Work Plan Interim Action (Source Removal)

Roby's Station Buena, Washington

for Washington State Department of Ecology

January 11, 2012

GEOENGINEERS

523 East Second Avenue Spokane, Washington 99202 509.363.3125

Work Plan Interim Action (Source Removal)

Roby's Station Buena, Washington

File No. 0504-060-02

January 11, 2012

Prepared for:

Washington Department of Ecology 15 West Yakima Avenue, Suite 200 Yakima, Washington 98902

Attention: Mary Monahan

Prepared by:

GeoEngineers, Inc. 523 East Second Avenue Spokane, Washington 99202 509.363.3125

Dave R. Lauder, PE Senior Engineer

Bruce D. Williams Principal

DRL:BDW:tlm

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Copyright© 2012 by GeoEngineers, Inc. All rights reserved.

Table of Contents

1.0	INTRODUCTION	1
2.0	DESCRIPTION OF INTERIM ACTION	1
2.2	. General	.1
	2. Purpose	
2.3	3. General Requirements	.2
2.4	I. Relationship to Cleanup Action	.2
3.0	SITE CONDITIONS	2
3.	L. Property Description	2
	 Site History and Previous Site Characterization Activities	
	3. Subsurface Conditions	
	3.3.1. Geology Review	
	3.3.2. Soil Conditions	.4
	3.3.3. Groundwater Conditions	.5
4.0	CHEMICAL ANALYTICAL TESTING RESULTS	5
4.1	. General	5
	2. Soil Analytical Results	
	3. Groundwater Analytical Results	
	I. Summary	
5.0	ALTERNATIVES	8
6.0	SCHEDULE	8
7.0		
7.2	L. General	8
	2. Notifications and Permits	
	 Health and Safety Plan and Work Plan Preparation 	
7.4	Mobilization and Demobilization	10
7.5	5. Temporary Erosion and Sediment Control	10
7.6	5. Utility Locating	10
7.7	7. Work Zones and Soil Stockpile Locations	10
	3. Excavation	
	9. Dust Control During Earthwork	
	LO.Underground Storage Tank Removal	
	L1.Confirmation Sampling	
	2.Disposal of Contaminated Soil	
1	.3.Final Grading Plan	
	7.13.2. Imported Fill Specifications	
	7.13.2. Imported in Specifications	
8.0	· ·	
	L. General	
	2. Protection Monitoring	
0.2		-0

9.0	REPOR	RTING	14
8.4	Quality	y Assurance Project Plan	14
8.3.	Confir	mation Sampling	14
	8.2.2.	Monitoring of Equipment Decontamination Area	14
	8.2.1.	General	13

LIST OF TABLES

- Table 1. Groundwater Elevations
- Table 2. Summary of Chemical Analytical Results from Area Monitoring Wells Groundwater
- Table 3. Summary of Chemical Analytical Results from Direct-Push Explorations Groundwater (TPH, Lead and VOCs)
- Table 4. Summary of Chemical Analytical Results from Direct-Push Explorations Groundwater (Semivolatiles)
- Table 5. Summary of Chemical Analytical Results from Direct-Push Explorations Soil (TPH, Lead and VOCs)
- Table 6. Summary of Chemical Analytical Results from Direct-Push Explorations Soil (Semivolatiles)

LIST OF FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Plan
- Figure 3. Groundwater Elevations, July 25 and 26, 2010
- Figure 4. Excavation Plan
- Figure 5. Cross Section A-A'

APPENDICES

Appendix A. Field Procedures and Logs of Borings

Table A-1. – Summary of Field Groundwater Quality Parameters

Figure A-1 – Key to Exploration Logs

Figures A-2 through A-19 – Logs of Direct-Push Borings

Appendix B. Laboratory Reports

1.0 INTRODUCTION

This document presents an Interim Action Work Plan (IAWP), which describes interim remedial actions related to source removal at the Roby's Station property in Buena, Washington. The approximate location of Roby's Station property (herein referred to as the "site") is shown in the Vicinity Map, Figure 1. This Work Plan is submitted to the Washington State Department of Ecology (Ecology) by GeoEngineers, Inc. (GeoEngineers) pursuant to the Scope of Work and Fee Estimate for this project.

Components of this document include: 1) a description of the planned interim action; 2) a summary of site history and current site conditions; 3) results of analytical testing conducted on site soil and groundwater samples, including results from the recent data gap investigation completed by GeoEngineers for purposes of additional site characterization; 4) a brief discussion of alternatives evaluated as part of the proposed interim action; 5) a brief schedule of proposed activities associated with the interim action; and 6) an interim cleanup action approach.

2.0 DESCRIPTION OF INTERIM ACTION

2.1. General

Major elements of the proposed interim action for cleanup of shallow soil include:

- Removal and off-site disposal of a former waste oil underground storage tank (UST);
- Excavation of shallow soil with petroleum hydrocarbon concentrations greater than Model Toxics Control Act (MTCA) Method A Cleanup levels (unrestricted land use) within the site;
- Excavation of isolated areas of soil contaminated with lead at concentrations greater than MTCA Method A cleanup levels (unrestricted land use) within the site;
- Possible excavation of isolated areas of soil contaminated with polychlorinated biphenyls (PCBs) at concentrations greater than MTCA Method A cleanup levels (unrestricted land use) within the site;
- Off-site disposal of contaminated soil in a landfill facility(s) permitted to accept site contaminated waste; and
- Backfilling excavations with imported soil.

2.2. Purpose

The purpose of the IAWP is to remove the existing UST and identified contaminated shallow (vadose zone) soil at the site. The objective of the IAWP is to:

- Reduce the potential for dermal contact with or ingestion of contaminated soil; and
- Reduce the potential for migration of contaminants (principally petroleum hydrocarbons) from soil to groundwater, particularly in advance of future groundwater cleanup activities.

This report is intended to provide information and rationale for the preferred interim cleanup action for source removal. As described in the subsequent **Site Background** section of this Work Plan, site

soil and groundwater is contaminated with petroleum hydrocarbons. Isolated areas of lead and trichloroethene (TCE) contamination also have been identified. Although PCBs have not been detected in site soil samples, PCBs were detected in the waste oil removed from the UST. The proposed interim action alternative for source removal includes excavation and off-site disposal of petroleum-, lead- and TCE-contaminated soil.

2.3. General Requirements

The intent of the IAWP is to achieve cleanup standards for a portion of the site, i.e. cleanup of vadose zone soil. It is possible, depending on conditions encountered during the cleanup, that soil located below the water table might be excavated and disposed off-site. However, the intent of the IAWP is not to excavate and dispose of all contaminated soil.

Based on the current information, MTCA Method A cleanup levels (unrestricted land use) will be the target cleanup levels for contaminants in soil.

2.4. Relationship to Cleanup Action

Currently, the cleanup action for treatment of petroleum hydrocarbon-contaminated groundwater and saturated soil has not been determined. However, future interim actions related to treatment of groundwater include conducting a pilot test utilizing in-situ chemical oxidation (ISCO) methods to evaluate the effectiveness of that alternative. Utilizing excavation and off-site disposal of vadose zone contaminated soil should not preclude the use of this proposed groundwater cleanup method, or other potential soil and groundwater cleanup alternatives.

3.0 SITE CONDITIONS

3.1. Property Description

The site is located near the intersection of Buena Road and Burr Street. The Roby's Station property measures about 0.47 acres, and is bounded on the northeast by Buena Road and a low income housing complex, on the south by a fire station, on the west by the post office, and on the east by Burr Street. The north portion of the site is paved with asphalt concrete. The remainder of the site is covered with grass and trees, except for the central portion of the site, where remnants of a mobile home pad remain. There also is evidence of man-made debris and fill on the site. The former gasoline station building was demolished and removed from the site in October 2011. The site is relatively level, with a slight topographic depression near the south portion of the site.

3.2. Site History and Previous Site Characterization Activities

The site previously operated as Roby's Services. The exact dates of operation were not available. However, the former fuel USTs were reportedly closed in place in 1996. Petroleum-contaminated soil and groundwater have been detected on and downgradient (south-southeast) of the site during previous site remedial and investigation activities. The approximate locations of site features including the former site USTs are shown on the Site Plan, Figure 2.

Petroleum contamination was identified in 1993 at several sites within the town of Buena, including the Roby's Station site, during installation of underground sewer lines.

- Site assessment activities conducted by Ecology between 1997 and 1999 included installing twelve monitoring wells (MW-1 through MW-12) in the town of Buena. Four monitoring wells (MW-5 through MW-8) are located near the site.
- Petroleum-contaminated soil was identified during removal of five USTs and associated product lines between the USTs and fuel dispensers at the site in 2001. Analytical laboratory test results indicated site soil near the USTs was contaminated with gasoline-range petroleum hydrocarbons (GRPH), diesel-range petroleum hydrocarbons (DRPH), and benzene, toluene, ethylbenzene and xylene (BTEX) compounds greater than MTCA Method A cleanup levels. The contaminated soil was placed back within the excavation following removal of the USTs. Additional fill was imported to backfill the excavations.
- GeoEngineers performed site characterization activities at the site in 2010, including installing a groundwater monitoring well (MW-15) south (downgradient) of the site. Results of laboratory analytical testing of groundwater samples obtained from monitoring well MW-15 in July 2010, indicated groundwater was contaminated with DRPH at concentrations greater than MTCA Method A cleanup levels. Analytical test results from groundwater samples collected from MW-15 during subsequent groundwater sampling events performed by Ecology in December 2010, March 2011 and June 2011 also indicated groundwater underlying the site was contaminated with GRPH and benzene at concentrations greater than MTCA Method A cleanup levels. DRPH and oil-range petroleum hydrocarbons (ORPH) also have been detected in groundwater samples collected from MW-15. Based on the groundwater sampling event in July 2010, groundwater flow direction appeared to be in a generally south-southeast direction under a gradient of about 0.005 feet per foot (ft/ft).
- The existing gasoline station structure on the site was demolished in October 2011. As part of demolition activities, an on-site domestic water well also was abandoned. An underground waste oil tank (approximately 300 gallons) was identified on the site. The waste oil tank contents were removed and properly disposed off-site during demolition activities. Screening of the waste oil tank contents by Ecology indicated the waste oil contained PCBs and leachable lead. Qualitative field screening conducted by Ecology also indicated the waste oil tank contents contained chlorinated compounds. Decommissioning of the waste oil tank will be included as part of the Interim Action activities. A drywell formerly was located within the structure. Ecology had the contents of the drywell vacuumed on previous occasions. However, the drywell refilled with apparent petroleum-contaminated water and debris after each cleaning attempt. The drywell was removed as part of demolition activities. Removal of concrete floor slabs during demolition revealed stained soil. A hydraulic lift was also removed as part of the building demolition activities.

3.3. Subsurface Conditions

3.3.1. Geology Review

The Washington Department of Natural Resources, "Geologic Map of the East Half of the Toppenish 1:100,000 Quadrangle, Washington" indicates that three geologic units are mapped near the site including: Quaternary Age Alluvium (Qa), Quaternary Age Terrace deposits (Qt) and Quaternary Age Outburst flood deposits, silt and sand (Qfs). Alluvium and Terrace deposits consist of silt, sand and gravel, deposited directly by the Yakima River. Alluvium is mapped in valley

bottoms, while Terrace deposits are mapped along the margins of the valley bottom, extending about 15 to 30 feet above the current Yakima River flood plain. Outburst flood deposits consist of rhythmically bedded and graded slackwater (low-energy) deposits of silt, minor sand and gravel, deposited during outburst floods from glacial Lake Missoula.

3.3.2. Soil Conditions

3.3.2.1. GENERAL

Soil conditions at the site were interpreted based on review of previous monitoring wells installed by Ecology, previous direct-push borings and monitoring wells advanced/installed by GeoEngineers in 2010, and the 18 direct-push borings (DP-20 through DP-37) that were advanced as part of the data gap investigation conducted between November 14 and 16, 2011. Note that off-site direct-push borings DP-1 through DP-8 were advanced as part of site characterization activities in 2010, and direct-push borings DP-9 through DP-19 were advanced as part of the data gap investigation for the nearby Gold Nugget Market site, also located in Buena.

The approximate locations of the borings and monitoring wells are shown on Figure 2. Direct-push borings DP-20 through DP-37 were advanced to depths in the range of about 5 to 10 feet below current site grade using a truck-mounted Geoprobe® 5400 drill rig. Soil samples from the direct-push borings were obtained at discrete intervals for field-screening of petroleum hydrocarbons using photoionization detector (PID) and water sheen methods. Select soil samples also were collected and submitted to an analytical laboratory. Groundwater samples also were collected from selected borings and submitted to an analytical laboratory. A detailed description of the field exploration program and logs of the borings and monitoring wells are presented in Appendix A.

3.3.2.2. UPPER GRAVEL

The site is underlain by an upper layer generally consisting of fine to coarse gravel with sand and silt. The upper layer of gravel extended to depths in the range of about 6 inches to about 5 feet below current site grade at the locations of the direct-push borings. It is possible that at least portions of the upper gravel layer consist of imported fill.

Results of field-screening indicated slight to moderate sheen from soil samples collected from DP-23 within the upper gravel layer. A slight sheen also was observed during field-screening on soil samples collected from direct-push borings DP-27, DP-35 and DP-36 within the upper gravel layer.

3.3.2.3. SILT AND SILTY SAND

Below the upper gravel, soil conditions at the locations of the direct-push borings and monitoring wells generally consist of silt and/or silty fine sand, which extends to depths in the range of about 5 to at least 10 feet below current site grade. Occasional organic matter also was observed in soil samples obtained from the direct-push borings from within the silt and silty sand layer.

Results of field-screening indicated slight to moderate sheens and/or hydrocarbon odors from soil samples collected from borings DP-20 through DP-35 within the silt and silty sand layer.

3.3.2.4. LOWER GRAVEL

Below the silt and silty sand, soil conditions at the locations of the direct-push borings and monitoring wells generally consist of sand and gravel with variable (generally less than about 12 percent) silt content, which extends to the depths explored.

Results of field-screening indicated a hydrocarbon odor from a soil sample collected from directpush boring DP-32 at a depth of about 10 feet below site grade, within the lower gravel layer. A strong gasoline odor also was noted on the well log for MW-7 between a depth of about 5 to 10 feet below site grade.

3.3.3. Groundwater Conditions

Review of available water well reports on the Washington Department of Ecology on-line database indicates that deposits of gravel, sand, silt and clay with cobbles extend to depths of at least 40 to 90 feet below ground surface near the site. Several well reports indicate that sandstone is present beneath the overburden soil deposits at depths in the range of about 50 to 90 feet below ground surface (bgs). Groundwater was measured at direct-push boring locations at depths in the range of about 3¹/₂ to 7 feet below current site grade at the time of drilling. Groundwater also has been measured at area monitoring wells during previous monitoring events. Table 1 presents a summary of groundwater elevations obtained during previous sampling events of area groundwater monitoring wells by GeoEngineers and Ecology. Groundwater Elevations, July 25 and 26, 2010, Figure 3 shows groundwater elevations and estimated groundwater flow directions for the Buena area during a previous monitoring event in July 2010.

4.0 CHEMICAL ANALYTICAL TESTING RESULTS

4.1. General

Groundwater samples have been collected and analyzed for total petroleum hydrocarbons (TPH) and volatile organic compounds (VOCs) from area monitoring wells during four previous monitoring events. A summary of groundwater analytical results from samples collected from area groundwater monitoring wells during previous monitoring events is presented in Table 2 through Table 5.

A total of 22 soil samples and 5 groundwater samples were collected and submitted for analytical testing from the recent direct-push borings. Selected soil samples were analyzed for TPH including GRPH, DRPH, ORPH and VOCs and lead. Selected soil samples from borings located near the waste oil tank and former drywell also were analyzed for semi-volatile organic compounds (SVOCs) and PCBs. Selected groundwater samples also were analyzed for GRPH, DRPH, ORPH, ORPH, VOCs, SVOCs, PCBs and lead.

Groundwater results from the direct-push borings provide a semi-quantitative assessment of groundwater conditions, as development of the temporary wells installed within the direct-push borings, and the water-quality parameters, particularly turbidity measurements, did not achieve, nor were intended to achieve, parameters as stringent as those established for samples obtained from permanent groundwater monitoring wells. A summary of groundwater analytical results for total petroleum hydrocarbons, lead and VOCs from groundwater samples collected from select direct-push borings is presented in Table 6. A summary of groundwater analytical results for SVOCs and PCBs from groundwater samples collected from select direct-push borings is presented in Table 7. A summary of soil analytical results for total petroleum hydrocarbons, VOCs and lead from select direct-push boring soil samples is presented in Table 8. A summary of soil analytical results for select direct-push boring soil samples is presented in Table 9.

4.2. Soil Analytical Results

GRPH were detected in soil samples at concentrations greater than the MTCA Method A cleanup level of 100 milligrams per kilogram (mg/kg) in the following samples: DP-23 at 2.5-foot depth (1,540 mg/kg); DP-24 at 7-foot depth (453 mg/kg); DP-25 at 6-foot depth (612 mg/kg); DP-27 at 6-foot depth (256 mg/kg); DP-28 at 7-foot depth (186 mg/kg); DP-29 at 8-foot depth (288 mg/kg); DP-30 at 4-foot depth (143 mg/kg); and DP-31 at 7-foot depth (130 mg/kg).

DRPH were detected in soil samples at concentrations greater than MTCA Method A cleanup level of 2,000 mg/kg in the following samples: DP-23 at 2.5-foot depth (8,380 mg/kg).

ORPH were detected at concentrations greater than the MTCA Method A cleanup level of 2,000 mg/kg in the following sample: DP-23 at 2.5-foot depth (21,400 mg/kg) and DP-32 at 4-foot depth (2,380 mg/kg).

Benzene was detected at concentrations greater than the MTCA Method A cleanup level of 0.03 mg/kg in the following samples: DP-21 at 4-foot depth (0.175 mg/kg); DP-24 at 7-foot depth (1.57 mg/kg); DP-25 at 6-foot depth (0.0803 mg/kg); DP-26 at 8-foot depth (0.0516 mg/kg); DP-27 at 9-foot depth (0.161 mg/kg); DP-28 at 7-foot depth (0.442 mg/kg); DP-28 at 9-foot depth (0.11 mg/kg); DP-29 at 2.5-foot depth (0.164 mg/kg); DP-29 at 8-foot depth (0.0461 mg/kg); DP-30 at 4-foot depth (0.702 mg/kg); DP-32 at 4-foot depth (0.136 mg/kg); and DP-35 at 4-foot depth (0.0775 mg/kg). The sample from DP-24 at 7-foot depth was subsequently submitted for Toxic Characteristic Leaching Procedure (TCLP) analysis. TCLP results indicate that the benzene concentration was less than 100 micrograms per liter (μ g/L), which is less than the threshold concentration for designation as hazardous or dangerous waste of 500 μ g/L.

Ethylbenzene and naphthalene were detected at concentrations greater than the MTCA Method A cleanup levels of 6 mg/kg and 5 mg/kg, respectively, in the following samples: DP-23 at 2.5-foot depth (6.48 mg/kg and 46.2 mg/kg, respectively), and DP-24 at 7-foot depth (10.3 mg/kg and 11.5 mg/kg, respectively). Trichloroethene (TCE) also was detected at a concentration greater than the MTCA Method A cleanup level of 0.03 mg/kg in the samples from DP-35 at 4-foot depth (0.0508 mg/kg) and DP-23 at 2.5-foot depth (0.597 μ g/L). Although the results for DP-23 at 2.5-foot are an estimate.

The reporting limits for several non-detect VOC analytes were greater than their MTCA Method A cleanup levels. Based on information provided by the analytical laboratory, this was due to the relatively high water content and corresponding low soil weight of the samples when measured on a dry weight basis. The analytes include methyl tertiary-butyl ether (MTBE), methylene chloride, tetrachloroethene (PCE) and trichloroethane (TCE). With the exception of one sample (DP-23 at 2.5-foot), the detection limits for non-detect results for PCE and MTBE were below the MTCA Method A cleanup levels. Of the 19 samples analyzed for VOCs with non-detect results for TCE, 7 samples had detection limits less than the MTCA Method A cleanup level and 12 samples had detection limits greater than the MTCA Method A cleanup level. All 22 samples analyzed for VOCs with non-detect results for VOCs with non-detect results for MTCA Method A cleanup level. All 22 samples analyzed for VOCs with non-detect results for NOCs with non-detect results for MECA Method A cleanup level.

SVOCs and PCBS were not detected in the samples analyzed for those contaminants.

Lead was detected in the sample from DP-23 at 2.5-foot depth at a concentration of 1,270 mg/kg, greater than the MTCA Method A cleanup level of 250 mg/kg. The sample was subsequently submitted for TCLP analysis. The concentration of lead based on the TCLP analysis was 0.0748 milligrams per liter (mg/L), which is less than hazardous or dangerous waste concentration threshold of 5 mg/L. Lead was not detected, or was detected at concentrations less than the MTCA Method A cleanup level, in the other 21 soil samples.

4.3. Groundwater Analytical Results

GRPH were detected in groundwater samples from direct-push borings DP-23 and DP-33 at concentrations of 2.6 mg/L and 6.72 mg/L, greater than the MTCA Method A cleanup level of 1 mg/L (1,000 µg/L).

DRPH was detected in the groundwater sample from DP-33 at a concentration of 2.27 mg/L, greater than the MTCA Method A cleanup level of 0.5 mg/L (500 micrograms per liter [μ g/L]).

Benzene was detected in the groundwater samples from DP-23 and DP-26 at concentrations of 40.6 μ g/L and 38.8 μ g/L, respectively, greater than the MTCA Method A cleanup level of 5 μ g/L. Total xylenes were detected in the groundwater sample from DP-33 at a concentration of 1,020 μ g/L, greater than the MTCA Method A cleanup level of 1,000 μ g/L. Other TPH and VOCs were not detected, or were detected at concentrations less than MTCA Method A cleanup levels for those analytes with established cleanup levels.

Lead also was detected in the groundwater sample from DP-33 at a concentration of 1,820 μ g/L, greater than the MTCA Method A cleanup level of 15 μ g/L. The lead concentrations are reported as total lead. Due to the high turbidity of the sample, results likely are not representative of the actual groundwater concentration. Lead was not detected in the other groundwater samples.

Naphthalene was detected in the groundwater sample from DP-26 at a concentration of 6.92 μ g/L, less than the MTCA Method A cleanup level of 160 μ g/L. With the exception of naphthalene, SVOCs and PCBs were not detected in groundwater samples.

4.4. Summary

Results of field screening and analytical testing indicate that the predominant areas of petroleum contamination at the site appear to be near or below the groundwater table, particularly within the silty sand soil unit. Contaminated soil and groundwater also appears to extend from near the former drywell location (near DP-23), and the former fuel dispenser area, towards the southeast, to the former UST area. PAHs and PCBs were not detected in soil samples analyzed for those contaminants. Figure 4 presents borings where results of analytical testing indicate soil and/or groundwater contamination greater than MTCA Method A cleanup levels. Cross section A-A' also is shown on Excavation Plan, Figure 4. A graphical depiction of cross section A-A' is presented in Cross Section A-A', Figure 5.

5.0 ALTERNATIVES

Several potential remedial alternatives for shallow (vadose) zone soil contamination were evaluated, including excavation and off-site disposal and in-situ treatment, such as soil vapor extraction (SVE). Because of the shallow groundwater table and nature of soil contamination ranging from volatile BTEX compounds to semi-volatile ORPH, in-situ treatment techniques such as SVE likely would not be as effective at removing the less volatile petroleum contaminants. Additionally, such techniques would not address the presence of lead in soil at concentrations greater than MTCA Method A cleanup levels. Other methods such as in-situ treatment or capping could preclude site access to deeper contaminated soil and groundwater for future site cleanup actions. Therefore, we considered excavation and off-site disposal at a permitted disposal facility as the baseline alternative as a comparison to other alternatives. Excavation and off-site disposal meets applicable criteria in MTCA by: 1) protecting human health and the environment (removing shallow soil contamination); 2) providing for compliance monitoring (allowing for compliance sampling and access to deeper soil and groundwater contamination for future remedial actions); and 3) providing for a reasonable restoration time frame. Therefore, this option has been selected for cleanup of shallow soil contamination as part of this interim action.

6.0 SCHEDULE

Following review by Ecology and incorporation of mutually agreed-to comments, the draft Interim Action Report will be submitted for public comment. Following the public comment period (if required), Ecology will address any public comments received and provide final comments. The Interim Action Report will be finalized within 30 days following receipt of final comments from Ecology.

Construction Plans and Specifications are currently being prepared so Ecology can solicit bids for the construction work. Ecology will select a contractor for the work and GeoEngineers will provide oversight of the construction work.

7.0 INTERIM ACTION APPROACH

7.1. General

Activities associated with source removal include: 1) obtaining necessary permits and providing appropriate notifications; 2) preparing work plans; 3) mobilization and demobilization; 4) establishing work zones and stockpile locations; 5) removing an existing UST; 6) excavating contaminated soil; 7) collecting confirmation soil samples of excavated areas; 8) transporting and disposing excavated soil to approved landfills; 9) incorporating dust control measures during site activities; and 10) backfilling excavations.

7.2. Notifications and Permits

The Contractor shall be a Washington State licensed UST decommisioner and be responsible for obtaining and paying for all permits and inspections required for removing the UST and other site work. Required notification/permits may include, but are not necessarily limited to:

- Yakima Regional Clean Air Agency notification for site earthwork activities;
- Yakima County notification of site earthwork activities and submittal, and acquisition of appropriate permits, such as grading permits, and approvals;
- State and local fire department notification of UST closure; and
- Any other permits or notifications required to complete the work such as permits or notifications required to cap utilities, street obstruction permits, temporary easements, or hydrant permits.

The Contractor also shall provide notification to the Engineer of the planned disposal landfills and shall provide proof that the landfills have agreed to accept the waste material before commencing with Interim Action activities.

7.3. Health and Safety Plan and Work Plan Preparation

The Contractor shall submit a Health and Safety Plan (HASP) detailing the specific safety requirements and safety procedures for the work. The Contractor shall establish work zones to protect worker safety and health and to reduce the potential for off-site contamination.

The Contractor shall, at a minimum, meet all requirements of WAC 296-155, Safety Standards for Construction. Contractor shall also comply with WAC 296-62, Part P, which governs hazardous waste operations in Washington State. Hazardous waste operations regulations (including a requirement for 40-hour or 80-hour OSHA hazardous waste training) will apply whenever exposure to hazardous materials is possible. The plan must be Site specific, addressing hazards at the Site. A generic plan or corporate-wide plan is not acceptable. The Engineer may halt or delay operations if Contractor does not provide an acceptable plan before the scheduled start date. An acceptable plan is a plan that meets the local, state, and federal requirements in the opinion of the Engineer's safety staff. The Engineer reserves the right to require future modifications to the plan to meet requirements of local, state and federal regulations.

The Contractor shall submit four (4) copies of the Contractor's Health and Safety Plan (HASP) to the Engineer a minimum of 7 days before mobilization to the Site. The Engineer will review the Health and Safety Plan and if any modifications are requested, the Contractor shall submit copies of the modified Health and Safety Plan to Engineer before beginning Site work. The Contractor shall not begin work until the HASP has been finalized and approved by the Engineer.

Contractor shall ensure their employees and their subcontractors perform their work in accordance with the HASP and all local, state and federal regulations. The Engineer reserves the right to exclude subcontractors, or subcontractor employees who perform work in an unsafe manner or who do not comply with the project health and safety plan. Contractor shall supervise work of subcontractors at all times. Subcontractors shall never perform work without Contractor supervision. Exceptions to this requirement will be considered on a case-by-case basis. At least one Contractor employee shall have current first aid and CPR training while Contractor is on Site.

The Engineer will be responsible for generating and maintaining a Site-specific HASP for all personnel on Site representing the Engineer. The Engineer's HASP will meet all local, state, and federal regulations.

The Contractor shall be required to submit a work plan detailing procedures and schedules for UST removal, soil excavation and off-site disposal, soil backfill and final site restoration. The work plan will identify personnel that have the required 40-Hour Hazardous Waste Operations (HAZWOPER) training and licenses for site excavation and UST work. The Contractor shall not commence work until the work plan and HASP have been approved by the Engineer. The Contractor shall revise the work plan and HASP as necessary for additional items included in the work as necessary.

7.4. Mobilization and Demobilization

The Contractor shall mobilize all equipment required to complete excavation and backfilling work. A temporary security fence shall be constructed around the perimeter of the Site, encompassing work areas, to reduce public access to the site.

7.5. Temporary Erosion and Sediment Control

The Contractor shall install temporary erosion and sediment control facilities where appropriate. The contractor shall use personnel with appropriate 40-hour OSHA Hazardous Waste training and shall follow approved work plans and all applicable regulations when doing any excavation work on the Site.

7.6. Utility Locating

The Contractor shall be responsible for locating underground utilities at the site, including calling the local "One-Call" utility locating service. The Contractor shall complete any other work necessary to locate underground utilities. The Contractor shall take all appropriate actions to protect utilities during excavation activities. The Contractor shall be responsible for obtaining any and all permits required to complete utility work. Utilities may include, but are not necessarily limited to: water, sewer, electricity, phone, and gas. The Contractor also shall be responsible for coordinating such work with the applicable utility company or local municipality. Excavation and impacted material handling conducted as part of utility capping activities shall be completed by personnel with appropriate 40-hour OSHA Hazardous Waste training in accordance with approved work plans and all applicable regulations.

7.7. Work Zones and Soil Stockpile Locations

The contractor shall establish work zones and temporary soil stockpile locations for soil excavation activities before initiating earthwork activities. These work zones include:

- The Exclusion Zone;
- Decontamination Zone;
- Temporary Stockpile Area; and
- Support Zone/Contractor Staging Area

The Exclusion Zone shall consist of the area of active excavation and proximity.

The Decontamination Zone shall be set up adjacent to the Exclusion Zone, such that personnel and equipment must pass through the Decontamination Zone from the Exclusion Zone before entering the Support Zone or exiting the site. During excavation activities, the Decontamination Zone shall

be located on the north side of the site near the current parking area. Equipment and materials utilized during excavation activities shall be decontaminated at this location. Water generated from decontamination procedures shall be containerized. The Contractor shall not discharge or transport water off-site for disposal without approval from the Engineer.

The Decontamination Zone also shall include a health and safety station, which shall contain first aid equipment, emergency eyewash, environmental monitoring equipment, and facilities for site personnel to conduct decontamination activities. Decontamination activities shall follow procedures contained in the Site Health and Safety Plan.

Temporary Stockpile Areas shall be established in the field in coordination with the Engineer based on the progress of the work.

The Support Zone/Contractor Staging Area shall be established on site at a suitable location such that it is separated from the Exclusion Zone by the Decontamination Zone.

In order to facilitate the completion of the work, Work Zones and stockpile areas can be moved with approval from the Engineer. The Contractor shall be responsible to prevent cross contamination or re-contamination of areas where the work has been completed. Any cross contaminated or re-contaminated areas as determined by the Engineer shall be removed and disposed of at the contractor's expense.

7.8. Excavation

Based on results of soil sampling and analytical testing, the areas of most contaminated soil generally are located in east portion of the site (near the former UST locations, fuel dispenser and fuel lines, as well as isolated areas including near the former drywell located within the former building footprint, and near the waste oil UST. Excavation depths to remove contaminated vadose zone soil to target cleanup levels likely will to extend to depths of about 4 to 7 feet below current site grade (approximate depth to the groundwater table). Excavation Plan, Figure 4 presents the anticipated excavation plan. Based on the results of the recent explorations and analytical testing, and review of previous reports and documentation, approximately 1,000 to 1,500 cubic yards (about 1,600 to 2,400 tons) of contaminated soil will be excavated and disposed of off-site.

The Contractor shall be responsible for monitoring stability of temporary excavations. Excavations deeper than 4 feet shall be sloped or shored in accordance with applicable state regulations. Site soils classify as Occupational Safety and Health Administration (OSHA) Type C. Therefore, temporary excavations should not be steeper than 1.5H:1V (horizontal to vertical). Flatter slopes will be necessary if loads are imposed near excavations a distance equal to or less than one half the depth of the excavation, such as from excavation spoils or equipment.

7.9. Dust Control During Earthwork

The contractor shall implement dust control measures during earthwork activities. Additional information regarding required monitoring activities is presented in section **8.0 Compliance Monitoring Plan**.

7.10. Underground Storage Tank Removal

The UST is present near the southeast portion of the former building. This feature is labeled "Existing Waste Oil Tank" in Figure 2. The exact dimensions of the UST have not been confirmed. However, based on the volume of waste oil removed from the UST during previous demolition activities, the volume of the UST is estimated to be about 300 gallons.

The UST shall be removed by a licensed contractor in accordance with WAC 173-360-385. The UST and associated piping, if present, shall be disposed of in an approved landfill facility or shipped off-site for decontamination in accordance with the Toxic Substance Control Act (TSCA), Title 40 of the Code of Federal Regulations (CFR), Part 761 governing PCBs.

The Contractor shall submit to the Engineer documentation regarding UST closure and disposal. The Engineer will complete a site assessment and prepare a report in accordance with WAC 173-360.

7.11. Confirmation Sampling

The Engineer will collect confirmation samples from excavations and submit for analytical testing for GRPH, DRPH, ORPH, BTEX compounds and lead. Approximately 10 to 20 percent of the confirmation samples also will be analyzed for VOCs and PCBs. Because the interim action is intended to remove shallow, vadose zone contaminated soil, confirmation sampling will be focused on the lateral extents of the remedial excavations. Confirmation sampling of excavation bottoms are not planned. If results indicate that target cleanup levels have been met at the lateral extents of the excavations will be backfilled. If sample results are greater than MTCA Method A cleanup levels for unrestricted land use, then excavation shall continue laterally in the area sampled. Following additional excavation, confirmation samples will be collected from the newly excavated area. This process will be repeated until results of analytical testing indicate that target cleanup levels have been reached. Additional information on the testing program is presented in section **8.0 Compliance Monitoring Plan**.

7.12. Disposal of Contaminated Soil

Contaminated soil shall be disposed of at an approved landfill permitted to accept petroleum contaminated waste. Contaminated soil shall be covered and secured during transport, and shall be handled, transported and disposed of in accordance with all applicable local, state and federal regulations governing non-hazardous waste.

7.13. Final Grading Plan

7.13.1. General

Following completion of excavation and stockpiling or off-site transport of contaminated soil and review of conformation testing results (see section **8.0 Compliance Monitoring Plan**), excavations shall be backfilled. The site shall be brought back to approximately current site grade, and graded such that surface water will not be concentrated and allowed to flow off-site.

7.13.2. Imported Fill Specifications

Backfill that will be placed below the water table at the time of backfilling shall consist of material meeting criteria in Section 9-03.12(4) "Gravel Backfill for Drains" of the 2012 Washington State Department of Transportation (WSDOT) Standard Specifications for Road, Bridge, and Municipal Construction (Standard Specifications). General imported fill for site backfill placed above the water table shall consist of soil meeting the criteria in Section 9-03.14(3) for "Common Borrow" of the 2012 WSDOT Standard Specifications. Certification shall be provided by the Contractor from the borrow source that the imported backfill is not contaminated.

7.13.3. Compaction Criteria

Imported fill shall be placed in approximate 8-inch-loose lifts, moisture conditioned to within about 3 percentage points of optimum moisture content, and compacted to at least 85 percent of the maximum dry density (MDD) based on the ASTM International (ASTM) D1557 laboratory test procedure.

8.0 COMPLIANCE MONITORING PLAN

8.1. General

Compliance monitoring is required during remediation of any site and consists of protection monitoring, performance monitoring, and conformance monitoring. Protection monitoring is conducted to ensure that human health and the environment are adequately protected during site activities. Performance monitoring is conducted to confirm that the cleanup action has attained the cleanup performance standards. Confirmation monitoring is conducted to confirm that the long-term effectiveness of the cleanup action is adequate after the cleanup standards have been attained.

8.2. Protection Monitoring

8.2.1. General

Protection monitoring shall be included in the HASP submitted by the Contractor(s) prior to the beginning of work. Protection monitoring for this project will include air monitoring during site excavation activities and monitoring of the Equipment Decontamination Area. The Contractor's HASP will specify the frequency and types of personnel monitoring, and environmental sampling techniques and instrumentation to be used by the Contractor in addition to any minimum requirements contained in the project specifications, including methods of maintenance and calibration of monitoring and sampling equipment. The submitted HASP(s) shall include the corrective actions and upgrading of personnel protection based on monitoring of air, personnel, and environmental sampling, with specific action levels identified.

The Engineer also will complete an independent air monitoring program during soil excavation activities as part of their HASP. Air will be monitored periodically throughout the day at the site perimeter during active excavation and loading activities at the Site boundaries using a portable hand-held electronic particulate meter (Haz-Dust, Model HD-1100 or equivalent). The Engineer will immediately notify the Contractor and require corrective action if particulate readings for dust exceed 5 milligrams per cubic meter (mg/m³).

8.2.2. Monitoring of Equipment Decontamination Area

The Decontamination Zone and Staging Area will be inspected daily for damage by both the Contractor and Engineer. Any damage to the areas as determined by either the Contractor or Engineer shall be repaired immediately in order to prevent contaminated material on construction equipment from leaving the Site in an uncontrolled manner.

8.3. Confirmation Sampling

After excavating the contaminated soil as delineated by the initial data gap investigation, and as shown in Figure 4, the Engineer will collect confirmation samples from the limits of the remedial excavations. As stated previously, samples will be collected from the lateral extents of excavations, and not from the bottom of excavations. Confirmation samples from excavation sidewalls will be collected at approximate 15 to 25 foot spacings. About 15 to 20 samples will be collected and analyzed for ORPH, DRPH, GRPH and BTEX compounds. About 2 to 4 samples, obtained from areas located near the waste oil UST, drywell and/or hydraulic lift also will be analyzed for VOCs and PCBs. If chemical analytical results indicate that contaminant concentrations exceed the established Site specific cleanup levels, the area where target cleanup concentrations are exceeded will be over-excavated and re-sampled following the same procedures as outlined above.

8.4. Quality Assurance Project Plan

The general QA objectives for this project are to develop and implement procedures for obtaining and evaluating data of a specified quality that can be used to assess Site conditions and risks. Field QA procedures to be followed include collecting equipment blanks and duplicate samples, and completing all appropriate sample documentation. Measurement data should have an appropriate degree of accuracy and reproducibility. Samples collected should be representative of actual field conditions and samples should be collected and analyzed using proper chain-ofcustody procedures. The Quality Assurance Plan developed as part of the original work Plan for this project will be utilized.

9.0 REPORTING

Upon completion of the work, the Engineer will write a Cleanup Action Report that provides documentation of the cleanup in accordance with WAC 173-340-400(6)(b). The report shall also contain an opinion from the Engineer, based on testing and inspections, as to whether the cleanup action has been completed in substantial compliance with the plans and specifications and related documents. Supporting documentation such as laboratory data sheets, waste manifests, bills of lading, and other pertinent information shall be included in the report.

Table 1

Groundwater Elevations

Buena Monitoring Wells

Buena, Washington

		Top of Casing	Depth to Groundwater		Groundwater Elevation ²
Well ID	Date Surveyed	Elevation ¹ (feet)	(feet)	Date Measured	(feet)
MW-1	07/22/10	793.44	2.78	07/08/10	790.66
10107 ±	01/22/10	100.44	2.81	07/26/10	790.63
			2.01	Dec. 2010	791.06
				Mar. 2011	790.54
				Jun. 2011	791.03
MW-2	07/22/10	795.34	4.58	07/08/10	790.76
10100-2	01/22/10	795.54	4.65	07/26/10	790.69
			4.00	Dec. 2010	791.16
				Mar. 2011	790.69
				Jun. 2011	791.18
MW-3	07/22/10	794.12	3.43	07/08/10	790.69
10100-5	07/22/10	194.12	3.51	07/26/10	790.61
			3.51	Dec. 2010	790.01
				Mar. 2011	790.59
				Jun. 2011	790.39
	07/00/10	704.05	2.50		
MW-4	07/22/10	794.25	3.58	07/08/10	790.67
			3.64	07/26/10	790.61
				Dec. 2010	790.92
				Mar. 2011	790.85
				Jun. 2011	790.95
MW-5 ²	07/22/10	794.19	2.71	07/08/10	791.48
			2.77	07/26/10	791.42
				Jun. 2011	790.97
MW-6	07/22/10	794.18	3.53	07/08/10	790.65
			3.59	07/26/10	790.59
				Dec. 2010	791.32
				Mar. 2011	790.63
				Jun. 2011	791.02
MW-7	07/26/10	793.52	3.95	07/08/10	789.57
			4.01	07/26/10	789.51
				Dec. 2010	790.14
				Mar. 2011	789.54
			·	Jun. 2011	789.77
MW-8				Jun. 2011	790,77
MW-9	07/22/10	789.73	2.72	07/08/10	787.01
			2.78	07/26/10	786.95
				Dec. 2010	787.28
				Mar. 2011	786.98
				Jun. 2011	787.12
MW-10	07/22/10	788.47	3.28	07/08/10	785.19
	. ,		3.19	07/26/10	785.28
				Dec. 2010	785.52
				Mar. 2011	785.70
				Jun. 2011	785.17
MW-11				Jun. 2011	786.31
MW-13	07/26/10	794.41	3.70	07/25/10	790.71
10	0., 20, 20			Dec. 2010	791.02
				Mar. 2011	790.54
				Jun. 2011	791.04
MW-14	07/22/10	794.38	3.78	07/25/10	790.60
IVI VV-T+	01/22/10	194.00	0.10	Dec. 2010	790.00
L				DC0. 2010	101.01
				Mar. 2011	790.84

Well ID	Date Surveyed	Top of Casing Elevation ¹ (feet)	Depth to Groundwater (feet)	Date Measured	Groundwater Elevation ² (feet)
MW-15	07/22/10	792.66	3.38	07/25/10	789.28
				Dec. 2010	789.74
				Mar. 2011	789.34
				Jun. 2011	789.72
MW-16	07/22/10	789.07	3.39	07/25/10	785.68
	07/26/10	789.07	3.44	07/26/10	785.63
				Dec. 2010	786.85
				Mar. 2011	786.76
				Jun. 2011	786.78
MW-17	07/22/10	790.68	5.25	07/25/10	785.43
	07/26/10	790.68	5.29	07/26/10	785.39
				Dec. 2010	785.64
				Mar. 2011	785.62
				Jun. 2011	785.57
MW-18	07/22/10	789.35	4.56	07/25/10	784.79
	07/26/10	789.35	4.58	07/26/10	784.77
				Dec. 2010	785.11
				Mar. 2011	784.92
				Jun. 2011	784.90

Notes:

¹Elevation surveyed at the top of casing (toc) for monitoring wells (MW).

²Groundwater elevations for December 2010, March 2011 and June 2011 were measured and provided by Ecology.

https://projects.geoengineers.com/sites/0050406002/Draft/DraftDataTables/[05040602_Table1_groundwaterelevations.xlsx]Sheet1

Table 2

Summary of Chemical Analytical Results from Area Monitoring Wells - Groundwater¹

Roby's Station Buena, Washington

Sample Number	Date Sampled	Alkalinity ⁴ (mg/l)	Dissolved Iron ⁵ (mg/l)	Dissolved Manganese ⁵ (mg/l)	NO3/N ⁶ (mg/l)	Sulfate ⁶ (mg/l)	EDB ⁷ (mg/l)	Methane ⁸ (mg/l)	Benzene ⁹ (µg∕l)	Ethylbenzene ⁹ (µg/l)	m+p- Xylene ^{9,12} (µg/l)	MTBE ⁹ (µg/l)	Naphthalene ⁹ (µg/l)	o-Xylene ^{9,12} (µg/l)	Toluene ⁹ (µg∕l)	Diesel ¹⁰ (µg/l)	Lube Oil ¹⁰ (µg/l)	Gasoline ^{11,13} (µg/l)
July 2010 ²		•										•		•				
MW5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW6	07/09/10	323	0.0704	0.909	0.74	29.9	-	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW7	07/09/10	304	3.86	1.43	<0.1	29.6	-	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW15	07/25/10	353	0.515	0.939	<0.1	30.7	-	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<mark>2,080</mark>	<500	<100
December 2	2010 ³																	
MW5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW6	12/14/10	-	-	-	-	-	-	-	<0.001	<0.001	< 0.002	<0.001	<0.001	<0.001	<0.001	<100	672	<100
MW7	12/14/10	313	0.892	1.1	ND	29.1	-	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW8	12/15/10	235	0.02218	0.0652	ND	ND	-	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW15	12/15/10	417	0.0233	0.131	ND	ND	-	-	<0.001	1.2	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
March 201	1 ³																	
MW5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MW6	03/23/11	334	ND	0.803	1.03	40.4	<0.00005	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW7	03/21/11	306	2.96	1.55	ND	38.4	<0.00005	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW8	03/21/11	278	0.0332	0.102	0.317	29.9	<0.00005	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	226	<500	<100
MW15	03/21/11	596	0.0164	0.0353	ND	5.32	<0.00005	· ·	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<mark>7,820</mark>	<500	379
June 2011 ³																		
MW5	06/08/11	150	2.95	0.279	ND	1.77	<0.0005	·	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW6	06/09/11	334	ND	0.951	0.854	35.2	<0.00005	-	< 0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW7	06/07/11	319	2.41	1.36	ND	40	<0.00005	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW8	06/07/11	257	ND	0.139	0.675	28.8	<0.00005		<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<100	<500	<100
MW15	06/07/11	633	0.213	0.0192	ND	95.6	<0.00005	-	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<mark>4,450</mark>	7,840	438
² Sampling col ³ Sampling col ⁴ Alkalinity wa: ⁵ Dissolved iro	mpleted by Geo mpleted by Was s analyzed usin on and dissolved	Engineers, Inc shington State g SM2320B. d manganese v	abs, Inc. of Spokane, Department of Ecolo vere analyzed using E PA Method 300.0.	gy														

Notes:

⁷EDB was analyzed using...

⁸Methane was analyzed using RSK 175 MOD.

⁹Benzene, ethylbenzene, m+p-xylene, methyl-t-butyl ether (MTBE), naphthalene, o-xylene and toluene were analyzed using EPA Method 8260B for samples from MW-1 through MW-18, and EPA Method 8021 for samples from DP-1 through DP-8.

 $^{\rm 10}{\rm Diesel}\xspace$ and lube oil-range petroleum hydrocarbons were analyzed using NWTPHDX.

 $^{\rm 11}{\rm Gasoline}\xspace$ range petroleum hydrocarbons were analyzed using NWTPHG.

 12 Washington State, Model Toxics Control Act (MTCA) Method A cleanup level for total xylenes is 1,000 $\mu\text{g/L}$

 13 Gasoline-range petroleum hydrocarbons cleanup level is 1,000 µg/l if benzene is not present; 800 µg/l if benzene is present.

mg/l = milligrams per liter; µg/l = micrograms per liter; -- = not tested; ND = not detected

https://projects.geoengineers.com/sites/0050406002/Draft/DraftDataTables/[Data by Quarter Tables.xlsx]Table 2

Table 3

Summary of Chemical Analytical Results from Direct-Push Explorations - Groundwater (TPH, Lead and VOCs)¹

Roby's Station Buena, Washington

Analyte Group	Analyte	Unit	MTCA ⁷ A Cleanup Level	Sample Name Sample Date Sample Time	DP-23-111511 11/15/2011 12:10 PM	DP-26-111511 11/15/2011 1:55 PM	DP-33-111611 11/16/2011 11:15 AM	DP-34-111611 11/16/2011 12:10 PM	DP-37-111611 11/16/2011 2:20 PM
TPH ²	Gasoline-range hydrocarbons	mg/I	1		2.6	0.461	6.72	0.1 U	0.1 U
TPH ³	Diesel-range hydrocarbons	mg/l	0.5		0.289	0.356	2.27	0.238 U	0.237 U
TPH ³	Heavy Oil-Range Hydrocarbons	mg/l	0.5		0.476 U	0.474 U	0.476 U	0.476 U	0.474 U
METALS ⁴	Lead	µg/I	15		30 U	30 U	1820	30 U	30 U
VOC ⁵	1,1,1,2-Tetrachloroethane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,1,1-Trichloroethane	µg/I	200		10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,1,2,2-Tetrachloroethane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,1,2-Trichloroethane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,1-Dichloroethane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,1-Dichloroethene	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,1-Dichloropropene	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,2,3-Trichlorobenzene	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,2,3-Trichloropropane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,2,4-Trichlorobenzene	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,2,4-Trimethylbenzene	µg/I		1	132	75.9	988	1 U	1 U
VOC ⁵	1,2-Dibromo-3-Chloropropane	µg/I			0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
VOC ⁶	1,2-dibromoethane (EDB)	µg/I	0.01		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
VOC ⁵	1,2-Dichlorobenzene (o-Dichlorobenzene)	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,2-Dichloroethane (EDC)	µg/I	5		10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,2-Dichloropropane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,3,5-Trimethylbenzene	µg/I			10.9	1 U	269	1 U	1 U
VOC ⁵	1,3-Dichlorobenzene (m-Dichlorobenzene)	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,3-Dichloropropane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	1,4-Dichlorobenzene (p-Dichlorobenzene)	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	2,2-Dichloropropane	µg/I]	10 U	1 U	10 U	1 U	1 U
VOC ⁵	2-Butanone, 4-(Acetyloxy)-	µg/I]	100 U	10 U	100 U	10 U	10 U
VOC ⁵	2-Chlorotoluene	µg/I]	10 U	1 U	10 U	1 U	1 U
VOC ⁵	2-Hexanone	µg/I]	100 U	10 U	100 U	10 U	10 U
VOC ⁵	4-Chlorotoluene	µg/I]	10 U	1 U	10 U	1 U	1 U
VOC ⁵	Acetone	µg/I] .	250 U	25 U	250 U	25 U	25 U
VOC ⁵	Benzene	µg/I	5		40.6	38.8	2.8	0.2 U	0.2 U

File No. 0504-060-02 Table 3 January 11, 2012

Analyte Group	Analyte	Unit	MTCA ⁷ A Cleanup Level	Sample Name Sample Date Sample Time	DP-23-111511 11/15/2011 12:10 PM	DP-26-111511 11/15/2011 1:55 PM	DP-33-111611 11/16/2011 11:15 AM	DP-34-111611 11/16/2011 12:10 PM	DP-37-111611 11/16/2011 2:20 PM
VOC ⁵	Bromobenzene	µg/l			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Bromochloromethane	µg/l			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Bromodichloromethane	µg/l			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Bromoform (Tribromomethane)	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Bromomethane	µg/I			50 U	5 U	50 U	5 U	5 U
VOC ⁵	Butane, 2-methoxy-2-methyl-	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Carbon Disulfide	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Carbon Tetrachloride	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Chlorobenzene	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Chloroethane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Chloroform	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Chloromethane	µg/I			30 U	3 U	30 U	3 U	3 U
VOC ⁵	Cis-1,2-Dichloroethene	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Cis-1,3-Dichloropropene	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Dibromochloromethane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Dibromomethane	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Dichlorodifluoromethane (CFC-12)	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Ethylbenzene	µg/I	700		10 U	1.01	242	1 U	1 U
VOC ⁵	Hexachlorobutadiene	µg/l			20 U	2 U	20 U	2 U	2 U
VOC ⁵	Isopropylbenzene (Cumene)	µg/I			10 U	6.97	34	1 U	1 U
VOC ⁵	Methyl t-butyl ether	µg/l	20		10 U	1 U	10 U	1 U	1 U
VOC ⁵	Methylene Chloride	µg/I	5		100 U	10 U	100 U	10 U	10 U
VOC ⁵	Naphthalene	µg/I	160		20 U	7.93	88.9	2 U	2 U
VOC ⁵	n-Butylbenzene	µg/I			10 U	1 U	30.3	1 U	1 U
VOC ⁵	n-Propylbenzene	µg/I			14.8	8.5	141	1 U	1 U
VOC ⁵	Phenol, 2-bromo-	µg/I			100 U	10 U	100 U	10 U	10 U
VOC ⁵	p-lsopropyltoluene	µg/I			10 U	1.49	10 U	1 U	1 U
VOC ⁵	Sec-Butylbenzene	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Styrene	µg/l			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Tetrachloroethene	µg/l	5		10 U	1 U	10 U	1 U	1 U
VOC ⁵	Toluene	µg/l	1000		10 U	1.35	10 U	1 U	1 U
VOC ⁵	Trans-1,2-Dichloroethene	µg/l			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Trans-1,3-Dichloropropene	µg/l			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Trichloroethene (TCE)	µg/I	5]	10 U	1 U	10 U	1 U	1 U
VOC ⁵	Trichlorofluoromethane (CFC-11)	µg/I			10 U	1 U	10 U	1 U	1 U
VOC ⁵	Vinyl Chloride	µg/I	0.2		2 U	0.2 U	2 U	0.2 U	0.2 U
VOC ⁵	Xylene, m-,p-	µg/I			55.4	21.3	830	2 U	2 U

File No. 0504-060-02

Analyte			MTCA ⁷ A Cleanup	Sample Date	11/15/2011	11/15/2011	11/16/2011	DP-34-111611 11/16/2011	DP-37-111611 11/16/2011
Group	Analyte	Unit	Level	Sample Time	12:10 PM	1:55 PM	11:15 AM	12:10 PM	2:20 PM
VOC ⁵	Xylene, o-	µg/I			10 U	1 U	190	1 U	1 U

Notes:

¹Chemical analyses conducted by TestAmerica Laboratory in Spokane, Washington.

²Gasoline-range hydrocarbons were analyzed using NWTPH-Gx.

³Diesel-range hydrocarbons and lube oil-range hydrocarbons were analyzed using NWTPH-Dx.

⁴Lead was analyzed using EPA 6010/7000 Series Methods.

⁵Volatile organic compounds (VOC) were analyzed using EPA 8260B Methods.

⁶1-2-dibromoethane (EDB) was analyzed using EPA 8011 Method.

⁷Wasington State, Model Toxics Control Act (MTCA) Method A cleanup levels

U indicates analyte was not detected at the reporting limit shown on summary table.

Bold Value indicates detection greater than reporting limit; mg/L = milligram per liter; $\mu g/L = microgram per liter$

Shading indicates non-detected value was greater than cleanup level

Outline indicates value was greater than cleanup level

https://projects.geoengineers.com/sites/0050406002/Draft/DraftDataTables/[0504-060-02 Tables.xlsx]Table 3

Table 4

Summary of Chemical Analytical Results form Direct-Push Explorations - Groundwater (Semivolatiles)¹

Roby's Station

Buena, Washington

Analyte Group	Analyte	Unit	MTCA ⁴ A Screening Level	Sample Name Sample Date Sample Time	DP-23-111511 11/15/2011 12:10:00 PM	DP-26-111511 11/15/2011 1:55:00 PM	DP-33-111611 11/16/2011 11:15:00 AM	DP-34-111611 11/16/2011 12:10:00 PM	DP-37-111611 11/16/2011 2:20:00 PM
SV0C ²	1,2,4-Trichlorobenzene	µg/I				4.72 U			
SVOC ²	1,2-dibromoethane (EDB)	µg/I	0.01		0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
SVOC ²	1,2-Dichlorobenzene (o-Dichlorobenzene)	µg/I				4.72 U			
SVOC ²	1,2-Dichloroethane (EDC)	µg/I	5		10 U	1 U	10 U	1 U	1 U
SVOC ²	1,3-Dichlorobenzene (m-Dichlorobenzene)	µg/l				4.72 U			
SVOC ²	1,4-Dichlorobenzene (p-Dichlorobenzene)	µg/l				4.72 U		-	
SVOC ²	2,2'-Oxybis[1-chloropropane]	µg/I				9.43 U			
SVOC ²	2,4,5-Trichlorophenol	µg/I			-	4.72 U			
SVOC ²	2,4,6-Trichlorophenol	µg/I			_	4.72 U			
SV0C ²	2,4-Dichlorophenol	µg/I			-	4.72 U			
SV0C ²	2,4-Dimethylphenol	µg/I			-	9.43 U			
SV0C ²	2,4-Dinitrophenol	µg/I				23.6 U			
SV0C ²	2,4-Dinitrotoluene	µg/I				4.72 U			
SV0C ²	2,6-Dinitrotoluene	µg/I			-	4.72 U			
SVOC ²	2-Butanone (MEK)	µg/I			-	4.72 U			
SV0C ²	2-Chloronaphthalene	µg/I			-	4.72 U	-		
SV0C ²	2-Chlorophenol	µg/I			-	4.72 U	-		-
SV0C ²	2-Methylnaphthalene	µg/I			-	4.72 U			
SV0C ²	2-Nitroaniline	µg/I			-	4.72 U	-		
SV0C ²	2-Nitrophenol	µg/I			-	4.72 U	-	-	
SV0C ²	3-Nitroaniline	µg/I			-	9.43 U	-	-	
SV0C ²	4,6-Dinitro-2-Methylphenol	µg/I				9.43 U	-	-	
SV0C ²	4-Bromophenyl phenyl ether	µg/I				4.72 U	-	-	
SV0C ²	4-Chloro-3-Methylphenol	µg/I				4.72 U	-	-	
SV0C ²	4-Chloroaniline	µg/I				18.9 U	-		-
SVOC ²	4-Chlorophenyl-Phenylether	µg/I				4.72 U	-		
SVOC ²	4-Methyl-2-Pentanone (Methyl isobutyl ketone)	µg/I				4.72 U	-		
SVOC ²	4-Nitroaniline	µg/I				9.43 U			
SVOC ²	4-Nitrophenol (p-Nitrophenol)	µg/I				23.6 U			
SVOC ²	Acenaphthene	µg/I				4.72 U			
SVOC ²	Acenaphthylene	µg/I				4.72 U			
SVOC ²	Anthracene	µg/I				4.72 U			
SVOC ²	Benzo(a)anthracene	µg/I				4.72 U			

File No. 0504-060-02

Analyte Group	Analyte	Unit	MTCA ⁴ A Screening Level	Sample Name Sample Date Sample Time	11/15/2011	DP-26-111511 11/15/2011 1:55:00 PM	DP-33-111611 11/16/2011 11:15:00 AM	DP-34-111611 11/16/2011 12:10:00 PM	DP-37-111611 11/16/2011 2:20:00 PM
SVOC ²	Benzo(b)fluoranthene	µg/l				4.72 U			
SVOC ²	Benzo(ghi)perylene	µg/I				4.72 U			
SVOC ²	Benzo(k)fluoranthene	µg/I				4.72 U			
SVOC ²	Benzoic Acid	µg/l				47.2 U			
SVOC ²	Benzyl Alcohol	µg/l				9.43 U		-	
SVOC ²	Bis(2-Chloroethoxy)Methane	µg/l				9.43 U		_	-
SVOC ²	Bis(2-Chloroethyl)Ether	µg/I				4.72 U		_	-
SVOC ²	Bis(2-Ethylhexyl) Phthalate	µg/I				9.43 U			
SVOC ²	Butyl benzyl phthalate	µg/l				4.72 U			
SVOC ²	Chrysene	µg/I				4.72 U			
SVOC ²	Dibenzo(a,h)anthracene	µg/I				4.72 U			
SVOC ²	Dibenzofuran	µg/l				4.72 U			
SVOC ²	Dibutyl phthalate	µg/l				4.72 U			
SVOC ²	Diethyl phthalate	µg/I				4.72 U		-	
SVOC ²	Dimethyl phthalate	µg/l				4.72 U		-	
SVOC ²	Di-N-Octyl Phthalate	µg/I			-	4.72 U			
SVOC ²	Fluoranthene	µg/l				4.72 U		-	
SVOC ²	Fluorene	µg/l			-	4.72 U			
SVOC ²	Hexachlorobenzene	µg/l			-	4.72 U			
SVOC ²	Hexachlorobutadiene	µg/l			-	9.43 U			
SVOC ²	Hexachlorocyclopentadiene	µg/l			-	9.43 U			
SVOC ²	Hexachloroethane	µg/l			-	9.43 U			
SVOC ²	Indeno(1,2,3-cd)pyrene	µg/l			-	4.72 U	-		
SVOC ²	Isophorone	µg/l				4.72 U	-		
SVOC ²	Naphthalene	µg/l	160		-	6.92			
SVOC ²	Nitrobenzene	µg/l				4.72 U	-		
SVOC ²	N-Nitrosodi-n-propylamine	µg/I			-	9.43 U	-	-	
SVOC ²	N-Nitrosodiphenylamine	µg/l			-	4.72 U		-	
SVOC ²	o-Cresol (2-methylphenol)	µg/l				9.43 U	-	-	
SVOC ²	Pentachlorophenol	µg/l				9.43 U		—	
SV0C ²	Phenanthrene	µg/l				4.72 U			
SVOC ²	Phenol	µg/l				4.72 U		-	-
SV0C ²	Pyrene	µg/l				4.72 U		-	-
PCB Aroclors ³	PCB-aroclor 1016	µg/l			0.118 U	0.263 U		0.108 U	0.107 U
PCB Aroclors ³	PCB-aroclor 1221	µg/l			0.118 U	0.263 U		0.108 U	0.107 U
PCB Aroclors ³	PCB-aroclor 1232	µg/l			0.118 U	0.263 U		0.108 U	0.107 U
PCB Aroclors ³	PCB-aroclor 1242	µg/l			0.118 U	0.263 U		0.108 U	0.107 U
PCB Aroclors ³	PCB-aroclor 1248	µg/l			0.118 U	0.263 U		0.108 U	0.107 U
PCB Aroclors ³	PCB-aroclor 1254	µg/l			0.118 U	0.263 U		0.108 U	0.107 U

Analyte Group		Analyte	Unit	MTCA ⁴ A Screening Level	 DP-23-111511 11/15/2011 12:10:00 PM	DP-26-111511 11/15/2011 1:55:00 PM	DP-33-111611 11/16/2011 11:15:00 AM	DP-34-111611 11/16/2011 12:10:00 PM	DP-37-111611 11/16/2011 2:20:00 PM
PCB Aroclors ³	PCB-aroclor 1260		µg/l		0.118 U	0.263 U		0.108 U	0.107 U
PCB Aroclors ³	PCB-aroclor 1268		µg/I		0.118 U	0.263 U		0.108 U	0.107 U

Notes:

¹Chemical analyses conducted by TestAmerica Laboratory in Spokane, Washington.
 ²Semivolatile organic compounds (SVOC) were analyzed using EPA 8270C method.
 ³Polychlorinated biphenyls (PCB) were analyzed using EPA 80802 Method.

⁴Washington State, Model Toxics Control Act (MTCA) Method A cleanup levels. U indicates analyte was not detected at the reporting limit shown on the summary table.

Bold Value indicates detection greater than reporting limit; $\mu g/L = microgram per liter$

Shading indicates non-detected value was greater than cleanup level

Outline indicates value was greater than cleanup level

https://projects.geoengineers.com/sites/0050406002/Draft/DraftDataTables/[0504-060-02 Tables.xlsx]Table 4

Table 5

Summary of Chemical Analytical Results from Direct-Push Explorations - Soil (TPH, Lead and VOCs)¹

Roby's Station Buena, Washington

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	DP-21-4.0-111511 11/15/2011 10:35 AM 4 feet	DP-23-2.5-111511 11/15/2011 11:25 AM 2.5 feet	DP-24-7.0-111511 11/15/2011 12:25 PM 7 feet	DP-25-2.5-111511 11/15/2011 12:35 PM 2.5 feet	DP-25-6.0-111511 11/15/2011 12:40 PM 6 feet	DP-26-2.5-111511 11/15/2011 1:15 PM 2.5 feet	DP-26-8.0-111511 11/15/2011 1:25 PM 8 feet
TPH ²	Gasoline-Range Hydrocarbons	mg/kg	100		18.5	1540	453	6.33 U	612	7.99 U	22.4
TPH ³	Diesel-range hydrocarbons	mg/kg	2000	ľ	13.2 U	8380	21.5	11.4 U	113	12.7 U	168
TPH ³	Heavy Oil-Range Hydrocarbons	mg/kg	2000		32.9 U	21400	50.1 U	28.5 U	56.1	31.7 U	62.3 U
METALS ⁴	Lead	mg/kg	250	Ī	3.03	1270	7.91	4.5	4.43	4.62	16.2
METALS ⁴	TCLP Lead	mg/L	5			0.0788					
VOC ⁵	1,1,1,2-Tetrachloroethane	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,1,1-Trichloroethane	mg/kg	2		0.277 U	2.84 U*	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,1,2,2-Tetrachloroethane	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,1,2-Trichloroethane	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,1-Dichloroethane	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,1-Dichloroethene	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,1-Dichloropropene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,2,3-Trichlorobenzene	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,2,3-Trichloropropane	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,2,4-Trichlorobenzene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,2,4-Trimethylbenzene	mg/kg			3.11	44.1	17.9	0.127 U	5.1	0.333	0.61
VOC ⁵	1,2-Dibromo-3-Chloropropane	mg/kg	-		0.00116 U	0.00108	0.00153 U	0.00112 U	0.00118 U	0.00125 U	0.00136 U
VOC ⁶	1,2-dibromoethane (EDB)	mg/kg	0.005		0.00116 U	0.00102 U	0.00153 U	0.00112 U	0.00118 U	0.00125 U	0.00136 U
VOC ⁵	1,2-Dichlorobenzene (o-Dichlorobenzene)	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,2-Dichloroethane (EDC)	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,2-Dichloropropane	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,3,5-Trimethylbenzene	mg/kg			U.0888 J	27.5	9.14	0.127 U	0.281	0.0480 J	0.0470 J
VOC ⁵	1,3-Dichlorobenzene (m-Dichlorobenzene)	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,3-Dichloropropane	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	1,4-Dichlorobenzene (p-Dichlorobenzene)	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	2,2-Dichloropropane	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	2-Butanone, 4-(Acetyloxy)-	mg/kg			2.77 U	28.4 U	6.12	1.27 U	6.83	1.87	1.52 U
VOC ⁵	2-Chlorotoluene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	2-Hexanone	mg/kg			2.77 U	28.4 U	4.57 U	1.27 U	1.34 U	1.6 U	1.52 U
VOC ⁵	4-Chlorotoluene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Acetone	mg/kg			5.55 U	56.8 U	9.36	2.53 U	2.68 U	3.2 U	3.03 U
VOC ⁵	Benzene	mg/kg	0.03		0.175	0.568 U	1.57	0.0253 U	0.0803	0.032 U*	0.0516
VOC ⁵	Bromobenzene	mg/kg		[0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Bromochloromethane	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Bromodichloromethane	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Bromoform (Tribromomethane)	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Bromomethane	mg/kg			1.39 U	14.2 U	2.29 U	0.633 U	0.669 U	0.799 U	0.758 U
VOC ⁵	Butane, 2-methoxy-2-methyl-	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Carbon Disulfide	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Carbon Tetrachloride	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Chlorobenzene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U

GEOENGINEERS

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	DP-21-4.0-111511 11/15/2011 10:35 AM 4 feet	DP-23-2.5-111511 11/15/2011 11:25 AM 2.5 feet	DP-24-7.0-111511 11/15/2011 12:25 PM 7 feet	DP-25-2.5-111511 11/15/2011 12:35 PM 2.5 feet	DP-25-6.0-111511 11/15/2011 12:40 PM 6 feet	DP-26-2.5-111511 11/15/2011 1:15 PM 2.5 feet	DP-26-8.0-111511 11/15/2011 1:25 PM 8 feet
VOC ⁵	Chloroethane	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Chloroform	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.0549 J	0.16 U	0.152 U
VOC ⁵	Chloromethane	mg/kg			1.39 U	14.2 U	2.29 U	0.633 U	0.669 U	0.799 U	0.758 U
VOC ⁵	Cis-1,2-Dichloroethene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Cis-1,3-Dichloropropene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Dibromochloromethane	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Dibromomethane	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Dichlorodifluoromethane (CFC-12)	mg/kg	-		0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Ethylbenzene	mg/kg	6		1.54	6.48	10.3	0.127 U	0.343	0.0368 J	0.152 U
VOC ⁵	Hexachlorobutadiene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Isopropylbenzene (Cumene)	mg/kg	-		0.155 J	2.42 J	2.9	0.127 U	0.518	0.0608 J	0.0819 J
VOC ⁵	Methyl t-butyl ether	mg/kg	0.1		0.277 U*	2.84 U	0.457 U*	0.127 U*	0.134 U*	0.16 U*	0.152 U*
VOC ⁵	Methylene Chloride	mg/kg	0.02		2.77 U	28.4 U	4.57 U	1.27 U	1.34 U	1.6 U	1.52 U
VOC ⁵	Naphthalene	mg/kg	5		1.29	46.2	11.5	0.253 U	0.731	0.32 U	0.171 J
VOC ⁵	n-Butylbenzene	mg/kg			0.216 J	10.9	2.86	0.127 U	0.605	0.0592 J	0.0637 J
VOC ⁵	n-Propylbenzene	mg/kg	-		0.372	10.9	5.84	0.127 U	1	0.0895 J	0.126 J
VOC ⁵	Phenol, 2-bromo-	mg/kg	-		2.77 U	28.4 U	10.6	1.27 U	1.85	1.6 U	1.52 U
VOC ⁵	p-Isopropyltoluene	mg/kg	_		0.0888 J	3.35	2.48	0.127 U	1.11	0.0927 J	0.0576 J
VOC ⁵	Sec-Butylbenzene	mg/kg	_		0.277 U	3.07	1.39	0.127 U	0.61	0.0640 J	0.0561 J
VOC ⁵	Styrene	mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Tetrachloroethene (PCE)		0.05		0.139 U*	1.42 U	0.229 U*	0.0633 U*	0.0669 U*	0.0799 U*	0.0758 U*
VOC ⁵	Toluene	mg/kg	7		0.0527 J	2.36 J	0.563	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Trans-1,2-Dichloroethene	mg/kg	1		0.03273 0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC VOC ⁵	Trans-1,3-Dichloropropene	mg/kg mg/kg			0.277 U	2.84 U	0.457 U	0.127 U	0.134 U	0.16 U	0.152 U
VOC ⁵	Trichloroethene (TCE)	mg/kg	0.03		0.0693 U	0.597 J	0.114 U	0.0317 U*	0.0335 U*	0.04 U	0.0379 U
VOC ⁵						0.852 U					
VOC VOC ⁵	Trichlorofluoromethane (CFC-11)	mg/kg			0.0832 U		0.137 U	0.038 U	0.0401 U	0.048 U	0.0455 U
VOC VOC ⁵	Vinyl Chloride	mg/kg	-		0.166 U	1.7 U	0.274 U	0.076 U	0.0803 U	0.0959 U	0.091 U
	Xylene, m-,p-	mg/kg			1.98	14.3	18.8	0.507 U	0.527 J	0.0416 J	0.0865 J
VOC ⁵	Xylene, o-	mg/kg			0.0666 J	18.8	1.33	0.253 U	0.0776 J	0.32 U	0.303 U
EPH ⁷	Extractable Petroleum Hydrocarbons, >C10-C12 Aliphatics	mg/kg				102		-			
EPH ⁷	Extractable Petroleum Hydrocarbons, >C10-C12 Aromatics	mg/kg				54.2					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C12-C16 Aliphatics	mg/kg				198					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C12-C16 Aromatics	mg/kg				93					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C16-C21 Aliphatics	mg/kg				361					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C16-C21 Aromatics	mg/kg				121					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C21-C34 Aliphatics	mg/kg				4580					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C21-C34 Aromatics	mg/kg				449					
EPH ⁷	Extractable Petroleum Hydrocarbons, C8-C10 Aliphatics	mg/kg				67.5					
EPH ⁷	Extractable Petroleum Hydrocarbons, C8-C10 Aromatics	mg/kg				21.4					
VPH ⁸	Benzene	mg/kg	0.03			0.0903					
VPH ⁸	Ethylbenzene	mg/kg	6			10.7					
VPH ⁸	Toluene	mg/kg	7			3.22					
VPH ⁸	Total Xylenes	mg/kg	9			40.8					
VPH ⁸	Methyl t-butyl ether	mg/kg	0.1			0.672 U					
VPH ⁸	Naphthalene	mg/kg	5			51.9					
VPH ⁸	Volatile Petroleum Hydrocarbons, >C10-C12 Aliphatics	mg/kg				713					

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	11/15/2011	DP-23-2.5-111511 11/15/2011 11:25 AM 2.5 feet	DP-24-7.0-111511 11/15/2011 12:25 PM 7 feet	DP-25-2.5-111511 11/15/2011 12:35 PM 2.5 feet	DP-25-6.0-111511 11/15/2011 12:40 PM 6 feet	DP-26-2.5-111511 11/15/2011 1:15 PM 2.5 feet	DP-26-8.0-111511 11/15/2011 1:25 PM 8 feet
VPH ⁸	Volatile Petroleum Hydrocarbons, >C10-C12 Aromatics	mg/kg				791					
VPH ⁸	Volatile Petroleum Hydrocarbons, >C12-C13 Aromatics	mg/kg				358					
VPH ⁸	Volatile Petroleum Hydrocarbons, >C6-C8 Aliphatics	mg/kg	-			7.7	-	-	-		-
VPH ⁸	Volatile Petroleum Hydrocarbons, >C8-C10 Aliphatics	mg/kg				182		-	-		
VPH ⁸	Volatile Petroleum Hydrocarbons, >C8-C10 Aromatics	mg/kg		I		267					
VPH ⁸	Volatile Petroleum Hydrocarbons, C5-C6 Aliphatics	mg/kg	-	Ī		6.72 U					

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	DP-27-6.0-111511 11/15/2011 2:20 PM 6 feet	DP-27-9.0-111511 11/15/2011 2:25 PM 9 feet	DP-28-7.0-111511 11/15/2011 2:35 PM 7 feet	DP-28-9.0-111511 11/15/2011 2:40 PM 9 feet	DP-29-2.5-111611 11/16/2011 8:05 AM 2.5 feet	DP-29-8.0-111611 11/16/2011 8:10 AM 8 feet	DP-30-4.0-111611 11/16/2011 8:55 AM 4 feet	DP-31-10.0-111611 11/16/2011 9:20 AM 10 feet
TPH ²	Gasoline-Range Hydrocarbons	mg/kg	100		256	15.3	186	18.1	21.3	288	143	9.07 U
TPH ³	Diesel-range hydrocarbons	mg/kg	2000		129	14.5 U	20.7 U	13.6 U	12.8 U	24.2	49.4	14.9 U
TPH ³	Heavy Oil-Range Hydrocarbons	mg/kg	2000		52.6	36.3 U	51.8 U	34.1 U	31.9 U	31.3 U	32.7 U	37.3 U
METALS ⁴	Lead	mg/kg	250		6.29	2.18 U	2.19 U	2.04 U	2.94	1.88 U	3.93	2.24 U
METALS ⁴	TCLP	mg/kg	-			-						
VOC ⁵	1,1,1,2-Tetrachloroethane	mg/kg	-		0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,1,1-Trichloroethane	mg/kg	2		0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,1,2,2-Tetrachloroethane	mg/kg	-		0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,1,2-Trichloroethane	mg/kg	-		0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,1-Dichloroethane	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,1-Dichloroethene	mg/kg	-		0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,1-Dichloropropene	mg/kg	-		0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,2,3-Trichlorobenzene	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,2,3-Trichloropropane	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,2,4-Trichlorobenzene	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,2,4-Trimethylbenzene	mg/kg			4.3	1.1	7.58	1.48	2.07	7.11 E	6.71	0.0653 J
VOC ⁵	1,2-Dibromo-3-Chloropropane	mg/kg	-		0.00129 U	0.00143 U	0.00145 U	0.00134 U	0.00128 U	0.00124 U	0.0013 U	0.907 U
VOC ⁶	1,2-dibromoethane (EDB)	mg/kg	0.005		0.00129 U	0.00143 U	0.00145 U	0.00134 U	0.00128 U	0.00124 U	0.0013 U	0.181 U
VOC ⁵	1,2-Dichlorobenzene (o-Dichlorobenzene)	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,2-Dichloroethane (EDC)	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,2-Dichloropropane	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,3,5-Trimethylbenzene	mg/kg			0.935	0.0511 J	0.360 J	0.0468 J	0.102 J	0.121 J	0.502	0.181 U
VOC ⁵	1,3-Dichlorobenzene (m-Dichlorobenzene)	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,3-Dichloropropane	mg/kg	-		0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	1,4-Dichlorobenzene (p-Dichlorobenzene)	mg/kg	-		0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	2,2-Dichloropropane	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	2-Butanone, 4-(Acetyloxy)-	mg/kg	-		3.23 U	1.89 U	3.91 U	1.46 U	1.42 U	2.84	1.5 U	1.81 U
VOC ⁵	2-Chlorotoluene	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	2-Hexanone	mg/kg			3.23 U	1.89 U	3.91 U	1.46 U	1.42 U	1.34 J	0.468 J	1.81 U
VOC ⁵ VOC ⁵	4-Chlorotoluene Acetone	mg/kg			0.323 U 6.45 U	0.189 U 3.79 U	0.391 U 7.83 U	0.146 U 2.92 U	0.142 U 2.83 U	0.14 U 4.6	0.15 U 3.06	0.181 U 3.63 U
VOC ⁵	Benzene	mg/kg	0.03		0.381	0.161	0.442	0.11	0.164	0.0461	0.702	0.0363 U*
VOC ⁵		mg/kg										
VOC VOC ⁵	Bromobenzene Bromochloromethane	mg/kg mg/kg			0.323 U 0.323 U	0.189 U 0.189 U	0.391 U 0.391 U	0.146 U 0.146 U	0.142 U 0.142 U	0.14 U 0.14 U	0.15 U 0.15 U	0.181 U 0.181 U
VOC ⁵	Bromodichloromethane	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC VOC ⁵	Bromoform (Tribromomethane)	mg/kg			0.323 U	0.189 U	0.391 U	0.148 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Bromomethane	mg/kg			1.61 U	0.189 U 0.947 U	1.96 U	0.731 U	0.142 0 0.708 U	0.698 U	0.752 U	0.181 U 0.907 U
VOC ⁵	Butane, 2-methoxy-2-methyl-	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Carbon Disulfide	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Carbon Tetrachloride	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Chlorobenzene	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U

File No. 0504-060-02 Table 5 | January 11, 2012

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	11/15/2011 2:20 PM	DP-27-9.0-111511 11/15/2011 2:25 PM 9 feet	DP-28-7.0-111511 11/15/2011 2:35 PM 7 feet	DP-28-9.0-111511 11/15/2011 2:40 PM 9 feet	DP-29-2.5-111611 11/16/2011 8:05 AM 2.5 feet	DP-29-8.0-111611 11/16/2011 8:10 AM 8 feet	DP-30-4.0-111611 11/16/2011 8:55 AM 4 feet	DP-31-10.0-111611 11/16/2011 9:20 AM 10 feet
VOC ⁵	Chloroethane	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Chloroform	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Chloromethane	mg/kg			1.61 U	0.947 U	1.96 U	0.731 U	0.708 U	0.698 U	0.752 U	0.907 U
VOC ⁵	Cis-1,2-Dichloroethene	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Cis-1,3-Dichloropropene	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Dibromochloromethane	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Dibromomethane	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Dichlorodifluoromethane (CFC-12)	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Ethylbenzene	mg/kg	6		0.984	0.0284 J	0.673	0.0424 J	1.51	2.84	2.81	0.0199 J
VOC ⁵	Hexachlorobutadiene	mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Isopropylbenzene (Cumene)	mg/kg	-		0.142 J	0.142 J	0.634	0.15	0.0906 J	0.377	0.393	0.253 J
VOC ⁵	Methyl t-butyl ether	mg/kg	0.1		0.323 U*	0.189 U*	0.391 U*	0.146 U*	0.142 U*	0.14 U*	0.15 U*	0.181 U*
VOC ⁵	Methylene Chloride	mg/kg	0.02		3.23 U	1.89 U	3.91 U	1.46 U	1.42 U	1.4 U	1.5 U	1.81 U
VOC ⁵	Naphthalene	mg/kg	5		1.4	0.224 J	4.68	0.386	0.664	1.19	2.52	0.363 U
VOC ⁵	n-Butylbenzene	mg/kg	-		0.332	0.0871 J	0.634	0.117 J	0.0962 J	0.452	0.37	0.181 U
VOC ⁵	n-Propylbenzene	mg/kg			0.877	0.216	1.1	0.31	0.28	1.32	0.918	0.181 U
VOC ⁵	Phenol, 2-bromo-	mg/kg			3.23 U	1.89 U	3.91 U	1.46 U	1.42 U	7.65	1.97	1.81 U
VOC ⁵	p-lsopropyltoluene	mg/kg			0.468	0.0852 J	0.626	0.102 J	0.0410 J	0.144	0.229	0.181 U
VOC ⁵	Sec-Butylbenzene				0.313 J	0.0701 J	0.348 J	0.0672 J	0.142 U	0.144	0.167	0.181 U
VOC VOC ⁵	Styrene	mg/kg mg/kg			0.323 U	0.189 U	0.391 U	0.146 U	0.142 U	0.14 U	0.15 U	0.181 U
VOC VOC ⁵	Tetrachloroethene (PCE)		0.05		0.161 U*	0.0947 U*	0.196 U*	0.0731 U*	0.0708 U*	0.0698 U*	0.0752 U*	0.0907 U*
VOC ⁵		mg/kg	7		0.0387 J	0.189 U	0.391 U	0.146 U	0.0694 J	0.0628 J	0.403	0.181 U
VOC VOC ⁵	Trans-1,2-Dichloroethene	mg/kg	'		0.323 U	0.189 U	0.391 U			0.14 U	0.403 0.15 U	0.181 U
VOC VOC ⁵	Trans-1,2-Dichloropene	mg/kg mg/kg			0.323 U	0.189 U	0.391 U	0.146 U 0.146 U	0.142 U 0.142 U	0.14 U	0.15 U	0.181 U
VOC ⁵	Trichloroethene (TCE)	mg/kg	0.03		0.0806 U	0.0474 U	0.0978 U	0.0365 U*	0.0354 U*	0.0349 U*	0.0376 U*	0.0453 U
VOC ⁵			0.03									
	Trichlorofluoromethane (CFC-11)	mg/kg			0.0968 U	0.0568 U	0.117 U	0.0438 U	0.0425 U	0.0419 U	0.0451 U	0.0544 U
VOC ⁵	Vinyl Chloride	mg/kg			0.194 U	0.114 U	0.235 U	0.0877 U	0.0849 U	0.0838 U	0.0903 U	0.109 U
VOC ⁵	Xylene, m-,p-	mg/kg			0.474 J	0.142 J	1.35 J	0.532 J	1.96	2.68	3.72	0.0363 J
VOC ⁵	Xylene, o-	mg/kg			0.0968 J	0.379 U	0.783 U	0.292 U	0.117 J	0.0447 J	0.567	0.0236 J
EPH ⁷	Extractable Petroleum Hydrocarbons, >C10-C12 Aliphatics	mg/kg				- •			-			
EPH ⁷	Extractable Petroleum Hydrocarbons, >C10-C12 Aromatics	mg/kg										
EPH ⁷	Extractable Petroleum Hydrocarbons, >C12-C16 Aliphatics	mg/kg										
EPH ⁷	Extractable Petroleum Hydrocarbons, >C12-C16 Aromatics	mg/kg										
EPH ⁷	Extractable Petroleum Hydrocarbons, >C16-C21 Aliphatics	mg/kg										
EPH ⁷	Extractable Petroleum Hydrocarbons, >C16-C21 Aromatics	mg/kg										
EPH ⁷	Extractable Petroleum Hydrocarbons, >C21-C34 Aliphatics	mg/kg						-				
EPH ⁷	Extractable Petroleum Hydrocarbons, >C21-C34 Aromatics	mg/kg				-						
EPH ⁷	Extractable Petroleum Hydrocarbons, C8-C10 Aliphatics	mg/kg										-
EPH ⁷	Extractable Petroleum Hydrocarbons, C8-C10 Aromatics	mg/kg										
VPH ⁸	Benzene	mg/kg	0.03									
VPH ⁸	Ethylbenzene	mg/kg	6									
VPH ⁸	Toluene	mg/kg	7									-
VPH ⁸	Total Xylenes	mg/kg	9									-
VPH ⁸	Methyl t-butyl ether	mg/kg	0.1									
VPH ⁸	Naphthalene	mg/kg	5									-
VPH ⁸	Volatile Petroleum Hydrocarbons, >C10-C12 Aliphatics	mg/kg										

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	DP-27-6.0-111511 11/15/2011 2:20 PM 6 feet	DP-27-9.0-111511 11/15/2011 2:25 PM 9 feet	DP-28-7.0-111511 11/15/2011 2:35 PM 7 feet	DP-28-9.0-111511 11/15/2011 2:40 PM 9 feet	DP-29-2.5-111611 11/16/2011 8:05 AM 2.5 feet	DP-29-8.0-111611 11/16/2011 8:10 AM 8 feet	DP-30-4.0-111611 11/16/2011 8:55 AM 4 feet	DP-31-10.0-111611 11/16/2011 9:20 AM 10 feet
VPH ⁸	Volatile Petroleum Hydrocarbons, >C10-C12 Aromatics	mg/kg	-									
VPH ⁸	Volatile Petroleum Hydrocarbons, >C12-C13 Aromatics	mg/kg										
VPH ⁸	Volatile Petroleum Hydrocarbons, >C6-C8 Aliphatics	mg/kg	-		-	-						
VPH ⁸	Volatile Petroleum Hydrocarbons, >C8-C10 Aliphatics	mg/kg			-							
VPH ⁸	Volatile Petroleum Hydrocarbons, >C8-C10 Aromatics	mg/kg	-			-						
VPH ⁸	Volatile Petroleum Hydrocarbons, C5-C6 Aliphatics	mg/kg			-							

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	DP-31-7.0-111611 11/16/2011 9:15 AM 7ft	DP-32-4.0-111611 11/16/2011 9:50 AM 4 feet	DP-34-6.0-111611 11/16/2011 11:25 AM 6 feet	DP-35-4.0-111611 11/16/2011 12:25 PM 4 feet	DP-36-8.0-111611 11/16/2011 1:00 PM 8 feet	DP-37-4.0-111611 11/16/2011 1:15 PM 4 feet	DP-37-10.0-111611 11/16/2011 1:25 PM 10 feet
TPH ²	Gasoline-Range Hydrocarbons	mg/kg	100		130	52.9	7 U	6.05 U	7.6 U	8.43 U	8.85 U
	Diesel-range hydrocarbons	mg/kg	2000		1240	443	13 U	217	13 U	13.1 U	14.4 U
TPH ³	Heavy Oil-Range Hydrocarbons	mg/kg	2000		124	2380	32.5 U	1060	32.6 U	32.9 U	36 U
METALS ⁴	Lead	mg/kg	250		4.78	191		113	3.03	3.41	2.16 U
METALS ⁴	TCLP	mg/kg	-								-
VOC ⁵	1,1,1,2-Tetrachloroethane	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,1,1-Trichloroethane	mg/kg	2		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,1,2,2-Tetrachloroethane	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,1,2-Trichloroethane	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,1-Dichloroethane	mg/kg			0.281 U	0.119 U	0.14 U	0.0448 J	0.152 U	0.169 U	0.177 U
VOC ⁵	1,1-Dichloroethene	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,1-Dichloropropene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,2,3-Trichlorobenzene	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,2,3-Trichloropropane	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,2,4-Trichlorobenzene	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,2,4-Trimethylbenzene	mg/kg			1.62	6.82 E	0.0854 J	0.0629 J	0.0258 J	0.169 U	0.177 U
VOC ⁵	1,2-Dibromo-3-Chloropropane	mg/kg			1.4 U	0.00109 U	0.00128 U	0.00112 U	0.0013 U	0.00129 U	0.00142 U
VOC ⁶	1,2-dibromoethane (EDB)	mg/kg	0.005		0.281 U	0.00109 U	0.00128 U	0.00112 U	0.0013 U	0.00129 U	0.00142 U
VOC ⁵	1,2-Dichlorobenzene (o-Dichlorobenzene)	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,2-Dichloroethane (EDC)	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,2-Dichloropropane	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,3,5-Trimethylbenzene	mg/kg	-		0.0787 J	2.16	0.0448 J	0.0399 J	0.152 U	0.169 U	0.177 U
VOC ⁵	1,3-Dichlorobenzene (m-Dichlorobenzene)	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,3-Dichloropropane	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	1,4-Dichlorobenzene (p-Dichlorobenzene)	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	2,2-Dichloropropane	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	2-Butanone, 4-(Acetyloxy)-	mg/kg			2.81 U	1.5	1.4 U	1.21 U	1.52 U	1.69 U	1.77 U
VOC ⁵	2-Chlorotoluene	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	2-Hexanone	mg/kg			2.81 U	0.940 J	1.4 U	1.21 U	1.52 U	1.69 U	1.77 U
VOC ⁵	4-Chlorotoluene	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Acetone	mg/kg			5.62 U	2.39 U	2.8 U	2.42 U	3.04 U	3.37 U	3.54 U
VOC ⁵	Benzene	mg/kg	0.03		0.0562 U*	0.136	0.028 U	0.0775	0.0304 U*	0.0337 U*	0.0354 U*
VOC ⁵	Bromobenzene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Bromochloromethane	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Bromodichloromethane	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Bromoform (Tribromomethane)	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Bromomethane	mg/kg			1.4 U	0.597 U	0.7 U	0.605 U	0.76 U	0.843 U	0.885 U
VOC ⁵	Butane, 2-methoxy-2-methyl-	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Carbon Disulfide	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Carbon Tetrachloride	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Chlorobenzene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	11/16/2011 9:15 AM	DP-32-4.0-111611 11/16/2011 9:50 AM 4 feet	DP-34-6.0-111611 11/16/2011 11:25 AM 6 feet	DP-35-4.0-111611 11/16/2011 12:25 PM 4 feet	DP-36-8.0-111611 11/16/2011 1:00 PM 8 feet	DP-37-4.0-111611 11/16/2011 1:15 PM 4 feet	DP-37-10.0-111611 11/16/2011 1:25 PM 10 feet
VOC ⁵	Chloroethane	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Chloroform	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Chloromethane	mg/kg			1.4 U	0.597 U	0.7 U	0.605 U	0.76 U	0.843 U	0.885 U
VOC ⁵	Cis-1,2-Dichloroethene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Cis-1,3-Dichloropropene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Dibromochloromethane	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Dibromomethane	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Dichlorodifluoromethane (CFC-12)	mg/kg	-		0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Ethylbenzene	mg/kg	6		0.0478 J	0.94	0.14 U	0.0363 J	0.152 U	0.169 U	0.177 U
VOC ⁵	Hexachlorobutadiene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Isopropylbenzene (Cumene)	mg/kg			0.253 J	0.174	0.14 U	0.121 U	0.0304 J	0.169 U	0.177 U
VOC ⁵	Methyl t-butyl ether	mg/kg	0.1		0.281 U*	0.119 U*	0.14 U*	0.121 U*	0.152 U*	0.169 U*	0.177 U*
VOC ⁵	Methylene Chloride	mg/kg	0.02		2.81 U	1.19 U	1.4 U	1.21 U	1.52 U	1.69 U	1.77 U
VOC ⁵	Naphthalene	mg/kg	5		0.801	1.81	0.192 J	0.242 U	0.304 U	0.337 U	0.354 U
VOC ⁵	n-Butylbenzene	mg/kg	-		0.559	0.411	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	n-Propylbenzene	mg/kg	-		0.458	0.757	0.14 U	0.0266 J	0.152 U	0.169 U	0.177 U
VOC ⁵	Phenol, 2-bromo-	mg/kg			2.81 U	1.19 U	1.4 U	1.21 U	1.52 U	1.69 U	1.77 U
VOC ⁵	p-IsopropyItoluene	mg/kg			0.281 U	0.107 J	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Sec-Butylbenzene	mg/kg			0.424	0.146	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Styrene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Tetrachloroethene (PCE)	mg/kg	0.05		0.14 U*	0.0597 U*	0.07 U*	0.0605 U*	0.076 U*	0.0843 U*	0.0885 U*
VOC ⁵	Toluene	mg/kg	7		0.281 U	1.42	0.14 U	0.0787 J	0.152 U	0.169 U	0.177 U
VOC ⁵	Trans-1,2-Dichloroethene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Trans-1,3-Dichloropropene	mg/kg			0.281 U	0.119 U	0.14 U	0.121 U	0.152 U	0.169 U	0.177 U
VOC ⁵	Trichloroethene (TCE)	mg/kg	0.03		0.0702 U	0.0298 U	0.035 U*	0.0508	0.038 U	0.0421 U	0.0443 U
VOC ⁵	Trichlorofluoromethane (CFC-11)	mg/kg	-		0.0843 U	0.0358 U	0.042 U	0.0363 U	0.0456 U	0.0506 U	0.0531 U
VOC ⁵	Vinyl Chloride	mg/kg			0.169 U	0.0716 U	0.042 U	0.0726 U	0.0912 U	0.101 U	0.106 U
VOC ⁵	Xylene, m-,p-	mg/kg			0.152 J	4.64	0.0378 J	0.122 J	0.608 U	0.674 U	0.708 U
VOC ⁵	Xylene, o-	mg/kg			0.0534 J	1.82	0.0350 J	0.0508 J	0.304 U	0.337 U	0.354 U
EPH ⁷	Extractable Petroleum Hydrocarbons, >C10-C12 Aliphatics	mg/kg				5.54 U		-		-	-
EPH ⁷	Extractable Petroleum Hydrocarbons, >C10-C12 Aromatics	mg/kg				5.54 U		-			
EPH ⁷	Extractable Petroleum Hydrocarbons, >C12-C16 Aliphatics	mg/kg				5.54 U		-			
EPH ⁷	Extractable Petroleum Hydrocarbons, >C12-C16 Anomatics	mg/kg				5.54 U	_	-			-
EPH ⁷	Extractable Petroleum Hydrocarbons, >C12-C10 Alphatics	mg/kg				13.5					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C10-C21 Anomatics	mg/kg	-			14.7					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C10-C21-C34 Aliphatics	mg/kg				219					
EPH ⁷	Extractable Petroleum Hydrocarbons, >C21-C34 Anomatics					256					
EPH ⁷	Extractable Petroleum Hydrocarbons, 2021-034 Aromatics	mg/kg mg/kg				5.54 U					
EPH ⁷											
VPH ⁸	Extractable Petroleum Hydrocarbons, C8-C10 Aromatics	mg/kg	-			5.54 U					
VPH ⁸	Benzene	mg/kg	0.03 6			0.253					
VPH ⁸	Ethylbenzene	mg/kg	6			0.754					
VPH ³	Toluene	mg/kg	'			1.46					
-	Total Xylenes	mg/kg	9			5.59					
VPH ⁸ VPH ⁸	Methyl t-butyl ether	mg/kg	0.1			0.545 U					
	Naphthalene	mg/kg	5			1.56					
VPH ⁸	Volatile Petroleum Hydrocarbons, >C10-C12 Aliphatics	mg/kg				26.1					

Analyte Group	Analyte	Unit	MTCA ⁹ A ULU Screening Level	Sample Name Sample Date and Time Depth	9:15 AM	DP-32-4.0-111611 11/16/2011 9:50 AM 4 feet	DP-34-6.0-111611 11/16/2011 11:25 AM 6 feet	DP-35-4.0-111611 11/16/2011 12:25 PM 4 feet	DP-36-8.0-111611 11/16/2011 1:00 PM 8 feet	DP-37-4.0-111611 11/16/2011 1:15 PM 4 feet	DP-37-10.0-111611 11/16/2011 1:25 PM 10 feet
VPH ⁸	Volatile Petroleum Hydrocarbons, >C10-C12 Aromatics	mg/kg				38				-	
VPH ⁸	Volatile Petroleum Hydrocarbons, >C12-C13 Aromatics	mg/kg				6.37					
VPH ⁸	Volatile Petroleum Hydrocarbons, >C6-C8 Aliphatics	mg/kg				5.45 U	-				
VPH ⁸	Volatile Petroleum Hydrocarbons, >C8-C10 Aliphatics	mg/kg				9.99				-	
VPH ⁸	Volatile Petroleum Hydrocarbons, >C8-C10 Aromatics	mg/kg				16.4			-	-	
VPH ⁸	Volatile Petroleum Hydrocarbons, C5-C6 Aliphatics	mg/kg				5.45 U					

Notes:

¹Chemical analyses conducted by TestAmerica Laboratory in Spokane, Washington.

 $^2\mbox{Gasoline-range}$ hydrocarbons were analyzed using NWTPH-Gx.

³Diesel- and lube oil-range hydrocarbons were analyzed using NWTPH-Dx.

⁴Lead was analyzed using EPA 6010/7000 Series Method. TCLP lead was analyzed using....

⁵Volatile organic compounds (VOC) were analyzed using EPA8260B Method.

⁶1, 2-dibromoethane (EDB) was analyzed using EPA 8011 Method

⁷Extractable petroleum hydrocarbons (EPH) were analyzed using NWTPH-EPH Methods.

⁸Volatile petroleum hydrocarbons (VPH) were analyzed using NWTPH-VPH Methods.

⁹Washington State, Model Toxecs Control Act (MTCA) Method A cleanup levels for unrestricted land use.

U indicates analyte was not detected at the reporting limit shown on the summary table.

J indicates analyte was detected at a concentration between the reporting limit and the method detectin limit, value is approximate

E indicates the analyte was detected at a concentration that exceeds the calibration range; value is semi-quantitative

Bold Value indicates detection greater than reporting limit; mg/kg = milligram per kilogram; mg/L = milligrams per liter

Shading indicates non-detected reporting limit was greater than cleanup level; *indicates detection limit was less than cleanup level

Outline indicates value was greater than cleanup level

https://projects.geoengineers.com/sites/0050406002/Draft/DraftDataTables/[0504-060-02 Tables.xlsx]Table 5

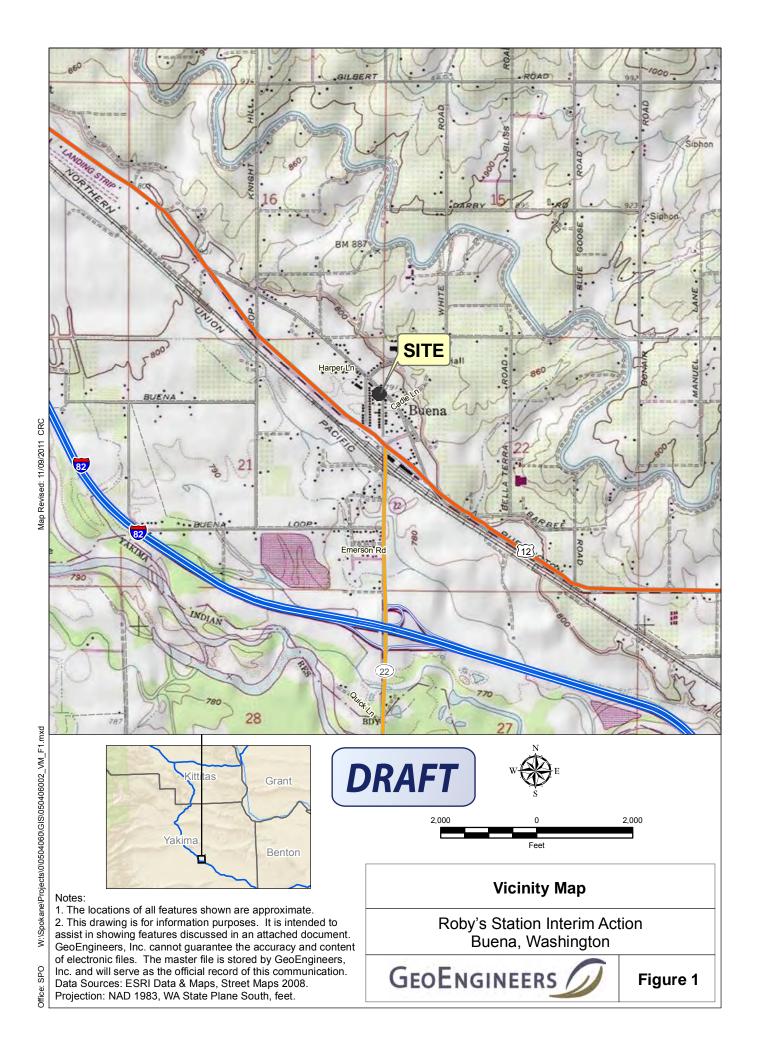
Table 6

Summary of Chemical Analytical Results from Direct-Push Explorations - Soil (Semivolatiles)¹

Roby's Station Buena, Washington

Analyte Group	Analyte	Unit	MTCA ⁴ A ULU Cleanup Level	Sample Name Sample Date and Time Depth	DP-23-2.5-111511 11/15/2011 11:25 AM 2.5 feet	DP-24-7.0-111511 11/15/2011 12:25 PM 7 feet	DP-25-2.5-111511 11/15/2011 12:35 PM 2.5 feet	DP-25-6.0-111511 11/15/2011 12:40 PM 6 feet	DP-26-2.5-111511 11/15/2011 1:15 PM 2.5 feet	DP-26-8.0-111511 11/15/2011 1:25 PM 8 feet	DP-32-4.0-111611 11/16/2011 9:50 AM 4 feet	DP-34-6.0-111611 11/16/2011 11:25 AM 6 feet
SV0C ²	1,2,4-Trichlorobenzene	µg/kg						1330 U	1250 U	1540 U		
SVOC ²	1,2-dibromoethane (EDB)	µg/kg	5		1.02 U	1.53 U	1.12 U	1.18 U	1.25 U	1.36 U	1.09 U	1.28 U
SVOC ²	1,2-Dichlorobenzene (o-Dichlorobenzene)	µg/kg			-	-		1330 U	1250 U	1540 U		
SVOC ²	1,2-Dichloroethane (EDC)	µg/kg			2840 U	457 U	127 U	134 U	160 U	152 U	119 U	140 U
SVOC ²	1,3-Dichlorobenzene (m-Dichlorobenzene)	µg/kg			-	-		1330 U	1250 U	1540 U		
SV0C ²	1,4-Dichlorobenzene (p-Dichlorobenzene)	µg/kg						1330 U	1250 U	1540 U		
SVOC ²	2,2'-Oxybis[1-chloropropane]	µg/kg	-		-			438 U	413 U	508 U		
SVOC ²	2,4,5-Trichlorophenol	µg/kg	-					438 U	413 U	508 U		
SV0C ²	2,4,6-Trichlorophenol	µg/kg	-			-		438 U	413 U	508 U		
SV0C ²	2,4-Dichlorophenol	µg/kg	-	Ĭ	-	-		438 U	413 U	508 U		
SV0C ²	2,4-Dimethylphenol	µg/kg	_		-	-		1330 U	1250 U	1540 U		
SV0C ²	2,4-Dinitrophenol	µg/kg			-	-		2650 U	2500 U	3080 U		
SV0C ²	2,4-Dinitrotoluene	µg/kg						664 U	626 U	769 U		
SV0C ²	2,6-Dinitrotoluene	µg/kg		-	_			664 U	626 U	769 U		
SV00 ²	2-Butanone (MEK)							1330 U	1250 U	1540 U		
SV0C ²	2-Chloronaphthalene	µg/kg µg/kg			-			438 U	413 U	508 U		
SV0C ²	2-Chlorophenol			-	-			438 U	413 U	508 U		
-		µg/kg		-	-	-						
SVOC ²	2-Methylnaphthalene	µg/kg		-		-		455	413 U	508 U		
SVOC ²	2-Nitroaniline	µg/kg		-		-		438 U	413 U	508 U		
SVOC ²	2-Nitrophenol	µg/kg		-	-	-	-	438 U	413 U	508 U		
SVOC ²	3-Nitroaniline	µg/kg		_	- '	-	-	1330 U	1250 U	1540 U		
SVOC ²	4,6-Dinitro-2-Methylphenol	µg/kg		_		-	-	1330 U	1250 U	1540 U		
SVOC ²	4-Bromophenyl phenyl ether	µg/kg		_		-	-	438 U	413 U	508 U		
SVOC ²	4-Chloro-3-Methylphenol	µg/kg		_		-	-	438 U	413 U	508 U		
SV0C ²	4-Chloroaniline	µg/kg				-	-	2650 U	2500 U	3080 U		
SV0C ²	4-Chlorophenyl-Phenylether	µg/kg				-	-	438 U	413 U	508 U		
SV0C ²	4-Methyl-2-Pentanone (Methyl isobutyl ketone)	µg/kg				-	-	438 U	413 U	508 U		
SV0C ²	4-Nitroaniline	µg/kg					-	438 U	413 U	508 U		
SV0C ²	4-Nitrophenol (p-Nitrophenol)	µg/kg						1330 U	1250 U	1540 U		
SV0C ²	Acenaphthene	µg/kg						438 U	413 U	508 U		
SV0C ²	Acenaphthylene	µg/kg				-		438 U	413 U	508 U	-	
SV0C ²	Anthracene	µg/kg						438 U	413 U	508 U		
SV0C ²	Benzo(a)anthracene	µg/kg						438 U	413 U	508 U		
SV0C ²	Benzo(b)fluoranthene	µg/kg		-				438 U	413 U	508 U		
SV0C ²	Benzo(ghi)perylene	µg/kg		-				438 U	413 U	508 U		
SV0C ²	Benzo(k)fluoranthene	µg/kg				-		438 U	413 U	508 U		
SV0C ²	Benzoic Acid	µg/kg						1330 U	1250 U	1540 U		
SV0C ²	Benzyl Alcohol	µg/kg		-				1330 U	1250 U	1540 U		
SV00 ²	Bis(2-Chloroethoxy)Methane	µg/kg		F				438 U	413 U	508 U		
SV00	Bis(2-Chloroethyl)Ether	µg/kg		F				438 U	413 U	508 U		
SV0C ²	Bis(2-Ethylhexyl) Phthalate	µg/ kg µg/kg		F				2650 U	2500 U	3080 U		
SV0C ²	Butyl benzyl phthalate	µg/ kg µg/ kg		F				438 U	413 U	508 U		
SVOC ²								438 U	413 U	508 U		
SVOC SVOC ²	Chrysene	µg/kg		F								
	Dibenzo(a,h)anthracene	µg/kg		F				438 U	413 U	508 U		
SVOC ²	Dibenzofuran	µg/kg		F				438 U	413 U	508 U		
SVOC ²	Dibutyl phthalate	µg/kg		ļ				1330 U	1250 U	1540 U		
SVOC ²	Diethyl phthalate	µg/kg		Ļ				438 U	413 U	508 U		
SVOC ²	Dimethyl phthalate	µg/kg						438 U	413 U	508 U		

			MTCA ⁴ A ULU Cleanup	Sample Name Sample Date and Time	DP-23-2.5-111511 11/15/2011 11:25 AM	DP-24-7.0-111511 11/15/2011 12:25 PM	DP-25-2.5-111511 11/15/2011 12:35 PM	DP-25-6.0-111511 11/15/2011 12:40 PM	DP-26-2.5-111511 11/15/2011 1:15 PM	DP-26-8.0-111511 11/15/2011 1:25 PM	DP-32-4.0-111611 11/16/2011 9:50 AM	DP-34-6.0-111611 11/16/2011 11:25 AM
Analyte Group	Analyte	Unit	Level	Depth	2.5 feet	7 feet	2.5 feet	6 feet	2.5 feet	8 feet	4 feet	6 feet
	Di-N-Octyl Phthalate	µg/kg			-			438 U	413 U	508 U		-
SVOC ²	Fluoranthene	µg/kg						438 U	413 U	508 U		
SVOC ²	Fluorene	µg/kg						438 U	413 U	508 U		
SVOC ²	Hexachlorobenzene	µg/kg						438 U	413 U	508 U		
SVOC ²	Hexachlorobutadiene	µg/kg				-		1330 U	1250 U	1540 U		
SVOC ²	Hexachlorocyclopentadiene	µg/kg						1330 U	1250 U	1540 U		
SVOC ²	Hexachloroethane	µg/kg						1330 U	1250 U	1540 U		
SVOC ²	Indeno(1,2,3-cd)pyrene	µg/kg				-	-	438 U	413 U	508 U	-	
SVOC ²	Isophorone	µg/kg			-	-	-	438 U	413 U	508 U	-	-
SVOC ²	Naphthalene	µg/kg	5000		-			492	413 U	508 U		-
SV0C ²	Nitrobenzene	µg/kg			-			438 U	413 U	508 U		-
SV0C ²	N-Nitrosodi-n-propylamine	µg/kg			-	1		438 U	413 U	508 U		-
SV0C ²	N-Nitrosodiphenylamine	µg/kg	-			-		438 U	413 U	508 U		-
SV0C ²	o-Cresol (2-methylphenol)	µg/kg			-			438 U	413 U	508 U		
SV0C ²	Pentachlorophenol	µg/kg	_			-		1330 U	1250 U	1540 U		
SV0C ²	Phenanthrene	µg/kg			-	-	-	438 U	413 U	508 U	-	-
SV0C ²	Phenol	µg/kg	-		-	-		438 U	413 U	508 U		
SV0C ²	Pyrene	µg/kg			-	-		438 U	413 U	508 U		
PCB Aroclors ³	PCB-aroclor 1016	µg/kg			102 U	155 U	56.9 U	59 U	63.4 U	136 U	55.8 U	64.9 U
PCB Aroclors ³	PCB-aroclor 1221	µg/kg			102 U	155 U	56.9 U	59 U	63.4 U	136 U	55.8 U	64.9 U
PCB Aroclors ³	PCB-aroclor 1232	µg/kg			102 U	155 U	56.9 U	59 U	63.4 U	136 U	55.8 U	64.9 U
PCB Aroclors ³	PCB-aroclor 1242	µg/kg		4	102 U	155 U	56.9 U	59 U	63.4 U	136 U	55.8 U	64.9 U
PCB Aroclors ³	PCB-aroclor 1248	µg/kg			102 U	155 U	56.9 U	59 U	63.4 U	136 U	55.8 U	64.9 U
PCB Aroclors ³	PCB-aroclor 1254	µg/kg			102 U	155 U	56.9 U	59 U	63.4 U	136 U	55.8 U	64.9 U
PCB Aroclors ³	PCB-aroclor 1260	µg/kg			102 U	155 U	56.9 U	59 U	63.4 U	136 U	55.8 U	64.9 U
PCB Aroclors ³	PCB-aroclor 1268	µg/kg			102 U	155 U	56.9 U	59 U	63.4 U	136 U	55.8 U	64.9 U
 ²Semivolatile organi ³Polychlorinated bipl ⁴Washington State, I U indicates analyte Bold Value indicate 	conducted by TestAmerica Laboratory in Spokane, c compounds (SVOC) were analyzed using EPA 82 henyls (PCB) were analyzed using EPA 80802 Met Model Toxics Control Act (MTCA) Method A cleanu was not detected at the reporting limit shown on es detection greater than reporting limit. Shading indicates non-detected value was greate	70C methoc hod. o levels. the summar	l. y table.									


