# **BASELINE ENVIRONMENTAL SUMMARY**

# FORMER CASCADE LAUNDRY 205 PROSPECT STREET WHATCOM COUNTY PARCEL 380330111249 BELLINGHAM, WASHINGTON 98225 ECOLOGY FS ID: 21786898

*For:* Sonja Max and Oliver Max 914 12<sup>th</sup> Street Bellingham, Washington 98225



PO Box 2546 Bellingham, WA 98227 (360) 714-9409

March 12, 2015

# TABLE OF CONTENTS

| 1.0                               | EXECUTIVE SUMMARY                                                                                                              | 1                                                        |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 2.0                               | SITE DESCRIPTION                                                                                                               | 2                                                        |
| 2.1<br>2.2<br>2.3                 | SITE NAME AND IDENTIFICATION<br>SITE OWNER<br>SITE OCCUPANT                                                                    |                                                          |
| 2.4<br>2.5<br>2.6                 | SITE LOCATION<br>GENERAL CHARACTERISTICS OF SITE<br>ADJACENT AND SURROUNDING LAND USE                                          |                                                          |
| 3.0                               | SITE HISTORY                                                                                                                   | 5                                                        |
| 4.0                               | ENVIRONMENTAL SETTING                                                                                                          | 6                                                        |
| 4.1<br>4.2<br>4.3<br>4.4          | SITE GEOLOGY AND SOILS<br>SITE HYDROLOGY<br>DRINKING WATER<br>SENSITIVE ENVIRONMENTS                                           |                                                          |
| 5.0                               | PREVIOUS ENVIRONMENTAL STUDIES                                                                                                 | 8                                                        |
| 5.1<br>5.2                        | UNDERGROUND STORAGE TANK HISTORY<br>SOIL AND GROUNDWATER SAMPLING HISTORY                                                      |                                                          |
| 6.0                               | GROUND PENETRATING RADAR SURVEY                                                                                                | 20                                                       |
| 7.0                               | INDOOR AIR SAMPLING                                                                                                            | 21                                                       |
| 7.1<br>7.<br>7.<br>7.<br>7.<br>7. | INDOOR AIR QUALITY SAMPLING                                                                                                    | 21<br>21<br>21<br>23<br>23<br>23<br>23<br>24<br>25<br>27 |
| 8.0                               | INDOOR SUMP SAMPLING                                                                                                           | 28                                                       |
| 8.1                               | INDOOR SUMP SAMPLING RESULTS DISCUSSION                                                                                        |                                                          |
| 9.0                               | NATURE AND EXTENT OF CONTAMINATION                                                                                             | 29                                                       |
| 9.1<br>9.2<br>9.3<br>9.4          | CIRCUMSTANCE OF RELEASE AND DISCOVERY<br>AFFECTED MEDIA<br>CONTAMINANT IDENTIFICATION<br>EXTENT AND MAGNITUDE OF CONTAMINATION |                                                          |

| 9.4.2 Extent of Groundwater Contamination        |    |
|--------------------------------------------------|----|
| 9.5 SOURCES OF CONTAMINATION                     |    |
| 9.5.1 Onsite Sources of Contamination            |    |
| 9.5.2 Potential Offsite Sources of Contamination |    |
| 10.0 DEVELOPMENT OF CLEANUP STANDARDS            | 31 |
| 10.1 TERRESTRIAL ECOLOGICAL EVALUATION           |    |
| 10.2 CLEANUP STANDARDS                           |    |
| 10.2.1 Soil Cleanup Standards                    |    |
| 10.2.2 Groundwater Cleanup Standards             |    |
| Cleanup Standards for Potable Water              |    |
| Cleanup Standards for Non-Potable Water          |    |
| 11.0 FINDINGS AND RECOMMENDATIONS                |    |

# **TABLE OF FIGURES**

| Figure 2. Aerial photo of site and surrounding land uses4Figure 3. Cross-section with general site geology7Figure 4. Onsite tank locations9Figure 5. Sample results from heating oil UST removal11Figure 6. Sample results from dry cleaning UST removal12Figure 7. Compilation Map of Soil Sample Locations16Figure 8. Soil Sample Exceedences (above MTCA Method A)17Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A19Figure 10. Indoor Air Sample Locations22 | Figure 1. Site Vicinity Map                                                 | 3  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----|
| Figure 3. Cross-section with general site geology7Figure 4. Onsite tank locations9Figure 5. Sample results from heating oil UST removal11Figure 6. Sample results from dry cleaning UST removal12Figure 7. Compilation Map of Soil Sample Locations16Figure 8. Soil Sample Exceedences (above MTCA Method A)17Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A19Figure 10. Indoor Air Sample Locations22                                                          | Figure 2. Aerial photo of site and surrounding land uses                    | 4  |
| Figure 4. Onsite tank locations9Figure 5. Sample results from heating oil UST removal11Figure 6. Sample results from dry cleaning UST removal12Figure 7. Compilation Map of Soil Sample Locations16Figure 8. Soil Sample Exceedences (above MTCA Method A)17Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A19Figure 10. Indoor Air Sample Locations22                                                                                                            | Figure 3. Cross-section with general site geology                           | 7  |
| Figure 5. Sample results from heating oil UST removal11Figure 6. Sample results from dry cleaning UST removal12Figure 7. Compilation Map of Soil Sample Locations16Figure 8. Soil Sample Exceedences (above MTCA Method A)17Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A19Figure 10. Indoor Air Sample Locations22                                                                                                                                            | Figure 4. Onsite tank locations                                             | 9  |
| Figure 6. Sample results from dry cleaning UST removal.       12         Figure 7. Compilation Map of Soil Sample Locations       16         Figure 8. Soil Sample Exceedences (above MTCA Method A)       17         Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A       19         Figure 10. Indoor Air Sample Locations       22                                                                                                                           | Figure 5. Sample results from heating oil UST removal                       | 11 |
| Figure 7. Compilation Map of Soil Sample Locations       16         Figure 8. Soil Sample Exceedences (above MTCA Method A)       17         Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A       19         Figure 10. Indoor Air Sample Locations       22                                                                                                                                                                                                    | Figure 6. Sample results from dry cleaning UST removal                      | 12 |
| Figure 8. Soil Sample Exceedences (above MTCA Method A)       17         Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A       19         Figure 10. Indoor Air Sample Locations       22                                                                                                                                                                                                                                                                        | Figure 7. Compilation Map of Soil Sample Locations                          | 16 |
| Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A                                                                                                                                                                                                                                                                                                                                                                                                                  | Figure 8. Soil Sample Exceedences (above MTCA Method A)                     | 17 |
| Figure 10. Indoor Air Sample Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A | 19 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Figure 10. Indoor Air Sample Locations                                      | 22 |

## TABLE OF TABLES

| . 10 |
|------|
| . 18 |
| . 20 |
| . 24 |
| . 25 |
| . 26 |
| . 27 |
| . 28 |
| . 28 |
| . 30 |
| . 33 |
| . 34 |
|      |

#### **APPENDICES**

#### APPENDIX I

Historic Aerial Photographs Sanborn Fire Insurance Maps Historic Site Photographs

#### APPENDIX II

Laboratory Report for Indoor Air Sampling Laboratory Report for Indoor Sump Testing

#### APPENDIX III

Underground Storage Tank Site Check/Site Assessment Checklist (Welch, 1992) Tank Removal Report (Whatcom Environmental Services, 2010) Phase I and Phase II Environmental Site Assessment (Stratum Group, 2006) Phase II Environmental Borings (GeoEngineers, 2007) Site Characterization Report (Whatcom Environmental Services, March 2011) Site Characterization Report – Building Interior Soil Borings (Whatcom Environmental Services, 2012)

# **Stratum Group**

PO Box 2546, Bellingham, WA 98227 Phone: (360) 714-9409

March 12, 2015

Sonja Max and Oliver Max 914 12<sup>th</sup> Street Bellingham, Washington 98225

#### **Re:** Baseline Environmental Summary

Cascade Laundry 205 Prospect Street Whatcom County Parcel 380330111249 Bellingham, Washington 98225 Ecology FS ID: 21786898

Dear Ms. Max and Mr. Max:

This report compiles environmental data regarding previous tank removal and soil and groundwater sampling as well as indoor air quality data and sump testing and ground penetrating radar studies that were recently completed at the Cascade Laundry site in Bellingham, Washington. This purpose of this report is to synthesize the numerous environmental reports and data for the site into one document to provide a baseline of site knowledge for future evaluations and/or cleanup actions.

The Cascade Laundry site is currently listed as a contaminated site with Washington State Department of Ecology. The site is listed as having soil and groundwater contamination due to petroleum products and tetrachloroethylene, a dry cleaning solvent.

Should you have any questions concerning this report, please do not hesitate to contact us at (360) 714-9409.

Sincerely, Stratum Group

Kim Ninnemann

Kim Ninnemann, B.S., L.G. Licensed Geologist

Dan McShane, M.Sc., L.E.G. Licensed Engineering Geologist

# 1.0 EXECUTIVE SUMMARY

Soil and groundwater conditions at the former Cascade Laundry site have been collected during various previous site investigations and during underground storage tank removals. In addition to this previous work Stratum Group recently completed indoor air quality sampling and tested soil and water in a sump at the site. The purpose of this report is to synthesize all of the previous environmental investigations that have been completed on the site into one document to provide a baseline of site knowledge for informing future evaluations and/or cleanup actions.

The Cascade Laundry site is located in downtown Bellingham. The site was developed as a dry cleaning and laundry facility by at least 1932, which included clothes dying and leather tanning. The site conducted dry cleaning activities through 1971. Commercial laundry continued at the site through the early 2000s.

A summary of environmental conditions on the site identified through review of available environmental investigations is provided below:

- 1. Three underground storage tanks (USTs) have previously been located on the Cascade Laundry property for storage of heating oil, gasoline and dry cleaning solvent. No contamination has been identified during soil sampling around the tanks. A ground penetrating radar completed on the site in February 2015 found no indications of any additional tanks.
- 2. Soil beneath the southern and western portions of the site exceed MTCA Method A cleanup levels for gasoline, diesel/oil, benzene, ethylbenzene, xylenes, and tetrachloroethylene (PERC), including beneath the southern portion of the building. Depth of contamination varies from surface soils to depths of 30 feet.
- 3. Groundwater samples collected via push probe sampling methods beneath the southern and western portions of the site exceed MTCA Method A cleanup standards for gasoline, benzene, and/or PERC, including beneath the southern portion of the building. Groundwater was encountered at depths ranging from 12 to 17 feet below the surface.
- 4. Diesel and oil contaminated sediment and water are present in the sump within the southwestern room of the building.
- 5. Detections of volatile organic compounds were identified within the indoor air of the building. Our evaluation of the data indicates that the air quality meets worker safety levels per Washington State Labor and Industries permissible exposure limits; however, the data is inconclusive as to whether the detections of the volatile organic compounds are due to vapor intrusion from the underlying impacted soil and groundwater, indoor sources or from ambient outdoor air.

Based upon our review of previous sampling results, recommendations are made to further evaluate the groundwater conditions at the site, identify whether vapor intrusion sources are present on the site, and determine site specific cleanup standards. This additional information will guide the decisions regarding cleanup options and approaches for the property.

# 2.0 SITE DESCRIPTION

#### 2.1 Site Name and Identification

Cascade Laundry 205 Prospect Street Whatcom County Parcel 380330111249 Bellingham, Washington 98225 Ecology Fs Id: 21786898

## 2.2 Site Owner

Sonja Max and Oliver Max 914 12<sup>th</sup> Street Bellingham, Washington 98225

#### 2.3 Site Occupant

The property is currently vacant.

## 2.4 Site Location

The Cascade Laundry site is located along the west side of Prospect Street between Flora Street and Central Avenue in the downtown area of Bellingham, Washington. The site occupies one tax parcel that utilizes the address of 205 Prospect Street. The property is located in the northwest quarter of the southwest quarter Section 30, Township 33 North, Range 3 West of Willamette Meridian. The location of the subject property is indicated in Figure 1.



Figure 1. Site Vicinity Map

## 2.5 General Characteristics of Site

An aerial photograph with the site layout and adjacent properties is provided below in Figure 2.



Figure 2. Aerial photo of site and surrounding land uses

The subject property consists of one tax parcel that is approximately 0.54 acres in size and is irregularly shaped. The site is developed with one building. The building has a footprint that covers approximately 13,150 square feet. The building has a second story, main floor, and basement. The building is currently vacant.

The subject property slopes gently to the west. The slope of the property increases toward the western property boundary, with a steep former shoreline slope along and adjacent to the western property boundary. The slope is vegetated and is approximately 35 feet high. The site has an elevation of approximately 65 feet along Prospect Street and approximately 55 feet along its western boundary. Whatcom Creek estuary is located approximately 320 feet to the northwest and Whatcom Waterway is located approximately 500 feet west of the subject property.

An asphalt paved parking area and driveway are located on the southeastern corner of the property and provides access to the site from Prospect Street. A second paved access extends along the

western property boundary. This western access road is accessed from Prospect Street from several properties to the north and skirts along the top of the vegetated slope, as an extension of Central Avenue. A vegetated, fill area is located just south of the western end of the building.

## 2.6 Adjacent and Surrounding Land Use

The site is located within downtown Bellingham, Washington. The land use in the vicinity is largely commercial with some government offices and a historic museum.

A paved parking area, and a building utilized by a variety of offices bound the subject property to the north. The building, located at 209 Prospect Street, immediately north of the subject property shares a common wall with the subject property. Prospect Street bounds the subject property to the east. A small building utilized by Accurate Lock (200 Prospect Street) and a larger building that was formerly utilized as part of the Whatcom County Museum (206 Prospect Street) are located across Prospect Street from the subject property. The Accurate Lock property is a former gasoline station. The Syre Building, utilized by the Whatcom County Museum, bounds the subject property to the south. A vegetated slope and Maritime Heritage Park bound the subject property to the west. A portion of Maritime Heritage Park was utilized as a part of a municipal landfill in the 1940s and 1950s, known as the Holly Street Landfill.

# 3.0 SITE HISTORY

The subject property and vicinity was initially developed in approximately the 1850s as it is located near the earliest area of development along Bellingham Bay. A saw mill was built along the banks of Whatcom Creek to take advantage of the water power provided by the creek. An 1892 photograph of the site and vicinity indicates that a home was located on the subject property at that time. The main structure of the current building was constructed on the site in 1922. The southern portion of the subject property was utilized as a car sales lot until approximately 1935.

Cascade Laundry began to utilize the subject property by at least 1932. An addition was added to the south side of the building in the 1966. Cascade Laundry utilized the building for cleaning clothing, rugs, and miscellaneous goods, dry cleaning, and dyeing fabric. The year that the dry cleaning operation began is unknown but is believed to have ended by 1971. The site remained in use as a laundry facility through the early 2000s.

Copies of historic aerial photographs and Sanborn Fire Insurance Maps of the site and vicinity are provided in Appendix I.

# 4.0 ENVIRONMENTAL SETTING

## 4.1 Site Geology and Soils

The following descriptions of the surficial deposits in the vicinity of the subject property were interpreted from the *Geologic Map of the Bellingham 1:100,000 Quadrangle, Washington* (Lapen, 2000). According to Lapin (2000), the subject property is underlain by Bellingham glaciomarine drift. The Bellingham Drift was deposited by melting glacial ice near the end of the last glacial period when the area was submerged below sea level. The Bellingham Drift generally consists of silty clay.

Soil data available for Whatcom County through the National Resources Conservation Service of the USDA (online version 2014) describes the soils on the property as urban land. Due to the presence of buildings no soil data was available.

Numerous environmental borings have been completed on the subject property to depths of up to 30 feet. In addition, the Department of Ecology indicates that one well log is on file for the property. Based upon the boring logs for the site, the underlying geology generally consists of silty clay, clayey silt, sandy clay and sandy silt to depths of up to 30 feet. Layers of sand were identified in numerous borings. The sand units vary from 2 to 14 feet thick and some sandy zones have lenses of clay.

Fill material was identified in some of the borings on the west side of the property and included organic material and pieces of glass and charcoal. Fill is also located at the southwestern corner of the building, east of a concrete retaining wall. The fill material at this location was largely comprised of loose brown silty sand. Some bricks, pipes, and other miscellaneous debris were observed within the fill material. Organic material, woody debris, and some brick fragments were identified in the upper 7 feet along the top of the slope, near the western property boundary.

A conceptual cross-section of the site's geology, based upon the information available in the environmental borings logs is provided in Figure 3.



Figure 3. Cross-section with general site geology

## 4.2 Site Hydrology

No streams or surface water drainages are located on the subject property. The site is located approximately 550 feet east of the Whatcom Waterway and includes the upper portion of the original shoreline bluff above the creek estuary. No groundwater seeps have been observed along the bluff.

An environmental investigation completed on the site in 2011 identified groundwater between depths of 12 to 17 feet within sandy lenses with groundwater present in coarser grained layers below 17 feet depth (Whatcom Environmental, 2011). An environmental investigation on the site in 2007, with four borings to depths of up to 27 feet, identified groundwater in only one of the borings at a depth of 12 feet (GeoEngineers, 2007). Based upon this data, seasonal perched groundwater is present at the site possibly at various depths within discrete more porous zones. The groundwater is not likely representative of a regional groundwater table. Based upon the presence of the groundwater within coarser grained layers in the subsurface, the perched groundwater likely has a low flow and recharge rate, but details of groundwater conditions are not fully known.

Our review of groundwater sampling reports for the adjacent Maritime Heritage Park site, located on the adjacent property to the west (also known as Holly Street landfill) indicates that groundwater is present on the park site at 12 to 13 feet below the ground surface. These groundwater levels correspond with a groundwater depth of approximately 43 feet below the ground surface at the subject property. Groundwater flow direction of groundwater at the monitoring wells within the park indicates flow to the northwest, toward Whatcom Creek (Landau, 1993).

## 4.3 Drinking Water

Cascade Laundry is located within the downtown area of Bellingham, Washington. All residences and commercial properties in the vicinity are served by the public City of Bellingham drinking water utility. No drinking water wells are located within ½ mile of the subject property. No drinking water wells are located down gradient of the subject property.

## 4.4 Sensitive Environments

Whatcom Creek is located approximately 320 feet northwest of the property where the creek transitions into an estuary via Whatcom Waterway and its connection to Bellingham Bay to the west approximately 500 feet west of the property. Both the creek and bay are considered sensitive environments.

The Holly Street landfill, a municipal landfill, operated on the adjacent property to the west from 1937 until 1957-1959. The landfill separates the subject property from the waterways. The landfill was created by filling tide flats and Whatcom Creek estuary. Debris in the landfill is largely described as sandy silts with inorganic materials such as glass, concrete, household debris, scrap metal, soil, coal slag, ashes, woody debris. Some previous waste disposal likely took place in this area prior to the site use as a landfill particularly along the bluff slopes.

# 5.0 Previous Environmental Studies

Several environmental investigations have taken place on the site. The documents include tank closure information available through Department of Ecology, a tank removal report from 2010, and reports from four soil and groundwater sampling events that took place between 2006 and 2011.

Copies of the referenced documents are provided in Appendix III.

## 5.1 Underground Storage Tank History

The site is listed as an underground storage tank site with Washington State Department of Ecology. Three underground tanks are confirmed in association with the site. The tanks include a 500-gallon gasoline tank, a 3,200-gallon heating oil tank, and a 300-gallon dry cleaning/PERC tank. All three tanks have been permanently closed-in-place or have been removed.

No active tanks are located on the site. The gasoline UST was located along the west side of the building, the heating oil UST was located along the northwest exterior wall of the building, and the dry cleaning tank was located along the southwestern exterior wall of the building. The approximate locations of the USTs are presented in Figure 4.



Figure 4. Onsite tank locations

A summary of the tank status, based upon environmental reports and Ecology information is provided in Table 1, below.

|   | Tank Size<br>(gallons) | Tank Contents               | Tank Status     | Installation<br>Date | Removal<br>Date |
|---|------------------------|-----------------------------|-----------------|----------------------|-----------------|
| 1 | 300                    | PERC<br>(dry cleaning tank) | Removed         | Unknown              | 2010            |
| 2 | 3,200                  | Bunker C fuel oil           | Removed         | Unknown              | 2010            |
| 3 | 500                    | Gasoline                    | Closed-in-Place | 1978                 | 1992            |

| Table 1. | Summary of | USTs |
|----------|------------|------|
|----------|------------|------|

The reports that describe the tank closures are described below.

#### Underground Storage Tank Site Check/Site Assessment Checklist (Welch, 1992)

A 500-gallon gasoline UST was permanently closed-in-place at the site by Robert H Welch (Welch Associates) on January 23, 1992. The checklist indicates that the tank had been installed in 1978. The form indicates that the site check/assessment was completed in accordance with Ecology guidance. No sampling data or figures were available to document soil conditions around the tank; however, a check box is marked that indicates that a release has not been confirmed from the UST system.

## Tank Removal Report (Whatcom Environmental Services, 2010)

The dry cleaning UST (PERC) and heating oil UST were removed from the site by Whatcom Environmental Services on October 13, 2010.

The 3,200-gallon heating oil tank was located along the northwest corner of the building and had previously been used to store Bunker C fuel oil, which had been used to power the site's boilers. The tank had been abandoned and no information was available as to its last usage. The tank contained approximately 7 inches of residual oil at the time of removal. After the tank was removed, four soil samples were collected from the heating oil UST area. One sample was collected beneath the heating oil UST, two samples were collected from the sidewalls and one from the overburden materials. The samples were analyzed for diesel-range and oil-range petroleum, benzene, toluene, ethylbenzene, and xylenes (BTEX), and metals. All of the samples of residual soils were non-detect for all analytes, except for the presence of oil-range petroleum at a concentration of 57 mg/kg in the sample collected from the north side of the excavation at 5 feet depth. The oil concentration is well below the MTCA Method A cleanup standard of 2,000 mg/kg. One sample (from the north side of the excavation) was analyzed for metals and had detections of arsenic, chromium, mercury, and lead, but at concentrations well below the MTCA Method A cleanup standards for unrestricted land use. Based upon the results, no soil contamination that warrants further action is present around the former heating oil tank. No

former bottom of the tank location.

A map of the soil samples collected around the former heating oil UST is provided in Figure 5.



Figure 5. Sample results from heating oil UST removal

The 300-gallon dry cleaning tank is referenced by Whatcom Environmental Services to have contained PERC (also referred to as tetrachloroethylene), based upon the site's history and anecdotal evidence provided by the property owner. The tank was located along the southwestern side of the building, within an area of fill material. Approximately 225 gallons of water was removed from the tank prior to tank removal. Soil samples were collected from beneath the PERC UST, from two of the sidewalls and from the overburden soil that had been removed from the top of the tank. The soil samples were analyzed for gasoline-range petroleum, BTEX, and/or halogenated volatiles. The laboratory results indicate the presence of gasoline range petroleum, xylenes, and PERC at concentrations that exceed the MTCA Method A cleanup standards in the bottom and sidewalls of the excavation around the tank. Gasoline-range petroleum was detected in two samples at 820 and 1,000 mg/kg, which exceeds the MTCA Method A cleanup standard of 100 mg/kg. Xylenes were detected in two of the samples at 12 and 13 mg/kg, which exceed the cleanup standard of 9 mg/kg, which exceeds

the cleanup standard of 0.05 mg/kg. No halogenated organic compounds were identified in the stockpile soil. The sampling indicates the presence of contaminated soil around the former PERC UST. No groundwater was encountered during the excavation, to a depth of 9 feet.

Soil samples collected from around the 300-gallon PERC tank are presented in Figure 6.

| $\frac{PERC West}{Gas - 820}$ $\frac{PERC - 0.098}{PERC - 0.098}$ $E = 2.2$ $X = 12$ $B,T = ND$ $\frac{PERC Floor}{Gas - 1,000}$ $\frac{PERC - 0.091}{PERC - 0.091}$ $E = 2.6$ $X = 13$ $B,T = ND$ |                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PERC South (7')<br>PERC – 0.37                                                                                                                                                                     | KEY         Sample Location         West (5')         Sample name & depth         ND         Analyte not detected         57                                                                 |
|                                                                                                                                                                                                    | 37       Concentration in mg/kg         1,000       Concentration exceeds         MTCA Method A cleanup         standards         BTEX       Benzene, toluene,         ethylbenzene, xylenes |

Figure 6. Sample results from dry cleaning UST removal

# 5.2 Soil and Groundwater Sampling History

The soil sampling events that took place from 2006 through 2012 have been compiled into Figures 7 and 8. The groundwater sampling locations are presented in Figure 9. The data from the soil samples is provided in Table 2 and the data from the groundwater samples is presented in Table 3. Figures 7 through 9 and corresponding tables can be found in the text document, below.

# Phase I and Phase II Environmental Site Assessment (Stratum Group, 2006)

Stratum Group conducted environmental due diligence on the site for a prospective purchaser in April 2006. Based upon the site's long term use as a dry cleaner facility, a phase II test pit investigation was initiated. A total of five test pits were completed around the exterior portion of the site. Two test pits were completed south of the southwest portion of the building within the fill material. Underground piping was encountered in the upper excavation and an approximately 300-gallon underground storage tank was discovered within the fill material. The tank was full of

yellowish brown liquid at the time of discovery. Samples collected from test pits identified the presence of PERC at 2.1 and 0.26 mg/kg, which exceeds the MTCA Method A cleanup standard of 0.05 mg/kg. The two soil samples were collected from below the fill material retaining wall to the west. One soil sample was collected from down gradient of the heating oil UST, and two samples were collected from down gradient of the gasoline UST. These samples had low detections of oil-range petroleum and PERC. The concentrations of oil and PERC were below the MTCA Method A cleanup standards for unrestricted land use. Based upon the sampling results, PERC contaminated soil was confirmed to be present at levels above the MTCA Method A cleanup level in the fill material south of the southwestern portion of the building.

The report recommended that the two USTs that are no longer in use (heating oil and dry cleaning tank) be removed and a soil cleanup take place to remove the PERC contaminated soil within the fill material near the southwestern corner of the building.

The locations of the soil samples collected during the test pit investigation are presented in Figure 7.

## Phase II Environmental Borings (GeoEngineers, 2007)

GeoEngineers completed four direct push borings (DP1- DP4) on the property on August 10, 2007. A final report was not completed; however, draft copies of the a Figure 1 site plan and surrounding property uses, log of direct push borings, and laboratory report results were reviewed to evaluate the findings. The borings were completed to depths that ranged from 24.5 to 29 feet. A total of eight soil samples and one water sample were collected from the borings. Samples were analyzed for gasoline, diesel, oil (or screened for petroleum), metals, and/or a suite of volatile organic compounds.

DP1 was completed in the southeast corner of the property, presumably up gradient of the dry cleaning activities, but down gradient of the gasoline station that formerly operated across Prospect Street. One soil sample was collected at 14 feet depth and was analyzed for gasoline-range petroleum and BTEX. No contaminants were detected. One water sample from the boring, collected at 12 feet depth, had no detections of gasoline or BTEX.

Boring DP2 was collected from the top of the slope, west of the southwest corner of the building. Soil samples were collected from 7, 15, and 29 feet depths. No contamination (petroleum, metals) was detected in the sample from 7 feet depth. Diesel, oil, and PERC were detected at 15 feet depth. Concentrations exceeded the cleanup standards with the combined diesel and oil concentration at 5,900 mg/kg, which exceeds the cleanup standard of 2,000 mg/kg. PERC was detected at a concentration of 1.1 mg/kg, which exceeds the cleanup standard of 0.05 mg/kg. Numerous volatile organic compounds were detected at 29 feet; however, only gasoline-range petroleum was detected at 110 mg/kg exceeded the cleanup standard of 100 mg/kg. No water was encountered in the boring.

Boring DP3 was completed approximately 30 feet south of DP2, along the top of the slope. Soil samples were collected from 13 and 26 feet depths. The sample from 13 feet had no petroleum or metals above the cleanup standards. The sample from 26 feet depth had numerous detections of

volatile organic compounds; however, only exceeded the cleanup standards for gasoline-range petroleum with a detection of 930 mg/kg. No ground water was encountered in the boring.

Boring DP4 was completed along the northwest side of the former gasoline UST. Samples were collected from 3.5 and 20 feet depth. The sample from 3.5 feet depth showed no contamination of petroleum or metals. The sample from 20 feet depth had a detection of gasoline-range petroleum at 380 mg/kg, which exceeds the cleanup standard of 100 mg/kg.

The laboratory reports indicated that the gasoline-range petroleum was likely mineral spirits in all the samples where it was detected. The GeoEngineers sampling event identified PERC contamination at 15 feet to the west of the building and gasoline contamination between 15 and 26 feet in Borings DP2 DP3 and DP4. Based upon the lack of groundwater in the borings west of the building to depths of 29 feet, the depth to the groundwater table is below 29 feet depth.

The soil sample locations and results are presented in Figure 6. The groundwater sample locations and groundwater results are presented in Figure 7.

#### Site Characterization Report (Whatcom Environmental Services, March 2011)

Five borings were extended into the fill material along the southwest corner of the building to further evaluate the extent of soil and/or groundwater contamination in that area of the site. Four borings (B-2 to B-5) were placed within the fill material and one boring (B-1) was placed just west of the retaining wall along the west side of the fill material. Seven soil samples were collected from the borings. All of the samples were collected between 17 and 30 feet depth and were analyzed for gasoline-range petroleum, BTEX, and tetrachloroethylene (PERC). Five of the soil samples had detections of gasoline-range petroleum between 730 and 1,600 mg/kg, which exceeded cleanup standards of 100 mg/kg. The exceedences ranged in depth from 14 to 25 feet. The two soil samples collected from 30 feet depth were non-detect for gasoline-range petroleum. PERC was detected in six of the seven soil samples; however, only two samples exceeded the cleanup standards. PERC was detected at 45 mg/kg at 24-25 feet depth in B-2 and 0.089 mg/kg at 30 feet in B-5, which exceed the MTCA Method A cleanup standard of 0.05 mg/kg. Xylenes were detected in five of the seven samples; however, only one sample (B3 from 17-18 feet) exceeded the cleanup standards with a concentration of 9.4 mg/kg (clean up standard is 9 mg/kg). Ethlybenzene was detected in five of the seven samples, but at concentrations that met the cleanup standards. Benzene was detected in one sample at a concentration that slightly exceeds the cleanup standard. Benzene was present at 0.048 mg/kg at 30 feet depth in B-5. Toluene was not detected in any of the soil samples.

Groundwater samples were collected from all five borings. The report indicates that groundwater was encountered between 12 and 17 feet below ground surface and that groundwater was present in sand lenses interbedded between saturated silty clay at depths below 17 feet. All five groundwater samples exceeded MTCA Method A cleanup standards for gasoline-range petroleum hydrocarbons of 800  $\mu$ g/L with a detected range of 4,400 to 13,000  $\mu$ g/L. Benzene was detected in four of the water samples at 14 to 49  $\mu$ g/L, which exceeds the cleanup standard of 5  $\mu$ g/L. PERC was detected in four

of the five samples; however, only exceeded the cleanup standard of  $5 \mu g/L$  in two of the samples at 5.4 in B-3 and 3,100  $\mu g/L$  in B-2. Concentrations of toluene, ethylbenzene, and xylenes in the samples were below cleanup standards. The laboratory reports that the gasoline-range detections likely contain mineral spirits. The report concluded that petroleum impacted soil was present in all five borings, PERC contaminated soil was identified in two of the borings and groundwater was contaminated in all five locations with mineral spirits (gasoline-range), benzene and/or PERC. The report indicates that PERC soil contamination appears to diminish at a depth of approximately 30 feet. PERC was not detected in the soil and/or groundwater of B-1, which is located in the inferred down gradient position relative to the fill material and dry cleaning tank area and seems to show a limit to the extent of PERC contamination; however, mineral spirits continued to be present above cleanup standard in the soil and water of B-1 and therefore the extent of mineral spirits contamination has not been defined.

The soil sample locations and results are presented in Figures 7 and 8. The groundwater sample locations and groundwater results are presented in Figure 9.

# Site Characterization Report – Building Interior Soil Borings (Whatcom Environmental Services, 2012)

Whatcom Environmental oversaw the drilling of four push probe borings through the floor of the Cascade Laundry building in December 2011. Borings were completed to depths of 27 to 29 feet, where bedrock was reported encountered. Groundwater was detected in all four borings at a depth of 12 to 14 feet. Two borings (B-6 and B-7) were completed in the southern portion of the building, within the western portion of the 1962 addition. Two borings were completed in the central portion of the main building (B-8 and B-9). A total of five soil samples and three groundwater samples were collected and analyzed for gasoline-range petroleum, BTEX, and PERC. All of the soil samples were below the state cleanup standard except for gasoline-range petroleum, benzene, ethylbenzene, and xylenes in the soil of B-6 at 14.5-15.5 feet depth. All other constituents were non-detect or below cleanup standards. The groundwater quality met the state cleanup standards in B-9, but exceeded the cleanup standard for benzene and PERC in B-6 and for PERC in B-7. No groundwater was encountered in B-8. In conclusion, the report documents that gasoline and BTEX constituents were found in the soil beneath the building footprint at 14-15 feet depth and PERC was identified in the groundwater in two locations beneath the southern end of the building footprint.

The soil sample locations and results are presented in Figures 7 and 8. The soil data is presented in Table 2. The groundwater sample locations and groundwater results are presented in Figure 9 and Table 3.

March 12, 2015 Cascade Laundry, 205 Prospect Street, Bellingham, WA **Environmental Baseline** 



Figure 7. Compilation Map of Soil Sample Locations

March 12, 2015 Cascade Laundry, 205 Prospect Street, Bellingham, WA **Environmental Baseline** 



Figure 8. Soil Sample Exceedences (above MTCA Method A)

| Sample        |       | Sample          | Soil Contaminants (mg/kg) |         |         |         |              |         |       |                   |  |
|---------------|-------|-----------------|---------------------------|---------|---------|---------|--------------|---------|-------|-------------------|--|
| Locat         | ion   | Depth<br>(feet) | Gas                       | Diesel  | Oil     | Benzene | Ethylbenzene | Xylenes | PERC  | Vinyl<br>Chloride |  |
| TP1           | 01    | 2               |                           | ND      | 70      |         |              |         | 2.1   | ND                |  |
| TD2           | 02    | 2               |                           | ND      | ND      |         |              |         | ND    | ND                |  |
| TP2 02<br>03  |       | 5               |                           | ND      | ND      |         |              |         | 0.26  | ND                |  |
| TD2           | 04    | 2               |                           | ND      | 84      |         |              |         | 0.023 | ND                |  |
| TP3 05        |       | 5.5             |                           | ND      | 76      |         |              |         | 0.014 | ND                |  |
| TP4           | 06    | 8               |                           | ND      | 58      |         |              |         | ND    | ND                |  |
| TD5           | 07    | 2               |                           | ND      | ND      |         |              |         | 0.04  | ND                |  |
| 115           | 08    | 8               |                           | ND      | ND      |         |              |         | 0.012 | ND                |  |
| DP            | 1     | 14              | ND                        |         |         | ND      | ND           | ND      |       |                   |  |
|               |       | 7               | ND                        | ND      | ND      |         |              |         |       |                   |  |
| DP2           | 2     | 15              | 83                        | 2,600   | 3,300   | ND      | 0.012        | 0.043   | 1.1   | ND                |  |
|               |       | 29              | 110                       | ND      | ND      | ND      | ND           | ND      | ND    | 0.084             |  |
| מח            | 2     | 13              | ND                        | ND      | ND      |         |              |         |       |                   |  |
| DP3           |       | 26              | 930                       | ND      | ND      | ND      | 1.2          | ND      | ND    | 1.3               |  |
| עת            | 4     | 3.5             | ND                        | ND      | ND      |         |              |         |       |                   |  |
| DP4           |       | 20              | 380                       | ND      | ND      | ND      | ND           | ND      | ND    | ND                |  |
| B-1           | l     | 17-18           | 1,500                     |         |         | ND      | 2.9          | 6.8     | 0.029 |                   |  |
| <b>B-</b> 2   | 2     | 24-25           | 1,200                     |         |         | ND      | 2.2          | 4.5     | 45    |                   |  |
| B-3           | 3     | 17-18           | 1,300                     |         |         | ND      | 4.0          | 9.4     | 0.038 |                   |  |
| B-3           | 3     | 30              | ND                        |         |         | ND      | ND           | ND      | 0.024 |                   |  |
| <b>B-</b> 4   | 1     | 14-15           | 730                       |         |         | ND      | 1.0          | 2.0     | ND    |                   |  |
| B-5           | 5     | 17-18           | 1,600                     |         |         | ND      | 3.7          | 5.8     | 0.021 |                   |  |
| B-5           | 5     | 30              | ND                        |         |         | 0.048   | ND           | ND      | 0.089 |                   |  |
| В-6           | 5     | 14.5            | <b>870</b>                |         |         | 7.2     | 2.1          | 16      | 16    |                   |  |
| В-6           | 5     | 28.5            | ND                        |         |         | ND      | ND           | ND      | ND    |                   |  |
| B-7           | 7     | 19              | ND                        |         |         | ND      | ND           | ND      | ND    |                   |  |
| В-8           | 3     | 12              | ND                        |         |         | ND      | ND           | ND      | ND    |                   |  |
| B-9           | )     | 15.5            | ND                        |         |         | ND      | ND           | ND      | ND    |                   |  |
| MTCA Method A |       | ethod A         | 30/100                    | 2,0     | 00      | 0.03    | 7            | 9       | 0.05  |                   |  |
| MTC           | CA Me | ethod B         | Not<br>available          | Not ave | iilable | 320     | 800          | 16,000  | 40    | 0.67-240          |  |
|               | 1     | 0/              |                           |         |         |         |              |         |       |                   |  |

**Table 2.** Compilation of Soil Sample Data (2006-2012)

\*sample results in red bold type exceed MTCA Method A or B cleanup standards; -- = analyte not tested; shaded boxes indicate sample exceeds MTCA Method A screening level

March 12, 2015 Cascade Laundry, 205 Prospect Street, Bellingham, WA **Environmental Baseline** 



Figure 9. Groundwater Sample Locations with exceedences above MTCA Method A

| Samula                  | Sample             |           | s (µg/L) |         |                   |         |       |
|-------------------------|--------------------|-----------|----------|---------|-------------------|---------|-------|
| Location                | Depth<br>(feet)    | Gas       | Benzene  | Toluene | Ethyl-<br>benzene | Xylenes | PERC  |
| DP1                     | 12                 | ND        | ND       | ND      | ND                | ND      |       |
| B-1                     | 13-17              | 4,400     | ND       | ND      | 36                | 44      | ND    |
| B-2                     | 26-30              | 13,000    | 21       | ND      | 66                | 97      | 3,100 |
| B-3                     | 18-22              | 9,700     | 14       | 26      | 180               | 360     | 5.4   |
| B-4                     | 16-20              | 5,700     | 49       | 11      | 55                | 55      | 3.9   |
| B-5                     | 26-30              | 13,000    | 28       | 51      | 200               | 340     | 4.4   |
| B-6                     | ~13.51             | 320       | 22       | 3.9     | 18                | 8.2     | 5.9   |
| B-7                     | ~12.5 <sup>1</sup> | ND        | ND       | 2.3     | ND                | ND      | 13    |
| B-9                     | ~14 <sup>1</sup>   | ND        | ND       | 1.0     | ND                | ND      | ND    |
| MTCA Method A<br>(µg/L) |                    | 800/1,000 | 5        | 1,000   | 700               | 1,000   | 5     |

**Table 3.** Compilation of Groundwater Sample Data

1 = depth of the first water encountered. Depth of sample is unknown; \*sample results in blue bold type exceed MTCA Method A or B cleanup standards; -- = analyte not tested; ND = analyte not detected; diesel, oil and vinyl chloride not analyzed; shaded boxes indicate sample exceeds MTCA Method A screening level

# 6.0 GROUND PENETRATING RADAR SURVEY

A ground penetrating radar (GPR) was completed throughout the interior and exterior of the Cascade Laundry site on February 9, 2015. The purpose of the survey was to determine the locations of any underground storage tanks. The GPR investigation did not detect any anomalies other than the presence of utility lines at the site.

The GPR study was completed by Applied Professional Services using a Dual Frequency Antennae (300 MHz/800 MHz) that is manufactured by Geophysical Survey Systems. GPR provides non-destructive, detailed cross-sectional imagery of the subsurface and can be used to detect utility lines, tanks, changes in subsurface materials, or buried objects. The GPR unit consists of a sending antenna which sends out pulses of radio waves (electromagnetic radiation) and a receiving antenna which picks up those pulses as they reflect off of underground objects. The GPR system is mobile and was walked throughout the exterior of the property and interior of the building. The clarity of the GPR study extended from 4 to 6 foot depth.

No underground storage tanks were identified during the study. In fact, the location of the former gasoline UST on the west side of the building was not visible in the survey. Previous documentation indicated that the tank had been closed-in-place, but the lack of imagery of the tank indicates that the tank may have been removed. Some underground utility lines that included natural gas lines, a sewer line, and pipes that held steam for the former dry cleaner were identified.

# 7.0 INDOOR AIR SAMPLING

## 7.1 Indoor Air Quality Sampling

The purpose of the indoor air sampling event was to evaluate the concentration of volatile organic compounds within the building and determine if the indoor air quality has been impacted by vapor intrusion. Vapor intrusion is the migration of contaminated air from the subsurface soil and/or groundwater into a building. The sampling event was also utilized to determine the general indoor air quality for potential risk to future employees or building occupants.

The building at 205 Prospect Street was primarily utilized as a dry cleaner and commercial laundry washing facility. Additional use of the building included dying clothes and leather tanning. Based upon these uses, as well as documented contamination of volatile organic compounds in the soil and groundwater, samples were collected and analyzed for volatile organic compounds.

Sampling was conducted over a 24-hour period on October 21, 2014 by Kim Ninnemann of Stratum Group.

## 7.1.1 Air Quality Sampling Methods

Air quality samples were collected from the main and upper floor of the building at 205 Prospect Street. Sampling equipment was used to collect a 24-hour sample of air from within the building.

Volatile organic compounds were collected using EPA Method TO-15. The samples were collected in a 6 liter summo canister. The summo canisters were pre-cleaned, leak checked, and certified and supplied by the laboratory. Canisters were placed on the floor within rooms where sampling data was desired and where volatile organic compounds were most likely to be present. A flow controller was utilized to collect a 24-hour time integrated sample from each sample location. The brass cap was removed and the flow controller attached to the top of the canister. The canister valve was opened to allow the ambient air to be drawn into the vacuum within the canister. Records were kept regarding start and end times for sampling and the pressure of the canister before and after sampling. An ambient air sample was not collected as part of this sampling event.

## 7.1.2 Indoor Air Quality Sample Locations

A total of six Summa canisters were placed throughout the interior of the Cascade Laundry building in order to collect air quality data. Two sample locations were tested from the second floor of the building and four sample locations were chosen on the main floor, which is the lowest occupied level of the building. A basement is located within the building, but is only utilized for maintenance equipment and boilers. These areas were chosen based upon previous chemical usage, rooms above sample locations where soil and/or groundwater contamination is present, and/or general air quality within the usable portions of the building. A map of the indoor sample locations is provided in Figure

10 below.



Figure 10. Indoor Air Sample Locations (drawing scale is approximate)

At the time of the sampling event, the building was vacant and all laundering and dry cleaning equipment had been removed. No chemical storage was observed within the building. Minor furniture and/or shelving is present. The locations of the samples are provided in Figure 8.

Sample A1 was collected from the former leather tanning room in the west end of the second story of the building. The sample was collected to evaluate potential air quality issues associated with the former usage of the room.

Sample A2 was collected from the main open area of the second story. No chemical usage is known

to have taken place in this portion of the building. Sample was collected to evaluate the general air quality of the space.

Samples A3 through A6 were collected from the main floor of the building.

Sample A3 was collected from the former equipment room in the west end of the building.

Sample A4 was collected from the southwest room of building. The use of the room is unknown; however the room contains a sump (4' wide by 4'long by 5' deep) that was used for collection of discharge from the onsite laundry and potentially dry cleaning equipment. The sump does not have a formal lid and contains a few feet of solids and liquids.

Sample A5 was collected from the main dry cleaning and laundering area, in the west end of the main portion of the building.

Sample A6 was collected from the southern room of building (1962 addition). No chemical usage is known to have taken place in this area; however environmental sampling through the floor of the room identified the presence of soil and groundwater contamination at depths below 14 feet.

## 7.1.3 Indoor Air Sampling Cleanup Standards

The air quality within the building was compared to two separate standards. The sample results were compared to both the air cleanup levels presented in the *Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Department of Ecology, review draft Oct 2009) and the L& I permissible exposure limits for worker safety.

## Vapor Intrusion Pathway Cleanup Standards

The air cleanup screening levels (Table B-1 of Guidance for Evaluating Soil Vapor Intrusion) are general screening levels that were calculated using Method B risk factors and are used to evaluate indoor air quality. The screening levels were based upon the assumption that the air is inhaled 24 hours per day. Based upon a 24-hour exposure risk level, the concentrations are generally more protective and lower than the Labor and Industries permissible exposure limits for an 8 hour work day. For this site, a full 24 hour sample was collected from each sample location. The Table B-1 screening concentrations are used to determine if a vapor intrusion pathway be present and require further assessment.

The cleanup standard for each individual contaminant identified during our sampling is provided in Table 4, below. Please note that air quality results and cleanup standards are reported in micrograms per cubic meter of air ( $\mu$ g/m<sup>3</sup>) in Table 2, which is the unit used for comparison of results to the MTCA Method B cleanup standard. A total of 76 compounds were analyzed as part of the volatile organic compound analyses; however only the compounds detected are listed in the table below.

| Analytes^                                          | Risk   | Screening Levels*<br>(µg/m <sup>3</sup> ) |        |  |  |
|----------------------------------------------------|--------|-------------------------------------------|--------|--|--|
|                                                    | Driver | Non-cancer                                | Cancer |  |  |
| Propene                                            |        |                                           |        |  |  |
| Dichlorodifluoromethane (CFC 12)                   | NC     | 80                                        |        |  |  |
| Chloromethane                                      | С      |                                           | 1.4    |  |  |
| Trichlorofluoromethane                             | NC     |                                           | 320    |  |  |
| Trichlorotrifluoroethane                           |        |                                           |        |  |  |
| Benzene                                            | С      | 14                                        | 0.32   |  |  |
| Carbon Tetrachloride                               | С      |                                           | 0.17   |  |  |
| Trichloroethene (trichloroethylene – TCE)          | С      | 16                                        | 0.1    |  |  |
| 2-Propanol (Isopropyl alcohol)                     |        |                                           |        |  |  |
| Cis-1,2-Dichloroethene (cis1,2dichloroethylene)    |        |                                           |        |  |  |
| Chloroform                                         | С      |                                           | 0.11   |  |  |
| Ethyl Acetate                                      |        |                                           |        |  |  |
| Toluene                                            | ND     | 2,200                                     |        |  |  |
| Tetrachloroethene (tetrachloroethylene – PERC/PCE) | С      | 16                                        | 0.42   |  |  |
| Chlorobenzene                                      | NC     | 8                                         |        |  |  |

#### Table 4. Indoor Air Quality Screening Levels

<sup>^</sup> = only analytes detected in the laboratory through the volatile organic compound analysis are listed; \*screening levels taken from indoor air cleanup levels in Table B-1 of *Draft Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action* (Ecology, 2009); Risk Driver = cancer (C) or non-cancer (NC)

#### Worker Safety Cleanup Standards

The source of the indoor air contaminants has not been determined; however, the most likely future use of the building will be for office, workshop, and/or commercial activity. Based upon these future site uses, the indoor air quality would need to meet Washington State L & I permissible exposure limits to protect worker safety throughout an 8 hour work day.

To evaluate the indoor sampling data to the state permissible exposure limits, the maximum concentration of each of the primary contaminants was calculated to represent an 8 hour exposure (ie concentration x hours/8 hours). The calculated data was compared to the Washington State L & I permissible exposure limits for an 8 hour workday. The permissible exposure limits are presented in units of parts per billion per volume (ppmV).

To evaluate the risk associated with multiple contaminants, contaminants are typically evaluated to determine if their health effects are additive. For evaluation of air quality at this site, all contaminants presented were assumed to be additive. The risk posed by the contaminants was evaluated using the following formula:

$$\begin{split} C_1/L_1 &+ C_2/L_2 + C_n/L_n = E_m \\ \text{Where} \quad C_1 = 8\text{-hr time weighted concentration for the first contaminant} \\ C_2 = 8\text{-hr time weighted concentration for the second contaminant} \\ L_1 = TWA_8 \text{ for the first contaminant} \\ L_2 = TWA_8 \text{ for the first contaminant} \\ E_m = \text{equivalent exposure for the mixture of contaminants with additive health} \\ & \text{effects.} \end{split}$$

A health effect is present if  $E_m$  is greater than 1.

Table 5 contains state permissible exposure limits of the four primary contaminants.

| Analytes                                                   | WA L&I Permissible Exposure Limits – TWA <sub>8</sub> ^<br>(ppbV) |  |  |  |  |
|------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Benzene                                                    | 1,000                                                             |  |  |  |  |
| Carbon Tetrachloride                                       | 2,000                                                             |  |  |  |  |
| Trichloroethene (TCE)                                      | 50,000                                                            |  |  |  |  |
| Chloroform                                                 | 2,000                                                             |  |  |  |  |
| Equivalent Exposure Assessment (E <sub>m</sub> ) for VOCs^ | $E_M \leq 1$                                                      |  |  |  |  |

Table 5. L&I Permissible Exposure Limits

## 7.1.4 Indoor Air Quality Sample Results

Samples were delivered via Fed Ex to ALS Laboratory Group in Simi Valley, California for analysis on October 24, 2014. A complete analytical laboratory report and chain-of-custody are presented in Appendix II. Samples from each location within the building were analyzed for volatile organic compounds using EPA Method TO-15. A total of 76 compounds were analyzed as part of the volatile organic compound analyses; however only the compounds detected are listed in the table below.

The laboratory report provides contaminant detections in  $\mu g/m^3$  and ppbV. The  $\mu g/m^3$  unit is typically used for comparison with MTCA air quality cleanup standards and the ppbV unit is used for comparison with the workplace safety permissible exposure limits. A summary of the sample results are presented in Table 6. The sample results are compared to the air cleanup screening levels for evaluation of vapor intrusion pathway.

| Analytes                            |      | Air Cleanup<br>Screening Levels<br>(ug/m <sup>3</sup> ) |      |      |      |      |                |        |
|-------------------------------------|------|---------------------------------------------------------|------|------|------|------|----------------|--------|
|                                     | A1   | A2                                                      | A3   | A4   | A5   | A6   | Non-<br>cancer | Cancer |
| Propene                             | ND   | ND                                                      | 3.2  | ND   | ND   | 0.81 |                |        |
| Dichlorodifluoromethane<br>(CFC 12) | 2.4  | 2.4                                                     | 2.5  | 2.4  | 2.4  | 2.4  | 80             |        |
| Chloromethane                       | ND   | ND                                                      | ND   | 0.36 | ND   | ND   |                | 1.4    |
| Trichlorofluoromethane              | 1.4  | 1.4                                                     | 1.4  | 1.4  | 1.4  | 1.5  |                | 320    |
| Trichlorotrifluoroethane            | 0.53 | 0.52                                                    | 0.57 | 0.51 | 0.58 | 0.58 |                |        |
| Benzene                             | 0.38 | 0.30                                                    | 2.6  | 0.32 | 0.33 | 0.57 | 14             | 0.32   |
| Carbon Tetrachloride                | 0.57 | 0.58                                                    | 0.65 | 0.54 | 0.59 | 0.59 |                | 0.17   |
| Trichloroethene (TCE)               | ND   | 0.22                                                    | 0.66 | 0.40 | 0.72 | 0.39 | 16             | 0.1    |
| 2-Propanol<br>(Isopropyl alcohol)   | ND   | ND                                                      | 6.1  | ND   | ND   | ND   |                |        |
| Cis-1,2-Dichloroethene              | ND   | ND                                                      | 0.39 | 0.23 | 0.41 | ND   |                |        |
| Chloroform                          | ND   | ND                                                      | 0.24 | 0.13 | 0.12 | ND   |                | 0.11   |
| Ethyl Acetate                       | ND   | 1.6                                                     | 1.8  | 4.3  | 2.1  | 2.1  |                |        |
| Toluene                             | 0.68 | 0.78                                                    | 0.74 | 0.85 | 1.1  | 0.79 | 2,200          |        |
| Tetrachloroethene<br>(PERC/PCE)     | 0.83 | 2.3                                                     | 6.4  | 4.1  | 6.9  | 2.8  | 16             | 0.42   |
| Chlorobenzene                       | ND   | ND                                                      | 0.22 | ND   | ND   | ND   | 8              |        |

|--|

Four of the contaminants were identified at concentrations that exceed the screening levels for vapor intrusion. To evaluate the potential risk of these contaminants for human health, based upon an 8-hour work day, the highest detected concentrations from the October 21, 2014 sampling event were compared against the L&I permissible exposure limits (see Table 7).

| Analytes                                                      | Sample with<br>Highest<br>Concentration | <b>Maximum</b><br><b>Detection*</b><br>(ppbV) | Calculated TWA <sub>8</sub><br>Of Maximum Detection<br>(ppbV)# | WA L&I<br>Permissible<br>Exposure Limits –<br>TWA <sub>8</sub> ^<br>(ppbV) |
|---------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|
| Benzene                                                       | A3                                      | 0.82                                          | 2.46                                                           | 1,000                                                                      |
| Carbon Tetrachloride                                          | A3                                      | 0.10                                          | 0.3                                                            | 2,000                                                                      |
| Trichloroethene (TCE)                                         | A5                                      | 0.12                                          | 0.36                                                           | 50,000                                                                     |
| Chloroform                                                    | A3                                      | 0.049                                         | 0.147                                                          | 2,000                                                                      |
| Equivalent Exposure Assessment (E <sub>m</sub> )<br>for VOCs^ |                                         |                                               | 0.0026                                                         | $E_M \leq l$                                                               |

#### Table 7. Indoor Air Quality Results compared with L&I Permissible Exposure Limits

\*concentration of maximum detection from Samples A1-A6, collected on Oct 21, 2014, based upon 24 hour sample collection period; # = time weighted average calculated from the 24 hour sample date; ^ = time weighted average over an 8 hour period based upon *Table 3 Permissible Exposure Limits (PELs) for Airborne Contaminants* (Chapter 296-841, 4/2007)

## 7.1.5 Indoor Air Results Discussion

Six indoor air quality samples were collected within the building at 205 Prospect Street. Of the 76 volatile organic compounds analyzed, a total of 15 analytes were detected in one or more samples. The concentrations of VOCs were initially compared to the air quality screening levels, based upon MTCA B risk assessments. Of the 15 compounds detected, five of the analytes were detected above the cleanup standard for acceptable indoor air quality for carcinogenic compounds: benzene, carbon tetrachloride, TCE, PERC, and chloroform. All of the concentrations are less than 10 times the cleanup standard and most exceedences are less than 2 times the cleanup standard. No immediate action is warranted; however the exceedences of the screening levels indicates that further evaluation of the vapor intrusion pathway should be conducted.

Based upon the results, five VOCs were identified as potential contaminants of concern for indoor air quality. However, multiple lines of evidence should be assessed before any action is taken to protect indoor receptors. The data collected is representative of indoor air quality, but does not separate the sources of the contamination such as: outdoor air contamination that has entered the building, an indoor contamination source, and/or contaminated air that has migrated from the contaminated soil via vapor intrusion. Therefore, the source of the indoor air contaminants is inconclusive.

In comparison to the L & I Permissible Exposure Limits, the air quality within the Cascade Laundry building is well below the action levels for occupants onsite for an 8 hour workday. The air quality does not pose a risk to occupants or workers within the building over an 8 hour period.

# 8.0 INDOOR SUMP SAMPLING

A sump was identified within the southwestern corner of the building. The sump is a constructed low area within the floor of the building that is approximately 4 feet wide by 4 feet long by approximately 5 feet deep. The sump receives discharge from a pipe along its northern interior wall. The pipe looks to have formerly collected runoff from equipment that was located in the main room, to the north. A pipe exits the sump, toward the south. The pipe likely discharges into the soil along the southwestern corner of the building, but the exact discharge area was not identified during this sampling event.

At the time of the sampling on October 21, 2014, the sump was filled with approximately 2 feet of soil-like material and approximately 1 foot of liquid. One soil sample and one liquid sample were collected from the sump. The soil sample was analyzed for diesel and oil-range petroleum and volatile organic compounds. The liquid sample was analyzed for volatile organic compounds. The samples were placed in an ice filled cooler and transported to ALS Laboratory in Everett, Washington by Red Dog Courier on October 22, 2014 for analysis.

The results of the samples are provided below in Tables 8 and 9. The table includes MTCA Method A and B cleanup standards for both soil and groundwater. A copy of the laboratory report and chain-of-custody for the samples is provided in Appendix II.

| Tuble of builtp bolt builtple Results |                        |                 |                            |                            |             |
|---------------------------------------|------------------------|-----------------|----------------------------|----------------------------|-------------|
|                                       | Analytes Detected (mg/ |                 |                            | d (mg/kg)                  |             |
| Sample ID                             | Diesel                 | Oil             | 1,3,5Trimethyl-<br>benzene | 1,2,4Trimethyl<br>-benzene | Other VOCs* |
| Sump – sediment                       | 1,600                  | 5,200           | 0.011                      | 0.036                      | ND          |
| MTCA Cleanup<br>Standards             | 2,000                  | $\mathcal{D}_A$ | <b>800</b> <sub>B</sub>    |                            | varies      |

| <b>1 able 5.</b> Sump Soll Sample Results | Table 8. | Sump | Soil | Sample | Results |
|-------------------------------------------|----------|------|------|--------|---------|
|-------------------------------------------|----------|------|------|--------|---------|

\*A total of 66 volatile organic compounds were tested; ND = analyte not detected; A = cleanup standard based upon MTCA Method A; B = cleanup standard is based upon MTCA Method B.

|  | Table 9. | Sump | Water | Sample | Results |
|--|----------|------|-------|--------|---------|
|--|----------|------|-------|--------|---------|

| Table 7. Sump Water Sample Results |                           |  |
|------------------------------------|---------------------------|--|
|                                    | Analytes Detected (mg/kg) |  |
| Sample ID                          | VOCs*                     |  |
| Sump – water                       | ND                        |  |
| MTCA Cleanup<br>Standards          | varies                    |  |

\*A total of 66 volatile organic compounds were tested; ND = analyte not detected

#### 8.1 Indoor Sump Sampling Results Discussion

Based upon the results of the sump sampling event, the soil within the sump has been contaminated with diesel and oil-range petroleum hydrocarbons. The water is suspected to have been contaminated with diesel and oil range petroleum products. The sump sediment and liquid has not been impacted by dry cleaning solvents.

The results indicate that discharge from the site's equipment (vapor moisture, water, and/or hydraulic oils) were released into the sump and likely were discharged out of the building.

We recommend that the sump be pumped clean and the materials be removed and disposed of properly, as heavy petroleum contaminated material.

# 9.0 NATURE AND EXTENT OF CONTAMINATION

#### 9.1 Circumstance of Release and Discovery

Contaminated soil was identified on the site during a test pit investigation in 2006, as part of environmental due diligence for a potential site purchaser. The Department of Ecology was notified of the presence of contamination based upon the discovery of contaminated soil in the southwest corner of the building at the time of a tank removal in 2010. The site was placed on Ecology's Confirmed and Suspected Contaminated Sites list on November 10, 2010.

## 9.2 Affected Media

Soil and groundwater contamination have been confirmed on the site.

## 9.3 Contaminant Identification

A summary of the contaminants of concern at the site are provided in Table 10, below. Contaminants were identified through multiple soil and groundwater sampling events, based upon the historic uses of the property. The MTCA Method A cleanup standards were typically used as screening levels for soil and groundwater contaminant levels. The MTCA Method B standards for indoor air quality were used as a screening tool for identifying potential contaminants of concern in the indoor air quality. Cleanup action is not necessarily required for each of the contaminants listed in Table 10; however these contaminants are recommended for evaluation during future sampling events.

| Soil Contaminants                                                                                                                                                                                                                  | Groundwater Contaminants                                                                          | Indoor Air Quality<br>Contaminants                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Gasoline-range petroleum<br/>(mineral spirits)</li> <li>Benzene</li> <li>Ethylbenzene</li> <li>Xylenes</li> <li>Diesel and oil-range<br/>petroleum</li> <li>Tetrachloroethylene (PERC)</li> <li>Vinyl chloride</li> </ul> | <ul> <li>Gasoline-range petroleum</li> <li>Benzene</li> <li>Tetrachloroethlyene (PERC)</li> </ul> | <ul> <li>Benzene</li> <li>Carbon Tetrachloride</li> <li>Trichloroethene (TCE)</li> <li>Chloroform</li> <li>Tetrachloroethylene<br/>(PERC/PCE)</li> </ul> |

#### Table 10. Site Specific Contaminants of Concern

The gasoline-range hydrocarbons identified on the site are identified by the laboratory as mineral spirits in many of the lab notes. The presence of gasoline in the subsurface may therefore be associated with mineral spirits used as a cleaning agent (Stoddard solvent), rather than gasoline fuel.

## 9.4 Extent and Magnitude of Contamination

## 9.4.1 Extent of Soil Contamination

Soil contamination was in the shallow fill soils along the southwestern corner of the building. In addition, soil contamination has been identified in the soils between 14 and 24 feet depth throughout the southern and western portions of the site, including beneath the western end of the 1962 building addition, which is located along the southern side of the main building. Two soil samples collected from approximately 30 feet depth were found to be free of contaminants and indicate that the soil contamination does not extend below 30 feet depth.

## 9.4.2 Extent of Groundwater Contamination

Groundwater beneath the site was identified between 12 and 17 feet during sampling events completed in winter and spring months. No groundwater was detected in the same areas during a summer investigation. Based upon our review of previous environmental reports, perched groundwater is detected in the winter and spring months between 12 and 17 feet. The groundwater below 17 feet depth is presented within slightly coarser sand layers within dominantly saturated silty clay (Whatcom Environmental, 2011).

Groundwater contamination has been identified beneath the south, southwest, and western portions of the site, including beneath the southern, 1962 addition portion of the building. No groundwater contamination was identified beneath the western, main portion of the building. No groundwater contamination was identified in the southeastern portion of the site, based upon one groundwater sample from 2007.

#### 9.5 Sources of Contamination

#### 9.5.1 Onsite Sources of Contamination

Multiple sources of contamination are suspected on the Cascade Laundry site, due to long term use as a dry cleaner and laundry facility. The contamination on the site is suspected to be due to one or more of the following:

- Release from former USTs
- Release to surface soils through former operations (ie. dumping materials out the back door)
- Release from sump discharge drain
- Placement of fill materials and/or dumping at top of slope, near western property boundary

#### 9.5.2 Potential Offsite Sources of Contamination

The Cascade Laundry site is bound by a landfill to the west. Based upon the landfill being located in a down gradient position, relative to the subject property, contamination is not suspected from the landfill activities.

Historic review of the site indicates that gasoline tank was located beneath Prospect Street throughout the 1900s, as indicated by the 1932 and 1963 Sanborn Fire Insurance Maps. In addition, a gasoline station was constructed on the corner of Prospect and Flora Street (200 Prospect Street), across Prospect Street from the subject property by 1932. The gasoline station operated until the late 1970s. No information was available regarding removal of tanks or cleanup of this former gasoline station. A warehouse building, constructed by 1913, has occupied the property across Prospect Street at 206 Prospect Street. The building has been utilized as a garage, warehouse, auto repair facility, and a museum. All of these adjacent property uses are located up gradient of the subject property.

Limited environmental data indicates that these are not sources of contamination on the subject property, as a soil and groundwater sample collected from the southeastern portion of the site in 2007 showed no indication of gasoline contamination and no gasoline contamination was identified in the groundwater beneath the main, western portion of the building during a 2011 investigation. Additional sampling could be conducted to further investigate these off-site sources, but based upon our evaluation they are not considered a likely source of the contamination on the Cascade Laundry site.

# **10.0 DEVELOPMENT OF CLEANUP STANDARDS**

In order to meet the intent of the Model Toxic Control Act cleanup regulations, cleanup standards must be set to be protective of human health and the environment, including ecological health.
## **10.1** Terrestrial Ecological Evaluation

A Terrestrial Ecological Evaluation (TEE) is required if hazardous substances are released to the soil at a site. The TEE is conducted to determine if cleanup standards for the site are required to be protective of soil biota, plants and/or wildlife.

Based on the TEE process, the site is not exempt from the ecological cleanup standards and must utilize a simplified terrestrial ecological evaluation or a site specific evaluation for cleanup standards that are protective of wildlife. The site is utilized as a commercial property and therefore will not need to be protective of soil biota or plant species; however cleanup standards that are protective of wildlife will need to be developed.

Discussions with Department of Ecology personnel should be conducted to evaluate whether a simplified or site specific TEE is required for the site.

## **10.2 Cleanup Standards**

Department of Ecology offers three options for cleanup standards: Method A, Method B, and Method C.

Method A is used on sites where the cleanup action is limited and common contaminants are present. Method A utilizes a common list of approximately 20 chemicals that have standardized cleanup levels and must take into account cleanup levels that are protective of ecological health. When the standards are met, the site can be used with unrestricted land use.

Method B cleanup standards can be used at any site. The cleanup standards are developed using standard default assumptions in risk equations; however the default assumptions can be modified, if appropriate. Cleanup levels for Method B are set at a risk level where risk does not exceed 1 in 100,000. Cleanup levels must also be protective of terrestrial and aquatic ecological environments. Most sites that meet Method B cleanup standards can be used with unrestricted land use.

Method C cleanup standards are utilized on industrial sites and typically require an institutional control to maintain protection for human and ecological health.

## 10.2.1 Soil Cleanup Standards

Cleanup standards will need to be developed for soil concentrations on the site. Soil cleanup standards are set to be protective of direct interaction with the soil from humans as well as protection of surface water quality and groundwater quality.

We recommend that the site utilize the Method B cleanup standards on the Cascade Laundry site;

however soil cleanup standards for Method A, Method B and wildlife protection are provided for your information. The final cleanup standards concentrations must also be protective of wildlife. To provide a point of comparison, the highest concentration of the contaminant detected in the soil, throughout all the onsite sampling events, is provided in the table below.

| Contaminant                                   | MTCA Method<br>A Cleanup<br>Standard<br>(mg/kg) | MTCA Method B<br>Cleanup Standard<br>(mg/kg) | Cleanup Standards<br>for Protection of<br>Wildlife <sup>1</sup><br>(mg/kg) | Highest<br>Concentration<br>Detected Onsite<br>(mg/kg) |
|-----------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|
| Gasoline                                      | 30/100 <sup>2</sup>                             | *requires lab testing                        | $12,000/5,000^3$                                                           | 1,600                                                  |
| Diesel                                        | 2 000                                           | petroleum fractions                          | $15.000/6.000^3$                                                           | 2,600                                                  |
| Oil                                           | 2,000                                           | (VPH/EPH)                                    | 13,000/0,000                                                               | 3,300                                                  |
| Benzene                                       | 0.03                                            | 320                                          | Not available                                                              | 7.2                                                    |
| Ethylbenzene                                  | 6                                               | 800                                          | Not available                                                              | 4.0                                                    |
| Xylenes                                       | 9                                               | 16,000                                       | Not available                                                              | 16                                                     |
| Tetracholorethene<br>(trichloroethylene/PERC) | 0.03                                            | 40                                           | Not available                                                              | 45                                                     |
| Vinyl Chloride                                |                                                 | $0.67 - 240^4$                               | Not available                                                              | 1.3                                                    |

## Table 11. Soil Cleanup Standards

1 = the wildlife protection levels are based upon Table 749-2 for sites that qualify for the simplified TEE and Table 749-3 for sites that conduct a site specific TEE. Site specific values can also be determined; 2 = cleanup standard for gasoline is 30 if benzene is present and 100 if benzene is not present; 3 = sample cannot have concentration at the surface soil that exceeds residual saturation concentrations; 4 = Ecology provides specific guidance regarding vinyl chloride, due to higher cancer risks from exposure in early life versus adulthood and cancer versus non-cancer cleanup standards

## 10.2.2 Groundwater Cleanup Standards

Groundwater cleanup standards are developed to be protective of groundwater for drinking water purposes. No groundwater monitoring wells are located on the site. Previous environmental sampling events have included collection of groundwater samples. The sample results have been compared to MTCA Method A cleanup standards, of which gasoline and benzene have exceeded the standards.

