SEDIMENT SAMPLING REPORT

WASHINGTON STATE DEPARTMENT OF NATURAL RESOURCES AQUATIC LANDS LEASE NO. 22-A02150

Prepared for GRAYS HARBOR HISTORICAL SEAPORT AUTHORITY

February 5, 2014 Project No. 0863.01.01

Prepared by Maul Foster & Alongi, Inc. 911 Western Avenue, Suite 575, Seattle WA 98104

SEDIMENT SAMPLING REPORT WASHINGTON STATE DEPARTMENT OF NATURAL RESOURCES AQUATIC LANDS LEASE NO. 22-A02150 The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

Madi Warah

Madi Novak Senior Environmental Scientist

Michael R. Murray Project Environmental Scientist

R:\0863.01 Harbor Architects\Report\03_2014.02.05 Sediment Sampling Report\Rf_GHHSA Sediment Sampling.docx

CONTENTS

TABLES AND ILLUSTRATIONS	IV
ACRONYMS AND ABBREVIATIONS	V
1 INTRODUCTION 1.1 REGULATORY BACKGROUND 1.2 SITE SETTING 1.3 SITE BACKGROUND 1.4 HISTORICAL DATA	1 1 1 2 2
 2 SEDIMENT SAMPLING AND ANALYSIS 2.1 CHEHALIS RIVER GRAB SAMPLES 2.2 FORMER MILL AREA SEDIMENT CORES 2.3 DELIVERY OF SAMPLES TO ANALYTICAL LABORATORY 	4 5 5 6
 RESULTS 3.1 CHEMICAL SCREENING 3.2 CHEHALIS RIVER SEDIMENT CONCENTRATIONS 3.3 WOODWASTE SCORING 	6 6 7 7
 4 SUMMARY AND CONCLUSIONS 4.1 CHEHALIS RIVER SAMPLES 4.2 FORMER MILL AREA SAMPLES 	8 8 8
LIMITATIONS	

REFERENCES

TABLES

FIGURE

APPENDIX A SAMPLING PHOTOGRAPHS

APPENDIX B

LABORATORY REPORTS

APPENDIX C

DATA VALIDATION MEMORANDUM

TABLES AND ILLUSTRATIONS

FOLLOWING REPORT:

TABLES

- 1 SAMPLE LOCATIONS AND ANALYSES
- 2 SAMPLE OBSERVATIONS
- 3 ANALYTICAL RESULTS
- 4 ANALYTICAL RESULTS—ORGANIC CARBON NORMALIZED
- 5 WOODWASTE SCORING

FIGURE

SAMPLE LOCATIONS, OBSERVED IMPACTS, AND SELECTED RESULTS

bml	below mudline
BTEX	benzene, toluene, ethylbenzene, xylenes
CSL	cleanup screening level
dioxins	polychlorinated dibenzo-p-dioxins and -furans
DNR	Washington State Department of Natural Resources
Ecology	Washington State Department of Ecology
GHHSA	Grays Harbor Historical Seaport Authority
the leased property	leased tideland and in-water property
MFA	Maul Foster & Alongi, Inc.
mg/kg	milligrams per kilogram
µg/kg	micrograms per kilogram
PAH	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PES	PES Environmental
PES	PES Environmental
pg/g	picograms per gram
SAIC	Science Applications International Corporation
the site	the uplands property and the leased property
SMS	Sediment Management Standards
SQS	Washington State sediment quality standards
SVOC	semivolatile organic compound
TEQ	toxicity equivalence
TOC	total organic carbon
WAC	Washington Administrative Code

On behalf of Grays Harbor Historical Seaport Authority (GHHSA), Maul Foster & Alongi, Inc. (MFA) has prepared this sediment sampling report for the leased tideland and in-water property (the leased property) located at 500 North Custer Street in Aberdeen, Washington (see the attached figure). The leased property, on the Chehalis River in Grays Harbor County, is being leased from the Washington State Department of Natural Resources (DNR) by Weyerhaeuser under Lease No. 22-A02150. GHHSA has entered into a sublease agreement of the state-owned aquatic lands from Weyerhaeuser. The terms of the sublease agreement include a requirement to conduct a sediment characterization study.

1.1 Regulatory Background

DNR requests "bookend" sediment sampling at the initiation and termination of an aquatic lease in order to differentiate baseline sediment conditions from impacts that occurred during the lease period, as well as to evaluate long-term trends in sediment conditions over the lease period. On February 2, 2011, in correspondence with Weyerhaeuser, DNR requested sediment sampling and proposed a sampling approach for the leased property. Floyd Snider, consultant to Weyerhaeuser, proposed a modification to the DNR-requested sampling in a proposal letter prepared for Weyerhaeuser on March 15, 2012 (Floyd | Snider, 2012). On March 26, 2012, DNR modified the Floyd Snider proposed sediment sampling plan (DNR, 2012) by expanding the analyte list for the three proposed surface sediment samples from the Chehalis River and requesting three sediment core samples in the Former Mill Area, a portion of the leased property (see the figure). MFA prepared a draft SAP (MFA, 2013a) incorporating the March 26, 2012 DNR modifications to the Floyd | Snider proposed SAP and submitted it to DNR on June 27, 2013. Comments were received from DNR via e-mail on July 16, 2013 (DNR, 2013a). MFA replied to DNR comments in a July 23, 2013, letter (MFA, 2013b); these were accepted by DNR in a July 31, 2013, e-mail (DNRb, 2013). Additional DNR conditions of approval were received on August 22, 2013 (DNRc, 2013). A final SAP was submitted by MFA on September 12, 2013 (MFA, 2013c) and approved by DNR. This report has been prepared consistent with the requirements of DNR's Draft State Owned Aquatic Lands Sediment Sampling and Analysis Guide (Integral, 2011).

1.2 Site Setting

The property leased from DNR by Weyerhaeuser (and subleased by GHHSA) encompasses approximately 16.9 acres (see the attached figure). The leased property is located in the alluvial meander plain of the Chehalis River in the northwestern margins of the Willapa Hills physiographic region of southwest Washington.

In the Former Mill Area, there is an approximately 100-by-200-foot area that is exposed at low tide and inundated to an existing bulkhead wall at high tide. Immediately upstream of the Former Mill Area is the Filled Tidelands area, and immediately downstream is the Dock Area, containing buildings and a dock structure. The leased property is proposed for future use as the homeport for the *Lady Washington* and *Hawaiian Chieftain* tall ships as part of a new maritime heritage facility called Seaport Landing.

1.3 Site Background

Sawmills have existed on the uplands property (directly south of the leased property) and the leased property (collectively referred to in this report as the site) since before 1900. Weyerhaeuser acquired the site in 1955 and operated several sawmills and associated support facilities through January 2009, when a mill, known as the small log sawmill, was permanently closed. There are no active wood products manufacturing operations at the site. When the facility was operational, raw logs were brought to the site in log rafts in the Chehalis River and tied up to pilings in the river in front of the Big Mill until the mid-1960s. After the mid-1960s, raw logs were brought to the site by truck and staged on log decks at various locations in and adjacent to the site. The Big Mill was originally configured to manufacture shingles and slats for housing construction. During World War II, the Big Mill was converted for manufacturing ship keels for the war effort. The precursor to the small log mill was added in 1972. The last upgrade to the small log mill took place in 2003. In 2006, the Big Mill and attached finger pier were closed; the associated structures were removed from the site between 2006 and 2008. This area is now known as the Former Mill Area. The site continued to operate the small log mill into early 2009. The operational history of the site is detailed in the Phase I assessment (PES Environmental [PES], 2010). GHHSA acquired the uplands property on March 29, 2013.

1.4 Historical Data

Sediment data from the vicinity of the leased property, dating back to 1999, were made available to MFA and are summarized below:

In 1999, the Washington State Department of Ecology (Ecology) conducted a sediment quality investigation on the Chehalis River (Ecology, 1999). Two of the samples collected during this investigation were taken from the leased property (see the figure for historical sample locations). Samples were analyzed for all Sediment Management Standards (SMS) compounds and for the presence of wood debris. There were no exceedances of the SMS, and no woodwaste accumulations were observed.

In August 2010, PES prepared an extensive Level I environmental site assessment. The document summarized past releases of contaminants, including the following:

- In 1989, red-end paint wastes (containing 1,1,1-trichloroethane and naphthalene) were released to Shannon Slough, resulting in a U.S. Environmental Protection Agency fine and cleanup action. Polycyclic aromatic hydrocarbons (PAHs); pentachlorophenol; and benzene, toluene, ethylbenzene, and xylenes (BTEX) were detected in sediments, but polychlorinated biphenyls (PCBs) were not.
- In 1992, storm system sediments were evaluated (catch basins and oil/water separators). Aroclor 1260 was detected at 959 parts per billion at CB-1, located southwest of the

planer. PAHs and BTEX were commonly detected in sediments, with dibenzofuran, phenol, and 2- and 4-methylphenol detected at the catch basin at the main shipping shed (located upland).

- Between 2006 and 2008, the Big Mill (which sat over the pocket beach area) was demolished. Over 1,000 piles were removed during the demolition.
- The facility stormwater pollution prevention plan significant spills report lists three spills: a June 2001 release of 17.5 gallons of hydraulic oil (with 1 gallon spilling into the Chehalis River); an August 2002 release of 4 gallons of hydraulic oil to the Chehalis River; and a March 2005 release of 50 gallons of diesel fuel to land near the stacker.
- The Big Mill, originally constructed in 1924, contained hydraulic equipment installed over plank flooring. Drip pans were installed under the hydraulic equipment in 1980.

In January 2010, Floyd | Snider evaluated water quality at the upper pocket beach area under the former mill. The study examined a small portion of the beach (the portion nearest the cement bulkhead). After evaluating the seeps and river water, the study concluded that the water coming from the seeps does not have the same general chemistry parameters as the river water, suggesting that the seeps are not bank storage of river water captured during high tide. Also, the study indicated that intermittent sheen previously observed at one of the seeps in 2009 was not observed during the site visit in January 2010.

In April 2011, Science Applications International Corporation (SAIC) conducted a soil and sediment investigation at the leased property (SAIC, 2011). Eight surface sediment samples were collected in the Dock Area immediately downstream of the Ecology sample locations from 1999 (see the figure). The surface sediment samples were analyzed for all SMS constituents and for the presence of wood debris and polychlorinated dibenzo-p-dioxins and -furans (referred to as dioxins in this report). Butyl-benzyl phthalate was detected at a concentration slightly above the sediment quality standard screening level. No accumulation of wood debris was encountered in the Dock Area. Surface sediment dioxins with a toxicity equivalence concentration (TEQ) of 6.1 picograms per gram (pg/g) were detected in the Dock Area.

SAIC also collected surface and subsurface sediments in the Former Mill Area (see the figure). Fine wood debris was encountered in surface sediment at two of the three locations, with woodwaste observed in all subsurface sediment throughout the length of the cores (i.e., 5 feet below mudline [bml]). Surface sediment from all three locations was composited for dioxin analysis, which resulted in a toxicity equivalent concentration (TEQ) of 68 pg/g. Two of the sample locations had initial surface mercury detections in excess of the SMS cleanup screening level (CSL), but later averaging with split samples found that the surface mercury concentrations exceeded the sediment quality standard but were below the CSL. One of the locations had surface exceedances of the SMS CSL for bis(2-ethylhexyl) phthalate and 1,4-dichlorobenzene. There were several subsurface sediment exceedances of the CSL in the Former Mill Area; however, the surface sediments are the point of compliance for SMS (Ecology, 2008).

The SAIC deliverable was a data report only and did not include interpretation of the analytical data. Floyd|Snider was retained to interpret the soil and sediment data in September 2011. Floyd|Snider concluded the following:

- SMS criteria apply to surface sediment only.
- High concentrations of total organic carbon (TOC) in sediment make carbon normalization of concentrations inappropriate.
- Consistent with the SMS standards, sediment in the Former Mill Area (pocket beach) is considered "station cluster of low concern."
- There are no SMS standards for dioxin, and therefore dioxins are not of concern (although Floyd|Snider indicated that the dioxin concentration is an order of magnitude above one of the background levels).
- Chemicals that exceed SMS criteria are sporadic and ubiquitous, and there is no evidence of a hazardous-substance release.
- Spatial averaging of concentrations results in a lower and evidently acceptable concentration.
- The lower pocket beach area (nearest the Chehalis River) is a depositional area, and contaminants there could be from deposition of contaminated river sediment. Also, remedy recontamination from upriver sources must be addressed before any cleanup actions are performed.
- Woodwastes and other waste materials were commonly used as fill material to create upland areas. Should woodwaste be removed, it would be necessary to determine how much to remove (e.g., at what volume or depth should the removal action cease [be considered complete?]).

2 SEDIMENT SAMPLING AND ANALYSIS

Sampling and analysis were conducted consistent with the final, DNR-approved SAP (MFA, 2013c), except as noted below. Surface sediment samples were collected in three locations in the Chehalis River from the top 10 centimeters of the river bottom. In the Former Mill Area, cores were advanced in three locations to 5 feet bml or refusal. Locations of the six sediment samples are shown in the attached figure. A tiered approach was used to trigger chemical analysis as described in the SAP. Table 1 summarizes the sediment sample locations, coordinates, and analyses conducted. All sediment samples were evaluated in the field for woodwaste content (percent by volume [Birkland, 1999]). Sample observations, including woodwaste content, are summarized in Table 2. Photographs of sediment samples collected in the Former Mill Area are included in Appendix A.

2.1 Chehalis River Grab Samples

Sediments were collected in the Chehalis River on November 8, 2013. A manually deployed Ponar[®] grab sampling device (i.e., modified Van Veen) with a 10-centimeter penetration capacity was used to collect surface sediment samples from a small sampling vessel. Sampling locations were approached at slow boat speeds and locations confirmed using a differential global positioning unit. Sample locations are presented in the figure. The grab sampler was deployed slowly, allowed to close, and retrieved aboard the vessel for sample acceptance criteria presented in the SAP (MFA, 2013c). The Ponar[®] device was emptied into a decontaminated stainless steel bowl and evaluated for woodwaste. The stainless steel sampling equipment was decontaminated between sample locations. Woodwaste and visual impacts were not observed in any sediment collected in the Chehalis River (see Table 2).

Surface sediment samples were analyzed for SMS constituents, dioxins, and TOC, consistent with the SAP (MFA, 2013c). In addition, salinity in pore water was analyzed to better understand ecologically relevant water conditions. Woodwaste was not present in the samples; therefore, analysis was not conducted for conventional parameters used to evaluate toxicity in sediment impacted with woodwaste.

2.2 Former Mill Area Sediment Cores

DNR and Ecology requested further sampling in the Former Mill Area to delineate historically elevated concentrations of butyl benzyl phthalate, pentachlorophenol, mercury, and dioxins (DNR, 2012). Three sediment cores were advanced on November 7 and 8, 2013, during low tides at the locations shown on the attached figure (CR-04, CR-05, and CR-06). Sample locations were adjusted from those presented in the SAP (MFA, 2013c), based on field observations.

Significant accumulations of woodwaste (greater than 25 percent) were observed in all locations in the Former Mill Area. Sheen, petroleum-hydrocarbon-like odor, and dark-colored water or water-product mixtures were observed below approximately 1 foot bml at all three locations. Water filled the holes to approximately 3 feet bml. As a result, samples collected below this depth may be cross-contaminated and not representative of in situ conditions. Field observations and sediment descriptions are summarized in Table 2.

Sediment cores from the Former Mill Area were analyzed using the tiered approach described in the SAP, except that bottom samples were not analyzed for chemical constituents, given the possible cross-contamination (see above). Based on field observations (see above), the list of analytes was expanded to include PCBs, semivolatile organic compounds (SVOCs), and petroleum hydrocarbons. Analysis for conventional parameters (TOC, total volatile solids, total solids, ammonia, total sulfides, and percent fines) was conducted on surface sediment samples and some subsurface sediment containing more than 25 percent woodwaste by volume (Birkland, 1999; DNR, 2012; Integral, 2011). Insufficient pore water volume was recovered by the laboratory for analysis of salinity and sulfides.

2.3 Delivery of Samples to Analytical Laboratory

Via courier under chain-of-custody procedures, all samples were shipped to the analytical laboratory, Analytical Resources Incorporated in Tukwila, Washington, on November 8, 2013. To maintain sample integrity, immediately after the sample containers were filled with sediment, they were placed in ice-filled coolers. Samples were maintained at approximately 4°C. The laboratory received the samples the same day.

3 RESULTS

Sediment samples were collected from three locations in the Chehalis River (surface sediment only, CR-01, CR-02, and CR-03), and three locations from the pocket beach in the Former Mill Area (surface and subsurface sediment, CR-04, CR-05, and CR-06). The locations are shown on the attached figure. Observations of physical impacts, including quantity of woodwaste, are summarized in Table 2.

Analytical results are presented in Table 3, and on an organic-carbon-normalized basis (for Chehalis River samples), in Table 4. Former Mill Area samples are not presented on an organic-carbonnormalized basis. Samples from the Former Mill Area had high TOC, ranging from 21 to 40 percent, likely due to the large amount of woodwaste present in this area. The high TOC makes it inappropriate to use carbon-normalized criteria for organics in this area (Michelsen, 1992); therefore, concentrations of organics were compared to the dry weight equivalents of the sediment quality standards (SQS) and CSL values.

Laboratory reports are provided in Appendix B. The data were reviewed for quality and found to be acceptable, with the appropriate qualifiers, for their intended use. The data quality review memorandum is provided as Appendix C.

3.1 Chemical Screening

Chemical concentrations are compared with the SMS marine criteria in Table 3. Locations with numerical exceedances are presented in the figure. Surface sediment exceedances of the SMS marine CSL are shaded in dark gray in Table 3, and include the following:

- 4-Methylphenol at CR-02 was marginally above the Washington State sediment quality standard (SQS) and CSL of 670 micrograms per kilogram (µg/kg) at 730 µg/kg.
- At CR-04, mercury was detected above the CSL of 0.59 milligram per kilogram (mg/kg) at 6.2 mg/kg, and benzoic acid was detected above the SQS and CSL of 650 μ g/kg at 1700 μ g/kg.
- AT CR-05, benzoic acid was detected above the SQS and CSL of 650 $\mu g/kg$ at 950 $\mu g/kg.$

Detected chemicals that are bioaccumulative (as defined by Washington Administrative Code [WAC] 173-333-310) are shaded in light gray in Table 3 and include dioxins, mercury, PCBs, and selected PAHs.

3.2 Chehalis River Sediment Concentrations

Sediment concentrations of dioxins, PCBs, and mercury in the Chehalis River were evaluated. These compounds were detected in sediment and are defined under WAC 173-333-310 as bioaccumulative chemicals. Also, because neither SMS nor DNR guidance presents numerical criteria for dioxins, some level of comparison to background concentrations is common practice. Existing Chehalis River sediment data collected within 1 mile of the site were queried from Ecology's EIM database; 46 sample locations were identified. Minimum, maximum, and average concentrations are summarized below. Note that data from the nearby Chehalis River sediment are used for comparison purposes only and are not considered background concentrations. Further evaluation of the Chehalis River data would be required to select appropriate background concentrations.

- Twelve of the 46 nearby samples were analyzed for dioxins. Dioxin TEQs were calculated for the EIM data,¹ resulting in a minimum TEQ of 0.36 pg/g, a maximum TEQ of 7.82 pg/g, and an average TEQ of 2.38 pg/g.
- Twenty-five of the samples were analyzed for PCBs. PCBs were not detected in any of the samples evaluated; however, many reporting limits were elevated compared to those currently achievable and attained for site samples. The total PCB minimum non-detect value was 0.64 U µg/kg, and the maximum non-detect value was 69 U µg/kg, with an average non-detect value of 21.5 µg/kg.
- Thirty-four of the samples were analyzed for mercury. Mercury concentrations ranged from not detected at a reporting limit of 0.008 mg/kg to a maximum concentration of 0.14 mg/kg. The average mercury concentration was 0.05 mg/kg.

3.3 Woodwaste Scoring

Samples containing more than 25 percent woodwaste by volume (Birkland, 1999) were analyzed for conventional sediment parameters. These parameters, along with other chemical analytes, are used to score each location according to Table A-3 of the DNR guidance (Integral, 2011). Woodwaste scoring is summarized in Table 5. Woodwaste scores ranged from "Medium Concern" to "High Concern" at all locations evaluated (i.e., in the Former Mill Area). Note that while pore water sulfides were not analyzed because of a lack of pore water, this parameter does not impact the results of the woodwaste screening.

¹ TEQ calculation methods were presented in the SAP (MFA, 2013c).

R:\0863.01 Harbor Architects\Report\03_2014.02.05 Sediment Sampling Report\Rf_GHHSA Sediment Sampling.docx

As a condition of a sublease agreement, DNR required sediment sampling within the leased area boundary (see the attached figure). Chemical analysis was performed on samples taken from six locations, and woodwaste scoring was performed at those locations with greater than 25 percent woodwaste by volume. Two primary areas were evaluated: the Chehalis River (represented by CR-01, CR-02, and CR-03), and the Former Mill Area (represented by CR-04, CR-05, and CR-06).

4.1 Chehalis River Samples

No impacts, including woodwaste, were observed in sediments collected in the Chehalis River portion of the leased property. Only one detection of 4-methylphenol at CR-02 was marginally above a screening criterion.

Bioaccumulative compounds PCBs and dioxins were also detected in Chehalis River sediment. PCBs were detected at a laboratory-estimated dry weight concentration of 12 μ g/kg in CR-02, where 4-methylphenol exceeded screening criteria (see above). PCBs were also detected in storm system solids during the 1990s. Note that PCBs are ubiquitous and are frequently present in the aquatic environment; however, because nearby Chehalis River sediment samples generally had elevated reporting limits for PCBs, a comparison of the PCB concentration at CR-02 with Chehalis River concentrations was not possible.

Dioxins were detected at all locations in the Chehalis River, with TEQs ranging from 12.4 pg/g to 15.8 pg/g. These TEQs are within an order of magnitude of the average dioxin TEQ (2.38 pg/g) in nearby Chehalis River samples.

4.2 Former Mill Area Samples

Significant accumulations of woodwaste (greater than 25 percent) were observed in all locations in the Former Mill Area. In addition, sheen, petroleum-hydrocarbon-like odor, and dark-colored water or water-product mixtures were observed below approximately 1 foot bml at all three locations.

Surface sediment exceedances of the SMS CSL in the Former Mill Area were limited to mercury and benzoic acid at CR-04 and benzoic acid at CR-05. Bioaccumulative chemicals PCBs, dioxins, and PAHs were detected in surface sediment. In subsurface sediment (10 centimeters to 5 feet bml), concentrations of dioxins, PCBs, SVOCs, PAHs, and total petroleum hydrocarbons generally increased relative to surface sediment concentrations.

Concentrations of dioxin TEQs in surface sediment in the Former Mill Area ranged from 27.2 pg/g to 68.9 pg/g, somewhat elevated relative to the Chehalis River nearby sample average dioxin TEQ of 2.38 pg/g. Subsurface concentrations ranged from 44.4 pg/g to 370 pg/g and appear to be substantially elevated relative to other Chehalis River samples.

PCB concentrations in surface sediment were 180 μ g/kg and 200 μ g/kg, while subsurface concentrations increased to between 690 μ g/kg and 1,170 μ g/kg. As noted in Section 3.2, the elevated PCB method reporting limits prevent an appropriate quantitative evaluation of samples historically collected nearby in the Chehalis River. However, relative to CR-02, the Chehalis River sample collected during this sampling event, the PCB concentrations in the Former Mill Area appear to be substantially elevated.

Similarly, PAH concentrations in surface sediment (total PAHs ranging from 2,580 μ g/kg to 4,680 μ g/kg) are elevated relative to Chehalis River samples collected during this sampling event (CR-01, CR-02, and CR-03, ranging from 42 mg/kg to 488 mg/kg), and concentrations increase in the subsurface in the Former Mill Area and range from 10,000 μ g/kg to 60,000 μ g/kg.

All samples collected in the Former Mill Area contained greater than 25 percent woodwaste by volume. Scoring of the woodwaste according to the DNR guidance (Integral, 2011) resulted in scores ranging from "Medium Concern" to "High Concern." Note that woodwastes and other waste materials were commonly used as fill material to create upland areas (Floyd | Snider, 2011).

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

The purpose of an environmental assessment is to reasonably evaluate the potential for or actual impact of past practices on a given site area. In performing an environmental assessment, it is understood that a balance must be struck between a reasonable inquiry into the environmental issues and an exhaustive analysis of each conceivable issue of potential concern. The following paragraphs discuss the assumptions and parameters under which such an opinion is rendered.

No investigation is thorough enough to exclude the presence of hazardous materials at a given site. If hazardous conditions have not been identified during the assessment, such a finding should not, therefore, be construed as a guarantee of the absence of such materials on the site.

Environmental conditions that cannot be identified by visual observation may exist at the site. Where subsurface work was performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations.

Except where there is express concern of our client, or where specific environmental contaminants have been previously reported by others, naturally occurring toxic substances, potential environmental contaminants inside buildings, or contaminant concentrations that are not of current environmental concern may not be reflected in this document.

Birkland, P.W. 1999. Soils and geomorphology. 3rd ed. New York: Oxford University Press.

DNR. 2012. Letter (re: Aberdeen former large log mill site sampling recommendations) to K. Johnson, Weyerhaeuser Company, Federal Way, Washington, from E. Shaffer, Washington State Department of Natural Resources, Aquatic Resources Division, Olympia, Washington. March 26.

DNR. 2013a. Electronic mail (re: Aberdeen sediment sampling plan) to M. Novak, Maul Foster & Alongi, Inc., from E. Shaffer, Washington State Department of Natural Resources. July 16.

DNR. 2013b. Electronic mail (re: Aberdeen sediment sampling plan) to M. Novak, Maul Foster & Alongi, Inc., from E. Shaffer, Washington State Department of Natural Resources. July 31.

DNR. 2013c. Electronic mail (re: draft SAP comments) to L. Bolton, Grays Harbor Historical Seaport Authority, from A. Hegland, Washington State Department of Natural Resources. August 22.

Ecology. 1999. Grays Harbor estuary sediment evaluation, chemical screening and station cluster analysis of selected locations. Publication No. 99-300. Washington State Department of Ecology Environmental Assessments Programs, Watershed Ecology Section, Olympia, Washington. January.

Ecology. 2008. Sediment sampling and analysis plan appendix, guidance on the development of sediment sampling and analysis plans meeting the requirements of the sediment management standards (Chapter 173-204 WAC). Publication No. 03-09-043. Washington State Department of Ecology Toxics Cleanup Program. Olympia, Washington. February.

Floyd | Snider. 2012. Letter (re: proposed sediment investigation in the Weyerhaeuser Aberdeen aquatic lands lease area) to K. Johnson and R. Laishley, Weyerhaeuser, from S. Bentsen, PE, and T. Floyd, PhD, Floyd | Snider, Seattle, Washington. March 15.

Integral. 2011. Draft state owned aquatic lands sediment sampling and analysis guide. Prepared for Washington State Department of Natural Resources, Olympia, Washington. Integral Consulting, Olympia, Washington. June.

MFA. 2013a. Draft Sediment Sampling and Analysis Plan, Washington State Department of Natural Resources Aquatic Lands Lease No. 22-A02150. Maul Foster & Alongi, Inc. June 27.

MFA. 2013b. Letter (re: GHHSA draft sediment sampling and analysis plan, response to DNR comments) to E. Shaffer, Washington State Department of Natural Resources, from M. Novak, Maul Foster & Alongi, Inc. July 23.

MFA. 2013c. Sediment Sampling and Analysis Plan, Washington State Department of Natural Resources Aquatic Lands Lease No. 22-A02150. Maul Foster & Alongi, Inc. September 12.

Michelsen, T. 1992. Technical information memorandum, organic carbon normalization of sediment data. Publication No. 05-09-050. Washington State Department of Ecology Sediment Management Unit. December.

PES. 2010. Level I environmental site assessment. PES Environmental, Eugene, Oregon. August 13.

SAIC. 2011. Weyerhaeuser aquatic lands lease confirmatory sampling, data report. Final. Submitted to Washington State Department of Natural Resources. Science Applications International Corporation, Bothell, Washington. August 12.

TABLES

Table 1Sample Locations and AnalysesGrays Harbor Historical Seaport AuthorityAberdeen, Washington

Sample Location	Sample Type	Sample Depth	Sample C	oordinates	
Chehalis Riv	ver		•		
CR-01	Surface Grab (Ponar)	0-10 cm bml	817108.6634	615592.2936	
CR-02	Surface Grab (Ponar)	0-10 cm bml	817677.5240	615747.8208	
CR-03	Surface Grab (Ponar)	0-10 cm bml	818247.8576	615977.6148	
Former Mill	Area		•		
CR-04	Sediment Core	0- 10 cm bml 10 cm -1 foot bml 1-2.5 feet bml 2.5-5 feet bml	816924.1940	615373.2920	
CR-05	Sediment Core	0-10 cm bml 10 cm-2.5 feet bml 2.5-3.5 feet bml	816946.1480	615432.6330	
CR-06	Sediment Core	0-10 cm bml 10 cm-1 foot bml 1-2.5 feet bml 2.5-4 feet bml	816971.8790	615382.2180	
NOTES: bml = below cm = centim					

Sample Location	CR-01	CR-02	CR-03	CR-04					CR-05		CR-06		
Collection Depth (feet bml)	0-0.33	0-0.33	0-0.33	0-0.03	0-0.33	2.5	4-5	0-0.33	2.5	3.5	0-0.33	2.5	5
Woodwaste (%)	0	0	0	50	75	55	55	50	80	10	70	70	70
Sheen	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No
Odor	No	No	No	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	No
Description	Gray silty sand (SM), loose, trace organic debris.	Gray to tan silty sand (SM), loose, trace organic debris, tan mottles.	Gray silty sand (SM), loose, trace organic debris.	Angular lumber and construction debris.				under 4 mm, w black-colored	ML) with 10% to 80 ⁶ et, medium densit water/product mix nstruction debris.	y, pockets of	Tan silty sand (ML) with 70% woodwaste under 4 mm, wet, medium density, pockets of black- colored water/product mixture Angular lumber and construction debris.		

bml = below mudline.

mm = millimeter(s).

Table 2 Sample Observations Grays Harbor Historical Seaport Authority Site Aberdeen, Washington

Location:	SMS Marir	ne Cleanup	CR-01	CR-02	CR-03	CR-04	CR-04	CR-04	CR-05	CR-05	CR-06	CR-06
Sample Name:	Screeni	ng Levels	CR01-10cm	CR02-10cm	CR03-10cm	CR04-10cm	CR04-2.5	CR04-5	CR05-10cm	CR05-2.5	CR06-10cm	CR06-2.5
Collection Date:	SQS	SIZmax, CSL,	11/08/2013	11/08/2013	11/08/2013	11/07/2013	11/08/2013	11/08/2013	11/08/2013	11/08/2013	11/07/2013	11/07/2013
Collection Depth (ft bgs):	3Q3	MCUL	0-0.33	0-0.33	0-0.33	0-0.33	1-2.5	4-5	0-0.33	1-2.5	0-0.33	1-2.5
Dioxin/Furans (pg/g)												
1,2,3,4,6,7,8-HpCDD	NV	NV	211	201	66.1	817	4070		1820	12200	1080	1090
1,2,3,4,6,7,8-HpCDF	NV	NV	31.9	113	24.7	165	919		437	1170	258	276
1,2,3,4,7,8,9-HpCDF	NV	NV	1.59	4.94	0.894 J	7.55 U	42.8		19.8	81.3	13.2	15.5
1,2,3,4,7,8-HxCDD	NV	NV	1.76	1.96	1.42	4.26	32.5		11.2	24.5	12.7	8.21
1,2,3,4,7,8-HxCDF	NV	NV	2.77	4.6	1.02	7.26	35.9		15.3	115	18.1	21.7
1,2,3,6,7,8-HxCDD	NV	NV	9.98	10.4	4.81	54.5	350		136	1020	63.8	72.8
1,2,3,6,7,8-HxCDF	NV	NV	1.19	3.22	0.862 J	3.38	18.9		10.9	51.7	8.9	8.35
1,2,3,7,8,9-HxCDD	NV	NV	11.1	12.4	12.9	10.2	48.1		29.9	98.1	16.5	15.4
1,2,3,7,8,9-HxCDF	NV	NV	0.778 U	0.886 J	0.268 J	2.45	14.6		6.11	62.9	4.79	4.66
1,2,3,7,8-PeCDD	NV	NV	3.93	4.53	5.08	4.34	18.8		13.9	34.1	9.35	8.27
1,2,3,7,8-PeCDF	NV	NV	0.683 J	0.804 J	0.508 J	2.06	12.4		4.73	41.4	3.28	3.24
2,3,4,6,7,8-HxCDF	NV	NV	1.8	5.58	0.785 J	5.09	22.2		11.1	69.3	16.9	16.3
2,3,4,7,8-PeCDF	NV	NV	0.814 J	1.13	0.594 J	3.43	15.7		5.82	43.5	5.96	5.87
2,3,7,8-TCDD	NV	NV	2.62	2.89	3.56	1.14 U	3.97		3	5.26	2.09	2.11
2,3,7,8-TCDF	NV	NV	1.96	2.18	1.34	3.53	16		6.3	54.3	4.87	4.95
OCDD	NV	NV	1690	1550	489	5340 J	23500 J		10300 J	68300 J	7830 J	6810 J
OCDF	NV	NV	51	211	36.4	476	1900		863	3100	680	652
Total HpCDDs	NV	NV	485	433	167	1530	7520		3750	21300	2480	2050
Total HpCDFs	NV	NV	87.1 U	310	55.9	678 U	3910		1560	5060 U	950	1120 U
Total HxCDDs	NV	NV	97	114	80.8 U	350 U	1540 U		1010 U	4840	742 U	783 U
Total HxCDFs	NV	NV	52.5 U	125	24.4 U	301 U	2130		853	6030 U	463 U	518 U
Total PeCDDs	NV	NV	25.8	34.9	30.6	68.7 U	133 U		334 U	862 U	88.7	67 U
Total PeCDFs	NV	NV	18 U	47.6 U	13.2 U	101 U	658 U		281 U	2660 U	203 U	147 U
Total TCDDs	NV	NV	17.4 U	28.1 U	24.7 U	17.5 U	32.6 U		73.6 U	180	42.6 U	28.7
Total TCDFs	NV	NV	12.4 U	33 U	16.7 U	27.9 U	119 U		78.1 U	558 U	82.8 U	62.3 U
Dioxin TEQ	NV	NV	13.1	15.8	12.4	27.2	143		68.9	370	44.9	44.4
Total Metals (mg/kg)												
Arsenic	57	93	10 U	9 U	10 U							20 U
Cadmium	5.1	6.7	0.5	0.4	0.5 U							1 U
Chromium	260	270	40 J	38.5 J	48 J							26 J
Copper	390	390	58 J	56.3 J	65.4 J							96 J
Lead	450	530	7	9	8							110
Mercury	0.41	0.59	0.05	0.1	0.09	6.2	0.5 J		0.16	0.5 J	0.55	0.53
Silver	6.1	6.1	0.7 U	0.6 U	0.8 U							1 U
Zinc	410	960	87	79	91							237

Location:		ie Cleanup	CR-01	CR-02	CR-03	CR-04	CR-04	CR-04	CR-05	CR-05	CR-06	CR-06
Sample Name:		ng Levels	CR01-10cm	CR02-10cm	CR03-10cm	CR04-10cm	CR04-2.5	CR04-5	CR05-10cm	CR05-2.5	CR06-10cm	CR06-2.5
Collection Date:		SIZmax, CSL,	11/08/2013	11/08/2013	11/08/2013	11/07/2013	11/08/2013	11/08/2013	11/08/2013	11/08/2013	11/07/2013	11/07/2013
Collection Depth (ft bgs):	SQS	MCUL	0-0.33	0-0.33	0-0.33	0-0.33	1-2.5	4-5	0-0.33	1-2.5	0-0.33	1-2.5
PCBs (µg/kg)		WICOL	0-0.33	0-0.33	0-0.33	0-0.33	1-2.0	4-0	0-0.33	1-2.0	0-0.33	1-2.0
Aroclor 1016	NV	NV	18 U	19 U	19 U	20 UJ	19 UJ		20 UJ	19 UJ		20 U
Aroclor 1221	NV	NV	18 U	19 U	19 U	20 UJ	19 UJ		20 UJ	19 UJ		20 U
Aroclor 1232	NV	NV	23 U	38 U	46 U	20 UJ	19 UJ		20 UJ	19 UJ		20 U
Aroclor 1242	NV	NV	18 U	19 U	19 U	20 UJ	19 UJ		20 UJ	19 UJ		20 U
Aroclor 1248	NV	NV	18 U	19 U	19 U	29 UJ	48 UJ		29 UJ	97 UJ		99 U
Aroclor 1254	NV	NV	18 U	12 J	19 U	97 UJ	440 J		98 UJ	490 J		200 U
Aroclor 1260	NV	NV	18 U	19 U	19 U	200 J	730 J		180 J	670 J		690
Total PCBs ^a	12000	65000	ND	12 J	ND	200 J	1170 J		180 J	1160 J		690
SVOCs (µg/kg)												
1,2,4-Trichlorobenzene	810	1800	4.8 U	4.9 U	4.8 U	100 UJ	81 UJ		43 J	74 J		70 U
1,2-Dichlorobenzene	2300	2300	4.8 U	4.9 U	4.8 U	100 UJ	81 UJ		58 UJ	88 UJ		70 U
1,3-Dichlorobenzene	NV	NV	4.8 U	4.9 U	4.8 U	100 UJ	81 UJ		620 J	280 J		70 U
1,4-Dichlorobenzene	3100	9000	4.8 U	19 J	4.8 U	100 UJ	81 UJ		1000 J	540 J		70 U
2,4-Dimethylphenol	29	29	24 U	24 U	24 U	530 UJ	400 UJ		290 UJ	440 UJ		350 U
2-Methylphenol	63	63	4.8 U	4.9 U	3.3 J	100 UJ	81 UJ		44 J	88 UJ		45 J
4-Methylphenol	670	670	30	730	60	420 UJ	320 UJ		310 J	280 J		420
Benzoic acid	650	650	190 U	240	180 J	1700 J	3200 UJ		950 J	3500 UJ		860 J
Benzyl alcohol	57	73	15 J	43 J	43 J	420 UJ	320 UJ		230 UJ	350 UJ		280 U
Bis(2-ethylhexyl)phthalate	47000	78000	29 J	49 U	48 U	1000 UJ	870 J		960 J	9400 J		1900
Butylbenzylphthalate	4900	6400	4.8 U	4.9 U	4.8 U	58 UJ	81 UJ		58 UJ	88 UJ	310 UJ	70 U
Dibenzofuran	15000	58000	12 J	20	19 U	420 UJ	210 J		310 J	230 J		490
Diethylphthalate	61000	110000	56	20	36	420 UJ	320 UJ		230 UJ	350 UJ		270 J
Dimethyl phthalate	53000	53000	4.8 U	3.1 J	2.5 J	100 UJ	81 UJ		58 UJ	88 UJ		70 U
Di-n-butyl phthalate	220000	1700000	19 U	20 U	19 U	420 UJ	320 UJ		230 UJ	350 UJ		280 U
Di-n-octyl phthalate	58000	4500000	19 U	20 U	19 U	420 UJ	320 UJ		230 UJ	350 UJ		280 U
Hexachlorobenzene	380	2300	4.8 U	4.9 U	4.8 U	100 UJ	81 UJ		58 UJ	88 UJ		70 U
Hexachlorobutadiene	3900	6200	4.8 U	4.9 U	4.8 U	100 UJ	81 UJ		58 UJ	88 UJ		70 U
N-Nitrosodiphenylamine	11000	11000	4.8 U	4.9 U	4.8 U	100 UJ	81 UJ		58 UJ	88 UJ		70 U
Pentachlorophenol	360	690	19 U	20 U	19 U	270 J	400 J		230 UJ	350 UJ	1500 UJ	240 J
Phenol	420	1,200	24	94	43	290 J	390 J	980 J	570 J	530 J	370 J	240 J
PAHs (µg/kg)									_			
2-Methylnaphthalene	38000	64000	19 U	28	19 U	420 UJ	320 UJ		310	350 UJ		780
Acenaphthene	16000	57000	14 J	20	19 U	420 UJ	180 J		210	390 J		490
Acenaphthylene	66000	66000	19 U	68	19 U	420 UJ	320 UJ		170	350 UJ		520
Anthracene	220000	1200000	14 J	16 J	19 U	420 UJ	290 J		230	320 J		750
Benzo(a)anthracene	110000	270000	28	11 J	19 U	250 J	640 J		390	680 J		1300
Benzo(a)pyrene	99000	210000	21	20 U	19 U	300 J	680 J		340 J	530 J		1200
Benzo(ghi)perylene	NV	NV	14 J	15 J	19 U	230 J	660 J		260 J	300 J		590

Location:	SMS Marin	ne Cleanup	CR-01	CR-02	CR-03	CR-04	CR-04	CR-04	CR-05	CR-05	CR-06	CR-06
Sample Name:		ng Levels	CR01-10cm	CR02-10cm	CR03-10cm	CR04-10cm	CR04-2.5	CR04-5	CR05-10cm	CR05-2.5	CR06-10cm	CR06-2.5
Collection Date:		SIZmax, CSL,	11/08/2013	11/08/2013	11/08/2013	11/07/2013	11/08/2013	11/08/2013	11/08/2013	11/08/2013	11/07/2013	11/07/2013
Collection Depth (ft bgs):	SQS	MCUL	0-0.33	0-0.33	0-0.33	0-0.33	1-2.5	4-5	0-0.33	1-2.5	0-0.33	1-2.5
Chrysene	110000	460000	35	17 J	19 U	530 J	940 J		420 J	460 J		1600
Dibenzo(a,h)anthracene	NV	NV	3 J	4.9 U	4.8 U	120 J	360 J		94 J	190 J		150
Fluoranthene	160000	1200000	100	63	25	590 J	2200 J		1300 J	3900 J		3200
Fluorene	23000	79000	14 J	15 J	19 U	420 UJ	180 J		260 J	230 J		650
Indeno(1,2,3-cd)pyrene	34000	88000	19 U	20 U	19 U	420 UJ	480 J		200 J	190 J		490
Naphthalene	99000	170000	25	280	23	420 J	340 J		720 J	440 J		1800
Phenanthrene	100000	480000	47	89	19	320 J	370 J		700 J	470 J		3600
Pyrene	1000000	1400000	110	61	21	700 J	1800 J		1300 J	3100 J		3600
Total Benzofluoranthenes	230000	450000	52	22 J	13 J	550 J	1700 J		660	810 J		2000
Total PAHs ^a	NV	NV	477	705	101	2580 J	6410 J		4680 J	8720 J		22720
Total HPAHs	960000	5300000	363	189	59	1840 J	5700 J		3260 J	7810 J		13640
Total LPAHs	370000	780000	114	488	42	740 J	710 J		1420 J	910 J		7290
NWTPH-Dx (mg/kg)	•	•		•	•			•	•			
Diesel	NV	NV				2400 J	3200 J		1200 J	3200 J		20000
Motor-Oil Range	NV	NV				7400 J	10000 J		4800 J	13000 J		60000
NWTPH-Gx (mg/kg)		Į		<u>I</u>	<u>I</u>		Į	Į				
Gasoline	NV	NV										54 UJ
Conventionals	•	1		1	1		1		1		1	
Ammonia (as N) (mg N/kg)	NV	NV				0.47 U		15.2	7.21		1.37	14.0
Sulfide (mg/kg)	NV	NV				6.46		179	320		906	2910
Total Organic Carbon (%)	NV	NV	2.06 J	3.21 J	2.91 J	31.4 J		16.5 J	13.6 J		35.6 J	49.5 J
Total Volatile Solids (%)	NV	NV				59.91		38.2	36.49		60.05	69.23
Total solids (%)	NV	NV	44.09	51.8	36.4	20.62		19.98	30.32		21.4	21.59
Grain Size (%)		1		1	1		r		1			
Gravel	NV	NV				22.8		23.6	20.2		22.7	
Very coarse sand	NV	NV				13.8		13	11.4		13	
Coarse sand	NV	NV				14.2		10.7	13.2		15.7	
Medium sand	NV	NV				8.5		6.1	10.5		11.9	
Fine sand	NV	NV				3.7		3.2	6		5.1	
Very fine sand	NV	NV				1.4		1.4	3.5		2	
Coarse silt	NV	NV				7.2		1.3	8.1		4.1	
Medium silt	NV	NV				5.9		10.6	7.7		5.1	
Fine silt	NV	NV				6.2		8.9	5.1		4.5	
Very fine silt	NV	NV				4.8		6.1	4.5		3.7	
Coarse clay	NV	NV				2.9		4.3	2.1		2.7	
Medium clay	NV	NV				2.6		3.7	2.4		2.1	
Fine clay	NV	NV				6.1		7.2	5.4		7.4	
Total fines	NV	NV				35.6		42.1	35.3		29.7	
Pore Water Analysis	N11 /	ND /	10700	10000	17500			I	1			
Conductivity (µmhos/cm)	NV	NV	18700	12200	17500							
Salinity (ppt)	NV	NV	11	6.9	10.2							

R:\0863.01 Harbor Architects\Report\03_2014.02.05 Sediment Sampling Report\Tables\ T-Sed Report Tables/T-3 Analytical Results

NOTES:

Detections are in **bold** font.