Notes:

Outline indicates value was greater than cleanup level

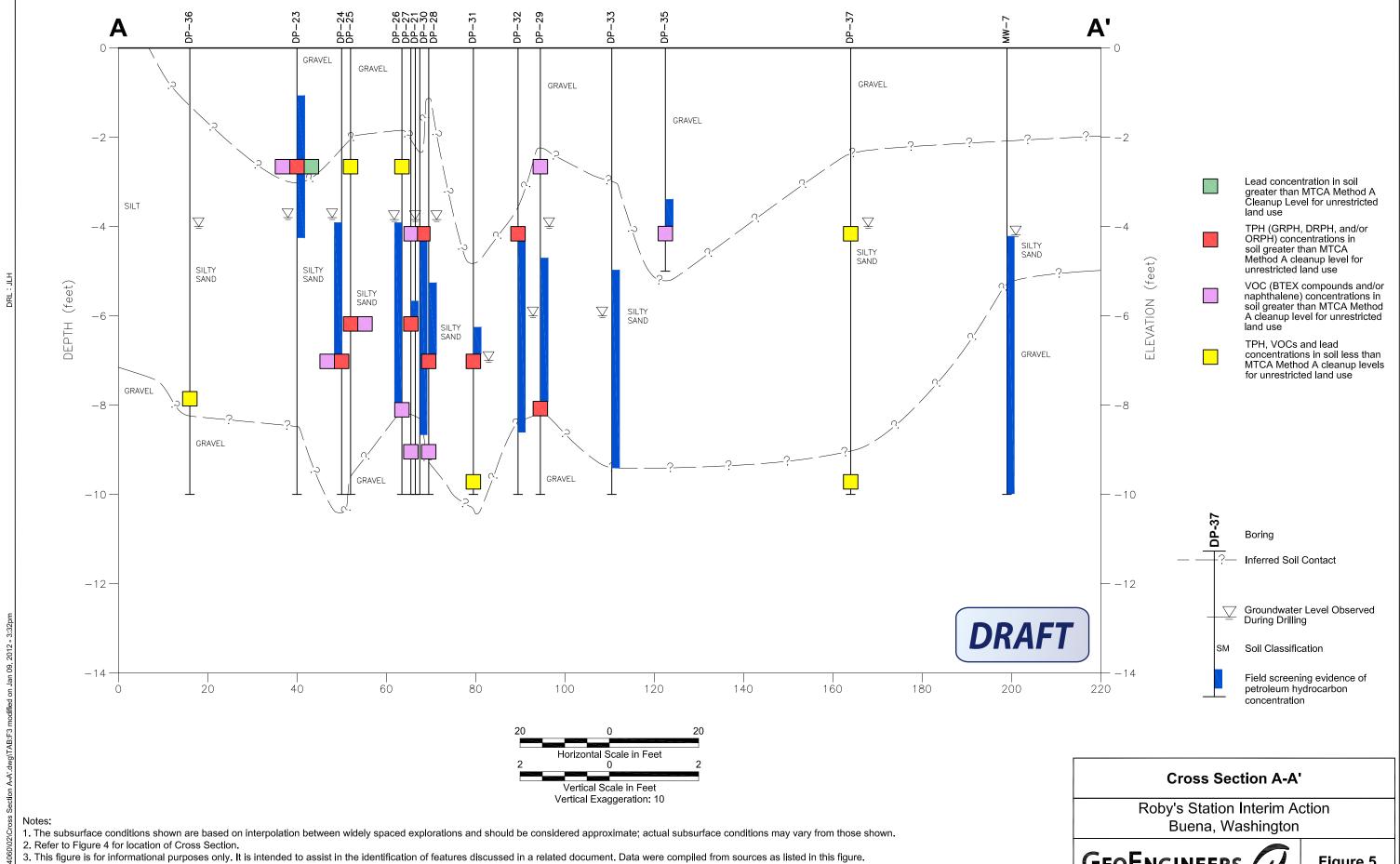
µg/kg = microgram per kilogram

https://projects.geoengineers.com/sites/0050406002/Draft/DraftDataTables/[0504-060-02 Tables.xlsx]Table 6

Map Revised: 1/10/2012 CRC

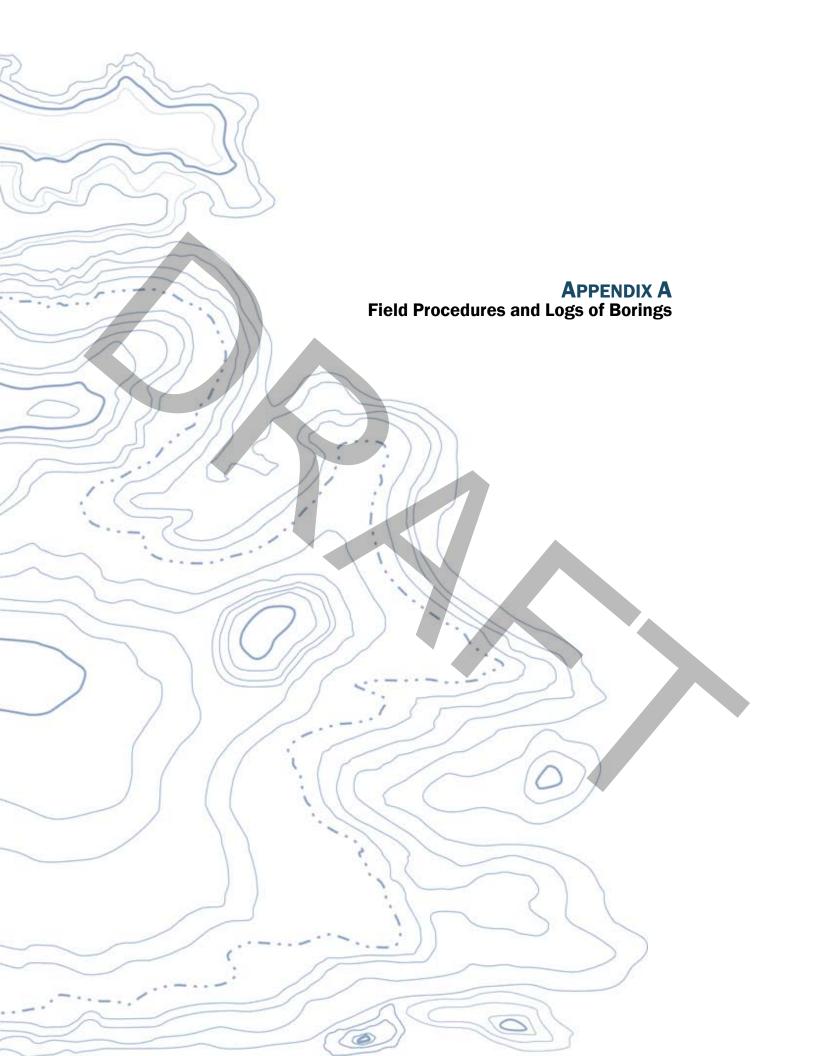
Office: SPO W:\Spokane\Projects\0\0504060\GIS\050406002_SP_F2.mxd

-3 MW MW-13 790.71 790.61 Harper Ln MW-2 DP MŴ-1 790.69 790.63 Fred Dill's \mathbf{C} **MW-4** Property 790.61 DP-4 DP-2 DF MW-14 790.60 MW-5 791.42 ● MW-6 Roby 790.59 Property ŴW-789.51 15 89-28 12 MW-9 786.95 MW-10 785.28 MW-16 C 785.63 MW-17 785.39 DP-5 Gold Nugget DP-7 Market & Cafe DP-8 DP-6 MW-18 784.77 DRAFT MW-1 Monitoring Well Number, Approximate Location and 790.63 Groundwater Elevation on July 25 and 26, 2010 DP-Direct Push Boring Number and Approximate Location 300 Groundwater Level Elevation Contour (dashed where inferred) Feet Groundwater Elevations, Groundwater Flow Direction July 25 and 26, 2010 Notes: 1. The locations of all features shown are approximate. **Buena LUST Site** 2. This drawing is for infomation purposes. It is intended to assist Buena, Washington in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, GEOENGINEERS / Inc. and will serve as the official record of this communication. Figure 3 3. Based on July 25 & 26, 2010 groundwater level measurements. Path: Reference: ESRI I3 Imagery (2006), ESRI Streets & Maps.


Map Revised: 7/29/2010, CRC

\\spo\Projects\0\0504060\GIS\05040600_F3_GroundwaterElevations.mxd

Map Revised: 01/09/2012 CRC


\Spokane\Projects\0\0504060\GIS\050406002_ExcavationArea_F4.mxd ≥ SPO

The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The master hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.

GEOENGINEERS

Figure 5

APPENDIX A FIELD PROCEDURES AND LOGS OF BORINGS

Field Explorations

Prior to completion of the explorations, GeoEngineers contacted the One-Call Utility Notification Center in accordance with Washington State law. In addition, GeoEngineers subcontracted Advanced Underground Locating, Inc., an underground utility location subcontractor to locate onsite utilities in advance to drilling activities.

Following clearance of utilities, subsurface conditions at the Site were explored on November 15 and 16, 2011 by advancing 18 direct-push borings (DP-20 through DP-37) and collecting soil and groundwater samples. The approximate exploration locations are shown in Figure 2. Note that direct-push borings DP-1 through DP-19 were advanced at other locations within the town of Buena, and are not included in this document.

Soil Sampling from Borings

Soil borings were completed using direct-push drilling techniques by a licensed driller. The directpush drilling samples were obtained continuously using 4-foot-long, 1-inch-diameter acrylic sleeves.

Each boring was continuously monitored by a geologist from our firm who observed and classified the soil encountered, and prepared a detailed log of each boring. Soil encountered in the borings was classified in the field in general accordance with ASTM International (ASTM) D-2488, the Standard Practice for Classification of Soils, Visual-Manual Procedure, which is summarized in Figure A-1. Logs of the direct-push borings are provided in Figures A-2 through A-19. Preservation of VOC samples was completed in accordance with Ecology Memo 5, document number 04-09-087. Sample containers were labeled and placed into an ice chest containing ice/ice packs. Soil samples for VOCs analyses were obtained consistent with EPA Method 5035A. Chain-of-custody procedures were followed during transport of the soil samples.

Sampling equipment was decontaminated between each sampling attempt for either drilling method. Samples were obtained using either a decontaminated soil knife or new, clean nitrile glove and placed into 4-ounce glass sample jars with Teflon lids.

Samples were placed in a cooler with ice and delivered to the analytical laboratory; standard chainof-custody procedures were observed during transport of the samples to the laboratory.

Field Screening Methods

A GeoEngineers field geologist performed field screening tests on selected soil samples from the explorations. Field screening results were used to aid in the selection of soil samples for chemical analysis. Screening methods included (1) visual examination and (2) water sheen screening. Note that the photo-ionization detector (PID) malfunctioned during field activities, and its use was discontinued.

January 11, 2012 | Page A-1 File No. 0504-060-02

Groundwater Sampling

Groundwater samples were collected at select borings. At the completion of drilling, the steel casing was removed and a temporary PVC well screen was installed in the bore-hole. Groundwater samples were obtained using low-flow purging methods. The groundwater samples were transferred in the field to laboratory-prepared sample containers and kept cool during transport to the testing laboratory. Water quality parameters were recorded during sampling and are presented in Table A-1. The sample containers were filled completely to eliminate headspace in the container. Chain-of-custody procedures were observed from the time of sample collection to delivery to the testing laboratory. The intent of the groundwater samples was to provide semi-quantitative data regarding groundwater contamination at the site. Standard water quality target parameters were not achieved during groundwater sampling from temporary well screens.

Decontamination Procedures

The objective of the decontamination procedure is to minimize the potential for crosscontamination between sample locations.

A designated decontamination area was established for decontamination of drilling equipment and reusable sampling equipment. Drilling equipment was cleaned using high-pressure/low-volume cleaning equipment.

Sampling equipment was decontaminated in accordance with the following procedures before each sampling attempt or measurement.

- 1. Brush equipment with a nylon brush to remove large particulate matter.
- 2. Rinse with potable tap water.
- 3. Wash with non-phosphate detergent solution (Liquinox® and potable tap water).
- 4. Rinse with potable tap water.
- 5. Rinse with distilled water.

Handling of Investigation-Derived Waste

Investigation Derived Waste (IDW), which consists of mainly drill cuttings and decontamination/purge water, was placed in DOT-approved 55-gallon drums. Each drum was labeled with the project name, exploration number, general contents, and date. The drummed IDW was stored on-site pending analysis and disposal.

Disposable items, such as sample tubing, disposable bailers, bailer line, gloves and protective overalls, paper towels, etc., were placed in plastic bags after use and deposited in trash receptacles for disposal.

Table A-1

Summary of Field Groundwater Quality Parameters

Roby's Station Buena, Washington

Sample Number	Date Sampled	рН	Specific Conductivity (mS/m)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	ORP (mV)
DP-23	11/15/11	6.35	0.71	>1,000	0.30	15.1	-80
DP-26	11/15/11	6.42	0.76	850	0.40	14.7	-69
DP-33	11/16/11	6.96	1.1	>1,000	0.40	14.1	-131
DP-34	11/16/11	6.74	0.80	710	0.40	13.9	-90
DP-37	11/16/11	7.02	0.80	93	0.50	14.2	-105

https://projects.geoengineers.com/sites/0050406002/Draft/DraftDataTables/[Table A-1.xlsx]Sheet1

	SO	IL CLASSI	FICATIO	ON CH	ART	ADD
М	AJOR DIVIS	IONS	-	BOLS	TYPICAL DESCRIPTIONS	SY GRAF
	GRAVEL	CLEAN GRAVELS	000		WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES	
COARSE GRAINED	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES	
SOILS	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES	
MORE THAN 50%	CAND	CLEAN SANDS		sw	WELL-GRADED SANDS, GRAVELLY SANDS	
RETAINED ON NO. 200 SIEVE	SAND AND SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND	▼
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES	$\overline{\nabla}$
	PASSING NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES	$\overline{\mathbf{v}}$
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY	
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
SOILS	OLATO		h	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	
MORE THAN 50% PASSING NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	
	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	M
			Anh	он	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	
HI	GHLY ORGANIC	SOILS		РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS	
OTE: Multiple	Sample	sed to indicate bo	escript		lassifications	%F AL
		inch I.D. split		(CDT)		CA CP CS
		elby tube		. (51 1)		DS HA MC
	Pis	-			×	MD OC
	Dire	ect-Push				PM PP
	Bul	k or grab				SA TX UC
of blo	ows required nce noted).	orded for drive to advance s See exploratio	ampler ¹ 1	2 inches	(or	VS NS
	· indicates sa	ampler pushe	d using tl	he weigh	t of the	SS MS HS NT
drill r	ig.		-	_	and the logs of explorations fo	NT

IONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL		
GRAPH	LETTER	DESCRIPTIONS		
	СС	Cement Concrete		
	AC	Asphalt Concrete		
	CR	Crushed Rock/ Quarry Spalls		
	TS	Topsoil/ Forest Duff/Sod		

- Measured groundwater level in exploration, well, or piezometer
- Groundwater observed at time of exploration
- Perched water observed at time of exploration
- Measured free product in well or piezometer

Graphic Log Contact

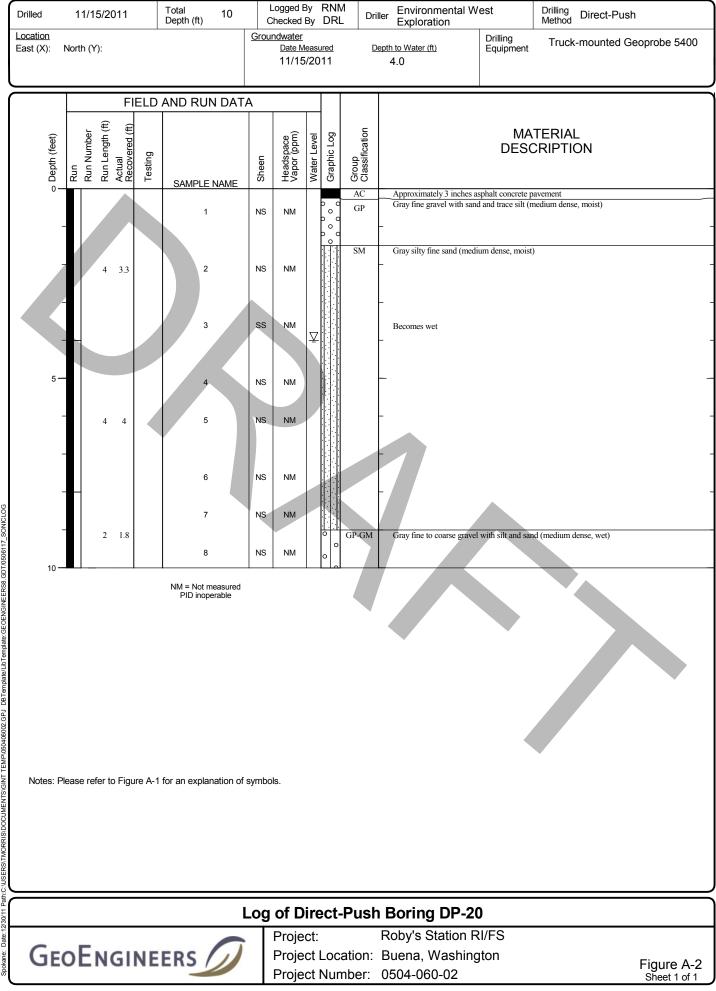
- Distinct contact between soil strata or geologic units Approximate location of soil strata
- change within a geologic soil unit

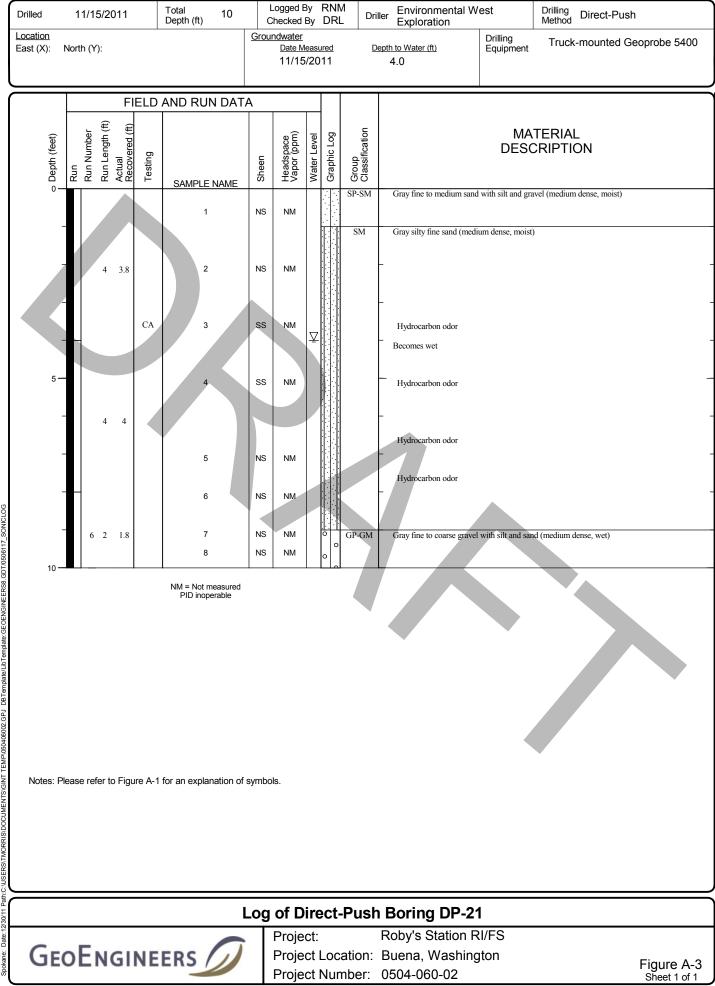
erial Description Contact

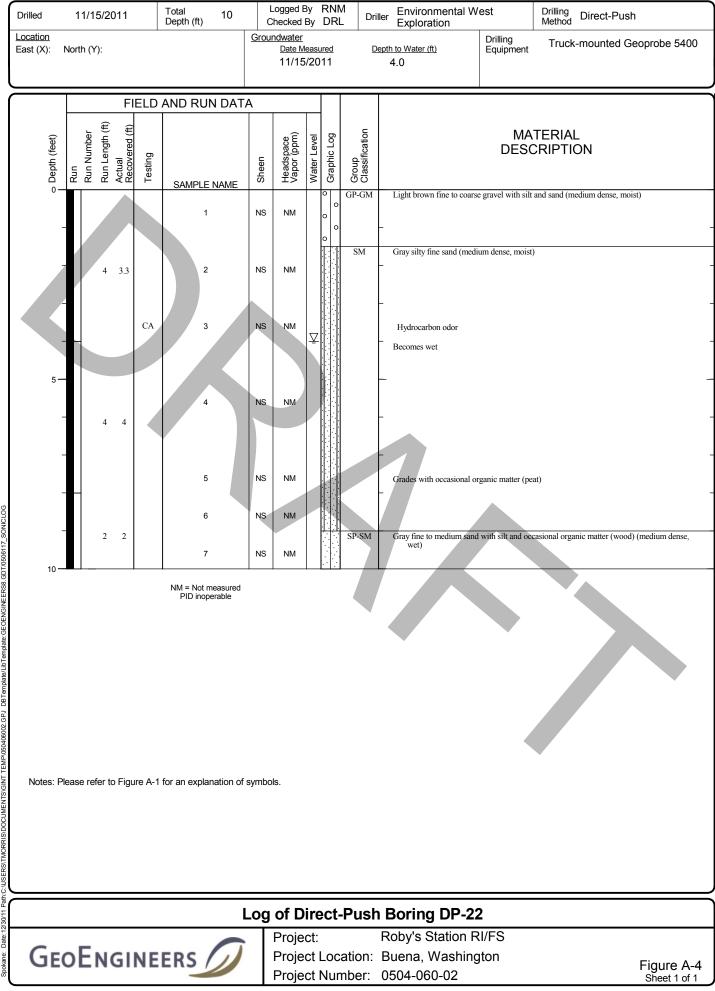
- Distinct contact between soil strata or geologic units
- Approximate location of soil strata change within a geologic soil unit

Laborator	<u>y /</u>	Field	<u>Tests</u>
	_		

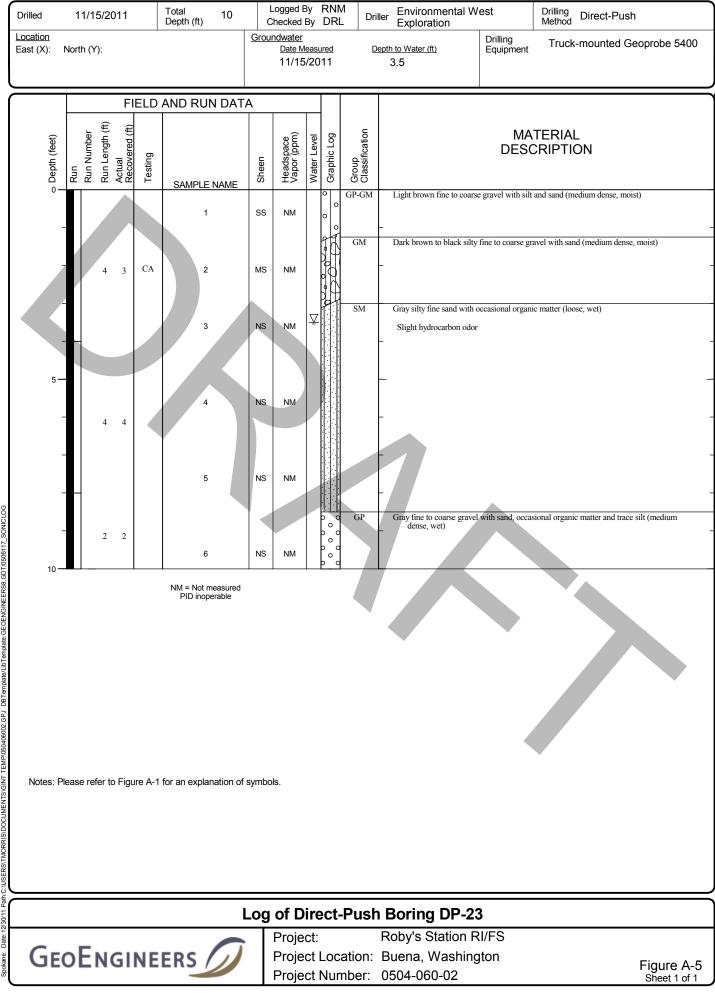
Percent fines

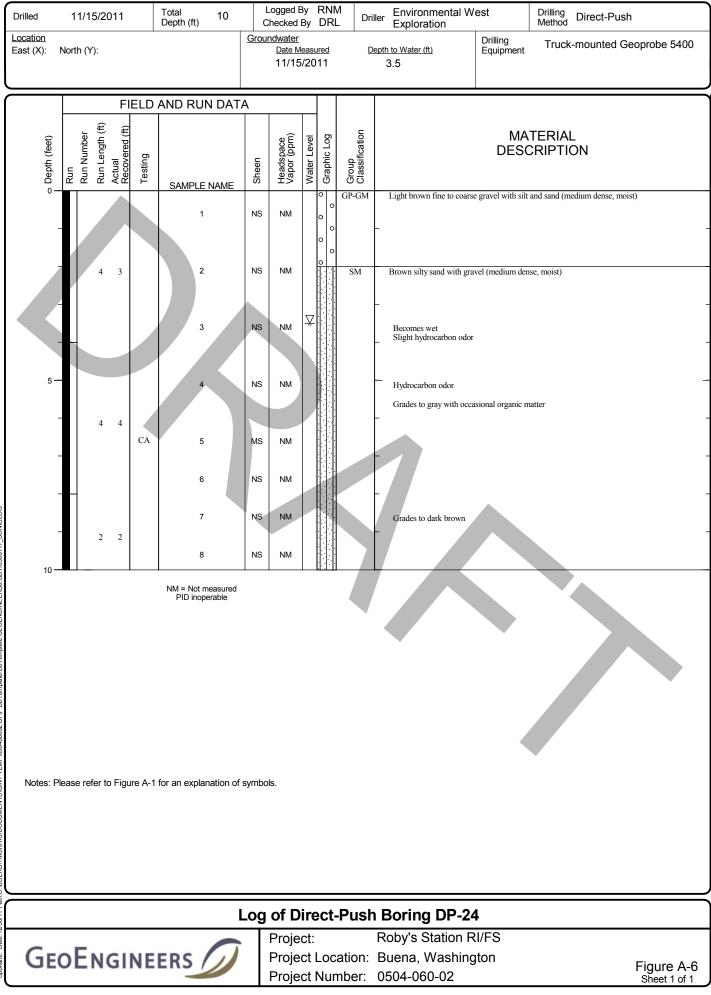

- Atterberg limits
- Chemical analysis
- Laboratory compaction test
- **Consolidation test**
- **Direct shear**
- Hydrometer analysis
- Moisture content
- Moisture content and dry density Organic content
- Permeability or hydraulic conductivity
- Pocket penetrometer
- Sieve analysis
- Triaxial compression
- Unconfined compression
- Vane shear

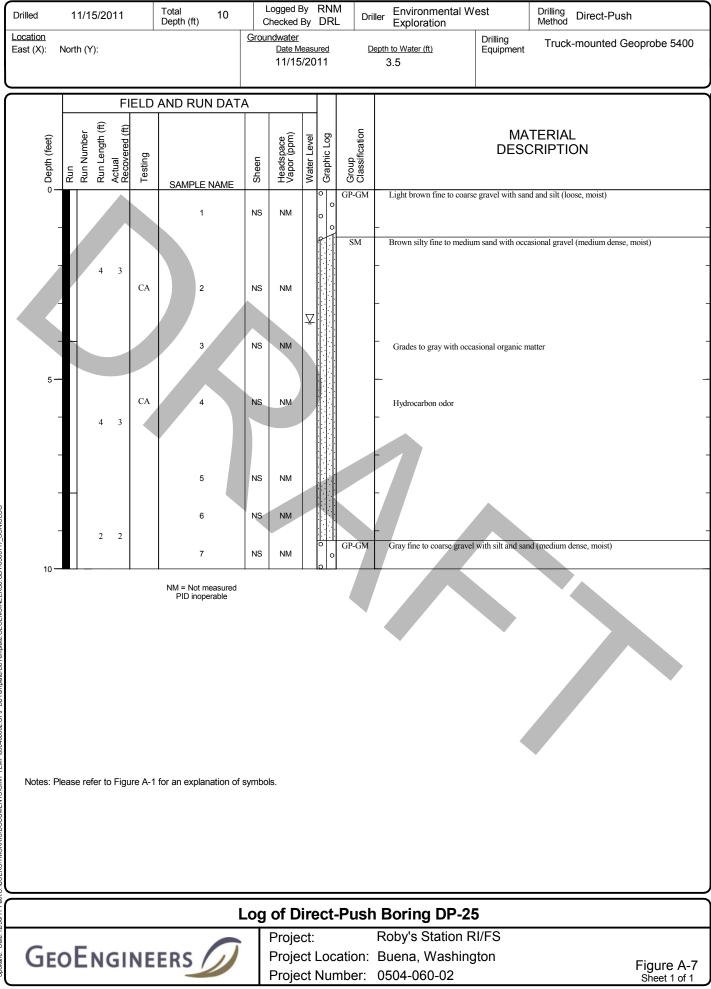

Sheen Classification


- No Visible Sheen
- Slight Sheen Moderate Sheen
- Heavy Sheen
- Not Tested

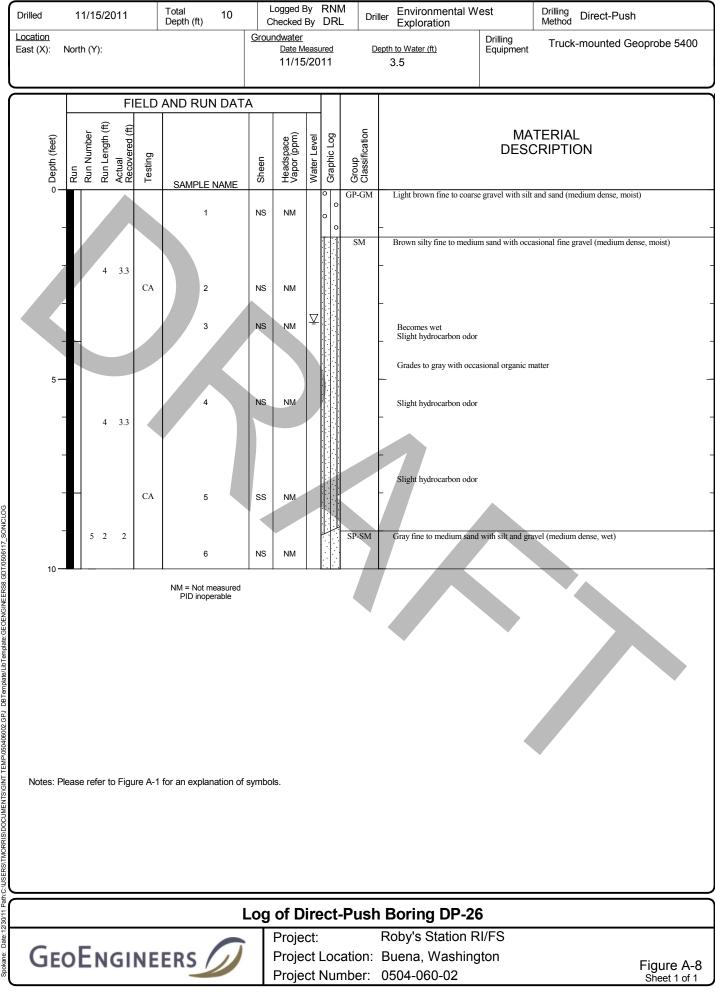
erstanding of subsurface conditions. nade; they are not warranted to be


KEY TO EXPLORATION LOGS GEOENGINEERS / **FIGURE A-1**

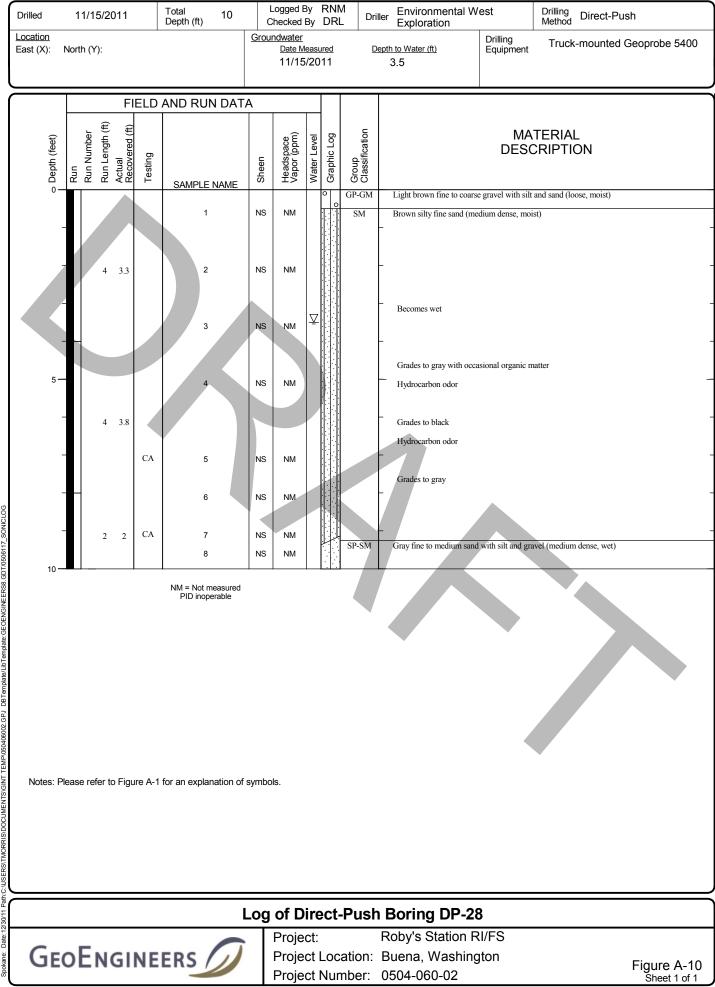


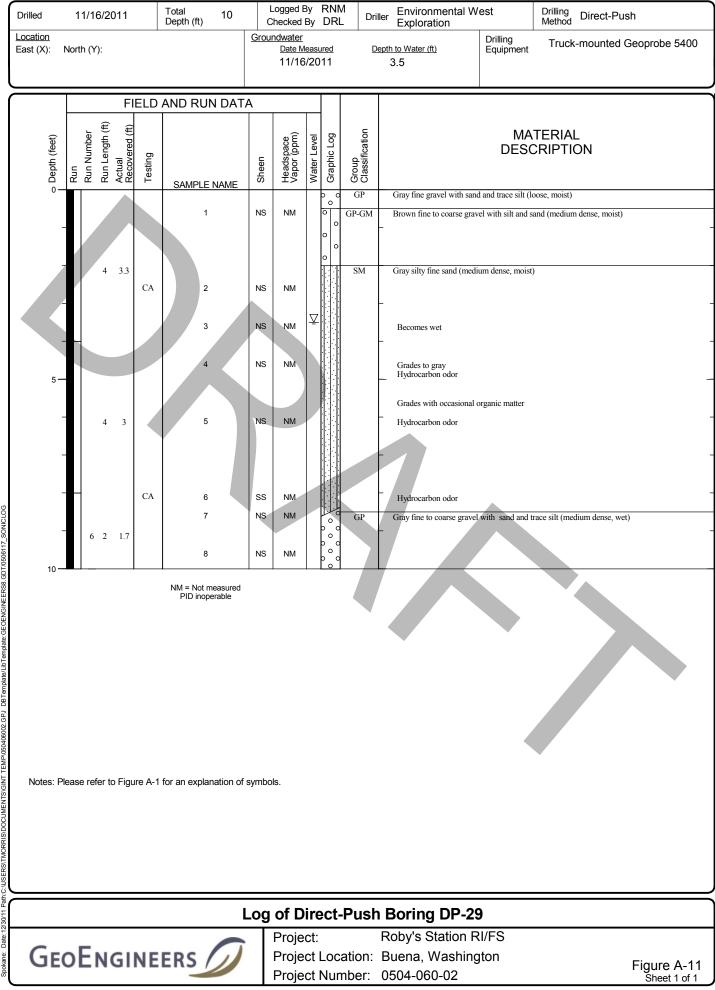


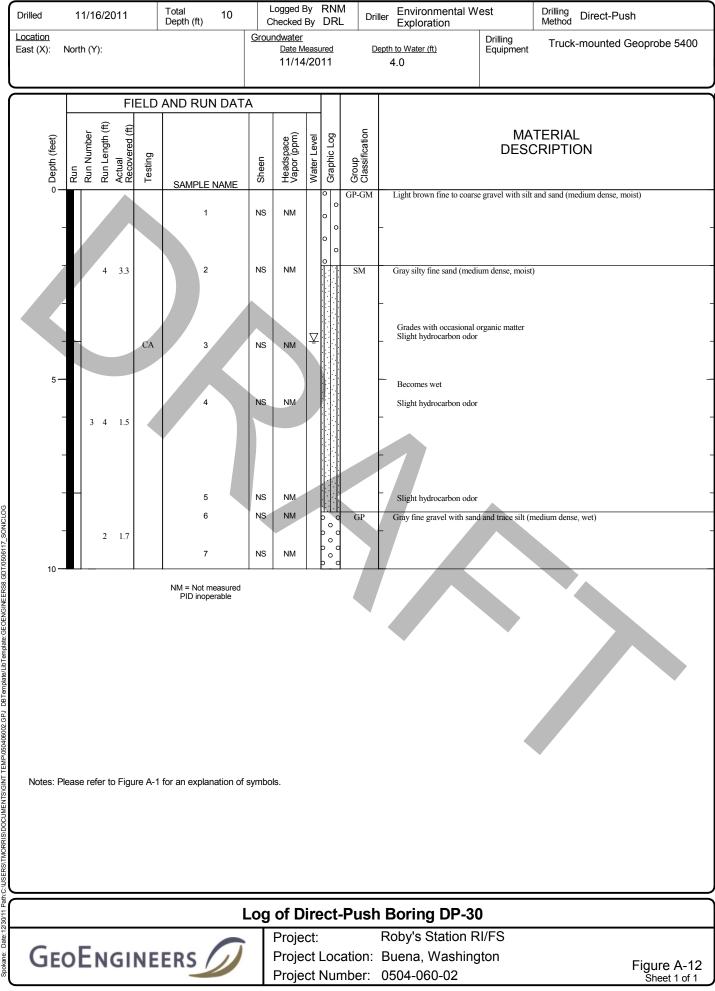
406002.GPJ Date:

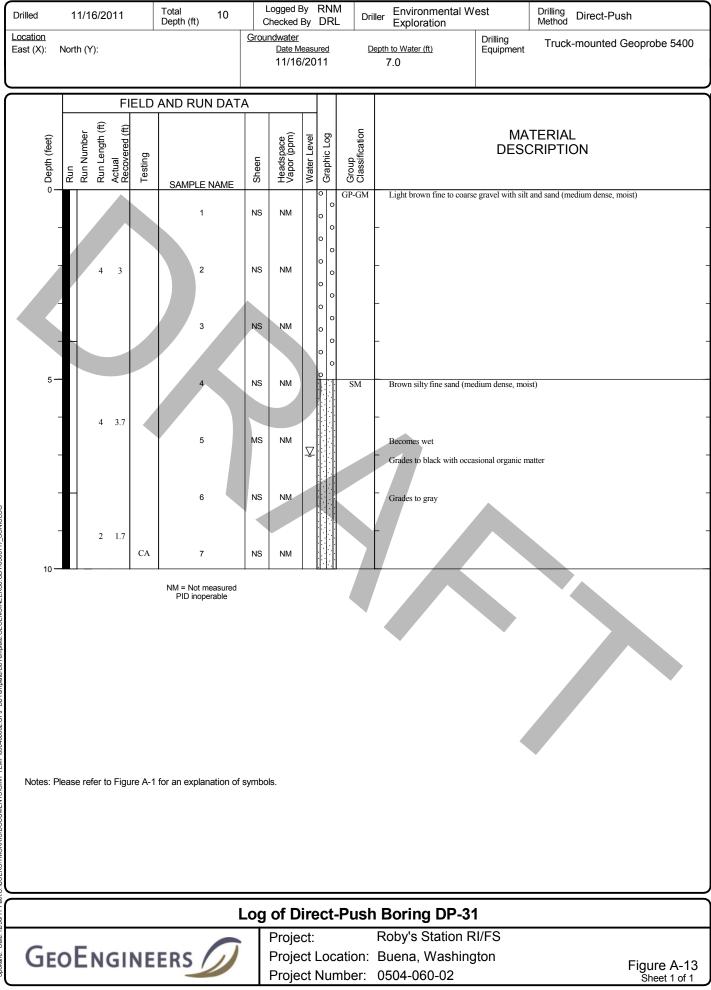


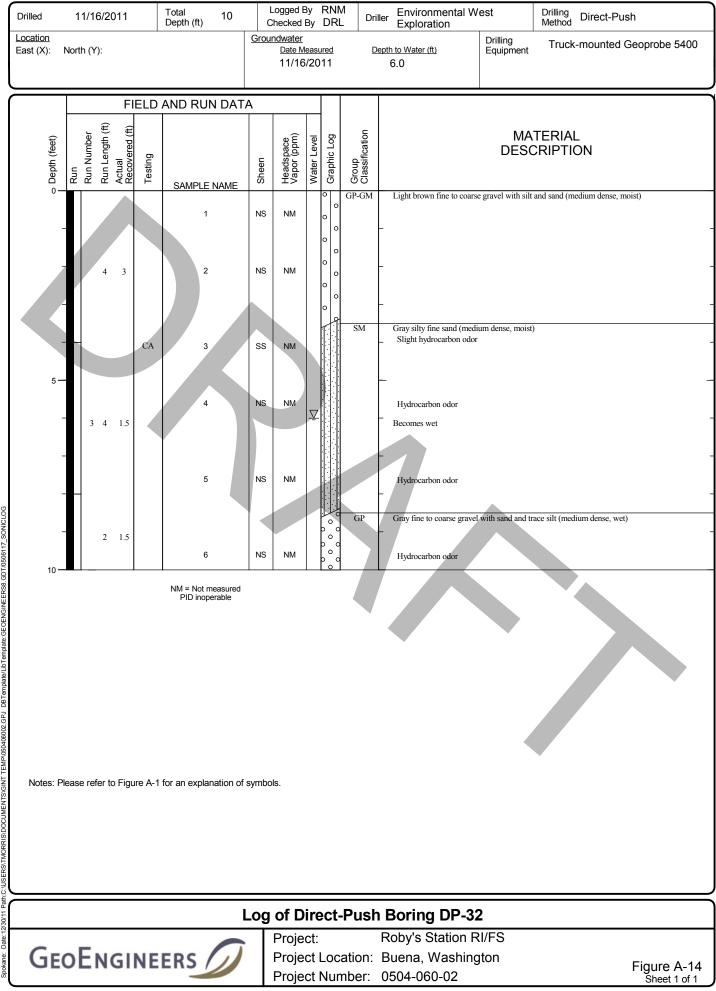

ookane: Date:123011 Path.C.USERS\TMORRIS\DOCUMENTS\GINT TEMP\050405002.GPJ DBTemplate\LbTemplate\GEOENGINEERS8.GDT/0506117_SONICLOG

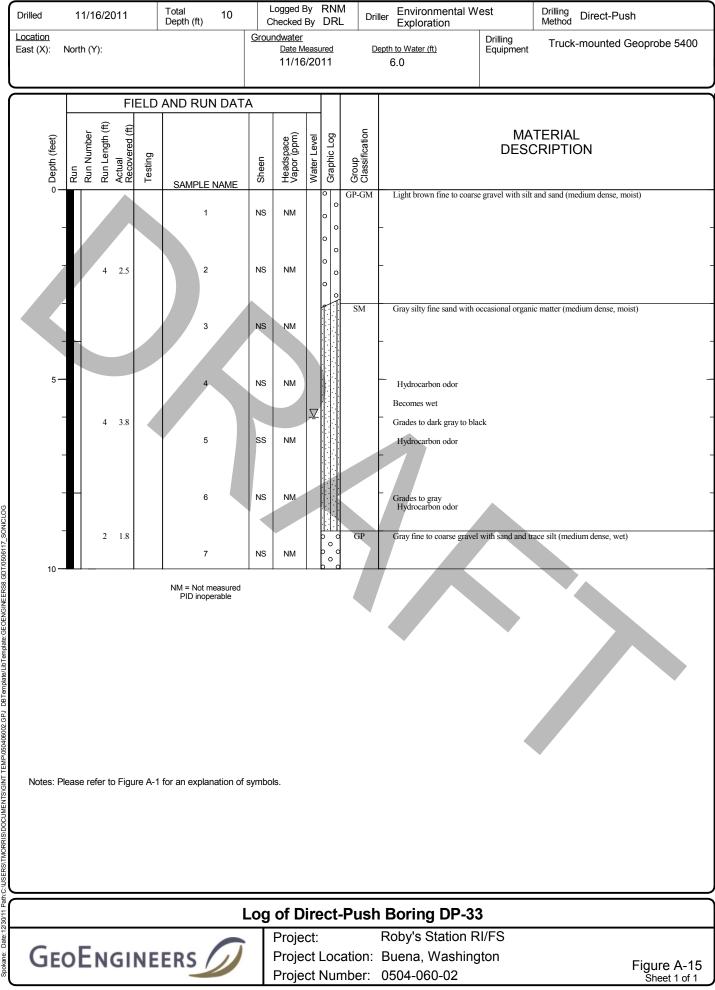


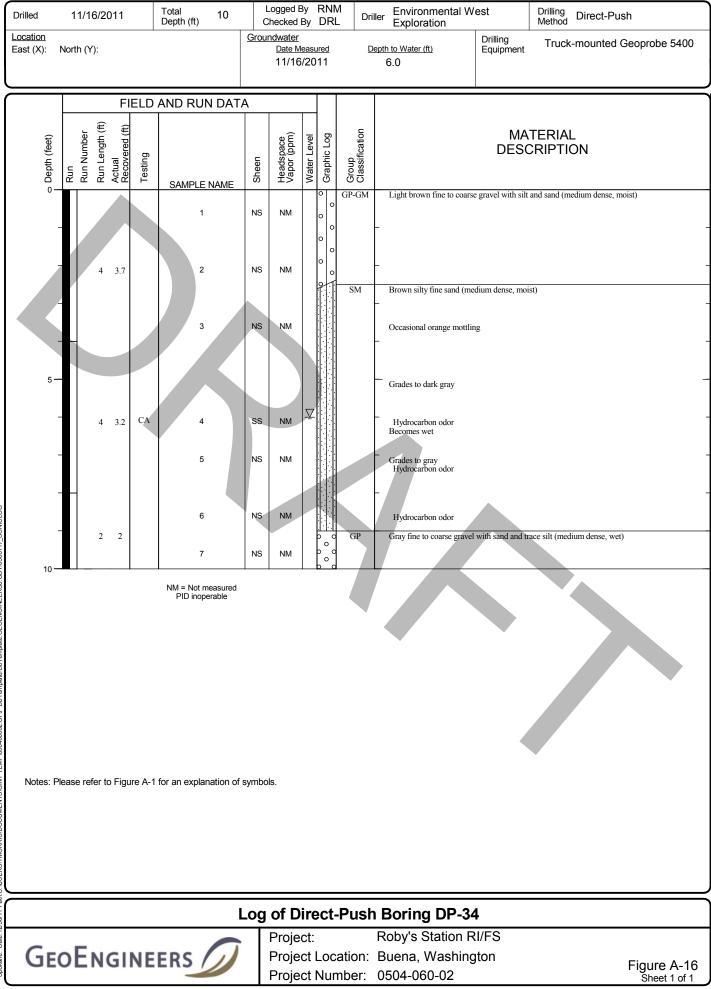

pokane: Date:1230/11 Path.C:USERSITMORRISIDOCUMENTSIGINT TEMP050406002.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT0506117_SONICLOG

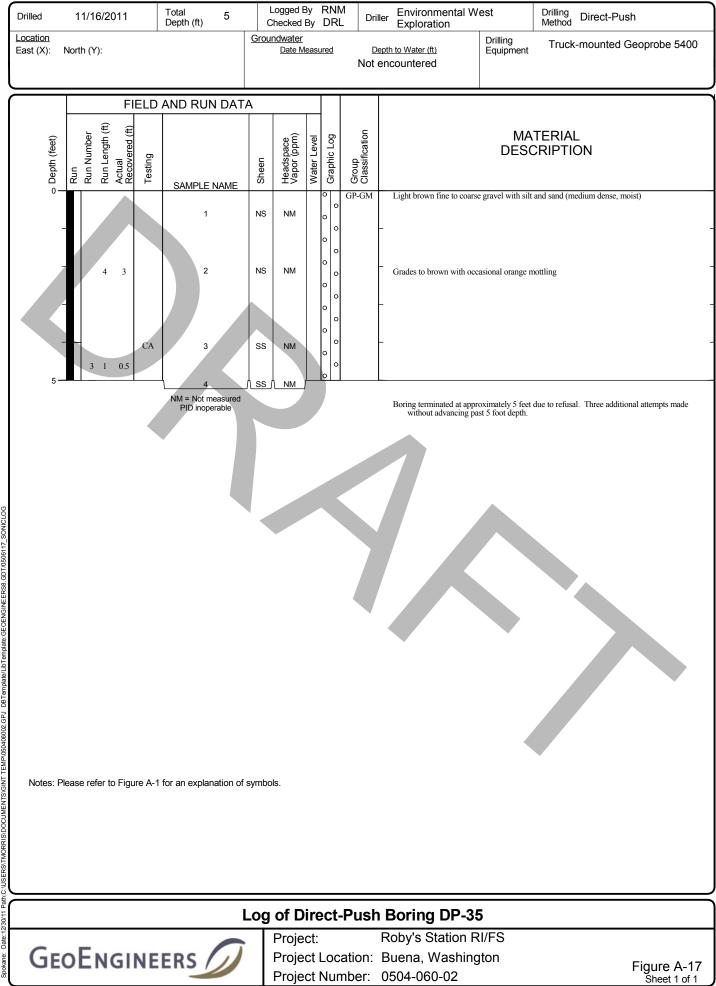


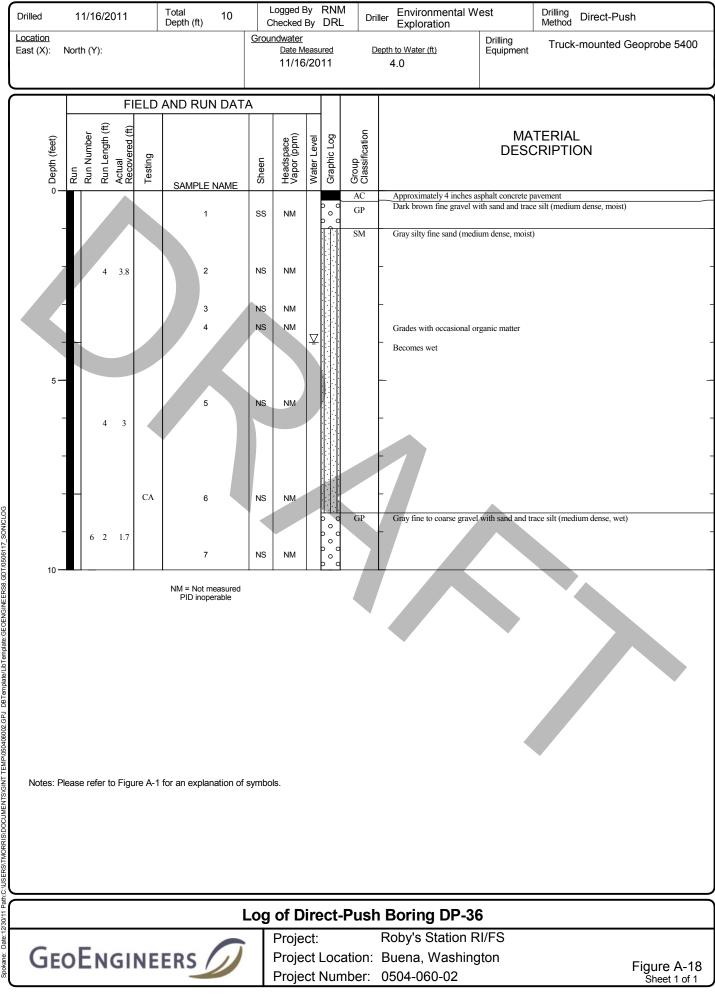

406002.GPJ Date:

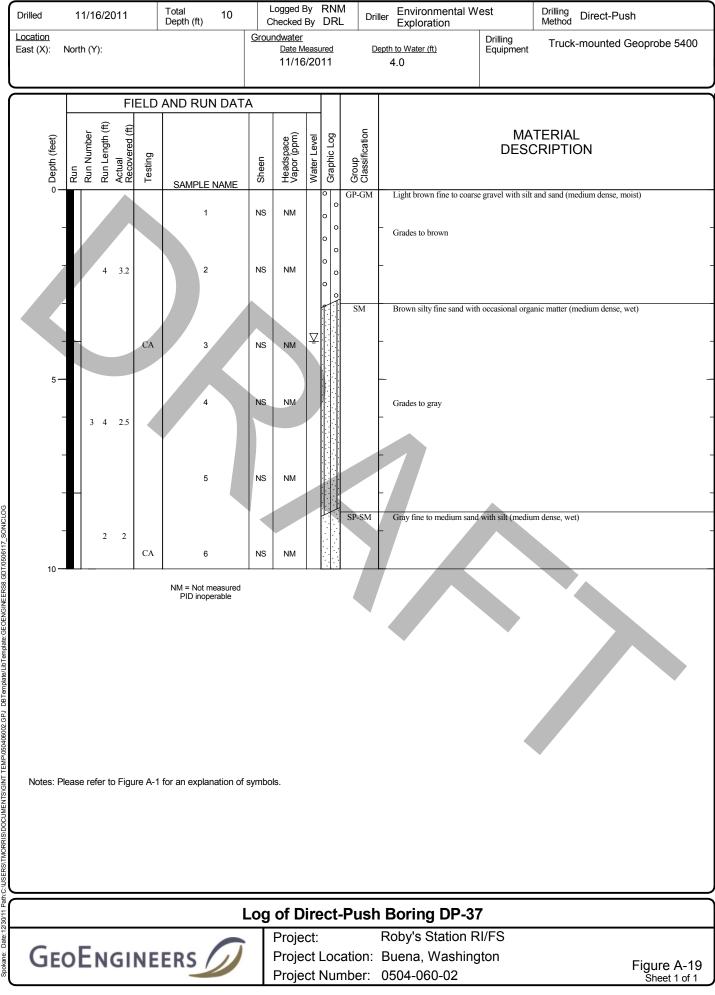


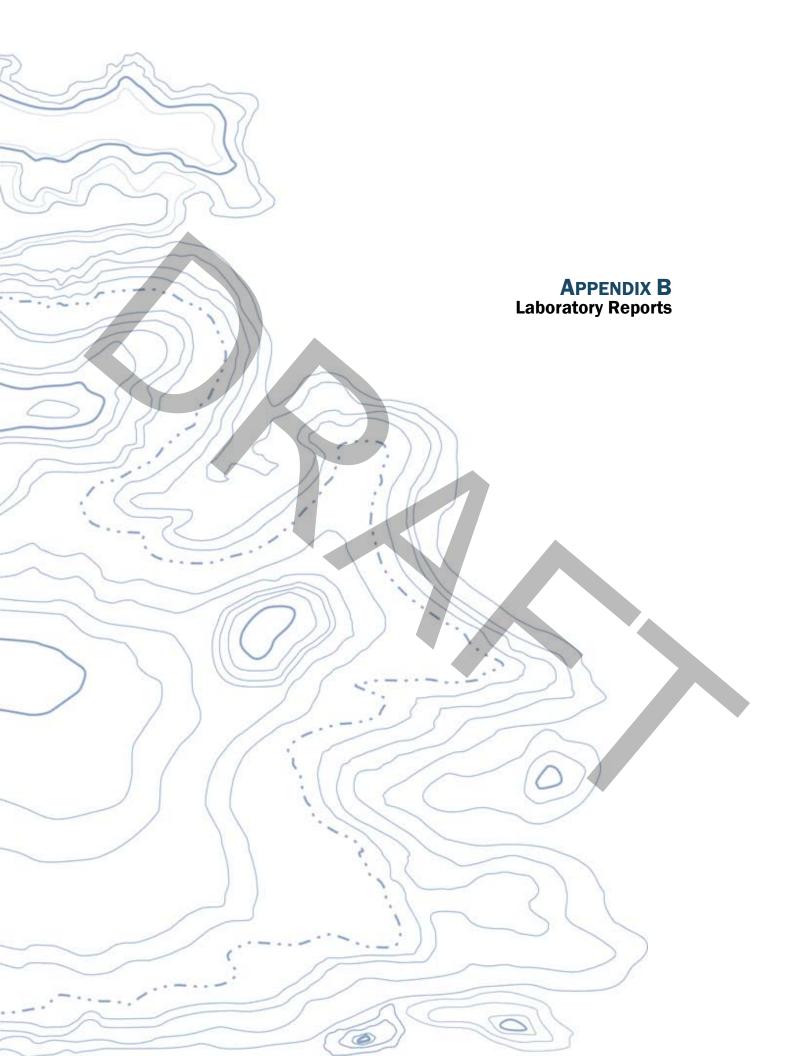





okane: Date:1230/11 Path:C:USERS\TMORRISDOCUMENTS\GINT TEMP\050406002.GPJ DBTemplate/LibTemplate.CEOENGINEERS8.GDT/0506117_SONICLOG





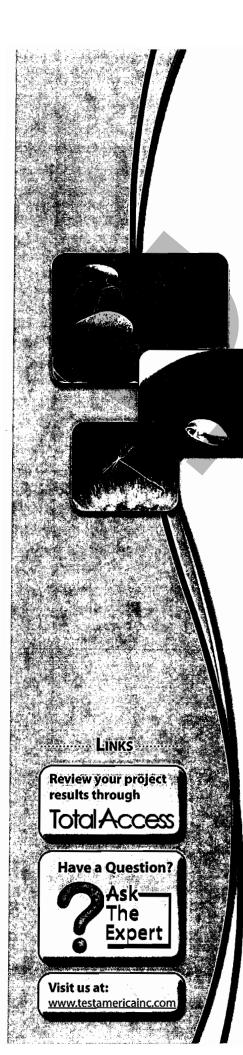

Spokare: Date:1230/11 Path.C:USERSITMORRISIDOCUMENTS/GINT TEMP/050406002.GPJ DBTemplate/LibTemplate/GEOENGINEERS8.GDT/0506117_SONICLOG

GDT/05061 E TEMP\050406002.GPJ **FS/GINT** NDOCUMEN 12/30/1 kane: Date:

APPENDIX B LABORATORY REPORTS

Chemical Analytical Data

Chain-of-custody procedures were followed during the transport of the field samples to the accredited analytical laboratory. The samples were held in cold storage pending extraction and/or analysis. The analytical results and quality control records are included in this appendix. Some of the samples were collected in unpreserved containers. Therefore, some of the analytical testing indicated on the chain-of-custody were eliminated based on coordination with the analytical laboratory.


Analytical Data Review

The laboratory maintains an internal quality assurance program as documented in its laboratory quality assurance manual. The laboratory uses a combination of method blanks, trip blanks, lab control samples, surrogate recoveries, duplicates, matrix spike recoveries, matrix spike duplicate recoveries, blank spike recoveries and blank spike duplicate recoveries to evaluate the analytical results. The laboratory also uses data quality goals for individual chemicals or groups of chemicals based on the long-term performance of the test methods. The data quality goals were included in the laboratory reports. The laboratory compared each group of samples with the existing data quality goals and noted any exceptions in the laboratory report. Data quality exceptions documented by the accredited laboratory were reviewed by GeoEngineers and are addressed in the data quality exception section of this appendix.

Data Quality Exception Summary

According to the laboratory, several qualifiers were reported, including surrogate recoveries being above acceptance limits due to matrix interference. Some of the analytical results were qualified as semi-quantitative because the analyte was detected at a concentration between the reporting limit and the detection limit. It is our opinion that the analytical data are of acceptable quality for their intended use.

<u>TestAmerica</u>

1

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SUK0108 Client Project/Site: 0504-060-02 Client Project Description: Roby's Station - Buena

For: Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202

Attn: Dave Lauder

tandelles 01

Authorized for release by: 1/6/2012 1:55:47 PM

Randee Decker Project Manager Randee.Decker@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: SUK0108

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	6
QC Sample Results	42
Certification Summary	67
Method Summary	69
Chain of Custody	70

11. 2

Sample Summary

TestAmerica Job ID: SUK0108

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
SUK0108-03	DP-21-4.0-111511	Soil	11/15/11 10:35	11/18/11 15:30
SUK0108-05	DP-23-2.5-111511	Soil	11/15/11 11:25	11/18/11 15:30
SUK0108-06	DP-23-111511	Water	11/15/11 12:10	11/18/11 15:30
SUK0108-07	DP-24-7.0-111511	Soil	11/15/11 12:25	11/18/11 15:30
SUK0108-08	DP-25-2.5-111511	Soil	11/15/11 12:35	11/18/11 15:30
SUK0108-09	DP-25-6.0-111511	Soil	11/15/11 12:40	11/18/11 15:30
UK0108-10	DP-26-2.5-111511	Soil	11/15/11 13:15	11/18/11 15:30
UK0108-11	DP-26-8.0-111511	Soil	11/15/11 13:25	11/18/11 15:30
UK0108-12	DP-26-111511	Water	11/15/11 13:55	11/18/11 15:30
UK0108-13	DP-27-6.0-111511	Soil	11/15/11 14:20	11/18/11 15:30
UK0108-14	DP-27-9.0-111511	Soil	11/15/11 14:25	11/18/11 15:30
UK0108-15	DP-28-7.0-111511	Soil	11/15/11 14:35	11/18/11 15:30
UK0108-16	DP-28-9.0-111511	Soil	11/15/11 14:40	11/18/11 15:30

Ĥ.

3

Definitions/Glossary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

Qualifiers

GCMS Volatile	es	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
M7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).	1
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	
Semivolatiles		
Qualifier	Qualifier Description	;
M1	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).	
۲1	The RPD between the primary and confirmatory analysis exceeded 40%. Per method 8000B, the higher value was reported.	ķ.
SG	Silica Gel clean-up performed on extracts.	Ę
х	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	1
:	Due to sample matrix effects, the surrogate recovery was below the acceptance limits.	
·····		
uels		
lualifier	Qualifier Description	
3	The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike concentration in the	
	sample was reduced to a level where the recovery calculation does not provide useful information.	
SC Volatiles		
ualifier	Qualifier Description	
18	The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).	
7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).	
4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.	
x	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	
GC Semivolati	les	
ualifier	Qualifier Description	
2	Surrogate recovery was above the acceptance limits. Data not impacted.	
X	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.	
letals		
ualifier	Qualifier Description	
danner	Analyte was detected in the associated Method Blank.	
SEA		
ualifier	Qualifier Description	
	Sample was prepped or analyzed beyond the specified holding time	
xtractions		
ualifier	Qualifier Description	
uaimer PS	Percent solids result provided to the TestAmerica Nashville laboratory.	
-0	רפונסות שטועש ופשעת שוטערע נט נוופ ו פשעתוופונכא ואמשוטווני ואשטומנטיץ.	
Blossary		
breviation	These commonly used abbreviations may or may not be present in this report.	
	Listed under the "D" column to designate that the result is reported on a dry weight basis	
R	Percent Recovery	
NF	Contains no Free Liquid	
L, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
), IVA, IVE, IN DL	Estimated Detection Limit	
PA	United States Environmental Protection Agency	
DL		
	Method Detection Limit Minimum Level (Dioxin)	
D	Not detected at the reporting limit (or MDL or EDL if shown)	

- ND Not detected at the reporting limit (or MDL or EDL if shown)
- PQL Practical Quantitation Limit
- QC Quality Control
- RL Reporting Limit

Definitions/Glossary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

10

Ō)

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.		Δ
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		5
TEQ	Toxicity Equivalent Quotient (Dioxin)		
		-	

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Lab Sample ID: SUK0108-03

Matrix: Soil Percent Solids: 86

Client Sample ID: DP-21-4.0-111511 Date Collected: 11/15/11 10:35 Date Received: 11/18/11 15:30

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND	0.277	0.139	mg/kg dry	— 	11/21/11 08:16	11/21/11 10:40	2.0
Chloromethane	ND	1.39	0.139	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Vinyl chloride	ND	0.166	0.0555	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Bromomethane	ND	1.39	0.277	mg/kg dry	¢.	11/21/11 08:16	11/21/11 10:40	2.0
Chloroethane	ND	0.277	0.139	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Trichlorofluoromethane	ND	0.0832	0.0277	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
1,1-Dichloroethene	ND	0.277	0.0555	mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
Carbon disulfide	ND	0.277	0.139	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Methylene chloride	ND	2.77	0.832	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Acetone	ND	5.55	2.61	mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
rans-1,2-Dichloroethene	ND	0.277	0.0555	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Methyl tert-butyl ether	ND	0.277	0.0277	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
1,1-Dichloroethane	ND	0.277	0.0555	mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
cis-1,2-Dichloroethene	ND	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
2,2-Dichloropropane	ND	0.277		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Bromochloromethane	ND	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
Chloroform	ND	0.277		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Carbon tetrachloride	ND	0.277	0.0277	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
1,1,1-Trichloroethane	ND	0.277	· · · · · · · · · · ·	mg/kg dry	₿	11/21/11 08:16	11/21/11 10:40	2.0
2-Butanone	ND	2.77		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
I,1-Dichloropropene	ND	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
Benzene	0.175	0.0555		mg/kg dry		11/21/11 08:16	11/21/11 10:40	2.0
,2-Dichloroethane (EDC)	ND	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
richloroethene	ND	0.0693		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
Dibromomethane	ND	0.277		mg/kg dry	¢.	11/21/11 08:16	11/21/11 10:40	2.0
,2-Dichloropropane	ND	0.277		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Bromodichloromethane	ND	0.277		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
is-1,3-Dichloropropene	ND	0.277		mg/kg dry		11/21/11 08:16	11/21/11 10:40	2.0
oluene	0.0527			mg/kg dry	*	11/21/11 08:16	11/21/11 10:40	2.0
-Methyl-2-pentanone	ND	2.77		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
ans-1,3-Dichloropropene	ND	0.277		mg/kg dry		11/21/11 08:16	11/21/11 10:40	2.0
etrachloroethene	ND	0.139		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
,1,2-Trichloroethane	ND	0.100		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
Dibromochloromethane	ND	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
,3-Dichloropropane	ND	0.277		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
,2-Dibromoethane	ND	0.277		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
-Hexanone	ND	2.77		mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.0
thylbenzene	1.54	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
Chlorobenzene	ND	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
,1,1,2-Tetrachloroethane	ND	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
					\$		11/21/11 10:40	2.0
ı,p-Xylene	1.98	1.11		mg/kg dry mg/kg doy	¢	11/21/11 08:16		2.0
-Xylene	0.0666			mg/kg dry		11/21/11 08:16	11/21/11 10:40	
tyrene romoform	ND	0.277		mg/kg dry mg/kg dry	¢ v	11/21/11 08:16	11/21/11 10:40	2.0
romoform	ND	0.277		mg/kg dry	¢ 	11/21/11 08:16	11/21/11 10:40	2.0
opropylbenzene	0.155			mg/kg dry	÷₩	11/21/11 08:16	11/21/11 10:40	2.0
-Propylbenzene	0.372	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
1,2,2-Tetrachloroethane	ND	0.277		mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
romobenzene	ND	0.277		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 10:40	2.0
,3,5-Trimethylbenzene	0.0888 .	0.277	0.0277	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00

TestAmerica Job ID: SUK0108

5

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

Client Sample ID: DP-21-4.0-111511 Date Collected: 11/15/11 10:35 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-03 Matrix: Soil

Percent Solids: 86

<u>-</u>

5

(9)

4-Chiontoluene ND 0.277 0.0277 mg/kg dry D 11/21/11 08:16 11/21/11 10:40 2.4. tent-Bulybenzne ND 0.277 0.0138 mg/kg dry D 11/21/11 08:16 11/21/11 10:40 2.0 1.2.010/07.0.4108/07.000000 ND 0.277 0.0138 0.277 0.0138 0.277 0.111 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 1.2.010/07.0.41000000000000000000000000000000000	Method: EPA 8260B - Volatile	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Inter-Bulylemizer ND 0.277 0.013 mg/ng dy 0 11/21/11 08:16 11/21/11 04:0 2.0 1,2,4-Trinnethylsenzere 3.11 0.277 0.037 mg/ng dy 0 11/21/11 08:16 11/21/11 04:0 2.0 pisopropytholione 0.0888 J 0.277 0.0134 mg/ng dy 0 11/21/11 08:16 11/21/11 04:0 2.0 J.3-Didiorbenzere ND 0.277 0.0134 mg/ng dy 0 11/21/11 08:16 11/21/11 104:0 2.0 J.3-Didiorbenzere ND 0.277 0.0137 mg/ng dy 0 11/21/11 08:16 11/21/11 104:0 2.0 J.3-Didiorbenzere ND 0.277 0.0137 mg/ng dy 0 11/21/11 08:16 11/21/11 104:0 2.0 J.2-Dibromo-3-chlaropropene ND 0.277 0.0138 mg/ng dy 0 11/21/11 08:16 11/21/11 104:0 2.0 J.2-Dibromo-3-chlaropropene ND 0.277 0.0132 mg/ng dy 0 11/21/11 08:16 11/21/11 104:0 2.0 J.2-Africhrobezere ND 0.277 0.0132 mg/ng dy	1,2,3-Trichloropropane			0.277						2.0
1,2.4-Trimethylbenzene 3.11 0.277 0.0277 mg/a dry 0 11/21/11 08:16 11/21/11 08:0 2.27 see:Bulylbenzene ND 0.277 0.0144 mg/a dry 0 11/21/11 08:16 11/21/11 10:16 11/21/11 10:16	4-Chlorotoluene	ND		0.277	0.0277	mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
sec-Bulyberzene ND 0.277 0.0194 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 n=Buryberzene 0.215 J 0.277 0.0138 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 12.Dibioroberzene ND 0.277 0.0138 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 12.Dibioroberzene ND 0.277 0.0132 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 12.2.4.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	tert-Butylbenzene	ND		0.277	0.0139	mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.0
Discreption Discreption <thdiscreption< th=""> <thdiscreption< th=""></thdiscreption<></thdiscreption<>	1,2,4-Trimethylbenzene	3.11		0.277	0.0277	mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.00
ND 0.277 0.0111 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 1.4.Dehtyberzene 0.215 0.2277 0.0133 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 1.2.Dehtyberzene 0.216 0.2277 0.0139 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 1.2.Dehtybrobenzene ND 0.277 0.0139 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 1.2.Dehtybrobenzene ND 0.277 0.0139 mg/kg dry 0 11/21/11 08:16 11/21/11 04:40 2.0 1.2.Dehtybrobenzene ND 0.277 0.0139 mg/kg dry 0 11/21/11 08:16 11/21/11 04:40 2.0 1.2.A.Tickhorobenzene ND 0.277 0.0332 mg/kg dry 0 11/21/11 08:16 11/21/11 10:40 2.0 Surrogate %Recovery Qualifier Limits 71.6.127 70.032 mg/kg dry 11/21/11 08:16 11/21/11 10:40 2.0	sec-Butylbenzene	ND		0.277	0.0194	mg/kg dry	¢	11/21/11 08:16	11/21/11 10:40	2.00
ND 0.277 0.0139 mgkg dy 0 11/21/11 08:16	p-lsopropyltoluene	0.0888	J	0.277	0.0194	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00
DeBuylberzone D.216 J 0.277 0.0277 mg/kg dry 0 11/21/11 08:16 1	1,3-Dichlorobenzene	ND		0.277	0.0111	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00
Haudyneitzing Ut 0 Oath Oath <thoath< th=""> Oath Oath</thoath<>	1,4-Dichlorobenzene	ND		0.277	0.0139	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00
ND 1.39 0.277 mg/kg dry print/21/11 08:16 11/21/11 10:40 2.0 Hexachlorobutadiene ND 0.277 0.0832 mg/kg dry print/21/11 08:16 11/21/11 10:40 2.0 L2.4-Trichlorobenzone ND 0.277 0.0832 mg/kg dry print/21/11 08:16 11/21/11 10:40 2.0 ND 0.277 0.0832 mg/kg dry print/11/08:16 11/21/11 10:40 2.0 12.3-Trichlorobenzene ND 0.277 0.0832 mg/kg dry print/11/08:16 11/21/11 10:40 2.0 Surrogate Skrecovery Qualifier Limits Prepared Analyzed Dill Fa Diloromoliuoronethane 89.6 77.1.19 11/21/11 08:22 11/22/11 04:2 2.0 Method: EPA 8011 - EDB by EPA Method 8014 MoL Unit D Prepared Analyzed Dil Fa 1,2-Dibromo-Sharo ND 1.16 ug/kg dry 11/21/11 08:22 11/22/11 10:42 11/22/11 10:42 11/22/11 10:42 11/22/11 10:42 11/22/11 10:42 11/22/11	n-Butylbenzene	0.216	J	0.277	0.0277	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00
In Distribution and define of the other of the other of the other o	1,2-Dichlorobenzene	ND		0.277	0.0139	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00
ND 0.277 0.0832 mg/kg dry fl 1/12/1/11 08:16 1/12/1/11 00:16	1,2-Dibromo-3-chloropropane	ŇD		1.39	0.277	mg/kg dry	Ø	11/21/11 08:16	11/21/11 10:40	2.00
Number of the second	Hexachlorobutadiene	ND		0.277	0.111	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00
Name ND Outside ND N	1,2,4-Trichlorobenzene	ND		0.277	0.0832	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00
ND 0.277 0.8832 mg/kg dry P 11/21/11 08:16 11/21/11 08:06 11/21/11 08:00 2.0 Surrogate %Recovery Dibromofluoromethane Qualifier Limits Prepared Analyzed Dill Fa Toluene-d8 107 80.129 11/21/11 08:16 11/21/11 08:16 11/21/11 08:00 2.0 Method: EPA 8011 - EDB by EPA Method 8011 Qualifier RL MDL Unit D Prepared Analyzed Dill Fa 1.2:Dibromoethane ND Qualifier RL MDL Unit D Prepared Analyzed Dill Fa 1.2:Dibromoethane ND R1 1.16 ug/kg dry 9 11/21/11 08:22 11/22/11 15:17 1.0 1.2:Dibromoethane ND R1 1.16 ug/kg dry 9 11/21/11 08:22 11/23/11 15:17 1.0 1.2:Dibromoethane ND Result Qualifier RL MDL Unit D Prepared Analyzed Dill Fa 1.2:Dibromoetarobns ND 3	Naphthalene	1.29		0.555	0.305	mg/kg dry	ġ	11/21/11 08:16	11/21/11 10:40	2.00
Construction Construction<	•	ND		0.277	0.0832	mg/kg dry	₽	11/21/11 08:16	11/21/11 10:40	2.00
Characteristic interviewed bit of the second seco	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
H-bromofiluorobenzene 125 57.7 - 149 11/21/11 08:16 11/21/11 08:16 11/21/11 04:0 2.0 Method: EPA 8011 - EDB by EPA Method 8011 Result Qualifier RL MDL Unit D Prepared Analyzed Dill Fa 1,2-Dibromoethane ND 1.16 ug/kg dry % 11/21/11 08:22 11/23/11 15:17 1.0 1,2-Dibromoethane ND R1 1.16 ug/kg dry % 11/21/11 08:22 11/23/11 15:17 1.0 Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx Result Qualifier RL MDL Upit D Prepared Analyzed Dil Fa Olesel Range Hydrocarbons ND 32.9 mg/kg dry % 11/19/11 07:15 11/19/11 12:08 1.0 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa Surrogate %Recovery Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Surrogate %Recovery Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Surrogate %Recovery Qualifier RL MDL Unit D Prepared Analyz	Dibromofluoromethane	89.6		71.6 - 127				11/21/11 08:16	11/21/11 10:40	2.00
Method: EPA 8011 - EDB by EPA Method 8011 Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa 1,2-Dibromoethane ND ND 1.16 ug/kg dry 17 11/21/11 08:22 11/23/11 15:17 1.0 1,2-Dibromo-3-chloropropane ND R1 1.16 ug/kg dry 17 11/23/11 15:17 1.0 Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx MDL Unit D Prepared Analyzed Dil Fa Obesel Range Hydrocarbons ND 13.2 mg/kg dry 11/19/11 07:15 11/19/11 12:08 1.0 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa SelFBP 81.3 50 - 150 11/19/11 07:15 11/19/11 12:08 1.0 Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx MDL Unit D Prepared Analyzed Dil Fa Saurogate %Recovery Qualifier Limits MDL 11/19/11 07:15 11/19/11 12:08 1.0 Nethod: NWTPH-Gx - Gasoline Hydrocarbons 18.5 6.93 MDL	Toluene-d8	107		80 - 129				11/21/11 08:16	11/21/11 10:40	2.00
AnalyteResultQualifierRLMDUnitpPreparedAnalyzedDil Fa1,2-DibromoethaneNDR11.16ug/kg dry5211/2/1/1 08:2211/23/11 15:171.01,2-Dibromo-3-chloropropaneNDR11.16ug/kg dry5211/21/11 08:2211/23/11 15:171.0Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-DxResultQualifierRLMDLUnitpPreparedAnalyzedDil FaMalyteResultQualifierRLMDLUnitpPreparedAnalyzedDil FaMethod: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-DxMDLUnitpPreparedAnalyzedDil FaMalyteResultQualifierLimitsmg/kg dry5211/19/11 07:1511/19/11 12:081.0Surrogate%RecoveryQualifierLimits50 - 150mg/kg dry5211/19/11 12:081.0PreparedAnalyzedDil Fa11/19/11 07:1511/19/11 12:081.01.0ND - Terphenyl-d1497.250 - 15011/19/11 07:1511/19/11 12:081.0Surrogate%RecoveryQualifierRLMDLunitpPreparedAnalyzedDil FaSurrogate%RecoveryQualifierLimits6.93mg/kg dry11/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimits50 - 15011/20/11 07:0811/20/11 10:401.0	4-bromofluorobenzene	. 125		57.7 - 149				11/21/11 08:16	11/21/11 10:40	2.00
AnalyteResultQualifierRLMDLUnitpPreparedAnalyzedDil Fa1.2-Dibromo-3-chloropropaneNDR11.16ug/kg dry ⁵³ 11/2/1/1 08:2211/23/11 15:171.01.2-Dibromo-3-chloropropaneNDR11.16ug/kg dry ⁵³ 11/21/11 08:2211/23/11 15:171.0Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-DxAnalyteResultQualifierRLMDLUnitpPreparedAnalyzedDil FaDiesel Range HydrocarbonsND13.2mg/kg dry ⁵⁴ 11/19/11 07:1511/19/11 12:081.0Heavy Oil Range HydrocarbonsND32.9mg/kg dry ⁵⁴ 11/19/11 07:1511/19/11 12:081.0Surrogate%RecoveryQualifierLimits50 - 15011/19/11 07:1511/19/11 12:081.02-FBP81.350 - 15011/19/11 07:1511/19/11 12:081.00- Terphenyl-d1497.250 - 15011/19/11 07:1511/19/11 12:081.0Surrogate%RecoveryQualifierResultMDLUnitpPreparedAnalyzedDil FaGasoline Range Hydrocarbons18.56.93mg/kg dry ⁵² 11/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimitsPreparedAnalyzedDil Fa4-BF (FID)13850 - 15070 - 15011/20/11 07:0811/20/11 10:401.0Surrogate%Recovery<	Method: EPA 8011 - EDB, by E	PA Method 8011								
Inclusion of the second seco	-		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: NWTPH-Dx - Semivolatile Pertoleum Products by NWTPH-Dx Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Diesel Range Hydrocarbons ND 32.9 mg/kg dry % 11/19/11 12:08 1.0 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 2-FBP 81.3 50 - 150 150 11/19/11 07:15 11/19/11 12:08 1.0 Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-GX MDL Unit D Prepared Analyzed Dil Fa Surrogate %Recovery Qualifier Limits MDL Unit D Prepared Analyzed Dil Fa O-Terphenyl-d14 97.2 50 - 150 11/19/11 07:15 11/19/11 12:08 1.0 Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx MDL Unit D Prepared Analyzed Dil Fa Gasoline Range Hydrocarbons 18.5 6.93 MDL Unit D Prepared Analyzed Dil Fa <th< td=""><td>1,2-Dibromoethane</td><td>ND</td><td></td><td>1.16</td><td></td><td>ug/kg dry</td><td></td><td>11/21/11 08:22</td><td>11/23/11 15:17</td><td>1.00</td></th<>	1,2-Dibromoethane	ND		1.16		ug/kg dry		11/21/11 08:22	11/23/11 15:17	1.00
AnalyteResult Diesel Range HydrocarbonsQualifierRLMDLUnitDPreparedAnalyzedDil FaDiesel Range HydrocarbonsND32.9mg/kg dry11/19/11 07:1511/19/11 07:1511/19/11 12:081.0Heavy Oil Range HydrocarbonsND32.9mg/kg dry11/19/11 07:1511/19/11 07:1511/19/11 12:081.0Surrogate%RecoveryQualifierLimits50 - 15011/19/11 07:1511/19/11 12:081.0-Terphenyl-d1497.250 - 15011/19/11 07:1511/19/11 12:081.0Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-GXResultQualifierRLMDLUnitDPreparedAnalyzedDil FaGasoline Range Hydrocarbons18.56.93mg/kg dry11/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimitsmg/kg dry11/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimits50 - 15011/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimits50 - 15011/20/11 07:0811/20/11 10:401.0HeFB (FID)138Control50 - 150PreparedAnalyzedDil FaMuthod: EPA 6010C - Total Metals by EPA 6010/7000 Series MethodsMDLUnitDPreparedAnalyzedDil FaAnalyteResultQualifierRLMDLMDLUnitDPreparedAnalyzedDil F	1,2-Dibromo-3-chloropropane	ND	R1	1.16		ug/kg dry	₽	11/21/11 08:22	11/23/11 15:17	1.00
AnalyteResult Diesel Range HydrocarbonsQualifierRLMDLUnitDPreparedAnalyzedDil FaDiesel Range HydrocarbonsND32.9mg/kg dry11/19/11 07:1511/19/11 07:1511/19/11 12:081.0Heavy Oil Range HydrocarbonsND32.9mg/kg dry11/19/11 07:1511/19/11 07:1511/19/11 12:081.0Surrogate%RecoveryQualifierLimits50 - 15011/19/11 07:1511/19/11 12:081.0-Terphenyl-d1497.250 - 15011/19/11 07:1511/19/11 12:081.0Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-GXResultQualifierRLMDLUnitDPreparedAnalyzedDil FaGasoline Range Hydrocarbons18.56.93mg/kg dry11/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimitsmg/kg dry11/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimits50 - 15011/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimits50 - 15011/20/11 07:0811/20/11 10:401.0HeFB (FID)138Control50 - 150PreparedAnalyzedDil FaMuthod: EPA 6010C - Total Metals by EPA 6010/7000 Series MethodsMDLUnitDPreparedAnalyzedDil FaAnalyteResultQualifierRLMDLMDLUnitDPreparedAnalyzedDil F	Method: NWTPH-Dx - Semivol	atile Petroleum P	roducts by	NWTPH-Dx						
Heavy Oil Range HydrocarbonsND32.9mg/kg dry**11/19/11 07:1511/19/11 12:081.0Surrogate%RecoveryQualifierLimitsPreparedAnalyzedDil Fa2-FBP81.350 - 15011/19/11 07:1511/19/11 12:081.0po-Terphenyl-d1497.250 - 15011/19/11 07:1511/19/11 12:081.0Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx97.250 - 15011/19/11 07:1511/19/11 12:081.0Method: Range Hydrocarbons18.56.93mg/kg dry*11/20/11 07:08AnalyzedDil FaGasoline Range Hydrocarbons18.55.93mg/kg dry*11/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimits50 - 15011/20/11 07:0811/20/11 10:401.0Surrogate%RecoveryQualifierLimits50 - 15011/20/11 07:0811/20/11 10:401.0Method: EPA 6010C - Total Metals by EPA 6010/7000 Series MethodsMDLUnitDPreparedAnalyzedDil FaAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil Fa			-		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Surrogate %Recovery Qualifier Limits 2-FBP 81.3 50 - 150 11/19/11 07:15 Analyzed Dil Fa 0-Terphenyl-d14 97.2 50 - 150 11/19/11 07:15 11/19/11 12:08 1.0 Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx MDL Unit D Prepared Analyzed Dil Fa Gasoline Range Hydrocarbons 18.5 6.93 mg/kg dry 2 Prepared Analyzed Dil Fa Surrogate %Recovery Qualifier Limits 0.10 Prepared Analyzed Dil Fa Surrogate %Recovery Qualifier Limits 0.10 Prepared Analyzed Dil Fa 4-BFB (FID) 138 20-150 11/20/11 107:08 11/20/11 10:40 1.0 Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods MDL Unit D Prepared Analyzed Dil Fa Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa 0 11/20/11 10:40 1.0 10 10	Diesel Range Hydrocarbons	ND		13.2		mg/kg dry	- x	11/19/11 07:15	11/19/11 12:08	1.00
Consister Junct (Minute) Linite Interview Interview <td>Heavy Oil Range Hydrocarbons</td> <td>ND</td> <td></td> <td>32.9</td> <td></td> <td>mg/kg dry</td> <td>*</td> <td>11/19/11 07:15</td> <td>11/19/11 12:08</td> <td>1.00</td>	Heavy Oil Range Hydrocarbons	ND		32.9		mg/kg dry	*	11/19/11 07:15	11/19/11 12:08	1.00
De-Terphenyl-d14 . 97.2 50 - 150 11/19/11 07:15 .11/19/11 12:08 1.0 Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fai Gasoline Range Hydrocarbons 18.5 6.93 mg/kg dry II/20/11 07:08 11/20/11 10:40 1.0 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fai 4-BFB (FID) 138 50 - 150 11/20/11 107:08 11/20/11 10:40 1.0 Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods MDL Unit D Prepared Analyzed Dil Fai Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fai										
Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Gasoline Range Hydrocarbons 18.5 6.93 6.93 mg/kg dry 92 11/20/11 07:08 11/20/11 10:40 1.00 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 4-BFB (FID) 138 50.150 11/20/11 10:40 1.00 Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods MDL Unit D Prepared Analyzed Dil Fa Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Far Gasoline Range Hydrocarbons 18.5 6.93 6.93 mg/kg dry 57 11/20/11 07:08 11/20/11 10:40 1.00 Surrogate %Recovery Qualifier Limits 10 11/20/11 07:08 Analyzed Dil Far I-BFB (FID) 138 0 50 - 150 11/20/11 07:08 Analyzed Dil Far Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods MDL Unit D Prepared Analyzed Dil Far Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Far	•		Qualifier					· .		Dil Fac 1.00
Gasoline Range Hydrocarbons 18.5 6.93 mg/kg dry 11/20/11 07:08 11/20/11 10:40 1.00 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 4-BFB (FID) 138 50 - 150 11/20/11 107:08 11/20/11 10:40 1.00 Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods MDL Unit D Prepared Analyzed Dil Fa	2-FBP	81.3	Qualifier	50 - 150				11/19/11 07:15	11/19/11 12:08	
Surrogate %Recovery Qualifier Limits 1-BFB (FID) 138 50 - 150 11/20/11 10:40 10 Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods Methods Methods Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa	2-FBP D-Terphenyl-d14 .			50 - 150 50 - 150				11/19/11 07:15	11/19/11 12:08	1.00
Analyte Interview	2-FBP o-Terphenyl-d14 Method: NWTPH-Gx - Gasoline	81.3 97.2 e Hydrocarbons b	by NWTPH-	50 - 150 50 - 150 Gx	MDL	Unit	D	11/19/11 07:15 11/19/11 07:15	11/19/11 12:08 .11/19/11 12:08	1.00
Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac	2-FBP o-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte	81.3 97.2 e Hydrocarbons k Result	by NWTPH-	50 - 150 50 - 150 Gx RL	MDL		-	11/19/11 07:15 11/19/11 07:15 Prepared	11/19/11 12:08 .11/19/11 12:08 Analyzed	1.00
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac	2-FBP D-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	e Hydrocarbons k <u>Result</u> 18.5	oy NWT PH- Qualifier	50 - 150 50 - 150 GX RL 6.93	MDL		-	11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08	11/19/11 12:08 ,11/19/11 12:08 Analyzed 11/20/11 10:40	1.00 1.00 Dil Fac
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac	2-FBP D-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Basoline Range Hydrocarbons Surrogate	e Hydrocarbons b Result 18.5 %Recovery	oy NWT PH- Qualifier	50 - 150 50 - 150 Gx RL 6.93 Limits	MDL		-	11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	11/19/11 12:08 .11/19/11 12:08 Analyzed 11/20/11 10:40 Analyzed	1.00 1.00 Dil Fac Dil Fac
Lead 3.03 1.74 mg/kg dry 😨 12/05/11 17:42 12/05/11 14:07 1.00	2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	e Hydrocarbons b Result 18.5 %Recovery 138	oy NWTPH- Qualifier Qualifier	50 - 150 50 - 150 Gx RL 6.93 <i>Limits</i> 50 - 150	MDL		-	11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	11/19/11 12:08 .11/19/11 12:08 Analyzed 11/20/11 10:40 Analyzed	1.00 1.00 Dil Fac 1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-23-2.5-111511

Date Collected: 11/15/11 11:25 Date Received: 11/18/11 15:30

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-05 Matrix: Soil

Percent Solids: 97.9

쀠

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane			1.42		- -	11/21/11 08:16	11/21/11 11:07	20.0
Chloromethane	ND	14.2		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
/inyl chloride	ND	1.70	0.568	mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
Bromomethane	ND	14.2	2.84	mg/kg dry	Ċ,	11/21/11 08:16	11/21/11 11:07	20.0
Chloroethane	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
Trichlorofluoromethane	ND	0.852		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
,1-Dichloroethene	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
Carbon disulfide	ND	2.84		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
fethylene chloride	ND	28.4		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
cetone	ND	56.8		mg/kg dry	ġ	11/21/11 08:16	11/21/11 11:07	20.0
rans-1,2-Dichloroethene	ND	2.84		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
Aethyl tert-butyl ether	ND	2.84		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
,1-Dichloroethane	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
is-1,2-Dichloroethene	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
,2-Dichloropropane	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
romochloromethane	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
Chloroform	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
arbon tetrachloride	ND	2.84	0.284	mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
,1,1-Trichloroethane	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
-Butanone	ND	28.4		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
,1-Dichloropropene	ND	2.84		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
enzene	ND	0.568		mg/kg dry		11/21/11 08:16	11/21/11 11:07	20.0
2-Dichloroethane (EDC)	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
richloroethene	0.597 J	0.710		mg/kg dry		11/21/11 08:16	11/21/11 11:07	20.0
ibromomethane	ND	2.84		mg/kg dry		11/21/11 08:16	11/21/11 11:07	20.0
2-Dichloropropane	ND	2.84		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
romodichloromethane	ND	2.84		mg/kg dry	\$	11/21/11 08:16	11/21/11 11:07	20.0
s-1,3-Dichloropropene	ND	2.84		mg/kg dry	\$	11/21/11 08:16	11/21/11 11:07	20.0
oluene	2.36 J	2.84		mg/kg dry	\$	11/21/11 08:16	11/21/11 11:07	20.0
Methyl-2-pentanone	2:36 J ND	28.4		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
ans-1,3-Dichloropropene	ND	2.84		mg/kg dry	\$	11/21/11 08:16	11/21/11 11:07	20.0
etrachloroethene	ND	1.42		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
1,2-Trichloroethane	ND	. 2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
ibromochloromethane	ND	2.84			÷.	11/21/11 08:16	11/21/11 11:07	20.0
3-Dichloropropane	ND	2.84		mg/kg dry mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0
2-Dibromoethane	ND	2.84		mg/kg ary mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
Hexanone	ND	2.84		mg/kg ary mg/kg dry	÷	11/21/11 08:16	11/21/11 11:07	20.0
	C 49				¢	11/21/11 08:16		
thylbenzene hlorobenzene	0.48 ND	2.84		mg/kg dry mg/kg dp/	¢		11/21/11 11:07	20.0
	ND	2.84		mg/kg dry		11/21/11 08:16	11/21/11 11:07	20.0
1,1,2-Tetrachloroethane	ND	2.84		mg/kg dry	# #	11/21/11 08:16	11/21/11 11:07	20.0
,p-Xylene Xulana	14.3	11.4		mg/kg dry	‡ *	11/21/11 08:16	11/21/11 11:07	20.0
Kylene -	18.8 ND	5.68		mg/kg dry	₩	11/21/11.08:16	11/21/11 11:07	20.0
yrene	ND	2.84		mg/kg dry	\$ *	11/21/11 08:16	11/21/11 11:07	20.0
omoform	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
opropylbenzene	2.42 J	2.84		mg/kg dry	\$ *	11/21/11 08:16	11/21/11 11:07	20.0
Propylbenzene	10.9	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
1,2,2-Tetrachloroethane	ND	2.84		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20.0
omobenzene	ND	2.84		mg/kg dry	₩ ••	11/21/11 08:16	11/21/11 11:07	20.0
3,5-Trimethylbenzene	27.5	2.84	0.284	mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20.0

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-23-2.5-111511 Date Collected: 11/15/11 11:25 Date Received: 11/18/11 15:30

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-05 Matrix: Soil

Percent Solids: 97.9

伯

5

De la compara de la compara

(j

Analyte	Result	Qualifier	RL	MDL	Continued)		Prepared	Analyzed	Dil Fa
1,2,3-Trichloropropane	ND		2.84	0.568	mg/kg dry	₩	11/21/11 08:16	11/21/11 11:07	20
4-Chlorotoluene	ND		2.84		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20
tert-Butylbenzene	ND		2.84	0.142	mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20
1,2,4-Trimethylbenzene	44.1		2.84	0.284	mg/kg dry	\$	11/21/11 08:16	11/21/11 11:07	20
sec-Butylbenzene	3.07		2.84	0.199	mg/kg dry	\$	11/21/11 08:16	11/21/11 11:07	20
p-Isopropyltoluene	3.35		2,84	0.199	mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20
1,3-Dichlorobenzene	ND		2.84	0.114	mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20
1,4-Dichlorobenzene	ND		2.84	0.142	mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20
n-Butylbenzene	10.9		2.84	0.284	mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20
1,2-Dichlorobenzene	ND		2.84	0.142	mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20
1,2-Dibromo-3-chloropropane	ND		14.2	2.84	mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20
Hexachlorobutadiene	ND		2.84	1.14	mg/kg dry	¢	11/21/11 08:16	11/21/11 11:07	20
1,2,4-Trichlorobenzene	ND		2.84	0.852	mg/kg dry	æ	11/21/11 08:16	11/21/11 11:07	20
Naphthalene	46.2		5,68	3.13	mg/kg dry	. ₿	11/21/11 08:16	11/21/11 11:07	20
1,2,3-Trichlorobenzene	ND		2.84		mg/kg dry	₽	11/21/11 08:16	11/21/11 11:07	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Dibromofluoromethane	92.8		71.6 - 127				11/21/11 08:16	11/21/11 11:07	20
Toluene-d8	99.0		80 - 129				11/21/11 08:16	11/21/11 11:07	20
1-bromofluorobenzene		zx	57.7 - 149				11/21/11 08:16	11/21/11 11:07	20
-	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Analyte ,2-Dibromoethane	Result ND 1.08		RL 1.02 1.02	MDL	Unit ug/kg dry ug/kg dry	D T	Prepared 11/21/11 08:22 11/21/11 08:22	Analyzed 11/23/11 23:06 11/23/11 23:06	1.
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin	ND 1.08 ated Biphenyls	R1 by EPA M	1.02 1.02 ethod 8082		ug/kg dry ug/kg dry	₩ ₩	11/21/11 08:22 11/21/11 08:22	11/23/11 23:06 11/23/11 23:06	1. 1.
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte	ND 1.08 ated Biphenyls Result	R1 by EPA M Qualifier	1.02 1.02 ethod 8082 RL	MDL	ug/kg dry ug/kg dry Unit	₩ ₩ D	11/21/11 08:22 11/21/11 08:22 Prepared	11/23/11 23:06 11/23/11 23:06 Analyzed	1.1 1.0 Dit Fa
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016		R1 by EPA M Qualifier QSG	1.02 1.02 ethod 8082 RL 102		ug/kg dry ug/kg dry Unit ug/kg dry	₩ ₩ D ₩	11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 Analyzed 11/22/11 14:03	1.0 1.0 Dit Fa
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221	ated Biphenyls 	R1 by EPA M Qualifier QSG QSG	1.02 1.02 ethod 8082 RL 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry	₩ ₩ D ₩	11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 12:03 11/22/11 14:03 11/22/11 13:52	1.0 1.0 Dit Fa 1.0 1.0
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1232	ated Biphenyls ated Biphenyls Result ND ND ND ND	R1 by EPA M Qualifier QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry		11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 Analyzed 11/22/11 14:03 11/22/11 13:52 11/22/11 13:52	1.0 1.0 Dit Fa 1.0 1.0 1.0
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242	ated Biphenyls ated Biphenyls Result ND ND ND ND ND ND	R1 by EPA M Qualifier QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry		11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11	Analyzed 11/23/11 23:06 11/23/11 23:06 Analyzed 11/22/11 14:03 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52	Dil Fa 1.0 1.0 Dil Fa 1.0 1.0 1.0 1.0 1.0
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1222 PCB-1242 PCB-1248	ated Biphenyls ated Biphenyls Result ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 Analyzed 11/22/11 14:03 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte ² CB-1016 ² CB-1221 ² CB-1222 ² CB-1232 ² CB-1242 ² CB-1248 ² CB-1254 ·	ated Biphenyls ated Biphenyls Result ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		II/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 Analyzed 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte ² CB-1016 ² CB-1221 ² CB-1222 ² CB-1232 ² CB-1242 ² CB-1248 ² CB-1254 · ² CB-1260	ated Biphenyls ated Biphenyls Result ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 Analyzed 11/22/11 14:03 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte ² CB-1016 ² CB-1221 ² CB-1222 ² CB-1242 ² CB-1244 ² CB-1254 ² CB-1260 ² CB-1268	ated Biphenyls ated Biphenyls Result ND ND ND ND ND ND ND ND ND ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 Analyzed 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1222 PCB-1242 PCB-1244 PCB-1254 PCB-1260 PCB-1268 Surrogate	ated Biphenyls Result ND ND ND ND ND ND ND ND ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 Analyzed 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1268 Surrogate TCX	Ated Biphenyls Result ND ND ND ND ND ND ND ND ND ND ND ND ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 Prepared	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 13:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 Analyzed	
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1222 PCB-1232 PCB-1242 PCB-1254 PCB-1254 PCB-1260 PCB-1260 PCB-1268 Surrogate TCX Decach/orobiphenyl	Ated Biphenyls ated Biphenyls Result ND ND ND ND ND ND ND ND ND ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		II/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 08:22 Prepared 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 Prepared 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 12:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03	1. 1.
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1232 PCB-1242 PCB-1254 PCB-1260 PCB-1260 PCB-1268 Surrogate TCX Decachlorobiphenyl Method: NWTPH-Dx - Semivolat	ND 1.08 ated Biphenyls Result ND ND <td>R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG</td> <td>1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102</td> <td></td> <td>ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry</td> <td></td> <td>II/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 08:22 Prepared 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 Prepared 11/21/11 11:11</td> <td>11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 12:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03</td> <td>1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td>	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102		ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		II/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 08:22 Prepared 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 Prepared 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 12:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte ² CB-1016 ² CB-1221 ² CB-1222 ² CB-1232 ² CB-1242 ² CB-1248 ² CB-1254 ² CB-1260 ² CB-1260 ² CB-1268 Surrogate ^{TCX} Decachlorobiphenyl Method: NWTPH-Dx - Semivolati Analyte	ND 1.08 ated Biphenyls Result ND ND <td>R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG</td> <td>1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102</td> <td>MDL</td> <td>ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry</td> <td></td> <td>11//21/11 08:22 11//21/11 08:22 Prepared 11//21/11 08:22 Prepared 11//21/11 08:22 11//21/11 08:22 Prepared 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 Prepared 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11</td> <td>11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 13:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03</td> <td>1. 1.</td>	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102	MDL	ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry		11//21/11 08:22 11//21/11 08:22 Prepared 11//21/11 08:22 Prepared 11//21/11 08:22 11//21/11 08:22 Prepared 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 Prepared 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 13:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03	1. 1.
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1222 PCB-1242 PCB-1242 PCB-1254 PCB-1260 PCB-1260 PCB-1268 Surrogate TCX Decachlorobiphenyl Method: NWTPH-Dx - Semivolati Analyte Diesel Range Hydrocarbons	ND 1.08 ated Biphenyls Result ND ND <td>R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG</td> <td>1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102</td> <td>MDL</td> <td>ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry Unit</td> <td></td> <td>11//21/11 08:22 11//21/11 08:22 Prepared 11//21/11 08:22 Prepared 11//21/11 08:22 11//21/11 08:22 Prepared 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 Prepared 11//21/11 11:11 Prepared</td> <td>11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 123:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03</td> <td>1. 1.</td>	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102	MDL	ug/kg dry ug/kg dry Unit ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry Unit		11//21/11 08:22 11//21/11 08:22 Prepared 11//21/11 08:22 Prepared 11//21/11 08:22 11//21/11 08:22 Prepared 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 11//21/11 11:11 Prepared 11//21/11 11:11 Prepared	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 123:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03	1. 1.
Analyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1242 PCB-1248 PCB-1254 PCB-1260 PCB-1260 PCB-1268 Surrogate CX Decachlorobiphenyl Method: NWTPH-Dx - Semivolation analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	ND ated Biphenyls Result ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102	MDL	Unit Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Unit mg/kg dry	 ₩ ₩	II/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 Prepared 11/21/11 11:11 11/21/11 11:11	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 123:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03	1.0 1.1
Method: EPA 8011 - EDB by EP Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorin Analyte PCB-1016 PCB-1221 PCB-1222 PCB-1232 PCB-1242 PCB-1248 PCB-1254 · PCB-1260 PCB-1260 PCB-1268 Surrogate TCX Decachlorobiphenyl Method: NWTPH-Dx - Semivolati Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP	ND ated Biphenyls Result ND	R1 by EPA M Qualifier QSG QSG QSG QSG QSG QSG QSG QSG	1.02 1.02 1.02 ethod 8082 RL 102 102 102 102 102 102 102 102	MDL	Unit Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Ug/kg dry Unit mg/kg dry	 ₩ ₩	II/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/21/11 108:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 Prepared 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 11/21/11 11:11 Prepared 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15	11/23/11 23:06 11/23/11 23:06 11/23/11 23:06 11/22/11 123:06 11/22/11 123:06 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 13:52 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 14:03 11/22/11 123:27 11/21/11 23:27 11/21/11 23:27	1.0 1.0 <u>Dit Fa</u> 1.0 1.0 1.0

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-05

Client Sample ID: DP-23-2.5-111511 Date Collected: 11/15/11 11:25 Date Received: 11/18/11 15:30

Matrix: Soil Percent Solids: 97.9 泪.

