SCS ENGINEERS

2016 Annual Monitoring Report Olympic View Sanitary Landfill

Presented To:

Olympic View Sanitary Landfill, Inc.

10015 SW Barney White Road Bremerton, Washington 98366 (818) 252-3202

Presented From:

SCS ENGINEERS

2405 140th Avenue NE, Suite 107 Bellevue, Washington 98005 (425) 746-4600

> March 21, 2017 File No. 04204027.20

Offices Nationwide www.scsengineers.com

Daniel A. Venchiarutti, LG, LHG

Project Director SCS ENGINEERS

Gregory D. Helland, LG, LHG

Project Director SCS ENGINEERS

Table of Contents

1.0	Intro	duction		1
2.0	Site	Description		3
	2.1	Location		3
	2.2	Backgroun	d	3
	2.3	Topograpl	hy and Climate	3
	2.4		Regional Hydrogeology	
2.0				
3.0			g Activities	
	3.1		rter	
		3.1.1 3.1.2	Groundwater Monitoring Network	
		3.1.3	Parameters and Analytical Methods	
		3.1.4	Field Monitoring and Sampling Procedures	
	3.2	Leachate		
		3.2.1	Leachate Monitoring Locations	
		3.2.2	Monitoring Schedule	
		3.2.3	Parameters and Analytical Methods	
		3.2.4	Leachate Monitoring Field Procedures	
	3.3		as	
		3.3.1	Landfill Gas Monitoring Network	
		3.3.2	Monitoring Schedule	
		3.3.3 3.3.4	Monitored ParametersLandfill Gas Monitoring Field Procedures and Instrumentation	
		3.3.4 3.3.5	Field Conditions	
4.0	201		g Results	
	4.1	•	iter	
	7.1	4.1.1	Groundwater Elevation and Flow	
		4.1.2	Groundwater Quality	
		4.1.3	Spatial Distribution and Temporal Trends	
		4.1.4	Groundwater Geochemistry	15
		4.1.5	Statistical Prediction Limit Evaluation	
		4.1.6	Point of Compliance and Cleanup Level Exceedances	
	4.2		Monitoring Results	
		4.2.1	Leachate Quality	
		4.2.2	Leachate Generation Rates	
	4.3		as Monitoring Results	
		4.3.1 4.3.2	Perimeter Gas Probe	
		4.3.2	Structure Monitoring	
5 O	C			
5.0		=	onclusions	
	5.1	Groundwo 5.1.1	iterGroundwater Quality	
		5.1.2	Evidence for Natural Attenuation	
		J.1.2	Litable 101 Halbidi Alichodioli	20

i

	5.2	Leachate
	5.3	Landfill Gas25
6.0	Refe	rences
		List of Tables
Table		Groundwater Well Construction Details
Table		Summary of Analytical Parameters
Table	-	Groundwater Elevations
Table		Detections and Field Measurements – Compliance Monitoring Wells
Table		Detections and Field Measurements – Performance Monitoring Wells
Table		Detections and Field Measurements – Downgradient Monitoring Wells
Table		Detections and Field Measurements – Upgradient Monitoring Wells
Table		Detections and Field Measurements – Leachate and Leak Detection Locations
Table	_	2016 Groundwater and Leachate VOC Detections
Table		Summary of 2016 Significant Parameters Trends by Well Type
Table		Summary of 2016 Trends in Groundwater Monitoring Wells (2005 – 2016)
Table		Fourth Quarter 2016 Prediction Limit Exceedances
Table	-	2016 Annual Groundwater Cleanup Level Statistical Evaluation Summary
Table		Groundwater Quality Criteria and Site-Specific Cleanup Level Exceedances
Table		2016 Leak Detection System Volumes
Table Table		Fourth Quarter 2016 Landfill Gas Measurement Results
rabie	12	LFG Monitoring Results - 2016
		List of Figures
Figure	1	Site Location Map
Figure	2	Groundwater Monitoring Network and Leachate Monitoring Locations
Figure	3	Subsurface LFG Monitoring Probes and Building Monitoring Locations
Figure	4A	Groundwater Elevation Map – First Quarter February 2016
Figure	4B	Groundwater Elevation Map – Second Quarter May 2016
Figure	4C	Groundwater Elevation Map – Third Quarter August 2016
Figure	4D	Groundwater Elevation Map – Fourth Quarter November 2016
Figure	÷ 5	Historical Groundwater Elevations
Figure		Total Arsenic Concentration Map – November 2016
Figure		Total Iron Concentration Map — November 2016
Figure		Total Manganese Concentration Map – November 2016
Figure		Vinyl Chloride Concentration Map — November 2016
Figure		Leachate Generation Volumes (2007 – 2016)
Figure	8 :	Barometric Pressure during LFG Migration Monitoring – November 2016
		Appendices
Appe	ndix 4	A Fourth Quarter 2016 Field Documentation
Appe		

1.0 INTRODUCTION

This report summarizes the results of the 2016 quarterly post-closure environmental monitoring conducted at the Olympic View Sanitary Landfill (OVSL), located in Bremerton, Washington. Monitoring events for the current compliance period were performed during February, May, August and November of 2016. Quarterly environmental monitoring at the OVSL includes sampling and analysis of groundwater and leachate pond leak detection liquid, and monitoring landfill gas (LFG). Leachate influent monitoring is also conducted at the OVSL on an annual basis.

The current OVSL monitoring program meets the regulatory requirements for both corrective action and post-closure detection and assessment monitoring. Quarterly groundwater and LFG monitoring was performed at the facility in accordance with the OVSL Environmental Monitoring Plan (EMP, Engineering Management Support, Inc., 2010) and the updated site-specific Sampling and Analysis Plan (SCS Engineers, 2013). The plans were developed in consultation with the Washington Department of Ecology (Ecology) and reflect a refined understanding of the site conditions based on the results of a Remedial Investigation/Feasibility Study (RI/FS) per WAC 173-340 (Model Toxics Control Act, MTCA). The OVSL monitoring program also meets the requirements of the Criteria for Municipal Solid Waste Landfills (WAC 173-351-430) which is administered by the Kitsap County Public Health District (KPHD).

SCS Engineers (SCS) and SCS Field Services (Field Services) performed quarterly environmental monitoring at the OVSL from February through December 2016. The following information describes the quarterly monitoring activities included in this report:

- Quarterly measurement of depth-to-water in groundwater monitoring wells within the monitoring well network
- Quarterly collection and analysis of groundwater samples at select monitoring wells within the monitoring network
- Quarterly collection and analysis of a leachate pond/leak detection system sample
- Collection and analysis of a leachate influent samples (during the fourth quarter monitoring event)
- Quarterly measurement of LFG concentrations at perimeter soil gas monitoring probes and building monitoring locations

This report includes:

- A site location description and background section
- A discussion of monitoring activities including a summary of sampling techniques and locations within the groundwater and LFG monitoring network
- Construction details for groundwater monitoring wells
- A discussion of groundwater including groundwater elevations, flow direction, and flow velocity for the reporting year
- A summary of the monitoring analytical program and presentation of the analytical results and findings for the reporting year
- A summary of the LFG monitoring results for the reporting year

- A geochemical evaluation of water quality samples collected in November 2016
- A statistical trend analysis and concentration time series plots of groundwater monitoring results
- A statistical evaluation and comparison of groundwater results to calculated prediction limits
- A comparison of groundwater monitoring results to site-specific cleanup levels and other applicable criteria
- Field documentation from the 2016 monitoring events
- The fourth quarter 2016 data validation report and associated analytical laboratory reports
- A summary of historical LFG monitoring measurements

Previously issued analytical laboratory data reports for the first three quarters of the 2016 monitoring will not be reissued with this report and can be found in the respective quarterly monitoring reports. Similarly, LFG migration monitoring results for the first three quarters of the 2016 compliance period are reported separately in their respective quarterly monitoring reports.

In order to conserve paper resources, the complete 2016 annual report is presented on an enclosed data CD attached to the rear cover of the document. However, for the convenience of the reviewer, hard copies of select materials are included in this report.

2.0 SITE DESCRIPTION

2.1 LOCATION

The closed OVSL facility is located on approximately 436 acres in Sections 3 and 10, Township 23N, Range 1W of the Willamette Meridian, in Kitsap County, Washington. The facility is situated on an upland area approximately 10 miles southwest of the city of Bremerton. The facility address is 10015 SW Barney White Road, Bremerton, Washington. A site location map is shown on Figure 1. The closed refuse fill area covers approximately 65 acres of the property. A site plan is presented on Figure 2.

2.2 BACKGROUND

The OVSL facility accepted municipal solid waste between 1967 and 2003. Landfill closure was completed in 2004, in accordance with Washington Administrative Code (WAC) 173-351. Landfill closure activities included construction of a LFG monitoring system, an active LFG collection and treatment system, a leachate collection and treatment system, a storm water drainage control system, and a final landfill cover.

The final landfill cover consists of (top to bottom):

- 12-inches of vegetative topsoil and cover soil
- geotextile fabric
- 12-inch drainage layer
- Geonet composite 60-mil flexible membrane liner
- 6-inch thick, low permeability soil

The active LFG collection system consists of a total of 81 well heads (69 vertical wells, 4 horizontal wells, and 8 interconnections to the leachate collection system) connected to a gas treatment flare station. The leachate collection system consists of subgrade collection piping and a leachate collection lagoon. A storm water drainage system controls storm water erosion and minimizes off-site migration of sediment-laden water (WMW 2008). Drainage and erosion protection improvements include vegetation, a landfill toe under-drain, down chutes, culverts, and drainage ditches.

2.3 TOPOGRAPHY AND CLIMATE

The site is located in the Southern Upland of the Kitsap Peninsula adjacent to the Union River-Gorst Creek trough. Site topography ranges from approximately 150 to 360 feet above mean sea level (MSL). The land surface generally slopes to the west-southwest towards the Union River, which is situated approximately a half mile west of the site.

Kitsap County's climate is characterized as maritime, with long, mild, wet winters and short, cool, dry summers. Climatically, and due to the local relief, there can be significant variations in total annual precipitation and average temperatures over short distances.

2.4 LOCAL AND REGIONAL HYDROGEOLOGY

The regional near-surface geology in the vicinity of the OVSL is dominated by glacio-fluvial and glacio-lacustrine deposits associated with the Vashon glaciation. A Remedial Investigation Report for completed for the OVSL (Parametrix 2007) identified the following main stratigraphic units in the vicinity of the Site:

- Organic Soils and Peat (Qw)
- Alluvium (Qal)
- Vashon Recessional Outwash (Qvr)
- Vashon Lacustrine Recessional Outwash (Qvrl)
- Vashon Till (Qvt),
- Vashon Advance Outwash (Qva)
- Vashon Advance Lacustrine Deposits (Qval)
- Pre-Vashon Deposits (Qpvu)

With the exception of the Vashon Till (which has not been confirmed to be present at the site), all of these units appear to be present beneath the OVSL.

Information provided in the site conceptual model indicates that organic soils/peat, alluvium, outwash, glacio-fluvial, glacio-lacustrine, and flood plain deposits outcrop along the west-central portions of the OVSL facility. Groundwater is present beneath the site at elevations ranging between approximately 140 and 260 feet above MSL (depths-to-water ranging between near-surface and approximately 80 feet below ground surface). The groundwater flow direction beneath the landfill is generally toward the west.

3.0 2016 MONITORING ACTIVITIES

3.1 GROUNDWATER

3.1.1 Groundwater Monitoring Network

Quarterly groundwater monitoring is conducted at the OVSL in accordance with the January 2001 Agreed Order, EMP as modified through subsequent technical discussions with Ecology, and the site-specific Sampling and Analysis Plan (SAP). The monitoring also meets the post-closure landfill monitoring requirements under WAC 173-351-430.

The groundwater monitoring network at the OVSL includes four categories of monitoring wells that are sampled either quarterly or semi-annually, as well as those that are only used for water level measurements. The four well categories designated at the Site include the following:

- Upgradient (background) monitoring wells are used to assess the quality of groundwater upgradient of the landfill Site.
- Performance monitoring wells are used to assess groundwater quality at the edge of the waste management unit.
- Compliance monitoring wells are used to assess groundwater quality at the MTCA Point-of-Compliance (POC).
- Downgradient monitoring wells are used to assess groundwater quality leaving the Site.

A monitoring well identifier and type summary is provided on the table below. The locations of these groundwater monitoring wells are illustrated on Figure 2.

Monitoring Wells at the OVSL by Type						
Upgradient	Performance	Compliance	Downgradient			
MW-13A	MW-2B1	MW-15R	MW-29A (S)			
MW-13B	MW-4	MW-34A	MW-32			
MW-16	MW-19C	MW-34C	MW-33A (S)			
MW-35	MW-20	MW-39	MW-33C			
	MW-23A	MW-42	MW-36A			
	MW-24	MW-43				

⁽S) = semiannual monitoring

A indicates a shallower well completion

B indicates an intermediate well completion

C indicates a deeper well completion

Well completion depths range from approximately 9 to 230 feet below ground surface (bgs). Screen lengths vary from 5 to 20 feet, with a 10-foot average well screen length. Completion depth differences are differentiated using the following letter indicators: "A" is a shallower monitoring well completion, "B" indicates an intermediate well completion, and "C" indicates a deeper monitoring well completion. Construction details for the monitoring wells are provided on Table 1.

Each of the groundwater monitoring wells designated for routine sampling is outfitted with a dedicated sampling pump (QED Well Wizard) suitable for low-flow purging and sampling. Low-flow sampling with dedicated pumps minimizes pump-introduced artifacts and eliminates cross contamination between wells. The dedicated bladder pumps are positioned with their inlets located within the screened interval of the well. Well construction, development, and pump installation are reported in detail in the *Report of 2005 Gas Probe and Monitoring Well Installations at OVSL* (SCS Engineers 2006), the *Remedial Investigation Report, OVSL, Kitsap County* (Parametrix 2007) and the Groundwater Monitoring Well Installation Report, OVSL (SCS Engineers. 2009).

3.1.2 Monitoring Schedule

Groundwater monitoring was conducted on a quarterly basis in 2016, with sampling events completed in February, May, August, and November 2016. In accordance with the SAP, monitoring wells MW-29A and MW-33A were sampled on a semiannual basis during May and November 2016.

3.1.3 Parameters and Analytical Methods

The analytical program for groundwater quality monitoring during the 2016 reporting period included the following Appendix I and II parameters:

Analytical Program	Parameter
Field Measurements	temperature, specific conductivity, pH, dissolved oxygen, turbidity, and static water level
Geochemical Indicator and General Parameters	chloride, sulfate, nitrate, calcium, sodium, bicarbonate, alkalinity, magnesium, potassium, iron, and manganese (Total suspended solids as of Sept. 2013)
Total Metals*	antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium, and zinc
Volatile Organic Compounds	as listed in WAC 173-351 Appendix I
Leachate Indicator Parameters	ammonia, total organic carbon (TOC), and total dissolved solids (TDS)

^{*} Consistent with the 2013 revisions to WAC 173-351, both dissolved and total Appendix I metals data were reported for a minimum period of eight quarters between September 2013 and December 2015. Beginning in 2016, Appendix I metals data have only been reported as a total fraction.

Laboratory methods are derived from several industry-standard publications. Methods for Chemical Analysis of Water and Wastes (MCAWW, EPA 1983) describe methods used for nitrate, nitrite, chloride, sulfate, and ammonia analyses. *Standard Methods for the Examination of Water and Wastewater* (APHA 1999, revised 2014) describe the methods used for analysis of alkalinity (total and bicarbonate), TDS, total suspended solids (TSS), and TOC. Metals and

VOC analyses are described in EPA publication number SW-846, Test Methods for Evaluating Solid Wastes, Physical and Chemical Methods (EPA revised 2007). The method for measuring arsenic is described in Method 200.8, Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry (EPA 1994).

All laboratory analyses were completed by TestAmerica labs in Denver, Colorado and Buffalo, New York; and by Analytical Resources Incorporated in Tukwila, Washington. The laboratories are accredited in accordance with WAC 173-50, Accreditation of Environmental Laboratories.

3.1.4 Field Monitoring and Sampling Procedures

Field activities conducted at the site consist of surveying well conditions, obtaining field measurements (depth-to-water, pH, specific conductivity, turbidity, temperature, and dissolved oxygen), collecting groundwater samples for laboratory analysis, and packaging and shipping the samples to the relevant laboratories. These activities are conducted as described in the revised 2013 site-specific SAP.

As part of the routine groundwater monitoring program, static water levels were measured and recorded each quarter in the wells within the groundwater monitoring network prior to initializing sampling procedures. Static water levels are collected from both monitoring wells where water quality samples are collected and additional monitoring wells used only for determining the potentiometric groundwater surface. Depth-to-water measurements (measured to the nearest 0.01 ft.) were obtained using an electronic water level indicator. Static water level measurements were recorded and documented on field sampling and measurement forms included in Appendix A (for November 2016).

Prior to sample collection, groundwater monitoring wells were purged in order to ensure representative groundwater conditions at each location. Both purging and sampling of the monitoring wells were conducted using low-flow/low-volume well sampling techniques. Once the pumping was initiated, flow rates were confirmed by volumetric discharge measurements (by measuring the total volume discharged per cycle using a graduated cylinder and verifying the number of pump cycles per minute specified by the controller). Field measurements for pH, temperature, specific conductivity, dissolved oxygen, and turbidity were conducted using a closed, in-line flow-through cell and a portable turbidity meter. When water quality parameters stabilized and there had been no change in the pumping water level, sample collection would begin. Field parameters were measured as described in *Standard Methods for the Examination of Water and Wastewater* (APAH 2014). Before initiating the purge process, the multiparameter field meters were calibrated in accordance with manufacturer's guidelines. Field data obtained during the well purging procedure was recorded on field sampling and measurement forms included in Appendix A (for November 2016).

Non-disposable sampling equipment that was exposed to well water (e.g., electronic water level tape) was decontaminated between wells as outlined in the SAP. Decontamination of equipment was completed before leaving each well, thereby minimizing potential cross contamination. Disposable sampling equipment and disposable personal protective equipment (PPE) were removed and disposed of after each use and prior to leaving each well.

3.2 LEACHATE

Leachate generated from three separate closed municipal waste storage cells is collected and pumped to an arterial force main that discharges to a one-acre leachate pond situated near the western end of the landfill (refer to Figure 2). The force main outfall is located on the north end of the leachate lagoon. Accumulated leachate is treated by aeration. When the leachate elevation in the pond approaches the elevation of the former pond outlet, leachate is removed via pumping and hauled to nearby wastewater treatment plants.

3.2.1 Leachate Monitoring Locations

Per the EMP and SAP, leachate monitoring is performed at three locations at the facility. Influent leachate sampling station L-INF is situated immediately downstream of the force main outfall on the north end of the leachate collection pond. The OBWL-TD sampling station is located at the Old Barney White Landfill Toe Drain collection sump, which subsequently connects to the leachate pond. Sampling station LP-LCD is located at the pump discharge outlet which periodically returns any accumulated liquids that collect beneath the leachate pond liner system back into the main lagoon.

The locations of the leachate monitoring stations are illustrated on Figure 2.

3.2.2 Monitoring Schedule

The current SAP provides for annual monitoring of the L-INF and OBWL-TD stations and quarterly monitoring of the LP-LCD station. Leachate samples were collected from L-INF and OBWL-TD during the fourth quarter of 2016. The LP-LCD was sampled quarterly throughout 2016.

3.2.3 Parameters and Analytical Methods

A summary of the analyzed parameters for the leachate samples collected at the OVSL is presented in the table below.

Quarterly LP-LCD Analytical Program	Parameter
Field Measurements	temperature, specific conductivity, pH, dissolved oxygen, and turbidity
Geochemical Indicator Parameters	chloride, sulfate, nitrate/nitrite, calcium, sodium, bicarbonate, alkalinity, magnesium, potassium, iron, and manganese
Leachate Indicator Parameters	ammonia, TOC, and TDS

Annual L-INF and OBWL-TD Analytical Program	Parameter
Field Measurements	temperature, specific conductivity, pH, dissolved oxygen, and turbidity
Geochemical Indicator Parameters	chloride, sulfate, nitrate/nitrite, calcium, sodium, bicarbonate, alkalinity, magnesium, potassium, iron, and manganese
Total Metals	antimony, barium, beryllium, cadmium, chromium, cobalt, copper, lead, nickel, selenium, silver, thallium, vanadium, and zinc
Volatile Organic Compounds	as listed in WAC 173-351 Appendix I
Leachate Indicator Parameters	ammonia, total organic carbon (TOC), and total dissolved solids (TDS)

Laboratory methods are the same methods used for groundwater samples. All laboratory analyses were completed by TestAmerica labs in Denver, Colorado and Buffalo, New York.

3.2.4 Leachate Monitoring Field Procedures

Field activities consisted of obtaining field parameter measurements, collecting leachate samples for laboratory analysis, and packaging and shipping the sample to the laboratory. The L-INF and OBWL-TD samples consisted of individual grab samples that were collected directly from their respective sampling stations using a peristatic pump. New disposable plastic tubing was used during the collection of each sample, and was subsequently discarded between sampling locations. The LP-LCD sample was obtained from an inline sampling port attached to the liquid return line that drains back into the leachate pond. All the leachate samples were collected directly into pre-labeled laboratory containers suitable for the chemical parameters being analyzed. Field instruments were calibrated in accordance with manufacturer's guidelines.

Field-measured parameters including temperature, specific conductivity, pH, and dissolved oxygen were measured as described in *Standard Methods for the Examination of Water and Wastewater* (APAH 2014). Field information obtained during leachate sampling was recorded on Field Information Forms included in Appendix A (for November 2016).

3.3 LANDFILL GAS

Landfill gas monitoring activities at the OVSL consist of obtaining field measurements of primary gas composition (methane, carbon dioxide, and oxygen) at 10 subsurface soil gas detection probes (several with multiple screened intervals) and four locations inside two onsite structures on or immediately adjacent to the landfill.

LFG monitoring is conducted to provide an assessment of the subsurface soil gas conditions at the OVSL and monitor compliance with regulatory criteria for subsurface methane concentrations. At the subsurface gas detection probes (LFG probes) relative soil gas pressure was also measured in the field. LFG monitoring procedures are detailed in the 2013 SAP.

3.3.1 Landfill Gas Monitoring Network

Monitoring was conducted at 10 perimeter LFG probes (GP-7 through GP-16) and two onsite structures as illustrated on Figure 3. Five of the LFG probes (GP-9 through GP-13) consist of multiple, vertically discrete monitoring zones. Probes with dual monitoring zones are designated with an "S" for the shallow zone, and a "D" for the deep zone. Probes with three monitoring zones are designated with an "S" for the shallow zone, "M" for the middle zone, and "D" for the deep zone. Data are not reported for probes where the screened interval is found to be submerged by groundwater. Details of all the LFG probes and boring logs can be found in *Report of 2005 Gas Probe and Monitoring Well Installations at OVSL* (SCS Engineers 2006).

3.3.2 Monitoring Schedule

Monitoring at the LFG probes and facility structures was conducted during March, June, September, and November 2016. LFG monitoring results are reported in Section 4.

3.3.3 Monitored Parameters

Field measurements of methane, carbon dioxide, and oxygen were obtained from each of the LFG probes and within the facility structures. In addition, subsurface soil gas pressure and groundwater levels were measured in the probes during each of the LFG monitoring events.

3.3.4 Landfill Gas Monitoring Field Procedures and Instrumentation

Field monitoring was conducted in accordance with 2013 SAP. The LFG probes and building locations were monitored in the field (for all parameters) using a GEM-2000 portable multi-gas analyzer. This portable gas analyzer measures methane and carbon dioxide with a dual wavelength infrared cell with a reference channel. Oxygen is measured with an electro-chemical cell. Pressure was measured with a transducer.

The gas analyzer was calibrated prior to each monitoring event. LFG monitoring activities are documented in the Field and Calibration Logs included in Appendix A.

3.3.5 Field Conditions

General weather conditions were noted during and preceding each quarterly LFG monitoring event. Atmospheric pressure fluctuations can influence gas concentrations and pressure in LFG probes. To assist in interpreting the monitoring data, barometric conditions were recorded during and prior to monitoring. The barometric trends for November 2016 are included in this report.

4.0 2016 MONITORING RESULTS

4.1 GROUNDWATER

4.1.1 Groundwater Elevation and Flow

Eight monitoring wells (MW-4, MW-9, MW-11, MW-13, MW-29A, MW-40A, MW-41A and MW-43) could not be accessed, were obstructed, had low conductivity groundwater, or were dry for at least one quarter during 2016. Recorded depth-to-water levels are summarized in field documentation included in Appendix A.

Depth-to-water measurements collected through 2016 were used to calculate groundwater elevations in feet relative to MSL. The 2016 records have been compiled and are presented on Table 3. Groundwater elevation surface maps (derived from static depth-to-water measurements collected at the OVSL monitoring wells) for each quarter during the reporting period are presented in Figures 4A through 4D. A hydrograph showing the past 10 years of recorded groundwater elevations is presented on Figure 5. Groundwater elevations at the OVSL ranged from 138.28 (MW-33A in February) to 261.13 (MW-13 in November) ft. MSL over the 2016 reporting period. Groundwater elevations remained relatively stable throughout the year. The potentiometric groundwater elevation surface across the OVSL does not show significant seasonal fluctuations. These results remain consistent with data reported during previous compliance years.

The groundwater flow direction during the reporting period was consistent with that previously reported at the site. Locally, the groundwater flow direction is to the west/northwest. The average hydraulic gradient across the site remained fairly consistent from quarter to quarter.

Calculated 2016 Hydraulic Gradient and Flow Velocities – East Side					
	Q1	Q2	Q3	Q4	
Well Pair	MW-35/MW-	24			
Hydraulic Gradient (ft./ft.)	0.0320	0.0312	0.0331	0.0336	
Flow Velocity (ft./day)	2.77	2.71	2.87	2.91	
Calculated 2016 Hydraulic C	Fradient and Flo	w Velocities – W	'est Side		
	Q1	Q2	Q3	Q4	
Well Pair	Well Pair MW-20/MW-38				
Hydraulic Gradient (ft./ft.)	0.0143	0.0141	0.0145	0.0136	
Flow Velocity (ft./day)	7.33	7.24	7.45	7.00	

Eastern Hydraulic Conductivity = 26 ft/day (Parametrix 2007) Western Hydraulic Conductivity = 154 ft/day (Parametrix 2007) Porosity = 30% (Parametrix 2007)

4.1.2 Groundwater Quality

4.1.2.1 Chemical Analysis

Water quality data for the OVSL are summarized in Tables 4A through 4D. These tables present the data results, segregated by well type, of detected analytes and measured field parameters from all four quarters of 2016. Each table presents the data for a monitoring well category (Compliance, Performance, Downgradient, and Upgradient). A table (4E) summarizing the detected analytes and field parameters for the annual L-INF and OBWL-TD leachate and the quarterly LP-LCD leak detection monitoring stations is also provided. In addition, a summary table of VOC detections in groundwater and leachate is presented on Table 5.

4.1.2.2 Data QA/QC

Analytical data from the TestAmerica and ARI laboratories were subjected to a quality assurance/quality control (QA/QC) program and evaluation. The program included field and inhouse components. The field portion consisted of the collection and analysis of trip blanks, field replicates, and matrix spike/matrix spike duplicates. The in-house evaluation provided a detailed review of laboratory data which included sample handling, analysis hold times, and laboratory performance analyses (duplicates, blanks, matrix spikes, matrix spike duplicates and surrogate recoveries).

Due to an express shipment delay, laboratory analyses for nitrate/nitrite and TDS in sample MW-24 were completed slightly outside their recommended holding times. In addition, several EPA method 8260 parameters were reportedly detected in a laboratory blank, and the affected sample batch was flagged with B (parameter detected in blank) and J (reported results are an estimated value) data qualifiers. However, notwithstanding the reported laboratory data qualifiers, the 2016 data set was determined to be acceptable for the intended purposes.

Appendix B contains the data validation report and the analytical laboratory data reports for the November 2016 monitoring event.

4.1.3 Spatial Distribution and Temporal Trends

4.1.3.1 Parameter Distribution

As noted in previous site monitoring reports, the influence of past waste disposal activities on groundwater quality at the OVSL is observed in the groundwater VOC detections, general chemistry, inorganics, and field parameter results. The elevated concentrations of parameters adjacent to the landfill are typically characteristic of influence from either landfill leaching, transport from LFG, or increased mobilization of naturally occurring constituents as a result of the landfill's presence.

At the OVSL, several key parameters (arsenic, iron, manganese, and vinyl chloride) are routinely monitored for their spatial distribution each quarter by plotting concentrations on the landfill base map. Spatial distributions for these parameters during the fourth quarter November 2016 monitoring event are presented in Figures 6A through 6D and summarized in the tables below.

Total Arsenic (mg/L) - November 2016 (Figure 6A)					
Concentration	Upgradient	Performance	Compliance	Downgradient	
Low	0.000114	0.000081	<0.0004	0.000509	
Locations	MW-35	MW-23A	MW-43	MW-33A	
High	0.000381	0.00288	0.00542	0.00995	
Locations	MW-16	MW-19C	MW-34C	MW-32	

Total Iron (mg/L) — November 2016 (Figure 6B)					
Concentration	Upgradient	Performance	Compliance	Downgradient	
Low	<0.06	< 0.06	<0.06	<0.06	
1 4:	MW-13B,	MW-4,	MW-15R,	MW-33C	
Locations	MW-35	MW-24	MW-34A		
High	0.12	1.1	27	4.6	
Location	MW-16	MW-2B1	MW-42	MW-29A	

Total Manganese (mg/L) – November 2016 (Figure 6C)					
Concentration	Upgradient	Performance	Compliance	Downgradient	
Low	<0.001	0.065	0.0027	0.0013	
Locations	MW-13A, MW-13B, MW-35	MW-23A	MW-34A	MW-36A	
High	0.017	2.7	4.4	1.8	
Locations	MW-16	MW-2B1	MW-42	MW-32	

Vinyl Chloride (μg/L) – November 2016 (Figure 6D)					
Concentration	Upgradient	Performance	Compliance	Downgradient	
Low	<0.02	< 0.02	<0.02	<0.02	
Locations	MW-13B, MW-16, MW-35	MW-20, MW-23A, MW-24	MW-15R, MW-34A, MW-39, MW-43	MW-29A, MW-33A, MW-33C, MW-36A	
High	0.008 JB	0.029 B	0.026 ^B	0.46 B	
Locations	MW-13A	MW-19C	MW-42	MW-32	

J B: Qualifiers J (estimated values below reporting limit) and B (compound detected in laboratory blank)

As noted during previous compliance years, groundwater impacts are observed in each category of monitoring wells at the Site. The highest concentrations of arsenic, iron and manganese (0.000381, 0.12 and 0.017 mg/L, respectively) reported in Upgradient (background) monitoring wells during the fourth quarter monitoring event were all detected in MW-16. With the exception of a single, J and B qualified detection $(0.008 \,\mu\text{g/L} \text{ at MW-13A} \text{ in November 2016})$, vinyl chloride was not reported in any of the Upgradient wells during 2016.

The highest concentrations of these four parameters detected in the Performance monitoring wells occurred at wells MW-19C (0.00288 mg/L arsenic and 0.029 μ g/L vinyl chloride) and MW-2B1 (1.1 iron mg/L and 2.7 mg/L manganese). The highest detected concentrations of

these parameters in the Compliance monitoring wells were recorded in wells MW-34C (0.00542 arsenic) and MW-42 (27 mg/L iron, 4.4 mg/L manganese and 0.026 μ g/L vinyl chloride). The highest detected concentrations of these parameters in the Downgradient monitoring wells were reported in well MW-32 (0.00995 mg/L arsenic, 1.8 mg/L manganese and 0.46 μ g/L vinyl chloride) and MW-29A (4.6 mg/L iron).

4.1.3.2 Temporal Trends

Time series graphs and statistical trend analyses were completed for all Upgradient, Performance, Compliance, and Downgradient monitoring wells using the DUMPStat software package. The statistical data set includes analytical results obtained between 2005 through the present reporting year (2016). This evaluation was conducted for parameters listed in Appendices I and II of WAC 173-351-990 which are organized into two groups: "Trend Test A" and "Trend Test B". The "Trend Test A" time series includes all organic parameters in Appendices I and II that have been detected above the practical quantification limit (PQL) during at least one sampling event in any of the wells since 2005 (currently 25 VOCs). The "Trend Test B" time series includes Appendix I and II inorganic and groundwater quality parameters (currently 32 parameters). To facilitate review of the statistically significant trends, time series sets were developed to just show those well/parameter combinations exhibiting either increasing or decreasing trends. These time series graphs are presented in Appendix C along with the other statistical evaluation results. A summary of those parameters showing significant increasing or decreasing concentration trends grouped by well type is provided on Table 6A, and a more detailed summary of parameter trends in specific wells can be found in Table 6B.

The dominant data trend seen for the majority of parameters throughout the OVSL remains that of decreasing concentrations. This is predominantly observed in the Performance, Compliance, and Downgradient monitoring wells: however, significant decreases are noted in all well groups for as many as 14 inorganic parameters and two VOCs (Tables 6A/6B). Significant increasing trends are also noted for certain inorganic parameters in all well groups, although the overall number of parameters increasing remains low.

Significant parameters trends calculated for the Compliance monitoring wells are summarized below.

Significant Trends in Compliance Wells (2005 - 2016)							
Incre	asing	Decr	easing				
Parameter	Wells	Parameter	Wells				
рН	MW-42, MW-34C	Alkalinity, Total	MW-15R				
Potassium, Dissolved	MW-42	Ammonia	MW-43				
Temperature	mperature MW-15R, MW-34A, MW-34C		MW-15R, MW-34A				
		Bicarbonate Alkalinity	MW-15R, MW-34A				
		Calcium	MW-15R, MW-34A, MW-34C				
		Chloride	MW-15R, MW-34A, MW-34C				

Magnesium	MW-15R, MW-34A, MW-34C
Sodium	MW-15R, MW-34A, MW-34C
Specific Conductivity	MW-15R, MW-34A, MW-34C
Sulfate	MW-42
Total Dissolved Solids	MW-15R, MW-34C
Vinyl Chloride	MW-34C

4.1.4 Groundwater Geochemistry

The geochemical character of the groundwater, LP-LCD, OBWL-TD and L-INF samples was evaluated by plotting and comparing geochemical parameters using a Piper diagram for the November 2016 analytical results. Water quality samples collected during November 2016 were of similar geochemical water type with clear differences seen between the groundwater and leachate derived samples. As noted for past reporting years, the positions of sampled wells on the diagram indicate that the dominant anion in site groundwater remains bicarbonate, with cations being dominated by calcium and magnesium. The leachate derived samples continue to report significantly higher sodium, calcium and potassium concentrations than groundwater, as well as higher chloride and bicarbonate levels. The Piper diagram for November 2016 can be found in Appendix D. Previous Piper diagrams for the first, second, and third quarters of the current compliance year can be found in their corresponding quarterly monitoring reports.

In addition to the Piper diagram, groundwater cation/anion balance calculations were also used to assess geochemical character. Ideally, after the major anions and cations present in a sample are determined, the sum of the positive cations (in milliequivalents per liter [meq/L]) should approximately equal the sum of the negative anions (Hem 1986). All natural waters should be electroneutral. However, differences can arise between dissolved cations and anions in groundwater as measured by an analytical laboratory due to a number of factors including: presence of colloidal fractions, systematic error in preparation and analysis of samples, malfunction of/poorly calibrated equipment, major species omitted from analysis, the presence of unusually high concentrations of cations/anions, and not all ions present in water are included in the balance calculation. Due to these potential issues, differences in the ion balance can be difficult to assess for imbalances due to groundwater impacts.

The range of the sum of ions and balance of ions observed at the site for the November 2016 monitoring event are summarized in the table below. Positive values indicate that the sum of the cations is greater than the sum of the anions. As stated in WAC 173-351-430-5(a), a relative percent difference (RPD) in the charge-balance (ion balance) of greater than five to ten percent (depending on the concentrations of ions in solution) could potentially indicate impacted groundwater conditions.

Well Group	Upgradient	Performance	Compliance	Downgradient
Sum of lons (meq/L)	1.16 – 1.91	0.91 – 2.16	0.32 – 4.80	0.86 – 2.53
Balance (%)	-1.9 – 4.5	-3.8 – 25.9	-2.6 – 10.1	-2.1 – 7.6

Ion balances observed at the site during the November 2016 event were generally within or very close to this threshold. Three wells (MW-4, MW-20 and MW-43) reported balances outside this range (25.9, 10.5 and 10.1 percent, respectively). The anomalously large RPD calculated for MW-4 appears to be related to unusually low cation results (primarily calcium and magnesium) reported in the fourth quarter sample, and is suspected to represent a one-time outlier. It's suspected that results outside the (+/-) 5 to 10% ion balance threshold are due to possible errors associated with analytical limitations in these measurements (as previously discussed) or potential low level impacts from human activities at the site.

4.1.5 Statistical Prediction Limit Evaluation

Statistical prediction limits using data from the upgradient monitoring wells are calculated at the end of each monitoring year to provide updated background concentrations for all Appendix I and II inorganic detection monitoring and groundwater quality parameters (a total of 32 parameters). These updated background prediction limit concentrations are used for comparison purposes for compliance and downgradient monitoring wells.

During the fourth quarter of 2016, prediction limits for inorganic parameters were exceeded at least once in ten of the Compliance and Downgradient groundwater monitoring wells (MW-15R, MW-29A, MW-32, MW-33A, MW-33C, MW-34A, MW-34C, MW-36A, MW-39 and MW-42). Compliance wells MW-34C and MW-42 reported the largest number of prediction limit exceedances (11 and 15 exceedances, respectively). A summary of the latest prediction limit exceedances for the November 2016 Compliance and Downgradient well results are presented on Table 7. Prediction limit calculations for 2016 are presented in Appendix C.

As summarized on Tables 6A and 6B, the following Upgradient monitoring wells exhibited statistically significant increasing or decreasing trends over the period for which background prediction limits are calculated: MW-13A (sulfate, temperature), MW-13B (bicarbonate/total alkalinity, chloride and sulfate), MW-16 (chloride) and MW-35 (arsenic, bicarbonate/total alkalinity, chloride, nitrate and temperature). Parameter trends in Upgradient monitoring wells are noted because they can impart a bias on the calculated prediction limit for the affected monitoring parameters which, in turn, can affect the number of exceedances identified for those monitoring parameters in Compliance and Downgradient wells.

For bicarbonate/total alkalinity, nitrate and temperature, their apparent increasing trends in the above-mentioned upgradient wells could impart a positive bias on the calculated prediction limits for these parameters. However, a visual examination of the time series graphs presented in Appendix C indicates that the noted increasing trends for these parameters remains relatively slight. Therefore, any bias to the prediction limit would be expected to be nominal and not significantly change the number of exceedances within this parameter subset.

4.1.6 Point of Compliance and Cleanup Level Exceedances

4.1.6.1 Point of Compliance (POC)

The solid waste regulations (WAC 173-351-300[6]), specify that groundwater quality compliance must be established at a POC located on the landfill property no more than one hundred fifty meters (four hundred ninety two feet) from the waste management unit boundary. At the OVSL, the POC is established as a line of wells located within 150 meters of the landfill waste management unit boundary. As illustrated on Figure 2, the Compliance monitoring wells are colored red and lie west/northwest of the downslope boundary of the landfill.

4.1.6.2 Cleanup Level Exceedances

Site-Specific MTCA Cleanup Levels

Ten organic and inorganic parameters are regulated under the OVSL Cleanup Action Plan (CAP, Ecology 2010) and have site-specific MTCA cleanup levels. Analytical results are used to calculate an upper confidence limit (95% UCL) of the mean concentration for each parameter for each well for Compliance and Downgradient monitoring wells to assess compliance with their respective cleanup level.

The UCLs are calculated using a three-year moving data window (per MTCAStat guidance) for the ten site-specific chemicals of concern (COC). The UCLs are calculated using MTCAStat; calculation details are presented in Appendix C. The following in-text table and Table 8 summarize the COCs and their 2016 exceedances in the Compliance and Downgradient monitoring wells.

Chemicals of Concern	Units	Site-specific MTCA Cleanup Level	Exceedances in 2016 (95% UCL)
1,1-Dichloroethane	μg/L	50	No
1,4-Dichlorobenzene	μg/L	2	No
Ammonia	mg/L	0.19	Yes
Arsenic	mg/L	0.000462	Yes
Cis-1,2-Dichloroethene	μg/L	35	No
Ethyl ether	μg/L	50	No
Iron	mg/L	0.3	Yes
Manganese	mg/L	0.05	Yes
Trichloroethene	μg/L	1	No
Vinyl Chloride	µg/L	0.2	Yes

Blue indicates this COC reported a 95% UCL exceedance of its site-specific MTCA Cleanup Levels during 2016.

Evidence of stable to improving groundwater quality at the OVSL continued to be noted over 2016 compliance period. Similar to previous reporting periods, the 95% UCL for vinyl chloride remained below the cleanup level in all Compliance wells and all Downgradient wells except MW-32. It should also be noted that minor variations in parameter concentrations observed from year to year can cause exceedances to arise or vanish between reporting periods. This is largely a result of the UCLs hovering very near their site cleanup levels and not an indication of meaningful changes to overall groundwater conditions.

Statistically significant trends are also noted on Table 8 in order to provide additional information regarding the status of the UCL relative to the cleanup standard. Trend information may be particularly useful if the calculated UCL value is very close to the cleanup standard (e.g., within 10%). In such cases, trend information may be useful in predicting a change in status of the UCL versus the cleanup level in the relative near term.

Exceedances of the site-specific MTCA cleanup levels were reported in four of the six Compliance well locations (refer to Table 8): MW-34C (arsenic, iron, manganese); MW-39 (ammonia, arsenic, iron, and manganese); MW-42 (ammonia, arsenic, iron, manganese); and MW-43 (iron and manganese). A significant decreasing trend was reported in 2016 for vinyl chloride in MW-34C and ammonia in MW-43. The 95% UCLs for select VOCs were below the site-specific MTCA cleanup levels in all of the Compliance monitoring wells.

As noted over the past several years, exceedances of the site-specific MTCA cleanup levels continue to be reported in all five Downgradient well locations (refer to Table 8):MW-29A (arsenic, iron, and manganese); MW-32 (arsenic, iron, manganese, and vinyl chloride); MW-33A (ammonia, iron, and manganese); MW-33C (arsenic and manganese); and MW-36A (arsenic). A significant decreasing trend was reported at MW-29A (for ammonia). With the sole exception of vinyl chloride in MW-32, all of the 95% UCLs for the select VOCs remained below the site-specific MTCA cleanup levels in all of the Downgradient monitoring wells.

Other Criteria Comparison (Federal MCLs, WAC 173-200, and MTCA)

In addition to the site-specific MTCA cleanup levels, groundwater at the OVSL is also compared to WAC 173-200 Groundwater Quality Protection Standards and State/Federal Primary and Secondary Maximum Contaminant Levels (MCLs). For comparison purposes, site-specific MTCA cleanup levels are also included.

The WAC 173-200 and MCL exceedances for the 2016 reporting period by parameter and well are summarized on Table 9. Criteria for the following seven analytes were exceeded:

- pH
- ammonia
- arsenic
- iron, total
- manganese
- trichloroethene
- vinyl chloride

These same parameters were noted to have exceeded their respective regulatory standards during the previous two (2014 and 2015) compliance years.

4.2 LEACHATE MONITORING RESULTS

4.2.1 Leachate Quality

The results of the fourth quarter 2016 leachate influent (L-INF) and Old Barney White Landfill Toe Drain (OBWL-TD) sample analyses are presented on Table 4E. Samples were also obtained from the LP-LCD monitoring station and submitted for selected Appendix II parameter and total metals analysis during all four quarters of 2016 (refer to Table 4E).

Similar to previously monitoring years, the 2016 L-INF sample reported relatively elevated concentrations of the typical leachate parameters, including total/bicarbonate alkalinity, ammonia, calcium, chloride, magnesium, sulfate, sodium, COD, TDS and TOC. In addition, low levels of three VOCs, tert-butyl alcohol, tetrahydrofuran and vinyl chloride, were detected in the November 2016 sample. It should be noted that the vinyl chloride detection (0.046 μ g/L) was B and J-qualified, and that this parameter had not been reported in the OVSL leachate since 2011. In contrast, the 2016 OBWL-TD sample reported generally lower inorganic results than the leachate influent. No VOCs were detected in the OBWL-TD sample.

Compared to the L-INF sample, the 2016 quarterly LP-LCD samples generally reported lower alkalinity, ammonia, COD and TOC concentrations.

4.2.2 Leachate Generation Rates

Leachate volumes generated at the OVSL have been recorded on a weekly basis by SCS Engineers Field Services since 2008. During the course of the 2016 reporting period, approximately 681,901 gallons of leachate were reported to have been pumped into the leachate collection pond. A total of 88.0 inches of rainfall was recorded at the nearby Bremerton National Airport weather station during 2016.

Leachate production continues to decline at the OVSL, from over 2 million gallons annually prior to 2013, to 1,106,803 gallons in 2014, and 801,614 gallons in 2015. These data continue to suggest that ongoing improvements to site maintenance and existing infrastructure have significantly reduced leachate generation rates (per inch of precipitation) at the OVSL. Annualized rainfall totals at the OVSL and the volumes of leachate produced on a quarterly and annual basis over the last ten years are presented on Figure 7.

In addition, the liner leak collection/detection system is checked regularly for the presence of any accumulated liquids beneath the OVSL leachate pond. If liquids are present, they are pumped out of the collection system, pass through the LP-LCD monitoring station, and are returned to the leachate pond. The volumes of liquid pumped out of the liner leakage collection system during 2016 are presented on Table 10. Approximately 1,687 gallons of liquid were removed from the collection system during 2016, which is a significantly lower LP-LCD volume than was pumped during the two previous reporting years (2,230 and 2,975 gallons in 2014 and 2015, respectively).

4.3 LANDFILL GAS MONITORING RESULTS

The presence of LFG at the OVSL is discussed in terms of detected methane and/or carbon dioxide (at concentrations of both gases at levels greater than 0.3 percent by volume) and depressed oxygen (less than 20.3 percent by volume). The detection of these gases, as well as, elevated gas pressures within the perimeter probes, are indicative of the potential presence of LFG. The reported values represent measurements under stabilized conditions (after purging at least one probe volume from each sampling zone). Also, the monitoring results are discussed in terms of probe locations, not sampling zones (by depth). For example, if methane is detected in the shallow or deep monitoring zone (or both) of one gas probe, the reference is to the location. The screened interval in Middle- and Deep-monitoring zones is sometimes submerged by the shallow groundwater table. When this occurs, gas results are not representative of the screened interval, and therefore not reported.

Perimeter LFG probes and surface structure locations were monitored for the presence of landfill gases. The November 2016 results are summarized in Table 11. LFG probe results for the 2016 compliance period are also summarized on Table 12.

4.3.1 Perimeter Gas Probe

During the November 2016 monitoring, methane was not detected above the regulatory standard in any of the LFG monitoring probes. The regulatory standard for methane in perimeter probes is the lower explosive limit (LEL) which is equal to 5% methane by volume. Carbon dioxide was measured in all the LFG probes ranging from 0.7 (GP-10D) to 8.2 percent by volume (GP-7). Depressed oxygen levels (less than 20.3 percent by volume) were reported at the majority of LFG probes, ranging from 4.0 (GP-8) to 19.7 percent by volume (GP-10S). One LFG probe (GP-13D) reported oxygen levels that were not depressed (20.7 percent by volume). Representative relative (static) pressure readings in the perimeter gas probes ranged from -0.07 (GP-13M/D) to 2.24 (GP-15) inches of water column.

As noted in previous monitoring years, the observed declines in methane and carbon dioxide levels in the subsurface probes (as well as the increases in oxygen levels) likely reflect changes in the LFG extraction system components (e.g., replacement of gas flares and blower station and the installation of six new LFG wells during October 2011 in the Barney White area) and more recent changes to LFG extraction system operations implemented by Waste Management. Appendix E includes tables and time-series plots of the historical concentrations of methane, carbon dioxide, and oxygen in the currently monitored gas probes, from March 2007 through the end of the 2016 monitoring year.

Groundwater seepage during the rainy season can submerge the perforated portion of the LFG probe casing and inhibit collection of soil gas in the vadose zone. To determine whether the perforated portion of the gas probes were blocked by water, water level measurements are taken at each LFG probe location. The percentage of exposed perforated casing for each LFG probe is shown on Table 11.

4.3.2 Structure Monitoring

The fourth quarter 2016 monitoring results did not detect methane in either the south slope well house or the scale house. The regulatory standard for methane in structure on or near the landfill is 25% of the LEL. Carbon dioxide was measured at levels between 0.4 and 2.1 percent by volume in the onsite structures. Slightly depressed oxygen concentrations were recorded at two scale house monitoring locations (18.8 and 20.2 percent by volume at SH-SS and SH-NS, respectively). Depressed oxygen was not observed in the south slope well house.

4.3.3 Barometric Pressure Conditions

Gas concentrations and pressures are influenced by fluctuating barometric pressure. Relative to time, the highest LFG concentrations and depressed oxygen concentrations tend to occur shortly after a significantly falling barometric trend. This is due to the effects of the landfill pressures trying to stabilize with the fluctuation in atmospheric (barometric) pressure and the associated lag time for stabilization.

To assist in interpreting data, barometric conditions were recorded prior to and during LFG monitoring. The trends for November 2016 are presented on Figure 8. On November 15, LFG monitoring was conducted during a period of slightly rising barometric pressure conditions.

5.0 SUMMARY AND CONCLUSIONS

The 2016 groundwater quality results, LFG generation rates and leachate production levels at the OVSL facility continue to indicate an overall improvement of environmental site conditions and the on-going stabilization of the closed landfill. Groundwater quality data collected over the past decade indicate that historically detected contaminants in groundwater are declining, with fewer exceedances of site-specific MTCA cleanup levels reported at POC monitoring wells and downgradient of the site. Despite greater than average precipitation, leachate production during 2016 continued to decline, which remains consistent with recent trends and the past implementation of improved site engineering controls. The facility will continue to explore opportunities to minimize any remaining above ground contribution to leachate volumes to ensure that the trend of diminishing leachate generation is maintained.

Overall LFG production at the facility continues to decline, with flow rates decreasing rapidly to several orders of magnitude below their modeled production high as the natural depletion of methane and other landfill gases continues at the site. It is anticipated that on-going operations and maintenance (O&M) efforts in 2017 will continue to show improving environmental conditions and increased landfill stability.

It should also be noted that during the latter part of 2016, Ecology completed a periodic (5-year) review of the MTCA remedy being implemented at the OVSL. The agency's review reported that the remedial actions (landfill engineering controls combined with monitored natural attenuation) completed at the site remain protective of human health and the environment. In addition, Ecology approved the optimization of the existing post-closure, groundwater monitoring program beginning with the 2017 compliance year. No modifications to the LFG or leachate monitoring schedule are anticipated at this time. The current (2013) site-specific Sampling and Analysis Plan (SAP) will be updated to reflect these changes during the Spring of 2017.

5.1 GROUNDWATER

5.1.1 Groundwater Quality

Elevated concentrations of certain VOCs, general chemistry parameters, inorganic analytes, and field parameters continued to be reported in the monitoring wells adjacent to the OVSL. Over the 2016 monitoring year, site specific MTCA cleanup levels, groundwater protection standards and/or federal MCLs were exceeded for seven analytes: pH, total arsenic, total iron, total manganese, ammonia, trichloroethene, and vinyl chloride. These results remain generally consistent with those reported for previous years, although overall trends show that the majority of analyte concentrations are decreasing.

The only primary MCL exceedances at the OVSL for the 2016 reporting period were for arsenic in wells MW-32 (0.0107 mg/L in May) and MW-34C (0.0156 mg/L, 0.0254 mg/L and 0.0699 mg/L in February, May and August, respectively). These were all total arsenic results obtained from unfiltered groundwater samples. The primary MCL for vinyl chloride was not exceeded during the current reporting period and has not been exceeded since 2006.

MTCA corrective action monitoring during 2016 reported 95% UCL groundwater cleanup goal exceedances at nine of eleven compliance and downgradient wells at the OVSL. Compliance wells MW-15R and MW-34A did not report any exceedances. With the exception of vinyl chloride in MW-32, the only parameters that exceeded the site specific MTCA cleanup levels were ammonia, arsenic, iron, and manganese.

Most parameter exceedances continued to be reported in Compliance wells MW-39 and MW-42 and Downgradient well MW-32. However, an analysis of the 95% UCL for the ten site COCs relative to their respective cleanup levels continues to suggest ongoing improvement in overall groundwater quality through 2016. In addition, Downgradient and Compliance wells exhibited only decreasing significant trends in site-specific COCs in 2016.

Prediction limits for inorganic parameters were exceeded in ten groundwater monitoring wells over the reporting period. Significantly increasing concentrations trends (using Sen's Non-Parametric Test for Trend) were reported for at least one inorganic parameter at eight well locations, while significantly decreasing trends also occurred at nineteen well locations. Significantly decreasing concentration trends were reported for trichloroethene (MW-19C) and vinyl chloride in Performance wells MW-19C and MW-34C.

Collectively, groundwater analytical data, statistical and graphical analyses, and comparison to water quality standards though 2016 continue to indicate similar, but improving conditions to those previously documented from 2005 through 2015, with on-going evidence that natural attenuation continues to be affecting the groundwater quality at the site.

5.1.2 Evidence for Natural Attenuation

Natural attention includes a variety of physical, chemical and biological processes that act without human intervention to reduce mass, toxicity, mobility, volume, or concentration of contaminants. Examples of these processes can include biodegradation, dispersion, dilution, sorption, volatilization, chemical transformation, and contaminant destruction. At solid waste landfills, natural attenuation processes are largely controlled by and associated with changes in groundwater chemistry. Typically, for landfills, pathways for aerating subsurface soils and groundwater is impeded, resulting in increasingly anaerobic and reducing conditions (or in the case of unlined landfills, there is potential for highly reduced liquids to enter the groundwater system). These conditions promote microbial communities that can degrade organic compounds resulting in the dechlorination of solvents and their daughter products.

Gradual, yet consistent, improvements to water quality continue to be observed at the OVSL as illustrated by the overall stability and/or decreasing trends observed in the calculated 95% UCLs for site COCs and through their improving comparison with their respective site-specific MTCA cleanup levels. These data support the conclusion that natural attention is occurring as expected at the OVSL

As discussed in past annual reports, it remains important to note that significant areas across and immediately downgradient of the OVSL waste cells exhibit a pronounced anaerobic and/or reducing geochemistry. Similarly, dissolved oxygen (DO) levels are significantly reduced in the groundwater immediately beneath and downgradient of the unlined Barney White waste cell.

These geochemical conditions are prevalent at well locations showing the most elevated contaminant concentrations (e.g., MW-20 and MW-19C with elevated total iron, vinyl chloride and other redox sensitive parameters). The presence of vinyl chloride beneath the west-central portions of the site is consistent with the ongoing reductive dechlorination of parent compounds (PCE, TCE and DCE isomers). However, further downgradient, along the far western margins of the site, groundwater geochemistry becomes increasingly less reductive and more oxidative, which in turn is increasingly supportive of the degradation of vinyl chloride. This was once again demonstrated during 2016 by the absence of VOCs, including vinyl chloride, in downgradient wells MW-29A, MW-33A, MW-33C and MW-36A. These geochemical conditions (high redox/low dissolved oxygen) have been consistently observed at the OVSL during post-closure monitoring.

The growing number of decreasing parameter trends provides additional evidence supporting the ongoing and expected natural attention at the OVSL. Given the current data and historical trends, natural attenuation at the OVSL can be anticipated to continue throughout the post-closure period and beyond.

5.2 LEACHATE

Comparisons between the 2016 groundwater and L-INF field and laboratory results continue to indicate that parameters measured and analyzed in the L-INF are elevated relative to groundwater. These parameters include total/bicarbonate alkalinity, ammonia, calcium, chloride, magnesium, sulfate, sodium, COD, TDS and TOC. Low levels of tert-butyl alcohol, tetrahydrofuran and vinyl chloride were also detected in the November 2016 sample. The vinyl chloride detection (0.046 μ g/L) was B and J-qualified, and it should be noted that this parameter had not been reported in OVSL leachate since 2011. In contrast, the OBWL-TD sample reported generally lower inorganic results than the leachate influent. No VOCs were detected in the OBWL-TD sample.

The LP-LCD monitoring station was sampled in all four quarters of 2016. These samples continued to report elevated specific conductivity, alkalinity, ammonia, calcium, chloride, iron, manganese, sodium, sulfate, TDS and TOC compared to the groundwater results.

The volume of leachate generated per inch of precipitation (681,901 gallons relative to 88.0 inches of rain) continues to steadily decline. This compares favorably to past annual totals, from over 2 million gallons annually prior to 2013, to 1,106,803 gallons in 2014, and 801,614 gallons in 2015. Liquid volumes recorded at the LP-LCD monitoring station for the leachate pond leakage collection system indicate that approximately 1,687 gallons of liquid were returned to the pond in 2016, which is a significantly lower volume than was reported over two previous years (2,230 and 2,975 gallons in 2014 and 2015, respectively). The relatively low LP-LCD volumes observed during 2016 continue to suggest that leakage through the leachate pond liner system is minimal and well controlled.

5.3 LANDFILL GAS

Methane was not detected above state regulatory standards in any of the LFG monitoring probes or in any of the landfill structures during 2016. Perimeter LFG probe monitoring results continue to demonstrate that the facility is in compliance with respect to subsurface landfill soil gas migration criteria (less than 5% by volume of methane in soil at the property boundary).

During 2016, methane was not detected at any of the structure gas monitoring locations. It should be noted that due to the demolition of on-site buildings during the latter half of 2009, only the South Slope Well House and the Scale House remain present at the OVSL. Going forward, structure LFG monitoring will continue for these two buildings.

LFG extraction rates and major gas component results for the 2016 operational period are summarized on Table E-4 (Appendix E). During 2016, approximately 128 million cubic feet of LFG were collected at the OVSL flare inlet, with an annualized average concentration of 25.02 percent methane (by volume). Improvements (discussed above and in previous reports) to the OVSL LFG extraction system and associated infrastructure, which commenced in 2007, have reduced and or stabilized LFG levels (as measured by methane, carbon dioxide and depressed oxygen levels) at both perimeter soil gas probe and structural monitoring locations. The LFG collection system will continue to be monitored and optimized to enhance its performance.

6.0 REFERENCES

- American Public Health Association (APHA), American Water Works Association, Water Environment Federation, revised 2014. *Standard Methods for the Examination of Water and Wastewater*.
- Engineering Management Support, December 2010, Environmental Monitoring Plan, Olympic View Sanitary Landfill, Port Orchard, WA.
- Gibbons, Robert D., and Discerning Systems, Inc. Copyright 1994-2005. *DUMPStat Version* 2.1.8.
- Parametrix, Inc. 2007 Draft Final Remedial Investigation Report, Olympic View Sanitary Landfill.
- SCS Engineers. June 2006. Report of the 2005 Gas Probe and Groundwater Monitoring Well Installation at the Olympic View Sanitary Landfill.
- SCS Engineers. April 2009. Groundwater Monitoring Well Installation Report, Olympic View Sanitary Landfill.
- SCS Engineers. 2013. *Olympic View Sanitary Landfill, (OVSL) Sampling and Analysis Plan.* April.
- SCS Engineers. March 2016. 2015 Annual Monitoring Report, Olympic View Sanitary Landfill.
- USEPA 1994. Method 200.8, Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry, Revision 5.4 EMMC Version. Environmental Monitoring Systems Laboratory, Office of Research and Development.
- USEPA revised 2007. *Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods*, Third Ed., Environmental Monitoring Systems Laboratory, Office of Research and Development.
- Washington Department of Ecology. October 2010. Cleanup Action Plan, Olympic View Sanitary Landfill, Kitsap County, Washington.
- Washington Department of Ecology. January 2017. Periodic Review, Olympic View Sanitary Facility Site ID# 79649975,10015 SW Barney White Road, Port Orchard, Washington.
- Washington, Attorney General. January 31, 2001. Agreed Order No. DE 00SWFAPNR-1729.
- Waste Management of Washington (WMW). Modification 8, October 15, 2008. *Storm Water Pollution Prevention Plan*.

Table 1. Groundwater Well Construction Details 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Well ID	Northing	Easting	Measuring Point Elevation (ft. MSL)	Well Depth (ft. bgs)	Top of Screen Elevation (ft. MSL)	Bottom of Screen Elevation (ft. MSL)	Screen Length (ft.)
ater Quality Monito	oring Wells					, ,	
MW-2B1	189232.23	1157544.63	172.94	18	163	153	10
MW-4	188298.52	1156887.57	175.78	34	149	139	10
MW-13A	188233.33	1159346.53	288.74	155	141	131	10
MW-13B	188223.33	1159346.53	288.66	260	36	26	10
MW-15R	189905.03	1157711.29	180.66	33	157	147	10
MW-16	190804.53	1159350.37	240.01	70	178	168	10
MW-19C	188520.03	1157025.96	196.96	90	111	106	5
MW-20 MW-23A	188850.01 189485.84	1157062.68 1158085.12	198.41 182.28	49 23	165 172	150 157	15 15
MW-24	189795.14	1158383.22	208.24	42	172	161	15
MW-29A	188570.27	1156121.60	160.21	25	140	135	5
MW-32	188908.88	1156388.52	152.36	21	135	130	5
MW-33A	189304.18	1155636.34	147.68	20	140	125	15
MW-33C	189284.18	1155636.34	147.59	65	89	79	10
MW-34A	189391.16	1156929.63	197.95	48	168	148	20
MW-34C	189391.16	1156943.77	199.89	98	114	99	15
MW-35	188917.42	1159762.03	302.69	149	161	151	10
MW-36A	189754.10	1156935.20	192.68	50	147	142	5
MW-39	190362.60	1158325.32	189.92	25	174	164	10
MW-42	188690.50	1156617.90	187.43	33	159	154	5
MW-43	188407.60	1156636.60	186.42	30	161	156	5
/ater Level Measure	188267.80	115050225	272 (2	100	NIA .	NIA	T NIA
MW-1 MW-2A1	189242.23	1158593.35 1157544.63	273.63 174.22	180 38	NA 143	NA 133	NA 10
MW-5	188840.50	1156959.90	164.37	36 14	159.5	149.5	10
MW-10	188737.81	1156265.18	155.12	17.5	139.3	137	5
MW-11	188424.54	1156062.42	155.04	22	137	132	5
MW-12	187614.62	1158267.67	233.09	70	183	163	20
MW-13	188243.33	1159346.53	288.94	40	256	246	10
MW-14	190169.37	1159300.21	228.22	80	151	146	5
MW-17	187977.80	1158110.35	208.01	54	163	153	10
MW-18	187322.70	1158398.81	258.34	75	199	184	15
MW-19A	188540.03	1157025.96	195.74	45.5	165	150	15
MW-19B	188530.03	11 <i>57</i> 025.96	195.82	59.5	146	136	10
MW-19D	188510.03	1157025.96	196.83	143	61	51	10
MW-21	188737.81	1156245.18	156.03	15	150	140	10
MW-23B	189475.84	1158085.12	182.42	60	130	120	10
MW-23C	189465.84	1158085.12	182.41	114	76	66	10
MW-26 MW-27	191159.90	1158911.65	189.73 200.65	25.5 32.5	178 182	163 167	15 15
MW-28	190934.05 191379.07	1158891.56 1158948.49	181.05	15	174.5	164.5	10
MW-29B	188580.27	1156121.60	161.69	65	110	95	15
MW-29C	188479.36	1156072.97	156.92	50	111	106	5
MW-30A	188623.50	1155612.45	166.74	35	136	131	5
MW-30B	188613.50	1155612.45	166.6	86	84	79	5
MW-31	189001.26	1155843.17	148.28	20	136	126	10
MW-33B	189294.18	1155636.34	147.55	40	114	104	10
MW-34B	189308.15	1156936.77	198.93	208	-1	-11	10
MW-36	189751.87	1156955.77	189.39	100	99	89	10
MW-37	189012.89	1155477.10	145.93	9	139	134	5
MW-38	188892.50	1155905.23	149.93	47	110	101	10
MW-40A	187885.89	1156779.45	180.16	24.4	160	155	5
MW-40B	187882.31	1156784.38	180.24	67	118	113	5
MW-40C	187875.42	1156785.79	181.16	103.7	82	77	5
MW-41A MW-41B	188106.83	1157522.05	199.43	35.7	168	163	5
	188104.34	11 <i>575</i> 30.68	200.64	79	126	121	5

Notes:

NA: screened interval information was not available for well MW-1.

Project No. 04204027.20 SCS ENGINEERS

Table 2. Summary of Analytical Parameters 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

	Volatile (Compo	_	Geochemical Indicator Parameters**	Leachate	Indicator Po	arameters	Field Parameters	Metals* and Nitrate		Appendix III Parameters b
Well	WAC 173- 351 Appendix I	Vinyl Chloride (SIM)	Cl, Fe, Mn, SO ₄ , Ca, Mg, Na, K, Alkalinity	Ammonia	TOC, TDS	BOD***, COD	Dissolved Oxygen, ORP, pH, Specific Conductivity, Temperature, Turbidity	As, Sb, Ba, Be, Cd, Cr, Co, Cu, Pb, Ni, Se, Ag, Tl, V, Zn, NO ₃	TSS	VOCs, SVOCs, PCBs, Pest/Herb, Hg, Sn
	Monitoring Lo	ocations								
MW-15R MW-34A MW-34C MW-39 MW-42 MW-43	√	√	✓	✓	√		✓	√	✓	
	e Monitoring I	Locations				•				
MW-2B1 MW-4 MW-19C MW-20 MW-23A MW-24	√	√	✓	✓	✓		✓	✓	✓	
	ent Monitoring	Locations	I	ı	T	1				
MW-29A° MW-32 MW-33A° MW-33C	✓	✓	✓	✓	✓		✓	✓	✓	
	t Monitoring Lo	ocations								
MW-13A MW-13B MW-16 MW-35	√	✓	✓	✓	✓		✓	✓	✓	
	Nonitoring Loca									
L-INF	✓	✓	√	√	√	√	√	✓		
LP-LCD OBWL-TD	✓	√	∨ ✓	✓ ✓	∨ ✓	✓ ✓	√	✓		

Notes

- √ Indicates wells were sampled for selected parameters
- * The Appendix I metals in the groundwater samples were analyzed for only total metals fractions (commencing 1Q16).
- ** Only Iron and Manganese were analyzed for both total and dissolved fractions during 2016.
- *** BOD only analyzed at LP-LCD
- $^{\mbox{\tiny α}}$ Sampled semi-annually in June and December 2016.
- ^b Groundwater and leachate samples were not analyzed for Appendix III parameters during 2016.

Table 3. Groundwater Elevations 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

	Measuring	Q1 Febr	uary 2016	Q2 Mc	ıy 2016	Q3 Aug	ust 2016	Q4 November 2016	
Location ID	Point								
Locuiton 15	Elevation	DTW	WLE	DTW	WLE	DTW	WLE	DTW	WLE
	(ft. MSL)								
Water Quality Mon	itoring Wells								
MW-2B1	172.94	5.51	167.43	5.78	167.16	7.27	165.67	6.20	166.74
MW-4	175.78			13.45	162.33	15.61	160.17	11.79	163.99
MW-13A	288.74	55.02	233.72	54.04	234.70	46.63	242.11	45.76	242.98
MW-13B	288.66	57.71	230.95	57.79	230.87	59.91	228.75	59.30	229.36
MW-15R	180.66	17.67	162.99	18.19	162.47	19.33	161.33	18.30	162.36
MW-16	240.01	53.70	186.31	51.91	188.10	58.07	181.94	59.30	180.71
MW-19C	196.96	31.73	165.23	32.89	164.07	34.46	162.50	32.89	164.07
MW-20	198.41	34.12	164.29	35.62	162.79	36.57	161.84	35.01	163.40
MW-23A	182.28	9.90	172.38	9.85	172.43	12.38	169.90	12.06	170.22
MW-24	208.25	28.53	179.72	28.52	179.73	32.59	175.66	32.20	176.05
MW-29A	160.21	4.00		13.33	146.88	15.00	145.21	14.68	145.53
MW-32	152.36	1.00	151.36	1.32	151.04	2.16	150.20	1.08	151.28
MW-33A	147.68	9.40	138.28	5.61	142.07	6.28	141.40	4.41	143.27
MW-33C	147.59	1.20	146.39	2.42	145.17	3.42	144.17	1.63	145.96
MW-34A MW-34C	197.95 199.89	38.04 39.88	159.91	38.97 41.30	158.98 158.59	40.43 42.24	157.52 157.65	38.91	159.04
MW-34C	302.69	39.88 70.14	160.01 232.55	71.40	231.29	72.44	230.25	40.73 71.17	159.16 231.52
MW-36A	193.15	29.64	163.04	31.05	161.63	31.86	160.82	30.43	162.25
MW-39	189.92	16.24	173.68	18.98	170.94	21.84	168.08	17.16	172.76
MW-42	187.76	26.10	161.33	27.21	160.22	28.78	158.65	26.41	161.02
MW-43	186.57	20.10		24.17	162.25	25.93	160.49	25.15	161.02
Water Level Measu				24.17	102.23	25.55	100.43	20.10	101.27
MW-1	273.63	NM	NM	NM	NM	NM	NM	NM	NM
MW-2A1	174.22	6.55	167.67	6.70	167.52	8.42	165.80	7.48	166.74
MW-5	164.37	1.25	163.12	1.59	162.78	3.24	161.13	1.82	162.55
MW-9	160.34			2.95	157.39	3.78	156.56	2.22	158.12
MW-10	155.12	2.80	152.32	4.01	151.11	5.32	149.89	NM	NM
MW-11	155.04	NM	NM	NM	NM	NM	NM	NM	NM
MW-12	233.09	41.20	191.89	41.85	191.24	48.03	185.06	47.85	185.24
MW-13	288.94			28.40	260.54	29.47	259.47	27.81	261.13
MW-14	228.22	NM	NM	NM	NM	NM	NM	NM	NM
MW-17	208.01	45.50	162.51	29.27	178.74	33.57	174.44	33.06	174.95
MW-18	258.34	58.70	199.64	58.81	199.53	63.97	194.37	64.26	194.08
MW-19A	195.74	30.38	165.36	31.96	163.78	33.28	162.46	31.62	164.12
MW-19B	195.82	30.45	165.37	32.00	163.82	33.33	162.49	31.70	164.12
MW-19D	196.83	30.33	166.50	30.77	166.06	33.38	163.45	32.09	164.74
MW-21	156.03	7.34	148.69	5.23	150.80	6.50	149.53	4.09	151.94
MW-23B	182.42	10.13	172.29	10.08	172.34	12.88	169.54	12.39	170.03
MW-23C	182.41	10.10	172.31	9.98	172.43	13.08	169.33	12.66	169.75
MW-26	189.73	8.65	181.08	8.05	181.68	11.60	178.13	11.97	177.76
MW-27	200.65	33.90	166.75	17.82	182.83	22.17	178.48	22.33	178.32
MW-28	181.05	4.75	176.30	4.71	176.34	5.63	175.42	5.51	175.54
MW-29B	161.69	15.40	146.29	16.98	144.71	18.55	143.14	16.23	145.46
MW-29C	156.92	9.00	147.92	11.64	145.28	13.34	143.58	10.68	146.24
MW-30A	166.74	22.12	144.62	23.79	142.95	25.40	141.34	23.12	143.62
MW-30B	166.60	22.03	144.57	23.62	142.98	25.22	141.38	22.97	143.63
MW-31	148.28	1.83	146.45	3.13	145.15	4.59	143.69	1.93	146.35
MW-33B	147.55	1.30	146.25	2.52	145.03	3.50	144.05	1.72	145.83
MW-34B	198.93	37.93	161.00	39.75	159.18	40.11	158.82	38.74	160.19
MW-36	189.39	29.76	159.63	31.14	158.25	31.98	157.41	30.54	158.85
MW-37	145.93	3.50	142.43	4.85	141.08	5.98	139.95	3.30	142.63
MW-38	149.93	3.13	146.80	4.46	145.47	5.90	144.03	3.26	146.67
MW-40A	176.63	12.22	100.01	13.53	166.63	16.25	163.91	13.79	166.37
MW-40B	176.72	12.23	168.01	13.66	166.58	16.34	163.90	14.02	166.22
MW-40C	176.78	15.49	165.67	14.12	167.04	16.58	164.58	15.21	165.95
MW-41A	195.91		470.10	21.35	178.08	25.12	174.31	24.11	175.32
MW-41B	196.24	21.24	179.40	21.54	179.10	25.43	175.21	24.68	175.96
MW-41C Notes:	196.15	23.10	176.57	23.25	176.42	26.84	172.83	26.17	173.50

Notes: DTW = Depth to Water (ft) WLE = Water level elevation

Elevations, ft. MSL

NM = Not measured due to access issues

-- = Well dry during sampling event

Project No. 04204027.20 **SCS ENGINEERS**

Table 4A. Detections and Field Measurements - Compliance Monitoring Wells 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Parameter	Units	MW-15R 2/24/2016	MW-15R 5/17/2016	MW-15R 8/29/2016	MW-15R 11/15/2016	MW-34A 2/23/2016	MW-34A 5/17/2016	MW-34A 8/31/2015	MW-34A 11/15/2016	MW-34C 2/23/2016	MW-34C 5/17/2016	MW-34C 8/31/2016	MW-34C 11/15/2016	MW-39 2/24/2016	MW-39 5/16/2016	MW-39 8/31/2016	MW-39 11/14/2016	MW-42 2/22/2016	MW-42 5/16/2016	MW-42 8/29/2016	MW-42 11/16/2016	MW-43 2/22/2016	MW-43 5/16/2016	MW-43 8/29/2016	MW-43 11/14/2016
Field Parameter	•	•				•				•				•											
Dissolved Oxygen	mg/L	1.27	0.28	0.44	0.85	5.57	5.55	3.52	0.51	0.17	0.33	0.38	0.58	1.21	0.25	0.2	1.28	0.15	0.14	0.19	0.3	4.07	0.18	0.51	2.73
Oxidation Reduction Potential	mV	123.0	146.0	104.0	109.0	162.1	168.0	145.0	119.6	-3.6	-22.0	-31.0	41.6	19.0	-87.0	-137.0	47.0	-96.0	-26.3	-117.0	-53.5	108.0	124.5	84.0	156.8
pH	рН	6.43	6.32	6.31	7.37	6.47	5.74	5.73	6.79	6.81	6.44	6.41	7.45	5.98	6.02	5.10	5.27	6.38	6.40	6.16	7.49	5.50	6.30	5.13	6.38
Specific Conductivity	umhos/cm	152	157	1 <i>57</i>	155	109	116	127	1 <i>77</i>	262	234	227	231	142	264	263	130	466	539	541	550	40	41	44	34
Temperature	deg C	10.37	10.5	11.05	10.45	12.20	12.7	12.88	12.47	13.00	13.3	13.61	12.6	10.15	10.3	11.56	12.89	12.52	11.8	13.13	12.57	8.11	8.8	10.88	12.63
Turbidity	NTU	4.19	1.70	2.80	1.21	1.23	2.90	1.82	1.25	22.00	128.10	372.00	77.9	7.46	2.10	1.51	4.53	11.38	4.70	2.27	3.75	5.27	3.50	4.21	1 <i>7</i> .19
General Chemistry	•	•				•				•				•			'								
Alkalinity, Bicarbonate (As CaCO3)	mg/L	73	74	66	<i>7</i> 1	46	56	58	80	130	110	100	110	65	90	90	57	190	230	220	220	12	17	17	13
Alkalinity, Total (As CaCO3)	mg/L	73	74	66	<i>7</i> 1	46	56	58	80	130	110	100	110	65	90	90	57	190	230	220	220	12	17	17	13
Ammonia (as N)	mg/L										0.031		0.03	0.11	0.44	0.47		5.4	5.7	5.8	5.4		0.043		0.03
Calcium, Dissolved	mg/L	14	13	14	13	10	10	12	15	25	22	22	24	10	12	12	13	38	38	43	42	3.2	3.0	0.055	3.2
Chloride	mg/L	2.3	2.7	2.6	2.3	1.8	1.7	2.5	3.2	4.3	4.4	4.7	4.4	2.6	6.2	6.1		9.7	17.0	15.0	12.0		1.3	1.8	
Iron, Dissolved	mg/L									0.21	0.58	0.32	0.62	11	35	34	0.37	22	23	24	27	0.32	0.26		
Iron, Total	mg/L			0.11					0.06	23	34	96 B	8.4	11	37	33 B	0.8	22	24	24	27	0.56	0.86	1.1	0.24
Magnesium, Dissolved	mg/L	8.4	8.5	9.1	9.4	3.9	4.5	5.1	8.5	11.0	10.0	8.6	11.0	5.1	7.7	6.8	6.1	13	14	15	14	1.3	1.5	0.33	1.4
Manganese, Dissolved	mg/L	0.0015	0.0024	0.0012	0.0013				0.0017	0.39	0.53	0.48 B	0.54	0.18	0.47	0.44 B	0.02	4.2	4.6	4.5	4.5	0.1	0.087	0.056	0.033
Manganese, Total	mg/L	0.0024	0.002	0.0084	0.0037	0.0016		0.0044	0.0027	2.4	0.9	14	0.6	0.18	0.42	0.41	0.017	4.3	4.5	4.5	4.4	0.11	0.076	0.057	0.036
Nitrate (As N)	mg/L	0.4	0.17	0.20	0.20	0.36	0.59	0.33						0.15			1.6	-				0.44	0.2	0.19	0.52
Potassium, Dissolved	mg/L									2.0								8.3	8.0	7.7	8.7				
Sodium, Dissolved	mg/L	6.6	5.3	5.5	6.3	7.3	7.0	7.7	9.7	13.0	12.0	9.5	12.0	5.8	8.6	8.4	4.8	21.0	21.0	22.0	21.0	2.4	2.2	1.8	2.3
Sulfate	mg/L	4.0	5.9	5.9	4.8	3.0	3.7	2.7	3.0	4.9	5.5	5.6	4.6	1.1			1.4	7.5	7.8	9.5	6.3	1.9	1.8	1.7	1.7
Total Dissolved Solids (TDS)	mg/L	110	98	96	91	96	100	120	120	180	170	170	160	89	120 B	130	76	240	260 B	270	250	24	32 B	27	28
Total Organic Carbon (TOC)	mg/L									2.2	1.5	3.7		1.2	2.8	2.2		6.7	6.7	6.4	7.2		1.1		1.2
Total Suspended Solids (TSS)	mg/L									260	87	430	19	7.6	12	29		9.2	14	24	31		6.4		
Metals	-,	•																							
Antimony, Total	mg/L																								
Arsenic, Total	mg/L	0.0002	0.00018	0.000187	0.000238	0.0004	0.00039	0.000474	0.000453	0.0156	0.0254	0.0699	0.00542	0.0006	0.00213	0.00171	0.000181	0.0014	0.0017	0.00193	0.00186				
Barium, Total	mg/L	0.0048	0.0046	0.0044	0.0044	0.0035	0.0026	0.0036	0.0045	0.085	0.14	0.59	0.037	0.0100	0.014	0.014	0.0086	0.110	0.110	0.110	0.110	0.0032	0.0031	0.0039	0.0034
Cadmium, Total	mg/L											0.00073										0.00022			
Chromium, Total	mg/L					0.0061	0.0061	0.0058																	
Cobalt, Total	mg/L											0.03			0.0072	0.0065									
Copper, Total	mg/L									0.0021	0.0027	0.013													
Lead, Total	mg/L																	-							
Nickel, Total	mg/L					0.0054						0.0047													
Vanadium, Total	mg/L	0.0044	0.0034	0.0029	0.0037	0.0045	0.0041	0.0044	0.0039	0.0027	0.0032	0.014													
Zinc, Total	mg/L		••									0.0093						1							
Volatile Organic Compounds																									
Acetone	ug/L																	3.3 J							
Methylcyclohexane	ug/L																								
Trichloroethene	ug/L																								
Vinyl chloride	ug/L									0.072	0.081	0.069 B	0.078 B					0.018 J	0.031	0.082 B	0.026 B				

Notes:

CaCO₃ = Calcium carbonate

deg-C = Degrees Celcius

J = Concentration is estimated

µmhos/cm = Microhms per centimeter

µg/L = Micrograms per liter

mg/L = Miliyoths

mV = Milivolts

NTU = Nephelometric turbidity units

SU = Standard units

--- Parameter not detected above the mg/L = Miligrams per liter

NM = Not Measured, see field notes

B = Anaylte detected in sample blank **Bold** = Anaylte exceeds a water quality standard.

-- = Parameter not detected above the project-specific reporting limit

mg/L = Miligrams per liter NM = Not Measured, see field notes

Table 4B. Detections and Field Measurements - Performance Monitoring Wells 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Parameter	Units	MW-2B1 2/23/2016	MW-2B1 5/17/2016	MW-2B1 8/30/2016	MW-2B1 11/15/2016	MW-4 2/22/2016	MW-4 5/16/2016	MW-4 9/1/2016	MW-4 11/14/2016	MW-19C 2/22/2016	MW-19C 5/17/2016	MW-19C 8/29/2016	MW-19C 11/14/2016	MW-20 2/23/2016	MW-20 5/17/2016	MW-20 8/29/2016	MW-20 11/14/2016	MW-23A 2/23/2016	MW-23A 5/17/2016	MW-23A 8/30/2016	MW-23A 11/16/2016	MW-24 2/24/2016	MW-24 5/17/2016	MW-24 8/30/2016	MW-24 11/14/2016
Field Parameter	•	•				•				•															
Dissolved Oxygen	mg/L	0.1	0.14	0.28	0.17	0.97	0.14	0.16	4.07	0.25	0.27	0.26	0.33	5.41	2.21	0.80	6.39	0.24	0.11	0.18	4.02	0.19	0.50	1.66	0.24
Oxidation Reduction Potential	mV	158.1	1.0	-29.0	80.2	173.0	124.4	111.0	142.0	22.0	-1.0	-29.0	63.1	171.0	130.0	73.0	121.8	155.0	7.2	43.0	145.0	125.9	83.0	110.0	107.9
pH	рН	6.70	6.11	6.06	7.29	5.73	6.65	6.11	5.06	6.69	6.66	6.46	7.41	6.02	6.28	6.24	6.94	6.15	6.54	5.82	6.11	6.63	6.63	5.88	6.63
Specific Conductivity	umhos/cm	177	232	233	241	71	135	137	50	134	134	168	154	230	376	337	200	175	142	153	88	147	119	115	127
Temperature	deg C	13.55	14.0	15.20	13.35	9.29	9.7	9.94	11.49	10.31	10.9	11.81	10.56	14.46	15.0	15.65	14.37	12.75	13.2	13.24	12.49	11.95	13.4	12.68	11.66
Turbidity	NTU	2.14	25.70	19.50	7.21	7.32	1.70	0.56	1.06	4.46	4.00	1.90	5.85	3.17	4.3	0.93	12.91	7.86	4.9	2.29	1.64	2.85	2.8	3.58	2.12
General Chemistry	•	•								•															
Alkalinity, Bicarbonate (As CaCO3)	mg/L	73	80	85	82	29	66	65	42	60	63	80	74	63	130	130	75	86	64	72	40	64	51	51	57
Alkalinity, Total (As CaCO3)	mg/L	73	80	85	82	29	66	65	42	60	63	80	74	63	130	130	75	86	64	72	40	64	51	51	57
Ammonia (as N)	mg/L	2	1.8	2.2	2.1					0.52	0.4	0.49	0.67						0.034						
Calcium, Dissolved	mg/L	17	17	19 B	18	6.2	11	13	4.3	12	11	15	16	20	33	30	19	19	13	16 B	7.8	12	9	10 B	11
Chloride	mg/L	4.8	17.0	13.0	14.0	1.9	2.1	2.0	1.4	2.0	2.4	4.7	5.7	9.9	11.0	11.0	8.3	3.0	2.7	2.3		2.6	3.2	2.6	2.5
Iron, Dissolved	mg/L		1.9	2.3	0.31						0.098	0.15	0.064							0.1					
Iron, Total	mg/L	0.21	3.6	4.1	1.1	0.13				0.14	0.24	0.18	0.12				0.18	1.3	0.50	0.31	0.098	0.14	0.10	0.19	
Magnesium, Dissolved	mg/L	5.2	5.1	5.3	5.6	2.9	6.2	5.7	2.0	6.0	5.9	7.8	8.8	10.0	18.0	17.0	11.0	9.2	6.1	7.2	3.4	7.3	5.4	5.7	6.5
Manganese, Dissolved	mg/L	1.8	2.5	2.4	2.5	0.022	0.44	0.87	0.021	0.97	0.87	1.1	1.2			0.066		0.51	1.0	1.5	0.035	1.2	0.68	0.45	0.7
Manganese, Total	mg/L	2.1	2.5	2.5	2.7	1.7	0.57	0.87	0.21	0.94	0.89	1.1	1.2	0.0074	0.016	0.29	0.45	1.0	1.3	1.7	0.065	1.4	0.86	1.6	1.7
Nitrate (As N)	mg/L				1.8				0.33					7.8	9.1	3.5	6.0		0.22		0.24		0.18	0.36	0.16 H
Potassium, Dissolved	mg/L	3.4	3.0	2.9	2.8					1.3	1.2	1.4	1.5	3.3	3.4	3.2	3.1	1.5				1.3			
Sodium, Dissolved	mg/L	5.2	13.0	13.0	11.0	4.8	6.7	6.8	3.0	6.0	5.4	6.4	6.1	8.3	11.0	9.2	9.3	5.6	5.0	5.7	3.5	4.9	4.6	4.3	5.0
Sulfate	mg/L	3.6	7.4	5.8	6.0	3.2	4.8	3.6	2.0	4.0	4.1	4.4	3.7	6.7	9.8	9.1	4.2	3.4	3.8	3.5	2.3 B	5.0	3.7	3.1	3.5
Total Dissolved Solids (TDS)	mg/L	110	160	140	140	53	90 B	130	36	94	91	110	110	160	230	200	160	130	100	93	87	100	83	77	86 H
Total Organic Carbon (TOC)	mg/L																								
Total Suspended Solids (TSS)	mg/L		6.4	6.4													4.0	-			26.0			5.6	
Metals																									
Antimony, Total	mg/L																								
Arsenic, Total	mg/L	0.0009	0.00321	0.0037	0.00133	0.0005	0.00062	0.00068	0.000292	0.0026	0.00232	0.00292	0.00288	0.0001	0.00014	0.000189	0.000182	0.0009	0.00024	0.000176	0.000081	0.0004	0.00027	0.000364	0.000271
Barium, Total	mg/L	0.0094	0.013	0.015	0.013	0.0057	0.0028	0.0023	0.0019	0.0036	0.0029	0.0035	0.0035	0.0110	0.0140	0.0120	0.016	0.0110	0.0048	0.0055	0.0078	0.0043	0.0028	0.005	0.0057
Cadmium, Total	mg/L													1				1							
Chromium, Total	mg/L																								
Cobalt, Total	mg/L																								
Copper, Total	mg/L																								
Lead, Total	mg/L																								
Nickel, Total	mg/L															0.0043	0.0048								
Vanadium, Total	mg/L					0.0029												0.0038	0.0026					0.0024	0.0022
Zinc, Total	mg/L																								
Volatile Organic Compounds										•															
Acetone	ug/L			3.7 J																					
Methylcyclohexane	ug/L																	-		0.18 J					
Trichloroethene	ug/L									1.1	1.2	1.2	0.99 J			0.65 J									
Vinyl chloride	ug/L		0.011 J	0.013 J B	0.0087 J B	0.0097 J	0.031	0.061 B	0.0095 J B	0.01 J		0.025 B	0.029 B			0.061 B									

B = Anaylte detected in sample blank H = Analyzed beyond hold time

Bold = Anaylte exceeds a water quality standard.

Notes:

CaCO₃ = Calcium carbonate mV = Milivolts B = Anayl deg-C = Degrees Celcius N = Nitrogen H = Analy J = Concentration is estimated NTU = Nephelometric turbidity units Bold = Analy Mily = Microhams per centimeter SU = Standard units

µg/L = Micrograms per liter SU = Standard units = Parameter not detected above the project-specific reporting limit mg/L = Miligrams per liter NM = Not Measured, see field notes

Table 4C. Detections and Field Measurements - Downgradient Monitoring Wells 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Parameter	Units	MW-29A 5/16/2016	MW-29A 11/14/2016	MW-32 2/24/2016	MW-32 5/16/2016	MW-32 9/1/2016	MW-32 11/16/2016	MW-33A 5/18/2016	MW-33A 11/17/2016	MW-33C 2/24/2016	MW-33C 5/18/2016	MW-33C 9/1/2016	MW-33C 11/17/2016	MW-36A 2/24/2016	MW-36A 5/17/2016	MW-36A 8/29/2016	MW-36A 11/15/2016
Field Parameter																	
Dissolved Oxygen	mg/L	0.15	0.23	0.40	0.15	0.36	1.18	0.57	0.43	0.12	0.25	0.3	0.26	2.16	1.58	1.23	2.9
Oxidation Reduction Potential	m∨	65.4	45.6	-47.0	37.5	-61.0	-2.3	1.0	39.2	90.2	-157.0	-122.0	-61.14	161.0	177.0	123.0	133.3
рН	рН	6.49	6.96	6.64	6.96	6.46	7.6	6.66	6.67	<i>7</i> .1 <i>7</i>	7.59	7.33	8.31	6.11	5.88	5.90	6.81
Specific Conductivity	umhos/cm	84	87	242	235	250	251	138	8.4	160	158	160	159	137	146	126	128
Temperature	deg C	8.80	11.34	12.00	12.10	12.49	12.13	9.40	9.99	8.88	9.70	11.07	9.24	9.58	9.70	10.73	9.71
Turbidity	NTU	2.40	8.87	3.81	2.90	0.90	1.50	12.00	8.61	4.75	1.60	2.49	1.12	5.31	1.60	1.34	1.75
General Chemistry																	
Alkalinity, Bicarbonate (As CaCO3)	mg/L	40	47	110	130	110	110	67	39	82	73	79	68	61	61	57	60
Alkalinity, Total (As CaCO3)	mg/L	40	47	110	130	110	110	67	39	82	73	79	68	61	61	57	60
Ammonia (as N)	mg/L	0.062	0.075						0.3						0.03		
Calcium, Dissolved	mg/L	6	7.4	23	20	23	20	14	8.6	1 <i>7</i>	1 <i>7</i>	18	17	11	10	9.9	10
Chloride	mg/L	1.3	1.7	7.3	6.5	6.4	7.0	2.9	2.2	2.9	3.0	3.0	2.8	1.7	1.5	1.5	1.7
Iron, Dissolved	mg/L	3.4	4.1	0.55	0.50	0.52	0.50		2.5		0.068		0.081			0.084	
Iron, Total	mg/L	3.9	4.6	0.55	0.76	0.55	0.61	1.5	2.5	0.28	0.14	0.2		0.07			0.078
Magnesium, Dissolved	mg/L	3.4	4.5	12.0	11.0	10.0	10.0	6.3	4.1	7.0	7.0	6.5	7.4	7.0	7.0	6.8	8.0
Manganese, Dissolved	mg/L	1.2	1.4	2.0	1.7	1.9	1.7	0.0052	0.089	0.15	0.15	0.15	0.15	0.0011			
Manganese, Total	mg/L	1.2	1.4	2.0	1.8	1.8	1.8	0.0098	0.083	0.22	0.15	0.29	0.15	0.0034	0.0011	0.0011	0.0013
Nitrate (As N)	mg/L													2.2	2.6	0.78	0.49
Potassium, Dissolved	mg/L			1.4			1.0			1.3	1.3	1.1	1.3	1.1			
Sodium, Dissolved	mg/L	2.9	3.6	13.0	11.0	11.0	12.0	4.0	3.0	4.7	4.5	4.3	4.2	8.4	7.0	6.1	7.3
Sulfate	mg/L			8.8	8.7	8.0	8.3	4.1	1.8	7.4	8.0	7.4	7.4	2.3	3.8	2.3	2.5
Total Dissolved Solids (TDS)	mg/L	76 B	58	180	160 B	170	150	86	62	110	100	100	95	120	110	99	96
Total Organic Carbon (TOC)	mg/L	1.6	1.7						2.5								
Total Suspended Solids (TSS)	mg/L		4.0				9.6	5.6	8.4				4.0				
Metals																	
Antimony, Total	mg/L																
Arsenic, Total	mg/L	0.00163	0.00199	0.009	0.0107	0.00918	0.00995	0.00028	0.000509	0.0024	0.00229	0.00259	0.00253	0.0006	0.00048	0.00051	0.000566
Barium, Total	mg/L	0.0059	0.0100	0.0046	0.0050	0.0041	0.0032	0.0021	0.0024	0.0051	0.0040	0.0043	0.0048	0.0032	0.0025	0.0024	0.0025
Cadmium, Total	mg/L																
Chromium, Total	mg/L													0.0160	0.011	0.0086	0.0085
Cobalt, Total	mg/L																
Copper, Total	mg/L																
Lead, Total	mg/L																
Nickel, Total	mg/L																
Vanadium, Total	mg/L							0.0026	0.0032					0.0038	0.0022	0.0029	0.0031
Zinc, Total	mg/L																
Volatile Organic Compounds				1				ı	.								
Acetone	ug/L																
Methylcyclohexane	ug/L																
Trichloroethene	ug/L				0.5 J	0.47 J											
Vinyl chloride	ug/L			0.31	0.28	0.35 B	0.46 B										

 $CaCO_3 = Calcium carbonate$ mV = Milivolts

B = Anaylte detected in sample blank

deg-C = Degrees Celcius

N = Nitrogen

Bold = Anaylte exceeds a water quality standard.

J = Concentration is estimated

NTU = Nephelometric turbidity units

 μ mhos/cm = Microhms per centimeter

SU = Standard units

µg/L = Micrograms per liter

-- = Parameter not detected above the project-specific reporting limit

mg/L = Miligrams per liter NM = Not Measured, see field notes

Table 4D. Detections and Field Measurements - Upgradient Monitoring Wells 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Parameter	Units	MW-13A 2/22/2016	MW-13A 5/16/2016	MW-13A 8/31/2016	MW-13A 11/14/2016	MW-13B 2/22/2016	MW-13B 5/16/2016	MW-13B 8/31/2016	MW-13B 11/14/2016	MW-16 2/24/2016	MW-16 5/16/2016	MW-16 8/31/2016	MW-16 11/14/2016	MW-35 2/22/2016	MW-35 5/16/2016	MW-35 8/31/2016	MW-35 11/15/2016
Field Parameter		•				•											
Dissolved Oxygen	mg/L	5.58	5.92	6.87	6.54	6.04	6.28	7.26	6.94	6.89	6.32	6.07	6.91	5.73	6.05	6.88	6.61
Oxidation Reduction Potential	mV	164.8	164.0	154.0	113	162.8	144.0	108	84	216.1	187.0	163	135	170.8	175.0	121	95
рН	рН	6.69	6.87	6.65	6.50	7.01	<i>7</i> .31	7.23	7.17	6.49	6.11	5.93	5.89	6.58	6.95	7.09	6.61
Specific Conductivity	umhos/cm	177	169	171	169	176	168	171	171	91	102	123	110	164	156	159	158
Temperature	deg C	9.59	9.8	9.98	9.57	9.30	9.9	10.43	10.41	9.02	9.4	9.66	9.81	10.31	10.1	10.78	10.41
Turbidity	NTU	1.03	1.5	0.86	0.84	1.17	4.3	0.65	0.89	0.95	4.2	0.57	2.51	0.99	4.7	0.67	0.78
General Chemistry	•	•				•											
Alkalinity, Bicarbonate (As CaCO3)	mg/L	80	90	84	92	77	87	82	80	40	50	60	56	72	82	77	91
Alkalinity, Total (As CaCO3)	mg/L	80	90	84	92	77	87	82	80	40	50	60	56	72	82	77	91
Ammonia (as N)	mg/L																
Calcium, Dissolved	mg/L	16.0	15.0	17.0	16.0	18.0	16.0	18.0	17.0	7.7	8.0	12.0	9.6	15.0	14.0	15.0	14.0
Chloride	mg/L	1.9	1.9	1.9	1.8	2.0	2.0	2.0	1.9	1.2	1.2	1.1	1.0	2.1	1.9	1.9	1.8
Iron, Dissolved	mg/L																
Iron, Total	mg/L				0.073								0.12				
Magnesium, Dissolved	mg/L	9.7	9.5	8.6	10.0	9.1	8.6	8.1	9.3	4.5	5.0	5.4	5.9	9.3	9.0	8.1	10.0
Manganese, Dissolved	mg/L								0.0012				0.0027				
Manganese, Total	mg/L									0.0019		0.0024	0.017				
Nitrate (As N)	mg/L	0.42	0.45	0.45	0.48	0.43	0.46	0.45	0.64	0.50	0.69	0.27	0.24	0.41	0.44	0.43	0.47
Potassium, Dissolved	mg/L																
Sodium, Dissolved	mg/L	5.9	5.5	5.4	5.4	5.8	5.2	5.8	5.1	4.4	4.8	5.4	5.0	5.6	5.2	5.1	6.3
Sulfate	mg/L	2.1	2.2	2.3	2.0	3.4	3.5	3.7	3	2.9	2.6	1.7	1.6	2.6	2.5	2.8	2.2
Total Dissolved Solids (TDS)	mg/L	100	99 B	130	110	100	99 B	120	100	79	83 B	93	86	93	100 B	95	120
Total Organic Carbon (TOC)	mg/L																
Total Suspended Solids (TSS)	mg/L									-							
Metals																	
Antimony, Total	mg/L			0.001													
Arsenic, Total	mg/L	0.0002	0.00016	0.000177	0.00017	0.0003	0.00029	0.000311	0.000314	0.0003	0.0003	0.000311	0.000381	0.0001	0.0001	0.000109	0.000114
Barium, Total	mg/L	0.0023	0.003	0.0029	0.0028	0.0036	0.0034	0.0041	0.0029	0.0027	0.0031	0.0042	0.0045	0.0031	0.0033	0.0029	0.0027
Cadmium, Total	mg/L																
Chromium, Total	mg/L					0.0033	0.0032	0.0031	0.0036	0.0077	0.0066	0.0092	0.0085				
Cobalt, Total	mg/L																
Copper, Total	mg/L				0.0021												
Lead, Total	mg/L																
Nickel, Total	mg/L																
Vanadium, Total	mg/L	0.0040	0.0039	0.0041	0.0039	0.0058	0.0056	0.0054	0.0061	0.0043	0.0034	0.0042	0.0049	0.0045	0.0046	0.0046	0.0043
Zinc, Total	mg/L												0.0056				
Volatile Organic Compounds		T				ı											
Acetone	ug/L																
Methylcyclohexane	ug/L																
Trichloroethene	ug/L																
Vinyl chloride Notes:	ug/L				0.008 J B												

Notes:

CaCO₃ = Calcium carbonate mV = Milivolts B = Anaylte detected in sample blank deg-C = Degrees Celcius N = Nitrogen Bold = Anaylte exceeds a water quality standard.

 $J = Conentration is estimated \\ NTU = Nephelometric turbidity units$

 $\mu mhos/cm = Microhms per centimeter$ SU = Standard units

 $\mu g/L = Micrograms per liter$ --= Parameter not detected above the project-specific reporting limit

mg/L = Miligrams per liter NM = Not Measured, see field notes

Table 4E. Detections and Field Measurements - Leachate and Leak Detection Locations 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Parameter	Units	L-INF* 11/14/2016	OBWL-TD 11/14/16	LP-LCD 3/8/2016	LP-LCD 6/20/2016	LP-LCD 9/19/2016	LP-LCD 11/22/2016
Field Parameter							
Dissolved Oxygen	mg/L	6.16	8.53	8.91	4.70	6.10	3.10
Oxidation Reduction Potential	m∨	104.0	129.3	53.2	48.0	133.2	-2.0
рН	рН	7.83	6.98	7.25	7.23	7.38	7.12
Specific Conductivity	umhos/cm	43.83	145	3875	3818	3345	3094
Temperature	deg C	18.24	13.29	9.41	19.10	21.70	11.40
Turbidity	NTU	31.38	25.77	4.35	24.1	4.3	119.0
General Chemistry	•	•					
Alkalinity, Bicarbonate (As CaCO3)	mg/L	1600	57	790	800	800	790
Alkalinity, Total (As CaCO3)	mg/L	1600	57	790	800	800	790
Ammonia (as N)	mg/L	150.0		5.2	4.7	11.0	4.7
Biochemical Oxygen Demand	mg/L	NA	NA		2.5	10.0	14 H
Calcium, Dissolved	mg/L	150	24	NA	NA	NA	NA
Calcium, Total	mg/L	NA	NA	66	57	49	58
Chemical Oxygen Demand	mg/L	340	14	170	150	180	190
Chloride	mg/L	680		640	600	660	630
Iron, Dissolved	mg/L	0.42		NA	NA	NA	NA
Iron, Total	mg/L	NA	NA	0.65		0.51	0.54
Magnesium, Dissolved	mg/L	94	2.9	NA	NA	NA	NA
Magnesium, Total	mg/L	NA	NA	37	15	29	34
Manganese, Dissolved	mg/L	2.7	0.008	NA	NA	NA	NA
Manganese, Total	mg/L	NA	NA	0.73		0.8	0.73
Nitrate/Nitrite	mg/L	0.36	0.27	NA	NA	NA	NA
Potassium, Dissolved	mg/L	100	2.1	NA	NA	NA	NA
Potassium, Total	mg/L	NA	NA	69	3.1	76	76
Sodium, Dissolved	mg/L	690	5.7	NA	NA	NA	NA
Sodium, Total	mg/L	NA	NA	780	66	700	740
Sulfate	mg/L	280	22	290	310	310	260
Total Dissolved Solids (TDS)	mg/L	2700	140	2,500	2,400	2,200	2,400 H
Total Organic Carbon (TOC)	mg/L	100	1.6	59	53	64	54
Metals							
Antimony, Dissolved	mg/L		0.0029	NA	NA	NA	NA
Barium, Dissolved	mg/L	0.19	0.015	NA	NA	NA	NA
Chromium, Dissolved	mg/L	0.0068		NA	NA	NA	NA
Cobalt, Dissolved	mg/L	0.0071		NA	NA	NA	NA
Nickel, Dissolved	mg/L	0.061	0.0047	NA	NA	NA	NA
Vanadium, Dissolved	mg/L	0.0069		NA	NA	NA	NA
Zinc, Dissolved	mg/L		0.13	NA	NA	NA	NA
Volatile Organic Compounds				·			
Butyl alcohol, tert-	ug/L	190		NA	NA	NA	NA
Tetrahydrofuran	ug/L	43		NA	NA	NA	NA
Vinyl chloride	ug/L	0.046 J B		NA	NA	NA	NA

NA = Not Analyed mV = Milivolts

 $CaCO_3 = Calcium carbonate$ deg-C = Degrees Celcius

N = Nitrogen

J = Concentration is estimated

NTU = Nephelometric turbidity units

µmhos/cm = Microhms per centimeter

SU = Standard units

 μ g/L = Micrograms per liter

-- = Parameter not detected above the project-specific reporting limit

mg/L = Miligrams per liter NM = Not Measured, see field notes H = Analyzed beyond hold time

B = Anaylte detected in sample blank

Table 5. 2016 Groundwater and Leachate VOC Detections 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Parameter	Units	Event	Well Type	Well	Result
Acetone	ug/L	Q116	Compliance	MW-42	3.3 J
		Q316	Performance	MW-2B1	3.7 J
Butyl alcohol, tert-	ug/L	Q416	System	L-INF	190
Methylcyclohexane	ug/L	Q316	Performance	MW-23A	0.18 J
Tetrahydrofuran	ug/L	Q416	System	L-INF	43
Trichloroethene	ug/L	Q116	Performance	MW-19C	1.1
		Q216	Downgradient	MW-32	0.5 J
		Q216	Performance	MW-19C	1.2
		Q316	Downgradient	MW-32	0.47 J
		Q316	Performance	MW-19C	1.2
		Q316	Performance	MW-20	0.65 J
		Q416	Performance	MW-19C	0.99 J
Vinyl chloride	ug/L	Q116	Compliance	MW-42	0.018 J
		Q116	Compliance	MW-34C	0.072
		Q116	Downgradient	MW-32	0.31
		Q116	Performance	MW-19C	0.01 J
		Q116	Performance	MW-4	0.0097 J
		Q216	Compliance	MW-34C	0.081
		Q216	Compliance	MW-42	0.031
		Q216	Downgradient	MW-32	0.28
		Q216	Performance	MW-2B1	0.011 J
		Q216	Performance	MW-4	0.031
		Q316	Compliance	MW-34C	0.069 B
		Q316	Compliance	MW-42	0.082 B
		Q316	Downgradient	MW-32	0.35 B
		Q316	Performance	MW-20	0.061 B
		Q316	Performance	MW-19C	0.025 B
		Q316	Performance	MW-2B1	0.013 J B
		Q316	Performance	MW-4	0.061 B
		Q416	Compliance	MW-42	0.026 B
		Q416	Compliance	MW-34C	0.078 B
		Q416	Downgradient	MW-32	0.46 B
		Q416	Performance	MW-4	0.0095 J B
		Q416	Performance	MW-19C	0.029 B
		Q416	Performance	MW-2B1	0.0087 J B
		Q416	System	L-INF	0.046 J B
		Q416	Upgradient	MW-13A	0.008 J B

J = Indicates that concentration is estimated due to low concentration in sample

B = Indicates that compound was detected in the method blank for the given parameter

Table 6A. Summary of Significant Parameter Trends by Well Type 2016 Annual Monitoring Report Olympic View Sanitary Lanfill, Kitsap County, Washington

Significant	VOC Trends	Significant Inorgan	ic Parameter Trends
Increasing	Decreasing	Increasing	Decreasing
Upgradient Wells			
None	None	Alkalinity, Bicarbonate	Arsenic, Total
		Alkalinity, Total	Sulfate
		Nitrate	Chloride
		Temperature	
Performance Wells			
None	Trichloroethene	Nitrate	Alkalinity, Bicarbonate
	Vinyl Choride	Sulfate	Alkalinity, Total
		Temperature	Arsenic, Total
			Calcium, Dissolved
			Chloride
			Iron, Total
			Magnesium, Dissolved
			Sodium, Dissolved
			Specific Conductivity
			Sulfate
			Temperature
Compliance Wells			
None	Vinyl Choride	рН	Alkalinity, Bicarbonate
		Potassium, Dissolved	Alkalinity, Total
		Temperature	Ammonia
			Calcium, Dissolved
			Chloride
			Magnesium, Dissolved
			Sodium, Dissolved
			Specific Conductivity
			Sulfate
			Total Dissolved Solids
Downgradient Wells	T	T	I
None	None	Nitrate	Alkalinity, Bicarbonate
		Temperature	Alkalinity, Total
		рН	Ammonia
			Barium, Total
			Calcium, Dissolved
			Chloride
			Magnesium, Dissolved
			Specific Conductivity
			Sulfate
			Total Dissolved Solids

Results of Sen's Non-Parametric Test for Trend

Trend Test Period: January 2005 through December 2016

Trend Test Wells:

- Compliance Wells: MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43
- Performance Wells: MW-2B1, MW-4, MW-19C, MW-20, MW-23A, MW-24
- Downgradient Wells: MW-9*, MW-29A**, MW-32, MW-33A**, MW-33C, MW-36A
- Upgradient Wells MW-13A, MW-13B, MW-16, MW-35,

*no longer routinely sampled; **sampled semi-annually

Trend Test A = all organic parameters listed in Appendix I and Appendix II of WAC 173-351-990 that have been detected at least once in at least one of 22 wells comprising the network of 1) compliance, 2) performance, 3) downgradient, and 4) upgradient site monitoring wells, during the trend test period. This includes the following constituents:

	Significant Increasing Trends	Significant Decreasing Trends
1,1-Dichloroethane	None	None
1,2-Dichloroethene (total)	None	None
1,2-Dichlorobenzene	None	None
1,4-Dichlorobenzene	None	None
Acetone	None	None
Benzene	None	None
Carbon Disulfide	None	None
Chlorobenzene	None	None
Chlorodifluoromethane	None	None
Chloroethane	None	None
Chloroform	None	None
Chloromethane	None	None
cis-1,2-dichloroethene	None	None
Dichlorodifluoromethane	None	None
Ethyl Ether	None	None
Methylene Chloride	None	None
Naphthalene	None	None
n-Butyl Alcohol	None	None
tert-Butyl Alcohol	None	None
Tetrachloroethene	None	None
Tetrahydrofuran	None	None
Toluene	None	None
trans-1,2-Dichloroethene	None	None
Trichloroethene	None	MW-19C (graph 509)
Vinyl Chloride	None	MW-19C (graph 530) MW-34C (graph 540)

	Significant Increasing Trends	Significant Decreasing Trends
Antimony, total	None	None
Arsenic, total	None	MW-19C (graph 89) MW-24 (graph 92) MW-35 (graph 100)
Barium, total	None	MW-32 (graph 116)
Beryllium, total	None	None
Cadmium, total	None	None
Chromium, total	None	None
Cobalt, total	None	None
Copper, total	None	None
ead, total	None	None
Nickel, total	None	None
Selenium, total	None	None
Silver, total	None	None
Fhallium, total	None	None
/anadium, total	None	None
Zinc, total	None	None
Nitrate (as N)	MW-20 (graph 384) MW-35 (graph 394) MW-36A (graph 395)	None
рН	MW-32 (graph 410) MW-34C (graph 414) MW-42 (graph 419)	None
Specific Conductivity	None	MW-15R (graph 507) MW-19C (graph 509) MW-23A (graph 511) MW-24 (graph 512) MW-29A (graph 513) MW-2B1 (graph 514) MW-32 (graph 515) MW-33A (graph 516) MW-34A (graph 518) MW-34C (graph 519) MW-4 (graph 523)

Trend Test B = all metals and groundwater quality parameters listed in Appendix I and Appendix II of WAC (173-351-990)							
	Significant Increasing Trends	Significant Decreasing Trends					
Temperature	MW-13A (graph 547) MW-15R (graph 549) MW-20 (graph 552) MW-2B1 (graph 556) MW-32 (graph 557) MW-33C (graph 559) MW-34A (graph 560) MW-34C (graph 561) MW-35 (graph 562) MW-4 (graph 565)	MW-24 (graph 554)					
Calcium, dissolved	None	MW-15R (graph 171) MW-23A (graph 175) MW-24 (graph 176) MW-29A (graph 177) MW-2B1 (graph 178) MW-32 (graph 179) MW-33A (graph 180) MW-34A (graph 182) MW-34C (graph 183) MW-36A (graph 185)					
Bicarbonate Alkalinity as CaCO3	MW-13B (graph 2) MW-35 (graph 16)	MW-15R (graph 3) MW-23A (graph 7) MW-24 (graph 8) MW-2B1 (graph 10) MW-34A (graph 14) MW-34C (graph 15) MW-36A (graph 17)					
Magnesium, dissolved	None	MW-15R (graph 318) MW-23A (graph 322) MW-24 (graph 323) MW-2B1 (graph 325) MW-33A (graph 327) MW-34A (graph 329) MW-34C (graph 330) MW-42 (graph 335)					

<u> </u>	Significant Increasing Trends	Significant Decreasing Trends
	Significant increasing frends	
		MW-13A (graph 526)
		MW-13B (graph 527)
		MW-19C (graph 530)
ulfate	MW-24 (graph 533)	MW-23A (graph 532)
		MW-36A (graph 542)
		MW-4 (graph 544)
		MW-42 (graph 545)
		MW-15R (graph 486)
		MW-19C (graph 488)
		MW-23A (graph 490)
odium, dissolved	None	MW-24 (graph 491)
·		MW-2B1 (graph 493)
		MW-34A (graph 497)
		MW-34C (graph 498)
		MW-13B (graph 191)
		MW-15R (graph 192)
		MW-16 (graph 193)
		MW-19C (graph 194)
		MW-23A (graph 196)
		MW-2B1 (graph 199)
hloride	None	MW-33A (graph 201)
		MW-34A (graph 203)
		MW-34C (graph 204)
		MW-35 (graph 205)
		MW-36A (graph 206)
		MW-4 (graph 208)
otassium, dissolved	MW-42 (graph 440)	None
		MW-15R (graph 24)
		MW-23A (graph 28)
		MW-24 (graph 29)
otal Alkalinity as CaCO3	MW-13B (graph 23)	MW-2B1 (graph 31)
•	MW-35 (graph 37)	MW-34A (graph 35)
		MW-34C (graph 36)
		MW-36A (graph 38)

Trend Test B = all metals and groundwater quality parameterslisted in Appendix I and Appendix II	,	
	Significant Increasing Trends	Significant Decreasing Trends
Iron, total	None	MW-24 (graph 281)
Manganese, total	None	None
Ammonia (as N)	None	MW-29A (graph 51) MW-43 (graph 63)
Total Organic Carbon	None	None
Total Dissolved Solids	None	MW-15R (graph 591) MW-23A (graph 595) MW-24 (graph 596) MW-2B1 (graph 598) MW-32 (graph 599) MW-33A (graph 600) MW-34C (graph 603)

Table 7. Fourth Quarter 2016 Prediction Limit Exceedances 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Well Type	Well Location	Date Sampled	Parameter	Units	Result	Prediction Limit
Compliance	MW-15R	11/15/2016	Sodium, dissolved	mg/L	6.3	6.2
	MW-34A	11/15/2016	Barium, total	mg/L	0.0045	0.0045
			Sodium, dissolved	mg/L	9.7	6.2
	MW-34C	11/15/2016	Alkalinity, bicarbonate (as caco3)	mg/L	110	96
			Alkalinity, total (as caco3)	mg/L	110	96
			Arsenic, total	ug/L	5.42	0.4793
			Barium, total	mg/L	0.037	0.0045
			Calcium, dissolved	mg/L	24	17.1
			Iron, total	mg/L	8.4	0.31
			Magnesium, dissolved	mg/L	11	10.984
			Manganese, total	mg/L	0.6	0.062
			Sodium, dissolved	mg/L	12	6.2
			Specific conductivity	mS/cm	0.231	0.18
	MW-39	11/14/2016	Barium, total	mg/L	0.0086	0.0045
			Iron, total	mg/L	0.8	0.31
			рН	pH Units	5.27	5.88 - 8.24
	MW-42	11/16/2016	Alkalinity, bicarbonate (as caco3)	mg/L	220	96
			Alkalinity, total (as caco3)	mg/L	220	96
			Ammonia (as n)	mg/L	5.4	0.3
			Arsenic, total	ug/L	1.86	0.4793
			Barium, total	mg/L	0.11	0.0045
			Calcium, dissolved	mg/L	42	17.1
			Chloride	mg/L	12	4.4
			Iron, total	mg/L	27	0.31
			Magnesium, dissolved	mg/L	14	10.984
			Manganese, total	mg/L	4.4	0.062
			Potassium, dissolved	mg/L	8.7	1.2
			Sodium, dissolved	mg/L	21	6.2
			Specific conductivity	mS/cm	0.55	0.18
			Total dissolved solids (tds)	mg/L	250	175
			Total organic carbon (toc)	mg/L	7.2	6

Table 7. Fourth Quarter 2016 Prediction Limit Exceedances 2016 Annual Monitoring Report

Olympic View Sanitary Landfill, Kitsap County, Washington

Well Type	Well Location	Date Sampled	Parameter	Units	Result	Prediction Limit
Downgradient	MW-29A	11/14/2016	Arsenic, total	ug/L	1.99	0.4793
			Barium, total	mg/L	0.01	0.0045
			Iron, total	mg/L	4.6	0.31
			Manganese, total	mg/L	1.4	0.062
	MW-32	11/16/2016	Alkalinity, bicarbonate (as caco3)	mg/L	110	96
			Alkalinity, total (as caco3)	mg/L	110	96
			Arsenic, total	ug/L	9.95	0.4793
			Calcium, dissolved	mg/L	20	17.1
			Chloride	mg/L	7	4.4
			Iron, total	mg/L	0.61	0.31
			Manganese, total	mg/L	1.8	0.062
			Sodium, dissolved	mg/L	12	6.2
			Specific conductivity	mS/cm	0.251	0.18
	MW-33A	11/17/2016	Arsenic, total	ug/L	0.509	0.4793
			Iron, total	mg/L	2.5	0.31
			Manganese, total	mg/L	0.083	0.062
	MW-33C	11/17/2016	Arsenic, total	ug/L	2.53	0.4793
			Barium, total	mg/L	0.0048	0.0045
			Manganese, total	mg/L	0.15	0.062
			рН	pH Units	8.31	5.88 - 8.24
			Potassium, dissolved	mg/L	1.3	1.2
	MW-36A	11/15/2016	Arsenic, total	ug/L	0.566	0.4793
			Sodium, dissolved	mg/L	7.3	6.2

Notes:

Contents prepared by GeoChem Applications

deg C = degrees Celcius

CaCO3 = calcium carbonate

N = nitrogen

 $\mu g/L = micrograms per liter$

mg/L = milligrams per liter

 $mS/cm = milliSiemens \ per \ centimeter$

Table 8. 2016 Annual Groundwater Cleanup Level Statistical Evaluation Summary 2016 Annual Monitoring Report

Olympic View Sanitary Landfill, Kitsap County, Washington

Statistical Methodology: calculation of 95% UCL of mean per MTCAStat

Data Input (general): 3-year "moving window", updated annually **Data Input (specific):** January 1, 2014 through December 31, 2016

Wells Evaluated: (1) Compliance -- MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43; (2) Downgradient -- MW-29A, MW-32, MW-33A, MW-33C, MW-36A

Monitoring Well Type	Monitoring Well	Corrective Action Monitoring Parameter	N ^[1]	% Detect	Max ^[2]	95% UCL of Mean ^[3]	Units ^[4]	Note	Groundwater Cleanup Level ^[5]	Units ^[4]	Does 95% UCL Exceed Cleanup Level?	Significant Trend? ^[6]
Compliance	MW-15R	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0	ug/L	No	No
		Ammonia as N	12	8.3%	0.036	0.036	mg/L	Α	0.19	mg/L	No	No
		Arsenic, total	12	100%	0.238	0.215	ug/L	LN	0.462	ug/L	No	No
		cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35.0	ug/L	No	No
		Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50.0	ug/L	No	No
		Iron, total	11[<i>7</i>]	18%	0.11	0.11	mg/L	Α	0.3	mg/L	No	No
		Manganese, total	12	100%	0.021	0.01	mg/L	LN	0.05	mg/L	No	No
		Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
		Vinyl Chloride	12	0%	0.02 (ND)	0.02	ug/L	В	0.2	ug/L	No	No
	MW-34A	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0	ug/L	No	No
		Ammonia as N	12	0%	0.03 (ND)	0.03	mg/L	В	0.19	mg/L	No	No
		Arsenic, total	12	100%	0.5	0.4493	ug/L	LN	0.462	ug/L	No	No
		cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35.0	ug/L	No	No
		Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50.0	ug/L	No	No
		Iron, total	12	8.3%	0.06	0.06	mg/L	Α	0.3	mg/L	No	No
		Manganese, total	12	67%	0.0044	0.00251	mg/L	LN	0.05	mg/L	No	No
		Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
		Vinyl Chloride	12	8.3%	0.03	0.03	ug/L	Α	0.2	ug/L	No	No
	MW-34C	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0	ug/L	No	No
		Ammonia as N	12	25%	0.031	0.031	mg/L	Α	0.19	mg/L	No	No
		Arsenic, total	12	100%	84.6	84.6	ug/L	A**	0.462	ug/L	Yes	No
		cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35.0	ug/L	No	No
		Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50.0	ug/L	No	No
		Iron, total	12	100%	100	148	mg/L	LN	0.3	mg/L	Yes	No
		Manganese, total	12	100%	14	5.915	mg/L	Z	0.05	mg/L	Yes	No
		Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
		Vinyl Chloride	12	100%	0.16	0.11868	ug/L	LN	0.2	ug/L	No	Yes (↓)

Table 8. 2016 Annual Groundwater Cleanup Level Statistical Evaluation Summary 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Monitoring Well Type	Monitoring Well	Corrective Action Monitoring Parameter	N ^[1]	% Detect	Max ^[2]	95% UCL of Mean ^[3]	Units ^[4]	Note	Groundwater Cleanup Level ^[5]	Units ^[4]	Does 95% UCL Exceed Cleanup Level?	Significant Trend? ^[6]
Compliance	MW-39	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	υg/L	В	2.0	ug/L	No	No
		Ammonia as N	12	92%	0.48	0.39	mg/L	Z	0.19	mg/L	Yes	No
		Arsenic, total	12	100%	2.16	1.70338	υg/L	Z	0.462	ug/L	Yes	No
		cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	υg/L	В	35.0	ug/L	No	No
		Ethyl ether	12	0%	0.72 (ND)	0.72	υg/L	В	50.0	ug/L	No	No
		Iron, total	12	100%	40	33.555	mg/L	Z	0.3	mg/L	Yes	No
		Manganese, total	12	100%	0.49	0.427	mg/L	Z	0.05	mg/L	Yes	No
		Trichloroethene	12	0%	0.46 (ND)	0.46	υg/L	В	1.0	ug/L	No	No
		Vinyl Chloride	12	0%	0.02 (ND)	0.02	υg/L	В	0.2	ug/L	No	No
	MW-42	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	υg/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	υg/L	В	2.0	ug/L	No	No
		Ammonia as N	12	100%	6.7	6.216	mg/L	LN	0.19	mg/L	Yes	No
		Arsenic, total	12	100%	1.93	1.726	υg/L	LN	0.462	ug/L	Yes	No
		cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	υg/L	В	35.0	ug/L	No	No
		Ethyl ether	12	0%	0.72 (ND)	0.72	υg/L	В	50.0	ug/L	No	No
		Iron, total	12	100%	32	26.76	mg/L	LN	0.3	mg/L	Yes	No
		Manganese, total	12	100%	5.3	4.8	mg/L	LN	0.1	mg/L	Yes	No
		Trichloroethene	12	0%	0.46 (ND)	0.46	υg/L	В	1.0	ug/L	No	No
		Vinyl Chloride	12	92%	0.16	0.1295	υg/L	Z	0.2	ug/L	No	No
	MW-43	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	υg/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	υg/L	В	2.0	ug/L	No	No
		Ammonia as N	12	58%	0.12	0.081	mg/L	LN	0.19	mg/L	No	Yes (↓)
		Arsenic, total	12	17%	0.05	0.05	υg/L	Α	0.462	ug/L	No	No
		cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	υg/L	В	35.0	ug/L	No	No
		Ethyl ether	12	0%	0.72 (ND)	0.72	υg/L	В	50.0	ug/L	No	No
		Iron, total	11[8]	100%	1. <i>7</i>	1.2266	mg/L	LN	0.3	mg/L	Yes	No
		Manganese, total	12	100%	0.26	0.34247	mg/L	LN	0.05	mg/L	Yes	No
		Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
		Vinyl Chloride	12	0%	0.02 (ND)	0.02	υg/L	В	0.2	ug/L	No	No

Table 8. 2016 Annual Groundwater Cleanup Level Statistical Evaluation Summary 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Monitoring Well Type	Monitoring Well	Corrective Action Monitoring Parameter	N ^[1]	% Detect	Max ^[2]	95% UCL of Mean ^[3]	Units ^[4]	Note	Groundwater Cleanup Level ^[5]	Units ^[4]	Does 95% UCL Exceed Cleanup Level?	Significant Trend? ^[6]
Downgradient	MW-29A	1,1-Dichloroethane	6	0%	0.38 (ND)	0.38	ug/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	6	0%	0.84 (ND)	0.84	ug/L	В	2.0	ug/L	No	No
		Ammonia as N	6	100%	0.095	0.0906	mg/L	LN	0.19	mg/L	No	Yes (↓)
		Arsenic, total	6	100%	1.99	1.936	ug/L	LN	0.462	ug/L	Yes	No
		cis-1,2-dichloroethene	6	0%	0.81 (ND)	0.81	ug/L	В	35.0	ug/L	No	No
		Ethyl ether	6	0%	0.72 (ND)	0.72	ug/L	В	50.0	ug/L	No	No
		Iron, total	6	100%	4.7	4.627	mg/L	LN	0.3	mg/L	Yes	No
		Manganese, total	6	100%	1.4	1.388	mg/L	Z	0.05	mg/L	Yes	No
		Trichloroethene	6	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
		Vinyl Chloride	6	0%	0.02 (ND)	0.02	ug/L	В	0.2	ug/L	No	No
	MW-32	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0	ug/L	No	No
		Ammonia as N	11	18%	0.039	0.039	mg/L	Α	0.19	mg/L	No	No
		Arsenic, total	12	100%	26.6	13.827	ug/L	Z	0.462	ug/L	Yes	No
		cis-1,2-dichloroethene	12	8.3%	0.81 (ND)	0.81	ug/L	A*	35.0	ug/L	No	No
		Ethyl ether	11	0%	0.72 (ND)	0.72	ug/L	В	50.0	ug/L	No	No
		Iron, total	12	100%	6.3	2.025	mg/L	Z	0.3	mg/L	Yes	No
		Manganese, total	12	100%	4.1	2.839568	mg/L	LN	0.05	mg/L	Yes	No
		Trichloroethene	12	67%	0.5	0.5	ug/L	A***	1.0	ug/L	No	No
		Vinyl Chloride	12	100%	0.54	0.4274	ug/L	LN	0.2	ug/L	Yes	No
	MW-33A	1,1-Dichloroethane	6	0%	0.38 (ND)	0.38	ug/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	6	0%	0.84 (ND)	0.84	ug/L	В	2.0	ug/L	No	No
		Ammonia as N	6	67%	0.3	0.3	mg/L	Α	0.19	mg/L	Yes	No
		Arsenic, total	6	100%	0.509	0.4684	ug/L	LN	0.462	ug/L	Yes	No
		cis-1,2-dichloroethene	6	0%	0.81 (ND)	0.81	ug/L	В	35.0	ug/L	No	No
		Ethyl ether	6	0%	0.72 (ND)	0.72	ug/L	В	50.0	ug/L	No	No
		Iron, total	6	100%	5	5	mg/L	A**	0.3	mg/L	Yes	No
		Manganese, total	6	100%	0.1	0.082	mg/L	Z	0.05	mg/L	Yes	No
		Trichloroethene	6	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
		Vinyl Chloride	6	0%	0.02 (ND)	0.02	ug/L	В	0.2	ug/L	No	No

Table 8. 2016 Annual Groundwater Cleanup Level Statistical Evaluation Summary 2016 Annual Monitoring Report

Olympic View Sanitary Landfill, Kitsap County, Washington

Monitoring Well Type	Monitoring Well	Corrective Action Monitoring Parameter	N ^[1]	% Detect	Max ^[2]	95% UCL of Mean ^[3]	Units ^[4]	Note	Groundwater Cleanup Level ^[5]	Units ^[4]	Does 95% UCL Exceed Cleanup Level?	Significant Trend? ^[6]
Downgradient	MW-33C	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0	ug/L	No	No
		Ammonia as N	12	0%	0.03 (ND)	0.03	mg/L	В	0.19	mg/L	No	No
		Arsenic, total	12	100%	2.67	2.552	ug/L	LN	0.462	ug/L	Yes	No
		cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35.0	ug/L	No	No
		Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50.0	ug/L	No	No
		Iron, total	12	83%	0.38	0.2962	mg/L	LN	0.3	mg/L	No	No
		Manganese, total	12	100%	0.29	0.2209	mg/L	LN	0.05	mg/L	Yes	No
		Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
		Vinyl Chloride	12	0%	0.02 (ND)	0.02	ug/L	В	0.2	ug/L	No	No
	MW-36A	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50.0	ug/L	No	No
		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0	ug/L	No	No
		Ammonia as N	12	8.3%	0.03	0.03	mg/L	Α	0.19	mg/L	No	No
		Arsenic, total	12	100%	0.68	0.5859	ug/L	LN	0.462	ug/L	Yes	No
		cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35.0	ug/L	No	No
		Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50.0	ug/L	No	No
		Iron, total	12	50%	0.18	0.1333	mg/L	LN	0.3	mg/L	No	No
		Manganese, total	12	83%	0.0068	0.006	mg/L	LN	0.05	mg/L	No	No
		Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
		Vinyl Chloride	12	0%	0.02 (ND)	0.02	ug/L	В	0.2	ug/L	No	No

NOTES:

A = Detection frequency of data set too low and/or N too few to calculate 95% UCL of mean; therefore, the highest detected result in the data set used to represent 95% UCL of mean.

A* = Same as note "A" except that the highest value in the data set is below the reporting limit of one or more non-detected results; therefore, the highest reporting limit is used to represent the 95% UCL of the mean.

A** = MTCAStat suggests use of lognormal formula but calculation of 95% UCL of mean by Land's formula provides unrealistic result; therefore, the highest detected result is used to represent the 95% UCL of the mean.

A*** = MTCAStat suggests use of the Z-score method but then cites inability to calculate due to presence of censored values; therefore, the highest detected result is used to represent the 95% UCL of the mean.

B = Detection frequency = 0; therefore, the highest reporting limit in the data set is used to represent the 95% UCL of mean.

LN = The 95% UCL of the mean is calculated using Land's formula since lognormal distribution is indicated.

N = The 95% UCL of the mean is calculated using a normal-based t-statistic since a normal distribution is indicated.

Z = the 95% UCL of the mean is calculated using the Z-score method in MTCAStat since neither normal nor lognormal distribution can be determined.

^[1] N = number of data points used for UCL calculation of the mean; only SIM results used for Vinyl Chloride (e.g., duplicate results with higher RLs by non-SIM were omitted).

^[2] MAX = maximum detected result in the data set; if no detected results, then = maximum reporting limit for non-detect results (indicated with ND).

^[3] A 3-year moving data set is used for calculation of the UCL.

^[4] ug/L - micrograms per liter; mg/L = milligrams per liter.

^[5] Groundwater Cleanup Levels are listed on Table 3 of the October 2010 Draft Cleanup Action Plan.

^[6] Trend analysis results are based on data for the period January 2005 through December 2016; arrows indicated increasing (A) or decreasing (V) trends.

^[7] For MW-15R, outlier of 0.41 mg/L from 2-24-15 sampling event was removed prior to UCL calculation

^[8] For MW-43, outlier of 24 mg/L from 6-2-14 sampling event was removed prior to UCL calculation

Table 9. Groundwater Quality Criteria and Site-Specific Cleanup Level Exceedances 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

		Field Parameters	General Chemistry						VC	Cs
Comparison	Criteria	pH (SU)	Ammonia (mg N/L)	Arsenic, Total (mg/L)	Iron, Dissolved (mg/L)	Iron, Total (mg/L)	Manganese, Dissolved (mg/L)	Manganese, Total (mg/L)	TCE (μg/L)	Vinyl Chlorid (µg/L)
	VAC 173-200	6.5< >8.5		0.00005	0.3	0.3	0.05	0.05	3	0.02
•	Federal MCL			0.01					5	2
•	Federal MCL	6.5< >8.5	0.19		0.3	0.3	0.05	0.05		
specific MTCA (0.19	0.00046					1	0.2
MW-13A	Q1 2016			0.0002		I				
	Q2 2016			0.00016						
	Q3 2016			0.000177					-	-
	Q4 2016			0.00017						
MW-13B	Q1 2016			0.0003						
	Q2 2016			0.00029						
	Q3 2016 Q4 2016			0.000311						
MW-16	Q1 2016	6.49		0.0003						
	Q2 2016	6.11	-	0.0003					-	-
	Q3 2016	5.93		0.000311						
	Q4 2016	5.89		0.000381						
MW-35	Q1 2016			0.0001						
	Q2 2016 Q3 2016			0.0001						
	Q3 2016 Q4 2016			0.000109						
MW-2B1	Q1 2016		2.00	0.0009			1.8	2.1		
	Q2 2016	6.11	1.80	0.00321	1.9	3.6	2.5	2.5		
	Q3 2016	6.06	2.20	0.0037	2.3	4.1	2.4	2.5	-	
	Q4 2016		2.10	0.00133	0.31	1.1	2.5	2.7		
MW-4	Q1 2016	5.73		0.0005				1.7		0.021
	Q2 2016 Q3 2016	6.11		0.00062 0.00068			0.44	0.57 0.87		0.031
	Q3 2016 Q4 2016	5.06		0.00088			0.87	0.87		0.061
MW-19C	Q1 2016		0.52	0.0026			0.97	0.94	1.1	
	Q2 2016		0.40	0.00232			0.87	0.89	1.2	-
	Q3 2016	6.46	0.49	0.00292			1.1	1.1	1.2	0.025
	Q4 2016		0.67	0.00288			1.2	1.2		0.029
MW-20	Q1 2016	6.02		0.0001						
	Q2 2016 Q3 2016	6.28		0.0001 <i>4</i> 0.000189			0.066	0.29		0.061
	Q4 2016	0.24		0.000182				0.45		0.001
MW-23A	Q1 2016	6.15		0.0009		1.3	0.51	1.0		
	Q2 2016			0.00024		0.5	1.0	1.3		
	Q3 2016	5.82		0.000176		0.31	1.5	1.7		
	Q4 2016	6.11		0.000081				0.065		
MW-24	Q1 2016			0.0004			1.2	1.4		
	Q2 2016 Q3 2016	5.88		0.00027 0.000364			0.68 0.45	0.86 1.6		
	Q4 2016	5.00		0.000384			0.7	1.7		
MW-15R	Q1 2016	6.43		0.0002						
	Q2 2016	6.32		0.00018						
	Q3 2016	6.31		0.000187						
	Q4 2016			0.000238						
MW-34A	Q1 2016	6.47		0.0004						
	Q2 2016 Q3 2016	5.74 5.73		0.00039 0.000474						
	Q4 2016			0.000453						
MW-34C	Q1 2016			0.0156		23	0.39	2.4		0.072
	Q2 2016	6.44		0.0254	0.58	34	0.53	0.9	-	0.081
	Q3 2016	6.41		0.0699	0.32	96	0.48	14		0.069
MANA/ 20	Q4 2016	 E 00		0.00542	0.62	8.4	0.54	0.6		0.078
MW-39	Q1 2016 Q2 2016	5.98 6.02	0.44	0.0006 0.00213	11 35	11 37	0.18 0.47	0.18 0.42		
	Q2 2016 Q3 2016	5.10	0.47	0.00213	34	33	0.44	0.42		
	Q4 2016	5.27		0.000181	0.37	0.8			-	-
MW-42	Q1 2016	6.38	5.40	0.0014	22	22	4.2	4.3		-
	Q2 2016	6.40	5.70	0.0017	23	24	4.6	4.5	-	0.031
	Q3 2016	6.16	5.80	0.00193	24	24	4.5	4.5		0.082
MW-43	Q4 2016	5.50	5.40	0.00186	0.32	27 0.56	4.5	0.11		0.026
11177-43	Q1 2016 Q2 2016	5.50 6.30			0.32	0.56 0.86	0.1 0.087	0.11 0.076		
	Q3 2016	5.13				1.1	0.056	0.057		
	Q4 2016	6.38								
MW-32	Q1 2016			0.0090	0.55	0.55	2.0	2.0		0.31
	Q2 2016			0.0107	0.5	0.76	1.7	1.8		0.28
	Q3 2016	6.46		0.00918	0.52	0.55	1.9	1.8		0.35
MW-33C	Q4 2016			0.00995	0.5	0.61	0.15	1.8 0.22		0.46
MVV-33C	Q1 2016 Q2 2016			0.0024 0.00229			0.15 0.15	0.22		
	Q2 2016 Q3 2016			0.00229			0.15	0.13		
	Q4 2016			0.00253			0.15	0.15	-	-
MW-36A	Q1 2016	6.11		0.0006					-	-
	Q2 2016	5.88		0.00048						
	Q3 2016	5.90		0.00051						
*****	Q4 2016			0.000566						
MW-29A	Q2 2016	6.49		0.00163	3.4	3.9	1.2	1.2		
	Q4 2016 Q2 2016			0.00199 0.00028	4.1	4.6 1.5	1.4	1.4		
MW-33A	(3/ /(1) /									

SU = standard units

 $mg\ N/L = miligrams\ of\ Nitrogen\ per\ liter$

mg/L = milligrams per liter $\mu g/L = micrograms\ per\ liter$ 0.00141 = exceeds Site-specific MTCA Cleanup Levels

0.035 = exceeds WAC 173-200 Groundwater Quality Criteria

6.44 = exceeds Federal MCL and WAC 173-200 Groundater Quality Criteria

0.0014 = exceeds Federal MCLs, Site-specific MTCA Cleanup Levels, and WAC 173-200 Criteria

 $\mathsf{TCE} = \mathsf{Trichloroethene}$

Table 10. Cumulative 2016 Leak Detection System Volumes
2016 Annual Monitoring Report
Olympic View Sanitary Landfill, Kitsap County, Washington

Date	Total Volume (Gals)	Comments
3/14/2016	490	Pumped dry, sample collected 3/8/2016
6/20/2016	265	Pumped dry, sample collected 6/20/2016
9/19/2016	640	Pumped dry, sample collected 9/19/2016
10/10/2016	152	Pumped dry
11/21/2016	140	Pumped dry, sample collected 11/22/2016
TOTAL	1,687	Volume for period between 1/1/2016 through 12/31/2016.

[&]quot;No measurement until sample" indicates that volume present was not pumped so adequate volume would be available for sampling.

Table 11. Fourth Quarter 2016 Landfill Gas Measurement Results 2016 Annual Monitoring Report

Olympic View Sanitary Landfill, Kitsap County Washington

Waste Manag	,	•	nont Donalin							Com		
Location Reference Designation	Date	Time	Pressure	gs CH₄	CO2	02	CH ₄ Spike Note 1	CO ₂ Spike Note 1	Depth to Water TOP	Exposed	Portion of s Notes 2 & 3	Other
Designation	Duic	111110				- 2						Onici
			(in H ₂ O)	(% vol.)	(% vol.)	(% vol.)	(% vol.)	(% vol.)	(ft)	(ft)	(%)	
ubsurface Lan	1						1					
GP-7	11/15/16	11:48	0.40	0.10	8.20	4.70			11.0	0.4	7%	
	11/15/14	11:42	0.02	0.10	3.60	4.00			16.2	3.4	67%	
GP-8	11/15/16	11:42	0.02	0.10	3.00	4.00			10.2	3.4	07 76	
GP-9S	11/15/16	12:00	0.01	0.00	2.10	17.50			0.0	0.0		Note 4
GP-9D	11/15/16	11:58	0.01	0.00	1.40	18.90			30.3	4.0	81%	11010 4
31-7D	,,										3170	
GP-10S	11/15/16	12:07	0.02	0.00	0.90	19.70			0.0	0.0		Note 4
GP-10D	11/15/16	12:10	0.04	0.00	0.70	19.40			28.7	4.6	92%	
GP-11S	11/15/16	12:21	0.00	0.00	2.20	18.30			0.0	0.0		Note 4
GP-11D	11/15/16	12:19	0.00	0.00	0.00	0.00			22.2	0.0	0%	Note 3
GP-12S	11/15/16	12:28	-0.03	0.00	1.20	18.30			0.0	0.0		Note 4
GP-12M	11/15/16 11/15/16	12:30 12:34	0.00	0.00	1.30 0.00	18.10 0.00			0.0 39.4	0.0	0%	Note 4 Note 3
GP-12D	11/13/10	12:34	0.00	0.00	0.00	0.00			37.4	0.0	U70	Note 3
GP-13S	11/15/16	12:39	-0.02	0.00	3.00	16.60			0.0	0.0		Note 4
GP-13M	11/15/16	12:42	-0.07	0.00	2.60	17.80			0.0	0.0		Note 4
GP-13D	11/15/16	12:45	-0.07	0.00	0.20	20.70			49.3	4.1	41%	
GP-14	11/15/16	12:50	0.04	0.00	5.60	8.20			15.4	5.0	99%	
GP-15	11/15/16	12:58	2.24	1.30	6.60	0.00			14.6	4.2	84%	
GP-16	11/15/16	13:13	-0.01	0.00	1.50	17.30			12.8	2.6	52%	
Onsite Building		1204	-0.02	0.00	2.10	10.00						
SH-SS	11/15/16	13:04 13:06	0.00	0.00	2.10 0.80	18.80						
SH-NS SH-IN	11/15/16	13:07	0.00	0.00	0.40	20.20						
211-114	11/13/10	10.07	0.00	0.00	0.40	20.00						
SS-WH	11/15/16	13:18	0.00	0.00	0.80	20.10						
					Weather C	onditions						
	Monitoring Da		11/15/16		Sky C				Cloudy			
	Monitored By:		Steve Harque	ail		/Rain/Snow:			None			
	Instrument:		GEM 2NAV			erature (°F):			52			
	Calibration Do	iie:	11/15/16		rrece	uing 24-ni bi	arometric Tre	ena:	Rising			
Notes:	1. Measureme	nt for spike	concentrations	of CH4 and	CO2 are re	corded if ob	served during	a samplina.				
	2. Exposed pe							0 1 0				
	3. Readings no	ot reported:	Screened inte	rval complete	ely submerge	ed.						
	4. Depth to wo	ater measur	ement not take	n this quarte	r .							
S11 = 1/ ·1				011.05								
$CH_4 = Methane$	Standala					South Side Ex						
CO ₂ = Carbon [noxide					North Side Ex						
O ₂ = Oxygen	_					Office Interio	or					
GP = Gas Prob S = Shallo	e w Monitoring Z	one		33-WH = S	outh Slope V	veii nouse						
	w Monitoring Z le Monitoring Z			Depressed (O ₂ < 20.3%	vol.						
	Monitoring Zon				$O_2 < 20.3\%$ $O_2 > 0.3\%$							
2 Deep		-			2 3.0 70							

TOP = From Top of Pipe

Detected $CH_4 > 0.3 \%$ vol.

Table 12. Landfill Gas Monitoring Results - 2016 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Location	Date	Pressure	CH4 (% vol.)	CO2 (% vol.)	O2 (% vol.)
Localion	Dule	(in. H ₂ O)	CH4 (/0 VOI.)	CO2 (/0 VOI.)	O2 (/0 VOI.)
GP-7	3/24/2016	0.00	0.0	3.1	9.7
	6/27/2016	13.77	0.0	7.3	6.8
	9/20/2016	0.08	0.0	11.2	7.7
	11/15/2016	0.40	0.1	8.2	4.7
GP-8	3/24/2016	0.00	0.0	1.4	6.7
	6/27/2016	13.79	0.0	2.8	11.3
	9/20/2016	0.10	0.0	5.0	11.9
	11/15/2016	0.02	0.1	3.6	4.0
GP-9S	3/24/2016	0.00	0.0	1.8	18.4
	6/27/2016	0.00	0.0	1.9	19.3
	9/20/2016	0.06	0.0	2.2	19. <i>7</i>
	11/15/2016	0.01	0.0	2.1	1 <i>7</i> .5
GP-9D	3/24/2016	0.07	0.0	1.3	18.8
	6/27/2016	0.00	0.0	1.0	18.6
	9/20/2016	0.07	0.0	1.4	19.6
	11/15/2016	0.01	0.0	1.4	18.9
GP-10S	3/24/2016	-0.02	0.0	0.7	20.1
	6/27/2016	-0.33	0.0	0.7	20.2
	9/20/2016	0.05	0.0	0.5	20.5
	11/15/2016	0.02	0.0	0.9	19. <i>7</i>
GP-10D	3/24/2016	-0.08	0.0	0.7	18.2
	6/27/2016	0.00	0.0	0.5	19.3
	9/20/2016	0.06	0.0	0.3	20.7
	11/15/2016	0.04	0.0	0.7	19.4
GP-11S	3/24/2016	-0.1 <i>7</i>	0.0	2.1	1 <i>7</i> .5
	6/27/2016	0.00	0.0	1.0	18. <i>7</i>
	9/20/2016	0.03	0.0	1.9	19.2
	11/15/2016	0.00	0.0	2.2	18.3
GP-11D	3/24/2016	-0.46	0.0	2.1	15.6
	6/27/2016	0.00	0.0	2.9	18.2
	9/20/2016	-0.05	0.0	0.6	19.9
	11/15/2016	0.00	0.0	0.0	0.0
GP-12S	3/24/2016	-0.16	0.0	1.7	18. <i>7</i>
	6/27/2016	0.01	0.0	1.0	19. <i>7</i>
	9/20/2016	0.03	0.0	0.9	19.5
	11/15/2016	-0.03	0.0	1.2	18.3
GP-12M	3/24/2016	-0.21	0.0	1.6	18.8
	6/27/2016	0.00	0.0	1.1	19.9
	9/20/2016	0.02	0.0	0.9	20.0
	11/15/2016	0.00	0.0	1.3	18.1
GP-12D	3/24/2016	-0.68	0.0	1.1	17.7
	6/27/2016	-32.86	0.0	0.5	19.4
	9/20/2016	0.02	0.0	0.7	17.8
	11/15/2016	0.00	0.0	0.0	0.0

Table 12. Landfill Gas Monitoring Results - 2016 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Location	Date	Pressure (in. H ₂ O)	CH4 (% vol.)	CO2 (% vol.)	O2 (% vol.)
GP-13S	3/24/2016	-0.05	0.0	3.3	16.7
	6/27/2016	0.00	0.0	2.8	18.5
	9/20/2016	0.01	0.0	1.8	18.5
	11/15/2016	-0.02	0.0	3.0	16.6
GP-13M	3/24/2016	-0.21	0.0	3.3	15.9
	6/27/2016	0.05	0.0	2.4	17.5
	9/20/2016	0.00	0.0	2.5	17.9
	11/15/2016	-0.07	0.0	2.6	1 <i>7.</i> 8
GP-13D	3/24/2016	-0.03	0.0	2.1	18.5
	6/27/2016	0.05	0.0	0.3	20.6
	9/20/2016	0.00	0.0	0.1	21.1
	11/15/2016	-0.07	0.0	0.2	20.7
GP-14	3/24/2016	0.01	0.0	4.8	4.9
	6/27/2016	-0.01	0.0	5.8	8.0
	9/20/2016	-0.01	0.0	2.0	15.8
	11/15/2016	0.04	0.0	5.6	8.2
GP-15	3/24/2016	0.38	0.1	4.3	0.0
	6/27/2016	-11.39	0.0	3.3	7.0
	9/20/2016	0.00	0.0	3.0	16.8
	11/15/2016	2.24	1.3	6.6	0.0
GP-16	3/24/2016	-0.03	0.0	2.4	17.6
	6/27/2016	-0.01	0.0	2.5	18.5
	9/20/2016	0.00	0.0	2.0	18.8
	11/15/2016	-0.01	0.0	1.5	17.3

Notes:

[—] Readings not reported: screened interval submerged

Figure 5. Historical Groundwater Elevations
2016 Annual Monitoring Report
Olympic View Sanitary Landfill, Kitsap County, Washington

04204027.20

Figure 7. Leachate Generation (2007 - 2016)
2016 Annual Monitoring Report
Olympic View Sanitary Landfill, Kitsap County, Washington

Project No. 04204027.20 SCS ENGINEERS

Figure 8. Barometric Pressure during LFG Migration Monitoring — November 2016
2016 Annual Monitoring Report
Olympic View Sanitary Landfill, Kitsap County, Washington

Barometric Pressure Trend for November 2016

Barometric Pressure Trend for November 15, 2016

Source: Bremerton National Airport, Station KPWT Latitude 47.5, Longitude 122.75, Elevation 482 ft-AMSL

Data Sources:

https://www.wunderground.com/history/airport/KPWT/2016/11/13/MonthlyHistory.html?req_city=&req_state=&req_statename=&reqdb.zip=&reqdb.magic=&reqdb.wmo=

APPENDIX A

FOURTH QUARTER 2016 FIELD DOCUMENTATION

(FIELD DOCUMENTATION FROM Q1 THROUGH Q3 ON CD)

SCS ENGINEERS

November 18, 2016 File No. 04204027.19

Subject: Fourth Quarter 2016 Compliance Monitoring Event

Olympic View Sanitary Landfill, Kitsap County, Washington

Sampling Event Dates: 11/14/16 through 11/17/16

Personnel: Sam Graber & Sam Adlington

NOTES/SAMPLING DECODING:

• Dedicated pumps were used for purging and sampling all wells.

- Duplicate samples were collected at MW-33C (DUP1) and MW-20 (DUP2).
- Geotech and Solinst water level meters were used to record all water level elevations.
- In addition to the monitoring wells where groundwater was collected for chemical analysis, additional wells were monitored for groundwater level elevations. A summary of measured water levels are included with the field documentation.
- Several well locks noted to need replacement on the site.
- This was the annual event and leachate samples were collected from the Leachate-Influent location as well as the Barney White Toe Drain Location
- The samples were sent to TestAmerica Denver for analysis at the close of each sampling day, except samples for low level arsenic which were held until the end of the sampling event and provided to Analytical Resources, Inc. in Tukwila, Washington.

Sample Date	Location ID	Sample ID	Comments
11/14/2016	MW-13A	1116-01	
11/14/2016	MW-13B	1116-02	
11/14/2016	MW-16	1116-03	
11/14/2016	MW-39	1116-04	
11/14/2016	MW-4	1116-05	
11/14/2016	MW-43	1116-06	
11/14/2016	MW-29A	1116-07	
11/14/2016	MW-20	1116-08	
11/14/2016	MW-20	1116-09	DUP-2
11/14/2016	MW-19C	1116-10	
11/14/2016	OBWL-TD	1116-11	

Sample Date	Location ID	Sample ID	Comments
11/14/2016	L-INF	1116-12	
11/15/2016	MW-35	1116-13	
11/15/2016	MW-34C	1116-14	
11/15/2016	MW-34A	1116-15	
11/15/2016	MW-36A	1116-16	
11/15/2016	MW-15R	1116-17	
11/15/2016	MW-2B1	1116-18	
11/16/2016	MW-23A	1116-19	
11/16/2016	MW-32	1116-20	
11/16/2016	MW-42	1116-21	
11/17/2016	MW-33A	1116-22	
11/17/2016	MW-33C	1116-23	
11/17/2016	MW-33C	1116-24	DUP-1
11/17/2016	MW-24	1116-25	
11/22/2016	LP-LCD	1116-26	

		FIELD INF	ORMAT	TION FORM	\overline{I}		$\sqrt{\Lambda}\sqrt{\Lambda}$
	Site Name: OUSC			Information Form is Required dition to any State Forms.		WASTE	MANAGEMENT
	Site No.: Sample Point:	submitted alon containers (i.e.	ng with the Chain of	f Custody Forms that accomp at is returned to the laborator	pany the sample	Laboratory Use Only/Lab	ID:
_	1 1 . 1 . 1 . 1 . 1 . 1 . 1	Sample ID		7 1 7 7 7	W 1		
PURGE	E PURGE DATE PURGI	20 12	3				
PI	(MM DD 11) (2400 H	ELAPSED H Hr Clock) ELAPSED H (hrs:min)		WATER VOL IN CASI (Gallons)	((Gallons)	WELL VOLs PURGED
(4)	Note: For Passive Sampling, replace "Water Vol in Purging and Sampling Equipment Dedicated:	in Casing" and "Well Vols Purged" w/		ng/Flow Cell and Tubing/Flo	ow Cell Vols Purged, A	Mark changes, record field	data, below.
MPL	Purging and Sampling Equipment Dedicated: Purging Device A-Submersil B-Peristaltic Sampling Device C-QED Blad X-Other:		Futer		0.45 µ or	μ (circle or fi	ll in)
SE/SA	Purging Device A-Submersil B-Peristaltic C-QED Blad	Pump E-Piston Pump	Filte	//	-Pressure	X-Other	
PURC	X-Other:	Тот г шпр Т 2 груги 2000-	Sample Tu	1 /) 1	-Teflon -Stainless Steel	C-PVC X-Other D-Polypropylene	er:
1	Well Elevation (at TOC) Total Well Depth (from TOC)	Depth to Water (DTV (ft/msi) (from TOC)	w) 4		Groundwater Elevationsite datum, from TO		(ft/msl)
	Total Well Depth	Stick Up	. 111	The state of the s	Casing	Casing	1
	Wole. Total weit Depin, Stick Op, Casing Ia. etc. a	(ft) (from ground elevation are optional and can be from historical		(ft) II dred by Site/Permit. Well El			be current.
	Sample Time Rate/Unit pH (2400 Hr Clock) (std)	Conductance (SC/EC) (µmhos/cm@25°C)	Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	110:213 350 18 51712	1st. 7 3	19185		16 194	1131610	111
al)	200 61212	2 nd 170	19163		16.72	1220	
ption	31 61219	3 rd 1 7 0	19 101		16.166	11196	
A (0)	0101314 4 634	4th 170	19160		6/62	11170	
DAT	10137 6.413	1 6 7	19.159		6.59	11150	
NO	5/10/40 / 6/419	1169	19157		656	11130	
STABILIZATION DATA (Optional)	6,50	169	19,57		6.54	11130	45 75
BILI			11	10134			
STA				1=1 1		111	
	Suggested range for 3 consec. readings or					111	
Ų,	note Permit/State requirements; Stabilization Data Fields are Optional (i.e. complete s	+/- 3% stabilization readings for paramete	ers required by WA	A. Site, or State). These fie	+/- 10%	+/- 25 mV	Stabilize
_	by State/Permit/Site. If a Data Logger or other Electron	nic format is used, fill in final reading	gs below and submit	t electronic data separately i	to Site. If more fields	above are needed, use se	eparate sheet or form
DATA	SAMPLE DATE pH (MM DD YY) (std)	CONDUCTANCE (umhos/cm @ 25°C)	TEMP.	TURBIDITY (ntu)	DO (mg/L-ppm)	eH/ORP Oth (mV) Unit	ier: 555 fine
FIELD DATA	Final Field Readings are required (i.e., record field m	neasurements, final stabilized readi	d 57	le readings before samplin	ig for all field parame	1130	armit/Site.
	Sample Appearance:	Oq	dor:	Colo	or:	Other:	
	Weather Conditions (required daily, or as cond	litions change): Direct	ection/Speed:	Outloo	k:	Precipitation:	Y or
	Specific Comments (including purge/well volu	ame calculations if required):					
FIELD COMMENTS							
MMI							
0	<u> </u>						
ELD							
	I certify that sampling procedures were in accord	dance with annlicable EPA. Stat	to and WM prote	neals fif more than one so			
			Ic, and with proto	1		gn): SCS	
	1 1		7,50				
	Date Name DISTRIBUT	Si TION: WHITE/ORIGINAL - Stays	Signature vs with Sample, YE	T.I.OW - Returned to Clies		ipany	

		FORMATION FORM
		te Management Field Information Form is Required is to be completed, in addition to any State Forms. The Field Form is
	ite Sample submitted a	along with the Chain of Custody Forms that accompany the sample (i.e. with the cooler that is returned to the laboratory).
	Sample ID	(All All All All All All All All All All
E	0 11 11 14 16 11 11 12 1 1 13	2 3
PURGE	PURGE DATE PURGE TIME ELAPSEI	D HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS
	(MM DD YY) (2400 Hr Clock) (hrs:mi Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged	in) (Gallons) (Gallons) PURGED "w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
IPLE	Purging and Sampling Equipment Dedicated:	Filter Device: Or N 0.45 μ or μ (circle or fill in)
PURGE/SAMPLE	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle	A-In-line Disposable C-Vacuum Filter Type: A B-Pressure X-Other
JRGE	Sampling Device C-QED Bladder Pump F-Dipper/Bottle	A-Teflon C-PVC X-Other:
_		Sample Tube Type: B-Stainless Steel D-Polypropylene
	Well Elevation (at TOC) Total Well Depth (from TOC) Total Well Depth (from TOC) New Teel Well Depth (from ground elevation of the control	OTW) 5930 Groundwater Elevation (site datum, from TOC)
	Total Well Depth Stick Up	Casing Casing
NA.	(from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from histo	tion) (ft) ID (in) Material orical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
1	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (μmhos/cm@25°C)	Temp, Turbidity D.O. eH/ORP DTW (°C) (ntu) (mg/L-ppm) (mV) (ft)
	111115 350 1" 61513 1" 111710	1091 111 611 111340
(1	11120 12nd 622nd 1170	106 111 670 1000
tions	1117213 3rd 6.76 3rd 1170	1054 111 16190 19110
(Op	111:216 44 71012 44 1170	10175 111 16196 1850 111
ATA	111:219 71018 1111619	1031 694 860
INC	111312 1114 11170	1056 111 1695 1840 1519 52
ATI	11135 17 717	10141 10189 16.194 1848 5
ILIZ		3 40
STABILIZATION DATA (Optional)		
V 2		
	Suggested range for 3 consec. readings or +/- 0.2 +/- 3% note Permit/State requirements:	+/- 10% +/- 25 mV Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for param	neters required by WM, Site, or State). These fields can be used where four (4) field measurements are required dings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form.
	SAMPLE DATE pH CONDUCTANCE	TEMP. TURBIDITY DO eH/ORP Other:
FIELD DATA	(MM DD YY) (std) (umbos/cm @ 25°C)	(°C) (ntu) (mg/L-ppm) (mV) Units
FIE	Final Field Readings are required (i.e. record field measurements, final stabilized re	eadings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
	Sample Appearance: Cleus	Odor: Other:
	Weather Conditions (required daily, or as conditions change):	rirection/Speed: Outlook: Precipitation: Y or 🕥
	Specific Comments (including purge/well volume calculations if required	d):
SL.		
COMMENTS		
WO.		
FIELD		
	I certify that sampling procedures were in accordance with applicable EPA, S	tate, and WM protocols (if more than one sampler, all should sign):
	11,14,16 Sam Grater	and SCS
	/	Signature Company
		Signature Company Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

				FIELD IN	FORMA'	TION FORM	1	W	$\sqrt{\Lambda}\sqrt{\Lambda}$
	ite ıme:	:	ousl			Information Form is Require		WAST	MANAGEMENT
	ite o.:		Sample MW	submitted al	long with the Chain o	addition to any State Forms. of Custody Forms that accompate is returned to the laborator	pany the sample	Laboratory Use Only/La	D:
	···		roint.	ample ID	i.e. with the cooler in	lat is returned to the laborator	у).		
PURGE	INFO	PURGE DATE	burge 2	2 5 2	3	WATER VOLINGASI	L L	YOU PURCED	
PU	Ξ	(MM DD YY)	(2400 Hr	Clock) (hrs:min	1)	WATER VOL IN CASI (Gallons)		L VOL PURGED (Gallons)	WELL VOLs PURGED
Ed.	ġ.	Note: For Passive Samplin Purging and Sampling Eq		Casing" and "Well Vols Purged"		r Device: or N			
MPL	ENT	Purging Device C	A-Submersible		Phic		0.45 μ or -In-line Disposable	μ (circle or ι	ill in)
E/SA	EQUIPMENT		B-Peristaltic P	ump E-Piston Pump		1 / 1	-Pressure	X-Other	
PURGE/SAMPLE	EQU	Sampling Device X-Other:	C-QED Bladde	er Pump F-Dipper/Bottle	12		-Teflon	C-PVC X-Oth	ner:
\vdash	_	Q 10/	φ (m) ψ (m) S		Sample To	ube Type: B	-Stainless Steel	D-Polypropylene	
TA CT	WELL DATA	Well Elevation (at TOC)	(e	Depth to Water (D7 (from TOC)	rw)	9 3 (ft) (s	roundwater Elevat	OC)	(ft/msl)
I July	/EL	Total Well Depth (from TOC)	(f)		on)	(ft) II		Casing Material	
L ²	_		/www.co	optional and can be from histor	rical data, unless req	uired by Site/Permit. Well El	evation, DTW, and G	roundwater Elevation must	be current.
		400 Hr Clock)	T h word	Conductance (SC/EC) (µmhos/cm@25°C)	Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	1	12:28 35/0	1" 6397	11 20	10 52		18/05	111410	
a l	1	151312	2 nd 6 1 5 2	1112	19/25		16,193	1300	
tion	1	2:36	31 5 9 8 3	prd	19164		DIIZ	1370	
<u> </u>	Ü	2:39	41 5 9 4 4	in [[[O	1962	1111	17/12	1330	iii
ATA	1	2:42	Sigil		19162		16 19/	135.0	
Z	1	2145	5 4 1	1 1 1 1 1 1 (7)	118		-0.	1350	C 0 37
12	1	7 14 9			19163		17100		5937
STABILIZATION DATA (Optional)	-1	0 · *(0	5,1819		19,90	2 51	6191	1350	
ABII						\sqcup			
ST	_							1 1 1	
ļ	2	See 2 agreed woodil					11	1 1 1	
- 0	note	ested range for 3 consec, readir	+/- 0.2	+/- 3%			+/- 10%	+/- 25 mV	Stabilize
	Stab by Si	ollization Data Fields are O tate/Permit/Site. If a Data L	otional (i.e. complete sta ogger or other Electronic	abilization readings for parame format is used, fill in final readi	eters required by Wings below and subm	M, Site, or State). These fie it electronic data separately	elds can be used whe to Site. If more field	re four (4) field measurer s above are needed, use s	ments are required eparate sheet or form
		SAMPLE DATE	pН	CONDUCTANCE	TEMP.	TURBIDITY	DO	eH/ORP Otl	ier: +imp
Q Q	1	(MM DD YY)	(std)	(umhos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV) Uni	
FIELD DATA	(Fina	l Field Readings are requi	red (i.e. record field med	asurements, final stabilized rea	4.31 adings, passive sam	ple readings before samplin	691 g for all field param	3 S O neters required by State/F	[1 2 4 8] ermit/Site.
		nple Appearance:	Cleur				or:		-
	Wea	ather Conditions (requi	red daily, or as conditi			- Outloo			: Ør (N)
	Spe	cific Comments (includ	ling purge/well volun	ne calculations if required)):				
ST.									
ME.	_								
MO.	_								
OQ.									
FIELD COMMENTS								1	
	I cer	rtify that sampling proce	dures were in accorda	nce with applicable EPA, Sta	ate, and WM prot	ocols (if more than one sa	mpler, all should s	ign):	
	_/	11,14,16	Sam	Grater	1	A		505	
	_								
		Date	Name DISTRIBUTIO	ON: WHITE/ORIGINAL - Sta	Signature avs with Sample, YI	ELLOW - Returned to Clies		npany v	

s	ite	Ĺ		US(FIE					ON FOR				M	$\sqrt{}$
Na	ime: lite	: [ample	1 1	1 1 [This form	is to be	completed, in	n addit	mation Form is Req on to any State Form stody Forms that acco	s. Th	e Field Form is	Laboratory Use C	nly/Lab	ID:
	o.:			oint:	ML) - 3 °					returned to the labora					
PURGE	INFO	PURGE DA (MM DD Y Note: For Passive S	Y)	(2	URGE TI 400 Hr Cl	ock)	ELAPSE (hrs:m	in)			FER VOL IN CA (Gallons) low Cell and Tubing/			VOL PURGE (Gallons) Mark changes, reco		WELL VOLs PURGED data, below.
PURGE/SAMPLE	EQUIPMENT	Purging and Sampl Purging Device Sampling Device	ling Equipr	A-Subr B-Peris	cated: nersible taltic Pu Bladder	mp E	-Bailer -Piston Pump -Dipper/Bott			ter De	vice: Y or N	A-I	0.45 µ or n-line Disposable ressure		rcle or fi	ill in)
PURC	EQ	X-Other:					D IPPUI, DOIL		Sample '	Tube '	Type:		Teflon Stainless Steel	C-PVC D-Polypropylene	X-Oth e	er:
	WELL DATA	Well Elevation (at TOC)	Ш		(ft/i	Depth msi) (from	to Water (I TOC)	OTW)	Ш	1/7	[[[ft]		oundwater Elevat e datum, from TC			(ft/msl)
1	WEL	Total Well Depth (from TOC) Note: Total Well De		Up, Casing Id	etc. are o		ground eleva		lata. unless re	eauirea	by Site/Permit. Well	Cas ID	(in		on must	he current
		ample Time 400 Hr Clock)	Rate/Ur	nit pH		Conductant (µmhos/cr	ce (SC/EC)		Temp.	4	Turbidity (ntu)		D.O. (mg/L - ppm)	eH/ORP (mV)	T MAST	DTW (ft)
	Ĭ	3:34	350	1st 515	1º	1_11	1316	1	12174				1/180	121710	2	111
(lal)	1	131319		2 rd 5.3	O 2nd		126	1	2 93				1 51	1500	2	
STABILIZATION DATA (Optional)	1	31412	1	3rd 5.3	1/ 3 rd		31	1	12.95	-			/ 149	153,0	2	
TA (C	1	3:45	H	44 512	19 4 th		134	1	2.94	-			1/42	151/10	7	
V DA		3.40	+	7.13	11		1319	1	2 99	H			1140	500		
TIO	1	31511	1	2.5			11315		2 93	-	4 53	,	11.34	141816		1111
LIZA	Ц.	1 1 1	1	5.2	1		130	-	2 89	-	1 7	1	1 18	47,0	4	118 97
TABI			1				7 1								-	
S													1 1		7	
	note	gested range for 3 conse Permit/State requireme	ents:	+/- 0.		+/-							+/- 10%	+/- 25 mV]	Stabilize
	by S	oilization Data Fields tate/Permit/Site. If a	s are Optio Data Logg	nal (i.e. com er or other E	olete stab 'ectronic f	ilization read ormat is used,	lings for parai fill in final rea	neters . dings b	required by 1 elow and sub	WM, S mit ele	te, or State). These ctronic data separate	field ely to	ls can be used whe Site. If more field	re four (4) field m <mark>s above are neede</mark> e	easurem 1. use s e	nents are required eparate sheet or form
ATA		SAMPLE DATE (MM DD YY)		pН		CONDUC		7	ГЕМР.		TURBIDITY		DO	eH/ORP		ner: 11.10c
FIELD DATA	Fins		6	(std) S. 2 (i.e. record)] ield meas	(umhos/cn	130	eading	CO Z 39 s, passive sa	mple r	eadings before samp	1	(mg/L-ppm)	(mV) 4 7 c	Unit	1354
		nple Appearance		Cleu				Odor	-10-1	=		olor:			_	
	We	ather Conditions	(required			ms change):	Ι		on/Speed:	-					itation:	: Y or 🕥
	Spe	ecific Comments (including	g purge/wel	l volum	e calculation	ns if require	d):								
FIELD COMMENTS																
MMI												_				-11
000	_															
TEL																V
	I ce	rtify that sampling	g proceduz	res were in a	ccordan	ce with appl	icable EPA,	State, 1	and WM pro	otocol	s (if more/than one	e sam	ipler, all should s	ign):		
	1	1,14,16	<u> </u>	Sam	60	atour		_	A	_	M		s -	565		
	-	Date	<u>_</u>	Vame DIST	RIBUTIO	N: WHITE	ORIGINAL	~	ature	YELL	OW - Returned to C	lient		npany		

Ι.				* 11 4		FIELD IN	FC)RMA	TIC	ON FOR	M	r			A	$\sqrt{\Lambda}$
	Site ame:	:		050						nation Form is Requ				w	ASTE	THEMEDANAM
	Site No.:		Sam		ادعام	submitted	l along	with the Chain	n of Custo	ody Forms that accont turned to the laborate	npan	y the sample	Lab	oratory Use Onl	y/Lab I	D:
"	10	<u> </u>	Poi	it: F	Sampl		s (1.e. w	ith the cooler	mat is re	turned to the laborate	огу).	•		-		 k
<u></u>	1 .	Irlilyli	6	1, 1	1/2	7	2/2	۲ ا	į	1 1 1 1		1 1 1	1			
PURGE	INFO	PURGE DATE	1-1	PUR	GE TIM	T FLAPSE	<u>С</u> 2	<u> </u>	\$\$7.4/T	ED VOLINGAS	PIN	C ACTUAL	VOI	DUDCED	- V	TELL VOL
≅		(MM DD YY)		(2400	Hr Cloc	ck) (hrs:r	ain)			ER VOL IN CAS (Gallons)			(Gallo	L PURGED		VELL VOLs PURGED
1	1	Note: For Passive Samp Purging and Sampling I				ng" and "Well Vols Purge	d" w/ A			4	low		Mark o			
PURGE/SAMPLE	ENT	Purging Device	:: Դ 	A-Submer				FIII	ter Devi		Δ_I	0.45 µ or n-line Disposabl	- C-V	μ (circle	e or fill	in)
F/SA	EQUIPMENT		~ ^ ,	B-Peristalt	tic Pump	p E-Piston Pum	•	F	ilter Ty			ressure		Other		
l Sa	EQU	Sampling Device (C-QED BI	adder P	ump F-Dipper/Bot	le			1 1/ 1		eflon	C-P		-Othe	r: ,
⊢		X-Other:			_			Sample '	Tube Ty	pe:	B-S	tainless Steel	D-P	olypropylene		
	WELL DATA	Well Elevation (at TOC)			(ft/ms	Depth to Water ((from TOC)	DTW)		111	7/1	27.55	undwater Eleva datum, from TO				(ft/msl)
	LL	Total Well Depth	I	1 1 1	1	Stick Up		1 1	11		Cas	F V V	v.	Casing		1
	¥ E	(from TOC) Note: Total Well Depth,	Stick Un	Casing Id etc	(ft)	(from ground elev		data unlare vo	aguivad h	(ft)	ID	(in)	Material		
Г		ample Time R	ate/Unit	pН		Conductance (SC/EC)	ior icui	Temp.	cyanea v	Turbidity	LIE V	D.O.	Ounin	eH/ORP	must o	DTW
	1	400 Hr Clock) AL	io l	(std)		(µmhos/cm@25°C)	1,	(°C)	Ĩ,	(ntu)		(mg/L - ppm)	17	(mV)	1	(ft)
	H	14:4:5		74.11	1st	11110	1	1151				16,62	1	11410		
nal)	H	111.kt.o	2 nd		2 2 nd	51	-	11/6				4.30	1	300		
ptio	H		3 rd	5.114	2 3rd		1	11 58				41/2	Ĺ	350		
) <u>₹</u>	1	MISI	4 th	5,07	4 th	1 150	_1	11 59				13 198	1	39.0		
DAT	L	V[5]		5.09		1 49		1152				1417	1	41.0		
S N	1	14:51	_	5.06	4	1 49		11149				14.13	1	420		11190
ZAT	L	500		51016	2	5 0	1	11 149	111111111111111111111111111111111111111	1 1 106		4,07	L	420		
BILL										1 1 1		1 1		1.1		111
STABILIZATION DATA (Optional)				11						1 1 1		1 1		1 1		111
-				1											İ	TTI
	note	gested range for 3 consec, rea Permit/State requirements:		+/- 0.2		+/- 3%						+/- 10%		+/- 25 mV	İ	Stabilize
	Stab by Si	ollization Data Fields are tate/Permit/Site. If a Data	Optional	(i.e. complete or other Electr	e stabiliz	zation readings for para	meters	required by I	WM, Site	, or State). These f	field	s can be used whe	re fou	r (4) field meas	sureme	ents are required
(TA		SAMPLE DATE	0.0	pН		CONDUCTANCE		ГЕМР.		URBIDITY	, .0.	DO				r: time
D DA	١.	(MM DD YY)	Ť	(std)	ΤĬ	(umhos/cm @ 25°C)	Ĭ.	(°C)	1.1	(ntu)		(mg/L-ppm)	1	(mV)	Units	
FIELD DATA	Fina	I Field Readings are req	uired (i.e	506 e. record field	l measur	ements, final stabilized	reading	s. passive sa	ımple rea	dings before sampl	ino	for all field parag	leters	required by Sto	ote/Per	1 500
		nple Appearance:		Clear							_				_	minore:
	Wea	ather Conditions (req	uired da	ily, or as cor	nditions	change):	Directi	on/Speed:	-			_ (e				Y or (N)
	Spe	ecific Comments (incl	uding p	urge/well vo	olume c	alculations if require	ed):									
S		11														
EN																
MM																· · · · · · · · · · · · · · · · · · ·
00 (T					
FIELD COMMENTS																
	I cer	rtify that sampling pro	cedures	were in acco	rdance	with applicable EPA.	State.	and WM pro	otocols (if more than one s	sam	pler, all should s	ign):			
				Sun			,	A		Mi	, w41.	-r-v-, an onoute s	0 ,	565		
		/ /		/	<u> </u>			- (/		Jav -			صي	-)		
		Date	Nam		UTION:	WHITE/ORIGINAL -	-	nature	VELLOV	V - Returned to Cit-	ent		прапу			

FIELD INFORMATION FORM	7/
Site Name: This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	MENT
Site No.: Sample Point: Sample ID Submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory). Laboratory Use Only/Lab ID:	
PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOL (MM DD YY) (2400 Hr Clock) (htrs::min) (Gallons) (Gallons) PURGE Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged, Mark changes, record field data, below.	
Purging and Sampling Equipment Dedicated: or N Filter Device or N 0.45 µ or µ (circle or fill in) Purging Device C A-Submersible Pump B-Peristaltic Pump E-Piston Pump F-Dipper/Bottle X-Other: Sample Tube Type: A A-In-line Disposable C-Vacuum B-Pressure X-Other: Sample Tube Type: A A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene	
Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit, Well Elevation, DTW, and Groundwater Elevation must be current.	ft/msl)
Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTY (2400 Hr Clock) (std) (μmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV) (ft)	
The suggested range for 3 consect, rendings or 4/-0.2 suggested range for 4/-0.2 suggest	quired et or form,
E Final Field Rendings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site. Sample Appearance: Clear Odor: Color: Col	<u> </u>
Specific Comments (including purge/well volume calculations if required):	<u>-</u>
2 x 1000 m Pay, 3x 500 m HNO3 (1 FILTERED), 1 x500 m H2504 AMBER	
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign): I	>

		TELD INFORMAT	TION FORM	
	Site ame: OVSL	This Waste Management Field I	Information Form is Required addition to any State Forms. The Field Form	WASTE MANAGEMENT
	Site		of Custody Forms that accompany the sample	
	Sample ID		We to total 10 10 10 10 10 10 10 10 10 10 10 10 10	
GE	10 1111416 1226			
PURGE	PURGE DATE PURGE TIME (MM DD YY) (2400 Hr Clock)			TUAL VOL PURGED WELL VOLS
	Note: For Passive Sampling, replace "Water Vol in Casing" an	(hrs:min) and "Well Vols Purged" w/ Water Vol in Tubi		(Gallons) PURGED urged. Mark changes, record field data, below.
PURGE/SAMPLE	Purging Davids A Submarsible Purg		or Device: Y or N 0.45 µ 0	-
S/SA	Purging Device A-Submersible Pump B-Peristaltic Pump C-QED Bladder Pump		ter Type: A-In-line Dispo	osable C-Vacuum X-Other
URGI	Sampling Device C-QED Bladder Pump	191	A-Teflon	C-PVC X-Other:
\vdash		Sample Tu	ube Type: B-Stainless Ste	eel D-Polypropylene
TAG		Depth to Water (DTW) (from TOC)	Groundwater F (site datum, fro	
Lia	Total Well Depth St	Stick Up	Casing	Casing
	(from TOC) (ft) (ft) (ft) Note: Total Well Depth, Stick Up, Casing id. etc. are optional a	from ground elevation) and can be from historical data, unless requ	uired by Site/Permit. Well Elevation, DTW, a	(in) Material and Groundwater Elevation must be current.
13		uctance (SC/EC) Temp. hos/cm@25°C) (°C)	Turbidity D.O. (ntu) (mg/L - ppr	eH/ORP DTW m) (mV) (ft)
	112:29 1 688 1	183 1127	1 1411 152 212	56 161211
	1232 2nd 679 2nd	186 1127	111119 1018	97 607
tiona	1235 34684 34	187 11129	11087	15/3/8
0	112138 1 4 61914 4	186 11124	11100 013	3 482
ATA	12:411 694	1134	1884 012	
ONL	12:44 1 694	187 (1184	1 887 01	23 456
ATI		I Î Î Î Î Î		
3II.IZ				
STABILIZATION DATA (Optional)				
- 3	Suggested range for 3 consec, readings or note Permit/State requirements: +/- 0,2	+/- 3%	+/- 10%	+/- 25 mV Stabilize
j j	<u>Stabilization Data Fields are Optional</u> (i.e. complete stabilization by State/Permit/Site. If a Data Logger or other Electronic format is a	n readings for parameters required by W.N. used, fill in final readings below and subm	M, Site, or State). These fields can be use it electronic data separately to Site. If mor	d where four (4) field measurements are required e fields above are needed, use separate sheet or form
	SAMPLE DATE pH CON	NDUCTANCE TEMP.	TURBIDITY DO	eH/ORP Other: Time
FIELD DATA	(MM DD YY) (std) (umb	hos/cm @ 25°C) (°C)	(ntu) (mg/L-ppr	m) (mV) Units $\frac{1}{2}$
E	Final Field Readings are required (i.e. record field measurements	ts, final stabilized readings, passive sam	ple readings before sampling for all field	parameters required by State/Permit/Site.
	Sample Appearance:	Odor:	Color:	Other:
	Weather Conditions (required daily, or as conditions change	nge): Direction/Speed:	Outlook: Over	Precipitation: Y or N
	Specific Comments (including purge/well volume calcul-	lations if required):		
SI.			ISTENTY DURI	
COMMENTS	PUTIENTIAL 1550E	w/ LOW COND	UCTIVITY 3 WA	top Level
OM.	METER.		,	
ED C	2 x 1000 ml Pay, 3 x 50	00 ml 4NO3 (1)	FILTERED), 1×500:	ILL 42504 AMBER
FIELD	GXVOA			· · · · · · · · · · · · · · · · · · ·
]	I certify that sampling procedures were in accordance with a	applicable EPA, State, and WM prote	ocols (if more than one sampler, all sho	ould sign):
	11/14/16 SAM ADDINE	270N ->	mf	sis engineers
	Date Name	Signature	<u> </u>	Соправу
			ELLOW - Returned to Client, PINK - Field	

		FORMAT	TON FORM	1	W	$\sqrt{\Lambda}\sqrt{\Lambda}$
			nformation Form is Require		WAST	E MANAGEMENT
	Site Sample	along with the Chain of	Custody Forms that accompa	my the sample	Laboratory Use Only/La	b ID:
PURGE	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged"	nin)	VATER VOL IN CASII (Gallons) g/Flow Cell and Tubing/Flo	(VOL PURGED (Gallons) Mark changes, record field	WELL VOLS PURGED d data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Purging Device C A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bott X-Other:	p Filte	r Type: A-	ln-line Disposable Pressure Teflon Stainless Steel	μ (circle or Z-Vacuum X-Other C-PVC X-Other D-Polypropylene	
	Well Elevation (at TOC) Total Well Depth (from TOC) Stick Up (from ground elevation) Output Depth (from ground elevation)	DTW) [] [3]		oundwater Elevat te datum, from TC		(ft/msl)
3	Total Well Depth Stick Up (from TOC) (ft) (from ground eleve Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from hist		(ft) ID			t be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (µmhos/cm@25°C)	Temp.	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	13:14 1 7:10 1 12:11	1436	111790	1634	1917.13	
<u></u>	13117 2nd 702 2nd 209	1 4 37	1 3145	621	1085	13/5/30
tion	1320 31 698 31 199	1 4 37	1000	1638	1149	
0	13:213 4" 16:46 4" 11917	1436	1 14.78	6.38	1182	3 5 34
ATA	113126 1 61916 1 11918	1436	11144	638	1201	
STABILIZATION DATA (Optional)	13:29 694 200	14.37	11291	639	1218	3151 38
'ATI					1 1 1	
ILIZ			1 1 1 1			
TAB			11 1 1 1			
	Suggested range for 3 consec, readings or +/- 0.2 +/- 3% note Permit/State requirements:	-		+/- 10%	+/- 25 mV	Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parar by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final rea	neters required by WM idings below and submit	, Site, or State). These fiel electronic data separately to	ds can be used whe	re four (4) field measure s above are needed, use s	ments are required
	SAMPLE DATE pH CONDUCTANCE	TEMP.	TURBIDITY	DO	eH/ORP Ot	her: Time
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25° C)	1 4 27	1 2 41	(mg/L-ppm)	(mV) Uni	its
FIE	Final Field Readings are required (i.e. record field measurements, final stabilized r	eadings, passive sampl		for all field param	eters required by State/F	Permit/Site.
	Sample Appearance:	Odor:	Color	·	Other:	
	Weather Conditions (required daily, or as conditions change):	Direction/Speed:	Outlook	OVERCA	ST Precipitation	1: Y 01(R)
S	Specific Comments (including purge/well volume calculations if require	d):				
ENT	DUPLICATE VOLUME COL	LEDTEI	O AS DIJP	200. 13	39	
MM		00,0	Pary	-	<u> </u>	
FIELD COMMENTS	2×1000 m Pary, 3×500 m HN	103 (1 FILT		500 m	AmBerz,	6×VOA
FIE	PER SAMPLE VOLUME					
	I certify that sampling procedures were in accordance with applicable EPA, S	State, and WM protoc	cols (if more than one sar	npler, all should si	ign):	
	11, 14, 16 SAM AD-ING-RON	- Som	m/- '		ics engin	LEER 5
	Date Name	Signature	D	Con	праву	
	DISTRIBUTION: WHITE/ORIGINAL-		LLOW - Returned to Client			

Γ				FIELD IN	FORMA'	TION FORM	1	W	$\sqrt{\Lambda}\sqrt{\Lambda}$
Na	Site OV	15L		This form	is to be completed, in	Information Form is Required dition to any State Forms.	The Field Form is	Laboratory Use Only/La	H MANAGEMENT
	No.:		int:			f Custody Forms that accomp at is returned to the laborator			
PURGE	Note: For Passiv	YY)	PURGE (2400 Hr		nia)	WATER VOL IN CASI (Gallons) ng/Flow Cell and Tubing/Flo	(6	VOL PURGED iallons) fark changes, record field	WELL VOLS PURGED idata, below.
PURGE/SAMPLE	Purging and Sam Purging Device Sampling Device X-Other:	e <u>C</u>	ent Dedicated: A-Submersibl B-Peristaltic F C-QED Bladd	Pump E-Piston Pum	p File	er Type: A B	0.45 µ or -In-line Disposable -Pressure -Teflon -Stainless Steel	μ (circle or C-Vacuum X-Other C-PVC X-Oth D-Polypropylene	
1	Well Elevation (at TOC) Total Well Dep (from TOC)	1		Depth to Water (Infr/msl) (from TOC)	DTW)	12 19 W	roundwater Elevationite datum, from TOC		(ft/msl)
	Total Well Dep (from TOC) Note: Total Well			Stick Up ft) (from ground elevi- e optional and can be from his		(ft) II		Casing Material undwater Elevation must	t be current.
	Sample Time (2400 Hr Clock)	Rate/Uni	t pH (std)	Conductance (SC/EC) (µmhos/cm@25°C)	Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	114:110			1" 1 4 1 2nd 1 4 4	1073	1488	ω 04 2 3i	79.9	3633297
tional)	1416	3	12.0	3" 1152	1064	876	089	739	323217
[A (Op	14114	4	1011	4th 13H	1065	(6 32	०५७	706	32 117
STABILIZATION DATA (Optional)	14:25		737	154	1000	5/89	0141	673	3287
ZATIC	14128	1	741	11514	1054	585	0.33	631	
ABILI			11						
ST							1 1		
	Suggested range for 3 cornote Permit/State requirer Stabilization Data Fiel	ments:	+/- 0.2	+/- 3% abilization readings for para	metars required by W.	(Site on State) Those for	+/- 10%	+/- 25 mV	Stabilize
	by State/Permit/Site. If	f a Data Logger	r or other Electronic	: format is used, fill in final red	idings below and subm	it electronic data separately	eids can b e used where to Site. If more fields i	above are needed, use s	eparate sheet or form,
DATA	SAMPLE DAT (MM DD YY)	E	pH (std)	CONDUCTANCE (umhos/cm @ 25°C)	TEMP. (°C)	TURBIDITY (ntu)	DO (mg/L-ppm)	eH/ORP Otl (mV) Uni	her: Time_
FIELD DATA	Final Field Readings	are required (i	741	asurements, final stabilized i	readings, passive sam	5 sport of the sampling of the readings before sampling the sampling of the sa	033	631	1428
	Sample Appearance	ce:			Odor:	Colo	or:	Other:	
	Weather Condition				Direction/Speed:	Outloo	k: <u>OVERCAS</u>	Precipitation	n: Y or N'
S	Specific Comments	(uncauding)	purge/weu voiui	ne calculations if require	ed):		1		
EN									
MIM									
FIELD COMMENTS	2 × 1000	m = Pc	14,3x	500 m HNC	3 Pary (i	FICTERED)	1, 1 x 500	in Ambe	12
, , ,	6x VOA								
				nce with applicable EPA,	State, and WM prote	ocols (if more than one sa			
	11/14/1	<u>(</u>	SAM AI	oling ton	->	my		is engin	CERS
	Date	Na	me DISTRIBUTI	ON: WHITE/ORIGINAL -	Signature Stays with Sample, YI	ELLOW - Returned to Clier	Comp	pany	

			(6)	-		FIELD IN	FORMA	TION FORM	M	W	$\sqrt{\Lambda}\sqrt{\Lambda}$
	ite ime:			DUSC.		This Waste	e Management Field	d Information Form is Requirent n addition to any State Forms.	red	WAST	MANAGEMENT
	ite lo.:		Sam		w -	submitted a	along with the Chain	n addition to any State Forms. 1 of Custody Forms that accomp that is returned to the laborator	pany the sample	Laboratory Use Only/Lab	ID:
L		·	1 1 2 3 4	mts	Sample	1 000 000 000 000 000 000 000 000 000 0	(101 1111111111111111111111111111111111	that to recarried to the recent	<u></u>		
GE	0	1115	16	9	2	7 2	2 3				
PURGE	INFO	PURGE DA			GE TIME			WATER VOL IN CASI			WELL VOLs
L		(MM DD Y Note: For Passive S			Hr Clock in Casing		" w/ Water Vol in Tu	(Gallons) abing/Flow Cell and Tubing/Flo	ow Cell Vols Purged.	(Gallons) Mark changes, record field	PURGED data, below.
TPLE	LN	Purging and Sampl				Or N	File	ter Device: Or N	0.45 µ от	μ (circle or fi	ill in)
SAN	EQUIPMENT	Purging Device	المحدا	A-Submersi B-Peristaltic		1	F		A-In-line Disposable B-Pressure	e C-Vacuum X-Other	
PURGE/SAMPLE	EQUI	Sampling Device	<u> </u>	C-QED Blac	dder Pu	ump F-Dipper/Bottle	7017		\-Teflon	C-PVC X-Oth	ier:
\vdash	_	X-Other:	n nov 0				Sample '	Tube Type: B	3-Stainless Steel	D-Polypropylene	
) Y	WELL DATA	Well Elevation (at TOC)			(ft/msl)	Depth to Water (D) (from TOC)	TW)	SST 1 1 1 2 / 1	Groundwater Elevat site datum, from TC		(ft/msl)
	TTT	Total Well Depth (from TOC)	1		(0)	Stick Up		Total Control	Casing	Casing	
	<u> </u>		epth, Stick Up	, Casing Id. etc.	(ft) are optic	(from ground elevational and can be from histo		equired by Site/Permit. Well El	D(in levation, DTW, and G		be current,
		Sample Time 400 Hr Clock)	Rate/Unit	t pH (std)		Conductance (SC/EC) (µmhos/cm@25°C)	Temp.	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	_	19:310	350 1	* 51211	1 st	11160	111180		18 18	11480	
		191315	2 10	5 85	2 nd	1 111517	11103		63	1300	
tiona		9:38	3"	6115	3 rd	1157	10160		6 62	111310	
0		9:41	4 th	16142	4 th	158	110 M7	î î î î	664	10 40	
ATA		9:4.4		649		1 11 15 18	110141		662	1010	
ON		19147		655		1157	110141		661	191910	7/1/21
ATIC		9150	V	1.11.11		1158		0.78	66	950	F F I
STABILIZATION DATA (Optional)				1 1							
IAB				11		F 1 F 1					
Š											
		gested range for 3 consectors of the property		+/- 0.2		+/- 3%	*		+/- 10%	+/- 25 mV	Stabilize
	Stab	bilization Data Fields	s are Optional	(i.e. complete	stabiliza	ation readings for param	neters required by I	WM, Site, or State). These fic mit electronic data separately	elds can be used whe	ere four (4) field measuren	nents are required
		SAMPLE DATE		pH		conductance	TEMP.	TURBIDITY	DO DO		eparate sheet or form ier: <u>+</u> ; ~~e
DDA	L	(MM DD YY)	Î,	(std)	(r	(umbos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV) Unit	
FIELD DATA	Fine	al Field Readings are	e required (i.	e record field	measure	i 58 ements, final stabilized re	eadings, passive sa	mple readings before sampli n	6 61 ng for all field paran	neters required by State/Po	grmit/Site.
-		mple Appearance:		Cleav					or:		Than Aire.
	Wes	eather Conditions	(required da	aily, or as cond	ditions (irection/Speed:			Precipitation:	: <u>Y</u> or <u>N</u>
	Spe	ecific Comments (i	including p	ourge/well vol	ume ca	alculations if required	i):				
SI.	_		_								
FIELD COMMENTS											
MO-											
DQ.											
FIEI.											
	I cei	rtify that sampling	procedures	were in accor	dance v	with applicable EPA, S	tate, and WM pro	otocols (if more than one sa	ampler, all should s	ign):	30
	[1,15,16	11	San	n 6	orabe	A	- dr		Scs	
	-		_								
		Date	Nan		TION:	WHITE/ORIGINAL - S	Signature Stays with Sample.	YELLOW - Returned to Clies		mpany	

	FIELD INFORMATION FORM								
Si Nan		ov.	2	This Was	te Management Field	Information Form is Required	red	WASTE	THEMEDANAM
Sit No	1 1 1 1	Sample Point:	MW-	submitted	along with the Chain	of Custody Forms that accomplate is returned to the laborator	pany the sample	Laboratory Use Only/Lab	ID:
_			Samp	ple ID		W 14 W W W			
GE	0 111121	6	102	5	50				
PURGE	PURGE DATE (MM DD YY)	E	PURGE TIN			WATER VOL IN CAS			WELL VOLS
	Note: For Passive Samp		Water Vol in Cas	sing" and "Well Vols Purged	l" w/ Water Vol in Tub	(Gallons) bing/Flow Cell and Tubing/Flo	ow Cell Vols Purged. Me	allons) ark changes, record field o	PURGED data, below.
MPLF	Purging and Sampling Purging Device	^ .	Dedicated: Submersible P	Y or N Pump D-Bailer	Filte	er Device: O or N	0.45 µ or	μ (circle or fil	ll in)
E/SA!	E .	B-P	Peristaltic Pum	np E-Piston Pump		//		C-vacuum X-Other	
PURGE/SAMPLE	Sampling Device (<u>C</u>	QED Bladder I	Pump F-Dipper/Bottl	10	1 / 1		C-PVC X-Oth	er:
_		1 1 1	řiı	Depth to Water (I				D-Polypropylene	1 1 1
WELL DATA	(at TOC)		(ft/m	27	J1)	31 - 1 T 1 SZ 1	site datum, from TOC		(ft/msl)
ÆLI	Total Well Depth (from TOC)		(ft)	Stick Up (from ground eleva	ation)	1 1 1 1	Casing (in)	Casing Material	Ĩ
×	Hole. Total Well Depth		ng Id. etc. are op	otional and can be from hist	orical data, unless rec	quired by Site/Permit. Well E	levation, DTW, and Grou	indwater Elevation must l	
l ,		Rate/Unit	pH (std)	Conductance (SC/EC) (µmhos/cm@25°C)	Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
-		ちい 1 st	1"		11				
al)	101419	2 nd	2 nd						
ption	10150	3rd b.	V 3 rd	231	1372		1 58	19/114	
A (0	101513	4th 60.	1910 411	232	1313	490	0.64	66.7	
DAT	101516	1 7	1018	231	13.08	181914	01-17	5 7 3	111
0 	101519	1 7	1213	431	[303	11120	0 143	141913	
STABILIZATION DATA (Optional)	111:015 2	2	1318	1 2 3 2	1 2 40	11180	0.47	141218	40,73
BILL	111110	11 2	142	232	1 2 63	191518	054	141216	
STA	(11:115	Y 7	1415	1231	1 2 60	779	1058	416	
					11		11	1 1 1	
n	Suggested range for 3 consec. re note Permit/State requirements:		+/- 0.2	+/- 3%	- 1		+/- 10%	+/- 25 mV	Stabilize
b	by State/Permit/Site. If a Dat	ita Logger or othe	ner Electronic for	rmat is used, fill in final rea	dings below and subr	VM, Site, or State). These final relationship in the state of the stat	elds can be used where to Site. <u>If more fields a</u>	four (4) field measurem bove are needed, use se	ents are required parate sheet or form,
ATA	SAMPLE DATE (MM DD YY)	-	oH std)	CONDUCTANCE (umbos/cm @ 25°C)	TEMP.	TURBIDITY (ntu)	DO (mg/L-ppm)	eH/ORP Oth (mV) Unit	
FIELD DATA	111516		45	231	12 60	1 779	0 59	416	1115
						nple readings before sampli			rmit/Site.
	Sample Appearance: Weather Conditions (re	4.1	or as condition				or:		(1)
	Specific Comments (incl	-		0 /		Outloo	DK:	Precipitation:	Y or (N)
				purse to che		-la.F			
SLN:	COLVE	TEC DATE	VCEC .	PW)C TV CH	ear of w	ajev			
MMI-									
[OO]									
FIELD COMMENTS							_		
	certify that sampling pr	rocedures were	e in accordanc	e with applicable EPA,	State, and WM pro	tocols (if more than one s	ampler. all should sig	u):	
	11,15,16	52.1	un ba		1	h		545	
	, ,								
	Date	Name Di	DISTRIBUTION	N: WHITE/ORIGINAL.	Signature Stavs with Sample, V	/ELLOW - Returned to Clie	Comp	any	

		ELD INFORMA	TION FORM	W	<u> </u>
Site Nam	te	This Waste Management Field	Id Information Form is Required in addition to any State Forms. The Fiel-	WASTE MANAGEM	THENT
Site No.	Sumple 1 2 1 2 1 1	submitted along with the Chain	in addition to any State Forms. The Field in of Custody Forms that accompany the that is returned to the laboratory).		
	Sample ID	[A] pointaint (tilat is fouring to the		
E ç	0 1 1 1 5 1 6 1 8	11142			
PURGE	PURGE DATE PURGE TIME	ELAPSED HRS	WATER VOL IN CASING	ACTUAL VOL PURGED WELL VO	
	(MM DD YY) (2400 Hr Clock) Note: For Passive Sampling, replace "Water Yol in Casing" and "	(hrs:min) "Well Vols Purged" w/ Water Vol in Tu	(Gallons) ubing/Flow Cell and Tubing/Flow Cell	(Gallons) PURGE! Vols Purged, Mark changes, record field data, below.	D
IPLE	Purging and Sampling Equipment Dedicated:	9,7		5 μ or μ (circle or fill in)	
PURGE/SAMPLE FOITPMENT	Purging Device A-Submersible Pump B-Peristaltic Pump	D-Bailer E-Piston Pump Fi	Filter Type: A A-In-line B-Pressu	e Disposable C-Vacuum ire X-Other	
RGE	Sampling Device C-QED Bladder Pump	F-Dipper/Bottle	A-Teflor	C-PVC X-Other:	
_	X-Other:	Sample	Tube Type: B-Stainle		
WELL DATA	Well Elevation Dep (at TOC) (ft/msl) (from	oth to Water (DTW)	X [Q [A] r]	vater Elevation (fit	Vmsl)
ELL	Total Well Depth Sticl (from TOC) (ft) (from	k Up m ground elevation)	Casing Casing	Casing (in) Material	
H	Wole. Total went Depin, Siles Op, Casing ia. etc. are optional and		equired by Site/Permit. Well Elevation,	(in) Material DTW, and Groundwater Elevation must be current.	
	1 Mai	ance (SC/EC) Temp. s/cm@25°C) (°C)		D.O. eH/ORP DTW /L-ppm) (mV) (ft)	
L	111:45 350 14 7119 14	112158		2144 191217 11	1_
	2nd 6,9,0 2nd	1194 11261		0184 1101714 11	1
tions	1701513 3rd 6 18 15 3rd 1	190 112.61		0[67 [111].7	1_
	11136 44 634 44	1186 1754		0.58 11140	
ATA	111:518 1 61810	1178 112148		050 1119.3	1
S L	12:00 V 6.719	1177 112147			391
ATIC					
STABILIZATION DATA (Optional)					i
01					
not	ote Permit/State requirements:	t-/- 3%		/- 10% +/- 25 mV Stabiliz	
St	tabilization Data Ficlds are Optional (i.e. complete stabilization rec y State/Permit/Site. If a Data Logger or other Electronic format is use	adings for parameters required by V	WM, Site, or State) These fields can	be used where four (4) field measurements are req	uired
	SAMPLE DATE pH CONDU	UCTANCE TEMP.	TURBIDITY	DO eH/ORP Other: -in	
FIELD DATA	(MM DD YY) (std) (umhos/	/cm @ 25°C) (°C)		/L-ppm) (mV) Units	1
FIE	inal Field Readings are required (i.e. record field measurements, f	final stabilized readings, passive sa	imple readings before sampling for al	$0 \le 1$ $1 9 6 0$ $2 0$	20
Si	Sample Appearance:	Odor:	Color:	Other:	
W	Weather Conditions (required daily, or as conditions change)	Direction/Speed:		Precipitation: Y or	2
	specific Comments (including purge/well volume calculati	ions if required):			
STS -					
FIELD COMMENTS					
<u>N</u> –					
Ğ-					
5.0				·	
	certify that sampling procedures were in accordance with app	plicable EPA, State, and WM pro	otocols (if more than one sampler,		
	11,15,16 San 6 abo		- M		
	Date Name	Signature		Company	_
		•	YELLOW - Returned to Client, PINK		