Detections that exceed the CSL are shaded in dark gray. Non-detect results are not screened against SLVs.

Detections of bioaccumulative chemicals defined in WAC 173-333-310 are shaded in light gray.

-- = not analyzed.

CSL = cleanup screening level.

ft bgs = feet below ground surface.

HPAH = high-molecular-weight PAH.

J = Result is an estimated value.

LPAH = low-molecular-weight PAH.

MCUL = minimum cleanup level.

mg N/kg = milligrams of nitrogen per kilogram.

mg/kg = milligrams per kilogram.

µg/kg = micrograms per kilogram.

µmhos/cm = micromhos per centimeter = microSiemen.

ND = not detected.

NV = no value.

NWTPH-Dx = total petroleum hydrocarbons-diesel and motor oil.

NWTPH-Gx = total petroleum hydrocarbons—gasoline.

PAH = polycyclic aromatic hydrocarbon.

PCB = polychlorinated biphenyl.

pg/g = picograms per gram (parts per trillion).

ppt = parts per thousand.

SIZmax = Sediment Impact Zone maximum allowable concentration (WAC 173-204-420).

SLV = screening level value.

SQS = Sediment Quality Standards (WAC 173-294-320).

SVOC = semivolatile organic compound. When samples were analyzed by both 8270D and 8270D SIM methods, or when samples were reanalyzed, the higher detected value or lower non-detect value was used.

U = Result is non-detect at method reporting limit.

UJ = Result is non-detect at or above method reporting limit. Reported value is estimated.

WAC = Washington Administrative Code.

^aCalculated value. Only detected values are summed.

Table 4Analytical Results—Organic Carbon NormalizedGrays Harbor Historical Seaport Authority SiteAberdeen, Washington

Location: Sample Name:	SMS Marine Cleanu	up Screening Levels	CR-01-OC Normal CR01-10cm	CR-02-OC Normal CR02-10cm	CR-03-OC Normal CR03-10cm
Collection Date:	SQS—Organic	CSL—Organic	11/08/2013	11/08/2013	11/08/2013
Collection Depth (ft bgs):	Carbon	Carbon	0-0.83	0-0.83	0-0.83
PCBs (µg/kg-OC)					
Aroclor 1016	NV	NV	874 U	592 U	653 U
Aroclor 1221	NV	NV	874 U	592 U	653 U
Aroclor 1232	NV	NV	1117 U	1184 U	1581 U
Aroclor 1242	NV	NV	874 U	592 U	653 U
Aroclor 1248	NV	NV	874 U	592 U	653 U
Aroclor 1254	NV	NV	874 U	374 J	653 U
Aroclor 1260	NV	NV	874 U	592 U	653 U
Total PCBs ^a	12000	65000	ND	374 J	ND
SVOCs (µg/kg-OC)					
1,2,4-Trichlorobenzene	810	1800	233 U	153 U	165 U
1,2-Dichlorobenzene	2300	2300	233 U	153 U	165 U
1,3-Dichlorobenzene	NV	NV	NA	NA	NA
1,4-Dichlorobenzene	3100	9000	233 U	592 J	165 U
Bis(2-ethylhexyl)phthalate	47000	78000	1408 J	1526 U	1649 U
Butylbenzylphthalate	4900	6400	233 U	153 U	165 U
Dibenzofuran	15000	58000	583 J	623	653 U
Diethylphthalate	61000	110000	2718	623	1237
Dimethyl phthalate	53000	53000	233 U	97 J	86 J
Di-n-butyl phthalate	220000	1700000	922 U	623 U	653 U
Di-n-octyl phthalate	58000	4500000	922 U	623 U	653 U
Hexachlorobenzene	380	2300	233 U	153 U	165 U
Hexachlorobutadiene	3900	6200	233 U	153 U	165 U
N-Nitrosodiphenylamine	11000	11000	233 U	153 U	165 U

Table 4Analytical Results—Organic Carbon NormalizedGrays Harbor Historical Seaport Authority SiteAberdeen, Washington

Location: Sample Name:	SMS Marine Cleanu	ip Screening Levels	CR-01-OC Normal CR01-10cm	CR-02-OC Normal CR02-10cm	CR-03-OC Normal CR03-10cm	
Collection Date:	SQS—Organic	CSL—Organic	11/08/2013	11/08/2013	11/08/2013	
Collection Depth (ft bgs):	Carbon	Carbon	0-0.83	0-0.83	0-0.83	
PAHs (µg/kg-OC)						
2-Methylnaphthalene	38000	64000	922 U	872	653 U	
Acenaphthene	16000	57000	680 J	623	653 U	
Acenaphthylene	66000	66000	922 U	2118	653 U	
Anthracene	220000	1200000	680 J	498 J	653 U	
Benzo(a)anthracene	110000	270000	1359	343 J	653 U	
Benzo(a)pyrene	99000	210000	1019	623 U	653 U	
Benzo(ghi)perylene	NV	NV	680 J	467 J	653 U	
Chrysene	110000	460000	1699	530 J	653 U	
Dibenzo(a,h)anthracene	NV	NV	146 J	153 U	165 U	
Fluoranthene	160000	1200000	4854	1963	859	
Fluorene	23000	79000	680 J	467 J	653 U	
Indeno(1,2,3-cd)pyrene	34000	88000	922 U	623 U	653 U	
Naphthalene	99000	170000	1214	8723	790	
Phenanthrene	100000	480000	2282	2773	653	
Pyrene	1000000	1400000	5340	1900	722	
Total Benzofluoranthenes	230000	450000	2524	685 J	447 J	
Total PAHs ^a	NV	NV	23155	21963	3471	
Total HPAHs	960000	5300000	17621	5888	2027	
Total LPAHs	370000	780000	5534	15202	1443	
Total Organic Carbon (%)			2.06 J	3.21 J	2.91 J	

R:\0863.01 Harbor Architects\Report\03_2014.02.05 Sediment Sampling Report\Tables\ T-Sed Report Tables/T-4 OC Results

Table 4Analytical Results—Organic Carbon NormalizedGrays Harbor Historical Seaport Authority SiteAberdeen, Washington

NOTES:

Detections are in **bold** font. CSL = cleanup screening level. ft bgs = feet below ground surface. HPAH = high-molecular-weight PAH. J = Result is an estimated value. LOQ = limit of quantitation. LPAH = low-molecular-weight PAH. ND = not detected. NV = no value. PAH = polycyclic aromatic hydrocarbon. PCB = polychlorinated biphenyl. SQS = Sediment Quality Standards (WAC 173-294-320). SVOC = semivolatile organic compound. When samples were analyzed by both 8270D and 8270D SIM methods, or when samples were reanalyzed, the higher detected value or lower non-detect value was used.

U = Result is non-detect at method reporting limit.

^aCalculated value. Only detected values are summed.

Table 5Woodwaste ScoringGrays Harbor Historical Seaport Authority SiteAberdeen, Washington

		Location:	CR-0-	4	CR-0	4	CR-C)5	CR-0)6	CR-0	6
	ç	Sample Name:	CR04-10)cm	CR04	-5	CR05-10cm		CR06-10cm		CR06-2.5	
	С	ollection Date:	11/07/2	013	11/08/2013		11/08/2013		11/07/2013		11/07/2013	
	Collection Depth (ft bgs):						0-0.8	33	0-0.8	3	1-2.5	5
	Woodwaste S (DNR,			4-5								
	Score Criteria Level 1	Score Criteria Level 2	Points		Points			Points		Points		Points
Phenol	420	1,200	290 J	0	980 J	1	570 J	1	370 J	0	240 J	0
Ammonia (as N) (mg N/kg)	≥30<40	≥40	0.47 U	0	15.2	0	7.21	0	1.37	0	14.0	0
Sulfide (mg/kg)	≥200<300	≥300	6.46	0	179	0	320	2	906	2	2910	2
Total Organic Carbon (%)	≥5<10	≥10	31.4 J	2	16.5 J	2	13.6 J	2	35.6 J	2	49.5 J	2
Total Volatile Solids (%)	≥10<15	>15	59.91	2	38.2	2	36.49	2	60.05	2	69.23	2
Total Solids (%)	≤50≥40	<40	20.62	2	19.98	2	30.32	2	21.4	2	21.59	2
Total Score												
				6		7		9		8		8
NOTES:												
<5 = Low Concern.												
≥5 < 6 = Low Medium Concern.												
≥6 < 7 = Medium Concern.												
>7 = High Concern.												
mg N/kg = milligrams of nitroger	ו per kilogram.											
mg/kg = milligrams per kilogram	1.											
J = Result is an estimated value												
U = Result is non-detect at meth	od reporting limit.											

FIGURE

Figure Sample Locations and **Select Analytical Results**

Grays Harbor Historical Seaport Authority Aberdeen, Washington

Legend

This product is for informational purposes and may not have been prepared for, or be suitable for kgal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

APPENDIX A SAMPLING PHOTOGRAPHS

PHOTOGRAPHS

Project Name:GHHSA Sediment SamplingProject Number:0863.01.03

Photo No. 1

Description

Sediment from CR-06 showing wood waste and visual impacts. 11/7/2013

Photo No. 2

Description Wood waste and visual impacts at CR-05. 11/8/2013

 $R: \label{eq:action} Report \ Architects \ Report \ 03_2014.02.05 \ Sediment \ Sampling \ Report \ Appendices \ App \ A-Photos. doc$

Photo No. 3

Description Wood waste and pocket of impacted fluid at CR-04. 11/8/2013

PHOTOGRAPHS

Project Name:GHHSA Sediment SamplingProject Number:0863.01.03

<u>Photo No.</u> 4

Description Wood waste and impacted fluid at CR-06. 11/7/2013

 $\label{eq:resonance} R: \label{eq:resonance} 03_{2014.02.05} \ Sediment \ Sampling \ Report \ Appendices \ App \ A - Photos. doc$

<u>Photo No.</u> 5

Description Wood waste and pocket of impacted fluid at CR-04. 11/8/2013

Photographs

Project Name:GHHSA Sediment SamplingProject Number:0863.01.03

 $R: \label{eq:action} 03_{2014.02.05} \ Sediment \ Sampling \ Report \ Appendices \ App \ A \ - \ Photos. doc$

APPENDIX B LABORATORY REPORTS ON ATTACHED CD

2 December 2013

Mike Murray Maul, Foster and Alongi, Inc 2001 NW 19th Avenue Suite 200 Portland, OR 97209

RE: Project: GHHSA ARI Job Nos.: XN64, XO00

Dear Mike:

Please find enclosed the original chain of custody records and the final results for the samples from the project referenced above.

Analytical Resources, Inc. (ARI) accepted fourteen sediment samples on November 8, 2013. Six samples were placed on hold as instructed. The remaining samples were analyzed for NWTPH-G, SVOCs, dioxins/furans, PCBs, NWTPH-Dx, total metals, porewater salinity and conventional parameters as requested. No porewater was extracted from samples CR04, CR05 or CR06. Porewater salinity is not available for these samples.

The percent recovery for the surrogates, bromobenzene and trifluorotoluene, were low following the initial NWTPH-G analysis of sample CR06-2.5. This sample was re-extracted and re-analyzed. The percent recoveries for both surrogates were low for the re-analysis. Since the percent recoveries for all spikes and surrogates were within established QC limits for the corresponding MB and LCS, it was concluded that the sample matrix was the cause of the low surrogate recoveries. No further corrective actions were taken. The results for the original analysis only have been submitted.

The percent differences (%Ds) for two compounds were high for the CCALs that bracketed the SIM-SVOA analyses of these samples. All positive results have been flagged with a "Q" qualifier to denote the high %Ds.

The percent recovery for the surrogate, TCMX, was low following the initial PCB analysis of sample CR01-10cm. Since the percent recovery for the surrogate, DCBP, was within established QC limits for this sample, no corrective actions were taken.

A small amount of contamination was detected in the method blank associated with the sulfide analyses of these samples. Sulfide was detected in all samples associated with this blank. The concentrations of sulfide measured in all samples associated with this blank were significantly greater than the concentration found in the blank for all samples except CR04-10cm. This sample only was re-prepared and re-analyzed. The re-analysis proceeded without incident of note. The result for the re-analysis only has been submitted for this sample. The results for the original analyses have been submitted for all other samples.

Page 1 of ______
Page 2

Murray, MFA GHHSA XN64, XO00 Sediment

2 December 2013

A matrix duplicate (MD) was prepared and analyzed for sulfide in conjunction with sample CR04-10cm. The RPD was high following the analysis of the MD. Since the percent recovery for sulfide was within acceptable QC limits for the corresponding LCS, it was concluded that a lack of sample homogeneity was the cause of the high RPD. No corrective actions were taken.

A matrix spike (MS) was prepared and analyzed for TOC in conjunction with sample CR04-10cm. The percent recovery was low following the analysis of the MS. The MS was re-prepared and reanalyzed. The percent recovery was low for the re-analysis. Since the percent recovery for TOC was within acceptable QC limits for the corresponding SRM and LCS, it was concluded that the sample matrix was the cause of the low MS recoveries. No further corrective actions were taken. The result for the original analysis only has been submitted for the MS.

An MD was prepared and analyzed for total metals in conjunction with sample CR06-2.5. The RPDs for chromium, copper and mercury were high following the analysis of the MD. Since the percent recoveries for all elements were within acceptable QC limits for the corresponding LCS, it was concluded that a lack of sample homogeneity was the cause of the high RPDs. No corrective actions were taken.

An MS was prepared and analyzed for total metals in conjunction with sample CR06-2.5. The percent recovery for mercury was low following the analysis of the MS. Since the percent recovery for mercury was within acceptable QC limits for the corresponding LCS, it was concluded that the sample matrix was the cause of the low MS recovery. No corrective actions were taken.

The remaining analyses proceeded without incident of note.

An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

Mark D. Harris

Project Manager 206/695-6210 markh@arilabs.com

cc: files XN64, XO00

Enclosures

Chain of Custody Record & Laboratory Analysis Reque	d & Labo	ratory A	nalysis F	lequest								
ARI Assigned Number: XNUL	Turn-around Requested:	Ind Requested:	-6		Page:	-	ن ر ت	d			Analyti	Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company: May 1 Toster 3 A long 1	6	Phone:	Phone: 9715442139	139	Date:	8/13	lce Present?	, c			4611 So Tukwila	4611 South 134th Place, Suite 100 Tukwila, WA 98168
<u>ت</u> ک	1			-	No. of Coplers:	9	Cooler Temps:	3.2,0.4,5	5/91		206-69	206-695-6200 206-695-6201 (fax)
Client Project Name:	þ							salysis Reque		04		Notes/Comments
CH H24	•					ary -1		24	1.1	<u>ک</u>		"Conuntionals"
Client Project #: 0863,01,01	Samplers:	MRM,	28/6	2	v. /v	des 01 10010 1-20	1	2:57 Jow Jua;	Mel S Hel S	م،'v <u>ج،</u> ما ^ر لاك	4001 (1 /4	include: TOCI
<u>-</u>		i			م د. م لارا	473 04.40 18-11	<u>~ >1</u> 2)7	20 7,1 4,1 4,4	ann VTC			NHU, FS POR WHI
Sample ID	Date	Time	Matrix	No Containers	120	#24 74 478		- 0%	201	1		Sulfides reines
C/206-10cm	11/11/13	12:00	Sed.	8	×	X	Х		X	X		Archure all
CR06-1		51121		ų						.×		reverse
CR06-2,5		12,30		. 80						\times		Sarple
CR06 -4		12,45		8						×		a~ 100
CRO4-Jocu		13,00		8	X	X	X		X	×		
CR04-1		13,30	\rightarrow	'n								
CROS-10cm	1 1/2/13	8.25	bird	Ø	-X	X	X		X	X		
cros-2,5	~	Sr.R	_	8						\times		
CROS - 3.5		9:00		3						X		
CR04 - 2,5				∞						.Х		>
Comments/Special Instructions	Relinquished by (Signature)	0	l'and	Received by (Signature)		Hd 2		Relinquished by (Signature)		-	Received by (Signature)	
X	Printed Name	Printed Name		Printed Name	Ame Con	P) III		Printed Name			Printed Name	2
Gu	M F A	4		Company A	$\overline{\langle \cdot \rangle}$			Company			Company	
· Ø	Date & Time	132:00	- WO	Date & The /		1830	<u> </u>	Date & Time		_	Date & Time	Ð
S Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program	rm all requested services in accord	ervices in acco	ordance with a	appropriate m	ethodology	following AF	RI Standaro	g ARI Standard Operating Procedures and th	ocedures and	d the ARI C	uality Assura	ARI Quality Assurance Program. This program

since and the requested services, the total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, putchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

Chain of Custody Recon	Chain of Custody Record & Laboratory Analysis Request	lequest	_						
ARI Assigned Number: XNUUH	Turn-around Requested:		Page:	₅ h	പ			Analytical Resources, Incorporated Analytical Chemists and Consultants	es, Incorporated s and Consultants
ARI Client Company:	MICAE: 9715442139	2139	Date: \V&/ 1 ⁻	Present?	nt? 🕇			4611 South 134th Place, Suite 100 Tukwila, WA 98168	Place, Suite 100
Client Contact:			No. of Coolers:	2 Cooler Temps:	2,2,0,45	52		206-695-6200 206-695-6201 (fax)	-695-6201 (fax)
ſΝ	(Abalysis Requested	Ped A		Notes	Notes/Comments
日日の	∉∕∦⊦		reck	ويح	200			1 3 levert	Werent crots=
Client Project #: 0853,01.01	Samplers: MRM/MN		- - - - - - - - - - - - - -		בנים גרביץ כסיב	evfu -	2017	1 + + + + + + + + + + + + + + + + + + +	rvs, tetel soluds
Sample ID	Date Time Matrix	No Contain e rs	A La	hon Mar	55 × 10	(0V)	1-3 HUN	2 2 2 sultides	~~
Croy - S	11/8/13/10:00 Sed	Ч					X	Archive	Ju all
CK01 - 10cm	11.15	V.	×		× ×		۰X	X	remaining
(RO1-1000	02:11	N	X		××		×	x X	Scumple
(1203-10cm	V 12:00 V	5	\times		\times \times		X	Nen X	
Comments/Special Instructions	Relinquished by	Received by (Signature)	1. White	() / () /	Relinquished by. (Signature)		<u>н 9</u>	Received by (Signature)	
		Printed Name			Printed Name			Printed Name	
		Company AI21)	Company		0	Company	
	Date & Time	Date & Time		1830	Date & Time		Δ	Date & Time	
 Limits of Liability: ARI will perform all reques meets standards for the industry. The total liab said services. The acceptance by the client of signed agreement between ARI and the Client. 	Limits of Liability: ARI will perform all requested services in accordance with approprial meets standards for the industry. The total liability of ARI, its officers, agents, employees, said services. The acceptance by the client of a proposal for services by ARI release ARI signed agreement between ARI and the Client.		thodology followi locessors, arising any liability in ex	ng ARI Standa j out of or in co cess thereof, r	rd Operating Proc nnection with the ot withstanding ar	edures and the requested serv y provision to t	ARI Quality vices, shall i the contrary	le methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-	n. This program ed amount for hase order or co-

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

L MUN		Turn-around Requested:			Hage:		to of	Ч				Analytic	Analytical Resources, Incorporated	orporate
ompany:		Phone:			Date:	2112	I tee Present?	1				4611 Sc	4611 South 134th Place, Suite 100	Suite 100
Client Context:	1 6110	111	77750	1217		X I V	Coolor			ç. Y)	106-69 ¹	iukwiia, wA 90166 206-695-6200-206-695-6201 (fax)	(701 (fax)
Mike Murren					Coolers:	2	Temps:	Ś	4×11,011,2.6					
Client Project Name: CIULICA	2							Adlysis R	alysis Requested	% 83			Notes/Comments	nents
THHOA						ан -1		24		18		٦ ل	Sy and thomas ?"	a 15''
Client Project #: 0 <i>363,01,01</i>	Samplers: ${\cal A}$	MRM	NW	2	v. /v	dosojy Hobjus Lzuz	1	2112 10W 1000	/	Ma's	<i>3</i> ^;4	HIDM / / /-!	include: 7	TOCI Salide
Sample ID	Date	Time	Matrix	No. Containers	L'AC	177442 14472 8-1448	N&W	A.1J) 41,10 51100	101	11/24/10	24/	202	NHU, TS, Pon Sultides, 20	Pore wither
C1206-10cm 11/	1/1/13 12:00		Sed.	8	X	X	X	Jor of		X	X		Archure C	الكن
CR06-1		1215		ų	*			Ň	(Smot		.×		annonnel	_ م
CR06-215	1	12;30		8	*			≁	torio 1		\times		Sarge	,
C200-4		12,45		æ					F		X		1307	đ
CRO4-Jacm	1	13;00		8	X	X	X	- Contract		\times	×			
CR04-I		13;30	\mathbf{A}	6							.×			
CROS-10cm	1 18/13	8.25	Jerd	X	X	X	X	Lever		\times	X			
cros-2,5		۲.۲		8				6			\times			
CROS - 3.5		9:00		R							X			
		9; 40		8							X		\mathcal{A}	
Comments/Special Instructions Relin	Relinquiched by: (Signature)	al N	And	Received by: (Signature)	1	All's		Retinquished by (Signature)	. . .		4	Received by ⁻ (Signature)		
	Printed Name.	mitted Name. Mady Noval	کل	Printed Name:	the Muller	1. CAL	Chris)	Printed Name				Printed Name	Đ	
Com	Company:	-		Company. \mathcal{A}	\sim	e.		Company		Ť		Company		
	Date & Time. \\\\ 32:00	2:00 [,] 0	Š	Date & Three: $\int \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}}$		1830		Date & Time:				Date & Time		

signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

XNEU: 00005

s Request	
Analysis	
of Custody Record & Laboratory Analysis Reque	
cord & I	
ody Rec	
Chain of Custody	
Chain	

ARI Assigned Number: XNUCH	Turn-around Requested:		Page:	6		Analytical R Analytical C	Analytical Resources, Incorporated Analytical Chemists and Consultants
ARI Client Company.	Phone: 141	0210	Date: ICe IV&/I ~ Present?	ant?		4611 South 134th Pl Tukwila, WA 98168	4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact:			No. of Cooler Coolers: Temps:	r 3.2,0452		206-695-62	206-695-6200 206-695-6201 (fax)
Client Project Name:				Analysis Requested			Notes/Comments
PLAS CHASN	517		73,02	 	-	9 50 7	lane in crol >=
	Samplers: MRM/MN)			-	<u>را در د</u>	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	roc, rvs, tetel lu
Sample ID	Date Time Matrix	No Containers	A strange	55 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Her	יז רב ניורד	sulfides, Softway
Croy -S	1/K/12 10:00 Sect	4	During .		X (March		preme all
C. P. 01 - 10 C.	11.15	1	, , , ,	XX	X	<u>х</u>	remaining
(P () = 10cm		Ь.	×	× ×	×	×	Sound re
(N 03 -10 cm		, 'L	×	X	×	×	Action of
		Y					
					-		
Comments/Special Instructions	Relinquished by	Received by	1 dal	Relinquished by: (Sumature)		Received by (Signature)	
	1 aco led	Printed Name:	(- 10 - 1	Printed Name		Printed Name:	
	Company Count	Company: ALCI		Company:	-	Company:	
	Date & Time.	Date & Time / Date & Time / 2	1830	Date & Time.		Date & Time:	
Limits of Llability: ARI will perform a meets standards for the industry. The	Limits of Libility: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procodures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for	appropriate meth mployees, or suc	todology following ARI Stand cessors, arising out of or in c	ard Operating Procedures onnection with the reque	s and the ARI Qu sted services, sh	ality Assurance all not exceed th	Program. This program ine Invoiced amount for
said services. The acceptance by the c	said services. The acceptance by the client of a proposal for services by AH release AHI from any liability in excess thereot, not withstanding any provision to the contrary in any contract, purchase order of co-	ease ARI trom a	ny liability in excess thereot, i	not withstanding any prov	vision to the contri	ary in any contr	act, purchase order or co-

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate signed agreement between ARI and the Client.

retention schedules have been established by work-order or contract.

ARI Client Mail Fuller Allung: Project Name CHH3A COC No(s) Assigned ARI Job No: Mail Delivered by Fed-Ex UPS Courge? Hand Delivered Other: Mill Up / n/n/ny Assigned ARI Job No: Mail Mail Fuller Name Mill UP / n/n/ny Preliminary Examination Phase: Tracking No: Name Name Name Name Were custody papers included with the cooler? YES No No No Tame: Tracking No: State State No No Tame: Introduction Complete due to compliance fill out form 00070F Temp Gun ID#: 71/87771557 Cooler Accepted by Complete custody forms and attach all shipping documents NO NO Log-In Phase: VES NO NO Was a temperature blank included in the cooler? YES NO Was a temperature blank included in the cooler? YES NO Was a temperature blank included in the cooler? YES NO Was a temperature blank included in the cooler? YES NO Was a temperature blank included in the cooler? YES NO		r ces, Incorporated sts and Consultants	Cooler Rec	eipt Forn	n	
Were custody papers included with the cooler? YES NO Were custody papers property filled out (ink, signed, etc.) 32 0.4 52 Time: YES NO If cooler temperature of Cooler(s) (*C) (recommended 2 0-6.0 *C for chemistry) 32 0.4 52 If cooler temperature is out of compliance fill out form 00070F Temp Gun ID#: 70.877775 Complete custody forms and attach all shipping documents 18.30 Log-In Phase: YES NO Was a temperature blank included in the cooler? YES NO What kind of packing material was used? Bubble Wrap Wet Ice) Gel Packs Baggies Foam Block Paper Other NO Was a temperature blank included in the cooler? YES NO What kind of packing material was used? Bubble Wrap Wet Ice) Gel Packs Baggies Foam Block Paper Other NO Was attemperature is out of condition (unbroken)? NA YES NO Were all bottles sealed in individual plastic bags? NO YES NO Ud all bottle labels complete and legible? YES NO YES NO Did the number of containers listed on COC match with the number of containers received? YES NO YES <th>COC No(s)[.] Assigned ARI Job No: Preliminary Examination Phase:</th> <th>J64(MA)</th> <th>Delivered by Fed-Ex UPS Cou</th> <th></th> <th></th> <th>livery</th>	COC No(s) [.] Assigned ARI Job No: Preliminary Examination Phase:	J64(MA)	Delivered by Fed-Ex UPS Cou			livery
Log-In Phase: YES NO Was a temperature blank included in the cooler? Wet loe Gel Packs Baggies Foam Block Paper Other Was sufficient ice used (if appropriate)? NA YES NO Were all bottles sealed in individual plastic bags? NA YES NO Did all bottles complete and legible? YES NO Did all bottle labels complete and legible? YES NO Did all bottle labels complete and legible? YES NO Did the number of containers listed on COC match with the number of containers received? YES NO Did all bottle suged correct for the requested analyses? YES NO Were all bottles used correct for the requested analyses? YES NO Were all VOC vials free of air bubbles? NA YES NO Was sufficient amount of sample sent in each bottle? YES NO Date VOC Trip Blank was made at ARI NA YES NO Was Sample Split by ARI NA YES Date. All 3 Time All 3 Time All 3 Time All 4 All 4	Were custody papers included w Were custody papers properly fil Temperature of Cooler(s) (°C) (re Time:	ith the cooler?	$\frac{1}{2}$ $\frac{3.2}{0.4}$	Temp Gun ID#: 70	NO NO	2
	Was a temperature blank include What kind of packing material Was sufficient ice used (if approp Were all bottles sealed in individe Did all bottles arrive in good cone Were all bottle labels complete a Did the number of containers list Did all bottle labels and tags agre Were all bottles used correct for Do any of the analyses (bottles) Were all VOC vials free of air bul Was sufficient amount of sample Date VOC Trip Blank was made Was Sample Split by ARI	ed in the cooler?	et Ice)Gel Packs Baggies Foam	Block Paper Other NA YES YES YES YES YES YES YES YES YES YES) NO NO NO NO NO NO NO NO NO NO	_
	Sample ID on Bottle	****		Sample ID or	COC	

Additional Notes, I	Discrepancies, & F	Resolutions:		
Ву	Date.			
Small Air Bubbles	Peabubbles	LARGE Air Bubbles	Small → "sm" (<2 mm)	
2mm	2-4 mm	> 4 mm	Peabubbles \rightarrow "pb" (2 to < 4 mm)	
• • •	••••	$\bullet \bullet \bullet$	Large → "lg" (4 to < 6 mm)	
[L		Headspace → "hs" (>6 mm)	

5 (*** + + 6**4

Subject: RE: GHHSA From: "Mike Murray" <mmurray@maulfoster.com> Date: 11/11/2013 3:40 PM To: "Mark Harris" <markh@arilabs.com> CC: <mnovak@maulfoster.com> Hi Mark, you are correct on all statements. The SMS marine chemicals we want analyzed are in Table 2 of the attached (should be the same table we circulated in August). Table 3 includes a summary of the methods we discussed. Please let us know if you have any questions. Thanks, MRM MICHAEL R. MURRAY RG | MAUL FOSTER & ALONGI, INC. d. 503 501 5226 | p. 971 544 2139 | c. 503 310 0435 | f. 971 544 2140 | www.maulfoster.com 2001 NW 19th Avenue, Suite 200, Portland, OR 97209 Please consider the environment before printing out this email. NOTICE: This email, and any attachments, is intended only for use by the named addressee(s) and may contain information that is privileged, confidential or otherwise protected from disclosure. If you are not the intended recipient or the person responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this email, and any attachments, is strictly prohibited. If you have received this email in error, please immediately notify the sender by reply email and permanently delete and/or destroy the original and all copies. Written MFA authorization is required for modification of final electronic work products. Distribution to others of any MFA electronic work products, whether or not they are modified, is prohibited without the express written consent of MFA. -----Original Message-----From: Mark Harris [mailto:markh@arilabs.com] Sent: Monday, November 11, 2013 8:42 AM To: Mike Murray Subject: GHHSA Mike: I just have a few items to clarify on these samples: 1) For those samples that request 'butylbenzylphthalate and PCP' only, we are to only do those two compounds, not the full SMS SVOC list, correct?

2) Is the request for 'SMS compounds' the full list of compounds in the table you sent in August?

3) Is '% fines' the same as grain size?

I think that's all we need. We'll get them logged and started as soon as possible.

Mark H.

Mark Harris Project Manager Analytical Resources, Inc. 206/695-6210 markh@arilabs.com

How was your customer experience? Please take our 5 minute online customer survey https://www.surveymonkey.com/s/WPDEVJK.

This correspondence contains confidential information from Analytical Resources, Inc. (ARI) The information contained herein is intended solely for the use of the individual(s) named above. If you are not the intended recipient, any copying, distribution, disclosure, or use of the text and/or attached document(s) is strictly prohibited.

If you have received this correspondence in error, please notify sender immediately. Thank you.

Attachments:

T-SAP.xlsx

24.8 KB

Subject: RE: GHHSA
From: "Madi Novak" <mnovak@maulfoster.com>
Date: 11/12/2013 12:55 PM
To: "Mark Harris" <markh@arilabs.com>
CC: "Mike Murray" <mmurray@maulfoster.com>

Thanks Mark,

1)	just	plain	phenol
2)	that	is fir	ne
3)	that	works	

MADI NOVAK | MAUL FOSTER & ALONGI, INC.

direct. 503 501 5212 | main. 971 544 2139 | cell. 971 227 1060 |www.maulfoster.com 2001 NW 19th Avenue, Suite 200, Portland, OR 97209 Please consider the environment before printing this email. NOTICE: This email, and any attachments, is intended only for use by the named addressee(s) and may contain information that is privileged, confidential or otherwise protected from disclosure. If you are not the intended recipient or the person responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this email, and any attachments, is strictly prohibited. If you have received this email in error, please immediately notify the sender by reply email and permanently delete and/or destroy the original and all copies. Written MFA authorization is required for modification of final electronic work products. Distribution to others of any MFA electronic work products, whether or not they are modified, is prohibited without the express written consent of MFA.

----Original Message----From: Mark Harris [<u>mailto:markh@arilabs.com</u>] Sent: Tuesday, November 12, 2013-12:53 PM — To: Madi Novak Subject: Re: GHHSA

Madi:

Okay, there are a couple of questions:

1) Is 'phenol' just plain phenol (by 8270), or PCP?

2) For CR04-5, we didn't receive large jars for porewater extraction. We received 4-8oz, 1-4oz and 1-2oz. We can us the 8oz but it won't leave much leftover.

3) For CR06-2.5, we didn't receive "VOA" jars. We can use the 4oz conventionals jar here and then give it to the conventionals lab if that works for you.

Mark H.