### Cleanup Standards for Potable Water

Groundwater is assumed to be potable with potential down gradient use at all sites. The protection of drinking water sources is a primary goal of cleanup standards and often drives the cleanup standard developed for soil quality. The MTCA Method A and Method B cleanup standards for the groundwater contaminants of concern at the site are presented in Table 12, below. For comparison, the highest concentration of the contaminants identified in the groundwater of the Cascade Laundry site, to-date is provided. Please note that groundwater samples and cleanup standards are provided in parts per billion ( $\mu$ g/L)

| Contaminant                       | MTCA Method A Cleanup<br>Standard (µg/L) | MTCA Method B<br>Cleanup Standard (µg/L) | Highest<br>Concentration<br>Detected Onsite<br>(µg/L) <sup>1</sup> |
|-----------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------------------------------|
| Gasoline                          | 800/1,000 <sup>2</sup>                   |                                          | 13,000                                                             |
| Benzene                           | 5                                        | 5 <sup>3</sup>                           | 49                                                                 |
| Tetracholorethlyene<br>(PERC/PCE) | 5                                        | 5 <sup>3</sup>                           | 3,100                                                              |

### Table 12. Potable Groundwater Cleanup Standards

1 = groundwater results were collected in three sampling investigations between 2007-2012 (see Section 5.2 Soil and Groundwater Sampling History); 2 = gasoline cleanup standard is lower if benzene is present; 3 = cleanup standards can vary based upon cancer risk - may require further evaluation

### Cleanup Standards for Non-Potable Water

The groundwater does not require to be cleaned up to meet drinking water standards, if Ecology is provided proof that the groundwater is non-potable. Water is considered non-potable if the groundwater is not used for drinking water purposes, will not ever be used for drinking water purposes and no potential down gradient properties will utilize the groundwater for drinking water purposes.

MTCA regulations require that the following information be documented in order to eliminate groundwater as a requirement for cleanup (WAC 173-340-720 (2)):

- Groundwater does not currently serve as a drinking water source
- Groundwater is not a potential future source of drinking water (must meet one of the following reasons)
  - Low yield ( $\leq 0.5$  gal/min)
  - Natural background levels of organic or inorganic constituents are high (ie total dissolved solids at ≥10,000 mg/L)
  - Recovery of groundwater for drinking purposes is technically impossible (depth or location)
- Department of Ecology determines it is unlikely for contaminated water to travel to groundwater that may be used as drinking water

No groundwater monitoring wells are currently located on the site; however based upon our review of previous sampling events, it is likely that the groundwater at the site will be considered to be non-potable based upon the site not being used as a drinking water source, no down gradient receptors based upon the down gradient site being a landfill, and the likely low yield of any onsite wells.

If groundwater is determined to be nonpotable, the groundwater does not need to be remediated; however, the concentrations of contaminants in the groundwater cannot impact air quality through vapor intrusion or have other pathways of impacts to human health or ecological health.

# 11.0 FINDINGS AND RECOMMENDATIONS

Our review of the environmental reports for the Cascade Laundry facility confirms the presence of petroleum and dry cleaning solvent contamination in the soil and groundwater beneath the site, including beneath the southern portion of the building that exceeds the MTCA Method A cleanup standards. In addition, petroleum contaminated sediment and water was identified in the sump within the building. Detections of some volatile organic compounds were identified within the indoor air of the building. Our evaluation of the data indicates that the air quality within the building is protective of workers during an 8 hour work shift, per Washington State Labor and Industries permissible exposure limits; however the data is inconclusive as to whether the detections of the volatile organic compounds are due to vapor intrusion from the underlying impacted soil and groundwater, indoor sources or from ambient outdoor air.

Our site review identified numerous areas where additional information is needed to help determine the most appropriate cleanup options for the site. The studies can be completed independently of Department of Ecology; however, if efforts are going to be made to have the site removed from the contaminated sites list, we recommend that the site enter the Voluntary Cleanup Program (VCP). The VCP is a program where Ecology provides fee-based technical advice before, during, or after site cleanups. Ecology reviews cleanup reports and determines whether they meet the appropriate cleanup standards. Ecology is not directly involved in the cleanup activities, but if the site meets the cleanup standards or has a low risk, Ecology personnel can provide a "no further action" letter or restrictive covenant and the site is removed from the contaminated sites list. Through the VCP, work plans can be reviewed and evaluated by Ecology personnel so that property owner and Ecology are in agreement about how to move forward on cleanup sites.

We recommend that the following studies take place to gather additional information about the site:

- Determine if groundwater is considered nonpotable
- Determine if vapor intrusion is present
- Determine appropriate cleanup standards for site

### Determine if groundwater is considered nonpotable

We recommend that a minimum of four groundwater monitoring wells be placed around the Cascade Laundry facility. The monitoring wells can be used to evaluate the depth to groundwater, the variability in water quality within the wells, and can be used to evaluate for flow volumes for determining potential potability. If groundwater is deemed nonpotable, cleanup standards do not need to be protective of a drinking water source and are therefore typically less stringent.

### Determine if vapor intrusion is present

Vapor intrusion is the migration of vapors from the subsurface into the building airspace. A single air

quality sampling event in October 2014 identified levels of five volatile organic compounds above the MTCA Method B screening levels; however the source of the contaminants was not determined. Further evaluation of the site's vapor intrusion risk should be completed. We recommend that further evaluation of the indoor air quality be conducted. The investigation can include evaluation of the potential vapor migration from ground water using the Johnson and Ettinger model for subsurface vapor intrusion into buildings. If needed, additional sampling can also be completed that could include a second round of indoor air quality sampling, an ambient air sample, and sub-slab or soil gas sampling.

## Determine appropriate cleanup standards for site

Cleanup standards should be determined for all the applicable impacted media on the site (groundwater, soil, and/or indoor air quality). Cleanup standards must be protective of both human health and wildlife. We recommend that Method B cleanup standards be identified for human health cleanup standards. To determine Method B cleanup standards for petroleum products, soil samples should be collected and evaluated using Method VPH/EPH so that the carbon fractionation of the contaminants can be determined. These values are used within the Method B risk assessment models for determining a site specific cleanup value.

In addition, cleanup values need to be determined that are protective of wildlife. The concentrations of contaminants for protection of wildlife are determined through the Terrestrial Ecological Evaluation (TEE) process. The Cascade Laundry site must do a simplified or site specific TEE. We recommend that the Ecology site manager be involved with the TEE process to help in determining what type of TEE is most appropriate for the site.

# **APPENDIX I**

Historic Aerial Photographs Sanborn Fire Insurance Maps Historic Site Photographs

# Historic Aerial Photographs



1950 Historic Aerial Photograph



1963 Historic Aerial Photograph



1975 Historic Aerial Photograph



1988 Historic Aerial Photograph



1997 Historic Aerial Photograph



2008 Historic Aerial Photograph



Sanborn Fire Insurance Map 1917-1932

# **Historic Site Photographs**



1924 Photograph of 205-207 Prospect, pre-Cascade Laundry (courtesy of Whatcom Museum of History and Art)



1970 Photograph (courtesy of Whatcom Museum of History and Art)

# **APPENDIX II**

Laboratory Report for Indoor Air Sampling Laboratory Report for Indoor Sump Testing



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

## LABORATORY REPORT

November 10, 2014

Kim Ninnemann Stratum Group, Inc. P.O. Box 2546 Bellingham, WA 98227

#### **RE: Cascade Laundry**

Dear Kim:

Enclosed are the results of the samples submitted to our laboratory on October 24, 2014. For your reference, these analyses have been assigned our service request number P1404375.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

Kate Aquilera era at 2:55 pm, Nov 10, 2014

Kate Aguilera Project Manager



2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

Client: Stratum Group, Inc. Project: Cascade Laundry Service Request No: P1404375

### CASE NARRATIVE

The samples were received intact under chain of custody on October 24, 2014 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

#### Volatile Organic Compound Analysis

The samples were analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is not included on the laboratory's AIHA-LAP scope of accreditation. Any analytes flagged with an X are not included on the laboratory's NELAP or DoD-ELAP scope of accreditation.

The spike recovery of trichlorofluoromethane in the Laboratory Control Sample (LCS) was outside the Laboratory generated control criterion. The recovery error equates to a potential high bias. However, the recovery in question was within the method criterion, therefore the data quality is not significantly affected. No corrective action was taken.

The Summa canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.



2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 <u>www.alsglobal.com</u>

### ALS Environmental - Simi Valley

#### CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

| Agency                    | Web Site                                                                                                     | Number                     |
|---------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|
| AIHA                      | http://www.aihaaccreditedlabs.org                                                                            | 101661                     |
| Arizona DHS               | http://www.azdhs.gov/lab/license/env.htm                                                                     | AZ0694                     |
| DoD ELAP                  | http://www.pjlabs.com/search-accredited-labs                                                                 | L14-2                      |
| Florida DOH<br>(NELAP)    | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm_                                                     | E871020                    |
| Maine DHHS                | http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-<br>services/labcert/labcert.htm              | 2014025                    |
| Minnesota DOH<br>(NELAP)  | http://www.health.state.mn.us/accreditation                                                                  | 643428                     |
| New Jersey DEP<br>(NELAP) | http://www.nj.gov/dep/oqa/                                                                                   | CA009                      |
| New York DOH<br>(NELAP)   | http://www.wadsworth.org/labcert/elap/elap.html                                                              | 11221                      |
| Oregon PHD<br>(NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat<br>oryAccreditation/Pages/index.aspx | CA200007                   |
| Pennsylvania DEP          | http://www.depweb.state.pa.us/labs                                                                           | 68-03307<br>(Registration) |
| Texas CEQ<br>(NELAP)      | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                | T104704413-<br>14-5        |
| Utah DOH<br>(NELAP)       | http://www.health.utah.gov/lab/labimp/certification/index.html                                               | CA01627201<br>4-4          |
| Washington DOE            | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                               | C946                       |

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

#### DETAIL SUMMARY REPORT

| Client:          | Stratum Group, | Inc.    |            |           |           |               |               | Service Request: P1404375 |
|------------------|----------------|---------|------------|-----------|-----------|---------------|---------------|---------------------------|
| Project ID:      | Cascade Laundr | y       |            |           |           |               |               |                           |
| 0                |                | •       |            |           |           |               |               |                           |
| Date Received:   | 10/24/2014     |         |            |           |           |               |               |                           |
| Time Received:   | 09:48          |         |            |           |           |               |               |                           |
|                  |                |         |            |           |           |               |               | and                       |
|                  |                |         |            |           |           |               |               |                           |
|                  |                |         |            |           |           |               |               | l ŏ l                     |
|                  |                |         |            |           |           |               |               |                           |
|                  |                |         | Date       | Time      | Container | D:1           | Df1           | 15                        |
| Client Semple ID | Lah Cada       | Moteria | Collocted  | Collocted | ID        | PII<br>(paig) | PII<br>(noig) | , Ó                       |
| Client Sample ID | Lab Code       | Matrix  | Collected  | Collected | ID        | (psig)        | (psig)        | E                         |
| A1               | P1404375-001   | Air     | 10/21/2014 | 11:52     | AS00215   | 0.63          | 3.72          | Х                         |
| A2               | P1404375-002   | Air     | 10/21/2014 | 12:00     | AC01873   | 0.45          | 3.86          | Х                         |
| A3               | P1404375-003   | Air     | 10/21/2014 | 12:10     | AS00786   | 0.66          | 3.71          | Х                         |
| A4               | P1404375-004   | Air     | 10/21/2014 | 12:14     | AS00341   | 0.66          | 3.83          | Х                         |
| A5               | P1404375-005   | Air     | 10/21/2014 | 12:17     | AS00338   | 0.49          | 3.75          | Х                         |
| A6               | P1404375-006   | Air     | 10/21/2014 | 12:20     | AS00747   | -3.07         | 3.52          | Х                         |

| -                                   | 404375                                     |                                   |                 |                |                          | Comments<br>e.o. Actual | Preservative           | specific<br>instructions                      |            |            | flow controller bar code | Jamas     | frowinghalt barroke | Jemes     |  |  |   |  | Project Requirements<br>(MRLs, QAPP)                                                     |                              | Cooler / Blank               |
|-------------------------------------|--------------------------------------------|-----------------------------------|-----------------|----------------|--------------------------|-------------------------|------------------------|-----------------------------------------------|------------|------------|--------------------------|-----------|---------------------|-----------|--|--|---|--|------------------------------------------------------------------------------------------|------------------------------|------------------------------|
|                                     | ALSPORET                                   | ALS Contact:                      | Analysis Method |                | £                        |                         |                        |                                               | 70-15      |            |                          |           |                     | ->        |  |  |   |  | Dustody Seal: (Circle)<br>BROKEN (BESEW)                                                 | 201001 M/W21021              | Patter /                     |
|                                     | cle<br>y-Standard                          |                                   |                 |                | re quaite                | 2                       |                        | e Votume                                      | 19         |            |                          |           |                     | }         |  |  |   |  | Chain of C<br>INTACT                                                                     |                              |                              |
|                                     | jes) please cir<br>y (25%) 10-Da           |                                   |                 |                | Sonjamar                 | 6225                    |                        | Canister<br>End Pressur<br>"Hg/psig           | 0          | 0          | -                        | 0         | o                   | 2.2       |  |  | _ |  |                                                                                          |                              | $\left  \right $             |
|                                     | Days (Surchar)<br>Day (35%) 5 Da           |                                   | and             | tuju           | gr /                     | ST WA 9                 | tim                    | Canister<br>Start Pressure<br>"Hg             | 29         | 30         | 730                      | 29.5      | 29.5                | 28        |  |  |   |  | / No<br>Units:                                                                           |                              |                              |
|                                     | Ind Time in Business<br>75%) 3 Day (50%) 4 | -                                 | cade Laun       | orade Law      | ation Sonta M            | 142 1718                | neman.                 | Flow Controller ID<br>(Bar code # - FC #)     | FLA 00539  | FCA 005 08 | FLARIZE                  | FLA 00852 | FCA 00042(2)        | FEA 00851 |  |  |   |  | EDD required YES                                                                         | Received by: (Signature      | Received by: (Storadure      |
|                                     | Requested Turnarou<br>1 Day (100%) 2 Day ( | Project Name                      | Cau             | Project Number | P.O. # / Billing Informa |                         | Sampler (Print & Sign) | Canister ID<br>(Bar code # -<br>AC, SC, etc.) | AS 00215   | AC01673    | AS 00786                 | AS 00341  | A S 0033 8          | AS DOTH 7 |  |  |   |  |                                                                                          | Time: 4 m                    | Time:                        |
| ٩                                   |                                            |                                   |                 |                |                          | 4 o                     | t o                    | Time<br>Collected                             |            |            |                          |           |                     |           |  |  |   |  | n Summaries) <u>  10%</u> Surcharge                                                      | Date w/1                     | Date:                        |
| nter Drive, Suit<br>alifornia 93065 | 26-7161<br>-7270                           |                                   |                 |                |                          | 1-21                    | he.n                   | Date<br>Collected                             | 10/20-0/21 |            |                          |           |                     | ->        |  |  |   |  | <ul> <li>please select</li> <li>QC &amp; Calibratio</li> <li>Idation Package)</li> </ul> |                              |                              |
| 2655 Park Ce<br>Simi Valley, C      | Phone (805) 5<br>Fax (805) 526             | Information)                      |                 | 4228           | neman-                   | Fax<br>360-7            | amestof                | U Laboratory<br>ID Number                     | 5.010      | 15-0-27    | 3.04(2)                  | 53. OLD   | anot C              | 11.4/2)   |  |  |   |  | Report Tier Levels                                                                       | 2                            |                              |
|                                     | (SIR)                                      | Company Name & Address (Reporting | quero miterto   | Relinihan WA 9 | Project Managero Km Nin  | 360-714-9409            | Stratum of New Arm     | Slient Sample ID                              | 41         | AZ         | A3                       | AU        | £                   | Ab        |  |  |   |  | Ther II - Results (Default in not specified)                                             | Relinquished by: (Signature) | Relinquished by: (Signature) |

Air - Chain of Custody Record & Analytical Service Request

١

#### ALS Environmental Sample Acceptance Check Form

| Client                            | t: Stratum Group                                       | o, Inc.                         | -                   | •                      |                    | Work order:            | P1404375           |              |           |              |
|-----------------------------------|--------------------------------------------------------|---------------------------------|---------------------|------------------------|--------------------|------------------------|--------------------|--------------|-----------|--------------|
| Project                           | t: Cascade Laund                                       | dry                             |                     |                        |                    |                        |                    |              |           |              |
| Sample                            | (s) received on:                                       | 10/24/14                        |                     | 1                      | Date opened:       | 10/24/14               | by:                | ADAV         | ĪD        |              |
| <u>Note:</u> This                 | s form is used for <u>all</u>                          | samples received by ALS.        | The use of this for | orm for custody se     | als is strictly me | ant to indicate prese  | ence/absence and n | ot as an ir  | idication | of           |
| compliance                        | e or nonconformity.                                    | Thermal preservation and        | pH will only be e   | valuated either at t   | he request of the  | e client and/or as req | uired by the metho | od/SOP.      | No        | N/A          |
| 1                                 | Wara sample (                                          | containars proporty n           | parked with ali     | ant sample ID          | )                  |                        |                    |              |           |              |
| 1                                 | Container(s) si                                        | unnlied by AI S?                |                     | ent sample ID          |                    |                        |                    |              |           |              |
| 2                                 | Did sample co                                          | <b>Intainers</b> arrive in good | od condition?       |                        |                    |                        |                    |              | П         |              |
| 4                                 | Were chain-of                                          | <b>-custody</b> papers used     | and filled out      | ?                      |                    |                        |                    | $\mathbf{X}$ |           |              |
| 5                                 | Did sample co                                          | ntainer labels and/or           | tags agree wi       | th custody pap         | ers?               |                        |                    | X            |           |              |
| 6                                 | Was <b>sample v</b>                                    | olume received adeau            | ate for analysi     | is?                    |                    |                        |                    | X            |           |              |
| 7                                 | Are samples w                                          | vithin specified holdin         | g times?            |                        |                    |                        |                    | X            |           |              |
| 8                                 | Was proper te                                          | mperature (thermal p            | oreservation) o     | f cooler at rece       | ipt adhered to     | o?                     |                    |              |           | X            |
|                                   |                                                        |                                 |                     |                        |                    |                        |                    |              |           |              |
| 9                                 | Was a <b>trip bla</b>                                  | nk received?                    |                     |                        |                    |                        |                    |              | X         |              |
| 10                                | 10 Were <b>custody seals</b> on outside of cooler/Box? |                                 |                     |                        |                    |                        |                    |              | X         |              |
| Location of seal(s)? Sealing Lid? |                                                        |                                 |                     |                        |                    |                        |                    |              | X         |              |
|                                   | Were signature and date included?                      |                                 |                     |                        |                    |                        |                    |              |           | X            |
|                                   | Were seals inta                                        | act?                            |                     |                        |                    |                        |                    |              |           | X            |
|                                   | Were custody                                           | seals on outside of sar         | mple container      | ?                      |                    |                        |                    |              | X         |              |
|                                   |                                                        | Location of seal(s)?            |                     |                        |                    |                        | _Sealing Lid?      |              |           | X            |
|                                   | Were signature                                         | e and date included?            |                     |                        |                    |                        |                    |              |           | X            |
|                                   | Were seals inta                                        | act?                            |                     |                        |                    |                        |                    |              |           | $\mathbf{X}$ |
| 11                                | Do container                                           | rs have appropriate <b>pr</b>   | reservation, a      | ccording to me         | thod/SOP or        | Client specified       | information?       |              |           | $\mathbf{X}$ |
|                                   | Is there a clier                                       | nt indication that the s        | submitted samp      | oles are <b>pH</b> pre | served?            |                        |                    |              |           | X            |
|                                   | Were <u>VOA vi</u>                                     | ials checked for prese          | nce/absence of      | f air bubbles?         |                    |                        |                    |              |           | X            |
|                                   | Does the client                                        | t/method/SOP require            | that the analy      | st check the same      | nple pH and        | if necessary alte      | r it?              |              |           | X            |
| 12                                | Tubes:                                                 | Are the tubes capp              | ped and intact?     | )                      |                    |                        |                    |              |           | X            |
|                                   |                                                        | Do they contain n               | noisture?           |                        |                    |                        |                    |              |           | X            |
| 13                                | Badges:                                                | Are the badges pr               | operly capped       | and intact?            |                    |                        |                    |              |           | X            |
|                                   |                                                        | Are dual bed badg               | ges separated a     | nd individuall         | capped and         | intact?                |                    |              |           | X            |
| Lab                               | Sample ID                                              | Container                       | Required            | Received               | Adjusted           | VOA Headspace          | e Receij           | pt / Pres    | ervatior  | 1            |

| Lab Sample ID   | Description        | Required<br>pH * | pH | Adjusted<br>pH | (Presence/Absence) | Comments |
|-----------------|--------------------|------------------|----|----------------|--------------------|----------|
| P1404375-001.01 | 6.0 L Silonite Can |                  |    |                |                    |          |
| P1404375-002.01 | 6.0 L Ambient Can  |                  |    |                |                    |          |
| P1404375-003.01 | 6.0 L Silonite Can |                  |    |                |                    |          |
| P1404375-004.01 | 6.0 L Silonite Can |                  |    |                |                    |          |
| P1404375-005.01 | 6.0 L Silonite Can |                  |    |                |                    |          |
| P1404375-006.01 | 6.0 L Silonite Can |                  |    |                |                    |          |
|                 |                    |                  |    |                |                    |          |
|                 |                    |                  |    |                |                    |          |

Explain any discrepancies: (include lab sample ID numbers):

Chain of Custody is missing time collected

Time collected is noted on the sample container tag.

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

#### RESULTS OF ANALYSIS

Page 1 of 3

0.63

# Client:Stratum Group, Inc.Client Sample ID:A1Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00215                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-001

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.72

Canister Dilution Factor: 1.20

| CAS #     | Compound                            | Result            | MRL                    | Result        | MRL<br>pphV | Data<br>Qualifier |
|-----------|-------------------------------------|-------------------|------------------------|---------------|-------------|-------------------|
| 115_07_1  | Propene                             | μg/m<br>ND        | <u>μ</u> g/III<br>0.60 | ND            | 0.35        | Quanner           |
| 75 71 8   | Dichlorodifluoromethane (CEC 12)    | 24                | 0.60                   | 0.40          | 0.12        |                   |
| 73-71-0   | Chloromathana                       | 2. <b>4</b><br>ND | 0.00                   | 0. <b>-</b> 7 | 0.12        |                   |
| 74-07-3   | 1.2 Dichlere 1.1.2.2                | ND                | 0.24                   | ND            | 0.12        |                   |
| 76-14-2   | 1,2-DICHIOTO-1,1,2,2-               | ND                | 0.60                   | ND            | 0.086       |                   |
| 75 01 4   | Visual Chlorida                     | ND                | 0.12                   | ND            | 0.047       |                   |
| /5-01-4   |                                     | ND                | 0.12                   | ND            | 0.047       |                   |
| 106-99-0  | 1,3-Butadiene                       | ND                | 0.24                   | ND            | 0.11        |                   |
| 74-83-9   | Bromomethane                        | ND                | 0.12                   | ND            | 0.031       |                   |
| 75-00-3   | Chloroethane                        | ND                | 0.12                   | ND            | 0.045       |                   |
| 64-17-5   | Ethanol                             | ND                | 6.0                    | ND            | 3.2         |                   |
| 75-05-8   | Acetonitrile                        | ND                | 0.60                   | ND            | 0.36        |                   |
| 107-02-8  | Acrolein                            | ND                | 2.4                    | ND            | 1.0         |                   |
| 67-64-1   | Acetone                             | ND                | 6.0                    | ND            | 2.5         |                   |
| 75-69-4   | Trichlorofluoromethane              | 1.4               | 0.12                   | 0.25          | 0.021       |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | ND                | 6.0                    | ND            | 2.4         |                   |
| 107-13-1  | Acrylonitrile                       | ND                | 0.60                   | ND            | 0.28        |                   |
| 75-35-4   | 1,1-Dichloroethene                  | ND                | 0.12                   | ND            | 0.030       |                   |
| 75-09-2   | Methylene Chloride                  | ND                | 0.60                   | ND            | 0.17        |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | ND                | 0.12                   | ND            | 0.038       |                   |
| 76-13-1   | Trichlorotrifluoroethane            | 0.53              | 0.12                   | 0.069         | 0.016       |                   |
| 75-15-0   | Carbon Disulfide                    | ND                | 6.0                    | ND            | 1.9         |                   |
| 156-60-5  | trans-1,2-Dichloroethene            | ND                | 0.12                   | ND            | 0.030       |                   |
| 75-34-3   | 1,1-Dichloroethane                  | ND                | 0.12                   | ND            | 0.030       |                   |
| 1634-04-4 | Methyl tert-Butyl Ether             | ND                | 0.12                   | ND            | 0.033       |                   |
| 108-05-4  | Vinyl Acetate                       | ND                | 6.0                    | ND            | 1.7         |                   |
| 78-93-3   | 2-Butanone (MEK)                    | ND                | 6.0                    | ND            | 2.0         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 2 of 3

0.63

# Client:Stratum Group, Inc.Client Sample ID:A1Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00215                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-001

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.72

Canister Dilution Factor: 1.20

| CAS #      | Compound                  | Result            | MRL   | Result | MRL   | Data      |
|------------|---------------------------|-------------------|-------|--------|-------|-----------|
|            |                           | μg/m <sup>3</sup> | µg∕m³ | ppbV   | ppbV  | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | ND                | 0.12  | ND     | 0.030 |           |
| 141-78-6   | Ethyl Acetate             | ND                | 1.2   | ND     | 0.33  |           |
| 110-54-3   | n-Hexane                  | ND                | 0.60  | ND     | 0.17  |           |
| 67-66-3    | Chloroform                | ND                | 0.12  | ND     | 0.025 |           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND                | 0.60  | ND     | 0.20  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND                | 0.12  | ND     | 0.030 |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND                | 0.12  | ND     | 0.022 |           |
| 71-43-2    | Benzene                   | 0.38              | 0.12  | 0.12   | 0.038 |           |
| 56-23-5    | Carbon Tetrachloride      | 0.57              | 0.12  | 0.090  | 0.019 |           |
| 110-82-7   | Cyclohexane               | ND                | 1.2   | ND     | 0.35  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND                | 0.12  | ND     | 0.026 |           |
| 75-27-4    | Bromodichloromethane      | ND                | 0.12  | ND     | 0.018 |           |
| 79-01-6    | Trichloroethene           | ND                | 0.12  | ND     | 0.022 |           |
| 123-91-1   | 1,4-Dioxane               | ND                | 0.60  | ND     | 0.17  |           |
| 80-62-6    | Methyl Methacrylate       | ND                | 1.2   | ND     | 0.29  |           |
| 142-82-5   | n-Heptane                 | ND                | 0.60  | ND     | 0.15  |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND                | 0.60  | ND     | 0.13  |           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND                | 0.60  | ND     | 0.15  |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND                | 0.60  | ND     | 0.13  |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND                | 0.12  | ND     | 0.022 |           |
| 108-88-3   | Toluene                   | 0.68              | 0.60  | 0.18   | 0.16  |           |
| 591-78-6   | 2-Hexanone                | ND                | 0.60  | ND     | 0.15  |           |
| 124-48-1   | Dibromochloromethane      | ND                | 0.12  | ND     | 0.014 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND                | 0.12  | ND     | 0.016 |           |
| 123-86-4   | n-Butyl Acetate           | ND                | 0.60  | ND     | 0.13  |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS**

0.63

Page 3 of 3

# Client:Stratum Group, Inc.Client Sample ID:A1Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00215                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-001

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.72

Canister Dilution Factor: 1.20

|             |                             | Result | MRL         | Result | MRL   | Data      |
|-------------|-----------------------------|--------|-------------|--------|-------|-----------|
| CAS #       | Compound                    | μg/m³  | $\mu g/m^3$ | ppbV   | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 0.60        | ND     | 0.13  |           |
| 127-18-4    | Tetrachloroethene           | 0.83   | 0.12        | 0.12   | 0.018 |           |
| 108-90-7    | Chlorobenzene               | ND     | 0.12        | ND     | 0.026 |           |
| 100-41-4    | Ethylbenzene                | ND     | 0.60        | ND     | 0.14  |           |
| 179601-23-1 | m,p-Xylenes                 | ND     | 0.60        | ND     | 0.14  |           |
| 75-25-2     | Bromoform                   | ND     | 0.60        | ND     | 0.058 |           |
| 100-42-5    | Styrene                     | ND     | 0.60        | ND     | 0.14  |           |
| 95-47-6     | o-Xylene                    | ND     | 0.60        | ND     | 0.14  |           |
| 111-84-2    | n-Nonane                    | ND     | 0.60        | ND     | 0.11  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 0.12        | ND     | 0.017 |           |
| 98-82-8     | Cumene                      | ND     | 0.60        | ND     | 0.12  |           |
| 80-56-8     | alpha-Pinene                | ND     | 0.60        | ND     | 0.11  |           |
| 103-65-1    | n-Propylbenzene             | ND     | 0.60        | ND     | 0.12  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 0.60        | ND     | 0.12  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 0.60        | ND     | 0.12  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND     | 0.60        | ND     | 0.12  |           |
| 100-44-7    | Benzyl Chloride             | ND     | 0.60        | ND     | 0.12  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 0.12        | ND     | 0.020 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 0.12        | ND     | 0.020 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 0.12        | ND     | 0.020 |           |
| 5989-27-5   | d-Limonene                  | ND     | 0.60        | ND     | 0.11  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 0.60        | ND     | 0.062 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 0.60        | ND     | 0.081 |           |
| 91-20-3     | Naphthalene                 | ND     | 0.60        | ND     | 0.11  |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 0.60        | ND     | 0.056 |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 1 of 3

0.45

# Client:Stratum Group, Inc.Client Sample ID:A2Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Summa Canister                         |
| Test Notes:    |                                              |
| Container ID:  | AC01873                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-002

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.86

Canister Dilution Factor: 1.23

| CAS #     | Compound                                             | Result<br>µg/m³ | MRL<br>µg/m <sup>3</sup> | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-----------|------------------------------------------------------|-----------------|--------------------------|----------------|-------------|-------------------|
| 115-07-1  | Propene                                              | ND              | 0.62                     | ND             | 0.36        |                   |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 2.4             | 0.62                     | 0.49           | 0.12        |                   |
| 74-87-3   | Chloromethane                                        | ND              | 0.25                     | ND             | 0.12        |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND              | 0.62                     | ND             | 0.088       |                   |
| 75-01-4   | Vinyl Chloride                                       | ND              | 0.12                     | ND             | 0.048       |                   |
| 106-99-0  | 1,3-Butadiene                                        | ND              | 0.25                     | ND             | 0.11        |                   |
| 74-83-9   | Bromomethane                                         | ND              | 0.12                     | ND             | 0.032       |                   |
| 75-00-3   | Chloroethane                                         | ND              | 0.12                     | ND             | 0.047       |                   |
| 64-17-5   | Ethanol                                              | ND              | 6.2                      | ND             | 3.3         |                   |
| 75-05-8   | Acetonitrile                                         | ND              | 0.62                     | ND             | 0.37        |                   |
| 107-02-8  | Acrolein                                             | ND              | 2.5                      | ND             | 1.1         |                   |
| 67-64-1   | Acetone                                              | ND              | 6.2                      | ND             | 2.6         |                   |
| 75-69-4   | Trichlorofluoromethane                               | 1.4             | 0.12                     | 0.25           | 0.022       |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND              | 6.2                      | ND             | 2.5         |                   |
| 107-13-1  | Acrylonitrile                                        | ND              | 0.62                     | ND             | 0.28        |                   |
| 75-35-4   | 1,1-Dichloroethene                                   | ND              | 0.12                     | ND             | 0.031       |                   |
| 75-09-2   | Methylene Chloride                                   | ND              | 0.62                     | ND             | 0.18        |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND              | 0.12                     | ND             | 0.039       |                   |
| 76-13-1   | Trichlorotrifluoroethane                             | 0.52            | 0.12                     | 0.068          | 0.016       |                   |
| 75-15-0   | Carbon Disulfide                                     | ND              | 6.2                      | ND             | 2.0         |                   |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND              | 0.12                     | ND             | 0.031       |                   |
| 75-34-3   | 1,1-Dichloroethane                                   | ND              | 0.12                     | ND             | 0.030       |                   |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND              | 0.12                     | ND             | 0.034       |                   |
| 108-05-4  | Vinyl Acetate                                        | ND              | 6.2                      | ND             | 1.7         |                   |
| 78-93-3   | 2-Butanone (MEK)                                     | ND              | 6.2                      | ND             | 2.1         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 2 of 3

0.45

# Client:Stratum Group, Inc.Client Sample ID:A2Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Summa Canister                         |
| Test Notes:    |                                              |
| Container ID:  | AC01873                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-002

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.86

Canister Dilution Factor: 1.23

| CAS #      | Compound                  | Result | MRL  | Result<br>ppbV | MRL<br>ppbV | Data<br>Oualifier |
|------------|---------------------------|--------|------|----------------|-------------|-------------------|
| 156-59-2   | cis-1,2-Dichloroethene    | ND     | 0.12 | ND             | 0.031       | Quuinter          |
| 141-78-6   | Ethyl Acetate             | 1.6    | 1.2  | 0.45           | 0.34        |                   |
| 110-54-3   | n-Hexane                  | ND     | 0.62 | ND             | 0.17        |                   |
| 67-66-3    | Chloroform                | ND     | 0.12 | ND             | 0.025       |                   |
| 109-99-9   | Tetrahydrofuran (THF)     | ND     | 0.62 | ND             | 0.21        |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 0.12 | ND             | 0.030       |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 0.12 | ND             | 0.023       |                   |
| 71-43-2    | Benzene                   | 0.30   | 0.12 | 0.094          | 0.039       |                   |
| 56-23-5    | Carbon Tetrachloride      | 0.58   | 0.12 | 0.092          | 0.020       |                   |
| 110-82-7   | Cyclohexane               | ND     | 1.2  | ND             | 0.36        |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 0.12 | ND             | 0.027       |                   |
| 75-27-4    | Bromodichloromethane      | ND     | 0.12 | ND             | 0.018       |                   |
| 79-01-6    | Trichloroethene           | 0.22   | 0.12 | 0.041          | 0.023       |                   |
| 123-91-1   | 1,4-Dioxane               | ND     | 0.62 | ND             | 0.17        |                   |
| 80-62-6    | Methyl Methacrylate       | ND     | 1.2  | ND             | 0.30        |                   |
| 142-82-5   | n-Heptane                 | ND     | 0.62 | ND             | 0.15        |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 0.62 | ND             | 0.14        |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | ND     | 0.62 | ND             | 0.15        |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 0.62 | ND             | 0.14        |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 0.12 | ND             | 0.023       |                   |
| 108-88-3   | Toluene                   | 0.78   | 0.62 | 0.21           | 0.16        |                   |
| 591-78-6   | 2-Hexanone                | ND     | 0.62 | ND             | 0.15        |                   |
| 124-48-1   | Dibromochloromethane      | ND     | 0.12 | ND             | 0.014       |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 0.12 | ND             | 0.016       |                   |
| 123-86-4   | n-Butyl Acetate           | ND     | 0.62 | ND             | 0.13        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 3 of 3

0.45

# Client:Stratum Group, Inc.Client Sample ID:A2Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Summa Canister                         |
| Test Notes:    |                                              |
| Container ID:  | AC01873                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-002

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.86

Canister Dilution Factor: 1.23

|             |                             | Result | MRL   | Result | MRL   | Data      |
|-------------|-----------------------------|--------|-------|--------|-------|-----------|
| CAS #       | Compound                    | μg/m³  | µg∕m³ | ppbV   | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 0.62  | ND     | 0.13  |           |
| 127-18-4    | Tetrachloroethene           | 2.3    | 0.12  | 0.33   | 0.018 |           |
| 108-90-7    | Chlorobenzene               | ND     | 0.12  | ND     | 0.027 |           |
| 100-41-4    | Ethylbenzene                | ND     | 0.62  | ND     | 0.14  |           |
| 179601-23-1 | m,p-Xylenes                 | ND     | 0.62  | ND     | 0.14  |           |
| 75-25-2     | Bromoform                   | ND     | 0.62  | ND     | 0.060 |           |
| 100-42-5    | Styrene                     | ND     | 0.62  | ND     | 0.14  |           |
| 95-47-6     | o-Xylene                    | ND     | 0.62  | ND     | 0.14  |           |
| 111-84-2    | n-Nonane                    | ND     | 0.62  | ND     | 0.12  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 0.12  | ND     | 0.018 |           |
| 98-82-8     | Cumene                      | ND     | 0.62  | ND     | 0.13  |           |
| 80-56-8     | alpha-Pinene                | ND     | 0.62  | ND     | 0.11  |           |
| 103-65-1    | n-Propylbenzene             | ND     | 0.62  | ND     | 0.13  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 0.62  | ND     | 0.13  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 0.62  | ND     | 0.13  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND     | 0.62  | ND     | 0.13  |           |
| 100-44-7    | Benzyl Chloride             | ND     | 0.62  | ND     | 0.12  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 5989-27-5   | d-Limonene                  | ND     | 0.62  | ND     | 0.11  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 0.62  | ND     | 0.064 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 0.62  | ND     | 0.083 |           |
| 91-20-3     | Naphthalene                 | ND     | 0.62  | ND     | 0.12  |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 0.62  | ND     | 0.058 |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 1 of 3

0.66

# Client:Stratum Group, Inc.Client Sample ID:A3Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00786                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-003

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.71

Canister Dilution Factor: 1.20

| CAS #     | Compound                                             | Result | MRL  | Result<br>ppbV | MRL<br>pphV | Data<br>Qualifier |
|-----------|------------------------------------------------------|--------|------|----------------|-------------|-------------------|
| 115-07-1  | Propene                                              | 3.2    | 0.60 | 1.8            | 0.35        | Quuiniti          |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 2.5    | 0.60 | 0.50           | 0.12        |                   |
| 74-87-3   | Chloromethane                                        | ND     | 0.24 | ND             | 0.12        |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND     | 0.60 | ND             | 0.086       |                   |
| 75-01-4   | Vinyl Chloride                                       | ND     | 0.12 | ND             | 0.047       |                   |
| 106-99-0  | 1,3-Butadiene                                        | ND     | 0.24 | ND             | 0.11        |                   |
| 74-83-9   | Bromomethane                                         | ND     | 0.12 | ND             | 0.031       |                   |
| 75-00-3   | Chloroethane                                         | ND     | 0.12 | ND             | 0.045       |                   |
| 64-17-5   | Ethanol                                              | ND     | 6.0  | ND             | 3.2         |                   |
| 75-05-8   | Acetonitrile                                         | ND     | 0.60 | ND             | 0.36        |                   |
| 107-02-8  | Acrolein                                             | ND     | 2.4  | ND             | 1.0         |                   |
| 67-64-1   | Acetone                                              | ND     | 6.0  | ND             | 2.5         |                   |
| 75-69-4   | Trichlorofluoromethane                               | 1.4    | 0.12 | 0.25           | 0.021       |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | 6.1    | 6.0  | 2.5            | 2.4         |                   |
| 107-13-1  | Acrylonitrile                                        | ND     | 0.60 | ND             | 0.28        |                   |
| 75-35-4   | 1,1-Dichloroethene                                   | ND     | 0.12 | ND             | 0.030       |                   |
| 75-09-2   | Methylene Chloride                                   | ND     | 0.60 | ND             | 0.17        |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND     | 0.12 | ND             | 0.038       |                   |
| 76-13-1   | Trichlorotrifluoroethane                             | 0.57   | 0.12 | 0.074          | 0.016       |                   |
| 75-15-0   | Carbon Disulfide                                     | ND     | 6.0  | ND             | 1.9         |                   |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND     | 0.12 | ND             | 0.030       |                   |
| 75-34-3   | 1,1-Dichloroethane                                   | ND     | 0.12 | ND             | 0.030       |                   |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND     | 0.12 | ND             | 0.033       |                   |
| 108-05-4  | Vinyl Acetate                                        | ND     | 6.0  | ND             | 1.7         |                   |
| 78-93-3   | 2-Butanone (MEK)                                     | ND     | 6.0  | ND             | 2.0         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 2 of 3

0.66

# Client:Stratum Group, Inc.Client Sample ID:A3Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00786                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-003

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.71

Canister Dilution Factor: 1.20

| CAS #      | Compound                | Result        | MRL                       | Result     | MRL<br>pphV | Data<br>Qualifian |
|------------|-------------------------|---------------|---------------------------|------------|-------------|-------------------|
| 156-59-2   | cis-1.2-Dichloroethene  | μg/m-<br>0.39 | μg/m <sup>2</sup><br>0.12 | 0 098      | 0.030       | Quaimer           |
| 141-78-6   | Ethyl Acetate           | 1.8           | 1.2                       | 0.50       | 0.030       |                   |
| 110-54-3   | n-Hexane                | ND            | 0.60                      | ND         | 0.17        |                   |
| 67-66-3    | Chloroform              | 0.24          | 0.12                      | 0 049      | 0.025       |                   |
| 109-99-9   | Tetrahydrofuran (THF)   | ND            | 0.60                      | ND         | 0.025       |                   |
| 107-06-2   | 1 2-Dichloroethane      | ND            | 0.12                      | ND         | 0.030       |                   |
| 71-55-6    | 1 1 1-Trichloroethane   | ND            | 0.12                      | ND         | 0.022       |                   |
| 71-43-2    | Benzene                 | 2.6           | 0.12                      | 0.82       | 0.022       |                   |
| 56-23-5    | Carbon Tetrachloride    | 0.65          | 0.12                      | 0.02       | 0.019       |                   |
| 110-82-7   | Cyclobexane             | ND            | 1.2                       | ND         | 0.35        |                   |
| 78-87-5    | 1 2-Dichloropropage     | ND            | 0.12                      | ND         | 0.026       |                   |
| 75-27-4    | Bromodichloromethane    | ND            | 0.12                      | ND         | 0.020       |                   |
| 79-01-6    | Trichloroethene         | 0.66          | 0.12                      | 0.12       | 0.013       |                   |
| 123-91-1   | 1 A-Diovane             | 0.00<br>ND    | 0.12                      | 0.12<br>ND | 0.022       |                   |
| 80.62.6    | Methyl Methacrylate     | ND            | 1.2                       | ND         | 0.29        |                   |
| 142 82 5   | n Hentane               |               | 0.60                      | ND         | 0.25        |                   |
| 142-02-5   | cis 1.3 Dichloropropopo |               | 0.00                      | ND         | 0.13        |                   |
| 10001-01-5 | 4 Mothyl 2 pontenono    |               | 0.00                      |            | 0.15        |                   |
| 100-10-1   | 4-Methyl-2-pentanone    |               | 0.00                      |            | 0.13        |                   |
| 70.00.5    | 1 1 2 Trichloroothone   |               | 0.00                      |            | 0.13        |                   |
| 109 99 2   | Talvana                 | 0.74          | 0.12                      |            | 0.022       |                   |
| 108-88-5   | 2 Hananana              | 0.74          | 0.60                      | 0.20       | 0.16        |                   |
| 391-78-0   | 2-Hexanone              | ND            | 0.60                      | ND         | 0.15        |                   |
| 124-48-1   | Dibromochloromethane    | ND            | 0.12                      | ND         | 0.014       |                   |
| 106-93-4   | 1,2-Dibromoethane       | ND            | 0.12                      | ND         | 0.016       |                   |
| 123-86-4   | n-Butyl Acetate         | ND            | 0.60                      | ND         | 0.13        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 3 of 3

0.66

# Client:Stratum Group, Inc.Client Sample ID:A3Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00786                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-003

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.71

Canister Dilution Factor: 1.20

|             |                             | Result | MRL         | Result | MRL   | Data      |
|-------------|-----------------------------|--------|-------------|--------|-------|-----------|
| CAS #       | Compound                    | μg/m³  | $\mu g/m^3$ | ppbV   | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 0.60        | ND     | 0.13  |           |
| 127-18-4    | Tetrachloroethene           | 6.4    | 0.12        | 0.95   | 0.018 |           |
| 108-90-7    | Chlorobenzene               | 0.22   | 0.12        | 0.048  | 0.026 |           |
| 100-41-4    | Ethylbenzene                | ND     | 0.60        | ND     | 0.14  |           |
| 179601-23-1 | m,p-Xylenes                 | ND     | 0.60        | ND     | 0.14  |           |
| 75-25-2     | Bromoform                   | ND     | 0.60        | ND     | 0.058 |           |
| 100-42-5    | Styrene                     | ND     | 0.60        | ND     | 0.14  |           |
| 95-47-6     | o-Xylene                    | ND     | 0.60        | ND     | 0.14  |           |
| 111-84-2    | n-Nonane                    | ND     | 0.60        | ND     | 0.11  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 0.12        | ND     | 0.017 |           |
| 98-82-8     | Cumene                      | ND     | 0.60        | ND     | 0.12  |           |
| 80-56-8     | alpha-Pinene                | ND     | 0.60        | ND     | 0.11  |           |
| 103-65-1    | n-Propylbenzene             | ND     | 0.60        | ND     | 0.12  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 0.60        | ND     | 0.12  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 0.60        | ND     | 0.12  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND     | 0.60        | ND     | 0.12  |           |
| 100-44-7    | Benzyl Chloride             | ND     | 0.60        | ND     | 0.12  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 0.12        | ND     | 0.020 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 0.12        | ND     | 0.020 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 0.12        | ND     | 0.020 |           |
| 5989-27-5   | d-Limonene                  | ND     | 0.60        | ND     | 0.11  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 0.60        | ND     | 0.062 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 0.60        | ND     | 0.081 |           |
| 91-20-3     | Naphthalene                 | ND     | 0.60        | ND     | 0.11  |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 0.60        | ND     | 0.056 |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 1 of 3

0.66

# Client:Stratum Group, Inc.Client Sample ID:A4Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00341                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-004

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.83

Canister Dilution Factor: 1.21

| CAS #     | Compound                                             | Result<br>ug/m <sup>3</sup> | MRL<br>ug/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Oualifier |
|-----------|------------------------------------------------------|-----------------------------|--------------|----------------|-------------|-------------------|
| 115-07-1  | Propene                                              | ND                          | 0.61         | ND             | 0.35        |                   |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 2.4                         | 0.61         | 0.49           | 0.12        |                   |
| 74-87-3   | Chloromethane                                        | 0.36                        | 0.24         | 0.17           | 0.12        |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND                          | 0.61         | ND             | 0.087       |                   |
| 75-01-4   | Vinyl Chloride                                       | ND                          | 0.12         | ND             | 0.047       |                   |
| 106-99-0  | 1,3-Butadiene                                        | ND                          | 0.24         | ND             | 0.11        |                   |
| 74-83-9   | Bromomethane                                         | ND                          | 0.12         | ND             | 0.031       |                   |
| 75-00-3   | Chloroethane                                         | ND                          | 0.12         | ND             | 0.046       |                   |
| 64-17-5   | Ethanol                                              | ND                          | 6.1          | ND             | 3.2         |                   |
| 75-05-8   | Acetonitrile                                         | ND                          | 0.61         | ND             | 0.36        |                   |
| 107-02-8  | Acrolein                                             | ND                          | 2.4          | ND             | 1.1         |                   |
| 67-64-1   | Acetone                                              | ND                          | 6.1          | ND             | 2.5         |                   |
| 75-69-4   | Trichlorofluoromethane                               | 1.4                         | 0.12         | 0.25           | 0.022       |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND                          | 6.1          | ND             | 2.5         |                   |
| 107-13-1  | Acrylonitrile                                        | ND                          | 0.61         | ND             | 0.28        |                   |
| 75-35-4   | 1,1-Dichloroethene                                   | ND                          | 0.12         | ND             | 0.031       |                   |
| 75-09-2   | Methylene Chloride                                   | ND                          | 0.61         | ND             | 0.17        |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND                          | 0.12         | ND             | 0.039       |                   |
| 76-13-1   | Trichlorotrifluoroethane                             | 0.51                        | 0.12         | 0.066          | 0.016       |                   |
| 75-15-0   | Carbon Disulfide                                     | ND                          | 6.1          | ND             | 1.9         |                   |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND                          | 0.12         | ND             | 0.031       |                   |
| 75-34-3   | 1,1-Dichloroethane                                   | ND                          | 0.12         | ND             | 0.030       |                   |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND                          | 0.12         | ND             | 0.034       |                   |
| 108-05-4  | Vinyl Acetate                                        | ND                          | 6.1          | ND             | 1.7         |                   |
| 78-93-3   | 2-Butanone (MEK)                                     | ND                          | 6.1          | ND             | 2.1         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 2 of 3

0.66

# Client:Stratum Group, Inc.Client Sample ID:A4Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00341                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-004

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.83

Canister Dilution Factor: 1.21

| CAS #      | Compound                  | Result            | MRL   | Result | MRL   | Data      |
|------------|---------------------------|-------------------|-------|--------|-------|-----------|
|            |                           | μg/m <sup>3</sup> | µg∕m³ | ppbV   | ppbV  | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | 0.23              | 0.12  | 0.057  | 0.031 |           |
| 141-78-6   | Ethyl Acetate             | 4.3               | 1.2   | 1.2    | 0.34  |           |
| 110-54-3   | n-Hexane                  | ND                | 0.61  | ND     | 0.17  |           |
| 67-66-3    | Chloroform                | 0.13              | 0.12  | 0.027  | 0.025 |           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND                | 0.61  | ND     | 0.21  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND                | 0.12  | ND     | 0.030 |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND                | 0.12  | ND     | 0.022 |           |
| 71-43-2    | Benzene                   | 0.32              | 0.12  | 0.10   | 0.038 |           |
| 56-23-5    | Carbon Tetrachloride      | 0.54              | 0.12  | 0.086  | 0.019 |           |
| 110-82-7   | Cyclohexane               | ND                | 1.2   | ND     | 0.35  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND                | 0.12  | ND     | 0.026 |           |
| 75-27-4    | Bromodichloromethane      | ND                | 0.12  | ND     | 0.018 |           |
| 79-01-6    | Trichloroethene           | 0.40              | 0.12  | 0.075  | 0.023 |           |
| 123-91-1   | 1,4-Dioxane               | ND                | 0.61  | ND     | 0.17  |           |
| 80-62-6    | Methyl Methacrylate       | ND                | 1.2   | ND     | 0.30  |           |
| 142-82-5   | n-Heptane                 | ND                | 0.61  | ND     | 0.15  |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND                | 0.61  | ND     | 0.13  |           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND                | 0.61  | ND     | 0.15  |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND                | 0.61  | ND     | 0.13  |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND                | 0.12  | ND     | 0.022 |           |
| 108-88-3   | Toluene                   | 0.85              | 0.61  | 0.23   | 0.16  |           |
| 591-78-6   | 2-Hexanone                | ND                | 0.61  | ND     | 0.15  |           |
| 124-48-1   | Dibromochloromethane      | ND                | 0.12  | ND     | 0.014 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND                | 0.12  | ND     | 0.016 |           |
| 123-86-4   | n-Butyl Acetate           | ND                | 0.61  | ND     | 0.13  |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

0.66

Page 3 of 3

# Client:Stratum Group, Inc.Client Sample ID:A4Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00341                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-004

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.83

Canister Dilution Factor: 1.21

|             |                             | Result | MRL   | Result | MRL   | Data      |
|-------------|-----------------------------|--------|-------|--------|-------|-----------|
| CAS #       | Compound                    | μg/m³  | μg/m³ | ppbV   | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 0.61  | ND     | 0.13  |           |
| 127-18-4    | Tetrachloroethene           | 4.1    | 0.12  | 0.61   | 0.018 |           |
| 108-90-7    | Chlorobenzene               | ND     | 0.12  | ND     | 0.026 |           |
| 100-41-4    | Ethylbenzene                | ND     | 0.61  | ND     | 0.14  |           |
| 179601-23-1 | m,p-Xylenes                 | ND     | 0.61  | ND     | 0.14  |           |
| 75-25-2     | Bromoform                   | ND     | 0.61  | ND     | 0.059 |           |
| 100-42-5    | Styrene                     | ND     | 0.61  | ND     | 0.14  |           |
| 95-47-6     | o-Xylene                    | ND     | 0.61  | ND     | 0.14  |           |
| 111-84-2    | n-Nonane                    | ND     | 0.61  | ND     | 0.12  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 0.12  | ND     | 0.018 |           |
| 98-82-8     | Cumene                      | ND     | 0.61  | ND     | 0.12  |           |
| 80-56-8     | alpha-Pinene                | ND     | 0.61  | ND     | 0.11  |           |
| 103-65-1    | n-Propylbenzene             | ND     | 0.61  | ND     | 0.12  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 0.61  | ND     | 0.12  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 0.61  | ND     | 0.12  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND     | 0.61  | ND     | 0.12  |           |
| 100-44-7    | Benzyl Chloride             | ND     | 0.61  | ND     | 0.12  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 5989-27-5   | d-Limonene                  | ND     | 0.61  | ND     | 0.11  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 0.61  | ND     | 0.063 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 0.61  | ND     | 0.082 |           |
| 91-20-3     | Naphthalene                 | ND     | 0.61  | ND     | 0.12  |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 0.61  | ND     | 0.057 |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 1 of 3

0.49

# Client:Stratum Group, Inc.Client Sample ID:A5Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00338                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-005

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.75

Canister Dilution Factor: 1.21

| CAS #     | Compound                                             | Result<br>µg/m³ | MRL<br>µg/m³ | Result<br>ppbV | MRL<br>ppbV | Data<br>Qualifier |
|-----------|------------------------------------------------------|-----------------|--------------|----------------|-------------|-------------------|
| 115-07-1  | Propene                                              | ND              | 0.61         | ND             | 0.35        |                   |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 2.4             | 0.61         | 0.49           | 0.12        |                   |
| 74-87-3   | Chloromethane                                        | ND              | 0.24         | ND             | 0.12        |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND              | 0.61         | ND             | 0.087       |                   |
| 75-01-4   | Vinyl Chloride                                       | ND              | 0.12         | ND             | 0.047       |                   |
| 106-99-0  | 1,3-Butadiene                                        | ND              | 0.24         | ND             | 0.11        |                   |
| 74-83-9   | Bromomethane                                         | ND              | 0.12         | ND             | 0.031       |                   |
| 75-00-3   | Chloroethane                                         | ND              | 0.12         | ND             | 0.046       |                   |
| 64-17-5   | Ethanol                                              | ND              | 6.1          | ND             | 3.2         |                   |
| 75-05-8   | Acetonitrile                                         | ND              | 0.61         | ND             | 0.36        |                   |
| 107-02-8  | Acrolein                                             | ND              | 2.4          | ND             | 1.1         |                   |
| 67-64-1   | Acetone                                              | ND              | 6.1          | ND             | 2.5         |                   |
| 75-69-4   | Trichlorofluoromethane                               | 1.4             | 0.12         | 0.26           | 0.022       |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND              | 6.1          | ND             | 2.5         |                   |
| 107-13-1  | Acrylonitrile                                        | ND              | 0.61         | ND             | 0.28        |                   |
| 75-35-4   | 1,1-Dichloroethene                                   | ND              | 0.12         | ND             | 0.031       |                   |
| 75-09-2   | Methylene Chloride                                   | ND              | 0.61         | ND             | 0.17        |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND              | 0.12         | ND             | 0.039       |                   |
| 76-13-1   | Trichlorotrifluoroethane                             | 0.58            | 0.12         | 0.076          | 0.016       |                   |
| 75-15-0   | Carbon Disulfide                                     | ND              | 6.1          | ND             | 1.9         |                   |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND              | 0.12         | ND             | 0.031       |                   |
| 75-34-3   | 1,1-Dichloroethane                                   | ND              | 0.12         | ND             | 0.030       |                   |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND              | 0.12         | ND             | 0.034       |                   |
| 108-05-4  | Vinyl Acetate                                        | ND              | 6.1          | ND             | 1.7         |                   |
| 78-93-3   | 2-Butanone (MEK)                                     | ND              | 6.1          | ND             | 2.1         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 2 of 3

0.49

# Client:Stratum Group, Inc.Client Sample ID:A5Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00338                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-005

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.75

Canister Dilution Factor: 1.21

| CAS #      | Compound                  | Result            | MRL   | Result | MRL   | Data      |
|------------|---------------------------|-------------------|-------|--------|-------|-----------|
|            |                           | μg/m <sup>3</sup> | µg/m³ | ppbV   | ppbV  | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | 0.41              | 0.12  | 0.10   | 0.031 |           |
| 141-78-6   | Ethyl Acetate             | 2.1               | 1.2   | 0.57   | 0.34  |           |
| 110-54-3   | n-Hexane                  | ND                | 0.61  | ND     | 0.17  |           |
| 67-66-3    | Chloroform                | 0.12              | 0.12  | 0.025  | 0.025 |           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND                | 0.61  | ND     | 0.21  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND                | 0.12  | ND     | 0.030 |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND                | 0.12  | ND     | 0.022 |           |
| 71-43-2    | Benzene                   | 0.33              | 0.12  | 0.10   | 0.038 |           |
| 56-23-5    | Carbon Tetrachloride      | 0.59              | 0.12  | 0.094  | 0.019 |           |
| 110-82-7   | Cyclohexane               | ND                | 1.2   | ND     | 0.35  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND                | 0.12  | ND     | 0.026 |           |
| 75-27-4    | Bromodichloromethane      | ND                | 0.12  | ND     | 0.018 |           |
| 79-01-6    | Trichloroethene           | 0.72              | 0.12  | 0.13   | 0.023 |           |
| 123-91-1   | 1,4-Dioxane               | ND                | 0.61  | ND     | 0.17  |           |
| 80-62-6    | Methyl Methacrylate       | ND                | 1.2   | ND     | 0.30  |           |
| 142-82-5   | n-Heptane                 | ND                | 0.61  | ND     | 0.15  |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND                | 0.61  | ND     | 0.13  |           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND                | 0.61  | ND     | 0.15  |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND                | 0.61  | ND     | 0.13  |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND                | 0.12  | ND     | 0.022 |           |
| 108-88-3   | Toluene                   | 1.1               | 0.61  | 0.28   | 0.16  |           |
| 591-78-6   | 2-Hexanone                | ND                | 0.61  | ND     | 0.15  |           |
| 124-48-1   | Dibromochloromethane      | ND                | 0.12  | ND     | 0.014 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND                | 0.12  | ND     | 0.016 |           |
| 123-86-4   | n-Butyl Acetate           | ND                | 0.61  | ND     | 0.13  |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

0.49

Page 3 of 3

# Client:Stratum Group, Inc.Client Sample ID:A5Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00338                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-005

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.75

Canister Dilution Factor: 1.21

|             |                             | Result | MRL   | Result | MRL   | Data      |
|-------------|-----------------------------|--------|-------|--------|-------|-----------|
| CAS #       | Compound                    | μg/m³  | µg∕m³ | ppbV   | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 0.61  | ND     | 0.13  |           |
| 127-18-4    | Tetrachloroethene           | 6.9    | 0.12  | 1.0    | 0.018 |           |
| 108-90-7    | Chlorobenzene               | ND     | 0.12  | ND     | 0.026 |           |
| 100-41-4    | Ethylbenzene                | ND     | 0.61  | ND     | 0.14  |           |
| 179601-23-1 | m,p-Xylenes                 | ND     | 0.61  | ND     | 0.14  |           |
| 75-25-2     | Bromoform                   | ND     | 0.61  | ND     | 0.059 |           |
| 100-42-5    | Styrene                     | ND     | 0.61  | ND     | 0.14  |           |
| 95-47-6     | o-Xylene                    | ND     | 0.61  | ND     | 0.14  |           |
| 111-84-2    | n-Nonane                    | ND     | 0.61  | ND     | 0.12  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 0.12  | ND     | 0.018 |           |
| 98-82-8     | Cumene                      | ND     | 0.61  | ND     | 0.12  |           |
| 80-56-8     | alpha-Pinene                | ND     | 0.61  | ND     | 0.11  |           |
| 103-65-1    | n-Propylbenzene             | ND     | 0.61  | ND     | 0.12  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 0.61  | ND     | 0.12  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 0.61  | ND     | 0.12  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND     | 0.61  | ND     | 0.12  |           |
| 100-44-7    | Benzyl Chloride             | ND     | 0.61  | ND     | 0.12  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 0.12  | ND     | 0.020 |           |
| 5989-27-5   | d-Limonene                  | ND     | 0.61  | ND     | 0.11  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 0.61  | ND     | 0.063 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 0.61  | ND     | 0.082 |           |
| 91-20-3     | Naphthalene                 | ND     | 0.61  | ND     | 0.12  |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 0.61  | ND     | 0.057 |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.
#### RESULTS OF ANALYSIS

Page 1 of 3

-3.07

# Client:Stratum Group, Inc.Client Sample ID:A6Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00747                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-006

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.52

Canister Dilution Factor: 1.57

| CAS #     | Compound                                             | Result<br>ug/m <sup>3</sup> | MRL<br>ug/m <sup>3</sup> | Result<br>ppbV | MRL<br>ppbV | Data<br>Oualifier |
|-----------|------------------------------------------------------|-----------------------------|--------------------------|----------------|-------------|-------------------|
| 115-07-1  | Propene                                              | 0.81                        | 0.79                     | 0.47           | 0.46        |                   |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)                     | 2.4                         | 0.79                     | 0.49           | 0.16        |                   |
| 74-87-3   | Chloromethane                                        | ND                          | 0.31                     | ND             | 0.15        |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-<br>tetrafluoroethane (CFC 114) | ND                          | 0.79                     | ND             | 0.11        |                   |
| 75-01-4   | Vinyl Chloride                                       | ND                          | 0.16                     | ND             | 0.061       |                   |
| 106-99-0  | 1,3-Butadiene                                        | ND                          | 0.31                     | ND             | 0.14        |                   |
| 74-83-9   | Bromomethane                                         | ND                          | 0.16                     | ND             | 0.040       |                   |
| 75-00-3   | Chloroethane                                         | ND                          | 0.16                     | ND             | 0.060       |                   |
| 64-17-5   | Ethanol                                              | ND                          | 7.9                      | ND             | 4.2         |                   |
| 75-05-8   | Acetonitrile                                         | ND                          | 0.79                     | ND             | 0.47        |                   |
| 107-02-8  | Acrolein                                             | ND                          | 3.1                      | ND             | 1.4         |                   |
| 67-64-1   | Acetone                                              | ND                          | 7.9                      | ND             | 3.3         |                   |
| 75-69-4   | Trichlorofluoromethane                               | 1.5                         | 0.16                     | 0.26           | 0.028       |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)                       | ND                          | 7.9                      | ND             | 3.2         |                   |
| 107-13-1  | Acrylonitrile                                        | ND                          | 0.79                     | ND             | 0.36        |                   |
| 75-35-4   | 1,1-Dichloroethene                                   | ND                          | 0.16                     | ND             | 0.040       |                   |
| 75-09-2   | Methylene Chloride                                   | ND                          | 0.79                     | ND             | 0.23        |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride)                  | ND                          | 0.16                     | ND             | 0.050       |                   |
| 76-13-1   | Trichlorotrifluoroethane                             | 0.58                        | 0.16                     | 0.075          | 0.020       |                   |
| 75-15-0   | Carbon Disulfide                                     | ND                          | 7.9                      | ND             | 2.5         |                   |
| 156-60-5  | trans-1,2-Dichloroethene                             | ND                          | 0.16                     | ND             | 0.040       |                   |
| 75-34-3   | 1,1-Dichloroethane                                   | ND                          | 0.16                     | ND             | 0.039       |                   |
| 1634-04-4 | Methyl tert-Butyl Ether                              | ND                          | 0.16                     | ND             | 0.044       |                   |
| 108-05-4  | Vinyl Acetate                                        | ND                          | 7.9                      | ND             | 2.2         |                   |
| 78-93-3   | 2-Butanone (MEK)                                     | ND                          | 7.9                      | ND             | 2.7         |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS**

Page 2 of 3

# Client:Stratum Group, Inc.Client Sample ID:A6Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00747                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-006

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig): -3.07

Final Pressure (psig): 3.52

Canister Dilution Factor: 1.57

| CAS #      | Compound                  | Result<br>ug/m <sup>3</sup> | MRL<br>ug/m <sup>3</sup> | Result<br>ppbV | MRL<br>ppbV | Data<br>Oualifier |
|------------|---------------------------|-----------------------------|--------------------------|----------------|-------------|-------------------|
| 156-59-2   | cis-1,2-Dichloroethene    | ND                          | 0.16                     | ND             | 0.040       | <u>(</u>          |
| 141-78-6   | Ethyl Acetate             | 2.1                         | 1.6                      | 0.59           | 0.44        |                   |
| 110-54-3   | n-Hexane                  | ND                          | 0.79                     | ND             | 0.22        |                   |
| 67-66-3    | Chloroform                | ND                          | 0.16                     | ND             | 0.032       |                   |
| 109-99-9   | Tetrahydrofuran (THF)     | ND                          | 0.79                     | ND             | 0.27        |                   |
| 107-06-2   | 1,2-Dichloroethane        | ND                          | 0.16                     | ND             | 0.039       |                   |
| 71-55-6    | 1,1,1-Trichloroethane     | ND                          | 0.16                     | ND             | 0.029       |                   |
| 71-43-2    | Benzene                   | 0.57                        | 0.16                     | 0.18           | 0.049       |                   |
| 56-23-5    | Carbon Tetrachloride      | 0.59                        | 0.16                     | 0.094          | 0.025       |                   |
| 110-82-7   | Cyclohexane               | ND                          | 1.6                      | ND             | 0.46        |                   |
| 78-87-5    | 1,2-Dichloropropane       | ND                          | 0.16                     | ND             | 0.034       |                   |
| 75-27-4    | Bromodichloromethane      | ND                          | 0.16                     | ND             | 0.023       |                   |
| 79-01-6    | Trichloroethene           | 0.39                        | 0.16                     | 0.072          | 0.029       |                   |
| 123-91-1   | 1,4-Dioxane               | ND                          | 0.79                     | ND             | 0.22        |                   |
| 80-62-6    | Methyl Methacrylate       | ND                          | 1.6                      | ND             | 0.38        |                   |
| 142-82-5   | n-Heptane                 | ND                          | 0.79                     | ND             | 0.19        |                   |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND                          | 0.79                     | ND             | 0.17        |                   |
| 108-10-1   | 4-Methyl-2-pentanone      | ND                          | 0.79                     | ND             | 0.19        |                   |
| 10061-02-6 | trans-1,3-Dichloropropene | ND                          | 0.79                     | ND             | 0.17        |                   |
| 79-00-5    | 1,1,2-Trichloroethane     | ND                          | 0.16                     | ND             | 0.029       |                   |
| 108-88-3   | Toluene                   | 0.79                        | 0.79                     | 0.21           | 0.21        |                   |
| 591-78-6   | 2-Hexanone                | ND                          | 0.79                     | ND             | 0.19        |                   |
| 124-48-1   | Dibromochloromethane      | ND                          | 0.16                     | ND             | 0.018       |                   |
| 106-93-4   | 1,2-Dibromoethane         | ND                          | 0.16                     | ND             | 0.020       |                   |
| 123-86-4   | n-Butyl Acetate           | ND                          | 0.79                     | ND             | 0.17        |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS**

-3.07

Page 3 of 3

# Client:Stratum Group, Inc.Client Sample ID:A6Client Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister                      |
| Test Notes:    |                                              |
| Container ID:  | AS00747                                      |

ALS Project ID: P1404375 ALS Sample ID: P1404375-006

Date Collected: 10/21/14 Date Received: 10/24/14 Date Analyzed: 11/5/14 Volume(s) Analyzed: 1.00 Liter(s)

Initial Pressure (psig):