	FIELD INFORMATION FORM								
Sit Nan	This Waste Managament Field Information Form is Paguired WASTE MA	NAGEMENT							
Sit No.	te Sample Sample								
	(MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PI Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, Purging and Sampling Equipment. Dedicated: Y	LL VOLs URGED below.							
PURGE/SAMPLE	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Filter Type: A-In-line Disposable C-Vacuum B-Pressure X-Other X-Other: Sample Tube Type: B-Stainless Steel D-Polypropylene								
DATA		(ft/msl)							
WELL		rrent.							
ī	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP (2400 Hr Clock) (std) (μmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV)	DTW (ft)							
ELD DATA	2:3 5 30p 1st 7 06 1st 12 7 9 78 13 12 7 3 3 3 3 3 3 3 3 3	te sheet or form. +1.~2.e.							
s	Sample Appearance: Odor: Color: Other:								
	Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y Specific Comments (including purge/well volume calculations if required):	or <u>N</u>							
FIELD COMMENTS	cartify that compling proceedures grow in accordance with angle N. ED. Co. Co. Lawrence and Co.								
	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):								

FIELD INFORMATION FORM																	
	ite ıme	:			OUSC	ر 			Management Field to be completed, in				Field Form is		w	BYBA	MANAGEMENT
	ite		11	Samı		0-1	. _ submitte	d alo	ong with the Chain e. with the cooler	of Custody	Forms that accom	pan	y the sample	La	aboratory Use Only	y/Lab i	D:
Ľ	0			Poin	te [r.c]c.	Sample		15 (1.	e. with the cooler	that is return	ed to the laborato	ry).	· []				
G		Hilitis	1/16	. [12	1	7	q	ï	1111	8		1	111		
PURGE	INFO	PURGE D	ATE		PUR	_tL GE TIM	E ELAPSI	7 D	нье	WATED	VOL IN CAS	TN			OL PURGED	10	VELL VOL
≅		(MM DD	YY)		(2400	Hr Clock	(hrs:	min)		(Gallons)			(Gal	lons)		VELL VOLs PURGED
543	(Note: For Passive Purging and Samp					g" and "Well Vols Purge	ed"			ell and Tubing/Fi	low		Mar			
MPI	ENT	Purging Device	. ~		A-Submers				111	ter Device.		ا A-Ir	0.45 μ or L n-line Disposabl	e C	μ (circle -Vacuum	or IIII	IN)
E/SA	EQUIPMENT	Sampling Device	1 C	_	B-Peristalti C-QED Bla	•		-	Fi	ilter Type:	1 /1 1		ressure		-Other		
PURGE/SAMPLE	EQU	X-Other:			C-QED BIS	iddel Pi	ımp F-Dipper/Bot	.tie	Sample	Tube Type:	1 1/		eflon tainless Steel			-Othe	r:
-				-						Tube Type.		_			-Polypropylene		*1 UF
	WELL DATA	Well Elevation (at TOC)				(řt/msl	Depth to Water ((from TOC)	(DT	(W)	183	1000		undwater Eleva datum, from T				(ft/msl)
	Ţ	Total Well Dept	h	1	1 1 1	ĺ	Stick Up		1 1	1.1		Casi	ing		Casing		
	× ×	(from TOC) Note: Total Well L	Depth, Sti	ck Up,	Casing Id. etc.	(ft) are opti	(from ground elev onal and can be from hi			equired by Si		D leva	(in tion, DTW, and G	ı) Froun	Material dwater Elevation	must b	e current.
Г		Sample Time 400 Hr Clock)		/Unit	pH (std)	С	onductance (SC/EC)		Temp.		urbidity		D.O.		eH/ORP		DTW
		13:3 Q	350	151	2011		(μmhos/cm@25°C)		(°C)	1 ,	(ntu)	7	(mg/L - ppm)	1	(mV)		(ft)
	1	13:13:5	1	2 nd	71: 1:1									1	11019		
nal)	1	2,20		7	7.56	1 1	1 1 5 14		10.49				2 62	H	[113]2		
) ptic	1	17:110	+	3 rd	7.25	1 ° F	1129		1091				11.138	H	1169		
[<u>4</u>	+	7, 11		4 th	7.50	4 th	1179		10 45				11 109	1	1128		
DA'	1_	3:4 4		-	71314	┨ ├	111514		10145				10198	1.1	1/10/8		
NO.	1	13:47	1	-	7,316	4	1155		10.44				10190		1097	2	
ZAT	1	13:50	4		7/3/		11155		110145		1 21		10 185		10910		118 35
BILL			Ĵ		_1_1_		TILL		11				R I		1 1 1		111
STABILIZATION DATA (Optional)					_1_1_				_1 1	1			1 1		1 1 1		
			L		1.1				1 1		1 1 1	ĺ			1 1 1		111
	note	gested range for 3 cons Permit/State requirem	ents:		+/- 0.2		+/- 3%		22.		:#t	1	+/- 10%		+/- 25 mV		Stabilize
	Stal by S	<mark>bilization Data Field</mark> State/Permit/Site. If c	<mark>ls are O</mark> p a Data Lo	otional ogger o	(i.e. complete r other Electro	stabiliz onic forn	ation readings for parc nat is used, fill in final re	ame. adir	ters required by I	WM, Site, or	State). These fi	elds	s can be used who	ere fo	our (4) field meas	ureme use sei	ents are required
		SAMPLE DATE			pН		CONDUCTANCE		TEMP.		RBIDITY		DO				r: time
Q Q	١.	(MM DD YY)	Lil	i i	(std)	Τľ	umbos/cm @ 25°C)		(°C)	1 1	(ntu)	1	(mg/L-ppm)	Î.	(mV)	Units	
FIELD DATA	Fin	al Field Readings ar	e requir	ed (i.e	record field	 measure	ments, final stabilized	rea	UO 45 dings, passive sai	mole readin	gs before sampli	ng i	O 89	neter	1 0 9 0	nte/Pe	1 3 5 0
		mple Appearance			clear			_	odor: N			_	, part	_		_	
	We	ather Conditions	s (requi	red dai			— change):		ection/Speed:				~			ition:	Y or N
	Spe	ecific Comments	(includ	ing pı	arge/well vo	lume c	alculations if requir	ed)	:		====	12				5	
S																	
ENT																	
MIM												-					
[O]					-			-				_		-			
FIELD COMMENTS								-				-		_			
m	_								- NAMES	0 %	97						
				uures			with applicable EPA,		A	otocols (if r	nore than one s	amj	pler, all should :	sign)			
	_[1 115 11	سا	_) ain	6/4	120		- Bh	_/	2	_		_	565		
	-	Date /	-	Name	e				Signature			_	Co	mpar	ny	-	
					DISTRIBU	JTION:	WHITE/ORIGINAL			YELLOW -	Returned to Clie	nt.			•		

	FIELD INFORMATION FORM								
	ite me:	This Waste	Management Field	Information Form is Require	d	WASTE	MANAGEMENT		
Si	ite Sample	submitted a	long with the Chain o	addition to any State Forms. T	nny the sample	Laboratory Use Only/Lab	ID:		
N	o.: Point: Police	ample ID	(i.e. with the cooler th	nat is returned to the laboratory).	3-			
(-)		3 0 1 1	23	1 1 1 1 1	1 1 1				
PURGE	PURGE DATE PURGE	TIME ELABORE		WATER VOLUM CASE	NC ACTUAL!	VOL BURCED X	WELL VOL		
PU	PURGE DATE PURGE (MM DD YY) (2400 Hr			WATER VOL IN CASII (Gallons)		VOL PURGED (Gallons)	VELL VOLs PURGED		
63	Note: For Passive Sampling, replace "Water Vol in				- 02				
MPLJ	Purging and Sampling Equipment. Dedicated: Purging Device C A-Submersible	e Pump D-Bailer	Fiite	r Device: Or N	0.45 µ or In-line Disposable	μ (circle or fil	l in)		
S/SA	Purging Device C A-Submersible B-Peristaltic F C-QED Bladd	'ump E-Piston Pump		1 // 1	Pressure	X-Other			
PURGE/SAMPLE	Sampling Device C-QED Bladd	er Pump F-Dipper/Bottle	5		Teflon	C-PVC X-Othe	er:		
_			Sample To	ube Type: B-	Stainless Steel	D-Polypropylene			
Ė	Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth Stick In Caping Id. at a great state of the s	Depth to Water (D'	TW)	1 2 ~	roundwater Elevatio te datum, from TOC		(ft/msl)		
1	Total Well Depth	Stick Up	1 1		sing	Casing			
1	(from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. ar	t) (from ground elevat	·	(ft) ID		Material undwater Elevation must l	ne current.		
Г	Sample Time Rate/Unit pH	Conductance (SC/EC)	Temp.	Turbidity	D.O.	eH/ORP	DTW		
	(2400 Hr Clock) (std)	(μmhos/cm@25°C)	(°C)	(ntu)	(mg/L - ppm)	(mV)	(ft)		
	1 4 3 5 550 18 7 4 5	13 250	1 13 HG		0 23	191/18			
[a]	2 ^{nl} // 4/0	ond 2 4 5	13 147		10136	19,7,4			
ptior	1 4 1 3 1 3 1 4 1 3 1 B	243	113148		10 32	85.9			
A (0	4th 713 11	th 2 4 2	113146		10 [25]	13312			
DAT	11410 1 21312	121412	: 13 M.		C 21	[6 2] [
NO	1141910 1 71311	1 2 4/2	1131:03	1	1019	8114	1 17140		
ZATI	1H1518 1 71/214	1 2 4 1	1 3 55	1 1 17121	10117	18012			
BILL		1 1 1 1			1.1				
STABILIZATION DATA (Optional)			1 1	1111					
					1_1_1		111		
	Suggested range for 3 consec. readings or note Permit/State requirements: +/- 0.2	+/- 3%	74	¥	+/- 10%	+/- 25 mV	Stabilize		
	Stabilization Data Fields are Optional (i.e. complete st by State/Permit/Site, If a Data Logger or other Electroni								
_	SAMPLE DATE PH	CONDUCTANCE	TEMP.	TURBIDITY	DO		er: time		
DA	(MM DD YY) (std)	(umhos/cm @ 25°C)	- (°C)	(ntu)	(mg/L-ppm)	(mV) Unit			
FIELD DATA	Final Field Readings are required (i.e. record field me	asyramonts final stabilized ra	gadinas passive sam	7 2.1	0 17	Store required by StotalPa	1453		
	Sample Appearance: (euw				r;		rmusue.		
	Weather Conditions (required daily, or as conditions)		irection/Speed:		c		Y or (N)		
	Specific Comments (including purge/well volu								
		•							
L									
FIELD COMMENTS									
SO)									
ELD		1-11-1							
	•	Constitution (Ex	100000	CONTRACTOR OF THE PARTY OF					
	I certify that sampling procedures were in accord		A.	tocols (if more than one sa	mpler, all should sig				
	11,15,16 Sam 6	orabo	-12			5.65			
	Date Name		Signature		Com	pany			
		ION: WHITE/ORIGINAL - S		ELLOW - Returned to Clien					

FIELD INFORMATION FORM	
This Waste Management Field Information Form is Required	WASTE MANAGEMENT
This form is to be completed, in addition to any State Forms. The Field Form is submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).	Only/Lab ID:
Point: [4 W - 2] 7 containers (i.e. with the cooler that is returned to the laboratory). Sample ID	<u> </u>
111616 1242 23	
PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGE (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons)	ED WELL VOLs PURGED
te: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, rec	cord field data, below.
	ircle or fill in)
rrging Device C A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter Type: A B-Pressure X-Other	
mpling Device C-QED Bladder Pump F-Dipper/Bottle	X-Other:
Other: Sample Tube Type: B-Stainless Steel D-Polypropyler	ne
ell Elevation Depth to Water (DTW) Groundwater Elevation (ft/msl) (from TOC) (site datum, from TOC)	(ft/msi)
tal Well Depth Stick Up Casing Casing om TOC) (ft) (from ground elevation) (ft) ID (in) Material	
te: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit, Well Elevation, DTW, and Groundwater Elevation. DIE Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP	
Hr Clock) (std) (μmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV)	DTW (ft)
1415 350 1" 51316 1" 1 1910 12134 1 1 14152 117171	1 1 1 1
2 2 2 5 6 7 2 nd 8 7 1 2 40 1 4 25 1 6 6	3
13 3 5 9 0 3 1 8 7 1 2 4 1 1 1 4 12 1 5 6	2
-156 4th 51917 4th 187 12146 1 141/2 1511	8 111
1519 1 61014 1 1818 12 147 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 111
1012 1 61018 1 1818 112 149 1 1 1 14105 114161	3
5015 4 6111 1 1818 112 119 1119 14102 /14151	0 1206
d range for 3 consec, readings or +/- 0.2 +/- 3% +/- 25 mV	Stabilize
ation Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field n Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed	neasurements are required
MPLE DATE PH CONDUCTANCE TEMP, TURBIDITY DO eH/ORP	Other: Line
(MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV)	Units_
cld Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by	State/Permit/Site.
e Appearance: Clear Odor: Color: Other:	
er Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Preci	pitation: Y or N
c Comments (including purge/well volume calculations if required):	
y that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	
1616 San Gruber Id Scs	

	FIELD INFORMA	TION FORM	
Site Name: Site No.: Site Point:	This Waste Management Field This form is to be completed, in submitted along with the Chain	Information Form is Required addition to any State Forms. The Field Form is of Custody Forms that accompany the sample hat is returned to the laboratory).	Laboratory Use Only/Lab ID:
(MM DD YY) Note: For Passive Sampling, replace "Wat	PURGE TIME ELAPSED HRS (2400 Hr Clock) (hrs:min) ter Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tui dicated: Or N Filt bmersible Pump D-Bailer	(Gallons)	μ (circle or fill in)
	D Bladder Pump F-Dipper/Bottle	A-Teflon B-Stainless Steel	X-Other C-PVC X-Other: D-Polypropylene
Well Elevation (at TOC) Total Well Depth (from TOC)	Depth to Water (DTW) (from TOC) Stick Up (ft) (from ground elevation)	Groundwater Elevati (site datum, from TO Casing (in) (in) (in)	
Sample Time Rate/Unit p	Id. etc. are optional and can be from historical data, unless rest. Conductance (SC/EC) Temp. (d) (mhos/cm@25°C) (°C)		
Tabilization Data Fields are Optional (i.e. conby State/Permit/Site. If a Data Logger or other)	mplete stabilization readings for parameters required by R Electronic format is used, fill in final readings below and subs CONDUCTANCE TEMP,	IM, Site, or State). These fields can be used when the electronic data separately to Site. If more fields TURBIDITY DO (ntu) (mg/L-ppm)	1 3 9
E 111616 17	60 251 1213 I field measurements, final stabilized readings, passive sar	1 50 1 18	-23 1405
Sample Appearance: Weather Conditions (required daily, or a Specific Comments (including purge/w	Odor:	Olor: No	Other: Precipitation: Y or ①
I certify that sampling procedures were in	s accordance with applicable EPA, State, and WM pro	tocols (if more than one sampler, all should si	gn): S CS
Date Name DIST	Signature TRIBUTION: WHITE/ORIGINAL - Stays with Sample, 1		npany

Γ							FIEL	D IN	FO	RMA	4 <i>TI</i>	ON F	ORM	1		M	A	$\sqrt{\Lambda}$
	ite ime:		C		ISL							rmation Form		d he Field Form is]_	w	BTE	MANAGEMENT
	ite o.:		150000	amp Point	200	ľ	10/4/2	submitted	along w	ith the Chai	in of C	stody Forms the returned to the	at accompa	any the sample	L	aboratory Use Onl	y/Lab	D:
L		Territoria (gri g	and talled the			San	nple ID		701				72 9	- w h	<u> </u>			100 - 100 - 100
GE	0	1116	16		11	1/4	12		18									
PURGE	INFO	PURGE DA				RGE T		ELAPSE		;	WA	TER VOL I		NG ACTUA		OL PURGED	V	VELL VOLs
L		Note: For Passive S	Sampling, re		e "Water Vo		asing" and "Well		in) ''' w/ Wa				ubing/Flow	w Cell Vols Purgea	(Gai . Mar	lons) k changes, record	field a	PURGED lata, below.
PURGE/SAMPLE	ENT	Purging and Sample Purging Device	ing Equipr		Dedicat			N Bailer		Fi	ilter D	evice: 🙆 o	r N	0.45 μ or L		μ (circle	e or fil	l in)
E/SA!	EQUIPMENT				B-Peristal	ltic Pu	mp E-P	iston Pump		I	Filter	Type: 4		In-line Disposal Pressure		-Vacuum -Other		
URG	EQU	Sampling Device X-Other:			C-QED B	ladder	Pump F-D	Dipper/Bottl	e I	Sample	· Tube	Tunai D		Teflon			-Othe	т:
\vdash	-		- 1 i	- 1	1 1	-	Do-4h 4	W-ton (I		оашрі,	t Luoc	Type.		Stainless Steel	_	P-Polypropylene		b : b 2
	WELL DATA	Well Elevation (at TOC)				(ft/	Depth t msl) (from T	to Water (I COC))TW)		26	, 4 (_{(ft}		oundwater Elev te datum, from T				(ft/msl)
;	ELL	Total Well Depth (from TOC)				(ft)	Stick Up	p round eleva	tion)	1 [sing	•	Casing		Ĩ
L	_	Note: Total Well De	TOTAL PROFE	7	Casing Id. et		optional and can	be from hist		ata, unless i	require	d by Site/Permit			in) <i>Groun</i>	Material dwater Elevation	must b	e current.
١,		ample Time 400 Hr Clock)	Rate/Ui		pH (std)	ě	Conductance (µmhos/cm		1 6	Temp. (°C)		Turbidity (ntu)		D.O. (mg/L - ppm)		eH/ORP (mV)	19	DTW (ft)
	1	14:415	390	1 st	71418	اة ا	15	1410	Li	12160			1	1/109		-141616		
	L	4:48	1	2 nd	751	(2 nd	1 15	MIT	1	2 60			1	052		- 46.9		r r i
tiona	1	14151		3 rd	7151	/ 3rd	5	49	1	260				10142		-506		
0	1	141514		4 th	750	2 4th	15	49	_(12/58			1	10 136		- 5 1 9		LLI
DATA	j	14157			7.50	2	5	51	1	2 59			1	0 33		-527		111
STABILIZATION DATA (Optional)	1	15:00	Y		7.41	1	15	50	1	2 57		1 2	175	10130	_	535	9	26 44
ZATI					11		سلنا	Ĺĺ					1	***************************************		1 1 1		
BILL		I I I			1.1								1	***************************************		LII		
STA			1				1.1.			Ш			1	***************************************		1 1 1		
													1			1 1 1		
	note	gested range for 3 consec Permit/State requirement	nts:		+/- 0.2		+/- 3%			-				+/- 10%	L	+/- 25 mV		Stabilize
_	by S	bilization Data Fields State/Permit/Site. If a	Data Logg	nal (i.e. compte other Elect	te stav tronic f	ilization readın ormat is used, fil	gs for paran ll in final rea	neters r dings be	equired by elow and su	, WM, 3 ibmit el	Site, or State) ectronic data se	These fiet eparately to	lds can be used w. o Site. <mark>If more fic</mark>	nere fo lds ab	our (4) field mea. ove are needed, i	surem <mark>18e sej</mark>	ents are <mark>required</mark> parate sheet or form,
ATA		SAMPLE DATE (MM DD YY)			pH (std)		CONDUCT (umhos/em (Т	EMP.		TURBIDIT	ΓY	DO (mg/L ppm)		eH/ORP	Othe	
FIELD DATA	1	11/16/1	6	-	TI	9		50	1,	2 57		(ntu)	2/75	(mg/L-ppm)	1	- 5 3 5	Units	1808
FIE	Fina	al Field Readings are	required	(i,e,		1	urements, final	1 1	eadings	, passive s	ample	readings before	e sampling		meter		nte/Pe	rmit/Site.
		mple Appearance:	-	-	lear									No			,_	
		ather Conditions					,			n/Speed:				·			tion:	Y or W
	Spe	ecific Comments (i	including	z pu	rge/well v	olum/	e calculations	if require	d):						_			
VIS	_			_							_							
FIELD COMMENTS	_					-					_						-	
CON	_										-							
CLD	_																	
1	_					_												
	I ce	rtify that sampling		ces w				able EPA, S	itate, a	nd WM pi	rotoco	ls (if more tha	in one sar	mpler, all should	sign)): 5°C5		
	[1 /10 / 11	<u> </u>		<u> 5 41</u>	M (braber				\sim				_	207		
	-	//	<u></u>	Name		RITTO	N. WHITE/O	DICINAT	Signa Stave w		Verr	OW Pat	od to Cit-	t. PINK - Field Co	ompa	ny		

FIELD INFORMATION FORM									
Si Na	This Was		Information Form is Require		WASTE	MANAGEMENT			
Si No	ite Sample	d along with the Chain of	f Custody Forms that accompa at is returned to the laboratory	pany the sample	Laboratory Use Only/Lab	ID:			
	Sample ID	V (1	10.704414	7).		====:			
展	011111116 [4:32]	i 8							
PURGE	PURGE DATE PURGE TIME ELAPSE	ED HRS	WATER VOL IN CASI	ING ACTUAL	VOL PURGED	WELL VOLs			
	(MM DD YY) (2400 Hr Clock) (hrs:m Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purgea	nin) ed" w/ Water Vol in Tubl i	(Gallons) ng/Flow Cell and Tubing/Flo	(G ow Cell Vols Purged, M	Gallons) Aark changes, record field (PURGED data, below.			
PLE	Purging and Sampling Equipment Dedicated:		r Device: Or N	0.45 µ ог	μ (circle or fi				
/SAM	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump	ın Filt	i A I	-In-line Disposable -Pressure	C-Vacuum X-Other				
PURGE/SAMPLE	Sampling Device C C-QED Bladder Pump F-Dipper/Bottl	tle	A-		C-PVC X-Other	er:			
_	X-Other:	Sample Tui		41	D-Polypropylene				
DATA		DTW)		Froundwater Elevatio Site datum, from TOC	253	(ft/msl)			
WELL	Total Well Depth Stick Up (from TOC) (ft) (from ground eleva	ration)	Ca (ft) ID	Casing (in)	Casing Material	1			
M	trote. Total well begin, slick op, Casing la. etc. are optional and can be from hist	storical data, unless requ	uired by Site/Permit. Well Ele		undwater Elevation must	be current.			
1	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (µmhos/cm@25°C)	Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)			
	141315 390 14 51519 14 1 18 9	110.45		12121	181714				
al)	9140 2nd 6135 2nd 1 86	1035		0.72	521				
otion	19:43 3rd 6:513 3rd 1 85	1022		0.45	14146				
STABILIZATION DATA (Optional)	9147 4 6.624 1 84	1006	9 52	6.46	408	1 1 1			
XAT/	19:50 4 6:617 1 1 814	9 99	861	0.43	39.2				
N I			1111			P P II			
ATI									
ILIZ									
TAB		FI	F T F T						
S				F	1 1 1				
	Suggested range for 3 consec, readings or +/- 0.2 +/- 3% note Permit/State requirements:	-		+/- 10%	+/- 25 mV	Stabilize			
5	Stabilization Data Fields are Optional (i.e. complete stabilization readings for param by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final rea	meters required by WN adinos helow and submi	1, Site, or State). These fie	ilds can be used where	four (4) field measuren	nents are required			
	SAMPLE DATE PH CONDUCTANCE	TEMP.	TURBIDITY	DO	eH/ORP Oth				
FIELD DATA	(MM DD YY) (std) (umbos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV) Unit	1-1-1			
E L	Final Field Readings are required (i.e. record field measurements, final stabilized re	readings, passive samp	le readings before sampling	O 13 Ig for all field parame	ters required by State/Pe	ermit/Site.			
	Sample Appearance:	Odor:	Colo	or:	Other:				
		Direction/Speed:	Outlook	k:	Precipitation:	Y or N			
	Specific Comments (including purge/well volume calculations if require	;d):							
SLN-									
COMMENTS									
CON									
FIELD				- 6					
	the state of the s				:				
I	certify that sampling procedures were in accordance with applicable EPA, S	State, and WM proto	cols (if more than one sa	mpler, all should sig					
	11, Wei 16 Sam Gratier				565				
	Date Name	Signature		Comp	POWY.				
	DISTRIBUTION: WHITE/ORIGINAL-S		LLOW - Returned to Clier	at. PINK - Field Copy	any				

	FIELD INFORMATION FORM							
Si Na:	me: This Was		Information Form is Required		WASTE	THEMEDAHAM		
Si	te Sample submitted	d along with the Chain	addition to any State Forms. The Fi of Custody Forms that accompany th		boratory Use Only/Lab I	D:		
N.	Point: Mw-729 container	s (i.e. with the cooler t	hat is returned to the laboratory).					
_		1 4	FIFTE	1 1 1	3F Y 3 - 4			
GE	0 1111716 11011	DX 23						
PURGE	PURGE DATE PURGE TIME ELAPSE	ED HRS	WATER VOL IN CASING	ACTUAL VO		VELL VOLs		
	(MM DDYY) (2400 Hr Clock) (hts:n Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purge	nin) d" w/ Water Vol in Tub	(Gallons) bing/Flow Cell and Tubing/Flow Cel	(Gall Il Vols Purged. Mari	ons) k changes, record field d	PURGED ata, below.		
TE	Purging and Sampling Equipment Dedicated:	Filt	er Device: O or N 0).45 µ or [μ (circle or fill	in)		
PURGE/SAMPLE	Purging Device C A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pum C-QED Bladder Pump F-Dipper/Bott		1 21 1	ine Disposable C-	-Vacuum			
GE/S	B-Peristaltic Pump E-Piston Pum Sampling Device C C-QED Bladder Pump F-Dipper/Bott	•	Iter Type: B-Pres	ssure X-	Other			
PUR	X-Other:	14	Tube Type: D A-Tefle		-PVC X-Othe -Polypropylene	r:		
-	War e I I I I I I I I I I I I I I I I I I				1 2 3 2 3			
DATA	Well Elevation Depth to Water (1 (fr/msl) (from TOC)	DTW)	11 1 (-1 51	dwater Elevation atum, from TOC)		(ft/msi)		
	Total Well Depth Stick Up	1.1	Casing	, , ,	Casing			
WELL	(from TOC) (ft) (from ground elever		(ft) ID	(in)	Material			
ŕ	Note: Total Well Depth, Stick Up, Casing Id. etc., are optional and can be from his Sample Time Rate/Unit pH Conductance (SC/EC)	Temp.	quired by Site/Permit。Well Elevation Turbidity	D.O.	dwater Elevation must b	DTW		
١,	(2400 Hr Clock) (std) (μmhos/cm@25°C)	(°C)	•	ng/L - ppm)	(mV)	(ft)		
	110:30 350 15 (355 15 15)	19135		19 34	171519			
	10:3 3 1 2nd 2nd	î î				TE UE 1		
nal)	1,5,6,1	i Client						
ptio	3 rd / 10 3 rd / 5 9	9 34		062	1516,5			
Ø (0	10141 4" 750 4" 159	9.23		0 42	250	111		
AT.	1101414 71914 111519	9 23		0 32 -	11 19 16	111		
STABILIZATION DATA (Optional)	110:47 8115 1159	923		0 30 -	141217	1 1 1		
TIC	10:50 V 371 1159				11111			
IZA		4.24		026 -	619			
BII								
STA						111		
			1 1 1 1		1 1 1	1.1 1		
	Suggested range for 3 consec. readings or +/- 0.2 +/- 3%			+/- 10%	+/- 25 mV	Stabilize		
3	Stabilization Data Fields are Optional (i.e. complete stabilization readings for para	meters required by M	M, Site, or State). These fields co	an be used where fo	nur (4) field measureme	ents are required		
	by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final rec SAMPLE DATE pH CONDUCTANCE	TEMP.	mt etectronic data separately to Site TURBIDITY	DO		r: +7 ~e		
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C)	(°C)		ng/L-ppm)	(mV) Units			
ELD	111716 831 159	9 24	1 12	026 -	614	1050		
	Final Field Readings are required (i.e. record field measurements, final stabilized to	readings, passive san	nple readings before sampling for		s required by State/Per	mit/Site.		
:	Sample Appearance:	Odor:	Color:		Other:			
,	Weather Conditions (required daily, or as conditions change):	Direction/Speed:	Outlook:		Precipitation:	Y or N		
7	Specific Comments (including purge/well volume calculations if require	ed):						
(0)								
ZZ -	6 1 1-1 1 11/100							
Œ-	Dup 1 taken at 1100							
COMMENTS								
FIELD						-		
	certify that sampling procedures were in accordance with applicable EPA,	State and WM pro	tocals (if more than any semple	ar all should sign'				
•		orace, and wive pro	rocore (ir inore man one sample	an snourd Sign)	•			
	Date Name	Signature			hv.			
	DISTRIBUTION: WHITE/ORIGINAL		ELLOW - Returned to Client. PIN	Compan NK - Field Copy	ıy			

	FIELD INFORMATION FORM							
	Site Name: This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT						
	Site Sample Sample Submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).	Laboratory Use Only/Lab ID:						
邑	# a							
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUA	AL VOL PURGED WELL VOLS						
4	(MM DD YY) (2400 Hr Clock) (hts:min) (Gallons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purgea	(Gallons) PURGED						
TE		μ (circle or fill in)						
PURGE/SAMPLE	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle A-Submersible Pump B-Piston Pump F-Dipper/Bottle A-In-line Disposate B-Pressure A-In-line Disposate B-Pressure							
KGE/8	B-Peristaltic Pump E-Piston Pump Filter Type: B-Pressure Sampling Device C C-QED Bladder Pump F-Dipper/Bottle B-Pressure F-Dipper/Bottle	X-Other C-PVC X-Other:						
PUF	Sample Tube Type: D B-Stainless Steel	D-Polypropylene						
DATA	Well Elevation (at TOC) Total Well Depth (from TOC) Output Depth to Water (DTW) (from TOC) Stick Up (from TOC) (from ground elevation) Output Casing ID (from TOC) (from TOC) (from TOC) Output Casing ID (from TOC) Output O							
ET I	Total Well Depth Stick Up Casing Communication (ft) ID (ft) ID	Casing						
3	(from TOC) (ft) (ftom ground elevation) (ft) ID (th) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and	in) Material Groundwater Elevation must be current.						
1	Sample Time Rate/Unit pH Conductance (SC/EC) Temp Turbidity D.O. (2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)						
	1 13:00 300 1 676 1 1 1 97 (1219 1 1 13120	11135						
al)	2nd 6.62 2nd 1.79 1.79 0.71	111116						
ption	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	11100 111						
Ø	0 13:11 44 663 44 1126 11179 111 0137	1691						
DAT	[13:114	1085						
	8 13:117 6 6 6 3 11 2 6 11 75 1 1 0 25	1081 3270						
ATI	E 1131210 V 61613 111217 11166 1 1212 10124	101719						
ILIZ								
STABILIZATION DATA (Optional)								
2	Suggested range for 3 consec. readings or ht- 0.2 ht- 3% - +t- 10%	+/- 25 mV Stabilize						
3	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used we by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fie	here four (4) field measurements are required lds above are needed, use separate sheet or form.						
		eH/ORP Other: 1/2.2						
FIELD DATA	[(mg/L-ppm) (std) (umbos/cm@25°C) (°C) (ntu) (mg/L-ppm) (1 1 7 1 6 6 3 6 7 7 7 7 7 7 7 7 7	(mV) Units						
FIE	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field pare							
	Sample Appearance: Odor: Color:	Other:						
	Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or W							
	Specific Comments (including purge/well volume calculations if required):							
FIELD COMMENTS	<u></u>							
IME.								
CON	Õ							
TD.								
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):								
11,17,16 San Graper Scs								
	Date Name Signature Company							
	DISTRIBUTION: WHITE/ORIGINAL - Stavs with Sample, YELLOW - Returned to Client, PINK - Field Co							

Γ	FIELD INFORMATION FORM							$\sqrt{\Lambda}\sqrt{\Lambda}$	
Na		e: This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is						MANAGEMENT	
	Site No.:	Sample Point:			of Custody Forms that accompa hat is returned to the laboratory		Laboratory Use Only/Lab	ID:	
PURGE	Note: For Passive So	r) (24	URGE TIME ELAPSE 400 Hr Clock) (hrs:m Vol in Casing" and "Well Vols Purgea	nin)	WATER VOL IN CASI (Gallons) ing/Flow Cell and Tubing/Flo	(0	Gallons)	WELL VOLs PURGED data, below.	
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Y or N 0.45 \(\mu\) or \(\mu\) p (circle or fill in) Purging Device B A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Folipper/Bottle Sampling Device B C-Vacuum B-Peristaltic Pump E-Piston Pump Folipper/Bottle X-Other: Sample Tube Type: A A-Teflon C-PVC X-Other: Sample Tube Type: D-Polypropylene								
	Well Elevation (at TOC) Total Well Depth (from TOC)		Depth to Water (I (ft/msl) (from TOC) Stick Up (ft) (from ground elevation)		(ft) (si	roundwater Elevation TO	C) Casing	(ft/msi)	
L	Note: Total Well Dep	pth, Stick Up, Casing Id. e	(ft) (from ground eleva etc. are optional and can be from hist		(ft) ID nuired by Site/Permit. Well Ele			be current.	
	Sample Time (2400 Hr Clock)	Rate/Unit pH (std)	Conductance (SC/EC) (µmhos/cm@25°C)	Temp.	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)	
		1 st	1 st	1.1.					
=	111:00	2nd 7.8	3 211 4383	118124	131138	61916	110410		
STABILIZATION DATA (Optional)		3 rd	3 rd			1 1			
0		4 th	4 th						
ATA							111		
ON									
ATIC									
LIZ									
[ABI				B 1					
S				F 1		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
	Suggested range for 3 consec	±/- U /	+/- 3%	=		+/- 10%	+/- 25 mV	Stabilize	
	note Permit/State requirement Stabilization Data Fields	is: are Optional (i.e. compl	lete stabilization readings for paran	meters required by W	M, Site, or State). These fie	lds can be used wher	e four (4) field measuren	ents are required	
	by State/Permit/Site. If a L SAMPLE DATE	Data Logger or other Ele pH	ectronic format is used, fill in final rea CONDUCTANCE	idings below and subm	nit electronic data separately t	o Site. <u>If more fields</u> DO		eparate sheet or form, er: Time	
DA	(MM DD YY)	(std)	(umhos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV) Unit		
FIELD DATA	Final Field Readings are	required (i.e. record fie	3 4383 eld measurements, final stabilized r	readings, passive sam	3138	g for all field parame	i C 4 C state/Potents required by State/Po	ermit/Site.	
	Sample Appearance:	CLEAR		Odor:	Colo		Other:		
	Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: CVERCAST Precipitation: Y of Specific Comments (including purge/well volume calculations if required):								
	SAMPLE								
LNI	POND,								
POND, FROM THE 6" OF INFLOENT PIPE. TX OCCUME PORY, 2 × 500 me H2504 AMBER. 1 × 500 me HNO2 Pory, 6 × V									
00									
TELE	IX LOCO MIL Pary, 2x 500 milly soy AMBER, 1x 500 mil HNO3 Pary, 6 x VOA								
11.0									
	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign): 1 14 16 59 505 606								
	Jan Jan Jan Jan Jan Jan Jan Jan Jan Jan								
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Conv								

		FIELD INFORMA	TION FORM					
	ame: OVSL		Id Information Form is Required in addition to any State Forms. The Field Form is	WASTE MANAGEMENT				
	Site Sample Point:	submitted along with the Chai	in of Custody Forms that accompany the sample r that is returned to the laboratory).	Laboratory Use Only/Lab ID:				
E PURGE	Note: For Passive Sampling, replace "Water	PURGE TIME ELAPSED HRS 2400 Hr Clock) (hrs:min) r Vol in Casing" and "Well Vols Purged" w/ Water Vol in Ti	(Gallons) https://www.cell.and.Tubing/Flow.Cell Vols Purge					
PURGE/SAMPLE	Purging and Sampling EquipmentDedic Purging Device B A-Subm B-Perist Sampling Device C-QED	mersible Pump D-Bailer staltic Pump E-Piston Pump F D Bladder Pump F-Dipper/Bottle	Iter Device: Or N 0.45 µ or A-In-line Disposa B-Pressure A-Teflon	Able C-Vacuum X-Other C-PVC X-Other:				
-		Depth to Water (DTW)	Tube Type: B-Stainless Steel Groundwater Ele	D-Polypropylene				
WEIT DA	Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id.	(ft/msl) (from TOC) Stick Up (ft) (from ground elevation) etc. are optional and can be from historical data, unless r	(ft) (site datum, from Casing ID ID required by Site/Permit. Well Elevation DTW and	Casing (in) Material				
	Sample Time Rate/Unit pH (2400 Hr Clock) (std)	Conductance (SC/EC) Temp.	Turbidity D.O. (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)				
	10:20 1 18 70	14 1 1176 1252	13260 405	11/60				
onal)	10125 2nd 614	8 2 1 4 5 1 3 29	12577 1853	1243				
STABILIZATION DATA (Optional)	4 th	4 th						
DATA								
TION								
ILIZA								
STAP								
	Suggested range for 3 consec. readings or note Permit/State requirements:	2 +/-3%	+/- 10%	+/- 25 mV Stabilize				
1	Stabilization Data Fields are Optional (i.e. comp.	plete stabilization readings for parameters required by lectronic format is used, fill in final readings below and sub	WM, Site, or State). These fields can be used y	where four (4) field measurements are required				
	SAMPLE DATE pH	CONDUCTANCE TEMP.	TURBIDITY DO	elds above are needed, use separate sheet or form eH/ORP Other:				
FIELD DATA	(MM DD YY) (std) (in a field Readings are required (i.e. record field)	(umhos/cm @ 25°C) (°C) [13 24] field measurements, final stabilized readings, passive sa	(mg/L-ppm) 2577 855 imple readines before sampling for all field no	S				
_	Sample Appearance: CLEAR		Color:	Other:				
	Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: CVERAST Precipitation: Y or N							
	Specific Comments (including purge/well volume calculations if required):							
IENTS	COLLECT SAMPLE. PERISTAUTIC SPEED = 7 2 300 m/mm,							
COMMENT	DTW = 7.03 Ø= 4 ID							
	D73: 11.95							
FIELD	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):							
-		ADUNG TON	otocois (ii more tumone sampier, an suoui	d sign): SCS ENG.				
). ()	1/2/				

SCS	ENGI	NEEF	(5	OVSL		
	Date	Time		Measured	Comments	Page 2 of 2 Last Quarter
				by (initials)		DTW
MW-2A1	11/16/16		7.48			9.1
MW-2B1			6.20			6.7
MW-30A		942	23.12			24.0
MW-30B			22.97		22.97	23.8
MW-31		1013	1.93			N
MW-32			1.08			1.5
MW-33A			4.41			5.6
MW-33B			1,72			2.1
MW-33C			1.63			2.1
MW-34A			38.91			39.
MW-34B			38.74			39.4
MW-34C			40.73			41.2
MW-35			71.17		Needs clearing	72.0
MW-36			30,54	-	10 10, 1	31.1
MW-36A			30.43			31.0
MW-37		955	3.30			NM
MW-38		(015	3.26		3	3.6
MW-39			17.16		heads clearing	21.3
MW-4			11.79		, (0) 0 000	14.9
MW-40A			13.79			15.5
MW-40B			14,02			
MW-40C		duta	15.21			15.4
		940				15.8
MW-41A			24.11			24.1
MW-41B			24.68			24.6
MW-41C			26.17			26.1
MW-42			26.41			27.8
MW-43			25.15			25.1
MW-5	V	10:27	1.82			2.5
MW-9	11/16		-2,22			NM

Olympic View Sanitary Landfill

Well	Date	Time	DTW	Measured by (initials)	Comments	Page 1 of 2 Last Quarte DTW
MW-1	=	-	\ = /	7-0	Not Measured, Hazard/No Access	
MW-10	11/16					NM
MW-11					Lost	4.2
MW-12			47.85			NM
MW-13			27.81			28.9
MW-13A			45.76			46.3
MW-13B	1		59.30			60.3
MW-14	-	-	2=	7-2	Not Measured, Damaged Well	
MW-15R	11/16		18.30			18.7
MW-16			59:30		Needs clearing	57.6
MW-17			33.06		1	NM
MW-18			64.26			NM
MW-19A		1205	31.62			32.5
MW-19B			31.70			32.6
MW-19C			32.89			33.8
MW-19D			32.09			32.7
MW-20			35.01			35.9
MW-21			41.09			5.3
MW-23A			1206	12.06		NM
MW-23B	+		12.39			12.4
MW-23C			12.66			12.9
MW-24			32.20			21.7
MW-26			11.97			NM
MW-27			22.33			21.7
MW-28			5,51		N	NM
MW-29A			14.68			13.3
MW-29B			16.23			17.1
MW-29C	V		10.68			11.7

Febraury 25, 2016 File No. 04204027.19

Subject: First Quarter 2016 Compliance Monitoring Event

Olympic View Sanitary Landfill, Kitsap County, Washington

Sampling Event Dates: 02/22/16 through 02/24/16 Personel: Sam Graber and Stephen Palachuk

NOTES/SAMPLING DECODING:

• Dedicated pumps were used for purging and sampling all wells.

- Duplicate samples were collected at MW-13B (DUP1) and MW-23A (DUP2).
- Geotech water level meters were used to record all water level elevations.
- In addition to the monitoring wells where groundwater was collected for chemical analysis, additional wells were monitored for groundwater level elevations. A summary of measured water levels are included with the field documentation.
- Vegetation that was blocking access to certain well locations was cleared in early August of 2016.
- Several well locks need replacement on the site.
- The samples were sent to TestAmerica Denver for analysis at the close of each sampling day, except samples for low level arsenic which were held until the end of the sampling event and provided to Analytical Resources, Inc. in Tukwila, Washington.

Sample Date	Location ID	Sample ID	Comments
02/22/2016	MW-13B	0216-01	
02/22/2016	MW-13B	0216-02	DUP 1
02/22/2016	MW-13A	0216-03	
02/22/2016	MW-35	0216-04	
02/22/2016	MW-43	0216-05	
02/22/2016	MW-42	0216-06	
02/22/2016	MW-19C	0216-07	
02/22/2016	MW-4	0216-08	
02/23/2016	MW-2B1	0216-09	
02/23/2016	MW-34A	0216-10	
02/23/2016	MW-34C	0216-11	
02/23/2016	MW-20	0216-12	

Sample Date	Location ID	Sample ID	Comments
02/23/2016	MW-23A	0216-13	
02/23/2016	MW-23A	0216-14	DUP 2
02/24/2016	MW-16	0216-15	
02/24/2016	MW-24	0216-16	
02/24/2016	MW-39	0216-1 <i>7</i>	
02/24/2016	MW-15R	0216-18	
02/24/2016	MW-36A	0216-19	
02/24/2016	MW-32	0216-20	
02/24/2016	MW-33C	0216-21	
3/8/2016	LP-LCD	0216-22	

SCS	ENGI	NEE	R S	OVSL		
	Date	Time	DTW	Measured	Comments	Page 2 of 2 Last Quarter
	Date	Time		by (initials)	Comments	DTW
MW-2A1			6,55		Lock broken	9.12
MW-2B1			5,51		Lock proken	6.72
MW-30A	(e)		22.12			24.00
MW-308			22.03		No lock. Minge broken Stick cap hinge broken	23.88
MW-31			1.83		Vivy broken	NM
MW-32		843	1.00		Stick Can hince broken	1.50
MW-33A			9.40		, ,	5,62
MW-33B			1.30		*	2.13
MW-33C			1.20			2.17
MW-34A	3	<u> </u>	38.04		No Lock	39.5
MW-34B			37.93		No Lock Lock broken / perplace	39.41
MW-34C			39.83	o a	Lock broken I perplace	41.21
MW-35		1[10	70.14		7/1-1	72.07
MW-36	1.0	7	29,76		NO Lock	31.14
MW-36A			29,64			31.00
MW-37			3.50		7	NM
MW-38			3.13		2	3.67
MW-39		10:37	16,24	-		21.34
MW-4			1	9	but botton at 28.50	14.95
MW-40A			14		hit botton at 28.50	15.51
MW-40B			12.23			
MW-400			15.49		liad to the	15.44
MW-41A					10th broken DTB - 31.89	15.84
WW-41A			· -		DTB - 31,89	24.18
MW-41B			21,24			24.64
MW-41C	11		23.10	1155		26.16
MW-42			26.10		No lock	27.85
MW-43	2/23/16		مست		hit tattolm at 29'	
MW-5			1,25	1.	1	25.16
- 9			1,67		10.1= (-11	2.57
MW-9					hit bottom at 18.3	NM

lock broken

Olympic View Sanitary Landfill

Well	Date	Time	DTW	Measured	Commonts	Page 1 of 2
vveli	Date	Time	DIW	by (initials)	Comments	Last Quarte DTW
MW-1	-	T-	=		Not Measured, Hazard/No Access	
MW-10			2.80		8	NM
MW-11			-	(4	lost	4.2
MW-12			41.20		No Lech hit bottom at 38,38	NM
MW-13	**		_		hit bottom of 38.38	28.9
MW-13A	g	1120	55.01			46.3
MW-13B		1120	57.71			60.3
MW-14	-		-	_	Not Measured, Damaged Well	
MW-15R			17.67		Aso Lock	18.7
MW-16			53:70		Stick up (id down't sid flug	57.6
MW-17			45,50			NM
MW-18			53.70			NM
MW-19A			30.38			32.5
MW-19B			30.15		Lock broken	32.6
MW-19C	1123	825	31.73		well up pushed up, 1st Plash	33.8
MW-19D			30.33		No lock	32.7
MW-20			34.12		No lock	35.9
MW-21	101 7		7.34		- 1	5.3
MW-23A			9.90		broken Lock	NM
MW-238			10.13	>	Lock broky	12.4
MW-23C			10.10	W.	Lock bronen	12.9
MW-24		1035	18,53			21.7
MW-26			8.65		Brokn Lode	NM
MW-27			33,90		4	21.7
MW-28			4.75		d'age	NM
MW-29A			~_		hit boffers is 191	13.3
MW-29B		ŀ	15.40		C AI	17.1
MW-29C			9.00		lock broken.	11.7

	FIELD INFORMATION FORM	$\sqrt{\sqrt{\Lambda}}$
	Site Name: This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
	Site No.: Sample Point: Mw- 1 3 3 Sample iD Lab Lab Lab Lab Lab Lab Lab La	poratory Use Only/Lab ID:
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL	L PURGED WELL VOLS
d	(MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark	ons) PURGED
LE		μ (circle or fill in)
PURGE/SAMPLE	Purging Device C A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C C-QED Bladder Pump F-Dipper/Bottle A-In-line Disposable C-V B-Pressure X-C A-In-line Disposable C-V B-Pressure X-C A-Teflon C-F	
GE/S	B-Peristaltic Pump E-Piston Pump Filter Type: B-Pressure X-C Sampling Device C-QED Bladder Pump F-Dipper/Bottle	Other
PUR	Sample Tube Type: D A-Teflon C-F B-Stainless Steel D-F	PVC X-Other:Polypropylene
WELL DATA	Well Elevation (at TOC) Depth to Water (DTW) 57,82 (ft) Groundwater Elevation (site datum, from TOC)	(ft/mst)
VEL	Total Well Depth Stick Up (from TOC) (ft) (from ground elevation) Casing (ft) ID (in)	Casing Material
	Note: Total Well Depth, Stick Up. Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Grounds Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O.	eH/ORP DTW
	(2400 Hr Clock) (std) (μmhos/cm@25°C) (°C) (ntu) (mg/L - ppm)	(mV) (ft)
		6518
lal)	Tall 17 6 4 4 9 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	65.1
ptio	19158 34 61818 34 1176 9.36 11 6015 1	64.2
A (C	9 15 10 1 4 10 10 1 1 17 10 1 9 3 14 1 1 1 1 0 b 1 1 0 1	63,3
DAT	[X	
S 1	<u>51504</u> 6.96 1176 9.32 111 6.09 1	631
ZAT	<u> </u>	630 111
BILE	15:10 4 7,01 1176 9,30 11,17 6,014 1	628 5810
STABILIZATION DATA (Optional)		
no	Suggested range for 3 consec, readings or https://o.2	+/- 25 mV Stabilize
St by	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where fou by State/Permit/Site. If a Data Logger or other Electronic format is used. fill in final readings below and submit electronic data separately to Site. If more fields above	ır (4) field measurements are required ve are needed, use separate sheet or form.
ATA	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO (MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm)	eH/ORP Other:
FIELD DATA	[0 2 2 2 1 6 7 0 1 1 7 6 9 3 0 1 6 1 7 6 9 9	(mV) Units
		TWO STATES OF THE STATES OF TH
l	Sample Appearance: Odor: NO Color: Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook:	
	Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Specific Comments (including purge/well volume calculations if required):	Precipitation: Y or
ga	s pth	
EN	Dup 1 collected here @ 1530 1507 7.98	
MM	ISIO 8.05	
000		E
FIELD COMMENTS		
	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	
	2,22,16 San Gaber In A	565
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Conv	,

FIELD IN	VEORMATION FORM	
Site Name: Site Site Sample A Submitted	ste Management Field Information Form is Requirement is to be completed, in addition to any State Forms. I along with the Chain of Custody Forms that accompanies (i.e. with the cooler that is returned to the laborator	The Field Form is sany the sample Laboratory Use Only/Lab ID:
PURGE DATE PURGE TIME ELAPSE (MM DD YY) (2400 Hr Clock) (hrs:r Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purge."	min) (Gallons)	(Gallons) PURGED
Purging and Sampling Equipment Dedicated: Or N or N Purging Device C A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bott	Filter Device: or N P Filter Type: A B A	0.45 μ or μ (circle or fill in) -In-line Disposable C-Vacuum -Pressure X-Other -Teflon C-PVC X-Other: -Stainless Steel D-Polypropylene
Well Elevation (at TOC) Total Well Depth (from TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc., are optional and can be from his	ation) (s) (s) (s) (s) (s) (s)	N. 10000000000
Sample Time (2400 Hr Clock) Yio D	adings below and submit electronic data separately	to Site. If more fields above are needed, use separate sheet or form
SAMPLE DATE pH CONDUCTANCE (MM DD YY) (std) (umhos/cm @ 25°C) O 2 2 2 1 6 6 6 6 6 7 7 Final Field Readings are required (i.e. record field measurements, final stabilized)	TEMP. TURBIDITY (CC) (ntu) [4] 5	DO eH/ORP Other: 1/2 Other: 1
Sample Appearance: Weather Conditions (required daily, or as conditions change): Specific Comments (including purge/well volume calculations if required to the conditions of the conditions o	Odor: Cold Direction/Speed: Outloo ed):	or: Other: Precipitation: Y or N
I certify that sampling procedures were in accordance with applicable EPA, 122, 16 Sam Grahar		ampler, all should sign):
/	Signature - Stays with Sample, YELLOW - Returned to Clie	Company nt. PINK - Field Copy

6.4		VFORMATIO	N FORM	1	V	$\sqrt{\Lambda}$
Site Name	This for	m is to be completed, in addition to	o any State Forms.	The Field Form is	Laboratory Use Only/L:	E MANAGEMENT
Site No.:		ed along with the Chain of Custod ers (i.e. with the cooler that is retu			Laboratory Use Only/L:	ao ID:
PURGE		:min)	R VOL IN CASI (Gallons) Cell and Tubing/Flo		VOL PURGED (Gallons) Mark changes, record fiel	WELL VOLs PURGED d data, below.
SAMPLE	Purging and Sampling Equipment Dedicated: Purging Device A-Submersible Pump D-Bailer Property of N D-Bailer Property of N D-Bailer Property of N D-Bailer Property of N D-Bailer	Filter Devic		0.45 μ or		fill in)
PURGE/SAMPLE EQUIPMENT	Sampling Device B-Peristaltic Pump E-Piston Pun F-Dipper/Bo	100000000000000000000000000000000000000		-Pressure -Teflon -Stainless Steel	X-Other C-PVC X-O	ther:
DATA	Well Elevation Depth to Water (at TOC) Cfrom TOC	(DTW)	7171	roundwater Elevat ite datum, from TC		(ft/msl)
WELL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from h	· [(ft) [I	· L		st he current
	ample Time Rate/Unit pH Conductance (SC/EC		Turbidity	D.O.	eH/ORP	DTW
	400 Hr Clock)	1073	(ntu)	(mg/L - ppm)	(mV)	(ft)
	2:35 \ 2nd 6 \ 4 / 2nd 1 (6 \ 4	1055	40	51810	1742	
ional	2:38 34 50 34 1/65	10,47		51716	1726	
00	2:41 44 6,5144 164	10.46		5,76	1725	
ATA	2:44 6653 1164	110.40	11.2121	51714	17116	
ONE	2147 655 1164	10.36	111	5.75	17113	710,30
ZATI	250 V 658 1164	10.31	0,9191	51713	170.8	
STABILIZATION DATA (Optional)				1 1	1 1 1	
STA						_1.1.1
Sug	gested range for 3 consec, readings or +/- 0,2 +/- 3%			1 1000	1/ 25 - V	Ch.hili-
Stal	Permit/State requirements: bilization Data Fields are Optional (i.e. complete stabilization readings for particular stabilization readings)					
	State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final version SAMPLE DATE pH CONDUCTANCE		nic data separately . J RBIDITY	DO Sile. If more field		separate sheet or form. ther:
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)		1250
HE Fin	a Field Readings are required (i.e. record field measurements, final stabilized	d readings, passive sample read	ings before samplin	og for all field paran	1708 neters required by State	
Sai	mple Appearance:	Odor: No	Colo	or:	Other:	
	eather Conditions (required daily, or as conditions change):	Direction/Speed:	Outloo	k:	Precipitatio	n: Y or N
Sp	ecific Comments (including purge/well volume calculations if requi	red):	8 18 3		101 0	
NTS	235 6.15 Good	Condition,	(-014th/	,	inscofish in	· ·
MME	150 7,58	Deriple Tubins	15 90	0	Sht. Polen	n4 (
000	7,50	02 getting unt	D SUMPI	£		
FIELD COMMENTS	100					
	ertify that sampling procedures were in accordance with applicable EPA	, State, and WM protocols (i	f more than one sa	ampler, all should s	sign):	
9 4	2,22,16 Sam Graber	Dr s	<u></u>		SCS	
-	Date Name DISTRIBUTION: WHITE/ORIGINAL	Signature - Stays with Sample, YELLOW	- Returned to Clie		mpany	

	VFORMATION FORM
This form	aste Management Field Information Form is Required m is to be completed, in addition to any State Forms. The Field Form is Laboratory Use Only/Lab ID:
	ed along with the Chain of Custody Forms that accompany the sample ers (i.e. with the cooler that is returned to the laboratory).
Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purge	ED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS (Gallons) (Gallons) PURGED (ged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below. Filter Device: Y Dor N 0.45 µ or µ (circle or fill in)
Purging Device A-Submersible Pump B-Bailer B-Peristaltic Pump E-Piston Pum C-QED Bladder Pump F-Dipper/Bot	A-In-line Disposable C-Vacuum
Purging and Sampling Equipment Dedicated: Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pum Sampling Device C-QED Bladder Pump F-Dipper/Bot	***
Well Elevation (at TOC) Total Well Depth (from TOC) Total Well Depth (from TOC) Stick Up (from TOC) Well Total Well Depth (fit) (from ground elev	(DTW) Groundwater Elevation (site datum, from TOC)
Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from his	Casing Casing (in) Material (instruction) waterial (instruction) was prequired by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (µmhos/cm@25°C)) Temp. Turbidity D.O. eH/ORP DTW (°C) (ntu) (mg/L-ppm) (mV) (ft)
11113 325 1 51315 1 1 1 1 1 1	18142 1318137 4126 1112 12910
1 1 1 1 2 1 2 nd 3 9 6 2 nd 4 0 1 1 2 1 3 nd 5 4 5 3 nd 3 9	3119 31413 419 109 290
9 11 24 4 5 47 4 40	813 1495 407 106 290
S149 1127 S149	812 1116 409 107 290
11:30 550 39 11:33 550 40	813 11323 419 109 290 810 11171 411 111 240
STABLIZATION DATA (Optional) 3 rd S 4 5 3 rd 3 9 40 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1311 527 407 108 290
STAB	
Suggested range for 3 consec. readings or +/- 0.2 +/- 3%	+/- 10% +/- 25 mV Stabilize
note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for pare	rameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form.
SAMPLE DATE (MM DD YY) (std) (umhos/cm @ 25°C) (umhos/cm @ 25°C) Final Field Readings are required (i.e. record field measurements, final stabilized	d readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
Sample Appearance: Closv	Odor: Color: Other:
	Direction/Speed: Outlook: Precipitation: Y or N
Specific Comments (including purge/well volume calculations if requin	ired):
\$ 29' to DTB (while	pursing water orange)
Low (oveluctence	L
732	(New Lock)
I certify that sampling procedures were in accordance with applicable EPA	A, State; and WM protocols (if more than one sampler, all should sign):
2,22,16 Steplen Palachek	supplied SCS
Date Name DISTRIBUTION: WHITE/ORIGINAL	Signature Company L - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

	FIELD INF	FORMATIC	N FORM		W	
Site Name: OVSL	This Waste N	Management Field Inform	ition Form is Required		WASTE	MAHAGEMENT
Site Sample	This form is to submitted alo	to be completed, in addition ong with the Chain of Custo	to any State Forms. The dy Forms that accompan	e Field Form is y the sample	Laboratory Use Only/Lab	ID:
No.: Point:		e. with the cooler that is ret			-	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1111	1 1 1 1	i i i	
80022216	2 35	5				
	URGE TIME ELAPSED	HRS WATE	ER VOL IN CASIN	G ACTUAL V	OL PURGED	WELL VOLs
(MM DD YY) (2 Note: For Passive Sampling, replace "Water	400 Hr Clock) (hrs:min) Vol in Casing and Well Vols Purged v		(Gallons) v Cell and Tubing/Flow		allons) ark changes, record field .	PURGED data, below.
Purging and Sampling Equipment Dedi	cated: Y or N	Filter Devi	cer Y Por N	0.45 μ or	μ (circle or fi	ll in)
Purging Device A-Subn B-Peris Sampling Device C-QED	nersible Pump D-Bailer		1 //\	n-line Disposable		
Sampling Device C B-Peris C-QED	taltic Pump E-Piston Pump Bladder Pump F-Dipper/Bottle	Filter Ty	-		X-Other	
Purging and Sampling Equipment Dedi Purging Device A-Subn B-Peris Sampling Device C-QED X-Other:		Sample Tube Ty		(20)	C-PVC X-Oth D-Polypropylene	er:
Well Elevation (at TOC)	Depth to Water (DT (ft/msi) (from TOC)		n /.	undwater Elevation		(ft/msl)
Total Well Depth	Stick Up		Cas	ing	Casing	
Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id.	(ft) (from ground elevation		(ft) ID	(in)	Material	ha current
Sample Time Rate/Unit pH		Temp.	Turbidity	D.O.	eH/ORP	DTW
(2400 Hr Clock) (std		(°C)	(ntu)	(mg/L - ppm)	(mV)	(ft)
12:40 300 11 6.12	11 14 4 4	1225	11 19 23	11.19	-14 17 1	1260
12145 2nd 613	14 2 nd 14 6 6	1233	15.93	0.21	-172.	2606
31 63	6 3" 470	1 2 32	10 32	016	83	26,07
0 12151 4 613	74 465	1236	1278	0.14	- 88	2609
EX 1121514 613	17 469	12.35	1253	o 14	-92	26 09
1257 63	8 464	12.45	1201	0 114	-94	26 09
E 13:00 V 63	3 466	112.52	111.38	0.15	-196.	26 09
					1.1.1	111
STABILLZATION DATA (Optional) 1						
			1 1 1		1 1 1	
Suggested range for 3 consec, readings or +/- 0, note Permit/State requirements:	2 +/- 3%	See 2		+/- 10%	+/- 25 mV	Stabilize
Stabilization Data Fields are Optional (i.e. com						
by State/Permit/Site. If a Data Logger or other Ed SAMPLE DATE pH	CONDUCTANCE		URBIDITY	DO		er: Time
(MM DD YY) (std)	(umhos/cm @ 25°C)	("C)	(ntu)	(mg/L-ppm)	(mV) Unit	S
SAMPLE DATE PH (MM DD YY) (std) O 2 2 2 1 6 6 3 Final Field Readings are required (i.e. record)	ield measurements, final stabilized reac	dings, passive sample rea	dings before sampling	for all field paramet	ers required by State/Po	1300
Sample Appearance:		Odor:	Color:		Other:	
Weather Conditions (required daily, or as	conditions change): Dire	ection/Speed:				Y of N
Specific Comments (including purge/we	ll volume calculations if required)	:	154			
EF ————————————————————————————————————		700				
		New	(Lock))		
WO						
9						
FIELD COMMENTS		W				
I certify that sampling procedures were in	accordance with applicable EPA, Sta	ate, and WM protocols (if more than one sam	pler, all should sig	n):	
2,22,16	tour Polace K					
/ /	O.					<u> </u>
Date Name	RIBUTION: WHITE/ORIGINAL - Str	Signature	W - Returned to Client	Comp	pany	1

Г	FIELD IN	FORMA	TION FORM	1	V	$\sqrt{\Lambda}\sqrt{\Lambda}$
Sin Nan Sin No	ne: This Was This form te Sample	is to be completed, in along with the Chain	I Information Form is Requir addition to any State Forms. of Custody Forms that accomp that is returned to the laborator	The Field Form is	Laboratory Use Only	//Lab ID:
PURGE	PURGE DATE PURGE TIME ELAPSE (MM DD YY) (2400 Hr Clock) (hrs:n Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged"	nin)	WATER VOL IN CASI (Gallons) bing/Flow Cell and Tubing/Flo	(VOL PURGED Gatlons) Mark changes, record	WELL VOLs PURGED field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: or N Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bott X-Other:	p Fi lle	lter Type: A	0.45 µ or	C-Vacuum X-Other	or fill in) Other:
WELL DATA	Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from hist	ation)	(ft) (s	Groundwater Elevatisite datum, from TO Casing (in) (in) (in) (in)	Casing Material	(ft/msl)
<u> </u>	Sample Time (2400 Hr Clock) Si		mit electronic data separately TURBIDITY	to Site. If more fields DO	eH/ORP	other: + inc
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) O Z Z Z G G G G G	readings, passive sa	(intu) 	(mg/L-ppm) O 25 ng for all field param	(mV)	Units
	Sample Appearance:	Odor: Direction/Speed: ed):	Cole	or:	Other:	ation: Y or N
1	certify that sampling procedures were in accordance with applicable EPA, 22, 12, 16 Name DISTRIBUTION: WHITE/ORIGINAL-	Signature	John	Cor	прапу	c5

Γ	FIELD INFOR	RMATION FORM	
Na S	Site ame: This Waste Manage This form is to be co Submitted along with Sample A A A A A A A A A	nent Field Information Form is Required impleted, in addition to any State Forms. The Field Form is the Chain of Custody Forms that accompany the sample the cooler that is returned to the laboratory).	Laboratory Use Only/Lab ID:
PURGE	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water	(Gallons)	AL VOL PURGED WELL VOLS (Gallons) PURGED d. Mark changes, record field data, below. \(\mu\) (circle or fill in)
PURGE/SAM	Purging and Sampling EquipmentDedicated: Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle X-Other:	Filter Type: A-In-line Disposa B-Pressure A-Teflon B-Stainless Steel	ble C-Vacuum X-Other C-PVC X-Other: D-Polypropylene
	Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc., are optional and can be from historical data.		Casing (ft/msi) Material
STABILIZATION DATA (Optional)	(2400 Hr Clock) (std) (μmhos/cm@25°C) (° 13:55 350 1st 614 6 1st 63 6 14:00 3 00 2std 58 4 2std 68 6 14:03 3std 70 3std 70 68	Turbidity D.O. (mg/L-ppm) 152 29 16 8 95 1125 15 31 171 127 11 145 21 3 128 11 38 11 16 120 13 34 1 96 127 10 3 1 93 129 7 8 9 99 129 7 32 9 97	eH/ORP (mV) (ft) 106 290 144 290 155 290 161 290 167 172 173
FIELD DATA S	Suggested range for 3 consec. readings or +/- 0.2 +/- 3% note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters readings State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below	w and submit electronic data separately to Site. If more five MP. TURBIDITY DO (ntu) (mg/L-ppm)	
FIEL	Sample Appearance: Close pertialetes Odor:	assive sample readings before sampling for all field particles. Color: Outlook:	Other:
FIELD COMMENTS	Specific Comments (including purge/well volume calculations if required):	DTB = 29'	
FIELDC	I certify that sampling procedures were in accordance with applicable EPA, State, and Z, 22, 16 Stelen Palacher	WM protocols (If more than one sampler, all shoul	d sign):
	Date Name Signate DISTRIBUTION: WHITE/ORIGINAL - Stays with	re Sample, YELLOW - Returned to Client. PINK - Field (Company Copy

Γ					FIELD I	NFORMA	TION FOR	M	M	$\sqrt{\Lambda}\sqrt{\Lambda}$
N:	Site ame: Site No.:		San Poi	nt: MW -	This W	faste Management Field rm is to be completed, in ted along with the Chain	Information Form is Requaddition to any State Form of Custody Forms that account is returned to the laborated in the statement of the statemen	s. The Field Form is	Laboratory Use Only/L	ab (D:
PURGE.			'Y) Sampling, repi		Clock) (hrs 'asing" and "Well Vols Pury		WATER VOL IN CA (Gallons) ing/Flow Cell and Tubing/	Flow Cell Vols Purged.		
PURGE/SAMPLE	EQUIPMENT	Purging and Sampl Purging Device Sampling Device X-Other:	_ C_	nt Dedicated: A-Submersible B-Peristaltic Pu C-QED Bladde	ımp E-Piston Pu	mp Fil	ter Type: O	A-In-line Disposabl B-Pressure A-Teflon B-Stainless Steel	X-Other	ther:
\vdash	WELL DATA	Well Elevation (at TOC) Total Well Depth (from TOC)		(ft)	Depth to Water (from TOC) Stick Up (from ground ele	(DTW)		Groundwater Eleva (site datum, from To	tion OC) Casing	(ft/msl)
	Sa	ample Time 100 Hr Clock)	Rate/Unit	pH (std)	Conductance (SC/EC (µmhos/cm@25°C)) Temp. (°C)	uired by Site/Permit. Well Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
STABILIZATION DATA (Optional)	Sugge note I Stab	SIN 3 SIN 3 SIN 9	nts: s are Optiona	6,75 2° 6,75 6,75 6,75 6,75 6,75 6,75 6,75 6,75			2,97 2,14 M. Site, or State). These tit electronic data separate	0.6.3 0.2.1 0.1.5 0.1.4 0.1.2 0.1.1 0.1.0 1.1.0	162,1 160,9 159,4 159,2 158,1 158,1 158,1	Stabilize ements are required separate sheet or form
		SAMPLE DATE		pН	CONDUCTANCE	ТЕМР.	TURBIDITY	DO		ther:
FIELD DATA	(O)	(MM DD YY) 2 2 1 I Field Readings are	b L	(std)	(umhos/cm @ 25°C)	d readings passine san	2 (4)	(mg/L-ppm)	1531) 5 2 5
	Sam Wea	nple Appearance:	required da	Clew nily, or as condition		Odor:	C	ook:	Other:	n: Y or N
SLN		PH	pen			100				+
IME			6.5							
FIELD COMMENTS	_	1525	6.5	0						
ELD	_	1705								
17.		- ,23 ,16		Sam 6.			tocols (if more than one		565	
L		Date	Nan		N: WHITE/ORIGINAL	Signature Stays with Sample, Y	ELLOW - Returned to Cl		mpany D y	

	FIELD II	NFORMA	TION FOR	M	W	$\sqrt{\Lambda}$
Site Name Site	This W	aste Management Field rm is to be completed, in	Information Form is Requaddition to any State Forms	ired The Field Form is	Laboratory Use Only/La	TE MANAGEMENT
No.:			of Custody Forms that accornat is returned to the laborat		Bootatoly est only 25	
PURGE	PURGE DATE PURGE TIME ELAPS	20 SED HRS	WATER VOL IN CAS	SING ACTUAL	L VOL PURGED	WELL VOLs
	(MM DD YY) (2400 Hr Clock) (hrs Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purg	s:min) ged" w/ Water Vol in Tub	(Gallons) ing/Flow Cell and Tubing/I	Flow Cell Vols Purged.	(Gallons) Mark changes, record field	PURGED Id data, below.
PURGE/SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated: or N Purging Device C A-Submersible Pump D-Bailer	Filte	r Device: Or N	0.45 μ or A-In-line Disposable	μ (circle or	fill in)
JRGE/SAMPL EQUIPMENT	B-Peristaltic Pump E-Piston Pur Sampling Device C-QED Bladder Pump F-Dipper/Bc	•	ter Type: A	B-Pressure	X-Other	
	X-Other:	Sample T		A-Teflon B-Stainless Steel	C-PVC X-Ot D-Polypropylene	ther:
WELL DATA	Well Elevation Depth to Water (at TOC) Depth to Water (fr/msl) (from TOC)	(DTW) 3	I G I S I VII	Groundwater Elevat (site datum, from TC		(ft/msl)
WELI	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from h		(ft)	Casing ID (in		st be current.
	Sample Time Rate/Unit pH Conductance (SC/EC 4400 Hr Clock) (std) (\mumhos/cm@25°C)) Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	M:08 1 6663 1 11114	12112		61414	1151715	
<u>a</u>	M; 13 2 nd 6,5 6 2 nd 1,09	12.12	1111	6.218	15312	
(Optional)	310 6.50 310 1103	1 2 12	1.64	6.00	1607	
TA (C	41 (0,49) 41 106	12019		5.80	16120	
NDA	4:25 648 1107	1222		5,69	161.9	
VIIOI -	4128 1 61418 11018	1 2 20	1,23	5,60 5,57	161.8	
ILIZA		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1627	7,7	102	
STABILIZATION DATA						
L			1111	11		
note	gested range for 3 consec. readings or +/- 0.2 +/- 3% e Permit/State requirements: bilization Data Fields are Optional (i.e., complete stabilization readings for particular stabilization)	rameters required by W	M. Site. or State). These	+/- 10%	+/- 25 mV	Stabilize ements are required
by S	State/Permit/Site, If a Data Logger or other Electronic format is used, fill in final i SAMPLE DATE pH CONDUCTANCE	readings below and subn	it electronic data separatel	ly to Site. If more field	ls above are needed, use	separate sheet or form.
DAT	(MM DD YY) (std) (umhos/cm @ 25°C)	TEMP. (°C)	TURBIDITY (ntu)	DO (mg/L-ppm)		nits
FIELD DATA	223 6 6 9 10 9 10 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	d readings, passive sam	1023 ple readings before samp	ling for all field paran	162,1 neters required by State/	1428 Permit/Site.
Sa	mple Appearance:	Odor:	Co	olor:	Other:	
W	eather Conditions (required daily, or as conditions change):	Direction/Speed:	Outlo	ook: <u>Clear</u>	Precipitatio	on: Y or N
Sp	ecific Comments (including purge/well volume calculations if requi	S				:
SLN:	1425 6.43					
FIELD COMMENTS	1428 6.34	To the Vent				
000	(100 0.2)					
			V			
	ertify that sampling procedures were in accordance with applicable EPA	A, State, and WM pro	tocols (if more than one	sampler, all should s	sign):	
-	2,23,16 Sam Graber	Sh	M		505	
-	Date Name DISTRIBUTION: WHITE/ORIGINAL	Signature 2 - Stays with Sample, Y	ELLOW - Returned to Cl		mpany	

	FIELD IN	VFORMAT	TON FORM	1	W	$\sqrt{\Lambda}\sqrt{\Lambda}$
Site Name Site No.:	: This Wa This form	ste Management Field In n is to be completed, in ad d along with the Chain of	Iformation Form is Requir dition to any State Forms. Custody Forms that accomp is returned to the laborator	ed The Field Form is any the sample	Laboratory Use Only/	Lab ID:
PURGE	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purge"	min)	VATER VOL IN CASI (Gallons) g/Flow Cell and Tubing/Flo	(VOL PURGED (Gallons) Mark changes, record fi	WELL VOLS PURGED eld data, below.
PURGE/SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated: Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pum Sampling Device C-QED Bladder Pump F-Dipper/Bot X-Other:	np Filte	r Type: H B	0.45 µ or	X-Other	or fill in) Other:
WELL DATA	Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc, are optional and can be from his	vation)	9 9 9 (ft) (s		Casing Material	(ft/msl)
STABILIZATION DATA (Optional)	Sample Time 400 Hr Clock) Rate/Unit pH (std) Conductance (SC/EC) (µmhos/cm@25°C) 3 0 7 25p 1				s above are needed, us	
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) 2 2 3 1 6 6 8	(°C)	(ntu) 2 Z O	(mg/L-ppm)	(mV) (Inits
W	ecific Comments (including purge/well volume calculations if require	Direction/Speed:		or. Lorange k: Clew		ion: Y or N
FIELD COMMENTS	- V			6.77	3	
I e	ertify that sampling procedures were in accordance with applicable EPA	, State, and WM proto	338		= -	
-	Date Name DISTRIBUTION: WHITE/ORIGINAL	Signature - Stays with Sample, YE	LLOW - Returned to Clie		mpany	

	FIEL.	D INFORMA	TION FOR	\overline{M}	W	$\sqrt{\Lambda}\sqrt{\Lambda}$
Site Nam	e: 0V7C	This Waste Management Field	Information Form is Required addition to any State Forms	ired The Field Form is	WAS	TE MANAGEMENT
Site No.	Gample A.	submitted along with the Chain containers (i.e. with the cooler	of Custody Forms that accom-	npany the sample	Laboratory Use Only/L	ab ID:
GE	022416 910	120				
PURGE	(MM DD YY) (2400 Hr Clock)	ELAPSED HRS (hrs:min)	WATER VOL IN CAS (Gallons)		VOL PURGED (Gallons)	WELL VOLs PURGED
PLE	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Purging and Sampling Equipment Dedicated:		er Device: or N	low Cell Vols Purged. 0.45 µ or	Mark changes, record field	
PURGE/SAMPLE	Purging Device C A-Submersible Pump D-Ba			A-In-line Disposable B-Pressure	e C-Vacuum X-Other	
PURG	Sampling Device C-QED Bladder Pump F-Di	pper/Bottle Sample	1 11 1	A-Teflon B-Stainless Steel	C-PVC X-O D-Polypropylene	ther:
DATA	Well Elevation Depth to (at TOC) Depth to (from TO	Water (DTW)	2 2 7 17 1	Groundwater Elevat (site datum, from TC		(fl/msl)
WELL DATA	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be	ound elevation) oe from historical data, unless re	(ft)	Casing (in		st he current
	Sample Time Rate/Unit pH Conductance (2400 Hr Clock) (std) (µmhos/cm@	(SC/EC) Temp.	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	19:112 250 14 61410 14 19151	9,00		7,319	2/2/0/9	
(Figure 1)	9117 1 2nd 61411 2nd 911	0,9,9		71211	2200	
Optio	4:2:3 4th (0:4) 4 4th (9:7)	9,00		71113	2194	7:2:2
ATA (9:26	9,00		7.012	2118,6	57.9.0
STABILIZATION DATA (Optional)	1929 6147 1911	9.0.2		6.9.4	217.0	53,44
ZATI	19:312 4 6:419 19:11	9,012	10,451	6, 8, 9	2161	
ABILI				11		
ST						
not	ggested range for 3 consec. readings or +/- 0.2 +/- 3%			+/- 10%	÷/- 25 mV	Stabilize
Str by	ublization Data Fields are Optional (i.e. complete stabilization reading. State/Permit/Site. If a Data Logger or other Electronic format is used, fill	s for parameters required by V in final readings below and subi	VM, Site, or State). These f nit electronic data separately	ields can be used whe to Site. <mark>If more field</mark>	re four (4) field measure s above are needed, use	ements are required separate sheet or form
ATA	SAMPLE DATE pH CONDUCT. (MM DD YY) (std) (umbos/cm @		TURBIDITY	DO		ther:
FIELD DATA	$\begin{array}{c c} (MM DDYY) & (std) & (umhos/cm @ \\ \hline 2 2 4 1 6 & [6,44] & 41 \end{array}$	25°C) (°C) (°C) (2.	10,951	(mg/L-ppm)	(mV) Ur	432
_	nal Field Readings are required (i.e. record field measurements, final s	tabilized readings, passive san	nple readings before sampli	ing for all field paran	neters required by State/	Permit/Site.
1	mple Appearance: 'eather Conditions (required daily, or as conditions change):	Odor: Direction/Speed:		ok: nyercas-	Other:	n: Y or (N)
Sp	pecific Comments (including purge/well volume calculations i		Oution	on <u>over eas</u>	Trecipitatio	II. 1 01 (1)
S	pt pen					1
FIELD COMMENTS	426 6.92	Slight partic	uluts 14 5	ande.	0055.11,	O Cyanic
	929 6.72				· •	
ELD (432 6.65					
	ertify that sampling procedures were in accordance with applical	bla FPA State and WM pre	tocals (if more than one of	nompley all should a	ian)	
	2, 24, 16 Sam Graber	A State, and William	Section of the sectio	?	S 65	
-	Date Name	Signature		Con	прапу	
	DISTRIBUTION: WHITE/OR		ELLOW - Returned to Clie			

		FIELD IN	VFORMAT	TION FORM	<u> </u>	V	$\sqrt{\Lambda}\sqrt{\Lambda}$	
Site Name: Site No.:	Samp Poin	This Wa This form	ste Management Field I m is to be completed, in a d along with the Chain of	nformation Form is Requit ddition to any State Forms. f Custody Forms that accomp at is returned to the laborator	red The Field Form is pany the sample	Laboratory Use Only/La	E MANAGEMENT	
PURG INFC	PURGE DATE (MM DD YY) fote: For Passive Sampling, replace	PURGE TIME ELAPSI (2400 Hr Clock) (hrs: ce "Water Vol in Casing" and "Well Vols Purge	min)	WATER VOL IN CASI (Gallons) ng/Flow Cell and Tubing/Flo	(1	VOL PURGED Gallons) Mark changes, record fiel	WELL VOLs PURGED d data, below.	
RGE/SAMPI CQUIPMENT	Purging and Sampling Equipment Dedicated: O or N							
VELL DA	Vell Elevation at TOC) Total Well Depth from TOC)	Depth to Water of (from TOC) Stick Up (ft) (from ground elev	vation)		Groundwater Elevatiste datum, from TO Casing (in)	Casing Material	(ft/msi)	
STABILIZATION DATA (Optional) Suggestion of the Personal Stability of	Papel Time Rate/Unit AUATA Proposed From Proposed Propos	Casing Id. etc. are optional and can be from his pH (std) (umhos/cm@25°C) (umh	Temp. (°C) [Turbidity (ntu)	D.O. (mg/L-ppm) D. 4/8 O. 3.2 O. 2.9 O. 2.5 O. 2.7 O. 2.7 O. 1.9 I. 1.0% elds can be used wheel	eH/ORP (mV) 1 3 4 1 1 5 1 6 1 4 2 5 1 3 0 6 1 2 5 9 1 -25 mV re four (4) field measure	DTW (ft) Stabilize	
ELD DATA	AMPLE DATE (MM DD YY) 2 2 4 / 6	pH CONDUCTANCE (std) (umhos/cm @ 25°C) (std) [1 4 7] (steep of field measurements, final stabilized	TEMP. (°C) []] 45	TURBIDITY (ntu) 2 35	DO (mg/L-ppm)	eH/ORP Of (mV) U1	ther: +124	
Weat	ole Appearance: her Conditions (required dai fic Comments (including pu	ily, or as conditions change): urge/well volume calculations if requir	Direction/Speed:			Other: <u>Hack</u> Precipitatio		
MMENTS	216 6,54 219 6,49		* 12		e discorne	C	o white	
FIEL	222 6.43	= 0.25 ' 0.D,	, ditche	ncction sam	re diamete	r ast extra	tubing	
	Date Nam	Sam braber	Signature	1	Cor	npany		

Γ	FIELD II	VFORMA'	TION FORM	1	W	$\sqrt{\sqrt{\Lambda}}$
Si Nan Si	ne: OVS This for the Sample Sample Submitte	m is to be completed, in a d along with the Chain o	Information Form is Required addition to any State Forms. If Custody Forms that accomp	The Field Form is any the sample	Laboratory Use Only/	Lab ID:
N.	Point: M W - 37 containe	rs (i.e. with the cooler th	at is returned to the laborator	y).		
PURGE		ED HRS :min) red" w/ Water Vol in Tubi	WATER VOL IN CASI (Gallons) ing/Flow Cell and Tubing/Flo	((VOL PURGED Gallons) Mark changes, record J	WELL VOLS PURGED ield data, below.
PLE			er Device: Y or N	0.45 µ or	μ (circle	
/SAM	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pu	np Fil	1 /4	-In-line Disposable -Pressure	C-Vacuum X-Other	
PURGE/SAMPLE	Sampling Device C C-QED Bladder Pump F-Dipper/Bo X-Other:	ottle Sample T		-Teflon -Stainless Steel	C-PVC X- D-Polypropylene	Other:
E v di A a a a a a	Well Elevation Depth to Water (at TOC) (fr/msl) (from TOC)	(DTW)	1/ 1/11 5	roundwater Elevati ite datum, from TO	1 1 1 1	(ft/msl)
	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from h		(ft) II		Casing Material oundwater Elevation	nust be current.
Γ	Sample Time Rate/Unit pH Conductance (SC/EC (2400 Hr Clock) (std) (µmhos/cm@25°C)) Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	12:04 350 1 611 3 1 1264	110132	1519136	12163	- 13 5	111614
=	1171019 11 211 51915 211 11219	1017	13544	0.94	141	17.21
STABILIZATION DATA (Optional)	12112 1 3" 519 2 3" 1 1 2 3	1009	1044	11 105	HIH	1730
(0p	12:15 4 5:91 4 133	10 09	1089	1111	1151	1 7 42
DAT	112:113 51913 111318	1009	1 821	1119	161	1 7 42
ION	1121211 51915 111412	1009	1339	11.12	1161	117 45
ZAT	112:214 81 51918 111412	10 15	7.116	11 121	1191	117,48
BILL						
STA						
	Suggested range for 3 consec, readings or +/- 0,2 +/- 3%			+/- 10%	+/- 25 mV	Stabilize
	note Permit/State requirements: Stabilization Data Fields are Ontional (i.e. complete stabilization readings for populate stabilization r	rameters required by R	VM, Site, or State). These fi	elds can be used whe	re four (4) field mea.	surements are required
-	by State/Permit/Site. If a Data Logger or other Electronic format is used. fill in final SAMPLE DATE pH CONDUCTANCE		mit electronic data separately TURBIDITY	to Site. If more field	eH/ORP	ose separate sheet or form Other:
DAT	(MM DD YY) (std) (umhos/cm @ 25°C)		(ntu)	(mg/L-ppm)	(mV)	Units 7
FIELD DATA	224 16 598 142 Final Field Readings are required (i.e. record field measurements, final stabilized	ed readings, passive sar	mple readings before sample	ing for all field paran	1 9 meters required by St	ate/Permit/Site.
Γ	Sample Appearance:	Odor:	Col	lor:	Other:	AMERICAN TO STATE OF THE STATE
1	Weather Conditions (required daily, or as conditions change):	Direction/Speed:	Outlo	ok:	Precipita	ation: Y or N
	Specific Comments (including purge/well volume calculations if requ	ired):				
g.	Lork broken					
Z						
COMMENTS						
1 -						
ETE! D						
	I certify that sampling procedures were in accordance with applicable EP		otocols (if more than one	sampler, all should	sign):	
			v			
	Date Name DISTRIBUTION: WHITE/ORIGINA	Signature L - Stays with Sample,	YELLOW - Returned to Cli		отрапу Су	

	FIELD INFORMA	ATION FORM	
Site Name: Site No.: Site No.: Sample Point: S	This Waste Management Fie This form is to be completed, submitted along with the Chai	Id Information Form is Required in addition to any State Forms. The Field Form is n of Custody Forms that accompany the sample r that is returned to the laboratory).	Laboratory Use Only/Lab ID:
PURGE DATE O O O O O	Clock) (hrs:min) Casing " and "Well Vols Purged" w/ Water Vol in 1 Fi	(Gallons)	μ (circle or fill in)
Purging and Sampling Equipment Dedicated: Purging Device A-Submersible B-Peristaltic Formula Sampling Device C-QED Bladd X-Other:	er Pump F-Dipper/Bottle	Tube Type: A-Teflon B-Stainless Steel	X-Other C-PVC X-Other: D-Polypropylene
Total Well Depth	Depth to Water (DTW) (from TOC) Stick Up (from ground elevation) e outloned and can be from historical data unlesses	Groundwater Electric (site datum, from	Casing (ft/msl) Casing (in) Material
Sample Time (2400 Hr Clock) 19:53 9:57 2nd 6:47 3rd 6:47	Conductance (SC/EC) (µmhos/cm@25°C) (°C) 1 ²⁴	Turbidity (ntu) (mg/L - ppm	eH/ORP (mV) (ft) 1
SAMPLE DATE PH (MM DD YY) (std) (Q 0 2 2 4 (6	CONDUCTANCE TEMP. (umhos/cm@25°C) (°C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TURBIDITY DO (mg/L-ppm)	eH/ORP Other:
Sample Appearance: Weather Conditions (required daily, or as condit Specific Comments (including purge/well voluments)	Odor: tions change): Direction/Speed: me calculations if required):	Color:	BOTTO TELEVISION AND CONTRACTOR OF THE PROPERTY OF
Date Name	Signature ION: WHITE/ORIGINAL - Stays with Sample		SC5

	200			FIELD IN	FORMA	TION FOR	M		
Site Name	:: L	USL		This Was	ste Management Field	d Information Form is Requi n addition to any State Forms.	ired The Field Form is	w.	ASTE MANAGEMENT
Site No.:		Sample Point:	MW- Sampl	3 6 A submitted	l along with the Chain	n of Custody Forms that accome that is returned to the laborate	npany the sample	Laboratory Use Only	y/Lab ID:
PURGE	(MM DD YY)	ino. replace "We	PURGE TIM (2400 Hr Clocater Vol in Casti	ck) (hrs;n	min)	WATER VOL IN CAS (Gallons) ubing/Flow Cell and Tubing/F		L VOL PURGED (Gallons) Mark changes, record	WELL VOLs PURGED field data, below.
PURGE/SAMPLE EQUIPMENT	Duraing and Sampling E	A-Su B-Pe		or N ump D-Bailer p E-Piston Pum	File P F	ter Device or N		μ (circle le C-Vacuum X-Other	e or fill in)
WELL DATA	Well Elevation (at TOC)		(ft/ms	Depth to Water (I		7077	Groundwater Eleva (site datum, from T	ition	(ft/msl)
WELI	Total Well Depth (from TOC) Note: Total Well Depth, S	Stick Up, Casing	(ft)	Stick Up (from ground eleva- tional and can be from his			Casing (iii Elevation, DTW, and C		must be current.
	Sample Time Rat 2400 Hr Clock)		pH (std)	Conductance (SC/EC) (µmhos/cm@25°C)	Temp.	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	11100 39	1st (0)	19 "	11(131)	19 54	1 1625	13.138	IMH.	1219172
(fg	1105	2 nd 6.	1 0 2 nd	1135	9.52	6.14	2 27	115121	29.72
STABILIZATION DATA (Optional)	11 1018	3 rd 6	1 3 3 4	136	19 53 G 54	1 7 63	224	1165	3024
TA(4" (0.0	10	136	9 54	10 48	219	160	30,26
NDA	1:1:1:7	G.		136	957	5'32	215	160	1807
ATIO	11120	1 4		1/3/7	1958		216	161	
BILIZ				ÎÎII	I			1111	
STA				1111	1 1		11	111	
	ggested range for 3 consec read	dings or	/- 0.2	+/- 3%	1 1		+/- 10%	+/- 25 mV	Stabilize
not Str	te Permit/State requirements: abilization Data Fields are C	Optional (i.e. co	omplete stabili	ization readings for para		WM, Site, or State). These f	fields can be used wh	nere four (4) field mea	surements are required
-	State/Permit/Site. If a Data SAMPLE DATE	Logger or other		mat is used, fill in final red	adings below and sub	bmit electronic data separately TURBIDITY	y to Site. If more field	ds above are needed, a	use separate sheet or form Other:
DAT	(MM DD YY)	(std		(umhos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV)	Units
FIELD DATA		uired (i.e. recor	rd field measur	rements, final stabilized	readings, passive sa	ample readings before sampl	Z 16 ling for all field para	meters required by St	ate/Permit/Site.
Sa	ample Appearance:	Clea	۲		Odor:	Co	olor:	Other:	-
w	eather Conditions (requ	uired daily, or	as conditions	s change):	Direction/Speed:_	Outlo	ook:	Precipita	ation: Y or N
`	pecific Comments (inclu	ıding purge/v	well volume (calculations if require	ed):		0.20		
SLUE -		15.4					¥(
FIELD COMMENTS									
000									*
FIEI -				4					
1	ertify that sampling prod			e with applicable EPA, IN Polochik	State, and WM pr	rotocols (if more than one	sampler, all should	sign):	1
	Date /	Name			Signature			ompany	
1			STRIBITION	· WHITE/ORIGINAL.	•	YELLOW - Returned to Cli			

City		FIELD INFO	ORMATION	FORM	
Site Nam	01/51	This Waste Man	nagement Field Information F e completed, in addition to any	Orm is Required State Forms. The Field Form is	WASTE MANAGEMENT
Site No.	: Point: 1/1/W -	submitted along	with the Chain of Custody Forn vith the cooler that is returned to	ns that accompany the sample	Laboratory Use Only/Lab ID:
PURGE	PURGE DATE PURGE TI (MM DD YY) (2400 Hr Cl. Note: For Passive Sampling, replace "Water Vol in Ca.	ock) (hrs:min)		(Gallons)	L VOL PURGED WELL VOLS (Gallons) PURGED Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Purging Device A-Submersible B-Peristaltic Pur Sampling Device C-QED Bladder	np E-Piston Pump	Filter Device: Y	A-In-line Disposable B-Pressure A-Teflon	μ (circle or fill in) e C-Vacuum X-Other C-PVC X-Other:
	X-Other:	Depth to Water (DTW)	Sample Tube Type:	B-Stainless Steel	D-Polypropylene
WELL DATA	(at TOC) Total Well Depth (from TOC) (ft)	*		Groundwater Eleval (site datum, from TC Casing (ift) (in	Casing (ft/mst)
3	Note: Total Well Depth, Stick Up, Casing Id. etc. are o	,	data, unless required by Site/P		
1	Sample Time Rate/Unit pH (2400 Hr Clock) (std)	Conductance (SC/EC) (µmhos/cm@25°C)	Temp. Turbi	u) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
(08:50 325 14 6.118 14	1 121413 1	11.85	537 1512	1111 1110
() E	2 nd 6,55 2 nd	242 1	1196	4 25 051	-12151
tion	08:58 31 659 31	242 1	11.97	39 1047	-32
0 2	09:01 411 662 411	239	11.198	14113 10143	-38
ATA	09104 6163	242 1	120	14133 043	-421
NO	09:017 6:64	2391	120	12,89 10 141	-45
STABILIZATION DATA (Optional)	09:110 464	1242	120	13191 1014	-47. INL
STAI					
L					
no	uggested range for 3 consec readings or +/- 0,2	+/- 3%)+- (+/- 10%	+/- 25 mV Stabilize
	t <mark>abilization Data Fields are Optional</mark> (i.e. complete stabi v State/Permit/Site, If a Data Logger or other Electronic fo				
ATA	SAMPLE DATE pH (MM DD YY) (std)		TEMP. TURBI	S9 60 15	eH/ORP Other:
FIELD DATA	22416 664	(umhos/cm @ 25°C)	\[2 \o \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13 81 (mg/L-ppm)	(mV) Units
E E	inal Field Readings are required (i.e. record field measure	urements, final stabilized reading	gs, passive sample readings b	pefore sampling for all field param	neters required by State/Permit/Site.
	ample Appearance: Clear	Odor		Color:	Other:
1	Veather Conditions (required daily, or as condition		ion/Speed:	Outlook:	Precipitation: Y oN
	pecific Comments (including purge/well volume	e calculations if required):	March	overgrown St	ill able to Somple
SINTS			1,4,9,1	000000000000000000000000000000000000000	7
MM-					· · · · · · · · · · · · · · · · · · ·
00		****		18-3-4-3	30)
FIELD COMMENTS		-	~~~		
- 102	certify that sampling procedures were in accordance	ce with applicable EPA, State,	and WM protocols (if mor	e than one sampler, all should	sign):
		~ Palachuk		1/2-	Scs
	Date Name	Sig	gnature	Co	mpany
	DISTRIBUTIO	N: WHITE/ORIGINAL - Stays	with Sample, YELLOW - Ret		•

Γ				FIELD IN	FORMA	TION FORM	\overline{I}	A	
N	Site ame: Site	:	VSL	This Was	te Management Field I	nformation Form is Required ddition to any State Forms. F Custody Forms that accomp	red The Field Form is	Laboratory Use Only	/Lab ID:
	No.:		Sample Point: MW			at is returned to the laborator			
DITOCE	INFO	022311	6 34	181					
Id		PURGE DATE (MM DD YY) Note: For Passive Sample	(2400 H	r Clock) ELAPSE (r Clock) (hrs:r (r Casing" and "Well Vols Purge)	nin)	WATER VOL IN CAS (Gallons) ng/Flow Cell and Tubing/Flo		L VOL PURGED (Gallons) Mark changes, record	WELL VOLs PURGED field data, below.
1	ENT	Purging and Sampling E	quipment Dedicated:		Filter	Devices Y or N	0.45 µ or L	μ (circle	or fill in)
0.00	EQUIPMENT	Sampling Device	B-Peristaltic C-QED Blad	*		· ·	B-Pressure A-Teflon	X-Other	-Other:
L		X-Other:			Sample Ti	be Type: D B	S-Stainless Steel	D-Polypropylene	
	WELL DATA	Well Elevation (at TOC)		Depth to Water ((ft/msi) (from TOC)	DTW) 3		Groundwater Elevat site datum, from TO		(ft/msl)
	WELL	Total Well Depth (from TOC) Note: Total Well Depth,	Stick Up, Casing Id. etc.	Stick Up (ft) (from ground elev are optional and can be from his		(ft) II	Casing D (in levation, DTW, and G	F. M. S.	must be current
Γ		ample Time Ra	te/Unit pH (std)	Conductance (SC/EC) (µmhos/cm@25°C)	Temp. (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
		14:214	151 6121	1st 226	14147	1 1 9 123	ISH9	11501	B.H.10
=	1	41219	2nd 603	2 nd 227	14 47	11 133	533	1621	34.19
ntion	1	4:32	314 6.013	3 rd 229	1448	310	\$ 36	1651	34 19
PA (6)		4135	44 61013	4" 230	1446	402	5 38	167	342
I DA	1	4:38	602	230	1448	(2)	5 38	160	3412
	-	4:44	602	229	1446	6.2		170	
LIZA	-		602	250	14 46	317	1541		
STABILIZATION DATA (Ontional)					9 1				
0									
	note	gested range for 3 consec. read Permit/State requirements:	+/- 0.2	+/- 3%			+/- 10%	+/- 25 mV	Stabilize
L				stabilization readings for parc nic format is used, fill in final re					
ATA		SAMPLE DATE (MM DD YY)	pH (etd)	CONDUCTANCE	TEMP.	TURBIDITY	DO (mart many)	eH/ORP	Other:
FIELD DATA	$ \epsilon $	2/2/3/(16)	(std)	(umhos/em @ 25°C)	114146		(mg/L-ppm)], +7	Units
FIR	Fin	al Field Readings are requ	ulred (i.e. record field n	neasurements, final stabilized	readings, passive sam	ple readings before sampli	ing for all field para	meters required by St	ate/Permit/Site.
ı	Sar	mple Appearance:	clen/		Odor:	Col	or:	Other:	
	We	eather Conditions (req	uired daily, or as cond	litions change):	Direction/Speed:	Outloo	ok:	Precipita	ation: Y or N
	•	ecific Comments (inclu	ıding purge/well vol	ume calculations if requir	ed):				
FIELD COMMENTS	_								
MM	_								
100	<u> </u>		77.00						
۳		ertify that sampling pro	cedures were in accor	dance with applicable EPA,		ocols (if more than one s	ampler, all should	sign):	
1		to the second se				11 1110	7	.)(1
	_	2,23,16	Steph	en falami		100			<u> </u>

Г	F	IELD INFORMA	TION FORM		W	$\sqrt{\Lambda}\sqrt{\Lambda}$		
Site Nam Site No.	e:	This Waste Management Field This form is to be completed, in submitted along with the Chain of containers (i.e. with the cooler the	Information Form is Required addition to any State Forms. The of Custody Forms that accompany	Field Form is y the sample	wasta	MANAGEMENT ID:		
FURGE/SAMPLE PURGE	(MM DD YY) (2400 Hr Clock) Note: For Passive Sampling, replace "Water Vol in Casing" at Purging and Sampling Equipment Dedicated:	O-Bailer	r Device Y or N A-Inter Type: A-Te	(Ga Cell Vols Purged. Man 0.45 µ or n-line Disposable Cressure X effon. C	llons) rk changes, record field μ (circle or fi	ll in)		
WELL DATA	(at TOC) (ff/msi) (f	Depth to Water (DTW) from TOC) Stick Up from ground elevation)	9990 (ft) Grou	undwater Elevation datum, from TOC)	Casing Material	(ft/msl)		
STABILIZATION DATA (Optional)	Sample Time Rate/Unit pH Condu	Temp. (°C)	Turbidity	D.O. (mg/L-ppm) D B 4 D 27 D 25 D 25 D 25 D 29 D 24 L	eH/ORP (mV) 2071 1841 165 165 165 161 161 174 175 mV	DTW (ft) 9 93 19 9		
St	abilization Data Fields are Optional (i.e. complete stabilization State/Permit/Site. If a Data Logger or other Electronic format is							
_	(MM DD YY) (std) (umb				(mV) Unit			
S ₁	Sample Appearance: Clear Some particles Odor: Color: Other: Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y (or N) Specific Comments (including purge/well volume calculations if required): Dup 12) to Rev. (0, 13:42							
FIELD COMMENTS	J) O Q (I							
		applicable EPA, State, and WM pro	tocols (if more than one sam		SCS			
1		Signature HITE/ORIGINAL - Stays with Sample, Y	ELLOW - Returned to Client.	Compa PINK - Field Copy	nuy			

s	ite	Î		ω< <i>ί</i>	31.		1			TION FO				ANAGEMENT
s	me: ite	: [ample	14/10		This fo	orm is	to be completed, in ong with the Chain	Information Form is R addition to any State For of Custody Forms that ac	ms. Tl	he Field Form is ny the sample	Laboratory Use Only	/Lab ID:
N	0.:		P	oint:	MM	Sample	9671107	ners (i.	e, with the cooler th	nat is returned to the labo	oratory)).		
PURGE	INFO	PURGE DA (MM DD YY Note: For Passive S.	Y)	replace "	PURGI (2400 H Water Vol in	r Clock	(h	rs:min))	WATER VOL IN (Gallons ing/Flow Cell and Tubin)		L VOL PURGED (Gallons) Mark changes, record	WELL VOLs PURGED field data, below.
AMPLE	MENT	Purging and Sampli Purging Device	ing Equip	A-	Submersil					er Device: or L	A-	0.45 μ or In-line Disposabl		or fill in)
PURGE/SAMPLE	EQUIPMENT	Sampling Device	C		Peristaltic QED Blad	•		•	Sample T	ube Type:	A-	Pressure Teflon Stainless Steel	X-Other C-PVC X- D-Polypropylene	Other:
_	DAIA	Well Elevation (at TOC)				(fl/msl)	Depth to Wate	r (DT		1 200		oundwater Eleva te datum, from To	tion	(ft/msl)
	WELLU	Total Well Depth (from TOC)			İ	(ft)	Stick Up (from ground e			(ft)	Ca ID	sing (in	Casing Material	
۲	_	Note: Total Well De	Rate/U	_	pH		onal and can be from onductance (SC/E)		Temp.	uired by Site/Permit. W Turbidity	ell Ele	D.O.	eH/ORP	must be current. DTW
		400 Hr Clock)	250	1/	(std)		μmhos/cm@25°C		(°C)	(ntu)	Ĭ	(mg/L - ppm)	(mV)	(ft)
	1	West C		1" (0	0.7	151	159	+	8 93			0.83	1 5 2 3	
(lau)	1	11:1.2		2 rd (9	1915	2 rd	1/:6:0	+	8,915			0,28	11202	
Optic	1	4:7:1		4th 7	NIOL	4111	1115191	1	8 43			0,21	1120.7	
ATA (T	4:24	\top	+ -4	1017	1	160		8,90			01/6	1095	
Q NO	Ì	4:27		5	112		1/60		9,93	6.3	20	0.14	11010,5	
ATIC	ì	4.30	W	*	1.17		1160		8,88	4:	15	0612	40	
ILIZ					1 1					1111		1 1		
STABILIZATION DATA (Optional)		1 1			1.11							1.1		111
					1 1					1111				
	note	gested range for 3 conse- Permit/State requirement bilization Data Fields	nts:		+/- 0.2 complete	tabiliz	+/- 3% ation readings for p	arame	ters required by H	M, Site, or State). The	ese fiel	+/- 10%	+/- 25 mV ere four (4) field meas	Stabilize surements are required
-			Data Logg	ger or ot		ic form		l readi						use separate sheet or form. Other: +1 ~~
DAT.	ı	(MM DD YY)	1 10		std)		umhos/cm @ 25°C		(°C)	(ntu)	110	(mg/L-ppm)	(mV)	Units
FIELD DATA	() Fin	2241	e required	(i.e. red	cord field n	neasure	ements, final stabiliz	red rea	888 dings, passive san	nple readings before sa	ZS impling	Oct Z	902 meters required by Sto	1 43 O
Γ	Sa	mple Appearance:	:					C	Odor:		Colo	r:	Other:	
	We	eather Conditions	(require	d daily,	or as cond	itions	change):	Dir	rection/Speed:	0	utlook	c elev	Precipita	ation: Y or N
	Sp	ecific Comments (includin	ıg purg	e/well vol	ume c	alculations if req	uired)): V C -	la fee		(51 X
COMMENTS	7	424 &	3.21			o ot	served war	45 1	4 045 14	let tubing.	191	1 Total	1 1700	Daniel
MM	_		3.29			b.	61+ 5/12	0/2	Did u			Jakeria	Mex took	. ascil
000	_				1.	055	ble Croppe	5	15+ tin	S.		- '	Pressure	= 40 ps7
FIELD					~	Flor	~ seams	juA		slightly u			7	
	I ce	ertify that sampling	g procedu	tres wei	re in accor					tocols (if more than	-		sign):	
	-	2,24,16	<u> </u>	_50	in 6	Paba			$-\lambda$	~ D			545	
	7/2	Date	=	Name	DISTRIBU	TION:	WHITE/ORIGINA	AL - St	Signature	/ELLOW - Returned t	o Clien		отрапу	

<u> </u>		FIELD IN	FORMATION FORM	
t .	me: UVE	This form	e Management Field Information Form is Required is to be completed, in addition to any State Forms. Th	e Field Form is
Si No	- CINZINIJI / """		along with the Chain of Custody Forms that accompar (i.e. with the cooler that is returned to the laboratory)	
E	030816	10115		
PURGE	PURGE DATE (MM DD YY)	PURGE TIME ELAPSEI (2400 Hr Clock) (hrs.m	in) (Gallons)	(Gallons) PURGED
LE	Purging and Sampling Equipm	<i>A</i> **	Filter Device: Y or N	Cell Vols Purged. Mark changes, record field data, below. 0.45 \ \mu \ \ \mu \ \ \mu \ \ \ \ (circle or fill in)
SAMP	Purging Device	A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump		n-line Disposable C-Vacuum Pressure X-Other
PURGE/SAMPLE	Purging Device Sampling Device	C-QED Bladder Pump F-Dipper/Bottl	е	Pressure X-Other Feflon C-PVC X-Other:
<u> </u>	X-Omer:		Sample Tube Type: B-S	Stainless Steel D-Polypropylene
T A C	Well Elevation (at TOC)	Depth to Water (I (ft/msl) (from TOC)	·	oundwater Elevation (ft/msl)
WELL DATA	Total Well Depth (from TOC) Note Total Well Depth. Stick U	Stick Up (ft) (from ground eleva	tion) (ft) ID	Sing Casing (in) Material carteny DTW, and Groundwater Elevation must be current
	Sample Time Rate/Un. (2400 Hr Clock)	· · · · · · · · · · · · · · · · · · ·	Temp. Turbidity (°C) (ntu)	D.O. eH/ORP DTW (mg/L - ppm) (mV) (ft)
		1st [st]	1- 1	
(î	11.11.11.11.11.11.11.11.11.11.11.11.11.	2 nd 2 nd 1		
tiona		3 rd 3 rd 1		
(0p		4 th	!!!!!!!!!!	
DAT			; ; ; ; ;	
NOI	1 1 1			
STABILIZATION DATA (Optional)				
ABIL				
ST				
	Suggested range for 3 consec, readings of	or +/- 0 2 +/- 3%		+/- 10% +/- 25 mV Stabilize
	note Permit/State requirements: Stabilization Data Fields are Option	nal (1 e. complete stabilization readings for para	meters required by WM, Site, or State). These fiel	ds can be used where four (4) field measurements are required
	SAMPLE DATE	pH CONDUCTANCE	TEMP. TURBIDITY	DO eH/ORP Other: TIMC
D DATA	(MM DD YY)	(std) (umhos/cm @ 25°C)	(°C) (utu) (utu) (4 [35]	(mg/L-ppm) (mV) Units
RIELD	Final Field Readings are required	(1 e. record field measurements, final stabilized		g for all field parameters required by State/Permit/Site.
	Sample Appearance: off	color (Particulates	Odor: Stight Color	: golden Other:
	Weather Conditions (required	, , , , ,	Outlook	Covercat Rain Precipitation: Y or (V)
	Specific Comments (including	g purge/well volume calculations if require	ed):	
SLN				
COMMENTS				
FIELD				
1	1 certify that sampling procedure	res were in accordance with applicable EPA,	State, and WM protocols (if more than one sa	mpler, all should sign):
	3,8,16	Bradley Beach	heligh 1	SCS-FS
	Date F	Name	Signature	Company

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	rni	/16				
Time	(600)					
Weather (sky or precip, temp)	(lond	1				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	pt 4 cal. Failed.
Standard Value	141 ³	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	Went duen to =4.5
Pre-Cal Reading	1370		6.87			tren started going buch or to 4.99
Post Cal Reading	1413		1.00	8.01	804, 102,21.2,0	0.84
Descrepancy	pH (Tales to	cal. ju	ill use 1	It pen	
Calib. Successful?	not	For 7H				
Calibration by		SEB				
Instrument Type,		MP20 / YSI 556 MicoTPW / HACH2				
Calibration Location		ası	and or			

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	2/2	2/2016			•	
Time	(00 ()		95		
Weather (sky or precip, temp)	Cla	ouds				
Type of Calibration	\ Standard	Standard	Standard	Standard	Standard	
Standard Value	1413 445-	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1409	4.00	7.04			
Post Cal Reading	141/3	4.01	7.00	7,43	979.7,11.50, 0.46	
Descrepancy	(75				
Calib. Successful?	\	les				
Calibration by		SDP				
Instrument Type, ID		MP20 /	YSI 556		MicoTPW/HACH2000	
Calibration Location		OVSL				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	W 23/16					
Time	123	0			1	
Weather (sky or precip, temp)	544	ny				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413 445	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1429	4.39	b.70			
Post Cal Reading	1413	543	7.00	4.17	742,101,21.0,03	5"
Descrepancy	PH	Gailed to	Cal. (w)	F		
Calib. Successful?			1 9			
Calibration by	556	5	11 10-2			
Instrument Type,		MP20 /	YSI 556	$\overline{}$	MicoTPW HACH2000)
Calibration Location	OUS					

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

_	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	1/23					
Time	12:30					
Weather (sky or precip, temp)	Clear	15vnny	¥	11		
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413 -445	4.01	7.00	100% or ~8.5	1000, 10, 0.2) 800, 100, 20, <0.1	
Pre-Cal Reading	1500	3.96	6,93		903,5,6,26,0.00	
Post Cal Reading	1413	4,01	7,06	3.15		
Descrepancy	N	0				
Calib. Successful?	Y	25	1			
Calibration by	5	P				
Instrument Type, ID		MP20 /	YSI 556	MicoTPW / HACH2000		
Calibration Location	C	NSL				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	1/2	4/16				
Time	3	00				
Weather (sky or precip, temp)	over	cust				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	ı
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1427	5.00	7.00 4			
Post Cal Reading	1413	et announces	7.00	9.77	881, 99.7, 20.5, 0.94	
Descrepancy	pH 7 s	seems to co	al. heter 1	then pH !	1. pH & Fale	d to cal
Calib. Successful?	Not	G PH				
Calibration by	Sŧ	3				
Instrument Type, ID	I IVIEZU / / TOLOGOZ			MicoTPW / HACH2000		>
Calibration Location		ousl				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	2/24	1116				
Time	(080g					
Weather (sky or precip, temp)	Cloud	dy				1
Type of Calibration		Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1417	4,04	6.99	8,02	984.1,7.67,0.00	
Post Cal Reading	1413	4.01	7.00			
Descrepancy		NO				U
Calib. Successful?		Yes				
Calibration by	S	DP				
Instrument Type, ID		MP20 /	YSI 556	(MicoTPW / HACH2000	
Calibration Location	I /	DVSL				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

May 19, 2016

File No. 04204027.19

Subject: Second Quarter 2016 Compliance Monitoring Event

Olympic View Sanitary Landfill, Kitsap County, Washington

Sampling Event Dates: 5/16/16 through 5/19/16

Personel: Sam Graber and Matt O'hare

NOTES/SAMPLING DECODING:

• Dedicated pumps were used for purging and sampling all wells.

- Duplicate samples were collected at MW-19C (DUP2) and MW-23A (DUP3).
- Geotech and Solinst water level meters were used to record all water level elevations.
- In addition to the monitoring wells where groundwater was collected for chemical analysis, additional wells were monitored for groundwater level elevations. A summary of measured water levels are included with the field documentation.
- Some vegetation that was blocking access to certain well locations was cleared during this event by SCS Field Services.
- Several well locks need replacement on the site.
- The samples were sent to TestAmerica Denver for analysis at the close of each sampling day, except samples for low level arsenic which were held until the end of the sampling event and provided to Analytical Resources, Inc. in Tukwila, Washington.

Sample Date	Location ID	Sample ID	Comments
5/16/16	MW-43	0516-01	
5/16/16	MW-29A	0516-02	
5/16/16	MW-32	0516-03	
5/16/16	MW-4	0516-04	
5/16/16	MW-42	0516-05	
5/16/16	MW-39	0516-06	
5/16/16	MW-16	0516-07	
5/16/16	MW-13B	0516-08	
5/16/16	MW-35	0516-09	
5/16/16	MW-13A	0516-10	
5/17/16	MW-34C	0516-11	

Sample Date	Location ID	Sample ID	Comments
5/17/16	MW-34A	0516-12	
5/17/16	MW-36A	0516-13	
5/17/16	MW-15R	0516-14	
5/17/16	MW-19C	0516-15	
5/17/16	MW-19C	0516-16	Dup-2
5/17/16	MW-24	0516-17	
5/17/16	MW-23A	0516-18	
5/17/16	MW-23A	0516-19	Dup-3
5/17/16	MW-20	0516-20	
5/17/16	MW-2B1	0516-21	
5/18/16	MW-33A	0516-22	
5/18/16	MW-33C	0516-23	
6/20/2016	LP-LCD	0516-24	

	FIELD INFORMATION FORM	Į.
Site Nam	This West Management Cold Information Provided Information Cold Informatio	Š
Site No.:	Sample Point: M W - Y 3 Sample ID Sample ID Sample ID Sample ID Laboratory).	
PURGE	PURGE DATE [MM DD YY] [O 400 IIr Clock) [Mm DD YY] [O 5 b 1 b	
PURGE/SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated: Y or N	_
WELL DATA	Well Elevation (at TOC) Depth to Water (DTW) (from TOC) Groundwater Elevation (slte datum, from TOC) (il/msl)	,
\vdash	Total Well Depth (from TOC) Stick Up (and the control of the cont	
	imple Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW 400 Hr Clock) (std) (μπhos/cm@25°C) (°C) (ntu) (mg/L-ppm) (mV) (ft)	1
(onal)	10:418 309 1 5,67 1 44 8,83 1 1 444 1 240 1 10:418 10:418 1 2 4171 2 4 4 4 4 4 4 4 4 4	_
ATA (Opti	10:517 31 9:16 31 19:1 8:78 19:1 0:517 10:517 31:45 19:1 0:517 31:45	
STABILIZATION DATA (Optional)	11:010 31513 1 1 1411 81810 1 1 1 0119 112141 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
STABILI		
note Sta	gested range for 3 consec, readings or +/- 0.2 1/- 3\% -/- 10\% +/- 25 mV Stabilize PermitState requirements: +/- 0.2 1/- 3\%/- 10\% +/- 25 mV Stabilize Dilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM. Site, or State). These fields can be used where four (4) field measurements are required tate/PermitSite. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or for	
YE.	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other:	ezet.
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) (C) (ntu) (mg/L-ppm) (mV) Units 5	3
	nple Appearance: Odor: Color: Other:	_
	ather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Outlook: Precipitation: Y or Conditions of Comments (including purge/well volume calculations if required):	
¥.	grange particulate in sumple to start. Pursed art. document from exhaust	_
MWE P	i refill dischase	-
FIELD COMMENT	0/10/5	-
FE _		
I ce	tify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	-
_	3,16,16 Sam Graber Such 505	_
	Date Name Signature Company DISTRIBUTION: WIIITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Copy	-

Г	FIELD II	VEODMA	TION FOR			
Site Nam	COUS (This We	aste Management Field	Information Form is Requ	fred	WAST	MANAGEMENT
Site	This for	m is to be completed, in	addition to any State Forms, of Custody Forms that account	The Field Form is	f.aboratory Use Only/La	DID:
No.	Point: 4W-Z9A Containe	m (i.e. with the cooler t	that is returned to the laborate	ory).		
E GE	091616 1400	00				
PURGE			WATER VOL IN CAS	SING ACTUAL	L VOL PURGED	WELL VOLS
	(MM DDYY) (2400 Hr Clock) (hrs: Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purgo	min) ed" w/ Water Vol in Tul	(Gallons) hing/Flow Cell and Tubing/F	Tow Cell Vols Purged.	(Gallons) Mark chunges, record field	PURGED data, below.
PURGE/SAMPLE	Purging and Sampling EquipmentDedicated: Y or N	Filt	er Device: Y or N	0.45 µ or	μ (circle or	îll in)
IRGE/SAMPL	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pum	ap Fi	/	A-in-line Disposabl B-Pressure	e C-Vacuum X-Other	
URGE	Sampling Device C-QED Bladder Pump F-Dipper/Bol			A-Teflon	C-PVC X-Ot	ner:
	X-Other:		l'ube Type: U	B-Stainless Steel	D-Polypropylene	
WELL DATA	Well Elevation (at TOC) Depth to Water (from TOC)	(DTW)/	1 1 5 5	G roundwater Eleva (site datum, from T		(ft/msl)
WEL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing id. etc. are optional and can be from his		(n)	Casing (in	Casing Material roundwater Elevation must	hu curvent
	Sample Time Raje/Unit pH Conductance (SC/EC) (μπhos/cm@25°C)	Temp (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP	DTW (ft)
	14:015 300 1-56015 1- 1 182	81712		0196	5146/1	
	14:110 2nd 46512 2nd 1813	81717		01311	161915	1 1 1
іопа	14:113 1 3" 4,510 3" 1 1 1815	81717	1 19112	0123	161815	
STABILIZATION DATA (Optional)	14:116 4 41416 4 1 133	21716	1 1 13 141	0119	161618	1 1
ATA	14:119 1 4:413 1 1815	8.715		0110	1010.50	
7QN	14:212 4:410 1:1814	01214		0.1.1	16611	
orrio 	14:215 1 41410 1 1814	05719	10000	01116	161517	
ZIT	9.010	81715	1 12 99	04115	161214	
ABII						
S						
Sug	gested range for 3 consec, readings or 1/- 0.2 1/- 3%					
Str	bilization Data Fields are Optional (i.e. complete stabilization readings for parc	ameters required by W	'M. Site, or State). These fi	-/- 10%	+/- 25 mV re four (4) field measures	Stabilize
бу	State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final re SAMPLE DATE pH CONDUCTANCE	radings below and subn	nit electronic data separately TURBIDITY	to Site. If more field	s above are needed, use s	eparate sheet or form
I PAI	(MM DD YY) (std) (umhos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV) Uni	
FIELD DATA	15 6 6 4 4 0 3 4 4 6 6 6 6 6 6 6 6	eadings, passive san	2 44	Op (5)	654	1 4 Z S
	mple Appearance: (Lew				Other:	4.000.11.00
W	eather Conditions (required daily, or as conditions change):	Direction/Speed:		ok: buerca	s + Precipitation	Y or N
Sp	ecific Comments (including purge/well volume calculations if requir	ed):				
2 <u> </u>	orange water at first, pursed	till Cle	rus			
COMMENTS	6.49					
<u> </u>						
						_
	ertify that sampling procedures were in accordance with applicable EPA,	State, and WM pro	tocols (if more than one s	ampler, all should s	ign):	
_	3,16,16 Sam Graber	An	Mr	•	SCS	
	Date Name DISTRIBUTION: WHITE/ORIGINAL-	Signature Stays with Sample, Y	ELLOW - Returned to Clie	Cor nt. PINK - Fleld Cop	npany y	

		FIELD INFORMA	TION FORM	
Site Nam		This Waste Management Fic	ld Information Form is Required	WASTE MANAGEMENT
Site	Sample	3 2 submitted along with the Chair	in addition to any State Forms. The Field Form is n of Custody Forms that accompany the sample	Laboratory Use Only/Lab ID:
No.:	Point: Sample	containers (i.e. with the cooler	that is returned to the laboratory).	
PURGE	051616 1305	5		
P. F.	PURGE DATE PURGE TIMI (MM DD YY) (2400 Hr Clock Note: For Passive Sampling, replace "Water Vol in Casing	k) (hrs:min)	(Gallons)	JAL VOL PURGED WELL VOLs (Gallons) PURGED and, Mark changes, record field data, below.
PLE	Purging and Sampling Equipment Dedicated:	or N Fil	ter Device: or N 0.45 µ or	
PURGE/SAMPLE EQUIPMENT	Purging Device A-Submersible Pur B-Peristaltic Pump		A-In-line Dispose B-Pressure	able C-Vacuum X-Other
RGE	Sampling Device C-QED Bladder Pu		A-Teflon	C-PVC X-Other:
_	X-Other:	Sample	Tube Type: B-Stainless Stee	
DATA	Well Elevation (at TOC)	Depth to Water (DTW) (from TOC)	Groundwater El (site datum, from	
WELL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optic	Stick Up (from ground elevation)	(n) UD Casing UD	Casing (in) Material
	Sample Time Rate/Unit pH 💥 Co	onductance (SC/EC) (µmbos/cm@25°C) (°C)	Turbidity D.O. (ntu) (mg/L - ppm	eH/ORP DTW
1	B:017 Bao 1 5114 1x	1241 1223	1111 21315	181920 1 1 1
	13:112 1 2no 51015 2nd	1 2 3 3 1 1 2 1 11	IIII OJSZ	62,8
Попа	13:115 314 51018 314	1 12 13 17 1 12 110	1 162413 0633	151314
0	13:118 4th 51110 4th	1 2136 1212	01213	141515
ATA	13:21 51019	1236 1211	1111 011 R	141/12
STABILIZATION DATA (Optional)	13:214 51018	1 213 6 1 2112	04/16	131878
ATIC	13:217 V 51018	1 1213 15 112113	1 121317 0115	13775
ILIZ				
TAB				
S				
note	gested range for 3 consec, readings or +/- 0.2	1/- 3%	-/- 10%	+/- 25 mV Stabilize
Stn by S	bilization Data Fields are Optional (i.e. complete stabiliza State/Permit/Site. If a Data Logger or other Electronic form	ation readings for parameters required by a	W.M. Site, or State). These fields can be used	where four (4) field measurements are required
4TA	SAMPLE DATE pH	CONDUCTANCE TEMP.	TURBIDITY DO	eH/ORP Other: 1
FIELD DATA	151 61 161 1 5 1 101 1	umhos/cm @ 25°C) (°C)	(ntu) (mg/L-ppm)	(mV) Units
	nl Field Readings are required (i.e. record field measure)	ments, final stabilized readings, passive sa	030	rameters required by State/Permit/Site.
	mple Appearance:	Odor:		
We	eather Conditions (required daily, or as conditions of			
Sp	ecific Comments (including purge/well volume ca	lculations if required):		
2 [*] _	plt possibly of			
COMMENTS	6.96			
ow —				
		-		
I ce	ertify that sampling procedures were in accordance w	vith applicable EPA, State, and WM pro	otocols (if more than one sampler, all shou	d sign):
_	5 16 16 Sam Gra	iba In	h	565
_				· · · · · · · · · · · · · · · · · · ·
		Signature WIHTE/ORIGINAL - Stays with Sample, Y	YELLOW - Returned to Client, PINK - Field (Сотрапу

Γ		FIELD INFORMATION FORM	
	site ame:	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	Ē.
	ite io.:	Sample Point: M W - U submitted along with the Chain of Custody Forms that accompany the sample containers (i.e., with the cooler that is returned to the laboratory).	
H		Sample ID	
PURGE	INFO	5 5 1 6 1 6 1 1 4 2 2 3	
FI	Z	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED	
8	-	tote: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below. Vor N Filter Device: Or N 0.45 \mu 0r \mu -	
SAMP	EQUIPMENT	rurging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum	
RGE	QUIE	ampling Device C-QED Bladder Pump F-Dipper/Bottle B-Perstaltic Pump E-Piston Pump Filter Type: A B-Pressure X-Other A-Teflon C-PVC X-Other:	
_	_	-Other: Sample Tube Type: U B-Stainless Steel D-Polypropylene	-
	DATA	Vell Elevation Depth to Water (DTW) Groundwater Elevation (from TOC) (from TOC) (site datum, from TOC)	
	WELL	otal Well Depth Stick Up Casing Cusing	
		pple Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW OHr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV) (ft)	
	Ì	145 300 14 41510 11 11 122 110114 11 167 1331	
<u>ਵ</u> ਿ	Ĺ	:510 1 2" 4,313 2" 11315 9,713 1 1 0,313 113 D10	
ption	L	1513 3" 4136 3" 111315 9712 13.8151 0,214 11312,6	
(O) V		1516 4" 41415 4" 111315 91712 111 0114 12719	
DAT		1319 4,413 111315 9,711 111 0,17 112,611	4
CION		1012 4150 11(1315 91710 1111 0115 1121419	4
JZA	4	2:015 4 41512 111315 91619 1116151 01114 (121414 111	-
STABILIZATION DATA (Optional)		┊ ┊┤┠┈┤┠┈┈┤┠┈┈┼┨┠┈┈┤┠┈┈┼┩┠┈┈┤┠┈┼┼	+
S			-
		ed range for 3 consec, readings or +/- 0.2 1/- 3% = 2/- 10% +/- 25 mV Stabilize	1
1 8	Stabl	cation Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by WM, Site or State). If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or for	_l ,rm.
		AMPLE DATE PH CONDUCTANCE TEMP, TURBIDITY DO eH/ORP Other:	
FIELD DATA	b	51616 452 135 469 1565 014 1244 1205	
		led Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.	-
		le Appearance: Odor: Color: Clew Other: Direction/Speed: Outlook: OUT CUST Precipitation: Y or M	-
	Spec	ic Comments (including purge/well volume calculations if required):	
LS.		black particulates in Sample	
FIELD COMMENTS	*	,.65	
OMO.			
ED C	-		_
	_		_
		y that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	
	_5	16, 16 Sam Graher In of Scs	-
8	. —	Date Name Signature Company	-

Γ	_		FIE	ELD INFORMA	TION FORM	M	V	
	iite ime:	0,05		This Waste Management Field This form is to be completed, in	Information Form is Requi	red	WAST	MANAGEMENT
	ite o.:		mple 4 W - 4 Sample ID	submitted along with the Chain containers (i.e. with the cooler	of Custody Forms that accom-	pany the sample	Laboratory Use Only/Lab	ID:
PURGE	INFO	051616 PURGE DATE	PURGE TIME	EL ABOUD MAG			LI LI	
		(MM DD YY) Note: For Passive Sampling, rep	(2400 flr Clock) place "Water Vol in Casing" and "	ELAPSED HRS (hrs:min) Well Vols Purged" w/ Water Val in Tu.		(G	allons)	WELL VOLs PURGED data, below.
PURGE/SAMPLE	MENT	Purging and Sampling Equipm Purging Device	A-Submersible Pump I	D-Bailer	er Device: Y or N	0.45 µ or	μ (circle or fi	II in)
IRGE/S	EQUIPMENT	Sampling Device	•	-Dipper/Bottle			X-Other C-PVC X-Oth	er:
\vdash	_	X-Other:					D-Polypropylene	
	LDAIA	(at TOC)	(ft/msl) (fron	h to Water (DTW)	1 1 1 1 1 1 1 1	Groundwater Elevation site datum, from TOC		(R/msl)
1	WELL		Stick (ft) (from to, Casing id. etc. are optional and	Up ground elevation) can be from historical data, unless re	1 1 100 1	Casing (in) D (in) Devation, DTW, and Grow	Casing Material Indivater Elevation must	be current.
		ample Time Raje/Uni		nce (SC/EC) Temp. cm@25°C) (°C)	Turbidity (ntu)	D.O. (nig/L - ppm)	eH/ORP (mV)	DTW (ft)
	1	6.00		501 11191	7 - 1	12614	1116	
ional)	1	51016	11 00	5 3 7 / 1/193	1 13018	01312	-11611	
STABILIZATION DATA (Optional)	i	1100	111.00	51411 11182	11113	01212	-121119	
DATA	1	5:1/2	4,972	51411 111381		0116	- 12 14 16	
TION	(i	151115	1 7	5 3 19 1 1 1 180	1 1 6.48	0115	- 121514	
ILIZA	_			5 3 9 1 1 180	1 1 14 169	03/19	-121613	
STAB								
		ested range for 3 consec, readings or	+/- 0.2	3%		-/- 10%	1 1 1	
	Stab	Permit/State requirements: Ilization Data Fields are Option tate/Permit/Site If a Data Logger	1 (i.e. complete stabilization read	dings for parameters required by B f, fill in final readings below and subs	M. Site or State). There for	dds can be used where	-t/- 25 mV four (4) field measuren	Stabilize tents are required
		SAMPLE DATE	pH CONDU	CTANCE TEMP.	TURBIDITY	DO		parate sheet ar Jorm. er: <u>† v~ +</u>
FIELD DATA	O	(MM DD YY) S 1 6 1 6 L	485	m @ 25°C) (°C) 5 3 9	(ntu) 4 [69]	(mg/L-ppm)	(mV) Unit	1518
		iple Appearance:	act record field measurements, fin	Odor:		or:		rmu/Site.
	Wea	ather Conditions (required d	aily, or as conditions change):	Direction/Speed:		k:		Y or N
	Spe		ourge/well volume calculatio					
SLN.		Slight oran	se particulates	at besinury.				
OMMENTS		* pH	pen fruit v	ending = 6.4				
0 - E		- 1		(-)				
HE.								
1			- 1	licable EPA, State, and WM pro	tocols (if more than one sa	mpler, all should sign		
		5,16,16	Sam Coraba		M		Scs	
		Date Na		Signature	ELLOW Battered to City	Compa	элу	

Γ					F	TELD IN	VFC)RMA	TIC	N FOR	M			WW	
	Site Bme:	LOV	181			This Wa	ste Man	agement Field	d Inform	tlan Form Is Req to any State Form	uired	1		WASTE M	ANAGHMENT
	Site No.:			mple MU	1-3	a submitte	d along v	with the Chain	n of Custo	ly Forms that acco	mpar	ny the sample	Laboratory Use	Only/Lab ID:	:
L		1. /			Sample ID							11 11			
E	ا ۾ ا	015/16	116	43	15/2	60	ds	T							
PURGE	INFO	PURGE DA			E TIME	ELAPSI		s	WATI	R VOL IN CA	SIN	G ACTUA	L VOL PURGE		ELL VOLs
Ļ		Note: For Passive	Sampling, re	place Water Vol		(hrs: and "Well Vols Purge	min) d w/W				Flow	Cell Vols Purged.	(Gullons) Mark changes, rec	ord field date	PURGED 14. below
MPE	ENT	Purging and Samp Purging Device	. // .	A-Submers	t	D-Bailer		File	ter Devi	e: Y or N	4	0.45 µ or L		ircle or fill in	1)
F/54	EQUIPMENT	Sampling Device	. 1	B-Peristalti	Pump	E-Piston Pum		F	llter Typ	e: A		n-line Disposabl ressure	X-Other		
PURGE/SAMPLE	EQ.	X-Other:		C-QED Bla	uder Pump	F-Dipper/Bot	tie 1	Sample	Tube Tvi	e:16		Teflon tainless Steel	C-PVC D-Polypropyler	X-Other:	
-	_	Well Elevation	F 1 F	1 1 1	1	Depth to Water (DTW)	1 I D	leol.	هاریا		oundwater Eleva	W W 100	7 7	Ϋ́T
	_	(at TOC)	Ш	$\perp \downarrow \downarrow \downarrow$		(from TOC)	,		181	9 8 (11)		e datum, from To			(ft/mst)
	<u> </u>	Total Well Depth (from TOC)			(R)	Stick Up (from ground elev	ation)			(n)	Cas ID	Cin	Casing Material		
H	-	Vote: Total Well Di inple Time	epth, Stick U Rate/Un			and can be from his	itorical e	lata, untess re Temp.	equired by	Site/Permit, Well Turbidity	Elev	D.O.		on must be c	
		00 Hr Clock)		(std)		1hos/cm@25°C)	Ťγ	(°C)	ű	(ntu)	ř	(mg/L - ppm)	eH/ORP (mV)	ŕβ	DTW (ft)
	11	5151	250	1 >1919	r*	160	<u>l</u>	UBS		1111		0183	7101	- I	1919
(al)		9:012		20101	2 nd	1667	1	0 50	_1.	1 114		10,35	-11/14/	- -	11 19 105
ption	1	4:01	W	01012	3"	1266	1	079		1218		10,29	79171	4	11903
A (0	11,	4:112	1	4 00Z	414	14614	1	030		1 211		075	-1817	_ L	1119 03
DAT	_1	<u> </u>		11			_			1 1 1		1 1			111
NO.							_			1 1 1		_1 1	111		111
ZAT		-1-1-	1	11	Ш	J		1	1						
STABILIZATION DATA (Optional)	_1	1							_1			1.	111		
STA	_1	I L		11					1				111		111
						_1_1_1_				LLL			1.1.1		111
	note Pe	and range for 3 conse	ents:	F/- U.Z	atabiliantia	1/- 3%		. ee.				=1-10%	+/- 25 mV		Stabilize
	by Stat	le/Permil/Site, If a	Data Logge	or other Electro	nic format i.	n readings for para s used, fill in final re	udings b	elow and subi	mit electro	nic data separate	field ly to	Site. <u>If more field</u>	s above are neede	d, use separ	ratę sheet or form.
DAT) 	(MM DD YY)	enco are na	pH (std)		NDUCTANCE hos/cm @ 25°C)	1	TEMP. (°C)	TI u tu	JRBIDITY (ntu)		DO (mg/L-ppm)	eH/ORP (mV)	Other: Units	+1794
FIELD DATA	0	51/6/1	6	602		764		0 30		121		0 25	-87	1 17	412
			10	-	reasurumer	us, final stabilized	reading:	s, passive sa	mple read	ings before samp	ling	for all field paran	inters required by	State/Permi	u/Site.
		ole Appearance: her Conditions		taily or as cond	litions cha	nge):	Odor:	-	1		olor:	50	Other:		
						ilations if require		n/Speed:		Outlo	ook:	_ cruo as	Precip	oitation: Y	
	10	Ceil	多下	whoop	anic cate	nations it require	u).			-	_				
OMMENTS		CI-COX	1 101	Chon)										
M.											_				
Ç	4	7													
HELD.															
Ŧ ()	I certi	fy that sampling	procedure	s were in accor	Jance with	spýlicable EPA,	State. 2	nd WM nra	tocols (%	more than one	gam	nler all should -	ian).		
	5	16,1	6 0	Mat	101	Ane		11	Alt	/ than one	Janil	hver, en anvend s	SPC D	-	Mark.
	-	/ /	- 62			- Entire -		10	1.0				100	2010	-4/1
		Date	Na	me DISTRIBU	rion: wi	IITE/ORIGINAL -	Sign:		ELLOW	- Returned to Cli	ient.		npany		

	FI	ELD INFORMA	TION FORM	ſ	
Site Name	90101	This Waste Management Field	Information Form is Require	ed	WASTE MANAGEMENT
Site No.:	Gample Will /	This form is to be completed, in submitted along with the Chain of	f Custody Forms that accompa	any the sample	ory Use Only/Lab ID;
140	Sample ID	containers (i.e. with the cooler th	at is returned to the laboratory	·).	
PURGE	PURGE DATE PURGE TIME	ELAPSED HRS	WATER VOL IN CASI	NG ACTUAL VOL P	URGED WELL VOLS
	(MM DD YY) (2400 IIr Clock) Note: For Passive Sampling, replace "Water Vol in Casing" and	(hrs:min) d "Well Vols Purged" w/ Water Vol in Tuh	(Gallons) ng/Flow Cell and Tubing/Flo	(Gullons) w Cell Vols Purged, Mark char	PURGED nges, record field data, below
IPLE	Purging and Sampling Equipment Dedicated:		r Device: Or N	0.45 µ or	μ (circle or fill in)
PURGE/SAMPLE EQUIPMENT	Purging Device A-Submersible Pump B-Peristaltic Pump	D-Bailer E-Piston Pump FIII	2.7	In-line Disposable C-Vaca Pressure X-Othe	
RGE	Sampling Device C-QED Bladder Pump	F-Dipper/Bottle		Teflon C-PVC	
200	X-Other:	Sample T	abe Type: B-	Stainless Steel D-Poly	propylene
L DATA	(at TOC) (ft/msl) (ft	epth to Water (DTW)	[1 7]] (n) (si	roundwater Elevation te datum, from TOC)	(ft/mst)
WELL	(from TOC) (ft) (ft) (ft) Note: Total Well Depth, Stick Up. Cusing ld, etc. are optional a	ick Up rom ground elevation) nd can be from historical data, unless req	(m) ID	(in) Ma	sing aterial r Elevation must be current.
		ctance (SC/EC) Temp os/cm@25°C) (°C)	Turbidity (ntu)		/ORP DTW mV) (ft)
	13:013 2501. 613151.	106 949	9.6	S 82 (18	0 S200
	3:018 2nd (0115 2nd	11013 19:40	1166	622 18	13/ 15/2/00
iona	13:113 1/1 3rd 61 1 1 3rd	11012 19137	1151	637 18	1512 00
(Op	3:18 4 611 4 6	1/10/2 19/38	11412	632 118	17 512190
ATA				113	7. PETO
Q Z					
STIO -					
			1 3 1 1		
STABILIZATION DATA (Optional)			1 1 1 1		
S -					
	ggested range for 3 consec, readings or +/-0,2	1/- 3%		-/- 10% H/-	25 mV Stabilize
Sta	bilization Data Fields are Optional (i.e. complete stabilization of State/Permit/Site. If a Data Logger or other Electronic format is u	readings for parameters required by W	M. Site, or State). These fiel	ds can be used where four (4) field measurements are remired
	SAMPLE DATE PH CONI	DUCTANCE TEMP.	TURBIDITY		ORP Other:
FIELD DATA	(umho)	s/cm @ 25°C) (°C)	(ntu)	(mg/L-ppm) (r	nV) Units
HE LE	ul Field Readings are required (i.e. record field measurements,	final stabilized readings, passive sum	le readings before sampling	for all field parameters real	ired by State/Permit/Site.
	mple Appearance: (Uw	Odor: Nov		ni	Other:
We	eather Conditions (required daily, or as conditions chang	pe): Direction/Speed:	- Outlook	Onescast	Precipitation: Y or
Sp	ecific Comments (including purge/well volume calcula	tions if required):	78		
$^{\perp_{2}}$	Jeeds lock Mechanism	seplaced -> Chi	in?		
COMMENT		1			
WO—					
	=====				
FIELD —					
	ertify that sampling procedures were in accordance with a	pplicable EPA, State, and WM prot	ocols (if more than one san	npler, all should sign):	
4	Sile il att Dit	fore M/H	TU	SCS	Englyce
_) -(2
	Date Name DISTRIBUTION: WIII	Signature TE/ORIGINAL - Stays with Sample, YE	LLOW - Returned to Client	Company . PINK - Field Copy	

Γ	FIELD INFORMATION FORM
Site Nam	e: This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is
Site No.	Sample
PURGE	PURGE DATE (MM DDYY) (2400 If Clock) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged, Mark changes, record field data, below.
PURGE/SAMPLE FOIIPMENT	Purging and Sampling Routement Dedicated
L DATA	Well Elevation (at TOC) Depth to Water (DTW) Groundwater Elevation (site datum, from TOC) (R/msl) Depth to Water (DTW) (R/msl)
WELL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing id. etc. are uptional and can be from historical data, unless required by Site/Permir, Well Elevation, DTW, and Groundwater Elevation must be current.
A B B S STABILIZATION DATA (Optional)	Sample Time Rate/Unit PH Conductance (SC/EC) Tamp. Turbidity D.O. eH/ORP (my) (fit)
FIELD DATA	S G 28 G V Units S G 28 G V G C C C C C C C C C C C C C C C C C
Sa W	mple Appearance: Color: Color: Color: Other: Precipitation: Y of N Color: Color
FIELD C	ertify that sampling procedures were in accordance with applicable EPA, State and WM protocols (if more than one sampler, all should sign): Sile 16 MgHOHase SCS ENGLESS
-	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

Γ	FIELD INFORMATION FORM	WW AVA
	This Waste Management Field Information Form is Required	WASTE MANAGEMENT
	Site No.: Sample M U - 3 Submitted along with the Chain of Custody Forms that accompany it containers (i.e. with the cooler that is returned to the laboratory).	
L	Sample ID	
됞	6.01516116 [10125] ODDST 11111	
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING	ACTUAL VOL PURGED WELL VOLS
	(MM DD YY) (2400 flr Clock) (hrs:min) (Gallons) Note: For Passive Sampling, replace "Water Vol in Castag" and "Wall Vols Purged" w/ Water Vol in Tubing/Flaw Cell and Tubing/Flaw Cell.	(Gallons) PURGED Il Vols Furged. Mark changes, record field data, below
PURGE/SAMPLE	Purging and Sampling binuipment Dedicated: Y N Filter Device: Y or N 0	0.45 μ or μ (circle or fill in)
SAN	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump F-Dipper/Bottle A-In-li B-Pres C-QED Bladder Pump F-Dipper/Bottle A-Tefle	ine Disposable C-Vacuum sure X-Other
URG	Sampling Device C-QED Bladder Pump F-Dipper/Bottle A-Tefl X-Other: Sample Type Type	
_		nless Steel D-Palypropylene
דאת	Well Elevation Depth to Water (DTW) Ground (site day (at TOC) (ft) (site day (at TOC))	dwater Elevation (R/msl)
VETY	Well Elevation (at TOC) Depth to Water (DTW) 7 4 0 Ground (site date)	(in) Material
	Total Well Deput, stack of, Cusing to, etc., are opinional and can be from historical data, unless required by Sile/Permit, Well Elevatio	
1	(2400 H (1) 1)	D.O. eH/ORP DTW (mV) (ft)
	1030 590 61918 11 11SIG 1059 11 1917	615 1971 1/198
(a)	10:315 275 276 61812 200 11156 1014 1142	1600 183 71148
ption	10:40 1 36190 1 1156 1012 1 36	16:05 17.81 17.1 44
<u>6</u>	10:43 4 6199 4 1156 011 1411	1603 117171 171/18
DAT.	10:416 V 6195 1156 1012 1417	1605 1751 171148
NO		
ZATI		
E E		
STABILIZATION DATA (Optional)		
l		
2	Suggested range for 3 consec, readings or note Permit/State requirements: 1/- 3/4	+/- 10% +/- 25 mV Stabilize
1	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields complete stabilization readings below and submit electronic data separately to Site by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site	on be used where four (4) field measurements are required. If more fields ubove are needed, use separate sheet or form.
FIELD DATA	SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY (MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (m	DO eH/ORP Other: The org/L-ppm) (mV) Units
E C	05/16/16 6/9/51 1/5/6 1/0/12 1/9/7/1	60st 1171ST 1 1046
= 1	Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for	all field parameters required by State/Permit/Site.
	Sample Appearance: Odor: Odor: Color: Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook:	Other:
	Specific Comments (including purge/well volume calculations if required): Outlook:	Precipitation Y or N
	Well locked 16en #7.	
OMMENTS	TV O TOCKET TO TOCKET	
		•
C		
ELD -		
÷	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sample)	r all should vign).
•	5,16,16 Must Pitare // ARI	SCS Englieets.
	1 /	
	Date Name Signature DISTRIBUTION: WIHTE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PIN	Company KK - Field Copy

Г				EIEID II	VE O D T C A	TION COD	17		
	Site ame:	1 AUS2		This Wa	aste Management Fiel	TION FOR	ired	Ţ	MANAGEMENT
5	Site No.:		Sample Point: W	submitte	d along with the Chain	n addition to any State Forms, of Custody Forms that account that is returned to the laborate	npany the sample	Laboratory Use On	ly/Lab ID:
PURGE	INFO	PURGE DATE	(2400	EE TIME ELAPSI	min)	WATER VOL IN CAS		L VOL PURGED	WELL VOLS PURGED
PURGE/SAMPLE	EQUIPMENT	Note: For Passive Sampling Purging and Sampling Eq Purging Device Sampling Device X-Other:		ible Pump D-Bailer c Pump E-Piston Pum	Fild np Fl ttle	er Device: Y or N	0.45 µ or A-In-line Disposab B-Pressure A-Teflon	Mark changes, recond μ (circ le C. Vacuum X-Other)	d field data, below le or fill in) -Other:
	_	Well Elevation (at TOC)		Depth to Water (((t/mst)) (from TOC)		14 In lu I	B-Stainless Steel Groundwater Eleva (site datum, from T	40000	(fl/msl)
	WELL DATA	Total Well Depth (from TOC) Note: Total Well Depth, St	ick Up, Casing Id. etc.	Stick Up (from ground elevare optional and can be from his	ration) storical data, unless re	(m)	Casing (i	Casing Material Groundwater Elevation	must be current
ELD DATA	Suggest Stab	ample Time Rate 100 Hr Clock) 1 1 2 4 1 2 9 1 3 V 1 3 V 1 4 3 V 1 4 4 1 1 5 A 7 Clock 1 1 4 9 1 5 A 7 Clock 1 1 4 9 1 5 A 7 Clock 1 1 2 9 1 2 9	e/Unit pH (std) 2nd 8 6 2nd 8 6 4nh 6 8 7 4nh 6 8 7 pgs or +/-0.2 ptlonal (i.e. complete ogger or other Electron pH (std))	Conductance (SC/EC) (µmhos/cm@25°C) 1" 70 2°d 169 3°d 169 4" 169 4" 169 i/-3% stabilization readings for paranic formut is used, fill in final reading for paranic formut is used.	Temp. (°C) 9.84 9.77 9.77 9.77 unineters required by the dings below and substituting the substitution that substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substitution that substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substituting the substitution that substituting the substituting the substituting the substitution that substituting the substitution that substituting the substitution that substitution the substitution the substitution the substitution that substitution the substitution that subst	Turbidity (ntu) 32 120 115 115 M. Site, or State). These finit electronic data separately TURBIDITY (ntu)	D.O. (mg/L-ppm) S. 97 S. 97 S. 92 S. 92 J. 10% Setts can be used with to Site. If mare field DO (mg/L-ppm) S. 92	eH/ORP (mV) 177 68 66 66 76 77 77 77 77 77	Stabilize Stabilize Stabilize Stabilize Stabilize Stabilize Stabilize Stabilize Stabilize Stabilize Stabilize
	Sam	ple Appearance: (ther Conditions (requi	law		Odor:	Col	or: Wor	Other:	0
			ing purge/well vol	ume calculations if require		70, 200	VVV ()	. receptor	- P1 1V
ELD C									
	I cer	tify that sampling proced	dures were in according	dance with applicable EPA,	State, and WM pro	tocols (if more than one s		COC	dyliers.
				TION: WIIITE/ORIGINAL-		ELLOW - Returned to Clie	nt. PINK - Field Cop	у	

FIELD INFORMATION FORM	$\wedge \wedge \wedge \wedge$
Name: This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field For	
Site No.: Sample Point: Sample Submitted along with the Chain of Custody Forms that accompany lite samp containers (i.e. with the cooler that is returned to the laboratory).	Luboratory Use Only/Lab ID:
PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING AC	
PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING AC (MM DD YY) (2400 IIr Clock) (hrs:min) (Gallons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell Vols II	CTUAL VOL PURGED WELL VOLS (Gallons) PURGED Purged. Mark changes, record field data, below.
Purging and Sampling Adjustment Dedicated: Purging Device: Purging Device: A-In-line Dis	or μ (circle or fill in) posable C-Vacuum
Purging and Sampling Equipment Dedicated: Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Filter Type: Sampling Device C-QED Bladder Pump F-Dipper/Bottle X-Other: Sample Tube Type: Prilter Device: A-In-line Distance: A-Teflon B-Stainless S	X-Other
X-Other: Sample Tube Type: B-Stainless S	C-PVC X-Other:teel D-Polypropylene
Well Elevation Depth to Water (DTW) Groundwater (at TOC) Groundwater (site datum, f	
Total Well Depth Stick Up Casing (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit, Well Elevation, DT's	Casing (in) Material (, and Groundwater Elevation must be current.
Sample Time Rate/Unit pH Conductance (SC/EC) Temp Turbidity D.O. (2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (nug/L-p	eH/ORP DTW
10:55 250 - 61410 - 12314 1317 3024 40	40 -1-31 4018
= 111:010 11 2 61417 2 1 1234 1312 124016 01	44 -1141 40 ps
\[\frac{1}{2} \] \[\frac{1}{3} \] \[\frac{1} \] \[\frac{1}{3} \] \[\frac{1}{3} \] \[\frac{1}{3} \] \[\frac{1} \] \[\frac{1} \] \[\frac{1}{3} \] \[\frac{1}{3} \] \[36 720 190185
\$ 11110 1 4 614 M 4 1 12 SY 1 1334 112811 101	33 -22 1400
11:015 1/3 3 1/2 3 1/3 3 1/3 3 1/3 3 1/3 3 1/3 3 0 0 1/3 3 1	
STAB	
Suggested range for 3 consec, readings or 1/- 0.2 1/- 3% - +	and Advised Mile
by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If mo	re fields above are needed, use separate sheet or form,
WM DD YY) (std) (umhos/cm@25°C) (°C) (ntu) (mg/L-p)	eH/ORP Other:
SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO (mg/L-p) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-p) [CONDUCTANCE TEMP. TURBIDITY DO (mg/L-p) (mg/L-p) [CONDUCTANCE TEMP. TURBIDITY DO (mg/L-p) (mg/L-p) [CONDUCTANCE TEMP. TURBIDITY DO (mg/L-p) (mg/L-p) [CONDUCTANCE TEMP. TURBIDITY DO (mg/L-p) (mg/L-p) [CONDUCTANCE TEMP. TURBIDITY DO (mg/L-p) (mg/L-p) [CONDUCTANCE TEMP. TURBIDITY DO (mg/L-p) [CONDUCTANCE TEM	33 - R R
Sample Appearance: Odor: Color:	Other:
Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook:	Precipitation: Y or N
Specific Comments (including purge/well volume calculations if required):	
Extended fring due to high turbidity >1100	
Tock Noeds replacement	11
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all sl	
5,17,16 Sam Graber Dry Su	
Date Name Signature DISTRIBUTION: WIIITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Floring Signature	Сотрапу

			FIELD IN	FORMA	TION FOR	M		
Sit Nam	/ / / /	4	This Was	te Management Field	Information Form is Required addition to any State Forms.	ired	h,	THEMBOANAM BYEAV
Site No.		Sample MW	> A submitted	along with the Chain	of Custody Forms that accom- that is returned to the laborate	npany the sample	Laboratory Use Or	nly/Lab ID:
-	IP Let Hall	Sa III I	mplc ID	1. L				
PURGE	PURGE DATE	d III	55 00					
P.O.	(MM DD YY)	PURGE T	Clock) (hrs:n	in)	WATER VOL IN CAS (Gallons)		L VOL PURGED (Gallons)	PHECED
J.	Purging and Sampling Ho		asing and Well Vols Purged Y or N		er Device Y or N	O.45 µ Or		d field data, below. tle or fill in)
PURGE/SAMPLE	Purging Device	A-Submersible B-Peristaltic Pa	E 10000000) RI		A-In-line Disposabl B-Pressure	e C-Vacuum X-Other	
URGE	Sampling Device	C-QED Bladde		e		A-Teflon	-	X-Other:
-	X-Other: Well Elevation	7 1 1 1 2	P. 11 . 27		ube Type:	B-Stainless Steel	D-Polypropylene	W 40 W 57
DAT	(at TOC)	(n	Depth to Water (I msl) (from TOC)	otw)	31/1/1/1/1	Groundwater Eleva (site datum, from Te		(fVmsl)
WELL DATA	Total Well Depth (from TOC)	(n			(fix)	Casing (in	Casing Material	
Ė	Sample Time Rate	/Unit pH	optional and can be from history Conductance (SC/EC)	orical data, unless rea	nited by Site/Permit. Well I Turbidity	Elevation, DTW. and G D.O.	roundwater Elevation eH/ORP	DTW
	2400 Hr Clock)	$\frac{1}{2} \left \frac{1}{2} \left \frac{1}{2} \left \frac{1}{2} \right \right $	(μmhos/cm@25°C)	11.7.8	(ntu)	(mg/L - ppm)	(mV)	(fi)
	11:415	2nd 572 2n	115	17.04	7.7	5.77	1<3	3869
ional	11:50	310 5 7 1 311	1115	1269	131	5/4	1/23	3894
00]	11:55	411 5714 40	1116	11265	79	555	1/48	3897
ATA							(1010.	
STABILIZATION DATA (Optional)								
ZATI	1111			1.1		1 1		
BIE	141 1					11		
STA -	<u> </u>	1 1		4.1				
	ggested range for 3 consec. reading	igs or +/- 0.2	1/- 3%	4.4				
Ste	te PermiuState requirements: abilization Data Fields are Operated State/Permit/Site - If a Data L	itional (i.e. complete stab	ilization readings for paran	neters required by II	M. Site, or State). These fi	ields can be used whe	+/- 25 mV re four (4) field med	Stabilize surements are required
ATA	State/Permit/Site. If a Data L	pН	CONDUCTANCE	TEMP.	TURBIDITY	DO DO	eH/ORP	use separate sheet or form. Other: The
FIELD DATA	MM DD YY)	S 7 4	(umhos/cm @ 25°C)	11/7/65	-7 G	(mg/L-ppm)	(mV)	Units_
	and Field Readings are requir	vd (i.e. record field meas	urements, final stabilized re	adings, passive sam	ple readings before sampli	ing for all field param	wters required by Si	ate/Permii/Site.
	mple Appearance: (eather Conditions (require	red daily or as condition		Odor: 10	Col		Other:	
	ecific Comments (includ			irection/Speed:	Outloo	ok:	Precipit	ation: Y of S
rΛ	MW-34B	- 39.75	DTW	, <u></u>				
OMMENTS T								
48	leeds lock (:eplacemu	H					
- E		NA TOTAL						
<u> </u>				_				
I co	ertify that sampling proces	lures were in accordan	ce with applicable EPA, S	tate, and WM prot	ocols (if more than one s	ampler, all should si	gn):	
-	211116	/ 14 1	10 1000	100	100		1	Ings-less
-	Date	Name DISTRIBUTION	N. WHITE/ORIGINAL S	Signature	a row by	Con	прапу	*

	FIELD IN	FORMATION FO	RM	
Sit Nan	This Wa	Management Field Information Form is	Required	WASTE MANAGEMENT
Sit	e Sample M) Submitte	to be completed, in addition to any State Fong with the Chain of Custody Forms that	accompany the sample	Laboratory Use Only/Lab ID:
No	Point: VI V - 20 71 contained	e, with the cooler that is returned to the la	boratory).	
PURGE	PURGE DATE PURGE TIME ELAPSE			OL PURGED WELL VOLS
	(MM DD YY) (2400 Hr Clock) (hrs: Note: For Passive Sampling, replace "Water Vol in Casing" well Vols Purge) (Gallon w/ Water Vol in Tuhing/Flow Cell and Tub	s) (Ge ing/Flow Cell Vols Purged. Ma	allons) PURGED with changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling UnuipmentDedicated: Purging Device A-Submersible Pump D-Bailer	47	N 0.45 µ or A-In-line Disposable	
URGE/SAMPI	Sampling Device B-Peristaltic Pump C-QED Bladder Pump F-Dipper/Bot X-Other:	Filter Type:	A-Teflon (X-Other C-PVC X-Other:
_	Well Elevation Depth to Water (w	Groundwater Elevation	I I I I I I I I I I I I I I I I I I I
WELL DATA	(at TOC) (from TOC) Total Well Depth (from TOC) (from TOC) (from ground elev	on)	(site datum, from TOC	Casing Material
×	Note: Total Well Depth, Stick Up, Casing Id. etc., are optional and can be from his			
l.	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 Hr Clock) (std) (µmhos/em@25°C)	Temp Turbidity (°C) (ntu)	D,O. (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	019:519 1 20 519 10 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.66	5 1600	100 108
ional)	019:519 1 31 5 8 7 31 1 1 4 7	965	5 59	1761 310
4 (Opt	10:014 V 4" 5188 4" 11146	966	6 1158	17171 131 108
STABILIZATION DATA (Optional)				
NOITY				
ZITIS				
STAE				
Sı	regested range for 3 consec, readings or			
ne	special range of the consecution of the complete stabilization readings for parallel stabilization pata Fields are Optional (i.e. complete stabilization readings for parallel	ters required by WM, Site, or State). The	-/- 10%	+/- 25 mV Stabilize
b)	State/Permit/Site. If a Data Logger or other Electronic formut is used, fill in final re SAMPLE DATE pH CONDUCTANCE	ngs below and submit electronic data sepa	rately to Site. If more fields a	bove are needed, use separate sheet or form.
DAT	(MM DD YY) (std) (umhos/cm @ 25°C)	TEMP. TURBIDITY	DO (mg/L-ppm)	eH/ORP Other: Turk
FIELD DATA	ind Field Readings are required (i.e. record field measurements, final stabilized	dings, passive sample readings before s	ampling for all field parameter	res required by State/Permit/Site.
S	ample Appearance:	odor: Vau	Color: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Other:
		-	Outlook: Surary	Precipitation: Y
S	pecific Comments (including purge/well volume calculations if requir	:		
SEL	10-36-51,19			
COMMENTS	Iall Laven			
	ser there			
FIELD -				
	certify that sampling procedures were in accordance with applicable EPA,	ite, and WM protocols (if more than	one sampler, all should sign	1):
	USITIG MATURIAN	MIC		(S Elyshows
	Date Name DISTRIBUTION: WIIITE/ORIGINAL-	Signature sys with Sample, YELLOW - Returned t	Compo	any

Si	te OUX	FIELD INFORM			
Nai Si	RC.	This form is to be completed	leld Information Form is Requi I, in addition to any State Forms. ain of Custody Forms that accom	The Field Form is	boratory Use Only/Lab ID:
N	Point: VI V Sample II		ler that is returned to the laborato	ry).	
PURGE	PURGE DATE PURGE TIME	0101015			
PUF	PURGE DATE PURGE TIME (MM DD YY) (2400 Ilr Clock) Note: For Passive Sampling, replace "Water Vol in Casing"	ELAPSED HRS (hrs:min)	WATER VOL IN CAS (Gallons)	(Geli	ons) PURGED
IPLE	Purging and Sampling Equipment Dedicated: /	Y or N 1	Filter Device: N	0.45 μ οτ	μ (circle or fill in)
PURGE/SAMPLE	Purging Device A-Submersible Pump B-Peristaltic Pump C-QED Bladder Pum	E-Piston Pump	705	A-In-line Disposable C- B-Pressure X-	Other
_	X-Other:				PVC X-Other: Polypropylene
DATA	Well Elevation (at TOC) (ft/msl)	Depth to Water (DTW) (from TOC)	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Groundwater Elevation site datum, from TOC)	(ft/mst)
WELL DATA	Total Well Depth (from TOC)	Stick Up (from ground elevation)	[(n) I	Casing (in)	Casing Material
	The same as a second se	ductance (SC/EC) Temp. mhos/cm(225°C) (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP DTW
	99:05 750 1610	159 105	1 318	064	59 1820
nal)	09:10	11517 10152	11119	0.35	1517 118 22
Option	01915 01917	1 1 1 5 7 1 10 52	1120	1030 1	48 1870
ATA (10128	76 180
ION			ini		
LIZAT					
STABILIZATION DATA (Optional)					
5	uggested range for 3 consec, readings or 4/-0,2 ote Pennit/State requirements: tabilization Data Fields are Optional (i.e., complete stabilizati	on readings for parameters required b	v WM, Site, or State). These fi	+/- 10%	+/- 25 mV Stabilize ur (4) field measurements are required
b	y State/Permit/Site, If a Data Logger or other Electronic formut	is used, fill in final readings below and s ONDUCTANCE TEMP.	tubmit electronic data separately TURBIDITY	DO Site. If more fields also	eH/ORP Other: T, WC
FIELD DATA	0K1 71 6 1 632 1 (un	nhos/cm @ 25°C) (°C)	(ntu)	(mg/L-ppm)	(mV) Units
	Inal Field Readings are required (i.e. record field measureme		sample readings before sampli	ng for all field parameters	/
	Sample Appearance: () () () () () () () () () (Odor: Direction/Speed:	Cole		Other: Precipitation: Y on N
9	specific Comments (including purge/well volume calc	·			
SIN					
MMF-					
00-					
I	certify that sampling procedures were in accordance with	h applicable EPA, State, and WM	protocols (if more than one sa	ampler, all should sign):	
	217/16 /WH ON	fare UV	Her	$=$ \propto	> tusingers
	Date Name DISTRIBUTION: W	Signature //IIITE/ORIGINAL - Stays with Samul	e VELLOW - Returned to Cite	Company	y

Г	FIELD I	NFORMA	TION FOR	M		
Sit Nam	This This	Waxte Management Field	I Information Form is Requadition to any State Forms	uired	WA	THE MANAGEMENT
Sit No.	e Sample /	tled along with the Chain	of Custody Forms that acco	inpany the sample	Laboratory Use Only	Lab ID:
H	Sample ID		T 10 14 15			
PURGE	PURGE DATE PURGE TIME ELAP	05				
PUI	(MM DD YY) (2400 Hr Clock) (h	SED HRS	WATER VOL IN CA (Gallons)	(VOL PURGED (Gallons)	WELL VOLS PURGED
E.E.	Note: For Passive Sampling, replace "Water Vol in Casing and West Vols Pun Purging and Sampling Aquipment Dedicated: Y N		er Device: Y or N		Mark changes, record for \ \ \ \ \ \ \ \ \ \ \ \ \ \	
PURGE/SAMPLE	Purging Device A-Submersible Pump D-Bailer		4	A-In-line Disposable	e C-Vacuum	,
SGE/S	B-Peristaltic Pump E-Piston Pt C-QED Bladder Pump F-Dipper/B	•	Iter Type:	B-Pressure A-Teflon	X-Other C-PVC X-	Other:
_	X-Other:	Sample T	ube Type:	B-Stainless Steel	D-Polypropylene	Other;
DATA	Well Elevation Depth to Water (at TOC) Depth to Water (fr/msl) (from TOC)	r (DTW)	5289	Groundwater Elevati		(fVmsl)
WELL DATA	Total Well Depth (from TOC) Note: Total Well Depth (from ground el		(R)	Casing (in)		
Ė	Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from Sample Time Rate/Unit pH Conductance (SC/EC		Turbidity	Elevation, DTW, and Gr	eH/ORP	DTW
	(2400 Hr Clock) (std) (µmhos/cm@25°C)	11111	(ntu)	(mg/L - ppm)	(mV)	1 320d
	14.410	1110	11710	035	1971	32.90
onal)	14.51	10 49	112	10,29		300
Opti	4:50	1093	40	02		3366
ATA (3.00	- 110113		02		15/2/10
STABILIZATION DATA (Optional)						
ATIO -						
TIZ						
TAB						
S			1 1 1 1			
no	ggested range for 3 consec, readings or +/- 0.2 1/- 3%	-		÷/- 10%	+/- 25 mV	Stabilize
St by	abilization Data Fields are Optional (i.e. complete stabilization readings for pa State/Permit/Site. If a Data Logger or other Electronic formut is used, fill in final	trameters required by W readings below and subs	M, Site, or State). Those nit electronic data separate	fields can be used when ly to Site. If more fields	re four (4) field meast above are needed, as	rements are required
	SAMPLE DATE pH CONDUCTANCE (MM DD YY) (std) (umhos/cm @ 25°C)	темр.	TURBIDITY	DO	eH/ORP (Other: Tree
FIELD DATA	15/11/14 16/6/6/11 1/34	11000	(1111)	(mg/L-ppm)		Inits
E	nal Field Readings are required (i.e. vecord field measurements, final stabilize	d readings, passive san	nple readings before samp	ling for all field param	viers required by Stat	e/Permit/Site.
	/eather Conditions (required daily, or as conditions change):	Odor: Ne		olor: Cha	Other:	
	pecific Comments (including purge/well volume calculations if requ	Direction/Speed:	Outlo	ook:	Precipitati	ion: Y of N
(O)	Je 2 taken her la	1500				
FIELD COMMENTS	1/VI PINOC	1-00				
T T	90-30,77					
<u>5</u>	98-32.00					
<u> </u>	9A-31,96					
I	ertify that sampling procedures were in accordance with applicable EP	A, State, and WM pro	heols (if more than one	sampler, all should si		
	3/17/14 JUNI 40/7/me	- /M/			CS Eng	hees
	Date Name	Signature		Corr	прапу	
	DISTRIBUTION: WHITE/ORIGINAL		ELLOW - Returned to Cli	lent. PINK - Field Copy		

Γ		FIELD IN	VFORMATION FO	RM	
	Site ame: ()	This Was	iste Management Field Information Form is	Required	WASTE MANAGEMENT
Si	Site Sam	mple This form	m is to be completed, in addition to any State F d along with the Chain of Custody Forms that	Forms. The Field Form is accompany the sample	aboratory Use Only/Lab ID;
L			ts (i.e. with the cooler that is returned to the la		
PURGE	PURGE DATE	1352		ШШ	
	Note: For Passive Sampling, repl	PURGE TIME ELAPSE (2400 Itr Clock) (hrs:m place "Water Vol in Casing" and "Wall Vols Purgea	min) (Gallon	is) (Gall	DL PURGED WELL VOLS lons) PURGED k changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment	entDedicated:	Filter Device: Or	N 0.45 µ 0T	μ (circle or fill in)
SAN	Purging Device C Sampling Device C	A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump	p Filter Type: A	A-In-line Disposable C B-Pressure X-	-Vacuum -Other
RGE	Sampling Device C	C-QED Bladder Pump F-Dipper/Bottl			-PVC X-Other:
_			Sample Tube Type:		-Polypropylene
DATA	Well Elevation (at TOC)	Depth to Water (I (from TOC)	(DTW) 2852	Groundwater Elevation (site datum, from TOC)	(fi/msl)
WELL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up.	Stick Up (ft) (from ground eleva	ration) (n)	Casing ID (in)	Casing Material dwater Elevation must be current.
	Sample Time Rate/Unit (2400 Hr Clock)		Temp. Turbidity	D.O. (mg/L - ppm)	eH/ORP DTW (mV) (fl)
	1355 50 1	1" 1 13 15	113123	01813 6	131416 1
	114:00		112199	01519	101914
iona	114103		1 3 3	0,5,7	181710
00	[14:016] 41h		1 3 22		
TA	Tivina /	61611	1 3 35		
NDA	111111111111111111111111111111111111111	6:6:3		0121	1813 7
IIOI-	114112	1 12	13.40	0,50	181313
IZA		0.1017	113141	75 01210	181310
STABILIZATION DATA (Optional)					
ST					
S	Suggested range for 3 consec, readings or				
n S	note Permit/State requirements: Stabilization Data Fields are Optional	t/- 0,2 1/- 1% (i.e. complete stabilization readings for paran	mature required by WM. Site, or State). The	=/- 10%	+/- 25 mV Stabilize
0.	by State/Permit/Site. If a Data Logger of SAMPLE DATE	or other Electronic format is used, fill in final run	udings below and submit electronic data sepa	rately to Site. If more fields ubo	we are needed, use separate sheet or form
DAT	(MM DD YY)	pH CONDUCTANCE (std) (umhos/cm @ 25°C)	TEMP. TURBIDITY (°C) (ntu)	DO (mg/L-ppm)	eH/ORP Other: +ine (mV) Units
FIELD DATA	OSIF I I G	.a. record field measurements, final stabilized re	1341 2	15 050	1830 1415
	Sample Appearance:		Odor:	Color:	
V	Weather Conditions (required da			Outlook:	
S	Specific Comments (including pr	purge/well volume calculations if required			
S _	* used alt per	ln			
COMMENTS	2 %				
MM(
					
FIELD -					
	certify that sampling procedures	s were in accordance with applicable EPA, S	State, and WM protocols (if more than	one sampler, all should sign):	
	5,17,16	Sum Graber	- And		5 C S
	Date Name	ле	Signature	Company	v
		DISTRIBUTION: WHITE/ORIGINAL S		Annual Control of the Control	,

Γ	FIELD INFORMATION FORM	VAVA\
	Name: This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
	Site Sample Sample Submitted along with the Chain of Custody Forms that accompany the sample	aboratory Use Only/Lab ID:
Ľ	No.: Point: MW - U 9 A containers (i.e. with the cooler that is returned to the laboratory). Sample 1D	: :
月	80051716 1222 123 11111	
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOLIN CASING ACTUAL VO	OL PURGED WELL VOLS
Ľ	(MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gullons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Man	lons) PURGED
PLE	Purging and Sampling Equipment Dedicated: Or N O.45 µ or N	μ (circle or fill in)
SAM	Purging and Sampling Equipment Dedicated:	-Vacuum -Other
RGE	Sampling Device C-QED Bladder Pump F-Dipper/Bottle	-PVC X-Other:
_		-Palypropylene
TAG	Well Elevation (at TOC) Total Well Depth (from TOC) New Total Well Depth (from TOC) New Total Well Depth (from TOC) New Total Well Depth (from TOC) New Total Well Depth (from TOC)	(R/mst)
1,13	Total Well Depth Stick Up Casing (from TOC) (from ground elevation)	Casing
	(from TOC) (in) (from ground elevation) (in) ID (in) Note: Total Well Depth, Stick Up, Casing id. etc. are optional and can be from historical data, unless required by Site/Permit, Well Elevation. DTW, and Ground	Material dwater Elevation must be current.
1	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. (2400 Hr Clock) (sid) (μπhos/cm@25°C) (°C) (ntu) (mg/L-ppm)	eH/ORP DTW (mV) (ft)
	12:25 390 11 11 11 11 11 13 135 11 0+610	121318
=	230 20 11413 1323 11016	121310 111
tiona	12:313 34 1 34 11143 113115 1 1 01210	111719
0	12:36 44 1142 11331 111 1016	1(1316
ATA	112:319 61613 111412 11318 111 06113	1911
OND	6121412 6514 111412 11317 1111 02112	183
E C	112:45 V 61514 111412 11317 114195 01111	777
STABILIZATION DATA (Optional)		11710
ABI		
S		
	Suggested range for 3 consec, readings or +/- 0.2 1/- 3%	1100 11
1	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by W.M. Site, or State). These fields can be used where for	+/- 25 mV Stabilize our (4) field measurements are required
-	by States resmirstle. If a Data Logger or other Electronic formal is used, fill in final readings below and submit electronic data separately to Site. If more fields about	eH/ORP Other:
Ď.	(MM DD YY) (std) (umhos/em@25°C) (°C) (ntu) (mg/L-ppm)	(mV) Units
CO L	OSI716 USSY IN 142 ISI7 Y S OI I Stabilized readings. passive sample readings before sampling for all field parameters.	7,7 1 2 4 5
	Sample Appearance: Odor: Color:	
,	Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook:	
	Specific Comments (including purge/well volume calculations if required):	
S	* used pH pen	
Æ.		
COMME	Dup 3 taken @ 1305	
ELDC		
Ξ.		
I	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	
	5,17,16 Sam Graber De is	SCS
	Date Nove	
	Date Name Signature Company DISTRIBUTION: WIHTE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Copy	у

Г	FIELD INFORMATION FORM	
Site Name	This Waste Management Field Information Form is Required	TE MANAGEMENT
Site	This form is to be completed, in addition to any State Forms. The Field Form is submitted along with the Chain of Custody Forms that accompany the sample [Laboratory Use Only/I	ab ID:
No.:	Sample 1D Point: VV CP Containers (i.e., with the cooler that is returned to the laboratory).	
PURGE	DISTIPLIE 11341ST 01010ST 11111	
PUF	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons)	WELL VOLS PURGED
6)	Note: For Passive Sampling, replace "Water Vol in Casing" and "Wall Vols Purged" wi Water Vol in Tubing Flow Cell and Tubing Flow Cell Vols Purged. Mark changes, record fa	ild data, below.
PURGE/SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated: Y for N Filter Device: for N 0.45 \(\mu\) or \(\mu\) \(\mu\) (circle of Purging Device \(\mu\) A-in-line Disposable C-Vacuum	r fill in)
RGE/SAMPL	A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter Type: A-In-line Disposable C-Vacuum B-Pressure X-Other	
URG		Other:
A. 112	X-Other: Sample Tube Type: B-Stainless Steel D-Polypropylene Well Elevation Depth to Water (DTW) Groundwater Elevation	1 1 1
DATA	(at TOC) (from TOC) (from TOC) (from TOC)	(fl/msl)
WELL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id, etc. are optional and can be from historical data, unless required by Site/Permit, Well Elevation, DTW, and Groundwater Elevation me	ust he current
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp, Turbidity D.O. eH/ORP	DTW
l l'i	2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV)	1 35/2
1	255 1 625 1 77/	3000
(F)	1555 1 2 nd (0C) 2 nd 15/16 15/08 16/1 12/28 12/01	D17165
Optio	3" 6 26 3" 57 / 15 66 512 218 128	1515 195
[A]	1103 9 4" 6108 4" 1376 1378 1713 221 301	13162
[A]		
NO -		111
STABILIZATION DATA (Optional)		
BIE		
STA		
note	gested range for 3 consec, readings or +/- 0.2 1/- 3% +/- 25 mV	Stabilize
Sta by S	bilitation Data Fields are Optiona (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measure State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use	ements are required separate sheet or form
	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP O	ther! Plan
FIELD DATA	(my) U	11400
HE WE	al Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State	(Permit/Site.
Sa	mple Appearance:Odor: Color:Other:	
We	eather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation	on: Y or N
Spe	ecific Comments (including purge/well volume calculations if required):	
TS —		
HEN —		
OWI -		
FIELD COMMENTS		
FIEL		
	ertify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	
-	5.16. 16 Mart 9 Die MATE SCS Engl	relys
_		
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Copy	1,1

Г	FIELD INCODMATION CODM	$\overline{}$
Site	FIELD INFORMATION FORM This Waste Management Field Information Form is Required WASTE MANAGEMENT	ŸŻ
Site	This form is to be completed, in addition to any State Forms. The Field Form is submitted along with the Chain of Custody Forms that accompany the sample Laboratory Use Only/Lab ID:	٦
No.	Point: Containers (i.e. with the cooler that is returned to the laboratory). Sample ID	
景。	051171161 1/21351 101010151 1111111111111111111111111	T
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VO	Ls
	(MM DD YY) (2400 IIr Clock) (hrs:min) (Gallons) (Gallons) PURGE Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tuhing/Flow Cell and Tuhing/Flow Cell Vols Purged. Mark changes, record field data, below.	D
PURGE/SAMPLE FOIIPMENT	Purging and Sampling Equipment Dedicated: Or N Filter Device: Or N 0.45 µ or µ (circle or fill in)	
E/SAN	Purging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter Type: B-Pressure X-Other	
URGI	Sampling Device C-QED Bladder Pump F-Dipper/Bottle X-Other: X-Other: R-Stainless Steel D-Polymoroydene	
	Well Classifier I I I I I I I I I I I I I I I I I I I	
DATA	(at TOC)	t/msl)
WELL	Total Well Depth (from TOC) Stick Up Casing (from TOC) (from ground elevation) (from TOC) (from ground elevation) (from TOC) (from ground elevation) (from TOC) (from ground elevation) (from TOC) (from ground elevation)	
-	Note: Total Well Depth, Stick Up, Caxing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation. DTW, and Groundwater Elevation must be current. ample Time Rate/Unit pH Conductance (SC/EC) Temp, Turbidity D.O. eH/ORP DTW	
1	(std)	
1	12 40 070 010 1235 11720 130014 092	20
<u></u>	1500 1502 1070 151 1919 1167 1070 151 16	2,04
ptio	725 1 731 1918 1 731 16	205
[A (C	SOO Y 4 6 1 1 2 5 7 1 1 1 2 5 7 0 1 6	20.
STABILIZATION DATA (Optional)	13:00 1 6111 1 1 232 1 1 4 64 1 1 2 5 7 1 0 1 4 1 1 1 1 6	200
NO -		L
ZAT		L
		1
STA		
Su	ested range for 3 consec. ceadings or	1
no	PermitState requirements: +/- 0.2 1/- 3% Stabilize the permit state requirements: +/- 0.2 1/- 3% Stabilize the permitstate requirements: +/- 0.2 1/- 3% Stabilize the permitstate requirements are required by WM, Site, or State). These fields can be used where four (4) field measurements are required by WM, Site, or State).	
by	ate/Permit/Site. If a Data Logger or other Electronic formal is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet	t or form
DAT.	SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO cH/ORP Other: [15] (MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV) Units	ع
FIELD DATA	51716 611 232 1404 2571 014 110 13	05
	I Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.	
	nple Appearance: Odor: Color: Other: nther Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or N	
	offic Comments (including purge/well volume calculations if required): Direction/Speed: Outlook: Precipitation: Y or N	-
11	w-2A / 6.70	
ENT T	rocks need (extrements	-
FIELD COMMENTS	sh Starting tuckelity NSOO + UTU	
000) () ()	 :
TEL) 		-
100	tify that sampling procedures were in accordance with applicable EPA, State, and WM profecols (if more than one sampler, all should sign):	
	5,17,16 Mart 194 Ses	
	Date Name Signature Company DISTRIBUTION: WIHTE/ORIGINAL-Stays with Sample, YELLOW - Returned to Client, PINK - Field Copy	

Γ		20				FIELD IN	IF	ORMA	TION FOR	M	W	$\sqrt{\Lambda}\sqrt{\Lambda}$
	ite me:	:	- (USC		This Wa	te M	lanagement Field	Information Form is Required	Ired	WAST	THEMBOANAM B
	ite lo.:		7 1155.7	mple	ء اد	submitted	alor	ig with the Chain	of Custody Forms that accou	ipany the sample	Laboratory Use Only/La	b ID:
L			I Po	oint: M	Sainp	Section 1997	s (1,e	, with the cooler	that is returned to the laborate	ory).		
	_	05118	11/6/		112	5	7	3	1111	1 11	1111	
URG	INFO	PURGE D	ATE	PUR	GE TIN	TE ELAPSE	D H	IRS	WATER VOL IN CAS	SING ACTUAL	VOL PURGED	WELL VOLs
~	_	(MM DD) Note: For Passive			Oftr Clo	ck) (hrs:r	nin)		(Gallons) hing/Fiow Cell and Tubing/F	((Inllans)	PURGED
HE	E	Purging and Samp				Or N			er Device: Or N	0.45 µ or	μ (circle or	
PURGE/SAMPLE	EQUIPMENT	Purging Device		A-Submer			_	F14	1 /4	A-In-line Disposable		
SGE/	QUIP	Sampling Device	LCJ	B-Peristal C-QED B			•	FI		B-Pressure A-Teflon	X-Other C-PVC X-Ot	
PUF	ā	X-Other:	<u></u>					Sample 7	1 1 1	B-Stainless Steel	C-PVC X-Ot. D-Polypropylene	ner:
	WELL DATA	Well Elevation (at TOC)		111	(ft/m)	Depth to Water (DTV	W) (W	16 17 17	Groundwater Elevat (site datum, from TC		(fl/msl)
	TT	Total Well Depth		[]]		Stick Up			W N NN NN N	Casing	Casing	1 (10.00)
	≯	(from TOC) Note: Total Well D	epth, Stick U	Ip, Cusing Id. etc	(ft) :. are op:	(from ground elev			I I I I I I I I I I I I I I I I I I I	ID (in)	Material	t he curvant
		ample Time 400 Hr Clock)	Rate/Un	it pH		Conductance (SC/EC) (µmhos/cm@25°C)		Temp.	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW
	4	19:218	340	51819	l st	1 111218		19 [73]		1/1/4	131210	(0)
ےا		191313	1 2	2nd 6141	2nd	1 1/13/7		19 144	1 1 1 1	10:01	1/1810	
iona		19136		3-101418	3 314	111317		19141		10:61	111710	
0		191319	1	4 61515	411	111317		19 141	1 1 1 1	10 101	1/1/10	
4TA		9:412		61318		111317	-	9 138	11317	10160	120	
STABILIZATION DATA (Optional)		191415		61616		1137	f	19136	111216		1/10	
TIO		4:418			1	1122	ŀ		111219		16.0	
/ZI				6.66	4	111518	1	19135	1112.0	10157	1 1/10	
ABI	-				1		-	1 1			$\perp \perp \perp$	
SI	-				1 }		-					
Į.	Sugg	ested range for 3 conse	ec, readings or	+/- 0.2	-	1/- 3%		-				
1	Stab	Permit/State requirementalization Data Field:	are Option	ul (i.e. complet	e stabili	zation readings for para	mete	rs required by II	M. Site, or State). These for	ields con be used whe	+/- 25 mV re four (4) field measure	Stabilize ments are required
	by St	SAMPLE DATE	Data Logge.	pH	ronic for	mat is used, fill in final rec	iding	s below and subi	nit electronic data separately TURBIDITY	to Site. If more fields	above are needed, use s	her: +1 44
DAT		(MM DD YY)	121 1	(std)	a a	(umhos/cm @ 25°C)	1	(°C)	(ntu)	(mg/L-ppm)	(mV) Uni	
FIELD DATA	Fina	5 1 3 1	6 creatired	6,6 () L	emeuts final stabilized		4 35	1 2 0	057	10	948
		nple Appearance		leav	meus ar	емето, ута значигей г	_			or:		ermusae.
		ather Conditions			nditions	change): [ok:		a: Y or (N)
	Spe	cific Comments (including	purge/well v	olume o	calculations if require		1				
S		purcel	DIGO	aust a	nulf	er out of u	est	er fer	3 minutes.			
EN.				,	1.00-1.1		-1.11	,				
COMMENTS												
FIELD.												
	I cer	tify that sampling	procedure	es were in acco	rdance	with annlicable FPA	State	and WM pro	tocols (if more than one s	amalan all shauld at		
		5/18/16		Savi	-	valze	, alt	, and the pro	the one s	ampier, an snould st	gu):	
		, , , , ,		Ju. (<i>U</i>		-	/500)C)	
	_	Date	Ne	ame DISTRIR	DTION	WHITE/ODION		Ignature	ELLOW B		репу	
_				DISTRIB	UTION:	WHITE/ORIGINAL-	Stay	s with Sample, Y	ELLOW - Returned to Clle	ent, PINK - Field Copy		

Γ		FIELD INFORM	ATION FORM	
Si Nai	0 1/-	This Waste Management	Field Information Form is Required ad, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
Si No	Sample	submitted along with the C	hain of Custody Forms that accompany the sample plet that is returned to the laboratory).	Laboratory Use Only/Lab ID:
L	rount. Extis	Sample ID	and wrotalling to the laboratory).	
景	05118116 110	20 22		
PURGE	=	GE TIME ELAPSED HRS	WATER VOL IN CASING ACTU	AL VOL PURGED WELL VOLS
_		Hr Clock) (hrs:min) in Casing and Well Vols Purged w/ Water Vol i	(Gallons) i Tuhing/Flow Cell and Tuhing/Flow Cell Vois Purge	(Gallons) PURGED d. Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicate		Filter Device: or N 0.45 µ or	μ (circle or fill in)
E/SAB	Purging Device C A-Submers B-Peristalti C-QED Bla	c Pump E-Piston Pump	Filter Type: A-In-line Disposa B-Pressure	ble C-Vacuum X-Other
URG	Sampling Device C-QED Bla X-Other:		A-Teflon	C-PVC X-Other:
_			ole Tube Type: B-Stainless Steel	D-Polypropylene
DATA	Well Elevation (at TOC)	Depth to Water (DTW) (ft/msi) (from TOC)	Z Z Z (ft) Groundwater Ele (site datum, from	
WELL	Total Well Depth (from TOC)	Stick Up (from ground elevation)	Casing (n) ID	Casing (in) Material
-^	Note: Total Well Depth, Stick Up, Casing Id. etc. Sample Time Rate/Unit pH	are optional and can be from historical data, unle Conductance (SC/EC) Temp.	ss required by Site/Permit. Well Elevation, DTW, and Turbidity D.O.	
ī	(2400 Hr Clock) 21 (std)	(μmhos/cm@25°C) (°C)	(ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
	110:212 250 1 61918	111314 110115	1111 1378	161210 111
(aa)	1 D 2 1 2nd 6 1819	2 rd 1 5 8 9,7 3	1 1 13 154 10 177	-121910
ptior	101310 34 71010	3" 1 11 15 18 19,70) 1 1 1 10144	-11 0310
A (0	110:313 4 71314	411 1159 9160	0 0 31	-113 15 10 111
DAT	1101316 71411	1 11 15 19 19 16	1 1 1 10130	1141210 111
<u>N</u>	1101319 71513	111513 1916	7 1 1 1 10 176	15110
STABILIZATION DATA (Optional)	110:412 7 7,519	111513 1916	1 1156 10125	1151710 111
BIEI				
STA				
	uggested range for 3 consec, readings or			
n	te Permi State requirements: +/- 0.2	stabilization readings for parameters required	17-10%	+/- 25 mV Stabilize
	y State/Permil/Site. If a Data Logger or other Electro	mic format is used, fill in final readings below and	submit electronic data separately to Site. If more fi	elds above are needed, use separate sheet or form.
DAT	SAMPLE DATE pH (MM DD YY) (std)	CONDUCTANCE TEMP. (umhos/cm @ 25°C) (°C)	TURBIDITY DO (mg/L-ppm)	eH/ORP Other: <u>time</u> (mV) Units
FIELD DATA	051316 759	158 965	156 025	1570 1042
	inni Field Readings are required (i.e. record field			
	ample Appearance: Clow Veather Conditions (required daily, or as con		Color: Cutlook:	
	pecific Comments (including purge/well vo	Direction/opeco	:Outlook:	Precipitation: Y or N
	Drue MW-33B=	7 / 2		
OMMENTS		70 - 0		
<u> </u>				
Ō				
<u> </u>				
-	certify that sampling procedures were in accor	dance with applicable EPA. State, and WM	protocols (if more than one campler all charle	d sign),
		Corabir	na sample, an should	5 C S
	Date Name	Signature		Сотрапу

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	5/16	/16				
Time	930)				
Weather (sky or precip, temp)	over	254				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	ں 4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1440	U.72	7.16			
Post Cal Reading	1413	4.01	7.00	8.05	Joy, 10.67, 0.52	759
Descrepancy	Z					
Calib. Successful?	Y25					
Calibration by	SED					
Instrument Type, ID		MP20 /	YSI 556		MICOTPW / HACH2000	
Calibration Location	0051				V	

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	5/16	/16		4		
Time	900)				
Weather (sky or precip, temp)						
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1013 4±5	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1446	4.17	6-17			
Post Cal Reading	1413	4.01	7.00	6.20	792,100,20-9,0.89	
Descrepancy	accepted	PH 7	cal out of	lause.		
Calib. Successful?	1/05					
Calibration by	SEB					
Instrument Type, ID		MP20 /	YSI 556		MicoTPW / HACH2000	
Calibration Location	OVS					

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

1	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	5/17	116				
Time	800					
Weather (sky or precip, temp)	Clear	^				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413 24 5	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1404	3,96	7.06			
Post Cal Reading	1413	4.01	7.00	8.30	980,11, 0.31	
Descrepancy	N6					
Calib. Successful?	Yes					
Calibration by	M	aft O'h	we			
Instrument Type, ID		MP20 /	YSI 556		MicoTPW/ HACH2000	
Calibration Location		OUSL				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	5/17	7/16				
Time	730					
Weather (sky or precip, temp)	clea	av				
Type of Calibration	Standard	pH pm Standard	plf Pru Standard	Standard	Standard	
Standard Value	1413 445	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1389	4.71	6.80			
Post Cal Reading	1413	400	7,00	7.37	786,101,20.4,0.98	
Descrepancy	used p	Hpin For	- PH			
Calib. Successful?	Ye.	5			_	
Calibration by	SI	36				
Instrument Type, ID		MP20 /	ySI 556 +	pH pen	MicoTPW / HACH2000	
Calibration Location	(JUSI.				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	5/13	116			•	
Time	800					
Weather (sky or precip, temp)	Clear					
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413 445	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1391	4.03	6.96			
Post Cal Reading	1413	4.01	7.00	7.20	773,100,21.1,0.95	
Descrepancy	No					
Calib. Successful?	125					
Calibration by	SEE	2				
Instrument Type, ID		MP20 /	YSI 556		MicoTPW / HACH2000	
Calibration Location	61	15L				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

September 19, 2016

File No. 04204027.19

Subject: Third Quarter 2016 Compliance Monitoring Event

Olympic View Sanitary Landfill, Kitsap County, Washington

Sampling Event Dates: 8/29/16 through 9/1/16

Personnel: Sam Graber

NOTES/SAMPLING DECODING:

- Dedicated pumps were used for purging and sampling all wells.
- Duplicate samples were collected at MW-39 (DUP1) and MW-34A (DUP2).
- Geotech and Solinst water level meters were used to record all water level elevations.
- In addition to the monitoring wells where groundwater was collected for chemical analysis, additional wells were monitored for groundwater level elevations. A summary of measured water levels are included with the field documentation.
- Several well locks noted to need replacement on the site.
- The samples were sent to TestAmerica Denver for analysis at the close of each sampling day, except samples for low level arsenic which were held until the end of the sampling event and provided to Analytical Resources, Inc. in Tukwila, Washington.