On 11/12/2013 12:28 PM, Madi Novak wrote: Thanks! Note the 06 sample appears to be pretty impacted. . . MADI NOVAK | MAUL FOSTER & ALONGI, INC. direct. 503 501 5212 | main. 971 544 2139 | cell. 971 227 1060 |<u>www.maulfoster.com</u> 2001 NW 19th Avenue, Suite 200, Portland, OR 97209 Please consider the environment before printing this email. NOTICE: This email, and any attachments, is intended only for use by the named addressee(s) and may contain information that is privileged, confidential or otherwise protected from disclosure. If you are not the intended recipient or the person responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this email, and any attachments, is strictly prohibited. If you have received this email in error, please immediately notify the sender by reply email and permanently delete and/or destroy the original and all copies. Written MFA authorization is required for modification of final electronic work products. Distribution to others of any MFA electronic work products, whether or not they are modified, is prohibited without the express written consent of MFA. ----Original Message-----From: Mark Harris [mailto:markh@arilabs.com] Sent: Tuesday, November 12, 2013 12:22 PM To: Madi Novak Cc: Mike Murray Subject: Re: GHHSA Madi: Got it. We'll get these tests added. Mark H. On 11/12/2013 12:20 PM, Madi Novak wrote: Hi Mark, I'd like to add analyses beyond what is already noted on the COC as follows: <u>CR04-10</u>cm analyze_for phenol _ CR05-10cm analyze for phenol CR06-10cm analyze for phenol CR04-5 please analyze for conventionals (toc, tvs, total solids, ammonia, total sulfides, pore water sulfides) and phenol. CR06-2.5 please analyze for SMS constituents, dioxins/furans, NWTPH-Gx and NWTPH-Dx Please let me know if you have any questions. Thank you, MADI NOVAK | MAUL FOSTER & ALONGI, INC. direct. 503 501 5212 | main. 971 544 2139 | cell. 971 227 1060 |www.maulfoster.com 2001 NW 19th Avenue, Suite 200, Portland, OR 97209 Please consider the environment before printing this email. NOTICE: This email, and any attachments, is intended only for use by the named addressee(s) and may contain information that is privileged, confidential or otherwise protected from disclosure. If you are not the intended recipient or the person responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this email, and any attachments, is strictly prohibited. If you have received this email in error, please immediately notify the sender by reply email and permanently delete and/or destroy the original and all copies. Written MFA authorization is required for modification of final electronic work products. Distribution to others of any MFA electronic work products, whether or not they are modified, is prohibited without the express written consent of MFA. ---Original Message-----

From: Mark Harris [mailto:markh@arilabs.com] Sent: Tuesday, November 12, 2013 6:25 AM To: Mike Murray Cc: Madi Novak Subject: Re: GHHSA We'll get them logged this morning. On 11/11/2013 3:40 PM, Mike Murray wrote: Hi Mark, you are correct on all statements. The SMS marine chemicals we want analyzed are in Table 2 of the attached (should be the same table we circulated in August). Table 3 includes a summary of the methods we discussed. Please let us know if you have any questions. Thanks, MRM MICHAEL R. MURRAY RG | MAUL FOSTER & ALONGI, INC. d. 503 501 5226 | p. 971 544 2139 | c. 503 310 0435 | f. 971 544 2140 | www.maulfoster.com 2001 NW 19th Avenue, Suite 200, Portland, OR 97209 Please consider the environment before printing out this email. NOTICE: This email, and any attachments, is intended only for use by the named addressee(s) and may contain information that is privileged, confidential or otherwise protected from disclosure. If you are not the intended recipient or the person responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this email, and any attachments, is strictly prohibited. If you have received this email in error, please immediately notify the sender by reply email and permanently delete and/or destroy the original and all copies. Written MFA authorization is required for modification of final electronic work products. Distribution to others of any MFA electronic work products, whether or not they are modified, is prohibited without the express written consent of MFA. ----Original Message-----From: Mark Harris [mailto:markh@arilabs.com] Sent: Monday, November 11, 2013 8:42 AM To: Mike Murray Subject: GHHSA Mike: I just have a few items to clarify on these samples: 1) For those samples that request 'butylbenzylphthalate and PCP' only, we are to only do those two compounds, not the full SMS SVOC list, correct? 2) Is the request for 'SMS compounds' the full list of compounds in the table you sent in August? 3) Is '% fines' the same as grain size? I think that's all we need. We'll get them logged and started as soon as

possible. Mark H.

_ _

Mark Harris Project Manager Analytical Resources, Inc. 206/695-6210 markh@arilabs.com

How was your customer_experience? Please take our 5 minute online customer survey https://www.surveymonkey.com/s/WPDBVJK.

This correspondence contains confidential information from Analytical Resources, Inc. (ARI) The information contained herein is intended solely for the use of the individual(s) named above. If you are not the intended recipient, any copying, distribution, disclosure, or use of the text and/or attached document(s) is strictly prohibited.

If you have received this correspondence in error, please notify sender immediately. Thank you.

Analytical Resources, Incorporated

Analytical Chemists and Consultants

Client: Maul Foster & Alongi

ARI Job No.: XN64

Client Project: GHHSA

Client Project No.: 0863.01.01

Case Narrative

- 1. Seven samples were submitted for testing and preparation on November 12, 2013 and were in good condition.
- 2. The samples were submitted for pore water extraction by the United States Army Corp of Engineers draft interim guidelines. Four samples to be submitted for sulfide analysis would not yield the required pore water volume. The three pore water samples to be submitted for salinity analysis did yield sufficient volume for analysis. All centrifuge bottles were decontaminated, pre-rinsed with hexane and allowed to dry completely. All spoons were decontaminated, pre-rinsed with dichloromethane and allowed to air dry completely. All samples were centrifuged in a pre-cooled centrifuge (4°C) at 3,000 x g for 30 minutes, decanted and then placed in another pre-cooled centrifuge (4°C) and spun at 7,000-x g for 30 minutes. The samples were decanted into small HDPE sample bottles with no preservation.
- 3. Four samples were submitted for grain size analysis according to Puget Sound Estuary Protocol (PSEP) methodology. The samples were originally split under the required volume required in PSEP. The samples were resplit, and the original bench sheets are included in the raw data. The samples were run in a single batch and one sample from another job was chosen for triplicate analysis. The triplicate data is reported on the QA summary. The samples contained woody or other organic matter which may have broken down during the sieving process, affecting grain size analysis. The samples displayed an oil-like sheen and left an oil-like residue on the equipment after processing.
- 4. The data is reported in summary tables and plots.
- 5. There were no other noted anomalies in the samples or methods on this project.

Released by: Geotechnical Laboratory Manager

Date:

Reviewed by Technician

Date: November 25,2013

Sample ID Cross Reference Report

ARI Job No: XN64 Client: Maul Foster & Alongi Project Event: 0863.01.01 Project Name: GHHSA

		ARI	ARI			
	Sample ID	Lab ID	LIMS ID	Matrix	Sample Date/Time	VTSR
1.	CR06-10cm	XN64A	13-24853	Sediment	11/07/13 12:00	11/08/13 18:30
2.	CR04-10cm	XN64B	13-24854	Sediment	11/07/13 13:00	11/08/13 18:30
з.	CR05-10cm	XN64C	13-24855	Sediment	11/08/13 08:25	11/08/13 18:30
4.	CR06-2.5	XN64D	- 13-24856	Sediment	11/07/13 1 2:30	11/08/13 18:30
5.	CR04-5	XN64E	13-24857	Sediment	11/08/13 10:00	11/08/13 18:30
6.	CR01-10cm	XN64F	13-24858	Sediment	11/08/13 11 : 15	11/08/13 18:30
7.	CR02-10cm	XN64G	13-24859	Sediment	11/08/13 11:30	11/08/13 18:30
8.	CR03-10cm	XN64H	13-24860	Sediment	11/08/13 11:30	11/08/13 18:30
9.	CR06-1	XN64I	13-24861	Sediment	11/07/13 12:15	11/08/13 18:30
10.	CR06-4	XN64J	13-24862	Sediment	11/07/13 12:30	11/08/13 18:30
11.	CR04-1	XN64K	13-24863	Sediment	11/07/13 13:30	11/08/13 18:30
12.	CR05-2.5	XN64L	13-24864	Sediment	11/08/13 08:45	11/08/13 18:30
13.	CR05-3.5	XN64M	13-24865	Sediment	11/08/13 09:00	11/08/13 18:30
14.	CR04-2.5	XN64N	13-24866	Sediment	11/08/13 09:40	11/08/13 18:30

- --

Printed 11/12/13 Page 1 of 1

Analytical Resources, Incorporated Analytical Chemists and Consultants

Data Reporting Qualifiers Effective 2/14/2011

Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but \geq the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).

Analytical Resources, Incorporated Analytical Chemists and Consultants

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)

Analytical Resources, Incorporated Analytical Chemists and Consultants

Geotechnical Data

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
 - SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
 - W Weight of sample in some pipette aliquots was below the level required for accurate weighting

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01

Data Release Authorized:

ARI ID	Client ID	Analysis Date	Basis	Range	Result
MB-111313 13-24856	Method Blank	11/13/13 PID1	Dry	Gasoline HC ID Trifluorotoluene	< 5.0 U 93.3%
				Bromobenzene	89.6%
XN64D 13-24856	CR06-2.5	11/13/13 PID1	Dry	Gasoline HC ID Trifluorotoluene Bromobenzene	< 54 U 26.8% 21.6%

Gasoline values reported in mg/kg (ppm)

Quantitation on total peaks in the gasoline range from Toluene to Naphthalene.

GAS: Indicates the presence of gasoline or weathered gasoline. GRO: Positive result that does not match an identifiable gasoline pattern.

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

ORGANICS ANALYSIS DATA SHEET TPHG by Method NWTPHG

Page 1 of 1

Lab Sample ID: LCS-111313 LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized:

Date Analyzed LCS: 11/13/13 11:16 LCSD: 11/13/13 11:46 Instrument/Analyst LCS: PID1/PKC LCSD: PID1/PKC

Sample ID: LCS-111313 LAB CONTROL SAMPLE

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount LCS: 100 mg-dry-wt LCSD: 100 mg-dry-wt

Analyte	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Gasoline Range Hydrocarbons	121	125	96.8%	121	125	96.8%	0.0%
	Report	ed in mg/l	kg (ppm)				

RPD calculated using sample concentrations per SW846.

TPHG Surrogate Recovery

	LCS	LCSD
Trifluorotoluene	107%	113%
Bromobenzene	93.3%	99.7%

TPHG SOIL SURROGATE RECOVERY SUMMARY

ARI Job: XN64 Matrix: Sediment QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01

Client ID	BFB	TFT	BBZ	TOT OUT
MB-111313	NA	93.3%	89.6%	0
LCS-111313	NA	107%	93.3%	0
 LCSD-111313	- NA	113%	99.78	Û
CR06-2.5	NA	26.8%*	21.6%*	2

	LCS/MB LIMITS	QC LIMITS
(TFT) = Trifluorotoluene	(80-120)	(65-128)
(BBZ) = Bromobenzene	(80-120)	(52-149)

Log Number Range: 13-24856 to 13-24856

FORM II TPHG

MANUAL INTEGRATION

Baseline correction 1. 2. Poor chromatography 3.) Peak not found 4. Totals calculation

5. Other

Analyst: _____

Date: 4/14/8

MANUAL INTEGRATION

Baseline correction
 Poor chromatography
 Peak not found
 Totals calculation

5. Other

Analyst: ____/

Date: W/14/17

Lab Sample ID: MB-111513 LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: Nov Reported: 11/21/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 14:58 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

Sample ID: MB-111513 METHOD BLANK

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.00 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	100	< 100 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	- < 20 U
132-64-9	Dibenzofuran	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	< 20 U
129-00-0	Pyrene	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo(a)anthracene	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	50	< 50 U
218-01-9	Chrysene	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U
50-32-8	Benzo(a)pyrene	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	20	< 20 U
53-70-3	Dibenz(a, h) anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U
TOTBFA	Total Benzofluoranthenes	40	< 40 U

Reported in µg/kg (ppb)

d5-Nitrobenzene	64.6%	2-Fluorobiphenyl	64.0%
d14-p-Terphenyl	79.88	d4-1,2-Dichlorobenzene	66.4%
d5-Phenol	56.9%	2-Fluorophenol	60.8%
2,4,6-Tribromophenol	61.5%	d4-2-Chlorophenol	64.1%

Lab Sample ID: XN64D LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: Reported: 11/21/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 16:09 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

Sample ID: CR06-2.5 SAMPLE

Sample Amount: 0.71 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 77.0%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	280	240 J
106-46-7	1,4-Dichlorobenzene	280	< 280 U
100-51-6	Benzyl Alcohol	280	< 280 U
95-50-1	1,2-Dichlorobenzene	280	< 280 U
95-48-7	2-Methylphenol	280	< 280 U
106-44-5	4-Methylphenol	280	420
105-67-9	2,4-Dimethylphenol	1,400	< 1,400 U
65-85-0	Benzoic Acid	2,800	860 J
120-82-1	1,2,4-Trichlorobenzene	280	< 280 U
91-20-3	Naphthalene	280	1,800
87-68-3	Hexachlorobutadiene	280	< 280 U
91-57-6	2-Methylnaphthalene	280	780
131-11-3	Dimethylphthalate	280	< 280 U
208-96-8	Acenaphthylene	280	520
83-32-9	Acenaphthene	280	490
132-64-9	Dibenzofuran	280	490
84-66-2	Diethylphthalate	280	270 J
86-73-7	Fluorene	280	650
86-30-6	N-Nitrosodiphenylamine	280	< 280 U
118-74-1	Hexachlorobenzene	280	< 280 U
87-86-5	Pentachlorophenol	1,400	< 1,400 U
85-01-8	Phenanthrene	280	3,600
120-12-7	Anthracene	280	ُ 750
84-74-2	Di-n-Butylphthalate	280	< 280 U
206-44-0	Fluoranthene	280	3,200
129-00-0	Pyrene	280	3,600
85-68-7	Butylbenzylphthalate	280	< 280 U
56-55-3	Benzo (a) anthracene	280	1,300
117-81-7	bis (2-Ethylhexyl) phthalate	700	1,900
218-01-9	Chrysene	280	1,600
117-84-0	Di-n-Octyl phthalate	280	< 280 U
50-32-8	Benzo (a) pyrene	280	1,200
193-39-5	Indeno (1,2,3-cd) pyrene	280	490
53-70-3	Dibenz(a,h)anthracene	280	< 280 U
191-24-2	Benzo(g,h,i)perylene	280	590
TOTBFA	Total Benzofluoranthenes	560	2,000

Reported in µg/kg (ppb)

d5-Nitrobenzene	63.6%	2-Fluorobiphenyl	70.0%
d14-p-Terphenyl	76.4%	d4-1,2-Dichlorobenzene	63.0%
d5-Phenol	55.6%	2-Fluorophenol	59.9%
2,4,6-Tribromophenol	72.9%	d4-2-Chlorophenol	61.9%

Lab Sample ID: XN64F LIMS ID: 13-24858 Matrix: Sediment Data Release Authorized: WW Reported: 11/21/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 16:45 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

Sample ID: CR01-10cm SAMPLE

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.30 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 51.2%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	19	24
106-46-7	1,4-Dichlorobenzene	19	< 19 t
100-51-6	Benzyl Alcohol	19	< 19 t
95-50-1	1,2-Dichlorobenzene	19	< 19 t
95-48-7	2-Methylphenol	19	< 19 t
106-44-5	4-Methylphenol	19	30
105-67-9	2,4-Dimethylphenol	97	< 97 t
65-85-0	Benzoic Acid	190	< 190 t
120-82-1	1,2,4-Trichlorobenzene	19	< 19 t
91-20-3	Naphthalene	19	25
87-68-3	Hexachlorobutadiene	19	< 19 t
91-57-6	2-Methylnaphthalene	19	< 19 t
131-11-3	Dimethylphthalate	19	< 19 t
208-96-8	Acenaphthylene	19	< 19 t
83-32-9	Acenaphthene	19	14
132-64-9	Dibenzofuran	19	12 .
84-66-2	Diethylphthalate	19	56
86-73-7	Fluorene	19	14 3
86-30-6	N-Nitrosodiphenylamine	19	< 19 t
118-74-1	Hexachlorobenzene	19	< 19 t
87-86-5	Pentachlorophenol	97	< 97 t
85-01-8	Phenanthrene	19	47
120-12-7	Anthracene	19	14 .
84-74-2	Di-n-Butylphthalate	19	< 19 t
206-44-0	Fluoranthene	19	100
129-00-0	Pyrene	19	110
85-68-7	Butylbenzylphthalate	19	< 19 t
56-55-3	Benzo (a) anthracene	19	28
117-81-7	bis(2-Ethylhexyl)phthalate	48	29 .
218-01-9	Chrysene	19	35
117-84-0	Di-n-Octyl phthalate	19	< 19
50-32-8	Benzo (a) pyrene	19	21
193-39-5	Indeno(1,2,3-cd)pyrene	19	< 19 t
53-70-3	Dibenz(a, h) anthracene	19	< 19 (
191-24-2	Benzo (g,h,i) perylene	19	14
TOTBFA	Total Benzofluoranthenes	39	52

Reported in µg/kg (ppb)

d5-Nitrobenzene	58.0%	2-Fluorobiphenyl	66.4%
d14-p-Terphenyl	71.6%	d4-1,2-Dichlorobenzene	57.6%
d5-Phenol	57.1%	2-Fluorophenol	57.2%
2,4,6-Tribromophenol	72.1%	d4-2-Chlorophenol	59.1%

Lab Sample ID: XN64G LIMS ID: 13-24859 Matrix: Sediment Data Release Authorized: NW Reported: 11/21/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 17:20 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

Sample ID: CR02-10cm SAMPLE

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.20 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 46.9%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	94
106-46-7	1,4-Dichlorobenzene	20	19 J
100-51-6	Benzyl Alcohol	20	31
95-50-1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	730
105-67-9	2,4-Dimethylphenol	98	< 98 U
65-85-0	Benzoic Acid	200	240
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	280
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57-6	2-Methylnaphthalene	20	28
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	68
83-32-9	Acenaphthene	20	20
132-64-9	Dibenzofuran	20	20
84-66-2	Diethylphthalate	20	20
86-73-7	Fluorene	20	1 5 J
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	98	< 98 U
85-01-8	Phenanthrene	20	89
120-12-7	Anthracene	20	16 J
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	63
129-00-0	Pyrene	20	61
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo (a) anthracene	20	11 J
117-81-7	bis(2-Ethylhexyl)phthalate	49	< 49 U
218-01-9	Chrysene	20	17 J
117-84-0	Di-n-Octyl phthalate	20	< 20 U
50-32-8	Benzo(a)pyrene	20	< 20 U
193-39-5	Indeno(1,2,3-cd)pyrene	20	< 20 U
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	15 J
TOTBFA	Total Benzofluoranthenes	39	22 J

Reported in µg/kg (ppb)

d5-Nitrobenzene	52.6%	2-Fluorobiphenyl	60.0%
d14-p-Terphenyl	64.8%	d4-1,2-Dichlorobenzene	51.6%
d5-Phenol	55.3%	2-Fluorophenol	53.7%
2,4,6-Tribromophenol	66.5%	d4-2-Chlorophenol	56.0%

Lab Sample ID: XN64H LIMS ID: 13-24860 Matrix: Sediment Data Release Authorized: NAA Reported: 11/21/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 17:55 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

Sample ID: CR03-10cm SAMPLE

Sample Amount: 10.41 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 61.6%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	19	43
106-46-7	1,4-Dichlorobenzene	19	< 19 U
100-51-6	Benzyl Alcohol	19	36
95-50-1	1,2-Dichlorobenzene	19	< 19 U
95-48-7	2-Methylphenol	19	< 19 U
106-44-5	4-Methylphenol	19	60
105-67-9	2,4-Dimethylphenol	96	< 96 U
65-85-0	Benzoic Acid	190	180 J
120-82-1	1,2,4-Trichlorobenzene	19	< 19 U
91-20-3	Naphthalene	19	23
87-68-3	Hexachlorobutadiene	19	< 19 U
91-57-6	2-Methylnaphthalene	19	< 19 U
131-11-3	Dimethylphthalate	19	< 19 U
208-96-8	Acenaphthylene	19	< 19 U
83-32-9	Acenaphthene	19	< 19 U
132-64-9	Dibenzofuran	19	< 19 U
84-66-2	Diethylphthalate	19	36
86-73-7	Fluorene	19	< 19 U
86-30-6	N-Nitrosodiphenylamine	19	< 19 U
118-74-1	Hexachlorobenzene	19	< 19 U
87-86-5	Pentachlorophenol	96	< 96 U
85-01-8	Phenanthrene	19	19
120-12-7	Anthracene	19	< 19 U
84-74-2	Di-n-Butylphthalate	19	< 19 U
206-44-0	Fluoranthene	19	25
129-00-0	Pyrene	19	21
85-68-7	Butylbenzylphthalate	19	< 19 U
56-55-3	Benzo(a)anthracene	19	< 19 U
117-81-7	bis(2-Ethylhexyl)phthalate	48	< 48 U
218-01-9	Chrysene	19	< 19 U
117-84-0	Di-n-Octyl phthalate	19	< 19 U
50-32-8	Benzo(a)pyrene	19	< 19 U
193-39-5	Indeno(1,2,3-cd)pyrene	19	< 19 U
53-70-3	Dibenz(a,h)anthracene	19	< 19 U
191-24-2	Benzo(g,h,i)perylene	19	< 19 U
TOTBFA	Total Benzofluoranthenes	38	13 J

Reported in µg/kg (ppb)

d5-Nitrobenzene	60.88	2-Fluorobiphenyl	66.8%
d14-p-Terphenyl	72.6%	d4-1,2-Dichlorobenzene	56.2%
d5-Phenol	61.5%	2-Fluorophenol	56.9%
2,4,6-Tribromophenol	72.1%	d4-2-Chlorophenol	60.7%

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-111513	64.6%	64.0%	79.8%	66.4%	56.9%	60.8%	61.5%	64.1%	0
LCS-111513	67.0%	66.8%	79.0%	63.4%	63.9%	64.1%	71.5%	64.3%	0
CR06-2.5	63.6%	70.0%	76.4%	63.0%	55.6%	59.9%	72.9%	61.9%	0
CR01-10cm	58.0%	66.4%	71.68	57.6%	57.18	57.28	72.18	59.18	Ō
CR02-10cm	52.6%	60.0%	64.8%	51.6%	55.3%	53.7%	66.5%	56.0%	0
CR03-10cm	60.8%	66.8%	72.6%	56.2%	61.5%	56.9%	72.1%	60.7%	0

	LCS/MB LIMITS	QC LIMITS
(NBZ) = d5-Nitrobenzene	(33-120)	(30-120)
(FBP) = 2-Fluorobiphenyl	(35-120)	(35-120)
(TPH) = d14-p-Terphenyl	(42-124)	(37-120)
(DCB) = d4-1,2-Dichlorobenzene	(37-120)	(32-120)
(PHL) = d5-Phenol	(32-120)	(29-120)
(2FP) = 2-Fluorophenol	(32-120)	(27-120)
(TBP) = 2,4,6-Tribromophenol	(23-133)	(24-134)
(2CP) = d4-2-Chlorophenol	(36-120)	(31-120)

Prep Method: SW3546 Log Number Range: 13-24856 to 13-24860

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by SW8270 GC/MS Page 1 of 2

Lab Sample ID: LCS-111513 LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: Reported: 11/21/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 15:34 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

Sample ID: LCS-111513 LAB CONTROL

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 10.00 g Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
Phenol	324	500	64.8%
1,4-Dichlorobenzene	345	500	69.0%
Benzyl Alcohol	312	500	62.4%
1,2-Dichlorobenzene	348	500	69.6%
2-Methylphenol	282	500	56.4%
4-Methylphenol	583	1000	58.3%
2,4-Dimethylphenol	908	1500	60.5%
Benzoic Acid	1810	2750	65.8%
1,2,4-Trichlorobenzene	347	500	69.4%
Naphthalene	329	500	65.8%
Hexachlorobutadiene	362	500	72.48
2-Methylnaphthalene	360	500	72.0%
Dimethylphthalate	404	500	80.8%
Acenaphthylene	387	500	77.48
Acenaphthène	350	500	70.0%
Dibenzofuran	376	500	75.28
Diethylphthalate	412	500	82.48
Fluorene	359	500	71.8%
N-Nitrosodiphenylamine	406	500	81.2%
Hexachlorobenzene	407	500	81.4%
Pentachlorophenol	1110	1500	74.08
Phenanthrene	404	500	80.8%
Anthracene	383	500	76.6%
Di-n-Butylphthalate	470	500	94.0%
Fluoranthene	406	500	81.2%
Pyrene	410	500	82.0%
Butylbenzylphthalate	484	500	96.8%
Benzo(a) anthracene	393	500	78.6%
bis(2-Ethylhexyl)phthalate	466	500	93.2%
Chrysene	384	500	76.8%
Di-n-Octyl phthalate	427	500	85.4%
Benzo(a)pyrene	399	500	79.8%
Indeno(1,2,3-cd)pyrene	373	500	74.6%
Dibenz(a, h) anthracene	264	500	52.8%

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270 GC/MS Page 2 of 2

Sample ID: LCS-111513 LAB CONTROL

Lab Sample ID: LCS-111513 LIMS ID: 13-24856 Matrix: Sediment Date Analyzed: 11/20/13 15:34

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA

0863.01.01

Analyte	Lab Control	Spike Added	Recovery
Benzo(g,h,i)perylene	$\frac{324}{801}$	500	64.8%
Total Benzofluoranthenes		1000	80.1%

-- -

Semivolatile Surrogate Recovery

d5-Nitrobenzene	67.0%
2-Fluorobiphenyl	66.8%
d14-p-Terphenyl	79.0%
d4-1,2-Dichlorobenzene	63.4%
d5-Phenol	63.9%
2-Fluorophenol	64.1%
2,4,6-Tribromophenol	71.5%
d4-2-Chlorophenol	64.3%

Reported in µg/kg (ppb)

Sample ID: MB-111513 METHOD BLANK

Lab Sample ID: MB-111513 LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: Matrix: Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 14:58 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.00 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	LOQ	Result
53-70-3	Dibenz(a,h)anthracene	5.0	< 5.0 U
106-46-7	1,4-Dichlorobenzene	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	5.0	< 5.0 U
118-74-1	Hexachlorobenzene	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	5.0	< 5.0 U
131-11-3	Dimethylphthalate	5.0	< 5.0 U
85-68-7	Butylbenzylphthalate	5.0	< 5.0 U
95-48-7	2-Methylphenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	25	< 25 U
86-30-6	N-Nitrosodiphenylamine	5.0	< 5.0 U
100-51-6	Benzyl Alcohol	20	< 20 U
87-86-5	Pentachlorophenol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	5.0	< 5.0 Ŭ
541-73-1	1,3-Dichlorobenzene	5.0	< 5.0 U

Reported in $\mu g/kg$ (ppb)

2-Fluorophenol	58.0%
d14-p-Terphenyl	76.0%

Lab Sample ID: XN64D LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 16:09 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

SAMPLE

Sample Amount: 0.71 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 77.0%

CAS Number	Analyte	LOQ	Result
53-70-3	Dibenz (a, h) anthracene	70	150
106-46-7	1,4-Dichlorobenzene	70	< 70 U
120-82-1	1,2,4-Trichlorobenzene	70	< 70 U
118-74-1	Hexachlorobenzene	70	< 70 U
87-68-3	Hexachlorobutadiene	70	< 70 U
131-11-3	Dimethylphthalate	70	< 70 U
85-68-7	Butylbenzylphthalate	70	< 70 U
95-48-7	2-Methylphenol	70	45 J
105-67-9	2,4-Dimethylphenol	350	< 350 U
86-30-6	N-Nitrosodiphenylamine	70	< 70 U
100-51-6	Benzyl Alcohol	280	< 280 U
87-86-5	Pentachlorophenol	280	240 J
95-50-1	1,2-Dichlorobenzene	70	< 70 U
541-73-1	1,3-Dichlorobenzene	70	< 70 U

Reported in µg/kg (ppb)

2-Fluorophenol	57.2%
d14-p-Terphenyl	76.6%

Lab Sample ID: XN64F LIMS ID: 13-24858 Matrix: Sediment Data Release Authorized: Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 16:45 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample ID: CR01-10cm

SAMPLE

Sample Amount: 10.30 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 51.2%

CAS Number	Analyte	LOQ	Result
53-70-3	Dibenz (a,h) anthracene	4.8	3.0 Ј
106-46-7	1,4-Dichlorobenzene	4.8	< 4.8 U
120-82-1	1,2,4-Trichlorobenzene	4.8	< 4.8 U
118-74-1	Hexachlorobenzene	4.8	< 4.8 U
87-68-3	Hexachlorobutadiene	4.8	< 4.8 U
131-11-3	Dimethylphthalate	4.8	< 4.8 U
85-68-7	Butylbenzylphthalate	4.8	< 4.8 U
95-48-7	2-Methylphenol	4.8	< 4.8 U
105-67-9	2,4-Dimethylphenol	24	< 24 U
86-30-6	N-Nitrosodiphenylamine	4.8	< 4.8 U
100-51-6	Benzyl Alcohol	19	15 J
87-86-5	Pentachlorophenol	19	< 19 U
95-50-1	1,2-Dichlorobenzene	4.8	< 4.8 U
541-73-1	1,3-Dichlorobenzene	4.8	< 4.8 U

Reported in µg/kg (ppb)

2-Fluorophenol	55.2%
d14-p-Terphenyl	70.4%

Lab Sample ID: XN64G LIMS ID: 13-24859 Matrix: Sediment Data Release Authorized: MC Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 17:20 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample ID: CR02-10cm

SAMPLE

Sample Amount: 10.20 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 46.9%

< 4.9 U
16
< 4.9 U
< 4.9 U
< 4.9 U
3.1 J
< 4.9 U
< 4.9 U
< 24 U
< 4.9 U
43 Q
< 20 Ū
ζ4.9 U
< 4.9 U

Reported in µg/kg (ppb)

2-Fluorophenol	52.9%
d14-p-Terphenyl	61.2%

Lab Sample ID: XN64H LIMS ID: 13-24860 Matrix: Sediment Data Release Authorized: WW Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/20/13 17:55 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample ID: CR03-10cm

SAMPLE

Sample Amount: 10.41 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 61.6%

CAS Number	Analyte	LOQ	Result
53-70-3	Dibenz(a,h)anthracene	4.8	< 4.8 U
106-46-7	1,4-Dichlorobenzene	4.8	< 4.8 U
120-82-1	1,2,4-Trichlorobenzene	4.8	< 4.8 U
118-74-1	Hexachlorobenzene	4.8	< 4.8 U
87-68-3	Hexachlorobutadiene	4.8	< 4.8 U
131-11-3	Dimethylphthalate	4.8	2.5 J
85-68-7	Butylbenzylphthalate	4.8	< 4.8 U
95-48-7	2-Methylphenol	4.8	3.3 J
105-67-9	2,4-Dimethylphenol	24	< 24 U
86-30-6	N-Nitrosodiphenylamine	4.8	< 4.8 U
100-51-6	Benzyl Alcohol	19	43 Q
87-86-5	Pentachlorophenol	19	< 19 Ū
95-50-1	1,2-Dichlorobenzene	4.8	< 4.8 U
541-73-1	1,3-Dichlorobenzene	4.8	< 4.8 U

Reported in µg/kg (ppb)

2-Fluorophenol	56.5%
d14-p-Terphenyl	67.8%

SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID	FPH	TER	TOT OUT
MB-111513	58.0%	76.0%	0
LCS-111513	62.8%	74.8%	0
CR06-2.5	57.2%	76.6%	0
CR01-10cm	55.2%	70.4%	0
CR02-10cm	52.9%	61.2%	0
CR03-10cm	56.5%	67.8%	0

	LCS/MB LIMITS	QC LIMITS
(FPH) = 2-Fluorophenol	(32-120)	(27-120)
(TER) = d14-p-Terphenyl	(42-124)	(37-120)

Prep Method: SW3546 Log Number Range: 13-24856 to 13-24860

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET

Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 1 Sample ID: LCS-111513 LAB CONTROL SAMPLE

Date Analyzed LCS: 11/20/13 15:34

Instrument/Analyst LCS: NT10/YZ

Date Extracted: 11/15/13

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.00 g-dry-wt Final Extract Volume LCS: 1.0 mL Dilution Factor LCS: 1.00

Analyte	LCS	Spike Added	Recovery
Dibenz(a,h)anthracene	268	500	53.6%
1,4-Dichlorobenzene	323	500	64.6%
1,2,4-Trichlorobenzene	337	500	67.48
Hexachlorobenzene	389	500	77.8%
Hexachlorobutadiene	345	500	69.0%
Dimethylphthalate	395	500	79.0%
Butylbenzylphthalate	497 Q	500	99.4%
2-Methylphenol	287	500	57.4%
2,4-Dimethylphenol	898	1500	59.9%
N-Nitrosodiphenylamine	405	500	81.0%
Benzyl Alcohol	369 Q	500	73.8%
Pentachlorophenol	1140 E	1500	76.0%
1,2-Dichlorobenzene	335	500	67.0%
1,3-Dichlorobenzene	325	500	65.0%

Reported in µg/kg (ppb)

2-Fluorophenol	62.8%
d14-p-Terphenyl	74.8%

Data File: /chem1/nt10.i/20131120.b/SIM.b/cc1120.d Report Date: 21-Nov-2013 15:54

Analytical Resources, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt10.iInjection Date: 20-NOV-2013 13:25Lab File ID: cc1120.dInit. Cal. Date(s): 18-NOV-2013 18-NOV-2013Analysis Type:Init. Cal. Times: 12:57Lab Sample ID: CC1120Quant Type: ISTDMethod: /chem1/nt10.i/20131120.b/SIM.b/SIMABN2.m

				MIN				MAX	
COMPOUND	RRF	/ AMOUNT	RF1	RRF	%D /	&DRIFT	%D /	%DRIFT	CURVE TY
	====		================		=====		====		========
\$ 1 2-Fluorophenol	1	1.38322	1.30899	0.010	-5	.36686	2	20.00000	Average
3 Phenol		1.61320	1.38756	0.010	-13	.98709	2	20.00000	Average
7 1,3-Dichlorobenzene	1	1.56138	1.49622	0.010	- 4	.17358	2	20.00000	Average
9 1,4-Dichlorobenzene	1	1.52875	1.43658	0.010	-6	.02923	2	20.00000	Average
11 Benzyl alcohol	ł	0.77619	0.54595	0.010	-29	.66251	2	20.00000	Average
12 1,2-Dichlorobenzene	1	1.44302	1.37869	0.010	-4	.45818	2	20.00000	Average
13 2-Methylphenol		1.29978	1.15552	0.010	-11	. 09903	2	20.00000	Average
15 4-Methylphenol		1.35246	1.11087	0.010	-17	.86342	2	20.00000	Average
16 N-Nitroso-di-n-propylamine	1	0.61576	0.60800	0.050	-1	.26034	2	20.00000	Average
22 2,4-Dimethylphenol	1	0.38359	0.36366	0.010	-5	.19602	2	20.00000	Average
26 1,2,4-Trichlorobenzene	1	0.40429	0.38951	0.010	-3	.65675	2	20.00000	Average
30 Hexachlorobutadiene	1	0.23352	0.22840	0.010	-2	.19038	2	20.00000	Average
39 Dimethylphthalate		1.32454	1.33403	0.010	0	.71718	2	20.00000	Average
50 Diethylphthalate	1	1.47908	1.50022	0.010	1	.42921	2	20.00000	Average
54 N-Nitrosodiphenylamine	1	0.49786	0.50051	0.010	0	.53071	2	20.00000	Average
57 Hexachlorobenzene – – –	-	0.32846	0.32612	0.010	<u>-</u> -0	.71223	[_] 2	20.0 <u>0</u> 000	Average
58 Pentachlorophenol	1	0.22846	0.22091	0.005	-3	.30315	2	20.00000	Average
\$ 66 Terphenyl-d14	ļ	0.50821	0.49737	0.010	-2	.13243	2	20.00000	Average
67 Butylbenzylphthalate	1	0.38795	0.46893	0.010	20	.87418	2		Average
79 Dibenzo(a,h)anthracene		1.10683	1.13862	0.010	2	.87234	2	0.00000	Average
90 N-Nitrosodimethylamine	1	0.56255	0.61737	0.010	9	.74446	2	0.00000	Average

Sample ID: CR06-10cm SAMPLE

Lab Sample ID: XN64A LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: Reported: 12/02/13

Date Extracted: 11/27/13 Date Analyzed: 11/30/13 16:35 Instrument/Ānalyst: NT10/¥Z GPC Cleanup: Yes QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 0.65 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 78.7%

CAS Number	Analyte	RL	Result	
108-95-2	Phenol	310	370	
87-86-5	Pentachlorophenol	1,500	< 1,500 U	
85-68-7	Butylbenzylphthalate	310	< 310 U	

Reported in $\mu g/kg$ (ppb)

d5-Nitrobenzene	64.0%	2-Fluorobiphenyl	65.2%
d14-p-Terphenyl	67.2%	d4-1,2-Dichlorobenzene	60.2%
d5-Phenol	62.0%	2-Fluorophenol	58.1%
2,4,6-Tribromophenol	61.1%	d4-2-Chlorophenol	62.1%

Sample ID: CR04-10cm SAMPLE

Lab Sample ID: XN64B LIMS ID: 13-24854 Matrix: Sediment Data Release Authorized: Reported: 12/02/13

Date Extracted: 11/27/13 Date Analyzed: 11/30/13 17:10 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 3.44 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 71.5%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	58	290
87-86-5	Pentachlorophenol	290	< 290 U
85-68-7	Butylbenzylphthalate	58	< 58 U

Reported in µg/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	66.0%	2-Fluorobiphenyl	71.4%
d14-p-Terphenyl	61.8%	d4-1,2-Dichlorobenzene	51.0%
d5-Phenol	56.9%	2-Fluorophenol	50.8%
2,4,6-Tribromophenol	69.1%	d4-2-Chlorophenol	56.4%

___ .

Sample ID: CR05-10cm SAMPLE

Lab Sample ID: XN64C LIMS ID: 13-24855 Matrix: Sediment Data Release Authorized: *B* Reported: 12/02/13

Date Extracted: 11/27/13 Date Analyzed: 11/30/13 17:46 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes Sample Amount: 3.38 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: 74.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	59	570
87-86-5	Pentachlorophenol	300	< 300 U
85-68-7	Butylbenzylphthalate	59	< 59 U

Reported in µg/kg (ppb)

Semivolatile Surrogate Recovery

d5-Nitrobenzene	71.4%	2-Fluorobiphenyl	65.6%
d14-p-Terphenyl	64.0%	d4-1,2-Dichlorobenzene	55.2%
d5-Phenol	62.0%	2-Fluorophenol	54.9%
2,4,6-Tribromophenol	64.8%	d4-2-Chlorophenol	60.8%

Sample ID: CR04-5 SAMPLE

Lab Sample ID: XN64E QC Report No: XN64-Maul Foster & Alongi LIMS ID: 13-24857 Project: GHHSA Matrix: Sediment 0863.01.01 Data Release Authorized: / Date Sampled: 11/08/13 Reported: 12/02/13 Date Received: 11/08/13 Date Extracted: 11/27/13 Sample Amount: 4.15 g-dry-wt

Date Analyzed: 11/30/13 18:21 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

Final Extract Volume: 1.0 mL Dilution Factor: 1.00

Percent Moisture: 80.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	48	980

Reported in µg/kg (ppb)

d5-Phenol	62.3%
2-Fluorophenol	50.8%
2,4,6-Tribromophenol	60.5%
d4-2-Chlorophenol	55.5%

Sample ID: MB-112713 METHOD BLANK

Lab Sample ID: MB-112713 LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: A Reported: 12/02/13

Date Extracted: 11/27/13 Date Analyzed: 11/30/13 15:25 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.00 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
87 - 86-5	Pentachlorophenol	100	< 100 U
85-68-7	Butylbenzylphthalate	20	< 20 U

Reported in µg/kg (ppb)

d5-Nitrobenzene	61.0%	2-Fluorobiphenyl	59.4%
d14-p-Terphenyl	71.2%	d4-1,2-Dichlorobenzene	62.0%
d5-Phenol	62.78	2-Fluorophenol	60.1%
2,4,6-Tribromophenol	55.5%	d4-2-Chlorophenol	64.0%

ORGANICS ANALYSIS DATA SHEET PSDDA Semivolatiles by SW8270D GC/MS

Page 1 of 1

Lab Sample ID: LCS-112713 LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: Reported: 12/02/13

Date Extracted: 11/27/13 Date Analyzed: 11/30/13 16:00 Instrument/Analyst: NT10/YZ GPC Cleanup: Yes

Sample ID: LCS-112713 LAB CONTROL

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 10.00 g Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
Phenol	322	500	64.4%
Pentachlorophenol	726 Q	1500	48.48
Butylbenzylphthalate	470	500	94.0%

Semivolatile Surrogate Recovery

d5-Nitrobenzene	59.4%	
2-Fluorobiphenyl	58.8%	
d14-p-Terphenyl	72.2%	
d4-1,2-Dichlorobenzene	54.4%	
d5-Phenol	61.5%	
2-Fluorophenol	58.0%	
2,4,6-Tribromophenol	62.8%	
 d4-2-Chlorophenol —	59.5%	