Final Pressure (psig): 3.52

Canister Dilution Factor: 1.57

|             |                             | Result | MRL         | Result | MRL   | Data      |
|-------------|-----------------------------|--------|-------------|--------|-------|-----------|
| CAS #       | Compound                    | μg/m³  | $\mu g/m^3$ | ppbV   | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 0.79        | ND     | 0.17  |           |
| 127-18-4    | Tetrachloroethene           | 2.8    | 0.16        | 0.42   | 0.023 |           |
| 108-90-7    | Chlorobenzene               | ND     | 0.16        | ND     | 0.034 |           |
| 100-41-4    | Ethylbenzene                | ND     | 0.79        | ND     | 0.18  |           |
| 179601-23-1 | m,p-Xylenes                 | ND     | 0.79        | ND     | 0.18  |           |
| 75-25-2     | Bromoform                   | ND     | 0.79        | ND     | 0.076 |           |
| 100-42-5    | Styrene                     | ND     | 0.79        | ND     | 0.18  |           |
| 95-47-6     | o-Xylene                    | ND     | 0.79        | ND     | 0.18  |           |
| 111-84-2    | n-Nonane                    | ND     | 0.79        | ND     | 0.15  |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 0.16        | ND     | 0.023 |           |
| 98-82-8     | Cumene                      | ND     | 0.79        | ND     | 0.16  |           |
| 80-56-8     | alpha-Pinene                | ND     | 0.79        | ND     | 0.14  |           |
| 103-65-1    | n-Propylbenzene             | ND     | 0.79        | ND     | 0.16  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 0.79        | ND     | 0.16  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 0.79        | ND     | 0.16  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND     | 0.79        | ND     | 0.16  |           |
| 100-44-7    | Benzyl Chloride             | ND     | 0.79        | ND     | 0.15  |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 0.16        | ND     | 0.026 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 0.16        | ND     | 0.026 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 0.16        | ND     | 0.026 |           |
| 5989-27-5   | d-Limonene                  | ND     | 0.79        | ND     | 0.14  |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 0.79        | ND     | 0.081 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 0.79        | ND     | 0.11  |           |
| 91-20-3     | Naphthalene                 | ND     | 0.79        | ND     | 0.15  |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 0.79        | ND     | 0.074 |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### RESULTS OF ANALYSIS

Page 1 of 3

## Client:Stratum Group, Inc.Client Sample ID:Method BlankClient Project ID:Cascade Laundry

| Test Code:     | EPA TO-15                                    | Date Collected: N   | A             |
|----------------|----------------------------------------------|---------------------|---------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 | Date Received: NA   |               |
| Analyst:       | Wida Ang                                     | Date Analyzed: 11   | /4/14         |
| Sample Type:   | 6.0 L Silonite Canister                      | Volume(s) Analyzed: | 1.00 Liter(s) |
| Test Notes:    |                                              |                     |               |

ALS Project ID: P1404375 ALS Sample ID: P141104-MB

Canister Dilution Factor: 1.00

| CAS #     | Compound                            | Result                  | MRL   | Result | MRL   | Data<br>Ouslifior |
|-----------|-------------------------------------|-------------------------|-------|--------|-------|-------------------|
| 115 07 1  | Propaga                             | μg/m <sup>2</sup><br>ND | μg/Π- |        | 0.29  | Quaimer           |
| 75 71 9   | Disklars diffusers mathems (CEC 12) |                         | 0.50  |        | 0.29  |                   |
| /5-/1-8   | Dichlorodilluoromethane (CFC 12)    | ND                      | 0.50  | ND     | 0.10  |                   |
| /4-8/-3   | Chloromethane                       | ND                      | 0.20  | ND     | 0.097 |                   |
| 76-14-2   | 1,2-Dichloro-1,1,2,2-               | ND                      | 0.50  | ND     | 0.072 |                   |
| 70 14 2   | tetrafluoroethane (CFC 114)         | ND                      | 0.50  | n D    | 0.072 |                   |
| 75-01-4   | Vinyl Chloride                      | ND                      | 0.10  | ND     | 0.039 |                   |
| 106-99-0  | 1,3-Butadiene                       | ND                      | 0.20  | ND     | 0.090 |                   |
| 74-83-9   | Bromomethane                        | ND                      | 0.10  | ND     | 0.026 |                   |
| 75-00-3   | Chloroethane                        | ND                      | 0.10  | ND     | 0.038 |                   |
| 64-17-5   | Ethanol                             | ND                      | 5.0   | ND     | 2.7   |                   |
| 75-05-8   | Acetonitrile                        | ND                      | 0.50  | ND     | 0.30  |                   |
| 107-02-8  | Acrolein                            | ND                      | 2.0   | ND     | 0.87  |                   |
| 67-64-1   | Acetone                             | ND                      | 5.0   | ND     | 2.1   |                   |
| 75-69-4   | Trichlorofluoromethane              | ND                      | 0.10  | ND     | 0.018 |                   |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | ND                      | 5.0   | ND     | 2.0   |                   |
| 107-13-1  | Acrylonitrile                       | ND                      | 0.50  | ND     | 0.23  |                   |
| 75-35-4   | 1,1-Dichloroethene                  | ND                      | 0.10  | ND     | 0.025 |                   |
| 75-09-2   | Methylene Chloride                  | ND                      | 0.50  | ND     | 0.14  |                   |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | ND                      | 0.10  | ND     | 0.032 |                   |
| 76-13-1   | Trichlorotrifluoroethane            | ND                      | 0.10  | ND     | 0.013 |                   |
| 75-15-0   | Carbon Disulfide                    | ND                      | 5.0   | ND     | 1.6   |                   |
| 156-60-5  | trans-1,2-Dichloroethene            | ND                      | 0.10  | ND     | 0.025 |                   |
| 75-34-3   | 1,1-Dichloroethane                  | ND                      | 0.10  | ND     | 0.025 |                   |
| 1634-04-4 | Methyl tert-Butyl Ether             | ND                      | 0.10  | ND     | 0.028 |                   |
| 108-05-4  | Vinyl Acetate                       | ND                      | 5.0   | ND     | 1.4   |                   |
| 78-93-3   | 2-Butanone (MEK)                    | ND                      | 5.0   | ND     | 1.7   |                   |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

### RESULTS OF ANALYSIS

Page 2 of 3

#### Client: Stratum Group, Inc. Client Sample ID: Method Blank Client Project ID: Cascade Laundry

EPA TO-15

Wida Ang

6.0 L Silonite Canister

Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13

Test Code:

Analyst:

Instrument ID:

Sample Type:

Test Notes:

ALS Project ID: P1404375 ALS Sample ID: P141104-MB

Date Collected: NA Date Received: NA Date Analyzed: 11/4/14 Volume(s) Analyzed: 1.00 Liter(s)

#### Canister Dilution Factor: 1.00

| CAS #      | Compound                  | Result | MRL   | Result | MRL   | Data      |
|------------|---------------------------|--------|-------|--------|-------|-----------|
|            | -                         | μg/m³  | µg/m³ | ppbV   | ppbV  | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | ND     | 0.10  | ND     | 0.025 |           |
| 141-78-6   | Ethyl Acetate             | ND     | 1.0   | ND     | 0.28  |           |
| 110-54-3   | n-Hexane                  | ND     | 0.50  | ND     | 0.14  |           |
| 67-66-3    | Chloroform                | ND     | 0.10  | ND     | 0.020 |           |
| 109-99-9   | Tetrahydrofuran (THF)     | ND     | 0.50  | ND     | 0.17  |           |
| 107-06-2   | 1,2-Dichloroethane        | ND     | 0.10  | ND     | 0.025 |           |
| 71-55-6    | 1,1,1-Trichloroethane     | ND     | 0.10  | ND     | 0.018 |           |
| 71-43-2    | Benzene                   | ND     | 0.10  | ND     | 0.031 |           |
| 56-23-5    | Carbon Tetrachloride      | ND     | 0.10  | ND     | 0.016 |           |
| 110-82-7   | Cyclohexane               | ND     | 1.0   | ND     | 0.29  |           |
| 78-87-5    | 1,2-Dichloropropane       | ND     | 0.10  | ND     | 0.022 |           |
| 75-27-4    | Bromodichloromethane      | ND     | 0.10  | ND     | 0.015 |           |
| 79-01-6    | Trichloroethene           | ND     | 0.10  | ND     | 0.019 |           |
| 123-91-1   | 1,4-Dioxane               | ND     | 0.50  | ND     | 0.14  |           |
| 80-62-6    | Methyl Methacrylate       | ND     | 1.0   | ND     | 0.24  |           |
| 142-82-5   | n-Heptane                 | ND     | 0.50  | ND     | 0.12  |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | ND     | 0.50  | ND     | 0.11  |           |
| 108-10-1   | 4-Methyl-2-pentanone      | ND     | 0.50  | ND     | 0.12  |           |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     | 0.50  | ND     | 0.11  |           |
| 79-00-5    | 1,1,2-Trichloroethane     | ND     | 0.10  | ND     | 0.018 |           |
| 108-88-3   | Toluene                   | ND     | 0.50  | ND     | 0.13  |           |
| 591-78-6   | 2-Hexanone                | ND     | 0.50  | ND     | 0.12  |           |
| 124-48-1   | Dibromochloromethane      | ND     | 0.10  | ND     | 0.012 |           |
| 106-93-4   | 1,2-Dibromoethane         | ND     | 0.10  | ND     | 0.013 |           |
| 123-86-4   | n-Butyl Acetate           | ND     | 0.50  | ND     | 0.11  |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### **RESULTS OF ANALYSIS** Page 3 of 3

#### **Client:** Stratum Group, Inc. **Client Sample ID: Method Blank**

**Client Project ID: Cascade Laundry** 

| Test Code:     | EPA TO-15                                    | Date Collected     |
|----------------|----------------------------------------------|--------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 | Date Received      |
| Analyst:       | Wida Ang                                     | Date Analyzed      |
| Sample Type:   | 6.0 L Silonite Canister                      | Volume(s) Analyzed |
| Test Notes:    |                                              |                    |

ALS Project ID: P1404375 ALS Sample ID: P141104-MB

l: NA l: NA l: 11/4/14 1.00 Liter(s) 1:

Canister Dilution Factor: 1.00

|             |                             | Result | MRL   | Result | MRL   | Data      |
|-------------|-----------------------------|--------|-------|--------|-------|-----------|
| CAS #       | Compound                    | μg/m³  | μg/m³ | ppbV   | ppbV  | Qualifier |
| 111-65-9    | n-Octane                    | ND     | 0.50  | ND     | 0.11  |           |
| 127-18-4    | Tetrachloroethene           | ND     | 0.10  | ND     | 0.015 |           |
| 108-90-7    | Chlorobenzene               | ND     | 0.10  | ND     | 0.022 |           |
| 100-41-4    | Ethylbenzene                | ND     | 0.50  | ND     | 0.12  |           |
| 179601-23-1 | m,p-Xylenes                 | ND     | 0.50  | ND     | 0.12  |           |
| 75-25-2     | Bromoform                   | ND     | 0.50  | ND     | 0.048 |           |
| 100-42-5    | Styrene                     | ND     | 0.50  | ND     | 0.12  |           |
| 95-47-6     | o-Xylene                    | ND     | 0.50  | ND     | 0.12  |           |
| 111-84-2    | n-Nonane                    | ND     | 0.50  | ND     | 0.095 |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | ND     | 0.10  | ND     | 0.015 |           |
| 98-82-8     | Cumene                      | ND     | 0.50  | ND     | 0.10  |           |
| 80-56-8     | alpha-Pinene                | ND     | 0.50  | ND     | 0.090 |           |
| 103-65-1    | n-Propylbenzene             | ND     | 0.50  | ND     | 0.10  |           |
| 622-96-8    | 4-Ethyltoluene              | ND     | 0.50  | ND     | 0.10  |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | ND     | 0.50  | ND     | 0.10  |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | ND     | 0.50  | ND     | 0.10  |           |
| 100-44-7    | Benzyl Chloride             | ND     | 0.50  | ND     | 0.097 |           |
| 541-73-1    | 1,3-Dichlorobenzene         | ND     | 0.10  | ND     | 0.017 |           |
| 106-46-7    | 1,4-Dichlorobenzene         | ND     | 0.10  | ND     | 0.017 |           |
| 95-50-1     | 1,2-Dichlorobenzene         | ND     | 0.10  | ND     | 0.017 |           |
| 5989-27-5   | d-Limonene                  | ND     | 0.50  | ND     | 0.090 |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | ND     | 0.50  | ND     | 0.052 |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | ND     | 0.50  | ND     | 0.067 |           |
| 91-20-3     | Naphthalene                 | ND     | 0.50  | ND     | 0.095 |           |
| 87-68-3     | Hexachlorobutadiene         | ND     | 0.50  | ND     | 0.047 |           |

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

#### SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

### Client:Stratum Group, Inc.Client Project ID:Cascade Laundry

ALS Project ID: P1404375

| Test Code:     | EPA TO-15                                    |
|----------------|----------------------------------------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 |
| Analyst:       | Wida Ang                                     |
| Sample Type:   | 6.0 L Silonite Canister(s)                   |
| Test Notes:    |                                              |

Date(s) Collected: 10/21/14 Date(s) Received: 10/24/14 Date(s) Analyzed: 11/4 - 11/5/14

|                    |               | 1,2-Dichloroethane-d4 | Toluene-d8 | Bromofluorobenzene |            |           |
|--------------------|---------------|-----------------------|------------|--------------------|------------|-----------|
| Client Sample ID   | ALS Sample ID | Percent               | Percent    | Percent            | Acceptance | Data      |
|                    |               | Recovered             | Recovered  | Recovered          | Limits     | Qualifier |
| Method Blank       | P141104-MB    | 120                   | 97         | 107                | 70-130     |           |
| Lab Control Sample | P141104-LCS   | 117                   | 96         | 108                | 70-130     |           |
| A1                 | P1404375-001  | 115                   | <b>98</b>  | 108                | 70-130     |           |
| A2                 | P1404375-002  | 116                   | 97         | 108                | 70-130     |           |
| A3                 | P1404375-003  | 118                   | 97         | 109                | 70-130     |           |
| A4                 | P1404375-004  | 119                   | 96         | 106                | 70-130     |           |
| A5                 | P1404375-005  | 117                   | 97         | 109                | 70-130     |           |
| A6                 | P1404375-006  | 120                   | 97         | 108                | 70-130     |           |

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

#### LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 3

| Client:            | Stratum Group, Inc. |
|--------------------|---------------------|
| Client Sample ID:  | Lab Control Sample  |
| Client Project ID: | Cascade Laundry     |

#### ALS Project ID: P1404375 ALS Sample ID: P141104-LCS

| Test Code:     | EPA TO-15                                    | Date Collected: N   | NA             |
|----------------|----------------------------------------------|---------------------|----------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 | Date Received: N    | NA             |
| Analyst:       | Wida Ang                                     | Date Analyzed: 1    | 1/5/14         |
| Sample Type:   | 6.0 L Silonite Canister                      | Volume(s) Analyzed: | 0.125 Liter(s) |
| Test Notes:    |                                              |                     |                |

|           |                                     |              |        |            | ALS        |           |
|-----------|-------------------------------------|--------------|--------|------------|------------|-----------|
| CAS #     | Compound                            | Spike Amount | Result | % Recovery | Acceptance | Data      |
|           |                                     | μg/m³        | μg/m³  |            | Limits     | Qualifier |
| 115-07-1  | Propene                             | 200          | 181    | 91         | 50-128     |           |
| 75-71-8   | Dichlorodifluoromethane (CFC 12)    | 204          | 201    | 99         | 66-117     |           |
| 74-87-3   | Chloromethane                       | 198          | 169    | 85         | 51-133     |           |
| 76 14 2   | 1,2-Dichloro-1,1,2,2-               |              |        | 103        | 65 117     |           |
| 70-14-2   | tetrafluoroethane (CFC 114)         | 206          | 212    | 105        | 05-117     |           |
| 75-01-4   | Vinyl Chloride                      | 202          | 213    | 105        | 61-127     |           |
| 106-99-0  | 1,3-Butadiene                       | 214          | 234    | 109        | 65-132     |           |
| 74-83-9   | Bromomethane                        | 202          | 206    | 102        | 62-114     |           |
| 75-00-3   | Chloroethane                        | 202          | 196    | 97         | 64-122     |           |
| 64-17-5   | Ethanol                             | 1,020        | 894    | 88         | 57-131     |           |
| 75-05-8   | Acetonitrile                        | 204          | 178    | 87         | 52-135     |           |
| 107-02-8  | Acrolein                            | 214          | 218    | 102        | 64-124     |           |
| 67-64-1   | Acetone                             | 1,080        | 874    | 81         | 60-113     |           |
| 75-69-4   | Trichlorofluoromethane              | 198          | 225    | 114        | 64-112     | L         |
| 67-63-0   | 2-Propanol (Isopropyl Alcohol)      | 420          | 384    | 91         | 62-129     |           |
| 107-13-1  | Acrylonitrile                       | 208          | 194    | 93         | 69-133     |           |
| 75-35-4   | 1,1-Dichloroethene                  | 214          | 208    | 97         | 70-114     |           |
| 75-09-2   | Methylene Chloride                  | 216          | 188    | 87         | 63-103     |           |
| 107-05-1  | 3-Chloro-1-propene (Allyl Chloride) | 218          | 211    | 97         | 57-135     |           |
| 76-13-1   | Trichlorotrifluoroethane            | 216          | 201    | 93         | 69-116     |           |
| 75-15-0   | Carbon Disulfide                    | 196          | 188    | 96         | 66-118     |           |
| 156-60-5  | trans-1,2-Dichloroethene            | 212          | 224    | 106        | 69-123     |           |
| 75-34-3   | 1,1-Dichloroethane                  | 208          | 200    | 96         | 65-118     |           |
| 1634-04-4 | Methyl tert-Butyl Ether             | 212          | 216    | 102        | 57-125     |           |
| 108-05-4  | Vinyl Acetate                       | 1,020        | 1150   | 113        | 69-131     |           |
| 78-93-3   | 2-Butanone (MEK)                    | 216          | 201    | 93         | 63-121     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

L = Laboratory control sample recovery outside the specified limits, results may be biased high.

#### LABORATORY CONTROL SAMPLE SUMMARY

Page 2 of 3

# Client:Stratum Group, Inc.Client Sample ID:Lab Control SampleClient Project ID:Cascade Laundry

#### ALS Project ID: P1404375 ALS Sample ID: P141104-LCS

| Test Code:     | EPA TO-15                                    | Date Collected: N   | ΝA     |          |
|----------------|----------------------------------------------|---------------------|--------|----------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 | Date Received: N    | ЛА     |          |
| Analyst:       | Wida Ang                                     | Date Analyzed: 1    | 1/5/14 |          |
| Sample Type:   | 6.0 L Silonite Canister                      | Volume(s) Analyzed: | 0.125  | Liter(s) |
| Test Notes:    |                                              |                     |        |          |

|            |                           |              |        |            | ALS        |           |
|------------|---------------------------|--------------|--------|------------|------------|-----------|
| CAS #      | Compound                  | Spike Amount | Result | % Recovery | Acceptance | Data      |
|            |                           | $\mu g/m^3$  | μg/m³  |            | Limits     | Qualifier |
| 156-59-2   | cis-1,2-Dichloroethene    | 214          | 216    | 101        | 69-119     |           |
| 141-78-6   | Ethyl Acetate             | 428          | 414    | 97         | 65-129     |           |
| 110-54-3   | n-Hexane                  | 210          | 186    | 89         | 55-116     |           |
| 67-66-3    | Chloroform                | 216          | 207    | 96         | 68-111     |           |
| 109-99-9   | Tetrahydrofuran (THF)     | 206          | 210    | 102        | 69-120     |           |
| 107-06-2   | 1,2-Dichloroethane        | 210          | 227    | 108        | 67-117     |           |
| 71-55-6    | 1,1,1-Trichloroethane     | 208          | 208    | 100        | 74-116     |           |
| 71-43-2    | Benzene                   | 220          | 167    | 76         | 61-109     |           |
| 56-23-5    | Carbon Tetrachloride      | 214          | 240    | 112        | 76-120     |           |
| 110-82-7   | Cyclohexane               | 422          | 375    | 89         | 72-115     |           |
| 78-87-5    | 1,2-Dichloropropane       | 212          | 181    | 85         | 67-119     |           |
| 75-27-4    | Bromodichloromethane      | 216          | 218    | 101        | 78-124     |           |
| 79-01-6    | Trichloroethene           | 208          | 197    | 95         | 69-115     |           |
| 123-91-1   | 1,4-Dioxane               | 218          | 197    | 90         | 69-127     |           |
| 80-62-6    | Methyl Methacrylate       | 420          | 416    | 99         | 76-128     |           |
| 142-82-5   | n-Heptane                 | 214          | 188    | 88         | 66-118     |           |
| 10061-01-5 | cis-1,3-Dichloropropene   | 226          | 234    | 104        | 77-124     |           |
| 108-10-1   | 4-Methyl-2-pentanone      | 218          | 215    | 99         | 66-134     |           |
| 10061-02-6 | trans-1,3-Dichloropropene | 216          | 246    | 114        | 80-130     |           |
| 79-00-5    | 1,1,2-Trichloroethane     | 212          | 196    | 92         | 75-119     |           |
| 108-88-3   | Toluene                   | 212          | 170    | 80         | 68-114     |           |
| 591-78-6   | 2-Hexanone                | 222          | 201    | 91         | 60-136     |           |
| 124-48-1   | Dibromochloromethane      | 220          | 208    | 95         | 75-132     |           |
| 106-93-4   | 1,2-Dibromoethane         | 216          | 194    | 90         | 72-122     |           |
| 123-86-4   | n-Butyl Acetate           | 224          | 201    | 90         | 60-137     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

#### LABORATORY CONTROL SAMPLE SUMMARY

Page 3 of 3

# Client:Stratum Group, Inc.Client Sample ID:Lab Control SampleClient Project ID:Cascade Laundry

#### ALS Project ID: P1404375 ALS Sample ID: P141104-LCS

| Test Code:     | EPA TO-15                                    | Date Collected: N   | NA             |
|----------------|----------------------------------------------|---------------------|----------------|
| Instrument ID: | Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 | Date Received: N    | NA             |
| Analyst:       | Wida Ang                                     | Date Analyzed: 1    | 1/5/14         |
| Sample Type:   | 6.0 L Silonite Canister                      | Volume(s) Analyzed: | 0.125 Liter(s) |
| Test Notes:    |                                              | -                   |                |

|             |                             |              |        |            | ALS        |           |
|-------------|-----------------------------|--------------|--------|------------|------------|-----------|
| CAS #       | Compound                    | Spike Amount | Result | % Recovery | Acceptance | Data      |
|             |                             | $\mu g/m^3$  | μg/m³  |            | Limits     | Qualifier |
| 111-65-9    | n-Octane                    | 208          | 176    | 85         | 66-120     |           |
| 127-18-4    | Tetrachloroethene           | 198          | 167    | 84         | 67-120     |           |
| 108-90-7    | Chlorobenzene               | 216          | 176    | 81         | 69-114     |           |
| 100-41-4    | Ethylbenzene                | 212          | 183    | 86         | 71-117     |           |
| 179601-23-1 | m,p-Xylenes                 | 420          | 366    | 87         | 71-118     |           |
| 75-25-2     | Bromoform                   | 216          | 233    | 108        | 76-149     |           |
| 100-42-5    | Styrene                     | 218          | 194    | 89         | 71-128     |           |
| 95-47-6     | o-Xylene                    | 206          | 180    | 87         | 72-118     |           |
| 111-84-2    | n-Nonane                    | 204          | 166    | 81         | 63-123     |           |
| 79-34-5     | 1,1,2,2-Tetrachloroethane   | 202          | 178    | 88         | 73-124     |           |
| 98-82-8     | Cumene                      | 204          | 174    | 85         | 71-118     |           |
| 80-56-8     | alpha-Pinene                | 208          | 179    | 86         | 71-123     |           |
| 103-65-1    | n-Propylbenzene             | 202          | 174    | 86         | 71-120     |           |
| 622-96-8    | 4-Ethyltoluene              | 212          | 181    | 85         | 71-121     |           |
| 108-67-8    | 1,3,5-Trimethylbenzene      | 212          | 183    | 86         | 72-121     |           |
| 95-63-6     | 1,2,4-Trimethylbenzene      | 210          | 189    | 90         | 71-122     |           |
| 100-44-7    | Benzyl Chloride             | 218          | 231    | 106        | 79-143     |           |
| 541-73-1    | 1,3-Dichlorobenzene         | 218          | 189    | 87         | 67-121     |           |
| 106-46-7    | 1,4-Dichlorobenzene         | 212          | 175    | 83         | 68-121     |           |
| 95-50-1     | 1,2-Dichlorobenzene         | 214          | 188    | 88         | 68-121     |           |
| 5989-27-5   | d-Limonene                  | 210          | 184    | 88         | 69-137     |           |
| 96-12-8     | 1,2-Dibromo-3-chloropropane | 206          | 207    | 100        | 73-145     |           |
| 120-82-1    | 1,2,4-Trichlorobenzene      | 210          | 209    | 100        | 60-135     |           |
| 91-20-3     | Naphthalene                 | 196          | 214    | 109        | 63-142     |           |
| 87-68-3     | Hexachlorobutadiene         | 214          | 200    | 93         | 65-127     |           |

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.



October 29, 2014

Ms. Kim Ninnemann Stratum Group P.O. Box 2546 Bellingham, WA 98227

Dear Ms. Ninnemann,

On October 22nd, 2 samples were received by our laboratory and assigned our laboratory project number EV14100144. The project was identified as your Cascade Laundry. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

**Rick Bagan** Laboratory Director

Page 1 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER



| CLIENT CONTACT:<br>CLIENT SAMPLE ID         Kim Nimemann<br>Cascade Laundry<br>Sump - Sediment         DATE RECUIND:<br>2012         10/21/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         12/2014         < | CLIENT:                   | Stratum Group<br>P.O. Box 2546<br>Bellingham, WA 98 | 227     |              | 10/29/2014<br>EV14100144<br>EV14100144-01 |         |              |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------|---------|--------------|-------------------------------------------|---------|--------------|------|
| CLIENT PROJECT:         Cascade Laundry         COLLECTION DAT:         10/21/2014 1:20:00 PM           CLIENT SAMPLE ID         Sump - Sediment         WDOE ACCREDITATION:         C601           SAMPLE DATA RESULTS           ANALYTE         METHOD         RESULTS         UNITS         PARE         BV           ANALYTE         METHOD         RESULTS         UNITS         PARE         BV           Colspan="2">Colspan="2">ANALYTE         MALYTE         MALYTE         MALYTE         MALYTE         MALYTE         NITHOD         RESULTS         UNIT         Total         UNIT         UNIT         Total         UNIT         Total         UNIT         Total         UNIT         Total         UNIT         UNIT         Total         Total         Total         UNIT         Total         To                                                                                                                                              | CLIENT CONTACT:           | Kim Ninnemann                                       |         | D            | ATE RECEIVED:                             | 10/22/2 | 2014         |      |
| CLIENT SAMPLE ID         Sump - Sediment         WDOE ACCREDITATION:         C601           SAMPLE DATA RESULTS         SAMPLE DATA RESULTS         NALYTS         ANALYTS         ANALYSIS         ANALYSIS           ANALYTE         METHOD         RESULTS         JUIITIS         PACTOR         NAIK         SAMALYSIS           TPH-Oll Range         NVTTPH-OX         1500         250         5         MG/KG         10282014         EBS           Derivoraditacionenhane         EPA-8280         U         10         1         ug/Kg         10242014         DLC           Viry Chiloté         EPA-8280         U         10         1         ug/Kg         10242014         DLC           Bromomethane         EPA-8280         U         10         1         ug/Kg         10242014         DLC           Chiconthane         EPA-8280         U         10         1         ug/Kg         10242014         DLC           Chiconthane         EPA-8280         U         10         1         ug/Kg         10242014         DLC           Carbon Tarschioride         EPA-8280         U         10         1         ug/Kg         10242014         DLC              Carbon Tarschioride         EPA-8280                                                                                                                                                          | CLIENT PROJECT:           | Cascade Laundry                                     |         | COL          | LECTION DATE:                             | 10/21/2 | 2014 1:20:00 | ) PM |
| SAMPLE DATA RESULTS         ANALYTE         NUTFH-DD         REPORTING         DIUTION         ANALYSIS AVALYSIS           ANALYTE         METH-DD         RESULTS         LIMITS         FACTOR         JUNTS         ANALYSIS         AVALYSIS           THH-Direl Range         NVTFH-DX         5200         250         5         MG/KG         10282014         EBS           Debriordifucomethane         EPA-8260         U         10         1         ug/Kg         10242014         DLC           Origonamethane         EPA-8260         U         10         1         ug/Kg         10242014         DLC           Dimomethane         EPA-8260         U         10         1         ug/Kg         10242014         DLC           Chiorostituro         EPA-8260         U         10         1         ug/Kg         10242014         DLC           Carbon Tatachiotale         EPA-8260         U         10         1         ug/Kg         10242014         DLC           Carbon Disulfide         EPA-8260         U         10         1         ug/Kg         10242014         DLC           Action transchorde         EPA-8260         U         20                                                                                                                                                                                                             | CLIENT SAMPLE ID          | Sump - Sediment                                     |         | WDOE AC      | CCREDITATION:                             | C601    |              |      |
| ANALYTE         METHOD         RESULTS         REPORTING<br>LIMITS         DILUTION<br>FACTO         ANALYSIS         ANALYSIS         ANALYSIS         ANALYSIS           TPH-Disel Range         NVTFH-DX         5200         250         5         MGKG         1028/2014         EBS           Dichtordfluoromethane         EPA-8260         U         10         1         ug/Kg         1024/2014         DLC           Chicomethane         EPA-8260         U         10         1         ug/Kg         1024/2014         DLC           Somomethane         EPA-8260         U         10         1         ug/Kg         1024/2014         DLC           Chicomethane         EPA-8260         U         10         1         ug/Kg         1024/2014         DLC           Chicomethane         EPA-8260         U         10         1         ug/Kg         1024/2014         DLC           Cathon Tetrachonde         EPA-8260         U         10         1         ug/Kg         1024/2014         DLC           Cathon Disulfide         EPA-8260         U         20         1         ug/Kg         1024/2014         DLC           Cathon Disulfide         EPA-8260         U         20         1 <th></th> <th></th> <th>SAMPLE</th> <th>DATA RESULTS</th> <th></th> <th></th> <th></th> <th></th>                                                             |                           |                                                     | SAMPLE  | DATA RESULTS |                                           |         |              |      |
| AnALYTE         METHOD         RESULTS         LIMITS         FACTOR         UNTS         DATE         BAT           TPH-JOIRange         NVTFH-DX         1600         120         5         MGKG         10/28/2014         EBS           Dichloronethane         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           Chloronethane         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           Chloronethane         EPA-8260         U         100         1         ugKg         10/24/2014         DLC           Bromonethane         EPA-8260         U         100         1         ugKg         10/24/2014         DLC           Chloroethane         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           Carbon Disalified         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           Carbon Disalified         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           Carbon Disalified         EPA-8260         U         10         1         ugKg         10/24/2014                                                                                                                                                                                       |                           |                                                     |         | REPORTING    |                                           |         |              |      |
| TH-Dusai Range         NVTTH-XX         1600         120         5         MGKG         1028/2014         EBS           TH-Dusai Range         NVTTH-XX         5200         250         5         MGKG         1028/2014         EDS           Duchordifucromethane         EPA-8260         U         10         1         upKg         1024/2014         DLC           Vinyl Chloride         EPA-8260         U         10         1         upKg         1024/2014         DLC           Samomethane         EPA-8260         U         10         1         upKg         1024/2014         DLC           Chloromethane         EPA-8260         U         10         1         upKg         1024/2014         DLC           Chloromethane         EPA-8260         U         10         1         upKg         1024/2014         DLC           Carbon Fischloride         EPA-8260         U         10         1         upKg         1024/2014         DLC           Carbon Fischloride         EPA-8260         U         10         1         upKg         1024/2014         DLC           Alsonoride         EPA-8260         U         10         1         upKg         1024/2014                                                                                                                                                                                            | ΔΝΔΙ ΥΤΕ                  | METHOD                                              | RESULTS | LIMITS       | FACTOR                                    | UNITS   | DATE         | BY   |
| TPH-Oil Range         NWTPH-DX         5200         5         MGKC         102/2014         EBS           Dichloromethane         EPA-8200         U         10         1         ug/kg         102/2014         DLC           Chloromethane         EPA-8200         U         10         1         ug/kg         102/2014         DLC           Viny Choride         EPA-8200         U         10         1         ug/kg         102/2014         DLC           Chloromethane         EPA-8200         U         10         1         ug/kg         102/2014         DLC           Carton Tetrachloride         EPA-8200         U         10         1         ug/kg         102/2014         DLC           Carton Dialdida         EPA-8200         U         10         ug/kg         102/2014         DLC           Carton Dialdida         EPA-8200         U         10         ug/kg         102/2014         DLC           Acotne         EPA-8200         U         10         ug/kg         102/2014         DLC           Carton Dialdida         EPA-8200         U         10         ug/kg         102/2014         DLC           Acotne         EPA-8200         U         1                                                                                                                                                                                           | TPH-Diesel Range          | NWTPH-DX                                            | 1600    | 120          | 5                                         | MG/KG   | 10/28/2014   | EBS  |
| DebkorodifluoromethaneEPA-8280U101upfkg10/24/214DLCChioromethaneEPA-8280U101upfkg10/24/214DLCBromomethaneEPA-8280U101upfkg10/24/214DLCChioromethaneEPA-8280U101upfkg10/24/214DLCCachon TerantolorideEPA-8280U101upfkg10/24/214DLCCachon TerantolorideEPA-8280U101upfkg10/24/214DLCCachon TerantolorideEPA-8280U101upfkg10/24/214DLCAcconeEPA-8280U101upfkg10/24/214DLCAcconeEPA-8280U101upfkg10/24/214DLCActoneEPA-8280U101upfkg10/24/214DLCActoneEPA-8280U101upfkg10/24/214DLCActoneEPA-8280U101upfkg10/24/214DLCActoneEPA-8280U101upfkg10/24/214DLCActoneEPA-8280U101upfkg10/24/214DLCActonethaneEPA-8280U101upfkg10/24/214DLCActonethaneEPA-8280U101upfkg10/24/214DLCActonethaneEPA-8280U101upfkg10/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TPH-Oil Range             | NWTPH-DX                                            | 5200    | 250          | 5                                         | MG/KG   | 10/28/2014   | EBS  |
| Chloromethane         EPA-8260         U         10         1         ug/kg         10242014         DLC           Viny Choide         EPA-8260         U         10         1         ug/kg         10242014         DLC           Bromomethane         EPA-8260         U         10         1         ug/kg         10242014         DLC           Carbon Tetrachtoride         EPA-8260         U         10         1         ug/kg         10242014         DLC           Carbon Tetrachtoride         EPA-8260         U         10         1         ug/kg         10242014         DLC           Carbon Disulide         EPA-8260         U         10         1         ug/kg         10242014         DLC           Acetane         EPA-8260         U         10         1         ug/kg         10242014         DLC           Acetane         EPA-8260         U         20         1         ug/kg         10242014         DLC           Acetane         EPA-8260         U         10         ug/kg         10242014         DLC           Methyl Fledy L'Ener         EPA-8260         U         10         ug/kg         10242014         DLC           1-1-Dichioroethane </td <td>Dichlorodifluoromethane</td> <td>EPA-8260</td> <td>U</td> <td>10</td> <td>1</td> <td>ug/Kg</td> <td>10/24/2014</td> <td>DLC</td>                                                   | Dichlorodifluoromethane   | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Ving Chlorids         EPA-8260         U         10         1         ug/kg         10242014         DLC           Brammethane         EPA-8260         U         10         1         ug/kg         10242014         DLC           Carlon Tritachloride         EPA-8260         U         10         1         ug/kg         10242014         DLC           Carlon Tritachloride         EPA-8260         U         10         1         ug/kg         10242014         DLC           Carlon Disulfide         EPA-8260         U         10         1         ug/kg         10242014         DLC           Carlon Disulfide         EPA-8260         U         50         1         ug/kg         10242014         DLC           Action Disulfide         EPA-8260         U         10         1         ug/kg         10242014         DLC           Action Disulfide         EPA-8260         U         10         1         ug/kg         10242014         DLC           Action Disulfide         EPA-8260         U         10         1         ug/kg         10242014         DLC           Action Disulfide         EPA-8260         U         10         1         ug/kg         10242014                                                                                                                                                                                     | Chloromethane             | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| BromomethaneEPA-8260U101ug/kg10/24/2014DLCChiorechaneEPA-8260U101ug/kg10/24/2014DLCCarbon TrachlorideEPA-8260U101ug/kg10/24/2014DLCTrichloroflucromethaneEPA-8260U101ug/kg10/24/2014DLCCarbon TrachlorideEPA-8260U101ug/kg10/24/2014DLCAcetoneEPA-8260U101ug/kg10/24/2014DLC1.1-DichloroethaneEPA-8260U201ug/kg10/24/2014DLCActyonitrileEPA-8260U101ug/kg10/24/2014DLCMethyler ChiorideEPA-8260U101ug/kg10/24/2014DLCTrans-1.2 DichloroethaneEPA-8260U101ug/kg10/24/2014DLC2.ButanoneEPA-8260U101ug/kg10/24/2014DLC2.DichlorophaneEPA-8260U101ug/kg10/24/2014DLC2.DichlorophaneEPA-8260U101ug/kg10/24/2014DLC2.DichlorophaneEPA-8260U101ug/kg10/24/2014DLC1.1-DichlorophaneEPA-8260U101ug/kg10/24/2014DLC2.DichlorophaneEPA-8260U101ug/kg10/24/2014DLC1.1-Dich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vinyl Chloride            | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| ChloroethaneEPA-8260U101ug/Kg10/24/2014DLCCarbon TartachlorideEPA-8260U101ug/Kg10/24/2014DLCCarbon DisulideEPA-8260U101ug/Kg10/24/2014DLCCarbon DisulideEPA-8260U501ug/Kg10/24/2014DLCAcetoneEPA-8260U501ug/Kg10/24/2014DLCActorineEPA-8260U201ug/Kg10/24/2014DLCAcryonthileEPA-8260U501ug/Kg10/24/2014DLCAcryonthileEPA-8260U101ug/Kg10/24/2014DLCAcryonthileEPA-8260U101ug/Kg10/24/2014DLC2-blanoreEPA-8260U101ug/Kg10/24/2014DLC2-blanoreEPA-8260U101ug/Kg10/24/2014DLC2-blanoreEPA-8260U101ug/Kg10/24/2014DLC2-blanoreEPA-8260U101ug/Kg10/24/2014DLC2-blanoreEPA-8260U101ug/Kg10/24/2014DLC2-blanoreEPA-8260U101ug/Kg10/24/2014DLC2-blanoreEPA-8260U101ug/Kg10/24/2014DLC1-blanorehaneEPA-8260U101ug/Kg<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bromomethane              | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Carbon TetrachlorideEPA-8260U101ug/Kg10/24/2014DLCTrichloroduromethaneEPA-8260U101ug/Kg10/24/2014DLCCarbon DiallideEPA-8260U501ug/Kg10/24/2014DLCAcatoneEPA-8260U101ug/Kg10/24/2014DLCActoneEPA-8260U201ug/Kg10/24/2014DLCArrytontifieEPA-8260U501ug/Kg10/24/2014DLCArrytontifieEPA-8260U101ug/Kg10/24/2014DLCArrytontifieEPA-8260U101ug/Kg10/24/2014DLC1.1-DichlorothaneEPA-8260U101ug/Kg10/24/2014DLC2.3-LohorothaneEPA-8260U101ug/Kg10/24/2014DLC2.3-LohorothaneEPA-8260U101ug/Kg10/24/2014DLC2.3-LohorothaneEPA-8260U101ug/Kg10/24/2014DLC2.3-LohorothaneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichlorothaneEPA-8260U101ug/Kg10/24/2014DLC2.3-LohorothaneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichlorothaneEPA-8260U101ug/Kg10/24/2014DLC1.1-Dichlorothane <t< td=""><td>Chloroethane</td><td>EPA-8260</td><td>U</td><td>10</td><td>1</td><td>ug/Kg</td><td>10/24/2014</td><td>DLC</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloroethane              | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Trichlorofluoromethane         EPA-8260         U         10         1         ugKg         1024/2014         DLC           Carton Disulfide         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           Acstone         EPA-8260         U         50         1         ugKg         10/24/2014         DLC           1.1-Dichloroethane         EPA-8260         U         20         1         ugKg         10/24/2014         DLC           Acrytonitrile         EPA-8260         U         20         1         ugKg         10/24/2014         DLC           Acrytonitrile         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           Trans-1.2-Dichloroethene         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           2-Butanone         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           2-2-Dichloroethane         EPA-8260         U         10         1         ugKg         10/24/2014         DLC           Chorotorm         EPA-8260         U         10         1         ugKg         10/24/2014                                                                                                                                                                                      | Carbon Tetrachloride      | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Carbon DisulfideEPA-8260U101ug/Kg10/24/2014DLCAcetoneEPA-8260U501ug/Kg10/24/2014DLC1,1-DichlorostheneEPA-8260U201ug/Kg10/24/2014DLCActyon ItrileEPA-8260U201ug/Kg10/24/2014DLCAcryonitrileEPA-8260U501ug/Kg10/24/2014DLCTrans-12-DichlorostheneEPA-8260U101ug/Kg10/24/2014DLC1,1-DichlorosthaneEPA-8260U101ug/Kg10/24/2014DLC2-ButanoneEPA-8260U101ug/Kg10/24/2014DLC2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,1-TrichlorosthaneEPA-8260U101ug/Kg10/24/2014DLC1,1-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,1-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,1-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC <td>Trichlorofluoromethane</td> <td>EPA-8260</td> <td>U</td> <td>10</td> <td>1</td> <td>ug/Kg</td> <td>10/24/2014</td> <td>DLC</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trichlorofluoromethane    | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| ActioneEPA-8260U501ug/Kg10/24/2014DLC1.1-DichorostheneEPA-8260U201ug/Kg10/24/2014DLCMethylene ChlorideEPA-8260U201ug/Kg10/24/2014DLCMethylene ChlorideEPA-8260U501ug/Kg10/24/2014DLCMethyl EtherEPA-8260U101ug/Kg10/24/2014DLCTrans-1.2-DichloroetheneEPA-8260U101ug/Kg10/24/2014DLC2-ButanoneEPA-8260U101ug/Kg10/24/2014DLC2-DichloroetheneEPA-8260U101ug/Kg10/24/2014DLC2-DichloroetheneEPA-8260U101ug/Kg10/24/2014DLC2-DichloroetheneEPA-8260U101ug/Kg10/24/2014DLC2-DichloroetheneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloropeneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloropeneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloropeneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloropeneEPA-8260U101ug/Kg10/24/2014DLC1.2-DichloropeneEPA-8260U101ug/Kg10/24/2014DLC1.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon Disulfide          | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 1.1-DichloroetheneEPA-8260U101ug/Kg102/2014DLCMethylen ChlorideEPA-8260U201ug/Kg10/24/2014DLCAcrylonitrileEPA-8260U101ug/Kg10/24/2014DLCTrans-1.2-DichloroetheneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-ButanoneEPA-8260U101ug/Kg10/24/2014DLC2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC1.1-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC1.2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC1.2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLC </td <td>Acetone</td> <td>EPA-8260</td> <td>U</td> <td>50</td> <td>1</td> <td>ug/Kg</td> <td>10/24/2014</td> <td>DLC</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acetone                   | EPA-8260                                            | U       | 50           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Methylene ChlorideEPA-8260U201ug/Kg102/42014DLCAcrydnitileEPA-8260U501ug/Kg102/42014DLCMethyl EtherEPA-8260U101ug/Kg102/42014DLCTrans-1,2-DichloroetheneEPA-8260U101ug/Kg102/42014DLC1.1-DichloroethaneEPA-8260U101ug/Kg102/42014DLC2-ButanoneEPA-8260U501ug/Kg102/42014DLC2.2-DichloroethaneEPA-8260U101ug/Kg102/42014DLC2.2-DichloroethaneEPA-8260U101ug/Kg102/42014DLC2.2-DichloroethaneEPA-8260U101ug/Kg102/42014DLCChloroformEPA-8260U101ug/Kg102/42014DLCChloroformEPA-8260U101ug/Kg102/42014DLC1.1-DichloroethaneEPA-8260U101ug/Kg102/42014DLC1.2-DichloroethaneEPA-8260U101ug/Kg102/42014DLC1.1-DichloroethaneEPA-8260U101ug/Kg102/42014DLC1.2-DichloroethaneEPA-8260U101ug/Kg102/42014DLC1.2-DichloroethaneEPA-8260U101ug/Kg102/42014DLC1.2-Dichloroe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-Dichloroethene        | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| AcyonitrileEPA-8260U501ug/kg10/24/2014DLCMethyl EherEPA-8260U101ug/kg10/24/2014DLCTrans-1,2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC1-1-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC2-ButanoneEPA-8260U501ug/kg10/24/2014DLC2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLCChloroformEPA-8260U101ug/kg10/24/2014DLC1,1-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC1,2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC1,2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC1,2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC1,2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC1,2-DichloroethaneEPA-8260U101ug/kg10/24/2014DLC <t< td=""><td>Methylene Chloride</td><td>EPA-8260</td><td>U</td><td>20</td><td>1</td><td>ug/Kg</td><td>10/24/2014</td><td>DLC</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Methylene Chloride        | EPA-8260                                            | U       | 20           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Methyl T-Butyl Ether         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Trans-1,2-Dichloroethene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-Dichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           2-Butanone         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           2-Butanone         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           2-2-Dichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           2-2-Dichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-1-Tichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-Dichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-Dichloroethane         EPA-8260         U         10         1         ug/Kg                                                                                                                                                                      | Acrylonitrile             | EPA-8260                                            | U       | 50           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Trans.1.2.Dichloroethene         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1.1-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           2-Butanone         EPA-8260         U         50         1         ug/kg         10/24/2014         DLC           2-Butanone         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           2-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           2-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           2-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1.1-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1.1-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1.1-Dichloroethane         EPA-8260         U         10         1         ug/kg         <                                                                                                                                                                      | Methyl T-Butyl Ether      | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 1.1-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           2-Butanone         EPA-8260         U         50         1         ug/kg         10/24/2014         DLC           Cis-1,2-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           2,2-Dichloropropane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           Stronochloromethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,1-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,1-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,1-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,2-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,2-Dichloroethane         EPA-8260         U         10         1         ug/kg<                                                                                                                                                                 | Trans-1,2-Dichloroethene  | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 2-Butanone         EPA-8260         U         50         1         ug/kg         10/24/2014         DLC           Cis-1,2-Dichloroethene         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           2,2-Dichloropropane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           Bromochloromethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           Chloroform         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,1-1:richloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,1-Dichloroptopene         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,2-Dichloroptopane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,2-Dichloroptopane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1/2-Dichloroptopane         EPA-8260         U         10         1         ug/kg <td>1,1-Dichloroethane</td> <td>EPA-8260</td> <td>U</td> <td>10</td> <td>1</td> <td>ug/Kg</td> <td>10/24/2014</td> <td>DLC</td>                                     | 1,1-Dichloroethane        | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Cis-1,2-Dichloroethene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           2,2-Dichloropropane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Bromochloromethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Chloroform         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-1:richloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-Dichloroptopane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,2-Dichloroptopane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,2-Dichloroptopane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,2-Dichloroptopane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Dibromomethane         EPA-8260         U         10         1         ug/Kg                                                                                                                                                                 | 2-Butanone                | EPA-8260                                            | U       | 50           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 2.2-Dichloropropane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Bromochloromethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Chloroform         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-Trichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-Dichloropropene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,2-Dichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,2-Dichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,2-Dichloropropane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Dibromomethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Trans-1,3-Dichloropropene         EPA-8260         U         10         1         ug/Kg                                                                                                                                                                 | Cis-1,2-Dichloroethene    | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Bromochloromethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Chloroform         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-1richloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1-Dichloropropene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,2-Dichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Benzene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1/2-Dichloropropane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Dibromomethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Dibromomethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Trans-1,3-Dichloropropene         EPA-8260         U         10         1         ug/Kg <t< td=""><td>2,2-Dichloropropane</td><td>EPA-8260</td><td>U</td><td>10</td><td>1</td><td>ug/Kg</td><td>10/24/2014</td><td>DLC</td></t<>                                        | 2,2-Dichloropropane       | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Chloroform         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,1,1-Trichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,1-Dichloropropene         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,2-Dichloroethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           Benzene         EPA-8260         U         5.0         1         ug/kg         10/24/2014         DLC           1,2-Dichloroptopane         EPA-8260         U         5.0         1         ug/kg         10/24/2014         DLC           1,2-Dichloroptopane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,2-Dichloroptopane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           Bromodichloromethane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           Trans-1,3-Dichloropropene         EPA-8260         U         10         1         ug/kg                                                                                                                                                                 | Bromochloromethane        | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 1,1,1-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC1,1-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLCBenzeneEPA-8260U5.01ug/Kg10/24/2014DLCTrichloroetheneEPA-8260U101ug/Kg10/24/2014DLC1,2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLCDibromomethaneEPA-8260U101ug/Kg10/24/2014DLCTrans-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC4-Methyl-2-PentanoneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chloroform                | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 1,1-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLCBenzeneEPA-8260U5.01ug/Kg10/24/2014DLCTrichloroetheneEPA-8260U101ug/Kg10/24/2014DLC1,2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLCDibromomethaneEPA-8260U101ug/Kg10/24/2014DLCTrans-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC4-Methyl-2-PentanoneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg <td< td=""><td>1,1,1-Trichloroethane</td><td>EPA-8260</td><td>U</td><td>10</td><td>1</td><td>ug/Kg</td><td>10/24/2014</td><td>DLC</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1,1-Trichloroethane     | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 1.2-DichloroethaneEPA-8260U101ug/Kg10/24/2014DLCBenzeneEPA-8260U5.01ug/Kg10/24/2014DLCTrichloroetheneEPA-8260U101ug/Kg10/24/2014DLC1,2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLCDibromomethaneEPA-8260U101ug/Kg10/24/2014DLCBromodichloropropaneEPA-8260U101ug/Kg10/24/2014DLCTrans-1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLCTolueneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1-Dichloropropene       | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| BenzeneEPA-8260U5.01ug/Kg10/24/2014DLCTrichloroetheneEPA-8260U101ug/Kg10/24/2014DLC1,2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLCDibromomethaneEPA-8260U101ug/Kg10/24/2014DLCBromodichloromethaneEPA-8260U101ug/Kg10/24/2014DLCTrans-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC4-Methyl-2-PentanoneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U501ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg </td <td>1,2-Dichloroethane</td> <td>EPA-8260</td> <td>U</td> <td>10</td> <td>1</td> <td>ug/Kg</td> <td>10/24/2014</td> <td>DLC</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2-Dichloroethane        | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| TrichloroetheneEPA-8260U101Ug/Kg10/24/2014DLC1,2-DichloropropaneEPA-8260U101Ug/Kg10/24/2014DLCDibromomethaneEPA-8260U101Ug/Kg10/24/2014DLCBromodichloromethaneEPA-8260U101Ug/Kg10/24/2014DLCTrans-1,3-DichloropropeneEPA-8260U101Ug/Kg10/24/2014DLC4-Methyl-2-PentanoneEPA-8260U101Ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U501Ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101Ug/Kg10/24/2014DLC1,1,2-TrichloroethaneEPA-8260U101Ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501Ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501Ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501Ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501Ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501Ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101Ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101Ug/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzene                   | EPA-8260                                            | U       | 5.0          | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 1,2-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLCDibromomethaneEPA-8260U101ug/Kg10/24/2014DLCBromodichloromethaneEPA-8260U101ug/Kg10/24/2014DLCTrans-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC4-Methyl-2-PentanoneEPA-8260U501ug/Kg10/24/2014DLCTolueneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroptopeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroptopeneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg <t< td=""><td>Trichloroethene</td><td>EPA-8260</td><td>U</td><td>10</td><td>1</td><td>ug/Kg</td><td>10/24/2014</td><td>DLC</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trichloroethene           | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Dibromomethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Bromodichloromethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Trans-1,3-Dichloropropene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           4-Methyl-2-Pentanone         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Toluene         EPA-8260         U         50         1         ug/Kg         10/24/2014         DLC           Cis-1,3-Dichloropropene         EPA-8260         U         50         1         ug/Kg         10/24/2014         DLC           1,1,2-Trichloroptopene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1,2-Trichloropthane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           2-Hexanone         EPA-8260         U         50         1         ug/Kg         10/24/2014         DLC           1,3-Dichloropropane         EPA-8260         U         10         1         ug/                                                                                                                                                                 | 1,2-Dichloropropane       | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| BromodichloromethaneEPA-8260U101ug/Kg10/24/2014DLCTrans-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC4-Methyl-2-PentanoneEPA-8260U501ug/Kg10/24/2014DLCTolueneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dibromomethane            | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Trans-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC4-Methyl-2-PentanoneEPA-8260U501ug/Kg10/24/2014DLCTolueneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromodichloromethane      | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 4-Methyl-2-PentanoneEPA-8260U501ug/Kg10/24/2014DLCTolueneEPA-8260U101ug/Kg10/24/2014DLCCis-1,3-DichloropropeneEPA-8260U101ug/Kg10/24/2014DLC1,1,2-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U501ug/Kg10/24/2014DLCTetrachloroethyleneEPA-8260U101ug/Kg10/24/2014DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trans-1,3-Dichloropropene | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Toluene         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           Cis-1,3-Dichloropropene         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,1,2-Trichloropthane         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           2-Hexanone         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC           1,3-Dichloropropane         EPA-8260         U         50         1         ug/kg         10/24/2014         DLC           1,3-Dichloropropane         EPA-8260         U         50         1         ug/kg         10/24/2014         DLC           Tetrachloropthylene         EPA-8260         U         10         1         ug/kg         10/24/2014         DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-Methyl-2-Pentanone      | EPA-8260                                            | U       | 50           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Cis-1,3-Dichloropropene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           1,1,2-Trichloroethane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           2-Hexanone         EPA-8260         U         50         1         ug/Kg         10/24/2014         DLC           1,3-Dichloropropane         EPA-8260         U         50         1         ug/Kg         10/24/2014         DLC           1,3-Dichloropropane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Tetrachloroethylene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Toluene                   | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 1,1,2-TrichloroethaneEPA-8260U101ug/Kg10/24/2014DLC2-HexanoneEPA-8260U501ug/Kg10/24/2014DLC1,3-DichloropropaneEPA-8260U101ug/Kg10/24/2014DLCTetrachloroethyleneEPA-8260U101ug/Kg10/24/2014DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cis-1,3-Dichloropropene   | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 2-Hexanone         EPA-8260         U         50         1         ug/Kg         10/24/2014         DLC           1,3-Dichloropropane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Tetrachloropethylene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,2-Trichloroethane     | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| 1,3-Dichloropropane         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC           Tetrachloroethylene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Hexanone                | EPA-8260                                            | U       | 50           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
| Tetrachloroethylene         EPA-8260         U         10         1         ug/Kg         10/24/2014         DLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-Dichloropropane       | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tetrachloroethylene       | EPA-8260                                            | U       | 10           | 1                                         | ug/Kg   | 10/24/2014   | DLC  |

Page 2

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company



|                                                                   |                                                                                                              | CERTIFIC | CATE OF ANALYSIS      |                                                                                      |                                                         |                                                  |                |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------|-----------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|----------------|
| CLIENT:<br>CLIENT CONTACT:<br>CLIENT PROJECT:<br>CLIENT SAMPLE ID | Stratum Group<br>P.O. Box 2546<br>Bellingham, WA 9822<br>Kim Ninnemann<br>Cascade Laundry<br>Sump - Sediment | 27       | DA<br>COLL<br>WDOE AC | DATE:<br>ALS JOB#:<br>ALS SAMPLE#:<br>ATE RECEIVED:<br>LECTION DATE:<br>CREDITATION: | 10/29/2<br>EV141<br>EV141<br>10/22/2<br>10/21/2<br>C601 | 2014<br>00144<br>00144-01<br>2014<br>2014 1:20:0 | 00 PM          |
|                                                                   |                                                                                                              | SAMPL    | E DATA RESULTS        |                                                                                      |                                                         |                                                  |                |
| ANALYTE                                                           | METHOD                                                                                                       | RESULTS  | REPORTING<br>LIMITS   | DILUTION<br>FACTOR                                                                   | UNITS                                                   | ANALYSIS<br>DATE                                 | ANALYSIS<br>BY |
| Dibromochloromethane                                              | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1,2-Dibromoethane                                                 | EPA-8260                                                                                                     | U        | 5.0                   | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| Chlorobenzene                                                     | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1,1,1,2-Tetrachloroethane                                         | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| Ethylbenzene                                                      | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| m,p-Xylene                                                        | EPA-8260                                                                                                     | U        | 20                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| Styrene                                                           | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| o-Xylene                                                          | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| Bromoform                                                         | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| Isopropylbenzene                                                  | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1,1,2,2-Tetrachloroethane                                         | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1,2,3- I richloropropane                                          | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| Bromobenzene                                                      | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| N-Propyl Benzene                                                  | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 2-Chiorotoluene                                                   | EPA-8260                                                                                                     | 0        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1,3,5-1 Innethyidenzene                                           | EPA-6260                                                                                                     | 11       | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| T Butyl Bonzono                                                   | EPA-0200                                                                                                     | 0        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1 2 4-Trimethylbenzene                                            | EPA-8260                                                                                                     | 36       | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| S-Butyl Benzene                                                   | EPA-8260                                                                                                     | 30       | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| P-Isopropyltoluene                                                | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1.3 Dichlorobenzene                                               | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1.4-Dichlorobenzene                                               | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ua/Ka                                                   | 10/24/2014                                       | DLC            |
| N-Butvlbenzene                                                    | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ua/Ka                                                   | 10/24/2014                                       | DLC            |
| 1,2-Dichlorobenzene                                               | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1,2-Dibromo 3-Chloropropane                                       | EPA-8260                                                                                                     | U        | 50                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1,2,4-Trichlorobenzene                                            | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| Hexachlorobutadiene                                               | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| Naphthalene                                                       | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
| 1,2,3-Trichlorobenzene                                            | EPA-8260                                                                                                     | U        | 10                    | 1                                                                                    | ug/Kg                                                   | 10/24/2014                                       | DLC            |
|                                                                   |                                                                                                              |          |                       |                                                                                      |                                                         |                                                  | ANALYSIS       |
| SURROGATE                                                         | METHOD                                                                                                       | %REC     |                       |                                                                                      |                                                         | DATE                                             | Бĭ             |
| C25 5X Dilution                                                   | NWTPH-DX                                                                                                     | 122      |                       |                                                                                      |                                                         | 10/28/2014                                       | EBS            |
| 1,2-Dichloroethane-d4                                             | EPA-8260                                                                                                     | 108      |                       |                                                                                      |                                                         | 10/24/2014                                       | DLC            |
| Toluene-d8                                                        | EPA-8260                                                                                                     | 99.0     |                       |                                                                                      |                                                         | 10/24/2014                                       | DLC            |
| 4-Bromofluorobenzene                                              | EPA-8260                                                                                                     | 138      |                       |                                                                                      |                                                         | 10/24/2014                                       | DLC            |

## Page 3 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER



|                  | CERTIFICATE OF ANALYSIS                                |                                    |                                           |  |  |  |  |
|------------------|--------------------------------------------------------|------------------------------------|-------------------------------------------|--|--|--|--|
| CLIENT:          | Stratum Group<br>P.O. Box 2546<br>Bellingham, WA 98227 | DATE:<br>ALS JOB#:<br>ALS SAMPLE#: | 10/29/2014<br>EV14100144<br>EV14100144-01 |  |  |  |  |
| CLIENT CONTACT:  | Kim Ninnemann                                          | DATE RECEIVED:                     | 10/22/2014                                |  |  |  |  |
| CLIENT PROJECT:  | Cascade Laundry                                        | COLLECTION DATE:                   | 10/21/2014 1:20:00 PM                     |  |  |  |  |
| CLIENT SAMPLE ID | Sump - Sediment                                        | WDOE ACCREDITATION:                | C601                                      |  |  |  |  |
|                  |                                                        |                                    |                                           |  |  |  |  |

SAMPLE DATA RESULTS

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains weathered diesel and lube oil. Diesel range product results biased high due to oil range product overlap.

Page 4 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER



|                                                                   |                                                                                                         | CERTIFIC | ATE OF ANALYSIS       |                                                                                       |                                                         |                                                  |                |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|-----------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|----------------|
| CLIENT:<br>CLIENT CONTACT:<br>CLIENT PROJECT:<br>CLIENT SAMPLE ID | Stratum Group<br>P.O. Box 2546<br>Bellingham, WA 98<br>Kim Ninnemann<br>Cascade Laundry<br>Sump - Water | 227      | D/<br>COLI<br>WDOE AC | DATE:<br>ALS JOB#:<br>ALS SAMPLE#:<br>ATE RECEIVED:<br>LECTION DATE:<br>CCREDITATION: | 10/29/2<br>EV141<br>EV141<br>10/22/2<br>10/21/2<br>C601 | 2014<br>00144<br>00144-02<br>2014<br>2014 1:15:0 | )0 PM          |
|                                                                   |                                                                                                         | SAMPLE   | DATA RESULTS          |                                                                                       |                                                         |                                                  |                |
| ANALYTE                                                           | METHOD                                                                                                  | RESULTS  | REPORTING<br>LIMITS   | DILUTION<br>FACTOR                                                                    | UNITS                                                   | ANALYSIS<br>DATE                                 | ANALYSIS<br>BY |
| Dichlorodifluoromethane                                           | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Chloromethane                                                     | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Vinyl Chloride                                                    | EPA-8260                                                                                                | U        | 0.20                  | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Bromomethane                                                      | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Chloroethane                                                      | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Carbon Tetrachloride                                              | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Trichlorofluoromethane                                            | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Carbon Disulfide                                                  | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Acetone                                                           | EPA-8260                                                                                                | U        | 25                    | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,1-Dichloroethene                                                | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Methylene Chloride                                                | EPA-8260                                                                                                | U        | 5.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Acrylonitrile                                                     | EPA-8260                                                                                                | U        | 10                    | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Methyl T-Butyl Ether                                              | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Trans-1,2-Dichloroethene                                          | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,1-Dichloroethane                                                | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 2-Butanone                                                        | EPA-8260                                                                                                | U        | 10                    | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Cis-1,2-Dichloroethene                                            | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 2,2-Dichloropropane                                               | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Bromochloromethane                                                | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Chloroform                                                        | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,1,1-Trichloroethane                                             | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,1-Dichloropropene                                               | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,2-Dichloroethane                                                | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Benzene                                                           | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Trichloroethene                                                   | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,2-Dichloropropane                                               | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Dibromomethane                                                    | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Bromodichloromethane                                              | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Trans-1,3-Dichloropropene                                         | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 4-Methyl-2-Pentanone                                              | EPA-8260                                                                                                | U        | 10                    | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
|                                                                   | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Cis-1,3-Dichloropropene                                           | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,1,2-I richloroethane                                            | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
|                                                                   | EPA-8260                                                                                                | U        | 10                    | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
|                                                                   | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
|                                                                   | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       |                |
|                                                                   | EPA-8260                                                                                                | U        | 2.0                   | 1                                                                                     | ug/L                                                    | 10/23/2014                                       |                |
| 1,2-DIDIDITIOEUTATIE                                              | EPA-0200                                                                                                | 0        | 0.01                  | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |

Page 5

PHONE 425-356-2600 FAX 425-356-2626 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 ALS Laboratory Group A Campbell Brothers Limited Company



|                                                                   |                                                                                                          | CERTIFIC | ATE OF ANALYSIS     |                                                                                       |                                                         |                                                  |                |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------|---------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|----------------|
| CLIENT:<br>CLIENT CONTACT:<br>CLIENT PROJECT:<br>CLIENT SAMPLE ID | Stratum Group<br>P.O. Box 2546<br>Bellingham, WA 982<br>Kim Ninnemann<br>Cascade Laundry<br>Sump - Water | 27       | D<br>COL<br>WDOE AG | DATE:<br>ALS JOB#:<br>ALS SAMPLE#:<br>ATE RECEIVED:<br>LECTION DATE:<br>CCREDITATION: | 10/29/2<br>EV141<br>EV141<br>10/22/2<br>10/21/2<br>C601 | 2014<br>00144<br>00144-02<br>2014<br>2014 1:15:0 | 00 PM          |
|                                                                   |                                                                                                          | SAMPLE   | E DATA RESULTS      |                                                                                       |                                                         |                                                  |                |
|                                                                   |                                                                                                          |          |                     |                                                                                       |                                                         |                                                  |                |
| ANALYTE                                                           |                                                                                                          | RESULTS  |                     | ACTOR                                                                                 | UNITS                                                   | 10/00/0014                                       |                |
|                                                                   | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| 1,1,1,2-1 etrachioroethane                                        | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Etnyibenzene                                                      | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| m,p-xyiene                                                        | EPA-8260                                                                                                 | U        | 4.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| Styrene                                                           | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 0-Aylene<br>Bramafarm                                             | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| BIOMOIOM                                                          | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
|                                                                   | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| 1,1,2,2-Tellachioroelinane                                        | EPA-0200                                                                                                 | 0        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| Remotionation                                                     | EPA-0200                                                                                                 | 0        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| bromobenzene                                                      | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| N-Propyl Benzene                                                  | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| 2-Chiorotoluene                                                   | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| 1,3,5-1 hmeinyibenzene                                            | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| T Putul Ponzono                                                   | EPA-0200                                                                                                 | 0        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| 1-Dulyi Derizerie                                                 | EPA-0200                                                                                                 | 0        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| 1,2,4-1 Inneuryidenzene                                           | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| S-Bulyi Berizene                                                  | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| P-isopropyitoluene                                                | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,3 Dichlorobenzene                                               | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,4-Dichlorobenzene                                               | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| N-Butyibenzene                                                    | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,2-Dichlorobenzene                                               | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
| 1,2-Dibromo 3-Chioropropane                                       | EPA-8260                                                                                                 | U        | 10                  | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| 1,2,4-1 nchioropenzene                                            | EPA-8260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| Nextchioropulaciene                                               | EPA-6260                                                                                                 | U        | 2.0                 | 1                                                                                     | ug/L                                                    | 10/23/2014                                       | DLC            |
|                                                                   | EPA-0200                                                                                                 | 0        | 2.0                 | 1                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| 1,2,3-11101000012010                                              | EFA-0200                                                                                                 | 0        | 2.0                 | I                                                                                     | ug/∟                                                    | 10/23/2014                                       | DLC            |
| SUPPOGATE                                                         | METHOD                                                                                                   | % DEC    |                     |                                                                                       |                                                         | ANALYSIS<br>DATE                                 | ANALYSIS<br>BY |
| 1 2 Dichloroothana d4                                             |                                                                                                          | -70REC   |                     |                                                                                       |                                                         | 10/22/2044                                       |                |
| i,∠-Dicnioroetnane-α4                                             | EPA-8260                                                                                                 | 98.4     |                     |                                                                                       |                                                         | 10/23/2014                                       | DLC            |
| A Bromofluorobonzono                                              |                                                                                                          | 102      |                     |                                                                                       |                                                         | 10/23/2014                                       |                |
| +-DIOMONUOUODENZENE                                               | EFA-0200                                                                                                 | 100      |                     |                                                                                       |                                                         | 10/23/2014                                       | DLC            |

U - Analyte analyzed for but not detected at level above reporting limit.

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

Page 6

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER



| CLIENT:         | Stratum Group        |             |
|-----------------|----------------------|-------------|
|                 | P.O. Box 2546        | А           |
|                 | Bellingham, WA 98227 | WDOE ACCREI |
| CLIENT CONTACT: | Kim Ninnemann        |             |
| CLIENT PROJECT: | Cascade Laundry      |             |

#### DATE: 10/29/2014 ALS SDG#: EV14100144 DOE ACCREDITATION: C601

### LABORATORY BLANK RESULTS

#### MB-102114S2 - Batch 87185 - Soil by NWTPH-DX

|                  |          |         | REPORTING | DILUTION |       | ANALYSIS A | NALYSIS |
|------------------|----------|---------|-----------|----------|-------|------------|---------|
| ANALYTE          | METHOD   | RESULTS | LIMITS    | FACTOR   | UNITS | DATE       | BY      |
| TPH-Diesel Range | NWTPH-DX | U       | 25        | 1        | MG/KG | 10/21/2014 | EBS     |
| TPH-Oil Range    | NWTPH-DX | U       | 50        | 1        | MG/KG | 10/21/2014 | EBS     |

U - Analyte analyzed for but not detected at level above reporting limit.