Sample Date	Location ID	Sample ID	Comments
8/29/2016	MW-43	0816-01	
8/29/2016	MW-42	0816-02	

Sample Date	Location ID	Sample ID	Comments
8/29/2016	MW-19C	0816-03	
8/29/2016	MW-20	0816-04	
8/29/2016	MW-36A	0816-05	
8/29/2016	MW-15R	0816-06	
8/30/2016	MW-23A	0816-07	
8/30/2016	MW-24	0816-08	
8/30/2016	MW-2B1	0816-09	
8/31/2016	MW-13A	0816-10	
8/31/2016	MW-13B	0816-11	
8/31/2016	MW-35	0816-12	
8/31/2016	MW-16	0816-13	
8/31/2016	MW-39	0816-14	
8/31/2016	MW-39	0816-15	Dup-1
8/31/2016	MW-34C	0816-16	
8/31/2016	MW-34A	0816-17	
8/31/2016	MW-34A	0816-18	Dup-2
9/1/2016	MW-4	0816-19	
9/1/2016	MW-32	0816-20	
9/1/2016	MW-33C	0816-21	
9/19/2016	LP-LCD	0816-22	

	FIELD INFORMATION FORM							
	me: This Y	Waste Management Field Information Form is Required form is to be completed, in addition to any State Forms. The Field Form is						
	ite Sample Submit	itted along with the Chain of Custody Forms that accompany the sample iners (i.e. with the cooler that is returned to the laboratory).						
PURGE	(MM DD YY) (2400 Hr Clock) (hr	PSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS AGRICATION (Gallons) (Gallons) PURGED AGRICATION OF THE PROPERTY OF THE PURGED WATER VOL IN Tubing/Flow Cell and Tubing/Flow Cell Vols Purged, Mark changes, record field data, below.						
PURCE/SAMPLE	Purging and Sampling Equipment Dedicated: Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pu Sampling Device C-QED Bladder Pump F-Dipper/B X-Other:	1						
WELL DATA		Casing Casing Casing						
2	Note: Total real Depth, Show Op, Casing ia. etc. are optional and can be from	historical data, unless required by Site/Permit, Well Elevation, DTW, and Groundwater Elevation must be current.						
١,	Sample Time Rate/Unit pH Conductance (SC/EC (2400 Hr Clock) (std) (µmhos/cm@25°C)	10 211						
	019:50 300 11 41711 14 1 145	11/144 111 1/98 1/340						
al)	D 9 5 5 2 nd 4 8 4 2 nd 4 4	1 11116 1111 01914 112110 2151913						
STABILIZATION DATA (Optional)	D19:58 41983 310 414	4 10,99 111 0,72 1030 111						
A (0	10101	1 10.91 18.25 0.64 19.70						
DAT	(10:014) 5,018 11,414	1 10,91 17,318 0,56 19,00						
ION	5111 194	/						
IZAJ	10:10 4 5:13	110188 1421 01511 181410 111						
ABIL								
ST								
	Suggested range for 3 consec. readings or +/- 0.2 +/- 3%	- +/- 10% +/- 25 mV Stabilize						
3	note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization readings for particular to the State of the Sta	parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required						
	sample Date ph Conductance SAMPLE DATE SAMPLE DATE SAMPLE DATE SAMPLE DATE PH CONDUCTANCE	I readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or for E TEMP. TURBIDITY DO eH/ORP Other:						
D DA	(MM DD YY) (std) (umhos/cm @ 25°C)							
FIELD DATA	0001110 17113 1 1999	1 10 39 4 71 0 5 1 8 4 0 10 10 10 10 10 10 10 10 10 10 10 10 1						
	Sample Appearance:	Odor: Color: Other:						
	Weather Conditions (required daily, or as conditions change):	Direction/Speed: Outlook: Clear Precipitation: Y or P						
	Specific Comments (including purge/well volume calculations if requ							
T.	orange particulates in encoler, Pars	sel extra 5 muntes						
FIELD COMMENTS								
COM								
ELD.								
MT "	I certify that sampling procedures were in accordance with applicable EP.	2A State and WM protocols (if more they are remained all should all all all all all all all all all a						
	B, 29, 16 Sam Gsalzes	A, State, and Wit protocols (it more than one sampler, all should sign):						
	Distribution: White/Original	Signature Company L - Stays with Sample, YELLOW - Returned to Client, PINK - Field Conv						

	FIELD INFORMATION FORM
Sit Nan Sit No	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory). Sample D Sample D Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).
PURCE/SAMPLE PURCE	PURGE DATE PURGE TIME PURGE TIME (MM DD YY) (2400 ftr Clock) (Ins:min) (Gallons) (Gallons) (Gallons) (Gallons) (Gallons) (Gallons) (Gallons) PURGED PURGED PURGED PURGED PURGED PURGED PURGED PURGED Note: For Passive Sampling, replace "Water Yol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below Purging and Sampling Equipment. Dedicated: Purging Device A-Submersible Pump B-Peristaltic Pump B-Peristaltic Pump C-QED Bladder Pump F-Dipper/Bottle A-Teflon C-PVC X-Other:
WELL DATA PL	Well Elevation (at TOC) Depth to Water (DTW) Total Well Depth (from TOC) Casing (from TOC) Casing (from ground elevation) Casing (from TOC) Casing (from Material)
STABILIZATION DATA (Optional)	Note: Total Well Depth, Stock Up. Costing Id. etc. are optional and can be from historical data, unless required by SteelPermit. Well Elevation, DTW, and Groundwater Elevation must be current. Turbidity D.O. etl/ORP DTW OI YIU 300 1° (Std) OI YIU 300 1° (Std) OI YIU 300 1° (Std) OI YIU 300 1° (Std) OI YIU 300 1° (Std) OI YIU INITIAL STATE OIL Well Depth, Stock Up. Costing Id. etc., are optional and can be from historical data, unless required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields can be used where four (4) field measurements are required by Will. Site. or State). These fields showe are needed, use separate sheet or for
ELD DATA	SAMPLE DATE (MM DD YY) (std) (umhos/cm@25°C) (°C) (ntu) (mg/L-ppm) (mV) Units 8 2 4 1 6
FIELD COMMENTS	nple Appearance: Clear Odor: Color: Other: ather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or N crific Comments (including purge/well volume calculations if required): crific that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign): 3.29, 16, Sam Gadder A. State, and WM protocols (if more than one sampler, all should sign):
	Date Nume Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

Site	The state of the s		TION FORM		V	$\sqrt{\sqrt{\lambda}}$
Name	This W	rm is to be completed, in	Information Form is Require addition to any State Forms.	The Field Form is	Laboratory Use Only/L	TE MANAGEMENT
Site No.:	Sample Point: MW-19C	ed along with the Chain c ers (i.e. with the cooler th	of Custody Forms that accomp at is returned to the laborator	any the sample y).	Laboratory Ose Only/1	.ao (D:
PURGE		e:min)	WATER VOL IN CASI (Gallons) ing/Flow Cell and Tubing/Flo		VOL PURGED (Gallons) Mark changes, record fie	WELL VOLS PURGED eld data, below.
PURGE/SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated: Purging Device A-Submersible Pump B-Peristaltic Pump E-Piston Pu			0.45 µ or	μ (circle o c C-Vacuum X-Other	r fill in)
PURGE/	Sampling Device C-QED Bladder Pump F-Dipper/Bo	•	1.0 1 A	-Teflon -Stainless Steel	-	Other:
DATA	Well Elevation Depth to Water (at TOC)	(DTW) 3	$ \mathbf{i} \cdot I - \mathbf{i} \cdot $	roundwater Elevat ite datum, from TC		(ft/msi)
WELL DATA	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from h	· · · · · · · · · · · · · · · · · · ·	(ft) II	`` `		ust be current.
•	Sample Time Rate/Unit pH Conductance (SC/EC 2400 Hr Clock) (std) (\mumhos/cm@25°C)		Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
1	11 4 8 300 14 6 4 0 14	1 3 38		21319	- 131360	
<u>a</u>	1153 2 nd 635 2 nd 165	1 12 104		0.66	- 1219,0	
STABILIZATION DATA (Optional)	1/56 30 6138 30 1/68	11199		0145	- 330	
[A]	1159 4" 642 4" 168	111 184		0.3.4	-1330	34,52
DAJ +	12:012 6:419 16:63	11195		0.28	- 3110	
NOT +	6,45	1 11 190		0.26	-131010	
IZA	12:08 6:46 168	111181	1 90	0.26	- 240	
ABIL						
ST -						
	ggested range for 3 consec. readings or +/- 0.2 +/- 3%			+/- 10%	+/- 25 mV	Stabilize
Sta	e Permit/State requirements: bilization Data Fields are Optional (i.e. complete stabilization readings for pa State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final i	rameters required by W	M, Site, or State). These fie	elds can be used whe	re four (4) field measur	rements are required
	SAMPLE DATE PH CONDUCTANCE	TEMP.	TURBIDITY	DO DO		ther:
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C)	[[C)	(ntu) / 90	(mg/L-ppm)	-290	nits
-	nal Field Rendings are required (i.e. record field measurements, final stabilize Imple Appearance:	Odor:	ple readings before sampling Colo			/Permit/Site.
	eather Conditions (required daily, or as conditions change):	Direction/Speed:			Other:	on: Y or N
Sp	ecific Comments (including purge/well volume calculations if requi		 -			
STN —						
FIELD COMMENTS						
S-						11
ELD —						
12.5	ertify that sampling procedures were in accordance with applicable EPA	A, State, and WM pro	tocols (if more than one sa	ampler, all should s	ign):	
	8,29,16 Sam Graber	· 1	~ Sl	. ,	505	
E	Date Name DISTRIBUTION: WHITE/ORIGINAL	Signature Stays with Sample, Y	ELLOW - Returned to Clie		mpany Y	

Γ	FIELD IN	VFORMATION FORM
	This for	aste Management Field Information Form is Required on is to be completed, in addition to any State Forms. The Field Form is to descompleted, in addition to any State Forms. The Field Form is to descompleted, in addition to any State Forms. The Field Form is
		ed along with the Chain of Custody Forms that accompany the sample true (i.e. with the cooler flat is returned to the laboratory).
88	0082916 1244	
PURGE	PURGE DATE PURGE TIME ELAPSI	ED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS
L	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purgi	ed" w/ Water Vol in Tubing/Flow Cell and Inbing/Flow Cell Vols Purged. Mark changes, record field data, below.
MPLE	Purging and Sampling Equipment Dedicated: (Y) or N Purging Device A-Submersible Pump D-Bailer	Filter Device: Y or N 0.45 \(\mu\) or \(\mu\) \(\mu\) (circle or fill in)
PURCE/SAMPLE	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pum Sampling Device C-QED Bladder Pump F-Dipper/Bol	ortle
PUR	X-Other:	Sample Tube Type: A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
40.40	Well Elevation (at TOC) Total Well Depth (from TOC) Strick Up (from TOC) Strick Up (from ground elevation of the four by	(DTW) 3657 Groundwater Elevation (site datum, from TOC)
T LOW	Total Well Depth Stick Up (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from his	vation) Casing Casing ID (in) Material istorical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) (2400 [Ir Clock)	Temp. Turbidity D.O. eH/ORP DTW ("C) (atu) (my/L-ppm) (mV) (ft)
	112:414 350 1 61219 1 131516	115196 1111 2531 151910 111
al)	1121419 11 211 61214 211 131510	115170 111 11513 1616:0
ption	12:5/2 1 314 6:2/3 314 1:3/3/2	(15,69) 111 (1310 161810 111
[A (O	121515 1 4 6.213 4 131513	15160 1111 16/19 17/00
(DA)	12.58 1 6.12.3 1 3.413	0199 7770
TION	(13:014 4 6:24 13:412 (13:014 4 6:1214 13:37	15165 1111 01819 171210 111
STABILIZATION DATA (Optional)	(1):014 (1214) 13377	115165 1 10193 01810 171310 3171018
TABI		
œ		
	Suggested range for 3 consec. readings or +/- 0.2 +/- 3%	- +/- 10% +/- 25 mV Stabilize
_	by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final re-	rameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required readings below and submit electronic data separately to Site. <mark>If more fields above are needed, use separate sheet or far</mark>
ATA	SAMPLE DATE pH CONDUCTANCE (MM DD YY) (std) (umhos/cm @ 25°C)	TEMP. TURBIDITY DO eH/ORP Other: +inc. (*C) (ntu) (mg/L-ppm) (mV) Units
FIELD DATA	082916 624 337	d readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
	Sample Appearance:	Odor: Color: Other:
	Weather Conditions (required daily, or as conditions change):	Direction/Speed:Outlook:Precipitation: Y or N
	Specific Comments (including purge/well volume calculations if require	
LIS	Slight purticulates in samp	de
COMMENTS		
CON		
FIELD		
<u> </u>	I certify that sampling procedures were in accordance with applicable EPA	A, State, and WM protocols (if more than one sampler, all should sign):
	9,29,16 San Graha	And scs
	Date Nume	Signature Company
		L - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

Г	FIELD I	NFORMA	TION FOR	M	V	$\sqrt{\Lambda}$
	This V	Vaste Management Field	Information Form is Requaddition to any State Forms.	host	WAST	MANAGEMENT
	Sample	tted along with the Chain o	f Custody Forms that account is returned to the laborate	npany the sample	Laboratory Use Only/La	b ID:
L	Sample ID	nets (no. with the cooler th	at is returned to the laborate	ory),] [-	
9	018/2/9/1/6/ 1/3/4/5/ 1	1211	1111	1 11		
PURGE	PURGE DATE PURGE TIME ELAPS	SED HRS	WATER VOL IN CAS	SING ACTUA	L VOL PURGED	WELL VOLs
=	11.11.4 (2)	rs:min)	(Gallons)		(Gallons)	PURGED
LE	Purging and Sampling Equipment Dedicated:		r Device: Y Dor N	0.45 µ or	μ (circle or	
PURCE/SAMPLE	Purging Device C A-Submersible Pump B-Pailer B-Peristaltic Pump E-Piston Pu C-QED Bladder Pump F-Dipper/Br		1 /1	A-In-line Disposab	le C-Vacuum	
CEAS	B-Peristaltic Pump E-Piston Pu Sampling Device C-QED Bladder Pump F-Dipper/Bi			B-Pressure	X-Other	
PUR	X-Other:	Sample Tu	(;)	A-Teflon B-Stainless Steel	C-PVC X-Ot D-Polypropylene	her:
Ē	Well Elevation Depth to Water	r (DTW)	L Lala L	Groundwater Eleva	ntion	LIL
ATT THE TANK	(at TOC) (from TOC)	LL 13	1/ 18/6/m	(site datum, from T	oc)	(it/mst)
4	Total Well Depth Stick Up (from TOC) (ft) (ft) (from ground ele		(ft)		Casing n) Material	
٦	Hote Total Well Depin, Stick Op, Casing ia. etc., are optional and can be from i					
	Sample Time Rate/Unit pH Conductance (SC/EC (2400 fir Clock) (std) (µmhos/cm@25°C)	C) Temp. (°C)	Turbidity (atu)	D.O. (cng/L - ppm)	eH/ORP (mV)	DTW (ft)
	13:46 390 1 61515 1 111413	112,55		51211	191010	111
	13:51 1 2 62 112 2 1 1 2 19	111112	Li I I I I	1,34	1/10/3.0	
iona	13:54 34 640134 1127	1 10 196	1 1 1 1	11318	111100	911 1
(Opt	13:57 4 5,960	110191		1125	11/11/10	
TA	14:00			1122	1111410	
NDA		110197		1005	111810	
rior	14103	110172		10212	112/10	-
STABILIZATION DATA (Optional)	114:06 4 51910 111216	110,113	1 1/33.4	19513	1121310	312115
BIL						
STA					111	
1 5	Suggested range for 3 consect readings or +/- 0.2 +/- 3% 1 3%	_لــا ل		+/- 10%	÷/- 25 mV	Stabilize
	Stabilization Data Fields are Optional (i.e. complete stabilization readings for pa by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final i	rameters required by Wi readings below and subm	d, Sita. or Stata). These f. it electronic data separataly	ields can be used wh to Site. If mare fiel d	ere four (4) field measure Is above are needed, use s	ments are required oparate sheet or form
FIELD DATA	SAMPLE DATE pH CONDUCTANCE (MM DD YY) (std) (umhos/cm @ 25°C)	Newspan All	TURBIDITY (ptu)	DO (mg/L-ppm)		ier: +ime
100	0829161 590 1 126	1 110/23	1 1 1 2 4	1 2 7	(mV) Un	11/0//
FIE	Final Field Readings are required (i.e. record field measurements, final stabilize	d readings, passive samp	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ing for all field para	meters required by State/I	Permit/Site.
	Sample Appearance:	Odor:	Col	lor;	Other:	
	Weather Conditions (required daily, or as conditions change):	Direction/Speed:	Outloo	ok:	Precipitation	: Y or N
	Specific Comments (including purge/well volume calculations if requi	ired):				
<u>s</u> .					t:	
EZ.						
COMMENTS						
FIELD						
	certify that sampling procedures were in accordance with applicable EPA	A, State, and WM prote	ocols (if more than one s	ampler, all should	sign):	
	8, 29,16 San Graber	A	11	, 311Vuid	565	
	300-1-0-1-0-1					
	Date Name	Signature	rrow -	Co	mpany	
_	DISTRIBUTION: WHITE/ORIGINAL	Stays with Sample, YE	LLOW - Returned to Clie	ent. PINK - Field Cor	ny .	

		FI.	ELD INFO	DRMAT	ION FORM		V	\sqrt{N}
Si Na	me:	50	This form is to b	e completed, in add	formation Form is Required dition to any State Forms. Th	e Field Form is	Laboratory Use Only/Lab	ID:
Si No					Custody Forms that accompar is returned to the laboratory).		S-1	
Ä	008/29/16	11454	2 2	2-				
PURGE	PURGE DATE	PURGE TIME	ELAPSED HR	s w	ATER VOL IN CASIN		VOL PURGED	WELL VOLs PURGED
	(MM DD YY) Note: For Passive Sampling, rapid		(hrs:min) ! "Well Vols Purged" w/ !			Cell Vols Purged, N	dark changes, record field	data, below.
MPLE	Purging and Sampling Equipment Purging Device C	A-Submersible Pump	or N D-Bailer	Filter !	Device: (Y) or N A-1	n-line Disposable	μ (circle or fi	ni in)
E/SA/	Purging Device C Sampling Device	B-Peristaltic Pump C-QED Bladder Pump	E-Piston Pump F-Dipper/Bottle	Filter	-16-1	Pressure	X-Other	
ã		C QED Bladdot 1 dinp		Sample Tub	1//	Teflon Stainless Steel	C-PVC X-Oth D-Polypropylene	ier:
WELL DATA	Well Elevation (at TOC)		epth to Water (DTW rom TOC)	للللا	O LOVE L	oundwater Elevations TO		(f/mst)
T LEYA	Total Well Depth (from TOC) Note: Total Well Dapth, Stick Up.	(6)	ick Up om ground elevation) nd can be from historical	data, unless requi	(th) ID	sing (in)	Casing Material oundwater Elevation must	be current.
Г	Sample Time Rate/Unit (2400 [Ir Clock)	pH Conduc	etance (SC/EC) os/cm@25°C)	Temp (°C)	Turbidity (atu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	114:56 300 s	66 19 1	111517	11155	1 1 1 1	16318	110110	111
	115:011 11 200	6,215 200	111517	11124	1111	82718	10160	111
tional	15:014 3	612934	:11518	11/16		01312	110110	
(O)	1500 14	61310 411	111517	11108		01416	110120	
DATA	115:110	61311	11157	111101		0.415	101310	
ION	1151113	61311	111516	1:1109		01413	110140	1195316
STABILIZATION DATA (Optional)	115:16 Y	01311	111517	11/105	1 1 12189	01414	11014.0	HH
BIL		11						
ST								
	Suggested range for 3 consec. readings or	+/- 0,2	1-7-3% ₁			+/- 10%	+/- 25 mV	Stabilize
	note Permit/State requirements: Stabilization Data Fields are Options by State/Permit/Site. If a Data Logger	Mile. complete stabilization	readings for parameter	's required by WA	I, Site, or State). These fie.	lds can be used whe	re four (4) field measure above are needed, use	oments are required separate sheet or form
Y.	SAMPLE DATE		DUCTANCE	TEMP.	TURBIDITY	DO	eH/ORP Ot	her: Time
DAT	(MM DD YY)	(std) (umh	os/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV) Un	its
FIELD DATA	Final Field Rendings are required 6	6 3 1	S final stabilized readi	1 1 05 nos. passive same	le readings before samplin	g for all field paran	neters required by State/	Permit/Site.
#		clear		or:		τ:		
	Weather Conditions (required of		ige): Direc	etion/Speed:	Outlook	k:	Precipitatio	n: Y o N
	Specific Comments (including	purge/well volume calcu	lations if required):	-				
NTS								
COMMENTS	_							
SON	-							
FIELD								
E	L certify that sampling procedure	es ware in accordance with	annlicable EPA. Stat	e. and WM orot	ocols (if more than one se	ampler, all should a	sign):	
	B, 29, 16	Sam brabe		6	n Sh		505	
	Date	eme DISTRIBUTION: WI		Signature vs with Sample, Y	ELLOW - Returned to Clie		ompany Dy	

	FI	ELD INFORMA	TION FORM	[W	
Site Name	75	This Waste Management Fiel	d Information Form is Require n addition to any State Forms. Th	4	WASTE	MANAGEMENT
Site	Sample W - 23	A submitted along with the Chair	of Custody Forms that accompa-	ny the sample	aboratory Use Only/Lab	ID:
No.:	Point: 4 W - 2 3 Sample ID	Containers (i.e. with the cooler	that is returned to the laboratory))		
60	083016 11150	1 2 2	1 1 1 1 1	1 1 1	1 1 1	
PURGE	NUMBER DATE		THE WAY TO A CASE			
15 A	PURGE DATE PURGE TIME (MM DD YY) (2400 Hr Clock)	ELAPSED HRS (hrs:min)	WATER VOL IN CASIN (Gallons)		OL PURGED V llons)	WELL VOLs PURGED
60	Note: For Pussiva Sampling, replace "Water Vol in Casing" and	"Well Vols Purged" w/ Water Vol in Tu				
I I	Purging and Sampling Equipment Dedicated:	4	ter Device: Y or N	0.45 µ ог	μ (circle or fil	l in)
/SAN	Purging Device A-Submersible Pump B-Peristaltic Pump	D-Bailer E-Piston Pump F	6-1	In-line Disposable(Pressure)	C-Vacuum K-Other	71
PURGE/SAMPLE EQUIPMENT	Sampling Device C-QED Bladder Pump	F-Dipper/Bottle	1 D 1 A-	Teflon (C-PVC X-Othe	er:
1,35501	X-Other:	Sample	Tube Type: B-	Stainless Steel [D-Polypropylene	
WELL DATA		pth to Water (DTW)	1 2 2 1 2 1 7 2 1	oundwater Elevation te datum, from TOC		((t/mst)
]	Total Well Depth Stic	ck Up		sing	Casing	
≪	(from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and	om ground elevation)	(ft) [D	(in)	Material	
5	Sample Time Rate/Unit pH Conducts	rance (SC/EC) Temp.	Turbidity	D.O.	eH/ORP	DTW
(2		s/cm@25°C) (°C)	(otu)	(mg/L - ppm)	(mV)	(ft)
-	1 5 2 300 1" 5 6 2 1"	11512 13127		0,515	17,0	
(F)	11517 1 2nd 51716 2nd	1/15/3 1/3/27		01.311	161210	112,612
ption	12:00 314 5:00 314	111512 113124		0216	121510	
ΘT	12103 411 5181 411	111512 113122		01212	141710	
NAT.	2:06 5:82	1 5 3 1 3 24		0,20	141510	
NO 1	209 51812	11513 113127		01119	141410	112161
ATI T	12:112 4 51812	11513 113124	1 12 129	01/18	14130	
STABILIZATION DATA (Optional)						111
			1161			111
note	Permit/State cognicements:	H- 3%	-	+/- 10%	÷/- 25 mV	Stabilize
Sta	bilization Data Fields are Optional (i.e. complete stabilization re State/Permit/Site. If a Data L ogger or other Electronic format is use	radings for parameters required by t	WM, Site, or State), These field	ds can be used where j	four (4) field measurem	ents are required
		DUCTANCE TEMP.	TURBIDITY	DO		er: Hing
V P	(MM DD YY) (stil) (umhos	s/cm @ 25°C) (°C)	(ntu)	(mg/L-ppm)	(mV) Unit	s
FIELD DATA	al Field Readings are required (i.e. record field measurements,	Anal stabilized readings passive an	[0,18	430	1212
	mple Appearance:					rmusue.
l	eather Conditions (required daily, or as conditions change		Color Outlook			V or N
	ecific Comments (including purge/well volume calculat		Outlook			
	cente commons (metading purge, wen volume circular	mons in requireus.				
SIN —						
COMMENTS 						
<u>ŏ</u> —						
FIELD						
FIE —						
I e	ertify that sampling procedures were in accordance with ap	λ	otocols (if more than one san	npler, all should sign	Character Company	
-	8,30,16 San Cospar		n sel		SCS	
-	Date Neme	Signature		Сопр	any.	
		Signature FE/ORIGINAL - Stays with Sample.	YELLOW - Returned to Client		····y	

	FIELD INFORMATION FORM						
Sit Nan	This Waste Management Field Information Forms to Described	27					
Sit No	Sample Sample Submitted along with the Chain of Custody Forms that accompany the sample Laboratory Use Only/Lab ID:						
PURGE	PURGE DATE (MM DD YY) PURGE TIME (2400 Hr Clock) PURGED HRS (ACTUAL VOL PURGED) (Gallons) (Gallons) PURGED PURGED						
62	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.	_					
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated:	_					
PUR	X-Other: Sample Tube Type: D A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene	=					
WELL DATA	Well Elevation (at TOC) Depth to Water (DTW) Groundwater Elevation (site datum, from TOC) Total Well Depth Stick Up Casing Casing						
ME	(from TOC) (ft) (from ground elevation) (ft) (from ground elevation) (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)						
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW 2400 Hr Clock) (std) (μmhos/cm@25°C) (°C) (ntu) (mg/L-ppm) (mV) (ft)						
	13:20 (50 1x 51914 1x 11114 1554 1 2600 1101210 111						
al)	13:25 200 5.88 200 1113 11430 253.9 113.0						
ption	13:28 3 5.87 3 1114 1336 1140	-					
[A (0	1311 4 5 9 9 4 11 15 1316 1316 1310	-					
[DA]	13:34 513:9 11:10 12:09 13:35 1:11:0	1					
TION	3:37 599 115 1279 1158 1100 11	-					
LIZA	3:40 539 115 1268 358 1.66 1100 32.60	긱					
STABILIZATION DATA (Optional)		-					
S -		-					
n	ggested range for 3 consec, readings or +/- 0.2 +/- 3% +/- 10% +/- 25 mV Stabilize						
	abilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or for						
	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other:	-					
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV) Units	2					
S	ample Appearance: Odor: Color: Other:						
1	Veather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or						
	pecific Comments (including purge/well volume calculations if required):	_					
NTS -	ow Flow & Request to get removed from list, Gir line proben as well	-					
FIELD COMMENTS	moderate particulates in sample	-					
000	hoderate particulars in sample	-					
TEL							
T =	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	-3					
	8,30,16 Sum Comber In Il Sc5	-					
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Conv	=					

Site	FIELD INFORMATION FORM [This Waste Management Field Information Form is Required] WASTE MANAGEMENT
Nam Site	This form is to be completed, in addition to any State Forms. The Field Form is Linboratory Use Only/Lab ID:
No.	
GE	083016 1430 20
PURGE	(MM DD YY) (2400 Hr Clock) (hrsmin) (Gallons) (Gallons)
H E	Note: For Pussive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below. Purging and Sampling Equipment Dedicated: Y or N 0.45 µ or µ (circle or fill in)
JRCE/SAMPL	Purging Device C A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter Type: A B-Pressure X-Other
PURCE/SAMPLE	Sampling Device C-QED Bladder Pump F-Dipper/Bottle X-Other: Sample Tube Type: D A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
ATA	Well Elevation Depth to Water (DTW) To Groundwater Elevation (at TOC) From TOC Groundwater Elevation (it/msi)
WELL DATA	Total Well Depth Stick Up Casing Casing (in) Material
r	Note: Total Well Depth, Stick Up, Cosing Id. etc. are optional and can be from historical data, unless required by Site/Parmit. Well Elevation, DTW, and Groundwater Elevation must be current. Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW
İΙ	2400 tir Clock) (std) (\mu mhos/cm@25°C) (°C) (ntu) (\mu y/L-ppm) (mV) (ft)
	141315 1 20 61014 20 12319 1528 1 054 - 200
ional	14:3 8 3" b:015 3" 1:21318 115133 1 01412 -121410
(Opt	YI YI 01 b1016 4th 12 3 8 115 57 1 01316 - 12 6 0
DATA	14:414 6:016 12318 1579 121216 0:314 -121810 111
STABILIZATION DATA (Optional)	14:417 61016 12:317 1:3164 11:813 0:311 -13:010
IZAT	14:510 Y 61016 1 12:313 115:20 1 11:915 012:8 -12:910 1 1
ABIL	
ST	
10.00	uggested range for 3 consec, readings or +/- 0,2 +/- 3% +/- 25 mV Stabilize
	abilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required it state/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are accepted, use separate sheet or fan
-	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other: +124
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV) Units
ENE	inal Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
1	Ample Appearance: Odor: Color: Other: Veather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or N
1	pecific Comments (including purge/well volume calculations if required):
	Funcina truck wear by
COMMENTS	
OMM.	
FIELD	
	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):
	9,30,16 San Graber De DCS
	Date Name Signature Campany DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

	N N	FIELD IN	FORMAT	TON FORM		W	$\sqrt{\Lambda}\sqrt{\Lambda}$
Site Nam	~ W	This Waste	Management Field In s to be completed, in ad	formation Form is Require	d he Field Form is	WASTE	MANAGRMENT
Site No.	Jumpio	submitted a	llong with the Chain of	Custody Forms that accompa	ny the sample	Laboratory Use Only/Lab	(D:
-		Sample to	Lal		1 1 1		
PURGE	PURCE DATE	DVDCE TIME	- 0	(AMER) VOL IN GARD		LION NUMBER	
P. S.	(MM DD YY)	PURGE TIME ELAPSED (2400 Hr Clock) (hrs:mir	n)	VATER VOL IN CASIN (Gallons)		(Gallons)	WELL VOLs PURGED
Θ.	Purging and Sampling Equipment D	Water Vol in Casing" and "Well Vols Purged" Dedicated: O or N		g/Flow Cell and Tubing/Flow Device: Y or N	v Cell Vols Purged. 0.45 μ or	Mark changes, record field	
PURGE/SAMPLE FOLIPMENT	Purging Device A-Si	Submersible Pump D-Bailer	08		In-line Disposable		(1 lii)
GE/S/	B-Pe Sampling Device C C-Q	Peristaltic Pump E-Piston Pump QED Bladder Pump F-Dipper/Bottle		**	Pressure	X-Other	
PURG	X-Other:		Sample Tub	1 / 1	Teflon Stainless Steel	C-PVC X-Oth D-Polypropylene	er:
DATA	Well Elevation (at TOC)	Depth to Water (D' (ft/msi) (from TOC)	TW) 4		oundwater Elevat te datum, from TC		(ft/msl)
WELL	Total Well Depth (from TOC)	Stick Up (ft) (from ground elevati	ion)	Ca (R) ID	sing (in	Casing Material	
*	Note: Total Well Depth, Stick Up, Casing	ng ld. etc. are optional and can be from histor	7 77 77	red by Site/Permit. Well Ele			be current
		pH Conductance (SC/EC) (std) (\mu mhos/cm@25°C)	Temp- (°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	17:515 35K 18 51	17 17 18 1 11 17 14	110138		71318	1191510	
 	18:00 1 2nd 6.	112 2nd 173	110109	1111	7,016	1870	111
tion	1863 1 3rd U	3 6 311 172	1005		2010	1706	111
0	1306 1 41 6.	33 4th 1 (12)	1001		61910	1161410	
ATA	131019 61	58 1171	1001		61.410	1 16 1310	4665
ON L	18:12	64 171	4, 219	LITI	61817	1360	
ATI	18:15	65 171	91.918	11 10 186	6.87	1540	
IIII			101	1 1 1 1			
STABILIZATION DATA (Optional)			i I	1 1 1 1	1 1		
				1 1 1 1	1 1		111
	aggested range for 3 consec. readings or +	+/- 0.2 +/- 3%	(-	#:	+/- 10%	+/- 25 mV	Stabilize
St by	abilization Data Fields are Optional (i.e. co State/Permit/Site. If a Data Logger or othe	complete stabilization readings for param er Electronic format is used, fill in final read	neters required by WM dings below and submit	f, Site, or State). These fiel electronic data separately to	ds can be used whe Site. If more field	ere four (4) field measuren 's above are needed, use s	nents are required eparate sheet or form.
	SAMPLE DATE pI (MM DD YY) (st	H CONDUCTANCE	TEMP. (°C)	TURBIDITY	DO	eH/ORP Oth	er: 17/2
FIELD DATA	12/3/11/6/1	td) (umhos/em@25°C)	999	(ntu)	(mg/L-ppm)	(mV) Uni	18/1
E E	inal Field Readings are required (i.e. reco	ord field measurements, final stabilized re	radings, passive samp		g for all field paran	neters required by State/P	ermit/Site.
			Odor:	Color	gerite.		
1	Weather Conditions (required daily, or		irection/Speed:	Outlook		Precipitation	Or N
	pecific Comments (including purge/	/well volume calculations if required	d):				
STN -							
COMMENTS							
FIELD							
	certify that sampling procedures were	e in accordance with applicable EPA, S	State, and WM proto	cals (if more than one sa	mpler all should s	sian).	
``		Sam bruber	4	M		5 CS	
		M. LOVATOO.					
	Date Name	DISTRIBUTION: WHITE/ORIGINAL - S	Signature Stays with Sample, YE	LLOW - Returned to Clien		mpany ov	/

	FIELD INFORMATION FORM
Sit	This Waste Management Field Information Form is Required WASTE MANAGEMENT
Si	This form is to be completed, in addition to any State Forms. The Field Form is Laboratory Use Only/Lab ID:
No	Point: [M W - 1] Constainers (i.e. with the cooler that is returned to the laboratory),
_	Sample (D
용.	083116 340 20
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS
٦	(MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
8	Purging and Sampling Equipment Dedicated: LOS or N. Filter Device: (S. Lor J. N.) Lot J. Lond. Au Griede or Gillin)
AMP	Purging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum
PURGE/SAMPLE	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump F-Dipper/Bottle Sampling Device C-QED Bladder Pump F-Dipper/Bottle A-In-line Disposable C-Vacuum B-Pressure X-Other A-Teffon C-PVC X-Other:
URC	
_	B-Statiness Steel D-I dispropsiele
WELL DATA	Well Elevation Depth to Water (DTW) Groundwater Elevation (from TOC) (from
17	Total Well Depth Stick Up Casing Casing
VE	(from TOC) (ft) (from ground elevation) (ft) ID (fin) Material
-	Note: Total Well Depth, Stick Up, Cosing Id. etc., are optional and can be from historical data, unless required by Site/Parmit. Well Elevation, DTW, and Groundwater Elevation must be current. Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity DO eH/ORP DTW
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp Turbidity D.O. eH/ORP DTW (2400 Ifr Clock) Δυ/Δια (std) (μmhos/cm@25°C) (°C) (ntu) (mg/L-ppm) (mV) (ft)
Н	18:40 340 1161612 11 111712 110174 1111 61518 1141310 1111
Ī	0:47
nal)	(2.1) (2.1) (2.1)
ptio	18:418 346,1719 34 111712 110,145 111 72011 11215,10
	13:511 1 61914 1 11712 110141 1 1 7118 111610 111
AT.	18:314 7112 111711 110141 1111 71213 1111210 61010
STABILIZATION DATA (Optional)	18:57 7:18 11712 110145 11 7:216 11019:0
Z -	19:010 7 7,213 111711 110143 11015 7,216 11018,0
불	┈ ┈┤┠┵┤┠┷┵┤┠┵┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
STA	
	ggested range for 3 consec. readings or +/- 0.2 +/- 3% +/- 10% +/- 25 mV Stabilize
S	abilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form
	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other: Time
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV) Units
	2 3 1 1 6 7 2 3 1 7 1 10 43 0 65 7 2 6 1 0 8 0 9 0 0
E E	nal Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permu/Site.
s	ample Appearance: Color: Other:
ν	/eather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or N
s	pecific Comments (including purge/well volume calculations if required):
ωn	
IN.	
WE -	
WO: -	
OQ _	
FIELD COMMENTS	
	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):
	8,31,16 Sam Grater In Dr 565
	Jan Diagram
	Date Nume Signature Company
	DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

	FIELD I	NFORMATION FORM	$\sqrt{\Lambda}$
Site	This !	Vaste Management Field Information Form is Pagnized	THEMEDAN
Site	Sample	orm is to be completed, in addition to any State Forms. The field form is tend along with the Chain of Custody Forms that accompany the sample	
No.	Point: NW-35 Countai	nors (i.e. with the cooler that is returned to the laboratory),	-]
PURGE	PURGE DATE PURGE TIME ELAF	SED HRS WATER VOL IN CASING ACTUAL VOL PURGED WEL	LL VOLs
٦,	(MM DD YY) (2400 Hr Clock) (h	rs:min) (Gallons) (Gallons) (Gallons) PU rged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged, Mark changes, record field data,	JRGED below.
MPLE	Purging and Sampling Southment Dedicated: IVI or LNL	Filter Device: Or N 0.45 µ or µ (circle or fill in)	
PURGE/SAMPLE EQUIPMENT	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston P Sampling Device C-QED Bladder Pump F-Dipper/E		
PUR	X-Other:	Sample Tube Type: A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene	
DATA	Well Elevation Depth to Water (at TOC) Depth to Water (fr/msl) (from TOC)	r (DTW) 7244 (site datum, from TOC)	(fVmst)
WELL DATA	Total Well Depth (from TOC) Stick Up	, , , , , , , , , , , , , , , , , , , ,	
	Note: Total well Depth, Stick Up, Casing Id. etc. are optional and can be from Sample Time Rate/Unit pH Conductance (SC/E)	historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be can Temp. Turbidity D.O. eH/ORP	DTW
	2400 [fr Clock) Δ1/μμ (std) (μmhos/cm@25°C	(°C) (atu) (mg/L-ppm) (mV)	(ft)
-	1915 5 11 2 6 9 9 2 1 1 6 6	1180 6181 (240	
onal)	91513 710143 1610	61817 61819 6121210	
STABILIZATION DATA (Optional)	7964	1086 111619 112710	
ATA	71018 11/610		121510
ON D	110:07 1 7,013 1 11151	t 110192 111 613A 112160	
ZATI	110:110 4 7:019 1:11:51	1 1:0173 1 1:0157 66818 1:210	
ST		┫╫┸┸┩	
	ggested range for 3 consec. readings or +/- 0.2 +/- 3%	- H-10% +-25 mV	Stabilize
St	te PermuState requirements: abilization Data Fields are Optional (i.e. complete stabilization readings for p	arameters required by WM, Site, or State). These fields can be used where four (4) field measurements	are required
	SAMPLE DATE ph CONDUCTANCE SAMPLE DATE	readings below and submit electronic data separately to Site. If more fields above are needed, use separate. TEMP. TURBIDITY DO eH/ORP Other:	te sheet or form
DAI	(MM DD YY) (std) (umhos/cm @ 25°C		
FIELD DATA	0 3 3 1 1 6 7 0 9 1 1 5 ° and field Readings are required (i.e. record field measurements, final stabiliz	l	O I O
Sa	ample Appearance:	Odor: Color: Other:	
W.	feather Conditions (required daily, or as conditions change):	Direction/Speed: Outlook: Precipitation: Y	∑ or <u>N</u>
Sį	pecific Comments (including purge/well volume calculations if requ	nired):	
SINTS -			
COMMENTS			
000			
FIELD	(4		
	_	A, State, and WM protocols (if more than one sampler, all should sign):	
	3,31,16 Sun Gaber	_ Anh _ 505	
	Date Name	Signature Company	
	DISTRIBUTION: WHITE/ORIGINA	L - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy	

	FIELD INFORMATION FORM
Site Nam	This Waste Management Field Information P
Site No.	Sample Point: WW - 1 6 submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).
	Sample (f)
S GE	083116 1050 120
PURGE	
	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
A P	Purging and Sampling Equipment Dedicated: Y or N Filter Device: or N 0.45 µ or µ (circle or fill in) Purging Device A-In-line Disposable C-Vacuum
JRCE/SAMPL	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Filter Type: A-In-line Disposable C-Vacuum B-Pressure X-Other
PURCE/SAMPLE	
	D Statities Seed D-1 Wypropylette
WELL DATA	Well Elevation (at TOC) Depth to Water (DTW) 5 8 0 7 (ii) (site datum, from TOC) (ii) (ii) (iii)
ELL	Total Well Depth Stick Up Casing Casing (from TOC) (fin) (from ground elevation) (fin) (fin) Material
_ ≩	(from TOC) (in) Material Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW 2400 ffr Clock) (std) (μmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV) (ft)
	10.50 350 116191911 11017 11148 1111 9,213
	10:515 1 201 6:1313 201 1 (218 9:910 1 5:213 1:550
iona	1101513 1 34 6 0 4 34 1 112 5 91312 1 1 5 5 5 0 1
(O)	111:011 1 4 51918 4 1123 9181) 1 1 5185 151810 11
ATA	51914 51914 11213 91714 1111 51919 1151910 111
ON	111:017 SIQIU 11213 Q667 111 61016 1161210 5181210
ATIC	111:110 V 51913 111213 9666 1057 607 1161310 111
STABILIZATION DATA (Optional)	
TAB	
S	
	ggested range for 3 consec, readings or +/- 0.2 +/- 3% +/- 25 mV Stabilize
St	abilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by W.M. Site, or State). These fields can be used where four (4) field measurements are required State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form.
	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other:
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV) Units
FE	nal Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
	ample Appearance: Cleur Odor: Color: Other:
W	/eather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: [outlook:
s_l	pecific Comments (including purge/well volume calculations if required):
SI _	
EN_	
NIMC -	
og_	
FIELD COMMENTS	
	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):
	3,71,16 Sun Graber And SCS
- 1	Dut November 1
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

Γ	FIELD IN	NFORMATION FORM
	ite This Was	ste Management Field Information Form is Required WASTE MANAGEMENT
s	ite Sample submitted	n is to be completed, in addition to any State Forms. The Field Form is d along with the Chain of Custody Forms that accompany the sample
N	Point: MW 3 9 constainers	(i.e. with the cooler that is returned to the laboratory).
		20 1111111111
PURGE		
2	PURGE DATE PURGE TIME ELAPSE (MM DD YY) (2400 Hr Clock) (hrs:rr	
- 01	Note: For Pussive Sampling, replace "Water Vol in Casing" and "Well Vols Purgeo	w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
IPLE	Porging and Sampling Equipment Dedicated: Or N	Filter Device: Y or N 0.45 µ or µ (circle or fill in)
SAB	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump	A-In-line Disposable C-Vacuum B-Pressure X-Other
RCE	Purging and Sampling Equipment Dedicated: or N Purging Device C A-Submersible Pump B-Peristaltic Pump E-Piston Pump Sampling Device C C-QED Bladder Pump F-Dipper/Bottl X-Other:	tle A-Teflon C-PVC X-Other:
2	X-Other:	Sample Tube Type: B-Stainless Steel D-Polypropylene
PATA	Well Elevation Depth to Water (I (fr/msl) (from TOC)	1 1 1 2 1 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1
[5	Total Well Depth Stick Up	(ft/mst)
1 13/0	(from TOC)	
ř	Note: Total Welt Depth, Stick Up, Casing Id. etc., are optional and can be from hist Sample Time Rate/Unit pH Conductance (SC/EC)	storical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current. Temp. Turbidity D.O. eH/ORP DTW
١,	(2400 Ifr Clock) (std) (µmhos/cm@25°C)	(°C) (ntu) (ng/L - ppm) (mV) (ft)
	111:515 350 1 51816 1 1 121316	11165 1111 (1117 -191610 111
≘	121010 1 21 51914 24 1261	11/163 1111 D1318 -117/10 111
tions	12:03 3" 5:914 3" 1261	11161 111 025 -12110 111
(O	112:06 11 4 51-15 4 12-61	111162 1111 01213 + 13610 111
ATA	121019 1 51915 12612	11162 111 0620 -113 110
QNO	12112 1 5196 121012	11162 111 2420 -1360 2131710
ATIC	11217 5 4 51916 1 121613	11156 11511 0220 -1131710
(LIZ		
STABILIZATION DATA (Optional)		
S		
	Suggested range for 3 consec. readings or +/- 0,2 +/- 3%	- +/- 10% +/- 25 mV Stabilize
		ameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required
-	by State/Termit/Site. If a Data Logger or other Electronic formal is used, fill in final real SAMPLE DATE pH CONDUCTANCE	radings below and submit electronic data veparately to Site. If more fletts above are needed, use separate sheet or form. TEMP. TURBIDITY DO eH/ORP Other:
DAJ	(MM DD YY) (std) (umhos/cm @ 25°C)	(°C) (ntu) (mg/L-ppm) (mV) Units
FIELD DATA	Final Field Readings are required (i.e. record field measurements, final stabilized r	readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
	Sample Appearance:	Odor: Other:
	Weather Conditions (required daily, or as conditions change):	Direction/Speed: Outlook: Precipitation: (Y) or N
	Specific Comments (including purge/well volume calculations if require	red):
ග _ි	Dup I talian of	1230
ENT		
MM		
00		
FIELD COMMENTS		
	Looytify that compling around the second sec	State and W/M protocols (16 may the
	I certify that sampling procedures were in accordance with applicable EPA,	State, and WM protocols (if more than one sampler, all should sign):
	17/31/10 7 WY DIWYE	
	Date Name	Signature Company
	DISTRIBUTION: WHITE/ORIGINAL -	- Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

Site	to I	RMATION FORM	WASTE MANAGEMENT
Nam Site No.	te Sample submitted along with	ment Field Information Form is Required impleted, in addition to any State Forms. The Fiel the Chain of Custody Forms that accompany the he cooler that is returned to the laboratory).	Id Form is sample Laboratory Use Only/Lab ID:
FOURGE/SAMPLE PURGE	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Purging and Sampling Equipment Dedicated: Purging Device C A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Sampling Device C-QED Bladder Pump F-Dipper/Bottle X-Other:	Filter Device: or N 0.4	p (circle or fill in) e Disposable C-Vacuum ure X-Other C-PVC X-Other:
WELL DATA	Total Well Depth (from TOC) Stick Up (from ground elevation)		water Elevation um, from TOC) Casing (in) Material
STABILIZATION DATA (Optional)	Sample Time Rate/Unit pH Conductance (SC/EC) To (1/31 0 350 1 6 1 4 1 2 3 0 1 3 1 3 1 3 4 4 6 3 7 4 1 2 2 9 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 4 1 3 3 3 4 1 3 3 3 4 1 3 3 3 4 1 3 3 3 4 1 3 3 3 3 3 3 3 3 3	mp. Turbidity (c) (ntu) (mg) (p. 132)	D.O. eH/ORP DTW (ft) 2 2 2 5 0
ELD DATA	SAMPLE DATE PH CONDUCTANCE TI	MP. TURBIDITY C) (ntu) (mg	DO eH/ORP Other: <u>true</u> 2/L-ppm) (mV) Units
V	Sample Appearance: Weather Conditions (required daily, or as conditions change): Direction Specific Comments (including purge/well volume calculations if required): Water Came ant as Clandy Yellow (orange)	Speed: Outlook:	Other: Precipitation: (Y) or N extended purse to clear
FIELD	certify that sampling procedures were in accordance with applicable EPA, State, an Description Succession Coulty extends	In In	5 CS Company

	FIELD IN	VFORMA	TION FORM	1	V	$\sqrt{\Lambda}$
Site Nam Site	e: This Wa	n is to be completed, in	Information Form is Required addition to any State Forms. If Custody Forms that accomp	The Field Form is	Laboratory Use Only/La	ab ID:
No.	Point: MW-34A container	rs (i.e. with the coaler (l	iat is returned to the laborator	y).		
PURGE	PURGE DATE PURGE TIME (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purge"	min)	WATER VOL IN CASI (Gallons) ing/Flow Cell and Tubing/Flo		. VOL PURGED (Gallons) Mark changes, record fiel	WELL VOLs PURGED d data, below.
PURCE/SAMPLE ROHIPMENT	Purging and Sampling Equipment Dedicated: Purging Device A-Submersible Pump B-Peristaltic Pump E-Piston Pum		/	0.45 µ or	μ (circle or e C-Vacuum X-Other	fill in)
PURCE/	Sampling Device C-QED Bladder Pump F-Dipper/Bot		LD A	-Teflon -Stainless Steel	C-PVC X-O	ther:
DATA	Well Elevation (at TOC) Depth to Water (at TOC)	(DTW) 4	1751 171 571	roundwater Elevat		(ft/msl)
WELL DATA	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from his		(A) [T			il be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) 2400 [ir Clock) (std) (\mumbes/cm@25°C)	Temp. (°C)	Turbidity (atu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	14:10 350 1 (0010 1 1 1 1 1 1 2 1 5 1 7 1 7 2 1 1 1 1 2 1 5	112193		31219	1121010	
ptional	14:18 34 51714 34 11125	112137		3,60	112 910	
ATA (C	4 5 7 4 1 2 7 4 5 7 4 1 2 7	112132		3.617	1141010	
TIOND	M1217 51713 111217	112190	1111	3 5 7	1141310	110.11
STABILIZATION DATA (Optional)		112188	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31512	1141510	901916
STA				<u> </u>		
St	ggested range for 3 consec, readings or +/- 0,2 +/- 3% te Penmi/State requirements: abilization Data Fields are Optional (i.e. complete stabilization readings for pare)	ameters required by W	M, Site, or State). These fix	+/- 19%	+/- 25 mV ere four (4) field measure	Stabilize ements are required
	State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final re SAMPLE DATE pH CONDUCTANCE	TEMP.	TURBIDITY	DO		<i>separale sheat or form</i> ther:
DAJ	(MM DD YY) (std) (umhos/cm @ 25°C)	(°C)	(ntu)	(mg/L-ppm)	14.94	nits
FIELD DATA	0 3 1 1 6 5 7 3 1 2 7 3 1 2 7 3 1 1 2 7 3 1 1 2 7 3 1 1 2 7 3 1 1 2 7 3 1 1 2 7 3 1 1 2 7 3 1 1 2 7 3 3 1 2 7 3 3 3 3 3 3 3 3 3	readings, passive sam	pla readings bafore sampling	3,52 ng for all field paran	1 4 5 0 meters required by State	Permit/Site.
Sa	imple Appearance:	Odor:	Cold	or:	Other:	
l w	feather Conditions (required daily, or as conditions change):	Direction/Speed:	Outloo	k:	Precipitatio	n: Y or N
Sı	pecific Comments (including purge/well volume calculations if requir					
COMMENTS	Dup 2 talin @ 1	445				
MM -						
FIELD						
-	ertify that sampling procedures were in accordance with applicable EPA.	, State, and WM pro	peols (if more than one sa	impler, all should s	sign):	
	8,31,16 Sam Gaber		n Al		505	
	Date Name DISTRIBUTION: WHITE/ORIGINAL	Signature - Stays with Sample, Y	ELLOW - Returned to Clies		mpany	

	FIELD	INFORMAT	TON FORM	1	W	$\sqrt{\Lambda}\sqrt{\Lambda}$
Site Nam	This	Waste Management Field In form is to be completed, in ad-	formation Form is Requir	ed	WAST	MANAGEMENT
Site No.	Sample	nitted along with the Chain of ainers (i.e. with the cooler that	Custody Forms that accomp	any the sample	Laboratory Use Only/La	b ID:
	O9 Sample ID			77		
8 0	660116 305	20			1 1 1	
PURGE		PSED HRS V	VATER VOL IN CASI	NG ACTUA	L VOL PURGED	WELL VOLs
2551	(MM DD YY) (2400 Hr Clock) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols P	hrs:min) urged" w/ Waier Vol in Tubin	(Gallons) g/Flow Cell and Tubing/Flo	w Cell Vols Purged.	(Gallons) Mark changes, record field	PURGED I data, below
PURCE/SAMPLE EOUIPMENT	Purging and Sampling EquipmentDedicated:	Filter	Device: N	0.45 µ or [μ (circle or	fill m)
SAN PME	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston F	oump Filte	1/1	-In-line Disposabl -Pressure	e C-Vacuum X-Other	
URCE/SAMPL EQUIPMENT	Sampling Device C-QED Bladder Pump F-Dipper/	Bottle	DIA	-Teflon	C-PVC X-Ot	her:
_	X-Other:	Sample Tub	ne Type: B	-Stainless Steel	D-Polypropylene	
WELL DATA	Well Elevation Depth to Wat (at TOC) (ff/msi) (from TOC)	er (DTW)	C 1 / 1 1 1	roundwater Eleva ite datum, from T		(fl/mst)
17	Total Well Depth Stick Up			asing	Casing	
₩.E	(from TOC) (fi) (from ground of Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from		red by Site/Permit. Well Ele	4 - 1		i be current.
	Sample Time Rate/Unit pH Conductance (SC/E		Turbidity (atu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	18:015 3:0 1 51512 1 1141	0 11021 1	(1.4)	1123	117140	
	18:10 1 2nd S1 416 2nd 1 1 1 3 13	3 110100		01.719	1131810	i i i
ional	18:113 3" 61012 3" 11318		1111	01214	1 121710	
STABILIZATION DATA (Optional)	18116 41 61017 41 1137	7 9 9 4	1 10179	0.20	112110	
ATA	0,119	7 994	1	0119	11/1/610	
Q Z	13:212	9 9 4 4		0111	11/1/10	15/15
	18:25 V b.111 1131	9 9 9 4	1 10156	00111	111910	115165
7217			1 1 1 1	100110	711110	
[ABI		1				
[S -		1		\vdash		
	rgested range for 3 consec, readings or +/- 0,2 b/- 3%	1		+/- 10%	+/- 25 mV	Stabilize
Ste	e PermuState ocquirements: billization Data Fields are Optional (i.e. complete stabilization readings for processing the stabilization of the stabilization	parameters required by WM.	. Site, or State). These fle	lds can be used who	ere four (4) field measure	ments are required
	State/Permit/Site. If a Data Logger or other Electronic format is used. fill in find SAMPLE DATE pH CONDUCTANC		TURBIDITY	DO Site. U mora Held		her: <u></u>
FIELD DATA	(MM DD YY) (stil) (umhos/cm @ 25°C		(ntu)	(mg/L-ppm)	(mV) Un	its
FIEL	nal Field Readings are required (i.e. record field measurements, final stabili	Zed readings, passive sample	e readings before samplin	g for all field paras	[[] [] [] []	USZT
	imple Appearance:			r:		
w	eather Conditions (required daily, or as conditions change):	Direction/Speed:		k:		ı: Y or N
- Sp	ecific Comments (including purge/well volume calculations if req	uired):				
g						
EN_						=
- MIM						
FIELD COMMENTS						
	ertify that sampling procedures were in accordance with applicable E	PA, State, and WM protoc	cols (if more than one sa	mpler, all should s	sign):	
	9,1,16 Sam Gaber		M		SCS	
	Date Neme DISTRIBUTION: WHITE/ORIGINA	Signature AL - Stays with Sample, YEI	LLOW - Returned to Clien		трапу У	

FIELD I	NFORMATION FORM
Site Sample submitted	Waste Management Field Information Form is Required orm is to be completed, in addition to any State Forms. The Field Form is ted along with the Chain of Custody Forms that accompany the sample ners (i.e. with the cooler that is returned to the laboratory).
(MM DD YY) (2400 Hr Clock) (hr	SED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS rs:min) (Gallons) (Gallons) PURGED rged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
Purging and Sampling Equipment Dedicated:	
Well Elevation (at TOC) Total Well Depth (from TOC) Mote: Total Well Depth Sick Up Caying by etc., are optional and can be from 1.	(fly (site datum, from TOC) (flymsi)
by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final	(°C) (ntu) (my/L-ppm) (mV) (ft) 12 49
SAMPLE DATE pH CONDUCTANCE (MM DD YY) (std) (umhos/cm @ 25°C Conductance	Odor: Outlook: Precipitation: Y or uired):
Needs clearing	
I certify that sampling procedures were in accordance with applicable Ex	PA, State, and WM protocols (if more than one sampler, all should sign): Signature Company

	FIELD INFORMATION FORM	W AVA
Site Name	This Waste Management Field Information Form is Required	WASTE MANAGEMENT
Site	Sample Sample	Use Only/Lab ID;
No.:	Point: Point: Containers (i.e. with the cooler that is returned to the laboratory), Sample (D	
O GE	090116 1048 120	
PURGE	Z PURGE DATE PURGETIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PUR	
	(MM DD YY) (2400 Hr. Clock) (hrs:min) (Gallons) (Callons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes	PURGED s, record field data, below
PLE	Purging and Sampling Equipment Dedicated: Tor N Filter Device: Or N 0.45 µ or 1	ı (circle or fill in)
SAM	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Filter Type: A-In-line Disposable C-Vacuur B-Pressure X-Other	n
PURCE/SAMPLE EQUIPMENT	Purging Device C A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump F-Dipper/Bottle Sampling Device C C-QED Bladder Pump F-Dipper/Bottle A-In-line Disposable C-Vacuur B-Pressure X-Other A-Teflon C-PVC	X-Other:
		pylene
WELL DATA	Well Elevation Depth to Water (DTW) Groundwater Elevation (ft/msl) (from TOC)	(tVmst)
SLL	Total Well Depth Stick Up Casing	- 1
- ₹	(from TOC) (ii) (from ground elevation) (iii) (from ground elevation) (iv)	
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/O (2400 Ifr Clock) (std) (μπhos/cm@25°C) (°C) (atu) (mg/L-ppm) (mV	
1	10:418 150 1 71016 1 111612 112152 1111 41914 165	310 111
	101513 1 200 61913 200 111612 111142 111 11815 11	4.0
tiona	110:56 3461813 34 11611 1118 11102 0.75 -41	210 111
0	10:59 14 61317 4 111612 111 107 111 01514 -161	740 111
ATA	111:02 1 7603 1 161 10198 1 1 1 01318 -195	30
ONO	11105 1 010 1111 1111	210
ATIC		210
ZITI		
STABILIZATION DATA (Optional)		
	Suggested range for 3 consec, readings or +/- 0.2 +/- 3% - +/- 10% +/- 25 onsec Permit/State requirements:	mV Stabilize
Sto	Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by W.M. Site, or State). These fields can be used where four (4) fit by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are a	
	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/O	
PDDA	(MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (mV	/) Units
FIELD DATA	Einal Field Readings are required (i.e., record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required.	ed by State/Permit/Site.
Sa	Sample Appearance: Odor: Color: Oth	er:
W		Precipitation: Y or N
Sp	Specific Comments (including purge/well volume calculations if required):	
TS —		
AEN -		
OMN 		
og_		
FIELD COMMENTS		
	I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):	
-	9,1,16 Sam Grabar Jack SC	5
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy	

Olympic View Sanitary Landfill

Well	Data	Timo	DTM	Maggurad	Comments	Page 1	
vveii	Date	Time	DTW	Measured by (initials)	Comments		Quarte TW
MW-1	-	°=:	_	_	Not Measured, Hazard/No Access		
MW-10			5.32		No. of the second	NM	
MW-11			_		lost		4.:
MW-12			48,03		Needs Clearing + Request to	NM	
MW-13			29.47	× 1) ITMOUCH		28.
MW-13A		- :	46.63				46.
MW-13B			59.91				60.
MW-14		=		_	Not Measured, Damaged Well		
MW-15R	4		19.33				18.
MW-16			58.07				57.
MW-17			33.57			NM	
MW-18			63.97		Needs clearing * Request-to	NM	
MW-19A			33,28)		32.
MW-19B		(33.33				32.
MW-19C			34.46				33.
MW-19D			33,38	4	8 -		32.
MW-20			36.57				35.
MW-21			6.50				5
MW-23A			12.38			NM	
MW-23B			12.88		Need Cleaving		12.
MW-23C			13.08		Mcca Clary		12.
MW-24			32.59		Request to lemane from list		21.
MW-26			11.60	TO - 27.	75 " 1	NM	
MW-27	=		22.17	TO = 34	5 Dottom Felt set, but no sed next in	レッナナ	21.
MW-28	Щ		5.63 TO	= 7,80	M J N	NM	
MW-29A			15.00				13,
MW-29B	N.		18.55		2 4	E,	17.
MW-29C			13.34				_ 11.

MW-12 + nw-18 not worth effort for two WLY. plux Clearing

ζ,

Page 1

dimeter at 20 278 28

PADO

	ENGI			OVSL		
	Date	Time	DTW	Measured by (initials)	Comments	Page 2 of 2 Last Quarte DTW
MW-2A1			8,42		nd))	9.1
MW-2B1			7.27		Need clearing	6.7
MW-30A			25.40			24.0
MW-30B			25.22	€ 25		23.8
MW-31			4.59		Needs clearing bud Needs clearing bud	Ni
MW-32	Λ	A	2.16		Needs clearing bud	1.5
MW-33A			6.28		9 :	5.6
MW-33B		et.	3.50			2.1
MW-33C			3.42			2.1
MW-34A			40.43			39.
MW-34B			40.11			39.4
MW-34C			42.24			41.2
MW-35			72.44		Needs clearing	72.0
MW-36			31.98			31.1
MW-36A			31.86			31.0
MW-37			5.98			NM
MW-38			5.90		5	3.6
MW-39			21.84			21.3
MW-4			15.61		Needs clearing	14.9
MW-40A			16.25	- B.	7	15.5
MW-40B			16.34		Neet clearing	15.4
MW-40C			16,58		49	15.84
MW-41A			25.12			
MW-41B			25.43			24.18
MW-41C					P ₁	24.6
			26.84			26.10
MW-42			28,78			27.85
MW-43			25.93			25.10
MW-5			3.24	1	Needs clearing	2.57
MW-9			3,18		Nerds clearing	NM

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	3/29	116				
Time	940					41
Weather (sky or precip, temp)	Sunny					
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1415	4.03	7.06			ts
Post Cal Reading	1413	4.01	7.00	7.79	787,102,21.3,08	7
Descrepancy	No					
Calib. Successful?	yes					
Calibration by	5	B				
Instrument Type, ID		MP20 /	YSI 556		MicoTPW / HACH2000	>
Calibration Location		oki				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	9/20/16					
Time	1/15		П			
Weather (sky or precip, temp)	over	ics+				•,
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1406	3,96	6.96			
Post Cal Reading	1413	4.01	7,00	8.06	783 99.8,20.8,0.84	
Descrepancy	Ni	>				
Calib. Successful?	· \/-	es				
Calibration by	SEG				st	181
Instrument Type, ID		MP20 /	YSI 556		MicoTPW (HACH2000)	ı
Calibration Location		OUSL				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	0/2	31/16				
Time	715					
Weather (sky or precip, temp)	over	reast				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	4
Pre-Cal Reading	1419	4.06	6.98			
Post Cal Reading	1413	4.01	7.00		788,99.8,20.3,0.	77
Descrepancy						
Calib. Successful?						
Calibration by	SE	6				
Instrument Type,		MP20 /	YSI 556		MicoTPW / HACH2000	
Calibration Location	0	<i></i> ろし				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

	Conductivity	pH4	pH 7	DO	Turbidity	Comments/Exceptions
Date	9/	1/16				
Time	7:	30				
Weather (sky or precip, temp)	OUE	veas.t				
Type of Calibration	Standard	Standard	Standard	Standard	Standard	
Standard Value	1413	4.01	7.00	100% or ~8.5	1000, 10, 0.2 800, 100, 20, <0.1	
Pre-Cal Reading	1411	408	7.02		3	
Post Cal Reading	1413	4.01	7.00	8.21	766,99.3, 20.4,1.12	
Descrepancy	/(か と				
Calib. Successful?	Y	125				
Calibration by	5	TEG	*			
Instrument Type,		MP20 /	YSI 556	MicoTPW / HACH2000		
Calibration Location		OVSL				

^{*} If Direct Reading is Unavailable, Assume pressure = 760 mm - 2.5 (altitude in ft/100)

APPENDIX B

FOURTH QUARTER 2016 DATA VALIDATION AND ANALYTICAL DATA REPORTS (ANALYTICAL DATA REPORTS AVAILABLE ON CD)

DATA VALIDATION REPORT - OLYMPIC VIEW SANITARY LANDFILL FOURTH QUARTER 2016

Project Details

Project No.	04204027.19	Site Name	Olympic View Sanitary Landfill	
Data Validator	Sam Graber	Data Level	Level II	
Date	1/10/2017 DV Tier Tier I			
QA Document	Olympic View Sanitary Landfill Sampling Analysis Plan, April 30, 2013			

Sample Login Summary

Sample Group	Sample Login Comments	Analytical Lab (Primary)
280-90968-1	No comments.	TestAmerica, Denver CO
280-91030-1	One of six VOAs for sample L-INF contained bubble larger than 6 mm. The lab used vials without headspace to perform analysis.	TestAmerica, Denver CO
280-91049-1	No comments.	TestAmerica, Denver CO
280-91129-1	No comments.	TestAmerica, Denver CO
280-91197-1	One of two coolers arrived three days late due to Fedex delay. Nitrite analysis performed outside of holding time for DUP1 and MW-24. TDS sample for MW-24 was reanalyzed outside of holding time. See narrative.	TestAmerica, Denver CO
280-91425-1	48-hr holding time for BOD expired prior to sample receipt. TDS analyzed 1 day passed holding time.	TestAmerica, Denver CO
280-91493-1	No comments.	TestAmerica, Denver CO
280-91758-1	No comments.	Analytical Resources Inc.

Analytical Summary

		Analyses					
Sample Group	Qtrly General Chemistry ¹	Qtrly Metals	Qtrly VOCs	As ²	TSS	BOD/COD	App III Analytes³
280-90968-1	Х	Х	Х		Χ		
280-91030-1	Х	Х	Х				
280-91049-1	Х	Х	Х		Χ		
280-91129-1	Х	Χ	Х		Χ		
280-91197-1	Х	Χ	Х		Х		
280-91425-1	X*	X**				Х	
280-91493-1		1				Х	
280-91758-1				Х			

 $^{^{\}rm 1}$ General Chemistry (NO3, Cl, SO4, NH4, Alkalinity, TDS, TOC)

² Arsenic only (total)

³ WAC 173-351-990 App. III - VOCs, Metals, Pesticides/PCBs, OP Pesticides, Herbicides, SVOCs, Sulfide, Cyanide

^{*} General Chemistry (CI, SO₄, NH₄, Alkalinity, TDS, TOC)

^{**} Total Metals (Ca, Fe, Mg, Mn, K, Na)

Laboratory Quality Assurance Samples

Laboratory Quality		:S
Lab QA Samples	Notes	Comments
Surrogates/Organics	See case narrative.	The analytes Acrolein, Acrylonitrile and 2-Chloroethyl Vinyl cannot be reliably quantitated in acid preserved samples, therefore, the reporting limits for the analytes is not reliable or defensible. No corrective action was taken as all samples are non-detect for the associated parameters.
		(280-91030-1) The sample L-INF was analyzed at a dilution for Method 8260C and 8260C SIM due to foaming at the time of purging during the analysis. Elevated reporting limits are provided.
		(280-91030-1) The VOA vials for sample L-INF exhibited pH values greater than 2. Because this sample is a leachate sample, a buffering effect was suspected.
		(280-91197-1) Several 8260B surrogate recoveries were above upper control limits for sample DUP1. Because the data are considered biased high and all target analytes were non-detect above the reporting limits, co corrective action necessary.
МВ	See case narrative.	Vinyl Chloride SIM (280-90968-1, 280-91030-1, 280-91049-1, 280-91129-1, 280-91197-1) was detected in the MB above the method detection limit
		(MDL), but below the established reporting limit (RL). No corrective action was taken.
		Sulfate (280-91129-1) was detected in the MB above the project established reporting limit. Because the associated sample (MW-23A) exhibited detection of Sulfate below the TA Denver RL, reanalysis not performed.
DUP	See case narrative.	(280-90968-1, 280-91030-1) The RPD results for TDS on samples MW-4, DUP2, and OBWL-TD were outside control limits. Because all other QC and calibration criteria were met no corrective action was needed.
LCS/LCSD	See case narrative.	(280-91129-1) The Method 8260C LCS exhibited recoveries below lower control limits. Laboratory's SOP allowed for three analytes to recover outside criteria, therefore reanalysis deemed unnecessary.
		Ammonia (280-91425-1) exhibited RPD outside control limits. Both LCS and LCSD recovered in control limits, therefore no corrective action deemed necessary.
MS/MSD	Possible matrix interference. See case narratives.	Dissolved Sodium (280-91049-1), in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the sample concentration was greater than 4 times the spike amount and the corresponding LCS and MB samples were within control limits.
		Dissolved Barium (280-91030-1) was recovered outside control limits on an OVSL sample (L-INF). No corrective action was taken because the sample concentration was greater than 4 times the spike amount and the corresponding LCS and MB samples were within control limits.
		Dissolved Manganese (280-91030-1) was recovered outside control limits on an OVSL sample (L-INF). No corrective action was taken because the sample concentration was greater than 4 times the spike amount and the corresponding LCS and MB samples were within control limits.
		Dissolved Manganese (280-90968-1), exhibited percent recoveries outside control limits on the MS/MSD performed on sample L-INF. No corrective action was taken because the sample concentration was greater than 4 times the spike amount and the corresponding LCS and MB samples were within control limits.
		Chloride (280-91030-1), in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		Bromomethane (280-91049-1), in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the corresponding LCS and MB samples were within control limits. In addition, the RPD result was outside the RPD limit

Lab QA Samples	Notes	Comments
		for Bromomethane. No corrective action taken.
		Chloroethane (280-91049-1), in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		2-Butanone (MEK) (280-91049-1), in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		Acetone (280-91049-1), in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		8260B compounds (280-91197-1) in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		Vinyl Chloride by 8260C (280-91129-1) in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		Methyl acetate by 8260C (280-91129-1) in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		Dissolved Manganese (280-91129-1, 280-91197-1) in a non-OVSL sample processed in the same batch as OVSL samples exhibited percent recoveries outside control limits. No corrective action was taken because the sample concentration was greater than 4 times the spike amount and the corresponding LCS and MB samples were within control limits.
		Total Barium (280-91129-1) was recovered outside control limits on an OVSL sample (MW-42). No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		Total Manganese (280-91129-1) was recovered outside control limits on an OVSL sample (MW-42). No corrective action was taken because the sample concentration was greater than 4 times the spike amount and the corresponding LCS and MB samples were within control limits.
		Total Manganese (280-91197-1) was recovered outside control limits on an OVSL sample (MW-33A). No corrective action was taken because the corresponding LCS and MB samples were within control limits.
		TOC (280-91425-1) on a sample from another client exhibited recoveries outside control limits. Both LCS and MB were within control limits, therefore, no corrective action taken.
General Chemistry	No comment.	
Metals	See case narrative.	(280-91030-1) The Method 6010B CCV samples surrounding the methods blank were above control limits for Dissolved Sodium. Corrective action deemed unnecessary.

Field Quality Assurance Samples

Field QA Samples	Sample Group	Analytes	Notes
Trip Blank	280-90968-1	No detections above the method detection limit.	
Trip Blank	280-91030-1	No detections above the method detection limit.	

Trip Blank	280-91049-1	No detections above the method detection limit.	
Trip Blank	280-91129-1	No detections above the method detection limit.	
Trip Blank	280-91197-1	No detections above the method detection limit.	

Detailed Field Replicate Evaluation

Amaluto	Units	MW-33C	DUP1		MW-20	DUP2	
Analyte	Units	(1116-23)	(1116-24)	RPD %	(1116-08)	(1116-09)	RPD%
Alkalinity, Bicarbonate (As CaCO3)	mg/L	68	69	1.5	75	75	0.0
Alkalinity, Total (As CaCO3)	mg/L	68	69	1.5	75	75	0.0
Ammonia (as N)	mg/L	0.03 U	0.047	44.2*	ND	ND	NA
Barium, Total	mg/L	0.0048	0.0034	34.1	0.016	0.016	0.0
Calcium, Dissolved	mg/L	17	17	0.0	19	19	0.0
Chloride	mg/L	2.8	2.8	0.0	8.3	8.4	1.2
Iron, Total	mg/L	0.06 U	0.06	0.0*	0.18	0.15	18.2
Iron, Dissolved	mg/L	0.081	0.06 U	29.8*	ND	ND	NA
Magnesium, Dissolved	mg/L	7.4	7.4	0.0	11	11	0.0
Manganese, Dissolved	mg/L	0.15	0.14	6.9	ND	ND	NA
Manganese, Total	mg/L	0.15	0.14	6.9	0.45	0.44	2.2
Nickel, Total	mg/L	ND	ND	NA	0.0048	0.0058	18.9
Nitrate as N	mg/L	ND	ND	NA	6	5.9	1.7
Potassium, Dissolved	mg/L	1.3	1.3	0.0	3.1	3.1	0.0
Sodium, Dissolved	mg/L	4.2	4.2	0.0	9.3	9.3	0.0
Sulfate	mg/L	7.4	7.4	0.0	4.2	4.3	2.4
Total Dissolved Solids (TDS)	mg/L	95	97	2.1	160	150	6.5
Total Suspended Solids	mg/L	4	4 U	0.0*	4	5.6	33.3
Vanadium, Total	mg/L	ND	ND	NA	0.0020 U	0.0022	9.52*

st RPD based on result as compared to the Reporting Limit (RL) for a non-detection in the compared sample

Lab Qualifier Definitions

Lab Qualifiers	Description	Lab Group
E	Result exceeded calibration range.	280-91049-1, 280-91129-1
F1	MS and/or MSD Recovery is outside acceptance limits.	280-90968-1, 280-91030-1, 280-91049-1, 280-91129-1, 280-91197-1, 280-91425-1
F2	MS/MSD exceeds control limits.	280-91049-1
F3	Duplicate RPD exceeds control limit	280-90968-1, 280-91030-1
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	280-90968-1, 280-91030-1, 280-91049-1, 280-91129-1, 280-91197-1
В	Compound was found in the blank and sample.	280-90968-1, 280-91030-1, 280-91049-1, 280-91129-1

U = Result was not detected at or above a concentration greater than the RL. Value provided is the RL for the given sample.

 $[\]ensuremath{\mathsf{NA}}=\ensuremath{\mathsf{Not}}$ applicable. Compared samples were below the RL for a given parameter.

Lab Qualifiers	Description	Lab Group
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	280-90968-1, 280-91030-1, 280-91049-1, 280-91129-1, 280-91197-1
Х	Surrogate is outside control limits.	280-91197-1
Н	Sample was prepped or analyzed beyond specific holding time.	280-91197-1, 280-91425-1
*	LCS or LCSD is outside acceptance limits.	280-91129-1, 280-91425-1
۸	ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: instrument related QC is outside control limits.	280-91030-1

Additional Qualifier Definitions

Qualifiers	Description	Lab Graun
Qualifiers	Description	Lab Group

Additional Items of Note

The analytes Acrolein, Acrylonitrile, and 2-Chloroethyl Vinyl Ether cannot be reliably quantitated in acid preserved samples, therefore, the reporting limits for the analytes is not reliable or defensible.

Qualified Data and Usability

Lab qualifiers are noted. All data, as qualified, are acceptable for use.

ANALYTICAL REPORT

Job Number: 280-91049-1

Job Description: WA02|Olympic View Sanitary LF

For:

Waste Management Sun Valley Hauling 9081 Tujunga Avenue Sun Valley, CA 91352

Attention: Mr. Phil Perley

Betsy Sara

Approved for release Betsy A Sara Project Manager II 12/7/2016 5:10 PM

Betsy A Sara, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0189 betsy.sara@testamericainc.com 12/07/2016

cc: Mr. Dan Venchiarutti

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Denver 4955 Yarrow Street, Arvada, CO 80002 Tel (303) 736-0100 Fax (303) 431-7171 www.testamericainc.com

Table of Contents

Cover Title Page	1
Report Narrative	3
Executive Summary	5
Method Summary	11
Method / Analyst Summary	12
Sample Summary	13
Sample Results	14
Sample Datasheets	15
Data Qualifiers	74
QC Results	75
Qc Association Summary	76
Surrogate Recovery Report	84
Qc Reports	86
Laboratory Chronicle	134
Client Chain of Custody	145
Sample Receipt Checklist	154

CASE NARRATIVE

Client: Waste Management

Project: WA02|Olympic View Sanitary LF

Report Number: 280-91049-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Sample Receiving

The samples were received on 11/16/2016; the samples arrived in good condition, properly preserved and on ice. The temperatures of the coolers at receipt were 1.6° C and 2.2° C.

Holding Times

All holding times were within established control limits.

Method Blanks

Vinyl chloride Method 8260C SIM was detected in the Method Blanks below the project established reporting limits. No corrective action is taken for any values in Method Blanks that are below the requested reporting limits.

All other Method Blank recoveries were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The Matrix Spikes and Matrix Spike Duplicates performed on samples from other clients exhibited recoveries outside control limits for Bromomethane, Chloroethane, 2-Butanone (MEK) and Acetone Method 8260C. In addition, the RPD result was outside the RPD limit for Bromomethane. Because the corresponding Laboratory Control Samples and the Method Blank samples were within control limits, these anomalies may be due to matrix interference and no corrective action was taken.

The percent recoveries and/or relative percent difference of the MS/MSD performed on a sample from another client were outside control limits for Dissolved Sodium Method 6010B because the sample concentration was greater than four times the spike amount. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, no corrective action was taken.

The percent recoveries and/or relative percent difference of the MS/MSD performed on sample L-INF (91030) were outside control limits for Dissolved Manganese Method 6020 because the sample concentration was greater than four times the spike amount. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, no corrective action was taken.

All other MS and MSD samples were within established control limits.

Organics

The analytes Acrolein, Acrylonitrile and 2-chloroethyl vinyl ether cannot be reliably quantitated in acid preserved samples, therefore, the reporting limits for the analytes Acrolein, Acrylonitrile and 2-chloroethyl vinyl ether is not reliable or defensible.

General Comments

The analyses for Volatile Organics by Method 8260C and Volatile Organics by Method 8260C SIM were performed by TestAmerica Buffalo. Their address and phone number are:

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 Amherst, NY 14228 716-691-2600

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
000 04040 4	MM 05					
280-91049-1	MW-35	74.47			tr.	Field Committee
Depth to water		71.17			ft	Field Sampling
Specific Conductivit	У	158			umhos/cm	Field Sampling
Dissolved Oxygen		6.61			mg/L	Field Sampling
eH		95.0			millivolts	Field Sampling
Turbidity		0.78			NTU	Field Sampling
Temperature		10.41			Degrees C	Field Sampling
pН		6.61			SU	Field Sampling
Chloride		1.8		1.0	mg/L	300.0
Sulfate		2.2		1.0	mg/L	300.0
Nitrate as N		0.47		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	91		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	91		5.0	mg/L	SM 2320B
Total Dissolved Soli	ids (TDS)	120		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		14		0.040	mg/L	6010B
Magnesium, Dissolv	ved	10		0.050	mg/L	6010B
Sodium, Dissolved		6.3		1.0	mg/L	6010B
Total Recoverable						
Barium, Total		0.0027		0.0010	mg/L	6020
Vanadium, Total		0.0043		0.0020	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91049-2	MW-34C					
Vinyl chloride		0.078	В	0.020	ug/L	8260C SIM
Depth to water		40.73			ft	Field Sampling
Specific Conductivity	y	231			umhos/cm	Field Sampling
Dissolved Oxygen		0.58			mg/L	Field Sampling
еН		41.6			millivolts	Field Sampling
Turbidity		77.9			NTU	Field Sampling
Temperature		12.60			Degrees C	Field Sampling
pН		7.45			SU	Field Sampling
Chloride		4.4		1.0	mg/L	300.0
Sulfate		4.6		1.0	mg/L	300.0
Ammonia (as N)		0.030		0.030	mg/L	350.1
Alkalinity, Total (As	CaCO3)	110		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ite (As CaCO3)	110		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	160		5.0	mg/L	SM 2540C
Total Suspended So	olids	19		4.0	mg/L	SM 2540D
Dissolved						
Calcium, Dissolved		24		0.20	mg/L	6010B
Iron, Dissolved		0.62		0.30	mg/L	6010B
Magnesium, Dissolv	red	11		0.050	mg/L	6010B
Sodium, Dissolved		12		5.0	mg/L	6010B
Manganese, Dissolv	red	0.54		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		8.4		0.060	mg/L	6010B
Barium, Total		0.037		0.0010	mg/L	6020
Manganese, Total		0.60		0.0010	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91049-3	MW-34A					
Depth to water		38.91			ft	Field Sampling
Specific Conductivity	y	177			umhos/cm	Field Sampling
Dissolved Oxygen		0.51			mg/L	Field Sampling
еН		119.6			millivolts	Field Sampling
Turbidity		1.25			NTU	Field Sampling
Temperature		12.47			Degrees C	Field Sampling
pН		6.79			SU	Field Sampling
Chloride		3.2		1.0	mg/L	300.0
Sulfate		3.0		1.0	mg/L	300.0
Alkalinity, Total (As	CaCO3)	80		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ite (As CaCO3)	80		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	120		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		15		0.040	mg/L	6010B
Magnesium, Dissolv	red	8.5		0.050	mg/L	6010B
Sodium, Dissolved		9.7		1.0	mg/L	6010B
Manganese, Dissolv	ved	0.0017		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		0.060		0.060	mg/L	6010B
Barium, Total		0.0045		0.0010	mg/L	6020
Manganese, Total		0.0027		0.0010	mg/L	6020
Vanadium, Total		0.0039		0.0020	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91049-4	MW-36A					
Depth to water		30.43			ft	Field Sampling
Specific Conductivit	ty	128			umhos/cm	Field Sampling
Dissolved Oxygen		2.90			mg/L	Field Sampling
eН		133.3			millivolts	Field Sampling
Turbidity		1.75			NTU	Field Sampling
Temperature		9.71			Degrees C	Field Sampling
рН		6.81			SU	Field Sampling
Chloride		1.7		1.0	mg/L	300.0
Sulfate		2.5		1.0	mg/L	300.0
Nitrate as N		0.49		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	60		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	60		5.0	mg/L	SM 2320B
Total Dissolved Sol	ids (TDS)	96		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		10		0.040	mg/L	6010B
Magnesium, Dissolv	ved	8.0		0.050	mg/L	6010B
Sodium, Dissolved		7.3		1.0	mg/L	6010B
Total Recoverable						
Iron, Total		0.078		0.060	mg/L	6010B
Barium, Total		0.0025		0.0010	mg/L	6020
Chromium, Total		0.0085		0.0030	mg/L	6020
Manganese, Total		0.0013		0.0010	mg/L	6020
Vanadium, Total		0.0031		0.0020	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91049-5	MW-15R					
Depth to water		18.30			ft	Field Sampling
Specific Conductivit	y	155			umhos/cm	Field Sampling
Dissolved Oxygen		0.85			mg/L	Field Sampling
eH		109.0			millivolts	Field Sampling
Turbidity		1.21			NTU	Field Sampling
Temperature		10.45			Degrees C	Field Sampling
рН		7.37			SU	Field Sampling
Chloride		2.3		1.0	mg/L	300.0
Sulfate		4.8		1.0	mg/L	300.0
Nitrate as N		0.20		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	71		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	71		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	91		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		13		0.040	mg/L	6010B
Magnesium, Dissolv	red .	9.4		0.050	mg/L	6010B
Sodium, Dissolved		6.3		1.0	mg/L	6010B
Manganese, Dissolv	/ed	0.0013		0.0010	mg/L	6020
Total Recoverable						
Barium, Total		0.0044		0.0010	mg/L	6020
Manganese, Total		0.0037		0.0010	mg/L	6020
Vanadium, Total		0.0037		0.0020	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91049-6	MW-2B1					
Vinyl chloride		0.0087	JB	0.020	ug/L	8260C SIM
Depth to water		6.20			ft	Field Sampling
Specific Conductivity	y	241			umhos/cm	Field Sampling
Dissolved Oxygen		0.17			mg/L	Field Sampling
еН		80.2			millivolts	Field Sampling
Turbidity		7.21			NTU	Field Sampling
Temperature		13.35			Degrees C	Field Sampling
рН		7.29			SU	Field Sampling
Chloride		14		1.0	mg/L	300.0
Sulfate		6.0		1.0	mg/L	300.0
Ammonia (as N)		2.1		0.030	mg/L	350.1
Nitrate as N		1.8		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	82		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	82		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	140		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		18		0.040	mg/L	6010B
Iron, Dissolved		0.31		0.060	mg/L	6010B
Magnesium, Dissolv	red	5.6		0.050	mg/L	6010B
Potassium, Dissolve	ed	2.8		1.0	mg/L	6010B
Sodium, Dissolved		11		1.0	mg/L	6010B
Manganese, Dissolv	ved .	2.5		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		1.1		0.060	mg/L	6010B
Barium, Total		0.013		0.0010	mg/L	6020
Manganese, Total		2.7		0.0010	mg/L	6020

METHOD SUMMARY

Client: Waste Management Job Number: 280-91049-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6010B	SW846 3005A
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN	SW846 6010B	SW846 3005A FIELD_FLTRD
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6020	SW846 3005A
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN	SW846 6020	SW846 3005A FIELD_FLTRD
Anions, Ion Chromatography	TAL DEN	MCAWW 300.0)
Nitrogen, Ammonia	TAL DEN	MCAWW 350.1	
Nitrate	TAL DEN	EPA 353.2	
Alkalinity	TAL DEN	SM SM 2320B	
Solids, Total Dissolved (TDS)	TAL DEN	SM SM 2540C	
Solids, Total Suspended (TSS)	TAL DEN	SM SM 2540D	
Organic Carbon, Total (TOC)	TAL DEN	SM SM 5310B	
Field Sampling	TAL DEN	EPA Field Sam	pling
Volatile Organic Compounds by GC/MS Purge and Trap	TAL BUF TAL BUF	SW846 8260C	SW846 5030C
Volatile Organic Compounds (GC/MS) Purge and Trap	TAL BUF TAL BUF	SW846 8260C	SIM SW846 5030C

Lab References:

TAL BUF = TestAmerica Buffalo

TAL DEN = TestAmerica Denver

Method References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
SW846 8260C SW846 8260C	Archer, Nicholas E Dias, Nicole M	NEA NMD1
SW846 8260C SIM	Dias, Nicole M	NMD1
SW846 6010B SW846 6010B SW846 6010B	Broander, Laura L Lackey, Cara M Rhoades, Chris R	LLB CML CRR
SW846 6020 SW846 6020	Mooney, Joseph C Trudell, Lynn-Anne M	JM LMT
EPA Field Sampling	Krisorn, Chamaiporn 1	C1K
MCAWW 300.0	Benson, Alex F	AFB
MCAWW 350.1	Spedale, Morgan A	MAS
EPA 353.2	Allen, Andrew J	AJA
SM SM 2320B	Carter, Melynda M	MMC
SM SM 2540C	Cherry, Scott V	SVC
SM SM 2540D	Cherry, Scott V	SVC
SM SM 5310B	Jewell, Connie C	CCJ

SAMPLE SUMMARY

Client: Waste Management Job Number: 280-91049-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
280-91049-1	MW-35	Water	11/15/2016 0950	11/16/2016 1000
280-91049-2	MW-34C	Water	11/15/2016 1115	11/16/2016 1000
280-91049-3	MW-34A	Water	11/15/2016 1200	11/16/2016 1000
280-91049-4	MW-36A	Water	11/15/2016 1251	11/16/2016 1000
280-91049-5	MW-15R	Water	11/15/2016 1350	11/16/2016 1000
280-91049-6	MW-2B1	Water	11/15/2016 1453	11/16/2016 1000
280-91049-7TB	TRIP BLANK	Water	11/15/2016 0000	11/16/2016 1000

SAMPLE RESULTS

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-35

Lab Sample ID: 280-91049-1 Date Sampled: 11/15/2016 0950 Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333378 Analysis Method: 8260C Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20521.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 2306

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-35

Lab Sample ID: 280-91049-1 Date Sampled: 11/15/2016 0950

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333378 Analysis Method: 8260C Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20521.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 2306

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-35

Lab Sample ID: 280-91049-1 Date Sampled: 11/15/2016 0950

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333378 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20521.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 2306 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 2306

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10877 - 1204-Bromofluorobenzene (Surr)9873 - 120Toluene-d8 (Surr)10080 - 120

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-35

Lab Sample ID: 280-91049-1 Date Sampled: 11/15/2016 0950

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333378 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20521.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 2306 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 2306

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34C

 Lab Sample ID:
 280-91049-2
 Date Sampled: 11/15/2016 1115

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333552 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20626.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1159

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34C

Lab Sample ID: 280-91049-2 Date Sampled: 11/15/2016 1115

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20626.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1159 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND ND		0.40	1.0
lodomethane	ND		0.40	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
			1.3	5.0
Tetrahydrofuran	ND			
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND NB		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34C

Lab Sample ID: 280-91049-2 Date Sampled: 11/15/2016 1115

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20626.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1159 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1159

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10677 - 1204-Bromofluorobenzene (Surr)9573 - 120Toluene-d8 (Surr)10080 - 120

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34C

Lab Sample ID: 280-91049-2 Date Sampled: 11/15/2016 1115

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20626.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1159 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1159

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34A

Lab Sample ID: 280-91049-3 Date Sampled: 11/15/2016 1200 Client Matrix:

Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333552 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20627.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1226

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND ND		0.78	1.0
1,3-Dichloropropane	ND ND		0.75	1.0
	ND ND		0.75	1.0
1,4-Dichlorobenzene	ND ND		9.3	40
1,4-Dioxane				
2,2-Dichloropropane	ND ND		0.40 1.3	1.0
2-Butanone (MEK)	ND			10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND ND		2.1	5.0
Acetone	ND ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34A

Lab Sample ID: 280-91049-3 Date Sampled: 11/15/2016 1200 Client Matrix:

Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333552 Analysis Method: 8260C Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20627.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1226 Prep Date: 11/26/2016 1226

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
Iodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34A

Lab Sample ID: 280-91049-3 Date Sampled: 11/15/2016 1200

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20627.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1226 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1226

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10877 - 1204-Bromofluorobenzene (Surr)9673 - 120Toluene-d8 (Surr)10080 - 120

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34A

Lab Sample ID: 280-91049-3 Date Sampled: 11/15/2016 1200

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20627.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1226 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1226

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-36A

 Lab Sample ID:
 280-91049-4
 Date Sampled: 11/15/2016 1251

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333552 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20628.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1253

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-36A

 Lab Sample ID:
 280-91049-4
 Date Sampled: 11/15/2016 1251

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20628.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/26/2016 1253

Analysis Date: 11/26/2016 1253 Prep Date: 11/26/2016 1253

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-36A

 Lab Sample ID:
 280-91049-4
 Date Sampled: 11/15/2016 1251

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20628.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1253 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	106		77 - 120
4-Bromofluorobenzene (Surr)	94		73 - 120
Toluene-d8 (Surr)	98		80 - 120

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-36A

Lab Sample ID: 280-91049-4 Date Sampled: 11/15/2016 1251

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20628.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1253 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1253

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-15R

Lab Sample ID: 280-91049-5 Date Sampled: 11/15/2016 1350

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333552 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20629.D Dilution: Initial Weight/Volume: 5 mL 1.0

Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1321

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.75	1.0
Chloroethane	ND		0.32	1.0
Smoroditario	110		0.02	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-15R

Lab Sample ID: 280-91049-5 Date Sampled: 11/15/2016 1350

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20629.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/26/2016 1321 Final Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1321 Prep Date: 11/26/2016 1321

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
	115		0.00	

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-15R

Lab Sample ID: 280-91049-5 Date Sampled: 11/15/2016 1350

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20629.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1321 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1321

Surrogate %Rec Qualifier Acceptance Limits
1,2-Dichloroethane-d4 (Surr) 105 77 - 120
4-Bromofluorobenzene (Surr) 94 73 - 120
Toluene-d8 (Surr) 99 80 - 120

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-15R

Lab Sample ID: 280-91049-5 Date Sampled: 11/15/2016 1350

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20629.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1321 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1321

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-2B1

 Lab Sample ID:
 280-91049-6
 Date Sampled: 11/15/2016 1453

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333552 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20630.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1348

1.1.1.2-Tetrachloroethane	Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane ND 0.21 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.31 1.0 1,1,2-Trichloroethane ND 0.31 1.0 1,1-Dichloroethane ND 0.38 1.0 1,1-Dichloroethane ND 0.29 1.0 1,1-Dichloropropene ND 0.72 1.0 1,2-Trichlorobenzene ND 0.41 1.0 1,2-3-Trichloropropane ND 0.88 1.0 1,2-3-Trichloropropane ND 0.88 1.0 1,2-4-Trichloropropane ND 0.41 1.0 1,2-4-Trichloropropane ND 0.75 1.0 1,2-Dichloropropane ND 0.75 1.0 1,2-Dichloropropane ND 0.73 1.0 1,2-Dichloropropane ND 0.73 1.0 1,2-Dichloropropane ND 0.73 1.0 1,2-Dichloropropane ND 0.72 1.0 1,2-Dichloropropane ND 0.72 1.0 <td>-</td> <td></td> <td></td> <td>0.35</td> <td>1.0</td>	-			0.35	1.0
1,1,2,2-Tichloroethane ND 0.31 1.0 1,1,2-Trichloro-1,2,2-trifluroethane ND 0.33 1.0 1,1,2-Trichloroethane ND 0.38 1.0 1,1-Dichloroethane ND 0.29 1.0 1,1-Dichloropropene ND 0.72 1.0 1,1-Dichloropropene ND 0.41 1.0 1,2,3-Trichloropropane ND 0.41 1.0 1,2,3-Trichloropropane ND 0.41 1.0 1,2,4-Trinethylbenzene ND 0.41 1.0 1,2,4-Trinethylbenzene ND 0.41 1.0 1,2,4-Trinethylbenzene ND 0.75 1.0 1,2,2-Hirmethylbenzene ND 0.75 1.0 1,2-Dichloropropane ND 0.73 1.0 1,2-Dichloroethane (EDB) ND 0.73 1.0 1,2-Dichloroethane (EDB) ND 0.79 1.0 1,2-Dichloroethane (Total ND 0.21 1.0 1,2-Dichloroethane (Total ND 0		ND		0.82	1.0
1,12-Trichloroethane		ND		0.21	1.0
1,12-Trichloroethane		ND		0.31	1.0
1,1-Dichloroethene ND		ND		0.23	1.0
1,1-Dichloroethene ND	1,1-Dichloroethane	ND		0.38	1.0
1,2,3-Trichlorobenzene ND 0.41 1.0 1,2,3-Trichloropopane ND 0.89 1.0 1,2,4-Trichlorobenzene ND 0.41 1.0 1,2,4-Trichlorobenzene ND 0.75 1.0 1,2,4-Trichlorobenzene ND 0.75 1.0 1,2-Dibromoethane (EDB) ND 0.39 1.0 1,2-Dibromoethane (EDB) ND 0.73 1.0 1,2-Dichlorobenzene ND 0.79 1.0 1,2-Dichlorobenzene ND 0.79 1.0 1,2-Dichlorobenzene ND 0.21 1.0 1,2-Dichloropthane ND 0.81 2.0 1,2-Dichloropthane ND 0.72 1.0 1,3,5-Trichlorobenzene ND 0.72 1.0 1,3,5-Trichlorobenzene ND 0.77 1.0 1,3-Dichloropthane ND 0.77 1.0 1,3-Dichloropthane ND 0.75 1.0 1,3-Dichlorobenzene ND 0.75 1.0 1,3-Dichlorobenzene ND 0.75 1.0 1,4-Dichlorobenzene ND 0.84 1.0 1,4-Dichlorobenzene ND 0.84 1.0 1,4-Dichloroptopane ND 0.84 1.0 1,4-Dichloroptopane ND 0.80 1.0 2-Butanone (MEK) ND 0.30 10 2-Butanone (MEK) ND 0.96 5.0 2-Hexanone ND 0.96 5.0 2-Hexanone ND 0.96 5.0 2-Hexanone ND 0.91 20 Acetonitrile ND 0.91 20 Acrolein ND 0.83 5.0 Benzene ND 0.80 1.0 Bromochloromethane ND 0.80 1.0 Bromochloromethane ND 0.89 1.0 Bromoform ND 0.89 1.0 Bromoform ND 0.89 1.0 Bromoform ND 0.89 1.0 Bromoform ND 0.89 1.0 Bromoformethane ND 0.99 1.0 Bromothoromethane ND 0.99 1.0 Bromothoromethane ND 0.91 0.0 Bromothoromethane ND 0.91 0.0 Bromothoromethane ND 0.91 0.0 Bromothoromethane ND 0.97 1.0 Carbon tetrachloride ND 0.75 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenzene ND 0.26 1.0 Chlorobenze	1,1-Dichloroethene	ND		0.29	1.0
1,2,3-Trichloropropane	1,1-Dichloropropene	ND		0.72	1.0
1.2.4-Trichlorobenzene ND 0.41 1.0 1.2.4-Trimethylbenzene ND 0.75 1.0 1.2-Dibromo-3-Chloropropane ND 0.39 1.0 1.2-Dibromo-Brane (EDB) ND 0.73 1.0 1.2-Dichlorobenzene ND 0.79 1.0 1.2-Dichlorobenzene ND 0.21 1.0 1.2-Dichloropropane ND 0.81 2.0 1.2-Dichloropropane ND 0.72 1.0 1.3-Frimethylbenzene ND 0.73 1.0 1.3-Frimethylbenzene ND 0.77 1.0 1.3-Dichloropropane ND 0.78 1.0 1.3-Dichloropropane ND 0.75 1.0 1.4-Dichloropropane ND 0.84 1.0 1.4-Dichloropropane ND 0.40 1.0 2Butanone (MEK) ND 0.40 1.0 2Butanone (MEK) ND 0.96 5.0 2Hexanone ND 0.96 5.0	1,2,3-Trichlorobenzene	ND		0.41	1.0
1.2.4-Trichlorobenzene ND 0.41 1.0 1.2.4-Trimethylbenzene ND 0.75 1.0 1.2-Dibromo-3-Chloropropane ND 0.39 1.0 1.2-Dibromoethane (EDB) ND 0.73 1.0 1.2-Dichlorobenzene ND 0.79 1.0 1.2-Dichloroethane ND 0.21 1.0 1.2-Dichloroethene, Total ND 0.81 2.0 1.2-Dichloropropane ND 0.72 1.0 1.3-S-Trindethybenzene ND 0.23 1.0 1,3-Frimethylbenzene ND 0.77 1.0 1,3-Dichloropropane ND 0.78 1.0 1,3-Dichloropropane ND 0.75 1.0 1,4-Dichloropropane ND 0.84 1.0 1,4-Dichloropropane ND 0.40 1.0 2,2-Dichloropropane ND 0.40 1.0 2,2-Butanone (MEK) ND 0.40 1.0 2-Hexanone ND 0.96 5.0	1,2,3-Trichloropropane	ND		0.89	1.0
1.2.4-Trimethylbenzene ND 0.75 1.0 1.2-Dibromo-3-Chloropropane ND 0.39 1.0 1.2-Dibromoethane (EDB) ND 0.73 1.0 1.2-Dichlorobenzene ND 0.79 1.0 1.2-Dichloroethane ND 0.21 1.0 1.2-Dichloroethene, Total ND 0.81 2.0 1.2-Dichloropropane ND 0.72 1.0 1.3-S-Trimethylbenzene ND 0.77 1.0 1.3-Frimethylbenzene ND 0.77 1.0 1.3-Dichlorobenzene ND 0.78 1.0 1.3-Dichloropropane ND 0.78 1.0 1.4-Dioxane ND 0.84 1.0 1.4-Dioxane ND 9.3 40 2-2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Hexanone ND 0.96 5.0 2-Hexanone ND 0.96 5.0 2-Hexanone		ND		0.41	1.0
1,2-Dibromo-3-Chloropropane ND 0.39 1.0 1,2-Dibromoethane (EDB) ND 0.73 1.0 1,2-Dichloroethane ND 0.79 1.0 1,2-Dichloroethane ND 0.21 1.0 1,2-Dichloropthene, Total ND 0.81 2.0 1,2-Dichloropropane ND 0.72 1.0 1,3-5-Trichlorobenzene ND 0.77 1.0 1,3-5-Trimethylbenzene ND 0.77 1.0 1,3-Dichloropropane ND 0.75 1.0 1,3-Dichloropropane ND 0.75 1.0 1,4-Dickoane ND 0.75 1.0 1,4-Dickoane ND 0.84 1.0 1,4-Dicxane ND 9.3 40 2,2-Dichloropropane ND 0.40 1.0 2,4-Butanone (MEK) ND 0.40 1.0 2-Butanone (MEK) ND 0.96 5.0 2-Hexanone ND 0.96 5.0 4-Methyl-2-pent		ND		0.75	1.0
1,2-Dichlorobenzene ND 0.79 1.0 1,2-Dichloroethane ND 0.21 1.0 1,2-Dichloroethene, Total ND 0.81 2.0 1,2-Dichloropropane ND 0.72 1.0 1,3-5-Trichlorobenzene ND 0.77 1.0 1,3-5-Tichlorobenzene ND 0.78 1.0 1,3-Dichloropropane ND 0.78 1.0 1,3-Dichloropropane ND 0.75 1.0 1,4-Dichloropenzene ND 0.84 1.0 1,4-Dichoropropane ND 0.84 1.0 1,4-Dichoropropane ND 0.40 1.0 2,2-Dichloropropane ND 0.40 1.0		ND		0.39	1.0
1,2-Dichlorobenzene ND 0.79 1.0 1,2-Dichloroethane ND 0.21 1.0 1,2-Dichloroethene, Total ND 0.81 2.0 1,2-Dichloropropane ND 0.72 1.0 1,3-5-Trichlorobenzene ND 0.77 1.0 1,3-5-Tichlorobenzene ND 0.78 1.0 1,3-Dichloropropane ND 0.78 1.0 1,3-Dichloropropane ND 0.75 1.0 1,4-Dichloropenzene ND 0.84 1.0 1,4-Dichoropropane ND 0.84 1.0 1,4-Dichoropropane ND 0.40 1.0 2,2-Dichloropropane ND 0.40 1.0		ND		0.73	1.0
1,2-Dichloroethene, Total		ND		0.79	1.0
1,2-Dichloropropane	1,2-Dichloroethane	ND		0.21	1.0
1,3,5-Trichlorobenzene	1,2-Dichloroethene, Total	ND		0.81	2.0
1,3,5-Trimethylbenzene ND 0.77 1.0 1,3-Dichlorobenzene ND 0.78 1.0 1,3-Dichloropropane ND 0.75 1.0 1,4-Dichlorobenzene ND 0.84 1.0 1,4-Dioxane ND 9.3 40 2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 2-Hexanone ND 0.96 5.0 2-Hexanone (MIBK) ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.83 5.0 Benzene ND 0.83 5.0 Benzene ND 0.83 5.0 Bromochloromethane ND 0.87 1.0 </td <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>0.72</td> <td>1.0</td>	1,2-Dichloropropane	ND		0.72	1.0
1,3-Dichlorobenzene ND 0.78 1.0 1,3-Dichloropropane ND 0.75 1.0 1,4-Dichlorobenzene ND 0.84 1.0 1,4-Dioxane ND 9.3 40 2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acroloritrile ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.83 5.0 Benzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromochloromethane ND 0.89	1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3-Dichloropropane ND 0.75 1.0 1,4-Dichlorobenzene ND 0.84 1.0 1,4-Dioxane ND 9.3 40 2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 2-Hexanone ND 0.96 5.0 4-Methyl-2-pentanone (MIBK) ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetone ND 3.0 10 Acetone ND 4.9 15 Acrolein ND 0.83 5.0 Acrolein ND 0.83 5.0 Benzene ND 0.83 5.0 Benzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.69 1.0	1,3,5-Trimethylbenzene	ND		0.77	1.0
1,4-Dichlorobenzene ND 0.84 1.0 1,4-Dioxane ND 9.3 40 2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 4-Methyl-2-pentanone (MIBK) ND 3.0 10 Accetone ND 3.0 10 Acetonitrile ND 3.0 10 Acrolein ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.83 5.0 Benzene ND 0.83 5.0 Bromobenzene ND 0.87 1.0 Bromodichloromethane ND 0.87 1.0 Bromodichloromethane ND 0.69 1.0	1,3-Dichlorobenzene	ND		0.78	1.0
1,4-Dichlorobenzene ND 0.84 1.0 1,4-Dioxane ND 9.3 40 2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 2-Hexanone ND 0.96 5.0 2-Hexanone (MIBK) ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 4-Methyl-2-pentanone (MIBK) ND 3.0 10 Accetone ND 3.0 10 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.83 5.0 Benzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.26 1.0 <td>1,3-Dichloropropane</td> <td>ND</td> <td></td> <td>0.75</td> <td>1.0</td>	1,3-Dichloropropane	ND		0.75	1.0
2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetonitrile ND 3.0 10 Acrolein ND 4.9 15 Acrylonitrile ND 0.83 5.0 Benzene ND 0.83 5.0 Berzene ND 0.83 5.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromoform ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 3.3 10 Butyl alcohol, tert- ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenze	1,4-Dichlorobenzene	ND		0.84	1.0
2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromoform ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chloroberzene <td< td=""><td>1,4-Dioxane</td><td>ND</td><td></td><td>9.3</td><td>40</td></td<>	1,4-Dioxane	ND		9.3	40
2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 4-Methyl-2-pentanone (MIBK) ND 3.0 10 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromoform ND 0.39 1.0 Bromoform ND 0.69 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobe	2,2-Dichloropropane	ND		0.40	1.0
2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.83 5.0 Berzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromoform ND 0.39 1.0 Bromomethane ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, ret- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	2-Butanone (MEK)	ND		1.3	10
2-Hexanone ND 1.2 5.0 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.83 5.0 Berzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromoform ND 0.39 1.0 Bromomethane ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, ret- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	2-Chloroethyl vinyl ether	ND		0.96	5.0
Acetonie ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0		ND		1.2	5.0
Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromoform ND 0.39 1.0 Bromomethane ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Acetone	ND		3.0	10
Acrylonitrile ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Acetonitrile	ND		4.9	15
Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Acrolein	ND		0.91	20
Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Acrylonitrile	ND		0.83	5.0
Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Benzene	ND		0.41	1.0
Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Bromobenzene	ND		0.80	1.0
Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Bromochloromethane	ND		0.87	1.0
Bromomethane ND 0.69 1.0 Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Bromodichloromethane	ND		0.39	1.0
Butyl alcohol, n- ND 8.9 40 Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Bromoform	ND		0.26	1.0
Butyl alcohol, tert- ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Bromomethane	ND		0.69	1.0
Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0	Butyl alcohol, n-	ND		8.9	40
Carbon tetrachlorideND0.271.0ChlorobenzeneND0.751.0ChlorodifluoromethaneND0.261.0	Butyl alcohol, tert-	ND		3.3	10
ChlorobenzeneND0.751.0ChlorodifluoromethaneND0.261.0					
Chlorodifluoromethane ND 0.26 1.0	Carbon tetrachloride	ND			1.0
	Chlorobenzene	ND			1.0
Chloroethane ND 0.32 1.0	Chlorodifluoromethane				
	Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-2B1

 Lab Sample ID:
 280-91049-6
 Date Sampled: 11/15/2016 1453

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20630.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/26/2016 1348

Analysis Date: 11/26/2016 1348 Prep Date: 11/26/2016 1348

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
	ND ND		0.76	1.0
o-Xylene	ND ND		0.76	1.0
p-Chlorotoluene			0.84	
p-Cymene	ND ND			1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-2B1

 Lab Sample ID:
 280-91049-6
 Date Sampled: 11/15/2016 1453

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20630.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	108		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Toluene-d8 (Surr)	98		80 - 120

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-2B1

Lab Sample ID: 280-91049-6 Date Sampled: 11/15/2016 1453

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20630.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1348 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1348

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91049-7TB Date Sampled: 11/15/2016 0000

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333552 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20631.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1415

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91049-7TB Date Sampled: 11/15/2016 0000

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20631.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1415 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
• •	ND ND		0.75	1.0
sec-Butylbenzene			0.73	1.0
Styrene Test amul methyl other	ND ND		0.73	
Tert-amyl methyl ether	ND			1.0
tert-Butylbenzene	ND ND		0.81	1.0
Tetrachloroethene	ND ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91049-7TB Date Sampled: 11/15/2016 0000

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20631.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	107		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Toluene-d8 (Surr)	100		80 - 120

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91049-7TB Date Sampled: 11/15/2016 0000

Client Matrix: Water Date Received: 11/16/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333552 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20631.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1415 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1415

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-35

Lab Sample ID: 280-91049-1 Date Sampled: 11/15/2016 0950

Client Matrix: Water Date Received: 11/16/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1469.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/18/2016 0036 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0036

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 99 50 - 150

TBA-d9 (Surr) 120 50 - 150

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34C

Lab Sample ID: 280-91049-2 Date Sampled: 11/15/2016 1115

Client Matrix: Water Date Received: 11/16/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1470.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/18/2016 0100 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0100

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 0.078
 B
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits
Dibromofluoromethane (Surr) 97 50 - 150
TBA-d9 (Surr) 132 50 - 150

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34A

Lab Sample ID: 280-91049-3 Date Sampled: 11/15/2016 1200

Client Matrix: Water Date Received: 11/16/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1471.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/18/2016 0124 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0124

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 99 50 - 150

TBA-d9 (Surr) 131 50 - 150

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-36A

Lab Sample ID: 280-91049-4 Date Sampled: 11/15/2016 1251

Client Matrix: Water Date Received: 11/16/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1472.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/18/2016 0149 Final Weight/Volume: 25 mL

Analysis Date: 11/18/2016 0149 Final Weight/Volume
Prep Date: 11/18/2016 0149

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 101 50 - 150

TBA-d9 (Surr) 124 50 - 150

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-15R

Lab Sample ID: 280-91049-5 Date Sampled: 11/15/2016 1350

Client Matrix: Water Date Received: 11/16/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1473.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/18/2016 0213 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0213

Analyte Result (ug/L) Qualifier MDL RL
Vinyl chloride ND 0.0040 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)10250 - 150TBA-d9 (Surr)12950 - 150

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-2B1

Lab Sample ID: 280-91049-6 Date Sampled: 11/15/2016 1453

Client Matrix: Water Date Received: 11/16/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1474.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/18/2016 0238 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0238

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 0.0087
 J B
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)10050 - 150TBA-d9 (Surr)12150 - 150

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91049-7TB Date Sampled: 11/15/2016 0000

Client Matrix: Water Date Received: 11/16/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1475.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/18/2016 0302 Final Weight/Volume: 25 mL

Analysis Date: 11/18/2016 0302 Final Weight/Volume: 25 m

Prep Date: 11/18/2016 0302

D. W. W.

Analyte Result (ug/L) Qualifier MDL RL
Vinyl chloride ND 0.0040 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)9750 - 150TBA-d9 (Surr)13750 - 150

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-35

Lab Sample ID: 280-91049-1 Date Sampled: 11/15/2016 0950

Client Matrix: Water Date Received: 11/16/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354204 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352775 Lab File ID: 25B120416.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/04/2016 1946 Final Weight/Volume: 50 mL

Prep Date: 11/28/2016 1441

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

| Cobalt, Total | ND | 0.0030 | 0.0030 | 170n, Total | ND | 0.060 | 0.

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354165 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25A11316.asc Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/03/2016 2323 Final Weight/Volume: 50 mL

Prep Date: 11/29/2016 0726

Analyte Result (mg/L) Qualifier RL RL
Magnesium, Dissolved 10 0.050 0.050

Analysis Method: 6010B Analysis Batch: 280-354385 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25A120516.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/05/2016 2315 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 0726

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Calcium, Dissolved
 14
 0.040
 0.040

 Iron, Dissolved
 ND
 0.060
 0.060

 Potassium, Dissolved
 ND
 1.0
 1.0

Potassium, Dissolved ND 1.0 1.0 Sodium, Dissolved 6.3 1.0 1.0

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353513 Instrument ID: MT_078
Prep Method: 3005A Prep Batch: 280-352777 Lab File ID: 262SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/29/2016 0702 Final Weight/Volume: 50 mL Prep Date: 11/28/2016 1441

Qualifier RL Analyte Result (mg/L) RL Antimony, Total 0.0010 0.0010 ND Barium, Total 0.0027 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-35

Lab Sample ID: 280-91049-1 Date Sampled: 11/15/2016 0950

Client Matrix: Water Date Received: 11/16/2016 1000

Client Matrix:	Water				Date	Received: 11/16/2016 1000
		6020 Metals (ICP/N	IS)-Total R	ecoveral	ble	
Analyte		Result (n	ng/L)	Qualifi	er RL	RL
Manganese, Total		ND			0.0010	0.0010
Nickel, Total		ND			0.0040	0.0040
Silver, Total		ND			0.0020	0.0020
Thallium, Total		ND			0.0010	0.0010
Vanadium, Total		0.0043			0.0020	0.0020
Zinc, Total		ND			0.0050	0.0050
Analysis Method:	6020	Analysis Batch:	280-3536	93	Instrument ID:	MT_078
Prep Method:	3005A	Prep Batch:	280-3527	77	Lab File ID:	047SMPL.d
Dilution:	1.0	-r			Initial Weight/Volum	ne: 50 mL
Analysis Date:	11/29/2016 1744				Final Weight/Volum	
Prep Date:	11/28/2016 1441				Timal Troigne Tolain	o. 00 mz
Analyte		Result (n	ng/L)	Qualifi	er RL	RL
Selenium, Total		ND			0.0010	0.0010
		6020 Metals (I	CP/MS)-Dis	solved		
Analysis Method:	6020	Analysis Batch:	280-3530	28	Instrument ID:	MT 077
Prep Method:	3005A	Prep Batch:	280-3524	-	Lab File ID:	199SMPL.d
Dilution:	1.0	r rep bateri.	200 002-	00	Initial Weight/Volum	
Analysis Date:	11/24/2016 0046				Final Weight/Volum	
Prep Date:	11/23/2016 1445				i iilai vveigili/volulli	C. JU IIIL
Analyte		Result (n	ng/L)	Qualifi	er RL	RL
Manganese, Disso	lved	ND			0.0010	0.0010

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34C

Lab Sample ID: 280-91049-2 Date Sampled: 11/15/2016 1115

Client Matrix: Water Date Received: 11/16/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354204 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352775 Lab File ID: 25B120416.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/04/2016 1949 Final Weight/Volume: 50 mL

Prep Date: 11/28/2016 1441

Sodium, Dissolved

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

Iron, Total 8.4 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354165 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25A11316.asc Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/03/2016 2326 Final Weight/Volume: 50 mL

Prep Date: 11/29/2016 0726

Analyte Result (mg/L) Qualifier RL RL
Magnesium, Dissolved 11 0.050 0.050

Analysis Method: 6010B Analysis Batch: 280-354577 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25B120616.asc

Dilution: 5.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/06/2016 1706 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 0726

Qualifier RL RL Result (mg/L) Analyte Calcium, Dissolved 0.20 0.20 24 Iron, Dissolved 0.62 0.30 0.30 Potassium, Dissolved ND 5.0 5.0

12

5.0

5.0

Analysis Method: 6020 Analysis Batch: 280-353513 Instrument ID: MT_078
Prep Method: 3005A Prep Batch: 280-352777 Lab File ID: 267SMPL.d

6020 Metals (ICP/MS)-Total Recoverable

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/29/2016 0721 Final Weight/Volume: 50 mL Prep Date: 11/28/2016 1441

Qualifier RL Analyte Result (mg/L) RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.037 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010

Job Number: 280-91049-1 Client: Waste Management

Client Sample ID: MW-34C

Lab Sample ID: 280-91049-2 Date Sampled: 11/15/2016 1115 Client Matrix Date Received: 11/16/2016 1000

Water

Client Matrix:	Water				Date Re	ceived: 11/16/2016 1000
		6020 Metals (ICP/N	IS)-Total R	ecoveral	ole	_
Analyte		Result (n	ng/L)	Qualific	er RL	RL
Manganese, Total		0.60			0.0010	0.0010
Nickel, Total		ND			0.0040	0.0040
Silver, Total		ND			0.0020	0.0020
Thallium, Total		ND			0.0010	0.0010
Vanadium, Total		ND			0.0020	0.0020
Zinc, Total		ND			0.0050	0.0050
Analysis Method:	6020	Analysis Batch:	280-35369	93	Instrument ID:	MT_078
Prep Method:	3005A	Prep Batch:	280-3527	77	Lab File ID:	052SMPL.d
Dilution:	1.0				Initial Weight/Volume:	
Analysis Date:	11/29/2016 1803				Final Weight/Volume:	
Prep Date:	11/28/2016 1441				a o.g o.ao.	
Analyte		Result (n	ng/L)	Qualific	er RL	RL
Selenium, Total		ND			0.0010	0.0010
		6020 Metals (I	CP/MS)-Dis	solved		
Analysis Method:	6020	Analysis Batch:	280-35302	28	Instrument ID:	MT_077
Prep Method:	3005A	Prep Batch:	280-3524		Lab File ID:	200SMPL.d
Dilution:	1.0	r rep Bateri.	200 002-1	50	Initial Weight/Volume:	
Analysis Date:	11/24/2016 0050				Final Weight/Volume:	
Prep Date:	11/23/2016 1445				i iliai vveigili/voiuille.	30 IIIL
Analyte		Result (n	ng/L)	Qualifi	er RL	RL
Manganese, Disso	olved	0.54			0.0010	0.0010

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-34A

Dilution:

Lab Sample ID: 280-91049-3 Date Sampled: 11/15/2016 1200

Client Matrix: Water Date Received: 11/16/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354204 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352775 Lab File ID: 25B120416.asc

1.0 Initial Weight/Volume: 50 mL 12/04/2016 1951 Final Weight/Volume: 50 mL

Analysis Date: 12/04/2016 1951
Prep Date: 11/28/2016 1441

Analyte Result (mg/L) Qualifier RL RL

 Cobalt, Total
 ND
 0.0030
 0.0030

 Iron, Total
 0.060
 0.060
 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354165 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25A11316.asc Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/03/2016 2328 Final Weight/Volume: 50 mL

Prep Date: 11/29/2016 0726

Analyte Result (mg/L) Qualifier RL RL

Magnesium, Dissolved 8.5 0.050 0.050

Analysis Method: 6010B Analysis Batch: 280-354385 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25A120516.asc Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/05/2016 2320 Final Weight/Volume: 50 mL

 Prep Date:
 11/29/2016 0726

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Calcium. Dissolved
 15
 0.040
 0.040

 Calcium, Dissolved
 13
 0.040
 0.040

 Iron, Dissolved
 ND
 0.060
 0.060

 Potassium, Dissolved
 ND
 1.0
 1.0

 Sodium, Dissolved
 9.7
 1.0
 1.0

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353513 Instrument ID: MT_078
Prep Method: 3005A Prep Batch: 280-352777 Lab File ID: 268SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/29/2016 0725 Final Weight/Volume: 50 mL Prep Date: 11/28/2016 1441

Qualifier RL Analyte Result (mg/L) RL Antimony, Total 0.0010 0.0010 ND Barium, Total 0.0045 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010

Job Number: 280-91049-1 Client: Waste Management

Client Sample ID: MW-34A

Analyte

Manganese, Dissolved

Lab Sample ID: 280-91049-3 Date Sampled: 11/15/2016 1200

Client Matrix:	Water				Date Re	ceived: 11/16/2016 1000
		6020 Metals (ICP/N	/IS)-Total Red	coverab	le	
Analyte		Result (r	ng/L)	Qualifie	er RL	RL
Manganese, Total Nickel, Total Silver, Total		0.0027 ND ND			0.0010 0.0040 0.0020	0.0010 0.0040 0.0020
Thallium, Total Vanadium, Total Zinc, Total		ND 0.0039 ND			0.0010 0.0020 0.0050	0.0010 0.0020 0.0050
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6020 3005A 1.0 11/29/2016 1807 11/28/2016 1441	Analysis Batch: Prep Batch:	280-353693 280-352777	7	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	MT_078 053SMPL.d 50 mL 50 mL
Analyte Selenium, Total		Result (r ND	mg/L)	Qualifie	er RL 0.0010	RL 0.0010
		6020 Metals (I	CP/MS)-Diss	olved		
Analysis Method: Prep Method: Dilution: Analysis Date: Prep Date:	6020 3005A 1.0 11/24/2016 0054 11/23/2016 1445	Analysis Batch: Prep Batch:	280-353028 280-352489	9	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	MT_077 201SMPL.d 50 mL 50 mL

Result (mg/L)

0.0017

Qualifier

RL

0.0010

RL

0.0010

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-36A

Lab Sample ID: 280-91049-4 Date Sampled: 11/15/2016 1251

Client Matrix: Water Date Received: 11/16/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354204 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352775 Lab File ID: 25B120416.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analysis Date: 12/04/2016 1954 Final Weight/Volume: 50

Prep Date: 11/28/2016 1441

1.0

Dilution:

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

Iron, Total 0.078 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354165 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25A11316.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/03/2016 2331 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 0726

Analyte Result (mg/L) Qualifier RL RL

Magnesium, Dissolved 8.0 0.050 0.050

Analysis Method: 6010B Analysis Batch: 280-354385 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25A120516.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/05/2016 2323 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 0726

Qualifier RL RL Analyte Result (mg/L) Calcium, Dissolved 0.040 0.040 10 Iron, Dissolved ND 0.060 0.060 Sodium, Dissolved 7.3 1.0 1.0

Analysis Method: 6010B Analysis Batch: 280-354577 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25B120616.asc Dilution: 1.0 Lab File ID: 25B120616.asc Initial Weight/Volume: 50 mL

ilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/06/2016 1709 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 0726

Analyte Result (mg/L) Qualifier RL RL
Potassium, Dissolved ND 1.0 1.0

Potassium, Dissolved ND 1.0 1.

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353513 Instrument ID: MT_078

Prep Method: 3005A Prep Batch: 280-352777 Lab File ID: 269SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/29/2016 0729 Final Weight/Volume: 50 mL Prep Date: 11/28/2016 1441

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-36A

 Lab Sample ID:
 280-91049-4
 Date Sampled: 11/15/2016 1251

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

Date Received: 11/16/2016 1000

		6020 Metals (ICP/M	IS)-Total Red	coverable	•	
Analyte		Result (m	ng/L)	Qualifier	RL	RL
Antimony, Total		ND			0.0010	0.0010
Barium, Total		0.0025			0.0010	0.0010
Beryllium, Total		ND			0.0010	0.0010
Cadmium, Total		ND			0.00020	0.00020
Chromium, Total		0.0085			0.0030	0.0030
Copper, Total		ND			0.0020	0.0020
Lead, Total		ND			0.0010	0.0010
Manganese, Total		0.0013			0.0010	0.0010
Nickel, Total		ND			0.0040	0.0040
Silver, Total		ND			0.0020	0.0020
Thallium, Total		ND			0.0010	0.0010
Vanadium, Total		0.0031			0.0020	0.0020
Zinc, Total		ND			0.0050	0.0050
Analysis Method:	6020	Analysis Batch:	280-353693	3 Ir	nstrument ID:	MT_078
Prep Method:	3005A	Prep Batch:	280-352777	7 L	ab File ID:	054SMPL.d
Dilution:	1.0	,		Ir	nitial Weight/Volume:	50 mL
Analysis Date:	11/29/2016 1811				inal Weight/Volume:	50 mL
Prep Date:	11/28/2016 1441			-		
Analyte		Result (m	ng/L)	Qualifier	RL	RL
Selenium, Total		ND			0.0010	0.0010
		6020 Metals (IC	CP/MS)-Diss	olved		
Analysis Method:	6020	Analysis Batch:	280-353028	3 Ir	nstrument ID:	MT_077
Prep Method:	3005A	Prep Batch:	280-352489) L	ab File ID:	202SMPL.d
Dilution:	1.0	•			nitial Weight/Volume:	50 mL
Analysis Date:	11/24/2016 0058				inal Weight/Volume:	50 mL
Prep Date:	11/23/2016 1445					30 <u>L</u>
Analyte		Result (m	ng/L)	Qualifier	RL	RL
Manganese, Disso	li ra al	ND	<u> </u>		0.0010	0.0010

Job Number: 280-91049-1 Client: Waste Management

Client Sample ID: MW-15R

Lab Sample ID: 280-91049-5 Date Sampled: 11/15/2016 1350

Client Matrix: Water Date Received: 11/16/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354204 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352775 Lab File ID: 25B120416.asc

> 50 mL Initial Weight/Volume:

> > 1.0

1.0

Dilution: Analysis Date: 12/04/2016 1956 Final Weight/Volume: 50 mL

Prep Date: 11/28/2016 1441

1.0

Qualifier RL RL Analyte Result (mg/L) Cobalt, Total ND 0.0030 0.0030

Iron, Total ND 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354165 Instrument ID: MT 025

Prep Method: 3005A Prep Batch: 280-352772 25A11316.asc Lab File ID: Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 50 12/03/2016 2334 Final Weight/Volume: mL

Prep Date: 11/29/2016 0726

Sodium, Dissolved

Qualifier Analyte Result (mg/L) RL RL Magnesium, Dissolved 9.4 0.050 0.050

Analysis Method: 6010B Analysis Batch: 280-354385 Instrument ID: MT_025 Prep Method: 3005A Prep Batch: 280-352772 Lab File ID: 25A120516.asc

50 mL Dilution: 1.0 Initial Weight/Volume:

Analysis Date: 12/05/2016 2325 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 0726

6.3

Qualifier RL RL Result (mg/L) Analyte Calcium, Dissolved 0.040 0.040 13 Iron, Dissolved ND 0.060 0.060 Potassium, Dissolved ND 1.0 1.0

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353513 Instrument ID: MT_078 270SMPL.d Prep Method: 3005A Prep Batch: 280-352777 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/29/2016 0733 Final Weight/Volume: 50 mL 11/28/2016 1441 Prep Date:

Qualifier RL Analyte Result (mg/L) RL Antimony, Total 0.0010 0.0010 ND Barium, Total 0.0044 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010

0.0010

0.0010

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-15R

Manganese, Dissolved

Lab Sample ID: 280-91049-5 Date Sampled: 11/15/2016 1350

Client Matrix: Water Date Received: 11/16/2016 1000

Client Matrix:	Water				Date Re	ceived: 11/16/2016 10
		6020 Metals (ICP/N	IS)-Total Red	covera	ble	
Analyte		Result (n	ng/L)	Qualifi	er RL	RL
Manganese, Total		0.0037	-		0.0010	0.0010
Nickel, Total		ND			0.0040	0.0040
Silver, Total		ND			0.0020	0.0020
Thallium, Total		ND			0.0010	0.0010
Vanadium, Total		0.0037			0.0020	0.0020
Zinc, Total		ND			0.0050	0.0050
Analysis Method:	6020	Analysis Batch:	280-353693	3	Instrument ID:	MT_078
Prep Method:	3005A	Prep Batch:	280-352777	7	Lab File ID:	055SMPL.d
Dilution:	1.0	'			Initial Weight/Volume:	50 mL
Analysis Date:	11/29/2016 1815				Final Weight/Volume:	
Prep Date:	11/28/2016 1441				· · · · · · · · · · · · · · · · · · ·	
Analyte		Result (n	ng/L)	Qualifi	er RL	RL
Selenium, Total		ND			0.0010	0.0010
		6020 Metals (IC	CP/MS)-Diss	olved		
Analysis Method:	6020	Analysis Batch:	280-353028	3	Instrument ID:	MT_077
Prep Method:	3005A	Prep Batch:	280-352489	9	Lab File ID:	203SMPL.d
Dilution:	1.0	- r ·			Initial Weight/Volume:	
Analysis Date:	11/24/2016 0101				Final Weight/Volume:	50 mL
Prep Date:	11/23/2016 1445				· ···a·· · · · · · · · · · · · · · · ·	
Analyte		Result (n	ng/L)	Qualifi	er RL	RL

0.0013

Job Number: 280-91049-1 Client: Waste Management

Client Sample ID: MW-2B1

Lab Sample ID: 280-91049-6 Date Sampled: 11/15/2016 1453

Client Matrix: Water Date Received: 11/16/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354204 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352775 Lab File ID: 25B120416.asc 1.0 Dilution: 50 mL

Initial Weight/Volume: Analysis Date: 12/04/2016 1959 Final Weight/Volume: 50 mL

Prep Date: 11/28/2016 1441

Sodium, Dissolved

Result (mg/L) Qualifier RL RL Analyte Cobalt, Total ND 0.0030 0.0030 Iron, Total 1.1 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354385 Instrument ID: MT 025

Prep Method: 3005A Prep Batch: 280-352772 25A120516.asc Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 50 12/05/2016 2338 Final Weight/Volume: mL Prep Date: 11/29/2016 0726

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 18 0.040 0.040 Iron, Dissolved 0.31 0.060 0.060 Magnesium, Dissolved 5.6 0.050 0.050 Potassium, Dissolved 2.8 1.0 1.0 1.0 1.0

6020 Metals (ICP/MS)-Total Recoverable

11

Analysis Method: 6020 Analysis Batch: 280-353513 Instrument ID: MT 078 Prep Method: 3005A 271SMPL.d Prep Batch: 280-352777 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/29/2016 0737 Final Weight/Volume: 50 mL 11/28/2016 1441 Prep Date:

Result (mg/L) RL Analyte Qualifier RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.013 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Manganese, Total 2.7 0.0010 0.0010 Nickel, Total ND 0.0040 0.0040 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total ND 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050

Client: Waste Management Job Number: 280-91049-1

Client Sample ID: MW-2B1

Lab Sample ID: 280-91049-6 Date Sampled: 11/15/2016 1453

Client Matrix: Water Date Received: 11/16/2016 1000

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353693 Instrument ID: MT_078
Prep Method: 3005A Prep Batch: 280-352777 Lab File ID: 056SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 1819 Final Weight/Volume: 50 mL

Prep Date: 11/28/2016 1441

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Selenium, Total
 ND
 0.0010
 0.0010

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 204SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/24/2016 0105 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 2.5 0.0010 0.0010

General Chemistry

Client Sample ID: MW-35

 Lab Sample ID:
 280-91049-1
 Date Sampled:
 11/15/2016 0950

 Client Matrix:
 Water
 Date Received:
 11/16/2016 1000

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	1.8	~~~	mg/L	1.0	1.0	1.0	300.0
Analys	sis Batch: 280-354220	Analysis Date	U	2016 2218			
Sulfate	2.2	•	mg/L	1.0	1.0	1.0	300.0
Analys	sis Batch: 280-354220	Analysis Date	: 12/05/2	2016 2218			
Ammonia (as N)	ND		mg/L	0.030	0.030	1.0	350.1
Analys	sis Batch: 280-352943	Analysis Date	: 11/23/2	2016 1644			
Nitrate as N	0.47		mg/L	0.050	0.050	1.0	353.2
Analys	sis Batch: 280-354397	Analysis Date	: 12/06/2	2016 0931			
Alkalinity, Total (As CaC	O3) 91		mg/L	5.0	5.0	1.0	SM 2320B
Analys	sis Batch: 280-352384	Analysis Date	: 11/20/2	2016 1618			
Alkalinity, Bicarbonate (A	As CaCO3) 91		mg/L	5.0	5.0	1.0	SM 2320B
Analys	sis Batch: 280-352384	Analysis Date	: 11/20/2	2016 1618			
Total Dissolved Solids (TDS) 120		mg/L	5.0	5.0	1.0	SM 2540C
Analys	sis Batch: 280-352501	Analysis Date	: 11/21/2	2016 1702			
Total Suspended Solids	ND		mg/L	4.0	4.0	1.0	SM 2540D
Analys	sis Batch: 280-352718		: 11/22/2	2016 1639			
Total Organic Carbon - A	Average ND		mg/L	1.0	1.0	1.0	SM 5310B
Analys	sis Batch: 280-353712	Analysis Date	: 11/29/2	2016 2239			

General Chemistry

Client Sample ID: MW-34C

 Lab Sample ID:
 280-91049-2
 Date Sampled:
 11/15/2016 1115

 Client Matrix:
 Water
 Date Received:
 11/16/2016 1000

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	4.4		mg/L	1.0	1.0	1.0	300.0
A	nalysis Batch: 280-354220	Analysis Date	: 12/05/20	16 2320			
Sulfate	4.6		mg/L	1.0	1.0	1.0	300.0
A	nalysis Batch: 280-354220	Analysis Date	: 12/05/20	16 2320			
Ammonia (as N)	0.030		mg/L	0.030	0.030	1.0	350.1
Α	nalysis Batch: 280-352943	Analysis Date	: 11/23/20)16 1646			
Nitrate as N	ND		mg/L	0.050	0.050	1.0	353.2
A	nalysis Batch: 280-354397	Analysis Date	: 12/06/20)16 0931			
Alkalinity, Total (As	CaCO3) 110		mg/L	5.0	5.0	1.0	SM 2320B
A	nalysis Batch: 280-352384	Analysis Date	: 11/20/20	16 1623			
Alkalinity, Bicarbon	ate (As CaCO3) 110		mg/L	5.0	5.0	1.0	SM 2320B
A	nalysis Batch: 280-352384	Analysis Date	: 11/20/20	16 1623			
Total Dissolved Sol	ids (TDS) 160		mg/L	5.0	5.0	1.0	SM 2540C
A	nalysis Batch: 280-352501	Analysis Date	: 11/21/20	16 1702			
Total Suspended S	olids 19		mg/L	4.0	4.0	1.0	SM 2540D
A	nalysis Batch: 280-352718	Analysis Date	: 11/22/20	16 1639			
Total Organic Carb	on - Average ND		mg/L	1.0	1.0	1.0	SM 5310B
A	nalysis Batch: 280-353712	Analysis Date	: 11/29/20	16 2256			

General Chemistry

Client Sample ID: MW-34A

 Lab Sample ID:
 280-91049-3
 Date Sampled: 11/15/2016 1200

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

Analyte		Result	Qual	Units	RL	RL	Dil	Method
Chloride		3.2		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch:	280-354220	Analysis Date	: 12/05/20	16 2336			
Sulfate		3.0		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch:	280-354220	Analysis Date	: 12/05/20	16 2336			
Ammonia (as I	N)	ND		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch:	280-352943	Analysis Date	: 11/23/20)16 1648			
Nitrate as N		ND		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch:	280-354397	Analysis Date	: 12/06/20	16 0931			
Alkalinity, Tota	al (As CaCO3)	80		mg/L	5.0	5.0	1.0	SM 2320E
	Analysis Batch:	280-352384	Analysis Date	: 11/20/20	16 1628			
Alkalinity, Bica	arbonate (As CaCO3	3) 80		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch:	280-352384	Analysis Date	: 11/20/20	16 1628			
Total Dissolve	d Solids (TDS)	120		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch:	280-352501	Analysis Date	: 11/21/20	16 1702			
Total Suspend	led Solids	ND		mg/L	4.0	4.0	1.0	SM 2540E
	Analysis Batch:	280-352718	Analysis Date	: 11/22/20	16 1639			
Total Organic	Carbon - Average	ND		mg/L	1.0	1.0	1.0	SM 5310E
	Analysis Batch:	280-354209	Analysis Date	: 12/02/20	16 1544			

General Chemistry

Client Sample ID: MW-36A

 Lab Sample ID:
 280-91049-4
 Date Sampled: 11/15/2016 1251

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

Analyte		Result	Qual	Units	RL	RL	Dil	Method
Chloride		1.7		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch:	280-354220	Analysis Date	: 12/05/20	16 2351			
Sulfate		2.5		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch:	280-354220	Analysis Date	: 12/05/20	16 2351			
Ammonia (as	N)	ND		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch:	280-352943	Analysis Date	: 11/23/20	16 1650			
Nitrate as N		0.49		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch:	280-354397	Analysis Date	: 12/06/20	16 0931			
Alkalinity, Tota	al (As CaCO3)	60		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch:	280-352384	Analysis Date	: 11/20/20	16 1633			
Alkalinity, Bica	arbonate (As CaCO3	3) 60		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch:	280-352384	Analysis Date	: 11/20/20	16 1633			
Total Dissolve	ed Solids (TDS)	96		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch:	280-352501	Analysis Date	: 11/21/20	16 1702			
Total Suspend	ded Solids	ND		mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch:	280-352718	Analysis Date	: 11/22/20	16 1639			
Total Organic	Carbon - Average	ND		mg/L	1.0	1.0	1.0	SM 5310B
_	Analysis Batch:	280-354209	Analysis Date	: 12/02/20	16 1628			

General Chemistry

Client Sample ID: MW-15R

 Lab Sample ID:
 280-91049-5
 Date Sampled: 11/15/2016 1350

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	2.3		mg/L	1.0	1.0	1.0	300.0
Analysis	Batch: 280-354220	Analysis Date	: 12/06/20	16 0007			
Sulfate	4.8		mg/L	1.0	1.0	1.0	300.0
Analysis	Batch: 280-354220	Analysis Date	: 12/06/20	16 0007			
Ammonia (as N)	ND		mg/L	0.030	0.030	1.0	350.1
Analysis	Batch: 280-352943	Analysis Date	: 11/23/20	16 1706			
Nitrate as N	0.20		mg/L	0.050	0.050	1.0	353.2
Analysis	Batch: 280-354397	Analysis Date	: 12/06/20	16 0931			
Alkalinity, Total (As CaCO3) 71		mg/L	5.0	5.0	1.0	SM 2320B
Analysis	Batch: 280-352384	Analysis Date	: 11/20/20	16 1638			
Alkalinity, Bicarbonate (As	CaCO3) 71		mg/L	5.0	5.0	1.0	SM 2320B
Analysis	Batch: 280-352384	Analysis Date	: 11/20/20	16 1638			
Total Dissolved Solids (TDS	S) 91		mg/L	5.0	5.0	1.0	SM 2540C
Analysis	Batch: 280-352501	Analysis Date	: 11/21/20	16 1702			
Total Suspended Solids	ND		mg/L	4.0	4.0	1.0	SM 2540D
Analysis	Batch: 280-352718	Analysis Date	: 11/22/20	16 1639			
Гotal Organic Carbon - Ave	rage ND		mg/L	1.0	1.0	1.0	SM 5310B
Analysis	Batch: 280-354209	Analysis Date	: 12/02/20	16 1642			

General Chemistry

Client Sample ID: MW-2B1

 Lab Sample ID:
 280-91049-6
 Date Sampled: 11/15/2016 1453

 Client Matrix:
 Water
 Date Received: 11/16/2016 1000

Analyte	Re	esult	Qual	Units	RL	RL	Dil	Method
Chloride	14			mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35	4220	Analysis Date	: 12/06/	2016 0022			
Sulfate	6.0	0		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35	4220	Analysis Date	: 12/06/	2016 0022			
Ammonia (as N)	2.	1		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch: 280-35	2943	Analysis Date	: 11/23/	2016 1712			
Nitrate as N	1.8	8		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-35	4397	Analysis Date	: 12/06/	2016 0931			
Alkalinity, Total	(As CaCO3) 82	<u> </u>		mg/L	5.0	5.0	1.0	SM 2320B
•	Analysis Batch: 280-35	2384	Analysis Date	: 11/20/	2016 1643			
Alkalinity, Bicart	onate (As CaCO3) 82	<u> </u>	•	mg/L	5.0	5.0	1.0	SM 2320B
•	Analysis Batch: 280-35			: 11/20/	2016 1643			
Total Dissolved	Solids (TDS) 14	10	•	mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 280-35	2501	Analysis Date	: 11/21/	2016 1702			
Total Suspende	d Solids NI		•	mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch: 280-35		Analysis Date	•				
Total Organic Ca	•		,	mg/L	1.0	1.0	1.0	SM 5310B
	Analysis Batch: 280-35			•				55.55
	. ,		. ,					

Field Service / Mobile Lab

Client Sample ID: MW-35

Lab Sample ID: 280-91049-1 Date Sampled: 11/15/2016 0950

Client Matrix: Water Date Received: 11/16/2016 1000

						Analysis	Date Analyzed
Analyte	Result	Qual	Units	Dil	Method	Batch	Date Prepared
Depth to water	71.17		ft	1.0	Field Sampling	280-352756	11/15/2016 1050
Specific Conductivity	158		umhos/cm	1.0	Field Sampling	280-352756	11/15/2016 1050
Dissolved Oxygen	6.61		mg/L	1.0	Field Sampling	280-352756	11/15/2016 1050
еН	95.0		millivolts	1.0	Field Sampling	280-352756	11/15/2016 1050
Turbidity	0.78		NTU	1.0	Field Sampling	280-352756	11/15/2016 1050
Temperature	10.41		Degrees C	1.0	Field Sampling	280-352756	11/15/2016 1050
рН	6.61		SU	1.0	Field Sampling	280-352756	11/15/2016 1050

Field Service / Mobile Lab

Client Sample ID: MW-34C

Lab Sample ID: 280-91049-2 Date Sampled: 11/15/2016 1115

Date Received: 11/16/2016 1000 Client Matrix: Water

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	40.73		ft	1.0	Field Sampling	280-352756	11/15/2016 1215
Specific Conductivity	231		umhos/cm	1.0	Field Sampling	280-352756	11/15/2016 1215
Dissolved Oxygen	0.58		mg/L	1.0	Field Sampling	280-352756	11/15/2016 1215
еН	41.6		millivolts	1.0	Field Sampling	280-352756	11/15/2016 1215
Turbidity	77.9		NTU	1.0	Field Sampling	280-352756	11/15/2016 1215
Temperature	12.60		Degrees C	1.0	Field Sampling	280-352756	11/15/2016 1215
рН	7.45		SU	1.0	Field Sampling	280-352756	11/15/2016 1215

Field Service / Mobile Lab

Client Sample ID: MW-34A

Lab Sample ID: 280-91049-3 Date Sampled: 11/15/2016 1200

Client Matrix: Water Date Received: 11/16/2016 1000

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	38.91	Quai	ft	1.0	Field Sampling	280-352756	11/15/2016 1300
Specific Conductivity	177		umhos/cm	1.0	Field Sampling	280-352756	11/15/2016 1300
Dissolved Oxygen	0.51		mg/L	1.0	Field Sampling	280-352756	11/15/2016 1300
еН	119.6		millivolts	1.0	Field Sampling	280-352756	11/15/2016 1300
Turbidity	1.25		NTU	1.0	Field Sampling	280-352756	11/15/2016 1300
Temperature	12.47		Degrees C	1.0	Field Sampling	280-352756	11/15/2016 1300
рН	6.79		SU	1.0	Field Sampling	280-352756	11/15/2016 1300

Field Service / Mobile Lab

Client Sample ID: MW-36A

Lab Sample ID: 280-91049-4 Date Sampled: 11/15/2016 1251 Client Matrix:

Water Date Received: 11/16/2016 1000

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	30.43		ft	1.0	Field Sampling	280-352756	11/15/2016 1351
Specific Conductivity	128		umhos/cm	1.0	Field Sampling	280-352756	11/15/2016 1351
Dissolved Oxygen	2.90		mg/L	1.0	Field Sampling	280-352756	11/15/2016 1351
еН	133.3		millivolts	1.0	Field Sampling	280-352756	11/15/2016 1351
Turbidity	1.75		NTU	1.0	Field Sampling	280-352756	11/15/2016 1351
Temperature	9.71		Degrees C	1.0	Field Sampling	280-352756	11/15/2016 1351
рН	6.81		SU	1.0	Field Sampling	280-352756	11/15/2016 1351

Field Service / Mobile Lab

Client Sample ID: MW-15R

Lab Sample ID: 280-91049-5 Date Sampled: 11/15/2016 1350

Client Matrix: Date Received: 11/16/2016 1000 Water

						Analysis	Date Analyzed
Analyte	Result	Qual	Units	Dil	Method	Batch	Date Prepared
Depth to water	18.30		ft	1.0	Field Sampling	280-352756	11/15/2016 1450
Specific Conductivity	155		umhos/cm	1.0	Field Sampling	280-352756	11/15/2016 1450
Dissolved Oxygen	0.85		mg/L	1.0	Field Sampling	280-352756	11/15/2016 1450
еН	109.0		millivolts	1.0	Field Sampling	280-352756	11/15/2016 1450
Turbidity	1.21		NTU	1.0	Field Sampling	280-352756	11/15/2016 1450
Temperature	10.45		Degrees C	1.0	Field Sampling	280-352756	11/15/2016 1450
рН	7.37		SU	1.0	Field Sampling	280-352756	11/15/2016 1450

Field Service / Mobile Lab

Client Sample ID: MW-2B1

Lab Sample ID: 280-91049-6 Date Sampled: 11/15/2016 1453 Client Matrix:

Water Date Received: 11/16/2016 1000

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	6.20		ft	1.0	Field Sampling	280-352756	11/15/2016 1553
Specific Conductivity	241		umhos/cm	1.0	Field Sampling	280-352756	11/15/2016 1553
Dissolved Oxygen	0.17		mg/L	1.0	Field Sampling	280-352756	11/15/2016 1553
еН	80.2		millivolts	1.0	Field Sampling	280-352756	11/15/2016 1553
Turbidity	7.21		NTU	1.0	Field Sampling	280-352756	11/15/2016 1553
Temperature	13.35		Degrees C	1.0	Field Sampling	280-352756	11/15/2016 1553
рН	7.29		SU	1.0	Field Sampling	280-352756	11/15/2016 1553

DATA REPORTING QUALIFIERS

Client: Waste Management Job Number: 280-91049-1

Lab Section	Qualifier	Description
GC/MS VOA		
	В	Compound was found in the blank and sample.
	F1	MS and/or MSD Recovery is outside acceptance limits.
	F2	MS/MSD RPD exceeds control limits
	Е	Result exceeded calibration range.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals		
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

QUALITY CONTROL RESULTS

Quality Control Results

Job Number: 280-91049-1 Client: Waste Management

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA	·				·
Analysis Batch:480-33	32322				
LCS 480-332322/4	Lab Control Sample	T	Water	8260C SIM	
LCSD 480-332322/5	Lab Control Sample Duplicate	T	Water	8260C SIM	
MB 480-332322/7	Method Blank	T	Water	8260C SIM	
280-91030-J-2 MS	Matrix Spike	Т	Water	8260C SIM	
280-91030-J-2 MSD	Matrix Spike Duplicate	Т	Water	8260C SIM	
280-91049-1	MW-35	T	Water	8260C SIM	
280-91049-2	MW-34C	Т	Water	8260C SIM	
280-91049-3	MW-34A	T	Water	8260C SIM	
280-91049-4	MW-36A	Т	Water	8260C SIM	
280-91049-5	MW-15R	T	Water	8260C SIM	
280-91049-6	MW-2B1	T	Water	8260C SIM	
280-91049-7TB	TRIP BLANK	T	Water	8260C SIM	
Analysis Batch:480-33	33378				
LCS 480-333378/4	Lab Control Sample	T	Water	8260C	
MB 480-333378/6	Method Blank	T	Water	8260C	
280-91049-1	MW-35	T	Water	8260C	
480-109672-R-1 MS	Matrix Spike	Т	Water	8260C	
480-109672-R-1 MSD	Matrix Spike Duplicate	Т	Water	8260C	
Analysis Batch:480-33	33552				
LCS 480-333552/4	Lab Control Sample	T	Water	8260C	
MB 480-333552/6	Method Blank	T	Water	8260C	
280-91049-2	MW-34C	T	Water	8260C	
280-91049-3	MW-34A	Т	Water	8260C	
280-91049-4	MW-36A	Т	Water	8260C	
280-91049-5	MW-15R	Т	Water	8260C	
280-91049-6	MW-2B1	Т	Water	8260C	
280-91049-7TB	TRIP BLANK	T	Water	8260C	
480-109670-K-2 MS	Matrix Spike	T	Water	8260C	
480-109670-K-2 MSD	Matrix Spike Duplicate	Т	Water	8260C	

Report Basis T = Total

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals	·				·
Prep Batch: 280-352489)				
LCS 280-352489/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352489/1-A	Method Blank	R	Water	3005A	
280-91030-D-2-B MS	Matrix Spike	D	Water	3005A	
280-91030-D-2-C MSD	Matrix Spike Duplicate	D	Water	3005A	
280-91049-1	MW-35	D	Water	3005A	
280-91049-2	MW-34C	D	Water	3005A	
280-91049-3	MW-34A	D	Water	3005A	
280-91049-4	MW-36A	D	Water	3005A	
280-91049-5	MW-15R	D	Water	3005A	
280-91049-6	MW-2B1	D	Water	3005A	
Prep Batch: 280-352772	2				
LCS 280-352772/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352772/1-A	Method Blank	R	Water	3005A	
280-91049-1	MW-35	D	Water	3005A	
280-91049-2	MW-34C	D	Water	3005A	
280-91049-3	MW-34A	D	Water	3005A	
280-91049-4	MW-36A	D	Water	3005A	
280-91049-5	MW-15R	D	Water	3005A	
280-91049-6	MW-2B1	D	Water	3005A	
280-91149-A-2-B MS	Matrix Spike	D	Water	3005A	
280-91149-A-2-C MSD	Matrix Spike Duplicate	D	Water	3005A	
Prep Batch: 280-352775	5				
LCS 280-352775/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352775/1-A	Method Blank	R	Water	3005A	
280-91049-1	MW-35	R	Water	3005A	
280-91049-2	MW-34C	R	Water	3005A	
280-91049-3	MW-34A	R	Water	3005A	
280-91049-4	MW-36A	R	Water	3005A	
280-91049-5	MW-15R	R	Water	3005A	
280-91049-6	MW-2B1	R	Water	3005A	
280-91099-D-1-B MS	Matrix Spike	R	Water	3005A	
280-91099-D-1-C MSD	Matrix Spike Duplicate	R	Water	3005A	

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 280-35277					
LCS 280-352777/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352777/1-A	Method Blank	R	Water	3005A	
280-91049-1	MW-35	R	Water	3005A	
280-91049-1MS	Matrix Spike	R	Water	3005A	
280-91049-1MSD	Matrix Spike Duplicate	R	Water	3005A	
280-91049-2	MW-34C	R	Water	3005A	
280-91049-3	MW-34A	R	Water	3005A	
280-91049-4	MW-36A	R	Water	3005A	
280-91049-5	MW-15R	R	Water	3005A	
280-91049-6	MW-2B1	R	Water	3005A	
Analysis Batch:280-35	3028				
LCS 280-352489/2-A	Lab Control Sample	R	Water	6020	280-352489
MB 280-352489/1-A	Method Blank	R	Water	6020	280-352489
280-91030-D-2-B MS	Matrix Spike	D	Water	6020	280-352489
280-91030-D-2-D MS	Matrix Spike Duplicate	D	Water	6020	280-352489
280-91049-1	MW-35	D	Water	6020	280-352489
		D	Water		
280-91049-2	MW-34C			6020	280-352489
280-91049-3	MW-34A	D	Water	6020	280-352489
280-91049-4	MW-36A	D	Water	6020	280-352489
280-91049-5	MW-15R	D	Water	6020	280-352489
280-91049-6	MW-2B1	D	Water	6020	280-352489
Analysis Batch:280-35					
LCS 280-352777/2-A	Lab Control Sample	R	Water	6020	280-352777
MB 280-352777/1-A	Method Blank	R	Water	6020	280-352777
280-91049-1	MW-35	R	Water	6020	280-352777
280-91049-1MS	Matrix Spike	R	Water	6020	280-352777
280-91049-1MSD	Matrix Spike Duplicate	R	Water	6020	280-352777
280-91049-2	MW-34C	R	Water	6020	280-352777
280-91049-3	MW-34A	R	Water	6020	280-352777
280-91049-4	MW-36A	R	Water	6020	280-352777
280-91049-5	MW-15R	R	Water	6020	280-352777
280-91049-6	MW-2B1	R	Water	6020	280-352777
Analysis Batch:280-35	3693				
280-91049-1	MW-35	R	Water	6020	280-352777
280-91049-1MS	Matrix Spike	R	Water	6020	280-352777
280-91049-1MSD	Matrix Spike Duplicate	R	Water	6020	280-352777
280-91049-2	MW-34C	R	Water	6020	280-352777
280-91049-3	MW-34A	R	Water	6020	280-352777
280-91049-4	MW-36A	R	Water	6020	280-352777
280-91049-5	MW-15R	R	Water	6020	280-352777
280-91049-6	MW-13K MW-2B1	R	Water	6020	280-352777
200-310 4 3-0	IVIVV-ZD I	K	vvalci	0020	200-332111

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals	·				•
Analysis Batch:280-354	1165				
LCS 280-352772/2-A	Lab Control Sample	R	Water	6010B	280-352772
MB 280-352772/1-A	Method Blank	R	Water	6010B	280-352772
280-91049-1	MW-35	D	Water	6010B	280-352772
280-91049-2	MW-34C	D	Water	6010B	280-352772
280-91049-3	MW-34A	D	Water	6010B	280-352772
280-91049-4	MW-36A	D	Water	6010B	280-352772
280-91049-5	MW-15R	D	Water	6010B	280-352772
280-91149-A-2-B MS	Matrix Spike	D	Water	6010B	280-352772
Analysis Batch:280-354	1204				
LCS 280-352775/2-A	Lab Control Sample	R	Water	6010B	280-352775
MB 280-352775/1-A	Method Blank	R	Water	6010B	280-352775
280-91049-1	MW-35	R	Water	6010B	280-352775
280-91049-2	MW-34C	R	Water	6010B	280-352775
280-91049-3	MW-34A	R	Water	6010B	280-352775
280-91049-4	MW-36A	R	Water	6010B	280-352775
280-91049-5	MW-15R	R	Water	6010B	280-352775
280-91049-6	MW-2B1	R	Water	6010B	280-352775
280-91099-D-1-B MS	Matrix Spike	R	Water	6010B	280-352775
280-91099-D-1-C MSD	Matrix Spike Duplicate	R	Water	6010B	280-352775
Analysis Batch:280-354	1 385				
LCS 280-352772/2-A	Lab Control Sample	R	Water	6010B	280-352772
MB 280-352772/1-A	Method Blank	R	Water	6010B	280-352772
280-91049-1	MW-35	D	Water	6010B	280-352772
280-91049-3	MW-34A	D	Water	6010B	280-352772
280-91049-4	MW-36A	D	Water	6010B	280-352772
280-91049-5	MW-15R	D	Water	6010B	280-352772
280-91049-6	MW-2B1	D	Water	6010B	280-352772
280-91149-A-2-B MS	Matrix Spike	D	Water	6010B	280-352772
280-91149-A-2-C MSD	Matrix Spike Duplicate	D	Water	6010B	280-352772
Analysis Batch:280-354	4 577				
280-91049-2	MW-34C	D	Water	6010B	280-352772
280-91049-4	MW-36A	D	Water	6010B	280-352772
		5		30.05	200 002112

Report Basis

D = Dissolved

R = Total Recoverable

Quality Control Results

Client: Waste Management Job Number: 280-91049-1

QC Association Summary

Prep Batch	Method	Client Matrix	Report Basis	Client Sample ID	Lab Sample ID
				e Lab	Field Service / Mobil
				352756	Analysis Batch:280-
g	Field Sampling	Water	T	MW-35	280-91049-1
g	Field Sampling	Water	T	MW-34C	280-91049-2
g	Field Sampling	Water	Т	MW-34A	280-91049-3
g	Field Sampling	Water	T	MW-36A	280-91049-4
g	Field Sampling	Water	Т	MW-15R	280-91049-5
•	Field Sampling	Water	T	MW-2B1	280-91049-6
g	Field Sampling Field Sampling Field Sampling	Water Water Water	T T T T	MW-34A MW-36A MW-15R	280-91049-2 280-91049-3 280-91049-4 280-91049-5 280-91049-6

Report Basis

T = Total

QC Association Summary

		Report	 . 		
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-3					
LCS 280-352384/30	Lab Control Sample	Т	Water	SM 2320B	
LCS 280-352384/4	Lab Control Sample	Т	Water	SM 2320B	
MB 280-352384/31	Method Blank	Т	Water	SM 2320B	
MB 280-352384/5	Method Blank	Т	Water	SM 2320B	
280-91049-1	MW-35	Т	Water	SM 2320B	
280-91049-2	MW-34C	Т	Water	SM 2320B	
280-91049-3	MW-34A	Т	Water	SM 2320B	
280-91049-4	MW-36A	T	Water	SM 2320B	
280-91049-5	MW-15R	Т	Water	SM 2320B	
280-91049-6	MW-2B1	T	Water	SM 2320B	
280-91099-A-3 DU	Duplicate	Т	Water	SM 2320B	
Analysis Batch:280-3	352501				
LCS 280-352501/2	Lab Control Sample	Т	Water	SM 2540C	
MB 280-352501/1	Method Blank	Т	Water	SM 2540C	
280-91049-1	MW-35	Т	Water	SM 2540C	
280-91049-2	MW-34C	Т	Water	SM 2540C	
280-91049-3	MW-34A	Т	Water	SM 2540C	
280-91049-4	MW-36A	Т	Water	SM 2540C	
280-91049-5	MW-15R	Т	Water	SM 2540C	
280-91049-6	MW-2B1	Т	Water	SM 2540C	
280-91049-6DU	Duplicate	Т	Water	SM 2540C	
Analysis Batch:280-3	352718				
LCS 280-352718/1	Lab Control Sample	Т	Water	SM 2540D	
MB 280-352718/2	Method Blank	Т	Water	SM 2540D	
280-91049-1	MW-35	Т	Water	SM 2540D	
280-91049-2	MW-34C	Т	Water	SM 2540D	
280-91049-3	MW-34A	Т	Water	SM 2540D	
280-91049-4	MW-36A	Т	Water	SM 2540D	
280-91049-5	MW-15R	Т	Water	SM 2540D	
280-91049-6	MW-2B1	Т	Water	SM 2540D	
280-91074-A-2 DU	Duplicate	Ť	Water	SM 2540D	

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-35	2943				
LCS 280-352943/59	Lab Control Sample	T	Water	350.1	
LCSD 280-352943/60	Lab Control Sample Duplicate	T	Water	350.1	
MB 280-352943/61	Method Blank	T	Water	350.1	
280-91049-1	MW-35	T	Water	350.1	
280-91049-2	MW-34C	T	Water	350.1	
280-91049-3	MW-34A	T	Water	350.1	
280-91049-4	MW-36A	T	Water	350.1	
280-91049-5	MW-15R	Т	Water	350.1	
280-91049-5MS	Matrix Spike	Т	Water	350.1	
280-91049-5MSD	Matrix Spike Duplicate	Т	Water	350.1	
280-91049-6	MW-2B1	Т	Water	350.1	
Analysis Batch:280-35	3712				
LCS 280-353712/3	Lab Control Sample	T	Water	SM 5310B	
LCSD 280-353712/4	Lab Control Sample Duplicate	T	Water	SM 5310B	
MB 280-353712/5	Method Blank	Т	Water	SM 5310B	
280-90915-B-2 MS	Matrix Spike	Т	Water	SM 5310B	
280-90915-B-2 MSD	Matrix Spike Duplicate	Т	Water	SM 5310B	
280-91049-1	MW-35	Т	Water	SM 5310B	
280-91049-2	MW-34C	T	Water	SM 5310B	
Analysis Batch:280-35	4209				
LCS 280-354209/3	Lab Control Sample	Т	Water	SM 5310B	
MB 280-354209/4	Method Blank	Т	Water	SM 5310B	
280-91049-3	MW-34A	Т	Water	SM 5310B	
280-91049-3MS	Matrix Spike	Т	Water	SM 5310B	
280-91049-3MSD	Matrix Spike Duplicate	T	Water	SM 5310B	
280-91049-4	MW-36A	T	Water	SM 5310B	
280-91049-5	MW-15R	T	Water	SM 5310B	
280-91049-6	MW-2B1	T	Water	SM 5310B	

Quality Control Results

Client: Waste Management Job Number: 280-91049-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
-	Chefft Sample 15	Duoio	Cheffit Waterix	Wethou	Fieb Batch
General Chemistry					
Analysis Batch: 280-35	4220				
LCS 280-354220/4	Lab Control Sample	Т	Water	300.0	
LCSD 280-354220/5	Lab Control Sample Duplicate	T	Water	300.0	
MB 280-354220/6	Method Blank	T	Water	300.0	
280-91049-1	MW-35	T	Water	300.0	
280-91049-1DU	Duplicate	T	Water	300.0	
280-91049-1MS	Matrix Spike	Т	Water	300.0	
280-91049-1MSD	Matrix Spike Duplicate	Т	Water	300.0	
280-91049-2	MW-34C	Т	Water	300.0	
280-91049-3	MW-34A	Т	Water	300.0	
280-91049-4	MW-36A	Т	Water	300.0	
280-91049-5	MW-15R	Т	Water	300.0	
280-91049-6	MW-2B1	Т	Water	300.0	
280-91049-6DU	Duplicate	Т	Water	300.0	
280-91049-6MS	Matrix Spike	Т	Water	300.0	
280-91049-6MSD	Matrix Spike Duplicate	Т	Water	300.0	
Analysis Batch:280-35	4397				
MB 280-354397/1	Method Blank	Т	Water	353.2	
280-91049-1	MW-35	Т	Water	353.2	
280-91049-2	MW-34C	Т	Water	353.2	
280-91049-3	MW-34A	Т	Water	353.2	
280-91049-4	MW-36A	Т	Water	353.2	
280-91049-5	MW-15R	Т	Water	353.2	
280-91049-6	MW-2B1	Т	Water	353.2	

Report Basis

T = Total

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Water

		DCA	BFB	TOL
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
280-91049-1	MW-35	108	98	100
280-91049-2	MW-34C	106	95	100
280-91049-3	MW-34A	108	96	100
280-91049-4	MW-36A	106	94	98
280-91049-5	MW-15R	105	94	99
280-91049-6	MW-2B1	108	95	98
280-91049-7	TRIP BLANK	107	95	100
MB 480-333378/6		105	101	100
MB 480-333552/6		108	98	99
LCS 480-333378/4		99	100	101
LCS 480-333552/4		107	99	102
480-109672-R-1 MS		105	96	100
480-109670-K-2 MS		108	99	100
480-109672-R-1 MSD		104	100	101
480-109670-K-2 MSD		107	98	101

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	77-120
BFB = 4-Bromofluorobenzene (Surr)	73-120
TOL = Toluene-d8 (Surr)	80-120

Client: Waste Management Job Number: 280-91049-1

Surrogate Recovery Report

8260C SIM Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	TBA
Lab Sample ID	Client Sample ID	%Rec	%Rec
280-91049-1	MW-35	99	120
280-91049-2	MW-34C	97	132
280-91049-3	MW-34A	99	131
280-91049-4	MW-36A	101	124
280-91049-5	MW-15R	102	129
280-91049-6	MW-2B1	100	121
280-91049-7	TRIP BLANK	97	137
MB 480-332322/7		97	122
LCS 480-332322/4		99	104
LCSD 480-332322/5		104	117
280-91030-J-2 MS		104	142
280-91030-J-2 MSD		104	138

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	50-150
TBA = TBA-d9 (Surr)	50-150

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 480-333378 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333378/6 Analysis Batch: 480-333378 Instrument ID: HP5973P Client Matrix: Prep Batch: Lab File ID: Water N/A P20520.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 2223 Units: ug/L

Prep Date: 11/23/2016 2223

Analyte	Result	Qual	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 480-333378

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333378/6 Analysis Batch: 480-333378 Instrument ID: HP5973P Client Matrix: Prep Batch: Water N/A Lab File ID: P20520.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 2223 Units: ug/L

Prep Date: 11/23/2016 2223

Chloroform	Analyte	Result	Qual	MDL	RL	
Chloromethane ND	Chloroethane	ND		0.32	1.0	
cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclochexane ND 0.18 1.0 Dibromomethane ND 0.41 1.0 Dibromomethane ND 0.41 1.0 Dichlorofiluromethane ND 0.68 1.0 Dichlorofiluromethane ND 0.68 1.0 Dichlorofiluromethane ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl terber ND 0.72 1.0 Ethyl terber ND 0.72 1.0 Ethyl terber ND 0.72 1.0 Ethyl terber ND 0.74 1.0 Hexacelorobutadiene ND 0.74 1.0 Hexacelorobutadiene ND 0.28 1.0 Hexacelorobutadiene ND 0.28 1.0 Hexacelorobutadiene ND	Chloroform	ND		0.34	1.0	
cis-1,3-Dichloropropene ND 0.36 1.0 Cycylohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromochloromethane ND 0.41 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Eithyl acetate ND 0.34 1.0 Eithyl ether ND 0.66 1.0 Eithyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Hexane ND 0.28 1.0 Hexane ND 0.28 1.0 Hexane ND 0.40 10 Idexane ND 0.40 10 Idexane ND 0.40 10 Idexane ND 0.40 10 </td <td>Chloromethane</td> <td>ND</td> <td></td> <td>0.35</td> <td>1.0</td> <td></td>	Chloromethane	ND		0.35	1.0	
Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodiffuoromethane ND 0.68 1.0 Dichloroffuoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl serb-butyl ether ND 0.72 1.0 Ethyl berache ND 0.72 1.0 Ethyl berache ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexachlorobutadiene ND 0.40 10 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isopropyl ether ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropyl ether ND 0.79 1.0 Isopropyl benzene ND 0.79<	cis-1,2-Dichloroethene	ND		0.81	1.0	
Dipromochloromethane	cis-1,3-Dichloropropene	ND		0.36	1.0	
Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl cetate ND 0.66 1.0 Ethyl terre ND 0.72 1.0 Ethyl terre ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isopropyl ether ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropyl ether ND 0.69 5.0 Methyl tert-butyl ether ND 0.69	Cyclohexane	ND		0.18	1.0	
Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexache ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 lodomethane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.59 1.0 lodomethane ND 0.59 1.0 lodom	Dibromochloromethane	ND		0.32	1.0	
Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Hexache ND 0.74 1.0 Hexache ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropyl ether ND 0.79 1.0 Isopropyl ether ND 0.79 1.0 Isopropyl ether ND 0.59 5.0 Methyl cyl chyl ether ND 0.69 5.0 Methyl tert-butyl ether ND 0.16	Dibromomethane	ND		0.41	1.0	
Dichlorofluoromethane ND 0.34 1.0 Eithyl acetate ND 0.66 1.0 Ethyl tehr ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.28 1.0 Hexachlorobutadiene ND 0.40 1.0 Hexane ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isobropyl ether ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropyl benzene ND 0.59 1.0 Methyl catate ND 0.79 1.0 Methyl acetate ND 0.13 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methyl croblevane ND 0.16 1.0 Methyl croblevane ND 0.16 1.0 Methyl croblevane ND 0.44	Dichlorodifluoromethane	ND			1.0	
Ethyl acetate	Dichlorofluoromethane					
Ethyl ether	Ethyl acetate	ND		0.66	1.0	
Ethyl tert-butyl ether						
Ethýlbenzené ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 lodomethane ND 0.30 1.0 lsoptopylene ND 0.59 1.0 lsopropylether ND 0.59 1.0 lsopropylebrzene ND 0.79 1.0 Methaczyloritrile ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylecyclohexane ND	-					
Hexachlorobutadiene ND						
Hexane						
ND						
Sebutanol ND						
Sopropyleher ND 0.59 1.0 Sopropylehezene ND 0.79 1.0 Sopropylehezene ND 0.79 1.0 Sopropylehezene ND 0.69 5.0 Sopropylehezene ND 0.69 5.0 Sopropylehezene ND 1.3 2.5 Sopropylehezene ND 0.16 1.0 Sopropylehezene ND 0.16 1.0 Sopropylehezene ND 0.16 1.0 Sopropylehezene ND 0.44 1.0 Sopropylehezene ND 0.66 2.0 Sopropylehezene ND 0.66 2.0 Sopropylehezene ND 0.64 1.0 Sopropylehezene ND 0.64 1.0 Sopropylehezene ND 0.64 1.0 Sopropylehezene ND 0.69 1.0 Sopropylehezene ND 0.86 1.0 Sopropylehezene ND 0.76 1.0 Sopropylehezene ND 0.76 1.0 Sopropylehezene ND 0.31 1.0 Sopropylehezene ND 0.75 1.						
Sepropylbenzene ND 0.79 1.0						
Methyl acetate ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 Methylene Chloride ND 0.44 1.0 Methylene Chloride ND 0.66 2.0 Maphthalene ND 0.66 2.0 Naphthalene ND 0.43 1.0 Naphthalene ND 0.64 1.0 N-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 0-Chlorotoluene ND 0.86 1.0 0-Chlorotoluene ND 0.84 1.0 0-Cygnene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0<						
Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclochexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 O-Chlorotoluene ND 0.86 1.0 O-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81 1						
Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 N-Propylbenzene ND 0.86 1.0 o-Chlorotoluene ND 0.76 1.0 o-Cylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrahydrofuran ND 0.36 1.0<						
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tertarbydrofuran ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 Trans-1,2-Dichloroethene ND 0.90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 o-Xylene ND 0.76 1.0 o-Chlorotoluene ND 0.84 1.0 o-Chlorotoluene ND 0.84 1.0 o-Chlorotoluene ND 0.31 1.0 o-Chlorotoluene ND 0.75 1.0 sec-Butylbenzene ND 0.75 1.0 sec-Butylbenzene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.51						
Maphthalene ND 0.66 2.0 Naphthalene ND 0.43 1.0 Naphthalene ND 0.64 1.0 Naphthalene ND 0.64 1.0 Naphthalene ND 0.69 1.0 Naphthalene ND 0.86 1.0 Naphthalene ND 0.86 1.0 Naphthalene ND 0.76 1.0 Naphthalene ND 0.76 1.0 Naphthalene ND 0.76 1.0 Naphthalene ND 0.76 1.0 Naphthalene ND 0.84 1.0 Naphthalene ND 0.84 1.0 Naphthalene ND 0.75 1.0 Naphthalene ND 0.75 1.0 Naphthalene ND 0.75 1.0 Naphthalene ND 0.73 1.0 Naphthalene ND 0.81 1.0 Naphthalene ND 0.81 1.0 Naphthalene ND 0.36 1.0 Naphthalene ND 0.36 1.0 Naphthalene ND 0.51 1.0 Naphthalene ND 0.51 1.0 Naphthalene ND 0.51 1.0 Naphthalene ND 0.51 1.0 Naphthalene ND 0.51 1.0 Naphthalene ND 0.37 1.0 Naphthalene ND 0.37 1.0 Naphthalene ND 0.37 1.0 Naphthalene ND 0.22 1.0 Naphthalene ND 0.22 1.0 Naphthalene ND 0.46 1.0 Naphthalene Naphthalene Naphthalene Naphthalene Naphthalene Naphthalene Naphthal	• •					
Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46<	-					
n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetranyl methyl out 0.36 1.0 Tetrachloroethene ND 0.51 1.0 Tetranyl methyl out 0.36 1.0 Tetranyl methyl out 0.36 1.0 Tetranyl methyl out 0.36 1.0 Tetrachloroethene ND 0.51 1.0 Toluene ND 0.51 1.0 Troluene ND 0.90 1.0 trans-1,2-Dichloroethene ND 0.37 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.22 1.0 Trichloroethene ND 0.22 1.0						
N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0						
o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 p-Cymene ND 0.75 1.0 sec-Butylbenzene ND 0.73 1.0 Styrene ND 0.27 1.0 tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0						
o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0						
Description of the process of the						
Description	•					
Sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0						
Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0						
Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0						
tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0						
Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0						
Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	tert-Butylbenzene					
Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	Tetrachloroethene			0.36		
trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	Tetrahydrofuran					
trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	Toluene					
trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	trans-1,2-Dichloroethene					
Trichloroethene ND 0.46 1.0	trans-1,3-Dichloropropene	ND		0.37	1.0	
	trans-1,4-Dichloro-2-butene	ND		0.22	1.0	
	Trichloroethene			0.46		
	Trichlorofluoromethane	ND		0.88	1.0	

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 480-333378 Method: 8260C

Preparation: 5030C

Lab Sample ID: MB 480-333378/6 Analysis Batch: 480-333378 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20520.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 11/23/2016 2223 Units: Final Weight/Volume: 5 mL Analysis Date: ug/L

Prep Date: 11/23/2016 2223

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
Surrogate	% Rec		Acceptance Limits	
Surrogate 1,2-Dichloroethane-d4 (Surr)	% Rec 105		Acceptance Limits 77 - 120	

Method Blank TICs- Batch: 480-333378

Cas Number	Analyte	RT	Est. Result (ug/	Qual
67-72-1	Hexachloroethane TIC	0.00	ND	

Client: Waste Management Job Number: 280-91049-1

Lab Control Sample - Batch: 480-333378

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333378/4 Analysis Batch: 480-333378 Instrument ID: HP5973P Client Matrix: Prep Batch: Lab File ID: Water N/A P20518.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Units: Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 2128 ug/L

Prep Date: 11/23/2016 2128

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	25.0	25.5	102	80 - 120	
1,1,1-Trichloroethane	25.0	23.1	92	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	23.7	95	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	22.2	89	61 - 148	
1,1,2-Trichloroethane	25.0	25.2	101	76 - 122	
1,1-Dichloroethane	25.0	24.3	97	77 - 120	
1,1-Dichloroethene	25.0	21.6	86	66 - 127	
1,1-Dichloropropene	25.0	23.4	94	72 - 122	
1,2,3-Trichlorobenzene	25.0	23.8	95	75 - 123	
1,2,3-Trichloropropane	25.0	24.2	97	68 - 122	
1,2,4-Trichlorobenzene	25.0	23.8	95	79 - 122	
1,2,4-Trimethylbenzene	25.0	24.0	96	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	22.3	89	56 - 134	
1,2-Dibromoethane (EDB)	25.0	25.2	101	77 - 120	
1,2-Dichlorobenzene	25.0	24.1	96	80 - 124	
1,2-Dichloroethane	25.0	24.5	98	75 - 120	
1,2-Dichloropropane	25.0	24.1	96	76 - 120	
1,3,5-Trimethylbenzene	25.0	23.7	95	77 - 121	
1,3-Dichlorobenzene	25.0	24.3	97	77 - 120	
1,3-Dichloropropane	25.0	25.1	101	75 - 120	
1,4-Dichlorobenzene	25.0	24.1	96	80 - 120	
1,4-Dioxane	500	499	100	50 - 150	
2,2-Dichloropropane	25.0	24.5	98	63 - 136	
2-Butanone (MEK)	125	125	100	57 - 140	
2-Chloroethyl vinyl ether	25.0	24.2	97	70 - 129	
2-Hexanone	125	127	102	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	127	102	71 - 125	
Acetone	125	137	110	56 - 142	
Acrolein	125	129	103	52 - 143	
Acrylonitrile	250	236	95	63 - 125	
Benzene	25.0	23.7	95	71 - 124	
Bromobenzene	25.0	24.1	97	78 - 120	
Bromochloromethane	25.0	24.1	97	72 - 130	
Bromodichloromethane	25.0	24.4	98	80 - 122	
Bromoform	25.0	24.0	96	61 - 132	
Bromomethane	25.0	25.3	101	55 - 144	
Butyl alcohol, tert-	250	250	100	75 - 125	
Carbon disulfide	25.0	26.7	107	59 - 134	
Carbon tetrachloride	25.0	23.5	94	72 - 134	
Chlorobenzene	25.0	25.3	101	80 - 120	
Chloroethane	25.0	22.8	91	69 - 136	
Chloroform	25.0	24.0	96	73 - 127	
Chloromethane	25.0	22.5	90	68 - 124	
cis-1,2-Dichloroethene	25.0	24.3	97	74 - 124	
cis-1,3-Dichloropropene	25.0	24.4	98	74 - 124	
Cyclohexane	25.0	21.7	87	59 - 135	
CycloticAdric	20.0	41.1	O1	00 - 100	

Client: Waste Management Job Number: 280-91049-1

Lab Control Sample - Batch: 480-333378

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333378/4 Analysis Batch: 480-333378 Instrument ID: HP5973P Client Matrix: Prep Batch: Water N/A Lab File ID: P20518.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 2128 Units: ug/L

Prep Date: 11/23/2016 2128

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	25.0	25.4	102	75 - 125	
Dibromomethane	25.0	25.0	100	76 - 127	
Dichlorodifluoromethane	25.0	20.4	81	59 - 135	
Dichlorofluoromethane	25.0	23.4	94	76 - 127	
Ethyl ether	25.0	24.0	96	76 - 123	
Ethylbenzene	25.0	24.5	98	77 - 123	
Hexachlorobutadiene	25.0	23.9	95	68 - 131	
Hexane	25.0	22.2	89	54 - 146	
lodomethane	25.0	24.7	99	78 - 123	
Isobutanol	625	624	100	51 - 150	
Isopropylbenzene	25.0	23.8	95	77 - 122	
Methyl acetate	125	121	97	74 - 133	
Methyl tert-butyl ether	25.0	24.4	98	77 - 120	
Methylcyclohexane	25.0	22.0	88	68 - 134	
Methylene Chloride	25.0	23.3	93	75 - 124	
m-Xylene & p-Xylene	25.0	24.4	98	76 - 122	
Naphthalene	25.0	23.8	95	66 - 125	
n-Butylbenzene	25.0	23.4	94	71 - 128	
N-Propylbenzene	25.0	23.7	95	75 - 127	
o-Chlorotoluene	25.0	24.6	99	76 - 121	
o-Xylene	25.0	24.2	97	76 - 122	
p-Chlorotoluene	25.0	24.1	96	77 - 121	
p-Cymene	25.0	23.8	95	73 - 120	
sec-Butylbenzene	25.0	23.5	94	74 - 127	
Styrene	25.0	25.3	101	80 - 120	
tert-Butylbenzene	25.0	23.0	92	75 - 123	
Tetrachloroethene	25.0	24.6	98	74 - 122	
Tetrahydrofuran	50.0	46.4	93	62 - 132	
Toluene	25.0	24.6	99	80 - 122	
trans-1,2-Dichloroethene	25.0	23.6	94	73 - 127	
trans-1,3-Dichloropropene	25.0	25.6	102	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	17.5	70	41 - 131	
Trichloroethene	25.0	23.6	94	74 - 123	
Trichlorofluoromethane	25.0	22.5	90	62 - 150	
Vinyl acetate	50.0	50.3	101	50 - 144	
Vinyl chloride	25.0	22.6	90	65 - 133	
Surrogate	% I	Rec	А	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	9:	9		77 - 120	
4-Bromofluorobenzene (Surr)		00		73 - 120	
Toluene-d8 (Surr)		01		80 - 120	
	''			30 .20	

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333378 Preparation: 5030C

MS Lab Sample ID: 480-109672-R-1 MS 480-333378 Instrument ID: HP5973P Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: P20537.D Dilution: 40 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/24/2016 0622 Final Weight/Volume: 5 mL

Prep Date: 11/24/2016 0622 Final Weight/Volume: 5 mL

Leach Date: N/A

MSD Lab Sample ID: 480-109672-R-1 MSD Analysis Batch: 480-333378 Instrument ID: HP5973P Client Matrix: Water N/A Lab File ID: Prep Batch: P20538.D Dilution: 40 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/24/2016 0649

Prep Date: 11/24/2016 0649

Leach Batch: N/A Initial Weight/Volume: 5 mL

Final Weight/Volume: 5 mL

5 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1,1-Trichloroethane	102	100	73 - 126	2	15		
1,1,2,2-Tetrachloroethane	100	99	76 - 120	1	15		
1,1,2-Trichloroethane	102	102	76 - 122	1	15		
1,1-Dichloroethane	104	100	77 - 120	4	20		
1,1-Dichloroethene	95	91	66 - 127	5	16		
1,2-Dichloroethane	105	102	75 - 120	3	20		
1,2-Dichloropropane	101	99	76 - 120	2	20		
2-Butanone (MEK)	106	106	57 - 140	0	20		
2-Hexanone	107	107	65 - 127	1	15		
4-Methyl-2-pentanone (MIBK)	110	108	71 - 125	2	35		
Acetone	118	113	56 - 142	4	15		
Benzene	102	97	71 - 124	5	13		
Bromodichloromethane	103	101	80 - 122	2	15		
Bromoform	92	94	61 - 132	3	15		
Bromomethane	148	155	55 - 144	4	15	F1	F1
Carbon disulfide	105	113	59 - 134	8	15		
Carbon tetrachloride	106	103	72 - 134	3	15		
Chlorobenzene	101	100	80 - 120	1	25		
Chloroethane	175	164	69 - 136	6	15	F1	F1
Chloroform	103	99	73 - 127	5	20		
Chloromethane	109	101	68 - 124	8	15		
cis-1,2-Dichloroethene	102	98	74 - 124	3	15		
cis-1,3-Dichloropropene	98	97	74 - 124	1	15		
Dibromochloromethane	101	103	75 - 125	2	15		
Ethylbenzene	102	100	77 - 123	2	15		
Methylene Chloride	98	93	75 - 124	5	15		
m-Xylene & p-Xylene	100	98	76 - 122	2	16		
o-Xylene	98	97	76 - 122	2	16		
Styrene	100	100	80 - 120	0	20		
Tetrachloroethene	99	101	74 - 122	2	20		
Toluene	102	100	80 - 122	2	15		
trans-1,2-Dichloroethene	101	96	73 - 127	5	20		
trans-1,3-Dichloropropene	101	101	80 - 120	1	15		

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333378 Preparation: 5030C

MS Lab Sample II Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 480-109672-R-1 MS Water 40 11/24/2016 0622 11/24/2016 0622 N/A	Pre	alysis Batch: p Batch: ach Batch:	480-333378 N/A N/A			HP5973P P20537.D 5 mL 5 mL 5 mL	
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: 480-109672-R-1 MSD Water 40 11/24/2016 0649 11/24/2016 0649 N/A	Pre	alysis Batch: p Batch: ach Batch:	480-333378 N/A N/A			HP5973P P20538.D 5 mL 5 mL 5 mL	
		%	Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
trans-1,4-Dichloro	p-2-butene	47	50	41 - 131	7	20		
Trichloroethene		101	97	74 - 123	4	16		
Vinyl chloride		103	99	65 - 133	4	15		
Surrogate			MS % Rec	MSD	% Rec	Acce	eptance Limi	ts
1,2-Dichloroethan	e-d4 (Surr)		105	104		7	7 - 120	
4-Bromofluorober			96	100		7	3 - 120	
Toluene-d8 (Surr)			100	101		8	0 - 120	

Water

40

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333378 Preparation: 5030C

MS Lab Sample ID: 480-109672-R-1 MS Units: ug/L MSD Lab Sample ID: 480-109672-R-1 MSD

Client Matrix: Water Client Matrix: Dilution: 40 Dilution:

Analysis Date: 11/24/2016 0622 Analysis Date: 11/24/2016 0649
Prep Date: 11/24/2016 0622 Prep Date: 11/24/2016 0649

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
1,1,1-Trichloroethane	ND	1000	1000	1020	1000
1,1,2,2-Tetrachloroethane	ND	1000	1000	1000	992
1,1,2-Trichloroethane	ND	1000	1000	1020	1020
1,1-Dichloroethane	ND	1000	1000	1040	1000
1,1-Dichloroethene	ND	1000	1000	950	908
1,2-Dichloroethane	ND	1000	1000	1050	1020
1,2-Dichloropropane	ND	1000	1000	1010	993
2-Butanone (MEK)	410	5000	5000	5720	5720
2-Hexanone	ND	5000	5000	5370	5340
4-Methyl-2-pentanone (MIBK)	ND	5000	5000	5480	5380
Acetone	460	5000	5000	6350	6100
Benzene	ND	1000	1000	1020	969
Bromodichloromethane	ND	1000	1000	1030	1010
Bromoform	ND	1000	1000	915	939
Bromomethane	ND	1000	1000	1480 F1	1550 F1
Carbon disulfide	ND	1000	1000	1050	1130
Carbon tetrachloride	ND	1000	1000	1060	1030
Chlorobenzene	ND	1000	1000	1010	998
Chloroethane	ND	1000	1000	1750 F1	1640 F1
Chloroform	ND	1000	1000	1030	986
Chloromethane	ND	1000	1000	1090	1010
cis-1,2-Dichloroethene	ND	1000	1000	1020	983
cis-1,3-Dichloropropene	ND	1000	1000	982	971
Dibromochloromethane	ND	1000	1000	1010	1030
Ethylbenzene	ND	1000	1000	1020	998
Methylene Chloride	20 J	1000	1000	996	950
m-Xylene & p-Xylene	ND	1000	1000	1000	983
o-Xylene	ND	1000	1000	982	965
Styrene	ND	1000	1000	1000	1000
Tetrachloroethene	ND	1000	1000	990	1010
Toluene	ND	1000	1000	1020	998
trans-1,2-Dichloroethene	ND	1000	1000	1010	960
trans-1,3-Dichloropropene	ND	1000	1000	1010	1010
trans-1,4-Dichloro-2-butene	ND	1000	1000	466	501
Trichloroethene	ND	1000	1000	1010	970
Vinyl chloride	ND	1000	1000	1030	987

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 480-333552

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333552/6 Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Prep Batch: Water N/A Lab File ID: P20625.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1115 Units: ug/L

Prep Date: 11/26/2016 1115

Analyte	Result	Qual	MDL	RL	
1,1,1,2-Tetrachloroethane	ND		0.35	1.0	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,1-Dichloropropene	ND		0.72	1.0	
1,2,3-Trichlorobenzene	ND		0.41	1.0	
1,2,3-Trichloropropane	ND		0.89	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2,4-Trimethylbenzene	ND		0.75	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane (EDB)	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloroethene, Total	ND		0.81	2.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3,5-Trichlorobenzene	ND		0.23	1.0	
1,3,5-Trimethylbenzene	ND		0.77	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,3-Dichloropropane	ND		0.75	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
1,4-Dioxane	ND		9.3	40	
2,2-Dichloropropane	ND		0.40	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Chloroethyl vinyl ether	ND		0.96	5.0	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Acetonitrile	ND		4.9	15	
Acrolein	ND		0.91	20	
Acrylonitrile	ND		0.83	5.0	
Benzene	ND		0.41	1.0	
Bromobenzene	ND		0.80	1.0	
Bromochloromethane	ND		0.87	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.26	1.0	
	ND ND		0.69	1.0	
Bromomethane Butyl alcohol, n-	ND ND		8.9	40	
Butyl alcohol, tert-	ND ND		3.3	10	
Carbon disulfide	ND ND		3.3 0.19	1.0	
Carbon tetrachloride	ND ND		0.19	1.0	
Chlorobenzene	ND ND		0.27 0.75	1.0	
Chlorodifluoromethane					
Chiorodiliuoromethane	ND		0.26	1.0	

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 480-333552

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333552/6 Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Prep Batch: Lab File ID: Water N/A P20625.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1115 Units: ug/L

Prep Date: 11/26/2016 1115 Leach Date: N/A

Analyte	Result	Qual	MDL	RL	
Chloroethane	ND		0.32	1.0	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dibromochloromethane	ND		0.32	1.0	
Dibromomethane	ND		0.41	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Dichlorofluoromethane	ND		0.34	1.0	
Ethyl acetate	ND		0.66	1.0	
Ethyl ether	ND		0.72	1.0	
Ethyl tert-butyl ether	ND		0.29	1.0	
Ethylbenzene	ND		0.74	1.0	
Hexachlorobutadiene	ND		0.28	1.0	
Hexane	ND		0.40	10	
lodomethane	ND		0.30	1.0	
Isobutanol	ND		4.8	25	
Isopropyl ether	ND		0.59	1.0	
Isopropylbenzene	ND		0.79	1.0	
Methacrylonitrile	ND		0.69	5.0	
Methyl acetate	ND		1.3	2.5	
Methyl tert-butyl ether	ND		0.16	1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND		0.44	1.0	
m-Xylene & p-Xylene	ND		0.66	2.0	
Naphthalene	ND		0.43	1.0	
n-Butylbenzene	ND		0.64	1.0	
N-Propylbenzene	ND		0.69	1.0	
o-Chlorotoluene	ND		0.86	1.0	
o-Xylene	ND		0.76	1.0	
p-Chlorotoluene	ND ND		0.84 0.31	1.0	
p-Cymene	ND ND		0.75	1.0 1.0	
sec-Butylbenzene				1.0	
Styrene Tert-amyl methyl ether	ND ND		0.73 0.27	1.0	
tert-Butylbenzene	ND ND		0.81	1.0	
Tetrachloroethene	ND ND		0.36	1.0	
Tetrahydrofuran	ND ND		1.3	5.0	
Toluene	ND		0.51	1.0	
trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,3-Dichloropropene	ND ND		0.37	1.0	
trans-1,4-Dichloro-2-butene	ND		0.22	1.0	
Trichloroethene	ND		0.46	1.0	
Trichlorofluoromethane	ND		0.88	1.0	

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 480-333552

Method: 8260C Preparation: 5030C

80 - 120

Lab Sample ID: MB 480-333552/6 Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20625.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL 11/26/2016 1115 Units: Analysis Date: ug/L

Prep Date: 11/26/2016 1115

Leach Date: N/A

Toluene-d8 (Surr)

Analyte	Result	Qual	MDL	RL
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
Surrogate	% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	108		77 - 120	
4-Bromofluorobenzene (Surr)	98		73 - 120	

Method Blank TICs- Batch: 480-333552

Cas Number	Analyte	RT	Est. Result (ug/	Qual
67-72-1	Hexachloroethane TIC	0.00	ND	

99

Client: Waste Management Job Number: 280-91049-1

Lab Control Sample - Batch: 480-333552

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333552/4 Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Prep Batch: Lab File ID: Water N/A P20623.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Units: Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1020 ug/L

Prep Date: 11/26/2016 1020

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	25.0	24.6	98	80 - 120	
1,1,1-Trichloroethane	25.0	24.1	96	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	22.8	91	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	23.8	95	61 - 148	
1,1,2-Trichloroethane	25.0	24.0	96	76 - 122	
1,1-Dichloroethane	25.0	24.3	97	77 - 120	
1,1-Dichloroethene	25.0	21.7	87	66 - 127	
1,1-Dichloropropene	25.0	23.9	95	72 - 122	
1,2,3-Trichlorobenzene	25.0	23.2	93	75 - 123	
1,2,3-Trichloropropane	25.0	23.5	94	68 - 122	
1,2,4-Trichlorobenzene	25.0	23.1	92	79 - 122	
1,2,4-Trimethylbenzene	25.0	23.0	92	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	21.7	87	56 - 134	
1,2-Dibromoethane (EDB)	25.0	24.4	98	77 - 120	
1,2-Dichlorobenzene	25.0	22.8	91	80 - 124	
1,2-Dichloroethane	25.0	25.0	100	75 - 120	
1,2-Dichloropropane	25.0	23.7	95	76 - 120	
1,3,5-Trimethylbenzene	25.0	23.1	92	77 - 121	
1,3-Dichlorobenzene	25.0	23.0	92	77 - 120	
1,3-Dichloropropane	25.0	24.4	98	75 - 120	
1,4-Dichlorobenzene	25.0	23.0	92	80 - 120	
1,4-Dioxane	500	446	89	50 - 150	
2,2-Dichloropropane	25.0	26.2	105	63 - 136	
2-Butanone (MEK)	125	123	99	57 - 140	
2-Chloroethyl vinyl ether	25.0	23.4	94	70 - 129	
2-Hexanone	125	126	101	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	127	102	71 - 125	
Acetone	125	123	99	56 - 142	
Acrolein	125	130	104	52 - 143	
Acrolein Acrylonitrile	250	241	96	63 - 125	
Benzene	25.0	23.6	94	71 - 124	
Bromobenzene	25.0	23.0	94 92	71 - 124 78 - 120	
				76 - 120 72 - 130	
Bromochloromethane Bromodichloromethane	25.0	24.0 24.3	96 97	72 - 130 80 - 122	
	25.0				
Bromoform	25.0	21.9	87	61 - 132	
Bromomethane	25.0	24.5	98	55 - 144 35 - 405	
Butyl alcohol, tert-	250	244	98	75 - 125	
Carbon disulfide	25.0	22.3	89	59 - 134 70 - 104	
Carbon tetrachloride	25.0	25.0	100	72 - 134	
Chlorobenzene	25.0	23.9	95	80 - 120	
Chloroethane	25.0	29.1	117	69 - 136	
Chloroform	25.0	24.3	97	73 - 127	
Chloromethane	25.0	23.2	93	68 - 124	
cis-1,2-Dichloroethene	25.0	24.1	96	74 - 124	
cis-1,3-Dichloropropene	25.0	24.1	97	74 - 124	
Cyclohexane	25.0	20.8	83	59 - 135	

Client: Waste Management Job Number: 280-91049-1

Lab Control Sample - Batch: 480-333552

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333552/4 Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Prep Batch: Water N/A Lab File ID: P20623.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/26/2016 1020 Units: ug/L

Prep Date: 11/26/2016 1020

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	25.0	24.3	97	75 - 125	
Dibromomethane	25.0	25.4	101	76 - 127	
Dichlorodifluoromethane	25.0	20.7	83	59 - 135	
Dichlorofluoromethane	25.0	27.0	108	76 - 127	
Ethyl ether	25.0	23.8	95	76 - 123	
Ethylbenzene	25.0	23.7	95	77 - 123	
Hexachlorobutadiene	25.0	22.5	90	68 - 131	
Hexane	25.0	22.5	90	54 - 146	
lodomethane	25.0	24.2	97	78 - 123	
Isobutanol	625	579	93	51 - 150	
Isopropylbenzene	25.0	22.9	92	77 - 122	
Methyl acetate	125	124	99	74 - 133	
Methyl tert-butyl ether	25.0	24.6	99	77 - 120	
Methylcyclohexane	25.0	22.2	89	68 - 134	
Methylene Chloride	25.0	23.4	93	75 - 124	
m-Xylene & p-Xylene	25.0	23.2	93	76 - 122	
Naphthalene	25.0	22.8	91	66 - 125	
n-Butylbenzene	25.0	22.4	90	71 - 128	
N-Propylbenzene	25.0	23.1	92	75 - 127	
o-Chlorotoluene	25.0	23.7	95	76 - 121	
o-Xylene	25.0	22.9	92	76 - 122	
p-Chlorotoluene	25.0	23.2	93	77 - 121	
p-Cymene	25.0	22.8	91	73 - 120	
sec-Butylbenzene	25.0	22.6	90	74 - 127	
Styrene	25.0	23.5	94	80 - 120	
tert-Butylbenzene	25.0	22.3	89	75 - 123	
Tetrachloroethene	25.0	24.0	96	74 - 122	
Tetrahydrofuran	50.0	46.0	92	62 - 132	
Toluene	25.0	23.5	94	80 - 122	
trans-1,2-Dichloroethene	25.0	23.7	95	73 - 127	
trans-1,3-Dichloropropene	25.0	24.7	99	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	14.4	58	41 - 131	
Trichloroethene	25.0	23.9	96	74 - 123	
Trichlorofluoromethane	25.0	24.9	100	62 - 150	
Vinyl acetate	50.0	52.8	106	50 - 144	
Vinyl chloride	25.0	23.1	92	65 - 133	
Surrogate	% I	Rec	Α	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	10	07		77 - 120	
4-Bromofluorobenzene (Surr)	9			73 - 120	
Toluene-d8 (Surr)		02		80 - 120	

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333552 Preparation: 5030C

MS Lab Sample ID: 480-109670-K-2 MS Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20642.D

Dilution: 100 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/26/2016 1916 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1916 5 mL

Prep Date: 11/26/2016 1916 Leach Date: N/A

MSD Lab Sample ID: 480-109670-K-2 MSD Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20643.D

Dilution: 100 Leach Batch: N/A Initial Weight/Volume: 5 mL
Analysis Date: 11/26/2016 1944 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1944 5 mL Leach Date: N/A

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MSD Qual MS Qual 1,1,1,2-Tetrachloroethane 100 101 80 - 120 0 20 73 - 126 5 1,1,1-Trichloroethane 105 100 15 1,1,2,2-Tetrachloroethane 95 94 76 - 120 1 15 105 100 61 - 148 4 20 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 99 100 76 - 122 1 15 3 1,1-Dichloroethane 104 101 77 - 120 20 66 - 127 92 4 16 1,1-Dichloroethene 96 3 1,1-Dichloropropene 104 101 72 - 122 20 75 - 123 2 20 93 95 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane 93 95 68 - 122 3 14 92 93 79 - 122 2 20 1,2,4-Trichlorobenzene 94 76 - 121 2 20 1,2,4-Trimethylbenzene 96 2 1,2-Dibromo-3-Chloropropane 88 86 56 - 134 15 1,2-Dibromoethane (EDB) 100 97 77 - 120 3 15 1 1,2-Dichlorobenzene 94 93 80 - 124 20 106 103 75 - 120 3 20 1,2-Dichloroethane 2 1,2-Dichloropropane 101 99 76 - 120 20 94 77 - 121 1 20 1,3,5-Trimethylbenzene 95 1,3-Dichlorobenzene 93 94 77 - 120 1 20 4 20 1,3-Dichloropropane 103 100 75 - 120 93 93 78 - 124 1 20 1,4-Dichlorobenzene 95 90 63 - 136 6 20 2,2-Dichloropropane 4 EF1 EF1 2-Butanone (MEK) 204 180 57 - 140 20 4 2-Hexanone 104 99 65 - 127 15 4-Methyl-2-pentanone (MIBK) 107 105 71 - 125 2 35 204 56 - 142 5 EF1 EF1 Acetone 235 15 4 102 98 71 - 124 13 Benzene 0 Bromobenzene 95 95 78 - 120 15 72 - 130 Bromochloromethane 100 97 3 15 Bromodichloromethane 102 100 80 - 122 2 15 **Bromoform** 87 87 61 - 132 0 15 103 84 55 - 144 21 15 F2 **Bromomethane**

105

108

Carbon tetrachloride

72 - 134

3

15

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333552 Preparation: 5030C

MS Lab Sample ID: 480-109670-K-2 MS Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20642.D

Dilution: 100 Leach Batch: N/A Initial Weight/Volume: 5 mL
Analysis Date: 11/26/2016 1916 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1916 5 mL

Leach Date: N/A

MSD Lab Sample ID: 480-109670-K-2 MSD Analysis Batch: 480-333552 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20643.D

Dilution: 100 Leach Batch: N/A Initial Weight/Volume: 5 mL
Analysis Date: 11/26/2016 1944 Final Weight/Volume: 5 mL

Prep Date: 11/26/2016 1944 5 mL Leach Date: N/A

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MSD Qual MS Qual Chlorobenzene 98 96 80 - 120 3 25 5 Chloroethane 111 106 69 - 136 15 Chloroform 104 99 73 - 127 5 20 9 93 68 - 124 15 Chloromethane 103 5 cis-1,2-Dichloroethene 100 95 74 - 124 15 2 cis-1,3-Dichloropropene 97 95 74 - 124 15 96 75 - 125 1 15 Dibromochloromethane 97 76 - 127 3 Dibromomethane 105 103 15 4 90 86 59 - 135 20 Dichlorodifluoromethane Dichlorofluoromethane 124 105 76 - 127 17 20 99 100 76 - 123 20 Ethyl ether 1 96 77 - 123 3 15 Ethylbenzene 99 3 20 Hexachlorobutadiene 91 94 68 - 131 Isopropylbenzene 96 95 77 - 122 1 20 0 Methyl tert-butyl ether 100 100 77 - 120 37 Methylene Chloride 99 97 75 - 124 1 15 1 m-Xylene & p-Xylene 96 95 76 - 122 16 94 66 - 125 1 20 Naphthalene 93 2 n-Butylbenzene 93 91 71 - 128 15 95 2 N-Propylbenzene 97 75 - 127 15 o-Chlorotoluene 99 99 76 - 121 0 20 76 - 122 2 95 93 o-Xylene 16 95 77 - 121 0 p-Chlorotoluene 95 15 1 p-Cymene 94 94 73 - 120 20 sec-Butylbenzene 96 94 74 - 127 2 15 94 80 - 120 2 20 Styrene 96 tert-Butylbenzene 93 92 75 - 123 1 15 3 Tetrachloroethene 100 97 74 - 122 20 Tetrahydrofuran 107 62 - 132 3 25 112 Toluene 99 97 80 - 122 2 15 trans-1,2-Dichloroethene 103 98 73 - 127 5 20 trans-1,3-Dichloropropene 98 97 80 - 120 1 15 Trichloroethene 100 97 74 - 123 3 16

73 - 120

80 - 120

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333552 Preparation: 5030C

4-Bromofluorobenzene (Surr)

Toluene-d8 (Surr)

MS Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 480-109670-K-2 MS Water 100 11/26/2016 1916 11/26/2016 1916 N/A	Pre	alysis Batch: p Batch: ich Batch:	480-333552 N/A N/A			HP5973P P20642.D 5 mL 5 mL 5 mL	
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	HD: 480-109670-K-2 MSD Water 100 11/26/2016 1944 11/26/2016 1944 N/A	Pre	alysis Batch: p Batch: ich Batch:	480-333552 N/A N/A			HP5973P P20643.D 5 mL 5 mL 5 mL	
		<u>%</u>	Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Trichlorofluorome	thane	108	99	62 - 150	9	20		
Vinyl chloride		95	92	65 - 133	3	15		
Surrogate			MS % Rec	: MSD %	% Rec	Acce	eptance Limi	ts
1,2-Dichloroethan	ne-d4 (Surr)		108	107		7	7 - 120	

99

100

98

101

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333552 Preparation: 5030C

MS Lab Sample ID: 480-109670-K-2 MS Units: ug/L MSD Lab Sample ID: 480-109670-K-2 MSD

Client Matrix:WaterClient Matrix:WaterDilution:100Dilution:100

Analysis Date: 11/26/2016 1916 Analysis Date: 11/26/2016 1944

Prep Date: 11/26/2016 1916 Prep Date: 11/26/2016 1944

Leach Date: N/A Leach Date: N/A

Analyte	Sample	MS Spike	MSD Spike	MS	MSD Beauty/Outel
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
1,1,1,2-Tetrachloroethane	ND	2500	2500	2510	2520
1,1,1-Trichloroethane	ND	2500	2500	2630	2500
1,1,2,2-Tetrachloroethane	ND	2500	2500	2370	2340
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2500	2500	2630	2510
1,1,2-Trichloroethane	ND	2500	2500	2480	2500
1,1-Dichloroethane	ND	2500	2500	2600	2530
1,1-Dichloroethene	ND	2500	2500	2390	2300
1,1-Dichloropropene	ND	2500	2500	2600	2520
1,2,3-Trichlorobenzene	ND	2500	2500	2320	2360
1,2,3-Trichloropropane	ND	2500	2500	2310	2380
1,2,4-Trichlorobenzene	ND	2500	2500	2290	2340
1,2,4-Trimethylbenzene	ND	2500	2500	2400	2360
1,2-Dibromo-3-Chloropropane	ND	2500	2500	2190	2150
1,2-Dibromoethane (EDB)	ND	2500	2500	2500	2430
1,2-Dichlorobenzene	ND	2500	2500	2350	2330
1,2-Dichloroethane	ND	2500	2500	2640	2560
1,2-Dichloropropane	ND	2500	2500	2530	2480
1,3,5-Trimethylbenzene	ND	2500	2500	2380	2360
1,3-Dichlorobenzene	ND	2500	2500	2320	2350
1,3-Dichloropropane	ND	2500	2500	2590	2490
1,4-Dichlorobenzene	ND	2500	2500	2340	2320
2,2-Dichloropropane	ND	2500	2500	2390	2250
2-Butanone (MEK)	49000	12500	12500	74700 E F1	71800 E F1
2-Hexanone	ND	12500	12500	13000	12400
4-Methyl-2-pentanone (MIBK)	290 J	12500	12500	13700	13400
Acetone	48000	12500	12500	77700 E F1	73900 E F1
Benzene	ND	2500	2500	2540	2440
Bromobenzene	ND	2500	2500	2380	2380
Bromochloromethane	ND	2500	2500	2490	2430
Bromodichloromethane	ND	2500	2500	2550	2500
Bromoform	ND	2500	2500	2180	2180
Bromomethane	ND	2500	2500	2580	2090 F2
Carbon tetrachloride	ND	2500	2500	2710	2620
Chlorobenzene	ND	2500	2500	2460	2400
Chloroethane	ND	2500	2500	2770	2640
Chloroform	ND	2500	2500	2610	2470
Chloromethane	ND	2500	2500	2560	2330
cis-1,2-Dichloroethene	ND	2500	2500	2490	2370
cis-1,3-Dichloropropene	ND	2500	2500	2420	2380
Dibromochloromethane	ND	2500	2500	2430	2400
Dibromomethane	ND	2500	2500	2630	2570
Dichlorodifluoromethane	ND	2500	2500	2240	2150
Dichlorofluoromethane	ND	2500	2500	3100	2620