Reported in $\mu g/kg$ (ppb)

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP T	OT OUT
MB-112713	61.0%	59.4%	71.2%	62.0%	62.7%	60.1%	55.5%	64.0%	0
LCS-112713	59.4%	58.8%	72.2%	54.4%	61.5%	58.0%	62.8%	59.5%	0
CR06-10cm	64.0%	65.2%	67.2%	60.2%	62.0%	58.1%	61.1%	62.1%	0
CR04-10cm	66.08	71.4%	61.8%	51.0%	56.9%	50.8%	69.1%	56.4%	0
CR05-10cm	71.4%	65.6%	64.0%	55.2%	62.0%	54.9%	64.8%	60.8%	0

	LCS/MB LIMITS	QC LIMITS
(NBZ) = d5-Nitrobenzene	(33-120)	(30 - 120)
(FBP) = 2-Fluorobiphenyl	(35-120)	(35-120)
(TPH) = d14-p-Terphenyl	(42-124)	(37-120)
(DCB) = d4-1,2-Dichlorobenzene	(37-120)	(32-120)
(PHL) = d5-Phenol	(32-120)	(29-120)
(2FP) = 2-Fluorophenol	(32-120)	(27 - 120)
(TBP) = 2,4,6-Tribromophenol	(23-133)	(24-134)
(2CP) = d4-2-Chlorophenol	(36-120)	(31-120)

Prep Method: SW3546 Log Number Range: 13-24853 to 13-24855

SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID	PHL	2FP	TBP	2CP T	TUO TC
CR04-5	62.3%	50.8%	60.5%	55.5%	0
<pre>(PHL) = d5-Phenol (2FP) = 2-Fluorophenol (TBP) = 2,4,6-Tribromophenol (2CP) = d4-2-Chlorophenol</pre>	(32- (32- (23-	LIMITS 120) 120) 133) 120)	(29 (27 (24	LIMITS -120) -120) -134) -120)	

Prep Method: SW3546 Log Number Range: 13-24857 to 13-24857 Analytical Resources, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt10.iInjection Date: 30-NOV-2013 14:15Lab File ID: cc1130.dInit. Cal. Date(s): 18-NOV-2013 18-NOV-2013Analysis Type:Init. Cal. Times: 12:57Lab Sample ID: ABN 5Quant Type: ISTDMethod: /chem1/nt10.i/20131130.b/ABN.m

	11		CCAL	MIN		MAX	1
COMPOUND	RRF / AMOUNT	RF5	RRF5		, ,	%D / %DRIFT	
<pre>\$ 1 2-Fluorophenol</pre>	== ======== 1.33752	1.34316			•	•	
\$ 2 Phenol-d5	1.67903	1.76680			1		, 5
3 Phenol	1.64980	1.69868			•	-	
\$ 5 2-Chlorophenol-d4	1.46461	1.46737					, ,
4 Bis(2-Chloroethyl)ether	1.13893	1.18807			•		5
6 2-Chlorophenol	1.46555	1.50423	•		•		
7 1,3-Dichlorobenzene	1.50753		•				5
9 1,4-Dichlorobenzene		1.45671	•		•		
	1.45615	1.42731	•		•	•	
\$ 10 1,2-Dichlorobenzene-d4	1.05860	1.03186					, ,
12 1,2-Dichlorobenzene	1.40987	1.36328				•	J
11 Benzyl alcohol	0.75201	0.68021				•	5
14 2,2'-oxybis(1-Chloropropane	0.43859	0.42280	•			20.00000	Averaged
13 2-Methylphenol	1.30286	1.31369	1			20.00000	Averaged
17 Hexachloroethane	0.56357	0.54992	0.54992			20.00000	Averaged
16 N-Nitroso-di-n-propylamine	0.66921	0.73985	0.73985	0.500	10.55710	20.00000	Averaged
15_4-Methylphenol	1.35046	_ 1.37131	1 .371 31	0.600	—1.543 65	20.00000	Averaged
\$ 18 Nitrobenzene-d5	0.37070	0.37690	0.37690	0.010	1.66998	20.00000	Averaged
19 Nitrobenzene	0.31004	0.32068	0.32068	0.200	3.43116	20.00000	Averaged
20 Isophorone	0.55731	0.58888	0.58888	0.300	5.66490	20.00000	Averaged
21 2-Nitrophenol	0.24272	0.24399	0.24399	0.100	0.52330	20.00000	Averaged
22 2,4-Dimethylphenol	0.38529	0.37385	0.37385	0.200	-2.96952	20.00000	Averaged
23 Bis(2-Chloroethoxy)methane	0.35632	0.37333	0.37333	0.050	4.77269	20.00000	Averaged
24 Benzoic acid	0.30601	0.26338	0.26338	0.010	-13.93292	20.00000	Averaged
25 2,4-Dichlorophenol	0.36046	0.41793	0.41793	0.100	15.94310	20.00000	Averaged
26 1,2,4-Trichlorobenzene	0.38026	0.35588	0.35588	0.010	-6.41096	20.00000	Averaged
28 Naphthalene	1.04402	1.01224	1.01224				5
29 4-Chloroaniline	0.40752	0.43494	0.43494	0.010	6.73065		5
30 Hexachlorobutadiene	0.23172	0.21277	0.21277			•	5
31 4-Chloro-3-methylphenol	0.32584	0.34666	0.34666				5
32 2-Methylnaphthalene	0.73051	0.73095	0.73095	•		•	5
33 Hexachlorocyclopentadiene	0.50700	0.29528	0.29528		-41.75949		5
34 2,4,6-Trichlorophenol	0.48707	0.47548	0.47548				J -
35 2,4,5-Trichlorophenol	0.50939	0.50924	0.50924	•			5
36 2-Fluorobiphenyl	1.55155	1.51018	1.51018				5
37 2-Chloronaphthalene	1.16558	1.13475	1.13475		-2.64502		5
	1 1.10220	1.134/5	1.134/5	0.700	-2.64502	20.00000	Averaged

_ _

Analytical Resources, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt10.iInjection Date: 30-NOV-2013 14:15Lab File ID: cc1130.dInit. Cal. Date(s): 18-NOV-2013 18-NOV-2013Analysis Type:Init. Cal. Times: 12:57 17:06Lab Sample ID: ABN 5Quant Type: ISTDMethod: /chem1/nt10.i/20131130.b/ABN.m

	I		CCAL	MIN	1	MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5		%D / %DRIFT	· ·	
38 2-Nitroaniline		0.24809	0.24809		•	•	
39 Dimethylphthalate	1.27144	1.23018				-	. 5
40 Acenaphthylene	1.93144	1.70905					
41 2,6-Dinitrotoluene	0.29938	0.30586			•		5
43 3-Nitroaniline	0.26355	0.27431					5
44 Acenaphthene	1.10793	1.08908			•	•	5
45 2,4-Dinitrophenol	16.88949	20.00000			•		5
46 Dibenzofuran	1.61373	1.57411					-
47 4-Nitrophenol	0.15330	0.14702					
48 2,4-Dinitrotoluene	0.39663	0.40616	•				5
50 Diethylphthalate	1.21570	1.17752				•	J
49 Fluorene	1.39934	1.36129	•				5
51 4-Chlorophenyl-phenylether	0.72393	0.68927					
52 4-Nitroaniline	0.25521	0.28063	1				_
53 4,6-Dinitro-2-methylphenol	0.19322	0.22219	1			1	-
54 N-Nitrosodiphenylamine	0.49888	- 0.48789	0.48789		· ·		5
\$ 55 2,4,6-Tribromophenol	0.32583	0.30139			•		-
56 4-Bromophenyl-phenylether	0.27481	0.26681	•	,	•	1	j .
57 Hexachlorobenzene	0.30461	0.28307	0.28307	,	•	1	
58 Pentachlorophenol	0.24013	0.15990	0.15990		· ·		2
60 Phenanthrene	1.07912	1.04348	1.04348	,		20.00000	
61 Anthracene	1.13273	1.13095	1.13095			20.00000	Averaged
62 Carbazole	0.80682	0.78067	0.78067			20.00000	
63 Di-n-butylphthalate	1.13123	1.22086	1.22086			20.000001	5
64 Fluoranthene	1.38260	1.37203	1.37203			20.00000	
65 Pyrene	1.28185	1.36007	1.36007		,	20.00000	5
\$ 66 Terphenyl-d14	0.78868	0.79464	0.79464		,	20.00000	2
67 Butylbenzylphthalate	0.41048	0.46207	0.46207			20.00000	2
68 Benzo(a)anthracene	1.24366	1.21618	1.21618			20.00000	Averaged
70 3,3'-Dichlorobenzidine	0.55098	0.51627	0.51627			20.00000	Averaged
71 Chrysene	1.10420	1.08574	1.08574			20.00000	Averaged
72 bis(2-Ethylhexyl)phthalate	0.48960	0.49585	0.49585			20.00000	
73 Di-n-octylphthalate	1.00124	0.93208	0.93208			20.00000	5
74 Benzo(b)fluoranthene	1.18784	1.14841	1.14841		-3.31942	20.00000	Averaged
75 Benzo(k)fluoranthene	1.19134	1.20474	1.20474	•	1.12484	20.00000	
,	1 1.1.1.1.1.1.1.1.1	1.50213	1.50214		1.12404	20.00000	Averaged

Analytical Resources, Inc.

CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt10.iInjection Date: 30-NOV-2013 14:15Lab File ID: cc1130.dInit. Cal. Date(s): 18-NOV-2013 18-NOV-2013Analysis Type:Init. Cal. Times: 12:57 17:06Lab Sample ID: ABN 5Quant Type: ISTDMethod: /chem1/nt10.i/20131130.b/ABN.m

	l	1	CCAL	MIN		MAX	1
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
		=====================================	======	=====		= = = = = = = = = = = = = = = = = = =	
76 Benzo(a)pyrene	1.04130	1.02577	1.02577	0.700	-1.49136	20.00000	Averaged
78 Indeno(1,2,3-cd)pyrene	1.31830	1.22128	1.22128	0.500	-7.35969	20.00000	Averaged
79 Dibenzo(a,h)anthracene	1.03965	0.92626	0.92626	0.400	-10.90674	20.00000	Averaged
80 Benzo(g,h,i)perylene	1.13505	1.05475	1.05475	0.500	-7.07445	20.00000	Averaged
90 N-Nitrosodimethylamine	0.59522	0.70862	0.70862	0.010	19.05172	20.00000	Averaged
91 Aniline	3.20010	3.08583	3.08583	0.010	-3.57071	20.00000	Averaged
93 Benzidine	0.26426	0.11931	0.11931	0.010	-54.85056	20.00000	Averaged
103 Pyridine	0.58020	0.52374	0.52374	0.010	-9.73196	20.00000	Averaged
105 1-methylnaphthalene	0.66247	0.67212	0.67212	0.010	1.45537	20.00000	Averaged
111 Azobenzene (1,2-DP-Hydrazin	0.92896	0.88274	0.88274	0.010	-4.97580	20.00000	Averaged
187 Total Benzofluoranthenes	1.17065	1.14890	1.14890	0.010	-1.85796	20.00000	Averaged
99 Perylene	1.00589	0.97543	0.97543	0.010	-3.02855	20.00000	Averaged
98 Retene	0.00018	0.00031	0.00031	0.010	77.41910	20.00000	Averaged
120 2,3,4,6-Tetrachlorophenol	0.41983	0.37849	0.37849	0.010	-9.84831	20.00000	Averaged

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by EPA 1613B

Page 1 of 1

Lab Sample ID: MB-111813 LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: 'Www Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 08:06 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Sample ID: MB-111813

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	EDL	RL	Result	
2,3,7,8-TCDF		0.65-0.89	0.0360	1.00	< 0.0360	U
2,3,7,8-TCDD	0.26	0.65-0.89		1.00	0.136	JEMPC
1,2,3,7,8-PeCDF	0.83	1.32-1.78		1.00	0.0300	JEMPC
2,3,4,7,8-PeCDF		1.32-1.78	0.0320	1.00	< 0.0320	U
1,2,3,7,8-PeCDD	1.47	1.32-1.78		1.00	0.0940	J
1,2,3,4,7,8-HxCDF		1.05-1.43	0.0300	1.00	< 0.0300	U
1,2,3,6,7,8-HxCDF		1.05-1.43	0.0300	1.00	< 0.0300	U
2,3,4,6,7,8-HxCDF		1.05-1.43	0.0320	1.00	< 0.0320	U
1,2,3,7,8,9-HxCDF		1.05-1.43	0.0380	1.00	< 0.0380	U
1,2,3,4,7,8-HxCDD	1.08	1.05-1.43		1.00	0.162	J
1,2,3,6,7,8-HxCDD	0.74	1.05-1.43		1.00	0.148	JEMPC
1,2,3,7,8,9-HxCDD	1.50	1.05-1.43		1.00	0.214	JEMPC
1,2,3,4,6,7,8-HpCDF		0.88-1.20	0.0280	1.00	< 0.0280	U
1,2,3,4,7,8,9-HpCDF		0.88-1.20	0.0420	1.00	< 0.0420	U
1,2,3,4,6,7,8-HpGDD	1.06	-0.88 - 1.20		-1.00	— 3 .93	
OCDF		0.76-1.02	0.0640	2.00	< 0.0640	U
OCDD	0.87	0.76-1.02		2.00	21.7	
Homologue Group	EDL	RL		Result		
Total TCDF	0.0360	1.00	<	0.0360 U		

J
EMPC
EMPC
EMPC
J
EMPC
J

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.33 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 0.34

Page 1 of 1

Lab Sample ID: MB-111813 LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 08:06 Instrument/Analyst: AS1/PK Sample ID: MB-111813

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	101	24-169	
13C-2,3,7,8-TCDD	0.79	0.65-0.89	103	25-164	
13C-1,2,3,7,8-PeCDF	1.56	1.32-1.78	131	24-185	
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	129	21-178	
13C-1,2,3,7,8-PeCDD	1.57	1.32-1.78	135	25-181	
13C-1,2,3,4,7,8-HxCDF	0.51	0.43-0.59	100	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	94.6	26-123	
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	98.0	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	98.4	29-147	
13C-1,2,3,4,7,8-HxCDD	1.27	1.05-1.43	106	32-141	
13C-1,2,3,6,7,8-HxCDD	1.24	1.05-1.43	96.5	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.45	0.37-0.51	89.2	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.44	0.37-0.51	100	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.06	0.88-1.20	105	23-140	
13C-OCDD	0.89	0.76-1.02	92.0	17-157	
37C14-2,3,7,8=TCDD			104	35-197	

Lab Sample ID: OPR-111813 LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: NW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/22/13 12:52 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Sample ID: OPR-111813

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	RL	Result
2,3,7,8-TCDF	0.71	0.65-0.89	1.00	21.7
2,3,7,8-TCDD	0.78	0.65-0.89	1.00	22.0
1,2,3,7,8-PeCDF	1.44	1.32-1.78	1.00	110
2,3,4,7,8-PeCDF	1.47	1.32-1.78	1.00	107
1,2,3,7,8-PeCDD	1.55	1.32-1.78	1.00	110
1,2,3,4,7,8-HxCDF	1.16	1.05-1.43	1.00	109
1,2,3,6,7,8-HxCDF	1.20	1.05-1.43	1.00	126
2,3,4,6,7,8-HxCDF	1.17	1.05-1.43	1.00	112
1,2,3,7,8,9-HxCDF	1.14	1.05-1.43	1.00	108
1,2,3,4,7,8-HxCDD	1.26	1.05-1.43	1.00	107
1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	1.00	119
1,2,3,7,8,9-HxCDD	1.24	1.05-1.43	1.00	112
1,2,3,4,6,7,8-HpCDF	0.96	0.88-1.20	1.00	119
1,2,3,4,7,8,9-HpCDF	0.95	0.88-1.20	1.00	109
1,2,3,4,6,7,8-HpCDD	1.02	0.88-1.20	1.00	
OCDF	0.87	0.76-1.02	2.00	219
OCDD	0.91	0.76-1.02	2.00	228
Homologue Group	EDL	RL	Result	
Total TCDF		1.00	22.8 EMPC	
Total TCDD		1.00	22.9 EMPC	
Total PeCDF		2.00	223 EMPC	
Total PeCDD		1.00	111 EMPC	
Total HxCDF		2.00	456 EMPC	
Total HxCDD		2.00	340 EMPC	
Total HpCDF		2.00	228	
Total HpCDD		2.00	114	

Lab Sample ID: OPR-111813 LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: WWW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/22/13 12:52 _Instrument/Analyst:_AS1/PK

Sample ID: OPR-111813

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	108	22-152	
13C-2,3,7,8-TCDD	0.79	0.65-0.89	102	20-175	
13C-1,2,3,7,8-PeCDF	1.62	1.32-1.78	118	21-192	
13C-2,3,4,7,8-PeCDF	1.58	1.32-1.78	109	13-328	
13C-1,2,3,7,8-PeCDD	1.58	1.32-1.78	113	21-227	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	111	19 - 202	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	97.3	21-159	
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	106	22-176	
13C-1,2,3,7,8,9-HxCDF	0.50	0.43-0.59	105	17-205	
13C-1,2,3,4,7,8-HxCDD	1.25	1.05-1.43	113	21-193	
13C-1,2,3,6,7,8-HxCDD	1.23	1.05-1.43	101	25-163	
13C-1, 2, 3, 4, 6, 7, 8-HpCDF	0.45	0.37-0.51	96.4	21-158	
13C-1, 2, 3, 4, 7, 8, 9-HpCDF	0.44	0.37-0.51	103	20-186	
13C-1, 2, 3, 4, 6, 7, 8-HpCDD	1.08	0.88-1.20	107	26-166	
13C-OCDD	0.89	0.76-1.02	92.4	13-198	
37C14-2,3,7,8-TCDD			101	31 - 19 1	

Page 1 of 1

Lab Sample ID: OPR-111813 LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: NWW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/22/13 12:52 Instrument/Analyst: AS1/PK

Sample ID: OPR-111813

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	OPR	Spiked	Recovery	Limits	
2,3,7,8-TCDF	21.7	20.0	108	75-158	
2,3,7,8-TCDD	22.0	20.0	110	67-158	
1,2,3,7,8-PeCDF	110	100	110	80-134	
2,3,4,7,8-PeCDF	107	100	107	68-160	
1,2,3,7,8-PeCDD	110	100	110	70-142	
1,2,3,4,7,8-HxCDF	109	100	109	72-134	
1,2,3,6,7,8-HxCDF	126	100	126	84-130	
2,3,4,6,7,8-HxCDF	112	100	112	70-156	
1,2,3,7,8,9-HxCDF	108	100	108	78-130	
1,2,3,4,7,8-HxCDD	107	100	107	70-164	
1,2,3,6,7,8-HxCDD	119	100	119	76-134	
1,2,3,7,8,9-HxCDD	112	100	112	64-162	
1,2,3,4,6,7,8-HpCDF	119	100	119	82-132	
1,2,3,4,7,8,9-HpCDF	109	100	109	78-138	
1,2,3,4,6,7,8-HpCDD	110	100	110	70-140	
OCDF	219	200	110	63-170	
OEDD	228	200	114	78-144	-

Page 1 of 1

Lab Sample ID: XN64A LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: WW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/22/13 23:04 Instrument/Analyst: AS1/PK Acid Cleanup: Yes -Silica-Carbon Cleanup: No

Sample ID: CR06-10cm

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	ËDL	RL	Result
2,3,7,8-TCDF	0.66	0.65-0.89		1.00	4.87
2,3,7,8-TCDD	0.69	0.65-0.89		1.00	2.09
1,2,3,7,8-PeCDF	1.44	1.32-1.78		1.00	3.28
2,3,4,7,8-PeCDF	1.58	1.32-1.78		1.00	5.96
1,2,3,7,8-PeCDD	1.52	1.32-1.78		1.00	9.35
1,2,3,4,7,8-HxCDF	1.15	1.05-1.43		1.00	18.1
1,2,3,6,7,8-HxCDF	1.14	1.05-1.43		1.00	8.90
2,3,4,6,7,8-HxCDF	1.15	1.05-1.43		1.00	16.9
1,2,3,7,8,9-HxCDF	1.19	1.05-1.43		1.00	4.79
1,2,3,4,7,8-HxCDD	1.19	1.05-1.43		1.00	12.7
1,2,3,6,7,8-HxCDD	1.23	1.05-1.43		1.00	63.8
1,2,3,7,8,9-HxCDD	1.22	1.05-1.43		1.00	16.5
1,2,3,4,6,7,8-HpCDF	0.97	0.88-1.20		1.00	258
1,2,3,4,7,8,9-HpCDF	0.94	0.88-1.20		1.00	13.2
1,2,3,4,6,7,8-HpCDD		0 .88- 1.20		1.00	1,080
OCDF	0.86	0.76-1.02		2.00	680
OCDD	0.89	0.76-1.02		2.00	7,830 E
Homologue Group	EDL	RL		Result	
Total TCDF		1.00		82.8 EMPC	
Total TCDD		1.00		42.6 EMPC	
Total PeCDF		2.00		203 EMPC	
Total PeCDD		1.00		88.7	
Total HxCDF		2.00		463 EMPC	
Total HxCDD		2.00		742 EMPC	
Total HpCDF		2.00		950	
Total HpCDD		2.00		2,480	

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 44.0 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 44.0

Page 1 of 1

Lab Sample ID: XN64A LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: WW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/22/13 23:04 Instrument/Analyst: AS1/PK

Sample ID: CR06-10cm

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	53.0	24-169	
13C-2,3,7,8-TCDD	0.78	0.65-0.89	64.4	25-164	
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	71.8	24-185	
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	72.1	21-178	
13C-1,2,3,7,8-PeCDD	1.56	1.32-1.78	77.0	25-181	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	63.0	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	58.2	26-123	
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	61.3	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	62.8	29-147	
13C-1,2,3,4,7,8-HxCDD	1.26	1.05-1.43	66.8	32-141	
13C-1,2,3,6,7,8-HxCDD	1.24	1.05-1.43	60.8	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.43	0.37-0.51	54.2	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	67.9	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.04	0.88-1.20	65.5	23-140	
13C-OCDD	0.89	0.76-1.02	53.1	17-157	
37C14-2,3,7,8-TCDD			85.7	35-197	

Lab Sample ID: XN64B LIMS ID: 13-24854 Matrix: Sediment Data Release Authorized: Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 00:01 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Sample ID: CR04-10cm

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	EDL	RL	Result	
2,3,7,8-TCDF	0.68	0.65-0.89		0.999	3.53	· · · · · · · · · · · · · · · · · · ·
2,3,7,8-TCDD	0.62	0.65-0.89		0.999	1.14	BEMPC
1,2,3,7,8-PeCDF	1.34	1.32-1.78		0.999	2.06	
2,3,4,7,8-PeCDF	1.44	1.32-1.78		0.999	3.43	
1,2,3,7,8-PeCDD	1.57	1.32-1.78		0.999	4.34	
1,2,3,4,7,8-HxCDF	1.21	1.05-1.43		0.999	7.26	
1,2,3,6,7,8-HxCDF	1.22	1.05-1.43		0.999	3.38	
2,3,4,6,7,8-HxCDF	1.16	1.05-1.43		0.999	5.09	
1,2,3,7,8,9-HxCDF	1.21	1.05-1.43		0.999	2.45	
1,2,3,4,7,8-HxCDD	1.23	1.05-1.43		0.999	4.26	
1,2,3,6,7,8-HxCDD	1.26	1.05-1.43		0.999	54.5	
1,2,3,7,8,9-HxCDD	1.26	1.05-1.43		0.999	10.2	
1,2,3,4,6,7,8-HpCDF	0.98	0.88-1.20		0.999	165	
1,2,3,4,7,8,9-HpCDF	0.89	0.88-1.20		0.999	7.55	EMPC
1,2,3,4,6,7,8-HpCDD	- 1.03	0.88-1.20		0.999	817	
OCDF	0.85	0.76-1.02		2.00	476	
OCDD	0.89	0.76-1.02		2.00	5,340	E
Homologue Group	EDL	RL		Result		
Total TCDF		0.999		27.9 EMPC		
Total TCDD		0.999		17.5 EMPC		
Total PeCDF		2.00		101 EMPC		
Total PeCDD		0.999		68.7 EMPC		
Total HxCDF		2.00		301 EMPC		
Total HxCDD		2.00		350 EMPC		
Total HpCDF		2.00		678 EMPC		
Total HpCDD		2.00		1,530		

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 27.3

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 27.3

Lab Sample ID: XN64B LIMS ID: 13-24854 Matrix: Sediment Data Release Authorized: Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 00:01 Instrument/Analyst: AS1/PK Sample ID: CR04-10cm

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	50.7	24-169	
13C-2,3,7,8-TCDD	0.78	0.65-0.89	75.7	25-164	
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	88.0	24-185	
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	87.7	21-178	
13C-1,2,3,7,8-PeCDD	1.57	1.32-1.78	93.0	25-181	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	79.0	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	71.2	26-123	
13C-2,3,4,6,7,8-HxCDF	0.53	0.43-0.59	76.7	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	80.5	29-147	
13C-1,2,3,4,7,8-HxCDD	1.25	1.05-1.43	78.1	32-141	
13C-1,2,3,6,7,8-HxCDD	1.22	1.05-1.43	75.4	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.44	0.37-0.51	66.9	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	84.1	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.04	0.88-1.20	80.2	23-140	
13C-OCDD	0.89	0.76-1.02	64.9	17-157	
37 C14-2,3 ,7,8-TCDD			84.3	35-197	

Page 1 of 1

Lab Sample ID: XN64C LIMS ID: 13-24855 Matrix: Sediment Data Release Authorized: Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 00:55 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Sample ID: CR05-10cm

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	EDL	RL	Result	
2,3,7,8-TCDF	0.77	0.65-0.89		0.999	6.30	
2,3,7,8-TCDD	0.73	0.65-0.89		0.999	3.00	
1,2,3,7,8-PeCDF	1.49	1.32-1.78		0.999	4.73	
2,3,4,7,8-PeCDF	1.52	1.32-1.78		0.999	5.82	
1,2,3,7,8-PeCDD	1.60	1.32-1.78		0.999	13.9	
1,2,3,4,7,8-HxCDF	1.12	1.05-1.43		0.999	15.3	
1,2,3,6,7,8-HxCDF	1.17	1.05-1.43		0.999	10.9	
2,3,4,6,7,8-HxCDF	1.18	1.05-1.43		0.999	11.1	
1,2,3,7,8,9-HxCDF	1.11	1.05-1.43		0.999	6.11	
1,2,3,4,7,8-HxCDD	1.26	1.05-1.43		0.999	11.2	
1,2,3,6,7,8-HxCDD	1.24	1.05-1.43		0.999	136	
1,2,3,7,8,9-HxCDD	1.25	1.05-1.43		0.999	29.9	
1,2,3,4,6,7,8-HpCDF	0.98	0.88-1.20		0.999	437	
1,2,3,4,7,8,9-HpCDF	1.05	0.88-1.20		0.999	19.8	
1,2,3,4,6,7,8-HpCDD	1-03 -	0.88-1.20 -		- 0 .9 99 -	1 ,820-	-
OCDF	0.86	0.76-1.02		2.00	863	
OCDD	0.89	0.76-1.02		2.00	10,300	Ε
Homologue Group	EDL	RL		Result		
Total TCDF		0.999		78.1 EMPC		
Total TCDD		0.999		73.6 EMPC		
Total PeCDF		2.00		281 EMPC		
Total PeCDD		0.999		334 EMPC		
Total HxCDF		2.00		853		
Total HxCDD		2.00		1,010 EMPC		
Total HpCDF		2.00		1,560		
Total HpCDD		2.00		3,750		

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 67.6 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 67.6

Page 1 of 1

Lab Sample ID: XN64C LIMS ID: 13-24855 Matrix: Sediment Data Release Authorized: MW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 00:55 Instrument/Analyst: AS1/PK

Sample ID: CR05-10cm

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	67.0	24-169	
13C-2,3,7,8-TCDD	0.78	0.65-0.89	86.8	25-164	
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	102	24-185	
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	97.1	21-178	
13C-1,2,3,7,8-PeCDD	1.56	1.32-1.78	104	25-181	
13C-1,2,3,4,7,8-HxCDF	0.51	0.43-0.59	88.7	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	78.9	26-123	
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	83.3	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	80.4	29-147	
13C-1,2,3,4,7,8-HxCDD	1.24	1.05-1.43	88.0	32-141	
13C-1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	81.4	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.44	0.37-0.51	69.6	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.44	0.37-0.51	86.7	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.06	0.88-1.20	82.4	23-140	
13C-OCDD	0.89	0.76-1.02	66.5	17-157	
37C14-2,3,7,8-TCDD			86.6	35-197	

Lab Sample ID: XN64D LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 01:49 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Sample ID: CR06-2.5

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits EDL	RL	Result	
2,3,7,8-TCDF	0.75	0.65-0.89	0.999	4.95	
2,3,7,8-TCDD	0.72	0.65-0.89	0.999	2.11	
1,2,3,7,8-PeCDF	1.42	1.32-1.78	0.999	3.24	
2,3,4,7,8-PeCDF	1.52	1.32-1.78	0.999	5.87	
1,2,3,7,8-PeCDD	1.45	1.32-1.78	0.999	8.27	
1,2,3,4,7,8-HxCDF	1.16	1.05-1.43	0.999	21.7	
1,2,3,6,7,8-HxCDF	1.18	1.05-1.43	0.999	8.35	
2,3,4,6,7,8-HxCDF	1.18	1.05-1.43	0.999	16.3	
1,2,3,7,8,9-HxCDF	1.15	1.05-1.43	0.999	4.66	
1,2,3,4,7,8-HxCDD	1.21	1.05-1.43	0.999	8.21	
1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	0.999	72.8	
1,2,3,7,8,9-HxCDD	1.28	1.05-1.43	0.999	15.4	
1,2,3,4,6,7,8-HpCDF	0.99	0.88-1.20	0.999	276	
1,2,3,4,7,8,9-HpCDF	0.98	0.88-1.20	0.999	15.5	
1,2,3,4,6,7,8-HpCDD	-1.04 -	0.88=1.20	— 0.99 9 —	1,090	
OCDF	0.87	0.76-1.02	2.00	652	
OCDD	0.88	0.76-1.02	2.00	6,810	Ε
Homologue Group	EDL	RL	Result		
Total TCDF		0.999	62.3 EMPC		

Total TCDF Total TCDD	0.999 0.999	62.3 28.7	EMPC
Total PeCDF	2.00	147	EMPC
Total PeCDD	0.999	67.0	EMPC
Total HxCDF	2.00	518	EMPC
Total HxCDD	2.00	783	EMPC
Total HpCDF	2.00	1,120	EMPC
Total HpCDD	2.00	2,050	

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 43.5 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 43.5

Page 1 of 1

Lab Sample ID: XN64D LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: NW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 01:49 Instrument/Analyst: AS1/PK

Sample ID: CR06-2.5

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	52.4	24-169	
13C-2,3,7,8-TCDD	0.80	0.65-0.89	65.4	25-164	
13C-1,2,3,7,8-PeCDF	1.57	1.32-1.78	76.0	24-185	
13C-2,3,4,7,8-PeCDF	1.56	1.32-1.78	76.5	21-178	
13C-1,2,3,7,8-PeCDD	1.57	1.32-1.78	80.6	25-181	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	66.0	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	60.5	26-123	
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	64.1	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	67.0	29-147	
13C-1,2,3,4,7,8-HxCDD	1.29	1.05-1.43	69.2	32-141	
13C-1,2,3,6,7,8-HxCDD	1.24	1.05-1.43	64.1	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.44	0.37-0.51	63.3	28-143	
13C-1, 2, 3, 4, 7, 8, 9-HpCDF	0.44	0.37-0.51	83.3	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.06	0.88-1.20	77.5	23-140	
13C-OCDD	0.89	0.76-1.02	70.3	17-157	
37C14-2,3,7,8-TCDD			84.5		

Lab Sample ID: XN64F LIMS ID: 13-24858 Matrix: Sediment Data Release Authorized: Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 02:43 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Sample ID: CR01-10cm

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Ion Ratio	Ratio Limits	EDL RL		Result		
0.70	0.65-0.89		0.99	5	1.96	
0.70	0.65-0.89		0.99	5	2.62	
1.48	1.32-1.78		0.99	5	0.683	J
1.74	1.32-1.78		0.99	5	0.814	J
1.60	1.32-1.78		0.99	5	3.93	
1.21	1.05-1.43		0.99	5	2.77	
1.17	1.05-1.43		0.99	5	1.19	
1.11	1.05-1.43		0.99	5	1.80	
1.05	1.05-1.43		0.99	5	0.778	JEMPC
1.18	1.05-1.43		0.99	5	1.76	
1.24	1.05-1.43		0.99	5	9.98	
	1.05-1.43		0.99	5	11.1	
	0.88-1.20		0.99	5	31.9	
1.00	0.88-1.20		0.99	5	1.59	
	0.88-1.20		0.99	5	211	
			1.99		51.0	
0.89	0.76-1.02		1.99		1,690	
EDL	RL		Result			
	0.995		12.4	EMPC		
	0.995		17.4	EMPC		
	1.99		18.0	EMPC		
	0.995		25.8			
	1.99		52.5	EMPC		
	1.99		97.0			
	1.99		87.1	EMPC		
	1.99		485			
	0.70 0.70 1.48 1.74 1.60 1.21 1.17 1.11 1.05 1.18 1.24 1.28 0.98 1.00 1.03 0.86 0.89	0.70 0.65-0.89 0.70 0.65-0.89 1.48 1.32-1.78 1.74 1.32-1.78 1.60 1.32-1.78 1.21 1.05-1.43 1.17 1.05-1.43 1.11 1.05-1.43 1.05 1.05-1.43 1.18 1.05-1.43 1.28 1.05-1.43 1.28 1.05-1.43 1.28 1.05-1.43 1.29 0.88-1.20 1.00 0.88-1.20 1.03 0.88-1.20 0.86 0.76-1.02 0.89 0.76-1.02 EDL RL 0.995 0.995 1.99 0.995 1.99 1.99 1.99 1.99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.70 0.65-0.89 0.995 1.96 0.70 0.65-0.89 0.995 2.62 1.48 1.32-1.78 0.995 0.683 1.74 1.32-1.78 0.995 0.814 1.60 1.32-1.78 0.995 3.93 1.21 1.05-1.43 0.995 2.77 1.17 1.05-1.43 0.995 1.19 1.11 1.05-1.43 0.995 1.80 1.05 1.05-1.43 0.995 1.76 1.24 1.05-1.43 0.995 1.76 1.24 1.05-1.43 0.995 1.76 1.24 1.05-1.43 0.995 1.76 1.24 1.05-1.43 0.995 1.11 0.98 0.88-1.20 0.995 31.9 1.00 0.88-1.20 0.995 211 0.86 0.76-1.02 1.99 1,690 EDL RL Result 1.99 0.995 17.4 EMPC 0.995 <td< td=""></td<>

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 12.9 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 12.9

Page 1 of 1

Lab Sample ID: XN64F LIMS ID: 13-24858 Matrix: Sediment Data Release Authorized: Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 02:43 Instrument/Analyst: AS1/PK

Sample ID: CR01-10cm

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2, 3, 7, 8-TCDF	0.78	0.65-0.89	73.1	24-169	
13C-2,3,7,8-TCDD	0.79	0.65-0.89	84.6	25-164	
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	115	24-185	
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	115	21-178	
13C-1,2,3,7,8-PeCDD	1.59	1.32-1.78	119	25-181	
13C-1,2,3,4,7,8-HxCDF	0.51	0.43-0.59	89.7	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	82.2	26-123	
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	87.7	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	87.9	29-147	
13C-1,2,3,4,7,8-HxCDD	1.26	1.05-1.43	90.8	32-141	
13C-1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	84.5	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.45	0.37-0.51	79.5	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	98.3	26-138	
13C-1, 2, 3, 4, 6, 7, 8-HpCDD	1.05	0.88-1.20	93.8	23-140	
13C-OCDD	0.89	0.76-1.02	90.0	17-157	
37C14-2,3,7,8-TCDD			85.0	3 5- 197	

Lab Sample ID: XN64G LIMS ID: 13-24859 Matrix: Sediment Data Release Authorized: New Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 03:37 - Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Total HpCDF

Total HpCDD

Sample ID: CR02-10cm

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	EDL	RL	Result	
2,3,7,8-TCDF	0.71	0.65-0.89		0.998	2.18	
2,3,7,8-TCDD	0.75	0.65-0.89		0.998	2.89	
1,2,3,7,8-PeCDF	1.33	1.32-1.78		0.998	0.804	J
2,3,4,7,8-PeCDF	1.63	1.32-1.78		0.998	1.13	
1,2,3,7,8-PeCDD	1.50	1.32-1.78		0.998	4.53	
1,2,3,4,7,8-HxCDF	1.11	1.05-1.43		0.998	4.60	
1,2,3,6,7,8-HxCDF	1.20	1.05-1.43		0.998	3.22	
2,3,4,6,7,8-HxCDF	1.17	1.05-1.43		0.998	5.58	
1,2,3,7,8,9-HxCDF	1.14	1.05-1.43		0.998	0.886	J
1,2,3,4,7,8-HxCDD	1.18	1.05-1.43		0.998	1.96	
1,2,3,6,7,8-HxCDD	1.24	1.05-1.43		0.998	10.4	
1,2,3,7,8,9-HxCDD	1.23	1.05-1.43		0.998	12.4	
1,2,3,4,6,7,8-HpCDF	0.98	0.88-1.20		0.998	113	
_1,2,3,4,7,8, <u>9</u> -HpCDF	0.97	0.88-1.20		0.998	4.94	
1,2,3,4,6,7,8-HpCDD	1.04	0.88-1.20		- 0.998	- 201 -	
OCDF	0.85	0.76-1.02		2.00	211	
OCDD	0.89	0.76-1.02		2.00	1,550	
Homologue Group	EDL	RL		Result		
Total TCDF	₩499	0.998		33.0 EMPC		
Total TCDD		0.998		28.1 EMPC		
Total PeCDF		2.00		47.6 EMPC		
Total PeCDD		0.998		34.9		
Total HxCDF		2.00		125		
Total HxCDD		2.00		114		
_						

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 15.6 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 15.6

2.00

2.00

Reported in pg/g

310

433

Lab Sample ID: XN64G LIMS ID: 13-24859 Matrix: Sediment Data Release Authorized: WW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 03:37 Instrument/Analyst: AS1/PK

Sample ID: CR02-10cm

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	94.6	24-169	
13C-2,3,7,8-TCDD	0.77	0.65-0.89	92.5	25-164	
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	119	24-185	
13C-2,3,4,7,8-PeCDF	1.56	1.32-1.78	120	21-178	
13C-1,2,3,7,8-PeCDD	1.58	1.32-1.78	125	25-181	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	87.6	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	81.5	26-123	
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	89.2	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	91.3	29-147	
13C-1,2,3,4,7,8-HxCDD	1.26	1.05-1.43	93.6	32-141	
13C-1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	85.4	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.45	0.37-0.51	86.1	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	105	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.05	0.88-1.20	103	23-140	
13C-OCDD	0.89	0.76-1.02	101	17-157	
37C14-2,3,7,8-TCDD -				- 35 - 197	

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by EPA 1613B

Page 1 of 1

Total HxCDD

Total HpCDF

Total HpCDD

Lab Sample ID: XN64H LIMS ID: 13-24860 Matrix: Sediment Data Release Authorized: WW Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 04:31 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