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.0903		0.0672		mg/kg dry	₩ ₩	11/15/11 11:25	11/26/11 14:09	50
Ethylbenzene	10.7		0.0672		mg/kg dry	₽	11/15/11 11:25	11/26/11 14:09	50.
Methyl tert-Butyl Ether	ND		0.672		mg/kg dry	₽	11/15/11 11:25	11/26/11 14:09	50.
Toluene	3.22		0.0672		mg/kg dry	₿	11/15/11 11:25	11/26/11 14:09	50.
Xylenes, total	40.8		0.202		mg/kg dry	₽	11/15/11 11:25	11/26/11 14:09	50.
C5 - C6 Aliphatic Hydrocarbons	ND		6.72		mg/kg dry	₽	11/15/11 11:25	11/26/11 14:09	50.
>C6 to C8 Ali	7.70		6.72		mg/kg dry	Þ	11/15/11 11:25	11/26/11 14:09	50.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,5-Dibromotoluene (FID)	85		60 - 140				11/15/11 11:25	11/26/11 14:09	50.
2,5-Dibromotoluene (PID)	87		60 - 140				11/15/11 11:25	11/26/11 14:09	50,
Method: NWTPH VPH - Purgeable						_			
Analyte		Qualifier	RL	MDL	Unit		Prepared	Analyzed	Dil Fa
Naphthalene	51.9		1.68		mg/kg dry	— 🛱	11/15/11 11:25	11/26/11 15:49	25
>C8 to C10 Ali	182		33.6		mg/kg dry	₽	11/15/11 11:25	11/26/11 15:49	25
>C8 to C10 Aro	267		33.6		mg/kg dry	₽	11/15/11 11:25	11/26/11 15:49	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,5-Dibromotoluene (F/D)	80		60 - 140				11/15/11 11:25	11/26/11 15:49	25
2,5-Dibromotoluene (PID)	92		60 - 140				11/15/11 11:25	11/26/11 15:49	25
Method: NWTPH VPH - Purgeable	e Petroleum Hy	drocarbons -	RE3						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
>C10 to C12 Ali	713		336		mg/kg dry	- \$	11/15/11 11:25	11/28/11 16:48	250
>C10 to C12 Aro	791		336		mg/kg dry	₽	11/15/11 11:25	11/28/11 16:48	250
>C12 to C13 Aro	358		336		mg/kg dry	₽	11/15/11 11:25	11/28/11 16:48	250
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,5-Dibromotoluene (FID)	97		60 - 140				11/15/11 11:25	11/28/11 16:48	250
2,5-Dibromotoluene (PID)	96		60 - 140				11/15/11 11:25	11/28/11 16:48	250
Method: NWTPH-Gx - Gasoline H	ydrocarbons b	y NWTPH-Gx							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	1540	•	710		mg/kg dry	¤	11/20/11 07:08	11/20/11 11:05	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-BFB (FID)	129		50 - 150				11/20/11 07:08	11/20/11 11:05	10
Method: NWTPH EPH - Extractab	le Petroleum H	lydrocarbons							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
C8-C10 Aliphatics	67.5		5.06		mg/kg dry	₽	11/26/11 06:55	11/29/11 18:45	1.0
C8-C10 Aromatics	21.4		5.06		mg/kg dry	₽	11/26/11 06:55	11/29/11 19:15	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
p-Terphenyl	94		60 - 140				11/26/11 06:55	11/29/11 19:15	1.0
2-Fluorobipheny/	113		60 - 140				11/26/11 06:55	11/29/11 19:15	1.0
2-Bromonaphthalene	128		60 - 140				11/26/11 06:55	11/29/11 19:15	1.0
I-Chlorooctadecane	55	ZX	60 - 140				11/26/11 06:55	11/29/11 18:45	1.0
Method: NWTPH EPH - Extractab	le Petroleum H	lydrocarbons	- RE1						
		-			11-14	P	Deserved	Analymod	Dil Fa
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DiiFa

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-05

Client Sample ID: DP-23-2.5-111511 Date Collected: 11/15/11 11:25 Date Received: 11/18/11 15:30

Matrix: Soil Percent Solids: 97.9 暈

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
>C10 to C12 Aro	54.2		10.1		mg/kg dry	- \$	11/26/11 06:55	12/01/11 06:36	2.0
Method: NWTPH EPH - Extractable	Petroleum	Hydrocarbon	s - RE2						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
>C12 to C16 Ali	198		50.6		mg/kg dry	<u>Å</u>	11/26/11 06:55	12/01/11 05:05	10.
>C12 to C16 Aro	93.0		25.3		mg/kg dry	₽	11/26/11 06:55	12/01/11 07:07	5.0
>C16 to C21 Aro	121		25.3		mg/kg dry	₽	11/26/11 06:55	12/01/11 07:07	5.0
Method: NWTPH EPH - Extractable	Petroleum I	Hvdrocarbon	s - RE3						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
>C16 to C21 Ali	361		101		mg/kg dry	- \\	11/26/11 06:55	12/01/11 05:36	20.
>C21 to C34 Aro	449		101		mg/kg dry	₿	11/26/11 06:55	12/01/11 07:37	20.
Method: NWTPH EPH - Extractable	Detroloum	Judrooarbon	C DEA						
Analyte		Qualifier	S-RE4 RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
>C21 to C34 Ali	4580		1010		mg/kg dry	- -	11/26/11 06:55	12/01/11 06:06	20
Method: EPA 6010C - TCLP Metals			Series Method						
Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Lead	0.0748		0.0350		mg/l		12/30/11 08:53	01/03/12 10:50	1.0
Method: EPA 6010C - Total Metals	by EPA 6010	/7000 Series	Methods						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	1270		1.53		mg/kg dry		12/05/11 17:42	12/06/11 14:21	1.0
Method: SW-846 - General Chemis	try Paramote	re							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
% Dry Solids		SPS	0.500		%		12/05/11 09:53	12/05/11 09:54	1.0
lient Sample ID: DP-23-11151	1						Lab Sam	ble ID: SUK0	108-06
ate Collected: 11/15/11 12:10								Matrix	: Wate
ate Received: 11/18/11 15:30									

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B D Prepared Analyzed Dil Fac Analyte Result Qualifier RL MDL Unit 11/20/11 07:12 11/20/11 10:08 Dichlorodifluoromethane ND 10.0 10.0 ug/l 11/20/11 07:12 11/20/11 10:08 10.0 Chloromethane ND 30.0 ug/l Vinyl chloride ND 2.00 11/20/11 07:12 11/20/11 10:08 10.0 ug/l 11/20/11 07:12 11/20/11 10:08 10.0 Bromomethane ND 50.0 ug/l ND 11/20/11 07:12 11/20/11 10:08 10.0 10.0 Chloroethane ug/l 11/20/11 10:08 10.0 ND 10.0 11/20/11 07:12 Trichlorofluoromethane ug/l 11/20/11 10:08 10.0 1,1-Dichloroethene ND 10.0 ug/l 11/20/11 07:12 Carbon disulfide ND 10.0 11/20/11 07:12 11/20/11 10:08 10.0 ug/l 11/20/11 07:12 11/20/11 10:08 10.0 Methylene chloride ND 100 ug/l ŃD 250 11/20/11 07:12 11/20/11 10:08 10.0 Acetone ug/l 10.0 ND 11/20/11 07:12 11/20/11 10:08 trans-1,2-Dichloroethene 10.0 ug/l 10.0 Methyl tert-butyl ether ND 10.0 ug/l 11/20/11 07:12 11/20/11 10:08 ŇD 10.0 ug/l 11/20/11 07:12 11/20/11 10:08 10.0 1,1-Dichloroethane cis-1,2-Dichloroethene ND 10.0 ug/l 11/20/11 07:12 11/20/11 10:08 10.0 ND 10.0 11/20/11 07:12 11/20/11 10:08 10.0 2,2-Dichloropropane ug/l ND 10.0 11/20/11 07:12 11/20/11 10:08 10.0 Bromochloromethane ug/l

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-23-111511

Date Collected: 11/15/11 12:10 Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	SUK)108
-------------	-----	-----	-----	------

角

Lab Sample ID: SUK0108-06 Matrix: Water

				5
D	Prepared	Analyzed	Dil Fac	F
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	電路
	11/20/11 07:12	11/20/11 10:08	10.0	Part State
	11/20/11 07:12	11/20/11 10:08	10.0	(e]
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	Tex 1
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
• • • •	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	
	11/20/11 07:12	11/20/11 10:08	10.0	

Analyte	ganic Compounds by EPA I Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND	10.0	ug/i		11/20/11 07:12	11/20/11 10:08	10.0
Carbon tetrachloride	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
,1,1-Trichloroethane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
P-Butanone	ND	100	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
,1-Dichloropropene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
Benzene	40.6	2.00	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
,2-Dichloroethane (EDC)	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
richloroethene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
Dibromomethane	ND ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
,2-Dichloropropane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
Iromodichloromethane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
is-1,3-Dichloropropene	ND · · ·	10.0	ug/i	• • •	11/20/11 07:12	11/20/11 10:08	10.0
oluene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
-Methyl-2-pentanone	ND	100	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
ans-1,3-Dichloropropene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
etrachloroethene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
,1,2-Trichloroethane	ND	10.0	ug/i		11/20/11 07:12	11/20/11 10:08	10.0
ibromochloromethane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
,3-Dichloropropane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
2-Dibromoethane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
	ND	10.0	and a second second		11/20/11 07:12	11/20/11 10:08	10.0
Hexanone			ug/l				10.0
hylbenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	
hlorobenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
1,1,2-Tetrachloroethane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
,p-Xylene	55.4	20.0	ug/i		11/20/11 07:12	11/20/11 10:08	10.0
Xylene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
yrene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
romoform	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
opropylbenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
Propylbenzene	14.8	10.0	ug/l	· · · · ·	11/20/11 07:12	11/20/11 10:08	10.0
1,2,2-Tetrachloroethane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
romobenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
3,5-Trimethylbenzene	. 10.9	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
Chlorotoluene	ND	10.0	ug/i		11/20/11 07:12	11/20/11 10:08	10.0
2,3-Trichloropropane	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
Chlorotoluene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
t-Butylbenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
2,4-Trimethylbenzene	132	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
c-Butylbenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
Isopropyltoluene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
3-Dichlorobenzene	ND	10.0	ug/ł		11/20/11 07:12	11/20/11 10:08	10.0
4-Dichlorobenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
Butylbenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
2-Dichlorobenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
2-Dibromo-3-chloropropane	ND	50.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
exachlorobutadiene	ND	20.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
2,4-Trichlorobenzene	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:08	10.0
······································					11/20/11 07:12	11/20/11 10:08	10.0
aphthalene 2,3-Trichlorobenzene	ND ND	20.0 10.0	ug/l ug/l		11/20/11 07:12 11/20/11 07:12	11/20/11 10:08	10.0

TestAmerica Job ID: SUK0108

11

5

Lab Sample ID: SUK0108-06 Matrix: Water

Client Sample ID: DP-23-111511 Date Collected: 11/15/11 12:10

Date Received: 11/18/11 15:30

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Dibromofluoromethane	89.4		66.5 - 145				11/20/11 07:12	11/20/11 10:08	10
Toluene-d8	106		75.4 - 120				11/20/11 07:12	11/20/11 10:08	10
4-bromofluorobenzene	106		68.4 - 123				11/20/11 07:12	11/20/11 10:08	10
Method: EPA 8011 - EDB by EF									
Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil F
1,2-Dibromoethane	ND		0.0100		ug/i		11/19/11 07:17	11/19/11 15:02	1.
1,2-Dibromo-3-chloropropane	ND		0.0100		ug/l		11/19/11 07:17	11/19/11 15:02	1.
Method: EPA 8082 - Polychlorin									
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil F
PCB-1016	ND		0.118		ug/l		12/02/11 13:45	12/05/11 12:24	1.
PCB-1221	ND		0.118		ug/l		12/02/11 13:45	12/05/11 12:12	1.
PCB-1232	ND		0.118		ug/l		12/02/11 13:45	12/05/11 12:12	1.
PCB-1242	ND		0.118		ug/l		12/02/11 13:45	12/05/11 12:12	1.
PCB-1248	ND		0.118		ug/l		12/02/11 13:45	12/05/11 12:12	1.
PCB-1254	ND		0.118		ug/l		12/02/11 13:45	12/05/11 12:12	1.
PCB-1260	ND		0.118		ug/l		12/02/11 13:45	12/05/11 12:24	1
PCB-1268	ND		0.118		ug/l		12/02/11 13:45	12/05/11 12:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
TCX	60.7		40 - 137				12/02/11 13:45	12/05/11 12:24	1
Decachlorobiphenyl	75.3		40 - 124				12/02/11 13:45	12/05/11 12:24	1.
Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte		Products by Qualifier	NWTPH-Dx RL 0.238	MDL	Unit mg/l	<u>D</u>	Prepared 11/21/11 09:38	Analyzed 11/23/11 13:58	1.
Analyte Diesel Range Hydrocarbons	Result	-	RL	MDL		<u>D</u>			1.
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	Result 0.289	Qualifier	RL - 0.238	MDL	mg/l		11/21/11 09:38	11/23/11 13:58	1.
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	Result 0.289 ND	Qualifier	- <u>RL</u> 0.238 0.476	MDL	mg/l	<u>D</u>	11/21/11 09:38 11/21/11 09:38	11/23/11 13:58 11/23/11 13:58	1. 1. Dil F
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP	Result 0.289 ND %Recovery	Qualifier	RL 0.238 0.476 <i>Limits</i>	MDL	mg/l	<u>D</u>	11/21/11 09:38 11/21/11 09:38 Prepared	11/23/11 13:58 11/23/11 13:58 Analyzed	1. 1. Dil F 1.
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP	Result 0.289 0.289 ND %Recovery 82.6	Qualifier	RL 0.238 0.476 Limits 50 - 150	MDL	mg/l	<u>D</u>	11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58	1. 1. Dil F 1.
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons b	Qualifier Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150		mġ/l mg/l		11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58	1. 1. Dil F 1. 1.
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons I Result	Qualifier Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 GX RL	MDL	mg/l mg/l Unit	D	11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed	1. 1. <i>Dil F</i> 1. 1. Dil F
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons b	Qualifier Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150		mġ/l mg/l		11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58	1. 1. Dil F 1. 1. Dil F
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons I Result 2600 %Recovery	Qualifier Qualifier by NWTPH- Qualifier Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 GX RL		mg/l mg/l Unit		11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed 11/21/11 12:05 Analyzed	1. 1. 1. 1. 1. 1. Dil F
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons I Result 2600	Qualifier Qualifier by NWTPH- Qualifier Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 GX RL 100		mg/l mg/l Unit		11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed 11/21/11 12:05	1. 1. 1. 1. 1. 1. Dil F
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons I Result 2600 %Recovery 305	Qualifier Qualifier by NWTPH- Qualifier Qualifier ZX	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 -Gx RL 100 <i>Limits</i> 37.9 - 162		mg/l mg/l Unit		11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed 11/21/11 12:05 Analyzed	1. 1. 1. 1. 1. 1. Dil F
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: EPA 6010C - Total Meta	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons I Result 2600 %Recovery 305 als by EPA 6010	Qualifier Qualifier by NWTPH- Qualifier Qualifier ZX	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 -Gx RL 100 <i>Limits</i> 37.9 - 162	MDL	mg/l mg/l Unit		11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed 11/21/11 12:05 Analyzed	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP Do-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate H-BFB (FID) Method: EPA 6010C - Total Meta Analyte	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons I Result 2600 %Recovery 305 als by EPA 6010	Qualifier Qualifier by NWTPH- Qualifier Qualifier ZX 0/7000 Serie Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 GX RL 100 <i>Limits</i> 37.9 - 162 es Methods	MDL	mg/l mg/l Unit ug/l	D	11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared 11/21/11 08:18	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed 11/21/11 12:05 Analyzed 11/21/11 12:05	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP po-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: EPA 6010C - Total Meta Analyte .ead	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons It Result 2600 %Recovery 305 als by EPA 6010 Result ND	Qualifier Qualifier by NWTPH- Qualifier Qualifier ZX 0/7000 Serie Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 GX RL 100 <i>Limits</i> 37.9 - 162 es Methods RL	MDL	mg/l mg/l Unit ug/l	D	11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared 11/21/11 08:18 Prepared 12/05/11 17:45	11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed 11/21/11 12:05 Analyzed 11/21/11 12:05 Analyzed 12/06/11 08:30	1. 1. 1. 1. 1. 1. Dil F 1. Dil F 1. Dil F
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: EPA 6010C - Total Meta Analyte Lead Lient Sample ID: DP-24-7.0 pt Collocted: 11/15/(1.12)25	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons It Result 2600 %Recovery 305 als by EPA 6010 Result ND	Qualifier Qualifier by NWTPH- Qualifier Qualifier ZX 0/7000 Serie Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 GX RL 100 <i>Limits</i> 37.9 - 162 es Methods RL	MDL	mg/l mg/l Unit ug/l	D	11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared 11/21/11 08:18 Prepared 12/05/11 17:45	11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 Analyzed 11/21/11 12:05 Analyzed 11/21/11 12:05 Analyzed 11/21/11 12:05 Analyzed 12/06/11 08:30 Die ID: SUK0*	
Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (F/D) Method: EPA 6010C - Total Meta Analyte Lead	Result 0.289 ND %Recovery 82.6 83.4 Hydrocarbons It Result 2600 %Recovery 305 als by EPA 6010 Result ND	Qualifier Qualifier by NWTPH- Qualifier Qualifier ZX 0/7000 Serie Qualifier	RL 0.238 0.476 <i>Limits</i> 50 - 150 50 - 150 GX RL 100 <i>Limits</i> 37.9 - 162 es Methods RL	MDL	mg/l mg/l Unit ug/l	D	11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared 11/21/11 08:18 Prepared 12/05/11 17:45	11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 11/23/11 13:58 Analyzed 11/23/11 13:58 Analyzed 11/21/11 12:05 Analyzed 11/21/11 12:05 Analyzed 11/21/11 12:05 Analyzed 12/06/11 08:30 Die ID: SUK0*	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

Method: EPA 8260B - Volatile Orga	anic Compour	nds by EPA	Methods 50)35/8260B					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.457	0.229	mg/kg dry	— <u>\$</u>	11/21/11 08:16	11/21/11 20:01	2.00
Chloromethane	ND		2.29	0.229	mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Lab Sample ID: SUK0108-07

TestAmerica Job ID: SUK0108

Client Sample ID: DP-24-7.0-111511 Date Collected: 11/15/11 12:25 Date Received: 11/18/11 15:30

Matrix: Soil Percent Solids: 64.6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	0.274	0.0915	mg/kg dry	₩ Ţ	11/21/11 08:16	11/21/11 20:01	2.00
Bromomethane	ND	2.29	0.457	mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
Chloroethane	ND	0.457	0.229	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
richlorofluoromethane	ND	0.137	0.0457	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
,1-Dichloroethene	ND	0.457	0.0915	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
Carbon disulfide	ND	0.457	0.229	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
Methylene chloride	ND	4.57	1.37	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
cetone	9.36	9.15	4.30	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
rans-1,2-Dichloroethene	ND	0.457	0.0915	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
lethyl tert-butyl ether	ND	0.457	0.0457	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
1-Dichloroethane	ND	0.457	0.0915	mg/kg dry	Ø	11/21/11 08:16	11/21/11 20:01	2.00
is-1,2-Dichloroethene	ND	0.457	0.0915	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
2-Dichloropropane	ND	0.457	0.229	mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
romochloromethane	ND	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
hloroform	ND	0.457		mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
arbon tetrachloride	ND	0.457	0.0457		ø	11/21/11 08:16	11/21/11 20:01	2.00
,1,1-Trichloroethane	ND	0.457	0.0915	mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
Butanone	10.6	4.57	0.457	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
1-Dichloropropene	ND	0.457		mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
enzene	1.57	0.0915		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
2-Dichloroethane (EDC)	ND	0.457	0.229	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
ichloroethene	ND	0.114		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
bromomethane	ND	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
2-Dichloropropane	ND	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
omodichloromethane	ND	0,457		mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
s-1,3-Dichloropropene	ND	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
luene	0.563	0.457		mg/kg dry	ø	11/21/11 08:16	11/21/11 20:01	2.00
Methyl-2-pentanone	6.12	4.57		mg/kg dry	ø	11/21/11 08:16	11/21/11 20:01	2.00
ins-1,3-Dichloropropene	ND	0.457		mg/kg dry		11/21/11 08:16	11/21/11 20:01	2.00
etrachloroethene	ND	0.229	0.0310	mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
1,2-Trichloroethane	ND	0.457		mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.00
bromochloromethane	ND	0.457		mg/kg dry	ġ.	11/21/11 08:16	11/21/11 20:01	2.00
	ND	0.457		mg/kg dry	ø	11/21/11 08:16	11/21/11,20:01	2.00
3-Dichloropropane ,	ND	0.457		mg/kg dry	ø	11/21/11 08:16	11/21/11 20:01	2.00
2-Dibromoethane Hexanone	ND	4.57			¢.	11/21/11 08:16	11/21/11 20:01	2.00
				mg/kg dry mg/kg dpy	₽	11/21/11 08:16	11/21/11 20:01	2.00
hylbenzene	10.3 ND	0.457 0.457		mg/kg dry mg/kg dry	\$	11/21/11 08:16	11/21/11 20:01	2.00
						11/21/11 08:16	11/21/11 20:01	2.00
1,1,2-Tetrachloroethane	ND	0.457		mg/kg dry	¢			2.00
,p-Xylene	18.8	1.83		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
Xylene	1.33	0.915		mg/kg dry		11/21/11 08:16	11/21/11 20:01	
vrene	ND	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
omoform	ND	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01 11/21/11 20:01	2.00 2.00
opropylbenzene	2.90	0.457		mg/kg dry		11/21/11 08:16		
Propylbenzene	5.84	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
1,2,2-Tetrachloroethane	ND	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
omobenzene	ND	0.457		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 20:01	2.00
3,5-Trimethylbenzene	9.14	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
Chlorotoluene	ND	0.457		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00
2,3-Trichloropropane	ND	0.457	0.0915	mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.00 2.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-07

Client Sample ID: DP-24-7.0-111511 Date Collected: 11/15/11 12:25 Date Received: 11/18/11 15:30

• • • • • • • • • • • • • • • • • • • •	
Matrix: Soil	
Percent Solids: 64.6	

5

Method: EPA 8260B - Volatile (Analyte		Qualifier	RL		Unit	, р	Prepared	Analyzed	Dil Fa
tert-Butylbenzene			0.457	0.0229		— -	11/21/11 08:16	11/21/11 20:01	2.0
1,2,4-Trimethylbenzene	17.9		1.14		mg/kg dry	¢	11/21/11 08:16	11/21/11 11:36	5.0
sec-Butylbenzene	1.39		0.457	0.0320		¢	11/21/11 08:16	11/21/11 20:01	2.0
p-isopropyitoluene	2.48		0.457	0.0320	• • •	¢	11/21/11 08:16	11/21/11 20:01	2.0
1,3-Dichlorobenzene	2:46 ND		0.457	0.0183		¢	11/21/11 08:16	11/21/11 20:01	2.0
1,4-Dichlorobenzene	ŇD		0.457		mg/kg dry	¢.	11/21/11 08:16	11/21/11 20:01	2.0
n-Butylbenzene	2.86		0.457	0.0457		¢	11/21/11 08:16	11/21/11 20:01	2.0
1,2-Dichlorobenzene	ND		0.457	0.0229		¢	11/21/11 08:16	11/21/11 20:01	2.0
1,2-Dibromo-3-chloropropane	ND		2.29		mg/kg dry	¢	11/21/11 08:16	11/21/11 20:01	2.0
Hexachlorobutadiene	ND		0.457		mg/kg dry	₽	11/21/11 08:16	11/21/11 20:01	2.0
	ND		0.457	0.133		\$	11/21/11 08:16	11/21/11 20:01	2.0
1,2,4-Trichlorobenzene						Ϋ́	11/21/11 08:16	11/21/11 20:01	2.00
Naphthalene	11.5		0.915		mg/kg dry	¢			2.0
1,2,3-Trichlorobenzene	ND		0.457	0.137	mg/kg dry	*	11/21/11 08:16	11/21/11 20:01	2.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	94.2		71.6 - 127				11/21/11 08.16	11/21/11 20:01	2.0
Toluene-d8	123		80 - 129				11/21/11 08:16	11/21/11 20:01	2.0
4-bromofluorobe nz ene		zx	57.7 - 149				11/21/11 08:16	11/21/11 20:01	2.0
Method: EPA 8011 - EDB by El	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.53		ug/kg dry	- \	11/21/11 08:22	11/23/11 15:30	1.0
1,2-Dibromo-3-chloropropane	ND	R1	1.53		ug/kg dry	¢	11/21/11 08:22	11/23/11 15:30	1.00
Method: EPA 8082 - Polychlori Analyte	Result	Qualifier	RL	MDL		– D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		155		ug/kg dry		11/21/11 11:11	11/22/11 14:15	1.00
PCB-1221	ND		155		ug/kg dry	¢	11/21/11 11:11	11/22/11 14:03	1.00
PCB-1232	ND		155		ug/kg dry	بې سی د د	11/21/11 11:11	11/22/11 14:03	1.00
PCB-1242	ND		155		ug/kg dry	*	11/21/11 11:11	11/22/11 14:03	1.00
PCB-1248	ND		155		ug/kg dry	\$ 	11/21/11 11:11	11/22/11 14:03	1.00
PCB-1254	ND		155		ug/kg dry	¢ س	11/21/11 11:11	11/22/11 14:03	1.00
PCB-1260	ND		155		ug/kg dry	¢	11/21/11 11:11	11/22/11 14:15	1.00
PCB-1268	ND		155		ug/kg dry	¢	11/21/11 11:11	11/22/11 14:03	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
rcx			27.9 - 154				11/21/11 11:11	11/22/11 14:15	1.00
Decachlorobiphenyl	85.2		35_157				11/21/11 11:11	11/22/11 14:15	1.00
Method: NWTPH-Dx - Semivola Analyte		Qualifier	NWTPH-DX RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons		Guanner	20.0	mor	mg/kg dry	- -	11/19/11 07:15	11/19/11 13:14	1.00
Heavy Oil Range Hydrocarbons	21.3 ND		50.1		mg/kg dry	₽	11/19/11 07:15	11/19/11 13:14	1.00
heavy On Range Hydrocarbons	ND		50.1		ng/ng ury		1115/11 07.15	11/13/11 10:14	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	95.7		50 - 150				11/19/11 07:15	11/19/11 13:14	1.00
o-Terphenyl-d14	97.4		50 - 150				11/19/11 07:15	11/19/11 13:14	1.00
-									
Method: NWTPH-Gx - Gasoline	•	-							
Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	•	oy NWTPH- Qualifier	Gx 	MDL	Unit mg/kg dry	– <mark>D</mark>	Prepared	Analyzed 11/20/11 11:29	Dil Fac 10.0

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-07

Client Sample ID: DP-24-7.0-111511 Date Collected: 11/15/11 12:25

Date Received: 11/18/11 15:30

Matrix: Soil Percent Solids: 64.6 -î

5

1

(j)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-BFB (FID)	193	ZX	50 - 150				11/20/11 07:08	11/20/11 11:29	10.0
- Method: EPA 6010C - Total Meta	ls by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	7.91		2.32		mg/kg dry	\$	12/05/11 17:42	12/06/11 14:24	1.00
Method: 8260B TCLP - BTEX TC	P - TCL P								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene		H	100		ug/L		01/05/12 15:08	01/05/12 15:08	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		75 - 120				01/05/12 15:08	01/05/12 15:08	100
Ethy/benzene-d10	96		80 - 120				01/05/12 15:08	01/05/12 15:08	100
Fluorobenzene (Surr)	95		80 - 120				01/05/12 15:08	01/05/12 15:08	100
Toluene-d8 (Surr)	96		85 - 120				01/05/12 15:08	01/05/12 15:08	100
Trifluorotoluene (Surr)	105		80 - 120				01/05/12 15:08	01/05/12 15:08	100
lient Sample ID: DP-25-2.5-	111511						Lab Samp	ble ID: SUK0	108-08
ate Collected: 11/15/11 12:35								Mat	rix: Soil
ate Received: 11/18/11 15:30								Percent Soli	da, 07 0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.127	0.0633	mg/kg dry	- 2	11/21/11 08:16	11/21/11 12:04	1.00
Chloromethane	ND		0.633	0.0633	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
Vinyl chloride	ND		0.0760	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
Bromomethane	ND		0.633	0.127	mg/kg dry	\$	11/21/11 08:16	11/21/11 12:04	1.00
Chloroethane	ND		0.127	0.0633	mg/kg dry	\$	11/21/11 08:16	11/21/11 12:04	1.00
Trichlorofluoromethane	ND		0.0380	0.0127	mg/kg dry	₿	11/21/11 08:16	11/21/11 12:04	1.00
1,1-Dichloroethene	ND		0.127	0.0253	mg/kg dry	¥	11/21/11 08:16	11/21/11 12:04	1.00
Carbon disulfide	ND		0.127	0.0633	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.00
Methylene chloride	ND		1.27	0.380	mg/kg dry	۵	11/21/11 08:16	11/21/11 12:04	1.00
Acetone	ND	,	2.53	1.19	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
trans-1,2-Dichloroethene	ND		0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
Methyl tert-butyl ether	ND		0.127	0.0127	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
1,1-Dichloroethane	ND		0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
cis-1,2-Dichloroethene	ND		0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
2,2-Dichloropropane	ND		0.127	0.0633	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
Bromochloromethane	ND		0.127	0.0253	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.00
Chloroform	ND		0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
Carbon tetrachloride	ND		0.127	0.0127	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
1,1,1-Trichloroethane	ND	· · ·	0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
2-Butanone	ND		1.27	0.127	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
1,1-Dichloropropene	ND		0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
Benzene	ND		0.0253	0.0101	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.00
1,2-Dichloroethane (EDC)	ND		0.127	0.0633	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
Trichloroethene	ND		0.0317	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.00
Dibromomethane	ND		0.127	0.0633	mg/kg dry	₿	11/21/11 08:16	11/21/11 12:04	1.00
1,2-Dichloropropane	ND		0.127	0.0253	mg/kg dry	۵	11/21/11 08:16	11/21/11 12:04	1.00
Bromodichloromethane	ND		0.127	0.0253	mg/kg dry	۵	11/21/11 08:16	11/21/11 12:04	1.00
cis-1,3-Dichloropropene	ND		0.127	0.0253	mg/kg dry	÷.	11/21/11 08:16	11/21/11 12:04	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

Client Sample ID: DP-25-2.5-111511 Date Collected: 11/15/11 12:35 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-08 Matrix: Soil Percent Solids: 87.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Toluene	ND		0.127	0.0127	mg/kg dry	Ţ,	11/21/11 08:16	11/21/11 12:04	1.0
4-Methyl-2-pentanone	ND		1.27	0.127	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
trans-1,3-Dichloropropene	ND		0.127	0.0253	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.0
Tetrachloroethene	ND		0.0633	0.0127	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
1,1,2-Trichloroethane	ND		0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
Dibromochloromethane	ND		0.127	0.0253	mg/kg dry	÷	11/21/11 08:16	11/21/11 12:04	1.0
1,3-Dichloropropane	ND		0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
1,2-Dibromoethane	ND		0.127	0.0253	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
2-Hexanone	ND		1.27	0.127	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.0
Ethylbenzene	ND		0.127		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
Chlorobenzene	ND		0.127		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
1,1,1,2-Tetrachloroethane	ND		0.127	0.0253	mg/kg dry	. ×	11/21/11 08:16	11/21/11 12:04	1.0
n,p-Xylene	ND		0.507		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
p-Xylene	0.0165		0.253	0.0127		₽	11/21/11 08:16	11/21/11 12:04	1.0
Styrene	ND		0.127	0.0127		¢	11/21/11 08:16	11/21/11 12:04	1.0
Bromoform	ND		0.127		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
sopropylbenzene	ND		0.127		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
-Propylbenzene	ND		0.127	0.0127			11/21/11 08:16	11/21/11 12:04	1.0
1,1,2,2-Tetrachloroethane	ND		0.127		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
Bromobenzene	ND		0.127		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
I,3,5-Trimethylbenzene	ND		0.127		mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.0
2-Chlorotoluene	ND		0.127		mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.0
,2,3-Trichloropropane	ND		0.127		mg/kg dry	₿	11/21/11 08:16	11/21/11 12:04	1.0
I-Chlorotoluene	ND		0.127		mg/kg dry	÷	11/21/11 08:16	11/21/11 12:04	1.0
ert-Butylbenzene	ND		0.127		mg/kg dry	\$	11/21/11 08:16	11/21/11 12:04	1.0
•			0.127		mg/kg dry	\$	11/21/11 08:16	11/21/11 12:04	1.0
I,2,4-Trimethylbenzene sec-Butylbenzene	0.0367 ND	J	0.127		mg/kg dry		11/21/11 08:16	11/21/11 12:04	1.0
-	ND		0.127		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
o-Isopropyitoluene I,3-Dichlorobenzene	ND		0.127	0.00507		¢	11/21/11 08:16	11/21/11 12:04	1.0
	ND		0.127			····	11/21/11 08:16	11/21/11 12:04	1.0
,4-Dichlorobenzene				*	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.0
n-Butylbenzene	ND ND		0.127 0.127	0.0127	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	1.0
,2-Dichlorobenzene					mg/kg dry		11/21/11 08:16	11/21/11 12:04	1.0
,2-Dibromo-3-chloropropane	ND	•	0.633		mg/kg dry	¢			1.0
lexachlorobutadiene	ND		0.127		mg/kg dry	¢	11/21/11 08:16	11/21/11 12:04	
,2,4-Trichlorobenzene	ND		0.127		mg/kg dry		11/21/11 08:16	11/21/11 12:04	1.0
Naphthalene	ND		0.253		mg/kg dry		11/21/11 08:16	11/21/11 12:04	1.0
,2,3-Trichlorobenzene	ND		0.127	0.0380	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:04	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	91.0		71.6 - 127				11/21/11 08:16	11/21/11 12:04	1.0
Foluene-d8	118		80 - 129				11/21/11 08:16	11/21/11 12:04	1.0
4-bromofluorobenzene	141		57.7 - 149				11/21/11 08:16	11/21/11 12:04	1.0
Method: EPA 8011 - EDB by E	PA Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,2-Dibromoethane	ND		1.12		ug/kg dry	- \	11/21/11 08:22	11/23/11 15:43	1.0
,2-Dibromo-3-chloropropane	ND		1.12		ug/kg dry	¢	11/21/11 08:22	11/23/11 15:43	1.0
/lethod: EPA 8082 - Polychlori	nated Biphenyls	by EPA Me	ethod 8082						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
CB-1016	ND		56.9		ug/kg dry	— 🕁	11/21/11 11:11	11/22/11 14:51	1.00

.

伯子

, 4 Î Î

5

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Date Collected: 11/15/11 12:35

Date Received: 11/18/11 15:30

Client Sample ID: DP-25-2.5-111511

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-08 Matrix: Soil

Percent Solids: 87.8

省.]

5

-

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1221	ND		56.9		ug/kg dry	<u>×</u>	11/21/11 11:11	11/22/11 14:39	1.0
PCB-1232	ND		56.9		ug/kg dry	₽	11/21/11 11:11	11/22/11 14:39	1.0
PCB-1242	ND		56.9		ug/kg dry	₿	11/21/11 11:11	11/22/11 14:39	1.0
PCB-1248	ND		56.9		ug/kg dry	₽	11/21/11 11:11	11/22/11 14:39	1.0
PCB-1254	ND		56.9		ug/kg dry	₽	11/21/11 11:11	11/22/11 14:39	1.0
PCB-1260	ND	· · · · · · · · · · · · · · ·	56.9		ug/kg dry	₿	11/21/11 11:11	11/22/11 14:51	1.0
PCB-1268	ND		56.9		ug/kg dry	¢	11/21/11 11:11	11/22/11 14:39	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Ana/yzed	Di/ Fa
тсх	60.9		27.9 - 154				11/21/11 11:11	11/22/11 14:51	1.0
Decachlorobiphenyl	94.7		35 - 157				11/21/11 11:11	11/22/11 14:51	1.0
Method: NWTPH-Dx - Semivolatile	Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	ND		11.4		mg/kg dry	<u>¤</u>	11/19/11 07:15	11/19/11 13:30	1.0
Heavy Oil Range Hydrocarbons	ND		28.5		mg/kg dry	₽	11/19/11 07:15	11/19/11 13:30	1.00
Surrogate	%Recovery	Qua/ifier	Limits				Prepared	Analyzed	Di/ Fa
2-FBP	87.8		50 - 150				11/19/11 07:15	11/19/11 13:30	1.00
p-Terphenyl-d14	94.8		50 - 150				11/19/11 07:15	11/19/11 13:30	1.0
Method: NWTPH-Gx - Gasoline Hy	drocarbons I	y NWTPH-	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		6.33		mg/kg dry	- -	11/20/11 07:08	11/20/11 11:55	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	98.3		50 - 150				11/20/11 07:08	11/20/11 11:55	1.00
Method: EPA 6010C - Total Metals	by EPA 6010	/7000 Serie	s Methods						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ead	4.50		1.71		mg/kg dry	- 🕱	12/05/11 17:42	12/06/11 14:28	1.00

Client Sample ID: DP-25-6.0-111511 Date Collected: 11/15/11 12:40 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-09

Matrix: Soil

Percent Solids: 84.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.134	0.0669	mg/kg dry	<u>⊅</u>	11/21/11 08:16	11/21/11 12:32	1.00
Chloromethane	ND		0.669	0.0669	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
Vinyl chloride	ND		0.0803	0.0268	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
Bromomethane	ND		0.669	0.134	mg/kg dry	₿	11/21/11 08:16	11/21/11 12:32	1.00
Chloroethane	ND		0.134	0.0669	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
Trichlorofluoromethane	ND		0.0401	0.0134	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
1,1-Dichloroethene	ND		0.134	0.0268	mg/kg dry	Ċ,	11/21/11 08:16	11/21/11 12:32	1.00
Carbon disulfide	ND		0.134	0. 0 669	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
Methylene chloride	ND		1.34	0.401	mg/kg dry	₿	11/21/11 08:16	11/21/11 12:32	1.00
Acetone	ND		2.68	1.26	mg/kg dry	₿	11/21/11 08:16	11/21/11 12:32	1.00
trans-1,2-Dichloroethene	ND		0.134	0.0268	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:32	1.00
Methyl tert-butyl ether	ND		0.134	0.0134	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
1,1-Dichloroethane	ND		0.134	0.0268	mg/kg dry	₿	11/21/11 08:16	11/21/11 12:32	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-25-6.0-111511 Date Collected: 11/15/11 12:40 Date Received: 11/18/11 15:30

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-09 Matrix: Soil

Percent Solids: 84.7

Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND	0.134	0.0268	mg/kg dry	— ¤	11/21/11 08:16	11/21/11 12:32	1.00
2,2-Dichloropropane	ND	0.134	0.0669	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
Bromochloromethane	ND	0.134	0.0268	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:32	1.00
Chloroform	0.0549 J	0.134	0.0268	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
Carbon tetrachloride	ND	0.134	0.0134	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
1,1,1-Trichloroethane	ND	0.134	0.0268	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
2-Butanone	1.85	1.34	0.134	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
I,1-Dichloropropene	ND	0.134	0.0268	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
Benzene	0.0803	0.0268	0.0107	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:32	1.00
I,2-Dichloroethane (EDC)	ND	0.134	0.0669	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
richloroethene	ND	0.0335	0.0268	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
Dibromomethane	ND	0.134	0.0669	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
,2-Dichloropropane	ND	0.134	0.0268	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
romodichloromethane	ND	0.134	0.0268	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
s-1,3-Dichloropropene	ND	0.134	0.0268	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
oluene	ND	0.134		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
-Methyl-2-pentanone	6.83	1.34	0.134	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
ans-1,3-Dichloropropene	ND	0.134	0.0268	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:32	1.00
etrachloroethene	ND	0.0669		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
,1,2-Trichloroethane	ND	0.134		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
vibromochloromethane	ND	0.134		mg/kg dry		11/21/11 08:16	11/21/11 12:32	1.00
,3-Dichloropropane	ND	0.134		mg/kg dry	\$	11/21/11 08:16	11/21/11 12:32	1.00
2-Dibromoethane	ND	0.134		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
-Hexanone	ND	1.34		mg/kg dry	• 🙀	11/21/11 08:16	11/21/11 12:32	1.00
thylbenzene	0.343	0.134		mg/kg dry	¢	11/21/11 08:16	11/21/11 12:32	1.00
hlorobenzene	ND	0.134		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
1,1,2-Tetrachloroethane	ND	0.134		mg/kg dry	∵‡	11/21/11 08:16	11/21/11 12:32	1.00
ı,p-Xylene	0.527 J	0.535		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
-Xylene	0.0776 J	0.268		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
tyrene	ND	0.134		mg/kg dry		11/21/11 08:16	11/21/11 12:32	1.00
romoform	ND	0.134		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
sopropylbenzene	0.518	0.134		mg/kg dry	¢	11/21/11 08:16	11/21/11 12:32	1.00
Propylbenzene	1.00	0.134		mg/kg dry	÷.	11/21/11 08:16	11/21/11 12:32	1.00
1,2,2-Tetrachloroethane	ND	0.134		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
romobenzene	ND	0.134		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
,3,5-Trimethylbenzene	0.281	0.134		mg/kg dry	ø	11/21/11 08:16	11/21/11 12:32	1.00
-Chlorotoluene	ND	0.134		mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00
,2,3-Trichloropropane	ND	0.134		mg/kg dry	\$	11/21/11 08:16	11/21/11 12:32	1.00
-Chlorotoluene	ND	0.134		mg/kg dry	÷.	11/21/11 08:16	11/21/11 12:32	1.00
ert-Butylbenzene	ND	0.134		mg/kg dry mg/kg dry	φ 4	11/21/11 08:16	11/21/11 12:32	1.00
-		0.134		mg/kg dry mg/kg dry	¢	11/21/11 08:16		1.00
2,4-Trimethylbenzene	5.10	0.134	0.00937		¢	11/21/11 08:16	11/21/11 12:32 11/21/11 12:32	1.00
ec-Butylbenzene	0.610				φ			
Isopropyltoluene	1.11 ND	0.134		mg/kg dry mg/kg dry		11/21/11 08:16	11/21/11 12:32	1.00
3-Dichlorobenzene	ND	0.134		mg/kg dry		11/21/11 08:16	11/21/11 12:32	1.00
4-Dichlorobenzene	ND	0.134	0.00669		Ф л	11/21/11 08:16	11/21/11 12:32	1.00
Butylbenzene	0.605	0.134		mg/kg dry	å	11/21/11 08:16	11/21/11 12:32	1.00
2-Dichlorobenzene	ND	0.134	0.00669			11/21/11 08:16	11/21/11 12:32	1.00
2-Dibromo-3-chloropropane	ND	0,669		mg/kg dry	\$	11/21/11 08:16	11/21/11 12:32	1.00
exachlorobutadiene	ND	0.134	0.0535	mg/kg dry	₽	11/21/11 08:16	11/21/11 12:32	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

Client Sample ID: DP-25-6.0-111511 Date Collected: 11/15/11 12:40

Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-09

Matrix: Soil Percent Solids: 84.7 1

5

Method: EPA 8260B - Volatile O Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dîl Fa
Naphthalene	0.731		0.268	0.147	mg/kg dry	— 🛱	11/21/11 08:16	11/21/11 12:32	1.0
1,2,3-Trichlorobenzene	ND		0.134	0.0401	mg/kg dry	¢	11/21/11 08:16	11/21/11 12:32	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	90.2		71.6 - 127				11/21/11 08:16	11/21/11 12:32	1.0
Toluene-d8	123		80 - 129				11/21/11 08:16	11/21/11 12:32	1.0
4-bromofluorobenzene	461	zx	57.7 - 149				11/21/11 08:16	11/21/11 12:32	1.0
Method: EPA 8011 - EDB by EP									
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.18		ug/kg dry	— ¤	11/21/11 08:22	11/23/11 15:56	1.
I,2-Dibromo-3-chloropropane	ND		1.18		ug/kg dry	₽	11/21/11 08:22	11/23/11 15:56	1.0
Method: EPA 8082 - Polychlorin			ethod 8082 RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte PCB-1016		Qualifier	<u> </u>	moL	ug/kg dry	- 7	11/21/11 11:11	11/22/11 15:03	1.
PCB-1221	ND		59.0		ug/kg dry ug/kg dry	₽	11/21/11 11:11	11/22/11 14:51	1.0
PCB-1232	ND		59.0		ug/kg dry ug/kg dry	₽	11/21/11 11:11	11/22/11 14:51	1.
CB-1232	ND	• • • • • • • • • • •	59.0		ug/kg dry		11/21/11 11:11	11/22/11 14:51	1.
CB-1242	ND		59.0		ug/kg dry	₽	11/21/11 11:11	11/22/11 14:51	1.
CB-1254	ND		59.0		ug/kg dry	₽	11/21/11 11:11	11/22/11 14:51	1.
CB-1260	ND		59.0		ug/kg dry		11/21/11 11:11	11/22/11 15:03	1.
CB-1268	ND		59.0		ug/kg dry	₿	11/21/11 11:11	11/22/11 14:51	1.
urrogate	%Recovery	Qualifier	Limite				Prepared	Analyzed	Dil F
		quantition	Limits			· · · · · ·	Frepared		
-	,	Z	27.9 - 154				11/21/11 11:11	11/22/11 15:03	
TCX	54.5								1.0
rCX Decachlorobiphenyl	54.5	Z	27.9 - 154 35 - 157	8270C			11/21/11 11:11	11/22/11 15:03	1.0
rcx Decachlorobipheny/ Method: EPA 8270C - Semivolati	54.5	Z	27.9 - 154 35 - 157	8270C MDL	Unit	D	11/21/11 11:11	11/22/11 15:03	1.0 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolati malyte	54.5	Z npounds pe	27.9 - 154 35 - 157 er EPA Method		Unit mg/kg dry	- -	11/21/11 11:11 11/21/11 11:11	11/22/11 15:03 11/22/11 15:03	1.4 1.4 Dil Fa
CX Decachlorobipheny/ Method: EPA 8270C - Semivolati Inalyte Icenaphthene	54.5 ile Organic Con Result	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL			_	11/21/11 11:11 11/21/11 11:11 Prepared	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 Analyzed 12/07/11 14:52 12/07/11 14:52	1.0 1.0 Dil Fa 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolation Inalyte Incenaphthene Incenaphthylene	54.5 ile Organic Con Result ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438		mg/kg dry	- 7	11/21/11 11:11 11/21/11 11:11 Prepared 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 Analyzed 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52	1.4 1.4 Dil Fé 1.0 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolation International Int	54.5 ile Organic Con Result ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438		mg/kg dry mg/kg dry	- 2 2	11/21/11 11:11 11/21/11 11:11 Prepared 11/29/11 07:09 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 Analyzed 12/07/11 14:52 12/07/11 14:52	1.4 1.4 Dil Fé 1.0 1.0 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolation inalyte icenaphthene icenaphthylene inthracene ienzo (a) anthracene	54.5 ile Organic Con Result ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438		mg/kg dry mg/kg dry mg/kg dry	- - # #	11/21/11 11:11 11/21/11 11:11 Prepared 11/29/11 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 Analyzed 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52	1.4 1.4 1.4 1.4 1.4 1.4 1.4
CX Alethod: EPA 8270C - Semivolation Internative International	54.5 ile Organic Con Result ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry mg/kg dry mg/kg dry	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	II/21/11 11:11 II/21/11 11:11 Prepared 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52	1.4 1.4 1.4 1.0 1.0 1.0 1.0 1.0 1.0
CX Alethod: EPA 8270C - Semivolation Internative International	54.5 ile Organic Con Result ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Prepared 11/29/11 11:11 11/21/11 11:11 Prepared 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 Analyzed 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52	T T
CX Necachlorobipheny/ Method: EPA 8270C - Semivolation analyte accenaphthene accenaphthylene anthracene enzo (a) anthracene enzo (a) pyrene tenzo (b) fluoranthene enzo (ghi) perylene	54.5 ile Organic Con Result ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	II/21/11 11:11 II/21/11 11:11 Prepared 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09	Analyzed 12/27/11 11/22/11 15:03 11/22/11 15:03 Analyzed 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52	T.
CX Necachlorobipheny/ Method: EPA 8270C - Semivolation analyte accenaphthene accenaphthylene anthracene enzo (a) anthracene enzo (a) pyrene enzo (b) fluoranthene enzo (c) fluoranthene enzo (c) fluoranthene enzo (c) fluoranthene	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		II/21/11 II:11 11/21/11 11:11 11/29/11 11:11 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 Analyzed 12/07/11 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52	T./ T./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./ 1./
CX Necachlorobipheny/ Nethod: EPA 8270C - Semivolati nalyte cenaphthene cenaphthylene nthracene enzo (a) anthracene enzo (a) anthracene enzo (a) pyrene enzo (b) fluoranthene enzo (chil) perylene enzo (k) fluoranthene enzo Acid	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33		mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		II/21/11 11:11 II/21/11 11:11 II/21/11 11:11 Prepared I1/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52	T.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolation inalyte inalyte incenaphthene incenaphthylene inthracene ienzo (a) anthracene ienzo (a) pyrene ienzo (b) fluoranthene ienzo (chil) perylene ienzo (k) fluoranthene ienzoi Acid enzyt alcohol	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438		mg/kg dry mg/kg dry		II/21/11 II:11 11/21/11 11:11 11/29/11 11:11 Prepared 11/29/11 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52 12/07/11 14:52	T./ T./
CX Pecachlorobipheny/ Method: EPA 8270C - Semivolationalyte Cenaphthene cenaphthylene nthracene enzo (a) anthracene enzo (a) anthracene enzo (b) fluoranthene enzo (c) fluoranthene enzo (c) fluoranthene enzo (k) fluoranthene enzo Acid enzyl alcohol -Bromophenyl phenyl ether utyl benzyl phthalate	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 1.33 0.438 0.438		mg/kg dry mg/kg dry		11/21/11 11:11 11/21/11 11:11 11/29/11 11:11 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 15:03 12/07/11 14:52	T./ T./
CX Decachlorobipheny/ Method: EPA 8270C - Semivolation inalyte International technological International technological Internationed Internationed Internat	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		II/21/11 II:11 11/21/11 11:11 11/29/11 11:11 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52	T.0 Dil Fr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolation inalyte Internetion of the second second second second intracene Intrac	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		II/21/11 11:11 II/21/11 11:11 II/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 15:03 12/07/11 14:52	T.0 T.0 Dil Fr 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolation inalyte icenaphthene icenaphthylene inthracene lenzo (a) anthracene lenzo (a) anthracene lenzo (b) fluoranthene ienzo (chi) perylene ienzo (chi) perylene ienzo (k) fluoranthene ienzo (k) fluoranthene ienzo ki fluoranthene ienzo ki fluoranthene ienzo ki fluoranthene ienzyl alcohol -Bromophenyl phenyl ether iutyl benzyl phthalate -Chloro-3-methylphenol -Chloroaniline	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		11/21/11 11:11 11/21/11 11:11 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 15:03 12/07/11 14:52	T.0 T.0 T.0 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolationalyte Internationalyte Internationalyte Internationalyte Internationalyte International Intern	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		11/21/11 11:11 11/21/11 11:11 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52	T.0 T.0 T.0 Dill F.0 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolation Analyte Accenaphthene Accenaphthylene Accenaphthylene Accenaphthylene Accenaphthylene Benzo (a) anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (c) fluora	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		11/21/11 11:11 11/21/11 11:11 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52	T.0 Dil F4 1.0
CX Decachlorobipheny/ Method: EPA 8270C - Semivolationalyte Internationalyte International Sector Semivolation International Semivolation International Sector Semivolation Internationa	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		11/21/11 11:11 11/21/11 11:11 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52	T.0 Dil F4 1.0
TCX Decachlorobipheny/ Method: EPA 8270C - Semivolati Analyte Acenaphthene Acenaphthylene Accenaphthylene Accenaphthylene Accenaphthylene Banzo (a) anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (c) fluoranthene Benzo (k) fluoranth	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		11/21/11 11:11 11/21/11 11:11 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52	T.0 Dil F.0 1.0
TCX Decachlorobipheny/ Method: EPA 8270C - Semivolati Analyte Acenaphthene Acenaphthylene Accenaphthylene Accenaphthylene Accenaphthylene Benzo (a) anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (c) fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroisopropyl)ether P-Chloronaphthalene P-Chlorophenol	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		11/21/11 11:11 11/21/11 11:11 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52	T.0 Dil Fa 1.0
TCX Decachlorobiphenyl Method: EPA 8270C - Semivolati Analyte Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (c) fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether 2-Chloronaphthalene 2-Chlorophenol 2-Chlorophenol <t< td=""><td>54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND</td><td>Z npounds pe</td><td>27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438</td><td></td><td>mg/kg dry mg/kg dry</td><td></td><td>11/21/11 11:11 11/21/11 11:11 11/29/11 07:09</td><td>11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52</td><td>Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0</td></t<>	54.5 ile Organic Con Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Z npounds pe	27.9 - 154 35 - 157 er EPA Method RL 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 1.33 1.33 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438 0.438		mg/kg dry mg/kg dry		11/21/11 11:11 11/21/11 11:11 11/29/11 07:09	11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 11/22/11 15:03 12/07/11 14:52	Dil Fa 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-25-6.0-111511 Date Collected: 11/15/11 12:40

Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	SUK0108

Lab Sample ID: SUK0108-09 Matrix: Soil

Percent Solids: 75.1

11

5

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Di-n-butyl phthalate	ND		1.33		mg/kg dry	<u> </u>	11/29/11 07:09	12/07/11 14:52	1.0
Di-n-octyl phthalate	ND		0.438	• • • • • • •	mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
Dibenzo (a,h) anthracene	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
Dibenzofuran	ND		0.438		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
1,2-Dichlorobenzene	ND		1.33		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
1,3-Dichlorobenzene	ND		1.33		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
1,4-Dichlorobenzene	ND		1.33		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
3,3'-Dichlorobenzidine	ND		1.33		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
2,4-Dichlorophenol	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
Diethyl phthalate	ND		0.438		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
2,4-Dimethylphenol	ND		1.33		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
Dimethyl phthalate	ND		0.438		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
4,6-Dinitro-2-methylphenol	ND		1.33		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
2,4-Dinitrophenol	ND		2.65		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
2,4-Dinitrotoluene	ND		0.664		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
2,6-Dinitrotoluene	ND		0.664		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
Bis(2-ethylhexyl)phthalate	ND		2.65		mg/kg dry	☆	11/29/11 07:09	12/07/11 14:52	1.0
Fluoranthene	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
Fluorene	ND		0.438		mg/kg dry	\$	11/29/11 07:09	12/07/11 14:52	1.0
Hexachlorobenzene	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
Hexachlorobutadiene	ND		1.33		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
Hexachlorocyclopentadiene	ND		1.33		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
lexachloroethane	ND		1.33		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
ndeno (1,2,3-cd) pyrene	ND		0.438		mg/kg dry	₿	11/29/11 07:09	12/07/11 14:52	1.0
sophorone	ND		0.438	•••••	mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
- 2-Methylnaphthalene	0.455		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
2-Methylphenol	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
3-,4-Methylphenol	ŇD		0.438		mg/kg dry	· · · 🌣	11/29/11 07:09	12/07/11 14:52	1.0
Naphthalene	0.492		0.438		mg/kg dry	\$	11/29/11 07:09	12/07/11 14:52	1.0
2-Nitroaniline	ND		0.438		mg/kg dry	ø	11/29/11 07:09	12/07/11 14:52	1.0
B-Nitroaniline	ND		1.33		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
I-Nitroaniline	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
litrobenzene	. ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52,	1.0
P-Nitrophenol	ND		0.438		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
l-Nitrophenol	ND		1.33		mg/kg dry	¢	11/29/11 07:09	12/07/11 14:52	1.0
NNitrosodi-n-propylamine	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
I-Nitrosodiphenylamine	ND		0.438		mg/kg dry	₿	11/29/11 07:09	12/07/11 14:52	1.0
Pentachlorophenol	ND		1.33		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
Phenanthrene	ND		0.438		mg/kg dry	₿	11/29/11 07:09	12/07/11 14:52	1.0
Phenol	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
Pyrene	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.00
,2,4-Trichlorobenzene	ND		1.33		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
,4,5-Trichlorophenol	ND		0.438		mg/kg dry	¢.	11/29/11 07:09	12/07/11 14:52	1.0
4,6-Trichlorophenol	ND		0.438		mg/kg dry	₽	11/29/11 07:09	12/07/11 14:52	1.0
urrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Fluorobiphenyl	79.7		30 - 126				11/29/11 07:09	12/07/11 14:52	1.0
-Fluorophenol	73.8		28 - 119				11/29/11 07:09	12/07/11 14:52	1.0
litrobenzene-d5	64.1		26 - 117				11/29/11 07:09	12/07/11 14:52	1.0

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Date Collected: 11/15/11 12:40

Date Received: 11/18/11 15:30

Client Sample ID: DP-25-6.0-111511

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-09

Matrix: Soil Percent Solids: 75.1 4

5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl-d14	108		26 - 143				11/29/11 07:09	12/07/11 14:52	1.00
2,4,6-Tribromophenol	76.6		30 - 127				11/29/11 07:09	12/07/11 14:52	1.00
Method: NWTPH-Dx - Semivolati	le Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	113		16.2		mg/kg dry	₽	11/19/11 07:15	11/19/11 13:47	1.00
Heavy Oil Range Hydrocarbons	56.1		40.4		mg/kg dry	¢	11/19/11 07:15	11/19/11 13:47	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	88,8		50 - 150				11/19/11 07:15	11/19/11 13:47	1.00
p-Terphenyl-d14	92.9		50 - 150				11/19/11 07:15	11/19/11 13:47	1.00
Method: NWTPH-Gx - Gasoline H	lydrocarbons b	y NWTPH-	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	612		335		mg/kg dry	— <u>\$</u>	11/20/11 07:08	11/21/11 07:30	50.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	205	ZX	50 - 150				11/20/11 07:08	11/21/11 07:30	50.0
Method: EPA 6010C - Total Meta	ls by EPA 6010	/7000 Serie	es Methods						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.43		1.77		mg/kg dry		12/05/11 17:42	12/06/11 14:49	1.00

Client Sample ID: DP-26-2.5-111511 Date Collected: 11/15/11 13:15 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-10

Matrix: Soil

Percent Solids: 78.9

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.160	0.0799	mg/kg dry	<u>\$</u>	11/21/11 08:16	11/21/11 13:00	1.00
Chloromethane	ND	0.799	0.0799	mg/kg dry	☆	11/21/11 08:16	11/21/11 13:00	1.00
Vinyl chloride	ND	0.0959	0.0320	mg/kg dry	☆	11/21/11 08:16	11/21/11 13:00	1.00
Bromomethane	ND	0.799	0.160	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:00	1.00
Chloroethane	ND	0.160	0.0799	mg/kg dry	☆	11/21/11 08:16	11/21/11 13:00	1.00
Trichlorofluoromethane	ND	0.0480	0.0160	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:00	1.00
1,1-Dichloroethene	ND	0.160	0.0320	mg/kg dry	\$	11/21/11 08:16	11/21/11 13:00	1.00
Carbon disulfide	ND	0.160	0.0799	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Methylene chloride	ND	1.60	0.480	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Acetone	ND	3.20	1.50	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:00	1.00
rans-1,2-Dichloroethene	ND	0.160	0.0320	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:00	1.00
Methyl tert-butyl ether	ND	0.160	0.0160	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:00	1.00
1,1-Dichloroethane	ND	0.160	0.0320	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:00	1.00
cis-1,2-Dichloroethene	ND	0.160	0.0320	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
2,2-Dichloropropane	ND	0.160	0.0799	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:00	1.00
Bromochloromethane	ND	0.160	0.0320	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:00	1.00
Chloroform	ND	0.160	0.0320	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Carbon tetrachloride	ND	0.160	0.0160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
1,1,1-Trichloroethane	ND	0.160	0.0320	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:00	1.00
2-Butanone	ND	1.60	0.160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
1,1-Dichloropropene	ND	0.160	0.0320	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:00	1.00

TestAmerica Spokane 1/6/2012

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-26-2.5-111511 Date Collected: 11/15/11 13:15 Date Received: 11/18/11 15:30

TestAmerica Job ID: SUK0108

征

5

Lab Sample ID: SUK0108-10 Matrix: Soil Percent Solids: 78.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.0320	0.0128	mg/kg dry	- \	11/21/11 08:16	11/21/11 13:00	1.00
1,2-Dichloroethane (EDC)	ND		0.160	0.0799	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Trichloroethene	ND)	0.0400	0.0320	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Dibromomethane	ND		0.160	0.0799	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
1,2-Dichloropropane	. ND		0.160	0.0320	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Bromodichloromethane	ND		0.160	0.0320	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
cis-1,3-Dichloropropene	ND		0.160	0.0320	mg/kg dry		11/21/11 08:16	11/21/11 13:00	1.00
Toluene	ND		0.160	0.0160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
4-Methyl-2-pentanone	1.87		1.60	0.160	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:00	1.00
trans-1,3-Dichloropropene	ND		0.160	0.0320	mg/kg dry		11/21/11 08:16	11/21/11 13:00	1.00
Tetrachloroethene	ND		0.0799	0.0160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
1,1,2-Trichloroethane	ND		0.160	0.0320	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Dibromochloromethane	ND		0.160		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
						₽		11/21/11 13:00	1.00
1,3-Dichloropropane	ND		0.160	0.0320	mg/kg dry	¢	11/21/11 08:16		1.00
1,2-Dibromoethane	ND		0.160	0.0320	mg/kg dry		11/21/11 08:16	11/21/11 13:00	
2-Hexanone	ND		1.60	0.160	mg/kg dry	₽ ₽	11/21/11 08:16	11/21/11 13:00	1.00
Ethylbenzene	0.0368		0.160	0.0160	mg/kg dry		11/21/11 08:16	11/21/11 13:00	1.00
Chlorobenzene	ND		0.160	0.0799	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:00	1.00
1,1,1,2-Tetrachloroethane	ND		0.160		mg/kg dry	\$	11/21/11 08:16	11/21/11 13:00	1.00
m,p-Xylene	0.0416	J	0.640	0.0160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
o-Xylene	ND		0.320	0.0160	mg/kg dry	*	11/21/11 08:16	11/21/11 13:00	1.00
Styrene	ND		0.160	0.0160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Bromoform	ND		0.160	0.0799	mg/kg dry	*	11/21/11 08:16	11/21/11 13:00	1.00
sopropylbenzene	0.0608	J	0.160	0.0160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
n-Propylbenzene	0.0895	J	0.160	0.0160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
1,1,2,2-Tetrachloroethane	ND		0.160	0.0320	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
Bromobenzene	ND		0.160	0.0160	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
1,3,5-Trimethylbenzene	0.0480	J	0.160	0.0160	mg/kg dry	**	11/21/11 08:16	11/21/11 13:00	1.00
2-Chlorotoluene	ND		0.160	0.00799	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
1,2,3-Trichloropropane	ND		0.160	0.0320	mg/kg dry	*	11/21/11 08:16	11/21/11 13:00	1.00
t-Chiorotoluene	ND		0.160		mg/kg dry	₩.	11/21/11 08:16	11/21/11 13:00	1.00
ert-Butylbenzene	ND		0.160		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
I,2,4-Trimethylbenzene	0.333		0.160		mg/kg dry	¢	11/21/11 08:16	11/21/11 13:00	1.00
sec-Butylbenzene	0.0640		0.160		mg/kg dry	ø	11/21/11 08:16	11/21/11 13:00	1.00
	0.0927		0.160		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
- IsopropyItoluene ,3-Dichlorobenzene	0.0927 ND	3	0.160		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
	ND		0.160		÷	11/21/11 08:16	11/21/11 13:00	1.00
I,4-Dichlorobenzene					mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
n-Butylbenzene	0.0592	J	0.160		mg/kg dry				
,2-Dichlorobenzene	ND		0.160		mg/kg dry		11/21/11 08:16	11/21/11 13:00	1.00
,2-Dibromo-3-chloropropane	ND		0.799		mg/kg dry	\$	11/21/11 08:16	11/21/11 13:00	1.00
lexachlorobutadiene	ND		0.160		mg/kg dry	\$	11/21/11 08:16	11/21/11 13:00	1.00
,2,4-Trichlorobenzene	ND		0 .160		mg/kg dry	₩	11/21/11 08:16	11/21/11 13:00	1.00
Naphthalene	ND		0.320		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:00	1.00
,2,3-Trichlorobenzene	ND		0.160	0.0480	mg/kg dry	₽	11/21/11 08:16	11/2 1/1 1 13:00	1.00
turrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	92.4		71.6 - 127				11/21/11 08:16	11/21/11 13:00	1.00
Toluene-d8	122		80 - 129				11/21/11 08:16	11/21/11 13:00	1.00
l-bromofluorobenzene	187	ZX	57.7 - 149				11/21/11 08:16	11/21/11 13:00	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

41

5

0

Lab Sample ID: SUK0108-10

Matrix: Soil Percent Solids: 78.9

Client Sample ID: DP-26-2.5-111511 Date Collected: 11/15/11 13:15 Date Received: 11/18/11 15:30

Method: EPA 8011 - EDB by E						_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.25		ug/kg dry	₽	11/21/11 08:22	11/23/11 16:09	1.0
1,2-Dibromo-3-chloropropane	ND		1.25		ug/kg dry	₽	11/21/11 08:22	11/23/11 16:09	1.0
Method: EPA 8082 - Polychlor	inated Biphenyls	by EPA M	ethod 8082						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		63.4		ug/kg dry	<u>₽</u>	11/21/11 11:11	11/22/11 15:14	1.0
PCB-1221	ND		63.4		ug/kg dry	₽	11/21/11 11:11	11/22/11 15:03	1.0
PCB-1232	ND		63.4		ug/kg dry	₽	11/21/11 11:11	11/22/11 15:03	1.0
PCB-1242	ND		63.4		ug/kg dry	₽	11/21/11 11:11	11/22/11 15:03	1.0
PCB-1248	ND		63.4		ug/kg dry	₽	11/21/11 11:11	11/22/11 15:03	1.0
PCB-1254	ND		63.4		ug/kg dry	₽	11/21/11 11:11	11/22/11 15:03	1.00
PCB-1260	ND		63.4		ug/kg dry	₽	11/21/11 11:11	11/22/11 15:14	1.00
PCB-1268	ND		63.4		ug/kg dry	₽	11/21/11 11:11	11/22/11 15:03	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
тсх	59.6		27.9 - 154				11/21/11 11:11	11/22/11 15:14	1.0
Decachlorobiphenyl	67.4		35 - 157				11/21/11 11:11	11/22/11 15:14	1.0

Method: EPA 8270C - Semivolatile Organic Compounds per EPA Method 8270C

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Acenaphthylene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Anthracene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Benzo (a) anthracene	ND		0.413		mg/kg dry	\$	11/29/11 07:09	12/07/11 15:16	1.00
Benzo (a) pyrene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Benzo (b) fluoranthene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Benzo (ghi) perylene	ND		0.413		mg/kg dry	\$	11/29/11 07:09	12/07/11 15:16	1.00
Benzo (k) fluoranthene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Benzoic Acid	ND		1.25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Benzył alcohol	ND		1.25		mg/kg dry		11/29/11 07:09	12/07/11 15:16	1.00
4-Bromophenyl phenyl ether	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Butyl benzyl phthalate	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
4-Chloro-3-methylphenol	ND		0.413		mg/kg dry	ά	11/29/11 07:09	12/07/11 15:16	1.00
4-Chloroaniline	ND		• 2.50		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Bis(2-chloroethoxy)methane	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Bis(2-chloroethyl)ether	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Bis(2-chloroisopropyl)ether	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
2-Chloronaphthalene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
2-Chlorophenol	ND		0.413		mg/kg dry	¢	11/29/11 07:09	12/07/11 15:16	1.00
4-Chlorophenyl phenyl ether	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Chrysene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Di-n-butyl phthalate	ND		1.25	• • • • •	mg/kg dry	₩.	11/29/11 07:09	12/07/11 15:16	1.00
Di-n-octyl phthalate	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Dibenzo (a,h) anthracene	ND		0.413		mg/kg dry	¢	11/29/11 07:09	12/07/11 15:16	1.00
Dibenzofuran	ND		0.413		mg/kg dry	¢	11/29/11 07:09	12/07/11 15:16	1.00
1,2-Dichlorobenzene	ND		1.25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
1,3-Dichlorobenzene	ND		1.25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
1,4-Dichlorobenzene	ND		1.25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
3,3'-Dichlorobenzidine	ND		1.25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
2,4-Dichlorophenol	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1.00
Diethyl phthalate	ND		0.413		mg/kg dry	¢	11/29/11 07:09	12/07/11 15:16	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-26-2.5-111511

Date Collected: 11/15/11 13:15 Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	sι	JK0,	108
1000 11101100					

Lab Sample ID: SUK0108-10 Matrix: Soil

Percent Solids: 79.9

íl.

5

Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil i
2,4-Dimethylphenol	ND		1.25		mg/kg dry	— ¥	11/29/11 07:09	12/07/11 15:16	1
Dimethyl phthalate	ND)	0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
,6-Dinitro-2-methylphenol	ND	• • • • • • • • • • • • •	1,25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
2,4-Dinitrophenol	ND)	2.50		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
2,4-Dinitrotoluene	ND	1	0.626		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
,6-Dinitrotoluene	ND	•	0.626		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
Bis(2-ethylhexyl)phthalate	ND		2.50		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
luoranthene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
luorene	ND		0.413		mg/kg dry	¢	11/29/11 07:09	12/07/11 15:16	1
lexachlorobenzene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
lexachlorobutadiene	ND		1.25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
exachlorocyclopentadiene	ND		1.25		mg/kg dry	¢	11/29/11 07:09	12/07/11 15:16	1
exachloroethane	ND		1.25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
deno (1,2,3-cd) pyrene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
ophorone	ND		0.413		mg/kg dry	Ϋ́	11/29/11 07:09	12/07/11 15:16	
Methylnaphthalene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
Methylphenol	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
4-Methylphenol	ND		0.413		mg/kg dry	••••	11/29/11 07:09	12/07/11 15:16	1
phthalene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
Nitroaniline	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	-
Vitroaniline	ND		1.25				11/29/11 07:09	12/07/11 15:16	· · · · · 1
					mg/kg dry	¢		12/07/11 15:16	
Vitroaniline	ND		0.413		mg/kg dry		11/29/11 07:09		
robenzene	ND		0.413		mg/kg dry	* •	11/29/11 07:09	12/07/11 15:16	1
Vitrophenol	ND		0.413		mg/kg dry	\$ ~	11/29/11 07:09	12/07/11 15:16	1
Nitrophenol	ND		1.25		mg/kg dry	\$ \$	11/29/11 07:09	12/07/11 15:16	1
Nitrosodi-n-propylamine	ND		0.413		mg/kg dry	\$4 	11/29/11 07:09	12/07/11 15:16	1
Nitrosodiphenylamine	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
ntachlorophenol	ND		1.25		mg/kg dry	₿ ¢	11/29/11 07:09	12/07/11 15:16	1
enanthrene	ND		0.413		mg/kg dry	*	11/29/11 07:09	12/07/11 15:16	
enol	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
rene	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
2,4-Trichlorobenzene	ND		1,25		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
,5-Trichlorophenol	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	
,6-Trichlorophenol	ND		0.413		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:16	1
rrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
luorobiphenyl	74.4		30 - 126				11/29/11 07:09	12/07/11 15:16	
luorophenol	71.5		28 - 119				11/29/11 07:09	12/07/11 15:16	1
robenzene-d5	67.5		26 - 117				11/29/11 07:09	12/07/11 15:16	1
enol-d6	72.5		35 - 125				11/29/11 07:09	12/07/11 15:16	1
"erphenyl-d14	92.3		26 - 143				11/29/11 07:09	12/07/11 15:16	1
,6-Tribromophenol	61.9		30 - 127				11/29/11 07:09	12/07/11 15:16	1
	atila Datualaum D	wadriata bir							
ethod: NWTPH-Dx - Semivol		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil f
alyte	Result ND	Guainer	RL	NDF		- -	11/19/11 07:15	11/19/11 14:03	1
esel Range Hydrocarbons avy Oil Range Hydrocarbons	ND		12.7 31.7		mg/kg dry mg/kg dry	₽	11/19/11 07:15 11/19/11 07:15	11/19/11 14:03	1
		0			•			Anolised	D #
rrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
-BP	92.8		50 - 150				11/19/11 07:15	11/19/11 14:03	1.

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

Client Sample ID: DP-26-2.5-111511 Date Collected: 11/15/11 13:15 Date Received: 11/18/11 15:30 Lab Sample ID: SUK0108-10 Matrix: Soil

Percent Solids: 78.9

们

5

(ġ)

Matrix: Soil

Percent Solids: 73.4

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		7.99		mg/kg dry	¢	11/20/11 07:08	11/20/11 12:45	1.0
Surrogate	%Recovery (Qua/ifier	Limits				Prepared	Ana/yzed	Di/ Fa
4-BFB (FID)	152 2	ZX	50 - 150				11/20/11 07:08	11/20/11 12:45	1.0
Method: EPA 6010C - Total Meta	Is by EPA 6010/7	7000 Series	s Methods						
Method: EPA 6010C - Total Meta Analyte	lls by EPA 6010/7 Result C		s Methods RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Date Collected: 11/15/11 13:25

Date Received: 11/18/11 15:30

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.152	0.0758	mg/kg dry		11/21/11 08:16	11/21/11 13:28	1.00
Chloromethane	ND	0.758	0.0758	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Vinyl chloride	ND	0.0910	0.0303	mg/kg dry	\$	11/21/11 08:16	11/21/11 13:28	1.00
Bromomethane	ND	0.758	0.152	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Chloroethane	ND	0.152	0.0758	mg/kg dry	\$	11/21/11 08:16	11/21/11 13:28	1.00
Trichlorofluoromethane	ND	0.0455	0.0152	mg/kg dry	\$	11/21/11 08:16	11/21/11 13:28	1.00
1,1-Dichloroethene	ND	0.152	0.0303	mg/kg dry	÷.	11/21/11 08:16	11/21/11 13:28	1.00
Carbon disulfide	ND	0.152	0.0758	mg/kg dry	\$	11/21/11 08:16	11/21/11 13:28	1.00
Methylene chloride	ND	1.52	0.455	mg/kg dry	\$	11/21/11 08:16	11/21/11 13:28	1.00
Acetone	ND	3.03	1.43	mg/kg dry	ф	11/21/11 08:16	11/21/11 13:28	1.00
trans-1,2-Dichloroethene	ND	0.152	0.0303	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Methyl tert-butyl ether	ND	0.152	0.0152	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
1,1-Dichloroethane	ND	0.152	0.0303	mg/kg dry	··· *	11/21/11 08:16	11/21/11 13:28	1.00
cis-1,2-Dichloroethene	ND	0.152	0.0303	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
2,2-Dichloropropane	ND	0.152	0,0758	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Bromochloromethane	ND	0.152	0.0303	mg/kg dry	ģ	11/21/11 08:16	11/21/11 13:28	1.00
Chloroform	ND	0.152	0.0303	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Carbon tetrachloride	ND	. 0.152	0.0152	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
1,1,1-Trichloroethane	ND	0.152	0.0303	mg/kg dry	ġ	11/21/11 08:16	11/21/11 13:28	1.00
2-Butanone	ND	1.52	0.152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1,1-Dichloropropene	ND	0.152	0.0303	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
Benzene	0.0516	0.0303	0.0121	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
1,2-Dichloroethane (EDC)	ND	0.152	0.0758	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Trichloroethene	ND	0.0379	0.0303	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
Dibromomethane	ND	0.152	0.0758	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1,2-Dichloropropane	ND	0.152	0.0303	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
Bromodichloromethane	ND	0.152	0.0303	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
cis-1,3-Dichloropropene	ND	0.152	0.0303	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:28	1.00
Toluene	ND	0.152	0.0152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
4-Methyl-2-pentanone	0.595	J 1.52	0.152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
trans-1,3-Dichloropropene	ND	0.152	0.0303	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:28	1.00
Tetrachloroethene	ND	0.0758	0.0152	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
1,1,2-Trichloroethane	ND	0.152	0.0303	mg/kg dry	\$	11/21/11 08:16	11/21/11 13:28	1.00
Dibromochloromethane	ND	0.152	0.0303	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
1,3-Dichloropropane	ND	0.152	0.0303	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-26-8.0-111511

Date Collected: 11/15/11 13:25 Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	SU	K0	1(90

Lab Sample ID: SUK0108-11 Matrix: Soil

Percent Solids: 73.4

1

254

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.152	0.0303	mg/kg dry	₩	11/21/11 08:16	11/21/11 13:28	1.00
2-Hexanone	ND		1.52	0.152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
Ethylbenzene	ND		0.152	0.0152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
Chlorobenzene	ND		0.152	0.0758	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1,1,1,2-Tetrachloroethane	ND		0.152	0.0303	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:28	1.00
m,p-Xylene	0.0865	J	0.607	0.0152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
o-Xylene	ND		0.303	0.0152	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Styrene	ND		0.152	0.0152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
Bromoform	ND		0.152	0.0758	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Isopropylbenzene	0.0819	J	0.152	0.0152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
n-Propylbenzene	0.126	J	0.152	0.0152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1,1,2,2-Tetrachloroethane	ND		0.152	0.0303	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
Bromobenzene	ND		0.152	0.0152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1,3,5-Trimethylbenzene	0.0470	J	0.152	0.0152	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
2-Chlorotoluene	ND		0.152	0.00758	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1,2,3-Trichloropropane	ND		0.152	0.0303	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1-Chlorotoluene	ND		0.152	0.0152	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:28	1.00
ert-Butylbenzene	ND		0.152	0.00758	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1,2,4-Trimethylbenzene	0.610		0.152	0.0152	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:2 8	1.00
sec-Butylbenzene	0.0561	J	0.152	0.0106	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:28	1.00
p-Isopropyltoluene	0.0576	J	0.152	0.0106	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
1,3-Dichlorobenzene	ND		0.152	0.00607	mg/kg dry	\$	11/21/11 08:16	11/21/11 13:28	1.00
,4-Dichlorobenzene	ND		0.152	0.00758	mg/kg dry	*	11/21/11 08:16	11/21/11 13:28	1.00
-Butylbenzene	0.0637	J	0.152	0.0152	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
,2-Dichlorobenzene	ND		0.152	0.00758	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
,2-Dibromo-3-chloropropane	ND		0.758	0.152	mg/kg dry	₿	11/21/11 08:16	11/21/11 13:28	1.00
Hexachlorobutadiene	ND		0.152	0.0607	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
1,2,4-Trichlorobenzene	ND		0.152	0.0455	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:28	1.00
Naphthalene	0.171	J	0.303	0.167	mg/kg dry	÷	11/21/11 08:16	11/21/11 13:28	1.00
,2,3-Trichlorobenzene	ND		0.152	0.0455	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:28	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	89.2		71.6 - 127				11/21/11 08:16	11/21/11 13:28	1.00
Toluene-d8	122		80 - 129				11/21/11 08:16	11/21/11 13:28	1.00
1-bromofluorobenzene	150	ZX	57.7 - 149				11/21/11 08:16	11/21/11 13:28	1.00
Wethod: EPA 8011 - EDB by El	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2-Dibromoethane	ND		1.36		ug/kg dry	ÿ	11/21/11 08:22	11/23/11 16:22	1.00
,2-Dibromo-3-chloropropane	ND	R1	1.36		ug/kg dry	₽	11/21/11 08:22	11/23/11 16:22	1.00
Method: EPA 8082 - Polychlorii	nated Biphenyls	by EPA M	ethod 8082						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		136		ug/kg dry	— <u>⊅</u>	11/21/11 11:11	11/23/11 09:10	1.00
PCB-1221	ND		136		ug/kg dry	₽	11/21/11 11:11	11/23/11 08:59	1.00
PCB-1232	ND		136		ug/kg dry	₽	11/21/11 11:11	11/23/11 08:59	1.00
PCB-1242	ND		136		ug/kg dry	₿	11/21/11 11:11	11/23/11 08:5 9	1.00
PCB-1248	ND		136		ug/kg dry	₽	11/21/11 11:11	11/23/11 08:59	1. 0 0
PCB-1254	ND		136		ug/kg dry	≎	11/21/11 11:11	11/23/11 08:59	1.00
PCB-1260	ND		136		ug/kg dry	₽	11/21/11 11:11	11/23/11 09:10	1.00

Client Sample ID: DP-26-8.0-111511

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-11

Soil 73.4 |0|

43

Date Collected: 11/15/11 13:25 Date Received: 11/18/11 15:30

Matrix: S
Percent Solids: 7

Surrogate	%Recovery Qualifier	Limits			Prepared	Ana/yzed	Dil Fac
тсх	47.0	27.9 - 154			11/21/11 11:11	11/23/11 09:10	1.00
Decachlorobiphenyl	78.2	35 - 157			11/21/11 11:11	11/23/11 09:10	1.00
Method: EPA 8270C - Semivolatil	e Organic Compounds p	er EPA Method 82	270C				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	0.508	mg/kg dry	¯ ₽	11/29/11 07:09	12/07/11 15:40	1.00
Acenaphthylene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Anthracene	ND	0.508	mg/kg dry	₿	11/29/11 07:09	12/07/11 15:40	1.00
Benzo (a) anthracene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Benzo (a) pyren <i>e</i>	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Benzo (b) fluoranthene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Benzo (ghi) perylene	ND	0.508	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
Benzo (k) fluoranthene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Benzoic Acid	ND	1.54	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Benzyl alcohol	ND	1.54	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
4-Bromophenyl phenyl ether	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Butyl benzyl phthalate	ND	0.508	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
4-Chloro-3-methylphenol	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
4-Chloroaniline	ND	3.08	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Bis(2-chloroethoxy)methane	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Bis(2-chloroethyl)ether	ND	0.508	mg/kg dry	÷	11/29/11 07:09	12/07/11 15:40	1.00
Bis(2-chloroisopropyl)ether	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
2-Chloronaphthalene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
2-Chlorophenol	ND	0.508	mg/kg dry		11/29/11 07:09	12/07/11 15:40	1.00
4-Chlorophenyl phenyl ether	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Chrysene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Di-n-butyl phthalate	ND	1.54	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
•••	ND	0.508		₽	11/29/11 07:09	12/07/11 15:40	1.00
Di-n-octyl phthalate	ND	0.508	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
Dibenzo (a,h) anthracene		0.508	mg/kg dry		11/29/11 07:09	12/07/11 15:40	1.00
Dibenzofuran	ND		mg/kg dry	₩ #			
1,2-Dichlorobenzene	ND	1.54	mg/kg dry		11/29/11 07:09	12/07/11 15:40	1.00
1,3-Dichlorobenzene	ND	1.54	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
1,4-Dichlorobenzene	ND	1.54	mg/kg dry	¢ ~	11/29/11 07:09	12/07/11 15:40	1.00
3,3'-Dichlorobenzidine	• ND	1.54	mg/kg dry	\$ *	11/29/11 07:09	12/07/11 15:40	•1.00
2,4-Dichlorophenol	ND	0.508	mg/kg dry		11/29/11 07:09	12/07/11 15:40	1.00
Diethyl phthalate	ND	0.508	mg/kg dry	\$	11/29/11 07:09	12/07/11 15:40	1.00
2,4-Dimethylphenol	ND	1.54	mg/kg dry	\$ 	11/29/11 07:09	12/07/11 15:40	1.00
Dimethyl phthalate	ND	0.508	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
4,6-Dinitro-2-methylphenol	ND	1.54	mg/kg dry	\$	11/29/11 07:09	12/07/11 15:40	1.00
2,4-Dinitrophenol	ND	3.08	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
2,4-Dinitrotoluene	ND	0.769	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
2,6-Dinitrotoluene	ND	0.769	mg/kg dry	₿	11/29/11 07:09	12/07/11 15:40	1.00
Bis(2-ethylhexyl)phthalate	ND	3.08	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Fluoranthene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Fluorene	ND	0,508	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
lexachlorobenzene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Hexachlorobutadiene	ND	1.54	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
Hexachlorocyclopentadiene	ND	1.54	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
Hexachloroethane	ND	1.54	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
ndeno (1,2,3-cd) pyrene	ND	0.508	mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
sophorone	ND	0.508	mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-26-8.0-111511 Date Collected: 11/15/11 13:25

Date Received: 11/18/11 15:30

ī

Lab Sample ID: SUK0108-11 Matrix: Soil

Percent Solids: 64.4

÷ĵ]

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2-Methylnaphthalene	ND		0.508		mg/kg dry	- \	11/29/11 07:09	12/07/11 15:40	1.00
2-Methylphenoł	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
3-,4-Methylphenol	ND		0.508		mg/kg dry	₿	11/29/11 07:09	12/07/11 15:40	1.00
Naphthalene	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
2-Nitroaniline	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
3-Nitroaniline	ND		1.54	• • • • • •	mg/kg dry	Ċ, Ċ	11/29/11 07:09	12/07/11 15:40	1.00
4-Nitroaniline	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Nitrobenzene	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
2-Nitrophenol	ND		0.508		mg/kg dry	ø	11/29/11 07:09	12/07/11 15:40	1.00
4-Nitrophenol	ND		1.54		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
N-Nitrosodi-n-propylamine	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
N-Nitrosodiphenylamine	ND		0.508		mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
Pentachlorophenol	ND		1.54		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Phenanthrene	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
henol	ND		0.508	•••••	mg/kg dry	₿	11/29/11 07:09	12/07/11 15:40	1.00
Pyrene	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
I,2,4-Trichlorobenzene	ND		1.54		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
2,4,5-Trichlorophenol	ND		0.508		mg/kg dry	¢	11/29/11 07:09	12/07/11 15:40	1.00
4,6-Trichlorophenol	ND		0.508		mg/kg dry	₽	11/29/11 07:09	12/07/11 15:40	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
P-Fluorobiphenyl	77.2		30 - 126				11/29/11 07:09	12/07/11 15:40	1.00
P-Fluorophenol	72.3		28-119				11/29/11 07:09	12/07/11 15:40	1.00
litrobenzene-d5	70.0		26 - 117				11/29/11 07:09	12/07/11 15:40	1.00
Phenol-d6	73.5		35 - 125				11/29/11 07:09	12/07/11 15:40	1.00
-Terphenyl-d14	92.6		26 - 143				11/29/11 07:09	12/07/11 15:40	1.00
,4,6-Tribromophenol	70.8		30 - 127				11/29/11 07:09	12/07/11 15:40	1.00
Method: NWTPH-Dx - Semivola	tile Petroleum F	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL		– D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	168		24.9	· ·	mg/kg dry	Ŷ	11/19/11 07:15	11/19/11 14:58	1.00
leavy Oil Range Hydrocarbons	ND		62.3		mg/kg dry	₽	11/19/11 07:15	11/19/11 14:58	1.00
urrogate	%Recovery	Qualifier	Limits	•			Prepared	Analyzed	Dil Fac
-FBP	91.5		50 - 150				11/19/11 07:15	11/19/11 14:58	1.00
-Terphenyl-d14	98.7		50 - 150				11/19/11 07:15	11/19/11 14:58	1.00
Method: NWTPH-Gx - Gasoline	Hydrocarbons I	by NWTPH-	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	22.4		7.58		mg/kg dry	- \$	11/20/11 07:08	11/20/11 15:53	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-BFB (FID)	172	ZX	50 - 150				11/20/11 07:08	11/20/11 15:53	1.00
Method: EPA 6010C - Total Met	als by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	- D #	Prepared 12/05/11 17:42	Analyzed 12/06/11 14:57	Dil Fac 1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-26-111511

Date Collected: 11/15/11 13:55 Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	SUKC	108
-------------	-----	-----	------	-----

Lab Sample ID: SUK0108-12 Matrix: Water

Analyte	Result (Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Chloromethane	ND	3.00	ug/t		11/20/11 07:12	11/20/11 10:36	1.00
Vinyl chloride	ND	0.200	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Bromomethane	ND	5.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Chloroethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Trichlorofluoromethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
1,1-Dichloroethene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Carbon disulfide	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Methylene chloride	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Acetone	ND	25.0	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
trans-1,2-Dichloroethene	ND	1.00	ug/i		11/20/11 07:12	11/20/11 10:36	1.00
Methyl tert-butyl ether	ND	1.00	ug/i		11/20/11 07:12	11/20/11 10:36	1.00
1,1-Dichloroethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
cis-1,2-Dichloroethene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
2,2-Dichloropropane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Bromochloromethane	ND ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Chloroform	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Carbon tetrachloride	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
1,1,1-Trichloroethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
2-Butanone	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
,1-Dichloropropene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Benzene	38.8	0.200	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
,2-Dichloroethane (EDC)	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Trichloroethene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Dibromomethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
,2-Dichloropropane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Bromodichloromethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
is-1,3-Dichloropropene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
foluene	1.35	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
-Methyl-2-pentanone	ND	10.0	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
rans-1,3-Dichloropropene	ND	1.00	ug/l	• • • • •	11/20/11 07:12	11/20/11 10:36	1.00
etrachloroethene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
.1.2-Trichloroethane	ND	1.00	ug/i		11/20/11 07:12	11/20/11 10:36	1.00
Dibromochloromethane	ND	1.00	ug/l	• • • • • • • • • •	11/20/11 07:12	11/20/11 10:36	1.00
,3-Dichloropropane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
.2-Dibromoethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
-Hexanone	ND	10.0	ug/l	· · · · ·	11/20/11 07:12	11/20/11 10:36	1.00
Sthylbenzene	1.01	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Chiorobenzene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
,1,1,2-Tetrachloroethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
n,p-Xylene	21.3	2.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
-Xylene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
tyrene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
Iromoform	ND	1.00	ug/i		11/20/11 07:12	11/20/11 10:36	1.00
sopropylbenzene	6.97	1.00	ug/i		11/20/11 07:12	11/20/11 10:36	1.00
		1.00		• • • • • • • • •	11/20/11 07:12	11/20/11 10:36	1.00
-Propylbenzene	8.50 ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
,1,2,2-Tetrachloroethane			ug/l				
Bromobenzene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 10:36	1.00
1,3,5-Trimethylbenzene 2-Chlorotoluene	ND ND	1.00 1.00	ug/l ug/l		11/20/11 07:12 11/20/11 07:12	11/20/11 10:36 11/20/11 10:36	1.00 1.00

T

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

11

5

Client Sample ID: DP-26-111511 Date Collected: 11/15/11 13:55 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-12 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,3-Trichloropropane	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
4-Chlorotoluene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
tert-Butylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
sec-Butylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
p-isopropyitoluene	1.49		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
1,3-Dichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
1,4-Dichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
n-Butylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
1,2-Dichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
1,2-Dibromo-3-chloropropane	ND		5.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
Hexachlorobutadiene	ND		2.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
1,2,4-Trichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
Naphthalene	7.93		2.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
I,2,3-Trichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 10:36	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	86.0		66.5 - 145				11/20/11 07:12	11/20/11 10:36	1.0
Toluene-d8	108		75.4 - 120				11/20/11 07:12	11/20/11 10:36	1.0
-bromofluorobenzene	120		68.4 - 123				11/20/11 07:12	11/20/11 10:36	1.0
Method: EPA 8260B - Volatile Org	ganic Compou	nds by EPA	Method 8260E	8 - RE1					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,2,4-Trimethylbenzene	75.9		10.0		ug/l		11/20/11 07:12	11/20/11 17:35	10
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Di/ Fa
-		Qualifier	Limits 66.5 - 145				Prepared 11/20/11 07:12	Analyzed 11/20/11 17:35	
Dibromofluoromethane		Qualifier							10
Surrogate Dibromofluoromethane Foluene-d8 I-bromofluorobenzene	86.6	Qualifier	66.5 - 145				11/20/11 07:12	11/20/11 17:35	
Dibromofluoromethane Foluene-d8	86.6 107 108	Qualifier	66.5 - 145 75.4 - 120				11/20/11 07:12 11/20/11 07:12	11/20/11 17:35 11/20/11 17:35	Dil Fa 10 10 10
Dibromofluoromethane Foluene-d8 I-bromofluorobenzene	86.6 107 108 Method 8011	<i>Qualifier</i> Qualifier	66.5 - 145 75.4 - 120	MDL	Unit	D	11/20/11 07:12 11/20/11 07:12	11/20/11 17:35 11/20/11 17:35	
Dibromofluoromethane Foluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA malyte	86.6 107 108 Method 8011		66.5 - 145 75.4 - 120 68.4 - 123	MDL	Unit ug/i	D	11/20/11 07:12 11/20/11 07:12 11/20/11 07:12	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35	10 10 10 Dil Fa
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA malyte ,2-Dibromoethane	86.6 107 108 Method 8011 Result		66.5 - 145 75.4 - 120 68.4 - 123 RL	MDL		D	11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed	10 10 10 10 10 10
Dibromofluoromethane Foluene-d8 I-bromofluorobenzene Method: EPA 8011 - EDB by EPA Analyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane	86.6 107 108 Method 8011 Result ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100	MDL	ug/l	D	11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14	10 10 10 10 10 10
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA malyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina	Method 8011 Result ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100	MDL	ug/i ug/i	D	11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Dibromofluoromethane oluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA inalyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina malyte	Method 8011 Result ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100		ug/i ug/i		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14	10 10 10 10 10 10 10 1.0 1.0 1.0 1.0
Vibromofluoromethane oluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA inalyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina inalyte CB-1016	86.6 107 108 Method 8011 Result ND ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 . thod 8082 RL		ug/i ug/i Unit		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 Prepared	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 Analyzed	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Dibromofluoromethane oluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA malyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina malyte CB-1016 CB-1221	A Method 8011 Result ND ND ND ND ND ND ND ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 . thod 8082 RL 0.263		ug/l ug/l Unit ug/l		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 Prepared 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 Analyzed 12/05/11 12:35	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Vibromofluoromethane Vibromofluoromethane Vibromofluorobenzene Method: EPA 8011 - EDB by EPA Inalyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina Inalyte CB-1016 CB-1221 CB-1232	A Method 8011 A Method 8011 Result ND ND ND ted Biphenyls Result ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 . thod 8082 RL 0.263 0.263		ug/l ug/l Unit ug/l ug/l ug/l		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 Prepared 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 12/05/11 12:35 12/05/11 12:35 12/05/11 12:24	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Vibromofluoromethane Vibromofluorobenzene Method: EPA 8011 - EDB by EPA Inalyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina Inalyte CB-1016 CB-1221 CB-1232 CB-1242	A Method 8011 Result ND ND ND ND ND ND ND ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 . thod 8082 RL 0.263 0.263 0.263		ug/l ug/l Unit ug/l ug/l		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 11/20/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Vibromofluoromethane Vibromofluorobenzene Method: EPA 8011 - EDB by EPA Inalyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina malyte CB-1016 CB-1221 CB-1232 CB-1242 CB-1248	A Method 8011 Result ND ND ND ND ND ND ND ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 thod 8082 RL 0.263 0.263 0.263 0.263 0.263 0.263		ug/l ug/l Unit ug/l ug/l ug/l ug/l ug/l		Theorem 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA malyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina malyte CB-1016 CB-1221 CB-1232 CB-1242 CB-1248 CB-1254	A Method 8011 Result ND ND ND ND ND ND ND ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 thod 8082 RL 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263		ug/l ug/l Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Nibromofluoromethane Soluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA nalyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina ralyte CB-1016 CB-1211 CB-1221 CB-1232 CB-1242 CB-1242 CB-1254 CB-1254 CB-1260	A Method 8011 Result ND ND ND ND ND ND ND ND ND ND	Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 thod 8082 RL 0.263 0.263 0.263 0.263 0.263 0.263		ug/l ug/l Unit ug/l ug/l ug/l ug/l ug/l		Theorem 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24	100 100 100 100 100 100 100 100 100 100
Nibromofluoromethane Soluene-d8 -bromofluorobenzene Method: EPA 8011 - EDB by EPA nalyte 2-Dibromoethane 2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina ralyte CB-1016 CB-12121 CB-1232 CB-1242 CB-1242 CB-1242 CB-1254 CB-1260 CB-1268	A Method 8011 Result ND ND ND A Method 8011 Result ND ND ND ND ND ND ND ND ND ND	Qualifier by EPA Me Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 thod 8082 RL 0.263 0.263 0.263 0.263 0.263 0.263 0.263		ug/l ug/l Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/20/11 12:35 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:35	To 10
Dibromofluoromethane Toluene-d8 I-bromofluorobenzene Method: EPA 8011 - EDB by EPA Malyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina Method: EPA 8082 - Polyc	A Method 8011 Result ND ND ND ND ND ND ND ND ND ND	Qualifier by EPA Me Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 0.0100 RL 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263		ug/l ug/l Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24	10 10 10
Dibromofluoromethane Foluene-d8 I-bromofluorobenzene Method: EPA 8011 - EDB by EPA	86.6 107 108 Method 8011 Result ND ND ted Biphenyls Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier by EPA Me Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263 0.263		ug/l ug/l Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:25 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 Analyzed	TO 10 10 10 10 10 10 11 11 11 11 11 11 11 12 13 14 15 16 16 16 16 16 16 16 17 18 19 10 10 10 10 10 10 10
Dibromofluoromethane Toluene-d8 I-bromofluorobenzene Method: EPA 8011 - EDB by EPA malyte ,2-Dibromoethane ,2-Dibromo-3-chloropropane Method: EPA 8082 - Polychlorina malyte CB-1016 CB-1221 CB-1232 CB-1242 CB-1254 CB-1254 CB-1260 CB-1268 Surrogate CX	86.6 107 108 A Method 8011 Result ND ND ted Biphenyls Result ND ND	Qualifier by EPA Me Qualifier	66.5 - 145 75.4 - 120 68.4 - 123 RL 0.0100 0.0100 0.0100 mthod 8082 RL 0.263 0.264 0.265 0.265 0.265	<u>MDL</u>	ug/l ug/l Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l		11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 11/20/11 07:12 Prepared 11/19/11 07:17 11/19/11 07:17 11/19/11 07:17 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45 12/02/11 13:45	11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 11/20/11 17:35 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:25 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:24 12/05/11 12:35 12/05/11 12:24 12/05/11 12:24 12/05/11 12:35 12/05/11 12:35	Tu 10 11 1.