#### MB-102314S - Batch 87329 - Soil by EPA-8260

| ANALYTE                   | METHOD   | RESULTS | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|----------|---------|---------------------|--------------------|-------|------------------|----------------|
| Dichlorodifluoromethane   | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Chloromethane             | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Vinyl Chloride            | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Bromomethane              | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Chloroethane              | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Carbon Tetrachloride      | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Trichlorofluoromethane    | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Carbon Disulfide          | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Acetone                   | EPA-8260 | U       | 50                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 1,1-Dichloroethene        | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Methylene Chloride        | EPA-8260 | U       | 20                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Acrylonitrile             | EPA-8260 | U       | 50                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Methyl T-Butyl Ether      | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Trans-1,2-Dichloroethene  | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 1,1-Dichloroethane        | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 2-Butanone                | EPA-8260 | U       | 50                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Cis-1,2-Dichloroethene    | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 2,2-Dichloropropane       | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Bromochloromethane        | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Chloroform                | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 1,1,1-Trichloroethane     | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 1,1-Dichloropropene       | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 1,2-Dichloroethane        | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Benzene                   | EPA-8260 | U       | 5.0                 | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Trichloroethene           | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 1,2-Dichloropropane       | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Dibromomethane            | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Bromodichloromethane      | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Trans-1,3-Dichloropropene | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| 4-Methyl-2-Pentanone      | EPA-8260 | U       | 50                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
| Toluene                   | EPA-8260 | U       | 10                  | 1                  | ug/Kg | 10/23/2014       | DLC            |
|                           |          |         |                     |                    |       |                  |                |

Page 7

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company



| CLIENT:<br>CLIENT CONTACT:<br>CLIENT PROJECT: | Stratum Group<br>P.O. Box 2546<br>Bellingham, WA 98227<br>Kim Ninnemann<br>Cascade Laundry | DATE:<br>ALS SDG#:<br>WDOE ACCREDITATION: | 10/29/2014<br>EV14100144<br>C601 |
|-----------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|
|                                               | L                                                                                          | ABORATORY BLANK RESULTS                   |                                  |

#### MB-102314S - Batch 87329 - Soil by EPA-8260

| Cis-1,3-Dichloropropene     | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
|-----------------------------|----------|---|-----|---|-------|------------|-----|--|
| 1,1,2-Trichloroethane       | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 2-Hexanone                  | EPA-8260 | U | 50  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,3-Dichloropropane         | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Tetrachloroethylene         | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Dibromochloromethane        | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,2-Dibromoethane           | EPA-8260 | U | 5.0 | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Chlorobenzene               | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,1,1,2-Tetrachloroethane   | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Ethylbenzene                | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| m,p-Xylene                  | EPA-8260 | U | 20  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Styrene                     | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| o-Xylene                    | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Bromoform                   | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Isopropylbenzene            | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,1,2,2-Tetrachloroethane   | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,2,3-Trichloropropane      | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Bromobenzene                | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| N-Propyl Benzene            | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 2-Chlorotoluene             | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,3,5-Trimethylbenzene      | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 4-Chlorotoluene             | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| T-Butyl Benzene             | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,2,4-Trimethylbenzene      | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| S-Butyl Benzene             | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| P-Isopropyltoluene          | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,3 Dichlorobenzene         | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,4-Dichlorobenzene         | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| N-Butylbenzene              | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,2-Dichlorobenzene         | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | U | 50  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,2,4-Trichlorobenzene      | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Hexachlorobutadiene         | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| Naphthalene                 | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |
| 1,2,3-Trichlorobenzene      | EPA-8260 | U | 10  | 1 | ug/Kg | 10/23/2014 | DLC |  |

U - Analyte analyzed for but not detected at level above reporting limit.

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

Page 8

RIGHT SOLUTIONS BIGHT PARTNER



| CLIENT:         | 5 |
|-----------------|---|
|                 | F |
|                 | E |
| CLIENT CONTACT: | k |
| CLIENT PROJECT: | ( |

.....

Stratum Group P.O. Box 2546 Bellingham, WA 98227 Kim Ninnemann Cascade Laundry DATE: 1( ALS SDG#: E' WDOE ACCREDITATION: C

10/29/2014 EV14100144 C601

#### LABORATORY BLANK RESULTS

#### MB-102214W - Batch 87186 - Water by EPA-8260

| ANALYTE                   | METHOD   | RESULTS | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS | ANALYSIS DATE | ANALYSIS<br>BY |
|---------------------------|----------|---------|---------------------|--------------------|-------|---------------|----------------|
| Dichlorodifluoromethane   | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Chloromethane             | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Vinyl Chloride            | EPA-8260 | U       | 0.20                | 1                  | ug/L  | 10/22/2014    | DLC            |
| Bromomethane              | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Chloroethane              | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Carbon Tetrachloride      | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Trichlorofluoromethane    | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Carbon Disulfide          | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Acetone                   | EPA-8260 | U       | 25                  | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,1-Dichloroethene        | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Methylene Chloride        | EPA-8260 | U       | 5.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Acrylonitrile             | EPA-8260 | U       | 10                  | 1                  | ug/L  | 10/22/2014    | DLC            |
| Methyl T-Butyl Ether      | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Trans-1,2-Dichloroethene  | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,1-Dichloroethane        | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 2-Butanone                | EPA-8260 | U       | 10                  | 1                  | ug/L  | 10/22/2014    | DLC            |
| Cis-1,2-Dichloroethene    | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 2,2-Dichloropropane       | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Bromochloromethane        | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Chloroform                | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,1,1-Trichloroethane     | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,1-Dichloropropene       | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,2-Dichloroethane        | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Benzene                   | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Trichloroethene           | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,2-Dichloropropane       | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Dibromomethane            | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Bromodichloromethane      | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Trans-1,3-Dichloropropene | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 4-Methyl-2-Pentanone      | EPA-8260 | U       | 10                  | 1                  | ug/L  | 10/22/2014    | DLC            |
| Toluene                   | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Cis-1,3-Dichloropropene   | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,1,2-Trichloroethane     | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 2-Hexanone                | EPA-8260 | U       | 10                  | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,3-Dichloropropane       | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Tetrachloroethylene       | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| Dibromochloromethane      | EPA-8260 | U       | 2.0                 | 1                  | ug/L  | 10/22/2014    | DLC            |
| 1,2-Dibromoethane         | EPA-8260 | U       | 0.01                | 1                  | ug/L  | 10/22/2014    | DLC            |

Page 9

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company



|                             | Stratum Group          |     |                  |             | 10/20/2 | 014        |     |
|-----------------------------|------------------------|-----|------------------|-------------|---------|------------|-----|
|                             | P.O. Box 2546          |     |                  | ALS SDG#    |         | EV14100144 |     |
|                             | Bellingham, WA 98227   |     | WDOE ACCI        | REDITATION: | C601    |            |     |
| CLIENT CONTACT:             | Kim Ninnemann          |     |                  |             |         |            |     |
| CLIENT PROJECT:             | Cascade Laundry        |     |                  |             |         |            |     |
|                             |                        |     |                  | · C         |         |            |     |
|                             |                        |     | JRT BLANK RESULT | 3           |         |            |     |
| MB-102214W - Batch          | 87186 - Water by EPA-8 | 260 |                  |             |         |            |     |
| Chlorobenzene               | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,1,1,2-Tetrachloroethane   | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| Ethylbenzene                | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| m,p-Xylene                  | EPA-8260               | U   | 4.0              | 1           | ug/L    | 10/22/2014 | DLC |
| Styrene                     | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| o-Xylene                    | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| Bromoform                   | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| lsopropylbenzene            | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,1,2,2-Tetrachloroethane   | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,2,3-Trichloropropane      | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| Bromobenzene                | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| N-Propyl Benzene            | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 2-Chlorotoluene             | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,3,5-Trimethylbenzene      | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 4-Chlorotoluene             | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| T-Butyl Benzene             | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,2,4-Trimethylbenzene      | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| S-Butyl Benzene             | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| P-Isopropyltoluene          | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,3 Dichlorobenzene         | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,4-Dichlorobenzene         | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| N-Butylbenzene              | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,2-Dichlorobenzene         | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,2-Dibromo 3-Chloropropane | EPA-8260               | U   | 10               | 1           | ug/L    | 10/22/2014 | DLC |
| 1,2,4-Trichlorobenzene      | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| Hexachlorobutadiene         | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| Naphthalene                 | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
| 1,2,3-Trichlorobenzene      | EPA-8260               | U   | 2.0              | 1           | ug/L    | 10/22/2014 | DLC |
|                             |                        |     |                  |             | -       |            |     |

U - Analyte analyzed for but not detected at level above reporting limit.

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

Page 10

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER



| CLIENT:         | Stratum Group        |         |
|-----------------|----------------------|---------|
|                 | P.O. Box 2546        |         |
|                 | Bellingham, WA 98227 | WDOE AC |
| CLIENT CONTACT: | Kim Ninnemann        |         |
| CLIENT PROJECT: | Cascade Laundry      |         |

#### ALS SDG#: EV14100144 CREDITATION: C601

DATE:

10/29/2014

#### LABORATORY CONTROL SAMPLE RESULTS

#### ALS Test Batch ID: 87185 - Soil by NWTPH-DX

|                        |          |      |     |      | ANALYSIS   | ANALYSIS |
|------------------------|----------|------|-----|------|------------|----------|
| SPIKED COMPOUND        | METHOD   | %REC | RPD | QUAL | DATE       | BY       |
| TPH-Diesel Range - BS  | NWTPH-DX | 96.6 |     |      | 10/22/2014 | EBS      |
| TPH-Diesel Range - BSD | NWTPH-DX | 87.0 | 10  |      | 10/21/2014 | EBS      |

#### ALS Test Batch ID: 87329 - Soil by EPA-8260

| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|--------------------------|----------|------|-----|------|------------------|----------------|
| 1,1-Dichloroethene - BS  | EPA-8260 | 94.3 |     |      | 10/23/2014       | DLC            |
| 1,1-Dichloroethene - BSD | EPA-8260 | 113  | 18  |      | 10/23/2014       | DLC            |
| Benzene - BS             | EPA-8260 | 97.4 |     |      | 10/23/2014       | DLC            |
| Benzene - BSD            | EPA-8260 | 90.5 | 7   |      | 10/23/2014       | DLC            |
| Trichloroethene - BS     | EPA-8260 | 93.4 |     |      | 10/23/2014       | DLC            |
| Trichloroethene - BSD    | EPA-8260 | 85.8 | 8   |      | 10/23/2014       | DLC            |
| Toluene - BS             | EPA-8260 | 95.8 |     |      | 10/23/2014       | DLC            |
| Toluene - BSD            | EPA-8260 | 91.0 | 5   |      | 10/23/2014       | DLC            |
| Chlorobenzene - BS       | EPA-8260 | 90.5 |     |      | 10/23/2014       | DLC            |
| Chlorobenzene - BSD      | EPA-8260 | 87.6 | 3   |      | 10/23/2014       | DLC            |

#### ALS Test Batch ID: 87186 - Water by EPA-8260

|                          |          |      |     |      | ANALYSIS   | ANALYSIS |  |
|--------------------------|----------|------|-----|------|------------|----------|--|
| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | DATE       | BY       |  |
| 1,1-Dichloroethene - BS  | EPA-8260 | 111  |     |      | 10/22/2014 | DLC      |  |
| 1,1-Dichloroethene - BSD | EPA-8260 | 90.6 | 20  |      | 10/22/2014 | DLC      |  |
| Benzene - BS             | EPA-8260 | 113  |     |      | 10/22/2014 | DLC      |  |
| Benzene - BSD            | EPA-8260 | 99.4 | 13  |      | 10/22/2014 | DLC      |  |
| Trichloroethene - BS     | EPA-8260 | 112  |     |      | 10/22/2014 | DLC      |  |
| Trichloroethene - BSD    | EPA-8260 | 98.9 | 12  |      | 10/22/2014 | DLC      |  |
| Toluene - BS             | EPA-8260 | 106  |     |      | 10/22/2014 | DLC      |  |
| Toluene - BSD            | EPA-8260 | 92.8 | 13  |      | 10/22/2014 | DLC      |  |
| Chlorobenzene - BS       | EPA-8260 | 108  |     |      | 10/22/2014 | DLC      |  |
| Chlorobenzene - BSD      | EPA-8260 | 97.9 | 10  |      | 10/22/2014 | DLC      |  |

APPROVED BY

Laboratory Director

Page 11

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com RIGHT SOLUTIONS RIGHT PARTNER

LABORATORY COPY

### **APPENDIX III**

Underground Storage Tank Site Check/Site Assessment Checklist (Welch, 1992) Tank Removal Report (Whatcom Environmental Services, 2010) Phase I and Phase II Environmental Site Assessment (Stratum Group, 2006) Phase II Environmental Borings (GeoEngineers, 2007) Site Characterization Report (Whatcom Environmental Services, March 2011) Site Characterization Report – Building Interior Soil Borings (Whatcom Environmental Services, 2012)

Received lime Aug. MA3E:9



### UNDERG! JUND STORAGE TANK

Site Check/Site Assessment Checklist

The purpose of this form is to certify the proper investigation of an UST site for the presence of a release. These activities shall be conducted in accordance with Chapter 173.360 WAC. A description of the various situations requiring a site check or site assessment is provided in the guidance document for UST site checks and site assessments.

This Site Check/Site Assessment Checklist shall be completed and signed by a person registered with the Department of Ecology to perform site assessments,

Two copies of the results of the site check or site assessment should be included with this checklist according to the reporting requirements in the guidance document for UST site checks and site assessments.

For further information about completing this form, please contact the Department of Ecology UST Program.

JAN 27 1992

The completed checklist should be mailed to the following address:

DEPARTMENT OF ECULOR INDERGROUND STORAGE TANUTH derground Storage Tank Section Department of Ecology Mail Stop PV-11

Olympla, WA 98504-8711

| ST Owner/Operator                                      | Cascade Laundry &                                                                                               | Cleaners, Inc                        |                               |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|
| wners Address;                                         | 205 Prospect                                                                                                    | Jieaners, Inc.                       | P.D. Boy                      |
|                                                        | Bellingham WA                                                                                                   | 4.                                   | 98225                         |
| elephone:                                              | (206) 734-4200                                                                                                  | State                                | ZIP-Code                      |
|                                                        |                                                                                                                 |                                      |                               |
|                                                        | Section 1. Constraints                                                                                          |                                      |                               |
| te ID NUMBER (on Inv                                   | voice or available from Ecology if                                                                              | tank is registered):005617           |                               |
| te/Business Name;                                      | Cascade Laundry & C                                                                                             | leaners, Inc.                        |                               |
| te Address:                                            | 205 Prospect                                                                                                    | Carlos Carlos                        | Whatcom                       |
|                                                        | Street<br>Re11                                                                                                  |                                      | County                        |
|                                                        | City                                                                                                            | State                                | 98225<br>ZP-Code              |
|                                                        | " all the definition of the second |                                      |                               |
| SITE CHECK/SI                                          | Rebert W. Walat                                                                                                 | TED BY:                              |                               |
| SITE CHECK/SI                                          | Robert H. Welch                                                                                                 | TED BY:                              |                               |
| SITE CHECK/SI<br>agistered Person:<br>idress:          | Robert H. Welch<br>POB 366 (315 Main                                                                            | TED BY:                              |                               |
| SITE CHECK/SI<br>agistered Person:<br>Idress:          | Robert H. Welch<br>POB 366 (315 Main<br>POB Vernon                                                              | n.Suite A)                           | P.O. Box                      |
| SITE CHECK/SI<br>agistered Person:<br>dress:           | Robert H. Welch<br>POB 366 (315 Main<br>Bureet<br>Mount Vernon<br>Glly<br>(206 ) 336-9579                       | TED BY:<br>n.Suite A)<br>WA<br>State | P.O. Box<br>98273<br>2P-Code  |
| SITE CHECK/SI<br>gistered Person:<br>dress:<br>ephone: | Robert H. Welch<br>POB 366 (315 Main<br>POB 366 (315 Main<br>Bureet<br>Mount Vernon<br>City<br>(206 ) 336-9579  | TED BY:                              | P.O. Box<br>98273<br>ZIP-Code |

No. 6237 9.9

MAQE: 0 7002 .8 .8 UA

| Tank ID Number (as registered with Ecovyy): 2. Year installed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|
| Tank capacity in gallons:500 4, Last substance stored:gasolin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e                  | <i></i> |
| REASON FOR CONDUCTING SITE GHECK/SITE ASSESSMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |         |
| Investigate suspected release due to on-site environmental contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |         |
| Investigate suspected release due to off-site environmental contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |         |
| Extend temporary closure of UST system for more than 12 months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |         |
| UST system undergoing change-in-service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |         |
| X UST system permanently closed-in-place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |         |
| UST system permanently closed with tank removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |         |
| Required by Ecology or delegated agency for UST system closed before December 22, 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                  |         |
| Other (describe):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |         |
| CHECKUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |         |
| signature appears below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yea                | No      |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yea                | No      |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yea                | No      |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?<br>Has a release from the UST system been confirmed?<br>NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yea                | No      |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?<br>Has a release from the UST system been confirmed?<br>NOTE: Owners/operators must report ell confirmed releases to the Department of Ecology or delegated agency within 24 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yea                | No      |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?<br>Has a release from the UST system been confirmed?<br>NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours.<br>Are the results of the site check/site assessment enclosed with this checklist?<br>NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                | No      |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?<br>Has a release from the UST system been confirmed?<br>NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours.<br>Are the results of the site check/site assessment enclosed with this checklist?<br>NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site oheck/site assessment guidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yea<br>X<br>X      | X       |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?<br>Has a release from the UST system been confirmed?<br>NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24 hours.<br>Are the results of the site check/site assessment enclosed with this checklist?<br>NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site oheck/site assessment guidance.<br>I hereby certify that I have been in responsible charge of performing the site check/site assessment described about the Persons submitting false information are subject to penalties under Chapter 173.360 WAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yea<br>X<br>X      | X       |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST<br>site check/site assessment guidance issued by the Department of Ecology?<br>Has a release from the UST system been confirmed?<br>NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24<br>hours.<br>Are the results of the site check/site assessment enclosed with this checklist?<br>NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the<br>reporting requirements specified in the UST site oheck/site assessment guidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes<br>X<br>X      | X       |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST<br>site check/site assessment guidance issued by the Department of Ecology?<br>Has a release from the UST system been confirmed?<br>NOTE: Owners/operators must report all confirmed releases to the Department of Ecology or delegated agency within 24<br>hours.<br>Are the results of the site check/site assessment enclosed with this checklist?<br>NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the<br>reporting requirements specified in the UST site oheck/site assessment guidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes<br>X<br>X      | No      |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?         Has a release from the UST system been confirmed?         NOTE: Owners/operators must report all confirme releases to the Department of Ecology or delegated agency within 24 hours.         Are the results of the site check/site assessment enclosed with this checklist?         NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements epocified in the UST site check/site assessment guidance.         I hereby certify that I have been in responsible charge of performing the site check/site assessment described abor Persons submitting false information are subject to penaltiles under Chapter 173.360 WAC.         U23.19.2       Data Department Person Registered with Ecology                                                                                                                                                                                                                                                                                                                                                                                                              | Yes<br>X<br>X<br>x | X       |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?         Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?         Has a release from the UST system been confirmed?         NOTE: Owners/operators must report all confirmer releases to the Department of Ecology or delegated agency within 24 hours.         Are the results of the site check/site assessment enclosed with this checklist?         NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site check/site assessment guidance.         I hereby certify that I have been in responsible charge of performing the site check/site assessment described abor Persons submitting false information are subject to penalities under Chapter 173.360 WAC.         Variable 2012       Data Data Data Data Data Data Data Data                                                                                                                                                                                                                    | Yes<br>X<br>X      | X       |
| Has the site check/site assessment been conducted according to applicable procedures specified in the UST site check/site assessment guidance issued by the Department of Ecology?         Has the site check/site assessment guidance issued by the Department of Ecology?         Has a release from the UST system been confirmed?         NOTE: Owners/operators must report all confirme releases to the Department of Ecology or delegated agency within 24 hours.         Are the results of the site check/site assessment enclosed with this checklist?         NOTE: Two copies of the site check/site assessment enclosed with this checklist?         NOTE: Two copies of the site check/site assessment enclosed with this checklist?         NOTE: Two copies of the site check/site assessment results must be submitted to the Department of Ecology according to the reporting requirements specified in the UST site oheck/site assessment guidance.         I hereby certify that I have been in responsible charge of performing the site check/site assessment described abor Persons submitting false information are subject to penalities under Chapter 173.360 WAC.         U23192       Defent of Person Registered with Ecology         OWNER'S SIGNATURE       Signature of Person Registered with Ecology         U23192       Signature of Authonized Representative 1 | Yes<br>X<br>X      | X       |

### MWELATCOIN LIENVIRONMENTAL

soil | water | air compliance consulting

228 East Champion Street, Suite 101 Bellingham, WA 98225 tel 360.752.9571 [fax 360.752.9573 www.whatcomenvironmental.com

November 8, 2010

Mrs. Diana O'Hara Cascade Laundry and Cleaners, Inc. 193 East Laurel Road Bellingham, WA 98226

#### RE: Underground Storage Tank Site Assessment at Closure – Cascade Laundry Facility, 205 Prospect Street, Bellingham, Washington (FSID# 21786898)

Mrs. O'Hara:

Whatcom Environmental Services Inc. has completed a Site Assessment of an Underground Storage Tank (UST) closure conducted at 205 Prospect Street in Bellingham, Washington. The property owner is Cascade Laundry & Cleaners. Whatcom Environmental conducted the UST Site Assessment at the time two abandoned USTs (one 3,200 gallon Bunker C tank and one 300 gallon tetrachloroethylene [PERC] tank) were closed and removed from the ground. Soil samples were collected from native soils on the sidewalls and the floor of the two tank-pit excavations in accordance with Washington State Department of Ecology (Ecology) UST Site Assessment guidance standards (Ecology, 2003).

Field screening and soil sample analytical results indicated that a release of petroleum products has occurred to soil at the site from the PERC UST system.

This letter report was prepared by Whatcom Environmental and the information provided in the report supplements the completed UST Site Check/Site Assessment Checklist, included as Appendix A.



#### Site Setting

The two abandoned USTs were formerly located at the Cascade Laundry building at 205 Prospect Street in Bellingham, Washington. The site is located in an area zoned Commercial by the City of Bellingham. The subject property is located approximately 0.1 miles northeast of the mouth of Whatcom Creek and has a median elevation of 60 feet above mean sea level. The site is relatively level but does slope slightly towards the west. A site location map is provided as Figure 1.

The removed USTs consisted of one 3,200 gallon tank and one 300 gallon tank. The abandoned tanks were assumed to have historically stored Bunker C fuel oil and PERC for dry cleaning based on the history of the subject property and anecdotal evidence provided by the owner. The subject property is listed in the Washington State UST databases and has an associated Facility Site Identification number of 21786898. A map showing the location of the two removed tanks and other pertinent site features is provided as Figure 2.

One additional UST is listed in the UST database entry for the subject property. This "gasoline" UST was reported by the owner to have been decommissioned at some time in the past. The tank location was reported to have been on the west side of the Cascade Laundry facility, near the boiler room entrance.

Soils in the area of the subject property are described in the Soil Survey of Whatcom County Area Washington (USDA, 1992). Soils at the property are described as Urban land with slopes from 0 to 3 percent. Urban land consists of buildings, paved streets and parking lots where identification of soils is impractical.

The property is underlain by Bellingham Glaciomarine drift which consists of moderately sorted to unsorted diamicton with lenses and discontinuous beds of moderately to well-sorted gravel, sand, silt, and clay. Bedding is massive to poorly stratified. Color is blue-gray to olive-gray depending on oxidation state. Thickness ranges to as much as 90 meters. The unit is consistently firm to very hard, depending on moisture content. The unit is predominantly dry to slightly moist (WSDNR, 2000). The unit acts as an aquitard, impeding vertical migration of contaminants.

The depth to groundwater at the site on the day the tanks were removed is unknown. An online search of the Washington State Well Log Database (http://apps.ecy.wa.gov/welllog/) was conducted and one soil boring was discovered.

2

The boring was drilled to a depth of 27 feet below ground surface (bgs) at the subject property in August of 2007. A temporary stainless steel well screen was used to collect a groundwater sample. The static water level reported on the bore log was 12 feet bgs. No groundwater wells were located on the subject property in the vicinity of the UST pits, therefore no groundwater investigation was undertaken as part of this UST Site Assessment. A copy of the bore log located on the WA State Well Log Database is provided in Appendix B.

#### Tank Closure

Mr. Thomas Davis of Whatcom Environmental Services observed the removal of the USTs from the property on October 13, 2010. Mr. Davis is a registered underground storage tank site assessor. Western Refinery Services (WRS) provided excavation services and WL Repair of Ferndale, Washington conducted the UST closure services during the UST decommissioning and removal.

The two tanks were located in separate excavations. The bunker tank was overlain by approximately 1 foot of overburden and the PERC tank was overlain by approximately 4 feet of overburden. Both tanks were bedded in what appeared to be native backfill material. A map showing the approximate location of the two USTs is provided as Figure 2.

#### Tank 1-N (ID# 37818) - Bunker C Fuel Oil

The northern UST, Tank 1-N, was a 3,200 gallon, single-walled, steel tank which measured approximately 6.25 feet in diameter and was approximately 14 feet long. Approximately 7 inches of residual oil were removed from the tank prior to excavation and removal from the ground.

The installation date of the tank is unknown. The tank was reportedly used to store Bunker C fuel oil for the laundry's boiler. The tank was abandoned at some unknown time in the past. The tank vent line had been cut-off to ground level. Product piping was located above the tank, within the tank pit and the tank was situated directly adjacent to the building wall; therefore, no piping samples were collected.

No leak detection or corrosion protection systems were associated with Tank 1-N. The tank steel appeared in poor condition with excessive corrosion and scaling when it was removed from the ground. No holes were observed in the tank exterior.

#### Tank 1-S (ID# 37641) - PERC

The southern UST, Tank 1-S, was a 300 gallon, single-walled, steel tank which measured approximately 3.17 feet in diameter and was approximately 5 feet long. Western Refinery Services pumped approximately 225 gallons of water (4.25 drums) from the tank prior to excavation and removal. Approximately 6 inches of residual sludge remained in the tank when it was removed from the ground.

The installation date of the tank is unknown. The tank was reportedly used to store tetrachloroethylene [PERC] for the laundry's dry cleaning section. The PERC tank was abandoned at some unknown time in the past. The tank vent line had been cut-off to ground level. Product piping was located above the tank, within the tank pit and the tank was situated directly adjacent to the building wall; therefore, no piping samples were collected.

No leak detection or corrosion protection systems were associated with Tank 1-S. The tank steel appeared in poor condition with excessive corrosion and pitting when it was removed from the ground. No holes were observed in the tank exterior, however, excessive oxidation of the tank steel left a veneer of welded gravel on the tank which was not removed due to fear of compromising the integrity of the tank which still contained some residual sludge.

#### Site Assessment Soil Sampling

During the UST removal, excavated soil was field screened by conducting sheen tests and by conducting organic vapor analysis using a photoionization detector (PID). Soil samples were collected from the tank-pit excavations after the tanks were removed from the excavations. Any contaminated tank-pit backfill material was placed back in the excavation for removal at a later date.

Six discrete soil samples were collected from the tank-pit excavations as part of this UST Site Assessment; one sample from beneath each tank on the excavation floor and two samples from two sidewalls in each tank-pit. Two composite samples were collected from the clean overburden stockpiles associated with each UST. All soil samples were collected from native soils using EPA Method 5035A. Soil samples were collected using stainless steel sampling tools. Soil was placed in clean sample containers provided by the lab, cooled with ice in a cooler, and shipped to ALS Laboratory Group in Everett, Washington. ALS is accredited by Ecology. The Site Assessment soil sample locations are shown on Figure 2.

The Bunker C tank pit Site Assessment soil samples were analyzed for diesel range Total Petroleum Hydrocarbons (TPH) using Method NWTPH-Dx; benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 8021; arsenic, cadmium, chromium, and lead using Method EPA 6020; and mercury using Method EPA 7471.

The PERC tank pit Site Assessment soil samples were analyzed for gasoline range TPH using Method NWTPH-Gx; benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 8021; and halogenated volatiles using EPA Method 8260.

Analytical results were compared to the Washington State Model Toxics Control Act (MTCA) Method A cleanup levels for unrestricted land-use.

#### Site Assessment Soil Sample Descriptions and Analytical Results

Soil samples collected from the two UST excavations consisted generally of brown silty fine sand to silty clay that ranged from loose to firm depending on the moisture content and the depth collected. A complete list of soil sample descriptions, locations, depths of collection, and field screening results is included in Table 1.

Laboratory analytical results indicated that none of the soil samples collected from the clean overburden stockpile, native sidewalls or floor of the Bunker C UST excavation contained concentrations of diesel range TPH, BTEX constituents, or metals at levels exceeding the MTCA Method A cleanup criteria. A summary of laboratory analytical results is provided in Table 2. The original analytical data reports are included in Appendix C.

Laboratory analytical results for samples collected from the PERC UST excavation indicated that soil in the vicinity of Tank 1-S contained concentrations of gasoline range TPH, xylenes, and PERC at concentrations that exceed the MTCA Method A cleanup levels. The PERC tank clean overburden stockpile soil samples did not contain concentrations of contaminants that exceeded the MTCA Method A cleanup levels. The stockpile samples indicate that contaminated soils were successfully segregated from clean soils.

#### Conclusions

Two abandoned USTs were decommissioned and removed from the ground at the Cascade Laundry facility located at 205 Prospect Street in Bellingham, Washington. The tanks were located in separate tank pits with a 3,200 gallon Bunker C fuel oil UST situated to the north and a 300 gallon PERC UST located to the south. The two tanks were removed from the ground on October 13, 2010.

Whatcom Environmental Services conducted a UST Site Assessment when the tanks were removed from the ground. Whatcom Environmental personnel field screened excavated soil and observed field evidence indicating that a release of petroleum products had occurred from the PERC UST, but not from the Bunker C tank. After the tank-pit backfill material was removed from the excavations and the floors and sidewalls of the excavations were scraped back to the native silty clay, soil samples were collected per UST Site Assessment guidelines. The analytical results from the Site Assessment samples confirmed that a release had occurred from the PERC tank.

No water was encountered in either UST excavation. A bore log from a boring drilled in 2007 indicated a water level 12 feet below the ground surface at the subject property. The deepest soil sample collected as part of the UST site assessment was collected at 9 feet bgs, three feet above the estimated high water mark. Therefore, no groundwater investigation was conducted at the site.

#### Limitations

No site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with a property. Performance of this work by Whatcom Environmental is intended to reduce, but not eliminate, uncertainty regarding the potential for recognized environmental conditions. No warranty, express or implied, is given regarding the presence of hidden or unidentified sources of contamination.

Whatcom Environmental Services, Inc. has prepared this report for the exclusive use of Cascade Laundry and Cleaners, Inc., its authorized agents, and regulatory agencies. This report is not intended for use by others and the information contained herein is not applicable to other sites. Please use this letter and the attached site location figures, UST Site Check/Site Assessment Checklist, and soil analytical data to document compliance with Underground Storage Tank requirements (WAC 173-360).

Sincerely,

Thomas A. Davis Project Manager, Whatcom Environmental Services WA UST Site Assessor #5252393-U7

#### References

- U.S. Department of Agriculture (USDA). 1992. Soil Survey of Whatcom County Area, Washington. Soil Conservation Service. 481 pp.
- Washington State Department of Ecology. 1998. Underground Storage Tank Statute and Regulations Chapter 173-360 WAC. Publication No. 95-604.
- Washington State Department of Ecology. 2001. Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC. Publication No. 94-06. February 12, 2001.
- Washington State Department of Ecology. 2003. Guidance for Site Checks and Site Assessments for Underground Storage Tanks. Publication # 90-52.
- Washington State Department of Natural Resources (WADNR). 2000. Geologic Map of the Bellingham 1:100,000 Quadrangle, Washington. Open File Report 2000-5.





| Sample             |            | Depth |                                                                                                                                                                                             |                      | PID   |
|--------------------|------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|
| ID*                | Date       | (ft)  | Location and Description                                                                                                                                                                    | Sheen Test           | (ppm) |
| Bunker West - 5ft  | 10/13/2010 | 5.0   | Collected from the west sidewall at approximately 1 foot above<br>the bottom of the tank<br>Silty fine sand, brown, loose, slightly moist                                                   | Very Slight<br>Sheen | 0.0   |
| Bunker North - 5ft | 10/13/2010 | 5.0   | Collected from the north sidewall at approximately 1 foot above<br>the bottom of the tank<br>Silty fine sand, brown, loose, slightly moist                                                  | Very Slight<br>Sheen | 0.0   |
| Bunker Stockpile   | 10/13/2010 |       | Collected as a composite from 3 locations in the excavated soil<br>stockpile associated with the Bunker C tank<br>Fine sandy silt with minor organics, dark brown, loose, slightly<br>moist | Very Slight<br>Sheen | 0.0   |
| Bunker Floor - 8ft | 10/13/2010 | 8.0   | Collected from the excavation floor at approximately 1 foot below<br>the bottom of the tank<br>Silty clay, brown, firm, dry                                                                 | No Sheen             | 0.0   |
| PERC South - 7ft   | 10/13/2010 | 7.0   | Collected from the south sidewall at approximately 1 foot above<br>the bottom of the tank<br>Silty clay, dark brown, firm, moist                                                            | Moderate<br>Sheen    | 923   |
| PERC West - 7ft    | 10/13/2010 | 7.0   | Collected from the west sidewall at approximately 1 foot above<br>the bottom of the tank<br>Clayey silt with minor gravel, dark brown to black, plastic, sticky,<br>wet                     | Moderate<br>Sheen    | 897   |
| PERC Floor - 9ft   | 10/13/2010 | 9.0   | Collected from the excavation floor at approximately 1 foot below<br>the bottom of the tank<br>Clayey silt with gravel, dark gray to black, sticky, wet                                     | Heavy Sheen          | 932   |
| PERC Stockpile     | 10/13/2010 |       | Collected as a composite from 3 locations in the excavated clean overburden soil stockpile associated with the PERC tank                                                                    | Slight Sheen         | 0.0   |
|                    |            |       | Silty fine sand, brown, loose, slightly moist                                                                                                                                               |                      |       |

### Table 1. Soil Sample Descriptions - Cascade Laundry Site - 205 Prospect St., Bellingham, WA

\* - Samples collected using EPA Method 5035A
| Table 2. Soil Sai  | nple TPH &   | BTEX Analyti                      | ical Results - C                    | ascade Laundry                      | Site - 205                   | Prospect &                   | it., Bellinghai                   | n, WA                        |
|--------------------|--------------|-----------------------------------|-------------------------------------|-------------------------------------|------------------------------|------------------------------|-----------------------------------|------------------------------|
| Sample ID          | Date         | NWTPH-Dx<br>Diesel Range<br>mg/kg | NWTPH-Dx<br>Lube-Oil Range<br>mg/kg | NWTPH-Gx<br>Gasoline Range<br>mg/kg | EPA-8021<br>Benzene<br>mg/kg | EPA-8021<br>Toluene<br>mg/kg | EPA-8021<br>Ethylbenzene<br>mg/kg | EPA-8021<br>Xylenes<br>mg/kg |
| Bunker West - 5ft  | 10/13/2010   | ND(<25)                           | ND(<50)                             | NA                                  | ND(<0.030)                   | ND(<0.050)                   | ND(<0.050)                        | ND(<0.20)                    |
| Bunker North - 5ft | 10/13/2010   | ND(<25)                           | 57                                  | NA                                  | ND(<0.030)                   | ND(<0.050)                   | ND(<0.050)                        | ND(<0.20)                    |
| Bunker Stockpile   | 10/13/2010   | ND(<25)                           | 160                                 | NA                                  | ND(<0.030)                   | ND(<0.050)                   | ND(<0.050)                        | ND(<0.20)                    |
| Bunker Floor - 8ft | 10/13/2010   | ND(<25)                           | ND(<50)                             | NA                                  | ND(<0.030)                   | ND(<0.050)                   | ND(<0.050)                        | ND(<0.20)                    |
| PERC South - 7ft   | 10/13/2010   | NA                                | NA                                  | NA                                  | NA                           | NA                           | NA                                | NA                           |
| PERC West - 7ft    | 10/13/2010   | NA                                | NA                                  | 1,000                               | ND(<0.03)                    | ND(<0.05)                    | 2.6                               | 13                           |
| PERC Floor - 9ft   | 10/13/2010   | NA                                | NA                                  | 820                                 | ND(<0.03)                    | ND(<0.05)                    | 2.2                               | 12                           |
| PERC Stockpile     | 10/13/2010   | NA                                | NA                                  | NA                                  | NA                           | NA                           | NA                                | NA                           |
| MTCA Method A Cl   | eanup Levels | 2,000                             | 2,000                               | 30/100*                             | 0.03                         | 4                            | Q                                 | 6                            |
|                    |              |                                   |                                     |                                     |                              |                              |                                   |                              |

ND- indicates analyte was not detected at level above reporting limit (shown in parentheses)

NA- indicates that the sample was not analyzed for the specified analyte **Bold** - Sample exceeded the MTCA Method A target cleanup level

\* cleanup level depends on BTEX concentration

Table 2. - p. 1

|                    |              | morals many moral i                      | icourts - Cascauc La                      | ALLA DALLA                   |                              | processing and                | 111011911110                 | UM I                      |
|--------------------|--------------|------------------------------------------|-------------------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|---------------------------|
| Sample ID          | Date         | EPA-8260*<br>Methylene chloride<br>mg/kg | EPA-8260*<br>Tetrachloroethylene<br>mg/kg | EPA-6020<br>Arsenic<br>mg/kg | EPA-6020<br>Cadmium<br>mg/kg | EPA-6020<br>Chromium<br>mg/kg | EPA-7471<br>Mercury<br>mg/kg | EPA-6020<br>Lead<br>mg/kg |
| Bunker West - 5ft  | 10/13/2010   | NA                                       | NA                                        | NA                           | NA                           | NA                            | NA                           | NA                        |
| Bunker North - 5ft | 10/13/2010   | NA                                       | NA                                        | 4.2                          | ND(<1.3)                     | 40                            | 0.066                        | 24                        |
| Bunker Stockpile   | 10/13/2010   | NA                                       | NA                                        | NA                           | NA                           | NA                            | NA                           | NA                        |
| Bunker Floor - 8ft | 10/13/2010   | NA                                       | NA                                        | NA                           | NA                           | NA                            | NA                           | NA                        |
| PERC South - 7ft   | 10/13/2010   | ND(<0.2)                                 | 0.370                                     | NA                           | NA                           | NA                            | NA                           | NA                        |
| PERC West - 7ft    | 10/13/2010   | ND(<0.23)                                | 0.098                                     | NA                           | NA                           | NA                            | NA                           | NA                        |
| PERC Floor - 9ft   | 10/13/2010   | ND(<0.25)                                | 0.091                                     | NA                           | NA                           | NA                            | NA                           | NA                        |
| PERC Stockpile     | 10/13/2010   | ND(<0.02)                                | ND(<0.01)                                 | NA                           | NA                           | NA                            | NA                           | NA                        |
| MTCA Method A Clé  | eanup Levels | 0.02                                     | 0.05                                      | 20                           | 2                            | 2,000                         | 7                            | 250                       |
|                    |              |                                          |                                           |                              |                              |                               |                              |                           |

\* The full list of Volatile Organic Compounds (VOCs) and results is included in Appendix B

NA- indicates that the sample was not analyzed for the specified analyte

ND- indicates analyte was not detected at level above reporting limit (shown in parentheses) **Bold** - Sample exceeded the MTCA Method A target cleanup level

Table 3 - p. 1

.

## APPENDIX A

UST Site Check/Site Assessment Checklist

•



## UNDERGROUND STORAGE TANK Site Check/Site Assessment Checklist

FOR OFFICE USE ONLY

Site #:\_ Owner #:

## INSTRUCTIONS

When a release has not been confirmed and reported, this Site Check/Site Assessment Checklist must be completed and signed by a person certified by IFCI or a Washington registered professional engineer who is competent, by means of examination, experience, or education, to perform site assessments. The results of the site check or site assessment must be included with this checklist. This form must be submitted to Ecology at the address shown below within 30 days after completion of the site check/site assessment.

SITE INFORMATION: Include the Ecology site ID number if the tanks are registered with Ecology. This number may be found on the tank owner's invoice or tank permit.

TANK INFORMATION: Please list all tanks for which the site check or site assessment is being conducted. Use the owner's tank ID numbers if available, and indicate tank capacity and substance stored.

REASON FOR CONDUCTING SITE CHECK/SITE ASSESSMENT: Please check the appropriate item.

| CHECKLIST: Please initial each item in the appropriate box.                                                                                                  | Underground Storage Tank Section<br>Department of Ecology<br>PO Box 47655 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| SITE ASSESSOR INFORMATION: This information must be signed by the registered site assessor who is responsible for conducting the site check/site assessment. | Olympia WA 98504-7655                                                     |

## SITE INFORMATION

Site ID Number (Available from Ecology if the tanks are registered): 5617 (FSID#: 21786898) Site/Business Name: Cascade Laundry Corp

Site Address: 205 Prospect St.

| Site Address: 205 Prospect St | •      | Telephone: (360) 671-7200 |
|-------------------------------|--------|---------------------------|
|                               | Street |                           |
| Bellingham                    | WA     | 98225                     |
| City                          | State  | Zip Code                  |

| Tank Capacity | Substance Stored                              |
|---------------|-----------------------------------------------|
| 3,200 gallons | Bunker C Fuel Oil                             |
| 300 gallons   | PERC                                          |
|               | Tank Capacity<br>3,200 gallons<br>300 gallons |

## **REASON FOR CONDUCTING SITE CHECK/SITE ASSESSMENT**

| Check one:                                                                     |
|--------------------------------------------------------------------------------|
| Investigate suspected release due to on-site environmental contamination.      |
| Investigate suspected release due to off-site environmental contamination.     |
| Extend temporary closure of UST system for more than 12 months.                |
| UST system undergoing change-in-service.                                       |
| XXXXX UST system permanently closed with tank removed.                         |
| Abandoned tank containing product.                                             |
| Required by Ecology or delegated agency for UST system closed before 12/22/88. |
| Other (describe):                                                              |

| CHECKLIST                                                                                                                                                                                                                   |     |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Each item of the following checklist shall be initialed by the person registered with the Department of Ecology whose signature appears below.                                                                              | YES | NO |
| 1. The location of the UST site is shown on a vicinity map.                                                                                                                                                                 |     |    |
| 2. A brief summary of information obtained during the site inspection is provided.<br>(see Section 3.2 in site assessment guidance)                                                                                         | I   |    |
| 3. A summary of UST system data is provided. (see Section 3.1.)                                                                                                                                                             | J   |    |
| 4. The soils characteristics at the UST site are described. (see Section 5.2)                                                                                                                                               | E   |    |
| 5. Is there any apparent groundwater in the tank excavation?                                                                                                                                                                |     |    |
| 6. A brief description of the surrounding land use is provided. (see Section 3.1)                                                                                                                                           | D   |    |
| 7. Information has been provided indicating the number and types of samples collected, methods used to collect and analyze the samples, and the name and address of the laboratory used to perform the analyses.            | I   |    |
| 8. A sketch or sketches showing the following items is provided:                                                                                                                                                            | [   |    |
| - location and ID number for all field samples collected                                                                                                                                                                    |     |    |
| - groundwater samples distinguished from soil samples (if applicable)                                                                                                                                                       | I   |    |
| - samples collected from stockpiled excavated soil                                                                                                                                                                          | B   |    |
| - tank and piping locations and limits of excavation pit                                                                                                                                                                    |     |    |
| - adjacent structures and streets                                                                                                                                                                                           |     |    |
| - approximate locations of any on-site and nearby utilities                                                                                                                                                                 |     |    |
| 9. If sampling procedures different from those specified in the guidance were used, has justification for using these alternative sampling procedures been provided? (see Section 3.4)                                      | ID  |    |
| 10. A table is provided showing laboratory results for each sample collected including; sample ID number, constituents analyzed for and corresponding concentration, analytical method and detection limit for that method. | A   |    |
| 11. Any factors that may have compromised the quality of the data or validity of the results are described.                                                                                                                 | 5   |    |
|                                                                                                                                                                                                                             |     | 6  |
| 12. The results of this site check/site assessment indicate that a confirmed release of a regulated substance has occurred.                                                                                                 | 1   |    |

## SITE ASSESSOR INFORMATION

| Thomas A. Davis<br>Person registered with Ecology                                                    | Whatcom I                                                                     | Environmental Services, Inc.<br>Firm Affiliated with    |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------|
| Business Address: 228 East Champ                                                                     | <b>ion Street, Suite 101</b> Teleph<br>reet                                   | none: (360) 752-9571                                    |
| Bellingham<br>City                                                                                   | <b>WA</b><br>State                                                            | <b>98225</b><br>Zip Code                                |
|                                                                                                      |                                                                               |                                                         |
| I hereby certify that I have been in responsible<br>submitting false information are subject to pend | charge of performing the site check/site<br>alties under Chapter 173.360 WAC. | assessment described above. Persons                     |
| 11/5/10                                                                                              | Signature of Person Registe                                                   | WA UST Site Assessor #: 5252393-U7<br>ared with Ecology |

## APPENDIX B

WA State Well Log Database Cascade Laundry 2007 Bore Log

| Data and/or the Information on this Well Report. | 27702 Hease print         RESOURCE PROTECTION Notice         (SUBMIT ONE WELL REPORT PER WER         Construction/Decommission ("x" in box)         □ Decommission         ORIGINAL INSTALLATION Notice of Intent         Consulting Firm GeoEngineers         Unique Ecology Well IDTag No.         □ Beconstruction of this well, and its         WELL CONSTRUCTION CERTIFICATION         accept responsibility for construction of this well, and its         Washington well construction standards. Materials used         reported above are true to my best knowledge and belief.         □ Driller □ Engineer ⊠ Trainee         Name (Print Last, First Name) Gogan, Scott         Driller or Trainee License No. T2877         If trainee, licensed driller/s Signature and I         Mana ITAMME | nt, sign and return<br><b>NELL REPORT</b><br>CLL INSTALLED)<br>Number:<br>J: I constructed and/or<br>compliance with all<br>and the information<br>License Number:<br>2508 | to the Departmen<br>CURRENT<br>Property Owner Car<br>Site Address 205 Pr<br>City Bellingham<br>Location NE1/4-1/4<br>EWM ⊠ or WWM<br>Lat/Long (s, t, r<br>still REQUIRED)<br>Tax Parcel No.3802<br>Cased or Uncased I<br>Work/Decommission | Image: second start Date   Notice of Intent No. E007966   Type of Well ("x in box) |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| y the                                            | Construction Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Well I                                                                                                                                                                     | Data                                                                                                                                                                                                                                       | Formation Description                                                              |
| epartment of Ecology does NOT Warranty           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dr <u>ove a retractable</u><br>stainless steel P<br>to depth and collect<br>sample.<br>Boring Depth:<br>Screen:<br>Slot Size:C<br>Type:                                    | VC screen down<br>ted a water<br>                                                                                                                                                                                                          | 0-20 SILTY CLAY<br>FISCAL SEPTO<br>20-26 SAAD<br>26-27 HARD CLAY                   |
| The D                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Removed all rods a<br>boring and backfille                                                                                                                                 | and casing from<br>ad with bentonite.                                                                                                                                                                                                      | RECEIVED<br>SEP 12 2007<br>DEPARTMENT OF EGGLOG<br>WELL DRILLING LINIT             |

..

•

| sport.             | 277025<br>Please pri                                                                                                                                                                                                  | int, sign and return t                                                                          | to the Departme                                                                                                  | nt of Ecology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R                  | RESOURCE PROTECTION                                                                                                                                                                                                   | WELL REPORT                                                                                     | CURRENT                                                                                                          | Notice of Intent No. A129918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| s Well             | (SUBMIT ONE WELL REPORT PER WE<br>Construction/Decommission ("x" in box)                                                                                                                                              | ELL INSTALLED)                                                                                  |                                                                                                                  | <b>Type of Well</b> ("x in box)<br>Resource Protection<br>Geotech Soil Boring                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ę                  | ORIGINAL INSTALLATION Notice of Intent                                                                                                                                                                                | Number:                                                                                         | Property Owner Ca                                                                                                | scade Laundry & Cleaners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S                  | E007966                                                                                                                                                                                                               |                                                                                                 | Site Address 205 Pi                                                                                              | rospect Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| č                  | Consulting Firm GeoEngineers                                                                                                                                                                                          |                                                                                                 | City Bellingham                                                                                                  | County Whatcom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tio                | Unique Ecology Well IDTag No                                                                                                                                                                                          | <u>'1</u>                                                                                       |                                                                                                                  | · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · |
| r the Informa      | WELL CONSTRUCTION CERTIFICATION<br>accept responsibility for construction of this well, and its<br>Washington well construction standards. Materials used<br>reported above are true to my best knowledge and belief. | V: I constructed and/or<br>s compliance with all<br>and the information                         | Location <u>NE</u> 1/4-1/4<br>EWM 🖾 or WWM<br>Lat/Long (s, t, r<br>still REQUIRED)<br>Tax Parcel No. <u>3803</u> | 4 SW1/4 Sec 30 Twn 38N R 03         1         Lat Deg Min Sec         Long Deg Min Sec         3301112490000                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0                  | Driller or Trainee License No. <u>T2877</u>                                                                                                                                                                           |                                                                                                 | Cased or Uncased I                                                                                               | Diameter Static Level2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| pd.                |                                                                                                                                                                                                                       |                                                                                                 | Work/Decommissio                                                                                                 | on Start Date 8/10/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| aa                 | If trainee, licensed driller's Signature and                                                                                                                                                                          | License Number:                                                                                 | Work/Decommissic                                                                                                 | on Completed Date 8/10/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ati                |                                                                                                                                                                                                                       |                                                                                                 |                                                                                                                  | Si completed Bate <u>or rover</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0                  |                                                                                                                                                                                                                       |                                                                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| He                 | Construction Design                                                                                                                                                                                                   | Well [                                                                                          | Data                                                                                                             | Formation Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| gy does NOT Warran |                                                                                                                                                                                                                       | Drove a retractable<br>stainless steel / Pt<br>to depth and collect<br>sample.<br>Boring Depth: | /C screen down<br>ed a water<br>27                                                                               | 0-20 SILTY CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| of Ecolo           |                                                                                                                                                                                                                       | Screen: <u>/7-20</u>                                                                            | /                                                                                                                | Zo-zy SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| tment o            |                                                                                                                                                                                                                       | Slot Size: <u>0010</u>                                                                          |                                                                                                                  | DEPT OFFISCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The Depar          |                                                                                                                                                                                                                       | Type: STyinks                                                                                   | <u></u>                                                                                                          | ZLERZT SHAND CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                  |                                                                                                                                                                                                                       | Removed all rods an<br>boring and backfille                                                     | nd casing from<br>d with bentonite.                                                                              | RECEIVED<br>SEP 12 2007<br>DEPARTIMENT OF ECOLOGY<br>WELL DRILLING UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    |                                                                                                                                                                                                                       | SCALE: 1"= PA                                                                                   | AGE / OF /                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## APPENDIX C

Original Laboratory Analytical Data



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |
|                       |            |

CLIENT CONTACT: Thom Davis Cascade Laundry CLIENT PROJECT ID: CLIENT SAMPLE ID: 10/13/2010 Bunker-West-5ft ALS SAMPLE #: -01 DATA RESULTS

REPORTING DILUTION ANALYSIS ANALYSIS ANALYTE METHOD **RESULTS\*** UNITS\*\* LIMITS FACTOR DATE BΥ Benzene EPA-8021 ND 0.030 1 MG/KG 10/14/2010 DLC Toluene EPA-8021 ND 0.050 1 MG/KG 10/14/2010 DLC Ethylbenzene EPA-8021 ND 0.050 1 MG/KG DLC 10/14/2010 Xylenes EPA-8021 ND 0.20 1 MG/KG 10/14/2010 DLC **TPH-Diesel Range** NWTPH-DX ND 25 1 MG/KG 10/15/2010 EBS **TPH-Oil Range** NWTPH-DX ND 50 MG/KG 10/15/2010 1 EBS

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT. \*\* UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

de alla de la companya de la companya

APPROVED BY:

Bagur

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 (1009) 425-356-2600 a 0X 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

Page 1

www.alsglobal.com

RIGHT SOLUTIONS



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| 10/26/2010 |
|------------|
| 1010096    |
| 10/14/2010 |
| C1336      |
|            |

 CLIENT CONTACT:
 Thom Davis

 CLIENT PROJECT ID:
 Cascade Laundry

 CLIENT SAMPLE ID:
 10/13/2010
 Bunker-North-5ft

 ALS SAMPLE #:
 -02

DATA RESULTS

| ANALYTE          | METHOD   | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|------------------|----------|------------------|---------------------|--------------------|---------|------------------|----------------|
| Benzene          | EPA-8021 | ND               | 0.030               | 1                  | MG/KG   | 10/14/2010       | DLC            |
| Toluene          | EPA-8021 | ND               | 0.050               | 1                  | MG/KG   | 10/14/2010       | DLC            |
| Ethylbenzene     | EPA-8021 | ND               | 0.050               | 1                  | MG/KG   | 10/14/2010       | DLC            |
| Xylenes          | EPA-8021 | ND               | 0.20                | 1                  | MG/KG   | 10/14/2010       | DLC            |
| TPH-Diesel Range | NWTPH-DX | ND               | 25                  | 1                  | MG/KG   | 10/15/2010       | EBS            |
| TPH-Oil Range    | NWTPH-DX | 57               | 50                  | 1                  | MG/KG   | 10/15/2010       | EBS            |
| Mercury          | EPA-7471 | 0.066            | 0.020               | 1                  | MG/KG   | 10/19/2010       | RAL            |
| Arsenic          | EPA-6020 | 4.2              | 0.75                | 5                  | MG/KG   | 10/19/2010       | RAL            |
| Cadmium          | EPA-6020 | ND               | 1.3                 | 5                  | MG/KG   | 10/19/2010       | RAL            |
| Chromium         | EPA-6020 | 40               | 0.74                | 5                  | MG/KG   | 10/19/2010       | RAL            |
| Lead             | EPA-6020 | 24               | 0.73                | 5                  | MG/KG   | 10/19/2010       | RAL            |

Chromatogram indicates that it is likely the sample contains lube oil.

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

" UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Al Bagun

Page 2 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 APRIME 425-356-2600 SAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |
|                       |            |

 CLIENT CONTACT:
 Thom Davis

 CLIENT PROJECT ID:
 Cascade Laundry

 CLIENT SAMPLE ID:
 10/13/2010
 Bunker-Stockpile

 ALS SAMPLE #:
 -03

A DESCRIPTION OF A

| ANALYTE          | METHOD   | RESULTS* |       |   | LINITS** |            |     |
|------------------|----------|----------|-------|---|----------|------------|-----|
| Benzene          | EPA-8021 | ND       | 0.030 | 1 | MG/KG    | 10/14/2010 |     |
| Toluene          | EPA-8021 | ND       | 0.050 | 1 | MG/KG    | 10/14/2010 | DLC |
| Ethylbenzene     | EPA-8021 | ND       | 0.050 | 1 | MG/KG    | 10/14/2010 | DLC |
| Xylenes          | EPA-8021 | ND       | 0.20  | 1 | MG/KG    | 10/14/2010 | DLC |
| TPH-Diesel Range | NWTPH-DX | ND       | 25    | 1 | MG/KG    | 10/15/2010 | EBS |
| TPH-Oil Range    | NWTPH-DX | 160      | 50    | 1 | MG/KG    | 10/15/2010 | EBS |
|                  |          |          |       |   |          |            |     |

Chromatogram indicates that it is likely the sample contains lube oil.

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

\*\* UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Port Bagun

Page 3
ADURESS 8620 Holly Drive, Suite 100, Everett, WA 98208 ADURESS 8620 Holly Drive, Suite 100, Everett, WA 98208 ADURESS 425-356-2600 ADURESS 425-356-2626
ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

MONT SOLUTIONS STREET FLOOP TO CO



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| 10/26/2010 |
|------------|
| 1010096    |
| 10/14/2010 |
| C1336      |
|            |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry CLIENT SAMPLE ID: 10/13/2010 Bunker-Floor-8ft ALS SAMPLE #: -04

DATA RESULTS 

| ANALYTE          | METHOD   | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|------------------|----------|----------|---------------------|--------------------|---------|------------------|----------------|
| Benzene          | EPA-8021 | ND       | 0.030               | 1                  | MG/KG   | 10/14/2010       | DLC            |
| Toluene          | EPA-8021 | ND       | 0.050               | 1                  | MG/KG   | 10/14/2010       | DLC            |
| Ethylbenzene     | EPA-8021 | ND       | 0.050               | 1                  | MG/KG   | 10/14/2010       | DLC            |
| Xylenes          | EPA-8021 | ND       | 0.20                | 1                  | MG/KG   | 10/14/2010       | DLC            |
| TPH-Diesel Range | NWTPH-DX | ND       | 25                  | 1                  | MG/KG   | 10/15/2010       | EBS            |
| TPH-Oil Range    | NWTPH-DX | ND       | 50                  | 1                  | MG/KG   | 10/15/2010       | EBS            |

"NO" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT. " UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Bager

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 1909e8425-356-2600 PAR 425-356-2626

Page 4

ALS Laboratory Group A Campbell Brothers Limited Company www.alsglobal.com

MONT SOLUTIONS



Whatcom Environmental Svcs., Inc. CLIENT: 228 E. Champion St. Suite 101 Bellingham, WA 98225

HEXE LEVEL

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |
|                       |            |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry CLIENT SAMPLE ID: 10/13/2010 PERC-South-7ft ALS SAMPLE #: -05

DATA RESULTS

| ANALYTE                   | METHOD   | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|----------|----------|---------------------|--------------------|---------|------------------|----------------|
| Dichlorodifluoromethane   | EPA-8260 | ND       | 160                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloromethane             | EPA-8260 | ND       | 94                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Vinyl Chloride            | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromomethane              | EPA-8260 | ND       | 78                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloroethane              | EPA-8260 | ND       | 94                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trichlorofluoromethane    | EPA-8260 | ND       | 83                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloroethene        | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Methylene chloride        | EPA-8260 | ND       | 200                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trans-1,2-Dichloroethene  | EPA-8260 | ND       | 93                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloroethane        | EPA-8260 | ND       | 95                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Cis-1,2-Dichloroethene    | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 2,2-Dichloropropane       | EPA-8260 | ND       | 97                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromochloromethane        | EPA-8260 | ND       | 170                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloroform                | EPA-8260 | ND       | 97                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,1-Trichloroethane     | EPA-8260 | ND       | 87                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloropropene       | EPA-8260 | ND       | 87                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Carbon Tetrachloride      | EPA-8260 | ND       | 99                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichloroethane        | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trichloroethene           | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichloropropane       | EPA-8260 | ND       | 88                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Dibromomethane            | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromodichloromethane      | EPA-8260 | ND       | 98                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trans-1,3-Dichloropropene | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Cis-1,3-Dichloropropene   | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,2-Trichloroethane     | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,3-Dichloropropane       | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Tetrachloroethylene       | EPA-8260 | 370      | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Dibromochloromethane      | EPA-8260 | ND       | 150                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dibromoethane         | EPA-8260 | ND       | 5.0                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chlorobenzene             | EPA-8260 | 220      | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,1,2-Tetrachloroethane | EPA-8260 | ND       | 81                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromoform                 | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,2,2-Tetrachloroethane | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,3-Trichloropropane    | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |

Page 5

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PRAME 425-356-2600 PRAK 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

MOHT SOLUTIONS



#### THE STORES IN THE STORE OF ANALYSIS AND THE STORES

CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |
|                       |            |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry 10/13/2010 PERC-South-7ft CLIENT SAMPLE ID: ALS SAMPLE #: -05

DATA RESULTS

| ANALYTE                     | METHOD   | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-----------------------------|----------|----------|---------------------|--------------------|---------|------------------|----------------|
| Bromobenzene                | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 2-Chlorotoluene             | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 4-Chlorotoluene             | EPA-8260 | ND       | 160                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,3 Dichlorobenzene         | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,4-Dichlorobenzene         | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichlorobenzene         | EPA-8260 | 180      | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,4-Trichlorobenzene      | EPA-8260 | ND       | 96                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Hexachlorobutadiene         | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,3-Trichlorobenzene      | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

\*\* UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

por Bagun

ALS Laboratory Group A Campbell Brothers Limited Company

Page 6

www.alsglobal.com

PHEMY SOLUTIONS



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| 10/26/2010 |
|------------|
| 1010096    |
| 10/14/2010 |
| C1336      |
|            |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry 10/13/2010 PERC-West-7ft CLIENT SAMPLE ID: ALS SAMPLE #: -06

DATA RESULTS 

| ANALYTE                   | METHOD   | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|----------|------------------|---------------------|--------------------|---------|------------------|----------------|
| TPH-Volatile Range        | NWTPH-GX | 1,000            | 30                  | 10                 | MG/KG   | 10/15/2010       | DLC            |
| Benzene                   | EPA-8021 | ND               | 0.30                | 10                 | MG/KG   | 10/15/2010       | DLC            |
| Toluene                   | EPA-8021 | ND               | 0.50                | 10                 | MG/KG   | 10/15/2010       | DLC            |
| Ethylbenzene              | EPA-8021 | 2.6              | 0.50                | 10                 | MG/KG   | 10/15/2010       | DLC            |
| Xylenes                   | EPA-8021 | 13               | 2.0                 | 10                 | MG/KG   | 10/15/2010       | DLC            |
| Dichlorodifluoromethane   | EPA-8260 | ND               | 180                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloromethane             | EPA-8260 | ND               | 110                 | 1 '                | UG/KG   | 10/21/2010       | GAP            |
| Vinyl Chloride            | EPA-8260 | 1,200            | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromomethane              | EPA-8260 | ND               | 92                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloroethane              | EPA-8260 | ND               | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trichlorofluoromethane    | EPA-8260 | ND               | 97                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloroethene        | EPA-8260 | ND               | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Methylene chloride        | EPA-8260 | ND               | 230                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trans-1,2-Dichloroethene  | EPA-8260 | 890              | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloroethane        | EPA-8260 | ND               | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Cis-1,2-Dichloroethene    | EPA-8260 | 8,200            | 1,200               | 10                 | UG/KG   | 10/21/2010       | GAP            |
| 2,2-Dichloropropane       | EPA-8260 | ND               | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromochloromethane        | EPA-8260 | ND               | 200                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chioroform                | EPA-8260 | ND               | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,1-Trichloroethane     | EPA-8260 | ND               | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloropropene       | EPA-8260 | ND               | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Carbon Tetrachloride      | EPA-8260 | ND               | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichloroethane        | EPA-8260 | ND               | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trichloroethene           | EPA-8260 | 150              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichloropropane       | EPA-8260 | ND               | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Dibromomethane            | EPA-8260 | ND               | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromodichloromethane      | EPA-8260 | ND               | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trans-1,3-Dichloropropene | EPA-8260 | ND               | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Cis-1,3-Dichloropropene   | EPA-8260 | ND               | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,2-Trichloroethane     | EPA-8260 | ND               | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,3-Dichloropropane       | EPA-8260 | ND               | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Tetrachloroethylene       | EPA-8260 | 98               | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Dibromochloromethane      | EPA-8260 | ND               | 180                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dibromoethane         | EPA-8260 | 9.9              | 5.0                 | 1                  | UG/KG   | 10/21/2010       | GAP            |

Page 7

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PERPENDE425-356-2600 FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PROHY SOLUTIONS -



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |
|                       |            |

 CLIENT CONTACT:
 Thom Davis

 CLIENT PROJECT ID:
 Cascade Laundry

 CLIENT SAMPLE ID:
 10/13/2010
 PERC-West-7ft

 ALS SAMPLE #:
 -06

IN THE REPORT OF A RESULTS AND A RESULTS

| ANALYTE                     | METHOD   | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-----------------------------|----------|----------|---------------------|--------------------|---------|------------------|----------------|
| Chlorobenzene               | EPA-8260 | 410      | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,1,2-Tetrachloroethane   | EPA-8260 | ND       | 95                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromoform                   | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,2,2-Tetrachloroethane   | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,3-Trichloropropane      | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromobenzene                | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 2-Chlorotoluene             | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 4-Chlorotoluene             | EPA-8260 | ND       | 180                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,3 Dichlorobenzene         | EPA-8260 | 230      | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,4-Dichlorobenzene         | EPA-8260 | 440      | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichlorobenzene         | EPA-8260 | 2,800    | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | ND       | 150                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,4-Trichlorobenzene      | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Hexachlorobutadiene         | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,3-Trichlorobenzene      | EPA-8260 | ND       | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |

Chromatogram indicates that it is likely the sample contains mineral spirits.

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

\*\* UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

- An example of the state of APPROVED BY:

Al Bagum

Page 8 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PROME 425-356-2600 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS IN THE CONSTR



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| 10/26/2010 |
|------------|
| 1010096    |
| 10/14/2010 |
| C1336      |
|            |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry CLIENT SAMPLE ID: 10/13/2010 PERC-Floor-9ft ALS SAMPLE #: -07

DATA RESULTS

| ANALYTE                   | METHOD   | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|----------|----------|---------------------|--------------------|---------|------------------|----------------|
| TPH-Volatile Range        | NWTPH-GX | 820      | 30                  | 10                 | MG/KG   | 10/16/2010       | DLC            |
| Benzene                   | EPA-8021 | ND       | 0.33                | 10                 | MG/KG   | 10/16/2010       | DLC            |
| Toluene                   | EPA-8021 | ND       | 0.55                | 10                 | MG/KG   | 10/16/2010       | DLC            |
| Ethylbenzene              | EPA-8021 | 2.2      | 0.55                | 10                 | MG/KG   | 10/16/2010       | DLC            |
| Xylenes                   | EPA-8021 | 12       | 2.2                 | 10                 | MG/KG   | 10/16/2010       | DLC            |
| Dichlorodifluoromethane   | EPA-8260 | ND       | 200                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloromethane             | EPA-8260 | ND       | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Vinyl Chloride            | EPA-8260 | 1,200    | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromomethane              | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloroethane              | EPA-8260 | ND       | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trichlorofluoromethane    | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloroethene        | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Methylene chloride        | EPA-8260 | ND       | 250                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trans-1,2-Dichloroethene  | EPA-8260 | 840      | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloroethane        | EPA-8260 | ND       | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Cis-1,2-Dichloroethene    | EPA-8260 | 1,800    | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 2,2-Dichloropropane       | EPA-8260 | ND       | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromochloromethane        | EPA-8260 | ND       | 210                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloroform                | EPA-8260 | ND       | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,1-Trichloroethane     | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloropropene       | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Carbon Tetrachloride      | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichloroethane        | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trichloroethene           | EPA-8260 | 650      | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichloropropane       | EPA-8260 | ND       | 110                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Dibromomethane            | EPA-8260 | ND       | 140                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromodichloromethane      | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trans-1,3-Dichloropropene | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Cis-1,3-Dichloropropene   | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,2-Trichloroethane     | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,3-Dichioropropane       | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Tetrachioroethylene       | EPA-8260 | 91       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Dibromochloromethane      | EPA-8260 | ND       | 190                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dibromoethane         | EPA-8260 | ND       | 5.0                 | 1                  | UG/KG   | 10/21/2010       | GAP            |

Page 9

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - (240765 425-356-2600 - 243425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| 10/26/2010 |
|------------|
| 1010096    |
| 10/14/2010 |
| C1336      |
|            |

CLIENT CONTACT: Thom Davis Cascade Laundry CLIENT PROJECT ID: CLIENT SAMPLE ID: 10/13/2010 PERC-Floor-9ft ALS SAMPLE #: -07

DATA RESULTS

| ANALYTE                     | METHOD   | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-----------------------------|----------|----------|---------------------|--------------------|---------|------------------|----------------|
| Chlorobenzene               | EPA-8260 | 500      | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,1,2-Tetrachloroethane   | EPA-8260 | ND       | 100                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromoform                   | EPA-8260 | ND       | 140                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,2,2-Tetrachloroethane   | EPA-8260 | ND       | 140                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,3-Trichloropropane      | EPA-8260 | ND       | 150                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromobenzene                | EPA-8260 | ND       | 140                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 2-Chlorotoluene             | EPA-8260 | ND       | 140                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 4-Chlorotoluene             | EPA-8260 | ND       | 200                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,3 Dichlorobenzene         | EPA-8260 | ND       | 140                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,4-Dichlorobenzene         | EPA-8260 | 210      | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichlorobenzene         | EPA-8260 | 1,000    | 140                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | ND       | 170                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,4-Trichlorobenzene      | EPA-8260 | ND       | 120                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Hexachlorobutadiene         | EPA-8260 | ND       | 150                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,3-Trichlorobenzene      | EPA-8260 | ND       | 130                 | 1                  | UG/KG   | 10/21/2010       | GAP            |

\* Chromatogram indicates that is likely that sample contains mineral spirits. TPH- Benzene, Toluene reporting limit raised due to low percent solids.