Sample ID: CR03-10cm

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	EDL	RL	Result	
2,3,7,8-TCDF	0.77	0.65-0.89		0.993	1.34	
2,3,7,8-TCDD	0.73	0.65-0.89		0.993	3.56	
1,2,3,7,8-PeCDF	1.55	1.32-1.78		0.993	0.508	J
2,3,4,7,8-PeCDF	1.70	1.32-1.78		0.993	0.594	J
1,2,3,7,8-PeCDD	1.61	1.32-1.78		0.993	5.08	
1,2,3,4,7,8-HxCDF	1.18	1.05-1.43		0.993	1.02	
1,2,3,6,7,8-HxCDF	1.13	1.05-1.43		0.993	0.862	J
2,3,4,6,7,8-HxCDF	1.25	1.05-1.43		0.993	0.785	J
1,2,3,7,8,9-HxCDF	1.36	1.05-1.43		0.993	0.268	J
1,2,3,4,7,8-HxCDD	1.28	1.05-1.43		0.993	1.42	В
1,2,3,6,7,8-HxCDD	1.27	1.05-1.43		0.993	4.81	
1,2,3,7,8,9-HxCDD	1.23	1.05-1.43		0.993	12.9	
1,2,3,4,6,7,8-HpCDF	0.96	0.88-1.20		0.993	24.7	
1,2,3,4,7,8,9-HpCDF	0.92	0.88-1.20		0.993	0.894	J
1,2,3,4,6,7,8-HpCDD	<u> </u>	0.88-1.20		0-993	- 66.1	-
OCDF	0.86	0.76-1.02		1.99	36.4	
OCDD	0.89	0.76-1.02		1.99	489	
Homologue Group	EDL	RL		Result		
Total TCDF		0.993		16.7 EMPC		
Total TCDD		0.993		24.7 EMPC		
Total PeCDF		1.99		13.2 EMPC		
Total PeCDD		0.993		30.6		
Total HxCDF		1.99		24.4 EMPC		

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 12.2 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 12.2

1.99

1.99

1.99

Reported in pg/g

80.8 EMPC

55.9

167

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by EPA 1613B Page 1 of 1

Lab Sample ID: XN64H LIMS ID: 13-24860 Matrix: Sediment Data Release Authorized: W Reported: 11/26/13

Date Extracted: 11/18/13 Date Analyzed: 11/23/13 04:31 _ Instrument/Analyst: AS1/PK

Sample ID: CR03-10cm

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.1 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	83.5	24-169	
13C-2,3,7,8-TCDD	0.78	0.65-0.89	90.3	25-164	
13C-1,2,3,7,8-PeCDF	1.57	1.32-1.78	113	24-185	
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	116	21-178	
13C-1,2,3,7,8-PeCDD	1.58	1.32-1.78	118	25-181	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	90.1	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	82.5	26-123	
13C-2, 3, 4, 6, 7, 8-HxCDF	0.52	0.43-0.59	87.4	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	89.6	29-147	
13C-1,2,3,4,7,8-HxCDD	1.25	1.05-1.43	91.8	32-141	
13C-1,2,3,6,7,8-HxCDD	1.24	1.05-1.43	83.1	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.44	0.37-0.51	82.9	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	101	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.06	0.88-1.20	96.1	23-140	
13C-OCDD	0.90	0.76-1.02	94.1	17-157	
37C14-2,3,7,8-TCDD	····		- 91.2	- 35=197-	

Reported in Percent Recovery

Lab Sample ID: MB-111513 LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: WW Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/21/13 17:41 Instrument/Analyst: ECD5/JGR --GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: MB-111513 METHOD BLANK

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g Final Extract Volume: 5.00 mL Dilution Factor: 1.00 ----Silica Gel: Yes

Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	77.2%
Tetrachlorometaxylene	64.8%

Lab Sample ID: XN64D LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: WW Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/21/13 18:42 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: CR06-2.5 SAMPLE

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 5.06 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 77.0%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	99	< 99 Y
11097-69-1	Aroclor 1254	200	< 200 Y
11096-82-5	Aroclor 1260	20	690
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	92.2%
Tetrachlorometaxylene	60.5%

Lab Sample ID: XN64F LIMS ID: 13-24858 Matrix: Sediment Data Release Authorized: W Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/21/13 19:02 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: CR01-10cm SAMPLE

Sample Amount: 5.39 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 51.2%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	18	< 18 U
53469-21-9	Aroclor 1242	18	< 18 U
12672-29-6	Aroclor 1248	18	< 18 U
11097-69-1	Aroclor 1254	18	< 18 U
11096-82-5	Aroclor 1260	18	< 18 U
11104-28-2	Aroclor 1221	18	< 18 U
11141-16-5	Aroclor 1232	23	< 23 Y

Reported in µg/kg (ppb)

Decachlorobiphenyl	57.0%
Tetrachlorometaxylene	55.5%

Lab Sample ID: XN64G LIMS ID: 13-24859 Matrix: Sediment Data Release Authorized: Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/21/13 19:22 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No Sample ID: CR02-10cm SAMPLE

Sample Amount: 5.32 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 46.9%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	19	< 19 U
11097-69-1	Aroclor 1254	19	12 J
11096-82-5	Aroclor 1260	19	< 19 U
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	38	< 38 Y

Reported in µg/kg (ppb)

Decachlorobiphenyl	60.0%
Tetrachlorometaxylene	59.5%

Lab Sample ID: XN64H LIMS ID: 13-24860 Matrix: Sediment Data Release Authorized: WW Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/21/13 19:42 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: CR03-10cm SAMPLE

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 5.38 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: 61.6%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	19	< 19 U
11097-69-1	Aroclor 1254	19	< 19 U
11096-82-5	Aroclor 1260	19	< 19 U
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	46	< 46 Y

Reported in µg/kg (ppb)

Decachlorobiphenyl	68.8%
Tetrachlorometaxylene	67.2%

SW8082/PCB SOIL/SOLID/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
	77 00	C1 114	CA 00	50 117	
MB-111513	77.2%	61-114	64.8%	52 - 117	0
LCS-111513	77.2%	61-114	64.5%	52 - 117	0
CR06-2.5	92.2%	54-115	60.5%	57-109	0
CR01-10cm	57.0%	54-115	55.5%*	57-109	1
CR02-10cm	60.0%	54-115	59.5%	57-109	0
CR03-10cm	68.8%	54-115	67.2%	57-109	0

Microwave (MARS) Control Limits PCBSMM Prep Method: SW3546 Log Number Range: 13-24856 to 13-24860

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD

Page 1 of 1

Lab Sample ID: LCS-111513 LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: WWW Reported: 11/22/13

Date Extracted: 11/15/13 Date Analyzed: 11/21/13 18:01 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

Sample ID: LCS-111513 LAB CONTROL

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: Yes

Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
Aroclor 1016	345	500	69.0%
Aroclor 1260	369	500	73.8%

PCB Surrogate Recovery

Decachlorobiphenyl	77.2%
Tetrachlorometaxylene	64.5%

Results reported in µg/kg (ppb)

ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Extraction Method: SW3546 Page 1 of 1 QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01

Date Received: 11/08/13

Matrix: Sediment

Data Release Authorized: Reported: 11/19/13

ARI ID	Sample	ID ·	Extraction Date	Analysis Date	EFV DL	Range/Surrogate	LOQ	Result
MB-111413 13-24856	Method HC ID:		11/14/13	11/15/13 FID9	10.0 1.0	Diesel Range Motor Oil Range o-Terphenyl	50 100	< 50 U < 100 U 77.0%
XN64D 13-24856	CR06-2 HC ID:	.5 DIESEL/MOTOR	11/14/13 OIL	11/15/13 FID9	10.0 1.0	Diesel Range Motor Oil Range o-Terphenyl	220 430	18,000 E 61,000 E 66.6%
XN64D DL 13-24856	CR06-2 HC ID:	.5 DIESEL/MOTOR	11/14/13 OIL	11/18/13 FID9	10.0 10	Diesel Range Motor Oil Range o-Terphenyl	2,200 4,300	20,000 60,000 63.3%

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. LOQ-Limit of Quantitation

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.

ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID

RESOURCES INCORPORATED

ANALYTICAL

Sample ID: LCS-111413 LAB CONTROL

Lab Sample ID: LCS-111413 LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: A Reported: 11/19/13

Date Extracted: 11/14/13 Date Analyzed: 11/15/13 13:34 Instrument/Analyst: FID9/JLW QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 10 mL Dilution Factor: 1.00

Range	Lab Control	Spike Added	Recovery
Diesel	1,240	1,500	82.7%

TPHD Surrogate Recovery

o-Terphenyl

77.1%

Results reported in mg/kg

TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

	ARI Job:	XN64
Matrix: Sediment	Project:	GHHSA
Date Received: 11/08/13		0863.01.01

ARI ID	Client ID	Client Amt	Final Vol	Basis	Prep Date
13-24856-111413MB1	Method Blank	10.0 g	10.0 mI	-	11/14/13
13-24856-111413LCS1 13-24856-XN64D	Lab Control CR06-2.5	10.0 g 2.31 g	10.0 mI 10.0 mI		11/14/13 11/14/13

TPHD SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01

OTER	TOT OUT
77.0% 77.1% 66.6% 63.3%	0 0 0 0
	77.18 66.68

LCS/MB LIMITS QC LIMITS

(OTER) = o-Terphenyl

(50-150) (50-150)

Prep Method: DL Log Number Range: 13-24856 to 13-24856

				 Y (x10	r6)	 								Ţ				
ра	-JET-A (1.473)	¢. 	0 +4 -	 °, ਯ	¢•6-	 0.7-		° • 8	0,9.		1.0-		1.1-	Column phase: RTX-1			Date : 15-NUV Client ID: XN	Data File: /c
N-	-C10 (2,791)													ALX-7		Info: XN64MBS1	15-NUV-2013 13:13 ID: XN64MBS1	Data File: /chem2/fid9.i/20131115.b/1115a012.d
-4	-C12 (3,795)																	⁄1115a012₊d
	-C14 (4.481)																	
เม-	-C16 (5.074)												ŝ	Ì				
	-C18 (5,618)			 		 												
6- Min	-C20 (6,175)									o-t	erph	(5,	757)					
	-C22 (6,730)													Column diameter:	Operator:		Instrument: fid9	
	-C24 (7,250)												1400 440 440				ment:	
	-C25 (7,494)												+ •	i eter	ЧÜ		fid	
	-C26 (7,740)													1			9	
	-C28 (8,196)													0,25				
	L					— -т	riaco	n Surr	(8,61)	>>								
-ە	-C32 (8,990)																	
	-C34 (9,318)																	
10	-C36 (9.628) -Filter Peak (9.760) -C38 (9.936) -C40 (10.220)																	
- 1 - 1 - 1																		
																		Page 1
12-														7.5.				

XNEU MARA

HP6890 GC Data, 1115a012.d 1.3-1,2o-terph 1.1-1.0-0,9-Irlacon Surr 0.8-0.7-Y (×10^6) 0.6-0.5-0.4-0.3-0.2-Peak 0.1-Û 0.0 7 Time (Min) ģ 5 11 12 3 4 6 8 10 13 ź

FID:9A SIGNAL

MANUAL INTEGRATION

1. Baseline correction $(\widehat{2}.)$ Poor chromatography

FID:9A-2C/RTX-1 XN64MBS1

- 3. Peak not found
- 4. Totals calculation
- 5. Surrogate Skimmed

Tel I Analyst:

Date: ([[19]1)

FID:9A-2C/RTX-1 XN64LCSS1

FID:9A SIGNAL

MANUAL INTEGRATION

1. Baseline correction

- 2. Poor chromatography
- 3. Peak not found
- 4. Totals calculation
- 5 Surrogate Skimmed

W? Analyst: ___

Date:

FID:9A-2C/RTX-1 XN64D

FID:9A SIGNAL

MANUAL INTEGRATION

Baseline correction
 Poor chromatography
 Peak not found
 Totals calculation
 Surrogate Skimmed

Analyst: 5

Date: 11/19/10

FID:9A-2C/RTX-1 XN64D

FID:9A SIGNAL

MANUAL INTEGRATION

1. Baseline correction

- 2. Poor chromatography
- 3. Peak not found
- 4. Totals calculation
- 5 Surrogate Skimmed

-54 Analyst:

Date: 1/19/12

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Client ID: CR06-10cm ARI ID: 13-24853 XN64A

Analyte	Date	Method	Units	RL	Sample
Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	21.40
Preserved Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	19.81
Total Volatile Solids	11/13/13 111313#1	SM2540E	Percent	0.01	60.05
N-Ammonia	11/13/13 111313#1	EPA 350.1M	mg-N/kg	0.46	1.37
Sulfide	11/12/13 111213#1	EPA 376.2	mg/kg	50.2	906
Total Organic Carbon	11/26/13 112613#1	Plumb,1981	Percent	0.198	35.6

Analytical reporting limit Undetected at reported detection limit RL

U

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Client ID: CR04-10cm ARI ID: 13-24854 XN64B

Analyte	te Date Meth		Units	RL	Sample
Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	20.62
Preserved Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	22.16
Total Volatile Solids	11/13/13 111313#1	SM2540E	Percent	0.01	59.91
N-Ammonia	11/13/13 111313#1	EPA 350.1M	mg-N/kg	0.47	< 0.47 U
Sulfide	11/14/13 111413#1	EPA 376.2	mg/kg	4.49	6.46
Total Organic Carbon	11/26/13 112613#1	Plumb,1981	Percent	0.196	31.4

RL Analytical reporting limit

U Undetected at reported detection limit

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Client ID: CR05-10cm ARI ID: 13-24855 XN64C

Analyte	Date	Method	Units	RL	Sample
Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	30.32
Preserved Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	31.81
Total Volatile Solids	11/13/13 111313#1	SM2540E	Percent	0.01	36.49
N-Ammonia	11/13/13 111313#1	EPA 350.1M	mg-N/kg	0.31	7.21
Sulfide	11/12/13 111213#1	EPA 376.2	mg/kg	31.1	320
Total Organic Carbon	11/26/13 112613#1	Plumb,1981	Percent	0.200	13.6

RL Analytical reporting limit
U Undetected at reported detection limit

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Client ID: CR06-2.5 ARI ID: 13-24856 XN64D

Analyte	Date	Method	hod Units		Sample
Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	21.59
Preserved Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	21.85
Total Volatile Solids	11/13/13 111313#1	SM2540E	Percent	0.01	69.23
N-Ammonia	11/13/13 111313#1	EPA 350.1M	mg-N/kg	0.42	14.0
Sulfide	11/12/13 111213#1	EPA 376.2	mg/kg	225	2,910
Total Organic Carbon	11/26/13 112613#1	Plumb,1981	Percent	0.198	49.5

Analytical reporting limit RL U

Undetected at reported detection limit

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Client ID: CR04-5 ARI ID: 13-24857 XN64E

Analyte	Date	Method	od Units RL		Sample
Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	19.98
Preserved Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	24.44
Total Volatile Solids	11/13/13 111313#1	SM2540E	Percent	0.01	38.20
N-Ammonia	11/13/13 111313#1	EPA 350.1M	mg-N/kg	0.45	15.2
Sulfide	11/12/13 111213#1	EPA 376.2	mg/kg	20.1	179
Total Organic Carbon	11/26/13 112613#1	Plumb,1981	Percent	0.196	16.5

RL Analytical reporting limit U Undetected at reported detection limit

Ammonia determined on 2N KCl extracts.

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Client ID: CR01-10cm ARI ID: 13-24858 XN64F

Analyte	Date	Method	Units	RL	Sample
Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	44.09
Total Organic Carbon	11/26/13 112613#1	Plumb,1981	Percent	0.020	2.06

RL Analytical reporting limit

U Undetected at reported detection limit

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Client ID: CR02-10cm ARI ID: 13-24859 XN64G

Analyte	Date	Method	Units	RL	Sample
Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	51.80
Total Organic Carbon	11/26/13 112613#1	Plumb,1981	Percent	0.020	3.21

RL Analytical reporting limit

Undetected at reported detection limit U

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Client ID: CR03-10cm ARI ID: 13-24860 XN64H

Analyte	Date	Method	Units	RL	Sample
Total Solids	11/13/13 111313#1	SM2540G	Percent	0.01	36.40
Total Organic Carbon	11/26/13 112613#1	Plumb,1981	Percent	0.020	2.91

RL Analytical reporting limit

U Undetected at reported detection limit

Matrix: Sediment Data Release Authorized: Reported: 11/26/13

Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Analyte	Date	Units	Blank	QC ID
Total Solids	11/13/13	Percent	< 0.01 U	ICB
Preserved Total Solids	11/13/13	Percent	- < 0.01 U	ICB
Total Volatile Solids	11/13/13	Percent	< 0.01 U	ICB
N-Ammonia	11/13/13	mg-N/kg	< 0.10 U	PREP
Sulfide	11/12/13 11/14/13	mg/kg	0.17 < 0.05 U	PREP PREP
Total Organic Carbon	11/26/13	Percent	< 0.020 U	ICB

Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
- Sulfide EPA 376.2	PREP PREP	11/12/13 11/14/13	mg/kg	6.37 6.20	_6.79 6.31	93.8% 98.3%
Total Organic Carbon Plumb,1981	ICVL	11/26/13	Percent	0.098	0.100	98.0%

Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

_

Analyte/SRM ID	Date	Units	SRM	True Value	Recovery
N-Ammonia ERA #04091 <u>2</u>	11/13/13	mg-N/kg	102	100	102.0%
Total Organic Carbon NIST 1941B	11/26/13	Percent	3.36	2.99	112.4%

Soil Standard Reference Report-XN64

Project: GHHSA Event: 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Analyte	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: XN64A Client ID:	CR06-10cm				
Total Solids	11/13/13	Percent	21.40	22.11 21.57	1.7%
Preserved Total Solids	11/13/13	Percent	19.81	21.39	7.78
Total Volatile Solids	11/13/13	Percent	60.05	59.01 59.81	0.9%
Total Organic Carbon	11/26/13	Percent	35.6	33.7 31.3	6.4%
ARI ID: XN64B Client ID:	: CR04-10cm				
Sulfide	11/14/13	mg/kg	6.46	0.67	162.4%

- -----

Matrix: Sediment Data Release Authorized Reported: 11/26/13	ż
---	---

Project:	GHHSA
Event:	0863.01.01
Date Sampled:	11/07/13
Date Received:	

Analyte	Date	Units	Sample	Spike	Spike Added	Recovery
ARI ID: XN64A Client	ID: CR06-10cm					
Total Organic Carbon	11/26/13	Percent	35.6	64.5	45.5	63.4%
ARI ID: XN64B Client	ID: CR04-10cm					
Sulfide	11/14/13	mg/kg	6.46	525	566	91.6%

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

Sample ID: CR06-10cm SAMPLE

Lab Sample ID: XN64A LIMS ID: 13-24853 Matrix: Sediment Data Release Authorized: Reported: 11/20/13 QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Percent Total Solids: 23.3%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
CLP	11/14/13	7471A	11/18/13	7439-97-6	Mercury	0.08	0.55	
			T 00					

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

INORGANICS ANALYSIS DATA SHEET TOTAL METALS

Page 1 of 1

- --- ----

Sample ID: CR04-10cm SAMPLE

Lab Sample ID: XN64B LIMS ID: 13-24854 Matrix: Sediment Data Release Authorized Reported: 11/20/13 QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Percent Total Solids: 20.7%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
CLP	11/14/13	7471A	11/18/13	7439-97-6	Mercury	0.1	6.2	

---- ---

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

Page 1 of 1

_

Sample ID: CR05-10cm SAMPLE

Lab Sample ID: XN64C QC LIMS ID: 13-24855 Matrix: Sediment Data Release Authorized: Reported: 11/20/13 D

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Percent Total Solids: 26.9%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
CLP	11/14/13	7471A	11/18/13	7439-97-6	Mercury	0.09	0.16	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

Page 1 of 1

Sample ID: CR06-2.5 SAMPLE

Lab Sample ID: XN64D LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: Reported: 11/20/13 QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Percent Total Solids: 20.3%

Prep	Prep	Analveie	Analysis	-				
Meth	Date	Method	Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	11/14/13	6010C	11/19/13	7440-38-2	Arsenic	20	20	U
3050B	11/14/13	6010C	11/19/13	7440-43-9	Cadmium	1	1	U
3050B	11/14/13	6010C	11/19/13	7440-47-3	Chromium	2	26	
3050B	11/14/13	6010C	11/19/13	7440-50-8	Copper	1	96	
3050B	11/14/13	6010C	11/19/13	7439-92-1	Lead	10	110	
CLP	11/14/13	7471A	11/18/13	7439-97-6	Mercury	0.08	0.53	
3050B	11/14/13	6010C	11/19/13	7440-22-4	Silver	1	1	U
3050B	11/14/13	6010C	11/19/13	7440-66-6	Zinc	5	237	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

.....

Page 1 of 1

Sample ID: CR06-2.5 DUPLICATE

Lab Sample ID: XN64D LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized: Reported: 11/20/13 QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

MATRIX DUPLICATE QUALITY CONTROL REPORT

Analysis				Control	
Method	Sample	Duplicate	RPD	Limit	Q
6010C	20 U	20 U	0.0%	+/- 20	L
6010C	1 U	1 U	0.0%	+/- 1	L
6010C	26	91	1118	+/- 20%	*
6010C	96	237	84.78	+/- 20%	*
6010C	110	120	8.78	+/- 20%	
7471A	0.53	0.41	25.5%	+/- 0.08	L*
6010C	1 U	1 U	0.0%	+/- 1	\mathbf{L}
6010C	237	211	11.6%	+/- 20%	
	Method 6010C 6010C 6010C 6010C 6010C 7471A 6010C	Method Sample 6010C 20 U 6010C 1 U 6010C 26 6010C 96 6010C 110 7471A 0.53 6010C 1 U	MethodSampleDuplicate6010C20 U20 U6010C1 U1 U6010C26916010C962376010C1101207471A0.530.416010C1 U1 U	MethodSampleDuplicateRPD6010C20 U20 U0.0%6010C1 U1 U0.0%6010C2691111%6010C9623784.7%6010C1101208.7%7471A0.530.4125.5%6010C1 U1 U0.0%	MethodSampleDuplicateRPDLimit6010C20 U20 U0.0%+/- 206010C1 U1 U0.0%+/- 16010C2691111%+/- 20%6010C9623784.7%+/- 20%6010C1101208.7%+/- 20%7471A0.530.4125.5%+/- 0.086010C1 U1 U0.0%+/- 1

Reported in mg/kg-dry

*-Control Limit Not Met

L-RPD Invalid, Limit = Detection Limit

Page 1 of 1

Lab Sample ID: XN64D LIMS ID: 13-24856 Matrix: Sediment Data Release Authorized Reported: 11/20/13 MATRIX SPIKE QC Report No: XN64-Maul Foster & Alongi Project: GHHSA

Sample ID: CR06-2.5

0863.01.01

Date Sampled: 11/07/13 Date Received: 11/08/13

MATRIX SPIKE QUALITY CONTROL REPORT

	Analysis			Spike	8	
Analyte	Method	Sample	Spike	Added	Recovery	Q
Arsenic	6010C	20 U	970	979	99.1%	
Cadmium	6010C	1 U	242	245	98.8%	
Chromium	6010C	26	276	245	102%	
Copper	6010C	96	389	245	120%	
Lead	6010C	110	1,090	979	100%	
Mercury	7471A	0.53	1.66	0.854	132%	N
Silver	6010C	1 U	237	245	96.7%	
Zinc	6010C	237	476	245	97.6%	

Reported in mg/kg-dry

N-Control Limit Not Met H-% Recovery Not Applicable, Sample Concentration Too High NA-Not Applicable, Analyte Not Spiked

Percent Recovery Limits: 75-125%

Page 1 of 1

Sample ID: CR01-10cm SAMPLE

Lab Sample ID: XN64F LIMS ID: 13-24858 Matrix: Sediment Data Release Authorized: Reported: 11/20/13 Percent Total Solids: 43.4%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	11/14/13	6010C	11/19/13	7440-38-2	Arsenic	10	10	U
3050B	11/14/13	6010C	11/19/13	7440-43-9	Cadmium	0.5	0.5	
3050B	11/14/13	6010C	11/19/13	7440-47-3	Chromium	1	40	
3050B	11/14/13	6010C	11/19/13	7440-50-8	Copper	0.5	58.0	
3050B	11/14/13	6010C	11/19/13	7439-92-1	Lead	5	7	
CLP	11/14/13	7471A	11/18/13	7439-97-6	Mercury	0.04	0.05	
3050B	11/14/13	6010C	11/19/13	7440-22-4	Silver	0.7	0.7	U
3050B	11/14/13	6010C	11/19/13	7440-66-6	Zinc	2	87	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

- --- --- --- --

Page 1 of 1

Sample ID: CR02-10cm SAMPLE

Lab Sample ID: XN64G LIMS ID: 13-24859 Matrix: Sediment Data Release Authorized Reported: 11/20/13

Percent Total Solids: 50.5%

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Prep	Prep	-	Analysis					
Meth	Date	Method	Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	11/14/13	6010C	11/19/13	7440-38-2	Arsenic	9	9	U
3050B	11/14/13	6010C	11/19/13	7440-43-9	Cadmium	0.4	0.4	
3050B	11/14/13	6010C	11/19/13	7440-47-3	Chromium	0.9	38.5	
3050B	11/14/13	6010C	11/19/13	7440-50-8	Copper	0.4	56.3	
3050B	11/14/13	6010C	11/19/13	7439-92-1	Lead	4	9	
CLP	11/14/13	7471A	11/18/13	7439-97-6	Mercury	0.04	0.10	
3050B	11/14/13	6010C	11/19/13	7440-22-4	Silver	0.6	0.6	U
3050B	11/14/13	6010C	11/19/13	7440-66-6	Zinc	2	79	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

-- - -

XNEU: 00445

Page 1 of 1

Sample ID: CR03-10cm SAMPLE

Lab Sample ID: XN64H LIMS ID: 13-24860 Matrix: Sediment Data Release Authorized Reported: 11/20/13 QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Percent Total Solids: 35.2%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	11/14/13	6010C	11/19/13	7440-38-2	Arsenic	10	10	U
3050B	11/14/13	6010C	11/19/13	7440-43-9	Cadmium	0.5	0.5	U
3050B	11/14/13	6010C	11/19/13	7440-47-3	Chromium	1	48	
3050B	11/14/13	6010C	11/19/13	7440-50-8	Copper	0.5	65.4	
3050B	11/14/13	6010C	11/19/13	7439-92-1	Lead	5	8	
CLP	11/14/13	7471A	11/18/13	7439-97-6	Mercury	0.06	0.09	
3050B	11/14/13	6010C	11/19/13	7440-22-4	Silver	0.8	0.8	U
3050B	11/14/13	6010C	11/19/13	7440-66-6	Zinc	3	91	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

Page 1 of 1

Lab Sample ID: XN64MB LIMS ID: 13-24858 Matrix: Sediment Data Release Authorized Reported: 11/20/13

Percent Total Solids: NA

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample ID: METHOD BLANK

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
3050B	11/14/13	6010C	11/19/13	7440-38-2	Arsenic	5	5	U
3050B	11/14/13	6010C	11/19/13	7440-43-9	Cadmium	0.2	0.2	U
3050B	11/14/13	6010C	11/19/13	7440-47-3	Chromium	0.5	0.5	U
3050B	11/14/13	6010C	11/19/13	7440-50-8	Copper	0.2	0.2	U
3050B	11/14/13	6010C	11/19/13	7439-92-1	Lead	2	2	U
CLP	11/14/13	7471A	11/18/13	7439-97-6	Mercury	0.02	0.02	U
3050B	11/14/13	6010C	11/19/13	7440-22-4	Silver	0.3	0.3	U
3050B	11/14/13	6010C	11/19/13	7440-66-6	Zinc	1	1	U

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation

Page 1 of 1

Lab Sample ID: XN64LCS LIMS ID: 13-24858 Matrix: Sediment Data Release Authorized: Reported: 11/20/13 Sample ID: LAB CONTROL

QC Report No: XN64-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

BLANK SPIKE QUALITY CONTROL REPORT

_	Analysis	Spike	Spike	Å	
Analyte	Method	Found	Added	Recovery	QQ
Arsenic	6010C	194	200	97.0%	
Cadmium	6010C	48.4	50.0	96.8%	
Chromium	6010C	50.5	50.0	101%	
Copper	6010C	49.2	50.0	98.4%	
Lead	6010C	195	200	97.5%	
Mercury	7471A	0.51	0.50	102%	
Silver	6010C	50.5	50.0	101%	
Zinc	6010C	48	50	96.0%	

- - ----

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120% Maul Foster & Alongi GHHSA 0863.01.01

Apparent Grain Size Distribution Summary Percent Finer Than Indicated Size

⊢				Verv				i						
		Gravel		Coarse Sand	Coarse Sand	Sand	Fine Sand	Very Fine Sand		S	Sit		Ü	Clay
'n	—		-	0	-	2	3	4	5	9	2	8	6	10
"0/ C		*	#10	#18	#35	09#	#120	#230	24.00	15 60	00 2	200	00 0	100
0/0		(4750)	(2000)	(1000)	(200)	(250)	(125)	(63)	00.10	00.01	00.7	0.30	2.00	00.1
100.0		86.0	69.2	55.5	40.6	22.8	12.5	9.0	8.5	7.5	6.4	5.2	3.5	2.8
100.0		89.7	71.9	59.5	43.7	25.3	14.7	11.4	9.3	8.1	7.1	5.5	4.3	3.0
100.0		82.2	66.7	54.2	39.7	22.5	12.4	9.1	8.6	7.6	6.6	5.2	3.8	2.8
100.0		87.1	77.3	64.3	48.7	36.7	31.6	29.7	25.5	20.5	15.9	12.2	9.5	7.4
100.0		84.3	77.2	63.4	49.2	40.7	37.0	35.6	28.5	22.6	16.4	11.6	8.7	6.1
100.0		89.8	79.8	68.4	55.2	44.7	38.8	35.3	27.2	19.4	14.3	9.9	7.8	5.4
100.0	0.	87.8	76.4	63.5	52.8	46.7	43.5	42.1	40.9	30.3	21.3	15.2	10.9	7.2
ļ	1													

Notes to the Testing:

1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

XN64

Maul Foster & Alongi GHHSA 0863.01.01 Apparent Grain Size Distribution Summary Percent Retained in Each Size Fraction

	_								
Total Fines	> 4	<230 (<62)	0.6	11.4	9.1	29.7	35.6	35.3	42.1
	> 10	<1.0	2.8	3.0	2.8	7.4	6.1	5.4	7.2
Clay	9 to 10	2.0-1.0	0.6	1.3	1.0	2.1	2.6	2.4	3.7
	8 to 9	3 9-2.0	1.7	1.3	1.4	2.7	2.9	2.1	4.3
Very Fine Silt	7 to 8	78-39	1.3	1.6	1.4	3.7	4.8	4.5	6.1
Fine Silt	6 to 7	15 6-7.8	1.0	1.0	1.0	4.5	6.2	5.1	6.8
Medium Silt	5 to 6	31 0-15.6	1.0	1.2	1.1	5.1	5.9	7.7	10.6
Coarse Silt	4 to 5	62.5-31.0	0.5	2.1	0.5	4.1	7.2	8.1	1.3
Very Fine Sand	3 to 4	120-230 (125-62)	3.4	3.4	3.3	2.0	1.4	3.5	1.4
Fine Sand	2 to 3	60-120 (250-125)	10.4	10.6	10.1	5.1	3.7	6.0	3.2
Medium Sand	1 to 2	35-60 (500-250)	17.8	18.4	17.2	11.9	8.5	10.5	6.1
Coarse Sand	0 to 1	18-35 (1000-500)	14.9	15.8	14.5	15.7	14.2	13.2	10.7
Very Coarse Sand	-1 to 0	10 to 18 (2000-1000)	13.7	12.4	12.5	13.0	13.8	11.4	13.0
Gravel	< -1	> #10 (2000)	30.8	28.1	33.3	22.7	22.8	20.2	23.6
Sample No.	Phi Size	Sieve Size (microns)		XN50 B		CR06-10cm	CR04-10cm	CR05-10cm	CR04-5

Notes to the Testing:

XN64 1. Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

QA SUMMARY

0863 01 01	XN64-1	
Client Project No.:	Batch No.:	Relative Standard Deviation, By Phi Size
XN50 B		Re
ARI Trip. Sample ID:		
	XN50 B Client Project No.:	XN50 B Client Project No.: Batch No.:

-
8.6 7.6
4.6 4.4

The Triplicate Applies To The Following Samples

		and the firm of a start of an and the start of the start		a summer of the second s		
Client ID	Date Sampled	Date Extracted	Date Complete	QA Ratio (95-105)	Data Qualifiers	Pipette Portion (5.0- 25.0g)
	11/8/2013	11/12/2013	11/14/2013	0.06		6.6
XN50 B	11/8/2013	11/12/2013	11/14/2013	100.8		8.5
	11/8/2013	11/12/2013	11/14/2013	0 66		6.6
CR06-10cm	11/7/2013	11/15/2013	11/22/2013	100.1		12.4
CR04-10cm	11/7/2013	11/15/2013	11/22/2013	96.0		13.7
CR05-10cm	11/8/2013	11/15/2013	11/22/2013	101.6		13.0
CR04-5	11/8/2013	11/15/2013	11/22/2013	97.4		14.0

* ARI Internal QA limits = 95-105%

Notes to the Testing

1 Organic matter was not removed prior to testing, thus the reported values are the "apparent" grain size distribution. See narrative for discussion of the testing.