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333552 Preparation: 5030C

MS Lab Sample ID: 480-109670-K-2 MS Units: ug/L MSD Lab Sample ID: 480-109670-K-2 MSD

Client Matrix:WaterClient Matrix:WaterDilution:100Dilution:100

Analysis Date: 11/26/2016 1916 Analysis Date: 11/26/2016 1944

Prep Date: 11/26/2016 1916 Prep Date: 11/26/2016 1944

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Ethyl ether	ND	2500	2500	2480	2500
Ethylbenzene	ND	2500	2500	2480	2400
Hexachlorobutadiene	ND	2500	2500	2270	2340
Isopropylbenzene	ND	2500	2500	2400	2370
Methyl tert-butyl ether	ND	2500	2500	2490	2500
Methylene Chloride	ND	2500	2500	2460	2440
m-Xylene & p-Xylene	ND	2500	2500	2410	2380
Naphthalene	ND	2500	2500	2320	2350
n-Butylbenzene	ND	2500	2500	2320	2270
N-Propylbenzene	ND	2500	2500	2420	2380
o-Chlorotoluene	ND	2500	2500	2470	2480
o-Xylene	ND	2500	2500	2370	2330
p-Chlorotoluene	ND	2500	2500	2370	2360
p-Cymene	ND	2500	2500	2350	2340
sec-Butylbenzene	ND	2500	2500	2400	2360
Styrene	ND	2500	2500	2400	2350
tert-Butylbenzene	ND	2500	2500	2320	2300
Tetrachloroethene	ND	2500	2500	2490	2420
Tetrahydrofuran	2600	5000	5000	8190	7940
Toluene	ND	2500	2500	2470	2420
trans-1,2-Dichloroethene	ND	2500	2500	2570	2440
trans-1,3-Dichloropropene	ND	2500	2500	2460	2420
Trichloroethene	ND	2500	2500	2510	2430
Trichlorofluoromethane	ND	2500	2500	2700	2460
Vinyl chloride	ND	2500	2500	2380	2310

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 480-332322 Method: 8260C SIM Preparation: 5030C

Lab Sample ID: Instrument ID: MB 480-332322/7 Analysis Batch: 480-332322 HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1464.D Dilution: Leach Batch: N/A Initial Weight/Volume: 25 mL 1.0 Final Weight/Volume: Analysis Date: 11/17/2016 2154 Units: ug/L 25 mL

Prep Date: 11/17/2016 2154

Leach Date: N/A

Analyte Result Qual RL MDL Vinyl chloride 0.00534 J 0.0040 0.020 Surrogate % Rec Acceptance Limits Dibromofluoromethane (Surr) 97 50 - 150 TBA-d9 (Surr) 122 50 - 150

Lab Control Sample/ Method: 8260C SIM Lab Control Sample Duplicate Recovery Report - Batch: 480-332322 Preparation: 5030C

LCS Lab Sample ID: LCS 480-332322/4 Analysis Batch: 480-332322 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1461.D Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0 25 mL Analysis Date: 11/17/2016 2041 Units: ug/L Final Weight/Volume: 25 mL 25 mL

Prep Date: 11/17/2016 2041

Leach Date: N/A

LCSD Lab Sample ID: LCSD 480-332322/5 Analysis Batch: 480-332322 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1462.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

Analysis Date: 11/17/2016 2105 Units: ug/L Final Weight/Volume: 25 mL 25 mL

Prep Date: 11/17/2016 2105

Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Vinyl chloride 115 123 50 - 150 7 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits Dibromofluoromethane (Surr) 99 104 50 - 150 50 - 150 TBA-d9 (Surr) 104 117

Client: Waste Management Job Number: 280-91049-1

Laboratory Control/ Method: 8260C SIM Laboratory Duplicate Data Report - Batch: 480-332322 Preparation: 5030C

LCS Lab Sample ID: LCS 480-332322/4 Units: ug/L LCSD Lab Sample ID: LCSD 480-332322/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/17/2016 2041 Analysis Date: 11/17/2016 2105
Prep Date: 11/17/2016 2041 Prep Date: 11/17/2016 2105

Leach Date: N/A Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS LCSD Result/Qual Result/Qual Vinyl chloride 0.200 0.200 0.230 0.246

Matrix Spike/ Method: 8260C SIM Matrix Spike Duplicate Recovery Report - Batch: 480-332322 Preparation: 5030C

MS Lab Sample ID: 280-91030-J-2 MS 480-332322 Instrument ID: HP5973J Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: J1476.D Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

 Dilution:
 4.0
 Leach Batch:
 N/A
 Initial Weight/Volume:
 25 mL

 Analysis Date:
 11/18/2016 0327
 Final Weight/Volume:
 25 mL

 Prep Date:
 11/18/2016 0327
 25 mL

Leach Date: N/A

Leach Date. N/A

MSD Lab Sample ID: 280-91030-J-2 MSD Analysis Batch: 480-332322 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1477.D Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

Analysis Date: 11/18/2016 0351 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0351 25 mL

Leach Date: N/A

% Rec. MS Qual Analyte MS MSD Limit **RPD RPD Limit** MSD Qual Vinyl chloride 138 137 50 - 150 20 Surrogate MS % Rec MSD % Rec Acceptance Limits

 Dibromofluoromethane (Surr)
 104
 104
 50 - 150

 TBA-d9 (Surr)
 142
 138
 50 - 150

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 8260C SIM Matrix Spike Duplicate Recovery Report - Batch: 480-332322 Preparation: 5030C

MS Lab Sample ID: 280-91030-J-2 MS Units: ug/L MSD Lab Sample ID: 280-91030-J-2 MSD

Client Matrix:WaterClient Matrix:WaterDilution:4.0Dilution:4.0

Analysis Date: 11/18/2016 0327 Analysis Date: 11/18/2016 0351
Prep Date: 11/18/2016 0327 Prep Date: 11/18/2016 0351

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qu	ıal	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Vinyl chloride	0.046	J	0.800	0.800	1.15	1.15

MT_025 25A120516.asc

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-352772 Method: 6010B

Preparation: 3005A Total Recoverable

Lab Sample ID: MB 280-352772/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/03/2016 2244

Prep Date: 11/29/2016 0726

Leach Date: N/A

Analysis Batch: 280-354165 Prep Batch: 280-352772

Leach Batch: N/A
Units: mg/L

Instrument ID: MT_025
Lab File ID: 25A11316.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte Result Qual RL RL

Magnesium, Dissolved ND 0.050 0.050

Method Blank - Batch: 280-352772 Method: 6010B Preparation: 3005A

Total Recoverable
B 280-352772/1-A Analysis Batch: 280-354385 Instrument ID:

Lab Sample ID: MB 280-352772/1-A Analysis Batch: 280-354385 Instrument ID:
Client Matrix: Water Prep Batch: 280-352772 Lab File ID:

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL Analysis Date: 12/05/2016 2236 Units: mg/L Final Weight/Volume: 50 mL

Prep Date: 11/29/2016 0726

Leach Date: N/A

Result Qual RL Analyte RL Calcium, Dissolved ND 0.040 0.040 Iron, Dissolved ND 0.060 0.060 Potassium, Dissolved ND 1.0 1.0 Sodium, Dissolved ND 1.0 1.0

MT_025

25A11316.asc

Qual

Client: Waste Management Job Number: 280-91049-1

Lab Control Sample - Batch: 280-352772

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-352772/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/03/2016 2247 Prep Date: 11/29/2016 0726

Leach Date: N/A Analysis Batch: 280-354165 Prep Batch:

Leach Batch: Units: mg/L

280-352772 N/A

Lab File ID: Initial Weight/Volume: Final Weight/Volume:

Instrument ID:

50 mL 50 mL

Analyte Spike Amount Result % Rec. Limit Qual Magnesium, Dissolved 50.0 50.7 101 90 - 113

Lab Control Sample - Batch: 280-352772

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-352772/2-A Client Matrix: Water

Dilution: 1.0 Analysis Date: 12/05/2016 2238 Prep Date: 11/29/2016 0726

Leach Date: N/A

Calcium, Dissolved

Sodium, Dissolved

Potassium. Dissolved

Iron. Dissolved

Analyte

Analysis Batch: 280-354385 Prep Batch: 280-352772 Leach Batch: N/A

Units: mg/L Instrument ID: MT_025 Lab File ID: 25A120516.asc Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Spike Amount Result % Rec. Limit 50.0 47.6 95 90 - 111 1.00 0.930 93 89 - 115 50.0 48.1 96 89 - 114 50.0 49.4 99 90 - 115

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352772 Preparation: 3005A

Dissolved

Method: 6010B

280-91149-A-2-B MS MS Lab Sample ID:

Client Matrix: Water

Dilution: 1.0

Analysis Date: 12/05/2016 2246 Prep Date: 11/29/2016 0726

Leach Date: N/A

MSD Lab Sample ID: 280-91149-A-2-C MSD

Client Matrix: Water Dilution: 1.0

12/05/2016 2249 Analysis Date: Prep Date: 11/29/2016 0726

Leach Date: N/A Analysis Batch: 280-354385 Prep Batch: 280-352772

Leach Batch: N/A Instrument ID: MT_025

Lab File ID: 25A120516.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

Analysis Batch: 280-354385 Instrument ID: MT_025

Lab File ID: 25A120516.asc Prep Batch: 280-352772

Initial Weight/Volume: Leach Batch: N/A 50 ml Final Weight/Volume: 50 mL

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Calcium, Dissolved 97 101 48 - 153 1 20 4 52 - 155 0 20 Iron, Dissolved 91 91 Potassium, Dissolved 106 108 76 - 132 1 20 70 - 203 1 Sodium, Dissolved 228 20 4 4 186

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352772

Preparation: 3005A

Dissolved

Method: 6010B

MS Lab Sample ID: Units: mg/L 280-91149-A-2-B MS

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/05/2016 2246 Prep Date: 11/29/2016 0726

Leach Date: N/A MSD Lab Sample ID: 280-91149-A-2-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/05/2016 2249 Prep Date: 11/29/2016 0726

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/0	Qual	MSD Result/Q	ual
Calcium, Dissolved	310	50.0	50.0	360	4	362	4
Iron, Dissolved	ND	1.00	1.00	0.909		0.909	
Potassium, Dissolved	11	50.0	50.0	63.8		64.4	
Sodium, Dissolved	2200	50.0	50.0	2270	4	2290	4

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-352775

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352775/1-A

Client Matrix: Water

Dilution: 1.0 Analysis Date: 12/04/2016 1904 Prep Date:

Leach Date: N/A

11/28/2016 1441

280-354204 Analysis Batch: Prep Batch: 280-352775

Leach Batch: N/A Units: mg/L Instrument ID: MT_025

Lab File ID: 25B120416.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Cobalt, Total	ND		0.0030	0.0030
Iron, Total	ND		0.060	0.060

Lab Control Sample - Batch: 280-352775

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-352775/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/04/2016 1906 Prep Date: 11/28/2016 1441

Leach Date: N/A

Instrument ID: Analysis Batch: 280-354204 MT 025 Prep Batch: 25B120416.asc 280-352775 Lab File ID:

Leach Batch: N/A Initial Weight/Volume: 50 mL Units: Final Weight/Volume: 50 mL mg/L

Spike Amount Analyte Result % Rec. Limit Qual Cobalt, Total 0.500 0.514 103 89 - 111 Iron, Total 1.00 0.980 98 89 - 115

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352775

Method: 6010B Preparation: 3005A **Total Recoverable**

MS Lab Sample ID: 280-91099-D-1-B MS

Client Matrix: Water

Dilution: 1.0

12/04/2016 1914 Analysis Date: Prep Date: 11/28/2016 1441

Analysis Batch: 280-354204 Prep Batch: 280-352775

Leach Batch: N/A

Analysis Batch:

Prep Batch:

Leach Batch:

Instrument ID: MT_025

Lab File ID: 25B120416.asc Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Leach Date:

MSD Lab Sample ID: 280-91099-D-1-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/04/2016 1916 Prep Date: 11/28/2016 1441

Leach Date:

280-354204 Instrument ID: MT 025 280-352775 Lab File ID: 25B120416.asc

> Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

% Rec. Analyte MS **MSD** Limit **RPD RPD Limit** MS Qual MSD Qual Cobalt. Total 103 94 82 - 119 20 9 7 Iron, Total 99 91 52 - 155 20

N/A

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 280-352775

Method: 6010B
Preparation: 3005A
Total Recoverable

MS Lab Sample ID: 280-91099-D-1-B MS Units: mg/L MSD Lab Sample ID: 280-91099-D-1-C MSD

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/04/2016 1914 Analysis Date: 12/04/2016 1916
Prep Date: 11/28/2016 1441 Prep Date: 11/28/2016 1441

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Cobalt, Total	ND	0.500	0.500	0.515	0.470
Iron, Total	0.27	1.00	1.00	1.27	1.18

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-352489 Method: 6020

Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352489/1-A Analysis Batch: 280-353028 Instrument ID:

MT_077 Client Matrix: Water Prep Batch: 280-352489 Lab File ID: 175 BLK.d Dilution: Leach Batch: N/A Initial Weight/Volume: 50 mL 1.0

Final Weight/Volume: Analysis Date: 11/23/2016 2315 Units: mg/L 50 mL

Prep Date: 11/23/2016 1445

Leach Date: N/A

Analyte Result Qual RL RL Manganese, Dissolved ND 0.0010 0.0010

Method: 6020 Lab Control Sample - Batch: 280-352489 Preparation: 3005A **Total Recoverable**

LCS 280-352489/2-A Analysis Batch: 280-353028 Instrument ID: MT 077 Lab Sample ID: 176 LCS.d Client Matrix: Water Prep Batch: 280-352489 Lab File ID:

Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 50 mL Analysis Date: 11/23/2016 2319 Units: mg/L Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Leach Date: N/A

% Rec. Analyte Spike Amount Result I imit Qual 101 85 - 117

Manganese, Dissolved 0.0400 0.0402

Matrix Spike/ Method: 6020 Matrix Spike Duplicate Recovery Report - Batch: 280-352489 Preparation: 3005A

Dissolved

MS Lab Sample ID: 280-91030-D-2-B MS Analysis Batch: 280-353028 Instrument ID: MT 077 180SMPL.d Client Matrix: Prep Batch: 280-352489 Lab File ID: Water Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Analysis Date: 11/23/2016 2334 Final Weight/Volume: 50 mL

11/23/2016 1445 Prep Date: Leach Date: N/A

280-353028 MSD Lab Sample ID: 280-91030-D-2-C MSD Analysis Batch: Instrument ID: MT 077 Client Matrix: Water Prep Batch: 280-352489 Lab File ID: 181SMPL.d

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL Analysis Date: 11/23/2016 2338 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Leach Date: N/A

% Rec. **RPD** Analyte MS **MSD** I imit **RPD Limit** MS Qual MSD Qual

Manganese, Dissolved 307 388 85 - 117 1 20 4 4

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 6020
Matrix Spike Duplicate Recovery Report - Batch: 280-352489 Preparation: 3005A

Units: mg/L

Dissolved

MS Lab Sample ID: 280-91030-D-2-B MS

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/23/2016 2334 Prep Date: 11/23/2016 1445

Leach Date: N/A

MSD Lab Sample ID: 280-91030-D-2-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/23/2016 2338 Prep Date: 11/23/2016 1445

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/0	Qual	MSD Result/Q)ual
Manganese, Dissolved	2.7	0.0400	0.0400	2.84	4	2.88	4

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-352777

Method: 6020 Preparation: 3005A Total Recoverable

Lab Sample ID: MB 280-352777/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 0617 Prep Date: 11/28/2016 1441

Leach Date: N/A

Analysis Batch: 280-353513 Prep Batch: 280-352777

Leach Batch: N/A Units: mg/L Instrument ID: MT_078
Lab File ID: 250_BLK.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Antimony, Total	ND		0.0010	0.0010
Barium, Total	ND		0.0010	0.0010
Beryllium, Total	ND		0.0010	0.0010
Cadmium, Total	ND		0.00020	0.00020
Chromium, Total	ND		0.0030	0.0030
Copper, Total	ND		0.0020	0.0020
Lead, Total	ND		0.0010	0.0010
Manganese, Total	ND		0.0010	0.0010
Nickel, Total	ND		0.0040	0.0040
Selenium, Total	ND		0.0010	0.0010
Silver, Total	ND		0.0020	0.0020
Thallium, Total	ND		0.0010	0.0010
Vanadium, Total	ND		0.0020	0.0020
Zinc, Total	ND		0.0050	0.0050

Lab Control Sample - Batch: 280-352777

Method: 6020 Preparation: 3005A Total Recoverable

Lab Sample ID: LCS 280-352777/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 0620 Prep Date: 11/28/2016 1441

Leach Date: N/A

Analysis Batch: 280-353513
Prep Batch: 280-352777
Leach Batch: N/A
Units: mg/L

Instrument ID: MT_078
Lab File ID: 251_LCS.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Antimony, Total	0.0400	0.0388	97	85 - 115	
Barium, Total	0.0400	0.0383	96	85 - 118	
Beryllium, Total	0.0400	0.0381	95	80 - 125	
Cadmium, Total	0.0400	0.0397	99	85 - 115	
Chromium, Total	0.0400	0.0391	98	84 - 121	
Copper, Total	0.0400	0.0391	98	85 - 119	
Lead, Total	0.0400	0.0393	98	85 - 118	
Manganese, Total	0.0400	0.0394	98	85 - 117	
Nickel, Total	0.0400	0.0400	100	85 - 119	
Selenium, Total	0.0400	0.0382	95	77 - 122	
Silver, Total	0.0400	0.0400	100	85 - 115	
Thallium, Total	0.0400	0.0387	97	85 - 118	
Vanadium, Total	0.0400	0.0392	98	85 - 120	
Zinc, Total	0.0400	0.0419	105	83 - 122	

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 6020
Matrix Spike Duplicate Recovery Report - Batch: 280-352777 Preparation: 3005A

Leach Date:

N/A

MS Lab Sample ID: 280-91049-1 Analysis Batch: 280-353513 Instrument ID:

MS Lab Sample ID: 280-91049-1 Analysis Batch: 280-353513 Instrument ID: MT_078
Client Matrix: Water Prep Batch: 280-352777 Lab File ID: 264SMPL.d
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Analysis Date: 11/29/2016 0710 Final Weight/Volume: 50 mL Prep Date: 11/28/2016 1441

MSD Lab Sample ID: 280-91049-1 Analysis Batch: 280-353513 Instrument ID: MT_078

Client Matrix: Water Prep Batch: 280-352777 Lab File ID: 265SMPL.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL
Analysis Date: 11/29/2016 0714 Final Weight/Volume: 50 mL
Prep Date: 11/28/2016 1441

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Antimony, Total	94	96	85 - 115	2	20		
Barium, Total	91	95	85 - 118	4	20		
Beryllium, Total	96	99	80 - 125	4	20		
Cadmium, Total	93	95	85 - 115	2	20		
Chromium, Total	101	102	84 - 121	0	20		
Copper, Total	95	97	85 - 119	2	20		
Lead, Total	95	96	85 - 118	1	20		
Manganese, Total	98	99	85 - 117	1	20		
Nickel, Total	95	96	85 - 119	1	20		
Silver, Total	94	96	85 - 115	2	20		
Thallium, Total	94	96	85 - 118	3	20		
Vanadium, Total	98	96	85 - 120	1	20		
Zinc, Total	95	98	83 - 122	3	20		

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 6020 Matrix Spike Duplicate Recovery Report - Batch: 280-352777 Preparation: 3005A **Total Recoverable**

Leach Date:

N/A

N/A

MS Lab Sample ID: 280-91049-1 Analysis Batch: Instrument ID: MT_078 280-353693 049SMPL.d Client Matrix: Water Prep Batch: 280-352777 Lab File ID: 1.0 N/A

Dilution: Leach Batch: Initial Weight/Volume: 50 mL 11/29/2016 1752 Final Weight/Volume: Analysis Date: 50 mL Prep Date: 11/28/2016 1441

MSD Lab Sample ID: 280-91049-1 Analysis Batch: 280-353693 Instrument ID: MT_078

050SMPL.d Client Matrix: Lab File ID: Water Prep Batch: 280-352777 Leach Batch: N/A 50 mL 1.0

Dilution: Initial Weight/Volume: Analysis Date: 11/29/2016 1756 Final Weight/Volume: 50 mL

Prep Date: 11/28/2016 1441 Leach Date:

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Selenium, Total 94 97 77 - 122 3 20

Client: Waste Management Job Number: 280-91049-1

Units: mg/L

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352777 Pre

Method: 6020 Preparation: 3005A Total Recoverable

MS Lab Sample ID: 280-91049-1

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 0710 Prep Date: 11/28/2016 1441

Leach Date: N/A

MSD Lab Sample ID: 280-91049-1

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 0714 Prep Date: 11/28/2016 1441

Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Antimony, Total	ND	0.0400	0.0400	0.0377	0.0386
Barium, Total	0.0027	0.0400	0.0400	0.0392	0.0406
Beryllium, Total	ND	0.0400	0.0400	0.0383	0.0398
Cadmium, Total	ND	0.0400	0.0400	0.0373	0.0381
Chromium, Total	ND	0.0400	0.0400	0.0406	0.0407
Copper, Total	ND	0.0400	0.0400	0.0379	0.0387
₋ead, Total	ND	0.0400	0.0400	0.0379	0.0383
Manganese, Total	ND	0.0400	0.0400	0.0391	0.0397
Nickel, Total	ND	0.0400	0.0400	0.0380	0.0384
Silver, Total	ND	0.0400	0.0400	0.0378	0.0386
Thallium, Total	ND	0.0400	0.0400	0.0375	0.0385
/anadium, Total	0.0043	0.0400	0.0400	0.0434	0.0428
Zinc, Total	ND	0.0400	0.0400	0.0380	0.0393

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352777

Method: 6020 Preparation: 3005A Total Recoverable

MS Lab Sample ID:

280-91049-1

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 1752 Prep Date: 11/28/2016 1441

Leach Date: N/A

MSD Lab Sample ID: 280-91049-1

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 1756 Prep Date: 11/28/2016 1441

Leach Date: N/A

Analyte	Sample	MS Spike	MSD Spike	MS	MSD
	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
Selenium, Total	ND	0.0400	0.0400	0.0377	0.0389

Units: mg/L

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-354220 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-354220/6 Analysis Batch: 280-354220 Instrument ID: WC_lonChrom10
Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/05/2016 1105 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Chloride
 ND
 1.0
 1.0

 Sulfate
 ND
 1.0
 1.0

Method Reporting Limit Check - Batch: 280-354220 Method: 300.0 Preparation: N/A

Lab Sample ID: MRL 280-354220/3 Analysis Batch: 280-354220 Instrument ID: WC_lonChrom10

Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/05/2016 1019 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

Qual Analyte Spike Amount Result % Rec. Limit Chloride 2.50 ND 95 50 - 150 Sulfate ND 94 2.50 50 - 150

Lab Control Sample/ Method: 300.0
Lab Control Sample Duplicate Recovery Report - Batch: 280-354220 Preparation: N/A

LCS Lab Sample ID: LCS 280-354220/4 Analysis Batch: 280-354220 Instrument ID: WC_lonChrom10
Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL
Analysis Date: 12/05/2016 1034 Units: mg/L Final Weight/Volume: 5 mL
Prep Date: N/A 5 uL

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-354220/5 Analysis Batch: 280-354220 Instrument ID: WC_lonChrom10
Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2 DENPC179 Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/05/2016 1050 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A 5 uL

Prep Date: N/A Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Chloride 103 103 90 - 110 10 0 Sulfate 102 90 - 110 10 102 0

Client: Waste Management Job Number: 280-91049-1

Laboratory Control/ Method: 300.0 Laboratory Duplicate Data Report - Batch: 280-354220 Preparation: N/A

LCS Lab Sample ID: LCS 280-354220/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-354220/5

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 12/05/2016 1034 Analysis Date: 12/05/2016 1050

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
Chloride	100	100	103	103
Sulfate	100	100	102	102

Client: Waste Management Job Number: 280-91049-1

Method: 300.0 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-354220 Preparation: N/A

280-91049-1 MS Lab Sample ID: Analysis Batch: 280-354220 Instrument ID: WC_IonChrom10 Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2 DENPC179 Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/05/2016 2249 Final Weight/Volume: Analysis Date: 5 mL

Prep Date: N/A 5 uL Leach Date: N/A

MSD Lab Sample ID: 280-91049-1 Analysis Batch: 280-354220 Instrument ID: WC IonChrom10 Info 2 DENPC179 Anic Client Matrix: Water Prep Batch: N/A Lab File ID:

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

12/05/2016 2305 Final Weight/Volume: 5 mL Analysis Date: Prep Date: N/A 5 uL

Leach Date: N/A

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Chloride 104 105 80 - 120 20 1 Sulfate 80 - 120 20 100 100 1

Matrix Spike/ Method: 300.0 Matrix Spike Duplicate Recovery Report - Batch: 280-354220 Preparation: N/A

MS Lab Sample ID: 280-91049-6 Analysis Batch: 280-354220 Instrument ID: WC IonChrom10

Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic 1.0 Leach Batch: Initial Weight/Volume: 5 mL Dilution: N/A

12/06/2016 0124 Analysis Date: Final Weight/Volume: 5 mL

5 uL Prep Date: N/A Leach Date: N/A

MSD Lab Sample ID: 280-91049-6 280-354220 Instrument ID: Analysis Batch: WC IonChrom10 Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

1.0 Initial Weight/Volume: 5 mL Dilution: Leach Batch: N/A

Analysis Date: 12/06/2016 0139 Final Weight/Volume: 5 mL

Prep Date: N/A 5 uL Leach Date: N/A

105

104

Sulfate

% Rec. Analyte MS **MSD** Limit **RPD RPD Limit** MS Qual MSD Qual Chloride 107 109 80 - 120 1 20

80 - 120

20

1

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-354220 Preparation: N/A

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 12/05/2016 2249 Analysis Date: 12/05/2016 2305

Prep Date: N/A

Prep Date: N/A

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Amount Result/Qual Result/Qual Chloride 1.8 25.0 25.0 27.8 28.0 Sulfate 2.2 25.0 25.0 27.1 27.3

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-354220 Preparation: N/A

MS Lab Sample ID: 280-91049-6 Units: mg/L MSD Lab Sample ID: 280-91049-6

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 12/06/2016 0124 Analysis Date: 12/06/2016 0139

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Result/Qual Result/Qual Amount Chloride 14 25.0 25.0 40.5 40.9 Sulfate 6.0 25.0 25.0 31.9 32.3

Client: Waste Management Job Number: 280-91049-1

Duplicate - Batch: 280-354220 Method: 300.0 Preparation: N/A

Lab Sample ID: 280-91049-1 Analysis Batch: 280-354220 Instrument ID: WC_lonChrom10
Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/05/2016 2234 Units: mg/L Final Weight/Volume: 5 mL Frep Date: N/A 5 uL

Prep Date: N/A Leach Date: N/A

Sulfate

Analyte Sample Result/Qual Result RPD Limit Qual Chloride 1.8 1.78 0.05 15 2.2 Sulfate 2.19 0.7 15

Duplicate - Batch: 280-354220 Method: 300.0 Preparation: N/A

Lab Sample ID: 280-91049-6 Analysis Batch: 280-354220 Instrument ID: WC_IonChrom10
Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/06/2016 0037 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A 5 uL
Leach Date: N/A

6.0

Analyte Sample Result/Qual Result RPD Limit Qual
Chloride 14 13.6 0 15

5.92

0.6

15

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-352943 Method: 350.1

Preparation: N/A

Lab Sample ID: MB 280-352943/61 Analysis Batch: 280-352943 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112316.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/23/2016 1610 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Ammonia (as N) ND 0.030 0.030

Lab Control Sample/ Method: 350.1
Lab Control Sample Duplicate Recovery Report - Batch: 280-352943 Preparation: N/A

LCS Lab Sample ID: LCS 280-352943/59 Analysis Batch: 280-352943 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112316.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/23/2016 1606 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-352943/60 Analysis Batch: 280-352943 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112316.RS
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/23/2016 1608 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/23/2016 1608 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A
Leach Date: N/A

% Rec.
Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Ammonia (as N) 100 97 90 - 110 2 10

Laboratory Control/ Method: 350.1 Laboratory Duplicate Data Report - Batch: 280-352943 Preparation: N/A

LCS Lab Sample ID: LCS 280-352943/59 Units: mg/L LCSD Lab Sample ID: LCSD 280-352943/60

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/23/2016 1606 Analysis Date: 11/23/2016 1608

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike Amount CSD Spike Result/Qual Result/Qual

Ammonia (as N) 2.50 2.50 2.49 2.43

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: 350.1
Matrix Spike Duplicate Recovery Report - Batch: 280-352943 Preparation: N/A

MS Lab Sample ID: 280-91049-5 Analysis Batch: 280-352943 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112316.RS`

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

Analysis Date: 11/23/2016 1708 Final Weight/Volume: 10 mL Prep Date: N/A

Leach Date: N/A

MSD Lab Sample ID: 280-91049-5 Analysis Batch: 280-352943 Instrument ID: WC Alp 3

MSD Lab Sample ID: 280-91049-5 Analysis Batch: 280-352943 Instrument ID: WC_Alp 3
Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112316.RS`

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

Analysis Date: 11/23/2016 1710 Final Weight/Volume: 10 mL

Prep Date: N/A
Leach Date: N/A

Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual

Ammonia (as N) 109 109 90 - 110 0 10

Matrix Spike/ Method: 350.1
Matrix Spike Duplicate Recovery Report - Batch: 280-352943 Preparation: N/A

MS Lab Sample ID: 280-91049-5 Units: mg/L MSD Lab Sample ID: 280-91049-5

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/23/2016 1708 Analysis Date: 11/23/2016 1710

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

MSD Sample MS Spike MSD Spike MS Analyte Result/Qual Amount Amount Result/Qual Result/Qual Ammonia (as N) ND 1.00 1.00 1.09 1.09

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-354397 Method: 353.2

Preparation: N/A

·

Lab Sample ID: MB 280-354397/1 Analysis Batch: 280-354397 Instrument ID: No Equipment Assigned Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/06/2016 0931 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Nitrate as N
 ND
 0.050
 0.050

5.0

5.0

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-352384 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-352384/5 Analysis Batch: 280-352384 Instrument ID: WC_AT2

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/20/2016 1340 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Alkalinity, Total (As CaCO3)
 ND
 5.0
 5.0

 Alkalinity, Bicarbonate (As CaCO3)
 ND
 5.0
 5.0

Method Blank - Batch: 280-352384 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-352384/31 Analysis Batch: 280-352384 Instrument ID: WC AT2

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/20/2016 1605 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date:

N/A

Alkalinity, Bicarbonate (As CaCO3)

Analyte Result Qual RL RL Alkalinity, Total (As CaCO3) ND 5.0 5.0

ND

TestAmerica Denver Page 126 of 155 12/07/2016

Client: Waste Management Job Number: 280-91049-1

Lab Control Sample - Batch: 280-352384 Method: SM 2320B Preparation: N/A

Lab Sample ID: Instrument ID: LCS 280-352384/4 Analysis Batch: 280-352384 WC_AT2 Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/20/2016 1334 Final Weight/Volume: Analysis Date: Units: mg/L

Prep Date: N/A Leach Date: N/A

N/A

Leach Date:

Analyte Spike Amount Result % Rec. Limit Qual Alkalinity, Total (As CaCO3) 200 202 101 90 - 110

Lab Control Sample - Batch: 280-352384 Method: SM 2320B Preparation: N/A

Lab Sample ID: LCS 280-352384/30 Analysis Batch: 280-352384 Instrument ID: WC AT2

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/20/2016 1559 Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Alkalinity, Total (As CaCO3) 200 195 98 90 - 110

Duplicate - Batch: 280-352384 Method: SM 2320B Preparation: N/A

Analysis Batch: Lab Sample ID: Instrument ID: WC AT2 280-91099-A-3 DU 280-352384

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT Dilution: Initial Weight/Volume: 1.0 Leach Batch: N/A

Analysis Date: 11/20/2016 1351 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Sample Result/Qual Result RPD Limit Qual Analyte 280 280 0.2 10 Alkalinity, Total (As CaCO3)

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-352501 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-352501/1 Analysis Batch: 280-352501 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL
Analysis Date: 11/21/2016 1702 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/21/2016 1702 Units: mg/L Final Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Dissolved Solids (TDS) ND 5.0 5.0

Lab Control Sample - Batch: 280-352501 Method: SM 2540C Preparation: N/A

Lab Sample ID: LCS 280-352501/2 Analysis Batch: 280-352501 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/21/2016 1702 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A
Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Total Dissolved Solids (TDS) 500 496 99 86 - 110

Duplicate - Batch: 280-352501 Method: SM 2540C

Preparation: N/A

Lab Sample ID: 280-91049-6 Analysis Batch: 280-352501 Instrument ID: No Equipment Assigned Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL
Analysis Date: 11/21/2016 1702 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Dissolved Solids (TDS) 140 132 4 10

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-352718 Method: SM 2540D Preparation: N/A

Lab Sample ID: MB 280-352718/2 Analysis Batch: 280-352718 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL 11/22/2016 1639 Final Weight/Volume: Analysis Date: Units: mg/L 250 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Suspended Solids ND 4.0 4.0

Lab Control Sample - Batch: 280-352718 Method: SM 2540D Preparation: N/A

Lab Sample ID: LCS 280-352718/1 Analysis Batch: 280-352718 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL
Analysis Date: 11/22/2016 1639 Units: mg/L Final Weight/Volume: 250 mL

Analysis Date: 11/22/2016 1639 Units: mg/L
Prep Date: N/A
Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual

Total Suspended Solids 100 93.6 94 86 - 114

Duplicate - Batch: 280-352718 Method: SM 2540D Preparation: N/A

Lab Sample ID: 280-91074-A-2 DU Analysis Batch: 280-352718 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 250 mL Analysis Date: 11/22/2016 1639 Units: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Suspended Solids 35 33.6 5 10

1.0

1.0

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-353712 Method: SM 5310B Preparation: N/A

Lab Sample ID: MB 280-353712/5 Analysis Batch: 280-353712 Instrument ID: WC_SHI3 Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt

Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0

11/29/2016 1831 Final Weight/Volume: Analysis Date: Units: ma/L Prep Date: N/A

Leach Date: N/A Analyte Result Qual RL RL

ND

Total Organic Carbon - Average Lab Control Sample/ Method: SM 5310B

Lab Control Sample Duplicate Recovery Report - Batch: 280-353712 Preparation: N/A

LCS Lab Sample ID: LCS 280-353712/3 Analysis Batch: 280-353712 Instrument ID: WC SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt

Leach Batch: Dilution: 10 N/A Initial Weight/Volume:

Analysis Date: 11/29/2016 1759 Units: Final Weight/Volume: 100 mL mg/L Prep Date: N/A

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353712/4 Analysis Batch: 280-353712 Instrument ID: WC_SHI3 Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/29/2016 1814 Final Weight/Volume: Analysis Date: Units: mg/L 100 mL

Prep Date: N/A Leach Date: N/A

% Rec. LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Analyte

Total Organic Carbon - Average 98 98 88 - 112 0 15

Laboratory Control/ Method: SM 5310B Laboratory Duplicate Data Report - Batch: 280-353712 Preparation: N/A

LCS Lab Sample ID: LCS 280-353712/3 LCSD Lab Sample ID: LCSD 280-353712/4 Units: mg/L

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

11/29/2016 1759 11/29/2016 1814 Analysis Date: Analysis Date:

Prep Date: N/A Prep Date: N/A Leach Date: N/A Leach Date: N/A

LCSD LCS Spike LCSD Spike LCS Analyte Amount Amount Result/Qual Result/Qual Total Organic Carbon - Average 25.0 25.0 24.6 24.5

WC_SHI3

50 mL

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-353712 Preparation: N/A

MS Lab Sample ID: 280-90915-B-2 MS Analysis Batch: 280-353712 Instrument ID:

Prep Date:

Leach Date:

N/A

N/A

Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/29/2016 1919 Final Weight/Volume:

MSD Lab Sample ID: 280-90915-B-2 MSD Analysis Batch: 280-353712 Instrument ID: WC SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/29/2016 1934 Final Weight/Volume: 50 mL

Prep Date: N/A
Leach Date: N/A

Analyte \(\frac{\lambda}{\text{Rec.}}{\text{MS MSD Limit RPD RPD Limit MS Qual MSD Qual}} \)

 Total Organic Carbon - Average
 101
 101
 88 - 112
 1
 15

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-353712 Preparation: N/A

MS Lab Sample ID: 280-90915-B-2 MS Units: mg/L MSD Lab Sample ID: 280-90915-B-2 MSD

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/29/2016 1919 Analysis Date: 11/29/2016 1934

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual Amount Amount Result/Qual Result/Qual Total Organic Carbon - Average ND 25.0 25.0 25.4 25.2

Client: Waste Management Job Number: 280-91049-1

Method Blank - Batch: 280-354209 Method: SM 5310B Preparation: N/A

Lab Sample ID: MB 280-354209/4 Analysis Batch: 280-354209 Instrument ID: WC_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 120216.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

12/02/2016 1512 Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Analyte Result Qual RL RL Total Organic Carbon - Average ND 1.0 1.0

Lab Control Sample - Batch: 280-354209 Method: SM 5310B Preparation: N/A

LCS 280-354209/3 Analysis Batch: 280-354209 Instrument ID: WC SHI3 Lab Sample ID:

120216.txt Client Matrix: Water Prep Batch: N/A Lab File ID: Dilution: 10 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/02/2016 1458 Units: Final Weight/Volume: 100 mL mg/L

Leach Date: N/A Analyte Spike Amount Result % Rec. I imit

Prep Date:

N/A

Qual Total Organic Carbon - Average 25.0 24.4 98 88 - 112

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-354209 Preparation: N/A

MS Lab Sample ID: 280-91049-3 Analysis Batch: 280-354209 Instrument ID: WC_SHI3

Client Matrix: Prep Batch: N/A Lab File ID: 120216.txt Water Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

12/02/2016 1558 Analysis Date: Final Weight/Volume: 50 mL

Prep Date: N/A N/A Leach Date:

MSD Lab Sample ID: 280-91049-3 Analysis Batch: 280-354209 Instrument ID: WC SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 120216.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/02/2016 1613 50 mL

Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

% Rec. **RPD** Analyte MS **MSD** I imit **RPD Limit** MS Qual MSD Qual

Total Organic Carbon - Average 102 102 88 - 112 0 15

Client: Waste Management Job Number: 280-91049-1

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-354209 Preparation: N/A

MS Lab Sample ID: 280-91049-3 Units: mg/L MSD Lab Sample ID: 280-91049-3

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/02/2016 1558 Analysis Date: 12/02/2016 1613

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Amount Result/Qual Result/Qual 25.0 25.0 Total Organic Carbon - Average ND 25.5 25.5

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: 280-91049-1 Client ID: MW-35

Sample Date/Time: 11/15/2016 09:50 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91049-F-1		480-333378		11/23/2016 23:06	1	TAL BUF	NMD1
A:8260C	280-91049-F-1		480-333378		11/23/2016 23:06	1	TAL BUF	NMD1
P:5030C	280-91049-K-1		480-332322		11/18/2016 00:36	1	TAL BUF	NMD1
A:8260C SIM	280-91049-K-1		480-332322		11/18/2016 00:36	1	TAL BUF	NMD1
P:3005A	280-91049-E-1-B		280-354165	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-1-B		280-354165	280-352772	12/03/2016 23:23	1	TAL DEN	LLB
P:3005A	280-91049-D-1-A		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	280-91049-D-1-A		280-354204	280-352775	12/04/2016 19:46	1	TAL DEN	CRR
P:3005A	280-91049-E-1-B		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-1-B		280-354385	280-352772	12/05/2016 23:15	1	TAL DEN	CRR
P:3005A	280-91049-E-1-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91049-E-1-A		280-353028	280-352489	11/24/2016 00:46	1	TAL DEN	LMT
P:3005A	280-91049-D-1-B		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-1-B		280-353513	280-352777	11/29/2016 07:02	1	TAL DEN	JM
P:3005A	280-91049-D-1-B		280-353693	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-1-B		280-353693	280-352777	11/29/2016 17:44	1	TAL DEN	JM
A:300.0	280-91049-A-1		280-354220		12/05/2016 22:18	1	TAL DEN	AFB
A:350.1	280-91049-C-1		280-352943		11/23/2016 16:44	1	TAL DEN	MAS
A:353.2	280-91049-A-1		280-354397		12/06/2016 09:31	1	TAL DEN	AJA
A:SM 2320B	280-91049-A-1		280-352384		11/20/2016 16:18	1	TAL DEN	MMC
A:SM 2540C	280-91049-A-1		280-352501		11/21/2016 17:02	1	TAL DEN	SVC
A:SM 2540D	280-91049-B-1		280-352718		11/22/2016 16:39	1	TAL DEN	SVC
A:SM 5310B	280-91049-C-1		280-353712		11/29/2016 22:39	1	TAL DEN	CCJ
A:Field Sampling	280-91049-A-1		280-352756		11/15/2016 10:50	1	TAL DEN	C1K

Lab ID: 280-91049-1 MS Client ID: MW-35

Sample Date/Time: 11/15/2016 09:50 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91049-D-1-C MS		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-1-C MS		280-353513	280-352777	11/29/2016 07:10	1	TAL DEN	JM
P:3005A	280-91049-D-1-C MS		280-353693	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-1-C MS		280-353693	280-352777	11/29/2016 17:52	1	TAL DEN	JM
A:300.0	280-91049-A-1 MS		280-354220		12/05/2016 22:49	1	TAL DEN	AFB

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: 280-91049-1 MSD Client ID: MW-35

Sample Date/Time: 11/15/2016 09:50 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91049-D-1-D MSD		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-1-D MSD		280-353513	280-352777	11/29/2016 07:14	1	TAL DEN	JM
P:3005A	280-91049-D-1-D MSD		280-353693	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-1-D MSD		280-353693	280-352777	11/29/2016 17:56	1	TAL DEN	JM
A:300.0	280-91049-A-1 MSD		280-354220		12/05/2016 23:05	1	TAL DEN	AFB

Lab ID: 280-91049-1 DU Client ID: MW-35

Sample Date/Time: 11/15/2016 09:50 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	280-91049-A-1 DU		280-354220		12/05/2016 22:34	1	TAL DEN	AFB

TestAmerica Denver A = Analytical Method P = Prep Method
Page 135 of 155 12/07/2016

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: 280-91049-2 Client ID: MW-34C

Sample Date/Time: 11/15/2016 11:15 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91049-F-2		480-333552		11/26/2016 11:59	1	TAL BUF	NEA
A:8260C	280-91049-F-2		480-333552		11/26/2016 11:59	1	TAL BUF	NEA
P:5030C	280-91049-K-2		480-332322		11/18/2016 01:00	1	TAL BUF	NMD1
A:8260C SIM	280-91049-K-2		480-332322		11/18/2016 01:00	1	TAL BUF	NMD1
P:3005A	280-91049-E-2-B		280-354165	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-2-B		280-354165	280-352772	12/03/2016 23:26	1	TAL DEN	LLB
P:3005A	280-91049-D-2-A		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	280-91049-D-2-A		280-354204	280-352775	12/04/2016 19:49	1	TAL DEN	CRR
P:3005A	280-91049-E-2-B ^5		280-354577	280-352772	11/29/2016 07:26	5	TAL DEN	TEB
A:6010B	280-91049-E-2-B ^5		280-354577	280-352772	12/06/2016 17:06	5	TAL DEN	CML
P:3005A	280-91049-E-2-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91049-E-2-A		280-353028	280-352489	11/24/2016 00:50	1	TAL DEN	LMT
P:3005A	280-91049-D-2-B		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-2-B		280-353513	280-352777	11/29/2016 07:21	1	TAL DEN	JM
P:3005A	280-91049-D-2-B		280-353693	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-2-B		280-353693	280-352777	11/29/2016 18:03	1	TAL DEN	JM
A:300.0	280-91049-A-2		280-354220		12/05/2016 23:20	1	TAL DEN	AFB
A:350.1	280-91049-C-2		280-352943		11/23/2016 16:46	1	TAL DEN	MAS
A:353.2	280-91049-A-2		280-354397		12/06/2016 09:31	1	TAL DEN	AJA
A:SM 2320B	280-91049-A-2		280-352384		11/20/2016 16:23	1	TAL DEN	MMC
A:SM 2540C	280-91049-A-2		280-352501		11/21/2016 17:02	1	TAL DEN	SVC
A:SM 2540D	280-91049-B-2		280-352718		11/22/2016 16:39	1	TAL DEN	SVC
A:SM 5310B	280-91049-C-2		280-353712		11/29/2016 22:56	1	TAL DEN	CCJ
A:Field Sampling	280-91049-A-2		280-352756		11/15/2016 12:15	1	TAL DEN	C1K

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: 280-91049-3 Client ID: MW-34A

Sample Date/Time: 11/15/2016 12:00 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91049-F-3		480-333552		11/26/2016 12:26	1	TAL BUF	NEA
A:8260C	280-91049-F-3		480-333552		11/26/2016 12:26	1	TAL BUF	NEA
P:5030C	280-91049-K-3		480-332322		11/18/2016 01:24	1	TAL BUF	NMD1
A:8260C SIM	280-91049-K-3		480-332322		11/18/2016 01:24	1	TAL BUF	NMD1
P:3005A	280-91049-E-3-B		280-354165	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-3-B		280-354165	280-352772	12/03/2016 23:28	1	TAL DEN	LLB
P:3005A	280-91049-D-3-A		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	280-91049-D-3-A		280-354204	280-352775	12/04/2016 19:51	1	TAL DEN	CRR
P:3005A	280-91049-E-3-B		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-3-B		280-354385	280-352772	12/05/2016 23:20	1	TAL DEN	CRR
P:3005A	280-91049-E-3-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91049-E-3-A		280-353028	280-352489	11/24/2016 00:54	1	TAL DEN	LMT
P:3005A	280-91049-D-3-B		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-3-B		280-353513	280-352777	11/29/2016 07:25	1	TAL DEN	JM
P:3005A	280-91049-D-3-B		280-353693	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-3-B		280-353693	280-352777	11/29/2016 18:07	1	TAL DEN	JM
A:300.0	280-91049-A-3		280-354220		12/05/2016 23:36	1	TAL DEN	AFB
A:350.1	280-91049-C-3		280-352943		11/23/2016 16:48	1	TAL DEN	MAS
A:353.2	280-91049-A-3		280-354397		12/06/2016 09:31	1	TAL DEN	AJA
A:SM 2320B	280-91049-A-3		280-352384		11/20/2016 16:28	1	TAL DEN	MMC
A:SM 2540C	280-91049-A-3		280-352501		11/21/2016 17:02	1	TAL DEN	SVC
A:SM 2540D	280-91049-B-3		280-352718		11/22/2016 16:39	1	TAL DEN	SVC
A:SM 5310B	280-91049-C-3		280-354209		12/02/2016 15:44	1	TAL DEN	CCJ
A:Field Sampling	280-91049-A-3		280-352756		11/15/2016 13:00	1	TAL DEN	C1K

Lab ID: 280-91049-3 MS Client ID: MW-34A

Sample Date/Time: 11/15/2016 12:00 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:SM 5310B	280-91049-C-3 MS		280-354209		12/02/2016 15:58	1	TAL DEN	CCJ

Lab ID: 280-91049-3 MSD Client ID: MW-34A

Sample Date/Time: 11/15/2016 12:00 Received Date/Time: 11/16/2016 10:00

Method	Bottle ID	Run	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Dil	Lab	Analyst
A:SM 5310B	280-91049-C-3 MSD		280-354209		12/02/2016 16:13	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: 280-91049-4 Client ID: MW-36A

Sample Date/Time: 11/15/2016 12:51 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91049-F-4		480-333552		11/26/2016 12:53	1	TAL BUF	NEA
A:8260C	280-91049-F-4		480-333552		11/26/2016 12:53	1	TAL BUF	NEA
P:5030C	280-91049-K-4		480-332322		11/18/2016 01:49	1	TAL BUF	NMD1
A:8260C SIM	280-91049-K-4		480-332322		11/18/2016 01:49	1	TAL BUF	NMD1
P:3005A	280-91049-E-4-B		280-354165	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-4-B		280-354165	280-352772	12/03/2016 23:31	1	TAL DEN	LLB
P:3005A	280-91049-D-4-A		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	280-91049-D-4-A		280-354204	280-352775	12/04/2016 19:54	1	TAL DEN	CRR
P:3005A	280-91049-E-4-B		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-4-B		280-354385	280-352772	12/05/2016 23:23	1	TAL DEN	CRR
P:3005A	280-91049-E-4-B		280-354577	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-4-B		280-354577	280-352772	12/06/2016 17:09	1	TAL DEN	CML
P:3005A	280-91049-E-4-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91049-E-4-A		280-353028	280-352489	11/24/2016 00:58	1	TAL DEN	LMT
P:3005A	280-91049-D-4-B		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-4-B		280-353513	280-352777	11/29/2016 07:29	1	TAL DEN	JM
P:3005A	280-91049-D-4-B		280-353693	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-4-B		280-353693	280-352777	11/29/2016 18:11	1	TAL DEN	JM
A:300.0	280-91049-A-4		280-354220		12/05/2016 23:51	1	TAL DEN	AFB
A:350.1	280-91049-C-4		280-352943		11/23/2016 16:50	1	TAL DEN	MAS
A:353.2	280-91049-A-4		280-354397		12/06/2016 09:31	1	TAL DEN	AJA
A:SM 2320B	280-91049-A-4		280-352384		11/20/2016 16:33	1	TAL DEN	MMC
A:SM 2540C	280-91049-A-4		280-352501		11/21/2016 17:02	1	TAL DEN	SVC
A:SM 2540D	280-91049-B-4		280-352718		11/22/2016 16:39	1	TAL DEN	SVC
A:SM 5310B	280-91049-C-4		280-354209		12/02/2016 16:28	1	TAL DEN	CCJ
A:Field Sampling	280-91049-A-4		280-352756		11/15/2016 13:51	1	TAL DEN	C1K

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: 280-91049-5 Client ID: MW-15R

> Received Date/Time: 11/16/2016 10:00 Sample Date/Time: 11/15/2016 13:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91049-F-5		480-333552		11/26/2016 13:21	1	TAL BUF	NEA
A:8260C	280-91049-F-5		480-333552		11/26/2016 13:21	1	TAL BUF	NEA
P:5030C	280-91049-K-5		480-332322		11/18/2016 02:13	1	TAL BUF	NMD1
A:8260C SIM	280-91049-K-5		480-332322		11/18/2016 02:13	1	TAL BUF	NMD1
P:3005A	280-91049-E-5-B		280-354165	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-5-B		280-354165	280-352772	12/03/2016 23:34	1	TAL DEN	LLB
P:3005A	280-91049-D-5-A		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	280-91049-D-5-A		280-354204	280-352775	12/04/2016 19:56	1	TAL DEN	CRR
P:3005A	280-91049-E-5-B		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-5-B		280-354385	280-352772	12/05/2016 23:25	1	TAL DEN	CRR
P:3005A	280-91049-E-5-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91049-E-5-A		280-353028	280-352489	11/24/2016 01:01	1	TAL DEN	LMT
P:3005A	280-91049-D-5-B		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-5-B		280-353513	280-352777	11/29/2016 07:33	1	TAL DEN	JM
P:3005A	280-91049-D-5-B		280-353693	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-5-B		280-353693	280-352777	11/29/2016 18:15	1	TAL DEN	JM
A:300.0	280-91049-A-5		280-354220		12/06/2016 00:07	1	TAL DEN	AFB
A:350.1	280-91049-C-5		280-352943		11/23/2016 17:06	1	TAL DEN	MAS
A:353.2	280-91049-A-5		280-354397		12/06/2016 09:31	1	TAL DEN	AJA
A:SM 2320B	280-91049-A-5		280-352384		11/20/2016 16:38	1	TAL DEN	MMC
A:SM 2540C	280-91049-A-5		280-352501		11/21/2016 17:02	1	TAL DEN	SVC
A:SM 2540D	280-91049-B-5		280-352718		11/22/2016 16:39	1	TAL DEN	SVC
A:SM 5310B	280-91049-C-5		280-354209		12/02/2016 16:42	1	TAL DEN	CCJ
A:Field Sampling	280-91049-A-5		280-352756		11/15/2016 14:50	1	TAL DEN	C1K

Lab ID: 280-91049-5 MS Client ID: MW-15R

> Sample Date/Time: 11/15/2016 13:50 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:350.1	280-91049-C-5 MS		280-352943		11/23/2016 17:08	1	TAL DEN	MAS

Lab ID: 280-91049-5 MSD Client ID: MW-15R

> Sample Date/Time: 11/15/2016 13:50 Received Date/Time: 11/16/2016 10:00

Method	Bottle ID	Run	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Dil	Lab	Analyst
A:350.1	280-91049-C-5 MSD		280-352943		11/23/2016 17:10	1	TAL DEN	MAS

A = Analytical Method P = Prep Method TestAmerica Denver 12/07/2016

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: 280-91049-6 Client ID: MW-2B1

> Received Date/Time: 11/16/2016 10:00 Sample Date/Time: 11/15/2016 14:53

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91049-F-6		480-333552		11/26/2016 13:48	1	TAL BUF	NEA
A:8260C	280-91049-F-6		480-333552		11/26/2016 13:48	1	TAL BUF	NEA
P:5030C	280-91049-K-6		480-332322		11/18/2016 02:38	1	TAL BUF	NMD1
A:8260C SIM	280-91049-K-6		480-332322		11/18/2016 02:38	1	TAL BUF	NMD1
P:3005A	280-91049-D-6-A		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	280-91049-D-6-A		280-354204	280-352775	12/04/2016 19:59	1	TAL DEN	CRR
P:3005A	280-91049-E-6-B		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91049-E-6-B		280-354385	280-352772	12/05/2016 23:38	1	TAL DEN	CRR
P:3005A	280-91049-E-6-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91049-E-6-A		280-353028	280-352489	11/24/2016 01:05	1	TAL DEN	LMT
P:3005A	280-91049-D-6-B		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-6-B		280-353513	280-352777	11/29/2016 07:37	1	TAL DEN	JM
P:3005A	280-91049-D-6-B		280-353693	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	280-91049-D-6-B		280-353693	280-352777	11/29/2016 18:19	1	TAL DEN	JM
A:300.0	280-91049-A-6		280-354220		12/06/2016 00:22	1	TAL DEN	AFB
A:350.1	280-91049-C-6		280-352943		11/23/2016 17:12	1	TAL DEN	MAS
A:353.2	280-91049-A-6		280-354397		12/06/2016 09:31	1	TAL DEN	AJA
A:SM 2320B	280-91049-A-6		280-352384		11/20/2016 16:43	1	TAL DEN	MMC
A:SM 2540C	280-91049-A-6		280-352501		11/21/2016 17:02	1	TAL DEN	SVC
A:SM 2540D	280-91049-B-6		280-352718		11/22/2016 16:39	1	TAL DEN	SVC
A:SM 5310B	280-91049-C-6		280-354209		12/02/2016 16:57	1	TAL DEN	CCJ
A:Field Sampling	280-91049-A-6		280-352756		11/15/2016 15:53	1	TAL DEN	C1K

Lab ID: 280-91049-6 MS Client ID: MW-2B1

> Sample Date/Time: 11/15/2016 14:53 Received Date/Time: 11/16/2016 10:00

			Analysis	Date Prepared /				
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	280-91049-A-6 MS		280-354220		12/06/2016 01:24	1	TAL DEN	AFB

Lab ID: 280-91049-6 MSD Client ID: MW-2B1

> Sample Date/Time: 11/15/2016 14:53 Received Date/Time: 11/16/2016 10:00

Method	Bottle ID	Run	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Dil	Lab	Analyst
A:300.0	280-91049-A-6 MSD		280-354220		12/06/2016 01:39	1	TAL DEN	AFB

Lab ID: 280-91049-6 DU Client ID: MW-2B1

> Sample Date/Time: 11/15/2016 14:53 Received Date/Time: 11/16/2016 10:00

Method	Bottle ID	Run	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Dil	Lab	Analyst
A:300.0	280-91049-A-6 DU		280-354220		12/06/2016 00:37	1	TAL DEN	AFB
A:SM 2540C	280-91049-A-6 DU		280-352501		11/21/2016 17:02	1	TAL DEN	SVC

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: 280-91049-7 Client ID: TRIP BLANK

Sample Date/Time: 11/15/2016 00:00 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91049-A-7		480-333552		11/26/2016 14:15	1	TAL BUF	NEA
A:8260C	280-91049-A-7		480-333552		11/26/2016 14:15	1	TAL BUF	NEA
P:5030C	280-91049-B-7		480-332322		11/18/2016 03:02	1	TAL BUF	NMD1
A:8260C SIM	280-91049-B-7		480-332322		11/18/2016 03:02	1	TAL BUF	NMD1

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	MB 480-333378/6		480-333378		11/23/2016 22:23	1	TAL BUF	NMD1
A:8260C	MB 480-333378/6		480-333378		11/23/2016 22:23	1	TAL BUF	NMD1
P:5030C	MB 480-333552/6		480-333552		11/26/2016 11:15	1	TAL BUF	NEA
A:8260C	MB 480-333552/6		480-333552		11/26/2016 11:15	1	TAL BUF	NEA
P:5030C	MB 480-332322/7		480-332322		11/17/2016 21:54	1	TAL BUF	NMD1
A:8260C SIM	MB 480-332322/7		480-332322		11/17/2016 21:54	1	TAL BUF	NMD1
P:3005A	MB 280-352772/1-A		280-354165	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	MB 280-352772/1-A		280-354165	280-352772	12/03/2016 22:44	1	TAL DEN	LLB
P:3005A	MB 280-352775/1-A		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	MB 280-352775/1-A		280-354204	280-352775	12/04/2016 19:04	1	TAL DEN	CRR
P:3005A	MB 280-352772/1-A		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	MB 280-352772/1-A		280-354385	280-352772	12/05/2016 22:36	1	TAL DEN	CRR
P:3005A	MB 280-352489/1-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	MB 280-352489/1-A		280-353028	280-352489	11/23/2016 23:15	1	TAL DEN	LMT
P:3005A	MB 280-352777/1-A		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	MB 280-352777/1-A		280-353513	280-352777	11/29/2016 06:17	1	TAL DEN	JM
A:300.0	MB 280-354220/6		280-354220		12/05/2016 11:05	1	TAL DEN	AFB
A:350.1	MB 280-352943/61		280-352943		11/23/2016 16:10	1	TAL DEN	MAS
A:353.2	MB 280-354397/1		280-354397		12/06/2016 09:31	1	TAL DEN	AJA
A:SM 2320B	MB 280-352384/5		280-352384		11/20/2016 13:40	1	TAL DEN	MMC
A:SM 2320B	MB 280-352384/31		280-352384		11/20/2016 16:05	1	TAL DEN	MMC
A:SM 2540C	MB 280-352501/1		280-352501		11/21/2016 17:02	1	TAL DEN	SVC
A:SM 2540D	MB 280-352718/2		280-352718		11/22/2016 16:39	1	TAL DEN	SVC
A:SM 5310B	MB 280-353712/5		280-353712		11/29/2016 18:31	1	TAL DEN	CCJ
A:SM 5310B	MB 280-354209/4		280-354209		12/02/2016 15:12	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: LCS Client ID: N/A

> Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCS 480-333378/4		480-333378		11/23/2016 21:28	1	TAL BUF	NMD1
A:8260C	LCS 480-333378/4		480-333378		11/23/2016 21:28	1	TAL BUF	NMD1
P:5030C	LCS 480-333552/4		480-333552		11/26/2016 10:20	1	TAL BUF	NEA
A:8260C	LCS 480-333552/4		480-333552		11/26/2016 10:20	1	TAL BUF	NEA
P:5030C	LCS 480-332322/4		480-332322		11/17/2016 20:41	1	TAL BUF	NMD1
A:8260C SIM	LCS 480-332322/4		480-332322		11/17/2016 20:41	1	TAL BUF	NMD1
P:3005A	LCS 280-352772/2-A		280-354165	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	LCS 280-352772/2-A		280-354165	280-352772	12/03/2016 22:47	1	TAL DEN	LLB
P:3005A	LCS 280-352775/2-A		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	LCS 280-352775/2-A		280-354204	280-352775	12/04/2016 19:06	1	TAL DEN	CRR
P:3005A	LCS 280-352772/2-A		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	LCS 280-352772/2-A		280-354385	280-352772	12/05/2016 22:38	1	TAL DEN	CRR
P:3005A	LCS 280-352489/2-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	LCS 280-352489/2-A		280-353028	280-352489	11/23/2016 23:19	1	TAL DEN	LMT
P:3005A	LCS 280-352777/2-A		280-353513	280-352777	11/28/2016 14:41	1	TAL DEN	SEJ
A:6020	LCS 280-352777/2-A		280-353513	280-352777	11/29/2016 06:20	1	TAL DEN	JM
A:300.0	LCS 280-354220/4		280-354220		12/05/2016 10:34	1	TAL DEN	AFB
A:350.1	LCS 280-352943/59		280-352943		11/23/2016 16:06	1	TAL DEN	MAS
A:SM 2320B	LCS 280-352384/4		280-352384		11/20/2016 13:34	1	TAL DEN	MMC
A:SM 2320B	LCS 280-352384/30		280-352384		11/20/2016 15:59	1	TAL DEN	MMC
A:SM 2540C	LCS 280-352501/2		280-352501		11/21/2016 17:02	1	TAL DEN	SVC
A:SM 2540D	LCS 280-352718/1		280-352718		11/22/2016 16:39	1	TAL DEN	SVC
A:SM 5310B	LCS 280-353712/3		280-353712		11/29/2016 17:59	1	TAL DEN	CCJ
A:SM 5310B	LCS 280-354209/3		280-354209		12/02/2016 14:58	1	TAL DEN	CCJ

Lab ID: LCSD Client ID: N/A

> Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCSD 480-332322/5		480-332322		11/17/2016 21:05	1	TAL BUF	NMD1
A:8260C SIM	LCSD 480-332322/5		480-332322		11/17/2016 21:05	1	TAL BUF	NMD1
A:300.0	LCSD 280-354220/5		280-354220		12/05/2016 10:50	1	TAL DEN	AFB
A:350.1	LCSD 280-352943/60		280-352943		11/23/2016 16:08	1	TAL DEN	MAS
A:SM 5310B	LCSD 280-353712/4		280-353712		11/29/2016 18:14	1	TAL DEN	CCJ

Lab ID: MRL Client ID: N/A

> Sample Date/Time: N/A Received Date/Time: N/A

Analysis Date Prepared / Batch Analyzed Method **Bottle ID** Run **Prep Batch** Dil Lab **Analyst** A:300.0 MRL 280-354220/3 280-354220 12/05/2016 10:19 TAL DEN AFB

A = Analytical Method P = Prep Method TestAmerica Denver 12/07/2016

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab ID: MS Client ID: N/A

Sample Date/Time: 11/15/2016 08:30 Received Date/Time: 11/16/2016 09:30

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	480-109672-R-1 MS		480-333378		11/24/2016 06:22	40	TAL BUF	NMD1
A:8260C	480-109672-R-1 MS		480-333378		11/24/2016 06:22	40	TAL BUF	NMD1
P:5030C	480-109670-K-2 MS		480-333552		11/26/2016 19:16	100	TAL BUF	NEA
A:8260C	480-109670-K-2 MS		480-333552		11/26/2016 19:16	100	TAL BUF	NEA
P:5030C	280-91030-J-2 MS		480-332322		11/18/2016 03:27	4	TAL BUF	NMD1
A:8260C SIM	280-91030-J-2 MS		480-332322		11/18/2016 03:27	4	TAL BUF	NMD1
P:3005A	280-91099-D-1-B MS		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	280-91099-D-1-B MS		280-354204	280-352775	12/04/2016 19:14	1	TAL DEN	CRR
P:3005A	280-91149-A-2-B MS		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91149-A-2-B MS		280-354385	280-352772	12/05/2016 22:46	1	TAL DEN	CRR
P:3005A	280-91030-D-2-B MS		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91030-D-2-B MS		280-353028	280-352489	11/23/2016 23:34	1	TAL DEN	LMT
A:SM 5310B	280-90915-B-2 MS		280-353712		11/29/2016 19:19	1	TAL DEN	CCJ

Lab ID: MSD Client ID: N/A

Sample Date/Time: 11/15/2016 08:30 Received Date/Time: 11/16/2016 09:30

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	480-109672-R-1 MSD		480-333378		11/24/2016 06:49	40	TAL BUF	NMD1
A:8260C	480-109672-R-1 MSD		480-333378		11/24/2016 06:49	40	TAL BUF	NMD1
P:5030C	480-109670-K-2 MSD		480-333552		11/26/2016 19:44	100	TAL BUF	NEA
A:8260C	480-109670-K-2 MSD		480-333552		11/26/2016 19:44	100	TAL BUF	NEA
P:5030C	280-91030-J-2 MSD		480-332322		11/18/2016 03:51	4	TAL BUF	NMD1
A:8260C SIM	280-91030-J-2 MSD		480-332322		11/18/2016 03:51	4	TAL BUF	NMD1
P:3005A	280-91099-D-1-C MSD		280-354204	280-352775	11/28/2016 14:41	1	TAL DEN	SEJ
A:6010B	280-91099-D-1-C MSD		280-354204	280-352775	12/04/2016 19:16	1	TAL DEN	CRR
P:3005A	280-91149-A-2-C MSD		280-354385	280-352772	11/29/2016 07:26	1	TAL DEN	TEB
A:6010B	280-91149-A-2-C MSD		280-354385	280-352772	12/05/2016 22:49	1	TAL DEN	CRR
P:3005A	280-91030-D-2-C MSD		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91030-D-2-C MSD		280-353028	280-352489	11/23/2016 23:38	1	TAL DEN	LMT
A:SM 5310B	280-90915-B-2 MSD		280-353712		11/29/2016 19:34	1	TAL DEN	CCJ

Lab ID: DU Client ID: N/A

Sample Date/Time: 11/15/2016 11:25 Received Date/Time: 11/16/2016 10:00

Method	Bottle ID	Run	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Dil	Lab	Analyst
A:SM 2320B	280-91099-A-3 DU	-	280-352384		11/20/2016 13:51	1	TAL DEN	MMC
A:SM 2540D	280-91074-A-2 DU		280-352718		11/22/2016 16:39	1	TAL DEN	SVC

Client: Waste Management Job Number: 280-91049-1

Laboratory Chronicle

Lab References:

TAL BUF = TestAmerica Buffalo TAL DEN = TestAmerica Denver

TestAmerica Denver A = Analytical Method P = Prep Method

Page 144 of 155 12/07/2016

TestAmerica

Chain of Custody Record

Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171

TestAmerica Denver

4955 Yarrow Street

7.19 T - TSP Dodecahydrate U - Acetone Special Instructions/Note: Arsenic - Direct sub to ARI 97-97-11 Short Hold: NO3(cad) R - Na2S2S03 M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 Company Months てつてつてい S-H2S04 Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Preservation Codes COC No: 280-17318-3224.1 10001 C - Zn Acetale D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid I - Ice J - DI Water K - EDTA A - HCL B - NaOH age: 01-91-17 Total Number of containers N 6938 8104 RISI 6949 rangter Date/Time: Method of Shipment 8104 BISI Cooler Temperature(s) C and Other Remarks: 280-91049 Chain of Custody (IRA of due toenic (direct sub to ARI) 777 Special Instructions/QC Requirements: Total Metals > (600) (oleffuß AT) MIZ 80858 E-Mail: betsy.sara@testamericainc.com (olsflug AT) fell gnol - 80858 > Received by: Received by: 7 > DSIVIKEICI/204/NO3(csq) Lab PM: Sara, Betsy A > Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) BT=Tissue, A=Air (Wirwater, Sesoild, Orwastefoll, Preservation Code: 55 Matrix Company Standard 480 Radiological Type (C=comp, G=grab) Sample 940-1 0 Graba 950 1453 Sample 1350 1200 1251 Date: Unknown TAT Requested (days) Due Date Requested: 245 376314 Sample Date 11/15/16 Date/Time: 11/15/16 R Project #: 28002692 Date/Time: #OM # Od Poison B S Graber @ 505 Cugine ers com 876313 Skin Irritant Project Name:WA02/Olympic View Sanitary LF Event Desc: Quarterly GW Appl/II - Mar Jun Sep Dec Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: 612-940-2980 Flammable | Trip blank Possible Hazard Identification MW-15R 220 344 MW-2B 35 Empty Kit Relinquished by: MW-36 Custody Seals Intact: Client Information Sample Identification 400-Company: Waste Management 13W 2615 Davis Street Mr. Patrick Madej 34 linquished by: San Leandro Washington State, Zip: CA, 94577

Page 145 of 155

Г	•	FIELD IN	VFORMAT	TON FORM	1		
	Site ame:	This Wa	ste Management Field I	nformation Form is Requir	ed	WASTE	MANAGEMENT
s	Site Sam	nple submitted	d along with the Chain of	Idition to any State Forms. T Custody Forms that accomp	any the sample	Laboratory Use Only/Lab	ID:
L	No.: Poi	Sample ID	rs (i.e. with the cooler tha	t is returned to the laboratory	у).		
PURGE	PURGE DATE	927	23				
PUF	PURGE DATE (MM DD YY)	PURGE TIME ELAPSI (2400 Hr Clock) (hrs:		WATER VOL IN CASI (Gallons)		VOL PURGED V	WELL VOLs PURGED
-	Note: For Passive Sampling, repl	lace "Water Vol in Casing" and "Well Vols Purge	ed" w/ Water Vol in Tubin	g/Flow Cell and Tubing/Flo	w Cell Vols Purged. M	fations) Mark changes, record field o	lata, below.
APLE	Purging and Sampling Equipmes Purging Device 2		Filter	Device: Or N	0.45 µ or	μ (circle or fil	l in)
/SA)	ruiging Device	A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pum	ıp Filte	/-	-In-line Disposable -Pressure	C-Vacuum X-Other	
PURGE/SAMPLE	Purging Device C Sampling Device C	C-QED Bladder Pump F-Dipper/Bot	97		-Teflon	C-PVC X-Othe	er:
\vdash		(a) V (W) S	Sample Tul	be Type: B-	-Stainless Steel	D-Polypropylene	
	Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth Stick In	Depth to Water ((ft/msl) (from TOC)	(DTW)	1 1 2/1	roundwater Elevation ite datum, from TOC		(ft/msl)
T ACTUAL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up,	Stick Up (ft) (from ground elev p, Casing Id. etc. are optional and can be from his		(ft) II		Casing Material	Nt current
	Sample Time Rate/Unit (2400 Hr Clock)		Temp.	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	19:310 350 1	* 5 12 11 1st 1 1 1 6 0	111180		18 18	1141810	
	9:35 1 200	nd 5 8 5 2nd 1 1 5 7	11103		16.163	1300	
ional	9:38	r (2 / 5 3rd 5 7	110160		6 62	1111310	
STABILIZATION DATA (Optional)	9:41	1 (0 42 41)	LID M7	1 1 1 1	664	10410	
ATA	9:44	61419	110141	1 1 1 1	662	1010	7 7 7
N D	91/17	6155 1157	110141	1 1 1 1		101910	7 1 21
VTI0	9:50	11611 1158	10111	0.78	6.61	191910	7,7,61
LIZA		0.1011		0,10	661	19.5.0	
ABI							2 8 8
S							
	Suggested range for 3 consec readings or	+/- 0,2 +/- 3%			+/- 10%	+/- 25 mV	Stabilize
	note Permit/State requirements: Stabilization Data Fields are Optional	l (i.e. complete stabilization readings for para	ameters required by WM	f, Site, or State). These fie	lds can be used where	e four (4) field measurem	ents are required
	SAMPLE DATE	or other Electronic format is used, fill in final re PH CONDUCTANCE	radings below and submit TEMP.	electronic data separately t TURBIDITY	o Site. If more fields		parate sheet or form er: +;~~
DA	(MM DD YY)	(std) (umhos/cm@25°C)	(°C)	(ntu)	(mg/L-ppm)	(mV) Units	
FIELD DATA	Final Field Readings are required (i	e, record field measurements, final stabilized	readings, passive samp	le readings before samplin	g for all field parame	19 5 6 ters required by State/Pe	mit/Site.
	Sample Appearance:	Clear	Odor: 1		г:		
	Weather Conditions (required da	aily, or as conditions change):	Direction/Speed:		k:		Y or N
	Specific Comments (including p	purge/well volume calculations if requir	red):				
SLN							
COMMENTS							
CO			-11-31				
FIELD (
1.0							
		s were in accordance with applicable EPA,	State, and WM proto	cols (if more than one sa	mpler, all should sig		
	11,15,16	Sam Grabe	-/2~	- 200		SCS	
	Date Nan	me	Signature		Comp	pany	
		DISTRIBUTION: WHITE/ORIGINAL	Stave with Sample VE	I I OW - Paturned to Clien	t DINK Field Conv.		

[(921)					FIELD IN	F	ORM.	AT	ION FOR	M	-		W	V	$\sqrt{\Lambda}\sqrt{\Lambda}$
Site Name			ou	SL						formation Form is Req dition to any State Forms		•		WAS	TE M	ТИВМВРАНА
Site No.:		175	ample Point:	Mω	Samp	3 4 C submitte	l along	with the Ch	ain of (Custody Forms that acco	mpan	y the sample	Labo	oratory Use Only/I	ab ID:	
PURGE	(MM DD)	YY)	replace "	PURG (2400 E "Water Vol 1	Hr Clo		D HI			ATER VOL IN CA (Gallons) t/Flow Cell and Tubing/		((Gallon	PURGED is) thanges, record fie	P	ELL VOLs PURGED a, below.
PURGE/SAMPLE EQUIPMENT	Purging and Samp Purging Device Sampling Device X-Other:	<u>C</u>	A- B-	. Dedicated -Submersi -Peristaltic -QED Blac	ible P c Pum	p E-Piston Pum	-		Filter	Device: O or N Type: A e Type: D	A-II B-P A-T	0.45 µ or n-line Disposable ressure Teflon tainless Steel	X-O C-P	ther	or fill in	
LDATA	Well Elevation (at TOC)				(ft/ms	Depth to Water (DTW) [ч	0 7 3 (m)		oundwater Elevation e datum, from TO			1	(ft/msl)
WELL	Total Well Depth (from TOC) Note: Total Well D		Up, Casi	ing Id. etc.	(ft) are op	Stick Up (from ground elev tional and can be from his		data, unless	s requir	(ft) red by Site/Permit. Well	Cas ID Eleve	(in)		Casing Material ater Elevation m	ust be c	current.
	Sample Time 2400 Hr Clock)	Rate/U		pH (std)	i î	Conductance (SC/EC) (μπhos/cm@25°C)	î	Temp. (°C)	F 1	Turbidity (ntu)	6 1	D.O. (mg/L - ppm)	1	eH/ORP (mV)	1	DTW (ft)
1	101412	350	1 st		1#				1						-	
nal)	10149		2 nd		2 nd		-		} }			_1_1			_	
STABILIZATION DATA (Optional)	0150		3rd	2.4.1	3 rd	231	-	3 72	1	11. 0		1 58		9 1 4	F	
TA (6	01515		4th 60	2.90	4 th	232		13 13	} }	1 41910		0.64		66.7	-	
NDA	0159		1	1018		231		3 03		189.4		0 (7		5 7 3	-	
OIT!	11:05	ر تان ک	2	1 2 3		131		1-1-	} }	11100		0 43		4 9 3	-	40173
LIZA	11 1110	20,4	1	7142	1	232	-	2 40	1	958		0.47		428	-	1017
TABI	11:115	1	-	745		231		260	1	779		058		416	-	
S												1000		1 1		
note	gested range for 3 conse Permit/State requirement	ents:		+/- 0.2		+/- 3%		8		væ.		+/- 10%	1	+/- 25 mV		Stabilize
Stal by S	bilization Data Field State/Permit/Site. If a	i <mark>s are Optic</mark> a Data Logg	onal (i.e. ger or ot	complete ther Electro	stabili nic for	zation readings for pard mat is used, fill in final re	meter. adings	s required b below and s	y WM, submit	Site, or State). These electronic data separate	field ly to	ls can be used wher Site. If more fields	e four abovi	e (4) field measu e are needed, us	rement e sepai	ts are required rate sheet or form,
ATA	SAMPLE DATE (MM DD YY)	C		pH (std)		CONDUCTANCE (umhos/cm @ 25°C)		TEMP.		TURBIDITY (ntu)		DO (mg/L-ppm)			other:	tine
FIELD DATA	11151	6 required	1	145	measu	rements, final stabilized	readin	2 60	1 15	1 779	ding,	0 58	eters i	416	1	I I S
Sa	mple Appearance	: - {)asticu	alutes, c	lone	4	Odo	r:	-	Co	olor:			Other:		
We	eather Conditions	s (required	d daily,	or as cond	ditions	s change):	Direct	ion/Speed:	_	Outle	ook:			Precipitati	on: Y	or N
Spe						calculations if requir	ŕ	-								
STN	Tech	ormed	ext	ended	2	ruse to cl	eas	up i	wafe	est.				-		
COMMENTS																
CON											_					
FIELD							_				-		-			
	ertify that sampling	g nrocedu	res wer	re in accou	dance	with applicable EPA,	State	and WM	protoc	als (if more than one	eam	onlar all should sid	an).			
	11,15,16		52	an l				1	2	M. M. Olle	Sall	-pava, wa anoutu Si	ь¤/•	545		
	Date /	- 19	Name	DISTRIB	יאסודו	- WHITE/ODICINAL		nature	la VET	LOW Potential C	lia-t	Com	pany			

FIELD INFORMATION	FORM VAVA
Name: This Waste Management Field Information Fo This form is to be completed, in addition to any S	orm is Required State Forms. The Field Form is
No.: Sample Point: Sample ID Sample ID Submitted along with the Chain of Custody Form containers (i.e. with the cooler that is returned to	
[A	DL IN CASING ACTUAL VOL PURGED WELL VOLS (Gallons) (Gallons) PURGED (and Tubing/Flow Cell Vols Purged, Mark changes, record field data, below.
Purging and Sampling Equipment Dedicated: V or N Filter Device: Y Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump F-Dipper/Bottle X-Other: Sample Tube Type:	or N 0.45 µ or µ (circle or fill in) A-In-line Disposable C-Vacuum B-Pressure X-Other A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
Well Elevation Depth to Water (DTW) 384	Groundwater Elevation (ft) (site datum, from TOC) (ft/msl)
Well Elevation (at TOC) Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc., are optional and can be from historical data, unless required by Site/Per	Casing Casing (ft) ID (in) Material
Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbic (2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu	dity D.O. eH/ORP DTW
The state of the s	
Sample Appearance: Clear Odor:	
Weather Conditions (required daily, or as conditions change): Direction/Speed: Specific Comments (including purge/well volume calculations if required):	Outlook: Precipitation: Y or N
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more	
11.15.16 San Gabo A	505
Date Name Signature DISTRIBUTION: WHITE/ORIGINAL - Stave with Sample VELLOW Pater	Company Company

	1941 1941	FIELD INF	ORMAT	ION FORM			$\sqrt{\Lambda}$
Site Name				formation Form is Required		WASTE	MANAGEMENT
Site No.:	Sample A. F.	3 6 A submitted along containers (i.e.	g with the Chain of	Custody Forms that accompar is returned to the laboratory)	ny the sample	Laboratory Use Only/Lab I	D:
PURGE	PURGE DATE (MM DD YY) (2400 Hr Cloc Note: For Passive Sampling, replace "Water Vol in Casti	ck) (hrs:min)		VATER VOL IN CASIN (Gallons) g/Flow Cell and Tubing/Flow	(G	allons)	VELL VOLs PURGED lata, below.
PURGE/SAMPLE EOUIPMENT	Purging and Sampling Equipment Dedicated: Purging Device A-Submersible Purging Device B-Peristaltic Pump C-QED Bladder P	p E-Piston Pump		r Type:	Teflon	L (circle or fill C-Vacuum X-Other C-PVC X-Othe D-Polypropylene	
WELL DATA	Well Elevation (at TOC) (ft/ms Total Well Depth (from TOC) (ft)	Stick Up (from ground elevation)		(ft) (site	(in)	Casing Material	(ft/msl)
	1.4	Conductance (SC/EC)	I data, unless requiremp. (°C)	Turbidity	D.O.	eH/ORP	DTW
1	213 5 30p 1st 7 0 6 1st	(μmhos/cm@25°C)	19178	(ntu)	(mg/L - ppm)	(mV)	(ft)
<u>a</u>	2140 1 2nd 140 2nd	1 1 2 8	19.75		3 112	1294	
Option	21 4 3 3rd 6 8 0 3rd	1128	14172	1 1 1 1	2 48	1329	
TA (C	12:46 12:48 14 (2:81)	1 28	14171		2.65	1327	
STABILIZATION DATA (Optional)	12:511 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1128	19171	1175	2 75	13333	3075
ZATIO							
BILLE		1111	11				
STA		1111					111
	ggested range for 3 consec, readings or +/- 0.2	+/- 3%			+/- 10%	+/- 25 mV	Stabilize
Sto	ibilization Data Fields are Optional (i.e. complete stabilization) State/Permit/Site, If a Data Logger or other Electronic form	zation readings for parameter	s required by WM,	Site, or State). These field	ls can be used where	four (4) field measureme	ents are required
	SAMPLE DATE pH	CONDUCTANCE	TEMP.	TURBIDITY	DO		r: <u>+i ne</u>
FIELD DATA	(MM DD YY) (std)	(umhos/cm @ 25°C)	(°C) [4]7[] 1gs, passive sample	e readings before sampling	(mg/L-ppm) 2 90 for all field parameter	(mV) Units	1251
Sa	imple Appearance:	Odo	or:	Color:		Other:	
	eather Conditions (required daily, or as conditions	Direction of the contract of t	tion/Speed:	Outlook:		Precipitation:	Y or 🕦
	pecific Comments (including purge/well volume c	alculations if required):	0				
SLVE -	1. 19						
COMMENTS							
FIELD							
I e	ertify that sampling procedures were in accordance		, and WM protoc	cols (if more than one sam	ipler, all should sig	n):	
-	11,15,16 5 mm Gra	ber	An	D		545	
:3 -	Date Name	Sig. WHITE/ODICINAL - Store	gnature	LOW B	Comp	pany	

		ELD INFORMA	TION FORM		$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$
	site OUSC		d Information Form is Required n addition to any State Forms. The I	Field Form is	WASTE MANAGEMENT
	Sample Point: Sample D Sample ID	submitted along with the Chain	n of Custody Forms that accompany that is returned to the laboratory).		ry Use Only/Lab ID:
PURGE	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Water Vol in Casing" and "	ELAPSED HRS (hrs:min)	WATER VOL IN CASING (Gallons)	(Gallons)	PURGED
PURGE/SAMPLE		or N File D-Bailer E-Piston Pump Fi F-Dipper/Bottle	ilter Type: A-In-I	o.45 µ or Line Disposable C-Vacuessure X-Othe	um X-Other:
_		th to Water (DTW)	Groun	ndwater Elevation	(ft/msi)
I I JOZAN	Well Elevation (ft/msl) (from Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and	n ground elevation)	Casin (R) ID	g Cas	ing terial
	Sample Time Rate/Unit pH Conductat	nce (SC/EC) Temp cm@25°C) (°C)	Turbidity	D.O. eH/	ORP DTW aV) (ft)
	13:3 0 350 1" 714 6 1"	11418 110150		13145 111	1014
lal)	13 13 7 2 nd 7 3 6 2 nd	11511 110149		2 62 [1]	3.2
STABILIZATION DATA (Optional)	3rd 7.12 3rd 7.12 3rd	1154 1047		11 138 111	6 9 111
TA ((4 th // 0 4 th	1159 1045		11 109 111	28
NDA	13:47	11514 110145		10.198 1.11	0.8
ATIO	13:50	155 1049	1 21	0190 10	9 0 118 35
ILIZ					M_O 1/8,55
STAB					
	Suggested range for 3 consec. readings or note Permit/State requirements: Stabilization Data Fields are Optional (i.e. complete stabilization reading)	- 3%	WM Site or State). These fields of		5 mV Stabilize
	by State/Permit/Site. If a Data Logger or other Electronic format is used	d, fill in final readings below and sub JCTANCE TEMP.	mit electronic data separately to Sit TURBIDITY	te. If more fields above are	e needed, use separate sheet or form ORP Other: $7/\sim -$
FIELD DATA	TARAN TERRATURE	25°C) (°C)	(ntu) (i	mg/L-ppm) (n	nV) Units
FIEI	Final Field Readings are required (i.e. record field measurements, fi	1 1 0 1 1	mple readings before sampling for	o 88 l O r all field parameters requ	9 0 1 3 5 0 ired by State/Permit/Site.
	Sample Appearance:	Odor:			ther:
	Weather Conditions (required daily, or as conditions change) Specific Comments (including purge/well volume calculations)		Outlook:	~	Precipitation: Y or N
SO -	Specific Commences (including purge, wen volume calculation				
COMMENTS					
MIMC.					(
FIELD					
	I certify that sampling procedures were in accordance with app	A	otocols (if more than one sampl		
	11.15,16 Sam Grabe				565
	Date Name	Signature Signature	WELLOW Determed to City of Di	Company	

	F	TELD INFORM	ATION FORM	
	me: OUS C		Tield Information Form is Required d, in addition to any State Forms. The Field Form	WASTE MANAGEMENT
Si	ite Sample O.: Point: Point	submitted along with the Ch	ain of Custody Forms that accompany the sample ler that is returned to the laboratory).	It is not a set II to Only II at III
I.	Sample ID	Containers (i.e. with the con	to the later of the factorial of the fac	
邑	011115116 11430	123		
PURGE	PURGE DATE PURGE TIME	ELAPSED HRS	WATER VOL IN CASING AC	TUAL VOL PURGED WELL VOLS
l l	(MM DD YY) (2400 Hr Clock) Note: For Passive Sampling, replace "Water Vol in Casing" a	(hrs:min) and "Well Vols Purged" w/ Water Vol in	(Gallons) Tubing/Flow Cell and Tubing/Flow Cell Vols P	(Gallons) PURGED urged. Mark changes, record field data, below.
PLE	Purging and Sampling Equipment Dedicated:	Or N	Filter Device: Or N 0.45 µ	or μ (circle or fill in)
PURGE/SAMPLE	Purging Device C A-Submersible Pump B-Peristaltic Pump C-QED Bladder Pump	D-Bailer E-Piston Pump	Filter Type: A A-In-line Disp	osable C-Vacuum X-Other
RGE/	Sampling Device C-QED Bladder Pump	*	A-Teflon	C-PVC X-Other:
PU	X-Other:	Samp	le Tube Type: B-Stainless St	eel D-Polypropylene
ATACL LEVEL	Well Elevation (at TOC) (ft/msl)	Depth to Water (DTW) (from TOC)	Groundwater (site datum, fr	
	Total Well Depth	Stick Up	Casing	Casing
	(from TOC) (ft) (ft) (Note: Total Well Depth, Stick Up, Casing Id. etc. are optional	(from ground elevation) I and can be from historical data, unles	s required by Site/Permit. Well Elevation, DTW,	(in) Material and Groundwater Elevation must be current.
		ductance (SC/EC) Temp. nhos/cm@25°C) (°C)	Turbidity D.O. (ntu) (mg/L - p	eH/ORP DTW om) (mV) (ft)
	1141313 >510 14 71413 14 1	12/5/0 1/3 46		59 191/18
<u></u>	1 4 3 3 2 nd 7 4 0 2 nd	121415 11314	7 1 1 1 101	36 974 111
tions	1 4 3rd 7 3 8 3rd	243 1348	101	32 35.9
4 (OF	1413 97 4th 713 11 4th 1	12142 11314		5 131312 111
DAT.	114/10 1 713/2	ISIMIZ IBM		U [E 2]
STABILIZATION DATA (Optional)	1141910 1 71511 1	12/4/2 1/3/10	1 1 1 1 1 1 2 1 2 1	9 18/14 17/40
ZAT	1H1513 1 71249 1	12/4// 1/3/5	1 17121 101	1 18012 111
BILI				
STA				
	Suggested range for 3 consec. readings or			
	Stabilization Data Fields are Optional (i.e. complete stabilization	+/- 3%	+/- 10%	+/- 25 mV Stabilize
L	by State/Permit/Site, If a Data Logger or other Electronic format i.	is used, fill in final readings below and	submit electronic data separately to Site. If mo	re fields above are needed, use separate sheet or form.
DATA		nductance temp. thos/cm@25°C) (°C)	TURBIDITY DO (ntu) (mg/L-pp	eH/ORP Other: <u>fine</u> m) (mV) Units
FIELD DATA	111516 729	241 133	721 0	7 802 1453
	Final Field Readings are required (i.e. record field measurements) Sample Appearance:		Sample readings before sampling for all field Color:	
	Weather Conditions (required daily, or as conditions cha		: Outlook:	
	Specific Comments (including purge/well volume calcu	ulations if required):		
S.				
ENI				***************************************
MIM				
DCC				
FIELD COMMENTS				
	I certify that sampling procedures were in accordance with	h applicable EPA, State, and WM	protocols (if more than one sampler, all sl	nould sign):
	11,15,16 Sam Grape		and	5165
	Date Name DISTRIBUTION: W	Signature HITE/ORIGINAL - Stays with Samp	le, YELLOW - Returned to Client, PINK - Fig	Company eld Copy

TestAmerica Denver

4955 Yarrow Street

Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171

Chain of Custody Record

Client Contact Phone: Shipping/Receiving Phone: Company: TestAmerica Laboratories, Inc. Address: 12/5/2016 City: IAT Reques State, Zip: NY, 14228-2298 Phone: PO.#.	Phone: Dis Date Remissad	, W. 44	E-Mail: betsy.sara@testamericainc.com				State of Origin.) - Calaire		Page:	
ng/Receiving yr merica Laboratories, Inc. zelwood Drive, st p:	:: ate Remosted:	<u></u>	∹Malt: ⊳etsy.sara@				Catoto			Page:	
vr. merica Laboratories, Inc. zelwood Drive, , st pp:	ate Remosted		,	testame	ricainc.con	_	Wash	state of Origin: Washington		Page 1 of 1	
merica Laboratories, Inc. zelwood Drive, st p:	ofe Reminested.		Accredits	tions Rea	Accreditations Required (See note)	te):	-			10in#	
;; zelwood Drive, , st p; 1228-2298	ate Reguested.		NELAF	NELAP - Oregon	'n	ì				280-91049-1	
15t 1228-2298	2046				'	. .	'			Preservation Codes:	des:
st (228-2298	2018				AL	Analysis Kequested	ednest	eq		57	
ip: 1228-2298	TAT Requested (days):		基础							B - NaOH	m - hexane N - None O - AsNaO2
	į								Me product	D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
31-2600(Tel) 716-691-7991(Fax)										F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4 T TEP Podoschudate
Email: WO#:									S		U - Acetone V - MCAA
Project Name: Project Niew Sanitary LF 28002692	t#. 2692									K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Ste: SSOW# Sanitary LF	#								noo to	Other:	
T Sample Identification - Client ID (Lab ID)	Sample Date Time	Sample Matrix Type Seolid. (C=comp, O=water, G=grab) BT=Tissue, A=Ar)	benetliä bleja MisM miche9	8260C_SIM/5030 8260C/5030C (M					Tetal Number		Special Instructions/Note
「		Preservation Code.	X	が言葉が	が大きないなった。		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	X	明の変形	のでは、日本のでは、日本のでは、これでは、日本のでは、日本
	11/15/16 09:50 Pacific	Water		×				3	6		2 - 1975
	11/15/16 11:15 Pacific	Water		×					, Ø		
	11/15/16 12:00 Pacific	Water		×		-			0		
	11/15/16 12:51 Pacific	Water	,	×					- CO		
MW-15R (280-91049-5)	11/15/16 13:50 Pacific	Water		×					9		
MW-2B1 (280-91049-6)	11/15/16 14:53 Pacific	Water		×					. 6		
									272		
									200	- ga 200a-	
		•							# 65 5340 3661		

currently maintain accreditation in the State of Origin listed above for analysis/lests/markx being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, in all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, inc. Possible Hazard Identification

Possible Hazard Identification		Sa	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	amples are retained longer than 1 mc	onth)
Unconfirmed			Return To Client Disposal By Lab	ab Archive For	Months
Deliverable Requested: I, III, IV, Other (specify)	Primary Deliverable Rank: 2	dS	Requir		
Empty Kit Relinquished by:	Date:	Time:	Method o	Method of Shipment:	
Relinquished by:	Date/Time:	Company	Rederived by:	THE COMPANY THE STREET	The Contraction of the Contracti
Relinquished by:	Date/Time:	Сотралу	Received by:	Date/Time: Co	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
O Custody Seals Intact: Custody Seal No.:	-		Cooler Temperature(s) °C and Other Remarks:	2,000	

TestAmerica Denver

4955 Yarrow Street Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171

Chain of Custody Record

TestAmerica

	Sampler:	Lab PM:					Carrier Tr	Carrier Tracking No(s):		COC No:		
Client Information (Sub Contract Lab)		Sara	Sara, Betsy A							280-378039.1		T
Culent Contact. Shipping/Receiving	Phone:	E-Mail: betsy.	E-Mall: betsy.sara@testamericainc.com	stameri	cainc.cor	E	State of Origin: Washington	origin: gton		Page:		·
Company: TestAmerica Laboratories, Inc.			Accreditations Required (See note): NELAP - Oregon	ons Requir Oregon	ou ees) pe	te):			}	Job #: 280-91049-1		Γ
Address:	Due Date Requested:					-				Preservation Codes	Sodes:	Τ
10 Hazelwood Drive, ,	12/5/2016				₹	lallysis	Analysis Kequested			A - HCL	M - Hexane	
City. Amherst	TAT Requested (days):									B - NaOH C - Zn Acetate	N - None O - AsNaO2	
State, Zip. NY, 14228-2298										D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3	/
Phone: 716-691-2600(Tel) 716-691-7991(Fax)	PO#.									G - Amchlor H - Ascorbic Acid		
Email:	WO#:		(QN									
Project Name: WA02 Olympic View Sanitary LF	Project #. 28002692		lio ee							A EDA	W - pH 4-5 Z - other (specify)	
Site: WA02]Olympic View Sanitary LF	SSOW#:		M) (del		_			_		of co		
	Sample		bereillii ble MGM mionte	SEOC. SIM/5036						redmuN laso		
Sample Identification - Cilent ID (Lab ID)	Sample Date I'me G=grab	G=grab) BT=Tissue, A=Air) Preservation Code;	a 🔀	- 4		200 de 20					Special instructions/Note:	1.
TRIP BLANK (280-91049-7)	11/15/16 Pacific	Water		×				1		2		1
						i		! 				1
0.5.41										- 		
										The Control		
										- 7 <u>- 7</u> - 7		
										e de la companya de l		
Note: Since laboratory accreditations are subject to change. TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory of currenty maintain accreditations are subject to change analysis/tests/matrix being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc.	itories, Inc. places the ownership of method, a sts/matrix being analyzed, the samples must b sts/matrix being analyzed, the samples of Custody int to date, return the signed Chain of Custody	nalyte & accreditation e shipped back to the attesting to said com	complianc TestAmeri	e upon out za laborato FestAmeriè	subcontra ry or other ca Laborat	ct laborato instruction ories, Inc.	ies. This sampl s will be provide	e shipment i d. Any chan	s forwarded ges to accre	under chain-of-custody ditation status should b	This sample shipment is forwarded under chain-of-custody. If the laboratory does not be provided. Any changes to accreditation status should be brought to TestAmerica	
Possible Hazard Identification			Sami	le Disp	A) Jesc	fee may	be assessed	if sampl	es are rei	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	1 month)	T
Unconfirmed				Return	Return To Client		Disposal By Lab	By Lab]	Archive For	Months	
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2		Spec	al Instru	Special Instructions/QC Requirements:	S Requir						
Empty Kit Relinquished by:	Date:		Time:				Met	Method of Shipment:	nent:			
	Date/Time:	Company	œ v	Received by	5	B		Date/Tin	Time:	16 0945	Cempark But.	
Relinquished by:	Date/Time:	Company	<u>œ</u>	Received by:		ر ()		Date	Date/Time:		Company	
Relinquished by:	Date/Time:	Company	ă.	Received by:				Date	Date/Time:		Company	Т

Custody Seal No.:

Custody Seals Intact:

Cooler Temperature(s) °C and Other Remarks:

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91049-1

Login Number: 91049 List Source: TestAmerica Denver

List Number: 1

Creator: Pottruff, Reed W

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91049-1

Login Number: 91049
List Source: TestAmerica Buffalo
List Number: 2
List Creation: 11/17/16 04:37 PM

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.5 #1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

ANALYTICAL REPORT

Job Number: 280-91030-1

Job Description: WA02|Olympic View Sanitary LF

For:

Waste Management Sun Valley Hauling 9081 Tujunga Avenue Sun Valley, CA 91352

Attention: Mr. Phil Perley

Betsy Sara

Approved for release Betsy A Sara Project Manager II 12/8/2016 10:21 AM

Betsy A Sara, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0189 betsy.sara@testamericainc.com 12/08/2016

cc: Mr. Dan Venchiarutti

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Denver 4955 Yarrow Street, Arvada, CO 80002 Tel (303) 736-0100 Fax (303) 431-7171 www.testamericainc.com

Table of Contents

Cover Title Page	1
Report Narrative	3
Executive Summary	5
Method Summary	7
Method / Analyst Summary	8
Sample Summary	9
Sample Results	10
Sample Datasheets	11
Data Qualifiers	32
QC Results	33
Qc Association Summary	34
Surrogate Recovery Report	39
Qc Reports	41
Laboratory Chronicle	96
Client Chain of Custody	102
Sample Receipt Checklist	106

CASE NARRATIVE

Client: Waste Management

Project: WA02|Olympic View Sanitary LF

Report Number: 280-91030-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Sample Receiving

The samples were received on 11/15/2016; the samples arrived on ice. The temperature of the cooler at receipt was 0.4 C.

One of six hydrochloric preserved VOA vials for sample L-INF contained a bubble greater than 6 mm. The laboratory used vials without headspace to perform the analysis. The client was notified on 11/16/2016.

Holding Times

All holding times were within established control limits.

Method Blanks

Vinyl chloride Method 8260C SIM was detected in the Method Blank below the project established reporting limit. No corrective action is taken for any values in Method Blanks that are below the requested reporting limits.

All other Method Blank recoveries were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The Matrix Spikes and Matrix Spike Duplicates performed on samples from other clients exhibited recoveries outside control limits for Chloroethane Method 8260B and Chloride Method 300.0. Because the corresponding Laboratory Control Samples and the Method Blank samples were within control limits, these anomalies may be due to matrix interference and no corrective action was taken.

The percent recoveries and/or relative percent difference of the MS/MSD performed on sample L-INF were outside control limits for Dissolved Barium and Dissolved Manganese Method 6020 because the sample concentration was greater than four times the spike amount. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, no corrective action was taken.

All other MS and MSD samples were within established control limits.

Sample Duplicate

The RPD for Total Dissolved Solids (TDS) Method 2540C performed on sample OBWL-TD was outside control limits. Because all other QC and calibration criteria were met no corrective action was needed.

Organics

The sample L-INF was analyzed at a dilution for Method 8260C due to foaming at the time of purging during the analysis. Elevated reporting limits (RL) are provided.

The sample L-INF was analyzed at a dilution for Method 8260C SIM due to foaming at the time of purging during the analysis. Elevated reporting limits (RL) are provided.

The prepreserved hydrochloric acid preserved vials for Method 8260C and 8260C SIM analyses for the sample L-INF exhibited pH values greater than 2. This is non-compliant with Method 8260C and 8260C SIM which require samples to be preserved with hydrochloric acid to a pH of less than 2. Because this sample is a leachate sample, a buffering effect was suspected.

Metals

The bracketing Continuing Calibration Verification Samples (CCV) surrounding the Method Blank were above control limits for Dissolved Sodium during Method 6010B analysis. Because the data are considered to be biased high and Dissolved Sodium was not detected in the Method Blank sample above the reporting limit, corrective action was deemed unnecessary.

General Comments

The analyses for Volatile Organics by Method 8260C and Volatile Organics by Method 8260C SIM were performed by TestAmerica Buffalo. Their address and phone number are:

TestAmerica Buffalo

10 Hazelwood Drive, Suite 106 Amherst, NY 14228 716-691-2600

For samples requiring analysis at a dilution, the dilution factor has been multiplied by the Method Detection Limit (MDL) for each analyte and evaluated versus the project-specific reporting limit (PSRL). If the obtained value is below the PSRL, then the PSRL is preserved as the reporting limit for the diluted result, otherwise, the obtained value becomes the reporting limit. This is done in order to maintain the PSRL to meet permit requirements at the request of the client and to report the lowest possible RL for each analyte.

EXECUTIVE SUMMARY - Detections

Client: Waste Management Job Number: 280-91030-1

Lab Sample ID Clier Analyte	it Sample ID R	esult Quali	Reporting fier Limit	Units	Method
280-91030-1 OBV	VL-TD				
Specific Conductivity	14	1 5		umhos/cm	Field Sampling
Dissolved Oxygen	8.	53		mg/L	Field Sampling
еН	12	29.3		millivolts	Field Sampling
Turbidity	25	5.77		NTU	Field Sampling
Temperature	13	3.29		Degrees C	Field Sampling
pН	6.	98		SU	Field Sampling
Sulfate	22	2	1.0	mg/L	300.0
Nitrate/Nitrite	0	27	0.050	mg/L	353.2
Chemical Oxygen Demand	(COD) 14	1	10	mg/L	410.4
Alkalinity, Total (As CaCO3	5) 57	7	5.0	mg/L	SM 2320B
Alkalinity, Bicarbonate (As	CaCO3) 57	7	5.0	mg/L	SM 2320B
Total Dissolved Solids (TDS	S) 14	40	5.0	mg/L	SM 2540C
Total Organic Carbon - Ave	erage 1.	6	1.0	mg/L	SM 5310B
Dissolved					
Calcium, Dissolved	24	1	0.040	mg/L	6010B
Magnesium, Dissolved	2.9	9	0.050	mg/L	6010B
Potassium, Dissolved	2.	1	1.0	mg/L	6010B
Sodium, Dissolved	5.	7	1.0	mg/L	6010B
Antimony, Dissolved	0.	0029	0.0010	mg/L	6020
Barium, Dissolved	0.	015	0.0010	mg/L	6020
Manganese, Dissolved	0.	0800	0.0010	mg/L	6020
Nickel, Dissolved	0.	0047	0.0040	mg/L	6020
Zinc, Dissolved	0.	13	0.0050	mg/L	6020

EXECUTIVE SUMMARY - Detections

Client: Waste Management Job Number: 280-91030-1

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91030-2	L-INF					
Butyl alcohol, tert-		190		50	ug/L	8260C
Tetrahydrofuran		43		25	ug/L	8260C
Vinyl chloride		0.046	JB	0.080	ug/L	8260C SIM
Specific Conductivit	У	43.83			umhos/cm	Field Sampling
Dissolved Oxygen	•	6.16			mg/L	Field Sampling
еН		104.0			millivolts	Field Sampling
Turbidity		31.38			NTU	Field Sampling
Temperature		18.24			Degrees C	Field Sampling
pH		7.83			SU	Field Sampling
Chloride		680		10	mg/L	300.0
Sulfate		280		10	mg/L	300.0
Ammonia (as N)		150		1.5	mg/L	350.1
Nitrate/Nitrite		0.36		0.050	mg/L	353.2
Chemical Oxygen D	emand (COD)	340		50	mg/L	410.4
Alkalinity, Total (As	CaCO3)	1600		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	1600		5.0	mg/L	SM 2320B
Total Dissolved Soli	ids (TDS)	2700		10	mg/L	SM 2540C
Total Organic Carbo	on - Average	100		5.0	mg/L	SM 5310B
Dissolved						
Calcium, Dissolved		150		0.040	mg/L	6010B
Cobalt, Dissolved		0.0071		0.0030	mg/L	6010B
Iron, Dissolved		0.42		0.060	mg/L	6010B
Magnesium, Dissolv		94		0.050	mg/L	6010B
Potassium, Dissolve	ed	100		1.0	mg/L	6010B
Sodium, Dissolved		690		1.0	mg/L	6010B
Barium, Dissolved		0.19		0.0010	mg/L	6020
Chromium, Dissolve		0.0068		0.0030	mg/L	6020
Manganese, Dissolv	ved	2.7		0.0010	mg/L	6020
Nickel, Dissolved		0.061		0.0040	mg/L	6020
Vanadium, Dissolve	ed	0.0069		0.0020	mg/L	6020

METHOD SUMMARY

Client: Waste Management Job Number: 280-91030-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN		SW846 3005A FIELD_FLTRD
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN		SW846 3005A FIELD_FLTRD
Anions, Ion Chromatography	TAL DEN	MCAWW 300.0	
Nitrogen, Ammonia	TAL DEN	MCAWW 350.1	
Nitrogen, Nitrate-Nitrite	TAL DEN	MCAWW 353.2	
COD	TAL DEN	MCAWW 410.4	
Alkalinity	TAL DEN	SM SM 2320B	
Solids, Total Dissolved (TDS)	TAL DEN	SM SM 2540C	
Organic Carbon, Total (TOC)	TAL DEN	SM SM 5310B	
Field Sampling	TAL DEN	EPA Field Sampl	ing
Volatile Organic Compounds by GC/MS Purge and Trap	TAL BUF TAL BUF	SW846 8260C	SW846 5030C
Volatile Organic Compounds (GC/MS) Purge and Trap	TAL BUF TAL BUF	SW846 8260C S	IM SW846 5030C

Lab References:

TAL BUF = TestAmerica Buffalo

TAL DEN = TestAmerica Denver

Method References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Waste Management Job Number: 280-91030-1

Method	Analyst	Analyst ID
SW846 8260C SW846 8260C	Archer, Nicholas E Youngman, Shawna M	NEA SMY
SW846 8260C SIM	Dias, Nicole M	NMD1
SW846 6010B SW846 6010B SW846 6010B	Broander, Laura L Lackey, Cara M Scott, Samantha J	LLB CML SJS
SW846 6020	Trudell, Lynn-Anne M	LMT
EPA Field Sampling	Krisorn, Chamaiporn 1	C1K
MCAWW 300.0	Benson, Alex F	AFB
MCAWW 350.1	Spedale, Morgan A	MAS
MCAWW 353.2	Cherry, Scott V	SVC
MCAWW 410.4	Jewell, Connie C	CCJ
SM SM 2320B	Carter, Melynda M	MMC
SM SM 2540C	Pedrick, Joshua A	JAP
SM SM 5310B	Jewell, Connie C	CCJ

SAMPLE SUMMARY

Client: Waste Management Job Number: 280-91030-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
280-91030-1	OBWL-TD	Water	11/14/2016 1025	11/15/2016 0850
280-91030-2	L-INF	Water	11/14/2016 1100	11/15/2016 0850
280-91030-3TB	TRIP BLANK	Water	11/14/2016 0000	11/15/2016 0850

SAMPLE RESULTS

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: OBWL-TD

Lab Sample ID: 280-91030-1 Date Sampled: 11/14/2016 1025

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333416 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9893.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/25/2016 1122 Final Weight/Volume: 5 mL

Analysis Date: 11/25/2016 1122 Prep Date: 11/25/2016 1122

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: OBWL-TD

Lab Sample ID: 280-91030-1 Date Sampled: 11/14/2016 1025

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333416 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9893.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/25/2016 1122 Final Weight/Volume: 5 mL

Prep Date: 11/25/2016 1122

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.72	1.0
	ND ND		0.29	1.0
Ethylbenzene				
Hexachlorobutadiene	ND ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND ND		0.36	1.0
Tetrahydrofuran	ND ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: OBWL-TD

Lab Sample ID: 280-91030-1 Date Sampled: 11/14/2016 1025

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333416 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9893.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/25/2016 1122 Final Weight/Volume: 5 mL

Prep Date: 11/25/2016 1122

Surrogate %Rec Qualifier Acceptance Limits
1,2-Dichloroethane-d4 (Surr) 100 77 - 120
4-Bromofluorobenzene (Surr) 95 73 - 120
Toluene-d8 (Surr) 99 80 - 120

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: OBWL-TD

Lab Sample ID: 280-91030-1 Date Sampled: 11/14/2016 1025

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333416 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9893.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/25/2016 1122 Final Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/25/2016 1122

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: L-INF

 Lab Sample ID:
 280-91030-2
 Date Sampled: 11/14/2016 1100

 Client Matrix:
 Water
 Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9819.D Dilution: 5.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1644 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1644 Prep Date: 11/23/2016 1644

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		1.8	5.0
1,1,1-Trichloroethane	ND		4.1	5.0
1,1,2,2-Tetrachloroethane	ND		1.1	5.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.6	5.0
1,1,2-Trichloroethane	ND		1.2	5.0
1,1-Dichloroethane	ND		1.9	5.0
1,1-Dichloroethene	ND		1.5	5.0
1,1-Dichloropropene	ND		3.6	5.0
1,2,3-Trichlorobenzene	ND		2.1	5.0
1,2,3-Trichloropropane	ND		4.5	5.0
1,2,4-Trichlorobenzene	ND		2.1	5.0
1,2,4-Trimethylbenzene	ND		3.8	5.0
1,2-Dibromo-3-Chloropropane	ND		2.0	5.0
1,2-Dibromoethane (EDB)	ND		3.7	5.0
1,2-Dichlorobenzene	ND		4.0	5.0
1,2-Dichloroethane	ND		1.1	5.0
1,2-Dichloroethene, Total	ND		4.1	10
1,2-Dichloropropane	ND		3.6	5.0
1,3,5-Trichlorobenzene	ND		1.2	5.0
1,3,5-Trimethylbenzene	ND		3.9	5.0
1,3-Dichlorobenzene	ND		3.9	5.0
1,3-Dichloropropane	ND		3.8	5.0
1,4-Dichlorobenzene	ND		4.2	5.0
1,4-Dioxane	ND		47	200
2,2-Dichloropropane	ND		2.0	5.0
2-Butanone (MEK)	ND		6.6	50
2-Chloroethyl vinyl ether	ND		4.8	25
2-Hexanone	ND		6.2	25
4-Methyl-2-pentanone (MIBK)	ND		11	25
Acetone	ND		15	50
Acetonitrile	ND		25	75
Acrolein	ND		4.6	100
Acrylonitrile	ND		4.2	25
Benzene	ND		2.1	5.0
Bromobenzene	ND		4.0	5.0
Bromochloromethane	ND		4.4	5.0
Bromodichloromethane	ND		2.0	5.0
Bromoform	ND		1.3	5.0
Bromomethane	ND		3.5	5.0
Butyl alcohol, n-	ND		44	200
Butyl alcohol, tert-	190		17	50
Carbon disulfide	ND		0.95	5.0
Carbon tetrachloride	ND ND		1.4	5.0
Chlorobenzene	ND		3.8	5.0
Chlorodifluoromethane	ND ND		1.3	5.0
	ND ND			
Chloroethane	ND		1.6	5.0

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: L-INF

 Lab Sample ID:
 280-91030-2
 Date Sampled: 11/14/2016 1100

 Client Matrix:
 Water
 Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9819.D Dilution: 5.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1644 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1644 Prep Date: 11/23/2016 1644

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		1.7	5.0
Chloromethane	ND		1.8	5.0
cis-1,2-Dichloroethene	ND		4.1	5.0
cis-1,3-Dichloropropene	ND		1.8	5.0
Cyclohexane	ND		0.90	5.0
Dibromochloromethane	ND		1.6	5.0
Dibromomethane	ND		2.1	5.0
Dichlorodifluoromethane	ND		3.4	5.0
Dichlorofluoromethane	ND		1.7	5.0
Ethyl acetate	ND		3.3	5.0
Ethyl ether	ND		3.6	5.0
Ethyl tert-butyl ether	ND		1.5	5.0
Ethylbenzene	ND		3.7	5.0
Hexachlorobutadiene	ND		1.4	5.0
Hexane	ND		2.0	50
Iodomethane	ND		1.5	5.0
Isobutanol	ND		24	130
Isopropyl ether	ND		3.0	5.0
Isopropylbenzene	ND		4.0	5.0
Methacrylonitrile	ND		3.5	25
Methyl acetate	ND		6.5	13
Methyl tert-butyl ether	ND		0.80	5.0
Methylcyclohexane	ND		0.80	5.0
Methylene Chloride	ND		2.2	5.0
m-Xylene & p-Xylene	ND		3.3	10
Naphthalene	ND		2.2	5.0
n-Butylbenzene	ND		3.2	5.0
N-Propylbenzene	ND		3.5	5.0
o-Chlorotoluene	ND		4.3	5.0
o-Xylene	ND		3.8	5.0
p-Chlorotoluene	ND		4.2	5.0
p-Cymene	ND		1.6	5.0
sec-Butylbenzene	ND		3.8	5.0
Styrene	ND		3.7	5.0
Tert-amyl methyl ether	ND		1.4	5.0
tert-Butylbenzene	ND		4.1	5.0
Tetrachloroethene	ND		1.8	5.0
Tetrahydrofuran	43		6.3	25
Toluene	ND		2.6	5.0
trans-1,2-Dichloroethene	ND		4.5	5.0
trans-1,3-Dichloropropene	ND		1.9	5.0
trans-1,4-Dichloro-2-butene	ND		1.1	5.0
Trichloroethene	ND		2.3	5.0
Trichlorofluoromethane	ND		4.4	5.0
Vinyl acetate	ND		4.3	25
Vinyl chloride	ND		4.5	5.0
viriyi ornoride	ND		4.0	5.0

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: L-INF

Lab Sample ID: 280-91030-2 Date Sampled: 11/14/2016 1100 Client Matrix:

Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S 5030C Prep Method: Prep Batch: N/A Lab File ID: S9819.D

Dilution: 5.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1644 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1644

Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 102 77 - 120 4-Bromofluorobenzene (Surr) 97 73 - 120 Toluene-d8 (Surr) 101 80 - 120

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: L-INF

Lab Sample ID: 280-91030-2 Date Sampled: 11/14/2016 1100

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9819.D Dilution: 5.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1644 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1644

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91030-3TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333219 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20497.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1156

Analysis Date: 11/23/2016 1156 Prep Date: 11/23/2016 1156

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91030-3TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333219 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20497.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1156

Analysis Date: 11/23/2016 1156 Prep Date: 11/23/2016 1156

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
	115		0.00	

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91030-3TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333219 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20497.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1156 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1156

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	96		73 - 120
Toluene-d8 (Surr)	100		80 - 120

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91030-3TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 0850

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333219 Instrument ID: HP5973P Prep Method: 5030C Prep Batch: N/A Lab File ID: P20497.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1156 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1156

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: OBWL-TD

Lab Sample ID: 280-91030-1 Date Sampled: 11/14/2016 1025

Client Matrix: Water Date Received: 11/15/2016 0850

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1466.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 2323 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 2323

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 96 50 - 150

TBA-d9 (Surr) 110 50 - 150

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: L-INF

Lab Sample ID: 280-91030-2 Date Sampled: 11/14/2016 1100

Client Matrix: Water Date Received: 11/15/2016 0850

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1467.D

Dilution: 4.0 Initial Weight/Volume: 25 mL

Analysis Date: 11/17/2016 2348 Final Weight/Volume: 25 mL Prep Date: 11/17/2016 2348

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 0.046
 J B
 0.016
 0.080

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 99 50 - 150

TBA-d9 (Surr) 125 50 - 150

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91030-3TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 0850

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332322 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1468.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/18/2016 0012 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0012

Analyte Result (ug/L) Qualifier MDL RL
Vinyl chloride ND 0.0040 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)9850 - 150TBA-d9 (Surr)12550 - 150

Client: Waste Management Job Number: 280-91030-1

Client Sample ID: OBWL-TD

Lab Sample ID: 280-91030-1 Date Sampled: 11/14/2016 1025

Client Matrix: Water Date Received: 11/15/2016 0850

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354109 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352694 Lab File ID: 25a120216BB.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/03/2016 0020 Final Weight/Volume: 50 mL

Prep Date: 11/25/2016 1545

Result (mg/L) Qualifier RL RL Analyte Calcium, Dissolved 24 0.040 0.040 Cobalt, Dissolved ND 0.0030 0.0030 ND 0.060 0.060 Iron, Dissolved Magnesium, Dissolved 2.9 0.050 0.050 Potassium, Dissolved 2.1 1.0 1.0

Analysis Method: 6010B Analysis Batch: 280-354656 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352694 Lab File ID: 25A120716A.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/07/2016 1127 Final Weight/Volume: 50 mL Prep Date: 11/25/2016 1545

Analyte Result (mg/L) Qualifier RL RL

Sodium, Dissolved 5.7 1.0 1.0

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 177SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/23/2016 2323 Final Weight/Volume: 50 ml

Analysis Date: 11/23/2016 2323 Final Weight/Volume: 50 mL Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL Antimony, Dissolved 0.0010 0.0010 0.0029 Barium, Dissolved 0.015 0.0010 0.0010 Beryllium, Dissolved ND 0.0010 0.0010 Cadmium, Dissolved ND 0.00020 0.00020 Chromium, Dissolved ND 0.0030 0.0030 Copper, Dissolved ND 0.0020 0.0020 Lead, Dissolved ND 0.0010 0.0010 Manganese, Dissolved 0.0080 0.0010 0.0010 Nickel. Dissolved 0.0047 0.0040 0.0040 0.0010 Selenium, Dissolved ND 0.0010 Silver, Dissolved ND 0.0020 0.0020 Thallium. Dissolved ND 0.0010 0.0010 Vanadium. Dissolved ND 0.0020 0.0020 Zinc, Dissolved 0.0050 0.0050 0.13

Job Number: 280-91030-1 Client: Waste Management

Client Sample ID: L-INF

Dilution:

Lab Sample ID: 280-91030-2 Date Sampled: 11/14/2016 1100 Client Matrix:

Water Date Received: 11/15/2016 0850

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354109 Instrument ID: MT_025

3005A Prep Method: Prep Batch: 280-352694 Lab File ID: 25a120216BB.asc

> Initial Weight/Volume: 50 mL

Analysis Date: 12/03/2016 0023 Final Weight/Volume: 50 mL

Prep Date: 11/25/2016 1545

1.0

Result (mg/L) Qualifier RL RL Analyte Calcium, Dissolved 150 0.040 0.040 Cobalt, Dissolved 0.0071 0.0030 0.0030 0.060 0.060 Iron, Dissolved 0.42 Magnesium, Dissolved 94 0.050 0.050 Potassium, Dissolved 100 1.0 1.0

MT 025 Analysis Method: 6010B Analysis Batch: 280-354577 Instrument ID: Prep Method: 3005A Prep Batch: 280-352694 Lab File ID: 25B120616.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/06/2016 1631 Final Weight/Volume: 50 mL Prep Date: 11/25/2016 1545

Analyte Result (mg/L) Qualifier RL RL

1.0 1.0 Sodium, Dissolved 690

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT 077 Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 178SMPL.d Dilution:

1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/23/2016 2327 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL Antimony, Dissolved 0.0010 0.0010 ND Barium, Dissolved 0.19 0.0010 0.0010 Beryllium, Dissolved ND 0.0010 0.0010 Cadmium, Dissolved ND 0.00020 0.00020 Chromium. Dissolved 0.0068 0.0030 0.0030 Copper, Dissolved ND 0.0020 0.0020 Lead, Dissolved ND 0.0010 0.0010 Manganese, Dissolved 2.7 0.0010 0.0010 0.061 Nickel. Dissolved 0.0040 0.0040 Selenium, Dissolved ND 0.0010 0.0010 Silver, Dissolved ND 0.0020 0.0020 Thallium. Dissolved ND 0.0010 0.0010 Vanadium. Dissolved 0.0069 0.0020 0.0020 Zinc, Dissolved 0.0050 0.0050 ND

General Chemistry

Client Sample ID: OBWL-TD

 Lab Sample ID:
 280-91030-1
 Date Sampled:
 11/14/2016 1025

 Client Matrix:
 Water
 Date Received:
 11/15/2016 0850

Analyte	Resul	t Qual	Units	RL	RL	Dil	Method
Chloride	ND		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35398	8 Analysis Date	e: 12/02/20	016 1422			
Sulfate	22		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35398	8 Analysis Date	e: 12/02/20	016 1422			
Ammonia (as I	N) ND		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch: 280-35294	3 Analysis Date	e: 11/23/20	016 1458			
Nitrate/Nitrite	0.27		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-35360	4 Analysis Date	e: 11/29/20	016 1906			
Chemical Oxyg	gen Demand (COD) 14		mg/L	10	10	1.0	410.4
	Analysis Batch: 280-35350	5 Analysis Date	e: 11/29/20	016 0923			
Alkalinity, Tota	al (As CaCO3) 57		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-35238	3 Analysis Date	e: 11/20/20	016 1310			
Alkalinity, Bica	arbonate (As CaCO3) 57		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-35238	3 Analysis Date	e: 11/20/20	016 1310			
Total Dissolve	d Solids (TDS) 140		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 280-35241	 Analysis Date 	e: 11/21/20	016 1012			
Total Organic	Carbon - Average 1.6		mg/L	1.0	1.0	1.0	SM 5310B
	Analysis Batch: 280-35371	2 Analysis Date	e: 11/30/20	016 0034			

General Chemistry

Client Sample ID: L-INF

 Lab Sample ID:
 280-91030-2
 Date Sampled:
 11/14/2016 1100

 Client Matrix:
 Water
 Date Received:
 11/15/2016 0850

Analyte	Resu	lt Qual	Units	RL	RL	Dil	Method
Chloride	680		mg/L	10	10	10	300.0
	Analysis Batch: 280-35398	88 Analysis Dat	e: 12/02/20	016 1458			
Sulfate	280		mg/L	10	10	10	300.0
	Analysis Batch: 280-35398	88 Analysis Dat	e: 12/02/20	016 1458			
Ammonia (as N)	150		mg/L	1.5	1.5	50	350.1
	Analysis Batch: 280-35294	3 Analysis Dat	e: 11/23/20	016 1504			
Nitrate/Nitrite	0.36		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-35360	04 Analysis Dat	e: 11/29/20	016 1908			
Chemical Oxygei	n Demand (COD) 340		mg/L	50	50	5.0	410.4
	Analysis Batch: 280-35350	5 Analysis Dat	e: 11/29/20	016 0923			
Alkalinity, Total (A	As CaCO3) 1600		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-35238	33 Analysis Dat	e: 11/20/20	016 1317			
Alkalinity, Bicarbo	onate (As CaCO3) 1600		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-35238	33 Analysis Dat	e: 11/20/20	016 1317			
Total Dissolved S	Solids (TDS) 2700		mg/L	10	10	1.0	SM 2540C
	Analysis Batch: 280-3524	0 Analysis Dat	e: 11/21/20	016 1012			
Total Organic Ca	rbon - Average 100		mg/L	5.0	5.0	5.0	SM 5310B
	Analysis Batch: 280-3537	2 Analysis Dat	e: 11/30/20	016 0124			

Field Service / Mobile Lab

Client Sample ID: OBWL-TD

Lab Sample ID: 280-91030-1 Date Sampled: 11/14/2016 1025

Client Matrix: Water Date Received: 11/15/2016 0850

						Analysis	Date Analyzed
Analyte	Result	Qual	Units	Dil	Method	Batch	Date Prepared
Specific Conductivity	145		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1125
Dissolved Oxygen	8.53		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1125
еН	129.3		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1125
Turbidity	25.77		NTU	1.0	Field Sampling	280-352756	11/14/2016 1125
Temperature	13.29		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1125
рН	6.98		SU	1.0	Field Sampling	280-352756	11/14/2016 1125

Field Service / Mobile Lab

Client Sample ID: L-INF

 Lab Sample ID:
 280-91030-2
 Date Sampled:
 11/14/2016 1100

 Client Matrix:
 Water
 Date Received:
 11/15/2016 0850

						Analysis	Date Analyzed
Analyte	Result	Qual	Units	Dil	Method	Batch	Date Prepared
Specific Conductivity	43.83		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1200
Dissolved Oxygen	6.16		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1200
еН	104.0		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1200
Turbidity	31.38		NTU	1.0	Field Sampling	280-352756	11/14/2016 1200
Temperature	18.24		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1200
pH	7.83		SU	1.0	Field Sampling	280-352756	11/14/2016 1200

DATA REPORTING QUALIFIERS

Client: Waste Management Job Number: 280-91030-1

Lab Section	Qualifier	Description
GC/MS VOA		
	В	Compound was found in the blank and sample.
	F1	MS and/or MSD Recovery is outside acceptance limits.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals		
	٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
General Chemistry		
	F3	Duplicate RPD exceeds the control limit
	F1	MS and/or MSD Recovery is outside acceptance limits.

QUALITY CONTROL RESULTS

Quality Control Results

Job Number: 280-91030-1 Client: Waste Management

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA	·				•
Analysis Batch:480-33	32322				
LCS 480-332322/4	Lab Control Sample	T	Water	8260C SIM	
LCSD 480-332322/5	Lab Control Sample Duplicate	T	Water	8260C SIM	
MB 480-332322/7	Method Blank	T	Water	8260C SIM	
280-91030-1	OBWL-TD	T	Water	8260C SIM	
280-91030-2	L-INF	T	Water	8260C SIM	
280-91030-2MS	Matrix Spike	T	Water	8260C SIM	
280-91030-2MSD	Matrix Spike Duplicate	T	Water	8260C SIM	
280-91030-3TB	TRIP BLANK	Т	Water	8260C SIM	
Analysis Batch:480-33	33215				
LCS 480-333215/4	Lab Control Sample	T	Water	8260C	
MB 480-333215/6	Method Blank	T	Water	8260C	
280-91030-2	L-INF	T	Water	8260C	
280-91030-2MS	Matrix Spike	T	Water	8260C	
280-91030-2MSD	Matrix Spike Duplicate	T	Water	8260C	
Analysis Batch:480-33	33219				
LCS 480-333219/7	Lab Control Sample	T	Water	8260C	
MB 480-333219/9	Method Blank	T	Water	8260C	
280-91030-3TB	TRIP BLANK	Т	Water	8260C	
480-109585-K-8 MS	Matrix Spike	T	Water	8260C	
480-109585-K-8 MSD	Matrix Spike Duplicate	T	Water	8260C	
Analysis Batch:480-33	33416				
LCS 480-333416/5	Lab Control Sample	T	Water	8260C	
MB 480-333416/30	Method Blank	Т	Water	8260C	
280-91030-1	OBWL-TD	T	Water	8260C	
280-91051-R-1 MS	Matrix Spike	Т	Water	8260C	
280-91051-S-1 MSD	Matrix Spike Duplicate	Ť	Water	8260C	

Report Basis T = Total

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 280-35248					
LCS 280-352489/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352489/1-A	Method Blank	R	Water	3005A	
280-91030-1	OBWL-TD	D	Water	3005A	
280-91030-2	L-INF	D	Water	3005A	
280-91030-2MS	Matrix Spike	D	Water	3005A	
280-91030-2MSD	Matrix Spike Duplicate	D	Water	3005A	
Prep Batch: 280-35269	4				
LCS 280-352694/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352694/1-A	Method Blank	R	Water	3005A	
280-90984-E-1-E MS	Matrix Spike	D	Water	3005A	
280-90984-E-1-F MSD	Matrix Spike Duplicate	D	Water	3005A	
280-91030-1	OBWL-TD	D	Water	3005A	
280-91030-2	L-INF	D	Water	3005A	
Analysis Batch:280-35	3028				
LCS 280-352489/2-A	Lab Control Sample	R	Water	6020	280-352489
MB 280-352489/1-A	Method Blank	R	Water	6020	280-352489
280-91030-1	OBWL-TD	D	Water	6020	280-352489
280-91030-2	L-INF	D	Water	6020	280-352489
280-91030-2MS	Matrix Spike	D	Water	6020	280-352489
280-91030-2MSD	Matrix Spike Duplicate	D	Water	6020	280-352489
Analysis Batch:280-35	4109				
LCS 280-352694/2-A	Lab Control Sample	R	Water	6010B	280-352694
MB 280-352694/1-A	Method Blank	R	Water	6010B	280-352694
280-90984-E-1-E MS	Matrix Spike	D	Water	6010B	280-352694
280-90984-E-1-F MSD	Matrix Spike Duplicate	D	Water	6010B	280-352694
280-91030-1	OBWL-TD	D	Water	6010B	280-352694
280-91030-2	L-INF	D	Water	6010B	280-352694
Analysis Batch:280-35	4577				
LCS 280-352694/2-A	Lab Control Sample	R	Water	6010B	280-352694
MB 280-352694/1-A	Method Blank	R	Water	6010B	280-352694
280-90984-E-1-E MS	Matrix Spike	D	Water	6010B	280-352694
280-90984-E-1-F MSD	Matrix Spike Duplicate	D	Water	6010B	280-352694
280-91030-1	OBWL-TD	D	Water	6010B	280-352694
280-91030-2	L-INF	D	Water	6010B	280-352694
Analysis Batch:280-35	4656				
280-91030-1	OBWL-TD	D	Water	6010B	280-352694

Quality Control Results

Job Number: 280-91030-1 Client: Waste Management

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis Client Matrix Method Pre	ep Batch
Report Basis D = Dissolved R = Total Recoverable			
Field Service / Mobile	e Lab		
Analysis Batch:280-3 280-91030-1 280-91030-2	3 52756 OBWL-TD L-INF	T Water Field Sampling T Water Field Sampling	

Report Basis T = Total

Client: Waste Management Job Number: 280-91030-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-35	52383				
LCS 280-352383/4	Lab Control Sample	T	Water	SM 2320B	
MB 280-352383/5	Method Blank	Т	Water	SM 2320B	
280-90999-A-1 DU	Duplicate	Т	Water	SM 2320B	
280-91030-1	OBWL-TD	Т	Water	SM 2320B	
280-91030-2	L-INF	Ť	Water	SM 2320B	
Analysis Batch:280-35	52410				
LCS 280-352410/2	Lab Control Sample	Т	Water	SM 2540C	
MB 280-352410/1	Method Blank	Т	Water	SM 2540C	
280-91030-1	OBWL-TD	Ť	Water	SM 2540C	
280-91030-1DU	Duplicate	Ť	Water	SM 2540C	
280-91030-2	L-INF	Ť	Water	SM 2540C	
Analysis Batch:280-35	52831				
LCS 280-352831/30	Lab Control Sample	Т	Water	SM 2320B	
MB 280-352831/31	Method Blank	T	Water	SM 2320B	
280-91030-2	L-INF	T	Water	SM 2320B	
280-91153-A-1 DU	Duplicate	T	Water	SM 2320B	
Analysis Batch:280-35	52943				
LCS 280-352943/18	Lab Control Sample	Т	Water	350.1	
LCSD 280-352943/19	Lab Control Sample Duplicate	T	Water	350.1	
MB 280-352943/20	Method Blank	T	Water	350.1	
280-91030-1	OBWL-TD	T	Water	350.1	
280-91030-1 280-91030-1MS	Matrix Spike	T	Water	350.1	
280-91030-1MSD		T T	Water	350.1	
	Matrix Spike Duplicate	T T	Water		
280-91030-2	L-INF	ı	vvalei	350.1	
Analysis Batch:280-35		-	10/-4	050.4	
LCS 280-353099/110	Lab Control Sample	T	Water	350.1	
LCSD 280-353099/111	Lab Control Sample Duplicate	T	Water	350.1	
MB 280-353099/112	Method Blank	T	Water	350.1	
280-91030-2	L-INF	Т	Water	350.1	
Analysis Batch:280-35					
LCS 280-353505/3	Lab Control Sample	T	Water	410.4	
LCSD 280-353505/4	Lab Control Sample Duplicate	Т	Water	410.4	
MB 280-353505/5	Method Blank	Т	Water	410.4	
280-91030-1	OBWL-TD	T	Water	410.4	
280-91030-1MS	Matrix Spike	T	Water	410.4	
280-91030-1MSD	Matrix Spike Duplicate	T	Water	410.4	
280-91030-2	L-INF	Т	Water	410.4	

Job Number: 280-91030-1 Client: Waste Management

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-35	3604				
LCS 280-353604/22	Lab Control Sample	T	Water	353.2	
LCS 280-353604/66	Lab Control Sample	T	Water	353.2	
MB 280-353604/23	Method Blank	T	Water	353.2	
MB 280-353604/67	Method Blank	T	Water	353.2	
280-90973-B-12 MS	Matrix Spike	T	Water	353.2	
280-90973-B-12 MSD	Matrix Spike Duplicate	T	Water	353.2	
280-91030-1	OBWL-TD	T	Water	353.2	
280-91030-2	L-INF	T	Water	353.2	
Analysis Batch:280-35	3712				
_CS 280-353712/3	Lab Control Sample	T	Water	SM 5310B	
_CSD 280-353712/4	Lab Control Sample Duplicate	T	Water	SM 5310B	
MB 280-353712/5	Method Blank	T	Water	SM 5310B	
280-90918-F-1 MS	Matrix Spike	T	Water	SM 5310B	
280-90918-F-1 MSD	Matrix Spike Duplicate	T	Water	SM 5310B	
280-91030-1	OBWL-TD	T	Water	SM 5310B	
280-91030-2	L-INF	Т	Water	SM 5310B	
Analysis Batch:280-35	3988				
_CS 280-353988/4	Lab Control Sample	T	Water	300.0	
_CSD 280-353988/5	Lab Control Sample Duplicate	Т	Water	300.0	
MB 280-353988/6	Method Blank	T	Water	300.0	
280-90914-A-1 DU	Duplicate	T	Water	300.0	
280-90914-A-1 MS	Matrix Spike	T	Water	300.0	
280-90914-A-1 MSD	Matrix Spike Duplicate	T	Water	300.0	
280-91030-1	OBWL-TD	T	Water	300.0	
280-91030-2	L-INF	Т	Water	300.0	
280-91667-D-11 DU	Duplicate	Т	Water	300.0	
280-91667-F-11 MS	Matrix Spike	Т	Water	300.0	
280-91667-E-11 MSD	Matrix Spike Duplicate	Т	Water	300.0	

Report Basis T = Total

Client: Waste Management Job Number: 280-91030-1

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Water

		DCA	BFB	TOL
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
280-91030-1	OBWL-TD	100	95	99
280-91030-2	L-INF	102	97	101
280-91030-3	TRIP BLANK	105	96	100
MB 480-333215/6		102	100	101
MB 480-333219/9		104	99	100
MB 480-333416/30		100	94	101
LCS 480-333215/4		102	98	102
LCS 480-333219/7		100	100	100
LCS 480-333416/5		100	98	103
280-91030-2 MS	L-INF MS	100	97	101
480-109585-K-8 MS		101	95	99
280-91051-R-1 MS		101	95	102
280-91030-2 MSD	L-INF MSD	99	98	104
480-109585-K-8 MSD		101	100	101
280-91051-S-1 MSD		101	96	103

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	77-120
BFB = 4-Bromofluorobenzene (Surr)	73-120
TOL = Toluene-d8 (Surr)	80-120

Client: Waste Management Job Number: 280-91030-1

Surrogate Recovery Report

8260C SIM Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	TBA
Lab Sample ID	Client Sample ID	%Rec	%Rec
280-91030-1	OBWL-TD	96	110
280-91030-2	L-INF	99	125
280-91030-3	TRIP BLANK	98	125
MB 480-332322/7		97	122
LCS 480-332322/4		99	104
LCSD 480-332322/5		104	117
280-91030-2 MS	L-INF MS	104	142
280-91030-2 MSD	L-INF MSD	104	138

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	50-150
TBA = TBA-d9 (Surr)	50-150

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333215 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333215/6 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9804.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1043 Units: ug/L

Prep Date: 11/23/2016 1043

Analyte	Result	Qual	MDL	RL	
1,1,1,2-Tetrachloroethane	ND		0.35	1.0	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,1-Dichloropropene	ND		0.72	1.0	
1,2,3-Trichlorobenzene	ND		0.41	1.0	
1,2,3-Trichloropropane	ND		0.89	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2,4-Trimethylbenzene	ND		0.75	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane (EDB)	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloroethene, Total	ND		0.81	2.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3,5-Trichlorobenzene	ND		0.23	1.0	
1,3,5-Trimethylbenzene	ND		0.77	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,3-Dichloropropane	ND		0.75	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
1,4-Dioxane	ND		9.3	40	
2,2-Dichloropropane	ND		0.40	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Chloroethyl vinyl ether	ND		0.96	5.0	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Acetonitrile	ND		4.9	15	
Acrolein	ND		0.91	20	
Acrylonitrile	ND		0.83	5.0	
Benzene	ND		0.41	1.0	
Bromobenzene	ND		0.80	1.0	
Bromochloromethane	ND		0.87	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.39	1.0	
5	ND			1.0	
Bromomethane Butyl alcohol, n-	ND ND		0.69 8.9	40	
Butyl alcohol, tert-	ND ND		3.3	10	
Carbon disulfide	ND ND		ა.ა 0.19	1.0	
Carbon distillide Carbon tetrachloride			0.19	1.0	
	ND ND				
Chlorodifluoromethana	ND ND		0.75	1.0	
Chlorodifluoromethane	ND		0.26	1.0	

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333215 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333215/6 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9804.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1043 Units: ug/L

Prep Date: 11/23/2016 1043

Analyte	Result	Qual	MDL	RL	
Chloroethane	ND		0.32	1.0	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dibromochloromethane	ND		0.32	1.0	
Dibromomethane	ND		0.41	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Dichlorofluoromethane	ND		0.34	1.0	
Ethyl acetate	ND		0.66	1.0	
Ethyl ether	ND		0.72	1.0	
Ethyl tert-butyl ether	ND		0.29	1.0	
Ethylbenzene	ND		0.74	1.0	
Hexachlorobutadiene	ND		0.28	1.0	
Hexane	ND		0.40	10	
Iodomethane	ND		0.30	1.0	
Isobutanol	ND		4.8	25	
Isopropyl ether	ND		0.59	1.0	
Isopropylbenzene	ND		0.79	1.0	
	ND		0.79	5.0	
Methacrylonitrile	ND ND		1.3	2.5	
Methyl test butyl other			0.16		
Methyl tert-butyl ether	ND			1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND		0.44	1.0	
m-Xylene & p-Xylene	ND		0.66	2.0	
Naphthalene	ND		0.43	1.0	
n-Butylbenzene	ND		0.64	1.0	
N-Propylbenzene	ND		0.69	1.0	
o-Chlorotoluene	ND		0.86	1.0	
o-Xylene	ND		0.76	1.0	
p-Chlorotoluene	ND		0.84	1.0	
p-Cymene	ND		0.31	1.0	
sec-Butylbenzene	ND		0.75	1.0	
Styrene	ND		0.73	1.0	
Tert-amyl methyl ether	ND		0.27	1.0	
tert-Butylbenzene	ND		0.81	1.0	
Tetrachloroethene	ND		0.36	1.0	
Tetrahydrofuran	ND		1.3	5.0	
Toluene	ND		0.51	1.0	
trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,3-Dichloropropene	ND		0.37	1.0	
trans-1,4-Dichloro-2-butene	ND		0.22	1.0	
Trichloroethene	ND		0.46	1.0	
Trichlorofluoromethane	ND		0.88	1.0	

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333215

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333215/6 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9804.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL 11/23/2016 1043 Units: Analysis Date: ug/L

Prep Date: 11/23/2016 1043

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
Surrogate	% Rec		Acceptance Limits	
Surrogate 1,2-Dichloroethane-d4 (Surr)	% Rec 102		Acceptance Limits 77 - 120	
			<u>'</u>	

Method Blank TICs-Batch: 480-333215

Cas Number	Analyte	RT	Est. Result (ug/	Qual
67-72-1	Hexachloroethane TIC	0.00	ND	

Client: Waste Management Job Number: 280-91030-1

Lab Control Sample - Batch: 480-333215

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333215/4 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Prep Batch: Lab File ID: Water N/A S9802.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Units: Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 0950 ug/L

Prep Date: 11/23/2016 0950

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	25.0	26.8	107	80 - 120	
1,1,1-Trichloroethane	25.0	25.9	104	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.6	102	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	24.8	99	61 - 148	
1,1,2-Trichloroethane	25.0	25.5	102	76 - 122	
1,1-Dichloroethane	25.0	25.0	100	77 - 120	
1,1-Dichloroethene	25.0	27.2	109	66 - 127	
1,1-Dichloropropene	25.0	25.6	102	72 - 122	
1,2,3-Trichlorobenzene	25.0	24.9	100	75 - 123	
1,2,3-Trichloropropane	25.0	24.3	97	68 - 122	
1,2,4-Trichlorobenzene	25.0	25.6	102	79 - 122	
1,2,4-Trimethylbenzene	25.0	25.9	103	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	25.0	100	56 - 134	
1,2-Dibromoethane (EDB)	25.0	25.3	101	77 - 120	
1,2-Dichlorobenzene	25.0	26.1	105	80 - 124	
1,2-Dichloroethane	25.0	24.0	96	75 - 120	
1,2-Dichloropropane	25.0	24.4	98	76 - 120	
1,3,5-Trimethylbenzene	25.0	26.0	104	77 - 121	
1,3-Dichlorobenzene	25.0	25.8	103	77 - 120	
1,3-Dichloropropane	25.0	24.6	98	75 - 120	
1,4-Dichlorobenzene	25.0	25.4	102	80 - 120	
1,4-Dioxane	500	398	80	50 - 150	
2,2-Dichloropropane	25.0	27.3	109	63 - 136	
2-Butanone (MEK)	125	115	92	57 - 140	
2-Chloroethyl vinyl ether	25.0	24.4	98	70 - 129	
2-Hexanone	125	111	89	65 - 127	
	125	109	87	71 - 125	
4-Methyl-2-pentanone (MIBK)	125	115	92	71 - 125 56 - 142	
Acetone		108	92 87		
Acrolein	125			52 - 143	
Acrylonitrile	250	232	93	63 - 125	
Benzene	25.0	25.1	100	71 - 124	
Bromobenzene	25.0	24.5	98	78 - 120	
Bromochloromethane	25.0	26.6	107	72 - 130	
Bromodichloromethane	25.0	25.4	101	80 - 122	
Bromoform	25.0	25.4	102	61 - 132	
Bromomethane	25.0	25.1	100	55 - 144	
Butyl alcohol, tert-	250	219	88	75 - 125	
Carbon disulfide	25.0	23.1	92	59 - 134	
Carbon tetrachloride	25.0	26.0	104	72 - 134	
Chlorobenzene	25.0	24.9	99	80 - 120	
Chloroethane	25.0	28.0	112	69 - 136	
Chloroform	25.0	25.1	100	73 - 127	
Chloromethane	25.0	24.7	99	68 - 124	
cis-1,2-Dichloroethene	25.0	25.4	102	74 - 124	
cis-1,3-Dichloropropene	25.0	24.9	100	74 - 124	
Cyclohexane	25.0	25.1	100	59 - 135	

Client: Waste Management Job Number: 280-91030-1

Lab Control Sample - Batch: 480-333215

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333215/4 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9802.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 0950 Units: ug/L

Prep Date: 11/23/2016 0950

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	25.0	25.3	101	75 - 125	
Dibromomethane	25.0	25.1	100	76 - 127	
Dichlorodifluoromethane	25.0	25.5	102	59 - 135	
Dichlorofluoromethane	25.0	24.4	98	76 - 127	
Ethyl ether	25.0	26.2	105	76 - 123	
Ethylbenzene	25.0	24.3	97	77 - 123	
Hexachlorobutadiene	25.0	24.4	98	68 - 131	
Hexane	25.0	24.9	100	54 - 146	
Iodomethane	25.0	24.8	99	78 - 123	
Isobutanol	625	572	92	51 - 150	
Isopropylbenzene	25.0	25.4	102	77 - 122	
Methyl acetate	125	110	88	74 - 133	
Methyl tert-butyl ether	25.0	24.3	97	77 - 120	
Methylcyclohexane	25.0	26.0	104	68 - 134	
Methylene Chloride	25.0	23.9	95	75 - 124	
m-Xylene & p-Xylene	25.0	24.4	98	76 - 122	
Naphthalene	25.0	24.3	97	66 - 125	
n-Butylbenzene	25.0	26.5	106	71 - 128	
N-Propylbenzene	25.0	25.3	101	75 - 127	
o-Chlorotoluene	25.0	25.0	100	76 - 121	
o-Xylene	25.0	24.7	99	76 - 122	
p-Chlorotoluene	25.0	25.2	101	77 - 121	
p-Cymene	25.0	26.0	104	73 - 120	
sec-Butylbenzene	25.0	25.4	101	74 - 127	
Styrene	25.0	24.8	99	80 - 120	
tert-Butylbenzene	25.0	26.0	104	75 - 123	
Tetrachloroethene	25.0	25.0	100	74 - 122	
Tetrahydrofuran	50.0	41.2	82	62 - 132	
Toluene	25.0	24.8	99	80 - 122	
trans-1,2-Dichloroethene	25.0	25.8	103	73 - 127	
trans-1,3-Dichloropropene	25.0	25.1	100	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	19.5	78	41 - 131	
Trichloroethene	25.0	25.1	101	74 - 123	
Trichlorofluoromethane	25.0	24.4	98	62 - 150	
Vinyl acetate	50.0	48.5	97	50 - 144	
Vinyl chloride	25.0	27.8	111	65 - 133	
Surrogate	% I	Rec	A	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	1	02		77 - 120	
4-Bromofluorobenzene (Surr)	98			73 - 120	
Toluene-d8 (Surr)		02		80 - 120	
		-			

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample ID: 280-91030-2 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9825.D Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 11/23/2016 1902 Final Weight/Volume: Analysis Date: 5 mL

Prep Date: 11/23/2016 1902 5 mL

Leach Date: N/A

MSD Lab Sample ID: 280-91030-2 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: N/A Lab File ID: Water Prep Batch: S9826.D Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1925 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1925 Final Weight/Volume: 5 mL

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1,1,2-Tetrachloroethane	109	109	80 - 120	0	20		
1,1,1-Trichloroethane	109	105	73 - 126	4	15		
1,1,2,2-Tetrachloroethane	101	103	76 - 120	1	15		
1,1,2-Trichloro-1,2,2-trifluoroethane	106	98	61 - 148	8	20		
1,1,2-Trichloroethane	104	108	76 - 122	4	15		
1,1-Dichloroethane	104	100	77 - 120	4	20		
1,1-Dichloroethene	114	108	66 - 127	5	16		
1,1-Dichloropropene	110	106	72 - 122	4	20		
1,2,3-Trichlorobenzene	98	98	75 - 123	0	20		
1,2,3-Trichloropropane	97	98	68 - 122	1	14		
1,2,4-Trichlorobenzene	99	99	79 - 122	1	20		
1,2,4-Trimethylbenzene	106	103	76 - 121	3	20		
1,2-Dibromo-3-Chloropropane	97	100	56 - 134	4	15		
1,2-Dibromoethane (EDB)	102	105	77 - 120	3	15		
1,2-Dichlorobenzene	104	103	80 - 124	1	20		
1,2-Dichloroethane	97	93	75 - 120	4	20		
1,2-Dichloropropane	101	97	76 - 120	4	20		
1,3,5-Trimethylbenzene	105	102	77 - 121	3	20		
1,3-Dichlorobenzene	105	102	77 - 120	3	20		
1,3-Dichloropropane	99	102	75 - 120	3	20		
1,4-Dichlorobenzene	102	100	78 - 124	2	20		
1,4-Dioxane	69	82	50 - 150	17	20		
2,2-Dichloropropane	104	99	63 - 136	6	20		
2-Butanone (MEK)	88	86	57 - 140	2	20		
2-Chloroethyl vinyl ether	96	92	70 - 129	4	20		
2-Hexanone	84	87	65 - 127	4	15		
4-Methyl-2-pentanone (MIBK)	88	91	71 - 125	4	35		
Acetone	79	78	56 - 142	0	15		
Acrolein	88	86	52 - 143	3	20		
Acrylonitrile	93	89	63 - 125	4	20		
Benzene	106	101	71 - 124	4	13		
Bromobenzene	104	98	78 - 120	5	15		
Bromochloromethane	108	101	72 - 130	6	15		

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample ID: 280-91030-2 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9825.D Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 11/23/2016 1902 Final Weight/Volume: Analysis Date: 5 mL

Prep Date: 11/23/2016 1902 5 mL

Leach Date: N/A

MSD Lab Sample ID: 280-91030-2 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: N/A Lab File ID: Water Prep Batch: S9826.D Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1925 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1925 Final Weight/Volume: 5 mL

	<u>% R</u>	ec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Bromodichloromethane	102	99	80 - 122	3	15		
Bromoform	97	99	61 - 132	2	15		
Bromomethane	109	98	55 - 144	11	15		
Butyl alcohol, tert-	75	80	75 - 125	6	15		
Carbon disulfide	98	93	59 - 134	6	15		
Carbon tetrachloride	115	106	72 - 134	8	15		
Chlorobenzene	102	103	80 - 120	1	25		
Chloroethane	117	113	69 - 136	4	15		
Chloroform	103	99	73 - 127	4	20		
Chloromethane	110	101	68 - 124	9	15		
cis-1,2-Dichloroethene	107	101	74 - 124	6	15		
cis-1,3-Dichloropropene	100	95	74 - 124	5	15		
Cyclohexane	112	103	59 - 135	8	20		
Dibromochloromethane	103	106	75 - 125	3	15		
Dibromomethane	102	100	76 - 127	2	15		
Dichlorodifluoromethane	109	100	59 - 135	8	20		
Dichlorofluoromethane	106	101	76 - 127	5	20		
Ethyl ether	106	102	76 - 123	4	20		
Ethylbenzene	103	101	77 - 123	2	15		
Hexachlorobutadiene	95	96	68 - 131	1	20		
Hexane	103	94	54 - 146	9			
Iodomethane	102	97	78 - 123	5	20		
Isobutanol	80	82	51 - 150	3	20		
Isopropylbenzene	105	102	77 - 122	2	20		
Methyl acetate	89	88	74 - 133	1	20		
Methyl tert-butyl ether	99	96	77 - 120	3	37		
Methylcyclohexane	110	101	68 - 134	8	20		
Methylene Chloride	98	96	75 - 124	3	15		
m-Xylene & p-Xylene	101	101	76 - 122	1	16		
Naphthalene	96	97	66 - 125	1	20		
n-Butylbenzene	106	102	71 - 128	3	15		
N-Propylbenzene	104	101	75 - 127	4	15		
o-Chlorotoluene	103	102	76 - 121	1	20		

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 280-91030-2 Water 5.0 11/23/2016 1902 11/23/2016 1902 N/A	Analysis Batch: Prep Batch: Leach Batch:	480-333215 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973S S9825.D 5 mL 5 mL 5 mL
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	EID: 280-91030-2 Water 5.0 11/23/2016 1925 11/23/2016 1925 N/A	Analysis Batch: Prep Batch: Leach Batch:	480-333215 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973S S9826.D 5 mL 5 mL 5 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
o-Xylene	102	103	76 - 122	2	16		
p-Chlorotoluene	103	101	77 - 121	2	15		
p-Cymene	105	102	73 - 120	3	20		
sec-Butylbenzene	104	102	74 - 127	3	15		
Styrene	102	103	80 - 120	0	20		
tert-Butylbenzene	107	104	75 - 123	3	15		
Tetrachloroethene	105	103	74 - 122	2	20		
Tetrahydrofuran	85	85	62 - 132	0	25		
Toluene	104	104	80 - 122	0	15		
trans-1,2-Dichloroethene	110	102	73 - 127	8	20		
trans-1,3-Dichloropropene	96	100	80 - 120	5	15		
trans-1,4-Dichloro-2-butene	65	69	41 - 131	5	20		
Trichloroethene	105	99	74 - 123	6	16		
Trichlorofluoromethane	110	103	62 - 150	6	20		
Vinyl acetate	91	91	50 - 144	1	23		
Vinyl chloride	123	115	65 - 133	7	15		
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Lim	its
1,2-Dichloroethane-d4 (Surr)		100	99		7	7 - 120	
4-Bromofluorobenzene (Surr)		97	98		7	'3 - 120	
Toluene-d8 (Surr)		101	104		8	80 - 120	

Surrogate	MS % Rec	MSD % Rec	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	100	99	77 - 120
4-Bromofluorobenzene (Surr)	97	98	73 - 120
Toluene-d8 (Surr)	101	104	80 - 120

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample ID: 280-91030-2 Units: ug/L MSD Lab Sample ID: 280-91030-2

Client Matrix:WaterClient Matrix:WaterDilution:5.0Dilution:5.0

Analysis Date: 11/23/2016 1902 Analysis Date: 11/23/2016 1925
Prep Date: 11/23/2016 1902 Prep Date: 11/23/2016 1925

Leach Date: N/A Leach Date: N/A

	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
1,1,1,2-Tetrachloroethane	ND	125	125	136	136
1,1,1-Trichloroethane	ND	125	125	136	131
1,1,2,2-Tetrachloroethane	ND	125	125	127	128
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	125	125	133	122
1,1,2-Trichloroethane	ND	125	125	130	135
1,1-Dichloroethane	ND	125	125	130	125
1,1-Dichloroethene	ND	125	125	142	135
1,1-Dichloropropene	ND	125	125	137	132
1,2,3-Trichlorobenzene	ND	125	125	122	123
1,2,3-Trichloropropane	ND	125	125	122	123
1,2,4-Trichlorobenzene	ND	125	125	124	123
1,2,4-Trimethylbenzene	ND	125	125	132	128
1,2-Dibromo-3-Chloropropane	ND	125	125	121	125
1,2-Dibromoethane (EDB)	ND	125	125	127	131
1,2-Dichlorobenzene	ND	125	125	130	128
1,2-Dichloroethane	ND	125	125	122	116
1,2-Dichloropropane	ND	125	125	127	122
1,3,5-Trimethylbenzene	ND	125	125	131	128
1,3-Dichlorobenzene	ND	125	125	131	128
1,3-Dichloropropane	ND	125	125	124	127
1,4-Dichlorobenzene	ND	125	125	127	125
1,4-Dioxane	ND	2500	2500	1730	2040
2,2-Dichloropropane	ND	125	125	130	123
2-Butanone (MEK)	ND	625	625	549	537
2-Chloroethyl vinyl ether	ND	125	125	119	115
2-Hexanone	ND	625	625	522	543
4-Methyl-2-pentanone (MIBK)	ND	625	625	550	570
Acetone	ND	625	625	492	490
Acrolein	ND	625	625	550	536
Acrylonitrile	ND	1250	1250	1160	1110
Benzene	ND	125	125	132	126
Bromobenzene	ND	125	125	130	123
Bromochloromethane	ND	125	125	135	127
Bromodichloromethane	ND	125	125	128	124
Bromoform	ND	125	125	122	124
Bromomethane	ND	125	125	136	123
Butyl alcohol, tert-	190	1250	1250	1130	1200
Carbon disulfide	ND	125	1250	123	116
Carbon disdilide Carbon tetrachloride	ND ND	125	125	143	133
Carbon tetrachionde Chlorobenzene	ND ND	125	125	127	129
Chloroethane	ND ND	125	125	146	141
Chloroform	ND ND	125	125	129	124
Chloromethane	ND	125	125	138	126

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample ID: 280-91030-2 Units: ug/L MSD Lab Sample ID: 280-91030-2

Client Matrix:WaterClient Matrix:WaterDilution:5.0Dilution:5.0

 Analysis Date:
 11/23/2016 1902
 Analysis Date:
 11/23/2016 1925

 Prep Date:
 11/23/2016 1902
 Prep Date:
 11/23/2016 1925

Leach Date: N/A Leach Date: N/A

	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
cis-1,2-Dichloroethene	ND	125	125	134	126
cis-1,3-Dichloropropene	ND	125	125	125	119
Cyclohexane	ND	125	125	140	129
Dibromochloromethane	ND	125	125	128	132
Dibromomethane	ND	125	125	128	126
Dichlorodifluoromethane	ND	125	125	136	126
Dichlorofluoromethane	ND	125	125	133	126
Ethyl ether	ND	125	125	133	127
Ethylbenzene	ND	125	125	128	126
Hexachlorobutadiene	ND	125	125	119	120
Hexane	ND	125	125	129	117
Iodomethane	ND	125	125	127	121
Isobutanol	ND	3130	3130	2500	2570
Isopropylbenzene	ND	125	125	131	128
Methyl acetate	ND	625	625	555	548
Methyl tert-butyl ether	ND	125	125	123	120
Methylcyclohexane	ND	125	125	137	127
Methylene Chloride	ND	125	125	123	120
m-Xylene & p-Xylene	ND	125	125	126	127
Naphthalene	ND	125	125	121	121
n-Butylbenzene	ND	125	125	132	128
N-Propylbenzene	ND	125	125	130	126
o-Chlorotoluene	ND	125	125	128	127
o-Xylene	ND	125	125	127	129
p-Chlorotoluene	ND	125	125	128	126
p-Cymene	ND	125	125	131	127
sec-Butylbenzene	ND	125	125	130	127
Styrene	ND	125	125	128	128
tert-Butylbenzene	ND	125	125	134	130
Tetrachloroethene	ND	125	125	132	129
Tetrahydrofuran	43	250	250	256	255
Toluene	ND	125	125	130	130
trans-1,2-Dichloroethene	ND	125	125	138	127
trans-1,3-Dichloropropene	ND	125	125	120	125
trans-1,4-Dichloro-2-butene	ND	125	125	81.7	86.1
Trichloroethene	ND	125	125	131	124
Trichlorofluoromethane	ND	125	125	137	129
Vinyl acetate	ND	250	250	229	227
Vinyl chloride	ND	125	125	154	143
viriyi cilionue	IND	123	123	104	143

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333219 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333219/9 Analysis Batch: 480-333219 Instrument ID: HP5973P Client Matrix: Prep Batch: Water N/A Lab File ID: P20496.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1112 Units: ug/L

Prep Date: 11/23/2016 1112

Analyte	Result	Qual	MDL	RL	
1,1,1,2-Tetrachloroethane	ND		0.35	1.0	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,1-Dichloropropene	ND		0.72	1.0	
1,2,3-Trichlorobenzene	ND		0.41	1.0	
1,2,3-Trichloropropane	ND		0.89	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2,4-Trimethylbenzene	ND		0.75	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane (EDB)	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloroethene, Total	ND		0.81	2.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3,5-Trichlorobenzene	ND		0.23	1.0	
1,3,5-Trimethylbenzene	ND		0.77	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,3-Dichloropropane	ND		0.75	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
1,4-Dioxane	ND		9.3	40	
2,2-Dichloropropane	ND		0.40	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Chloroethyl vinyl ether	ND		0.96	5.0	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Acetonitrile	ND		4.9	15	
Acrolein	ND		0.91	20	
Acrylonitrile	ND		0.83	5.0	
Benzene	ND		0.41	1.0	
Bromobenzene	ND		0.80	1.0	
Bromochloromethane	ND		0.87	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.39	1.0	
5	ND			1.0	
Bromomethane Butyl alcohol, n-	ND ND		0.69 8.9	40	
Butyl alcohol, tert-	ND ND		3.3	10	
Carbon disulfide	ND ND		ა.ა 0.19	1.0	
Carbon distillide Carbon tetrachloride			0.19	1.0	
	ND ND				
Chlorodifluoromethana	ND ND		0.75	1.0	
Chlorodifluoromethane	ND		0.26	1.0	

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333219

11/23/2016 1112

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333219/9 Analysis Batch: 480-333219 Instrument ID: HP5973P Client Matrix: Prep Batch: Water N/A Lab File ID: P20496.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1112 Units: ug/L

Leach Date: N/A

Prep Date:

Analyte	Result	Qual	MDL	RL	
Chloroethane	ND		0.32	1.0	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dibromochloromethane	ND		0.32	1.0	
Dibromomethane	ND		0.41	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Dichlorofluoromethane	ND		0.34	1.0	
Ethyl acetate	ND		0.66	1.0	
Ethyl ether	ND		0.72	1.0	
Ethyl tert-butyl ether	ND		0.29	1.0	
Ethylbenzene	ND		0.74	1.0	
Hexachlorobutadiene	ND		0.28	1.0	
Hexane	ND		0.40	10	
lodomethane	ND		0.30	1.0	
Isobutanol	ND		4.8	25	
Isopropyl ether	ND		0.59	1.0	
Isopropylbenzene	ND		0.79	1.0	
Methacrylonitrile	ND		0.69	5.0	
Methyl acetate	ND		1.3	2.5	
Methyl tert-butyl ether	ND		0.16	1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND		0.44	1.0	
m-Xylene & p-Xylene	ND		0.66	2.0	
Naphthalene	ND		0.43	1.0	
n-Butylbenzene	ND		0.64	1.0	
N-Propylbenzene	ND		0.69	1.0	
o-Chlorotoluene	ND		0.86	1.0	
o-Xylene	ND		0.76	1.0	
p-Chlorotoluene	ND		0.84	1.0	
p-Cymene	ND		0.31	1.0	
sec-Butylbenzene	ND		0.75	1.0	
Styrene	ND		0.73	1.0	
Tert-amyl methyl ether	ND		0.27	1.0	
tert-Butylbenzene	ND		0.81	1.0	
Tetrachloroethene	ND		0.36	1.0	
Tetrahydrofuran	ND		1.3	5.0	
Toluene	ND		0.51	1.0	
trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,3-Dichloropropene	ND		0.37	1.0	
trans-1,4-Dichloro-2-butene	ND		0.22	1.0	
Trichloroethene	ND		0.46	1.0	
Trichlorofluoromethane	ND		0.88	1.0	

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333219

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333219/9 Analysis Batch: 480-333219 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20496.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL 11/23/2016 1112 Units: Analysis Date: ug/L

Prep Date: 11/23/2016 1112

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
Currogata	0/ Doo		Acceptance Limite	
Surrogate	% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	104		77 - 120	
			<u>'</u>	

Method Blank TICs- Batch: 480-333219

Cas Number	Analyte	RT	Est. Result (ug/	Qual
67-72-1	Hexachloroethane TIC	0.00	ND	

Client: Waste Management Job Number: 280-91030-1

Lab Control Sample - Batch: 480-333219

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333219/7 Analysis Batch: 480-333219 Instrument ID: HP5973P Client Matrix: Prep Batch: Lab File ID: Water N/A P20494.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Units: Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1017 ug/L

Prep Date: 11/23/2016 1017

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	25.0	24.9	100	80 - 120	
1,1,1-Trichloroethane	25.0	23.5	94	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	23.7	95	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	23.9	96	61 - 148	
1,1,2-Trichloroethane	25.0	24.3	97	76 - 122	
1,1-Dichloroethane	25.0	23.7	95	77 - 120	
1,1-Dichloroethene	25.0	22.3	89	66 - 127	
1,1-Dichloropropene	25.0	23.7	95	72 - 122	
1,2,3-Trichlorobenzene	25.0	24.1	96	75 - 123	
1,2,3-Trichloropropane	25.0	23.7	95	68 - 122	
1,2,4-Trichlorobenzene	25.0	24.0	96	79 - 122	
1,2,4-Trimethylbenzene	25.0	24.3	97	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	23.5	94	56 - 134	
1,2-Dibromoethane (EDB)	25.0	24.4	97	77 - 120	
1,2-Dichlorobenzene	25.0	23.7	95	80 - 124	
1,2-Dichloroethane	25.0	24.1	96	75 - 120	
1,2-Dichloropropane	25.0	23.8	95	76 - 120	
1,3,5-Trimethylbenzene	25.0	23.9	96	77 - 121	
1,3-Dichlorobenzene	25.0	24.1	96	77 - 121 77 - 120	
1,3-Dichloropropane	25.0	24.0	96	77 - 120 75 - 120	
1,4-Dichlorobenzene	25.0	23.9	96	80 - 120	
1,4-Dioxane	500	507	101	50 - 150	
2,2-Dichloropropane	25.0	25.4	102	63 - 136	
• •	125	125 125	102		
2-Butanone (MEK)	25.0	24.7	99	57 - 140 70 - 129	
2-Chloroethyl vinyl ether 2-Hexanone	125	122	99 97	65 - 127	
		124			
4-Methyl-2-pentanone (MIBK)	125	132	99 105	71 - 125	
Acetone	125		105	56 - 142	
Acrolein	125	131	105	52 - 143	
Acrylonitrile	250	241	96	63 - 125	
Benzene	25.0	23.7	95	71 - 124	
Bromobenzene	25.0	24.0	96	78 - 120	
Bromochloromethane	25.0	24.5	98	72 - 130	
Bromodichloromethane	25.0	24.4	97	80 - 122	
Bromoform	25.0	24.4	98	61 - 132	
Bromomethane	25.0	26.9	108	55 - 144	
Butyl alcohol, tert-	250	259	104	75 - 125	
Carbon disulfide	25.0	22.2	89	59 - 134	
Carbon tetrachloride	25.0	24.3	97	72 - 134	
Chlorobenzene	25.0	24.1	97	80 - 120	
Chloroethane	25.0	24.0	96	69 - 136	
Chloroform	25.0	23.6	94	73 - 127	
Chloromethane	25.0	23.5	94	68 - 124	
cis-1,2-Dichloroethene	25.0	24.2	97	74 - 124	
cis-1,3-Dichloropropene	25.0	24.6	99	74 - 124	
Cyclohexane	25.0	23.0	92	59 - 135	

Client: Waste Management Job Number: 280-91030-1

Lab Control Sample - Batch: 480-333219

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333219/7 Analysis Batch: 480-333219 Instrument ID: HP5973P Client Matrix: Prep Batch: Water N/A Lab File ID: P20494.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1017 Units: ug/L

Prep Date: 11/23/2016 1017

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	25.0	25.0	100	75 - 125	
Dibromomethane	25.0	24.8	99	76 - 127	
Dichlorodifluoromethane	25.0	22.8	91	59 - 135	
Dichlorofluoromethane	25.0	26.6	107	76 - 127	
Ethyl ether	25.0	23.5	94	76 - 123	
Ethylbenzene	25.0	24.1	97	77 - 123	
Hexachlorobutadiene	25.0	24.0	96	68 - 131	
Hexane	25.0	23.7	95	54 - 146	
lodomethane	25.0	24.4	98	78 - 123	
Isobutanol	625	647	103	51 - 150	
Isopropylbenzene	25.0	24.0	96	77 - 122	
Methyl acetate	125	120	96	74 - 133	
Methyl tert-butyl ether	25.0	24.4	97	77 - 120	
Methylcyclohexane	25.0	23.2	93	68 - 134	
Methylene Chloride	25.0	22.4	89	75 - 124	
m-Xylene & p-Xylene	25.0	24.2	97	76 - 122	
Naphthalene	25.0	24.0	96	66 - 125	
n-Butylbenzene	25.0	23.8	95	71 - 128	
N-Propylbenzene	25.0	24.4	97	75 - 127	
o-Chlorotoluene	25.0	24.3	97	76 - 121	
o-Xylene	25.0	23.5	94	76 - 122	
p-Chlorotoluene	25.0	24.2	97	77 - 121	
p-Cymene	25.0	24.1	97	73 - 120	
sec-Butylbenzene	25.0	23.9	95	74 - 127	
Styrene	25.0	24.6	98	80 - 120	
tert-Butylbenzene	25.0	23.4	94	75 - 123	
Tetrachloroethene	25.0	25.0	100	74 - 122	
Tetrahydrofuran	50.0	46.8	94	62 - 132	
Toluene	25.0	23.9	96	80 - 122	
trans-1,2-Dichloroethene	25.0	23.6	95	73 - 127	
trans-1,3-Dichloropropene	25.0	25.3	101	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	20.3	81	41 - 131	
Trichloroethene	25.0	23.5	94	74 - 123	
Trichlorofluoromethane	25.0	24.9	99	62 - 150	
Vinyl acetate	50.0	50.3	101	50 - 144	
Vinyl chloride	25.0	23.9	96	65 - 133	
Surrogate	% I	Rec	A	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	1	00		77 - 120	
4-Bromofluorobenzene (Surr)	10	00		73 - 120	
Toluene-d8 (Surr)		00		80 - 120	

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333219 Preparation: 5030C

MS Lab Sample ID: 480-109585-K-8 MS Analysis Batch: 480-333219 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20513.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1912 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1912 5 mL

Leach Date: N/A

MSD Lab Sample ID: 480-109585-K-8 MSD Analysis Batch: 480-333219 Instrument ID: HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20514.D

Client Matrix: Water Prep Batch: N/A Lab File ID: P20514.D

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1940 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1940 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1940 5 mL

	<u>% R</u>	lec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1,1,2-Tetrachloroethane	105	107	80 - 120	2	20		
1,1,1-Trichloroethane	103	108	73 - 126	4	15		
1,1,2,2-Tetrachloroethane	104	105	76 - 120	1	15		
1,1,2-Trichloroethane	103	108	76 - 122	4	15		
1,1-Dichloroethane	106	107	77 - 120	1	20		
1,1-Dichloroethene	98	103	66 - 127	5	16		
1,2,3-Trichloropropane	102	104	68 - 122	1	14		
1,2-Dibromo-3-Chloropropane	100	98	56 - 134	2	15		
1,2-Dibromoethane (EDB)	102	108	77 - 120	6	15		
1,2-Dichlorobenzene	99	104	80 - 124	5	20		
1,2-Dichloroethane	105	104	75 - 120	1	20		
1,2-Dichloropropane	104	106	76 - 120	2	20		
1,4-Dichlorobenzene	99	103	78 - 124	4	20		
1,4-Dioxane	105	108	50 - 150	2	20		
2-Butanone (MEK)	113	111	57 - 140	2	20		
2-Hexanone	110	112	65 - 127	2	15		
4-Methyl-2-pentanone (MIBK)	111	113	71 - 125	2	35		
Acetone	121	118	56 - 142	2	15		
Acrylonitrile	104	103	63 - 125	1	20		
Benzene	103	106	71 - 124	3	13		
Bromochloromethane	102	103	72 - 130	1	15		
Bromodichloromethane	100	104	80 - 122	3	15		
Bromoform	83	88	61 - 132	6	15		
Bromomethane	108	93	55 - 144	14	15		
Carbon disulfide	100	102	59 - 134	1	15		
Carbon tetrachloride	106	111	72 - 134	5	15		
Chlorobenzene	102	108	80 - 120	6	25		
Chloroethane	112	103	69 - 136	8	15		
Chloroform	102	105	73 - 127	2	20		
Chloromethane	115	113	68 - 124	1	15		
cis-1,2-Dichloroethene	102	106	74 - 124	4	15		
cis-1,3-Dichloropropene	96	100	74 - 124	4	15		
Dibromochloromethane	97	103	75 - 125	6	15		

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333219 Preparation: 5030C

MS Lab Sample ID: 480-109585-K-8 MS Instrument ID: Analysis Batch: 480-333219 HP5973P Client Matrix: Water Prep Batch: N/A Lab File ID: P20513.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: Analysis Date: 11/23/2016 1912 5 mL Prep Date: 11/23/2016 1912 5 mL

Leach Date: N/A

MSD Lab Sample ID: 480-109585-K-8 MSD Analysis Batch: 480-333219 Instrument ID: HP5973P Client Matrix: Lab File ID: Water Prep Batch: N/A P20514.D

Dilution: Leach Batch: N/A Initial Weight/Volume: 5 mL 1.0 Analysis Date: 11/23/2016 1940 Final Weight/Volume: 5 mL Prep Date: 11/23/2016 1940 5 mL

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Dibromomethane	106	106	76 - 127	0	15		
Ethylbenzene	102	110	77 - 123	7	15		
lodomethane	103	106	78 - 123	3	20		
Methylene Chloride	99	101	75 - 124	2	15		
m-Xylene & p-Xylene	101	109	76 - 122	7	16		
o-Xylene	98	105	76 - 122	7	16		
Styrene	102	108	80 - 120	6	20		
Tetrachloroethene	102	110	74 - 122	8	20		
Tetrahydrofuran	109	107	62 - 132	2	25		
Toluene	102	109	80 - 122	6	15		
trans-1,2-Dichloroethene	103	106	73 - 127	3	20		
trans-1,3-Dichloropropene	98	105	80 - 120	7	15		
trans-1,4-Dichloro-2-butene	53	57	41 - 131	7	20		
Trichloroethene	101	104	74 - 123	3	16		
Trichlorofluoromethane	106	101	62 - 150	5	20		
Vinyl acetate	109	107	50 - 144	2	23		
Vinyl chloride	107	112	65 - 133	5	15		
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Lim	its
1,2-Dichloroethane-d4 (Surr)		101	101		7	77 - 120	
4-Bromofluorobenzene (Surr)		95	100		7	73 - 120	
Toluene-d8 (Surr)		99	101		8	30 - 120	

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333219 Preparation: 5030C

MS Lab Sample ID: 480-109585-K-8 MS Units: ug/L MSD Lab Sample ID: 480-109585-K-8 MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/23/2016 1912 Analysis Date: 11/23/2016 1940 Prep Date: 11/23/2016 1912 Prep Date: 11/23/2016 1940

Leach Date: N/A Leach Date: N/A

	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
1,1,1,2-Tetrachloroethane	ND	25.0	25.0	26.2	26.8
1,1,1-Trichloroethane	ND	25.0	25.0	25.9	27.0
1,1,2,2-Tetrachloroethane	ND	25.0	25.0	26.0	26.2
1,1,2-Trichloroethane	ND	25.0	25.0	25.8	26.9
1,1-Dichloroethane	ND	25.0	25.0	26.6	26.9
1,1-Dichloroethene	ND	25.0	25.0	24.6	25.8
1,2,3-Trichloropropane	ND	25.0	25.0	25.6	25.9
1,2-Dibromo-3-Chloropropane	ND	25.0	25.0	25.1	24.6
1,2-Dibromoethane (EDB)	ND	25.0	25.0	25.4	26.9
1,2-Dichlorobenzene	ND	25.0	25.0	24.7	25.9
1,2-Dichloroethane	ND	25.0	25.0	26.3	26.0
1,2-Dichloropropane	ND	25.0	25.0	25.9	26.4
1,4-Dichlorobenzene	ND	25.0	25.0	24.8	25.8
1,4-Dioxane	ND	500	500	526	538
2-Butanone (MEK)	ND	125	125	141	138
2-Hexanone	ND	125	125	138	140
4-Methyl-2-pentanone (MIBK)	ND	125	125	139	142
Acetone	ND	125	125	151	148
Acrylonitrile	ND	250	250	260	258
Benzene	ND	25.0	25.0	25.7	26.6
Bromochloromethane	ND	25.0	25.0	25.5	25.7
Bromodichloromethane	ND	25.0	25.0	25.1	25.9
Bromoform	ND	25.0	25.0	20.6	21.9
Bromomethane	ND	25.0	25.0	26.9	23.3
Carbon disulfide	ND	25.0	25.0	25.1	25.5
Carbon tetrachloride	ND	25.0	25.0	26.6	27.9
Chlorobenzene	ND	25.0	25.0	25.5	27.0
Chloroethane	ND	25.0	25.0	28.1	25.9
Chloroform	ND	25.0	25.0	25.5	26.2
Chloromethane	ND	25.0	25.0	28.7	28.3
cis-1,2-Dichloroethene	ND	25.0	25.0	25.6	26.5
cis-1,3-Dichloropropene	ND	25.0	25.0	24.1	25.0
Dibromochloromethane	ND	25.0	25.0	24.2	25.7
Dibromomethane	ND	25.0	25.0	26.5	26.5
Ethylbenzene	ND	25.0	25.0	25.6	27.4
Iodomethane	ND	25.0	25.0	25.8	26.6
Methylene Chloride	ND	25.0	25.0	24.9	25.3
m-Xylene & p-Xylene	ND	25.0	25.0	25.3	27.2
o-Xylene	ND	25.0	25.0	24.5	26.3
Styrene	ND	25.0	25.0	25.5	27.0
Tetrachloroethene	ND	25.0	25.0	25.6	27.6
Tetrahydrofuran	ND	50.0	50.0	54.4	53.4
Toluene	ND	25.0	25.0	25.6	27.2
TOTALCTIC	ND	20.0	20.0	20.0	21.2

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333219 Preparation: 5030C

MS Lab Sample ID: 480-109585-K-8 MS Units: ug/L MSD Lab Sample ID: 480-109585-K-8 MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/23/2016 1912 Analysis Date: 11/23/2016 1940 Prep Date: 11/23/2016 1912 Prep Date: 11/23/2016 1940

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
trans-1,2-Dichloroethene	ND	25.0	25.0	25.7	26.6
trans-1,3-Dichloropropene	ND	25.0	25.0	24.5	26.2
trans-1,4-Dichloro-2-butene	ND	25.0	25.0	13.2	14.2
Trichloroethene	ND	25.0	25.0	25.3	26.0
Trichlorofluoromethane	ND	25.0	25.0	26.6	25.4
Vinyl acetate	ND	50.0	50.0	54.5	53.6
Vinyl chloride	ND	25.0	25.0	26.7	28.0

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333416 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333416/30 Analysis Batch: 480-333416 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9891.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/25/2016 1038 Units: ug/L

Prep Date: 11/25/2016 1038

Analyte	Result	Qual	MDL	RL	
1,1,1,2-Tetrachloroethane	ND		0.35	1.0	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,1-Dichloropropene	ND		0.72	1.0	
1,2,3-Trichlorobenzene	ND		0.41	1.0	
1,2,3-Trichloropropane	ND		0.89	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2,4-Trimethylbenzene	ND		0.75	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane (EDB)	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloroethene, Total	ND		0.81	2.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3,5-Trichlorobenzene	ND		0.23	1.0	
1,3,5-Trimethylbenzene	ND		0.77	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,3-Dichloropropane	ND		0.75	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
1,4-Dioxane	ND		9.3	40	
2,2-Dichloropropane	ND		0.40	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Chloroethyl vinyl ether	ND		0.96	5.0	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Acetonitrile	ND		4.9	15	
Acrolein	ND		0.91	20	
Acrylonitrile	ND		0.83	5.0	
Benzene	ND		0.41	1.0	
Bromobenzene	ND		0.80	1.0	
Bromochloromethane	ND		0.87	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.39	1.0	
5	ND			1.0	
Bromomethane Butyl alcohol, n-	ND ND		0.69 8.9	40	
Butyl alcohol, tert-	ND ND		3.3	10	
Carbon disulfide	ND ND		ა.ა 0.19	1.0	
Carbon distillide Carbon tetrachloride			0.19	1.0	
	ND ND				
Chlorodifluoromethana	ND ND		0.75	1.0	
Chlorodifluoromethane	ND		0.26	1.0	

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333416

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333416/30 Analysis Batch: 480-333416 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9891.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/25/2016 1038 Units: ug/L

Prep Date: 11/25/2016 1038

Analyte	Result	Qual	MDL	RL
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-333416

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333416/30 Analysis Batch: 480-333416 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9891.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 11/25/2016 1038 Units: Final Weight/Volume: 5 mL Analysis Date: ug/L

Prep Date: 11/25/2016 1038

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
Surrogate	% Rec		Acceptance Limits	
Surrogate 1,2-Dichloroethane-d4 (Surr)	% Rec 100		Acceptance Limits 77 - 120	
•			·	

Method Blank TICs-Batch: 480-333416

Cas Number	Analyte	RT	Est. Result (ug/	Qual
67-72-1	Hexachloroethane TIC	0.00	ND	

Client: Waste Management Job Number: 280-91030-1

Lab Control Sample - Batch: 480-333416

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333416/5 Analysis Batch: 480-333416 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9887.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/25/2016 0906 Units: ug/L

Prep Date: 11/25/2016 0906

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	25.0	26.6	106	80 - 120	
1,1,1-Trichloroethane	25.0	25.2	101	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.7	103	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	23.8	95	61 - 148	
1,1,2-Trichloroethane	25.0	25.2	101	76 - 122	
1,1-Dichloroethane	25.0	24.5	98	77 - 120	
1,1-Dichloroethene	25.0	25.1	101	66 - 127	
1,1-Dichloropropene	25.0	25.6	102	72 - 122	
1,2,3-Trichlorobenzene	25.0	25.6	102	75 - 123	
1,2,3-Trichloropropane	25.0	23.7	95	68 - 122	
1,2,4-Trichlorobenzene	25.0	25.3	101	79 - 122	
1,2,4-Trimethylbenzene	25.0	26.0	104	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	26.9	107	56 - 134	
1,2-Dibromoethane (EDB)	25.0	24.9	99	77 - 120	
1,2-Dichlorobenzene	25.0	26.1	104	80 - 124	
1,2-Dichloroethane	25.0	23.5	94	75 - 120	
1,2-Dichloropropane	25.0	24.8	99	76 - 120	
1,3,5-Trimethylbenzene	25.0	25.5	102	77 - 121	
1,3-Dichlorobenzene	25.0	25.8	103	77 - 120	
1,3-Dichloropropane	25.0	24.7	99	75 - 120	
1,4-Dichlorobenzene	25.0	25.1	100	80 - 120	
1,4-Dioxane	500	432	86	50 - 150	
2,2-Dichloropropane	25.0	27.1	108	63 - 136	
2-Butanone (MEK)	125	108	86	57 - 140	
2-Chloroethyl vinyl ether	25.0	23.3	93	70 - 129	
2-Hexanone	125	110	88	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	112	89	71 - 125	
Acetone	125	100	80	56 - 142	
Acrolein	125	105	84	52 - 143	
Acrylonitrile	250	231	92	63 - 125	
Benzene	25.0	24.7	99	71 - 124	
Bromobenzene	25.0	24.0	96	78 - 120	
Bromochloromethane	25.0	24.9	99	72 - 130	
Bromodichloromethane	25.0	24.7	99	80 - 122	
Bromoform	25.0	26.6	107	61 - 132	
Bromomethane	25.0	24.0	96	55 - 144	
Butyl alcohol, tert-	250	198	79	75 - 125	
Carbon disulfide	25.0	21.3	85	59 - 134	
Carbon tetrachloride	25.0	26.1	104	72 - 134	
Chlorobenzene	25.0	24.7	99	80 - 120	
Chloroethane	25.0	29.1	116	69 - 136	
Chloroform	25.0	24.4	98	73 - 127	
Chloromethane	25.0	27.5	110	68 - 124	
cis-1,2-Dichloroethene	25.0	24.5	98	74 - 124	
cis-1,3-Dichloropropene	25.0	24.5	98	74 - 124 74 - 124	
Cyclohexane	25.0	25.2	101	59 - 135	
Cycloricadic	20.0	20.2	101	00 - 100	

Client: Waste Management Job Number: 280-91030-1

Lab Control Sample - Batch: 480-333416

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333416/5 Analysis Batch: 480-333416 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9887.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/25/2016 0906 Units: ug/L

Prep Date: 11/25/2016 0906

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	25.0	26.0	104	75 - 125	
Dibromomethane	25.0	25.0	100	76 - 127	
Dichlorodifluoromethane	25.0	28.7	115	59 - 135	
Dichlorofluoromethane	25.0	25.3	101	76 - 127	
Ethyl ether	25.0	24.4	98	76 - 123	
Ethylbenzene	25.0	24.5	98	77 - 123	
Hexachlorobutadiene	25.0	25.0	100	68 - 131	
Hexane	25.0	23.7	95	54 - 146	
lodomethane	25.0	22.7	91	78 - 123	
Isobutanol	625	546	87	51 - 150	
Isopropylbenzene	25.0	24.9	100	77 - 122	
Methyl acetate	125	108	86	74 - 133	
Methyl tert-butyl ether	25.0	23.5	94	77 - 120	
Methylcyclohexane	25.0	24.7	99	68 - 134	
Methylene Chloride	25.0	22.5	90	75 - 124	
m-Xylene & p-Xylene	25.0	24.2	97	76 - 122	
Naphthalene	25.0	24.4	98	66 - 125	
n-Butylbenzene	25.0	26.7	107	71 - 128	
N-Propylbenzene	25.0	25.2	101	75 - 127	
o-Chlorotoluene	25.0	24.7	99	76 - 121	
o-Xylene	25.0	24.9	100	76 - 122	
p-Chlorotoluene	25.0	25.3	101	77 - 121	
p-Cymene	25.0	25.5	102	73 - 120	
sec-Butylbenzene	25.0	25.5	102	74 - 127	
Styrene	25.0	25.0	100	80 - 120	
tert-Butylbenzene	25.0	26.1	104	75 - 123	
Tetrachloroethene	25.0	24.9	100	74 - 122	
Tetrahydrofuran	50.0	42.0	84	62 - 132	
Toluene	25.0	24.9	100	80 - 122	
trans-1,2-Dichloroethene	25.0	24.4	98	73 - 127	
trans-1,3-Dichloropropene	25.0	25.5	102	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	21.3	85	41 - 131	
Trichloroethene	25.0	24.2	97	74 - 123	
Trichlorofluoromethane	25.0	25.4	102	62 - 150	
Vinyl acetate	50.0	47.9	96	50 - 144	
Vinyl chloride	25.0	29.6	118	65 - 133	
Surrogate	% I	Rec	Α	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	1	00		77 - 120	
4-Bromofluorobenzene (Surr)	98			73 - 120	
Toluene-d8 (Surr)		03		80 - 120	
	''			30 .20	

Client: Waste Management Job Number: 280-91030-1

Method: 8260C Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 480-333416 Preparation: 5030C

MS Lab Sample ID: 280-91051-R-1 MS Analysis Batch: 480-333416 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9915.D Leach Batch: N/A Initial Weight/Volume: Dilution: 50 5 mL

Analysis Date: 11/25/2016 1757 Final Weight/Volume: 5 mL Prep Date: 11/25/2016 1757 5 mL

Leach Date: N/A

Naphthalene

Tetrachloroethene

o-Xylene

Styrene

Toluene

MSD Lab Sample ID: 280-91051-S-1 MSD Analysis Batch: 480-333416 Instrument ID: HP5973S Client Matrix: Prep Batch: N/A Lab File ID: Water S9916.D

Dilution: 50 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: Analysis Date: 11/25/2016 1820 5 mL 11/25/2016 1820 5 mL

Prep Date:

Leach Date: N/A % Rec. MS MSD Limit **RPD RPD Limit** Analyte MS Qual MSD Qual 1,1,1,2-Tetrachloroethane 112 80 - 120 5 20 107 1,1,1-Trichloroethane 108 112 73 - 126 4 15 1,1,2,2-Tetrachloroethane 106 104 76 - 120 2 15 3 105 76 - 122 1,1,2-Trichloroethane 101 15 0 1,1-Dichloroethane 106 106 77 - 120 20 1 1,1-Dichloroethene 113 112 66 - 127 16 96 75 - 120 2 20 1,2-Dichloroethane 98 2 1,3-Dichlorobenzene 104 106 77 - 120 20 19 77 92 50 - 150 20 1,4-Dioxane 2-Butanone (MEK) 87 88 57 - 140 1 20 65 - 127 2 85 86 15 2-Hexanone 4-Methyl-2-pentanone (MIBK) 89 0 35 89 71 - 125 Acetone 84 83 56 - 142 1 15 Benzene 106 108 71 - 124 2 13 Bromodichloromethane 102 103 80 - 122 1 15 101 105 61 - 132 3 15 **Bromoform** 6 Bromomethane 102 96 55 - 144 15 59 - 134 1 Carbon disulfide 103 104 15 Carbon tetrachloride 114 115 72 - 134 1 15 2 Chlorobenzene 100 103 80 - 120 25 45 69 - 136 3 15 F1 F1 Chloroethane 51 0 73 - 127 20 Chloroform 103 103 0 Chloromethane 110 110 68 - 12415 3 cis-1,2-Dichloroethene 106 109 74 - 124 15 Dibromochloromethane 106 106 75 - 125 1 15 77 - 123 3 Ethylbenzene 98 101 15 3 99 97 75 - 124 15 Methylene Chloride 2 m-Xylene & p-Xylene 100 102 76 - 122 16

66 - 125

76 - 122

80 - 120

74 - 122

80 - 122

1

0

1

1

3

20

16

20

20

15

96

100

101

105

105

95

101

100

104

103

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333416 Preparation: 5030C

MS Lab Sample II Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 280-91051-R-1 MS Water 50 11/25/2016 1757 11/25/2016 1757 N/A	Pre	alysis Batch: p Batch: ich Batch:	480-333416 N/A N/A			HP5973S S9915.D 5 mL 5 mL 5 mL	
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: 280-91051-S-1 MSD Water 50 11/25/2016 1820 11/25/2016 1820 N/A	Pre	alysis Batch: p Batch: ich Batch:	480-333416 N/A N/A			HP5973S S9916.D 5 mL 5 mL 5 mL	
		%	Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
trans-1,2-Dichloro Trichloroethene Vinyl acetate Vinyl chloride	ethene	110 105 97 123	109 104 98 125	73 - 127 74 - 123 50 - 144 65 - 133	1 1 1 2	20 16 23 15		
Surrogate			MS % Rec	MSD 9	% Rec	Acce	eptance Limi	ts
1,2-Dichloroethan 4-Bromofluorober Toluene-d8 (Surr)	nzene (Surr)		101 95 102	101 96 103		7	7 - 120 3 - 120 0 - 120	

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333416 Preparation: 5030C

MS Lab Sample ID: 280-91051-R-1 MS Units: ug/L MSD Lab Sample ID: 280-91051-S-1 MSD

Client Matrix:WaterClient Matrix:WaterDilution:50Dilution:50

Analysis Date: 11/25/2016 1757 Analysis Date: 11/25/2016 1820
Prep Date: 11/25/2016 1757 Prep Date: 11/25/2016 1820

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
1,1,1,2-Tetrachloroethane	ND	1250	1250	1330	1400
1,1,1-Trichloroethane	ND	1250	1250	1350	1400
1,1,2,2-Tetrachloroethane	ND	1250	1250	1320	1300
1,1,2-Trichloroethane	ND	1250	1250	1270	1310
1,1-Dichloroethane	ND	1250	1250	1320	1330
1,1-Dichloroethene	ND	1250	1250	1420	1400
1,2-Dichloroethane	ND	1250	1250	1230	1200
1,3-Dichlorobenzene	ND	1250	1250	1300	1320
1,4-Dioxane	ND	25000	25000	19100	23000
2-Butanone (MEK)	ND	6250	6250	5470	5510
2-Hexanone	ND	6250	6250	5290	5390
4-Methyl-2-pentanone (MIBK)	ND	6250	6250	5570	5590
Acetone	ND	6250	6250	5220	5160
Benzene	ND	1250	1250	1320	1350
Bromodichloromethane	ND	1250	1250	1280	1290
Bromoform	ND	1250	1250	1270	1310
Bromomethane	ND	1250	1250	1270	1200
Carbon disulfide	ND	1250	1250	1290	1300
Carbon tetrachloride	ND	1250	1250	1420	1440
Chlorobenzene	ND	1250	1250	1250	1280
Chloroethane	1600	1250	1250	2150 F1	2220 F1
Chloroform	ND	1250	1250	1290	1280
Chloromethane	ND	1250	1250	1380	1370
cis-1,2-Dichloroethene	ND	1250	1250	1320	1360
Dibromochloromethane	ND	1250	1250	1320	1330
Ethylbenzene	ND	1250	1250	1230	1270
Methylene Chloride	ND	1250	1250	1240	1210
m-Xylene & p-Xylene	ND	1250	1250	1250	1270
Naphthalene	ND	1250	1250	1180	1190
o-Xylene	ND	1250	1250	1260	1250
Styrene	ND	1250	1250	1250	1270
Tetrachloroethene	ND	1250	1250	1300	1310
Toluene	ND	1250	1250	1280	1310
trans-1,2-Dichloroethene	ND	1250	1250	1370	1360
Trichloroethene	ND	1250	1250	1310	1300
Vinyl acetate	ND	2500	2500	2430	2440
Vinyl chloride	ND	1250	1250	1530	1560

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 480-332322 Method: 8260C SIM Preparation: 5030C

Lab Sample ID: Instrument ID: MB 480-332322/7 Analysis Batch: 480-332322 HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1464.D Dilution: Leach Batch: N/A Initial Weight/Volume: 25 mL 1.0 Final Weight/Volume: Analysis Date: 11/17/2016 2154 Units: ug/L 25 mL

Prep Date: 11/17/2016 2154

Leach Date: N/A

Analyte Result Qual RL MDL Vinyl chloride 0.00534 J 0.0040 0.020 Surrogate % Rec Acceptance Limits Dibromofluoromethane (Surr) 97 50 - 150 TBA-d9 (Surr) 122 50 - 150

Lab Control Sample/ Method: 8260C SIM Lab Control Sample Duplicate Recovery Report - Batch: 480-332322 Preparation: 5030C

LCS Lab Sample ID: LCS 480-332322/4 Analysis Batch: 480-332322 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1461.D Leach Batch: N/A Initial Weight/Volume: Dilution: 1.0 25 mL Analysis Date: 11/17/2016 2041 Units: ug/L Final Weight/Volume: 25 mL 25 mL

Prep Date: 11/17/2016 2041

Leach Date: N/A

LCSD Lab Sample ID: LCSD 480-332322/5 Analysis Batch: 480-332322 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1462.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

Analysis Date: 11/17/2016 2105 Units: ug/L Final Weight/Volume: 25 mL Prep Date: 11/17/2016 2105 25 mL

Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Vinyl chloride 115 123 50 - 150 7 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits Dibromofluoromethane (Surr) 99 104 50 - 150 50 - 150 TBA-d9 (Surr) 104 117

Client: Waste Management Job Number: 280-91030-1

Laboratory Control/ Method: 8260C SIM Laboratory Duplicate Data Report - Batch: 480-332322 Preparation: 5030C

LCS Lab Sample ID: LCS 480-332322/4 Units: ug/L LCSD Lab Sample ID: LCSD 480-332322/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/17/2016 2041 Analysis Date: 11/17/2016 2105
Prep Date: 11/17/2016 2041 Prep Date: 11/17/2016 2105

Leach Date: N/A Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS LCSD Result/Qual Result/Qual Vinyl chloride 0.200 0.200 0.230 0.246

Matrix Spike/ Method: 8260C SIM

Matrix Spike Duplicate Recovery Report - Batch: 480-332322 Preparation: 5030C

MS Lab Sample ID: 280-91030-2 480-332322 Instrument ID: HP5973J Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: J1476.D Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

Analysis Date: 11/18/2016 0327 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0327 25 mL

Leach Date: N/A

MSD Lab Sample ID: 280-91030-2 Analysis Batch: 480-332322 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1477.D Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

Analysis Date: 11/18/2016 0351 Final Weight/Volume: 25 mL

Prep Date: 11/18/2016 0351

25 mL

Leach Date: N/A

 Analyte
 MS
 MSD
 Limit
 RPD
 RPD Limit
 MS Qual
 MSD Qual

 Vinyl chloride
 138
 137
 50 - 150
 1
 20

SurrogateMS % RecMSD % RecAcceptance LimitsDibromofluoromethane (Surr)10410450 - 150TBA-d9 (Surr)14213850 - 150

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 8260C SIM Matrix Spike Duplicate Recovery Report - Batch: 480-332322 Preparation: 5030C

MS Lab Sample ID: 280-91030-2 Units: ug/L MSD Lab Sample ID: 280-91030-2

Client Matrix:WaterClient Matrix:WaterDilution:4.0Dilution:4.0

Analysis Date: 11/18/2016 0327 Analysis Date: 11/18/2016 0351
Prep Date: 11/18/2016 0327 Prep Date: 11/18/2016 0351

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qu	ıal	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Vinyl chloride	0.046	J	0.800	0.800	1.15	1.15

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-352694

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352694/1-A

Client Matrix: Water Dilution: 1.0

12/02/2016 2310 Analysis Date: 11/25/2016 1545 Prep Date:

Leach Date: N/A Analysis Batch: 280-354109 Prep Batch: 280-352694

Leach Batch: N/A

Units: mg/L Instrument ID: MT_025

Lab File ID: 25a120216BB.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL	
Calcium, Dissolved	ND		0.040	0.040	
Cobalt, Dissolved	ND		0.0030	0.0030	
Iron, Dissolved	ND		0.060	0.060	
Magnesium, Dissolved	ND		0.050	0.050	
Potassium, Dissolved	ND		1.0	1.0	

Method Blank - Batch: 280-352694 Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352694/1-A

Client Matrix: Water Dilution: 1.0 Analysis Date: 12/06/2016 1614

Prep Date: 11/25/2016 1545

Leach Date: N/A Analysis Batch: 280-354577 Prep Batch: 280-352694 Leach Batch: N/A

Units: mg/L Instrument ID: MT_025

Lab File ID: 25B120616.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Sodium, Dissolved	ND	۸	1.0	1.0

MT_025

Client: Waste Management Job Number: 280-91030-1

Lab Control Sample - Batch: 280-352694

Method: 6010B Preparation: 3005A Total Recoverable

Lab Sample ID: LCS 280-352694/2-A

Client Matrix: Water

Dilution: 1.0
Analysis Date: 12/02/2016 2313
Prep Date: 11/25/2016 1545

N/A

Leach Date:

Analysis Batch: 280-354109 Prep Batch: 280-352694

Leach Batch: N/A Units: mg/L

-354109 Instrument ID:

Lab File ID: 25a120216BB.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Calcium, Dissolved	50.0	51.8	104	90 - 111	
Cobalt, Dissolved	0.500	0.502	100	89 - 111	
Iron, Dissolved	1.00	0.979	98	89 - 115	
Magnesium, Dissolved	50.0	54.8	110	90 - 113	
Potassium, Dissolved	50.0	53.3	107	89 - 114	

Lab Control Sample - Batch: 280-352694

Method: 6010B Preparation: 3005A Total Recoverable

Lab Sample ID: LCS 280-352694/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/06/2016 1617

Prep Date: 11/25/2016 1545

Leach Date: N/A

Analysis Batch: 280-354577
Prep Batch: 280-352694
Leach Batch: N/A
Units: mg/L

Instrument ID: MT_025
Lab File ID: 25B120616.asc
Initial Weight(Volume: 50 ml

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Sodium, Dissolved	50.0	51.8	104	90 - 115	

Client: Waste Management Job Number: 280-91030-1

280-354109

280-352694

280-354109

280-352694

N/A

N/A

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352694

Analysis Batch:

Prep Batch:

Leach Batch:

Analysis Batch:

Prep Batch:

Leach Batch:

MS Lab Sample ID: 280-90984-E-1-E MS

Client Matrix: Water

Dilution: 1.0

Analysis Date: 12/02/2016 2320 Prep Date: 11/25/2016 1545

Leach Date: N/A

MSD Lab Sample ID: 280-90984-E-1-F MSD

Client Matrix: Water Dilution: 1.0

12/02/2016 2323 Analysis Date: Prep Date: 11/25/2016 1545

Leach Date: N/A Method: 6010B Preparation: 3005A

Dissolved

Instrument ID: MT_025

Lab File ID: 25a120216BB.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

Instrument ID: MT 025

Lab File ID: 25a120216BB.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

Analyte	<u>%</u> MS	Rec. MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Calcium, Dissolved	86	105	48 - 153	3	20	4	4
Cobalt, Dissolved	91	99	82 - 119	9	20		
Iron, Dissolved	90	97	52 - 155	1	20	4	4
Magnesium, Dissolved	104	113	62 - 146	2	20		
Potassium, Dissolved	101	111	76 - 132	9	20		

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352694

Method: 6010B Preparation: 3005A

Dissolved

MS Lab Sample ID: 280-90984-E-1-E MS

Client Matrix: Water

Dilution: 1.0

12/06/2016 1624 Analysis Date: Prep Date: 11/25/2016 1545

Leach Date: N/A

Client Matrix: Water Dilution: 1.0

12/06/2016 1626 Analysis Date: Prep Date: 11/25/2016 1545

Leach Date: N/A Analysis Batch: 280-354577 Prep Batch: 280-352694

Leach Batch: N/A Instrument ID: MT 025 25B120616.asc Lab File ID:

Initial Weight/Volume: 50 mL

Final Weight/Volume: 50 mL

MSD Lab Sample ID: 280-90984-E-1-F MSD Analysis Batch: 280-354577 Instrument ID: MT 025

Prep Batch: 280-352694 Lab File ID: 25B120616.asc Leach Batch: N/A Initial Weight/Volume: 50 mL

Final Weight/Volume: 50 mL

% Rec. MS MSD RPD Analyte Limit **RPD Limit** MS Qual MSD Qual 70 - 203Sodium, Dissolved 95 105 7 20

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352694 Preparation: 3005A

Units: mg/L

Dissolved

Method: 6010B

280-90984-E-1-E MS MS Lab Sample ID:

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/02/2016 2320 Prep Date: 11/25/2016 1545

Leach Date: N/A MSD Lab Sample ID: 280-90984-E-1-F MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/02/2016 2323 Prep Date: 11/25/2016 1545

Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/0	Qual	MSD Result/C)ual
Calcium, Dissolved	310	50.0	50.0	358	4	367	4
Cobalt, Dissolved	ND	0.500	0.500	0.453		0.497	
Iron, Dissolved	5.5	1.00	1.00	6.38	4	6.45	4
Magnesium, Dissolved	140	50.0	50.0	191		195	
Potassium, Dissolved	3.3	50.0	50.0	53.7		59.0	

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352694

Preparation: 3005A

Dissolved

Method: 6010B

MS Lab Sample ID: 280-90984-E-1-E MS Units: mg/L

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/06/2016 1624 Prep Date: 11/25/2016 1545

Leach Date: N/A MSD Lab Sample ID: 280-90984-E-1-F MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/06/2016 1626 Prep Date: 11/25/2016 1545

Leach Date: N/A

Analyte	Sample	MS Spike	MSD Spike	MS	MSD
	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
Sodium, Dissolved	16	50.0	50.0	63.2	68.1

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-352489

Method: 6020 Preparation: 3005A Total Recoverable

Lab Sample ID: MB 280-352489/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/23/2016 2315 Prep Date: 11/23/2016 1445

Leach Date: N/A

Analysis Batch: 280-353028 Prep Batch: 280-352489

Leach Batch: N/A Units: mg/L Instrument ID: MT_077
Lab File ID: 175_BLK.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Antimony, Dissolved	ND		0.0010	0.0010
Barium, Dissolved	ND		0.0010	0.0010
Beryllium, Dissolved	ND		0.0010	0.0010
Cadmium, Dissolved	ND		0.00020	0.00020
Chromium, Dissolved	ND		0.0030	0.0030
Copper, Dissolved	ND		0.0020	0.0020
Lead, Dissolved	ND		0.0010	0.0010
Manganese, Dissolved	ND		0.0010	0.0010
Nickel, Dissolved	ND		0.0040	0.0040
Selenium, Dissolved	ND		0.0010	0.0010
Silver, Dissolved	ND		0.0020	0.0020
Thallium, Dissolved	ND		0.0010	0.0010
Vanadium, Dissolved	ND		0.0020	0.0020
Zinc. Dissolved	ND		0.0050	0.0050

Lab Control Sample - Batch: 280-352489

Method: 6020 Preparation: 3005A Total Recoverable

Lab Sample ID: LCS 280-352489/2-A Client Matrix: Water

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/23/2016 2319 Prep Date: 11/23/2016 1445

Leach Date: N/A

Analysis Batch: 280-353028
Prep Batch: 280-352489
Leach Batch: N/A
Units: mg/L

Instrument ID: MT_077
Lab File ID: 176_LCS.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Antimony, Dissolved	0.0400	0.0406	102	85 - 115	
Barium, Dissolved	0.0400	0.0388	97	85 - 118	
Beryllium, Dissolved	0.0400	0.0392	98	80 - 125	
Cadmium, Dissolved	0.0400	0.0421	105	85 - 115	
Chromium, Dissolved	0.0400	0.0390	98	84 - 121	
Copper, Dissolved	0.0400	0.0439	110	85 - 119	
Lead, Dissolved	0.0400	0.0414	104	85 - 118	
Manganese, Dissolved	0.0400	0.0402	101	85 - 117	
Nickel, Dissolved	0.0400	0.0400	100	85 - 119	
Selenium, Dissolved	0.0400	0.0399	100	77 - 122	
Silver, Dissolved	0.0400	0.0409	102	85 - 115	
Thallium, Dissolved	0.0400	0.0414	104	85 - 118	
Vanadium, Dissolved	0.0400	0.0388	97	85 - 120	
Zinc, Dissolved	0.0400	0.0432	108	83 - 122	

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-352489

Method: 6020 Preparation: 3005A

Dissolved

MS Lab Sample ID: 280-91030-2 Client Matrix: Water

Dilution: 1.0

11/23/2016 2334 Analysis Date: Prep Date: 11/23/2016 1445

Leach Date: N/A

MSD Lab Sample ID: 280-91030-2 Client Matrix: Water

Analysis Date: 11/23/2016 2338 Prep Date: 11/23/2016 1445

1.0

Leach Date: N/A

Dilution:

Analysis Batch: 280-353028 Prep Batch: 280-352489

N/A

Leach Batch: N/A

Leach Batch:

Instrument ID: MT_077 Lab File ID: 180SMPL.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analysis Batch: 280-353028 Instrument ID: MT_077 280-352489 Lab File ID: 181SMPL.d Prep Batch:

> Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Antimony, Dissolved	109	107	85 - 115	2	20		
Barium, Dissolved	98	124	85 - 118	4	20	4	4
Beryllium, Dissolved	109	110	80 - 125	1	20		
Cadmium, Dissolved	95	97	85 - 115	2	20		
Chromium, Dissolved	99	100	84 - 121	1	20		
Copper, Dissolved	95	96	85 - 119	0	20		
Lead, Dissolved	98	97	85 - 118	1	20		
Manganese, Dissolved	307	388	85 - 117	1	20	4	4
Nickel, Dissolved	99	99	85 - 119	0	20		
Selenium, Dissolved	99	98	77 - 122	1	20		
Silver, Dissolved	93	97	85 - 115	4	20		
Thallium, Dissolved	98	97	85 - 118	2	20		
Vanadium, Dissolved	103	105	85 - 120	2	20		
Zinc, Dissolved	111	109	83 - 122	2	20		

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 6020
Matrix Spike Duplicate Recovery Report - Batch: 280-352489 Preparation: 3005A

Units: mg/L

Dissolved

MS Lab Sample ID: 280-91030-2

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/23/2016 2334 Prep Date: 11/23/2016 1445

Leach Date: N/A

MSD Lab Sample ID: 280-91030-2

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/23/2016 2338 Prep Date: 11/23/2016 1445

Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Antimony, Dissolved	ND	0.0400	0.0400	0.0437	0.0429
Barium, Dissolved	0.19	0.0400	0.0400	0.230 4	0.240 4
Beryllium, Dissolved	ND	0.0400	0.0400	0.0437	0.0439
Cadmium, Dissolved	ND	0.0400	0.0400	0.0380	0.0387
Chromium, Dissolved	0.0068	0.0400	0.0400	0.0464	0.0469
Copper, Dissolved	ND	0.0400	0.0400	0.0382	0.0382
Lead, Dissolved	ND	0.0400	0.0400	0.0392	0.0387
Manganese, Dissolved	2.7	0.0400	0.0400	2.84 4	2.88 4
Nickel, Dissolved	0.061	0.0400	0.0400	0.101	0.101
Selenium, Dissolved	ND	0.0400	0.0400	0.0396	0.0393
Silver, Dissolved	ND	0.0400	0.0400	0.0371	0.0387
Thallium, Dissolved	ND	0.0400	0.0400	0.0393	0.0387
Vanadium, Dissolved	0.0069	0.0400	0.0400	0.0479	0.0490
Zinc, Dissolved	ND	0.0400	0.0400	0.0443	0.0435

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-353988 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-353988/6 Analysis Batch: 280-353988 Instrument ID: WC_IonChrom7 Client Matrix: Water Prep Batch: N/A Lab File ID: 06.0000.d Dilution: Leach Batch: N/A Initial Weight/Volume: 5 mL 1.0 12/02/2016 1052 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL Chloride ND 1.0 1.0 Sulfate ND 1.0 1.0

Method Reporting Limit Check - Batch: 280-353988 Method: 300.0

Preparation: N/A

MRL 280-353988/3 280-353988 Instrument ID: WC IonChrom7 Lab Sample ID: Analysis Batch: Client Matrix: Prep Batch: 03.0000.d Water N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/02/2016 0959 Analysis Date: Units: Final Weight/Volume: 5 mL mg/L

Prep Date: N/A Leach Date: N/A

Water

Qual Analyte Spike Amount Result % Rec. Limit Chloride 2.50 ND 103 50 - 150 Sulfate ND 50 - 150 2.50 103

Lab Control Sample/ Method: 300.0

Lab Control Sample Duplicate Recovery Report - Batch: 280-353988 Preparation: N/A

WC IonChrom7 LCS Lab Sample ID: LCS 280-353988/4 Analysis Batch: 280-353988 Instrument ID: Client Matrix: Water Prep Batch: N/A Lab File ID: 04.0000.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/02/2016 1016 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL Prep Date: N/A 25 uL Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353988/5 280-353988 WC IonChrom7 Analysis Batch: Instrument ID:

N/A 05.0000.d Client Matrix: Prep Batch: Lab File ID: Leach Batch: 5 mL Dilution: 1.0 N/A Initial Weight/Volume: Analysis Date: 12/02/2016 1034 Units: mg/L Final Weight/Volume: 5 mL

N/A 25 uL

Prep Date: Leach Date: N/A

% Rec. RPD Limit Analyte LCS **LCSD** Limit **RPD** LCS Qual LCSD Qual Chloride 101 101 90 - 110 10 0 Sulfate 101 90 - 110 10 100 0

Client: Waste Management Job Number: 280-91030-1

Laboratory Control/ Method: 300.0 Laboratory Duplicate Data Report - Batch: 280-353988 Preparation: N/A

LCS Lab Sample ID: LCS 280-353988/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-353988/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/02/2016 1016 Analysis Date: 12/02/2016 1034

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
Chloride	100	100	101	101
Sulfate	100	100	101	100

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-353988 Preparation: N/A

MS Lab Sample I	D: 280-90914-A-1 MS	Analysis Batch:	280-353988	Instrument ID:	WC_lonChrom7
Client Matrix:	Water	Prep Batch:	N/A	Lab File ID:	09.0000.d
Dilution:	5.0	Leach Batch:	N/A	Initial Weight/Volume:	5 mL
Analysis Date:	12/02/2016 1311			Final Weight/Volume:	5 mL
Prep Date:	N/A				25 uL
Leach Date:	N/A				

MSD Lab Sample	ID: 280-90914-A-1 MSD	Analysis Batch:	280-353988	Instrument ID:	WC_IonChrom7
Client Matrix:	Water	Prep Batch:	N/A	Lab File ID:	10.0000.d
Dilution:	5.0	Leach Batch:	N/A	Initial Weight/Volume:	5 mL
Analysis Date:	10/00/0016 1000			Final \Maight/\/aluma:	E ml

Analysis Date: 12/02/2016 1329 Final Weight/Volume: 5 mL Prep Date: N/A 25 uL Leach Date: N/A

Analyte	<u>% F</u> MS	Rec. MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Chloride Sulfate	102 99	102 101	80 - 120 80 - 120	0	20 20		

Matrix Spike/ Method: 300.0
Matrix Spike Duplicate Recovery Report - Batch: 280-353988 Preparation: N/A

Leach Date:

N/A

MOD Lab Carral	ID: 280-91667-F-11 MSD	Analysis Batch:	280-353088	Instrument ID:	WC IonChrom7
Leach Date:	N/A				
Prep Date:	N/A				25 uL
Analysis Date:	12/02/2016 2030			Final Weight/Volume:	5 mL
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	5 mL
Client Matrix:	Water	Prep Batch:	N/A	Lab File ID:	26.0000.d
MS Lab Sample I	ID: 280-91667-F-11 MS	Analysis Batch:	280-353988	Instrument ID:	WC_IonChrom7

Analysis Batch: Instrument ID: WC_IonChrom7 MSD Lab Sample ID: 280-91667-E-11 MSD 280-353988 Water Prep Batch: N/A 27.0000.d Client Matrix: Lab File ID: Dilution: 1.0 Leach Batch: Initial Weight/Volume: 5 mL N/A Analysis Date: 12/02/2016 2048 Final Weight/Volume: 5 mL Prep Date: N/A 25 uL

% Rec. Analyte MS **MSD** Limit **RPD RPD Limit** MS Qual MSD Qual Chloride 114 140 80 - 120 6 20 F1 Sulfate 80 - 120 2 20 114 116

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-353988 Preparation: N/A

MS Lab Sample ID: 280-90914-A-1 MS Units: mg/L MSD Lab Sample ID: 280-90914-A-1 MSD

Client Matrix: Water Client Matrix: Water

Dilution: 5.0 Dilution: 5.0

Analysis Date: 12/02/2016 1311 Analysis Date: 12/02/2016 1329

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Amount Result/Qual Result/Qual Chloride 360 125 125 485 485 Sulfate 420 125 125 549 552

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-353988 Preparation: N/A

MS Lab Sample ID: 280-91667-F-11 MS Units: mg/L MSD Lab Sample ID: 280-91667-E-11 MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 12/02/2016 2030 Analysis Date: 12/02/2016 2048

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Result/Qual Result/Qual Amount Chloride 25.0 25.0 100 72 107 F1 Sulfate 3.6 25.0 25.0 32.0 32.7

Client: Waste Management Job Number: 280-91030-1

Duplicate - Batch: 280-353988 Method: 300.0 Preparation: N/A

Lab Sample ID: 280-90914-A-1 DU Analysis Batch: 280-353988 Instrument ID: WC_IonChrom7 b.0000.80 Client Matrix: Water Prep Batch: N/A Lab File ID: Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/02/2016 1253 Units: Final Weight/Volume: 5 mL Analysis Date: mg/L

Prep Date: N/A 25 uL

Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual Chloride 358 360 0 15 420 425 Sulfate 0.1 15

Duplicate - Batch: 280-353988 Method: 300.0 Preparation: N/A

Lab Sample ID: 280-91667-D-11 DU Analysis Batch: 280-353988 Instrument ID: WC_IonChrom7 Client Matrix: Water Prep Batch: N/A Lab File ID: 25.0000.d Dilution: Leach Batch: Initial Weight/Volume: 5 mL 1.0 N/A

Analysis Date: 12/02/2016 2012 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A 25 uL

Leach Date: N/A

RPD Result Limit Analyte Sample Result/Qual Qual 72.0 Chloride 72 0.5 15 Sulfate 3.6 3.44 15 4

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-352943 Method: 350.1 Preparation: N/A

Lab Sample ID: MB 280-352943/20 Analysis Batch: 280-352943 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112316.RS` Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/23/2016 1448 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Leach Date:

N/A

Analyte Result Qual RL RL

Ammonia (as N) ND 0.030 0.030

Lab Control Sample/ Method: 350.1
Lab Control Sample Duplicate Recovery Report - Batch: 280-352943 Preparation: N/A

LCS Lab Sample ID: LCS 280-352943/18 Analysis Batch: 280-352943 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112316.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/23/2016 1444 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

LCSD Lab Sample ID: LCSD 280-352943/19 Analysis Batch: 280-352943 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112316.RS
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/23/2016 1446 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/23/2016 1446 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A
Leach Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual
Ammonia (as N) 100 101 90 - 110 1 10

Laboratory Control/ Method: 350.1 Laboratory Duplicate Data Report - Batch: 280-352943 Preparation: N/A

LCS Lab Sample ID: LCS 280-352943/18 Units: mg/L LCSD Lab Sample ID: LCSD 280-352943/19

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/23/2016 1444 Analysis Date: 11/23/2016 1446

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS Result/Qual Result/Qual

Ammonia (as N) 2.50 2.50 2.51 2.52

Client: Waste Management Job Number: 280-91030-1

Method: 350.1 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-352943 Preparation: N/A

280-91030-1 Instrument ID: MS Lab Sample ID: Analysis Batch: 280-352943 WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW 4\112316.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

11/23/2016 1500 Final Weight/Volume: Analysis Date: 10 mL Prep Date: N/A

MSD Lab Sample ID: 280-91030-1 Analysis Batch: 280-352943 Instrument ID: WC Alp 3

Client Matrix: Lab File ID: C:\FLOW 4\112316.RS Water Prep Batch: N/A

Leach Batch: Initial Weight/Volume: Dilution: 1.0 N/A 10 mL

11/23/2016 1502 Final Weight/Volume: 10 mL Analysis Date:

Prep Date: N/A Leach Date: N/A

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual

Ammonia (as N) 106 105 90 - 110 0 10

Leach Date:

N/A

Matrix Spike/ Method: 350.1 Matrix Spike Duplicate Recovery Report - Batch: 280-352943 Preparation: N/A

MS Lab Sample ID: 280-91030-1 Units: mg/L MSD Lab Sample ID: 280-91030-1

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

11/23/2016 1500 Analysis Date: 11/23/2016 1502 Analysis Date:

Prep Date: N/A Prep Date: N/A Leach Date: Leach Date: N/A N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual Amount Amount Result/Qual Result/Qual Ammonia (as N) ND 1.00 1.00 1.06 1.05

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-353099 Method: 350.1 Preparation: N/A

Lab Sample ID: MB 280-353099/112 Analysis Batch: 280-353099 Instrument ID: WC_Alp 3
Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112516.RS`

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/25/2016 1329 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Ammonia (as N)
 ND
 0.030
 0.030

Lab Control Sample/ Method: 350.1
Lab Control Sample Duplicate Recovery Report - Batch: 280-353099 Preparation: N/A

LCS Lab Sample ID: LCS 280-353099/110 Analysis Batch: 280-353099 Instrument ID: WC Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112516.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/25/2016 1325 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

Leach Date: N/A

N/A

Leach Date:

LCSD Lab Sample ID: LCSD 280-353099/111 Analysis Batch: 280-353099 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112516.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL Analysis Date: 11/25/2016 1327 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/25/2016 1327 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Ammonia (as N) 96 91 90 - 110 5 10

Laboratory Control/ Method: 350.1 Laboratory Duplicate Data Report - Batch: 280-353099 Preparation: N/A

LCS Lab Sample ID: LCS 280-353099/110 Units: mg/L LCSD Lab Sample ID: LCSD 280-353099/111

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/25/2016 1325 Analysis Date: 11/25/2016 1327

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS Result/Qual Result/Qual

Ammonia (as N) 2.50 2.50 2.39 2.27

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-353604 Method: 353.2

Preparation: N/A

Lab Sample ID: MB 280-353604/23 Analysis Batch: 280-353604 Instrument ID: WC_Alp 2

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112916.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL Analysis Date: 11/29/2016 1632 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/29/2016 1632 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A
Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Nitrate/Nitrite
 ND
 0.050
 0.050

Method Blank - Batch: 280-353604 Method: 353.2 Preparation: N/A

Leach Date:

N/A

Lab Sample ID: MB 280-353604/67 Analysis Batch: 280-353604 Instrument ID: WC_Alp 2

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112916.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/29/2016 1800 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Nitrate/Nitrite
 ND
 0.050
 0.050

Client: Waste Management Job Number: 280-91030-1

Method Reporting Limit Check - Batch: 280-353604

Method: 353.2 Preparation: N/A

Lab Sample ID: MRL 280-353604/21 Analysis Batch:

Client Matrix: Water Dilution:

1.0

Analysis Date: Prep Date: N/A Leach Date: N/A

Prep Batch: Leach Batch: 11/29/2016 1628 Units:

280-353604 N/A

N/A mg/L Instrument ID: WC_Alp 2

C:\FLOW_4\112916.RS Lab File ID:

Initial Weight/Volume: 100 mL Final Weight/Volume: 100 mL

Analyte Spike Amount Result % Rec. Limit Qual Nitrate/Nitrite 0.100 0.115 115 50 - 150

Lab Control Sample - Batch: 280-353604

Method: 353.2 Preparation: N/A

Lab Sample ID: LCS 280-353604/22

Client Matrix: Water Dilution: 1.0

11/29/2016 1630 Analysis Date:

Prep Date: N/A Leach Date: N/A Prep Batch: Leach Batch:

Units:

Analysis Batch:

280-353604 N/A N/A

mg/L

Instrument ID: WC Alp 2

Lab File ID: C:\FLOW_4\112916.RS

Initial Weight/Volume: 100 mL Final Weight/Volume: 100 mL

Analyte Spike Amount Result % Rec. Limit Qual Nitrate/Nitrite 5.00 5.05 101 90 - 110

Lab Control Sample - Batch: 280-353604

Method: 353.2 Preparation: N/A

Lab Sample ID: LCS 280-353604/66

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 1758

Prep Date: N/A N/A Leach Date:

Analysis Batch: 280-353604

Prep Batch: N/A Leach Batch: N/A

Units:

mg/L

Instrument ID: WC Alp 2

Lab File ID: C:\FLOW_4\112916.RS Initial Weight/Volume: 100 mL Final Weight/Volume: 100 mL

% Rec. Limit Qual Analyte Spike Amount Result Nitrate/Nitrite 5.00 5.11 102 90 - 110

Client: Waste Management Job Number: 280-91030-1

Method: 353.2 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-353604 Preparation: N/A

280-90973-B-12 MS Instrument ID: MS Lab Sample ID: Analysis Batch: 280-353604 WC_Alp 2

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW 4\112916.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

11/29/2016 1712 Final Weight/Volume: Analysis Date: 5 mL

Prep Date: N/A Leach Date: N/A

MSD Lab Sample ID: 280-90973-B-12 MSD Analysis Batch: 280-353604 Instrument ID: WC Alp 2

Client Matrix: Lab File ID: C:\FLOW 4\112916.RS Water Prep Batch: N/A

Dilution: Leach Batch: Initial Weight/Volume: 1.0 N/A 5 mL

11/29/2016 1714 Final Weight/Volume: 5 mL Analysis Date: Prep Date: N/A

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual

Nitrate/Nitrite 101 100 90 - 110 1 10

Leach Date:

N/A

Matrix Spike/ Method: 353.2 Matrix Spike Duplicate Recovery Report - Batch: 280-353604 Preparation: N/A

MS Lab Sample ID: 280-90973-B-12 MS Units: mg/L MSD Lab Sample ID: 280-90973-B-12 MSD

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

11/29/2016 1712 Analysis Date: 11/29/2016 1714 Analysis Date:

Prep Date: N/A Prep Date: N/A Leach Date: Leach Date: N/A N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual Amount Amount Result/Qual Result/Qual Nitrate/Nitrite ND 4.00 4.00 4.05 4.02

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-353505 Method: 410.4 Preparation: N/A

Lab Sample ID: MB 280-353505/5 Analysis Batch: 280-353505 Instrument ID: WC_Genesys20

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 2 mL 1.0 11/29/2016 0923 Final Weight/Volume: Analysis Date: Units: mg/L 2 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Chemical Oxygen Demand (COD) ND 10 10

Lab Control Sample/ Method: 410.4

Lab Control Sample Duplicate Recovery Report - Batch: 280-353505 Preparation: N/A

LCS Lab Sample ID: LCS 280-353505/3 Analysis Batch: 280-353505 Instrument ID: WC_Genesys20

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 100 mL Analysis Date: 11/29/2016 0923 Units: Final Weight/Volume: 100 mL mg/L

Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353505/4 Analysis Batch: 280-353505 Instrument ID: WC_Genesys20

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/29/2016 0923 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

% Rec.
Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Chemical Oxygen Demand (COD) 98 100 90 - 110 2 11

Laboratory Control/ Method: 410.4
Laboratory Duplicate Data Report - Batch: 280-353505 Preparation: N/A

LCS Lab Sample ID: LCS 280-353505/3 Units: mg/L LCSD Lab Sample ID: LCSD 280-353505/4

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/29/2016 0923 Analysis Date: 11/29/2016 0923

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike Amount LCS Spike LCSD Spike Result/Qual Result/Qual Chemical Oxygen Demand (COD) 100 100 98.1 99.8

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: 410.4
Matrix Spike Duplicate Recovery Report - Batch: 280-353505 Preparation: N/A

MS Lab Sample ID: 280-91030-1 Analysis Batch: 280-353505 Instrument ID: WC_Genesys20

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/29/2016 0923 Final Weight/Volume: 100 mL

Prep Date: N/A
Leach Date: N/A

MSD Lab Sample ID: 280-91030-1 Analysis Batch: 280-353505 Instrument ID: WC_Genesys20

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/29/2016 0923 Final Weight/Volume: 100 mL
Prep Date: N/A

Leach Date: N/A

Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual

Chemical Oxygen Demand (COD) 93 90 90 - 110 2 11

% Rec.