1.00

12/01/11 20:26

11/22/11 13:00

4.72

ND

Acenaphthene

ug/l

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

Client Sample ID: DP-26-111511

Date Collected: 11/15/11 13:55 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-12 Matrix: Water

12.0

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND	4.72	ug/i		1/22/11 13:00	12/01/11 20:26	1.00
Anthracene	ND	4.72	ug/i	1	1/22/11 13:00	12/01/11 20:26	1.00
Benzo (a) anthracene	ND	4.72	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
Benzo (a) pyrene	ND	4.72	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
Benzo (b) fluoranthene	ND	4.72	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
Benzo (ghi) perylene	ND	4.72	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
Benzo (k) fluoranthene	ND	4.72	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
Benzoic Acid	ND	47.2	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
Benzyl alcohol	ND	9.43	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
-Bromophenyl phenyl ether	ND	4.72	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
Butyl benzyl phthalate	ND	4.72	ug/l	1	1/22/11 13:00	12/01/11 20:26	1.00
I-Chloro-3-methylphenol	ND	4.72	ug/t		1/22/11 13:00	12/01/11 20:26	1.00
I-Chloroaniline	ND	18.9	ug/i		1/22/11 13:00	12/01/11 20:26	1.00
Bis(2-chloroethoxy)methane	ND	9.43	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
Bis(2-chloroethyl)ether	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
Bis(2-chloroisopropyl)ether	ND	9.43	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
-Chloronaphthalene	ND	4.72	ug/f		1/22/11 13:00	12/01/11 20:26	1.00
-Chlorophenol	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
-Chlorophenyl phenyl ether	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
Chrysene	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
i-n-butyl phthalate	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
i-n-octyl phthalate	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
ibenzo (a,h) anthracene	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
ibenzofuran	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
2-Dichlorobenzene	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
,3-Dichlorobenzene	ND	4.72	ug/i		1/22/11 13:00	12/01/11 20:26	1.00
4-Dichlorobenzene	ND	4.72	a a a state a second		1/22/11 13:00	12/01/11 20:26	1.00
3'-Dichlorobenzidine	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
4-Dichlorophenol	ND	4.72	ug/i		1/22/11 13:00	12/01/11 20:26	1.00
iethyl phthalate	ND		ug/l				1.00
	ND	4.72	ug/l		1/22/11 13:00	12/01/11 20:26	
,4-Dimethylphenol imethyl phthalate	ND	9.43	ug/i		1/22/11 13:00	12/01/11 20:26	1.00
		4.72	ug/i		1/22/11 13:00	12/01/11 20:26	1.00
6-Dinitro-2-methylphenol	ND	9.43	ug/l		1/22/11 13:00	12/01/11 20:26	1.00
4-Dinitrophenol	ND	23.6	ug/i		1/22/11 13:00	12/01/11 20:26	1.00
4-Dinitrotoluene	ND	4.72	ug/l		/22/11 13:00	12/01/11 20:26	1.00
6-Dinitrotoluene	ND	4.72	ug/l		/22/11 13:00	12/01/11 20:26	1.00
is(2-ethylhexyl)phthalate	ND	9.43	ug/i		/22/11 13:00	12/01/11 20:26	1.00
luoranthene	ND	4.72	ug/I		/22/11 13:00	12/01/11 20:26	1.00
	ND	4.72	ug/l		/22/11 13:00	12/01/11 20:26	1.00
exachlorobenzene	ND	4.72	ug/l		/22/11 13:00	12/01/11 20:26	1.00
exachlorobutadiene	ND	9.43	ug/l		/22/11 13:00	12/01/11 20:26	1.00
exachlorocyclopentadiene	ND	9.43	ug/l		/22/11 13:00	12/01/11 20:26	1.00
exachloroethane	ND	9.43	ug/l		/22/11 13:00	12/01/11 20:26	1.00
deno (1,2,3-cd) pyrene	ND	4.72	ug/l		/22/11 13:00	12/01/11 20:26	1.00
ophorone	ND	4.72	ug/l		/22/11 13:00	12/01/11 20:26	1.00
Methylnaphthalene	ND	4.72	ug/l		/22/11 13:00	12/01/11 20:26	1.00
Methylphenol	ND	9.43	ug/l	11	/22/11 13:00	12/01/11 20:26	1.00
,4-Methylphenol	ND	4.72	ug/l	11	/22/11 13:00	12/01/11 20:26	1.00
aphthalene	6.92	4.72	ug/l	4.4	/22/11 13:00	12/01/11 20:26	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-26-111511

Date Collected: 11/15/11 13:55 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-12 Matrix: Water

5

T

(3)

· ·	rtesui	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
3-Nitroaniline	ND)	9.43		ug/l		11/22/11 13:00	12/01/11 20:26	1
4-Nitroaniline	NE)	9.43		ug/l		11/22/11 13:00	12/01/11 20:26	1
Nitrobenzene	NC)	4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1
2-Nitrophenol	ND)	4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1.
4-Nitrophenol	ND	1	23.6		ug/i		11/22/11 13:00	12/01/11 20:26	1
N-Nitrosodi-n-propylamine	ND)	9.43		ug/l		11/22/11 13:00	12/01/11 20:26	1
N-Nitrosodiphenylamine	ND		4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1.
Pentachiorophenol	ND		9.43		ug/l		11/22/11 13:00	12/01/11 20:26	1
Phenanthrene	ND		4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1.
Phenol	ND		4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1.
Pyrene	ND		4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1.
1,2,4-Trichlorobenzene	ND		4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1.
2,4,5-Trichlorophenol	ND		4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1.
2,4,6-Trichlorophenol	ND		4.72		ug/l		11/22/11 13:00	12/01/11 20:26	1.
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil F
2-Fluorobiphenyl	94.4		20 - 120		7		11/22/11 13:00	12/01/11 20:26	1.
2-Fluorophenol	68.0		10 - 120				11/22/11 13:00	12/01/11 20:26	1.
Nitrobenzene-d5	84.7		20 - 130				11/22/11 13:00	12/01/11 20:26	1.
Phenol-d6	70.4		10 - 125				11/22/11 13:00	12/01/11 20:26	1.
p-Terphenyl-d14	92.6		35 - 130				11/22/11 13:00	12/01/11 20:26	1.
2,4,6-Tribromophenol	120		20 - 130				11/22/11 13:00	12/01/11 20:26	1.
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	0.356 ND		0.237		mg/l		11/21/11 09:38	11/23/11 14:15	
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	0.356 ND		0.237		mg/l mg/l		11/21/11 09:38 11/21/11 09:38	11/23/11 14:15 11/23/11 14:15	1. 1.
• •		Qualifier							1.
Heavy Oil Range Hydrocarbons	ND		0.474				11/21/11 09:38	11/23/11 14:15	
Heavy Oil Range Hydrocarbons Surrogate	ND %Recovery		0.474 <i>Limits</i>				11/21/11 09:38 Prepared	11/23/11 14:15 Analyzed	1. <i>Dil F</i> 1.
Heavy Oil Range Hydrocarbons Surrogate 2-FBP	ND %Recovery 85.5		0.474 Limits 50 - 150				11/21/11 09:38 Prepared 11/21/11 09:38	11/23/11 14:15 Analyzed 11/23/11 14:15	1. <i>Dil F</i> 1.
Heavy Oil Range Hydrocarbons Surrogate 2-FBP	ND 		0.474 Limits 50 - 150 50 - 150				11/21/11 09:38 Prepared 11/21/11 09:38	11/23/11 14:15 Analyzed 11/23/11 14:15	1. <i>Dil F</i> 1.
Heavy Oil Range Hydrocarbons Surrogate 2-FBP D-Terphenyl-d14	ND %Recovery 85.5 86.4 Hydrocarbons		0.474 Limits 50 - 150 50 - 150	MDL		D	11/21/11 09:38 Prepared 11/21/11 09:38	11/23/11 14:15 Analyzed 11/23/11 14:15	1. <u>Dil F</u> 1. 1.
Heavy Oil Range Hydrocarbons Surrogate 2-FBP D-Terphenyl-d14 Method: NWTPH-Gx - Gasoline	ND %Recovery 85.5 86.4 Hydrocarbons	by NWTPH-	0.474 - <u>Limits</u> 50 - 150 50 - 150 Gx	MDL	mg/l	D	11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15	1. <i>DII F</i> 1. 1. <i>DII F</i>
Heavy Oil Range Hydrocarbons Surrogate 2-FBP 0-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Sasoline Range Hydrocarbons	ND %Recovery 85.5 86.4 Hydrocarbons Result 461	by NWTPH- Qualifier	0.474 <u>Limits</u> <u>50 - 150</u> <u>50 - 150</u> Gx <u>RL</u> <u>100</u>	MDL	mg/l	<u>D</u>	11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30	1. <u>DII F</u> <u>1.</u> <u>1.</u> <u>DII F</u> <u>1.</u>
Heavy Oil Range Hydrocarbons Surrogate 2-FBP D-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	ND %Recovery 85.5 86.4 Hydrocarbons Result 461 %Recovery	by NWTPH-	0.474 <u>Limits</u> <u>50 - 150</u> <u>50 - 150</u> Gx <u>RL</u> <u>100</u> <u>Limits</u>	MDL	mg/l	D	11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30 Analyzed	1. Dil F
Heavy Oil Range Hydrocarbons Surrogate 2-FBP 0-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Sasoline Range Hydrocarbons	ND %Recovery 85.5 86.4 Hydrocarbons Result 461	by NWTPH- Qualifier	0.474 <u>Limits</u> <u>50 - 150</u> <u>50 - 150</u> Gx <u>RL</u> <u>100</u>	MDL	mg/l	<u>D</u>	11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30	1. <i>DII F</i> 1. 1. <i>DII F</i> <i>DII F</i>
Heavy Oil Range Hydrocarbons Surrogate 2-FBP D-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	ND <u>%Recovery</u> 85.5 86.4 Hydrocarbons Result 461 <u>%Recovery</u> 155	by NWTPH- Qualifier Qualifier	0.474 <u>Limits</u> <u>50 - 150</u> <u>50 - 150</u> Gx <u>RL</u> <u>100</u> <u>Limits</u> <u>37.9 - 162</u>	MDL	mg/l	<u>D</u>	11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30 Analyzed	1. <i>DII F</i> 1. 1. <i>DII F</i> <i>DII F</i>
Heavy Oil Range Hydrocarbons Surrogate 2-FBP D-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Basoline Range Hydrocarbons Surrogate I-BFB (FID)	ND <u>%Recovery</u> 85.5 86.4 Hydrocarbons I <u>Result</u> 461 <u>%Recovery</u> 155 als by EPA 6010	by NWTPH- Qualifier Qualifier	0.474 <u>Limits</u> <u>50 - 150</u> <u>50 - 150</u> Gx <u>RL</u> <u>100</u> <u>Limits</u> <u>37.9 - 162</u>	MDL	mg/l Unit ug/l	D	11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30 Analyzed	1. <i>DII F</i> 1. 1. <i>DII F</i> <i>DII F</i>
Heavy Oil Range Hydrocarbons Surrogate 2-FBP D-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate I-BFB (FID) Method: EPA 6010C - Total Meta	ND <u>%Recovery</u> 85.5 86.4 Hydrocarbons I <u>Result</u> 461 <u>%Recovery</u> 155 als by EPA 6010	by NWTPH- Qualifier Qualifier Qualifier Qualifier	0.474 <u>Limits</u> <u>50.150</u> <u>50.150</u> Gx <u>RL</u> <u>100</u> <u>Limits</u> <u>37.9.162</u> es Methods		mg/l Unit ug/l		11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared 11/21/11 08:18	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30 Analyzed 11/21/11 12:30	1 <i>DII F</i> 1. <i>DII F</i> 1. <i>DII F</i> 1. <i>DII F</i>
Heavy Oil Range Hydrocarbons Surrogate 2-FBP 0-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate I-BFB (FID) Method: EPA 6010C - Total Met Analyte Lead	ND %Recovery 85.5 86.4 Hydrocarbons Result 461 %Recovery 155 als by EPA 6010 Result ND	by NWTPH- Qualifier Qualifier Qualifier Qualifier	0.474 <u>Limits</u> 50 - 150 50 - 150 Gx <u>RL</u> 100 <u>Limits</u> 37.9 - 162 es Methods RL		mg/l Unit Unit		11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared 11/21/11 08:18 Prepared 12/05/11 17:45	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30 Analyzed 11/21/11 12:30 Analyzed 12/06/11 08:32	1. <i>Dil F</i> 1. <i>Dil F</i> 1. <i>Dil F</i> 1. <i>Dil F</i> 1.
Heavy Oil Range Hydrocarbons Surrogate 2-FBP 5-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate I-BFB (FID) Method: EPA 6010C - Total Method Inalyte Iead Surrogate ID: DP-27-6.0	ND %Recovery 85.5 86.4 Hydrocarbons Result 461 %Recovery 155 als by EPA 6010 Result ND	by NWTPH- Qualifier Qualifier Qualifier Qualifier	0.474 <u>Limits</u> 50 - 150 50 - 150 Gx <u>RL</u> 100 <u>Limits</u> 37.9 - 162 es Methods RL		mg/l Unit Unit		11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared 11/21/11 08:18 Prepared 12/05/11 17:45	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30 Analyzed Analyzed	1. <i>Dil F</i> 1. <i>Dil F</i> 1. <i>Dil F</i> 1. <i>Dil F</i> 1.
Heavy Oil Range Hydrocarbons Surrogate 2-FBP 0-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate I-BFB (FID) Method: EPA 6010C - Total Met Analyte Lead	ND %Recovery 85.5 86.4 Hydrocarbons Result 461 %Recovery 155 als by EPA 6010 Result ND	by NWTPH- Qualifier Qualifier Qualifier Qualifier	0.474 <u>Limits</u> 50 - 150 50 - 150 Gx <u>RL</u> 100 <u>Limits</u> 37.9 - 162 es Methods RL		mg/l Unit Unit		11/21/11 09:38 Prepared 11/21/11 09:38 11/21/11 09:38 Prepared 11/21/11 08:18 Prepared 11/21/11 08:18 Prepared 12/05/11 17:45	11/23/11 14:15 Analyzed 11/23/11 14:15 11/23/11 14:15 Analyzed 11/21/11 12:30 Analyzed 11/21/11 12:30 Analyzed 12/06/11 08:32 Die ID: SUKO	1 <i>Dil F</i> 1. <i>Dil F</i> 1. <i>Dil F</i> 1. <i>Dil F</i> 1. <i>Dil F</i> 1.

Method: EPA 8260B - Volatile Orga	anic Compounds	s by EPA Methods 50	35/8260B					
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.323	0.161	mg/kg dry	<u></u>	11/21/11 08:16	11/21/11 13:56	2.00
Chloromethane	ND	1.61	0.161	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-27-6.0-111511

Date Collected: 11/15/11 14:20 Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	SUK0108
1000 1101104	000		00110100

Lab Sample ID: SUK0108-13 Matrix: Soil

Percent Solids: 76.4

1

5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Vinyl chloride	ND	0.194	0.0645	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.0
Bromomethane	ND	1.61	0.323	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.0
Chloroethane	ND	0.323	0.161	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
Trichlorofluoromethane	ND	0.0968	0.0323	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
1,1-Dichloroethene	ND	0.323	0.0645	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
Carbon disulfide	ND	0.323	0.161	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
Methylene chloride	ND	3.23	0.968	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
Acetone	ND	6.45	3.03	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
rans-1,2-Dichloroethene	ND	0.323	0.0645	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
Nethyl tert-butyl ether	ND	0.323	0.0323	mg/kg dry	Ÿ	11/21/11 08:16	11/21/11 13:56	2.00
,1-Dichloroethane	ND	0.323	0.0645	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
is-1,2-Dichloroethene	ND	0.323		mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
,2-Dichloropropane	ND	0.323	0.161	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
Bromochloromethane	ND	0.323		mg/kg dry		11/21/11 08:16	11/21/11 13:56	2.00
Chloroform	ND	0.323		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
Carbon tetrachloride	ND	0.323		mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
,1,1-Trichloroethane	ND	0.323		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
-Butanone	ND	3.23	0.323	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
,1-Dichloropropene	ND	0.323		mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
Benzene	0.381	0.0645		mg/kg dry	¢.	11/21/11 08:16	11/21/11 13:56	2.00
,2-Dichloroethane (EDC)	ND	0.323		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
richloroethene	ND	0.0806		mg/kg dry	\$	11/21/11 08:16	11/21/11 13:56	2.00
ibromomethane	ND	0.323		mg/kg dry	 ¢	11/21/11 08:16	11/21/11 13:56	2.00
,2-Dichloropropane	ND	0.323		mg/kg dry	ø	11/21/11 08:16	11/21/11 13:56	2.00
romodichloromethane	ND	0.323		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
is-1,3-Dichloropropene	ND	0.323		mg/kg dry	₩.	11/21/11 08:16	11/21/11 13:56	2.00
oluene	0.0387 J	0.323		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
-Methyl-2-pentanone	1.74 J	3.23		mg/kg dry	₩.	11/21/11 08:16	11/21/11 13:56	2.00
rans-1,3-Dichloropropene	1.74 J ND	0.323		mg/kg dry	÷.	11/21/11 08:16	11/21/11 13:56	2.00
etrachloroethene	ND .	0.323		mg/kg dry		11/21/11 08:16	11/21/11 13:56	2.00
,1,2-Trichloroethane	ND , ND	0.323		mg/kg dry	φ	11/21/11 08:16	11/21/11 13:56	2.00
ibromochloromethane	ND	0.323		mg/kg dry	÷.	11/21/11 08:16	11/21/11 13:56	2.00
	ND	0.323		mg/kg dry	,¢	11/21/11 08:16	11/21/11 13:56	2.00
,3-Dichloropropane	ND	0.323			•~ #	11/21/11 08:16	11/21/11 13:56	2.00
,2-Dibromoethane				mg/kg dry				2.00
Hexanone	ND	3.23 0.323		mg/kg dry mg/kg dry	Υ Ω	11/21/11 08:16	11/21/11 13:56	2.00
thylbenzene	0.984	0.323		mg/kg dry mg/kg dry	₽ ¢	11/21/11 08:16 11/21/11 08:16	11/21/11 13:56 11/21/11 13:56	2.00
hlorobenzene	ND	0.323		mg/kg dry	÷			
1,1,2-Tetrachloroethane	ND	0.323		mg/kg dry		11/21/11 08:16	11/21/11 13:56	2.00
n,p-Xylene	0.474 J	1.29		mg/kg dry	₽ ¤	11/21/11 08:16	11/21/11 13:56	2.00
-Xylene	0.0968 J	0.645		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 13:56	2.00
yrene	ND	0.323		mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
romoform	ND	0.323		mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
opropylbenzene	0.532	0.323		mg/kg dry	₩.	11/21/11 08:16	11/21/11 13:56	2.00
Propylbenzene	0.877	0.323		mg/kg dry	\$	11/21/11 08:16	11/21/11 13:56	2.00
1,2,2-Tetrachloroethane	ND	0.323		mg/kg dry	\$	11/21/11 0 8:16	11/21/11 13:56	2.00
romobenzene	ND	0.323		mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
3,5-Trimethylbenzene	0.935	0.323		mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.00
Chlorotoluene	ND	0.323	0. 01 61	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00
2,3-Trichloropropane	ND	0.323	0.0645	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Date Collected: 11/15/11 14:20

Date Received: 11/18/11 15:30

Client Sample ID: DP-27-6.0-111511

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-13

Matrix: Soil Percent Solids: 76.4 11

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
tert-Butylbenzene	NC		0.323	0.0161	mg/kg dry	- ¤	11/21/11 08:16	11/21/11 13:56	2.
1,2,4-Trimethylbenzene	4.30	1	0.323	0.0323	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
sec-Butylbenzene	0.313	J	0.323	0.0226	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.
p-lsopropyltoluene	0.468		0.323	0.0226	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
1,3-Dichlorobenzene	ND		0.323	0.0129	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
1,4-Dichlorobenzene	ND		0.323	0.0161	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
n-Butylbenzene	0.332		0.323	0.0323	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
1,2-Dichlorobenzene	ND		0.323	0.0161	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
1,2-Dibromo-3-chloropropane	ND		1.61	0.323	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
Hexachlorobutadiene	ND		0.323	0.129	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
1,2,4-Trichlorobenzene	ND		0.323	0.0968	mg/kg dry	₽	11/21/11 08:16	11/21/11 13:56	2.
Naphthalene	1.40		0.645	0.355	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.0
1,2,3-Trichlorobenzene	ND		0.323	0.0968	mg/kg dry	¢	11/21/11 08:16	11/21/11 13:56	2.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	90.4		71.6 - 127				11/21/11 08:16	11/21/11 13:56	2.0
Toluene-d8	119		80 - 129				11/21/11 08:16	11/21/11 13:56	2.0
4-bromofluorobenzene	221	zx	57.7 - 149				11/21/11 08:16	11/21/11 13:56	2.0
Method: EPA 8011 - EDB by EPA	Method 8011								
				MIDI	11-14	_		Appluzed	Dil Fa
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Date
Analyte 1,2-Dibromoethane	Result ND	Qualifier		MDL	ug/kg dry	D ₩	Prepared 11/21/11 08:22	11/23/11 16:48	1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane	ND ND		1.29 1.29	MDL					1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte	ND ND e Petroleum F		1.29 1.29	MDL	ug/kg dry	₩	11/21/11 08:22	11/23/11 16:48	1.0 1.0 Dil Fa
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons	ND ND e Petroleum F Result	Products by	1.29 1.29 NWTPH-Dx RL		ug/kg dry ug/kg dry Unit	₩ ₩ D	11/21/11 08:22 11/21/11 08:22 Prepared	11/23/11 16:48 11/23/11 16:48 Analyzed	1.0 1.0 Dil Fa 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	e Petroleum F Result 129	Products by Qualifier	1.29 1.29 NWTPH-Dx RL 18,9		ug/kg dry ug/kg dry Unit mg/kg dry	₩ ₩ ₽	11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15	11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 15:14 11/19/11 15:14	1.0 1.0 Dil Fa 1.0 1.0
	e Petroleum F Result 129 52.6	Products by Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2		ug/kg dry ug/kg dry Unit mg/kg dry	₩ ₩ ₽	11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15	11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 15:14	
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	e Petroleum F Result 129 52.6 %Recovery	Products by Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i>		ug/kg dry ug/kg dry Unit mg/kg dry	₩ ₩ ₽	11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 Prepared	11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 15:14 11/19/11 15:14 Analyzed	1.0 1.0 1.0 Dil Fa 1.0 1.0 Dil Fa 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP	e Petroleum F Result 129 52.6 <u>%Recovery</u> 96.6	Products by Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i> 50 - 150		ug/kg dry ug/kg dry Unit mg/kg dry	₩ ₩ ₽	11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 Prepared 11/19/11 07:15	11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 11/19/11 15:14 Analyzed 11/19/11	1.0 1.0 1.0 Dil Fa 1.0 1.0 Dil Fa 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14	e Petroleum F Result 129 52.6 %Recovery 96.6 102	Products by Qualifier Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i> 50 - 150 50 - 150		ug/kg dry ug/kg dry Unit mg/kg dry	₩ ₩ ₽	11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 Prepared 11/19/11 07:15	11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 11/19/11 15:14 Analyzed 11/19/11	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP	e Petroleum F Result 129 52.6 %Recovery 96.6 102	Products by Qualifier Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i> 50 - 150 50 - 150		ug/kg dry ug/kg dry Unit mg/kg dry mg/kg dry	₩ ₩ ₽	11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 Prepared 11/19/11 07:15	11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 11/19/11 15:14 Analyzed 11/19/11	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte	e Petroleum F Result 129 52.6 %Recovery 96.6 102	Products by Qualifier Qualifier Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i> 50 - 150 50 - 150 50 - 150	MDL	ug/kg dry ug/kg dry Unit mg/kg dry mg/kg dry		11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 Prepared 11/19/11 07:15 11/19/11 07:15	11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 15:14 11/19/11 15:14 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate	e Petroleum F Result 129 52.6 %Recovery 96.6 102 ydrocarbons I Result	Products by Qualifier Qualifier Dy NWTPH- Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i> 50 - 150 50 - 150 50 - 150 Gx RL	MDL	ug/kg dry ug/kg dry Unit mg/kg dry mg/kg dry Unit		11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 <i>Prepared</i> 11/19/11 07:15 11/19/11 07:15 Prepared	11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 15:14 11/19/11 15:14 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 Analyzed 11/19/11 15:14 Analyzed Analyzed Analyzed	1.0 1.0 Dil Fa 1.0 1.0 Dil Fa
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons	e Petroleum F Result 129 52.6 %Recovery 96.6 102 ydrocarbons I Result 256	Qualifier Qualifier Qualifier Dy NWTPH- Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i> 50 - 150 50 - 150 50 - 150 Gx RL 8.06	MDL	ug/kg dry ug/kg dry Unit mg/kg dry mg/kg dry Unit		11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	11/23/11 16:48 11/23/11 16:48 11/23/11 16:48 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate	e Petroleum F Result 129 52.6 %Recovery 96.6 102 ydrocarbons I Result 256 %Recovery 55.1	Products by Qualifier Qualifier Dy NWTPH- Qualifier Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 Limits 50 - 150 50 - 150 Gx RL 8.06 Limits 50 - 150	MDL	ug/kg dry ug/kg dry Unit mg/kg dry mg/kg dry Unit		11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	Analyzed 11/23/11 16:48 Analyzed 11/19/11 15:14 11/19/11 15:14 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 Analyzed 11/20/11 16:18 Analyzed	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	e Petroleum F Result 129 52.6 %Recovery 96.6 102 ydrocarbons I Result 256 %Recovery 55.1	Products by Qualifier Qualifier Dy NWTPH- Qualifier Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 Limits 50 - 150 50 - 150 Gx RL 8.06 Limits 50 - 150	MDL	ug/kg dry ug/kg dry Unit mg/kg dry mg/kg dry		11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	Analyzed 11/23/11 16:48 Analyzed 11/19/11 15:14 11/19/11 15:14 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 Analyzed 11/20/11 16:18 Analyzed	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: EPA 6010C - Total Metals Analyte	e Petroleum F Result 129 52.6 %Recovery 96.6 102 ydrocarbons I Result 256 %Recovery 55.1	Products by Qualifier Qualifier Oy NWTPH- Qualifier Qualifier	1.29 1.29 NWTPH-Dx RL 18.9 47.2 Limits 50 - 150 50 - 150 Gx RL 8.06 Limits 50 - 150 So - 150	MDL	ug/kg dry ug/kg dry Unit mg/kg dry mg/kg dry		11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared 11/20/11 07:08	Analyzed 11/23/11 16:48 11/23/11 16:48 11/23/11 16:48 Analyzed 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/20/11 16:18 Analyzed 11/20/11 16:18 11/20/11 16:18	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: EPA 6010C - Total Metals Analyte Lead	ND e Petroleum F Result 129 52.6 %Recovery 96.6 102 ydrocarbons I Result 2556 %Recovery 95.1 55.1 s by EPA 6010 Result 6.29	Products by Qualifier Qualifier Oy NWTPH- Qualifier Qualifier	1.29 1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i> 50 - 150 50 - 150 Gx RL 8.06 <i>Limits</i> 50 - 150 So - 150 So - 150 Charles Allowed States of the second states of th	MDL	ug/kg dry ug/kg dry Unit mg/kg dry Unit mg/kg dry Unit		11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared 11/20/11 07:08 Prepared 11/20/11 07:08	11/23/11 16:48 11/23/11 16:48 11/23/11 16:48 11/19/11 16:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/20/11 16:18 Analyzed 11/20/11 16:18	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivolatil Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: EPA 6010C - Total Metals Analyte	ND e Petroleum F Result 129 52.6 %Recovery 96.6 102 ydrocarbons I Result 2556 %Recovery 95.1 55.1 s by EPA 6010 Result 6.29	Products by Qualifier Qualifier Oy NWTPH- Qualifier Qualifier	1.29 1.29 1.29 NWTPH-Dx RL 18.9 47.2 <i>Limits</i> 50 - 150 50 - 150 Gx RL 8.06 <i>Limits</i> 50 - 150 So - 150 So - 150 Charles Allowed States of the second states of th	MDL	ug/kg dry ug/kg dry Unit mg/kg dry Unit mg/kg dry Unit		11/21/11 08:22 11/21/11 08:22 11/21/11 08:22 Prepared 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared 11/20/11 07:08 Prepared 11/20/11 07:08	11/23/11 16:48 11/23/11 16:48 11/23/11 16:48 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/19/11 15:14 11/20/11 16:18 Analyzed 11/20/11 16:18 Analyzed 11/20/11 15:01 Ole ID: SUK0'	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

- 1	method, El A Ozoob - Volatile Orge	The compounds by LFA in	lethous 505	0/02000					
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Dichlorodifluoromethane	ND	0.189	0.0947	mg/kg dry	<u>Å</u>	11/21/11 08:16	11/21/11 14:24	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Date Collected: 11/15/11 14:25

Date Received: 11/18/11 15:30

Client Sample ID: DP-27-9.0-111511

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-14 Matrix: Soil

Percent Solids: 68.9

Analyte	Drganic Compounds by EPA 	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND	0.947	0.0947	mg/kg dry	*	11/21/11 08:16	11/21/11 14:24	1.00
Vinyl chloride	ND	0.114	0.0379	mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
Bromomethane	ND	0.947	0.189	mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
Chloroethane	ND	0.189	0.0947	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Trichlorofluoromethane	ND	0.0568	0.0189	mg/kg dry	₿	11/21/11 08:16	11/21/11 14:24	1.00
1,1-Dichloroethene	ND	0.189	0.0379	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:24	1.00
Carbon disulfide	ND	0.189	0.0947	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Methylene chloride	ND	1.89	0.568	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Acetone	ND	3.79	1.78	mg/kg dry	₿	11/21/11 08:16	11/21/11 14:24	1.00
trans-1,2-Dichloroethene	ND	0.189	0.0379	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Methyl tert-butyl ether	ND	0.189	0.0189	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,1-Dichloroethane	ND	0.189	0.0379	mg/kg dry	₿	11/21/11 08:16	11/21/11 14:24	1.00
cis-1,2-Dichloroethene	ND	0.189	0.0379	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
2,2-Dichloropropane	ND	0.189	0.0947	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Bromochloromethane	ND	0.189	0.0379	mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
Chloroform	ND	0.189	0.0379	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Carbon tetrachloride	ND	0.189	0.0189	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,1,1-Trichloroethane	ND	0.189	0.0379	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
2-Butanone	ND	1.89	0.189	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,1-Dichloropropene	ND	0.189	0.0379	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Benzene	0.161	0.0379	0.0152	mg/kg dry		11/21/11 08:16	11/21/11 14:24	1.00
I,2-Dichloroethane (EDC)	ND	0.189	0.0947	mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
Trichloroethene	ND	0.0474	0.0379	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Dibromomethane	ND	0.189		mg/kg dry	× 🙀	11/21/11 08:16	11/21/11 14:24	1.00
I,2-Dichloropropane	ND	0.189	0.0379	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Bromodichloromethane	ND	0.189		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
cis-1,3-Dichloropropene	ND	0.189		mg/kg dry		11/21/11 08:16	11/21/11 14:24	1.00
Foluene	ND	0.189		mg/kg dry	#	11/21/11 08:16	11/21/11 14:24	1.00
4-Methyl-2-pentanone	ND	1.89		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
rans-1,3-Dichloropropene	ND	0.189		mg/kg dry		11/21/11 08:16	11/21/11 14:24	1.00
Tetrachloroethene	ND	0.0947		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,1,2-Trichloroethane	ND	0.189		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Dibromochloromethane	ND	0.189		mg/kg dry	¢.	11/21/11 08:16	11/21/11 14:24	1.00
I,3-Dichloropropane	ND	0.189		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
I,2-Dibromoethane	ND	0.189		mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
2-Hexanone	ND	1.89		mg/kg dry		11/21/11 08:16	11/21/11 14:24	1.00
		0.189		mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
Ethylbenzene	0.0284 J			mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
Chlorobenzene	ND	0,189		mg/kg dry	·		11/21/11 14:24	1.00
,1,1,2-Tetrachloroethane	ND	0.189		•	¢	11/21/11 08:16		1.00
n,p-Xylene	0.142 J	0.758		mg/kg dry mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
-Xylene	ND	0.379		mg/kg dry	÷.	11/21/11 08:16	11/21/11 14:24	1.00
tyrene	ND	0.189		• - •		11/21/11 08:16	11/21/11 14:24	
Bromoform	ND	0.189		mg/kg dry	¢ *	11/21/11 08:16	11/21/11 14:24	1.00
sopropylbenzene	0.142 J	0.189		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 14:24	1.00
-Propylbenzene	0.216	0.189		mg/kg dry	¢ ~	11/21/11 08:16	11/21/11 14:24	1.00
,1,2,2-Tetrachloroethane	ND	0.189		mg/kg dry	\$	11/21/11 08:16	11/21/11 14:24	1.00
Bromobenzene	ND	0.189		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:24	1.00
,3,5-Trimethylbenzene	0.0511 J	0.189		mg/kg dry	\$	11/21/11 0 8:16	11/21/11 14:24	1.00
-Chlorotoluene	ND	0.189		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:24	1.00
,2,3-Trichloropropane	ND	0.189	0.0379	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

Client Sample ID: DP-27-9.0-111511

Date Collected: 11/15/11 14:25 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-14 Matrix: Soil

Percent Solids: 68.9

仆

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
4-Chlorotoluene	ND		0.189	0.0189	mg/kg dry	- -	11/21/11 08:16	11/21/11 14:24	1.0
tert-Butylbenzene	ND		0.189	0.00947	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,2,4-Trimethylbenzene	1.10		0.189	0.0189	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
sec-Butylbenzene	0.0701	J	0.189	0.0133	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
p-lsopropyltoluene	0.0852	J	0.189	0.0133	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,3-Dichlorobenzene	ND		0.189	0.00758	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,4-Dichlorobenzene	ND		0.189	0.00947	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:24	1.00
n-Butylbenzene	0.0871	J	0.189	0.0189	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,2-Dichlorobenzene	ND		0.189	0.00947	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:24	1.00
1,2-Dibromo-3-chloropropane	ND		0.947	0.189	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Hexachlorobutadiene	ND		0.189	0.0758	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
1,2,4-Trichlorobenzene	ND		0.189	0.0568	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:24	1.00
Naphthalene	0.224	j	0.379	0.208	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:24	1.00
1,2,3-Trichlorobenzene	ND		0.189	0.0568	mg/kg dry	₽	11/2 1/11 08:16	11/21/11 14:24	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	96.6		71.6 - 127				11/21/11 08:16	11/21/11 14:24	1.00
Toluene-d8	119		80 - 129				11/21/11 08:16	11/21/11 14:24	1.00
4-bromofluorobenzene	140		57.7 - 149				11/21/11 08:16	11/21/11 14:24	1.00
Method: EPA 8011 - EDB by EF Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.43		ug/kg dry	- 2	11/21/11 08:22	11/23/11 17:15	1.00
1,2-Dibromo-3-chloropropane	ND	~	1.43		ug/kg dry	\$	11/21/11 08:22	11/23/11 17:15	1.00
Method: NWTPH-Dx - Semi∨ola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		14.5		mg/kg dry	*	11/19/11 07:15	11/19/11 15:31	1.00
Heavy Oil Range Hydrocarbons	ND		36.3		mg/kg dry	\$	11/19/11 07:15	11/19/11 15:31	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	74.0		50 - 150				11/19/11 07:15	11/19/11 15:31	1.00
p-Terphenyl-d14	94.2		50 - 150				11/19/11 07:15	11/19/11 15:31	1.00
Method: NWTPH-Gx - Gasoline	Hydrocarbons I		Gx					•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	15.3		9.47		mg/kg dry	- -	11/20/11 07:08	11/20/11 16:43	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	157	ZX	50 - 150				11/20/11 07:08	11/20/11 16:43	1.00
Method: EPA 6010C - Total Meta	als by EPA 6010	/7000 Serie	s Methods						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	ND		2.18			— 7	12/05/11 17:42	12/06/11 15:04	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

Client Sample ID: DP-28-7.0-111511 Date Collected: 11/15/11 14:35 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-15 Matrix: Soil

Percent Solids: 68.4

vichlorodifluoromethane	ND							
	ND	0.391	0.196	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.00
hloromethane	ND	1.96	0.196	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
inyl chloride	ND	0.235	0.0783	mg/kg dry	\$	11/21/11 08:16	11/21/11 14:52	2.00
romomethane	ND	1.96	0.391	mg/kg dry	\$	11/21/11 08:16	11/21/11 14:52	2.0
hloroethane	ND	0.391	0.196	mg/kg dry	۵	1 1/21/ 11 08:16	11/21/11 14:52	2.00
richlorofluoromethane	ND	0.117	0.0391	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.00
,1-Dichloroethene	ND	0.391	0.0783	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.0
arbon disulfide	ND	0.391	0.196	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
lethylene chloride	ND	3.91	1.17	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
cetone	ND	7.83	3.68	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
ans-1,2-Dichloroethene	ND	0.391	0.0783	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
ethyl tert-butyl ether	ND	0.391	0.0391	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
1-Dichloroethane	ŇĎ	0.391	0.0783	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
s-1,2-Dichloroethene	ND	0.391	0.0783	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.0
2-Dichloropropane	ND	0.391		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
romochloromethane	ND	0.391		mg/kg dry	\$	11/21/11 08:16	11/21/11 14:52	2.0
hloroform	ND	0.391		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
arbon tetrachloride	ND	0.391	0.0391	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
1,1-Trichloroethane	ND	0.391		mg/kg dry	ø	11/21/11 08:16	11/21/11 14:52	2.0
Butanone	ND	3.91		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
1-Dichloropropene	ND	0.391		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
enzene	0.442	0.0783		mg/kg dry		11/21/11 08:16	11/21/11 14:52	2.0
2-Dichloroethane (EDC)	ND	0.391		mg/kg dry		11/21/11 08:16	11/21/11 14:52	2.0
ichloroethene	ND	0.0978		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.0
bromomethane	ND	0.391		mg/kg dry	·	11/21/11 08:16	11/21/11 14:52	2.0
2-Dichloropropane	ND	0.391		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.0
omodichloromethane	ND	0.391		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.0
s-1,3-Dichloropropene	ND	0.391		mg/kg dry mg/kg dry		11/21/11 08:16	11/21/11 14:52	2.0
luene	ND	0.391			*			2.00
		3.91		mg/kg dry mg/kg day	*	11/21/11 08:16	11/21/11 14:52	
Methyl-2-pentanone	1.32 J ND			mg/kg dry	÷	11/21/11 08:16	11/21/11 14:52	2.00
ns-1,3-Dichloropropene trachloroethene		0.391		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	
trachioroethene	ND	0.196		mg/kg dry	v ¢	11/21/11 08:16	11/21/11 14:52	2.00
	ND	0.391		mg/kg dry	¥ \$	11/21/11 08:16	11/21/11 14:52	2.00
bromochloromethane	ND	0.391		mg/kg dry		11/21/11 08:16	11/21/11 14:52	2.00
3-Dichloropropane	. ND	0.391		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.00
2-Dibromoethane	ND	0.391		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.00
Hexanone	ND	3.91		mg/kg dry	*	11/21/11 08:16	11/21/11 14:52	2.00
hylbenzene	0.673	0.391		mg/kg dry	\$ \$	11/21/11 08:16	11/21/11 14:52	2.00
lorobenzene	ND	0.391		mg/kg dry	÷	11/21/11 08:16	11/21/11 14:52	2.00
I,1,2-Tetrachloroethane	ND	0.391		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 14:52	2.00
p-Xylene	1.35 J	1.57		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 14:52	2.00
(ylene	ND	0.783		mg/kg dry		11/21/11 08:16	11/21/11 14:52	2.00
/rene	ND	0.391		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.00
omoform	ND	0.391		mg/kg dry	\$	11/21/11 08:16	11/21/11 14:52	2.00
propylbenzene	0.634	0.391		mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.00
Propylbenzene	1.10	0.391	0.0391	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
,2,2-Tetrachloroethane	ND	0.391		mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
omobenzene	ND	0.391		mg/kg dry	\$	11/21/11 08:16	11/21/11 14:52	2.00
,5-Trimethylbenzene	0.360 J	0.391	0.0391	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00

5

°∦:

TestAmerica Spokane 1/6/2012

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Date Collected: 11/15/11 14:35

Date Received: 11/18/11 15:30

Client Sample ID: DP-28-7.0-111511

TestAmerica Job ID: SUK0108

Lab Sample ID: SUK0108-15 Matrix: Soil

Percent Solids: 68.4

à

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichloropropane	ND		0.391	0.0783	mg/kg dry	- ¤	11/21/11 08:16	11/21/11 14:52	2.0
4-Chlorotoluene	ND		0.391	0.0391	mg/kg dry	¢	11/21/11 08:16	11/21/11 14:52	2.0
tert-Butylbenzene	ND		0.391	0.0196	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.0
1,2,4-Trimethylbenzene	7.58		0.391	0.0391	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
sec-Butylbenzene	0.348	J	0.391	0.0274	mg/kg dry	Ϋ́	11/21/11 08:16	11/21/11 14:52	2.00
p-lsopropyltoluene	0.626		0.391	0.0274	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
1,3-Dichlorobenzene	ND		0.391	0.0157	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
1,4-Dichlorobenzene	ND		0.391	0.0196	mg/kg dry	÷.	11/21/11 08:16	11/21/11 14:52	2.00
n-Butylbenzene	0.634		0.391	0.0391	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
1,2-Dichlorobenzene	ND		0.391	0.0196	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
1,2-Dibromo-3-chloropropane	ND	· • · · · · · · · · · · · · · · · · · ·	1.96	0.391	mg/kg dry	ά	11/21/11 08:16	11/21/11 14:52	2.00
Hexachlorobutadiene	ND		0.391	0.157	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
1,2,4-Trichlorobenzene	ND		0.391	0.117	mg/kg dry	₽	11/21/11 08:16	11/21/11 14:52	2.00
Naphthalene	4.68		0.783	0.431		¢	11/21/11 08:16	11/21/11 14:52	2.00
1,2,3-Trichlorobenzene	ND		0.391	0.117	mg/kg dry	₽	11/21/11 0 8 :16	11/21/11 14:52	2.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	89.2		71.6 - 127				11/21/11 08:16	11/21/11 14:52	2.00
Toluene-d8	127		80 - 129				11/21/11 08:16	11/21/11 14:52	2.00
4-bromofluorobenzene	184	zx	57.7 - 149				11/21/11 08:16	11/21/11 14:52	2.00
Method: EPA 8011 - EDB by E	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.45		ug/kg dry	ÿ	11/21/11 08:22	11/23/11 17:28	1.00
1,2-Dibromo-3-chloropropane	ND	R1	1.45		ug/kg dry	₽	11/21/11 08:22	11/23/11 17:28	1.00
Method: NWTPH-Dx - Semivola	atile Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		20.7		mg/kg dry	*	11/19/11 07:15	11/19/11 15:47	1.00
Heavy Oil Range Hydrocarbons	ND		51.8		mg/kg dry	**	11/19/11 07:15	11/19/11 15:47	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	82.1		50 - 150				11/19/11 07:15	11/19/11 15:47	1.00
p-Terphenyl-d14 .	92.0		50 - 150				11/19/11 07:15,	11/19/11 15:47	1.00
Method: NWTPH-Gx - Gasoline	Hydrocarbons b	W NWTPH-0	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	186		9.78		mg/kg dry	₽	11/20/11 07:08	11/20/11 17:07	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-BFB (FID)	676	ZX	50 - 150				11/20/11 07:08	11/20/11 17:07	1.00
Method: EPA 6010C - Total Met	als by EPA 6010	/7000 Serie:	s Methods						
Method: EPA 6010C - Total Met Analyte		/7000 Serie: Qualifier	s Methods RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-28-9.0-111511

Date Collected: 11/15/11 14:40 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0108-16

Matrix: Soil Percent Solids: 73.4

Method: EPA 8260B - Volatile (Analyte	Result (Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.	0.0731	mg/kg dry	<u>₽</u>	11/21/11 08:16	11/21/11 15:20	1.00
Chloromethane	ND	0.	731 0.073 1	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
/inyl chloride	ND	0.0	0.0292	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Bromomethane	ND	0.	731 0.146	mg/kg dry	. ⇔	11/21/11 08:16	11/21/11 15:20	1.00
Chloroethane	ND	0.	46 0.0731	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Inchlorofluoromethane	ND	0.04	38 0.0146	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
I,1-Dichloroethene	ND	0.	46 0.0292	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Carbon disulfide	ND	0.1	46 0.0731	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Methylene chloride	ND	1	.46 0.438	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Acetone	ND	2	.92 1.37	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
rans-1,2-Dichloroethene	ND	0.4		mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Methyl tert-butyl ether	ND	0.4	46 0.0146	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
,1-Dichloroethane	ND	0.4		mg/kg dry		11/21/11 08:16	11/21/11 15:20	1.00
vis-1,2-Dichloroethene	ND			mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
,2-Dichloropropane	ND	0.4			₽	11/21/11 08:16	11/21/11 15:20	1.00
Bromochloromethane	ND			mg/kg dry		11/21/11 08:16	11/21/11 15:20	1.00
Chloroform	ND		46 0.0292		₽	11/21/11 08:16	11/21/11 15:20	1.00
Carbon tetrachloride	ND		46 0.0146	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
,1,1-Trichloroethane	ND	0.1		mg/kg dry	÷	11/21/11 08:16	11/21/11 15:20	1.00
-Butanone	ND			mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
,1-Dichloropropene	ND	0.1			. ₽	11/21/11 08:16	11/21/11 15:20	1.00
Benzene	0.110	0.02		mg/kg dry		11/21/11 08:16	11/21/11 15:20	1.00
,2-Dichloroethane (EDC)	ND	0.1			¢	11/21/11 08:16	11/21/11 15:20	1.00
richloroethene	ND	0.03			₽	11/21/11 08:16	11/21/11 15:20	1.00
libromomethane	ND	0.1				11/21/11 08:16	11/21/11 15:20	1.00
	ND	0.1		mg/kg dry	¢.	11/21/11 08:16	11/21/11 15:20	1.00
,2-Dichloropropane romodichloromethane	ND	0.1		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
	ND	0.1	 	mg/kg dry		11/21/11 08:16	11/21/11 15:20	1.00
is-1,3-Dichloropropene					T ₽	11/21/11 08:16	11/21/11 15:20	1.00
	ND	0.1		mg/kg dry	r ‡	11/21/11 08:16	11/21/11 15:20	1.00
-Methyl-2-pentanone	ND		46 0.146	mg/kg dry			11/21/11 15:20	1.00
ans-1,3-Dichloropropene	ND	0.1		mg/kg dry	¢	11/21/11 08:16		1.00
etrachloroethene	ND	0.07		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
,1,2-Trichloroethane	ND	. 0.1		mg/kg dry	. œ	11/21/11 08:16	11/21/11 15:20 11/21/11 15:20	1.00
Dibromochloromethane	ND	0.1		mg/kg dry	¢	11/21/11 08:16		
,3-Dichloropropane	ND	0.1		mg/kg dry		11/21/11 08:16	11/21/11 15:20	1.00
,2-Dibromoethane	ND	0.1		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
-Hexanone	ND			mg/kg dry	¢ ~	11/21/11 08:16	11/21/11 15:20	1.00
thylbenzene	0.0424 J	0.1		mg/kg dry	¢ ~	11/21/11 08:16	11/21/11 15:20	1.00
Chlorobenzene	ND	0.1		mg/kg dry	ې بې	11/21/11 08:16	11/21/11 15:20	1.00
,1,1,2-Tetrachloroethane	ND	0.1		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
n,p-Xylene	0.532 J	0.5		mg/kg dry	¢ ~	11/21/11 08:16	11/21/11 15:20	1.00
Xylene	ND	0.2		mg/kg dry	¢ 	11/21/11 08:16	11/21/11 15:20	1.00
yrene	ND	0.1		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
romoform	ND	0.1		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
opropylbenzene	0.150	0.1		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
Propylbenzene	0.310	0.1	46 0.0146	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
1,2,2-Tetrachloroethane	ND	0.1	46 0.0292	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
romobenzene	ND	0.1	46 0.0146	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
3,5-Trimethylbenzene	0.0468 J	0.1	46 0.0146	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
-Chlorotoluene	ND	0.1	46 0.00731	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00

Client Sample Results

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-28-9.0-111511

Date Collected: 11/15/11 14:40 Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	SUK	0108
-------------	-----	-----	-----	------

Lab Sample ID: SUK0108-16 Matrix: Soil

Percent Solids: 73.4

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,3-Trichloropropane	ND		0.146	0.0292	mg/kg dry	- x	11/21/11 08:16	11/21/11 15:20	1.0
4-Chlorotoluene	ND		0.146	0.0146	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.0
tert-Butylbenzene	ND		0.146	0.00731	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.0
1,2,4-Trimethylbenzene	1.48		0.146	0.0146	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
sec-Butylbenzene	0.0672	J	0.146	0.0102	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:20	1.00
p-lsopropyltoluene	0.102	J	0.146	0.0102	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
1,3-Dichlorobenzene	ND		0.146	0.00584	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
1,4-Dichlorobenzene	ND		0.146	0.00731	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
n-Butylbenzene	0.117	J	0.146	0.0146	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
1,2-Dichlorobenzene	ND		0.146	0.00731	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
1,2-Dibromo-3-chloropropane	ND		0.731	0.146	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Hexachlorobutadiene	ND		0.146	0.0584	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
1,2,4-Trichlorobenzene	ND		0.146	0.0438	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Naphthalene	0.386		0.292	0.161	mg/kg dry	ţ.	11/21/11 08:16	11/21/11 15:20	1.00
1,2,3-Trichlorobenzene	ND		0.146	0.0438	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:20	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	89.0		71.6 - 127				11/21/11 08:16	11/21/11 15:20	1.00
Toluene-d8	122		80 - 129				11/21/11 08:16	11/21/11 15:20	1.00
4-bromofluorobenzene	140		57.7 - 149				11/21/11 08:16	11/21/11 15:20	1.00
Analyte	Result	Qualifier	RL 1.34	MDL	Unit ug/kg dry	- D T	Prepared	Analyzed	Dil Fac 1.00
•		Quaimer		MDL			· ·		
1,2-Dibromo-3-chloropropane	ND		1.34		ug/kg dry	₽	11/21/11 08:22	11/23/11 17:41	1.00
Method: NWTPH-Dx - Semivola		-			11-14	D	Descend	A	Dil Fac
Analyte		Qualifier	RL	MDL			Prepared	Analyzed	
Diesel Range Hydrocarbons	ND		13.6		mg/kg dry	¥ ¢	11/19/11 07:15	11/19/11 16:03	1.00
Heavy Oil Range Hydrocarbons	ND		34.1		mg/kg dry	4k	11/19/11 07:15	11/19/11 16:03	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
							11110111 07 15	11/19/11 16:03	1.00
2-FBP	77.9		50 - 150				11/19/11 07:15	11/19/11/10.03	
2-FBP p-Terphenyl-d14	77.9 98.0		50 - 150 50 - 150				.11/19/11 07:15	11/19/11 16:03	1.00
	98.0	by NWTPH-	50 - 150						1.00
o- <i>Terphenyl-d14</i> Method: NWTPH-Gx - Gasoline	98.0 Hydrocarbons I	oy NWTPH- Qualifier	50 - 150	MDL	Unit	D			1.00 Dil Fac
p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte	98.0 Hydrocarbons I		50 - 150 Gx	MDL	Unit mg/kg dry	- D	.11/19/11 07:15	11/19/11 16:03	
p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons	98.0 Hydrocarbons i Result		50 - 150 Gx RL	MDL			,11/19/11 07:15 Prepared	11/19/11 16:03 Analyzed	Dil Fac
o-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate	98.0 Hydrocarbons I Result 18.1	Qualifier Qualifier	50 - 150 Gx 	MDL			.11/19/11 07:15 Prepared 11/20/11 07:08	11/19/11 16:03 Analyzed 11/20/11 17:31	Dil Fac 1.00 Dil Fac
o-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	98.0 Hydrocarbons i Result 18.1 <u>%Recovery</u> 168	Qualifier Qualifier ZX	50 - 150 Gx 	MDL			.11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	11/19/11 16:03 Analyzed 11/20/11 17:31 Analyzed	Dil Fac 1.00
p-Terphenyl-d14	98.0 Hydrocarbons i Result 18.1 <u>%Recovery</u> 168 tals by EPA 6010	Qualifier Qualifier ZX	50 - 150 Gx 	MDL	mg/kg dry		.11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	11/19/11 16:03 Analyzed 11/20/11 17:31 Analyzed	Dil Fac 1.00 Dil Fac

TestAmerica Job ID: SUK0108

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 11K0116-BLK1 Matrix: Water				Client Sample ID: Method Bla Prep Type: To
Analysis Batch: 11K0116				Prep Batch: 11K0116
	Blank Blank			
Analyte	Result Qualifier	RL	MDL Unit	D Prepared Analyzed Dil F
Dichlorodifluoromethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Chloromethane	ND	3.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Vinyl chloride	ND	0.200	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Bromomethane	ND	5.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Chloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Trichlorofluoromethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
1,1-Dichloroethene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Carbon disulfide	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Methylene chloride	ND	10.0	ug/i	11/20/11 07:12 11/20/11 08:45 1.
Acetone	ND	25.0	ug/l	11/20/11 07:12 11/20/11 08:45 1.
rans-1,2-Dichloroethene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Methyl tert-butyl ether	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
1,1-Dichloroethane	ND	1.00	ug/i	11/20/11 07:12 11/20/11 08:45 1.
cis-1,2-Dichloroethene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
2,2-Dichloropropane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Bromochloromethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Chloroform	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
Carbon tetrachloride	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.
1,1-Trichloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
-Butanone	ND	10.0	ug/l	11/20/11 07:12 11/20/11 08:45 1.
,1-Dichloropropene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
Benzene	ND	0.200	ug/l	11/20/11 07:12 11/20/11 08:45 1.
,2-Dichloroethane (EDC)	ND	1.00	ug/i	11/20/11 07:12 11/20/11 08:45 1.0
Tichloroethene	ND	1.00	-	11/20/11 07:12 11/20/11 08:45 1.0
Dibromomethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
,2-Dichloropropane	ND	1.00	ug/l	
Bromodichloromethane			ug/l	
****************	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
is-1,3-Dichloropropene	ND	1.00	ug/i	11/20/11 07:12 11/20/11 08:45 1.0
	ND	1.00	ug/í	11/20/11 07:12 11/20/11 08:45 1.0
-Methyl-2-pentanone	ND	10.0	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
ans-1,3-Dichloropropene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
etrachloroethene	ND .	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
,1,2-Trichloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
ibromochloromethane	ND	1.00	ug/i	11/20/11 07:12 11/20/11 08:45 1.0
,3-Dichloropropane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
2-Dibromoethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
Hexanone	ND	10.0	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
thylbenzene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
hlorobenzene	ND	1.00	ug/i	11/20/11 07:12 11/20/11 08:45 1.0
1,1,2-Tetrachloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
,p-Xylene	ND	2.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
Xylene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
yrene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
romoform	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
opropylbenzene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
Propylbenzene	ND	1.00	ug/i	11/20/11 07:12 11/20/11 08:45 1.0
1,2,2-Tetrachloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
romobenzene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0
3,5-Trimethylbenzene	ND	1.00	ug/l	11/20/11 07:12 11/20/11 08:45 1.0

6

٩.

TestAmerica Spokane 1/6/2012

1

6

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11K0116-BLK1 Matrix: Water						C	Client Sa	ample ID: Metho Prep Tyj	
Analysis Batch: 11K0116								Prep Batch: 11	K0116_
•	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL Unit		D Pre	pared	Analyzed	Dil Fa
2-Chlorotoluene	ND		1.00	ug/l		11/20/	/11 07:12	11/20/11 08:45	1.0
1,2,3-Trichloropropane	ND	1	1.00	ug/l		11/20/	/11 07:12	11/20/11 08:45	1.0
4-Chlorotoluene	ND		1.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
tert-Butylbenzene	ND	1	1.00	ug/l		11/20/	/ 1 1 07:12	11/20/11 08:45	1.0
1,2,4-Trimethylbenzene	ND	1	1.00	ug/l		11/20/	/11 07:12	1 1/20/11 08:45	1.0
sec-Butylbenzene	ND	• • • • • • • • • • • • • • • • • • • •	1.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
p-Isopropyltoluene	ND		1.00	ug/l		11/20/	11 07:12	11/20/ 11 08:45	1.0
1,3-Dichlorobenzene	ND		1.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
1,4-Dichlorobenzene	ND		1.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
n-Butylbenzene	ND		1.00	ug/t		11/20/	'11 07: 1 2	11/20/11 08:45	1.0
1,2-Dichlorobenzene	ND		1.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
1,2-Dibromo-3-chloropropane	ND		5.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
Hexachlorobutadiene	ND		2.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
1,2,4-Trichlorobenzene	ND		1.00	ug/i		11/20/	11 07:12	11/20/11 08:45	1.0
Naphthalene	ND		2.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
1,2,3-Trichlorobenzene	ND		1.00	ug/l		11/20/	11 07:12	11/20/11 08:45	1.0
· / - · · · · · · · · · · · · · · · · ·									
Surrogate	Blank %Recovery		nits			Pre	pared	Analyzed	Dil Fa
Dibromofluoromethane	91.4		- 145				/11 07:12	11/20/11 08:45	1.0
Toluene-d8	94.4		- 120				11 07:12	11/20/11 08:45	1.0
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1	84.8		- 123				411 07:12 Sample	11/20/11 08:45 ID: Lab Control Prep Typ	Samp
^{4-bromofluorobenzene} Lab Sample ID: 11K0116-BS1 Matrix: Water		68.4	. 123				Sample	ID: Lab Control Prep Typ Prep Batch: 11	Sampl
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116		68.4 Spike	. 123 LCS	LCS	Unit	Client S	Sample	ID: Lab Control Prep Typ Prep Batch: 11P %Rec.	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte		68.4 Spike Added	- 123 LCS Result	Qualifier	Unit		Sample %Rec	ID: Lab Control Prep Typ Prep Batch: 11 %Rec. Limits	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene		68.4 Spike Added 10.0	- 123 LCS Result	Qualifier	ug/l	Client S	Sample %Rec 106	ID: Lab Control Prep Typ Prep Batch: 11 %Rec. Limits 60.4 - 140	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene		68.4 Spike Added 10.0 10.0	- 123 LCS Result 10.6 10.5	Qualifier	ug/l ug/l	Client S	Sample %Rec 106 105	ID: Lab Control Prep Typ Prep Batch: 114 %Rec. Limits 60.4 - 140 72.9 - 120	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene		68,4 Spike Added 10.0 10.0 10.0	- 123 LCS Result 10.6 10.5 10.1	Qualifier	ug/i ug/i ug/i	Client S	Sample %Rec 106 105 101	ID: Lab Control Prep Typ Prep Batch: 114 %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Toluene		68,4 Spike Added 10.0 10.0 10.0 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	Sample %Rec 106 105 101 116	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132	e: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Toluene		68,4 Spike Added 10.0 10.0 10.0	- 123 LCS Result 10.6 10.5 10.1	Qualifier	ug/i ug/i ug/i	Client S	Sample %Rec 106 105 101	ID: Lab Control Prep Typ Prep Batch: 114 %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Foluene		68.4 Spike Added 10.0 10.0 10.0 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	Sample %Rec 106 105 101 116	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Frichloroethene Foluene Chlorobenzene		68.4 Spike Added 10.0 10.0 10.0 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	Sample %Rec 106 105 101 116	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene Surrogate	84.8	68.4 Spike Added 10.0 10.0 10.0 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	Sample %Rec 106 105 101 116	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132	Sampl be: Tota
A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane	LCS LCS %Recovery Qua	68,4 Spike Added 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	Sample %Rec 106 105 101 116	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8	LCS LCS %Recovery Qua 91.6	68,4 Spike Added 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	Sample %Rec 106 105 101 116	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132	Sampl be: Tota
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene	LCS LCS %Recovery Qua 91.6 93.0	68,4 Spike Added 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	%Rec 106 105 101 116 110	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132	Sampl
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-MS1	LCS LCS %Recovery Qua 91.6 93.0	68,4 Spike Added 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	%Rec 106 105 101 116 110	ID: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132 80 ـ 120	Sampl be: Tota (0116_)
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Foluene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water	LCS LCS %Recovery Qua 91.6 93.0	68,4 Spike Added 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/I ug/I ug/I ug/I	Client S	Sample %Rec 106 105 101 116 110	ID: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120	Sampl be: Tota (0116_)
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Foluene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water	LCS LCS %Recovery Qua 91.6 93.0	68.4 Spike Added 10.0	- 123 LCS Result 10.5 10.1 11.6	Qualifier	ug/l ug/l ug/l ug/l ug/l	Client S	Sample %Rec 106 105 101 116 110	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132 80 ـ 120	Sampl be: Tota (0116_
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Trichloroethene Foluene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116	84.8 LCS LCS %Recovery Qua 91.6 93.0 86.2	68.4 Spike Added 10.0 5 5 5 5 5 5 5 5 5 5 5 5 5	- 123 LCS Result 10.6 10.7 11.6 11.0 Matrix Spike	Qualifier	ug/l ug/l ug/l ug/l ug/l	Client S	Sample %Rec 106 105 101 116 110	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132 80 ـ 120 Sample ID: Matr Prep Typ Prep Batch: 11P	Sampl be: Tota (0116_
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Foluene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116	LCS LCS %Recovery Qua 91.6 93.0 86.2 Sample Sam	68.4 Spike Added 10.0 5 5 5 5 5 5 5 5 5 5 5 5 5	- 123 LCS Result 10.6 10.7 11.6 11.0 Matrix Spike	Qualifier Matrix Spil Qualifier	ug/l ug/l ug/l ug/l	Client S	Sample %Rec 106 105 101 116 110 Client S	ID: Lab Control Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132 80 ـ 120 Sample ID: Matr Prep Typ Prep Batch: 11P %Rec.	Sampl be: Tota (0116_
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Serrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene	LCS LCS %Recovery Qua 91.6 93.0 86.2 Sample Sam Result Qua	68,4 Spike Added 10.0 5 145 75.4 - 120 68.4 - 123 Spike Spike Added	- 123 LCS Result 10.5 10.1 11.6 11.0 Matrix Spike Result	Qualifier Matrix Spil Qualifier	ug/l ug/l ug/l ug/l	Client S	Sample %Rec 106 105 101 116 110 Client S	ID: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120 Sample ID: Matr Prep Typ Prep Batch: 11P %Rec. Limits	Sampl be: Tota (0116_
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene	LCS LCS %Recovery Qua 91.6 93.0 86.2 Sample Sam Result Qua	68.4 Spike Added 10.0 5.4 - 120 68.4 - 123 10.0	- 123 LCS Result 10.5 10.1 11.6 11.0 Matrix Spike Result 10.2	Qualifier Matrix Spil Qualifier	ke Unit ug/l ug/l ug/l	Client S	Sample %Rec 106 105 101 116 110 Client S kRec 102	ID: Lab Control Prep Batch: 11P %Rec. Limits 60.4 ـ 140 72.9 ـ 120 73.7 ـ 120 72.4 ـ 132 80 ـ 120 Sample ID: Matr Prep Typ Prep Batch: 11P %Rec. Limits 52.5 ـ 135	Sampl be: Tota (0116_
4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene	LCS LCS %Recovery Qua 91.6 93.0 86.2 Sample Sam Result Qua ND ND	68.4 Spike Added 10.0 5 5 5 5 5 5 5 5 5 5 5 5 5	- 123 LCS Result 10.5 10.1 11.6 11.0 11.0 11.0 11.0 11.0 11.0	Qualifier Matrix Spil Qualifier	ke Unit ug/l ug/l ug/l ug/l ug/l	Client S	Sample %Rec 106 105 101 116 110 Client S %Rec 102 102	ID: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120 Sample ID: Matr Prep Typ Prep Batch: 111 %Rec. Limits 52.5 - 135 72.3 - 120	Sampl be: Tota (0116_)

1.

6

(9)

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11K0116-MS1								Client	Sample ID		-
Matrix: Water										ер Туре	
Analysis Batch: 11K0116									Prep Batc	h: 11K0	116_F
	Matrix Spike	Matrix Spike	•								
Surrogate	%Recovery	Qualifier	Limits								
Dibromofluoromethane	96.2		66.5 - 145								
Toluene-d8	97.2		75.4 - 120								
4-bromofluorobenzene	102		68.4 - 123								
Lab Sample ID: 11K0116-MSD1						Client	: Sar	nple ID	: Matrix Sp	oike Dup	olicate
Matrix: Water									Pre	р Туре:	Tota
Analysis Batch: 11K0116									Prep Batcl	h: 11K0	116_F
	Sample	Sample	Spike	vatrix Spike Dup	Matrix Spike	Duţ			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier I	Jnit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		10.0	9.83	ī	ıg/l	_	98.3	52.5 - 135	3.40	10.5
Benzene	ND		10.0	10.2	ı	ıg/l		102	72.3 - 120	0.00	10.7
Trichloroethene	ND		10.0	9.47	ι	ıg/ł		94.7	80 - 120	0.106	10
Toluene	ND		10.0	11.3	ι	ıg/l		113	62.7 - 137	0.621	13
Chlorobenzene	ND		10.0	10.6	ι	ıg/l		106	78.9 - 120	0.190	11.2
Mat	rix Spike Dup	Matrix Spike	Dup								
Surrogate	%Recovery	Qualifier	Limits								
Dibromofluoromethane	88.4		66.5 - 145								
Toluene-d8	101		75.4 - 120								
4-bromofluorobenzene	114		68.4 - 123								

Method: EPA 8260B - Volatile Organic Compounds by EPA Methods 5035/8260B

Lab Sample ID: 11K0118-BLK1 Matrix: Soil Analysis Batch: 11K0118	Blank	Blank					ample ID: Metho Prep Typ Prep Batch: 11P	e: Total
Analyte		Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.100	0.0500	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Chloromethane	ND		0.500	0.0500	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Vinyl chloride	ND		0.0600	0.0200	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Bromomethane	ND		0.500	0.100	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Chloroethane	ND		0.100	0.0500	mg/kg wet	11/21/11 08:16	11/21/11 09:44	• 1.00
Trichlorofluoromethane	ND		0.0300	0.0100	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
1,1-Dichloroethene	ND		0.100	0.0200	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Carbon disulfide	ND		0.100	0.0500	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Methylene chloride	ND		1.00	0.300	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Acetone	ND		2.00	0.940	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
trans-1,2-Dichloroethene	ND		0.100	0.0200	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Methyl tert-butyl ether	ND		0.100	0.0100	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
1,1-Dichloroethane	ND		0.100	0.0200	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
cis-1,2-Dichloroethene	ND		0.100	0.0200	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
2,2-Dichloropropane	ND		0.100	0.0500	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Bromochloromethane	ND		0.100	0.0200	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Chloroform	ND		0.100	0.0200	mg/kg wei	11/21/11 08:16	11/21/11 09:44	1.00
Carbon tetrachloride	ND		0.100	0.0100	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
1,1,1-Trichloroethane	ND		0.100	0.0200	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
2-Butanone	ND		1.00	0.100	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
1,1-Dichloropropene	ND		0.100	0.0200	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00
Benzene	ND		0.0200	0.00800	mg/kg wet	11/21/11 08:16	11/21/11 09:44	1.00

痱

6

<u>(j)</u>

Method: EPA 8260B - Volatile Organic Compounds by EPA Methods 5035/8260B (Continued)

Lab Sample ID: 11K0118-BLK1							Client Sa	mple ID: Metho	
Matrix: Soil							_	Prep Ty	
Analysis Batch: 11K0118	Blook	Blank					F	Prep Batch: 11	K0118_F
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichloroethane (EDC)	ND		0.100	0.0500			11/21/11 08:16	11/21/11 09:44	1.0
Trichloroethene	ND		0.0250	0.0200	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Dibromomethane	ND		0.100	0.0500	mg/kg wet	• • • •	11/21/11 08:16	11/21/11 09:44	1.0
1,2-Dichloropropane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
Bromodichloromethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
cis-1,3-Dichloropropene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Toluene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
4-Methyl-2-pentanone	ND		1.00		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
rans-1,3-Dichloropropene	ND		0.100		mg/kg wet	• • •	11/21/11 08:16	11/21/11 09:44	1.0
Tetrachloroethene	ND		0.0500		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
1,1,2-Trichloroethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
Dibromochloromethane	ND		0.100		mg/kg wet	• • • • •	11/21/11 08:16	11/21/11 09:44	1.00
1,3-Dichloropropane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
1,2-Dibromoethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
2-Hexanone	ND ND		1.00		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
Ethylbenzene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
Chlorobenzene	ND		0.100	0.0500	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
	ND		0.100		mg/kg wet	•••	11/21/11 08:16	11/21/11 09:44	1.00
I,1,1,2-Tetrachloroethane	ND		0.400		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
n,p-Xylene					mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
-Xylene	ND		0.200					11/21/11 09:44	1.00
Styrene	ND		0.100		mg/kg wet		11/21/11 08:16		1.00
Bromoform	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	
sopropylbenzene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
n-Propylbenzene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
1,1,2,2-Tetrachloroethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
Bromobenzene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
1,3,5-Trimethylbenzene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
2-Chlorotoluene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
,2,3-Trichloropropane	0.0330	J	0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
I-Chlorotoluene	' ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
ert-Butylbenzene	ND		0.100	0.00500	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
,2,4-Trimethylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
ec-Butylbenzene	ND		0.100	0.00700	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
o-Isopropyltoluene	ND		0.100	0.00700	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
,3-Dichlorobenzene	ND		0.100	0.00400	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
,4-Dichlorobenzene	ND		0.100	0.00500	mg/kg wet	• •	11/21/11 08:16	11/21/11 09:44	1.00
-Butylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
,2-Dichlorobenzene	0.0130	J	0.100	0.00500	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
,2-Dibromo-3-chloropropane	ND		0.500	0.100	mg/kg wet	• • • • •	11/21/11 08:16	11/21/11 09:44	1.00
lexachlorobutadiene	ND		0.100	0.0400	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
,2,4-Trichlorobenzene	ND		0.100	0.0300	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
laphthalene	ND		0.200	0.110	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
,2,3-Trichlorobenzene	0.0400	J	0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.00
		Blank Qualifier	Limite				Prepared	Analyzed	Dil Fa
Surrogate Dibromofluoromethane	%Recovery 91.4	quainer	Limits 71.6 - 127				11/21/11 08:16	11/21/11 09:44	1.00
Foluene-d8	91.4 107		80 - 129				11/21/11 08:16	11/21/11 09:44	1.00
louene-a8 1-bromofluorobenzene	107		60 - 129 57.7 - 149				11/21/11 08:16	11/21/11 09:44	1.00

TestAmerica Job ID: SUK0108

11

Method: EPA 8260B - Volatile Organic Compounds by EPA Methods 5035/8260B (Continued)

Lab Sample ID: 11K0118-BS Matrix: Soil	1					CI	ient \$	Sample		ontrol Sample op Type: Tota
										h: 11K0118_l
Analysis Batch: 11K0118			Spike	LCS	LCS				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene			1.00	0.878		mg/kg wet		87.8		
Benzene			1.00	0.998		mg/kg wet		99.8	75.8 - 122	
Trichloroethene			1.00	0.924		mg/kg wet		92.4	78 - 122	
Toluene			1.00	1.11	· · · · · · · · · · · · ·	mg/kg wet		111	80 - 124	
Chlorobenzene			1.00	1.05		mg/kg wet		105	80 - 124	
shorobenzene			1.00	1.05		my/ky wet		100	00-120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	90.8		71.6 - 127							
Toluene-d8	109		80 - 129							
4-bromofluorobenzene	107		57.7 - 149							
ab Sample ID: 11K0118-MS	1							Client	Sample ID	: Matrix Spike
Matrix: Soil									Pre	p Type: Tota
Analysis Batch: 11K0118									Prep Batc	h: 11K0118_F
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
,1-Dichloroethene	ND		1.14	1.22		mg/kg dry	\	107	58.8 - 134	
lenzene	0.164		1.14	1,58	M7	mg/kg dry	¢	124	72 - 120	
richloroethene	ND		1.14	1.28		mg/kg dry	₽	112	71.1 - 121	
oluene	0.0694		1.14	1.71	M7	mg/kg dry	¢	144	75.6 - 120	
hlorobenzene	ND		1.14	1.53	M7	mg/kg dry	ø	134	75.7 - 120	
	Madata On the	14-4-4-0-1								
	Matrix Spike	-								
Surrogate	%Recovery	Quanner	Limits 71.6 - 127							
Dibromofluoromethane	89.2									
Toluene-d8	122		80 - 129							
-bromofluorobenzene	141		57.7 _ 149					4		
-h Cample ID: 44/0440 MO	D4					Client	. Con		Motrix Cr	
ab Sample ID: 11K0118-MS	Di					Cilen	t San	ipie iD		ike Duplicate
Matrix: Soil				· · · · ·						p Type: Tota n: 11K0118_F
Analysis Batch: 11K0118	Sample	Sample	Spike	atrix Spike Dup	Matrix Spik				жес.	RPE
naluta	•	Qualifier	Added	• •	Qualifier	Unit	D	%Rec	Limits	RPD Limi
1 Dichloroothopo	- Result ND	Quaimer	Added		Juaimer		- 🕁	109	58.8 - 134	1.38 26.4
,1-Dichloroethene					M7	mg/kg dry mg/kg doy	ø		56.6 - 134 72 - 120	6.59 29.5
enzene	0.164		1.14	1.69	IVI /	mg/kg dry ma/kg day	¥ ¢	134		
nchloroethene	ND		1.14	1.32		mg/kg dry	- 44 - 44	116	71.1 - 121	3.48 29.8
oluene	0.0694		1.14	1.75		mg/kg dry	* *	147	75.6 - 120	2.13 27
hlorobenzene	ND		1.14	1.57	M7	mg/kg dry	¢	138	75.7 - 120	2.29 26.6
	Matrix Spike Dup	Matrix Spik	e Dup							
		-								
	%Recoverv	Quaimer	Linnis							
urrogate	%Recovery 	Qualitier	Limits 71.6 - 127							
	%Recovery 90.4 119	Quaimer	71.6 - 127 80 - 129							

TestAmerica Job ID: SUK0108

_ Lab Sample ID: 11K0113-BLK1								(Client S	ample ID: Me	thod Blar
Matrix: Water											Type: Tot
Analysis Batch: 11K0113										Prep Batch:	••
	Blank	Blank								-	
Analyte	Result	Qualifier		RL	MD)L Unit		D Pr	epared	Analyzed	Dil F
1,2-Dibromoethane	ND		0	.0100		ug/l		11/19)/11 07:17	11/19/11 14:	10 1.0
1,2-Dibromo-3-chloropropane	ND		0	.0100		ug/l		11/19	/11 07:17	11/19/11 14:	10 1.0
- Lab Sample ID: 11K0113-BS1								Client	Sample	ID: Lab Conf	rol Samp
Matrix: Water										Prep	Type: Tot
Analysis Batch: 11K0113										Prep Batch:	11K0113_
			Spike		LCS					%Rec.	
Analyte			Added			Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane			0.125		0868		ug/i		69.5	60 - 140	
1,2-Dibromo-3-chloropropane			0.125	(.132		ug/i		106	60 - 140	
Lab Sample ID: 11K0113-BS2								Client	Sample	ID: Lab Cont	rol Samp
Matrix: Water											Type: Tot
Analysis Batch: 11K0113										Prep Batch:	11K0113_
			Spike		LCS I					%Rec.	
Analyte	_		Added			Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane			0.125		0976		ug/l		78.0	60 - 140	
1,2-Dibromo-3-chloropropane			0.125	C	.128		ug/i		102	60 - 140	
Lab Sample ID: 11K0113-BSD1							Clie	nt Sam	ole ID: L	ab Control S.	ample Du
Matrix: Water										Prep	Type: Tota
Analysis Batch: 11K0113										Prep Batch:	1K0113_
			Spike	LCS	Dup L	LCS Dup				%Rec.	RP
Analyte			Added	R	sult (Qualifier	Unit	D	%Rec	Limits	RPD Lim
1,2-Dibromoethane			0.125	0.0	928		ug/l		74.2	60 - 140	6.63 2
1,2-Dibromo-3-chloropropane			0.125	C	.131		ug/l		105	60-140 0	.930 2
Lab Sample ID: 11K0120-BLK1								C	Client Sa	ample ID: Me	thod Blan
Matrix: Soil										Prep 1	Type: Tota
Analysis Batch: 11K0120										Prep Batch:	1K0120_
•	Blank	Blank									
Analyte	Result	Qualifier		RL	MD	L Unit		D Pre	epared	Analyzed	Dil Fa
1,2-Dibromoethane	ND			1.00		ug/kg w	vet	11/21	/11 08:22	11/23/11 14:2	4 1.0
1,2-Dibromo-3-chloropropane	ND			1.00		ug/kg w	/et	11/21	/11 08:22	11/23/11 14:2	4 1.0
Lab Sample ID: 11K0120-BLK2								c	lient Sa	ample ID: Mei	hod Blan
Matrix: Soil										Prep 1	ype: Tota
Analysis Batch: 11K0120										Prep Batch: 1	•
	Blank	Blank							*	-	
,, ,		Qualifier		RL	MDI	L Unit	I	D Pre	pared	Analyzed	Dil Fa
-	Result	Quanner		1.00		ug/kg w	ret	11/21/	11 08:22	11/23/11 19:3	8 1.0
Analyte	Result ND							44/04		44/00/44 40.0	
Analyte 1,2-Dibromoethane		quainer		1.00		ug/kg w	ret	11/21/	11 08:22	11/23/11 19:3	8 1.0
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane	ND					ug/kg w	ret			ID: Lab Cont	
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Lab Sample ID: 11K0120-BS1	ND	Quaimer				ug/kg w	ret			ID: Lab Cont	
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Lab Sample ID: 11K0120-BS1 Matrix: Soil	ND	Quainer				ug/kg w	ret		Sample	ID: Lab Cont	rol Sampl Type: Tota
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Lab Sample ID: 11K0120-BS1 Matrix: Soil	ND	Quainer	Spike	1.00	LCS L		ret		Sample	ID: Lab Conti Prep 1	rol Sampl Type: Tota
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Lab Sample ID: 11K0120-BS1 Matrix: Soil Analysis Batch: 11K0120 Analyte	ND		Spike Added	1.00			Unit		Sample	ID: Lab Cont Prep 1 Prep Batch: 1	rol Sampl Type: Tota
Analyte 1,2-Dibromoethane 1,2-Dibromo-3-chloropropane Lab Sample ID: 11K0120-BS1 Matrix: Soil Analysis Batch: 11K0120	ND		•	1.00 Re		.cs		Client \$	Sample	ID: Lab Contr Prep 1 Prep Batch: 1 %Rec.	rol Sampl Type: Tota

ΫĽ

6

(ē)

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 11K0120-BS2 Matrix: Soil				CI	ient	Sample	ID: Lab Co		Sample : Total
							Prep Batcl		
Analysis Batch: 11K0120	Spike	105	LCS				Rec.	1. 1160	120_F
Analyte	Added		Qualifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane		5.50		ug/kg wet		110	60 - 140		
1,2-Dibromo-3-chloropropane	5.00	5.35		ug/kg wet		107	60 - 140		
	0.00	0.00		uging net					
Lab Sample ID: 11K0120-BS3				CI	ient \$	Sample	ID: Lab Co	ntrol S	ample
Matrix: Soil						•			: Total
Analysis Batch: 11K0120							Prep Batch	n: 11K0	120 P
	Spike	LCS	LCS				%Rec.		-
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane	5.00	5.59		ug/kg wet		112	60 - 140		
1,2-Dibromo-3-chloropropane	5.00	5.41		ug/kg wet		108	60_140		
Lab Sample ID: 11K0120-BSD1				Client S	Samp	le ID: L	ab Control	Samp	le Dup
Matrix: Soil									: Total
Analysis Batch: 11K0120							Prep Batch	n: 11K0	120_P
	Spike	-	LCS Dup				%Rec.		RPD
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane	5.00	5.57		ug/kg wet		111	60 - 140	1.00	20
1,2-Dibromo-3-chloropropane	5.00	5.37		ug/kg wet		107	60 - 140	4.39	20
-				.					
Lab Sample ID: 11K0120-BSD2				Client	samp	ie ID: L	ab Control	-	
Matrix: Soil								p Type:	
Analysis Batch: 11K0120	Calify						Prep Batch %Rec.	: 11K0	_
Analysis	Spike	LCS Dup		Unit	-	%Rec		RPD	RPD Limit
Analyte	Added	5.73	Qualifier		- <u>-</u>	%Rec 115	Limits 60_140	4.11	20
1,2-Dibromoethane				ug/kg wet			60 - 140 60 - 140	4.11 5.10	20
1,2-Dibromo-3-chloropropane	5.00	5.63		ug/kg wet		113	00 - 140	5.10	20

Method: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082

Lab Sample ID: 11K0123-BLK1 Matrix: Soil Analysis Batch: 11K0123	Blank	Blank						mple ID: Metho Prep Typ Prep Batch: 11P	e: Total
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	ND		50.0		ug/kg wet		11/21/11 11:11	11/22/11 13:16	1.00
PCB-1232	ND		50.0		ug/kg wet		11/21/11 11:11	11/22/11 13:16	1.00
PCB-1242	ND		50.0		ug/kg wet		11/21/11 11:11	11/22/11 13:16	1.00
PCB-1248	ND		50.0		ug/kg wet		11/21/11 11:11	11/22/11 13:16	1.00
PCB-1254	ND		50.0		ug/kg wet		11/21/11 11:11	11/22/11 13:16	1.00
PCB-1268	ND		50.0		ug/kg wet		1 1/21/1 1 11:11	1 1 /22/11 13:16	1.00
Lab Sample ID: 11K0123-BLK1 Matrix: Soil Analysis Batch: 11K0123								mple ID: Metho Prep Typ Prep Batch: 11M	e: Total
	Blank	Biank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		50.0		ug/kg wet		11/21/11 11:11	11/22/11 13:28	1.00
PCB-1260	ND		50.0		ug/kg wet		11/21/11 11:11	11/22/11 13:28	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

Lab Sample ID: 11K0123-BLK1	I						C	Client S	Sample ID: I	Viethod	Blank
Matrix: Soil									Pre	р Туре	: Total
Analysis Batch: 11K0123									Prep Batcl		
		Blank Bla	nk								
Surrogate		overy Qua		mits			Pre	epared	Analyz	ed	Dil Fac
тсх		66.6	27.9	- 154				/11 11:11			1.00
Decachlorobiphenyl		106	35	- 157			11/21	/11 11:11	1 11/22/11	13:28	1.00
Lab Sample ID; 11K0123-BS1						c	lient :	Sample	ID: Lab Co	ontrol S	ample
Matrix: Soil								•		р Туре	
Analysis Batch: 11K0123									Prep Batch		
			Spike	LCS	LCS				%Rec.		_
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1016			167	127		ug/kg wet		76.2	63.1 - 147		
PCB-1260			167	155		ug/kg wet		92.8	74.4 - 130		
	LCS	LCS									
Surrogate	%Recovery		Limits								
тсх	52.6		27.9 - 154								
Decachlorobiphenyl	96.3		35 - 157								
ab Sample ID: 11K0123-BSD1						Client	Samp	le ID: L	ab Control	Sampl	e Dup
Matrix: Soil									Pre	р Туре	Total
Analysis Batch: 11K0123									Prep Batch	: 11K0	123_P
			Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016			167	133		ug/kg wet		80.0	63.1 - 147	4.88	25
PCB-1260			167	160		ug/kg wet		96.2	74.4 - 130	3.54	25
	LCS Dun	LCS Dup									
Surrogate	%Recovery	-	Limits								
CX	54.7		27.9 - 154								
Decachlorobiphenyl	103		35 - 157								
ab Sample ID: 11K0123-MS1							Clien	t Samp	ble ID: DP-2	4-7.0-1	11511
/latrix: Soil									Pre	о Туре:	Total
									Prep Batch	: 11K0	123_P
Analysis Batch: 11K0123									ALD		
Analysis Batch: 11K0123	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			%Rec.		
nalyte	Result	Sample Qualifier	· Added	Result	Qualifier	ke Unit	D	%Rec	Limits		
nalyte CB-1016	Result ND	-	-	-	Qualifier	Unit ug/kg dry	- x				
Analysis Batch: 11K0123 Inalyte CB-1016 CB-1260	Result	-	· Added	Result	Qualifier	Unit	- D \$		Limits		
nalyte CB-1016	Result ND ND	Qualifier	Added 516 516	Result 1730	Qualifier	Unit ug/kg dry	- x	335	Limits 50.6 - 145		<u> </u>
nalyte CB-1016 CB-1260	Result ND ND Matrix Spike	Qualifier Matrix Spi	• Added 516 516 ike	Result 1730	Qualifier	Unit ug/kg dry	- x	335	Limits 50.6 - 145		
nalyte CB-1016	Result ND ND Matrix Spike %Recovery	Qualifier Matrix Spi	• Added 516 516 ike Limits	Result 1730	Qualifier	Unit ug/kg dry	- x	335	Limits 50.6 - 145		
nalyte CB-1016 CB-1260 urrogate CX	Result ND ND Matrix Spike	Qualifier Matrix Spi	• Added 516 516 ike	Result 1730	Qualifier	Unit ug/kg dry	- x	335	Limits 50.6 - 145		
nalyte CB-1016 CB-1260 urrogate CX	Result ND ND Matrix Spike %Recovery 97.7	Qualifier Matrix Spi	Added 516 516 ike <u>Limits</u> 27.9 - 154	Result 1730	Qualifier	Unit ug/kg dry	- x	335	Limits 50.6 - 145		
nalyte CB-1016 CB-1260 urrogate CX ecachlorobiphenyl	Result ND ND Matrix Spike %Recovery 97.7 80.9	Qualifier Matrix Spi	Added 516 516 ike <u>Limits</u> 27.9 - 154	Result 1730	Qualifier	Unit ug/kg dry	*	335 106	Limits 50.6 - 145	4-7.0-1	11511
nalyte CB-1016 CB-1260 urrogate CX ecachlorobiphenyl ab Sample ID: 11K0123-MSD1	Result ND ND Matrix Spike %Recovery 97.7 80.9	Qualifier Matrix Spi	Added 516 516 ike <u>Limits</u> 27.9 - 154	Result 1730	Qualifier	Unit ug/kg dry	*	335 106	Limits 50.6 - 145 57.6 - 120		
nalyte CB-1016 CB-1260 <i>urrogate</i> CX ecachlorobiphenyl ab Sample ID: 11K0123-MSD1 atrix: Soil	Result ND ND Matrix Spike %Recovery 97.7 80.9	Qualifier Matrix Spi	Added 516 516 ike <u>Limits</u> 27.9 - 154	Result 1730	Qualifier	Unit ug/kg dry	*	335 106 t Samp	Limits 50.6 - 145 57.6 - 120	о Туре:	Total
nalyte CB-1016 CB-1260 <i>urrogate</i> CX ecachlorobiphenyl ab Sample ID: 11K0123-MSD1 latrix: Soil	Result ND ND Matrix Spike %Recovery 97.7 80.9	Qualifier Matrix Spi Qualifier	Added 516 516 Limits 27.9 - 154 35 - 157	Result 1730	Qualifier M1	Unit ug/kg dry ug/kg dry	*	335 106 t Samp	Limits 50.6 - 145 57.6 - 120	о Туре:	Total
nalyte CB-1016 CB-1260 urrogate	Result ND ND Matrix Spike %Recovery 97.7 80.9 Sample	Qualifier Matrix Spi Qualifier	Added 516 516 Limits 27.9 - 154 35 - 157	Result 1730 548 flatrix Spike Dup	Qualifier M1	Unit ug/kg dry ug/kg dry	*	335 106 t Samp	Limits 50.6 - 145 57.6 - 120 Dile ID: DP-2 Prep Prep Batch	о Туре:	Total I23_P
nalyte CB-1016 CB-1260 <i>urrogate</i> CX <i>ecachlorobiphenyl</i> ab Sample ID: 11K0123-MSD1 latrix: Soil nalysis Batch: 11K0123	Result ND ND Matrix Spike %Recovery 97.7 80.9 Sample	Qualifier Matrix Spi Qualifier Sample	Added 516 516 <i>Limits</i> 27.9 - 154 35 - 157 Spike	Result 1730 548 Matrix Spike Dup Result	Qualifier M1 Matrix Spik	LUnit ug/kg dry ug/kg dry	Clien	335 106 t Samp	Limits 50.6 - 145 57.6 - 120 Die ID: DP-2 Prep Batch %Rec.	o Type: : 11K01	Total I23_P RPD

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

Ĥ.