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

" UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Per Bagum

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 CRADINE 425-356-2600 RAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

Page 10

www.alsglobal.com

FRONT SOLUTIONS



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |
|                       |            |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry CLIENT SAMPLE ID: 10/13/2010 PERC-Stockpile ALS SAMPLE #: -08

A SERVICE AND A SERVICE AND A CATARESULTS AND A

| ANALYTE                   | METHOD   | <b>RESULTS*</b> | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|----------|-----------------|---------------------|--------------------|---------|------------------|----------------|
| Dichlorodifluoromethane   | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloromethane             | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Vinyl Chloride            | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromomethane              | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloroethane              | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trichlorofluoromethane    | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloroethene        | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Methylene chloride        | EPA-8260 | ND              | 20                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trans-1,2-Dichloroethene  | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloroethane        | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Cis-1,2-Dichloroethene    | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 2,2-Dichloropropane       | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromochloromethane        | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chloroform                | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,1-Trichloroethane     | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1-Dichloropropene       | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Carbon Tetrachloride      | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichloroethane        | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trichloroethene           | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichloropropane       | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Dibromomethane            | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromodichloromethane      | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Trans-1,3-Dichloropropene | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Cis-1,3-Dichloropropene   | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,2-Trichloroethane     | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,3-Dichloropropane       | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Tetrachloroethylene       | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Dibromochloromethane      | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dibromoethane         | EPA-8260 | ND              | 5.0                 | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Chlorobenzene             | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,1,2-Tetrachloroethane | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Bromoform                 | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,1,2,2-Tetrachloroethane | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,3-Trichloropropane    | EPA-8260 | ND              | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |

Page 11

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - Physics 425-356-2600 - CAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PRONT SOLUTIONS



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry CLIENT SAMPLE ID: 10/13/2010 PERC-Stockpile ALS SAMPLE #: -08

DATA RESULTS

| ANALYTE                     | METHOD   | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-----------------------------|----------|----------|---------------------|--------------------|---------|------------------|----------------|
| Bromobenzene                | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 2-Chlorotoluene             | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 4-Chlorotoluene             | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,3 Dichlorobenzene         | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,4-Dichlorobenzene         | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dichlorobenzene         | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | ND       | 50                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,4-Trichlorobenzene      | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| Hexachlorobutadiene         | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |
| 1,2,3-Trichlorobenzene      | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 10/21/2010       | GAP            |

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMT.

\*\* UNITS FOR ALL NON-LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS.

APPROVED BY:

Al Bagun

Page 12 ADDのE538 8620 Holly Drive, Suite 100, Everett, WA 98208 - おやかを425-356-2600 - そAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PROFT SOLUTIONS PERMIT PLACE PRO



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

DATE: 10/26/2010 ALS JOB#: 1010096 DATE RECEIVED: 10/14/2010 WDOE ACCREDITATION #: C1336

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry

#### QUALITY CONTROL RESULTS

SURROGATE RECOVERY

#### ALS SAMPLE ID METHOD SUR ID % RECV 1010096-01 EPA-8021 TFT 95% 1010096-01 NWTPH-DX C25 89% 1010096-02 EPA-8021 TET 85% 1010096-02 NWTPH-DX C25 95% 1010096-03 EPA-8021 TFT 92% 1010096-03 NWTPH-DX C25 99% 1010096-04 EPA-8021 TFT 81% 1010096-04 NWTPH-DX C25 91% 1010096-05 EPA-8260 1,2-Dichloroethane-d4 100% 1010096-05 EPA-8260 4-Bromofluorobenzene 107% 1010096-06 10X Dilution NWTPH-GX TFT S2 1010096-06 10X Dilution EPA-8021 TFT **\$**2 1010096-06 EPA-8260 1,2-Dichloroethane-d4 104% 1010096-06 EPA-8260 4-Bromofluorobenzene 98% 1010096-06 10X Dilution EPA-8260 1,2-Dichloroethane-d4 100% 1010096-06 10X Dilution EPA-8260 4-Bromofluorobenzene 92% 1010096-07 10X Dilution NWTPH-GX TFT **S**2 1010096-07 10X Dilution EPA-8021 TFT **S**2 1010096-07 EPA-8260 1,2-Dichloroethane-d4 103% 1010096-07 EPA-8260 4-Bromofluorobenzene **S**1 1010096-08 EPA-8260 1,2-Dichloroethane-d4 109% 1010096-08 EPA-8260 4-Bromofluorobenzene 102%

S1- Surrogate outside of control limits due to matrix effect.

S2- Due to high dilution factor surrogate results should be considered uncontrolled.

APPROVED BY:

X Bagun

Page 13

ADORESS 8620 Holly Drive, Suite 100, Everett, WA 98208 0 PHOME 425-356-2600 MAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

MONT SOLUTIONS



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry

## QUALITY CONTROL RESULTS

#### BLANK RESULTS

| QC SAMPLE ID | MATRIX | METHOD   | ANALYTE                   | RESULT     | UNITS |
|--------------|--------|----------|---------------------------|------------|-------|
| MBG-101310S  | Soil   | NWTPH-GX | TPH-Volatile Range        | ND(<3.0)   | MG/KG |
| MB-101310S   | Soil   | EPA-8021 | Benzene                   | ND(<0.030) | MG/KG |
| MB-101310S   | Soil   | EPA-8021 | Toluene                   | ND(<0.050) | MG/KG |
| MB-101310S   | Soil   | EPA-8021 | Ethylbenzene              | ND(<0.050) | MG/KG |
| MB-101310S   | Soil   | EPA-8021 | Xylenes                   | ND(<0.20)  | MG/KG |
| MB-101510S   | Soil   | NWTPH-DX | TPH-Diesel Range          | ND(<25)    | MG/KG |
| MB-101510S   | Soil   | NWTPH-DX | TPH-Oil Range             | ND(<50)    | MG/KG |
| MB-101610S   | Soil   | EPA-8260 | Dichlorodifluoromethane   | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Chloromethane             | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Vinyl Chloride            | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Bromomethane              | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Chloroethane              | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Trichlorofluoromethane    | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Carbon Tetrachloride      | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | 1,1-Dichloroethene        | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Methylene chloride        | ND(<20)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Trans-1,2-Dichloroethene  | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | 1,1-Dichloroethane        | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Cis-1,2-Dichloroethene    | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | 2,2-Dichloropropane       | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Bromochloromethane        | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Chloroform                | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | 1,1,1-Trichloroethane     | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | 1,1-Dichloropropene       | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | 1,2-Dichloroethane        | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Trichloroethene           | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | 1,2-Dichloropropane       | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Dibromomethane            | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Bromodichloromethane      | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Trans-1,3-Dichloropropene | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Toluene                   | ND(<10)    | UG/KG |
| MB-101610S   | Soil   | EPA-8260 | Cis-1,3-Dichloropropene   | ND(<10)    | UG/KG |
|              |        | P        | Page 14                   |            |       |

ADDX838 8620 Holly Drive, Suite 100, Everett, WA 98208 - PERCENT 425-356-2600 - PAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

FNGHT SELLETEDES CLEARED FOR VERY



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

DATE: 10/26/2010 ALS JOB#: 1010096 DATE RECEIVED: 10/14/2010 WDOE ACCREDITATION #: C1336

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry

And the second second second second second

#### QUALITY CONTROL RESULTS

#### **BLANK RESULTS**

| QC SAMPLE ID  | MATRIX | METHOD   | ANALYTE                     | RESULT     | UNITS |
|---------------|--------|----------|-----------------------------|------------|-------|
| MB-101610S    | Soil   | EPA-8260 | 1,1,2-Trichloroethane       | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,3-Dichloropropane         | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | Tetrachloroethylene         | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | Dibromochloromethane        | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,2-Dibromoethane           | ND(<5.0)   | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | Chlorobenzene               | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,1,1,2-Tetrachloroethane   | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | Bromoform                   | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,1,2,2-Tetrachloroethane   | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,2,3-Trichloropropane      | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | Bromobenzene                | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 2-Chlorotoluene             | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 4-Chlorotoluene             | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,3 Dichlorobenzene         | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,4-Dichlorobenzene         | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,2-Dichlorobenzene         | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,2-Dibromo 3-Chloropropane | ND(<50)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,2,4-Trichlorobenzene      | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | Hexachlorobutadiene         | ND(<10)    | UG/KG |
| MB-101610S    | Soil   | EPA-8260 | 1,2,3-Trichlorobenzene      | ND(<10)    | UG/KG |
| MBLK-10192010 | Soil   | EPA-7471 | Mercury                     | ND(<0.020) | MG/KG |
| MB-101810S    | Soil   | EPA-6020 | Arsenic                     | ND(<0.12)  | MG/KG |
| MB-101810S    | Soil   | EPA-6020 | Cadmium                     | ND(<0.20)  | MG/KG |
| MB-101810S    | Soil   | EPA-6020 | Chromium                    | ND(<0.12)  | MG/KG |
| MB-101810S    | Soil   | EPA-6020 | Lead                        | ND(<0.12)  | MG/KG |

APPROVED BY:

Page 15 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - 2000-2012-356-2600 SS 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PROHIT SOLUTIONS



CLIENT: Whatcom Environmental Svcs., Inc. 228 E. Champion St. Suite 101 Bellingham, WA 98225

| DATE:                 | 10/26/2010 |
|-----------------------|------------|
| ALS JOB#:             | 1010096    |
| DATE RECEIVED:        | 10/14/2010 |
| WDOE ACCREDITATION #: | C1336      |

CLIENT CONTACT: Thom Davis CLIENT PROJECT ID: Cascade Laundry

### QUALITY CONTROL RESULTS

#### BLANK SPIKE/BLANK SPIKE DUPLICATE RESULTS

| QC BATCH ID | MATRIX | METHOD   | ANALYTE            | SPIKE<br>AMOUNT | BLANK SPIKE<br>RECOVERY | BLANK SPIKE<br>DUPLICATE<br>RECOVERY | RPD |
|-------------|--------|----------|--------------------|-----------------|-------------------------|--------------------------------------|-----|
| 1153        | Soil   | NWTPH-GX | TPH-Volatile Range | 500             | 101%                    | 102%                                 | 0   |
| 1153        | Soil   | EPA-8021 | Benzene            | 20              | 106%                    | 107%                                 | 0   |
| 1153        | Soil   | EPA-8021 | Toluene            | 20              | 106%                    | 106%                                 | 0   |
| 1153        | Soil   | EPA-8021 | Ethylbenzene       | 20              | 103%                    | 103%                                 | 0   |
| 1153        | Soil   | EPA-8021 | Xylenes            | 60              | 107%                    | 107%                                 | 0   |
| 1150        | Soil   | NWTPH-DX | TPH-Diesel Range   | 250             | 84%                     | 84%                                  | 0   |
| 1166        | Soil   | EPA-8260 | 1,1-Dichloroethene | 10              | 86%                     | 89%                                  | 3   |
| 1166        | Soil   | EPA-8260 | Trichloroethene    | 10              | 94%                     | 96%                                  | 2   |
| 1166        | Soil   | EPA-8260 | Toluene            | 10              | 88%                     | 92%                                  | 4   |
| 1166        | Soil   | EPA-8260 | Chlorobenzene      | 10              | 91%                     | 94%                                  | 3   |
| R71174      | Soil   | EPA-7471 | Mercury            | 100             | 109%                    | 101%                                 | 8   |
| 1170        | Soil   | EPA-6020 | Arsenic            | 100             | 92%                     | 93%                                  | 1   |
| 1170        | Soil   | EPA-6020 | Cadmium            | 100             | 96%                     | 95%                                  | 0   |
| 1170        | Soil   | EPA-6020 | Chromium           | 100             | 95%                     | 94%                                  | 1   |
| 1170        | Soil   | EPA-6020 | Lead               | 100             | 98%                     | 97%                                  | 1   |

APPROVED BY:

Par Bagum

Page 16 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 Address 425-356-2600 Address 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PROHT SOLUTIONS COLORS PLANTING



# **Stratum Group**

1451 Grant Street, Bellingham, WA 98225 Phone: (360) 714-9409

May 2, 2006

Bob Goodwin 249 Dolphin Place Bellingham, Washington 98229

## **Environmental Site Assessments: Phase I and Phase II**

Cascade Laundry 205 Prospect Street Bellingham, Washington

Dear Mr. Goodwin:

We herein present the results of our Phase I and Phase II Environmental Site Assessments (ESA) for the above referenced property in Bellingham, Washington.

Should you have any questions concerning this Environmental Site Assessment, please do not hesitate to contact us at (360) 714-9409.

Sincerely,

# Stratum Group

Dan McShane, M.S. Geologist Kim Ninnemann, B.S. Geologist

## REPORT ENVIRONMENTAL SITE ASSESSMENT PHASE I AND PHASE II

# CASCADE LAUNDRY 205 PROSPECT STREET BELLINGHAM, WASHINGTON

For: Bob Goodwin 249 Dolphin Place Bellingham, Washington 98229

By

Stratum Group 1451 Grant Street Bellingham, WA 98225 (360) 714-9409

May 2, 2006

# **TABLE OF CONTENTS**

| SECTION 2: INTRODUCTION                                  | <b>1</b><br>1 |
|----------------------------------------------------------|---------------|
|                                                          | 1             |
| 2.1 Purpose and Scope                                    |               |
| 2.2 Special Terms and Conditions                         | 2             |
| 2.3 Limiting Conditions and Methodology Used             | 3             |
| SECTION 3: SITE CHARACTERIZATION                         | 3             |
| 3.1 LOCATION                                             | 3             |
| 3.2 SITE AND VICINITY PHYSICAL CHARACTERISTICS           | 3             |
| 3.2.1 Geologic Summary                                   | 3             |
| 3.2.2 Geohydrologic Summary                              | 4             |
| 3.3 SITE DESCRIPTION                                     | 4             |
| 3.3.1 Public Utilities                                   | 4             |
| 3.3.2 Building Conditions                                | 4             |
| 3.3.3 Surface Conditions                                 | 6             |
| 3.3.4 Adjoining Properties                               | 8             |
| 3.4 SITE DOCUMENTS                                       | 9             |
| 3.5 INTERVIEWS                                           | 0             |
| 3.6 PAST USE OF SITE AND ADJOINING PROPERTIES            | 0             |
| 3.6.1 Summary of Past Site Use 1                         | 0             |
| 3.6.2 Summary of Past Site Use of Adjoining Properties 1 | 1             |
| 3.6.3 Historic Use Sources 1                             | 1             |
| SECTION 4: POTENTIAL OFF-SITE CONTAMINATION SOURCES 1    | 2             |
| 4.1 STANDARD ASTM ENVIRONMENTAL RECORD SOURCES           | 2             |
| 4.2 POTENTIAL OFF-SITE SOURCES 1                         | 3             |
| SECTION 5: POTENTIAL ON-SITE CONTAMINATION SOURCES 1     | 5             |
| 5.1 POTENTIAL ON-SITE SOURCES                            | 5             |
| 5.2 Phase II Soil Sampling Investigation                 | 5             |
| SECTION 6: CONCLUSIONS1                                  | 8             |

## **APPENDIX I**

# **APPENDIX II**

Laboratory Testing Results

Figure 1 - Site Vicinity Map Figure 2 – Aerial Photograph of Site Figures 3 – Site Plan with Test Pit Locations Figures 4 through 8 – Site Photographs

# SECTION 1: EXECUTIVE SUMMARY

At the request of Bob Goodwin, Stratum Group conducted Phase I Environmental Site Assessment at 205 Prospect Street in Bellingham, Washington in April 2006.

The site is currently utilized by Cascade Laundry, a commercial laundry cleaning and delivery business. Our historical review indicated that the building was constructed on the subject property in 1922 and has been utilized by Cascade Laundry since at least 1932. An addition was added to the south side of the building in the 1966. Cascade Laundry has utilized the building for laundry, dry cleaning, and fabric dyeing services. The dry cleaning and fabric dyeing operations were ended by approximately 1971. Based on the former uses of the subject property, particularly the dry cleaning and fabric dying operations, a Phase II soil sampling investigation was recommended.

During the test pit investigation, three underground storage tanks were encountered on the property. One underground storage tank was discovered south of the southwestern end of the building during the test pit excavation. This tank is approximately 300-gallons in size and was likely used in the dry cleaning or fabric dyeing operation. A second underground storage tank is located north of the west side of the building. The size of this tank is unknown, but was used to contain fuel for a boiler. Neither of the two tanks is currently in use. A third tank previously contained leaded gasoline and was closed-in-place west of the northwest corner of the building. The Washington State Department of Ecology Underground Storage Tank data base indicates that two other tanks had previously been removed from the property. However, other than the reported tank removal, no other information regarding the two removed tanks was available.

Five test pits were excavated around the western perimeter of the building and eight soil samples were collected. The samples were analyzed for diesel, oil, and volatile organic compounds. Volatile organic compounds were detected in six of the samples analyzed. Clean up levels have been established for only one of the four volatile organic compounds detected in the samples, tetrachloroethylene. Tetrachloroethylene (also known as PERC) is a commonly used as a dry cleaning solvent. Two of the samples have detections of PERC significantly above the clean up standard. Four samples contained detections for oil-range hydrocarbons, but the levels were well below the Method A clean up standard.

Due to the presence of two underground storage tanks that are no longer in use and soil samples with levels of volatile organic compounds above the clean up standard, we recommend that a tank removal and soil clean up be completed. Recommendations for the clean up of the subject property are detailed in the *Conclusions* of this report.

# **SECTION 2: INTRODUCTION**

# 2.1 Purpose and Scope

The purpose of the Phase I Environmental Site Assessment was to identify, to the extent feasible pursuant to the processes prescribed within the ASTM Standard Practice E 1527, recognized environmental conditions in connection with the subject property. A recognized environmental condition is defined as the presence or likely presence of any hazardous substances or petroleum

products on a property under conditions that indicate an existing release, a past release, or a material threat of a release of any hazardous substances or petroleum products into structures on the property or into the ground, ground water, or surface water of the property, even under conditions in compliance with existing laws. The term is not intended to include *de minimis* conditions that generally do not present a material risk of harm to public health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies.

The scope of our services included:

- Inspection of the property for indications of hazardous substances, petroleum products, lead paint, asbestos, or careless storage or disposal practices that could potentially lead to contamination
- Review of Federal, State, and local records as to locations of nearby hazardous waste sites or leaking underground storage tanks
- Review of other public records, historic aerial photographs, and historic maps to determine past usage of the property and surrounding areas
- Interview of persons with knowledge of the sites and surrounding property
- Review of the physical setting, geology and geohydrology of the site
- Review reports completed for the subject property or adjacent sites
- Complete five test pits and collect soil samples to evaluate if contamination is present
- Transport samples to an accredited laboratory using proper storage and handling practices
- Evaluate laboratory analysis reports
- Preparation of this report describing the conditions encountered and recommendations for further study, if necessary.

# 2.2 Special Terms and Conditions

Stratum Group has prepared this report using reasonable efforts in each phase of its work to estimate the liabilities associated with recognized environmental conditions on the subject property and in the vicinity of the subject property. No environmental site assessment can wholly eliminate uncertainty regarding the potential for recognized environmental conditions in connection with a property. This report is intended to reduce, but not eliminate, uncertainty regarding the existence of recognized environmental conditions in connection with the subject property, in recognition of reasonable limits of time and cost. Stratum Group makes no warranty, expressed or implied, as to the accuracy of information contained in public records.

This report is not definitive and should not be assumed to be a complete or specific definition of all conditions above or below grade.

# 2.3 Limiting Conditions and Methodology Used

No limiting conditions were encountered during the conduct of this Phase I Environmental Site Assessment. The methodology used during the production of this report is as prescribed in the ASTM E 1527 standard.

# SECTION 3: SITE CHARACTERIZATION

# 3.1 Location

The subject property is located in the downtown area of Bellingham, Washington at 205 Prospect Street. The property is located in the northwest quarter of the southwest quarter Section 30, Township 33 North, Range 3 West of Willamette Meridian. The location of the subject property is indicated in Figure 1 in the Appendix I.

# 3.2 Site and Vicinity Physical Characteristics

The subject property is approximately 0.54 acres in size and is located within the downtown Bellingham commercial area. The property is occupied by one building that is currently utilized by Cascade Laundry. The subject property is located at an elevation of approximately 60 feet above mean sea level and is located adjacent to an approximately 35-foot high vegetated slope. The slope extends along the western property boundary and slopes westward. Whatcom Waterway is located approximately 550 feet west of the subject property.

# 3.2.1 Geologic Summary

Northwestern Washington has been occupied by continental glaciers at least four times during the Pleistocene Epoch (1.6 million to 10,000 years ago). During these glacial (stades) and accompanying interglacial periods (interstades), the underlying bedrock was eroded and glacial related sediments of varying thickness were deposited over the bedrock.

The following descriptions of the surficial deposits in the vicinity of the subject property were interpreted from the <u>Geologic Map of Western Whatcom County, Washington</u> (Easterbrook, 1976), the <u>Preliminary Geologic Map of the Bellingham 1:100,000 Quadrangle, Washington</u> (Lapin and others, 2000) and our own observations in the vicinity of the subject property. According to Easterbrook (1976) and Lapin and others (2000), the subject property is underlain by Bellingham glaciomarine drift. The Bellingham Drift was deposited by melting glacial ice near the end of the last glacial period when the area was submerged below sea level. The Bellingham Drift generally consists of silty clay. Glaciomarine drift soils were not observed during our test pit investigation. The soils observed on the subject property to a depth of approximately 8 feet were brown sandy, silty fill material. Some bricks, pipes, and other miscellaneous debris were observed in the pits.

Stratum Group

Chuckanut sandstone was observed at approximately 5 foot depth in test pit #3.

The <u>Soil Survey of Whatcom County</u> (USDA, 1992), describes the soils on and in the vicinity of the subject property as urban land. Due to the presence of buildings no soil data was available.

# 3.2.2 Geohydrologic Summary

Generally, shallow ground water flow direction is a function of topography. The subject property is located along the east side of a west facing slope. Ground water information provided in the *Environmental Site Assessment, Northwest Center for Art, Maritime Heritage Park Site, Bellingham, Washington* completed by Landau Associates in February 1993 for the adjacent site to the west indicates that the ground water flow is northwest toward Whatcom Creek and Bellingham Bay. The report indicates that ground water elevation is approximately 12-13 feet above mean sea level or approximately 43 feet below the subject property.

# **3.3 Site Description**

Stratum Group conducted a site visit to the subject property on April 1, 2006. A second site visit and Phase II sampling was conducted on April 6, 2006.

The property is occupied by one large building that is used as laundry facility for Cascade Laundry.

A 2002 aerial photograph of the subject property and vicinity is presented in Figure 2. The aerial photograph provides a good overview and layout of the property. A general site plan sketch is provided in Figure 3 in the Appendix I. The test pit locations are also indicated in Figure 3. Photographs of the site are provided in Figures 4 through 8 in the Appendix I.

# 3.3.1 Public Utilities

The property is serviced by electricity, natural gas, and telephone utilities and utilizes the public water and sanitary sewer systems.

# 3.3.2 Building Conditions

One building is located on the subject property. The building is two stories high and has a daylight basement.

The eastern portion of the property, nearest to Prospect Street is utilized as a small office. The main floor of the building has numerous large laundry washing and drying equipment, garment pressing equipment, and various other large metal laundry equipment. Large floor drains are located beneath

Stratum Group

the washing equipment. The drains are connected to the sanitary sewer system. Biodegradable soaps are currently used in the machines. The former dry cleaning area was located in the southwest corner of the building. The main floor has concrete floors. An addition was added to the south side of the building in the 1960s and is utilized for storage of dirty clothes that are ready for cleaning. The southwest corner of the main floor of the building was the area previously utilized for dry cleaning.

Approximately three painted areas were tested for lead paint and no lead was detected. A few pipes were wrapped with fiberglass insulation and no asbestos containing materials were noted.

The second story of the building is primarily utilized as storage. Large wooden beams and wooden floor are present in the second story. A rug cleaning area is located in the western portion of the second story. A small former apartment is located in the east end of the second story. A small bathroom is located in the southwest corner of the second story. No lead paint was detected in the painted areas of the former apartment. Access to the roof of the southern building addition is available through the second story. The owner of the property, Terry O'Hara, stated that the roof was replaced approximately 5 years ago. A pile of the previous roofing material is located on the second floor of the building and may contain asbestos.

The basement of the building is utilized as a maintenance area and contains the current and former boiler. The current boiler is powered by natural gas. A large water tank is also located in the basement. Small containers (5-gallons or less) of oils and various materials were stored in the basement of the building. Low areas are present in the floor of the basement for access to the former partially underground boiler. A floor drain was observed in the floor of the basement. The maintenance man for Cascade Laundry indicated that the former boiler had previously been wrapped with asbestos containing materials and an extensive asbestos removal had taken place. Doors from the basement lead to the access road along the west side of the building.

Our interior observations as required by ASTM Standard Practice E 1527, are presented in Table 1.

| ASTM Observation     | Yes/No    | Comments                                                                                                                                                                 |
|----------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Heating              | Yes       | The building is heated by natural gas.                                                                                                                                   |
| Stains/Corrosion     | No        |                                                                                                                                                                          |
| Drains/Sumps         | Yes       | Drains are present beneath the washing machines on the main floor of the building and in the basement. The drains are currently connected to the sanitary sewer.         |
| Asbestos             | Potential | No asbestos materials were observed, except for a pile of<br>previous roofing materials that is stored in the second<br>story of the building that may contain asbestos. |
| Lead Paint           | No        | Lead testing was completed in a few locations inside the building and no lead paint was detected.                                                                        |
| PCBs                 | No        |                                                                                                                                                                          |
| Hazardous Containers | Yes       | A few 5-gallon buckets of oil were present in the basement of the building.                                                                                              |
| Odors                | No        |                                                                                                                                                                          |

| TABLE 1                         |
|---------------------------------|
| Interior Observations Checklist |

# 3.3.3 Surface Conditions

A site sketch of the subject property is presented in Figure 3 and an aerial photograph of the site is presented in Figure 2 in Appendix I. The site sketch and aerial photograph provide a good overview of the layout of the subject property.

A paved access road extends along the western boundary of the subject property and wraps around the southern portion of the property to beneath a covered area south of the building addition. The covered area is utilized for storage of laundry bins and for loading/unloading the delivery trucks. The covered area is also accessible through the paved parking area in the southwest corner of the subject property, adjacent to Prospect Street.

The land between the paved access road and the building is primarily dirt covered, except for some additional paved parking along the north side of the building. Retaining walls are located along the southwest and northwest sides of the building are 7-9 feet high. The retaining walls are such that an elevated terrace is located on the uphill side of the retaining wall.

The owner of the property and the maintenance man indicated that an underground storage tank (UST) is located along the northwest side of the building within fill material contained by the retaining wall. The tank is thought to have held fuel for the former boiler. A second UST was discovered in the fill material along the southwest side of the building during our test pit excavation. Details about the test pit excavation and soil sampling is presented in the *Section* 5 - Potential On-Site Contamination Sources section of this report

Our A pril 1, 2006 e xterior obs ervations a s r equired by A STM S tandard P ractice E 1527 are presented in Table 2.
| ASTM Observation     | Yes/No | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hazardous Containers | No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Storage Tanks        | Yes    | An approximately 300-gallon tank that may be associated<br>with the site's former use as a dry cleaner/fabric dying<br>facility is located along the southwest wall of the<br>building. One UST exists along the northwest side of the<br>building and was used to contain fuel for the former<br>boiler. One tank was closed-in-place west of the<br>northwest corner of the building. Two other tanks have<br>been reported to have been removed from the property,<br>but no other information was available regarding the use<br>or location of the tanks. |
| Solid Waste Disposal | No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Odors                | Yes    | A sharp sweet odor was observed in the soils south of the southwest corner of the building during our test pit excavations.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PCBs                 | No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Asbestos             | No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pits, Ponds, Lagoons | No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stained Soil         | No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Stressed Vegetation  | No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Waste Water          | No     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Septic Systems       | No     | The property is connected to the City of Bellingham sanitary sewer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| TABLE 2                         |
|---------------------------------|
| Exterior Observations Checklist |

# 3.3.4 Adjoining Properties

Central Avenue, a paved parking area, and a building utilized by a variety of offices bound the subject property to the north. The building, located at 209 Prospect Street, shares a common wall with the subject property. Prospect Street bounds the subject property to the east. A small building utilized by Accurate Lock (200 Prospect Street) and a larger building utilized as part of the

Whatcom County Museum (206 Prospect Street) are located across Prospect Street from the subject property. A building utilized by the Whatcom County Museum bounds the subject property to the south. A vegetated slope and Maritime Heritage Park bound the subject property to the west. A portion of Maritime Heritage Park was utilized as a part of a municipal landfill in the 1940s and 1950s. Information about this site is presented in the *Section 3.4 - Site Documents* of this report.

# **3.4 Site Documents**

A document entitled *Environmental Site Assessment, Northwest Center for Art, Maritime Heritage Center Park Site, Bellingham, Washington* completed in February 1993 by Landau Associates was reviewed for this report. The report includes a history of the Maritime Heritage Park site and vicinity and the results of soil, ground water, and methane testing. Four test pits and four borings were completed on the Maritime Heritage Park site in November 1992 of which three of the borings became ground water monitoring wells. The report indicates that refuse mixed with 10-40% soil was found between 2-4 feet below the ground surface (bgs). The refuse was between 12-20 feet thick and consisted of glass bottles, metal scrap, paper, porcelain, soil, cloth, wire, cans, brick, tires, wood chips, and appliance and automotive parts. Bedrock was reached between 25-36 feet bgs. Landau indicates that ground water was encountered between 19-24 feet bgs or at an elevation of 12-13 feet elevation above mean sea level. Ground water flow was determined to be to the northwest toward Bellingham Bay and Whatcom Creek based on information gathered from the monitoring wells. Methane gas was detected at 22-35% of the lower explosive limit inside two of the monitoring wells.

The ground water quality tests indicated none of the 36 volatile organic compounds analyzed for were detected in the samples. Total petroleum hydrocarbon contamination was not found above the detection limit. Calcium, iron, manganese, and zinc were detected in the ground water samples. The maximum contaminate levels for iron and manganese was exceeded in the ground water. Lead, arsenic, chromium, and mercury were not found above the detection limits.

The soil tests taken in the refuse areas found detections of arsenic, cadmium, chromium, lead, mercury, and zinc. Of the detected metals, only zinc was determined to exceed the clean up levels in the refuse soil samples. Zinc was not found in the ground water.

The report mentions in the conclusion that Cascade Laundry discharges water on the bluff. The report recommends that the discharge (mostly water) from the Cascade Laundry site be redirected into the storm sewer or sanitary sewer system.

Based on t he location of the former landfill site down gradient of the subject property it is our opinion that the M aritime H eritage P ark s ite d oes n ot n egatively impact the environmental conditions on the subject property. The results a lso in dicate that ground water at the M aritime Heritage Park has not been impacted by solvents associated with dry cleaning operations.

# **3.5 Interviews**

Whatcom County Health Department was contacted concerning any known environmental health hazards associated with the property. The Health Department indicated that they had no records or reports of environmental conditions associated with the property.

Terry O'hara, owner of the subject property, indicated that the property was utilized as a dry cleaner approximately 35-40 years ago. The dry cleaning equipment was located in the southwest corner of the main building. Mr. O'hara thought that the dry cleaning operation was ended by at least 1971. Mr. O'hara stated that the office portion of the building was created in the 1980s and that the roof of the entire building was replaced in approximately 2001.

Bill Reilly with the City of Bellingham Public Works was interviewed on March 28, 2006. Mr. Reilly stated that the Cascade Laundry site had previously had problems with a drain line that was releasing steamy discharge onto the slopes west of the building. Mr. Reilly stated that the issue had been resolved with the sewer department and the site was connected to the sanitary sewer.

The City of Bellingham fire department was interviewed on May 2, 2006. The fire department records indicate that one tank was filled-in-place on the subject property in September 1991.

# 3.6 Past Use of Site and Adjoining Properties

Our historic investigation included review of historical Sanborn Fire Insurance Maps, Polk City Directories, Whatcom County Assessor's notes, historic photographs of the area and interviews with the owner of the subject property.

# 3.6.1 Summary of Past Site Use

The subject property and vicinity was initially developed in approximately the 1850s as it is located near the earliest area of development along Bellingham Bay. An 1892 photograph of the site indicates that a small home was located on the subject property at that time. The Sanborn Maps indicate that a residence was constructed in the southwest corner of the subject property by 1904. The main structure of the building presently on the subject property was constructed in 1922. The southern portion of the subject property was utilized as a car sales lot until approximately 1935. Cascade Laundry began to utilize the subject property by at least 1932. An addition was added to the south side of the building in the 1966. Cascade Laundry has utilized the building for cleaning clothing, rugs, and miscellaneous goods, dry cleaning, and dyeing fabric. The year that the dry cleaning operation began is unknown but is believed to have ended by 1971.

# 3.6.2 Summary of Past Site Use of Adjoining Properties

The land north of the subject property was utilized as a home site from the late 1800s. By 1913, a building utilized as a tenement was located near the northwest corner of the subject property. This building was removed in the 1920s a building was constructed that shared a wall with the northeast wall of the building on the subject property. The building was utilized by the Salvation Army from at least 1935 through the 1970s. Since approximately 1980, the building has been utilized by numerous offices and commercial businesses.

Prospect Street has historically bound the subject property to the east. A grocery warehouse was located across Prospect Street from the subject property as early as 1897. A grain and hay warehouse was located across Prospect Street from the subject property in 1904. By 1913, a large building was constructed across Prospect Street from the subject property (206 Prospect Street). The building has since been utilized as a garage, warehouse, auto repair shop, and museum. The 1932 and 1963 Sanborn Fire Insurance Maps indicate that an underground gasoline tank was located in the road west of the building at 206 Prospect Street. By 1932 a gasoline station was constructed on the corner of Prospect and Flora Street (200 Prospect Street), across Prospect Street from the subject property. The gasoline station operated until the late 1970s. The site has been utilized by Accurate Lock since approximately 1980.

Vacant land bounded the subject property to the south in the late 1800s and early 1900s. By 1913, a building was constructed south of the subject property and was utilized by the fire department. The building was remodeled in the early 1990s and is currently utilized as a museum.

The land west of the subject property was initially utilized as a saw mill lumber yard in the mid to late 1800s. The land was utilized as part of a municipal landfill in the 1940s and 1950s. The landfill was later capped with 2-4 feet of clean soil. The property was developed as a park in the early 1990s.

# 3.6.3 Historic Use Sources

Historic aerial photographs and maps of the subject properties were consulted for this Phase I ESA to determine past uses of the subject property and adjacent properties and are listed below.

- 1. Sanborn Fire Insurance Maps dated 1897, 1904, 1913, 1932, 1948, and 1963, maintained by the City of Bellingham Public Library in Bellingham, Washington and the on-line digital Sanborn Fire Insurance Map database.
- 2. Polk City Directories for Bellingham dated 1935-1985, maintained by the City of Bellingham Public Library in Bellingham, Washington. The directories were

Stratum Group

inspected at approximately 5-year intervals.

- 3. Property assessor records maintained by the Whatcom County Assessors Office, Bellingham, Washington
- 4. Information available through interviews with the owner of the subject property.
- 5. Review of the report entitled *Environmental Site Assessment, Northwest Center for Art, Maritime Heritage Center Park Site, Bellingham, Washington* completed in February 1993 by Landau Associates for an adjacent property to the west.
- 6. Bellingham North, Washington, Revised 1989, 7.5-Minute Series (Topographic): United States Geologic Survey, scale 1:24,000. Part of this map is reproduced in Figure 1.
- 7. Available historic photographs we have in our collection dating back to the late 1800s.

# SECTION 4: POTENTIAL OFF-SITE CONTAMINATION SOURCES

# 4.1 Standard ASTM Environmental Record Sources

The public documents, listed in Table 3, have been reviewed to identify off-site contamination sources in the vicinity of the subject property that have a potential to negatively impact the subject property's soil, ground water, or surface water. The sites found within the search radius, as identified by the ASTM standard, are then evaluated to determine their potential effect on the subject property. Factors such as location, topographic barriers, ground water flow direction, type of contamination, and the actions taken to remove the contamination are all considered to determine each off-site contamination source's potential impacts on the subject property.

Thirty-eight potential off-site contamination sources were identified within the ASTM standard search radius. The subject property is also listed on the public databases as an Underground Storage Tank site. The locations of the potential contamination sources and the subject property are indicated on the Figure 1 site vicinity map. The sites are numbered on the Figure 1 site vicinity map and correspond to the site names listed on the *Potential Off-Site Contamination Sources* list on the page following the map.

| AGENCY                              | DOCUMENT                                                                                               | SEARCH<br>RADIUS                 | IDENTIFIED<br>SITES |
|-------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|
| Federal<br>Environmental            | Resource Conservation and<br>Recovery Act Transfer, Storage,<br>and/or Disposal Facility (RCRA<br>TSD) | 1 Mile                           | 0                   |
| Protection Agency                   | CERCLIS                                                                                                | <sup>1</sup> / <sub>2</sub> Mile | 0                   |
|                                     | National Priorities List<br>(SUPERFUND)                                                                | 1 Mile                           | 0                   |
|                                     | Confirmed and Suspected<br>Contaminated Sites (CSCS)                                                   | 1 Mile                           | 18                  |
| Washington State<br>Department of   | Leaking Underground Storage<br>Tank List (LUST)                                                        | <sup>1</sup> / <sub>2</sub> Mile | 16                  |
| Ecology                             | Underground Storage Tank List (UST)                                                                    | Adjacent*                        | 4                   |
| Whatcom County<br>Health Department | Solid Waste Landfill Sites                                                                             | 1 Mile                           | 1                   |

| TABLE 3                      |
|------------------------------|
| Environmental Records Review |

\*Subject property is listed as an Underground Storage Tank Site with Ecology

#### 4.2 Potential Off-Site Sources

Thirty-eight sites were identified within the ASTM search radius around the subject property.

Many of the sites are located across Whatcom Creek from the subject property, which acts as a hydrologic barrier. Based on the hydrologic separation of the sites from the subject property, it is our opinion that all of the sites located north of Whatcom Creek from the subject property do not pose a significant risk of contamination to the subject property.

The topography in the vicinity of the Old Sears Building (map #32) and the Cornwall Building (map #16) indicates that shallow ground water flows north toward Whatcom Creek and away from the subject property. Based on the ground water flow direction from these sites away from the subject property, it is our opinion that these sites do not pose a significant risk of contamination to the subject property.

The Colony Wharf (map #4), Holly Street Landfill (map #6), Rentals Inc (map #24), and Whatcom Waterway (map #9) sites are located down gradient of the subject property and therefore do not pose a significant risk of contamination to the subject property.

The topography in the vicinity of the Georgia-Pacific (map #1), Bellingham National Bank (map #2), Morse Hardware Company (map #10), Ray's Station (map #11), Burlington Northern (map #17) sites slopes toward the northwest. Shallow ground water flow generally follows the local topography, which indicates that shallow ground water flow is to the northwest toward Bellingham Bay and away from the subject property. Based on the locations of these sites, it is our opinion that they do not pose a significant risk of contamination to the subject property.

The Minit-Lube site (map #25), the Lighthouse Mission Warehouse (site #12), and Motorpool (map #30) are listed with Ecology as having been reportedly cleaned up. Based on the sites having been reportedly cleaned up, it is our opinion that these sites do not pose a significant risk of contamination to the subject property.

The Smart Stop Shell (map #7) is listed with Ecology as having impacted the soil and ground water with petroleum products. Ecology's database indicates that a clean up was started at the site in June 1995. The site is located approximately 2,150 feet southeast of the subject property. Based on the distance separating the subject property from the Smart Stop Shell site, it is our opinion that the site does not pose a significant risk of contamination to the subject property.

Three sites are located adjacent to the subject property: the Fire Station (map #39), the Accurate Lock site (map #37), and the gas tank beneath Prospect Street (map #36). The Fire Station site is located adjacent to the south side of the subject property. Ecology's database indicates that one UST has been removed from the site. The site is not listed as a contaminated site and is located laterally gradient to the subject property. It is our opinion that the Fire Station site does not pose a significant risk of contamination to the subject property.

The Accurate Lock and the gas tank beneath Prospect Street sites are located adjacent to the east side of the subject property. The sites are not listed on the public databases, but were identified through our historical records search. The status of the tanks (whether they are present or not) is unknown. No odors or sheen indicative of gasoline were observed in the soils during our test pits in the western portion of the subject property. In addition, the soils in the vicinity consist of glaciomarine drift, which has a high clay content and slows the movement of gasoline through the subsurface. It is our opinion that the Accurate Lock and the gas tank beneath Prospect Street pose a low risk of contamination to the subject property and no further investigation is warranted.

# SECTION 5: POTENTIAL ON-SITE CONTAMINATION SOURCES

# **5.1 Potential On-Site Sources**

A representative of Stratum Group visited the subject property on April 1, 2006. The purpose of the site visit was to identify, to the extent feasible pursuant to the processes prescribed within the ASTM Standard Practice E 1527, recognized environmental conditions in connection with the subject property.

Our site inspection and interviews with people knowledgeable about the site indicated that at least five USTs have been located on the subject property. One leaded gasoline tank was closed-in-place on the site in September 1991. One tank is located north of the northwest portion of the building and was previously used to hold fuel for a boiler. A third tank was discovered in the fill material south of the southwest corner of the building and was likely utilized in the dry cleaning or fabric dyeing operations at the site. Ecology's UST database indicates that two other tanks were removed from the subject property, but no information is known about these tanks.

In addition, our historical review and interviews with people knowledgeable about the site indicated that the property previously had dry cleaning and fabric dyeing operations. The solvents and chemicals associated with these uses can be hazardous to human health and the environment. Therefore, based on the presence of tanks and the previous uses of the subject property, a Phase II soil sampling investigation was recommended.

# 5.2 Phase II Soil Sampling Investigation

A Phase II investigation was completed on April 6, 2006. Five test pits were excavated around the west end of the building on the subject property. One to two soil samples were collected from each test pit and analyzed for volatile organic compounds, diesel, and oil. A map of the test pit locations is presented in Figure 4 in Appendix I. No ground water was encountered in any of the test pits. All of the test pits were refilled with the excavated material after the samples were collected.

Test pit #1 was excavated approximately six feet south of the southern wall of the main building, west of a concrete pad. One soil sample was collected at 2 feet bgs. The test pit was abandoned at approximately 4 feet bgs due to the presence of approximately 4 underground pipes that crossed through the pit. A sweet odor was noted in the soils excavated from test pit #1.

Test pit #2 was excavated approximately 6 feet south of the southern wall of the building in the western end of the fill material. A soil sample was collected at 2 feet bgs. A vertical pipe was observed in the east end of the test pit. Further excavation exposed a corner of an underground storage tank. The tank was filled with yellowish-brown liquid. A second soil sample was collected from approximately 5 feet bgs. A sweet odor was noted in the soils excavated from test pit #2.

The soil in test pits #1 and #2 was fill material. The top eight inches of soil was brown and contained rocks. This material was underlain by approximately 1.5 feet of dark blackish soil. Light brown soil was observed beneath the black colored soil.

Test pit #3 was excavated west of the retaining wall adjacent to the southwest corner of the building. Soil samples were collected at 2 and 5.5 feet bgs. Weathered sandstone was encountered at 5.5 feet bgs and no more material could be excavated.

Test pit #4 was excavated in the fill material north of the northwest portion of the building. An underground storage tank is known to be located at shallow depths near the building, so the test pit was located approximately 10 feet north of the building within the fill material. The fill material consisted of approximately 6 inches of dark soil underlain by brown soil comprised of silt, sand, and clay. Some debris and rocks were observed in the material. No odor or sheen were observed in the soils in test pit #4. A sample was collected at 8 feet bgs.

Test pit #5 was excavated west of the west side of the building, south of the unleaded gasoline tank that was closed-in-place. The soil consisted of brown sand and silty fill material with a layer of bricks and pottery at approximately 3 feet bgs. Soil samples were collected at 2 and 8 feet bgs.

Eight soil samples were collected from the test pits. The soil was collected using Method 5035 B using a plastic syringe. Approximately 10 gram of soil was placed in a pre-weighed vial with methanol. Additional soil from each sample location was placed in 8-ounce soil jars. Samples were immediately placed in an ice cooler. The samples were then transported to CCI Analytical Laboratories in Everett, Washington for analysis via courier. The samples reached the laboratory at approximately 7:30am on April 7, 2006. Each sample was analyzed for diesel and oil range petroleum products and for volatile organic compounds. The petroleum product concentrations were analyzed using the EPA method NWTPH-DX and the volatile organic compound analysis was conducted using the EPA method EPA-8260. Sample 01 was analyzed for diesel and oil using NWTPH-DX with a silica cleanup.

A summary of the laboratory test results are presented in Table 4, below. Copies of the laboratory results are located in Appendix II.

| Sample                          | Sample                   | Diesel           | Oil              | Volatile Organic Compounds* (µg/kg) |                             |                             |                             |  |
|---------------------------------|--------------------------|------------------|------------------|-------------------------------------|-----------------------------|-----------------------------|-----------------------------|--|
| Number                          | Name and<br>Depth (feet) | Range<br>(mg/kg) | Range<br>(mg/kg) | Tetrachloro-<br>ethylene            | Cis-1,2,-<br>Dichloroethene | 1,3,5-Tri-<br>methylbenzene | 1,2,4-Tri-<br>methylbenzene |  |
| 01                              | TP1 2'                   | ND(<25)          | 70               | 2100                                | ND(<10)                     | ND(<10)                     | ND(<10)                     |  |
| 02                              | TP2 2'                   | ND(<25)          | ND(<50)          | ND(<10)                             | ND(<10)                     | ND(<10)                     | ND(<10)                     |  |
| 03                              | TP2 5'                   | ND(<25)          | ND(<50)          | 260                                 | 120                         | 850                         | 390                         |  |
| 04                              | TP3 2'                   | ND(<25)          | 84               | 23                                  | ND(<10)                     | ND(<10)                     | ND(<10)                     |  |
| 05                              | TP3 5.5'                 | ND(<25)          | 76               | 14                                  | ND(<10)                     | ND(<10)                     | ND(<10)                     |  |
| 06                              | TP4 8'                   | ND(<25)          | 58               | ND(<10)                             | ND(<10)                     | ND(<10)                     | ND(<10)                     |  |
| 07                              | TP5 2'                   | ND(<25)          | ND(<50)          | 40                                  | ND(<10)                     | ND(<10)                     | ND(<10)                     |  |
| 08                              | TP5 8'                   | ND(<25)          | ND(<50)          | 12                                  | ND(<10)                     | ND(<10)                     | ND(<10)                     |  |
| Method A Soil Cleanup<br>Levels |                          | 2,000            | 2,000            | 50                                  | not<br>available            | not<br>available            | not<br>available            |  |

**TABLE 4**Soil Sample Laboratory Results

\*only the four (out of 65) volatile organic compounds detected in the samples are listed in this table mg/kg = parts per million; ug/kg = parts per billion

ND (<25) = parameter not detected at the bracketed concentration

Shaded areas indicate the sample concentration was above the clean up standard

The results of the laboratory analysis indicate that Sample 01 and Sample 03 exceed the Method A clean up standards for tetrachloroethylene (PERC), a common dry cleaning solvent. Sample 01 had a detection of 2,100  $\mu$ g/kg and Sample 03 had a detection of PERC at 260  $\mu$ g/kg. The Method A clean up standard for PERC has been established at 50  $\mu$ g/kg in the soil, a level determined to protect the quality of ground water and be safe for human health and the environment. Four additional soil samples had detections of PERC, but at levels between 12 and 40  $\mu$ g/kg, below the clean up standard.

Sample 03, adjacent to an underground storage tank, also had detections of Cis-1,2,-Dichloroethene, 1,3,5-Trimethylbenzene, and 1,2,4-Trimethylbenzene. These volatile organic compounds are associated with paints and dyes and are likely related to the fabric dyeing operations that occurred on the property.

Four of the eight soil samples had detections of oil-range petroleum. The sample detections ranged from 58 to 84 mg/kg, well below the clean up standard of 2,000 mg/kg.

The shallow contamination of PERC detected in Sample 01 is likely from spills that occurred during the dry cleaning operations at the site, as the sample location is near the door of the dry cleaning operations area. The volatile organic compounds detected in Sample 03 are likely from the underground storage tank discovered during our test pit investigation. A fill or vent pipe extended vertically from the tank to approximately 1 foot below the ground surface. The pipe was not capped and may have collect rain water. The tank was full of liquid during our test pit investigation and has the potential to overflow through the pipe.

Based on the presence of volatile organic compounds at levels above the clean up standards, it is our opinion that a clean up should take place on the property prior to any redevelopment of the site.

# **SECTION 6: CONCLUSIONS**

We have performed Phase I and a Phase II Environmental Site Assessments for the subject property at 205 Prospect Street in Bellingham, Washington.

# **On-Site Contamination**

The Phase I investigation indicated that the subject property had previously had dry cleaning and fabric dyeing operations. In addition, two underground storage tanks are known to be located on the subject property that are no longer in use. One tank is located north of the northwest corner of the building and was used to hold fuel for a boiler. A second tank was discovered during our test pit investigation south of the southwest corner of the building and was likely used in the dry cleaning/fabric dyeing operation. Ecology's database indicates that the subject property has had three underground tanks removed. One tank is known to have contained leaded gasoline and was closed-in-place. No information is known about the other two tanks.

Based on these areas of concern, a Phase II soil sampling investigation was completed. Five test pits were excavated around the western end of the building and eight soil samples were collected. The soil samples were analyzed for diesel, oil, and volatile organic compounds. No diesel was detected in any of the samples. Oil was detected in four of the samples at levels well below the clean up standard. Six of the eight samples had detections of tetrachloroethylene, a common dry cleaning solvent. Two of these samples (Samples 01 and 03) had detections of 2,100 and 260  $\mu$ g/kg of tetrachloroethylene, significantly above the clean up standard of 50  $\mu$ g/kg. Sample 03 had detections of three additional volatile organic compounds. No clean up standards were available for these compounds.

The volatile organic compound contamination likely stems from spills that occurred during the site's operation as a dry cleaning and from overflow or leaks from an underground storage tank associated with the site's former use as a dry cleaner/fabric dyer. Based on the soil samples collected down gradient of the fill material (test pit #3) which had detections of dry cleaning solvent

at levels below the clean up standard and no volatile organic compounds detected in the ground water samples collected from the adjacent property to the west, the contamination seems to be limited to the fill soils south of the former dry cleaning area.

No issues of contamination were observed with the current operations of the building. No lead or asbestos were observed in the building, except for a pile of roofing material stored on the second story of the building which may potentially contain asbestos.

## Potential Off-Site Contamination

Thirty-eight sites were identified within the ASTM radius as potential off-site contamination sources. Three of the sites are located adjacent to the subject property: the Fire Station (map #39), the Accurate Lock site (map #37), and the gas tank beneath Prospect Street (map #36).

The Fire Station site is located adjacent to the south of the subject property. Ecology's database indicates that one UST has been removed from the site. The site is not listed as a contaminated site and is located laterally gradient to the subject property, therefore, it is our opinion that the Fire Station site does not pose a significant risk of contamination to the subject property.

The Accurate Lock and the gas tank beneath Prospect Street sites are located adjacent to the east of the subject property. The sites are not listed on the public databases, but were identified through our historical records search. The status of the tanks (whether they are present or not) is unknown. No odors or sheen indicative of gasoline were observed in the soils during our test pits in the western portion of the subject property. In addition, the soils in the vicinity are mapped as glaciomarine drift, which has a high clay content and slows the movement of gasoline through the subsurface. It is our opinion that the Accurate Lock and the gas tank beneath Prospect Street pose a low risk of contamination to the subject property and no further investigation is warranted.

#### Recommendations

Based on the testing results the soil on the south side of the building is contaminated with chemicals associated with dry cleaning solvents at levels greater than the Model Toxics Control Act cleanup standard. At present the soil does not pose a risk to human health or the environment, but does pose a risk in the event that the site were to be redeveloped. In addition abandoned underground storage tanks are located on the site. One of these tanks contains liquid that is likely contaminated with dry cleaning solvents.

We recommend that the soil impacted by higher levels of volatile organic compounds be removed from the subject property and disposed of at an appropriate facility. The contamination is likely limited to the fill soils south of the southwestern portion of the subject property, adjacent to the former dry cleaning area of the building.

In addition, we recommend that the two underground storage tanks known to be present on the subject property be removed by a licensed tank removal company. Soil samples should be collected from the soil in the vicinity of the tanks after removal to confirm that the soils are clean.

At this point we do not have a solid number for the volume of soil contaminated. If a high volume estimate of a contaminated area of 20 feet by 20 feet by 10 feet deep area of contamination is assumed, we estimate that the cost of excavation and disposal of the contaminated soil, removal of two underground storage tanks, confirmation clean up sampling, laboratory analyses, and report preparation is on the order of \$65,000. The cost of the clean up is largely due to the costs associated with transport and disposal of the soil at a hazardous waste landfill located in eastern Oregon. This cost may be alleviated by judicious excavation and sampling to limit the amount of soil excavated and removed from the site.

# **APPENDIX I**

Figure 1 - Site Vicinity Map Figure 2 – Aerial Photograph Figure 3 – General Site Plan with Test Pit Locations Figures 4 through 8 – Site Photographs

# **APPENDIX II**

Laboratory Test Results



Figure 2. Aerial photograph of subject property and vicinity (2002, City of Bellingham)



Figure 4. View of the front of the Cascade Laundry building, looking west-northwest across Prospect Street.



Figure 5. View of northwest corner of the Cascade Laundry building, looking southeast. Note the retaining wall and fill material on the left side of the photo. The underground storage tank used to hold fuel for the boiler is located near the building within the fill material.



Figure 6. View of the retaining wall south of the southwestern portion of the building, looking east. The dry cleaning operations occurred within the main building in the left side of the photo and the building addition is visible in the background on the right hand side of the photo.



Figure 7. View of test pit #2 in the fill material south of the southwest corner of the building, looking east. The vertical pipe in the far side of the test pit is attached to an underground storage tank.



Figure 8. View of test pit #5 being excavated along the west side of the building, looking south. Disturbed material is visible in the back-central of the photo where test pit #3 was excavated. The closed-in-place underground gasoline tank is located just beyond the telephone pole in the forefront of the photo where the dirt looks reddish.



ce: BAM Path: P\0\0000381-031\00\Site Plan.mxd RMB:IMS 08/14/2007

# 



|                        | Date<br>Drill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e(s)<br>ed          |                            |            | 8          | 3/10    | 0/07    | ,           |                |                 | Logged A. Fickeisen Ch<br>By A. Fickeisen                                                                | lecked                    |                            | R. Bek                |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|------------|------------|---------|---------|-------------|----------------|-----------------|----------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|-----------------------|--|
| 9162<br>1              | Drill<br>Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ing<br>tractor      |                            |            |            | ES      | SN      |             |                |                 | Drilling Direct Push Sa<br>Method Met                                                                    | Sampling Co<br>Methods    |                            | Continuous Macro Core |  |
| 330<br>2 <sup>55</sup> | Aug<br>Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er<br>a             |                            |            |            | N/      | /A      |             |                |                 | Hammer N/A Dri<br>Data Eq                                                                                | lling<br>uipment          | L                          | mited Access Rig      |  |
|                        | Tota<br>Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al<br>th (fl)       |                            |            |            | 29      | 9.5     |             |                |                 | Surface Gr<br>Elevation (ft) 57 Ele                                                                      | oundwater<br>evation (ft) |                            | Not Determined        |  |
|                        | Vert<br>Dati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ti <b>cal</b><br>um |                            |            |            |         |         |             |                |                 | Datum/ Ea<br>System No                                                                                   | sting(x):<br>orthing(y):  |                            |                       |  |
| 1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 5                          | SAMF       | PLES       | 3       |         |             |                |                 |                                                                                                          |                           | DOL                        | 1                     |  |
|                        | Elevation feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth feet          | Interval<br>Recovered (in) | Blows/foot | Sub-Sample | Number  | Testing | Water Level | Graphic<br>Log | Group<br>Symbol | MATERIAL DESCRIPTION                                                                                     | Sheen                     | Headspace Val<br>PID (ppm) | NOTES                 |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                   | 26                         |            |            | 1       |         |             |                | TS<br>SM        | Topsoil<br>- Brown silty fine to medium sand with gravel<br>(moist) (fill)                               | - ss                      | 0                          |                       |  |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 —                 | 36                         |            |            | ******* |         |             |                | SM              | Brown silty fine to medium sand with organic<br>matter, wood fragments, and occasional gravel<br>(moist) | - SS                      | 0                          |                       |  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     | 34                         |            | <b>n</b>   | 3       | CA      |             |                | CL              | Brown clay with sand and occasional gravel                                                               | - ss<br>- ss              | D                          |                       |  |
|                        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                   | - 36                       |            |            |         |         |             |                | SP-SM           | (moist)<br>Brown fine to medium sand with silt (moist)                                                   | <br>NS                    | D                          |                       |  |
|                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 —                | - 20                       |            |            | 4       | CA      |             |                | CL              | Gray and black clay with organic matter and glass<br>shards (moist)                                      | - 55                      | 230                        |                       |  |
|                        | 40<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | 50                         |            |            | 5       |         |             |                | 21,             | organic matter and rock fragments (moist to<br>wet)                                                      | - SS<br>- SS              | 3                          |                       |  |
| 5_1.GDT 8/26/08        | -<br><br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                  | 39                         |            |            | 6       |         |             |                | CL              | Gray clay with fine to medium sand (moist)<br>– (Bellingham [glaciomarine] Drift)                        |                           | 100                        | odor                  |  |
| 30 DP.GPJ GEN(         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>-<br>25 —      | - 42                       |            |            | 7       |         |             |                |                 | -                                                                                                        | - NS<br>- NS<br>- NS      | 1<br>10                    | slight odor           |  |
| KING\0381031(          | -<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                   | - 38                       |            |            |         |         |             |                | CI.             | Gray clay with occasional gravel (moist)                                                                 | NS<br>NS<br>NS            | 150<br>127<br>60           |                       |  |
| 3381031\00\WORH        | 38     8     CA     CL     Gray fine to medium sandy clay (moist to wet)     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -< |                     |                            |            |            |         |         |             |                |                 |                                                                                                          |                           |                            |                       |  |
| R:\0\03\C              | $\sub$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                            |            |            |         |         |             |                |                 | OF DIRECT-PUSH BORING DP.                                                                                | -2                        |                            |                       |  |
| 6 ENVBORING            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ge                  | юĒ                         | - N        | GI         | NI      |         | R           | s /            |                 | Project: Cascade Laundry S<br>Project Location: Bellingham, WA<br>Project Number: 0381-031-00            | Site                      |                            | Figure: A             |  |

# LOG OF DIRECT-PUSH BORING DP-2



Figure: A-3 Sheet 1 of 1



Project Location: Bellingham, WA Project Number: 0381-031-00

Figure: A-4 Sheet 1 of 1





 CLIENT:
 GEOENGINEERS, INC.
 DATE:
 8/23/2007

 600
 DUPONT STREET
 CCIL JOB #:
 0708056

 BELLINGHAM, WA 98225
 DATE RECEIVED:
 8/14/2007

 WDOE ACCREDITATION #:
 C142

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 11:45 DPI-081007-14

 CCIL SAMPLE #:
 -05

#### DATA RESULTS

| ANALYTE            | METHOD   | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|--------------------|----------|------------------|---------------------|--------------------|---------|------------------|----------------|
| TPH-Volatile Range | NWTPH-GX | ND               | 3                   | 1                  | MG/KG   | 8/16/2007        | DLC            |
| Benzene            | EPA-8021 | ND               | 0.03                | 1                  | MG/KG   | 8/16/2007        | DLC            |
| Toluene            | EPA-8021 | ND               | 0.05                | 1                  | MG/KG   | 8/16/2007        | DLC            |
| Ethylbenzene       | EPA-8021 | ND               | 0.05                | 1                  | MG/KG   | 8/16/2007        | DLC            |
| Xylenes            | EPA-8021 | ND               | 0.2                 | 1                  | MG/KG   | 8/16/2007        | DLC            |

\* "ND" INDICATES ANALYZE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

\*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Part Bagun

Page 1



 CLIENT: GEOENGINEERS, INC.
 DATE:
 8/23/2007

 600 DUPONT STREET
 CCIL JOB #:
 0708056

 BELLINGHAM, WA 98225
 DATE RECEIVED:
 8/14/2007

 WDOE ACCREDITATION #:
 C142

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007
 12:50

 CCIL SAMPLE #:
 ·10

#### DATA RESULTS

| ANALYTE            | METHOD   | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|--------------------|----------|------------------|---------------------|--------------------|---------|------------------|----------------|
| TPH-Volatile Range | NWTPH-GX | ND               | 50                  | 1                  | UG/L    | 8/18/2007        | DLC            |
| Benzene            | EPA-8021 | ND               | 1                   | 1                  | UG/L    | 8/18/2007        | DLC            |
| Toluene            | EPA-8021 | ND               | 1                   | 1                  | UG/L    | 8/18/2007        | DLC            |
| Ethylbenzene       | EPA-8021 | ND               | 1                   | 1                  | UG/L    | 8/18/2007        | DLC            |
| Xylenes            | EPA-8021 | ND               | 3                   | 1                  | UG/L    | 8/18/2007        | DLC            |

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

\*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Part Bagun

Page 2



CLIENT: GEOENGINEERS, INC. DATE: 8/23/2007 600 DUPONT STREET CCIL JOB #: 0708056 BELLINGHAM, WA 98225 DATE RECEIVED: 8/14/2007 WDOE ACCREDITATION #:

CLIENT CONTACT: **RON BEK** CLIENT PROJECT ID: 0381-031-00 CLIENT SAMPLE ID: 8/10/2007 14:40 DP2-081007-7 CCIL SAMPLE #: ·12

#### DATA RESULTS

C142

| ANALYTE           | METHOD     | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-------------------|------------|------------------|---------------------|--------------------|---------|------------------|----------------|
| HCID-Gas Range    | NWTPH-HCID | ND               | 20                  | 1                  | MG/KG   | 8/21/2007        | EBS            |
| HCID-Diesel Range | NWTPH-HCID | ND               | 50                  | 1                  | MG/KG   | 8/21/2007        | EBS            |
| HCID-Oil Range    | NWTPH-HCID | ND               | 100                 | 1                  | MG/KG   | 8/21/2007        | EBS            |
| Arsenic           | EPA-6010   | 5.5              | 5                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Cadmium           | EPA-6010   | ND               | 1                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Chromium          | EPA-6010   | 47               | 1                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Lead              | EPA-6010   | 200              | 5                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Mercury           | EPA-7471   | 0.10             | 0.02                | 1                  | MG/KG   | 8/22/2007        | CEO            |

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

\*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Part Bagun



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 14:50 DP2-081007-15

 CCIL SAMPLE #:
 ·14

## DATA RESULTS

| ANALYTE                   | METHOD             | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|--------------------|------------------|---------------------|--------------------|---------|------------------|----------------|
| TPH-Volatile Range        | NWTPH-GX           | 83               | 6                   | 2                  | MG/KG   | 8/17/2007        | DLC            |
| TPH-Diesel Range          | NWTPH-DX W/CLEANUP | 2600             | 25                  | 1                  | MG/KG   | 8/15/2007        | EBS            |
| TPH-Oil Range             | NWTPH-DX W/CLEANUP | 3300             | 50                  | 1                  | MG/KG   | 8/15/2007        | EBS            |
| Dichlorodifluoromethane   | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Chloromethane             | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Vinyl Chloride            | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Bromomethane              | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Chloroethane              | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Trichlorofluoromethane    | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Acetone                   | EPA-8260           | 500              | 480                 | 9.5                | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloroethene        | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Methylene Chloride        | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Acrylonitrile             | EPA-8260           | ND               | 50                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Methyl T-Butyl Ether      | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Trans-1,2-Dichloroethene  | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,1-Dichloroethane        | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 2-Butanone                | EPA-8260           | 320              | 240                 | 4.8                | UG/KG   | 8/21/2007        | GAP            |
| Cis-1,2-Dichloroethene    | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 2,2-Dichloropropane       | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Bromochloromethane        | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Chloroform                | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,1,1-Trichloroethane     | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,1-Dichloropropene       | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Carbon Tetrachloride      | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2-Dichloroethane        | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Benzene                   | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Trichloroethene           | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2-Dichloropropane       | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Dibromomethane            | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Bromodichloromethane      | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Trans-1,3-Dichloropropene | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 4-Methyl-2-Pentanone      | EPA-8260           | ND               | 50                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Toluene                   | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Cis-1,3-Dichloropropene   | EPA-8260           | ND               | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |

```
FAX 425 356-2626
```



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 14:50 DP2-081007-15

 CCIL SAMPLE #:
 ·14

| DATA RESULTS                |          |          |                     |                    |         |                  |                |
|-----------------------------|----------|----------|---------------------|--------------------|---------|------------------|----------------|
| ANALYTE                     | METHOD   | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
| 1,1,2-Trichloroethane       | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 2-Hexanone                  | EPA-8260 | ND       | 50                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,3-Dichloropropane         | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Tetrachloroethylene         | EPA-8260 | 1100     | 100                 | 10                 | UG/KG   | 8/21/2007        | GAP            |
| Dibromochloromethane        | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2-Dibromoethane           | EPA-8260 | ND       | 5                   | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Chlorobenzene               | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,1,1,2-Tetrachloroethane   | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Ethylbenzene                | EPA-8260 | 12       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| M+P Xylene                  | EPA-8260 | 21       | 20                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Styrene                     | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| O-Xylene                    | EPA-8260 | 22       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Bromoform                   | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Isopropylbenzene            | EPA-8260 | 110      | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,1,2,2-Tetrachloroethane   | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2,3-Trichloropropane      | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Bromobenzene                | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| N-Propyl Benzene            | EPA-8260 | 18       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 2-Chlorotoluene             | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,3,5-Trimethylbenzene      | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 4-Chlorotoluene             | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| T-Butyl Benzene             | EPA-8260 | 50       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2,4-Trimethylbenzene      | EPA-8260 | 3600     | 200                 | 20                 | UG/KG   | 8/15/2007        | GAP            |
| S-Butyl Benzene             | EPA-8260 | 1000     | 200                 | 20                 | UG/KG   | 8/15/2007        | GAP            |
| P-Isopropyltoluene          | EPA-8260 | 27       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,3 Dichlorobenzene         | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,4-Dichlorobenzene         | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| N-Butylbenzene              | EPA-8260 | 64       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2-Dichlorobenzene         | EPA-8260 | 67       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | ND       | 50                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2,4-Trichlorobenzene      | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Hexachlorobutadiene         | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| Naphthalene                 | EPA-8260 | 26       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |
| 1,2,3-Trichlorobenzene      | EPA-8260 | ND       | 10                  | 1                  | UG/KG   | 8/14/2007        | GAP            |

425 356-2600



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007
 14:50
 DP2-081007-15

 CCIL SAMPLE #:
 ·14

#### DATA RESULTS

| ANALYTE                                               | METHOD                           | <b>RESULTS</b> *             | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS**  | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-------------------------------------------------------|----------------------------------|------------------------------|---------------------|--------------------|----------|------------------|----------------|
| NOTE: CHROMATOGRAM INDIC<br>SPIRITS, HIGHLY WEATHERED | ATES SAMPLE CO<br>DIESEL FUEL AN | ONTAINS PRODU<br>D LUBE OIL. | JCTS WHICH ARE      | E LIKELY WEA       | THERED M | IINERAL          |                |
|                                                       |                                  |                              |                     | P                  |          |                  |                |

OIL RANGE RESULT IS BIASED HIGH DUE TO DIESEL RANGE PRODUCT OVERLAP.