Matrix Spike/ Method: 410.4
Matrix Spike Duplicate Recovery Report - Batch: 280-353505 Preparation: N/A

MS Lab Sample ID: 280-91030-1 Units: mg/L MSD Lab Sample ID: 280-91030-1

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/29/2016 0923 Analysis Date: 11/29/2016 0923

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual Amount Amount Result/Qual Result/Qual Chemical Oxygen Demand (COD) 14 50.0 50.0 60.1 58.8

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-352383 Method: SM 2320B Preparation: N/A

Lab Sample ID: Instrument ID: MB 280-352383/5 Analysis Batch: 280-352383 WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Final Weight/Volume:

11/20/2016 1257 Analysis Date: Units: mg/L Prep Date: N/A Leach Date: N/A

Leach Date:

Leach Date:

N/A

N/A

Analyte Result Qual RL RL ND Alkalinity, Total (As CaCO3) 5.0 5.0 Alkalinity, Bicarbonate (As CaCO3) ND 5.0 5.0

Lab Control Sample - Batch: 280-352383 Method: SM 2320B Preparation: N/A

Lab Sample ID: Analysis Batch: Instrument ID: WC-AT3 LCS 280-352383/4 280-352383

Client Matrix: Prep Batch: Lab File ID: 112016 alk.TXT Water N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/20/2016 1253 Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A

% Rec. Limit Qual Analyte Spike Amount Result Alkalinity, Total (As CaCO3) 200 200 100 90 - 110

Method: SM 2320B Duplicate - Batch: 280-352383

Preparation: N/A

280-352383 Instrument ID: WC-AT3 Lab Sample ID: 280-90999-A-1 DU Analysis Batch:

Client Matrix: Prep Batch: N/A Lab File ID: 112016 alk.TXT Water

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/20/2016 1305 Final Weight/Volume: Analysis Date: Units: mq/L Prep Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Alkalinity, Total (As CaCO3) 55 57.8 5 10

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-352831 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-352831/31 Analysis Batch: 280-352831 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/22/2016 1516 Units: mg/L Final Weight/Volume:

Analysis Date: 11/22/2016 1516 Units: mg/L Final Prep Date: N/A

Leach Date:

Leach Date:

N/A

N/A

Analyte Result Qual RL RL

Alkalinity, Total (As CaCO3) ND 5.0 5.0

Alkalinity, Bicarbonate (As CaCO3) ND 5.0 5.0

Lab Control Sample - Batch: 280-352831 Method: SM 2320B Preparation: N/A

Lab Sample ID: LCS 280-352831/30 Analysis Batch: 280-352831 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/22/2016 1511 Units: mg/L Final Weight/Volume: Prep Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Alkalinity, Total (As CaCO3) 200 194 97 90 - 110

Duplicate - Batch: 280-352831 Method: SM 2320B

Preparation: N/A

Lab Sample ID: 280-91153-A-1 DU Analysis Batch: 280-352831 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/22/2016 1555 Units: mg/L Final Weight/Volume:

Analysis Date: 11/22/2016 1555 Units: mg/L Final Wel
Prep Date: N/A
Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Alkalinity, Total (As CaCO3) 150 152 2 10

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-352410 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-352410/1 Analysis Batch: 280-352410 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/21/2016 1012 Final Weight/Volume: Analysis Date: Units: mg/L 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Dissolved Solids (TDS) ND 5.0 5.0

Lab Control Sample - Batch: 280-352410 Method: SM 2540C Preparation: N/A

Lab Sample ID: LCS 280-352410/2 Analysis Batch: 280-352410 Instrument ID: No Equipment Assigned

Prep Batch: Client Matrix: Water N/A Lab File ID: Leach Batch: Initial Weight/Volume: 100 mL Dilution: 10 N/A Analysis Date: 11/21/2016 1012 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A
Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual

Total Dissolved Solids (TDS) 500 494 99 86 - 110

Duplicate - Batch: 280-352410 Method: SM 2540C Preparation: N/A

Lab Sample ID: 280-91030-1 Analysis Batch: 280-352410 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/21/2016 1012 Final Weight/Volume: 100 mL Analysis Date: Units: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Dissolved Solids (TDS) 140 115 22 10 F3

Client: Waste Management Job Number: 280-91030-1

Method Blank - Batch: 280-353712 Method: SM 5310B Preparation: N/A

Lab Sample ID: MB 280-353712/5 Analysis Batch: 280-353712 Instrument ID: WC_SHI3 Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/29/2016 1831 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Organic Carbon - Average ND 1.0 1.0

Lab Control Sample/ Method: SM 5310B

Lab Control Sample Duplicate Recovery Report - Batch: 280-353712 Preparation: N/A

LCS Lab Sample ID: LCS 280-353712/3 Analysis Batch: 280-353712 Instrument ID: WC_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/29/2016 1759 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353712/4 Analysis Batch: 280-353712 Instrument ID: WC_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 112916 txt

Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/29/2016 1814 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/29/2016 1814 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A
Leach Date: N/A

% Rec.
Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Total Organic Carbon - Average 98 98 88 - 112 0 15

Laboratory Control/ Method: SM 5310B
Laboratory Duplicate Data Report - Batch: 280-353712 Preparation: N/A

LCS Lab Sample ID: LCS 280-353712/3 Units: mg/L LCSD Lab Sample ID: LCSD 280-353712/4

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/29/2016 1759 Analysis Date: 11/29/2016 1814

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS Result/Qual Result/Qual

Total Organic Carbon - Average 25.0 25.0 24.6 24.5

Client: Waste Management Job Number: 280-91030-1

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-353712 Preparation: N/A

MS Lab Sample ID: 280-90918-F-1 MS Analysis Batch: 280-353712 Instrument ID: WC_SHI3 Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/29/2016 2327 Final Weight/Volume: 50 mL

Prep Date: N/A Leach Date: N/A

N/A

Leach Date:

MSD Lab Sample ID: 280-90918-F-1 MSD

Analysis Batch: 280-353712 Instrument ID: WC_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt

Client Matrix: Water Prep Batch: N/A Lab File ID: 112916.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/29/2016 2343 Final Weight/Volume: 50 mL

Prep Date: N/A

 % Rec.

 Analyte
 MS
 MSD
 Limit
 RPD
 RPD Limit
 MS Qual
 MSD Qual

Total Organic Carbon - Average 100 101 88 - 112 1 15

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-353712 Preparation: N/A

MS Lab Sample ID: 280-90918-F-1 MS Units: mg/L MSD Lab Sample ID: 280-90918-F-1 MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/29/2016 2327 Analysis Date: 11/29/2016 2343

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual Amount Amount Result/Qual Result/Qual Total Organic Carbon - Average ND 25.0 25.0 24.9 25.1

Client: Waste Management Job Number: 280-91030-1

Laboratory Chronicle

Lab ID: 280-91030-1 Client ID: OBWL-TD

Sample Date/Time: 11/14/2016 10:25 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91030-F-1		480-333416		11/25/2016 11:22	1	TAL BUF	SMY
A:8260C	280-91030-F-1		480-333416		11/25/2016 11:22	1	TAL BUF	SMY
P:5030C	280-91030-J-1		480-332322		11/17/2016 23:23	1	TAL BUF	NMD1
A:8260C SIM	280-91030-J-1		480-332322		11/17/2016 23:23	1	TAL BUF	NMD1
P:3005A	280-91030-D-1-B		280-354109	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	280-91030-D-1-B		280-354109	280-352694	12/03/2016 00:20	1	TAL DEN	LLB
P:3005A	280-91030-D-1-B		280-354656	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	280-91030-D-1-B		280-354656	280-352694	12/07/2016 11:27	1	TAL DEN	SJS
P:3005A	280-91030-D-1-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91030-D-1-A		280-353028	280-352489	11/23/2016 23:23	1	TAL DEN	LMT
A:300.0	280-91030-A-1		280-353988		12/02/2016 14:22	1	TAL DEN	AFB
A:350.1	280-91030-C-1		280-352943		11/23/2016 14:58	1	TAL DEN	MAS
A:353.2	280-91030-B-1		280-353604		11/29/2016 19:06	1	TAL DEN	SVC
A:410.4	280-91030-C-1		280-353505		11/29/2016 09:23	1	TAL DEN	CCJ
A:SM 2320B	280-91030-A-1		280-352383		11/20/2016 13:10	1	TAL DEN	MMC
A:SM 2540C	280-91030-A-1		280-352410		11/21/2016 10:12	1	TAL DEN	JAP
A:SM 5310B	280-91030-C-1		280-353712		11/30/2016 00:34	1	TAL DEN	CCJ
A:Field Sampling	280-91030-A-1		280-352756		11/14/2016 11:25	1	TAL DEN	C1K

Lab ID: 280-91030-1 MS Client ID: OBWL-TD

Sample Date/Time: 11/14/2016 10:25 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:350.1	280-91030-C-1 MS		280-352943		11/23/2016 15:00	1	TAL DEN	MAS
A:410.4	280-91030-C-1 MS		280-353505		11/29/2016 09:23	1	TAL DEN	CCJ

Lab ID: 280-91030-1 MSD Client ID: OBWL-TD

Sample Date/Time: 11/14/2016 10:25 Received Date/Time: 11/15/2016 08:50

Method	Bottle ID	Run	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Dil	Lab	Analyst
A:350.1	280-91030-C-1 MSD		280-352943		11/23/2016 15:02	1	TAL DEN	MAS
A:410.4	280-91030-C-1 MSD		280-353505		11/29/2016 09:23	1	TAL DEN	CCJ

Lab ID: 280-91030-1 DU Client ID: OBWL-TD

Sample Date/Time: 11/14/2016 10:25 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:SM 2540C	280-91030-A-1 DU		280-352410		11/21/2016 10:12	1	TAL DEN	JAP

Client: Waste Management Job Number: 280-91030-1

Laboratory Chronicle

Lab ID: 280-91030-2 Client ID: L-INF

Sample Date/Time: 11/14/2016 11:00 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91030-E-2		480-333215		11/23/2016 16:44	5	TAL BUF	NEA
A:8260C	280-91030-E-2		480-333215		11/23/2016 16:44	5	TAL BUF	NEA
P:5030C	280-91030-J-2		480-332322		11/17/2016 23:48	4	TAL BUF	NMD1
A:8260C SIM	280-91030-J-2		480-332322		11/17/2016 23:48	4	TAL BUF	NMD1
P:3005A	280-91030-D-2-D		280-354109	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	280-91030-D-2-D		280-354109	280-352694	12/03/2016 00:23	1	TAL DEN	LLB
P:3005A	280-91030-D-2-D		280-354577	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	280-91030-D-2-D		280-354577	280-352694	12/06/2016 16:31	1	TAL DEN	CML
P:3005A	280-91030-D-2-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91030-D-2-A		280-353028	280-352489	11/23/2016 23:27	1	TAL DEN	LMT
A:300.0	280-91030-A-2		280-353988		12/02/2016 14:58	10	TAL DEN	AFB
A:350.1	280-91030-C-2		280-352943		11/23/2016 15:04	50	TAL DEN	MAS
A:353.2	280-91030-B-2		280-353604		11/29/2016 19:08	1	TAL DEN	SVC
A:410.4	280-91030-C-2		280-353505		11/29/2016 09:23	5	TAL DEN	CCJ
A:SM 2320B	280-91030-A-2		280-352383		11/20/2016 13:17	1	TAL DEN	MMC
A:SM 2540C	280-91030-A-2		280-352410		11/21/2016 10:12	1	TAL DEN	JAP
A:SM 5310B	280-91030-C-2		280-353712		11/30/2016 01:24	5	TAL DEN	CCJ
A:Field Sampling	280-91030-A-2		280-352756		11/14/2016 12:00	1	TAL DEN	C1K

Lab ID: 280-91030-2 MS Client ID: L-INF

Sample Date/Time: 11/14/2016 11:00 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91030-E-2 MS		480-333215		11/23/2016 19:02	5	TAL BUF	NEA
A:8260C	280-91030-E-2 MS		480-333215		11/23/2016 19:02	5	TAL BUF	NEA
P:5030C	280-91030-J-2 MS		480-332322		11/18/2016 03:27	4	TAL BUF	NMD1
A:8260C SIM	280-91030-J-2 MS		480-332322		11/18/2016 03:27	4	TAL BUF	NMD1
P:3005A	280-91030-D-2-B MS		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91030-D-2-B MS		280-353028	280-352489	11/23/2016 23:34	1	TAL DEN	LMT

Lab ID: 280-91030-2 MSD Client ID: L-INF

Sample Date/Time: 11/14/2016 11:00 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91030-E-2 MSD		480-333215		11/23/2016 19:25	5	TAL BUF	NEA
A:8260C	280-91030-E-2 MSD		480-333215		11/23/2016 19:25	5	TAL BUF	NEA
P:5030C	280-91030-J-2 MSD		480-332322		11/18/2016 03:51	4	TAL BUF	NMD1
A:8260C SIM	280-91030-J-2 MSD		480-332322		11/18/2016 03:51	4	TAL BUF	NMD1
P:3005A	280-91030-D-2-C MSD		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91030-D-2-C MSD		280-353028	280-352489	11/23/2016 23:38	1	TAL DEN	LMT

Client: Waste Management Job Number: 280-91030-1

Laboratory Chronicle

Lab ID: 280-91030-3 Client ID: TRIP BLANK

Sample Date/Time: 11/14/2016 00:00 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			Analyst SMY
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91030-A-3		480-333219		11/23/2016 11:56	1	TAL BUF	SMY
A:8260C	280-91030-A-3		480-333219		11/23/2016 11:56	1	TAL BUF	SMY
P:5030C	280-91030-B-3		480-332322		11/18/2016 00:12	1	TAL BUF	NMD1
A:8260C SIM	280-91030-B-3		480-332322		11/18/2016 00:12	1	TAL BUF	NMD1

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	MB 480-333215/6		480-333215		11/23/2016 10:43	1	TAL BUF	NEA
A:8260C	MB 480-333215/6		480-333215		11/23/2016 10:43	1	TAL BUF	NEA
P:5030C	MB 480-333219/9		480-333219		11/23/2016 11:12	1	TAL BUF	SMY
A:8260C	MB 480-333219/9		480-333219		11/23/2016 11:12	1	TAL BUF	SMY
P:5030C	MB 480-333416/30		480-333416		11/25/2016 10:38	1	TAL BUF	SMY
A:8260C	MB 480-333416/30		480-333416		11/25/2016 10:38	1	TAL BUF	SMY
P:5030C	MB 480-332322/7		480-332322		11/17/2016 21:54	1	TAL BUF	NMD1
A:8260C SIM	MB 480-332322/7		480-332322		11/17/2016 21:54	1	TAL BUF	NMD1
P:3005A	MB 280-352694/1-A		280-354109	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	MB 280-352694/1-A		280-354109	280-352694	12/02/2016 23:10	1	TAL DEN	LLB
P:3005A	MB 280-352694/1-A		280-354577	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	MB 280-352694/1-A		280-354577	280-352694	12/06/2016 16:14	1	TAL DEN	CML
P:3005A	MB 280-352489/1-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	MB 280-352489/1-A		280-353028	280-352489	11/23/2016 23:15	1	TAL DEN	LMT
A:300.0	MB 280-353988/6		280-353988		12/02/2016 10:52	1	TAL DEN	AFB
A:350.1	MB 280-352943/20		280-352943		11/23/2016 14:48	1	TAL DEN	MAS
A:350.1	MB 280-353099/112		280-353099		11/25/2016 13:29	1	TAL DEN	MAS
A:353.2	MB 280-353604/23		280-353604		11/29/2016 16:32	1	TAL DEN	SVC
A:353.2	MB 280-353604/67		280-353604		11/29/2016 18:00	1	TAL DEN	SVC
A:410.4	MB 280-353505/5		280-353505		11/29/2016 09:23	1	TAL DEN	CCJ
A:SM 2320B	MB 280-352383/5		280-352383		11/20/2016 12:57	1	TAL DEN	MMC
A:SM 2320B	MB 280-352831/31		280-352831		11/22/2016 15:16	1	TAL DEN	MMC
A:SM 2540C	MB 280-352410/1		280-352410		11/21/2016 10:12	1	TAL DEN	JAP
A:SM 5310B	MB 280-353712/5		280-353712		11/29/2016 18:31	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91030-1

Laboratory Chronicle

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCS 480-333215/4		480-333215		11/23/2016 09:50	1	TAL BUF	NEA
A:8260C	LCS 480-333215/4		480-333215		11/23/2016 09:50	1	TAL BUF	NEA
P:5030C	LCS 480-333219/7		480-333219		11/23/2016 10:17	1	TAL BUF	SMY
A:8260C	LCS 480-333219/7		480-333219		11/23/2016 10:17	1	TAL BUF	SMY
P:5030C	LCS 480-333416/5		480-333416		11/25/2016 09:06	1	TAL BUF	SMY
A:8260C	LCS 480-333416/5		480-333416		11/25/2016 09:06	1	TAL BUF	SMY
P:5030C	LCS 480-332322/4		480-332322		11/17/2016 20:41	1	TAL BUF	NMD1
A:8260C SIM	LCS 480-332322/4		480-332322		11/17/2016 20:41	1	TAL BUF	NMD1
P:3005A	LCS 280-352694/2-A		280-354109	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	LCS 280-352694/2-A		280-354109	280-352694	12/02/2016 23:13	1	TAL DEN	LLB
P:3005A	LCS 280-352694/2-A		280-354577	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	LCS 280-352694/2-A		280-354577	280-352694	12/06/2016 16:17	1	TAL DEN	CML
P:3005A	LCS 280-352489/2-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	LCS 280-352489/2-A		280-353028	280-352489	11/23/2016 23:19	1	TAL DEN	LMT
A:300.0	LCS 280-353988/4		280-353988		12/02/2016 10:16	1	TAL DEN	AFB
A:350.1	LCS 280-352943/18		280-352943		11/23/2016 14:44	1	TAL DEN	MAS
A:350.1	LCS 280-353099/110		280-353099		11/25/2016 13:25	1	TAL DEN	MAS
A:353.2	LCS 280-353604/22		280-353604		11/29/2016 16:30	1	TAL DEN	SVC
A:353.2	LCS 280-353604/66		280-353604		11/29/2016 17:58	1	TAL DEN	SVC
A:410.4	LCS 280-353505/3		280-353505		11/29/2016 09:23	1	TAL DEN	CCJ
A:SM 2320B	LCS 280-352383/4		280-352383		11/20/2016 12:53	1	TAL DEN	MMC
A:SM 2320B	LCS 280-352831/30		280-352831		11/22/2016 15:11	1	TAL DEN	MMC
A:SM 2540C	LCS 280-352410/2		280-352410		11/21/2016 10:12	1	TAL DEN	JAP
A:SM 5310B	LCS 280-353712/3		280-353712		11/29/2016 17:59	1	TAL DEN	CCJ

Lab ID: LCSD Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCSD 480-332322/5		480-332322		11/17/2016 21:05	1	TAL BUF	NMD1
A:8260C SIM	LCSD 480-332322/5		480-332322		11/17/2016 21:05	1	TAL BUF	NMD1
A:300.0	LCSD 280-353988/5		280-353988		12/02/2016 10:34	1	TAL DEN	AFB
A:350.1	LCSD 280-352943/19		280-352943		11/23/2016 14:46	1	TAL DEN	MAS
A:350.1	LCSD 280-353099/111		280-353099		11/25/2016 13:27	1	TAL DEN	MAS
A:410.4	LCSD 280-353505/4		280-353505		11/29/2016 09:23	1	TAL DEN	CCJ
A:SM 5310B	LCSD 280-353712/4		280-353712		11/29/2016 18:14	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91030-1

Laboratory Chronicle

Lab ID: MRL Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

Method	Bottle ID	Dun	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Dil	Lab	Analyst
wethod	Bottle ID	Run	Datcii	Prep Batch	Allalyzeu	ווט	Lab	Analyst
A:300.0	MRL 280-353988/3		280-353988		12/02/2016 09:59	1	TAL DEN	AFB
A:353.2	MRL 280-353604/21		280-353604		11/29/2016 16:28	1	TAL DEN	SVC

Lab ID: MS Client ID: N/A

Sample Date/Time: 11/14/2016 13:53 Received Date/Time: 11/15/2016 00:05

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	480-109585-K-8 MS		480-333219		11/23/2016 19:12	1	TAL BUF	SMY
A:8260C	480-109585-K-8 MS		480-333219		11/23/2016 19:12	1	TAL BUF	SMY
P:5030C	280-91051-R-1 MS		480-333416		11/25/2016 17:57	50	TAL BUF	SMY
A:8260C	280-91051-R-1 MS		480-333416		11/25/2016 17:57	50	TAL BUF	SMY
P:3005A	280-90984-E-1-E MS		280-354109	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	280-90984-E-1-E MS		280-354109	280-352694	12/02/2016 23:20	1	TAL DEN	LLB
P:3005A	280-90984-E-1-E MS		280-354577	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	280-90984-E-1-E MS		280-354577	280-352694	12/06/2016 16:24	1	TAL DEN	CML
A:300.0	280-90914-A-1 MS		280-353988		12/02/2016 13:11	5	TAL DEN	AFB
A:300.0	280-91667-F-11 MS		280-353988		12/02/2016 20:30	1	TAL DEN	AFB
A:353.2	280-90973-B-12 MS		280-353604		11/29/2016 17:12	1	TAL DEN	SVC
A:SM 5310B	280-90918-F-1 MS		280-353712		11/29/2016 23:27	1	TAL DEN	CCJ

Lab ID: MSD Client ID: N/A

Sample Date/Time: 11/14/2016 13:53 Received Date/Time: 11/15/2016 00:05

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	480-109585-K-8 MSD		480-333219		11/23/2016 19:40	1	TAL BUF	SMY
A:8260C	480-109585-K-8 MSD		480-333219		11/23/2016 19:40	1	TAL BUF	SMY
P:5030C	280-91051-S-1 MSD		480-333416		11/25/2016 18:20	50	TAL BUF	SMY
A:8260C	280-91051-S-1 MSD		480-333416		11/25/2016 18:20	50	TAL BUF	SMY
P:3005A	280-90984-E-1-F MSD		280-354109	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	280-90984-E-1-F MSD		280-354109	280-352694	12/02/2016 23:23	1	TAL DEN	LLB
P:3005A	280-90984-E-1-F MSD		280-354577	280-352694	11/25/2016 15:45	1	TAL DEN	MLS
A:6010B	280-90984-E-1-F MSD		280-354577	280-352694	12/06/2016 16:26	1	TAL DEN	CML
A:300.0	280-90914-A-1 MSD		280-353988		12/02/2016 13:29	5	TAL DEN	AFB
A:300.0	280-91667-E-11 MSD		280-353988		12/02/2016 20:48	1	TAL DEN	AFB
A:353.2	280-90973-B-12 MSD		280-353604		11/29/2016 17:14	1	TAL DEN	SVC
A:SM 5310B	280-90918-F-1 MSD		280-353712		11/29/2016 23:43	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91030-1

Laboratory Chronicle

Client ID: N/A Lab ID: DU

> Sample Date/Time: 11/11/2016 13:42 Received Date/Time: 11/11/2016 14:58

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	280-90914-A-1 DU		280-353988		12/02/2016 12:53	5	TAL DEN	AFB
A:300.0	280-91667-D-11 DU		280-353988		12/02/2016 20:12	1	TAL DEN	AFB
A:SM 2320B	280-90999-A-1 DU		280-352383		11/20/2016 13:05	1	TAL DEN	MMC
A:SM 2320B	280-91153-A-1 DU		280-352831		11/22/2016 15:55	1	TAL DEN	MMC

Lab References:

TAL BUF = TestAmerica Buffalo TAL DEN = TestAmerica Denver

TestAmerica

TestAmerica Denver

Arvada, CO 80002

4955 Yarrow Street

Chain of Custody Record

S - H2SO4 T - TSP Dodecahydrate U - Acetone V - MCAA Special Instructions/Note: M - Hexane
N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2SO3 TAO Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon 11/15/10 COC No: 280-29114-4071.1 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - MahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 880 Page 1 of 1 1 - Ice J - DI Water K-EDTA Archive For 18/16 Total Number of containers Date/Time: ethod of Shipment O. 4 + O. O. D. S. A. CANS Recel 280-91030 Chain of Custody Analysis Requested Special Instructions/QC Requirements DOT/TXON/sinommA betsy.sara@testamericainc.com Dissolved Metals teceived by: × 3500B SIM - Vinyl chloride × Sara, Betsy A 2 2 Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) E-Mail: SCS BT=Tissue, Audir (Wnwater, Snsofid, Onwaste/oil, Preservation Code Matrix Company Project #: 28002692-Annual OBW-TB/L-INF App I/II -Dec 3 3 Radiological STANDARY Type (C=comp, G=grab) Sample 16:00 5 J JAM ADLINGTON (425)495-0818 1025 Sample 1100 Time Date: Unknown 11/14/20ily Due Date Requested: TAT Requested (days) Sample Date 31/11/11 01/14/10 76311 Date/Time: Poison B 3300 Southwest Barney White Road 2400 140 AVENE œ AS DAY VENCHIARCITY npic View Transfer Gtation SCS ENGLINEERS Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Phone (303) 736-0100 Fax (303) 431-7171 98052 Flammable (425) 289 - 5445 Possible Hazard Identification NA02jOlympic View Sanitary LF BLANK SAM ADLINGTON Beuence Empty Kit Relinquished by: Custody Seals Intact: A3 Client Information Sample Identification A Yes A No 1 - HOF Charles Luckie Non-Hazard OBSC TRIP linguished by: WA 98312 Washington emerton

FIELD INFORMATION FORM Site OVSL This Waste Management Field Information Form is Required Name: This form is to be completed, in addition to any State Forms. The Field Form is Site Laboratory Use Only/Lab ID: Sample submitted along with the Chain of Custody Forms that accompany the sample No.: containers (i.e. with the cooler that is returned to the laboratory). Point: PURGE INFO PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tulting/Flow Cell and Tubing/Flow Cell Vols Purged, Mark changes, reco field data, below. PURGEISAMPLE Purging and Sampling Equipment ... Dedicated: Filter Device: Y Dor | N | 0.45 µ 0r u (circle or fill in) В Purging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter Type: **B-Pressure** X-Other Sampling Device C-QED Bladder Pump F-Dipper/Bottle A-Teflon C-PVC X-Other: X-Other: Sample Tube Type: **B-Stainless Steel** D-Polypropylene WELL DATA Well Elevation Depth to Water (DTW) Groundwater Elevation (at TOC) (from TOC) (site datum, from TOC) Total Well Depth Stick Up Casing Casing (from TOC) (from ground elevation) ID Material Note: Total Well Depth, Sfiek Up, Casting Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current. Sample Time Rate/Unit Conductance (SC/EC) Temp. eH/ORP Turbidity D.O. (2400 Hr Clock) (umhos/cm@25°C) (std) (°C) (ntu) (mg/L - ppm) (mV)(ft) STABILIZATION DATA (Optional Suggested range for 3 consec, readings or +/- 0.2 +/~ 10% note Permit/State requirements +/- 25 mV Stabilize Stabilization Data Fields are Optional (i.e., complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other: Time (MM DD YY) (std) (umpros/em @ 25°C) (mg/L-ppm) (nrV) Units Final Field Readings are required (i.e. record field measurements, final stabilized to uple readings before sampling for all field parameters required by State/Permit/Site, CLEAR Sample Appearance: Odor: Color: Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: CVERLAST Precipitation: Y or (N) Specific Comments (including purge/well volume calculations if required): I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more illamone sampler, all should sign): 11/14 ADLINGTON

Сотрину

DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

Signature

Name

Sid	to I	FORMATION FORM VV
Nan Sir	This form i	a Management Field Information Form is Required is to be completed, in addition to any State Forms. The Field Form is along with the Chain of Custody Forms that accompany the sample [Liboratory Use Only/Lab ID:
No	Point: L L L Containers ((i.e. with the cooler that is returned to the laboratory).
PURGE	PURGE DATE PURGE TIME ELAPSED	D HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS
4	(MM DD YY) (2400 Hr Clock) (hrs:mi	
WPLE	Purging and Sampling Equipment Dedicated: V or	Filter Device: or N 0.45 µ or µ (circle or fill in)
PURGE/SAMPLE	Purging Device B A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump C-QED Bladder Pump F-Dipper/Bottle	A Cond
PUR	X-Other:	Sample Tube Type: B-Stainless Steel D-Polypropylene
WELL DATA	Well Elevation Depth to Water (D (at TOC) (from TOC)	OTW) Groundwater Elevation (films!)
WELL	Total Well Depth Stick Up (from TOC) (ft) (from ground elevat Note: Total Well Depth, Stick Up, Caving Id. etc. are optional and can be from history	ction) Casing Casing Casing (in) Material (in) Material (in) Material (in) Material (in) Casing (in) Material (in) Material (in) (in) Material (in) (in) (in) (in) (in) (in) (in) (in)
1	Sample Time Rate/Unit pH Conductance (SC/BC) (2400 Hr Clock) (std) (µmhos/cm@25°C)	Temp. Turbidity D.O. eH/ORP DTW (°C) (ntu) (mg/L - ppm) (mV) (ft)
-		
nal)	11190 12178321413813	118124 131138 61816 110H10
Optio	3 ^{cd} 3 ^{cd} 1 4 th 1 1 1	
ATA (4 ^h 1 1 1	
Q NO		
STABILIZATION DATA (Optional)		
HE.		
STA		
	Suggested range for 3 consec. readings or +1-0.2 +1-3%	- +/- 10% +/- 25 mV Slabilize
	note Perintification Data Pights are Ontional (i.e. complete stabilization readings for paran	meters required by WM, Site, or State). These fields can be used where four [4] field measurements are required idings below and submit electronic data separately to Site. If mare fields above are needed, use separate sheet or form
	SAMPLE DATE PH CONDUCTANCE (MM DD YY) (std) (umlios/cm@25°C)	TEMP. TURBIDITY DO eH/ORP Other: Time
FIELD DATA	111416 783 4383	readings, passive sample readings before sampling far all field parameters required by State/Permit/Site.
٤	Sample Appearance: CLEPAY2	Odor: Color: Other:
		Direction/Speed: Outlook: CVEIZCAST Precipitation: Y of R
	Specific Comments (including purge/well volume calculations if required SAMIOLG, COLLECTED Grown II	
ENTS-		WENT PIPE.
MIN -		LUCEL FIFE.
FIELD COMMENTS		
	1x locume Pary, 2x 500 milliony	AMBER, IX500m HNOzPory, 6x VOA
1	I certify that sampling procedures were in accordance with applicable EPA, S	and the second s
	11/14/16 SAM ADEINGTON	Scs eng.
	Date Name DISTRIBUTION: WHITE/ORIGINAL.	Signature Company

TestAmerica Denver

CO 80002 Arvada,

4955 Yarrow Street

COLUMN COLUMN

Chain of Custody Record

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

T - TSP Dodecahydrate U - Acetone V - MCAA W - pH 4-5 Z - other (specify) N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2SO3 S - H2SO4 Preservation Codes: H - Ascorbic Acid 280-378005.1 A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH 280-91030-1 Page 1 of 1 l - Ice J - DI Water G - Amchlor K - EDTA L - EDA Total Number of containers Sarrier Tracking No(s): State of Origin: Washington Analysis Requested betsy.sara@testamericainc.com Accreditations Required (See note): NELAP - Oregon 8500C SIM/2030C (MOD) Focal Method 8260C/5030C (MOD) Appendix II Volatiles Sara, Betsy A (où jo seY) (ZWISM miofie? Field Filtered Sample (Yes or No) ab PM: E-Mail: AT Requested (days): Due Date Requested: 12/2/2016 Project #: 28002692 SSOW#: Phone: ₩O# Client Information (Sub Contract Lab) Phone (303) 736-0100 Fax (303) 431-7171 716-691-2600(Tel) 716-691-7991(Fax) WA02jOlympic View Sanitary LF WA02|Olympic View Sanitary LF estAmerica Laboratories, Inc. 10 Hazelwood Drive, Shipping/Receiving State, Zip: NY, 14228-2298 Client Contact Amherst

Votes: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc. Months Company OGY Date/Time: Method of Shipment. Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: Return To Client Received by. TAD Company Company Primary Deliverable Rank: 2 120 Date: Time: 11-16-16 Date/Time: Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Empty Kit Relinquished by: linquished by: elinquished by: elinquished by: Unconfirmed

--INF (280-91030-2)

OBWL-TD (280-91030-1)

TRIP BLANK (280-91030-3)

Special Instructions/Note:

ű, ю. ζ,

がはない。

Preservation Code:

Matrix

Sample

Type (C≕comp, G=grab)

Sample

Sample Date

Sample Identification - Client ID (Lab ID)

× ×

× × ×

Water

×

Water

Water

Pacific 11:00 Pacific Pacific

11/14/16 11/14/16 11/14/16

Custody Seal No..

Custody Seals Intact: △ Yes △ No

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91030-1

Login Number: 91030 List Source: TestAmerica Denver

List Number: 1

Creator: True, Joshua A

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	False	No: Headspace larger than ¼" in 1 or more vial; at least one vial w/o headspace.
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91030-1

Login Number: 91030
List Source: TestAmerica Buffalo
List Number: 2
List Creation: 11/17/16 04:36 PM

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.5 #1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	False	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

ANALYTICAL REPORT

Job Number: 280-90968-1

Job Description: WA02|Olympic View Sanitary LF

For:

Waste Management Sun Valley Hauling 9081 Tujunga Avenue Sun Valley, CA 91352

Attention: Mr. Phil Perley

Betsy Sara

Approved for release. Betsy A Sara Project Manager II 12/11/2016 12:38 PM

Betsy A Sara, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0189 betsy.sara@testamericainc.com 12/11/2016

cc: Mr. Dan Venchiarutti

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

Table of Contents

Cover Title Page	1
Report Narrative	3
Executive Summary	5
Method Summary	15
Method / Analyst Summary	16
Sample Summary	17
Sample Results	18
Sample Datasheets	19
Data Qualifiers	113
QC Results	114
Qc Association Summary	115
Surrogate Recovery Report	125
Qc Reports	127
Laboratory Chronicle	168
Client Chain of Custody	182
Sample Receipt Checklist	194

CASE NARRATIVE

Client: Waste Management

Project: WA02|Olympic View Sanitary LF

Report Number: 280-90968-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Sample Receiving

The samples were received on 11/15/2016; the samples arrived in good condition, properly preserved and on ice. The temperatures of the coolers at receipt were 0.1° C, 0.1° C, 0.4° C and 0.4° C.

Holding Times

All holding times were within established control limits.

Method Blanks

Vinyl chloride Method 8260C SIM was detected in the Method Blanks below the project established reporting limits. No corrective action is taken for any values in Method Blanks that are below the requested reporting limits.

All other Method Blank recoveries were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The percent recoveries and/or relative percent difference of the MS/MSD performed on sample L-INF (91030) were outside control limits for Dissolved Manganese Method 6020 because the sample concentration was greater than four times the spike amount. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, no corrective action was taken.

Sample MW-16 was selected to fulfill the laboratory batch quality control requirements for Method 350.1. Analysis of the laboratory generated MS/MSD for this sample exhibited recoveries of Ammonia above the upper control limit. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, this anomaly may be due to matrix interference and no corrective action was taken.

All other MS and MSD samples were within established control limits.

Sample Duplicate

The RPD results for Total Dissolved Solids (TDS) Method 2540C performed on samples MW-4 and DUP2 were outside control limits. Because all other QC and calibration criteria were met no corrective action was needed.

Organics

The analytes Acrolein, Acrylonitrile and 2-chloroethyl vinyl ether cannot be reliably quantitated in acid preserved samples, therefore, the reporting limits for the analytes Acrolein, Acrylonitrile and 2-chloroethyl vinyl ether is not reliable or defensible.

General Comments

The analyses for Volatile Organics by Method 8260C and Volatile Organics by Method 8260C SIM were performed by TestAmerica Buffalo. Their address and phone number are:
TestAmerica Buffalo
10 Hazelwood Drive, Suite 106
Amherst, NY 14228
716-691-2600

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-1	MW-13A					
Vinyl chloride		0.0080	JB	0.020	ug/L	8260C SIM
Depth to water		45.76			ft	Field Sampling
Specific Conductivit	ty	169			umhos/cm	Field Sampling
Dissolved Oxygen		6.54			mg/L	Field Sampling
eH		113.0			millivolts	Field Sampling
Turbidity		0.84			NTU	Field Sampling
Temperature		9.57			Degrees C	Field Sampling
pН		6.50			SU	Field Sampling
Chloride		1.8		1.0	mg/L	300.0
Sulfate		2.0		1.0	mg/L	300.0
Nitrate as N		0.48		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	92		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	92		5.0	mg/L	SM 2320B
Total Dissolved Sol	ids (TDS)	110		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		16		0.040	mg/L	6010B
Magnesium, Dissol	ved	10		0.050	mg/L	6010B
Sodium, Dissolved		5.4		1.0	mg/L	6010B
Total Recoverable						
Iron, Total		0.073		0.060	mg/L	6010B
Barium, Total		0.0028		0.0010	mg/L	6020
Copper, Total		0.0021		0.0020	mg/L	6020
Vanadium, Total		0.0039		0.0020	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-2	MW-13B					
Depth to water		59.30			ft	Field Sampling
Specific Conductivit	у	171			umhos/cm	Field Sampling
Dissolved Oxygen		6.94			mg/L	Field Sampling
eH		84.0			millivolts	Field Sampling
Turbidity		0.89			NTU	Field Sampling
Temperature		10.41			Degrees C	Field Sampling
рН		7.17			SU	Field Sampling
Chloride		1.9		1.0	mg/L	300.0
Sulfate		3.0		1.0	mg/L	300.0
Nitrate as N		0.64		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	80		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	80		5.0	mg/L	SM 2320B
Total Dissolved Soli	ids (TDS)	100		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		17		0.040	mg/L	6010B
Magnesium, Dissolv	/ed	9.3		0.050	mg/L	6010B
Sodium, Dissolved		5.1		1.0	mg/L	6010B
Manganese, Dissolv	ved	0.0012		0.0010	mg/L	6020
Total Recoverable						
Barium, Total		0.0029		0.0010	mg/L	6020
Chromium, Total		0.0036		0.0030	mg/L	6020
Vanadium, Total		0.0061		0.0020	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-3	MW-16					
Depth to water		59.30			ft	Field Sampling
Specific Conductivity	/	110			umhos/cm	Field Sampling
Dissolved Oxygen		6.91			mg/L	Field Sampling
eH		135.0			millivolts	Field Sampling
Turbidity		2.51			NTU	Field Sampling
Temperature		9.81			Degrees C	Field Sampling
pH		5.89			SU	Field Sampling
Chloride		1.0		1.0	mg/L	300.0
Sulfate		1.6		1.0	mg/L	300.0
Nitrate as N		0.24		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	56		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	te (As CaCO3)	56		5.0	mg/L	SM 2320B
Total Dissolved Solid	ds (TDS)	86		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		9.6		0.040	mg/L	6010B
Magnesium, Dissolv	ed	5.9		0.050	mg/L	6010B
Sodium, Dissolved		5.0		1.0	mg/L	6010B
Manganese, Dissolv	ed	0.0027		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		0.12		0.060	mg/L	6010B
Barium, Total		0.0045		0.0010	mg/L	6020
Chromium, Total		0.0085		0.0030	mg/L	6020
Manganese, Total		0.017		0.0010	mg/L	6020
Vanadium, Total		0.0049		0.0020	mg/L	6020
Zinc, Total		0.0056		0.0050	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-4	MW-39					
Depth to water		17.16			ft	Field Sampling
Specific Conductivit	ty	130			umhos/cm	Field Sampling
Dissolved Oxygen		1.28			mg/L	Field Sampling
eH		47.0			millivolts	Field Sampling
Turbidity		4.53			NTU	Field Sampling
Temperature		12.89			Degrees C	Field Sampling
рН		5.27			SU	Field Sampling
Sulfate		1.4		1.0	mg/L	300.0
Nitrate as N		1.6		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	57		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	57		5.0	mg/L	SM 2320B
Total Dissolved Sol	ids (TDS)	76		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		13		0.040	mg/L	6010B
Iron, Dissolved		0.37		0.060	mg/L	6010B
Magnesium, Dissol	ved	6.1		0.050	mg/L	6010B
Sodium, Dissolved		4.8		1.0	mg/L	6010B
Manganese, Dissol	ved	0.020		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		0.80		0.060	mg/L	6010B
Barium, Total		0.0086		0.0010	mg/L	6020
Manganese, Total		0.017		0.0010	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-5	MW-4					
Vinyl chloride		0.0095	JB	0.020	ug/L	8260C SIM
Depth to water		11.79			ft	Field Sampling
Specific Conductivity	1	50			umhos/cm	Field Sampling
Dissolved Oxygen		4.07			mg/L	Field Sampling
eH		142.0			millivolts	Field Sampling
Turbidity		1.06			NTU	Field Sampling
Temperature		11.49			Degrees C	Field Sampling
рН		5.06			SU	Field Sampling
Chloride		1.4		1.0	mg/L	300.0
Sulfate		2.0		1.0	mg/L	300.0
Nitrate as N		0.33		0.050	mg/L	353.2
Alkalinity, Total (As 0	CaCO3)	42		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	te (As CaCO3)	42		5.0	mg/L	SM 2320B
Total Dissolved Solid	ds (TDS)	36		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		4.3		0.040	mg/L	6010B
Magnesium, Dissolve	ed	2.0		0.050	mg/L	6010B
Sodium, Dissolved		3.0		1.0	mg/L	6010B
Manganese, Dissolv	ed	0.021		0.0010	mg/L	6020
Total Recoverable						
Barium, Total		0.0019		0.0010	mg/L	6020
Manganese, Total		0.21		0.0010	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-6	MW-43					
Specific Conductivity	у	34			umhos/cm	Field Sampling
Dissolved Oxygen		2.73			mg/L	Field Sampling
eH		156.8			millivolts	Field Sampling
Turbidity		17.19			NTU	Field Sampling
Temperature		12.63			Degrees C	Field Sampling
pН		6.38			SU	Field Sampling
Sulfate		1.7		1.0	mg/L	300.0
Ammonia (as N)		0.030		0.030	mg/L	350.1
Nitrate as N		0.52		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	13		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	13		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	28		5.0	mg/L	SM 2540C
Total Organic Carbo	on - Average	1.2		1.0	mg/L	SM 5310B
Dissolved						
Calcium, Dissolved		3.2		0.040	mg/L	6010B
Magnesium, Dissolv	red	1.4		0.050	mg/L	6010B
Sodium, Dissolved		2.3		1.0	mg/L	6010B
Manganese, Dissolv	/ed	0.033		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		0.24		0.060	mg/L	6010B
Barium, Total		0.0034		0.0010	mg/L	6020
Manganese, Total		0.036		0.0010	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-7	MW-20					
Depth to water		35.01			ft	Field Sampling
Specific Conductivity	y	200			umhos/cm	Field Sampling
Dissolved Oxygen		6.39			mg/L	Field Sampling
eH		121.8			millivolts	Field Sampling
Turbidity		12.91			NTU	Field Sampling
Temperature		14.37			Degrees C	Field Sampling
pН		6.94			SU	Field Sampling
Chloride		8.3		1.0	mg/L	300.0
Sulfate		4.2		1.0	mg/L	300.0
Nitrate as N		6.0		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	75		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	75		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	160		5.0	mg/L	SM 2540C
Total Suspended So	olids	4.0		4.0	mg/L	SM 2540D
Dissolved						
Calcium, Dissolved		19		0.040	mg/L	6010B
Magnesium, Dissolv	/ed	11		0.050	mg/L	6010B
Potassium, Dissolve	ed	3.1		1.0	mg/L	6010B
Sodium, Dissolved		9.3		1.0	mg/L	6010B
Total Recoverable						
Iron, Total		0.18		0.060	mg/L	6010B
Barium, Total		0.016		0.0010	mg/L	6020
Manganese, Total		0.45		0.0010	mg/L	6020
Nickel, Total		0.0048		0.0040	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-8FD	DUP2					
Chloride		8.4		1.0	mg/L	300.0
Sulfate		4.3		1.0	mg/L	300.0
Nitrate as N		5.9		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	75		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	75		5.0	mg/L	SM 2320B
Total Dissolved Soli	ids (TDS)	150		5.0	mg/L	SM 2540C
Total Suspended So	olids	5.6		4.0	mg/L	SM 2540D
Dissolved						
Calcium, Dissolved		19		0.040	mg/L	6010B
Magnesium, Dissolv	/ed	11		0.050	mg/L	6010B
Potassium, Dissolve	ed	3.1		1.0	mg/L	6010B
Sodium, Dissolved		9.3		1.0	mg/L	6010B
Total Recoverable						
Iron, Total		0.15		0.060	mg/L	6010B
Barium, Total		0.016		0.0010	mg/L	6020
Manganese, Total		0.44		0.0010	mg/L	6020
Nickel, Total		0.0058		0.0040	mg/L	6020
Vanadium, Total		0.0022		0.0020	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-9	MW-19C					
Trichloroethene		0.99	J	1.0	ug/L	8260C
Vinyl chloride		0.029	В	0.020	ug/L	8260C SIM
Depth to water		32.96			ft	Field Sampling
Specific Conductivit	у	154			umhos/cm	Field Sampling
Dissolved Oxygen		0.33			mg/L	Field Sampling
еН		63.1			millivolts	Field Sampling
Turbidity		5.85			NTU	Field Sampling
Temperature		10.56			Degrees C	Field Sampling
рН		7.41			SU	Field Sampling
Chloride		5.7		1.0	mg/L	300.0
Sulfate		3.7		1.0	mg/L	300.0
Ammonia (as N)		0.67		0.030	mg/L	350.1
Alkalinity, Total (As	CaCO3)	74		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	74		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	110		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		16		0.040	mg/L	6010B
Iron, Dissolved		0.064		0.060	mg/L	6010B
Magnesium, Dissolv	/ed	8.8		0.050	mg/L	6010B
Potassium, Dissolve	ed	1.5		1.0	mg/L	6010B
Sodium, Dissolved		6.1		1.0	mg/L	6010B
Manganese, Dissolv	/ed	1.2		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		0.12		0.060	mg/L	6010B
Barium, Total		0.0035		0.0010	mg/L	6020
Manganese, Total		1.2		0.0010	mg/L	6020

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-90968-11	MW-29A					
Depth to water		14.68			ft	Field Sampling
Specific Conductivit	y	87			umhos/cm	Field Sampling
Dissolved Oxygen		0.23			mg/L	Field Sampling
eH		45.6			millivolts	Field Sampling
Turbidity		8.87			NTU	Field Sampling
Temperature		11.34			Degrees C	Field Sampling
pН		6.96			SU	Field Sampling
Chloride		1.7		1.0	mg/L	300.0
Ammonia (as N)		0.075		0.030	mg/L	350.1
Alkalinity, Total (As	CaCO3)	47		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	47		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	58		5.0	mg/L	SM 2540C
Total Suspended So	olids	4.0		4.0	mg/L	SM 2540D
Total Organic Carbo	on - Average	1.7		1.0	mg/L	SM 5310B
Dissolved						
Calcium, Dissolved		7.4		0.040	mg/L	6010B
Iron, Dissolved		4.1		0.060	mg/L	6010B
Magnesium, Dissolv	/ed	4.5		0.050	mg/L	6010B
Sodium, Dissolved		3.6		1.0	mg/L	6010B
Manganese, Dissolv	/ed	1.4		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		4.6		0.060	mg/L	6010B
Barium, Total		0.010		0.0010	mg/L	6020
Manganese, Total		1.4		0.0010	mg/L	6020

METHOD SUMMARY

Client: Waste Management Job Number: 280-90968-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6010B	SW846 3005A
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN		SW846 3005A FIELD_FLTRD
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6020	SW846 3005A
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN		SW846 3005A FIELD_FLTRD
Anions, Ion Chromatography	TAL DEN	MCAWW 300.0	
Nitrogen, Ammonia	TAL DEN	MCAWW 350.1	
Nitrate	TAL DEN	EPA 353.2	
Alkalinity	TAL DEN	SM SM 2320B	
Solids, Total Dissolved (TDS)	TAL DEN	SM SM 2540C	
Solids, Total Suspended (TSS)	TAL DEN	SM SM 2540D	
Organic Carbon, Total (TOC)	TAL DEN	SM SM 5310B	
Field Sampling	TAL DEN	EPA Field Samp	oling
Volatile Organic Compounds by GC/MS Purge and Trap	TAL BUF TAL BUF	SW846 8260C	SW846 5030C
Volatile Organic Compounds (GC/MS) Purge and Trap	TAL BUF TAL BUF	SW846 8260C S	SIM SW846 5030C

Lab References:

TAL BUF = TestAmerica Buffalo

TAL DEN = TestAmerica Denver

Method References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
SW846 8260C	Archer, Nicholas E	NEA
SW846 8260C SIM	Dias, Nicole M	NMD1
SW846 6010B SW846 6010B	Diaz, Luis R Lackey, Cara M	LRD CML
SW846 6020	Trudell, Lynn-Anne M	LMT
EPA Field Sampling	Krisorn, Chamaiporn 1	C1K
MCAWW 300.0	Benson, Alex F	AFB
MCAWW 350.1	Spedale, Morgan A	MAS
EPA 353.2	Allen, Andrew J	AJA
SM SM 2320B	Carter, Melynda M	MMC
SM SM 2540C	Pedrick, Joshua A	JAP
SM SM 2540D	Cherry, Scott V	SVC
SM SM 5310B	Jewell, Connie C	CCJ

SAMPLE SUMMARY

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
280-90968-1	MW-13A	Water	11/14/2016 1004	11/15/2016 1217
280-90968-2	MW-13B	Water	11/14/2016 1135	11/15/2016 1217
280-90968-3	MW-16	Water	11/14/2016 1248	11/15/2016 1217
280-90968-4	MW-39	Water	11/14/2016 1354	11/15/2016 1217
280-90968-5	MW-4	Water	11/14/2016 1500	11/15/2016 1217
280-90968-6	MW-43	Water	11/14/2016 1158	11/15/2016 1217
280-90968-7	MW-20	Water	11/14/2016 1329	11/15/2016 1217
280-90968-8FD	DUP2	Water	11/14/2016 1339	11/15/2016 1217
280-90968-9	MW-19C	Water	11/14/2016 1428	11/15/2016 1217
280-90968-10TB	TRIP BLANK	Water	11/14/2016 0000	11/15/2016 1217
280-90968-11	MW-29A	Water	11/14/2016 1244	11/15/2016 1217

SAMPLE RESULTS

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13A

Lab Sample ID: 280-90968-1 Date Sampled: 11/14/2016 1004

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9806.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1144 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1144

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.75	1.0
Chloroethane	ND		0.32	1.0
Smoroditario	110		0.02	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13A

Lab Sample ID: 280-90968-1 Date Sampled: 11/14/2016 1004 Client Matrix:

Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

480-333215 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9806.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1144

Prep Date: 11/23/2016 1144

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.72	1.0
	ND		0.29	1.0
Ethylbenzene				
Hexachlorobutadiene	ND ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13A

Lab Sample ID: 280-90968-1 Date Sampled: 11/14/2016 1004

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9806.D

Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 11/23/2016 1144 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1144

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10377 - 1204-Bromofluorobenzene (Surr)9973 - 120Toluene-d8 (Surr)10180 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13A

Lab Sample ID: 280-90968-1 Date Sampled: 11/14/2016 1004

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9806.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1144 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1144

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13B

Lab Sample ID: 280-90968-2 Date Sampled: 11/14/2016 1135 Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333215 Analysis Method: 8260C Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9807.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1207

Prep Date: 11/23/2016 1207

Analyte	Result (ug/L)	Qualifier	MDL	RL
I,1,1,2-Tetrachloroethane	ND		0.35	1.0
I,1,1-Trichloroethane	ND		0.82	1.0
I,1,2,2-Tetrachloroethane	ND		0.21	1.0
I,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
I,1,2-Trichloroethane	ND		0.23	1.0
I,1-Dichloroethane	ND		0.38	1.0
I,1-Dichloroethene	ND		0.29	1.0
I,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
I,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
I,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
l,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
I,4-Dichlorobenzene	ND		0.84	1.0
I,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
I-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13B

 Lab Sample ID:
 280-90968-2
 Date Sampled: 11/14/2016 1135

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9807.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1207 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1207

Chioroform	Analyte	Result (ug/L)	Qualifier	MDL	RL
cis-1.2-Dichloroethene ND 0.81 1.0 cis-1.3-Dichloropropene ND 0.38 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromomethane ND 0.41 1.0 Dichlorofiluoromethane ND 0.68 1.0 Dichloromethane ND 0.88 1.0 Dichloromethane ND 0.88 1.0 Dichloromethane ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.74 1.0 Hexane ND 0.74 1.0 Hexane ND 0.30 1.0 Isopropyl ether ND 0.30 1.0 Isopropyl ether ND 0.59	Chloroform	ND		0.34	1.0
cis-13-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromochluromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.68 1.0 Ethyl acetate ND 0.68 1.0 Ethyl acetate ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 Ideam ND 0.40 10 Ideam ND 0.44 10 Ideam ND 0.48 25 Isopropylether ND 0.79 1.0 Methacylonitrile ND 0.69 5.0	Chloromethane	ND		0.35	1.0
Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofuoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isopropyle ther ND 0.30 1.0 Isopropyle ther ND 0.48 2.5 Isopropylearzene ND 0.79 1.0 Methylerbutylether <	cis-1,2-Dichloroethene	ND		0.81	1.0
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.68 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tent-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 Idodomethane ND 0.40 10 Isobutanol ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylether ND 0.59 1.0 Isopropylether ND 0.59 1.0 Methacyloritrile ND 0.59 1.0 Methacyloritrile ND 0.69 5.0 Methyl certale ND 0.16 1.0 Methylochexane ND 0.16	cis-1,3-Dichloropropene	ND		0.36	1.0
Dibromoethane ND 0.41 1.0 Dichlorodiffluoromethane ND 0.68 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylenzene ND 0.74 1.0 Hexanel ND 0.28 1.0 Hexanel ND 0.40 10 Idodomethane ND 0.30 1.0 Isobutanol ND 0.30 1.0 Isobutanol ND 0.59 1.0 Isopropylenzene ND 0.59 1.0 Methacrylonitrile ND 0.59 1.0 Methyl tert-butyl ether ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methyler Chloride ND 0.16 </td <td>Cyclohexane</td> <td>ND</td> <td></td> <td>0.18</td> <td>1.0</td>	Cyclohexane	ND		0.18	1.0
Dichlorodifluoromethane ND 0.68 1.0 Ethyl acetate ND 0.34 1.0 Ethyl ether ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexanel ND 0.40 10 Idexanchlorobutadiene ND 0.40 10 Idexanel ND 0.40 10 Idexanel ND 0.40 10 Idedomethane ND 0.40 10 Idedomethane ND 0.30 1.0 Isopropylether ND 0.30 1.0 Isopropylether ND 0.59 1.0 Isopropylether ND 0.79 1.0 Methacyloritile ND 0.79 1.0 Methylether-butyl ether ND 0.16 1.0 Methylether-butylether ND 0.16 1.0 </td <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>0.32</td> <td>1.0</td>	Dibromochloromethane	ND		0.32	1.0
Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 lodomethane ND 0.48 25 losporpylether ND 0.59 1.0 lodomethane ND 0.59 1.0 lospropylether ND 0.59 1.0 lodomethane ND 0.69 5.0 Methylacetare ND 0.69 5.0 Methylacetare ND 0.16 1.0 <t< td=""><td>Dibromomethane</td><td>ND</td><td></td><td>0.41</td><td>1.0</td></t<>	Dibromomethane	ND		0.41	1.0
Ethyl acetate ND 0.66 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacyrolnitrile ND 0.79 1.0 Methylacetate ND 0.79 1.0 Methylacetate ND 0.16 1.0 Methylacetate ND 0.44 1.	Dichlorodifluoromethane	ND			1.0
Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexane ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropyl ether ND 0.69 5.0 Methyl ether ND 0.69 5.0 Methyl ether ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 <td>Dichlorofluoromethane</td> <td>ND</td> <td></td> <td>0.34</td> <td>1.0</td>	Dichlorofluoromethane	ND		0.34	1.0
Ethyl tert-butlyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexane ND 0.28 1.0 Hexane ND 0.40 10 Idodmethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropylebrzene ND 0.59 1.0 Methylacytene ND 0.69 5.0 Methylacytolythrile ND 0.69 5.0 Methylacyther butly ether ND 0.16 1.0 Methylacytoloexane ND 0.16 1.0 Methyler-Chloride ND 0.16 1.0 Methyler-Chloride ND 0.44 1.0 m-Xylere & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.66 2.0 Naphthalene ND 0.69 1.0 o-Chlorotoluene ND 0.69 1.0	Ethyl acetate	ND			1.0
Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobropyle defer ND 0.59 1.0 Isopropylebrzene ND 0.79 1.0 Methylacerete ND 0.69 5.0 Methylacerete ND 0.69 5.0 Methylacerete ND 0.16 1.0 Methylyletr-butyl ether ND 0.16 1.0 Methylyletr-butyl ether ND 0.16 1.0 Methylyletr-butyl ether ND 0.16 1.0 Methylecyclohexane ND 0.16 1.0 Methyl tert-butyl ether ND 0.66 2.0 ND 0.64 </td <td>Ethyl ether</td> <td>ND</td> <td></td> <td>0.72</td> <td>1.0</td>	Ethyl ether	ND		0.72	1.0
Hexane ND 0.48 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methylacytonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methyleryclohexane ND 0.16 1.0 Methylere Chloride ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 o-Chlorotoluene ND 0.84	Ethyl tert-butyl ether	ND		0.29	1.0
Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropyl ether ND 0.79 1.0 Isopropyl ether ND 0.69 5.0 Methacylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.66 2.0 Maphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylene ND	Ethylbenzene	ND			1.0
Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methancrylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methyleur-butyl ether ND 0.16 1.0 Methyleuc-Chloride ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86	Hexachlorobutadiene	ND		0.28	1.0
Isobutanol ND	Hexane	ND		0.40	10
Isopropyle ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 ND 0.69 5.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 Methylene Chloride ND 0.44 1.0 Methylene Chloride ND 0.66 2.0 Maphthalene ND 0.66 2.0 Maphthalene ND 0.64 1.0 Methylenzene ND 0.64 1.0 Methylenzene ND 0.64 1.0 Methylenzene ND 0.64 1.0 Methylenzene ND 0.69 1.0 Methylenzene ND 0.69 1.0 Methylenzene ND 0.86 1.0 Methylenzene ND 0.76 1.0 Methylenzene ND 0.76 1.0 Methylenzene ND 0.75 1.	lodomethane	ND		0.30	1.0
Isopropylbenzene	Isobutanol	ND		4.8	25
Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 N-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81 <t< td=""><td>Isopropyl ether</td><td>ND</td><td></td><td>0.59</td><td>1.0</td></t<>	Isopropyl ether	ND		0.59	1.0
Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81 1.	Isopropylbenzene	ND		0.79	1.0
Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.51 <t< td=""><td>Methacrylonitrile</td><td>ND</td><td></td><td>0.69</td><td>5.0</td></t<>	Methacrylonitrile	ND		0.69	5.0
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0	Methyl acetate	ND		1.3	2.5
Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.75 1.0 Styrene ND 0.27 1.0 tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.37 1.0 </td <td>Methyl tert-butyl ether</td> <td>ND</td> <td></td> <td>0.16</td> <td>1.0</td>	Methyl tert-butyl ether	ND		0.16	1.0
m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 p-Cymene ND 0.75 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetra-Butylbenzene ND 0.81 1.0 Tetra-Butylbenzene ND 0.36 1.0 Tetra-Butylbenzene ND 0.36 1.0 Tetra-Butylbenzene ND 0.36 1.0 Tetra-Butylbenzene ND 0.36 <t< td=""><td>Methylcyclohexane</td><td>ND</td><td></td><td>0.16</td><td>1.0</td></t<>	Methylcyclohexane	ND		0.16	1.0
Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 Trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloroethene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichlorofluoromethane ND	Methylene Chloride	ND		0.44	1.0
n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND	m-Xylene & p-Xylene	ND		0.66	2.0
N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.51 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichlorofluoromethane ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND	Naphthalene	ND		0.43	1.0
o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrabloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.51 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	n-Butylbenzene	ND			1.0
o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	N-Propylbenzene	ND		0.69	1.0
p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.27 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	o-Chlorotoluene	ND			1.0
p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	· · · · · · · · · · · · · · · · · · ·				
sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	p-Chlorotoluene				1.0
Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					1.0
Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					1.0
tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	•				
Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					1.0
trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	Toluene				1.0
trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	trans-1,2-Dichloroethene				
Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
TrichlorofluoromethaneND0.881.0Vinyl acetateND0.855.0					1.0
Vinyl acetate ND 0.85 5.0					
Vinyl chloride ND 0.90 1.0					
	Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13B

 Lab Sample ID:
 280-90968-2
 Date Sampled: 11/14/2016 1135

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

Date Neceived. 11/10/2010 121/

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9807.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1207 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1207

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10477 - 1204-Bromofluorobenzene (Surr)10073 - 120Toluene-d8 (Surr)10280 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13B

Lab Sample ID: 280-90968-2 Date Sampled: 11/14/2016 1135

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9807.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1207 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1207

Targeted Tentatively Identified Compounds

Cas NumberAnalyteEst. Result (ug/L)Qualifier67-72-1Hexachloroethane TICND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-16

Lab Sample ID: 280-90968-3 Date Sampled: 11/14/2016 1248

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9808.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1230 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1230 Prep Date: 11/23/2016 1230

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-16

Lab Sample ID: 280-90968-3 Date Sampled: 11/14/2016 1248

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9808.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1230 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1230

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND ND		0.40	1.0
lodomethane	ND		0.40	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
			1.3	5.0
Tetrahydrofuran	ND ND			
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND NB		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-16

Lab Sample ID: 280-90968-3 Date Sampled: 11/14/2016 1248

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9808.D

Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 11/23/2016 1230 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1230

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10677 - 1204-Bromofluorobenzene (Surr)9973 - 120Toluene-d8 (Surr)10380 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-16

Lab Sample ID: 280-90968-3 Date Sampled: 11/14/2016 1248

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9808.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1230 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1230

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-39

Lab Sample ID: 280-90968-4 Date Sampled: 11/14/2016 1354

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9809.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1253 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1253

1,1,1,2-Tetrachloroethane ND 0.35 1.0 1,1,1-Trichloroethane ND 0.82 1.0 1,1,2,2-Tetrachloroethane ND 0.21 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.31 1.0 1,1,2-Trichloroethane ND 0.23 1.0 1,1-Dichloroethane ND 0.38 1.0 1,1-Dichloroethane ND 0.29 1.0 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0 1,2,3-Trichloropropane ND 0.89 1.0	
1,1,2,2-Tetrachloroethane ND 0.21 1.0 1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.31 1.0 1,1,2-Trichloroethane ND 0.23 1.0 1,1-Dichloroethane ND 0.38 1.0 1,1-Dichloroethene ND 0.29 1.0 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.31 1.0 1,1,2-Trichloroethane ND 0.23 1.0 1,1-Dichloroethane ND 0.38 1.0 1,1-Dichloroethene ND 0.29 1.0 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0	
1,1,2-Trichloroethane ND 0.23 1.0 1,1-Dichloroethane ND 0.38 1.0 1,1-Dichloroethene ND 0.29 1.0 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0	
1,1,2-Trichloroethane ND 0.23 1.0 1,1-Dichloroethane ND 0.38 1.0 1,1-Dichloroethene ND 0.29 1.0 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0	
1,1-Dichloroethene ND 0.29 1.0 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0	
1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0	
1,2,3-Trichlorobenzene ND 0.41 1.0	
1,2,3-Trichloropropane ND 0.89 1.0	
. / /	
1,2,4-Trichlorobenzene ND 0.41 1.0	
1,2,4-Trimethylbenzene ND 0.75 1.0	
1,2-Dibromo-3-Chloropropane ND 0.39 1.0	
1,2-Dibromoethane (EDB) ND 0.73 1.0	
1,2-Dichlorobenzene ND 0.79 1.0	
1,2-Dichloroethane ND 0.21 1.0	
1,2-Dichloroethene, Total ND 0.81 2.0	
1,2-Dichloropropane ND 0.72 1.0	
1,3,5-Trichlorobenzene ND 0.23 1.0	
1,3,5-Trimethylbenzene ND 0.77 1.0	
1,3-Dichlorobenzene ND 0.78 1.0	
1,3-Dichloropropane ND 0.75 1.0	
1,4-Dichlorobenzene ND 0.84 1.0	
1,4-Dioxane ND 9.3 40	
2,2-Dichloropropane ND 0.40 1.0	
2-Butanone (MEK) ND 1.3 10	
2-Chloroethyl vinyl ether ND 0.96 5.0	
2-Hexanone ND 1.2 5.0	
4-Methyl-2-pentanone (MIBK) ND 2.1 5.0	
Acetone ND 3.0 10	
Acetonitrile ND 4.9 15	
Acrolein ND 0.91 20	
Acrylonitrile ND 0.83 5.0	
Benzene ND 0.41 1.0	
Bromobenzene ND 0.80 1.0	
Bromochloromethane ND 0.87 1.0	
Bromodichloromethane ND 0.39 1.0	
Bromoform ND 0.26 1.0	
Bromomethane ND 0.69 1.0	
Butyl alcohol, n- ND 8.9 40	
Butyl alcohol, tert- ND 3.3 10	
Carbon disulfide ND 0.19 1.0	
Carbon tetrachloride ND 0.27 1.0	
Chlorobenzene ND 0.75 1.0	
Chlorodifluoromethane ND 0.26 1.0	
Chloroethane ND 0.32 1.0	

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-39

Lab Sample ID: 280-90968-4 Date Sampled: 11/14/2016 1354

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9809.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1253 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1253

Chloroform ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromomethane ND 0.41 1.0 Dichlorofiluoromethane ND 0.68 1.0 Dichlorofiluoromethane ND 0.34 1.0 Dichlorofiluoromethane ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tether with ether ND 0.72 1.0 Ethyl tether with ether ND 0.74 1.0 Hexane ND 0.74 1.0 Hexane ND 0.28 1.0 Hexane ND 0.30 1.0 Isopropyl ether ND 0.5	
cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.18 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromochloromethane ND 0.41 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.28 1.0 Hexane ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isopropylether ND <t< td=""><td></td></t<>	
cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.30 1.0 Isopropyleiber ND 0.30 1.0 Isopropyleibe	
Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tether ND 0.29 1.0 Ethyl teth-butyl ether ND 0.29 1.0 Ethyl tether ND 0.29 1.0 Ethyl tether ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isopropylether ND 0.59 1.0 Isopropylether ND 0.59 <	
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Ethyl benzene ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 lsopropyl ether ND 0.59 1.0 lsopropyleberzene ND 0.59 1.0 Methacylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl cetatyl ether ND 0.16 1.0 Methyl cetatyl ether ND	
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Ethyl benzene ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylenzene ND 0.59 1.0 Methacylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl acetate ND 0.16 1.0 Methylenc Chloride ND 0.16	
Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobropyl ether ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylehrzene ND 0.59 1.0 Methyl exteate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylene Chloride ND 0.16	
Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iedomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 0.30 1.0 Isobutanol ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropylebrazene ND 0.79 1.0 Methactylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl ether ND 0.16 1.0 Methyl ether ND 0.16 1.0	
Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Isobrane ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylebazene ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.79 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.6	
Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND	
Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iedomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.16 1.0 Methylene Chloride ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.64	
Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methylacylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl ether-butyl ether ND 0.16 1.0 Methyleer-butyl ether ND 0.16 1.0 Methylee-Chloride ND 0.16 1.0 Methylee-Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.43 1.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.69 <td></td>	
Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl cactate ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.64 1.0 n-Butylbenzene ND 0.64 1.0 n-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.76 1.0 o-Xylene ND 0.86 1.0	
Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 N-Propylbenzene ND 0.69 1.0 O-Chlorotoluene ND 0.86 1.0 O-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW	
Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.76 1.0 o-Xylene ND 0.84 1.0 <td></td>	
Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 Methylcene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.63 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75	
Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 n-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Isopropylbenzene	
Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Methylene Chloride ND 0.44 1.0 M-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 N-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
sec-Butylbenzene ND 0.75 1.0	
sec-Butylbenzene ND 0.75 1.0	
Tert-amyl methyl ether ND 0.27 1.0	
tert-Butylbenzene ND 0.81 1.0	
Tetrachloroethene ND 0.36 1.0	
Tetrahydrofuran ND 1.3 5.0	
Toluene ND 0.51 1.0	
trans-1,2-Dichloroethene ND 0.90 1.0	
trans-1,3-Dichloropropene ND 0.37 1.0	
trans-1,4-Dichloro-2-butene ND 0.22 1.0	
Trichloroethene ND 0.22 1.0	
Vinyl chloride ND 0.90 1.0	

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-39

Lab Sample ID: 280-90968-4 Date Sampled: 11/14/2016 1354

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9809.D

Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 11/23/2016 1253 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1253

Surrogate %Rec Qualifier Acceptance Limits
1,2-Dichloroethane-d4 (Surr) 102 77 - 120
4-Bromofluorobenzene (Surr) 100 73 - 120
Toluene-d8 (Surr) 102 80 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-39

Lab Sample ID: 280-90968-4 Date Sampled: 11/14/2016 1354

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9809.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1253 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1253

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-4

Lab Sample ID: 280-90968-5 Date Sampled: 11/14/2016 1500 Client Matrix:

Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

480-333215 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9812.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1402 Prep Date: 11/23/2016 1402

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND ND		0.75	1.0
1,2-Dibromoethane (EDB)	ND ND		0.73	1.0
1,2-Dichlorobenzene	ND ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
	ND ND		0.83	5.0
Acrylonitrile Benzene				
	ND ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-4

Lab Sample ID: 280-90968-5 Date Sampled: 11/14/2016 1500

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9812.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1402 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1402

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dibromochloromethane	ND		0.32	1.0	
Dibromomethane	ND		0.41	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Dichlorofluoromethane	ND		0.34	1.0	
Ethyl acetate	ND		0.66	1.0	
Ethyl ether	ND		0.72	1.0	
Ethyl tert-butyl ether	ND		0.29	1.0	
Ethylbenzene	ND		0.74	1.0	
Hexachlorobutadiene	ND		0.28	1.0	
Hexane	ND		0.40	10	
lodomethane	ND		0.30	1.0	
Isobutanol	ND		4.8	25	
Isopropyl ether	ND		0.59	1.0	
Isopropylbenzene	ND		0.79	1.0	
Methacrylonitrile	ND		0.69	5.0	
Methyl acetate	ND		1.3	2.5	
Methyl tert-butyl ether	ND		0.16	1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND		0.44	1.0	
m-Xylene & p-Xylene	ND		0.66	2.0	
Naphthalene	ND		0.43	1.0	
n-Butylbenzene	ND		0.64	1.0	
N-Propylbenzene	ND		0.69	1.0	
o-Chlorotoluene	ND		0.86	1.0	
o-Xylene	ND		0.76	1.0	
p-Chlorotoluene	ND		0.84	1.0	
p-Cymene	ND		0.31	1.0	
sec-Butylbenzene	ND		0.75	1.0	
Styrene	ND		0.73	1.0	
Tert-amyl methyl ether	ND		0.27	1.0	
tert-Butylbenzene	ND		0.81	1.0	
Tetrachloroethene	ND		0.36	1.0	
Tetrahydrofuran	ND		1.3	5.0	
Toluene	ND		0.51	1.0	
trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,3-Dichloropropene	ND		0.37	1.0	
trans-1,4-Dichloro-2-butene	ND		0.22	1.0	
Trichloroethene	ND		0.46	1.0	
Trichlorofluoromethane	ND		0.88	1.0	
Vinyl acetate	ND		0.85	5.0	
Vinyl chloride	ND		0.90	1.0	

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-4

Lab Sample ID: 280-90968-5 Date Sampled: 11/14/2016 1500

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9812.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1402 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1402

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10677 - 1204-Bromofluorobenzene (Surr)9873 - 120Toluene-d8 (Surr)10180 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-4

Lab Sample ID: 280-90968-5 Date Sampled: 11/14/2016 1500

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9812.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1402 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1402

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-43

 Lab Sample ID:
 280-90968-6
 Date Sampled: 11/14/2016 1158

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

480-333215 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9813.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL 11/23/2016 1425

Analysis Date: 11/23/2016 1425 Prep Date: 11/23/2016 1425

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-43

Lab Sample ID: 280-90968-6 Date Sampled: 11/14/2016 1158

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9813.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1425 Final Weight/Volume: 5 mL

Chloroform ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromomethane ND 0.41 1.0 Dichlorofiluoromethane ND 0.68 1.0 Dichlorofiluoromethane ND 0.34 1.0 Dichlorofiluoromethane ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tether with ether ND 0.72 1.0 Ethyl tether with ether ND 0.74 1.0 Hexane ND 0.74 1.0 Hexane ND 0.28 1.0 Hexane ND 0.30 1.0 Isopropyl ether ND 0.5	
cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.18 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromochloromethane ND 0.41 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.28 1.0 Hexane ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isopropylehrer ND <t< td=""><td></td></t<>	
cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.30 1.0 Isopropyleiber ND 0.30 1.0 Isopropyleibe	
Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tether ND 0.29 1.0 Ethyl teth-butyl ether ND 0.29 1.0 Ethyl tether ND 0.29 1.0 Ethyl tether ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isopropylether ND 0.59 1.0 Isopropylether ND 0.59 <	
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Ethyl benzene ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 lsopropyl ether ND 0.59 1.0 lsopropyleberzene ND 0.59 1.0 Methacylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl cetatyl ether ND 0.16 1.0 Methyl cetatyl ether ND	
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Ethyl benzene ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.40 10 lsobrutanol ND 4.8 25 lsopropyl ether ND 0.59 1.0 lsopropylenzene ND 0.59 1.0 Methacylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16	
Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobropyl ether ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylehrzene ND 0.59 1.0 Methyl exteate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylene Chloride ND 0.16	
Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iedomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 0.30 1.0 Isobutanol ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropylebrazene ND 0.79 1.0 Methactylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl ether ND 0.16 1.0 Methyl ether ND 0.16 1.0	
Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Isobrane ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylebazene ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.79 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.6	
Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND	
Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iedomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.16 1.0 Methylene Chloride ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.64	
Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methylacylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl ether-butyl ether ND 0.16 1.0 Methyleer-butyl ether ND 0.16 1.0 Methylee-Chloride ND 0.16 1.0 Methylee-Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.43 1.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.69 <td></td>	
Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl cactate ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.64 1.0 n-Butylbenzene ND 0.64 1.0 n-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.76 1.0 o-Xylene ND 0.86 1.0	
Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 N-Propylbenzene ND 0.69 1.0 O-Chlorotoluene ND 0.86 1.0 O-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW	
Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.76 1.0 o-Xylene ND 0.84 1.0 <td></td>	
Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 Methylcene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.63 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75	
Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 n-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Isopropylbenzene	
Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Methylene Chloride ND 0.44 1.0 M-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 N-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
sec-Butylbenzene ND 0.75 1.0	
sec-Butylbenzene ND 0.75 1.0	
Tert-amyl methyl ether ND 0.27 1.0	
tert-Butylbenzene ND 0.81 1.0	
Tetrachloroethene ND 0.36 1.0	
Tetrahydrofuran ND 1.3 5.0	
Toluene ND 0.51 1.0	
trans-1,2-Dichloroethene ND 0.90 1.0	
trans-1,3-Dichloropropene ND 0.37 1.0	
trans-1,4-Dichloro-2-butene ND 0.22 1.0	
Trichloroethene ND 0.22 1.0	
Vinyl chloride ND 0.90 1.0	

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-43

Lab Sample ID: 280-90968-6 Date Sampled: 11/14/2016 1158

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9813.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1425 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1425

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10477 - 1204-Bromofluorobenzene (Surr)9573 - 120Toluene-d8 (Surr)9980 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-43

Lab Sample ID: 280-90968-6 Date Sampled: 11/14/2016 1158

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9813.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1425 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1425

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier

67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-20

Lab Sample ID: 280-90968-7 Date Sampled: 11/14/2016 1329

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9814.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1448 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1448
Prep Date: 11/23/2016 1448

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-20

Lab Sample ID: 280-90968-7 Date Sampled: 11/14/2016 1329

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9814.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1448 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
Iodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl acetate Vinyl chloride	ND		0.83	1.0
Virgi Silionae	ND		0.00	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-20

Lab Sample ID: 280-90968-7 Date Sampled: 11/14/2016 1329

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9814.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1448 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1448

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10477 - 1204-Bromofluorobenzene (Surr)9973 - 120Toluene-d8 (Surr)10280 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-20

Lab Sample ID: 280-90968-7 Date Sampled: 11/14/2016 1329

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9814.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1448 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1448

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: DUP2

Lab Sample ID: 280-90968-8FD Date Sampled: 11/14/2016 1339

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333215 Analysis Method: 8260C Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9815.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1511

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: DUP2

Lab Sample ID: 280-90968-8FD Date Sampled: 11/14/2016 1339

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9815.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1511 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND NB		0.36	1.0
Tetrahydrofuran	ND NB		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: DUP2

Lab Sample ID: 280-90968-8FD Date Sampled: 11/14/2016 1339

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9815.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1511 Final Weight/Volume: 5 mL

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	103		77 - 120
4-Bromofluorobenzene (Surr)	97		73 - 120
Toluene-d8 (Surr)	100		80 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: DUP2

Lab Sample ID: 280-90968-8FD Date Sampled: 11/14/2016 1339

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9815.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1511 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1511

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-19C

 Lab Sample ID:
 280-90968-9
 Date Sampled: 11/14/2016 1428

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

480-333215 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9816.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL 11/23/2016 1534

Analysis Date: 11/23/2016 1534 Prep Date: 11/23/2016 1534

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-19C

Lab Sample ID: 280-90968-9 Date Sampled: 11/14/2016 1428

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9816.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1534 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
			0.74	1.0
Hexachlorobutadiene	ND ND		0.28	
Hexane	ND ND			10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND ND		0.90	1.0
	ND ND		0.90	1.0
trans-1,3-Dichloropropene				
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	0.99	J	0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate Vinyl chloride	ND ND		0.85 0.90	5.0 1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-19C

Lab Sample ID: 280-90968-9 Date Sampled: 11/14/2016 1428

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9816.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1534 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1534

Surrogate %Rec Qualifier Acceptance Limits
1,2-Dichloroethane-d4 (Surr) 100 77 - 120
4-Bromofluorobenzene (Surr) 98 73 - 120
Toluene-d8 (Surr) 102 80 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-19C

Lab Sample ID: 280-90968-9 Date Sampled: 11/14/2016 1428

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9816.D

Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 11/23/2016 1534 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1534

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier

67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-90968-10TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333215 Analysis Method: 8260C Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9817.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1558

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-90968-10TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9817.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1558 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-90968-10TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9817.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1558 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1558

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10577 - 1204-Bromofluorobenzene (Surr)9873 - 120Toluene-d8 (Surr)10080 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-90968-10TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9817.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1558 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1558

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9818.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1621 Final Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1621 Prep Date: 11/23/2016 1621

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9818.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1621 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND ND		0.40	1.0
			0.40	
lodomethane	ND			1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND 		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
			1.3	
Tetrahydrofuran Toluene	ND ND		0.51	5.0
	ND ND			1.0
trans-1,2-Dichloroethene	ND ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9818.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/23/2016 1621 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1621

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10277 - 1204-Bromofluorobenzene (Surr)9673 - 120Toluene-d8 (Surr)10280 - 120

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333215 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S9818.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1621 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1621

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13A

Lab Sample ID: 280-90968-1 Date Sampled: 11/14/2016 1004

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1437.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0019 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0019

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 0.0080
 J B
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)9750 - 150TBA-d9 (Surr)9150 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13B

Lab Sample ID: 280-90968-2 Date Sampled: 11/14/2016 1135

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1438.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0043 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0043

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 100 50 - 150

TBA-d9 (Surr) 96 50 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-16

Lab Sample ID: 280-90968-3 Date Sampled: 11/14/2016 1248

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1439.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0107 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0107

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)10050 - 150TBA-d9 (Surr)10250 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-39

Lab Sample ID: 280-90968-4 Date Sampled: 11/14/2016 1354

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1440.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0131 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0131

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 98 50 - 150

TBA-d9 (Surr) 117 50 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-4

Lab Sample ID: 280-90968-5 Date Sampled: 11/14/2016 1500

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1441.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0155 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0155

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 0.0095
 J B
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 101 50 - 150

TBA-d9 (Surr) 104 50 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-43

Lab Sample ID: 280-90968-6 Date Sampled: 11/14/2016 1158

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1442.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0220 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0220

Analyte Result (ug/L) Qualifier MDL RL
Vinyl chloride ND 0.0040 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)10050 - 150TBA-d9 (Surr)11150 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-20

Lab Sample ID: 280-90968-7 Date Sampled: 11/14/2016 1329

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1443.D Dilution: 1.0 Initial Weight/Volume: 25 mL

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0244 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0244

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)10050 - 150TBA-d9 (Surr)10550 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: DUP2

Lab Sample ID: 280-90968-8FD Date Sampled: 11/14/2016 1339

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1444.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0309 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0309

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)9850 - 150TBA-d9 (Surr)11550 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-19C

Lab Sample ID: 280-90968-9 Date Sampled: 11/14/2016 1428

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1445.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0333 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0333

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 0.029
 B
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)10150 - 150TBA-d9 (Surr)12150 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-90968-10TB Date Sampled: 11/14/2016 0000

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1446.D Dilution: 1.0 Initial Weight/Volume: 25 mL

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0357 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0357

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)10250 - 150TBA-d9 (Surr)12550 - 150

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332057 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1447.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/17/2016 0421 Final Weight/Volume: 25 mL

Prep Date: 11/17/2016 0421

Analyte Result (ug/L) Qualifier MDL RL
Vinyl chloride ND 0.0040 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)10250 - 150TBA-d9 (Surr)11050 - 150

Job Number: 280-90968-1 Client: Waste Management

Client Sample ID: MW-13A

Lab Sample ID: 280-90968-1 Date Sampled: 11/14/2016 1004

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0523 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Result (mg/L) Qualifier RL RL Analyte Cobalt, Total ND 0.0030 0.0030

Iron, Total 0.073 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT 025

Prep Method: 3005A Prep Batch: 280-353142 25D120916.asc Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0252 50 Final Weight/Volume: mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 0.040 0.040 16 Iron, Dissolved ND 0.060 0.060

Magnesium, Dissolved 10 0.050 0.050 Potassium, Dissolved ND 1.0 1.0 5.4 1.0 1.0 Sodium, Dissolved

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT 077 Prep Method: 084SMPL.d 3005A Prep Batch: 280-352238 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1732 Final Weight/Volume: 50 mL

11/25/2016 0725 Prep Date:

Analyte Result (mg/L) Qualifier RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.0028 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 ND Chromium, Total 0.0030 0.0030 Copper, Total 0.0021 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Manganese, Total ND 0.0010 0.0010 ND 0.0040 0.0040 Nickel, Total Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total 0.0039 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13A

Lab Sample ID: 280-90968-1 Date Sampled: 11/14/2016 1004

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 185SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/23/2016 2354 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved ND 0.0010 0.0010

TestAmerica Denver Page 75 of 195 12/11/2016

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13B

Lab Sample ID: 280-90968-2 Date Sampled: 11/14/2016 1135

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0526 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Sodium, Dissolved

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

 Iron, Total
 ND
 0.060
 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353142 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0255 Final Weight/Volume: 50 ml

Analysis Date: 12/10/2016 0255 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 17 0.040 0.040 Iron, Dissolved ND 0.060 0.060 Magnesium, Dissolved 9.3 0.050 0.050 Potassium, Dissolved ND 1.0 1.0

5.1

6020 Metals (ICP/MS)-Total Recoverable

1.0

1.0

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352238 Lab File ID: 092SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1802 Final Weight/Volume: 50 mL Prep Date: 11/25/2016 0725

Analyte Result (mg/L) Qualifier RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.0029 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 0.0036 Chromium, Total 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Manganese, Total ND 0.0010 0.0010 ND 0.0040 0.0040 Nickel, Total Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total 0.0061 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-13B

Lab Sample ID: 280-90968-2 Date Sampled: 11/14/2016 1135

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 186SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/23/2016 2357 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 0.0012 0.0010 0.0010

Job Number: 280-90968-1 Client: Waste Management

Client Sample ID: MW-16

Lab Sample ID: 280-90968-3 Date Sampled: 11/14/2016 1248

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analysis Date: 11/29/2016 0538

Prep Date: 11/23/2016 1445

Vanadium, Total

Zinc, Total

Result (mg/L) Qualifier RL RL Analyte Cobalt, Total ND 0.0030 0.0030 Iron, Total 0.12 0.060 0.060

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT 025

Prep Method: 3005A Prep Batch: 280-353142 25D120916.asc Lab File ID:

6010B Metals (ICP)-Dissolved

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 50 12/10/2016 0257 Final Weight/Volume: mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 9.6 0.040 0.040 Iron, Dissolved ND 0.060 0.060 Magnesium, Dissolved 5.9 0.050 0.050

Potassium, Dissolved ND 1.0 1.0 5.0 1.0 1.0 Sodium, Dissolved

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT 077 Prep Method: 093SMPL.d 3005A Prep Batch: 280-352238 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1806 Final Weight/Volume: 50 mL 11/25/2016 0725 Prep Date:

Analyte Result (mg/L) Qualifier RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.0045 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 0.0085 Chromium, Total 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Manganese, Total 0.017 0.0010 0.0010 ND 0.0040 0.0040 Nickel, Total Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010

0.0020

0.0050

0.0020

0.0050

0.0049

0.0056

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-16

Lab Sample ID: 280-90968-3 Date Sampled: 11/14/2016 1248

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 187SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/24/2016 0001 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 0.0027 0.0010 0.0010

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-39

Lab Sample ID: 280-90968-4 Date Sampled: 11/14/2016 1354

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0541 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Sodium, Dissolved

Result (mg/L) Qualifier RLRL Analyte 0.0030 Cobalt, Total ND 0.0030

Iron, Total 0.80 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353142 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0300 50 Final Weight/Volume: mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL 0.040 Calcium, Dissolved 13 0.040 Iron, Dissolved 0.37 0.060 0.060 Magnesium, Dissolved 6.1 0.050 0.050 Potassium, Dissolved ND 1.0 1.0

1.0

1.0

6020 Metals (ICP/MS)-Total Recoverable

4.8

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT 077 Prep Method: 3005A Prep Batch: Lab File ID: 094SMPL.d

280-352238 Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1810 Final Weight/Volume: 50 mL

Prep Date: 11/25/2016 0725

Analyte	Result (mg/L)	Qualifier	RL	RL	
Antimony, Total	ND		0.0010	0.0010	
Barium, Total	0.0086		0.0010	0.0010	
Beryllium, Total	ND		0.0010	0.0010	
Cadmium, Total	ND		0.00020	0.00020	
Chromium, Total	ND		0.0030	0.0030	
Copper, Total	ND		0.0020	0.0020	
Lead, Total	ND		0.0010	0.0010	
Manganese, Total	0.017		0.0010	0.0010	
Nickel, Total	ND		0.0040	0.0040	
Selenium, Total	ND		0.0010	0.0010	
Silver, Total	ND		0.0020	0.0020	
Thallium, Total	ND		0.0010	0.0010	
Vanadium, Total	ND		0.0020	0.0020	
Zinc, Total	ND		0.0050	0.0050	

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-39

Lab Sample ID: 280-90968-4 Date Sampled: 11/14/2016 1354

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077 Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 188SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/24/2016 0005 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL

Manganese, Dissolved 0.0010 0.0010 0.020

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-4

Lab Sample ID: 280-90968-5 Date Sampled: 11/14/2016 1500

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0543 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Sodium, Dissolved

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

Iron, Total ND 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353142 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0302 Final Weight/Volume: 50 mL

3.0

Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 4.3 0.040 0.040 Iron, Dissolved ND 0.060 0.060 Magnesium, Dissolved 2.0 0.050 0.050 Potassium, Dissolved ND 1.0 1.0

1.0

1.0

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-352238 Lab File ID: 095SMPL.d

Prep Method: 3005A Prep Batch: 280-352238 Lab File ID: 095SMPL.d
Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1813 Final Weight/Volume: 50 mL Prep Date: 11/25/2016 0725

Analyte Result (mg/L) Qualifier RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.0019 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020

Lead, Total ND 0.0010 0.0010 Manganese, Total 0.21 0.0010 0.0010 ND 0.0040 0.0040 Nickel, Total Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010

 Thallium, Total
 ND
 0.0010
 0.0010

 Vanadium, Total
 ND
 0.0020
 0.0020

 Zinc, Total
 ND
 0.0050
 0.0050

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-4

Lab Sample ID: 280-90968-5 Date Sampled: 11/14/2016 1500

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 189SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/24/2016 0009 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 0.021 0.0010 0.0010

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-43

Lab Sample ID: 280-90968-6 Date Sampled: 11/14/2016 1158

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0546 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Sodium, Dissolved

Vanadium, Total

Zinc, Total

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

Iron, Total 0.24 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353142 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0305 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 3.2 0.040 0.040 Iron, Dissolved ND 0.060 0.060 Magnesium, Dissolved 1.4 0.050 0.050 Potassium, Dissolved ND 1.0 1.0

1.0

0.0020

0.0050

1.0

0.0020

0.0050

2.3

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352238 Lab File ID: 096SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1817 Final Weight/Volume: 50 mL

Prep Date: 11/25/2016 0725

Analyte Result (mg/L) Qualifier RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.0034 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 ND Chromium, Total 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Manganese, Total 0.036 0.0010 0.0010 ND 0.0040 0.0040 Nickel, Total Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010

ND

ND

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-43

Lab Sample ID: 280-90968-6 Date Sampled: 11/14/2016 1158

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 190SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/24/2016 0012 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 0.033 0.0010 0.0010

TestAmerica Denver Page 85 of 195 12/11/2016

Job Number: 280-90968-1 Client: Waste Management

Client Sample ID: MW-20

Lab Sample ID: 280-90968-7 Date Sampled: 11/14/2016 1329

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0548 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Sodium, Dissolved

Result (mg/L) Qualifier RL RL Analyte Cobalt, Total ND 0.0030 0.0030

Iron, Total 0.18 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT 025

Prep Method: 3005A Prep Batch: 280-353142 25D120916.asc Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 50 12/10/2016 0307 Final Weight/Volume: mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 19 0.040 0.040 Iron, Dissolved ND 0.060 0.060 Magnesium, Dissolved 0.050 0.050 11 Potassium, Dissolved 3.1 1.0 1.0

9.3

6020 Metals (ICP/MS)-Total Recoverable

1.0

1.0

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT 077 Prep Method: 097SMPL.d 3005A Prep Batch: 280-352238 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1821 Final Weight/Volume: 50 mL

11/25/2016 0725 Prep Date:

Result (mg/L) Analyte Qualifier RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.016 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Manganese, Total 0.45 0.0010 0.0010 0.0048 0.0040 0.0040 Nickel, Total Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total ND 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-20

Lab Sample ID: 280-90968-7 Date Sampled: 11/14/2016 1329

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 191SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/24/2016 0016 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved ND 0.0010 0.0010

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: DUP2

Lab Sample ID: 280-90968-8FD Date Sampled: 11/14/2016 1339

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0551 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Sodium, Dissolved

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

Iron, Total 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353142 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0310 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 19 0.040 0.040 Iron, Dissolved ND 0.060 0.060 Magnesium, Dissolved 0.050 0.050 11 Potassium, Dissolved 3.1 1.0 1.0

9.3

6020 Metals (ICP/MS)-Total Recoverable

1.0

1.0

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-352238 Lab File ID: 098SMPL.d

Prep Method: 3005A Prep Batch: 280-352238 Lab File ID: 098SMPL.d
Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1825 Final Weight/Volume: 50 mL Prep Date: 11/25/2016 0725

Analyte Result (mg/L) Qualifier RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.016 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 ND Chromium, Total 0.0030 0.0030

Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Manganese, Total 0.44 0.0010 0.0010 0.0058 0.0040 0.0040 Nickel, Total Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020

 Selerium, Total
 ND
 0.0010
 0.0010

 Silver, Total
 ND
 0.0020
 0.0020

 Thallium, Total
 ND
 0.0010
 0.0010

 Vanadium, Total
 0.0022
 0.0020
 0.0020

 Zinc, Total
 ND
 0.0050
 0.0050

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: DUP2

Lab Sample ID: 280-90968-8FD Date Sampled: 11/14/2016 1339

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 192SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/24/2016 0020 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved ND 0.0010 0.0010

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-19C

Lab Sample ID: 280-90968-9 Date Sampled: 11/14/2016 1428

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0554 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Sodium, Dissolved

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

Iron, Total 0.12 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353142 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0313 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier RLAnalyte RL 0.040 Calcium, Dissolved 16 0.040 0.064 Iron, Dissolved 0.060 0.060 Magnesium, Dissolved 8.8 0.050 0.050 Potassium, Dissolved 1.5 1.0 1.0

6.1

6020 Metals (ICP/MS)-Total Recoverable

1.0

1.0

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-352238 Lab File ID: 099SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1828 Final Weight/Volume: 50 mL

Prep Date: 11/25/2016 0725

Analyte	Result (mg/L)	Qualifier	RL	RL
Antimony, Total	ND		0.0010	0.0010
Barium, Total	0.0035		0.0010	0.0010
Beryllium, Total	ND		0.0010	0.0010
Cadmium, Total	ND		0.00020	0.00020
Chromium, Total	ND		0.0030	0.0030
Copper, Total	ND		0.0020	0.0020
Lead, Total	ND		0.0010	0.0010
Manganese, Total	1.2		0.0010	0.0010
Nickel, Total	ND		0.0040	0.0040
Selenium, Total	ND		0.0010	0.0010
Silver, Total	ND		0.0020	0.0020
Thallium, Total	ND		0.0010	0.0010
Vanadium, Total	ND		0.0020	0.0020
Zinc, Total	ND		0.0050	0.0050

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-19C

Lab Sample ID: 280-90968-9 Date Sampled: 11/14/2016 1428

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 193SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/24/2016 0024 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 1.2 0.0010 0.0010

Job Number: 280-90968-1 Client: Waste Management

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353463 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/29/2016 0556 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Sodium, Dissolved

Result (mg/L) Qualifier RL RL Analyte Cobalt, Total ND 0.0030 0.0030

Iron, Total 4.6 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT 025

Prep Method: 3005A Prep Batch: 280-353142 25D120916.asc Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 50 12/10/2016 0315 Final Weight/Volume: mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier Analyte RLRL Calcium, Dissolved 7.4 0.040 0.040 Iron, Dissolved 4.1 0.060 0.060 Magnesium, Dissolved 4.5 0.050 0.050 Potassium, Dissolved ND 1.0 1.0

3.6

6020 Metals (ICP/MS)-Total Recoverable

1.0

1.0

Analysis Method: 6020 Analysis Batch: 280-353261 Instrument ID: MT 077 Prep Method: 100SMPL.d 3005A Prep Batch: 280-352238 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/25/2016 1832 Final Weight/Volume: 50 mL

11/25/2016 0725 Prep Date:

Result (mg/L) Analyte Qualifier RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.010 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Manganese, Total 1.4 0.0010 0.0010 ND 0.0040 0.0040 Nickel, Total Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total ND 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050

Client: Waste Management Job Number: 280-90968-1

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353028 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-352489 Lab File ID: 194SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/24/2016 0027 Final Weight/Volume: 50 mL

Prep Date: 11/23/2016 1445

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 1.4 0.0010 0.0010

General Chemistry

Client Sample ID: MW-13A

 Lab Sample ID:
 280-90968-1
 Date Sampled:
 11/14/2016 1004

 Client Matrix:
 Water
 Date Received:
 11/15/2016 1217

Analyte		Result	Qual	Units	RL	RL	Dil	Method
Chloride		1.8		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-3	354768	Analysis Date:	12/08/20	16 1227			
Sulfate		2.0		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-3	354768	Analysis Date:	12/08/20	16 1227			
Ammonia (as N)		ND		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch: 280-3	352527	Analysis Date:	11/21/20	16 1611			
Nitrate as N		0.48		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-3	355103	Analysis Date:	12/11/20	16 0914			
Alkalinity, Total (A	As CaCO3)	92		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-3	352383	Analysis Date:	11/20/20	16 1441			
Alkalinity, Bicarbo	onate (As CaCO3)	92		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-3	352383	Analysis Date:	11/20/20	16 1441			
otal Dissolved S	Solids (TDS)	110		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 280-3	352412	Analysis Date:	11/21/20	16 1013			
Total Suspended	Solids	ND		mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch: 280-3	352044	Analysis Date:	11/17/20	16 1754			
Total Organic Ca	rbon - Average	ND		mg/L	1.0	1.0	1.0	SM 5310B
	Analysis Batch: 280-3	35/778	Analysis Data	12/07/20	16 1636			

General Chemistry

Client Sample ID: MW-13B

 Lab Sample ID:
 280-90968-2
 Date Sampled:
 11/14/2016 1135

 Client Matrix:
 Water
 Date Received:
 11/15/2016 1217

Analyte		Result	Qual	Units	RL	RL	Dil	Method
Chloride		1.9		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch:	280-354768	Analysis Date	: 12/08/20	16 1243			
Sulfate		3.0		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch:	280-354768	Analysis Date	: 12/08/20	16 1243			
Ammonia (as I	N)	ND		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch:	280-352527	Analysis Date	: 11/21/20	16 1627			
Nitrate as N		0.64		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch:	280-355103	Analysis Date	: 12/11/20	16 0914			
Alkalinity, Tota	I (As CaCO3)	80		mg/L	5.0	5.0	1.0	SM 2320E
	Analysis Batch:	280-352383	Analysis Date	: 11/20/20	16 1503			
Alkalinity, Bica	rbonate (As CaCO3	3) 80		mg/L	5.0	5.0	1.0	SM 2320E
	Analysis Batch:	280-352383	Analysis Date	: 11/20/20	16 1503			
Total Dissolve	d Solids (TDS)	100		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch:	280-352412	Analysis Date	: 11/21/20	16 1013			
Total Suspend	led Solids	ND		mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch:	280-352044	Analysis Date	: 11/17/20	16 1754			
Total Organic	Carbon - Average	ND		mg/L	1.0	1.0	1.0	SM 5310B
_	Analysis Batch:	280-354778	Analysis Date	: 12/07/20	16 1651			

General Chemistry

Client Sample ID: MW-16

 Lab Sample ID:
 280-90968-3
 Date Sampled: 11/14/2016 1248

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	1.0		mg/L	1.0	1.0	1.0	300.0
Anal	ysis Batch: 280-354768	Analysis Date:	: 12/08/20	16 1258			
Sulfate	1.6		mg/L	1.0	1.0	1.0	300.0
Anal	ysis Batch: 280-354768	Analysis Date:	: 12/08/20	16 1258			
Ammonia (as N)	ND	F1	mg/L	0.030	0.030	1.0	350.1
Anal	ysis Batch: 280-352527	Analysis Date:	: 11/21/20	16 1635			
Nitrate as N	0.24		mg/L	0.050	0.050	1.0	353.2
Anal	ysis Batch: 280-355103	Analysis Date:	: 12/11/20	16 0914			
Alkalinity, Total (As Ca	CO3) 56		mg/L	5.0	5.0	1.0	SM 2320B
Anal	ysis Batch: 280-352383	Analysis Date:	: 11/20/20	16 1512			
Alkalinity, Bicarbonate	(As CaCO3) 56		mg/L	5.0	5.0	1.0	SM 2320B
Analy	ysis Batch: 280-352383	Analysis Date:	: 11/20/20	16 1512			
Total Dissolved Solids	(TDS) 86		mg/L	5.0	5.0	1.0	SM 2540C
Anal	ysis Batch: 280-352412	Analysis Date:	: 11/21/20	16 1013			
Total Suspended Solid	s ND		mg/L	4.0	4.0	1.0	SM 2540D
Anal	ysis Batch: 280-352044	Analysis Date:	: 11/17/20	16 1754			
Total Organic Carbon -	Average ND	-	mg/L	1.0	1.0	1.0	SM 5310B
•	ysis Batch: 280-354778	Analysis Date:	: 12/07/20	16 1735			

General Chemistry

Client Sample ID: MW-39

 Lab Sample ID:
 280-90968-4
 Date Sampled:
 11/14/2016 1354

 Client Matrix:
 Water
 Date Received:
 11/15/2016 1217

Analyte	Resul	: Qual	Units	RL	RL	Dil	Method
Chloride	ND		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35476	3 Analysis Date	: 12/08/20	16 1314			
Sulfate	1.4		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35476	3 Analysis Date	: 12/08/20	16 1314			
Ammonia (as N)	ND		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch: 280-35252	7 Analysis Date	: 11/21/20	16 1641			
Nitrate as N	1.6		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-35510	3 Analysis Date	: 12/11/20	16 0914			
Alkalinity, Total (A	s CaCO3) 57		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-35238	3 Analysis Date	: 11/20/20	16 1516			
Alkalinity, Bicarbo	nate (As CaCO3) 57		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-35238	3 Analysis Date	: 11/20/20	16 1516			
Total Dissolved S	olids (TDS) 76		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 280-35241	2 Analysis Date	: 11/21/20	16 1013			
Total Suspended	Solids ND		mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch: 280-35204	4 Analysis Date	: 11/17/20	16 1754			
Total Organic Car	bon - Average ND		mg/L	1.0	1.0	1.0	SM 5310B
=-	Analysis Batch: 280-35477	3 Analysis Date	: 12/07/20	16 1750			

General Chemistry

Client Sample ID: MW-4

 Lab Sample ID:
 280-90968-5
 Date Sampled: 11/14/2016 1500

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

Analyte Result RL RL Dil Method Qual Units Chloride mg/L 1.0 1.0 1.0 300.0 1.4 Analysis Batch: 280-354768 Analysis Date: 12/08/2016 1329 Sulfate 1.0 300.0 1.0 Analysis Batch: 280-354768 Analysis Date: 12/08/2016 1329 Ammonia (as N) ND mg/L 0.030 1.0 350.1 0.030 Analysis Batch: 280-352527 Analysis Date: 11/21/2016 1643 Nitrate as N 0.050 1.0 0.33 mg/L 0.050 353.2 Analysis Batch: 280-355103 Analysis Date: 12/11/2016 0914 Alkalinity, Total (As CaCO3) 42 mg/L 5.0 1.0 SM 2320B 5.0 Analysis Batch: 280-352831 Analysis Date: 11/22/2016 1633 Alkalinity, Bicarbonate (As CaCO3) 42 5.0 5.0 1.0 SM 2320B mg/L Analysis Batch: 280-352831 Analysis Date: 11/22/2016 1633 Total Dissolved Solids (TDS) 5.0 1.0 SM 2540C 36 mg/L 5.0 Analysis Batch: 280-352412 Analysis Date: 11/21/2016 1013 **Total Suspended Solids** 4.0 1.0 SM 2540D ND mg/L 4.0 Analysis Batch: 280-352044 Analysis Date: 11/17/2016 1754 Total Organic Carbon - Average ND mq/L 1.0 1.0 1.0 SM 5310B

Analysis Batch: 280-354778 Analysis Date: 12/07/2016 1804

General Chemistry

Client Sample ID: MW-43

 Lab Sample ID:
 280-90968-6
 Date Sampled:
 11/14/2016 1158

 Client Matrix:
 Water
 Date Received:
 11/15/2016 1217

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	ND	Quai	mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35476	3 Analysis Date	0				000.0
Sulfate	1.7	•	mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35476	3 Analysis Date	: 12/08/2	016 1415			
Ammonia (as N)	0.030		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch: 280-35252	7 Analysis Date	: 11/21/2	016 1645			
Nitrate as N	0.52		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-35510	3 Analysis Date	: 12/11/2	016 0914			
Alkalinity, Total (A	s CaCO3) 13		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-35238	3 Analysis Date	: 11/20/2	016 1525			
Alkalinity, Bicarboi	nate (As CaCO3) 13		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-35238	3 Analysis Date	: 11/20/2	016 1525			
Total Dissolved So	olids (TDS) 28		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 280-35241	2 Analysis Date	: 11/21/2	016 1013			
Total Suspended S	Solids ND		mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch: 280-35204	Analysis Date	: 11/17/2	016 1754			
Total Organic Carl	oon - Average 1.2		mg/L	1.0	1.0	1.0	SM 5310B
	Analysis Batch: 280-354778	3 Analysis Date	: 12/07/2	016 1821			

General Chemistry

Client Sample ID: MW-20

 Lab Sample ID:
 280-90968-7
 Date Sampled: 11/14/2016 1329

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	8.3		mg/L	1.0	1.0	1.0	300.0
A	Analysis Batch: 280-354768	Analysis Date	: 12/08/20	16 1431			
Sulfate	4.2		mg/L	1.0	1.0	1.0	300.0
A	Analysis Batch: 280-354768	Analysis Date	: 12/08/20	16 1431			
Ammonia (as N)	ND		mg/L	0.030	0.030	1.0	350.1
A	Analysis Batch: 280-352527	Analysis Date	: 11/21/20	16 1701			
Nitrate as N	6.0		mg/L	0.050	0.050	1.0	353.2
A	Analysis Batch: 280-355103	Analysis Date	: 12/11/20	16 0914			
Alkalinity, Total (As	CaCO3) 75		mg/L	5.0	5.0	1.0	SM 2320B
A	Analysis Batch: 280-352383	Analysis Date	: 11/20/20	16 1530			
Alkalinity, Bicarbon	ate (As CaCO3) 75		mg/L	5.0	5.0	1.0	SM 2320B
A	Analysis Batch: 280-352383	Analysis Date	: 11/20/20	16 1530			
Total Dissolved So	lids (TDS) 160		mg/L	5.0	5.0	1.0	SM 2540C
A	Analysis Batch: 280-352412	Analysis Date	: 11/21/20	16 1013			
Total Suspended S	Solids 4.0		mg/L	4.0	4.0	1.0	SM 2540D
A	Analysis Batch: 280-352044	Analysis Date	: 11/17/20	16 1754			
Total Organic Carb	on - Average ND		mg/L	1.0	1.0	1.0	SM 5310B
· A	Analysis Batch: 280-354778	Analysis Date	: 12/07/20	16 1907			

General Chemistry

Client Sample ID: DUP2

Lab Sample ID: 280-90968-8FD Date Sampled: 11/14/2016 1339

Client Matrix: Water Date Received: 11/15/2016 1217

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	8.4		mg/L	1.0	1.0	1.0	300.0
Analys	is Batch: 280-354768	Analysis Date	: 12/08/20	16 1446			
Sulfate	4.3		mg/L	1.0	1.0	1.0	300.0
Analys	is Batch: 280-354768	Analysis Date	: 12/08/20	16 1446			
Ammonia (as N)	ND		mg/L	0.030	0.030	1.0	350.1
Analys	is Batch: 280-352527	Analysis Date	: 11/21/20	16 1703			
litrate as N	5.9		mg/L	0.050	0.050	1.0	353.2
Analys	is Batch: 280-355103	Analysis Date	: 12/11/20)16 0914			
Alkalinity, Total (As CaC	O3) 75		mg/L	5.0	5.0	1.0	SM 2320B
Analys	is Batch: 280-352383	Analysis Date	: 11/20/20	16 1534			
Alkalinity, Bicarbonate (A	s CaCO3) 75		mg/L	5.0	5.0	1.0	SM 2320B
Analys	is Batch: 280-352383	Analysis Date	: 11/20/20	16 1534			
otal Dissolved Solids (T	DS) 150		mg/L	5.0	5.0	1.0	SM 2540C
Analys	is Batch: 280-352412	Analysis Date	: 11/21/20)16 1013			
otal Suspended Solids	5.6		mg/L	4.0	4.0	1.0	SM 2540D
Analys	is Batch: 280-352044	Analysis Date	: 11/17/20	16 1754			
otal Organic Carbon - A	verage ND	-	mg/L	1.0	1.0	1.0	SM 5310B
_	sis Batch: 280-354778	Analysis Data	. 12/07/20	16 1024			

General Chemistry

Client Sample ID: MW-19C

 Lab Sample ID:
 280-90968-9
 Date Sampled: 11/14/2016 1428

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

Analyte		Result	Qual	Units	RL	RL	Dil	Method
Chloride		5.7		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch:	280-354768	Analysis Date	: 12/08/20	16 1502			
Sulfate		3.7		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch:	280-354768	Analysis Date	: 12/08/20	16 1502			
Ammonia (as I	N)	0.67		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch:	280-352527	Analysis Date	: 11/21/20	16 1705			
Nitrate as N		ND		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch:	280-355103	Analysis Date	: 12/11/20	16 0914			
Alkalinity, Tota	ıl (As CaCO3)	74		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch:	280-352331	Analysis Date	: 11/17/20	16 1143			
Alkalinity, Bica	rbonate (As CaCO3	3) 74		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch:	280-352331	Analysis Date	: 11/17/20	16 1143			
Total Dissolve	d Solids (TDS)	110		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch:	280-352412	Analysis Date	: 11/21/20	16 1013			
Total Suspend	led Solids	ND		mg/L	4.0	4.0	1.0	SM 2540E
	Analysis Batch:	280-352044	Analysis Date	: 11/17/20	16 1754			
Total Organic	Carbon - Average	ND		mg/L	1.0	1.0	1.0	SM 5310B
	Analysis Batch:	280-354778	Analysis Date	: 12/07/20	16 1938			

General Chemistry

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

Analyte		Result	Qual	Units	RL	RL	Dil	Method
Chloride		1.7		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 28	80-354768	Analysis Date	: 12/08/2	016 1517			
Sulfate		ND		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 28	80-354768	Analysis Date	: 12/08/2	016 1517			
Ammonia (as I	N)	0.075		mg/L	0.030	0.030	1.0	350.1
•	Analysis Batch: 28	80-352527	Analysis Date	: 11/21/2	016 1718			
Nitrate as N		ND		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 28	80-355103	Analysis Date	: 12/11/2	016 0914			
Alkalinity, Tota	II (As CaCO3)	47		mg/L	5.0	5.0	1.0	SM 2320B
•	Analysis Batch: 28	80-352331	Analysis Date	: 11/17/2	016 1149			
Alkalinity, Bica	rbonate (As CaCO3)	47		mg/L	5.0	5.0	1.0	SM 2320B
•	Analysis Batch: 28	80-352331	Analysis Date	: 11/17/2	016 1149			
Total Dissolve	d Solids (TDS)	58		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 28	80-352412	Analysis Date	: 11/21/2	016 1013			
Total Suspend	led Solids	4.0	-	mg/L	4.0	4.0	1.0	SM 2540D
•	Analysis Batch: 28	80-352478	Analysis Date	: 11/21/2	016 1439			
Total Organic	-		j		1.0	1.0	1.0	SM 5310B
3	Analysis Batch: 28			•	016 1955			
	•		•					

Field Service / Mobile Lab

Client Sample ID: MW-13A

 Lab Sample ID:
 280-90968-1
 Date Sampled:
 11/14/2016 1004

 Client Matrix:
 Water
 Date Received:
 11/15/2016 1217

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	45.76		ft	1.0	Field Sampling	280-352756	11/14/2016 1104
Specific Conductivity	169		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1104
Dissolved Oxygen	6.54		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1104
еН	113.0		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1104
Turbidity	0.84		NTU	1.0	Field Sampling	280-352756	11/14/2016 1104
Temperature	9.57		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1104
pH	6.50		SU	1.0	Field Sampling	280-352756	11/14/2016 1104

Field Service / Mobile Lab

Client Sample ID: MW-13B

 Lab Sample ID:
 280-90968-2
 Date Sampled: 11/14/2016 1135

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

Analysis Date Analyzed Analyte Result Qual Units Dil Method Batch **Date Prepared** Depth to water 59.30 ft 1.0 Field 280-352756 11/14/2016 1235 Sampling Specific Conductivity 171 umhos/cm 1.0 Field 11/14/2016 1235 280-352756 Sampling Dissolved Oxygen 6.94 mg/L 1.0 Field 280-352756 11/14/2016 1235 Sampling 84.0 millivolts 1.0 Field 11/14/2016 1235 еΗ 280-352756 Sampling Turbidity 0.89 NTU 1.0 Field 280-352756 11/14/2016 1235 Sampling Temperature Degrees C 10.41 1.0 Field 280-352756 11/14/2016 1235 Sampling SU Field рΗ 7.17 1.0 280-352756 11/14/2016 1235

Sampling

Field Service / Mobile Lab

Client Sample ID: MW-16

 Lab Sample ID:
 280-90968-3
 Date Sampled: 11/14/2016 1248

 Client Matrix:
 Water
 Date Received: 11/15/2016 1217

Analyte	Result	Qual	Units	D	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	59.30		ft	1	0.1	Field Sampling	280-352756	11/14/2016 1348
Specific Conductivity	110		umhos/cm	1	0.1	Field Sampling	280-352756	11/14/2016 1348
Dissolved Oxygen	6.91		mg/L	1	0.1	Field Sampling	280-352756	11/14/2016 1348
еН	135.0		millivolts	1	0.1	Field Sampling	280-352756	11/14/2016 1348
Turbidity	2.51		NTU	1	0.1	Field Sampling	280-352756	11/14/2016 1348
Temperature	9.81		Degrees C	1	0.1	Field Sampling	280-352756	11/14/2016 1348
pH	5.89		SU	1	0.1	Field Sampling	280-352756	11/14/2016 1348

Field Service / Mobile Lab

Client Sample ID: MW-39

Lab Sample ID: 280-90968-4 Date Sampled: 11/14/2016 1354

Date Received: 11/15/2016 1217 Client Matrix: Water

						Analysis	Date Analyzed
Analyte	Result	Qual	Units	Dil	Method	Batch	Date Prepared
Depth to water	17.16		ft	1.0	Field Sampling	280-352756	11/14/2016 1454
Specific Conductivity	130		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1454
Dissolved Oxygen	1.28		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1454
еН	47.0		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1454
Turbidity	4.53		NTU	1.0	Field Sampling	280-352756	11/14/2016 1454
Temperature	12.89		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1454
рН	5.27		SU	1.0	Field Sampling	280-352756	11/14/2016 1454

Field Service / Mobile Lab

Client Sample ID: MW-4

Lab Sample ID: 280-90968-5 Date Sampled: 11/14/2016 1500

Client Matrix: Water Date Received: 11/15/2016 1217

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	11.79		ft	1.0	Field Sampling	280-352756	11/14/2016 1600
Specific Conductivity	50		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1600
Dissolved Oxygen	4.07		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1600
еН	142.0		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1600
Turbidity	1.06		NTU	1.0	Field Sampling	280-352756	11/14/2016 1600
Temperature	11.49		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1600
рН	5.06		SU	1.0	Field Sampling	280-352756	11/14/2016 1600

Field Service / Mobile Lab

Client Sample ID: MW-43

Lab Sample ID: 280-90968-6 Date Sampled: 11/14/2016 1158

Client Matrix: Water Date Received: 11/15/2016 1217

						Analysis	Date Analyzed
Analyte	Result	Qual	Units	Dil	Method	Batch	Date Prepared
Specific Conductivity	34		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1258
Dissolved Oxygen	2.73		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1258
еН	156.8		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1258
Turbidity	17.19		NTU	1.0	Field Sampling	280-352756	11/14/2016 1258
Temperature	12.63		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1258
рН	6.38		SU	1.0	Field Sampling	280-352756	11/14/2016 1258

Field Service / Mobile Lab

Client Sample ID: MW-20

Lab Sample ID: 280-90968-7 Date Sampled: 11/14/2016 1329

Client Matrix: Water Date Received: 11/15/2016 1217

						Analysis	Date Analyzed
Analyte	Result	Qual	Units	Dil	Method	Batch	Date Prepared
Depth to water	35.01		ft	1.0	Field Sampling	280-352756	11/14/2016 1429
Specific Conductivity	200		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1429
Dissolved Oxygen	6.39		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1429
еН	121.8		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1429
Turbidity	12.91		NTU	1.0	Field Sampling	280-352756	11/14/2016 1429
Temperature	14.37		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1429
рН	6.94		SU	1.0	Field Sampling	280-352756	11/14/2016 1429

Field Service / Mobile Lab

Client Sample ID: MW-19C

Lab Sample ID: 280-90968-9 Date Sampled: 11/14/2016 1428

Client Matrix: Water Date Received: 11/15/2016 1217

						Analysis	Date Analyzed
Analyte	Result	Qual	Units	Dil	Method	Batch	Date Prepared
Depth to water	32.96		ft	1.0	Field Sampling	280-352756	11/14/2016 1528
Specific Conductivity	154		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1528
Dissolved Oxygen	0.33		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1528
еН	63.1		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1528
Turbidity	5.85		NTU	1.0	Field Sampling	280-352756	11/14/2016 1528
Temperature	10.56		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1528
рН	7.41		SU	1.0	Field Sampling	280-352756	11/14/2016 1528

Field Service / Mobile Lab

Client Sample ID: MW-29A

Lab Sample ID: 280-90968-11 Date Sampled: 11/14/2016 1244

Client Matrix: Water Date Received: 11/15/2016 1217

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	14.68		ft	1.0	Field Sampling	280-352756	11/14/2016 1344
Specific Conductivity	87		umhos/cm	1.0	Field Sampling	280-352756	11/14/2016 1344
Dissolved Oxygen	0.23		mg/L	1.0	Field Sampling	280-352756	11/14/2016 1344
еН	45.6		millivolts	1.0	Field Sampling	280-352756	11/14/2016 1344
Turbidity	8.87		NTU	1.0	Field Sampling	280-352756	11/14/2016 1344
Temperature	11.34		Degrees C	1.0	Field Sampling	280-352756	11/14/2016 1344
рН	6.96		SU	1.0	Field Sampling	280-352756	11/14/2016 1344

DATA REPORTING QUALIFIERS

Client: Waste Management Job Number: 280-90968-1

Lab Section	Qualifier	Description
GC/MS VOA		
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals		
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
General Chemistry		
	F3	Duplicate RPD exceeds the control limit
	F1	MS and/or MSD Recovery is outside acceptance limits.

QUALITY CONTROL RESULTS

Client: Waste Management Job Number: 280-90968-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA	•				
Analysis Batch:480-33	32057				
LCS 480-332057/4	Lab Control Sample	Т	Water	8260C SIM	
LCSD 480-332057/5	Lab Control Sample Duplicate	T	Water	8260C SIM	
MB 480-332057/7	Method Blank	Т	Water	8260C SIM	
280-90968-1	MW-13A	T	Water	8260C SIM	
280-90968-2	MW-13B	T	Water	8260C SIM	
280-90968-3	MW-16	T	Water	8260C SIM	
280-90968-4	MW-39	Т	Water	8260C SIM	
280-90968-5	MW-4	T	Water	8260C SIM	
280-90968-6	MW-43	T	Water	8260C SIM	
280-90968-7	MW-20	T	Water	8260C SIM	
280-90968-8FD	DUP2	T	Water	8260C SIM	
280-90968-9	MW-19C	T	Water	8260C SIM	
280-90968-10TB	TRIP BLANK	T	Water	8260C SIM	
280-90968-11	MW-29A	T	Water	8260C SIM	
Analysis Batch:480-33	33215				
LCS 480-333215/4	Lab Control Sample	Т	Water	8260C	
MB 480-333215/6	Method Blank	T	Water	8260C	
280-90968-1	MW-13A	T	Water	8260C	
280-90968-2	MW-13B	T	Water	8260C	
280-90968-3	MW-16	T	Water	8260C	
280-90968-4	MW-39	T	Water	8260C	
280-90968-5	MW-4	T	Water	8260C	
280-90968-6	MW-43	T	Water	8260C	
280-90968-7	MW-20	T	Water	8260C	
280-90968-8FD	DUP2	T	Water	8260C	
280-90968-9	MW-19C	T	Water	8260C	
280-90968-10TB	TRIP BLANK	T	Water	8260C	
280-90968-11	MW-29A	T	Water	8260C	
280-91030-E-2 MS	Matrix Spike	T	Water	8260C	
280-91030-E-2 MSD	Matrix Spike Duplicate	Т	Water	8260C	

Report Basis

T = Total

Client: Waste Management Job Number: 280-90968-1

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals					7 10 P 2 11 11 1
Prep Batch: 280-352234					
CS 280-352234/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352234/1-A	Method Blank	R	Water	3005A	
280-90915-C-2-B MS	Matrix Spike	R	Water	3005A	
280-90915-C-2-C MSD	Matrix Spike Duplicate	R	Water	3005A	
280-90968-1	MW-13A	R	Water	3005A	
280-90968-2	MW-13B	R	Water	3005A	
280-90968-3	MW-16	R	Water	3005A	
280-90968-4	MW-39	R	Water	3005A	
280-90968-5	MW-4	R	Water	3005A	
280-90968-6	MW-43	R	Water	3005A	
280-90968-7	MW-20	R	Water	3005A	
280-90968-8FD	DUP2	R	Water	3005A	
280-90968-9	MW-19C	R	Water	3005A	
280-90968-11	MW-29A	R	Water	3005A	
Prep Batch: 280-352238					
CS 280-352238/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352238/1-A	Method Blank	R	Water	3005A	
280-90968-1	MW-13A	R	Water	3005A	
280-90968-1MS	Matrix Spike	R	Water	3005A	
280-90968-1MSD	Matrix Spike Duplicate	R	Water	3005A	
280-90968-2	MW-13B	R	Water	3005A	
280-90968-3	MW-16	R	Water	3005A	
280-90968-4	MW-39	R	Water	3005A	
280-90968-5	MW-4	R	Water	3005A	
280-90968-6	MW-43	R	Water	3005A	
280-90968-7	MW-20	R	Water	3005A	
280-90968-8FD	DUP2	R	Water	3005A	
280-90968-9	MW-19C	R	Water	3005A	
280-90968-11	MW-29A	R	Water	3005A	

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 280-352489	9				
_CS 280-352489/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352489/1-A	Method Blank	R	Water	3005A	
280-90968-1	MW-13A	D	Water	3005A	
280-90968-2	MW-13B	D	Water	3005A	
280-90968-3	MW-16	D	Water	3005A	
280-90968-4	MW-39	D	Water	3005A	
280-90968-5	MW-4	D	Water	3005A	
280-90968-6	MW-43	D	Water	3005A	
280-90968-7	MW-20	D	Water	3005A	
280-90968-8FD	DUP2	D	Water	3005A	
280-90968-9	MW-19C	D	Water	3005A	
280-90968-11	MW-29A	D	Water	3005A	
280-91030-D-2-B MS	Matrix Spike	D	Water	3005A	
280-91030-D-2-C MSD	Matrix Spike Duplicate	D	Water	3005A	
Analysis Batch:280-353		Б	\A/=4==	0000	000 050400
_CS 280-352489/2-A	Lab Control Sample	R	Water	6020	280-352489
MB 280-352489/1-A	Method Blank	R	Water	6020	280-352489
280-90968-1	MW-13A	D	Water	6020	280-352489
280-90968-2	MW-13B	D	Water	6020	280-352489
280-90968-3	MW-16	D	Water	6020	280-352489
280-90968-4	MW-39	D	Water	6020	280-352489
280-90968-5	MW-4	D	Water	6020	280-352489
280-90968-6	MW-43	D	Water	6020	280-352489
280-90968-7	MW-20	D	Water	6020	280-352489
280-90968-8FD	DUP2	D	Water	6020	280-352489
280-90968-9	MW-19C	D	Water	6020	280-352489
280-90968-11	MW-29A	D	Water	6020	280-352489
280-91030-D-2-B MS	Matrix Spike	D	Water	6020	280-352489
280-91030-D-2-C MSD	Matrix Spike Duplicate	D	Water	6020	280-352489

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 280-353142	2				
LCS 280-353142/2-A	Lab Control Sample	R	Water	3005A	
MB 280-353142/1-A	Method Blank	R	Water	3005A	
280-90959-L-1-C MS	Matrix Spike	D	Water	3005A	
280-90959-L-1-D MSD	Matrix Spike Duplicate	D	Water	3005A	
280-90968-1	MW-13A	D	Water	3005A	
280-90968-2	MW-13B	D	Water	3005A	
280-90968-3	MW-16	D	Water	3005A	
280-90968-4	MW-39	D	Water	3005A	
280-90968-5	MW-4	D	Water	3005A	
280-90968-6	MW-43	D	Water	3005A	
280-90968-7	MW-20	D	Water	3005A	
280-90968-8FD	DUP2	D	Water	3005A	
280-90968-9	MW-19C	D	Water	3005A	
280-90968-11	MW-29A	D	Water	3005A	
Analysis Batch:280-353	2261				
LCS 280-352238/2-A	Lab Control Sample	R	Water	6020	280-352238
MB 280-352238/1-A	Method Blank	R	Water	6020	280-352238
280-90968-1	MW-13A	R	Water	6020	280-352238
280-90968-1MS	Matrix Spike	R	Water	6020	280-352238
280-90968-1MSD	Matrix Spike Duplicate	R	Water	6020	280-352238
280-90968-2	MW-13B	R	Water	6020	280-352238
280-90968-3	MW-16B	R	Water	6020	280-352238
280-90968-4	MW-39	R	Water	6020	280-352238
280-90968-5	MW-4	R	Water	6020	280-352238
280-90968-6	MW-43	R	Water	6020	280-352238
280-90968-7	MW-20	R R	Water	6020	280-352238
280-90968-8FD	DUP2	R R	Water	6020	280-352238
280-90968-8FD 280-90968-9	MW-19C	R R		6020	280-352238
			Water		
280-90968-11	MW-29A	R	Water	6020	280-352238

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Analysis Batch:280-353					
LCS 280-352234/2-A	Lab Control Sample	R	Water	6010B	280-352234
MB 280-352234/1-A	Method Blank	R	Water	6010B	280-352234
280-90915-C-2-B MS	Matrix Spike	R	Water	6010B	280-352234
280-90915-C-2-C MSD	Matrix Spike Duplicate	R	Water	6010B	280-352234
280-90968-1	MW-13A	R	Water	6010B	280-352234
280-90968-2	MW-13B	R	Water	6010B	280-352234
280-90968-3	MW-16	R	Water	6010B	280-352234
280-90968-4	MW-39	R	Water	6010B	280-352234
280-90968-5	MW-4	R	Water	6010B	280-352234
280-90968-6	MW-43	R	Water	6010B	280-352234
280-90968-7	MW-20	R	Water	6010B	280-352234
280-90968-8FD	DUP2	R	Water	6010B	280-352234
280-90968-9	MW-19C	R	Water	6010B	280-352234
280-90968-11	MW-29A	R	Water	6010B	280-352234
Analysis Batch:280-355	5067				
LCS 280-353142/2-A	Lab Control Sample	R	Water	6010B	280-353142
MB 280-353142/1-A	Method Blank	R	Water	6010B	280-353142
280-90959-L-1-C MS	Matrix Spike	D	Water	6010B	280-353142
280-90959-L-1-D MSD	Matrix Spike Duplicate	D	Water	6010B	280-353142
280-90968-1	MW-13A	D	Water	6010B	280-353142
280-90968-2	MW-13B	D	Water	6010B	280-353142
280-90968-3	MW-16B	D	Water	6010B	280-353142
280-90968-4	MW-39	D	Water	6010B	280-353142
280-90968-5	MW-4	D	Water	6010B	280-353142
280-90968-6	MW-43	D	Water	6010B	280-353142
280-90968-7	MW-20	D	Water	6010B	280-353142
280-90968-8FD	DUP2	D	Water	6010B	280-353142
280-90968-8FD 280-90968-9	MW-19C	D	Water	6010B	
280-90968-11	MW-29A	D D	water Water	6010B 6010B	280-353142 280-353142
200-90900-11	IVIVV-29A	U	vvalei	UUIUD	200-333142

Report Basis

D = Dissolved

R = Total Recoverable

Client: Waste Management Job Number: 280-90968-1

QC Association Summary

Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
le Lab				
352756				
MW-13A	T	Water	Field Sampling	
MW-13B	Т	Water	Field Sampling	
MW-16	Т	Water	Field Sampling	
MW-39	Т	Water	Field Sampling	
MW-4	Т	Water	Field Sampling	
MW-43	Т	Water	Field Sampling	
MW-20	Т	Water	Field Sampling	
MW-19C	Т	Water	Field Sampling	
MW-29A	Т	Water	Field Sampling	
	MW-13A MW-13B MW-16 MW-39 MW-4 MW-43 MW-20 MW-19C	Client Sample ID Basis Ie Lab 352756 MW-13A T MW-13B T MW-16 T MW-39 T MW-4 T MW-43 T MW-20 T MW-19C T	Client Sample ID Basis Client Matrix Ie Lab 352756 MW-13A T Water MW-13B T Water MW-16 T Water MW-39 T Water MW-4 T Water MW-43 T Water MW-20 T Water MW-19C T Water	Client Sample ID Basis Client Matrix Method Ie Lab 352756 MW-13A T Water Field Sampling MW-13B T Water Field Sampling MW-16 T Water Field Sampling MW-39 T Water Field Sampling MW-4 T Water Field Sampling MW-43 T Water Field Sampling MW-43 T Water Field Sampling MW-20 T Water Field Sampling MW-19C T Water Field Sampling Field Sampling MW-19C

Report Basis

T = Total

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-3	352044				
LCS 280-352044/1	Lab Control Sample	Т	Water	SM 2540D	
MB 280-352044/2	Method Blank	Т	Water	SM 2540D	
280-90968-1	MW-13A	Т	Water	SM 2540D	
280-90968-1DU	Duplicate	Т	Water	SM 2540D	
280-90968-2	MW-13B	Т	Water	SM 2540D	
280-90968-3	MW-16	Т	Water	SM 2540D	
280-90968-4	MW-39	Т	Water	SM 2540D	
280-90968-5	MW-4	Т	Water	SM 2540D	
280-90968-6	MW-43	Т	Water	SM 2540D	
280-90968-7	MW-20	Т	Water	SM 2540D	
280-90968-8FD	DUP2	Т	Water	SM 2540D	
280-90968-9	MW-19C	Т	Water	SM 2540D	
Analysis Batch:280-3	352331				
LCS 280-352331/4	Lab Control Sample	Т	Water	SM 2320B	
MB 280-352331/5	Method Blank	Т	Water	SM 2320B	
280-90901-A-1 DU	Duplicate	Т	Water	SM 2320B	
280-90968-9	MW-19C	Т	Water	SM 2320B	
280-90968-11	MW-29A	Т	Water	SM 2320B	
Analysis Batch:280-3	352383				
LCS 280-352383/30	Lab Control Sample	Т	Water	SM 2320B	
LCS 280-352383/4	Lab Control Sample	Т	Water	SM 2320B	
MB 280-352383/31	Method Blank	Т	Water	SM 2320B	
MB 280-352383/5	Method Blank	Т	Water	SM 2320B	
280-90968-1	MW-13A	Т	Water	SM 2320B	
280-90968-2	MW-13B	Т	Water	SM 2320B	
280-90968-2DU	Duplicate	Ť	Water	SM 2320B	
280-90968-3	MW-16	Ť	Water	SM 2320B	
280-90968-4	MW-39	Ť	Water	SM 2320B	
280-90968-6	MW-43	Ť	Water	SM 2320B	
280-90968-7	MW-20	Ť	Water	SM 2320B	
280-90968-8FD	DUP2	Ť	Water	SM 2320B	

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry	·				·
Analysis Batch:280-352					
LCS 280-352412/2	Lab Control Sample	T	Water	SM 2540C	
MB 280-352412/1	Method Blank	Т	Water	SM 2540C	
280-90968-1	MW-13A	T	Water	SM 2540C	
280-90968-2	MW-13B	T	Water	SM 2540C	
280-90968-3	MW-16	T	Water	SM 2540C	
280-90968-4	MW-39	Т	Water	SM 2540C	
280-90968-5	MW-4	Т	Water	SM 2540C	
280-90968-6	MW-43	Т	Water	SM 2540C	
280-90968-7	MW-20	Ť	Water	SM 2540C	
280-90968-8FD	DUP2	T	Water	SM 2540C	
280-90968-9	MW-19C	Ť	Water	SM 2540C	
280-90968-11	MW-29A	T	Water	SM 2540C	
280-90969-B-2 DU	Duplicate	Ť	Water	SM 2540C	
	·				
Analysis Batch:280-352		-	147.1.	014.05.400	
LCS 280-352478/1	Lab Control Sample	T -	Water	SM 2540D	
LCSD 280-352478/2	Lab Control Sample Duplicate	T	Water	SM 2540D	
MB 280-352478/3	Method Blank	Ţ	Water	SM 2540D	
280-90968-11	MW-29A	T	Water	SM 2540D	
280-91242-A-3 DU	Duplicate	Т	Water	SM 2540D	
Analysis Batch:280-352	2527				
LCS 280-352527/107	Lab Control Sample	T	Water	350.1	
LCS 280-352527/59	Lab Control Sample	T	Water	350.1	
LCSD 280-352527/108	Lab Control Sample Duplicate	T	Water	350.1	
LCSD 280-352527/60	Lab Control Sample Duplicate	T	Water	350.1	
MB 280-352527/109	Method Blank	T	Water	350.1	
MB 280-352527/61	Method Blank	T	Water	350.1	
280-90968-1	MW-13A	Т	Water	350.1	
280-90968-2	MW-13B	Т	Water	350.1	
280-90968-3	MW-16	Т	Water	350.1	
280-90968-3MS	Matrix Spike	Т	Water	350.1	
280-90968-3MSD	Matrix Spike Duplicate	Т	Water	350.1	
280-90968-4	MW-39	Ť	Water	350.1	
280-90968-5	MW-4	Ť	Water	350.1	
280-90968-6	MW-43	Ť	Water	350.1	
280-90968-7	MW-20	Ť	Water	350.1	
280-90968-8FD	DUP2	T	Water	350.1	
280-90968-9	MW-19C	T	Water	350.1	

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry	·				·
Analysis Batch:280-352	2831				
.CS 280-352831/30	Lab Control Sample	T	Water	SM 2320B	
/IB 280-352831/31	Method Blank	T	Water	SM 2320B	
280-90968-5	MW-4	T	Water	SM 2320B	
280-91153-A-1 DU	Duplicate	Т	Water	SM 2320B	
Analysis Batch:280-353	491				
.CS 280-353491/2	Lab Control Sample	Т	Water	SM 2540C	
CSD 280-353491/3	Lab Control Sample Duplicate	Т	Water	SM 2540C	
/IB 280-353491/1	Method Blank	Т	Water	SM 2540C	
280-90968-5	MW-4	Т	Water	SM 2540C	
280-90968-5DU	Duplicate	Т	Water	SM 2540C	
280-90968-8FD	DUP2	Т	Water	SM 2540C	
280-90968-8DU	Duplicate	T	Water	SM 2540C	
Analysis Batch:280-354	768				
CS 280-354768/4	Lab Control Sample	T	Water	300.0	
CSD 280-354768/5	Lab Control Sample Duplicate	Т	Water	300.0	
/IB 280-354768/6	Method Blank	T	Water	300.0	
280-90968-1	MW-13A	Т	Water	300.0	
280-90968-2	MW-13B	T	Water	300.0	
280-90968-3	MW-16	Т	Water	300.0	
280-90968-4	MW-39	T	Water	300.0	
280-90968-5	MW-4	Т	Water	300.0	
280-90968-6	MW-43	Т	Water	300.0	
280-90968-7	MW-20	Т	Water	300.0	
280-90968-8FD	DUP2	Т	Water	300.0	
280-90968-9	MW-19C	Т	Water	300.0	
280-90968-11	MW-29A	Т	Water	300.0	
280-91032-B-10 DU	Duplicate	Т	Water	300.0	
280-91032-B-10 MS	Matrix Spike	Т	Water	300.0	
280-91032-B-10 MSD	Matrix Spike Duplicate	T	Water	300.0	

Job Number: 280-90968-1 Client: Waste Management

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-3	54778				
LCS 280-354778/3	Lab Control Sample	Т	Water	SM 5310B	
MB 280-354778/4	Method Blank	Т	Water	SM 5310B	
280-90968-1	MW-13A	Т	Water	SM 5310B	
280-90968-2	MW-13B	Т	Water	SM 5310B	
280-90968-2MS	Matrix Spike	Т	Water	SM 5310B	
280-90968-2MSD	Matrix Spike Duplicate	Т	Water	SM 5310B	
280-90968-3	MW-16	Т	Water	SM 5310B	
280-90968-4	MW-39	Т	Water	SM 5310B	
280-90968-5	MW-4	Т	Water	SM 5310B	
280-90968-6	MW-43	Т	Water	SM 5310B	
280-90968-7	MW-20	Т	Water	SM 5310B	
280-90968-8FD	DUP2	Т	Water	SM 5310B	
280-90968-9	MW-19C	Ť	Water	SM 5310B	
280-90968-11	MW-29A	Т	Water	SM 5310B	
Analysis Batch:280-3	55103				
MB 280-355103/1	Method Blank	Т	Water	353.2	
280-90968-1	MW-13A	Т	Water	353.2	
280-90968-2	MW-13B	Т	Water	353.2	
280-90968-3	MW-16	Т	Water	353.2	
280-90968-4	MW-39	Т	Water	353.2	
280-90968-5	MW-4	Т	Water	353.2	
280-90968-6	MW-43	Т	Water	353.2	
280-90968-7	MW-20	Т	Water	353.2	
280-90968-8FD	DUP2	Т	Water	353.2	
280-90968-9	MW-19C	Т	Water	353.2	
280-90968-11	MW-29A	Т	Water	353.2	

Report Basis T = Total

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Water

Lab Sample ID	Client Sample ID	DCA %Rec	BFB %Rec	TOL %Rec
280-90968-1	MW-13A	103	99	101
280-90968-2	MW-13B	104	100	102
280-90968-3	MW-16	106	99	103
280-90968-4	MW-39	102	100	102
280-90968-5	MW-4	106	98	101
280-90968-6	MW-43	104	95	99
280-90968-7	MW-20	104	99	102
280-90968-8	DUP2	103	97	100
280-90968-9	MW-19C	100	98	102
280-90968-10	TRIP BLANK	105	98	100
280-90968-11	MW-29A	102	96	102
MB 480-333215/6		102	100	101
LCS 480-333215/4		102	98	102
280-91030-E-2 MS		100	97	101
280-91030-E-2 MSD		99	98	104

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	77-120
BFB = 4-Bromofluorobenzene (Surr)	73-120
TOL = Toluene-d8 (Surr)	80-120

Surrogate Recovery Report

8260C SIM Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	TBA
Lab Sample ID	Client Sample ID	%Rec	%Rec
280-90968-1	MW-13A	97	91
280-90968-2	MW-13B	100	96
280-90968-3	MW-16	100	102
280-90968-4	MW-39	98	117
280-90968-5	MW-4	101	104
280-90968-6	MW-43	100	111
280-90968-7	MW-20	100	105
280-90968-8	DUP2	98	115
280-90968-9	MW-19C	101	121
280-90968-10	TRIP BLANK	102	125
280-90968-11	MW-29A	102	110
MB 480-332057/7		97	97
LCS 480-332057/4		101	87
LCSD 480-332057/5		96	85

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	50-150
TBA = TBA-d9 (Surr)	50-150

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 480-333215 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333215/6 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Prep Batch: Lab File ID: Water N/A S9804.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1043 Units: ug/L

Prep Date: 11/23/2016 1043

Analyte	Result	Qual	MDL	RL	
1,1,1,2-Tetrachloroethane	ND		0.35	1.0	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,1-Dichloropropene	ND		0.72	1.0	
1,2,3-Trichlorobenzene	ND		0.41	1.0	
1,2,3-Trichloropropane	ND		0.89	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2,4-Trimethylbenzene	ND		0.75	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane (EDB)	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloroethene, Total	ND		0.81	2.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3,5-Trichlorobenzene	ND		0.23	1.0	
1,3,5-Trimethylbenzene	ND		0.77	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,3-Dichloropropane	ND		0.75	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
1,4-Dioxane	ND		9.3	40	
2,2-Dichloropropane	ND		0.40	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Chloroethyl vinyl ether	ND		0.96	5.0	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Acetonitrile	ND		4.9	15	
Acrolein	ND		0.91	20	
Acrylonitrile	ND		0.83	5.0	
Benzene	ND		0.41	1.0	
Bromobenzene	ND		0.80	1.0	
Bromochloromethane	ND		0.87	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.26	1.0	
Bromomethane	ND		0.69	1.0	
Butyl alcohol, n-	ND		8.9	40	
Butyl alcohol, tert-	ND		3.3	10	
Carbon disulfide	ND		0.19	1.0	
Carbon tetrachloride	ND		0.27	1.0	
Chlorobenzene	ND		0.75	1.0	
Chlorodifluoromethane	ND		0.26	1.0	
	. 15		3.20		

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 480-333215

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333215/6 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9804.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 1043 Units: ug/L

Prep Date: 11/23/2016 1043 Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
Iodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 480-333215 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333215/6 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9804.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: Final Weight/Volume: 5 mL 11/23/2016 1043 Units: ug/L

Prep Date: 11/23/2016 1043

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
Surrogate	% Rec		Acceptance Limits	
Surrogate 1,2-Dichloroethane-d4 (Surr)	% Rec 102		Acceptance Limits 77 - 120	
			· · · · · · · · · · · · · · · · · · ·	

Method Blank TICs-Batch: 480-333215

Cas Number	Analyte	RT	Est. Result (ug/	Qual
67-72-1	Hexachloroethane TIC	0.00	ND	

Client: Waste Management Job Number: 280-90968-1

Lab Control Sample - Batch: 480-333215

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333215/4 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Prep Batch: Lab File ID: Water N/A S9802.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Units: Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 0950 ug/L

Prep Date: 11/23/2016 0950

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	25.0	26.8	107	80 - 120	
1,1,1-Trichloroethane	25.0	25.9	104	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.6	102	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	24.8	99	61 - 148	
1,1,2-Trichloroethane	25.0	25.5	102	76 - 122	
1,1-Dichloroethane	25.0	25.0	100	77 - 120	
1,1-Dichloroethene	25.0	27.2	109	66 - 127	
1,1-Dichloropropene	25.0	25.6	102	72 - 122	
1,2,3-Trichlorobenzene	25.0	24.9	100	75 - 123	
1,2,3-Trichloropropane	25.0	24.3	97	68 - 122	
1,2,4-Trichlorobenzene	25.0	25.6	102	79 - 122	
1,2,4-Trimethylbenzene	25.0	25.9	103	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	25.0	100	56 - 134	
1,2-Dibromoethane (EDB)	25.0	25.3	101	77 - 120	
1,2-Dichlorobenzene	25.0	26.1	105	80 - 124	
1,2-Dichloroethane	25.0	24.0	96	75 - 120	
1,2-Dichloropropane	25.0	24.4	98	76 - 120	
1,3,5-Trimethylbenzene	25.0	26.0	104	77 - 121	
1,3-Dichlorobenzene	25.0	25.8	103	77 - 120	
1,3-Dichloropropane	25.0	24.6	98	75 - 120	
1,4-Dichlorobenzene	25.0	25.4	102	80 - 120	
1,4-Dioxane	500	398	80	50 - 150	
2,2-Dichloropropane	25.0	27.3	109	63 - 136	
2-Butanone (MEK)	125	115	92	57 - 140	
2-Chloroethyl vinyl ether	25.0	24.4	98	70 - 129	
2-Hexanone	125	111	89	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	109	87	71 - 125	
Acetone	125	115	92	56 - 142	
Acrolein	125	108	87	52 - 143	
Acrylonitrile	250	232	93	63 - 125	
Benzene	25.0	25.1	100	71 - 124	
Bromobenzene	25.0	24.5	98	78 - 120	
Bromochloromethane	25.0	26.6	107	70 - 120 72 - 130	
Bromodichloromethane	25.0	25.4	101	80 - 122	
Bromoform	25.0	25.4 25.4	102	61 - 132	
Bromomethane	25.0	25.4	100	55 - 144	
Butyl alcohol, tert-	250	219	88	75 - 125	
Carbon disulfide	25.0	23.1	92	59 - 134	
Carbon distillide Carbon tetrachloride	25.0 25.0	23.1 26.0	92 104	59 - 134 72 - 134	
	25.0 25.0	24.9	99	72 - 13 4 80 - 120	
Chlorobenzene Chloroethane	25.0 25.0	24.9 28.0	99 112	69 - 136	
Chloroform Chloromethane	25.0 25.0	25.1	100	73 - 127	
	25.0	24.7	99	68 - 124 74 - 124	
cis-1,2-Dichloroethene	25.0	25.4	102	74 - 124	
cis-1,3-Dichloropropene	25.0	24.9	100	74 - 124	
Cyclohexane	25.0	25.1	100	59 - 135	

Client: Waste Management Job Number: 280-90968-1

Lab Control Sample - Batch: 480-333215

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333215/4 Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S9802.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/23/2016 0950 Units: ug/L

Prep Date: 11/23/2016 0950

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	25.0	25.3	101	75 - 125	
Dibromomethane	25.0	25.1	100	76 - 127	
Dichlorodifluoromethane	25.0	25.5	102	59 - 135	
Dichlorofluoromethane	25.0	24.4	98	76 - 127	
Ethyl ether	25.0	26.2	105	76 - 123	
Ethylbenzene	25.0	24.3	97	77 - 123	
Hexachlorobutadiene	25.0	24.4	98	68 - 131	
lodomethane	25.0	24.8	99	78 - 123	
Isobutanol	625	572	92	51 - 150	
Isopropylbenzene	25.0	25.4	102	77 - 122	
Methyl acetate	125	110	88	74 - 133	
Methyl tert-butyl ether	25.0	24.3	97	77 - 120	
Methylcyclohexane	25.0	26.0	104	68 - 134	
Methylene Chloride	25.0	23.9	95	75 - 124	
m-Xylene & p-Xylene	25.0	24.4	98	76 - 122	
Naphthalene	25.0	24.3	97	66 - 125	
n-Butylbenzene	25.0	26.5	106	71 - 128	
N-Propylbenzene	25.0	25.3	101	75 - 127	
o-Chlorotoluene	25.0	25.0	100	76 - 121	
o-Xylene	25.0	24.7	99	76 - 122	
p-Chlorotoluene	25.0	25.2	101	77 - 121	
p-Cymene	25.0	26.0	104	73 - 120	
sec-Butylbenzene	25.0	25.4	101	74 - 127	
Styrene	25.0	24.8	99	80 - 120	
tert-Butylbenzene	25.0	26.0	104	75 - 123	
Tetrachloroethene	25.0	25.0	100	74 - 122	
Tetrahydrofuran	50.0	41.2	82	62 - 132	
Toluene	25.0	24.8	99	80 - 122	
trans-1,2-Dichloroethene	25.0	25.8	103	73 - 127	
trans-1,3-Dichloropropene	25.0	25.1	100	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	19.5	78	41 - 131	
Trichloroethene	25.0	25.1	101	74 - 123	
Trichlorofluoromethane	25.0	24.4	98	62 - 150	
Vinyl acetate	50.0	48.5	97	50 - 144	
Vinyl chloride	25.0	27.8	111	65 - 133	
Surrogate	% I	Rec	A	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	10	02		77 - 120	
4-Bromofluorobenzene (Surr)	9				
Toluene-d8 (Surr)		02		73 - 120 80 - 120	
rolucite-do (ourr)	11	U <u>L</u>		00 - 120	

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample ID: 280-91030-E-2 MS Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9825.D Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1902 Leach Batch: N/A Initial Weight/Volume: 5 mL

Prep Date: 11/23/2016 1902 Final Weight/Volume: 5 mL

5 mL

Leach Date: N/A

MSD Lab Sample ID: 280-91030-E-2 MSD Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9826.D

Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1925 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1925 5 mL

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1,1,2-Tetrachloroethane	109	109	80 - 120	0	20		
1,1,1-Trichloroethane	109	105	73 - 126	4	15		
1,1,2,2-Tetrachloroethane	101	103	76 - 120	1	15		
1,1,2-Trichloro-1,2,2-trifluoroethane	106	98	61 - 148	8	20		
1,1,2-Trichloroethane	104	108	76 - 122	4	15		
1,1-Dichloroethane	104	100	77 - 120	4	20		
1,1-Dichloroethene	114	108	66 - 127	5	16		
1,1-Dichloropropene	110	106	72 - 122	4	20		
1,2,3-Trichlorobenzene	98	98	75 - 123	0	20		
1,2,3-Trichloropropane	97	98	68 - 122	1	14		
1,2,4-Trichlorobenzene	99	99	79 - 122	1	20		
1,2,4-Trimethylbenzene	106	103	76 - 121	3	20		
1,2-Dibromo-3-Chloropropane	97	100	56 - 134	4	15		
1,2-Dibromoethane (EDB)	102	105	77 - 120	3	15		
1,2-Dichlorobenzene	104	103	80 - 124	1	20		
1,2-Dichloroethane	97	93	75 - 120	4	20		
1,2-Dichloropropane	101	97	76 - 120	4	20		
1,3,5-Trimethylbenzene	105	102	77 - 121	3	20		
1,3-Dichlorobenzene	105	102	77 - 120	3	20		
1,3-Dichloropropane	99	102	75 - 120	3	20		
1,4-Dichlorobenzene	102	100	78 - 124	2	20		
1,4-Dioxane	69	82	50 - 150	17	20		
2,2-Dichloropropane	104	99	63 - 136	6	20		
2-Butanone (MEK)	88	86	57 - 140	2	20		
2-Chloroethyl vinyl ether	96	92	70 - 129	4	20		
2-Hexanone	84	87	65 - 127	4	15		
4-Methyl-2-pentanone (MIBK)	88	91	71 - 125	4	35		
Acetone	79	78	56 - 142	0	15		
Acrolein	88	86	52 - 143	3	20		
Acrylonitrile	93	89	63 - 125	4	20		
Benzene	106	101	71 - 124	4	13		
Bromobenzene	104	98	78 - 120	5	15		
Bromochloromethane	108	101	72 - 130	6	15		

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample ID: 280-91030-E-2 MS Analysis Batch: 480-333215 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S9825.D

Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1902 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1902 5 mL Leach Date: N/A

MSD Lab Sample ID: 280-91030-E-2 MSD Analysis Batch: 480-333215 Instrument ID: HP5973S

Client Matrix: Water Prep Batch: N/A Lab File ID: S9826.D Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/23/2016 1925 Final Weight/Volume: 5 mL

Prep Date: 11/23/2016 1925 5 mL

MS MSD Limit RPD RPD Limit MS Qual MSD Bromodichloromethane 102 99 80 - 122 3 15 Bromoform 97 99 61 - 132 2 15 Bromomethane 109 98 55 - 144 11 15 Butyl alcohol, tert- 75 80 75 - 125 6 15 Carbon disulfide 98 93 59 - 134 6 15 Carbon tetrachloride 115 106 72 - 134 8 15 Chlorobenzene 102 103 80 - 120 1 25 Chloroethane 117 113 69 - 136 4 15	Qual
Bromoform 97 99 61 - 132 2 15 Bromomethane 109 98 55 - 144 11 15 Butyl alcohol, tert- 75 80 75 - 125 6 15 Carbon disulfide 98 93 59 - 134 6 15 Carbon tetrachloride 115 106 72 - 134 8 15 Chlorobenzene 102 103 80 - 120 1 25	
Bromomethane 109 98 55 - 144 11 15 Butyl alcohol, tert- 75 80 75 - 125 6 15 Carbon disulfide 98 93 59 - 134 6 15 Carbon tetrachloride 115 106 72 - 134 8 15 Chlorobenzene 102 103 80 - 120 1 25	
Butyl alcohol, tert- 75 80 75 - 125 6 15 Carbon disulfide 98 93 59 - 134 6 15 Carbon tetrachloride 115 106 72 - 134 8 15 Chlorobenzene 102 103 80 - 120 1 25	
Carbon disulfide 98 93 59 - 134 6 15 Carbon tetrachloride 115 106 72 - 134 8 15 Chlorobenzene 102 103 80 - 120 1 25	
Carbon tetrachloride 115 106 72 - 134 8 15 Chlorobenzene 102 103 80 - 120 1 25	
Chlorobenzene 102 103 80 - 120 1 25	
Chloroethane 117 113 69 - 136 4 15	
Chloroform 103 99 73 - 127 4 20	
Chloromethane 110 101 68 - 124 9 15	
cis-1,2-Dichloroethene 107 101 74 - 124 6 15	
cis-1,3-Dichloropropene 100 95 74 - 124 5 15	
Cyclohexane 112 103 59 - 135 8 20	
Dibromochloromethane 103 106 75 - 125 3 15	
Dibromomethane 102 100 76 - 127 2 15	
Dichlorodifluoromethane 109 100 59 - 135 8 20	
Dichlorofluoromethane 106 101 76 - 127 5 20	
Ethyl ether 106 102 76 - 123 4 20	
Ethylbenzene 103 101 77 - 123 2 15	
Hexachlorobutadiene 95 96 68 - 131 1 20	
lodomethane 102 97 78 - 123 5 20	
Isobutanol 80 82 51 - 150 3 20	
Isopropylbenzene 105 102 77 - 122 2 20	
Methyl acetate 89 88 74 - 133 1 20	
Methyl tert-butyl ether 99 96 77 - 120 3 37	
Methylcyclohexane 110 101 68 - 134 8 20	
Methylene Chloride 98 96 75 - 124 3 15	
m-Xylene & p-Xylene 101 101 76 - 122 1 16	
Naphthalene 96 97 66 - 125 1 20	
n-Butylbenzene 106 102 71 - 128 3 15	
N-Propylbenzene 104 101 75 - 127 4 15	
o-Chlorotoluene 103 102 76 - 121 1 20	
o-Xylene 102 103 76 - 122 2 16	

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 280-91030-E-2 MS Water 5.0 11/23/2016 1902 11/23/2016 1902 N/A	Analysis Batch: Prep Batch: Leach Batch:	480-333215 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973S S9825.D 5 mL 5 mL 5 mL
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	EID: 280-91030-E-2 MSD Water 5.0 11/23/2016 1925 11/23/2016 1925 N/A	Analysis Batch: Prep Batch: Leach Batch:	480-333215 N/A N/A	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	HP5973S S9826.D 5 mL 5 mL 5 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
p-Chlorotoluene	103	101	77 - 121	2	15		
p-Cymene	105	102	73 - 120	3	20		
sec-Butylbenzene	104	102	74 - 127	3	15		
Styrene	102	103	80 - 120	0	20		
tert-Butylbenzene	107	104	75 - 123	3	15		
Tetrachloroethene	105	103	74 - 122	2	20		
Tetrahydrofuran	85	85	62 - 132	0	25		
Toluene	104	104	80 - 122	0	15		
trans-1,2-Dichloroethene	110	102	73 - 127	8	20		
trans-1,3-Dichloropropene	96	100	80 - 120	5	15		
trans-1,4-Dichloro-2-butene	65	69	41 - 131	5	20		
Trichloroethene	105	99	74 - 123	6	16		
Trichlorofluoromethane	110	103	62 - 150	6	20		
Vinyl acetate	91	91	50 - 144	1	23		
Vinyl chloride	123	115	65 - 133	7	15		

Surrogate	MS % Rec	MSD % Rec	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	100	99	77 - 120
4-Bromofluorobenzene (Surr)	97	98	73 - 120
Toluene-d8 (Surr)	101	104	80 - 120

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Preparation: 5030C

MS Lab Sample ID: 280-91030-E-2 MS Units: ug/L MSD Lab Sample ID: 280-91030-E-2 MSD

Client Matrix:WaterClient Matrix:WaterDilution:5.0Dilution:5.0

Analysis Date: 11/23/2016 1902 Analysis Date: 11/23/2016 1925 Prep Date: 11/23/2016 1902 Prep Date: 11/23/2016 1925

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
1,1,1,2-Tetrachloroethane	ND ND	125	125	136	136
1,1,1-Trichloroethane	ND ND	125	125	136	131
1,1,2,2-Tetrachloroethane	ND	125	125	127	128
1,1,2-Trichloro-1,2,2-trifluoroethane	ND ND	125	125	133	122
1,1,2-Trichloroethane	ND	125	125	130	135
1,1-Dichloroethane	ND	125	125	130	125
1,1-Dichloroethane	ND ND	125	125	142	135
	ND ND	125	125	137	132
1,1-Dichloropropene 1,2,3-Trichlorobenzene	ND ND	125	125	122	123
	ND ND	125	125	122	123
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	ND ND	125	125	124	123
		125	125	132	128
1,2,4-Trimethylbenzene	ND ND		125		
1,2-Dibromo-3-Chloropropane	ND	125		121	125
1,2-Dibromoethane (EDB)	ND	125	125	127	131
1,2-Dichlorobenzene	ND	125	125	130	128
1,2-Dichloroethane	ND	125	125	122	116
1,2-Dichloropropane	ND	125	125	127	122
1,3,5-Trimethylbenzene	ND	125	125	131	128
1,3-Dichlorobenzene	ND	125	125	131	128
1,3-Dichloropropane	ND	125	125	124	127
1,4-Dichlorobenzene	ND	125	125	127	125
1,4-Dioxane	ND	2500	2500	1730	2040
2,2-Dichloropropane	ND	125	125	130	123
2-Butanone (MEK)	ND	625	625	549	537
2-Chloroethyl vinyl ether	ND	125	125	119	115
2-Hexanone	ND	625	625	522	543
4-Methyl-2-pentanone (MIBK)	ND	625	625	550	570
Acetone	ND	625	625	492	490
Acrolein	ND	625	625	550	536
Acrylonitrile	ND	1250	1250	1160	1110
Benzene	ND	125	125	132	126
Bromobenzene	ND	125	125	130	123
Bromochloromethane	ND	125	125	135	127
Bromodichloromethane	ND	125	125	128	124
Bromoform	ND	125	125	122	124
Bromomethane	ND	125	125	136	123
Butyl alcohol, tert-	190	1250	1250	1130	1200
Carbon disulfide	ND	125	125	123	116
Carbon tetrachloride	ND	125	125	143	133
Chlorobenzene	ND	125	125	127	129
Chloroethane	ND	125	125	146	141
Chloroform	ND	125	125	129	124
Chloromethane	ND	125	125	138	126
Omoromothano	110	120	120	100	120

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333215 Method: 8260C
Preparation: 5030C

MS Lab Sample ID: 280-91030-E-2 MS Units: ug/L MSD Lab Sample ID: 280-91030-E-2 MSD

Client Matrix:WaterClient Matrix:WaterDilution:5.0Dilution:5.0

Analysis Date: 11/23/2016 1902 Analysis Date: 11/23/2016 1925

Prep Date: 11/23/2016 1902 Prep Date: 11/23/2016 1925

Leach Date: N/A Leach Date: N/A

	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
cis-1,2-Dichloroethene	ND	125	125	134	126
cis-1,3-Dichloropropene	ND	125	125	125	119
Cyclohexane	ND	125	125	140	129
Dibromochloromethane	ND	125	125	128	132
Dibromomethane	ND	125	125	128	126
Dichlorodifluoromethane	ND	125	125	136	126
Dichlorofluoromethane	ND	125	125	133	126
Ethyl ether	ND	125	125	133	127
Ethylbenzene	ND	125	125	128	126
Hexachlorobutadiene	ND	125	125	119	120
Iodomethane	ND	125	125	127	121
Isobutanol	ND	3130	3130	2500	2570
Isopropylbenzene	ND	125	125	131	128
Methyl acetate	ND	625	625	555	548
Methyl tert-butyl ether	ND	125	125	123	120
Methylcyclohexane	ND	125	125	137	127
Methylene Chloride	ND	125	125	123	120
m-Xylene & p-Xylene	ND	125	125	126	127
Naphthalene	ND	125	125	121	121
n-Butylbenzene	ND	125	125	132	128
N-Propylbenzene	ND	125	125	130	126
o-Chlorotoluene	ND	125	125	128	127
o-Xylene	ND	125	125	127	129
p-Chlorotoluene	ND	125	125	128	126
p-Cymene	ND	125	125	131	127
sec-Butylbenzene	ND	125	125	130	127
Styrene	ND	125	125	128	128
tert-Butylbenzene	ND	125	125	134	130
Tetrachloroethene	ND	125	125	132	129
Tetrahydrofuran	43	250	250	256	255
Toluene	ND	125	125	130	130
trans-1,2-Dichloroethene	ND	125	125	138	127
trans-1,3-Dichloropropene	ND	125	125	120	125
trans-1,4-Dichloro-2-butene	ND	125	125	81.7	86.1
Trichloroethene	ND	125	125	131	124
Trichlorofluoromethane	ND	125	125	137	129
Vinyl acetate	ND	250	250	229	227
Vinyl chloride	ND	125	125	154	143

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 480-332057 Method: 8260C SIM Preparation: 5030C

Lab Sample ID: Instrument ID: MB 480-332057/7 Analysis Batch: 480-332057 HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1436.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL Units: Final Weight/Volume: Analysis Date: 11/16/2016 2326 ug/L 25 mL

Prep Date: 11/16/2016 2326

Leach Date: N/A

Analyte Result Qual MDL RL Vinyl chloride 0.00786 J 0.0040 0.020 Surrogate % Rec Acceptance Limits Dibromofluoromethane (Surr) 97 50 - 150 TBA-d9 (Surr) 97 50 - 150

Lab Control Sample/ Method: 8260C SIM Lab Control Sample Duplicate Recovery Report - Batch: 480-332057 Preparation: 5030C

LCS Lab Sample ID: LCS 480-332057/4 Analysis Batch: 480-332057 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1433.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL Analysis Date: 11/16/2016 2213 Units: ug/L Final Weight/Volume: 25 mL 25 mL

Prep Date: 11/16/2016 2213

Leach Date: N/A

LCSD Lab Sample ID: LCSD 480-332057/5 Analysis Batch: 480-332057 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1434.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

Analysis Date: 11/16/2016 2237 Units: ug/L Final Weight/Volume: 25 mL Prep Date: 11/16/2016 2237 25 mL

Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Vinyl chloride 104 97 50 - 150 7 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits Dibromofluoromethane (Surr) 101 96 50 - 150 85 50 - 150 TBA-d9 (Surr) 87

Client: Waste Management Job Number: 280-90968-1

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 480-332057

Method: 8260C SIM
Preparation: 5030C

LCS Lab Sample ID: LCS 480-332057/4 Units: ug/L LCSD Lab Sample ID: LCSD 480-332057/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

 Analysis Date:
 11/16/2016
 2213
 Analysis Date:
 11/16/2016
 2237

 Prep Date:
 11/16/2016
 2213
 Prep Date:
 11/16/2016
 2237

Leach Date: N/A Leach Date: N/A

Analyte	LCS Spike	LCSD Spike	LCS	LCSD
	Amount	Amount	Result/Qual	Result/Qual
Vinyl chloride	0.200	0.200	0.207	0.194

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352234

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352234/1-A

Client Matrix: Water

Dilution: 1.0 Analysis Date: 11/29/2016 0433 Prep Date: 11/23/2016 1445

Leach Date: N/A

280-353463 Analysis Batch: Instrument ID:

Prep Batch: 280-352234 N/A

Leach Batch: Units: mg/L

MT_025 Lab File ID: 25E112816.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Cobalt, Total	ND		0.0030	0.0030
Iron, Total	ND		0.060	0.060

Lab Control Sample - Batch: 280-352234

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-352234/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 0436 Prep Date: 11/23/2016 1445

Leach Date:

N/A

Instrument ID: Analysis Batch: 280-353463 MT 025 Prep Batch: 280-352234 25E112816.asc Lab File ID:

Initial Weight/Volume: Leach Batch: N/A 50 mL Units: mg/L Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Cobalt, Total	0.500	0.491	98	89 - 111	
Iron, Total	1.00	1.04	104	89 - 115	

280-353463

280-352234

N/A

Analysis Batch:

Prep Batch:

Leach Batch:

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352234

Method: 6010B Preparation: 3005A

MS Lab Sample ID: 280-90915-C-2-B MS

Client Matrix: Water

Dilution: 1.0

11/29/2016 0446 Analysis Date: Prep Date: 11/23/2016 1445

Leach Date:

Total Recoverable

Instrument ID: MT_025 Lab File ID: 25E112816.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

MSD Lab Sample ID: 280-90915-C-2-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/29/2016 0448 Prep Date: 11/23/2016 1445

Leach Date:

Analysis Batch: 280-353463 Instrument ID: MT 025 Prep Batch: 280-352234 Lab File ID: 25E112816.asc

Leach Batch: N/A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

% Rec. Analyte MS **MSD** Limit **RPD RPD Limit** MS Qual MSD Qual Cobalt. Total 87 89 82 - 119 2 20 7 Iron, Total 86 147 52 - 155 20 4 4

Water

1.0

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 280-352234
Method: 6010B
Preparation: 3005A
Total Recoverable

MS Lab Sample ID: 280-90915-C-2-B MS Units: mg/L MSD Lab Sample ID: 280-90915-C-2-C MSD

Client Matrix:

Dilution:

Client Matrix: Water
Dilution: 1.0

Analysis Date: 11/29/2016 0446 Analysis Date: 11/29/2016 0448
Prep Date: 11/23/2016 1445 Prep Date: 11/23/2016 1445

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Cobalt, Total	ND	0.500	0.500	0.436	0.446
Iron, Total	8.1	1.00	1.00	8.96 4	9.56 4

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-353142

Method: 6010B Preparation: 3005A Total Recoverable

Lab Sample ID: MB 280-353142/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/10/2016 0227

Prep Date: 12/01/2016 1405

Leach Date: N/A

Analysis Batch: 280-355067 Prep Batch: 280-353142

Leach Batch: N/A Units: mg/L Instrument ID: MT_025

Lab File ID: 25D120916.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Calcium, Dissolved	ND		0.040	0.040
Iron, Dissolved	ND		0.060	0.060
Magnesium, Dissolved	ND		0.050	0.050
Potassium, Dissolved	ND		1.0	1.0
Sodium, Dissolved	ND		1.0	1.0

Lab Control Sample - Batch: 280-353142

Method: 6010B Preparation: 3005A Total Recoverable

Lab Sample ID: LCS 280-353142/2-A

Client Matrix: Water
Dilution: 1.0
Analysis Date: 12/10/2016 0230

Prep Date: 12/01/2016 1405

Leach Date: N/A

Analysis Batch: 280-355067
Prep Batch: 280-353142
Leach Batch: N/A
Units: mg/L

Instrument ID: MT_025
Lab File ID: 25D120916.asc
Initial Weight/Volume: 50 mL

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Calcium, Dissolved	50.0	51.5	103	90 - 111	
Iron, Dissolved	1.00	0.952	95	89 - 115	
Magnesium, Dissolved	50.0	55.0	110	90 - 113	
Potassium, Dissolved	50.0	51.5	103	89 - 114	
Sodium, Dissolved	50.0	52.7	105	90 - 115	

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-353142 Preparation: 3005A

280-90959-L-1-C MS MS Lab Sample ID:

Client Matrix: Water

Dilution: 1.0

12/10/2016 0237 Analysis Date: Prep Date: 12/01/2016 1405

Leach Date: N/A

MSD Lab Sample ID: 280-90959-L-1-D MSD

Client Matrix: Water Dilution: 1.0

12/10/2016 0240 Analysis Date: Prep Date: 12/01/2016 1405

Leach Date: N/A **Dissolved**

280-355067

280-353142

N/A

Instrument ID: MT_025

Method: 6010B

Lab File ID: 25D120916.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

Analysis Batch: 280-355067 Instrument ID: MT_025

Analysis Batch:

Prep Batch:

Leach Batch:

Lab File ID: 25D120916.asc Prep Batch: 280-353142

Leach Batch: Initial Weight/Volume: N/A 50 ml Final Weight/Volume: 50 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Calcium, Dissolved	111	101	48 - 153	3	20		
Iron, Dissolved	94	93	52 - 155	1	20		
Magnesium, Dissolved	145	84	62 - 146	4	20	4	4
Potassium, Dissolved	109	107	76 - 132	1	20		
Sodium, Dissolved	181	112	70 - 203	4	20	4	4

Matrix Spike/

MS Lab Sample ID:

Method: 6010B Matrix Spike Duplicate Recovery Report - Batch: 280-353142 Preparation: 3005A

Units: mg/L

Dissolved

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/10/2016 0237 12/01/2016 1405 Prep Date:

280-90959-L-1-C MS

Leach Date: N/A MSD Lab Sample ID: 280-90959-L-1-D MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/10/2016 0240 Prep Date: 12/01/2016 1405

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/	Qual	MSD Result/0	Qual
Calcium, Dissolved	99	50.0	50.0	154		149	
Iron, Dissolved	0.14	1.00	1.00	1.08		1.07	
Magnesium, Dissolved	710	50.0	50.0	781	4	751	4
Potassium, Dissolved	23	50.0	50.0	77.7		76.8	
Sodium, Dissolved	740	50.0	50.0	831	4	796	4

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352238

Method: 6020 Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352238/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/25/2016 1552 11/25/2016 0725 Prep Date:

Leach Date: N/A Analysis Batch: 280-353261 Prep Batch: 280-352238

Leach Batch: N/A Units: mg/L

Instrument ID: MT_077 Lab File ID: 058 BLK.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Antimony, Total	ND		0.0010	0.0010
Barium, Total	ND		0.0010	0.0010
Beryllium, Total	ND		0.0010	0.0010
Cadmium, Total	ND		0.00020	0.00020
Chromium, Total	ND		0.0030	0.0030
Copper, Total	ND		0.0020	0.0020
Lead, Total	ND		0.0010	0.0010
Manganese, Total	ND		0.0010	0.0010
Nickel, Total	ND		0.0040	0.0040
Selenium, Total	ND		0.0010	0.0010
Silver, Total	ND		0.0020	0.0020
Thallium, Total	ND		0.0010	0.0010
Vanadium, Total	ND		0.0020	0.0020
Zinc, Total	ND		0.0050	0.0050

Lab Control Sample - Batch: 280-352238

Method: 6020 Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-352238/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/25/2016 1556 11/25/2016 0725

Prep Date:

Leach Date: N/A Analysis Batch: Instrument ID: MT_077 280-353261 Prep Batch: 280-352238 Lab File ID: 059_LCS.d Leach Batch: N/A Initial Weight/Volume: 50 mL Units: mg/L Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Antimony, Total	0.0400	0.0400	100	85 - 115	
Barium, Total	0.0400	0.0420	105	85 - 118	
Beryllium, Total	0.0400	0.0374	93	80 - 125	
Cadmium, Total	0.0400	0.0373	93	85 - 115	
Chromium, Total	0.0400	0.0389	97	84 - 121	
Copper, Total	0.0400	0.0382	96	85 - 119	
Lead, Total	0.0400	0.0393	98	85 - 118	
Manganese, Total	0.0400	0.0397	99	85 - 117	
Nickel, Total	0.0400	0.0393	98	85 - 119	
Selenium, Total	0.0400	0.0379	95	77 - 122	
Silver, Total	0.0400	0.0382	95	85 - 115	
Thallium, Total	0.0400	0.0393	98	85 - 118	
Vanadium, Total	0.0400	0.0388	97	85 - 120	
Zinc, Total	0.0400	0.0374	94	83 - 122	

MT_077

086SMPL.d

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 6020
Matrix Spike Duplicate Recovery Report - Batch: 280-352238 Preparation: 3005A
Total Recoverable

MS Lab Sample ID: 280-90968-1 Analysis Batch: 280-353261 Client Matrix: Water Prep Batch: 280-352238 Dilution: 1.0 Leach Batch: N/A

Dilution: 1.0 Leach Batch: National National Leach Batch: National

Prep Date: 11/25/2016 0725
Leach Date: N/A

Leach Date: N/A

MSD Lab Sample ID: 280-90968-1 Client Matrix: Water

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/25/2016 1743 Prep Date: 11/25/2016 0725

Leach Date: N/A

Vanadium, Total

Zinc, Total

ach Batch: N/A Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Instrument ID:

Lab File ID:

Analysis Batch: 280-353261 Instrument ID: MT_077
Prep Batch: 280-352238 Lab File ID: 087SMPL.d
Leach Batch: N/A Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

2

5

20

20

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Antimony, Total 104 104 85 - 115 0 20 85 - 118 2 20 Barium, Total 101 103 Beryllium, Total 99 102 80 - 125 3 20 85 - 115 1 Cadmium, Total 102 103 20 2 20 Chromium, Total 109 107 84 - 121 2 20 Copper, Total 93 95 85 - 119 103 103 85 - 118 1 20 Lead, Total Manganese, Total 1 106 106 85 - 117 20 85 - 119 1 20 Nickel, Total 99 100 Selenium, Total 95 95 77 - 122 0 20 Silver, Total 103 104 85 - 115 0 20 Thallium, Total 101 101 85 - 118 0 20

85 - 120

83 - 122

99

101

100

106

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 280-352238

Method: 6020
Preparation: 3005A
Total Recoverable

Units: mg/L

MS Lab Sample ID: 280-90968-1

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/25/2016 1739 Prep Date: 11/25/2016 0725

Leach Date: N/A

Total Recoverable

MSD Lab Sample ID: 280-90968-1 Client Matrix: Water

Dilution: 1.0

Analysis Date: 11/25/2016 1743 Prep Date: 11/25/2016 0725

Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Antimony, Total	ND	0.0400	0.0400	0.0417	0.0417
Barium, Total	0.0028	0.0400	0.0400	0.0431	0.0438
Beryllium, Total	ND	0.0400	0.0400	0.0397	0.0407
Cadmium, Total	ND	0.0400	0.0400	0.0409	0.0412
Chromium, Total	ND	0.0400	0.0400	0.0437	0.0430
Copper, Total	0.0021	0.0400	0.0400	0.0395	0.0402
Lead, Total	ND	0.0400	0.0400	0.0411	0.0413
Manganese, Total	ND	0.0400	0.0400	0.0425	0.0423
Nickel, Total	ND	0.0400	0.0400	0.0396	0.0399
Selenium, Total	ND	0.0400	0.0400	0.0380	0.0380
Silver, Total	ND	0.0400	0.0400	0.0412	0.0414
Thallium, Total	ND	0.0400	0.0400	0.0404	0.0403
Vanadium, Total	0.0039	0.0400	0.0400	0.0434	0.0441
Zinc, Total	ND	0.0400	0.0400	0.0403	0.0426

MT 077 176 LCS.d

50 mL

50 mL

50 mL

50 mL

4

4

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352489 Method: 6020

> Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352489/1-A

Client Matrix: Water

Dilution: 10 Analysis Date: 11/23/2016 2315

Prep Date: 11/23/2016 1445

Leach Date: N/A Analysis Batch: 280-353028 Prep Batch: 280-352489

Leach Batch: N/A

Units:

Instrument ID: MT_077 Lab File ID: 175 BLK.d Initial Weight/Volume: 50 mL

Final Weight/Volume: mg/L 50 mL

Analyte Result Qual RL RL Manganese, Dissolved ND 0.0010 0.0010

Method: 6020 Lab Control Sample - Batch: 280-352489 Preparation: 3005A

Total Recoverable

Initial Weight/Volume:

Final Weight/Volume:

Method: 6020

Final Weight/Volume:

20

Lab File ID:

Lab Sample ID: LCS 280-352489/2-A Analysis Batch: 280-353028 Instrument ID:

Client Matrix: Water Prep Batch: 280-352489 Dilution: 10 Leach Batch: N/A Analysis Date: 11/23/2016 2319 Units: mg/L

Prep Date: 11/23/2016 1445

Leach Date: N/A

% Rec. Analyte Spike Amount Result I imit Qual

Manganese, Dissolved 0.0400 0.0402 101 85 - 117

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352489 Preparation: 3005A

Dissolved

307

MS Lab Sample ID: 280-91030-D-2-B MS Analysis Batch: 280-353028 Instrument ID: MT 077 Water 180SMPL.d Client Matrix: Prep Batch: 280-352489 Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Analysis Date: 11/23/2016 2334

11/23/2016 1445 Prep Date:

Leach Date: N/A

MSD Lab Sample ID: 280-91030-D-2-C MSD Analysis Batch: 280-353028 Instrument ID: MT 077

Client Matrix: Water Prep Batch: 280-352489 Lab File ID: 181SMPL.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL Final Weight/Volume:

388

Analysis Date: 11/23/2016 2338 11/23/2016 1445

Prep Date:

Leach Date: N/A

Manganese, Dissolved

% Rec. Analyte **RPD** MS **MSD** I imit **RPD Limit** MS Qual MSD Qual

85 - 117

1

12/11/2016 TestAmerica Denver Page 146 of 195

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 6020
Matrix Spike Duplicate Recovery Report - Batch: 280-352489 Preparation: 3005A

Units: mg/L

Dissolved

MS Lab Sample ID: 280-91030-D-2-B MS

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/23/2016 2334 Prep Date: 11/23/2016 1445

Leach Date: N/A

MSD Lab Sample ID: 280-91030-D-2-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/23/2016 2338 Prep Date: 11/23/2016 1445

Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/	Qual	MSD Result/0	Qual
Manganese, Dissolved	2.7	0.0400	0.0400	2.84	4	2.88	4

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-354768 Method: 300.0 Preparation: N/A

Lab Sample ID:MB 280-354768/6Analysis Batch:280-354768Instrument ID:WC_IonChrom10Client Matrix:WaterPrep Batch:N/ALab File ID:Info 2_DENPC179_Anio

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/08/2016 1055 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Chloride
 ND
 1.0
 1.0

 Sulfate
 ND
 1.0
 1.0

Method Reporting Limit Check - Batch: 280-354768 Method: 300.0

Preparation: N/A

Lab Sample ID: MRL 280-354768/3 Analysis Batch: 280-354768 Instrument ID: WC_lonChrom10

Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 12/08/2016 1009 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

% Rec. Qual Analyte Spike Amount Result Limit Chloride 2.50 ND 96 50 - 150 Sulfate ND 2.50 97 50 - 150

Lab Control Sample/ Method: 300.0
Lab Control Sample Duplicate Recovery Report - Batch: 280-354768 Preparation: N/A

LCS Lab Sample ID: LCS 280-354768/4 Analysis Batch: 280-354768 Instrument ID: WC_lonChrom10

Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 12/08/2016 1024 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A 5 uL

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-354768/5 Analysis Batch: 280-354768 Instrument ID: WC IonChrom10

LCSD Lab Sample ID: LCSD 280-354768/5 Analysis Batch: 280-354768 Instrument ID: WC_lonChrom10

Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/08/2016 1039 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A 5 uL

Prep Date: N/A
Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Chloride 102 102 90 - 110 10 0 Sulfate 102 90 - 110 10 102 0

Client: Waste Management Job Number: 280-90968-1

Method: 300.0

Laboratory Control/

Laboratory Duplicate Data Report - Batch: 280-354768 Preparation: N/A

LCS Lab Sample ID: LCS 280-354768/4 Units: mg/L

Sulfate

LCSD Lab Sample ID: LCSD 280-354768/5 Client Matrix: Water Client Matrix: Water Dilution: Dilution: 1.0 1.0

Analysis Date: 12/08/2016 1024 Analysis Date: 12/08/2016 1039

N/A Prep Date: Prep Date: N/A Leach Date: N/A Leach Date: N/A

LCS Spike LCSD Spike LCS **LCSD** Analyte Amount Result/Qual Result/Qual **Amount** Chloride 100 100 102 102 Sulfate 100 100 102 102

Method: 300.0 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-354768 Preparation: N/A

MS Lab Sample ID: 280-91032-B-10 MS Analysis Batch: 280-354768 Instrument ID: WC IonChrom10 Client Matrix: Water Prep Batch: N/A Lab File ID:

Info 2_DENPC179_Anio Leach Batch: Initial Weight/Volume: Dilution: 1.0 N/A 5 mL

12/08/2016 1141 Analysis Date: Final Weight/Volume: 5 mL

Prep Date: N/A 5 uL Leach Date: N/A

MSD Lab Sample ID: 280-91032-B-10 MSD Analysis Batch: 280-354768 Instrument ID: WC_IonChrom10

Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2 DENPC179 Anic Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0 5 mL

Analysis Date: 12/08/2016 1156 Final Weight/Volume: 5 ml

Prep Date: N/A 5 uL

Leach Date: N/A

108

108

% Rec. Analyte MS **MSD** Limit **RPD RPD Limit** MS Qual MSD Qual Chloride 107 80 - 120 20 107 0

80 - 120

0

20

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-354768 Preparation: N/A

MS Lab Sample ID: 280-91032-B-10 MS Units: mg/L MSD Lab Sample ID: 280-91032-B-10 MSD

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/08/2016 1141 Analysis Date: 12/08/2016 1156

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Chloride	4.2	25.0	25.0	30.8	30.8
Sulfate	25	25.0	25.0	51.5	51.5

Duplicate - Batch: 280-354768 Method: 300.0 Preparation: N/A

Lab Sample ID: 280-91032-B-10 DU Analysis Batch: 280-354768 Instrument ID: WC_lonChrom10

Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/08/2016 1126 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A 5 uL Leach Date: N/A

RPD Analyte Sample Result/Qual Result Limit Qual Chloride 4.2 4.16 0 15 Sulfate 25 24.5 0 15

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352527 Method: 350.1

Preparation: N/A

Lab Sample ID: MB 280-352527/61 Analysis Batch: 280-352527 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112116.RS Dilution: 1.0 Leach Batch: N/A

Initial Weight/Volume: 11/21/2016 1457 Units: Final Weight/Volume: Analysis Date: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL ND Ammonia (as N) 0.030 0.030

Method Blank - Batch: 280-352527 Method: 350.1 Preparation: N/A

Lab Sample ID: MB 280-352527/109 Analysis Batch: 280-352527 Instrument ID: WC_Alp 3

Client Matrix: Prep Batch: Water N/A Lab File ID:

C:\FLOW_4\112116.RS Dilution: Leach Batch: Initial Weight/Volume: 1.0 N/A

Analysis Date: 11/21/2016 1633 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Analyte Result Qual RL RL Ammonia (as N) ND 0.030 0.030

Client: Waste Management Job Number: 280-90968-1

Lab Control Sample/ Method: 350.1 Lab Control Sample Duplicate Recovery Report - Batch: 280-352527 Preparation: N/A

LCS Lab Sample ID: LCS 280-352527/59 Instrument ID: Analysis Batch: 280-352527 WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112116.RS

Dilution: Leach Batch: N/A Initial Weight/Volume: 100 mL 1.0 11/21/2016 1453 Final Weight/Volume: Units: mg/L 100 mL

Analysis Date: Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-352527/60 Analysis Batch: 280-352527 Instrument ID: WC Alp 3

Prep Batch: Lab File ID: C:\FLOW 4\112116.RS Client Matrix: Water N/A

Initial Weight/Volume: Dilution: 1.0 Leach Batch: N/A 100 mL

11/21/2016 1455 Units: Final Weight/Volume: 100 mL Analysis Date: mg/L

Prep Date: N/A Leach Date: N/A

% Rec. LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Analyte

102 2 Ammonia (as N) 105 90 - 110 10

N/A

N/A

Leach Date:

Lab Control Sample/ Method: 350.1 Lab Control Sample Duplicate Recovery Report - Batch: 280-352527 Preparation: N/A

LCS Lab Sample ID: LCS 280-352527/107 Analysis Batch: 280-352527 Instrument ID: WC Alp 3

Lab File ID: Client Matrix: Water Prep Batch: N/A C:\FLOW 4\112116.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Final Weight/Volume: Analysis Date: 11/21/2016 1629 Units: 100 mL mg/L Prep Date: N/A

Leach Date:

LCSD Lab Sample ID: LCSD 280-352527/108 Analysis Batch: 280-352527 Instrument ID: WC Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112116.RS Leach Batch: 1.0 N/A Initial Weight/Volume: 100 mL Dilution:

11/21/2016 1631 Analysis Date: Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A

% Rec. LCS Analyte **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual

Ammonia (as N) 102 103 90 - 110 1 10

Client: Waste Management Job Number: 280-90968-1

Laboratory Control/ Method: 350.1
Laboratory Duplicate Data Report - Batch: 280-352527 Preparation: N/A

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/21/2016 1453 Analysis Date: 11/21/2016 1455

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike Amount Result/Qual Result/Qual

Ammonia (as N) 2.50 2.50 2.61 2.55

Laboratory Control/ Method: 350.1 Laboratory Duplicate Data Report - Batch: 280-352527 Preparation: N/A

LCS Lab Sample ID: LCS 280-352527/107 Units: mg/L LCSD Lab Sample ID: LCSD 280-352527/108

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/21/2016 1629 Analysis Date: 11/21/2016 1631

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike Amount LCS Spike Result/Qual Result/Qual

Ammonia (as N) 2.50 2.50 2.54 2.57

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: 350.1
Matrix Spike Duplicate Recovery Report - Batch: 280-352527 Preparation: N/A

MS Lab Sample ID: 280-90968-3 Analysis Batch: 280-352527 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112116.RS`

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

Analysis Date: 11/21/2016 1637 Final Weight/Volume: 10 mL Prep Date: N/A

Leach Date: N/A

MSD Lab Sample ID: 280-90968-3 Analysis Batch: 280-352527 Instrument ID: WC_Alp 3
Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112116.RS`

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

Analysis Date: 11/21/2016 1639 Final Weight/Volume: 10 mL Prep Date: N/A

<u>% Rec.</u>

Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual

Ammonia (as N) 191 185 90 - 110 3 10 F1 F1

Matrix Spike/ Method: 350.1

Matrix Spike Duplicate Recovery Report - Batch: 280-352527 Preparation: N/A

Leach Date:

N/A

MS Lab Sample ID: 280-90968-3 Units: mg/L MSD Lab Sample ID: 280-90968-3

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/21/2016 1637 Analysis Date: 11/21/2016 1639

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

MSD Sample MS Spike MSD Spike MS Analyte Result/Qual Amount Amount Result/Qual Result/Qual Ammonia (as N) ND 1.00 1.00 1.91 F1 1.85 F1

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-355103 Method: 353.2

Preparation: N/A

Lab Sample ID: MB 280-355103/1 Analysis Batch: 280-355103 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/11/2016 0914 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Nitrate as N
 ND
 0.050
 0.050

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352331 Method: SM 2320B Preparation: N/A

Lab Sample ID: Instrument ID: MB 280-352331/5 Analysis Batch: 280-352331 WC_AT2 Client Matrix: Water Prep Batch: N/A Lab File ID: 111716.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/17/2016 1120 Units: Final Weight/Volume: Analysis Date: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL ND Alkalinity, Total (As CaCO3) 5.0 5.0 Alkalinity, Bicarbonate (As CaCO3) ND 5.0 5.0

Lab Control Sample - Batch: 280-352331 Method: SM 2320B Preparation: N/A

Lab Sample ID: Analysis Batch: Instrument ID: WC AT2 LCS 280-352331/4 280-352331

Client Matrix: Prep Batch: Lab File ID: 111716.TXT Water N/A

Initial Weight/Volume: Dilution: 1.0 Leach Batch: N/A 11/17/2016 1113 Units:

Analysis Date: mg/L Final Weight/Volume: Prep Date: N/A Leach Date: N/A

% Rec. Limit Qual Analyte Spike Amount Result Alkalinity, Total (As CaCO3) 200 197 99 90 - 110

Method: SM 2320B Duplicate - Batch: 280-352331 Preparation: N/A

280-90901-A-1 DU 280-352331 Instrument ID: Lab Sample ID: Analysis Batch: WC_AT2 Client Matrix: Prep Batch: N/A Lab File ID: 111716.TXT Water

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/17/2016 1138 Final Weight/Volume: Analysis Date: Units: mq/L

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual Alkalinity, Total (As CaCO3) ND ND NC 10

5.0

5.0

5.0

5.0

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352383 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-352383/5 Analysis Batch: 280-352383 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/20/2016 1257 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Leach Date:

Alkalinity, Bicarbonate (As CaCO3)

N/A

Alkalinity, Bicarbonate (As CaCO3)

Analyte Result Qual RL RL
Alkalinity, Total (As CaCO3) ND 5.0 5.0

Method Blank - Batch: 280-352383 Method: SM 2320B

Preparation: N/A

Lab Sample ID: MB 280-352383/31 Analysis Batch: 280-352383 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

ND

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/20/2016 1459 Units: mg/L Final Weight/Volume: Prep Date: N/A

Analyte Result Qual RL RL Alkalinity, Total (As CaCO3) ND 5.0 5.0

ND

Client: Waste Management Job Number: 280-90968-1

Lab Control Sample - Batch: 280-352383 Method: SM 2320B Preparation: N/A

Tropulation: 14/

Lab Sample ID: LCS 280-352383/4 Analysis Batch: 280-352383 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/20/2016 1253 Linits: mg/l Final Weight/Volume:

Analysis Date: 11/20/2016 1253 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date:

N/A

Analyte Spike Amount Result % Rec. Limit Qual

Alkalinity, Total (As CaCO3) 200 200 100 90 - 110

Lab Control Sample - Batch: 280-352383 Method: SM 2320B Preparation: N/A

Lab Sample ID: LCS 280-352383/30 Analysis Batch: 280-352383 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/20/2016 1455 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Alkalinity, Total (As CaCO3) 200 194 97 90 - 110

Duplicate - Batch: 280-352383 Method: SM 2320B Preparation: N/A

Lab Sample ID: 280-90968-2 Analysis Batch: 280-352383 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112016 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/20/2016 1508 Units: mg/L Final Weight/Volume: Prep Date: N/A
Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Alkalinity, Total (As CaCO3) 80 78.8 1 10

5.0

5.0

5.0

5.0

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352831 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-352831/31 Analysis Batch: 280-352831 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/22/2016 1516 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Analyte Result Qual RL RL

ND

ND

Lab Control Sample - Batch: 280-352831 Method: SM 2320B

Alkalinity, Total (As CaCO3)

Leach Date:

Leach Date:

Alkalinity, Bicarbonate (As CaCO3)

N/A

N/A

Preparation: N/A

Lab Sample ID: LCS 280-352831/30 Analysis Batch: 280-352831 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/22/2016 1511 Units: mg/L Final Weight/Volume: Prep Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Alkalinity, Total (As CaCO3) 200 194 97 90 - 110

Duplicate - Batch: 280-352831 Method: SM 2320B

Preparation: N/A

Lab Sample ID: 280-91153-A-1 DU Analysis Batch: 280-352831 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/22/2016 1555 Units: mg/L Final Weight/Volume: Prep Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Alkalinity, Total (As CaCO3) 150 152 2 10

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352412 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-352412/1 Analysis Batch: 280-352412 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/21/2016 1013 Units: Final Weight/Volume: 100 mL

Analysis Date: 11/21/2016 1013 Units: mg/L Find Prep Date: N/A
Leach Date: N/A

Analyte Result Qual RL RL

Total Dissolved Solids (TDS) ND 5.0 5.0

Lab Control Sample - Batch: 280-352412 Method: SM 2540C Preparation: N/A

Lab Sample ID: LCS 280-352412/2 Analysis Batch: 280-352412 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/21/2016 1013 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A
Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Total Dissolved Solids (TDS) 500 490 98 86 - 110

Duplicate - Batch: 280-352412 Method: SM 2540C

Preparation: N/A

Leach Date:

N/A

Lab Sample ID: 280-90969-B-2 DU Analysis Batch: 280-352412 Instrument ID: No Equipment Assigned Client Matrix: Prep Batch: Water N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/21/2016 1013 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Dissolved Solids (TDS) 300 303 1 10

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-353491 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-353491/1 Analysis Batch: 280-353491 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/29/2016 0842 Final Weight/Volume: Units: ma/L 100 mL

Analysis Date: 11/29/2016 0842 Prep Date: N/A

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Dissolved Solids (TDS) ND 5.0 5.0

Lab Control Sample/ Method: SM 2540C

Lab Control Sample Duplicate Recovery Report - Batch: 280-353491 Preparation: N/A

LCS Lab Sample ID: LCS 280-353491/2 Analysis Batch: 280-353491 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: Leach Batch: 100 mL Dilution: 10 N/A Initial Weight/Volume: Analysis Date: 11/29/2016 0842 Units: Final Weight/Volume: 100 mL mg/L

Prep Date: N/A Leach Date: N/A

Leach Date:

LCSD Lab Sample ID: LCSD 280-353491/3 Analysis Batch: 280-353491 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Applying Date: 11/20/2016 0942 Light: mg/l Final Weight/Volume: 100 ml

Analysis Date: 11/29/2016 0842 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

% Rec.