6 6

Method: EPA 8082 - Polych	lorinated Bip	henyls	s by EPA Me	thod 80	82 (Con	tinued)			
Lab Sample ID: 11K0123-MSD1							Client Samp	ole ID: DP-24-7.0	0-111511
Matrix: Soil								Prep Ty	pe: Total
Analysis Batch: 11K0123								Prep Batch: 11	K0123_P
Mati	rix Spike Dup Mat	trix Spike	Dup						
Surrogate	%Recovery Qua	alifier	Limits						
TCX	89.3		27.9 - 154						
Decachlorobiphenyl	77.5		35 - 157						
Lab Sample ID: 11L0019-BLK1							Client Sa	ample ID: Metho	od Blank
Matrix: Water							onent of	•	pe: Total
Analysis Batch: 11L0019								Prep Batch: 11	•
Analysis Daten. Theoris	Blank	Blank							
Analyte		Qualifie	r R	L 1	MDL Unit		Prepared	Analyzed	Dil Fac
PCB-1221	ND	_	0.10		ug/i		12/02/11 13:45	12/05/11 11:48	1.00
PCB-1232	ND		0.10		ug/l		12/02/11 13:45	12/05/11 11:48	1.00
PCB-1242	ND		0.10	0	ug/l		12/02/11 13:45	12/05/11 11:48	1.00
PCB-1248	ND		0.10		ug/l		12/02/11 13:45	12/05/11 11:48	1.00
PCB-1254	ND		0.10	0	ug/l		12/02/11 13:45	12/05/11 11:48	1.00
PCB-1268	ND		0.10	0	ug/l		12/02/11 13:45	12/05/11 11:48	1.00
					-				
Lab Sample ID: 11L0019-BLK1							Client Sa	ample ID: Metho	od Blank
Matrix: Water								Prep Ty	pe: Total
Analysis Batch: 11L0019								Prep Batch: 11	L0019_P
	Blank	Blank							
Analyte	Result	Qualifier	R	- ^	/IDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.10	5	ug/l		12/02/11 13:45	12/05/11 12:00	1.00
PCB-1260	ND		0.10)	ug/l		12/02/11 13:45	12/05/11 12:00	1.00
	Blank	Blank							
Surrogate	%Recovery		- Limits				Prepared	Analyzed	Dil Fac
TCX	58.2		40 - 137	-			12/02/11 13:45	12/05/11 12:00	1.00
Decachlorobiphenyl	79.2		40 - 124				12/02/11 13:45	12/05/11 12:00	1.00
Lab Sample ID: 11L0019-BS1							Client Sample I	ID: Lab Control	Sample
Matrix: Water									be: Total
Analysis Batch: 11L0019							I	Prep Batch: 11	L0019_P
			Spike	_	LCS			%Rec.	
Analyte			Added		Qualifier	Unit	<u>D_%Rec</u>	Limits	
PCB-1016			2.50	1.72		ug/l	68.8	42.6 - 134	
PCB-1260			2.50	1.99		ug/l	79.6	43.1 - 130	
	LCS LCS								
Surrogate	%Recovery Qua	lifier	Limits						
	66.8		40 - 137						
Decachlorobiphenyl	79.4		40 - 124						

Lab Sample ID: 11K0758-BLK1 Matrix: Water Analysis Batch: 11K0758	Blank	Blank						mple ID: Metho Prep Typ Prep Batch: 11K	e: Total
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		5.00		ug/l		11/22/11 13:00	12/01/11 13:31	1.00
Acenaphthylene	ND		5.00		ug/l		11/22/11 13:00	12/01/11 13:31	1.00
Anthracene	ND		5.00		ug/l		11/22/11 13:00	12/01/11 13:31	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 ~n]

Lab Sample ID: 11K0758-BLK1 Matrix: Water					Client Sa	mple ID: Metho Prep Typ				
Analysis Batch: 11K0758					Prep Batch: 11K0758_F					
	Blank Blank			_						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Benzo (a) anthracene	ND	5.00	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
Benzo (a) pyrene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Benzo (b) fluoranthene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Benzo (ghi) perylene	ND	5.00	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
Benzo (k) fluoranthene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Benzoic Acid	ND	50.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Benzyl alcohol	ND	10.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
-Bromophenyl phenyl ether	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Butyl benzyl phthalate	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
-Chloro-3-methylphenol	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
-Chloroaniline	ND	20.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Bis(2-chloroethoxy)methane	ND	10.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Bis(2-chloroethyl)ether	ND	5.00	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
Bis(2-chloroisopropyl)ether	ND	10.0	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
-Chloronaphthalene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
-Chlorophenol	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
-Chlorophenyl phenyl ether	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
hrysene	ND	5.00	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
i-n-butyl phthalate	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
i-n-octyl phthalate	ND	5.00	ug/ł		11/22/11 13:00	12/01/11 13:31	1.00			
ibenzo (a,h) anthracene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
ibenzofuran	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
,2-Dichlorobenzene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
3-Dichlorobenzene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
4-Dichlorobenzene	ND	5.00	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
,3'-Dichlorobenzidine	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
4-Dichlorophenol	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
iethyl phthalate	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
,4-Dimethylphenol	ND	10.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
imethyl phthalate	ND	5.00	ug/l	· · · ·	11/22/11 13:00	12/01/11 13:31	1.00			
6-Dinitro-2-methylphenol	ND	10.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
4-Dinitrophenol	ND	25.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
4-Dinitrotoluene	· ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
6-Dinitrotoluene	ND	5.00	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
is(2-ethylhexyl)phthalate	ND	10.0	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
luoranthene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
luorene	ND	5.00			11/22/11 13:00	12/01/11 13:31	1.00			
exachlorobenzene	ND	5.00	ug/l							
exachlorobutadiene			ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
exachlorocyclopentadiene	ND	10.0	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
exachlorocyclopentagiene	ND	10.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
	ND	10.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
deno (1,2,3-cd) pyrene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
pphorone	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Methylnaphthalene	ND	5.00	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
Methylphenol	ND	10.0	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
4-Methylphenol	ND	5.00	ug/i		11/22/11 13:00	12/01/11 13:31	1.00			
aphthalene	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Nitroaniline	ND	5.00	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Nitroaniline	ND	10.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			
Nitroaniline	ND	10.0	ug/l		11/22/11 13:00	12/01/11 13:31	1.00			

31

6

Lab Sample ID: 11K0758-BLK1 Matrix: Water								mple ID: Metho Prep Ty	
Analysis Batch: 11K0758							F	Prep Batch: 11	K0758_
• • • •		Blank			-			Analumad	D 2 E
Analyte	Result ND	Qualifier	RL	ADL Unit	[epared	Analyzed	Dil Fa
Nitrobenzene				ug/i			/11 13:00	12/01/11 13:31 12/01/11 13:31	1.0
2-Nitrophenol	ND		5.00	ug/l			/11 13:00		1.0
4-Nitrophenol	ND		25.0	ug/l			/11 13:00	12/01/11 13:31	
N-Nitrosodi-n-propylamine	ND		10.0	ug/l			/11 13:00	12/01/11 13:31	1.0
N-Nitrosodiphenylamine	ND		5.00	ug/i			/11 13:00	12/01/11 13:31	1.0
Pentachlorophenol	ND		10.0	ug/l			/11 13:00	12/01/11 13:31	1.0
Phenanthrene	ND		5.00	ug/l			/11 13:00	12/01/11 13:31	1.0
Phenol	ND		5.00	ug/l		11/22	/11 13:00	12/01/11 13:31	1.0
Pyrene	ND		5.00	ug/l		11/22	/11 13:00	12/01/11 13:31	1.0
1,2,4-Trichlorobenzene	NĎ		5.00	ug/l		11/22	/11 13:00	12/01/11 13:31	1.0
2,4,5-Trichlorophenol	ND		5.00	ug/l		11/22	/11 13:00	12/01/11 13:31	1.0
2,4,6-Trichlorophenol	ND		5.00	ug/l		11/22	/11 13:00	12/01/11 13:31	1.0
	Blank	Plank							
Surrogate	%Recovery	Qualifier Limits	\$			Pre	pared	Analyzed	Dil Fa
2-Fluorobiphenyl	86.3	20-1					/11 13:00	12/01/11 13:31	1.0
2-Fluorophenol	63.6	10 - 1					/11 13:00	12/01/11 13:31	1.0
Nitrobenzene-d5	92.9	20 - 1					/11 13:00	12/01/11 13:31	1.0
Phenol-d6	61.3	10_1					/11 13:00	12/01/11 13:31	1.0
-neno-uo	01.5	10-1	20			11/22	11 13.00		
- Tombered ddd	00.0	DE 4	20			44/00	144 42.00	40/04/44 40.04	10
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1	86.0 95.1	35 - 1. 20 - 1.				11/22	/11 13:00 /11 13:00 Sample I	12/01/11 13:31 12/01/11 13:31 D: Lab Control	1.0 Sample
2,4,6- <i>Tribromophenol</i> Lab Sample ID: 11K0758-BS1 Matrix: Water						11/22	/11 13:00 Sample I	12/01/11 13:31	1.0 Sample be: Tota
2,4,6- <i>Tribromophenol</i> Lab Sample ID: 11K0758-BS1 Matrix: Water			30	LCS		11/22	/11 13:00 Sample I	12/01/11 13:31 D: Lab Control Prep Typ	1.0 Sample be: Tota
2,4,6- <i>Tribromophenol</i> Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758		20-1.	30 LCS	LCS Qualifier	Unit	11/22	/11 13:00 Sample I	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 11P	1.0 Sample be: Tota
p-Terphenyl-d14 2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte		20 - 1. Spike	30 LCS			11/22 Client \$	/11 13:00 Sample I F	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 11P %Rec.	e: Tota
2,4,6- <i>Tribromophenol</i> Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene		20 - 1. Spike Added	30 LCS Result		Unit	11/22 Client \$	/11 13:00 Sample I F	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 11P %Rec. Limits	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol		20 - 1. Spike Added 50.0	30 LCS Result 50.6		Unit ug/l	11/22 Client \$	/11 13:00 Sample I F %Rec 101	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 114 %Rec. Limits 55 - 120	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol		20 - 1 Spike Added 50.0 50.0	30 LCS Result 50.6 46.3	Qualifier	Unit ug/l ug/l	11/22 Client \$	211 13:00 Sample I F %Rec 101 92.6	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 114 %Rec. Limits 55 - 120 35 - 135	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene		20 - 1 Spike Added 50.0 50.0 50.0	30 LCS Result 50.6 46.3 48.8	Qualifier	Unit ug/l ug/l	11/22 Client \$	711 13:00 Sample I F %Rec 101 92.6 97.7	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 55 - 120 35 - 135 30 - 130	1.0 Sample be: Tota
2,4,6- <i>Tribromophenol</i> Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 ^{Analyte}		20 - 1 Spike Added 50.0 50.0 50.0 50.0	30 LCS Result 50.6 46.3 48.8 44.8	Qualifier	Unit ug/l ug/l ug/l	11/22 Client \$	Sample I Sample I %Rec 101 92.6 97.7 89.5	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 114 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol		20 - 1 Spike Added 50.0 50.0 50.0 50.0 50.0 50.0	30 LCS Result 50.6 46.3 48.8 44.8 50.3	Qualifier	Unit ug/l ug/l ug/l ug/l	11/22 Client \$	And the second s	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 114 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol N-Nitrosodi-n-propylamine		20 - 1 Spike Added 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	And the second s	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 11k %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol V-Nitrosodi-n-propylamine Pentachlorophenol		20 - 1 Spike Added 50.0 50	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	And the second s	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 11k %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol N-Nitrosodi-n-propylamine Pentachlorophenol Phenol		20 - 1. Spike Added 50.0 5	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	711 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115 72.5	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 11H %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150 10 - 145	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 1-Nitrophenol N-Nitrosodi-n-propylamine Pentachlorophenol Phenol Pyrene		20 - 1 Spike Added 50.0 50	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2 48.6	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	/11 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 11H %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphtherre I-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene I-Nitrophenol V-Nitrosodi-n-propylamine Pentachlorophenol Phenol Pyrene		20 - 1. Spike Added 50.0 5	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	711 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115 72.5 97.2	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150 10 - 145 55 - 125	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 1-Nitrosodi-n-propylamine 2-entachlorophenol 2-honol 2-pyrene 2,2,4-Trichlorobenzene	95.1	20 - 1 Spike Added 50.0 50	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2 48.6	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	711 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115 72.5 97.2	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150 10 - 145 55 - 125	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol N-Nitrosodi-n-propylamine Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surrogate 9	95.1	20 - 1 Spike Added 50.0 50	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2 48.6	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	711 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115 72.5 97.2	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150 10 - 145 55 - 125	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 1-Nitrosodi-n-propylamine 2-entachlorophenol 2-henol 2-pyrene 1,2,4-Trichlorobenzene Surrogate 2 2-Fluorobiphenyl	UCS LCS 6Recovery Quali	20-1 Spike Added 50.0	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2 48.6	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	711 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115 72.5 97.2	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150 10 - 145 55 - 125	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol N-Nitrosodi-n-propylamine Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surrogate 2-Fluorobiphenyl 2-Fluorophenol	UCS LCS <u>6Recovery</u> 103 77.4	20-1 Spike Added 50.0	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2 48.6	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	711 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115 72.5 97.2	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150 10 - 145 55 - 125	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol N-Nitrosodi-n-propylamine Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surrogate 2-Fluorobiphenyl 2-Fluorobiphenol Nitrobenzene-d5	95.1 LCS LCS <u>6Recovery</u> Qual 103 77.4 93.8	20-1 Spike Added 50.0	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2 48.6	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	711 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115 72.5 97.2	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150 10 - 145 55 - 125	1.0 Sample be: Tota
2,4,6-Tribromophenol Lab Sample ID: 11K0758-BS1 Matrix: Water Analysis Batch: 11K0758 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene 4-Nitrophenol N-Nitrosodi-n-propylamine Pentachlorophenol Phenol Phenol Pyrene 1,2,4-Trichlorobenzene	UCS LCS <u>6Recovery</u> 103 77.4	20-1 Spike Added 50.0	30 LCS Result 50.6 46.3 48.8 44.8 50.3 43.8 42.8 57.5 36.2 48.6	Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/22 Client \$	711 13:00 Sample I %Rec 101 92.6 97.7 89.5 101 87.6 85.6 115 72.5 97.2	12/01/11 13:31 D: Lab Control Prep Typ Prep Batch: 111 %Rec. Limits 55 - 120 35 - 135 30 - 130 10 - 125 50 - 130 10 - 150 40 - 130 20 - 150 10 - 145 55 - 125	1.0 Sample be: Tota

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

1

Method: EPA 8270C - Semivolatile Organic Compounds per EPA Method 8270C (Continued)

_ Lab Sample ID: 11K0758-BSD [·] Matrix: Water	1			Client Sample ID: Lab Control Sample Du Prep Type: Tota								
Analysis Batch: 11K0758									Prep Batch			
			Spike	LCS Dup	LCS Dup				%Rec.		RPD	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Acenaphthene			50.0	52.4		ug/l		105	55 - 120	3.42	50	
4-Chloro-3-methylphenol			50.0	51.2		ug/l		102	35 - 135	9.93	50	ł
2-Chloropheno!			50.0	51.1		ug/l		102	30 - 130	4.52	50	
1,4-Dichlorobenzene	• • • • • • •		50.0	48.5		ug/l		97.0	10 - 125	7.98	50	
2,4-Dinitrotoluene			50.0	52.8		ug/l		106	50 - 130	5.00	50	
4-Nitrophenol			50.0	52.5		ug/l		105	10_150	18.1	50	· •
N-Nitrosodi-n-propylamine			50.0	44.1	• • • • • • • • •	ug/l		88.2	40 - 130	2.99	50	1.2020
Pentachlorophenol			50.0	59.5		ug/I		119	20.150	3.42	50	E
Phenol			50.0	41.0		ug/l		81.9	10 - 145	12.3	50	
Pyrene			50.0	50.4		ug/l		101	55 - 125	3.76	50	
1,2,4-Trichlorobenzene			50.0	48.8		ug/l		97.5	30 _ 120	7.45	50	
	LCS Dup	LCS Dun										
Surrogate	%Recovery		Limits									
2-Fluorobiphenyl	106		20 - 120									
2-Fluorophenol	83.8		10 - 120									
Nitrobenzene-d5	94.8		20 - 130									
Phenol-d6	93.6	•••••••	10 - 125								• • • •	
p-Terphenyl-d14	101		35 - 130									
2,4,6-Tribromophenol	112		20-130									

Lab Sample ID: 11K0882-BLK1 Matrix: Soil

Analysis Batch: 11K0882

Client Sample ID: Method Blank Prep Type: Total Prep Batch: 11K0882_P

	Blank Blan	nk 👘					
Analyte	Result Qual	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	0.330	mg/kg wet	- 1	1/29/11 07:09	12/07/11 12:26	1.00
Acenaphthylene	ND	0.330	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
Anthracene	ND	0.330	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
Benzo (a) anthracene	ND	0.330	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
Benzo (a) pyrene	ND	0.330	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
Benzo (b) fluoranthene	ND	0.330	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
Benzo (ghi) perylene	ND	0.330	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
Benzo (k) fluoranthene	ND	0.330	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
Benzoic Acid	ND	0.999	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
Benzyl alcohol	ND	0.999	mg/kg wet	1'	1/29/11 07:09	12/07/11 12:26	1.00
4-Bromophenyl phenyl ether	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
Butyl benzyl phthalate	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
4-Chloro-3-methylphenol	ND	0.330	mg/kg wet	1	1/29/11 07:09	12/07/11 12:26	1.00
4-Chloroaniline	ND	2.00	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
Bis(2-chloroethoxy)methane	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
Bis(2-chloroethyl)ether	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
Bis(2-chloroisopropyl)ether	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
2-Chloronaphthalene	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
2-Chlorophenol	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
4-Chlorophenyl phenyl ether	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
Chrysene	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
Di-n-butyl phthalate	ND	0.999	mg/kg wet	11	/29/11 07:09	12/07/11 12:26	1.00
Di-n-octyl phthalate	ND	0.330	mg/kg wet	11	1/29/11 07:09	12/07/11 12:26	1.00
Dibenzo (a,h) anthracene	ND	0.330	mg/kg wet	11	/29/11 07:09	12/07/11 12:26	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 1

Lab Sample ID: 11K0882-BLK1 Matrix: Soil						Client Sa	mple ID: Metho Prep Typ	
Analysis Batch: 11K0882						I	Prep Batch: 11	<0882_P
		Blank				_		
Analyte		Qualifier RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Dibenzofuran	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
1,2-Dichlorobenzene	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
1,3-Dichlorobenzene	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
1,4-Dichlorobenzene	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
3,3'-Dichlorobenzidine	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
2,4-Dichlorophenol	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
Diethyl phthalate	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
2,4-Dimethylphenol	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
Dimethyl phthalate	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
1,6-Dinitro-2-methylphenol	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
2,4-Dinitrophenol	ND	2.00		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
2,4-Dinitrotoluene	ND	0.500		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
2,6-Dinitrotoluene	ND	0.500		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
Bis(2-ethylhexyl)phthalate	ND	2.00		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
Fluoranthene	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
Fluorene	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
lexachlorobenzene	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
lexachlorobutadiene	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
lexachlorocyclopentadiene	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
lexachloroethane	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
ndeno (1,2,3-cd) pyrene	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
sophorone	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
-Methylnaphthalene	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
-Methylphenol	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
-,4-Methylphenol	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
laphthalene	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
-Nitroaniline	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
-Nitroaniline	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
-Nitroaniline	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
litrobenzene	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
2-Nitrophenol	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
-Nitrophenol	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
I-Nitrosodi-n-propylamine	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
J-Nitrosodiphenylamine	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
Pentachlorophenol	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
henanthrene	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
Phenol	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
yrene .2.4-Trichlorobenzene	ND	0.999		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
2,4,5-Trichlorophenol	ND	0.330		mg/kg wet		11/29/11 07:09	12/07/11 12:26	1.00
,4,6-Trichlorophenol	ND	0.330		inging wet		1/20/11 07:09	12/01/11 12.20	1.00
	Blank	Blank						
urrogate	%Recovery	Qualifier Limits				Prepared	Analyzed	Dil Fac
-Fluorobiphenyl	89.8	30 - 126				11/29/11 07:09	12/07/11 12:26	1.00
-Fluorophenol	82.5	28 - 119				11/29/11 07:09	12/07/11 12:26	1.00
litrobenzene-d5	79.7	26 - 117				11/29/11 07:09	12/07/11 12:26	1.00
Phenol-d6	84.5	35 - 125				11/29/11 07:09	12/07/11 12:26	1.00
-Terphenyl-d14	97.9	26 - 143				11/29/11 07:09	12/07/11 12:26	1.00
,4,6-Tribromophenol	92.7	30 - 127				11/29/11 07:09	12/07/11 12:26	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 1

6

Matrix: Soil										Туре: То
Analysis Batch: 11K0882			Creike	1.00	1.00				Prep Batch:	11K0882
Analyte			Spike Added		LCS	11-14	-		%Rec.	
Acenaphthene		·		1.47	Qualifier	Unit	_ <u>D</u>	%Rec 89.7	Limits 	
4-Chloro-3-methylphenol			1.64	1.47		mg/kg wet		107	46 - 120 36 - 138	
2-Chlorophenol			1.64	1.45		mg/kg wet mg/kg wet		88.6	18 - 137	
1,4-Dichlorobenzene			1.64	1.34	· · · · · · · · · · ·	mg/kg wet		81.5	7 - 135	· · · · · · · ·
2,4-Dinitrotoluene			1.64	1.67		mg/kg wet		102	49 - 125	
4-Nitrophenol			1.64	1.82		mg/kg wet		111	40 - 148	
N-Nitrosodi-n-propylamine			1.64	1.32		mg/kg wet		79.6	20 - 138	- · · · · · ·
Pentachlorophenol			1.64	1.37		mg/kg wet		83.2	20 - 100	
Phenol			1.64	1.21		mg/kg wet		73.9	37 - 122	
Pyrene			1.64	1.47		mg/kg wet		89.7	26 - 143	
1,2,4-Trichlorobenzene			1.64	1.37		mg/kg wet		83.7	25 - 129	
				1.07		mg.ng not		00.7	201 120	
	LCS	LCS								
Surrogate	%Recovery		Limits							
2-Fluorobiphenyl	91.8		30 - 126							
2-Fluorophenol	83.2		28 - 119							
Nitrobenzene-d5	82.6		26 - 117							
Phenol-d6	77.5		35 - 125							
p-Terphenyl-d14	101		26 - 143							
ab Sample ID: 11K0882-MS	<i>98.7</i> 51		30-127				Clier	nt Samp	ole ID: DP-25 Prep	
ab Sample ID: 11K0882-MS Iatrix: Soil			30-127				Clier		Prep	Type: Tot
.ab Sample ID: 11K0882-MS /latrix: Soil	51	Sample	30 - 127 Spike	Matrix Spike	Matrix Spik		Clier			Type: Tot
.ab Sample ID: 11K0882-MS /latrix: Soil Analysis Batch: 11K0882	51 Sample	Sample Qualifier			Matrix Spik Qualifier		Clier D		Prep Prep Batch:	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Malyte	51 Sample	-	Spike			B			Prep Prep Batch: %Rec.	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Analyte	51 Sample Result	-	Spike Added	Result		e Unit	D	%Rec	Prep Prep Batch: %Rec. Limits	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Acenaphthene -Chloro-3-methylphenol	S1 Sample Result ND	-	Spike Added 2.22	Result 2.05		e Unit mg/kg dry	- D	%Rec 92.6	Prep Prep Batch: %Rec. Limits 26 - 150	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Accenaphthene I-Chloro-3-methylphenol I-Chlorophenol	S1 Sample Result ND ND	-	Spike Added 2.22 2.22	Result 2.05 2.83		Unit mg/kg dry mg/kg dry	- D 森	%Rec 92.6 128	Prep Batch: %Rec. Limits 26 - 150 26 - 150	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Accenaphthene I-Chloro-3-methylphenol I-Chlorophenol I-Chlorophenol	S1 Sample Result ND ND ND	-	Spike Added 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11		e Unit mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0	Prep Batch: %Rec. Limits 26 - 150 26 - 150 8 - 150	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Accenaphthene -Chloro-3-methylphenol -Chlorophenol -4-Dichlorobenzene ,4-Dinitrotoluene	S1 Sample Result ND ND ND ND	-	Spike Added 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80		e Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	D 	%Rec 92.6 128 95.0 81.1	Prep Batch: %Rec. Limits 26 - 150 26 - 150 8 - 150 4 - 150	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Accenaphthene I-Chloro-3-methylphenol 2-Chlorophenol .4-Dichlorobenzene 2,4-Dinitrotoluene I-Nitrophenol	S1 Sample Result ND ND ND ND ND	-	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31		e Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104	Prep Batch: %Rec. Limits 26 - 150 26 - 150 8 - 150 4 - 150 32 - 150	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Acenaphthene I-Chloro-3-methylphenol 2-Chlorophenol .4-Dichlorobenzene 2.4-Dinitrotoluene I-Nitrosodi-n-propylamine	S1 Sample Result ND ND ND ND ND ND	-	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45		e Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 95.0 81.1 104 110	Prep Batch: %Rec. Limits 26 - 150 26 - 150 8 - 150 4 - 150 32 - 150 20 - 175	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Acenaphthene I-Chloro-3-methylphenol 2-Chlorophenol .4-Dichlorobenzene 2.4-Dinitrotoluene I-Nitrophenol I-Nitrosodi-n-propylamine Pentachlorophenol	S1 Result ND ND ND ND ND ND ND ND ND	-	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40		e Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 20 - 175 10 - 150	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Acenaphthene I-Chloro-3-methylphenol I-Chlorophenol I,4-Dichlorobenzene 2,4-Dinitrotoluene I-Nitrophenol I-Nitrosodi-n-propylamine Pentachlorophenol Phenol	S1 Sample Result ND ND ND ND ND ND ND ND ND ND	-	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 20 - 175 10 - 150 12 - 150	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte	S1 Sample Result ND ND ND ND ND ND ND ND ND ND	-	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08 1.63		e Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7	Prep Batch: %Rec. Limits 26 - 150 26 - 150 4 - 150 32 - 150 20 - 175 10 - 150 12 - 150 17 - 150	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analyte Acenaphthene -Chloro-3-methylphenol -Chlorophenol -Chlorophenol -4-Dichlorobenzene -4-Dinitrotoluene -Nitrophenol I-Nitrosodi-n-propylamine Pentachlorophenol Phenol Yrene	S1 Sample Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08 1.63 2.11		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7 95.2	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 32 - 150 20 - 175 10 - 150 17 - 150 16 - 175	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analysis Batch: 11K0882 Analyte	S1 Sample Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Matrix Spike	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08 1.63 2.11		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7 95.2	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 32 - 150 20 - 175 10 - 150 17 - 150 16 - 175	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analysis Batch: 11K0882 Analyte	S1 Sample Result ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Matrix Spike	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08 1.63 2.11		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7 95.2	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 32 - 150 20 - 175 10 - 150 17 - 150 16 - 175	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analysis Batch: 11K0882 Analyte Analyte Accenaphthene -Chloro-3-methylphenol -Chlorophenol -Chlorophenol -Chlorophenol -Nitrosodi-n-propylamine tentachlorophenol henol yrene ,2,4-Trichlorobenzene <i>urrogate</i> -Fluorobipheny/	51 Sample Result ND ND ND ND ND ND ND ND ND ND	Qualifier Matrix Spike	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08 1.63 2.11		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7 95.2	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 32 - 150 20 - 175 10 - 150 17 - 150 16 - 175	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analysis Batch: 11K0882 Analyte Accenaphthene -Chloro-3-methylphenol -Chlorophenol -Chlorophenol -A-Dinitrotoluene -Nitrophenol I-Nitrosodi-n-propylamine Pentachlorophenol Prenol Pyrene ,2,4-Trichlorobenzene - <i>Fluorobiphenyl</i> - <i>Fluorophenol</i>	51 Sample Result ND ND ND ND ND ND ND ND ND ND	Qualifier Matrix Spike	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08 1.63 2.11		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7 95.2	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 32 - 150 20 - 175 10 - 150 17 - 150 16 - 175	Type: Tot
Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analysis Batch: 11K0882 Analyte Acenaphthene I-Chloro-3-methylphenol P-Chlorophenol P-Chlorophenol I-Nitrosodi-n-propylamine P-nitrophenol I-Nitrosodi-n-propylamine Partachlorophenol Prenol Pyrene 2,2,4-Trichlorobenzene <i>currogate</i> <i>Filuorobiphenyl</i> <i>-Filuorophenol</i> <i>litrobenzene-d</i> 5	51 Sample Result ND ND ND ND ND ND ND ND ND ND	Qualifier Matrix Spike	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08 1.63 2.11		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7 95.2	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 32 - 150 20 - 175 10 - 150 17 - 150 16 - 175	Type: Tot
2,4,6-Tribromopheno/ Lab Sample ID: 11K0882-MS Matrix: Soil Analysis Batch: 11K0882 Analysis	51 Sample Result ND ND ND ND ND ND ND ND ND ND	Qualifier Matrix Spike	Spike Added 2.22 2.22 2.22 2.22 2.22 2.22 2.22	Result 2.05 2.83 2.11 1.80 2.31 2.45 1.40 2.08 1.63 2.11		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 92.6 128 95.0 81.1 104 110 63.0 93.7 73.7 95.2	Prep Batch: %Rec. Limits 26 - 150 26 - 150 26 - 150 32 - 150 32 - 150 32 - 150 20 - 175 10 - 150 17 - 150 16 - 175	Type: Tot

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

.∛|+

Lab Sample ID: 11K0882-MSD Matrix: Soil									le ID: DP- Pre	р Туре	
Analysis Batch: 11K0882								I	Prep Batcl		
	•	-	pike	Matrix Spike Dup	Matrix Spl	ke Dur			%Rec.		RPD
Analyte			ded		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	ND		2.22	1.94		mg/kg dry	<u> </u>	87.6	26 - 150	5.44	60
4-Chloro-3-methylphenol	ND		2.22	2.58		mg/kg dry	\$	116	26 - 150	9.18	60
2-Chlorophenol	ND		2.22	1.92		mg/kg dry	₽	86.4	8 _ 150	9.37	60
1,4-Dichlorobenzene	ND		2.22	1.71		mg/kg dry	\$	77.3	4 _ 150	4.73	60
2,4-Dinitrotoluene	ND	:	2.22	2.13		mg/kg dry	₽	96.1	32 - 150	7.87	60
4-Nitrophenol	ND	:	2.22	2.13		mg/kg dry	₽	95.8	20 - 175	14.1	60
N-Nitrosodi-n-propylamine	ND		2.22	1.43		mg/kg dry	\$	64.3	10_150	2.20	60
Pentachlorophenol	ND		2.22	1.70		mg/kg dry	₽	76.5	12 - 150	20.1	60
Phenol	ND		2.22	1.49		mg/kg dry	¢	67.1	17 - 150	9.25	60
Pyrene	ND		2.22	2.14		mg/kg dry	₽	96.4	16 - 175	1.32	60
1,2,4-Trichlorobenzene	ND		2.22	2.09		mg/kg dry	¢	94.2	18 - 150	0.505	60
Ма	trix Spike Dup	Matrix Spike Dup									
Surrogate	%Recovery	Qualifier Limits	s								
2-Fluorobiphenyl	85.7	30-1	26								
P-Fluorophenol	83.7	28 - 1	19								
litrobenzene-d5	63.5	26 - 1	17								
	67.6	35 - 12	25								
Phenol-d6			10								
Phenol-d6 p-Terphenyl-d14	104	26 - 14	43								

	Blank	Blank						4		
Analyte	Result	Qualifier	RL	N	IDL Unit	D	Pr	epared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		10.0		mg/kg	wet	11/19	/11 07:15	11/19/11 11:	35 1.00
Heavy Oil Range Hydrocarbons	ND		25.0		mg/kg	wet	11/19	/11 07:15	11/19/11 11:	35 1.00
1	Blank	Blank								
Surrogate	%Recovery	Qualifier	Limits				Pr	epared	Analyzed	Dil Fac
2-FBP	95.3		50 - 150				11/19	/11 07:15	11/19/11 11:	35 1.00
p-Terphenyl-d14	100		50 - 150				11/19	/11 07:15	11/19/11 11:	35 1.00
Lab Sample ID: 11K0112-BS1						c	Client	Sample	ID: Lab Cont	rol Sample
Matrix: Soil									Prep	Type: Total
Analysis Batch: 11K0112									Prep Batch:	11K0112_P
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons			83.3	77.5		mg/kg wet		92.9	73 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-FBP	92,9		50 - 150
p-Terphenyl-d14	99.9		50 <u>-</u> 150

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx (Continued) Client Sample ID: DP-21-4.0-111511 Lab Sample ID: 11K0112-MS1 Prep Type: Total Matrix: Soil Prep Batch: 11K0112_P Analysis Batch: 11K0112 Sample Sample Spike Matrix Spike Matrix Spike %Rec. Limits Analyte Result Qualifier Added Result Qualifier Unit D %Rec $\overline{\alpha}$ Diesel Range Hydrocarbons ND 169 157 mg/kg dry 92.9 70.1 - 139 Matrix Spike Matrix Spike %Recovery Qualifier I Imits Surrogate 2-FBP 92.1 50 - 150 p-Terphenyl-d14 99.2 50 - 150 Lab Sample ID: 11K0112-DUP1 Client Sample ID: DP-21-4.0-111511 Matrix: Soil Prep Type: Total Analysis Batch: 11K0112 Prep Batch: 11K0112_P Sample Sample Duplicate Duplicate RPD Result Qualifier Unit D RPD Limit Analyte **Result** Qualifier Ť **Diesel Range Hydrocarbons** ND ND mg/kg dry 40 ₽ 40 Heavy Oil Range Hydrocarbons ND ND mg/kg dry Duplicate Duplicate %Recovery Qualifier Limits Surrogate 2-FBP 82.4 50 - 150 95.0 50 - 150 p-Terphenyl-d14 **Client Sample ID: Method Blank** Lab Sample ID: 11K0122-BLK1 Prep Type: Total Matrix: Water Prep Batch: 11K0122_P Analysis Batch: 11K0122 Blank Blank Prepared Dil Fac D Result Qualifier RL MDL Unit Analyzed Analyte 1.00 ND 11/21/11 09:38 11/23/11 13:09 Diesel Range Hydrocarbons 0.250 mg/l Heavy Oil Range Hydrocarbons ND 0.500 11/21/11 09:38 11/23/11 13:09 1.00 mg/l Blank Blank Dil Fac %Recovery Qualifier Prepared Analyzed Surrogate Limits 11/23/11 13:09 1.00 11/21/11 09:38 2-FBP 88.0 50 - 150 11/23/11 13:09 p-Terphenyl-d14 90.2 50 - 150 11/21/11 09:38 1.00 Lab Sample ID: 11K0122-BS1 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Analysis Batch: 11K0122 Prep Batch: 11K0122 P Spike LCS LCS %Rec. %Rec Limits Added Result Qualifier Unit D Analyte 54.5 - 136 2.50 2.13 mg/l 85.2 Diesel Range Hydrocarbons LCS LCS Surrogate %Recovery Qualifier Limits 2-FBP 83.2 50 - 150 p-Terphenyl-d14 85.3 50 - 150 t Sample ID: Lab Control Sample Dur

Lab Sample ID: 11K0122-BSD1				Client	t Samp	IE ID: L	ab Contro	Sampi	e Dup
Matrix: Water							Pre	p Type:	: Total
Analysis Batch: 11K0122							Prep Batci	ו: 11K0	122_P
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Diesel Range Hydrocarbons	2.50	2.65		mg/l		106	54.5 - 136	21.6	32.5
	Analysis Batch: 11K0122 Analyte	Matrix: Water Analysis Batch: 11K0122 Spike Analyte Added	Matrix: Water Analysis Batch: 11K0122 Analyte Added Result	Matrix: Water Analysis Batch: 11K0122 Analyte Added Result Qualifier	Matrix: Water Analysis Batch: 11K0122 Analyte Added Result Qualifier Unit	Matrix: Water Analysis Batch: 11K0122 Analyte Added Result Qualifier Unit D	Matrix: Water Analysis Batch: 11K0122 Analyte Added Result Qualifier Unit D %Rec	Matrix: Water Prep Analysis Batch: 11K0122 Spike LCS Dup LCS Dup Analyte Added Result Qualifier Unit D %Rec	Matrix: Water Prep Type: Analysis Batch: 11K0122 Prep Batch: 11K0 Spike LCS Dup LCS Dup %Rec. Analyte Added Result Qualifier Unit D %Rec

ĺ

(5)

(9)

TestAmerica Spokane 1/6/2012

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0108

们

 $\left\{ \overline{j} \right\}_{i=1}^{n}$

6

(a) 5

132

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx (Continued)

Lab Sample ID: 11K0122-BSD Matrix: Water	1		Client Sample ID: Lab Control S Prep
Analysis Batch: 11K0122			Prep Batch:
	LCS Dup LCS Dup		
Surrogate	%Recovery Qualifier	Limits	
2-FBP	108	50 - 150	
p-Terphenyl-d14 _	108	50 - 150	

Method: NWTPH VPH - Purgeable Petroleum Hydrocarbons

Lab Sample ID: 11K6225-BLK1 Matrix: Soil							Client Sa	mple ID: Metho Prep Typ	
Analysis Batch: U020892								Prep Batch: 11	
	Blank	Blank							(0225_1
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.0500		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.
Ethylbenzene	ND		0.0500		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
Methyl tert-Butyl Ether	ND		0.500		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
Naphthalene	ND		0.250		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
Toluene	ND		0.0500		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
Kylenes, total	ND		0.150		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
C5 - C6 Aliphatic Hydrocarbons	ND		5.00		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
>C6 to C8 Ali	ND		5.00		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
C8 to C10 Ali	ND		5.00		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
C10 to C12 Ali	ND		5.00		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
C8 to C10 Aro	ND		5.00		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
C10 to C12 Aro	ND		5.00		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
C12 to C13 Aro	ND		5.00		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,5-Dibromotoluene (FID)	98		60 - 140				11/26/11 00:00	11/26/11 09:55	50.0
2,5-Dibromotoluene (PID)	102		60 - 140				11/26/11 00:00	11/26/11 09:55	50.0

Matrix: Soil

Client Sample ID: Lab Control Sample Prep Type: Total

Analysis Batch: U020892						Prep Batch	: 11K6225_P
	• Spike	LCS	LCS			%Rec.	— —
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Benzene	0.100	0.0953		mg/kg wet	95	70 - 130	
Ethylbenzene	0.100	0.0967		mg/kg wet	97	70 - 130	
Methyl tert-Butyl Ether	0.100	0.0897		mg/kg wet	90	70 - 130	
Naphthalene	0.100	0.0899		mg/kg wet	90	70 - 130	
Toluene	0.100	0.0957		mg/kg wet	96	70 - 130	
Xylenes, total	0.300	0.293		mg/kg wet	98	70 - 130	
C5 - C6 Aliphatic Hydrocarbons	0.300	0.272		mg/kg wet	91	70 - 130	
>C6 to C8 Ali	0.200	0.179		mg/kg wet	89	70 ₋ 130	
>C8 to C10 Ali	0.600	0.564		mg/kg wet	94	70 <u>-</u> 130	
>C10 to C12 Ali	0.200	0.180		mg/kg wet	90	70 - 130	
>C8 to C10 Aro	0.500	0.449		mg/kg wet	90	70_130	
>C10 to C12 Aro	0.100	0.0996		mg/kg wet	100	70 - 130	
>C12 to C13 Aro	0.100	0.112		ma/ka wet	112	70 - 130	

13) S

Lab Sample ID: 11K6225-BS1 Matrix: Soil Analysis Batch: U020892 Surrogate %F 2,5-Dibromotoluene (FID) 2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-BLK1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro		nk Blank Ilt Qualifier	0.05 0.05 0.2 0.05 0.1 5, 5, 5, 5, 5,	00 00 00 50 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	<u>D</u> t t t t t t t	Pre 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	lient Sa	Prep Batch: 1 ⁴ ample ID: Meth	ype: Tota IK6225_F nod Blani ype: Tota
Surrogate %F 2,5-Dibromotoluene (FID) 2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-BLK1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C8 to C10 Aro >C10 to C12 Aro	Recovery Q 95 100 Blar Resu N N N N N N N N N N N N N N	nk Blank Ilt Qualifier	60 - 140 60 - 140 60 - 140 0.05 0.05 0.5 0.2 0.05 0.1 5. 5. 5.	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	Pre 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	Client Sa pared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Prep Batch: 1 ample ID: Meth Prep Ty Prep Batch: 11 <u>Analyzed</u> 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	nod Blani (pe: Tota IK6447_I
2,5-Dibromotoluene (FID) 2,5-Dibromotoluene (FID) Lab Sample ID: 11K6447-BLK1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	Recovery Q 95 100 Blar Resu N N N N N N N N N N N N N N	nk Blank Ilt Qualifier	60 - 140 60 - 140 60 - 140 0.05 0.05 0.5 0.2 0.05 0.1 5. 5. 5.	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	Pre 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	ppared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Prep Ty Prep Batch: 11 Analyzed 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	Pe: Tota IK6447_ - Dil Fa 50. 50. 50. 50. 50. 50. 50. 50.
2,5-Dibromotoluene (FID) 2,5-Dibromotoluene (FID) Lab Sample ID: 11K6447-BLK1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	95 100 Blar Resu N N N N N N N N N N N	nk Blank alt Qualifier ID ID ID ID ID ID ID ID ID ID ID ID	60 - 140 60 - 140 60 - 140 0.05 0.05 0.5 0.2 0.05 0.1 5. 5. 5.	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	Pre 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	ppared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Prep Ty Prep Batch: 11 Analyzed 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	Pe: Tota IK6447_I DII Fa 50. 50. 50. 50. 50. 50. 50. 50.
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-BLK1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C8 to C10 Aro >C10 to C12 Aro	100 Blar Resu N N N N N N N N N N N	alt Qualifier	60 - 140 0.05 0.05 0.5 0.2 0.05 0.1 5. 5. 5.	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	Pre 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	ppared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Prep Ty Prep Batch: 11 Analyzed 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	Pe: Tota IK6447_I
Lab Sample ID: 11K6447-BLK1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C8 to C10 Aro >C10 to C12 Aro	Blar Resu N N N N N N N N N N N N N	alt Qualifier	0.05 0.05 0.5 0.2 0.05 0.1 5, 5, 5, 5, 5, 5,	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	Pre 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	ppared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Prep Ty Prep Batch: 11 Analyzed 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	Pe: Tota IK6447_I
Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C6 to C8 Ali >C6 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	Resu N N N N N N N N N N	alt Qualifier	0.05 0.05 0.2 0.05 0.1 5, 5, 5, 5, 5,	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	Pre 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	ppared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Prep Ty Prep Batch: 11 Analyzed 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	pe: Tota IK6447_F
Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C6 to C8 Ali >C6 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	Resu N N N N N N N N N N	alt Qualifier	0.05 0.05 0.2 0.05 0.1 5, 5, 5, 5, 5,	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	Pre 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	ppared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Prep Ty Prep Batch: 11 Analyzed 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	pe: Tota IK6447_F
Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	Resu N N N N N N N N N N	alt Qualifier	0.05 0.05 0.2 0.05 0.1 5, 5, 5, 5, 5,	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	pared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Prep Batch: 11 Analyzed 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	Dil Fa 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50.
Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C6 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C6 to C10 Ali >C8 to C10 Ali >C8 to C10 Aro >C10 to C12 Aro	Resu N N N N N N N N N N	alt Qualifier	0.05 0.05 0.2 0.05 0.1 5, 5, 5, 5, 5,	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	pared (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	Analyzed 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	Dil Fa 50. 50. 50. 50. 50. 50. 50.
Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C6 to C8 Ali >C8 to C10 Ali >C8 to C10 Aro >C10 to C12 Aro			0.05 0.05 0.2 0.05 0.1 5, 5, 5, 5, 5,	00 00 00 50 50 50 00 50 00 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t	11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	(11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	50. 50. 50. 50. 50. 50. 50.
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro			0.05 0.5 0.2 0.05 0.1 5, 5, 5, 5,	00 00 50 00 50 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t t t t t t	11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	(11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	50. 50. 50. 50. 50.
Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C6 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro			0.5 0.2 0.05 0.1 5. 5. 5. 5.	00 50 00 50 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	ť ť ť ť ť	11/28/ 11/28/ 11/28/ 11/28/ 11/28/ 11/28/	(11 00:00 (11 00:00 (11 00:00 (11 00:00 (11 00:00	11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	50. 50. 50. 50.
Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro			0.2 0.05 0.1 5, 5, 5, 5,	50 00 50 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t t t t	11/28/ 11/28/ 11/28/ 11/28/ 11/28/	11 00:00 11 00:00 11 00:00 11 00:00	11/28/11 15:51 11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	50. 50. 50. 50.
Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro			0.05 0.1 5, 5. 5. 5.	00 50 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we mg/kg we	t t t	11/28/ 11/28/ 11/28/ 11/28/	11 00:00 11 00:00 11 00:00	11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	50. 50. 50.
Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	N N N N		0.1 5. 5. 5.	50 00 00 00		mg/kg we mg/kg we mg/kg we mg/kg we	t t t	11/28/ 11/28/ 11/28/	11 00:00 11 00:00	11/28/11 15:51 11/28/11 15:51	50. 50.
C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro			5. 5. 5.	00 00 00		mg/kg we mg/kg we mg/kg we	t t	11/28/ 11/28/	11 00:00	11/28/11 15:51	50.
>C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	N N Ń	D D D	5. 5. 5.	00 00		mg/kg we mg/kg we	t	11/28/			
>C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	N N	D D	5. 5.	00		mg/kg we			11 00:00	11/28/11 15:51	50.
>C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro	Ń	D	5.				t	11/28/			
>C8 to C10 Aro >C10 to C12 Aro				00	· · / · ·				11 00:00	11/28/11 15:51	50.
>C10 to C12 Aro	N	D	5.			mg/kg we	ť	11/28/	11 00:00	11/28/11 15:51	50.
				00		mg/kg we	t	11/28/	11 00:00	11/28/11 15:51	50.
C12 to C13 Aro	N	D	5.	00	- I	mg/kg we	t 🚊	11/28/	11 00:00	11/28/11 15:51	50.
	N	D	5.	00	· · · ·	mg/kg we	t i i i i i i i i i i i i i i i i i i i	11/28/	11 00:00	11/28/11 15:51	50.0
	Blan	k Blank									
Surrogate	%Recover		Limits					Pre	pared	Analyzed	Dil Fa
2,5-Dibromotoluene (FID)	8	86	60 - 140	,					11 00:00	11/28/11 15:51	50.0
2,5-Dibromotoluene (PID)	8	13	60 - 140					11/28/	11 00:00	11/28/11 15:51	50.0
ah Sampla ID: 11K6447 DS1								liant C	amula l	Di Lah Cantra	Comple
Lab Sample ID: 11K6447-BS1 Matrix: Soil							Ľ	nent S	sampte i	D: Lab Contro Pren Tv	pe: Tota
Analysis Batch: U020985									-	Prep Batch: 11	•
analysis Daten. 0020505			Spike	LCS	LCS				ſ	%Rec.	N0447_F
Analyte			Added	Result			Jnit	D	%Rec	Limits	
Benzene			0.100	0.0945			ng/kg wet		94	70 - 130	
Ethylbenzene			0.100	0.0931		•	ng/kg wet		93	70 - 130	
Methyl tert-Butyl Ether			0.100	0.0931			ng/kg wet		93	70 - 130	
Naphthalene			0.100	0.0813			ng/kg wet		81	70-130	
Foluene			0.100	0.0937			ng/kg wet		94	70 - 130	
(ylenes, total			0.300	0.284			ng/kg wet		95	70 - 130	
5 - C6 Aliphatic Hydrocarbons			0.300	0.209			ng/kg wet		70	70 - 130	
C6 to C8 Ali			0.200	0.166			ng/kg wet		83	70 - 130	
C8 to C10 Ali			0.600	0.534			ng/kg wet		89	70 - 130	
C10 to C12 Ali			0.200	0.170			ng/kg wet		85	70 - 130	
CB to C10 Aro			0.500	0.431			ng/kg wet		86	70 - 130	
C10 to C12 Aro			0.100	0.0862			ng/kg wet		86	70 - 130	
C12 to C13 Aro			0.100	0.0802			ng/kg wet		80	70 - 130	• • • • • • • • •
	LCS LC	s									
Surrogate %Re	Recovery Qu		Limits								
2,5-Dibromotoluene (FID)	95		60 - 140								

TestAmerica Job ID: SUK0108

[]

6 ()

Method: NWTPH VPH - Purgeable Petroleum Hydrocarbons (Continued)

Lab Sample ID: 11K6447-MS1							Clie	nt Samp	ple ID: DP-2	23-2.5-1	1151
Matrix: Soil									Pre	р Туре	: Tota
Analysis Batch: U020985									Prep Batcl	h: 11K6	447_
•	Sample	Sample	Spike	Matrix Spike	Matrix Spik	e			%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	ND		128	126		mg/kg dry	<u>\$</u>	98	70 - 130		
Ethylbenzene	10.9		128	138		mg/kg dry	₽	100	70 - 130		
Methyl tert-Butyl Ether	ND		128	116		mg/kg dry	₽	91	70 - 130		
Naphthalene	47.1		128	150		mg/kg dry	\$	80	70 - 130		
Toluene	4.00		128	130		mg/kg dry	₽	98	70 - 130		
Xylenes, total	44.6		383	431		mg/kg dry	₽	101	70_130		
C5 - C6 Aliphatic Hydrocarbons	ND		383	344		mg/kg dry	₽	90	70 - 130		
>C6 to C8 Ali	ND		255	257		mg/kg dry	₽	101	70-130		
>C8 to C10 Ali	206		766	924		mg/kg dry	₽	94	70 - 130		
>C10 to C12 Ali	713		255	848	M8	mg/kg dry	₽	52	70_130		
>C8 to C10 Aro	301		638	862		mg/kg dry	₽	88	70 - 130		
>C10 to C12 Aro	791		128	826	M8	mg/kg dry	₽	27	70 - 130		
>C12 to C13 Aro	358		128	365	M8	mg/kg dry	₽	6	70 - 130		
	Matrix Spike	Matrix Spike									
Surrogate	%Recovery	Qualifier	Limits								
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1	99 105		60 - 140 60 - 140				Clien	it Samp	ile ID: DP-2 Prei		
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil							Clien	-		р Туре:	Tota
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soll		Sample	60 - 140	Matrix Spike Dup	Matrix Spike	ə Duş	Clien	-	Pre	р Туре:	Tota 447_F
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985	105 Sample	Sample Qualifier	60 - 140		Matrix Spike Qualifier	ə Duş Unit	Clien	-	Pre _l Prep Batch	р Туре:	Tota 447_F RPE
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte	105 Sample	-	60 - 140 Spike					l	Prej Prep Batch %Rec.	p Type: 1: 11K64	Tota 447_F RPE Limit
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene	105 Sample Result	-	60 - 140 Spike Added	Result		Unit	D	%Rec	Prep Prep Batch %Rec. Limits	p Type: 1: 11K64 	Tota 447_F RPE Limit
2,5-Dibromotoluene (FID) 2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether	105 Sample Result ND	-	60 - 140 Spike Added 128	Result 129		Unit mg/kg dry	D a	%Rec 101	Prep Prep Batch %Rec. Limits 70 - 130	p Type: 11K64 RPD 3	Tota 447_F RPE Limit 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tent-Butyl Ether	Sample Result ND 10.9	-	60 - 140 Spike Added 128 128	Result 129 141		Unit mg/kg dry mg/kg dry	- <u>⊅</u> ₽	%Rec 101 102	Prep Batch %Rec. Limits 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2	Tota 447_F RPE Limi 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene	Sample Result ND 10.9 ND	-	60 - 140 Spike Added 128 128 128	Result 129 141 118		Unit mg/kg dry mg/kg dry mg/kg dry	- D # #	%Rec 101 102 92	Prep Batch %Rec. Limits 70 - 130 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1	Tota 447_F RPE Limi 28 28 28
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene	Sample Result ND 10.9 ND 47.1	-	60 - 140 Spike Added 128 128 128 128 128	Result 129 141 118 172		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry	D 2 2 2 2 2 2	%Rec 101 102 92 98	Prep Batch %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14	Tota 447_F RPE Limit 25 25 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene	105 Sample Result ND 10.9 ND 47.1 4.00	-	60 - 140 Spike Added 128 128 128 128 128 128	Result 129 141 118 172 133		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 101 102 92 98 101	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2	Tota 447_F RPE Limit 25 25 25 25 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons	105 Sample Result ND 10.9 ND 47.1 4.00 44.6	-	60 - 140 Spike Added 128 128 128 128 128 128 383	Result 129 141 118 172 133 441		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 2	Tota 447_F RPI Limi 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2!
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali	105 Sample Result ND 10.9 ND 47.1 4.00 44.6 ND	-	60 - 140 Spike Added 128 128 128 128 128 128 383 383	Result 129 141 118 172 133 441 388		Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103 101	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 2 12	Tota 447_F RPI Limi 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2!
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Kylenes, total D5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali	105 Sample Result ND 10.9 ND 47.1 4.00 44.6 ND ND	-	60 - 140 Spike Added 128 128 128 128 128 128 383 383 255	Result 129 141 118 172 133 441 388 260	Qualifier	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103 101 102	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 2 12 12	Tota 447_F RPI Limi 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2! 2!
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Kylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali	105 Sample Result ND 10.9 ND 47.1 4.00 44.6 ND ND 206	-	60 - 140 Spike Added 128 128 128 128 128 128 383 383 383 555 766	Result 129 141 118 172 133 441 388 260 950	Qualifier	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103 101 102 97	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 2 12 1 3	Tota 447_F RPI Limi 25 25 25 25 25 25 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Kylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C6 to C10 Aro	105 Sample Result ND 10.9 ND 47.1 4.00 44.6 ND ND 206 713	-	60 - 140 Spike Added 128 128 128 128 128 128 383 383 383 255 766 255	Result 129 141 118 172 133 441 388 260 950 859	Qualifier M8	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103 101 102 97 57	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 2 12 1 3 1	Tota #47_F RPE Limi 25 25 25 25 25 25 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Kylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali -C8 to C10 Ali -C10 to C12 Ali -C8 to C10 Aro -C10 to C12 Aro	105 Sample Result ND 10.9 ND 47.1 4.00 44.6 ND 206 713 301	-	60 - 140 Spike Added 128 128 128 128 128 128 383 383 383 255 766 255 638	Result 129 141 118 172 133 441 388 260 950 859 876	Qualifier M8 M8	Unit mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103 101 102 97 57 90	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 12 12 1 3 1 2	Tota 447_I RPF Limi 24 25 25 25 25 25 25 25 25 25 25 25 25 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Vaphthalene Foluene Kylenes, total C5 - C6 Aliphatic Hydrocarbons -C6 to C8 Ali -C8 to C10 Ali -C10 to C12 Ali -C8 to C10 Aro -C10 to C12 Aro -C12 to C13 Aro	105 Sample Result ND 10.9 ND 47.1 4.00 44.6 ND ND 206 713 301 791 358	Qualifier	60 - 140 Spike Added 128 128 128 128 128 383 383 255 766 255 638 128 128 128 128 128 128 128 12	Result 129 141 118 172 133 441 388 260 950 859 876 841	Qualifier M8 M8	Unit mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103 101 102 97 57 90 39	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 12 12 1 3 1 2 2	Tota 447_I RPF Limi 24 25 25 25 25 25 25 25 25 25 25 25 25 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro >C12 to C13 Aro	105 Sample Result ND 10.9 ND 47.1 4.00 44.6 ND 206 713 301 791	Qualifier Matrix Spike	60 - 140 Spike Added 128 128 128 128 128 383 383 255 766 255 638 128 128 128 128 128 128 128 12	Result 129 141 118 172 133 441 388 260 950 859 876 841	Qualifier M8 M8	Unit mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103 101 102 97 57 90 39	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 12 12 1 3 1 2 2	Tota 447_F RPC 25 25 25 25 25 25 25 25 25 25 25 25 25
2,5-Dibromotoluene (PID) Lab Sample ID: 11K6447-MSD1 Matrix: Soil Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Allphatic Hydrocarbons >C6 to C8 Ali >C6 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro >C12 to C13 Aro Matrix	105 Sample Result ND 10.9 ND 47.1 4.00 44.6 ND 44.6 ND 206 713 301 791 358 x Spike Dup	Qualifier Matrix Spike	60 - 140 Spike Added 128 128 128 128 128 383 383 255 766 255 638 128 128 128 255 766 255 638 128 128 128 255 766 255 638 128 128 128 128 255 766 255 638 128 128 128 128 255 766 255 638 128 128 128 255 766 255 638 128 128 128 255 766 255 638 128 128 128 255 766 255 638 128 128 255 766 255 766 255 638 128 128 128 255 766 255 638 128 128 255 766 255 766 255 766 255 766 255 766 255 768 128 128 128 255 766 255 766 255 766 255 766 255 766 255 768 128 128 128 128 128 128 128 12	Result 129 141 118 172 133 441 388 260 950 859 876 841	Qualifier M8 M8	Unit mg/kg dry mg/kg dry		%Rec 101 102 92 98 101 103 101 102 97 57 90 39	Prep Prep Batch %Rec. Limits 70 - 130 70 - 130	p Type: 11K64 <u>RPD</u> 3 2 1 14 2 12 12 1 3 1 2 2	Tota

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 11K0114-BLK1 Matrix: Soil Analysis Batch: 11K0114	Blank	Blank						mple ID: Metho Prep Typ Prep Batch: 11P	e: Total
Analyte Gasoline Range Hydrocarbons		Qualifier	RL 5.00	MDL	Unit mg/kg wet	<u>D</u>	Prepared 11/20/11 07:08	Analyzed 11/20/11 09:24	Dil Fac 1.00

TestAmerica Spokane 1/6/2012

Gasoline Range Hydrocarbons

TestAmerica Job ID: SUK0108

3)

6

2007 Herry

Dil Fac

1.00

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx (Continued) Lab Sample ID: 11K0114-BLK1 Client Sample ID: Method Blank Matrix: Soil Prep Type: Total Analysis Batch: 11K0114 Prep Batch: 11K0114_P Blank Blank %Recovery Qualifier Limits Prepared Analyzed Surrogate 4-BFB (FID) 50 - 150 11/20/11 07:08 11/20/11 09:24 102 Lab Sample ID: 11K0114-BS1 Client Sample ID: Lab Control Sample

Lab Sample ID. TIKUTI4-BST						0	iieiit v	Jampie	1D. Lab 00		-
Matrix: Soil										p Type	
Analysis Batch: 11K0114									Prep Batc	h: 11K0	114_F
			Spike		LCS		_		%Rec.		
Analyte			Added		Qualifier	Unit	_ <u>D</u>	%Rec	Limits		
Gasoline Range Hydrocarbons			25.0	22.7		mg/kg wet		90.9	74.4 - 124		
	LCS	LCS									
Surrogate	%Recovery		Limits								
4-BFB (FID)	124		50 - 150								
Lab Sample ID: 11K0114-BSD1						Client	Samp	le ID: L	ab Contro	l Sampl	e Dup
Matrix: Soil									Pre	p Type:	: Tota
Analysis Batch: 11K0114									Prep Batcl	h: 11K0	114_F
,			Spike	LCS Dup	LCS Dup				%Rec.		RPE
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Hydrocarbons			25.0	22.7		mg/kg wet		90.9	74.4 - 124	0.00449	20
		1.00 5									
	•	LCS Dup									
Surrogate	%Recovery	Qualifier	Limits								
4-BFB (FID)	133		50 - 150								
ah Samala ID: 11K0114 DUD1							Clior	t Samr	ole ID: DP-2	06-2 5-1	11511
Lab Sample ID: 11K0114-DUP1 Matrix: Soil							Cilei	n Samp		p Type:	
Analysis Batch: 11K0114						K			Prep Batcl		
Analysis Batch. 11K0114	Sample	Sample		Dunlicate	Duplicate				Piep Datei		RPC
Analyte		Qualifier			Qualifier	Unit	D			RPD	Limit
Gasoline Range Hydrocarbons	4.62			2.71		mg/kg dry	-			52.2	32.3
Sasonne Hange Hydrocarbons	4.02										
	Duplicate	Duplicate		~							
Surrogate	%Recovery	Qualifier	Limits								
4-BFB (FID)	113		50 - 150								
				-							
Lab Sample ID: 11K0114-DUP2								Clie	nt Sample		
Matrix: Soil										р Туре:	
Analysis Batch: 11K0114									Prep Batch	n: 11K0 [.]	
		Sample		-	Duplicate						RPD
Analyte		Qualifier			Qualifier	Unit	_ D			RPD	Limit
Gasoline Range Hydrocarbons	0.813			0.367	R4	mg/kg dry	- Q			75.6	32.3
	Duplicate	Duplicate									
Surrogate	%Recovery	•	Limits								
4-BFB (FID)	96.7		50 - 150								
Lab Sample ID: 11K0119-BLK1							С	lient Sa	ample ID: N	lethod	Blank
Matrix: Water									Pre	р Туре:	Tota
Analysis Batch: 11K0119								1	Prep Batch		
•	B	lank Blank									_
Analyte	R	esult Qualifie	r	RL M	DL Unit	D	Pre	pared	Analyze	d	Dil Fac
· · · · · ·				400			44/04/	44.00:40	44/04/44 4	4.45	1 00

1.00

11/21/11 11:15

11/21/11 08:18

100

ND

ug/l

Method: NWTPH EPH - Extractable Petroleum Hydrocarbons

 Lab Sample ID: 11K6185-BLK1 Matrix: Soil Analysis Batch: U021053								mple ID: Metho Prep Typ Prep Batch: 11M	e: Total
Analyte		Blank Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C8-C10 Aliphatics	ND		5.00		mg/kg wet		11/26/11 06:55	11/29/11 15:42	1.00
>C10 to C12 Ali	ND		5.00		mg/kg wet		11/26/11 06:55	11/29/11 15:42	1.00
>C12 to C16 Ali	ND		5.00		mg/kg wet		11/26/11 06:55	11/29/11 15:42	1.00
>C16 to C21 Ali	ND		5.00		mg/kg wet		11/26/11 06:55	11/29/11 15:42	1.00
>C21 to C34 Ali	· ND		5.00		mg/kg wet		11/26/11 06:55	11/29/11 15:42	1.00
	Blank	Blank							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	82		60 - 140				11/26/11 06:55	11/29/11 15:42	1.00

1

TestAmerica Spokane 1/6/2012

Method: NWTPH EPH - Extractable Petroleum Hydrocarbons (Continued)

Lab Sample ID: 11K6185-BLK	1								(Client S	Sample ID: Me	thod E	3lan
Matrix: Soil											Prep	Type: `	Tota
Analysis Batch: U021053											Prep Batch:	11K61	85_
	E	lank B	lank										
Analyte	R	esult Q	ualifier	R	L N	/IDL	Unit	D	Pre	epared	Analyzed	C	Dil Fa
C10 to C12 Aro		ND		5.0	0		mg/kg v	wet	11/26	/11 06:5	5 11/30/11 15:	26	1.0
>C12 to C16 Aro		ND		5.0	0		mg/kg v	wet	11/26	/11 06:5	5 11/30/11 15:	26	1.0
>C16 to C21 Aro		ND		5.0	0		mg/kg v	wet	11/26	/11 06:58	5 11/30/11 15:	26	1.0
>C21 to C34 Aro		ND		5.0	0		mg/kg v	wet	11/26	/11 06:5	5 11/30/11 15:	26	1.0
	_												
		lank B							_			_	
Surrogate	%Reco	very Q	ualifier	Limits	_					epared	Analyzed		Dil Fa
p-Terphenyl		104		60 - 140						/11 06:55			1.0
2-Fluorobiphenyl		125		60 - 140						/11 06:58			1.0
2-Bromonaphthalene		141 Z	2	60 - 140					11/26	/11 06:5	5 11/30/11 15:	26	1.0
ab Sample ID: 11K6185-BS1								c	lient	Sample	D: Lab Cont	rol Sar	mpl
Matrix: Soil											Prep	Type: 1	Tota
Analysis Batch: U021053											Prep Batch:	11K618	85_
				Spike	LCS	LC	s				%Rec.		
Analyte				Added	Result	Qu	alifier	Unit	D	%Rec	Limits		
C8-C10 Aliphatics				10.0	6.71	-		mg/kg wet		67	50 - 150		
C10 to C12 Ali				5.00	3.91			mg/kg wet		78	70 - 130		
C12 to C16 Ali				10.0	8.66			mg/kg wet		87	70 - 130		
C16 to C21 Ali		· · · · · · · · ·		15.0	14.2			mg/kg wet		95	70 - 130		
C21 to C34 Ali				25.0	23.5			mg/kg wet		94	70 <u>-</u> 130		
	LCS												
Surrogate	%Recovery	Qualifie	er L	imits									
-Chlorooctadecane	77		60	0 - 140									
ab Sample ID: 11K6185-BS1								С	lient S	Sample	ID: Lab Cont	rol Sar	mpl
Matrix: Soil											Prep '	Гуре: Т	Tota
Analysis Batch: U021053											Prep Batch:	1K618	85_I
•				Spike	LCS	LC	s				%Rec.		
nalyte				Added	Result	Qua	alifier	Unit	D	%Rec	Limits		
C10 to C12 Aro				5.00	4.77			mg/kg wet		95	70 - 130		
C12 to C16 Aro				15.0	15.3			mg/kg wet		102	70 - 130		
C16 to C21 Aro				25.0.	25.8			mg/kg wet		103	70 - 130		
C21 to C34 Aro				40.0	46.0	• •		mg/kg wet		115	70 - 130		· · ·
	LCS	LCS											
urrogate	%Recovery	Qualifie	r Li	mits									
	88			0 - 140									
-Terphenyl													
p-Terphenyl P-Fluorobiphenyl	117		60) - 140									

Method: EPA 6010C - TCLP Metals by EPA 1311/6010/7000 Series Methods

– Lab Sample ID: 11L0155-BLK1 Matrix: Ash Analvsis Batch: 11L0155								mple ID: Metho Prep Typ Prep Batch: 11L	e: TCLP
	Blank	Blank						•	_
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	ND		0.0350		mg/l		12/30/11 08:53	01/03/12 10:45	1.00

'íl:

Method: EPA 6010C - TCLP Metals by EPA 1311/6010/7000 Series Methods (Continued) Client Sample ID: Method Blank Lab Sample ID: 11L0155-BLK2 Matrix: Ash Prep Type: TCLP Analysis Batch: 11L0155 Prep Batch: 11L0155_P Blank Blank Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Lead ND 0.0350 mg/l 12/30/11 08:53 01/03/12 10:47 1.00 Lab Sample ID: 11L0155-BS1 **Client Sample ID: Lab Control Sample** Matrix: Ash Prep Type: TCLP Prep Batch: 11L0155_P Analysis Batch: 11L0155 Spike LCS LCS %Rec. Analyte Added Unit %Rec Limits Result Qualifier D Lead 1.00 0.998 mg/l 99.8 80 - 130 Lab Sample ID: 11L0155-MS1 **Client Sample ID: Matrix Spike** Matrix: Ash Prep Type: TCLP Analysis Batch: 11L0155 Prep Batch: 11L0155_P Sample Sample Spike Matrix Spike Matrix Spike %Rec. Analyte Result Qualifier Added **Result Qualifier** Unit D %Rec Limits Lead 0.0332 1.00 0.996 mg/l 96.3 70 - 130 Lab Sample ID: 11L0155-MSD1 Client Sample ID: Matrix Spike Duplicate Matrix: Ash Prep Type: TCLP Analysis Batch: 11L0155 Prep Batch: 11L0155 P Sample Sample Spike Matrix Spike Dup Matrix Spike Dur %Rec. RPD Result Qualifier Limit Analyte Result Qualifier Added Unit D %Rec Limits RPD Lead 0.0332 1.00 1.01 mg/l 97.5 70 - 130 1.17 20 Lab Sample ID: 11L0155-DUP1 **Client Sample ID: Duplicate** Matrix: Ash Prep Type: TCLP Prep Batch: 11L0155 P Analysis Batch: 11L0155 Duplicate Duplicate Sample Sample RPD Analyte Result Qualifier RPD Result Qualifier Unit D Limit Lead 0.0332 0.0325 2.05 20 mg/l Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods Lab Sample ID: 11L0028-BLK1 **Client Sample ID: Method Blank** Matrix: Soil Prep Type: Total Analysis Batch: 11L0028 Prep Batch: 11L0028_P Blank Blank Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Lead ND 1.50 mg/kg wet 12/05/11 15:15 12/06/11 14:04 1.00

Lab Sample ID: 11L0028-BS1				C	lient S	Sample	e ID: Lab Control Sample	
Matrix: Soil							Prep Type: Total	
Analysis Batch: 11L0028							Prep Batch: 11L0028_P	
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	50.0	49.1		mg/kg wet		98.1	80 - 120	

1

6

•

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods (Continued)

Lab Sample ID: 11L0028-MS1 Matrix: Soil							Clie	nt Sam	ple ID: DP- Pre	21-4.0-1 ep Type	
Analysis Batch: 11L0028									Prep Batc		
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	æ			%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead	3.03		58.1	53.4		mg/kg dry	, x	86.6	75 - 125		
- Lab Sample ID: 11L0028-MSD1							Clie	nt Samı	ple ID: DP-	21-4.0-1	11151
Matrix: Soil								-		ер Туре	
Analysis Batch: 11L0028									Prep Batc	h: 11L0	028_
	Sample	Sample	Spike	Aatrix Spike Dup	Matrix Spil	ke Dur			%Rec.		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Lead	3.03		58.1	53.5		mg/kg dry	ġ.	86.9	75 - 125	0.361	2
Lab Sample ID: 11L0028-DUP1							Clie	nt Samp	ole ID: DP-		
Matrix: Soil										р Туре	
Analysis Batch: 11L0028				-					Prep Batc	h: 11L0	
		Sample			Duplicate		_				RP
Analyte		Qualifier			Qualifier	Unit	— D			RPD	Lim
Lead	3.03			2.79		mg/kg dry	¢			8.35	2
Lab Sample ID: 11L0030-BLK1							c	lient Sa	ample ID: I	Method	Blan
Matrix: Water									Pre	p Type:	: Tota
Analysis Batch: 11L0030	E	Blank Blank							Prep Batc	h: 11L0	030_
Analyte	R	esuit Qualifie	er	RL M	DL Unit	D	Pre	pared	Analyz	ed	Dil Fa
								-			
Matrix: Water	0,1	0972 B		0.0300	mg/l				ID: Lab Co Pre	ontrol Sa p Type:	ampi : Tota
: Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030	0.	0972 B	Spike	LCS	LCS		Client S	Sample	ID: Lab Co Pre Prep Batcl %Rec.	ontrol Sa p Type:	ampl : Tota
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030	0.	0972 B	Added	LCS Result		Unit		Sample %Rec	ID: Lab Co Pre Prep Batcl %Rec. Limits	ontrol Sa p Type:	ampl : Tota
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030	0.	0972 B	-	LCS	LCS		Client S	Sample	ID: Lab Co Pre Prep Batcl %Rec.	ontrol Sa p Type:	ampl : Tota
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead	0.	0972 B	Added	LCS Result	LCS	Unit	Client S	Sample %Rec 98.6	ID: Lab Co Pre Prep Batcl %Rec. Limits	ontrol Sa p Type: h: 11L0	ampl : Tota 030_
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1	0.	0972 B	Added	LCS Result	LCS	Unit	Client S	Sample <u>%Rec</u> 98.6 Client \$	ID: Lab Co Prep Batcl %Rec. Limits 80 - 120 Sample ID: Pre	ontrol Sa p Type: h: 11L0 Matrix p Type:	ampl : Tota 030_ Spik : Tota
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water	0.	0972 B	Added	LCS Result	LCS	Unit	Client S	Sample <u>%Rec</u> 98.6 Client \$	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID:	ontrol Sa p Type: h: 11L0 Matrix p Type:	ampl : Tota 030_I Spik
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030	0. Sample		Added 50.0 Spike	LCS Result	LCS Qualifier	Unit mg/l	Client S	Sample <u>%Rec</u> 98.6 Client \$	ID: Lab Co Prep Batcl %Rec. Limits 80 - 120 Sample ID: Prep Batcl %Rec.	ontrol Sa p Type: h: 11L0 Matrix p Type:	ampl : Tota 030_ Spik : Tota
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030	Sample Result		Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result	LCS Qualifier	Unit mg/l	Client S	Sample %Rec 98.6 Client \$ %Rec	ID: Lab Co Prep Batcl %Rec. Limits 80.120 Sample ID: Prep Batcl %Rec. Limits	ontrol Sa p Type: h: 11L0 Matrix p Type:	: Tota 030_I Spike : Tota
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030	Sample	Sample `	Added 50.0 Spike	LCS Result 49.3 Matrix Spike	LCS Qualifier Matrix Spik	Unit mg/l	Client S	Sample <u>%Rec</u> 98.6 Client S	ID: Lab Co Prep Batcl %Rec. Limits 80 - 120 Sample ID: Prep Batcl %Rec.	ontrol Sa p Type: h: 11L0 Matrix p Type:	ampl : Tota 030_ Spik : Tota
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte	Sample Result	Sample `	Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result	LCS Qualifier Matrix Spik	Unit mg/l e Unit mg/l	Client S	Sample %Rec 98.6 Client S <u>%Rec</u> 96.3	ID: Lab Co Prep Batcl %Rec. Limits 80.120 Sample ID: Prep Batcl %Rec. Limits	Matrix p Type: h: 11L0 Matrix p Type: h: 11L0	ampl : Tota 030_ Spik : Tota 030_
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead	Sample Result	Sample `	Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result	LCS Qualifier Matrix Spik	Unit mg/l e Unit mg/l	Client S	Sample %Rec 98.6 Client S <u>%Rec</u> 96.3	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125	Matrix p Type: h: 11L0 Matrix p Type: h: 11L0	ampl : Tota 030_ Spik : Tota 030_
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water	Sample Result	Sample `	Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result	LCS Qualifier Matrix Spik	Unit mg/l e Unit mg/l	Client S	Sample <u>%Rec</u> 98.6 Client S <u>%Rec</u> 96.3 nple ID:	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125	Matrix p Type: h: 11L0 Matrix p Type: h: 11L0 h: 11L0 jke Dup p Type:	ampl : Tota 030_ Spik : Tota 030_ Ilicat
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water	Sample Result	Sample [•] Qualifier	Added 50.0 Spike Added 50.0	LCS Result 49.3 Matrix Spike Result	LCS Qualifier Matrix Spik Qualifier	Unit mg/l unit mg/l Clie	Client S	Sample <u>%Rec</u> 98.6 Client S <u>%Rec</u> 96.3 nple ID:	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125 Matrix Sp Prep	Matrix p Type: h: 11L0 Matrix p Type: h: 11L0 h: 11L0 jke Dup p Type:	ampl : Tota 030_ Spik : Tota 030_ Ilicat
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030	Sample Result 1.82 Sample	Sample [•] Qualifier	Added 50.0 Spike Added 50.0	LCS Result 49.3 Matrix Spike Result 50.0 Matrix Spike Dup	LCS Qualifier Matrix Spik Qualifier	Unit mg/l unit mg/l Clie	Client S	Sample <u>%Rec</u> 98.6 Client S <u>%Rec</u> 96.3 nple ID:	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125 Matrix Sp Prep Batcl	Matrix p Type: h: 11L0 Matrix p Type: h: 11L0 h: 11L0 jke Dup p Type:	ampl : Tota 030_ Spik : Tota 030_ Niicat Tota 030_ RP
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030	Sample Result 1.82 Sample	Sample ' Qualifier Sample	Added 50.0 Spike Added 50.0 Spike	LCS Result 49.3 Matrix Spike Result 50.0 Matrix Spike Dup	LCS Qualifier Matrix Spik Qualifier	Unit mg/l Unit mg/l Clie	Client S	Sample %Rec 98.6 Client S %Rec 96.3 nple ID:	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125 Matrix Sp Prep Batcl %Rec.	Matrix p Type: h: 11L0 Matrix p Type: h: 11L00 ike Dup p Type: h: 11L00	ampl : Tota 030_ Spik Tota 030_ RP Lim
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead	Sample Result 1.82 Sample Result	Sample ' Qualifier Sample	Added 50.0 Spike Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result 50.0 Matrix Spike Dup Result	LCS Qualifier Matrix Spik Qualifier	Unit mg/l e Unit mg/l Clie	Client S	Sample %Rec 98.6 Client S %Rec 96.3 mple ID: %Rec 98.3	ID: Lab Co Prep Batcl %Rec. Limits 80.120 Sample ID: Prep Batcl %Rec. Limits 75.125 Matrix Sp Prep Batcl %Rec. Limits	Matrix p Type: h: 11L0 Matrix p Type: h: 11L00 ike Dup p Type: h: 11L00 	ampl : Tota 030_ Spik : Tota 030_ RP Lim 2
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead	Sample Result 1.82 Sample Result	Sample ' Qualifier Sample	Added 50.0 Spike Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result 50.0 Matrix Spike Dup Result	LCS Qualifier Matrix Spik Qualifier	Unit mg/l e Unit mg/l Clie	Client S	Sample %Rec 98.6 Client S %Rec 96.3 mple ID: %Rec 98.3	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125 Matrix Sp Prep Batcl %Rec. Limits 75-125	Matrix p Type: h: 11L0 Matrix p Type: h: 11L00 ike Dup p Type: h: 11L00 <u>RPD</u> 2.01	ampl : Tota 030_ Spik : Tota 030_ RP Lim 2
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead	Sample Result 1.82 Sample Result	Sample ' Qualifier Sample	Added 50.0 Spike Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result 50.0 Matrix Spike Dup Result	LCS Qualifier Matrix Spik Qualifier	Unit mg/l e Unit mg/l Clie	Client S	Sample %Rec 98.6 Client S %Rec 96.3 nple ID: %Rec 98.3 Client	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125 Matrix Sp Prep Batch %Rec. Limits 75-125 matrix Sp Prep Batch %Rec. Limits 75-125	Matrix p Type: h: 11L0 Matrix p Type: h: 11L00 ike Dup p Type: h: 11L00 <u>RPD</u> 2.01 ID: Dup p Type:	ampl : Tota 030_ Spik : Tota 030_ Nicat RP Lim 2 Ulicat
Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead	Sample Result 1.82 Sample Result	Sample ` Qualifier Sample Qualifier	Added 50.0 Spike Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result 50.0 Matrix Spike Dup Result	LCS Qualifier Matrix Spik Qualifier	Unit mg/l e Unit mg/l Clie	Client S	Sample %Rec 98.6 Client S %Rec 96.3 nple ID: %Rec 98.3 Client	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125 Matrix Sp Prep Batcl %Rec. Limits 75-125	Matrix p Type: h: 11L0 Matrix p Type: h: 11L00 ike Dup p Type: h: 11L00 <u>RPD</u> 2.01 ID: Dup p Type:	ampl : Tota 030_1 Spik Tota 030_1 Spik Tota 030_1 Limi 22 Ilicate Tota 030_6
Lead Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Analyte Lead Analyte Analysis Batch: 11L0030-DUP1 Matrix: Water Analysis Batch: 11L0030 Analyte	Sample Result 1.82 Sample Result 1.82 Sample	Sample ` Qualifier Sample Qualifier	Added 50.0 Spike Added 50.0 Spike Added	LCS Result 49.3 Matrix Spike Result 50.0 Matrix Spike Dup Result 51.0	LCS Qualifier Matrix Spik Qualifier	Unit mg/l e Unit mg/l Clie	Client S	Sample %Rec 98.6 Client S %Rec 96.3 nple ID: %Rec 98.3 Client	ID: Lab Co Prep Batcl %Rec. Limits 80-120 Sample ID: Prep Batcl %Rec. Limits 75-125 Matrix Sp Prep Batch %Rec. Limits 75-125 matrix Sp Prep Batch %Rec. Limits 75-125	Matrix p Type: h: 11L0 Matrix p Type: h: 11L00 ike Dup p Type: h: 11L00 <u>RPD</u> 2.01 ID: Dup p Type:	ampl : Tota 030_1 Spiku Tota 030_1 Nicatu 2030_6 RPI Limi 20 Vilicatu

1

Method: 8260B TCLP - BTEX TCLP

Lab Sample ID: 103178-5									С	lient S	ample ID: I		
Matrix: Soil												р Туре	
Analysis Batch: 103178											Prep Bat	ch: 103	3178_P
		Blank Blan											
Analyte	R	esult Qua	lifier	RL	MDL	Unit		D		pared	Analyz		Dil Fac
Benzene		ND		100		ug/L			01/05/	12 13:51	01/05/12 1	3:51	100
	E	lank Bla	nk										
Surrogate	%Reco	very Qua	lifier Lir	nits					Pre	pared	Analyz	ed	Dil Fac
4-Bromofluorobenzene (Surr)		91	75	- 120					01/05/	12 13:51	01/05/12 1	13:51	100
Ethylbenzene-d10		99	80	- 120					01/05/	12 13:51	01/05/12 1	13:51	100
Fluorobenzene (Surr)		95	80	- 120					01/05/	12 13:51	01/05/12 1	13:51	100
Toluene-d8 (Surr)		98	85	- 120					01/05/	12 13:51	01/05/12 1	13:51	100
Trifluorotoluene (Surr)		107	80	- 120					01/05/	12 13:51	01/05/12 1	3:51	100
Lab Sample ID: 304731D							(Clier	nt Sam	ple ID:	: Matrix Sp	-	
Matrix: Soil											•	o Type:	
Analysis Batch: 103178											Prep Bate	ch: 103	_
	Sample			fatrix Spike I	-	-	•				%Rec.		RPD
Analyte		Qualifier	Added		sult Qu	alifier	Unit		<u> </u>	%Rec	Limits	RPD	Limit
Benzene	ND	н	2000	2	060 H		ug/L			103	80 - 120	0	30
	Matrix Spike Dup	Matrix Sp	ike Dup										
Surrogate	%Recovery	Qualifier	Limits		1								
4-Bromofluorobenzene (Surr)	98		75 - 120										
Ethylbenzene-d10	102		80 - 120										
Fluorobenzene (Surr)	97		80 - 120										
Toluene-d8 (Surr)			85 - 120										• •
Trifluorotoluene (Surr)	105		80 - 120										
Lab Sample ID: 304731S										Client S	Sample ID:		-
Matrix: Soil												Type:	
Analysis Batch: 103178											Prep Bato	ch: 103	178_P
	Sample	•	Spike	Matrix Sp		-					%Rec.		
Analyte		Qualifier	Added		ult Qu	alifier	Unit		<u>D</u>	%Rec	Limits		
Benzene	ND	н	2000	20	160 H		ug/L	Ť		103	80 - 120		
	Matrix Spike	Matrix Spi	ike										
Surrogate	%Recovery	Qualifier	Limits										
4-Bromofluorobenzene (Surr)	101		75 - 120				•						
Ethylbenzene-d10	101		80 - 120										
Fluorobenzene (Surr)	94		80 - 120										
Toluene-d8 (Surr)	97		85 - 120										

Certification Summary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

[1]

(5)

7

() ()

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Spokane	Alaska	Alaska UST	10	UST-071
TestAmerica Nashville		ACIL		393
TestAmerica Nashville	A2LA	ISO/IEC 17025		0453.07
restAmerica Nashville	A2LA	WY UST		453.07
restAmerica Nashville	Alabama	State Program	4	41150
restAmerica Nashville	Alaska	Alaska UST	10	UST-087
restAmerica Nashville	Arizona	State Program	9	AZ0473
restAmerica Nashville	Arkansas	State Program	6	88-0737
restAmerica Nashville	California	NELAC	9	1168CA
restAmerica Nashville	Canada (CALA)	Canada (CALA)	-	3744
estAmerica Nashville	Colorado	State Program	8	N/A
restAmerica Nashville	Connecticut	State Program	1	PH-0220
estAmerica Nashville	Florida	NELAC	4	E87358
estAmerica Nashville	Illinois	NELAC		200010
estAmerica Nashville	lowa	State Program	7	131
estAmerica Nashville	Kansas	NELAC	7	E-10229
estAmerica Nashville	Kentucky	Kentucky UST	4	19
estAmerica Nashville	Kentucky	State Program	4	90038
estAmerica Nashville	Louisiana	NELAC	6	30613
estAmerica Nashville	Louisiana	NELAC	6	LA100011
estAmerica Nashville	Maryland	State Program	3	316
estAmerica Nashville	Massachusetts	State Program	1	M-TN032
estAmerica Nashville	Mississippi	State Program		N/A
estAmerica Nashville	Montana	MT DEQ UST	8	NA
estAmerica Nashville	New Hampshire	NELAC	1	2963
estAmerica Nashville	New Jersey	NELAC	2	TN965
estAmerica Nashville	New York	NELAC	2	11342
estAmerica Nashville	North Carolina	North Carolina DENR	4	387
estAmerica Nashville	North Dakota	State Program		R-146
estAmerica Nashville	Ohio	OVAP	5	CL0033
estAmerica Nashville	Oklahoma	State Program	6	9412
estAmerica Nashville	Oregon	NELAC	10	TN200001
estAmerica Nashville	Pennsylvania	NELAC	3	68-00585
estAmerica Nashville	Rhode island	State Program	1	LAO00268
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	South Carolina	State Program	4	84009
estAmerica Nashville	Tennessee	State Program	4	2008
estAmerica Nashville	Texas	NELAC	6	T104704077-09-TX
estAmerica Nashville	USDA	USDA	-	S-48469
estAmerica Nashville	Utah	NELAC	8	TAN
estAmerica Nashville	Virginia	NELAC Secondary AB	3	460152
estAmerica Nashville	Virginia	State Program	3	00323
estAmerica Nashville	Washington	State Program	10	C789
estAmerica Nashville	West Virginia	West Virginia DEP	3	219
estAmerica Nashville	Wisconsin	State Program	5	998020430
estAmerica Portland	Alaska	Alaska UST	10	UST-012
estAmerica Portland	Alaska	State Program	10	OR00040
estAmerica Portland	California	State Program	9	2597
estAmerica Portland	Oregon	NELAC	10	OR100021
estAmerica Portland	USDA	USDA		P330-11-00092
estAmerica Portland	Washington	State Program	10	C586
	-	-		

TestAmerica Spokane 1/6/2012

Certification Summary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 1

5

7

aboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Seattle	Alaska	TA-Port Heiden Mobile Lab	10	UST-093
FestAmerica Seattle	California	NELAC	9	1115CA
estAmerica Seattle	Florida	NELAC	4	E871074
estAmerica Seattle	L-A-B	DoD ELAP		L2236
estAmerica Seattle	L-A-B	ISO/IEC 17025		L2236
estAmerica Seattle	Louisiana	NELAC	6	05016
estAmerica Seattle	Montana	MT DEQ UST	8	N/A
estAmerica Seattle	Oregon	NELAC	10	WA100007
estAmerica Seattle	USDA	USDA		P330-11-00222
estAmerica Seattle	Washington	State Program	10	C553

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0108

Method	Method Description	Protocol	Laboratory
SW-846	General Chemistry Parameters		TAL NSH
EPA 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL SPK
EPA 8260B	Volatile Organic Compounds by EPA Methods 5035/8260B		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8082	Polychlorinated Biphenyls by EPA Method 8082		TAL SPK
EPA 8270C	Semivolatile Organic Compounds per EPA Method 8270C		TAL PTL
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH VPH	Purgeable Petroleum Hydrocarbons		TAL NSH
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
NWTPH EPH	Extractable Petroleum Hydrocarbons		TAL NSH
EPA 6010C	Total Metals by EPA 6010/7000 Series Methods		TAL SPK
EPA 6010C	TCLP Metals by EPA 1311/6010/7000 Series Methods		TAL SPK
ASTM D2216-80	Percent Dry Weight (Solids) per ASTM D2216-80		TAL PTL
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK
3260B TCLP	BTEX TCLP		TAL SEA

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL PTL = TestAmerica Portland, 9405 SW Nimbus Ave., Beaverton, OR 97008, TEL 503/906-9200

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253) 922-2310

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

5)

郋

	2102/9/1								2	s7 to	07 ə	Pag									-		6
	9210 2210 2210	ഹ			7	_		ut Charges.	AT ON OT											1-0-1	12251	PAGE 1 or 2	TAL-1000(0408)
	425-420-9200 FAX 420-9210 509-924-9200 FAX 924-929 505-9200 FAX 924-929 907-563-9200 FAX 563-9210	BULKOICE	TURNAROUND REQUEST	ess Days * wic Amalyses	Hydrocarbon Analyses	3 2 1 <1	Committee	than standard may incur Rush Ch	LOCATION/ . COMMENTS	Juld	HIN		- play						1	DATE: 1	DATE: /	ouity 2 more Phote	anch zwa I
=	•	der #:	URNAL		Petroleum]	4		equests less	# OF CONT.	വ	ப	Ы	ഗ	5	7	S	ഹ	ŝ	S	Call t	FIRME TA		lactor.
	11720 North Creek Prvy N Suite 400, Bothell, WA 98011-8244 11972 E. First Ave, Spotane, WA 99206-5302 9405 SW Mimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119	Work Order #:	F	Į		X		* Turnaround Requests less than sia	MATRIX (W, S, O)	S	У	S	ν	Ś	3	Ś	Ś	Ś	S	FIRMS	FIRM	1 before	
•	othell, W/ okane, W/ werton, Ol	-						ľ									ì			-	. 	. Cerk	Level ,
	iite 400, B st Ave, Sp s Ave,Bea																\backslash		•	real	(in	H2(2)	Herz
·] -	Yewy N Su 922 E. Fir W Nimbu et Rd Ste.								•		•							\backslash		But	ill.	Ъ,	20
	th Creek P 119 9405 S 20ad Airpo																			Breeze	Level 1	NPU	NPH
Tr.	.1720 Nor	ORT			CO															RECEIVED BY: PRINT NAME:	RECEIVED BY: FRINT NAME:		e i
LL L	2000 Xi	CHAIN OF CUSTODY REPORT	as reart	F			NATVERS		1108 7.08 7.08 7.000 7.000											RECEN	RECET	- x - x	2
Ŧ		TODY	203		-970 - 0 <u>5</u> 0-	PRESERVATIVE		24	5037 5037			X		X	X	×	X	X	X			value	
- -		CUS	Same				noaa		رومی 1903 :			X		X Ni	X	X	Х	X	X	0271 11/51/11	11-18-4	14	×9.
-		N OF	INVOICE TO:		PO. NUMBER:				5970 0 L Z J					X	X	×	×	X		DATE: U	TIME (5	-o-4-06-0 hiskedt -1	higher
		CHAI	N.		PON				578CS					X			<u> </u>	X	X	Tuc.		-10-23	4 14
								1	200			XX		×	X	X	X	×	X	TYO		the from	Samp les
ï					,				Им.191 <u>D.6.614</u> ИМПРН ИФПУН					× 	× ×	$\frac{\times}{\times}$	X V	र रू	X	HENE GEOENGINEOR	1	a lly	my5.
	\mathbf{O}	DNI		1007				_	H383	0		X		S X.			X 25	1240 5		Seo E	GEL	St	ere ke
6	Ŭ	L TES		A 90	-		.		 ප ස	0930	1010	1035	lios	1125	1210	[22S	1235	12	1315	FIRM:	FIRME	Seill	Grandar k
		ENTAI		1.04		Suc.	2	hira	SAMPLING													m	n
	Ψ	KONM	The	r Gorka				Miyo	ц осц	11/21/11		<u> </u>								i a	j.	3	, z
S.	Ę	ENVIE	Sig.	ande		14	1- 0 -+	ż				sti	SI	IS I	•	lı s	lı s	lısı	115	24.		Prel, ce	Anciyee
	$\overline{\mathbf{A}}$	ER IN	ท่ายู่ง	ve Le	2-21		020	obert	MPLE	0-11-0	ISU	0-1115	11-0.	11-5-	lisi	111-0-1	11-5-	11-0-9	11-5-	Phi & Mahi	P	й	
,	TestAmeric	THE LEADER IN ENVIRONMENTAL TESTING	Pol	å D V V	-26-26	NAME: A	NUMBER	BY: R	CLIENT SAMPLE	DP-20-4.0-111511	DP-20-1/1511	DP-21-4.0-111511	DP-22-4.0-11151	DP-23-2-5-11151	DP-23-11151	DP-24-7-0-11811	DP-25-2-5-99	DP-25-6-0-11151	26-2	E Roha	ж Ж	IL REMARK	
	₽∎	H H H	CLIENT. GEOENGINEERS, ThC.	REPORTO: Dave Lauder ADDRESS: E-73 F 2nd Aur Sonkawi luid 99200	PHONE 509-263-312 5 PAX:	PROJECT NAME: Robuls Charlens - Ruens	PROJECT NUMBER: OSO4- 060- 02	SAMPLED BY: Robert N. Miyahira	9 9 9 9	DP-2	Dp-	DP-2	DP-	DP-	DP-	- DP-	PP-	-90,	" DP-26-2-5-11151	RELEASED BY:	RELEASED BY: PRINT NAME:	ADDITIONAL REMARKS	
				<u>⊮</u> <	Δ.	1	<u> </u>	s		-	~					•							

ļ	2102	C/9/L										of 72	١٧e	Page											a
			9210		· ' .	7]			sh Charges.	TA WO ID				۰,		* • . •	••				12-21 12-21	15:SI	MOE C or C	TAL-1000(0408)
		425-420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 503-906-9200 FAX 906-9210			TURNAROUND REQUEST In Business Days	norganic Analyses	frocarbon Analyses	3 2 1 <1		specity: s than standard may incur Rush Charge.	LOCATION	·				*	`-	held		•			DATE: /	TEMP: COC MOE	£
=				der #:	URNAR	trganic & Jr		•	Ê	٦ ٢	# OF CONT.	N	7	S	ĩs	S	S	7			•	FILM: GEL	17		
		11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. Finst Awe, Spokene, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145	2000 W International Airport Rd Ste A10, Auchorage, AK 99502-1119	Work Order #:	Ŧ	ے پر]"]%	Z		* Turnarround R	MATRIX (W, S, O)	S	3	S	S.	Ŝ	S	M				FURME	FIRM:		
		othell, WA okane, WA verton, OR	iorage, AK	•						ľ						•								•	
		tite 400, B st Ave, Sp s Ave, Bea	Ald, And																			fach	ull'en		-
-		Pkwy N St 922 E. Fir 3W Nimbu	art Rd Ste																			Em	lilu hiv C	•	
-		rth Creek 1 11 9405 S	onal Airpo												•							Preve	Und	•	
		11720 No	V Internati	CHAIN OF CUSTODY REPORT	4		22															RECTEIVED BY:	RECEIVED BY: FRINT NAME:		
4			2000 X	Y RE	as report		60-03	LINE	and the state of the		1/08											TNINT PECE	RECE		÷
				TOD	20.3		0504-060-	PRESERVATIVE				X	c ×	×	X	X	X								
				CUS	Same			-			302	<u>X</u> .	X X	X	X	· ×	X					115/11 1630	112-11		
1				IO NI	INVOICE TO:		P.O. NUMBER:		4		170	X X	x X					-				DATE (DATE: 11-19-11		
				CHA	2	V	P.O.		-	3	50015		∧ X	×		\times	X					Thc.			
									-	×0-1	AND CAPH NWTTH NWTTH NWTTH NWTTH NWTTH NWTTH NWTTH NWTTH NWTTH	<u>``</u>	<u>х</u>		<u> </u>	X		·				T. Ya			
									-		1980 1976 1976		X	X	× ×	×						mm GeoEngineer.	Ĥ		
6		σ	TING			1202					49,80	1325 2	355	1420	1425		1440	1530				GeoE	GET		
	•	\underline{O}	L TES			A d		g		R	양된	ž	13.	1	14	i435	ŧ	12				FIRME	FIRM		
		<u>т</u>	AENTA			1.46		Buena	Ň	yahi	SAMPLING														
6		Ĕ	RONN		JVC H	Spoke	- X	- Vot	0-090	N. Miyahira		11/21/11		_ · _				>				ahira	ł		
C		<u>lestAmerica</u>	THE LEADER IN ENVIRONMENTAL TESTING		eers,	E 2nd Ave., Spokane, WA 99202	2 5 FA	tols :	24-0					lisi	(וצוו	ไเรา	(121)					Robert Mivahira	Jam		ŀ
	-	1	DER IN		-15 15 15 15	Dud	63-31	Robyl	к О И	Rober	AMPLE	DP-26-8-0-1(151)	lisii	DP-27-6-0-111511	DP-27-9.0-11151	115111-0.7.85-90	115111-0.18-82-00	ISIII				bert	h	ŝ	
		S S	LEAD		Sto E	ц Ц	09-3	NAME	NUMBE) BY:	CLIENT SAMPLE IDENTIFICATION	26-8	DP-26-111511	1-12-	27-1	28.	0-82:	DP-28-11151			i		Ne Sur	ADDITTONAL REMARKS	
n l	H		THE		CLIENT: GEO ENGINEERS, INC.	ADDRESS:	PHONE-509-363-312 5 PAX:	PROJECT NAME: Roby's Station -	PROJECT NUMBER: 0504 - 060-02	SAMPLED BY: Robert	0 H	ď	2 DP-	, DP	DP.	-99 ,		, DP	×	6	9	RELEASED BY:	RELEASED BY:	ADTTIDDA	
[].					<u> </u>																				

	merica le Rece				
Work Order #: SUXOVOB Client: (78) Em	Nelss			Project: Roby's Station-Birenn	
Dale/Time Received: 15:30 11/18/14	By:	w			
Samples Delivered By: Shipping Service Courier				· · · · · · ·	
List Air Bill Number(s) or Attach a photocopy of the Air Bill:				·	
ReceiptiPhase	Yes?	No.	ŇA	Comments	
Were samples received in a cooler:	X			· ,	
Custody Seals are present and inlact:	\mathbf{X}				
Are CoC documents present:	X				
Necessary signatures:	8				
Thermal Preservation Type: 🛛 Blue ice 🗍 Gei ice 🎝 Real ice	Dry Ice	None	Other:		
remperature by IR Gun: C Thermometer Serial #8150	0 (accepta	nce criteria ()-6 °C)		
emperature out of range: Not enough ice lice melted w.					
Date/Filme: 11 BIN 1025 By	Yes		NA.		
re sample labels affixed and completed for each container	X				
samples containers were received intact:	X				
to sample IDs match the CoC	X				-
ppropriate sample containers were received for tests requested		X		dianct receive unpeserved uses for HND3 for Lean	
re sample volumes adequate for tests requested	<u>X</u>				
ppropriate preservatives were used for the tests requested		X		NO HNOZ PREZENTED	
of inorganic samples checked and is within method specification		X			
e VOC samples free of bubbles >6mm (1/4" diameter)	X				
e dissolved parameters field filtered			_X		
o any samples need to be filtered or preserved by the lab	X			preserved scimple odume of HN	Q
pes this project require quick lurnaround analysis		X			
e there any short hold time tests (see chart below)	X			EDB	
e any samples within 2 days of or past expiration	Х				
as the CoC scanned	X				
ere there Non-conformance issues at login	$\overline{\mathbf{v}}$				
res, was a CAR generated #	N				

24 hours or less	48 hours	7 days
Collform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromlum +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep

.

••

Í

<u>TestAmerica</u>

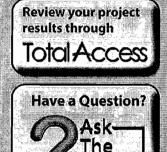
THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Spokane 11922 East 1st. Avenue Spokane, WA 99206 Tel: (509)924-9200

TestAmerica Job ID: SUK0109 Client Project/Site: 0504-060-02 Client Project Description: Roby's Station - Buena

For: Geo Engineers - Spokane 523 East Second Ave. Spokane, WA 99202


Attn: Dave Lauder

tander 0

Authorized for release by: 12/30/2011 11:49:57 AM

Randee Decker Project Manager Randee.Decker@testamericainc.com

..... LINKS

www.testamericainc.com

Visit us at:

xpert

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Definitions	4
Client Sample Results	5
QC Sample Results	35
Certification Summary	
Method Summary	
Chain of Custody	65

Sample Summary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0109

-	3
-	4
	5
	6
	7
	8

9

ab Sample ID	Client Sample ID	Matrix	Collected	Received
SUK0109-01	DP-29-2.5-111611	Soil	11/16/11 08:05	11/18/11 15:30
SUK0109-02	DP-29-8.0-111611	Soil	11/16/11 08:10	11/18/11 15:30
SUK0109-04	DP-30-4.0-111611	Soil	11/16/11 08:55	11/18/11 15:30
SUK0109-06	DP-31-7.0-111611	Soil	11/16/11 09:15	11/18/11 15:30
SUK0109-07	DP-31-10.0-111611	Soil	11/16/11 09:20	11/18/11 15:30
SUK0109-08	DP-32-4.0-111611	Soil	11/16/11 09:50	11/18/11 15:30
SUK0109-11	DP-33-111611	Water	11/16/11 11:15	11/18/11 15:30
SUK0109-12	DP-34-6.0-111611	Soil	11/16/11 11:25	11/18/11 15:30
SUK0109-13	DP-34-111611	Water	11/16/11 12:10	11/18/11 15:30
SUK0109-14	DP-35-4.0-111611	Soil	11/16/11 12:25	11/18/11 15:30
SUK0109-16	DP-36-8.0-111611	Soil	11/16/11 13:00	11/18/11 15:30
SUK0109-17	DP-37-4.0-111611	Soil	11/16/11 13:15	11/18/11 15:30
UK0109-18	DP-37-10.0-111611	Soil	11/16/11 13:25	11/18/11 15:30
UK0109-19	DP-37-111611	Water	11/16/11 14:20	11/18/11 15:30

Definitions/Glossary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0109

Ĩ

Qualifiers	
GCMS Volatil	es
Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
M7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
E	Concentration exceeds the calibration range and therefore result is semi-quantitative.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
Semivolatiles	
Qualifier	Qualifier Description
M1	The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).
R1	The RPD between the primary and confirmatory analysis exceeded 40%. Per method 8000B, the higher value was reported.
A-01	The presence of known aroclors could not be confirmed. This sample contains high quantities of unknown analyte.
QSG	Silica Gel clean-up performed on extracts.
Fuels	
Qualifier	Ouslifies Description
R2	Qualifier Description The RPD exceeded the acceptance limit.
	The RPD exceeded the acceptance minit.
GC Volatiles	
Qualifier	Qualifier Description
M8	The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
M7	The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
R4	Due to the low levels of analyte in the sample, the duplicate RPD calculation does not provide useful information.
ZX	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
GC Semivolat	iles
Qualifier	Qualifier Description
Z2	Surrogate recovery was above the acceptance limits. Data not impacted.
zx	Due to sample matrix effects, the surrogate recovery was outside the acceptance limits.
Metals	
Qualifier	Qualifier Description
в	Analyte was detected in the associated Method Blank.
B1	Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in
	the method blank.
Extractions	
Qualifier	Qualifier Description
SPS	Percent solids result provided to the TestAmerica Nashville laboratory.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
æ	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0109

Client Sample ID: DP-29-2.5-111611 Date Collected: 11/16/11 08:05 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-01 Matrix: Soil Percent Solids: 78.3

	ile Organic Compounds by EP/				_	_ .		- <i>u</i> -
Analyte	Result Qualifier		MDL			Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.142	0.0708	mg/kg dry	¥	11/21/11 08:16	11/21/11 15:49	1.00
Chloromethane	ND	0.708		mg/kg dry	. \$	11/21/11 08:16	11/21/11 15:49	1.00
Vinyl chloride	ND	0.0849		mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
Bromomethane	ND	0.708		mg/kg dry	\$	11/21/11 08:16	11/21/11 15:49	1.00
Chloroethane	ND	0.142		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 15:49	1.00
Trichlorofluoromethane	ND	0.0425		mg/kg dry	\$÷ • • • • • • • •	11/21/11 08:16	11/21/11 15:49	1.00
1,1-Dichloroethene	ND	0.142		mg/kg dry	\$	11/21/11 08:16	11/21/11 15:49	1.00
Carbon disulfide	ND	0.142		mg/kg dry	\$	11/21/11 08:16	11/21/11 15:49	1.00
Methylene chloride	ND	1.42		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
Acetone	ND	2.83		mg/kg dry	\$	11/21/11 08:16	11/21/11 15:49	1.00
trans-1,2-Dichloroethene	ND	0.142	0.0283	mg/kg dry	*	11/21/11 08:16	11/21/11 15:49	1.00
Methyl tert-butyl ether	ND	0.142		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
1,1-Dichloroethane	ND	0.142		mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
cis-1,2-Dichloroethene	ND	0.142	0.0283	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
2,2-Dichloropropane	ND	0.142	0.0708	mg/kg dry	\$	11/21/11 08:16	11/21/11 15:49	1.00
Bromochloromethane	ND	0.142	0.0283	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
Chloroform	ND	0.142	0.0283	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
Carbon tetrachloride	ND	0.142	0.0142	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
1,1,1-Trichloroethane	ND	0.142	0.0283	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
2-Butanone	ND	1.42	0.142	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
1,1-Dichloropropene	ND	0.142	0.0283	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
Benzene	0.164	0.0283	0.0113	mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
1,2-Dichloroethane (EDC)	ND	0.142	0.0708	mg/kg dry	\$	11/21/11 08:16	11/21/11 15:49	1.00
Trichloroethene	ND	0.0354	0.0283	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
Dibromomethane	ND	0.142	0.0708	mg/kg dry	×.	11/21/11 08:16	11/21/11 15:49	1.00
1,2-Dichloropropane	ND	0.142	0.0283	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
Bromodichloromethane	ND	0.142	0.0283	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
cis-1,3-Dichloropropene	ND	0.142	0.0283	mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
Toluene	0.0694 J	0.142	0.0142	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
4-Methyl-2-pentanone	ND	1.42	0.142	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
trans-1,3-Dichloropropene	ND	0.142	0.0283	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
Tetrachloroethene	ND	0.0708	0.0142	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
1,1,2-Trichloroethane	ND	• 0.142	0.0283	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
Dibromochloromethane	ND	0.142	0.0283	mg/kg dry	Ċ,	11/21/11 08:16	11/21/11 15:49	1.00
1,3-Dichloropropane	ND	0.142	0.0283	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
1,2-Dibromoethane	ND	0.142	0.0283	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
2-Hexanone	ND	1.42	0.142	mg/kg dry	₿	11/21/11 08:16	11/21/11 15:49	1.00
Ethylbenzene	1.51	0.142	0.0142	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
Chlorobenzene	ND	0.142	0.0708	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
1,1,1,2-Tetrachloroethane	ND	0.142	0.0283	mg/kg dry	¢.	11/21/11 08:16	11/21/11 15:49	1.00
m,p-Xylene	1.96	0.566	0.0142	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
o-Xylene	0.117 J	0.283	0.0142	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
Styrene	ND	0.142		mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.00
Bromoform	ND	0.142		mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
Isopropylbenzene	0.0906 J	0.142		mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
n-Propylbenzene	0.280	0.142		mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
1,1,2,2-Tetrachloroethane	ND	0.142		mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
Bromobenzene	ND	0.142		mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
1,3,5-Trimethylbenzene	0.102 J	0.142		mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.00
2-Chlorotoluene	ND	0.142	0.00708			11/21/11 08:16	11/21/11 15:49	1.00
		5.112	0.007.00					

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0109

Client Sample ID: DP-29-2.5-111611 Date Collected: 11/16/11 08:05

Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-01 Matrix: Soil Percent Solids: 78.3

9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,3-Trichloropropane	ND		0.142	0.0283	mg/kg dry	- ¤	11/21/11 08:16	11/21/11 15:49	1.0
4-Chlorotoluene	ND		0.142	0.0142	mg/kg dry	φ	11/21/11 08:16	11/21/11 15:49	1.0
tert-Butylbenzene	ND		0.142	0.00708	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.0
1,2,4-Trimethylbenzene	2.07		0.142	0.0142	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.0
sec-Butylbenzene	ND		0.142	0.00991	mg/kg dry		11/21/11 08:16	11/21/11 15:49	1.0
p-lsopropyltoluene	0.0410	J	0.142	0.00991	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.0
1,3-Dichlorobenzene	ND		0.142	0.00566	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.0
1,4-Dichlorobenzene	ND		0.142	0.00708	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.0
n-Butylbenzene	0.0962	J	0.142	0.0142	mg/kg dry	¢	11/21/11 08:16	11/21/11 15:49	1.0
1,2-Dichlorobenzene	ND		0.142	0.00708	mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
1,2-Dibromo-3-chloropropane			0.708		mg/kg dry	ø	11/21/11 08:16	11/21/11 15:49	1.00
Hexachlorobutadiene	ND		0.142		mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
1,2,4-Trichlorobenzene	ND		0.142		mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
Naphthalene	0.664		0.283		mg/kg dry	÷.	11/21/11 08:16	11/21/11 15:49	1.00
1,2,3-Trichlorobenzene	ND		0.142		mg/kg dry	₽	11/21/11 08:16	11/21/11 15:49	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Ana/yzed	Dil Fae
Dibromofluoromethane	89.0		71.6 - 127				11/21/11 08:16	11/21/11 15:49	1.00
Toluene-d8	118		80 - 129				11/21/11 08:16	11/21/11 15:49	1.00
4-bromofluorobenzene	130		57.7 - 149				11/21/11 08:16	11/21/11 15:49	1.00
Method: EPA 8011 - EDB by E Analyte	Result	Qualifier	RL	MDL		- D 27	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.28		ug/kg dry		11/21/11 08:22	11/23/11 17:54	1.00
1,2-Dibromo-3-chloropropane	ND	R1	1.28		ug/kg dry	₽	11/21/11 08:22	11/23/11 17:54	1.00
Method: NWTPH-Dx - Semivola	tile Betroloum B	roducto bu							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		12.8		mg/kg dry	- 😿	11/19/11 07:15	11/19/11 16:20	1.00
Heavy Oil Range Hydrocarbons	ND		31.9		mg/kg dry	₽	11/19/11 07:15	11/19/11 16:20	1.00
loavy on range rijarooarbono	110		01.0						
							Dromonod	and so and	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	
-	%Recovery 98.5	Qualifier	Limits 50 - 150				11/19/11 07:15	Analyzed 11/19/11 16:20	1.00
2-FBP		Qualifier					· ·		1.00
2-FBP	98.5	Qualifier	50 - 150				11/19/11 07:15	11/19/11 16:20	
2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline	98.5 104 Hydrocarbons b	oy NWTPH-	<u>50 - 150</u> 50 - 150 50 - 150				11/19/11 07:15 11/19/11 07:15	11/19/11 16:20 11/19/11 16:20	1.00
2-FBP o-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte	98.5 104 Hydrocarbons b		<u>50 - 150</u> 50 - 150 Gx	MDL		D	11/19/11 07:15 11/19/11 07:15 Prepared	11/19/11 16:20 11/19/11 16:20 Analyzed	1.00 Dil Fac
2 <i>-FBP</i> p- <i>Terphenyl-d</i> 14 Method: NWTPH-Gx - Gasoline Analyte	98.5 104 Hydrocarbons b	oy NWTPH-	<u>50 - 150</u> 50 - 150 50 - 150	MDL	Unit mg/kg dry	- D	11/19/11 07:15 11/19/11 07:15	11/19/11 16:20 11/19/11 16:20	1.00
2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbon s	98.5 104 Hydrocarbons b Result 21.3	oy NWTPH-0 Qualifier	<u>50 - 150</u> 50 - 150 Gx <u>RL</u> 7.08	MDL			11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08	11/19/11 16:20 11/19/11 16:20 Analyzed 11/20/11 17:56	1.00 Dil Fac 1.00
Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate	98.5 104 Hydrocarbons b Result 21.3 %Recovery	oy NWTPH-	50 - 150 50 - 150 Gx RL 7.08 Llmits	MDL			11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	11/19/11 16:20 11/19/11 16:20 Analyzed 11/20/11 17:56 Analyzed	1.00 Dil Fac 1.00 Dil Fac
2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate	98.5 104 Hydrocarbons b Result 21.3	oy NWTPH-0 Qualifier	<u>50 - 150</u> 50 - 150 Gx <u>RL</u> 7.08	MDL			11/19/11 07:15 11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08	11/19/11 16:20 11/19/11 16:20 Analyzed 11/20/11 17:56	1.00 Dil Fac 1.00
2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	98.5 104 Hydrocarbons b Result 21.3 %Recovery 129	oy NWTPH-(Qualifier Qualifier	50 - 150 50 - 150 Gx RL 7.08 Limits 50 - 150	MDL			11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	11/19/11 16:20 11/19/11 16:20 Analyzed 11/20/11 17:56 Analyzed	1.00 Dil Fac 1.00 Dil Fac
2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbon s Surrogate	98.5 104 • Hydrocarbons b Result 21.3 <u>%Recovery</u> 129 tals by EPA 6010	oy NWTPH-(Qualifier Qualifier	50 - 150 50 - 150 Gx RL 7.08 Limits 50 - 150	MDL	mg/kg dry		11/19/11 07:15 11/19/11 07:15 Prepared 11/20/11 07:08 Prepared	11/19/11 16:20 11/19/11 16:20 Analyzed 11/20/11 17:56 Analyzed	1.00 Dil Fac 1.00 Dil Fac

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-29-8.0-111611 Date Collected: 11/16/11 08:10

Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	SUK01	09

1

1

4

Lab Sample ID: SUK0109-02 Matrix: Soil

Percent Solids: 79.8

Method: EPA 8260B - Volatile O	Result Qualif	fier RL	MDL	Unit	<u>ם</u>	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.140	0.0698	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
Chloromethane	ND	0.698	0.0698	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Vinyl chloride	ND	0.0838	0.0279	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
Bromomethane	ND	0.698	0.140	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Chloroethane	ND	0.140	0.0698	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Trichlorofluoromethane	ND	0.0419	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
1,1-Dichloroethene	ND	0.140	0.0279	mg/kg dry	¢.	11/21/11 08:16	11/21/11 16:17	1.00
Carbon disulfide	ND	0.140	0.0698	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Methylene chloride	ND	1.40	0.419	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Acetone	4.60	2.79	1.31	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
rans-1,2-Dichloroethene	ND	0.140	0.0279	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Methyl tert-butyl ether	ND	0.140	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
1,1-Dichloroethane	ND	0.140	0.0279	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
cis-1,2-Dichloroethene	ND	0.140	0.0279	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
2,2-Dichloropropane	ND	0.140	0.0698	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Bromochloromethane	ND	0.140	0.0279	mg/kg dry	¢.	11/21/11 08:16	11/21/11 16:17	1.00
Chloroform	ND	0.140	0.0279	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Carbon tetrachloride	ND	0.140	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
I,1,1-Trichloroethane	ND	0.140	0.0279	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
2-Butanone	7.65	1.40	0.140	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
,1-Dichloropropene	ND	0.140		mg/kg dry	\$	11/21/11 08:16	11/21/11 16:17	1.00
Benzene	0.0461	0.0279		mg/kg dry	т. ф	11/21/11 08:16	11/21/11 16:17	1.00
I,2-Dichloroethane (EDC)	ND	0.140		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Frichloroethene	ND	0.0349		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
Dibromomethane	ND	0.140		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
,2-Dichloropropane	ND	0.140		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
Bromodichloromethane	ND	0.140		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
sis-1,3-Dichloropropene	ND	0.140		mg/kg dry		11/21/11 08:16	11/21/11 16:17	1.00
oluene	0.0628 J	0.140		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
I-Methyl-2-pentanone	2.84	1.40		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
rans-1,3-Dichloropropene	ND	0.140		mg/kg dry	φ.	11/21/11 08:16	11/21/11 16:17	1.00
etrachloroethene	ND	0.0698		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
.1,2-Trichloroethane	ND .	0.140		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Dibromochloromethane	ND	0.140		ma/ka dry	¢.	11/21/11 08:16	11/21/11 16:17	1.00
,3-Dichloropropane	ND	0.140		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
,2-Dibromoethane	ND	0.140		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
-Hexanone	1.34 J	1.40		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
ithylbenzene	2.84	0.140		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Chlorobenzene	2.04 ND	0.140		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
,1,1,2-Tetrachloroethane	ND	0.140		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
		0.559		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
n,p-Xylene Xylene	2.68	0.279		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
-xyiene	0.0447 J ND	0.279		mg/kg dry	···.	11/21/11 08:16	11/21/11 16:17	1.00
Bromoform	ND	0.140		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
					¢	11/21/11 08:16	11/21/11 16:17	1.00
sopropylbenzene	0.377	0.140		mg/kg dry				
-Propylbenzene	1.32	0.140		mg/kg dry mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
,1,2,2-Tetrachloroethane	ND	0.140		mg/kg dry mg/kg dry		11/21/11 08:16	11/21/11 16:17	1.00
	ND	0.140		mg/kg dry		11/21/11 08:16	11/21/11 16:17	1.00
,3,5-Trimethylbenzene -Chlorotoluene	0.121 J ND	0.140	0.0140	mg/kg dry	쑤	11/21/11 08:16	11/21/11 16:17 11/21/11 16:17	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0109

Client Sample ID: DP-29-8.0-111611 Date Collected: 11/16/11 08:10 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-02

Matrix: Soil 4 Percent Solids: 79.8 5 6 7 8 9

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2,3-Trichloropropane	ND		0.140	0.0279	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.0
4-Chlorotoluene	ND		0.140	0.0140	mg/kg dry	\$	11/21/11 08:16	11/21/11 16:17	1.0
tert-Butylbenzene	ND		0.140	0.00698	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
1,2,4-Trimethylbenzene	7.11	E	0.140	0.0140	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
sec-Butylbenzene	0.184		0.140	0.00978	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
p-lsopropyltoluene	0.144		0.140	0.00978	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
1,3-Dichlorobenzene	ND		0.140	0.00559	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
1,4-Dichlorobenzene	ND		0.140	0.00698	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
n-Butylbenzene	0.452		0.140	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
1,2-Dichlorobenzene	ND		0.140	0.00698	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
1,2-Dibromo-3-chloroproparie	ND		0.698	0.140	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
Hexachlorobutadiene	ND		0.140	0.0559	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
1,2,4-Trichlorobenzene	ND		0.140	0.0419	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:17	1.00
Naphthalene	1.19		0.279	0.154	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
1,2,3-Trichlorobenzene	ND		0.140	0.0419	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:17	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	88.0		71.6 - 127				11/21/11 08:16	11/21/11 16:17	1.00
Toluene-d8	125		80 - 129				11/21/11 08:16	11/21/11 16:17	1.00
4-bromofluorobenzene	177	zx	57.7 - 149				11/21/11 08:16	11/21/11 16:17	1.00
Method: EPA 8011 - EDB by El	PA Method 8011								
- Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.24		ug/kg dry	- x	11/21/11 08:22	11/23/11 18:07	1.00
1,2-Dibromo-3-chloropropane	ND	R1	1.24		ug/kg dry	₽	11/21/11 08:22	11/23/11 18:07	1.00
Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	24.2		12.5		mg/kg dry	- \$	11/19/11 07:15	11/19/11 16:36	1.00
Heavy Oil Range Hydrocarbons	ND		31.3		mg/kg dry	\$	11/19/11 07:15	11/19/11 16:36	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	94.7		50 - 150				11/19/11 07:15	11/19/11 16:36	1.00
p-Terphenyl-d14	101		50 - 150				11/19/11 07:15	11/19/11 16:36	1.00
Method: NWTPH-Gx - Gasoline	Hydrocarbons b	by NWTPH-	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	288		14.0		mg/kg dry	Ţ.	11/20/11 07:08	11/20/11 18:21	2.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-BFB (FID)	303	ZX	50 - 150				11/20/11 07:08	11/20/11 18:21	2.00
Method: EPA 6010C - Total Met	als by EPA 6010	/7000 Serie	es Methods						
Method: EPA 6010C - Total Met	-	/7000 Serie Qualifier	es Methods RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-30-4.0-111611 Date Collected: 11/16/11 08:55 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-04