XN64

Request
Analysis R
aboratory
ord & L
ody Rec
of Custo
hain

ARI Assigned Number:	Turn-around Requested:	Requested:			Page:	of				Analytical Resources, Incorporated Analytical Chemists and Consultants	ted
ARI Client Company: Malul FOSter & Along'	195	Phone:				Ice Present?	an in			4611 South 134th Place, Suite 100 Tukwila, WA 98168	00
Client Contact: Mhr Cay Mi Ke					ND. of VA Coolers: NA	Cooler Temps:	NA			206-695-6200 206-695-6201 (fax)	(XE
Client Project Name:							Analysis Requested	quested		Notes/Comments	
Client Project #: \$463.01.\$1	Samplers:	ML			h+; u						
Sample ID	Date	Time	Matrix	No. Containers	:noG						
CROI-IDCM	Cil HI/N	11:45m	H, 0								
CR02-10 cm	11/14/13 11:25	11:25	He	~	<u> </u>						**** * **
CR 02-10CM	1/14/13	11:25	H, O								
3	-										
					· · ·						
Comments/Special Instructions	l≿	Mathun	ι	Received by: (Signature)	- ja M	(C)	Relinquished by (Signature)		Re((Sig	Received by: (Signature)	
~~~~	Printed Name	しいせい く		Printed Name:	nite M	1/5/1	Printed Name		Prir	Printed Name	
	Company			Company	HCI	ĥ	Company:		Col	Company.	,
	Date & Time	n		Date & Tim#. (1 //4/	// <u></u> //	15	Date & Time:		Dat	Date & Time.	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for a meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for a said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or consistence agreement between ARI and the Client.

retention schedules have been established by work-order or contract.

Sample ID Cross Reference Report



ARI Job No: X000 Client: Maul Foster & Alongi Project Event: 0863.01.01 Project Name: GHHSA

	Sample ID	ARI Lab ID	ARI LIMS ID	Matrix	Sample Date/Time	VTSR
1. 2. 3.	CR01-10CM CR02-10CM CR03-10CM	X000A X000B X000C	13-25168	Pore Water	11/14/13 11:25 11/14/13 11:25 11/14/13 11:25	11/14/13 11:45 11/14/13 11:45 11/14/13 11:45

____

Printed 11/14/13 Page 1 of 1



Matrix: Pore Water Data Release Authorized: Reported: 11/15/13 Project: GHHSA Event: 0863.01.01 Date Sampled: 11/14/13 Date Received: 11/14/13

Client ID: CR01-10cm ARI ID: 13-25167 X000A

Analyte	Date Batch	Method	Units	RL	Sample
Conductivity	11/15/13 111513#1	EPA 120.1	umhos/cm	1.00	18,700
Salinity	11/15/13 111513#1	SM 2520.B	ppt	0.10	11.0

. . . . . . . .

RL Analytical reporting limit

U Undetected at reported detection limit

- ----





Project: GHHSA Event: 0863.01.01 Date Sampled: 11/14/13 Date Received: 11/14/13

Client ID: CR02-10cm ARI ID: 13-25168 X000B

Analyte	Date Batch	Method	Units	RL	Sample
Conductivity	11/15/13 111513#1	EPA 120.1	umhos/cm	1.00	12,200
Salinity	11/15/13 111513#1	SM 2520.B	ppt	0.10	6.90

RL Analytical reporting limit

U Undetected at reported detection limit





Project: GHHSA Event: 0863.01.01 Date Sampled: 11/14/13 Date Received: 11/14/13

Client ID: CR03-10cm ARI ID: 13-25169 X000C

Analyte	Date Batch	Method	Units	RL	Sample
Conductivity	11/15/13 111513#1	EPA 120.1	umhos/cm	1.00	17,500
Salinity	11/15/13 111513#1	SM 2520.B	ppt	0.10	10.2

RL Analytical reporting limit

U Undetected at reported detection limit



Matrix: Pore Water Data Release Authorized Reported: 11/15/13

Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Analyte	Method	Date	Units	Blank	ID
Conductivity	EPA 120.1	11/15/13	umhos/cm	< 1.00 U	
Salinity	SM 2520.B	11/15/13	ppt	< 0.10 U	

- - - -----





٨

____

Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Analyte/Method	QC ID	Date	Units	LCS	Spike Added	Recovery
Salinity SM 2520.B	ICVL	11/15/13	ppt	46,700	47,600	98.1%

----



Matrix: Pore Water Data Release Authorized: Reported: 11/15/13 Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Analyte/SRM ID	Method	Date	Units	SRM	True Value	Recovery
Conductivity Ricca #4110724	EPA 120.1	11/15/13	umhos/cm	974	1,000	97.4%





Project: GHHSA Event: 0863.01.01 Date Sampled: 11/14/13 Date Received: 11/14/13

Analyte	Method	Date	Units	Sample	Replicate(s)	RPD/RSD
ARI ID: XOOOA	Client ID: CR01-1	0cm				
Conductivity	EPA 120.1	11/15/13	umhos/cm	18,700	18,700	0.0%
Salinity	SM 2520.B	11/15/13	ppt	11.0	11.0	0.0%

___ -



# Analytical Resources, Incorporated

Analytical Chemists and Consultants

23 December 2013

Mike Murray Maul, Foster and Alongi, Inc 2001 NW 19th Avenue Suite 200 Portland, OR 97209

#### RE: Project: GHHSA ARI Job No.: XQ70

#### Dear Mike:

Please find enclosed copies of the original chain of custody records and the final results for the samples from the project referenced above. These samples were originally accepted on November 8, 2013. These samples were analyzed for SVOCs, dioxins/furans, PCBs, NWTPH-Dx and total mercury as requested on 12/6/13.

The percent differences (%Ds) for several compounds were high for the CCALs that bracketed the SVOA and SIM-SVOA analyses of these samples. All positive results have been flagged with a "Q" qualifier to denote the high %Ds.

All samples were initially analyzed for SVOAs and SIM-SVOAs on 12/16/13. The areas for the internal standards were not within control limits following the analyses of these samples. All samples were diluted and re-analyzed on 12/19/13. The re-analyses proceeded without incident of note. The results for the re-analyses only have been submitted.

The remaining analyses proceeded without incident of note.

An electronic copy of this report and all associated raw data will be kept on file at ARI. If you have any questions or require additional information, please contact me at your convenience.

Sincerely,

ANALYTICAL RESOURCES, INC.

TOUDAG

Mark D. Harris – Project Manager 206/695-6210 markh@arilabs.com

cc: file XQ70

Enclosures

MDH/mdh

Page 1 of

5(;1 *++65

Subject: RE: XN64-GHHSA
From: "Mike Murray" <mmurray@maulfoster.com>
Date: 12/6/2013 11:22 AM
To: "Mark Harris" <markh@arilabs.com>
CC: "Madi Novak" <mnovak@maulfoster.com>, "Mary Benzinger" <mbenzinger@maulfoster.com>

Hi Mark, we finished our initial evaluation and would like to run some follow-up analysis.

Since we are up against the hold time for mercury, the mercury analysis would have to happen pretty soon.

We would like to run archived samples: CR04-2.5 and CR05-2.5 for dioxin/furans and mercury.

We would like to run archived samples: CR04-10cm, CR04-2.5, CR05-10cm, and CR05-2.5 for SVOCs, PCBs and TPH-Dx.

Standard TAT is fine.

Lastly could you provide us with a cost for this follow-up analysis for our budget?

Let me know if you have any questions.

Thanks and have a nice weekend. Mike

MICHAEL R. MURRAY RG | MAUL FOSTER & ALONGI, INC.

d. 503 501 5226 | p. 971 544 2139 | c. 503 310 0435 | f. 971 544 2140 | <u>www.maulfoster.com</u> 2001 NW 19th Avenue, Suite 200, Portland, OR 97209

Please consider the environment before printing out this email. NOTICE: This email, and any attachments, is intended only for use by the named addressee(s) and may contain information that is privileged, confidential or otherwise protected from disclosure. If you are not the intended recipient or the person responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this email, and any attachments, is strictly prohibited. If you have received this email in error, please immediately notify the sender by reply email and permanently delete and/or destroy the original and all copies. Written MFA authorization is required for modification of final electronic work products. Distribution to others of any MFA electronic work products, whether or not they are modified, is prohibited without the express written consent of MFA.

----Original Message----From: Mark Harris [mailto:markh@arilabs.com] Sent: Tuesday, December 03, 2013 8:32 AM To: Mary Benzinger Cc: Madi Novak; Mike Murray Subject: Re: XN64-GHHSA

Mary:

No problem. It's in 2 parts due to the size of the file.

This is one of two and the EDD for XN64.

Mark H.

40

On 12/2/2013 5:30 PM, Mary Benzinger wrote: Hi Mark, Thanks for the final EDD and cover letter. Since there are so many parts to this report, and I don't want to miss anything, could you send these as a single report? Thank you! Mary Benzinger | MAUL FOSTER & ALONGI, INC. d. 503 501 5247 | p. 503 501 5214| c. 503 319 7132| www.maulfoster.com 2001 NW 19th Avenue, Suite 200, Portland, OR 97209 Please consider the environment before printing this email. NOTICE: This email, and any attachments, is intended only for use by the named addressee(s) and may contain information that is privileged, confidential or otherwise protected from disclosure. If you are not the intended recipient or the person responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this email, and any attachments, is strictly prohibited. If you have received this email in error, please immediately notify the sender by reply email and permanently delete and/or destroy the original and all copies. Written MFA authorization is required for modification of final electronic work products. Distribution to others of any MFA electronic work products, whether or not they are modified, is prohibited without the express written consent of MFA. ----Original Message-----From: Mark Harris [mailto:markh@arilabs.com] Sent: Monday, December 02, 2013 2:08 PM To: Madi Novak; Mike Murray; Mary Benzinger Subject: XN64-GHHSA All: Attached are the final EDD for the bulk of the sediment samples (XOOO was for the porewaters and that one was complete and final.) and a copy of the narrative. No data have change so I omitted the actual sample reports. If you'd like those re-sent and an 'intact'/complete report, let me know. The hard copy will mail tomorrow. Let me know if you have any questions. Mark H. Mark Harris Project Manager Analytical Resources, Inc. 206/695-6210 markh@arilabs.com How was your customer experience? Please take our 5 minute online customer survey <a href="https://www.surveymonkey.com">https://www.surveymonkey.com</a> /s/WPDBVJK>.

This correspondence contains confidential information from Analytical Resources,

\$€

Inc. (ARI) The information contained herein is intended solely for the use of the individual(s) named above. If you are not the intended recipient, any copying, distribution, disclosure, or use of the text and/or attached document(s) is strictly prohibited.

If you have received this correspondence in error, please notify sender immediately. Thank you.

Analytical Resources, Incorporated	Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 Tukwila, WA 98168	206-695-6200 206-695-6201 (fax)	Notes/Comments		A NHY TS, Por with	Browne all	americo	Sangre	an mon							Received by (Signature)	Printed Name	Company	Date & Time	ality Assurance Program. This program Ill not exceed the Invoiced amount for
		spa	A 1	31,4 514 1405 514074	11 Jan	XX	×	$\times$	×	>		XX	X	X,	X	-				tures and the ARI Que quested services, sha
4	Ice Present?	Cooler 3.2, 0.4, 5	Adalysis Requeste	bist wow bours	20] 4,157 44,107 5WS											Relinquished by (Signature)	Printed Name	Company	Date & Time	dard Operating Proce connection with the re
Page: 1 of	Date: [tee 1/ \ /   3 Pre	No. of Coplers: Coo	a	V m	2222	XXXX				X X		X X				4 Maz >	Der Milleut		1830	boogy following ARI Stan ssors, arising out of or in trability in overse theored
est	2139			2	No Containers	8	4	8	8	8		8	8	2	8	Received by (Signature)	Printed Name	company A21	Date & Time / S	appropriate method mployees, or succes lesse ADI from any
Turn-arquind Requested:	Phone:		0	samplers: MRM/M	Date Time Matrix	11/7/13 12:00 Sed.	12115	12;30	SH'21	13,20	1 13:30 1	1 yelis 8.25 sed	1 24.8 1	9:00		Relinquickhead by (Signature) Mo. M. M. M.	Printed Name	Company F 17	12416 & Time 1/8/13 2:00 pm	equested services in accordance with a liability of ARI, its officers, agents, end of a success to services by ABI rel
Chain of Custody Record & Laboratory Analysis Requ ARI Assigned Number: XNU Turn-arquind Requested:	ARI Client Company: Maul Fuester 3 A lona 1	Client Contact:	Client Project Name:	Client Project #: 01.01.01 0363,01.01	Sample ID	C1206-10cm 11	CR06-1	CR06-2.5	CR06 -4	CRO4-Jacm	cro4-1	CROS-1000	CROS-2,5	CROS - 3.5		Comments/Special Instructions Re (S	<u>I</u>			Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successions, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

ARI,	ARI Assigned Number: XNUCH	5	Turn-around Requested:	<u>\</u>		Page:	5	ō	പ്				Analytic Analytic	Analytical Resources, Incorporated Analytical Chemists and Consultants	ed at
ARI	ARI Client Company:	15	oue	hhS	6517	Date:	8/13	lce Present?					4611 So Tukwila,	4611 South 134th Place, Suite 100 Tukwila, WA 98168	9
Clien	Client Contact:					No. of Coolers:	9	Cooler Temps:	3	2,045	2		206-695	206-695-6200 206-695-6201 (fax)	(x
Clien	Client Project Name:	<							Abalysis R	Requested	Ń			Notes/Comments	
Clien	Client Project #: Sample	Samplers:	No.			1	( and a second	Fur	reiden verde		Nonfuri	100	und ater	Concent cructs= TOC, TUS, tetel.	<u> </u>
	nple I	Date	Time	Matrix	No Containers	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Perter Perter	Mer	21.5	JOT	en vio)	Arch	is Be	sulfides, So fines	
	Croy - S	21/8/11	lo: 00	Las 1	4							X		Atrene al	
U	CK01 - 10cm		11.15		5	X			×	X		X	X	remaining	
	CR01-1000		11.30		S	X			Х	X		×	X	Scumple	
	(Ro3-10cm		12:00	$\int$	2	X			X	X		X	$\times$	Non N	<u> </u>
						-									
					a# 		the second s					4			
															<u> </u>
<u> </u>					 										1
E Co U	Comments/Special Instructions	Relinquished by (Signature)	Neron	4	Received by (Signature)		UN S		Relinquished by. (Signature)	<u>م</u>			Received by (Signature)		
		Printed Name	Printed Name	<u> </u>	Printed Name		I Miller. D		Printed Name				Printed Name	'n	<del></del>
		Company MPIQ		LI I	company A21	21			Company				Company		<u> </u>
1 22		Date & Time 11/8/13 2		WQ WQ	Date & Time	5	18	1830	Date & Time				Date & Time		1
	Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for	I requested se otal liability of linet of a prop	ervices in acc ARI, its offic	ordance with ers, agents, er	appropriate m mployees, or s	ethodology uccessors,	following Af arising out	RI Standar of or in cor thereof no	d Operatin, mection wi	g Procedu ith the requ	res and the lested ser	ARI Qual vices, shall	Inot excee	nce Program. This program ad the Invoiced amount for	
Said Sinne	said services. The acceptance by the client of sinned acreement between ABI and the Client.	alerit ur a prop o Client	Nosai iui sei vi	ices by Anile	icase ani ilon		iy ili excess	וווכובחו, ווג	A WILLISIAN	unig any p	UVISION 10	the contrat	ry in any c	oniraci, purchase order or c	5

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

signed agreement between ARI and the Client.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>سيب ک</u> ا	ARI Assigned Number: V A )[,,,,]	Turn-arg	Requested:			Page:		יו ס					Analytic	Analytical Resources, Incorporated	, Incorporate
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>	ARI Client Company:		Phone:			Date:		Ice	1				Analytic 4611 Sc	al Chemists a uth 134th Pla	and Consulta ace, Suite 100
При странатион         Полона         Полона <t< td=""><td><u></u></td><td></td><td>7100191</td><td></td><td>244.2</td><td>134</td><td></td><td></td><td></td><td></td><td>Ţ</td><td>Ş</td><td></td><td>Tukwila</td><td>WA 98168</td><td></td></t<>	<u></u>		7100191		244.2	134					Ţ	Ş		Tukwila	WA 98168	
Clear Project Kindler All All All All All All All All All Al		Cilent Contact: Mike Muri	)				No. of Coolers:	4	Cooler Temps:	3.2,0	4,5,4	spi		206-695	-6200 206-6	595-6201 (ta)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Client Project Name:	5						ď	dalysis Re	quested	64 83			Notes/C	Comments
Sample IDDateTimeMetrixIncomeane $\mathcal{B}_{11}$ $\mathcal{B}_{12}$ <		01.0	Samplers:	NRN		2	v. 7v	101 des 01 100 10 1 + 202	Lon	240W		514041	م،ٰ٧٤	JHIMA HIJ	includ.	tonals"
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sample ID	Date	Time	Matrix	No. Containers	Live Dext	177442	2) <i>7W</i>	4,107 44,10	100	1/ HANN	ret/	n 2002 Krijuss	1° rol	Pore with
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>مەرىم</u>	C1206-10cm	11/4/13	12:00	Sed.	8	×	X	X	200.04		X	×		Archur	لل من مع
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CR06-1		12,15		ų	*			Ň	(and)		X		erve	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CR06-2.5		12;30		8	×				to to to		×		gros	a
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CR06 -4		12,45		8					•		×		507	a~~;-
CRO4-1 1 13:3 1 3 X X X X X X X X X X X X X X X X X		CRO4-Jocu		13,00		8	X	X	X	Jonan		X	×			
CEOS-10cm 1 1/8/13 8.25 Led X X X W V X X X X X X X X X X X X X X X	1. No.	cro4-1		13;30	¥	?							X			
CROS - 2.5 CROS - 3.5 CROS - 3.5 CROS - 3.5 CROS - 3.5 CROS - 3.5 CROS - 2.5 CROS - 2.5 CROS - 2.5 Primed Name Primed Name		CROS-100M	1 1/8/13	8.25	Jud	X	X	X	X	Lever A		X	X			
$ \begin{array}{c c} CCS - 3.5 \\ CKO4 - 2.5 \\ Comments/Special Instructions \\ Reinquished by: \\ Received by$		cros-215		24.8		8			X				X			
CRO4 - 2,5 CRO4 - 2,5 Comments/Special Instructions Reinquished by: (Signature) Mercy Mercy Mercy Method Name: Printed Name: Mac Vi NO val Miller Miller Miller Printed Name: Mac Vi NO val Miller Miller Miller Printed Name: Mar A Date & Time: VICI 3 2,00 000 11/8/3 Reindown: No val Miller M		- 1		9:00		r							X			
Comments/Special Instructions     Reinquished by:     Reinquished by:       Rignaturey     Reinquished by:     Reinquished by:       Rignaturey     Reinquished by:     Reinquished by:       Printed Name:     Printed Name:     Signatures)       Printed Name:     Printed Name:     Printed Name:       Printed Name:     Printed Name:     Printed Name:       Printed Name:     Printed Name:     Printed Name:       Pata & Time:     Pata & Time:     Pata & Time:		CR04 - 2,5		9;40	1/	8							X		~	~
Printed Name. Macdy Novaly Printed Name. Company: Company: Date & Time. VICI 5 2:00 000 11/8/3 1836 Date & Time.		Comments/Special Instructions	Relinquiched by: (Signature)	1 101	Jun	Received by: (Signature)		t Pit		etinquished by signature)		<b>.</b> .	4	Received by ⁻ (Signature)		
Company: Company: Date & Time: V[K] 13 2:00 000 11/8/13 18.36 V[K] 13 2:00 000 11/8/13 18.36	×		Printed Name.	2	a hr	Printed Name:	riler	P)://		rinted Name		F		Printed Nam		
Date & Time: V/S/13 2:00 000 11/S/13 18.50 Date & Time:	JGJ			t		company. A	2		3	ompany				Company		
	5 CM		Date & Time-		20	Date & Time:/		1830		ate & Time:		-		Date & Time		

said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or couaru Operatirig Frocedures and the Ant Quality Assurance Program. This program Limits of Liability: And will periorm all requested services in accordance with appropriate ineurousely rollowing Andrean Control and Assurance Frogram. This program and standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for meets standards for the industry. signed agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

XNE! 2000005

Chain of Custody Record & Laboratory Analysis Request

And Chant Content.     Profes.     Display Figure 1       Clant Content.     Clant Content.     Clant Content.       Clant Content.     Clant Content.     Clant Content.       Clant Profes.     Clant Content.     Clant Content.       Sample ID     Date     Time     Matrix       Sample ID     Date     Time     Matrix       Clant Content Conceller     Ull LIS     S     X       Clant Conceller     Ull LIS     S     X	Net C     Manual     Control     National     Control     National     National     National       Ver Cr.v.     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C	ARI Assigned Number: NNLCU	ARI Assigned Number: NULU Turn-around Requested:	Page: 2 of	6	Analytical Resources, Incorporated Analytical Chemists and Consultants
Data Chante::     Color::     3     7     10/15/2     206-095-000       Clain Projection:     Entry::     Clain Projection:     Entry::     2/1     2/1       Clain Projection:     Entry::     CLoud - 5     V/K/13     0::00     2/1     2/1       Clain Projection:     III::     5     X     X     X     X     X       Clain - 10::     V     11::     5     X     X     X     X       Clain - 10::     V     11::     5     X     X     X     X       Clain - 10::     V     11::     5     X     X     X     X       Clain - 10::     V     11::     5     X     X     X     X       Clain - 10::     V     11::     5     X     X     X     X       Clain - 10::     V     V     5	Clean Chance:     Chance:     27,1,0,1,5,2     206-035-000       Clean Chance:     Clean Chance:     Clean Chance:     21,0,1,5,2     206-035-000       Clean Chance:     Clean Chance:     Clean Chance:     Clean Chance:     21,0,1,5,2     206-035-000       Clean Chance:     Clean Chance:     Clean Chance:     Clean Chance:     Clean Chance:     21,0,1,5,2     206-035-000       Clean Chance:     Clean Chance:     Clean Chance:     Clean Chance:     Clean Chance:     21,0,1,5,2     21,0,1,5,2       Clean Chance:     Clean Chance:     Clean Chance:     Clean Chance:     Clean Chance:     21,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	ARI Client Company.	ODA:	Date: V&/13		4611 South 134th Place, Suite 100 Tukwila, WA 98168
Clear France, Num.     Clear France     Admission     Admission       Clear France     Clear France     Samples     Samples     Samples       Clear France     Samples     Samples     Samples     Samples       Clear France     Samples     Samples     Samples     Samples       Clear France     Why Is 10:00     Samples     Samples     Sample	Claim Proper Name.     Claim Program (Claim Program	Client Contact:		άÛ	3.2,04	206-695-6200 206-695-6201 (fax)
Charling Weth S CH H MAR     Charling Mark	Clientingeneration     Control     Contro     Control     Control     Con	Л	ト		Adalysis Requested 3	Notes/Comments
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample ID     Date     Time     Matrix     No comments     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2     2 2 <th2 2<="" th="">     2 2     2 2     2 2<!--</td--><td></td><td>Sam /</td><td>( still</td><td>במסניי הניאר הריכי</td><td></td></th2>		Sam /	( still	במסניי הניאר הריכי	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sample ID	Time Matrix	להיונים ליריונים מיריון מיריון	JArue	
$ \begin{array}{c ccccl} \hline CECl - IOcn \\ \hline CECl - IOcn \\ \hline III.30 \\ \hline CECl - IOcn \\ \hline CECl - IOcn \\ \hline III.30 \\ \hline CECl - IOcn \\ \hline CECl - III.30 \\ \hline CECL - $		Croy-S	12 10:00 5	Lanim 1	Xadia I	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		CE01 - 1000			XXXXX	X remaining
CRO3-10cm     W     Disco     W     S     X     X     X     X     X     X     V       Image: Comments Special Instructions     Image: Comments     Ima		(ROJ-100)	02 02:11	X		X soundre
Comments/Special Instructions     Referented by Received by Received by Comments/Special Instructions     Received by Received		( RO3-10cm	V 12:00 V 2		$\times$ $\times$ $\times$	
Comments/Special Instructions Perindo Manus Printed Name Printed Name						
Comments/Special Instructions     Relinquished by Relinquished by Signature)     Received by Received by Relinquished by Received by Receiv						
Comments/Special Instructions     Refinquished by Refinquished by (signature)     Received by Received by (signature)     Refinquished by (signature)       Comments/Special Instructions     Refinquished by (signature)     Refinquished by (signature)     Refinquished by (signature)       Printed Name     Refinquished by (signature)     Refinquished by (signature)     Refinquished by (signature)       Printed Name     Refinance     Refinance       Printed Name     Refinance     Refinance       Printed Name     Refinance     Refinance    <						
Comments/Special Instructions     Reinquished by     Received by     Received by       Comments/Special Instructions     Reinquished by     Received by     Received by       (Signature)     McLUL     Received by     Received by       (Signature)     McLUL     Signature)     Reinquished by:       (Signature)     McLUL     Received by     Received by       (Signature)     McLUL     Signature)     Signature)       Printed Name     McLUL     Company:     Printed Name       Date & Time     MCL     McLUL     Company:       Date & Time     MCL     MCL     Date & Time.						
Comments/Special Instructions     Reinquished by     Received by     Received by       Reinquished by     Received by     Received by     Reinquished by:       (Signature)     Medu     Needword by     Reinquished by:       (Signature)     Medu     Needword by     Reinquished by:       Printed Name     Printed Name     Signature)     Printed Name       Macual     NOUCL     Lon Ni (kr     Ni (lift)       Oampany     Medu     Company:     Company:       Vil (S Time:     Date & Time:     Nil (B/I)     Date & Time:						
Comments/Special Instructions     Relinquished by     Removed by     Reinquished by:       (Signature)     Naclew Naclew Market     (Signature)     (Signature)       Printed Name     Printed Name     (Signature)       Printed Name     Printed N						
Printed Name Printed Name Maddi Novals Company MFIA Date & Time UI/8/13 2 DM 11/8/13 2 DM 11/8/13 1830 Date & Time.		Comments/Special Instructions	. •	1 - 1 UC	Relinquished by: (Signature)	Received by (Signature)
Company: MPLA Company: Date & Time U/8/13 2 DM 11/8/13 1830 Date & Time.			adi Novak	Ni ler I	Printed Name	Primed Name:
$\frac{\text{Date & Time}}{\sqrt{8}/5} \sum OM \frac{\text{Date & Time}}{\sqrt{8}/13} \frac{3.0}{10} \frac{3.0}{10} \frac{10.0}{10} \frac{10.0}{$			NFIQ	AZI	Company:	Company:
	4		8/13 2 DM	13	Date & Time.	Date & Time:

meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client. Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

Analytical Resources, Incorporated Analytical Chemists and Consultants	<b>Cooler Receipt Form</b>	
ARI Client <u>MAW</u> Fuster & Aluryi COC No(s) ⁻ Assigned ARI Job No: <u>XN64</u> Preliminary Examination Phase: Were intact, properly signed and dated custody seals attached Were custody papers included with the cooler? Were custody papers properly filled out (ink, signed, etc.) Temperature of Cooler(s) (°C) (recommended 2 0-6.0 °C for c	VES NO	' <i>iver</i> (
Time:	Temp Gun ID#: 7087795	2
Cooler Accepted by	Date8113Time850	
Log-In Phase:	is and attach all shipping documents	
What kind of packing material was used?       Bubble W         Was sufficient ice used (if appropriate)?	YES       NO         NA       YES         NA       YES         NO       YES         NA       YES         NO       YES <th></th>	
Sample ID on Bottle Sample ID on COC	Sample ID on Bottle Sample ID on COC	
Additional Notes, Discrepancies, & Resolutions:		
By Date.		
Small Ar Bubbles Peabubbles' LARGE Air Bubbles 2mm 2-4 mm > 4 mm	Small $\rightarrow$ "sm" (<2 mm) Peabubbles $\rightarrow$ "pb" (2 to <4 mm)	
· · ·   •.•.•   • • •	Large → "lg" (4 to < 6 mm)	

Headspace → "hs" (>6 mm)

**Revision 014** 



## Sample ID Cross Reference Report



ARI Job No: XQ70 Client: Maul Foster & Alongi Project Event: 0863.01.01 Project Name: GHHSA

	Sample ID	ARI Lab ID	ARI LIMS ID Ma	atrix	Sample Date/Time	VTSR
2. 3.	CR04-10cm CR05-10cm CR05-2.5 CR04-2.5	XQ70A XQ70B XQ70C XQ70D	13-26908 Se 13-26909 Se 13-26910 Se 13-26911 Se	ediment ediment	11/07/13 13:00 11/08/13 08:25 11/08/13 08:45 11/08/13 09:40	11/08/13 18:30 11/08/13 18:30 11/08/13 18:30 11/08/13 18:30 11/08/13 18:30

Printed 12/06/13 Page 1 of 1



Analytical Resources, Incorporated Analytical Chemists and Consultants

## Data Reporting Qualifiers Effective 2/14/2011

## Inorganic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Duplicate RPD is not within established control limits
- B Reported value is less than the CRDL but  $\geq$  the Reporting Limit
- N Matrix Spike recovery not within established control limits
- NA Not Applicable, analyte not spiked
- H The natural concentration of the spiked element is so much greater than the concentration spiked that an accurate determination of spike recovery is not possible
- L Analyte concentration is ≤5 times the Reporting Limit and the replicate control limit defaults to ±1 RL instead of the normal 20% RPD

## Organic Data

- U Indicates that the target analyte was not detected at the reported concentration
- * Flagged value is not within established control limits
- B Analyte detected in an associated Method Blank at a concentration greater than one-half of ARI's Reporting Limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.
- J Estimated concentration when the value is less than ARI's established reporting limits
- D The spiked compound was not detected due to sample extract dilution
- E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.
- Q Indicates a detected analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20%Drift or minimum RRF).



Analytical Resources, Incorporated Analytical Chemists and Consultants

- S Indicates an analyte response that has saturated the detector. The calculated concentration is not valid; a dilution is required to obtain valid quantification of the analyte
- NA The flagged analyte was not analyzed for
- NR Spiked compound recovery is not reported due to chromatographic interference
- NS The flagged analyte was not spiked into the sample
- M Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters. This flag is used only for GC-MS analyses
- M2 The sample contains PCB congeners that do not match any standard Aroclor pattern. The PCBs are identified and quantified as the Aroclor whose pattern most closely matches that of the sample. The reported value is an estimate.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification"
- Y The analyte is not detected at or above the reported concentration. The reporting limit is raised due to chromatographic interference. The Y flag is equivalent to the U flag with a raised reporting limit.
- EMPC Estimated Maximum Possible Concentration (EMPC) defined in EPA Statement of Work DLM02.2 as a value "calculated for 2,3,7,8-substituted isomers for which the quantitation and /or confirmation ion(s) has signal to noise in excess of 2.5, but does not meet identification criteria" (Dioxin/Furan analysis only)
- C The analyte was positively identified on only one of two chromatographic columns. Chromatographic interference prevented a positive identification on the second column
- P The analyte was detected on both chromatographic columns but the quantified values differ by ≥40% RPD with no obvious chromatographic interference
- X Analyte signal includes interference from polychlorinated diphenyl ethers. (Dioxin/Furan analysis only)
- Z Analyte signal includes interference from the sample matrix or perfluorokerosene ions. (Dioxin/Furan analysis only)



Analytical Resources, Incorporated Analytical Chemists and Consultants

## **Geotechnical Data**

- A The total of all fines fractions. This flag is used to report total fines when only sieve analysis is requested and balances total grain size with sample weight.
- F Samples were frozen prior to particle size determination
- SM Sample matrix was not appropriate for the requested analysis. This normally refers to samples contaminated with an organic product that interferes with the sieving process and/or moisture content, porosity and saturation calculations
- SS Sample did not contain the proportion of "fines" required to perform the pipette portion of the grain size analysis
- W Weight of sample in some pipette aliquots was below the level required for accurate weighting


Sample ID: MB-121013 METHOD BLANK

Lab Sample ID: MB-121013 LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 22:31 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes

### QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.00 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	RL	Result
108-95-2	Phenol	20	< 20 U
106-46-7	1,4-Dichlorobenzene	20	< 20 U
100-51-6	Benzyl Alcohol	20	< 20 U
95-50 <b>-</b> 1	1,2-Dichlorobenzene	20	< 20 U
95-48-7	2-Methylphenol	20	< 20 U
106-44-5	4-Methylphenol	20	< 20 U
105-67-9	2,4-Dimethylphenol	100	< 100 U
65-85-0	Benzoic Acid	200	< 200 U
120-82-1	1,2,4-Trichlorobenzene	20	< 20 U
91-20-3	Naphthalene	20	< 20 U
87-68-3	Hexachlorobutadiene	20	< 20 U
91-57 <b>-</b> 6	2-Methylnaphthalene	20	< 20 U
131-11-3	Dimethylphthalate	20	< 20 U
208-96-8	Acenaphthylene	20	< 20 U
83-32-9	Acenaphthene	20	< 20 U
132-64-9	Dibenzofuran	20	< 20 U
84-66-2	Diethylphthalate	20	< 20 U
86-73-7	Fluorene	20	< 20 U
86-30-6	N-Nitrosodiphenylamine	20	< 20 U
118-74-1	Hexachlorobenzene	20	< 20 U
87-86-5	Pentachlorophenol	100	< 100 U
85-01-8	Phenanthrene	20	< 20 U
120-12-7	Anthracene	20	< 20 U
84-74-2	Di-n-Butylphthalate	20	< 20 U
206-44-0	Fluoranthene	20	< 20 U
129-00-0	Pyrene	20	< 20 U
85-68-7	Butylbenzylphthalate	20	< 20 U
56-55-3	Benzo(a)anthracene	20	< 20 U
117-81-7	bis(2-Ethylhexyl)phthalate	50	< 50 U
218-01-9	Chrysene	20	< 20 U
117-84-0	Di-n-Octyl phthalate	20	< 20 U
50-32-8	Benzo(a)pyrene	20	< 20 U
193-39-5	Indeno (1, 2, 3-cd) pyrene	20	< 20 U
53-70-3	Dibenz(a,h)anthracene	20	< 20 U
191-24-2	Benzo(g,h,i)perylene	20	< 20 U
TOTBFA	Total Benzofluoranthenes	40	< 40 U

Reported in µg/kg (ppb)

d5-Nitrobenzene d14-p-Terphenyl	73.6% 96.4%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	68.8% 67.6%
d5-Phenol	76.18	2-Fluorophenol	74.8%
2,4,6-Tribromophenol	88.8%	d4-2-Chlorophenol	73.1%

Lab Sample ID: XQ70A LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: NWW Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/19/13 14:35 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes

### Sample ID: CR04-10cm SAMPLE

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 2.37 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 80.3%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	420	460
106-46-7	1,4-Dichlorobenzene	420	< 420 U
100-51-6	Benzyl Alcohol	420	< 420 U
95-50-1	1,2-Dichlorobenzene	420	< 420 U
95-48-7	2-Methylphenol	420	< 420 U
106-44-5	4-Methylphenol	420	< 420 U
105-67-9	2,4-Dimethylphenol	2,100	< 2,100 U
65-85-0	Benzoic Acid	4,200	1,700 J
120-82-1	1,2,4-Trichlorobenzene	420	< 420 U
91-20-3	Naphthalene	420	420
87-68-3	Hexachlorobutadiene	420	< 420 U
91-57-6	2-Methylnaphthalene	420	< 420 U
131-11-3	Dimethylphthalate	420	< 420 U
208-96-8	Acenaphthylene	420	< 420 U
83-32-9	Acenaphthene	420	< 420 U
132-64-9	Dibenzofuran	420	< 420 U
84-66-2	Diethylphthalate	420	< 420 U
86-73-7	Fluorene	420	< 420 U
86-30-6	N-Nitrosodiphenylamine	420	< 420 U
118-74-1	Hexachlorobenzene	420	< 420 U
87-86-5	Pentachlorophenol	2,100	< 2,100 U
85-01-8	Phenanthrene	420	320 J
120-12-7	Anthracene	420	< 420 U
84-74-2	Di-n-Butylphthalate	420	< 420 U
206-44-0	Fluoranthene	420	590 Q
129-00-0	Pyrene	420	700
85-68-7	Butylbenzylphthalate	420	< 420 U
56-55-3	Benzo (a) anthracene	420	250 J
117-81-7	bis(2-Ethylhexyl)phthalate	1,000	< 1,000 U
218-01-9	Chrysene	420	530
117-84-0	Di-n-Octyl phthalate	420	< 420 U
50-32-8	Benzo (a) pyrene	420	300 JQ
193-39-5	Indeno(1,2,3-cd)pyrene	420	< 420 U
53-70-3	Dibenz(a, h) anthracene	420	< 420 U
191-24-2	Benzo(g,h,i)perylene	420	230 JQ
TOTBFA	Total Benzofluoranthenes	840	550 J

Reported in  $\mu g/kg$  (ppb)

d5-Nitrobenzene	76.0%	2-Fluorobiphenyl	76.0%
d14-p-Terphenyl	94.0%	d4-1,2-Dichlorobenzene	63.0%
d5-Phenol	80.0%	2-Fluorophenol	74.0%