N/A

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Total Dissolved Solids (TDS) 99 96 86 - 110 3 20

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-353491

Method: SM 2540C
Preparation: N/A

LCS Lab Sample ID: LCS 280-353491/2 Units: mg/L LCSD Lab Sample ID: LCSD 280-353491/3

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/29/2016 0842 Analysis Date: 11/29/2016 0842

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike Amount LCS Spike LCSD Spike Result/Qual Result/Qual Total Dissolved Solids (TDS) 500 500 494 479

Client: Waste Management Job Number: 280-90968-1

Duplicate - Batch: 280-353491 Method: SM 2540C Preparation: N/A

Lab Sample ID: 280-90968-5 Analysis Batch: 280-353491 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/29/2016 0842 Units: Final Weight/Volume: 100 mL Analysis Date: mg/L

Prep Date: N/A Leach Date: N/A

Leach Date:

N/A

Analyte Sample Result/Qual Result RPD Limit Qual
Total Dissolved Solids (TDS) 43 52.0 19 10 F3

Duplicate - Batch: 280-353491 Method: SM 2540C

Preparation: N/A

Lab Sample ID: 280-90968-8 Analysis Batch: 280-353491 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL
Analysis Date: 11/29/2016 0842 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/29/2016 0842 Units: mg/L Final Weight/Volume: Prep Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual
Total Dissolved Solids (TDS) 130 154 15 10 F3

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-352044 Method: SM 2540D Preparation: N/A

Lab Sample ID: MB 280-352044/2 Analysis Batch: 280-352044 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL 11/17/2016 1754 Units: Final Weight/Volume: Analysis Date: mg/L 250 mL

Prep Date: N/A

Leach Date: N/A

Analyte Result Qual RL RL

Total Suspended Solids ND 4.0

Lab Control Sample - Batch: 280-352044 Method: SM 2540D Preparation: N/A

Lab Sample ID: LCS 280-352044/1 Analysis Batch: 280-352044 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: Initial Weight/Volume: Leach Batch: 250 mL Dilution: 10 N/A Analysis Date: 11/17/2016 1754 Units: mg/L Final Weight/Volume: 250 mL

Prep Date: N/A Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual

Total Suspended Solids 100 91.6 92 86 - 114

Duplicate - Batch: 280-352044 Method: SM 2540D Preparation: N/A

Lab Sample ID: 280-90968-1 Analysis Batch: 280-352044 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL Final Weight/Volume: 250 mL Analysis Date: 11/17/2016 1754 Units: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Suspended Solids ND ND NC 10

Client: Waste Management Job Number: 280-90968-1

280-352478

Instrument ID:

Method Blank - Batch: 280-352478 Method: SM 2540D Preparation: N/A

Lab Sample ID: Analysis Batch: No Equipment Assigned Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 ml 11/21/2016 1439 Final Weight/Volume: Analysis Date: Units: ma/L 250 mL

Prep Date: N/A Leach Date: N/A

MB 280-352478/3

Analyte Result Qual RL RL

Total Suspended Solids ND 4.0 4.0

Lab Control Sample/ Method: SM 2540D

Lab Control Sample Duplicate Recovery Report - Batch: 280-352478 Preparation: N/A

LCS Lab Sample ID: LCS 280-352478/1 280-352478 Instrument ID: Analysis Batch: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: Leach Batch: 250 mL Dilution: 10 N/A Initial Weight/Volume: Analysis Date: 11/21/2016 1439 Units: Final Weight/Volume: 250 mL mg/L

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-352478/2 Analysis Batch: 280-352478 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL

11/21/2016 1439 Final Weight/Volume: 250 mL Analysis Date: Units: mg/L Prep Date: N/A

Leach Date: N/A

% Rec. RPD LCS **LCSD** Limit RPD Limit LCS Qual LCSD Qual Analyte

Total Suspended Solids 93 91 86 - 114 2 20

Laboratory Control/ Method: SM 2540D Laboratory Duplicate Data Report - Batch: 280-352478 Preparation: N/A

LCS Lab Sample ID: LCS 280-352478/1 LCSD Lab Sample ID: LCSD 280-352478/2 Units: mg/L

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

11/21/2016 1439 11/21/2016 1439 Analysis Date: Analysis Date:

Prep Date: N/A Prep Date: N/A Leach Date: N/A Leach Date: N/A

LCSD LCS Spike LCSD Spike LCS Analyte **Amount** Amount Result/Qual Result/Qual **Total Suspended Solids** 100 100 92.8 90.8

Client: Waste Management Job Number: 280-90968-1

Duplicate - Batch: 280-352478 Method: SM 2540D Preparation: N/A

Lab Sample ID: 280-91242-A-3 DU Analysis Batch: 280-352478 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL

Analysis Date: 11/21/2016 1439 Units: mg/L Final Weight/Volume: 250 mL Prep Date: N/A

Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Suspended Solids ND ND NC 10

Qual

Client: Waste Management Job Number: 280-90968-1

Method Blank - Batch: 280-354778 Method: SM 5310B Preparation: N/A

Lab Sample ID: MB 280-354778/4 Analysis Batch: 280-354778 Instrument ID: V

Lab Sample ID: MB 280-354778/4 Analysis Batch: 280-354778 Instrument ID: WC_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 12/07/2016 1252 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

Leach Date:

N/A

Analyte Result Qual RL RL

Total Organic Carbon - Average ND 1.0 1.0

Lab Control Sample - Batch: 280-354778 Method: SM 5310B

Preparation: N/A

Lab Sample ID: LCS 280-354778/3 Analysis Batch: 280-354778 Instrument ID: WC_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/07/2016 1237 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

Analyte Spike Amount Result % Rec. Limit

Total Organic Carbon - Average 25.0 24.4 98 88 - 112

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-354778 Preparation: N/A

MS Lab Sample ID: 280-90968-2 Analysis Batch: 280-354778 Instrument ID: WC_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/07/2016 1706 Final Weight/Volume: 50 mL Prep Date: N/A

Leach Date: N/A

MSD Lab Sample ID: 280-90968-2 Analysis Batch: 280-354778 Instrument ID: WC_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/07/2016 1720 Final Weight/Volume: 50 mL

Prep Date: N/A
Leach Date: N/A

Analyte \(\frac{\% \text{Rec.}}{\text{MS}} \) As \(\text{MSD} \) Limit \(\text{RPD} \) RPD Limit \(\text{MS Qual} \) MSD Qual

 Total Organic Carbon - Average
 99
 99
 88 - 112
 0
 15

Client: Waste Management Job Number: 280-90968-1

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-354778 Preparation: N/A

MS Lab Sample ID: 280-90968-2 Units: mg/L MSD Lab Sample ID: 280-90968-2

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/07/2016 1706 Analysis Date: 12/07/2016 1720

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Amount Result/Qual Result/Qual 25.0 25.0 Total Organic Carbon - Average ND 24.8 24.9

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: 280-90968-1 Client ID: MW-13A

Sample Date/Time: 11/14/2016 10:04 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-1		480-333215		11/23/2016 11:44	1	TAL BUF	NEA
A:8260C	280-90968-F-1		480-333215		11/23/2016 11:44	1	TAL BUF	NEA
P:5030C	280-90968-K-1		480-332057		11/17/2016 00:19	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-1		480-332057		11/17/2016 00:19	1	TAL BUF	NMD1
P:3005A	280-90968-D-1-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-1-A		280-353463	280-352234	11/29/2016 05:23	1	TAL DEN	CML
P:3005A	280-90968-E-1-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-1-B		280-355067	280-353142	12/10/2016 02:52	1	TAL DEN	LRD
P:3005A	280-90968-E-1-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-1-A		280-353028	280-352489	11/23/2016 23:54	1	TAL DEN	LMT
P:3005A	280-90968-D-1-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-1-B		280-353261	280-352238	11/25/2016 17:32	1	TAL DEN	LMT
A:300.0	280-90968-A-1		280-354768		12/08/2016 12:27	1	TAL DEN	AFB
A:350.1	280-90968-C-1		280-352527		11/21/2016 16:11	1	TAL DEN	MAS
A:353.2	280-90968-A-1		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-1		280-352383		11/20/2016 14:41	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-1		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-1		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-1		280-354778		12/07/2016 16:36	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-1		280-352756		11/14/2016 11:04	1	TAL DEN	C1K

Lab ID: 280-90968-1 MS Client ID: MW-13A

Sample Date/Time: 11/14/2016 10:04 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-90968-D-1-C MS		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-1-C MS		280-353261	280-352238	11/25/2016 17:39	1	TAL DEN	LMT

Lab ID: 280-90968-1 MSD Client ID: MW-13A

Sample Date/Time: 11/14/2016 10:04 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-90968-D-1-D MSD		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-1-D MSD		280-353261	280-352238	11/25/2016 17:43	1	TAL DEN	LMT

Job Number: 280-90968-1 Client: Waste Management

Laboratory Chronicle

Lab ID: 280-90968-1 DU Client ID: MW-13A

> Sample Date/Time: 11/14/2016 10:04 Received Date/Time: 11/15/2016 12:17

Analysis Date Prepared / **Batch Analyzed** Method **Bottle ID** Run Prep Batch Dil Analyst Lab A:SM 2540D 280-90968-B-1 DU 11/17/2016 17:54 280-352044 TAL DEN SVC

Lab ID: 280-90968-2 Client ID: MW-13B

> Sample Date/Time: 11/14/2016 11:35 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-2		480-333215		11/23/2016 12:07	1	TAL BUF	NEA
A:8260C	280-90968-F-2		480-333215		11/23/2016 12:07	1	TAL BUF	NEA
P:5030C	280-90968-K-2		480-332057		11/17/2016 00:43	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-2		480-332057		11/17/2016 00:43	1	TAL BUF	NMD1
P:3005A	280-90968-D-2-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-2-A		280-353463	280-352234	11/29/2016 05:26	1	TAL DEN	CML
P:3005A	280-90968-E-2-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-2-B		280-355067	280-353142	12/10/2016 02:55	1	TAL DEN	LRD
P:3005A	280-90968-E-2-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-2-A		280-353028	280-352489	11/23/2016 23:57	1	TAL DEN	LMT
P:3005A	280-90968-D-2-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-2-B		280-353261	280-352238	11/25/2016 18:02	1	TAL DEN	LMT
A:300.0	280-90968-A-2		280-354768		12/08/2016 12:43	1	TAL DEN	AFB
A:350.1	280-90968-C-2		280-352527		11/21/2016 16:27	1	TAL DEN	MAS
A:353.2	280-90968-A-2		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-2		280-352383		11/20/2016 15:03	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-2		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-2		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-2		280-354778		12/07/2016 16:51	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-2		280-352756		11/14/2016 12:35	1	TAL DEN	C1K

Lab ID: 280-90968-2 MS Client ID: MW-13B

> Sample Date/Time: 11/14/2016 11:35 Received Date/Time: 11/15/2016 12:17

Analysis Date Prepared / **Batch Analyzed** Method **Bottle ID** Run **Prep Batch** Dil Lab Analyst A:SM 5310B 280-90968-C-2 MS 280-354778 12/07/2016 17:06 TAL DEN CCJ

Client ID: MW-13B Lab ID: 280-90968-2 MSD

> Sample Date/Time: 11/14/2016 11:35 Received Date/Time: 11/15/2016 12:17

Date Prepared / **Analysis** Method **Bottle ID** Run **Batch Prep Batch Analyzed** Dil Lab Analyst A:SM 5310B 280-90968-C-2 MSD 280-354778 12/07/2016 17:20 TAL DEN CCJ

A = Analytical Method P = Prep Method TestAmerica Denver 12/11/2016

Job Number: 280-90968-1 Client: Waste Management

Laboratory Chronicle

Lab ID: 280-90968-2 DU Client ID: MW-13B

> Sample Date/Time: 11/14/2016 11:35 Received Date/Time: 11/15/2016 12:17

Analysis Date Prepared / **Batch Analyzed** Method **Bottle ID** Run Prep Batch Dil Lab **Analyst** A:SM 2320B 280-90968-B-2 DU 280-352383 11/20/2016 15:08 TAL DEN MMC

Lab ID: 280-90968-3 Client ID: MW-16

> Sample Date/Time: 11/14/2016 12:48 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-3		480-333215		11/23/2016 12:30	1	TAL BUF	NEA
A:8260C	280-90968-F-3		480-333215		11/23/2016 12:30	1	TAL BUF	NEA
P:5030C	280-90968-K-3		480-332057		11/17/2016 01:07	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-3		480-332057		11/17/2016 01:07	1	TAL BUF	NMD1
P:3005A	280-90968-D-3-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-3-A		280-353463	280-352234	11/29/2016 05:38	1	TAL DEN	CML
P:3005A	280-90968-E-3-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-3-B		280-355067	280-353142	12/10/2016 02:57	1	TAL DEN	LRD
P:3005A	280-90968-E-3-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-3-A		280-353028	280-352489	11/24/2016 00:01	1	TAL DEN	LMT
P:3005A	280-90968-D-3-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-3-B		280-353261	280-352238	11/25/2016 18:06	1	TAL DEN	LMT
A:300.0	280-90968-A-3		280-354768		12/08/2016 12:58	1	TAL DEN	AFB
A:350.1	280-90968-C-3		280-352527		11/21/2016 16:35	1	TAL DEN	MAS
A:353.2	280-90968-A-3		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-3		280-352383		11/20/2016 15:12	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-3		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-3		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-3		280-354778		12/07/2016 17:35	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-3		280-352756		11/14/2016 13:48	1	TAL DEN	C1K

Lab ID: 280-90968-3 MS Client ID: MW-16

> Sample Date/Time: 11/14/2016 12:48 Received Date/Time: 11/15/2016 12:17

Analysis Date Prepared / **Batch Analyzed** Method **Bottle ID** Run **Prep Batch** Dil Lab Analyst A:350.1 280-90968-C-3 MS 280-352527 11/21/2016 16:37 TAL DEN MAS

Client ID: MW-16 Lab ID: 280-90968-3 MSD

> Sample Date/Time: 11/14/2016 12:48 Received Date/Time: 11/15/2016 12:17

Date Prepared / **Analysis** Method **Bottle ID** Run **Batch Prep Batch Analyzed** Dil Lab Analyst A:350.1 280-90968-C-3 MSD 280-352527 11/21/2016 16:39 TAL DEN MAS

A = Analytical Method P = Prep Method TestAmerica Denver 12/11/2016

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: 280-90968-4 Client ID: MW-39

Sample Date/Time: 11/14/2016 13:54 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-4		480-333215		11/23/2016 12:53	1	TAL BUF	NEA
A:8260C	280-90968-F-4		480-333215		11/23/2016 12:53	1	TAL BUF	NEA
P:5030C	280-90968-K-4		480-332057		11/17/2016 01:31	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-4		480-332057		11/17/2016 01:31	1	TAL BUF	NMD1
P:3005A	280-90968-D-4-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-4-A		280-353463	280-352234	11/29/2016 05:41	1	TAL DEN	CML
P:3005A	280-90968-E-4-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-4-B		280-355067	280-353142	12/10/2016 03:00	1	TAL DEN	LRD
P:3005A	280-90968-E-4-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-4-A		280-353028	280-352489	11/24/2016 00:05	1	TAL DEN	LMT
P:3005A	280-90968-D-4-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-4-B		280-353261	280-352238	11/25/2016 18:10	1	TAL DEN	LMT
A:300.0	280-90968-A-4		280-354768		12/08/2016 13:14	1	TAL DEN	AFB
A:350.1	280-90968-C-4		280-352527		11/21/2016 16:41	1	TAL DEN	MAS
A:353.2	280-90968-A-4		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-4		280-352383		11/20/2016 15:16	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-4		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-4		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-4		280-354778		12/07/2016 17:50	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-4		280-352756		11/14/2016 14:54	1	TAL DEN	C1K

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: 280-90968-5 Client ID: MW-4

Sample Date/Time: 11/14/2016 15:00 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-5		480-333215		11/23/2016 14:02	1	TAL BUF	NEA
A:8260C	280-90968-F-5		480-333215		11/23/2016 14:02	1	TAL BUF	NEA
P:5030C	280-90968-K-5		480-332057		11/17/2016 01:55	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-5		480-332057		11/17/2016 01:55	1	TAL BUF	NMD1
P:3005A	280-90968-D-5-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-5-A		280-353463	280-352234	11/29/2016 05:43	1	TAL DEN	CML
P:3005A	280-90968-E-5-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-5-B		280-355067	280-353142	12/10/2016 03:02	1	TAL DEN	LRD
P:3005A	280-90968-E-5-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-5-A		280-353028	280-352489	11/24/2016 00:09	1	TAL DEN	LMT
P:3005A	280-90968-D-5-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-5-B		280-353261	280-352238	11/25/2016 18:13	1	TAL DEN	LMT
A:300.0	280-90968-A-5		280-354768		12/08/2016 13:29	1	TAL DEN	AFB
A:350.1	280-90968-C-5		280-352527		11/21/2016 16:43	1	TAL DEN	MAS
A:353.2	280-90968-A-5		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-5		280-352831		11/22/2016 16:33	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-5		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-5		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-5		280-354778		12/07/2016 18:04	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-5		280-352756		11/14/2016 16:00	1	TAL DEN	C1K

Lab ID: 280-90968-5 DU Client ID: MW-4

Sample Date/Time: 11/14/2016 15:00 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:SM 2540C	280-90968-B-5 DU		280-353491		11/29/2016 08:42	1	TAL DEN	JAP

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: 280-90968-6 Client ID: MW-43

Sample Date/Time: 11/14/2016 11:58 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-6		480-333215		11/23/2016 14:25	1	TAL BUF	NEA
A:8260C	280-90968-F-6		480-333215		11/23/2016 14:25	1	TAL BUF	NEA
P:5030C	280-90968-K-6		480-332057		11/17/2016 02:20	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-6		480-332057		11/17/2016 02:20	1	TAL BUF	NMD1
P:3005A	280-90968-D-6-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-6-A		280-353463	280-352234	11/29/2016 05:46	1	TAL DEN	CML
P:3005A	280-90968-E-6-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-6-B		280-355067	280-353142	12/10/2016 03:05	1	TAL DEN	LRD
P:3005A	280-90968-E-6-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-6-A		280-353028	280-352489	11/24/2016 00:12	1	TAL DEN	LMT
P:3005A	280-90968-D-6-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-6-B		280-353261	280-352238	11/25/2016 18:17	1	TAL DEN	LMT
A:300.0	280-90968-A-6		280-354768		12/08/2016 14:15	1	TAL DEN	AFB
A:350.1	280-90968-C-6		280-352527		11/21/2016 16:45	1	TAL DEN	MAS
A:353.2	280-90968-A-6		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-6		280-352383		11/20/2016 15:25	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-6		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-6		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-6		280-354778		12/07/2016 18:21	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-6		280-352756		11/14/2016 12:58	1	TAL DEN	C1K

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: 280-90968-7 Client ID: MW-20

> Sample Date/Time: 11/14/2016 13:29 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-7		480-333215		11/23/2016 14:48	1	TAL BUF	NEA
A:8260C	280-90968-F-7		480-333215		11/23/2016 14:48	1	TAL BUF	NEA
P:5030C	280-90968-K-7		480-332057		11/17/2016 02:44	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-7		480-332057		11/17/2016 02:44	1	TAL BUF	NMD1
P:3005A	280-90968-D-7-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-7-A		280-353463	280-352234	11/29/2016 05:48	1	TAL DEN	CML
P:3005A	280-90968-E-7-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-7-B		280-355067	280-353142	12/10/2016 03:07	1	TAL DEN	LRD
P:3005A	280-90968-E-7-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-7-A		280-353028	280-352489	11/24/2016 00:16	1	TAL DEN	LMT
P:3005A	280-90968-D-7-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-7-B		280-353261	280-352238	11/25/2016 18:21	1	TAL DEN	LMT
A:300.0	280-90968-A-7		280-354768		12/08/2016 14:31	1	TAL DEN	AFB
A:350.1	280-90968-C-7		280-352527		11/21/2016 17:01	1	TAL DEN	MAS
A:353.2	280-90968-A-7		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-7		280-352383		11/20/2016 15:30	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-7		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-7		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-7		280-354778		12/07/2016 19:07	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-7		280-352756		11/14/2016 14:29	1	TAL DEN	C1K

P = Prep Method TestAmerica Denver A = Analytical Method 12/11/2016

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: 280-90968-8 Client ID: DUP2

> Sample Date/Time: 11/14/2016 13:39 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-8		480-333215		11/23/2016 15:11	1	TAL BUF	NEA
A:8260C	280-90968-F-8		480-333215		11/23/2016 15:11	1	TAL BUF	NEA
P:5030C	280-90968-K-8		480-332057		11/17/2016 03:09	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-8		480-332057		11/17/2016 03:09	1	TAL BUF	NMD1
P:3005A	280-90968-D-8-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-8-A		280-353463	280-352234	11/29/2016 05:51	1	TAL DEN	CML
P:3005A	280-90968-E-8-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-8-B		280-355067	280-353142	12/10/2016 03:10	1	TAL DEN	LRD
P:3005A	280-90968-E-8-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-8-A		280-353028	280-352489	11/24/2016 00:20	1	TAL DEN	LMT
P:3005A	280-90968-D-8-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-8-B		280-353261	280-352238	11/25/2016 18:25	1	TAL DEN	LMT
A:300.0	280-90968-A-8		280-354768		12/08/2016 14:46	1	TAL DEN	AFB
A:350.1	280-90968-C-8		280-352527		11/21/2016 17:03	1	TAL DEN	MAS
A:353.2	280-90968-A-8		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-8		280-352383		11/20/2016 15:34	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-8		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-8		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-8		280-354778		12/07/2016 19:24	1	TAL DEN	CCJ

Lab ID: 280-90968-8 DU Client ID: DUP2

> Sample Date/Time: 11/14/2016 13:39 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:SM 2540C	280-90968-B-8 DU		280-353491		11/29/2016 08:42	1	TAL DEN	JAP

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: 280-90968-9 Client ID: MW-19C

Sample Date/Time: 11/14/2016 14:28 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-9		480-333215		11/23/2016 15:34	1	TAL BUF	NEA
A:8260C	280-90968-F-9		480-333215		11/23/2016 15:34	1	TAL BUF	NEA
P:5030C	280-90968-K-9		480-332057		11/17/2016 03:33	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-9		480-332057		11/17/2016 03:33	1	TAL BUF	NMD1
P:3005A	280-90968-D-9-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-9-A		280-353463	280-352234	11/29/2016 05:54	1	TAL DEN	CML
P:3005A	280-90968-E-9-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-9-B		280-355067	280-353142	12/10/2016 03:13	1	TAL DEN	LRD
P:3005A	280-90968-E-9-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-9-A		280-353028	280-352489	11/24/2016 00:24	1	TAL DEN	LMT
P:3005A	280-90968-D-9-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-9-B		280-353261	280-352238	11/25/2016 18:28	1	TAL DEN	LMT
A:300.0	280-90968-A-9		280-354768		12/08/2016 15:02	1	TAL DEN	AFB
A:350.1	280-90968-C-9		280-352527		11/21/2016 17:05	1	TAL DEN	MAS
A:353.2	280-90968-A-9		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-9		280-352331		11/17/2016 11:43	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-9		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-9		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-9		280-354778		12/07/2016 19:38	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-9		280-352756		11/14/2016 15:28	1	TAL DEN	C1K

Lab ID: 280-90968-10 Client ID: TRIP BLANK

Sample Date/Time: 11/14/2016 00:00 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-A-10		480-333215		11/23/2016 15:58	1	TAL BUF	NEA
A:8260C	280-90968-A-10		480-333215		11/23/2016 15:58	1	TAL BUF	NEA
P:5030C	280-90968-D-10		480-332057		11/17/2016 03:57	1	TAL BUF	NMD1
A:8260C SIM	280-90968-D-10		480-332057		11/17/2016 03:57	1	TAL BUF	NMD1

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: 280-90968-11 Client ID: MW-29A

> Sample Date/Time: 11/14/2016 12:44 Received Date/Time: 11/15/2016 12:17

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-90968-F-11		480-333215		11/23/2016 16:21	1	TAL BUF	NEA
A:8260C	280-90968-F-11		480-333215		11/23/2016 16:21	1	TAL BUF	NEA
P:5030C	280-90968-K-11		480-332057		11/17/2016 04:21	1	TAL BUF	NMD1
A:8260C SIM	280-90968-K-11		480-332057		11/17/2016 04:21	1	TAL BUF	NMD1
P:3005A	280-90968-D-11-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90968-D-11-A		280-353463	280-352234	11/29/2016 05:56	1	TAL DEN	CML
P:3005A	280-90968-E-11-B		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90968-E-11-B		280-355067	280-353142	12/10/2016 03:15	1	TAL DEN	LRD
P:3005A	280-90968-E-11-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-90968-E-11-A		280-353028	280-352489	11/24/2016 00:27	1	TAL DEN	LMT
P:3005A	280-90968-D-11-B		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	280-90968-D-11-B		280-353261	280-352238	11/25/2016 18:32	1	TAL DEN	LMT
A:300.0	280-90968-A-11		280-354768		12/08/2016 15:17	1	TAL DEN	AFB
A:350.1	280-90968-C-11		280-352527		11/21/2016 17:18	1	TAL DEN	MAS
A:353.2	280-90968-A-11		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	280-90968-B-11		280-352331		11/17/2016 11:49	1	TAL DEN	MMC
A:SM 2540C	280-90968-B-11		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-90968-B-11		280-352478		11/21/2016 14:39	1	TAL DEN	SVC
A:SM 5310B	280-90968-C-11		280-354778		12/07/2016 19:55	1	TAL DEN	CCJ
A:Field Sampling	280-90968-A-11		280-352756		11/14/2016 13:44	1	TAL DEN	C1K

P = Prep Method TestAmerica Denver A = Analytical Method 12/11/2016

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	MB 480-333215/6		480-333215		11/23/2016 10:43	1	TAL BUF	NEA
A:8260C	MB 480-333215/6		480-333215		11/23/2016 10:43	1	TAL BUF	NEA
P:5030C	MB 480-332057/7		480-332057		11/16/2016 23:26	1	TAL BUF	NMD1
A:8260C SIM	MB 480-332057/7		480-332057		11/16/2016 23:26	1	TAL BUF	NMD1
P:3005A	MB 280-352234/1-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	MB 280-352234/1-A		280-353463	280-352234	11/29/2016 04:33	1	TAL DEN	CML
P:3005A	MB 280-353142/1-A		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	MB 280-353142/1-A		280-355067	280-353142	12/10/2016 02:27	1	TAL DEN	LRD
P:3005A	MB 280-352489/1-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	MB 280-352489/1-A		280-353028	280-352489	11/23/2016 23:15	1	TAL DEN	LMT
P:3005A	MB 280-352238/1-A		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	MB 280-352238/1-A		280-353261	280-352238	11/25/2016 15:52	1	TAL DEN	LMT
A:300.0	MB 280-354768/6		280-354768		12/08/2016 10:55	1	TAL DEN	AFB
A:350.1	MB 280-352527/61		280-352527		11/21/2016 14:57	1	TAL DEN	MAS
A:350.1	MB 280-352527/109		280-352527		11/21/2016 16:33	1	TAL DEN	MAS
A:353.2	MB 280-355103/1		280-355103		12/11/2016 09:14	1	TAL DEN	AJA
A:SM 2320B	MB 280-352331/5		280-352331		11/17/2016 11:20	1	TAL DEN	MMC
A:SM 2320B	MB 280-352383/5		280-352383		11/20/2016 12:57	1	TAL DEN	MMC
A:SM 2320B	MB 280-352383/31		280-352383		11/20/2016 14:59	1	TAL DEN	MMC
A:SM 2320B	MB 280-352831/31		280-352831		11/22/2016 15:16	1	TAL DEN	MMC
A:SM 2540C	MB 280-352412/1		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540C	MB 280-353491/1		280-353491		11/29/2016 08:42	1	TAL DEN	JAP
A:SM 2540D	MB 280-352044/2		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 2540D	MB 280-352478/3		280-352478		11/21/2016 14:39	1	TAL DEN	SVC
A:SM 5310B	MB 280-354778/4		280-354778		12/07/2016 12:52	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCS 480-333215/4		480-333215		11/23/2016 09:50	1	TAL BUF	NEA
A:8260C	LCS 480-333215/4		480-333215		11/23/2016 09:50	1	TAL BUF	NEA
P:5030C	LCS 480-332057/4		480-332057		11/16/2016 22:13	1	TAL BUF	NMD1
A:8260C SIM	LCS 480-332057/4		480-332057		11/16/2016 22:13	1	TAL BUF	NMD1
P:3005A	LCS 280-352234/2-A		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	LCS 280-352234/2-A		280-353463	280-352234	11/29/2016 04:36	1	TAL DEN	CML
P:3005A	LCS 280-353142/2-A		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	LCS 280-353142/2-A		280-355067	280-353142	12/10/2016 02:30	1	TAL DEN	LRD
P:3005A	LCS 280-352489/2-A		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	LCS 280-352489/2-A		280-353028	280-352489	11/23/2016 23:19	1	TAL DEN	LMT
P:3005A	LCS 280-352238/2-A		280-353261	280-352238	11/25/2016 07:25	1	TAL DEN	TEB
A:6020	LCS 280-352238/2-A		280-353261	280-352238	11/25/2016 15:56	1	TAL DEN	LMT
A:300.0	LCS 280-354768/4		280-354768		12/08/2016 10:24	1	TAL DEN	AFB
A:350.1	LCS 280-352527/59		280-352527		11/21/2016 14:53	1	TAL DEN	MAS
A:350.1	LCS 280-352527/107		280-352527		11/21/2016 16:29	1	TAL DEN	MAS
A:SM 2320B	LCS 280-352331/4		280-352331		11/17/2016 11:13	1	TAL DEN	MMC
A:SM 2320B	LCS 280-352383/4		280-352383		11/20/2016 12:53	1	TAL DEN	MMC
A:SM 2320B	LCS 280-352383/30		280-352383		11/20/2016 14:55	1	TAL DEN	MMC
A:SM 2320B	LCS 280-352831/30		280-352831		11/22/2016 15:11	1	TAL DEN	MMC
A:SM 2540C	LCS 280-352412/2		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540C	LCS 280-353491/2		280-353491		11/29/2016 08:42	1	TAL DEN	JAP
A:SM 2540D	LCS 280-352044/1		280-352044		11/17/2016 17:54	1	TAL DEN	SVC
A:SM 2540D	LCS 280-352478/1		280-352478		11/21/2016 14:39	1	TAL DEN	SVC
A:SM 5310B	LCS 280-354778/3		280-354778		12/07/2016 12:37	1	TAL DEN	CCJ

Lab ID: LCSD Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCSD 480-332057/5		480-332057		11/16/2016 22:37	1	TAL BUF	NMD1
A:8260C SIM	LCSD 480-332057/5		480-332057		11/16/2016 22:37	1	TAL BUF	NMD1
A:300.0	LCSD 280-354768/5		280-354768		12/08/2016 10:39	1	TAL DEN	AFB
A:350.1	LCSD 280-352527/60		280-352527		11/21/2016 14:55	1	TAL DEN	MAS
A:350.1	LCSD 280-352527/108		280-352527		11/21/2016 16:31	1	TAL DEN	MAS
A:SM 2540C	LCSD 280-353491/3		280-353491		11/29/2016 08:42	1	TAL DEN	JAP
A:SM 2540D	LCSD 280-352478/2		280-352478		11/21/2016 14:39	1	TAL DEN	SVC

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Lab ID: MRL Client ID: N/A

> Sample Date/Time: N/A Received Date/Time: N/A

Analysis Date Prepared / **Batch** Method **Analyzed Bottle ID** Run Prep Batch Dil Lab **Analyst** A:300.0 MRL 280-354768/3 280-354768 12/08/2016 10:09 TAL DEN AFB

Lab ID: MS Client ID: N/A

> Sample Date/Time: 11/14/2016 11:00 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91030-E-2 MS		480-333215		11/23/2016 19:02	5	TAL BUF	NEA
A:8260C	280-91030-E-2 MS		480-333215		11/23/2016 19:02	5	TAL BUF	NEA
P:3005A	280-90915-C-2-B MS		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90915-C-2-B MS		280-353463	280-352234	11/29/2016 04:46	1	TAL DEN	CML
P:3005A	280-90959-L-1-C MS		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90959-L-1-C MS		280-355067	280-353142	12/10/2016 02:37	1	TAL DEN	LRD
P:3005A	280-91030-D-2-B MS		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91030-D-2-B MS		280-353028	280-352489	11/23/2016 23:34	1	TAL DEN	LMT
A:300.0	280-91032-B-10 MS		280-354768		12/08/2016 11:41	1	TAL DEN	AFB

Lab ID: MSD Client ID: N/A

> Sample Date/Time: 11/14/2016 11:00 Received Date/Time: 11/15/2016 08:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91030-E-2 MSD		480-333215		11/23/2016 19:25	5	TAL BUF	NEA
A:8260C	280-91030-E-2 MSD		480-333215		11/23/2016 19:25	5	TAL BUF	NEA
P:3005A	280-90915-C-2-C MSD		280-353463	280-352234	11/23/2016 14:45	1	TAL DEN	SEJ
A:6010B	280-90915-C-2-C MSD		280-353463	280-352234	11/29/2016 04:48	1	TAL DEN	CML
P:3005A	280-90959-L-1-D MSD		280-355067	280-353142	12/01/2016 14:05	1	TAL DEN	MLS
A:6010B	280-90959-L-1-D MSD		280-355067	280-353142	12/10/2016 02:40	1	TAL DEN	LRD
P:3005A	280-91030-D-2-C MSD		280-353028	280-352489	11/23/2016 14:45	1	TAL DEN	SEJ
A:6020	280-91030-D-2-C MSD		280-353028	280-352489	11/23/2016 23:38	1	TAL DEN	LMT
A:300.0	280-91032-B-10 MSD		280-354768		12/08/2016 11:56	1	TAL DEN	AFB

Quality Control Results

Client: Waste Management Job Number: 280-90968-1

Laboratory Chronicle

Client ID: N/A Lab ID: DU

> Sample Date/Time: 11/14/2016 13:45 Received Date/Time: 11/15/2016 09:40

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	280-91032-B-10 DU		280-354768		12/08/2016 11:26	1	TAL DEN	AFB
A:SM 2320B	280-90901-A-1 DU		280-352331		11/17/2016 11:38	1	TAL DEN	MMC
A:SM 2320B	280-91153-A-1 DU		280-352831		11/22/2016 15:55	1	TAL DEN	MMC
A:SM 2540C	280-90969-B-2 DU		280-352412		11/21/2016 10:13	1	TAL DEN	JAP
A:SM 2540D	280-91242-A-3 DU		280-352478		11/21/2016 14:39	1	TAL DEN	SVC

Lab References:

TAL BUF = TestAmerica Buffalo TAL DEN = TestAmerica Denver

TestAmerica Denver A = Analytical Method P = Prep Method 12/11/2016

FIELD INFORMATION FORM Site This Wasts Menagement Field Information Form is Required
This form is to be completed, in addition to any State Forms. The Field Form is Name: Site submitted along with the Chain of Custody Forms that accompany the sample Sample Laboratory Use Only/Lab ID: No.: ontainers (i.e. with the cooler that is returned to the laboratory), Poluts PURGE INFO PURGE DATE PURCE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED Note: For Passive Sumpling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged, Mark changes, record field data, below. FURGESAMPLE EQUIPMENT Purging and Sampling Equipment . . . Dedicated: or N Filter Device: Y Dor | N | 0.45 µ or [Purging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter-Type: B-Pressure Y-Other Sampling Device C-QED Bladder Pump F-Dipper/Bottle C-PVC X-Other: X-Other: Sample Tube Type: B-Stainless Steel D-Polypropylene Well Elevation Depth to Water (DTW) Groundwater Elevation (at TOC) (from TOC) (site datum, from TOC) Total Well Depth Stick Up Casing (from TOC) (from ground elevation) (in) Material Note: Total Well Dapth, Stick Up, Casing Id. etc. are aptional and can be from historical data, unless required by Site/Pormit. Well Elevation, DTW, and Groundwoter Elevation pН Sample Time Rute/Unit Conductance (SC/EC) Turbidity D,O, eH/ORP מדע (2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV)(ft) 210 415 175 Suggested range for 3 consec. readings or +/- 10% note Permit State requirements; Stabilization Unita Fields are Ontional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required by State/Permit/Site. If a Data Lagger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form SAMPLE DATE рĦ CONDUCTANCE TEMP. TURBIDITY DO Other: eH/ORP (MM DD YY) (std) (umhos/em @ 25°C) (mg/L-ppm) (mV) Units 3 Firm Pleid Rendings are required (Le stabilized readings, passive sample readings before sampling for all field parameters required by State/Paralli Site. 1 Rud Sample Appearance: Odor: Color: Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or N Specific Comments (including purge/well volume calculations if required): I certify that sampling procedures were in accordance with applicable EPA, State, and WM, protocols (if more than one sampler, all should sign): Signature DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Copy

Site	<u> </u>		<u>.</u>	FIELD IN	FORMAT	ION FORM	1	W	$\sqrt{\lambda}\sqrt{\lambda}$
Name; Site	ļ <u>. </u>	li assau	<u> </u>	This form	is to be completed, in a	nformation Form is Require ddition to any State Forms. T	be Field Form is	Laboratory Use Only/Lab II	ARMAGEMENT
No.:	:	Sam Poli	in [19] [19] -			Custody Forms that accompa at is returned to the laboratory		Discinct 000 Only Lab 11	
H	1114	1 6	11/11		23			1 1 1 1	
PURGE INFO	PURGE DA		PURGE TI	ME ELAPSE	D HRS	WATER VOL IN CASI	I III NG ACTUAL	VOLPURGED W	/ELL VOLs
N		ampling, repl		ock) (hrs:n slug" and "Well Vols Purgu	d ⁿ w/ Water Vol In Tubi	(Gallons) ng/Flow Cell and Tubing/Flo	nv Cell Vols Purged.	Gallons) Mark changes, report field de	PURGED ata, below.
PURGE/SAMPLE EQUIPMENT X S d d	urging and Sampli urging Device	^ .	nt Dedicated: A-Submersible	Or N Pump D-Bailer	Filte	Device: or N	or -In-line Disposable	μ (circle or fill	in)
EQUIPMENT	Sampling Device		- B-Peristaltic Pu C-QED Bladder	mpE-Piston Pum	pFilt de	er Type: A B	Pressure	X-Other	
£ 2 x	C-Other:				Sample Ti		-Teflon -Stainless Steel	C-PVC X-Othe D-Palypropylene	r:
DATA © <	Vell Elevation at TOC)		(0/1	Depth to Water (msl) (from TOC)	DTW) 5	1011/41/71	roundwater Elevat ite datum, from TC		(A/mst)
[E] (f	otal Well Depth from TOC)		[in)	Stick Up (from ground elev	ation)	l ha m	asing (in	Casing Material	
	aple Time	Rate/Unit		prional and con be from his Conductance (SC/EC)	<i>toricai data, uniess reg</i> Temp,	dred by StretPeractic Well Ele Turbidity	evation, DTW, and G	oundwater Elevation must be eH/ORP	DTW
(2400	. 1	<u>al/1131</u> 350 1	(std)	(μmhos/cm@25°C)	(°C)	(ntu)	(mg/L, - ppm)	(mV)	(ft)
- - - - 	1120	1"	101612 211	11170	10165		1611	1111310	
(Optional)	1:7:13	3"			10 54		16190	191/10	
	1126	4"		11170	110175		16196	1850	
E I	11219		JI018	1 1/1619	11031		16 194	181610	
	11312		71114	11/17/0	110156		16195	181410	1519152
STABILIZATION DATA	11315	<u> </u>	21112	111711	110141	1100	16.194	1000	
			-disease-t-				<u> </u>	18140	
	ted range for 3 conse		+/- 0,2	-1-/- 3%	<u>_</u>		±/A 10%	+/- 25 mV	Stabilize
Stubill	zntion Data Fields	are Ortions	(i.e., complete stab or other Electronic j	ilization readings for para format is used, fill in final re	ameters required by W adings below and subm	M. Site, or State). These fie it electronic data separately	elds can be used who to Site. If more field	ere four (4) field measurenn 's above are naddeil, use sei	ente ara rimuliand
	AMPLE DATE		pH (std)	CONDUCTANCE (umbos/cm @ 25°C)	TEMP.	TURBIDITY (ntu)	DO (wg/Lappm)		r: <u> </u>
FIELD DATA	/ / 4 / Field Rendings ar	6 Second of (1.	e, record field meas			ple readings before sampli	6 94	1 8 40	1/35
	ole Appearance		Cleur	- Carrie Channell Control of the Con	Odor:	Cole		Other:	
			aily, or as conditio	· ·	Direction/Speed:	Outloo	ık:	Precipitation:	Y or 🕙
Speci	ific Comments (including p	ourge/well volum	e calculations if requir	red):	and the second s			
STA:				2					
OMMENTS	· · · · · · · · · · · · · · · · · · ·	- Voca dancement	and the second s						
Ō	A CONTRACTOR OF THE PARTY OF TH		·						
MELD									
					State, and WM pro	ocols (if more than one sa	ampler, ali should :		
	1,14,1k		Sum C	Scaper			-	252.	
	Date	. Na		M. WHERMONGINA	Signature	FLIOW - Puturned to Cita		праву	The state of the s

	FIELD INFORMATION FORM
Site Name	This Weste Management Field Information Form is Regulared This form is to be completed, in addition to any State Form is. The Field Form is
Site No.:	Sample M w -
_	Semple ID
[8 g	111416 1225 23
PURGE INFO	PURGE DATE PURGE TIME EXAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS (MM DD YY) (2400 Br Clock) (hrs:min) (Gallons) (Gallons) PURGED
	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged, Mark changes, record field data, below.
PURGE SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated: Filter Device: or N 0.45 \(\mu\) or \(\mu\) (circle or fill in) Purging Device \(\mu\) A-In-line Disposable C-Vacuum
OTPM	B-Peristaltic Pump R-Piston Pump Filter-Type: B-Pressure X-Other Sampling Device C-QED Bladder Pump F-Dipper/Bottle
FUR	X-Other: Sample Tube Type: A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
DATA	Well Elevation (at TOC) Depth to Water (DTW) Office (from TOC) Depth to Water (DTW) Office (from TOC) Groundwater Elevation (site datum, from TOC)
WELL DATA	Total Well Depth (from TOC) (a) (from ground elevation) (a) (a) (from ground elevation) (b) (c) (c) (d) (d) (d) (d) (d) (e) (e) (e) (e) (e) (from ground elevation) (e) (from ground elevation) (e) (from ground elevation) (e) (from ground elevation
	Note: Total Well Depth, Stick Up. Casing id. onc. are optional and can be from historical data, unless required by Site/Permit, Well Elevation, DTW, and Groundwater Elevation must be current. Imple Time Raid/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW
(2	00 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L-ppm) (mV) (ît)
	7.13.15 1 2" 6.1 5 2" 1 1 1 1 2 19.77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DATA (Optional)	7136 1 3" 51918 3" 1 11110 1964 1 1 1 D 12 113720 111
AT .	2/3/9 1 4 5/9/14 1 1/1/0 19/62 1 1 1 1 1/1/2 1/3/3/0 1 1 1 1 1/4/9/ 7/3/5/0 1 1 1
NA L	
STABILIZATION	2 M B 9 5 1819 1 11110 19191 1 1251 1619/ / 131510 111
IABI —	╎╶┊╌ ┪┝╌┤┟ ╌┈ ┫┠╬╌┼┼┦┠╌╌┧┣┵╌╌┪╏╌┸┩┠┵┸┿┪┠┼┸┻
S	┝ ╶┋ ╌┩┝ ╌ ╡┡╼╌╌┩┠╌╌╌┼┪┠┵╌╬┪┠╌┵┼╌┿┩┠ ╏╏ ┩╢╌╀╌╃┫┠┼┼┼
	ested tange for 3 consco. readings or +/- 0.2 +/- 3%
Sta	Mization Dala Fields are Optional (i.e., complete stabilization readings for parameters required by Wid, Sija, or State). These fields can be used where four [4] field measurements are required to the Dala Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields where are needed, who separate sheet or for
	SAMPLE DATE PH CONDUCTANCE TEMP, TURBIDITY DO eH/ORP Other:
FIELD DATA	11 M 1 6 18 8 9 1 1 1 1 0 1 0 0 1 1 2 51 1 0 1 1 3 5 5 5 5 5 5 5 5 5
	Fleid Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Situ.
	aple Appearance: Clear Odor: Color: Other:
1	ather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: N
Sp	cific Comments (including purge/well volume calculations if required):
SEZ-	
COMMENTS	
8-	
ETECTO -	
	riffy that compiling proceedings were in accordance with an Health EDA Co
10	rdly that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):
-	SC)
-	Date Name Signature Company

	FIELD INFORMATION FORM
Stte Nam	This Weste Management Field Information Form is Required This form is to be completed, in addition to any State Forms, The Field Form is
Site No.	
	Sample ID
段。	1111416 1331 123
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS
	(MM DDYY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
PIE.	Purging and Sampling Equipment Dedicated:
PURGE/SAMPLE	Purging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter Type: B-Pressure X-Other
RGE	Sampling Device C-QED Bladder Pump F-Dipper/Bottle
	X-Other: Sample Tube Type: U B-Stainless Steel D-Polypropylene
WELL DATA	Well Elevation Depth to Water (DTW) Groundwater Elevation (at TOC) (from TOC) (from TOC) (from TOC) (from TOC)
	Total Well Depth Stick Up Casing Casing
N.	(from TOC) (ft) (ftom ground elevation) (fto TOC) (fto TOC) (ft) (fto Material Note: Total Well Depth. Stick Up, Casing id. ate, are optional and can be from historical data, unless regulred by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
	ample Time Rate/Unit pH Conductance (SC/BC) Temp. Turbidity D.O. eH/ORP DTW (00 Hr Clock) (Δ1/Δ/Δ-1 (std) (μπιλοs/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV) (ft)
	131314 250 1 51510 1 111316 112174 1111 1/120 121710
	131319 1 20 51310 20 1111216 112193 1111 /1 151 151010
iona	13 1412 11 34 51311 34 111311 112195 1111 1/144 151310 111
O Td	13145 1 4" 51219 4" 111314 112194 1 1 1 1/42 151/10
ATA	13 14 18 1 513 11 1 113 14 112 144 1 1 1 1 1/140 151010 1 1 1
STABILIZATION DATA (Optional)	13 15 11 1 5,13 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ATIO	31514 V 51217 111310 112189 114153 1128 141710 1118177
717	
IAB	[┷]
S -	╵╶╸ ╸╸ ┆┊┆╏┞┇┩┞┇┩┞┈╇╌╬┈╬┈┸┼╬┈╬┈┩╒┼┸┩╏╌╏┇┩╏╌╬┈┩╏╌╏╬┥
F .	ested range for 3 couses, readings or +/- 0.2 +/- 3% +/- 10% +/- 25 mV Stabilize
S	llization Duta Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Sita, or State). These fields can be used where four (4) field measurements are required tote/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. [finare fields above are needed, use separate sheet ar fin
	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other:
FIELD DATA	(MM DD YY) (std) (u'mlios/cm@25°C) (°C) (utu) (mg/L-ppm) (mV) Units
	Field Rendings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Sites.
s	nple Appearance: Clear Odor: Color: Other:
v	ather Conditions (required daily, or as conditions change): Direction/Speed: — Outlook: Precipitation: Y or
s	cific Comments (including purge/well volume calculations if required):
SI-	
COMMENTS	
OMIO-	
1 -	
FIELD	
1	rtify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if moreginal one sampler, all should sign);
	1,14,16 Sam Graber In Mr 505
	Dute Name Signature Company
	Dute Name Signature Company DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field Copy

	FIELD INFORMATION FORM
Site Name	This Waste Management Field Information Form is Required. This form is to be completed, in addition to any State Forms. The Field Form is
Site No.:	Sample Point: Sample Point: Submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).
<u> </u>	Sample ID
PURGE INFO	111114116 [1413]7] [123]
	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOL5 (MM DD YY) (2400 Hr Clock) (bus:min) (Gallons) (Gallons) PURGED
<u>м</u> :	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged, Mark changes, record field data, below.
PURGE SAMPLE EQUIPMENT	Purging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum
S H	B-Peristaltic Pump E-Riston Pump Filter Types B-Pressure X-Other Sampling Device C QED Bladder Pump F-Dipper/Bottle
FUR	X-Other: Sample Tube Type: A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
DATA	Well Elevation (at TOC) Depth to Water (DTW) [fi/msi] (from TOC) Depth to Water (DTW) [fi/msi] (from TOC) Depth to Water (DTW) [fi/msi]
WELL DATA	Total Well Depth (from TOC) (a) Stick Up (a) (from ground elevation) (b) (a) (a) Material
<u> </u>	Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by StielPermit. Well Elevation, DTW, and Groundwater Elevation must be current. ample Time Rata/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW
	400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV) (ft)
	19140 300 1 51417 1 111110 11260 1111 1662 /111910 111
	14:415 1 2 5115 2 11511 (11) 56 1 1 1 1 1 14:30 (13:010) 1 1 1
(Optional)	1418 3" 51112 3" 1 1 511 11158 1 1 1 1 1 1 1 1 1 1 3 5 0 1 1 1
	M 1511 1
YO -	141514 51019 1 1419 111152 1 1 1 1 1417 (14110 1 1 1
	14150 51016 1 1414 11149 1 1 1 1 1413 1141210 1111 1413
STABILIZATION DATA	15100 4 51016 111510 111149 111106 14107 1141210 111
	╵╶┋ ╶╣╏╌┸┪┠╌┸═┧┠═┶═┸┸═┩┠╌┸┸┩┝┸┸┵┸┩╏┸┸┥┠┸┸╇┤┠┸┸┸
5 -	╵┋╵ ┫┝╃┪┠╬╃┨┠┵╌┵┦┪┠╌┇╣┠┦┸╏┠┦┸┨┠┦┸┨┠┸┸╂┥┞┚┚
	Bergin/Pitter revolektions revolektions and the second sec
Situ	Permissiate requirements: Migation Data fields are Ontional (i.e. complete stabilization readings for parameters required by WM. Sits, or State). Thus fields are used where four (4) field measurements are members are members for the property of the complete stabilization of the complete stabilization readings for parameters required by WM. Sits, or State).
	itatel/Permitt/Site. If a Data Logger or other Electronic formal is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or for SAMPLE DATE pH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other:
FIELD DATA	(MM DD YY) (stil) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppin) (mV) Units
Sa	mple Appearance: Clear Odor: Color: Other:
ŀ	ather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or
Sį	ecific Comments (including purge/well volume calculations if required):
E -	
COMMENTS	
S-	
FIELD -	
	ortify that campling proceedures were by accordance with analysis of the Control Williams of the Contr
	artify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):
	1 1
	Date Name Signature Company DISTRIBUTION: WHITE/ORIGINAL-Stays with Sample VELLOW - Returned to Clear PINK - Field Conv.

	LD INFORMATION FORM	
	This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form submitted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the laboratory).	
Purging and Sampling Equipment Dedicated: Output Purging Device Output B-Peristaltic Pump E-Peristaltic Pump Device	(Insumin) (Gallons) (Il Vols Parged!" vn/ Water Vol in Tubling/Flow Cell and Tubling/Flow Cell Vols P Filter Device(Y-) or N 0.45 µ Bailer A-in-line Dis	or µ (circle or fill in) posable C-Vacuum X-Other C-PVC X-Other:
(at TOC) (from TOC) (from TOC) (from TOC)	himsonimis and a second and a s	com TOC) (R/mst) Casing (in) Material
SAMPLE DATE (MM DD YY) (std) (std) (initios/ci		32 B O 9 + + + + + + + + + + + + + + + + + +
Sample Appearance: CLEAR Weather Conditions (required daily, or as conditions change): Specific Comments (including purge/well volume calculation)	Direction/Speed: Outlook: Over us if required): T Z8.75 FROM TOC	ORMGEOther:
1 certify that sampling procedures were in accordance with app	icable EPA, State, and WM protocols (if more than one sympler, all s	hould sign): SCS ENGINEERS
	Signature / ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Fi	Company leid Conv

	FIELD INFORMATION FORM
Site Name	e: UV 51 This Weste Management Field Information Form is Regulated This form is to be completed, in addition to any State Forms. The Field Form is
Site No.:	Sample
	Sample D
B	
PURGE	PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLS (MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED
<u></u>	Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Plaw Cell and Tubing/Plaw Cell Vols Purged. Mark changes, record field data, below.
PURGE SAMPLE EQUIPMENT	Purging and Sampling Equipment Dedicated: Y or N Filter Devices Y or N 0.45 \mu or \ \mu \mu \mu (circle or fill in) Purging Device C A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum
SESA UPM	B-Peristaltic Pump B-Riston Rump Filter-Types A B-Pressure X-Other Sampling Device C C-QED Bladder Pump F-Dipper/Bottle
PUR EO	X-Other: Sample Tube Type: D A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
DATA	Well Elevation (at TOC) Depth to Water (DTW) 3 5 C 1 Groundwater Elevation (site datum, from TOC)
WELL DATA	Total Well Depth Stick Up Casing Casing (from TOC) (ft) (from ground elevation) (ft) ID (ftn) Material
 	Note: Total Well Depth, Stick Up, Casing Id. sto. are optional and can be from historical data, unless required by Stre/Permit. Well Elevation, DTW, and Groundwater Elevation must be current. Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW
	(2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (mg/L - ppm) (mV) (ft)
	113114 1 1 7 7 1 10 1 1 121111 1 1 1 1 1 1 1 1 1 1 1 1
	13117 1 2" 71012 2" 1 121019 114137 1 13145 1612 1101815 1315130
STABILIZATION DATA (Optional)	131210 1 31161418 311 11919 114137 111010 16138 1111419 111
12	131213 1 4 6416 4 1 11917 11436 1 19178 638 111812 315 84
DAY.	13:26 1 696 111918 11436 1111144 16136 112011
	1131219 1 61414 1 121010 14137 111211 16131 1121 18 3151 138
ZZ	╵╹╸ ┪┡┵┥┡┵┵┥╠┹┶┖┦╏╏┖┩╎┞┸┤╟┸┼┼┼┪╟┵╁╣╟┸╁╣╟┸╁╣
	╶ ┸┈┸┈┩╎╌┸┈┩╎╌┸┸┈┩╎┸┸┩╽┸┸┸┩╽┵┷╢╟┸┸┷╣┟┷┵┩
S	──── ┤┝┷┤┟┷┷┤┝┵┵┤┠┵┵┤┠┵┵┤┠┸┼┸┩┡┵┵┤┞┸┵┤
	ggested range for 3 consuc, readings or +/- 0.2 +/- 3% 5
St	the Permit State reputerious: Complete stabilization readings for parameters required by W.M. Site, or State). There fields can be used where four fell field maximum are required.
037	State/Permit/Site. If a Data Logger or other Electronic formal is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate stired or form SAMPLE DATE pH CONDUCTANCE TEMP, TURBIDITY DO CH/ORP Other: Time
TELD DATA	(MM DD YY) (std.) (imhös/cm @ 25°C) (°C) (ntu) (mg/L-ppm) (my) (Inits
	inal Beld Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site.
1	ample Appearance: Odor: Color: — Other:
W.	Veather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Outlook: Precipitation: Y of N
$ \mathbf{s}_{\mathbf{l}} $	pecific Comments (including purge/well volume calculations if required):
SI -	
<u> </u>	DUPLICATE VOLUME COLLECTED AS DUPLO 1339
1 0 –	Pary
FIELD COMMENTS	2×1000 m. Pury, 3×500 m. HNO3 (1 FILTERED), 1×500 m. AMBERZ, 36×VOA
EIE -	PER SAMPLE VOLUME
1 I	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):
	11, 14, 16 SAM AD-INGTON Symmy SUS ENGINGERS
1	Date Name Signature Company

FIELD INFORMATION FORM	
Site This Waste Management Field Information Form is Required	MARAN MANAGEMENT
Site Sample WW Sample	Laboratory Use Only/Lab ID:
Infoliation (e.g. Intokslet (+ 1) to the first to	
PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACTU	AV YOU WELL ON THE TOTAL OF THE
(Mallons)	AL VOL PURGED WELL VOLs (Gallons) PURGED
Note: For Passive Sampling, registive "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged Purging and Sampling Equipment Dedicated: Y Jor N 0.45 \mu or	
Purging and Sampling Equipment Dedicated: Y for N 0.45 \(\mu\) or Purging Device C A-Submersible Pump D-Bailer	μ (circle or fill in)
Purging Device C A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston-Pump F-Dipper/Bottle C-QED Bladder Pump F-Dipper/Bottle A-Teflon	
X-Other: Sample Tube Type: B-Stainless Steel	C-PVC X-Other: D-Polypropylene
Well Elevation (at TOC) Depth to Water (DTW) A 2 2 4 (n) Groundwater Elevation (at TOC) Total Well Depth (from TOC) (from TOC) (from TOC) (n) Groundwater Elevation (from TOC) (n) Casing ID	
Total Well Depth (from TOC) (ft) (ft) (ftoin ground elevation) (cn) ID Note: Total Well Depth, Stick Up, Casing Id., etc. are optional and cam be from historical data, unless required by StrePerms. Well Elevation, DTW, and	Casing: (in) Material (Considerate Electron was to consent
Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. (2400 Hr Clock) (std) (µmhos/cin@25°C) (°C) (ntu) (mg/L.ppm)	eH/ORP DTW
114:110 1 17 74:11 14 111:164 1 11:13:170 16:104	1989
= 1191113 1 2 7310 2 1 11919 110173 1 11488 1231	17914 3833247
THE	1739
5 1 14 1 19 1 4 7 3 14 4 1 1 1 1 5 1 4 1 1 1 1 1 6 1 52 10 150	0 17016 312117
\[1 \cdot 4 \cdot 2 \cdot 2 \cdot 1 \cdot 3 \cdot 3 \cdot 1 \cd	16173
8 114:215 1 7:319 1:115:14 110162 1:15:189 10:30	6 6511 1312 877
114:260 1 7.411 1 115:4 10:54 1 15:85 10:3:	161311
╚╟ ┚┇┸ ┩┝┸┩╞┸┹┪╟┸┸┸┩┞┸┰┩	
Suggested range for 3 cousee, readings or	
nute Permitistate requirements: 4/- 0.2 +/- 3%	+/- 25 mV Stabilizo
by State/Permit/Site. If a Data Logger or other Electronic furmat is used, fill in final readings below and submit electronic data separately to Site. [[nure]	lelds above are needed, use separate sheet or form
SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO (MM DD YY) (std) (without/cm @ 25°C) (CC) (titu) (ing/L-ppm)	eH/ORP Other: Time (mV) Units
SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO (mg/L-ppm) (MM DD YY) (std) (withhol/cm @ 25°C) (°C) (utu) (mg/L-ppm) [2] [1] [1] [4] [6] [7 4] [1] [1 5 4] [10 56 [10 56] [5 55] [0 55] [3] Finit Field Readings are required. (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field per sample readings.	rameters required by State/Pormit/Site.
Sample Appearance: Odor: Color:	Other:
Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook:	AST Precipitation: Y or N
Specific Comments (including purge/well volume calculations if required):	
S	
8 2 × 10000 12 Pory, 3 × 500 m HNO3 Pay (1 FILTERED), 1 × 50	om Amber
E GX VOA	
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all shou	ld sign):
11,14,16 SAM ADLINGTON Symmet	SCS ENGINEERS
Date Name Signature	0
Date Name Signature DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client, PINK - Field	Сопряду Сору

FIELD INFORMATION FORM	
Name: OVSL This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form	is Wasta Management
Site No.: Sample Point: Sample ID Sumple ID	Laboratory Use Ouly/Lab ID:
PURGE DATE PURGE TIME ELAPSED HRS WATER VOL IN CASING ACT	
(Ars:min) (Gallons) Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purgeti" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Pu	FUAL VOL PURGED WELL VOLS (Gallons) PURGED urgsal, Mark changes, record field data, below.
Purging and Sampling EquipmentDedicated: Fire N Filter Device: Y for N 0.45 µ 1	
Purging Device C A-Submersible Pump D-Bailer D-Bailer A-In-line Disp B-Poristaltic Pump E-Piston Pump F-Dipper/Bottle C-QED Bladder Pump F-Dipper/Bottle A-Teffon	osable C-Vacuum X-Other
Sample Tube Type: B-Stainless Sto	C-PVC X-Other: pel D-Polypropylene
Well Elevation (at TOC) Depth to Water (DTW) 1 4 6 8 (ft) Groundwater (at TOC) Total Well Depth (from TOC) Stick Up (from TOC) (ft) Casing (ft)	1 1 1 1 1 1 1 1
Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing ld. etc. are optional and can be from litstorical data, unless required by Site/Permit. Well Elevation, DTW.	Casing (in) Material and Groundwater Elevation must be current.
Sample Time Rate/Unit pH Conductance (SC/BC) Temp. Turbidity D.O. (2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntn) (mg/L - pp	eH/ORP DTW om) (mV) (ft)
121219 1 1 61818 1 1 183 11127 1 141 152 121	36 16211
3 1121312 1 2 617 19 2 1 1 18K0 111 127 1 11 11 19 10K	37 16017 111
1238 1 684 4 1 186 1124 1 1160 1018 124 1241 1 186 1018	15/3/8
S 1121312 1 4 61914 4 1 1 1816 111 126 1 111 100 101	
121411 1 61914 1 1817 1 184 1 1884 101	
	273 141516 111
12 4 4 1 6 4 6 1 8 7 1 8 7 1 8 8 7 1 8 8 7 8 8 8 8 8 8 8	
Suggested range for 3 consec, readings or +/- 0,2 +/- 3% +/- 10%	+/- 25 mV Stabilize
Stabilization Data Fights are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be us by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If me	ed where four (4) fleld measurements are required to fields above are unided, use senerate sheet or form
SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO	eH/ORP Other: Time
Final Hold Resultings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field	23 456 1244
Sample Appearance: Odor: Color:	Other:
Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook:	Precipitation: Y or R
Specific Comments (including purge/well volume calculations if required):	
E WATER LEVEL FLUCTUATING INCONSISTENTY DUDI	ng Purge.
la de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Artele Level
WETER.	. 9
13 2 x 1000 me fory, 3 x 500 me HIVU3 (& FILTERED), 1 x 500	ML 40504 AMBER
I certify that sampling procedures were in accordance with applicable EPA, State, and WML protocols (if more than one sampler, all state)	*.
The state of the s	scs engineers
Date Name Signature DISTRIBUTION: WHITE/ORIGINAL - Stave with Sample VELLOW - Returned to Client PINIC - El	Company

America Denver Agrico Street			0	Chain of Custody Record	f Cu	stod	y Re	cord	20	Bioy de	1916	Tes	tAn	TestAmerica
Ayada, CC 00002 Phone (303) 736-0100 Fax (303) 431-7171									0	Bloy BISI	to I	7 THE LEADI	ER IN ENVIR	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler: Sam	6. +S	Sum 4.	Lab PM Sara,	Lab PM: Sara, Betsy A				ğ 0.	Carrier Tracking No(s)	Carrier Tracking No(s):	COC No: 280-17318-3224.1	8-3224.1	
Client Contact: Mr. Patrick Madej	- 219 euond	- 046	2,480		E-Mail: betsy.sara@testamericainc.com	estamen	cainc.co	E	9	81048151	516905	Page:	to	
Sompany: Waste Management							Ā	Analysis Requested	Redne	sted		Job #:	07500	027.19
Address: 2615 Davis Street	Due Date Requested:	10	tandard)					-4	-	E		Preservation Codes	8	
oty. San Leandro	TAT Requested (days):	4	3					,,	-			B - NaOH C - Zn Acet		None AsNaO2
State, Zip: CA, 94577	,											D - Nitric Acid E - NaHSO4		P - Na204S Q - Na2SO3
Phone: 612 - 940 - 2980	PO#;				(0					_		G - Amchior H - Ascorbic Acid		Na2S2SO3 H2SO4 TSP Dodecabydrate
5	WO#:						J.		(IRI)					U - Acetone V - MCAA
Project Name:WA02IOIympic View Sanitary LF Event Desc: Quarterly GW AppI/II - Mar Jun Sep Dec	Project #: 28002692				10 29	(peg)	(oleffu	(A of du			K-EDTA L-EDA		W - ph 4-5 Z - other (specify)
Site: Washington	:#MOSS				A) as		8 AT)	oleffué	irect su			of con		
		Sample	Sample Type (C=comp,	Matrix (Wiewafer, Simpled, Owwastefoll,	eld Filtered :	ezojved Metal	OOTIsinomn	3 AT) MI2 803 SlateM lat	Si Arsenic (di			sal Number		
Sample Identification	Sample Date	Time	G=grab) Preserva	S=grab) BT=Tisstum, A=Air) Preservation Code:	dX	10 0	-	-	-			1	cial Instru	Special Instructions/Note:
MW-134	11/14/16	1043	3	3	3	X	X	V	V				Short Hold: NO3/cad)	NO3/cad)
MW-1313	11/14/16	4.4	1	_	=	-	-	-	-			l Ars	enic - Dire	Arsenic - Direct sub to ARI
٥	_	1248							E		-			
MW-39		1354									_			
h- m4		1500												
NW-43		1158												
MW-294		1244										Custody	Custody	
MW-20		1329									8-097	Dago Oligin		
Dup 2		1339												
1		1428	7		\frac{1}{7}	>	>	?	→			>		
Tro Hank	>	1	1	>	7		>					7		
tion Skin Irritant	Poison B M Unknown	- nwor	Radiological	,	Sam	ole Disp Return	le Disposal (A I Return To Client	fee may	be ass	assessed if sam Disposal By Lab	nples are r	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	than 1 mc	Months
ested: I, II, III, IV, Other					Spec	ial Instru	ctions/Q	Special Instructions/QC Requirements	ements:					
Empty Kit Relinquished by:		Date:			Time:	1		-		Method of Shipment	hipment	-		
Relinquished by:	Date/Time: 1 1 1 5	1600		Company	E.	Received by	1/2	13			Date/Time:	0880	S	Cognogny
Relinquished by:	Date/Time:			Company	UL.	Received by:					Date/Time:		S	Company
Relinquished by:	Date/Time:			Company	u.	Received by:	2				Date/Time:		8	Сотрапу
Custody Seals Intact: Custody Seal No. 310, 976313	3, 276315, 8	5,876316	316		0	S, I, G	perature(s)	PO Sund Off	Remai	£8#5	Cooler Temperature(s) C and Other Remarks: (6, 1, 6, 1, 6, 4) (6, 4, 6, 6) FR#5 + 19,05 FREC	8	to to	11/15/ /6

TestAmerica Denver

4955 Yarrow Street Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171

TestAmerica The LEADER IN ENVIOUNTENTAL TESTING

Chain of Custody Record

Frione (303) 730-0 100 Fax (303) 431-7171				
	Sampler:	Lab PM:	Carrier Tracking No(s):	COC No:
Client Information (Sub Contract Lab)		Sara, Betsy A	,	280-377778.1
Client Contact:	Phone:	E-Mail:	State of Origin:	Page:
Shipping/Receiving		betsy.sara@testamericainc.com	Washington	Page 1 of 2
Company:		Accreditations Required (See note):		Job#:

	Call Call			200											•		
Client Information (Sub Contract Lab)				Sara	Sara, Betsy A	Ą										280-377778.1	
Client Contact: Shipping/Receiving	Phone:			E-Mail: befsv	E-Mail: betsv.sara@testamericainc.com)festar	nericair	mon of			State of Washi	State of Origin: Washington				Page: Page 1 of 2	
Company:					Accredits	afions R	Accreditations Required (See note)	See not	â			2			Ī	# 40I	
TestAmerica Laboratories, inc.					NELAP - Oregon	- Ore	gon		÷						1	280-90968-1	
Address: 10 Hazelwood Drive, ,	Due Date Requested: 12/2/2016	:p		1				Į	Analysis		Requested	þ				Preservation Codes:	des:
City: Amherst	TAT Requested (days):	ys):							_							A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None
State, Zip: NY, 14228-2298	 				* 4(1) * 4(1) * 7(4)											D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone: 716-691-2600(Tel) 716-691-7991(Fax)	PO#.				7 - Y. 7 - Y.		pot							***********	4 74	F - MeOH G - Amchlor U Accepto Acid	R - Na2S203 S - H2S04 T TSD Podombudodo
Enail:	wo#:						ai Meti									i - Ice J - Di Water	U - Acetone V - MCAA
Project Name: WA02(Olympic View Sanitary LF	Project #: 28002692						ח) דיסכי							· · · · · · · · · · · · · · · · · · ·	ialnei	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site: WA02 Olympic View Sanitary LF	SSOW#:						OM) ၁۱		· · · · · · ·					·		Other:	
Campile Identification Cleant In (1 st. II)		Sample		Matrix (W=vater, S=solid, O=vasteloil,	ield Filtered erform MS/M	560C/5030C (M	560C_SIM/5030								ńedmuń leto		
701	Sample Date		Preservation Code	BT=Tissue, A=Air) fron, Code:		#35. F-57	8					建	12.		īX	Special	Special Instructions/Note:
MW-13A (280-90968-1)	11/14/16	10:04 Pacific		Water		×	×		7	2 2	78 59 59 51	Y .			6	A CORPORATION AND A CORPORATIO	A AND THE PASS OF STATES AND THE PASS OF T
MW-13B (280-90968-2)	11/14/16	11:35 Pacific		Water		×	×								ဖ		
MW-16 (280-90968-3)	11/14/16	12:48 Pacific		Water		×	×		-			ļ		-	ဖွ		
MW-39 (280-90968-4)	11/14/16	13:54 Pacific		Water		×	×								<u>.</u>		
MW-4 (280-90968-5)	11/14/16	15:00 Pacific		Water		×	×					-			9.		
MW-43 (280-90968-6)	11/14/16	11:58 Pacific		Water		×	×		-						ွတ်		
MW-20 (280-90968-7)	11/14/16	13:29 Pacific		Water		×	×								· o		
DUP2 (280-90968-8)	11/14/16	13:39 Pacific		Water		×	×								्रं		
MW-19C (280-90968-9)	11/14/16	14:28 Posifio		Water		×	×							<u> </u>	9		April 2 min

Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc.

-						
_	Possible Hazard Identification			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	ed if samples are retained longer than 1	month)
_	Unconfirmed			Return To Client Disposal By Lab	I By Lab Archive For	Months
	Deliverable Requested: I, II, III, IV, Other (specify)	pecify) Primary Deliverable	ble Rank: 2	Regu		
	Empty Kit Relinquished by:		Date:	Time:	Method of Shipment:	
12/	Relinquished by:	Date/Time: -	(S30 Company	Received L. Charles	Date-Time (11, 0930 Company)	L'ASTITUTE OF THE PROPERTY OF
/11/2	Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
2016	Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
_	Custody Seals Intact: Custody Seal No.: △ Yes △ No			Cooler Temperature(s) °C and Other Remarks: °	41 2.7c	

TestAmerica Denver

4955 Yarrow Street Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171

Chain of Custody Record

TestAmerica

Client Information (Sub Contract Lab)	Sampler:	Lab PM: Sara Befsv A	4	Carrier Tracking No(s):		COC No: 280-377778 2	
(Can College Lab)	Phone:	E-Mail:		State of Origin:		Page:	
J/Receiving		betsy.sara	betsy.sara@testamericainc.com	Washington		Page 2 of 2	
Company: TestAmerica Laboratories, Inc.		Accred NEL/	Accreditations Required (See note): NELAP - Oregon			Jos #: 280-90968-1	
	Due Date Requested: 12/2/2016		Analysis	Analysis Requested		Preservation Codes:	:Se
City: Amherst	TAT Requested (days):					B - NaOH	M - hexane N - None
State, Zip: NY, 14228-2298						D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone: 716-691-2600(Tel) 716-691-7991(Fax)	PO#	(0				F - MeOH G - Amchlor H - Ascorbic Acid	R - Na2S203 S - H2SO4 T - TSP Dodecahvdrate
Email:	WO#:		loV II x		S .	I - Ice J - Di Water	U - Acetone V - MCAA
Project Name: WA02 Olympic View Sanitary LF	Project#. 28002692		ipuədd		iədietr	K - EDTA L - EDA	W - pH 4-5 Z - other (specify)
Site: WA02 Olympic View Sanitary LF	SSOW#:		A (GO			Other:	
Sample Identification - Client ID (Lab ID)	Sample Type Sample (C=comp,	Matrix (W=water, (W=water, Sesolid, Co-waster) (MMS/M)	3560C_SIM/503C		Jedniji jejoj		Snecial Instructions (Note
一個の一個の一個の一個の一個の一個の一個の一個の一個の一個の一個の一個の一個の一	V	X		はないと なるとう	X		おいからない はない こうしょう いっち いいかかっち はない ないしょう こうしょう いっちゅう
TRIP BLANK (280-90968-10)	11/14/16 Pacific	Water	×				
MW-29A (280-90968-11)	11/14/16 12:44 Pacific	Water	×				
	The state of the s						
-							
					- 1		
					100 TE		
Note: Since laboratory accreditations are subject to change. TestAmerica Laboratories, Inc. places the ownership of currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samp Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain		e & accreditation compled back to the TestAring to said complicance	f method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does no also must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica of Custody attesting to said complicance to TestAmerica Laboratories, Inc.	ries. This sample shipmer is will be provided. Any ch	it is forwarded unde anges to accreditati	r chain-of-custody. If to on status should be bro	This sample shipment is forwarded under chain-of-custody. If the laboratory does not be provided. Any changes to accreditation status should be brought to TestAmerica
Possible Hazard Identification		Š	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	be assessed if sam	oles are retaine	ed longer than 1 i	nonth)
Unconfirmed			Return To Client	Disposal By Lab	Archive	ve For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Pnmary Deliverable Kank: ∠	in .	Special instructions/QC Requirements:				
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment:	pment:		
Relinquished by:	-15-16 (530	Company TAP	Received The	V	Date/Time:	1 CP30	Semple Constitution of the
Reinquished by:	Date/Time:	Сотралу	Received by:	<u>Ö</u>	Date/Time:		Company
Relinquished by:	Date/Time:	Company	Received by:	ă	Date/Time;		Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks:	her Remarks: H	27	3	

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-90968-1

Login Number: 90968 List Source: TestAmerica Denver

List Number: 1

Creator: True, Joshua A

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-90968-1

Login Number: 90968
List Source: TestAmerica Buffalo
List Number: 2
List Creation: 11/16/16 05:36 PM

Creator: Hulbert, Michael J

Answer	Comment
True	
True	
True	
True	
True	
True	2.7 #1
True	
False	Two samples received broken- G-4 & H-6
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	
N/A	
N/A	
	True True True True True True True True

ANALYTICAL REPORT

Job Number: 280-91129-1

Job Description: WA02|Olympic View Sanitary LF

For:

Waste Management Sun Valley Hauling 9081 Tujunga Avenue Sun Valley, CA 91352

Attention: Mr. Phil Perley

Betsy Sara

Approved for release. Betsy A Sara Project Manager II 12/15/2016 12:51 PM

Betsy A Sara, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0189 betsy.sara@testamericainc.com 12/15/2016

cc: Mr. Dan Venchiarutti

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Laboratories, Inc.

TestAmerica Denver 4955 Yarrow Street, Arvada, CO 80002 Tel (303) 736-0100 Fax (303) 431-7171 www.testamericainc.com

Table of Contents

Cover Title Page	1
Report Narrative	3
Executive Summary	5
Method Summary	8
Method / Analyst Summary	9
Sample Summary	10
Sample Results	11
Sample Datasheets	12
Data Qualifiers	44
QC Results	45
Qc Association Summary	46
Surrogate Recovery Report	52
Qc Reports	54
Laboratory Chronicle	102
Client Chain of Custody	110
Sample Receipt Checklist	115

CASE NARRATIVE

Client: Waste Management

Project: WA02|Olympic View Sanitary LF

Report Number: 280-91129-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Sample Receiving

The samples were received on 11/17/2016; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 0.6 C.

Holding Times

All holding times were within established control limits.

Method Blanks

Vinyl chloride Method 8260C SIM was detected in the Method Blanks below the project established reporting limits. No corrective action is taken for any values in Method Blanks that are below the requested reporting limits.

Sulfate Method 300.0 was detected in the Method Blank above the reporting limit. Because the associated sample MW-23A exhibited a detection of Sulfate below the TestAmerica Denver reporting limit, 5 mg/L, reanalysis was not performed.

All other Method Blank recoveries were within established control limits.

Laboratory Control Samples (LCS)

The Method 8260C LCS exhibited recoveries of n-Butyl alcohol and tert-Butyl alcohol below the lower control limits. A full list spike was utilized for Method 8260C, however a short list spike was reported. The laboratory's SOP for Method 8260C allows for three analytes to recover outside criteria when a full list spike is utilized, and therefore reanalysis was deemed unnecessary.

All other Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The Matrix Spikes and Matrix Spike Duplicates performed on samples from other clients exhibited recoveries outside control limits for Vinyl chloride Method and Methyl acetate 8260C. Because the corresponding Laboratory Control Samples and the Method Blank samples were within control limits, these anomalies may be due to matrix interference and no corrective action was taken.

The percent recoveries and/or relative percent difference of the MS/MSD performed on a sample from another client were outside control limits for Dissolved Manganese Method 6020 because the sample concentration was greater than four times the spike amount. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, no corrective action was taken.

Sample MW-42 was selected to fulfill the laboratory batch quality control requirements for Method 6020. Analysis of the laboratory generated MS/MSD for this sample exhibited recoveries of Total Barium above the upper control limit. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, this anomaly may be due to matrix interference and no corrective action was taken.

The percent recoveries and/or relative percent difference of the MS/MSD performed on sample MW-42 were outside control limits for Total Manganese Method 6020 because the sample concentration was greater than four times the spike amount. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, no corrective action was taken.

All other MS and MSD samples were within established control limits.

Organics

The analytes Acrolein, Acrylonitrile and 2-chloroethyl vinyl ether cannot be reliably quantitated in acid preserved samples, therefore, the reporting limits for the analytes Acrolein, Acrylonitrile and 2-chloroethyl vinyl ether is not reliable or defensible.

General Comments

The analyses for Volatile Organics by Method 8260C and Volatile Organics by Method 8260C SIM were performed by TestAmerica Buffalo. Their address and phone number are:
TestAmerica Buffalo
10 Hazelwood Drive, Suite 106
Amherst, NY 14228
716-691-2600

EXECUTIVE SUMMARY - Detections

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91129-1	MW-23A					
Depth to water		12.06			ft	Field Sampling
Specific Conductivit	ty	88			umhos/cm	Field Sampling
Dissolved Oxygen		4.02			mg/L	Field Sampling
eH		145.0			millivolts	Field Sampling
Turbidity		1.64			NTU	Field Sampling
Temperature		12.49			Degrees C	Field Sampling
рН		6.11			SU	Field Sampling
Sulfate		2.3	В	1.0	mg/L	300.0
Nitrate as N		0.24		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	40		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	40		5.0	mg/L	SM 2320B
Total Dissolved Sol	ids (TDS)	87		5.0	mg/L	SM 2540C
Total Suspended S	olids	26		4.0	mg/L	SM 2540D
Dissolved						
Calcium, Dissolved		7.8		0.040	mg/L	6010B
Magnesium, Dissolv	ved	3.4		0.050	mg/L	6010B
Sodium, Dissolved		3.5		1.0	mg/L	6010B
Manganese, Dissol	ved	0.035		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		0.098		0.060	mg/L	6010B
Barium, Total		0.0078		0.0010	mg/L	6020
Manganese, Total		0.065		0.0010	mg/L	6020

EXECUTIVE SUMMARY - Detections

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91129-2	MW-32					
Vinyl chloride		0.46	В	0.020	ug/L	8260C SIM
Depth to water		1.08			ft	Field Sampling
Specific Conductivity		251			umhos/cm	Field Sampling
Dissolved Oxygen		1.18			mg/L	Field Sampling
eH		-2.3			millivolts	Field Sampling
Turbidity		1.50			NTU	Field Sampling
Temperature		12.13			Degrees C	Field Sampling
рН		7.60			SU	Field Sampling
Chloride		7.0		1.0	mg/L	300.0
Sulfate		8.3		1.0	mg/L	300.0
Alkalinity, Total (As C	aCO3)	110		5.0	mg/L	SM 2320B
Alkalinity, Bicarbonate	e (As CaCO3)	110		5.0	mg/L	SM 2320B
Total Dissolved Solids	s (TDS)	150		5.0	mg/L	SM 2540C
Total Suspended Soli	ds	9.6		4.0	mg/L	SM 2540D
Dissolved						
Calcium, Dissolved		20		0.040	mg/L	6010B
Iron, Dissolved		0.50		0.060	mg/L	6010B
Magnesium, Dissolve	d	10		0.050	mg/L	6010B
Potassium, Dissolved		1.0		1.0	mg/L	6010B
Sodium, Dissolved		12		1.0	mg/L	6010B
Manganese, Dissolve	d	1.7		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		0.61		0.060	mg/L	6010B
Barium, Total		0.0032		0.0010	mg/L	6020
Manganese, Total		1.8		0.0010	mg/L	6020

EXECUTIVE SUMMARY - Detections

Lab Sample ID Clie Analyte	nt Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91129-3 MW	-42					
Vinyl chloride		0.026	В	0.020	ug/L	8260C SIM
Depth to water		26.41			ft	Field Sampling
Specific Conductivity		550			umhos/cm	Field Sampling
Dissolved Oxygen		0.30			mg/L	Field Sampling
еН		-53.5			millivolts	Field Sampling
Turbidity		3.75			NTU	Field Sampling
Temperature		12.57			Degrees C	Field Sampling
pH		7.49			SU	Field Sampling
Chloride		12		1.0	mg/L	300.0
Sulfate		6.3		1.0	mg/L	300.0
Ammonia (as N)		5.4		0.060	mg/L	350.1
Alkalinity, Total (As CaCO	3)	220		5.0	mg/L	SM 2320B
Alkalinity, Bicarbonate (As	CaCO3)	220		5.0	mg/L	SM 2320B
Total Dissolved Solids (TD	S)	250		5.0	mg/L	SM 2540C
Total Suspended Solids		31		4.0	mg/L	SM 2540D
Total Organic Carbon - Ave	erage	7.2		1.0	mg/L	SM 5310B
Dissolved						
Calcium, Dissolved		42		0.040	mg/L	6010B
Iron, Dissolved		27		0.060	mg/L	6010B
Magnesium, Dissolved		14		0.050	mg/L	6010B
Potassium, Dissolved		8.7		1.0	mg/L	6010B
Sodium, Dissolved		21		1.0	mg/L	6010B
Manganese, Dissolved		4.5		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		27		0.060	mg/L	6010B
Barium, Total		0.11	F1	0.0010	mg/L	6020
Manganese, Total		4.4		0.0010	mg/L	6020

METHOD SUMMARY

Client: Waste Management Job Number: 280-91129-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6010B	SW846 3005A
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN		SW846 3005A FIELD_FLTRD
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6020	SW846 3005A
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN		SW846 3005A FIELD_FLTRD
Anions, Ion Chromatography	TAL DEN	MCAWW 300.0	
Nitrogen, Ammonia	TAL DEN	MCAWW 350.1	
Nitrate	TAL DEN	EPA 353.2	
Alkalinity	TAL DEN	SM SM 2320B	
Solids, Total Dissolved (TDS)	TAL DEN	SM SM 2540C	
Solids, Total Suspended (TSS)	TAL DEN	SM SM 2540D	
Organic Carbon, Total (TOC)	TAL DEN	SM SM 5310B	
Field Sampling	TAL DEN	EPA Field Samp	bling
Volatile Organic Compounds by GC/MS Purge and Trap	TAL BUF TAL BUF	SW846 8260C	SW846 5030C
Volatile Organic Compounds (GC/MS) Purge and Trap	TAL BUF TAL BUF	SW846 8260C S	SW846 5030C

Lab References:

TAL BUF = TestAmerica Buffalo

TAL DEN = TestAmerica Denver

Method References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
SW846 8260C	Archer, Nicholas E	NEA
SW846 8260C SIM SW846 8260C SIM	Archer, Nicholas E Cwiklinski, Charles D	NEA CDC
SW846 6010B SW846 6010B	Lackey, Cara M Scott, Samantha J	CML SJS
SW846 6020	Trudell, Lynn-Anne M	LMT
EPA Field Sampling	Krisorn, Chamaiporn 1	C1K
MCAWW 300.0	Benson, Alex F	AFB
MCAWW 350.1	Spedale, Morgan A	MAS
EPA 353.2	Allen, Andrew J	AJA
SM SM 2320B	Carter, Melynda M	MMC
SM SM 2540C	Pedrick, Joshua A	JAP
SM SM 2540D	Cherry, Scott V	SVC
SM SM 5310B	Jewell, Connie C	CCJ

SAMPLE SUMMARY

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
280-91129-1	MW-23A	Water	11/16/2016 1305	11/17/2016 1705
280-91129-2	MW-32	Water	11/16/2016 1405	11/17/2016 1705
280-91129-3	MW-42	Water	11/16/2016 1500	11/17/2016 1705
280-91129-4TB	TRIP BLANK	Water	11/16/2016 0000	11/17/2016 1705

SAMPLE RESULTS

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-23A

 Lab Sample ID:
 280-91129-1
 Date Sampled:
 11/16/2016 1305

 Client Matrix:
 Water
 Date Received:
 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

480-333598 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: S0009.D N/A Lab File ID: Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/27/2016 1623

Prep Date: 11/27/2016 1623

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-23A

 Lab Sample ID:
 280-91129-1
 Date Sampled: 11/16/2016 1305

 Client Matrix:
 Water
 Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

8260C 480-333598 HP5973S Analysis Method: Analysis Batch: Instrument ID: Prep Method: 5030C Prep Batch: N/A Lab File ID: S0009.D Dilution: 1.0 Initial Weight/Volume: 5 mL 11/27/2016 1623 Final Weight/Volume: Analysis Date: 5 mL

Prep Date: 11/27/2016 1623

Result (ug/L) Qualifier RL Analyte MDL ND 1.0 Chloroform 0.34 ND 0.35 Chloromethane 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1.3-Dichloropropene ND 0.36 1.0 ND Cyclohexane 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 ND 0.30 Iodomethane 1.0 ND 4.8 25 Isobutanol Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 2.5 1.3 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 1.0 0.44 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0 Vinyl chloride ND 0.90 1.0

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-23A

 Lab Sample ID:
 280-91129-1
 Date Sampled:
 11/16/2016 1305

 Client Matrix:
 Water
 Date Received:
 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333598 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0009.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/27/2016 1623

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	94		73 - 120
Toluene-d8 (Surr)	99		80 - 120

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-23A

Lab Sample ID: 280-91129-1 Date Sampled: 11/16/2016 1305 Client Matrix:

Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

480-333598 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0009.D Dilution: Initial Weight/Volume: 5 mL 1.0

Analysis Date: 11/27/2016 1623 Final Weight/Volume: 5 mL

Prep Date: 11/27/2016 1623

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier Hexachloroethane TIC 67-72-1 ND

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-32

 Lab Sample ID:
 280-91129-2
 Date Sampled: 11/16/2016 1405

 Client Matrix:
 Water
 Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

8260C 480-333598 HP5973S Analysis Method: Analysis Batch: Instrument ID: Prep Method: 5030C Prep Batch: Lab File ID: S0010.D N/A Dilution: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: Analysis Date: 11/27/2016 1646 5 mL

Prep Date: 11/27/2016 1646

Result (ug/L) Qualifier MDL RL Analyte 1.0 1,1,1,2-Tetrachloroethane ND 0.35 1,1,1-Trichloroethane ND 0.82 1.0 ND 1,1,2,2-Tetrachloroethane 0.21 1.0 1.1.2-Trichloro-1.2.2-trifluoroethane ND 0.31 1.0 1,1,2-Trichloroethane ND 0.23 1.0 1,1-Dichloroethane ND 0.38 1.0 ND 0.29 1.0 1,1-Dichloroethene 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0 1,2,3-Trichloropropane ND 0.89 1.0 1,2,4-Trichlorobenzene ND 0.41 1.0 1,2,4-Trimethylbenzene ND 0.75 1.0 1,2-Dibromo-3-Chloropropane ND 0.39 1.0 1,2-Dibromoethane (EDB) ND 0.73 1.0 1.2-Dichlorobenzene ND 0.79 1.0 1,2-Dichloroethane ND 0.21 1.0 ND 0.81 2.0 1,2-Dichloroethene, Total ND 0.72 1.0 1,2-Dichloropropane 1,3,5-Trichlorobenzene ND 0.23 1.0 1,3,5-Trimethylbenzene ND 0.77 1.0 1,3-Dichlorobenzene ND 0.78 1.0 1,3-Dichloropropane ND 0.75 1.0 ND 0.84 1.0 1,4-Dichlorobenzene 40 1,4-Dioxane ND 9.3 2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 5.0 ND 1.2 2-Hexanone 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n-ND 8.9 40 Butyl alcohol, tert-ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0 Chloroethane ND 0.32 1.0

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-32

Lab Sample ID: 280-91129-2 Date Sampled: 11/16/2016 1405

Client Matrix: Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333598 Instrument ID: HP5973S
Prep Method: 5030C Prep Batch: N/A Lab File ID: S0010.D
Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 11/27/2016 1646 Final Weight/Volume: 5 mL

Analysis Date: 11/27/2016 1646 Prep Date: 11/27/2016 1646

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.73	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.90	1.0
trans-1,4-Dichloro-2-butene				
Trichloroethene	ND ND		0.22 0.46	1.0
	ND ND			1.0
Trichlorofluoromethane	ND ND		0.88	1.0
Vinyl acetate	ND ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-32

Lab Sample ID: 280-91129-2 Date Sampled: 11/16/2016 1405 Client Matrix: Water

Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333598 Analysis Method: 8260C Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0010.D Dilution: Initial Weight/Volume: 5 mL 1.0

Final Weight/Volume: 5 mL Analysis Date: 11/27/2016 1646

Prep Date: 11/27/2016 1646

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	102		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Toluene-d8 (Surr)	100		80 - 120

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-32

Lab Sample ID: 280-91129-2 Date Sampled: 11/16/2016 1405

Client Matrix: Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333598 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0010.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/27/2016 1646 Final Weight/Volume: 5 mL

Prep Date: 11/27/2016 1646

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-42

 Lab Sample ID:
 280-91129-3
 Date Sampled: 11/16/2016 1500

 Client Matrix:
 Water
 Date Received: 11/17/2016 1705

Date Neceived. 11/11/2010 1/03

8260C Volatile Organic Compounds by GC/MS

8260C 480-333730 HP5973S Analysis Method: Analysis Batch: Instrument ID: Prep Method: 5030C Prep Batch: Lab File ID: S0066.D N/A Dilution: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: Analysis Date: 11/28/2016 2353 5 mL

Prep Date: 11/28/2016 2353

Result (ug/L) Qualifier MDL RL Analyte 1.0 1,1,1,2-Tetrachloroethane ND 0.35 1,1,1-Trichloroethane ND 0.82 1.0 ND 1,1,2,2-Tetrachloroethane 0.21 1.0 1.1.2-Trichloro-1.2.2-trifluoroethane ND 0.31 1.0 1,1,2-Trichloroethane ND 0.23 1.0 1,1-Dichloroethane ND 0.38 1.0 ND 0.29 1.0 1,1-Dichloroethene 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0 1,2,3-Trichloropropane ND 0.89 1.0 1,2,4-Trichlorobenzene ND 0.41 1.0 1,2,4-Trimethylbenzene ND 0.75 1.0 1,2-Dibromo-3-Chloropropane ND 0.39 1.0 1,2-Dibromoethane (EDB) ND 0.73 1.0 1.2-Dichlorobenzene ND 0.79 1.0 1,2-Dichloroethane ND 0.21 1.0 ND 0.81 2.0 1,2-Dichloroethene, Total ND 0.72 1.0 1,2-Dichloropropane 1,3,5-Trichlorobenzene ND 0.23 1.0 1,3,5-Trimethylbenzene ND 0.77 1.0 1,3-Dichlorobenzene ND 0.78 1.0 1,3-Dichloropropane ND 0.75 1.0 ND 0.84 1.0 1,4-Dichlorobenzene 40 1,4-Dioxane ND 9.3 2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 5.0 ND 1.2 2-Hexanone 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n-ND 8.9 40 Butyl alcohol, tert-ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0 Chloroethane ND 0.32 1.0

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-42

Lab Sample ID: 280-91129-3 Date Sampled: 11/16/2016 1500 Client Matrix: Water

Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333730 Analysis Method: 8260C Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0066.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/28/2016 2353 Prep Date: 11/28/2016 2353

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-42

Lab Sample ID: 280-91129-3 Date Sampled: 11/16/2016 1500

Client Matrix: Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333730 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0066.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/28/2016 2353 Final Weight/Volume: 5 mL

Prep Date: 11/28/2016 2353

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	98		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Toluene-d8 (Surr)	100		80 - 120

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-42

Lab Sample ID: 280-91129-3 Date Sampled: 11/16/2016 1500 Client Matrix:

Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

480-333730 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0066.D Dilution: Initial Weight/Volume: 5 mL 1.0

Analysis Date: 11/28/2016 2353 Final Weight/Volume: 5 mL

Prep Date: 11/28/2016 2353

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier Hexachloroethane TIC 67-72-1 ND

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91129-4TB Date Sampled: 11/16/2016 0000

Client Matrix: Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333598 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0012.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/27/2016 1732 Final Weight/Volume: 5 mL

Analysis Date: 11/27/2016 1732 Prep Date: 11/27/2016 1732

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91129-4TB Date Sampled: 11/16/2016 0000

Client Matrix: Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333598 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0012.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/27/2016 1732 Final Weight/Volume: 5 mL

Prep Date: 11/27/2016 1732

Chloroform	Analyte	Result (ug/L)	Qualifier	MDL	RL
cis-1,2-Dichloropenen ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromochloromethane ND 0.68 1.0 Dichlorofuloromethane ND 0.68 1.0 Dichlorofuloromethane ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl acetate ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.40 10 Idodomethane ND 0.30 1.0 Isopropyle					
cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromomethane ND 0.68 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.68 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isopropyleather ND 0.59 1.0 Isopropyleather ND 0.59 1.0	Chloromethane	ND		0.35	1.0
Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl terr ND 0.72 1.0 Ethyl terr-butyl ether ND 0.72 1.0 Ethyl terr-butyl ether ND 0.72 1.0 Ethyl terr-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Idodomethane ND 0.28 1.0 Idodomethane ND 0.30 1.0 Isobutarol ND 0.40 10 Isopropyl ether ND 0.59 1.0 Isopropyl terzen ND	cis-1,2-Dichloroethene	ND			1.0
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.68 1.0 Ethyl actate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Hexane ND 0.74 1.0 Hexane ND 0.40 10 Isoporopiteane ND 0.40 10 Isopropyl ether ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropyleenzene ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropyleenzene ND 0.79 1.0 Methacyronitrile ND 0.59 5.0 Methyl zertately ether ND 0.16 1.0 Methylcoloskane ND 0.16 <td>cis-1,3-Dichloropropene</td> <td></td> <td></td> <td></td> <td>1.0</td>	cis-1,3-Dichloropropene				1.0
Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl teher ND 0.72 1.0 Ethyl teher ND 0.29 1.0 Ethyl teher ND 0.29 1.0 Ethyl teher ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isobropyl ether ND 0.30 1.0 Isopropylether ND 0.59 1.0 Isopropyletherzene ND 0.59 1.0 Methyla cetate ND 0.69 5.0 Methyla cetate ND 0.16 1.0 Methyla cetate ND 0.16 1.0	Cyclohexane	ND			
Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl teher ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Ethyl benzene ND 0.74 1.0 Hexachlorobutadiene ND 0.40 1.0 Hexane ND 0.40 10 Idexane ND 0.40 10 Idexane ND 0.30 1.0 Isobutanol ND 0.30 1.0 Isobropyl ether ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropyletherzene ND 0.79 1.0 Methactylorobatene ND 0.79 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylet-bouly ether ND 0.16 1.0 Methylet-bouly ether ND 0.16 </td <td>Dibromochloromethane</td> <td></td> <td></td> <td>0.32</td> <td>1.0</td>	Dibromochloromethane			0.32	1.0
Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl teher ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylebenzene ND 0.59 1.0 Isopropylebenzene ND 0.59 1.0 Methylacerlohezene ND 0.69 5.0 Methylacerlohezene ND 0.16 1.0 Methylacerlohezene ND 0.16 1.0 Methylacerlohezene ND 0.16 1.0 Methylacerlohezene ND 0.44 1.0 Methylacerlohezene ND	Dibromomethane	ND			1.0
Ethyl acetate ND 0.66 1.0 Ethyl tertr-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethyl benzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylebnzene ND 0.79 1.0 Methacryonitrile ND 0.79 1.0 Methacryonitrile ND 0.79 1.0 Methyl acetate ND 0.79 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylere Chloride ND 0.16 1.0 Methylere Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.64 1.0 N-Propylbenzene ND 0	Dichlorodifluoromethane	ND			1.0
Ethyl terher ND 0.72 1.0 Ethyl terheuryl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexane ND 0.40 10 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobropyl ether ND 0.59 1.0 Isopropyle ether ND 0.59 1.0 Isopropyle expere ND 0.79 1.0 Methylacetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl eth-butyl ether ND 0.16 1.0 Methylen Chloride ND 0.16 1.0 Methylen Chloride ND 0.16 1.0 Methylene & p-Xylene ND 0.44 1.0 m-Xylene & P-Xylene ND 0.44 1.0 n-Butylbenzene ND 0.66 2.0 Naphthalene ND 0.64 1.	Dichlorofluoromethane	ND		0.34	
Ethylbenzene ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylebrazene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methyleochaxane ND 0.44 1.0 Methyleochaxane ND 0.44 1.0 Methyleochaxane ND 0.66 2.0 </td <td></td> <td>ND</td> <td></td> <td></td> <td></td>		ND			
Ethylbenzené ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylenzene ND 0.79 1.0 Methyl actate ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.44 1.0 m-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chiorotoluene ND 0.86	Ethyl ether				
Hexachlorobutadiene	Ethyl tert-butyl ether	ND			
Hexane	Ethylbenzene	ND			1.0
Indomethane ND	Hexachlorobutadiene	ND			1.0
Isobutanol ND	Hexane	ND			10
Isopropyleheren ND	lodomethane	ND			1.0
Isopropylbenzene	Isobutanol				
Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.64 1.0 n-Butylbenzene ND 0.64 1.0 n-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.75 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81	Isopropyl ether	ND		0.59	1.0
Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81	Isopropylbenzene	ND			1.0
Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.75 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.51	Methacrylonitrile	ND			5.0
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetratyldrofuran ND 0.36 1.0 Toluene ND 0.51 1.0	Methyl acetate	ND			2.5
Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetra-butylbenzene ND 0.81 1.0 Tetra-butylbenzene ND 0.36 1.0 Tetrahydrofuran ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0<	Methyl tert-butyl ether	ND		0.16	1.0
m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetra-Butylbenzene ND 0.81 1.0 Tetrahydrofuran ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.51 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND	Methylcyclohexane	ND		0.16	
Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.81 1.0 Tetrahydrofuran ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.46 1.0 Trichloroethene ND <td< td=""><td>Methylene Chloride</td><td>ND</td><td></td><td></td><td></td></td<>	Methylene Chloride	ND			
n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Clorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.37 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88<	m-Xylene & p-Xylene				
N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,4-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND <		ND			1.0
o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	n-Butylbenzene	ND		0.64	1.0
o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
P-Cymene					
sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	•				
Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					1.0
trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0	·				
Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0					
TrichlorofluoromethaneND0.881.0Vinyl acetateND0.855.0					
Vinyl acetate ND 0.85 5.0					
Vinyl chloride ND 0.90 1.0					
	Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91129-4TB Date Sampled: 11/16/2016 0000

Client Matrix: Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333598 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0012.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/27/2016 1732 Final Weight/Volume: 5 mL

Prep Date: 11/27/2016 1732

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
4-Bromofluorobenzene (Surr)	94		73 - 120
Toluene-d8 (Surr)	99		80 - 120

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91129-4TB Date Sampled: 11/16/2016 0000

Client Matrix: Water Date Received: 11/17/2016 1705

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333598 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0012.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/27/2016 1732 Final Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/27/2016 1732

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-23A

Lab Sample ID: 280-91129-1 Date Sampled: 11/16/2016 1305

Client Matrix: Water Date Received: 11/17/2016 1705

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332686 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1489.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/20/2016 0113 Final Weight/Volume: 25 mL

Prep Date: 11/20/2016 0113

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)9850 - 150TBA-d9 (Surr)12250 - 150

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-32

Lab Sample ID: 280-91129-2 Date Sampled: 11/16/2016 1405

Client Matrix: Water Date Received: 11/17/2016 1705

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332790 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1518.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/21/2016 1527 Final Weight/Volume: 25 mL

Prep Date: 11/21/2016 1527

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 0.46
 B
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)9750 - 150TBA-d9 (Surr)13750 - 150

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-42

Lab Sample ID: 280-91129-3 Date Sampled: 11/16/2016 1500

Client Matrix: Water Date Received: 11/17/2016 1705

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332790 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1519.D

Dilution: 1.0 Initial Weight/Volume: 25 mL

Analysis Date: 11/21/2016 1552 Final Weight/Volume: 25 mL Prep Date: 11/21/2016 1552

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 0.026
 B
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits
Dibromofluoromethane (Surr) 100 50 - 150
TBA-d9 (Surr) 134 50 - 150

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91129-4TB Date Sampled: 11/16/2016 0000

Client Matrix: Water Date Received: 11/17/2016 1705

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-332686 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1492.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/20/2016 0227 Final Weight/Volume: 25 mL

Prep Date: 11/20/2016 0227

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)9850 - 150TBA-d9 (Surr)11550 - 150

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-23A

Lab Sample ID: 280-91129-1 Date Sampled: 11/16/2016 1305

Client Matrix: Water Date Received: 11/17/2016 1705

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354736 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352797 Lab File ID: 25A120716E.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 2121 Final Weight/Volume: 50 mL

Prep Date: 11/29/2016 1435

Sodium, Dissolved

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

 Iron, Total
 0.098
 0.060
 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354579 Instrument ID: MT 025

Prep Method: 3005A Prep Batch: 280-352793 Lab File ID: 25C120616.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/06/2016 2017 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Result (mg/L) Qualifier Analyte RL RL 0.040 0.040 Calcium, Dissolved 7.8 Magnesium, Dissolved 3.4 0.050 0.050 Potassium. Dissolved ND 1.0 1.0

Analysis Method: 6010B Analysis Batch: 280-354656 Instrument ID: MT_025

3.5

Prep Method: 3005A Prep Batch: 280-352793 Lab File ID: 25A120716A.asc

1.0

1.0

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 1117 Final Weight/Volume: 50 mL

Analysis Date: 12/07/2016 1117 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Analyte Result (mg/L) Qualifier RL RL

Iron, Dissolved ND 0.060 0.060

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353847 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352798 Lab File ID: 153SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/30/2016 2212 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Qualifier RL Analyte Result (mg/L) RL Antimony, Total 0.0010 0.0010 ND Barium, Total 0.0078 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-23A

Lab Sample ID: 280-91129-1 Date Sampled: 11/16/2016 1305

Client Matrix: Water Date Received: 11/17/2016 1705

Analyte	Result (mg/L)	Qualifier	RL	RL
Manganese, Total	0.065		0.0010	0.0010
Nickel, Total	ND		0.0040	0.0040
Selenium, Total	ND		0.0010	0.0010
Silver, Total	ND		0.0020	0.0020
Thallium, Total	ND		0.0010	0.0010
Vanadium, Total	ND		0.0020	0.0020
Zinc, Total	ND		0.0050	0.0050

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353847 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352792 Lab File ID: 219SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/01/2016 0225 Final Weight/Volume: 50 mL

Prep Date: 11/29/2016 1435

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 0.035 0.0010 0.0010

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-32

Lab Sample ID: 280-91129-2 Date Sampled: 11/16/2016 1405

Client Matrix: Water Date Received: 11/17/2016 1705

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354736 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352797 Lab File ID: 25A120716E.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 2123 Final Weight/Volume: 50 mL

Prep Date: 11/29/2016 1435

Sodium, Dissolved

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

 Iron, Total
 0.61
 0.060
 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354579 Instrument ID: MT 025

Prep Method: 3005A Prep Batch: 280-352793 Lab File ID: 25C120616.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/06/2016 2019 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Result (mg/L) Qualifier Analyte RL RL 0.040 0.040 Calcium, Dissolved 20 Magnesium, Dissolved 10 0.050 0.050 Potassium. Dissolved 1.0 1.0 1.0

Analysis Method: 6010B Analysis Batch: 280-354656 Instrument ID: MT_025

12

Prep Method: 3005A Prep Batch: 280-352793 Lab File ID: 25A120716A.asc

1.0

1.0

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 1119 Final Weight/Volume: 50 mL

Analysis Date: 12/07/2016 1119 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Analyte Result (mg/L) Qualifier RL RL Iron, Dissolved 0.50 0.060 0.060

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353847 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352798 Lab File ID: 154SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/30/2016 2216 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Qualifier RL Analyte Result (mg/L) RL Antimony, Total 0.0010 0.0010 ND Barium, Total 0.0032 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-32

Lab Sample ID: 280-91129-2 Date Sampled: 11/16/2016 1405

Client Matrix: Water Date Received: 11/17/2016 1705

Result (mg/L) Qualifier RL RL			6020 Metals (ICP/N	IS)-Total Re	coverab	le			
Nickel, Total ND 0.0040 0.0040 Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total ND 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050 Analysis Method: 6020 Analysis Batch: 280-353847 Prep Batch: 280-352792 Lab File ID: 220SMPL.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL Final Weight/Volume: 50 mL Result (mg/L) Qualifier RL RL	Analyte		Result (n	ng/L)	Qualifie	r	RL		RL
Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total ND 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050 Analysis Method: 6020 Metals (ICP/MS)-Dissolved Analysis Batch: 280-353847 Instrument ID: MT_077 Prep Method: 3005A Prep Batch: 280-352792 Lab File ID: 220SMPL.d Dilution: 1.0 Analysis Date: 12/01/2016 0229 Prep Date: 11/29/2016 1435 Analyte Result (mg/L) Qualifier RL RL RL	Manganese, Total		1.8				0.0010		0.0010
ND 0.0020 0.0020	Nickel, Total		ND				0.0040		0.0040
ND 0.0010 0.0010 0.0020 2.002	Selenium, Total		ND				0.0010		0.0010
Vanadium, Total ND 0.0020 0.0020 G020 Metals (ICP/MS)-Dissolved Analysis Method: 6020 Analysis Batch: 280-353847 Instrument ID: MT_077 Prep Method: 3005A Prep Batch: 280-352792 Lab File ID: 220SMPL.d Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/01/2016 0229 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 1435 Result (mg/L) Qualifier RL RL	Silver, Total		ND				0.0020		0.0020
ND 0.0050 0.0050	Thallium, Total		ND				0.0010		0.0010
Analysis Method: 6020	Vanadium, Total		ND				0.0020		0.0020
Analysis Method: 6020	Zinc, Total		ND				0.0050		0.0050
Prep Method: 3005A Prep Batch: 280-352792 Lab File ID: 220SMPL.d Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/01/2016 0229 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 1435 Result (mg/L) Qualifier RL RL			6020 Metals (IC	CP/MS)-Diss	olved				
Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/01/2016 0229 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 1435 Analyte Result (mg/L) Qualifier RL RL	Analysis Method:	6020	Analysis Batch:	280-35384	7	Instrum	nent ID:	MT	_077
Analysis Date: 12/01/2016 0229 Final Weight/Volume: 50 mL Prep Date: 11/29/2016 1435 Analyte Result (mg/L) Qualifier RL RL	Prep Method:	3005A	Prep Batch:	280-35279	2	Lab File	e ID:	220	SMPL.d
Prep Date: 11/29/2016 1435 Analyte Result (mg/L) Qualifier RL RL	Dilution:	1.0				Initial V	Veight/Volume:	50	mL
Prep Date: 11/29/2016 1435 Analyte Result (mg/L) Qualifier RL RL	Analysis Date:	12/01/2016 0229				Final W	/eight/Volume:	50	mL
, , ,	-	11/29/2016 1435					J		
, , ,	Analyto		Posult /s	ag/L)	Ouglific	r	DI		DI
		alvod	1.7	ig/L)	Qualifie	ı	0.0010		0.0010

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-42

Sodium, Dissolved

Lab Sample ID: 280-91129-3 Date Sampled: 11/16/2016 1500

Client Matrix: Water Date Received: 11/17/2016 1705

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354736 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352797 Lab File ID: 25A120716E.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 2126 Final Weight/Volume: 50 mL

Prep Date: 11/29/2016 1435

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

 Cobalt, Total
 ND
 0.0030
 0.0030

 Iron, Total
 27
 0.060
 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-354579 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-352793 Lab File ID: 25C120616.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/06/2016 2022 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Result (mg/L) Qualifier Analyte RL RL 0.040 0.040 Calcium, Dissolved 42 Magnesium, Dissolved 14 0.050 0.050 Potassium. Dissolved 8.7 1.0 1.0

1.0

1.0

Analysis Method: 6010B Analysis Batch: 280-354656 Instrument ID: MT 025

21

Prep Method: 3005A Prep Batch: 280-352793 Lab File ID: 25A120716A.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/07/2016 1122 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Analyte Result (mg/L) Qualifier RL RL

Iron, Dissolved 27 0.060 0.060

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-353847 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352798 Lab File ID: 155SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/30/2016 2220 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Qualifier RL Analyte Result (mg/L) RL Antimony, Total ND 0.0010 0.0010 Barium, Total 0.11 F1 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010

Client: Waste Management Job Number: 280-91129-1

Client Sample ID: MW-42

Lab Sample ID: 280-91129-3 Date Sampled: 11/16/2016 1500

Client Matrix: Water Date Received: 11/17/2016 1705

		6020 Metals (ICP/N	IS)-Total Red	coverab	le	
Analyte		Result (n	ng/L)	Qualifie	r RL	RL
Manganese, Total		4.4	-		0.0010	0.0010
Nickel, Total		ND			0.0040	0.0040
Selenium, Total		ND			0.0010	0.0010
Silver, Total		ND			0.0020	0.0020
Thallium, Total		ND			0.0010	0.0010
Vanadium, Total		ND			0.0020	0.0020
Zinc, Total		ND			0.0050	0.0050
		6020 Metals (IC	CP/MS)-Diss	olved		
Analysis Method:	6020	Analysis Batch:	280-353847	7	Instrument ID:	MT_077
Prep Method:	3005A	Prep Batch:	280-352792	2	Lab File ID:	221SMPL.d
Dilution:	1.0				Initial Weight/Volume:	50 mL
Analysis Date:	12/01/2016 0233			1	Final Weight/Volume:	50 mL
Prep Date:	11/29/2016 1435				J	
Analyte		Result (m	ng/L)	Qualifie	r RL	RL
Manganese, Disso	olved	4.5			0.0010	0.0010

General Chemistry

Client Sample ID: MW-23A

 Lab Sample ID:
 280-91129-1
 Date Sampled: 11/16/2016 1305

 Client Matrix:
 Water
 Date Received: 11/17/2016 1705

Analyte RL RL Dil Method Result Qual Units Chloride ND mg/L 1.0 1.0 1.0 300.0 Analysis Batch: 280-354600 Analysis Date: 12/08/2016 0858 Sulfate 1.0 300.0 2.3 mg/L 1.0 Analysis Batch: 280-354600 Analysis Date: 12/08/2016 0858 Ammonia (as N) ND mg/L 0.030 1.0 350.1 0.030 Analysis Batch: 280-353099 Analysis Date: 11/25/2016 1231 Nitrate as N 0.050 0.24 mg/L 0.050 1.0 353.2 Analysis Batch: 280-354812 Analysis Date: 12/08/2016 1039 Alkalinity, Total (As CaCO3) 40 5.0 1.0 SM 2320B mg/L 5.0 Analysis Batch: 280-352831 Analysis Date: 11/22/2016 1349 Alkalinity, Bicarbonate (As CaCO3) 40 5.0 5.0 1.0 SM 2320B mg/L Analysis Batch: 280-352831 Analysis Date: 11/22/2016 1349 Total Dissolved Solids (TDS) 5.0 1.0 SM 2540C 87 mg/L 5.0 Analysis Batch: 280-352631 Analysis Date: 11/22/2016 1053 **Total Suspended Solids** 4.0 1.0 SM 2540D 26 mg/L 4.0 Analysis Batch: 280-352743 Analysis Date: 11/22/2016 1849 Total Organic Carbon - Average ND mq/L 1.0 1.0 1.0 SM 5310B

Analysis Batch: 280-354209 Analysis Date: 12/02/2016 1825

General Chemistry

Client Sample ID: MW-32

 Lab Sample ID:
 280-91129-2
 Date Sampled: 11/16/2016 1405

 Client Matrix:
 Water
 Date Received: 11/17/2016 1705

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	7.0		mg/L	1.0	1.0	1.0	300.0
Anal	sis Batch: 280-354600	Analysis Date	: 12/08/20	16 0916			
Sulfate	8.3		mg/L	1.0	1.0	1.0	300.0
Anal	sis Batch: 280-355349	Analysis Date	: 12/13/20	16 1229			
Ammonia (as N)	ND		mg/L	0.030	0.030	1.0	350.1
Anal	sis Batch: 280-353099	Analysis Date	: 11/25/20	16 1233			
Nitrate as N	ND		mg/L	0.050	0.050	1.0	353.2
Anal	sis Batch: 280-354812	Analysis Date	: 12/08/20	16 1039			
Alkalinity, Total (As Ca	CO3) 110		mg/L	5.0	5.0	1.0	SM 2320B
Anal	sis Batch: 280-352831	Analysis Date	: 11/22/20	16 1353			
Alkalinity, Bicarbonate	(As CaCO3) 110		mg/L	5.0	5.0	1.0	SM 2320B
Anal	sis Batch: 280-352831	Analysis Date	: 11/22/20	16 1353			
Total Dissolved Solids	(TDS) 150		mg/L	5.0	5.0	1.0	SM 2540C
Anal	sis Batch: 280-352631	Analysis Date	: 11/22/20	16 1053			
Total Suspended Solid	s 9.6		mg/L	4.0	4.0	1.0	SM 2540D
Anal	sis Batch: 280-352743	Analysis Date	: 11/22/20	16 1849			
Fotal Organic Carbon -	Average ND		mg/L	1.0	1.0	1.0	SM 5310B
Analy	sis Batch: 280-354209	Analysis Date	: 12/02/20	16 1840			

General Chemistry

Client Sample ID: MW-42

 Lab Sample ID:
 280-91129-3
 Date Sampled: 11/16/2016 1500

 Client Matrix:
 Water
 Date Received: 11/17/2016 1705

Analyte	Res	ult	Qual	Units	RL	RL	Dil	Method
Chloride	12			mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-354	600 Ana	lysis Date	: 12/08/20	16 1027			
Sulfate	6.3			mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-355	349 Ana	lysis Date	: 12/13/20	16 1330			
Ammonia (as N)	5.4			mg/L	0.060	0.060	2.0	350.1
	Analysis Batch: 280-353)99 Ana	lysis Date	: 11/25/20	16 1253			
Nitrate as N	ND			mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-354	312 Ana	lysis Date	: 12/08/20	16 1039			
Alkalinity, Total (A	s CaCO3) 220			mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-352	331 Ana	lysis Date	: 11/22/20	16 1358			
Alkalinity, Bicarbo	nate (As CaCO3) 220			mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-352	331 Ana	lysis Date	: 11/22/20	16 1358			
Total Dissolved S	olids (TDS) 250			mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 280-352	31 Ana	lysis Date	: 11/22/20	16 1053			
Total Suspended	Solids 31			mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch: 280-352	743 Ana	lysis Date	: 11/22/20	16 1849			
Total Organic Car	bon - Average 7.2			mg/L	1.0	1.0	1.0	SM 5310B
	Analysis Batch: 280-354	000 ∆na	lysis Date	. 12/02/20	16 1854			

11/16/2016 1405

Client: Waste Management Job Number: 280-91129-1

Field Service / Mobile Lab

Client Sample ID: MW-23A

рΗ

 Lab Sample ID:
 280-91129-1
 Date Sampled:
 11/16/2016 1305

 Client Matrix:
 Water
 Date Received:
 11/17/2016 1705

Analysis Date Analyzed Analyte Result Qual Units Dil Method Batch **Date Prepared** Depth to water 12.06 ft 1.0 Field 280-352756 11/16/2016 1405 Sampling Specific Conductivity 88 umhos/cm 1.0 Field 11/16/2016 1405 280-352756 Sampling Dissolved Oxygen 4.02 mg/L 1.0 Field 280-352756 11/16/2016 1405 Sampling 145.0 millivolts 1.0 Field 11/16/2016 1405 еΗ 280-352756 Sampling Turbidity 1.64 NTU 1.0 Field 280-352756 11/16/2016 1405 Sampling Temperature Degrees C 12.49 1.0 Field 280-352756 11/16/2016 1405

SU

6.11

Sampling

Sampling

280-352756

Field

1.0

Field Service / Mobile Lab

Client Sample ID: MW-32

Lab Sample ID: 280-91129-2 Date Sampled: 11/16/2016 1405

Client Matrix: Water Date Received: 11/17/2016 1705

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	1.08		ft	1.0	Field Sampling	280-352756	11/16/2016 1505
Specific Conductivity	251		umhos/cm	1.0	Field Sampling	280-352756	11/16/2016 1505
Dissolved Oxygen	1.18		mg/L	1.0	Field Sampling	280-352756	11/16/2016 1505
еН	-2.3		millivolts	1.0	Field Sampling	280-352756	11/16/2016 1505
Turbidity	1.50		NTU	1.0	Field Sampling	280-352756	11/16/2016 1505
Temperature	12.13		Degrees C	1.0	Field Sampling	280-352756	11/16/2016 1505
рН	7.60		SU	1.0	Field Sampling	280-352756	11/16/2016 1505

Field Service / Mobile Lab

Client Sample ID: MW-42

 Lab Sample ID:
 280-91129-3
 Date Sampled: 11/16/2016 1500

 Client Matrix:
 Water
 Date Received: 11/17/2016 1705

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	26.41	Quui	ft	1.0	Field Sampling	280-352756	11/16/2016 1600
Specific Conductivity	550		umhos/cm	1.0	Field Sampling	280-352756	11/16/2016 1600
Dissolved Oxygen	0.30		mg/L	1.0	Field Sampling	280-352756	11/16/2016 1600
еН	-53.5		millivolts	1.0	Field Sampling	280-352756	11/16/2016 1600
Turbidity	3.75		NTU	1.0	Field Sampling	280-352756	11/16/2016 1600
Temperature	12.57		Degrees C	1.0	Field Sampling	280-352756	11/16/2016 1600
pH	7.49		SU	1.0	Field Sampling	280-352756	11/16/2016 1600

DATA REPORTING QUALIFIERS

Client: Waste Management Job Number: 280-91129-1

Lab Section	Qualifier	Description
GC/MS VOA		
	В	Compound was found in the blank and sample.
	*	LCS or LCSD is outside acceptance limits.
	F1	MS and/or MSD Recovery is outside acceptance limits.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals		
	F1	MS and/or MSD Recovery is outside acceptance limits.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
General Chemistry		
	В	Compound was found in the blank and sample.
	Е	Result exceeded calibration range.

QUALITY CONTROL RESULTS

Job Number: 280-91129-1 Client: Waste Management

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA	·				•
Analysis Batch:480-3	32686				
LCS 480-332686/4	Lab Control Sample	Т	Water	8260C SIM	
LCSD 480-332686/5	Lab Control Sample Duplicate	T	Water	8260C SIM	
MB 480-332686/7	Method Blank	Т	Water	8260C SIM	
280-91129-1	MW-23A	T	Water	8260C SIM	
280-91129-4TB	TRIP BLANK	Т	Water	8260C SIM	
Analysis Batch:480-3	32790				
LCS 480-332790/4	Lab Control Sample	Т	Water	8260C SIM	
LCSD 480-332790/5	Lab Control Sample Duplicate	Т	Water	8260C SIM	
MB 480-332790/7	Method Blank	Т	Water	8260C SIM	
280-91129-2	MW-32	Т	Water	8260C SIM	
280-91129-3	MW-42	Т	Water	8260C SIM	
Analysis Batch:480-3	33598				
LCS 480-333598/5	Lab Control Sample	Т	Water	8260C	
MB 480-333598/7	Method Blank	T	Water	8260C	
280-91129-1	MW-23A	T	Water	8260C	
280-91129-2	MW-32	T	Water	8260C	
280-91129-4TB	TRIP BLANK	Т	Water	8260C	
480-109772-D-4 MS	Matrix Spike	Т	Water	8260C	
480-109772-D-4 MSD	Matrix Spike Duplicate	T	Water	8260C	
Analysis Batch:480-3	33730				
LCS 480-333730/4	Lab Control Sample	Т	Water	8260C	
MB 480-333730/6	Method Blank	Т	Water	8260C	
280-91129-3	MW-42	Т	Water	8260C	
480-109807-G-6 MS	Matrix Spike	Т	Water	8260C	
480-109807-H-6 MSD	Matrix Spike Duplicate	Т	Water	8260C	

Report Basis T = Total

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 280-352792					
LCS 280-352792/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352792/1-A	Method Blank	R	Water	3005A	
280-91117-E-1-B MS	Matrix Spike	D	Water	3005A	
280-91117-E-1-C MSD	Matrix Spike Duplicate	D	Water	3005A	
280-91129-1	MW-23A	D	Water	3005A	
280-91129-2	MW-32	D	Water	3005A	
280-91129-3	MW-42	D	Water	3005A	
Prep Batch: 280-352793					
LCS 280-352793/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352793/1-A	Method Blank	R	Water	3005A	
280-91117-E-2-C MS	Matrix Spike	D	Water	3005A	
280-91117-E-2-D MSD	Matrix Spike Duplicate	D	Water	3005A	
280-91129-1	MW-23A	D	Water	3005A	
280-91129-2	MW-32	D	Water	3005A	
280-91129-3	MW-42	D	Water	3005A	
Prep Batch: 280-352797					
LCS 280-352797/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352797/1-A	Method Blank	R	Water	3005A	
280-91129-1	MW-23A	R	Water	3005A	
280-91129-2	MW-32	R	Water	3005A	
280-91129-3	MW-42	R	Water	3005A	
280-91130-C-1-B MS	Matrix Spike	R	Water	3005A	
280-91130-C-1-C MSD	Matrix Spike Duplicate	R	Water	3005A	
Prep Batch: 280-352798					
LCS 280-352798/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352798/1-A	Method Blank	R	Water	3005A	
280-91129-1	MW-23A	R	Water	3005A	
280-91129-2	MW-32	R	Water	3005A	
280-91129-3	MW-42	R	Water	3005A	
280-91129-3MS	Matrix Spike	R	Water	3005A	
280-91129-3MSD	Matrix Spike Duplicate	R	Water	3005A	

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals					
Analysis Batch:280-353	847				
LCS 280-352792/2-A	Lab Control Sample	R	Water	6020	280-352792
MB 280-352792/1-A	Method Blank	R	Water	6020	280-352792
LCS 280-352798/2-A	Lab Control Sample	R	Water	6020	280-352798
MB 280-352798/1-A	Method Blank	R	Water	6020	280-352798
280-91117-E-1-B MS	Matrix Spike	D	Water	6020	280-352792
280-91117-E-1-C MSD	Matrix Spike Duplicate	D	Water	6020	280-352792
280-91129-1	MW-23A	D	Water	6020	280-352792
280-91129-1	MW-23A	R	Water	6020	280-352798
280-91129-2	MW-32	D	Water	6020	280-352792
280-91129-2	MW-32	R	Water	6020	280-352798
280-91129-3	MW-42	D	Water	6020	280-352792
280-91129-3	MW-42	R	Water	6020	280-352798
280-91129-3MS	Matrix Spike	R	Water	6020	280-352798
280-91129-3MSD	Matrix Spike Duplicate	R	Water	6020	280-352798
Analysis Batch:280-354	579				
LCS 280-352793/2-A	Lab Control Sample	R	Water	6010B	280-352793
MB 280-352793/1-A	Method Blank	R	Water	6010B	280-352793
280-91117-E-2-C MS	Matrix Spike	D	Water	6010B	280-352793
280-91117-E-2-D MSD	Matrix Spike Duplicate	D	Water	6010B	280-352793
280-91129-1	MW-23A	D	Water	6010B	280-352793
280-91129-2	MW-32	D	Water	6010B	280-352793
280-91129-3	MW-42	D	Water	6010B	280-352793
Analysis Batch:280-354	656				
LCS 280-352793/2-A	Lab Control Sample	R	Water	6010B	280-352793
MB 280-352793/1-A	Method Blank	R	Water	6010B	280-352793
280-91117-E-2-C MS	Matrix Spike	D	Water	6010B	280-352793
280-91117-E-2-D MSD	Matrix Spike Duplicate	D	Water	6010B	280-352793
280-91129-1	MW-23A	D	Water	6010B	280-352793
280-91129-2	MW-32	D	Water	6010B	280-352793
280-91129-3	MW-42	D	Water	6010B	280-352793
Analysis Batch:280-354	736				
LCS 280-352797/2-A	Lab Control Sample	R	Water	6010B	280-352797
MB 280-352797/1-A	Method Blank	R	Water	6010B	280-352797
280-91129-1	MW-23A	R	Water	6010B	280-352797
280-91129-2	MW-32	R	Water	6010B	280-352797
280-91129-3	MW-42	R	Water	6010B	280-352797
280-91130-C-1-B MS	Matrix Spike	R	Water	6010B	280-352797
280-91130-C-1-C MSD	Matrix Spike Duplicate	R	Water	6010B	280-352797

Job Number: 280-91129-1 Client: Waste Management

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Report Basis D = Dissolved					
R = Total Recoverable					
Field Service / Mobi	le Lab				
Analysis Batch:280-	352756				
280-91129-1	MW-23A	Т	Water	Field Sampling	
280-91129-2	MW-32	Т	Water	Field Sampling	
280-91129-3	MW-42	T	Water	Field Sampling	

Report Basis T = Total

QC Association Summary

Internal Chemistry Inalysis Batch: 280-352631 Lab Control Sample T Water SM 2540C B 280-352631/1 Method Blank T Water SM 2540C Water SM 2540D Water SM 254	Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
S. 280-352631/2	General Chemistry	·				·
S. 280-352631/2	Analysis Batch:280-352	2631				
10-91129-1	LCS 280-352631/2		Т	Water	SM 2540C	
10-91129-2 MW-32 T Water	MB 280-352631/1	Method Blank	Т	Water	SM 2540C	
MW-42	280-91129-1	MW-23A	T	Water	SM 2540C	
Duplicate T Water SM 2540C	280-91129-2	MW-32		Water	SM 2540C	
Nalysis Batch: 280-352743/1	280-91129-3	MW-42	T	Water	SM 2540C	
CS 280-352743/1	280-91170-R-2 DU	Duplicate	Т	Water	SM 2540C	
B 280-352743/2 Method Blank T Water SM 2540D 30-91129-1 MW-23A T Water SM 2540D 30-91129-2 MW-32 T Water SM 2540D 30-91129-3 MW-42 T Water SM 2540D 30-91129-3DU Duplicate T Water SM 2540D 30-91129-3DU Duplicate T Water SM 2540D 30-91129-3DU Duplicate T Water SM 2540D 30-91129-3DU Duplicate T Water SM 2320B 30-91078-A-2 DU Duplicate T Water SM 2320B 30-91129-1 MW-23A T Water SM 2320B 30-91129-2 MW-32 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water SM 2320B 30-91129-3 MW-42 T Water 350.1 30-91129-1 MW-23A T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2 MW-42 T Water 350.1 30-91129-2 MW-42 T Water 350.1 30-91129-2 MS Matrix Spike T Water 350.1 30-91129-2 MS Matrix Spike T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1	Analysis Batch:280-352	2743				
No.91129-1 MW-23A	LCS 280-352743/1	Lab Control Sample	Т	Water	SM 2540D	
Nater SM 2540D	MB 280-352743/2	Method Blank	Т	Water	SM 2540D	
MW-42	280-91129-1	MW-23A	Т	Water	SM 2540D	
Duplicate T Water SM 2540D	280-91129-2	MW-32	Т	Water	SM 2540D	
malysis Batch:280-352831/4	280-91129-3	MW-42	Т	Water	SM 2540D	
CS 280-352831/4	280-91129-3DU	Duplicate	Т	Water	SM 2540D	
CS 280-352831/4	Analysis Batch:280-352	2831				
Succession	LCS 280-352831/4		T	Water	SM 2320B	
MW-23A	MB 280-352831/5	Method Blank	Т	Water	SM 2320B	
No.91129-2 MW-32 T	280-91078-A-2 DU	Duplicate	Т	Water	SM 2320B	
MW-42 T Water SM 2320B	280-91129-1	MW-23A	T	Water	SM 2320B	
nalysis Batch:280-353099 CS 280-353099/62 Lab Control Sample T Water 350.1 CSD 280-353099/63 Lab Control Sample Duplicate T Water 350.1 B 280-353099/64 Method Blank T Water 350.1 80-91129-1 MW-23A T Water 350.1 80-91129-2 MW-32 T Water 350.1 80-91129-2MS Matrix Spike T Water 350.1 80-91129-2MSD Matrix Spike Duplicate T Water 350.1 80-91129-3 MW-42 T Water 350.1 80-9353180/4 Lab Control Sample T Water SM 2320B B 280-353180/5 Method Blank T Water SM 2320B 80-91129-1 MW-23A T Water SM 2320B	280-91129-2	MW-32	T	Water	SM 2320B	
CS 280-353099/62 Lab Control Sample T Water 350.1 CSD 280-353099/63 Lab Control Sample Duplicate T Water 350.1 B 280-353099/64 Method Blank T Water 350.1 30-91129-1 MW-23A T Water 350.1 30-91129-2 MW-32 T Water 350.1 30-91129-2MS Matrix Spike T Water 350.1 30-91129-2MSD Matrix Spike Duplicate T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-3 MW-42 T Water 350.1 30-91129-1 Method Blank T Water SM 2320B 30-91129-1 MW-23A T Water SM 2320B	280-91129-3	MW-42	T	Water	SM 2320B	
CSD 280-353099/63	Analysis Batch:280-353	3099				
B 280-353099/64 Method Blank T Water 350.1 80-91129-1 MW-23A T Water 350.1 80-91129-2 MW-32 T Water 350.1 80-91129-2MS Matrix Spike T Water 350.1 80-91129-2MSD Matrix Spike Duplicate T Water 350.1 80-91129-3 MW-42 T Water 350.1 80-91129-3 MW-42 T Water 350.1 80-91129-3 MW-42 T Water 350.1 80-91129-3 MW-42 T Water 350.1 80-91129-1 Water SM 2320B 80-91129-1 MW-23A T Water SM 2320B	LCS 280-353099/62	Lab Control Sample		Water	350.1	
30-91129-1 MW-23A T Water 350.1	LCSD 280-353099/63	Lab Control Sample Duplicate	T	Water	350.1	
30-91129-2 MW-32 T Water 350.1 30-91129-2MS Matrix Spike T Water 350.1 30-91129-2MSD Matrix Spike Duplicate T Water 350.1 30-91129-3 MW-42 T Water 350.1 350-91129-3 MW-42 T Water 350.1 350-91129-3 Water 350.1 350-91129-1 Water SM 2320B 350-91129-1 SM 2320B 350-91129-1 Water SM 2320B 350-1 Water S	MB 280-353099/64	Method Blank	Т	Water	350.1	
80-91129-2MS Matrix Spike T Water 350.1 80-91129-2MSD Matrix Spike Duplicate T Water 350.1 80-91129-3 MW-42 T Water 350.1 Inalysis Batch:280-353180 CS 280-353180/4 Lab Control Sample T Water SM 2320B B 280-353180/5 Method Blank T Water SM 2320B 80-91129-1 MW-23A T Water SM 2320B	280-91129-1	MW-23A		Water	350.1	
80-91129-2MSD Matrix Spike Duplicate T Water 350.1 80-91129-3 MW-42 T Water 350.1 Inalysis Batch:280-353180 CS 280-353180/4 Lab Control Sample T Water SM 2320B B 280-353180/5 Method Blank T Water SM 2320B 80-91129-1 MW-23A T Water SM 2320B	280-91129-2	MW-32		Water	350.1	
80-91129-3 MW-42 T Water 350.1 Inalysis Batch:280-353180 CS 280-353180/4 Lab Control Sample T Water SM 2320B B 280-353180/5 Method Blank T Water SM 2320B 80-91129-1 MW-23A T Water SM 2320B	280-91129-2MS	Matrix Spike	T	Water	350.1	
Inalysis Batch:280-353180 CS 280-353180/4 Lab Control Sample T Water SM 2320B B 280-353180/5 Method Blank T Water SM 2320B 80-91129-1 MW-23A T Water SM 2320B	280-91129-2MSD	Matrix Spike Duplicate		Water	350.1	
CS 280-353180/4 Lab Control Sample T Water SM 2320B B 280-353180/5 Method Blank T Water SM 2320B 30-91129-1 MW-23A T Water SM 2320B	280-91129-3	MW-42	Т	Water	350.1	
B 280-353180/5 Method Blank T Water SM 2320B 30-91129-1 MW-23A T Water SM 2320B	Analysis Batch:280-353					
30-91129-1 MW-23A T Water SM 2320B	LCS 280-353180/4	Lab Control Sample		Water	SM 2320B	
	MB 280-353180/5	Method Blank	T	Water	SM 2320B	
30-91292-A-3 DU Duplicate T Water SM 2320B	280-91129-1	MW-23A		Water	SM 2320B	
·	280-91292-A-3 DU	Duplicate	T	Water	SM 2320B	

Client: Waste Management Job Number: 280-91129-1

QC Association Summary

Lab Camarla ID	Client Commis ID	Report Basis		Mathad	Draw Batab
Lab Sample ID	Client Sample ID	Dasis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-35					
LCS 280-354209/3	Lab Control Sample	T	Water	SM 5310B	
MB 280-354209/4	Method Blank	T	Water	SM 5310B	
280-91049-C-3 MS	Matrix Spike	T	Water	SM 5310B	
280-91049-C-3 MSD	Matrix Spike Duplicate	T	Water	SM 5310B	
280-91129-1	MW-23A	T	Water	SM 5310B	
280-91129-2	MW-32	T	Water	SM 5310B	
280-91129-3	MW-42	Т	Water	SM 5310B	
Analysis Batch:280-35	4600				
LCS 280-354600/55	Lab Control Sample	Т	Water	300.0	
LCSD 280-354600/56	Lab Control Sample Duplicate	Ť	Water	300.0	
MB 280-354600/57	Method Blank	Ť	Water	300.0	
280-91129-1	MW-23A	T	Water	300.0	
280-91129-2	MW-32	Ť	Water	300.0	
280-91129-2DU	Duplicate	Ť	Water	300.0	
280-91129-2MS	Matrix Spike	Ť	Water	300.0	
280-91129-2MSD	Matrix Spike Duplicate	Ť	Water	300.0	
280-91129-3	MW-42	Ť	Water	300.0	
Analysis Batch:280-35	4942				
MB 280-354812/1	Method Blank	Т	Water	353.2	
280-91129-1	MW-23A	T	Water	353.2	
280-91129-2	MW-32	, T	Water	353.2	
280-91129-3	MW-42	T	Water	353.2	
A call also Barral con on	5 0.40				
Analysis Batch:280-35 LCS 280-355349/4		Т	Water	300.0	
	Lab Control Sample	=			
LCSD 280-355349/5	Lab Control Sample Duplicate	T	Water	300.0	
MB 280-355349/6	Method Blank	T	Water	300.0	
280-91129-2	MW-32	T T	Water	300.0	
280-91129-3	MW-42	I	Water	300.0	

Report Basis

T = Total

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Water

		DCA	BFB	TOL
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
280-91129-1	MW-23A	100	94	99
280-91129-2	MW-32	102	95	100
280-91129-3	MW-42	98	95	100
280-91129-4	TRIP BLANK	99	94	99
MB 480-333598/7		99	95	101
MB 480-333730/6		97	93	99
LCS 480-333598/5		99	96	102
LCS 480-333730/4		101	93	100
480-109772-D-4 MS		99	94	102
480-109807-G-6 MS		98	96	101
480-109772-D-4 MSD		98	94	101
480-109807-H-6 MSD		98	96	102

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	77-120
BFB = 4-Bromofluorobenzene (Surr)	73-120
TOL = Toluene-d8 (Surr)	80-120

Surrogate Recovery Report

8260C SIM Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	TBA
Lab Sample ID	Client Sample ID	%Rec	%Rec
280-91129-1	MW-23A	98	122
280-91129-2	MW-32	97	137
280-91129-3	MW-42	100	134
280-91129-4	TRIP BLANK	98	115
MB 480-332686/7		99	129
MB 480-332790/7		101	135
LCS 480-332686/4		97	120
LCS 480-332790/4		101	126
LCSD 480-332686/5		92	110
LCSD 480-332790/5		98	135

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	50-150
TBA = TBA-d9 (Surr)	50-150

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 480-333598

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333598/7 Analysis Batch: 480-333598 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0004.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/27/2016 1416 Units: ug/L

Prep Date: 11/27/2016 1416

Leach Date: N/A

Analyte	Result	Qual	MDL	RL	
1,1,1,2-Tetrachloroethane	ND		0.35	1.0	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,1-Dichloropropene	ND		0.72	1.0	
1,2,3-Trichlorobenzene	ND		0.41	1.0	
1,2,3-Trichloropropane	ND		0.89	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2,4-Trimethylbenzene	ND		0.75	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane (EDB)	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloroethene, Total	ND		0.81	2.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3,5-Trichlorobenzene	ND		0.23	1.0	
1,3,5-Trimethylbenzene	ND		0.77	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,3-Dichloropropane	ND		0.75	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
1,4-Dioxane	ND		9.3	40	
2,2-Dichloropropane	ND		0.40	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Chloroethyl vinyl ether	ND		0.96	5.0	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Acetonitrile	ND		4.9	15	
Acrolein	ND		0.91	20	
Acrylonitrile	ND		0.83	5.0	
Benzene	ND		0.41	1.0	
Bromobenzene	ND		0.80	1.0	
Bromochloromethane	ND		0.87	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.39	1.0	
5	ND			1.0	
Bromomethane Butyl alcohol, n-	ND ND		0.69 8.9	40	
Butyl alcohol, tert-	ND ND		3.3	10	
Carbon disulfide	ND ND		ა.ა 0.19	1.0	
Carbon distillide Carbon tetrachloride			0.19	1.0	
	ND ND				
Chlorodifluoromethana	ND ND		0.75	1.0	
Chlorodifluoromethane	ND		0.26	1.0	

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 480-333598

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333598/7 Analysis Batch: 480-333598 Instrument ID: HP5973S Client Matrix: Prep Batch: Lab File ID: Water N/A S0004.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/27/2016 1416 Units: ug/L

Prep Date: 11/27/2016 1416

Leach Date: N/A

Chlorochtane	Analyte	Result	Qual	MDL	RL	
Chloromethane	Chloroethane			0.32		
cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromoethane ND 0.41 1.0 Dibromoethane ND 0.68 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorodiromethane ND 0.68 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexachlorobutadiene ND 0.40 1.0 Isopropylenzene ND 0.40	Chloroform					
cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromochloromethane ND 0.41 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.74 1.0 Hexacle ND 0.29 1.0 Hexane ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 lsopropyle ther ND 0.30 1.0 lsopropyle ther ND 0.59 1.0	Chloromethane	ND		0.35	1.0	
Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofuoromethane ND 0.68 1.0 Dichlorofuoromethane ND 0.66 1.0 Ethyl acetate ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.59 1.0 Isopropylether ND 0.59 1.0 Isopropylethere ND 0.59	cis-1,2-Dichloroethene	ND		0.81	1.0	
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichloroffluoromethane ND 0.68 1.0 Ethyl acetate ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tent-butyl ether ND 0.74 1.0 Ethyl tent-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 lsopropyl ether ND 0.59 1.0 lsopropylether ND 0.59 1.0 Methacrylonitrile ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl ether butyl ether ND 0.16 1.0 Methylochexane ND 0.	cis-1,3-Dichloropropene	ND		0.36	1.0	
Dibromomethane ND 0.41 1.0 Dichlorodiffuoromethane ND 0.88 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tert ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexachlorobutadiene ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isoboutanol ND 0.30 1.0 Isoboutanol ND 4.8 25 Isopropylenzere ND 0.59 1.0 Isopropylenzere ND 0.59 1.0 Methylacrotate ND 0.69 5.0 Methyl Jacetate ND 0.16 1.0 Methyl acetate ND 0.16	Cyclohexane	ND		0.18	1.0	
Dichlorodifluoromethane ND 0.88 1.0 Dichlorofiluoromethane ND 0.34 1.0 Ethyl ectate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 lsobutanol ND 4.8 25 lsopropylether ND 0.59 1.0 lsopropylether ND 0.59 1.0 Methylacetale ND 0.79 1.0 Methyletherbutylether ND 0.69 5.0 Methyletherbutylether ND 0.16 1.0 Methyletherbutylether ND 0.16 1.0 Methyletherbutyletherbutylether ND	Dibromochloromethane	ND		0.32	1.0	
Dickhlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tertheur ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.40 10 Idodmethane ND 0.40 10 Idodmethane ND 0.40 10 Idodmethane ND 0.30 1.0 Isopropylether ND 0.59 1.0 Isopropylether ND 0.59 1.0 Isopropylethere ND 0.59 1.0 Isopropylethere ND 0.59 1.0 Isopropylethere ND 0.69 5.0 Methylacetate ND 0.69 5.0 Methylacetate ND 0.69 5.0 Methylacetate ND 0.16	Dibromomethane	ND		0.41	1.0	
Ethyl acetate ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tether ND 0.29 1.0 Ethyl tether ND 0.29 1.0 Ethyl tether ND 0.29 1.0 Ethyl tether ND 0.29 1.0 Ethyl tether ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexache ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 0.50 1.0 Isopropyl ether ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropylenzene ND 0.79 1.0 Methacylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl teth-butyl ether ND 0.16 1.0 Methylenc Chloride ND 0.16 1.0 Methylene Chloride ND 0.66 2.0 Methylene Chloride ND 0.66 2.0 Maphthalene ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 O-Xylene ND 0.66 1.0 O-Xylene ND 0.66 1.0 O-Xylene ND 0.66 1.0 O-Xylene ND 0.66 1.0 O-Xylene ND 0.66 1.0 O-Xylene ND 0.76 1.0 P-Cymrene ND 0.75 1.0 Styrene ND 0.77 1.0 Stert-Butylbenzene ND 0.77 1.0 Stert-Butylben	Dichlorodifluoromethane	ND		0.68	1.0	
Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylebenzene ND 0.79 1.0 Methylencene ND 0.69 5.0 Methyl ether ND 0.69 5.0 Methyl ether-butyl ether ND 0.16 1.0 Methyler-butyl ether ND 0.44 1.0 Mayhthalene ND 0.64 </td <td>Dichlorofluoromethane</td> <td>ND</td> <td></td> <td>0.34</td> <td>1.0</td> <td></td>	Dichlorofluoromethane	ND		0.34	1.0	
Ethyl benzene ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl sert-butyl ether ND 0.16 1.0 Methyl tert-butyl ether	Ethyl acetate	ND		0.66	1.0	
Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methalecylonitrile ND 0.69 5.0 Methyl scetate ND 0.13 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylecyclohexane ND 0.16 1.0 Methylecyclohexane ND 0.16 1.0 Methylene Chloride ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.43 1.0 N-Propylbenzene ND 0.64	Ethyl ether	ND		0.72	1.0	
Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methylopolitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.64 1.0 N-Proplea ND 0.64	Ethyl tert-butyl ether	ND		0.29	1.0	
Hexane	Ethylbenzene	ND		0.74	1.0	
lodomethane ND 0.30 1.0 Isobropyl ether ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methancylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl acreate ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 mx-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.76 1.0 p-Chlorotoluene ND 0.75 1.0	Hexachlorobutadiene	ND		0.28	1.0	
Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Methylene Chloride ND 0.44 1.0 Methylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 N-Propylbenzene ND 0.86 1.0 O-Xylene ND 0.86 1.0 p-Cymene ND 0.76 1.0 Styrene ND 0.75 1.0 <td>Hexane</td> <td>ND</td> <td></td> <td>0.40</td> <td>10</td> <td></td>	Hexane	ND		0.40	10	
Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 o-Xylene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.75 1.0 sec-Butylbenzene ND 0.75 1.0	lodomethane	ND		0.30	1.0	
Sopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl acetate ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Methylene SpXylene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N.	Isobutanol	ND		4.8	25	
Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylche Chloride ND 0.44 1.0 Methylene Chloride ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tetr-amyl methyl ether ND 0.81 1.0 <td>Isopropyl ether</td> <td>ND</td> <td></td> <td>0.59</td> <td>1.0</td> <td></td>	Isopropyl ether	ND		0.59	1.0	
Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 Methylene Chloride ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.73 1.0 Styrene ND 0.73 1.0 Tetr-amyl methyl ether ND 0.81 1.0 tetr-Butylbenzene ND 0.81 <td< td=""><td>Isopropylbenzene</td><td>ND</td><td></td><td>0.79</td><td>1.0</td><td></td></td<>	Isopropylbenzene	ND		0.79	1.0	
Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.76 1.0 p-Cymene ND 0.31 1.0 p-Cymene ND 0.75 1.0 Sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.		ND		0.69	5.0	
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.75 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.37		ND		1.3	2.5	
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.75 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.37	Methyl tert-butyl ether	ND		0.16	1.0	
m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Clymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,4-Dichloro-2-butene ND 0.37 1.0 Trichloroethene ND 0.46 1.0	Methylcyclohexane	ND		0.16	1.0	
Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46	Methylene Chloride	ND		0.44	1.0	
n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrachloroethene ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	m-Xylene & p-Xylene	ND		0.66	2.0	
N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.36 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	Naphthalene	ND		0.43	1.0	
o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	n-Butylbenzene	ND		0.64	1.0	
o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.27 1.0 Tert-amyl methyl ether ND 0.81 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	N-Propylbenzene	ND		0.69	1.0	
p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 0.51 1.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	o-Chlorotoluene	ND		0.86	1.0	
p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	o-Xylene	ND		0.76	1.0	
sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	p-Chlorotoluene	ND		0.84	1.0	
Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	p-Cymene	ND		0.31	1.0	
Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	sec-Butylbenzene	ND		0.75	1.0	
tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	Styrene	ND		0.73	1.0	
Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	Tert-amyl methyl ether	ND		0.27	1.0	
Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	tert-Butylbenzene	ND		0.81	1.0	
Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	Tetrachloroethene	ND		0.36	1.0	
Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	Tetrahydrofuran	ND		1.3	5.0	
trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0		ND		0.51	1.0	
trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0	trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0		ND		0.37	1.0	
Trichloroethene ND 0.46 1.0	trans-1,4-Dichloro-2-butene	ND		0.22	1.0	
	Trichlorofluoromethane	ND		0.88	1.0	

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 480-333598 Method: 8260C

Preparation: 5030C

Lab Sample ID: MB 480-333598/7 Analysis Batch: 480-333598 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S0004.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL 11/27/2016 1416 Units: Analysis Date: ug/L

Prep Date: 11/27/2016 1416

Leach Date: N/A

Analyte	Result	Qual	MDL	RL	
Vinyl acetate	ND		0.85	5.0	
Vinyl chloride	ND		0.90	1.0	
			Acceptance Limits		
Surrogate	% Rec		Acceptance Limits		
Surrogate 1,2-Dichloroethane-d4 (Surr)	% Rec 99		Acceptance Limits 77 - 120		
•			· ·		

Method Blank TICs-Batch: 480-333598

Cas Number	Analyte	RT	Est. Result (ug/	Qual
67-72-1	Hexachloroethane TIC	0.00	ND	

Client: Waste Management Job Number: 280-91129-1

Lab Control Sample - Batch: 480-333598

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333598/5 Analysis Batch: 480-333598 Instrument ID: HP5973S Client Matrix: Prep Batch: Lab File ID: Water N/A S0002.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Units: Final Weight/Volume: 5 mL Analysis Date: 11/27/2016 1330 ug/L

Prep Date: 11/27/2016 1330

Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	25.0	27.7	111	80 - 120	
1,1,1-Trichloroethane	25.0	26.3	105	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.7	103	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	25.0	100	61 - 148	
1,1,2-Trichloroethane	25.0	25.9	104	76 - 122	
1,1-Dichloroethane	25.0	25.5	102	77 - 120	
1,1-Dichloroethene	25.0	26.2	105	66 - 127	
1,1-Dichloropropene	25.0	26.4	105	72 - 122	
1,2,3-Trichlorobenzene	25.0	25.5	102	75 - 123	
1,2,3-Trichloropropane	25.0	24.2	97	68 - 122	
1,2,4-Trichlorobenzene	25.0	25.5	102	79 - 122	
1,2,4-Trimethylbenzene	25.0	25.9	103	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	26.3	105	56 - 134	
1,2-Dibromoethane (EDB)	25.0	25.3	101	77 - 120	
1,2-Dichlorobenzene	25.0	25.4	102	80 - 124	
1,2-Dichloroethane	25.0	23.8	95	75 - 120	
1,2-Dichloropropane	25.0	25.2	101	76 - 120	
1,3,5-Trimethylbenzene	25.0	25.9	103	77 - 121	
1,3-Dichlorobenzene	25.0	26.1	104	77 - 120	
1,3-Dichloropropane	25.0	25.2	101	75 - 120	
1,4-Dichlorobenzene	25.0	25.6	102	80 - 120	
1,4-Dioxane	500	385	77	50 - 150	
2,2-Dichloropropane	25.0	27.4	110	63 - 136	
2-Butanone (MEK)	125	114	91	57 - 140	
2-Chloroethyl vinyl ether	25.0	24.2	97	70 - 129	
2-Hexanone	125	108	86	65 - 127	
	125	111	89	71 - 125	
4-Methyl-2-pentanone (MIBK) Acetone	125	119	95	71 - 125 56 - 142	
Acrolein		103			
	125	237	82 05	52 - 143	
Acrylonitrile	250		95	63 - 125	
Benzene	25.0	25.7	103	71 - 124	
Bromobenzene	25.0	24.7	99	78 - 120	
Bromochloromethane	25.0	26.2	105	72 - 130	
Bromodichloromethane	25.0	26.0	104	80 - 122	
Bromoform	25.0	26.3	105	61 - 132	
Bromomethane	25.0	24.7	99	55 - 144	
Butyl alcohol, tert-	250	224	90	75 - 125	
Carbon disulfide	25.0	22.2	89	59 - 134	
Carbon tetrachloride	25.0	27.8	111	72 - 134	
Chlorobenzene	25.0	25.3	101	80 - 120	
Chloroethane	25.0	28.9	115	69 - 136	
Chloroform	25.0	25.2	101	73 - 127	
Chloromethane	25.0	27.0	108	68 - 124	
cis-1,2-Dichloroethene	25.0	26.1	105	74 - 124	
cis-1,3-Dichloropropene	25.0	26.0	104	74 - 124	
Cyclohexane	25.0	26.0	104	59 - 135	

Client: Waste Management Job Number: 280-91129-1

Lab Control Sample - Batch: 480-333598

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333598/5 Analysis Batch: 480-333598 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0002.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/27/2016 1330 Units: ug/L

Prep Date: 11/27/2016 1330 Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	25.0	26.5	106	75 - 125	
Dibromomethane	25.0	25.1	100	76 - 127	
Dichlorodifluoromethane	25.0	28.4	114	59 - 135	
Dichlorofluoromethane	25.0	25.0	100	76 - 127	
Ethyl ether	25.0	25.7	103	76 - 123	
Ethylbenzene	25.0	24.6	98	77 - 123	
Hexachlorobutadiene	25.0	25.1	100	68 - 131	
Hexane	25.0	25.4	101	54 - 146	
Iodomethane	25.0	23.5	94	78 - 123	
Isobutanol	625	569	91	51 - 150	
Isopropylbenzene	25.0	25.5	102	77 - 122	
Methyl acetate	125	111	89	74 - 133	
Methyl tert-butyl ether	25.0	25.0	100	77 - 120	
Methylcyclohexane	25.0	26.3	105	68 - 134	
Methylene Chloride	25.0	23.5	94	75 - 124	
m-Xylene & p-Xylene	25.0	24.3	97	76 - 122	
Naphthalene	25.0	24.4	98	66 - 125	
n-Butylbenzene	25.0	26.2	105	71 - 128	
N-Propylbenzene	25.0	25.3	101	75 - 127	
o-Chlorotoluene	25.0	24.8	99	76 - 121	
o-Xylene	25.0	24.5	98	76 - 122	
p-Chlorotoluene	25.0	25.1	100	77 - 121	
p-Cymene	25.0	25.8	103	73 - 120	
sec-Butylbenzene	25.0	25.7	103	74 - 127	
Styrene	25.0	25.0	100	80 - 120	
tert-Butylbenzene	25.0	25.9	103	75 - 123	
Tetrachloroethene	25.0	25.6	102	74 - 122	
Tetrahydrofuran	50.0	43.7	87	62 - 132	
Toluene	25.0	25.3	101	80 - 122	
trans-1,2-Dichloroethene	25.0	25.5	102	73 - 127	
trans-1,3-Dichloropropene	25.0	26.7	107	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	22.7	91	41 - 131	
Trichloroethene	25.0	25.2	101	74 - 123	
Trichlorofluoromethane	25.0	25.5	102	62 - 150	
Vinyl acetate	50.0	49.9	100	50 - 144	
Vinyl chloride	25.0	29.3	117	65 - 133	
Surrogate	%	Rec	А	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	9	9		77 - 120	
4-Bromofluorobenzene (Surr)	9				
Toluene-d8 (Surr)		02		73 - 120 80 - 120	
()	·	-		-	

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333598 Preparation: 5030C

MS Lab Sample ID: 480-109772-D-4 MS 480-333598 Instrument ID: HP5973S Analysis Batch: Client Matrix: Prep Batch: N/A Lab File ID: S0023.D Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: Analysis Date: 11/27/2016 2151 5 mL

Prep Date: 11/27/2016 2151 5 mL

Leach Date: N/A

MSD Lab Sample ID: 480-109772-D-4 MSD Analysis Batch: 480-333598 Instrument ID: HP5973S Client Matrix: Water N/A Lab File ID: Prep Batch: S0024.D Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/27/2016 2214 Final Weight/Volume: 5 mL Prep Date: 11/27/2016 2214 5 mL

Leach Date: N/A

	<u>%</u>	<u>% Rec.</u>					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1,1,2-Tetrachloroethane	106	104	80 - 120	2	20		
1,1,1-Trichloroethane	110	103	73 - 126	6	15		
1,1,2,2-Tetrachloroethane	103	102	76 - 120	1	15		
1,1,2-Trichloroethane	103	103	76 - 122	1	15		
1,1-Dichloroethane	104	100	77 - 120	4	20		
1,1-Dichloroethene	111	104	66 - 127	6	16		
1,1-Dichloropropene	112	102	72 - 122	9	20		
1,2,3-Trichlorobenzene	103	97	75 - 123	7	20		
1,2,3-Trichloropropane	100	96	68 - 122	4	14		
1,2,4-Trichlorobenzene	101	97	79 - 122	4	20		
1,2,4-Trimethylbenzene	103	100	76 - 121	3	20		
1,2-Dichlorobenzene	102	98	80 - 124	4	20		
1,2-Dichloroethane	95	93	75 - 120	2	20		
1,2-Dichloropropane	104	99	76 - 120	4	20		
1,3,5-Trimethylbenzene	105	100	77 - 121	4	20		
1,3-Dichlorobenzene	102	98	77 - 120	4	20		
1,4-Dichlorobenzene	102	98	78 - 124	4	20		
2,2-Dichloropropane	109	103	63 - 136	6	20		
2-Butanone (MEK)	92	90	57 - 140	3	20		
2-Hexanone	87	84	65 - 127	3	15		
4-Methyl-2-pentanone (MIBK)	91	89	71 - 125	2	35		
Acetone	81	79	56 - 142	3	15		
Benzene	105	101	71 - 124	4	13		
Bromobenzene	97	96	78 - 120	1	15		
Bromochloromethane	105	102	72 - 130	3	15		
Bromodichloromethane	101	97	80 - 122	4	15		
Bromoform	101	99	61 - 132	1	15		
Bromomethane	104	103	55 - 144	1	15		
Butyl alcohol, tert-	93	85	75 - 125	7	15		
Carbon disulfide	94	89	59 - 134	5	15		
Carbon tetrachloride	114	108	72 - 134	6	15		
Chlorobenzene	103	99	80 - 120	4	25		
Chloroethane	126	118	69 - 136	6	15		

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333598 Preparation: 5030C

MS Lab Sample ID: 480-109772-D-4 MS Analysis Batch: 480-333598 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S0023.D Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 11/27/2016 2151 5 mL

Analysis Date: 11/27/2016 2151 Final Weight/Volume: 5 mL
Prep Date: 11/27/2016 2151 5 mL

Leach Date: N/A

MSD Lab Sample ID: 480-109772-D-4 MSD Analysis Batch: 480-333598 Instrument ID: HP5973S N/A Client Matrix: Prep Batch: Lab File ID: Water S0024.D Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/27/2016 2214 Final Weight/Volume: 5 mL

Prep Date: 11/27/2016 2214 Final Weight/Volume: 5 mL

Leach Date: N/A

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Chloroform	102	98	73 - 127	4	20		
Chloromethane	117	112	68 - 124	5	15		
cis-1,2-Dichloroethene	105	100	74 - 124	5	15		
cis-1,3-Dichloropropene	100	98	74 - 124	2	15		
Dibromochloromethane	104	101	75 - 125	2	15		
Dibromomethane	103	98	76 - 127	5	15		
Dichlorodifluoromethane	126	117	59 - 135	7	20		
Ethyl ether	104	98	76 - 123	6	20		
Ethylbenzene	101	97	77 - 123	4	15		
Hexachlorobutadiene	101	96	68 - 131	5	20		
Isopropylbenzene	105	100	77 - 122	4	20		
Methyl tert-butyl ether	98	95	77 - 120	3	37		
Methylene Chloride	93	92	75 - 124	1	15		
m-Xylene & p-Xylene	101	95	76 - 122	6	16		
Naphthalene	100	97	66 - 125	3	20		
n-Butylbenzene	106	101	71 - 128	4	15		
N-Propylbenzene	103	99	75 - 127	4	15		
o-Chlorotoluene	101	98	76 - 121	2	20		
o-Xylene	101	96	76 - 122	5	16		
p-Chlorotoluene	100	98	77 - 121	2	15		
p-Cymene	105	99	73 - 120	6	20		
sec-Butylbenzene	106	100	74 - 127	6	15		
Styrene	100	96	80 - 120	4	20		
tert-Butylbenzene	107	99	75 - 123	7	15		
Tetrachloroethene	106	100	74 - 122	5	20		
Tetrahydrofuran	93	90	62 - 132	3	25		
Toluene	104	100	80 - 122	3	15		
trans-1,2-Dichloroethene	108	102	73 - 127	6	20		
trans-1,3-Dichloropropene	100	98	80 - 120	1	15		
Trichloroethene	105	100	74 - 123	5	16		
Trichlorofluoromethane	113	101	62 - 150	12	20		
Vinyl chloride	135	123	65 - 133	9	15	F1	
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Limi	its

Client: Waste Management Job Number: 280-91129-1

Surrogate	MS % Rec	MSD % Rec	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	99	98	77 - 120
4-Bromofluorobenzene (Surr)	94	94	73 - 120
Toluene-d8 (Surr)	102	101	80 - 120

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333598 Preparation: 5030C

MS Lab Sample ID: 480-109772-D-4 MS Units: ug/L MSD Lab Sample ID: 480-109772-D-4 MSD

Client Matrix: Water Client Matrix: Water

Dilution: 10 Dilution: 10

Analysis Date: 11/27/2016 2151 Analysis Date: 11/27/2016 2214

Prep Date: 11/27/2016 2151 Prep Date: 11/27/2016 2214

	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
1,1,1,2-Tetrachloroethane	ND	250	250	265	259
1,1,1-Trichloroethane	ND	250	250	275	258
1,1,2,2-Tetrachloroethane	ND	250	250	256	255
1,1,2-Trichloroethane	ND	250	250	259	257
1,1-Dichloroethane	ND	250	250	261	250
1,1-Dichloroethene	ND	250	250	277	261
1,1-Dichloropropene	ND	250	250	281	256
1,2,3-Trichlorobenzene	ND	250	250	258	241
1,2,3-Trichloropropane	ND	250	250	249	240
1,2,4-Trichlorobenzene	ND	250	250	252	242
1,2,4-Trimethylbenzene	ND	250	250	258	250
1,2-Dichlorobenzene	ND	250	250	255	246
1,2-Dichloroethane	ND	250	250	238	232
1,2-Dichloropropane	ND	250	250	259	247
1,3,5-Trimethylbenzene	ND	250	250	262	251
1,3-Dichlorobenzene	ND	250	250	256	246
1,4-Dichlorobenzene	ND	250	250	255	244
2,2-Dichloropropane	ND	250	250	273	258
2-Butanone (MEK)	ND	1250	1250	1160	1130
2-Hexanone	ND	1250	1250	1090	1050
4-Methyl-2-pentanone (MIBK)	ND	1250	1250	1140	1110
Acetone	ND	1250	1250	1010	989
Benzene	ND	250	250	263	253
Bromobenzene	ND	250	250	243	241
Bromochloromethane	ND	250	250	262	255
Bromodichloromethane	ND	250	250	253	243
Bromoform	ND	250	250	252	248
Bromomethane	ND	250	250	260	258
Butyl alcohol, tert-	770	2500	2500	3090	2890
Carbon disulfide	ND	250	250	234	223
Carbon tetrachloride	ND	250	250	285	269
Chlorobenzene	ND	250	250	256	247
Chloroethane	ND	250	250	314	296
Chloroform	ND	250	250	256	245
Chloromethane	ND	250	250	293	279
cis-1,2-Dichloroethene	ND	250	250	263	249
cis-1,3-Dichloropropene	ND	250	250	250	246
Dibromochloromethane	ND	250	250	259	254
Dibromomethane	ND	250	250	258	245
Dichlorodifluoromethane	ND	250	250	314	292
Ethyl ether	ND	250	250	260	245
Ethylbenzene	ND	250	250	254	243
Hexachlorobutadiene	ND	250	250	252	241

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333598 Preparation: 5030C

MS Lab Sample ID: 480-109772-D-4 MS Units: ug/L MSD Lab Sample ID: 480-109772-D-4 MSD

Client Matrix:WaterClient Matrix:WaterDilution:10Dilution:10

Analysis Date: 11/27/2016 2151 Analysis Date: 11/27/2016 2214

Prep Date: 11/27/2016 2151 Prep Date: 11/27/2016 2214

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qua	MSD Il Result/Qual
Isopropylbenzene	ND	250	250	261	251
Methyl tert-butyl ether	ND	250	250	244	238
Methylene Chloride	ND	250	250	233	231
m-Xylene & p-Xylene	ND	250	250	253	237
Naphthalene	ND	250	250	249	242
n-Butylbenzene	ND	250	250	264	253
N-Propylbenzene	ND	250	250	259	248
o-Chlorotoluene	ND	250	250	251	246
o-Xylene	ND	250	250	252	240
p-Chlorotoluene	ND	250	250	250	246
p-Cymene	ND	250	250	263	247
sec-Butylbenzene	ND	250	250	265	250
Styrene	ND	250	250	251	241
tert-Butylbenzene	ND	250	250	266	248
Tetrachloroethene	ND	250	250	264	251
Tetrahydrofuran	ND	500	500	467	452
Toluene	ND	250	250	259	250
trans-1,2-Dichloroethene	ND	250	250	269	254
trans-1,3-Dichloropropene	ND	250	250	249	246
Trichloroethene	ND	250	250	262	250
Trichlorofluoromethane	ND	250	250	284	253
Vinyl chloride	ND	250	250	338 I	F1 308

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 480-333730 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333730/6 Analysis Batch: 480-333730 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0060.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/28/2016 2114 Units: ug/L

Prep Date: 11/28/2016 2114

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
			-	

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 480-333730

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333730/6 Analysis Batch: 480-333730 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0060.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/28/2016 2114 Units: ug/L

Prep Date: 11/28/2016 2114

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Chloroethane	ND		0.32	1.0
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 480-333730

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333730/6 Analysis Batch: 480-333730 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S0060.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL 11/28/2016 2114 Units: Analysis Date: ug/L

Prep Date: 11/28/2016 2114

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
Surrogate	% Rec		Acceptance Limits	
Surrogate 1,2-Dichloroethane-d4 (Surr)	% Rec 97		Acceptance Limits 77 - 120	
			· · · · · · · · · · · · · · · · · · ·	

Method Blank TICs-Batch: 480-333730

Cas Number	Analyte	RT	Est. Result (ug/	Qual
67-72-1	Hexachloroethane TIC	0.00	ND	

Client: Waste Management Job Number: 280-91129-1

Lab Control Sample - Batch: 480-333730

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333730/4 Analysis Batch: 480-333730 Instrument ID: HP5973S Client Matrix: Prep Batch: Lab File ID: Water N/A S0058.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Units: Final Weight/Volume: 5 mL Analysis Date: 11/28/2016 2028 ug/L

Prep Date: 11/28/2016 2028

Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,1,1,2-Tetrachloroethane	25.0	25.8	103	80 - 120	
1,1,1-Trichloroethane	25.0	25.1	100	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	25.0	100	76 - 120	
1,1,2-Trichloro-1,2,2-trifluoroethane	25.0	24.5	98	61 - 148	
1,1,2-Trichloroethane	25.0	24.0	96	76 - 122	
1,1-Dichloroethane	25.0	24.4	97	77 - 120	
1,1-Dichloroethene	25.0	25.9	104	66 - 127	
1,1-Dichloropropene	25.0	25.6	102	72 - 122	
1,2,3-Trichlorobenzene	25.0	25.9	104	75 - 123	
1,2,3-Trichloropropane	25.0	22.9	91	68 - 122	
1,2,4-Trichlorobenzene	25.0	26.4	105	79 - 122	
1,2,4-Trimethylbenzene	25.0	26.0	104	76 - 121	
1,2-Dibromo-3-Chloropropane	25.0	25.9	104	56 - 134	
1,2-Dibromoethane (EDB)	25.0	23.5	94	77 - 120	
1,2-Dichlorobenzene	25.0	25.1	100	80 - 124	
1,2-Dichloroethane	25.0	21.9	87	75 - 120	
1,2-Dichloropropane	25.0	23.9	96	76 - 120	
1,3,5-Trimethylbenzene	25.0	26.0	104	77 - 121	
1,3-Dichlorobenzene	25.0	25.7	103	77 - 121 77 - 120	
1,3-Dichloropenzene	25.0	23.5	94	77 - 120 75 - 120	
1,4-Dichlorobenzene	25.0	24.9	100	80 - 120	
1,4-Dictiloroberizerie 1,4-Dioxane	500	24.9	53	50 - 150 50 - 150	
•		26.9			
2,2-Dichloropropane	25.0		108	63 - 136 57 - 140	
2-Butanone (MEK)	125	92.7	74		
2-Chloroethyl vinyl ether	25.0	23.3	93	70 - 129	
2-Hexanone	125	91.8	73 70	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	98.9	79 25	71 - 125	
Acetone	125	81.1	65	56 - 142	
Acrolein	125	89.4	72	52 - 143	
Acrylonitrile	250	210	84	63 - 125	
Benzene	25.0	24.5	98	71 - 124	
Bromobenzene	25.0	24.5	98	78 - 120	
Bromochloromethane	25.0	23.9	96	72 - 130	
Bromodichloromethane	25.0	24.6	98	80 - 122	
Bromoform	25.0	24.7	99	61 - 132	
Bromomethane	25.0	26.1	104	55 - 144	
Butyl alcohol, n-	625	428	68	72 - 150	*
Butyl alcohol, tert-	250	178	71	75 - 125	*
Carbon disulfide	25.0	22.0	88	59 - 134	
Carbon tetrachloride	25.0	26.0	104	72 - 134	
Chlorobenzene	25.0	24.2	97	80 - 120	
Chloroethane	25.0	27.4	110	69 - 136	
Chloroform	25.0	23.7	95	73 - 127	
Chloromethane	25.0	23.9	96	68 - 124	
cis-1,2-Dichloroethene	25.0	24.8	99	74 - 124	

Client: Waste Management Job Number: 280-91129-1

Lab Control Sample - Batch: 480-333730

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333730/4 Analysis Batch: 480-333730 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0058.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/28/2016 2028 Units: ug/L

Prep Date: 11/28/2016 2028

Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Cyclohexane	25.0	25.2	101	59 - 135	
Dibromochloromethane	25.0	25.5	102	75 - 125	
Dibromomethane	25.0	23.8	95	76 - 127	
Dichlorodifluoromethane	25.0	25.7	103	59 - 135	
Dichlorofluoromethane	25.0	23.7	95	76 - 127	
Ethyl ether	25.0	23.9	96	76 - 123	
Ethylbenzene	25.0	24.0	96	77 - 123	
Hexachlorobutadiene	25.0	27.2	109	68 - 131	
Hexane	25.0	24.1	96	54 - 146	
lodomethane	25.0	23.2	93	78 - 123	
Isobutanol	625	665	106	51 - 150	
Isopropylbenzene	25.0	25.7	103	77 - 122	
Methyl acetate	125	104	83	74 - 133	
Methyl tert-butyl ether	25.0	24.0	96	77 - 120	
Methylcyclohexane	25.0	25.8	103	68 - 134	
Methylene Chloride	25.0	22.2	89	75 - 124	
m-Xylene & p-Xylene	25.0	23.3	93	76 - 122	
Naphthalene	25.0	24.4	97	66 - 125	
n-Butylbenzene	25.0	27.2	109	71 - 128	
N-Propylbenzene	25.0	25.5	102	75 - 127	
o-Chlorotoluene	25.0	24.8	99	76 - 121	
o-Xylene	25.0	23.8	95	76 - 122	
p-Chlorotoluene	25.0	27.8	111	77 - 121	
p-Cymene	25.0	26.5	106	73 - 120	
sec-Butylbenzene	25.0	25.9	103	74 - 127	
Styrene	25.0	23.8	95	80 - 120	
tert-Butylbenzene	25.0	26.2	105	75 - 123	
Tetrachloroethene	25.0	26.0	104	74 - 122	
Tetrahydrofuran	50.0	50.8	102	62 - 132	
Toluene	25.0	24.6	98	80 - 122	
trans-1,2-Dichloroethene	25.0	24.5	98	73 - 127	
trans-1,3-Dichloropropene	25.0	25.0	100	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	23.8	95	41 - 131	
Trichloroethene	25.0	24.3	97	74 - 123	
Trichlorofluoromethane	25.0	23.7	95	62 - 150	
Vinyl acetate	50.0	54.5	109	50 - 144	
Vinyl chloride	25.0	26.8	107	65 - 133	
Surrogate	% I	Rec	Ad	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	10	01		77 - 120	
4-Bromofluorobenzene (Surr)	9:			73 - 120	
Toluene-d8 (Surr)		00		80 - 120	

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333730 Preparation: 5030C

MS Lab Sample ID: 480-109807-G-6 MS Analysis Batch: 480-333730 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S0079.D

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/29/2016 0453 Final Weight/Volume: 5 mL

Prep Date: 11/29/2016 0453 5 mL

Leach Date: N/A

MSD Lab Sample ID: 480-109807-H-6 MSD Analysis Batch: 480-333730 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S0080.D

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL
Analysis Date: 11/29/2016 0516 Final Weight/Volume: 5 mL

Prep Date: 11/29/2016 0516 5 mL Leach Date: N/A

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MSD Qual MS Qual 1,1,1-Trichloroethane 99 104 73 - 126 4 15 76 - 120 1,1,2,2-Tetrachloroethane 92 93 1 15 1,1,2-Trichloro-1,2,2-trifluoroethane 88 91 61 - 148 4 20 76 - 122 91 97 6 1,1,2-Trichloroethane 15 1,1-Dichloroethane 94 99 77 - 120 5 20 6 1,1-Dichloroethene 98 104 66 - 127 16 96 79 - 122 97 1 20 1,2,4-Trichlorobenzene 1,2-Dibromo-3-Chloropropane 91 103 56 - 134 12 15 92 93 77 - 120 1 15 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 95 97 80 - 124 2 20 90 75 - 120 8 20 1,2-Dichloroethane 83 95 6 20 1,2-Dichloropropane 90 76 - 120 3 20 1,3-Dichlorobenzene 96 98 77 - 120 1,4-Dichlorobenzene 93 95 78 - 124 2 20 2-Butanone (MEK) 75 76 57 - 140 1 20 73 73 65 - 127 0 15 2-Hexanone 2 4-Methyl-2-pentanone (MIBK) 77 79 71 - 125 35 69 69 56 - 142 0 15 Acetone Benzene 95 100 71 - 124 4 13 3 Bromodichloromethane 92 94 80 - 122 15 80 84 61 - 132 5 15 **Bromoform** 3 102 99 55 - 144 Bromomethane 15 59 - 134 3 Carbon disulfide 84 86 15 5 Carbon tetrachloride 100 105 72 - 134 15 Chlorobenzene 92 97 80 - 120 5 25 69 - 136 2 15 Chloroethane 113 111 4 Chloroform 91 95 73 - 127 20 1 Chloromethane 101 100 68 - 124 15 74 - 124 99 6 cis-1,2-Dichloroethene 93 15 cis-1,3-Dichloropropene 88 92 74 - 124 3 15 Cyclohexane 94 99 59 - 135 6 20 Dibromochloromethane 89 92 75 - 125 3 15 7 Dichlorodifluoromethane 98 92 59 - 135 20

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333730 Preparation: 5030C

Client Matrix: Water Prep Batch: N/A Lab File ID: S0079.I Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 11/29/2016 0453 Final Weight/Volume: 5 mL Leach Date: N/A
Leach Date: N/A

MSD Lab Sample ID: 480-109807-H-6 MSD Analysis Batch: 480-333730 Instrument ID: HP5973S Client Matrix: Prep Batch: N/A Lab File ID: Water S0080.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 11/29/2016 0516 Final Weight/Volume: 5 mL Analysis Date: Prep Date: 11/29/2016 0516 5 mL

Leach Date: N/A

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Ethylbenzene	94	97	77 - 123	3	15		
Isopropylbenzene	99	101	77 - 122	2	20		
Methyl acetate	73	75	74 - 133	3	20	F1	
Methyl tert-butyl ether	89	92	77 - 120	4	37		
Methylcyclohexane	97	99	68 - 134	3	20		
Methylene Chloride	84	88	75 - 124	5	15		
m-Xylene & p-Xylene	91	96	76 - 122	5	16		
o-Xylene	91	95	76 - 122	5	16		
Styrene	89	93	80 - 120	5	20		
Tetrachloroethene	99	101	74 - 122	2	20		
Toluene	94	98	80 - 122	4	15		
trans-1,2-Dichloroethene	96	100	73 - 127	4	20		
trans-1,3-Dichloropropene	90	92	80 - 120	2	15		
Trichloroethene	94	100	74 - 123	6	16		
Trichlorofluoromethane	100	102	62 - 150	2	20		
Vinyl chloride	118	116	65 - 133	2	15		
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Lim	its
1,2-Dichloroethane-d4 (Surr)		98	98		-	77 - 120	
4-Bromofluorobenzene (Surr)		96	96		7	73 - 120	
Toluene-d8 (Surr)		101	102		8	30 - 120	

Surrogate	MS % Rec	MSD % Rec	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	98	98	77 - 120
4-Bromofluorobenzene (Surr)	96	96	73 - 120
Toluene-d8 (Surr)	101	102	80 - 120

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333730 Preparation: 5030C

MS Lab Sample ID: 480-109807-G-6 MS Units: ug/L MSD Lab Sample ID: 480-109807-H-6 MSD

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/29/2016 0453 Analysis Date: 11/29/2016 0516

Prep Date: 11/29/2016 0453 Prep Date: 11/29/2016 0516

A 1. 4 -	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
1,1,1-Trichloroethane	ND	25.0	25.0	24.9	25.9
1,1,2,2-Tetrachloroethane	ND	25.0	25.0	23.0	23.3
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	25.0	25.0	21.9	22.8
1,1,2-Trichloroethane	ND	25.0	25.0	22.8	24.3
1,1-Dichloroethane	ND	25.0	25.0	23.6	24.9
1,1-Dichloroethene	ND	25.0	25.0	24.5	26.1
1,2,4-Trichlorobenzene	ND	25.0	25.0	23.9	24.2
1,2-Dibromo-3-Chloropropane	ND	25.0	25.0	22.8	25.7
1,2-Dibromoethane (EDB)	ND	25.0	25.0	22.9	23.1
1,2-Dichlorobenzene	ND	25.0	25.0	23.7	24.2
1,2-Dichloroethane	ND	25.0	25.0	20.8	22.5
1,2-Dichloropropane	ND	25.0	25.0	22.4	23.7
1,3-Dichlorobenzene	ND	25.0	25.0	23.9	24.5
1,4-Dichlorobenzene	ND	25.0	25.0	23.2	23.7
2-Butanone (MEK)	ND	125	125	94.1	94.6
2-Hexanone	ND	125	125	91.2	91.5
4-Methyl-2-pentanone (MIBK)	ND	125	125	96.3	98.3
Acetone	ND	125	125	85.9	85.8
Benzene	ND	25.0	25.0	23.8	24.9
Bromodichloromethane	ND	25.0	25.0	22.9	23.6
Bromoform	ND	25.0	25.0	19.9	20.9
Bromomethane	ND	25.0	25.0	25.4	24.7
Carbon disulfide	ND	25.0	25.0	20.9	21.5
Carbon tetrachloride	ND	25.0	25.0	25.0	26.3
Chlorobenzene	ND	25.0	25.0	23.0	24.2
Chloroethane	ND	25.0	25.0	28.2	27.8
Chloroform	ND	25.0	25.0	22.8	23.7
Chloromethane	ND	25.0	25.0	25.2	25.0
cis-1,2-Dichloroethene	ND	25.0	25.0	23.2	24.7
cis-1,3-Dichloropropene	ND	25.0	25.0	22.1	22.9
Cyclohexane	ND	25.0	25.0	23.5	24.9
Dibromochloromethane	ND	25.0	25.0	22.3	23.1
Dichlorodifluoromethane	ND	25.0	25.0	24.5	22.9
Ethylbenzene	ND	25.0	25.0	23.4	24.1
Isopropylbenzene	ND	25.0	25.0	24.8	25.3
Methyl acetate	ND	125	125	91.4 F1	94.3
Methyl tert-butyl ether	ND	25.0	25.0	22.3	23.1
Methylcyclohexane	ND	25.0	25.0	24.1	24.8
Methylene Chloride	ND ND	25.0	25.0 25.0	21.0	22.0
m-Xylene & p-Xylene	ND ND	25.0	25.0	22.8	23.9
o-Xylene	ND ND	25.0 25.0	25.0 25.0	22.0 22.7	23.8
	ND	25.0 25.0		22.7 22.2	23.3
Styrene			25.0		
Tetrachloroethene	ND	25.0	25.0	24.6	25.2

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333730 Preparation: 5030C

MS Lab Sample ID: 480-109807-G-6 MS Units: ug/L MSD Lab Sample ID: 480-109807-H-6 MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/29/2016 0453 Analysis Date: 11/29/2016 0516

Prep Date: 11/29/2016 0453 Prep Date: 11/29/2016 0516

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Toluene	ND	25.0	25.0	23.6	24.5
trans-1,2-Dichloroethene	ND	25.0	25.0	24.1	25.1
trans-1,3-Dichloropropene	ND	25.0	25.0	22.5	23.0
Trichloroethene	ND	25.0	25.0	23.5	25.0
Trichlorofluoromethane	ND	25.0	25.0	25.1	25.5
Vinvl chloride	ND	25.0	25.0	29.5	29.0

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 480-332686 Method: 8260C SIM Preparation: 5030C

Lab Sample ID: Instrument ID: MB 480-332686/7 Analysis Batch: 480-332686 HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1487.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL Units: Final Weight/Volume: Analysis Date: 11/20/2016 0006 ug/L 25 mL

Prep Date: 11/20/2016 0006

Leach Date: N/A

Analyte Result Qual RL MDL Vinyl chloride 0.00494 J 0.0040 0.020 Surrogate % Rec Acceptance Limits Dibromofluoromethane (Surr) 99 50 - 150 TBA-d9 (Surr) 129 50 - 150

Lab Control Sample/ Method: 8260C SIM Lab Control Sample Duplicate Recovery Report - Batch: 480-332686 Preparation: 5030C

LCS Lab Sample ID: LCS 480-332686/4 Analysis Batch: 480-332686 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1484.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL Analysis Date: 11/19/2016 2252 Units: ug/L Final Weight/Volume: 25 mL 25 mL

Prep Date: 11/19/2016 2252

Leach Date: N/A

LCSD Lab Sample ID: LCSD 480-332686/5 Analysis Batch: 480-332686 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1485.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

Analysis Date: 11/19/2016 2316 Units: ug/L Final Weight/Volume: 25 mL Prep Date: 11/19/2016 2316 25 mL

Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Vinyl chloride 119 113 50 - 150 5 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits Dibromofluoromethane (Surr) 97 92 50 - 150 50 - 150 TBA-d9 (Surr) 120 110

Client: Waste Management Job Number: 280-91129-1

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 480-332686

Method: 8260C SIM
Preparation: 5030C

LCS Lab Sample ID: LCS 480-332686/4 Units: ug/L LCSD Lab Sample ID: LCSD 480-332686/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/19/2016 2252 Analysis Date: 11/19/2016 2316
Prep Date: 11/19/2016 2252 Prep Date: 11/19/2016 2316

Analyte	LCS Spike	LCSD Spike	LCS	LCSD
	Amount	Amount	Result/Qual	Result/Qual
Vinyl chloride	0.200	0.200	0.239	0.227

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 480-332790 Method: 8260C SIM Preparation: 5030C

Lab Sample ID: Instrument ID: MB 480-332790/7 Analysis Batch: 480-332790 HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1515.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL Units: Final Weight/Volume: Analysis Date: 11/21/2016 1305 ug/L 25 mL

Prep Date: 11/21/2016 1305

Leach Date: N/A

Analyte Result Qual RL MDL Vinyl chloride 0.00569 J 0.0040 0.020 Surrogate % Rec Acceptance Limits Dibromofluoromethane (Surr) 101 50 - 150 TBA-d9 (Surr) 135 50 - 150

Lab Control Sample/ Method: 8260C SIM Lab Control Sample Duplicate Recovery Report - Batch: 480-332790 Preparation: 5030C

LCS Lab Sample ID: LCS 480-332790/4 Analysis Batch: 480-332790 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1512.D Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0 25 mL Analysis Date: 11/21/2016 1152 Units: ug/L Final Weight/Volume: 25 mL Prep Date: 11/21/2016 1152 25 mL

Leach Date: N/A

LCSD Lab Sample ID: LCSD 480-332790/5 Analysis Batch: 480-332790 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1513.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

11/21/2016 1217 Analysis Date: Units: ug/L Final Weight/Volume: 25 mL 11/21/2016 1217 Prep Date: 25 mL

Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Vinyl chloride 116 104 50 - 150 11 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits Dibromofluoromethane (Surr) 101 98 50 - 150 135 50 - 150 TBA-d9 (Surr) 126

Client: Waste Management Job Number: 280-91129-1

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 480-332790

Method: 8260C SIM
Preparation: 5030C

LCS Lab Sample ID: LCS 480-332790/4 Units: ug/L LCSD Lab Sample ID: LCSD 480-332790/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/21/2016 1152 Analysis Date: 11/21/2016 1217

Prep Date: 11/21/2016 1152 Prep Date: 11/21/2016 1217

Analyte	LCS Spike	LCSD Spike	LCS	LCSD
	Amount	Amount	Result/Qual	Result/Qual
Vinyl chloride	0.200	0.200	0.231	0.208

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-352793

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352793/1-A

Client Matrix: Water Dilution: 1.0

12/06/2016 1905 Analysis Date: Prep Date: 11/30/2016 0735

Leach Date: N/A Analysis Batch: 280-354579 Prep Batch: 280-352793

Leach Batch: N/A Units: mg/L

Instrument ID: MT_025

Lab File ID: 25C120616.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Calcium, Dissolved	ND		0.040	0.040
Magnesium, Dissolved	ND		0.050	0.050
Potassium, Dissolved	ND		1.0	1.0
Sodium, Dissolved	ND		1.0	1.0

Method Blank - Batch: 280-352793 Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352793/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/07/2016 1052 Prep Date: 11/30/2016 0735

Leach Date: N/A Analysis Batch: 280-354656 Prep Batch: 280-352793

Leach Batch: N/A Units: mg/L Instrument ID: MT 025

Lab File ID: 25A120716A.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte RLRL Result Qual Iron, Dissolved ND 0.060 0.060

Client: Waste Management Job Number: 280-91129-1

Lab Control Sample - Batch: 280-352793

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-352793/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/06/2016 1908 Prep Date: 11/30/2016 0735

Leach Date: N/A Analysis Batch: 280-354579 Prep Batch: 280-352793

Leach Batch: N/A Units: mg/L Instrument ID:

MT_025 Lab File ID: 25C120616.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Calcium, Dissolved	50.0	48.8	98	90 - 111	
Magnesium, Dissolved	50.0	48.7	97	90 - 113	
Potassium, Dissolved	50.0	51.8	104	89 - 114	
Sodium, Dissolved	50.0	51.6	103	90 - 115	

Lab Control Sample - Batch: 280-352793

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-352793/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/07/2016 1054 Prep Date: 11/30/2016 0735

Leach Date: N/A Analysis Batch: 280-354656 Prep Batch: 280-352793 Leach Batch: N/A

Units: mg/L Instrument ID: MT_025 Lab File ID: 25A120716A.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte % Rec. Limit Qual Spike Amount Result Iron, Dissolved 1.00 0.978 98 89 - 115

25A120716A.asc

Client: Waste Management Job Number: 280-91129-1

N/A

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352793

Dissolved

280-91117-E-2-C MS MS Lab Sample ID:

Client Matrix: Water

Dilution: 1.0

Analysis Date: 12/06/2016 1918 Prep Date: 11/30/2016 0735

Leach Date: N/A

MSD Lab Sample ID: 280-91117-E-2-D MSD

Client Matrix: Water Dilution: 1.0

12/06/2016 1920 Analysis Date: Prep Date: 11/30/2016 0735

Leach Date: N/A Method: 6010B

Preparation: 3005A

Instrument ID: Analysis Batch: 280-354579 MT_025 Prep Batch: 280-352793 Lab File ID: 25C120616.asc

Initial Weight/Volume: 50 ml

Final Weight/Volume: 50 mL

Analysis Batch: 280-354579 Instrument ID: MT 025

Leach Batch:

Lab File ID: Prep Batch: 280-352793 25C120616.asc

Initial Weight/Volume: Leach Batch: N/A 50 ml Final Weight/Volume: 50 mL

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Calcium, Dissolved 93 76 48 - 153 3 20 4 4 70 62 - 146 3 20 4 4 Magnesium, Dissolved 86 Potassium, Dissolved 110 106 76 - 132 3 20 70 - 203 3 Sodium, Dissolved 20 106 101

Matrix Spike/

Leach Date:

Matrix Spike Duplicate Recovery Report - Batch: 280-352793

Method: 6010B Preparation: 3005A

Dissolved

MS Lab Sample ID: Analysis Batch: 280-354656 Instrument ID: MT 025 280-91117-E-2-C MS

Client Matrix: Water Prep Batch: 280-352793 Lab File ID:

Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 1102 Final Weight/Volume: 50 mL

11/30/2016 0735 Prep Date:

Leach Date: N/A

MSD Lab Sample ID: 280-91117-E-2-D MSD Analysis Batch: 280-354656 Instrument ID: MT 025

Client Matrix: Water Prep Batch: 280-352793 Lab File ID: 25A120716A.asc

Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 1104 Final Weight/Volume: 50 mL

Prep Date: 11/30/2016 0735

% Rec.