TestAmerica Job ID: SUK0109

Matrix: Soil

Percent Solids: 76.5

Analyte	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND	0.150	0.0752	mg/kg dry	— ¥	11/21/11 08:16	11/21/11 16:45	1.0
Chloromethane	ND	0.752	0.0752	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
Vinyl chloride	ND	0.0903	0.0301	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
Bromomethane	ND	0.752	0.150	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
Chloroethane	ND	0.150	0.0752	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
Trichlorofluoromethane	ND	0.0451	0.0150	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
1,1-Dichloroethene	ND	0.150	0.0301	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.0
Carbon disulfide	ND	0.150	0.0752	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.0
Methylene chloride	ND	1.50	0.451	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
Acetone	3.06	3.01	1.41	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.0
trans-1,2-Dichloroethene	ND	0.150	0.0301	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
Methyl tert-butyl ether	ND	0.150	0.0150	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
1,1-Dichloroethane	ND	0.150	0.0301	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.0
cis-1,2-Dichloroethene	ND	0.150	0.0301	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
2,2-Dichloropropane	ND	0.150	0.0752	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
Bromochloromethane	ND	0.150		mg/kg dry		11/21/11 08:16	11/21/11 16:45	1.0
Chioroform	ND	0.150	0.0301	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.0
Carbon tetrachloride	ND	0.150	0.0150	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.0
I,1,1-Trichloroethane	ND	0.150		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.0
2-Butanone	1.97	1.50	0.150	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.0
I,1-Dichloropropene	ND	0.150	0.0301	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
		0.0301		mg/kg dry		11/21/11 08:16	11/21/11 16:45	1.00
Benzene I,2-Dichloroethane (EDC)	0.702 ND	0.150		mg/kg dry	\$	11/21/11 08:16	11/21/11 16:45	1.00
		0.0376		/	÷	11/21/11 08:16		1.00
Frichloroethene	ND			mg/kg dry	· · · · · · · · · · · · · · · · · · ·		11/21/11 16:45	
Dibromomethane	ND	0.150		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
I,2-Dichloropropane	ND	0.150		mg/kg dry		11/21/11 08:16	11/21/11 16:45	1.00
Bromodichloromethane	ND	0.150		mg/kg dry		11/21/11 08:16	11/21/11 16:45	1.00
is-1,3-Dichloropropene	ND	0.150		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 16:45	1.00
foluene	0.403	0.150		mg/kg dry	*	11/21/11 08:16	11/21/11 16:45	1.00
I-Methyl-2-pentanone	0.845 J	1.50		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
rans-1,3-Dichloropropene	ND	0.150		mg/kg dry	₿	11/21/11 08:16	11/21/11 16:45	1.00
Tetrachloroethene	ND	0.0752	0.0150	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
I,1,2-Trichloroethane	. ND	0.150	0.0301	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.QC
Dibromochloromethane	ND	0.150	0.0301	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
,3-Dichloropropane	ND	0.150	0.0301	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
,2-Dibromoethane	ND	0.150	0.0301	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
-Hexanone	0.468 J	1.50	0.150	mg/kg dry	¢.	11/21/11 08:16	11/21/11 16:45	1.00
thylbenzene	2.81	0.150	0.0150	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
Chlorobenzene	ND	0.150	0.0752	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
,1,1,2-Tetrachloroethane	ND	0.150	0.0301	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
n,p-Xylene	3.72	0.602	0.0150	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
-Xylene	0.567	0.301	0.0150	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
Styrene	ND	0.150	0.0150	mg/kg dry		11/21/11 08:16	11/21/11 16:45	1.00
Bromoform	ND	0.150		mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
sopropylbenzene	0.393	0.150		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
-Propylbenzene	0.918	0.150		mg/kg dry		11/21/11 08:16	11/21/11 16:45	1.00
,1,2,2-Tetrachloroethane	0.918 ND	0.150		mg/kg dry	ø	11/21/11 08:16	11/21/11 16:45	1.00
Bromobenzene	ND	0.150		mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
					····	11/21/11 08:16		1.00
,3,5-Trimethylbenzene	0.502	0.150		mg/kg dry mg/kg day	*	11/21/11 08:16	11/21/11 16:45	1.00

1.00

* 11/21/11 08:16 11/21/11 16:45

0.150

0.00752 mg/kg dry

ND

2-Chlorotoluene

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-30-4.0-111611

Date Collected: 11/16/11 08:55 Date Received: 11/18/11 15:30 TestAmerica Job ID: SUK0109

1

3

*4*1

Lab Sample ID: SUK0109-04 Matrix: Soil Percent Solids: 76.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,3-Trichloropropane	ND		0.150	0.0301	mg/kg dry		11/21/11 08:16	11/21/11 16:45	1.0
4-Chlorotoluene	ND		0.150	0.0150	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.0
tert-Butylbenzene	ND		0.150	0.00752	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
1,2,4-Trimethylbenzene	6.71		0.150	0.0150	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
sec-Butylbenzene	0.167		0.150	0.0105	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
p-lsopropyitoluene	0.229		0.150	0.0105	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
1,3-Dichlorobenzene	ND		0.150	0.00602	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
1,4-Dichlorobenzene	ND		0.150	0.00752	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
n-Butylbenzene	0.370		0.150	0.0150	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
1,2-Dichlorobenzene	ND		0.150	0.00752	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
1,2-Dibromo-3-chloropropane	ND		0.752	0.150	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
Hexachlorobutadiene	ND		0.150	0.0602	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
1,2,4-Trichlorobenzene	ND		0.150	0.0451	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
Naphthalene	2.52		0.301	0.165	mg/kg dry	¢	11/21/11 08:16	11/21/11 16:45	1.00
1,2,3-Trichlorobenzene	ND		0.150	0.0451	mg/kg dry	₽	11/21/11 08:16	11/21/11 16:45	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	89.8		71.6 - 127				11/21/11 08:16	11/21/11 16:45	1.00
Toluene-d8	124		80 - 129				11/21/11 08:16	11/21/11 16:45	1.00
4-bromofluorobenzene	200	zx	57.7 - 149				11/21/11 08:16	11/21/11 16:45	1.00
Method: EPA 8011 - EDB by El	PA Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.30		ug/kg dry	- x	11/21/11 08:22	11/23/11 18:20	1.00
1,2-Dibromo-3-chloropropane	ND	R1	1.30		ug/kg dry	₽	11/21/11 08:22	11/23/11 18:20	1.00
Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	49.4		13.1		mg/kg dry	- x	11/19/11 07:15	11/19/11 16:53	1.00
Heavy Oil Range Hydrocarbons	ND		32.7		mg/kg dry	\$	11/19/11 07:15	11/19/11 16:53	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	94.4		50 - 150				11/19/11 07:15	11/19/11 16:53	1.00
p-Terphenyl-d14	97.5		50 - 150	•			11/19/11 07:15	11/19/11 16:53	1.00
Method: NWTPH-Gx - Gasoline	Hydrocarbons b	by NWTPH-	Gx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	143		15.0		mg/kg dry	- ₽	11/20/11 07:08	11/20/11 18:46	2.00
		Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate	%Recovery	quaimor							
	%Recovery 336		50 - 150				11/20/11 07:08	11/20/11 18:46	2.00
4-BFB (FID)		ŻX					11/20/11 07:08	11/20/11 18:46	2.00
Surrogate 4-BFB (FID) Method: EPA 6010C - Total Met Analyte	336 als by EPA 6010	ŻX		MDL	Unit	D	11/20/11 07:08 Prepared	11/20/11 18:46 Analyzed	2.0 Dil Fa

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-31-7.0-111611 Date Collected: 11/16/11 09:15 Date Received: 11/18/11 15:30

TestAmerica Job ID: SUK0109

Lab Sample ID: SUK0109-06 Matrix: Soil Percent Solids: 54.6

Analyte	Organic Compounds by EP Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.281	0.140	mg/kg dry	— 	11/21/11 08:16	11/21/11 17:13	1.00
Chloromethane	ND	1.40	0.140	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Vinyl chloride	ND	0.169	0.0562	ma/ka dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Bromomethane	ND	1.40	0.281	mg/kg dry	····	11/21/11 08:16	11/21/11 17:13	1.00
Chloroethane	ND	0.281		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
Trichlorofluoromethane	ND	0.0843		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1,1-Dichloroethene	ND	0.281		mg/kg dry		11/21/11 08:16	11/21/11 17:13	1.00
Carbon disulfide	ND	0.281		•	¢	11/21/11 08:16	11/21/11 17:13	1.00
Methylene chloride	ND	2.81		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Acetone	ND	5.62		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
trans-1,2-Dichloroethene	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Methyl tert-butyl ether	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1,1-Dichloroethane	ND	0.281		mg/kg dry		11/21/11 08:16	11/21/11 17:13	1.00
cis-1,2-Dichloroethene	ND	0.281		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
2,2-Dichloropropane	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Bromochloromethane	ND	0.281		mg/kg dry		11/21/11 08:16	11/21/11 17:13	1.00
Chloroform	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Carbon tetrachloride	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1,1,1-Trichloroethane	ND	0.281		mg/kg dry		11/21/11 08:16	11/21/11 17:13	1.00
2-Butanone	ND	2.81		•	¢	11/21/11 08:16	11/21/11 17:13	1.00
	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1,1-Dichloropropene Benzene	ND	0.0562		mg/kg dry		11/21/11 08:16	11/21/11 17:13	1.00
	ND				₽	11/21/11 08:16	11/21/11 17:13	1.00
1,2-Dichloroethane (EDC)	ND	0.281 0.0702			¢,	11/21/11 08:16	11/21/11 17:13	1.00
Trichloroethene				mg/kg dry	¢		11/21/11 17:13	1.00
Dibromomethane	ND	0.281		mg/kg dry	¢	11/21/11 08:16		
1,2-Dichloropropane	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Bromodichloromethane	ND	0.281		mg/kg dry		11/21/11 08:16	11/21/11 17:13	1.00
cis-1,3-Dichloropropene	ND	0.281		mg/kg dry	¢ ×	11/21/11 08:16	11/21/11 17:13	1.00
Toluene	ND	0.281		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 17:13	1.00
4-Methyl-2-pentanone	1.66 J	2.81		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
rans-1,3-Dichloropropene	ND	0.281		mg/kg dry	\$	11/21/11 08:16	11/21/11 17:13	1.00
Tetrachloroethene	ND	0.140		mg/kg dry	¢ ×	11/21/11 08:16	11/21/11 17:13	1.00
1,1,2-Trichloroethane	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Dibromochloromethane	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1,3-Dichloropropane	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1,2-Dibromoethane	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
2-Hexanone	ND	2.81		mg/kg dry	\$	11/21/11 08:16	11/21/11 17:13	1.00
Ethylbenzene	0.0478 J	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Chlorobenzene	ND	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1,1,1,2-Tetrachloroethane	ND	0.281		mg/kg dry	\$	11/21/11 08:16	11/21/11 17:13	1.00
n,p-Xylene	0.152 J	1.12		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
o-Xylene	0.0534 J	0.562	0.0281	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Styrene	ND	0.281	0.0281	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
Bromoform	ND	0.281		mg/kg dry	\$	11/21/11 08:16	11/21/11 17:13	1.00
sopropylbenzene	0.253 J	0.281		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1-Propylbenzene	0.458	0.281	0.0281	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
1,1,2,2-Tetrachloroethane	ND	0.281	0.0562	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
Bromobenzene	ND	0.281	0.0281	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
I,3,5-Trimethylbenzene	0.0787 J	0.281	0.0281	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
2-Chlorotoluene	ND	0.281	0.0140	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0109

Client Sample ID: DP-31-7.0-111611 Date Collected: 11/16/11 09:15 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-06 Matrix: Soil

Percent Solids: 54.6

1

. (j) ____

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ane	ND		0.281	0.0562	mg/kg dry	_ ☆	11/21/11 08:16	11/21/11 17:13	1.0
	ND		0.281	0.0281	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.0
	ND		0.281	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
nzene	1.62		0.281	0.0281	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
•	0.424		0.281	0.0197	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
	ND		0.281	0.0197	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
ie in the second se	ND		0.281	0.0112	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
le	ND		0.281	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
	0.559		0.281	0.0281	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
e	ND		0.281	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
ropropane	ŃD		1.40	0.281	mg/kg dry	₿	11/21/11 08:16	11/21/11 17:13	1.00
ne	ND		0.281	0.112	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
ene	ND		0.281	0.0843	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
	0.801		0.562	0.309	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:13	1.00
ene	ND		0.281	0.0843	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:13	1.00
%	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
ane	89.6		71.6 - 127				11/21/11 08:16	11/21/11 17:13	1.00
	120		80 - 129				11/21/11 08:16	11/21/11 17:13	1.00
ene	173	zx	57.7 - 149				11/21/11 08:16	11/21/11 17:13	1.00
H-Dx - Semivolatile Petr	oleum F	roducts by	NWTPH-Dx						
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
rocarbons	1240	Ť	18.3		mg/kg dry	- \$	11/19/11 07:15	11/19/11 17:09	1.00
Hydrocarbons	124		45.8		mg/kg dry	#	11/19/11 07:15	11/19/11 17:09	1.00
%	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	110		50 - 150				11/19/11 07:15	11/19/11 17:09	1.00
	94.0		50 - 150				11/19/11 07:15	11/19/11 17:09	1.00
H-Gx - Gasoline Hydroca	arbons l	by NWTPH-	-Gx						
-		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ydrocarbons	130		14.0		mg/kg dry	- x	11/20/11 07:08	11/20/11 19:10	1.00
%	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	218	ZX	50 - 150				11/20/11 07:08	11/20/11 19:10	1.00
010C - Total Metals by E	PA 6010)/7000 Serie	es Methods						
-	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	4.78		2.75		mg/kg dry	- 2	12/05/11 17:43	12/06/11 12:43	1.00
							Lah Samr	ole ID: SUK0	100-07
ID: DP-31-10.0-1116							1 ob C	amr	ample ID: SUKU
							Lah Samr		11

Date Received: 11/18/11 15:30

Percent Solids: 67

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	0.181	0.0907	mg/kg dry	_ ⊉	11/21/11 08:16	11/21/11 17:41	1.00
Chloromethane	ND	0.907	0.0907	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.00
Vinyl chloride	ND	0.109	0.0363	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.00
Bromomethane	ND	0.907	0.181	ma/ka drv	···.	11/21/11 08:16	11/21/11 17:41	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0109

Client Sample ID: DP-31-10.0-111611 Date Collected: 11/16/11 09:20 Date Received: 11/18/11 15:30 Lab Sample ID: SUK0109-07 Matrix: Soil Percent Solids: 67

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloroethane	ND	0.181	0.0907	mg/kg dry	<u>₽</u>	11/21/11 08:16	11/21/11 17:41	1.0
richlorofluoromethane	ND	0.0544	0.0181	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
,1-Dichloroethene	ND	0.181	0.0363	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.0
Carbon disulfide	ND	0.181	0.0907	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
Methylene chloride	ND	1.81	0.544	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
Acetone	ND	3.63		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.0
rans-1,2-Dichloroethene	ND	0.181	0.0363		₽	11/21/11 08:16	11/21/11 17:41	1.0
Aethyl tert-butyl ether	ND	0.181		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
,1-Dichloroethane	ND	0.181		mg/kg dry	÷.	11/21/11 08:16	11/21/11 17:41	1.0
is-1,2-Dichloroethene	ND	0.181		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
2.2-Dichloropropane	ND	0.181		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
Bromochloromethane	ND	0.181		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.0
Chloroform	ND	0.181		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
Carbon tetrachloride	ND	0.181		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
,1,1-Trichloroethane	ND	0.181		mg/kg dry	÷.	11/21/11 08:16	11/21/11 17:41	1.0
-Butanone	ND	1.81		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
		0.181		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.0
,1-Dichloropropene	ND							1.0
	ND	0.0363		mg/kg dry		11/21/11 08:16	11/21/11 17:41	
,2-Dichloroethane (EDC)	ND	0.181		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.0
richloroethene	ND	0.0453		mg/kg dry	¢ 	11/21/11 08:16	11/21/11 17:41	1.0
bibromomethane	ND	0.181		mg/kg dry	¢.	11/21/11 08:16	11/21/11 17:41	1.0
,2-Dichloropropane	ND	0.181		mg/kg dry	\$	11/21/11 08:16	11/21/11 17:41	1.0
romodichloromethane	ND	0.181		mg/kg dry	¥.	11/21/11 08:16	11/21/11 17:41	1.0
is-1,3-Dichloropropene	ND	0.181		mg/kg dry	\$ 	11/21/11 08:16	11/21/11 17:41	1.0
oluene	ND	0.181		mg/kg dry	\$	11/21/11 08:16	11/21/11 17:41	1.00
-Methyl-2-pentanone	ND	1.81	0.181	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.0
ans-1,3-Dichloropropene	ND	0.181	0.0363	mg/kg dry	\$	11/21/11 08:16	11/21/11 17:41	1.0
etrachloroethene	ND	0.0907	0.0181	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
,1,2-Trichloroethane	ND	0.181	0.0363	mg/kg dry	#	11/21/11 08:16	11/21/11 17:41	1.0
ibromochloromethane	ND	0.181	0.0363	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
,3-Dichloropropane	ND	0.181	0.0363	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
2-Dibromoethane	ND	0.181	0.0363	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
Hexanone .	ND	1.81	0.181	mg/kg dry	\$	11/21/11 08;16	11/21/11 17:41	1.0
thylbenzene	0.0199 J	0.181	0.0181	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.00
hlorobenzene	ND	0.181	0.0907	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
1,1,2-Tetrachloroethane	ND	0.181	0.0363	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.0
n,p-Xylene	0.0363 J	0.725	0.0181	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
-Xylene	0.0236 J	0.363	0.0181	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.0
tyrene	ND	0.181	0.0181	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.0
romoform	ND	0.181	0.0907	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.00
opropylbenzene	ND	0.181	0.0181	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.00
Propylbenzene	ND	0.181	0.0181	mg/kg dry	т. ф	11/21/11 08:16	11/21/11 17:41	1.00
1,2,2-Tetrachloroethane	ND	0.181		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.00
romobenzene	ND	0.181		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.00
3,5-Trimethylbenzene	ND	0.181		mg/kg dry	•••	11/21/11 08:16	11/21/11 17:41	1.00
Chlorotoluene	ND	0.181		mg/kg dry	ø	11/21/11 08:16	11/21/11 17:41	1.00
2,3-Trichloropropane	ND	0.181		mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.00
					··~~~			1.00
Chlorotoluene	ND ND	0.181 0.181		mg/kg dry mg/kg dry	¢	11/21/11 08:16 11/21/11 08:16	11/21/11 17:41 11/21/11 17:41	1.00
rt-Butylbenzene	NII 1	0 181	1111111111	marka arv	24	11/21/11 08°16	1/21/11 1/141	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0109

3

Client Sample ID: DP-31-10.0-111611 Date Collected: 11/16/11 09:20 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-07 Matrix: Soil

Percent Solids: 67

Analyte		Qualifier			Unit	D	Prepared	Analyzed	Dil F
sec-Butylbenzene	ND		0.181		mg/kg dry	<u> </u>	11/21/11 08:16	11/21/11 17:41	1.
p-lsopropyltoluene	ND	•••••	0.181	0.0127	mg/kg dry	₿	11/21/11 08:16	11/21/11 17:41	1.
1,3-Dichlorobenzene	ND		0.181	0.00725	mg/kg dry	₿	11/21/11 08:16	11/21/11 17:41	1.
1,4-Dichlorobenzene	ND		0.181	0.00907	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.
n-Butylbenzene	ND		0.181	0.0181	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.
1,2-Dichlorobenzene	ND		0.181	0.00907	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.
1,2-Dibromo-3-chloropropane	ND		0.907	0.181	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.
Hexachlorobutadiene	. ND		0.181	0.0725	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.
1,2,4-Trichlorobenzene	ND		0.181	0.0544	mg/kg dry	₽	11/21/11 08:16	11/21/11 17:41	1.
Naphthalene	ND		0.363	0.199	mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.
1,2,3-Trichlorobenzene	ND		0.181		mg/kg dry	¢	11/21/11 08:16	11/21/11 17:41	1.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Dibromofluoromethane	92.2		71.6 - 127				11/21/11 08:16	11/21/11 17:41	1.
Foluene-d8	122		80 - 129				11/21/11 08:16	11/21/11 17:41	1.
1-bromofluorobenzene	144		57.7 - 149				11/21/11 08:16	11/21/11 17:41	1.
Method: NWTPH-Dx - Semivolat	ile Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Diesel Range Hydrocarbons	ND		14.9		mg/kg dry	_ ☆	11/19/11 07:15	11/22/11 11:03	1.0
leavy Oil Range Hydrocarbons	ND		37.3		mg/kg dry	₽	11/19/11 07:15	11/22/11 11:03	1.
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fi
-FBP	59.3		50 - 150				11/19/11 07:15	11/22/11 11:03	1.0
-Terphenyl-d14	71.5		50 - 150				11/19/11 07:15	11/22/11 11:03	1.0
lethod: NWTPH-Gx - Gasoline I	Hydrocarbons b	y NWTPH-	Gx						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Basoline Range Hydrocarbons	ND		9.07		mg/kg dry	- x	11/20/11 07:08	11/20/11 19:35	1.0
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-BFB (FID)	100		50 - 150				11/20/11 07:08	11/20/11 19:35	1.0
/lethod: EPA 6010C - Total Meta			es Methods						
nalyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fa
ead	ND		2.24		mg/kg dry	— 🛱	12/05/11 17:43	12/06/11 12:46	1.0
ient Sample ID: DP-32-4.0-	-111611						Lab Samp	ple ID: SUK0 ⁴	109-0
te Collected: 11/16/11 09:50								Mat	rix: So
te Received: 11/18/11 15:30							•	Percent Solie	ds: 89
					,				
lethod: EPA 8260B - Volatile Or nalyte	•	nds by EP/ Qualifier	A Methods 5035 RL	5/8260B MDL	Unit	D	Prepared	Analyzed	Dil Fa

Dichlorodifluoromethane	ND	0.119	0.0597	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Chloromethane	ND	0.597	0.0597	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Vinyl chloride	ND	0.0716	0.0239	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Bromomethane	ND	0.597	0.119	mg/kg dry	Q.	11/21/11 08:16	11/21/11 18:09	1.00
Chloroethane	ND	0.119	0.0597	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Trichlorofluoromethane	ND	0.0358	0.0119	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
1,1-Dichloroethene	ND	0.119	0.0239	mg/kg dry	Þ.	11/21/11 08:16	11/21/11 18:09	1.00
Carbon disulfide	ND	0.119	0.0597	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-32-4.0-111611

Date Collected: 11/16/11 09:50 Date Received: 11/18/11 15:30

TestAmerica Job ID: SUK0109

Lab Sample ID: SUK0109-08 Matrix: Soil Percent Solids: 89.6

-4 5 6] 7 3

Analyte	Result Qualifier	RL _		Unit	— D	Prepared	Analyzed	Dil Fa
Methylene chloride	ND	1.19	0.358			11/21/11 08:16	11/21/11 18:09	1.0
Acetone	ND	2.39		mg/kg dry	\$	11/21/11 08:16	11/21/11 18:09	1.00
trans-1,2-Dichloroethene	ND	0.119		mg/kg dry	\$	11/21/11 08:16	11/21/11 18:09	1.00
Methyl tert-butyl ether	ND	0.119		mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
1,1-Dichloroethane	ND	0.119		mg/kg dry	\$	11/21/11 08:16	11/21/11 18:09	1.00
cis-1,2-Dichloroethene	ND	0.119	0.0239	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
2,2-Dichloropropane	ND	0.119	0.0597		\$	11/21/11 08:16	11/21/11 18:09	1.00
Bromochloromethane	ND	0.119		mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Chloroform	ND	0.119	0.0239	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Carbon tetrachloride	ND	0.119		mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
1,1,1-Trichloroethane	ND	0.119	0.0239	mg/kg dry	\$	11/21/11 08:16	11/21/11 18:09	1.00
2-Butanone	ND	1.19	0.119	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
1,1-Dichloropropene	ND .	0.119		mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Benzene	0.136	0.0239	0.00955	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
1,2-Dichloroethane (EDC)	ND	0.119	0.0597	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Trichloroethene	ND	0.0298	0.0239	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Dibromomethane	ND	0.119	0.0597	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
1,2-Dichloropropane	ND	0.119	0.0239	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Bromodichloromethane	ND	0.119	0.0239	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
cis-1,3-Dichloropropene	ND	0.119	0.0239	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Toluene	1.42	0.119	0.0119	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
4-Methyl-2-pentanone	1.50	1.19	0.119	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
trans-1,3-Dichloropropene	ND	0.119	0.0239	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Tetrachloroethene	ND	0.0597	0.0119	mg/kg dry	₿	11/21/11 08:16	11/21/11 18:09	1.00
1,1,2-Trichloroethane	ND	0.119	0.0239	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Dibromochloromethane	ND	0.119	0.0239	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
1,3-Dichloropropane	ND	0.119	0.0239	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
1,2-Dibromoethane	ND	0.119	0.0239	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
2-Hexanone	0.940 J	1.19	0.119	mg/kg dry	*	11/21/11 08:16	11/21/11 18:09	1.00
Ethylbenzene	0.940	0.119	0.0119	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Chlorobenzene	ND	0.119	0.0597	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
1,1,1,2-Tetrachloroethane	ND	0.119	0.0239	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
n,p-Xylene	4.64	0.477	0.0119	mg/kg dry	¢.	11/21/11 08:16	11/21/11 18:09	1.00
o-Xylene	1.82	0.239	0.0119	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Styrene	ND	0.119	0.0119	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Bromoform	ND	0.119	0.0597	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
sopropylbenzene	0.174	0.119	0.0119	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
n-Propylbenzene	0.757	0.119	0.0119	mg/kg dry		11/21/11 08:16	11/21/11 18:09	1.00
1,1,2,2-Tetrachloroethane	ND	0.119		mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Bromobenzene	ND	0.119		mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
1,3,5-Trimethylbenzene	2.16	0.119		mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
2-Chlorotoluene	ND	0.119		mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
1,2,3-Trichloropropane	ND	0.119		mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
I-Chiorotoluene	ND	0.119		mg/kg dry	· · · .	11/21/11 08:16	11/21/11 18:09	1.00
ert-Butylbenzene	ND	0.119		mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
I,2,4-Trimethylbenzene	6.82 E	0.119		mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
sec-Butylbenzene	0.146	0.119		mg/kg dry	· · · 🎝 · ·	11/21/11 08:16	11/21/11 18:09	1.00
o-lsopropyitoluene	0.148 0.107 J	0.119		mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
I,3-Dichlorobenzene	ND	0.119		mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
I,4-Dichlorobenzene	ND	0.119		mg/kg dry	···.	11/21/11 08:16	11/21/11 18:09	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0109

1

Client Sample ID: DP-32-4.0-111611 Date Collected: 11/16/11 09:50 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-08 Matrix: Soil

Percent Solids: 89.6

Method: EPA 8260B - Volatile O	rganic Compou	unds by EP	A Methods 503	5/8260B (Continued	i)			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	0.411		0.119	0.0119	mg/kg dry	₩ Å	11/21/11 08:16	11/21/11 18:09	1.00
1,2-Dichlorobenzene	ND		0.119	0.00597	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
1,2-Dibromo-3-chloropropane	ND		0.597	0.119	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Hexachlorobutadiene	ND		0.119	0.0477	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
1,2,4-Trichlorobenzene	ND		0.119	0.0358	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:09	1.00
Naphthalene	1.81		0.239	0.131	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
1,2,3-Trichlorobenzene	ND		0.119	0.0358	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:09	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	91.0		71.6 - 127				11/21/11 08:16	11/21/11 18:09	1.00
Toluene-d8	121		80 - 129				11/21/11 08:16	11/21/11 18:09	1.00
4-bromofluorobenzene	229	zx	57.7 - 149				11/21/11 08:16	11/21/11 18:09	1.00
Method: EPA 8011 - EDB by EP	A Mothod 8041								
Analyte	Result		RL	MDL	Unit	Ð	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.09		ug/kg dry	₽	11/21/11 08:22	11/23/11 23:19	1.00
1,2-Dibromo-3-chloropropane	ND		1.09		ug/kg dry	¢	11/21/11 08:22	11/23/11 23:19	1.00
Method: EPA 8082 - Polychlorina	ated Binhenvle		ethod 8082						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016		A-01 QSG	55.8		ug/kg dry	— -	11/21/11 11:11	11/23/11 09:22	1.00
PCB-1221	ND		55.8		ug/kg dry	. #	11/21/11 11:11	11/23/11 09:10	1.00
PCB-1232		A-01 QSG	55.8		ug/kg dry	#	11/21/11 11:11	11/23/11 09:10	1.00
PCB-1232	ND		55.8			ф	11/21/11 11:11	11/23/11 09:10	1.00
					ug/kg dry			11/23/11 09:10	1.00
PCB-1248	ND		55.8		ug/kg dry	Ψ	11/21/11 11:11	11/23/11 09:10	1.00
PCB-1254		A-01 QSG	55.8		ug/kg dry	····	11/21/11 11:11		1.00
PCB-1260		A-01 QSG	55.8		ug/kg dry		11/21/11 11:11	11/23/11 09:22	
PCB-1268	ND	A-01 QSG	55.8		ug/kg dry	*	11/21/11 11:11	11/23/11 09:10	1.00
Surrogate	%Recovery	-	Limits				Prepared	Analyzed	Dil Fac
тсх	94.8	QSG	27.9 - 154				11/21/11 11:11	11/23/11 09:22	1.00
Decachlorobiphenyl	81.5	QSG	35 - 157				11/21/11 11:11	11/23/11 09:22	1.00
Method: NWTPH-Dx - Semivolati	ie Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	443		112		mg/kg dry		11/21/11 09:35	11/22/11 09:41	10.0
Heavy Oil Range Hydrocarbons	2380		279		mg/kg dry	₽	11/21/11 09:35	11/22/11 09:41	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP			50 - 150				11/21/11 09:35	11/22/11 09:41	10.0
p-Terphenyl-d14	87.1		50 - 150				11/21/11 09:35	11/22/11 09:41	10.0
		droorbor							
Method: NWTPH VPH - Purgeabl ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.253		0.0545		mg/kg dry	¤	11/16/11 09:50	11/26/11 13:36	50.0
Ethylbenzene	0.754		0.0545		mg/kg dry	₽	11/16/11 09:50	11/26/11 13:36	50.0
Methyl tert-Butyl Ether	ND		0.545		mg/kg dry	₽	11/16/11 09:50	11/26/11 13:36	50.0
Naphthalene	1.56		0.272	• • • • • • • • • • • •	mg/kg dry	¢.	11/16/11 09:50	11/26/11 13:36	50.0
Toluene	1.46		0.0545		mg/kg dry	₽	11/16/11 09:50	11/26/11 13:36	50.0
(ylenes, total	5.59		0.163		mg/kg dry	₽	11/16/11 09:50	11/26/11 13:36	50.0
C5 - C6 Aliphatic Hydrocarbons	5.59 ND	•••••	5.45		mg/kg dry		11/16/11 09:50	11/26/11 13:36	50.0
>C6 to C8 Ali	ND		5.45		mg/kg dry	₽	11/16/11 09:50	11/26/11 13:36	50.0

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0109

Client Sample ID: DP-32-4.0-111611 Date Collected: 11/16/11 09:50

Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-08 Matrix: Soil

Percent Solids: 89.6

1

4:

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
>C8 to C10 Ali	9.99		5.45		mg/kg dry	¤ ⊽	11/16/11 09:50	11/26/11 13:36	50
>C10 to C12 Ali	26.1		5.45		mg/kg dry	\$	11/16/11 09:50	11/26/11 13:36	50
>C8 to C10 Aro	16.4		5.45		mg/kg dry	¢	11/16/11 09:50	11/26/11 13:36	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Ana/yzed	Dil F
2,5-Dibromotoluene (FID)	110		60 - 140				11/16/11 09:50	11/26/11 13:36	50
2,5-Dibromotoluene (PID)	. 117		60 - 140				11/16/11 09:50	11/26/11 13:36	50
Method: NWTPH VPH - Purgea	ible Petroleum H	ydrocarbon	s - RE1						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
C12 to C13 Aro	6.37		5.45		mg/kg dry	<u>\$</u>	11/16/11 09:50	11/28/11 17:54	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2,5-Dibromotoluene (PID)	113		60 - 140				11/16/11 09:50	11/28/11 17:54	50
Method: NWTPH VPH - Purgea					11-24		Duranted	Analyzad	Dil F
Analyte		Qualifier		MDL	Unit	- D	Prepared 11/16/11 09:50	Analyzed 11/28/11 17:21	2
C10 to C12 Aro	38.0		27.2		mg/kg dry	*	11/16/11 09:50	11/28/11 17:21	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
,5-Dibromotoluene (PID)	102		60 - 140				11/16/11 09:50	11/28/11 17:21	2
Method: NWTPH-Gx - Gasoline		-							
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil F
Sasoline Range Hydrocarbons	52.9		5.97		mg/kg dry	- x	11/20/11 07:08	11/20/11 21:14	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
I-BFB (FID)	163	ZX	50 - 150				11/20/11 07:08	11/20/11 21:14	1.
Method: NWTPH EPH - Extract	able Petroleum I	łydrocarbo	ns						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
C8-C10 Aliphatics	ND		5.54		mg/kg dry	<u>\$</u>	11/26/11 06:55	11/29/11 19:45	1.0
8-C10 Aromatics	ND		5.54		mg/kg dry	\$	11/26/11 06:55	11/29/11 20:16	1.0
C10 to C12 Ali	ND		5.54		mg/kg dry	\$	11/26/11 06:55	11/29/11 19:45	1.
C10 to C12 Aro	ND		5.54		mg/kg dry	\$	11/26/11 06:55	11/29/11 20:16	1.0
C12 to C16 Ali	ND		5.54		mg/kg dry	₽	11/26/11 06:55	11/29/11 19:45	1.
C12 to C16 Aro	ND		5.54		mg/kg dry	₿	11/26/11 06:55	11/29/11 20:16	1.0
C16 to C21 Ali	13.5		5.54		mg/kg dry	¢	11/26/11 06:55	11/29/11 19:45	1.0
C16 to C21 Aro	14.7		5.54		mg/kg dry	\$	11/26/11 06:55	11/29/11 20:16	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Terphenyl	76		60 - 140				11/26/11 06:55	11/29/11 20:16	1.0
-Fluorobiphenyl	114		60 - 140				11/26/11 06:55	11/29/11 20:16	1.0
2-Bromonaphthalene	130		60 - 140				11/26/11 06:55	11/29/11 20:16	1.0
l-Chlorooctadecane	53	ZX	60 - 140				11/26/11 06:55	11/29/11 19:45	1.0
Method: NWTPH EPH - Extract					11-14		Drongrad	Apply-of	
Analyte		Qualifier	RL	MDL		- 0	Prepared	Analyzed	Dil Fa
C21 to C34 Ali	219		55.4		mg/kg dry	12	11/26/11 06:55	12/01/11 08:07	10.
						يە.		10/0/11/	
>C21 to C34 Aro	256		55.4		mg/kg dry	¢	11/26/11 06:55	12/01/11 09:00	10

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Date Collected: 11/16/11 09:50

Date Received: 11/18/11 15:30

Client Sample ID: DP-32-4.0-111611

TestAmerica Job ID: SUK0109

Lab Sample ID: SUK0109-08 Matrix: Soil Percent Solids: 89.6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead		1.67		mg/kg dry	₽	12/05/11 17:43	12/06/11 12:50	1.00
Method: SW-846 - General Chem					_			
Method: SW-846 - General Chem Analyte	nistry Parameters Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: DP-33-11161 Date Collected: 11/16/11 11:15

Date Received: 11/18/11 15:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane		10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Chloromethane	ND	30.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Vinyl chloride	ND	2.00	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Bromomethane	ND	50.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Chloroethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Trichlorofluoromethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,1-Dichloroethene	ND	10.0	ug/l	•••••	11/21/11 15:46	11/22/11 16:39	10.0
Carbon disulfide	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Methylene chloride	ND	100	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Acetone	ND	250	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
rans-1,2-Dichloroethene	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Methyl tert-butyl ether	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,1-Dichloroethane	ND	10.0	ug/i		11/21/11 15:46	11/22/11 16:39	10.0
cis-1,2-Dichloroethene	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
2,2-Dichloropropane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Bromochloromethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Chloroform	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Carbon tetrachloride	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,1,1-Trichloroethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
2-Butanone	ND	100	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
I,1-Dichloropropene	• ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Benzene	2.80	2.00	ug/l	•••••	11/21/11 15:46	11/22/11 16:39	10.0
1,2-Dichloroethane (EDC)	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Trichloroethene	ND	10.0	ug/i		11/21/11 15:46	11/22/11 16:39	10.0
Dibromomethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,2-Dichloropropane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Bromodichloromethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
is-1,3-Dichloropropene	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Foluene	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
I-Methyl-2-pentanone	ND	100	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
rans-1,3-Dichloropropene	ND	10.0	ug/i		11/21/11 15:46	11/22/11 16:39	10.0
Fetrachloroethene	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,1,2-Trichloroethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Dibromochloromethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
I,3-Dichloropropane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
I,2-Dibromoethane	ND	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
2-Hexanone	ND	100	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Ethylbenzene	242	10.0	ug/l		11/21/11 15:46	11/22/11 16:39	10.0

9

Matrix: Water

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-33-111611

Date Collected: 11/16/11 11:15 Date Received: 11/18/11 15:30

Method: EPA 8260B - Volatile Orga	nic Compou	unds bv EPA	Method 826	0B (Contir	nued)				
Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		10.0		ug/i		11/21/11 15:46	11/22/11 16:39	10.0
1,1,1,2-Tetrachloroethane	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
m,p-Xylene	830		20.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
o-Xylene	190		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Styrene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Bromoform	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Isopropylbenzene	34.0		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
n-Propylbenzene	141		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,1,2,2-Tetrachloroethane	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Bromobenzene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,3,5-Trimethylbenzene	269		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
2-Chlorotoluene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,2,3-Trichloropropane	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
4-Chlorotoluene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
tert-Butylbenzene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,2,4-Trimethylbenzene	988		100		ug/l		11/21/11 15:46	11/22/11 17:07	100
sec-Butylbenzene	ND	•••••	10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
p-lsopropyltoluene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,3-Dichlorobenzene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,4-Dichlorobenzene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
n-Butylbenzene	30.3		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,2-Dichlorobenzene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,2-Dibromo-3-chloropropane	ND		50.0	•••••	ug/l	• • • • • • • • • • • •	11/21/11 15:46	11/22/11 16:39	10.0
Hexachlorobutadiene	ND		20.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,2,4-Trichlorobenzene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Naphthalene	88.9		20.0	•••••	ug/l		11/21/11 15:46	11/22/11 16:39	10.0
1,2,3-Trichlorobenzene	ND		10.0		ug/l		11/21/11 15:46	11/22/11 16:39	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	87.6		66.5 - 145				11/21/11 15:46	11/22/11 16:39	10.0
Toluene-d8	104		75.4 - 120				11/21/11 15:46	11/22/11 16:39	10.0
4-bromofluorobenzene	106		68.4 - 123				11/21/11 15:46	11/22/11 16:39	10.0
_									
Method: EPA 8011 - EDB by EPA N									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/l		11/23/11 06:54	11/23/11 13:32	1.00
1,2-Dibromo-3-chloropropane	ND		0.0100		ug/l		11/23/11 06:54	11/23/11 13:32	1.00
- Methods NNATDLI Due Comissionistics		we do ate hor A							
Method: NWTPH-Dx - Semivolatile I Analyte		Qualifier	RL	MDL	linit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	2.27	Guainer	0.238		mg/l		11/21/11 09:38	11/23/11 14:31	1.00
Heavy Oil Range Hydrocarbons	ND		0.200		mg/i		11/21/11 09:38	11/23/11 14:31	1.00
Houry On Mange Hydrocarbons			5.470		.ng/i			,	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP -	85.9		50 - 150				11/21/11 09:38	11/23/11 14:31	1.00
p-Terphenyl-d14	85.3		50 - 150				11/21/11 09:38	11/23/11 14:31	1.00
_									
Method: NWTPH-Gx - Gasoline Hyd	rocarbons b	y NWTPH-G	ix						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	6720		1000		ug/l		11/21/11 08:18	11/22/11 09:48	10.0

Matrix: Water

Lab Sample ID: SUK0109-11

3

TestAmerica Job ID: SUK0109

Lab Sample ID: SUK0109-11

Client Sample ID: DP-33-111611 Date Collected: 11/16/11 11:15

Date Received: 11/18/11 15:30

Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fa
4-BFB (FID)	126	37.9 - 162				11/21/11 08:18	11/22/11 09:48	10.
Method: EPA 6010C - Total Met	als by EPA 6010/70	000 Series Methods						
Analyte	Result Qu	ualifier RL	MDĽ	Unit	D	Prepared	Analyzed	Dil Fa
Lead	1.82 B1	0.0300		mg/l		12/05/11 17:45	12/06/11 08:36	1.0
lient Sample ID: DP-34-6.0	0-111611					Lab Sam	ple ID: SUK0	109-12
ate Collected: 11/16/11 11:25							Mat	rix: Soi
Date Received: 11/18/11 15:30							Percent Sc	lids: 7
Method: EPA 8260B - Volatile O	reanic Compound	a by EDA Mathada 50	25/02600					
Analyte	Result Qu	-		Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND	0.140	0.0700	mg/kg dry	— \	11/21/11 08:16	11/21/11 18:37	1.0
Chloromethane	ND	0.700	0.0700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
Vinyl chloride	ND	0.0840	0.0280	mg/kg dry	‡	11/21/11 08:16	11/21/11 18:37	1.0
Bromomethane	ND	0.700	0.140	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.0
Chloroethane	ND	0.140	0.0700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
Trichlorofluoromethane	ND	0.0420	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
1,1-Dichloroethene	ND	0.140	0.0280	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.0
Carbon disulfide	ND	0.140	0.0700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
Methylene chloride	ND	1.40	0.420	mg/kg dry	\$	11/21/11 08:16	11/21/11 18:37	1.0
Acetone	ND	2.80	1.32	mg/kg dry	\$	11/21/11 08:16	11/21/11 18:37	1.00
trans-1,2-Dichloroethene	ND	0.140	0.0280	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
Methyl tert-butyl ether	ND	0.140	0.0140	mg/kg dry	\$	11/21/11 08:16	11/21/11 18:37	1.00
1,1-Dichloroethane	ND	0.140	0.0280	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.00
cis-1,2-Dichloroethene	ND	0.140	0.0280	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
2,2-Dichloropropane	ND	0.140	0.0700	mg/kg dry	\$	11/21/11 08:16	11/21/11 18:37	1.00
Bromochloromethane	ND	0.140	0.0280	mg/kg dry	¥.	11/21/11 08:16	11/21/11 18:37	1.00
Chloroform	ND	0.140	0.0280	mg/kg dry	\$	11/21/11 08:16	11/21/11 18:37	1.00
Carbon tetrachloride	ND	0.140	0.0140	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.00
1,1,1-Trichloroethane	ND	0.140	0.0280	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.00
2-Butanone	ND	1.40	0.140	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
1,1-Dichloropropene	ND	0.140	0.0280	mg/kg dry	₽	11/21/11 08:16	1,1/21/11 18:37	1.00
Benzene	ND	0.0280	0.0112	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.00
1,2-Dichloroethane (EDC)	ND	0.140	0.0700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00

	. ,							
	Trichloroethene	ND	0.0350	0.0280 mg/kg	gdry 🌣	11/21/11 08:16	1 1/2 1/11 18:37	1.00
	Dibromomethane	ND	0.140	0.0700 mg/k	g dry 🌣	11/21/11 08:16	11/21/11 18:37	1.00
	1,2-Dichloropropane	ND	0.140	0.0280 mg/kg	g dry 🌣	11/21/11 08:16	11/2 1 /11 18:37	1.00
	Bromodichloromethane	ND	0.140	0.0280 mg/kg	g dry 🌣	11/2 1 /11 08:16	11/21/11 18:37	1.00
	cis-1,3-Dichloropropene	ND	0.140 (0.0280 mg/kg	g dry 🌼	11/21/11 08:16	11/21/11 18:37	1.00
	Toluene	ND	0.140	0.0140 mg/kg	gdry [¢]	11/21/11 08:16	11/21/11 18:37	1.00
	4-Methyl-2-pentanone	0.956 J	1.40	0.140 mg/kg	gdny ¢	11/21/11 08:16	11/21/11 18:37	1.00
ļ	trans-1,3-Dichloropropene	ND	0.140 (0.0280 mg/kg	gdry ¢	11/21/11 08:16	11/21/11 18:37	1.00
	Tetrachloroethene	ND	0.0700	0.0140 mg/kg	jdry ¤	11/21/11 08:16	11/21/11 18:37	1.00
	1,1,2-Trichloroethane	ND	0.140	0.0280 mg/kg	gdry ₿	11/21/11 08:16	11/21/11 18:37	1.00
	Dibromochloromethane	ND	0.140 (0.0280 mg/kg	adry 🌣	11/21/11 08:16	11/21/11 18:37	1.00
l	1,3-Dichloropropane	ND	0.140	0.0280 mg/kg	adry 🌣	11/21/11 08:16	11/2 1 /11 18:37	1.00
	1,2-Dibromoethane	ND	0.140).0280 mg/kg	a)dry ₿	11/21/11 08:1 6	11/21/11 18:37	1.00
	2-Hexanone	ND	1.40	0.140 mg/kg	adry 🌣	11/21/11 08:16	11/21/11 18:37	1.00
	Ethylbenzene	ND	0.140 0).01 40 mg/k g	adry ¤	11/21/11 08:16	11/21/11 18:37	1.00
1								

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-34-6.0-111611 Date Collected: 11/16/11 11:25

Date Received: 11/18/11 15:30

TestAmerica	.lob	ID:	SUK0109
1030 41101104	000	ю.	00100100

1

9

3

公

5

6 75 8

Ő

Lab Sample ID: SUK0109-12 Matrix: Soil Percent Solids: 77

Method: EPA 8260B - Volatile Analyte	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chlorobenzene	ND		0.140	0.0700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
1,1,1,2-Tetrachloroethane	ND		0.140	0.0280	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
m,p-Xylene	0.0378	J	0.560	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
o-Xylene	0.0350	J	0.280	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
Styrene	ND		0.140	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
Bromoform	ND		0.140	0.0700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
Isopropylbenzene	ND		0.140	0.0140	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.0
n-Propylbenzene	ND		0.140	0.0140	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.0
1,1,2,2-Tetrachloroethane	ND		0.140	0.0280	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.0
Bromobenzene	ND		0.140	0.0140	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.00
1,3,5-Trimethylbenzene	0.0448	J	0.140	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
2-Chiorotoluene	ND		0.140	0.00700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
1,2,3-Trichloropropane	ND		0.140	0.0280	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
4-Chlorotoluene	ND		0.140	0.0140	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.00
tert-Butylbenzene	ND		0.140	0.00700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
1,2,4-Trimethylbenzene	0.0854	J	0.140	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
sec-Butylbenzene	ND	· · · · · · · · · ·	0.140	0.00980	mg/kg dry	₩.	11/21/11 08:16	11/21/11 18:37	1.00
p-lsopropyltoluene	ND		0.140	0.00980	mg/kg dry	¢	11/21/11 08:16	11/21/11 18:37	1.00
1,3-Dichlorobenzene	ND		0.140	0.00560	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
1,4-Dichlorobenzene	ND	•••••	0.140	0.00700	mg/kg dry	¢.	11/21/11 08:16	11/21/11 18:37	1.00
n-Butylbenzene	ND		0.140	0.0140	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
1,2-Dichlorobenzene	ND		0.140	0.00700	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
1,2-Dibromo-3-chloropropane	ND		0.700	0.140	mg/kg dry	••••	11/21/11 08:16	11/21/11 18:37	1.00
Hexachlorobutadiene	ND	÷	0.140		mg/kg dry	ø	11/21/11 08:16	11/21/11 18:37	1.00
1,2,4-Trichlorobenzene	ND		0.140	0.0420	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
Naphthalene	0.192	J	0.280	0.154	mg/kg dry	····	11/21/11 08:16	11/21/11 18:37	1.00
1,2,3-Trichlorobenzene	ND		0.140	0.0420	mg/kg dry	₽	11/21/11 08:16	11/21/11 18:37	1.00
Surrogate	%Recovery	Qua/ifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	93.6		71.6 - 127				11/21/11 08:16	11/21/11 18:37	1.00
Toluene-d8	117		80 - 129				11/21/11 08:16	11/21/11 18:37	1.00
4-bromofluorobenzene	166	ZX	57.7 - 149				11/21/11 08:16	11/21/11 18:37	1.00
Method: EPA 8011 - EDB by E	DA Mothod 8011		•						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane			1.28		ug/kg dry	- -	11/21/11 08:22	11/23/11 18:33	1.00
1,2-Dibromo-3-chloropropane	ND		1.28		ug/kg dry	¢	11/21/11 08:22	11/23/11 18:33	1.00
Method: EPA 8082 - Polychlor	insted Binhenvle		ethod 8082						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016			64.9		ug/kg dry	- -	11/21/11 11:11	11/23/11 09:34	1.00
PCB-1221	ND		64.9		ug/kg dry	₽	11/21/11 11:11	11/23/11 09:22	1.00
PCB-1232	ND		64.9		ug/kg dry	₽	11/21/11 11:11	11/23/11 09:22	1.00
PCB-1242	ND		64.9		ug/kg dry		11/21/11 11:11	11/23/11 09:22	1.00
PCB-1242	ND		64.9		ug/kg dry	ø	11/21/11 11:11	11/23/11 09:22	1.00
PCB-1254	ND		64.9		ug/kg dry ug/kg dry	₽	11/21/11 11:11	11/23/11 09:22	1.00
						· · · . \$	11/21/11 11:11	11/23/11 09:34	1.00
PCB-1260 PCB-1268	ND ND		64.9 64.9		ug/kg dry ug/kg dry	₽	11/21/11 11:11	11/23/11 09:34	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
тсх	44.5		27.9 - 154				11/21/11 11:11	11/23/11 09:34	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0109

Client Sample ID: DP-34-6.0-111611 Date Collected: 11/16/11 11:25 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-12 Matrix: Soil Percent Solids: 77

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Decachlorobiphenyl	72,2		35 - 157				11/21/11 11:11	11/23/11 09:34	1.0
Method: NWTPH-Dx - Semivola				MDI	11-14		Despected	Anolyzad	
Analyte		Qualifier	RL	MDL	Unit		Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	ND		13.0		mg/kg dry	- \$	11/21/11 09:35	11/22/11 01:22	1.0
Heavy Oil Range Hydrocarbons	ND		32.5		mg/kg dry	¢	11/21/11 09:35	11/22/11 01:22	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-FBP	92.4		50 - 150				11/21/11 09:35	11/22/11 01:22	1.0
p-Terphenyl-d14	97.1		50 - 150				11/21/11 09:35	11/22/11 01:22	1.0
Method: NWTPH-Gx - Gasoline	Hydrocarbone b		34						
		-			Unit	D	Prepared	Analyzed	Dil Fa
	Result	Qualifier	RL	MDL	Onit		rieparea		
Analyte Gasoline Range Hydrocarbons	Result ND	Qualifier	RL 7.00	MDL	mg/kg dry	- 2	11/20/11 07:08	11/20/11 21:38	
Analyte Gasoline Range Hydrocarbons				MDL		_	<u> </u>		
Analyte	ND		7.00	MDL		_	11/20/11 07:08	11/20/11 21:38	1.0
Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	ND %Recovery 103		7.00	MDL		_	11/20/11 07:08 Prepared 11/20/11 07:08	11/20/11 21:38 Analyzed 11/20/11 21:38	1.0 Dil Fa 1.0
Analyte Gasoline Range Hydrocarbons Surrogate	ND %Recovery 103		7.00	MDL		_	11/20/11 07:08 Prepared 11/20/11 07:08	11/20/11 21:38 Analyzed	1.0 Dil Fa 1.0 109-1

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND	1.00	ug/i	11/20/11 07:12	11/20/11 18:03	1.00
Chloromethane	ND	3.00	ug/i	11/20/11 07:12	11/20/11 18:03	1.00
Vinyl chloride	ND	0.200	ug/i	11/20/11 07:12	11/20/11 18:03	1.00
Bromomethane	ND	5.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Chloroethane	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Trichlorofluoromethane	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
1,1-Dichloroethene	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Carbon disulfide	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Methylene chloride	ND	10.0	ug/i	11/20/11 07:12	11/20/11 18:03	1.00
Acetone	ND	25.0	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
trans-1,2-Dichloroethene	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Methyl tert-butyl ether	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
1,1-Dichloroethane	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
cis-1,2-Dichloroethene	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
2,2-Dichloropropane	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Bromochloromethane	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Chloroform	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Carbon tetrachloride	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
1,1,1-Trichloroethane	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
2-Butanone	ND	10.0	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
1,1-Dichloropropene	ND	1.00	ug/i	11/20/11 07:12	11/20/11 18:03	1.00
Benzene	ND	0.200	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
1,2-Dichloroethane (EDC)	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Trichloroethene	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
Dibromomethane	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00
1,2-Dichloropropane	ND	1.00	ug/l	11/20/11 07:12	11/20/11 18:03	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Client Sample ID: DP-34-111611

Date Collected: 11/16/11 12:10 Date Received: 11/18/11 15:30

Analyte	Result	t Qualifier	RL	MDL	. Unit	D	Prepared	Analyzed	Dil Fa
Bromodichloromethane		<u> </u>	1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
cis-1,3-Dichloropropene	NC)	1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
Toluene	NC)	1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
4-Methyl-2-pentanone	NC)	10.0		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
trans-1,3-Dichloropropene	ND		1.00		ug/l	•••••	11/20/11 07:12	11/20/11 18:03	1.0
Tetrachloroethene	ND)	1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
1,1,2-Trichloroethane	ND	1	1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
Dibromochloromethane	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
1,3-Dichloropropane	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
1,2-Dibromoethane	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
2-Hexanone	ND		10.0		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
Ethylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
Chlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
1,1,1,2-Tetrachloroethane	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
m,p-Xylene	ND		2.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
p-Xylene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
Styrene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
Bromoform	ND		1.00				11/20/11 07:12	11/20/11 18:03	1.0
sopropylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
					ug/l	• • • • • • • • •	11/20/11 07:12	11/20/11 18:03	1.0
n-Propylbenzene	ND		1.00		ug/l				
1,1,2,2-Tetrachloroethane	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
Bromobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
1,3,5-Trimethylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.0
2-Chlorotoluene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
I,2,3-Trichloropropane	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
I-Chlorotoluene	ND		1.00		ug/i		11/20/11 07:12	11/20/11 18:03	1.00
ert-Butylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
,2,4-Trimethylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
ec-Butylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
-Isopropyitoluene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
1,3-Dichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
,4-Dichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
n-Butylbenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
l,2-Dichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
,2-Dibromo-3-chloropropane	ND		5.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
lexachlorobutadiene	ND		2.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
,2,4-Trichlorobenzene	ND		1.00		ug/l		11/20/11 07:12	11/20/11 18:03	1.00
laphthalene	ND		2.00		ug/l	• • • • • • • • • •	11/20/11 07:12	11/20/11 18:03	1.00
,2,3-Trichlorobenzene	ND		1.00		ug/i		11/20/11 07:12	11/20/11 18:03	1.00
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	95.4		66.5 - 145				11/20/11 07:12	11/20/11 18:03	1.00
Foluene-d8	96.4		75.4 - 120				11/20/11 07:12	11/20/11 18:03	1.00
l-bromofluorobenzene	96.4		68.4 - 123				11/20/11 07:12	11/20/11 18:03	1.00
lethod: EPA 8011 - EDB by EF	PA Method 8011								
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0100		ug/l		11/19/11 07:17	11/19/11 15:27	1.00
,2-Dibromo-3-chloropropane	ND		0.0100		ug/l		11/19/11 07:17	11/19/11 15:27	1.00

Matrix: Water

Lab Sample ID: SUK0109-13

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Date Received: 11/18/11 15:30

TestAmerica Job ID: SUK0109

Client Sample ID: DP-34-111611 Date Collected: 11/16/11 12:10

Method: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082

Lab Sample ID: SUK0109-13

Matrix: Water 4 5 6 7, 8

1

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.108		ug/i		12/02/11 13:45	12/05/11 12:48	1.00
PCB-1221	ND		0.108		ug/l		12/02/11 13:45	12/05/11 12:35	1.00
PCB-1232	ND		0.108		ug/l		12/02/11 13:45	12/05/11 12:35	1.00
PCB-1242	ND		0.108		ug/l		12/02/11 13:45	12/05/11 12:35	1.00
PCB-1248	ND		0.108		ug/l		12/02/11 13:45	12/05/11 12:35	1.00
PCB-1254	ND		0.108		ug/l		12/02/11 13:45	12/05/11 12:35	1.00
PCB-1260	ND		0.108		ug/l		12/02/11 13:45	12/05/11 12:48	1.00
PCB-1268	ND		0.108		ug/l		12/02/11 13:45	12/05/11 12:35	1.00
Surrogate	%Recovery	Qua/ifier	Limits				Prepared	Ana/yzed	Di/ Fac
TCX	53.9		40 - 137				12/02/11 13:45	12/05/11 12:48	1.00
Decachlorobiphenyl	75.3		40 - 124				12/02/11 13:45	12/05/11 12:48	1.00
Method: NWTPH-Dx - Semivolatile	Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		0.238		mg/l		11/21/11 09:38	11/23/11 14:48	1.00
Heavy Oil Range Hydrocarbons	ND		0.476		mg/l		11/21/11 09:38	11/23/11 14:48	1.00
Surrogate	%Recovery	Qua/ifier	Limits				Prepared	Ana/yzed	Di/ Fac
2-FBP	79.3		50 - 150				11/21/11 09:38	11/23/11 14:48	1.00
	81.2		50 - 150				11/21/11 09:38	11/23/11 14:48	1.00
p-Terphenyl-d14	01							11/20/11 14.40	1.00
		oy NWTPH-	Gx					11/20/11 14.40	1.00
Method: NWTPH-Gx - Gasoline Hy	drocarbons l	oy NWTPH- Qualifier	-Gx	MDL	Unit	D	Prepared	Analyzed	Díl Fac
Method: NWTPH-Gx - Gasoline Hy Analyte	drocarbons l	-		MDL	Unit ug/l	<u> </u>	Prepared 11/21/11 08:18		
Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons	drocarbons I Result	Qualifier	RL	MDL		D		Analyzed	Díl Fac
Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate	drocarbons I Result ND	Qualifier	RL	MDL		<u>D</u>	11/21/11 08:18	Analyzed 11/21/11 12:55	Dil Fac
Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	drocarbons l Result ND %Recovery 98.7	Qualifier Qualifier	RL 100 Limits 37.9 - 162	MDL		D	11/21/11 08:18 Prepared	Analyzed 11/21/11 12:55 Analyzed	Dil Fac 1.00 Dil Fac
p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Hy Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: EPA 6010C - Total Metals Analyte	drocarbons le Result ND %Recovery 98.7 by EPA 6010	Qualifier Qualifier	RL 100 Limits 37.9 - 162			D	11/21/11 08:18 Prepared	Analyzed 11/21/11 12:55 Analyzed	Dil Fac 1.00 Dil Fac

Date Collected: 11/16/11 12:25 Date Received: 11/18/11 15:30

Matrix: Soil

Percent Solids: 88.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.121	0.0605	mg/kg dry	\\\\	11/21/11 15:42	11/22/11 10:46	1.00
Chloromethane	ND		0.605	0.0605	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Vinyl chloride	ND		0.0726	0.0242	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Bromomethane	ND		0.605	0.121	mg/kg dry	₿	11/21/11 15:42	11/22/11 10:46	1.00
Chloroethane	ND		0.121	0.0605	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Trichlorofluoromethane	ND		0.0363	0.0121	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
1,1-Dichloroethene	0.0448	J	0.121	0.0242	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Carbon disulfide	ND		0.121	0.0605	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Methylene chloride	ND		1.21	0.363	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Acetone	ND		2.42	1.14	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
trans-1,2-Dichloroethene	ND		0.121	0.0242	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Methyl tert-butyl ether	ND		0.121	0.0121	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0109

Client Sample ID: DP-35-4.0-111611 Date Collected: 11/16/11 12:25 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-14 Matrix: Soil

Percent Solids: 88.5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1-Dichloroethane	ND	0.121	0.0242	mg/kg dry	<u>\$</u>	11/21/11 15:42	11/22/11 10:46	1.0
cis-1,2-Dichloroethene	ND	0.121	0.0242	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.0
2,2-Dichloropropane	ND	0.121	0.0605	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.0
Bromochloromethane	ND	0.121	0.0242	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.0
Chloroform	ND	0.121	0.0242	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.0
Carbon tetrachloride	ND	0.121	0.0121	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.0
1,1,1-Trichloroethane	ND	0.121	0.0242	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.0
2-Butanone	ND	1.21	0.121	mg/kg dry	₿	11/21/11 15:42	11/22/11 10:46	1.0
1,1-Dichloropropene	ND	0.121	0.0242	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.0
Benzene	0.0775	0.0242	0.00968	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.0
1,2-Dichloroethane (EDC)	ND	0.121	0.0605	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.0
Trichloroethene	0.0508	0.0303	0.0242	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Dibromomethane	ND	0.121	0.0605	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
1,2-Dichloropropane	ND	0.121	0.0242	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Bromodichloromethane	ND	0.121	0.0242	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
cis-1,3-Dichloropropene	ND	0.121	0.0242	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
Toluene	0.0787 J	0.121	0.0121	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
4-Methyl-2-pentanone	ND	1.21	0.121	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
rans-1,3-Dichloropropene	ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
Tetrachloroethene	ND	0.0605	0.0121	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
1,1,2-Trichloroethane	ND	0.121	0.0242	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Dibromochloromethane	ND	0.121		mg/kg dry	≱	11/21/11 15:42	11/22/11 10:46	1.00
1,3-Dichloropropane	ND	0.121		mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
I,2-Dibromoethane	ND	0.121		mg/kg dry	ø	11/21/11 15:42	11/22/11 10:46	1.00
2-Hexanone	ND	1.21		mg/kg dry	····à	11/21/11 15:42	11/22/11 10:46	1.00
Ethylbenzene	0.0363 J	0.121		mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
Chlorobenzene	ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
I,1,1,2-Tetrachloroethane	ND	0.121		mg/kg dry	· · · p · ·	11/21/11 15:42	11/22/11 10:46	1.00
n,p-Xylene	0.122 J	0.484		mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
o-Xylene	0.0508 J	0.242		mg/kg dry		11/21/11 15:42	11/22/11 10:46	1.00
Styrene	ND	0.121		mg/kg dry		11/21/11 15:42	11/22/11 10:46	1.00
Bromoform	ND	0.121		mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
sopropylbenzene	. ND	0.121		mg/kg dry	\$	11/21/11 15:42	11/22/11 10:46	1.00
n-Propylbenzene	0.0266 J	0.121		mg/kg dry	ф	11/21/11 15:42	11/22/11 10:46	1.00
1,1,2,2-Tetrachloroethane	0.0288 J ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
Bromobenzene	ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1,00
I,3,5-Trimethylbenzene	0.0399 J	0.121		mg/kg dry	····	11/21/11 15:42	11/22/11 10:46	1.00
2-Chlorotoluene	0.0399 J ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
,2,3-Trichloropropane					¢			
	ND	0.121		mg/kg dry		11/21/11 15:42	11/22/11 10:46	1.00
I-Chlorotoluene	ND	0.121		mg/kg dry mg/kg day	¢ n	11/21/11 15:42	11/22/11 10:46	1.00
ert-Butylbenzene	ND	0.121		mg/kg dry	¢ n	11/21/11 15:42	11/22/11 10:46	1.00
,2,4-Trimethylbenzene	0.0629 J	0.121		mg/kg dry	¢ 	11/21/11 15:42	11/22/11 10:46	1.00
ec-Butylbenzene	ND	0.121		mg/kg dry	¢ ×	11/21/11 15:42	11/22/11 10:46	1.00
-lsopropyltoluene	ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
,3-Dichlorobenzene	ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
,4-Dichlorobenzene	ND	0.121		mg/kg dry		11/21/11 15:42	11/22/11 10:46	1.00
-Butylbenzene	ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
,2-Dichlorobenzene	ND	0.121		mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.00
,2-Dibromo-3-chloropropane	ND	0.605		mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00
lexachlorobutadiene	ND	0.121	0.0484	mg/kg dry	₽	11/21/11 15:42	11/22/11 10:46	1.00

1

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

TestAmerica Job ID: SUK0109

僵

.//

9

Client Sample ID: DP-35-4.0-111611 Date Collected: 11/16/11 12:25 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-14 Matrix: Soil

Percent Solids: 88.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND		0.121	0.0363	mg/kg dry	₩	11/21/11 15:42	11/22/11 10:46	1.0
Naphthalene	ND		0.242	0.133	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.0
1,2,3-Trichlorobenzene	ND		0.121	0.0363	mg/kg dry	¢	11/21/11 15:42	11/22/11 10:46	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	89.8		71.6 - 127				11/21/11 15:42	11/22/11 10:46	1.0
Toluene-d8	114		80 - 129				11/21/11 15:42	11/22/11 10:46	1.0
4-bromofluorobenzene	119		57.7 - 149				11/21/11 15:42	11/22/11 10:46	1.0
Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.12		ug/kg dry	_ <u>¤</u>	11/21/11 08:22	11/23/11 23:32	1.0
1,2-Dibromo-3-chloropropane	ND		1.12		ug/kg dry	₽	11/21/11 08:22	11/23/11 23:32	1.0
Method: NWTPH-Dx - Semivolatil	le Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	217		22.6		mg/kg dry	₩	11/21/11 09:35	11/22/11 09:57	2.0
Heavy Oil Range Hydrocarbons	1060		56.5		mg/kg dry	¢	11/21/11 09:35	11/22/11 09:57	2.0
Surrogate	%Recovery	Qua/ifier	Limits				Prepared	Analyzed	Dil Fa
2-FBP	74.4		50 - 150				11/21/11 09:35	11/22/11 09:57	2.0
p-Terphenyl-d14	88.4		50 - 150				11/21/11 09:35	11/22/11 09:57	2.0
Method: NWTPH-Gx - Gasoline H	ydrocarbons b		-Gx						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		6.05		mg/kg dry	- -	11/20/11 07:08	11/20/11 22:27	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-BFB (FID)	98.9		50 - 150				11/20/11 07:08	11/20/11 22:27	1.0
Method: EPA 6010C - Total Metal	s by EPA 6010	/7000 Serie	es Methods						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Lead	113		1.69		mg/kg dry	- 	12/05/11 17:43	12/06/11 12:54	1.0

Client Sample ID: DP-36-8.0-111611

Lab Sample ID: SUK0109-16

Date Collected: 11/16/11 13:00 Date Received: 11/18/11 15:30

Matrix: Soil

Percent Solids: 76.7

Organic Compounds I							
Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	0.152	0.0760	mg/kg dry		11/21/11 15:42	11/22/11 11:14	1.00
ND	0.760	0.0760	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00
ND	0.0912	0.0304	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00
ND	0.760	0.152	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.00
ND	0.152	0.0760	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00
ND	0.0456	0.0152	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00
ND	0.152	0.0304	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.00
ND	0.152	0.0760	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00
ND	1.52	0.456	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.00
ND	3.04	1.43	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00
ND	0.152	0.0304	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.00
	Result Qual ND ND ND ND ND ND ND ND ND ND ND	Result Qualifier RL ND 0.152 ND 0.760 ND 0.0912 ND 0.760 ND 0.152 ND 0.152 ND 0.152 ND 0.0456 ND 0.152 ND 0.152 ND 0.152 ND 1.52 ND 3.04	ND 0.152 0.0760 ND 0.760 0.0760 ND 0.0912 0.0304 ND 0.760 0.152 ND 0.760 0.152 ND 0.760 0.152 ND 0.152 0.0760 ND 0.152 0.0760 ND 0.152 0.0304 ND 1.52 0.456 ND 3.04 1.43	Result Qualifier RL MDL Unit ND 0.152 0.0760 mg/kg dry ND 0.760 0.0760 mg/kg dry ND 0.0912 0.0304 mg/kg dry ND 0.152 0.0760 mg/kg dry ND 0.0912 0.0304 mg/kg dry ND 0.152 0.0760 mg/kg dry ND 0.152 0.0760 mg/kg dry ND 0.152 0.0304 mg/kg dry ND 0.152 0.0304 mg/kg dry ND 0.152 0.0760 mg/kg dry ND 1.52 0.456 mg/kg dry ND 3.04 1.43 mg/kg dry	Result Qualifier RL MDL Unit D ND 0.152 0.0760 mg/kg dry Img/kg dry <td>Result Qualifier RL MDL Unit D Prepared ND 0.152 0.0760 mg/kg dry * 11/21/11 15:42 ND 0.760 0.0760 mg/kg dry * 11/21/11 15:42 ND 0.0912 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.0912 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.760 0.152 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0760 mg/kg dry * 11/21/11 15:42 ND 0.0456 0.0152 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0760 mg/kg dry * 11/21/11 15:42 ND 1.52 <</td> <td>Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.152 0.0760 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.760 0.0760 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.0912 0.0304 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.0912 0.0304 mg/kg dry \$\$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.760 0.152 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.152 0.0760 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.0456 0.0152 mg/kg dry \$\$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.152 0.0304 mg/kg dry \$</td>	Result Qualifier RL MDL Unit D Prepared ND 0.152 0.0760 mg/kg dry * 11/21/11 15:42 ND 0.760 0.0760 mg/kg dry * 11/21/11 15:42 ND 0.0912 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.0912 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.760 0.152 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0760 mg/kg dry * 11/21/11 15:42 ND 0.0456 0.0152 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0304 mg/kg dry * 11/21/11 15:42 ND 0.152 0.0760 mg/kg dry * 11/21/11 15:42 ND 1.52 <	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.152 0.0760 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.760 0.0760 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.0912 0.0304 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.0912 0.0304 mg/kg dry \$\$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.760 0.152 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.152 0.0760 mg/kg dry \$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.0456 0.0152 mg/kg dry \$\$\$\$\$ 11/21/11 15:42 11/22/11 11:14 ND 0.152 0.0304 mg/kg dry \$

Client Sample ID: DP-36-8.0-111611 Date Collected: 11/16/11 13:00

Date Received: 11/18/11 15:30

TestAmerica	Job	ID:	SUK0109	9
1000				

Lab Sample ID: SUK0109-16 Matrix: Soil Percent Solids: 76.7

Analyte	Result Qualifier	RL		Unit	_ <u>D</u>	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND	0.152	0.0152	mg/kg dry	_ ₩	11/21/11 15:42	11/22/11 11:14	1.0
1,1-Dichloroethane	ND	0.152	0.0304	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.0
cis-1,2-Dichloroethene	ND	0.152	0.0304	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
2,2-Dichloropropane	ND	0.152	0.0760	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
Bromochloromethane	ND	0.152	0.0304	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.0
Chloroform	ND	0.152	0.0304	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00
Carbon tetrachloride	ND	0.152	0.0152	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
1,1,1-Trichloroethane	ND	0.152	0.0304	mg/kg dry	ø	11/21/11 15:42	11/22/11 11:14	1.0
2-Butanone	ND	1.52	0.152	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
I,1-Dichloropropene	ND	0.152	0.0304	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
Benzene	ND	0.0304	0.0122	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.0
I,2-Dichloroethane (EDC)	ND	0.152	0.0760	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
Trichloroethene	ND	0.0380	0.0304	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
Dibromomethane	ND	0.152	0.0760	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.0
,2-Dichloropropane	ND	0.152		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
Bromodichloromethane	ND	0.152		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
is-1,3-Dichloropropene	ND	0.152	0.0304	mg/kg dry	÷.	11/21/11 15:42	11/22/11 11:14	1.0
oluene	ND	0.152	0.0152	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
-Methyl-2-pentanone	ND	1.52		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
ans-1,3-Dichloropropene	ND	0.152		mg/kg dry	•••	11/21/11 15:42	11/22/11 11:14	1.0
etrachioroethene	ND	0.0760		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
,1,2-Trichloroethane	ND	0.152		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
ibromochloromethane	ND	0.152		mg/kg dry	••• ; •••	11/21/11 15:42	11/22/11 11:14	1.0
,3-Dichloropropane	ND	0.152		mg/kg dry		11/21/11 15:42	11/22/11 11:14	1.0
,2-Dibromoethane	ND	0.152		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
-Hexanone	ND	1.52		mg/kg dry	. a	11/21/11 15:42	11/22/11 11:14	1.0
ithylbenzene	ND	0.152		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.0
hiorobenzene	ND	0.152		mg/kg dry		11/21/11 15:42	11/22/11 11:14	1.0
,1,1,2-Tetrachloroethane	ND	0.152		mg/kg dry	; ; -	11/21/11 15:42	11/22/11 11:14	1.0
1,p-Xylene	ND	0.608		mg/kg dry		11/21/11 15:42	11/22/11 11:14	1.0
-Xylene	ND	0.304		mg/kg dry	₽.	11/21/11 15:42	11/22/11 11:14	1.00
tyrene	ND	0.304		mg/kg dry	·	11/21/11 15:42	11/22/11 11:14	1.00
iromoform	ND	0.152			¢	11/21/11 15:42	11/22/11 11:14	1.00
•		0.152		mg/kg dry	¢	11/21/11 15:42		1.00
sopropylbenzene	0.0304 J			mg/kg dry			11/22/11 11:14	1.00
-Propylbenzene	ND	0.152		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	
1,2,2-Tetrachloroethane	ND	0.152		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.00
	ND	0.152		mg/kg dry		11/21/11 15:42	11/22/11 11:14	1.00
3,5-Trimethylbenzerie	ND	0.152		mg/kg dry		11/21/11 15:42	11/22/11 11:14	1.00
Chlorotoluene	ND	0.152		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.00
2,3-Trichloropropane	ND	0.152		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.00
Chlorotoluene	ND	0.152		mg/kg dry	\$ ~	11/21/11 15:42	11/22/11 11:14	1.00
rt-Butylbenzene	ND	0.152		mg/kg dry	\$	11/21/11 15:42	11/22/11 11:14	1.00
2,4-Trimethylbenzene	0.0258 J	0.152		mg/kg dry	¢ 	11/21/11 15:42	11/22/11 11:14	1.00
ec-Butylbenzene	ND	0.152		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.00
Isopropyitoluene	ND	0.152		mg/kg dry	¢ 	11/21/11 15:42	11/22/11 11:14	1.00
3-Dichlorobenzene	ND	0.152		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.0
4-Dichlorobenzene	ND	0.152	0.00760		¢	11/21/11 15:42	11/22/11 11:14	1.00
Butylbenzene	ND	0.152		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00
2-Dichlorobenzene	ND	0.152	0.00760	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.00

-4 5_

Ġ,

1

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

i.

TestAmerica Job ID: SUK0109

1

<u>/</u>1

Client Sample ID: DP-36-8.0-111611 Date Collected: 11/16/11 13:00 Date Received: 11/18/11 15:30 Lab Sample ID: SUK0109-16 Matrix: Soil

Percent Solids: 76.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Hexachlorobutadiene	ND		0.152	0.0608	mg/kg dry	×	11/21/11 15:42	11/22/11 11:14	1.0
1,2,4-Trichlorobenzene	ND		0.152	0.0456	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
Naphthalene	ND		0.304	0.167	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:14	1.0
1,2,3-Trichlorobenzene	ND		0.152	0.0456	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:14	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	90.8		71.6 - 127				11/21/11 15:42	11/22/11 11:14	1.0
Toluene-d8	109		80 - 129				11/21/11 15:42	11/22/11 11:14	1.0
4-bromofluorobenzene	132		57.7 - 149				11/21/11 15:42	11/22/11 11:14	1.0
- Method: EPA 8011 - EDB by E	PA Method 8011								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.30		ug/kg dry	— <u>¤</u>	11/21/11 08:22	11/23/11 18:46	1.0
1,2-Dibromo-3-chloropropane	ND		1.30		ug/kg dry	¢	11/21/11 08:22	11/23/11 18:46	1.0
Method: NWTPH-Dx - Semivola	tile Petroleum P	roducts by	NWTPH-Dx						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Hydrocarbons	ND		13.0		mg/kg dry	₽	11/28/11 13:33	11/29/11 12:31	1.0
Heavy Oil Range Hydrocarbons	ND		32.6		mg/kg dry	₽	11/28/11 13:33	11/29/11 12:31	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-FBP	67.2		50 - 150				11/28/11 13:33	11/29/11 12:31	1.0
p-Terphenyl-d14	87.3		50 - 150				11/28/11 13:33	11/29/11 12:31	1.0
Method: NWTPH-Gx - Gasoline	Hydrocarbons b		-Gx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Hydrocarbons	ND		7.60		mg/kg dry	₩	11/22/11 08:26	11/22/11 11:27	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-BFB (FID)	96.6		50 - 150				11/22/11 08:26	11/22/11 11:27	1.00
Method: EPA 6010C - Total Met	als by EPA 6010	/7000 Serie	es Methods						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	3.03		1.96		mg/kg dry	- x	12/05/11 17:43	12/06/11 13:07	1.00
			•						-

Date Collected: 11/16/11 13:15 Date Received: 11/18/11 15:30 Matrix: Soil Percent Solids: 76.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.169	0.0843	mg/kg dry	— x	11/21/11 15:42	11/22/11 11:42	1.00
Chloromethane	ND		0.843	0.0843	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Vinyl chloride	ND		0.101	0.0337	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Bromomethane	ND	· · · · · · · · · · · · · · · · · · ·	0.843	0.169	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
Chloroethane	ND		0.169	0.0843	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Trichlorofluoromethane	ND		0.0506	0.0169	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
1,1-Dichloroethene	ND		0.169	0.0337	mg/kg dry	¢.	11/21/11 15:42	11/22/11 11:42	1.00
Carbon disulfide	ND		0.169	0.0843	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Methylene chloride	ND		1.69	0.506	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Acetone	ND		3.37	1.58	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		0.169	0.0337	mg/kg dry	- ÷	11/21/11 15:42	11/22/11 11:42	1.00
Methyl tert-butyl ether	ND		0.169	0.0169	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
1,1-Dichloroethane	ND		0.169	0.0337	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
cis-1,2-Dichloroethene	ND		0.169	0.0337	mg/kg dry	¢	11/21/11 15:42	11/22/11 11: 42	1.00
2,2-Dichloropropane	ND		0.169	0.0843	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
Bromochloromethane	ND		0.169	0.0337	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
Chloroform	ND		0.169	0.0337	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Carbon tetrachloride	ND		0.169	0.0169	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
1,1,1-Trichloroethane	ND		0.169	0.0337	mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
2-Butanone	ND		1.69	0.169	mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
1,1-Dichloropropene	ND		0.169	0.0337	mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
Benzene	ND		0.0337	0.0135	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
1,2-Dichloroethane (EDC)	ND		0.169	0.0843	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Trichloroethene	ND		0.0421	0.0337	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Dibromomethane	ND		0.169	0.0843	mg/kg dry	¢.	11/21/11 15:42	11/22/11 11:42	1.00
1,2-Dichloropropane	ND		0.169	0.0337	mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
Bromodichloromethane	ND		0.169	0.0337	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
cis-1,3-Dichloropropene	ND		0.169	0.0337	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
Toluene	ND		0.169	0.0169	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
4-Methyl-2-pentanone	ND		1.69	0.169	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
trans-1,3-Dichloropropene	ND		0.169	0.0337	mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
Tetrachloroethene	ND		0.0843	0.0169	mg/kg dry	*	11/21/11 15:42	11/22/11 11:42	1.00
1,1,2-Trichloroethane	ND		0.169	0.0337	mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
Dibromochloromethane	ND		0.169	0.0337	mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
1,3-Dichloropropane	ND		0.169	0.0337	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
1,2-Dibromoethane	ND		0.169	0.0337	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
2-Hexanone	ND		1.69	0.169	mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
Ethylbenzene	ND		0.169	0.0169	mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
Chlorobenzene	ND		0.169		mg/kg dry	*	11/21/11 15:42	11/22/11 11:42	1.00
1,1,1,2-Tetrachloroethane	ND		0.169	0.0337	mg/kg dry	\$ <u></u>	11/21/11 15:42	11/22/11 11:42	1.00
m,p-Xylene	ND		0.674		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
o-Xylene	ND		0.337		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Styrene .	ND		0.169		mg/kg dry	\$	11/21/11 15;42	11/22/11 11:42	1.00
Bromoform	ND		0.169		mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
Isopropylbenzene	ND		0.169		mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
n-Propylbenzene	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
1,1,2,2-Tetrachloroethane	ND		0.169		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
Bromobenzene	ND		0.169		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.00
1,3,5-Trimethylbenzene	ND		0.169		mg/kg dry	¢ 	11/21/11 15:42	11/22/11 11:42	1.00
2-Chlorotoluene	ND		0.169		mg/kg dry	\$	11/21/11 15:42	11/22/11 11:42	1.00
1,2,3-Trichloropropane	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
4-Chlorotoluene	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
tert-Butylbenzene	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
1,2,4-Trimethylbenzene	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
sec-Butylbenzene	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
p-Isopropyltoluene	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
1,3-Dichlorobenzene	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
1,4-Dichlorobenzene	ND		0.169	0.00843			11/21/11 15:42	11/22/11 11:42	1.00
n-Butylbenzene	ND		0.169		mg/kg dry		11/21/11 15:42	11/22/11 11:42	1.00
1,2-Dichlorobenzene	ND		0.169	0.00843	mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00

RL

MDL Unit

D

Prepared

Method: EPA 8260B - Volatile Organic Compounds by EPA Methods 5035/8260B (Continued)

Result Qualifier

Client Sample ID: DP-37-4.0-111611 Date Collected: 11/16/11 13:15 Date Received: 11/18/11 15:30

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Analyte

TestAmerica Job ID: SUK0109

Analyzed

Lab Sample ID: SUK0109-17 Matrix: Soil

9

Dil Fac

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

ı.

Trichlorofluoromethane

1,1-Dichloroethene

Methylene chloride

Carbon disulfide

TestAmerica Job ID: SUK0109

Client Sample ID: DP-37-4.0-111611 Date Collected: 11/16/11 13:15 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-17 Matrix: Soil

Percent Solids: 76.1

1

Ċ.

4

9

Method: EPA 8260B - Volatile Org Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromo-3-chloropropane	ND		0.843		mg/kg dry	- x	11/21/11 15:42	11/22/11 11:42	1.00
Hexachlorobutadiene	ND		0.169		mg/kg dry	₿	11/21/11 15:42	11/22/11 11:42	1.0
1,2,4-Trichlorobenzene	ND		0.169		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.0
Naphthalene	ND	•••••	0.337		mg/kg dry	¢	11/21/11 15:42	11/22/11 11:42	1.0
1,2,3-Trichlorobenzene	ND		0.169		mg/kg dry	₽	11/21/11 15:42	11/22/11 11:42	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	91.8		71.6 - 127				11/21/11 15:42	11/22/11 11:42	1.00
Toluene-d8	111		80 - 129				11/21/11 15:42	11/22/11 11:42	1.00
4-bromofluorobenzene	126		57.7 - 149				11/21/11 15:42	11/22/11 11:42	1.0
Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		1.29		ug/kg dry	₽	11/21/11 08:22	11/23/11 18:59	1.00
1,2-Dibromo-3-chloropropane	ND		1.29		ug/kg dry	₽	11/21/11 08:22	11/23/11 18:59	1.00
Method: NWTPH-Dx - Semivolatile	Petroleum P	roducts by	NWTPH-Dx						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons	ND		13.1		mg/kg dry	₽	11/21/11 09:35	11/22/11 01:54	1.00
Heavy Oil Range Hydrocarbons	ND		32.9		mg/kg dry	₽	11/21/11 09:35	11/22/11 01:54	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP	88.9		50 - 150				11/21/11 09:35	11/22/11 01:54	1.00
p-Terphenyl-d14	92.1		50 - 150				11/21/11 09:35	11/22/11 01:54	1.00
Method: NWTPH-Gx - Gasoline Hy		-							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sasoline Range Hydrocarbons	ND		8.43		mg/kg dry	₩	11/20/11 07:08	11/20/11 22:52	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-BFB (FID)	98.8		50 - 150				11/20/11 07:08	11/20/11 22:52	1.00
							1.0201107.00	11/20/11/22:02	1.00
lethod: EPA 6010C - Total Metals	-								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
ead	3.41	•	1.97		mg/kg dry	₽	12/05/11 17:43	12/06/11 13:11	1.00
ient Sample ID: DP-37-10.0-	111611						Lab Samp	ole ID: SUK0 ⁴	109-18
te Collected: 11/16/11 13:25								Mati	rix: Soil
ate Received: 11/18/11 15:30								Percent Solid	ds: 69.4
			,					,	
lethod: EPA 8260B - Volatile Orga nalyte	-	nds by EPA Qualifier	A Methods 5035 RL	5/8260B MDL	Unit	D	Prepared	Analyzed	Dil Fac
ichlorodifluoromethane	ND				mg/kg dry	± ₩	11/21/11 15:42	11/22/11 12:11	1.00
hloromethane	ND ND		0.177		mg/kg ary mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11 11/22/11 12:11	1.00
niorometnane invl chloride	ND ND		0.885		mg/kg ary mg/kg dry	₽	11/21/11 15:42 11/21/11 15:42	11/22/11 12:11 11/22/11 12:11	1.00
romomethane	ND		0.106		mg/kg dry mg/kg dry	- æ	11/21/11 15:42 11/21/11 15:42	11/22/11 12:11	1.00
	ND ND		0.885		mg/kg ary mg/kg dry	¥ ₽		11/22/11 12:11 11/22/11 12:11	1.00
chloroethane	NU		U.1//	0.0000	ing ng ury		11/21/11 15:42		1.00

☆ 11/21/11 15:42

* 11/21/11 15:42 11/22/11 12:11

0.0531

0.177

0.0177 mg/kg dry

0.0354 mg/kg dry

ND

ND

ND

ND

11/22/11 12:11

1.00

1.00

0.177

0.177

0.177

0.00708 mg/kg dry

0.00885 mg/kg dry

0.0177 mg/kg dry

11/21/11 15:42

[☆] 11/21/11 15:42

11/21/11 15:42

.....¢

ND

ND

ND

Method: EPA 8260B - Volatile Organic Compounds by EPA Methods 5035/8260B (Continued)

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

1,3-Dichlorobenzene

1,4-Dichlorobenzene

n-Butylbenzene

Client Sample ID: DP-37-10.0-111611 Date Collected: 11/16/11 13:25 Date Received: 11/18/11 15:30