2,4,6-Tribromophenol	101%	d4-2-Chlorophenol	74.78





Lab Sample ID: XQ70B LIMS ID: 13-26909 Matrix: Sediment Data Release Authorized: Www Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/19/13 15:10 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes

### Sample ID: CR05-10cm SAMPLE

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 4.31 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 73.1%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	230	600
106-46-7	1,4-Dichlorobenzene	230	1,100
100-51-6	Benzyl Alcohol	230	< 230 U
95 <b>-</b> 50-1	1,2-Dichlorobenzene	230	< 230 U
95-48-7	2-Methylphenol	230	< 230 U
106-44-5	4-Methylphenol	230	310
105-67-9	2,4-Dimethylphenol	1,200	< 1,200 U
65-85-0	Benzoic Acid	2,300	950 J
120-82-1	1,2,4-Trichlorobenzene	230	< 230 U
91-20-3	Naphthalene	230	720
87-68-3	Hexachlorobutadiene	230	< 230 U
91-57-6	2-Methylnaphthalene	230	310
131-11-3	Dimethylphthalate	230	< 230 U
208-96-8	Acenaphthylene	230	170 J
83-32-9	Acenaphthene	230	210 J
132-64-9	Dibenzofuran	230	310
84-66-2	Diethylphthalate	230	< 230 U
86-73-7	Fluorene	230	260
86-30-6	N-Nitrosodiphenylamine	230	< 230 U
118-74-1	Hexachlorobenzene	230	< 230 U
87-86-5	Pentachlorophenol	1,200	< 1,200 U
85-01-8	Phenanthrene	230	700
120-12-7	Anthracene	230	230
84-74-2	Di-n-Butylphthalate	230	< 230 U
206-44-0	Fluoranthene	230	1,300 Q
129-00-0	Pyrene	230	1,300
85-68-7	Butylbenzylphthalate	230	< 230 U
56-55-3	Benzo (a) anthracene	230	390
117-81-7	bis(2-Ethylhexyl)phthalate	580	960
218-01-9	Chrysene	230	420
117-84-0	Di-n-Octyl phthalate	230	< 230 U
50-32-8	Benzo (a) pyrene	230	340 Q
193-39-5	Indeno (1,2,3-cd) pyrene	230	200 J
53-70-3	Dibenz(a,h)anthracene	230	< 230 U
191-24-2	Benzo(g,h,i)perylene	230	260 Q
TOTBFA	Total Benzofluoranthenes	460	660

Reported in µg/kg (ppb)

d5-Nitrobenzene	69.0%	2-Fluorobiphenyl	75.0%
d14-p-Terphenyl	92.0%	d4-1,2-Dichlorobenzene	59.0%
d5-Phenol	76.7%	2-Fluorophenol	68.0%
2,4,6-Tribromophenol	92.0%	d4-2-Chlorophenol	72.0%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270D GC/MS Extraction Method: SW3546 Page 1 of 1

Lab Sample ID: XQ70C LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/19/13 15:44 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes

# Sample ID: CR05-2.5 SAMPLE

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 2.85 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 74.2%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	350	530
106-46-7	1,4-Dichlorobenzene	350	600
100-51-6	Benzyl Alcohol	350	< 350 U
95-50-1	1,2-Dichlorobenzene	350	< 350 U
95-48-7	2-Methylphenol	350	< 350 U
106-44-5	4-Methylphenol	350	280 J
105-67-9	2,4-Dimethylphenol	1,800	< 1,800 U
65-85-0	Benzoic Acid	3,500	< 3,500 U
120-82-1	1,2,4-Trichlorobenzene	350	< 350 U
91-20-3	Naphthalene	350	440
87-68-3	Hexachlorobutadiene	350	< 350 U
91-57-6	2-Methylnaphthalene	350	< 350 U
131-11-3	Dimethylphthalate	350	< 350 U
208-96-8	Acenaphthylene	350	< 350 U
83-32-9	Acenaphthene	350	390
132-64-9	Dibenzofuran	350	230 J
84-66-2	Diethylphthalate	350	< 350 U
86-73-7	Fluorene	350	230 J
86-30-6	N-Nitrosodiphenylamine	350	< 350 U
118-74-1	Hexachlorobenzene	350	< 350 U
87-86-5	Pentachlorophenol	1,800	< 1,800 U
85-01-8	Phenanthrene	350	470
120-12-7	Anthracene	350	320 J
84-74-2	Di-n-Butylphthalate	350	< 350 U
206-44-0	Fluoranthene	350	3,900 Q
129-00-0	Pyrene	350	3,100
85-68-7	Butylbenzylphthalate	350	< 350 U
56-55-3	Benzo (a) anthracene	350	680
117-81-7	bis(2-Ethylhexyl)phthalate	880	9,400
218-01-9	Chrysene	350	460
117-84-0	Di-n-Octyl phthalate	350	< 350 U
50-32-8	Benzo (a) pyrene	350	530 Q
193-39-5	Indeno (1,2,3-cd) pyrene	350	190 JQ
53-70-3	Dibenz(a,h)anthracene	350	< 350 U
191-24-2	Benzo(g,h,i)perylene	350	300 JQ
TOTBFA	Total Benzofluoranthenes	700	810

Reported in µg/kg (ppb)

d5-Nitrobenzene	71.0% 87.0%	2-Fluorobiphenyl d4-1,2-Dichlorobenzene	72.08 58.08
d14-p-Terphenyl d5-Phenol	75.38	2-Fluorophenol	58.0% 68.0%
2,4,6-Tribromophenol	93.3%	d4-2-Chlorophenol	67.3%



Lab Sample ID: XQ70D LIMS ID: 13-26911 Matrix: Sediment Data Release Authorized: Www Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/19/13 16:18 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes

### Sample ID: CR04-2.5 SAMPLE

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 3.10 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 82.8%

CAS Number	Analyte	RL	Result
108-95-2	Phenol	320	390
106-46-7	1,4-Dichlorobenzene	320	< 320 U
100-51-6	Benzyl Alcohol	320	< 320 U
95-50-1	1,2-Dichlorobenzene	320	< 320 U
95-48-7	2-Methylphenol	320	< 320 U
106-44-5	4-Methylphenol	320	< 320 U
105-67-9	2,4-Dimethylphenol	1,600	< 1,600 U
65-85-0	Benzoic Acid	3,200	< 3,200 U
120-82-1	1,2,4-Trichlorobenzene	320	< 320 U
91-20-3	Naphthalene	320	340
87-68 <b>-</b> 3	Hexachlorobutadiene	320	< 320 U
91-57-6	2-Methylnaphthalene	320	< 320 U
131-11 <b>-</b> 3	Dimethylphthalate	320	< 320 U
208-96-8	Acenaphthylene	320	< 320 U
83-32-9	Acenaphthene	320	180 J
132-64-9	Dibenzofuran	320	210 J
84-66-2	Diethylphthalate	320	< 320 U
86-73-7	Fluorene	320	180 J
86-30-6	N-Nitrosodiphenylamine	320	< 320 U
118-74-1	Hexachlorobenzene	320	< 320 U
87-86-5	Pentachlorophenol	1,600	< 1,600 U
85-01-8	Phenanthrene	320	370
120-12-7	Anthracene	320	290 J
84-74-2	Di-n-Butylphthalate	320	< 320 U
206-44-0	Fluoranthene	320	2,200 Q
129-00-0	Pyrene	320	1,800
85-68-7	Butylbenzylphthalate	320	< 320 U
56-55-3	Benzo (a) anthracene	320	640
117-81-7	bis(2-Ethylhexyl)phthalate	810	870
218-01-9	Chrysene	320	940
117-84-0	Di-n-Octyl phthalate	320	< 320 U
50-32-8	Benzo (a) pyrene	320	680 Q
193-39-5	Indeno (1,2,3-cd) pyrene	320	480 Q
53-70-3	Dibenz(a,h)anthracene	320	< 320 Ū
191-24-2	Benzo(g,h,i)perylene	320	660 Q
TOTBFA	Total Benzofluoranthenes	640	1,700

Reported in µg/kg (ppb)

d5-Nitrobenzene	68.0%	2-Fluorobiphenyl	70.0%
d14-p-Terphenyl	85.0%	d4-1,2-Dichlorobenzene	58.0%
d5-Phenol	76.0%	2-Fluorophenol	67.3%
2,4,6-Tribromophenol	90.7%	d4-2-Chlorophenol	71.3%



# SW8270 SEMIVOLATILES SOIL/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID	NBZ	FBP	TPH	DCB	PHL	2FP	TBP	2CP I	OT OUT
MB-121013	73.6%	68.8%	96.48	67.68	76.18	74.8%	88.88	73.1%	· 0
LCS-121013	72.8%	69.0%	86.0%	64.4%	76.98	69.7%	89.1%	69.7%	Õ
CR04-10cm	76.0%	76.0%	94.0%	63.0%	80.0%	74.0%	101%	74.7%	0
CR05-10cm	69.08	75.0%	92.08	59.0%	76.7%	68.0%	92.0%	72.0%	0
CR05-2.5	71.0%	72.0%	87.0%	58.0%	75.3%	68.0%	93.38	67.3%	0
CR04-2.5	68.0%	70.0%	85.0%	58.0%	76.0%	67.3%	90.7%	71.3%	0

	LCS/MB LIMITS	QC LIMITS
(NBZ) = d5-Nitrobenzene	(33-120)	(30-120)
(FBP) = 2-Fluorobiphenyl	(35-120)	(35-120)
(TPH) = d14-p-Terphenyl	(42-124)	(37-120)
(DCB) = d4-1,2-Dichlorobenzene	(37-120)	(32-120)
(PHL) = d5-Phenol	(32-120)	(29-120)
(2FP) = 2-Fluorophenol	(32-120)	(27-120)
(TBP) = 2,4,6-Tribromophenol	(23-133)	(24-134)
(2CP) = d4-2-Chlorophenol	(36-120)	(31-120)

Prep Method: SW3546 Log Number Range: 13-26908 to 13-26911

### ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270 GC/MS

Page 1 of 2

Lab Sample ID: LCS-121013 LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: WW Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 23:05 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes

# RESOURCES INCORPORATED

ANALYTICAL

Sample ID: LCS-121013 LAB CONTROL

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 10.00 g Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
Phenol	409 Q	500	81.8%
1,4-Dichlorobenzene	362	500	72.4%
Benzyl Alcohol	443	500	88.6%
1,2-Dichlorobenzene	359	500	71.8%
2-Methylphenol	347 Q	500	69.4%
4-Methylphenol	704	1000	70.4%
2,4-Dimethylphenol	1030	1500	68.7%
Benzoic Acid	1750	2750	63.6%
1,2,4-Trichlorobenzene	359	500	71.8%
Naphthalene	349	500	69.8%
Hexachlorobutadiene	346	500	69.2%
2-Methylnaphthalene	384	500	76.8%
Dimethylphthalate	440	500	88.0%
Acenaphthylene	371	500	74.2%
Acenaphthene	369	500	73.8%
Dibenzofuran	.371	500	74.2%
Diethylphthalate	465	500	93.0%
Fluorene	402	500	80.48
N-Nitrosodiphenylamine	497	500	99.4%
Hexachlorobenzene	431	500	86.28
Pentachlorophenol	1260	1500	84.0%
Phenanthrene	418	500	83.6%
Anthracene	420	500	84.0%
Di-n-Butylphthalate	499	500	99.88
Fluoranthene	487	500	97.48
Pyrene	451	500	90.2%
Butylbenzylphthalate	538	500	108%
Benzo(a)anthracene	449	500	89.8%
bis(2-Ethylhexyl)phthalate	453	500	90.6%
Chrysene	405	500	81.0%
Di-n-Octyl phthalate	411	500	82.28
Benzo(a) pyrene	473 Q	500	94.68
Indeno(1,2,3-cd)pyrene	326	500	65.2%
Dibenz(a, h) anthracene	239	500	47.8%

## ORGANICS ANALYSIS DATA SHEET Semivolatiles by SW8270 GC/MS

Page 2 of 2

INCORPORATED Sample ID: LCS-121013 LAB CONTROL

ANALYTICAL RESOURCES

Lab Sample ID: LCS-121013 LIMS ID: 13-26908 Matrix: Sediment Date Analyzed: 12/16/13 23:05 QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01

Analyte	Lab Control	Spike Added	Recovery
Benzo(g,h,i)perylene	298 Q	500	59.6%
Total Benzofluoranthenes	804	1000	80.4%

# Semivolatile Surrogate Recovery

d5-Nitrobenzene	72.8%
2-Fluorobiphenyl	69.0%
d14-p-Terphenyl	86.0%
d4-1,2-Dichlorobenzene	64.4%
d5-Phenol	76.9%
2-Fluorophenol	69.78
2,4,6-Tribromophenol	89.18
d4-2-Chlorophenol	69.7%

Reported in µg/kg (ppb)

# Data File: /chem3/nt14.i/20131216.b/cc1216.d Report Date: 18-Dec-2013 11:50

# Analytical Resources, Inc.

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt14.iInjection Date: 16-DEC-2013 14:35Lab File ID: cc1216.dInit. Cal. Date(s): 11-DEC-2013 11-DEC-2013Analysis Type:Init. Cal. Times: 13:42Lab Sample ID: CC1216Quant Type: ISTDMethod: /chem3/nt14.i/20131216.b/ABN.m

		ł	CCAL	MIN	1	XAM	1
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	\$D / \$DRIFT	CURVE TYPE
	=== =============		1		1	*=====	===========
\$ 1 2-Fluorophenol	1,17428	1.24341	1.24341	0.010	5.88625	20.00000	Averaged
\$ 2 Phenol-d5	1.53259	1.86495	1.86495	0.010	21.68632	20.00000	Averaged
3 Phenol	1.72460	2.28443	2.28443	0.100	32.46149	20.00000	Averaged
\$ 5 2-Chlorophenol-d4	1.26113	1.48243	1.48243	0.010	17.54756	20.00000	Averaged
4 Bis(2-Chloroethyl)ether	1.21185	1.36504	1.36504	0.700	12.64150	20.00000	Averaged
6 2-Chlorophenol	1.39571	1.58374	1.58374	0.800	13.47235	20.00000	Averaged
7 1,3-Dichlorobenzene	1.35866	1.39327	1.39327	0.010	2.54760	20.00000	Averaged
9 1,4-Dichlorobenzene	1.37673	1.47273	1.47273	0.010	6.97294	20.00000	Averaged
\$ 10 1,2-Dichlorobenzene-d4	0.91055	0.92994	0.92994	0.010	2.12977	20.00000	Averaged
12 1,2-Dichlorobenzene	1.30836	1.39328	1.39328	0.010	6.49053	20.00000	Averaged
11 Benzyl alcohol	0.71262	0.71605	0.71605	0.010	0.48076	20.00000	Averaged
14 2,2'-oxybis(1-Chloropropane	0.41510	0.44252	0.44252	0.010	6.60507	20.00000	Averaged
13 2-Methylphenol	1.28565	1.63760	1.63760	0.700	27.37490	20.00000	Averaged
17 Hexachloroethane	0.50480	0.58400	0.58400	0.300	15.68841	20.00000	Averaged
16 N-Nitroso-di-n-propylamine	0.82009	0.92258	0.92258	0.500	12.49799	20.00000	Averaged
15 4-Methylphenol	1.32235	1.52759	1.52759	0.600	15,52060	20.00000	Averaged
\$ 18 Nitrobenzene-d5	0.34376	0.36571	0.36571	0.010	6.38390	20.00000	Averaged
19 Nitrobenzene	0.31920	0.34108	0.34108	0.200	6.85376	20.00000	Averaged
20 Isophorone	0.53787	0.62730	0.62730	0.300	16.62654	20.00000	Averaged
21 2-Nitrophenol	0.17764	0.20043	0.20043	0.100	12.83152	20.00000	Averaged
22 2,4-Dimethylphenol	0.34055	0.33896	0.33896	0.200	-0.46801	20.00000	Averaged
23 Bis(2-Chloroethoxy)methane	0.36439	0,39087	0.39087	0.050	7.26782	20.00000	Averaged
24 Benzoic acid	22.13133	20.00000	0.29393	0.010	10.65666	20.00000	Quadratic
25 2,4-Dichlorophenol	0.30590	0.29214	0.29214	0.100	-4.49796	20.00000	Averaged
26 1,2,4-Trichlorobenzene	0.28701	0.28540	0.28540	0.010	-0.56085	20.00000	Averaged
28 Naphthalene	0.97655	0.91734	0.91734	0.100	-6.06334	20.00000	Averaged
29 4-Chloroaniline	0.35123	0.35058	0.35058	0.010	-0.18568	20.00000	Averaged
30 Hexachlorobutadiene	0.15785	0.14396	0.14396	0.010	-8.79813	20.00000	Averaged
31 4-Chloro-3-methylphenol	0.27785	0.31047	0.31047	0.200	11.74054	20.00000	
32 2-Methylnaphthalene	0.60064	0.65374			•	20.00000	Averaged
33 Hexachlorocyclopentadiene	0.28573	0.28156	0.28156	0.001	-1.46152	20.00000	Averaged
34 2,4,6-Trichlorophenol	0.33472	0.33706	0.33706	0.200	0.69917	20.00000	Averaged
35 2,4,5-Trichlorophenol	0.34791				•		
\$ 36 2-Fluorobiphenyl	1.17682			,		•	
37 2-Chloronaphthalene	0.91423			•	•		
	1	1	1	1	1		

# Data File: /chem3/nt14.i/20131216.b/cc1216.d Report Date: 18-Dec-2013 11:50

# Analytical Resources, Inc.

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt14.iInjection Date: 16-DEC-2013 14:35Lab File ID: cc1216.dInit. Cal. Date(s): 11-DEC-2013 11-DEC-2013Analysis Type:Init. Cal. Times: 13:42Lab Sample ID: CC1216Quant Type: ISTDMethod: /chem3/nt14.i/20131216.b/ABN.m

	1	l	CCAL	MIN		MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	•	1	•		1	•	
38 2-Nitroaniline	0.24954	•			1		
39 Dimethylphthalate	1.02784	0.99658	0.99658	0.010	-3.04148	20.00000	Averaged
40 Acenaphthylene	1.49257	1.50210	1.50210	0.900	0.63883	20.00000	Averaged
41 2,6-Dinitrotoluene	0.21189	0.22920	0.22920	0.100	8.16670	20.00000	Averaged
43 3-Nitroaniline	0.24052	0.31026	0.31026	0.010	28.99449	20.00000	Averaged
44 Acenaphthene	0.98795	0.99989	0.99989	0.100	1.20896	20.00000	Averaged
45 2,4-Dinitrophenol	23.16297	20.00000	0.20780	0.030	15.81487	20.00000	Quadratic
46 Dibenzofuran	1.35835	1.36137	1.36137	0.800	0.22181	20.00000	Averaged
47 4-Nitrophenol	12.21840	10.00000	0.18571	0.010	22.18400	20.00000	Quadratic
48 2,4-Dinitrotoluene	0.28642	0.34410	0.34410	0.200	20.13907	20.00000	Averaged
50 Diethylphthalate	1.04034	1.11819	1.11819	0.010	7.48333	20.00000	Averaged
49 Fluorene	1.11381	1.19567	1.19567	0.100	7.34932	20.00000	Averaged
51 4-Chlorophenyl-phenylether	0.52797	0.55611	0.55611	0.100	5.33073	20.00000	Averaged
52 4-Nitroaniline	0.23548	0.30333	0.30333	0.010	28.80928	20.00000	Averaged
53 4,6-Dinitro-2-methylphenol	21.44275	20.00000	0.15670	0.001	7.21377	20.00000	Quadratic
54 N-Nitrosodiphenylamine	0.45731	0.48842	0.48842	0.010	6.80253	20.00000	Averaged
\$ 55 2,4,6-Tribromophenol	0.14057	0.15699	0.15699	0.010	11.67677	20.00000	Averaged
56 4-Bromophenyl-phenylether	0.17470	0.17810	0.17810	0.100	1.94559	20.00000	Averaged
57 Hexachlorobenzene	0.18922	0.19402	0.19402	0.100	2.53893	20.00000	Averaged
58 Pentachlorophenol	0.13759	0.15143	0.15143	0.010	10.06242	20.00000	Averaged
60 Phenanthrene	0.98991	1.00125	1.00125	0.700	1.14616	20.00000	Averaged
61 Anthracene	0.93027	1.00068	1.00068	0.700	7.56870	20.00000	Averaged
62 Carbazole	0.78633	0.80297	0.80297	0.010	2.11592	20.00000	Averaged
63 Di-n-butylphthalate	4.97069	5.00000	0.99244	0.010	-0.58611	20.00000	Quadratic
64 Fluoranthene	0.96832	1.02085	1.02085	0.600	5.42503	20.00000	Averaged
65 Pyrene	1.05920	1.13312	1.13312	0.600	6.97928	20.00000	Averaged
5 66 Terphenyl-d14	0.54772	0.60324	0.60324	0.010	10.13620	20.00000	Averaged
67 Butylbenzylphthalate	5.99504	5.00000	0.48742	0.010	19.90087	20.00000	Quadratic
68 Benzo(a)anthracene	0.96296	1.05793	1.05793	0.700	9.86156	20.00000	Averaged
70 3,3'-Dichlorobenzidine	0.37653			0.010	34.77172	20.00000	Averaged
71 Chrysene	, 0.96364	•	1.00119	0.700	3.89666	20.00000	Averaged
72 bis(2-Ethylhexyl)phthalate	5.09548			0.010	1.90964	20.00000	Quadratic
73 Di-n-octylphthalate	0.90626		•			20.00000	Averaged
74 Benzo(b)fluoranthene	0.95807				•		• –
75 Benzo(k)fluoranthene	1.08338						

# Data File: /chem3/nt14.i/20131219.b/cc1219.d Report Date: 20-Dec-2013 12:25

Analytical Resources, Inc.

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt14.iInjection Date: 19-DEC-2013 13:20Lab File ID: cc1219.dInit. Cal. Date(s): 11-DEC-2013 11-DEC-2013Analysis Type:Init. Cal. Times: 13:42Lab Sample ID: CC1219Quant Type: ISTDMethod: /chem3/nt14.i/20131219.b/ABN.m

	I	1	CCAL	MIN	I	MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	-	=================		=====	==========	=======	=====
\$ 1 2-Fluorophenol	1.17428	1.25110	1.25110	0.010	6.54152	20.00000	Averaged
\$ 2 Phenol-d5	1.53259	1.68197	1.68197	0.010	9.74747	20.00000	Averaged
3 Phenol	1.72460	2.06212	2.06212	0.100	19.57082	20.00000	Averaged
\$ 5 2-Chlorophenol-d4	1.26113	1.35866	1.35866	0.010	7.73355	20.00000	Averaged
7 1,3-Dichlorobenzene	1.35866	1.37381	1.37381	0.010	1.11576	20.00000	Averaged
9 1,4-Dichlorobenzene	1.37673	1.40685	1.40685	0.010	2.18783	20.00000	Averaged
\$ 10 1,2-Dichlorobenzene-d4	0.91055	0.90961	0.90961	0.010	-0.10237	20.00000	Averaged
12 1,2-Dichlorobenzene	1.30836	1.33676	1.33676	0.010	2.17026	20.00000	Averaged
11 Benzyl alcohol	0.71262	0.60029	0.60029	0.010	-15.76266	20.00000	Averaged
13 2-Methylphenol	1.28565	1.38979	1.38979	0.700	8.10015	20.00000	Averaged
17 Hexachloroethane	0.50480	0.54043	0.54043	0.300	7.05796	20.00000	Averaged
15 4-Methylphenol	1.32235	1.55612	1.55612	0.600	17.67807	20.00000	Averaged
\$ 18 Nitrobenzene-d5	0.34376	0.43301	0.43301	0.010	25.96305	20.00000	Averaged
22 2,4-Dimethylphenol	0.34055	0.41148	0.41148	0.200	20.82758	20.00000	Averaged
24 Benzoic acid	22.66401	20.00000	0.30132	0.010	13.32003	20.00000	Quadratic
26 1,2,4-Trichlorobenzene	0.28701	0.28579	0.28579	0.010	-0.42499	20.00000	Averaged
28 Naphthalene	0.97655	0.99956	0.99956	0.100	2.35549	20.00000	Averaged
30 Hexachlorobutadiene	0.15785	0.16150	0.16150	0.010	2.31186	20.00000	Averaged
32 2-Methylnaphthalene	0.60064	0.63776	0.63776	0.300	6.17978	20.00000	Averaged
\$ 36 2-Fluorobiphenyl	1.17682	1.14344	1.14344	0.010	-2.83614	20.00000	Averaged
39 Dimethylphthalate	1.02784	1.08929	1.08929	0.010	5.97840	20.00000	Averaged
40 Acenaphthylene	1.49257	1.66949	1.66949	0.900	11.85318	20.00000	Averaged
44 Acenaphthene	0.98795	1.02363	1.02363	0.100	3.61189	20.00000	Averaged
46 Dibenzofuran	1.35835	1.35620	1.35620	0.800	-0.15867	20.00000	Averaged
50 Diethylphthalate	1.04034	1.08344	1.08344	0.010	4.14230	20.00000	Averaged
49 Fluorene	1.11381	1.13689	1.13689	0.100	2.07158	20.00000	Averaged
54 N-Nitrosodiphenylamine	0.45731	0.49072	0.49072	0.010	7.30647	20.00000	Averaged
\$ 55 2,4,6-Tribromophenol	0.14057	0.15985	0.15985	0.010	13.71325	20.00000	Averaged
57 Hexachlorobenzene	0.18922	0.18957	0.18957	0.100	0.18562	20.00000	Averaged
58 Pentachlorophenol	0.13759	0.14640	0.14640	0.010	6.40405	20.00000	Averaged
60 Phenanthrene	0.98991	1.01301	1.01301	0.700	2.33394	20.00000	Averaged
61 Anthracene	0.93027	1.04290	1.04290	0.700	12.10716	20.00000	Averaged
62 Carbazole	0.78633			•	,	20.00000	Averaged
63 Di-n-butylphthalate	5.99374				•	20.00000	Quadratic
64 Fluoranthene	0.96832			•	•		

# Data File: /chem3/nt14.i/20131219.b/cc1219.d Report Date: 20-Dec-2013 12:25

# Analytical Resources, Inc.

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt14.iInjection Date: 19-DEC-2013 13:20Lab File ID: cc1219.dInit. Cal. Date(s): 11-DEC-2013 11-DEC-2013Analysis Type:Init. Cal. Times: 13:42Lab Sample ID: CC1219Quant Type: ISTDMethod: /chem3/nt14.i/20131219.b/ABN.m

l	I I	1	CCAL	MIN	1	MAX	
COMPOUND	RRF / AMOUNT	RF5	RRF5	RRF	%D / %DRIFT	\$D / \$DRIFT	CURVE TYPE
=====================================		=========		=====	===========	=========	=======
65 Pyrene	1.05920	1.21808	1.21808	0.600	15.00059	20.00000	Averaged
\$ 66 Terphenyl-d14	0.54772	0.60372	0.60372	0.010	10.22380	20.00000	Averaged
67 Butylbenzylphthalate	5.93567	5.00000	0.48241	0.010	18.71334	20.00000	Quadratic
68 Benzo(a)anthracene	0.96296	1.03775	1.03775	0.700	7.76626	20.00000	Averaged
71 Chrysene	0.96364	0.99857	0.99857	0.700	3.62404	20.00000	Averaged
72 bis(2-Ethylhexyl)phthalate	5.06179	5.00000	0.47942	0.010	1.23574	20.00000	Quadratic
73 Di-n-octylphthalate	0.90626	0.84799	0.84799	0.010	~6.42947	20.00000	Averaged
76 Benzo(a)pyrene	0.75649	0.91728	0.91728	0.700	21.25560	20.00000	Averaged
78 Indeno(1,2,3-cd)pyrene	6.32074	5.00000	1.23958	0.500	26.41483	20.00000	Quadratic
79 Dibenzo(a,h)anthracene	6.52311	5.00000	1.00184	0.400	30.46223	20.00000	Quadratic
80 Benzo(g,h,i)perylene	0.74846	0.97758	0.97758	0.500	30.61294	20.00000	Averaged
105 1-methylnaphthalene	0.55159	0.58695	0.58695	0.010	6.41015	20.00000	Averaged
187 Total Benzofluoranthenes	0.94535	1.00637	1.00637	0.010	6.45522	20.00000	Averaged
98 Retene	++++	0.00018	0.00018	0.010	++++	20.00000	Averaged
120 2,3,4,6-Tetrachlorophenol	0.24889	0.28706	0.28706	0.010	15.33455	20.00000	Averaged
		1			I	I	



Sample ID: MB-121013 METHOD BLANK

Lab Sample ID: MB-121013 LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: NA Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 22:31 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.00 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 1.00 Percent Moisture: NA

CAS Number	Analyte	LOQ	Result
53-70-3	Dibenz(a,h)anthracene	5.0	< 5.0 U
106-46-7	1,4-Dichlorobenzene	5.0	< 5.0 U
120-82-1	1,2,4-Trichlorobenzene	5.0	< 5.0 U
118-74-1	Hexachlorobenzene	5.0	< 5.0 U
87-68-3	Hexachlorobutadiene	5.0	< 5.0 U
131-11-3	Dimethylphthalate	5.0	< 5.0 U
85-68-7	Butylbenzylphthalate	5.0	< 5.0 U
95-48 <b>-</b> 7	2-Methylphenol	5.0	< 5.0 U
105-67-9	2,4-Dimethylphenol	25	< 25 U
86-30-6	N-Nitrosodiphenylamine	5.0	< 5.0 U
100-51-6	Benzyl Alcohol	20	< 20 U
87-86-5	Pentachlorophenol	20	< 20 U
95-50-1	1,2-Dichlorobenzene	5.0	< 5.0 U
541-73-1	1,3-Dichlorobenzene	5.0	< 5.0 U

Reported in µg/kg (ppb)

2-Fluorophenol	73.6%
d14-p-Terphenyl	93.0%



Sample ID: CR04-10cm SAMPLE

Lab Sample ID: XQ70A LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: (V), Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/19/13 14:35 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 2.37 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 80.3%

CAS Number	Analyte	LOQ	Result
53-70-3	Dibenz (a, h) anthracene	100	120 Q
106-46-7	1,4-Dichlorobenzene	100	< 100 U
120-82-1	1,2,4-Trichlorobenzene	100	< 100 U
118-74-1	Hexachlorobenzene	100	< 100 U
87-68-3	Hexachlorobutadiene	100	< 100 U
131 <b>-</b> 11-3	Dimethylphthalate	100	< 100 U
85-68-7	Butylbenzylphthalate	100	< 100 U
95-48-7	2-Methylphenol	100	< 100 U
105-67-9	2,4-Dimethylphenol	530	< 530 U
86-30-6	N-Nitrosodiphenylamine	100	< 100 U
100-51-6	Benzyl Alcohol	420	< 420 U
87-86-5	Pentachlorophenol	420	270 J
95-50-1	1,2-Dichlorobenzene	100	< 100 U
541-73 <b>-</b> 1	1,3-Dichlorobenzene	100	< 100 U

Reported in µg/kg (ppb)

2-Fluorophenol	72.0%
d14-p-Terphenyl	95.0%



Sample ID: CR05-10cm SAMPLE

Lab Sample ID: XQ70B LIMS ID: 13-26909 Matrix: Sediment Data Release Authorized: N Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/19/13 15:10 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 4.31 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 73.1%

CAS Number	Analyte	LOQ	Result
53-70-3	Dibenz (a, h) anthracene	58	94 Q
106-46-7	1,4-Dichlorobenzene	58	1,000
120-82-1	1,2,4-Trichlorobenzene	58	43 J
118-74-1	Hexachlorobenzene	58	< 58 U
87-68-3	Hexachlorobutadiene	58	< 58 U
131-11-3	Dimethylphthalate	58	< 58 U
85-68-7	Butylbenzylphthalate	58	< 58 U
95-48-7	2-Methylphenol	58	44 J
105-67-9	2,4-Dimethylphenol	290	< 290 U
86-30-6	N-Nitrosodiphenylamine	58	< 58 U
100-51-6	Benzyl Alcohol	230	< 230 U
87 <b>-</b> 86-5	Pentachlorophenol	230	< 230 U
95-50 <b>-</b> 1	1,2-Dichlorobenzene	58	< 58 U
541-73-1	1,3-Dichlorobenzene	58	620

Reported in µg/kg (ppb)

2-Fluorophenol	66.0%
d14-p-Terphenyl	96.0%



Sample ID: CR05-2.5 SAMPLE

Lab Sample ID: XQ70C LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: May Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/19/13 15:44 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 2.85 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 74.2%

CAS Number	Analyte	LOQ	Result	
53-70-3	Dibenz (a, h) anthracene	88	190 Q	
106-46-7	1,4-Dichlorobenzene	88	540	
120-82-1	1,2,4-Trichlorobenzene	88	74 J	
118-74-1	Hexachlorobenzene	88	< 88 U	
87-68-3	Hexachlorobutadiene	88	< 88 U	
131-11-3	Dimethylphthalate	88	< 88 U	
85-68-7	Butylbenzylphthalate	88	< 88 U	
95-48-7	2-Methylphenol	88	< 88 U	
105-67-9	2,4-Dimethylphenol	440	< 440 U	
86-30-6	N-Nitrosodiphenylamine	88	< 88 U	
100-51-6	Benzyl Alcohol	350	< 350 Ŭ	
87-86-5	Pentachlorophenol	350	< 350 U	
95-50-1	1,2-Dichlorobenzene	88	< 88 U	
541-73-1	1,3-Dichlorobenzene	88	280	

Reported in µg/kg (ppb)

2-Fluorophenol	66.0%
d14-p-Terphenyl	92.0%



Sample ID: CR04-2.5 SAMPLE

Lab Sample ID: XQ70D LIMS ID: 13-26911 Matrix: Sediment Data Release Authorized: YVVV Reported: 12/20/13

Date Extracted: 12/10/13 Date Analyzed: 12/19/13 16:18 Instrument/Analyst: NT14/YZ GPC Cleanup: Yes Silica Gel Cleanup: No Alumina Cleanup: No QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 3.10 g-dry-wt Final Extract Volume: 1.0 mL Dilution Factor: 5.00 Percent Moisture: 82.8%

CAS Number	Analyte	LOQ	Result
53-70-3	Dibenz (a, h) anthracene	81	360 Q
106-46-7	1,4-Dichlorobenzene	81	< 81 U
120-82-1	1,2,4-Trichlorobenzene	81	< 81 U
118-74-1	Hexachlorobenzene	81	< 81 U
87-68-3	Hexachlorobutadiene	81	< 81 U
131-11-3	Dimethylphthalate	81	< 81 U
85-68-7	Butylbenzylphthalate	81	< 81 U
95-48-7	2-Methylphenol	81	< 81 U
105-67-9	2,4-Dimethylphenol	400	< 400 U
86-30-6	N-Nitrosodiphenylamine	81	< 81 U
100-51-6	Benzyl Alcohol	320	< 320 U
87-86-5	Pentachlorophenol	320	400
95-50-1	1,2-Dichlorobenzene	81	< 81 U
541-73-1	1,3-Dichlorobenzene	81	< 81 U

Reported in µg/kg (ppb)

2-Fluorophenol	66.7%
d14-p-Terphenyl	88.0%



# SIM SW8270 SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID	FPH	TER	TOT OUT
MB-121013	73.6%	93.0%	0
LCS-121013	67.3%	85.0%	0
CR04-10cm	72.0%	95.0%	0
CR05-10cm	66.0%	96.0%	0
CR05-2.5	66.0%	92.0%	0
CR04-2.5	66.78	88.0%	0

	LCS/MB LIMITS	QC LIMITS
(FPH) = 2-Fluorophenol	(32-120)	(27-120)
(TER) = d14-p-Terphenyl	(42-124)	(37-120)

Prep Method: SW3546 Log Number Range: 13-26908 to 13-26911



# ORGANICS ANALYSIS DATA SHEET

Semivolatiles by Selected Ion Monitoring GC/MS Page 1 of 1

Sample ID: LCS-121013 LAB CONTROL SAMPLE

Lab Sample ID: LCS-121013 LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: WW Reported: 12/20/13

Date Analyzed LCS: 12/16/13 23:05

Instrument/Analyst LCS: NT14/YZ

Date Extracted: 12/10/13

Benzyl Alcohol

Pentachlorophenol 1,2-Dichlorobenzene

1,3-Dichlorobenzene

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA Event: 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount LCS: 10.00 g-dry-wt Final Extract Volume LCS: 1.0 mL Dilution Factor LCS: 1.00

94.48

70.7%

65.4%

65.0%

Analyte	LCS	Spike Added	Recovery
Dibenz(a,h)anthracene	277 Q	500	55.4%
1,4-Dichlorobenzene	321	500	64.2%
1,2,4-Trichlorobenzene	324	500	64.8%
Hexachlorobenzene	397	500	79.48
Hexachlorobutadiene	311	500	62.2%
Dimethylphthalate	431	500	86.2%
Butylbenzylphthalate	497 Q	500	99.4%
2-Methylphenol	351	500	70.2%
2,4-Dimethylphenol	1030	1500	68.7%
N-Nitrosodiphenylamine	539	500	108%

Reported in µg/kg (ppb)

500

500

500

1500

472

327

325

1060

2-Fluorophenol	67.3%
d14-p-Terphenyl	85.0%



Data File: /chem3/nt14.i/20131216.b/SIM.b/cc1216a.d Report Date: 18-Dec-2013 12:39

Analytical Resources, Inc.

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt14.iInjection Date: 16-DEC-2013 15:10Lab File ID: cc1216a.dInit. Cal. Date(s): 11-DEC-2013 11-DEC-2013Analysis Type:Init. Cal. Times: 13:42Lab Sample ID: CC1216AQuant Type: ISTDMethod: /chem3/nt14.i/20131216.b/SIM.b/SIMABN2.m

		.	CCAL	MIN		MAX	1
COMPOUND	RRF / AMOUNT	RF1	RRF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
*=*==*==**=**=*=***********************	=== ===================================	**=*==*=*=*	============================	====	*********	============	*********
\$ 1 2-Fluorophenol	1.15354	1.35715	1.35715 0	.010	17.65056	20.00000	Averaged
3 Phenol	1.64342	2.01076	2.01076 0	.010	22.35191	20.00000	Averaged
7 1,3-Dichlorobenzene	1.48921	1,36005	1.36005 0	.010	-8.67321	20.00000	Averaged
9 1,4-Dichlorobenzene	1.53576	1.39881	1.39881 0	.010	-8.91741	20.00000	Averaged
11 Benzyl alcohol	0.73455	0.69021	0.69021 0	.010	-6.03607	20.00000	Averaged
12 1,2-Dichlorobenzene	1.44417	1.35069	1.35069 0	.010	-6.47300	20.00000	Averaged
13 2-Methylphenol	1,16447	1.32247	1.32247/0	.010	13.56828	20.00000	Averaged
15 4-Methylphenol	1.17598	1.42684	1.42684 0	.010	21.33128	20.00000	Averaged
16 N-Nitroso-di~n-propylamine	0.67964	0.81381	0.81381 0	.050	19.74181	20.00000	Averaged
22 2,4-Dimethylphenol	0.31095	0.36393	0.36393 0	.010	17.03836	20.00000	Averaged
26 1,2,4-Trichlorobenzene	0.32381	0.31910	0.31910 0	.010	-1.45706	20.00000	Averaged
30 Hexachlorobutadiene	0.18925	0.18577	0.18577 0	.010	-1.83458	20.00000	Averaged
39 Dimethylphthalate	1.08013	1.09660	1.09660 0	.010	1.52449	20.00000	Averaged
50 Diethylphthalate	1.08190	1.20458	1.20458 0	.010	11.33938	20.00000	Averaged
54 N-Nitrosodiphenylamine	0.44728	0.41444	0.41444 0	.010	-7.34177	20.00000	Averaged
57 Hexachlorobenzene	0.23567	0.20797	0.20797 0	.010	-11.75525	20.00000	Averaged
58 Pentachlorophenol	1.96223	2.00000]	0.13704 0	.005	-1.88854	20.00000	Quadratic
\$ 66 Terphenyl-d14	0.33250	0.37945	0.37945 0	.010	14.12095	20.00000	Averaged
67 Butylbenzylphthalate	1.50861	1.00000	0.44448 0	.010	50.86076	20.00000	Quadratic
79 Dibenzo(a,h)anthracene	1.28459	1.00000	0.85513 0	.010	28.45890	20.00000	Quadratic
90 N-Nitrosodimethylamine	0.71021	0.74780	0.74780 0	.010	5.29331	20.00000	Averaged
	1		t	1		ł	]

Data File: /chem3/nt14.i/20131219.b/SIM.b/cc1219a.d Report Date: 20-Dec-2013 14:28

Analytical Resources, Inc.

# CONTINUING CALIBRATION COMPOUNDS

Instrument ID: nt14.iInjection Date: 19-DEC-2013 13:54Lab File ID: cc1219a.dInit. Cal. Date(s): 11-DEC-2013 11-DEC-2013Analysis Type:Init. Cal. Times: 13:42Lab Sample ID: CC1219AQuant Type: ISTDMethod: /chem3/nt14.i/20131219.b/SIM.b/SIMABN2.m

1	I		CCAL	MIN	1	MAX	1 1
COMPOUND	RRF / AMOUNT	RF1	RRF1	RRF	%D / %DRIFT	%D / %DRIFT	CURVE TYPE
	===   ================	=================		=====	=====================================		========
\$ 1 2-Fluorophenol	1.15354	1.24037	1.24037	0.010	7.52656	20.00000	Averaged
3 Phenol	1.64342	2.06332	2.06332	0.010	25.55060	20.00000	Averaged
7 1,3-Dichlorobenzene	1.48921	1.38703	1.38703	0.010	-6.86159	20.00000	Averaged
9 1,4-Dichlorobenzene	1.53576	1.41163	1.41163	0.010	~8.08209	20.00000	Averaged
11 Benzyl alcohol	0.73455	0.59642	0.59642	0.010	-18.80423	20.00000	Averaged
12 1,2-Dichlorobenzene	1.44417	1.34299	1.34299	0.010	-7.00601	20.00000	Averaged
13 2-Methylphenol	1.16447	1.37427	1,37427	0.010	18.01630	20.00000	Averaged
15 4-Methylphenol	1.17598	1.41000	1.41000	0.010	19.89964	20.00000	Averaged
16 N-Nitroso-di-n-propylamine	0.67964	0.78820	0.78820	0.050	15.97388	20.00000	Averaged
22 2,4-Dimethylphenol	0.31095	0.33793	0.33793	0.010	8.67849	20.00000	Averaged
26 1,2,4-Trichlorobenzene	0.32381	0.29286	0.29286	0.010	-9.55764	20.00000	Averaged
30 Hexachlorobutadiene	0.18925	0.17622	0.17622	0.010	-6.88463	20.00000	Averaged
39 Dimethylphthalate	1.08013	1.09935	1.09935	0.010	1.77956	20.00000	Averaged
50 Diethylphthalate	1.08190	1.18151	1.18151	0.010	9.20739	20.00000	Averaged
54 N-Nitrosodiphenylamine	0.44728	0.47933	0.47933	0.010	7.16631	20.00000	Averaged
57 Hexachlorobenzene	0.23567	0.21436	0.21436	0.010	-9.04196	20.00000	Averaged
58 Pentachlorophenol	1.87741	2.00000	0.13089	0.005	-6.12946	20.00000	Quadratic
\$ 66 Terphenyl-d14	0.33250	0.37094	0.37094	0.010	11.56153	20.00000	Averaged
67 Butylbenzylphthalate	1.39203	1.00000	0.40762	0.010	39.20322	20.00000	Quadratic   <
79 Dibenzo(a,h)anthracene	1.42897	1.00000	0.95782	0.010	42.89718	20.00000	Quadratic <
90 N-Nitrosodimethylamine	0.71021	0.81237	0.81237	0.010	14.38476	20.00000	Averaged
1							

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by EPA 1613B

Page 1 of 1

Lab Sample ID: MB-121013 LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: WW Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 20:08 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

#### Sample ID: MB-121013

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	EDL	RL	Result	
2,3,7,8-TCDF		0.65-0.89	0.0320	1.00	< 0.0320	U
2,3,7,8-TCDD	0.11	0.65-0.89		1.00	0.162	JEMPC
1,2,3,7,8-PeCDF		1.32-1.78	0.0340	1.00	< 0.0340	U
2,3,4,7,8-PeCDF		1.32-1.78	0.0420	1.00	< 0.0420	U
1,2,3,7,8-PeCDD	0.80	1.32-1.78		1.00	0.0460	JEMPC
1,2,3,4,7,8-HxCDF		1.05-1.43	0.0360	1.00	< 0.0360	U
1,2,3,6,7,8-HxCDF		1.05-1.43	0.0320	1.00		U
2,3,4,6,7,8-HxCDF		1.05-1.43	0.0380	1.00		U
1,2,3,7,8,9-HxCDF		1.05-1.43	0.0520	1.00		U
1,2,3,4,7,8-HxCDD	1.93	1.05-1.43		1.00		JEMPC
1,2,3,6,7,8-HxCDD		1.05-1.43	0.0740	1.00		U
1,2,3,7,8,9-HxCDD	1.07	1.05-1.43		1.00		J
1,2,3,4,6,7,8-HpCDF		0.88-1.20	0.0900	1.00		U
1,2,3,4,7,8,9-HpCDF		0.88-1.20	0.144	1.00		U
1,2,3,4,6,7,8-HpCDD	1.17	0.88-1.20		1.00		
OCDF		0.76-1.02	0.0780	2.00		U
OCDD	0.84	0.76-1.02		2.00	8.80	
Homologue Group	EDL	RL		Result		
Total TCDF	0.0320	1.00	<	0.0320	U	
Total TCDD		1.00		0.305	EMPC	
Total PeCDF	0.0420	2.00	<	0.0420	U	
Total PeCDD		1.00		0.113	EMPC	
Total HxCDF	0.0520	2.00	<	0.0520	U	
Total HxCDD		2.00		1.48	EMPC	
Total HpCDF	0.144	2.00	<	0.144	U	
Total HpCDD		2.00		3.95		

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 0.24 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 0.26

Reported in pg/g

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by EPA 1613B Page 1 of 1

Lab Sample ID: MB-121013 LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: WWW Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 20:08 Instrument/Analyst: AS1/PK

#### Sample ID: MB-121013

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.77	0.65-0.89	88.8	24-169	
13C-2,3,7,8-TCDD	0.79	0.65-0.89	90.4	25-164	
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	97.4	24-185	
13C-2,3,4,7,8-PeCDF	1.58	1.32-1.78	74.6	21-178	
13C-1,2,3,7,8-PeCDD	1.59	1,32-1.78	88.6	25-181	
13C-1,2,3,4,7,8-HxCDF	0.51	0.43-0.59	77.0	26-152	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	81.9	26-123	
13C-2, 3, 4, 6, 7, 8-HxCDF	0.52	0.43-0.59	76.8	28-136	
13C-1,2,3,7,8,9-HxCDF	0.52	0.43-0.59	69.4	29-147	
13C-1,2,3,4,7,8-HxCDD	1.26	1.05-1.43	92.8	32-141	
13C-1,2,3,6,7,8-HxCDD	1.24	1.05-1.43	85.8	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.45	0.37-0.51	69.0	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.44	0.37-0.51	71.8	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.05	0.88-1.20	93.6	23-140	
13C-OCDD	0.88	0.76-1.02	79.3	17-157	
37C14-2,3,7,8-TCDD			95.2	35-197	

Reported in Percent Recovery

Lab Sample ID: OPR-121013 LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: NW Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 21:01 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

#### ANALYTICAL RESOURCES INCORPORATED

Sample ID: OPR-121013

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits	RL	Result
2,3,7,8-TCDF	0.67	0.65-0.89	1.00	24.0
2,3,7,8-TCDD	0.77	0.65-0.89	1.00	22.3
1,2,3,7,8-PeCDF	1.44	1.32-1.78	1.00	116
2,3,4,7,8-PeCDF	1.44	1.32-1.78	1.00	112
1,2,3,7,8-PeCDD	1.54	1.32-1.78	1.00	110
1,2,3,4,7,8-HxCDF	1.15	1.05-1.43	1.00	111
1,2,3,6,7,8-HxCDF	1.16	1.05-1.43	1.00	113
2,3,4,6,7,8-HxCDF	1.17	1.05-1.43	1.00	114
1,2,3,7,8,9-HxCDF	1.16	1.05-1.43	1.00	111
1,2,3,4,7,8-HxCDD	1.27	1.05-1.43	1.00	113
1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	1.00	111
1,2,3,7,8,9-HxCDD	1.25	1.05-1.43	1.00	117
1,2,3,4,6,7,8-HpCDF	0.98	0.88-1.20	1.00	155
1,2,3,4,7,8,9-HpCDF	0.98	0.88-1.20	1.00	111
1,2,3,4,6,7,8-HpCDD	1.04	0.88-1.20	1.00	113
OCDF	0.83	0.76-1.02	2.00	179
OCDD	0.90	0.76-1.02	2.00	236
Homologue Group	EDL	RL	Result	
Total TCDF		1.00	29.9 EMPC	
Total TCDD		1.00	23.2 EMPC	
Total PeCDF		2.00	247 EMPC	
Total PeCDD		1.00	112 EMPC	
Total HxCDF		2.00	455 EMPC	