N/A

MS **RPD** Analyte **MSD** Limit **RPD Limit** MS Qual MSD Qual 52 - 155 Iron, Dissolved 90 75 3 20

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 6010B
Matrix Spike Duplicate Recovery Report - Batch: 280-352793 Preparation: 3005A

Dissolved

MS Lab Sample ID: 280-91117-E-2-C MS Units: mg/L MSD Lab Sample ID: 280-91117-E-2-D MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

 Analysis Date:
 12/06/2016
 1918
 Analysis Date:
 12/06/2016
 1920

 Prep Date:
 11/30/2016
 0735
 Prep Date:
 11/30/2016
 0735

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/	Qual	MSD Result/0	Qual
Calcium, Dissolved	310	50.0	50.0	358	4	349	4
Magnesium, Dissolved	290	50.0	50.0	329	4	321	4
Potassium, Dissolved	12	50.0	50.0	67.5		65.4	
Sodium, Dissolved	57	50.0	50.0	110		107	

Matrix Spike/ Method: 6010B
Matrix Spike Duplicate Recovery Report - Batch: 280-352793 Preparation: 3005A

Dissolved

MS Lab Sample ID: 280-91117-E-2-C MS Units: mg/L MSD Lab Sample ID: 280-91117-E-2-D MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 12/07/2016 1102 Analysis Date: 12/07/2016 1104

Prep Date: 11/30/2016 0735 Prep Date: 11/30/2016 0735

	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
Iron, Dissolved	3.8	1.00	1.00	4.67	4.51

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-352797

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352797/1-A

Client Matrix: Water Dilution:

1.0 Analysis Date: 12/07/2016 2116 Prep Date: 11/29/2016 1435

Leach Date: N/A

280-354736 Analysis Batch: Prep Batch: 280-352797

Leach Batch: N/A Units: mg/L Instrument ID: MT_025

Lab File ID: 25A120716E.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Cobalt, Total	ND		0.0030	0.0030
Iron, Total	ND		0.060	0.060

Lab Control Sample - Batch: 280-352797

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-352797/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/07/2016 2119 Prep Date: 11/29/2016 1435

Leach Date: N/A Analysis Batch: 280-354736 Prep Batch: 280-352797 Lab File ID:

280-354736

280-352797

280-352797

N/A

N/A

Leach Batch: N/A Units: mg/L

Analysis Batch:

Prep Batch:

Leach Batch:

Analysis Batch:

Prep Batch:

Leach Batch:

Instrument ID: MT 025

25A120716E.asc Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Spike Amount Analyte Result % Rec. Limit Qual Cobalt, Total 0.500 0.505 101 89 - 111 Iron, Total 1.00 1.04 104 89 - 115

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352797

Method: 6010B Preparation: 3005A **Total Recoverable**

MS Lab Sample ID: 280-91130-C-1-B MS

Client Matrix: Water Dilution: 1.0

12/07/2016 2134 Analysis Date:

Prep Date: 11/29/2016 1435

Leach Date:

Instrument ID: MT_025

Lab File ID: 25A120716E.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

MSD Lab Sample ID: 280-91130-C-1-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/07/2016 2136 Prep Date: 11/29/2016 1435

Leach Date:

280-354736 Instrument ID: MT 025

> Lab File ID: 25A120716E.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

% Rec. Analyte MS **MSD** Limit **RPD** RPD Limit MS Qual MSD Qual Cobalt. Total 99 101 82 - 119 2 20 Iron, Total 101 103 52 - 155 2 20

Water

12/07/2016 2136

11/29/2016 1435

1.0

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 280-352797

Method: 6010B

Preparation: 3005A

Total Recoverable

MS Lab Sample ID: 280-91130-C-1-B MS Units: mg/L MSD Lab Sample ID: 280-91130-C-1-C MSD

Client Matrix:

Dilution:

Client Matrix: Water Dilution: 1.0

 Analysis Date:
 12/07/2016 2134
 Analysis Date:

 Prep Date:
 11/29/2016 1435
 Prep Date:

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Cobalt, Total	ND	0.500	0.500	0.496	0.507
Iron, Total	0.22	1.00	1.00	1.23	1.25

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-352792 Method: 6020

> Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352792/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/01/2016 0049

Prep Date: 11/29/2016 1435

Leach Date: N/A Analysis Batch: 280-353847 Prep Batch: 280-352792

Leach Batch: N/A

Units: mg/L Instrument ID: MT_077 Lab File ID: 194 BLK.d Initial Weight/Volume: 50 mL

Final Weight/Volume: 50 mL

Analyte Result Qual RL RL Manganese, Dissolved ND 0.0010 0.0010

280-353847

280-352792

280-353847

280-352792

N/A

Method: 6020 Lab Control Sample - Batch: 280-352792 Preparation: 3005A

Analysis Batch:

Prep Batch:

Units:

Leach Batch:

Total Recoverable

Initial Weight/Volume:

Final Weight/Volume:

Instrument ID:

Lab File ID:

Lab Sample ID: LCS 280-352792/2-A

Client Matrix: Water Dilution: 10

Analysis Date: 12/01/2016 0053 Prep Date: 11/29/2016 1435

Leach Date: N/A

% Rec. Analyte Spike Amount Result I imit Qual Manganese, Dissolved 0.0400 0.0409 102 85 - 117

N/A

mg/L

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352792

Method: 6020 Preparation: 3005A

Initial Weight/Volume:

Final Weight/Volume:

Dissolved

Lab File ID:

Instrument ID:

MS Lab Sample ID: 280-91117-E-1-B MS

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/01/2016 0105 Prep Date: 11/29/2016 1435

Leach Date: N/A

MSD Lab Sample ID: 280-91117-E-1-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/01/2016 0109 Prep Date: 11/29/2016 1435

Leach Date: N/A

280-353847 Analysis Batch: Prep Batch:

Leach Batch: N/A

280-352792

Analysis Batch:

Prep Batch:

Leach Batch:

Instrument ID: Lab File ID:

199SMPL.d 50 mL

MT 077

MT 077 195 LCS.d

50 mL

50 mL

MT 077 198SMPL.d

50 mL

50 mL

Initial Weight/Volume: Final Weight/Volume: 50 mL

% Rec.

Analyte **RPD** MS **MSD** I imit **RPD Limit** MS Qual MSD Qual Manganese, Dissolved 168 56 85 - 117 3 20 4 4

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 6020 Matrix Spike Duplicate Recovery Report - Batch: 280-352792 Preparation: 3005A

Dissolved

MS Lab Sample ID: 280-91117-E-1-B MS Units: mg/L

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/01/2016 0105 Prep Date: 11/29/2016 1435

Leach Date: N/A MSD Lab Sample ID: 280-91117-E-1-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/01/2016 0109 Prep Date: 11/29/2016 1435

Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/	Qual	MSD Result/0	Qual
Manganese, Dissolved	1.5	0.0400	0.0400	1.60	4	1.56	4

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-352798

Method: 6020 Preparation: 3005A Total Recoverable

Lab Sample ID: MB 280-352798/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 2205 Prep Date: 11/30/2016 0735

Leach Date: N/A

Analysis Batch: 280-353847 Prep Batch: 280-352798

Leach Batch: N/A Units: mg/L Instrument ID: MT_077
Lab File ID: 151_BLK.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Analyte Result Qual RL RL Antimony, Total ND 0.0010 0.0010 Barium, Total ND 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Cadmium, Total ND 0.00020 0.00020 Chromium, Total ND 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead. Total ND 0.0010 0.0010 Manganese, Total ND 0.0010 0.0010 Nickel, Total ND 0.0040 0.0040 Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total ND 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050

Lab Control Sample - Batch: 280-352798

Method: 6020 Preparation: 3005A Total Recoverable

Lab Sample ID: LCS 280-352798/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 2208 Prep Date: 11/30/2016 0735

Leach Date: N/A

Analysis Batch: 280-353847
Prep Batch: 280-352798
Leach Batch: N/A
Units: mg/L

Instrument ID: MT_077
Lab File ID: 152_LCS.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Antimony, Total	0.0400	0.0388	97	85 - 115	
Barium, Total	0.0400	0.0424	106	85 - 118	
Beryllium, Total	0.0400	0.0425	106	80 - 125	
Cadmium, Total	0.0400	0.0418	105	85 - 115	
Chromium, Total	0.0400	0.0407	102	84 - 121	
Copper, Total	0.0400	0.0414	103	85 - 119	
Lead, Total	0.0400	0.0427	107	85 - 118	
Manganese, Total	0.0400	0.0417	104	85 - 117	
Nickel, Total	0.0400	0.0415	104	85 - 119	
Selenium, Total	0.0400	0.0410	103	77 - 122	
Silver, Total	0.0400	0.0415	104	85 - 115	
Thallium, Total	0.0400	0.0409	102	85 - 118	
Vanadium, Total	0.0400	0.0395	99	85 - 120	
Zinc, Total	0.0400	0.0467	117	83 - 122	

Client: Waste Management Job Number: 280-91129-1

Method: 6020 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-352798 Preparation: 3005A **Total Recoverable**

280-91129-3 MS Lab Sample ID: Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 2227 Prep Date: 11/30/2016 0735

Leach Date: N/A

MSD Lab Sample ID: 280-91129-3

Client Matrix: Water Dilution: 1.0

11/30/2016 2231 Analysis Date: Prep Date: 11/30/2016 0735

Leach Date: N/A

Zinc, Total

Analysis Batch: 280-353847

Leach Batch: N/A

Prep Batch: 280-352798 Instrument ID: MT_077 Lab File ID: 157SMPL.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analysis Batch: 280-353847 Instrument ID: MT_077 Lab File ID: 158SMPL.d Prep Batch: 280-352798 Initial Weight/Volume: Leach Batch: N/A 50 ml Final Weight/Volume: 50 mL

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Antimony, Total 104 102 85 - 115 2 20 F1 85 - 118 20 Barium, Total 125 108 4 Beryllium, Total 106 104 80 - 125 2 20 85 - 115 1 Cadmium, Total 99 20 100 5 20 Chromium, Total 104 99 84 - 121 4 20 Copper, Total 101 97 85 - 119 101 100 85 - 118 1 20 Lead, Total Manganese, Total 2 841 574 85 - 117 20 4 2 20 Nickel, Total 101 102 85 - 119 Selenium, Total 96 97 77 - 122 1 20 Silver, Total 101 98 85 - 115 3 20 Thallium, Total 100 98 85 - 118 1 20 4 20 Vanadium, Total 108 103 85 - 120

83 - 122

7

20

101

108

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 280-352798

Method: 6020
Preparation: 3005A
Total Recoverable

Units: mg/L

MS Lab Sample ID: 280-91129-3

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 2227 Prep Date: 11/30/2016 0735

Leach Date: N/A

Total Necoverable

MSD Lab Sample ID: 280-91129-3

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 2231 Prep Date: 11/30/2016 0735

Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Antimony, Total	ND	0.0400	0.0400	0.0418	0.0409
Barium, Total	0.11	0.0400	0.0400	0.161 F1	0.155
Beryllium, Total	ND	0.0400	0.0400	0.0423	0.0417
Cadmium, Total	ND	0.0400	0.0400	0.0401	0.0396
Chromium, Total	ND	0.0400	0.0400	0.0416	0.0396
Copper, Total	ND	0.0400	0.0400	0.0403	0.0389
Lead, Total	ND	0.0400	0.0400	0.0403	0.0400
Manganese, Total	4.4	0.0400	0.0400	4.72 4	4.61 4
Nickel, Total	ND	0.0400	0.0400	0.0402	0.0409
Selenium, Total	ND	0.0400	0.0400	0.0384	0.0387
Silver, Total	ND	0.0400	0.0400	0.0404	0.0393
Thallium, Total	ND	0.0400	0.0400	0.0399	0.0394
Vanadium, Total	ND	0.0400	0.0400	0.0430	0.0413
Zinc, Total	ND	0.0400	0.0400	0.0405	0.0433

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-354600 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-354600/57 Analysis Batch: 280-354600 Instrument ID: WC_IonChrom6 Client Matrix: Water Prep Batch: N/A Lab File ID: 57.0000.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/08/2016 0840 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL

Prep Date: N/A Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Chloride
 ND
 1.0
 1.0

 Sulfate
 20.3
 1.0
 1.0

Method Reporting Limit Check - Batch: 280-354600 Method: 300.0

Preparation: N/A

MRL 280-354600/3 280-354600 Instrument ID: WC IonChrom6 Lab Sample ID: Analysis Batch: Client Matrix: Prep Batch: 03.0000.d Water N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/07/2016 0958 Analysis Date: Units: Final Weight/Volume: 5 mL mg/L

Prep Date: N/A Leach Date: N/A

Qual Analyte Spike Amount Result % Rec. Limit Chloride 2.50 ND 100 50 - 150 Sulfate ND 100 50 - 150 2.50

Lab Control Sample/ Method: 300.0

Lab Control Sample Duplicate Recovery Report - Batch: 280-354600 Preparation: N/A

WC IonChrom6 LCS Lab Sample ID: LCS 280-354600/55 Analysis Batch: 280-354600 Instrument ID: Client Matrix: Water Prep Batch: N/A Lab File ID: 55.0000.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/08/2016 0805 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL Prep Date: N/A 25 uL

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-354600/56 Analysis Batch: 280-354600 Instrument ID: WC_lonChrom6 Client Matrix: Water Prep Batch: N/A Lab File ID: 56.0000.d

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/08/2016 0823 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A 25 uL

Prep Date: N/A Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Chloride 101 100 90 - 110 10 0 Sulfate 101 90 - 110 10 В В 101 1

Client: Waste Management Job Number: 280-91129-1

Method: 300.0 **Laboratory Control/** Laboratory Duplicate Data Report - Batch: 280-354600 Preparation: N/A

LCS Lab Sample ID: LCS 280-354600/55 LCSD Lab Sample ID: LCSD 280-354600/56 Units: mg/L

Client Matrix: Water Client Matrix: Water Dilution: Dilution: 1.0 1.0

Analysis Date: 12/08/2016 0805 Analysis Date: 12/08/2016 0823

Prep Date: N/A Prep Date: N/A N/A N/A Leach Date: Leach Date:

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qu	al	LCSD Result/Qu	ual
Chloride	100	100	101		100	
Sulfate	100	100	101	В	101	В

Matrix Spike/ Method: 300.0 Matrix Spike Duplicate Recovery Report - Batch: 280-354600 Preparation: N/A

MS Lab Sample ID): 280-91129-2	Analysis Batch:	280-354600	Instrument ID:	WC_IonChrom6
Client Matrix:	Water	Prep Batch:	N/A	Lab File ID:	61.0000.d
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	5 mL
Analysis Date:	12/08/2016 0951			Final Weight/Volume:	5 mL
_					

Prep Date: N/A 25 uL

Leach Date: N/A

MSD Lab Sample ID: 280-91129-2 Instrument ID: WC_IonChrom6 Analysis Batch: 280-354600 62.0000.d Client Matrix: Water Prep Batch: N/A Lab File ID: Dilution: Leach Batch: N/A Initial Weight/Volume: 5 mL 1.0

Analysis Date: 12/08/2016 1009 Final Weight/Volume: 5 mL

Prep Date: N/A 25 uL Leach Date: N/A

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Chloride 109 110 80 - 120 0 20

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-354600 Preparation: N/A

MS Lab Sample ID: 280-91129-2 Units: mg/L MSD Lab Sample ID: 280-91129-2

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/08/2016 0951 Analysis Date: 12/08/2016 1009

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Amount Result/Qual Result/Qual Chloride 7.0 25.0 25.0 34.2 34.4

Duplicate - Batch: 280-354600 Method: 300.0 Preparation: N/A

Lab Sample ID: 280-91129-2 Analysis Batch: 280-354600 Instrument ID: W

WC IonChrom6 60.0000.d Client Matrix: Water Prep Batch: N/A Lab File ID: Dilution: 1.0 Leach Batch: Initial Weight/Volume: 5 mL N/A Analysis Date: 12/08/2016 0933 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A 25 uL Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual
Chloride 7.0 6.97 0.1 15

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-355349 Method: 300.0

Preparation: N/A

Lab Sample ID: MB 280-355349/6 Analysis Batch: 280-355349 Instrument ID: WC_lonChrom10
Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2 DENPC179 Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/13/2016 1046 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL
Sulfate ND 1.0 1.0

Method Reporting Limit Check - Batch: 280-355349 Method: 300.0

Preparation: N/A

Lab Sample ID: MRL 280-355349/3 Analysis Batch: 280-355349 Instrument ID: WC_lonChrom10
Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2 DENPC179 Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/13/2016 1000 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual

Sulfate 2.50 ND 94 50 - 150

Lab Control Sample/ Method: 300.0
Lab Control Sample Duplicate Recovery Report - Batch: 280-355349 Preparation: N/A

LCS Lab Sample ID: LCS 280-355349/4 Analysis Batch: 280-355349 Instrument ID: WC_lonChrom10
Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 12/13/2016 1015 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A 5 uL

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-355349/5 Analysis Batch: 280-355349 Instrument ID: WC IonChrom10

Client Matrix: Water Prep Batch: N/A Lab File ID: Info 2_DENPC179_Anic

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/13/2016 1030 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A 5 uL

Leach Date: N/A

 Manalyte
 Manalyte
 Manalyte
 Manalyte
 Manalyte
 Manalyte
 Manalyte
 Manalyte
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication
 Republication</th

Client: Waste Management Job Number: 280-91129-1

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-355349

Method: 300.0

Preparation: N/A

LCS Lab Sample ID: LCS 280-355349/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-355349/5

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 12/13/2016 1015 Analysis Date: 12/13/2016 1030

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS Result/Qual Result/Qual Sulfate 100 100 101 101

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-353099 Method: 350.1 Preparation: N/A

Lab Sample ID: MB 280-353099/64 Analysis Batch: 280-353099 Instrument ID: WC_Alp 3
Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112516.RS`

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/25/2016 1153 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Ammonia (as N)
 ND
 0.030
 0.030

Lab Control Sample/ Method: 350.1
Lab Control Sample Duplicate Recovery Report - Batch: 280-353099 Preparation: N/A

LCS Lab Sample ID: LCS 280-353099/62 Analysis Batch: 280-353099 Instrument ID: WC Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112516.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/25/2016 1149 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353099/63 Analysis Batch: 280-353099 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112516.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL Analysis Date: 11/25/2016 1151 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/25/2016 1151 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A
Leach Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Ammonia (as N) 100 99 90 - 110 0 10

Laboratory Control/ Method: 350.1 Laboratory Duplicate Data Report - Batch: 280-353099 Preparation: N/A

LCS Lab Sample ID: LCS 280-353099/62 Units: mg/L LCSD Lab Sample ID: LCSD 280-353099/63

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/25/2016 1149 Analysis Date: 11/25/2016 1151

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS Result/Qual Result/Qual

Ammonia (as N) 2.50 2.50 2.49 2.49

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: 350.1
Matrix Spike Duplicate Recovery Report - Batch: 280-353099 Preparation: N/A

Leach Date:

Leach Date:

Ammonia (as N)

N/A

N/A

MS Lab Sample ID: 280-91129-2 Analysis Batch: 280-353099 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112516.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

Analysis Date: 11/25/2016 1249 Final Weight/Volume: 10 mL Prep Date: N/A

MSD Lab Sample ID: 280-91129-2 Analysis Batch: 280-353099 Instrument ID: WC Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112516.RS`

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

Analysis Date: 11/25/2016 1251 Final Weight/Volume: 10 mL Prep Date: N/A

<u>% Rec.</u>

Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual

Ammonia (as N) 110 104 90 - 110 6 10

Matrix Spike/ Method: 350.1

Matrix Spike Duplicate Recovery Report - Batch: 280-353099 Preparation: N/A

MS Lab Sample ID: 280-91129-2 Units: mg/L MSD Lab Sample ID: 280-91129-2

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/25/2016 1249 Analysis Date: 11/25/2016 1251

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

ND

Sample MS Spike MSD Spike MS MSD
Analyte Result/Qual Amount Amount Result/Qual Result/Qual

1.00

1.00

1.10

1.04

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-354812 Method: 353.2

Preparation: N/A

Lab Sample ID: MB 280-354812/1 Analysis Batch: 280-354812 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/08/2016 1039 Units: mg/L Final Weight/Volume:

Analysis Date: 12/08/2016 1039 Units: mg/L F
Prep Date: N/A
Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Nitrate as N
 ND
 0.050
 0.050

5.0

Qual

5.0

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-352831 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-352831/5 Analysis Batch: 280-352831 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/22/2016 1315 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Alkalinity, Bicarbonate (As CaCO3)

N/A

N/A

Alkalinity, Total (As CaCO3)

Leach Date:

Leach Date:

 Analyte
 Result
 Qual
 RL
 RL

 Alkalinity, Total (As CaCO3)
 ND
 5.0
 5.0

ND

Lab Control Sample - Batch: 280-352831 Method: SM 2320B Preparation: N/A

·

Lab Sample ID: LCS 280-352831/4 Analysis Batch: 280-352831 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/22/2016 1311 Units: mg/L Final Weight/Volume: Prep Date: N/A

Analyte Spike Amount Result % Rec. Limit

Alkalinity, Total (As CaCO3) 200 200 100 90 - 110

Duplicate - Batch: 280-352831 Method: SM 2320B Preparation: N/A

Lab Sample ID: 280-91078-A-2 DU Analysis Batch: 280-352831 Instrument ID: WC-AT3
Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.

Client Matrix: Water Prep Batch: N/A Lab File ID: 112216 alk.TXT Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/22/2016 1324 Units: mg/L Final Weight/Volume: Prep Date: N/A

260

Analyte Sample Result/Qual Result RPD Limit Qual

262

0.5

10

Qual

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-353180 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-353180/5 Analysis Batch: 280-353180 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112316 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/23/2016 1224 Units: mg/L Final Weight/Volume:

Analysis Date: 11/23/2016 1224 Units: mg/L F
Prep Date: N/A
Leach Date: N/A

Leach Date:

N/A

 Analyte
 Result
 Qual
 RL
 RL

 Alkalinity, Total (As CaCO3)
 ND
 5.0
 5.0

 Alkalinity, Bicarbonate (As CaCO3)
 ND
 5.0
 5.0

Lab Control Sample - Batch: 280-353180 Method: SM 2320B Preparation: N/A

Lab Sample ID: LCS 280-353180/4 Analysis Batch: 280-353180 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112316 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/23/2016 1220 Units: mg/L Final Weight/Volume: Prep Date: N/A

Analyte Spike Amount Result % Rec. Limit

Alkalinity, Total (As CaCO3) 200 202 101 90 - 110

Duplicate - Batch: 280-353180 Method: SM 2320B Preparation: N/A

Lab Sample ID: 280-91292-A-3 DU Analysis Batch: 280-353180 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112316 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/23/2016 1234 Units: mg/L Final Weight/Volume:

Analysis Date: 11/23/2016 1234 Units: mg/L Final Weight/Volume: Prep Date: N/A
Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Alkalinity, Total (As CaCO3) 180 194 6 10

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-352631 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-352631/1 Analysis Batch: 280-352631 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/22/2016 1053 Units: Final Weight/Volume: Analysis Date: mg/L 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Dissolved Solids (TDS) ND 5.0 5.0

Lab Control Sample - Batch: 280-352631 Method: SM 2540C Preparation: N/A

Lab Sample ID: LCS 280-352631/2 Analysis Batch: 280-352631 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL
Analysis Date: 11/22/2016 1053 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/22/2016 1053 Units:

Prep Date: N/A

Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual

Total Dissolved Solids (TDS) 500 494 99 86 - 110

Duplicate - Batch: 280-352631 Method: SM 2540C Preparation: N/A

Lab Sample ID: 280-91170-R-2 DU Analysis Batch: 280-352631 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL 11/22/2016 1053 Final Weight/Volume: Analysis Date: Units: mg/L 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Dissolved Solids (TDS) 12000 11900 2 10 E

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-352743 Method: SM 2540D Preparation: N/A

Lab Sample ID: MB 280-352743/2 Analysis Batch: 280-352743 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL 11/22/2016 1849 Units: Final Weight/Volume: Analysis Date: mg/L 250 mL

Prep Date: N/A Leach Date: N/A

N/A

Leach Date:

Total Suspended Solids

TestAmerica Denver

Analyte Result Qual RL RL

Total Suspended Solids ND 4.0 4.0

Lab Control Sample - Batch: 280-352743 Method: SM 2540D Preparation: N/A

Lab Sample ID: LCS 280-352743/1 Analysis Batch: 280-352743 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: Leach Batch: Initial Weight/Volume: 250 mL Dilution: 1.0 N/A

Analysis Date: 11/22/2016 1849 Units: mg/L Final Weight/Volume: 250 mL Prep Date: N/A

% Rec. Qual Analyte Spike Amount Result Limit

Total Suspended Solids 100 92.8 93 86 - 114

Duplicate - Batch: 280-352743 Method: SM 2540D Preparation: N/A

Lab Sample ID: 280-91129-3 Analysis Batch: 280-352743 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL 11/22/2016 1849 250 mL Units:

Final Weight/Volume: Analysis Date: mg/L Prep Date: N/A Leach Date: N/A

31

Analyte Sample Result/Qual Result RPD Limit Qual

31.2

10

12/15/2016

Page 99 of 116

Client: Waste Management Job Number: 280-91129-1

Method Blank - Batch: 280-354209 Method: SM 5310B Preparation: N/A

Lab Sample ID: MB 280-354209/4 Analysis Batch: 280-354209 Instrument ID: WC_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 120216.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

12/02/2016 1512 Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Analyte Result Qual RL RL Total Organic Carbon - Average ND 1.0 1.0

Lab Control Sample - Batch: 280-354209 Method: SM 5310B Preparation: N/A

LCS 280-354209/3 Analysis Batch: 280-354209 Instrument ID: WC SHI3 Lab Sample ID: 120216.txt Client Matrix: Water Prep Batch: N/A Lab File ID:

Dilution: 10 Leach Batch: N/A

Initial Weight/Volume: Analysis Date: 12/02/2016 1458 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Spike Amount Result % Rec. I imit Qual Total Organic Carbon - Average 25.0 24.4 98 88 - 112

Matrix Spike/ Method: SM 5310B

Matrix Spike Duplicate Recovery Report - Batch: 280-354209 Preparation: N/A

MS Lab Sample ID: 280-91049-C-3 MS Analysis Batch: 280-354209 Instrument ID: WC_SHI3 Client Matrix: Prep Batch: N/A Lab File ID: 120216.txt Water

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

12/02/2016 1558 Analysis Date: Final Weight/Volume: 50 mL

Prep Date: N/A N/A Leach Date:

MSD Lab Sample ID: 280-91049-C-3 MSD Analysis Batch: 280-354209 Instrument ID: WC SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 120216.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/02/2016 1613 Final Weight/Volume: 50 mL

Prep Date: N/A Leach Date: N/A

102

102

Total Organic Carbon - Average

% Rec. **RPD** Analyte MS **MSD** I imit **RPD Limit** MS Qual MSD Qual

88 - 112

0

15

Client: Waste Management Job Number: 280-91129-1

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-354209 Preparation: N/A

MS Lab Sample ID: 280-91049-C-3 MS Units: mg/L MSD Lab Sample ID: 280-91049-C-3 MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 12/02/2016 1558 Analysis Date: 12/02/2016 1613

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte	Sample	MS Spike	MSD Spike	MS	MSD
	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
Total Organic Carbon - Average	ND	25.0	25.0	25.5	25.5

Client: Waste Management Job Number: 280-91129-1

Laboratory Chronicle

Lab ID: 280-91129-1 Client ID: MW-23A

Sample Date/Time: 11/16/2016 13:05 Received Date/Time: 11/17/2016 17:05

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91129-F-1		480-333598		11/27/2016 16:23	1	TAL BUF	NEA
A:8260C	280-91129-F-1		480-333598		11/27/2016 16:23	1	TAL BUF	NEA
P:5030C	280-91129-K-1		480-332686		11/20/2016 01:13	1	TAL BUF	NEA
A:8260C SIM	280-91129-K-1		480-332686		11/20/2016 01:13	1	TAL BUF	NEA
P:3005A	280-91129-E-1-B		280-354579	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91129-E-1-B		280-354579	280-352793	12/06/2016 20:17	1	TAL DEN	CML
P:3005A	280-91129-E-1-B		280-354656	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91129-E-1-B		280-354656	280-352793	12/07/2016 11:17	1	TAL DEN	SJS
P:3005A	280-91129-D-1-A		280-354736	280-352797	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	280-91129-D-1-A		280-354736	280-352797	12/07/2016 21:21	1	TAL DEN	SJS
P:3005A	280-91129-D-1-B		280-353847	280-352798	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91129-D-1-B		280-353847	280-352798	11/30/2016 22:12	1	TAL DEN	LMT
P:3005A	280-91129-E-1-A		280-353847	280-352792	11/29/2016 14:35	1	TAL DEN	SEJ
A:6020	280-91129-E-1-A		280-353847	280-352792	12/01/2016 02:25	1	TAL DEN	LMT
A:300.0	280-91129-A-1		280-354600		12/08/2016 08:58	1	TAL DEN	AFB
A:350.1	280-91129-C-1		280-353099		11/25/2016 12:31	1	TAL DEN	MAS
A:353.2	280-91129-A-1		280-354812		12/08/2016 10:39	1	TAL DEN	AJA
A:SM 2320B	280-91129-B-1		280-352831		11/22/2016 13:49	1	TAL DEN	MMC
A:SM 2540C	280-91129-A-1		280-352631		11/22/2016 10:53	1	TAL DEN	JAP
A:SM 2540D	280-91129-B-1		280-352743		11/22/2016 18:49	1	TAL DEN	SVC
A:SM 5310B	280-91129-C-1		280-354209		12/02/2016 18:25	1	TAL DEN	CCJ
A:Field Sampling	280-91129-A-1		280-352756		11/16/2016 14:05	1	TAL DEN	C1K

Client: Waste Management Job Number: 280-91129-1

Laboratory Chronicle

Lab ID: 280-91129-2 Client ID: MW-32

Sample Date/Time: 11/16/2016 14:05 Received Date/Time: 11/17/2016 17:05

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91129-F-2		480-333598		11/27/2016 16:46	1	TAL BUF	NEA
A:8260C	280-91129-F-2		480-333598		11/27/2016 16:46	1	TAL BUF	NEA
P:5030C	280-91129-J-2		480-332790		11/21/2016 15:27	1	TAL BUF	CDC
A:8260C SIM	280-91129-J-2		480-332790		11/21/2016 15:27	1	TAL BUF	CDC
P:3005A	280-91129-E-2-B		280-354579	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91129-E-2-B		280-354579	280-352793	12/06/2016 20:19	1	TAL DEN	CML
P:3005A	280-91129-E-2-B		280-354656	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91129-E-2-B		280-354656	280-352793	12/07/2016 11:19	1	TAL DEN	SJS
P:3005A	280-91129-D-2-A		280-354736	280-352797	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	280-91129-D-2-A		280-354736	280-352797	12/07/2016 21:23	1	TAL DEN	SJS
P:3005A	280-91129-D-2-B		280-353847	280-352798	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91129-D-2-B		280-353847	280-352798	11/30/2016 22:16	1	TAL DEN	LMT
P:3005A	280-91129-E-2-A		280-353847	280-352792	11/29/2016 14:35	1	TAL DEN	SEJ
A:6020	280-91129-E-2-A		280-353847	280-352792	12/01/2016 02:29	1	TAL DEN	LMT
A:300.0	280-91129-A-2		280-354600		12/08/2016 09:16	1	TAL DEN	AFB
A:300.0	280-91129-A-2		280-355349		12/13/2016 12:29	1	TAL DEN	AFB
A:350.1	280-91129-C-2		280-353099		11/25/2016 12:33	1	TAL DEN	MAS
A:353.2	280-91129-A-2		280-354812		12/08/2016 10:39	1	TAL DEN	AJA
A:SM 2320B	280-91129-B-2		280-352831		11/22/2016 13:53	1	TAL DEN	MMC
A:SM 2540C	280-91129-A-2		280-352631		11/22/2016 10:53	1	TAL DEN	JAP
A:SM 2540D	280-91129-B-2		280-352743		11/22/2016 18:49	1	TAL DEN	SVC
A:SM 5310B	280-91129-C-2		280-354209		12/02/2016 18:40	1	TAL DEN	CCJ
A:Field Sampling	280-91129-A-2		280-352756		11/16/2016 15:05	1	TAL DEN	C1K

Lab ID: 280-91129-2 MS Client ID: MW-32

Sample Date/Time: 11/16/2016 14:05 Received Date/Time: 11/17/2016 17:05

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	280-91129-A-2 MS		280-354600		12/08/2016 09:51	1	TAL DEN	AFB
A:350.1	280-91129-C-2 MS		280-353099		11/25/2016 12:49	1	TAL DEN	MAS

Lab ID: 280-91129-2 MSD Client ID: MW-32

Sample Date/Time: 11/16/2016 14:05 Received Date/Time: 11/17/2016 17:05

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	280-91129-A-2 MSD		280-354600		12/08/2016 10:09	1	TAL DEN	AFB
A:350.1	280-91129-C-2 MSD		280-353099		11/25/2016 12:51	1	TAL DEN	MAS

Client: Waste Management Job Number: 280-91129-1

Laboratory Chronicle

Lab ID: 280-91129-2 DU Client ID: MW-32

Sample Date/Time: 11/16/2016 14:05 Received Date/Time: 11/17/2016 17:05

Analysis Date Prepared / **Batch** Analyzed Analyst Method **Bottle ID** Run Prep Batch Dil Lab A:300.0 280-91129-A-2 DU 280-354600 12/08/2016 09:33 TAL DEN AFB

Lab ID: 280-91129-3 Client ID: MW-42

Sample Date/Time: 11/16/2016 15:00 Received Date/Time: 11/17/2016 17:05

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91129-I-3		480-333730		11/28/2016 23:53	1	TAL BUF	NEA
A:8260C	280-91129-I-3		480-333730		11/28/2016 23:53	1	TAL BUF	NEA
P:5030C	280-91129-J-3		480-332790		11/21/2016 15:52	1	TAL BUF	CDC
A:8260C SIM	280-91129-J-3		480-332790		11/21/2016 15:52	1	TAL BUF	CDC
P:3005A	280-91129-E-3-B		280-354579	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91129-E-3-B		280-354579	280-352793	12/06/2016 20:22	1	TAL DEN	CML
P:3005A	280-91129-E-3-B		280-354656	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91129-E-3-B		280-354656	280-352793	12/07/2016 11:22	1	TAL DEN	SJS
P:3005A	280-91129-D-3-A		280-354736	280-352797	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	280-91129-D-3-A		280-354736	280-352797	12/07/2016 21:26	1	TAL DEN	SJS
P:3005A	280-91129-D-3-B		280-353847	280-352798	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91129-D-3-B		280-353847	280-352798	11/30/2016 22:20	1	TAL DEN	LMT
P:3005A	280-91129-E-3-A		280-353847	280-352792	11/29/2016 14:35	1	TAL DEN	SEJ
A:6020	280-91129-E-3-A		280-353847	280-352792	12/01/2016 02:33	1	TAL DEN	LMT
A:300.0	280-91129-B-3		280-354600		12/08/2016 10:27	1	TAL DEN	AFB
A:300.0	280-91129-B-3		280-355349		12/13/2016 13:30	1	TAL DEN	AFB
A:350.1	280-91129-C-3		280-353099		11/25/2016 12:53	2	TAL DEN	MAS
A:353.2	280-91129-A-3		280-354812		12/08/2016 10:39	1	TAL DEN	AJA
A:SM 2320B	280-91129-A-3		280-352831		11/22/2016 13:58	1	TAL DEN	MMC
A:SM 2540C	280-91129-B-3		280-352631		11/22/2016 10:53	1	TAL DEN	JAP
A:SM 2540D	280-91129-A-3		280-352743		11/22/2016 18:49	1	TAL DEN	SVC
A:SM 5310B	280-91129-C-3		280-354209		12/02/2016 18:54	1	TAL DEN	CCJ
A:Field Sampling	280-91129-A-3		280-352756		11/16/2016 16:00	1	TAL DEN	C1K

Lab ID: 280-91129-3 MS Client ID: MW-42

Sample Date/Time: 11/16/2016 15:00 Received Date/Time: 11/17/2016 17:05

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91129-D-3-C MS		280-353847	280-352798	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91129-D-3-C MS		280-353847	280-352798	11/30/2016 22:27	1	TAL DEN	LMT

Client: Waste Management Job Number: 280-91129-1

Laboratory Chronicle

Lab ID: 280-91129-3 MSD Client ID: MW-42

> Received Date/Time: 11/17/2016 17:05 Sample Date/Time: 11/16/2016 15:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91129-D-3-D MSD		280-353847	280-352798	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91129-D-3-D MSD		280-353847	280-352798	11/30/2016 22:31	1	TAL DEN	LMT

Lab ID: 280-91129-3 DU Client ID: MW-42

> Sample Date/Time: 11/16/2016 15:00 Received Date/Time: 11/17/2016 17:05

Analysis Date Prepared / Method **Bottle ID Batch** Analyzed Run **Prep Batch** Dil Lab Analyst 11/22/2016 18:49 A:SM 2540D 280-91129-A-3 DU 280-352743 TAL DEN SVC

Lab ID: 280-91129-4 Client ID: TRIP BLANK

> Sample Date/Time: 11/16/2016 00:00 Received Date/Time: 11/17/2016 17:05

Method	Bottle ID	Run	Analysis Batch	Prep Batch	Date Prepared / Analyzed	Dil	Lab	Analyst
P:5030C	280-91129-A-4		480-333598		11/27/2016 17:32	1	TAL BUF	NEA
A:8260C	280-91129-A-4		480-333598		11/27/2016 17:32	1	TAL BUF	NEA
P:5030C	280-91129-B-4		480-332686		11/20/2016 02:27	1	TAL BUF	NEA
A:8260C SIM	280-91129-B-4		480-332686		11/20/2016 02:27	1	TAL BUF	NEA

P = Prep Method TestAmerica Denver A = Analytical Method 12/15/2016

Client: Waste Management Job Number: 280-91129-1

Laboratory Chronicle

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	MB 480-333598/7		480-333598		11/27/2016 14:16	1	TAL BUF	NEA
A:8260C	MB 480-333598/7		480-333598		11/27/2016 14:16	1	TAL BUF	NEA
P:5030C	MB 480-333730/6		480-333730		11/28/2016 21:14	1	TAL BUF	NEA
A:8260C	MB 480-333730/6		480-333730		11/28/2016 21:14	1	TAL BUF	NEA
P:5030C	MB 480-332686/7		480-332686		11/20/2016 00:06	1	TAL BUF	NEA
A:8260C SIM	MB 480-332686/7		480-332686		11/20/2016 00:06	1	TAL BUF	NEA
P:5030C	MB 480-332790/7		480-332790		11/21/2016 13:05	1	TAL BUF	CDC
A:8260C SIM	MB 480-332790/7		480-332790		11/21/2016 13:05	1	TAL BUF	CDC
P:3005A	MB 280-352793/1-A		280-354579	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	MB 280-352793/1-A		280-354579	280-352793	12/06/2016 19:05	1	TAL DEN	CML
P:3005A	MB 280-352793/1-A		280-354656	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	MB 280-352793/1-A		280-354656	280-352793	12/07/2016 10:52	1	TAL DEN	SJS
P:3005A	MB 280-352797/1-A		280-354736	280-352797	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	MB 280-352797/1-A		280-354736	280-352797	12/07/2016 21:16	1	TAL DEN	SJS
P:3005A	MB 280-352798/1-A		280-353847	280-352798	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	MB 280-352798/1-A		280-353847	280-352798	11/30/2016 22:05	1	TAL DEN	LMT
P:3005A	MB 280-352792/1-A		280-353847	280-352792	11/29/2016 14:35	1	TAL DEN	SEJ
A:6020	MB 280-352792/1-A		280-353847	280-352792	12/01/2016 00:49	1	TAL DEN	LMT
A:300.0	MB 280-354600/57		280-354600		12/08/2016 08:40	1	TAL DEN	AFB
A:300.0	MB 280-355349/6		280-355349		12/13/2016 10:46	1	TAL DEN	AFB
A:350.1	MB 280-353099/64		280-353099		11/25/2016 11:53	1	TAL DEN	MAS
A:353.2	MB 280-354812/1		280-354812		12/08/2016 10:39	1	TAL DEN	AJA
A:SM 2320B	MB 280-352831/5		280-352831		11/22/2016 13:15	1	TAL DEN	MMC
A:SM 2320B	MB 280-353180/5		280-353180		11/23/2016 12:24	1	TAL DEN	MMC
A:SM 2540C	MB 280-352631/1		280-352631		11/22/2016 10:53	1	TAL DEN	JAP
A:SM 2540D	MB 280-352743/2		280-352743		11/22/2016 18:49	1	TAL DEN	SVC
A:SM 5310B	MB 280-354209/4		280-354209		12/02/2016 15:12	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91129-1

Laboratory Chronicle

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCS 480-333598/5		480-333598		11/27/2016 13:30	1	TAL BUF	NEA
A:8260C	LCS 480-333598/5		480-333598		11/27/2016 13:30	1	TAL BUF	NEA
P:5030C	LCS 480-333730/4		480-333730		11/28/2016 20:28	1	TAL BUF	NEA
A:8260C	LCS 480-333730/4		480-333730		11/28/2016 20:28	1	TAL BUF	NEA
P:5030C	LCS 480-332686/4		480-332686		11/19/2016 22:52	1	TAL BUF	NEA
A:8260C SIM	LCS 480-332686/4		480-332686		11/19/2016 22:52	1	TAL BUF	NEA
P:5030C	LCS 480-332790/4		480-332790		11/21/2016 11:52	1	TAL BUF	CDC
A:8260C SIM	LCS 480-332790/4		480-332790		11/21/2016 11:52	1	TAL BUF	CDC
P:3005A	LCS 280-352793/2-A		280-354579	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	LCS 280-352793/2-A		280-354579	280-352793	12/06/2016 19:08	1	TAL DEN	CML
P:3005A	LCS 280-352793/2-A		280-354656	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	LCS 280-352793/2-A		280-354656	280-352793	12/07/2016 10:54	1	TAL DEN	SJS
P:3005A	LCS 280-352797/2-A		280-354736	280-352797	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	LCS 280-352797/2-A		280-354736	280-352797	12/07/2016 21:19	1	TAL DEN	SJS
P:3005A	LCS 280-352798/2-A		280-353847	280-352798	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	LCS 280-352798/2-A		280-353847	280-352798	11/30/2016 22:08	1	TAL DEN	LMT
P:3005A	LCS 280-352792/2-A		280-353847	280-352792	11/29/2016 14:35	1	TAL DEN	SEJ
A:6020	LCS 280-352792/2-A		280-353847	280-352792	12/01/2016 00:53	1	TAL DEN	LMT
A:300.0	LCS 280-354600/55		280-354600		12/08/2016 08:05	1	TAL DEN	AFB
A:300.0	LCS 280-355349/4		280-355349		12/13/2016 10:15	1	TAL DEN	AFB
A:350.1	LCS 280-353099/62		280-353099		11/25/2016 11:49	1	TAL DEN	MAS
A:SM 2320B	LCS 280-352831/4		280-352831		11/22/2016 13:11	1	TAL DEN	MMC
A:SM 2320B	LCS 280-353180/4		280-353180		11/23/2016 12:20	1	TAL DEN	MMC
A:SM 2540C	LCS 280-352631/2		280-352631		11/22/2016 10:53	1	TAL DEN	JAP
A:SM 2540D	LCS 280-352743/1		280-352743		11/22/2016 18:49	1	TAL DEN	SVC
A:SM 5310B	LCS 280-354209/3		280-354209		12/02/2016 14:58	1	TAL DEN	CCJ

Lab ID: LCSD Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCSD 480-332686/5		480-332686		11/19/2016 23:16	1	TAL BUF	NEA
A:8260C SIM	LCSD 480-332686/5		480-332686		11/19/2016 23:16	1	TAL BUF	NEA
P:5030C	LCSD 480-332790/5		480-332790		11/21/2016 12:17	1	TAL BUF	CDC
A:8260C SIM	LCSD 480-332790/5		480-332790		11/21/2016 12:17	1	TAL BUF	CDC
A:300.0	LCSD 280-354600/56		280-354600		12/08/2016 08:23	1	TAL DEN	AFB
A:300.0	LCSD 280-355349/5		280-355349		12/13/2016 10:30	1	TAL DEN	AFB
A:350.1	LCSD 280-353099/63		280-353099		11/25/2016 11:51	1	TAL DEN	MAS

Client: Waste Management Job Number: 280-91129-1

Laboratory Chronicle

Client ID: N/A Lab ID: MRL

> Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	MRL 280-354600/3		280-354600		12/07/2016 09:58	1	TAL DEN	AFB
A:300.0	MRL 280-355349/3		280-355349		12/13/2016 10:00	1	TAL DEN	AFB

Lab ID: MS Client ID: N/A

> Sample Date/Time: 11/16/2016 12:30 Received Date/Time: 11/17/2016 09:45

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	480-109772-D-4 MS		480-333598		11/27/2016 21:51	10	TAL BUF	NEA
A:8260C	480-109772-D-4 MS		480-333598		11/27/2016 21:51	10	TAL BUF	NEA
P:5030C	480-109807-G-6 MS		480-333730		11/29/2016 04:53	1	TAL BUF	NEA
A:8260C	480-109807-G-6 MS		480-333730		11/29/2016 04:53	1	TAL BUF	NEA
P:3005A	280-91117-E-2-C MS		280-354579	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91117-E-2-C MS		280-354579	280-352793	12/06/2016 19:18	1	TAL DEN	CML
P:3005A	280-91117-E-2-C MS		280-354656	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91117-E-2-C MS		280-354656	280-352793	12/07/2016 11:02	1	TAL DEN	SJS
P:3005A	280-91130-C-1-B MS		280-354736	280-352797	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	280-91130-C-1-B MS		280-354736	280-352797	12/07/2016 21:34	1	TAL DEN	SJS
P:3005A	280-91117-E-1-B MS		280-353847	280-352792	11/29/2016 14:35	1	TAL DEN	SEJ
A:6020	280-91117-E-1-B MS		280-353847	280-352792	12/01/2016 01:05	1	TAL DEN	LMT
A:SM 5310B	280-91049-C-3 MS		280-354209		12/02/2016 15:58	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91129-1

Laboratory Chronicle

Lab ID: MSD Client ID: N/A

Sample Date/Time: 11/16/2016 12:30 Received Date/Time: 11/17/2016 09:45

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	480-109772-D-4 MSD		480-333598		11/27/2016 22:14	10	TAL BUF	NEA
A:8260C	480-109772-D-4 MSD		480-333598		11/27/2016 22:14	10	TAL BUF	NEA
P:5030C	480-109807-H-6 MSD		480-333730		11/29/2016 05:16	1	TAL BUF	NEA
A:8260C	480-109807-H-6 MSD		480-333730		11/29/2016 05:16	1	TAL BUF	NEA
P:3005A	280-91117-E-2-D MSD		280-354579	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91117-E-2-D MSD		280-354579	280-352793	12/06/2016 19:20	1	TAL DEN	CML
P:3005A	280-91117-E-2-D MSD		280-354656	280-352793	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91117-E-2-D MSD		280-354656	280-352793	12/07/2016 11:04	1	TAL DEN	SJS
P:3005A	280-91130-C-1-C MSD		280-354736	280-352797	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	280-91130-C-1-C MSD		280-354736	280-352797	12/07/2016 21:36	1	TAL DEN	SJS
P:3005A	280-91117-E-1-C MSD		280-353847	280-352792	11/29/2016 14:35	1	TAL DEN	SEJ
A:6020	280-91117-E-1-C MSD		280-353847	280-352792	12/01/2016 01:09	1	TAL DEN	LMT
A:SM 5310B	280-91049-C-3 MSD		280-354209		12/02/2016 16:13	1	TAL DEN	CCJ

Lab ID: DU Client ID: N/A

Sample Date/Time: 11/15/2016 08:15 Received Date/Time: 11/16/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:SM 2320B	280-91078-A-2 DU		280-352831		11/22/2016 13:24	1	TAL DEN	MMC
A:SM 2320B	280-91292-A-3 DU		280-353180		11/23/2016 12:34	1	TAL DEN	MMC
A:SM 2540C	280-91170-R-2 DU		280-352631		11/22/2016 10:53	1	TAL DEN	JAP

Lab References:

TAL BUF = TestAmerica Buffalo TAL DEN = TestAmerica Denver

Chain of Custody Record

TestAmeric THE LEADER IN ENVIRONMENTAL TEST

T - TSP Dodecahydrate U - Acetone していっていかてい Special Instructions/Note: Arsenic - Direct sub to ARI Z - other (specify) Short Hold: NO3(cad) R - Na2S2S03 N - None O - AsNaO2 P - Na2O4S O - Na2SO3 M - Hexane S-H2S04 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Mont Preservation Codes: COC No: 280-17318-3224.1 A-HCL
B-NaOH
C-Zn Acetate
D-Nitric Acid
F-NaOH
G-Amchlor
H-Ascorbic Acid J - DI Water K - EDTA L-EDA age: Total Number of containers K 6950 **Method of Shipment** 815 2018 Analysis Requested 280-91129 Chain of Custody (the of due toeilc) clinear A leto? Special Instructions/QC Requirements: rotal Metals (oleffuß AT) MIZ 808SI betsy.sara@testamericainc.com (oleffud AT) 1ell gnol - 80358 Ammonia/TOC LDS/NIKS/CI/SO4/NO3(csq) Lab PM: Sara, Betsy A Perform MS/MSD (Yes or No) ime: Field Filtered Sample (Yes or No) E-Mail: Preservation Code: Matrix (Wewater, 3 2480 Standard) Radiological (C=comb, G=grab) Sample Type D ŧ - 940 -Grabel 1405 1500 Sample 1305 Time 1 Unknown TAT Requested (days): 519 Due Date Requested: un Sample Date 1/16/16 28002692 SSOW#: X WO# Poison B Grabol CSLS Engineers. La Skin Irritant Event Desc: Quarterly GW Appl/II - Mar Jun Sep Dec Deliverable Requested: I, II, III, IV, Other (specify) 940-2480 Flammable Flammable Trup Dank Possible Hazard Identification 33 32 Zh-MW Empty Kit Relinquished by: 450-MW -Client Information Sample Identification Waste Management Non-Hazard 2615 Davis Street Mr. Patrick Madej 219 San Leandro Washington State, Zip: CA, 94577

company

1000

11/10/11

Jate/Time:

Received by:

Company

Sate/Time:

876312

Custody Seal No.

Custody Seals Intact:

linquished by:

12/15/2016

A Yes A No

200

009)

116/16

Company Зотралу Cooler Temperature(s) "Capa Other Remarks:

COUNTRIES DENVE

Phone (303) 736-0100 Fax (303) 431-7171 Arvada, CO 80002 4955 Yarrow Street

Page 110 of 116

		FIELD IN	VFORMATI	ON FORM		W	$\sqrt{\Lambda}\sqrt{\Lambda}$
Site Name: Site No.:	: Sample Point:	This War This form	uste Management Field Inform in is to be completed, in additing the dalong with the Chain of Custon in the cooler that is	mation Form is Required ion to any State Forms. The stody Forms that accompany		boratory Use Only/Lab II	O:
PURGE INFO	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "	PURGE TIME ELAPSE (2400 Hr Clock) (hrs: "Water Vol in Casing" and "Well Vols Purge	min)	TER VOL IN CASING (Gallons)	(Gall	ons)	ZELL VOLS PURGED
PURGE/SAMPLE EQUIPMENT	Purging and Sampling Equipment Purging Device C A-6 B-J		Filter De	vice: O or N A-in B-Pro	0.45 µ or	μ (circle or fill	in)
WELL DATA	Well Elevation (at TOC) Total Well Depth (from TOC)	Depth to Water ((from TOC) Stick Up (ft) (from ground elev sing Id. etc. are optional and can be from his	vation)	(ft) (site	(in)	Casing Material	(ft/msi)
	Rate/Unit 400 Hr Clock) 1st 5 2 5 0 2 1st 5 2 5 4th 5 2 5 9 6 6 6 6 6 6 6 6 6	pH (std)	Temp. (°C) 1 2 40 1 2 40 1 2 41 1 2 46 1 2 47 1 2 49	Turbidity	D.O. (mg/L - ppm) 4 52 4 23 4 12 4 10 4 05 4 05 4 02 4 02 6 1	eH/ORP (mV) 171711 16613 15612 15118 14813 14510	DTW (ft)
Stah by S	Permit/State requirements: oblization Data Fields are Optional (i.e., tate/Permit/Site, If a Data Logger or other	+/- 0.2 +/- 3% c. complete stabilization readings for parather Electronic format is used, fill in final real	ameters required by WM, SI cadings below and submit ele	ite, or State). These fields ctronic data separately to S	+/- 10% can be used where fo	ove are needed, use sep	arate sheet or form
ELD DAT	(MM DD YY) (s	pH CONDUCTANCE (std) (umhos/cm @ 25°C)	1 2 49	1 64	DO (mg/L-ppm) 4 02 or all field parameter.	(mV) Units	1305
We	ather Conditions (required daily, o	or as conditions change): ge/well volume calculations if require	Direction/Speed:				Y or D
COMMENTS							
FIELD	rtify that sampling procedures were	re in accordance with applicable EPA,	, State, and WM protocol	s (if more than one samp	oler, all should sign):		
-	Date Name	DISTRIBUTION: WHITE/ORIGINAL	Signature Stave with Samula VEV I	An Oliver de Client I	Compan	S C S	

	20	FIELD II	VFORMAT	TION FORM	1	TVA	$\sqrt{\Lambda}\sqrt{\Lambda}$
Site Nam-	· ·	DUSL This Wi	aste Management Field I	Information Form is Requireddition to any State Forms.	ed	WASTE	MANAGEMENT
Site No.:	Sample	submitte	ed along with the Chain o	f Custody Forms that accomp at is returned to the laborator	any the sample	aboratory Use Only/Lab	ID:
PURGE	PURGE DATE (MM DD YY) Note: For Passive Sampling, replace "Wa	(2400 Hr Clock) (hrs	:min)	WATER VOL IN CASI (Gallons) ng/Flow Cell and Tubing/Flo	(Ga	llons)	WELL VOLS PURGED data, below.
PURGE/SAMPLE FOIIPMENT	Purging and Sampling Equipment Do Purging Device C A-Su B-Per Sampling Device C C-QE X-Other:	redicated: Or N ubmersible Pump D-Bailer eristaltic Pump E-Piston Pun ED Bladder Pump F-Dipper/Bo	mp Filt	er Type: A	-Teflon _g C	μ (circle or file) C-Vacuum C-Other C-PVC X-Other C-POlypropylene	
WELL DATA	Well Elevation (at TOC)	Depth to Water (ft/msi) (from TOC)	(DTW)	1 /N 9	roundwater Elevation ite datum, from TOC)		(ft/msl)
WELI	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing	Stick Up (ft) (from ground elegate, are optional and can be from high		(ft) II		Casing Material adwater Elevation must	be current.
	2400 Hr Clock)	pH Conductance (SC/EC) (std) (µmhos/cm@25°C)	(°C)	Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (ft)
	1315 3 350 1 st 61	9 4 1 2 4 9 1 3 2 nd 2 1 9	1207		204	171316	
ptional	1131516 3rd 71	43 3rd 244	1209		1134	113.9	
ATA (0	114:012 1 4° 7:	5 5 4 th	1211		1 106	32	
STABILIZATION DATA (Optional)	4105 7	60 1251	1 2 13	1 150	1118	1-1213	
LIZAT							
STABI							
	ggested range for 3 consec. readings or +/.	/- 0,2 +/- 3%			+/- 10%	+/- 25 mV	Stabilize
St	te Permit/State requirements: abilization Data Fields are Optional (i.e. co	omplete stabilization readings for par	rameters required by WI	M, Site, or State). These fie	elds can be used where I	four (4) field measurem	ents are required
	State/Permit/Site. If a Data Logger or other SAMPLE DATE pH		eadings below and submi	it electronic data separately i TURBIDITY	to Site. <u>If more fields al</u> DO		parate sheet or form er: 'A
FIELD DATA	(MM DD YY) (std	60 251	(°C)	(ntu) 	(mg/L-ppm)	(mV) Unit	1405
Sa	ample Appearance:		Odor: 1	Colo	or: No	Other:	
	Veather Conditions (required daily, or	0,	Direction/Speed:		k: overcust		Y or W
	pecific Comments (including purge/w	well volume calculations if require	red):				
TENT							
OMIN-							
FIELD COMMENTS							
	ertify that sampling procedures were in	in accordance with annihilable ED4	State and W/M	acola (if man it	omploy all the 11 '	\.	
		Sum Graber	, State, and WM prote	ocois (it idore man one sa): 5 CS	
74	/ / Name	STRIBUTION: WHITE/ORIGINAL	Signature	CLLOW - Returned to Clier	Compa	iny	

Г	FIELD	INFORMATION FORM
Si Nar	te This	Waste Management Field Information Form is Required form is to be completed, in addition to any State Forms. The Field Form is
Si	te Sample Subm	nitted along with the Chain of Custody Forms that accompany the sample Laboratory Use Only/Lab ID:
No	Sample ID	ainers (i.e. with the cooler that is returned to the laboratory).
PURGE	(MM DD YY) (2400 Hr Clock) (I	PSED HRS WATER VOL IN CASING ACTUAL VOL PURGED WELL VOLs (hrs:min) (Gallons) (Gallons) PURGED (burged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
PURGE/SAMPLE	Purging and Sampling Equipment Dedicated: Or N Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston P Sampling Device C-QED Bladder Pump F-Dipper/I X-Other:	Filter Device: or N 0.45 \(\mu \) or \(\mu \) \(\mu \) (circle or fill in) A-In-line Disposable C-Vacuum B-Pressure X-Other
-	Well Elevation Depth to Wate (at TOC) (ft/msl) (from TOC)	ter (DTW) Groundwater Elevation (site datum, from TOC)
WELL DATA	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from	elevation) Casing Casing Material (ft) ID (in) Material m historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
7	Sample Time Rate/Unit pH Conductance (SC/E (2400 Hr Clock) (std) (µmhos/cm@25°C	GC) Temp. Turbidity D.O. eH/ORP DTW
	114:45 350 12 7148 12 151416	
(onal)	1	9 1260 1 1 1012 - 506 1 1
STABILIZATION DATA (Optional)	141514 4h 7512 4h 51416	
DATA	14157 750 15151	1 112 59 1 1 1 10 33 - 15 72 7 1 1 1
TION	7.49 1550	0 1 2 57 1 3 75 0 30 - 5 3 5 2 6 44
ILIZA		
STAB		
	Suggested range for 3 consec, readings or +/- 0,2 +/- 3%	+/- 10% +/- 25 mV Stabilize
5	ote Permit/State requirements: Etabilization Data Fields are Optional (i.e. complete stabilization readings for p	parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required
	ny State/Permit/Site. If a Data Logger or other Electronic format is used, fill in fina SAMPLE DATE pH CONDUCTANCE	al readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form TEMP. TURBIDITY DO eH/ORP Other: 47'
FIELD DATA	(MM DD YY) (std) (umhos/cm @ 25°C	C) (°C) (ntu) (mg/L-ppm) (mV) Units
	Sample Appearance:	oder: Alaca Colors of Alaca Colors ample readings before sampling for all field parameters required by State/Permit/Site.
	Weather Conditions (required daily, or as conditions change):	Odor: Vo Color: Other: The Direction/Speed: Outlook: Precipitation: Y or (V)
	Specific Comments (including purge/well volume calculations if req	
SLUE		
COMMENT		
FIELD		
	certify that sampling procedures were in accordance with applicable El	PA, State, and WM protocols (if more than one sampler, all should sign):
	11,16,16 Sam Graper	_ A.d _ 5CS
	Date Name DISTRIBUTION: WHITE (OPICIN)	Signature Company AL Stave with Sample VELLOW Poturned to Client PINK Field Conv.

TestAmerica Denver

Phone (303) 736-0100 Fax (303) 431-7171 Arvada, CO 80002 4955 Yarrow Street

Chain of Custody Record

TestAmerica

	Sampler:		ab PM:		Carrier Tracking No(s):	;;	COC No:		
Slient Information (Sub Contract Lab)			Sara, Betsy A		····		280-378315.1		
lient Contact:	Phone:		E-Mail:		State of Origin:		Page:		
shipping/Receiving			betsy.sara@testamericainc.com	nc.com	Washington		Page 1 of 1		
ompany:			Accreditations Required (See note):	See note):			Job #:		
estAmerica Laboratories, Inc.			NELAP - Oregon				280-91129-1		
ddress:	Due Date Requested:						Preservation Codes:	es:	
0 Hazelwood Drive,	12/6/2016			Analysis Requested	equested		2	M Liverage	
	TAT Requested (days):		· · · · · · · · · · · · · · · · · · ·			13		N - None	
Amherst			T. W.					O - AsNaO2	
tate, Zip:	T						D - Nitric Acid	P - Na204S	
IY, 14228-2298	i						E - NaHSO4	Q - Na2SO3	
hone:	PO#		\$6				F- MeOH	R - Nazszo3	
16-691-2600(Tel) 716-691-7991(Fax)) tte		-		G - Amenior H - Ascorbic Acid	S - HZSO4 T - TSP Dodecahvdrate	
mail:	WO#:		οΛ II (0			***	I - Ice	U - Acetone	
			N.	-		318		W - M 4.5	
roject Name: VA02]Olympic View Sanitary LF	Project #: 28002692		ouedo			inie).		Z - other (specify)	
ite: VA02 Olympic View Sanitary LF	SSOW#:		0C (MC 10D) V 18D (X 29mb			igo Jo	Other:		
	***************************************	Sample Matrix	ered WS/W			iedm	TO TO THE REAL PROPERTY.		
	Sample	Type (W=water, S=solid, C=comp.	105/50 MyDi			DN IŞ			
Sample Identification - Client ID (Lab ID)	_	Ö	Fle Pêl 826			101	12.75	Special Instructions/Note:	
300 / LICENSTRUCTURE CANADA CONTROL CO		O CHARACTER CHARACTER I	White A statement of the state		STATE OF A VANIETY OF STREET	200 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CONT. 10 1000000000000000000000000000000000	

S. C. Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc. Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont 0900 Archive For Date/Time: Method of Shipment: Sooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements: Received by: E Company Primary Deliverable Rank: 2 Date: 97-58-1 Date/Time: Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Possible Hazard Identification Empty Kit Relinquished by: Custody Seals Intact:

Δ Yes Δ No inquished by: elinquished by: elinquished by: Unconfirmed

MW-23A (280-91129-1) JW-32 (280-91129-2) MW-42 (280-91129-3)

တ ထ

Preservation Code:

× × \times

×

Water Water Water

Pacific 15:00

Pacific 14:05

11/16/16 11/16/16

11/16/16

Pacific

11/16/16

TRIP BLANK (280-91129-4)

Pacific

× ×

×

Water

ιö Ø

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91129-1

Login Number: 91129 List Source: TestAmerica Denver

List Number: 1

Creator: True, Joshua A

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91129-1

Login Number: 91129
List Source: TestAmerica Buffalo
List Number: 2
List Creation: 11/19/16 11:48 AM

Creator: Hulbert, Michael J

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.7 #1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	False	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

ANALYTICAL REPORT

Job Number: 280-91758-1

Job Description: WA02|Olympic View Sanitary LF

For:

Waste Management Sun Valley Hauling 9081 Tujunga Avenue Sun Valley, CA 91352

Attention: Mr. Phil Perley

Betsy Sara

Approved for release Betsy A Sara Project Manager II 12/5/2016 10:04 AM

Betsy A Sara, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0189 betsy.sara@testamericainc.com 12/05/2016

cc: Mr. Dan Venchiarutti

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Laboratories, Inc.

TestAmerica Denver 4955 Yarrow Street, Arvada, CO 80002 Tel (303) 736-0100 Fax (303) 431-7171 www.testamericainc.com

Table of Contents

Cover Title Page	1
Subcontracted Data	3

02 December 2016

Sample Receiving Test America - Denver 4955 Yarrow Street Arvada, CO 80002

RE: OVSL

Please find enclosed sample receipt documentation and analytical results for samples from the project referenced above.

Sample analyses were performed according to ARI's Quality Assurance Plan and any provided project specific Quality Assurance Plan. Each analytical section of this report has been approved and reviewed by an analytical peer, the appropriate Laboratory Supervisor or qualified substitute, and a technical reviewer.

Should you have any questions or problems, please feel free to contact us at your convenience.

Associated Work Order(s) Associated SDG ID(s) 16K0286 N/A

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed in the enclose Narrative. ARI, an accredited laboratory, certifies that the report results for which ARI is accredited meets all the reqirements of the accrediting body. A list of certified analyses, accreditations, and expiration dates is included in this report.

Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mark Harris, Project Manager

PJLA Testing Accreditation # 66169

Request
Vsis
Anal
Laboratory
ంర
Record
Custody
र्
Chain

Standard		Date: 11/	11/18/16		(-	Analytical Resources, Incorporated Analytical Chemists and Consultants
Phone: 425-746-4600		Page:	of	8		4611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: Dan Venchiarutti	No. of Coolers:	No. of oolers:	Cooler Temps:		1	206-695-6200 206-695-6201 (fax)
OVSL		4		Analysis Requested		Notes/Comments
Client Project #: 04204027.19 Samplers: Sam Graber)ar.	history.				
Date Time Matrix No.		12401	2			
11/14/16 1043 Ground	1 X					
1135	<u> </u>					
. 8 1 2 1						
1354						
1500						
1158						
1244						
1329						
1339						
↑ 82h1 ↑	う	,				
Comments/Special Instructions Relinquished by: (Signature)	Received by:			Relinquished by: (Signature)		Received by: (Signature)
Printed Name: Sava Graber	je j	Shan Wang	5	Printed Name:		Printed Name:
52	Company:			Company:		Company:
Date & Time: Date 117 174 117 118	Date & Time:	1, 112	V	Date & Time:		Date & Time:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

equest
œ
Vsis
Anal
Laboratory
ර
Record
Custody
1
_
Chai

ARI Assigned Number: Standard	Date: 11/18/16		Analytical Resources, Incorporated Analytical Chemists and Consultants
Phone: 425-746-4600	Page: 2 of	3	4611 South 134th Place, Suite 100
Client Contact: Dan Venchiarutti	No. of Coolers: Ter	Cooler Temps:	206-695-6200 206-695-6201 (fax)
TS/AO		Analysis Requested	Notes/Comments
Client Project #: 04204027.19 Samplers: Sam Graber	Dinosonic Gas		
Date Time Matrix No. Containers] maj		
MW-35 11/15/16 950 Crowd 1	X		
340 1115	, , , , , , , , , , , , , , , , , , , ,		
344 (200			
364 1251			
MW-1512 (350			
NW-251 V 1453			
234 HIMBMB 1305			
32 1 1405			
-42 V 1500			
V 029 21/11/11	→		
Comments/Special Instructions Relinquished by: (Signature)		Relinquished by: (Signature)	Received by: (Signature)
san Gusber	Snar Warn	Printed Name:	Printed Name:
55	HR!	Сотралу:	Company:
Date & Time: Date & Time		Date & Time:	Date & Time:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

sis Request
Sis
y Analysis
Laboratory
ار مح
y Record
of Custody
of
Chain of

423-740-4000
Cooler
leuci posaric
No. Containers
7 X
<i>→ →</i>
Received by: (Signature) (Signature)
Bran Warn
Company:
Date & Time: Date & Time:

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Printed: 11/18/2016 5:01:23PM

٧	V	o	R	K	o	R	D	E	R	Ł

and the state of t	
16K0286	
1010/0200	

Client: Test America - Denver

Project Manager: Mark Harris

Project: OVSL

Project Number: 04204027.19

Preservation Confirmation

Container ID	Container Type	рН
16K0286-01 A	Miscellaneous Container	L2 puss
16K0286-02 A	Miscellaneous Container	
16K0286-03 A	Miscellaneous Container	
16K0286-04 A	Miscellaneous Container	
16K0286-05 A	Miscellaneous Container	
16K0286-06 A	Miscellaneous Container	
16K0286-07 A	Miscellaneous Container	
16K0286-08 A	Miscellaneous Container	
16K0286-09 A	Miscellaneous Container	
16K0286-10 A	Miscellaneous Container	
16K0286-11 A	Miscellaneous Container	
16K0286-12 A	Miscellaneous Container	
16K0286-13 A	Miscellaneous Container	
16K0286-14 A	Miscellaneous Container	
16K0286-15 A	Miscellaneous Container	
16K0286-16 A	Miscellaneous Container	
16K0286-17 A	Miscellaneous Container	
16K0286-18 A	Miscellaneous Container	
16K0286-19 A	Miscellaneous Container	
16K0286-20 A	Miscellaneous Container	
16K0286-21 A	Miscellaneous Container	
16K0286-22 A	Miscellaneous Container	
16K0286-23 A	Miscellaneous Container	
		V V

TIL	11-18-16
Preservation Confirmed By	Date

Reviewed By

Date

Page 7 of 37

Cooler Receipt Form

ARI Client: SCS	Project Name: OVS	L		
COC No(s): NA	Delivered by: Fed-Ex UPS Cou	rier Hand Delive	ered Other:	
Assigned ARI Job No: 1640286	Tracking No:			(NA)
Preliminary Examination Phase:	ridoking rio.			_NA
Were intact, properly signed and dated custody seals attached to	the outside of to cooler?	`	YES	100
Were custody papers included with the cooler?			25	140
Were custody papers properly filled out (ink, signed, etc.)		7	25)	NO
Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for cher	mistry)	7	128	NO
Time: 1240	2,5		-	
If cooler temperature is out of compliance fill out form 00070F		Temp Gun ID#	DOOS	255
Cooler Accepted by:		135		
Complete custody forms	and attach all shipping documents	and the later and the later to		
Log-In Phase:		nai s		
Was a temperature blank included in the cooler?			VEC	(10)
What kind of packing material was used? Bubble Wrap		Block Paper O	YES	NO
Was sufficient ice used (if appropriate)?	Dagges i Valli	NA	YES	NO.
Were all bottles sealed in individual plastic bags?		IVA.	YES	NO
Did all bottles arrive in good condition (unbroken)?		1	1.	
Were all bottle labels complete and legible?			YES	NO
Did the number of containers listed on COC match with the numb			YES	NO
Did all bottle labels and tags agree with custody papers?			YES	NO
Were all bottles used correct for the requested analyses?			YES	NO
Do any of the analyses (bottles) require preservation? (attach pre			YES	NO
Were all VOC vials free of air bubbles?	servation sheet, excluding VOCs)	NA	YES	NO
		NA	YES	NO
Was sufficient amount of sample sent in each bottle?	***************************************		YES	NO
Date VOC Trip Blank was made at ARI		MA	-	
Was Sample Split by ARI : NA YES Date/Time:	Equipment:		Split by:	
Samples Logged by: Date:	. ((-(8-(C	1650		
	r of discrepancies or concerns **			
DISEASE THE STATE OF THE STATE	or discrepancies or concerns			
Sample ID on Bottle Sample ID on COC	CompletD D-til		DEFE	THE RESERVE THE RE
Campio ID on COC	Sample ID on Bottle	Sampl	le ID on COC	2
l g s				**************************************
	1		5t	
Additional Notes, Discrepancies, & Resolutions:				:5
A Resolutions.	\$ (50)			
15 °		*		
By: Date:				
Cont Air Duality I	Small → "sm" (<2 mm)			nia
Small Air Eubbles Pesbubbles LARGE Air Bubbles -2mm 2-4 mm > 4 mm	The state of the s			-
0 0 0 0 0 0	Peabubbles > "pb" (2 to < 4 mm)			
0 0 0 0	Large → "lg" (4 to < 6 mm)		3 - 1 () () () () () () () () () (
	Headspace \rightarrow "hs" (>6 mm)			

Reported:

02-Dec-2016 06:32

Test America - Denver Project: OVSL
4955 Yarrow Street Project Number: 04204027.19
Arvada, CO 80002 Project Manager: Sample Receiving

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-13A	16K0286-01	Water	14-Nov-2016 10:43	18-Nov-2016 11:35
MW-13B	16K0286-02	Water	14-Nov-2016 11:35	18-Nov-2016 11:35
MW-16	16K0286-03	Water	14-Nov-2016 12:48	18-Nov-2016 11:35
MW-39	16K0286-04	Water	14-Nov-2016 13:54	18-Nov-2016 11:35
MW-4	16K0286-05	Water	14-Nov-2016 15:00	18-Nov-2016 11:35
MW-43	16K0286-06	Water	14-Nov-2016 11:58	18-Nov-2016 11:35
MW-29A	16K0286-07	Water	14-Nov-2016 12:44	18-Nov-2016 11:35
MW-20	16K0286-08	Water	14-Nov-2016 13:29	18-Nov-2016 11:35
Dup-2	16K0286-09	Water	14-Nov-2016 13:39	18-Nov-2016 11:35
MW-19C	16K0286-10	Water	14-Nov-2016 14:28	18-Nov-2016 11:35
MW-35	16K0286-11	Water	15-Nov-2016 09:50	18-Nov-2016 11:35
MW-34C	16K0286-12	Water	15-Nov-2016 11:15	18-Nov-2016 11:35
MW-34A	16K0286-13	Water	15-Nov-2016 12:00	18-Nov-2016 11:35
MW-36A	16K0286-14	Water	15-Nov-2016 12:51	18-Nov-2016 11:35
MW-15R	16K0286-15	Water	15-Nov-2016 13:50	18-Nov-2016 11:35
MW-2B1	16K0286-16	Water	15-Nov-2016 14:53	18-Nov-2016 11:35
MW-23A	16K0286-17	Water	16-Nov-2016 13:05	18-Nov-2016 11:35
MW-32	16K0286-18	Water	16-Nov-2016 14:05	18-Nov-2016 11:35
MW-42	16K0286-19	Water	16-Nov-2016 15:00	18-Nov-2016 11:35
MW-33A	16K0286-20	Water	17-Nov-2016 09:50	18-Nov-2016 11:35
MW-33C	16K0286-21	Water	17-Nov-2016 10:50	18-Nov-2016 11:35
Dup-1	16K0286-22	Water	17-Nov-2016 11:00	18-Nov-2016 11:35
MW-24	16K0286-23	Water	17-Nov-2016 13:20	18-Nov-2016 11:35

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

7 - 105

Test America - Denver Project: OVSL

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

Case Narrative

CASE NARRATIVE

Client: Test America - Denver

Project: OVSL

Workorder: 16K0286

Sample receipt

23 samples were received 18-Nov-2016 11:35 under ARI workorder 16K0286. For details regarding sample receipt, please refer to the Cooler Receipt Form.

Total Metals - EPA Method 200.8

These samples were digested and analyzed within the recommended holding time.

All initial and continuing calibrations were within method requirements.

Arsenic was not detected in the method blanks above the LOQ.

The percent recoveries for arsenic were within acceptable QC limits for the LCSs.

Matrix spikes (MSs) were prepared and analyzed in conjunction with samples MW-13 A and MW-34A. The percent recoveries for arsenic were within acceptable QC limits for the MSs.

Matrix duplicates (MDs) were prepared and analyzed in conjunction with samples MW-13 A and MW-34A. The RPDs for arsenic were within acceptable QC limits for the MDs.

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test America - Denver Project: OVSL

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-13A 16K0286-01 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 10:43

 Instrument: ICPMS2
 Analyzed: 11/23/2016 18:38

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.000170 mg/L

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Test America - Denver Project: OVSL
4955 Yarrow Street Project Number: 04204027.19

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-13B 16K0286-02 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 11:35

 Instrument: ICPMS2
 Analyzed: 11/23/2016 18:08

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.000314 mg/L

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-16 16K0286-03 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 12:48

 Instrument: ICPMS2
 Analyzed: 11/23/2016 18:13

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.000381 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-39 16K0286-04 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 13:54

 Instrument: ICPMS2
 Analyzed: 11/23/2016 18:18

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

 Analyte
 CAS Number
 Dilution
 Reporting Limit
 Result
 Units
 Notes

 Arsenic
 7440-38-2
 1
 0.0000400
 0.000181
 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-4 16K0286-05 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 15:00

 Instrument: ICPMS2
 Analyzed: 11/23/2016 18:23

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.000292 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-43 16K0286-06 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 11:58

 Instrument: ICPMS2
 Analyzed: 11/23/2016 18:28

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 ND mg/L U

Analytical Resources, Inc.

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

MW-29A 16K0286-07 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 12:44

 Instrument: ICPMS2
 Analyzed: 11/23/2016 19:07

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.00199 mg/L

Analytical Resources, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

4611 S. 134th Place, Suite 100 • Tukwila, WA 98168 • Ph: (206) 695-6200 • Fax: (206) 695-6202

Test America - Denver Project: OVSL
4955 Yarrow Street Project Number: 04204027.19
Arvada, CO 80002 Project Manager: Sample Receiving

Reported: 02-Dec-2016 06:32

MW-20 16K0286-08 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 13:29

 Instrument: ICPMS2
 Analyzed: 11/23/2016 19:12

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.000182 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

Dup-2 16K0286-09 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 13:39

 Instrument: ICPMS2
 Analyzed: 11/23/2016 19:16

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analytical Resources, Inc.

Test America - Denver Project: OVSL
4955 Yarrow Street Project Number: 04204027.19

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-19C 16K0286-10 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/14/2016 14:28

 Instrument: ICPMS2
 Analyzed: 11/23/2016 19:21

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.00288 mg/L

Analytical Resources, Inc.

Test America - Denver Project: OVSL
4955 Varrow Street Project Number: 04204027 19

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

MW-35 16K0286-11 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/15/2016 09:50

 Instrument: ICPMS2
 Analyzed: 11/23/2016 19:26

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analytical Resources, Inc.

Test America - Denver Project: OVSL
4955 Varrow Street Project Number: 04204027 1

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

MW-34C 16K0286-12 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/15/2016 11:15

 Instrument: ICPMS2
 Analyzed: 11/23/2016 19:31

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0607 Sample Size: 100 mL

Prepared: 11/23/2016 07:45 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.00542 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-34A 16K0286-13 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/15/2016 12:00

 Instrument: ICPMS2
 Analyzed: 11/30/2016 21:02

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x

Preparation Batch: BEK0716 Sample Size: 100 mL Prepared: 11/29/2016 07:30 Final Volume: 20 mL

 Analyte
 CAS Number
 Dilution
 Reporting Limit
 Result
 Units
 Notes

 Arsenic
 7440-38-2
 1
 0.0000400
 0.000453
 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-36A 16K0286-14 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/15/2016 12:51

 Instrument: ICPMS2
 Analyzed: 11/30/2016 20:33

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analytical Resources, Inc.

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

MW-15R 16K0286-15 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/15/2016 13:50

 Instrument: ICPMS2
 Analyzed: 11/30/2016 20:38

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x

Preparation Batch: BEK 0716

Sample Size: 100 m

Preparation Batch: BEK0716 Sample Size: 100 mL Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analytical Resources, Inc.

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

MW-2B1 16K0286-16 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/15/2016 14:53

 Instrument: ICPMS2
 Analyzed: 11/30/2016 20:43

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.00133 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

MW-23A 16K0286-17 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/16/2016 13:05

 Instrument: ICPMS2
 Analyzed: 11/30/2016 20:48

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

 Analyte
 CAS Number
 Dilution
 Limit
 Result
 Units
 Notes

 Arsenic
 7440-38-2
 1
 0.0000400
 0.000810
 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-32 16K0286-18 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/16/2016 14:05

 Instrument: ICPMS2
 Analyzed: 11/30/2016 20:52

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.00995 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-42 16K0286-19 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/16/2016 15:00

 Instrument: ICPMS2
 Analyzed: 11/30/2016 21:31

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.00186 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

MW-33A 16K0286-20 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/17/2016 09:50

 Instrument: ICPMS2
 Analyzed: 11/30/2016 21:36

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.000509 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-33C 16K0286-21 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/17/2016 10:50

 Instrument: ICPMS2
 Analyzed: 11/30/2016 21:41

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.00253 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number:04204027.19Reported:Arvada, CO 80002Project Manager:Sample Receiving02-Dec-2016 06:32

Dup-1 16K0286-22 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/17/2016 11:00

 Instrument: ICPMS2
 Analyzed: 11/30/2016 21:46

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analyte CAS Number Dilution Result Units Notes

Arsenic 7440-38-2 1 0.0000400 0.00250 mg/L

Analytical Resources, Inc.

4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

MW-24 16K0286-23 (Water)

Metals and Metallic Compounds

 Method: EPA 200.8
 Sampled: 11/17/2016 13:20

 Instrument: ICPMS2
 Analyzed: 11/30/2016 21:51

Sample Preparation: Preparation Method: RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x
Preparation Batch: BEK0716 Sample Size: 100 mL

Prepared: 11/29/2016 07:30 Final Volume: 20 mL

Analytical Resources, Inc.

Test America - Denver

Project: OVSL

4955 Yarrow StreetProject Number: 04204027.19Arvada, CO 80002Project Manager: Sample Receiving

Reported: 02-Dec-2016 06:32

Metals and Metallic Compounds - Quality Control

Batch BEK0607 - RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x

Instrument: ICPMS2

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEK0607-BLK1)				Prep	ared: 23-Nov	-2016 An	alyzed: 23-	Nov-2016 1	8:03		
Arsenic		ND	0.0000400	mg/L							U
LCS (BEK0607-BS1)				Prep	ared: 23-Nov	-2016 An	alyzed: 23-	Nov-2016 1	8:48		
Arsenic	75a	0.00468	0.0000400	mg/L	0.00500		93.5	80-120			
Duplicate (BEK0607-DUP1)		Sourc	e: 16K0286-01	Prep	ared: 23-Nov	-2016 An	alyzed: 23-	Nov-2016 1	8:33		
Arsenic	75a	0.000169	0.0000400	mg/L		0.000170			0.83	20	
Matrix Spike (BEK0607-MS1)		Sourc	e: 16K0286-01	Prep	ared: 23-Nov	-2016 An	alyzed: 23-	Nov-2016 1	8:43		
Arsenic	75a	0.00456	0.0000400	mg/L	0.00500	0.000170	87.8	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Test America - Denver

Project: OVSL

4955 Yarrow StreetProject Number: 04204027.19Arvada, CO 80002Project Manager: Sample Receiving

Reported: 02-Dec-2016 06:32

Metals and Metallic Compounds - Quality Control

Batch BEK0716 - RHN EPA 600/4-79-020 4.1.4 HNO3 matrix 5x

Instrument: ICPMS2

QC Sample/Analyte	Isotope	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Blank (BEK0716-BLK1)				Prepa	ared: 29-Nov	7-2016 An	alyzed: 30-	Nov-2016 2	20:28		
Arsenic	75a	ND	0.0000400	mg/L							U
LCS (BEK0716-BS1)				Prepa	ared: 29-Nov	7-2016 An	alyzed: 30-	Nov-2016 2	21:12		
Arsenic	75a	0.00446	0.0000400	mg/L	0.00500		89.3	80-120			
Duplicate (BEK0716-DUP1)		Sourc	e: 16K0286-13	Prepa	ared: 29-Nov	7-2016 An	alyzed: 30-	Nov-2016 2	20:57		
Arsenic	75a	0.000446	0.0000400	mg/L		0.000453			1.56	20	
Matrix Spike (BEK0716-MS1)		Sourc	e: 16K0286-13	Prepa	ared: 29-Nov	7-2016 An	alyzed: 30-	Nov-2016 2	21:07		
Arsenic	75a	0.00471	0.0000400	mg/L	0.00500	0.000453	85.2	75-125			

Recovery limits for target analytes in MS/MSD QC samples are advisory only.

Analytical Resources, Inc.

Test America - Denver Project: OVSL
4955 Yarrow Street Project Number: 04204027.19
Arvada, CO 80002 Project Manager: Sample Receiving

Reported: 02-Dec-2016 06:32

Certified Analyses included in this Report

Analyte Certifications

EPA 200.8 in Water

Arsenic-75a NELAP, WADOE, WA-DW, DoD-ELAP

Arsenic-75b NELAP

Code	Description	Number	Expires
ADEC	Alaska Dept of Environmental Conservation	UST-033	05/06/2017
CALAP	California Department of Public Health CAELAP	2748	02/28/2018
DoD-ELAP	DoD-Environmental Laboratory Accreditation Program	66169	03/30/2017
NELAP	ORELAP - Oregon Laboratory Accreditation Program	WA100006	05/11/2017
WADOE	WA Dept of Ecology	C558	06/30/2017
WA-DW	Ecology - Drinking Water	C558	06/30/2017

Analytical Resources, Inc.

Test America - DenverProject: OVSL4955 Yarrow StreetProject Number: 04204027.19Reported:Arvada, CO 80002Project Manager: Sample Receiving02-Dec-2016 06:32

Notes and Definitions

U This analyte is not detected above the applicable reporting or detection limit.

J Estimated concentration value detected below the reporting limit.

D The reported value is from a dilution

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

[2C] Indicates this result was quantified on the second column on a dual column analysis.

ANALYTICAL REPORT

Job Number: 280-91425-1

Job Description: WA02|Olympic View Sanitary LF

For:

Waste Management Sun Valley Hauling 9081 Tujunga Avenue Sun Valley, CA 91352

Attention: Mr. Phil Perley

Betsy Sara

Approved for release Betsy A Sara Project Manager II 12/15/2016 5:42 PM

Betsy A Sara, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0189 betsy.sara@testamericainc.com 12/15/2016

cc: Mr. Dan Venchiarutti

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

Table of Contents

Cover Title Page	1
Report Narrative	3
Executive Summary	4
Method Summary	5
Method / Analyst Summary	6
Sample Summary	7
Sample Results	8
Sample Datasheets	9
Data Qualifiers	11
QC Results	12
Qc Association Summary	13
Qc Reports	16
Laboratory Chronicle	34
Client Chain of Custody	37
Sample Receipt Checklist	38

CASE NARRATIVE

Client: Waste Management

Project: WA02|Olympic View Sanitary LF

Report Number: 280-91425-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Sample Receiving

The sample was received on 11/25/2016; the sample arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 4.9 C.

Holding Times

The 48-hour holding time for Biochemical Oxygen Demand (BOD) Method 5210B expired prior to sample receipt. The client was notified.

The Total Dissolved Solids (TDS) Method 2540C was analyzed 1 day past the 7-day holding time. Total Dissolved Solids analysis was requested with a few hours remaining in the holding time. The client was notified.

All other holding times were within established control limits.

Method Blanks

All Method Blank recoveries were within established control limits.

Laboratory Control Samples (LCS)

The Method 350.1 LCS/LCSD exhibited RPD data outside the QC control limits for Ammonia. Both the LCS and LCSD were recovered within QC control limits, demonstrating that the laboratory performed the method within acceptable guidelines; therefore, corrective action is deemed unnecessary.

All other Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The Matrix Spike and Matrix Spike Duplicate performed on a sample from another client exhibited recoveries outside control limits for Total Organic Carbon (TOC) Method 5310B. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, this anomaly may be due to matrix interference and no corrective action was taken.

All other MS and MSD samples were within established control limits.

EXECUTIVE SUMMARY - Detections

Client: Waste Management Job Number: 280-91425-1

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
280-91425-1 LP-LCD					
Chloride	630		10	mg/L	300.0
Sulfate	260		10	mg/L	300.0
Ammonia (as N)	4.7		0.15	mg/L	350.1
Chemical Oxygen Demand (COD)	190		20	mg/L	410.4
Alkalinity, Total (As CaCO3)	790		5.0	mg/L	SM 2320B
Alkalinity, Bicarbonate (As CaCO3)	790		5.0	mg/L	SM 2320B
Total Dissolved Solids (TDS)	2400	Н	10	mg/L	SM 2540C
Total Organic Carbon - Average	54		2.0	mg/L	SM 5310B
Biochemical Oxygen Demand	14	Н	13	mg/L	SM5210B
Total Recoverable					
Calcium, Total	58		0.040	mg/L	6010B
Iron, Total	0.54		0.060	mg/L	6010B
Magnesium, Total	34		0.050	mg/L	6010B
Manganese, Total	0.73		0.050	mg/L	6010B
Potassium, Total	76		1.0	mg/L	6010B
Sodium, Total	740		1.0	mg/L	6010B

METHOD SUMMARY

Client: Waste Management Job Number: 280-91425-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6010B	SW846 3005A
Anions, Ion Chromatography	TAL DEN	MCAWW 300.0	
Nitrogen, Ammonia	TAL DEN	MCAWW 350.1	
COD	TAL DEN	MCAWW 410.4	
Alkalinity	TAL DEN	SM SM 2320B	
Solids, Total Dissolved (TDS)	TAL DEN	SM SM 2540C	
Organic Carbon, Total (TOC)	TAL DEN	SM SM 5310B	
BOD, 5 Day	TAL DEN	SM SM5210B	

Lab References:

TAL DEN = TestAmerica Denver

Method References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Waste Management Job Number: 280-91425-1

Method	Analyst	Analyst ID
SW846 6010B	Lackey, Cara M	CML
MCAWW 300.0	Benson, Alex F	AFB
MCAWW 350.1	Spedale, Morgan A	MAS
MCAWW 410.4	Jewell, Connie C	CCJ
SM SM 2320B	Carter, Melynda M	MMC
SM SM 2540C	Pedrick, Joshua A	JAP
SM SM 5310B	Jewell, Connie C	CCJ
SM SM5210B	Martinez, Rut S	RSM

SAMPLE SUMMARY

Client: Waste Management Job Number: 280-91425-1

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
280-91425-1	LP-LCD	Water	11/22/2016 1110	11/25/2016 0835

SAMPLE RESULTS

Analytical Data

Job Number: 280-91425-1 Client: Waste Management

Client Sample ID: LP-LCD

Lab Sample ID: 280-91425-1 Date Sampled: 11/22/2016 1110

Date Received: 11/25/2016 0835 Client Matrix: Water

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-353968 MT_025 Instrument ID:

Prep Method: 3005A Prep Batch: 280-353411 25B120116.asc Lab File ID:

1.0 50 mL Dilution: Initial Weight/Volume: 12/01/2016 1816 50 mL Final Weight/Volume:

Analysis Date: 11/29/2016 1435 Prep Date:

Result (mg/L) RL RL Qualifier Analyte 0.040 0.040 Calcium, Total 58 0.54 0.060 Iron, Total 0.060 34 0.050 Magnesium, Total 0.050 Manganese, Total 0.73 0.050 0.050 Potassium, Total 76 1.0 1.0 Sodium, Total 740 1.0 1.0

Client: Waste Management Job Number: 280-91425-1

General Chemistry

Client Sample ID: LP-LCD

 Lab Sample ID:
 280-91425-1
 Date Sampled: 11/22/2016 1110

 Client Matrix:
 Water
 Date Received: 11/25/2016 0835

nalyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	630		mg/L	10	10	10	300.0
Analysis Batch: 2	80-355362	Analysis Date	: 12/14/20	16 0143			
Sulfate	260		mg/L	10	10	10	300.0
Analysis Batch: 2	80-355362	Analysis Date	: 12/14/20	16 0143			
Ammonia (as N)	4.7		mg/L	0.15	0.15	5.0	350.1
Analysis Batch: 2	80-353756	Analysis Date	: 11/30/20	16 1300			
Chemical Oxygen Demand (COD)	190		mg/L	20	20	2.0	410.4
Analysis Batch: 2	80-354396	Analysis Date	: 12/06/20	16 0921			
Alkalinity, Total (As CaCO3)	790		mg/L	5.0	5.0	1.0	SM 2320B
Analysis Batch: 2	80-353708	Analysis Date	: 11/29/20	16 1345			
Alkalinity, Bicarbonate (As CaCO3)	790		mg/L	5.0	5.0	1.0	SM 2320B
Analysis Batch: 2	80-353708	Analysis Date	: 11/29/20	16 1345			
otal Dissolved Solids (TDS)	2400	Н	mg/L	10	10	1.0	SM 2540C
Analysis Batch: 2	80-353679	Analysis Date	: 11/30/20	16 0904			
otal Organic Carbon - Average	54		mg/L	2.0	2.0	2.0	SM 5310B
Analysis Batch: 2	80-355417	Analysis Date	: 12/12/20	16 1939			
Biochemical Oxygen Demand	14	Н	mg/L	13	13	5.0	SM5210B
Analysis Batch: 2	80-353110	Analysis Date	: 11/25/20	16 1722			

DATA REPORTING QUALIFIERS

Client: Waste Management Job Number: 280-91425-1

Lab Section	Qualifier	Description
General Chemistry		
	F1	MS and/or MSD Recovery is outside acceptance limits.
	*	RPD of the LCS and LCSD exceeds the control limits
	Н	Sample was prepped or analyzed beyond the specified holding time

QUALITY CONTROL RESULTS

Job Number: 280-91425-1 Client: Waste Management

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 280-353411	1				
LCS 280-353411/2-A	Lab Control Sample	R	Water	3005A	
MB 280-353411/1-A	Method Blank	R	Water	3005A	
280-91415-D-1-B MS	Matrix Spike	R	Water	3005A	
280-91415-D-1-C MSD	Matrix Spike Duplicate	R	Water	3005A	
280-91425-1	LP-LCD	R	Water	3005A	
Analysis Batch:280-353	3968				
LCS 280-353411/2-A	Lab Control Sample	R	Water	6010B	280-353411
MB 280-353411/1-A	Method Blank	R	Water	6010B	280-353411
280-91415-D-1-B MS	Matrix Spike	R	Water	6010B	280-353411
280-91415-D-1-C MSD	Matrix Spike Duplicate	R	Water	6010B	280-353411
280-91425-1	LP-LCD	R	Water	6010B	280-353411

Report Basis
R = Total Recoverable

Client: Waste Management Job Number: 280-91425-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry	onom campio is		GHOTH MULTIX	motriou	1 Top Baton
	2440				
Analysis Batch:280-353 LCS 280-353110/3		Т	Water	SM5210B	
MB 280-353110/4	Lab Control Sample Method Blank	T	Water	SM5210B SM5210B	
280-91425-1	LP-LCD	T T	Water	SM5210B SM5210B	
280-91425-1DU	Duplicate	T T	Water	SM5210B SM5210B	
200-91425-100	Duplicate	'	vvalei	310132 1015	
Analysis Batch:280-35	3679				
LCS 280-353679/2	Lab Control Sample	Т	Water	SM 2540C	
LCSD 280-353679/3	Lab Control Sample Duplicate	Ť	Water	SM 2540C	
MB 280-353679/1	Method Blank	Ť	Water	SM 2540C	
280-91425-1	LP-LCD	Ť	Water	SM 2540C	
280-91498-B-2 DU	Duplicate	Ť	Water	SM 2540C	
200 01 100 2 2 2 0	Bapiloate	•		0111 20 100	
Analysis Batch:280-35	3708				
LCS 280-353708/4	Lab Control Sample	T	Water	SM 2320B	
MB 280-353708/5	Method Blank	T	Water	SM 2320B	
280-91425-1	LP-LCD	T	Water	SM 2320B	
280-91425-1DU	Duplicate	T	Water	SM 2320B	
Analysis Batch:280-353	3756				
LCS 280-353696/1-A	Lab Control Sample	T	Water	350.1	
LCS 280-353756/59	Lab Control Sample	T	Water	350.1	
LCSD 280-353696/2-A	Lab Control Sample Duplicate	T	Water	350.1	
LCSD 280-353756/60	Lab Control Sample Duplicate	T	Water	350.1	
MB 280-353756/61	Method Blank	T	Water	350.1	
280-91179-C-1 MS	Matrix Spike	T	Water	350.1	
280-91179-C-1 MSD	Matrix Spike Duplicate	T	Water	350.1	
280-91425-1	LP-LCD	T	Water	350.1	
280-91497-J-3 MS	Matrix Spike	T	Water	350.1	
280-91497-J-3 MSD	Matrix Spike Duplicate	Т	Water	350.1	
Analysis Batch:280-354	4396				
LCS 280-354396/3	Lab Control Sample	Т	Water	410.4	
LCSD 280-354396/4	Lab Control Sample Duplicate	Т	Water	410.4	
MB 280-354396/5	Method Blank	Т	Water	410.4	
280-91373-C-1 MS	Matrix Spike	T	Water	410.4	
280-91373-C-1 MSD	Matrix Spike Duplicate	T	Water	410.4	
280-91425-1	LP-LCD	Т	Water	410.4	

Job Number: 280-91425-1 Client: Waste Management

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-355	362				
LCS 280-355362/4	Lab Control Sample	T	Water	300.0	
LCSD 280-355362/5	Lab Control Sample Duplicate	T	Water	300.0	
MB 280-355362/6	Method Blank	T	Water	300.0	
280-91415-A-1 DU	Duplicate	Т	Water	300.0	
280-91415-A-1 MS	Matrix Spike	Т	Water	300.0	
280-91415-A-1 MSD	Matrix Spike Duplicate	Т	Water	300.0	
280-91425-1	LP-LCD	Т	Water	300.0	
Analysis Batch:280-355	6417				
LCS 280-355417/12	Lab Control Sample	Т	Water	SM 5310B	
MB 280-355417/13	Method Blank	Т	Water	SM 5310B	
280-91425-1	LP-LCD	Т	Water	SM 5310B	
280-91615-C-3 MS	Matrix Spike	Т	Water	SM 5310B	
280-91615-C-3 MSD	Matrix Spike Duplicate	Т	Water	SM 5310B	
Analysis Batch:280-355	6418				
LCS 280-355418/12	Lab Control Sample	Т	Water	SM 5310B	
MB 280-355418/13	Method Blank	Т	Water	SM 5310B	
280-91425-1	LP-LCD	Т	Water	SM 5310B	
280-91615-C-3 MS	Matrix Spike	Т	Water	SM 5310B	
280-91615-C-3 MSD	Matrix Spike Duplicate	Т	Water	SM 5310B	

Report Basis T = Total

Client: Waste Management Job Number: 280-91425-1

Method Blank - Batch: 280-353411

Method: 6010B Preparation: 3005A Total Recoverable

Lab Sample ID: MB 280-353411/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/01/2016 1658
Prep Date: 11/29/2016 1435

Leach Date: N/A

Analysis Batch: 280-353968 Prep Batch: 280-353411

Leach Batch: N/A Units: mg/L Instrument ID: MT_025

Lab File ID: 25B120116.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Calcium, Total	ND		0.040	0.040
Iron, Total	ND		0.060	0.060
Magnesium, Total	ND		0.050	0.050
Manganese, Total	ND		0.050	0.050
Potassium, Total	ND		1.0	1.0
Sodium, Total	ND		1.0	1.0

Lab Control Sample - Batch: 280-353411

Method: 6010B Preparation: 3005A Total Recoverable

Lab Sample ID: LCS 280-353411/2-A Client Matrix: Water

Dilution: 1.0
Analysis Date: 12/01/2016 1701
Prep Date: 11/29/2016 1435

Leach Date: N/A

Analysis Batch: 280-353968
Prep Batch: 280-353411
Leach Batch: N/A

Units: mg/L

Instrument ID: MT_025 Lab File ID: 25B120116.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Calcium, Total	50.0	51.5	103	90 - 111	
Iron, Total	1.00	1.02	102	89 - 115	
Magnesium, Total	50.0	51.7	103	90 - 113	
Manganese, Total	0.500	0.505	101	90 - 110	
Potassium, Total	50.0	51.7	103	89 - 114	
Sodium, Total	50.0	51.3	103	90 - 115	

Client: Waste Management Job Number: 280-91425-1

280-353968

280-353411

N/A

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-353411

280-91415-D-1-B MS MS Lab Sample ID:

Client Matrix:

1.0 Dilution:

12/01/2016 1708 Analysis Date: Prep Date: 11/29/2016 1435

Leach Date: N/A

MSD Lab Sample ID: 280-91415-D-1-C MSD

Water Client Matrix: Dilution: 1.0

12/01/2016 1710 Analysis Date: Prep Date: 11/29/2016 1435

Leach Date: N/A Method: 6010B Preparation: 3005A **Total Recoverable**

MT_025 Instrument ID:

Lab File ID: 25B120116.asc

50 mL Initial Weight/Volume: Final Weight/Volume: 50 mL

Analysis Batch: 280-353968 MT 025 Instrument ID:

Analysis Batch:

Prep Batch:

Leach Batch:

280-353411 25B120116.asc Prep Batch: Lab File ID: Leach Batch: N/A Initial Weight/Volume: 50 ml

Final Weight/Volume: 50 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Calcium, Total	95	101	48 - 153	3	20		
Iron, Total	104	105	52 - 155	2	20		
Magnesium, Total	100	102	62 - 146	2	20		
Manganese, Total	99	101	79 - 121	2	20		
Potassium, Total	101	105	76 - 132	4	20		
Sodium, Total	98	102	70 - 203	4	20		

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-353411

Method: 6010B Preparation: 3005A **Total Recoverable**

MS Lab Sample ID: MSD Lab Sample ID: 280-91415-D-1-C MSD 280-91415-D-1-B MS Units: mg/L

Water Client Matrix: Dilution: 1.0

12/01/2016 1708 Analysis Date: Prep Date: 11/29/2016 1435

Leach Date: N/A

Water Client Matrix: Dilution: 1.0

12/01/2016 1710 Analysis Date: Prep Date: 11/29/2016 1435

Leach Date: N/A

	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
Calcium, Total	74	50.0	50.0	122	125
Iron, Total	ND	1.00	1.00	1.04	1.05
Magnesium, Total	17	50.0	50.0	67.2	68.4
Manganese, Total	ND	0.500	0.500	0.497	0.506
Potassium, Total	3.5	50.0	50.0	54.0	56.1
Sodium, Total	13	50.0	50.0	61.6	64.0

25 uL

Client: Waste Management Job Number: 280-91425-1

Method Blank - Batch: 280-355362 Method: 300.0 Preparation: N/A

MB 280-355362/6 Analysis Batch: 280-355362 Instrument ID: WC_IonChrom8 Lab Sample ID: Client Matrix: Water Prep Batch: Lab File ID: 06.0000.d N/A Leach Batch: 5 mL 1.0 N/A Dilution: Initial Weight/Volume: Analysis Date: 12/13/2016 1050 mg/L Final Weight/Volume: 5 mL Units:

Prep Date: N/A Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Chloride
 ND
 1.0
 1.0

 Sulfate
 ND
 1.0
 1.0

Method Reporting Limit Check - Batch: 280-355362 Method: 300.0 Preparation: N/A

Preparation. N/A

Analysis Batch: WC IonChrom8 Lab Sample ID: MRL 280-355362/3 280-355362 Instrument ID: 03.0000.d Prep Batch: Client Matrix: Water N/A Lab File ID: 1.0 Leach Batch: 5 mL Dilution: N/A Initial Weight/Volume: Analysis Date: 12/13/2016 1000 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Chloride 2.50 ND 103 50 - 150 Sulfate 2.50 ND 101 50 - 150

Lab Control Sample/ Method: 300.0

Lab Control Sample Duplicate Recovery Report - Batch: 280-355362 Preparation: N/A

LCS Lab Sample ID: LCS 280-355362/4 WC IonChrom8 Analysis Batch: 280-355362 Instrument ID: Water Prep Batch: 04.0000.d Client Matrix: N/A Lab File ID: 1.0 Leach Batch: 5 mL Dilution: N/A Initial Weight/Volume: 12/13/2016 1016 Final Weight/Volume: Analysis Date: mg/L 5 mL Units:

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-355362/5 Analysis Batch: 280-355362 Instrument ID: WC_lonChrom8 Client Matrix: Water Prep Batch: N/A Lab File ID: 05.0000.d

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/13/2016 1033 Units: mg/L Final Weight/Volume: 5 mL Prep Date: N/A 25 uL

Prep Date: N/A Leach Date: N/A

% Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit Chloride 101 101 90 - 110 0 10 Sulfate 101 101 90 - 110 0 10

Client: Waste Management Job Number: 280-91425-1

Method: 300.0 **Laboratory Control/** Laboratory Duplicate Data Report - Batch: 280-355362 Preparation: N/A

LCS Lab Sample ID: LCS 280-355362/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-355362/5

Water Water Client Matrix: Client Matrix: Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/13/2016 1016 Analysis Date: 12/13/2016 1033

Prep Date: Prep Date: N/A N/A Leach Date: Leach Date: N/A N/A

LCSD LCS Spike LCSD Spike LCS Analyte Amount Amount Result/Qual Result/Qual Chloride 100 100 101 101 100 Sulfate 100 101 101

Method: 300.0 Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-355362 Preparation: N/A

MS Lab Sample ID: 280-91415-A-1 MS Analysis Batch: 280-355362 Instrument ID: WC IonChrom8 Client Matrix: Water Prep Batch: 27.0000.d N/A Lab File ID:

Leach Batch: 5 mL Dilution: N/A Initial Weight/Volume: 12/13/2016 2312 Analysis Date: 5 mL Final Weight/Volume:

Prep Date: N/A 25 uL

Leach Date: N/A

MSD Lab Sample ID: 280-91415-A-1 MSD Analysis Batch: 280-355362 WC_IonChrom8 Instrument ID: Water Prep Batch: 28.0000.d Client Matrix:

N/A Lab File ID: Leach Batch: Dilution: N/A Initial Weight/Volume: 5 mL Analysis Date: 12/13/2016 2329 Final Weight/Volume: 5 mL

Prep Date: N/A 25 uL Leach Date: N/A

% Rec. MS **MSD RPD** RPD I imit MS Qual MSD Qual Analyte I imit

Chloride 103 80 - 120 2 20 101 Sulfate 101 104 80 - 120 1 20

Client: Waste Management Job Number: 280-91425-1

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-355362 Preparation: N/A

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/13/2016 2312 Analysis Date: 12/13/2016 2329

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Sample MS Spike MSD Spike MS **MSD** Result/Qual Analyte Amount Amount Result/Qual Result/Qual Chloride 9.0 25.0 25.0 34.2 34.9 Sulfate 28 25.0 25.0 53.8 54.5

Duplicate - Batch: 280-355362 Method: 300.0 Preparation: N/A

280-91415-A-1 DU Analysis Batch: 280-355362 WC IonChrom8 Lab Sample ID: Instrument ID: 26.0000.d Water Prep Batch: Client Matrix: Lab File ID: N/A Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 5 mL Analysis Date: 12/13/2016 2255 Units: mg/L Final Weight/Volume: 5 mL

Analysis Date: 12/13/2016 2255 Units: mg/L Final Weight/Volume: 5 mL
Prep Date: N/A
Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual 9.0 Chloride 9.25 3 15 Sulfate 28 0.2 28.5 15

Client: Waste Management Job Number: 280-91425-1

Method Blank - Batch: 280-353756 Method: 350.1

Preparation: N/A

Lab Sample ID: MB 280-353756/61 Analysis Batch: 280-353756 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\113016.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/30/2016 1310 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Ammonia (as N)
 ND
 0.030
 0.030

Client: Waste Management Job Number: 280-91425-1

Method: 350.1 Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 280-353756 Preparation: N/A

LCS Lab Sample ID: LCS 280-353696/1-A Analysis Batch: 280-353756 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\113016.RS

1.0 Leach Batch: 100 mL N/A Dilution: Initial Weight/Volume:

Analysis Date: 11/30/2016 1144 mg/L Final Weight/Volume: 100 mL Units: Prep Date: N/A

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353696/2-A Analysis Batch: 280-353756 WC Alp 3 Instrument ID:

C:\FLOW 4\113016.RS Water Prep Batch: Client Matrix: N/A Lab File ID:

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

11/30/2016 1146 100 mL Analysis Date: Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual

Ammonia (as N) 100 101 90 - 110 1 10

Lab Control Sample/ Method: 350.1 Lab Control Sample Duplicate Recovery Report - Batch: 280-353756 Preparation: N/A

Analysis Batch: LCS Lab Sample ID: LCS 280-353756/59 280-353756 Instrument ID: WC Alp 3

Water C:\FLOW 4\113016.RS

Prep Batch: Client Matrix: N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

11/30/2016 1306 100 mL Analysis Date: Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353756/60 Analysis Batch: 280-353756 WC Alp 3 Instrument ID:

Water Prep Batch: N/A C:\FLOW_4\113016.RS Client Matrix: Lab File ID:

Leach Batch: 100 mL Dilution: 1.0 N/A Initial Weight/Volume:

100

Analysis Date: 11/30/2016 1308 100 mL Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

90

Ammonia (as N)

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual

90 - 110

11

10

Client: Waste Management Job Number: 280-91425-1

Laboratory Control/ Method: 350.1 Laboratory Duplicate Data Report - Batch: 280-353756 Preparation: N/A

LCS Lab Sample ID: LCS 280-353696/1-A Units: mg/L LCSD Lab Sample ID: LCSD 280-353696/2-A

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/30/2016 1144 Analysis Date: 11/30/2016 1146

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS LCSD Amount Result/Qual Result/Qual Ammonia (as N) 2.50 2.50 2.50 2.52

Laboratory Control/ Method: 350.1 Laboratory Duplicate Data Report - Batch: 280-353756 Preparation: N/A

LCS Lab Sample ID: LCS 280-353756/59 Units: mg/L LCSD Lab Sample ID: LCSD 280-353756/60

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/30/2016 1306 Analysis Date: 11/30/2016 1308

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

 Analyte
 LCS Spike Amount
 LCSD Spike Amount
 LCS Result/Qual
 LCSD Result/Qual

 Ammonia (as N)
 2.50
 2.50
 2.25
 2.51
 *

Client: Waste Management Job Number: 280-91425-1

Method: 350.1 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-353756 Preparation: N/A

MS Lab Sample ID: 280-91497-J-3 MS Analysis Batch: 280-353756 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\113016.RS

1.0 Leach Batch: 10 mL Dilution: N/A Initial Weight/Volume:

11/30/2016 1314 Analysis Date: Final Weight/Volume: 10 mL

Prep Date: N/A Leach Date: N/A

MSD Lab Sample ID: 280-91497-J-3 MSD Analysis Batch: 280-353756 WC Alp 3 Instrument ID:

C:\FLOW 4\113016.RS Water Prep Batch: Client Matrix: N/A Lab File ID:

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

11/30/2016 1316 Analysis Date: Final Weight/Volume: 10 mL Prep Date: N/A

% Rec. MS **MSD** MSD Qual Analyte Limit **RPD** RPD Limit MS Qual

Ammonia (as N) 108 108 90 - 110 0 10

Leach Date:

Leach Date:

N/A

N/A

Matrix Spike/ Method: 350.1 Preparation: N/A Matrix Spike Duplicate Recovery Report - Batch: 280-353756

MS Lab Sample ID: 280-91179-C-1 MS Analysis Batch: 280-353756 WC Alp 3 Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW 4\113016.RS

1.0 Leach Batch: 10 mL Dilution: N/A Initial Weight/Volume:

11/30/2016 1358 Analysis Date: Final Weight/Volume: 10 mL

Prep Date: N/A Leach Date: N/A

MSD Lab Sample ID: 280-91179-C-1 MSD Analysis Batch: 280-353756 Instrument ID: WC Alp 3

Water Prep Batch: C:\FLOW_4\113016.RS Client Matrix: N/A Lab File ID:

1.0 Leach Batch: 10 mL Dilution: N/A Initial Weight/Volume:

11/30/2016 1400 10 mL Analysis Date: Final Weight/Volume:

Prep Date: N/A

% Rec. MS **MSD** RPD MS Qual MSD Qual Analyte Limit **RPD Limit**

Ammonia (as N) 107 105 90 - 110 2 10

Client: Waste Management Job Number: 280-91425-1

Matrix Spike/ Method: 350.1
Matrix Spike Duplicate Recovery Report - Batch: 280-353756 Preparation: N/A

MS Lab Sample ID: 280-91497-J-3 MS

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 1314

Prep Date: N/A Leach Date: N/A Units: mg/L MSD Lab Sample ID: 280-91497-J-3 MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 1316

Prep Date: N/A Leach Date: N/A

MS Spike MSD Spike MS **MSD** Sample Analyte Result/Qual Amount Amount Result/Qual Result/Qual Ammonia (as N) 0.079 1.00 1.00 1.16 1.16

Matrix Spike/ Method: 350.1
Matrix Spike Duplicate Recovery Report - Batch: 280-353756 Preparation: N/A

MS Lab Sample ID: 280-91179-C-1 MS Units: m

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 1358

Prep Date: N/A Leach Date: N/A Units: mg/L MSD Lab Sample ID: 280-91179-C-1 MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 1400

Prep Date: N/A Leach Date: N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Amount Result/Qual Result/Qual Ammonia (as N) ND 1.00 1.00 1.07 1.05

Client: Waste Management Job Number: 280-91425-1

280-354396

Method Blank - Batch: 280-354396 Method: 410.4 Preparation: N/A

Analysis Batch: WC_Genesys20 Lab Sample ID: Instrument ID: Client Matrix: Water Prep Batch: Lab File ID: N/A N/A Leach Batch: 2 mL 1.0 N/A Dilution: Initial Weight/Volume: 12/06/2016 0921 Analysis Date: mg/L 2 mL Units: Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

MB 280-354396/5

RL RL Analyte Result Qual Chemical Oxygen Demand (COD) ND 10 10

Method: 410.4 Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 280-354396 Preparation: N/A

Analysis Batch: LCS Lab Sample ID: LCS 280-354396/3 280-354396 WC Genesys20 Instrument ID:

Prep Batch: Client Matrix: Water N/A Lab File ID: N/A Leach Batch: 100 mL Dilution: 1.0 N/A Initial Weight/Volume:

12/06/2016 0921 Analysis Date: Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

Leach Date: N/A

N/A

Leach Date:

LCSD Lab Sample ID: LCSD 280-354396/4 Analysis Batch: 280-354396 WC Genesys20 Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Leach Batch: 100 mL 1.0 N/A Initial Weight/Volume: Dilution:

Analysis Date: 12/06/2016 0921 100 mL Units: mq/L Final Weight/Volume: Prep Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD**

RPD Limit LCS Qual LCSD Qual

Chemical Oxygen Demand (COD) 95 97 90 - 110 2 11

Method: 410.4 **Laboratory Control/** Laboratory Duplicate Data Report - Batch: 280-354396 Preparation: N/A

LCS Lab Sample ID: LCS 280-354396/3 Units: mg/L LCSD Lab Sample ID: LCSD 280-354396/4

Client Matrix: Water Client Matrix: Water 1.0 1.0 Dilution: Dilution:

12/06/2016 0921 12/06/2016 0921 Analysis Date: Analysis Date:

Prep Date: Prep Date: N/A N/A Leach Date: Leach Date: N/A N/A

LCS **LCSD** LCS Spike LCSD Spike Analyte Amount Amount Result/Qual Result/Qual 100 100 95.5 97.1 Chemical Oxygen Demand (COD)

Client: Waste Management Job Number: 280-91425-1

Method: 410.4 Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-354396 Preparation: N/A

MS Lab Sample ID: 280-91373-C-1 MS Analysis Batch: 280-354396 WC_Genesys20 Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A 5.0 Leach Batch: 100 mL N/A Initial Weight/Volume: Dilution:

12/06/2016 0921 Analysis Date: Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

MSD Lab Sample ID: 280-91373-C-1 MSD Analysis Batch: 280-354396 WC Genesys20 Instrument ID:

Water Prep Batch: Client Matrix: N/A Lab File ID: N/A Leach Batch: Dilution: 5.0 N/A Initial Weight/Volume: 100 mL

Analysis Date: 12/06/2016 0921 100 mL Final Weight/Volume: Prep Date: N/A

% Rec.

MS **MSD** MS Qual MSD Qual Analyte Limit **RPD RPD Limit** Chemical Oxygen Demand (COD) 101 99 90 - 110

Matrix Spike/ Method: 410.4

Leach Date:

N/A

Chemical Oxygen Demand (COD)

TestAmerica Denver

Matrix Spike Duplicate Recovery Report - Batch: 280-354396 Preparation: N/A

MSD Lab Sample ID: 280-91373-C-1 MSD MS Lab Sample ID: 280-91373-C-1 MS Units: mg/L

Client Matrix: Water Client Matrix: Water 5.0 5.0 Dilution: Dilution:

12/06/2016 0921 12/06/2016 0921 Analysis Date: Analysis Date:

Prep Date: Prep Date: N/A N/A Leach Date: N/A Leach Date: N/A

270

MSD Sample MS Spike MSD Spike MS Result/Qual Result/Qual Amount **Amount** Result/Qual Analyte

250

250

519

514

12/15/2016 Page 27 of 38

Client: Waste Management Job Number: 280-91425-1

Method Blank - Batch: 280-353708 Method: SM 2320B Preparation: N/A

MB 280-353708/5 Analysis Batch: 280-353708 WC_AT2 Lab Sample ID: Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: 113016 alk.TXT 1.0 Leach Batch:

N/A Initial Weight/Volume: Dilution: 11/29/2016 1336 Analysis Date: Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

N/A

N/A

RL RL Result Qual Analyte ND Alkalinity, Total (As CaCO3) 5.0 5.0 Alkalinity, Bicarbonate (As CaCO3) ND 5.0 5.0

Lab Control Sample - Batch: 280-353708 Method: SM 2320B Preparation: N/A

Analysis Batch: WC AT2 Lab Sample ID: LCS 280-353708/4 280-353708 Instrument ID:

Prep Batch: 113016 alk.TXT Client Matrix: Water N/A Lab File ID:

1.0 Leach Batch: Dilution: N/A Initial Weight/Volume:

11/29/2016 1332 Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A Leach Date:

Analyte Spike Amount Result % Rec. Limit Qual 201 100 Alkalinity, Total (As CaCO3) 200 90 - 110

Duplicate - Batch: 280-353708 Method: SM 2320B Preparation: N/A

280-91425-1 Analysis Batch: 280-353708 WC_AT2 Lab Sample ID: Instrument ID:

Prep Batch: 113016 alk.TXT Client Matrix: Water N/A Lab File ID:

1.0 Leach Batch: Dilution: N/A Initial Weight/Volume:

Analysis Date: 11/29/2016 1352 mg/L Units: Final Weight/Volume: Prep Date: N/A Leach Date:

Analyte Sample Result/Qual RPD Limit Qual Result

Alkalinity, Total (As CaCO3) 790 772 2 10

Client: Waste Management Job Number: 280-91425-1

Method Blank - Batch: 280-353679 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-353679/1 Analysis Batch: 280-353679 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: Lab File ID: N/A N/A Leach Batch: 100 mL 1.0 N/A Dilution: Initial Weight/Volume: 11/30/2016 0904 Analysis Date: mg/L Final Weight/Volume: 100 mL Units:

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Dissolved Solids (TDS) ND 5.0 5.0

Lab Control Sample/ Method: SM 2540C

Lab Control Sample Duplicate Recovery Report - Batch: 280-353679 Preparation: N/A

LCS Lab Sample ID: LCS 280-353679/2 Analysis Batch: 280-353679 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL
Analysis Date: 11/30/2016 0904 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/30/2016 0904 Units: mg/L Fill Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353679/3 Analysis Batch: 280-353679 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/30/2016 0904 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A
Leach Date: N/A

<u>% Rec.</u>

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Total Dissolved Solids (TDS) 97 99 86 - 110 1 20

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-353679

Method: SM 2540C
Preparation: N/A

LCS Lab Sample ID: LCS 280-353679/2 Units: mg/L LCSD Lab Sample ID: LCSD 280-353679/3

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/30/2016 0904 Analysis Date: 11/30/2016 0904

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A
Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Total Dissolved Solids (TDS) 501 488 494

Client: Waste Management Job Number: 280-91425-1

Duplicate - Batch: 280-353679 Method: SM 2540C Preparation: N/A

280

Leach Date:

N/A

Total Dissolved Solids (TDS)

Lab Sample ID: 280-91498-B-2 DU Analysis Batch: 280-353679 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/30/2016 0904 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

284

2

10

Client: Waste Management Job Number: 280-91425-1

Method Blank - Batch: 280-355417 Method: SM 5310B Preparation: N/A

Lab Sample ID: MB 280-355417/13 Analysis Batch: 280-355417 Instrument ID: WC_SHI2

Client Matrix: Water Prep Batch: N/A Lab File ID: 121216.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/12/2016 1909 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Analyte Result Qual RL RL

Total Organic Carbon - Average ND 1.0 1.0

Lab Control Sample - Batch: 280-355417 Method: SM 5310B Preparation: N/A

Lab Sample ID: LCS 280-355417/12 Analysis Batch: 280-355417 Instrument ID: WC_SHI2 Client Matrix: Water Prep Batch: N/A Lab File ID: 121216.txt

Dilution: 1.0 Leach Batch: N/A Lab File ID: 121216.txt Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/12/2016 1854 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A
Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual
Total Organic Carbon - Average 25.0 24.0 96 88 - 112

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-355417 Preparation: N/A

MS Lab Sample ID: 280-91615-C-3 MS Analysis Batch: 280-355417 Instrument ID: WC_SHI2 Client Matrix: Water Prep Batch: N/A Lab File ID: 121216.txt Leach Batch: N/A Initial Weight/Volume:

Dilution: 83.33 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 12/12/2016 2011 Final Weight/Volume: 50 mL

Analysis Date: 12/12/2016 2011 Final Weight/Volume: 50 mL Prep Date: N/A

Leach Date:

N/A

MSD Lab Sample ID: 280-91615-C-3 MSD Analysis Batch: 280-355417 Instrument ID: WC_SHI2

Client Matrix: Water Prep Batch: N/A Lab File ID: 121216.txt

Dilution: 50 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/12/2016 2041 Final Weight/Volume: 50 mL

Prep Date: N/A
Leach Date: N/A

% Rec. MS **MSD** MS Qual MSD Qual Analyte Limit **RPD RPD Limit** Total Organic Carbon - Average 56 0 88 - 112 NC 15 F1 F1

Client: Waste Management Job Number: 280-91425-1

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-355417 Preparation: N/A

MS Lab Sample ID: 280-91615-C-3 MS Units: mg/L MSD Lab Sample ID: 280-91615-C-3 MSD

Client Matrix:WaterClient Matrix:WaterDilution:83.33Dilution:50

Analysis Date: 12/12/2016 2011 Analysis Date: 12/12/2016 2041

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

	Sample	MS Spike	MSD Spike	MS Result/Qual		MSD Result/Qual	
Analyte	Result/Qual	Amount	Amount				
Total Organic Carbon - Average	2000	2080	1250	3170	F1	ND	F1

Client: Waste Management Job Number: 280-91425-1

Method Blank - Batch: 280-353110 Method: SM5210B Preparation: N/A

MB 280-353110/4 Analysis Batch: 280-353110 No Equipment Assigned Lab Sample ID: Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

1.0 Leach Batch: N/A Initial Weight/Volume: Dilution:

11/25/2016 1722 Analysis Date: Units: mg/L Final Weight/Volume: 300 mL

Prep Date: N/A Leach Date: N/A

RL RL Result Qual Analyte ND Biochemical Oxygen Demand 2.0 2.0

Lab Control Sample - Batch: 280-353110 Method: SM5210B Preparation: N/A

LCS 280-353110/3 Analysis Batch: 280-353110 Instrument ID: No Equipment Assigned Lab Sample ID:

Prep Batch: Client Matrix: Water N/A Lab File ID: N/A

Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume:

11/25/2016 1722 Analysis Date: Units: mg/L Final Weight/Volume: 300 mL

Prep Date: N/A Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual

Biochemical Oxygen Demand 198 196 99 85 - 115

Duplicate - Batch: 280-353110 Method: SM5210B Preparation: N/A

280-91425-1 Analysis Batch: 280-353110 No Equipment Assigned Lab Sample ID: Instrument ID: Water Prep Batch: Client Matrix: N/A Lab File ID: N/A

5.0 Leach Batch: Dilution: Initial Weight/Volume: N/A

11/25/2016 1722 300 mL Analysis Date: Units: mg/L Final Weight/Volume: Prep Date:

N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual Biochemical Oxygen Demand 14 13.4 20 8

Client: Waste Management Job Number: 280-91425-1

Laboratory Chronicle

Lab ID: 280-91425-1 Client ID: LP-LCD

Sample Date/Time: 11/22/2016 11:10 Received Date/Time: 11/25/2016 08:35

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91425-E-1-A		280-353968	280-353411	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	280-91425-E-1-A		280-353968	280-353411	12/01/2016 18:16	1	TAL DEN	CML
A:300.0	280-91425-B-1		280-355362		12/14/2016 01:43	10	TAL DEN	AFB
A:350.1	280-91425-D-1		280-353756		11/30/2016 13:00	5	TAL DEN	MAS
A:410.4	280-91425-D-1		280-354396		12/06/2016 09:21	2	TAL DEN	CCJ
A:SM 2320B	280-91425-A-1		280-353708		11/29/2016 13:45	1	TAL DEN	MMC
A:SM 2540C	280-91425-B-1		280-353679		11/30/2016 09:04	1	TAL DEN	JAP
A:SM 5310B	280-91425-D-1		280-355417		12/12/2016 19:39	2	TAL DEN	CCJ
A:SM5210B	280-91425-A-1		280-353110		11/25/2016 17:22	5	TAL DEN	RSM

Lab ID: 280-91425-1 DU Client ID: LP-LCD

Sample Date/Time: 11/22/2016 11:10 Received Date/Time: 11/25/2016 08:35

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:SM 2320B	280-91425-A-1 DU		280-353708		11/29/2016 13:52	1	TAL DEN	MMC
A:SM5210B	280-91425-A-1 DU		280-353110		11/25/2016 17:22	5	TAL DEN	RSM

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	MB 280-353411/1-A		280-353968	280-353411	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	MB 280-353411/1-A		280-353968	280-353411	12/01/2016 16:58	1	TAL DEN	CML
A:300.0	MB 280-355362/6		280-355362		12/13/2016 10:50	1	TAL DEN	AFB
A:350.1	MB 280-353756/61		280-353756		11/30/2016 13:10	1	TAL DEN	MAS
A:410.4	MB 280-354396/5		280-354396		12/06/2016 09:21	1	TAL DEN	CCJ
A:SM 2320B	MB 280-353708/5		280-353708		11/29/2016 13:36	1	TAL DEN	MMC
A:SM 2540C	MB 280-353679/1		280-353679		11/30/2016 09:04	1	TAL DEN	JAP
A:SM 5310B	MB 280-355417/13		280-355417		12/12/2016 19:09	1	TAL DEN	CCJ
A:SM5210B	MB 280-353110/4		280-353110		11/25/2016 17:22	1	TAL DEN	RSM

TestAmerica Denver A = Analytical Method P = Prep Method

Client: Waste Management Job Number: 280-91425-1

Laboratory Chronicle

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	LCS 280-353411/2-A		280-353968	280-353411	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	LCS 280-353411/2-A		280-353968	280-353411	12/01/2016 17:01	1	TAL DEN	CML
A:300.0	LCS 280-355362/4		280-355362		12/13/2016 10:16	1	TAL DEN	AFB
A:350.1	LCS 280-353696/1-A		280-353756		11/30/2016 11:44	1	TAL DEN	MAS
A:350.1	LCS 280-353756/59		280-353756		11/30/2016 13:06	1	TAL DEN	MAS
A:410.4	LCS 280-354396/3		280-354396		12/06/2016 09:21	1	TAL DEN	CCJ
A:SM 2320B	LCS 280-353708/4		280-353708		11/29/2016 13:32	1	TAL DEN	MMC
A:SM 2540C	LCS 280-353679/2		280-353679		11/30/2016 09:04	1	TAL DEN	JAP
A:SM 5310B	LCS 280-355417/12		280-355417		12/12/2016 18:54	1	TAL DEN	CCJ
A:SM5210B	LCS 280-353110/3		280-353110		11/25/2016 17:22	1	TAL DEN	RSM

Lab ID: LCSD Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	LCSD 280-355362/5		280-355362		12/13/2016 10:33	1	TAL DEN	AFB
A:350.1	LCSD		280-353756		11/30/2016 11:46	1	TAL DEN	MAS
	280-353696/2-A							
A:350.1	LCSD 280-353756/60		280-353756		11/30/2016 13:08	1	TAL DEN	MAS
A:410.4	LCSD 280-354396/4		280-354396		12/06/2016 09:21	1	TAL DEN	CCJ
A:SM 2540C	LCSD 280-353679/3		280-353679		11/30/2016 09:04	1	TAL DEN	JAP

Lab ID: MRL Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

		Analysis Date Prepared /						
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	MRL 280-355362/3		280-355362		12/13/2016 10:00	1	TAL DEN	AFB

Lab ID: MS Client ID: N/A

Sample Date/Time: 11/21/2016 11:01 Received Date/Time: 11/22/2016 09:10

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91415-D-1-B MS		280-353968	280-353411	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	280-91415-D-1-B MS		280-353968	280-353411	12/01/2016 17:08	1	TAL DEN	CML
A:300.0	280-91415-A-1 MS		280-355362		12/13/2016 23:12	1	TAL DEN	AFB
A:350.1	280-91497-J-3 MS		280-353756		11/30/2016 13:14	1	TAL DEN	MAS
A:350.1	280-91179-C-1 MS		280-353756		11/30/2016 13:58	1	TAL DEN	MAS
A:410.4	280-91373-C-1 MS		280-354396		12/06/2016 09:21	5	TAL DEN	CCJ
A:SM 5310B	280-91615-C-3 MS		280-355417		12/12/2016 20:11	83.33	TAL DEN	CCJ

TestAmerica Denver A = Analytical Method P = Prep Method
Page 35 of 38 12/15/2016

Client: Waste Management Job Number: 280-91425-1

Laboratory Chronicle

Lab ID: MSD Client ID: N/A

Sample Date/Time: 11/21/2016 11:01 Received Date/Time: 11/22/2016 09:10

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91415-D-1-C		280-353968	280-353411	11/29/2016 14:35	1	TAL DEN	SEJ
A:6010B	MSD 280-91415-D-1-C MSD		280-353968	280-353411	12/01/2016 17:10	1	TAL DEN	CML
A:300.0	280-91415-A-1 MSD		280-355362		12/13/2016 23:29	1	TAL DEN	AFB
A:350.1	280-91497-J-3 MSD		280-353756		11/30/2016 13:16	1	TAL DEN	MAS
A:350.1	280-91179-C-1 MSD		280-353756		11/30/2016 14:00	1	TAL DEN	MAS
A:410.4	280-91373-C-1 MSD		280-354396		12/06/2016 09:21	5	TAL DEN	CCJ
A:SM 5310B	280-91615-C-3 MSD		280-355417		12/12/2016 20:41	50	TAL DEN	CCJ

Lab ID: DU Client ID: N/A

Sample Date/Time: 11/21/2016 11:01 Received Date/Time: 11/22/2016 09:10

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	280-91415-A-1 DU		280-355362		12/13/2016 22:55	1	TAL DEN	AFB
A:SM 2540C	280-91498-B-2 DU		280-353679		11/30/2016 09:04	1	TAL DEN	JAP

Lab References:

TAL DEN = TestAmerica Denver

TestAmerica Denver A = Analytical Method P = Prep Method
Page 36 of 38 12/15/2016

<u>TestAmerica</u>

Chain of Custody Record

Phone (303) 736-0100 Fax (303) 431-7171

TestAmerica Denver

4955 Yarrow Street Arvada, CO 80002

T - TSP Dodecahydrate U - Acetone Special Instructions/Note: Z - other (specify) R - Na2S2SO3 M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 Months 140 S-H2S04 W - ph 4-5 Company 91-52-11 MUS 280-27355-11726.1 Preservation Codes H - Ascorbic Acid A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH Page 1 of 1 J - DI Water K - EDTA L - EDA 2530 G - Amchlor 280-91425 Chain of Custody ethod of Shipment: Fr/L Cooler Temperature(s) Cand Other Remarks: Total Number of containers 11-25-16 Date/Time: Jate/Time: **Analysis Requested** Special Instructions/QC Requirements: X E-Mail: betsy.sara@testamericainc.com × eceived by: X 800 × 110'4 - COD Sara, Betsy A Ses-FS BT=Tissue, A"Alr (Wirwater, Srsolid, Orwasteloii, Preservation Code: Matrix Company Company 3 Project #: 28002692 - Otrly Leachate Risers-Mar Jun Sep Dec Type (C=comp, G=grab) Radiological 100 Sd3 - 867.2369 Sample Cab 20 Purchase Order not required JANGSAL Sample 7 Time 0/11/2/11/01/11 Unknown Date TAT Requested (days): Due Date Requested: Marine 116 Sample Date Jate/Time: SOW#: Poison B Olympic View Transfer Station 9300 Southwest Barney White Ro Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) nall mtrambe wm.com 077-07-221191-7500 3702 458-974-1334 Custody Seal No.: Flammable 200 アイルカルイ Possible Hazard Identification WA02|Olympic View Sanitary LF empty Kit Relinquished by Custody Seals Intact: Client Information Sample Identification A Yes A No Waste Management September 1 linquished by: State, Zip: WA, 98312 Washington Bremerton

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91425-1

Login Number: 91425 List Source: TestAmerica Denver

List Number: 1

Creator: White, Denise E

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	False	OUT OF HT, SAMPLED 11/22 RECEIVED 11/25
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

ANALYTICAL REPORT

Job Number: 280-91197-1

Job Description: WA02|Olympic View Sanitary LF

For:

Waste Management Sun Valley Hauling 9081 Tujunga Avenue Sun Valley, CA 91352

Attention: Mr. Phil Perley

Betsy Sara

Approved for release Betsy A Sara Project Manager II

Betsy A Sara, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0189 betsy.sara@testamericainc.com 12/16/2016

cc: Mr. Dan Venchiarutti

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is 4025.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Denver 4955 Yarrow Street, Arvada, CO 80002 Tel (303) 736-0100 Fax (303) 431-7171 www.testamericainc.com

Table of Contents

Cover Title Page	1
Report Narrative	3
Executive Summary	5
Method Summary	8
Method / Analyst Summary	9
Sample Summary	10
Sample Results	11
Sample Datasheets	12
Data Qualifiers	52
QC Results	53
Qc Association Summary	54
Surrogate Recovery Report	60
Qc Reports	62
Laboratory Chronicle	99
Client Chain of Custody	107
Sample Receipt Checklist	113

CASE NARRATIVE

Client: Waste Management

Project: WA02|Olympic View Sanitary LF

Report Number: 280-91197-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

This report may include reporting limits (RLs) less than TestAmerica's standard reporting limit. The reported sample results and associated reporting limits are being used specifically to meet the needs of this project. Note that data are not normally reported to these levels without qualification because they are inherently less reliable and potentially less defensible than required by the latest industry standards.

Sample Receiving

The samples were received on 11/18/2016 and 11/21/2016; the samples arrived in good condition, properly preserved and on ice. The temperatures of the coolers at receipt were 0.2° C and 2.9° C.

One of two coolers arrived on 11/18/2016 at a temperature of 0.4 C. The other cooler arrived on 11/21/2016 at a temperature of 3.1 C. The delayed cooler contained all sample volume for samples DUP1 and MW-24.

Holding Times

The Nitrate result was derived from a calculation and the analysis date/time reflects when the calculation was performed. Nitrate+Nitrite and Nitrite results were required for the calculation. Nitrate+Nitrite analysis has a 28-day holding time. Nitrite analysis has a 48-hour holding time, and due to a FedEx delay, the associated Nitrite analysis was performed outside of the 48-hour holding time for the samples DUP1 and MW-24. The Nitrite analysis was performed within the holding time for the samples MW-33C and MW-33A.

The original Total Dissolved Solids (TDS) result for the sample MW-24 was over the calibration range, therefore the sample was reanalyzed eight days outside of the 7-day holding time. Only the reanalysis result is reported in this submission.

All other holding times were within established control limits.

Method Blanks

Vinyl chloride Method 8260C SIM was detected in the Method Blanks below the project established reporting limits. No corrective action is taken for any values in Method Blanks that are below the requested reporting limits.

All other Method Blank recoveries were within established control limits.

Laboratory Control Samples (LCS)

All Laboratory Control Samples were within established control limits.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD)

The Matrix Spikes and Matrix Spike Duplicates performed on samples from other clients exhibited recoveries outside control limits for multiple 8260C compounds. Because the corresponding Laboratory Control Samples and the Method Blank samples were within control limits, these anomalies may be due to matrix interference and no corrective action was taken.

The percent recoveries and/or relative percent difference of the MS/MSD performed on a sample from another client were outside control limits for Dissolved Manganese Method 6020 because the sample concentration was greater than four times the spike amount. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, no corrective action was taken.

Sample MW-33A was selected to fulfill the laboratory batch quality control requirements for Method 6020. Analysis of the laboratory generated MS/MSD for this sample exhibited recoveries of Total Manganese below the lower control limit. Because the corresponding Laboratory Control Sample and the Method Blank sample were within control limits, this anomaly may be due to matrix interference and no corrective action was taken.

All other MS and MSD samples were within established control limits.

Organics

The Method 8260B surrogate recoveries of 1,2-Dichloroethane-d4, 4-Bromofluorobenzene and Toluene-d8 were above the upper control limits for sample DUP1. Because the data are considered to be biased high and all target analytes in the sample were non-detect above the reporting limits, corrective action was deemed unnecessary.

The analytes Acrolein, Acrylonitrile and 2-chloroethyl vinyl ether cannot be reliably quantitated in acid preserved samples, therefore, the reporting limits for the analytes Acrolein, Acrylonitrile and 2-chloroethyl vinyl ether is not reliable or defensible.

General Comments

716-691-2600

The analyses for Volatile Organics by Method 8260C and Volatile Organics by Method 8260C SIM were performed by TestAmerica Buffalo. Their address and phone number are:

TestAmerica Buffalo
10 Hazelwood Drive, Suite 106
Amherst, NY 14228

EXECUTIVE SUMMARY - Detections

Client: Waste Management Job Number: 280-91197-1

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91197-1	MW-33C					
Depth to water		1.63			ft	Field Sampling
Specific Conductivity	у	159			umhos/cm	Field Sampling
Dissolved Oxygen		0.26			mg/L	Field Sampling
еН		-61.14			millivolts	Field Sampling
Turbidity		1.12			NTU	Field Sampling
Temperature		9.24			Degrees C	Field Sampling
pH		8.31			SU	Field Sampling
Chloride		2.8		1.0	mg/L	300.0
Sulfate		7.4		1.0	mg/L	300.0
Alkalinity, Total (As	CaCO3)	68		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	68		5.0	mg/L	SM 2320B
Total Dissolved Soli	ds (TDS)	95		5.0	mg/L	SM 2540C
Total Suspended So	olids	4.0		4.0	mg/L	SM 2540D
Dissolved						
Calcium, Dissolved		17		0.040	mg/L	6010B
Iron, Dissolved		0.081		0.060	mg/L	6010B
Magnesium, Dissolv	red	7.4		0.050	mg/L	6010B
Potassium, Dissolve	ed	1.3		1.0	mg/L	6010B
Sodium, Dissolved		4.2		1.0	mg/L	6010B
Manganese, Dissolv	/ed	0.15		0.0010	mg/L	6020
Total Recoverable						
Barium, Total		0.0048		0.0010	mg/L	6020
Manganese, Total		0.15		0.0010	mg/L	6020

EXECUTIVE SUMMARY - Detections

Client: Waste Management Job Number: 280-91197-1

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91197-3	MW-33A					
Depth to water		4.41			ft	Field Sampling
Specific Conductivit	у	8.4			umhos/cm	Field Sampling
Dissolved Oxygen		0.43			mg/L	Field Sampling
еН		39.2			millivolts	Field Sampling
Turbidity		8.61			NTU	Field Sampling
Temperature		9.99			Degrees C	Field Sampling
рН		6.67			SU	Field Sampling
Chloride		2.2		1.0	mg/L	300.0
Sulfate		1.8		1.0	mg/L	300.0
Ammonia (as N)		0.30		0.030	mg/L	350.1
Alkalinity, Total (As	CaCO3)	39		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	39		5.0	mg/L	SM 2320B
Total Dissolved Soli	ids (TDS)	62		5.0	mg/L	SM 2540C
Total Suspended So	olids	8.4		4.0	mg/L	SM 2540D
Total Organic Carbo	on - Average	2.5		1.0	mg/L	SM 5310B
Dissolved						
Calcium, Dissolved		8.6		0.040	mg/L	6010B
Iron, Dissolved		2.5		0.060	mg/L	6010B
Magnesium, Dissolv	ved	4.1		0.050	mg/L	6010B
Sodium, Dissolved		3.0		1.0	mg/L	6010B
Manganese, Dissolv	ved	0.089		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		2.5		0.060	mg/L	6010B
Barium, Total		0.0024		0.0010	mg/L	6020
Manganese, Total		0.083	F1	0.0010	mg/L	6020
Vanadium, Total		0.0032		0.0020	mg/L	6020

EXECUTIVE SUMMARY - Detections

Client: Waste Management Job Number: 280-91197-1

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
280-91197-4	DUP1					
Chloride		2.8		1.0	mg/L	300.0
Sulfate		7.4		1.0	mg/L	300.0
Ammonia (as N)		0.047		0.030	mg/L	350.1
Alkalinity, Total (As	CaCO3)	69		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	69		5.0	mg/L	SM 2320B
Total Dissolved Sol	ids (TDS)	97		5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		17		0.040	mg/L	6010B
Magnesium, Dissol	ved	7.4		0.050	mg/L	6010B
Potassium, Dissolve	ed	1.3		1.0	mg/L	6010B
Sodium, Dissolved		4.2		1.0	mg/L	6010B
Manganese, Dissol	ved	0.14		0.0010	mg/L	6020
Total Recoverable						
Iron, Total		0.060		0.060	mg/L	6010B
Barium, Total		0.0034		0.0010	mg/L	6020
Manganese, Total		0.14		0.0010	mg/L	6020
280-91197-5	MW-24					
Depth to water		32.20			ft	Field Sampling
Specific Conductivity	ty	127			umhos/cm	Field Sampling
Dissolved Oxygen		0.24			mg/L	Field Sampling
еН		107.9			millivolts	Field Sampling
Turbidity		2.12			NTU	Field Sampling
Temperature		11.66			Degrees C	Field Sampling
рН		6.63			SU	Field Sampling
Chloride		2.5		1.0	mg/L	300.0
Sulfate		3.5		1.0	mg/L	300.0
Nitrate as N		0.16		0.050	mg/L	353.2
Alkalinity, Total (As	CaCO3)	57		5.0	mg/L	SM 2320B
Alkalinity, Bicarbona	ate (As CaCO3)	57		5.0	mg/L	SM 2320B
Total Dissolved Sol	ids (TDS)	86	Н	5.0	mg/L	SM 2540C
Dissolved						
Calcium, Dissolved		11		0.040	mg/L	6010B
Magnesium, Dissol	ved	6.5		0.050	mg/L	6010B
Sodium, Dissolved		5.0		1.0	mg/L	6010B
Manganese, Dissol	ved	0.70		0.0010	mg/L	6020
Total Recoverable		0.0057		0.0040		0000
Barium, Total		0.0057		0.0010	mg/L	6020
Manganese, Total		1.7		0.0010	mg/L	6020
Vanadium, Total		0.0022		0.0020	mg/L	6020

METHOD SUMMARY

Client: Waste Management Job Number: 280-91197-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6010B	SW846 3005A
Metals (ICP) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN	SW846 6010B	SW846 3005A FIELD_FLTRD
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals	TAL DEN TAL DEN	SW846 6020	SW846 3005A
Metals (ICP/MS) Preparation, Total Recoverable or Dissolved Metals Sample Filtration, Field	TAL DEN TAL DEN	SW846 6020	SW846 3005A FIELD_FLTRD
Anions, Ion Chromatography	TAL DEN	MCAWW 300.0	
Nitrogen, Ammonia	TAL DEN	MCAWW 350.1	
Nitrate	TAL DEN	EPA 353.2	
Alkalinity	TAL DEN	SM SM 2320B	
Solids, Total Dissolved (TDS)	TAL DEN	SM SM 2540C	
Solids, Total Suspended (TSS)	TAL DEN	SM SM 2540D	
Organic Carbon, Total (TOC)	TAL DEN	SM SM 5310B	
Field Sampling	TAL DEN	EPA Field Samp	bling
Volatile Organic Compounds by GC/MS Purge and Trap	TAL BUF TAL BUF	SW846 8260C	SW846 5030C
Volatile Organic Compounds (GC/MS) Purge and Trap	TAL BUF TAL BUF	SW846 8260C S	SIM SW846 5030C

Lab References:

TAL BUF = TestAmerica Buffalo

TAL DEN = TestAmerica Denver

Method References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Waste Management Job Number: 280-91197-1

Method	Analyst	Analyst ID
SW846 8260C	O'Brien, Shaun W	SWO
SW846 8260C SIM	Gentile, Joseph W	JWG
SW846 6010B SW846 6010B	Diaz, Luis R Rhoades, Chris R	LRD CRR
SW846 6020	Trudell, Lynn-Anne M	LMT
EPA Field Sampling	Krisorn, Chamaiporn 1	C1K
MCAWW 300.0	Benson, Alex F	AFB
MCAWW 350.1	Spedale, Morgan A	MAS
EPA 353.2	Allen, Andrew J	AJA
SM SM 2320B	Carter, Melynda M	MMC
SM SM 2540C	Pedrick, Joshua A	JAP
SM SM 2540D	Cherry, Scott V	SVC
SM SM 5310B	Jewell, Connie C	CCJ

SAMPLE SUMMARY

Client: Waste Management Job Number: 280-91197-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
Lab Sample ID	Chefit Sample ID	Chefft Matrix	Sampleu	Received
280-91197-1	MW-33C	Water	11/17/2016 1050	11/18/2016 1000
280-91197-2TB	TRIP BLANK	Water	11/17/2016 0000	11/18/2016 1000
280-91197-3	MW-33A	Water	11/17/2016 0950	11/18/2016 1000
280-91197-4	DUP1	Water	11/17/2016 1100	11/18/2016 1000
280-91197-5	MW-24	Water	11/17/2016 1320	11/18/2016 1000

SAMPLE RESULTS

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33C

 Lab Sample ID:
 280-91197-1
 Date Sampled:
 11/17/2016 1050

 Client Matrix:
 Water
 Date Received:
 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333995 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0146.D Dilution: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/30/2016 1144

Prep Date: 11/30/2016 1144

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33C

 Lab Sample ID:
 280-91197-1
 Date Sampled: 11/17/2016 1050

 Client Matrix:
 Water
 Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

8260C 480-333995 HP5973S Analysis Method: Analysis Batch: Instrument ID: Prep Method: 5030C Prep Batch: N/A Lab File ID: S0146.D Dilution: 1.0 Initial Weight/Volume: 5 mL 11/30/2016 1144 Final Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1144 Prep Date: 11/30/2016 1144

Result (ug/L) Qualifier RL Analyte **MDL** 1.0 Chloroform ND 0.34 ND 0.35 Chloromethane 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1.3-Dichloropropene ND 0.36 1.0 ND Cyclohexane 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 ND 0.30 Iodomethane 1.0 ND 4.8 25 Isobutanol Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 2.5 1.3 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 Styrene ND 0.73 1.0 Tert-amyl methyl ether ND 0.27 1.0 tert-Butylbenzene ND 0.81 1.0 Tetrachloroethene ND 0.36 1.0 Tetrahydrofuran ND 1.3 5.0 Toluene ND 0.51 1.0 trans-1,2-Dichloroethene ND 0.90 1.0 trans-1,3-Dichloropropene ND 0.37 1.0 trans-1,4-Dichloro-2-butene ND 0.22 1.0 Trichloroethene ND 0.46 1.0 Trichlorofluoromethane ND 0.88 1.0 Vinyl acetate ND 0.85 5.0 Vinyl chloride ND 0.90 1.0

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33C

Lab Sample ID: 280-91197-1 Date Sampled: 11/17/2016 1050

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0146.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/30/2016 1144 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1144

Surrogate %Rec Qualifier Acceptance Limits
1,2-Dichloroethane-d4 (Surr) 102 77 - 120
4-Bromofluorobenzene (Surr) 97 73 - 120
Toluene-d8 (Surr) 102 80 - 120

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33C

Lab Sample ID: 280-91197-1 Date Sampled: 11/17/2016 1050

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0146.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1144 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1144

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91197-2TB Date Sampled: 11/17/2016 0000

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

8260C 480-333995 HP5973S Analysis Method: Analysis Batch: Instrument ID: Prep Method: 5030C Prep Batch: Lab File ID: S0147.D N/A Dilution: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1207 Prep Date: 11/30/2016 1207

Result (ug/L) Qualifier **MDL** RL Analyte 1,1,1,2-Tetrachloroethane ND 0.35 1.0 1,1,1-Trichloroethane ND 0.82 1.0 ND 1,1,2,2-Tetrachloroethane 0.21 1.0 1.1.2-Trichloro-1.2.2-trifluoroethane ND 0.31 1.0 1,1,2-Trichloroethane ND 0.23 1.0 1,1-Dichloroethane ND 0.38 1.0 ND 0.29 1.0 1,1-Dichloroethene 1,1-Dichloropropene ND 0.72 1.0 1,2,3-Trichlorobenzene ND 0.41 1.0 1,2,3-Trichloropropane ND 0.89 1.0 1,2,4-Trichlorobenzene ND 0.41 1.0 1,2,4-Trimethylbenzene ND 0.75 1.0 1,2-Dibromo-3-Chloropropane ND 0.39 1.0 1,2-Dibromoethane (EDB) ND 0.73 1.0 1.2-Dichlorobenzene ND 0.79 1.0 1,2-Dichloroethane ND 0.21 1.0 ND 0.81 2.0 1,2-Dichloroethene, Total ND 0.72 1.0 1,2-Dichloropropane 1,3,5-Trichlorobenzene ND 0.23 1.0 1,3,5-Trimethylbenzene ND 0.77 1.0 1,3-Dichlorobenzene ND 0.78 1.0 1,3-Dichloropropane ND 0.75 1.0 ND 0.84 1.0 1,4-Dichlorobenzene 40 1,4-Dioxane ND 9.3 2,2-Dichloropropane ND 0.40 1.0 2-Butanone (MEK) ND 1.3 10 2-Chloroethyl vinyl ether ND 0.96 5.0 5.0 ND 1.2 2-Hexanone 4-Methyl-2-pentanone (MIBK) ND 2.1 5.0 Acetone ND 3.0 10 Acetonitrile ND 4.9 15 Acrolein ND 0.91 20 Acrylonitrile ND 0.83 5.0 Benzene ND 0.41 1.0 Bromobenzene ND 0.80 1.0 Bromochloromethane ND 0.87 1.0 Bromodichloromethane ND 0.39 1.0 Bromoform ND 0.26 1.0 Bromomethane ND 0.69 1.0 Butyl alcohol, n-ND 8.9 40 Butyl alcohol, tert-ND 3.3 10 Carbon disulfide ND 0.19 1.0 Carbon tetrachloride ND 0.27 1.0 Chlorobenzene ND 0.75 1.0 Chlorodifluoromethane ND 0.26 1.0 Chloroethane ND 0.32 1.0

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91197-2TB Date Sampled: 11/17/2016 0000

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0147.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1207 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1207

Chloroform ND 0.34 1.0 Chloromethane ND 0.35 1.0 cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.41 1.0 Dibromomethane ND 0.41 1.0 Dichlorofiluoromethane ND 0.68 1.0 Dichlorofiluoromethane ND 0.34 1.0 Dichlorofiluoromethane ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tether with ether ND 0.72 1.0 Ethyl tether with ether ND 0.74 1.0 Hexane ND 0.74 1.0 Hexane ND 0.28 1.0 Hexane ND 0.30 1.0 Isopropyl ether ND 0.5	
cis-1,2-Dichloroethene ND 0.81 1.0 cis-1,3-Dichloropropene ND 0.18 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromochloromethane ND 0.41 1.0 Dichloroffluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.28 1.0 Hexane ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isopropylether ND <t< td=""><td></td></t<>	
cis-1,3-Dichloropropene ND 0.36 1.0 Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.66 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.30 1.0 Isopropyleiber ND 0.30 1.0 Isopropyleibe	
Cyclohexane ND 0.18 1.0 Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tether ND 0.29 1.0 Ethyl teth-butyl ether ND 0.29 1.0 Ethyl tether ND 0.29 1.0 Ethyl tether ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Idodomethane ND 0.40 10 Idodomethane ND 0.30 1.0 Isopropylether ND 0.59 1.0 Isopropylether ND 0.59 <	
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Ethyl benzene ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 lsopropyl ether ND 0.59 1.0 lsopropyleberzene ND 0.59 1.0 Methacylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl cetatyl ether ND 0.16 1.0 Methyl cetatyl ether ND	
Dibromochloromethane ND 0.32 1.0 Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichloroffluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.74 1.0 Ethyl benzene ND 0.74 1.0 Hexachlorobutadiene ND 0.74 1.0 Hexane ND 0.40 10 lodomethane ND 0.40 10 lodomethane ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylenzene ND 0.59 1.0 Methacylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl acetate ND 0.16 1.0 Methylenc Chloride ND 0.16	
Dibromomethane ND 0.41 1.0 Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobropyl ether ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylehrzene ND 0.59 1.0 Methyl exteate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylene Chloride ND 0.16	
Dichlorodifluoromethane ND 0.68 1.0 Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl tether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iedomethane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 0.30 1.0 Isobutanol ND 0.59 1.0 Isopropyl ether ND 0.59 1.0 Isopropylebrzene ND 0.79 1.0 Methactylonitrile ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl ether ND 0.16 1.0 Methyl ether ND 0.16 1.0	
Dichlorofluoromethane ND 0.34 1.0 Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.40 10 Isobrane ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylebazene ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.79 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.6	
Ethyl acetate ND 0.66 1.0 Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 0.30 1.0 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND	
Ethyl ether ND 0.72 1.0 Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iedomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.16 1.0 Methylene Chloride ND 0.66 2.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.64	
Ethyl tert-butyl ether ND 0.29 1.0 Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 lodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyacylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.44 1.0 Naphthalene ND 0.66 2.0 Naphthalene ND 0.64 1.0 n-Propylbenzene ND 0.69	
Ethylbenzene ND 0.74 1.0 Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methyl cactate ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.64 1.0 n-Butylbenzene ND 0.64 1.0 n-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.76 1.0 o-Xylene ND 0.86 1.0	
Hexachlorobutadiene ND 0.28 1.0 Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.64 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 N-Propylbenzene ND 0.69 1.0 O-Chlorotoluene ND 0.86 1.0 O-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0 NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW	
Hexane ND 0.40 10 Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 0.69 5.0 Methyl acetate ND 0.16 1.0 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.76 1.0 o-Xylene ND 0.84 1.0 <td></td>	
Iodomethane ND 0.30 1.0 Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylcyclohexane ND 0.44 1.0 Methylcene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.63 1.0 N-Propylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75	
Isobutanol ND 4.8 25 Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 n-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Isopropyl ether ND 0.59 1.0 Isopropylbenzene ND 0.79 1.0 Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Isopropylbenzene	
Methacrylonitrile ND 0.69 5.0 Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 Methylene Chloride ND 0.44 1.0 M-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 N-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methyl acetate ND 1.3 2.5 Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methyl tert-butyl ether ND 0.16 1.0 Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methylcyclohexane ND 0.16 1.0 Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Methylene Chloride ND 0.44 1.0 m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
m-Xylene & p-Xylene ND 0.66 2.0 Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
Naphthalene ND 0.43 1.0 n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
n-Butylbenzene ND 0.64 1.0 N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
N-Propylbenzene ND 0.69 1.0 o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
o-Chlorotoluene ND 0.86 1.0 o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
o-Xylene ND 0.76 1.0 p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
p-Chlorotoluene ND 0.84 1.0 p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
p-Cymene ND 0.31 1.0 sec-Butylbenzene ND 0.75 1.0	
sec-Butylbenzene ND 0.75 1.0	
sec-Butylbenzene ND 0.75 1.0	
Tert-amyl methyl ether ND 0.27 1.0	
tert-Butylbenzene ND 0.81 1.0	
Tetrachloroethene ND 0.36 1.0	
Tetrahydrofuran ND 1.3 5.0	
Toluene ND 0.51 1.0	
trans-1,2-Dichloroethene ND 0.90 1.0	
trans-1,3-Dichloropropene ND 0.37 1.0	
trans-1,4-Dichloro-2-butene ND 0.22 1.0	
Trichloroethene ND 0.22 1.0	
Vinyl chloride ND 0.90 1.0	

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91197-2TB Date Sampled: 11/17/2016 0000

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0147.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1207

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10477 - 1204-Bromofluorobenzene (Surr)9673 - 120Toluene-d8 (Surr)10180 - 120

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91197-2TB Date Sampled: 11/17/2016 0000

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0147.D

Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 11/30/2016 1207 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1207

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier

67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0148.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1230 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1230

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.75	1.0
Chloroethane	ND		0.32	1.0
Smoroditario	110		0.02	1.0

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333995 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0148.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1230

Prep Date: 11/30/2016 1230

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.73	1.0
ert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND ND		0.51 0.90	1.0
trans-1,2-Dichloroethene trans-1,3-Dichloropropene			0.90 0.37	1.0 1.0
· · · · · · · · · · · · · · · · · · ·	ND ND			
trans-1,4-Dichloro-2-butene	ND ND		0.22	1.0
Trichloroethene	ND ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0148.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 1.0 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1230

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10377 - 1204-Bromofluorobenzene (Surr)9573 - 120Toluene-d8 (Surr)10080 - 120

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0148.D

Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/30/2016 1230 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1230

Targeted Tentatively Identified Compounds

Cas NumberAnalyteEst. Result (ug/L)Qualifier67-72-1Hexachloroethane TICND

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: DUP1

Lab Sample ID: 280-91197-4 Date Sampled: 11/17/2016 1100

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0149.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 11/30/2016 1254 Final Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1254 Prep Date: 11/30/2016 1254

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND ND		0.75	1.0
	ND ND		0.75	1.0
1,4-Dicyloro	ND ND		9.3	40
1,4-Dioxane			9.3 0.40	
2,2-Dichloropropane	ND ND		0.40 1.3	1.0
2-Butanone (MEK)	ND			10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: DUP1

Lab Sample ID: 280-91197-4 Date Sampled: 11/17/2016 1100

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0149.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1254 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1254

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
Iodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND		0.36	1.0
Tetrahydrofuran	ND		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
,				

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: DUP1

Lab Sample ID: 280-91197-4 Date Sampled: 11/17/2016 1100

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0149.D

Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 11/30/2016 1254 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1254

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	131	X	77 - 120
4-Bromofluorobenzene (Surr)	126	Χ	73 - 120
Toluene-d8 (Surr)	133	Χ	80 - 120

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: DUP1

Lab Sample ID: 280-91197-4 Date Sampled: 11/17/2016 1100

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0149.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1254 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1254

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-24

Lab Sample ID: 280-91197-5 Date Sampled: 11/17/2016 1320

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

480-333995 Analysis Method: 8260C Analysis Batch: Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0150.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 11/30/2016 1317

Prep Date: 11/30/2016 1317

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1,2-Tetrachloroethane	ND		0.35	1.0
1,1,1-Trichloroethane	ND		0.82	1.0
1,1,2,2-Tetrachloroethane	ND		0.21	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0
1,1,2-Trichloroethane	ND		0.23	1.0
1,1-Dichloroethane	ND		0.38	1.0
1,1-Dichloroethene	ND		0.29	1.0
1,1-Dichloropropene	ND		0.72	1.0
1,2,3-Trichlorobenzene	ND		0.41	1.0
1,2,3-Trichloropropane	ND		0.89	1.0
1,2,4-Trichlorobenzene	ND		0.41	1.0
1,2,4-Trimethylbenzene	ND		0.75	1.0
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0
1,2-Dibromoethane (EDB)	ND		0.73	1.0
1,2-Dichlorobenzene	ND		0.79	1.0
1,2-Dichloroethane	ND		0.21	1.0
1,2-Dichloroethene, Total	ND		0.81	2.0
1,2-Dichloropropane	ND		0.72	1.0
1,3,5-Trichlorobenzene	ND		0.23	1.0
1,3,5-Trimethylbenzene	ND		0.77	1.0
1,3-Dichlorobenzene	ND		0.78	1.0
1,3-Dichloropropane	ND		0.75	1.0
1,4-Dichlorobenzene	ND		0.84	1.0
1,4-Dioxane	ND		9.3	40
2,2-Dichloropropane	ND		0.40	1.0
2-Butanone (MEK)	ND		1.3	10
2-Chloroethyl vinyl ether	ND		0.96	5.0
2-Hexanone	ND		1.2	5.0
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0
Acetone	ND		3.0	10
Acetonitrile	ND		4.9	15
Acrolein	ND		0.91	20
Acrylonitrile	ND		0.83	5.0
Benzene	ND		0.41	1.0
Bromobenzene	ND		0.80	1.0
Bromochloromethane	ND		0.87	1.0
Bromodichloromethane	ND		0.39	1.0
Bromoform	ND		0.26	1.0
Bromomethane	ND		0.69	1.0
Butyl alcohol, n-	ND		8.9	40
Butyl alcohol, tert-	ND		3.3	10
Carbon disulfide	ND		0.19	1.0
Carbon tetrachloride	ND		0.27	1.0
Chlorobenzene	ND		0.75	1.0
Chlorodifluoromethane	ND		0.26	1.0
Chloroethane	ND		0.32	1.0

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-24

Lab Sample ID: 280-91197-5 Date Sampled: 11/17/2016 1320

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 480-333995 Analysis Method: 8260C Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0150.D Dilution: Initial Weight/Volume: 5 mL 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1317

Prep Date: 11/30/2016 1317

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloroform	ND		0.34	1.0
Chloromethane	ND		0.35	1.0
cis-1,2-Dichloroethene	ND		0.81	1.0
cis-1,3-Dichloropropene	ND		0.36	1.0
Cyclohexane	ND		0.18	1.0
Dibromochloromethane	ND		0.32	1.0
Dibromomethane	ND		0.41	1.0
Dichlorodifluoromethane	ND		0.68	1.0
Dichlorofluoromethane	ND		0.34	1.0
Ethyl acetate	ND		0.66	1.0
Ethyl ether	ND		0.72	1.0
Ethyl tert-butyl ether	ND		0.29	1.0
Ethylbenzene	ND		0.74	1.0
Hexachlorobutadiene	ND		0.28	1.0
Hexane	ND		0.40	10
lodomethane	ND		0.30	1.0
Isobutanol	ND		4.8	25
Isopropyl ether	ND		0.59	1.0
Isopropylbenzene	ND		0.79	1.0
Methacrylonitrile	ND		0.69	5.0
Methyl acetate	ND		1.3	2.5
Methyl tert-butyl ether	ND		0.16	1.0
Methylcyclohexane	ND		0.16	1.0
Methylene Chloride	ND		0.44	1.0
m-Xylene & p-Xylene	ND		0.66	2.0
Naphthalene	ND		0.43	1.0
n-Butylbenzene	ND		0.64	1.0
N-Propylbenzene	ND		0.69	1.0
o-Chlorotoluene	ND		0.86	1.0
o-Xylene	ND		0.76	1.0
p-Chlorotoluene	ND		0.84	1.0
p-Cymene	ND		0.31	1.0
sec-Butylbenzene	ND		0.75	1.0
Styrene	ND		0.73	1.0
Tert-amyl methyl ether	ND		0.27	1.0
tert-Butylbenzene	ND		0.81	1.0
Tetrachloroethene	ND NB		0.36	1.0
Tetrahydrofuran	ND NB		1.3	5.0
Toluene	ND		0.51	1.0
trans-1,2-Dichloroethene	ND		0.90	1.0
trans-1,3-Dichloropropene	ND ND		0.37	1.0
trans-1,4-Dichloro-2-butene	ND		0.22	1.0
Trichloroethene	ND		0.46	1.0
Trichlorofluoromethane	ND		0.88	1.0
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-24

Lab Sample ID: 280-91197-5 Date Sampled: 11/17/2016 1320

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0150.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1317 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1317

Surrogate%RecQualifierAcceptance Limits1,2-Dichloroethane-d4 (Surr)10677 - 1204-Bromofluorobenzene (Surr)9573 - 120Toluene-d8 (Surr)10180 - 120

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-24

Lab Sample ID: 280-91197-5 Date Sampled: 11/17/2016 1320

Client Matrix: Water Date Received: 11/18/2016 1000

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 480-333995 Instrument ID: HP5973S Prep Method: 5030C Prep Batch: N/A Lab File ID: S0150.D Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1317 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1317

Targeted Tentatively Identified Compounds

Cas Number Analyte Est. Result (ug/L) Qualifier
67-72-1 Hexachloroethane TIC ND

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33C

Lab Sample ID: 280-91197-1 Date Sampled: 11/17/2016 1050

Client Matrix: Water Date Received: 11/18/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-333833 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1545.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 11/29/2016 1922 Final Weight/Volume: 25 mL

Prep Date: 11/29/2016 1922

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 96 50 - 150

TBA-d9 (Surr) 129 50 - 150

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-91197-2TB Date Sampled: 11/17/2016 0000

Client Matrix: Water Date Received: 11/18/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-334146 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1579.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 12/01/2016 0250 Final Weight/Volume: 25 mL

Prep Date: 12/01/2016 0250

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 94 50 - 150

TBA-d9 (Surr) 136 50 - 150

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Water Date Received: 11/18/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-334146 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1580.D

Dilution: 1.0 Initial Weight/Volume: 25 mL Analysis Date: 12/01/2016 0315 Final Weight/Volume: 25 mL

Prep Date: 12/01/2016 0315

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 93 50 - 150

TBA-d9 (Surr) 138 50 - 150

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: DUP1

Lab Sample ID: 280-91197-4 Date Sampled: 11/17/2016 1100

Client Matrix: Water Date Received: 11/18/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-333833 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1533.D

Dilution: 1.0 Initial Weight/Volume: 25 mL

Analysis Date: 11/29/2016 1429 Final Weight/Volume: 25 mL Prep Date: 11/29/2016 1429

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate%RecQualifierAcceptance LimitsDibromofluoromethane (Surr)9650 - 150TBA-d9 (Surr)10550 - 150

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-24

Lab Sample ID: 280-91197-5 Date Sampled: 11/17/2016 1320

Client Matrix: Water Date Received: 11/18/2016 1000

8260C SIM Volatile Organic Compounds (GC/MS)

Analysis Method: 8260C SIM Analysis Batch: 480-333833 Instrument ID: HP5973J Prep Method: 5030C Prep Batch: N/A Lab File ID: J1534.D

Dilution: 1.0 Initial Weight/Volume: 25 mL

Analysis Date: 11/29/2016 1454 Final Weight/Volume: 25 mL Prep Date: 11/29/2016 1454

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Vinyl chloride
 ND
 0.0040
 0.020

Surrogate %Rec Qualifier Acceptance Limits

Dibromofluoromethane (Surr) 94 50 - 150

TBA-d9 (Surr) 104 50 - 150

Job Number: 280-91197-1 Client: Waste Management

Client Sample ID: MW-33C

Lab Sample ID: 280-91197-1 Date Sampled: 11/17/2016 1050

Client Matrix: Water Date Received: 11/18/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354936 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353059 25D120816.asc Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/08/2016 2322 Final Weight/Volume: 50 mL

Prep Date: 11/30/2016 0735

Sodium, Dissolved

Analyte Result (mg/L) Qualifier RLRL 0.0030 Cobalt, Total ND 0.0030 Iron, Total ND 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353084 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0017 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 0731

Result (mg/L) Qualifier RLRL Analyte 0.040 Calcium, Dissolved 17 0.040 0.081 Iron, Dissolved 0.060 0.060 Magnesium, Dissolved 7.4 0.050 0.050 Potassium, Dissolved 1.3 1.0 1.0

1.0

1.0

6020 Metals (ICP/MS)-Total Recoverable

4.2

Analysis Method: 6020 Analysis Batch: 280-354033 Instrument ID: MT 077 Prep Method: 3005A Prep Batch: 280-353082 Lab File ID: 229SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/02/2016 0348 Final Weight/Volume: 50 mL

Prep Date: 12/01/2016 1405

Analyte	Result (mg/L)	Qualifier	RL	RL	
Barium, Total	0.0048		0.0010	0.0010	
Cadmium, Total	ND		0.00020	0.00020	
Chromium, Total	ND		0.0030	0.0030	
Copper, Total	ND		0.0020	0.0020	
Lead, Total	ND		0.0010	0.0010	
Nickel, Total	ND		0.0040	0.0040	
Selenium, Total	ND		0.0010	0.0010	
Silver, Total	ND		0.0020	0.0020	
Thallium, Total	ND		0.0010	0.0010	
Vanadium, Total	ND		0.0020	0.0020	
Zinc, Total	ND		0.0050	0.0050	

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33C

Lab Sample ID: 280-91197-1 Date Sampled: 11/17/2016 1050

Client Matrix: Water Date Received: 11/18/2016 1000

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-354791 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-353082 Lab File ID: 026SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 1725 Final Weight/Volume: 50 mL

Prep Date: 12/01/2016 1405

Analyte Result (mg/L) Qualifier RLRL Antimony, Total ND 0.0010 0.0010 ND Beryllium, Total 0.0010 0.0010 0.15 Manganese, Total 0.0010 0.0010

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353835 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-352794 Lab File ID: 105SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/30/2016 1909 Final Weight/Volume: 50 mL

Prep Date: 11/30/2016 0735

Analyte Result (mg/L) Qualifier RL RL

Manganese, Dissolved 0.15 0.0010 0.0010

TestAmerica Denver Page 38 of 115 12/16/2016

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Water Date Received: 11/18/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354936 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353059 Lab File ID: 25D120816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/08/2016 2324 Final Weight/Volume: 50 mL

Prep Date: 11/30/2016 0735

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

Iron, Total 2.5 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353084 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/10/2016 0019 Final Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0019 Final Weight/Volume: 50
Prep Date: 12/01/2016 0731

Analyte Result (mg/L) Qualifier RL RL Calcium, Dissolved 8.6 0.040 0.040

Iron, Dissolved 2.5 0.060 0.060 Magnesium, Dissolved 4.1 0.050 0.050 Potassium, Dissolved ND 1.0 1.0 Sodium, Dissolved 3.0 1.0 1.0

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-354033 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-353082 Lab File ID: 232SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/02/2016 0359 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier RL Analyte RL 0.0024 0.0010 Barium, Total 0.0010 Cadmium, Total ND 0.00020 0.00020 ND Chromium, Total 0.0030 0.0030 Copper, Total ND 0.0020 0.0020

Lead, Total ND 0.0010 0.0010 Nickel, Total ND 0.0040 0.0040 Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total 0.0032 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050

Job Number: 280-91197-1 Client: Waste Management

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Date Received: 11/18/2016 1000 Water

6020 Metals (ICP/MS)-Total Recoverable

Analysis Batch: 280-354791 Instrument ID: Analysis Method: 6020 MT_077 Prep Method: 3005A Prep Batch: 280-353082 Lab File ID: 027SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: Final Weight/Volume: 12/07/2016 1729 50 mL

Prep Date: 12/01/2016 1405

Analyte Result (mg/L) Qualifier RLRL Antimony, Total ND 0.0010 0.0010 ND Beryllium, Total 0.0010 0.0010 Manganese, Total 0.083 F1 0.0010 0.0010

6020 Metals (ICP/MS)-Dissolved

Analysis Method: Analysis Batch: 280-353835 Instrument ID: MT_077 6020 Prep Method: 3005A Prep Batch: 280-352794 Lab File ID: 106SMPL.d

Dilution: Initial Weight/Volume: 1.0 50 mL

Final Weight/Volume: Analysis Date: 11/30/2016 1913 50 mL Prep Date: 11/30/2016 0735

Qualifier Analyte Result (mg/L) RLRL

Manganese, Dissolved 0.0010 0.0010 0.089

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: DUP1

Lab Sample ID: 280-91197-4 Date Sampled: 11/17/2016 1100

Client Matrix: Water Date Received: 11/18/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354936 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353059 Lab File ID: 25D120816.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/08/2016 2327 Final Weight/Volume: 50 mL

Prep Date: 11/30/2016 0735

Sodium, Dissolved

 Analyte
 Result (mg/L)
 Qualifier
 RL
 RL

 Cobalt, Total
 ND
 0.0030
 0.0030

Iron, Total 0.060 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353084 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0022 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 0731

Result (mg/L) Qualifier Analyte RLRL 0.040 Calcium, Dissolved 17 0.040 Iron, Dissolved ND 0.060 0.060 Magnesium, Dissolved 7.4 0.050 0.050 Potassium, Dissolved 1.3 1.0 1.0

4.2

6020 Metals (ICP/MS)-Total Recoverable

1.0

1.0

Analysis Method: 6020 Analysis Batch: 280-354033 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-353082 Lab File ID: 237SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/02/2016 0418 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 1405

Result (mg/L) Qualifier RL Analyte RL 0.0034 0.0010 Barium, Total 0.0010 Cadmium, Total ND 0.00020 0.00020 ND Chromium, Total 0.0030 0.0030 Copper, Total ND 0.0020 0.0020 Lead, Total ND 0.0010 0.0010 Nickel, Total ND 0.0040 0.0040 Selenium, Total ND 0.0010 0.0010 Silver, Total ND 0.0020 0.0020 Thallium, Total ND 0.0010 0.0010 Vanadium, Total ND 0.0020 0.0020 Zinc, Total ND 0.0050 0.0050

Job Number: 280-91197-1 Client: Waste Management

Client Sample ID: DUP1

Lab Sample ID: 280-91197-4 Date Sampled: 11/17/2016 1100

Client Matrix: Date Received: 11/18/2016 1000 Water

6020 Metals (ICP/MS)-Total Recoverable

Analysis Batch: 280-354791 Instrument ID: Analysis Method: 6020 MT_077 Prep Method: 3005A Prep Batch: 280-353082 Lab File ID: 032SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: Final Weight/Volume: 12/07/2016 1748 50 mL

Prep Date: 12/01/2016 1405

Analyte Result (mg/L) Qualifier RLRL Antimony, Total ND 0.0010 0.0010 ND Beryllium, Total 0.0010 0.0010 0.14 Manganese, Total 0.0010 0.0010

6020 Metals (ICP/MS)-Dissolved

Analysis Method: Analysis Batch: 280-353835 Instrument ID: MT_077 6020 Prep Method: 3005A Prep Batch: 280-352794 Lab File ID: 107SMPL.d

Dilution: Initial Weight/Volume: 1.0 50 mL

Final Weight/Volume: Analysis Date: 11/30/2016 1917 50 mL Prep Date: 11/30/2016 0735

Qualifier Analyte Result (mg/L) RLRL

Manganese, Dissolved 0.0010 0.0010 0.14

Job Number: 280-91197-1 Client: Waste Management

Client Sample ID: MW-24

Lab Sample ID: 280-91197-5 Date Sampled: 11/17/2016 1320

Client Matrix: Water Date Received: 11/18/2016 1000

6010B Metals (ICP)-Total Recoverable

Analysis Method: 6010B Analysis Batch: 280-354936 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 25D120816.asc 280-353059 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/08/2016 2329 Final Weight/Volume: 50 mL

Prep Date: 11/30/2016 0735

Sodium, Dissolved

Result (mg/L) Qualifier RLRL Analyte 0.0030 Cobalt, Total ND 0.0030

Iron, Total ND 0.060 0.060

6010B Metals (ICP)-Dissolved

Analysis Method: 6010B Analysis Batch: 280-355067 Instrument ID: MT_025

Prep Method: 3005A Prep Batch: 280-353084 Lab File ID: 25D120916.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/10/2016 0024 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 0731

Result (mg/L) Qualifier RLAnalyte RL 0.040 Calcium, Dissolved 11 0.040 Iron, Dissolved ND 0.060 0.060 Magnesium, Dissolved 6.5 0.050 0.050 Potassium, Dissolved ND 1.0 1.0

1.0

1.0

5.0

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-354033 Instrument ID: MT 077

Prep Method: 3005A Prep Batch: 280-353082 Lab File ID: 238SMPL.d Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 12/02/2016 0422 Final Weight/Volume: 50 mL

Prep Date: 12/01/2016 1405 Analyta Docult (ma/L) ы

Analyte	Result (mg/L)	Qualifier	RL	RL	
Barium, Total	0.0057		0.0010	0.0010	
Cadmium, Total	ND		0.00020	0.00020	
Chromium, Total	ND		0.0030	0.0030	
Copper, Total	ND		0.0020	0.0020	
Lead, Total	ND		0.0010	0.0010	
Nickel, Total	ND		0.0040	0.0040	
Selenium, Total	ND		0.0010	0.0010	
Silver, Total	ND		0.0020	0.0020	
Thallium, Total	ND		0.0010	0.0010	
Vanadium, Total	0.0022		0.0020	0.0020	
Zinc, Total	ND		0.0050	0.0050	

Client: Waste Management Job Number: 280-91197-1

Client Sample ID: MW-24

Lab Sample ID: 280-91197-5 Date Sampled: 11/17/2016 1320

Client Matrix: Water Date Received: 11/18/2016 1000

6020 Metals (ICP/MS)-Total Recoverable

Analysis Method: 6020 Analysis Batch: 280-354791 Instrument ID: MT_077
Prep Method: 3005A Prep Batch: 280-353082 Lab File ID: 033SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 12/07/2016 1752 Final Weight/Volume: 50 mL

Prep Date: 12/01/2016 1405

Analyte Result (mg/L) Qualifier RLRL Antimony, Total ND 0.0010 0.0010 Beryllium, Total ND 0.0010 0.0010 Manganese, Total 1.7 0.0010 0.0010

6020 Metals (ICP/MS)-Dissolved

Analysis Method: 6020 Analysis Batch: 280-353835 Instrument ID: MT_077

Prep Method: 3005A Prep Batch: 280-352794 Lab File ID: 108SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/30/2016 1921 Final Weight/Volume: 50 mL Prep Date: 11/30/2016 0735

Analyte Result (mg/L) Qualifier RL RL
Manganese, Dissolved 0.70 0.0010 0.0010

General Chemistry

Client Sample ID: MW-33C

 Lab Sample ID:
 280-91197-1
 Date Sampled: 11/17/2016 1050

 Client Matrix:
 Water
 Date Received: 11/18/2016 1000

Analyte	Res	ult Qual	Units	RL	RL	Dil	Method
Chloride	2.8		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-355	56 Analysis Dat	te: 12/13/20	16 0310			
Sulfate	7.4		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-355	56 Analysis Dat	te: 12/13/20	16 0310			
Ammonia (as N)	ND		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch: 280-3536	02 Analysis Dat	te: 11/29/20	16 1429			
Nitrate as N	ND		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-3554	01 Analysis Dat	te: 12/13/20	16 1028			
Alkalinity, Total (A	As CaCO3) 68		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-3531	80 Analysis Dat	te: 11/23/20	16 1257			
Alkalinity, Bicarbo	onate (As CaCO3) 68		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-3531	80 Analysis Dat	te: 11/23/20	16 1257			
Total Dissolved S	Solids (TDS) 95		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 280-3528	54 Analysis Dat	te: 11/23/20	16 0955			
Total Suspended	Solids 4.0		mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch: 280-3529	12 Analysis Dat	te: 11/23/20	16 1539			
Γotal Organic Ca	rbon - Average ND		mg/L	1.0	1.0	1.0	SM 5310B
	Analysis Batch: 280-3547	78 Analysis Dat	te: 12/07/20	16 1422			

General Chemistry

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Water Date Received: 11/18/2016 1000

Analyte	Re	esult	Qual	Units	RL	RL	Dil	Method
Chloride	2.2	2		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35	5156	Analysis Date:	12/13/20	016 0330			
Sulfate	1.8	8		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 280-35	5156	Analysis Date:	12/13/20	016 0330			
Ammonia (as N)	0.3	30		mg/L	0.030	0.030	1.0	350.1
	Analysis Batch: 280-353	3602	Analysis Date:	11/29/20	016 1431			
Nitrate as N	NE)		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 280-35	5401	Analysis Date:	12/13/20	016 1028			
Alkalinity, Total (A	As CaCO3) 39)		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-353	3180	Analysis Date:	11/23/20	016 1302			
Alkalinity, Bicarbo	onate (As CaCO3) 39)		mg/L	5.0	5.0	1.0	SM 2320B
	Analysis Batch: 280-353	3180	Analysis Date:	11/23/20	016 1302			
Total Dissolved S	Solids (TDS) 62	2		mg/L	5.0	5.0	1.0	SM 2540C
	Analysis Batch: 280-352	2854	Analysis Date:	11/23/20	016 0955			
Total Suspended	Solids 8.4	4		mg/L	4.0	4.0	1.0	SM 2540D
	Analysis Batch: 280-352	2912	Analysis Date:	11/23/20	016 1539			
Total Organic Ca	rbon - Average 2.5	5		mg/L	1.0	1.0	1.0	SM 5310B
	Analysis Batch: 280-354	4778	Analysis Date:	12/07/20	016 1439			

General Chemistry

Client Sample ID: DUP1

 Lab Sample ID:
 280-91197-4
 Date Sampled: 11/17/2016 1100

 Client Matrix:
 Water
 Date Received: 11/18/2016 1000

Analyte	Result	Qual	Units	RL	RL	Dil	Method
Chloride	2.8		mg/L	1.0	1.0	1.0	300.0
Anal	ysis Batch: 280-355156	Analysis Date	: 12/13/20	16 0350			
Sulfate	7.4		mg/L	1.0	1.0	1.0	300.0
Anal	ysis Batch: 280-355156	Analysis Date	: 12/13/20	16 0350			
Ammonia (as N)	0.047		mg/L	0.030	0.030	1.0	350.1
Anal	ysis Batch: 280-353602	Analysis Date	: 11/29/20	16 1433			
Nitrate as N	ND		mg/L	0.050	0.050	1.0	353.2
Anal	ysis Batch: 280-355401	Analysis Date	: 12/13/20	16 1028			
Alkalinity, Total (As Ca	CO3) 69		mg/L	5.0	5.0	1.0	SM 2320B
Anal	ysis Batch: 280-353180	Analysis Date	: 11/23/20	1307			
Alkalinity, Bicarbonate	(As CaCO3) 69		mg/L	5.0	5.0	1.0	SM 2320B
Anal	ysis Batch: 280-353180	Analysis Date	: 11/23/20	1307			
Total Dissolved Solids	(TDS) 97		mg/L	5.0	5.0	1.0	SM 2540C
Anal	ysis Batch: 280-352854	Analysis Date	: 11/23/20	16 0955			
Total Suspended Solid	s ND		mg/L	4.0	4.0	1.0	SM 2540D
Anal	ysis Batch: 280-352912	Analysis Date	: 11/23/20)16 1539			
Total Organic Carbon -	- Average ND		mg/L	1.0	1.0	1.0	SM 5310B
Anal	ysis Batch: 280-354778	Analysis Date	: 12/07/20	16 1454			