Acesona NO 3.54 (1.6) migh dy F T122/11116.42 T122/1111 T122/1111 Methy larbdy jetkar NO 0.177 0.0354 mgkg dy 0 1122/111 1122/111 110 Libbishoombare NO 0.177 0.0354 mgkg dy 0 1122/111 1122/11 110 Libbishoombare NO 0.177 0.0354 mgkg dy 0 1122/11 1122/11 110 Z.2.Dichoobbare ND 0.177 0.0354 mgkg dy 0 1122/11 1122/11 1.00 Z.2.Dichoobbare ND 0.177 0.0354 mgkg dy 0 1122/11 1.00 Childron for acchoobbare ND 0.177 0.0354 mgkg dy 0 1122/11 1.00 1.1.1-Trichobarebare ND 0.177 0.0354 mgkg dy 0 1122/11 1.00 1.1.2-Dichoarebare ND 0.177 0.0354 mgkg dy 0 1122/11 1.00 1.1	Analyte	Result C	Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methy tarkayletka ND 0.177 0.0177 0.0177 0.0354 making any making any beta 1,2 bickhooethane 11/2/11/11542 11/2/11/11/11542 11/2/11/11542 11/2/11/11	Acetone	ND	3.5	4 1.66	mg/kg đry	¢	11/21/11 15:42	11/22/11 12:11	1.00
1.1-Dickborzetnare ND 0.17 0.0354 mays dy 0 11/21/11 15.0 das -1.2.Dichtodethene ND 0.177 0.0354 mays dy 0 11/21/11 11/22/11 11/21/11	trans-1,2-Dichloroethene	ND	0.17	7 0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
de 12.Dichidocentene ND 0.177 0.0384 mpkg dry 0 11/2/1111542 11/2/1111211 1.00 2.2.Dichidocentenia ND 0.177 0.0385 mpkg dry 0 11/2/1111542 11/2/111111111111111111111111111111111	Methyl tert-butyl ether	ND	0.17	7 0.0177	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
2.2.Dichtooproane ND 0.177 0.085 mg/g.g.fry 0 11/2/11/1542 11/2/11/12/11 1.00 Brönzöhlindrindriktane ND 0.177 0.0354 mg/g.dry 0 11/2/11/1542 11/2/11/12/11 11/2/11/1542 11/2	1,1-Dichloroethane	ND	0.17	7 0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
Bromoditoromethane ND 0.777 0.0854 mph.gdry 0 11/21/11 1542 11/221/11 2211 1.00 Chierdorm ND 0.177 0.0354 mph.gdry 0 11/221/11 1542 11/221/11 1542 11/221/11 1211 1.00 1.1.1-Trichloinethane ND 0.177 0.0354 mpk.gdry 0 11/221/11 1542 11/221/11 1211 1.00 1.0.1-Trichloinethane ND 0.177 0.0354 mpk.gdry 0 11/221/11 1542 11/221/11 1211 1.00 1.2-Scholnoordnam ND 0.0354 0.0142 mpk.gdry 0 11/221/11 1542 11/221/11 1211 1.00 1.2-Scholnoordname ND 0.0443 0.0354 mpk.gdry 0 11/211/11 1542 11/221/11 1211 1.00 1.2-Scholnoordname ND 0.177 0.0354 mpk.gdry 0 11/21/11 1542 11/221/11 1211 1.00 1.2-Scholnoordname ND 0.177 0.0354 mpk.gdry 0 11/21/11 1542 11/221/11 1211 1.00	cis-1,2-Dichloroethene	ND	0.17	7 0.0354	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
ND 0.177 0.0354 mply dry 0 11/21/11 15.42 11/22/11 12:11 1.00 Carbon Israchiofie ND 0.177 0.0354 mply dry 0 11/21/11 15.42 11/22/11 12:11 1.00 2-Butanone ND 1.77 0.0354 mply dry 0 11/21/11 15.42 11/22/11 12:11 1.00 2-Butanone ND 0.777 0.0354 0.0142 mply dry 0 11/21/11 15.42 11/22/11 12:11 1.00 1.2-Dichlorosthane (EDC) ND 0.077 0.0854 mply dry 0 11/21/11 15.42 11/22/11 12:11 1.00 1.2-Dichlorosthane (EDC) ND 0.077 0.0854 mgly dry 0 11/21/11 15.42 11/22/11 12:11 1.00 Disconschane ND 0.077 0.0854 mgly dry 0 11/21/11 15.42 11/22/11 12:11 1.00 Disconschane ND 0.177 0.0354 mgly dry 0 11/21/11 15.42 11/22/11 12:11 1.00 12-Dichloropropene	2,2-Dichloropropane	ND	0.17	7 0.0885	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
Cacton terechinde ND 0.177 0.0177 n.g.ng dry 0 11/11/11542 11/22/1112:11 1.00 1.1,1-Thibiodethane ND 0.177 0.0354 mg/ng dry 0 11/21/111542 11/22/1112:11 1.00 1.1-Dickhoopropene ND 0.177 0.0354 mg/ng dry 0 11/21/111542 11/22/1112:11 1.00 Banzene ND 0.0354 0.0142 mg/ng dry 0 11/21/111542 11/22/1112:11 1.00 J2-Dichlorophroethane (EDC) ND 0.0443 0.0354 mg/ng dry 0 11/21/111542 11/22/1112:11 1.00 J2-Dichlorophropane ND 0.177 0.0354 mg/ng dry 0 11/21/111542 11/22/1112:11 1.00 J2-Dichlorophropane ND 0.177 0.0354 mg/ng dry 0 11/21/111542 11/22/1112:11 1.00 J2-Dichlorophropane ND 0.177 0.0354 mg/ng dry 0 11/21/111542 11/22/1112:11 1.00 J1/2-TriHObo	Bromochloromethane	ND	0.17	7 0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
1,1-Trightorethane ND 0,177 0.0354 mg/kg dry 0 11/21/11 15/42 11/22/11 12:11 1.00 2-Butanone ND 1.77 0.177 mg/kg dry 0 11/21/11 15/42 11/22/11 12:11 1.00 Benzene ND 0.0354 0.0422 mg/kg dry 0 11/21/11 15/42 11/22/11 12:11 1.00 1.2-Dichorophane ND 0.0434 0.0354 0.0142 mg/kg dry 0 11/21/11 15/42 11/22/11 12:11 1.00 1.2-Dichorophane ND 0.0443 0.0354 mg/kg dry 0 11/21/11 15/42 11/22/11 12:11 1.00 1.2-Dichorophane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15/42 11/22/11 12:11 1.00 1.2-Dichorophane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15/42 11/22/11 12:11 1.00 1.2-Dichorophane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15/42 11/22/11 12:11 1.00	Chloroform	ND	0.17	7 0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
2-Butanone ND 1.77 0.177 mgkg dry 0 11/2/111 15.42 11/2/111 1.10 1.1-Dichloropropene ND 0.0354 mgkg dry 0 11/2/111 11/2/111 11/2/11 11/2/11 11/2/11 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/11 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/11 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 11/2/111 </td <td>Carbon tetrachloride</td> <td>ND</td> <td>0.17</td> <td>7 0.0177</td> <td>mg/kg dry</td> <td>¢</td> <td>11/21/11 15:42</td> <td>11/22/11 12:11</td> <td>1.00</td>	Carbon tetrachloride	ND	0.17	7 0.0177	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
1,1-Dichtoropropene ND 0.177 0.0354 mg/kg dry 0 11/2/111 15/20 11/2/111 <td>1,1,1-Trichloroethane</td> <td>ND</td> <td>0.17</td> <td>7 0.0354</td> <td>mg/kg dry</td> <td>¢</td> <td>11/21/11 15:42</td> <td>11/22/11 12:11</td> <td>1.00</td>	1,1,1-Trichloroethane	ND	0.17	7 0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
Berzene ND 0.0354 0.0142 mgkg dry 0 1121/111542 1122/1112:11 1.00 1,2-Dichorosthane (EDC) ND 0.0433 0.0354 mgkg dry 0 1121/111542 1122/1112:11 1.00 Dibromomethane ND 0.0177 0.0885 mgkg dry 0 1121/111542 1122/1112:11 1.00 Dibromomethane ND 0.177 0.0384 mgkg dry 0 1121/111542 1122/1112:11 1.00 Gemodicitoropropane ND 0.177 0.0384 mgkg dry 0 1121/111542 1122/1112:11 1.00 Gemodicitoropropane ND 0.177 0.0384 mgkg dry 0 1121/111542 1122/1112:11 1.00 Toluene ND 0.177 0.0384 mgkg dry 0 1121/111542 1122/1112:11 1.00 train-1,3-Dichoropropene ND 0.177 0.0384 mgkg dry 0 1121/111542 1122/1112:11 1.00 1,2-Dichorosthane ND <t< td=""><td>2-Butanone</td><td>ND</td><td>1.7</td><td>7 0.177</td><td>mg/kg dry</td><td>¢</td><td>11/21/11 15:42</td><td>11/22/11 12:11</td><td>1.00</td></t<>	2-Butanone	ND	1.7	7 0.177	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
1.2-Dichloroethane (EDC) ND 0.177 0.0885 mg/kg dry 0 1122/11 15:42 1122/11 12:11 1.00 Trichloroethane ND 0.0443 0.0354 mg/kg dry 0 1122/11 16:42 1122/11 12:11 1.00 12-Dichloropropane ND 0.177 0.0354 mg/kg dry 0 1122/11 16:42 1122/11 12:11 1.00 12-Sichloropropane ND 0.177 0.0354 mg/kg dry 0 1122/11 16:42 1122/11 12:11 1.00 64: 3-Dichloropropane ND 0.177 0.0354 mg/kg dry 0 1122/11 16:42 1122/11 12:11 1.00 12-11 0.00 0.177 0.0354 mg/kg dry 0 1122/11 16:42 1122/11 12:11 1.00 12-11 0.00 0.177 0.0354 mg/kg dry 0 1122/11 12:11 1.00 112-11 1.00 0.177 0.0354 mg/kg dry 0 1122/11 12:11 1.00 112-11 0.00 0.177 0.0354 m	1,1-Dichloropropene	ND	0.17	7 0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
Trichloroethene ND 0.0443 0.0354 mg/k dry 0 11/21/11 11/21	Benzene	ND	0.035	4 0.0142	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
Dibromomethane ND 0.177 0.0885 mg/kg dry 0 11/21/11 11/22/11 11/21/11 11/22/11 11/21/11 11/22/11 11/21/11 11/22/11 11/21/11 11/22/11 11/21/11 11/22/11 11/21/11 11/22/11 11/21/11 11/22/11 11/21/11 11/22/11 11/21/11 11/21/11 11/22/11 11/21/	1,2-Dichloroethane (EDC)	ND	0.17	7 0.0885	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
1,2-Dichloropropane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 Bromodichloromethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 dis-1,3-Dichloropropene ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 4-Methyl-2-pentanone ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 trans-1,3-Dichloropropene ND 0.177 0.0354 mg/kg dry 6 11/21/11 15:42 11/22/11 12:11 1.00 trans-1,3-Dichloropropene ND 0.177 0.0354 mg/kg dry 6 11/21/11 15:42 11/22/11 12:11 1.00 1,3-Dichloropropene ND 0.177 0.0354 mg/kg dry 6 11/21/11 15:42 11/22/11 12:11 1.00 1,3-Dichloropropene ND 0.177 0.0354 mg/kg dry 6 11/21/11 15:42 11/22/11 12:11 1.00 </td <td>Trichloroethene</td> <td>ND</td> <td>0.044</td> <td>3 0.0354</td> <td>mg/kg dry</td> <td>₽</td> <td>11/21/11 15:42</td> <td>11/22/11 12:11</td> <td>1.00</td>	Trichloroethene	ND	0.044	3 0.0354	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
Bromodichloromethane ND 0.177 0.0354 mg/kg dry 0 11/2/1/11542	Dibromomethane	ND	0.17	7 0.0885	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
ds-1,3-Dichloropropene ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 4-Methyl-2-pentanone ND 0.177 0.177 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 4-Methyl-2-pentanone ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 1-mans 1.3-Dichloropropene ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 1,1.2-Trichloroethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 1,3-Dichloropropane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 1,2-Dibromoethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 1,2-Dibromoethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 15:42 11/22/11 12:11 1.00 <	1,2-Dichloropropane	ND	0.17	7 0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
Toluene ND 0.177 0.0177 mg/kg dry © 11/21/11 15:42 11/22/11 12:11 1.00 4-Methyl-2-pentanone ND 1.77 0.0177 mg/kg dry © 11/21/11 15:42 11/22/11 12:11 1.00 trans-1,3-Dichloropropene ND 0.177 0.0354 mg/kg dry © 11/21/11 15:42 11/22/11 12:11 1.00 1/12-Trichloroethane ND 0.0885 0.0177 0.0354 mg/kg dry © 11/21/11 15:42 11/22/11 12:11 1.00 1,3-Dichloropropane ND 0.177 0.0354 mg/kg dry © 11/21/11 15:42 11/22/11 12:11 1.00 1,3-Dichloropropane ND 0.177 0.0354 mg/kg dry © 11/21/11 15:42 11/22/11 12:11 1.00 2-Dicromotelhane ND 0.177 0.0354 mg/kg dry © 11/21/11 15:42 11/22/11 12:11 1.00 2-Hexanone ND 0.177 0.0354 mg/kg dry © 11/21/11 15:42 11/22/11 12:11 1.00 </td <td>Bromodichloromethane</td> <td>ND</td> <td>0.17</td> <td>7 0.0354</td> <td>mg/kg dry</td> <td>\$</td> <td>11/21/11 15:42</td> <td>11/22/11 12:11</td> <td>1.00</td>	Bromodichloromethane	ND	0.17	7 0.0354	mg/kg dry	\$	11/21/11 15:42	11/22/11 12:11	1.00
4-Methyl-2-pentanone ND 1.77 0.177 mg/kg dry 5 11/21/11 11/22/11 12/21/11 11/22/11 12/21/11 11/22/11 12/21/11 11/22/11 12/21/11 11/22/11 12/21/11 11/22/11 12/21/11 11/22/11 12/21/11 11/22/11 11/22/11 12/21/11 11/22/11 12/21/11 11/22/11 11	cis-1,3-Dichloropropene	ND	0.17	7 0.0354	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
trains-1,3-Dichloropropene ND 0.177 0.0384 mg/kg dry B 1//2/1/115.42 1//2/1/112.11 1.00 Tetrachloroethene ND 0.0885 0.0177 mg/kg dry a 11/2/1/115.42 11/2/1/112.11 1.00 1,1,2-Trichloroethane ND 0.177 0.0354 mg/kg dry a 11/2/1/115.42 11/2/1/112.11 1.00 0,3-Dichloropropane ND 0.177 0.0354 mg/kg dry a 11/2/1/115.42 11/2/1/112.11 1.00 1,3-Dichloropropane ND 0.177 0.0354 mg/kg dry a 11/2/1/115.42 11/2/1/112.11 1.00 2-Hexanone ND 0.177 0.0354 mg/kg dry a 11/2/1/115.42 11/2/1/112.11 1.00 1.12.2/112.211 0.00 0.177 0.077 0.0685 mg/kg dry a 11/2/1/115.42 11/2/1/112.11 1.00 1.11.1.2-Tetrachloroethane ND 0.177 0.0778 0.0177 mg/kg dry a 11/2/1/115.42 11/2/1/112.11	Toluene	ND	0.17	7 0.0177	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
Intersection ND 0.0885 0.0177 mg/kg dry 0 11/21/11 11/22/11 11.00 1,1,2-Trichloroethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 11/22/11 11/00 2.Hexanone ND 0.177 0.0177 mg/kg dry 0 11/22/11 11/22/11 11/22/11 11/22/11 1.00 11/21/11 0.0177 0.0177 mg/kg dry 0 11/22/11 11/22/11 11/22/11	4-Methyl-2-pentanone	ND	1.7	7 0.177	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
1,1,2-Trichloroethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 1.2/21/11 1.00 Dibromochloromethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 1.5.2 11/22/11 1.10 1,2-Dibromoethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 1.5.42 11/22/11 1.10 1,2-Dibromoethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 1.5.42 11/22/11 1.10 2-Hexanone ND 0.177 0.0377 mg/kg dry 0 11/21/11 1.5.42 11/22/11 1.100 1.1.2-Tetrachloroethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 1.5.42 11/22/11 1.100 1.1.1,2-Tetrachloroethane ND 0.177 0.0354 mg/kg dry 0 11/21/11 1.5.42 11/22/11 1.100 1.1.1,2-Tetrachloroethane ND 0.177 0.0354 0.0177 mg/kg dry 11/21/11	trans-1,3-Dichloropropene	ND	0.17	7 0.0354	mg/kg dry	\$	11/21/11 15:42	11/22/11 12:11	1.00
Dibromochloromethane ND 0.177 0.0354 mg/kg dry ½ 1//21/1115/42 1//22/1112:11 1.00 1,3-Dichloropropane ND 0.177 0.0354 mg/kg dry ½ 11/21/1115/42 11/22/1112:11 1.00 1,2-Dibromoethane ND 0.177 0.0354 mg/kg dry ½ 11/21/1115/42 11/22/1112:11 1.00 2-Hexanone ND 1.77 0.0177 mg/kg dry ½ 11/21/1115/42 11/22/1112:11 1.00 Chlorobenzene ND 0.177 0.0354 mg/kg dry ½ 11/21/1115/42 11/22/1112:11 1.00 1,1,1,2-Tetrachloroethane ND 0.177 0.0354 mg/kg dry ½ 11/21/1115/42 11/22/1112:11 1.00 n,j,s,2tjene ND 0.377 0.0354 mg/kg dry ½ 11/21/1115/42 11/22/1112:11 1.00 Styrene ND 0.177 0.0354 0.0177 mg/kg dry ½ 11/21/1115/42 11/22/1112:11 1.00 Bromo	Tetrachloroethene	ND	0.088	5 0.0177	mg/kg dry	\$	11/21/11 15:42	11/22/11 12:11	1.00
1,3-Dichloropropane ND 0.177 0.0354 mg/kg dry © 11/21/11 11/22/11 1.00 1,2-Dibromoethane ND 0.177 0.0354 mg/kg dry © 11/21/11 11/22/11 11/22/11 1.00 2-Hexanone ND 1.77 0.0177 mg/kg dry © 11/21/11 11/22/11 1.00 2-Hexanone ND 0.177 0.0177 mg/kg dry © 11/21/11 1.1/22/11 1.1/22/11 1.00 Ethylbenzene ND 0.177 0.0177 mg/kg dry © 11/21/11 1.1/22/11 1.100 1,1,2-Tetrachloroethane ND 0.177 0.0354 mg/kg dry © 11/21/11 1.1/22/11 1.100 np-Xylene ND 0.708 0.0177 mg/kg dry © 11/21/11 1.1/22/11 1.1/2 1.1/22/11 1.100 Styrene ND 0.177 0.0177 mg/kg dry © 11/21/11 1.1/22/11 1.1/21/11 1.00	1,1,2-Trichloroethane	ND	0.17	0.0354	mg/kg dry	\$	11/21/11 15:42	11/22/11 12:11	
1,2-Dibromethane ND 0.177 0.0354 mg/kg dry ½ 11/21/11 11/22/11 1.00 2-Hexanone ND 1.77 0.177 mg/kg dry 2 11/22/11 11/22/11 1.00 Ethylbenzene ND 0.177 0.0177 mg/kg dry 2 11/22/11 11/22/11 1.00 Chlorobenzene ND 0.177 0.0354 mg/kg dry 2 11/21/11 1.42 11/22/11 1.00 1,1,2-Tetrachloroethane ND 0.177 0.0354 mg/kg dry 2 11/22/11 1.00 n,p-Xylene ND 0.177 0.0354 mg/kg dry 2 11/22/11 1.00 Styrene ND 0.708 0.0177 mg/kg dry 2 11/22/11 1.00 Bromoform ND 0.177 0.0177 mg/kg dry 2 11/22/11 1.00 Isopropylbenzene ND 0.177 0.0177 mg/kg dry 2 11/22/11 1.00 1	Dibromochloromethane	ND	0.17	0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
2-HexanoneND1.770.177mg/kg dryQ11/21/1115:4211/22/111.00EthylbenzeneND0.1770.0177mg/kg dryQ11/21/1111/22/111.00ChlorobenzeneND0.1770.0885mg/kg dryQ11/21/1111/22/111.001,1,2-TetrachloroethaneND0.1770.0354mg/kg dryQ11/21/1111/22/111.00n,p-XyleneND0.7080.0177mg/kg dryQ11/21/1111/22/111.00o-XyleneND0.3540.0177mg/kg dryQ11/21/1111/22/111.00o-XyleneND0.3540.0177mg/kg dryQ11/21/1111/22/111.00StyreneND0.1770.0177mg/kg dryQ11/21/1111/22/111.00BromoformND0.1770.0177mg/kg dryQ11/21/1111/22/111.00IsopropylbenzeneND0.1770.0177mg/kg dryQ11/21/1111/22/111.00n-PropylbenzeneND0.1770.0177mg/kg dryQ11/21/111.0211/22/111.001,1,2,2-TetrachloroethaneND0.1770.0177mg/kg dryQ11/22/1111/22/111.001,1,2,2-TetrachloroethaneND0.1770.0177mg/kg dryQ11/21/1111/22/111.001,2,3-TrinchloroethaneND0.1770.0177mg/kg dryQ	1,3-Dichloropropane	ND	0.17	7 0.0354	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
EthylbenzeneND0.1770.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.00ChlorobenzeneND0.1770.0885mg/kg dryD11/21/11 15:4211/22/11 12:111.001,1,1,2-TetrachloroethaneND0.1770.0354mg/kg dryD11/21/11 15:4211/22/11 12:111.00m,p-XyleneND0.7080.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.00o-XyleneND0.3540.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.00o-XyleneND0.1770.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.00StyreneND0.1770.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.00BromoformND0.1770.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.00IsopropylbenzeneND0.1770.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.001,1,2,2-TetrachloroethaneND0.1770.0177mg/kg dryD11/22/11 12:111.001,3,5-TrimethylbenzeneND0.1770.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.001,2,3-FricholoropropaneND0.1770.0177mg/kg dryD11/21/11 15:4211/22/11 12:111.001,2,3-FricholoropropaneND0.1770.0177mg/kg dryD11/21/11 15:4211/22/11 12:	1,2-Dibromoethane	ND	0.17	7 0.0354	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	
Chlorobenzene ND 0.177 0.0865 mg/kg dry * 11/21/11 122/11 <th122 11<="" th=""> 122/11 <th122 11<<="" td=""><td>2-Hexanone</td><td>ND</td><td>1.7</td><td>0.177</td><td>mg/kg dry</td><td>\$</td><td>11/21/11 15:42</td><td>11/22/11 12:11</td><td>1.00</td></th122></th122>	2-Hexanone	ND	1.7	0.177	mg/kg dry	\$	11/21/11 15:42	11/22/11 12:11	1.00
1,1,1,2-Tetrachloroethane ND 0.177 0.0354 mg/kg dry ½ 11/21/11 12/11 1.00 m,p-Xylene ND 0.708 0.0177 mg/kg dry ½ 11/22/11 12/21 1.00 o-Xylene ND 0.354 0.0177 mg/kg dry ½ 11/21/11 15:42 11/22/11 12:11 1.00 o-Xylene ND 0.354 0.0177 mg/kg dry ½ 11/21/11 12:21 1.00 Styrene ND 0.177 0.0177 mg/kg dry ½ 11/22/11 11/22/11 1.00 Bromoform ND 0.177 0.0177 mg/kg dry ½ 11/22/11 11/22/11 1.00 Isopropylbenzene ND 0.177 0.0177 mg/kg dry ½ 11/22/11 1.100 1,1,2,2-Tetrachloroethane ND 0.177 0.0177 mg/kg dry ½ 11/22/11 1.12 1.11 1.00 1,3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry ½ 11/22/11 1.12 1.12 1.12 1.12 <td>Ethylbenzene</td> <td>ND</td> <td>0.17</td> <td>0.0177</td> <td>mg/kg dry</td> <td>₽</td> <td>11/21/11 15:42</td> <td>11/22/11 12:11</td> <td>1.00</td>	Ethylbenzene	ND	0.17	0.0177	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
m.pXyleneND0.7080.0177mg/kg dry311/21/1111/22/111.00o-XyleneND0.3540.0177mg/kg dry311/21/1111/22/111.00StyreneND0.1770.0177mg/kg dry311/21/1115.4211/22/111.00BromoformND0.1770.0177mg/kg dry311/21/111.54211/22/111.00IsopropylbenzeneND0.1770.0177mg/kg dry311/21/111.54211/22/111.00n-PropylbenzeneND0.1770.0177mg/kg dry311/21/111.54211/22/111.1001,1,2,2-TetrachloroethaneND0.1770.0177mg/kg dry311/21/111.22/111.001,3,5-TrimethylbenzeneND0.1770.0177mg/kg dry311/21/111.12/21/111.001,2,3-TrichloroptoaneND0.1770.0177mg/kg dry311/21/111.22/111.1001,2,3-TrichloroptoaneND0.1770.0177mg/kg dry311/21/111.22/111.1004-ChlorotolueneND0.1770.0177mg/kg dry311/21/111.22/111.1001,2,4-TrimethylbenzeneND0.1770.0177mg/kg dry311/21/111.22/111.1001,2,4-TrimethylbenzeneND0.1770.0177mg/kg dry311/21/111.22/111.001,2,4-Trimethylbenzene <td< td=""><td>Chlorobenzene</td><td>ND</td><td>0.17</td><td>0.0885</td><td>mg/kg dry</td><td>₽</td><td>11/21/11 15:42</td><td>11/22/11 12:11</td><td>1.00</td></td<>	Chlorobenzene	ND	0.17	0.0885	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
o-XyleneND0.3540.0177mg/kg dry*.11/21/1111/22/111.00StyreneND0.1770.0177mg/kg dry*11/21/1111/22/111.00BromoformND0.1770.0885mg/kg dry*11/21/1111/22/111.00IsopropylbenzeneND0.1770.0177mg/kg dry*11/21/1111/22/111.00n-PropylbenzeneND0.1770.0177mg/kg dry*11/21/1111/22/111.001,1,2,2-TetrachloroethaneND0.1770.0177mg/kg dry*11/21/111.22/111.00BromobenzeneND0.1770.0177mg/kg dry*11/21/111.4211/22/111.001,3,5-TrimethylbenzeneND0.1770.0177mg/kg dry*11/21/111.4211/22/111.001,3,5-TrimethylbenzeneND0.1770.0177mg/kg dry*11/21/111.4211/22/111.001,2,3-TrichloropropaneND0.1770.0177mg/kg dry*11/21/111.4211/22/111.001,2,4-TrimethylbenzeneND0.1770.0177mg/kg dry*11/21/111.4211/22/111.001,2,3-TrichloropropaneND0.1770.0177mg/kg dry*11/21/111.4211/22/111.001,2,4-TrimethylbenzeneND0.1770.0177mg/kg dry*11/21/111.4211/22/111.00 <td>1,1,1,2-Tetrachloroethane</td> <td>ND</td> <td>0.17</td> <td>0.0354</td> <td>mg/kg dry</td> <td>¢</td> <td>11/21/11 15:42</td> <td>11/22/11 12:11</td> <td>1.00</td>	1,1,1,2-Tetrachloroethane	ND	0.17	0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
Styrene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 Bromoform ND 0.177 0.0885 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 Isopropylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 n-Propylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,12,2-Tetrachloroethane ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 <t< td=""><td>m,p-Xylene</td><td>ND</td><td>0.70</td><td>0.0177</td><td>mg/kg dry</td><td>¢</td><td>11/21/11 15:42</td><td>11/22/11 12:11</td><td>1.00</td></t<>	m,p-Xylene	ND	0.70	0.0177	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
BromoformND0.1770.0885mg/kg dry#11/21/1111/22/111.00IsopropylbenzeneND0.1770.0177mg/kg dry#11/21/1111/22/111.00n-PropylbenzeneND0.1770.0177mg/kg dry#11/21/1111/22/1112:111.001,1,2,2-TetrachloroethaneND0.1770.0177mg/kg dry#11/21/1111/22/1112:111.001,1,2,2-TetrachloroethaneND0.1770.0354mg/kg dry#11/21/1111/22/111.00BromobenzeneND0.1770.0177mg/kg dry#11/21/1111/22/111.001,3,5-TrimethylbenzeneND0.1770.0177mg/kg dry#11/21/1111/22/111.002-ChlorotolueneND0.1770.0177mg/kg dry#11/21/1111/22/111.001,2,3-TrichloropropaneND0.1770.0177mg/kg dry#11/21/1111/22/111.004-ChlorotolueneND0.1770.0177mg/kg dry#11/21/1111/22/111.004-ChlorotolueneND0.1770.0177mg/kg dry#11/21/1111/22/111.004-ChlorotolueneND0.1770.0177mg/kg dry#11/21/1111/22/111.004-ChlorotolueneND0.1770.0177mg/kg dry#11/21/1111/22/111.001,2,4-TrimethylbenzeneND0.177	o-Xylęne	ND	0.35	0.0177	mg/kg dry	¢.	11/21/11 15:42	11/22/11 12:11	1.00
IsopropylbenzeneND0.1770.0177mg/kg dry**11/21/111.22/1112:111.00n-PropylbenzeneND0.1770.0177mg/kg dry**11/21/1111/22/1112:111.001,1,2,2-TetrachloroethaneND0.1770.0177mg/kg dry**11/21/1111/22/1112:111.001,1,2,2-TetrachloroethaneND0.1770.0177mg/kg dry**11/21/1111/22/1112:111.00BromobenzeneND0.1770.0177mg/kg dry**11/21/1111/22/111.001,3,5-TrimethylbenzeneND0.1770.0177mg/kg dry**11/21/1111/22/111.002-ChlorotolueneND0.1770.00885mg/kg dry**11/21/1115:4211/22/111.001,2,3-TrichloropropaneND0.1770.0177mg/kg dry**11/21/1111/22/111.004-ChlorotolueneND0.1770.0177mg/kg dry**11/21/1111/22/111.004-ChlorotolueneND0.1770.0177mg/kg dry**11/21/1115:4211/22/111.004-ChlorotolueneND0.1770.0177mg/kg dry**11/21/111.22/111.001,2,4-TrimethylbenzeneND0.1770.0177mg/kg dry**11/21/1111/22/111.001,2,4-TrimethylbenzeneND0.1770.0177mg/kg dry**11/21/1111/	Styrene	ND	0.17	0.0177	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
n-Propylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,1,2,2-Tetrachloroethane ND 0.177 0.0354 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 Bromobenzene ND 0.177 0.0354 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 2-Chlorotoluene ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,2,3-Trichloropropane ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 <tr< td=""><td>Bromoform</td><td>ND</td><td>0.17</td><td>0.0885</td><td>mg/kg dry</td><td>¢</td><td>11/21/11 15:42</td><td>11/22/11 12:11</td><td>1.00</td></tr<>	Bromoform	ND	0.17	0.0885	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
ND 0.177 0.0354 mg/kg dry * 11/21/11 15:42 11/22/11 11/22/11 1.00 Bromobenzene ND 0.177 0.0354 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 J.3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 J.3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 2-Chlorotoluene ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,2,3-Trichloropropane ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 1.00	Isopropylbenzene	ND	0.17	0.0177	mg/kg dry		11/21/11 15:42	11/22/11 12:11	1.00
Bromobenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,3,5-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 2-Chlorotoluene ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,2,3-Trichloropropane ND 0.177 0.0354 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 tert-Butylbenzene ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,2,4-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00	n-Propylbenzene	ND	0.17	0.0177	mg/kg dry	₿	11/21/11 15:42	11/22/11 12:11	1.00
ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 2-Chlorotoluene ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,2,3-Trichloropropane ND 0.177 0.0354 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 4-Chlorotoluene ND 0.177 0.0354 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 tert-Butylbenzene ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,2,4-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,2,4-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 sec-Butylbenzene	1,1,2,2-Tetrachloroethane	ND	0.17	0.0354	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
2-Chlorotoluene ND 0.177 0.00885 mg/kg dry ** 11/21/11 15:42 11/22/11 12:11 1.00 1,2,3-Trichloropropane ND 0.177 0.0354 mg/kg dry ** 11/21/11 15:42 11/22/11 12:11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry ** 11/21/11 15:42 11/22/11 12:11 1.00 tert-Butylbenzene ND 0.177 0.00885 mg/kg dry ** 11/21/11 15:42 11/22/11 12:11 1.00 1,2,4-Trimethylbenzene ND 0.177 0.0177 mg/kg dry ** 11/21/11 15:42 11/22/11 12:11 1.00 sec-Butylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 sec-Butylbenzene ND 0.177 0.0124 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00		ND	0.17						
ND 0.177 0.0354 mg/kg dry * 11/21/11 15:42 11/22/11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 1.00 4-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 1.00 tert-Butylbenzene ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 1.00 1,2,4-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 1.22/11 1.00 sec-Butylbenzene ND 0.177 0.0124 mg/kg dry * 11/21/11 1.22/11 1.00	1,3,5-Trimethylbenzene	ND	0.17	0.0177	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
A-Chlorotoluene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 tert-Butylbenzene ND 0.177 0.00885 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 1,2,4-Trimethylbenzene ND 0.177 0.0177 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00 sec-Butylbenzene ND 0.177 0.0124 mg/kg dry * 11/21/11 15:42 11/22/11 12:11 1.00	2-Chlorotoluene	ND	0.177	0.00885	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	
tert-Butylbenzene ND 0.177 0.00885 mg/kg dry # 11/21/11 15:42 11/22/11 12:11 1.00 1,2,4-Trimethylbenzene ND 0.177 0.0177 mg/kg dry # 11/21/11 15:42 11/22/11 12:11 1.00 sec-Butylbenzene ND 0.177 0.0124 mg/kg dry # 11/21/11 15:42 11/22/11 12:11 1.00	1,2,3-Trichloropropane	ND	0.17	. .					
1,2,4-Trimethylbenzene ND 0.177 0.0177 mg/kg dry # 11/21/11 15:42 11/22/11 12:11 1.00 sec-Butylbenzene ND 0.177 0.0124 mg/kg dry # 11/21/11 15:42 11/22/11 12:11 1.00	4-Chlorotoluene	ND	0.17			¢	11/21/11 15:42	11/22/11 12:11	
sec-Butylbenzene ND 0.177 0.0124 mg/kg dry 🌣 11/21/11 15:42 11/22/11 12:11 1.00	tert-Butylbenzene	ND	0.177	0.00885	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00
	1,2,4-Trimethylbenzene	ND			mg/kg dry		11/21/11 15:42		
p-Isopropyltoluene ND 0.177 0.0124 mg/kg dry 🌣 11/21/11 15:42 11/22/11 12:11 1.00	sec-Butylbenzene	ND			mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	
	p-lsopropyltoluene	ND	0.177	0.0124	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.00

Matrix: Soil Percent Solids: 69.4

1

1.00

1.00

1.00

11/22/11 12:11

11/22/11 12:11

11/22/11 12:11

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0109

Client Sample ID: DP-37-10.0-111611 Date Collected: 11/16/11 13:25 Date Received: 11/18/11 15:30

Lab Sample ID: SUK0109-18 Matrix: Soil

Percent Solids: 69.4

4

5 ©

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND		0.177	0.00885	mg/kg dry	— <u>¤</u>	11/21/11 15:42	11/22/11 12:11	1.0
1,2-Dibromo-3-chloropropane	ND		0.885	0.177	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.0
Hexachlorobutadiene	ND		0.177	0.0708	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.0
1,2,4-Trichlorobenzene	ND		0.177	0.0531	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
Naphthalene	ND		0.354	0.195	mg/kg dry	¢	11/21/11 15:42	11/22/11 12:11	1.0
1,2,3-Trichlorobenzene	ND		0.177	0.0531	mg/kg dry	₽	11/21/11 15:42	11/22/11 12:11	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	92.0		71.6 - 127				11/21/11 15:42	11/22/11 12:11	1.00
Toluene-d8	116		80 - 129				11/21/11 15:42	11/22/11 12:11	1.00
4-bromofluorobenzene	139		57.7 - 149				11/21/11 15:42	11/22/11 12:11	1.00
Method: EPA 8011 - EDB by E Analyte		Qualifier	RL	MDL	Linit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND	Quaimer	1.42		ug/kg dry	- \	11/21/11 08:22	11/23/11 20:17	1.00
r,2"Dibionioetnane						₽		11/23/11 20:17	1.00
1,2-Dibromo-3-chloropropane Method: NWTPH-Dx - Semivola				MDI	ug/kg dry		11/21/11 08:22		
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons	atile Petroleum P 	roducts by Qualifier	NWTPH-Dx 	MDL	Unit mg/kg dry	- D	Prepared	Analyzed 11/22/11 02:44	Dil Fac
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	atile Petroleum P Result ND ND	Qualifier	NWTPH-Dx RL 14.4 36.0	MDL	Unit	D	Prepared 11/21/11 09:35 11/21/11 09:35	Analyzed 11/22/11 02:44 11/22/11 02:44	Dil Fac 1.00 1.00
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	atile Petroleum P Result ND ND %Recovery		NWTPH-Dx RL 14.4 36.0 Limits	MDL	Unit mg/kg dry	- D	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed	Dil Fac 1.00 1.00 Dil Fac
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP	atile Petroleum P Result ND ND %Recovery 87.5	Qualifier	NWTPH-Dx RL 14.4 36.0 Limits 50 - 150	MDL	Unit mg/kg dry	- D	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/21/11 09:35	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/22/11 02:44	Dil Fac 1.00 1.00 <i>Dil Fac</i> 1.00
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14	atile Petroleum P Result ND ND %Recovery 87.5 93.2	Qualifier Qualifier	NWTPH-Dx RL 14.4 36.0 Limits 50 - 150 50 - 150	MDL	Unit mg/kg dry	- D	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed	Dil Fac 1.00 1.00 Dil Fac 1.00
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline	atile Petroleum P Result ND ND %Recovery 87.5 93.2 P Hydrocarbons I	Qualifier Qualifier Dy NWTPH-	NWTPH-Dx RL 14.4 36.0 Limits 50 - 150 50 - 150 Gx		Unit mg/kg dry mg/kg dry	- D \$	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/21/11 09:35 11/21/11 09:35	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/22/11 02:44 11/22/11 02:44	Dil Fac 1.00 1.00 Dil Fac 1.00 1.00
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte	atile Petroleum P Result ND ND %Recovery 87.5 93.2 93.2 • Hydrocarbons I Result	Qualifier Qualifier	NWTPH-Dx RL 14.4 36.0 Limits 50 - 150 50 - 150 Gx RL	MDL	Unit mg/kg dry mg/kg dry Unit	- D ¢ D	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/21/11 09:35 11/21/11 09:35 Prepared	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed	Dil Fac 1.00 1.00 Dil Fac Dil Fac
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline	atile Petroleum P Result ND ND %Recovery 87.5 93.2 P Hydrocarbons I	Qualifier Qualifier Dy NWTPH-	NWTPH-Dx RL 14.4 36.0 Limits 50 - 150 50 - 150 Gx		Unit mg/kg dry mg/kg dry	- D \$	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/21/11 09:35 11/21/11 09:35	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/22/11 02:44 11/22/11 02:44	Dil Fac 1.00 1.00 Dil Fac Dil Fac
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate	atile Petroleum P Result ND ND %Recovery 87.5 93.2 • Hydrocarbons I Result ND %Recovery	Qualifier Qualifier Dy NWTPH-	NWTPH-Dx RL 14.4 36.0 Limits 50 - 150 50 - 150 Gx RL 8.85 Limits		Unit mg/kg dry mg/kg dry Unit	- D ¢ D	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/21/11 09:35 11/21/11 09:35 11/21/11 09:35 Prepared 11/20/11 07:10 Prepared	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/21/11 00:30 Analyzed	Dil Fac 1.00 Dil Fac 1.00 Dil Fac Dil Fac Dil Fac
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Basoline Range Hydrocarbons	atile Petroleum P Result ND ND %Recovery 87.5 93.2 • Hydrocarbons I Result ND	Qualifier Qualifier Dy NWTPH- Qualifier	NWTPH-Dx RL 14.4 36.0 Limits 50 - 150 50 - 150 Gx RL 8.85		Unit mg/kg dry mg/kg dry Unit	- D ¢ D	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/20/11 07:10	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/21/11 00:30	Dil Fac 1.00 Dil Fac 1.00 Dil Fac Dil Fac Dil Fac
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Method: EPA 6010C - Total Method:	atile Petroleum P Result ND ND %Recovery 87.5 93.2 Hydrocarbons I Result ND %Recovery 101 tals by EPA 6010	Qualifier Qualifier Oy NWTPH- Qualifier Qualifier	NWTPH-Dx RL 14.4 36.0 Limits 50 - 150 50 - 150 Gx RL 8.85 Limits 50 - 150 es Methods	MDL	Unit mg/kg dry mg/kg dry Unit mg/kg dry		Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/21/11 09:35 11/21/11 09:35 11/21/11 09:35 Prepared 11/20/11 07:10 Prepared 11/20/11 07:10	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/21/11 00:30 Analyzed 11/21/11 00:30	Dil Fac 1.00 1.00 Dil Fac 1.00 Dil Fac Dil Fac 1.00 Dil Fac
Method: NWTPH-Dx - Semivola Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate 2-FBP p-Terphenyl-d14 Method: NWTPH-Gx - Gasoline Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	atile Petroleum P Result ND ND %Recovery 87.5 93.2 Hydrocarbons I Result ND %Recovery 101 tals by EPA 6010	Qualifier Qualifier Dy NWTPH- Qualifier Qualifier	NWTPH-Dx RL 14.4 36.0 <i>Limits</i> 50 - 150 50 - 150 Gx RL 8.85 <i>Limits</i> 50 - 150		Unit mg/kg dry mg/kg dry Unit mg/kg dry	- D ¢ D	Prepared 11/21/11 09:35 11/21/11 09:35 Prepared 11/21/11 09:35 11/21/11 09:35 11/21/11 09:35 Prepared 11/20/11 07:10 Prepared	Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/22/11 02:44 11/22/11 02:44 Analyzed 11/21/11 00:30 Analyzed	Dil Fac 1.00 1.00 <i>Dil Fac</i>

Date Collected: 11/16/11 14:20

Date Received: 11/18/11 15:30

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B Result Qualifier Dil Fac Analyte D Analyzed RL MDL Unit Prepared 1.00 Dichlorodifluoromethane ND 11/20/11 07:12 11/20/11 11:32 1.00 ug/l 11/20/11 07:12 11/20/11 11:32 Chloromethane ND 3.00 ug/i 1.00 Vinyl chloride ND 0.200 ug/l 11/20/11 07:12 11/20/11 11:32 1.00 Bromomethane ND 5.00 ug/l 11/20/11 07:12 11/20/11 11:32 1.00 Chloroethane ND 11/20/11 07:12 11/20/11 11:32 1.00 1.00 ug/l 11/20/11 11:32 Trichlorofluoromethane ND 11/20/11 07:12 1.00 1.00 ug/l 1,1-Dichloroethene ND 1.00 ug/l 11/20/11 07:12 11/20/11 11:32 1.00 Carbon disulfide ND 1.00 ug/l 11/20/11 07:12 11/20/11 11:32 1.00

Matrix: Water

TestAmerica Job ID: SUK0109

Matrix: Water

Lab Sample ID: SUK0109-19

Client Sample ID: DP-37-111611

Date Collected: 11/16/11 14:20 Date Received: 11/18/11 15:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methylene chloride	ND	10.0	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Acetone	ND	25.0	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
trans-1,2-Dichloroethene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Methyl tert-butyl ether	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
1,1-Dichloroethane	ND	1.00	ug/l	• • • • • • •	11/20/11 07:12	11/20/11 11:32	1.00
cis-1,2-Dichloroethene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
2,2-Dichloropropane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Bromochloromethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Chloroform	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Carbon tetrachloride	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
,1,1-Trichloroethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
-Butanone	ND	10.0	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
,1-Dichloropropene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Benzene	ND	0.200	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
,2-Dichloroethane (EDC)	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
richloroethene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Dibromomethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
,2-Dichloropropane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
romodichloromethane	ND	1.00	ug/i		11/20/11 07:12	11/20/11 11:32	1.00
is-1,3-Dichloropropene	ND	1.00	ug/l	• • • • • • •	11/20/11 07:12	11/20/11 11:32	1.00
oluene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
-Methyl-2-pentanone	ND	10.0	ug/i		11/20/11 07:12	11/20/11 11:32	1.00
ans-1,3-Dichloropropene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
etrachloroethene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
,1,2-Trichloroethane	ND	1.00	ug/l	/	11/20/11 07:12	11/20/11 11:32	1.00
libromochloromethane	ND	1.00	ug/i		11/20/11 07:12	11/20/11 11:32	1.00
3-Dichloropropane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
2-Dibromoethane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
-Hexanone	ND	10.0	ug/i		11/20/11 07:12	11/20/11 11:32	1.00
thylbenzene	ND	1.00	ug/i		11/20/11 07:12	11/20/11 11:32	1.00
hlorobenzene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
,1,1,2-Tetrachloroethane	ND	1.00	ug/l	• • • • • • •	11/20/11 07:12	11/20/11 11:32	1.00
i,p-Xylene	ND	2.00	ug/l.		11/20/11 07:12	11/20/11 11:32	1.00
-Xylene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
tyrene	ND	1.00	ug/i	• • • • • • •	11/20/11 07:12	11/20/11 11:32	1.00
romoform	ND	1.00	ug/i		11/20/11 07:12	11/20/11 11:32	1.00
opropylbenzene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Propylbenzene	ND	1.00			11/20/11 07:12	11/20/11 11:32	1.00
			ug/l				1.00
1,2,2-Tetrachioroethane romobenzene	ND	1.00 1.00	ug/l		11/20/11 07:12	11/20/11 11:32	
	ND		ug/l		11/20/11 07:12	11/20/11 11:32	1.00 1.00
3,5-Trimethylbenzene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	
Chiorotoluene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
2,3-Trichloropropane	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Chlorotoluene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
rt-Butylbenzene	ND	1.00	ug/i		11/20/11 07:12	11/20/11 11:32	1.00
2,4-Trimethylbenzene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
ec-Butylbenzene	ND	1.00	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Isopropyitoluene	ND	1.00	ug/i		11/20/11 07:12	11/20/11 11:32	1.00
3-Dichlorobenzene 4-Dichlorobenzene	ND ND	1.00 1.00	ug/l		11/20/11 07:12 11/20/11 07:12	11/20/11 11:32 11/20/11 11:32	1.00

24

5

3

Client Sample ID: DP-37-111611 Date Collected: 11/16/11 14:20

Lab Sample ID: SUK0109-19 Matrix: Water

Method: EPA 8260B - Volatile Or Analyte		unds by El t Qualifier	PA Method 8260I RL	-	nued) Unit	D	Prepared	Analyzed	Dil Fa
n-Butylbenzene	ND)	1.00		ug/l		11/20/11 07:12	11/20/11 11:32	1.0
1,2-Dichlorobenzene	ND)	1.00		ug/l		11/20/11 07:12	11/20/11 11:32	1.00
1,2-Dibromo-3-chloropropane	ND		5.00	· · · · · · · · · · · ·	ug/l		11/20/11 07:12	11/20/11 11:32	1.00
lexachlorobutadiene	ND)	2.00		ug/l		11/20/11 07:12	11/20/11 11:32	1.00
1,2,4-Trichlorobenzene	ND)	1.00		ug/i		11/20/11 07:12	11/20/11 11:32	1.00
Vaphthalene	ND		2.00		ug/l		11/20/11 07:12	11/20/11 11:32	1.00
1,2,3-Trichlorobenzene	ND	I	1.00		ug/l		11/20/11 07:12	11/20/11 11:32	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Ana/yzed	Dil Fac
Dibromofluoromethane	91.0		66.5 - 145				11/20/11 07:12	11/20/11 11:32	1.00
Toluene-d8	102		75.4 - 120				11/20/11 07:12	11/20/11 11:32	1.00
4-bromofluorobenzene	114		68.4 - 123				11/20/11 07:12	11/20/11 11:32	1.00
Method: EPA 8011 - EDB by EPA	Method 8011								
Analyte	Result			MDL	Unit	D	Prepared	Analyzed	Dil Fac
,2-Dibromoethane	ND		0.0100		ug/l		11/19/11 07:17	11/19/11 15:40	1.00
,2-Dibromo-3-chloropropane	ND		0.0100		ug/l		11/19/11 07:17	11/19/11 15:40	1.00
Method: EPA 8082 - Polychlorina									
		Qualifier	RL	MDL		<u> </u>	Prepared	Analyzed	Dil Fac
CB-1016	ND		0.107		ug/l		12/02/11 13:45	12/05/11 13:34	1.00
CB-1221	ND		0.107		ug/l		12/02/11 13:45	12/05/11 12:48	1.00
°CB-1232	ND		0.107		ug/l		12/02/11 13:45	12/05/11 12:48	1.00
2CB-1242	ND		0.107		ug/l		12/02/11 13:45	12/05/11 12:48	1.00
PCB-1248	ND		0.107		ug/i		12/02/11 13:45	12/05/11 12:48	1.00
CB-1254	ND		0.107		ug/l		12/02/11 13:45	12/05/11 12:48	1.00
PCB-1260	ND		0.107		ug/l		12/02/11 13:45	12/05/11 13:34	1.00
CB-1268	ND		0.107		ug/l		12/02/11 13:45	12/05/11 12:48	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	65.1		40 - 137				12/02/11 13:45	12/05/11 13:34	1.00
Decachlorobiphenyl	74.2		40 - 124				12/02/11 13:45	12/05/11 13:34	1.00
Method: NWTPH-Dx - Semivolatil	•				11-14	_	Durand		
Analyte	- Result ND	Qualifier	- RL 0.237	MDL		D	Prepared 11/21/11 09:38	Analyzed	Dil Fac 1.00
)iesel Range Hydrocarbons leavy Oil Range Hydrocarbons	ND		0.237		mg/l mg/l		11/21/11 09:38 11/21/11 09:38	11/23/11 15:04 11/23/11 15:04	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
P-FBP	82.0		50 - 150				11/21/11 09:38	11/23/11 15:04	1.00
-Terphenyl-d14	81.9		50 - 150				11/21/11 09:38	11/23/11 15:04	1.00
/lethod: NWTPH-Gx - Gasoline Hy	ydrocarbons I	by NWTPH	-Gx						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sasoline Range Hydrocarbons	ND		100		ug/l		11/21/11 08:18	11/21/11 13:20	1.00
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-BFB (FID)	101		37.9 - 162				11/21/11 08:18	11/21/11 13:20	1.00
-866 (710)									
مامع (مارم) Aethod: EPA 6010C - Total Metals Malyte	s by EPA 6010)/7000 Seri Qualifier	es Methods RL	MDL		D	Prepared	Analyzed	Dil Fac

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B

Lab Sample ID: 11K0116-BLK1 Matrix: Water				Client Sample ID	rep Type: Tota
Analysis Batch: 11K0116					tch: 11K0116_
-	Blank Bla				
Analyte	Result Qu		MDL Unit	<u> </u>	lyzed Dil Fa
Dichlorodifluoromethane	ND	1.00	ug/l		1 08:45 1.0
Chioromethane	ND	3.00	ug/l		1 08:45 1.0
/inyl chloride	ND	0.200	ug/l		1 08:45 1.0
Bromomethane	ND	5.00	ug/l		1 08:45 1.0
Chloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
richlorofluoromethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
I,1-Dichloroethene	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
Carbon disulfide	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
Methylene chloride	ND	10.0	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
cetone	ND	25.0	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
rans-1,2-Dichloroethene	ND	1.00	ug/i	11/20/11 07:12 11/20/1	1 08:45 1.0
Methyl tert-butyl ether	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
,1-Dichloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
is-1,2-Dichloroethene	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
2,2-Dichloropropane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
Bromochloromethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
Chloroform	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
Carbon tetrachloride	ND	1.00	ug/i	11/20/11 07:12 11/20/1	1 08:45 1.0
,1,1-Trichloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
-Butanone	ND	10.0	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
,1-Dichloropropene	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
Benzene	ND	0.200	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
,2-Dichloroethane (EDC)	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
richloroethene	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
Dibromomethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
,2-Dichloropropane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
romodichloromethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
is-1,3-Dichloropropene	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
oluene	ND	1.00	ug/l	11/20/11 07:12 11/20/1	1 08:45 1.0
-Methyl-2-pentanone	ND	10.0	ug/i	11/20/11 07:12 11/20/1	
ans-1,3-Dichloropropene	ND	1.00	ug/l	11/20/11 07:12 11/20/1	
etrachloroethene	ND	1.00	ug/l	11/20/11 07:12 11/20/1	
.1.2-Trichloroethane	ND	1.00	. ug/l	11/20/11 07:12 11/20/1	
bibromochloromethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	
,3-Dichloropropane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	
,2-Dibromoethane	ND	1.00	ug/l	11/20/11 07:12 11/20/1	
-Hexanone	ND	10.0		11/20/11 07:12 11/20/1	
			ug/i		
thylbenzene hlorobenzene	ND	1.00 1.00	ug/l	11/20/11 07:12 11/20/11	
	ND		ug/l	11/20/11 07:12 11/20/1 11/20/11 07:12 11/20/1	
1,1,2-Tetrachloroethane	ND	1.00	ug/l		
ı,p-Xylene	ND	2.00	ug/l	11/20/11 07:12 11/20/11	
Xylene	ND	1.00	ug/l	11/20/11 07:12 11/20/11	
lyrene	ND	1.00	ug/l	11/20/11 07:12 11/20/11	
romoform	ND	1.00	ug/l	11/20/11 07:12 11/20/11	
	ND	1.00	ug/l	11/20/11 07:12 11/20/11	
Propylbenzene	ND	1.00	ug/l	11/20/11 07:12 11/20/11	
1,2,2-Tetrachloroethane	ND	1.00	ug/l	11/20/11 07:12 11/20/11	
romobenzene	ND	1.00	ug/l	11/20/11 07:12 11/20/11	08:45 1.00

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

Lab Sample ID: 11K0116-BLK1 Matrix: Water Analysis Batch: 11K0116							С		ample ID: Metho Prep Typ Prep Batch: 11ł	be: Tota
·	BI	ank Blank								
Analyte	Re	sult Qualifi	er	I	MDL Unit	<u>D</u>	Prep	pared	Analyzed	Dil Fa
2-Chiorotoluene		ND		1.00	ug/l		11/20/1	11 07:12	11/20/11 08:45	1.00
1,2,3-Trichloropropane		ND		1.00	ug/i		11/20/1	11 07:12	11/20/11 08:45	1.00
4-Chlorotoluene		ND		1.00	ug/l		11/20/1	11 07:12	11/20/11 08:45	1.00
tert-Butylbenzene		ND		1.00	ug/l		11/20/1	11 07:12	11/20/11 08:45	1.00
1,2,4-Trimethylbenzene		ND		1.00	ug/l		11/20/1	11 07:12	11/20/11 08:45	1.0
sec-Butylbenzene		ND		1.00	ug/l		11/20/1	11 07:12	11/20/11 08:45	1.00
p-lsopropyltoluene		ND		1.00	ug/l		11/20/1	11 07:12	11/20/11 08:45	1.0
1,3-Dichlorobenzene		ND		1.00	ug/l			1 07:12	11/20/11 08:45	1.0
1,4-Dichlorobenzene		ND		1.00	ug/l		11/20/1	11 07:12	11/20/11 08:45	1.0
n-Butylbenzene		ND		1.00	ug/ł		11/20/1	1 07:12	11/20/11 08:45	1.0
1,2-Dichlorobenzene		ND		1.00	ug/l		11/20/1	1 07:12	11/20/11 08:45	1.0
1,2-Dibromo-3-chloropropane		ND		5.00	ug/l			1 07:12	11/20/11 08:45	1.00
Hexachlorobutadiene		ND		2.00	ug/l			1 07:12	11/20/11 08:45	1.00
1,2,4-Trichlorobenzene		ND		1.00	ug/l		11/20/1	1 07:12	11/20/11 08:45	1.00
Naphthalene		ND		2.00	ug/l		11/20/1	1 07:12	11/20/11 08:45	1.00
1,2,3-Trichlorobenzene		ND ank Blank		1.00	ug/l		11/20/1	1 07:12	11/20/11 08:45	1.00
			er Limit	-			Bron	ared	Analyzed	Dil Fa
Surrogate Dibromofluoromethane	%Recov		66.5 - 1				·	1 07:12	11/20/11 08:45	1.0
	9	11.4	00.0	140						
		A A	75 4	120			11/20/1	11 07.12		1 0
Toluene-d8 4-bromofluorobenzene _ab Sample ID: 11K0116-BS1		14.4 14.8	75.4 - 1 68.4 - 1			с		1 07:12	11/20/11 08:45 11/20/11 08:45 ID: Lab Control Bren Tyn	1.0 Sample
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water				123	LCS	c	11/20/1	1 07:12 ample	11/20/11 08:45	1.00 Sample se: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116			68.4 - 1	123 LCS	LCS Qualifier	C Unit	11/20/1	1 07:12 ample	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K	1.00 Sample se: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte			68.4 - 1 Spike	123 LCS			11/20/1 lient Sa	1 07:12 ample	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec.	1.00 Sample se: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte			68,4 - 1 Spike Added	123 LCS Result		Unit	11/20/1 lient Sa	ample %Rec	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits	1.00 Sample se: Tota
Toluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte J.1-Dichloroethene Benzene			68,4 Spike Added 10.0	123 LCS Result 10.6		Unit ug/I	11/20/1 lient Sa	1 07:12 ample %Rec 106	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140	1.00 Sample se: Tota
Toluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Trichloroethene			68,4 Spike Added 10.0 10.0	123 LCS Result 10.6 10.5		Unit ug/l ug/l	11/20/1 lient Sa	21 07:12 ample %Rec 106 105	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120	1.00 Sample se: Tota
Toluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Tichloroethene Toluene			68.4. 1 Spike Added 10.0 10.0 10.0	123 LCS Result 10.6 10.5 10.1		Unit ug/l ug/l ug/l	11/20/1 lient Sa	ample %Rec 106 105 101	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120	1.00 Sample se: Tota
Toluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Tichloroethene Toluene	۵ 	4.8	68.4 Spike Added 10.0 10.0 10.0 10.0	123 LCS Result 10.6 10.5 10.1 11.6		Unit ug/l ug/l ug/l	11/20/1 lient Sa	ample %Rec 106 105 101 116	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132	1.00 Sample se: Tota
Toluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Frichloroethene Coluene Chlorobenzene	6 	4.8 	508.4 Spike Added 10.0 10.0 10.0 10.0 10.0	123 LCS Result 10.6 10.5 10.1 11.6		Unit ug/l ug/l ug/l	11/20/1 lient Sa	ample %Rec 106 105 101 116	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132	1.00 Sample se: Tota
Toluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene richloroethene oluene Chlorobenzene Surrogate	LCS I %Recovery (4.8 	68,4 Spike Added 10.0 10.0 10.0 10.0 10.0 Limits	123 LCS Result 10.6 10.5 10.1 11.6		Unit ug/l ug/l ug/l	11/20/1 lient Sa	ample %Rec 106 105 101 116	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132	1.00 Sample se: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene Surrogate Dibromofluoromethane	LCS I %Recovery (91.6	4.8 	Spike Added 10.0	123 LCS Result 10.6 10.5 10.1 11.6		Unit ug/l ug/l ug/l	11/20/1 lient Sa	ample %Rec 106 105 101 116	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132	e: Tota
Toluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8	LCS 1 %Recovery 0 91.6 93.0	4.8 	Spike Added 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 56.5 - 145 75.4 - 120	123 LCS Result 10.6 10.5 10.1 11.6		Unit ug/l ug/l ug/l	11/20/1 lient Sa	ample %Rec 106 105 101 116	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132	1.00 Sample se: Tota
Toluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8	LCS I %Recovery (91.6	4.8 	Spike Added 10.0	123 LCS Result 10.6 10.5 10.1 11.6		Unit ug/l ug/l ug/l	11/20/1 lient Sa	ample %Rec 106 105 101 116	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132	1.00 Sample se: Tota
Foluene-d8 A-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analysis Batch: 11K0116 Analyte J-Dichloroethene Benzene richloroethene Oluene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 H-bromofluorobenzene Lab Sample ID: 11K0116-MS1	LCS 1 %Recovery 0 91.6 93.0	4.8 	Spike Added 10.0 56.5 - 145 75.4 - 120	123 LCS Result 10.6 10.5 10.1 11.6		Unit ug/l ug/l ug/l	11/20/1	ample %Rec 106 105 101 116 110	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120	1.00 Sample re: Tota C0116_F
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Trichloroethene Coluene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 H-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water	LCS 1 %Recovery 0 91.6 93.0	4.8 	Spike Added 10.0 56.5 - 145 75.4 - 120	123 LCS Result 10.6 10.5 10.1 11.6		Unit ug/l ug/l ug/l	11/20/1	ample %Rec 106 105 101 116 110	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120	1.00 Sample re: Tota 0116_F
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Trichloroethene Coluene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 H-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water	LCS I %Recovery 0 91.6 93.0 86.2	4.8 LCS Qualifier	68.41 Spike Added 10.0 10.0 10.0 10.0 10.0 10.0 566.5 - 145 75.4 - 120 68.4 - 123	123 LCS Result 10.6 10.5 10.1 11.6 11.0	Qualifier	Unit ug/l ug/l ug/l ug/l	11/20/1	ample %Rec 106 105 101 116 110	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120 ************************************	1.00 Sample re: Tota 0116_F
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analyte I,1-Dichloroethene Benzene Trichloroethene Coluene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 H-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116	LCS / %Recovery (91.6 93.0 86.2 Sample S	4.8 LCS Qualifier	68.4. 1 Spike Added 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	123 LCS Result 10.6 10.5 10.1 11.6 11.0	Qualifier	Unit ug/l ug/l ug/l ug/l	11/20/1	ample ample %Rec 106 105 101 116 110	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120	1.00 Sample re: Tota 0116_F
Foluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene richloroethene Oluene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 H-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116	LCS L %Recovery Q 91.6 93.0 86.2 Sample S Result Q	4.8 LCS Qualifier	68.41 Spike Added 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	123 LCS Result 10.6 10.5 10.1 11.6 11.0 Matrix Spike Result	Qualifier Matrix Spike Qualifier	Unit ug/l ug/l ug/l ug/l	11/20/1	ample ample %Rec 106 105 101 116 110 ient Sa F %Rec	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120	1.00 Sample re: Tota 0116_F
Foluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Oluene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 H-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116 Analysis Batch: 11K0116	LCS L %Recovery 0 91.6 93.0 86.2 Sample S Result 0 ND	4.8 LCS Qualifier	Spike Added 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 66.5 - 145 75.4 - 120 68.4 - 123 Spike Added 10.0	123 LCS Result 10.6 10.5 10.1 11.6 11.0 Matrix Spike Result 10.2	Qualifier Matrix Spike Qualifier	Unit ug/l ug/l ug/l ug/l	11/20/1	ample %Rec 106 105 101 116 110 ient Sa %Rec 102	11/20/11 08:45 ID: Lab Control Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120 Prep Typ Prep Batch: 11K %Rec. Limits 52.5 - 135	1.00 Sample re: Tota 0116_F
Foluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Oluene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 H-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116 Analysis Batch: 11K0116 Analyse (1-Dichloroethene	LCS I %Recovery 0 91.6 93.0 86.2 Sample 5 Result 0 ND ND	4.8 LCS Qualifier	68.4 Spike Added 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 66.5.145 75.4.120 68.4.123 Spike Added 10.0 10.0 10.0	123 LCS Result 10.6 10.5 10.1 11.6 11.0 Matrix Spike Result 10.2 10.2	Qualifier Matrix Spike Qualifier	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	11/20/1	ample %Rec 106 105 101 116 110 ient Sa %Rec 102 102	11/20/11 08:45 ID: Lab Control Prep Typ Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120 72.4 - 132 80 - 120 72.4 - 132 80 - 120 72.5 - 135 72.3 - 120	1.00 Sample re: Tota 0116_F
Discrimination denomination Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-BS1 Matrix: Water Analysis Batch: 11K0116 Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0116-MS1 Matrix: Water Analysis Batch: 11K0116 Analysis Batch: 11K0116 Analyte 1,1-Dichloroethene Benzene Trichloroethene Benzene Tolu	LCS L %Recovery 0 91.6 93.0 86.2 Sample S Result 0 ND	4.8 LCS Qualifier	Spike Added 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 66.5 - 145 75.4 - 120 68.4 - 123 Spike Added 10.0	123 LCS Result 10.6 10.5 10.1 11.6 11.0 Matrix Spike Result 10.2	Qualifier Matrix Spike Qualifier	Unit ug/l ug/l ug/l ug/l	11/20/1	ample %Rec 106 105 101 116 110 ient Sa %Rec 102	11/20/11 08:45 ID: Lab Control Prep Batch: 11K %Rec. Limits 60.4 - 140 72.9 - 120 73.7 - 120 72.4 - 132 80 - 120 Prep Typ Prep Batch: 11K %Rec. Limits 52.5 - 135	1.00 Sample re: Total 0116_F

1

2

QC Sample Results

			QC Sam	pie Result	S					
ient: Geo Engineers - Spokane							Те	stAmerica Job	ID: SUI	<0109
oject/Site: 0504-060-02										
ethod: EPA 8260B - Volat	tile Organi	c Compo	unde hv	FPA Method	8260B	(Conti	nued)			
	ine organi	c compo	unus by		02000	(00111	-			44044
Lab Sample ID: 11K0116-MS1 Matrix: Water							Clien	t Sample ID: I	p Type:	
								Prep Batch		
Analysis Batch: 11K0116								гер васс	1. 1160	110_F
	Matrix Spike	Matrix Spike								
Surrogate	%Recovery	Qualifier	Limits							
Dibromofluoromethane	96.2		66.5 - 145							
Toluene-d8	97.2		75.4 - 120							
1-bromofluorobenzene	102		68.4 - 123							
							Ollow		27 44	44644
ab Sample ID: 11K0116-MSD1							Clien	t Sample ID: [
Matrix: Water								Prep Batch	p Type:	
Analysis Batch: 11K0116	Sample	Sampla	Snika	vatrix Spike Dup	Matrix Coll			Prep Batcr %Rec.	1. 11601	RPD
Analyte		Qualifier	Added	• •	Qualifier	Unit	D %R		RPD	Limit
,1-Dichloroethene	ND	Qualifier	Added 10.0	9.83	Gudinier	ug/i	<u> </u>		3.40	10.5
Benzene	ND		10.0	9.83		ug/i ug/i		02 72.3 - 120	0.00	10.5
richloroethene	ND		10.0	9.47		ug/i ug/i	94		0.106	10.7
oluene	ND		10.0	9.47	· · · · · · · · · · · ·	ug/i ug/i		13 62.7 - 137	0.621	13
Chiorobenzene	ND		10.0	10.6		ug/i		06 78.9 - 120	0.021	11.2
			10.0	10.0		ugn	•	10.3 - 120	0.150	11.4
Mai	trix Spike Dup	Matrix Spike	Dup							
		Qualifier	I incline							
Surrogate	%Recovery	Qualifier	Limits							
	%Recovery 88.4	Quanner -	66.5 - 145							
Surrogate Dibromofluoromethane Toluene-d8		Quamer								
Dibromofluoromethane oluene-d8 -bromofluorobenzene	88.4		66.5 - 145				Client	Sample ID: M	lethod I	3lank
Dibromofluoromethane Toluene-d8 -bromofluorobenzene .ab Sample ID: 11K0128-BLK1 flatrix: Water	88.4 101	Quanner	66.5 - 145 75.4 - 120				Client	Pre	р Туре:	Total
bibromofluoromethane oluene-d8 -bromofluorobenzene .ab Sample ID: 11K0128-BLK1 flatrix: Water	88.4 101 114	lank Blank	66.5 - 145 75.4 - 120				Client	•	р Туре:	Total
ibromofluoromethane ioluene-d8 -bromofluorobenzene ab Sample ID: 11K0128-BLK1 flatrix: Water .nalysis Batch: 11K0128	88.4 101 114 B		66.5 - 145 75.4 - 120 68.4 - 123	RL M	DL Vnit		Client D Prepared	Prep Prep Batch	p Type: 1: 11K01	Total 28_P Dil Fac
Nibromofluoromethane Toluene-d8 -bromofluorobenzene .ab Sample ID: 11K0128-BLK1 flatrix: Water .nalysis Batch: 11K0128	88.4 101 114 B	lank Blank	66.5 - 145 75.4 - 120 68.4 - 123	<u>RL M</u> 1.00	DL <u>Vinit</u> ug/i			Prep Prep Batch Analyze	p Type: 11K01	Total 28_P
Dibromofluoromethane Toluene-d8 -bromofluorobenzene .ab Sample ID: 11K0128-BLK1	88.4 101 114 B	lank Blank Isult Qualifie	66.5 - 145 75.4 - 120 68.4 - 123				D Prepared	Prep Prep Batch Analyze 46 11/22/11 14	p Type: h: 11K01 hd 4:46	Total 28_P Dil Fac
Dibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 unalyte blohlorodifluoromethane chloromethane inyl chloride	88.4 101 114 B	lank Blank Isult Qualifie	66.5 - 145 75.4 - 120 68.4 - 123	1.00	ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14	p Type: 1: 11K01 1: 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00
Dibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 Linalyte bichlorodifluoromethane chloromethane	88.4 101 114 B	lank Blank esult Qualifie ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00	ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14	p Type: 1: 11K01 1: 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00
Nibromofluoromethane Soluene-d8 -bromofluorobenzene ab Sample ID: 11K0128-BLK1 Matrix: Water Inalysis Batch: 11K0128 nalyte ichlorodifluoromethane hloromethane inyl chloride romomethane hlorothane	88.4 101 114 B	lank Blank esult Qualifie ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200	ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14	p Type: 11K01 d 4:46 4:46 4:46 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 unalyte Dichlorodifluoromethane Schloromethane Inyl chloride romomethane Inoroethane	88.4 101 114 B	lank Blank esult Qualifie ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00	ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14	p Type: 11K01 d 4:46 4:46 4:46 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00
Vibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Inalysis Batch: 11K0128 Inalyte itchlorodifluoromethane hloromethane hloromethane hloroethane richlorofluoromethane	88.4 101 114 B	lank Blank esult Qualifie ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00	ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14	p Type: 1: 11K01 4:46 4:46 4:46 4:46 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00
bibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 unalyte bichlorodifluoromethane chloromethane inyl chloride romomethane richlorofluoromethane .1-Dichloroethene	88.4 101 114 B	lank Blank sult Qualifie ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14 46 11/22/11 14	p Type: 11K01 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00
Dibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 unalyte blohlorodifluoromethane chloromethane inyl chloride	88.4 101 114 B	lank Blank sult Qualifie ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14	p Type: 1: 11K01 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:4	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00
bibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 malyte bichlorodifluoromethane chloromethane inyl chloride romomethane inhloroethane richlorofluoromethane shloroethane richlorofluoromethane shloroethane richlorofluoromethane shloroethane richlorofluoromethane shloroethane	88.4 101 114 B	lank Blank sult Qualifie ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14	p Type: 1: 11K01 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:4	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 malyte Dichlorodifluoromethane Chloromethane Chloromethane Chloroethane richlorofluoromethane Analyte Chloroethane Analyte Chloroethane Analyte Chloroethane Chl	88.4 101 114 B Re	lank Blank sult Qualifie ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14	p Type: 11K01 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
bibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 malyte bichlorodifluoromethane thloromethane inyl chloride romomethane richlorofluoromethane 1-Dichloroethene arbon disulfide lethylene chloride cetorne ans-1,2-Dichloroethene	88.4 101 114 B Re	lank Blank suit Qualifie ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00 1.00 25.0	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14	p Type: 11K01 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Vibromofluoromethane oluene-d8 -bromofluorobenzene ab Sample ID: 11K0128-BLK1 Matrix: Water analysis Batch: 11K0128 malyte ichlorodifluoromethane ihloromethane inyl chloride romomethane hlorofluoromethane 1-Dichloroethene arbon disulfide lethylene chloride cetorie ans-1,2-Dichloroethene lethyl tert-butyl ether	88.4 101 114 B Re	lank Blank esult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14	p Type: 11K01 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
ibromofluoromethane ioluene-d8 -bromofluorobenzene ab Sample ID: 11K0128-BLK1 flatrix: Water analysis Batch: 11K0128 nalyte ichlorodifluoromethane hloromethane inyl chloride romomethane hloroethane nichlorofluoromethane 1-Dichloroethene arbon disulfide ethylene chloride cetone ans-1,2-Dichloroethene ethyl tert-butyl ether 1-Dichloroethane	88.4 101 114 B Re	lank Blank esult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14	p Type: 11K01 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 Inalysis Batch: 11K0128 Inalyte Dichlorodifluoromethane Chlorodifluoromethane Chlorodethane Individe Indid	88.4 101 114 B Re	lank Blank esult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 1	p Type: 11K01 d 1 4:46 4:4	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 Inalysis Batch: 11K018	88.4 101 114 B Re	lank Blank sult Qualifie ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 11/22/11 14 47 11/22/11 14 48 11/22/11 14 49 11/22/11 14 40 11/22/11 14 40 11/22/11 14 40 11/22/11 14 41 14/22/11 14 41 14/22/	p Type: 11K01 d 14:46 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
bibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 Inalyte bichlorodifluoromethane thloromethane inyl chloride romomethane richlorofluoromethane ,1-Dichloroethene arbon disulfide lethylene chloride cetone ans-1,2-Dichloroethene lethyl tert-butyl ether ,1-Dichloroethane s-1,2-Dichloroethene	88.4 101 114 B Re	lank Blank esult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 14 4	p Type: 11K01 4:46 4:	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 Unalysis Batch: 11K018	88.4 101 114 B Re	lank Blank esult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 11/22/11 14 47 11/22/11 14 48 11/22/11 14 49 11/22/11 14 40 11/22/11 14 40 11/22/11 14 40 11/22/11 14 40 11/22/11 14 40 11/22/11 14 41 1	p Type: 1: 11K01 4:46	Total 28_P 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Inalysis Batch: 11K0128 Inalysis Batch: 11K018	88.4 101 114 B Re	lank Blank sult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 14	p Type: 1: 11K01 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 Unalysis Batch: 11K018	88.4 101 114 B Re	lank Blank sult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 14 47 14 47 14 48 14 4	p Type: 1: 11K01 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Analysis Batch: 11K0128 Inalysis Batch: 11K018	88.4 101 114 B Re	lank Blank sult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123	1.00 3.00 0.200 5.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 11/22/11 14 47 11/22/11 14 48 11/22/11 14 49 11/22/11 14 40 11/22/11 14 40 11/22/11 14 40 11/22/11 14 41 14	p Type: 11K01 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
bibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Inalysis Batch: 11K0128 Inalyte bichlorodifluoromethane chloromethane inyl chloride romomethane hloroethane nichlorofluoromethane .1-Dichloroethane arbon disulfide lethylene chloride cetorre ans-1,2-Dichloroethene lethyl tert-butyl ether .1-Dichloroethane s-1,2-Dichloroethene .2-Dichloroethene .2-Dichloroethene .2-Dichloroethane s-1,2-Dichloroethene .2-Dichloroethane s-1,2-Dichloroethene .1,1-Trichloroethane Butanone	88.4 101 114 B Re	lank Blank sult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123 r	1.00 3.00 0.200 5.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 11/22/11 14 47 11/22/11 14 48 11/22/11 14 49 11/22/11 14 40 11/22/11 14 40 11/22/11 14 40 11/22/11 14 41 14 4	p Type: 1: 11K01 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
bibromofluoromethane oluene-d8 -bromofluorobenzene Lab Sample ID: 11K0128-BLK1 Matrix: Water Inalysis Batch: 11K0128 Inalyte bichlorodifluoromethane chlorodifluoromethane chlorodifluoromethane chlorofluoromethane inyl chloride romomethane inchlorofluoromethane chlorofluoromethane chlorofluoromethane inchlorofluoromethane shloroethane inchlorofluoromethane shloroethane s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloroethene s-1,2-Dichloropropane romochloromethane hloroform arbon tetrachloride 1,1-Trichloroethane Butanone 1-Dichloropropene	88.4 101 114 B Re	lank Blank sult Qualifie ND ND ND ND ND ND ND ND ND ND ND ND ND	66.5 - 145 75.4 - 120 68.4 - 123 r	1.00 3.00 0.200 5.00 1.00	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l		D Prepared 11/21/11 15 11/21/11 15 11/21/	Prep Batch Analyze 46 11/22/11 14 46 11/22/11 14 47 11/22/11 14 47 11/22/11 14 48 11/22/11 14 49 11/22/11 14 40 11/22/11 14 40 11/22/11 14 40 11/22/11 14 41 1	p Type: 1: 11K01 4:46	Total 28_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

TestAmerica Spokane 12/30/2011

1

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued)

ND 1.00 ugit 11/21/11 15.46 11/22/11 15.46 Bramdelhoremetrane ND 1.00 ugit 11/21/11 15.46 11/22/11 15.46 Get J.3.Dichoropropene ND 1.00 ugit 11/21/11 15.46 11/22/11 14.46 4.4ethyl-Zpentanone ND 1.00 ugit 11/21/11 15.46 11/22/11 4 1.12.Trichloropropene ND 1.00 ugit 11/21/11 15.46 11/22/11 4 1.12.Trichloropropene ND 1.00 ugit 11/21/11 15.46 11/22/11 4 1.12.Trichloropropene ND 1.00 ugit 11/21/11 15.46 11/22/11 4 1.2.Trichloropropane ND 1.00 ugit 11/21/11 15.46 11/22/11 4 2.Horonochene ND 1.00 ugit	Type: Total	mple ID: Metho Prep Typ Prep Batch: 11I					Discl		Lab Sample ID: 11K0128- Matrix: Water Analysis Batch: 11K0128
Differmomethans ND 1.00 ugd 11/21/11 15:46 11/22/11 4 1.2-Dichloropropene ND 1.00 ugd 11/21/11 15:46 11/22/11 4 1.2-Dichloropropene ND 1.00 ugd 11/21/11 15:46 11/22/11 4 cis-1.3-Dichloropropene ND 1.00 ugd 11/21/11 15:46 11/22/11 4 cis-1.3-Dichloropropene ND 1.00 ugd 11/21/11 15:46 11/22/11 4 Toluane ND 1.00 ugd 11/21/11 15:46 11/22/11 4 1.4Metty-2-gentance ND 1.00 ugd 11/21/11 15:46 11/22/11 4 1.1.2-Trichloroethane ND 1.00 ugd 11/21/11 15:46 11/22/11 4 1.2-Dichloropane ND 1.00	I Dil Fac	Analyzed	Prepared	Unit	MDL	RL			Analvte
ND 1.00 ugit 11/22/11 14/21/11 14/22/11 14/21/11 11/22/11 14/21/11<		11/22/11 14:46	- <u> </u>				· · ·		
Bromodichloromethane ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 dis 1,3-Chiloropropene ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 4 Methyl-Spenjanone ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 4 Methyl-Spenjanone ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 1 Tarchitoroethane ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 1 J, 2. Trichtoroethane ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 1 J, 2. Dichtoroppane ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 1 J, 2. Dichtoroppane ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 1 J, Dichtoroppane ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 1 J, Dichtoroppane ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 1 J, 2. Trickenolocothane ND 1.00 ugrl 11/21/11 15.46 11/22/11 14.46 <		11/22/11 14:46							· · · · · · · · · · · · · · · · · · ·
cis-1,3-Dichloropropen ND 1,00 ugr 11/21/1115.46 11/22/111 Toluene ND 1,00 ugr 11/21/1115.46 11/22/111 Transe 1,3-Dichloropropene ND 1,00 ugr 11/21/1115.46 11/22/111 Transe 1,3-Dichloropropene ND 1,00 ugr 11/21/1115.46 11/22/11 Tartarchorochtene ND 1,00 ugr 11/21/1115.46 11/22/11 1,1,2-Trichkorochtane ND 1,00 ugr 11/21/11 11/22/11 11/21/11 1,2-Dichoropropane ND 1,00 ugr 11/22/11 14/21/11 11/22/11 14/21/11 1,2-Dichoropropane ND 1,00 ugr 11/22/11 14/21/11 11/22/11 14/21/11 11/22/11 14/21/11 14/21/11 11/22/11 14/21/11 11/22/11 14/21/11 11/22/11 14/21/11 11/22/11 14/21/11 11/22/11 14/21/11 11/22/11 14/21/11 11/22/11 14/21/11 11/22/11 14/21/11 11/22/11		11/22/11 14:46		-					
Totuene ND 1.00 ugr 11/22/11 15:46<		11/22/11 14:46							
4-Methyl-2-pentanone ND 10.0 ugf 11/21/11 15.46 11/22/11 16.46 11		11/22/11 14:46							
trans-1,3-Dichloropropene ND 1.00 ug/l 11/2/11116.46 11/2/1116.46		11/22/11 14:46		-					
Tetrachloroethene ND 1.00 ug/l 11/21/11 15.46 11/22/11 14 1.1, 2.Trichloroethane ND 1.00 ug/l 11/21/11 15.46 11/22/11 4 1.3.Dichlorophane ND 1.00 ug/l 11/21/11 15.46 11/22/11 4 1.4.Dichlorophane ND 1.00 ug/l 11/21/11 15.46 11/22/11 4 2.1.Dichlorophane ND 1.00 ug/l 11/21/11 15.46 11/22/11 4 Chirobanzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4 Systene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4 Systene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4 Systene ND 1.00 ug/l		11/22/11 14:46						• • • • • • • • • • • • • • • • • • •	7
ND 1.00 ugd 11/2/11115.46 11/2/11	:46 1.00	11/22/11 14:46		-					Tetrachloroethene
Dibromachloromethane ND 1.00 ugf 11/21/11 11/22/11 1,3-Dichnoroptane ND 1.00 ugf 11/22/11 11/22/11 1,3-Dichnorochane ND 1.00 ugf 11/22/11 14.4 2-Hexanone ND 1.00 ugf 11/22/11 14.4 2-Hexanone ND 1.00 ugf 11/22/11 14.4 Ehylperzene ND 1.00 ugf 11/22/11 14.4 Chlorobenzene ND 1.00 ugf 11/22/11 14.4 1,1,1,2-Tetrachorochtane ND 1.00 ugf 11/22/11 14.4 Syrene ND 1.00 ugf 11/22/11 14.4 11/22/11 14.4 Syrene ND 1.00 ugf 11/22/11 14.4 11/22/11 14.4 11/22/11 14.4 11/22/11 14.4 11/22/11 14.4 11/22/11 14.4 11/22/11 14.4 11/22/11 14.4 11/22/11 14.4		11/22/11 14:46		-					
ND 1.00 ug/l 11/21/11 11/22/11 1,2-Dichtoropropane ND 1.00 ug/l 11/22/11 14.4 11/22/11 2-biexanone ND 1.00 ug/l 11/22/11 15.46 11/22/11 Eihylbenzene ND 1.00 ug/l 11/22/11 15.46 11/22/11 Chorobenzene ND 1.00 ug/l 11/22/11 15.46 11/22/11 Chorobenzene ND 1.00 ug/l 11/22/11 15.46 11/22/11 Syrene ND	46 1.00	11/22/11 14:46	11/21/11 15:46			1.00	••••	ND	Dibromochloromethane
1,2-Ditromeethane ND 1,00 ug/l 11/2/1/11546 11/2/1/1154 2-Hexanone ND 10.0 ug/l 11/2/1/11546 11/2/1/11546 Ethylbenzene ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 Chorobenzene ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 All, 1, 1, 2-Tetrachloroethane ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 All, 1, 1, 2-Tetrachloroethane ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 Sylene ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 11/2/1/11546 Sylene ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 11/2/1/11546 Sylence ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 11/2/1/11546 Sylence ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 11/2/1/11546 Sylence ND 1.00 ug/l 11/2/1/11546 11/2/1/11546 11/2/1/1		11/22/11 14:46		-					
2-Hexanone ND 10.0 ug/t 11/21/1115:46 11/22/1114 Eflytlemzene ND 1.00 ug/t 11/21/1115:46 11/22/1114 Chlorobenzene ND 1.00 ug/t 11/21/1115:46 11/22/1114 Chlorobenzene ND 1.00 ug/t 11/21/1115:46 11/22/1114 Anno-Xylene ND 2.00 ug/t 11/21/1115:46 11/22/1114 Syrene ND 1.00 ug/t 11/21/1115:46 11/22/1114 Syrene ND 1.00 ug/t 11/21/1115:46 11/22/1114 Isomoform ND 1.00 ug/t 11/21/1115:46 11/22/1114 Isopropylbenzene ND 1.00 ug/t 11/21/1115:46 11/22/1114 Sormoform ND 1.00 ug/t 11/21/1115:46 11/22/1114 Isopropylbenzene ND 1.00 ug/t 11/21/1115:46 11/22/1114 Isopropylbenzene ND 1.00 ug/t 11/21/1115:46 11/22/1114 <td></td> <td>11/22/11 14:46</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		11/22/11 14:46							
Ethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Chlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Chlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 pSylene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14 Sylene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Syrene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 <		11/22/11 14:46							
ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 L1, L2-Tetrachloroethane ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 NP, Sylene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14 Sylene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Sylenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Arcaboretene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Sylenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14		11/22/11 14:46		-					
ND 1.00 ug/ 11/21/11 15:46 11/22/11 14 n,p-Xylene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14 Sylene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Sylene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 Sylene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 sopropylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 somobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14 -Chiorobuene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14	46 1.00	11/22/11 14:46	11/21/11 15:46			1.00		ND	-
ND 2.00 ug/l 11/21/11 15.46 11/22/11 xYlene ND 1.00 ug/l 11/21/11 15.46 11/22/11 Styrene ND 1.00 ug/l 11/21/11 15.46 11/22/11 Stromoform ND 1.00 ug/l 11/21/11 15.46 11/22/11 Stromofornzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 Stromofornzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 Stromofornzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 Stromoforpane ND 1.00 ug/l 11/21/11 15.46 11/22/11 <	46 1.00	11/22/11 14:46	11/21/11 15:46			1.00		ND	1,1,1,2-Tetrachloroethane
ND 1.00 ug/l 11/21/11 15:46 11/22/11 Styrene ND 1.00 ug/l 11/21/11 15:46 11/22/11 Styrene ND 1.00 ug/l 11/21/11 15:46 11/22/11 Styrene ND 1.00 ug/l 11/21/11 15:46 11/22/11 sopropylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 Propylbenzene ND 1.00 ug/l 11/22/11 15:46 11/22/11 Argonobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 Strimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 11/22/	46 1.00	11/22/11 14:46	11/21/11 15:46	-		2.00			
Styrene ND 1.00 ug/t 11/21/11 15:46 11/22/11 14 Bromoform ND 1.00 ug/t 11/21/11 15:46 11/22/11 14 Sopropybenzene ND 1.00 ug/t 11/21/11 15:46 11/22/11 14 -Propybenzene ND 1.00 ug/t 11/21/11 15:46 11/22/11 14 -Propybenzene ND 1.00 ug/t 11/21/11 15:46 11/22/11 14 1,2,2-Tetrachloroethane ND 1.00 ug/t 11/21/11 15:46 11/22/11 14 3romoberzene ND 1.00 ug/t 11/21/11 15:46 11/22/11 14 -Chlorotoluene ND 1.00 ug/t <t< td=""><td>46 1.00</td><td>11/22/11 14:46</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>	46 1.00	11/22/11 14:46		-					
ND 1.00 ug/l 11/21/11 15.46 11/22/11 4.56 sopropylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4.56 -Propylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4.56 -Propylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4.57 Arbonobenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4.57 3,5-Trimethylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4.57 3,5-Trimethylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 4.57 3,5-Trimethylbenzene ND 1.00 ug/l 11/22/11 4.57 11/22/11 4.57 -Chlorotoluene ND 1.00 ug/l 11/22/11 14.546 11/22/11 4.57 -Chlorotoluene ND 1.00 ug/l 11/22/11 14.546 11/22/11 4.54 -Chlorotoluene ND 1.00 ug/l 11/22/11 14.546 11/22/11 4.54 -Chlorotoluene ND 1.00 ug/		11/22/11 14:46							
sopropylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 14. -Propylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 14. -Propylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 14. (romoberzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 14. (romoberzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 14. -Chlorotoluene ND 1.00 ug/l 11/21/11 15.46 11/22/11 14. -2.4-Trimethylbenzene ND 1.00 ug/l 11/21/11 15.46 11/22/11 14. -Sepropyltoluene ND 1.00	46 1.00	11/22/11 14:46		-					-
Propyberzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: 12/21/11 15:46 Argenderzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 Argenderzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 Chlorobluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 Chlorobluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 Chlorobluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 Chlorobluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 Arbelybenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 ee-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 -Isopropytoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 15:46 -Butylbenzene ND 1.00 ug/l 11/21/1		11/22/11 14:46		-					
1,2,2-Tetrachloroethane ND 1.00 ug/l 11/21/11 15:46 11/22/11 14:46 bromobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14:4		11/22/11 14:46							
Aromobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/21/11 15:46 3,5-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/21/11 15:46 -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/21/11 15:46 -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: 4.2.4-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: 4.2.4-Trimethylbenzene -Shorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: 4.2.4-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: 11/22/11 14: 11/21/11 15:46 11/22/11 14: 11/22/11 14: 11/22/11 14: 11/21/11 15:46 11/22/11 14: 11/22/11 14: 11/21/11 15:46 11/22/11 14: 11/22/11 14: 12/21/11 15:46 11/22/11 14: 11/22/11 14: 12/21/11 15:46 11/22/11 14: 11/22/11 14: 12/21/11 15:46 11/22/11 14: 11/22/11 14: 12/21/11 15:46 11/22/11 14: 12/21/11 14: 12/21/11 15:46 11/22/11 14: 12/21/		11/22/11 14:46							
3,5-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: 2,3-Trichloropropane ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/2/11 14: -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/2/11 14: -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/2/11 14: -2,2-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/2/11 14: -2,2-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/2/11 14: 4-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/2/11 14: 4-Dichlorobenzene -2-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/2/11 14: 4-Dichlorobenzene 11/21/11 15:46 11/22/11 14: 12/2/11 14: 4-Dichlorobenzene ND 1.00		11/22/11 14:46		-					
C-Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 11/22/11 14: ,2,3-Trichloropropane ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/211 14: -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/211 14: -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/211 14: -chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/211 14: -g.2.4-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/211 14: 12/211 14: -g.2.6-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 12/21/11 14: 12/21/11 14: 12/21/11 15:46 11/22/11 14: 12/21/11 14: 12/21/11 15:46 11/22/11 14: 12/21/11 14: 12/21/11 15:46 11/22/11 14: 12/21/11 14: 12/21/11 15:46 11/22/11 14: 12/21/11 15:46 11/22/11 14: 12/21/11 14: 12/21/11 1		11/22/11 14:46							
2,3-Trichloropropane ND 1,00 ug/l 11/21/11 15:46 11/22/11 14: -Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ed-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: 2,4-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Isopropyltoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Joichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Z-Dichlorobenze		11/22/11 14:46							
-Chlorotoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ent-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,4-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Isopropyltoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Jabchlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -A-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2-Dibromo-3-chloropropane ND		11/22/11 14:46							
ert-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,4-Trimethylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: elsopropyltoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,3-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,4-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2-Dichlorobenzene ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: -2-Dibromo-3-		11/22/11 14:46							
ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ec-Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: elsopropyltoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: a-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2-Dibromo-3-chloropropane ND 5.00 ug/l 11/22/11 14: 11/22/11 14: -2,4-Trichlorobenzene ND 2.00 ug/l <td></td> <td>11/22/11 14:46</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		11/22/11 14:46							
ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Isopropyltoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Isopropyltoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Isopropyltoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -S-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/22/11 14: 11/22/11 14: -2-Dichlorobenzene ND 5.00 ug/l 11/22/11 14: 11/22/11 14: -2-Dibromo-3-chloropropane ND 2.00 ug/l 11/22/11 14: 11/22/11 14: -2,24-Trichlorobenzene ND 1.00 ug/l <td></td> <td>11/22/11 14:46</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>		11/22/11 14:46							-
Isopropyltoluene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,3-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,4-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2.Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2-Dichlorobenzene ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: ,2-Dibromo-3-chloropropane ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: ,2-Dibromo-3-chloropropane ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,4-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14:		11/22/11 14:46					· · · · · · · · · · ·		
ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: (4-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: (2-Dichlorobenzene ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: (2-Dibromo-3-chloropropane ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: (2-Dibromo-3-chloropropane ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: (2,4-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: (2,4-Trichlorobenzene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: (2,3-Trichlorobenzene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: (2,3-Trichlorobenzene ND 1.		11/22/11 14:46		-					
A-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2-Dibromo-3-chloropropane ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: texachlorobutadiene ND 2.00 ug/l 11/22/11 14: 11/22/11 14: -2,4-Trichlorobenzene ND 1.00 ug/l 11/22/11 15:46 11/22/11 14: -2,4-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2,4-Trichlorobenzene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: -2,3-Trichlorobenzene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: -2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: -2,3-Trichlorobenzene<		11/22/11 14:46		-					
Butylbenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2-Dichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2-Dichlorobenzene ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: ,2-Dibromo-3-chiloropropane ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: lexachlorobutadiene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,4-Trichlorobenzene ND 1.00 ug/l 11/22/11 14: 11/22/11 14: ,2,4-Trichlorobenzene ND 1.00 ug/l 11/22/11 15:46 11/22/11 14: aphthalene ND 2.00 ug/l 11/22/11 14: 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/22/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14:		11/22/11 14:46							
ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2-Diblorono-3-chloropropane ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: ,2-Dibromo-3-chloropropane ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: lexachlorobutadiene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,4-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: laphthalene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14:									
ND 5.00 ug/l 11/21/11 15:46 11/22/11 14: lexachlorobutadiene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,4-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: laphthalene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Blank Blank Blank Blank 1.00 ug/l 11/21/11 15:46 11/22/11 14:		11/22/11 14:46							-
ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,4-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: laphthalene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Blank Bl									
ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Japhthalene ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Blank Bl		11/22/11 14:46							• •
ND 2.00 ug/l 11/21/11 15:46 11/22/11 14: ,2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Blank				-					
2,3-Trichlorobenzene ND 1.00 ug/l 11/21/11 15:46 11/22/11 14: Blank Blank		11/22/11 14:46							
		11/22/11 14:46		-					-
Surrogate %Recovery Qualifier Limits Prepared Analyzed							Blank	Blank	
	Dil Fac						Qualifier	•	
	46 1.00	11/22/11 14:46	11/21/11 15:46			66.5 - 145		89.0	
"oluene-d8 101 75.4 - 120 11/21/11 15:46 11/22/11 14:	46 1.00	11/22/11 14:46	11/21/11 15:46			75.4 - 120		101	oluene-d8

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

4

6

6

Method: EPA 8260B - Volatile Organic Compounds by EPA Method 8260B (Continued) Lab Sample ID: 11K0128-BS1 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total Analysis Batch: 11K0128 Prep Batch: 11K0128_P LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1,1-Dichloroethene 10.0 9.39 ug/l 93.9 60.4 - 140 Benzene 10.0 9.53 ug/l 95.3 72.9 - 120 ug/l Trichloroethene 10.0 9.05 90.5 73.7 - 120 10.8 Toluene 10.0 ug/l 108 72.4 - 132 Chlorobenzene 10.0 10.1 ug/l 101 80 - 120 LCS LCS Surrogate %Recovery Qualifier Limits Dibromofluoromethane 88.2 66.5 - 145 Toluene-d8 98.0 75.4 - 120 4-bromofluorobenzene 98.2 68.4 - 123 Lab Sample ID: 11K0128-BSD1 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total Analysis Batch: 11K0128 Prep Batch: 11K0128 P Spike LCS Dup LCS Dup %Rec. RPD Added Result Qualifier RPD Limit Analyte Unit D %Rec Limits 1,1-Dichloroethene 10.0 10.0 ug/l 100 60.4 - 140 6.39 14 Benzene 10.0 10.0 ug/l 100 72.9 - 120 5.31 14.3 9.60 Trichloroethene 10.0 ug/l 96.0 73.7 - 120 5.90 10 Toluene 10.0 11.6 ug/l 116 72.4 - 132 6.85 12 Chlorobenzene 10.0 10.8 ug/l 108 80 - 120 5.93 11 LCS Dup LCS Dup %Recovery Qualifier Surrogate Limits Dibromofluoromethane 88.4 66.5 - 145 Toluene-d8 98.2 75.4 - 120 4-bromofluorobenzene 68.4 - 123 94.8 Client Sample ID: DP-33-111611 Lab Sample ID: 11K0128-DUP1 Matrix: Water Prep Type: Total Prep Batch: 11K0128_P Analysis Batch: 11K0128 Sample Sample RPD Duplicate Duplicate Limit **Result Qualifier** D RPD Analyte Result Qualifier-Unit 1,1-Dichloroethene ND 20 ND ug/l Benzene 2.80 2.80 ug/l 0.00 20 Trichloroethene ND ND ug/l 20 Toluene 9.40 10.2 ug/l 8.16 20 Chlorobenzene ND ND 20 ug/l Duplicate Duplicate Surrogate %Recovery Qualifier Limits Dibromofluoromethane 66.5 - 145 90.2 Toluene-d8 108 75.4 - 120

4-bromofluorobenzene

122

68.4 - 123

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

1

(5) (2)

Method: EPA 8260B - Volatile Organic Compounds by EPA Methods 5035/8260B

Lab Sample ID: 11K0118-BLK1 Matrix: Soil								mple ID: Metho Prep Typ	e: Tota
Analysis Batch: 11K0118	Blank I	Blank					I	Prep Batch: 11	(0118_
Analyte	Result (RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	ND ·		0.100	0.0500	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Chloromethane	ND		0.500	0.0500	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Vinyl chloride	ND		0.0600	0.0200	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Bromomethane	ND		0.500	0.100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Chloroethane	ND		0.100	0.0500	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Trichlorofluoromethane	ND		0.0300	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
1,1-Dichloroethene	ND		0.100	0.0200	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Carbon disulfide	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Methylene chloride	ND		1.00		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Acetone	ND		2.00		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
rans-1,2-Dichloroethene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Methyl tert-butyl ether	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
1,1-Dichloroethane	ND		0.100		mg/kg wet	· · • · · ·	11/21/11 08:16	11/21/11 09:44	1.0
is-1,2-Dichloroethene	ND		0.100	0.0200			11/21/11 08:16	11/21/11 09:44	1.0
2,2-Dichloropropane	ND		0.100	0.0200			11/21/11 08:16	11/21/11 09:44	1.0
Bromochloromethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Chloroform	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Carbon tetrachloride	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,1,1-Trichloroethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
	ND		1.00					11/21/11 09:44	1.0
-Butanone	ND				mg/kg wet		11/21/11 08:16		1.0
,1-Dichloropropene			0.100		mg/kg wet	<u> </u>	11/21/11 08:16	11/21/11 09:44	
Benzene	ND		0.0200		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,2-Dichloroethane (EDC)	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
	ND		0.0250		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Dibromomethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,2-Dichloropropane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Bromodichloromethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
is-1,3-Dichloropropene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
oluene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
I-Methyl-2-pentanone	ND		1.00		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
rans-1,3-Dichloropropene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
etrachioroethene	ND		0.0500		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,1,2-Trichloroethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Dibromochloromethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,3-Dichloropropane	ND		0.100	0.0200	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,2-Dibromoethane	ND		0.100	0.0200	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
-Hexanone	ND		1.00	0,100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
thylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
hlorobenzene	ND		0.100	0.0500	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,1,1,2-Tetrachloroethane	ND		0.100	0.0200	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
n,p-Xylene	ND		0.400	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
-Xylene	ND		0.200	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
tyrene	ND		0.100	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
romoform	ND		0.100	0.0500	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
opropylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Propylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,1,2,2-Tetrachloroethane	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
Bromobenzene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0
,3,5-Trimethylbenzene	ND		0.100		mg/kg wet		11/21/11 08:16	11/21/11 09:44	1.0

1

2

Method: EPA 8260B - Volatile Organic Compounds by EPA Methods 5035/8260B (Continued)

Lab Sample ID: 11K0118-BLK1 Matrix: Soil	l							C	lient S	ample ID: Meti Prep T	nod Blani /pe: Tota
Analysis Batch: 11K0118	Blan	k Blank								Prep Batch: 1	IK0118_
Analyte		t Qualifier		RL M	IDL	Unit	D	Pre	pared	Analyzed	Dil Fa
2-Chlorotoluene	ND	<u> </u>	0	0.100 0.00	500	mg/kg wet		11/21/	11 08:16	11/21/11 09:44	1.0
1,2,3-Trichloropropane	0.0330) J	0	.100 0.0	200	mg/kg wet		11/21/	11 08:16	11/21/11 09:44	1.0
4-Chlorotoluene	NE		0			mg/kg wet		11/21/	11 08:16	11/21/11 09:44	1.0
tert-Butylbenzene	NE					mg/kg wet			11 08:16		1.0
1,2,4-Trimethylbenzene	NE)	0			mg/kg wet		11/21/	11 08:16	11/21/11 09:44	1.0
sec-Butylbenzene						mg/kg wet			11 08:16		1.0
p-Isopropyltoluene	NE					mg/kg wet			11 08:16		1.0
1,3-Dichlorobenzene	NE					mg/kg wet		11/21/	11 08:16		1.0
1,4-Dichlorobenzene	NE					mg/kg wet			11 08:16		1.0
n-Butylbenzene	NC					mg/kg wet			11 08:16		1.0
1,2-Dichlorobenzene	0.0130					mg/kg wet			11 08:16	11/21/11 09:44	1.0
1,2-Dibromo-3-chloropropane	NE					mg/kg wet			11 08:16	11/21/11 09:44	1.0
Hexachlorobutadiene	NE					mg/kg wet			11 08:16	11/21/11 09:44	1.0
1,2,4-Trichlorobenzene	NE									11/21/11 09:44	1.0
						mg/kg wet			11 08:16		
Naphthalene	NE					mg/kg wet			11 08:16	11/21/11 09:44	1.0
1,2,3-Trichlorobenzene	0.0400		0	.100 0.03	300	mg/kg wet		11/21/	11 08:16	11/21/11 09:44	1.0
Surrogate	Blank %Recovery	Blank Qualifier	Limits	s				Pre	pared	Analyzed	Dil Fa
Dibromofluoromethane	91.4	i ———	71.6 - 1	27			-	11/21/	11 08:16	11/21/11 09:44	1.0
					/			11/01/	44.00.40	44/04/44 00.44	10
	107	1	80 - 1	29				11/21/	11 08:16	11/21/11 09:44	1.0
^r oluene-d8 -bromofluorobenzene .ab Sample ID: 11K0118-BS1	107 107		80 - 1. 57.7 - 1.					11/21/	11 08:16	11/21/11 09:44 ID: Lab Contro	1.0 I Sample
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil			57.7 - 1	49				11/21/	11 08:16 ample	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11	1.00 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118			57.7 - 1	49 LCS				11/21/	11 08:16 Sample	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec.	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte			57.7 - 1 Spike Added	49 LCS Result		alifier Unit	Cli	11/21/	11 08:16 Sample %Rec	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1,1-Dichloroethene			57.7 - 1 Spike Added 1.00	49 LCS Result 0.878		alifier Unit mg/kg	Cli	11/21/	11 08:16 sample %Rec 87.8	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte I,1-Dichloroethene Benzene			57,7 - 1/ Spike Added 1.00 1.00	49 LCS Result 0.878 0,998		nlifier Unit mg/kg mg/kg	Cli wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte I,1-Dichloroethene Benzene frichloroethene			57,7 - 14 Spike Added 1.00 1.00 1.00	49 LCS Result 0.878 0.998 0.924		nliffer Unit mg/kg mg/kg mg/kg	Cli wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte I,1-Dichloroethene Benzene Frichloroethene foluene			57,7 - 14 Spike Added 1.00 1.00 1.00	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte I,1-Dichloroethene Benzene Frichloroethene foluene			57,7 - 14 Spike Added 1.00 1.00 1.00	49 LCS Result 0.878 0.998 0.924		nliffer Unit mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte I,1-Dichloroethene Benzene frichloroethene foluene			57,7 - 14 Spike Added 1.00 1.00 1.00	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124	1.00 I Sample pe: Tota
Toluene-d8 1-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1.1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene			57,7 - 14 Spike Added 1.00 1.00 1.00	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte I,1-Dichloroethene Senzene Frichloroethene Chlorobenzene Surrogate	LCS LCS %Recovery Qua	Silifier	57,7 - 1/ Spike Added 1.00 1.00 1.00 1.00 1.00	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124	1.04 I Sample pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8	LCS LCS %Recovery Qua 90.8	Shiffler 71	57,7 - 1 Spike Added 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124	1.00 I Sample pe: Tota
Toluene-d8 I-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte (1-Dichloroethene Benzene frichloroethene Chlorobenzene Chlorobenzene Chlorofluoromethane Toluene-d8	LCS LCS %Recovery Qua	Salifier 71	57,7 - 1/ Spike Added 1.00 1.00 1.00 1.00 1.00 Limits	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124	1.0 I Sampl pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1,1-Dichloroethene Benzene frichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 I-bromofluorobenzene	LCS LCS %Recovery Qua 90.8 109	Salifier 71	57,7 - 1 Spike Added 1.00	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111 105	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124	1.0 I Sample pe: Tota K0118_F
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-MS1	LCS LCS %Recovery Qua 90.8 109	Salifier 71	57,7 - 1 Spike Added 1.00	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111 105	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124 80 - 120	1.00 I Sample pe: Tota K0118_F
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-MS1 Matrix: Soil	LCS LCS %Recovery Qua 90.8 109	Salifier 71	57,7 - 1 Spike Added 1.00	49 LCS Result 0.878 0.998 0.924 1.11		nijfier Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111 105	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124 80 - 120	1.00 I Sample pe: Tota K0118_F 5-111611 pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1,1-Dichloroethene Benzene Trichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-MS1 Matrix: Soil	LCS LCS %Recovery Qua 90.8 109	5 hlifier 71 57	57,7 - 1 Spike Added 1.00	49 LCS Result 0.878 0.998 0.924 1.11	Qua	nliffer Unit mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111 105	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124 80 - 120	1.00 I Sample pe: Tota K0118_F 5-111611 pe: Tota
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte Analyte Analyte Analyte Analyte Analyte Chloroethene Coluene Chlorobenzene Coluene Chlorobenzene Coluene-d8 H-bromofluoromethane Toluene-d8 H-bromofluorobenzene Lab Sample ID: 11K0118-MS1 Matrix: Soil Analysis Batch: 11K0118	LCS LCS %Recovery Qua 90.8 109 107	Shifier 71	57,7 - 14 Spike Added 1.00	49 LCS Result 0.878 0.998 0.924 1.11 1.05	Qua	nliffer Unit mg/kg mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/	11 08:16 ample %Rec 87.8 99.8 92.4 111 105	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124 80 - 120	1.0 I Sample pe: Tota K0118_F
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte Analyte Analyte Analyte Chlorobenzene Chlo	LCS LCS %Recovery Qua 90.8 109 107 Sample Sam	Shifier 71	57,7 - 14 Spike Added 1.00	49 LCS Result 0.878 0.998 0.924 1.11 1.05	Qua	nliffer Unit mg/kg mg/kg mg/kg mg/kg mg/kg	Cli wet wet wet	11/21/ ent S 	11 08:16 ample %Rec 87.8 99.8 92.4 111 105	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124 80 - 120	1.0 I Sample pe: Tota K0118_F
Foluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte (1-Dichloroethene Senzene frichloroethene Chlorobenzene Surrogate Dibromofluoromethane Toluene-d8 -bromofluorobenzene Lab Sample ID: 11K0118-MS1 Matrix: Soil Analysis Batch: 11K0118 Analyte (1-Dichloroethene	LCS LCS %Recovery Qua 90.8 109 107 Sample Sam Result Qua	Shifier 71	57,7 - 14 Spike Added 1.00	49 LCS Result 0.878 0.998 0.924 1.11 1.05 Matrix Spike Result	Matu	rix Spike liffer Unit mg/kg mg/kg mg/kg t	Cli wet wet wet wet	11/21/ ent S 	11 08:16 ample %Rec 87.8 99.8 92.4 111 105 t Samp	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124 80 - 120	1.00 I Sample pe: Tota K0118_F
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1,1-Dichloroethene Frichloroethene Chlorobenzene Surrogate Dibromofluoromethane Foluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-MS1 Matrix: Soil Analysis Batch: 11K0118 Analyte ,1-Dichloroethene Benzene	LCS LCS %Recovery Qua 90.8 109 107 Sample Sam Result Qua ND	Shifier 71	57,7 - 14 Spike Added 1.00	49 LCS Result 0.878 0.998 0.924 1.11 1.05 Matrix Spike Result 1.22	Matu	rix Spike liffer Unit mg/kg mg/kg mg/kg mg/kg liffer Unit mg/kg	Cli wet wet wet wet	11/21/ ent S Clien 	11 08:16 ample %Rec 87.8 99.8 92.4 111 105 t Samp	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124 80 - 120 Ne ID: DP-29-2. Prep Ty Prep Batch: 11 %Rec. Limits 58.8 - 134	pe: Tota K0118_F
Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0118-BS1 Matrix: Soil Analysis Batch: 11K0118 Analyte 1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene Surrogate Dibromofluoromethane	LCS LCS %Recovery Qua 90.8 109 107 Sample Sam Result Qua ND 0.164	Shifier 71	57,7 - 14 Spike Added 1.00 1.01	49 LCS Result 0.878 0.998 0.924 1.11 1.05 Matrix Spike Result 1.22 1.58	Qua Matu Qua M7	rix Spike lilifier Unit mg/kg mg/kg mg/kg lilifier Unit mg/kg mg/kg	Cli wet wet wet wet try try	11/21/ ent S Clien ~ ×	11 08:16 ample %Rec 87.8 99.8 92.4 111 105 92.4 111 105	11/21/11 09:44 ID: Lab Contro Prep Ty Prep Batch: 11 %Rec. Limits 54.2 - 150 75.8 - 122 78 - 122 80 - 124 80 - 120 Ne ID: DP-29-2. Prep Ty Prep Batch: 11 %Rec. Limits 58.8 - 134 72 - 120	1.00 I Sample pe: Tota K0118_F 5-111611 pe: Tota

Method: EPA 8260B - Volat	tile Organi	c Comp	ounds by	EPA Method	IS 5035/8	3260B (C	ontir	iuea)			
Lab Sample ID: 11K0118-MS1							Clier	nt Sam	ple ID: DP-2	9-2.5-1	111611
Matrix: Soil									Pre	р Туре	: Total
Analysis Batch: 11K0118									Prep Batch	11K0)118_P
	Matrix Spike	Matrix Spik	e								
Surrogate	%Recovery	-	Limits								
Dibromofluoromethane	89.2		71.6 - 127								
Toluene-d8	122		80 - 129								
4-bromofluorobenzene	141		57.7 - 149								
Lab Sample ID: 11K0118-MSD1							Clier	nt Sam	ole ID: DP-2	9-2.5-1	11611
Matrix: Soil									Pre	о Туре	: Total
Analysis Batch: 11K0118									Prep Batch	: 11K0	118_P
	Sample	Sample	Spike	fatrix Spike Dup	Matrix Spik	ke Duş			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		1.14	1.24		mg/kg dry	<u></u>	109	58.8 - 134	1.38	26.4
Benzene	0.164		1.14	1.69	M7	mg/kg dry	₽	134	72 - 120	6.59	29.5
Trichloroethene	ND		1.14	1.32		mg/kg dry	₽	116	71.1 - 121	3.48	29.8
Toluene	0.0694	J	1.14	1.75	M7	mg/kg dry	\$	147	75.6 - 120	2.13	27
Chlorobenzene	ND		1.14	1.57	M7	mg/kg dry	₽	138	75.7 - 120	2.29	26.6
100	trix Spike Dup	Matrix Spik	e Dun								
		Qualifier	Limits								
	7011000VCIY	quanner	71.6 - 127								
Surrogate	90.4										
Dibromofluoromethane	90.4 119										
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil	90.4 119 149		80 - 129 57.7 - 149				с		•	Type:	: Total
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1	119 149	ank Blank	80 - 129				С		•	Type:	: Total
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil	119 149 Bi	ank Blank sult Qualif	80 - 129 57.7 - 149	RL M	DL Unit	Б			Prep	o Type: : 11K0	: Total
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127	119 149 Bi		80 - 129 57.7 - 149		DL Unit		Pre		Prep Prep Batch	o Type: : 11K0 d	: Total 127_P
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte	119 149 Bi	suit Qualif	80 - 129 57.7 - 149	0.100 0.05		vet –	Pre 11/21/	pared	Prep Prep Batch Analyze	o Type: : 11K0 d <u>0:50</u>	: Total 127_P Dil Fac
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane	119 149 Bi	ND Qualif	80 - 129 57.7 - 149 ler	0.100 0.05 0.500 0.05	00 mg/kg w	vet	Pre 11/21/ 11/21/	pared 11 15:42	Prep Prep Batch Analyze 11/22/11 09	o Type: : 11K0 d 0:50 0:50	: Total 127_P Dil Fac 1.00
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane	119 149 Bi	ND Qualif	80 - 129 57.7 - 149 ler	0.100 0.05 0.500 0.05 0.0600 0.02	00 mg/kg w 00 mg/kg w	vet vet vet	Pre 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42	Prep Prep Batch Analyze 11/22/11 05 11/22/11 05	• Type: • 11K0 • • • • • • • • • • • • • • • • • • •	: Total 127_P Dil Fac 1.00 1.00
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride	119 149 Bi	ND Qualif	80 - 129 57.7 - 149 ler	0.100 0.05 0.500 0.05 0.0600 0.02 0.500 0.1	00 mg/kg w 00 mg/kg w 00 mg/kg w	vet vet vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42 11 15:42	Prep Prep Batch Analyze 11/22/11 05 11/22/11 05 11/22/11 05	• Type: • 11K0 •	Total 127_P Dil Fac 1.00 1.00
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane	119 149 Bi	ND Qualif ND ND ND ND	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.0600 0.02 0.500 0,1 0.100 0.5	00 mg/kg w 00 mg/kg w 00 mg/kg w 00 mg/kg w	vet vet vet vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42 11 15:42 11 15:42	Prep Batch Analyze 11/22/11 03 11/22/11 03 11/22/11 03 11/22/11 03 11/22/11 03	b Type: : 11K0 d 0:50 0:50 0:50 0:50 0:50	Total 127_P Dil Fac 1.00 1.00 1.00
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane	119 149 Bi	ND Qualif ND ND ND ND ND ND ND ND ND	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.0600 0.02 0.500 0.1 0.100 0.05 0.000 0.02 0.000 0.02 0.000 0.02 0.000 0.02 0.000 0.02 0.000 0.01	00 mg/kg w 00 mg/kg w 00 mg/kg w 00 mg/kg w 00 mg/kg w	vet vet vet vet vet vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42	Prep Batch Analyzet 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05	b Type: : 11K0 d 0:50 0:50 0:50 0:50 0:50 0:50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane	119 149 Bi	ND Qualif ND ND N	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.0600 0.02 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02	00 mg/kg w	vet vet vet vet vet vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42	Prep Batch Analyzer 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05	b Type: : 11K0 d 0:50 0:50 0:50 0:50 0:50 0:50	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene	119 149 	ND Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.0600 0.02 0.500 0.1 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02	00 mg/kg w	vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42	Prep Batch Analyze 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05	b Type: : 11K0 d b:50	Total 127_P DII Fac 1.00 1.00 1.00 1.00 1.00 1.00
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide	119 149 	ND Qualify Qualify Qualify ND	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.6600 0.02 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 1.00 0.33	00 mg/kg w	vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42 11 15:42	Prep Batch Analyze 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05 11/22/11 05	b Type: 11K0 d 550 550 550 550 550 550 550	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride	119 149 Bi	ND Qualif ND ND N	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.0600 0.02 0.500 0.1 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.02 1.00 0.3 2.00 0.9	00 mg/kg w	vet vet vet vet vet vet vet vet vet vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyze 11/22/11 05 11/22/11 05	Type: 11K0 1 1 1 1 1 1 1 1	: Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone	119 149 Bi	ND Qualif ND ND N	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.02 0.500 0.1 0.500 0.1 0.500 0.1 0.500 0.1 0.100 0.05 0.100 0.02 0.100 0.05 1.00 0.3 2.00 0.9 0.100 0.02	00 mg/kg w	vet vet vet vet vet vet vet vet vet vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyzer 11/22/11 05 11/22/11 05	a Type: 11K0 a 2:50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene	119 149 Bi	ND Qualif ND ND N	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.0600 0.02 0.500 0.1 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.03 2.00 0.9 0.100 0.02 0.100 0.02	00 mg/kg w	vet	Pre 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/ 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyze 11/22/11 09 11/22/11 09	a Type: 11K0 a 2:50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether	119 149 BI 	Sult Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.02 0.500 0.10 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.03 2.00 0.3 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02	00 mg/kg w	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyze 11/22/11 09	Type: 11K0 2:50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane	119 149 BI 	Sult Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.02 0.500 0.12 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.03 2.00 0.9 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02	00 mg/kg w	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Batch	Type: 11K0 2:50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene	119 149 BI B	Sult Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.05 0.500 0.12 0.500 0.1 0.500 0.1 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.03 2.00 0.9 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02	00 mg/kg w	vet vet vet vet vet vet vet vet vet vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Batch	Type: 11K0 0:50 :50 <t< td=""><td>Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0</td></t<>	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2,2-Dichloropropane	119 149 	Sult Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.05 0.500 0.12 0.500 0.11 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.05 1.00 0.33 2.00 0.9 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02	00 mg/kg w	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyzer 11/22/11 09 11/22/11 0	Type: 11K0 2:50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2,2-Dichloropethane Bromochloromethane	119 149 	Sult Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.02 0.500 0.12 0.500 0.12 0.500 0.11 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.03 2.00 0.9 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02	00 mg/kg w	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyzer 11/22/11 09 11/22/11	Type: 11K0 2:50 :50 :50 <tr< td=""><td>Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0</td></tr<>	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2,2-Dichloroptopane Bromochloromethane Chloroform	119 149 Bl Re	Sult Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.05 0.500 0.12 0.500 0.11 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.05 1.00 0.33 2.00 0.9 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02	00 mg/kg w	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyzer 11/22/11 03 11/22/11 03 11/22/11 03 11/22/11 03 11/22/11 03 11/22/11 05 11/22/11 05 11/25/11 05 11/25/11 05 11/25/11 05 11/25/11 05 11/25/11 05 11/25/11	Type: 11K0 2:50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2,2-Dichloropthane Chloroform Carbon tetrachloride	119 149 Bl Re	Sult Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.05 0.500 0.02 0.500 0.12 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.05 1.00 0.33 2.00 0.9 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02	00 mg/kg w	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyze 11/22/11 03 11/22/11 03 11/22/11 03 11/22/11 03 11/22/11 05	Type: 11K0 2:50 :50 :50 :50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethene 2,2-Dichloropthene Bromochloromethane Chloroform Carbon tetrachloride 1,1,1-Trichloroethane	119 149 Bl Re	Sult Qualif	80 - 129 57.7 - 149 ier	0.100 0.05 0.500 0.05 0.500 0.05 0.500 0.12 0.500 0.12 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 1.00 0.02 1.00 0.14 0.100 0.02	00 mg/kg w 00 mg/kg w </td <td>vet vet vet vet vet vet vet vet vet vet</td> <td>Pre 11/21/</td> <td>pared 11 15:42 11 15:42</td> <td>Prep Batch Analyzer 11/22/11 03 11/22/11 03 11/22/11</td> <td>Type: 11K0 2:50 :50 :50 :50 :50 :50</td> <td>Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0</td>	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Batch Analyzer 11/22/11 03 11/22/11	Type: 11K0 2:50 :50 :50 :50 :50 :50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethene 2,2-Dichloropropane Bromochloromethane Chloroform Carbon tetrachloride 1,1,1-Trichloroethane 2-Butanone	119 149 	Sult Qualif	80 - 129 57.7 - 149	0.100 0.05 0.500 0.05 0.500 0.05 0.500 0.12 0.500 0.12 0.500 0.1 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 1.00 0.02 1.00 0.14 0.100 0.02	00 mg/kg w 00 mg/kg w </td <td>vet vet vet vet vet vet vet vet vet vet</td> <td>Pre 11/21/</td> <td>pared 11 15:42 11 15:42</td> <td>Prep Prep Batch</td> <td>Type: 11K0 2:50 :50 :50 :50 :50 :50 :50</td> <td>Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0</td>	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Prep Batch	Type: 11K0 2:50 :50 :50 :50 :50 :50 :50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Dibromofluoromethane Toluene-d8 4-bromofluorobenzene Lab Sample ID: 11K0127-BLK1 Matrix: Soil Analysis Batch: 11K0127 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene Carbon disulfide Methylene chloride Acetone trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2,2-Dichloropropane Bromochloromethane Chloroform Carbon tetrachloride 1,1,1-Trichloroethane 2-Butanone 1,1-Dichloropropene	119 149 Bl Re	Sult Qualif	80 - 129 57.7 - 149	0.100 0.05 0.500 0.05 0.500 0.05 0.500 0.10 0.500 0.11 0.100 0.05 0.0300 0.01 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 0.100 0.02 1.00 0.11 0.100 0.02 0.100 0.02 0.100 0.02 0.0200 0.088	00 mg/kg w 00 mg/kg w </td <td>vet</td> <td>Pre 11/21/</td> <td>pared 11 15:42 11 15:42</td> <td>Prep Prep Batch</td> <td>Type: 11K0 2:50 :50 :50 :50 :50 :50 :50 :50 :50</td> <td>Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0</td>	vet	Pre 11/21/	pared 11 15:42 11 15:42	Prep Prep Batch	Type: 11K0 2:50 :50 :50 :50 :50 :50 :50 :50 :50	Total 127_P Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