Total HxCDD		2.00	343 EMPC	
Total HpCDF		2.00	267 EMPC	
Total HpCDD		2.00	117	

Reported in pg/g

Page 1 of 1

Lab Sample ID: OPR-121013 LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: May Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 21:01 Instrument/Analyst: AS1/PK

# ANALYTICAL RESOURCES INCORPORATED

Sample ID: OPR-121013

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	86.7	22-152	
13C-2,3,7,8-TCDD	0.79	0.65-0.89	86.8	20-175	
13C-1,2,3,7,8-PeCDF	1.59	1.32-1.78	98.4	21-192	
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	81.7	13-328	
13C-1,2,3,7,8-PeCDD	1.57	1.32-1.78	104	21-227	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	75.8	19-202	
13C-1,2,3,6,7,8-HxCDF	0.52	0.43-0.59	82.2	21-159	
13C-2,3,4,6,7,8-HxCDF	0.53	0.43-0.59	76.2	22-176	
13C-1,2,3,7,8,9-HxCDF	0.51	0.43-0.59	71.6	17-205	
13C-1,2,3,4,7,8-HxCDD	1.26	1.05-1.43	93.2	21-193	
13C-1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	85.8	25-163	
13C-1,2,3,4,6,7,8-HpCDF	0.45	0.37-0.51	69.4	21-158	
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	96.4	20-186	
13C-1,2,3,4,6,7,8-HpCDD	1.04	0.88-1.20	94.5	26-166	
13C-OCDD	0.88	0.76-1.02	81.4	13-198	
37C14-2,3,7,8-TCDD			90.1	31-191	

Reported in Percent Recovery

Page 1 of 1

Lab Sample ID: OPR-121013 LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: Www Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 21:01 Instrument/Analyst: AS1/PK

# Sample ID: OPR-121013

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	OPR	Spiked	Recovery	Limits
2,3,7,8-TCDF	24.0	20.0	120	75-158
2,3,7,8-TCDD	22.3	20.0	112	67-158
1,2,3,7,8-PeCDF	116	100	116	80-134
2,3,4,7,8-PeCDF	112	100	112	68-160
1,2,3,7,8-PeCDD	110	100	110	70-142
1,2,3,4,7,8-HxCDF	111	100	111	72-134
1,2,3,6,7,8-HxCDF	113	100	113	84-130
2,3,4,6,7,8-HxCDF	114	100	114	70-156
1,2,3,7,8,9-HxCDF	111	100	111	78-130
1,2,3,4,7,8-HxCDD	113	100	113	70-164
1,2,3,6,7,8-HxCDD	111	100	111	76-134
1,2,3,7,8,9-HxCDD	117	100	117	64-162
1,2,3,4,6,7,8-HpCDF	155	100	155	82-132
1,2,3,4,7,8,9-HpCDF	111	100	111	78-138
1,2,3,4,6,7,8-HpCDD	113	100	113	70-140
OCDF	179	200	89.5	63-170
OCDD	236	200	118	78-144

Reported in pg/g

ANALYTICAL RESOURCES

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 12:49 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No ANALYTICAL RESOURCES

INCORPORATED

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits EDL	RL	Result
2,3,7,8-TCDF	0.69	0.65-0.89	0.984	54.3
2,3,7,8-TCDD	0.77	0.65-0.89	0.984	5.26
1,2,3,7,8-PeCDF	1.43	1.32-1.78	0.984	41.4
2,3,4,7,8-PeCDF	1.48	1.32-1.78	0.984	43.5
1,2,3,7,8-PeCDD	1.53	1.32-1.78	0.984	34.1
1,2,3,4,7,8-HxCDF	1.19	1.05-1.43	0.984	115
1,2,3,6,7,8-HxCDF	1.16	1.05-1.43	0.984	51.7
2,3,4,6,7,8-HxCDF	1.22	1.05-1.43	0.984	69.3
1,2,3,7,8,9-HxCDF	1.15	1.05-1.43	0.984	62.9
1,2,3,4,7,8-HxCDD	1.39	1.05-1.43	0.984	24.5
1,2,3,6,7,8-HxCDD	1.24	1.05-1.43	0.984	1,020
1,2,3,7,8,9-HxCDD	1.24	1.05-1.43	0.984	98.1
1,2,3,4,6,7,8-HpCDF	1.00	0.88-1.20	0.984	1,170
1,2,3,4,7,8,9-HpCDF	0.99	0.88-1.20	0.984	81.3
1,2,3,4,6,7,8-HpCDD	1.03	0.88-1.20	9.84	12,200
OCDF	0.84	0.76-1.02	1.97	3,100
OCDD	0.89	0.76-1.02	19.7	68,300 E
Homologue Group	EDL	RL	Result	
Total TCDF		0.984	558 EMPC	 }
Total TCDD		0.984	180	
Total PeCDF		1.97	2,660 EMPC	2
Total PeCDD		0.984	862 EMPC	
Total HxCDF		1.97	6,030 EMPC	
Total HxCDD		1.97	4,840	
Total HpCDF		1.97	5,060 EMPC	
Total HpCDD		1.97	21,300	

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 359 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 359

#-Result from diluted secondary analysis.

Reported in pg/g

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 12:49 Instrument/Analyst: AS1/PK

# Sample ID: CR05-2.5

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.78	0.65-0.89	70.7	24-169	
13C-2, 3, 7, 8-TCDD	0.79	0.65-0.89	79.7	25-164	
13C-1,2,3,7,8-PeCDF	1.58	1.32-1.78	85.6	24-185	
13C-2,3,4,7,8-PeCDF	1.57	1.32-1.78	84.0	21-178	
13C-1,2,3,7,8-PeCDD	1.58	1.32-1.78	89.2	25-181	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	84.4	26-152	
13C-1,2,3,6,7,8-HxCDF	0.51	0.43-0.59	75.8	26-123	
13C-2, 3, 4, 6, 7, 8-HxCDF	0.52	0.43-0.59	80.4	28-136	
13C-1,2,3,7,8,9-HxCDF	0.53	0.43-0.59	88.5	29-147	
13C-1,2,3,4,7,8-HxCDD	1.27	1.05-1.43	87.3	32-141	
13C-1,2,3,6,7,8-HxCDD	1.25	1.05-1.43	78.6	28-130	
13C-1,2,3,4,6,7,8-HpCDF	0.49	0.37-0.51	128	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	91.4	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.05	0.88-1.20	86.9	23-140	
13C-OCDD	0.91	0.76-1.02	80.3	17-157	
37C14-2,3,7,8-TCDD			83.8	35-197	

Reported in Percent Recovery





Sample ID: CR05-2.5 DILUTION

Lab Sample ID: XQ70C LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/17/13 04:24 Instrument/Analyst: AS1/PK QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 10.2 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 10.0

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	1.09 0.90	0.88-1.20 0.76-1.02	110 109	23-140 17-157	
37C14-2,3,7,8-TCDD			94.7	35-197	

Reported in Percent Recovery

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET Dioxins/Furans by EPA 1613B

Page 1 of 1 Lab Sample ID: XQ70D

LIMS ID: 13-26911 Matrix: Sediment Data Release Authorized: Www Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 13:43 Instrument/Analyst: AS1/PK Acid Cleanup: Yes Silica-Carbon Cleanup: No

#### Sample ID: CR04-2.5

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 11.9 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00 Silica-Florisil Cleanup: Yes

Analyte	Ion Ratio	Ratio Limits EDL	RL	Result
2,3,7,8-TCDF	0.71	0.65-0.89	0.842	16.0
2,3,7,8-TCDD	0.77	0.65-0.89	0.842	3.97
1,2,3,7,8-PeCDF	1.50	1.32-1.78	0.842	12.4
2,3,4,7,8-PeCDF	1.49	1.32-1.78	0.842	15.7
1,2,3,7,8-PeCDD	1.54	1.32-1.78	0.842	18.8
1,2,3,4,7,8-HxCDF	1.14	1.05-1.43	0.842	35.9
1,2,3,6,7,8-HxCDF	1.18	1.05-1.43	0.842	18.9
2,3,4,6,7,8-HxCDF	1.35	1.05-1.43	0.842	22.2
1,2,3,7,8,9-HxCDF	1.18	1.05-1.43	0.842	14.6
1,2,3,4,7,8-HxCDD	1.17	1.05-1.43	0.842	32.5
1,2,3,6,7,8-HxCDD	1.23	1.05-1.43	0.842	350
1,2,3,7,8,9-HxCDD	1.24	1.05-1.43	0.842	48.1
1,2,3,4,6,7,8-HpCDF	0.99	0.88-1.20	0.842	919
1,2,3,4,7,8,9-HpCDF	0.95	0.88-1.20	0.842	42.8
1,2,3,4,6,7,8-HpCDD	1.03	0.88-1.20	4.21	4,070
OCDF	0.83	0.76-1.02	1.68	1,900
OCDD	0.89	0.76-1.02	8.42	23,500 E
Homologue Group	EDL	RL	Result	
Total TCDF		0.842	119 EMPC	 }
Total TCDD		0.842	32.6 EMPC	:
Total PeCDF		1.68	658 EMPC	<b>;</b>
Total PeCDD		0.842	133 EMPC	;
Total HxCDF		1.68	2,130	
Total HxCDD		1.68	1,540 EMPC	
Total HpCDF		1.68	3,910	
Total HpCDD		1.68	7,520	

Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=0, Including EMPC): 140 Total 2,3,7,8-TCDD Equivalence (WHO2005, ND=1/2 EDL, Including EMPC): 140 #-Result from diluted secondary analysis.

Reported in pg/g

Lab Sample ID: XQ70D LIMS ID: 13-26911 Matrix: Sediment Data Release Authorized: WW Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/16/13 13:43 Instrument/Analyst: AS1/PK

# Sample ID: CR04-2.5

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 11.9 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 1.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-2,3,7,8-TCDF	0.77	0.65-0.89	36.8	24-169	
13C-2,3,7,8-TCDD	0.77	0.65-0.89	58.6	25-164	
13C-1,2,3,7,8-PeCDF	1.56	1.32-1.78	70.6	24-185	
13C-2,3,4,7,8-PeCDF	1.58	1.32-1.78	65.8	21-178	
13C-1,2,3,7,8-PeCDD	1.56	1.32-1.78	73.3	25-181	
13C-1,2,3,4,7,8-HxCDF	0.52	0.43-0.59	81.8	26-152	
13C-1,2,3,6,7,8-HxCDF	0.53	0.43-0.59	70.8	26-123	
13C-2,3,4,6,7,8-HxCDF	0.52	0.43-0.59	72.1	28-136	
13C-1,2,3,7,8,9-HxCDF	0.51	0.43-0.59	69.7	29 <b>-</b> 147	
13C-1,2,3,4,7,8-HxCDD	1.26	1.05-1.43	81.4	32-141	
13C-1, 2, 3, 6, 7, 8-HxCDD	1.24	1.05-1.43	70.7	28-130	
13C-1, 2, 3, 4, 6, 7, 8-HpCDF	0.47	0.37-0.51	52.6	28-143	
13C-1,2,3,4,7,8,9-HpCDF	0.45	0.37-0.51	71.8	26-138	
13C-1,2,3,4,6,7,8-HpCDD	1.06	0.88-1.20	62.1	23-140	
13C-OCDD	0.89	0.76-1.02	61.1	17-157	
37C14-2,3,7,8-TCDD			66.3	35-197	

Reported in Percent Recovery





Page 1 of 1 Lab Sample ID: XQ70D

LIMS ID: 13-26911 Matrix: Sediment Data Release Authorized: Reported: 12/17/13

Date Extracted: 12/10/13 Date Analyzed: 12/17/13 05:18 Instrument/Analyst: AS1/PK

### Sample ID: CR04-2.5 DILUTION

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 11.9 g-dry-wt Final Extract Volume: 20 uL Dilution Factor: 5.00

Analyte	Ion Ratio	Ratio Limits	Result	Limits	Exceedance
13C-1,2,3,4,6,7,8-HpCDD 13C-OCDD	1.06 0.90	0.88-1.20 0.76-1.02	74.7 60.5	23-140 17-157	
37C14-2,3,7,8-TCDD			60.1	35-197	

Reported in Percent Recovery



ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Extraction Method: SW3546 Page 1 of 1

Lab Sample ID: MB-120913 LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: WW Reported: 12/17/13

Date Extracted: 12/09/13 Date Analyzed: 12/14/13 14:14 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

## Sample ID: MB-120913 METHOD BLANK

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: NA

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	20	< 20 U
11097-69-1	Aroclor 1254	20	< 20 U
11096-82-5	Aroclor 1260	20	< 20 U
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	88.8%
Tetrachlorometaxylene	98.0%



ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Extraction Method: SW3546 Page 1 of 1

Lab Sample ID: XQ70A LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: NNN Reported: 12/17/13

Date Extracted: 12/09/13 Date Analyzed: 12/14/13 15:15 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

## Sample ID: CR04-10cm SAMPLE

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/07/13 Date Received: 11/08/13

Sample Amount: 5.13 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 80.3%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469-21-9	Aroclor 1242	20	< 20 U
12672-29-6	Aroclor 1248	29	< 29 Y
11097-69-1	Aroclor 1254	97	< 97 Y
11096-82-5	Aroclor 1260	20	200
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	82.2%
Tetrachlorometaxylene	77.5%



ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Extraction Method: SW3546 Page 1 of 1

Lab Sample ID: XQ70B LIMS ID: 13-26909 Matrix: Sediment Data Release Authorized: MAN Reported: 12/17/13

Date Extracted: 12/09/13 Date Analyzed: 12/14/13 15:35 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

## Sample ID: CR05-10cm SAMPLE

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 5.12 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 73.1%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	20	< 20 U
53469 <b>-</b> 21-9	Aroclor 1242	20	< 20 U
12672 <b>-</b> 29-6	Aroclor 1248	29	< 29 Y
11097 <b>-</b> 69-1	Aroclor 1254	98	< 98 Y
11096-82-5	Aroclor 1260	20	180
11104-28-2	Aroclor 1221	20	< 20 U
11141-16-5	Aroclor 1232	20	< 20 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	75.5%
Tetrachlorometaxylene	77.2%

ANALYTICAL RESOURCES INCORPORATED

ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Extraction Method: SW3546 Page 1 of 1

Lab Sample ID: XQ70C LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: WW Reported: 12/17/13

Date Extracted: 12/09/13 Date Analyzed: 12/14/13 15:55 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

### Sample ID: CR05-2.5 SAMPLE

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 5.16 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 74.2%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	97	< 97 Y
11097-69-1	Aroclor 1254	19	490
11096-82-5	Aroclor 1260	19	670
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in µg/kg (ppb)

Decachlorobiphenyl	62.0%
Tetrachlorometaxylene	91.2%


ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Extraction Method: SW3546 Page 1 of 1

Lab Sample ID: XQ70D LIMS ID: 13-26911 Matrix: Sediment Data Release Authorized: WWW Reported: 12/17/13

Date Extracted: 12/09/13 Date Analyzed: 12/14/13 16:15 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

### Sample ID: CR04-2.5 SAMPLE

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Sample Amount: 5.16 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: 82.8%

CAS Number	Analyte	RL	Result
12674-11-2	Aroclor 1016	19	< 19 U
53469-21-9	Aroclor 1242	19	< 19 U
12672-29-6	Aroclor 1248	48	< 48 Y
11097-69-1	Aroclor 1254	19	440
11096-82-5	Aroclor 1260	19	730
11104-28-2	Aroclor 1221	19	< 19 U
11141-16-5	Aroclor 1232	19	< 19 U

Reported in µg/kg (ppb)

### PCB Surrogate Recovery

Decachlorobiphenyl	95.2%
Tetrachlorometaxylene	87.8%



### SW8082/PCB SOIL/SOLID/SEDIMENT SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID	DCBP % REC	DCBP LCL-UCL	TCMX % REC	TCMX LCL-UCL	TOT OUT
MB-120913	88.8%	61-114	98.0%	52-117	
LCS-120913	89.0%	61-114	98.8%	52-117	
CR04-10cm	82.2%	54-115	77.5%	57-109	
CR05-10cm	75.5%	54-115	77.2%	57-109	
CR05-2.5	62.0%	54-115	91.2%	57-109	
CR04-2.5	95.2%	54-115	87.8%	57-109	

Microwave (MARS) Control Limits PCBSMM Prep Method: SW3546 Log Number Range: 13-26908 to 13-26911



### ORGANICS ANALYSIS DATA SHEET PSDDA PCB by GC/ECD Page 1 of 1

Lab Sample ID: LCS-120913 LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: WWW

Reported: 12/17/13

Date Extracted: 12/09/13 Date Analyzed: 12/14/13 14:34 Instrument/Analyst: ECD5/JGR GPC Cleanup: No Sulfur Cleanup: Yes Acid Cleanup: Yes Florisil Cleanup: No

### Sample ID: LCS-120913 LAB CONTROL

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 5.00 g-dry-wt Final Extract Volume: 5.00 mL Dilution Factor: 1.00 Silica Gel: No

Percent Moisture: NA

Analyte	Lab Control	Spike Added	Recovery
Aroclor 1016	470	500	94.0%
Aroclor 1260	412	500	82.4%

### PCB Surrogate Recovery

Decachlorobiphenyl	89.0%
Tetrachlorometaxylene	98.8%

Results reported in µg/kg (ppb)



### ORGANICS ANALYSIS DATA SHEET TOTAL DIESEL RANGE HYDROCARBONS

NWTPHD by GC/FID Extraction Method: SW3546 Page 1 of 1 QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01

Matrix: Sediment

Date Received: 11/08/13

Data Release Authorized: MW Reported: 12/16/13

ARI ID	Sample ID	Extraction Date	Analysis Date	EFV DL	Range/Surrogate	LOQ	Result
MB-121013 13-26908	Method Blank HC ID:	12/10/13	12/12/13 FID3B	10.0 1.0	Diesel Range Motor Oil Range o-Terphenyl	50 100	< 50 U < 100 U 89.8%
XQ70A 13-26908	CR04-10cm HC ID: DRO/MOTOR OI	12/10/13 L	12/12/13 FID3B	10.0 1.0	<b>Diesel Range Motor Oil Range</b> o-Terphenyl	250 500	<b>2,400</b> <b>7,400</b> 76.4%
XQ70B 13-26909	CR05-10cm HC ID: DRO/MOTOR OI	12/10/13 L	12/12/13 FID3B	10.0 1.0	<b>Diesel Range Motor Oil Range</b> o-Terphenyl	180 370	<b>1,200</b> <b>4,800</b> 85.3%
XQ70C 13-26910	CR05-2.5 HC ID: DRO/MOTOR OI	12/10/13 L	12/12/13 FID3B	10.0 1.0	<b>Diesel Range Motor Oil Range</b> o-Terphenyl	190 390	<b>3,200</b> 13,000 76.2%
XQ70D 13-26911	CR04-2.5 HC ID: DRO/MOTOR OI	12/10/13 L	12/12/13 FID3B	10.0 1.0	<b>Diesel Range Motor Oil Range</b> o-Terphenyl	290 580	<b>3,200</b> <b>10,000</b> 74.7%

Reported in mg/kg (ppm)

EFV-Effective Final Volume in mL. DL-Dilution of extract prior to analysis. LOQ-Limit of Quantitation

Diesel range quantitation on total peaks in the range from C12 to C24. Motor Oil range quantitation on total peaks in the range from C24 to C38. HC ID: DRO/RRO indicates results of organics or additional hydrocarbons in ranges are not identifiable.



### TPHD SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01

Client ID OTER		TOT OUT
101010000	00.00	0
121013MBS	89.8%	0
121013LCS	83.18	0
CR04-10cm	76.48	0
CR05-10cm	85.3%	0
CR05-2.5	76.2%	0
CR04-2.5	74.7%	0

LCS/MB	LIMITS	QC LIMITS

(OTER) = o-Terphenyl

(50-150) (50-150)

Prep Method: SW3546 Log Number Range: 13-26908 to 13-26911



### ORGANICS ANALYSIS DATA SHEET NWTPHD by GC/FID Page 1 of 1

Sample ID: LCS-121013 LAB CONTROL

Lab Sample ID: LCS-121013 LIMS ID: 13-26908 Matrix: Sediment Data Release Authorized: MWV Reported: 12/16/13

Date Extracted: 12/10/13 Date Analyzed: 12/12/13 13:47 Instrument/Analyst: FID3B/JLW QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Sample Amount: 10.0 g-dry-wt Final Extract Volume: 10 mL Dilution Factor: 1.00

Range	Lab Control	Spike Added	Recovery		
Diesel	1,170	1,500	78.0%		

### TPHD Surrogate Recovery

o-Terphenyl

83.1%

Results reported in mg/kg



### TOTAL DIESEL RANGE HYDROCARBONS-EXTRACTION REPORT

		ARI Job: Project:	XQ70 GHHSA 0863.01.01					
ARI ID		Client	ID	Client Amt	Final Vol	Basis	Prep Date	

13-26908-121013MB1	Method Blank	10.0 g	10.0 mL	-	12/10/13
13-26908-121013LCS1	Lab Control	10.0 g	10.0 mL	-	12/10/13
13-26908-XQ70A	CR04-10cm	1.98 g	10.0 mL	D	12/10/13
13-26909 <b>-</b> XQ70B	CR05-10cm	2.70 g	10.0 mL	D	12/10/13
13-26910 <b>-</b> XQ70C	CR05-2.5	2.59 g	10.0 mL	D	12/10/13
13-26911-XQ70D	CR04-2.5	1.73 g	10.0 mL	D	12/10/13

	Y (x10^5)	1			
	<pre></pre>	6	NeS	Cli	Data Date
	-C8 (1.621)	L MD	Sample	Client	ο ω •• ፲:
N-		Column phase: RTX-1	Info: XQ70HBS1	ID: XQ70MBS1	Data File: /chem3/fid3b.i/20131212.b/1212b011.d Date : 12-DEC-2013 13:22
		10 ++ 70	ž	XQ70	FC-2
		X-X	170MB	MBS1	M3/f 013
ω-			S1		1d36 13:2
.				i	2 1/2
	-C10 (3,743)				0131
-4					.212.
.					.b/12
	-C12 (4,704)				21260
					211.
	-C14 (5.392)				Ω.
თ-	-C16 (5,985)				
	-C18 (6.593)				
	-C18 (6.593) o-terph (6.769) -C20 (7.228) -C22 (7.867) -C24 (8.491) -C25 (8.780) -C26 (9.077)				
-1-	-C20 (7,228)				
Η. 11 0 0-	-C22 (7,867)				
. 00		8	ş	Ļ	
	-C24 (8,491)	lum	ě Pů	istru	
	-C25 (8,780)	e i	Operator:	Imen	
-ە	-C26 (9,077)	Column diameter:	Ē	÷÷	
	-C28 (9,659)	₽7 **		<pre>Instrument: fid3b.i</pre>	
5-		0,25		* •	
°.	-Triacon Surr (10,273)	জ			
<u> </u> -	-C32 (10,900)				
<u>م</u>					
	-C34 (11,560)				
12-					
	-C36 (12,219)				
	-Filter Peak (12,485)				
ដ-	-C38 (12,854)				
	-C40 (13,475)				g
4- 					Page 1
•					P P
	te, an general normal starts,	en en	a ca	igamana someog	걞
<u> </u>		a a sta i	AF 16 18 - 18 18	1000 A	•





- 1. Baseline correction
- 3. Peak not found
- 5. Skimmed surrogate

Analyst: <u>Ju</u>

Date: 100





- 1. Baseline correction
- 3. Peak not found
- (5) Skimmed surrogate

Analyst: JU Date: 12/0/12





1. Baseline correction

3. Peak not found

(5) Skimmed surrogate

Analyst: ______

Date: 100





- 1. Baseline correction
- 3. Peak not found
- (B) Skimmed surrogate

Analyst: <u>50</u>

Date: 12/15/19





- 1. Baseline correction
- 3. Peak not found
- (5) Skimmed surrogate

Analyst: ______

Date: 12/13/12



Page 1 of 1

Sample ID: CR05-2.5 SAMPLE

Lab Sample ID: XQ70C LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: Reported: 12/13/13 QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Percent Total Solids: 16.0%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
CLP	12/10/13	7471A	12/12/13	7439-97-6	Mercury	0.1	0.5	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation



Page 1 of 1

Sample ID: CR04-2.5 SAMPLE

Lab Sample ID: XQ70D LIMS ID: 13-26911 Matrix: Sediment Data Release Authorized: Reported: 12/13/13

gr

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: 11/08/13 Date Received: 11/08/13

Percent Total Solids: 15.5%

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
CLP	12/10/13	7471A	12/12/13	7439-97-6	Mercury	0.1	0.5	

U-Analyte undetected at given LOQ LOQ-Limit of Quantitation



Page 1 of 1

Sample ID: METHOD BLANK

Lab Sample ID: XQ70MB LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized Reported: 12/13/13 QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

Percent Total Solids: NÀ

Prep Meth	Prep Date	Analysis Method	Analysis Date	CAS Number	Analyte	LOQ	mg/kg-dry	Q
CLP	12/10/13	7471A	12/12/13	7439-97-6	Mercury	0.02	0.02	U
U-Ana	lyte undete	cted at gi	lven LOQ					

LOQ-Limit of Quantitation



Page 1 of 1

Lab Sample ID: XQ70LCS LIMS ID: 13-26910 Matrix: Sediment Data Release Authorized: Reported: 12/13/13 Sample ID: LAB CONTROL

QC Report No: XQ70-Maul Foster & Alongi Project: GHHSA 0863.01.01 Date Sampled: NA Date Received: NA

### BLANK SPIKE QUALITY CONTROL REPORT

Analyte	Analysis Method	Spike Found	Spike Added	% Recovery	Q
Mercury	7471A	0.53	0.50	106%	

Reported in mg/kg-dry

N-Control limit not met NA-Not Applicable, Analyte Not Spiked Control Limits: 80-120%

# APPENDIX C DATA VALIDATION MEMORANDUM



# DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

### PROJECT NO. 0863.01.03 | NOVEMBER 27, 2013 | GRAYS HARBOR HISTORICAL SEAPORT AUTHORITY

This report reviews the analytical results for sediment samples collected by the Maul Foster & Alongi, Inc. (MFA) project team on the property located at 500 North Custer Street in Aberdeen, Washington. The samples were collected in November 2013.

Analytical Resources, Incorporated (ARI) performed the analyses. ARI report XN64_XO00_GHHSA_rpt, which contains reports XN64 and XO00, and report XQ70_MFA_GHHSA_rpt, which contains XQ70, were reviewed. Three of the sediment samples were processed by ARI to obtain pore water and were reported in XO00. Follow-up analyses were performed on XN64 samples and reported in XQ70. The analyses performed and samples analyzed are listed below. Some analyses may not have been performed on all samples.

Analysis	Reference
Ammonia Nitrogen	USEPA 350.1 Modified
Diesel and Motor Oil	NWTPH-Dx
Dioxins/Furans	USEPA 1613B
Gasoline	NWTPH-G
Grain Size	PSEP 1986
Polychlorinated Biphenyls	USEPA 8082A
Pore Water Conductivity	USEPA 120.1
Pore Water Salinity	SM 2520B
Preserved and Total Solids	SM 2540G
Semivolatile Organic Compounds	USEPA 8270D/8270D SIM
Total Mercury	USEPA 7471A
Total Metals	USEPA 6010C
TOC	Plumb
Total Sulfides	USEPA 376.2
Total Volatile Solids	SM 2540E

NWTPH = Northwest Total Petroleum Hydrocarbons.

Plumb = Procedures for handling and chemical analysis of sediment and water samples (Plumb, 1981).

PSEP = Puget Sound Estuary Protocols.

SIM = selective ion monitoring.

SM = Standard Methods for the Examination of Water and Wastewater.

TOC = total organic carbon.

USEPA = U.S. Environmental Protection Agency.

Samples Analyzed				
SDG XN64	SDG XO00	SDG XQ70		
CR01-10cm	CR01-10cm (pore water)	CR04-10cm		
CR02-10cm	CR02-10cm (pore water)	CR05-10cm		
CR03-10cm	CR03-10cm (pore water)	CR05-2.5		
CR04-10cm	-	CR04-2.5		
CR05-10cm	-	-		
CR06-10cm	-	-		
CR04-5	-	-		
CR06-2.5	-	-		

SDG = sample delivery group.

# DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of USEPA procedures (USEPA, 2008, 2010, 2011), appropriate laboratory and method-specific guidelines (ARI, 2013; USEPA, 1986), and the dioxin rules memorandum developed by MFA and approved by the Washington State Department of Ecology (MFA, 2012).

Data validation procedures were modified, as appropriate, to accommodate quality control (QC) requirements for methods not specifically addressed by the functional guidelines (e.g., total volatile solids).

Any result reported as exceeding the calibration range of the instrument was qualified as an estimate and assigned a "J" flag.

USEPA Method 1613B results reported as estimated maximum potential concentrations (EMPCs) were qualified by the reviewer with "U" (non-detect) at the reported EMPC value.

In report XQ70, the USEPA Method 1613B OCDD results for samples CR05-2.5 and CR04-2.5 exceeded the instrument calibration range. National Functional Guidelines for dioxin/furan data review state that laboratories are not required to take action when OCDD exceeds instrument calibration range (USEPA, 2011) The OCDD results were qualified "J" as estimated.

All data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

# HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

# Holding Times

In report XN64, the USEPA Method 8270D results for phenol, pentachlorophenol, and butylbenzylphthalate from samples CR04-10cm, CR04-5, CR05-10cm, and CR06-10cm were extracted and analyzed 6 six days after the recommended 14-day holding time. All detected results have been qualified "J" as estimated and all non-detect results have been qualified "UJ" as estimated.

In report XQ70, samples CR04-10cm, CR05-10cm, CR05-2.5, and CR04-2.5 were extracted for analysis by NWTPH-Dx, USEPA Method 8082A, and USEPA Method 8270D/8270D SIM after the recommended 14 day holding time. Samples CR05-2.5 and CR04-2.5 were prepared and analyzed for USEPA Method 7471A total mercury after the recommended 28-day holding time. All detected results have been qualified "J" as estimated and all non-detect results have been qualified "U" as estimated.

The remaining extractions and analyses were performed within the recommended holding time criteria.

# Preservation and Sample Storage

The samples were preserved and stored appropriately.

# BLANKS

# Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

If an analyte was detected in a sample and in the associated method blank at less than ten times the method blank concentration, the sample result was qualified. USEPA Method 1613B sample results were qualified if sample concentrations were less than five times the associated method blank concentration. Reporting limits were elevated to the concentrations detected in the samples, and results were qualified as not detected "U" at the elevated method reporting limit (MRL).

For USEPA Method 1613B, if an analyte was detected in a sample and in the associated method blank below the reporting limit but above the estimated detection limit (EDL), sample detections below the level found in the method blank were qualified as "U" at the reporting limit.

In report XN64 and XQ70, the USEPA Method 1613B method blanks had detections for some analytes below the MRL and some detections for 1,2,3,4,6,7,8-HpCDD and OCDD above the MRL. All associated sample results were greater than five times the method blank concentrations; thus, no results were qualified.

In report XN64, the USEPA Method 376.2 sulfide method blank prepared on November 12, 2013, had a total sulfide detection of 0.17 milligram per kilogram (mg/kg). All associated sample detections were greater than ten times the method blank detection; thus, no results were qualified.

All remaining laboratory method blanks were non-detect.

Trip Blanks

Trip blanks were not submitted for this sampling event, as volatile organic compounds were not analyzed.

### Equipment Rinsate Blanks

Equipment rinsate blanks were not collected for this sampling event. Equipment was decontaminated after each sample was collected, in accordance with the sediment sampling and analysis plan (MFA, 2013).

# SURROGATE RECOVERY RESULTS

When appropriate, individual samples were spiked with surrogate compounds to evaluate laboratory performance.

In report XN64, NWTPH-Gx surrogate recoveries for sample CR06-2.5 exceeded the lower percent recovery limits for both trifluorotoluene and bromobenzene. The associated result was qualified by the reviewer as follows:

Sample	Component	Original Result (mg/kg)	Qualified Result (mg/kg)
CR06-2.5	Gasoline	54 U	54 UJ

The reviewer took no action based on minor surrogate outliers or surrogate percent recoveries that were outside acceptance limits because of dilutions necessary to quantify high concentrations of target analytes present in the samples. The laboratory appropriately documented and qualified surrogate outliers. Associated batch quality assurance and QC for samples with surrogate outliers were within acceptance limits.

All remaining surrogate recoveries were within acceptance limits.

# LABELED ANALOG STANDARD RECOVERY RESULTS

All USEPA Method 1613B Modified samples were spiked with C13 labeled analog standards to quantify the recovery of individual target compounds. All C13 labeled analog standard recoveries were within acceptance limits.

# MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency.

In report XN64, the USEPA Method 7471A MS exceeded the upper percent recovery acceptance limit for total mercury. The exceedance was minor and the laboratory control sample (LCS) had acceptable recovery; thus, no results were qualified.

In report XN64, the case narrative states that the USEPA 376.2 sulfide matrix duplicate exceeded relative percent difference (RPD) acceptance criteria. The matrix duplicate RPD results were not included in the QC report. The remaining batch QC had acceptable recoveries and the laboratory stated that sample heterogeneity likely was the cause of the RPD exceedance. No results were qualified.

In report XN64, the case narrative states that the Method Plumb (1981) MS had low percent recovery for TOC and that a re-prepared MS also had low recovery. The LCS had acceptable recovery, which indicates matrix interference. The following results were qualified "J" as estimated:

Report	Sample	Component	Original Result (%)	Qualified Result (%)
XN64	CR06-10cm	TOC	35.6	35.6 J
XN64	CR04-10cm	TOC	31.4	31.4 J
XN64	CR05-10cm	TOC	13.6	13.6 J
XN64	CR06-2.5	TOC	49.5	49.5 J
XN64	CR04-5	TOC	16.5	16.5 J
XN64	CR01-10cm	TOC	2.06	2.06 J
XN64	CR02-10cm	TOC	3.21	3.21 J
XN64	CR03-10cm	TOC	2.91	2.91 J

All recoveries were within acceptance limits for percent recovery and RPDs.

# LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate RPDs for USEPA Method 6010C were assessed against the RPD acceptance limit of 35 percent for soil laboratory duplicates, as presented in the National Functional Guidelines for inorganic data review (USEPA, 2010). Minor laboratory duplicate RPD exceedances and exceedances for results near the reporting limit were not qualified by the reviewer.

In report XN64, the USEPA Method 6010C laboratory duplicate exceeded RPD acceptance criteria for total chromium, total copper, and total mercury. The exceedance for total mercury was minor and the associated results were not qualified. The associated batch QC had acceptable recoveries; however, the total chromium and total copper RPD exceedances were significant. The following results were qualified:

Report	Sample	Component	Original Result (mg/kg)	Qualified Result (mg/kg)
XN64	CR06-2.5	Total Chromium	26	26 J
XN64	CR06-2.5	Total Copper	96	96 J
XN64	CR01-10cm	Total Chromium	40	40 J

Report	Sample	Component	Original Result (mg/kg)	Qualified Result (mg/kg)
XN64	CR01-10cm	Total Copper	58	58 J
XN64	CR02-10cm	Total Chromium	38.5	38.5 J
XN64	CR02-10cm	Total Copper	56.3	56.3 J
XN64	CR03-10cm	Total Chromium	48	48 J
XN64	CR03-10cm	Total Copper	65.4	65.4 J

All remaining laboratory duplicate RPDs were within acceptance limits.

# LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/laboratory control sample duplicate (LCSD) is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

In report XN64, the USEPA Method 8270D SIM LCS exceeded the instrument calibration range for pentachlorophenol. The LCS percent recovery was within acceptance limits, and the associated sample detections were already qualified as estimated because they were below the MRL; thus no results were qualified by the reviewer.

All remaining LCS/LCSD analytes were within acceptance limits for percent recovery and RPD.

# FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicate samples were submitted for analysis.

# CONTINUING CALIBRATION VERIFICATION RESULTS

Continuing calibration verification (CCV) results are used to demonstrate instrument precision and accuracy through the end of the sample batch.

National Functional Guidelines for low/medium volatile and semivolatile data review (USEPA, 2008) state that results associated with closing CCV percent drift exceedances between 50 percent and -50 percent do not require qualification. However, USEPA Method 8270D states that when CCV percent drift acceptance criteria are met for at least 80 percent of the compounds, non-detects may be reported for compounds that exceed acceptance limits if the laboratory demonstrates that quantitation limit sensitivity can still be achieved. Detected compounds associated with CCV percent drift exceedances may be reported as estimated values.

In report XN64, the USEPA Method 8270D SIM CCV exceeded percent drift criteria for benzyl alcohol and butylbenzylphthalate. In report XQ70, the USEPA Method 8270D and

8270D SIM CCVs also exceeded percent drift criteria for several compounds. Associated sample detections above the MRL were qualified with "J" as estimated. USPEA Method 8270D results associated with report XQ70 were already qualified "J" due to holding time exceedances, as noted above.

Report	Sample	Component	Original Result (µg/kg)	Qualified Result (µg/kg)
XN64	CR02-10cm	Benzyl Alcohol	43 Q	43 J
XN64	CR03-10cm	Benzyl Alcohol	43 Q	43 J

µg/kg = micrograms per kilogram.

Based on available information, all other CCVs were within acceptance limits for percent recovery.

# **REPORTING LIMITS**

ARI used routine reporting limits for non-detect results, except when samples required dilutions because of limited sample or extract volume, high analyte concentrations, and/or matrix interferences.

Detections below the MRL were reported for some analyses: results for USEPA Method 1613B were reported to EDLs, and results for USEPA Methods 8082A, 8270D, and 8270D SIM were reported to method detection limits. Some NWTPH-Gx, USEPA Method 8082A, and USEPA Method 8270D reporting limits were raised because of chromatographic interference or matrix interference. All samples in report XQ70 were diluted 1:5 for USEPA Method 8270D/8270D SIM analyses due to matrix interference.

# DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

In report XN64, the case narrative states that the USEPA Method 7471A MS exceeded the lower acceptance limit for total mercury; however, the MS exceeded the upper acceptance limit.

In report XO00, conductivity was not indicated on the chain of custody but was analyzed for pore water extracts of samples CR01-10cm, CR02-10cm, and CR03-10cm.

All samples submitted for pore water extraction (CR01-10cm, CR02-10cm, CR03-10cm, and CR04-5) produced insufficient volume for USEPA Method 376.2 sulfides analysis. The volume of extracted pore water was sufficient to perform the remaining analyses.

No additional issues were found.

- ARI. 2013. Quality assurance manual. Analytical Resources, Incorporated. Tukwila, Washington.
- MFA. 2012. Dioxin and furan analysis, data validation, and TEQ calculation rules. Maul Foster & Alongi, Inc. December.
- MFA. 2013. Sediment sampling and analysis plan. Washington State Department of Natural Resources aquatic lands lease no. 22-A02150. Maul Foster & Alongi, Inc. September 12.
- Plumb, R. H., Jr. 1981. Procedures for handling and chemical analysis of sediment and water samples. Technical report EPA/CE-81-1. U.S. Army Engineering Waterways Experiment Station, Vicksburg, MS.
- USEPA. 1986. Test methods for evaluating solid waste: physical/chemical methods. EPA-530/SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. September (revision 6, February 2007).
- USEPA. 2008. USEPA contract laboratory program, national functional guidelines for organics data review. EPA 540/R-08/01. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. June.
- USEPA. 2010. USEPA contract laboratory program national functional guidelines for inorganic superfund data review. EPA 540/R-10/011. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.
- USEPA. 2011. USEPA contract laboratory program, national functional guidelines for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) data review. EPA-540-R-11-016. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. September.