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

\*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

for Bagon



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 15:40 DP2-081007-29

 CCIL SAMPLE #:
 .17

#### DATA RESULTS

| ANALYTE                   | METHOD             | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|--------------------|------------------|---------------------|--------------------|---------|------------------|----------------|
| TPH-Volatile Range        | NWTPH-GX           | 110              | 15                  | 5                  | MG/KG   | 8/17/2007        | DLC            |
| TPH-Diesel Range          | NWTPH-DX W/CLEANUP | ND               | 25                  | 1                  | MG/KG   | 8/15/2007        | EBS            |
| TPH-Oil Range             | NWTPH-DX W/CLEANUP | ND               | 50                  | 1                  | MG/KG   | 8/15/2007        | EBS            |
| Dichlorodifluoromethane   | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Chloromethane             | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Vinyl Chloride            | EPA-8260           | 84               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Bromomethane              | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Chloroethane              | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Trichlorofluoromethane    | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Acetone                   | EPA-8260           | ND               | 300                 | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloroethene        | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Methylene Chloride        | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Acrylonitrile             | EPA-8260           | ND               | 300                 | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Methyl T-Butyl Ether      | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Trans-1,2-Dichloroethene  | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloroethane        | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Butanone                | EPA-8260           | ND               | 300                 | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Cis-1,2-Dichloroethene    | EPA-8260           | 320              | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 2,2-Dichloropropane       | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Bromochloromethane        | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Chloroform                | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,1-Trichloroethane     | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloropropene       | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Carbon Tetrachloride      | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichloroethane        | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Benzene                   | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Trichloroethene           | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichloropropane       | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Dibromomethane            | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Bromodichloromethane      | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Trans-1,3-Dichloropropene | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 4-Methyl-2-Pentanone      | EPA-8260           | ND               | 300                 | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Toluene                   | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Cis-1,3-Dichloropropene   | EPA-8260           | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |

425 356-2600



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 15:40 DP2-081007-29

 CCIL SAMPLE #:
 .17

# DATA RESULTS

| ANALYTE                     | METHOD   | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-----------------------------|----------|------------------|---------------------|--------------------|---------|------------------|----------------|
| 1,1,2-Trichloroethane       | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Hexanone                  | EPA-8260 | ND               | 300                 | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3-Dichloropropane         | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Tetrachloroethylene         | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Dibromochloromethane        | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dibromoethane           | EPA-8260 | ND               | 30                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Chlorobenzene               | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,1,2-Tetrachloroethane   | EPA-8260 | 1700             | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Ethylbenzene                | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| M+P Xylene                  | EPA-8260 | ND               | 120                 | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Styrene                     | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| O-Xylene                    | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Bromoform                   | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Isopropylbenzene            | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,2,2-Tetrachloroethane   | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,3-Trichloropropane      | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Bromobenzene                | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| N-Propyl Benzene            | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Chlorotoluene             | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3,5-Trimethylbenzene      | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 4-Chlorotoluene             | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| T-Butyl Benzene             | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,4-Trimethylbenzene      | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| S-Butyl Benzene             | EPA-8260 | 280              | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| P-Isopropyltoluene          | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3 Dichlorobenzene         | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,4-Dichlorobenzene         | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| N-Butylbenzene              | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichlorobenzene         | EPA-8260 | 160              | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | ND               | 300                 | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,4-Trichlorobenzene      | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Hexachlorobutadiene         | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| Naphthalene                 | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,3-Trichlorobenzene      | EPA-8260 | ND               | 60                  | 6                  | UG/KG   | 8/15/2007        | GAP            |

425 356-2600



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 15:40 DP2-081007-29

 CCIL SAMPLE #:
 .17

# DATA RESULTS ANALYTE METHOD RESULTS\* DILUTION ANALYSIS ANALYSIS NOTE: CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY WEATHERED MINERAL SPIRITS. SAMPLE CONTAINS PRODUCT WHICH IS LIKELY WEATHERED MINERAL SPIRITS.

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES. \*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Per Bagun

8620 Holly Drive Suite 100 Everett, WA 98208 425 356-2600 FAX 425 356-2626 Seattle 206 292-9059



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007
 16:10
 DP3-081007-13

 CCIL SAMPLE #:
 ·21

#### DATA RESULTS

| ANALYTE           | METHOD     | RESULTS* | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-------------------|------------|----------|---------------------|--------------------|---------|------------------|----------------|
| HCID-Gas Range    | NWTPH-HCID | ND       | 20                  | 1                  | MG/KG   | 8/21/2007        | EBS            |
| HCID-Diesel Range | NWTPH-HCID | ND       | 50                  | 1                  | MG/KG   | 8/21/2007        | EBS            |
| HCID-Oil Range    | NWTPH-HCID | ND       | 100                 | 1                  | MG/KG   | 8/21/2007        | EBS            |
| Arsenic           | EPA-6010   | ND       | 5                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Cadmium           | EPA-6010   | ND       | 1                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Chromium          | EPA-6010   | 20       | 1                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Lead              | EPA-6010   | ND       | 5                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Mercury           | EPA-7471   | 0.03     | 0.02                | 1                  | MG/KG   | 8/22/2007        | CEO            |

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

\*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Part Bagun

Page 10



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 16:47 DP3-081007-26

 CCIL SAMPLE #:
 ·24

#### DATA RESULTS

| ANALYTE                   | METHOD             | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|--------------------|------------------|---------------------|--------------------|---------|------------------|----------------|
| TPH-Volatile Range        | NWTPH-GX           | 930              | 150                 | 50                 | MG/KG   | 8/16/2007        | DLC            |
| TPH-Diesel Range          | NWTPH-DX W/CLEANUP | ND               | 25                  | 1                  | MG/KG   | 8/15/2007        | EBS            |
| TPH-Oil Range             | NWTPH-DX W/CLEANUP | ND               | 50                  | 1                  | MG/KG   | 8/15/2007        | EBS            |
| Dichlorodifluoromethane   | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Chloromethane             | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Vinyl Chloride            | EPA-8260           | 1300             | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromomethane              | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Chloroethane              | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Trichlorofluoromethane    | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Acetone                   | EPA-8260           | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloroethene        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Methylene Chloride        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Acrylonitrile             | EPA-8260           | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Methyl T-Butyl Ether      | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Trans-1,2-Dichloroethene  | EPA-8260           | 120              | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloroethane        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Butanone                | EPA-8260           | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Cis-1,2-Dichloroethene    | EPA-8260           | 5700             | 800                 | 80                 | UG/KG   | 8/15/2007        | GAP            |
| 2,2-Dichloropropane       | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromochloromethane        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Chloroform                | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,1-Trichloroethane     | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloropropene       | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Carbon Tetrachloride      | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichloroethane        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Benzene                   | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Trichloroethene           | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichloropropane       | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Dibromomethane            | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromodichloromethane      | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Trans-1,3-Dichloropropene | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 4-Methyl-2-Pentanone      | EPA-8260           | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Toluene                   | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Cis-1,3-Dichloropropene   | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |

425 356-2600



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 16:47 DP3-081007-26

 CCIL SAMPLE #:
 ·24

#### DATA RESULTS

| ANALYTE                     | METHOD   | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-----------------------------|----------|------------------|---------------------|--------------------|---------|------------------|----------------|
| 1,1,2-Trichloroethane       | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Hexanone                  | EPA-8260 | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3-Dichloropropane         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Tetrachloroethylene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Dibromochloromethane        | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dibromoethane           | EPA-8260 | ND               | 40                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Chlorobenzene               | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,1,2-Tetrachloroethane   | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Ethylbenzene                | EPA-8260 | 1200             | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| M+P Xylene                  | EPA-8260 | ND               | 160                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Styrene                     | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| O-Xylene                    | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromoform                   | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Isopropylbenzene            | EPA-8260 | 1600             | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,2,2-Tetrachloroethane   | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,3-Trichloropropane      | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromobenzene                | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| N-Propyl Benzene            | EPA-8260 | 3200             | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Chlorotoluene             | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3,5-Trimethylbenzene      | EPA-8260 | 720              | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 4-Chlorotoluene             | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| T-Butyl Benzene             | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,4-Trimethylbenzene      | EPA-8260 | 270              | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| S-Butyl Benzene             | EPA-8260 | 2400             | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| P-Isopropyltoluene          | EPA-8260 | 1200             | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3 Dichlorobenzene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,4-Dichlorobenzene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| N-Butylbenzene              | EPA-8260 | 3500             | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichlorobenzene         | EPA-8260 | 160              | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,4-Trichlorobenzene      | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Hexachlorobutadiene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Naphthalene                 | EPA-8260 | 1800             | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,3-Trichlorobenzene      | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |

425 356-2600


CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225 
 DATE:
 8/23/2007

 CCIL JOB #:
 0708056

 DATE RECEIVED:
 8/14/2007

 WDOE ACCREDITATION #:
 C142

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 16:47 DP3-081007-26

 CCIL SAMPLE #:
 ·24

### DATA RESULTS

| ANALYTE                                            | METHOD         | RESULTS*      | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS**   | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|----------------------------------------------------|----------------|---------------|---------------------|--------------------|-----------|------------------|----------------|
| NOTE: CHROMATOGRAM INDICA<br>SPIRITS AND GASOLINE. | TES SAMPLE CON | NTAINS PRODUC | CTS WHICH ARE       | LIKELY WEA         | THERED MI | NERAL            |                |

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES. \*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Port Bayon



 CLIENT:
 GEOENGINEERS, INC.
 DATE:
 8/23/2007

 600
 DUPONT STREET
 CCIL JOB #:
 0708056

 BELLINGHAM, WA 98225
 DATE RECEIVED:
 8/14/2007

 WDOE ACCREDITATION #:
 C142

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 17:30 DP4-081007-3.5

 CCIL SAMPLE #:
 ·25

### DATA RESULTS

| ANALYTE           | METHOD     | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-------------------|------------|------------------|---------------------|--------------------|---------|------------------|----------------|
| HCID-Gas Range    | NWTPH-HCID | ND               | 20                  | 1                  | MG/KG   | 8/21/2007        | EBS            |
| HCID-Diesel Range | NWTPH-HCID | ND               | 50                  | 1                  | MG/KG   | 8/21/2007        | EBS            |
| HCID-Oil Range    | NWTPH-HCID | ND               | 100                 | 1                  | MG/KG   | 8/21/2007        | EBS            |
| Arsenic           | EPA-6010   | 8.1              | 5                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Cadmium           | EPA-6010   | 1.2              | 1                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Chromium          | EPA-6010   | 54               | 1                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Lead              | EPA-6010   | 99               | 5                   | 4                  | MG/KG   | 8/19/2007        | CEO            |
| Mercury           | EPA-7471   | 0.13             | 0.02                | 1                  | MG/KG   | 8/22/2007        | CEO            |

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES.

\*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

Part Bagun



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 17:48 DP4-081007-20

 CCIL SAMPLE #:
 ·29

# DATA RESULTS

| ANALYTE                   | METHOD             | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|---------------------------|--------------------|------------------|---------------------|--------------------|---------|------------------|----------------|
| TPH-Volatile Range        | NWTPH-GX           | 380              | 30                  | 10                 | MG/KG   | 8/16/2007        | DLC            |
| TPH-Diesel Range          | NWTPH-DX W/CLEANUP | ND               | 25                  | 1                  | MG/KG   | 8/15/2007        | EBS            |
| TPH-Oil Range             | NWTPH-DX W/CLEANUP | ND               | 50                  | 1                  | MG/KG   | 8/15/2007        | EBS            |
| Dichlorodifluoromethane   | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Chloromethane             | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Vinyl Chloride            | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromomethane              | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Chloroethane              | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Trichlorofluoromethane    | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Acetone                   | EPA-8260           | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloroethene        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Methylene Chloride        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Acrylonitrile             | EPA-8260           | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Methyl T-Butyl Ether      | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Trans-1,2-Dichloroethene  | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloroethane        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Butanone                | EPA-8260           | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Cis-1,2-Dichloroethene    | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 2,2-Dichloropropane       | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromochloromethane        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Chloroform                | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,1-Trichloroethane     | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1-Dichloropropene       | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Carbon Tetrachloride      | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichloroethane        | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Benzene                   | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Trichloroethene           | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichloropropane       | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Dibromomethane            | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromodichloromethane      | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Trans-1,3-Dichloropropene | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 4-Methyl-2-Pentanone      | EPA-8260           | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Toluene                   | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Cis-1,3-Dichloropropene   | EPA-8260           | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |

425 356-2600

FAX 425 356-2626



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007 17:48 DP4-081007-20

 CCIL SAMPLE #:
 ·29

## DATA RESULTS

| ANALYTE                     | METHOD   | <b>RESULTS</b> * | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|-----------------------------|----------|------------------|---------------------|--------------------|---------|------------------|----------------|
| 1,1,2-Trichloroethane       | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Hexanone                  | EPA-8260 | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3-Dichloropropane         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Tetrachloroethylene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Dibromochloromethane        | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dibromoethane           | EPA-8260 | ND               | 40                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Chlorobenzene               | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,1,2-Tetrachloroethane   | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Ethylbenzene                | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| M+P Xylene                  | EPA-8260 | ND               | 160                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Styrene                     | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| O-Xylene                    | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromoform                   | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Isopropylbenzene            | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,1,2,2-Tetrachloroethane   | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,3-Trichloropropane      | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Bromobenzene                | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| N-Propyl Benzene            | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 2-Chlorotoluene             | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3,5-Trimethylbenzene      | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 4-Chlorotoluene             | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| T-Butyl Benzene             | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,4-Trimethylbenzene      | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| S-Butyl Benzene             | EPA-8260 | 120              | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| P-Isopropyltoluene          | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,3 Dichlorobenzene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,4-Dichlorobenzene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| N-Butylbenzene              | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dichlorobenzene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2-Dibromo 3-Chloropropane | EPA-8260 | ND               | 400                 | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,4-Trichlorobenzene      | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Hexachlorobutadiene         | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| Naphthalene                 | EPA-8260 | 76               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |
| 1,2,3-Trichlorobenzene      | EPA-8260 | ND               | 80                  | 8                  | UG/KG   | 8/15/2007        | GAP            |

425 356-2600



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

 CLIENT CONTACT:
 RON BEK

 CLIENT PROJECT ID:
 0381-031-00

 CLIENT SAMPLE ID:
 8/10/2007
 17:48

 CCIL SAMPLE #:
 ·29

| DATA RESULTS                                                                          |  |          |  |  |         |                  |                |
|---------------------------------------------------------------------------------------|--|----------|--|--|---------|------------------|----------------|
|                                                                                       |  | RESULTS* |  |  | UNITS** | ANALYSIS<br>DATE | ANALYSIS<br>BY |
| NOTE: CHROMATOGRAM INDICATES SAMPLE CONTAINS PRODUCT WHICH IS LIKELY MINERAL SPIRITS. |  |          |  |  |         |                  |                |

\* "ND" INDICATES ANALYTE ANALYZED FOR BUT NOT DETECTED AT LEVEL ABOVE REPORTING LIMIT. REPORTING LIMIT IS GIVEN IN PARENTHESES. \*\* UNITS FOR ALL NON LIQUID SAMPLES ARE REPORTED ON A DRY WEIGHT BASIS

APPROVED BY:

for Bagon



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

CLIENT CONTACT: RON BEK CLIENT PROJECT ID: 0381-031-00

# QUALITY CONTROL RESULTS

### SURROGATE RECOVERY

| CCIL SAMPLE ID |              | METHOD             | SUR ID                | SPIKE<br>AMOUNT | % RECV |
|----------------|--------------|--------------------|-----------------------|-----------------|--------|
| 0708056-05     |              | NWTPH-GX           | TFT                   | 250 PPB         | 72     |
| 0708056-05     |              | EPA-8021           | TFT                   | 250 PPB         | 71     |
| 0708056-10     |              | NWTPH-GX           | TFT                   | 0.5 PPM         | 81     |
| 0708056-10     |              | EPA-8021           | TFT                   | 0.5 PPM         | 75     |
| 0708056-12     |              | NWTPH-HCID         | BCB                   | 50 PPM          | 117    |
| 0708056-12     |              | NWTPH-HCID         | C25                   | 10 PPM          | 116    |
| 0708056-14     |              | NWTPH-GX           | TFT                   | 250 PPB         | 84     |
| 0708056-14     |              | NWTPH-DX W/CLEANUP | C25                   | 5 PPM           | 103    |
| 0708056-14     |              | EPA-8260           | 1,2-Dichloroethane-d4 | 100 PPB         | 85     |
| 0708056-14     |              | EPA-8260           | Toluene-d8            | 100 PPB         | 105    |
| 0708056-14     |              | EPA-8260           | 4-Bromofluorobenzene  | 100 PPB         | 63**   |
| 0708056-14     | 1st DILUTION | EPA-8260           | 1,2-Dichloroethane-d4 | 100 PPB         | 80     |
| 0708056-14     | 1st DILUTION | EPA-8260           | Toluene-d8            | 100 PPB         | 81     |
| 0708056-14     | 1st DILUTION | EPA-8260           | 4-Bromofluorobenzene  | 100 PPB         | 97     |
| 0708056-14     | 2nd DILUTION | EPA-8260           | 1,2-Dichloroethane-d4 | 100 PPB         | 99     |
| 0708056-14     | 2nd DILUTION | EPA-8260           | Toluene-d8            | 100 PPB         | 103    |
| 0708056-14     | 2nd DILUTION | EPA-8260           | 4-Bromofluorobenzene  | 100 PPB         | 99     |
| 0708056-17     |              | NWTPH-GX           | TFT                   | 250 PPB         | 92     |
| 0708056-17     |              | NWTPH-DX W/CLEANUP | C25                   | 5 PPM           | 96     |
| 0708056-17     |              | EPA-8260           | 1,2-Dichloroethane-d4 | 100 PPB         | 79     |
| 0708056-17     |              | EPA-8260           | Toluene-d8            | 100 PPB         | 82     |
| 0708056-17     |              | EPA-8260           | 4-Bromofluorobenzene  | 100 PPB         | 97     |
| 0708056-21     |              | NWTPH-HCID         | BCB                   | 50 PPM          | 136    |
| 0708056-21     |              | NWTPH-HCID         | C25                   | 10 PPM          | 140    |
| 0708056-24     |              | NWTPH-GX           | TFT                   | 250 PPB         | *      |
| 0708056-24     |              | NWTPH-DX W/CLEANUP | C25                   | 5 PPM           | 124    |
| 0708056-24     |              | EPA-8260           | 1,2-Dichloroethane-d4 | 100 PPB         | 98     |
| 0708056-24     |              | EPA-8260           | Toluene-d8            | 100 PPB         | 83     |
| 0708056-24     |              | EPA-8260           | 4-Bromofluorobenzene  | 100 PPB         | 92     |
| 0708056-24     | DILUTION     | EPA-8260           | 1,2-Dichloroethane-d4 | 100 PPB         | 84     |
| 0708056-24     | DILUTION     | EPA-8260           | Toluene-d8            | 100 PPB         | 80     |
| 0708056-24     | DILUTION     | EPA-8260           | 4-Bromofluorobenzene  | 100 PPB         | 93     |
| 0708056-25     |              | NWTPH-HCID         | BCB                   | 50 PPM          | 123    |
| 0708056-25     |              | NWTPH-HCID         | C25                   | 10 PPM          | 134    |

FAX 425 356-2626



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

CLIENT CONTACT: RON BEK CLIENT PROJECT ID: 0381-031-00

### QUALITY CONTROL RESULTS

### SURROGATE RECOVERY

| CCIL SAMPLE ID | METHOD             | SUR ID                | SPIKE<br>AMOUNT | % RECV |
|----------------|--------------------|-----------------------|-----------------|--------|
| 0708056-29     | NWTPH-GX           | TFT                   | 250 PPB         | *      |
| 0708056-29     | NWTPH-DX W/CLEANUP | C25                   | 5 PPM           | 116    |
| 0708056-29     | EPA-8260           | 1,2-Dichloroethane-d4 | 100 PPB         | 79     |
| 0708056-29     | EPA-8260           | Toluene-d8            | 100 PPB         | 82     |
| 0708056-29     | EPA-8260           | 4-Bromofluorobenzene  | 100 PPB         | 101    |

\* SURROGATE DILUTED OUT OF CALIBRATION RANGE.

\*\* SURROGATE OUTSIDE OF CONTROL LIMITS OF 77-120% DUE TO MATRIX EFFECT.



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

CLIENT CONTACT: RON BEK CLIENT PROJECT ID: 0381-031-00

## QUALITY CONTROL RESULTS

### **BLANK RESULTS**

| METHOD                              | RESULT    | ASSOCIATED<br>SAMPLES  |
|-------------------------------------|-----------|------------------------|
| NWTPH-GX (TPH-Volatile Range)       | ND(<3)    | 0708056 -5,14,17,24,29 |
| EPA-8021 (Benzene)                  | ND(<0.03) | 0708056 -05            |
| EPA-8021 (Toluene)                  | ND(<0.05) | 0708056 -05            |
| EPA-8021 (Ethylbenzene)             | ND(<0.05) | 0708056 -05            |
| EPA-8021 (Xylenes)                  | ND(<0.2)  | 0708056 -05            |
| NWTPH-DX (TPH-Diesel Range)         | ND(<25)   | 0708056 -14,17,24,29   |
| NWTPH-DX (TPH-Oil Range)            | ND(<50)   | 0708056 -14,17,24,29   |
| EPA-8260 (Dichlorodifluoromethane)  | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Chloromethane)            | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Vinyl Chloride)           | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Bromomethane)             | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Chloroethane)             | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Trichlorofluoromethane)   | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Acetone)                  | ND(<50)   | 0708056 -14,17,24,29   |
| EPA-8260 (1,1-Dichloroethene)       | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Methylene Chloride)       | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Acrylonitrile)            | ND(<50)   | 0708056 -14,17,24,29   |
| EPA-8260 (Methyl T-Butyl Ether)     | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Trans-1,2-Dichloroethene) | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (1,1-Dichloroethane)       | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (2-Butanone)               | ND(<50)   | 0708056 -14,17,24,29   |
| EPA-8260 (Cis-1,2-Dichloroethene)   | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (2,2-Dichloropropane)      | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Bromochloromethane)       | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Chloroform)               | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (1,1,1-Trichloroethane)    | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (1,1-Dichloropropene)      | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Carbon Tetrachloride)     | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (1,2-Dichloroethane)       | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Benzene)                  | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Trichloroethene)          | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (1,2-Dichloropropane)      | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Dibromomethane)           | ND(<10)   | 0708056 -14,17,24,29   |
| EPA-8260 (Bromodichloromethane)     | ND(<10)   | 0708056 -14,17,24,29   |
|                                     | Page 20   |                        |

Everett, WA 98208

425 356-2600

FAX 425 356-2626



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

CLIENT CONTACT: RON BEK CLIENT PROJECT ID: 0381-031-00

### QUALITY CONTROL RESULTS

### **BLANK RESULTS**

| METHOD                                 | RESULT  | ASSOCIATED<br>SAMPLES |
|----------------------------------------|---------|-----------------------|
| EPA-8260 (Trans-1,3-Dichloropropene)   | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (4-Methyl-2-Pentanone)        | ND(<50) | 0708056 -14,17,24,29  |
| EPA-8260 (Toluene)                     | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (Cis-1,3-Dichloropropene)     | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,1,2-Trichloroethane)       | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (2-Hexanone)                  | ND(<50) | 0708056 -14,17,24,29  |
| EPA-8260 (1,3-Dichloropropane)         | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (Tetrachloroethylene)         | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (Dibromochloromethane)        | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,2-Dibromoethane)           | ND(<5)  | 0708056 -14,17,24,29  |
| EPA-8260 (Chlorobenzene)               | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,1,1,2-Tetrachloroethane)   | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (Ethylbenzene)                | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (M+P Xylene)                  | ND(<20) | 0708056 -14,17,24,29  |
| EPA-8260 (Styrene)                     | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (O-Xylene)                    | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (Bromoform)                   | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (Isopropylbenzene)            | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,1,2,2-Tetrachloroethane)   | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,2,3-Trichloropropane)      | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (Bromobenzene)                | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (N-Propyl Benzene)            | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (2-Chlorotoluene)             | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,3,5-Trimethylbenzene)      | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (4-Chlorotoluene)             | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (T-Butyl Benzene)             | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,2,4-Trimethylbenzene)      | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (S-Butyl Benzene)             | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (P-Isopropyltoluene)          | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,3 Dichlorobenzene)         | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,4-Dichlorobenzene)         | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (N-Butylbenzene)              | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,2-Dichlorobenzene)         | ND(<10) | 0708056 -14,17,24,29  |
| EPA-8260 (1,2-Dibromo 3-Chloropropane) | ND(<50) | 0708056 -14,17,24,29  |
|                                        | Page 21 |                       |

Everett, WA 98208 425 356-2600

FAX 425 356-2626



CLIENT: GEOENGINEERS, INC. 600 DUPONT STREET BELLINGHAM, WA 98225

| DATE:                 | 8/23/2007 |
|-----------------------|-----------|
| CCIL JOB #:           | 0708056   |
| DATE RECEIVED:        | 8/14/2007 |
| WDOE ACCREDITATION #: | C142      |

CLIENT CONTACT: RON BEK CLIENT PROJECT ID: 0381-031-00

### QUALITY CONTROL RESULTS

#### **BLANK RESULTS**

| METHOD                            | RESULT    | ASSOCIATED<br>SAMPLES |
|-----------------------------------|-----------|-----------------------|
| EPA-8260 (1,2,4-Trichlorobenzene) | ND(<10)   | 0708056 -14,17,24,29  |
| EPA-8260 (Hexachlorobutadiene)    | ND(<10)   | 0708056 -14,17,24,29  |
| EPA-8260 (Naphthalene)            | ND(<10)   | 0708056 -14,17,24,29  |
| EPA-8260 (1,2,3-Trichlorobenzene) | ND(<10)   | 0708056 -14,17,24,29  |
| EPA-6010 (Arsenic)                | ND(<5.0)  | 0708056 -12, 21, 25   |
| EPA-6010 (Cadmium)                | ND(<1.0)  | 0708056 -12, 21, 25   |
| EPA-6010 (Chromium)               | ND(<1.0)  | 0708056 -12, 21, 25   |
| EPA-6010 (Lead)                   | ND(<5.0)  | 0708056 -12, 21, 25   |
| EPA-7471 (Mercury)                | ND(<0.02) | 0708056 -12, 21, 25   |
| NWTPH-GX (TPH-Volatile Range)     | ND(<50)   | 0708056 -10           |
| EPA-8021 (Benzene)                | ND(<1)    | 0708056 -10           |
| EPA-8021 (Toluene)                | ND(<1)    | 0708056 -10           |
| EPA-8021 (Ethylbenzene)           | ND(<1)    | 0708056 -10           |
| EPA-8021 (Xylenes)                | ND(<3)    | 0708056 -10           |



 CLIENT:
 GEOENGINEERS, INC.
 DATE:
 8/23/2007

 600
 DUPONT STREET
 CCIL JOB #:
 0708056

 BELLINGHAM, WA 98225
 DATE RECEIVED:
 8/14/2007

 WDOE ACCREDITATION #:
 C142

CLIENT CONTACT: RON BEK CLIENT PROJECT ID: 0381-031-00

### QUALITY CONTROL RESULTS

### SPIKE/SPIKE DUPLICATE RESULTS

| METHOD   | ANALYTE            | ASSOCIATED<br>SAMPLES  | SPIKE<br>AMOUNT | DILUTION<br>FACTOR | SPIKE<br>RECOVERY | SPIKE DUP<br>RECOVERY | RPD |
|----------|--------------------|------------------------|-----------------|--------------------|-------------------|-----------------------|-----|
| NWTPH-GX | TPH-Volatile Range | 0708056 -5,14,17,24,29 | 25 MG/KG        | 1                  | 112 %             | 119 %                 | 6   |
| EPA-8021 | Benzene            | 0708056 -05            | 1 MG/KG         | 1                  | 97 %              | 93 %                  | 4   |
| EPA-8021 | Toluene            | 0708056 -05            | 1 MG/KG         | 1                  | 98 %              | 94 %                  | 4   |
| EPA-8021 | Ethylbenzene       | 0708056 -05            | 1 MG/KG         | 1                  | 96 %              | 91 %                  | 5   |
| EPA-8021 | Xylenes            | 0708056 -05            | 3 MG/KG         | 1                  | 96 %              | 92 %                  | 4   |
| NWTPH-DX | TPH-Diesel Range   | 0708056 -14,17,24,29   | 125 MG/KG       | 1                  | 85 %              | 89 %                  | 5   |
| EPA-8260 | 1,1-Dichloroethene | 0708056 -14,17,24,29   | 10 UG/KG        | 1                  | 110 %             | 105 %                 | 5   |
| EPA-8260 | Benzene            | 0708056 -14,17,24,29   | 10 UG/KG        | 1                  | 106 %             | 98 %                  | 8   |
| EPA-8260 | Trichloroethene    | 0708056 -14,17,24,29   | 10 UG/KG        | 1                  | 97 %              | 95 %                  | 3   |
| EPA-8260 | Toluene            | 0708056 -14,17,24,29   | 10 UG/KG        | 1                  | 99 %              | 95 %                  | 4   |
| EPA-8260 | Chlorobenzene      | 0708056 -14,17,24,29   | 10 UG/KG        | 1                  | 97 %              | 91 %                  | 6   |
| EPA-6010 | Arsenic            | 0708056 -12, 21, 25    | 20 MG/KG        | 1                  | 112 %             | 111 %                 | 1   |
| EPA-6010 | Cadmium            | 0708056 -12, 21, 25    | 20 MG/KG        | 1                  | 98 %              | 98 %                  | 0   |
| EPA-6010 | Chromium           | 0708056 -12, 21, 25    | 20 MG/KG        | 1                  | 109 %             | 109 %                 | 0   |
| EPA-6010 | Lead               | 0708056 -12, 21, 25    | 20 MG/KG        | 1                  | 110 %             | 109 %                 | 1   |
| EPA-7471 | Mercury            | 0708056 -12, 21, 25    | 1 MG/KG         | 1                  | 91 %              | 95 %                  | 4   |
| NWTPH-GX | TPH-Volatile Range | 0708056 -10            | 500 UG/L        | 1                  | 114 %             | 108 %                 | 5   |
| EPA-8021 | Benzene            | 0708056 -10            | 20 UG/L         | 1                  | 88 %              | 92 %                  | 4   |
| EPA-8021 | Toluene            | 0708056 -10            | 20 UG/L         | 1                  | 96 %              | 99 %                  | 3   |
| EPA-8021 | Ethylbenzene       | 0708056 -10            | 20 UG/L         | 1                  | 96 %              | 100 %                 | 4   |
| EPA-8021 | Xylenes            | 0708056 -10            | 60 UG/L         | 1                  | 97 %              | 100 %                 | 3   |

APPROVED BY:

Per Bagun

# SITE CHARACTERIZATION REPORT CASCADE LAUNDRY & CLEANERS, INC. 205 PROSPECT STREET BELLINGHAM, WASHINGTON FSID #21786898

prepared for:

Cascade Laundry and Cleaners, Inc. 205 Prospect Street Bellingham, WA 98225

# March 15, 2011

# MWhatcom

soil | water | air compliance consulting

228 East Champion Street, Suite 101, Bellingham, WA 98225 tel 360.752.9571 | fax 360.752.9573 | www.whatcomenvironmental.com

# SITE CHARACTERIZATION REPORT CASCADE LAUNDRY & CLEANERS, INC. 205 PROSPECT STREET BELLINGHAM, WASHINGTON FSID #21786898

Prepared for

Cascade Laundry and Cleaners, Inc. 205 Prospect Street Bellingham, WA 98225

Prepared by

Whatcom Environmental Services 228 East Champion Street #101 Bellingham, Washington 98225

March 15, 2011

Wash Harold Cashman Project Manager Hydrogeologis 341 sed Geolo HAROLD J. CASHMAN

Thomas Davis QA/QC Reviewer

# TABLE OF CONTENTS

## Page

| 1.0 | IN  | IRODUCTION                           | 1  |
|-----|-----|--------------------------------------|----|
| 2.0 | SI  | TE DESCRIPTION                       | 2  |
|     | 2.1 | Site Topography and Surrounding Area | 2  |
|     | 2.2 | Site Geology                         | 2  |
|     | 2.3 | Site Hydrogeology                    | 3  |
| 3.0 | RE  | LEASE INFORMATION                    | 4  |
| 4.0 | IN  | VESTIGATIVE METHODS                  | 5  |
| 5.0 | SC  | DIL AND GROUNDWATER SCREENING LEVELS | 6  |
| 6.0 | IN  | VESTIGATION FINDINGS                 | 7  |
|     | 6.1 | Boring B-1                           | 7  |
|     | 6.2 | Boring B-2                           | 8  |
|     | 6.3 | Boring B-3                           | 8  |
|     | 6.4 | Boring B-4                           | 9  |
|     | 6.5 | Boring B-5                           | 10 |
| 7.0 | CC  | DNCLUSIONS                           | 12 |
| 8.0 | LII | MITATIONS                            | 13 |
| 9.0 | RE  | FERENCES                             | 14 |

### LIST OF FIGURES

| Figure 1. Site L | ocation M | /lap |
|------------------|-----------|------|
|------------------|-----------|------|

Figure 2. Soil Boring Location Map

### LIST OF TABLES

- Table 1. Soil Sample Descriptions Cascade Laundry, 205 Prospect St., Bellingham, WA
- Table 2. Soil Sample Analytical Results Cascade Laundry, 205 Prospect St., Bellingham, WA
- Table 3.Groundwater Sample Analytical Results Cascade Laundry, 205 Prospect St.,<br/>Bellingham, WA

# LIST OF APPENDICES

- Appendix A Soil Boring Logs
- Appendix B Soil Sample Analytical Data Report
- Appendix C Groundwater Sample Analytical Data Report

# **1.0 INTRODUCTION**

A release of petroleum products to soil was discovered at 205 Prospect Street in Bellingham, Washington (Figure 1) on October 13, 2010 during an underground storage tank (UST) site assessment. Following removal of an abandoned 300 gallon UST, suspected to have stored mineral spirits and/or tetrachloroethylene (PERC), soil samples were collected from the excavation sidewalls and floor. Field screening observations and laboratory analytical results confirmed that gasoline range total petroleum hydrocarbons (TPH), xylenes, and PERC were released to soil surrounding the tank at concentrations which exceeded the Model Toxics Control Act (MTCA) Method A target cleanup levels. Laboratory analyses indicated that the gasoline range TPH likely consisted of mineral spirits. Mineral spirits and PERC were common dry cleaning solvents used in the past.

The field screening results and soil sample data collected October 13, 2010 confirmed that a release had occurred from the 300 gallon underground storage tank, therefore, per the MTCA cleanup regulation, a formal site characterization was conducted at the site on January 24, 2011.

Five soil borings were advanced in the vicinity of the former UST tank pit. The borings were drilled to characterize the extent of the release to soil and groundwater. One boring was drilled within the tank pit; two borings were drilled to the west of the tank pit, and one boring was drilled to the south and one to the east of the tank pit. The soil boring locations are shown on Figure 2.

Soil and groundwater samples were collected from each boring location. Concentrations of gasoline range TPH (mineral spirits) exceeding the MTCA Method A cleanup level were found in soil samples collected at depths ranging from 14 to 25 feet and in all water samples collected. Concentrations of PERC exceeding MTCA Method A cleanup levels were found in soil samples collected at depths of 24 to 30 feet in borings B-2 and B-5 and in groundwater samples collected from borings B-2 and B-3.

This Site Characterization report was prepared by Whatcom Environmental Services Inc. on behalf of Cascade Laundry and Cleaners Inc. The report documents the results of a site characterization conducted in accordance with WAC 173-340-450(5)(b).

## 2.0 SITE DESCRIPTION

The site is located at 205 Prospect Street in Bellingham, Washington as shown on Figure 1. The property is located in the downtown portion of Bellingham in the northwest quarter of the southwest quarter of Section 30, Township 38N, Range 3E. The site is located in an area zoned Commercial and is currently vacant.

The site is listed in the Washington State UST database with Facility Site ID Number (FS ID#) 21786898. Three abandoned USTs have been closed at the site. Two USTs were removed from the site and one was closed in place. No USTs are currently in service at the subject property. This site characterization effort was focused on the 300 gallon UST (decommissioned on October 13, 2010) which was formerly located on the south side of the building. The abandoned tank was assumed to have historically stored mineral spirits and/or PERC for dry cleaning use until the 1960s based on the history of the subject property. Anecdotal evidence provided by the current property owner indicated that Cascade Laundry and Cleaners, Inc. was unaware of the presence of the PERC UST and had never stocked or used mineral spirits or PERC at the property. A map showing the location of the removed UST and other pertinent site features is provided as Figure 2.

### 2.1 Site Topography and Surrounding Area

The subject property is located approximately 0.1 miles northeast of the mouth of Whatcom Creek and has a median elevation of 60 feet above mean sea level. The majority of the property is level, however the western portion of the property slopes downward slightly towards the west. The site is located on a bluff which slopes down to the west towards the Holly Street Landfill. A site location map is provided as Figure 1.

The Holly Street Landfill is located immediately west of the subject property. A former gasoline fueling station was located to the east of the subject property across Prospect Street at 200 Prospect Street from the 1920s to the 1970s.

### 2.2 Site Geology

The property is underlain by Bellingham Glaciomarine drift which consists of moderately sorted to unsorted diamicton with lenses and discontinuous beds of moderately to well-sorted gravel, sand, silt, and clay. Bedding is massive to poorly stratified. Color is bluegray to olive-gray depending on oxidation state. Thickness ranges to as much as 90 meters. The unit is consistently firm to plastic, depending on moisture content. The unit is predominantly dry to slightly moist (WSDNR, 2000). The unit acts as an aquitard, impeding vertical migration of contaminants.

### 2.3 Site Hydrogeology

The depth to groundwater at the site on the day the soil borings were drilled ranged from 12 to 17 feet below ground surface, depending on the ground elevation at the boring locations. Groundwater was encountered in sand lenses interbeded in saturated silty clay at depths below approximately 12 to 17 feet. Based on the site topography, the groundwater flow direction is assumed to flow to the west.

# **3.0 RELEASE INFORMATION**

Failure of the UST system integrity is the suspected source of the release. The date of the release and tank abandonment is unknown. The leak occurred at an unknown date prior to the removal and closure of the tank on October 13, 2010.

The current property owner reported that the tank piping may have been ruptured in 2006 by a contractor (Stratum Group) during investigative environmental work undertaken by a prospective purchaser of the property.

At the time of tank closure the soil adjacent to and beneath the tank was sampled and confirmed to have been impacted by gasoline range TPH, BTEX constituents and PERC at concentrations exceeding the MTCA Method A target cleanup levels.

# 4.0 INVESTIGATIVE METHODS

The soil boring locations were chosen based on knowledge of the location of the confirmed release and based on the topography of the release site. Five soil borings were drilled by Cascade Drilling using a direct-push hydraulic and percussion drive-point sampling system on January 24, 2011. One boring was drilled within the tank pit; two borings were drilled to the west of the tank pit, one boring was drilled to the south of the tank pit and one boring was drilled to the east of the tank pit. Soil boring locations are shown on Figure 2.

Subsurface utilities were located prior to drilling. The drill rig equipment was decontaminated prior to drilling each test hole. The borings were continuously cored to depths ranging from 20 to 30 feet below grade. Soil cores were logged in the field and soil descriptions generally followed ASTM D 2487 'Unified Soil Classification System' procedures for description and identification of soils. The soil cores were evaluated for organic vapors using a photoionization detector (PID) and flame ionization detector (FID) and for petroleum products using sheen tests. The test holes were backfilled to the surface using bentonite-based grout materials specified in WAC 173-160. Soil boring logs are included in Appendix A.

Immediately after the soil cores were described a portion of the sample was sheen tested and the remainder of the sample was placed in labeled re-sealable bags. Sheen test results were recorded as NS – no sheen, VSS – very slight sheen, SS – slight sheen, MS – moderate sheen, and HS – heavy sheen. The PID or FID was inserted into the re-sealable bag in order to evaluate the presence of organic vapors, and a headspace reading was measured and organic vapor detections in parts per million (ppm) were recorded on the borelogs. Results from the sheen tests and PID/FID measurements are summarized in Table 1 and on the borelogs in Appendix A.

Soil samples were collected for laboratory analysis from each soil boring from depths determined based on field screening results. Groundwater samples were also collected for laboratory analysis from each boring location.

## 5.0 SOIL AND GROUNDWATER SCREENING LEVELS

Based on the historical use of the site as dry cleaning and laundry facility, soil and water samples collected from the site were analyzed for gasoline range TPH using Method NWTPH-Gx, BTEX constituents using EPA Method 8021, and PERC using EPA Method 8260.

The soil screening levels for the site were established for unrestricted land use in accordance with the Model Toxics Control Act (MTCA) WAC 173-340. MTCA Method A target cleanup levels are provided in WAC 173-340, Table 740-1.

The water screening levels for the site were established for unrestricted land use in accordance with the Model Toxics Control Act (MTCA) WAC 173-340. MTCA Method A water target cleanup levels are provided in WAC 173-340, Table 720-1.

The soil and water data were compared to the applicable MTCA Method A concentrations. MTCA Method A target cleanup levels for soil are shown on Table 2 and MTCA Method A target cleanup levels for water are shown on Table 3.

# 6.0 INVESTIGATION FINDINGS

The information gathered during the subsurface investigation described herein indicates that soil and groundwater at the five boring locations have been impacted by a release of mineral spirits. All samples (both soil and water) collected from the borings contained detectable concentrations of gasoline range TPH (mineral spirits), BTEX constituents or tetrachloroethylene (PERC).

Seven soil samples were chosen for analysis from the five boring locations based on field screening results. Soil samples were collected for laboratory analysis for gasoline range TPH, BTEX constituents and PERC. Soil sample analytical methods included NWTPH-Gx for gasoline range TPH, EPA-8021 for BTEX constituents and EPA-8260 for PERC in accordance with WAC 173-340, Table 830-1. All soil samples were collected using EPA Method 5035A. Soil sample descriptions, including field screening results and sample depths, are presented in Table 1. A summary of the soil sample laboratory analytical data are presented in Table 2. The soil boring logs are included in Appendix A.

Groundwater samples were also collected from each boring location though a slotted stainless steel screen using a peristaltic pump. Groundwater samples were collected for laboratory analysis for gasoline range TPH, BTEX constituents and PERC. Groundwater sample analytical methods included NWTPH-Gx for gasoline range TPH, EPA-8021 for BTEX constituents and EPA-8260 for PERC. The original laboratory sample analytical data reports are included in Appendix B.

### 6.1 Boring B-1

Soil boring B-1 was drilled approximately 20 feet west of the tank pit at a lower elevation than the tank location (Figure 2). Field screening results from soil cores extracted from the boring at depths of 5 to 10 feet below ground surface (bgs) indicated no presence of petroleum contamination. Field screening of soil samples collected from depths of 10 to 20 feet bgs exhibited moderate sheens with organic vapor detections ranging from 1,532 ppm to 1,701 ppm.

Laboratory analysis of a soil sample collected from 17-18 feet in the boring confirmed the presence of gasoline range TPH at a concentration of 1,500 mg/kg (identified as mineral spirits) which exceeded the MTCA Method A target cleanup level of 100 mg/kg. BTEX constituents and PERC were not detected above their respective MTCA Method A target cleanup levels. PERC was detected at a concentration of 0.029 mg/kg which was below the Method A target cleanup level of 0.05 mg/kg. (Table 2).

The groundwater sample collected from boring B-1 contained mineral spirits at a concentration of 4,400 ug/L, which exceeded the MTCA Method A target cleanup level of 1,000 ug/L. BTEX constituents were not detected above their respective MTCA Method A target cleanup levels. PERC was not detected in the sample.

### 6.2 Boring B-2

Soil boring B-2 was drilled approximately 12 feet west of the tank pit (Figure 2). Field screening of soil collected from the boring at a depth of 10 to 15 feet bgs revealed a very slight sheen. Field screening of soil samples collected from depths of 15 to 30 feet bgs exhibited moderate sheens with organic vapor detections ranging from 3,800 ppm to 7,451 ppm.

Laboratory analysis of a soil sample collected from 24-25 feet bgs in the boring contained mineral spirits at a concentration of 1,200 mg/kg which exceeded the MTCA Method A target cleanup level of 100 mg/kg. BTEX constituents were not detected above their respective MTCA Method A cleanup levels. PERC was detected at a concentration of 45.0 mg/kg which exceeded the MTCA Method A target cleanup level of 0.05 mg/kg (Table 2).

The groundwater sample collected from boring B-2 contained mineral spirits at a concentration of 13,000 ug/L, which exceeded the MTCA Method A target cleanup level of 1,000 ug/L. Benzene was detected at a concentration of 21 ug/L, which exceeded the MTCA Method A cleanup level of 5 ug/L. Toluene, ethylbenzene, and xylenes were not detected above their respective MTCA Method A target cleanup levels. PERC was detected at a concentration of 3,100 ug/L, which exceeded the MTCA Method A target cleanup level of 5 ug/L.

### 6.3 Boring B-3

Soil boring B-3 was drilled within the tank pit excavation (Figure 2). The first 9 feet of soil consisted of clean backfill material placed in the excavation after the tank was removed from the ground. Below the backfill two layers of clay were encountered at depths of 11 to 15 feet bgs and 25 to 30 feet bgs. Between the layers of clay, at depths of 15 to 25 feet bgs lenses of silt, clay and sand were encountered which exhibited slight to heavy sheens and organic vapor readings ranging from 58 ppm to 6,388 ppm.

Two soil samples were collected from boring B-3. One sample was collected from 17-18 feet bgs where the highest organic vapor detection was documented. A second soil sample was collected from the bottom of the boring at a depth of 30 feet in an effort to delineate the total depth of contamination beneath the former tank location.

Laboratory analysis of the soil sample collected at 17-18 feet bgs contained mineral spirits at a concentration of 1,300 mg/kg which exceeded the MTCA Method A target cleanup level of 100 mg/kg. Benzene, toluene, and ethylbenzene, and PERC were not detected above their respective MTCA Method A cleanup levels. Xylenes were detected at a concentration of 9.4 mg/kg, which exceeded the MTCA Method A cleanup level of 9 mg/kg. PERC was detected at a concentration of 0.038 which was below the Method A target cleanup level of 0.05 mg/kg.

Laboratory analysis of the soil sample collected at 30 feet bgs did not contain concentrations of mineral spirits, BTEX constituents, or PERC which exceeded the MTCA Method A target cleanup levels. PERC was detected at a concentration of 0.024 mg/kg which was below the Method A target cleanup level of 0.05 mg/kg.

The groundwater sample collected from boring B-3 contained mineral spirits at a concentration of 9,700 ug/L, which exceeded the MTCA Method A target cleanup level of 1,000 ug/L. Benzene was detected at a concentration of 14 ug/L, which exceeded the MTCA Method A cleanup level of 5 ug/L. Toluene, ethylbenzene, and xylenes were detected at concentrations below their respective MTCA Method A target cleanup levels. PERC was detected at a concentration of 5.4 ug/L, which exceeded the MTCA Method A target cleanup level of 5 ug/L.

### 6.4 Boring B-4

Soil boring B-4 was drilled approximately 10 feet east of the tank pit excavation (Figure 2). Field screening of soil from 0 to 8 feet bgs revealed no evidence of petroleum contamination. Field screening of soil cores collected from 8 to 15 feet bgs yielded slight to heavy sheens and organic vapor concentrations ranging from 50 ppm to 2,891 ppm.

Laboratory analysis of a soil sample collected from 14-15 feet bgs contained mineral spirits at a concentration of 730 mg/kg which exceeded the MTCA Method A target cleanup level of 100 mg/kg. Benzene, toluene, and PERC were not detected. Ethylbenzene and xylenes were detected at concentrations below their respective Method A target cleanup levels (Table 2).

The groundwater sample collected from boring B-4 contained mineral spirits at a concentration of 5,700 ug/L, which exceeded the MTCA Method A target cleanup level of 1,000

ug/L. Benzene was detected at a concentration of 49 ug/L, which exceeded the MTCA Method A cleanup level of 5 ug/L. Toluene, ethylbenzene, xylenes, and PERC were detected at concentrations below their respective MTCA Method A target cleanup levels. PERC was detected at a concentration of 3.9 ug/L, below the Method A target cleanup level of 5 ug/L.

### 6.5 Boring B-5

Soil boring B-5 was drilled approximately 10 feet south of the tank pit excavation (Figure 2). Field screening of soil from 0 to 10 feet bgs revealed a very slight to slight sheen and low organic vapor detections. Field screening of soil from 10 to 28 feet yielded moderate to heavy sheens and organic vapor concentrations ranging from 51 ppm to 7,087 ppm. Field screening of soil from 28 to 30 feet bgs yielded no sheen and low organic vapor detections. Sandstone may have been encountered at 30 feet bgs in the very tip of the drill casing.

Two soil samples were collected from boring B-5. One sample was collected from 17-18 feet bgs where the highest organic vapor detection was documented. A second soil sample was collected from the bottom of the boring at a depth of 30 feet in an effort to delineate the total depth of contamination at the boring location.

Laboratory analysis of the soil sample collected from 17-18 feet bgs contained mineral spirits at a concentration of 1,600 mg/kg which exceeded the MTCA Method A target cleanup level of 100 mg/kg. Benzene and toluene were not detected. Ethylbenzene, xylenes, and PERC were detected at concentrations below their respective Method A target cleanup levels. PERC was detected at a concentration of 0.021 below the Method A target cleanup level of 0.05 mg/kg (Table 2).

Laboratory analysis of a soil sample collected at 30 feet bgs did not contain detectable concentrations of mineral spirits, toluene, ethylbenzene, or xylenes. Benzene was detected at a concentration of 0.048 mg/kg, which exceeded the MTCA Method A target cleanup level of 0.03 mg/kg. PERC was detected at a concentration of 0.089, which exceeded the MTCA Method A target cleanup level of 0.05 mg/kg (Table 2).

The groundwater sample collected from boring B-5 contained mineral spirits at a concentration of 13,000 ug/L, which exceeded the MTCA Method A target cleanup level of 1,000 ug/L. Benzene was detected at a concentration of 28 ug/L, which exceeded the MTCA Method A cleanup level of 5 ug/L. Toluene, ethylbenzene, xylenes, and PERC were detected at

concentrations below their respective MTCA Method A target cleanup levels. PERC was detected at a concentration of 4.4 ug/L, below the Method A target cleanup level of 5 ug/L.

# 7.0 CONCLUSIONS

A site characterization investigation was conducted at the former Cascade Laundry and Cleaners Inc. property located at 205 Prospect Street in Bellingham, Washington. The site characterization was initiated following the discovery of soil contamination identified during a UST Site Assessment completed in October 2010. At the time of tank closure the soil adjacent to and beneath the tank was sampled and confirmed to contain concentration of gasoline range TPH, BTEX constituents and PERC which exceeded the MTCA Method A target cleanup levels.

Per the MTCA cleanup regulation, the release was investigated on January 24, 2011. Five soil borings were advanced at the site in the vicinity of the leaking UST. The borings were drilled to characterize the extent of the release to soil and groundwater at to determine the extent of the release site.

Petroleum contaminated soil was identified at each of the five soil boring locations. The investigation revealed that subsurface soil in the vicinity of the leaking UST is impacted with mineral spirits at concentrations which exceed the MTCA Method A target cleanup level. Subsurface soil at two of the boring locations (B-2 and B-5) contained PERC at concentrations which exceed the MTCA Method A target cleanup level.

Groundwater contamination was also identified at each of the boring locations. Groundwater samples collected from all five boring locations contained concentrations of mineral spirits which exceed the MTCA Method A target cleanup level. Groundwater samples collected from two of the boring locations (B-2 and B-3) contained PERC at concentrations which exceed the MTCA Method A target cleanup level.

Based on the analytical results from soil samples collected at boring locations B-3 and B-5, the PERC concentrations in soil appear to diminish at a depth of approximately 30 feet. PERC was not identified in soil or groundwater at concentrations exceeding the MTCA Method A cleanup level in boring B-1 which was located in the inferred downgradient direction from the release source, however mineral spirits were identified at concentrations exceeding the MTCA Method A cleanup level at that location. The total extent of the mineral spirits and PERC contamination at the site has not been determined.

# 8.0 LIMITATIONS

No site investigation can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Performance of this investigation by Whatcom Environmental Services, Inc. is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental contamination in connection with the subject property.

The interpretation of subsurface soil and groundwater conditions is based on Whatcom Environmental's field observations and chemical analytical data collected from relatively widely spaced sampling locations at the site. It is possible that contamination exists beneath portions of the site that were not explored, sampled, or analyzed. No warranty, express or implied, is given regarding the presence of hidden or unidentified sources of contamination of the subject property. In addition, no warranty, express or implied is given regarding geotechnical or geologic hazards.

This environmental report is based on conditions that existed at the time the investigation was performed and samples collected. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, or by natural events such as floods, earthquakes, ground instability, or groundwater fluctuations.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted environmental practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

This report has been prepared for use by Cascade Laundry and Cleaners, Inc. Whatcom Environmental prepares a report for the client's exclusive use for a particular project and in accordance with generally accepted practices at the time of investigation. This report was prepared for exclusive use by the client and its agents and may not be used, relied upon, or assigned to a third party without written consent from Whatcom Environmental. This report is not intended for use by others, and the information contained herein is not applicable to other sites. This report may be made available to regulatory agencies.

13

# 9.0 REFERENCES

- U.S. Department of Agriculture (USDA). 1992. Soil Survey of Whatcom County Area, Washington. Soil Conservation Service. 481 pp.
- Washington State Department of Ecology (Ecology). 1994. Guidance on Preparing Independent Remedial Action Reports Under the Model Toxics Control Act Chapter 70.105D RCW, Working Draft, Publication No. 94-18. March 9, 1994.
- Washington State Department of Ecology (Ecology). 2001. Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC. Publication No. 94-06. February 12, 2001.
- Washington State Department of Natural Resources (WADNR). 2000. Geologic Map of the Bellingham 1:100,000 Quadrangle, Washington. Open File Report 2000-5.





| Sample ID         | Date      | Depth<br>(ft bgs) | Location and Description                                                                                      | Sheen<br>Test  | DID<br>(mdd) |
|-------------------|-----------|-------------------|---------------------------------------------------------------------------------------------------------------|----------------|--------------|
| B-1 (17 to 18 ft) | 1/24/2011 | 18                | Bottom of boring approximately 20 feet west of tank pit.                                                      | Moderate Sheen | 1,705        |
|                   |           |                   | Silty clay with fine sand, gray to dark gray, plastic, sticky, wet                                            |                |              |
| B-2 (24 to 25 ft) | 1/24/2011 | 25                | Near bottom of boring approximately 12 feet west of tank pit.<br>Fine sandy silt, gray, plastic, wet.         | Moderate Sheen | 7,451        |
| B-3 (17 to 18 ft) | 1/24/2011 | 18                | 17 feet below grade of boring drilled in tank pit.<br>Silty sand, dark gray, loose, wet.                      | Heavy Sheen    | 6,388        |
| B-3 (30 ft)       | 1/24/2011 | 30                | Bottom of boring drilled in tank pit.<br>Clay, gray, plastic, sticky, wet.                                    | No Sheen       | 25           |
| B-4 (14 to 15 ft) | 1/24/2011 | 15                | 14 feet below grade approximately 10 feet east of tank pit.<br>Clayey sand, dark gray, loose, wet.            | Heavy Sheen    | 2,891        |
| B-5 (17 to 18 ft) | 1/24/2011 | 18                | 17 feet below grade approximately 8 feet south of tank pit.<br>Fine sandy silt, dark gray, loose, wet.        | Heavy Sheen    | 7,087        |
| B-5 (30 ft)       | 1/24/2011 | 30                | Bottom of boring approximately 8 feet south of tank pit.<br>Clayey silt, olive gray, slightly plastic, moist. | No Sheen       | 17           |
|                   |           |                   |                                                                                                               |                |              |

AU7 7 E all å 200 0 ĉ 5 rintio ( 7 Soil Sa Table 1.

Table 1. - p. 1

| Table 2. Soi    | l Sample Analyti     | cal Results - Cas | scade Laun | dry, 205 P | rospect St., Be | ellingham, | WA                       |
|-----------------|----------------------|-------------------|------------|------------|-----------------|------------|--------------------------|
|                 |                      | NWTPH-Gx          | EPA-8021   | EPA-8021   | EPA-8021        | EPA-8021   | EPA-8260                 |
| Sample ID       | Date                 | Gasoline Range    | Benzene    | Toluene    | Ethylbenzene    | Xylenes    | Tetrachloro-<br>ethylene |
|                 |                      | mg/kg             | mg/kg      | mg/kg      | mg/kg           | mg/kg      | mg/kg                    |
| B-1 (17 to 18 f | <b>t)</b> 1/24/2011  | 1,500             | ND(<0.60)  | ND(<1.0)   | 2.9             | 6.8        | 0.029                    |
| B-2 (24 to 25 f | <b>t</b> ) 1/24/2011 | 1,200             | ND(<0.60)  | ND(<1.0)   | 2.2             | 4.5        | 45.0                     |
| B-3 (17 to 18 f | <b>t)</b> 1/24/2011  | 1,300             | ND(<0.60)  | ND(<1.0)   | 4.0             | 9.4        | 0.038                    |
| B-3 (30 ft)     | 1/24/2011            | ND(<3.0)          | ND(<0.03)  | ND(<0.05)  | ND(<0.05)       | ND(<0.20)  | 0.024                    |
| B-4 (14 to 15 f | <b>t)</b> 1/24/2011  | 730               | ND(<0.30)  | ND(<0.50)  | 1.0             | 2.0        | ND(<0.01)                |
| B-5 (17 to 18 f | <b>t)</b> 1/24/2011  | 1,600             | ND(<0.60)  | ND(<1.0)   | 3.7             | 5.8        | 0.021                    |
| B-5 (30 ft)     | 1/24/2011            | ND(<3.0)          | 0.048      | ND(<0.05)  | ND(<0.05)       | ND(<0.20)  | 0.089                    |
| MTCA Method     | A Cleanup Levels     | 30/100*           | 0.03       | 7          | 9               | 6          | 0.05                     |
|                 |                      |                   |            |            |                 |            |                          |

ND- indicates analyte was not detected at level above reporting limit (shown in parentheses)

Bold - Sample exceeded the MTCA Method A target cleanup level

Italicized - Reporting limit exceeds Method A target cleanup level

\* cleanup level depends on BTEX concentration

NOTE: Lab reported that NWTPH-GX chromatograms indicate that the soil samples likely contain mineral spirits.

| Table 3. Groundwate   | r Sample A | malytical Results | s - Cascade | : Laundry, | 205 Prospect | St., Bellin | gham, WA                 |
|-----------------------|------------|-------------------|-------------|------------|--------------|-------------|--------------------------|
|                       |            | NWTPH-Gx          | EPA-8021    | EPA-8021   | EPA-8021     | EPA-8021    | EPA-8260                 |
| Sample ID             | Date       | Gasoline Range    | Benzene     | Toluene    | Ethylbenzene | Xylenes     | Tetrachloro-<br>ethylene |
|                       |            | (µg/L)            | (µg/I)      | (µg/l)     | (µg/L)       | (µg/L)      | (ng/L)                   |
| B-1 Water (13-17 ft)  | 1/24/2011  | 4,400             | ND(<5.0)    | ND(<5.0)   | 36           | 44          | ND(<2.0)                 |
| B-2 Water (26-30 ft)  | 1/24/2011  | 13,000            | 21          | ND(<10.0)  | 66           | 67          | 3,100                    |
| B-3 Water (18-22 ft)  | 1/24/2011  | 9,700             | 14          | 26         | 180          | 360         | 5.4                      |
| B-4 Water (16-20 ft)  | 1/24/2011  | 5,700             | 49          | 11         | 55           | 55          | 3.9                      |
| B-5 Water (26-30 ft)  | 1/24/2011  | 13,000            | 28          | 51         | 200          | 340         | 4.4                      |
| MTCA Method A Cleanup | ) Levels   | 800/1,000*        | ഹ           | 1,000      | 700          | 1,000       | ß                        |
|                       |            |                   |             |            |              |             |                          |

ND- indicates analyte was not detected at level above reporting limit (shown in parentheses) **Bold** - Sample exceeded the MTCA Method A target cleanup level

\* cleanup level depends on BTEX concentration

NOTE: Lab reported that NWTPH-GX chromatograms indicate that the water samples likely contain mineral spirits.

# APPENDIX A

Soil Boring Logs

| Boring Log                                                                                                                                            |                                                                                                                                    |              |          |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|--------|
| Project: Cascade Laundry<br>Client: Cascade Laundry<br>Boring Number: B-1<br>Location: West of tank outside retaining wall<br>Date Completed: 1/24/11 | Sheet: 1 of 1<br>Drilled by: Cascade Drilling<br>Logged by: Thomas Davis<br>First Encountered Water: 12 ft.<br>Total Depth: 20 ft. |              |          |        |
| Depth/Description                                                                                                                                     | Blow<br>Count                                                                                                                      | PID<br>(ppm) | Sheen    | Sample |
| 0 - 5' Hand excavated to clear boring location                                                                                                        |                                                                                                                                    |              |          |        |
| 3'     Rocky lense                                                                                                                                    |                                                                                                                                    |              |          |        |
| 3 - 5' Fine sandy silt, tan, sticky, moist                                                                                                            |                                                                                                                                    |              |          |        |
| 5 - 9'Fine sandy silt, dark brown, sticky, firm9 - 9.5'Sand, tan, loose, moist                                                                        |                                                                                                                                    | 0.0<br>0.0   | NS<br>NS |        |
| 9.5 - 10' Silty clay, brown, firm, moist                                                                                                              |                                                                                                                                    | 0.0          | NS       |        |
| 10 - 15' Silty clay, gray, firm, wet                                                                                                                  |                                                                                                                                    | 1,532        | SS       |        |
| 15 -16' Fine sand, dark gray, wet                                                                                                                     | _                                                                                                                                  | 1,705        | MS       |        |
| 16 - 20' Silty clay, minor fine sand, gray, sticky,<br>plastic                                                                                        |                                                                                                                                    | 1,705        | MS       |        |
|                                                                                                                                                       |                                                                                                                                    |              |          |        |
|                                                                                                                                                       |                                                                                                                                    |              |          |        |
|                                                                                                                                                       |                                                                                                                                    |              |          |        |
|                                                                                                                                                       |                                                                                                                                    |              |          |        |

.
| Boring Log                                                                                                                                                    |                                                                       |                                                                                                                                    |       |        |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--|
| Project: Cascade Laundry<br>Client: Cascade Laundry<br>Boring Number: B-2<br>Location: West of tank pit inside retaining wall area<br>Date Completed: 1/24/11 | Sheet: 1 of<br>Drilled by:<br>Logged by:<br>First Encou<br>Total Dept | Sheet: 1 of 1<br>Drilled by: Cascade Drilling<br>Logged by: Thomas Davis<br>First Encountered Water: 16 ft.<br>Total Depth: 30 ft. |       |        |  |
| Depth/Description                                                                                                                                             | Blow<br>Count                                                         | FID*<br>(ppm)                                                                                                                      | Sheen | Sample |  |
| 0 - 5' Hand excavated to clear boring location.<br>Sandy gravel with organics.                                                                                | -                                                                     |                                                                                                                                    |       |        |  |
| 5 - 10' Sand, brown, loose, moist                                                                                                                             | -                                                                     |                                                                                                                                    | NS    |        |  |
| 10 - 15' Clayey silt, brown, firm, moist                                                                                                                      | -                                                                     |                                                                                                                                    | vss   |        |  |
| 15 - 20' Silty clay, gray, firm, moist to slightly wet                                                                                                        |                                                                       |                                                                                                                                    | MS    |        |  |
| 20 - 22' Silty fine sand, dark gray, loose, wet                                                                                                               |                                                                       | 4,500                                                                                                                              | MS    |        |  |
| 22 - 24' Clay, gray, sticky, plastic                                                                                                                          | 1                                                                     | 7,451                                                                                                                              | мs    |        |  |
| 24 - 25' Fine sandy silt, dark gray, plastic, wet                                                                                                             | -                                                                     | 7,451                                                                                                                              | MS    | $\geq$ |  |
| 25 - 30' Fine sandy silt, dark gray, plastic, wet                                                                                                             |                                                                       | 3,800                                                                                                                              | MS    |        |  |
|                                                                                                                                                               |                                                                       |                                                                                                                                    |       |        |  |
|                                                                                                                                                               | -                                                                     |                                                                                                                                    |       |        |  |
|                                                                                                                                                               |                                                                       |                                                                                                                                    | ·     |        |  |
|                                                                                                                                                               | 1                                                                     |                                                                                                                                    |       |        |  |
|                                                                                                                                                               | 1                                                                     |                                                                                                                                    |       |        |  |
|                                                                                                                                                               | -1                                                                    |                                                                                                                                    |       |        |  |
|                                                                                                                                                               | 4                                                                     |                                                                                                                                    |       |        |  |
|                                                                                                                                                               | 4                                                                     |                                                                                                                                    |       |        |  |
|                                                                                                                                                               | 4                                                                     |                                                                                                                                    |       |        |  |
| * Used FID instead of PID due to technical problems                                                                                                           |                                                                       |                                                                                                                                    |       |        |  |
| WHATCOM ENVIRONMENTAL                                                                                                                                         | SERVIC                                                                | ES INC.                                                                                                                            |       |        |  |
| www.whatcomenvironmental.com                                                                                                                                  | n                                                                     |                                                                                                                                    |       |        |  |

| Boring Log                                                                                                                                   |                                                                        |                                                         |                                 |          |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|----------|
| Project: Cascade Laundry<br>Client: Cascade Laundry<br>Boring Number: B-3<br>Location: Center of former tank pit.<br>Date Completed: 1/24/11 | Sheet: 1 of<br>Drilled by:<br>Logged by:<br>First Encou<br>Total Deptl | 1<br>Cascade Di<br>Thomas D<br>Intered Wat<br>n: 30 ft. | rilling<br>Davis<br>ter: 17 ft. |          |
| Depth/Description                                                                                                                            | Blow<br>Count                                                          | FID<br>(ppm)                                            | Sheen                           | Sample   |
| 0 - 9' Tank pit backfill material. Sand and gravel.                                                                                          |                                                                        | 0.0                                                     | NS                              |          |
| 10 - 11' Backfill, silty sand, tan and gray, wet                                                                                             |                                                                        | 23                                                      | SS                              |          |
| 11 - 15' Clay, blue-gray, firm, moist                                                                                                        |                                                                        | 550                                                     | НS                              |          |
| 15 - 17' Silty clay, tan, firm, moist to wet                                                                                                 |                                                                        | 385                                                     | MS                              |          |
| 17 - 19' Silty sand, dark gray, loose, wet                                                                                                   |                                                                        | 6,388                                                   | нѕ                              | $\ge$    |
| 19 - 20' Clayey silt, blue-gray, firm, moist                                                                                                 |                                                                        | 530                                                     | MS                              |          |
| 20 - 22' Silty sand, gray, loose, wet                                                                                                        |                                                                        | 58                                                      | MS                              |          |
| 22 - 25' Silty clay, tan and gray, plastic, sticky                                                                                           | 4                                                                      | 300                                                     | SS                              |          |
| 25 - 30′ Clay, gray, plastic, sticky, wet                                                                                                    |                                                                        | 25                                                      | NS                              | $\geq$   |
|                                                                                                                                              | •                                                                      |                                                         |                                 |          |
|                                                                                                                                              |                                                                        |                                                         |                                 |          |
|                                                                                                                                              |                                                                        |                                                         |                                 |          |
|                                                                                                                                              | -                                                                      |                                                         |                                 |          |
|                                                                                                                                              |                                                                        |                                                         |                                 |          |
|                                                                                                                                              |                                                                        |                                                         |                                 |          |
|                                                                                                                                              | -                                                                      |                                                         |                                 |          |
|                                                                                                                                              | }                                                                      |                                                         |                                 |          |
|                                                                                                                                              | -                                                                      |                                                         |                                 |          |
|                                                                                                                                              | SERVIC                                                                 | ES INC                                                  | <u>I</u>                        | <u> </u> |
| www.whatcomenvironmental.com                                                                                                                 |                                                                        | 25 INC.                                                 |                                 |          |

| Boring Log                                                                                                                         |                                                                                                                                    |              |       |            |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|------------|
| Project: Cascade Laundry<br>Client: Cascade Laundry<br>Boring Number: B-4<br>Location: East of tank pit<br>Date Completed: 1/24/11 | Sheet: 1 of 1<br>Drilled by: Cascade Drilling<br>Logged by: Thomas Davis<br>First Encountered Water: 15 ft.<br>Total Depth: 20 ft. |              |       |            |
| Depth/Description                                                                                                                  | Blow<br>Count                                                                                                                      | FID<br>(ppm) | Sheen | Sample     |
| 0 - 5' Hand excavated to clear boring location.<br>Sand and gravel.                                                                |                                                                                                                                    | 0.0          | NS    |            |
| 5 - 8' Gravelly sand, brown, minor silt, firm,<br>moist.                                                                           | -                                                                                                                                  | 0.0          | SS    |            |
| 8 - 9' Sand, dark gray, loose, wet                                                                                                 |                                                                                                                                    | 85           | HS    |            |
| 9 - 10' Clay, blue-gray, hard, moist                                                                                               |                                                                                                                                    | 200          | MS    |            |
| 10 - 13' Clay, gray, hard, moist                                                                                                   | -                                                                                                                                  | 50           | SS    |            |
| 13 - 14' Clay, brown, hard, moist                                                                                                  | -                                                                                                                                  | 50           | SS    |            |
| 14 - 15' Clayey sand, dark gray, loose, wet                                                                                        | -                                                                                                                                  | 2,891        | HS    | $\ge$      |
| 15 - 17' Clay, gray, hard, moist                                                                                                   |                                                                                                                                    | 50           | NS    |            |
| 17 - 20' Clayey silt, tan, hard, moist                                                                                             | -                                                                                                                                  | 30           | NS    |            |
|                                                                                                                                    | -                                                                                                                                  |              |       |            |
|                                                                                                                                    | -                                                                                                                                  |              |       |            |
|                                                                                                                                    |                                                                                                                                    |              |       |            |
|                                                                                                                                    | 4                                                                                                                                  |              |       |            |
|                                                                                                                                    |                                                                                                                                    |              |       |            |
|                                                                                                                                    | -                                                                                                                                  |              |       |            |
|                                                                                                                                    | -                                                                                                                                  |              |       |            |
|                                                                                                                                    |                                                                                                                                    |              |       |            |
|                                                                                                                                    |                                                                                                                                    | <u> </u>     |       | <u>.</u> . |
|                                                                                                                                    | SERVIC                                                                                                                             | ES INC.      |       |            |

| Boring Log                                                                                                                          | ,<br>,                                                              |                                                                                                                                    |                                       |          |  |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--|
| Project: Cascade Laundry<br>Client: Cascade Laundry<br>Boring Number: B-5<br>Location: South of tank pit<br>Date Completed: 1/24/11 | Sheet: 1 o<br>Drilled by:<br>Logged by<br>First Encou<br>Total Dept | Sheet: 1 of 1<br>Drilled by: Cascade Drilling<br>Logged by: Thomas Davis<br>First Encountered Water: 16 ft.<br>Total Depth: 30 ft. |                                       |          |  |
| Depth/Description                                                                                                                   | Blow<br>Count                                                       | FID<br>(ppm)                                                                                                                       | Sheen                                 | Sample   |  |
| 0 - 5' Hand excavated to clear boring location.<br>Silty sandy gravel, tan with brown to<br>olive-brown                             |                                                                     | 0.0                                                                                                                                | vss                                   |          |  |
| 5 - 8' Sandy gravelly silt, brown and gray, firm,<br>moist                                                                          |                                                                     | 7                                                                                                                                  | vss                                   |          |  |
| 8 - 10' Clayey silt, brown, firm, moist                                                                                             | -                                                                   | 17                                                                                                                                 | SS                                    |          |  |
| 10 - 13' Clayey silt, brown, firm, moist                                                                                            |                                                                     | 60                                                                                                                                 | MS                                    |          |  |
| 13 - 15' Silty clay, olive-gray, firm, moist                                                                                        |                                                                     | 6,130                                                                                                                              | MS                                    |          |  |
| 15 - 16' Silty clay, olive-gray, plastic, moist                                                                                     |                                                                     |                                                                                                                                    | MS                                    |          |  |
| 16 - 18' Fine sandy silt, dark gray, loose, wet                                                                                     |                                                                     | 7,087                                                                                                                              | HS                                    | $\times$ |  |
| 18 - 20' Clay, olive-gray, hard, moist                                                                                              |                                                                     | 51                                                                                                                                 | VSS                                   |          |  |
| 20 - 24' Clayey silt, olive-gray, soft, plastic, wet                                                                                |                                                                     |                                                                                                                                    |                                       |          |  |
| 24 - 25' Clayey silt with minor gravel, olive-brown,<br>hard, moist                                                                 |                                                                     |                                                                                                                                    |                                       |          |  |
| 25 - 28' Clayey silt, olive-gray, slightly plastic, moist,                                                                          |                                                                     | 300                                                                                                                                | VSS                                   |          |  |
| 28 - 30' Clayey silt, olive-gray, slightly plastic, moist,                                                                          |                                                                     | 17                                                                                                                                 | NS                                    | $\times$ |  |
| 30' Appears to be sandstone in drill casing tip                                                                                     |                                                                     | 0.0                                                                                                                                | NS                                    |          |  |
| WHATCOM ENVIRONMENTAL                                                                                                               | SERVIC                                                              | ES INC.                                                                                                                            | • • • • • • • • • • • • • • • • • • • | <u></u>  |  |

## APPENDIX B

Soil Sample Analytical Data Report



| CLIENT:          | Whatcom Environmental Svcs., Inc.<br>228 E. Champion St., Suite 101<br>Bellingham, WA 98225 | DATE:<br>ALS JOB#:<br>ALS SAMPLE#: | 2/1/2011<br>1101122<br>-01 |
|------------------|---------------------------------------------------------------------------------------------|------------------------------------|----------------------------|
| CLIENT CONTACT:  | Harold Cashman / Thom Davis                                                                 | DATE RECEIVED:                     | 1/27/2011                  |
| CLIENT PROJECT:  | Cascade Laundry                                                                             | COLLECTION DATE:                   | 1/24/2011 09:00            |
| CLIENT SAMPLE ID | B-1 17 to 18ft                                                                              | WDOE ACCREDITATION:                | C601                       |
|                  |                                                                                             | ****                               |                            |

#### DATA RESULTS

|                       |          |          | REPORTING | DILUTION |       | ANALYSIS A | NALYSIS  |
|-----------------------|----------|----------|-----------|----------|-------|------------|----------|
| ANALYTE               | METHOD   | RESULTS  | LIMITS    | FACTOR   | UNITS | DATE       | BY       |
| TPH-Volatile Range    | NWTPH-GX | 1500     | 60        | 20       | MG/KG | 01/27/2011 | DLC      |
| Benzene               | EPA-8021 | U        | 0.60      | 20       | MG/KG | 01/27/2011 | DLĊ      |
| Toluene               | EPA-8021 | U        | 1.0       | 20       | MG/KG | 01/27/2011 | DLĊ      |
| Ethylbenzene          | EPA-8021 | 2.9      | 1.0       | 20       | MG/KG | 01/27/2011 | DLC      |
| Xylenes               | EPA-8021 | 6.8      | 4.0       | 20       | MG/KG | 01/27/2011 | DLC      |
| Tetrachloroethylene   | EPA-8260 | 29       | 10        | 1        | UG/KG | 01/28/2011 | GAP      |
|                       |          |          |           |          |       | ANALYSIS A | ANALYSIS |
| SURROGATE             | METHOD   | %REC     |           |          |       | DATE       | BY       |
| TFT 20X Dilution      | NWTPH-GX | 75.9 DS2 |           |          |       | 01/27/2011 | DLC      |
| TFT 20X Dilution      | EPA-8021 | 131 DS2  |           |          |       | 01/27/2011 | DLC      |
| 1,2-Dichloroethane-d4 | EPA-8260 | 81.8     |           |          |       | 01/28/2011 | GAP      |
| 4-Bromofluorobenzene  | EPA-8260 | 80.1     |           |          |       | 01/28/2011 | GAP      |

U - Analyte analyzed for but not detected at level above reporting limit. DS2 - Due to high dilution factor surrogate results should be considered uncontrolled.