1

2

Method: EPA 8260B - Volatile Organic Compounds by EPA Methods 5035/8260B (Continued)

Lab Sample ID: 11K0127-BLK1							Client Sa	mple ID: Metho	
Matrix: Soil								Prep Typ	
Analysis Batch: 11K0127							I	Prep Batch: 11k	.0127_P
		Blank	-		11-24	_	B	Anatomad	
Analyte		Qualifier	RL _		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
I,2-Dichloropropane	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
Bromodichloromethane	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
dis-1,3-Dichloropropene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
foluene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
I-Methyl-2-pentanone	ND		1.00		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
rans-1,3-Dichloropropene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
etrachloroethene	ND		0.0500	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,1,2-Trichloroethane	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
Dibromochloromethane	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,3-Dichloropropane	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,2-Dibromoethane	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
-Hexanone	ND		1.00	0.100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
thylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
Chlorobenzene	ND		0.100	0.0500	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,1,1,2-Tetrachloroethane	ND		0.100	0.0200	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
n,p-Xylene	ND		0.400	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
-Xylene	ND		0.200	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
tyrene	ND		0.100	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
Bromoform	ND		0.100	0.0500	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
opropylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
Propylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,1,2,2-Tetrachloroethane	ND		0.100	0.0200	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
romobenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,3,5-Trimethylbenzene	ND		0.100	0.0100	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
-Chlorotoluene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,2,3-Trichloropropane	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
-Chlorotoluene	ND		0.100		mg/kg wet	• • • • • •	11/21/11 15:42	11/22/11 09:50	1.00
ert-Butylbenzene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,2,4-Trimethylbenzene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
ec-Butylbenzene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
-Isopropyltoluene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,3-Dichlorobenzene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
4-Dichlorobenzene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
-Butylbenzene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,2-Dichlorobenzene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
					mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
2-Dibromo-3-chloropropane	ND		0.500				11/21/11 15:42		
exachlorobutadiene	ND		0.100		mg/kg wet			11/22/11 09:50	1.00
2,4-Trichlorobenzene	ND		0.100		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
aphthalene	ND		0.200		mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
,2,3-Trichlorobenzene	ND		0.100	0.0300	mg/kg wet		11/21/11 15:42	11/22/11 09:50	1.00
urrogate	Blank %Recovery		Limits				Prepared	Analyzed	Dil Fac
ibromofluoromethane	90.8		71.6 - 127				11/21/11 15:42	11/22/11 09:50	1.00
ioluene-d8			80 - 129				11/21/11 15:42	11/22/11 09:50	1.00
oluene-ao -bromofluorobenzene	111 115		80 - 129 57.7 - 149				11/21/11 15:42	11/22/11 09:50	1.00

4-bromofluorobenzene

í

-								_			
Lab Sample ID: 11K0127-BS1						c	lient	Sample	e ID: Lab Co		•
Matrix: Soil										р Туре	
Analysis Batch: 11K0127									Prep Batch	n: 11K0)127_F
			Spike		LCS				%Rec.		
Analyte			Added		Qualifier	Unit	<u>D</u>	%Rec	Limits		
1,1-Dichloroethene			1.00			mg/kg wet		80.1	54.2 - 150		
Benzene			1.00			mg/kg wet		96.4	75.8 - 122		
Trichloroethene			1.00	0.880		mg/kg wet		88.0	78 - 122		
Toluene			1.00	1.11		mg/kg wet		111	80 - 124		
Chlorobenzene			1.00	1.05		mg/kg wet		105	80 - 120		
	105	LCS									
Surrogate	%Recovery		Limits								
Dibromofluoromethane	89.0	Quaimer	71.6 - 127								
	89.0 115										
Toluene-d8			80 - 129								
4-bromofluorobenzene	117		57.7 - 149								
ab Completion 44/2407 MOd							0				44044
Lab Sample ID: 11K0127-MS1							Clien	t Samp	le ID: DP-37		
Matrix: Soil										p Type:	
Analysis Batch: 11K0127	0 and 1		Online	Mately Caller	Madala 0 11				Prep Batch	11 11 KU	127_F
Analista	Sample		Spike	Matrix Spike	-			N/Dee	%Rec.		
Analyte	Result	Qualifier	Added		Qualifier	Unit	 ₩	%Rec	Limits		
1,1-Dichloroethene	ND		1.33	1.54		mg/kg dry		116	58.8 - 134		
Benzene	ND		1.33	1.80	M	mg/kg dry	\$	135	72 - 120		
	ND		1.33	1.61		mg/kg dry	¢	121	71.1 - 121		
Toluene	ND		1.33	2.00		mg/kg dry	\$	151	75.6 - 120		
Chlorobenzene	ND		1.33	1.88	M7	mg/kg dry	\$	142	75.7 - 120		
	Matrix Spike	Matrix Spike	e								
Surrogate	%Recovery	•	Limits								
Dibromofluoromethane	93.8		71.6 - 127								
Toluene-d8	113		80 - 129								
1-bromofluorobenzene	133		57.7 - 149								
+ biomonuolopenzene	100		07.7 - 140								
_ab Sample ID: 11K0127-MSD1	I						Client	Samn	e ID: DP-37	-10.0-1	11611
Matrix: Soil							onom	oump		Type:	
Analysis Batch: 11K0127									Prep Batch		
Analysis Daten. Theory	Sample	Sample	Spike	vatrix Spike Dup	Matrix Snik	e Dur			%Rec.		RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
.1-Dichloroethene	ND		1.33	1.68		mg/kg dry		127	58.8 - 134	8.67	26.4
Benzene	ND		1.33	1.95	M7	mg/kg dry	₽	146	72 - 120	7.84	29.5
inchloroethene							æ			9.63	29.8
	ND		1.33	1.77		mg/kg dry	····	133	71.1 - 121	9.63 7.41	29.0
oluene	ND		1.33	2.16		mg/kg dry		162	75.6 - 120		
Chlorobenzene	ND		1.33	2.07	M /	mg/kg dry	¢,	155	75.7 - 120	9.23	26.6
Ма	trix Spike Dup	Matrix Spike	e Dup								
Surrogate	%Recovery	•	Limits								
Dibromofluoromethane	94.4		71.6 - 127								
Toluene-d8	111		80 - 129								

TestAmerica Spokane 12/30/2011

57.7 - 149

TestAmerica Job ID: SUK0109

5

6

Method: EPA 8011 - EDB by EPA Method 8011 Lab Sample ID: 11K0113-BLK1 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total Prep Batch: 11K0113_P Analysis Batch: 11K0113 Blank Blank MDL Unit Analyzed Dil Fac Analyte Result Qualifier RL D Prepared 0.0100 11/19/11 07:17 11/19/11 14:10 1.00 1,2-Dibromoethane ND ug/l ND 0.0100 11/19/11 07:17 11/19/11 14:10 1.00 1,2-Dibromo-3-chloropropane ug/l Lab Sample ID: 11K0113-BS1 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Analysis Batch: 11K0113 Prep Batch: 11K0113_P Spike LCS LCS %Rec. Analyte **Result Qualifier** Limits Added Unit D %Rec 1,2-Dibromoethane 0.125 0.0868 ug/l 69.5 60 - 140 1,2-Dibromo-3-chloropropane 0.132 106 60 - 140 0.125 ug/l Lab Sample ID: 11K0113-BS2 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Analysis Batch: 11K0113 Prep Batch: 11K0113_P LCS LCS Spike %Rec. Added **Result Qualifier** Unit %Rec Limits Analyte D 1,2-Dibromoethane 0.125 0.0976 78.0 60 - 140 ug/l 1,2-Dibromo-3-chloropropane 0.125 102 60 - 140 0.128 ug/l Client Sample ID: Lab Control Sample Dup Lab Sample ID: 11K0113-BSD1 Matrix: Water Prep Type: Total Analysis Batch: 11K0113 Prep Batch: 11K0113_P Spike LCS Dup LCS Dup %Rec. RPD Added **Result Qualifier** Unit %Rec Limits RPD Limit Analyte D 1,2-Dibromoethane 0.125 0.0928 ug/l 74.2 60 - 140 6.63 20 1,2-Dibromo-3-chloropropane 0.125 0.131 ua/l 105 60 - 140 0.930 20 **Client Sample ID: Method Blank** Lab Sample ID: 11K0120-BLK1 Prep Type: Total Matrix: Soil Prep Batch: 11K0120_P Analysis Batch: 11K0120 Blank Blank **Dil Fac** Analyzed Analyte Result Qualifier RL MDL Unit D Prepared ND 1.00 11/21/11 08:22 11/23/11 14:24 1.00 1,2-Dibromoethane ug/kg wet 1,2-Dibromo-3-chloropropane ND 1.00 ug/kg wet 11/21/11 08:22 11/23/11 14:24 1.00 Lab Sample ID: 11K0120-BLK2 **Client Sample ID: Method Blank** Prep Type: Total Matrix: Soil Prep Batch: 11K0120_P Analysis Batch: 11K0120 Blank Blank Result Qualifier MDL Unit Dil Fac RL D Prepared Analyzed Analyte 1,2-Dibromoethane ND 1.00 ug/kg wet 11/21/11 08:22 11/23/11 19:38 1.00 11/21/11 08:22 ND 1.00 11/23/11 19:38 1.00 1,2-Dibromo-3-chloropropane ug/kg wet Client Sample ID: Lab Control Sample Lab Sample ID: 11K0120-BS1 Prep Type: Total Matrix: Soil Analysis Batch: 11K0120 Prep Batch: 11K0120_P LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Analyte D 1,2-Dibromoethane 5.00 5.63 ug/kg wet 113 60 - 140 1,2-Dibromo-3-chloropropane 5.00 5.61 ug/kg wet 112 60 - 140

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Lab Sample ID: 11K0120-BS2 Matrix: Soil						С	lient	Sample	ID: Lab Co	ontrol S ep Type	
Analysis Batch: 11K0120			pike	1.05	LCS				Prep Batc %Rec.	n: 11K	5120_
Analyte			ded		Qualifier	Unit	Ð	%Rec	Limits		
1,2-Dibromoethane			5.00	5.50	quamer	ug/kg wet		110	60 - 140		
1,2-Dibromo-3-chloropropane			5.00	5.35		ug/kg wet		107	60 - 140		
Lab Sample ID: 11K0120-BS3						с	lient S	Sample	ID: Lab Co	ontrol S	Sampl
Matrix: Soil						Ũ		Sampio		р Туре	
Analysis Batch: 11K0120									Prep Batcl		
,		s	pike	LCS	LCS				%Rec.		
Analyte		A	lded	Result	Qualifier	Unit	Ð	%Rec	Limits		
1,2-Dibromoethane			5.00	5.59		ug/kg wet		112	60 - 140		
1,2-Dibromo-3-chloropropane			5.00	5.41		ug/kg wel		108	60 - 140		
Lab Sample ID: 11K0120-BSD1						Client	Samp	ole ID: L	ab Contro	l Samp	le Du
Matrix: Soil									Pre	р Туре	: Tota
Analysis Batch: 11K0120									Prep Batch	h: 11K0	120_
		S	pike	LCS Dup	LCS Dup				%Rec.		RP
Analyte		Ac	lded	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
1,2-Dibromoethane			5.00	5.57		ug/kg wet		111	60 - 140	1.00	2
1,2-Dibromo-3-chloropropane			5.00	5.37		ug/kg wet		107	60 - 140	4.39	2
Lab Sample ID: 11K0120-BSD2						Client	Samp	le ID: L	ab Control	Samp	le Du
Matrix: Soil										р Туре	
Analysis Batch: 11K0120									Prep Batch	n: 11K0	
			pike		LCS Dup				%Rec.		RP
Analyte			ded		Qualifier	Unit	_ <u>D</u>	%Rec	Limits	RPD	Lim
1,2-Dibromoethane			5.00	5.73		ug/kg wet		115	60 - 140	4.11	2
1,2-Dibromo-3-chloropropane			5.00	5.63		ug/kg wet		113	60 - 140	5.10	2
Lab Sample ID: 11K0139-BLK1							С	lient Sa	ample ID: N	/lethod	Blan
Matrix: Water									Pre	р Туре	: Tota
Analysis Batch: 11K0139									Prep Batch	n: 11K0	139_I
	Blank	Blank									
Analyte	Result	Qualifier	RI	. M	DL Unit	D	Pre	pared	Analyze	ed	Dil Fa
1,2-Dibromoethane	ND		0.0100)	ug/i		11/23/	11 06:54	11/23/11 1	2:40	1.0
1,2-Dibromo-3-chloropropane	ND	-	0.0100)	ug/l		11/23/ [,]	11 06:54	11/23/11 1	2:40	1.0 0
Lab Sample ID: 11K0139-BS1						CI	ient S	ample	ID: Lab Co		
Matrix: Water									-	р Туре	
Analysis Batch: 11K0139		S	oi ke	LCS	LCS				Prep Batch %Rec.	11K0 ii: 1	139_F
Analyte		Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane		0.	125	0.123		ug/l	·	98.3	60 - 140		
1,2-Dibromo-3-chloropropane		0.	125	0.140		ug/i		112	60 - 140		
ab Sample ID: 11K0139-BS2						CI	ient S	ample	ID: Lab Co	ntrol S	ample
Matrix: Water									Pre	o Type:	: Tota
Analysis Batch: 11K0139									Prep Batch	: 11K0	139_F
		S	lke	LCS	LCS				%Rec.		
Analyte			ded		Qualifier	Unit	_ <u>D</u>	%Rec	Limits		
,2-Dibromoethane		0.	125	0.123		ug/l		98.7	60 - 140		

Method: EPA 8011 - EDB by EPA Method 8011 (Continued)

Matrix: Water Prep Type Analysis Batch: 11K0139 Prep Batch: 11K0 Analyte Spike LCS Dup %Rec. 1,2-Dibromoethane 0.125 0.107 ug/l D %Rec. 1,2-Dibromo-3-chloropropane 0.125 0.146 ug/l 117 60 - 140 13.9 Method: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082 Client Sample ID: 11K0123-BLK1 Client Sample ID: Method	mple ID: 11K0139-BSD1				Clien	t Samp	ole ID: L	ab Control		•
Spike LCS Dup %Rec. Analyte Added Result Qualifier Unit D %Rec. 1,2-Dibromoethane 0.125 0.107 ug/l D %Rec. 13.9 1,2-Dibromo-3-chloropropane 0.125 0.146 ug/l 117 60 - 140 4.02 Hethod: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082										
Analyte Added Result Qualifier Unit D %Rec Limits RPD 1,2-Dibromoethane 0.125 0.107 ug/l 1 0 85.5 60 - 140 13.9 1,2-Dibromoe-3-chloropropane 0.125 0.146 ug/l 117 60 - 140 4.02 lethod: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082	is Batch: 11K0139	0						•	n: 11K0 ⁻	-
1,2-Dibromoethane 0.125 0.107 ug/l 85.5 60 - 140 13.9 1,2-Dibromo-3-chloropropane 0.125 0.146 ug/l 117 60 - 140 4.02 lethod: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082		•	•	•						RPD
,2-Dibromo-3-chloropropane 0.125 0.146 ug/l 117 60 - 140 4.02 ethod: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ethod: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082	omoethane	0.125	0.107		ug/l		85.5	60 - 140	13.9	20
	mo-3-chloropropane	0.125	0.146		ug/l		117	60 - 140	4.02	20
	I: EPA 8082 - Polychlorinated Biphe	nvis by EPA M	ethod 808	32						
ab Sample ID: 11K0123-BLK1 Client Sample ID: Method				<i>'</i>						
	mpla ID: 11K0122 BLK1					<u> </u>	liont Ca		lathad I	Blank
Matrix: Soil Prep Type						, c		•		

Method: EPA 8082 - Polych	lorinated	Biphe	enyls by EF	PA Metho	d 808	32							
Lab Sample ID: 11K0123-BLK1 Matrix: Soil Analysis Batch: 11K0123									c	Client S	ample ID: Pr Prep Bate	ер Тур	e: Total
		Blank B						_	_				
Analyte	R	esult Q	ualifier		M	IDL				pared	Analy		Dii Fac
PCB-1221				50.0			ug/kg wet			/11 11:11			1.00
PCB-1232 PCB-1242		ND		50.0 50.0			ug/kg wet			'11 11:11 '11 11:11			1.00 1.00
PCB-1242 PCB-1248		ND ND		50.0			ug/kg wet			11 11:11			1.00
PCB-1246		ND		50.0			ug/kg wet ug/kg wet			'11 11:11 '11 11:11			1.00
PCB-1254		ND		50.0			ug/kg wet			11 11:11			1.00
				00.0			ug/ng wor		1020		1022/11	10.10	1.00
Lab Sample ID: 11K0123-BLK1									с	lient S	ample ID:	Method	d Blank
Matrix: Soil													e: Total
Analysis Batch: 11K0123											Prep Bato		
	B	lank B	lank								-		
Analyte	Re	esult Qi	ualifier	RL	м	DL	Unit	D	Pre	pared	Analyz	zed	Dil Fac
PCB-1016		ND		50,0			ug/kg wet		11/21/	11 11:11	11/22/11	13:28	1.00
PCB-1260		ND		50.0		I	ug/kg wet		11/21/	11 11:11	11/22/11	13:28	1.00
	В	lank Bl	lank										
Surrogate		very Q		Limits					Pre	pared	Analyz	zed	Dil Fac
TCX		66.6		.9 - 154						11 11:11			1.00
Decach/orobiphenyl		106	\$	35 - 157					11/21/	11 11:11	11/22/11	13:28	1.00
Lab Sample ID: 11K0123-BS1								C	lient S	Sample	ID: Lab C		
Matrix: Soil													e: Total
Aņalysis Batch: 11K0123								•			Prep Batc	h: 11K0	0123_P
			Spik		LCS				_		%Rec.		
Analyte			Adde		Result	Qua			<u> </u>	%Rec	Limits		
PCB-1016			16		127		ug/kg			76.2	63.1 - 147		
PCB-1260			16	D7	155		ug/kg	wet		92.8	74.4 - 130		
	LCS	LCS											
Surrogate	%Recovery	Qualifie	r Limits										
TCX	52.6		27.9 - 154										
Decachlorobiphenyl	96.3		35 - 157										
— Г									_		_		
Lab Sample ID: 11K0123-BSD1							Cli	ient	Sampl	le ID: L	ab Contro		
Matrix: Soil												ер Туре	
Analysis Batch: 11K0123							D			l	Prep Batc	h: 11K(
Analuta			Spik		S Dup		•		-	0/ D	%Rec.		RPD
Analyte PCB-1016			Adde 16		Result 133	Qua			_ <u>D</u> _	%Rec 80.0	Limits 63.1 - 147	RPD 4.88	Limit 25
PCB-1016 PCB-1260					133 160		ug/kg			80.0 96.2	63.1 - 147 74.4 - 130	4.88 3.54	25 25
			16		100		ug/kg	wei		90.2	/4.4 - 130	3.94	20

1

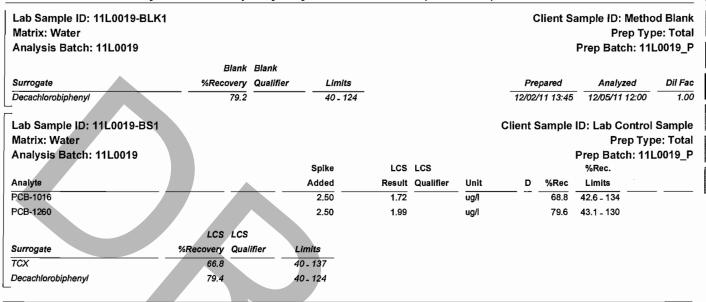
Method: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082 (Continued)

Lab Sample ID: 11K0123-BSD1 Matrix: Soil						Clien	t Sample	ID: La	ab Control Sa Prep 1	ample Dup ype: Total
Analysis Batch: 11K0123								I	Prep Batch: 1	
-		00 0								_
0	LCS Dup L	•	(inclés							
Surrogate	%Recovery Q 54.7	uanner	Limits							
Decachlorobiphenyl	103		35 - 157							
Lab Sample ID: 11K0123-MS1 Matrix: Soil							CI	ient S	Sample ID: Ma	atrix Spike ype: Tota
									-	
Analysis Batch: 11K0123	Comple C	mala	Spike	Matrix Calka	Moteix C	niko		r	Prep Batch: 1 %Rec.	INU123_F
	Sample Sa		-	Matrix Spike			D 44	Dee	Limits	
Analyte	Result Q	ualifier	Added		Qualifier		— 🛱 🕺	Rec		
PCB-1016	ND		516	1730	M1	ug/kg dry		335	50.6 - 145	
PCB-1260	ND		516	548		ug/kg dry	¢	106	57.6 - 120	
	Matrix Spike M	atrix Spike								
Surrogate	%Recovery Q	•	LImits							
rcx	97.7		27.9 - 154							
	97.7 80.9		27.9 - 154 35 - 157							
Decachlorobiphenyl	80.9		30 - 15/							
ab Sample ID: 11K0123-MSD1						Clie	ent Sampl	le ID:	Matrix Spike	Duplicate
/atrix: Soil							•			ype: Total
analysis Batch: 11K0123								F	Prep Batch: 1	
marysis Daten. Thtorzo	Sample Sa	mole	Spike	Matrix Spike Dup	Matrix S	pike Dur			%Rec.	RPD
nalyte	Result Q		Added	Result		• •	D %	Rec		PD Limit
CB-1016	ND ND		516	1860		ug/kg dry	— • —	361		7.37 40
CB-1260	ND		516	491	IALI	ug/kg dry ug/kg dry		95.1		1.1 27.4
		· · · · ·	•.•	431		-33		00.1		
	rix Spike Dup Ma	atrix Spike I				-337				
Mati		•				13113 11				
urrogate .	rix Spike Dup Ma	•	Dup							
Matu urrogate CX	rix Spike Dup Ma %Recovery Qu 89.3	•	Dup Limits 27.9 - 154							
Matu Surrogate CX	rix Spike Dup Ma %Recovery Qu	•	Dup Limits							
Matu Surrogate	rix Spike Dup Ma %Recovery Qu 89.3	•	Dup Limits 27.9 - 154						mple ID: Met	hod Blank
Matu urrogate CX hecachlorobiphenyl ab Sample ID: 11L0019-BLK1	rix Spike Dup Ma %Recovery Qu 89.3	•	Dup Limits 27.9 - 154						-	
Matu CX Decachlorobiphenyl ab Sample ID: 11L0019-BLK1 Matrix: Water	rix Spike Dup Ma %Recovery Qu 89.3	•	Dup Limits 27.9 - 154					nt Sa	-	hod Blank ype: Total
Matu urrogate CX lecachlorobiphenyl ab Sample ID: 11L0019-BLK1 Natrix: Water	rix Spike Dup Ma %Recovery Qu 89.3 77.5	-	Dup Limits 27.9 - 154					nt Sa	Prep T	hod Blank ype: Total 1L0019_P
Matu ourrogate CX Decachlorobiphenyl ab Sample ID: 11L0019-BLK1 Matrix: Water unalysis Batch: 11L0019 nalyte	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu	k Blank It Qualifier	Dup Limits 27.9 - 154 35 - 157	RL M	DL Unit	<u><u> </u></u>	Clie	nt Sa F ed	Prep T Prep Batch: 1 Analyzed	hod Blank ype: Total 1L0019_P Dil Fac
Matu cx becachlorobiphenyl ab Sample ID: 11L0019-BLK1 Matrix: Water unalysis Batch: 11L0019 nalyte CB-1221	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu	k Blank It Qualifier	Dup Limits 27.9 - 154 35 - 157	<u>RL</u> <u>M</u> 0.100	ug/i		Clier Prepare 12/02/11 1	nt Sa F ed 13:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:48	hod Blank ype: Total 1L0019_P
Matu cx becachlorobiphenyl ab Sample ID: 11L0019-BLK1 Matrix: Water unalysis Batch: 11L0019 nalyte CB-1221	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu	k Blank It Qualifier	Dup Limits 27.9 - 154 35 - 157	RL M			Clie	nt Sa F ed 13:45	Prep T Prep Batch: 1 Analyzed	hod Blank ype: Total 1L0019_P
Matu urrogate CX ab Sample ID: 11L0019-BLK1 latrix: Water .nalysis Batch: 11L0019 nalyte CB-1221 CB-1221 CB-1232	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu	k Blank It Qualifier D	Dup Limits 27.9 - 154 35 - 157	<u>RL</u> <u>M</u> 0.100	ug/i		Clier Prepare 12/02/11 1	nt Sa F ed 13:45 13:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:48	hod Blank ype: Total 1L0019_P Dil Fac 3 1.00 3 1.00
Matu wrrogate CX Decachlorobiphenyl ab Sample ID: 11L0019-BLK1 Matrix: Water analysis Batch: 11L0019 nalyte CB-1221 CB-1232 CB-1242	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu Ni Ni	k Blank It Qualifier D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100	ug/t ug/l		Clier Prepare 12/02/11 1 12/02/11 1	nt Sa F ed 13:45 13:45	Prep T Prep Batch: 1 <u>Analyzed</u> 12/05/11 11:48 12/05/11 11:48	hod Blank ype: Total 1L0019_P Dil Fac 3 1.00 3 1.00 3 1.00
Matu Surrogate CCX Decachlorobiphenyl Lab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 Malyte CB-1221 CB-1222 CB-1248	rix Spike Dup Ma %Recovery Qu 89.3 77.5 88an Resu Ni Ni Ni	k Blank It Qualifier D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100	ug/l ug/l ug/l		Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1	nt Sar F ed 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48	hod Blank ype: Total 1L0019_P
Matu CX Decachlorobiphenyl Lab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 malyte CB-1221 CB-1222 CB-1248 CB-1254	rix Spike Dup Ma %Recovery Qu 89.3 77.5 89.3 Blan Resu NI NI NI	k Blank It Qualifier D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100	ug/l ug/l ug/l ug/l		Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1	nt Sa F ed 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48	hod Blank ype: Total 1L0019_P
Mate Surrogate CX Decachlorobiphenyl Lab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 Malyte CB-1221 CB-1222 CB-1248 CB-1254 CB-1254 CB-1268	rix Spike Dup Ma %Recovery Qu 89.3 77.5 89.3 Blan Resu Ni Ni Ni Ni	k Blank It Qualifier D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100 0.100 0.100	ug/t ug/l ug/l ug/l ug/l		Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1	nt Saa F 13:45 13:45 13:45 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48	hod Blank ype: Total 1L0019_P
Mate Surrogate CX Decachlorobiphenyl Lab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 Malyte CB-1221 CB-1222 CB-1248 CB-1254 CB-1254 CB-1268	rix Spike Dup Ma %Recovery Qu 89.3 77.5 89.3 Blan Resu Ni Ni Ni Ni	k Blank It Qualifier D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100 0.100 0.100	ug/t ug/l ug/l ug/l ug/l		Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1	nt Saa F 13:45 13:45 13:45 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48	hod Blank ype: Total 1L0019_P
Matu Surrogate CX Decachlorobiphenyl .ab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 Malyte CB-1221 CB-1222 CB-1242 CB-1248 CB-1254 CB-1254 CB-1268 .ab Sample ID: 11L0019-BLK1	rix Spike Dup Ma %Recovery Qu 89.3 77.5 89.3 Blan Resu Ni Ni Ni Ni	k Blank It Qualifier D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100 0.100 0.100	ug/t ug/l ug/l ug/l ug/l		Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1	nt Saa F 13:45 13:45 13:45 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48	hod Blank ype: Total 1L0019_P bil Fac 3 1.00 3 1.00 3 1.00 3 1.00 3 1.00 3 1.00 3 1.00
Matu Surrogate CX Decachlorobiphenyl .ab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 Malyte CB-1221 CB-1221 CB-1222 CB-1248 CB-1248 CB-1254 CB-1254 CB-1268 .ab Sample ID: 11L0019-BLK1 Matrix: Water	rix Spike Dup Ma %Recovery Qu 89.3 77.5 89.3 Blan Resu Ni Ni Ni Ni	k Blank It Qualifier D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100 0.100 0.100	ug/t ug/l ug/l ug/l ug/l		Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1	nt Sar F ed 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48	hod Blank ype: Total 1L0019_P
Matu cx becachlorobipheny/ ab Sample ID: 11L0019-BLK1 Matrix: Water malysis Batch: 11L0019 malyte CB-1221 CB-1222 CB-1242 CB-1248 CB-1254 CB-1254 CB-1268 ab Sample ID: 11L0019-BLK1 Matrix: Water	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu Ni Ni Ni Ni Ni	k Blank It Qualifier D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100 0.100 0.100	ug/t ug/l ug/l ug/l ug/l		Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1	nt Sa F 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 Prep T Prep Batch: 1	hod Blank ype: Total 1L0019_P
Maturrogate CX Decachlorobipheny/ ab Sample ID: 11L0019-BLK1 Matrix: Water analysis Batch: 11L0019 Malyte CB-1221 CB-1232 CB-1242 CB-1248 CB-1254 CB-1254 CB-1268 ab Sample ID: 11L0019-BLK1 Matrix: Water analysis Batch: 11L0019	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu NI NI NI NI NI NI NI NI NI NI	k Blank It Qualifier	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0	ug/t ug/l ug/l ug/l ug/l		Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1	nt Sa F 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48	hod Blank ype: Total 1L0019_P
Matu cx becachlorobipheny/ ab Sample ID: 11L0019-BLK1 Matrix: Water analysis Batch: 11L0019 nalyte CB-1221 CB-1232 CB-1242 CB-1248 CB-1254 CB-1254 CB-1268 ab Sample ID: 11L0019-BLK1 Matrix: Water analysis Batch: 11L0019 nalyte	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu NI NI NI NI NI NI NI NI NI NI	k Blank It Qualifier D D D D D D D D D D D D D D D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0	ug/l ug/l ug/l ug/l ug/l	<u></u>	Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1	nt Sai F 13:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 Prep T Prep Batch: 1	hod Blank ype: Total 1L0019_P
Mate Surrogate CX Decachlorobiphenyl Lab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 Malyte CB-1221 CB-1222 CB-1248 CB-1254 CB-1254 CB-1268 Lab Sample ID: 11L0019-BLK1 Matrix: Water Malysis Batch: 11L0019 Malyte CB-1016	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni	k Blank It Qualifier D D D D D D D D D D D D D D D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	ug/l ug/l ug/l ug/l ug/l ug/l	<u></u>	Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 Clier Prepare	nt Sai F 13:45 13:45 13:45 13:45 13:45 13:45 nt Sai F ad 3:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 Prep T Prep Batch: 1 Analyzed	hod Blank ype: Total 1L0019_P
Mate Surrogate CX Decachlorobiphenyl Lab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 Malyte CB-1221 CB-1222 CB-1248 CB-1254 CB-1254 CB-1268 Lab Sample ID: 11L0019-BLK1 Matrix: Water Malysis Batch: 11L0019 Malyte CB-1016	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu NI NI NI NI NI NI NI NI NI NI NI NI NI	k Blank It Qualifier	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0 0.100 0	ug/l ug/l ug/l ug/l ug/l ug/l	<u></u>	Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 Clier Prepare 12/02/11 1	nt Sai F 13:45 13:45 13:45 13:45 13:45 13:45 nt Sai F ad 3:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:46 12/05/11 11:46 12/05/11 11:46 12/05/11 11:46 12/05/11 11:46 12/05/11 11:46 mple ID: Meth Prep T Prep Batch: 1 Analyzed 12/05/11 12:00	hod Blank ype: Total 1L0019_P
Matrix CX Decachlorobiphenyl Lab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 Malyte CB-1221 CB-1222 CB-1242 CB-1248 CB-1254 CB-1254 CB-1268 Ab Sample ID: 11L0019-BLK1 Matrix: Water Analysis Batch: 11L0019 malyte CB-1016 CB-1260	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu NI NI NI NI NI Blan Resu Blan Resu Blan	k Blank It Qualifier D D D D D D D D D D D D D D D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	ug/l ug/l ug/l ug/l ug/l ug/l	<u></u>	Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 Clier Prepare 12/02/11 1 12/02/11 1	nt Sau F ed 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45 13:45	Prep T Prep Batch: 1 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 12/05/11 11:48 Prep T Prep Batch: 1 <u>Analyzed</u> 12/05/11 12:00	hod Blank ype: Total 1L0019_P
	rix Spike Dup Ma %Recovery Qu 89.3 77.5 Blan Resu NI NI NI NI NI Blan Resu Blan Resu Blan	k Blank It Qualifier D D D D D D D D D D D D D D D D D D D	Dup Limits 27.9 - 154 35 - 157	RL M 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	ug/l ug/l ug/l ug/l ug/l ug/l	<u></u>	Clier Prepare 12/02/11 1 12/02/11 1 12/02/11 1 12/02/11 1 Clier Prepare 12/02/11 1	nt Sau F ed 13:45	Prep T Prep Batch: 1 Analyzed 12/05/11 11:46 12/05/11 11:46 12/05/11 11:46 12/05/11 11:46 12/05/11 11:46 12/05/11 11:46 mple ID: Meth Prep T Prep Batch: 1 Analyzed 12/05/11 12:00	hod Blank ype: Total 1L0019_P

(3. 3.

4

5


6

14

8

9

Method: EPA 8082 - Polychlorinated Biphenyls by EPA Method 8082 (Continued)

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx

Lab Sample ID: 11K0112-BLK1										Client S	ample ID: Meth	od Blank
Matrix: Soil											•	pe: Total
Analysis Batch: 11K0112											Prep Batch: 11	
	1	Blank	Blank								· · · · · · · · · · · · · · · · · · ·	
Analyte	R	Result	Qualifier		RL	N	DL Unit	D	Pr	epared	Analyzed	Dil Fac
Diesel Range Hydrocarbons		ND			10.0		mg/kg v	wet –	11/19	0/11 07:15	5 11/19/11 11:35	1.00
Heavy Oil Range Hydrocarbons		ND			25.0		mg/kg \	wet	11/19	/11 07:15	5 11/19/11 11:35	1.00
		B/ank	Plank									
Surrogate			Qualifier	, Lir	nits				Dr	epared	Analyzed	Dil Fac
2-FBP		95.3	Quaimer		- 150					0/11 07:15		
p-Terphenyl-d14		100			- 150					/11 07:15		
					- 100							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Lab Sample ID: 11K0112-BS1								Ċ	Client	Sample	ID: Lab Contro	Sample
Matrix: Soil										•		pe: Total
Analysis Batch: 11K0112											Prep Batch: 11	К0112_Р
				Spike		LCS	LCS'				%Rec.	-
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons				83.3		77.5		mg/kg we	t –	92.9	73 - 133	
	105	LCS										
Surrogate	%Recovery		fier	Limits								
2-FBP	92.9	quun		50 - 150								
p-Terphenyl-d14	99.9			50 - 150								
				,								
Lab Sample ID: 11K0112-MS1										Client	Sample ID: Mat	rix Spike
Matrix: Soil											Prep Ty	pe: Total
Analysis Batch: 11K0112											Prep Batch: 11	K0112_P
	Sample	Samp	le	Spike	Matri	ix Spike	Matrix Spik	e			%Rec.	
Analyte	Result	Quali	lier	Added		Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons	ND			169		157		mg/kg dry	<u> </u>	92.9	70.1 - 139	
	Matrix Spike	Matrix	c Spike									
Surrogate	%Recovery	Qualit	fier	Limits								
2-FBP	92.1			50 - 150								

Method: NWTPH-Dx - Semi	volatile P	etroleum I	Products by	NWTPH	-Dx (Co	ntinued)			
Lab Sample ID: 11K0112-MS1 Matrix: Soil Analysis Batch: 11K0112							Clier	nt Sample ID: Mat Prep Ty Prep Batch: 11	pe: Total
, ,	Matrix Snike	Matrix Spike							
Surrogate	%Recovery	-	Limits						
p-Terphenyl-d14	99.2		50 - 150						
-									
Lab Sample ID: 11K0112-DUP1							С	lient Sample ID: I	-
Matrix: Soil									pe: Total
Analysis Batch: 11K0112	Comple	Sample		Duplicate	Dunlicata			Prep Batch: 11	
Analyte		Qu <u>ali</u> fier		-	Duplicate Qualifier	Unit	D	RF	RPD D Limit
Diesel Range Hydrocarbons	ND			ND		mg/kg dry	— * —		40
Heavy Oil Range Hydrocarbons	ND			ND		mg/kg dry	¢		40
, , , , ,						,			
		Duplicate							
Surrogate	%Recovery	Qualifier	Limits						
	82.4 95.0		50 - 150 50 - 150						
p-Terphenyl-d14 _	95.0		50 - 150						
Lab Sample ID: 11K0121-BLK1							Client	Sample ID: Meth	od Blank
Matrix: Soil									pe: Total
Analysis Batch: 11K0121								Prep Batch: 11	K0121_P
	E	Blank Blank							
Analyte	R	esult Qualifier			IDL Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Hydrocarbons		ND	10.		mg/kg		11/21/11 09:3		1.00
Heavy Oil Range Hydrocarbons		ND	25.	0	mg/kg v	wet	11/21/11 09:3	35 11/21/11 23:43	1.00
	E	Blank Blank							
Surrogate	%Reco	overy Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-FBP		90.2	50 - 150				11/21/11 09:3		1.00
p-Terphenyl-d14		95.9	50 - 150				11/21/11 09:3	95 11/21/11 23:43	1.00
- Lab Sample ID: 11K0121-BS1						C	lient Samnl	e ID: Lab Control	Sample
Matrix: Soil						Ŭ	nent oampi	Prep Ty	
Analysis Batch: 11K0121								Prep Batch: 11	
			Spike	LCS	LCS			%Rec.	
Analyte			Added	Result	Qualifier	Unit	D %Red	: Limits	
Diesel Range Hydrocarbons	•		83.3	76.7		mg/kg wet	92.1	73 - 133 •	
	LCS	105							
Surrogate	%Recovery		Limits						
2-FBP	87.8		50 - 150						
p-Terphenyl-d14	96.6		50 - 150						
-									
Lab Sample ID: 11K0121-DUP1							Cli	ent Sample ID: D	uplicate
Matrix: Soil								Prep Typ	
Analysis Batch: 11K0121	. .							Prep Batch: 11	_
A	Sample	-			Duplicate		-		RPD
Analyte		Qualifier			Qualifier	Unit	– D —	RPI	
Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	16.6 22.6			ND ND		mg/kg dry mg/kg dry	\$ ¢		40 40
	22.6			NU		mg/kg dry	Ŧ		40
	Duplicate	Duplicate							
Surrogate	%Recovery	Qualifier	Limits						
2-FBP	88.1		50 - 150						
p-Terphenyl-d14	92.9		50 - 150						

3

4

5

6

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx (Continued) Lab Sample ID: 11K0121-DUP2 **Client Sample ID: Duplicate** Matrix: Soil Prep Type: Total Analysis Batch: 11K0121 Prep Batch: 11K0121_P Sample Sample Duplicate Duplicate RPD Analyte Result Qualifier **Result Qualifier** Unit D RPD Limit Diesel Range Hydrocarbons ND 뀸 9.66 ma/ka dry 40 Heavy Oil Range Hydrocarbons 23.2 ₽ 46.2 R2 mg/kg dry 66.4 40 Duplicate Duplicate Surrogate %Recovery Qualifier Limits 2-FBP 95.3 50 - 150 p-Terphenyl-d14 98.8 50 . 150 Lab Sample ID: 11K0122-BLK1 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total Analysis Batch: 11K0122 Prep Batch: 11K0122_P Blank Blank Result Qualifier Analyte MDL Unit D Dil Fac RL Prepared Analyzed **Diesel Range Hydrocarbons** 0.250 ND mg/l 11/21/11 09:38 11/23/11 13:09 1.00 Heavy Oil Range Hydrocarbons ND 0.500 11/21/11 09:38 11/23/11 13:09 1.00 mg/l Blank Blank Surrogate %Recovery Qualifier Dil Fac Limits Prepared Analyzed 2-FBP 88.0 50 - 150 11/21/11 09:38 11/23/11 13:09 1.00 p-Terphenyl-d14 90.2 50 - 150 11/21/11 09:38 11/23/11 13:09 1.00 Lab Sample ID: 11K0122-BS1 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Analysis Batch: 11K0122 Prep Batch: 11K0122_P Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit Limits D %Rec Diesel Range Hydrocarbons 54.5 - 136 2.50 2.13 85.2 ma/l LCS LCS Surrogate %Recovery Qualifier Limits 2-FBP 83.2 50 - 150 p-Terphenyl-d14 85.3 50 - 150 Lab Sample ID: 11K0122-BSD1 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total Analysis Batch: 11K0122 Prep Batch: 11K0122_P Spike LCS Dup LCS Dup %Rec. RPD Analyte Added **Result Qualifier** Unit D %Rec Limits RPD Limit Diesel Range Hydrocarbons 2.50 2 65 mg/i 106 54.5 - 136 21.6 32.5 LCS Dup LCS Dup Surrogate %Recovery Qualifier Limits 2-FBP 108 50 - 150 p-Terphenyl-d14 108 50 - 150 **Client Sample ID: Method Blank** Lab Sample ID: 11K0145-BLK1 Matrix: Soil Prep Type: Total Analysis Batch: 11K0145 Prep Batch: 11K0145_P Blank Blank Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac D Diesel Range Hydrocarbons ND 10.0 mg/kg wet 11/28/11 13:33 11/29/11 11:58 1.00 Heavy Oil Range Hydrocarbons ND 25.0 mg/kg wet 11/28/11 13:33 11/29/11 11:58 1.00

Method: NWTPH-Dx - Semivolatile Petroleum Products by NWTPH-Dx (Continued)

Lab Sample ID: 11K0145-BLK1							(Client S	ample ID: Metho	d Blank
Matrix: Soil									Prep Typ	be: Tota
Analysis Batch: 11K0145									Prep Batch: 11	<0145_F
	1	Blank Blank								
Surrogate	%Rec	overy Qualifie	er Limits				Pr	epared	Analyzed	Dil Fac
2-FBP		81.5	50 - 150	2			11/28	/11 13:33	11/29/11 11:58	1.00
p-Terphenyl-d14		97.5	50 - 150	0			11/28	/11 13:33	11/29/11 11:58	1.00
Lab Sample ID: 11K0145-BS1						(lient	Sample	ID: Lab Control	Sample
Matrix: Soil									Prep Typ	e: Tota
Analysis Batch: 11K0145									Prep Batch: 11P	(0145_F
			Spike	LCS	LCS				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons			83.3	67.3		mg/kg wet		80.8	73 - 133	
	105	LCS								
Surrogate	%Recovery		Limits							
2-FBP	83.2		50 - 150							
p-Terphenyl-d14	92.3		50 - 150							
Lab Sample ID: 11K0145-MS1								Client \$	Sample ID: Matri	ix Spike
Matrix: Soil									Prep Typ	e: Total
Analysis Batch: 11K0145									Prep Batch: 11K	(0145_P
-	Sample	Sample	Spike	Matrix Spike	Matrix Spik	e			%Rec.	_
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Hydrocarbons	ND		96.9	81.1		mg/kg dry	₩	83.7	70.1 - 139	
	Matrix Sniko	Matrix Spike								
Surrogate	%Recovery		Limits							
2-FBP	69.5		50 - 150							
p-Terphenyl-d14	92.9		50 - 150							
	02.0		00-700							
Lab Sample ID: 11K0145-DUP1								Clier	nt Sample ID: Di	uplicate
Matrix: Soil									Prep Typ	
								1	Prep Batch: 11K	
								-		RPD
	Sample	Sample		Duplicate	Duplicate					
Analysis Batch: 11K0145	-	Sample Qualifier			Duplicate Qualifier	Unit	D		RPD) Limit
Analysis Batch: 11K0145	-	-			-	Unit mg/kg dry	— D		RPD	
Analysis Batch: 11K0145 Analyte Diesel Range Hydrocarbons	Result	-		Result	-					40
Analysis Batch: 11K0145 Analyte Diesel Range Hydrocarbons	Result ND	Qualifier		Result ND	-	mg/kg dry	— <u>*</u>			40
Analysis Batch: 11K0145 Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons Surrogate	Result ND ND	Qualifier	Limits	Result ND	-	mg/kg dry	— <u>*</u>			2 Limit 40 40
Analysis Batch: 11K0145 Analyte Diesel Range Hydrocarbons Heavy Oil Range Hydrocarbons	Result ND ND Duplicate	Qualifier	Limits 50 - 150	Result ND	-	mg/kg dry	— <u>*</u>			40

Method: NWTPH VPH - Purgeable Petroleum Hydrocarbons

Lab Sample ID: 11K6225-BLK1 Matrix: Soil Analysis Batch: U020892	Blank	Blank						mple ID: Metho Prep Typ Prep Batch: 11K	e: Total
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0500		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
Ethylbenzene	ND		0.0500		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
Methyl tert-Butyl Ether	ND		0.500		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0
Naphthalene	ND		0.250		mg/kg wet		11/26/11 00:00	11/26/11 09:55	50.0

9

Method: NWTPH VPH - Purgeable Petroleum Hydrocarbons (Continued)

Lab Sample ID: 11K6225-BLK1 Matrix: Soil Analysis Batch: U020892		lank	Black							С		ample ID: Metho Prep Typ Prep Batch: 11I	pe: Tota
Analyte			Blank Qualifier		RL	МС	DL I	Unit	D	Prep	ared	Analyzed	Dil Fa
Toluene		ND			0.0500		— ī	mg/kg wet		11/26/1	1 00:00	11/26/11 09:55	50.0
Xylenes, total		ND			0.150		r	mg/kg wet		11/26/1	1 00:00	11/26/11 09:55	50.0
C5 - C6 Aliphatic Hydrocarbons		ND			5.00		· · · ·	mg/kg wet		11/26/1	1 00:00	11/26/11 09:55	50.0
>C6 to C8 Ali		ND			5.00		ŗ	mg/kg wet		11/26/1	1 00:00	11/26/11 09:55	50.0
>C8 to C10 Ali		ND			5.00		ŗ	mg/kg wet		11/26/1	1 00:00	11/26/11 09:55	50.0
>C10 to C12 Ali	••••	ND	••••		5.00		r r	mg/kg wet		11/26/1	1 00:00	11/26/11 09:55	50.
>C8 to C10 Aro		ND			5.00		r	mg/kg wet		11/26/1	1 00:00	11/26/11 09:55	50.
>C10 to C12 Aro		ND			5.00		r	mg/kg wet		11/26/1	1 00:00	11/26/11 09:55	50.0
>C12 to C13 Aro		ND		· · · · · · · · · ·	5.00			mg/kg wet	••••	11/26/1	1 00:00	11/26/11 09:55	50.0
	E	llank	Blank										
Surrogate	%Reco	-	Qualifier	_	mits						ared	Analyzed	Dil Fac
2,5-Dibromotoluene (FID)		98		60	- 140					11/26/1	1 00:00	11/26/11 09:55	50.0
2,5-Dibromotoluene (PID)		102		60	- 140					11/26/1	1 00:00	11/26/11 09:55	50.0
Lab Sample ID: 11K6225-BS1									c	lient S	ample i	D: Lab Control	Sample
Matrix: Soil												Prep Тур	e: Tota
Analysis Batch: U020892											F	Prep Batch: 11	(6225_F
				Spike		LCS I	LCS					%Rec.	
Analyte				Added		Result	Qual	lifier Un	it	D	%Rec	Limits	
Benzene				0.100		0.0953		mg	/kg wet		95	70 - 130	_
Ethylbenzene				0.100		0.0967		mg	/kg wet		97	70 - 130	
Methyl tert-Butyl Ether				0.100		0.0897		mg	/kg wet		90	70 - 130	
Naphthalene				0.100		0.0899		mg	/kg wet		90	70 - 130	
Foluene				0.100	7	0.0957		mg	/kg wet		96	70 - 130	
Xylenes, total				0.300		0.293		mg	/kg wet		98	70 - 130	
C5 - C6 Aliphatic Hydrocarbons				0.300		0.272		mg	/kg wet		91	70 - 130	
>C6 to C8 Ali				0.200		0.179		mg	/kg wet		89	70 - 130	
>C8 to C10 Ali				0.600		0.564		mg	/kg wet		94	70 - 130	
>C10 to C12 Ali				0.200		0.180		mg	/kg wet		90	70 - 130	
>C8 to C10 Aro				0.500		0.449		mg	/kg wet		90	70 - 130	
>C10 to C12 Aro				0.100		0.0996		mg	/kg wet		100	70 - 130	
C12 to C13 Aro		•		0.100		0.112		mg	/kg wet		112	70 - 130	
	LCS	100		•				-	-				
Surrogate	%Recovery		lifier	Limits									
2,5-Dibromotoluene (FID)	95			60 - 140									
2,5-Dibromotoluene (PID)	100			60 - 140									
_ab Sample ID: 11K6447-BLK1										CI	ient Sa	mple ID: Metho	d Blank
Matrix: Soil										5	on va	Prep Typ	
											E	Prep Batch: 11K	
	в	lank	Blank								•	Top Buton. The	
Analysis Batch: 0020985	_		Qualifier		RL	MD	LU	Jnit	D	Prep	ared	Analyzed	Dil Fac
•	R	SUIL						ng/kg wet		11/28/1		_	50.0
Analyte	R				0.0500						00.00	11/28/11 15:51	20.0
Analyte Benzene	R	ND			0.0500 0.0500							11/28/11 15:51 11/28/11 15:51	
Analyte Benzene Ethylbenzene	R	ND ND			0.0500		n	ng/kg wet		11/28/1	1 00:00	11/28/11 15:51	50.0
Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether	R(ND ND ND			0.0500 0.500		n n	ng/kg wet ng/kg wet		11/28/1 11/28/1	1 00:00 1 00:00	11/28/11 15:51 11/28/11 15:51	50.0 50.0
Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene	R(ND ND ND ND			0.0500 0.500 0.250		m m m	ng/kg wet ng/kg wet ng/kg wet		11/28/1 11/28/1 11/28/1	1 00:00 1 00:00 1 00:00	11/28/11 15:51 11/28/11 15:51 11/28/11 15:51	50.0 50.0 50.0
Analysis Batch: U020985 Analyte Benzene Ethylbenzene Methyl tert-Butyl Ether Naphthalene Foluene Kylenes, total	R(ND ND ND			0.0500 0.500		n n n n	ng/kg wet ng/kg wet		11/28/1 11/28/1	1 00:00 1 00:00 1 00:00 1 00:00	11/28/11 15:51 11/28/11 15:51	50.0 50.0 50.0 50.0 50.0 50.0

2

Method: NWTPH VPH - Purgeable Petroleum Hydrocarbons (Continued)

Lab Sample ID: 11K6447-BLK1										Client S	ample ID: Meth	od Blank
Matrix: Soil										onone o	•	pe: Total
Analysis Batch: U020985											Prep Batch: 11	-
	E	Blank	Blank									-
Analyte	R	esult	Qualifier		RL	MDL	Unit	D	Pr	epared	Analyzed	Dil Fac
>C6 to C8 Ali		ND			5.00		mg/kg w	/et	11/28	/11 00:00	11/28/11 15:51	50.0
>C8 to C10 Ali		ND			5.00		mg/kg w	/et	11/28	/11 00:00	11/28/11 15:51	50.0
>C10 to C12 Ali		ND			5.00		mg/kg w	vet	11/28	/11 00:00	11/28/11 15:51	50.0
>C8 to C10 Aro		ND			5.00		mg/kg w	vet	11/28	/11 00:00	11/28/11 15:51	50.0
>C10 to C12 Aro		ND			5.00		mg/kg w	vet	11/28	/11 00:00	11/28/11 15:51	50.0
>C12 to C13 Aro		ND	•••••		5.00		mg/kg w	/et	11/28	/11 00:00	11/28/11 15:51	50.0
		Blank							_			
Surrogate	_ %Reco		Qualifier	Limit						epared	Analyzed	Dil Fac
2,5-Dibromotoluene (FID)		86		60 - 1						/11 00:00	11/28/11 15:51	50.0
2,5-Dibromotoluene (PID)		83		60 - 1	40				11/28	/11 00:00	11/28/11 15:51	50.0
										· · ·		0
Lab Sample ID: 11K6447-BS1								С	lient	Sample	ID: Lab Contro	
Matrix: Soil												pe: Total
Analysis Batch: U020985											Prep Batch: 11	K6447_P
				Spike		S LC			-		%Rec.	
Analyte				Added			alifier	Unit	<u> </u>	%Rec	Limits	
Benzene				0.100	0.094	1		mg/kg wet		94	70 - 130	
Ethylbenzene				0.100	0.093			mg/kg wet		93	70 - 130	
Methyl tert-Butyl Ether				0.100	0.093			mg/kg wet		93	70 - 130	
Naphthalene				0.100	0.081			mg/kg wet		81	70 - 130	
Foluene				0.100	0.093			mg/kg wet		94	70 - 130	
(ylenes, total				0.300	0.28			mg/kg wet		95	70 - 130	
C5 - C6 Aliphatic Hydrocarbons				0.300	0.20			mg/kg wet		70	70 - 130	
>C6 to C8 Ali				0.200	0.16			mg/kg wet		83	70 - 130	
>C8 to C10 Ali				0.600	0.53	4		mg/kg wet		89	70 - 130	
C10 to C12 Ali				0.200	0.17	0		mg/kg wet		85	70 - 130	
>C8 to C10 Aro				0.500	0.43			mg/kg wet		86	70 - 130	
>C10 to C12 Aro				0.100	0.086			mg/kg wet		86	70 - 130	
C12 to C13 Aro				0.100	0.080	2		mg/kg wet		80	70-130	
	LCS	100										
Surrogate	%Recovery	Qualifi	Tor Li	mits								
2,5-Dibromotoluene (FID)	95	Quan) - 140								
2,5-Dibromotoluene (PID)	95 95) - 140) - 140					·			
,5-Dibromotoluene (PiD)	90		00	- 140								
.ab Sample ID: 11K6447-MS1										Client S	Sample ID: Matr	ix Spike
Matrix: Soil										onente	Prep Typ	-
Analysis Batch: U020985											Prep Batch: 11	
analysis batch. 0020905	Sample	Sampl	e	Spike	Matrix Spik	e Ma	trix Spike	,			%Rec.	
Analyte	Result	-		Added			alifier	Unit	D	%Rec	Limits	
Benzene	ND	ajaann		125	12			mg/kg wet		98	70 - 130	
thylbenzene	10.6			125	12			mg/kg wet		100	70 - 130	
Aethyl tert-Butyl Ether	ND			125	11			mg/kg wet		91	70 - 130 70 - 130	
laphthalene				125				mg/kg wet		80	70 - 130	
•	46.1				14							
oluene	3.92			125	12			mg/kg wet		98 101	70 - 130 70 - 130	
Vienes, total	43.7			375	42			mg/kg wet		101	70 - 130	
5 - C6 Aliphatic Hydrocarbons	ND			375	33			mg/kg wet		90	70 - 130	
C6 to C8 Ali	ND			250	25			mg/kg wet		101	70 - 130	
•C8 to C10 Ali •C10 to C12 Ali	202			750	90 83	5		mg/kg wet		94 52	70 - 130 70 - 130	

TestAmerica Spokane 12/30/2011

Lab Sample ID: 11K6447-MS1 Matrix: Soil								Client	Sample ID: Pre	Matrix p Type	
Analysis Batch: U020985									Prep Batch	n: 11K6	447_F
	Sample	Sample	Spike	Matrix Spike	Matrix Spik	(ê			%Rec.		
Analyte	Result	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
>C8 to C10 Aro	294		625	844		mg/kg wet		88	70 - 130		
>C10 to C12 Aro	775		125	808	M8	mg/kg wet		27	70 - 130		
>C12 to C13 Aro	350		125	358	M8	mg/kg wet		6	70_130		
	Matrix Snike	Matrix Spike									
Surrogate	%Recovery	-	Limits								
2,5-Dibromotoluene (FID)	99	Quaimer	60 - 140								
2,5-Dibromotoluene (PID)	99 105		60 - 140								
	105		00 - 140								
Lab Sample ID: 11K6447-MSD	1					Client	Sar	nnie ID:	Matrix Spi	ike Dur	licate
Matrix: Soil						enorm			-	p Type:	
Analysis Batch: U020985									Prep Batch		
Analysis Baton, Oversee	Sample	Sample	Spike	Aatrix Spike Dup	Matrix Spik	e Dur		'	%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
-											
Benzene	ND		125	126		mg/kg wet	· —	101	70 - 130	3	25
Benzene Ethylbenzene	ND 10.6		125 125	126 138		mg/kg wet		101 102	70 - 130 70 - 130	3 2	25 25
Ethylbenzene Methyl tert-Butyl Ether	10.6		125	138		mg/kg wet mg/kg wet		102	70 - 130	2	25
Ethylbenzene	10.6 ND		125 125	138 116		mg/kg wet		102 92	70 - 130 70 - 130	2 1	25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene	10.6 ND 46.1		125 125 125	138 116 169		mg/kg wet mg/kg wet mg/kg wet		102 92 98	70 - 130 70 - 130 70 - 130	2 1 14	25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene	10.6 ND 46.1 3.92		125 125 125 125	138 116 169 130		mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	2 1 14 2	25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total	10.6 ND 46.1 3.92 43.7		125 125 125 125 125 375	138 116 169 130 431		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	2 1 14 2 2	25 25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons	10.6 ND 46.1 3.92 43.7 ND		125 125 125 125 125 375 375	138 116 169 130 431 380		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103 101	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	2 1 14 2 2 12	25 25 25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali	10.6 ND 46.1 3.92 43.7 ND ND		125 125 125 125 375 375 250	138 116 169 130 431 380 254	MB	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103 101 102	70 - 130 70 - 130	2 1 14 2 2 12 1	25 25 25 25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali	10.6 ND 46.1 3.92 43.7 ND ND 202		125 125 125 125 375 375 250 750	138 116 169 130 431 380 254 930	M8	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103 101 102 97	70 - 130 70 - 130	2 1 14 2 2 12 1 3	25 25 25 25 25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali	10.6 ND 46.1 3.92 43.7 ND ND 202 699		125 125 125 375 375 250 750 250	138 116 169 130 431 380 254 930 841		mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103 101 102 97 57	70 - 130 70 - 130	2 1 14 2 2 12 1 3 1	25 25 25 25 25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro	10.6 ND 46.1 3.92 43.7 ND ND 202 699 294		125 125 125 375 375 250 750 250 625	138 116 169 130 431 380 254 930 841 857	M8	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103 101 102 97 57 90	70 - 130 70 - 130	2 1 14 2 2 12 1 3 1 2	25 25 25 25 25 25 25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro >C12 to C13 Aro	10.6 ND 46.1 3.92 43.7 ND 202 699 294 775 350		125 125 125 375 375 250 750 250 625 125 125	138 116 169 130 431 380 254 930 841 857 823	M8	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103 101 102 97 57 90 39	70 - 130 70 - 130	2 1 14 2 2 12 1 3 1 2 2	25 25 25 25 25 25 25 25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro >C12 to C13 Aro	10.6 ND 46.1 3.92 43.7 ND 202 699 294 775 350 etrix Spike Dup	-	125 125 125 375 375 250 750 250 625 125 125 125 000	138 116 169 130 431 380 254 930 841 857 823	M8	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103 101 102 97 57 90 39	70 - 130 70 - 130	2 1 14 2 2 12 1 3 1 2 2	25 25 25 25 25 25 25 25 25 25 25
Ethylbenzene Methyl tert-Butyl Ether Naphthalene Toluene Xylenes, total C5 - C6 Aliphatic Hydrocarbons >C6 to C8 Ali >C8 to C10 Ali >C10 to C12 Ali >C8 to C10 Aro >C10 to C12 Aro >C12 to C13 Aro	10.6 ND 46.1 3.92 43.7 ND 202 699 294 775 350 etrix Spike Dup	-	125 125 125 375 375 250 750 250 625 125 125	138 116 169 130 431 380 254 930 841 857 823	M8	mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet mg/kg wet		102 92 98 101 103 101 102 97 57 90 39	70 - 130 70 - 130	2 1 14 2 2 12 1 3 1 2 2	25 25 25 25 25 25 25 25 25 25 25

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx

Lab Sample ID: 11K0114-BLK1								Ċ	Client S	ample ID: Meth	od Blank
Matrix: Soil										Prep Ty	pe: Total
Analysis Batch: 11K0114										Prep Batch: 11	K0114_P
	Blank	Blank									
Analyte	Result	Qualifier	RL	м	DL Uni	ť	D	Pre	pared	Analyzed	Dil Fac
Gasoline Range Hydrocarbons	ND		5.00		mg	/kg wet		11/20	/11 07:08	11/20/11 09:24	1.00
	Blank	B/ank									
Surrogate	%Recovery	Qualifier	Limits					Pre	epared	Analyzed	Dil Fac
4-BFB (FID)	102		50 - 150				_	11/20	/11 07:08	3 11/20/11 09:24	1.00
Lab Sample ID: 11K0114-BS1							Cli	ent \$	Sample	ID: Lab Contro	l Sample
Matrix: Soil									•	Prep Ty	pe: Total
Analysis Batch: 11K0114										Prep Batch: 11	K0114_P
			Spike	LCS	LCS					%Rec.	_
Analyte			Added	Result	Qualifie	ər Unit		D	%Rec	Limits	
Gasoline Range Hydrocarbons			25.0	22.7		mg/kg	vet		90.9	74.4 - 124	

Lab Sample ID: 11K0114-BS1						C	lient Sample	e ID: Lab Control	Sample
Matrix: Soil								Prep Ty	pe: Tota
Analysis Batch: 11K0114								Prep Batch: 11	K0114_F
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-BFB (FID)	. 124		50 - 150						
Lab Sample ID: 11K0114-BSD1						Client	Sample ID:	Lab Control Sam	
Matrix: Soil								Prep Typ	
Analysis Batch: 11K0114			Spike	LCS Dun	LCS Dup			Prep Batch: 11	10114_F RPD
Analyte			Added	-	Qualifier	Unit	D %Rec	Limits RPI	
Gasoline Range Hydrocarbons				22.7		mg/kg wet	<u> </u>		
		LCS Dup							
Surrogate	%Recovery	Qualifier	Limits						
4-BFB (FID)	133		50 - 150						
Lab Sample ID: 11K0114-DUP1							CI	ent Sample ID: D	unlicate
Matrix: Soil							Circ	Prep Typ	-
Analysis Batch: 11K0114								Prep Batch: 11	
	Sample	Sample		Duplicate	Duplicate				RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPI	D Limit
Gasoline Range Hydrocarbons	4.62			2.71	R4	mg/kg dry	— — ———	52.2	2 32.3
O urse und -	Duplicate %Recovery	Duplicate	Limits			<u>_</u>			
Surrogate 4-BFB (FID)	37Kecovery 113	Quaimer	50 - 150						
4-BFB (FID)	113		50-150						
Lab Sample ID: 11K0114-DUP2							Client Sam	ple ID: DP-34-6.0	-111611
Matrix: Soil								Prep Typ	
Analysis Batch: 11K0114								Prep Batch: 11k	
	Sample	Sample		Duplicate	Duplicate			<u> </u>	RPD
Analyte	Result	Qualifier			Qualifier	Unit	D	RPE) Limit
Gasoline Range Hydrocarbons	0.813			0.367	R4	mg/kg dry	*	75.6	32.3
	Duplicate	Duplicate							
Surrogate	%Recovery	-	Limits						
4-BFB (F/D)	96.7		50 - 150						
						•			
							Client S	ample ID: Metho	
Lab Sample ID: 11K0115-BLK1							enem e		
Lab Sample ID: 11K0115-BLK1 Matrix: Soil								Prep Typ	
Lab Sample ID: 11K0115-BLK1								Prep Typ Prep Batch: 11K	
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115		lank Blank						Prep Batch: 11K	(0115_P
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 _{Analyte}		esult Qualifi			DL Unit	<u>D</u>	Prepared	Prep Batch: 11K	0115_P
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 ^{Analyte}				RLM	DL Unit mg/kg v			Prep Batch: 11K	(0115_P
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 _{Analyte}	Re	esult Qualifi					Prepared	Prep Batch: 11K	0115_P
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 Analyte Gasoline Range Hydrocarbons	Re	ND Qualifi	5.				Prepared	Prep Batch: 11K	0115_P
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 Analyte Gasoline Range Hydrocarbons	Re	ND Qualifi	5.	00			Prepared 11/20/11 07:10	Prep Batch: 11K Analyzed 11/20/11 23:16 Analyzed	0115_P
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 Analyte Gasoline Range Hydrocarbons Surrogate 4-BFB (FID)	Re	esult Qualifi ND Iank Blank very Qualifi	ier Limits	00		vet ·	Prepared 11/20/11 07:10 Prepared 11/20/11 07:10	Prep Batch: 11K Analyzed 11/20/11 23:16 Analyzed 11/20/11 23:16	0115_P Dil Fac 1.00 Dil Fac 1.00
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Lab Sample ID: 11K0115-BS1	Re	esult Qualifi ND Iank Blank very Qualifi	ier Limits	00		vet ·	Prepared 11/20/11 07:10 Prepared 11/20/11 07:10	Prep Batch: 11K - Analyzed - 11/20/11 23:16 - Analyzed - 11/20/11 23:16 ID: Lab Control	0115_P Dil Fac 1.00 Dil Fac 1.00 Sample
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 Analyte Basoline Range Hydrocarbons Surrogate 4-BFB (FID) Lab Sample ID: 11K0115-BS1 Matrix: Soil	Re	esult Qualifi ND Iank Blank very Qualifi	ier Limits	00		vet ·	Prepared 11/20/11 07:10 Prepared 11/20/11 07:10	Prep Batch: 11K - Analyzed 11/20/11 23:16 - Analyzed 11/20/11 23:16 ID: Lab Control Prep Typ	CO115_P Dil Fac 1.00 Dil Fac 1.00 Sample e: Total
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 Analyte Gasoline Range Hydrocarbons	Re	esult Qualifi ND Iank Blank very Qualifi	er Llmits 50 - 150	<u>00</u>	mg/kg v	vet ·	Prepared 11/20/11 07:10 Prepared 11/20/11 07:10	Prep Batch: 11K - Analyzed - 11/20/11 23:16 - Analyzed - 11/20/11 23:16 ID: Lab Control Prep Typ Prep Batch: 11K	CO115_P Dil Fac 1.00 Dil Fac 1.00 Sample e: Total
Lab Sample ID: 11K0115-BLK1 Matrix: Soil Analysis Batch: 11K0115 Gasoline Range Hydrocarbons Surrogate 4-BFB (FID) Lab Sample ID: 11K0115-BS1 Matrix: Soil	Re	esult Qualifi ND Iank Blank very Qualifi	ier Limits	DOD LCS	mg/kg v	vet ·	Prepared 11/20/11 07:10 Prepared 11/20/11 07:10	Prep Batch: 11K - Analyzed 11/20/11 23:16 - Analyzed 11/20/11 23:16 ID: Lab Control Prep Typ	CO115_P Dil Fac 1.00 Dil Fac 1.00 Sample e: Total

25

5

6

Method: NWTPH-Gx - Gasoline Hydrocarbons by NWTPH-Gx (Continued) Lab Sample ID: 11K0115-BS1 **Client Sample ID: Lab Control Sample** Matrix: Soil Prep Type: Total Analysis Batch: 11K0115 Prep Batch: 11K0115_P LCS LCS Surrogate %Recovery Qualifier Limits 4-BFB (FID) 113 50 . 150 Lab Sample ID: 11K0115-BSD1 **Client Sample ID: Lab Control Sample Dup** Matrix: Soil Prep Type: Total Analysis Batch: 11K0115 Prep Batch: 11K0115_P Spike LCS Dup LCS Dup %Rec. RPD Analyte Added **Result Qualifier** Unit %Rec Limits RPD Limit D 74.4 - 124 0.124 20 Gasoline Range Hydrocarbons 25.0 20.9 mg/kg wet 83.6 LCS Dup LCS Dup Surrogate %Recovery Qualifier Limits 4-BFB (FID) 50 - 150 117 Lab Sample ID: 11K0115-DUP1 **Client Sample ID: Duplicate** Matrix: Soil Prep Type: Total Analysis Batch: 11K0115 Prep Batch: 11K0115_P Sample Duplicate Duplicate Sample RPD Qualifier **Result Qualifier** RPD Limit Analyte Result Unit D Gasoline Range Hydrocarbons Ř 32.3 ND ND mg/kg dry Duplicate Duplicate Surrogate %Recovery Qualifier Limits 4-BFB (FID) 96.4 50 - 150 Lab Sample ID: 11K0119-BLK1 Client Sample ID: Method Blank Matrix: Water Prep Type: Total Analysis Batch: 11K0119 Prep Batch: 11K0119_P Blank Blank Result Qualifier Dil Fac MDL Unit Analyte RL Prepared Analyzed 100 ND 11/21/11 08:18 11/21/11 11:15 Gasoline Range Hydrocarbons ug/l 1.00 Blank Blank Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-BFB (FID) 37.9 - 162 11/21/11 08:18 11/21/11 11:15 97.7 1.00 Lab Sample ID: 11K0119-BS1 Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Analysis Batch: 11K0119 Prep Batch: 11K0119_P Spike LCS LCS %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits Gasoline Range Hydrocarbons 1000 910 ug/l 91.0 80 - 120 LCS LCS %Recovery Surrogate Qualifier Limits 4-BFB (FID) 37.9 - 162 121 Lab Sample ID: 11K0119-MS1 Client Sample ID: DP-37-111611 Matrix: Water Prep Type: Total Analysis Batch: 11K0119 Prep Batch: 11K0119_P Sample Sample Spike Matrix Spike Matrix Spike %Rec. Result Qualifier Analyte **Result Qualifier** Added Unit D %Rec Limits Gasoline Range Hydrocarbons ND 1000 882 88.2 55.6 - 126 ug/l

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0109

1

Lab Sample ID: 11K0119-MS1							Client	Sample ID: DP	-37-1116
Matrix: Water								Prep	Гуре: То
Analysis Batch: 11K0119								Prep Batch:	11K0119
	Matrix Spike	Matrix Spike							
Surrogate	%Recovery	-	Limits						
4-BFB (FID)	123		37.9 - 162						
			•••••						
Lab Sample ID: 11K0119-DUP1							Client	Sample ID: DP	-37-1116
Matrix: Water								Prep	Гуре: То
Analysis Batch: 11K0119								Prep Batch:	1K0119
	Sample	Sample		Duplicate	Duplicate				R
Analyte		Qualifier			Qualifier	Unit	D		RPD Li
Gasoline Range Hydrocarbons	ND			ND		ug/l			
	Duplicate	Duplicate							
Surrogate	%Recovery		LImits						
4-BFB (FID)	100		37.9 - 162						
			07.0 - 702						
Lab Sample ID: 11K0130-BLK1							Client	Sample ID: Met	hod Bla
Matrix: Soil								-	ype: To
Analysis Batch: 11K0130								Prep Batch: 1	•••
	I	Blank Blank							
Analyte	R	esult Qualifi	er	RL M	IDL Unit	D	Prepared	` Analyzed	Dil F
asoline Range Hydrocarbons		ND		5.00	mg/kg	wet	11/22/11 08:2	26 11/22/11 10:1	3 1.
Surragata		Blank Blank	a distante				0	A	0.10
Surrogate -BFB (F/D)	%Reco	overy Qualifie					Prepared	Analyzed	
-BFB (FID)		102	50 - 15	0			11/22/11 08:2	26 11/22/11 10:1	31.
_ab Sample ID: 11K0130-BS1						C	liont Samul	e ID: Lab Contr	ol Samn
Matrix: Soil						Ŭ	nem Sampi		ype: Tot
Analysis Batch: 11K0130								Prep Batch: 1	
			Spike	LCS	LCS			%Rec.	11(0100_
Analyte			Added		Qualifier	Unit	D %Red		
Basoline Range Hydrocarbons			25.0	22.5		mg/kg wet	90.0		
		LCS							
Surrogate	%Recovery	Qualifier	Limits						
I-BFB (FID)	124		50 - 150						
ah Gammia ID: 44K0400 DOD4						<u>.</u>			
ab Sample ID: 11K0130-BSD1						Client	Sample ID:	Lab Control Sa	-
Aatrix: Soil									ype: Tot
Analysis Batch: 11K0130			0-11-	1.00 0				Prep Batch: 1	_
			Spike		LCS Dup			%Rec.	RF
Analyte			Added		Qualifier	Unit	D %Red		PD Lin
Basoline Range Hydrocarbons			25.0	21.8		mg/kg wet	87.0	74.4 - 124 3	.38
	LCS Dup	LCS Dup							
Surrogate	%Recovery	Qualifier	Limits						
-BFB (FID)	121		50 - 150						
ab Sample ID: 11K0130-DUP1							Client Sam	ple ID: DP-36-8	.0-11161
/atrix: Soil								Prep T	/pe: Tot
								Prep Batch: 1	1K0130
Analysis Batch: 11K0130									
Analysis Batch: 11K0130	Sample	Sample		Duplicate	Duplicate			•	RP
Analysis Batch: 11K0130 Analyte	-	Sample Qualifier			Duplicate Qualifier	Unit	- D	-	

1

3.

4

5 6

•••

9

Method: NWTPH-Gx - Gase	oline Hydroca	rbons	by NWTPH-G	ix (Con	tinu	ed)					
Lab Sample ID: 11K0130-DUP1 Matrix: Soil Analysis Batch: 11K0130	I							Clien	-	ole ID: DP-36-8.0 Prep Typ Prep Batch: 11H	oe: Total
Surrogate 4-BFB (FID)	Duplicate Dup %Recovery Qua 98.0		Limits 50 - 150								
Method: NWTPH EPH - Ext	ractable Petro	oleum H	lydrocarbon	s							
Lab Sample ID: 11K6185-BLK1 Matrix: Soil								С	lient S	ample ID: Metho Prep Typ	
Analysis Batch: U021053										Prep Batch: 11	
		Blank									
Analyte		Qualifier	RL	N			D		pared	Analyzed	Dil Fac
C8-C10 Aliphatics	ND		5.00			ng/kg wet			11 06:55	11/29/11 15:42	1.00
>C10 to C12 Ali	ND		5.00			ng/kg wet			11 06:55	11/29/11 15:42	1.00
>C12 to C16 Ali	ND		5.00			ng/kg wet			1 06:55	11/29/11 15:42	1.00
>C16 to C21 Ali	ND		5.00			ng/kg wet			1 06:55	11/29/11 15:42	1.00
>C21 to C34 Ali	ND		5.00		r	ng/kg wet		11/26/1	1 06:55	11/29/11 15:42	1.00
Surrogate	Blank %Recovery	Blank Qualifier	Limits					Prep	pared	Analyzed	Dil Fac
1-Chlorooctadecane	82		60 - 140					11/26/1	11 06:55	11/29/11 15:42	1.00
Lab Sample ID: 11K6185-BLK1								C	liont Sr	ample ID: Metho	d Blank
Matrix: Soil										-	
Analysis Batch: U021053										Prep Typ Prep Batch: 11K	
Analysis Batch. 0021055	Blank	Blank								Fiep batch. Th	(0105_F
Analyte	Result		RL	м	IDL (Init	D	Prep	ared	Analyzed	Dil Fac
>C10 to C12 Aro	ND		5.00			ng/kg wet	<u> </u>		1 06:55	11/30/11 15:26	1.00
>C12 to C16 Aro	ND		5.00			1g/kg wet			1 06:55	11/30/11 15:26	1.00
>C16 to C21 Aro	ND		5.00			1g/kg wet		11/26/1		11/30/11 15:26	1.00
>C21 to C34 Aro	ND		5.00			1g/kg wet			1 06:55	11/30/11 15:26	1.00
		Blank									
Surrogate	%Recovery	Qualifier	Limits				-		ared	Analyzed	Dil Fac
o-Terphenyl	104		60 - 140					11/26/1		11/30/11 15:26	1.00
2-Fluorobiphenyl	125		60 - 140					11/26/1		11/30/11 15:26	1.00
2-Bromonaphthalene 	141	Z2	60 - 140					11/26/1	1 06:55	11/30/11 15:26	1.00
Lab Sample ID: 11K6185-BS1							CI	ient Sa	ample	ID: Lab Control	Sample
Matrix: Soil										Prep Typ	e: Total
Analysis Batch: U021053			Spike	LCS	LCS				F	Prep Batch: 11K %Rec.	6185_P
Analyte			Added	Result		ifier Unit		D	%Rec	Limits	
C8-C10 Aliphatics			10.0	6.71		mg/kg v	vet		67	50 - 150	
>C10 to C12 Ali			5.00	3.91		mg/kg v			78	70 - 130	
>C12 to C16 Ali			10.0	8.66		mg/kg v			87	70 - 130	
>C16 to C21 Ali			15.0	14.2	• • • • •	mg/kg v			95	70 - 130	
>C21 to C34 Ali			25.0	23.5		mg/kg v			94	70 - 130	
	LCS LCS										
Surrogate	%Recovery Qual	ifier	Limits								
1 Chlomostadocano	77		60 140								

1-Chlorooctadecane 77 60 - 140

3

9

Method: NWTPH EPH - Extractable Petroleum Hydrocarbons (Continued)

Lab Sample ID: 11K6185-B Matrix: Soil	51				CI	ient \$	Sample		ntrol Sample o Type: Total
Analysis Batch: U021053								•	: 11K6185_P
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
>C10 to C12 Aro		5.00	4.77		mg/kg wet		95	70 - 130	
>C12 to C16 Aro		15.0	15.3		mg/kg wet		102	70 - 130	
>C16 to C21 Aro		25.0	25.8		mg/kg wet		103	70 - 130	
>C21 to C34 Aro		40.0	46.0		mg/kg wet		115	70 - 130	
	LCS LCS								
Surrogate	%Recovery Qualifie	r Limits							
o-Terphenyl	88	60 - 140							
2-Fluorobiphenyl	117	60 - 140							
2-Bromonaphthalene	129	60 - 140							

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods

Lab Sample ID: 11L0027-BLK1							(Client S	ample ID: N	lethod	Blank
Matrix: Soil									Pre	р Туре	: Total
Analysis Batch: 11L0027									Prep Batch	n: 11LC)027_P
		Blank Blank									
Analyte	R	lesult Qualifier		RL M	MDL Unit	D	Pre	epared	Analyze	d	Dil Fac
Lead		ND		1.50	mg/kg	wet	12/05	/11 15:07	12/06/11 1	2:25	1.00
 Lab Sample ID: 11L0027-BS1						c	lient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Soil									Prep	о Туре	: Total
Analysis Batch: 11L0027									Prep Batch	: 11L0	027_P
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead			50.0	49.5		mg/kg wet		99.0	80 - 120		
_ Lab Sample ID: 11L0027-MS1							Clier	nt Sam	ple ID: DP-3	0-4.0-1	11611
Matrix: Soil									Prep	у Туре	: Total
Analysis Batch: 11L0027									Prep Batch	: 11L0	027 P
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	(e			%Rec.		-
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lead	3.93		65.4	. 59.8		mg/kg dry	¢	85.4	75 - 125		
_ Lab Sample ID: 11L0027-MSD1							Clier	nt Samp	ole ID: DP-3	0-4.0 - 1	11611
Matrix: Soil									Prep	Туре	: Total
Analysis Batch: 11L0027									Prep Batch	: 11L0	027 P
-	Sample	Sample	Spike	Aatrix Spike Dup	Matrix Spil	ke Duş			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	3.93		65.4	58.5		mg/kg dry	¢	83.4	75 - 125	2.21	20
_ Lab Sample ID: 11L0027-DUP1							Clier	nt Samr	ble ID: DP-30	0-4.0-1	11611
Matrix: Soil											Total
Analysis Batch: 11L0027									Prep Batch		
-	Sample	Sample		Duplicate	Duplicate						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Lead	3.93			3.84		mg/kg dry	₽			2.29	20

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods (Continued)

Lab Sample ID: 11L0028-BLK1 Matrix: Soil Analysis Batch: 11L0028							(Client Sa	ample ID: Metho Prep Typ Prep Batch: 11L	e: Total
		Blank Blank				_	_			
Analyte Lead		Result Qualifier	·	RL N 1.50	IDL Unit mg/kg v	D		epared /11 15:15	Analyzed 12/06/11 14:04	Dil Fac 1.00
		ND		1.50	mg/kg v	Vel	12/05	/11 15.15	12/00/11 14:04	1.00
Lab Sample ID: 11L0028-BS1						c	lient	Sample	ID: Lab Control	Sample
Matrix: Soil									Ргер Тур	e: Total
Analysis Batch: 11L0028									Prep Batch: 11L	.0028_P
			Spike		LCS		_		%Rec.	
Analyte Lead			Added	49.1	Qualifier	Unit mg/kg wet	D	%Rec 98.1	Limits 80 - 120	
Leau _			50.0	49.1		mg/kg wet		90.1	80 - 120	
Lab Sample ID: 11L0028-MS1								Client §	Sample ID: Matri	x Spike
Matrix: Soil									Prep Typ	
Analysis Batch: 11L0028									Prep Batch: 11L	0028_P
	Sample	Sample	Spike	Matrix Spike	Matrix Spik	e			%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
_Lead	3.03		58.1	53.4		mg/kg dry	<u>\$</u>	86.6	75 ₋ 125	
Lab Sample ID: 11L0028-MSD1						Clie	nt Sar	nnle ID:	Matrix Spike Du	unlicate
Matrix: Soil						One	in Oai	inpie iD.	Prep Typ	-
Analysis Batch: 11L0028									Prep Batch: 11L	
	Sample	Sample	Spike via	atrix Spike Dup	Matrix Spik	e Duț			%Rec.	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits RPD	Limit
Lead	3.03		58.1	53.5		mg/kg dry	<u>*</u>	86.9	75-125 0.361	20
- Lob Sample ID: 441,0000 DUD4								Clie	at Commin ID: D:	nlianta
Lab Sample ID: 11L0028-DUP1 Matrix: Soil								Clier	nt Sample ID: Dւ Prep Typ	
Analysis Batch: 11L0028									Prep Batch: 11L	
Thay or Daton. Theorem	Sample	Sample		Duplicate	Duplicate					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	(RPD	Limit
							- x	·	0.05	
Lead	3.03			2.79		mg/kg dry	- *		8.35	20
_	3.03			2.79		mg/kg dry				
_ Lab Sample ID: 11L0030-BLK1	3.03			2.79		mg/kg dry		lient Sa	mple ID: Metho	d Blank
_ Lab Sample ID: 11L0030-BLK1 Matrix: Water	3.03			2.79		mg/kg ary			mple ID: Method Prep Type	d Blank ∋: Total
_ Lab Sample ID: 11L0030-BLK1		Blank Blank		2.79		mg/kg dry			mple ID: Metho	d Blank ∋: Total
_ Lab Sample ID: 11L0030-BLK1 Matrix: Water	В	Blank Blank esult Qualifier			DL Unit	mg/kg dry D	C		mple ID: Method Prep Type	d Blank ∋: Total
_ Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030	B		0.0		DL Unit mg/l		C Pre	. I pared	mple ID: Method Prep Type Prep Batch: 11L	d Blank e: Total 0030_P
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead	B	esult Qualifier	0.0	RL M	DL Unit mg/l	<u>D</u>	C Pre 12/05/	pared 11 17:45	mple ID: Method Prep Type Prep Batch: 11L <u>Analyzed</u> 12/06/11 08:27	d Blank e: Total 0030_P Dil Fac 1.00
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1	B	esult Qualifier	0.0	RL M	DL Unit mg/l	<u>D</u>	C Pre 12/05/	pared 11 17:45	mple ID: Method Prep Type Prep Batch: 11L <u>Analyzed</u> 12/06/11 08:27 D: Lab Control 3	d Blank e: Total 0030_P Dil Fac 1.00 Sample
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1 Matrix: Water	B	esult Qualifier	0.0	RL M	DL Unit mg/l	<u>D</u>	C Pre 12/05/	pared 11 17:45 Sample I	mple ID: Method Prep Type Prep Batch: 11L <u>Analyzed</u> 12/06/11 08:27 D: Lab Control S Prep Type	Blank Total 0030_P Dil Fac 1.00 Sample Total
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1	B	esult Qualifier		<u>RL M</u>	mg/l	<u>D</u>	C Pre 12/05/	pared 11 17:45 Sample I	mple ID: Method Prep Type Prep Batch: 11L <u>Analyzed</u> 12/06/11 08:27 D: Lab Control S Prep Type Prep Batch: 11L	Blank Total 0030_P Dil Fac 1.00 Sample Total
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030	B	esult Qualifier	Spike	RL MI 300	mg/l	<u>P</u> C	Pre 12/05/ lient S	, pared 11 17:45 Sample I	mple ID: Method Prep Type Prep Batch: 11L <u>Analyzed</u> 12/06/11 08:27 D: Lab Control 3 Prep Type Prep Batch: 11L %Rec.	Blank Total 0030_P Dil Fac 1.00 Sample Total
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1 Matrix: Water	B	esult Qualifier		RL MI 300	mg/l	D_ C Unit	C Pre 12/05/	pared 11 17:45 Sample I	mple ID: Method Prep Type Prep Batch: 11L <u>Analyzed</u> 12/06/11 08:27 D: Lab Control S Prep Type Prep Batch: 11L	Blank Total 0030_P Dil Fac 1.00 Sample Total
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte	B	esult Qualifier	Spike Added	RL MI 3000 LCS Result	mg/l	<u>P</u> C	Pre 12/05/ lient S	pared 11 17:45 Sample I Kec	mple ID: Method Prep Type Prep Batch: 11L <u>Analyzed</u> 12/06/11 08:27 D: Lab Control 3 Prep Type Prep Batch: 11L %Rec. Limits	Blank Total 0030_P Dil Fac 1.00 Sample Total
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte	B	esult Qualifier	Spike Added	RL MI 3000 LCS Result	mg/l	D_ C Unit	Pre 12/05/ lient S	pared 11 17:45 Sample I B <u>%Rec</u> 98.6	mple ID: Method Prep Type Prep Batch: 11L <u>Analyzed</u> 12/06/11 08:27 D: Lab Control 3 Prep Type Prep Batch: 11L %Rec. Limits	d Blank e: Total 0030_P Dil Fac 1.00 Sample e: Total 0030_P
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water	B	esult Qualifier	Spike Added	RL MI 3000 LCS Result	mg/l	D_ C Unit	Pre 12/05/ lient S	pared 11 17:45 Sample I B <u>%Rec</u> 98.6	mple ID: Method Prep Type Prep Batch: 11L Analyzed 12/06/11 08:27 D: Lab Control 3 Prep Type Prep Batch: 11L %Rec. Limits 80 - 120 mple ID: DP-33- Prep Type	d Blank :: Total 0030_P Dil Fac 1.00 Sample :: Total 0030_P 111611 :: Total
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lead	= <u>R</u> e 0.0	esult Qualifier 0972 B	Spike Added 50.0	RL MI 300 LCS Result 49.3	mg/l LCS Qualifier	D C Unit mg/l	Pre 12/05/ lient S	pared 11 17:45 Sample I B <u>%Rec</u> 98.6	mple ID: Method Prep Type Prep Batch: 11L Analyzed 12/06/11 08:27 D: Lab Control 3 Prep Type Prep Batch: 11L %Rec. Limits 80 - 120 mple ID: DP-33- Prep Type Prep Batch: 11L	d Blank :: Total 0030_P Dil Fac 1.00 Sample :: Total 0030_P 111611 :: Total
Lab Sample ID: 11L0030-BLK1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-BS1 Matrix: Water Analysis Batch: 11L0030 Analyte Lead Lab Sample ID: 11L0030-MS1 Matrix: Water	E Re 0.0	esult Qualifier 0972 B	Spike Added	RL MI 3000 LCS Result 49.3 Matrix Spike	mg/l LCS Qualifier	D C Unit mg/l	Pre 12/05/ lient S	pared 11 17:45 Sample I B <u>%Rec</u> 98.6	mple ID: Method Prep Type Prep Batch: 11L Analyzed 12/06/11 08:27 D: Lab Control 3 Prep Type Prep Batch: 11L %Rec. Limits 80 - 120 mple ID: DP-33- Prep Type	d Blank :: Total 0030_P Dil Fac 1.00 Sample :: Total 0030_P 111611 :: Total

2

31

Method: EPA 6010C - Total Metals by EPA 6010/7000 Series Methods (Continued)

Lab Sample ID: 11L0030-MSD1 Matrix: Water Analysis Batch: 11L0030				∜atrix Spike Dup					Prep Batch %Rec.	o Type: : 11L0(Totai)30_P RPD	2 5
Analyte			ded		Qualifier	Unit	D	%Rec	Limits	RPD -	Limit	6
Lead	1.82	B1 5	50.0	51.0		mg/l		98.3	75 - 125	2.01	20	
Lab Sample ID: 11L0030-DUP1							c	lient S	ample ID: D			7
Matrix: Water										о Туре:		
Analysis Batch: 11L0030		_							Prep Batch	: 11L00		•
	Sample			Duplicate		11-14				890	RPD	9
Analyte Lead	1.82	Qualifier	_		Qualifier	Unit ma/l	D			8PD 9.90	Limit 20	ઝ
Lead	1.82	В1		2.01		mg/l				9.90	20	

Certification Summary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02

aboratory	Authority	Program	EPA Region	Certification ID			
estAmerica Spokane	Alaska	Alaska UST	10	UST-071			
estAmerica Spokane	Washington	State Program	10	C569			
estAmerica Nashville		ACIL		393			
estAmerica Nashville	A2LA	ISO/IEC 17025	ISO/IEC 17025				
estAmerica Nashville	A2LA	WY UST		453.07			
estAmerica Nashville	Alabama	State Program	4	41150			
estAmerica Nashville	Alaska	Alaska UST	10	UST-087			
estAmerica Nashville	Arizona	State Program	9	AZ0473			
estAmerica Nashville	Arkansas	State Program	6	88-0737			
estAmerica Nashville	California	NELAC	9	1168CA			
estAmerica Nashville	Canada (CALA)	Canada (CALA)		3744			
estAmerica Nashville	Colorado	State Program	8	N/A			
estAmerica Nashville	Connecticut	State Program	1	PH-0220			
estAmerica Nashville	Florida	NELAC	4	E87358			
estAmerica Nashville	Illinois	NELAC	5	200010			
estAmerica Nashville	lowa	State Program	7	131			
estAmerica Nashville	Kansas	NELAC	7	E-10229			
estAmerica Nashville	Kentucky	Kentucky UST	4	19			
estAmerica Nashville	Kentucky	State Program	4	90038			
estAmerica Nashville	Louisiana	NELAC	6	30613			
estAmerica Nashville	Louisiana	NELAC		LA100011			
estAmerica Nashville	Maryland	State Program	3	316			
estAmerica Nashville	Massachusetts	State Program	1	M-TN032			
estAmerica Nashville	Mississippi	State Program		N/A			
estAmerica Nashville	Montana	MT DEQ UST	8	NA			
estAmerica Nashville	New Hampshire	NELAC	1	2963			
estAmerica Nashville	New Jersey	NELAC	2	TN965			
estAmerica Nashville	New York	NELAC	2	11342			
estAmerica Nashville	North Carolina	North Carolina DENR	4	387			
estAmerica Nashville	North Dakota	State Program		R-146			
estAmerica Nashville	Ohio	OVAP	8 5				
estAmerica Nashville	Oklahoma			CL0033			
estAmerica Nashville		State Program	6	9412			
	Oregon	NELAC	10	TN200001			
estAmerica Nashville	Pennsylvania Dhada Jalaad	NELAC	3	68-00585			
estAmerica Nashville	Rhode Island	State Program	1	LAO00268			
estAmerica Nashville	South Carolina	State Program	4	84009			
stAmerica Nashville	South Carolina	State Program	4	84009			
stAmerica Nashville	Tennessee	State Program	4	2008			
stAmerica Nashville	Texas	NELAC	6	T104704077-09-TX			
stAmerica Nashville	USDA	USDA		S-48469 TAN			
stAmerica Nashville	Utah	NELAC					
stAmerica Nashville	Virginia	NELAC Secondary AB	3	460152			
stAmerica Nashville	Virginia	State Program	3	00323			
stAmerica Nashville	Washington	State Program	10	C789			
stAmerica Nashville	West Virginia	West Virginia DEP	3	219			

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Method Summary

Client: Geo Engineers - Spokane Project/Site: 0504-060-02 TestAmerica Job ID: SUK0109

2

Method	Method Description	Protocol	Laboratory
SW-846	General Chemistry Parameters		TAL NSH
EPA 8260B	Volatile Organic Compounds by EPA Method 8260B		TAL SPK
EPA 8260B	Volatile Organic Compounds by EPA Methods 5035/8260B		TAL SPK
EPA 8011	EDB by EPA Method 8011		TAL SPK
EPA 8082	Polychlorinated Biphenyls by EPA Method 8082		TAL SPK
NWTPH-Dx	Semivolatile Petroleum Products by NWTPH-Dx		TAL SPK
NWTPH VPH	Purgeable Petroleum Hydrocarbons		TAL NSH
NWTPH-Gx	Gasoline Hydrocarbons by NWTPH-Gx		TAL SPK
NWTPH EPH	Extractable Petroleum Hydrocarbons		TAL NSH
EPA 6010C	Total Metals by EPA 6010/7000 Series Methods		TAL SPK
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (800) 765-0980

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

:	A 98011-8244 425-420-9200 FAX 420-9210 30/201 A 99206-5302 509-924-9200 FAX 924-9290 X R 97008-7145 503-906-9200 FAX 966-9210 X K 99502-1119 907-563-9200 FAX 563-9210 X	TURNAROUND REQUEST	Organic & Inorganic Analyses		Specify:	tan standard nay incur russ clarges. LOCATION TA COMMENTS WO ID	of 6		hold	2	5 hoted	- ,			he ld	hold -	GET DATE L'18 -CC	рите: 11/18/11 74 тиме: 1530	D°C PAGE 1 oF 2	
	 11720 North Creek Pkwy N Suite 400, Bothell, WA 98011-8244 11922 E. First Ave, Spokane, WA 99206-5302 9405 SW Nimbus Ave, Beaverton, OR 97008-7145 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 REPORT 	TUR	Organic Organic STD. Petrolet		OTHER	* Jurnarouna requests te MATRUX # 05 (W, S, O) CONT.	5 5	5 5	× 8	5 5	. 5	S S	S	S S	w 8	S 5	Revision FIRME G	// ===================================		
•	11720 North Creek Pkwy N 11922 E. 1 9405 SW Nim 2000 W International Airport Rd SJ	part	60-02		I I I I I I I I I I I I I I I I I I I	1198											RECEIVED BY: PRINT NAME: Ry Con T	RECEIVED BY: ULALLA		
	11720 No 2000 W Internation	INVOICE TO:	-0"0-1-020-0"	1 –	KEQUESTED ANALYSES	2803 2803 5000 5000 1000 1000 1000 1000 1000 10	×××	××		×××		×	×	× × ×			DATE: 11-16-11 10. TIME: 1620	DATE: {}-{}-{}		
	-		WA 99202			ессен и 2005 2005 2005 2005 2005 2005 2005 2005	×	N X X ol	40	0855 X X X	0 10S	0915 × × × ×	0920 × × ×	0950 X × ×	lo3o	<i>io40</i>	FRME GEO ENDINE OR LENC	FIRME GET		
Accountion of the second	THE LEADER IN ENVIRONMENTAL TESTING	CLIENT: GeoEngineers, Inc. REPORT TO: Dave Lander	nd Ave. , Spokane, 25Fax:	Station - Buena	H-060-02	DATE/TING	11/11/11 0805	0180	0840						lic	\checkmark	a hira	2		
WARNANG AND TO THE A MANY		CLIENT: GeoEngineers, Enc. REPORT TO: Dave Lander	ADDRESS: 523 E 2nd AV PHONE: 509-363-3125FAX:	PROJECT NAME Roby's Station - Buena	PROJECT NUMBER: OSO4- 060- 02	CLIENT SAMPLE	, DP-29-2-5-11161	209-29-8-0-11411	3 DP-29-111611	1DP-30-4.0-11/611	5 DP-30-10,0-11(61)	0 PP-31 ~ 7.0 - 41/61	, DP-31-10.0-11161	" DP-32-4,0-11161	, DP-32-111611	10 DP-33-7.0-1161	RELEASED BY WAY WAY	RELEASED BY: PRINT NAME. Do 72.000	ADDITIONAL REMARKS:	

12/30/2011			79 ło	99 əb	ья									ŝ
210 X 10	1,	h Charges. TA	di ow				•.	-	-		-19- 29- 29-	11×14 530	PAGE 2 OF	TAL-1000(0408)
425 420-9200 FAX 420-9210 509-924-9200 FAX 924-9290 509-9200 FAX 906-9210 907-563-9200 FAX 565-9210	TURNAROUND REQUEST In Business Days * Organic & Inorganic Analyses Ferroleum Hydrocarbon Analyses	OTHER Specify: • Turnaround Requests less than standard may incur Rush Charges: MATERX MATERX # OF LOCATION TA	comments			hold.	huld				ענב: ול - (א) - וו זיענב: ון - (א) - וו	DATE: /		AT
er #	TURNAR In B Organic & I Petroleum F	OTHER S nd Requests less X # OF	CONT.	N I	ΓĽ		Ś	Ь	ഗ	2	FIRM: GEL	5		
 11720 North Creek Pkvy N Suite 400, Bothell, WA 98011-8244 4. 11922 E. First Ave, Spokane, WA 99206-5302 59405 SW Nimbus Ave, Spokane, WA 99206-5119 9405 SW Nimbus Ave, Steverton, OR 97008-7145 552000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 9502-1119 2000 W International Airport Rd Ste A10, Anchorage, AK 99502-1119 9561 REPORT Work Order #: 		Turnaround R MATRIX	(W, S, O)	ς.	3 0	S	S	S	s	3	FIRM:	FIRM:	<u>.</u>	
Bothell, WA pokanc, WA saverton, OF chorage, AK											love	1		
buite 400, tist Ave, S uus Ave, Ba è A 10, An											1	متالد		
c Pkwy N S 11922 E. F 1 SW Nimt port Rd Su						<u> </u>					- 5-			
면 법						_	•••				2	- Aller		
11720 Not 2000 W Internati CHAIN OF CUSTODY REPORT	+ 0-	- 8									RECEIVED BY: PRINT NAME:	RECEIVED BY: PRINT NAME:		
. 2000	report	ANALYS									REC	REC		
STOD	Same as report 0504-060-0 PRESERVATIVE	REQUESTED ANALYSES	03		× \			×		x	-	-		
F CU	Se -	38	13 1	×	X	< 			X		11-16-11	11-14-11		.
Ô	INVOICE TO		nel 🔨		<u>ک</u> کر	5		X	X	× ×	DATE 11-16-1 TIME 1620	DATE: 11- 14 TIME: 15- 30		
		- [¤] 20 ∀	101 ~ 728 103 ×	X	X X			¥	×	X	_ 			
if a		т н н т н т т т т т т т т т т т т т т т	1/100 X	X	×. >>			X	X	X	LCS.T.V			
	502	- + H ×9-Hd +1u		\times	X>			بلا	ير لار	X	FIENS GEO ENG MERCS, ENC.	GEE		
	A 99	<u> +\</u>		S	0 4	i N	8		1325	i420	"Ceo ⊟	Se F.		
	re, W	UN NO	III S	1125	1210	1255	1300	13 IS	13	į	FIRM	FIRM		
	Bue	a hire	DATE/TIME											
	Ave., S Ave., S atton	60-0	11/91/11							>	E E	Bruch		
	eers, 2nd A 2nd A 5 sta	? Z -		611	1	119	191	(19 <u>1</u>	1191		Mirania P	W.		
	Roby Roby	R: OS Rober	CATTON	111-0-	11911	111-0	11- 2.8	f.0~11	1-0-01	11911	11 7	Ŋ	RKS:	
THE LEADER IN ENVIRONMENTAL TESTING	CLIENT: GEOENGINEERS, INC. REPORT TO: Dave Lawder ADDRESS: 523 E 2nd Ave., Spokane, WA 99202 PHONE: 509-363-3125 FAX: PROJECT NAME: Roby 15 Statton - Buera	PROJECT NUMBER: 0504-060-02 SAMPLEDBY: Robert N. MIYAHINA CLIENTSAMPLE SAMPLE	DP-33 - 11/61	2 DP-34-6-0-111611	DP-34-111611	, DP-36-4.0-111611	, DP-36-8.2-111611	, D P-37-4.0-11161	DP-37~ 10-0-11(61)	DP-37-11611			ADDITIONAL REMARKS	
	CLIENT: REPORT ADDRES PHONE: PROJECT	PROJEC	DP-	2 D P	90 -	, DP	، DP.	, D P	° De	, DP	RELEASED BY: PRINT NAME:	RELEASED BY: PRINT NAME:	ADDITHC	

23	merica le Rece	•			
			•	PI II P	
Work Order #: 51YO1 Client: ()&Em	weens			Project: hoby's Station - Burenon	
Date/Time Received: 15,30 11/18/4		u)		·	
Samples Delivered By: Shipping Service Courier Cllent	Other	_			
List Air Bill Number(s) or Attach a photocopy of the Air Bill:	านไม่เป็นการเรื	ANDERSON	All Astronom	AN TOTAL MADE AND	
Receipt Phase	Yes	No	L NA	Comments	
Were samples received in a cooler:	X				
Custody Seals are present and intact:	\angle				
Are CoC documents present:	X				
Necessary signatures:	8				
Thermal Preservation Type: Blue Ice Gel Ice	Dry Ice	None [Other:		
Temperature by IR Gun: O C Thermometer Secial #8150	0 (accepta	nce criteria	0-6 ℃)		
Temperature out of range: Not enough ice Cice melted	lin 4hrs of c	ollection [ther:	
Logaln Phase Date/Time: 11 8 151 (0907 B);	Yes	No	NA	UComments	
Are sample labels affixed and completed for each container	X				
Samples containers were received intact:	X			· · · · · · · · · · · · · · · · · · ·	
Do sample IDs match the CoC	X				
Appropriate sample containers were received for tests requested		X		Danot receive unpervioluce DB or HNO2 for PD	27
re sample volumes adequate for tests requested	X				
ppropriate preservatives were used for the tests requested		X		NO HAMB provided containers	
H of Inorganic samples checked and is within method specification			X		
re VOC samples free of bubbles >6mm (1/4" diameter)	X				
re dissolved parameters field filtered			X		
o any samples need to be filtered or preserved by the lab	X			preserved Ferlead	
oes this project require quick turnaround analysis		X			
re there any short hold time tests (see chart below)		X			
re any samples within 2 days of or past expiration	Х			EDB	
/as the CoC scanned	X			· · · ·	
lere there Non-conformance issues at login	X			·. · ·	
yes, was a CAR generated #					

24 hours or less	48 hours	7 days
Collform Bacteria	BOD, Color, MBAS	TDS, TSS, VDS, FDS
Chromlum +6	Nitrate/Nitrite	Sulfide
	Orthophosphate	Aqueous Organic Prep