Chromatogram indicates that it is likely that sample contains mineral spirits.

Page 1 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 ेंद्र **425-356-2626** ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

MONT SOLUTIONS



#### CERTIFICATE OF ANALYSIS de de la composition de la com

| CLIENT:                               | Whatcom Environme<br>228 E. Champion St.<br>Bellingham, WA 982 | ental Svcs., Inc.<br>., Suite 101<br>25 |                          | 1/2011<br>101122<br>2 |         |                    |               |
|---------------------------------------|----------------------------------------------------------------|-----------------------------------------|--------------------------|-----------------------|---------|--------------------|---------------|
| CLIENT CONTACT:                       | Harold Cashman / T                                             | hom Davis                               | DATE RECEIVED: 1/27/2011 |                       |         |                    |               |
| CLIENT PROJECT:                       | Cascade Laundry                                                |                                         | C                        | OLLECTION D           | ATE: 1/ | 24/2011 11:        | 50            |
| CLIENT SAMPLE ID                      | B-2 24 to 25ft                                                 |                                         | WDO                      | E ACCREDITAT          | ION: C  | 601                |               |
| ite jaarte ja                         |                                                                | DAT                                     | A RESULTS                |                       |         |                    |               |
|                                       | METHOD                                                         | RESULTS                                 | REPORTING<br>LIMITS      | DILUTION<br>FACTOR    | UNITS   | ANALYSIS A<br>DATE | NALYSIS<br>BY |
| TPH-Volatile Range                    | NWTPH-GX                                                       | 1200                                    | 60                       | 20                    | MG/KG   | 01/27/2011         | DLC           |
| Benzene                               | EPA-8021                                                       | U                                       | 0.60                     | 20                    | MG/KG   | 01/27/2011         | DLC           |
| Toluene                               | EPA-8021                                                       | U                                       | 1.0                      | 20                    | MG/KG   | 01/27/2011         | DLC           |
| Ethylbenzene                          | EPA-8021                                                       | 2.2                                     | 1.0                      | 20                    | MG/KG   | 01/27/2011         | DLC           |
| Xylenes                               | EPA-8021                                                       | 4.5                                     | 4.0                      | 20                    | MG/KG   | 01/27/2011         | DLC           |
| Tetrachloroethylene                   | EPA-8260                                                       | 45000                                   | 1000                     | 100                   | UG/KG   | 01/28/2011         | GAP           |
|                                       |                                                                |                                         |                          |                       |         | ANALYSIS A         | ANALYSIS      |
| SURROGATE                             | METHOD                                                         | %REC                                    |                          |                       |         | DATE               | BY            |
| TFT 20X Dilution                      | NWTPH-GX                                                       | 69.3 DS2                                |                          |                       |         | 01/27/2011         | DLC           |
| TFT 20X Dilution                      | EPA-8021                                                       | 125 DS2                                 |                          |                       |         | 01/27/2011         | DLC           |
| 1,2-Dichloroethane-d4 100X Dilution   | EPA-8260                                                       | 89.0                                    |                          |                       |         | 01/28/2011         | GAP           |
| 4-Bromofluorobenzene 100X<br>Dilution | EPA-8260                                                       | 103                                     |                          |                       |         | 01/28/2011         | GAP           |

 $\mathsf{DS2}$  - Due to high dilution factor surrogate results should be considered uncontrolled. U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains mineral spirits.

ic ii

요리가지의 8620 Holly Drive, Suite 100, Everett, WA 98208 - 문학학과는 425-356-2600 - 문학학 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

MONT SOLUTIONS



| CLIENT:          | Whatcom Environmental Svcs., Inc. | DATE:               | 2/1/2011        |
|------------------|-----------------------------------|---------------------|-----------------|
|                  | 228 E. Champion St., Suite 101    | ALS JOB#:           | 1101122         |
|                  | Bellingham, WA 98225              | ALS SAMPLE#:        | -03             |
| CLIENT CONTACT:  | Harold Cashman / Thom Davis       | DATE RECEIVED:      | 1/27/2011       |
| CLIENT PROJECT:  | Cascade Laundry                   | COLLECTION DATE:    | 1/24/2011 13:00 |
| CLIENT SAMPLE ID | B-3 17 to 18ft                    | WDOE ACCREDITATION: | C601            |
|                  | I DATA RESU                       | <b>16</b>           |                 |

|                       |          |          | REPORTING |        |       | ANALYSIS A |          |
|-----------------------|----------|----------|-----------|--------|-------|------------|----------|
| ANALYTE               | METHOD   | RESULTS  | LIMITS    | FACTOR | UNITS | DATE       | BY       |
| TPH-Volatile Range    | NWTPH-GX | 1300     | 300       | 100    | MG/KG | 01/31/2011 | DLC      |
| Benzene               | EPA-8021 | U        | 0.60      | 20     | MG/KG | 01/31/2011 | DLC      |
| Toluene               | EPA-8021 | U        | 1.0       | 20     | MG/KG | 01/31/2011 | DLC      |
| Ethylbenzene          | EPA-8021 | 4.0      | 1.0       | 20     | MG/KG | 01/31/2011 | DLC      |
| Xylenes               | EPA-8021 | 9.4      | 4.0       | 20     | MG/KG | 01/31/2011 | DLC      |
| Tetrachloroethylene   | EPA-8260 | 38       | 10        | 1      | UG/KG | 01/28/2011 | GAP      |
|                       |          |          |           |        |       | ANALYSIS A | ANALYSIS |
| SURROGATE             | METHOD   | %REC     |           |        |       | DATE       | BY       |
| TFT 100X Dilution     | NWTPH-GX | 197 DS2  |           |        |       | 01/31/2011 | DLC      |
| TFT 20X Dilution      | EPA-8021 | 0 DS2    |           |        |       | 01/31/2011 | DLC      |
| 1,2-Dichloroethane-d4 | EPA-8260 | 79.4     |           |        |       | 01/28/2011 | GAP      |
| 4-Bromofluorobenzene  | EPA-8260 | 60.3 GS1 |           |        |       | 01/28/2011 | GAP      |

U - Analyte analyzed for but not detected at level above reporting limit. GS1 - Surrogate outside of control limits due to matrix effect.

DS2 - Due to high dilution factor surrogate results should be considered uncontrolled.

Chromatogram indicates that it is likely that sample contains mineral spirits.

Page 3 ACORESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - PHONE 425-356-2600 - RAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

MONT SOLUTIONS



| CLIENT:               | Whatcom Environme<br>228 E. Champion St.<br>Bellingham, WA 982 | ental Svcs., Inc.<br>, Suite 101<br>25 | Svcs., Inc. DATE:<br>ite 101 ALS JOB#: |                    |         | 2/1/2011<br>1101122<br>-04 |               |  |
|-----------------------|----------------------------------------------------------------|----------------------------------------|----------------------------------------|--------------------|---------|----------------------------|---------------|--|
| CLIENT CONTACT:       | Harold Cashman / Tl                                            | hom Davis                              |                                        | DATE RECEI         | VED: 1/ | 27/2011                    |               |  |
| CLIENT PROJECT:       | Cascade Laundry                                                |                                        | C                                      | OLLECTION D        | ATE: 1/ | /24/2011 13:               | 10            |  |
| CLIENT SAMPLE ID      | B-3 30ft                                                       |                                        | WDOI                                   | E ACCREDITAT       | TON: C  | 601                        |               |  |
|                       |                                                                | DAI                                    | ARESULTS                               |                    |         |                            |               |  |
| ANALYTE               | METHOD                                                         | RESULTS                                | REPORTING<br>LIMITS                    | DILUTION<br>FACTOR | UNITS   | ANALYSIS A<br>DATE         | NALYSIS<br>BY |  |
| TPH-Volatile Range    | NWTPH-GX                                                       | U                                      | 3.0                                    | 1                  | MG/KG   | 01/27/2011                 | DLC           |  |
| Benzene               | EPA-8021                                                       | U                                      | 0.030                                  | 1                  | MG/KG   | 01/27/2011                 | DLC           |  |
| Toluene               | EPA-8021                                                       | U                                      | 0.050                                  | 1                  | MG/KG   | 01/27/2011                 | DLC           |  |
| Ethylbenzene          | EPA-8021                                                       | U                                      | 0.050                                  | 1                  | MG/KG   | 01/27/2011                 | DLC           |  |
| Xylenes               | EPA-8021                                                       | U                                      | 0.20                                   | 1                  | MG/KG   | 01/27/2011                 | DLC           |  |
| Tetrachloroethylene   | EPA-8260                                                       | 24                                     | 10                                     | 1                  | UG/KG   | 01/28/2011                 | GAP           |  |
|                       |                                                                |                                        |                                        |                    |         | ANALYSIS A                 |               |  |
| SURROGATE             | METHOD                                                         | %REC                                   |                                        |                    |         | DATE                       | BY            |  |
| TF <b>T</b>           | NWTPH-GX                                                       | 86.1                                   |                                        |                    |         | 01/27/2011                 | DLC           |  |
| TF <b>T</b>           | EPA-8021                                                       | 76.7                                   |                                        |                    |         | 01/27/2011                 | DLC           |  |
| 1,2-Dichloroethane-d4 | EPA-8260                                                       | 78.1                                   |                                        |                    |         | 01/28/2011                 | GAP           |  |
| 4-Bromofluorobenzene  | EPA-8260                                                       | 98.6                                   |                                        |                    |         | 01/28/2011                 | GAP           |  |

U - Analyte analyzed for but not detected at level above reporting limit.

the second s

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PROVE 425-356-2600 RAC 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

NGHT SOLUTIONS AT LET ALL THE



| CLIENT:               | Whatcom Environme<br>228 E. Champion St.<br>Bellingham, WA 982 | ental Svcs., Inc.<br>., Suite 101<br>25 |                     | 1/2011<br>101122<br>15 |         |             |                |
|-----------------------|----------------------------------------------------------------|-----------------------------------------|---------------------|------------------------|---------|-------------|----------------|
| CLIENT CONTACT:       | Harold Cashman / TI                                            | hom Davis                               |                     | DATE RECEI             | VED: 1/ | 27/2011     |                |
| CLIENT PROJECT:       | Cascade Laundry                                                |                                         | C                   | COLLECTION D           | ATE: 1/ | 24/2011 14: | 10             |
| CLIENT SAMPLE ID      | B-4 14 to 15ft                                                 |                                         | WDOI                | E ACCREDITAT           | ION: C  | 601         |                |
|                       |                                                                | DAT,                                    | ARESULTS            |                        |         |             |                |
| ANALYTE               | METHOD                                                         | RESULTS                                 | REPORTING<br>LIMITS | DILUTION               | UNITS   | ANALYSIS A  | ANALYSIS<br>BY |
| TPH-Volatile Range    | NWTPH-GX                                                       | 730                                     | 30                  | 10                     | MG/KG   | 01/27/2011  | DLC            |
| Benzene               | EPA-8021                                                       | U                                       | 0.30                | 10                     | MG/KG   | 01/27/2011  | DLC            |
| Toluene               | EPA-8021                                                       | U                                       | 0.50                | 10                     | MG/KG   | 01/27/2011  | DLC            |
| Ethylbenzene          | EPA-8021                                                       | 1.0                                     | 0.50                | 10                     | MG/KG   | 01/27/2011  | DLC            |
| Xylenes               | EPA-8021                                                       | 2.0                                     | 2.0                 | 10                     | MG/KG   | 01/27/2011  | DLC            |
| Tetrachloroethylene   | EPA-8260                                                       | U                                       | 10                  | 1                      | UG/KG   | 01/28/2011  | GAP            |
|                       |                                                                |                                         |                     |                        |         | ANALYSIS /  |                |
| SURROGATE             | METHOD                                                         | %REC                                    |                     |                        |         | Dreft La    | 51             |
| TFT 10X Dilution      | NWTPH-GX                                                       | 98.1 DS2                                |                     |                        |         | 01/27/2011  | DLC            |
| TFT 10X Dilution      | EPA-8021                                                       | 118 DS2                                 |                     |                        |         | 01/27/2011  | DLC            |
| 1,2-Dichloroethane-d4 | EPA-8260                                                       | 87.7                                    |                     |                        |         | 01/28/2011  | GAP            |
| 4-Bromofluorobenzene  | EPA-8260                                                       | 115                                     |                     |                        |         | 01/28/2011  | GAP            |

DS2 - Due to high dilution factor surrogate results should be considered uncontrolled.

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains mineral spirits.

ADDEXES 8620 Holly Drive, Suite 100, Everett, WA 98208 - わりつたと425-356-2600 - かみち425-356-2626 ALS Laboratory Group - A Campbell Brothers Limited Company

www.alsglobal.com

NGHT SOLUTIONS CONTRACTOR



| CLIENT:             | Whatcom Environme<br>228 E. Champion St<br>Bellingham, WA 982 | ental Svcs., In<br>., Suite 101<br>25 | С.                  | DATE: 2/1/2011<br>ALS JOB#: 1101122<br>ALS SAMPLE#: -06 |          |                    |               |  |
|---------------------|---------------------------------------------------------------|---------------------------------------|---------------------|---------------------------------------------------------|----------|--------------------|---------------|--|
| CLIENT CONTACT:     | Harold Cashman / T                                            | hom Davis                             |                     | DATE RECEIVED: 1/27/2011                                |          |                    |               |  |
| CLIENT PROJECT:     | Cascade Laundry                                               |                                       | С                   | OLLECTION D                                             | ATE: 1/2 | 24/2011 15:3       | 35            |  |
| CLIENT SAMPLE ID    | B-5 30ft                                                      |                                       | WDOE                | ACCREDITAT                                              | TON: CE  | 501                |               |  |
|                     |                                                               | Directory D/                          | ATA RESULTS         |                                                         |          |                    |               |  |
| ANALYTE             | METHOD                                                        | RESULTS                               | REPORTING<br>LIMITS | DILUTION<br>FACTOR                                      | UNITS    | ANALYSIS A<br>DATE | NALYSIS<br>BY |  |
| TPH-Volatile Range  | NWTPH-GX                                                      | U                                     | 3.0                 | 1                                                       | MG/KG    | 01/27/2011         | DLC           |  |
| Benzene             | EPA-8021                                                      | 0.048                                 | 0.030               | 1                                                       | MG/KG    | 01/27/2011         | DLC           |  |
| Toluene             | EPA-8021                                                      | U                                     | 0.050               | 1                                                       | MG/KG    | 01/27/2011         | DLC           |  |
| Ethylbenzene        | EPA-8021                                                      | U                                     | 0.050               | 1                                                       | MG/KG    | 01/27/2011         | DLC           |  |
| Xylenes             | EPA-8021                                                      | U                                     | 0.20                | 1                                                       | MG/KG    | 01/27/2011         | DLC           |  |
| Tetrachloroethylene | EPA-8260                                                      | 89                                    | 10                  | 1                                                       | UG/KG    | 01/28/2011         | GAP           |  |
|                     |                                                               |                                       |                     |                                                         |          | ANALYSIS A         | NALYSIS       |  |
| SURROGATE           | METHOD                                                        | %REC                                  |                     |                                                         |          | DATE               | BY            |  |
| TFT                 | NWTPH-GX                                                      | 92.7                                  |                     |                                                         |          | 01/27/2011         | DLC           |  |
| TFT                 | EPA-8021                                                      | 80.5                                  |                     |                                                         |          | 01/27/2011         | DLC           |  |

GAP

GAP

01/28/2011

01/28/2011

U - Analyte analyzed for but not detected at level above reporting limit.

EPA-8260

EPA-8260

79.8

100

1,2-Dichloroethane-d4

4-Bromofluorobenzene

AUDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 DMDRE 425-356-2600 FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com



| CLIENT:               | Whatcom Environme   | ental Svcs., Inc. |                     | D,                 | ATE: 2  | /1/2011            |                |  |
|-----------------------|---------------------|-------------------|---------------------|--------------------|---------|--------------------|----------------|--|
|                       | 228 E. Champion St. | ., Suite 101      |                     | ALS J              | OB#: 1  | 101122             |                |  |
|                       | Bellingham, WA 982  | 25                |                     | ALS SAMP           | LE#: -( | -07                |                |  |
| CLIENT CONTACT:       | Harold Cashman / Tl | hom Davis         |                     | DATE RECEN         | VED: 1, | /27/2011           |                |  |
| CLIENT PROJECT:       | Cascade Laundry     |                   | C                   | COLLECTION D       | ATE: 1  | /24/2011 15:       | 45             |  |
| CLIENT SAMPLE ID      | B-5 17 to 18ft      |                   | WDO                 | E ACCREDITAT       | ION: C  | 601                |                |  |
| ist. Jett Miles       |                     | DAT               | A RESULTS           |                    |         |                    |                |  |
| ANALYTE               | METHOD              | RESULTS           | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS   | ANALYSIS A         | ANALYSIS<br>BY |  |
| TPH-Volatile Range    | NWTPH-GX            | 1600              | 60                  | 20                 | MG/KG   | 01/27/2011         | DLC            |  |
| Benzene               | EPA-8021            | U                 | 0.60                | 20                 | MG/KG   | 01/27/2011         | DLC            |  |
| Toluene               | EPA-8021            | U                 | 1.0                 | 20                 | MG/KG   | 01/27/2011         | DLC            |  |
| Ethylbenzene          | EPA-8021            | 3.7               | 1.0                 | 20                 | MG/KG   | 01/27/2011         | DLC            |  |
| Xylenes               | EPA-8021            | 5.8               | 4.0                 | 20                 | MG/KG   | 01/27/2011         | DLC            |  |
| Tetrachloroethylene   | EPA-8260            | 21                | 10                  | 1                  | UG/KG   | 01/28/2011         | GAP            |  |
| SURROGATE             | METHOD              | %REC              | e.                  |                    |         | ANALYSIS /<br>DATE | ANALYSIS<br>BY |  |
| TET 20X Dilution      | NWTPH-GX            | 77 8 0 82         |                     |                    |         | 01/07/0011         |                |  |
| TET 20X Dilution      |                     | 11.0 DOZ          |                     |                    |         | 01/27/2011         | DLC            |  |
| 1.2 Dichloroothana d4 | EFA-0021            | 130 032           |                     |                    |         | 01/2//2011         | DLC            |  |
| 1,2-Dichloroethane-04 | EPA-8260            | 96,2              |                     |                    |         | 01/28/2011         | GAP            |  |
| 4-Bromofluorobenzene  | EPA-8260            | 120               |                     |                    |         | 01/28/2011         | GAP            |  |

DS2 - Due to high dilution factor surrogate results should be considered uncontrolled.

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains mineral spirits.

ADORESS 8620 Holly Drive, Suite 100, Everett, WA 98208 C 2940 SE 425-356-2600 28 C 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

MOHT SOLUTIONS

| Charge     |
|------------|
| Rush       |
| incur      |
| ' may      |
| standard   |
| than       |
| less       |
| request    |
| Turnaround |
| •          |

Received By:



LABORATORY COPY

## APPENDIX C

Groundwater Sample Analytical Data Report



| CLIENT:               | Whatcom Environme<br>228 E. Champion St.<br>Bellingham, WA 982 | ental Svcs., Inc.<br>., Suite 101<br>25 |                     | D/<br>ALS J(<br>ALS SAMP | ATE: 2.<br>DB#: 1<br>LE#: -( | /1/2011<br>101122<br>)8 |                |  |
|-----------------------|----------------------------------------------------------------|-----------------------------------------|---------------------|--------------------------|------------------------------|-------------------------|----------------|--|
| CLIENT CONTACT:       | Harold Cashman / T                                             | hom Davis                               |                     | DATE RECEIN              | /ED: 1                       | /27/2011                |                |  |
| CLIENT PROJECT:       | Cascade Laundry                                                |                                         | C                   | OLLECTION D              | ATE: 1.                      | /24/2011 09:            | 15             |  |
| CLIENT SAMPLE ID      | B-1 Water                                                      |                                         | WDO                 | E ACCREDITAT             | ION: C                       | 601                     |                |  |
|                       |                                                                | DAT.                                    | A RESULTS           |                          |                              |                         |                |  |
| ANALYTE               | METHOD                                                         | RESULTS                                 | REPORTING<br>LIMITS | DILUTION<br>FACTOR       | UNITS                        | ANALYSIS A<br>DATE      | ANALYSIS<br>BY |  |
| TPH-Volatile Range    | NWTPH-GX                                                       | 4400                                    | 1000                | 20                       | UG/L                         | 01/27/2011              | DLC            |  |
| Benzene               | EPA-8021                                                       | U                                       | 5.0                 | 5                        | UG/L                         | 01/28/2011              | DLC            |  |
| Toluene               | EPA-8021                                                       | U                                       | 5.0                 | 5                        | UG/L                         | 01/28/2011              | DLC            |  |
| Ethylbenzene          | EPA-8021                                                       | 36                                      | 5.0                 | 5                        | UG/L                         | 01/28/2011              | DLC            |  |
| Xylenes               | EPA-8021                                                       | 44                                      | 15                  | 5                        | UG/L                         | 01/28/2011              | DLC            |  |
| Tetrachloroethylene   | EPA-8260                                                       | U                                       | 2.0                 | 1                        | UG/L                         | 01/27/2011              | GAP            |  |
| SURROGATE             | METHOD                                                         | %REC                                    |                     |                          |                              | ANALYSIS A<br>DATE      | ANALYSIS<br>BY |  |
| TFT 20X Dilution      | NWTPH-GX                                                       | 101                                     |                     |                          |                              | 01/27/2011              | DLC            |  |
| TFT 5X Dilution       | EPA-8021                                                       | 82.3                                    |                     |                          |                              | 01/28/2011              | DLC            |  |
| 1,2-Dichloroethane-d4 | EPA-8260                                                       | 98.6                                    |                     |                          |                              | 01/27/2011              | GAP            |  |
| 4-Bromofluorobenzene  | EPA-8260                                                       | 220 GS1                                 |                     |                          |                              | 01/27/2011              | GAP            |  |

GS1 - Surrogate outside of control limits due to matrix effect.

U - Analyte analyzed for but not detected at level above reporting limit.

Chromatogram indicates that it is likely that sample contains mineral spirits.

ADDRESP 8620 Holly Drive, Suite 100, Everett, WA 98208 EMONE 425-356-2600 FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

-

NEW SOLUTIONS CONTRACTOR



| CLIENT:                                 | Whatcom Environme<br>228 E. Champion St<br>Bellingham, WA 982 | ental Svcs., Inc.<br>., Suite 101<br>25 |                     | DATE: 2/1/2011<br>ALS JOB#: 1101122<br>ALS SAMPLE#: -09 |        |              |               |  |  |
|-----------------------------------------|---------------------------------------------------------------|-----------------------------------------|---------------------|---------------------------------------------------------|--------|--------------|---------------|--|--|
| CLIENT CONTACT:                         | Harold Cashman / T                                            | hom Davis                               |                     | DATE RECEIV                                             | 'ED: 1 | /27/2011     |               |  |  |
| CLIENT PROJECT:                         | Cascade Laundry                                               |                                         | C                   | OLLECTION DA                                            | TE: 1  | /24/2011 11: | 15            |  |  |
| CLIENT SAMPLE ID                        | B-2 Water                                                     |                                         | WDO                 | E ACCREDITATI                                           | ON: C  | 601          |               |  |  |
|                                         |                                                               | DAT                                     | ARESULTS            |                                                         |        |              |               |  |  |
| ANALYTE                                 | METHOD                                                        | RESULTS                                 | REPORTING<br>LIMITS | DILUTION<br>FACTOR                                      | UNITS  | ANALYSIS A   | NALYSIS<br>BY |  |  |
| TPH-Volatile Range                      | NWTPH-GX                                                      | 13000                                   | 500                 | 10                                                      | UG/L   | 01/27/2011   | DLC           |  |  |
| Benzene                                 | EPA-8021                                                      | 21                                      | 10                  | 10                                                      | UG/L   | 01/27/2011   | DLC           |  |  |
| Toluene                                 | EPA-8021                                                      | U                                       | 10                  | 10                                                      | UG/L   | 01/27/2011   | DLC           |  |  |
| Ethylbenzene                            | EPA-8021                                                      | 66                                      | 10                  | 10                                                      | UG/L   | 01/27/2011   | DLC           |  |  |
| Xylenes                                 | EPA-8021                                                      | 97                                      | 30                  | 10                                                      | UG/L   | 01/27/2011   | DLC           |  |  |
| Tetrachloroethylene                     | EPA-8260                                                      | 3100                                    | 23                  | 1000                                                    | UG/L   | 01/27/2011   | GAP           |  |  |
|                                         |                                                               |                                         |                     |                                                         |        | ANALYSIS A   | ANALYSIS      |  |  |
| SURROGATE                               | METHOD                                                        | %REC                                    |                     |                                                         |        | DATE         | BY            |  |  |
| TFT 10X Dilution                        | NWTPH-GX                                                      | 106                                     |                     |                                                         |        | 01/27/2011   | DLC           |  |  |
| TFT 10X Dilution                        | EPA-8021                                                      | 95.5                                    |                     |                                                         |        | 01/27/2011   | DLC           |  |  |
| 1,2-Dichloroethane-d4 1000X<br>Dilution | EPA-8260                                                      | 75.6                                    |                     |                                                         |        | 01/27/2011   | GAP           |  |  |
| 4-Bromofluorobenzene 1000>              | K EPA-8260                                                    | 97.8                                    |                     |                                                         |        | 01/27/2011   | GAP           |  |  |

de la contra

10.0

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains mineral spirits.

ADORESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - 2000/2425-356-2600 - 202425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PROFEE SOLUTIONS STORES ASSAULTER



| CLIENT:<br>CLIENT CONTACT:<br>CLIENT PROJECT:<br>CLIENT SAMPLE ID | Whatcom Environme<br>228 E. Champion St.<br>Bellingham, WA 982<br>Harold Cashman / TI<br>Cascade Laundry<br>B-3 Water | ental Svcs., Inc.<br>., Suite 101<br>25<br>hom Davis | C<br>WDOB           | DA<br>ALS JC<br>ALS SAMPL<br>DATE RECEIV<br>COLLECTION DA<br>ACCREDITATI | ATE: 2<br>DB#: 1<br>_E#: -*<br>'ED: 1<br>ATE: 1<br>ON: C | /1/2011<br>101122<br>10<br>/27/2011<br>/24/2011 13<br>:601 | :25            |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------|--------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|----------------|
| 10年—11月日日日本(11月日                                                  |                                                                                                                       | DAT                                                  | A RESULTS           |                                                                          |                                                          |                                                            |                |
| ANALYTE                                                           | METHOD                                                                                                                | RESULTS                                              | REPORTING<br>LIMITS | DILUTION<br>FACTOR                                                       | UNITS                                                    | ANALYSIS<br>DATE                                           | ANALYSIS<br>BY |
| TPH-Volatile Range                                                | NWTPH-GX                                                                                                              | 9700                                                 | 1000                | 20                                                                       | UG/L                                                     | 01/28/2011                                                 | DLC            |
| Benzene                                                           | EPA-8021                                                                                                              | 14                                                   | 10                  | 10                                                                       | UG/L                                                     | 01/28/2011                                                 | DLC            |
| Toluene                                                           | EPA-8021                                                                                                              | 26                                                   | 10                  | 10                                                                       | UG/L                                                     | 01/28/2011                                                 | DLC            |
| Ethylbenzene                                                      | EPA-8021                                                                                                              | 180                                                  | 10                  | 10                                                                       | UG/L                                                     | 01/28/2011                                                 | DLC            |
| Xylenes                                                           | EPA-8021                                                                                                              | 360                                                  | 30                  | 10                                                                       | UG/L                                                     | 01/28/2011                                                 | DLC            |
| Tetrachloroethylene                                               | EPA-8260                                                                                                              | 5.4                                                  | 2.0                 | 10                                                                       | UG/L                                                     | 01/27/2011                                                 | GAP            |
| SURROGATE                                                         | METHOD                                                                                                                | %REC                                                 |                     |                                                                          |                                                          | ANALYSIS<br>DATE                                           | ANALYSIS<br>BY |
| TFT 20X Dilution                                                  | NWTPH-GX                                                                                                              | 95.5                                                 |                     |                                                                          |                                                          | 01/28/2011                                                 | DLC            |
| TFT 10X Dilution                                                  | EPA-8021                                                                                                              | 93.2                                                 |                     |                                                                          |                                                          | 01/28/2011                                                 | DLC            |
| 1,2-Dichloroethane-d4 10X Dilu                                    | ution EPA-8260                                                                                                        | 81.7                                                 |                     |                                                                          |                                                          | 01/27/2011                                                 | GAP            |
| 4-Bromofluorobenzene 10X Dil                                      | ution EPA-8260                                                                                                        | 77.9 GS1                                             |                     |                                                                          |                                                          | 01/27/2011                                                 | GAP            |

GS1 - Surrogate outside of control limits due to matrix effect.

Chromatogram indicates that it is likely that sample contains mineral spirits.

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - EGONG 425-356-2600 - EGO, 425-356-2626 ALS Laboratory Group - A Campbell Brothers Limited Company

www.alsglobal.com

PHONE SOLUTIONS 2 MARCH PARTY NO.



| CLIENT:                        | Whatcom Environme   | ental Svcs., Inc. |                     | DA                 | \TE: 2 | 2/1/2011           |                |
|--------------------------------|---------------------|-------------------|---------------------|--------------------|--------|--------------------|----------------|
|                                | 228 E. Champion St. | , Suite 101       |                     | ALS JC             | OB#: ´ | 1101122            |                |
| 1                              | Bellingham, WA 982  | 25                |                     | ALS SAMPL          | _E#: - | 11                 |                |
| CLIENT CONTACT:                | Harold Cashman / T  | hom Davis         |                     | DATE RECEIV        | ′ED: ′ | 1/27/2011          |                |
| CLIENT PROJECT:                | Cascade Laundry     |                   | C                   | OLLECTION DA       | ATE: 1 | 1/24/2011 14:      | 20             |
| CLIENT SAMPLE ID               | B-4 Water           |                   | WDO                 | E ACCREDITATI      | ON: (  | C601               |                |
|                                |                     | DAT               | A RESULTS           |                    |        |                    |                |
| ANALYTE                        | METHOD              | RESULTS           | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS  | ANALYSIS A         | NALYSIS<br>BY  |
| TPH-Volatile Range             | NWTPH-GX            | 5700              | 500                 | 10                 | UG/L   | 01/28/2011         | DLC            |
| Benzene                        | EPA-8021            | 49                | 10                  | 10                 | UG/L   | 01/28/2011         | DLC            |
| Toluene                        | EPA-8021            | 11                | 10                  | 10                 | UG/L   | 01/28/2011         | DLC            |
| Ethylbenzene                   | EPA-8021            | 55                | 10                  | 10                 | UG/L   | 01/28/2011         | DLC            |
| Xylenes                        | EPA-8021            | 55                | 30                  | 10                 | UG/L   | 01/28/2011         | DLC            |
| Tetrachloroethylene            | EPA-8260            | 3.9               | 2.0                 | 10                 | UG/L   | 01/28/2011         | GAP            |
| SURROGATE                      | METHOD              | %REC              |                     |                    |        | ANALYSIS A<br>DATE | ANALYSIS<br>BY |
| TET 10X Dilution               | NWTPH-GX            | 104               |                     |                    |        | 01/28/2011         |                |
| TFT 10X Dilution               | EPA-8021            | 102               |                     |                    |        | 01/28/2011         |                |
| 1.2-Dichloroethane-d4 10X Dilu | tion EPA-8260       | 87 7              |                     |                    |        | 01/28/2011         | GAR            |
| 4-Bromofluorobenzene 10X Dil   | ution EPA-8260      | 102               |                     |                    |        | 01/28/2011         | GAP            |

Chromatogram indicates that it is likely that sample contains mineral spirits.

. . . . . . . .

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 ERCAR 425-356-2600 SAN 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PROFET SOLUTIONS MUM ENLISTERS



| CLIENT:             | Whatcom Environme<br>228 E. Champion St.<br>Bellingham, WA 9822 | ntal Svcs., Inc.<br>, Suite 101<br>25 |                     | DA<br>ALS JO<br>ALS SAMPL | TE: 2.<br>B#: 1<br>.E#: -1 | /1/2011<br>101122<br>I2 |               |
|---------------------|-----------------------------------------------------------------|---------------------------------------|---------------------|---------------------------|----------------------------|-------------------------|---------------|
| CLIENT CONTACT:     | Harold Cashman / Th                                             | nom Davis                             |                     | DATE RECEIV               | ED: 1.                     | /27/2011                |               |
| CLIENT PROJECT:     | Cascade Laundry                                                 |                                       | C                   | OLLECTION DA              | TE: 1.                     | /24/2011 16:            | 00            |
| CLIENT SAMPLE ID    | B-5 Water                                                       |                                       | WDOE                | E ACCREDITATIO            | ON: C                      | 601                     |               |
|                     |                                                                 | DAL                                   | A RÉSULTS           |                           |                            |                         |               |
| ANALYTE             | METHOD                                                          | RESULTS                               | REPORTING<br>LIMITS | DILUTION<br>FACTOR        | UNITS                      | ANALYSIS #<br>DATE      | NALYSIS<br>BY |
| TPH-Volatile Range  | NWTPH-GX                                                        | 13000                                 | 500                 | 10                        | UG/L                       | 01/28/2011              | DLC           |
| Benzene             | EPA-8021                                                        | 28                                    | 10                  | 10                        | UG/L                       | 01/28/2011              | DLC           |
| Toluene             | EPA-8021                                                        | 51                                    | 10                  | 10                        | UG/L                       | 01/28/2011              | DLC           |
| Ethylbenzene        | EPA-8021                                                        | 200                                   | 10                  | 10                        | UG/L                       | 01/28/2011              | DLC           |
| Xylenes             | EPA-8021                                                        | 340                                   | 30                  | 10                        | UG/L                       | 01/28/2011              | DLC           |
| Tetrachloroethylene | EPA-8260                                                        | 4.4                                   | 2.0                 | 10                        | UG/L                       | 01/28/2011              | GAP           |
|                     |                                                                 |                                       |                     |                           |                            | ANALYSIS A              | NALYSIS       |

| SURROGATE                          | METHOD   | %REC     | DATE       | ВҮ  |
|------------------------------------|----------|----------|------------|-----|
| TFT 10X Dilution                   | NWTPH-GX | 101      | 01/28/2011 | DLC |
| TFT 10X Dilution                   | EPA-8021 | 98.6     | 01/28/2011 | DLC |
| 1,2-Dichloroethane-d4 10X Dilution | EPA-8260 | 84.6     | 01/28/2011 | GAP |
| 4-Bromofluorobenzene 10X Dilution  | EPA-8260 | 75.7 GS1 | 01/28/2011 | GAP |

GS1 - Surrogate outside of control limits due to matrix effect. Chromatogram indicates that it is likely that sample contains mineral spirits.

Page 12 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 20002 425-356-2600 84X 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

NEW SOLUTIONS



| CLIENT:         | Whatcom Environmental Svcs., Inc. | DATE:               | 2/1/2011 |
|-----------------|-----------------------------------|---------------------|----------|
|                 | 228 E. Champion St., Suite 101    | ALS JOB#:           | 1101122  |
|                 | Bellingham, WA 98225              | WDOE ACCREDITATION: | C601     |
| CLIENT CONTACT: | Harold Cashman / Thom Davis       |                     |          |
| CLIENT PROJECT: | Cascade Laundry                   |                     |          |

## LABORATORY BLANK RESULTS

#### MBG-012511S

| ANALYTE                       | METHOD   | RESULTS | REPORTING<br>LIMITS                   | DILUTION | UNITS   | ANALYSIS<br>DATE   | ANALYSIS<br>BY |
|-------------------------------|----------|---------|---------------------------------------|----------|---------|--------------------|----------------|
| TPH-Volatile Range            | NWTPH-GX | U       | 3.0                                   | 1        | MG/KG   | 01/25/2011         | DLC            |
| MBG-012511W                   |          |         | · · · · · · · · · · · · · · · · · · · | и        | , tinge |                    | ••••••••••••   |
|                               |          |         | REPORTING                             | DILUTION |         | ANALYSIS           | ANALYSIS       |
| ANALYTE<br>TPH-Volatile Range |          | RESULTS | LIMITS                                | FACTOR   |         | DATE<br>01/25/2011 | BY             |
| TTT-volatile Range            | AWH H-OX | 0       | 50                                    | I.       | UGIL    | 01/25/2011         | DEC            |
| MB-012511S                    |          |         |                                       |          |         |                    |                |
|                               |          |         | REPORTING                             | DILUTION |         | ANALYSIS           | ANALYSIS       |
| ANALYTE                       | METHOD   | RESULTS | LIMITS                                | FACTOR   | UNITS   | DATE               | BY             |
| Benzene                       | EPA-8021 | U       | 0.030                                 | 1        | MG/KG   | 01/25/2011         | DLC            |
| Toluene                       | EPA-8021 | U       | 0.050                                 | 1        | MG/KG   | 01/25/2011         | DLC            |
| Ethylbenzene                  | EPA-8021 | U       | 0.050                                 | 1        | MG/KG   | 01/25/2011         | DLC            |
| Xylenes                       | EPA-8021 | U       | 0.20                                  | 1        | MG/KG   | 01/25/2011         | DLC            |
| MB-012511W                    |          |         |                                       |          |         |                    |                |
|                               |          |         | REPORTING                             | DILUTION |         | ANALYSIS           | ANALYSIS       |
| ANALYTE                       | METHOD   | RESULTS | LIMITS                                | FACTOR   | UNITS   | DATE               | BY             |
| Benzene                       | EPA-8021 | υ       | 1.0                                   | 1        | UG/L    | 01/25/2011         | DLC            |
| Toluene                       | EPA-8021 | U       | 1.0                                   | 1        | UG/L    | 01/25/2011         | DLC            |
| Ethylbenzene                  | EPA-8021 | υ       | 1.0                                   | 1        | UG/L    | 01/25/2011         | DLC            |
| Xylenes                       | EPA-8021 | U       | 3.0                                   | 1        | UG/L    | 01/25/2011         | DLC            |

#### MB-012411S

|                     |          |         | REPORTING | DILUTION |       | ANALYSIS A | NALYSIS |
|---------------------|----------|---------|-----------|----------|-------|------------|---------|
| ANALYTE             | METHOD   | RESULTS | LIMITS    | FACTOR   | UNITS | DATE       | BY      |
| 1,1-Dichloroethene  | EPA-8260 | U       | 10        | 1        | UG/KG | 01/24/2011 | GAP     |
| Toluene             | EPA-8260 | U       | 10        | 1        | UG/KG | 01/24/2011 | GAP     |
| Tetrachloroethylene | EPA-8260 | U       | 10        | 1        | UG/KG | 01/24/2011 | GAP     |

### Page 13 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - NGOAR 425-356-2600 - PAA 425-356-2626 ALS Laboratory Group - A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SCHATTORS PROVE A PROPERTY



| CLIENT:                            | Whatcom Environmental Svcs., Inc.              | DATE:                           | 2/1/2011 |
|------------------------------------|------------------------------------------------|---------------------------------|----------|
|                                    | 228 E. Champion St., Suite 101                 | ALS JOB#:                       | 1101122  |
|                                    | Bellingham, WA 98225                           | WDOE ACCREDITATION <sup>:</sup> | C601     |
| CLIENT CONTACT:<br>CLIENT PROJECT: | Harold Cashman / Thom Davis<br>Cascade Laundry |                                 |          |

## LABORATORY BLANK RESULTS

#### MB-012711W

|                     |          |         | REPORTING | DILUTION |       | ANALYSIS / | ANALYSIS |
|---------------------|----------|---------|-----------|----------|-------|------------|----------|
| ANALYTE             | METHOD   | RESULTS | LIMITS    | FACTOR   | UNITS | DATE       | BY       |
| 1,1-Dichloroethene  | EPA-8260 | U       | 2.0       | 1        | UG/L  | 01/27/2011 | GAP      |
| Toluene             | EPA-8260 | U       | 2.0       | 1        | UG/L  | 01/27/2011 | GAP      |
| Tetrachloroethylene | EPA-8260 | U       | 2.0       | 1        | UG/L  | 01/27/2011 | GAP      |

Page 14 ADDREDS 8620 Holly Drive, Suite 100, Everett, WA 98208 (2000) 425-356-2600 (2000) 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company 

www.alsglobal.com

MOHT SOLUTIONS



| CLIENT:         | Whatcom Environmental Svcs., Inc. 228 E. Champion St., Suite 101 | DATE:<br>ALS JOB#:  | 2/1/2011<br>1101122 |
|-----------------|------------------------------------------------------------------|---------------------|---------------------|
|                 | Bellingham, WA 98225                                             | WDOE ACCREDITATION: | C601                |
| CLIENT CONTACT: | Harold Cashman / Thom Davis                                      |                     |                     |
| CLIENT PROJECT: | Cascade Laundry                                                  |                     |                     |

## LABORATORY CONTROL SAMPLE-RESULTS

## ALS Test Batch ID: 1378 - Soil by NWTPH-GX

|                          |          |              |     |      | ANALYSIS   | ANALYSIS |  |
|--------------------------|----------|--------------|-----|------|------------|----------|--|
| SPIKED COMPOUND          | METHOD   | %REC         | RPD | QUAL | DATE       | BY       |  |
| TPH-Volatile Range - BS  | NWTPH-GX | 91.5         |     |      | 01/25/2011 | DLC      |  |
| TPH-Volatile Range - BSD | NWTPH-GX | 88. <b>6</b> | 3   |      | 01/25/2011 | DLC      |  |

## ALS Test Batch ID: 1382 - Water by NWTPH-GX

|                          |          |      |     |      | ANALYSIS   | ANALYSIS |
|--------------------------|----------|------|-----|------|------------|----------|
| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | DATE       | BY       |
| TPH-Volatile Range - BS  | NWTPH-GX | 86.8 |     |      | 01/25/2011 | DLC      |
| TPH-Volatile Range - BSD | NWTPH-GX | 90.3 | 3   |      | 01/25/2011 | DLC      |

#### ALS Test Batch ID: 1378 - Soil by EPA-8021

| SPIKED COMPOUND    | METHOD   | %REC | RPD | QUAL | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|--------------------|----------|------|-----|------|------------------|----------------|
| Benzene - BS       | EPA-8021 | 93.6 |     |      | 01/25/2011       | DLC            |
| Benzene - BSD      | EPA-8021 | 89.1 | Ą.  |      | 01/25/2011       | DLC            |
| Toluene - BS       | EPA-8021 | 94.7 |     |      | 01/25/2011       | DLC            |
| Toluene - BSD      | EPA-8021 | 90.0 | 5   |      | 01/25/2011       | DLC            |
| Ethylbenzene - BS  | EPA-8021 | 91.2 |     |      | 01/25/2011       | DLC            |
| Ethylbenzene - BSD | EPA-8021 | 86.4 | 5   |      | 01/25/2011       | DLC            |
| Xylenes - BS       | EPA-8021 | 96.3 |     |      | 01/25/2011       | DLC            |
| Xylenes - BSD      | EPA-8021 | 91.1 | 5   |      | 01/25/2011       | DLC            |

## ALS Test Batch ID: 1382 - Water by EPA-8021

| SPIKED COMPOUND    | METHOD   | %REC | RPD | QUAL | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|--------------------|----------|------|-----|------|------------------|----------------|
| Benzene - BS       | EPA-8021 | 103  |     |      | 01/25/2011       | DLC            |
| Benzene - BSD      | EPA-8021 | 104  | 0   |      | 01/25/2011       | DLC            |
| Toluene - BS       | EPA-8021 | 101  |     |      | 01/25/2011       | DLC            |
| Toluene - BSD      | EPA-8021 | 102  | 0   |      | 01/25/2011       | DLC            |
| Ethylbenzene - BS  | EPA-8021 | 101  |     |      | 01/25/2011       | DLC            |
| Ethylbenzene - BSD | EPA-8021 | 101  | 0   |      | 01/25/2011       | DLC            |
| Xylenes - BS       | EPA-8021 | 100  |     |      | 01/25/2011       | DLC            |
| Xylenes - BSD      | EPA-8021 | 101  | 0   |      | 01/25/2011       | DLC            |

| ,                                               | age 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 |                 |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|
| ADBRESS 8620 Holly Drive, Suite 100, Everett, W | VA 98208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PEONE 425-356-2600                                                                                              | ea%425-356-2626 |
| ALS Laboratory Group — A C                      | Campbell Broth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ers Limited Company                                                                                             |                 |
|                                                 | Contractor and the contractor of the contractor | A CANADA STATE OF THE ACCOUNT OF THE |                 |

#### Page 15

ALS Laboratory Group A Campbell Brothers Limited Company

PHESE TO SECTION OF THE CONTRACT OF THE CONTRACT.



| CLIENT:<br>CLIENT CONTACT:<br>CLIENT PROJECT: | Whatcom Environmental Svcs., Inc.<br>228 E. Champion St., Suite 101<br>Bellingham, WA 98225<br>Harold Cashman / Thom Davis<br>Cascade Laundry | DATE:<br>ALS JOB#:<br>WDOE ACCREDITATION: | 2/1/2011<br>1101122<br>C601 |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|
|                                               |                                                                                                                                               |                                           |                             |

## LABORATORY CONTROL SAMPLE RESULTS

#### ALS Test Batch ID: 1383 - Soil by EPA-8260

| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | ANALYSIS<br>DATE | ANALYSIS<br>BY |  |
|--------------------------|----------|------|-----|------|------------------|----------------|--|
| 1,1-Dichloroethene - BS  | EPA-8260 | 93.9 |     |      | 01/24/2011       | GAP            |  |
| 1,1-Dichloroethene - BSD | EPA-8260 | 90.8 | 3   |      | 01/25/2011       | GAP            |  |
| Toluene - BS             | EPA-8260 | 99.5 |     |      | 01/24/2011       | GAP            |  |
| Toluene - BSD            | EPA-8260 | 101  | 1   |      | 01/25/2011       | GAP            |  |

#### ALS Test Batch ID: 1390 - Water by EPA-8260

| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | ANALYSIS<br>DATE | ANALYSIS<br>BY |  |
|--------------------------|----------|------|-----|------|------------------|----------------|--|
| 1,1-Dichloroethene - BS  | EPA-8260 | 110  |     |      | 01/27/2011       | GAP            |  |
| 1,1-Dichloroethene - BSD | EPA-8260 | 118  | 7   |      | 01/27/2011       | GAP            |  |
| Toluene - BS             | EPA-8260 | 110  |     |      | 01/27/2011       | GAP            |  |
| Toluene - BSD            | EPA-8260 | 120  | 9   |      | 01/27/2011       | GAP            |  |

APPROVED BY

Laboratory Director

Page 16 ADDXESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHOME 425-356-2600 ERX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PRONT SOLUTIONS CONTRACTOR

| oratory Use Only)    | 22                                        | of S                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ays*                                                                           | i may incur Rush Charges         |
|----------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|
| ALS Job# (Lab        | 11011                                     | 1 Page 2                                                    | OTHER (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mes many in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JESTED in Business D<br>OTHEF<br>Specify:                                      | around request less than standar |
| ly/                  | Request                                   | Date 1/36/1                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EDB / EDC by EPA 8260 SIM (water)         EDB / EDC by EPA 8260 (soli)         EDB / EDC by EPA 8260 (soli)         Semivolatile Organic Compounds by EPA 8270         Polycyclic Aromatic Hydrocarbons (PAH) by EPA 8270 SIM [         Polycyclic Aromatic Hydrocarbons (PAH) by EPA 8270 SIM [         Polycyclic Aromatic Hydrocarbons (PAH) by EPA 8081/8082         Polycyclic Aromatic Hydrocarbons (PAH) by EPA 8081/8082         Polycyclic Aromatic Hydrocarbons (PAH) by EPA 8081/8082         POL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TURNAROUND REQU<br>Metals & Inorganic Analysis                                 | & Hydrocarbon Analysis           |
| Chain Of Custod      | oratory Analysis F                        |                                                             | ANALYSIS REQUESTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NWTPH-HCID       NWTPH-HCID       NWTPH-GX       NMTBE by EPA-8021 □ EPA-8021       NTBE by EPA-8021 □ EPA-8020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | St A                                                                           | 8 30 s                           |
| Ş                    | Lab                                       | eattle<br>ax<br>/iro.com                                    | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SULS<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL:<br>ALL: | 5amplies cellected via 50°<br>extime):<br>. eves 1/26/ 11 -1:15                | 11/12/ SUA round                 |
| ALS Laboratory Group | Everett, WA 98208<br>Phone (425) 356-2600 | 206) 292-9059 St<br>(425) 356-2626 Fc<br>http://www.alsenv. | The second secon | PEROMITIO Windform EWU<br>COMPANY: WINDLECT The<br>PRONECT The<br>ADDRESS: 22'S F. Ower<br>RPHONE:<br>PO NUMBER:<br>PO PO NUMBER:<br>PO PO P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPECIAL INSTRUCTIONS<br>SIGNATURES (Name, Company, Dati<br>1. Relinquished By: | Received By:                     |

# SITE CHARACTERIZATION REPORT BUILDING INTERIOR SOIL BORINGS CASCADE LAUNDRY & CLEANERS, INC. 205 PROSPECT STREET BELLINGHAM, WASHINGTON FSID #21786898

prepared for:

Cascade Laundry and Cleaners, Inc. 205 Prospect Street Bellingham, WA 98225

## January 10, 2012

# NWLATCOIL MENVIRONMENTAL

soil | water | air compliance consulting

228 East Champion Street, Suite 101, Bellingham, WA 98225 tel 360.752.9571 | fax 360.752.9573 | www.whatcomenvironmental.com

## SITE CHARACTERIZATION REPORT BUILDING INTERIOR SOIL BORINGS CASCADE LAUNDRY & CLEANERS, INC. 205 PROSPECT STREET BELLINGHAM, WASHINGTON FSID #21786898

Prepared for

Cascade Laundry and Cleaners, Inc. 205 Prospect Street Bellingham, WA 98225

Prepared by

Whatcom Environmental Services 228 East Champion Street #101 Bellingham, Washington 98225

January 10, 2012



Thomas Davis QA/QC Reviewer

## TABLE OF CONTENTS

#### Page

| 1.0 | IN  | TRODUCTION                           | .1 |
|-----|-----|--------------------------------------|----|
| 2.0 | SIT | TE DESCRIPTION                       | 2  |
|     | 2.1 | Site Topography and Surrounding Area | 2  |
|     | 2.2 | Site Geology                         | 2  |
|     | 2.3 | Site Hydrogeology                    | 3  |
| 3.0 | INV | VESTIGATIVE METHODS                  | 4  |
| 4.0 | SO  | IL AND GROUNDWATER SCREENING LEVELS  | 6  |
| 5.0 | IN  | VESTIGATION FINDINGS                 | 7  |
|     | 5.1 | Boring B-6                           | 7  |
|     | 5.2 | Boring B-7                           | 8  |
|     | 5.3 | Boring B-8                           | 8  |
|     | 5.4 | Boring B-9                           | 8  |
| 6.0 | CC  | DNCLUSIONS                           | 10 |
| 7.0 | LIN | MITATIONS                            | 11 |
| 8.0 | RE  | FERENCES                             | 12 |
|     |     |                                      |    |

## LIST OF FIGURES

| Figure 1. Site Location Map |
|-----------------------------|
|-----------------------------|

Figure 2. Soil Boring Location Map

Figure 3. Laboratory Analytical Data Summary Map

#### LIST OF TABLES

- Table 1.
   Soil Sample Descriptions
- Table 2.Soil Sample Analytical Results

Table 3. Groundwater Sample Analytical Results

#### LIST OF APPENDICES

- Appendix A Soil Boring Logs
- Appendix B Soil Sample Analytical Data Report
- Appendix C Groundwater Sample Analytical Data Report

## **1.0 INTRODUCTION**

Additional site characterization work was conducted at 205 Prospect Street in Bellingham, Washington on December 20, 2011. The Cascade Laundry and Cleaners Inc. (client) site location is shown on Figure 1. Four soil borings were drilled within the building interior to evaluate the soil and groundwater conditions beneath the building footprint at the locations shown on Figure 2. Soil samples were collected from each boring location. Groundwater samples were collected from three of the four borings. The results of the December 2011 site characterization work are presented in this report.

A release of petroleum products to soil was discovered at on October 13, 2010 during an underground storage tank (UST) site assessment. Field screening observations and laboratory analytical results confirmed that gasoline range total petroleum hydrocarbons (TPH), xylenes, and tetrachloroethylene (PERC) were released to soil surrounding the tank at concentrations which exceeded the Model Toxics Control Act (MTCA) Method A target cleanup levels. A UST Site Assessment report was prepared for the client by Whatcom Environmental Services on November 8, 2010.

A site characterization was conducted at the site on January 24, 2011. Five soil borings were advanced in the vicinity of the former UST tank pit to characterize the extent of the release to soil and groundwater at the locations shown on Figure 2. Concentrations of gasoline range TPH (mineral spirits) exceeding the MTCA Method A cleanup level were found in soil samples collected at depths ranging from 14 to 25 feet and in all water samples collected. A Site Characterization report was prepared for the client by Whatcom Environmental Services on March 15, 2011.

1

## 2.0 SITE DESCRIPTION

The site is located at 205 Prospect Street in Bellingham, Washington as shown on Figure 1. The property is located in the downtown portion of Bellingham in the northwest quarter of the southwest quarter of Section 30, Township 38N, Range 3E. The site is located in an area zoned Commercial and is currently vacant.

#### 2.1 Site Topography and Surrounding Area

The subject property is located approximately 0.1 miles northeast of the mouth of Whatcom Creek and has a median elevation of 60 feet above mean sea level. The majority of the property is level; however the western portion of the property slopes downward slightly towards the west. The site is located on a bluff which slopes down to the west towards the former Holly Street Landfill (FSID#: 2925). A site location map is provided as Figure 1.

#### 2.2 Site Geology

The subject property is located in the northern portion of the Puget Sound Basin. The region is characterized by thick sequences of Pleistocene glacial advance outwash and meltwater deposits that were deposited on a basement of tectonically deformed ancient sedimentary and metamorphic bedrock. The glacial deposits have been reworked by more recent fluvial, lacustrine, and aeolian actions into the landforms present today.

The property is underlain by Bellingham Glaciomarine drift which consists of moderately sorted to unsorted diamicton with lenses and discontinuous beds of moderately to well-sorted gravel, sand, silt, and clay. Bedding is massive to poorly stratified. Color is bluegray to olive-gray depending on oxidation state. Thickness ranges to as much as 90 meters. The unit is consistently firm to plastic, depending on moisture content. The unit is predominantly dry to slightly moist (WSDNR, 2000). The unit acts as an aquitard, impeding vertical migration of contaminants.

Field evidence supports the published interpretation of geology at the subject property. The depth to bedrock in each boring was approximately 27-29 feet bgs which indicates that the diamicton is approximately 25 to 30 feet thick at the site.

#### 2.3 Site Hydrogeology

The depth to groundwater at the site on the day the soil borings were drilled ranged from 12 to 14 feet below ground surface. Groundwater was encountered in sand lenses interbeded in saturated silty clay at depths below approximately 12 to 14 feet. The diamicton became fully saturated and plastic at an approximate depth of 20 feet bgs in each of the four borings. Based on the site topography, the groundwater flow direction is assumed to flow to the west.

## **3.0 INVESTIGATIVE METHODS**

Four soil borings were drilled by Cascade Drilling using a direct-push hydraulic and percussion drive-point sampling system on December 20, 2011. The soil borings were drilled inside the building at the locations shown on Figure 2.

Subsurface utilities were located prior to drilling. The drill rig equipment was decontaminated prior to drilling each test hole. The borings were continuously cored to depths ranging from 27 to 29 feet below grade where bedrock was encountered. Soil cores were logged in the field and soil descriptions generally followed ASTM D 2487 'Unified Soil Classification System' procedures for description and identification of soils. The soil cores were evaluated for organic vapors using a photoionization detector (PID) and for petroleum products using sheen tests. The test holes were backfilled to the surface using bentonite-based grout materials specified in WAC 173-160. Soil boring logs are included in Appendix A.

Immediately after the soil cores were described a portion of the sample was sheen tested and the remainder of the sample was placed in labeled re-sealable bags. Sheen test results were recorded as NS – no sheen, VSS – very slight sheen, SS – slight sheen, MS – moderate sheen, and HS – heavy sheen. The PID was inserted into the re-sealable bag in order to evaluate the presence of organic vapors, and a headspace reading was measured and organic vapor detections in parts per million (ppm) were recorded on the borelogs. Results from the sheen tests and PID measurements are summarized in Table 1 and on the borelogs in Appendix A.

Soil samples were collected for laboratory analysis from each soil boring at depths determined based on field screening results. If field screening did not indicate the presence of contamination in a boring, a sample was generally collected in relation to the depth where water was first encountered. Five soil samples were chosen for analysis from the four soil boring locations. Soil samples were analyzed for gasoline range TPH, BTEX constituents and PERC. All soil samples were collected using EPA Method 5035A. Soil sample descriptions, including field screening results and sample depths, are presented in Table 1. A summary of the soil sample laboratory analytical data are presented in Table 2. The original soil sample analytical data reports included in Appendix B.

Groundwater samples were collected from each boring location with the exception of boring B-8, which did not yield enough water to allow for sample collection. The groundwater

4

\_\_\_\_\_

samples were collected though slotted PVC well screens inserted into the open boreholes. A peristaltic pump and polyethylene tubing were used to collect the samples. Groundwater samples were collected for laboratory analysis for gasoline range TPH, BTEX constituents and PERC. A summary of the groundwater sample laboratory analytical data are presented in Table 3. The original laboratory sample analytical data reports are included in Appendix C.

## 4.0 SOIL AND GROUNDWATER SCREENING LEVELS

Based on the historical use of the site as dry cleaning and laundry facility, soil and water samples collected from the site were analyzed for gasoline range TPH using Method NWTPH-Gx, BTEX constituents using EPA Method 8021, and PERC using EPA Method 8260.

The soil screening levels for the site were established for unrestricted land use in accordance with the Model Toxics Control Act (MTCA) WAC 173-340. MTCA Method A target cleanup levels are provided in WAC 173-340, Table 740-1.

The water screening levels for the site were established for unrestricted land use in accordance with the Model Toxics Control Act (MTCA) WAC 173-340. MTCA Method A water target cleanup levels are provided in WAC 173-340, Table 720-1.

The soil and water data were compared to the applicable MTCA Method A concentrations. MTCA Method A target cleanup levels for soil are shown on Table 2 and MTCA Method A target cleanup levels for water are shown on Table 3.

## **5.0 INVESTIGATION FINDINGS**

The information gathered during the subsurface investigation described herein indicates that soil at one of the four boring locations (B-6) and groundwater at two boring locations (B-6 and B-7) contained concentrations of gasoline range TPH, BTEX constituents, and/or tetrachloroethylene (PERC) which exceeded the applicable MTCA Method A cleanup levels. A laboratory analytical data summary map is provided on Figure 3.

#### 5.1 Boring B-6

Soil boring B-6 was drilled at the location shown on Figure 2. Field screening results from soil cores extracted from the boring are included on the B-6 boring log included in Appendix A. Two soil samples and one groundwater sample were collected for laboratory analysis from soil boring B-6.

Laboratory analysis of the soil sample collected from 14.5-15 feet in boring B-6 confirmed the presence of gasoline range TPH at a concentration of 870 mg/kg which exceeded the MTCA Method A target cleanup level of 30 mg/kg. Three of four BTEX constituents were also detected at concentrations exceeding the MTCA Method A target cleanup levels (Table 2). PERC was not detected in the sample.

Laboratory analysis of the soil sample collected from 28.5-29 feet in boring B-6 did not detect the presence of gasoline range TPH, BTEX constituents, or PERC.

The groundwater sample collected from boring B-6 contained benzene at a concentration of 22 ug/L which exceeded the MTCA Method A cleanup level of 5 ug/L. PERC was detected in the water sample at a concentration of 5.9 ug/L which exceeded the MTCA Method A cleanup level of 5 ug/L (Table 3). Gasoline range TPH was detected at a concentration of 320 ug/L, which did not exceed the MTCA Method A target cleanup level of 800 ug/L. Toluene, ethylbenzene, and xylenes were detected at low concentrations which did not exceed the applicable MTCA Method A cleanup levels.

#### 5.2 Boring B-7

Soil boring B-7 was drilled at the location shown on Figure 2. Field screening results from soil cores extracted from the boring are included on the B-7 boring log included in Appendix A. One soil sample and one groundwater sample were collected for laboratory analysis from soil boring B-7.

Field screening results did not indicate the presence of petroleum compounds in the soil to the full depth of the boring. Laboratory analysis of the soil sample collected from 19-19.5 feet in boring B-7 did not detect the presence of TPH, BTEX constituents, or PERC (Table 2).

The groundwater sample collected from boring B-7 contained PERC at a concentration of 13 ug/L, which exceeded the MTCA Method A target cleanup level of 5 ug/L (Table 3). Toluene was detected at a concentration of 2.3 ug/L, which did not exceed the MTCA Method A cleanup level. Gasoline range TPH, benzene, ethylbenzene, and xylenes were not detected (Table 3).

#### 5.3 Boring B-8

Soil boring B-8 was drilled at the location shown on Figure 2. Field screening results from soil cores extracted from the boring are included on the B-8 boring log included in Appendix A. One soil sample was collected for laboratory analysis from soil boring B-8. No groundwater sample was collected from boring B-8, due to a lack of groundwater at that boring location.

Field screening results did not detect the presence of petroleum compounds in the soil to the full depth of the boring. Laboratory analysis of the soil sample collected from 12-12.5 feet in boring B-8 indicated that PERC was present in the soil at a concentration of 0.012 mg/kg which was below the MTCA Method A target cleanup level of 0.05 mg/kg (Table 2). Gasoline range TPH and BTEX constituents were not detected.

#### 5.4 Boring B-9

Soil boring B-9 was drilled at the location shown on Figure 2. Field screening results from soil cores extracted from the boring are included on the B-9 boring log included in Appendix A. One soil sample and one groundwater sample were collected for laboratory analysis from soil boring B-9.

Field screening results did not indicate the presence of petroleum compounds in the soil to the full depth of the boring. Laboratory analysis of the soil sample collected from 15.5-16 feet in boring B-9 did not detect the presence of TPH, BTEX constituents, or PERC (Table 2).

The groundwater sample collected from boring B-9 contained toluene at a concentration of 1.0 ug/L, which did not exceed the MTCA Method A cleanup level. Gasoline range TPH, benzene, ethylbenzene, xylenes, and PERC were not detected (Table 3).
# 6.0 CONCLUSIONS

Additional site characterization work was conducted in December 2011 at the Cascade Laundry and Cleaners Inc. property to evaluate the soil and groundwater conditions beneath a portion of the building footprint. Based on the analytical results from samples collected at the site, soil and groundwater contamination at concentrations which exceeded the MTCA Method A cleanup levels were identified beneath the southwest corner of the building.

Gasoline range TPH and BTEX constituents were identified at concentrations which exceeded the MTCA Method A cleanup levels in a soil sample collected from boring B-6 at a depth of 14.5-15 feet.

PERC was identified in groundwater at concentrations which exceeded the MTCA Method A cleanup level in the water samples collected from borings B-6 and B-7.

# 7.0 LIMITATIONS

No site investigation can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. Performance of this investigation by Whatcom Environmental Services, Inc. is intended to reduce, but not eliminate, uncertainty regarding the potential for environmental contamination in connection with the subject property.

The interpretation of subsurface soil and groundwater conditions is based on Whatcom Environmental's field observations and chemical analytical data collected from relatively widely spaced sampling locations at the site. It is possible that contamination exists beneath portions of the site that were not explored, sampled, or analyzed. No warranty, express or implied, is given regarding the presence of hidden or unidentified sources of contamination of the subject property. In addition, no warranty, express or implied is given regarding geotechnical or geologic hazards.

This environmental report is based on conditions that existed at the time the investigation was performed and samples collected. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, or by natural events such as floods, earthquakes, ground instability, or groundwater fluctuations.

Within the limitations of scope, schedule, and budget, our services have been executed in accordance with generally accepted environmental practices in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

This report has been prepared for use by Cascade Laundry and Cleaners, Inc. Whatcom Environmental prepares a report for the client's exclusive use for a particular project and in accordance with generally accepted practices at the time of investigation. This report was prepared for exclusive use by the client and its agents and may not be used, relied upon, or assigned to a third party without written consent from Whatcom Environmental. This report is not intended for use by others, and the information contained herein is not applicable to other sites. This report may be made available to regulatory agencies.

11

## **8.0 REFERENCES**

- Cascade Laundry and Cleaners, Inc. November 8, 2010. Underground Storage Tank Site Assessment at Closure – Cascade Laundry Facility, 205 Prospect Street, Bellingham, Washington (FSID# 21786898).
- Cascade Laundry and Cleaners, Inc. March 15, 2011. Site Characterization Report: Cascade Laundry & Cleaners, Inc., 205 Prospect Street, Bellingham, Washington, FSID #21786898.
- U.S. Department of Agriculture (USDA). 1992. Soil Survey of Whatcom County Area, Washington. Soil Conservation Service. 481 pp.
- Washington State Department of Ecology (Ecology). 1994. Guidance on Preparing Independent Remedial Action Reports Under the Model Toxics Control Act Chapter 70.105D RCW, Working Draft, Publication No. 94-18. March 9, 1994.
- Washington State Department of Ecology (Ecology). 2001. Model Toxics Control Act Cleanup Regulation Chapter 173-340 WAC. Publication No. 94-06. February 12, 2001.
- Washington State Department of Natural Resources (WADNR). 2000. Geologic Map of the Bellingham 1:100,000 Quadrangle, Washington. Open File Report 2000-5.







| Table 1. Soil Sa | mple Descri | ptions - (        | Cascade Laundry, 205 Prospect St., Bellingham, WA                                                                              |               |      |
|------------------|-------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------|------|
| Sample ID        | Date        | Depth<br>(ft bgs) | Location and Description                                                                                                       | Sheen<br>Test | (mag |
| B-6 14.5-15ft    | 12/20/2011  | 14.5-15           | Silty clay, brown/gray, plastic, slightly wet<br>Collected from boring B-6 at a depth of 14.5 to 15 feet bgs.                  | VSS           | 640  |
| B-6 28.5-29ft    | 12/20/2011  | 28.5-29           | Silty clay, minor gravel, brown, plastic, wet<br>Collected from boring B-6 at a depth of 28.5 to 29 feet bgs.                  | NS            | 6    |
| B-7 19-19.5ft    | 12/20/2011  | 19-19.5           | Silty clay, minor gravel, gray, plastic, moist to slightly wet<br>Collected from boring B-7 at a depth of 19 to 19.5 feet bgs. | NS            | 0.0  |
| B-8 12-12.5ft    | 12/20/2011  | 12-12.5           | Sandy silt, brown, loose, wet<br>Collected from boring B-8 at a depth of 12 to 15.5 feet bgs.                                  | NS            | 0.0  |
| B-9 15.5-16ft    | 12/20/2011  | 15.5-16 (         | Clayey silt, minor gravel, brown, plastic, wet<br>Collected from boring B-9 at a depth of 15.5 to 16 feet bgs.                 | NS            | 0.0  |
|                  |             |                   |                                                                                                                                |               |      |

NS - No Sheen

VSS - Very Slight Sheen

Table 1. - p. 1

|               |                | NWTPH-Gx       | EPA-8021  | EPA-8021  | EPA-8021     | EPA-8021 | EPA-8260                 |
|---------------|----------------|----------------|-----------|-----------|--------------|----------|--------------------------|
| Sample ID     | Date           | Gasoline Range | Benzene   | Toluene   | Ethylbenzene | Xylenes  | Tetrachloro-<br>ethylene |
|               |                | mg/kg          | mg/kg     | mg/kg     | mg/kg        | mg/kg    | mg/kg                    |
| B-6 14.5-15ft | 12/20/2011     | 870            | 7.2       | 2.1       | 16           | 16       | ND(<0.01)                |
| B-6 28.5-29ft | 12/20/2011     | ND(<3)         | ND(<0.03) | ND(<0.05) | ND(<0.05)    | ND(<0.2) | ND(<0.01)                |
| B-7 19-19.5ft | 12/20/2011     | ND(<3)         | ND(<0.03) | ND(<0.05) | ND(<0.05)    | ND(<0.2) | ND(<0.01)                |
| B-8 12-12.5ft | 12/20/2011     | ND(<3)         | ND(<0.03) | ND(<0.05) | ND(<0.05)    | ND(<0.2) | 0.012                    |
| B-9 15.5-16ft | 12/20/2011     | ND(<3)         | ND(<0.03) | ND(<0.05) | ND(<0.05)    | ND(<0.2) | ND(<0.01)                |
| MTCA Method A | Cleanup Levels | 30/100*        | 0.03      | 2         | 6            | 6        | 0.05                     |
|               |                |                |           |           |              |          |                          |

Table 2. Soil Sample Analytical Results - Cascade Laundry, 205 Prospect St., Bellingham, WA

**Bold** - Sample exceeded the MTCA Method A target cleanup level

ND- indicates analyte was not detected at level above reporting limit (shown in parentheses)

\* cleanup level depends on BTEX concentration

Table 2. - p. 1

| Table 3.  | Groundwater Sample A  | nalytical Results | s - Cascade | Laundry, | 205 Prospect | St., Bellin | gham, WA                 |
|-----------|-----------------------|-------------------|-------------|----------|--------------|-------------|--------------------------|
|           |                       | NWTPH-Gx          | EPA-8021    | EPA-8021 | EPA-8021     | EPA-8021    | EPA-8260                 |
| Sample II | Date                  | Gasoline Range    | Benzene     | Toluene  | Ethylbenzene | Xylenes     | Tetrachloro-<br>ethylene |
| B-6 Water | 12/20/2011            | (HS/ L)<br>320    | (HS/ H)     | 3 q      | 18/ J        | <b>р 11</b> | t م<br>۲ م               |
|           |                       |                   |             |          |              |             |                          |
| b-7 water | 17/20/201             | ND(<50)           | (0.1>)UN    | 2.3      | ND(<1.0)     | ND(<3.0)    | 13                       |
| B-9 Water | : 12/20/2011          | ND(<50)           | ND(<1.0)    | 1.0      | ND(<1.0)     | ND(<3.0)    | ND(<2.0)                 |
| MTCA Mei  | thod A Cleanup Levels | 800/1,000*        | 5           | 1,000    | 200          | 1,000       | 5                        |

ND- indicates analyte was not detected at level above reporting limit (shown in parentheses)

**Bold** - Sample exceeded the MTCA Method A target cleanup level

\* cleanup level depends on BTEX concentration

Table 3. - p. 1

# APPENDIX A

,

Soil Boring Logs

| Boring Lo                                                                                                                                                | og                                                                 |                                                           |                         |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|-------------------------|---------|
| Project: Cascade Laundry<br>Client: Cascade Laundry<br>Boring Number: <b>B-6</b><br>Location: South boring inside building<br>Date Completed: 12/20/2011 | Sheet: 1 c<br>Drilled by:<br>Logged by<br>First Enco<br>Total Dept | of 1<br>Cascade<br>v: T. Davis<br>untered Wa<br>th: 29 ft | Drilling<br>ater: ~13.5 | i ft    |
| Depth/Description                                                                                                                                        | Blow<br>Count                                                      | PID<br>(ppm)                                              | Sheen                   | Sample  |
| 0-5' Pre cleared<br>Organics at top 2-3 feet, brown clayey<br>silt below                                                                                 |                                                                    | 0.0                                                       | NS                      |         |
| 5-10' Clayey silt, brown, firm, dry                                                                                                                      |                                                                    | 0.0                                                       | NS                      |         |
| 10-12.5' Clayey silt, brown, firm, dry                                                                                                                   |                                                                    | 17                                                        | VSS                     |         |
| 12.5-13.5' Silty clay, gray, plastic, moist to slightly wet                                                                                              |                                                                    | 350                                                       | VSS                     |         |
| 13.5-15' Silty clay, brown, plastic, slightly wet                                                                                                        |                                                                    | 499                                                       | VSS                     | 14.5-15 |
| 15-18.5' Silty clay, brown, plastic, slightly wet<br>15'<br>16'<br>17'<br>18'                                                                            |                                                                    | 320<br>49<br>50<br>15                                     | VSS<br>NS<br>NS<br>NS   |         |
| 18.5-20' Silty clay, gray, firm, moist<br>19'<br>20'                                                                                                     |                                                                    | 11<br>7                                                   | NS<br>NS                |         |
| 20-25' Silty clay, gray, plastic, wet                                                                                                                    |                                                                    | 0.0                                                       | NS                      |         |
| 25-26.5' Silty clay, gray, plastic, wet                                                                                                                  |                                                                    | 142                                                       | VSS                     |         |
| 26-27.5' Silty clay, fractured, brown,<br>saturated, wet                                                                                                 |                                                                    | 111                                                       | NS                      |         |
| 27.5-29' Silty clay, minor gravel, brown, plastic wet                                                                                                    |                                                                    | 9                                                         | NS                      | 28-29   |
| Bedrock at 29 feet                                                                                                                                       | -                                                                  |                                                           |                         |         |

www.whatcomenvironmental.com

# **Boring Log**

Project: Cascade Laundry Client: Cascade Laundry Boring Number: **B-7** Location: South middle boring inside building Date Completed: 12/20/2011 Sheet: 1 of 1 Drilled by: Cascade Drilling Logged by: T. Davis First Encountered Water: ~12.5 ft Total Depth: 29 ft

|            | Depth/Description                                                  | Blow<br>Count | PID<br>(ppm) | Sheen | Sample     |
|------------|--------------------------------------------------------------------|---------------|--------------|-------|------------|
| 0-5'       | Pre cleared<br>Clayey silt, minor mottling, brown, loose,<br>moist |               | 0.0          | NS    |            |
| 5-9'       | Clayey silt, brown, firm, dry                                      | •             | 0.0          | NS    |            |
| 9-10'      | Silty clay, brown, firm, dry to moist                              |               | 0.0          | NS    |            |
| 10-12'     | Silty clay, brown, firm, moist                                     |               | 0.0          | NS    |            |
| 12-13'     | Sandy silt, brown, firm, moist to slightly wet                     | 4             | 0.0          | NS    |            |
| 13-14'     | Clayey silt, brown, firm, moist                                    |               | 0.0          | NS    |            |
| 14-15'     | Silty clay with minor gravel, brown,<br>firm, fractures, moist     |               | 0.0          | NS    |            |
| 15-18.5'   | Silty clay, brown, firm, moist                                     |               | 0.0          | NS    |            |
| 18.5-20'   | Silty clay with minor gravel, gray, plastic, moist to slightly wet | 4             | 0.0          | NS    | 19-19.5'   |
| 20-25'     | Silty clay with minor gravel, gray, plastic, wet                   | 4             | 0.0          | NS    |            |
| 25-29'     | Gravelly silty clay, plastic, wet                                  | 4             | 0.0          | NS    |            |
|            |                                                                    | 4             |              |       |            |
|            | ·                                                                  | -             |              |       |            |
| Bedrock at | t 29 feet                                                          | -             |              |       |            |
|            |                                                                    | SERVI         | CES IN       | C.    | - <u> </u> |

| ade Laundry<br>le Laundry<br>r: <b>B-8</b><br>th middle boring inside building<br>ed: 12/20/2011 | Sheet: 1 o<br>Drilled by:<br>Logged by<br>First Encou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f 1<br>Cascade I<br>: T. Davis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h: 27 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ater: Lens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at 12 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Depth/Description                                                                                | Blow<br>Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PID<br>(ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pre-cleared<br>Clayey silt, brown with minor orange<br>mottling, plastic, moist                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clayey silt, brown with minor mottling,<br>firm, dry                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clayey silt with minor gravel, brown,<br>firm, moist                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sandy silt, brown, loose, wet                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12-12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Clayey silt, brown, firm, moist                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clayey silt with gravel, brown, firm, moist                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clayey with minor gravel, gray, firm<br>slightly moist                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Silty clay with minor gravel, gray, plastic, wet                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hit salt & pepper sandstone (chuckanut?)                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 feet                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                  | Pre-cleared<br>Clayey silt, brown with minor orange<br>mottling, plastic, moist<br>Clayey silt, brown with minor mottling,<br>firm, dry<br>Clayey silt with minor gravel, brown,<br>firm, moist<br>Sandy silt, brown, loose, wet<br>Clayey silt, brown, firm, moist<br>Clayey silt with gravel, brown, firm, moist<br>Clayey with minor gravel, gray, firm<br>slightly moist<br>Silty clay with minor gravel, gray, plastic,<br>wet<br>Hit salt & pepper sandstone (chuckanut?)<br>Hit salt & pepper sandstone (chuckanut?)<br>7 feet<br>WHATCOM ENVIRONMENTAI | Pre-cleared<br>Clayey silt, brown with minor orange<br>mottling, plastic, moist<br>Clayey silt, brown with minor mottling,<br>firm, dry<br>Clayey silt with minor gravel, brown,<br>firm, moist<br>Sandy silt, brown, loose, wet<br>Clayey silt, brown, loose, wet<br>Clayey silt with gravel, brown, firm, moist<br>Clayey silt with gravel, brown, firm, moist<br>Clayey with minor gravel, gray, firm<br>slightly moist<br>Silty clay with minor gravel, gray, plastic,<br>wet<br>Hit salt & pepper sandstone (chuckanut?)<br>7 feet<br>WHATCOM ENVIRONMENTAL SERVI | Pre-cleared  0.0    Clayey silt, brown with minor orange  0.0    mottling, plastic, moist  0.0    Clayey silt, brown with minor mottling,  0.0    firm, dry  0.0    Clayey silt with minor gravel, brown,  0.0    firm, moist  0.0    Sandy silt, brown, loose, wet  0.0    Clayey silt with gravel, brown, firm, moist  0.0    Clayey silt with gravel, brown, firm, moist  0.0    Clayey with minor gravel, gray, firm  0.0    slightly moist  0.0    Silty clay with minor gravel, gray, plastic, wet  0.0    Hit salt & pepper sandstone (chuckanut?)  0.0 | Pre-cleared  0.0  NS    Clayey silt, brown with minor orange  0.0  NS    Clayey silt, brown with minor mottling,  0.0  NS    firm, dry  0.0  NS    Clayey silt with minor gravel, brown,  0.0  NS    Sandy silt, brown, loose, wet  0.0  NS    Clayey silt with gravel, brown, firm, moist  0.0  NS    Clayey silt with gravel, brown, firm, moist  0.0  NS    Clayey with minor gravel, gray, firm  0.0  NS    Silty clay with minor gravel, gray, plastic, wet  0.0  NS    Hit salt & pepper sandstone (chuckanut?)  0.0  NS |

# **Boring Log**

Project: Cascade Laundry Client: Cascade Laundry Boring Number: **B-9** Location: North boring inside building Date Completed: 12/20/2011 Sheet: 1 of 1 Drilled by: Cascade Drilling Logged by: T. Davis First Encountered Water: ~14 ft Total Depth: 27 ft

|            | Depth/Description                                                        | Blow<br>Count | PID<br>(ppm) | Sheen | Sample |
|------------|--------------------------------------------------------------------------|---------------|--------------|-------|--------|
| 0-5'       | Pre-cleared<br>Clayey silt, brown, firm, moist                           |               | 0.0          | NS    |        |
| 5-10'      | Clayey silt, brown, firm, dry<br>Moist at 9 ft                           |               | 0.0          | NS    |        |
| 10-11      | Fine sandy silt, brown, firm, slightly wet                               |               | 0.0          | NS    |        |
| 11-14'     | Clayey silt, brown, firm, moist                                          |               | 0.0          | NS    |        |
| 14-15'     | Clayey silt with minor gravel, brown, plastic<br>fractures, slightly wet | ,             | 0.0          | NS    |        |
| 15-17.5'   | Clayey silt with minor gravel, brown, plastic, wet                       |               | 0.0          | NS    | 15-16' |
| 17.5-20'   | Clayey silt with gravel, gray, firm, moist                               |               | 0.0          | NS    |        |
| 20-25'     | Silty clay with minor gravel, gray, plastic, slightly wet                |               | 0.0          | NS    |        |
| 25-27'     | Silty clay, gray, plastic, wet                                           |               | 0.0          | NS    |        |
|            |                                                                          |               |              |       |        |
|            |                                                                          |               |              |       |        |
|            |                                                                          |               |              |       |        |
|            |                                                                          |               |              |       |        |
| Redrock of | opprovimately 07.5 fact                                                  |               |              |       |        |
|            | approximately 21.0 rect                                                  |               |              |       |        |
|            | WHATCOM ENVIRONMENTAL                                                    | , SERVI       | CES IN       | С.    |        |

# APPENDIX B

Soil Sample Analytical Data Report

.



December 30, 2011

Mr. Harold Cashman Whatcom Environmental Svcs., Inc. 228 E. Champion St., Suite 101 Bellingham, WA 98225

Dear Mr. Cashman,

On December 22nd, 5 samples were received by our laboratory and assigned our laboratory project number 1112141. The project was identified as your Cascade Laundry. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan Laboratory Director

Page 1 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - CMCNE 425-356-2600 - EAC 425-356-2626 ALS Laboratory Group - A Campbell Brothers Limited Company

www.alsolobal.com

RANGE-EXC. SERVER REPAIRED FOR A CONTRACT STORES



|                     |                   | GERTIFICA         | TE OF ANALYSI | 8             |         |             |          |
|---------------------|-------------------|-------------------|---------------|---------------|---------|-------------|----------|
| CLIENT:             | Whatcom Environm  | ental Svcs., Inc. |               | DATI          | E: 12/3 | 30/2011     |          |
| ,                   | 228 E. Champion S | it., Suite 101    |               | ALS JOB       | #: 111  | 2141        |          |
|                     | Bellingham, WA 98 | 225               |               | ALS SAMPLE    | #: -01  |             |          |
| CLIENT CONTACT:     | Harold Cashman    |                   |               | DATE RECEIVED | D: 12/2 | 22/2011     |          |
| CLIENT PROJECT:     | Cascade Laundry   |                   | CC            | DLLECTION DAT | E: 12/2 | 20/2011 09: | 30       |
| CLIENT SAMPLE ID    | B-8 12 to 12.5 ft |                   | WDOE          | ACCREDITATION | V: C60  | )1          |          |
|                     |                   |                   | RESULTS       |               |         |             |          |
|                     |                   |                   | REPORTING     | DILUTION      |         |             |          |
| ANALYTE             | METHOD            | RESULTS           | LIMITO        | TACTOR        | UNITS   | DATE        | 51       |
| I PH-Volatile Range | NW IPH-GX         | U                 | 3.0           | 1             | MG/KG   | 12/22/2011  | GAP      |
| Benzene             | EPA-8021          | U                 | 0.030         | 1             | MG/KG   | 12/22/2011  | GAP      |
| Toluene             | EPA-8021          | υ                 | 0.050         | 1             | MG/KG   | 12/22/2011  | GAP      |
| Ethylbenzene        | EPA-8021          | U                 | 0.050         | 1             | MG/KG   | 12/22/2011  | GAP      |
| Xylenes             | EPA-8021          | U                 | 0.20          | 1             | MG/KG   | 12/22/2011  | GAP      |
| Tetrachloroethylene | EPA-8260          | 12                | 10            | 1             | UG/KG   | 12/29/2011  | GAP      |
|                     |                   |                   |               |               |         | ANALYSIS    | ANALYSIS |
| SURROGATE           | METHOD            | %REC              |               |               |         | DATE        | BY       |
| ТЕТ                 | NWTPH-GX          | 57.6 GS1          |               |               |         | 12/22/2011  | GAP      |
| TET                 | EPA-8021          | 72.6              |               |               |         | 12/22/2011  | GAP      |

12/29/2011

GAP

U - Analyte analyzed for but not detected at level above reporting limit.

EPA-8260

94.3

GS1 - Surrogate outside of control limits due to matrix effect.

1,2-Dichloroethane-d4

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 ADDRESS 425-356-2600 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PRODUCT SECURITY CONTRACTOR AND A CONTRACT OF



| CLIENT:<br>CLIENT CONTACT:<br>CLIENT PROJECT:<br>CLIENT SAMPLE ID | Whatcom Environm<br>228 E. Champion Si<br>Bellingham, WA 982<br>Harold Cashman<br>Cascade Laundry<br>B-9 15.5 to 16 ft | ental Svcs., Inc.<br>t., Suite 101<br>225 | CC<br>WDOE          | DATE<br>ALS JOB#<br>ALS SAMPLE#<br>DATE RECEIVED<br>DLLECTION DATE<br>ACCREDITATION | : 12/3<br>: 111<br>: -02<br>: 12/2<br>: 12/2<br>: C60 | 80/2011<br>2141<br>22/2011<br>20/2011 11:0 | 00            |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|---------------|
|                                                                   |                                                                                                                        | DAT/                                      | RESULTS             |                                                                                     |                                                       |                                            |               |
| ANALYTE                                                           | METHOD                                                                                                                 | RESULTS                                   | REPORTING<br>LIMITS | DILUTION<br>FACTOR                                                                  | UNITS                                                 | ANALYSIS A                                 | NALYSIS<br>BY |
| TPH-Volatile Range                                                | NWTPH-GX                                                                                                               | U                                         | 2.0                 | 0.66                                                                                | MG/KG                                                 | 12/22/2011                                 | GAP           |
| Benzene                                                           | EPA-8021                                                                                                               | U                                         | 0.027               | 0.66                                                                                | MG/KG                                                 | 12/22/2011                                 | GAP           |
| Toluene                                                           | EPA-8021                                                                                                               | ປ                                         | 0.045               | 0.66                                                                                | MG/KG                                                 | 12/22/2011                                 | GAP           |
| Ethylbenzene                                                      | EPA-8021                                                                                                               | U                                         | 0.045               | 0.66                                                                                | MG/KG                                                 | 12/22/2011                                 | GAP           |
| Xylenes                                                           | EPA-8021                                                                                                               | U                                         | 0.18                | 0.66                                                                                | MG/KG                                                 | 12/22/2011                                 | GAP           |
| Tetrachloroethylene                                               | EPA-8260                                                                                                               | U                                         | 10                  | 1                                                                                   | UG/KG                                                 | 12/29/2011                                 | GAP           |
| SURROGATE                                                         | METHOD                                                                                                                 | %REC                                      |                     |                                                                                     |                                                       | ANALYSIS A<br>DATE                         | NALYSIS<br>BY |
| TFT 0.66X Dilution                                                | NWTPH-GX                                                                                                               | 58.7 GS1                                  |                     |                                                                                     |                                                       | 12/22/2011                                 | GAP           |
| TFT 0.66X Dilution                                                | EPA-8021                                                                                                               | 76.2                                      |                     |                                                                                     |                                                       | 12/22/2011                                 | GAP           |
| 1,2-Dichloroethane-d4                                             | EPA-8260                                                                                                               | 100                                       |                     |                                                                                     |                                                       | 12/29/2011                                 | GAP           |

U - Analyte analyzed for but not detected at level above reporting limit.

GS1 - Surrogate outside of control limits due to matrix effect.

ACOR855 8620 Holly Drive, Suite 100, Everett, WA 98208 - クロマンド 425-356-2600 - パース 425-356-2626 ALS Laboratory Group - A Campbell Brothers Limited Company

www.alsglobal.com



| CLIENT:               | Whatcom Environm<br>228 E. Champion S<br>Bellingham, WA 983 | iental Svcs., Inc.<br>t., Suite 101<br>225 |                     | DATE<br>ALS JOB#<br>ALS SAMPLE# | E: 12/3<br>#: 111<br>#: -03 | 30/2011<br>2141    | i ganta dagi eta dina di kiti La Manda da Kata | KILLOW |
|-----------------------|-------------------------------------------------------------|--------------------------------------------|---------------------|---------------------------------|-----------------------------|--------------------|------------------------------------------------|--------|
| CLIENT CONTACT:       | Harold Cashman                                              |                                            |                     | DATE RECEIVED                   | ): 12/2                     | 22/2011            |                                                |        |
| CLIENT PROJECT:       | Cascade Laundry                                             |                                            | CC                  | DLLECTION DATE                  | E: 12/2                     | 20/2011 12:        | 15                                             |        |
| CLIENT SAMPLE ID      | B-7 19 to 19.5 ft                                           |                                            | WDOE                | ACCREDITATION                   | I: C60                      | )1                 |                                                |        |
|                       | arang - Tanata                                              | DA1                                        | A RESULTS           |                                 |                             |                    |                                                |        |
| αναι γτε              | METHOD                                                      | RESULTS                                    | REPORTING<br>LIMITS | DILUTION                        | UNITS                       | ANALYSIS A         | NALYSIS<br>BY                                  |        |
| TPH-Volatile Range    | NWTPH-GX                                                    | U                                          | 3.0                 | 1                               | MG/KG                       | 12/22/2011         | GAP                                            |        |
| Benzene               | EPA-8021                                                    | U                                          | 0.030               | 1                               | MG/KG                       | 12/22/2011         | GAP                                            |        |
| Toluene               | EPA-8021                                                    | U                                          | 0.050               | 1                               | MG/KG                       | 12/22/2011         | GAP                                            |        |
| Ethylbenzene          | EPA-8021                                                    | U                                          | 0.050               | 1                               | MG/KG                       | 12/22/2011         | GAP                                            |        |
| Xylenes               | EPA-8021                                                    | U                                          | 0.20                | 1                               | MG/KG                       | 12/22/2011         | GAP                                            |        |
| Tetrachloroethylene   | EPA-8260                                                    | U                                          | 10                  | 1                               | UG/KG                       | 12/29/2011         | GAP                                            |        |
| SURROGATE             | METHOD                                                      | %REC                                       |                     |                                 |                             | ANALYSIS /<br>DATE | ANALYSIS<br>BY                                 |        |
| TFT                   | NWTPH-GX                                                    | 62.0                                       |                     |                                 |                             | 12/22/2011         | GAP                                            |        |
| TFT                   | EPA-8021                                                    | 74.4                                       |                     |                                 |                             | 12/22/2011         | GAP                                            |        |
| 1,2-Dichloroethane-d4 | EPA-8260                                                    | 97.4                                       |                     |                                 |                             | 12/29/2011         | GAP                                            |        |

U - Analyte analyzed for but not detected at level above reporting limit.

ADORESS 8620 Holly Drive, Suite 100, Everett, WA 98208 SHOWE 425-356-2600 TAL 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

FREGHAT SECONALTINGTIS CONTRACTOR



| CLIENT:<br>CLIENT CONTACT:<br>CLIENT PROJECT: | Whatcom Environm<br>228 E. Champion S<br>Bellingham, WA 983<br>Harold Cashman<br>Cascade Laundry | ental Svcs., Inc.<br>t., Suite 101<br>225 | CC                  | DATE<br>ALS JOB#<br>ALS SAMPLE#<br>DATE RECEIVED<br>DLLECTION DATE | :: 12/3<br>:: 111<br>:: -04<br>:: 12/2<br>:: 12/2 | 30/2011<br>2141<br>22/2011<br>20/2011 14:3 | 30            |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|--------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|---------------|--|
| GLIENT SAWIFLE ID                             | B-0 14.5 (0 15 ft                                                                                |                                           | WDOE .              | ACCREDITATION                                                      | I. COU                                            |                                            |               |  |
|                                               |                                                                                                  | DATA                                      | RESULTS             |                                                                    |                                                   |                                            |               |  |
| ANALYTE                                       | METHOD                                                                                           | RESULTS                                   | REPORTING<br>LIMITS | DILUTION<br>FACTOR                                                 | UNITS                                             | ANALYSIS A<br>DATE                         | NALYSIS<br>BY |  |
| TPH-Volatile Range                            | NWTPH-GX                                                                                         | 870                                       | 300                 | 100                                                                | MG/KG                                             | 12/22/2011                                 | GAP           |  |
| Benzene                                       | EPA-8021                                                                                         | 7.2                                       | 0.43                | 10                                                                 | MG/KG                                             | 12/22/2011                                 | GAP           |  |
| Toluene                                       | EPA-8021                                                                                         | 2.1                                       | 0.71                | 10                                                                 | MG/KG                                             | 12/22/2011                                 | GAP           |  |
| Ethylbenzene                                  | EPA-8021                                                                                         | 16                                        | 0.71                | 10                                                                 | MG/KG                                             | 12/22/2011                                 | GAP           |  |
| Xylenes                                       | EPA-8021                                                                                         | 16                                        | 2.8                 | 10                                                                 | MG/KG                                             | 12/22/2011                                 | GAP           |  |
| Tetrachloroethylene                           | EPA-8260                                                                                         | U                                         | 10                  | 1                                                                  | UG/KG                                             | 12/29/2011                                 | GAP           |  |
| SURROGATE                                     | METHOD                                                                                           | %REC                                      |                     |                                                                    |                                                   | ANALYSIS A<br>DATE                         | NALYSIS<br>BY |  |
| TFT 100X Dilution                             | NWTPH-GX                                                                                         | 2.44 DS2                                  |                     |                                                                    |                                                   | 12/22/2011                                 | GAP           |  |
| TFT 10X Dilution                              | EPA-8021                                                                                         | 46.4 DS2                                  |                     |                                                                    |                                                   | 12/22/2011                                 | GAP           |  |
| 1,2-Dichloroethane-d4                         | EPA-8260                                                                                         | 104                                       |                     |                                                                    |                                                   | 12/29/2011                                 | GAP           |  |

U - Analyte analyzed for but not detected at level above reporting limit.

DS2 - Due to high dilution factor surrogate results should be considered uncontrolled. Chromatogram indicates that it is likely that sample contains an unidentified gasoline range product.

Page 5 ADDR255 8620 Holly Drive, Suite 100, Everett, WA 98208 - PERCAR 425-356-2600 - PERCAPS-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

FIGHT SOLUTIONS



| CLIENT:             | Whatcom Environm<br>228 E. Champion S<br>Bellingham, WA 98 | iental Svcs., Inc.<br>t., Suite 101<br>225 |                     | DA<br>ALS JO<br>ALS SAMPL | TE: 12/3<br>B#: 111<br>E#: -05 | 0/2011<br>2141     |               |  |
|---------------------|------------------------------------------------------------|--------------------------------------------|---------------------|---------------------------|--------------------------------|--------------------|---------------|--|
| CLIENT CONTACT:     | Harold Cashman                                             |                                            |                     | DATE RECEIV               | ED: 12/2                       | 2/2011             |               |  |
| CLIENT PROJECT:     | Cascade Laundry                                            |                                            | CC                  | LLECTION DA               | TE: 12/2                       | 20/2011 14:4       | 45            |  |
| CLIENT SAMPLE ID    | B-6 28.5 to 29 ft                                          |                                            | WDOE /              | ACCREDITATIO              | DN: C60                        | 1                  |               |  |
|                     |                                                            | DAT/                                       | RESULTS             |                           |                                |                    |               |  |
| ANALYTE             | METHOD                                                     | RESULTS                                    | REPORTING<br>LIMITS | DILUTION<br>FACTOR        | UNITS                          | ANALYSIS A<br>DATE | NALYSIS<br>BY |  |
| TPH-Volatile Range  | NWTPH-GX                                                   | U                                          | 3.0                 | 1                         | MG/KG                          | 12/22/2011         | GAP           |  |
| Benzene             | EPA-8021                                                   | U                                          | 0.030               | 1                         | MG/KG                          | 12/22/2011         | GAP           |  |
| Toluene             | EPA-8021                                                   | U                                          | 0.050               | 1                         | MG/KG                          | 12/22/2011         | GAP           |  |
| Ethylbenzene        | EPA-8021                                                   | U                                          | 0.050               | 1                         | MG/KG                          | 12/22/2011         | GAP           |  |
| Xylenes             | EPA-8021                                                   | U                                          | 0.20                | 1                         | MG/KG                          | 12/22/2011         | GAP           |  |
| Tetrachloroethylene | EPA-8260                                                   | Ų                                          | 10                  | 1                         | UG/KG                          | 12/29/2011         | GAP           |  |

|                       |          |      | ANALYSIS ANALYSIS |              |    |
|-----------------------|----------|------|-------------------|--------------|----|
| SURROGATE             | METHOD   | %REC |                   | DATE         | 3Y |
| TFT                   | NWTPH-GX | 60.3 |                   | 12/22/2011 G | AP |
| TFT                   | EPA-8021 | 79.7 |                   | 12/22/2011 G | AP |
| 1,2-Dichloroethane-d4 | EPA-8260 | 91.8 |                   | 12/29/2011 G | AP |

U - Analyte analyzed for but not detected at level above reporting limit.

45.52 M

Page 6 ADDR658 8620 Holly Drive, Suite 100, Everett, WA 98208 - 2000/0425-356-2600 - 3.8.425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PROOF SCILLINGINS 1.0.24



#### CERTIFICATE OF ANALYSIS alari alaringa

| CLIENT:         | Whatcom Environmental Svcs., Inc. | DATE:               | 12/30/2011 |
|-----------------|-----------------------------------|---------------------|------------|
|                 | 228 E. Champion St., Suite 101    | ALS SDG#:           | 1112141    |
|                 | Bellingham, WA 98225              | WDOE ACCREDITATION: | C601       |
| CLIENT CONTACT: | Harold Cashman                    |                     |            |
| CLIENT PROJECT: | Cascade Laundry                   |                     |            |

LABORATORY BLANK RESULTS

### MBG-121611S2 - Batch 2378 - Soil by NWTPH-GX

| 1                  |          |         | REPORTING | DILUTION |       | ANALYSIS / | ANALYSIS |
|--------------------|----------|---------|-----------|----------|-------|------------|----------|
| ANALYTE            | METHOD   | RESULTS | LIMITS    | FACTOR   | UNITS | DATE       | BY       |
| TPH-Volatile Range | NWTPH-GX | U       | 3.0       | 1        | MG/KG | 12/17/2011 | DLC      |
|                    |          |         |           |          |       |            |          |

#### MB-121611S2 - Batch 2378 - Soil by EPA-8021

|              |          |         | REPORTING | DILUTION |       | ANALYSIS A | ANALYSIS |
|--------------|----------|---------|-----------|----------|-------|------------|----------|
| ANALYTE      | METHOD   | RESULTS | LIMITS    | FACTOR   | UNITS | DATE       | BY       |
| Benzene      | EPA-8021 | U       | 0.030     | 1        | MG/KG | 12/17/2011 | DLC      |
| Toluene      | EPA-8021 | U       | 0.050     | 1        | MG/KG | 12/17/2011 | DLC      |
| Ethylbenzene | EPA-8021 | U       | 0.050     | 1        | MG/KG | 12/17/2011 | DLC      |
| Xylenes      | EPA-8021 | U       | 0.20      | 1        | MG/KG | 12/17/2011 | DLC      |

#### MB-122911S - Batch 2404 - Soil by EPA-8260

|                     |          |         | REPORTING | DILUTION |       | ANALYSIS / | ANALYSIS |
|---------------------|----------|---------|-----------|----------|-------|------------|----------|
| ANALYTE             | METHOD   | RESULTS | LIMITS    | FACTOR   | UNITS | DATE       | BY       |
| 1,1-Dichloroethene  | EPA-8260 | U       | 10        | 1        | UG/KG | 12/29/2011 | GAP      |
| Toluene             | EPA-8260 | U       | 10        | · 1      | UG/KG | 12/29/2011 | GAP      |
| Tetrachloroethylene | EPA-8260 | U       | 10        | 1        | UG/KG | 12/29/2011 | GAP      |

Page 7 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 UP#OAC 425-356-2600 CAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

MIGHT SELLITIONS



| CLIENT:         | Whatcom Environmental Svcs., Inc. | DATE:               | 12/30/2011 |
|-----------------|-----------------------------------|---------------------|------------|
|                 | 228 E. Champion St., Suite 101    | ALS SDG#:           | 1112141    |
|                 | Bellingham, WA 98225              | WDOE ACCREDITATION: | C601       |
| CLIENT CONTACT: | Harold Cashman                    |                     |            |
| CLIENT PROJECT: | Cascade Laundry                   |                     |            |

### LABORATORY CONTROL SAMPLE RESULTS

### ALS Test Batch ID: 2378 - Soil by NWTPH-GX

|                          |          |      |     |      | ANALYSIS   | ANALYSIS |  |
|--------------------------|----------|------|-----|------|------------|----------|--|
| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | DATE       | BY       |  |
| TPH-Volatile Range - BS  | NWTPH-GX | 73,3 |     |      | 12/17/2011 | DLC      |  |
| TPH-Volatile Range - BSD | NWTPH-GX | 78.0 | 6   |      | 12/17/2011 | DLC      |  |

#### ALS Test Batch ID: 2378 - Soil by EPA-8021

|                    |          |      |     | · · · · | ANALYSIS   | ANALYSIS |
|--------------------|----------|------|-----|---------|------------|----------|
| SPIKED COMPOUND    | METHOD   | %REC | RPD | QUAL    | DATE       | BY       |
| Benzene - BS       | EPA-8021 | 107  |     |         | 12/19/2011 | DLC      |
| Benzene - BSD      | EPA-8021 | 111  | 4   |         | 12/19/2011 | DLC      |
| Toluene - BS       | EPA-8021 | 107  |     |         | 12/19/2011 | DLC      |
| Toluene - BSD      | EPA-8021 | 110  | 3   |         | 12/19/2011 | DLC      |
| Ethylbenzene - BS  | EPA-8021 | 103  |     |         | 12/19/2011 | DLC      |
| Ethylbenzene - BSD | EPA-8021 | 105  | 2   |         | 12/19/2011 | DLC      |
| Xylenes - BS       | EPA-8021 | 108  |     |         | 12/19/2011 | DLC      |
| Xylenes - BSD      | EPA-8021 | 111  | 3   |         | 12/19/2011 | DLC      |

#### ALS Test Batch ID: 2404 - Soil by EPA-8260

| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | ANALYSIS<br>DATE | ANALYSIS<br>BY |  |
|--------------------------|----------|------|-----|------|------------------|----------------|--|
| 1,1-Dichloroethene - BS  | EPA-8260 | 101  |     |      | 12/29/2011       | GAP            |  |
| 1,1-Dichloroethene - BSD | EPA-8260 | 111  | 9   |      | 12/29/2011       | GAP            |  |
| Toluene - BS             | EPA-8260 | 99.4 |     |      | 12/29/2011       | GAP            |  |
| Toluene - BSD            | EPA-8260 | 105  | 6   |      | 12/29/2011       | GAP            |  |

APPROVED BY

Laboratory Director

Page 8

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PROBE 425-356-2600 EPAC425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

BARGAR-R'A' MARKAR, R.A. TOPECKER RAMA CONTRACTOR CONTRACTOR

| Charg    |
|----------|
| Sush (   |
| ncurl    |
| лау      |
| standard |
| than     |
| less     |
| request  |
| umaround |
| 12       |

Specify:

SAME

-

2

3

Analysis

drocarbon

SAME

\*\*

С



ເດ ມ 9 0,0 11/27/11 @ 1100 126/21 274 513 マシの Malun 1. Relinquished By: 2. Relinquished By: Received By: Received By:

LABORATORY COPY

# APPENDIX C

Groundwater Sample Analytical Data Report



December 29, 2011

Mr. Thom Davis Whatcom Environmental Svcs., Inc. 228 E. Champion St., Suite 101 Bellingham, WA 98225

Dear Mr. Davis,

On December 22nd, 4 samples were received by our laboratory and assigned our laboratory project number 1112140. The project was identified as your Cascade Laundry. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Rick Bagan Laboratory Director

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 CONSE 425-356-2600 CONSE 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

Page 1

www.alsglobal.com

FREEDO-FRE SERVICE FREEDOR FREEDOR FREEDOR FREEDOR



| CLIENT:            | Whatcom Environn<br>228 E. Champion S<br>Bellingham, WA 98 | nental Svcs., Inc.<br>St., Suite 101 |                     | DAT<br>ALS JOB     | E: 12/2<br>#: 111 | 29/2011<br>2140 |               |   |
|--------------------|------------------------------------------------------------|--------------------------------------|---------------------|--------------------|-------------------|-----------------|---------------|---|
| CLIENT CONTACT:    | Thom Davis                                                 | ~~~~                                 |                     | DATE RECEIVE       | #01<br>D: 12/3    | 22/2011         |               |   |
| CLIENT PROJECT:    | Cascade Laundry                                            |                                      | CC                  | LLECTION DAT       | E: 12/2           | 20/2011 13:0    | 00            |   |
| CLIENT SAMPLE ID   | B-7 Water                                                  |                                      | WDOE .              | ACCREDITATIO       | N: C60            | )1              |               |   |
|                    |                                                            | DA                                   | TA RESULTS          |                    |                   |                 |               |   |
| ANALYTE            | METHOD                                                     | RESULTS                              | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS             | ANALYSIS A      | NALYSIS<br>BY | ! |
| TPH-Volatile Range | NWTPH-GX                                                   | U                                    | 50                  | 1                  | UG/L              | 12/22/2011      | GAP           | : |
| Benzene            | EPA-8021                                                   | U                                    | 1.0                 | 1                  | UG/L              | 12/22/2011      | GAP           |   |
| Toluene            | EPA-8021                                                   | 2.3                                  | 1.0                 | 1                  | UG/L              | 12/22/2011      | GAP           |   |
| Ethylbenzene       | EPA-8021                                                   | U                                    | 1.0                 | 1                  | UG/L              | 12/22/2011      | GAP           |   |
| Xvlenes            | EPA-8021                                                   | U                                    | 3.0                 | 1                  | UG/L              | 12/22/2011      | GAP           | - |

| Tetrachloroethylene   | EPA-8260 | 13   | 2.0 | 11 | UG/L | 12/28/2011 | GAP     |
|-----------------------|----------|------|-----|----|------|------------|---------|
|                       |          |      |     |    |      | ANALYSIS A | NALYSIS |
| SURROGATE             | METHOD   | %REC |     |    |      | DATE       | ВҮ      |
| TFT                   | NWTPH-GX | 136  |     |    |      | 12/22/2011 | GAP     |
| TFT                   | EPA-8021 | 138  |     |    |      | 12/22/2011 | GAP     |
| 1,2-Dichloroethane-d4 | EPA-8260 | 112  |     |    |      | 12/28/2011 | GAP     |

1

U - Analyte analyzed for but not detected at level above reporting limit.

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 (100AE 425-356-2600) (243 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

FREE FOR THE SECOND AND MADE SECTION OF THE PROPERTY OF THE PR



| CLIENT:                                         | Whatcom Environm<br>228 E. Champion S<br>Bellingham, WA 98 | iental Svcs., Inc.<br>t., Suite 101<br>225 |                           | DATE<br>ALS JOB#<br>ALS SAMPLE# | : 12/2<br>: 111<br>: -02 | 29/2011<br>2140 |                |  |  |  |
|-------------------------------------------------|------------------------------------------------------------|--------------------------------------------|---------------------------|---------------------------------|--------------------------|-----------------|----------------|--|--|--|
| CLIENT CONTACT:                                 | Thom Davis                                                 |                                            | DATE RECEIVED: 12/22/2011 |                                 |                          |                 |                |  |  |  |
| CLIENT PROJECT:                                 | Cascade Laundry                                            |                                            | CC                        | DLLECTION DATE                  | : 12/2                   | 20/2011 14:3    | 35             |  |  |  |
| CLIENT SAMPLE ID                                | B-9 Water                                                  |                                            | WDOE                      | ACCREDITATION                   | : C60                    | 01              |                |  |  |  |
| 12::: <b>:::::::::</b> :::::::::::::::::::::::: |                                                            | DATA                                       | RESULTS                   |                                 |                          |                 |                |  |  |  |
|                                                 |                                                            |                                            | REPORTING                 | DILUTION                        |                          | ANALYSIS A      | NALYSIS        |  |  |  |
| ANALYTE                                         | METHOD                                                     | RESULTS                                    | LIMITS                    | FACTOR                          | UNITS                    | DATE            | BY             |  |  |  |
| TPH-Volatile Range                              | NWTPH-GX                                                   | Ų                                          | 50                        | 1                               | UG/L                     | 12/22/2011      | GAP            |  |  |  |
| Benzene                                         | EPA-8021                                                   | U                                          | 1.0                       | 1                               | UG/L                     | 12/22/2011      | GAP            |  |  |  |
| Toluene                                         | EPA-8021                                                   | 1.0                                        | 1.0                       | 1                               | UG/L                     | 12/22/2011      | GAP            |  |  |  |
| Ethylbenzene                                    | EPA-8021                                                   | U                                          | 1.0                       | 1                               | UG/L                     | 12/22/2011      | GAP            |  |  |  |
| Xylenes                                         | EPA-8021                                                   | U                                          | 3.0                       | 1                               | UG/L                     | 12/22/2011      | GAP            |  |  |  |
| Tetrachloroethylene                             | EPA-8260                                                   | U                                          | 2.0                       | 1                               | UG/L                     | 12/28/2011      | GAP            |  |  |  |
| SURROGATE                                       | METHOD                                                     | %REC                                       |                           |                                 |                          | ANALYSIS A      | ANALYSIS<br>BY |  |  |  |
| TFT                                             | NWTPH-GX                                                   | 110                                        |                           |                                 |                          | 12/22/2011      | GAP            |  |  |  |
| TFT                                             | EPA-8021                                                   | 113                                        |                           |                                 |                          | 12/22/2011      | GAP            |  |  |  |
| 1,2-Dichloroethane-d4                           | EPA-8260                                                   | 112                                        |                           |                                 |                          | 12/28/2011      | GAP            |  |  |  |

U - Analyte analyzed for but not detected at level above reporting limit.

Page 3 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 DECKE 425-356-2600 DECK 425-356-2626 ALS Laboratory Group — A Campbell Brothers Limited Company

www.alsglobal.com

PREFET SOLUTIONS



| CLIENT:                                 | Whatcom Environm<br>228 E. Champion S<br>Bellingham, WA 98 | iental Svcs., Inc.<br>t., Suite 101<br>225 |                     | DATE<br>ALS JOB#<br>ALS SAMPLE# | : 12//<br>: 111<br>: -03 | 29/2011<br>2140    |               |   |
|-----------------------------------------|------------------------------------------------------------|--------------------------------------------|---------------------|---------------------------------|--------------------------|--------------------|---------------|---|
| CLIENT CONTACT:                         | Thom Davis                                                 |                                            |                     | DATE RECEIVED                   | : 12/2                   | 22/2011            |               |   |
| CLIENT PROJECT:                         | Cascade Laundry                                            |                                            | CC                  | DLLECTION DATE                  | : 12/2                   | 20/2011 15:0       | 00            |   |
| CLIENT SAMPLE ID                        | B-6 Water                                                  |                                            | WDOE .              | ACCREDITATION                   | : C60                    | 01                 |               |   |
| fa: : : : : : : : : : : : : : : : : : : |                                                            | DATA                                       | RESULTS             |                                 |                          |                    |               |   |
| ALLAL                                   | RICTUOD                                                    |                                            | REPORTING<br>LIMITS | DILUTION                        |                          | ANALYSIS A         | NALYSIS       | 1 |
| TRH-Volatile Range                      |                                                            | RESUL15<br>320                             | 50                  | 1                               |                          | 12/22/2011         |               |   |
| Renzene                                 | EPA-8021                                                   | 220                                        | 10                  | 1                               |                          | 12/22/2011         | GAP           |   |
| Toluene                                 | EPA-8021                                                   | 3.9                                        | 1.0                 | 1                               |                          | 12/22/2011         | GAP           |   |
| Ethylbenzene                            | EPA-8021                                                   | 18                                         | 1.0                 | 1                               | UG/L                     | 12/22/2011         | GAP           | ; |
| Xylenes                                 | EPA-8021                                                   | 8.2                                        | 3.0                 | 1                               | UG/L                     | 12/22/2011         | GAP           |   |
| Tetrachloroethylene                     | EPA-8260                                                   | 5.9                                        | 2.0                 | 1                               | ŲG/L                     | 12/28/2011         | GAP           |   |
| SURROGATE                               | METHOD                                                     | %REC                                       |                     |                                 |                          | ANALYSIS A<br>DATE | NALYSIS<br>BY |   |
| TFT                                     | NWTPH-GX                                                   | 101                                        |                     |                                 |                          | 12/22/2011         | GAP           |   |
| TF <b>T</b>                             | EPA-8021                                                   | 121                                        |                     |                                 |                          | 12/22/2011         | GAP           |   |
| 1,2-Dichloroethane-d4                   | EPA-8260                                                   | 108                                        |                     |                                 |                          | 12/28/2011         | GAP           |   |

Chromatogram indicates that it is likely that sample contains weathered gasoline.

Page 4 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 ABDDRESS 425-356-2600 ACS 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

PROPERTY SCHEMIC PARTICIPATION CONTRACTOR STATES



| CLIENT:               | Whatcom Environm<br>228 E. Champion S<br>Bellingham, WA 983 | iental Svcs., Inc.<br>it., Suite 101<br>225 |           | DATE<br>#ALS JOB<br>#ALS SAMPLE | : 12//<br>: 111<br>: -04 | 29/2011<br>2140 |                |  |
|-----------------------|-------------------------------------------------------------|---------------------------------------------|-----------|---------------------------------|--------------------------|-----------------|----------------|--|
| CLIENT CONTACT:       | Thom Davis                                                  |                                             |           | DATE RECEIVED                   | : 12/2                   | 22/2011         |                |  |
| CLIENT PROJECT:       | Cascade Laundry                                             |                                             | CC        | DLLECTION DATE                  | : 12/                    | 20/2011 16:0    | 00             |  |
| CLIENT SAMPLE ID      | Drum Water                                                  |                                             | WDOE      | ACCREDITATION                   | : C60                    | D1              |                |  |
|                       |                                                             | ПАТА                                        | RESULTS   |                                 |                          |                 |                |  |
|                       |                                                             |                                             | REPORTING |                                 |                          | ANALYSIS A      |                |  |
| ANALYTE               | METHOD                                                      | RESULTS                                     |           | TACTOR                          | UNITS                    | DATE            |                |  |
| TPH-Volatile Range    | NWTPH-GX                                                    | 160                                         | 50        | 1                               | UG/L                     | 12/22/2011      | GAP            |  |
| Benzene               | EPA-8021                                                    | U                                           | 1.0       | 1                               | UG/L                     | 12/22/2011      | GAP            |  |
| Toluene               | EPA-8021                                                    | 1.0                                         | 1.0       | 1                               | UG/L                     | 12/22/2011      | GAP            |  |
| Ethylbenzene          | EPA-8021                                                    | 1.5                                         | 1.0       | 1                               | UG/L                     | 12/22/2011      | GAP            |  |
| Xylenes               | EPA-8021                                                    | U                                           | 3.0       | 1                               | UG/L                     | 12/22/2011      | GAP            |  |
| Tetrachloroethylene   | EPA-8260                                                    | U                                           | 2.0       | 1                               | UG/L                     | 12/29/2011      | GAP            |  |
| SURROGATE             | METHOD                                                      | %REC                                        |           |                                 |                          | ANALYSIS A      | ANALYSIS<br>BY |  |
| TFT                   | NWTPH-GX                                                    | 96.9                                        |           |                                 |                          | 12/22/2011      | GAP            |  |
| TFT                   | EPA-8021                                                    | 110                                         |           |                                 |                          | 12/22/2011      | GAP            |  |
| 1,2-Dichloroethane-d4 | EPA-8260                                                    | 107                                         |           |                                 |                          | 12/29/2011      | GAP            |  |

U - Analyte analyzed for but not detected at level above reporting limit. Chromatogram indicates that it is likely that sample contains lightly weathered gasoline.

200845558620 Holly Drive, Suite 100, Everett, WA 98208 - 20101425-356-2600 - RAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

Page 5

www.alsglobal.com

FREEDOMENT, SECONDALFREEDOM



| CLIENT:         | Whatcom Environmental Svcs., Inc.<br>228 E. Champion St., Suite 101 | DATE:<br>ALS SDG#:  | 12/29/2011<br>1112140 |
|-----------------|---------------------------------------------------------------------|---------------------|-----------------------|
|                 | Bellingham, WA 98225                                                | WDOE ACCREDITATION: | C601                  |
| CLIENT CONTACT: | Thom Davis                                                          |                     |                       |
| CLIENT PROJECT: | Cascade Laundry                                                     |                     |                       |

#### LABORATORY BLANK RESULTS - sim --foreir svikk--late - dott - taskeri -dam-- dam vetakeri

### MBG-122211W - Batch 2394 - Water by NWTPH-GX

| ANALYTE              | METHOD              | RESULTS | REPORTING<br>LIMITS | DILUTION<br>FACTOR | UNITS | ANALYSIS<br>DATE | ANALYSIS<br>BY |
|----------------------|---------------------|---------|---------------------|--------------------|-------|------------------|----------------|
| TPH-Volatile Range   | NWTPH-GX            | U       | 50                  | 1                  | UG/L  | 12/22/2011       | GAP            |
| MB-122211W - Batch 2 | 394 - Water by EPA- | -8021   |                     |                    |       |                  |                |
|                      |                     |         | REPORTING           | DILUTION           |       | ANALYSIS         | ANALYSIS       |
| ANALYTE              | METHOD              | RESULTS | LIMITS              | FACTOR             | UNITS | DATE             | BY             |
| Benzene              | EPA-8021            | U       | 1.0                 | 1                  | UG/L  | 12/22/2011       | GAP            |
| Toluene              | EPA-8021            | U       | 1.0                 | 1                  | UG/L  | 12/22/2011       | GAP            |
| Ethylbenzene         | EPA-8021            | U       | 1.0                 | 1                  | UG/L  | 12/22/2011       | GAP            |
| Xylenes              | EPA-8021            | U       | 3.0                 | 1                  | UG/I  | 12/22/2011       | GAP            |

### MB-122211W2 - Batch 2397 - Water by EPA-8260

|                     |          |         | REPORTING | DILUTION |       | ANALYSIS A | ANALYSIS |
|---------------------|----------|---------|-----------|----------|-------|------------|----------|
| ANALYTE             | METHOD   | RESULTS | LIMITS    | FACTOR   | UNITS | DATE       | BY       |
| 1,1-Dichloroethene  | EPA-8260 | U       | 2.0       | 1        | UG/L  | 12/22/2011 | GAP      |
| Toluene             | EPA-8260 | U       | 2.0       | 1        | UG/L  | 12/22/2011 | GAP      |
| Tetrachloroethylene | EPA-8260 | U       | 2.0       | 1        | UG/L  | 12/22/2011 | GAP      |

Page 6 RODRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 PHONE 425-356-2600 CAK 425-356-2626 ALS Laboratory Group — A Campbell Brothers Limited Company

www.alsglobal.com

FIGHT SERUTIONS



| CLIENT:                            | Whatcom Environmental Svcs., Inc. | DATE:              | 12/29/2011 |
|------------------------------------|-----------------------------------|--------------------|------------|
|                                    | 228 E. Champion St., Suite 101    | ALS SDG#:          | 1112140    |
|                                    | Bellingham, WA 98225              | WDOE ACCREDITATION | C601       |
| CLIENT CONTACT:<br>CLIENT PROJECT: | Thom Davis<br>Cascade Laundry     |                    |            |

#### LABORATORY CONTROL SAMPLE RESULTS

## ALS Test Batch ID: 2394 - Water by NWTPH-GX

|                          |          |      |     |      | ANALYSIS   | ANALYSIS |
|--------------------------|----------|------|-----|------|------------|----------|
| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | DATE       | BY       |
| TPH-Volatile Range - BS  | NWTPH-GX | 100  |     |      | 12/22/2011 | GAP      |
| TPH-Volatile Range - BSD | NWTPH-GX | 104  | 4   |      | 12/22/2011 | GAP      |

#### ALS Test Batch ID: 2394 - Water by EPA-8021

| SPIKED COMPOUND    | METHOD   | %REC | RPD | QUAL | ANALYSIS<br>DATE | ANALYSIS<br>BY |  |
|--------------------|----------|------|-----|------|------------------|----------------|--|
| Benzene - BS       | EPA-8021 | 108  |     |      | 12/22/2011       | GAP            |  |
| Benzene - BSD      | EPA-8021 | 111  | 2   |      | 12/22/2011       | GAP            |  |
| Toluene - BS       | EPA-8021 | 103  |     |      | 12/22/2011       | GAP            |  |
| Toluene - BSD      | EPA-8021 | 106  | 3   |      | 12/22/2011       | GAP            |  |
| Ethylbenzene - BS  | EPA-8021 | 100  |     |      | 12/22/2011       | GAP            |  |
| Ethylbenzene - BSD | EPA-8021 | 103  | 3   |      | 12/22/2011       | GAP            |  |
| Xylenes - BS       | EPA-8021 | 101  |     |      | 12/22/2011       | GAP            |  |
| Xylenes - BSD      | EPA-8021 | 103  | 2   |      | 12/22/2011       | GAP            |  |

### ALS Test Batch ID: 2397 - Water by EPA-8260

a production of a second s

| SPIKED COMPOUND          | METHOD   | %REC | RPD | QUAL | ANALYSIS<br>DATE | ANALYSIS<br>BY |  |
|--------------------------|----------|------|-----|------|------------------|----------------|--|
| 1,1-Dichloroethene - BS  | EPA-8260 | 119  |     |      | 12/22/2011       | GAP            |  |
| 1,1-Dichloroethene - BSD | EPA-8260 | 106  | 12  |      | 12/23/2011       | GAP            |  |
| Toluene - BS             | EPA-8260 | 108  |     |      | 12/22/2011       | GAP            |  |
| Toluene - BSD            | EPA-8260 | 96.3 | 12  |      | 12/23/2011       | GAP            |  |

APPROVED BY

Dagu

Laboratory Director

Page 7

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 98208 - FROM 425-356-2600 - FAX 425-356-2626 ALS Laboratory Group A Campbell Brothers Limited Company

www.alsglobal.com

HIGHT SOLLITIONS

| i | Charges    |
|---|------------|
|   | Hush       |
|   | r incur    |
|   | (ma)       |
|   | standaro   |
|   | than       |
|   | less       |
|   | request    |
|   | Turnaround |







Ĩ

SIGNATURES (Name, Com

SPECIAL INSTRUCTIONS

| -        |                  |                   |                |             |             |          | ć             | NO              | LION     | 00 0       | 100        | ם וא פ              | EIVE      | BEC         |      |                            |       |               |   |   |   |   |          |          |
|----------|------------------|-------------------|----------------|-------------|-------------|----------|---------------|-----------------|----------|------------|------------|---------------------|-----------|-------------|------|----------------------------|-------|---------------|---|---|---|---|----------|----------|
| e Only   |                  |                   |                |             |             |          |               |                 | รษ       | ∃NI∖       | 100        | OF CC               | 138N      | и∩N         | S    | S                          | 3     | ما            |   |   |   |   |          |          |
| ory Us   | $\wedge$         |                   | )f             |             |             |          |               |                 |          |            |            |                     |           |             |      |                            |       |               |   |   |   |   |          | A        |
| aborati  | 5                | -                 | 0              |             |             |          |               |                 |          |            |            |                     |           |             |      |                            |       |               |   |   |   |   | 7        | <u> </u> |
| 5        |                  | 5                 |                | 3           |             |          |               |                 |          |            |            |                     |           |             |      | <br>                       |       |               |   |   |   |   | #        | <u>N</u> |
| *        | $\sim$           |                   | -              | peci        |             |          |               |                 |          |            |            |                     | _         |             |      |                            |       |               |   |   |   |   | 3        | Ø        |
| LS Jot   |                  | 2                 | je<br>Ge       | ۲<br>S<br>۲ |             |          |               |                 |          |            |            |                     |           |             |      |                            |       |               |   |   |   |   | <u> </u> |          |
| R        |                  |                   | Pa             | Ξ           |             |          | ~~~           |                 |          |            | <u>k -</u> | ~                   | <u></u>   |             |      |                            |       |               |   |   |   |   |          | ¥        |
| l        |                  | ]                 | 1-1            | Б           |             |          | 20            | 6 '             | ₹P∧      |            | 10         | <b>.</b>            | 83        | Ю           | ×    | ×                          | x     | X             |   |   |   |   | ß        | 71       |
|          |                  |                   | 2-2            |             |             | <u> </u> | d19HI         | 1Sə             | 4 [] IQ  | V-ima      | S 🗆        | AOV [] 8            | IsteM-    | тогь        |      |                            |       |               | - |   |   |   | N)       |          |
|          |                  |                   | e              |             |             |          |               |                 |          |            | (Â)        | iceq2) r            | ento e    | steM        |      |                            | L     |               |   |   |   |   |          |          |
|          |                  |                   | Dat            |             |             |          | _ <b>1</b> ∀! | [ [ ] <b> 0</b> | d iiq [  | 8-1        | 4A)7       | 1 🗆 9-A(            | )TM-2     | 679M        |      |                            |       |               |   |   |   |   |          |          |
|          |                  |                   |                |             |             |          | 85            | 08/18           | 08 A9    | Dy E       |            | sebicides           | d 🗆       | PCB         |      | <br>                       | ļ     |               |   |   |   |   |          |          |
|          | يب               |                   |                |             | Ű           | ] Wis    | 0228-         | A93 yo          | (HA9)    | rbons      | droca      | VH oitsmo           | nA bilov  | Polyc       |      |                            |       |               |   | • |   |   |          |          |
|          | es               |                   |                |             |             |          | 8570          | A93 /           | (q spu   | nodu       | 100 0      | insgrO e            | lijblov   | imə2        |      |                            |       |               |   |   |   |   |          |          |
| _        | gu               | -                 |                |             |             |          |               |                 |          | (1)        | os) 0á     | )28 A93 (           | EDC P     | ( 803       |      |                            |       |               |   |   |   |   |          |          |
| 20       | Ъе               |                   |                |             |             |          |               |                 | GL)      | iew) N     | VIS OS     | )S8 A93 /           | EDC P     | EDB \       |      |                            |       |               |   |   |   |   |          |          |
| <b>Č</b> | <u>. i</u>       |                   |                | a           |             |          | (             | 928             | AG3 VO   | l spu      | nodu       | anic Cor            | pr0 əli   | tsloV       |      |                            |       |               |   |   |   |   |          |          |
|          | <u>N</u>         |                   |                | STE         |             |          |               |                 | 8260     | EPA        | λq sa      | oliteloV b          | genate    | ioleH       |      |                            |       |               |   |   |   |   |          |          |
| C<br>T   | nal<br>Jal       |                   |                | JCE<br>DCE  |             |          |               |                 | <u> </u> | 8-A9       | 3 🗀        | 1208-A <sup>c</sup> | E pÀ E    | 8TM         |      |                            |       |               |   |   |   |   |          |          |
| Ć        | ) <b>A</b>       | •                 |                | RE          |             |          |               |                 |          | · <u> </u> |            | rs08-A              | EF U      | K3T8        | ×    | ×                          | X     | ×             |   |   |   |   |          |          |
| ain'     | 2                |                   |                | SIS         |             |          |               |                 |          |            |            |                     | к9-на<br> | TWN         | ×    | ×                          | ×     | X             |   |   |   |   |          |          |
| Ŗ        | atc              |                   |                | VAL         |             |          |               |                 |          |            |            |                     | KO-Ha     | TWN         |      |                            |       |               |   |   |   |   |          |          |
| Ú        | , p              | 5                 |                | Ā           |             | 1        |               | 1               | 1        |            | _          |                     | ы-на      | TWN<br>LWN  |      |                            |       |               |   |   |   |   |          |          |
|          | de               |                   |                |             |             |          |               |                 |          |            |            |                     |           | B#          | _    | $\mathbb{I}_{\mathcal{N}}$ | ŝ     |               |   |   |   | 1 |          |          |
|          |                  |                   |                |             |             |          |               |                 |          | ۲          |            |                     |           | צן          |      |                            | • • • | 7             |   |   |   |   |          |          |
|          |                  |                   |                |             |             |          |               |                 |          | 1          |            |                     |           |             | 15   |                            |       |               |   |   |   |   |          |          |
|          |                  |                   |                |             |             |          | 10)           |                 | n        | •          |            |                     |           | IYP         | 3    |                            |       | $\rightarrow$ |   |   |   |   |          |          |
|          |                  |                   |                |             |             |          | Ŧ             |                 | 54       | 0          |            |                     |           | L           |      |                            |       |               |   |   |   |   |          |          |
|          |                  |                   |                |             |             |          |               | 3               | 2.2      | 2          | /          |                     |           | Ψ           | 8    | 35                         | 6     | g             |   |   |   |   |          |          |
|          |                  |                   | E              |             |             |          | 5             | 2               | \$       | E.         | Ve.        | <u></u>             |           | F           | 1 cc | 크                          | 1     | 16            |   |   |   |   |          |          |
|          | 0                | attle             | al.co          |             |             |          | 4             |                 | 8        | MAIL       |            | 8                   |           | ш           |      |                            |       | 5             |   |   |   |   |          |          |
|          | te 10            | ç<br>Se           | 6 Fau          | 2           | 1           |          | 5             | 1               | 12       | 4          |            | B                   |           | DAT         | 10   |                            |       |               |   |   |   |   |          |          |
| _        | e, Sui<br>08     | 902               | 5-262<br>w.als | ]]          |             |          | 3             | 1               |          | [          | Ì          | , K                 |           |             |      |                            |       |               |   |   |   |   |          |          |
| nenta    | Drive<br>V 982   | 888<br>666        | × 320          | 17          |             |          | Ŭ             | ر ا             |          |            |            | V                   | X         |             | Ι.   | )                          |       |               |   |   |   |   |          |          |
| UPUN     | Ho‼y<br>H, ∦y    | 400<br>400<br>400 | the second     | 3           |             |          | Ľ             | -               |          |            |            |                     |           |             | 12   | Ĥ                          | 5t    | 3             |   |   |   | ĺ |          |          |
| ILS En   | 3620  <br>Everei | hon               |                | 19646       | ES          | }        | ۱ <u>۰</u>    | }               |          |            |            |                     |           | -<br>-<br>- | 3    | 3                          | 'ŝ    | らう            |   |   |   |   |          |          |
| -        | ы ш I            |                   |                | 0           | 3           | 3        | 28            | 3               |          |            |            |                     |           | AMP         |      |                            | •     | 5             |   |   |   |   |          |          |
|          |                  |                   | Ń              | ġ           | ₽×:         | ۲<br>ش   | <b>1</b> 2    | M               |          | BER:       | <u>و</u>   | ż                   |           | Ś           |      | 5                          | 16    | ž             |   |   |   |   |          |          |
|          |                  |                   | لد<br>م        | VECT        | <b>NPAN</b> | VECT     | BESS          |                 | :ENC     | MUN        | DICE       | ENTIC               | HESS      |             | 80   | 2                          | 23    | 0             |   |   |   |   |          |          |
|          |                  |                   | 3              | PRO         | щŞ          | MAN      | <b>PD</b>     | L               | Ho       | <u>Ö</u>   | ž8́        | ATTA :              | AUL       |             |      |                            | ന     | 4             | ن | ġ | ~ | ά | 6        | 0        |
| 1        |                  |                   |                |             |             |          |               |                 |          |            |            |                     |           | Ĺ           |      |                            |       | עסר           |   |   |   |   |          |          |