General Chemistry

Client Sample ID: MW-24

 Lab Sample ID:
 280-91197-5
 Date Sampled: 11/17/2016 1320

 Client Matrix:
 Water
 Date Received: 11/18/2016 1000

Analyte		Result	Qual	Units	RL	RL	Dil	Method
Chloride		2.5		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 2	280-355156	Analysis Date	: 12/13/20	16 0410			
Sulfate		3.5		mg/L	1.0	1.0	1.0	300.0
	Analysis Batch: 2	280-355156	Analysis Date	: 12/13/20	16 0410			
Ammonia (as N	l)	ND		mg/L	0.030	0.030	1.0	350.1
·	Analysis Batch: 2	280-353602	Analysis Date	: 11/29/20	16 1435			
Nitrate as N		0.16		mg/L	0.050	0.050	1.0	353.2
	Analysis Batch: 2	280-355401	Analysis Date	: 12/13/20	16 1028			
Alkalinity, Total	(As CaCO3)	57		mg/L	5.0	5.0	1.0	SM 2320E
	Analysis Batch: 2	280-353180	Analysis Date	: 11/23/20	16 1311			
Alkalinity, Bicar	bonate (As CaCO3)) 57		mg/L	5.0	5.0	1.0	SM 2320E
	Analysis Batch: 2	280-353180	Analysis Date	: 11/23/20	16 1311			
Total Dissolved	Solids (TDS)	86	Н	mg/L	5.0	5.0	1.0	SM 25400
	Analysis Batch: 2	280-353679	Analysis Date	: 11/30/20	16 0904			
Total Suspende	ed Solids	ND		mg/L	4.0	4.0	1.0	SM 2540E
	Analysis Batch: 2	280-352912	Analysis Date	: 11/23/20	16 1539			
Total Organic C	Carbon - Average	ND		mg/L	1.0	1.0	1.0	SM 5310E
	Analysis Batch: 2	280-354778	Analysis Date	: 12/07/20	16 1508			

Field Service / Mobile Lab

Client Sample ID: MW-33C

 Lab Sample ID:
 280-91197-1
 Date Sampled: 11/17/2016 1050

 Client Matrix:
 Water
 Date Received: 11/18/2016 1000

Analysis Date Analyzed Analyte Result Qual Units Dil Method Batch **Date Prepared** Depth to water 1.63 ft 1.0 Field 280-352756 11/17/2016 1150 Sampling Specific Conductivity 159 umhos/cm 1.0 Field 11/17/2016 1150 280-352756 Sampling Dissolved Oxygen 0.26 mg/L 1.0 Field 280-352756 11/17/2016 1150 Sampling -61.14 millivolts 1.0 Field 11/17/2016 1150 еΗ 280-352756 Sampling Turbidity 1.12 NTU 1.0 Field 280-352756 11/17/2016 1150 Sampling Temperature Degrees C 9.24 1.0 Field 280-352756 11/17/2016 1150 Sampling SU Field рΗ 8.31 1.0 280-352756 11/17/2016 1150

Sampling

Field Service / Mobile Lab

Client Sample ID: MW-33A

Lab Sample ID: 280-91197-3 Date Sampled: 11/17/2016 0950

Client Matrix: Date Received: 11/18/2016 1000 Water

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	4.41		ft	1.0	Field Sampling	280-352756	11/17/2016 1050
Specific Conductivity	8.4		umhos/cm	1.0	Field Sampling	280-352756	11/17/2016 1050
Dissolved Oxygen	0.43		mg/L	1.0	Field Sampling	280-352756	11/17/2016 1050
еН	39.2		millivolts	1.0	Field Sampling	280-352756	11/17/2016 1050
Turbidity	8.61		NTU	1.0	Field Sampling	280-352756	11/17/2016 1050
Temperature	9.99		Degrees C	1.0	Field Sampling	280-352756	11/17/2016 1050
рН	6.67		SU	1.0	Field Sampling	280-352756	11/17/2016 1050

Field Service / Mobile Lab

Client Sample ID: MW-24

Lab Sample ID: 280-91197-5 Date Sampled: 11/17/2016 1320

Client Matrix: Water Date Received: 11/18/2016 1000

Analyte	Result	Qual	Units	Dil	Method	Analysis Batch	Date Analyzed Date Prepared
Depth to water	32.20		ft	1.0	Field Sampling	280-352756	11/17/2016 1420
Specific Conductivity	127		umhos/cm	1.0	Field Sampling	280-352756	11/17/2016 1420
Dissolved Oxygen	0.24		mg/L	1.0	Field Sampling	280-352756	11/17/2016 1420
еН	107.9		millivolts	1.0	Field Sampling	280-352756	11/17/2016 1420
Turbidity	2.12		NTU	1.0	Field Sampling	280-352756	11/17/2016 1420
Temperature	11.66		Degrees C	1.0	Field Sampling	280-352756	11/17/2016 1420
рН	6.63		SU	1.0	Field Sampling	280-352756	11/17/2016 1420

DATA REPORTING QUALIFIERS

Client: Waste Management Job Number: 280-91197-1

Lab Section	Qualifier	Description
GC/MS VOA		
	F1	MS and/or MSD Recovery is outside acceptance limits.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	X	Surrogate is outside control limits
Metals		
	F1	MS and/or MSD Recovery is outside acceptance limits.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
General Chemistry		
	Н	Sample was prepped or analyzed beyond the specified holding time

QUALITY CONTROL RESULTS

Client: Waste Management Job Number: 280-91197-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:480-333	833				
CS 480-333833/4	Lab Control Sample	T	Water	8260C SIM	
CSD 480-333833/5	Lab Control Sample Duplicate	T	Water	8260C SIM	
MB 480-333833/7	Method Blank	T	Water	8260C SIM	
280-91197-1	MW-33C	T	Water	8260C SIM	
280-91197-4	DUP1	T	Water	8260C SIM	
280-91197-5	MW-24	T	Water	8260C SIM	
Analysis Batch:480-333	995				
CS 480-333995/4	Lab Control Sample	Т	Water	8260C	
MB 480-333995/6	Method Blank	Т	Water	8260C	
280-91197-1	MW-33C	Т	Water	8260C	
280-91197-2TB	TRIP BLANK	Т	Water	8260C	
280-91197-3	MW-33A	Т	Water	8260C	
280-91197-4	DUP1	Т	Water	8260C	
280-91197-5	MW-24	Т	Water	8260C	
180-109984-E-3 MS	Matrix Spike	Т	Water	8260C	
180-109984-E-3 MSD	Matrix Spike Duplicate	T	Water	8260C	
Analysis Batch:480-334	1146				
CS 480-334146/5	Lab Control Sample	Т	Water	8260C SIM	
CSD 480-334146/6	Lab Control Sample Duplicate	T	Water	8260C SIM	
ЛВ 480-334146/8	Method Blank	Т	Water	8260C SIM	
280-91197-2TB	TRIP BLANK	Т	Water	8260C SIM	
280-91197-3	MW-33A	T	Water	8260C SIM	

Report Basis

T = Total

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals	·				· · · · · · · · · · · · · · · · · · ·
Prep Batch: 280-35279	4				
LCS 280-352794/2-A	Lab Control Sample	R	Water	3005A	
MB 280-352794/1-A	Method Blank	R	Water	3005A	
280-91068-E-1-C MS	Matrix Spike	D	Water	3005A	
280-91068-E-1-D MSD	Matrix Spike Duplicate	D	Water	3005A	
280-91197-1	MW-33C	D	Water	3005A	
280-91197-3	MW-33A	D	Water	3005A	
280-91197-4	DUP1	D	Water	3005A	
280-91197-5	MW-24	D	Water	3005A	
Prep Batch: 280-35305	9				
LCS 280-353059/2-A	Lab Control Sample	R	Water	3005A	
MB 280-353059/1-A	Method Blank	R	Water	3005A	
280-91196-C-1-B MS	Matrix Spike	D	Water	3005A	
280-91196-C-1-C MSD	Matrix Spike Duplicate	D	Water	3005A	
280-91197-1	MW-33C	R	Water	3005A	
280-91197-3	MW-33A	R	Water	3005A	
280-91197-4	DUP1	R	Water	3005A	
280-91197-5	MW-24	R	Water	3005A	
Prep Batch: 280-35308	2				
LCS 280-353082/2-A	Lab Control Sample	R	Water	3005A	
MB 280-353082/1-A	Method Blank	R	Water	3005A	
280-91197-1	MW-33C	R	Water	3005A	
280-91197-3	MW-33A	R	Water	3005A	
280-91197-3MS	Matrix Spike	R	Water	3005A	
280-91197-3MSD	Matrix Spike Duplicate	R	Water	3005A	
280-91197-4	DUP1	R	Water	3005A	
280-91197-5	MW-24	R	Water	3005A	
Prep Batch: 280-35308	4				
LCS 280-353084/2-A	Lab Control Sample	R	Water	3005A	
MB 280-353084/1-A	Method Blank	R	Water	3005A	
280-91197-1	MW-33C	D	Water	3005A	
280-91197-3	MW-33A	D	Water	3005A	
280-91197-4	DUP1	D	Water	3005A	
280-91197-5	MW-24	D	Water	3005A	
280-91292-C-1-B MS	Matrix Spike	D	Water	3005A	
280-91292-C-1-C MSD	Matrix Spike Duplicate	D	Water	3005A	

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals	Chone Gampio 12			ou	. rep Baton
Analysis Batch:280-353	025				
LCS 280-352794/2-A	Lab Control Sample	R	Water	6020	280-352794
MB 280-352794/1-A	Method Blank	R	Water	6020	280-352794
280-91068-E-1-C MS	Matrix Spike	D	Water	6020	280-352794
280-91068-E-1-D MSD	Matrix Spike Duplicate	D	Water	6020	280-352794
280-91197-1	MW-33C	D	Water	6020	280-352794
280-91197-3	MW-33A	D	Water	6020	280-352794
280-91197-4	DUP1	D	Water	6020	280-352794
280-91197-5	MW-24	D	Water	6020	280-352794
200 01107 0	10100 27	Б	Water	0020	200 002704
Analysis Batch:280-354	033				
LCS 280-353082/2-A	Lab Control Sample	R	Water	6020	280-353082
MB 280-353082/1-A	Method Blank	R	Water	6020	280-353082
280-91197-1	MW-33C	R	Water	6020	280-353082
280-91197-3	MW-33A	R	Water	6020	280-353082
280-91197-3MS	Matrix Spike	R	Water	6020	280-353082
280-91197-3MSD	Matrix Spike Duplicate	R	Water	6020	280-353082
280-91197-4	DUP1	R	Water	6020	280-353082
280-91197-5	MW-24	R	Water	6020	280-353082
Analysis Batch:280-354	704				
LCS 280-353082/2-A	Lab Control Sample	R	Water	6020	280-353082
MB 280-353082/1-A	Method Blank	R	Water	6020	280-353082
280-91197-1	MW-33C	R	Water	6020	280-353082
280-91197-3	MW-33A	R	Water	6020	280-353082
280-91197-3MS	Matrix Spike	R	Water	6020	280-353082
280-91197-3MSD	Matrix Spike Duplicate	R	Water	6020	280-353082
280-91197-4	DUP1	R	Water	6020	280-353082
280-91197-5	MW-24	R	Water	6020	280-353082
Analysis Batch:280-354					
LCS 280-353059/2-A	Lab Control Sample	R	Water	6010B	280-353059
MB 280-353059/1-A	Method Blank	R	Water	6010B	280-353059
280-91196-C-1-B MS	Matrix Spike	D	Water	6010B	280-353059
280-91196-C-1-C MSD	Matrix Spike Duplicate	D	Water	6010B	280-353059
280-91197-1	MW-33C	R	Water	6010B	280-353059
280-91197-3	MW-33A	R	Water	6010B	280-353059
280-91197-4	DUP1	R	Water	6010B	280-353059
280-91197-5	MW-24	R	Water	6010B	280-353059

Job Number: 280-91197-1 Client: Waste Management

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Analysis Batch:280-35	5067				
LCS 280-353084/2-A	Lab Control Sample	R	Water	6010B	280-353084
MB 280-353084/1-A	Method Blank	R	Water	6010B	280-353084
280-91197-1	MW-33C	D	Water	6010B	280-353084
280-91197-3	MW-33A	D	Water	6010B	280-353084
280-91197-4	DUP1	D	Water	6010B	280-353084
280-91197-5	MW-24	D	Water	6010B	280-353084
280-91292-C-1-B MS	Matrix Spike	D	Water	6010B	280-353084
280-91292-C-1-C MSD	Matrix Spike Duplicate	D	Water	6010B	280-353084
Report Basis					
D = Dissolved					
R = Total Recoverable					
Field Service / Mobile L	.ab				
Analysis Batch:280-352	2756				
280-91197-1	MW-33C	Т	Water	Field Sampling	
280-91197-3	MW-33A	Т	Water	Field Sampling	
280-91197-5	MW-24	Т	Water	Field Sampling	

Report Basis T = Total

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-3	52854				
LCS 280-352854/2	Lab Control Sample	T	Water	SM 2540C	
MB 280-352854/1	Method Blank	Т	Water	SM 2540C	
280-91197-1	MW-33C	Т	Water	SM 2540C	
280-91197-1DU	Duplicate	Т	Water	SM 2540C	
280-91197-3	MW-33A	Ť	Water	SM 2540C	
280-91197-4	DUP1	T	Water	SM 2540C	
Analysis Batch:280-3	52912				
LCS 280-352912/1	Lab Control Sample	T	Water	SM 2540D	
MB 280-352912/2	Method Blank	Т	Water	SM 2540D	
280-91197-1	MW-33C	Ť	Water	SM 2540D	
280-91197-3	MW-33A	Ť	Water	SM 2540D	
280-91197-3DU	Duplicate	Ť	Water	SM 2540D	
280-91197-4	DUP1	Ť	Water	SM 2540D	
280-91197-5	MW-24	Ť	Water	SM 2540D	
Analysis Batch:280-3	53180				
LCS 280-353180/4	Lab Control Sample	Т	Water	SM 2320B	
MB 280-353180/5	Method Blank	T	Water	SM 2320B	
280-91197-1	MW-33C	Ť	Water	SM 2320B	
280-91197-3	MW-33A	T	Water	SM 2320B	
280-91197-4	DUP1	T	Water	SM 2320B	
280-91197-5	MW-24	T	Water	SM 2320B	
280-91292-A-3 DU	Duplicate	Ť	Water	SM 2320B	
Analysis Batch:280-3	53602				
LCS 280-353602/18	Lab Control Sample	Т	Water	350.1	
LCSD 280-353602/19	Lab Control Sample Duplicate	Т	Water	350.1	
MB 280-353602/20	Method Blank	Ť	Water	350.1	
280-91197-1	MW-33C	Ť	Water	350.1	
280-91197-3	MW-33A	Ť	Water	350.1	
280-91197-4	DUP1	Ť	Water	350.1	
280-91197-5	MW-24	T	Water	350.1	
440-166999-B-1 MS	Matrix Spike	T	Water	350.1	
	•	, T		350.1	
440-166999-B-1 MSD	Matrix Spike Duplicate	ı	Water	330.1	
Analysis Batch:280-3		T	Matar	CM 05400	
LCS 280-353679/2	Lab Control Sample	T	Water	SM 2540C	
LCSD 280-353679/3	Lab Control Sample Duplicate	T -	Water	SM 2540C	
MB 280-353679/1	Method Blank	T	Water	SM 2540C	
280-91197-5	MW-24	T	Water	SM 2540C	
280-91498-B-2 DU	Duplicate	T	Water	SM 2540C	

Job Number: 280-91197-1 Client: Waste Management

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					
Analysis Batch:280-354	4778				
LCS 280-354778/3	Lab Control Sample	T	Water	SM 5310B	
MB 280-354778/4	Method Blank	T	Water	SM 5310B	
280-91182-G-1 MS	Matrix Spike	T	Water	SM 5310B	
280-91182-G-1 MSD	Matrix Spike Duplicate	Т	Water	SM 5310B	
280-91197-1	MW-33C	Т	Water	SM 5310B	
280-91197-3	MW-33A	T	Water	SM 5310B	
280-91197-4	DUP1	T	Water	SM 5310B	
280-91197-5	MW-24	Т	Water	SM 5310B	
Analysis Batch:280-35	5156				
LCS 280-355156/4	Lab Control Sample	T	Water	300.0	
LCSD 280-355156/5	Lab Control Sample Duplicate	T	Water	300.0	
MB 280-355156/6	Method Blank	T	Water	300.0	
280-91197-1	MW-33C	T	Water	300.0	
280-91197-3	MW-33A	T	Water	300.0	
280-91197-4	DUP1	T	Water	300.0	
280-91197-5	MW-24	T	Water	300.0	
280-91292-A-11 DU	Duplicate	Т	Water	300.0	
280-91292-A-11 MS	Matrix Spike	T	Water	300.0	
280-91292-A-11 MSD	Matrix Spike Duplicate	T	Water	300.0	
Analysis Batch:280-35	5401				
MB 280-355401/1	Method Blank	Т	Water	353.2	
280-91197-1	MW-33C	Т	Water	353.2	
280-91197-3	MW-33A	Т	Water	353.2	
280-91197-4	DUP1	T	Water	353.2	
280-91197-5	MW-24	T	Water	353.2	

Report Basis T = Total

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Water

		DCA	BFB	TOL
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
280-91197-1	MW-33C	102	97	102
280-91197-2	TRIP BLANK	104	96	101
280-91197-3	MW-33A	103	95	100
280-91197-4	DUP1	131X	126X	133X
280-91197-5	MW-24	106	95	101
MB 480-333995/6		102	97	103
LCS 480-333995/4		100	99	104
480-109984-E-3 MS		102	97	104
480-109984-E-3 MSD		104	98	106

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	77-120
BFB = 4-Bromofluorobenzene (Surr)	73-120
TOL = Toluene-d8 (Surr)	80-120

Client: Waste Management Job Number: 280-91197-1

Surrogate Recovery Report

8260C SIM Volatile Organic Compounds (GC/MS)

Client Matrix: Water

		DBFM	TBA
Lab Sample ID	Client Sample ID	%Rec	%Rec
280-91197-1	MW-33C	96	129
280-91197-2	TRIP BLANK	94	136
280-91197-3	MW-33A	93	138
280-91197-4	DUP1	96	105
280-91197-5	MW-24	94	104
MB 480-333833/7		93	132
MB 480-334146/8		95	131
LCS 480-333833/4		98	113
LCS 480-334146/5		95	120
LCSD 480-333833/5		97	121
LCSD 480-334146/6		95	122

Surrogate	Acceptance Limits
DBFM = Dibromofluoromethane (Surr)	50-150
TBA = TBA-d9 (Surr)	50-150

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 480-333995

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333995/6 Analysis Batch: 480-333995 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0144.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/30/2016 1041 Units: ug/L

Prep Date: 11/30/2016 1041

Analyte	Result	Qual	MDL	RL	
1,1,1,2-Tetrachloroethane	ND		0.35	1.0	
1,1,1-Trichloroethane	ND		0.82	1.0	
1,1,2,2-Tetrachloroethane	ND		0.21	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.31	1.0	
1,1,2-Trichloroethane	ND		0.23	1.0	
1,1-Dichloroethane	ND		0.38	1.0	
1,1-Dichloroethene	ND		0.29	1.0	
1,1-Dichloropropene	ND		0.72	1.0	
1,2,3-Trichlorobenzene	ND		0.41	1.0	
1,2,3-Trichloropropane	ND		0.89	1.0	
1,2,4-Trichlorobenzene	ND		0.41	1.0	
1,2,4-Trimethylbenzene	ND		0.75	1.0	
1,2-Dibromo-3-Chloropropane	ND		0.39	1.0	
1,2-Dibromoethane (EDB)	ND		0.73	1.0	
1,2-Dichlorobenzene	ND		0.79	1.0	
1,2-Dichloroethane	ND		0.21	1.0	
1,2-Dichloroethene, Total	ND		0.81	2.0	
1,2-Dichloropropane	ND		0.72	1.0	
1,3,5-Trichlorobenzene	ND		0.23	1.0	
1,3,5-Trimethylbenzene	ND		0.77	1.0	
1,3-Dichlorobenzene	ND		0.78	1.0	
1,3-Dichloropropane	ND		0.75	1.0	
1,4-Dichlorobenzene	ND		0.84	1.0	
1,4-Dioxane	ND		9.3	40	
2,2-Dichloropropane	ND		0.40	1.0	
2-Butanone (MEK)	ND		1.3	10	
2-Chloroethyl vinyl ether	ND		0.96	5.0	
2-Hexanone	ND		1.2	5.0	
4-Methyl-2-pentanone (MIBK)	ND		2.1	5.0	
Acetone	ND		3.0	10	
Acetonitrile	ND		4.9	15	
Acrolein	ND		0.91	20	
Acrylonitrile	ND		0.83	5.0	
Benzene	ND		0.41	1.0	
Bromobenzene	ND		0.80	1.0	
Bromochloromethane	ND		0.87	1.0	
Bromodichloromethane	ND		0.39	1.0	
Bromoform	ND		0.39	1.0	
5	ND			1.0	
Bromomethane Butyl alcohol, n-	ND ND		0.69 8.9	40	
Butyl alcohol, tert-	ND ND		3.3	10	
Carbon disulfide	ND ND		ა.ა 0.19	1.0	
Carbon distillide Carbon tetrachloride			0.19	1.0	
	ND ND				
Chlorodifluoromethana	ND ND		0.75	1.0	
Chlorodifluoromethane	ND		0.26	1.0	

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 480-333995

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333995/6 Analysis Batch: 480-333995 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0144.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/30/2016 1041 Units: ug/L

Prep Date: 11/30/2016 1041

Analyte	Result	Qual	MDL	RL	
Chloroethane	ND		0.32	1.0	
Chloroform	ND		0.34	1.0	
Chloromethane	ND		0.35	1.0	
cis-1,2-Dichloroethene	ND		0.81	1.0	
cis-1,3-Dichloropropene	ND		0.36	1.0	
Cyclohexane	ND		0.18	1.0	
Dibromochloromethane	ND		0.32	1.0	
Dibromomethane	ND		0.41	1.0	
Dichlorodifluoromethane	ND		0.68	1.0	
Dichlorofluoromethane	ND		0.34	1.0	
Ethyl acetate	ND		0.66	1.0	
Ethyl ether	ND		0.72	1.0	
Ethyl tert-butyl ether	ND		0.29	1.0	
Ethylbenzene	ND		0.74	1.0	
Hexachlorobutadiene	ND		0.28	1.0	
Hexane	ND		0.40	10	
Iodomethane	ND		0.30	1.0	
Isobutanol	ND		4.8	25	
Isopropyl ether	ND		0.59	1.0	
Isopropylbenzene	ND		0.79	1.0	
Methacrylonitrile	ND		0.69	5.0	
Methyl acetate	ND		1.3	2.5	
Methyl tert-butyl ether	ND		0.16	1.0	
Methylcyclohexane	ND		0.16	1.0	
Methylene Chloride	ND		0.44	1.0	
m-Xylene & p-Xylene	ND		0.66	2.0	
Naphthalene	ND		0.43	1.0	
n-Butylbenzene	ND		0.64	1.0	
N-Propylbenzene	ND		0.69	1.0	
o-Chlorotoluene	ND		0.86	1.0	
o-Xylene	ND		0.76	1.0	
p-Chlorotoluene	ND		0.84	1.0	
p-Cymene	ND		0.31	1.0	
sec-Butylbenzene	ND		0.75	1.0	
Styrene	ND		0.73	1.0	
Tert-amyl methyl ether	ND		0.27	1.0	
tert-Butylbenzene	ND		0.81	1.0	
Tetrachloroethene	ND		0.36	1.0	
Tetrahydrofuran	ND		1.3	5.0	
Toluene	ND		0.51	1.0	
trans-1,2-Dichloroethene	ND		0.90	1.0	
trans-1,3-Dichloropropene	ND		0.37	1.0	
trans-1,4-Dichloro-2-butene	ND		0.22	1.0	
Trichloroethene	ND		0.46	1.0	
Trichlorofluoromethane	ND		0.88	1.0	

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 480-333995 Method: 8260C Preparation: 5030C

Lab Sample ID: MB 480-333995/6 Analysis Batch: 480-333995 Instrument ID: HP5973S Client Matrix: Water Prep Batch: N/A Lab File ID: S0144.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: Final Weight/Volume: 5 mL 11/30/2016 1041 Units: ug/L

Prep Date: 11/30/2016 1041

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Vinyl acetate	ND		0.85	5.0
Vinyl chloride	ND		0.90	1.0
Surrogate	% Rec		Acceptance Limits	
1.2 Diobleroethane d4 (Surr)	102		77 100	
1,2-Dichloroethane-d4 (Surr)	102		77 - 120	
4-Bromofluorobenzene (Surr)	97		77 - 120 73 - 120	

Method Blank TICs- Batch: 480-333995

Cas Number Analyte RT Est. Result (ug, Qual 67-72-1 Hexachloroethane TIC 0.00 ND

Client: Waste Management Job Number: 280-91197-1

Lab Control Sample - Batch: 480-333995

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333995/4 Analysis Batch: 480-333995 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0142.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/30/2016 0954 Units: ug/L

Prep Date: 11/30/2016 0954

1,1,1,2-Tetrachloroethane 25.0 28.4 114 80 - 120 1,1,1-Trichloroethane 25.0 27.5 110 73 - 126 1,1,2,2-Tetrachloroethane 25.0 26.7 107 76 - 120 1,1,2-Trichloro-1,2,2-trifluoroethane 25.0 24.0 96 61 - 148 1,1,2-Trichloroethane 25.0 26.4 106 76 - 122 1,1-Dichloroethane 25.0 26.6 107 77 - 120 1,1-Dichloroethane 25.0 26.9 108 66 - 127 1,1-Dichloroethane 25.0 26.9 108 66 - 127 1,1-Dichloropropene 25.0 27.3 109 72 - 122 1,2,3-Trichloropropene 25.0 26.3 105 75 - 123 1,2,3-Trichloropropane 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 26.5 106 77 - 120 1,2-Dichlorobenzene 25.0	
1,1,2,2-Tetrachloroethane 25.0 26.7 107 76 - 120 1,1,2-Trichloro-1,2,2-trifluoroethane 25.0 24.0 96 61 - 148 1,1,2-Trichloroethane 25.0 26.4 106 76 - 122 1,1-Dichloroethane 25.0 26.6 107 77 - 120 1,1-Dichloroethane 25.0 26.9 108 66 - 127 1,1-Dichloropropene 25.0 27.3 109 72 - 122 1,2,3-Trichlorobenzene 25.0 26.3 105 75 - 123 1,2,3-Trichloropropane 25.0 25.1 100 68 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3-Dichlorobenzene 25.0	
1,1,2-Trichloro-1,2,2-trifluoroethane 25.0 24.0 96 61 - 148 1,1,2-Trichloroethane 25.0 26.4 106 76 - 122 1,1-Dichloroethane 25.0 26.6 107 77 - 120 1,1-Dichloroethene 25.0 26.9 108 66 - 127 1,1-Dichloropropene 25.0 27.3 109 72 - 122 1,2,3-Trichlorobenzene 25.0 26.3 105 75 - 123 1,2,3-Trichloropropane 25.0 25.1 100 68 - 122 1,2,4-Trichlorobenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 26.5 106 76 - 121 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloropropane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 <td< td=""><td></td></td<>	
1,1,2-Trichloroethane 25.0 26.4 106 76 - 122 1,1-Dichloroethane 25.0 26.6 107 77 - 120 1,1-Dichloroethene 25.0 26.9 108 66 - 127 1,1-Dichloropropene 25.0 27.3 109 72 - 122 1,2,3-Trichlorobenzene 25.0 26.3 105 75 - 123 1,2,3-Trichloropropane 25.0 25.1 100 68 - 122 1,2,4-Trichlorobenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloropropane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5	
1,1-Dichloroethane 25.0 26.6 107 77 - 120 1,1-Dichloroethene 25.0 26.9 108 66 - 127 1,1-Dichloropropene 25.0 27.3 109 72 - 122 1,2,3-Trichlorobenzene 25.0 26.3 105 75 - 123 1,2,3-Trichloropropane 25.0 25.1 100 68 - 122 1,2,4-Trichlorobenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloropropane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,1-Dichloroethene 25.0 26.9 108 66 - 127 1,1-Dichloropropene 25.0 27.3 109 72 - 122 1,2,3-Trichlorobenzene 25.0 26.3 105 75 - 123 1,2,3-Trichloropropane 25.0 25.1 100 68 - 122 1,2,4-Trichlorobenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloropropane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,1-Dichloropropene 25.0 27.3 109 72 - 122 1,2,3-Trichlorobenzene 25.0 26.3 105 75 - 123 1,2,3-Trichloropropane 25.0 25.1 100 68 - 122 1,2,4-Trichlorobenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2,3-Trichlorobenzene 25.0 26.3 105 75 - 123 1,2,3-Trichloropropane 25.0 25.1 100 68 - 122 1,2,4-Trichlorobenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2,3-Trichloropropane 25.0 25.1 100 68 - 122 1,2,4-Trichlorobenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2,4-Trichlorobenzene 25.0 26.5 106 79 - 122 1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2,4-Trimethylbenzene 25.0 26.5 106 76 - 121 1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2-Dibromo-3-Chloropropane 25.0 27.9 112 56 - 134 1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2-Dibromoethane (EDB) 25.0 26.7 107 77 - 120 1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2-Dichlorobenzene 25.0 26.1 104 80 - 124 1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2-Dichloroethane 25.0 24.5 98 75 - 120 1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,2-Dichloropropane 25.0 25.5 102 76 - 120 1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,3,5-Trimethylbenzene 25.0 26.6 106 77 - 121 1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
1,3-Dichlorobenzene 25.0 26.5 106 77 - 120	
,	
1,3-Dichloropropane 25.0 26.5 106 75 - 120	
1,4-Dichlorobenzene 25.0 25.8 103 80 - 120	
1,4-Dioxane 500 445 89 50 - 150	
2,2-Dichloropropane 25.0 27.5 110 63 - 136	
2-Butanone (MEK) 125 125 100 57 - 140	
2-Chloroethyl vinyl ether 25.0 26.8 107 70 - 129	
2-Hexanone 125 121 97 65 - 127	
4-Methyl-2-pentanone (MIBK) 125 123 98 71 - 125	
Acetone 125 124 100 56 - 142	
Acrolein 125 130 104 52 - 143	
Acrylonitrile 250 252 101 63 - 125	
Benzene 25.0 26.2 105 71 - 124	
Bromobenzene 25.0 25.7 103 78 - 120	
Bromochloromethane 25.0 26.5 106 72 - 130	
Bromodichloromethane 25.0 26.1 104 80 - 122	
Bromoform 25.0 26.2 105 61 - 132	
Bromomethane 25.0 25.3 101 55 - 144	
Butyl alcohol, tert- 250 248 99 75 - 125	
Carbon disulfide 25.0 25.0 100 59 - 134	
Carbon tetrachloride 25.0 27.9 112 72 - 134	
Chlorobenzene 25.0 26.7 107 80 - 120	
Chloroethane 25.0 27.0 108 69 - 136	
Chloroform 25.0 25.3 101 73 - 127	
Chloromethane 25.0 22.3 89 68 - 124	
cis-1,2-Dichloroethene 25.0 26.8 107 74 - 124	
cis-1,3-Dichloropropene 25.0 26.0 104 74 - 124	
Cyclohexane 25.0 26.9 108 59 - 135	

Client: Waste Management Job Number: 280-91197-1

Lab Control Sample - Batch: 480-333995

Method: 8260C Preparation: 5030C

Lab Sample ID: LCS 480-333995/4 Analysis Batch: 480-333995 Instrument ID: HP5973S Client Matrix: Prep Batch: Water N/A Lab File ID: S0142.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 11/30/2016 0954 Units: ug/L

Prep Date: 11/30/2016 0954

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Dibromochloromethane	25.0	27.4	110	75 - 125	
Dibromomethane	25.0	26.0	104	76 - 127	
Dichlorodifluoromethane	25.0	18.6	74	59 - 135	
Dichlorofluoromethane	25.0	25.1	100	76 - 127	
Ethyl ether	25.0	26.6	106	76 - 123	
Ethylbenzene	25.0	25.9	103	77 - 123	
Hexachlorobutadiene	25.0	25.4	102	68 - 131	
Hexane	25.0	26.7	107	54 - 146	
lodomethane	25.0	25.0	100	78 - 123	
Isobutanol	625	631	101	51 - 150	
Isopropylbenzene	25.0	26.4	106	77 - 122	
Methyl acetate	125	117	94	74 - 133	
Methyl tert-butyl ether	25.0	25.6	102	77 - 120	
Methylcyclohexane	25.0	27.0	108	68 - 134	
Methylene Chloride	25.0	25.2	101	75 - 124	
m-Xylene & p-Xylene	25.0	25.4	102	76 - 122	
Naphthalene	25.0	25.9	104	66 - 125	
n-Butylbenzene	25.0	26.7	107	71 - 128	
N-Propylbenzene	25.0	26.2	105	75 - 127	
o-Chlorotoluene	25.0	25.8	103	76 - 121	
o-Xylene	25.0	25.8	103	76 - 122	
p-Chlorotoluene	25.0	26.3	105	77 - 121	
p-Cymene	25.0	26.3	105	73 - 120	
sec-Butylbenzene	25.0	26.3	105	74 - 127	
Styrene	25.0	25.8	103	80 - 120	
tert-Butylbenzene	25.0	26.1	104	75 - 123	
Tetrachloroethene	25.0	27.0	108	74 - 122	
Tetrahydrofuran	50.0	45.6	91	62 - 132	
Toluene	25.0	26.5	106	80 - 122	
trans-1,2-Dichloroethene	25.0	27.5	110	73 - 127	
trans-1,3-Dichloropropene	25.0	27.2	109	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	20.6	82	41 - 131	
Trichloroethene	25.0	26.4	106	74 - 123	
Trichlorofluoromethane	25.0	24.1	97	62 - 150	
Vinyl acetate	50.0	50.5	101	50 - 144	
Vinyl chloride	25.0	26.0	104	65 - 133	
Surrogate	% I	Rec	А	cceptance Limits	
1,2-Dichloroethane-d4 (Surr)	1	00		77 - 120	
4-Bromofluorobenzene (Surr)	99			73 - 120	
Toluene-d8 (Surr)		04		80 - 120	
()	•	-		·	

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333995 Method: 8260C
Preparation: 5030C

MS Lab Sample ID: 480-109984-E-3 MS 480-333995 Instrument ID: HP5973S Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: S0163.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 11/30/2016 1818 Final Weight/Volume: Analysis Date: 5 mL

Prep Date: 11/30/2016 1818 5 mL

Leach Date: N/A

MSD Lab Sample ID: 480-109984-E-3 MSD Analysis Batch: 480-333995 Instrument ID: HP5973S Client Matrix: Water N/A Lab File ID: Prep Batch: S0164.D Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0 5 mL

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/30/2016 1841 Final Weight/Volume: 5 mL

Prep Date: 11/30/2016 1841 5 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,1,1-Trichloroethane	130	127	73 - 126	3	15	F1	F1
1,1,2,2-Tetrachloroethane	118	117	76 - 120	1	15		
1,1,2-Trichloro-1,2,2-trifluoroethane	128	123	61 - 148	4	20		
1,1,2-Trichloroethane	118	119	76 - 122	1	15		
1,1-Dichloroethane	125	123	77 - 120	2	20	F1	F1
1,1-Dichloroethene	138	135	66 - 127	2	16	F1	F1
1,2,4-Trichlorobenzene	116	118	79 - 122	2	20		
1,2-Dibromo-3-Chloropropane	111	116	56 - 134	4	15		
1,2-Dibromoethane (EDB)	114	116	77 - 120	1	15		
1,2-Dichlorobenzene	117	117	80 - 124	1	20		
1,2-Dichloroethane	112	111	75 - 120	1	20		
1,2-Dichloropropane	119	119	76 - 120	0	20		
1,3-Dichlorobenzene	119	118	77 - 120	1	20		
1,4-Dichlorobenzene	118	116	78 - 124	2	20		
2-Butanone (MEK)	98	100	57 - 140	1	20		
2-Hexanone	95	96	65 - 127	1	15		
4-Methyl-2-pentanone (MIBK)	101	103	71 - 125	2	35		
Acetone	88	90	56 - 142	1	15		
Benzene	125	122	71 - 124	2	13	F1	
Bromodichloromethane	118	118	80 - 122	1	15		
Bromoform	107	110	61 - 132	2	15		
Bromomethane	111	111	55 - 144	0	15		
Carbon disulfide	116	114	59 - 134	2	15		
Carbon tetrachloride	135	131	72 - 134	2	15	F1	
Chlorobenzene	119	118	80 - 120	0	25		
Chloroethane	129	133	69 - 136	3	15		
Chloroform	120	119	73 - 127	0	20		
Chloromethane	107	111	68 - 124	3	15		
cis-1,2-Dichloroethene	124	123	74 - 124	1	15		
cis-1,3-Dichloropropene	114	112	74 - 124	2	15		
Cyclohexane	132	121	59 - 135	9	20		
Dibromochloromethane	118	117	75 - 125	1	15		
Dichlorodifluoromethane	86	84	59 - 135	2	20		

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333995 Preparation: 5030C

MS Lab Sample II Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 480-109984-E-3 MS Water 1.0 11/30/2016 1818 11/30/2016 1818 N/A	Prep	lysis Batch:) Batch: ch Batch:	480-333995 N/A N/A			HP5973S S0163.D 5 mL 5 mL 5 mL	
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: 480-109984-E-3 MSD Water 1.0 11/30/2016 1841 11/30/2016 1841 N/A	Prep	lysis Batch:) Batch: ch Batch:	480-333995 N/A N/A			HP5973S S0164.D 5 mL 5 mL 5 mL	
		%	Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Ethylbenzene		116	116	77 - 123	0	15		
Isopropylbenzene		121	119	77 - 122	2	20		
Methyl acetate		96	96	74 - 133	1	20		
Methyl tert-butyl e		113	113	77 - 120	1	37		
Methylcyclohexan		130	125	68 - 134	4	20		
Methylene Chloric		122	125	75 - 124	2	15		F1
m-Xylene & p-Xyl	ene	116	114	76 - 122	2	16		
o-Xylene		113	112	76 - 122	1	16		
Styrene		113	113	80 - 120	0	20		
Tetrachloroethene	e	125	122	74 - 122	2	20	F1	
Toluene		121	119	80 - 122	1	15		
trans-1,2-Dichloro	ethene	130	125	73 - 127	4	20	F1	

Trichlorofluoromethane Vinyl chloride	114 129	113 127	62 - 150 65 - 133	0 20 1 15	
Surrogate		MS % Rec	MSD % Re	ес	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)		102	104		77 - 120
4-Bromofluorobenzene (Surr)		97	98		73 - 120
Toluene-d8 (Surr)		104	106		80 - 120

113

121

112

120

80 - 120

74 - 123

15

16

0

trans-1,3-Dichloropropene

Trichloroethene

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 8260C Matrix Spike Duplicate Recovery Report - Batch: 480-333995 Method: 8260C Preparation: 5030C

MS Lab Sample ID: 480-109984-E-3 MS Units: ug/L MSD Lab Sample ID: 480-109984-E-3 MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/30/2016 1818 Analysis Date: 11/30/2016 1841
Prep Date: 11/30/2016 1818 Prep Date: 11/30/2016 1841

Leach Date: N/A Leach Date: N/A

	Sample		MS Spike	MSD Spike	MS		MSD	
Analyte	Result/Qual		Amount	Amount	Result/C	ual	Result/C)ual
1,1,1-Trichloroethane	ND		25.0	25.0	32.6	F1	31.7	F1
1,1,2,2-Tetrachloroethane	ND		25.0	25.0	29.5		29.1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		25.0	25.0	32.0		30.7	
1,1,2-Trichloroethane	ND		25.0	25.0	29.6		29.7	
1,1-Dichloroethane	ND		25.0	25.0	31.4	F1	30.7	F1
1,1-Dichloroethene	ND		25.0	25.0	34.5	F1	33.8	F1
1,2,4-Trichlorobenzene	ND		25.0	25.0	29.0		29.5	
1,2-Dibromo-3-Chloropropane	ND		25.0	25.0	27.8		29.0	
1,2-Dibromoethane (EDB)	ND		25.0	25.0	28.6		28.9	
1,2-Dichlorobenzene	ND		25.0	25.0	29.4		29.2	
1,2-Dichloroethane	ND		25.0	25.0	28.0		27.7	
1,2-Dichloropropane	ND		25.0	25.0	29.7		29.8	
1,3-Dichlorobenzene	ND		25.0	25.0	29.8		29.5	
1,4-Dichlorobenzene	ND		25.0	25.0	29.6		28.9	
2-Butanone (MEK)	ND		125	125	123		125	
2-Hexanone	ND		125	125	119		120	
4-Methyl-2-pentanone (MIBK)	ND		125	125	126		128	
Acetone	ND		125	125	110		112	
Benzene	ND		25.0	25.0	31.2	F1	30.6	
Bromodichloromethane	ND		25.0	25.0	29.6		29.4	
Bromoform	ND		25.0	25.0	26.8		27.4	
Bromomethane	ND		25.0	25.0	27.8		27.6	
Carbon disulfide	ND		25.0	25.0	29.0		28.4	
Carbon tetrachloride	ND		25.0	25.0	33.6	F1	32.8	
Chlorobenzene	ND		25.0	25.0	29.7		29.5	
Chloroethane	ND		25.0	25.0	32.2		33.1	
Chloroform	ND		25.0	25.0	29.9		29.9	
Chloromethane	ND		25.0	25.0	26.8		27.7	
cis-1,2-Dichloroethene	ND		25.0	25.0	30.9		30.7	
cis-1,3-Dichloropropene	ND		25.0	25.0	28.6		27.9	
Cyclohexane	ND		25.0	25.0	33.0		30.3	
Dibromochloromethane	ND		25.0	25.0	29.5		29.3	
Dichlorodifluoromethane	ND		25.0	25.0	21.4		21.0	
Ethylbenzene	ND		25.0	25.0	29.1		29.0	
Isopropylbenzene	ND		25.0	25.0	30.4		29.8	
Methyl acetate	ND		125	125	120		121	
Methyl tert-butyl ether	0.58	J	25.0	25.0	28.8		28.9	
Methylcyclohexane	ND		25.0	25.0	32.6		31.2	
Methylene Chloride	ND		25.0	25.0	30.4		31.2	F1
m-Xylene & p-Xylene	ND		25.0	25.0	28.9		28.5	
o-Xylene	ND		25.0	25.0	28.4		28.0	
Styrene	ND		25.0	25.0	28.2		28.3	
Tetrachloroethene	ND		25.0	25.0	31.1	F1	30.6	

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 8260C
Matrix Spike Duplicate Recovery Report - Batch: 480-333995 Method: 8260C
Preparation: 5030C

MS Lab Sample ID: 480-109984-E-3 MS Units: ug/L MSD Lab Sample ID: 480-109984-E-3 MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/30/2016 1818 Analysis Date: 11/30/2016 1841
Prep Date: 11/30/2016 1818 Prep Date: 11/30/2016 1841

Leach Date: N/A Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Toluene	ND	25.0	25.0	30.2	29.8
trans-1,2-Dichloroethene	ND	25.0	25.0	32.5 F1	31.2
trans-1,3-Dichloropropene	ND	25.0	25.0	28.0	28.2
Trichloroethene	ND	25.0	25.0	30.1	30.2
Trichlorofluoromethane	ND	25.0	25.0	28.4	28.3
Vinvl chloride	ND	25.0	25.0	32.3	31.8

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 480-333833 Method: 8260C SIM Preparation: 5030C

Lab Sample ID: Instrument ID: MB 480-333833/7 Analysis Batch: 480-333833 HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1532.D Dilution: Leach Batch: N/A Initial Weight/Volume: 25 mL 1.0 Units: Final Weight/Volume: Analysis Date: 11/29/2016 1326 ug/L 25 mL

Prep Date: 11/29/2016 1326

Leach Date: N/A

Analyte Result Qual RL MDL Vinyl chloride 0.00456 J 0.0040 0.020 Surrogate % Rec Acceptance Limits Dibromofluoromethane (Surr) 93 50 - 150 TBA-d9 (Surr) 132 50 - 150

Lab Control Sample/ Method: 8260C SIM Lab Control Sample Duplicate Recovery Report - Batch: 480-333833 Preparation: 5030C

LCS Lab Sample ID: LCS 480-333833/4 Analysis Batch: 480-333833 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1529.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL Analysis Date: 11/29/2016 1213 Units: ug/L Final Weight/Volume: 25 mL 25 mL

Prep Date: 11/29/2016 1213

Leach Date: N/A

LCSD Lab Sample ID: LCSD 480-333833/5 Analysis Batch: 480-333833 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1530.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

11/29/2016 1237 Analysis Date: Units: ug/L Final Weight/Volume: 25 mL Prep Date: 11/29/2016 1237 25 mL

Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Vinyl chloride 123 125 50 - 150 2 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits Dibromofluoromethane (Surr) 98 97 50 - 150 121 50 - 150 TBA-d9 (Surr) 113

Client: Waste Management Job Number: 280-91197-1

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 480-333833

Method: 8260C SIM
Preparation: 5030C

LCS Lab Sample ID: LCS 480-333833/4 Units: ug/L LCSD Lab Sample ID: LCSD 480-333833/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

 Analysis Date:
 11/29/2016
 1213
 Analysis Date:
 11/29/2016
 1237

 Prep Date:
 11/29/2016
 1213
 Prep Date:
 11/29/2016
 1237

Leach Date: N/A Leach Date: N/A

Analyte	LCS Spike	LCSD Spike	LCS	LCSD
	Amount	Amount	Result/Qual	Result/Qual
Vinyl chloride	0.200	0.200	0.246	0.250

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 480-334146 Method: 8260C SIM Preparation: 5030C

Lab Sample ID: Instrument ID: MB 480-334146/8 Analysis Batch: 480-334146 HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1578.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL Units: Final Weight/Volume: Analysis Date: 12/01/2016 0226 ug/L 25 mL

Prep Date: 12/01/2016 0226

Leach Date: N/A

Analyte Result Qual RL MDL Vinyl chloride ND 0.0040 0.020 Surrogate % Rec Acceptance Limits Dibromofluoromethane (Surr) 95 50 - 150 TBA-d9 (Surr) 131 50 - 150

Lab Control Sample/ Method: 8260C SIM Lab Control Sample Duplicate Recovery Report - Batch: 480-334146 Preparation: 5030C

LCS Lab Sample ID: LCS 480-334146/5 Analysis Batch: 480-334146 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1575.D Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0 25 mL Analysis Date: 12/01/2016 0049 Units: ug/L Final Weight/Volume: 25 mL 25 mL

Prep Date: 12/01/2016 0049

Leach Date: N/A

LCSD Lab Sample ID: LCSD 480-334146/6 Analysis Batch: 480-334146 Instrument ID: HP5973J Client Matrix: Water Prep Batch: N/A Lab File ID: J1576.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 25 mL

Analysis Date: 12/01/2016 0113 Units: ug/L Final Weight/Volume: 25 mL Prep Date: 12/01/2016 0113 25 mL

Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD** RPD Limit LCS Qual LCSD Qual Vinyl chloride 125 128 50 - 150 2 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits Dibromofluoromethane (Surr) 95 95 50 - 150 122 50 - 150 TBA-d9 (Surr) 120

Client: Waste Management Job Number: 280-91197-1

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 480-334146

Method: 8260C SIM
Preparation: 5030C

LCS Lab Sample ID: LCS 480-334146/5 Units: ug/L LCSD Lab Sample ID: LCSD 480-334146/6

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/01/2016 0049 Analysis Date: 12/01/2016 0113
Prep Date: 12/01/2016 0049 Prep Date: 12/01/2016 0113

Leach Date: N/A Leach Date: N/A

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual	
Vinyl chloride	0.200	0.200	0.250	0.256	

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-353059

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-353059/1-A

Client Matrix: Water Dilution:

1.0 Analysis Date: 12/08/2016 2234

Prep Date: 11/30/2016 0735

Leach Date: N/A

280-354936 Analysis Batch: Prep Batch: 280-353059

Leach Batch: N/A

Units: mg/L Instrument ID: MT_025

Lab File ID: 25D120816.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Cobalt, Total	ND		0.0030	0.0030
Iron, Total	ND		0.060	0.060

Lab Control Sample - Batch: 280-353059

Method: 6010B Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-353059/2-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/08/2016 2236

Prep Date: 11/30/2016 0735

Leach Date: N/A Analysis Batch: 280-354936 Prep Batch: 280-353059

Leach Batch: N/A Units: mg/L

Leach Batch:

108

Instrument ID: MT 025 25D120816.asc I ab File ID:

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Cobalt, Total	0.500	0.525	105	89 - 111	
Iron, Total	1.00	1.06	106	89 - 115	

N/A

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-353059

Method: 6010B Preparation: 3005A

Dissolved

MS Lab Sample ID: 280-91196-C-1-B MS

Client Matrix: Water Dilution: 1.0

12/08/2016 2251 Analysis Date:

Prep Date: 11/30/2016 0735

Leach Date:

Instrument ID: Analysis Batch: MT_025 280-354936 Prep Batch: 280-353059

25D120816.asc Lab File ID: Initial Weight/Volume: 50 mL

Final Weight/Volume: 50 mL

MSD Lab Sample ID: 280-91196-C-1-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/08/2016 2254 Prep Date: 11/30/2016 0735

Leach Date:

Iron, Total

Analysis Batch: 280-354936 Instrument ID: MT 025 Prep Batch: 280-353059 Lab File ID: 25D120816.asc

Leach Batch: N/A Initial Weight/Volume: 50 mL

4

Final Weight/Volume: 50 mL

% Rec. Analyte MS **MSD** Limit **RPD RPD Limit** MS Qual MSD Qual Cobalt. Total 101 101 82 - 119 0 20 52 - 155 20

104

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 6010B
Matrix Spike Duplicate Recovery Report - Batch: 280-353059 Preparation: 3005A

Units: mg/L

Dissolved

MS Lab Sample ID: 280-91196-C-1-B MS

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/08/2016 2251 Prep Date: 11/30/2016 0735

Leach Date: N/A

MSD Lab Sample ID: 280-91196-C-1-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/08/2016 2254 Prep Date: 11/30/2016 0735

Analyte	Sample	MS Spike	MSD Spike	MS	MSD
	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
Cobalt, Total	ND	0.500	0.500	0.507	0.507
Iron, Total	ND	1.00	1.00	1.08	1.04

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-353084

Method: 6010B Preparation: 3005A Total Recoverable

Lab Sample ID: MB 280-353084/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/10/2016 0012 Prep Date: 12/01/2016 0731

Leach Date: N/A

Analysis Batch: 280-355067 Prep Batch: 280-353084

Leach Batch: N/A Units: mg/L Instrument ID: MT_025

Lab File ID: 25D120916.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Calcium, Dissolved	ND		0.040	0.040
Iron, Dissolved	ND		0.060	0.060
Magnesium, Dissolved	ND		0.050	0.050
Potassium, Dissolved	ND		1.0	1.0
Sodium, Dissolved	ND		1.0	1.0

Lab Control Sample - Batch: 280-353084

Method: 6010B Preparation: 3005A Total Recoverable

Lab Sample ID: LCS 280-353084/2-A

Client Matrix: Water
Dilution: 1.0
Analysis Date: 12/10/2016 0014

Prep Date: 12/01/2016 0731

Leach Date: N/A

Analysis Batch: 280-355067
Prep Batch: 280-353084
Leach Batch: N/A
Units: mg/L

Instrument ID: MT_025
Lab File ID: 25D120916.asc
Initial Weight/Volume: 50 ml

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Calcium, Dissolved	50.0	51.9	104	90 - 111	
Iron, Dissolved	1.00	0.983	98	89 - 115	
Magnesium, Dissolved	50.0	53.5	107	90 - 113	
Potassium, Dissolved	50.0	51.8	104	89 - 114	
Sodium, Dissolved	50.0	53.0	106	90 - 115	

Client: Waste Management Job Number: 280-91197-1

N/A

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-353084

Dissolved

280-91292-C-1-B MS MS Lab Sample ID:

Client Matrix: Water

Dilution: 1.0

12/10/2016 0032 Analysis Date: Prep Date: 12/01/2016 0731

Leach Date: N/A

Client Matrix: Water Dilution: 1.0

12/10/2016 0034 Analysis Date: Prep Date: 12/01/2016 0731

Leach Date: N/A Method: 6010B Preparation: 3005A

Instrument ID: Analysis Batch: 280-355067 MT_025 Prep Batch: 280-353084

Lab File ID: 25D120916.asc

Initial Weight/Volume: 50 ml Final Weight/Volume: 50 mL

MSD Lab Sample ID: 280-91292-C-1-C MSD Analysis Batch: 280-355067 Instrument ID: MT_025

Leach Batch:

Lab File ID: 25D120916.asc Prep Batch: 280-353084

Leach Batch: Initial Weight/Volume: N/A 50 ml Final Weight/Volume: 50 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Calcium, Dissolved	102	97	48 - 153	2	20		
Iron, Dissolved	104	101	52 - 155	2	20		
Magnesium, Dissolved	106	102	62 - 146	2	20		
Potassium, Dissolved	104	102	76 - 132	2	20		
Sodium, Dissolved	105	100	70 - 203	3	20		

Matrix Spike/

MS Lab Sample ID:

Method: 6010B Matrix Spike Duplicate Recovery Report - Batch: 280-353084 Preparation: 3005A

Units: mg/L

Dissolved

280-91292-C-1-B MS

Client Matrix: Water Dilution: 1.0

12/10/2016 0032 Analysis Date: 12/01/2016 0731 Prep Date:

Leach Date: N/A MSD Lab Sample ID: 280-91292-C-1-C MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/10/2016 0034 Prep Date: 12/01/2016 0731

Analyte	Sample Result/Qual	MS Spike Amount	MSD Spike Amount	MS Result/Qual	MSD Result/Qual
Calcium, Dissolved	56	50.0	50.0	107	104
Iron, Dissolved	ND	1.00	1.00	1.04	1.01
Magnesium, Dissolved	22	50.0	50.0	74.9	73.3
Potassium, Dissolved	1.0	50.0	50.0	53.2	52.2
Sodium, Dissolved	42	50.0	50.0	94.8	92.1

50 mL

MT 077 095SMPL.d

50 mL

50 mL

MT 077

Qual

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-352794 Method: 6020

> Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-352794/1-A

Client Matrix: Water

Dilution: 1.0 Analysis Date: 11/30/2016 1816

Prep Date: 11/30/2016 0735

Leach Date: N/A Analysis Batch: 280-353835 280-352794

Prep Batch: Leach Batch: N/A

Units: mg/L Instrument ID: MT_077 Lab File ID: 091 BLK.d

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte Result Qual RL RL Manganese, Dissolved ND 0.0010 0.0010

Method: 6020 Lab Control Sample - Batch: 280-352794 Preparation: 3005A

Total Recoverable

LCS 280-352794/2-A Lab Sample ID: Client Matrix: Water

Dilution: 10 Analysis Date: 11/30/2016 1820

Prep Date: 11/30/2016 0735

Leach Date: N/A Analysis Batch: 280-353835 Instrument ID: MT 077 092 LCS.d Prep Batch: 280-352794 Lab File ID: Leach Batch: N/A Initial Weight/Volume: 50 mL

Units: mg/L Final Weight/Volume:

280-353835

280-352794

N/A

% Rec. Analyte Spike Amount Result I imit Manganese, Dissolved 0.0400 0.0410 102 85 - 117

Analysis Batch:

Prep Batch:

Leach Batch:

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-352794 Preparation: 3005A Dissolved

MS Lab Sample ID: 280-91068-E-1-C MS Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 1831 11/30/2016 0735 Prep Date:

Leach Date: N/A

MSD Lab Sample ID: 280-91068-E-1-D MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 1835 Prep Date: 11/30/2016 0735

Leach Date: N/A Analysis Batch: 280-353835 Prep Batch:

N/A

280-352794

Leach Batch:

Instrument ID: Lab File ID:

Method: 6020

Instrument ID:

Initial Weight/Volume:

Final Weight/Volume:

Lab File ID:

096SMPL.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

% Rec.

Analyte **RPD** MS **MSD** I imit **RPD Limit** MS Qual MSD Qual Manganese, Dissolved 305 171 85 - 117 2 20 4 4

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 6020 Matrix Spike Duplicate Recovery Report - Batch: 280-352794 Preparation: 3005A

Dissolved

MS Lab Sample ID: 280-91068-E-1-C MS Units: mg/L

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 1831 Prep Date: 11/30/2016 0735

Leach Date: N/A MSD Lab Sample ID: 280-91068-E-1-D MSD

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/30/2016 1835 Prep Date: 11/30/2016 0735

Analyte	Sample	MS Spike	MSD Spike	MS		MSD	MSD	
	Result/Qual	Amount	Amount	Result/Qual		Result/0	Result/Qual	
Manganese, Dissolved	2.8	0.0400	0.0400	2.92	4	2.87	4	

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-353082

Method: 6020 Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-353082/1-A

Client Matrix: Water Dilution: 1.0

12/02/2016 0232 Analysis Date: 12/01/2016 1405 Prep Date:

Leach Date: N/A Analysis Batch: 280-354033 Prep Batch: 280-353082

Leach Batch: N/A Units: mg/L

Instrument ID: MT_077 Lab File ID: 209 BLK.d Initial Weight/Volume: 50 mL

Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Barium, Total	ND		0.0010	0.0010
Cadmium, Total	ND		0.00020	0.00020
Chromium, Total	ND		0.0030	0.0030
Copper, Total	ND		0.0020	0.0020
Lead, Total	ND		0.0010	0.0010
Nickel, Total	ND		0.0040	0.0040
Selenium, Total	ND		0.0010	0.0010
Silver, Total	ND		0.0020	0.0020
Thallium, Total	ND		0.0010	0.0010
Vanadium, Total	ND		0.0020	0.0020
Zinc, Total	ND		0.0050	0.0050

Method Blank - Batch: 280-353082

Method: 6020 Preparation: 3005A **Total Recoverable**

Lab Sample ID: MB 280-353082/1-A Client Matrix: Water Dilution: 1.0 Analysis Date: 12/07/2016 1717

12/01/2016 1405 Prep Date:

Leach Date: N/A

MT_077 Analysis Batch: 280-354791 Instrument ID: Prep Batch: 280-353082 Lab File ID: 024_BLK.d Leach Batch: N/A Initial Weight/Volume: 50 mL Units: mg/L Final Weight/Volume: 50 mL

Analyte	Result	Qual	RL	RL
Antimony, Total	ND		0.0010	0.0010
Beryllium, Total	ND		0.0010	0.0010
Manganese, Total	ND		0.0010	0.0010

Client: Waste Management Job Number: 280-91197-1

Lab Control Sample - Batch: 280-353082

Method: 6020 Preparation: 3005A **Total Recoverable**

Lab Sample ID: LCS 280-353082/2-A Client Matrix: Water

Dilution: 1.0 Analysis Date: 12/02/2016 0235 Prep Date:

12/01/2016 1405

Leach Date: N/A

280-354033 Analysis Batch: Prep Batch: 280-353082 Leach Batch: N/A

Units: mg/L Instrument ID: MT_077 210_LCS.d Lab File ID: Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte Spike Amount Result % Rec. Limit Qual Barium, Total 0.0400 0.0368 92 85 - 118 Cadmium, Total 0.0400 0.0405 101 85 - 115 Chromium, Total 0.0400 98 84 - 121 0.0391 Copper, Total 0.0400 0.0401 100 85 - 119 Lead, Total 0.0400 0.0387 97 85 - 118 Nickel, Total 0.0400 0.0409 102 85 - 119 Selenium, Total 0.0400 0.0357 89 77 - 122 Silver, Total 0.0400 104 0.0416 85 - 115 Thallium, Total 0.0400 0.0382 96 85 - 118 Vanadium, Total 0.0400 0.0375 94 85 - 120

0.0413

Lab Control Sample - Batch: 280-353082

Method: 6020 Preparation: 3005A **Total Recoverable**

103

Lab Sample ID: LCS 280-353082/2-A Client Matrix: Water

Dilution: 1.0 Analysis Date: 12/07/2016 1721 Prep Date: 12/01/2016 1405

Leach Date: N/A

Zinc, Total

Analysis Batch: 280-354791 Prep Batch: 280-353082 Leach Batch: N/A Units: mg/L

0.0400

Instrument ID: MT_077 Lab File ID: 025_LCS.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

83 - 122

Analyte Spike Amount Result % Rec. Limit Qual Antimony, Total 0.0400 92 85 - 115 0.0368 0.0400 100 Beryllium, Total 0.0399 80 - 125 Manganese, Total 0.0400 0.0382 95 85 - 117

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 6020 Preparation: 3005A Matrix Spike Duplicate Recovery Report - Batch: 280-353082 **Total Recoverable**

Leach Date:

Leach Date:

N/A

N/A

MS Lab Sample ID: 280-91197-3 Analysis Batch: 280-354033 Instrument ID: MT_077 Client Matrix: Water Prep Batch: 280-353082 Lab File ID: 234SMPL.d

Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 50 mL

12/02/2016 0407 Final Weight/Volume: Analysis Date: 50 mL 12/01/2016 1405 Prep Date:

MSD Lab Sample ID: 280-91197-3 Analysis Batch: 280-354033 Instrument ID: MT_077 235SMPL.d Client Matrix: Water 280-353082 Lab File ID: Prep Batch:

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Analysis Date: 12/02/2016 0410 Final Weight/Volume: 50 mL 12/01/2016 1405 Prep Date:

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Barium, Total	108	104	85 - 118	3	20		
Cadmium, Total	108	99	85 - 115	8	20		
Chromium, Total	102	97	84 - 121	5	20		
Copper, Total	101	100	85 - 119	2	20		
Lead, Total	100	99	85 - 118	1	20		
Nickel, Total	99	100	85 - 119	1	20		
Selenium, Total	103	103	77 - 122	1	20		
Silver, Total	100	99	85 - 115	1	20		
Thallium, Total	96	96	85 - 118	0	20		
Vanadium, Total	100	98	85 - 120	2	20		
Zinc, Total	106	107	83 - 122	2	20		

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 6020
Matrix Spike Duplicate Recovery Report - Batch: 280-353082 Preparation: 3005A
Total Recoverable

Leach Date:

N/A

280-91197-3 Instrument ID: MT_077 MS Lab Sample ID: Analysis Batch: 280-354791 Client Matrix: Water Prep Batch: 280-353082 Lab File ID: 029SMPL.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Analysis Date: 12/07/2016 1736 Final Weight/Volume: 50 mL Prep Date: 12/01/2016 1405

MSD Lab Sample ID: 280-91197-3 Analysis Batch: 280-354791 Instrument ID: MT_077

Client Matrix: Water Prep Batch: 280-3534791 Inistidirient 12. Wit_077

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL
Analysis Date: 12/07/2016 1740 Final Weight/Volume: 50 mL

Prep Date: 12/01/2016 1405

Leach Date: N/A

% Rec. **RPD** Limit Analyte MS MSD Limit **RPD** MS Qual MSD Qual Antimony, Total 98 90 85 - 115 9 20 Beryllium, Total 95 96 80 - 125 0 20 Manganese, Total 82 90 85 - 117 3 20 F1

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-353082 Preparation: 3005A

Units: mg/L

Total Recoverable

Method: 6020

280-91197-3 MS Lab Sample ID:

Client Matrix: Water Dilution: 1.0

12/02/2016 0407 Analysis Date: Prep Date: 12/01/2016 1405

Leach Date: N/A MSD Lab Sample ID: 280-91197-3

Client Matrix: Water Dilution: 1.0

12/02/2016 0410 Analysis Date: Prep Date: 12/01/2016 1405

Leach Date: N/A

A 1, 4 -	Sample	MS Spike	MSD Spike	MS	MSD
Analyte	Result/Qual	Amount	Amount	Result/Qual	Result/Qual
Barium, Total	0.0024	0.0400	0.0400	0.0455	0.0441
Cadmium, Total	ND	0.0400	0.0400	0.0431	0.0397
Chromium, Total	ND	0.0400	0.0400	0.0408	0.0388
Copper, Total	ND	0.0400	0.0400	0.0405	0.0399
Lead, Total	ND	0.0400	0.0400	0.0400	0.0397
Nickel, Total	ND	0.0400	0.0400	0.0396	0.0399
Selenium, Total	ND	0.0400	0.0400	0.0411	0.0414
Silver, Total	ND	0.0400	0.0400	0.0398	0.0396
Thallium, Total	ND	0.0400	0.0400	0.0385	0.0385
Vanadium, Total	0.0032	0.0400	0.0400	0.0430	0.0422
Zinc, Total	ND	0.0400	0.0400	0.0422	0.0430

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 280-353082

Method: 6020 Preparation: 3005A **Total Recoverable**

MS Lab Sample ID: 280-91197-3

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/07/2016 1736 Prep Date: 12/01/2016 1405

Leach Date: N/A MSD Lab Sample ID: 280-91197-3

Client Matrix: Water Dilution: 1.0

Analysis Date: 12/07/2016 1740 Prep Date: 12/01/2016 1405

Leach Date: N/A

Analyte	Sample Result/Qual	MS Spike MSD Spike Amount Amount		MS Result/Qual	MSD Result/Qual
Antimony, Total	ND	0.0400	0.0400	0.0393	0.0361
Beryllium, Total	ND	0.0400	0.0400	0.0382	0.0382
Manganese, Total	0.083	0.0400	0.0400	0.116 F1	0.119

Units: mg/L

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-355156 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-355156/6 Analysis Batch: 280-355156 Instrument ID: WC_IonChrom11

Client Matrix: Water Prep Batch: N/A Lab File ID: 0006.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/12/2016 1118 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL Chloride ND 1.0 1.0 Sulfate ND 1.0 1.0

Method Reporting Limit Check - Batch: 280-355156 Method: 300.0

Preparation: N/A

MRL 280-355156/3 Instrument ID: WC IonChrom11 Lab Sample ID: Analysis Batch: 280-355156

Client Matrix: Prep Batch: 0003.d Water N/A Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/12/2016 1018 Analysis Date: Units: Final Weight/Volume: 5 mL mg/L

Prep Date: N/A Leach Date: N/A

% Rec. Qual Analyte Spike Amount Result Limit Chloride 2.50 ND 91 50 - 150 Sulfate ND 84 50 - 150 2.50

Lab Control Sample/ Method: 300.0

Lab Control Sample Duplicate Recovery Report - Batch: 280-355156 Preparation: N/A

WC IonChrom11 LCS Lab Sample ID: LCS 280-355156/4 Analysis Batch: 280-355156 Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: 0004.d Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 12/12/2016 1038 Final Weight/Volume: Analysis Date: Units: mg/L 5 mL

Prep Date: N/A 10 uL Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-355156/5 280-355156 WC IonChrom11 Analysis Batch: Instrument ID:

N/A 0005.d Client Matrix: Water Prep Batch: Lab File ID: 5 mL Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: Analysis Date: 12/12/2016 1058 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A 10 uL

Leach Date: N/A

% Rec. RPD Limit Analyte LCS **LCSD** Limit **RPD** LCS Qual LCSD Qual Chloride 96 90 - 110 10 96 0 Sulfate 96 90 - 110 10 96 0

Client: Waste Management Job Number: 280-91197-1

Method: 300.0 **Laboratory Control/** Laboratory Duplicate Data Report - Batch: 280-355156 Preparation: N/A

LCS Lab Sample ID: LCS 280-355156/4 LCSD Lab Sample ID: LCSD 280-355156/5 Units: mg/L

Client Matrix: Water Client Matrix: Water Dilution: Dilution: 1.0 1.0

Analysis Date: 12/12/2016 1038 Analysis Date: 12/12/2016 1058

Prep Date: N/A Prep Date: N/A N/A N/A Leach Date: Leach Date:

Analyte	LCS Spike Amount	LCSD Spike Amount	LCS Result/Qual	LCSD Result/Qual
Chloride	100	100	96.5	96.5
Sulfate	100	100	95.8	95.9

Matrix Spike/ Method: 300.0 Matrix Spike Duplicate Recovery Report - Batch: 280-355156 Preparation: N/A

MS Lab Sample ID: 280-91292-A-11 MS Analysis Batch: 280-355156 Instrument ID: WC IonChrom11

Client Matrix: Water Prep Batch: N/A Lab File ID: 0026.d Leach Batch: N/A Initial Weight/Volume: 5 mL Dilution: 1.0 12/13/2016 0011 Final Weight/Volume: Analysis Date: 5 mL

Prep Date: N/A 10 uL

Leach Date: N/A

MSD Lab Sample ID: 280-91292-A-11 MSD WC_IonChrom11 Analysis Batch: 280-355156 Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: 0027.d Dilution: Leach Batch: N/A Initial Weight/Volume: 5 mL 1.0 Analysis Date: 12/13/2016 0031 Final Weight/Volume: 5 mL

Prep Date: N/A 10 uL Leach Date: N/A

96

94

Sulfate

% Rec. Analyte MS **MSD** Limit **RPD RPD Limit** MS Qual MSD Qual Chloride 87 80 - 120 20 86 2

80 - 120

1

20

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 300.0 Matrix Spike Duplicate Recovery Report - Batch: 280-355156 Preparation: N/A

280-91292-A-11 MS MSD Lab Sample ID: 280-91292-A-11 MSD MS Lab Sample ID: Units: mg/L

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

12/13/2016 0011 12/13/2016 0031 Analysis Date: Analysis Date:

Prep Date: N/A Prep Date: N/A Leach Date: N/A Leach Date: N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Amount Result/Qual Result/Qual Chloride 5.7 25.0 25.0 27.2 27.6 Sulfate 14 25.0 25.0 37.7 38.2

Duplicate - Batch: 280-355156 Method: 300.0 Preparation: N/A

Lab Sample ID: Instrument ID: 280-91292-A-11 DU Analysis Batch: 280-355156 WC IonChrom11

Client Matrix: N/A Lab File ID: 0025.d Water Prep Batch: Initial Weight/Volume: Dilution: Leach Batch: N/A 5 mL 1.0 Final Weight/Volume: 5 mL Analysis Date: 12/12/2016 2351 Units: mg/L

Prep Date: N/A 10 uL

Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual Chloride 5.7 5.78 15 1 Sulfate 14 14.2 0.1 15

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-353602 Method: 350.1 Preparation: N/A

Lab Sample ID: MB 280-353602/20 Analysis Batch: 280-353602 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112916.RS Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/29/2016 1421 Final Weight/Volume: Analysis Date: Units: ma/L Prep Date: N/A

Leach Date:

Leach Date:

N/A

N/A

Analyte Result Qual RL RL

Ammonia (as N) ND 0.030 0.030

Lab Control Sample/ Method: 350.1 Lab Control Sample Duplicate Recovery Report - Batch: 280-353602 Preparation: N/A

LCS Lab Sample ID: LCS 280-353602/18 Analysis Batch: 280-353602 Instrument ID: WC Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112916.RS

Leach Batch: Dilution: 10 N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/29/2016 1417 Units: Final Weight/Volume: 100 mL mg/L Prep Date: N/A

280-353602 Instrument ID:

LCSD Lab Sample ID: LCSD 280-353602/19 Analysis Batch: WC Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112916.RS Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

11/29/2016 1419 Final Weight/Volume: Analysis Date: Units: mg/L 100 mL

Prep Date: N/A Leach Date: N/A

% Rec.

RPD LCS **LCSD** Limit RPD Limit LCS Qual LCSD Qual Analyte

Ammonia (as N) 100 98 90 - 110 1 10

Laboratory Control/ Method: 350.1 Laboratory Duplicate Data Report - Batch: 280-353602 Preparation: N/A

LCS Lab Sample ID: LCS 280-353602/18 LCSD Lab Sample ID: LCSD 280-353602/19 Units: mg/L

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

11/29/2016 1417 11/29/2016 1419 Analysis Date: Analysis Date:

Prep Date: N/A Prep Date: N/A Leach Date: N/A Leach Date: N/A

LCSD LCS Spike LCSD Spike LCS Analyte **Amount** Amount Result/Qual Result/Qual Ammonia (as N) 2.50 2.50 2.49 2.46

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: 350.1
Matrix Spike Duplicate Recovery Report - Batch: 280-353602 Preparation: N/A

MS Lab Sample ID: 440-166999-B-1 MS Analysis Batch: 280-353602 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112916.RS`

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

Analysis Date: 11/29/2016 1425 Final Weight/Volume: 10 mL Prep Date: N/A

Leach Date: N/A

MSD Lab Sample ID: 440-166999-B-1 MSD Analysis Batch: 280-353602 Instrument ID: WC_Alp 3

Client Matrix: Water Prep Batch: N/A Lab File ID: C:\FLOW_4\112916.RS

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 10 mL

Analysis Date: 11/29/2016 1427 Final Weight/Volume: 10 mL Prep Date: N/A

Analyte \(\frac{\% \text{Rec.}}{\text{MS MSD Limit}} \) RPD RPD Limit MS Qual MSD Qual

Ammonia (as N) 109 106 90 - 110 2 10

Leach Date:

N/A

Matrix Spike/ Method: 350.1

Matrix Spike Duplicate Recovery Report - Batch: 280-353602 Preparation: N/A

MS Lab Sample ID: 440-166999-B-1 MS Units: mg/L MSD Lab Sample ID: 440-166999-B-1 MSD

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/29/2016 1425 Analysis Date: 11/29/2016 1427

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Sample MS Spike MSD Spike MS MSD

Analyte Result/Qual Amount Amount Result/Qual Result/Qual Ammonia (as N) 0.050 1.00 1.00 1.14 1.11

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-355401 Method: 353.2

Preparation: N/A

Lab Sample ID: MB 280-355401/1 Analysis Batch: 280-355401 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/13/2016 1028 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

 Analyte
 Result
 Qual
 RL
 RL

 Nitrate as N
 ND
 0.050
 0.050

5.0

5.0

101

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-353180 Method: SM 2320B Preparation: N/A

Lab Sample ID: Instrument ID: MB 280-353180/5 Analysis Batch: 280-353180 WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112316 alk.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Final Weight/Volume:

11/23/2016 1224 Units: Analysis Date: mg/L Prep Date: N/A Leach Date: N/A

Alkalinity, Bicarbonate (As CaCO3)

Alkalinity, Total (As CaCO3)

Analyte Result Qual RL RL ND Alkalinity, Total (As CaCO3) 5.0 5.0

ND

Lab Control Sample - Batch: 280-353180 Method: SM 2320B Preparation: N/A

Lab Sample ID: Analysis Batch: Instrument ID: WC-AT3 LCS 280-353180/4 280-353180

Client Matrix: Prep Batch: Lab File ID: 112316 alk.TXT Water N/A

Initial Weight/Volume: Dilution: 1.0 Leach Batch: N/A 11/23/2016 1220

Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A Leach Date: N/A

% Rec. Limit Qual Analyte Spike Amount Result 202 90 - 110

Method: SM 2320B Duplicate - Batch: 280-353180

200

Preparation: N/A

280-353180 Instrument ID: WC-AT3 Lab Sample ID: 280-91292-A-3 DU Analysis Batch:

Client Matrix: Prep Batch: N/A Lab File ID: 112316 alk.TXT Water

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 11/23/2016 1234 Final Weight/Volume: Analysis Date: Units: mq/L

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual Alkalinity, Total (As CaCO3) 180 194 6 10

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-352854 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-352854/1 Analysis Batch: 280-352854 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/23/2016 0955 Units: Final Weight/Volume: Analysis Date: mg/L 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Dissolved Solids (TDS) ND 5.0 5.0

Lab Control Sample - Batch: 280-352854 Method: SM 2540C Preparation: N/A

Lab Sample ID: LCS 280-352854/2 Analysis Batch: 280-352854 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: Initial Weight/Volume: Leach Batch: 100 mL Dilution: 10 N/A Analysis Date: 11/23/2016 0955 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Total Dissolved Solids (TDS) 500 487 97 86 - 110

Duplicate - Batch: 280-352854 Method: SM 2540C

Preparation: N/A

Lab Sample ID: 280-91197-1 Analysis Batch: 280-352854 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/23/2016 0955 Final Weight/Volume: 100 mL Analysis Date: Units: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Dissolved Solids (TDS) 95 96.0 1 10

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-353679 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-353679/1 Analysis Batch: 280-353679 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL 11/30/2016 0904 Final Weight/Volume: Analysis Date: Units: ma/L 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Dissolved Solids (TDS) ND 5.0 5.0

Lab Control Sample/ Method: SM 2540C
Lab Control Sample Duplicate Recovery Report - Batch: 280-353679 Preparation: N/A

LCS Lab Sample ID: LCS 280-353679/2 Analysis Batch: 280-353679 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: Leach Batch: 100 mL Dilution: 10 N/A Initial Weight/Volume: Analysis Date: 11/30/2016 0904 Units: Final Weight/Volume: 100 mL mg/L

Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-353679/3 Analysis Batch: 280-353679 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/30/2016 0904 Units: mg/L Final Weight/Volume: 100 mL Prep Date: N/A

Leach Date: N/A

Analyte \frac{\% \text{Rec.}}{\text{LCSD}} \text{Limit} \text{RPD} \text{RPD Limit} \text{LCS Qual LCSD Qual}

Total Dissolved Solids (TDS) 97 99 86 - 110 1 20

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-353679

Method: SM 2540C
Preparation: N/A

LCS Lab Sample ID: LCS 280-353679/2 Units: mg/L LCSD Lab Sample ID: LCSD 280-353679/3

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/30/2016 0904 Analysis Date: 11/30/2016 0904

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike Amount LCS Spike LCSD Spike Result/Qual Result/Qual

Total Dissolved Solids (TDS) 501 501 488 494

Client: Waste Management Job Number: 280-91197-1

Duplicate - Batch: 280-353679 Method: SM 2540C Preparation: N/A

Lab Sample ID: 280-91498-B-2 DU Analysis Batch: 280-353679 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL

Analysis Date: 11/30/2016 0904 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 11/30/2016 0904 Units: mg/L Final Weight/Vol Prep Date: N/A
Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Dissolved Solids (TDS) 280 284 2 10

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-352912 Method: SM 2540D Preparation: N/A

Lab Sample ID: MB 280-352912/2 Analysis Batch: 280-352912 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL 11/23/2016 1539 Units: Final Weight/Volume: Analysis Date: mg/L 250 mL

Prep Date: N/A Leach Date: N/A

Analyte Result Qual RL RL

Total Suspended Solids ND 4.0 4.0

Lab Control Sample - Batch: 280-352912 Method: SM 2540D Preparation: N/A

Lab Sample ID: LCS 280-352912/1 Analysis Batch: 280-352912 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: Initial Weight/Volume: Leach Batch: 250 mL Dilution: 1.0 N/A Analysis Date: 11/23/2016 1539 Units: mg/L Final Weight/Volume: 250 mL

Prep Date: N/A Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual

Total Suspended Solids 100 97.2 97 86 - 114

Duplicate - Batch: 280-352912 Method: SM 2540D Preparation: N/A

Lab Sample ID: 280-91197-3 Analysis Batch: 280-352912 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: Water N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL 11/23/2016 1539 Final Weight/Volume: 250 mL Analysis Date: Units: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Suspended Solids 8.4 8.00 5 10

Client: Waste Management Job Number: 280-91197-1

Method Blank - Batch: 280-354778 Method: SM 5310B Preparation: N/A

Lab Sample ID: MB 280-354778/4 Analysis Batch: 280-354778 Instrument ID: WC_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/07/2016 1252 Units: mg/L Final Weight/Volume:

Analysis Date: 12/07/2016 1252 Units: mg/L Final Weight Prep Date: N/A
Leach Date: N/A

Analyte Result Qual RL RL

Total Organic Carbon - Average ND 1.0 1.0

Lab Control Sample - Batch: 280-354778 Method: SM 5310B Preparation: N/A

Lab Sample ID: LCS 280-354778/3 Analysis Batch: 280-354778 Instrument ID: WC_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/07/2016 1237 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A

Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Total Organic Carbon - Average 25.0 24.4 98 88 - 112

Matrix Spike/ Method: SM 5310B

Matrix Spike Duplicate Recovery Report - Batch: 280-354778 Preparation: N/A

MS Lab Sample ID: 280-91182-G-1 MS Analysis Batch: 280-354778 Instrument ID: WC_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt

Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/07/2016 1336 Final Weight/Volume: 50 mL

Prep Date: N/A
Leach Date: N/A

MSD Lab Sample ID: 280-91182-G-1 MSD Analysis Batch: 280-354778 Instrument ID: WC_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 120716B.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 12/07/2016 1351 Final Weight/Volume: 50 mL

Prep Date: N/A
Leach Date: N/A

Analyte \(\frac{\% \text{Rec.}}{\text{MS}} \) As \(\text{MSD} \) Limit \(\text{RPD} \) RPD Limit \(\text{MS Qual} \) MSD Qual

 Total Organic Carbon - Average
 100
 100
 88 - 112
 0
 15

Client: Waste Management Job Number: 280-91197-1

Matrix Spike/ Method: SM 5310B Matrix Spike Duplicate Recovery Report - Batch: 280-354778 Preparation: N/A

MS Lab Sample ID: 280-91182-G-1 MS Units: mg/L MSD Lab Sample ID: 280-91182-G-1 MSD

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 12/07/2016 1336 Analysis Date: 12/07/2016 1351

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

Sample MS Spike MSD Spike MS **MSD** Analyte Result/Qual Amount Amount Result/Qual Result/Qual 25.0 25.0 Total Organic Carbon - Average 17 42.2 42.1

Client: Waste Management Job Number: 280-91197-1

Laboratory Chronicle

Lab ID: 280-91197-1 Client ID: MW-33C

> Sample Date/Time: 11/17/2016 10:50 Received Date/Time: 11/18/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91197-F-1		480-333995		11/30/2016 11:44	1	TAL BUF	SWO
A:8260C	280-91197-F-1		480-333995		11/30/2016 11:44	1	TAL BUF	SWO
P:5030C	280-91197-G-1		480-333833		11/29/2016 19:22	1	TAL BUF	JWG
A:8260C SIM	280-91197-G-1		480-333833		11/29/2016 19:22	1	TAL BUF	JWG
P:3005A	280-91197-E-1-A		280-354936	280-353059	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91197-E-1-A		280-354936	280-353059	12/08/2016 23:22	1	TAL DEN	CRR
P:3005A	280-91197-E-1-B		280-355067	280-353084	12/01/2016 07:31	1	TAL DEN	SUR
A:6010B	280-91197-E-1-B		280-355067	280-353084	12/10/2016 00:17	1	TAL DEN	LRD
P:3005A	280-91197-E-1-C		280-353835	280-352794	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91197-E-1-C		280-353835	280-352794	11/30/2016 19:09	1	TAL DEN	LMT
P:3005A	280-91197-D-1-A		280-354033	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-1-A		280-354033	280-353082	12/02/2016 03:48	1	TAL DEN	LMT
P:3005A	280-91197-D-1-A		280-354791	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-1-A		280-354791	280-353082	12/07/2016 17:25	1	TAL DEN	LMT
A:300.0	280-91197-B-1		280-355156		12/13/2016 03:10	1	TAL DEN	AFB
A:350.1	280-91197-C-1		280-353602		11/29/2016 14:29	1	TAL DEN	MAS
A:353.2	280-91197-A-1		280-355401		12/13/2016 10:28	1	TAL DEN	AJA
A:SM 2320B	280-91197-B-1		280-353180		11/23/2016 12:57	1	TAL DEN	MMC
A:SM 2540C	280-91197-A-1		280-352854		11/23/2016 09:55	1	TAL DEN	JAP
A:SM 2540D	280-91197-B-1		280-352912		11/23/2016 15:39	1	TAL DEN	SVC
A:SM 5310B	280-91197-C-1		280-354778		12/07/2016 14:22	1	TAL DEN	CCJ
A:Field Sampling	280-91197-A-1		280-352756		11/17/2016 11:50	1	TAL DEN	C1K

Lab ID: 280-91197-1 DU Client ID: MW-33C

> Received Date/Time: 11/18/2016 10:00 Sample Date/Time: 11/17/2016 10:50

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:SM 2540C	280-91197-A-1 DU		280-352854		11/23/2016 09:55	1	TAL DEN	JAP

Lab ID: 280-91197-2 Client ID: TRIP BLANK

> Sample Date/Time: 11/17/2016 00:00 Received Date/Time: 11/18/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91197-A-2		480-333995		11/30/2016 12:07	1	TAL BUF	SWO
A:8260C	280-91197-A-2		480-333995		11/30/2016 12:07	1	TAL BUF	SWO
P:5030C	280-91197-B-2		480-334146		12/01/2016 02:50	1	TAL BUF	JWG
A:8260C SIM	280-91197-B-2		480-334146		12/01/2016 02:50	1	TAL BUF	JWG

Client: Waste Management Job Number: 280-91197-1

Laboratory Chronicle

Lab ID: 280-91197-3 Client ID: MW-33A

Sample Date/Time: 11/17/2016 09:50 Received Date/Time: 11/18/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91197-F-3		480-333995		11/30/2016 12:30	1	TAL BUF	SWO
A:8260C	280-91197-F-3		480-333995		11/30/2016 12:30	1	TAL BUF	SWO
P:5030C	280-91197-J-3		480-334146		12/01/2016 03:15	1	TAL BUF	JWG
A:8260C SIM	280-91197-J-3		480-334146		12/01/2016 03:15	1	TAL BUF	JWG
P:3005A	280-91197-E-3-A		280-354936	280-353059	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91197-E-3-A		280-354936	280-353059	12/08/2016 23:24	1	TAL DEN	CRR
P:3005A	280-91197-E-3-B		280-355067	280-353084	12/01/2016 07:31	1	TAL DEN	SUR
A:6010B	280-91197-E-3-B		280-355067	280-353084	12/10/2016 00:19	1	TAL DEN	LRD
P:3005A	280-91197-E-3-C		280-353835	280-352794	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91197-E-3-C		280-353835	280-352794	11/30/2016 19:13	1	TAL DEN	LMT
P:3005A	280-91197-D-3-A		280-354033	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-3-A		280-354033	280-353082	12/02/2016 03:59	1	TAL DEN	LMT
P:3005A	280-91197-D-3-A		280-354791	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-3-A		280-354791	280-353082	12/07/2016 17:29	1	TAL DEN	LMT
A:300.0	280-91197-B-3		280-355156		12/13/2016 03:30	1	TAL DEN	AFB
A:350.1	280-91197-C-3		280-353602		11/29/2016 14:31	1	TAL DEN	MAS
A:353.2	280-91197-A-3		280-355401		12/13/2016 10:28	1	TAL DEN	AJA
A:SM 2320B	280-91197-B-3		280-353180		11/23/2016 13:02	1	TAL DEN	MMC
A:SM 2540C	280-91197-A-3		280-352854		11/23/2016 09:55	1	TAL DEN	JAP
A:SM 2540D	280-91197-B-3		280-352912		11/23/2016 15:39	1	TAL DEN	SVC
A:SM 5310B	280-91197-C-3		280-354778		12/07/2016 14:39	1	TAL DEN	CCJ
A:Field Sampling	280-91197-A-3		280-352756		11/17/2016 10:50	1	TAL DEN	C1K

Lab ID: 280-91197-3 MS Client ID: MW-33A

Sample Date/Time: 11/17/2016 09:50 Received Date/Time: 11/18/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91197-D-3-B MS		280-354033	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-3-B MS		280-354033	280-353082	12/02/2016 04:07	1	TAL DEN	LMT
P:3005A	280-91197-D-3-B MS		280-354791	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-3-B MS		280-354791	280-353082	12/07/2016 17:36	1	TAL DEN	LMT

Client: Waste Management Job Number: 280-91197-1

Laboratory Chronicle

Lab ID: 280-91197-3 MSD Client ID: MW-33A

Sample Date/Time: 11/17/2016 09:50 Received Date/Time: 11/18/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:3005A	280-91197-D-3-C MSD		280-354033	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-3-C MSD		280-354033	280-353082	12/02/2016 04:10	1	TAL DEN	LMT
P:3005A	280-91197-D-3-C MSD		280-354791	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-3-C MSD		280-354791	280-353082	12/07/2016 17:40	1	TAL DEN	LMT

Lab ID: 280-91197-3 DU Client ID: MW-33A

Sample Date/Time: 11/17/2016 09:50 Received Date/Time: 11/18/2016 10:00

Analysis Date Prepared / **Batch** Analyzed Method **Bottle ID** Run **Prep Batch** Dil Lab **Analyst** A:SM 2540D 280-91197-B-3 DU 280-352912 11/23/2016 15:39 TAL DEN SVC

Lab ID: 280-91197-4 Client ID: DUP1

Sample Date/Time: 11/17/2016 11:00 Received Date/Time: 11/18/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91197-F-4		480-333995		11/30/2016 12:54	1	TAL BUF	SWO
A:8260C	280-91197-F-4		480-333995		11/30/2016 12:54	1	TAL BUF	SWO
P:5030C	280-91197-K-4		480-333833		11/29/2016 14:29	1	TAL BUF	JWG
A:8260C SIM	280-91197-K-4		480-333833		11/29/2016 14:29	1	TAL BUF	JWG
P:3005A	280-91197-E-4-A		280-354936	280-353059	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91197-E-4-A		280-354936	280-353059	12/08/2016 23:27	1	TAL DEN	CRR
P:3005A	280-91197-E-4-B		280-355067	280-353084	12/01/2016 07:31	1	TAL DEN	SUR
A:6010B	280-91197-E-4-B		280-355067	280-353084	12/10/2016 00:22	1	TAL DEN	LRD
P:3005A	280-91197-E-4-C		280-353835	280-352794	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91197-E-4-C		280-353835	280-352794	11/30/2016 19:17	1	TAL DEN	LMT
P:3005A	280-91197-D-4-A		280-354033	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-4-A		280-354033	280-353082	12/02/2016 04:18	1	TAL DEN	LMT
P:3005A	280-91197-D-4-A		280-354791	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-4-A		280-354791	280-353082	12/07/2016 17:48	1	TAL DEN	LMT
A:300.0	280-91197-B-4		280-355156		12/13/2016 03:50	1	TAL DEN	AFB
A:350.1	280-91197-C-4		280-353602		11/29/2016 14:33	1	TAL DEN	MAS
A:353.2	280-91197-A-4		280-355401		12/13/2016 10:28	1	TAL DEN	AJA
A:SM 2320B	280-91197-B-4		280-353180		11/23/2016 13:07	1	TAL DEN	MMC
A:SM 2540C	280-91197-A-4		280-352854		11/23/2016 09:55	1	TAL DEN	JAP
A:SM 2540D	280-91197-B-4		280-352912		11/23/2016 15:39	1	TAL DEN	SVC
A:SM 5310B	280-91197-C-4		280-354778		12/07/2016 14:54	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91197-1

Laboratory Chronicle

Lab ID: 280-91197-5 Client ID: MW-24

Sample Date/Time: 11/17/2016 13:20 Received Date/Time: 11/18/2016 10:00

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	280-91197-F-5		480-333995		11/30/2016 13:17	1	TAL BUF	SWO
A:8260C	280-91197-F-5		480-333995		11/30/2016 13:17	1	TAL BUF	SWO
P:5030C	280-91197-K-5		480-333833		11/29/2016 14:54	1	TAL BUF	JWG
A:8260C SIM	280-91197-K-5		480-333833		11/29/2016 14:54	1	TAL BUF	JWG
P:3005A	280-91197-E-5-A		280-354936	280-353059	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91197-E-5-A		280-354936	280-353059	12/08/2016 23:29	1	TAL DEN	CRR
P:3005A	280-91197-E-5-B		280-355067	280-353084	12/01/2016 07:31	1	TAL DEN	SUR
A:6010B	280-91197-E-5-B		280-355067	280-353084	12/10/2016 00:24	1	TAL DEN	LRD
P:3005A	280-91197-E-5-C		280-353835	280-352794	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91197-E-5-C		280-353835	280-352794	11/30/2016 19:21	1	TAL DEN	LMT
P:3005A	280-91197-D-5-A		280-354033	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-5-A		280-354033	280-353082	12/02/2016 04:22	1	TAL DEN	LMT
P:3005A	280-91197-D-5-A		280-354791	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	280-91197-D-5-A		280-354791	280-353082	12/07/2016 17:52	1	TAL DEN	LMT
A:300.0	280-91197-B-5		280-355156		12/13/2016 04:10	1	TAL DEN	AFB
A:350.1	280-91197-C-5		280-353602		11/29/2016 14:35	1	TAL DEN	MAS
A:353.2	280-91197-A-5		280-355401		12/13/2016 10:28	1	TAL DEN	AJA
A:SM 2320B	280-91197-B-5		280-353180		11/23/2016 13:11	1	TAL DEN	MMC
A:SM 2540C	280-91197-A-5		280-353679		11/30/2016 09:04	1	TAL DEN	JAP
A:SM 2540D	280-91197-B-5		280-352912		11/23/2016 15:39	1	TAL DEN	SVC
A:SM 5310B	280-91197-C-5		280-354778		12/07/2016 15:08	1	TAL DEN	CCJ
A:Field Sampling	280-91197-A-5		280-352756		11/17/2016 14:20	1	TAL DEN	C1K

Client: Waste Management Job Number: 280-91197-1

Laboratory Chronicle

Lab ID: MB Client ID: N/A

> Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	MB 480-333995/6		480-333995		11/30/2016 10:41	1	TAL BUF	SWO
A:8260C	MB 480-333995/6		480-333995		11/30/2016 10:41	1	TAL BUF	SWO
P:5030C	MB 480-333833/7		480-333833		11/29/2016 13:26	1	TAL BUF	JWG
A:8260C SIM	MB 480-333833/7		480-333833		11/29/2016 13:26	1	TAL BUF	JWG
P:5030C	MB 480-334146/8		480-334146		12/01/2016 02:26	1	TAL BUF	JWG
A:8260C SIM	MB 480-334146/8		480-334146		12/01/2016 02:26	1	TAL BUF	JWG
P:3005A	MB 280-353059/1-A		280-354936	280-353059	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	MB 280-353059/1-A		280-354936	280-353059	12/08/2016 22:34	1	TAL DEN	CRR
P:3005A	MB 280-353084/1-A		280-355067	280-353084	12/01/2016 07:31	1	TAL DEN	SUR
A:6010B	MB 280-353084/1-A		280-355067	280-353084	12/10/2016 00:12	1	TAL DEN	LRD
P:3005A	MB 280-352794/1-A		280-353835	280-352794	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	MB 280-352794/1-A		280-353835	280-352794	11/30/2016 18:16	1	TAL DEN	LMT
P:3005A	MB 280-353082/1-A		280-354033	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	MB 280-353082/1-A		280-354033	280-353082	12/02/2016 02:32	1	TAL DEN	LMT
P:3005A	MB 280-353082/1-A		280-354791	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	MB 280-353082/1-A		280-354791	280-353082	12/07/2016 17:17	1	TAL DEN	LMT
A:300.0	MB 280-355156/6		280-355156		12/12/2016 11:18	1	TAL DEN	AFB
A:350.1	MB 280-353602/20		280-353602		11/29/2016 14:21	1	TAL DEN	MAS
A:353.2	MB 280-355401/1		280-355401		12/13/2016 10:28	1	TAL DEN	AJA
A:SM 2320B	MB 280-353180/5		280-353180		11/23/2016 12:24	1	TAL DEN	MMC
A:SM 2540C	MB 280-352854/1		280-352854		11/23/2016 09:55	1	TAL DEN	JAP
A:SM 2540C	MB 280-353679/1		280-353679		11/30/2016 09:04	1	TAL DEN	JAP
A:SM 2540D	MB 280-352912/2		280-352912		11/23/2016 15:39	1	TAL DEN	SVC
A:SM 5310B	MB 280-354778/4		280-354778		12/07/2016 12:52	1	TAL DEN	CCJ

A = Analytical Method P = Prep Method TestAmerica Denver 12/16/2016

Client: Waste Management Job Number: 280-91197-1

Laboratory Chronicle

Lab ID: LCS Client ID: N/A

> Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCS 480-333995/4		480-333995		11/30/2016 09:54	1	TAL BUF	SWO
A:8260C	LCS 480-333995/4		480-333995		11/30/2016 09:54	1	TAL BUF	SWO
P:5030C	LCS 480-333833/4		480-333833		11/29/2016 12:13	1	TAL BUF	JWG
A:8260C SIM	LCS 480-333833/4		480-333833		11/29/2016 12:13	1	TAL BUF	JWG
P:5030C	LCS 480-334146/5		480-334146		12/01/2016 00:49	1	TAL BUF	JWG
A:8260C SIM	LCS 480-334146/5		480-334146		12/01/2016 00:49	1	TAL BUF	JWG
P:3005A	LCS 280-353059/2-A		280-354936	280-353059	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	LCS 280-353059/2-A		280-354936	280-353059	12/08/2016 22:36	1	TAL DEN	CRR
P:3005A	LCS 280-353084/2-A		280-355067	280-353084	12/01/2016 07:31	1	TAL DEN	SUR
A:6010B	LCS 280-353084/2-A		280-355067	280-353084	12/10/2016 00:14	1	TAL DEN	LRD
P:3005A	LCS 280-352794/2-A		280-353835	280-352794	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	LCS 280-352794/2-A		280-353835	280-352794	11/30/2016 18:20	1	TAL DEN	LMT
P:3005A	LCS 280-353082/2-A		280-354033	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	LCS 280-353082/2-A		280-354033	280-353082	12/02/2016 02:35	1	TAL DEN	LMT
P:3005A	LCS 280-353082/2-A		280-354791	280-353082	12/01/2016 14:05	1	TAL DEN	MLS
A:6020	LCS 280-353082/2-A		280-354791	280-353082	12/07/2016 17:21	1	TAL DEN	LMT
A:300.0	LCS 280-355156/4		280-355156		12/12/2016 10:38	1	TAL DEN	AFB
A:350.1	LCS 280-353602/18		280-353602		11/29/2016 14:17	1	TAL DEN	MAS
A:SM 2320B	LCS 280-353180/4		280-353180		11/23/2016 12:20	1	TAL DEN	MMC
A:SM 2540C	LCS 280-352854/2		280-352854		11/23/2016 09:55	1	TAL DEN	JAP
A:SM 2540C	LCS 280-353679/2		280-353679		11/30/2016 09:04	1	TAL DEN	JAP
A:SM 2540D	LCS 280-352912/1		280-352912		11/23/2016 15:39	1	TAL DEN	SVC
A:SM 5310B	LCS 280-354778/3		280-354778		12/07/2016 12:37	1	TAL DEN	CCJ

Lab ID: LCSD Client ID: N/A

> Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	LCSD 480-333833/5		480-333833		11/29/2016 12:37	1	TAL BUF	JWG
A:8260C SIM	LCSD 480-333833/5		480-333833		11/29/2016 12:37	1	TAL BUF	JWG
P:5030C	LCSD 480-334146/6		480-334146		12/01/2016 01:13	1	TAL BUF	JWG
A:8260C SIM	LCSD 480-334146/6		480-334146		12/01/2016 01:13	1	TAL BUF	JWG
A:300.0	LCSD 280-355156/5		280-355156		12/12/2016 10:58	1	TAL DEN	AFB
A:350.1	LCSD 280-353602/19		280-353602		11/29/2016 14:19	1	TAL DEN	MAS
A:SM 2540C	LCSD 280-353679/3		280-353679		11/30/2016 09:04	1	TAL DEN	JAP

Lab ID: MRL Client ID: N/A

> Sample Date/Time: N/A Received Date/Time: N/A

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	MRL 280-355156/3		280-355156		12/12/2016 10:18	1	TAL DEN	AFB

Client: Waste Management Job Number: 280-91197-1

Laboratory Chronicle

Client ID: N/A Lab ID: MS

> Sample Date/Time: 11/17/2016 11:42 Received Date/Time: 11/18/2016 09:30

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	480-109984-E-3 MS		480-333995		11/30/2016 18:18	1	TAL BUF	SWO
A:8260C	480-109984-E-3 MS		480-333995		11/30/2016 18:18	1	TAL BUF	SWO
P:3005A	280-91196-C-1-B MS		280-354936	280-353059	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91196-C-1-B MS		280-354936	280-353059	12/08/2016 22:51	1	TAL DEN	CRR
P:3005A	280-91292-C-1-B MS		280-355067	280-353084	12/01/2016 07:31	1	TAL DEN	SUR
A:6010B	280-91292-C-1-B MS		280-355067	280-353084	12/10/2016 00:32	1	TAL DEN	LRD
P:3005A	280-91068-E-1-C MS		280-353835	280-352794	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91068-E-1-C MS		280-353835	280-352794	11/30/2016 18:31	1	TAL DEN	LMT
A:300.0	280-91292-A-11 MS		280-355156		12/13/2016 00:11	1	TAL DEN	AFB
A:350.1	440-166999-B-1 MS		280-353602		11/29/2016 14:25	1	TAL DEN	MAS
A:SM 5310B	280-91182-G-1 MS		280-354778		12/07/2016 13:36	1	TAL DEN	CCJ

Lab ID: MSD Client ID: N/A

Sample Date/Time: 11/17/2016 11:42 Received Date/Time: 11/18/2016 09:30

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
P:5030C	480-109984-E-3 MSD		480-333995		11/30/2016 18:41	1	TAL BUF	SWO
A:8260C	480-109984-E-3 MSD		480-333995		11/30/2016 18:41	1	TAL BUF	SWO
P:3005A	280-91196-C-1-C MSD		280-354936	280-353059	11/30/2016 07:35	1	TAL DEN	TEB
A:6010B	280-91196-C-1-C MSD		280-354936	280-353059	12/08/2016 22:54	1	TAL DEN	CRR
P:3005A	280-91292-C-1-C MSD		280-355067	280-353084	12/01/2016 07:31	1	TAL DEN	SUR
A:6010B	280-91292-C-1-C MSD		280-355067	280-353084	12/10/2016 00:34	1	TAL DEN	LRD
P:3005A	280-91068-E-1-D MSD		280-353835	280-352794	11/30/2016 07:35	1	TAL DEN	SUR
A:6020	280-91068-E-1-D MSD		280-353835	280-352794	11/30/2016 18:35	1	TAL DEN	LMT
A:300.0	280-91292-A-11 MSD		280-355156		12/13/2016 00:31	1	TAL DEN	AFB
A:350.1	440-166999-B-1 MSD		280-353602		11/29/2016 14:27	1	TAL DEN	MAS
A:SM 5310B	280-91182-G-1 MSD		280-354778		12/07/2016 13:51	1	TAL DEN	CCJ

Client: Waste Management Job Number: 280-91197-1

Laboratory Chronicle

Client ID: N/A Lab ID: DU

> Sample Date/Time: 11/17/2016 10:45 Received Date/Time: 11/19/2016 08:40

			Analysis		Date Prepared /			
Method	Bottle ID	Run	Batch	Prep Batch	Analyzed	Dil	Lab	Analyst
A:300.0	280-91292-A-11 DU		280-355156		12/12/2016 23:51	1	TAL DEN	AFB
A:SM 2320B	280-91292-A-3 DU		280-353180		11/23/2016 12:34	1	TAL DEN	MMC
A:SM 2540C	280-91498-B-2 DU		280-353679		11/30/2016 09:04	1	TAL DEN	JAP

Lab References:

TAL BUF = TestAmerica Buffalo TAL DEN = TestAmerica Denver

Chain of Custody Record

Phone (303) 736-0100 Fax (303) 431-7171

Arvada, CO 80002

4955 Yarrow Street

TestAmerica Denver

TestAmerica

T - TSP Dodecahydrate U - Acetone 04204027.19 W - ph 4-5 Z - other (specify) Special Instructions/Note: Arsenic - Direct sub to ARI N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2SO3 Short Hold: NO3(cad) Months M - Hexane S-H2S04 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client

Disposal By Lab

Archive For Mont COC No: 280-17318-3224.1 Preservation Code G - Amchlor H - Ascorbic Acid A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH J - DI Water K - EDTA L-EDA 1-100 Page: Total Number of containers 4 9104 BISI 6971 89 Method of Shipment 2151 904 Analysis Requested 280-91197 Chain of Custody Total Arsenic (direct sub to ARI) Special Instructions/QC Requirements XXX otal Metals (olethus AT) MIZ 80858 E-Mail: betsy.sara@testamericainc.com (oleffud AT) fall gnol - 80628 OUTSINOUM DS/AIKS/CI/SO4/NO3(cad) Lab PM: Sara, Betsy A Perform MS/MSD (Yes or No) Time \geq BT=Tissue, A=Air (Wirwater, Sasolid, Oxwaste/oil, Preservation Code: Matrix 0862 \geq Radiological Type (C=comp, G=grab) Sample Gabe 0 1 Due Date Requested: Standar 946 1100 1320 950 050 Sample Time 1 Date: Unknown Sala 672 (days) 1/1/1/ Sample Date B Project #: 28002692 #OM Poison B S EVALOSCS OUS MONTS. com Skin Irritant Event Desc: Quarterly GW Appl/II - Mar Jun Sep Dec Deliverable Requested: I, II, III, IV, Other (specify) 2980 1 ank Flammable Possible Hazard Identification · Ohb - 219 45 - 24 331 23 Empty Kit Relinquished by Trip Client Information Sample Identification MS! MW-Waste Management Jup Non-Hazard Mr. Patrick Madej 2615 Davis Street San Leandro Nashington State, Zip: CA, 94577

Page 107 of 115

12/16/2016

linquished by:

elinquished by:

Company

1000

Date/Time: ||- [8-|6

Received by:

36

1500

11/17/16 Date/Time:

Date/Time:

company

Date/Time:

Received by:

Company

876701

871302

Custody Seal No.

Custody Seals Intact:

A Yes A No

Cooler Temperature(s) "C and Other Remarks:
0.7, 5.1 IRS CF-0.2 However, 157, 1 | H8-16

Site Name: This form is to be completed, in addition to any State Forms. The Field Form is Site submitted along with the Chain of Custody Forms that accompany the sample Sample Laboratory Use Only/Lab ID: No.: Point: ontainers (i.e. with the cooler that is returned to the laboratory). PURGE INFO PURGE DATE PURGE TIME WATER VOL IN CASING ACTUAL VOL PURGED (MM DDYY) (2400 Hr Clock) (hrs:min) (Gallons) (Callons) PURGED Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below. PURGESAMPLE Filter Device: O or N Purging and Sampling Equipment . . . Dedicated: or N 0.45 µ or Purging Device A-Submersible Pump D-Bailer A-In-line Disposable C-Vacuum B-Peristaltic Pump E-Piston Pump Filter Type **B-Pressure** X-Other Sampling Device C-QED Bladder Pump F-Dipper/Bottle A-Teflon C-PVC X-Other: X-Other: Sample Tube Type: **B-Stainless Steel** D-Polypropylene Well Elevation Depth to Water (DTW) Groundwater Elevation (at TOC) (from TOC) direct fi (site datum, from TOC) Total Well Depth Stick Up Casing Casing (from TOC) (fil) (from ground elevation) ID Moterial Note: Total Well Depth, Stick Up, Casing id. etc., are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Gro water Elevation must be current. Retg/Unit Sample Time рH Conductance (SC/EC) Turbidity D.O. eH/ORP DTW (2400 Hr Clock) (std) (µmhos/cm@25°C) (ntu) (mg/L - ppm) (mV) (ft) Õ 0 126 Suggested range for 3 consec. readings or +/- 0.2 +/- 3% +/- 10% note Permit/State requirements: Stabilization Data Melds are Optional (i.e. complete stabilization readings for parameters required by WM. Site, or State). These fields can be used where four (4) field measure by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields above are needed, use separate sheet or form SAMPLE DATE pН CONDUCTANCE TEMP. TURBIDITY no eH/ORP Other: +7 1-4 (MM DD YY) (std) (umitos/cm @ 25°C) (ing/L-ppm) (mV)Chaits 9 3 5 Final Field Rendinus are required (i.e. record field meas urements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/Site Sample Appearance: Odor: Color: Weather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or N O Specific Comments (including purge/well volume calculations if required): 1100 I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign): Date Сотралу DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Client. PINK - Field Copy

		FIE	LD INFORMA	TION FORM	T	W	
Site Name:		MSC	This Waste Management Field. This form is to be completed, in	Information Form is Reguled	Ed.	WAPTH	MANAGEMENT
Sife No.:	Sus Pol	inte MW - 33	submitted along with the Chain containers (i.e. with the cooler th	f Custody Forms that accompa	any the sample	Laboratory Use Only/Lab	ID:
		Sample ID	1 Soundary (1.0. Author contol at	at is retained to the laboratory	7)-		
	117116	432	1 1 1 9				
PURGE INFO	JRGE DATE	PURGE TIME	ELAPSED HRS	WATER YOL IN CASI	MC ACTUALS	VOL PURGED	WILL WAY.
	MM DO YY)	(2400 Hr Clock)	(breemin)	(Oallana)	10	S-11>	WELL VOLs PURGED
Purging	and Sampling Equipme	ent Dedicated:	ell Vols Purged" w/ Water Vot in Tub r N Filts	ng/Finw Cell and Tubing/Rio r Device: Oper N	ne Cell Vols Purged, M 0.45 μ or	fark changes, record field 	The same of the sa
Purging	Device	A-Submersible Pump D	-Bailer		-In-line Disposable		1 (1)
Sampli Sampli	ig Device C		-Piston Pump Fil: -Dipper/Bottle	ter Type: A B.	-Pressure	X-Other	······································
Purging On Damping On	: [Sample T	1 1 / 1	-Teflon -Stainless Steel	C-PVC X-Oth D-Polypropylene	er:
The state of the s	levation	Denti	to Water (DTW)				1 1
Well E (at TO Total V (from 1	c)	(ft/msi) (from			roundwater Elevatio ite datum, from TOC		(ft/msl)
Total V	(ell Depth	Stick Stick	Up ground elevation)	Ca) II	asing	Casing	1
(70/65 81	ital Well Depth, Stak Up	Casing ld. eic. are optional and co	an be from historical data, unless req	uired by Stic/Permit, Well Ele) [in] evation, DTW, and Gro	Material undwater Elevation must	be current.
Sample T (2400 Hr C		PH Conductan (std) (μmhos/o		Turbidity (ntu)	D.O. (mg/L - ppm)	eH/ORP (mV)	DTW (fi)
1913	15 790 1	" <u> </u>	1819 110143		1277	181714	
914		w 6 3 5 2 nd	1816 110 135		[0]72	15 [2].1	
STABILIZATION DATA (Optional)	3 1 3	6533	185 1012		10145	141416	
ତି ସ		62624	1814 166	1 19 52	10146	141018	
1915		61617	1814 19199	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0	13912	
					ाठ। भक्ष	12016	
						<u> </u>	
Suggested rang	e for 3 consec, readings or	+/- 0.2				<u> </u>	
Stabilization	to reguliements; Data Fiolds are Ontion:	1 (1.e. complete stabilization read	lines for parameters required by W	M. Site, or State). There for	#/- 10%	+/- 25 mV	Stabilize
oy state), et m	it/Site, If a Data Logger E DATE	or other Electronic format is used, pH CONDU	fill in final readings below and subm	it electronic data separately (to Site. <u>If more fields</u>	<u>above ure needed, use s</u>	paraig sheet or farm.
[A, (WW	DD YY)	(sid) (umbos/er		TURBIDITY (utu)	DO (mg/L-ppm)	cH/ORP Oth (mV) Unl	er: <u>+ </u>
	7/6	667	34 9 99	3 6(0 41	397	950
Sample Ap			al stabilized readings, passive sam	The state of the s			ermii/Sita.
1	· · · · · ·	aily, or as conditions change):	Odor: Direction/Speed:	Colo		Other:	
		purge/well volume calculation		~ Outlooi	K	Precipitation	Y or N
	(
Ž		in the second of				-	
			4 2		:		· .
COMMENTS							
FIELD			and the second s		R.		
	and a second sec		The state of the s		·		
I certify tha	t sampling procedure		icable EPA, State, and WM pro	ocols (if more than one sa	mpler, all should sig	_	
	<u>w1/6</u>	Jam Grafie	<u></u>	- 24		505	W-National Control of the Control of
/	ate Na	me	Signature		Com	pany	——————————————————————————————————————

	FIELD INFORMATION FORM
Site Nam	Trick West, Many contract Florit Factors of the Contract of th
Site	Sample Sample Laboratory Use Only/Lab ID:
	Sample ID
PURGE	
	(MM DD YY) (2400 Hr Clock) (hrs:min) (Gallons) (Gallons) PURGED Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" m Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged. Mark changes, record field data, below.
PEE	Purging and Sampling Hautinment Dudlestade (A)
PURGE/SAMPLE ROTTIPMENT	Purging Device A-Submersible Pump D-Bailer B-Peristaltic Pump E-Piston Pump Filter Type: A-in-line Disposable C-Vacuum B-Pressure X-Other
	Sampling Device C C-QED Bladder Pump F-Dipper/Bottle B-Perstatic Pump E-Piston Pump Filter Type: B-Pressure X-Other C-QED Bladder Pump F-Dipper/Bottle
FOF	X-Other: Sample Tube Type: D A-Teflon C-PVC X-Other: B-Stainless Steel D-Polypropylene
WELL DATA	Well Elevation Depth to Water (DTW) 3 2 2 5 (a) Groundwater Elevation (site datum, from TOC) Groundwater Elevation (from TOC)
WELL	Total Well Depth (from TOC) Note: Total Well Depth, Stick Up, Casing Id. etc. are optional and can be from historical data, unless required by Site/Permit. Well Elevation, DTW, and Groundwater Elevation must be current.
	Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. eH/ORP DTW 2400 Hr Clock) (std) (µmhos/cm@25°C) (°C) (ntu) (my/L - ppm) (mV) (ft)
1	131010 340 1 61716 1 111917 11219 1111 13120 1111315 111
اچ	13,015 20 6,612 20 11,12,16 11,179 1 1 10,71 11,136 11
	13:018 3" 61613 3" 111745 11178 111 1050 11100 111
<u> </u>	13:111 40 66 613 40 1 11216 11179 1 1 10137 1101911
ATA (13114 1 61613 1111217 11172 1111 10127 1101815 111
	13:117 1 61613 11126 11175 111 10125 1101811 1312 120
ATIK	131210 4 61613 111217 11166 1 1212 10124 101719 111
STABILIZATION DATA (Optional)	
TAB	
\(\frac{1}{2}\)	
	ggosted range for 3 consec, readings or +/- 0.2 +/- 3% - +/- 10% +/- 25 mV Stabilize
S	abilization Duta Fields are Optional (i.e., complete stabilization readings for parameters required by WM, Site, or State). These fields can be used where four (4) field measurements are required State/Permit/Site, If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. If more fields upon are needed, use separate sheet or form
	SAMPLE DATE PH CONDUCTANCE TEMP. TURBIDITY DO eH/ORP Other: 1
FIELD DATA	(MM DD YY) (std) (umhos/cm@25°C) (°C) (ntu) (ing/L-ppm) (mV) Units
E E	nni Field Rendlings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field parameters required by State/Permit/State.
	ample Appearance: Clear Odor: Color: Other:
Ŋ	/eather Conditions (required daily, or as conditions change): Direction/Speed: Outlook: Precipitation: Y or (W
S	pecific Comments (including purge/well volume calculations if required):
£ -	
COMMENTS	
) (T	
FIELD	
	certify that sampling procedures were in accordance with applicable EPA, State, and WM protocols (if more than one sampler, all should sign):
	11/17/16 Sam Graper & SCS
 :	
	Date Name Signature Company

TestAmerica Denver

4955 Yarrow Street Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171

Chain of Custody Record

THE LEADER IN ENMACHINEL TESTING

TestAmerica

	Sampler:			Lab PM:	ند						Carrie	r Trackir	Carrier Tracking No(s):		Q	COC No:		
ormation (Sub Contract Lab)				Sara,	Sara, Betsy A	¥									2	280-378736.1		
	Phone:			E-Mail:							State	State of Origin:	Ì.,		ш.	Page:		
Shipping/Receiving				betsy	betsy.sara@testamericainc.com	testar	nerica	nc.cor	Ľ		Was	Washington	_		<u> </u>	Page 1 of 1		
Company:					Accreditations Required (See note)	tions R	equired	(See no	ote):						ſ	.#cof		
TestAmerica Laboratories, Inc.					NELAP - Oregon	-Ore	gon	.							N	280-91197-1		
	Due Date Requested:	 <u>.</u>													ľ	Preservation Codes:	odes:	
lazelwood Drive,	12/7/2016							Ā	alys	is Re	Analysis Requested	ted				A - HCi	M - Hovene	
	TAT Requested (days):	·s):		a.alex	動物							-				B - NaOH	N - None	
				i constant											AND THE	C - Zn Acetate	O - AsNaO2	
State, Zip: NV 14228-2308																D - Nitric Acid E - NaHSO4	P - Na204S O - Na2SO3	
	: 01					•				_					_	F - MeOH	R - Na2S203	
91-2600(Tel) 716-691-7991(Fax)	PO#:				(o		bou:		-					•••		G - Amchior H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrate	hydrate
Email:	₩O#:			, pathwell by	A 17 8 5 30		191N 16:									I - Ice J - Di Water	U - Acetone V - MCAA	
Project Name: WA02 Olympic View Sanitary LF	Project #: 28002692						רסם (חו									K-EDIA L-EDA	w - pH 4-5 Z - other (specify)	.S
	SSOW#:				gmes Y) ası	A (00)	DC (WC								o (coi	Other:	,	
			Sample	Matrix			£ng/iA								nedin			
			Type	(W≃water, S≅solid			1187:					<u></u>			ηN			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, G=grab)	. T	Name and Address of the Owner,										éjoj	Special I	Special Instructions/Note:	te:
ではないのでは、大きなでは、これでは、これではないないできないとなっていますが、 はないはないないないないないないないないないないないないないないないないないな	In Tail	V	1.00.	ioni Code:	\bigvee	遊	靈	建				74			X	1000年 1000年	まっているではなられば、 では、これでは、 では、 では、 では、 では、 では、 では、 では、	
MW-33C (280-91197-1)	11/17/16	10:50 Pacific		Water		×	×								; 6 0			
TRIP BLANK (280-91197-2)	11/17/16	Pacific		Water		×	×								- (A)			
MW-33A (280-91197-3)	11/17/16	09:50 Pacific		Water		×	×								ÇÇ.		;	
DUP1 (280-91197-4)	11/17/16	11:00 Pacific		Water		×	×								Ô			
MW-24 (280-91197-5)	11/17/16	13:20 Pacific		Water		×	×								9			
					-												:	
																	,	,

Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, Inc. Company Col Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month
Special Instructions/QC Requirements: 0001 Jate/Time: 3/16 Date/Time: Method of Shipment 12 Received by: Received by: Time: Company Sompany Primary Deliverable Rank: 2 Date: Date/Time: Deliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Empty Kit Relinquished Jnconfirmed telinquished by: elinquished by Relinquished by

05.

Cooler Temperature(s) °C and Other Remarks:

Custody Seal No.:

Custody Seals Intact:

Δ Yes Δ No

TestAmerica Denver

4955 Yarrow Street

Arvada, CO 80002 Phone (303) 736-0100 Fax (303) 431-7171

ecord
tody Rec
of Custo
Chain o

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING	

Client Information (Sub Contract Lab)				Sara,	Sara, Betsy A					280-379494.1	
Client Contact: Shipping/Receiving	Phone:			E-Mail:	sara@te	stame	E-Mail: betsv sara@testamericainc.com	State of Origin: Washington		Page: Page 1 of 1	
Company.					ccreditation	ons Requ	Accreditations Required (See note):			# qop	
l estAmerica Laboratories, Inc.				_	NELAP - Oregon	Orego	_			280-91197-1	
Address: 10 Hazelwood Drive, ,	Due Date Requested: 12/7/2016				i		Analysis Requested	auested		Preservation Codes	des:
City.	TAT Requested (days):			1000							М - Нехале N - None
Amnerst Sect. 7:0.	wak sun									C - Zn Acetate	O - AsNaO2
NY, 14228-2298					2.02						Q - Na2SO3
Phone: 716-691-2600(Te) 716-691-7991(Fax)	PO#) were					F - MeOH G - Amchlor	K - Na2S203 S - H2S04
	WO #:				. I				333		I - I SP Dodecanydrate U - Acetone
					21 1/2 0 - 1 - 0					J - DI Water	V - MCAA W - pH 4-5
Project Name: WA02 Olympic View Sanitary LF	Project #: 28002692				(vCt						Z - other (specify)
Site: WA02 Olympic View Sanitary LF	ssow#:				(N) refe					Other:	
	-	r	}		Ľ.			_		7.16	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample (6	Sample Type (C=comp, G=grab)	Matrix (w=water, S=solid, O=waste/oil, BI=Tissue, A=Air)		8560C_SIM\50				Special Number Special	Special Instructions/Note:
のでは、一般のでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ	25	W	12011	海 地	X	\$15000 24000	And the Control of th			2000年	A STATE OF THE PARTY OF THE PAR
MW-33C (280-91197-1)	11/17/16	ļ		Water		×				ීර	
TRIP BLANK (280-91197-2)	11/17/16 F	Pacific		Water		×				N	
MW-33A (280-91197-3)	11/17/16	09:50		Water		×				9	
		acilic				-			3,5,5		772
		1	1			+				新	
										() ()	

							2			100	
									2002		
Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the TestAmerica laboratories will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to TestAmerica Laboratories, inc. attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to accreditations.	atories, Inc. places the own sts/matrix being analyzed, tl int to date, return the signed	ership of met he samples n d Chain of Cu	hod, analyte & nust be shippe istody attestin	accreditation of back to the g to said comp	compliance TestAmeric Icance to	s upon or a labora FestAme	ut subcontract laboratories tory or other instructions w rica Laboratories, Inc.	. This sample shipn II be provided. Any	nent is forwarded ur changes to accredi	nder chain-of-custody. tation status should be	If the laboratory does not brought to TestAmerica
Possible Hazard Identification					Samp	le Dis	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if sa	mples are reta	ined longer than	1 month)
Unconfirmed						Retur	Return To Client	Disposal By Lab	b	Archive For	Months
Deliverable Requested: I, II, III, I), Other (specify)	Primary Deliverable Rank: 2	Rank: 2			Speci	al Instr	Requir	ents:	1		
Empty Kit Relinquished by	Date	te:			Time:	1		Method of Shipment:	Shipment		
Relinquisher W W	Date	1	168 J	Сотрапу	27	Received	17/C		Date/Time:	1/6 1000	Wedness C.
Relinquished by:	Date/Time:	\$	ŏ	Company	ă.	Received by:	.A.		Date/Time:		Company
Relinquished by:	Date/Time:		Ö	Company	ě.	Received by:	y.		Date/Time:		Сотрапу
Custody Seals Intact: Custody Seal No.:				į	ŏ	oler Ten	Cooler Temperature(s) °C and Other Remarks:	Remarks:	3 2	8	
					1	١)	

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91197-1

Login Number: 91197 List Source: TestAmerica Denver

List Number: 1

Creator: True, Joshua A

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	N/A	
COC is filled out with all pertinent information.	N/A	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the sample IDs on the containers and the COC.	N/A	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91197-1

Login Number: 91197
List Source: TestAmerica Buffalo
List Number: 2
List Creation: 11/23/16 03:29 PM

Creator: Hulbert, Michael J

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.9 #1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	False	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Login Sample Receipt Checklist

Client: Waste Management Job Number: 280-91197-1

Login Number: 91197
List Source: TestAmerica Buffalo
List Number: 3
List Creation: 11/29/16 03:02 PM

Creator: Hulbert, Michael J

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.3 #1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	False	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

APPENDIX C

2016 ANNUAL TIME SERIES, TREND TEST AND PREDICTION LIMIT EVALUATION

Olympic View Sanitary Landfill

Annual Statistical Evaluation & Summary 2016 Monitoring Year

Prepared for:

SCS ENGINEERS

2405 140th Ave NE, Ste 107 Bellevue, Washington 98005 (425) 746-4600

Prepared by:

GeoChem Applications Geochemical and Statistical Data Analysis

3941 Park Drive, Suite 20-249 El Dorado Hills, CA 95762 916 ♦ 939 ♦ 2307 www.geochemapplications.com

FEBRUARY 2017

CONTENTS:

- 1. Statistical Trend Analysis (showing status through Q4 2016)
- 2. Prediction Limits for Detection Monitoring
 - a. 2016 Prediction Limits (showing status through Q4 2016)
 - b. Updated Prediction Limits for Use in 2017 Monitoring Year
- 3. 2016 Annual UCL Calculations for Preliminary Groundwater Cleanup Goals

1. Statistical Trend Analysis

- Trend Results Summary Table (showing status through Q4 2016) (Table 1-1)
- Time-Series Graphs Depicting Significant Trends for "Trend Test A"
- Time-Series Graphs Depicting Significant Trends for "Trend Test B"

Results of Sen's Non-Parametric Test for Trend

FOURTH QUARTER 2016 REPORT

Trend Test Period: January 2005 through December 2016

Trend Test Wells:

- Compliance Wells: MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43
- Performance Wells: MW-2B1, MW-4, MW-19C, MW-20, MW-23A, MW-24
- Downgradient Wells: MW-29A*, MW-32, MW-33A*, MW-33C, MW-36A
- Upgradient Wells MW-13A, MW-13B, MW-16, MW-35,

Trend Test A = all organic parameters listed in Appendix I and Appendix II of WAC 173-351-990 that have been detected at least once in at least one of 22 wells comprising the network of 1) compliance, 2) performance, 3) downgradient, and 4) upgradient site monitoring wells, during the trend test period. This includes the following constituents:

	Significant Increasing Trends	Significant Decreasing Trends
1,1-Dichloroethane	None	None
1,2-Dichloroethene (total)	None	None
1,2-Dichlorobenzene	None	None
1,4-Dichlorobenzene	None	None
Acetone	None	None
Benzene	None	None
Carbon Disulfide	None	None
Chlorobenzene	None	None
Chlorodifluoromethane	None	None
Chloroethane	None	None
Chloroform	None	None
Chloromethane	None	None
cis-1,2-dichloroethene	None	None
Dichlorodifluoromethane	None	None
Ethyl Ether	None	None
Methylene Chloride	None	None
Naphthalene	None	None
n-Butyl Alcohol	None	None
tert-Butyl Alcohol	None	None
Tetrachloroethene	None	None
Tetrahydrofuran	None	None
Toluene	None	None
trans-1,2-Dichloroethene	None	None
Trichloroethene	None	MW-19C (graph 509)
Vinyl Chloride	None	MW-19C (graph 530) MW-34C (graph 540)

^{*}sampled semi-annually

(r		
Chloride	None	MW-13B (graph 191) MW-15R (graph 192) MW-16 (graph 193) MW-19C (graph 194) MW-23A (graph 196) MW-2B1 (graph 199) MW-33A (graph 201) MW-34A (graph 203) MW-34C (graph 204) MW-35 (graph 205) MW-36A (graph 206) MW-4 (graph 208)
Chromium, total	None	None
Cobalt, total	None	None
Copper, total	None	None
Iron, total	None	MW-24 (graph 281)
Lead, total	None	None
Magnesium, dissolved	None	MW-15R (graph 318) MW-23A (graph 322) MW-24 (graph 323) MW-2B1 (graph 325) MW-33A (graph 327) MW-34A (graph 329) MW-34C (graph 330) MW-42 (graph 335)
Manganese, total	None	None
Nickel, total	None	None
Nitrate (as N)	MW-20 (graph 384) MW-35 (graph 394) MW-36A (graph 395)	None
рН	MW-32 (graph 410) MW-34C (graph 414) MW-42 (graph 419)	None
Potassium, dissolved	MW-42 (graph 440)	None
Selenium, total	None	None
Silver, total	None	None
Sodium, dissolved		MW-15R (graph 486) MW-19C (graph 488) MW-23A (graph 490) MW-24 (graph 491) MW-2B1 (graph 493) MW-34A (graph 497) MW-34C (graph 498)

Specific Conductivity	MW-24 (graph 533) MW-13A (graph 547) MW-15R (graph 549) MW-20 (graph 552) MW-2B1 (graph 556) MW-32 (graph 557) MW-33C (graph 559) MW-34A (graph 560) MW-34C (graph 561) MW-35 (graph 562) MW-4 (graph 565) None None	MW-15R (graph 507) MW-19C (graph 509) MW-23A (graph 511) MW-24 (graph 512) MW-29A (graph 513) MW-2B1 (graph 514) MW-32 (graph 515) MW-33A (graph 516) MW-34A (graph 518) MW-34C (graph 519) MW-4 (graph 523)
Sulfate	MW-24 (graph 533)	MW-13A (graph 526) MW-13B (graph 527) MW-19C (graph 530) MW-23A (graph 532) MW-36A (graph 542) MW-4 (graph 544) MW-42 (graph 545)
Temperature	MW-15R (graph 549) MW-20 (graph 552) MW-2B1 (graph 556) MW-32 (graph 557) MW-33C (graph 559) MW-34A (graph 560) MW-34C (graph 561) MW-35 (graph 562)	MW-24 (graph 554)
Thallium, total		None
Total Dissolved Solids	None	MW-15R (graph 591) MW-23A (graph 595) MW-24 (graph 596) MW-2B1 (graph 598) MW-32 (graph 599) MW-33A (graph 600) MW-34C (graph 603)
Total Organic Carbon	None	None
Vanadium, total	None	None
Zinc, total	None	None

Trend Test B = all metals and groundwater quality parameters		
listed in Appendix I and Appendix II of WAC (173-351-990)		
	Significant Increasing Trends	Significant Decreasing Trends
		MW-15R (graph 3)
		MW-23A (graph 7)
	MM 10D (averala 0)	MW-24 (graph 8)
Alkalinity, bicarbonate (as CaCO3)	MW-13B (graph 2)	MW-2B1 (graph 10)
	MW-35 (graph 16)	MW-34A (graph 14)
		MW-34C (graph 15)
		MW-36A (graph 17)
		MW-15R (graph 24)
		MW-23A (graph 28)
	MM 10D (graph 00)	MW-24 (graph 29)
Alkalinity, total (as CaCO3)	MW-13B (graph 23)	MW-2B1 (graph 31)
	MW-35 (graph 37)	MW-34A (graph 35)
		MW-34C (graph 36)
		MW-36A (graph 38)
Ammonia (aa N)	None	MW-29A (graph 51)
Ammonia (as N)	Notie	MW-43 (graph 63)
Antimony, total	None	None
		MW-19C (graph 89)
Arsenic, total	None	MW-24 (graph 92)
	<u>.</u>	MW-35 (graph 100)
Barium, total	None	MW-32 (graph 116)
Beryllium, total	None	None
Cadmium, total	None	None
		MW-15R (graph 171)
		MW-23A (graph 175)
		MW-24 (graph 176)
		MW-29A (graph 177)
Calcium, dissolved	None	MW-2B1 (graph 178)
Daiolatti, alosoivea	NOTIC	MW-32 (graph 179)
		MW-33A (graph 180)
		MW-34A (graph 182)
		MW-34C (graph 183)
	İ	MW-36A (graph 185)

Total dissolved solids (tds) Detect for sample point MW-34C ND Significant Decreasing Trend 0 Outlier 500. 450. Man. outlier ⊕ 400. 350. M G 300. 250. 200. 150. 100. Trend test 05 06 07 08 09 10 11 12 13 14 15 16 17 Samples -Graph 603

2. Prediction Limits for Detection Monitoring

- 2016 Prediction Limits and Q4 2016 Exceedance Summary Table (Table 2-1)
- Updated Prediction Limits for Use During 2017 Monitoring Year (Table 2-2)
- Upgradient Data used in 2017 Prediction Limit Calculations (Table 2-3)
- Results of Shapiro-Wilk Test for Normality for 2017 Upgradient Data (Table 2-4)
- Comparison of 2016 Prediction Limits with 2017 Prediction Limits (Table 2-5)

TABLE 2-1 SUMMARY OF CURRENT PREDICTION LIMIT EXCEEDANCES Q4 2016

Olympic View Sanitary Landfill

Statistical Methodology:

- 1. Inter-Well Prediction Limits using DUMPStat[™]
- 2. Upgradient Data Set: pooled data from wells MW-13A, MW-13B, MW-16, and MW-35
- 3. "Detection Monitoring" well comparisons:
 - complance wells: MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43
 - downgradient wells: MW-29A*, MW-32, MW-33A*, MW-33C, MW-36A *sampled semi-annually, most current results presented
- 4. Parameters: all Appendix I and II inorganic and ground water quality parameters
- 5. Background Data Sets: January 2005 December 2016
- 6. Arsenic: only low-level Method 200.8 data used
- 7. Units: mg/L = milligrams per liter; ug/L = micrograms per liter; mS/cm = millisiemens per centimeter; deg C = d

_					Prediction
<u>Parameter</u>	<u>Unit</u>	<u>Well</u>		Date Sampled	<u>Limit</u>
Alkalinity, bicarbonate (as caco3)	mg/L	MW-32	110	11/16/2016	96
Alkalinity, bicarbonate (as caco3)	mg/L	MW-34C	110	11/15/2016	96
Alkalinity, bicarbonate (as caco3)	mg/L	MW-42	220	11/16/2016	96
Alkalinity, total (as caco3)	mg/L	MW-32	110	11/16/2016	96
Alkalinity, total (as caco3)	mg/L	MW-34C	110	11/15/2016	96
Alkalinity, total (as caco3)	mg/L	MW-42	220	11/16/2016	96
Ammonia (as n)	mg/L	MW-42	5.4	11/16/2016	0.30
Arsenic, total	ug/L	MW-29A	1.99	11/14/2016	0.479
Arsenic, total	ug/L	MW-32	9.95	11/16/2016	0.479
Arsenic, total	ug/L	MW-33A	0.509	11/17/2016	0.479
Arsenic, total	ug/L	MW-33C	2.53	11/17/2016	0.479
Arsenic, total	ug/L	MW-34C	5.42	11/15/2016	0.479
Arsenic, total	ug/L	MW-36A	0.566	11/15/2016	0.479
Arsenic, total	ug/L	MW-42	1.86	11/16/2016	0.479
Barium, total	mg/L	MW-29A	0.01	11/14/2016	0.0045
Barium, total	mg/L	MW-33C	0.0048	11/17/2016	0.0045
Barium, total	mg/L	MW-34A	0.0045	11/15/2016	0.0045
Barium, total	mg/L	MW-34C	0.037	11/15/2016	0.0045
Barium, total	mg/L	MW-39	0.0086	11/14/2016	0.0045
Barium, total	mg/L	MW-42	0.11	11/16/2016	0.0045
Calcium, dissolved	mg/L	MW-32	20	11/16/2016	17.1
Calcium, dissolved	mg/L	MW-34C	24	11/15/2016	17.1
Calcium, dissolved	mg/L	MW-42	42	11/16/2016	17.1
Chloride	mg/L	MW-32	7	11/16/2016	4.4
Chloride	mg/L	MW-42	12	11/16/2016	4.4
Iron, total	mg/L	MW-29A	4.6	11/14/2016	0.31
Iron, total	mg/L	MW-32	0.61	11/16/2016	0.31
Iron, total	mg/L	MW-33A	2.5	11/17/2016	0.31

					Prediction
<u>Parameter</u>	<u>Unit</u>	<u>Well</u>	Latest Result	Date Sampled	<u>Limit</u>
Iron, total	mg/L	MW-34C	8.4	11/15/2016	0.31
Iron, total	mg/L	MW-39	0.8	11/14/2016	0.31
Iron, total	mg/L	MW-42	27	11/16/2016	0.31
Magnesium, dissolved	mg/L	MW-34C	11	11/15/2016	11.0
Magnesium, dissolved	mg/L	MW-42	14	11/16/2016	11.0
Manganese, total	mg/L	MW-29A	1.4	11/14/2016	0.062
Manganese, total	mg/L	MW-32	1.8	11/16/2016	0.062
Manganese, total	mg/L	MW-33A	0.083	11/17/2016	0.062
Manganese, total	mg/L	MW-33C	0.15	11/17/2016	0.062
Manganese, total	mg/L	MW-34C	0.6	11/15/2016	0.062
Manganese, total	mg/L	MW-42	4.4	11/16/2016	0.062
рН	pH Units	MW-33C	8.31	11/17/2016	5.88 - 8.24
рН	pH Units	MW-39	5.27	11/14/2016	5.88 - 8.24
Potassium, dissolved	mg/L	MW-33C	1.3	11/17/2016	1.2
Potassium, dissolved	mg/L	MW-42	8.7	11/16/2016	1.2
Sodium, dissolved	mg/L	MW-15R	6.3	11/15/2016	6.2
Sodium, dissolved	mg/L	MW-32	12	11/16/2016	6.2
Sodium, dissolved	mg/L	MW-34A	9.7	11/15/2016	6.2
Sodium, dissolved	mg/L	MW-34C	12	11/15/2016	6.2
Sodium, dissolved	mg/L	MW-36A	7.3	11/15/2016	6.2
Sodium, dissolved	mg/L	MW-42	21	11/16/2016	6.2
Specific conductivity	mS/cm	MW-32	0.251	11/16/2016	0.18
Specific conductivity	mS/cm	MW-34C	0.231	11/15/2016	0.18
Specific conductivity	mS/cm	MW-42	0.55	11/16/2016	0.18
Total dissolved solids (tds)	mg/L	MW-42	250	11/16/2016	175
Total organic carbon (toc)	mg/L	MW-42	7.2	11/16/2016	6.0

STATISTICAL PREDICTION LIMITS UPDATED FOR 2017 MONITORING YEAR

Olympic View Sanitary Landfill

Statistical Methodology:

- 1. Inter-Well Prediction Limits using DUMPStat
- 2. Upgradient Data Set: pooled data from wells 13A, 13B, 16, and 35
- 3. "Detection Monitoring" well comparisons:
 - complance wells
 - performance wells
 - downgradient wells
- 4. Parameters: all Appendix I and II inorganic and ground water quality parameters
- 5. Background Data Sets: January 2005 December 2016 (updated annually)
- 6. Arsenic: only low-level Method 200.8 data used
- 7. Units: mg/L = milligrams per liter; ug/L = micrograms per liter; mS/cm = millisiemens per centimeter; deg C = degrees Celcius

		Distributional	Total	Detected	Mean	Standard	Prediction	Nonparametric
Constituent	Units	Assumption ^[1]	N ^[2]	N		Deviation	Limit ^[3]	Confidence ^[4]
Alkalinity, bicarbonate (as CaCO ₃)	mg/L	nonparametric	170	170			96	0.99
Alkalinity, total (as CaCO ₃)	mg/L	nonparametric	174	174			96	0.99
Ammonia (as N)	mg/L	nonparametric	170	72			0.300	0.99
Antimony, total	mg/L	nonparametric	54	3			0.0013	0.99
Arsenic, total	ug/L	normal	61	61			0.43	0.99
Barium, total	mg/L	normal	54	54	0.0033	0.0005	0.0045	
Beryllium, total	mg/L	nonparametric	54	0			Current RL*	0.99
Cadmium, total	mg/L	nonparametric	54	0			Current RL*	0.99
Calcium, dissolved	mg/L	nonparametric	174	174			18.00	0.99
Chloride	mg/L	nonparametric	174	172			4.40	0.99
Chromium, total	mg/L	nonparametric	54	24			0.0092	0.99
Cobalt, total	mg/L	nonparametric	54	0			Current RL*	0.99
Copper, total	mg/L	nonparametric	54	1			0.0021	0.99
Iron, total	mg/L	nonparametric	54	7			0.31	0.99
Lead, total	mg/L	nonparametric	54	1			0.0014	0.99
Magnesium, dissolved	mg/L	normal	174	174	8.28	1.209	11.15	
Manganese, total	mg/L	nonparametric	54	15			0.062	0.99
Nickel, total	mg/L	nonparametric	54	1			0.0041	0.99
Nitrate (as N)	mg/L	nonparametric	170	170			1.80	0.99
рН	pH Units	normal	165	165	7.02	0.459	5.81 - 8.23	
Potassium, dissolved	mg/L	nonparametric	174	13			1.20	0.99
Selenium, total	mg/L	nonparametric	54	0			Current RL*	0.99
Silver, total	mg/L	nonparametric	54	0			Current RL*	0.99
Sodium, dissolved	mg/L	nonparametric	174	174			6.30	0.99
Specific conductivity	mS/cm	nonparametric	167	167			0.18	0.99
Sulfate	mg/L	nonparametric	174	173			9.90	0.99
Temperature	deg C	nonparametric	167	167			14.32	0.99
Thallium, total	mg/L	nonparametric	54	0			Current RL*	0.99
Total dissolved solids (tds)	mg/L	nonparametric	174	174			175	0.99
Total organic carbon (toc)	mg/L	nonparametric	162	7			6.0	0.99
Vanadium, total	mg/L	normal	54	54	0.0045	0.0007	0.0063	
Zinc, total	mg/L	nonparametric	54	1			0.0056	0.99

^[1] Distributional Assumption based on Multiple Group Shapiro-Wilk Test (results presented on Table 2-4 herein).

^[2] N = number of background data points from the pooled upgradient well data set AFTER removal of outliers (see Table 2-3 for outliers).

^[3] Prediction Limit calculated at 95% confidence level and adjusted for multiple comparisons and one verification resample per Unified Guidance (USEPA, March 2009).

^[4] Nonparametric confidence level as calculated by DUMPStat.

^{*}Current RL: in cases where all background data are non-detected, a nonparametric prediction limit is set at the current constituent-specific laboratory reporting limit (RL).

Constituent	Units	Well	Date	Result
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/22/2005	75.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/15/2005	63.8000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/27/2005	75.6000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	12/15/2005	72.5000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/28/2006	80.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/21/2006	79.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/26/2006	80.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	12/13/2006	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/27/2007	83.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/19/2007	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/19/2007	79.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	12/19/2007	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/25/2008	83.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/18/2008	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/17/2008	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	12/17/2008	92.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/24/2009	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/17/2009	84.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/10/2009	87.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/25/2010	86.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/23/2010	86.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/23/2010	96.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	12/08/2010	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/30/2011	88.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/06/2011	89.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/27/2011	89.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	12/14/2011	90.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/21/2012	89.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/08/2012	87.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/26/2012	87.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	12/03/2012	83.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/11/2013	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/05/2013	83.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	12/03/2013	86.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	03/04/2014	87.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	06/02/2014	84.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	09/22/2014	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	11/17/2014	79.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	02/23/2015	84.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	05/19/2015	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	08/26/2015	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	11/10/2015	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	02/22/2016	80.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	05/16/2016	90.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	08/31/2016	84.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13A	11/14/2016	92.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/22/2005	70.6000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/15/2005	57.3000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/27/2005	72.7000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	12/15/2005	68.8000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/29/2006	73.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/21/2006	74.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/26/2006	75.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	12/13/2006	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/27/2007	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/19/2007	74.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/18/2007	74.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	12/19/2007	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/25/2008	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/18/2008	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/17/2008	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	12/16/2008	74.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/24/2009	78.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/17/2009	79.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/10/2009	81.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/25/2010	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/23/2010	80.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/23/2010	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	12/08/2010	88.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/30/2011	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/06/2011	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/27/2011	83.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	12/14/2011	84.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/21/2012	83.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/08/2012	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/26/2012	84.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	12/03/2012	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/11/2013	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/05/2013	79.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	12/03/2013	84.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	03/04/2014	83.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	06/02/2014	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	09/22/2014	80.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	11/17/2014	79.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	02/23/2015	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	05/19/2015	81.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	08/26/2015	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	11/10/2015	79.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	02/22/2016	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	05/16/2016	87.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	08/31/2016	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-13B	11/14/2016	80.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	03/24/2009	66.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	06/16/2009	59.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	09/09/2009	66.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	03/25/2010	46.0000
Alkalinity, bicarbonate (as caco3) Alkalinity, bicarbonate (as caco3)	MG/L MG/L	MW-16 MW-16	06/24/2010 09/24/2010	71.0000
	MG/L	MW-16		74.0000
Alkalinity, bicarbonate (as caco3) Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	12/09/2010 03/30/2011	72.0000 53.0000
Alkalinity, bicarbonate (as cacos)	MG/L	MW-16	06/07/2011	59.0000
Alkalinity, bicarbonate (as cacos)	MG/L	MW-16	09/27/2011	66.0000
Alkalinity, bicarbonate (as cacos)	MG/L	MW-16	12/13/2011	60.0000
Alkalinity, bicarbonate (as cacos)	MG/L	MW-16	03/21/2012	50.0000
Alkalinity, bicarbonate (as cacos)	MG/L	MW-16	06/08/2012	49.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	09/27/2012	57.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	12/04/2012	64.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	03/12/2013	51.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	06/04/2013	50.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	09/05/2013	62.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	12/16/2013	62.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	03/05/2014	57.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	06/02/2014	44.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	09/22/2014	57.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	11/18/2014	57.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	02/23/2015	52.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	05/20/2015	51.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	08/26/2015	51.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	11/11/2015	65.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	02/24/2016	40.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	05/16/2016	50.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	08/31/2016	60.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-16	11/14/2016	56.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/22/2005	68.2000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/14/2005	59.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/27/2005	69.2000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	12/15/2005	67.3000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/28/2006	74.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/21/2006	71.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/26/2006	72.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	12/12/2006	73.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/27/2007	73.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/20/2007	70.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/18/2007	69.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	12/20/2007	72.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/25/2008	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/18/2008	72.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/18/2008	72.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	12/19/2008	68.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/24/2009	72.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/16/2009	73.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/10/2009	74.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/25/2010	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/23/2010	75.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/23/2010	75.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	12/09/2010	74.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/30/2011	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/06/2011	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/26/2011	78.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	12/13/2011	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/21/2012	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/06/2012	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/26/2012	78.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	12/04/2012	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/13/2013	73.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/06/2013	73.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/05/2013	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	12/16/2013	78.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	03/04/2014	78.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	06/02/2014	76.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	09/22/2014	75.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	11/17/2014	74.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	02/25/2015	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	05/19/2015	75.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	08/26/2015	71.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	11/10/2015	75.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	02/22/2016	72.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	05/16/2016	82.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	08/31/2016	77.0000
Alkalinity, bicarbonate (as caco3)	MG/L	MW-35	11/15/2016	91.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	03/22/2005	75.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	06/15/2005	63.8000
Alkalinity, total (as caco3)	MG/L	MW-13A	09/27/2005	75.6000
Alkalinity, total (as caco3)	MG/L	MW-13A	12/15/2005	72.5000
Alkalinity, total (as caco3)	MG/L	MW-13A	03/28/2006	80.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	06/21/2006	79.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	09/26/2006	80.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	12/13/2006	82.0000
Alkalinity, total (as caco3) Alkalinity, total (as caco3)	MG/L	MW-13A	03/27/2007	83.0000
Alkalinity, total (as caco3) Alkalinity, total (as caco3)	MG/L	MW-13A	06/19/2007	81.0000
	MG/L	MW-13A	09/19/2007	79.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	12/19/2007	82.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	03/25/2008	83.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	06/18/2008	82.0000
Alkalinity, total (as caco3)	MG/L	MW-13A MW-13A	09/17/2008	81.0000
Alkalinity, total (as caco3) Alkalinity, total (as caco3)	MG/L MG/L	_	12/17/2008	92.0000
Alkalinity, total (as caco3)		MW-13A	03/24/2009	81.0000
Alkalinity, total (as caco3) Alkalinity, total (as caco3)	MG/L	MW-13A	06/17/2009	84.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	09/10/2009	87.0000
	MG/L	MW-13A	12/03/2009	84.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	03/25/2010	86.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	06/23/2010	86.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	09/23/2010	96.0000
Alkalinity, total (as caco3) Alkalinity, total (as caco3)	MG/L MG/L	MW-13A MW-13A	12/08/2010 03/30/2011	82.0000 88.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Alkalinity, total (as caco3)	MG/L	MW-13A	06/06/2011	89.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	09/27/2011	89.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	12/14/2011	90.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	03/21/2012	89.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	06/08/2012	87.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	09/26/2012	87.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	12/03/2012	83.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	03/11/2013	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	06/05/2013	83.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	12/03/2013	86.0000
Alkalinity, total (as cacos)	MG/L	MW-13A	03/04/2014	87.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	06/02/2014	84.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	09/22/2014	82.0000
	I .			
Alkalinity, total (as caco3)	MG/L	MW-13A	11/17/2014	79.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	02/23/2015	84.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	05/19/2015	82.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	08/26/2015	77.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	11/10/2015	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	02/22/2016	80.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	05/16/2016	90.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	08/31/2016	84.0000
Alkalinity, total (as caco3)	MG/L	MW-13A	11/14/2016	92.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/22/2005	70.6000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/15/2005	57.3000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/27/2005	72.7000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/15/2005	68.8000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/29/2006	73.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/21/2006	74.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/26/2006	75.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/13/2006	76.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/27/2007	76.0000
Alkalinity, total (as cacos)	MG/L	MW-13B	06/19/2007	74.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/18/2007	74.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/19/2007	76.0000
Alkalinity, total (as caco3)	MG/L	MW-13B		
	I .		03/25/2008	77.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/18/2008	77.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/17/2008	76.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/16/2008	74.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/24/2009	78.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/17/2009	79.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/10/2009	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/03/2009	80.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/25/2010	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/23/2010	80.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/23/2010	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/08/2010	88.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/30/2011	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/06/2011	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/27/2011	83.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/14/2011	84.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/21/2012	83.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/08/2012	82.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/26/2012	84.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/03/2012	82.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/11/2013	77.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/05/2013	79.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	12/03/2013	84.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	03/04/2014	83.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	06/02/2014	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	09/22/2014	80.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	11/17/2014	79.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	02/23/2015	82.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	05/19/2015	81.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	08/26/2015	76.0000
			UUICUICUII)	

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Alkalinity, total (as caco3)	MG/L	MW-13B	02/22/2016	77.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	05/16/2016	87.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	08/31/2016	82.0000
Alkalinity, total (as caco3)	MG/L	MW-13B	11/14/2016	80.0000
Alkalinity, total (as caco3)	MG/L	MW-16	03/24/2009	66.0000
Alkalinity, total (as caco3)	MG/L	MW-16	06/16/2009	59.0000
Alkalinity, total (as caco3)	MG/L	MW-16	09/09/2009	66.0000
Alkalinity, total (as caco3)	MG/L	MW-16	12/03/2009	77.0000
Alkalinity, total (as cacos)	MG/L	MW-16	03/25/2010	46.0000
Alkalinity, total (as cacos)	MG/L	MW-16	06/24/2010	71.0000
Alkalinity, total (as caco3)	MG/L	MW-16	09/24/2010	74.0000
Alkalinity, total (as caco3)	MG/L	MW-16	12/09/2010	72.0000
Alkalinity, total (as caco3)	MG/L	MW-16	03/30/2011	53.0000
Alkalinity, total (as caco3)	MG/L	MW-16	06/07/2011	59.0000
Alkalinity, total (as caco3)	MG/L	MW-16	09/27/2011	66.0000
Alkalinity, total (as caco3)	MG/L	MW-16	12/13/2011	60.0000
Alkalinity, total (as caco3)	MG/L	MW-16	03/21/2012	50.0000
Alkalinity, total (as caco3)	MG/L	MW-16	06/08/2012	49.0000
Alkalinity, total (as caco3)	MG/L	MW-16	09/27/2012	57.0000
Alkalinity, total (as caco3)	MG/L	MW-16	12/04/2012	64.0000
Alkalinity, total (as caco3)	MG/L	MW-16	03/12/2013	51.0000
Alkalinity, total (as caco3)	MG/L	MW-16	06/04/2013	50.0000
Alkalinity, total (as caco3)	MG/L	MW-16	09/05/2013	62.0000
Alkalinity, total (as caco3)	MG/L	MW-16	12/16/2013	62.0000
Alkalinity, total (as caco3)	MG/L	MW-16	03/05/2014	57.0000
Alkalinity, total (as caco3)	MG/L	MW-16	06/02/2014	44.0000
Alkalinity, total (as caco3)	MG/L	MW-16	09/22/2014	57.0000
Alkalinity, total (as cacos)	MG/L	MW-16	11/18/2014	57.0000
Alkalinity, total (as caco3)	MG/L	MW-16	02/23/2015	
	I			52.0000
Alkalinity, total (as caco3)	MG/L	MW-16	05/20/2015	51.0000
Alkalinity, total (as caco3)	MG/L	MW-16	08/26/2015	51.0000
Alkalinity, total (as caco3)	MG/L	MW-16	11/11/2015	65.0000
Alkalinity, total (as caco3)	MG/L	MW-16	02/24/2016	40.0000
Alkalinity, total (as caco3)	MG/L	MW-16	05/16/2016	50.0000
Alkalinity, total (as caco3)	MG/L	MW-16	08/31/2016	60.0000
Alkalinity, total (as caco3)	MG/L	MW-16	11/14/2016	56.0000
Alkalinity, total (as caco3)	MG/L	MW-35	03/22/2005	68.2000
Alkalinity, total (as caco3)	MG/L	MW-35	06/14/2005	59.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/27/2005	69.2000
Alkalinity, total (as caco3)	MG/L	MW-35	12/15/2005	67.3000
Alkalinity, total (as caco3)	MG/L	MW-35	03/28/2006	73.0000
Alkalinity, total (as caco3)	MG/L	MW-35	06/21/2006	71.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/26/2006	72.0000
Alkalinity, total (as caco3)	MG/L	MW-35	12/12/2006	73.0000
Alkalinity, total (as caco3)	MG/L	MW-35	03/27/2007	73.0000
Alkalinity, total (as caco3)	MG/L	MW-35	06/20/2007	70.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/18/2007	69.0000
Alkalinity, total (as caco3)	MG/L	MW-35	12/20/2007	72.0000
Alkalinity, total (as caco3)	MG/L	MW-35	03/25/2008	77.0000
Alkalinity, total (as caco3)	MG/L	MW-35	06/18/2008	72.0000
Alkalinity, total (as cacos)	MG/L	MW-35	09/18/2008	72.0000
Alkalinity, total (as caco3)	MG/L	MW-35	12/19/2008	68.0000
Alkalinity, total (as caco3)	MG/L	MW-35	03/24/2009	72.0000
Alkalinity, total (as caco3)	MG/L	MW-35	06/16/2009	73.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/10/2009	74.0000
Alkalinity, total (as caco3)	MG/L	MW-35	12/03/2009	74.0000
Alkalinity, total (as caco3)	MG/L	MW-35	03/25/2010	76.0000
Alkalinity, total (as caco3)	MG/L	MW-35	06/23/2010	75.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/23/2010	75.0000
Alkalinity, total (as caco3)	MG/L	MW-35	12/09/2010	74.0000
Alkalinity, total (as caco3)	MG/L	MW-35	03/30/2011	77.0000
Alkalinity, total (as caco3)	MG/L	MW-35	06/06/2011	76.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/26/2011	78.0000
Alkalinity, total (as caco3)	MG/L	MW-35	12/13/2011	77.0000
Alkalinity, total (as caco3)	MG/L	MW-35	03/21/2012	77.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Alkalinity, total (as caco3)	MG/L	MW-35	06/06/2012		77.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/26/2012		78.0000
Alkalinity, total (as caco3)	MG/L	MW-35	12/04/2012		76.0000
Alkalinity, total (as caco3)	MG/L	MW-35	03/13/2013		73.0000
Alkalinity, total (as caco3)	MG/L	MW-35	06/06/2013		73.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/05/2013		77.0000
Alkalinity, total (as caco3)	MG/L	MW-35	12/16/2013		78.0000
Alkalinity, total (as cacos)	MG/L	MW-35	03/04/2014		78.0000
Alkalinity, total (as caco3)	MG/L	MW-35	06/02/2014		
		I	00/02/2014		76.0000
Alkalinity, total (as caco3)	MG/L	MW-35	09/22/2014		75.0000
Alkalinity, total (as caco3)	MG/L	MW-35	11/17/2014		74.0000
Alkalinity, total (as caco3)	MG/L	MW-35	02/25/2015		77.0000
Alkalinity, total (as caco3)	MG/L	MW-35	05/19/2015		75.0000
Alkalinity, total (as caco3)	MG/L	MW-35	08/26/2015		71.0000
Alkalinity, total (as caco3)	MG/L	MW-35	11/10/2015		75.0000
Alkalinity, total (as caco3)	MG/L	MW-35	02/22/2016		72.0000
Alkalinity, total (as caco3)	MG/L	MW-35	05/16/2016		82.0000
Alkalinity, total (as caco3)	MG/L	MW-35	08/31/2016		77.0000
Alkalinity, total (as caco3)	MG/L	MW-35	11/15/2016		91.0000
Ammonia (as n)	MG/L	MW-13A	03/22/2005		0.0200
Ammonia (as n)	MG/L	MW-13A	06/15/2005		0.1300
Ammonia (as n)	MG/L	MW-13A	09/27/2005		0.0210
Ammonia (as n)	MG/L	MW-13A	12/15/2005	ND	0.0200
Ammonia (as n)	MG/L	MW-13A	03/28/2006	IND	0.0490
,					
Ammonia (as n)	MG/L	MW-13A	06/21/2006		0.0680
Ammonia (as n)	MG/L	MW-13A	09/26/2006		0.0360
Ammonia (as n)	MG/L	MW-13A	12/13/2006	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	03/27/2007	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	06/19/2007	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	09/19/2007	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	12/19/2007		0.0420
Ammonia (as n)	MG/L	MW-13A	03/25/2008		0.0500
Ammonia (as n)	MG/L	MW-13A	06/18/2008	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	09/17/2008	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	12/17/2008	.,,	0.0630
Ammonia (as n)	MG/L	MW-13A	03/24/2009		0.0830
Ammonia (as n)	MG/L	MW-13A	06/17/2009		0.0930
` '	MG/L	MW-13A		ND	
Ammonia (as n)	1	I	09/10/2009	טאו	0.0300
Ammonia (as n)	MG/L	MW-13A	12/03/2009		0.0590
Ammonia (as n)	MG/L	MW-13A	03/25/2010		0.0460
Ammonia (as n)	MG/L	MW-13A	06/23/2010	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	09/23/2010		0.0490
Ammonia (as n)	MG/L	MW-13A	12/08/2010		0.0610
Ammonia (as n)	MG/L	MW-13A	03/30/2011		0.0640
Ammonia (as n)	MG/L	MW-13A	06/06/2011	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	09/27/2011		0.0750
Ammonia (as n)	MG/L	MW-13A	12/14/2011		0.0860
Ammonia (as n)	MG/L	MW-13A	03/21/2012		0.0390
Ammonia (as n)	MG/L	MW-13A	06/08/2012		0.2800
Ammonia (as n)	MG/L	MW-13A	09/26/2012		0.0870
Ammonia (as n)	MG/L	MW-13A	12/03/2012		0.1200
,	MG/L	MW-13A		NID	
Ammonia (as n)		1	03/11/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	06/05/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	12/03/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	03/04/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	06/02/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	09/22/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	11/17/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	02/23/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	05/19/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	08/26/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	11/10/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-13A	02/22/2016	ND	0.0300
	I IVI CI/ L	ININA IOU	UCICCICUIO	ושויו	U.UUUU
Ammonia (as n)	MG/L	MW-13A	05/16/2016	ND	0.0300

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Ammonia (as n)	MG/L	MW-13A	11/14/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	03/22/2005	ND	0.0200
Ammonia (as n)	MG/L	MW-13B	06/15/2005		0.1200
Ammonia (as n)	MG/L	MW-13B	09/27/2005		0.1700
Ammonia (as n)	MG/L	MW-13B	12/15/2005	ND	0.0200
Ammonia (as n)	MG/L	MW-13B	03/29/2006		0.0360
Ammonia (as n)	MG/L	MW-13B	06/21/2006	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	09/26/2006		0.0300
Ammonia (as n)	MG/L	MW-13B	12/13/2006	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	03/27/2007	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	06/19/2007		0.0300
Ammonia (as n)	MG/L	MW-13B	12/19/2007		0.1100
Ammonia (as n)	MG/L	MW-13B	03/25/2008	NID	0.0600
Ammonia (as n)	MG/L	MW-13B	06/18/2008	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	09/17/2008	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	12/16/2008		0.0560
Ammonia (as n)	MG/L	MW-13B	03/24/2009		0.0630
Ammonia (as n)	MG/L MG/L	MW-13B MW-13B	06/17/2009		0.0870
Ammonia (as n) Ammonia (as n)	MG/L	MW-13B	09/10/2009 12/03/2009	ND	0.0450 0.0300
Ammonia (as n)	MG/L	MW-13B	03/25/2010	טאו	0.0300
Ammonia (as n)	MG/L	MW-13B	06/23/2010	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	09/23/2010	ושוי	0.0450
Ammonia (as n)	MG/L	MW-13B	12/08/2010		0.0520
Ammonia (as n)	MG/L	MW-13B	03/30/2011		0.0620
Ammonia (as n)	MG/L	MW-13B	06/06/2011	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	09/27/2011	.,,	0.0320
Ammonia (as n)	MG/L	MW-13B	12/14/2011		0.0300
Ammonia (as n)	MG/L	MW-13B	03/21/2012	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	06/08/2012		0.2000
Ammonia (as n)	MG/L	MW-13B	09/26/2012		0.0760
Ammonia (as n)	MG/L	MW-13B	12/03/2012	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	03/11/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	06/05/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	12/03/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	03/04/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	06/02/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	09/22/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	11/17/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	02/23/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	05/19/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	08/26/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	11/10/2015	ND	0.0300
Ammonia (as n) Ammonia (as n)	MG/L MG/L	MW-13B MW-13B	02/22/2016 05/16/2016	ND ND	0.0300 0.0300
Ammonia (as n)	MG/L	MW-13B	08/31/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-13B	11/14/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-16	03/24/2009	יאט	0.0620
Ammonia (as n)	MG/L	MW-16	06/16/2009		0.0930
Ammonia (as n)	MG/L	MW-16	09/09/2009		0.0360
Ammonia (as n)	MG/L	MW-16	12/03/2009		0.0580
Ammonia (as n)	MG/L	MW-16	03/25/2010		0.0460
Ammonia (as n)	MG/L	MW-16	06/24/2010	ND	0.0300
Ammonia (as n)	MG/L	MW-16	09/24/2010	ND	0.0300
Ammonia (as n)	MG/L	MW-16	12/09/2010		0.0590
Ammonia (as n)	MG/L	MW-16	03/30/2011		0.0600
Ammonia (as n)	MG/L	MW-16	06/07/2011		0.0480
Ammonia (as n)	MG/L	MW-16	09/27/2011	ND	0.0300
Ammonia (as n)	MG/L	MW-16	12/13/2011	ND	0.0300
Ammonia (as n)	MG/L	MW-16	03/21/2012		0.0420
Ammonia (as n)	MG/L	MW-16	06/08/2012		0.3400 *
Ammonia (as n)	MG/L	MW-16	09/27/2012		0.3000
Ammonia (as n)	MG/L	MW-16	12/04/2012	ND	0.0300
Ammonia (as n)	MG/L	MW-16	03/12/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-16	06/04/2013	ND	0.0300

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Ammonia (as n)	MG/L	MW-16	09/05/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-16	12/16/2013		0.0960
Ammonia (as n)	MG/L	MW-16	03/05/2014		0.0510
Ammonia (as n)	MG/L	MW-16	06/02/2014		0.0580
Ammonia (as n)	MG/L	MW-16	09/22/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-16	11/18/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-16	02/23/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-16	05/20/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-16	08/26/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-16	11/11/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-16	02/24/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-16	05/16/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-16	08/31/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-16	11/14/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-35	03/22/2005	ND	0.0200
Ammonia (as n)	MG/L	MW-35	06/14/2005		0.1200
Ammonia (as n)	MG/L	MW-35	09/27/2005		0.1500
Ammonia (as n)	MG/L	MW-35	12/15/2005	ND	0.0200
Ammonia (as n)	MG/L	MW-35	03/28/2006	ND	0.0300
Ammonia (as n)	MG/L	MW-35	06/21/2006	ND	0.0300
Ammonia (as n)	MG/L	MW-35	09/26/2006		0.0330
Ammonia (as n)	MG/L	MW-35	12/12/2006	ND	0.0300
Ammonia (as n)	MG/L	MW-35	03/27/2007	ND	0.0300
Ammonia (as n)	MG/L	MW-35	06/20/2007	.,,	0.0420
Ammonia (as n)	MG/L	MW-35	12/20/2007		0.0600
Ammonia (as n)	MG/L	MW-35	03/25/2008		0.0590
Ammonia (as n)	MG/L	MW-35	06/18/2008	ND	0.0300
Ammonia (as n)	MG/L	MW-35	09/18/2008	ND	0.0300
Ammonia (as n)	MG/L	MW-35		ואט	I
Ammonia (as n)	MG/L	MW-35	12/19/2008		0.0810 0.0600
` '			03/24/2009		
Ammonia (as n)	MG/L	MW-35	06/16/2009	ND	0.0660
Ammonia (as n)	MG/L	MW-35	09/10/2009	ND	0.0300
Ammonia (as n)	MG/L	MW-35	12/03/2009 03/25/2010		0.0760
Ammonia (as n)	MG/L	MW-35		ND	0.0410
Ammonia (as n)	MG/L	MW-35	06/23/2010	ND	0.0300
Ammonia (as n)	MG/L	MW-35	09/23/2010		0.0530
Ammonia (as n)	MG/L	MW-35	12/09/2010		0.0550
Ammonia (as n)	MG/L	MW-35	03/30/2011		0.0630
Ammonia (as n)	MG/L	MW-35	06/06/2011		0.1800
Ammonia (as n)	MG/L	MW-35	09/26/2011	NID	0.0650
Ammonia (as n)	MG/L	MW-35	12/13/2011	ND	0.0300
Ammonia (as n)	MG/L	MW-35	03/21/2012		0.0300
Ammonia (as n)	MG/L	MW-35	06/06/2012		0.6000 *
Ammonia (as n)	MG/L	MW-35	09/26/2012	ND	0.0690
Ammonia (as n)	MG/L	MW-35	12/04/2012	ND	0.0300
Ammonia (as n)	MG/L	MW-35	03/13/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-35	06/06/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-35	09/05/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-35	12/16/2013	ND	0.0300
Ammonia (as n)	MG/L	MW-35	03/04/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-35	06/02/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-35	09/22/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-35	11/17/2014	ND	0.0300
Ammonia (as n)	MG/L	MW-35	02/25/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-35	05/19/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-35	08/26/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-35	11/10/2015	ND	0.0300
Ammonia (as n)	MG/L	MW-35	02/22/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-35	05/16/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-35	08/31/2016	ND	0.0300
Ammonia (as n)	MG/L	MW-35	11/15/2016	ND	0.0300
Antimony, total	MG/L	MW-13A	12/03/2013	ND	0.0010
Antimony, total	MG/L	MW-13A	03/04/2014	ND	0.0010
Antimony, total	MG/L	MW-13A	06/02/2014	ND	0.0010
Antimony, total	MG/L	MW-13A	09/22/2014	ND	0.0010

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Antimony, total	MG/L	MW-13A	11/17/2014	ND	0.0010
Antimony, total	MG/L	MW-13A	02/23/2015	ND	0.0010
Antimony, total	MG/L	MW-13A	05/19/2015	ND	0.0010
Antimony, total	MG/L	MW-13A	08/26/2015	ND	0.0010
Antimony, total	MG/L	MW-13A	11/10/2015	ND	0.0010
Antimony, total	MG/L	MW-13A	02/22/2016	ND	0.0010
Antimony, total	MG/L	MW-13A	05/16/2016	ND	0.0010
Antimony, total	MG/L	MW-13A	08/31/2016	110	0.0010
Antimony, total	MG/L	MW-13A	11/14/2016	ND	0.0010
Antimony, total	MG/L	MW-13B	12/03/2013	ND	0.0010
Antimony, total	MG/L	MW-13B	03/04/2014	ND	0.0010
Antimony, total	MG/L	MW-13B	06/02/2014	ND	0.0010
	MG/L				
Antimony, total		MW-13B	09/22/2014	ND	0.0010
Antimony, total	MG/L	MW-13B	11/17/2014	ND	0.0010
Antimony, total	MG/L	MW-13B	02/23/2015	ND	0.0010
Antimony, total	MG/L	MW-13B	05/19/2015	ND	0.0010
Antimony, total	MG/L	MW-13B	08/26/2015	ND	0.0010
Antimony, total	MG/L	MW-13B	11/10/2015	ND	0.0010
Antimony, total	MG/L	MW-13B	02/22/2016	ND	0.0010
Antimony, total	MG/L	MW-13B	05/16/2016	ND	0.0010
Antimony, total	MG/L	MW-13B	08/31/2016	ND	0.0010
Antimony, total	MG/L	MW-13B	11/14/2016	ND	0.0010
Antimony, total	MG/L	MW-16	09/05/2013	ND	0.0010
Antimony, total	MG/L	MW-16	12/16/2013	ND	0.0010
Antimony, total	MG/L	MW-16	03/05/2014	ND	0.0010
Antimony, total	MG/L	MW-16	06/02/2014	ND	0.0010
Antimony, total	MG/L	MW-16	09/22/2014	ND	0.0010
Antimony, total	MG/L	MW-16	11/18/2014	ND	0.0010
Antimony, total	MG/L	MW-16	02/23/2015	IND	0.0011
Antimony, total	MG/L	MW-16	05/20/2015	ND	0.0011
Antimony, total	MG/L	MW-16	08/26/2015	ND	
Antimony, total	MG/L			טאו	0.0010
Antimony, total		MW-16	11/11/2015	ND	0.0013
Antimony, total	MG/L	MW-16	02/24/2016	ND	0.0010
Antimony, total	MG/L	MW-16	05/16/2016	ND	0.0010
Antimony, total	MG/L	MW-16	08/31/2016	ND	0.0010
Antimony, total	MG/L	MW-16	11/14/2016	ND	0.0010
Antimony, total	MG/L	MW-35	09/05/2013	ND	0.0010
Antimony, total	MG/L	MW-35	12/16/2013	ND	0.0010
Antimony, total	MG/L	MW-35	03/04/2014	ND	0.0010
Antimony, total	MG/L	MW-35	06/02/2014	ND	0.0010
Antimony, total	MG/L	MW-35	09/22/2014	ND	0.0010
Antimony, total	MG/L	MW-35	11/17/2014	ND	0.0010
Antimony, total	MG/L	MW-35	02/25/2015	ND	0.0010
Antimony, total	MG/L	MW-35	05/19/2015	ND	0.0010
Antimony, total	MG/L	MW-35	08/26/2015	ND	0.0010
Antimony, total	MG/L	MW-35	11/10/2015	ND	0.0010
Antimony, total	MG/L	MW-35	02/22/2016	ND	0.0010
Antimony, total	MG/L	MW-35	05/16/2016	ND	0.0010
Antimony, total	MG/L	MW-35	08/31/2016	ND	0.0010
Antimony, total	MG/L	MW-35	11/15/2016	ND	0.0010
Arsenic, total	UG/L	MW-13A	03/22/2005	ND	5.0000 *
Arsenic, total	UG/L	MW-13A	06/15/2005	.,,	0.2200
Arsenic, total	UG/L	MW-13A	09/27/2005		0.2300
Arsenic, total	UG/L	MW-13A	12/15/2005		0.2100
The state of the s	UG/L	MW-13A			
Arsenic, total			12/03/2013		0.1700
Arsenic, total	UG/L	MW-13A	03/04/2014		0.1800
Arsenic, total	UG/L	MW-13A	06/02/2014		0.2000
Arsenic, total	UG/L	MW-13A	09/22/2014		0.1700
Arsenic, total	UG/L	MW-13A	11/17/2014		0.1800
Arsenic, total	UG/L	MW-13A	02/23/2015		0.2100
Arsenic, total	UG/L	MW-13A	05/19/2015		0.1800
Arsenic, total	UG/L	MW-13A	08/26/2015		0.1900
Arsenic, total	UG/L	MW-13A	11/10/2015		0.2000
Arsenic, total	UG/L	MW-13A	02/22/2016		0.2000
Arsenic, total	UG/L	MW-13A	05/16/2016	ı	0.1600

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result	
Arsenic, total	UG/L	MW-13A	08/31/2016		0.1770	
Arsenic, total	UG/L	MW-13A	11/14/2016		0.1700	
Arsenic, total	UG/L	MW-13B	03/22/2005	ND	5.0000	*
Arsenic, total	UG/L	MW-13B	06/15/2005		0.3700	
Arsenic, total	UG/L	MW-13B	09/27/2005		0.3900	
Arsenic, total	UG/L	MW-13B	12/15/2005		0.3800	
Arsenic, total	UG/L	MW-13B	12/03/2013		0.2800	
Arsenic, total	UG/L	MW-13B	03/04/2014		0.3200	
Arsenic, total	UG/L	MW-13B	06/02/2014		0.3300	
Arsenic, total	UG/L	MW-13B	09/22/2014		0.3000	
Arsenic, total	UG/L	MW-13B	11/17/2014		0.3000	
Arsenic, total	UG/L	MW-13B	02/23/2015		0.3600	
Arsenic, total	UG/L	MW-13B	05/19/2015		0.3100	
Arsenic, total	UG/L	MW-13B	08/26/2015		0.3100	
Arsenic, total	UG/L	MW-13B	11/10/2015		0.3000	
Arsenic, total	UG/L	MW-13B	02/22/2016		0.3000	
Arsenic, total	UG/L	MW-13B	05/16/2016		0.2900	
Arsenic, total	UG/L	MW-13B	08/31/2016		0.3110	
Arsenic, total	UG/L	MW-13B	11/14/2016		0.3140	
Arsenic, total	UG/L	MW-16	12/23/2013		0.2900	
Arsenic, total	UG/L	MW-16	03/05/2014		0.4300	
Arsenic, total	UG/L	MW-16	06/02/2014		0.3300	
Arsenic, total	UG/L	MW-16	09/22/2014		0.3200	
Arsenic, total	UG/L	MW-16	11/18/2014		0.3500	
Arsenic, total	UG/L	MW-16	02/23/2015		0.3700	
Arsenic, total	UG/L	MW-16	05/20/2015		0.3400	
Arsenic, total	UG/L	MW-16	08/26/2015		0.3200	
Arsenic, total	UG/L	MW-16	11/11/2015		0.3000	
Arsenic, total	UG/L	MW-16	02/24/2016		0.3000	
Arsenic, total	UG/L	MW-16	05/16/2016		0.3000	
Arsenic, total	UG/L	MW-16	08/31/2016		0.3110	
Arsenic, total	UG/L	MW-16	11/14/2016		0.3810	
Arsenic, total	UG/L	MW-35	03/22/2005	ND	5.0000	*
Arsenic, total	UG/L	MW-35	06/14/2005		0.1400	
Arsenic, total	UG/L	MW-35	09/27/2005		0.1500	
Arsenic, total	UG/L	MW-35	12/15/2005		0.1400	
Arsenic, total	UG/L	MW-35	12/23/2013		0.1200	
Arsenic, total	UG/L	MW-35	03/04/2014		0.1100	
Arsenic, total	UG/L	MW-35	06/02/2014		0.1200	
Arsenic, total	UG/L	MW-35	09/22/2014		0.1100	
Arsenic, total	UG/L	MW-35	11/17/2014		0.1200	
Arsenic, total	UG/L	MW-35	02/25/2015		0.1100	
Arsenic, total	UG/L	MW-35	05/19/2015		0.1100	
Arsenic, total	UG/L	MW-35	08/26/2015		0.1100	
Arsenic, total	UG/L	MW-35	11/10/2015		0.1000	
Arsenic, total	UG/L	MW-35	02/22/2016		0.1000	
Arsenic, total	UG/L	MW-35	05/16/2016		0.1000	
Arsenic, total	UG/L	MW-35	08/31/2016		0.1090	
Arsenic, total	UG/L	MW-35	11/15/2016		0.1140	
Barium, total	MG/L	MW-13A	12/03/2013		0.0030	
Barium, total	MG/L	MW-13A	03/04/2014		0.0029	
Barium, total	MG/L	MW-13A	06/02/2014		0.0029	
Barium, total	MG/L	MW-13A	09/22/2014		0.0027	
Barium, total	MG/L	MW-13A	11/17/2014		0.0026	
Barium, total	MG/L	MW-13A	02/23/2015		0.0024	
Barium, total	MG/L	MW-13A	05/19/2015		0.0023	
Barium, total	MG/L	MW-13A	08/26/2015		0.0033	
Barium, total	MG/L	MW-13A	11/10/2015		0.0030	
Barium, total	MG/L	MW-13A	02/22/2016		0.0023	
Barium, total	MG/L	MW-13A	05/16/2016		0.0030	
Barium, total	MG/L	MW-13A	08/31/2016		0.0029	
Barium, total	MG/L	MW-13A	11/14/2016		0.0028	
Barium, total	MG/L	MW-13B	12/03/2013		0.0035	
Barium, total	MG/L	MW-13B	03/04/2014		0.0032	
Barium, total	MG/L	MW-13B	06/02/2014		0.0031	

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Barium, total	MG/L	MW-13B	09/22/2014		0.0033
Barium, total	MG/L	MW-13B	11/17/2014		0.0037
Barium, total	MG/L	MW-13B	02/23/2015		0.0034
Barium, total	MG/L	MW-13B	05/19/2015		0.0033
Barium, total	MG/L	MW-13B	08/26/2015		0.0039
Barium, total	MG/L	MW-13B	11/10/2015		0.0036
Barium, total	MG/L	MW-13B	02/22/2016		0.0036
Barium, total	MG/L	MW-13B	05/16/2016		0.0034
Barium, total	MG/L	MW-13B	08/31/2016		0.0041
Barium, total	MG/L	MW-13B	11/14/2016		0.0029
Barium, total	MG/L	MW-16	09/05/2013		0.0041
Barium, total	MG/L	MW-16	12/16/2013		0.0043
Barium, total	MG/L	MW-16	03/05/2014		0.0036
Barium, total	MG/L	MW-16	06/02/2014		0.0025
Barium, total	MG/L	MW-16	09/22/2014		0.0033
Barium, total	MG/L	MW-16	11/18/2014		0.0039
Barium, total	MG/L	MW-16	02/23/2015		0.0036
Barium, total	MG/L	MW-16	05/20/2015		0.0034
Barium, total	MG/L	MW-16	08/26/2015		0.0038
Barium, total	MG/L	MW-16	11/11/2015		0.0043
Barium, total	MG/L	MW-16	02/24/2016		0.0027
Barium, total	MG/L	MW-16	05/16/2016		0.0031
Barium, total	MG/L	MW-16	08/31/2016		0.0042
Barium, total	MG/L	MW-16	11/14/2016		0.0045
Barium, total	MG/L	MW-35	09/05/2013		0.0034
Barium, total	MG/L	MW-35	12/16/2013		0.0031
Barium, total	MG/L	MW-35	03/04/2014		0.0030
Barium, total	MG/L	MW-35	06/02/2014		0.0034
Barium, total	MG/L	MW-35 MW-35	09/22/2014		0.0034
Barium, total	MG/L MG/L		11/17/2014		0.0034
Barium, total	MG/L	MW-35 MW-35	02/25/2015 05/19/2015		0.0030 0.0031
Barium, total	MG/L	MW-35	08/26/2015		0.0031
Barium, total Barium, total	MG/L	MW-35	11/10/2015		0.0029
Barium, total	MG/L	MW-35	02/22/2016		0.0030
Barium, total	MG/L	MW-35	05/16/2016		0.0031
Barium, total	MG/L	MW-35	08/31/2016		0.0029
Barium, total	MG/L	MW-35	11/15/2016		0.0023
Beryllium, total	MG/L	MW-13A	12/03/2013	ND	0.0010
Beryllium, total	MG/L	MW-13A	03/04/2014	ND	0.0010
Beryllium, total	MG/L	MW-13A	06/02/2014	ND	0.0010
Beryllium, total	MG/L	MW-13A	09/22/2014	ND	0.0010
Beryllium, total	MG/L	MW-13A	11/17/2014	ND	0.0010
Beryllium, total	MG/L	MW-13A	02/23/2015	ND	0.0010
Beryllium, total	MG/L	MW-13A	05/19/2015	ND	0.0010
Beryllium, total	MG/L	MW-13A	08/26/2015	ND	0.0010
Beryllium, total	MG/L	MW-13A	11/10/2015	ND	0.0010
Beryllium, total	MG/L	MW-13A	02/22/2016	ND	0.0010
Beryllium, total	MG/L	MW-13A	05/16/2016	ND	0.0010
Beryllium, total	MG/L	MW-13A	08/31/2016	ND	0.0010
Beryllium, total	MG/L	MW-13A	11/14/2016	ND	0.0010
Beryllium, total	MG/L	MW-13B	12/03/2013	ND	0.0010
Beryllium, total	MG/L	MW-13B	03/04/2014	ND	0.0010
Beryllium, total	MG/L	MW-13B	06/02/2014	ND	0.0010
Beryllium, total	MG/L	MW-13B	09/22/2014	ND	0.0010
Beryllium, total	MG/L	MW-13B	11/17/2014	ND	0.0010
Beryllium, total	MG/L	MW-13B	02/23/2015	ND	0.0010
Beryllium, total	MG/L	MW-13B	05/19/2015	ND	0.0010
Beryllium, total	MG/L	MW-13B	08/26/2015	ND	0.0010
Beryllium, total	MG/L	MW-13B	11/10/2015	ND	0.0010
Beryllium, total	MG/L	MW-13B	02/22/2016	ND	0.0010
Beryllium, total	MG/L	MW-13B	05/16/2016	ND	0.0010
Beryllium, total	MG/L	MW-13B	08/31/2016	ND	0.0010
Beryllium, total	MG/L	MW-13B	11/14/2016	ND	0.0010
Beryllium, total	MG/L	MW-16	09/05/2013	ND	0.0010

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Beryllium, total	MG/L	MW-16	12/16/2013	ND	0.0010
Beryllium, total	MG/L	MW-16	03/05/2014	ND	0.0010
Beryllium, total	MG/L	MW-16	06/02/2014	ND	0.0010
Beryllium, total	MG/L	MW-16	09/22/2014	ND	0.0010
Beryllium, total	MG/L	MW-16	11/18/2014	ND	0.0010
Beryllium, total	MG/L	MW-16	02/23/2015	ND	0.0010
Beryllium, total	MG/L	MW-16	05/20/2015	ND	0.0010
Beryllium, total	MG/L	MW-16	08/26/2015	ND	0.0010
Beryllium, total	MG/L	MW-16	11/11/2015	ND	0.0010
Beryllium, total	MG/L	MW-16	02/24/2016	ND	0.0010
Beryllium, total	MG/L	MW-16	05/16/2016	ND	0.0010
Beryllium, total	MG/L	MW-16	08/31/2016	ND	0.0010
Beryllium, total	MG/L	MW-16	11/14/2016	ND	0.0010
Beryllium, total	MG/L	MW-35	09/05/2013	ND	0.0010
Beryllium, total	MG/L	MW-35	12/16/2013	ND	0.0010
Beryllium, total	MG/L	MW-35	03/04/2014	ND	0.0010
Beryllium, total	MG/L	MW-35	06/02/2014	ND	0.0010
Beryllium, total	MG/L	MW-35	09/22/2014	ND	0.0010
Beryllium, total	MG/L	MW-35	11/17/2014	ND	0.0010
Beryllium, total	MG/L	MW-35	02/25/2015	ND	0.0010
Beryllium, total	MG/L	MW-35	05/19/2015	ND	0.0010
Beryllium, total	MG/L	MW-35	08/26/2015	ND	0.0010
Beryllium, total	MG/L	MW-35	11/10/2015	ND	0.0010
Beryllium, total	MG/L	MW-35	02/22/2016	ND	0.0010
Beryllium, total	MG/L	MW-35	05/16/2016	ND	0.0010
Beryllium, total	MG/L	MW-35	08/31/2016	ND	0.0010
Beryllium, total	MG/L	MW-35	11/15/2016	ND	0.0010
Cadmium, total	MG/L	MW-13A	12/03/2013	ND	0.0002
Cadmium, total	MG/L	MW-13A	03/04/2014	ND	0.0002
Cadmium, total	MG/L	MW-13A	06/02/2014	ND	0.0002
Cadmium, total	MG/L	MW-13A	09/22/2014	ND	0.0002
Cadmium, total	MG/L	MW-13A	11/17/2014	ND	0.0002
Cadmium, total	MG/L	MW-13A	02/23/2015	ND	0.0002
Cadmium, total	MG/L	MW-13A	05/19/2015	ND	0.0002
Cadmium, total	MG/L	MW-13A	08/26/2015	ND	0.0002
Cadmium, total	MG/L	MW-13A	11/10/2015	ND	0.0002
Cadmium, total	MG/L	MW-13A	02/22/2016	ND	0.0002
Cadmium, total	MG/L	MW-13A	05/16/2016	ND	0.0002
Cadmium, total	MG/L	MW-13A	08/31/2016	ND	0.0002
Cadmium, total	MG/L	MW-13A	11/14/2016	ND	0.0002
Cadmium, total	MG/L	MW-13B	12/03/2013	ND	0.0002
Cadmium, total	MG/L	MW-13B	03/04/2014	ND	0.0002
Cadmium, total	MG/L	MW-13B	06/02/2014	ND	0.0002
Cadmium, total	MG/L	MW-13B	09/22/2014	ND	0.0002
Cadmium, total	MG/L	MW-13B	11/17/2014	ND	0.0002
Cadmium, total	MG/L	MW-13B	02/23/2015	ND	0.0002
Cadmium, total	MG/L	MW-13B	05/19/2015	ND	0.0002
Cadmium, total	MG/L	MW-13B	08/26/2015	ND	0.0002
Cadmium, total	MG/L	MW-13B	11/10/2015	ND	0.0002
Cadmium, total	MG/L	MW-13B	02/22/2016	ND	0.0002
Cadmium, total					0.0002
	MG/L	MW-13B	05/16/2016	ND	
Cadmium, total	MG/L	MW-13B	08/31/2016	ND	0.0002
Cadmium, total Cadmium, total	MG/L	MW-13B	11/14/2016	ND ND	0.0002
Cadmium, total	MG/L	MW-16	09/05/2013		0.0002
	MG/L	MW-16	12/16/2013	ND	0.0002
Cadmium, total	MG/L	MW-16	03/05/2014	ND	0.0002
Cadmium, total	MG/L	MW-16	06/02/2014	ND	0.0002
Cadmium, total	MG/L	MW-16	09/22/2014	ND	0.0002
Cadmium, total	MG/L	MW-16	11/18/2014	ND	0.0002
Cadmium, total	MG/L	MW-16	02/23/2015	ND	0.0002
Cadmium, total	MG/L	MW-16	05/20/2015	ND	0.0002
Cadmium, total	MG/L	MW-16	08/26/2015	ND	0.0002
Cadmium, total	MG/L	MW-16	11/11/2015	ND	0.0002
Cadmium, total	MG/L	MW-16	02/24/2016	ND	0.0002
Cadmium, total	MG/L	MW-16	05/16/2016	ND	0.0002

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Cadmium, total	MG/L	MW-16	08/31/2016	ND	0.0002
Cadmium, total	MG/L	MW-16	11/14/2016	ND	0.0002
Cadmium, total	MG/L	MW-35	09/05/2013	ND	0.0002
Cadmium, total	MG/L	MW-35	12/16/2013	ND	0.0002
Cadmium, total	MG/L	MW-35	03/04/2014	ND	0.0002
Cadmium, total	MG/L	MW-35	06/02/2014	ND	0.0002
Cadmium, total	MG/L	MW-35	09/22/2014	ND	0.0002
Cadmium, total	MG/L	MW-35	11/17/2014	ND	0.0002
Cadmium, total	MG/L	MW-35	02/25/2015	ND	0.0002
Cadmium, total	MG/L	MW-35	05/19/2015	ND	0.0002
Cadmium, total	MG/L	MW-35	08/26/2015	ND	0.0002
Cadmium, total	MG/L	MW-35	11/10/2015	ND	0.0002
Cadmium, total	MG/L	MW-35	02/22/2016	ND	0.0002
Cadmium, total	MG/L	MW-35	05/16/2016	ND	0.0002
Cadmium, total	MG/L	MW-35	08/31/2016	ND	0.0002
Cadmium, total	MG/L	MW-35	11/15/2016	ND	0.0002
Calcium, dissolved	MG/L	MW-13A	03/22/2005		15.7000
Calcium, dissolved	MG/L	MW-13A	06/15/2005		14.2000
Calcium, dissolved	MG/L	MW-13A	09/27/2005		14.2000
Calcium, dissolved	MG/L	MW-13A	12/15/2005		15.1000
Calcium, dissolved	MG/L	MW-13A	03/28/2006		16.0000
Calcium, dissolved	MG/L	MW-13A	06/21/2006		16.0000
Calcium, dissolved	MG/L	MW-13A	09/26/2006		15.0000
Calcium, dissolved	MG/L	MW-13A	12/13/2006		15.0000
Calcium, dissolved	MG/L	MW-13A	03/27/2007		15.0000
Calcium, dissolved	MG/L	MW-13A	06/19/2007		16.0000
Calcium, dissolved	MG/L	MW-13A	09/19/2007		16.0000
Calcium, dissolved	MG/L	MW-13A	12/19/2007		15.0000
Calcium, dissolved	MG/L	MW-13A	03/25/2008		16.0000
Calcium, dissolved	MG/L	MW-13A	06/18/2008		16.0000
Calcium, dissolved	MG/L	MW-13A	09/17/2008		15.0000
Calcium, dissolved	MG/L	MW-13A	12/17/2008		16.0000
Calcium, dissolved	MG/L	MW-13A	03/24/2009		15.0000
Calcium, dissolved	MG/L	MW-13A	06/17/2009		17.0000
Calcium, dissolved	MG/L	MW-13A	09/10/2009		15.0000
Calcium, dissolved	MG/L	MW-13A	12/03/2009		15.0000
Calcium, dissolved	MG/L	MW-13A	03/25/2010		16.0000
Calcium, dissolved	MG/L	MW-13A	06/23/2010		15.0000
Calcium, dissolved	MG/L	MW-13A	09/23/2010		15.0000
Calcium, dissolved	MG/L	MW-13A	12/08/2010		16.0000
Calcium, dissolved	MG/L	MW-13A	03/30/2011		16.0000
Calcium, dissolved	MG/L	MW-13A	06/06/2011		16.0000
Calcium, dissolved	MG/L	MW-13A	09/27/2011		16.0000
Calcium, dissolved	MG/L	MW-13A	12/14/2011		16.0000
Calcium, dissolved	MG/L	MW-13A	03/21/2012		16.0000
Calcium, dissolved	MG/L	MW-13A	06/08/2012		15.0000
Calcium, dissolved	MG/L	MW-13A	09/26/2012		15.0000
Calcium, dissolved	MG/L	MW-13A	12/03/2012		16.0000
Calcium, dissolved	MG/L	MW-13A	03/11/2013		16.0000
Calcium, dissolved	MG/L	MW-13A	06/05/2013		16.0000
Calcium, dissolved	MG/L	MW-13A	12/03/2013		16.0000
Calcium, dissolved	MG/L	MW-13A	03/04/2014		16.0000
Calcium, dissolved	MG/L	MW-13A	06/02/2014		16.0000
Calcium, dissolved	MG/L	MW-13A	09/22/2014		15.0000
Calcium, dissolved	MG/L	MW-13A	11/17/2014		15.0000
Calcium, dissolved	MG/L	MW-13A	02/23/2015		15.0000
Calcium, dissolved	MG/L	MW-13A	05/19/2015		16.0000
Calcium, dissolved	MG/L	MW-13A	08/26/2015		15.0000
Calcium, dissolved	MG/L	MW-13A	11/10/2015		15.0000
Calcium, dissolved	MG/L	MW-13A	02/22/2016		16.0000
Calcium, dissolved	MG/L	MW-13A	05/16/2016		15.0000
Calcium, dissolved	MG/L	MW-13A	08/31/2016		17.0000
Calcium, dissolved	MG/L	MW-13A	11/14/2016		16.0000
Calcium, dissolved	MG/L	MW-13B	03/22/2005	I	16.9000
Calcium, dissolved	MG/L	MW-13B	06/15/2005		16.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Calcium, dissolved	MG/L	MW-13B	09/27/2005	17.1000
Calcium, dissolved	MG/L	MW-13B	12/15/2005	16.1000
Calcium, dissolved	MG/L	MW-13B	03/29/2006	17.0000
Calcium, dissolved	MG/L	MW-13B	06/21/2006	17.0000
Calcium, dissolved	MG/L	MW-13B	09/26/2006	16.0000
Calcium, dissolved	MG/L	MW-13B	12/13/2006	17.0000
Calcium, dissolved	MG/L	MW-13B	03/27/2007	16.0000
Calcium, dissolved	MG/L	MW-13B	06/19/2007	16.0000
Calcium, dissolved	MG/L	MW-13B	09/18/2007	17.0000
Calcium, dissolved	MG/L	MW-13B	12/19/2007	15.0000
Calcium, dissolved	MG/L	MW-13B	03/25/2008	16.0000
Calcium, dissolved	MG/L	MW-13B	06/18/2008	17.0000
Calcium, dissolved	MG/L	MW-13B	09/17/2008	16.0000
Calcium, dissolved	MG/L	MW-13B	12/16/2008	16.0000
Calcium, dissolved	MG/L	MW-13B	03/24/2009	16.0000
Calcium, dissolved	MG/L	MW-13B	06/17/2009	17.0000
Calcium, dissolved	MG/L	MW-13B	09/10/2009	16.0000
Calcium, dissolved Calcium, dissolved	MG/L MG/L	MW-13B MW-13B	12/03/2009 03/25/2010	16.0000 17.0000
Calcium, dissolved	MG/L MG/L	MW-13B	06/23/2010	16.0000
Calcium, dissolved	MG/L	MW-13B	09/23/2010	16.0000
Calcium, dissolved	MG/L	MW-13B	12/08/2010	16.0000
Calcium, dissolved	MG/L	MW-13B	03/30/2011	16.0000
Calcium, dissolved	MG/L	MW-13B	06/06/2011	16.0000
Calcium, dissolved	MG/L	MW-13B	09/27/2011	16.0000
Calcium, dissolved	MG/L	MW-13B	12/14/2011	16.0000
Calcium, dissolved	MG/L	MW-13B	03/21/2012	16.0000
Calcium, dissolved	MG/L	MW-13B	06/08/2012	16.0000
Calcium, dissolved	MG/L	MW-13B	09/26/2012	16.0000
Calcium, dissolved	MG/L	MW-13B	12/03/2012	17.0000
Calcium, dissolved	MG/L	MW-13B	03/11/2013	17.0000
Calcium, dissolved	MG/L	MW-13B	06/05/2013	17.0000
Calcium, dissolved	MG/L	MW-13B	12/03/2013	17.0000
Calcium, dissolved	MG/L	MW-13B	03/04/2014	17.0000
Calcium, dissolved	MG/L	MW-13B	06/02/2014	16.0000
Calcium, dissolved	MG/L	MW-13B	09/22/2014	15.0000
Calcium, dissolved	MG/L	MW-13B	11/17/2014	16.0000
Calcium, dissolved	MG/L	MW-13B	02/23/2015	17.0000
Calcium, dissolved	MG/L	MW-13B	05/19/2015	17.0000
Calcium, dissolved	MG/L	MW-13B	08/26/2015	16.0000
Calcium, dissolved	MG/L	MW-13B	11/10/2015	17.0000
Calcium, dissolved Calcium, dissolved	MG/L	MW-13B	02/22/2016 05/16/2016	18.0000
Calcium, dissolved	MG/L MG/L	MW-13B MW-13B	08/31/2016	16.0000 18.0000
Calcium, dissolved	MG/L	MW-13B	11/14/2016	17.0000
Calcium, dissolved	MG/L	MW-16	03/24/2009	12.0000
Calcium, dissolved	MG/L	MW-16	06/16/2009	10.0000
Calcium, dissolved	MG/L	MW-16	09/09/2009	11.0000
Calcium, dissolved	MG/L	MW-16	12/03/2009	14.0000
Calcium, dissolved	MG/L	MW-16	03/25/2010	9.6000
Calcium, dissolved	MG/L	MW-16	06/24/2010	12.0000
Calcium, dissolved	MG/L	MW-16	09/24/2010	13.0000
Calcium, dissolved	MG/L	MW-16	12/09/2010	13.0000
Calcium, dissolved	MG/L	MW-16	03/30/2011	9.8000
Calcium, dissolved	MG/L	MW-16	06/07/2011	9.7000
Calcium, dissolved	MG/L	MW-16	09/27/2011	12.0000
Calcium, dissolved	MG/L	MW-16	12/13/2011	11.0000
Calcium, dissolved	MG/L	MW-16	03/21/2012	8.9000
Calcium, dissolved	MG/L	MW-16	06/08/2012	9.1000
Calcium, dissolved	MG/L	MW-16	09/27/2012	11.0000
Calcium, dissolved	MG/L	MW-16	12/04/2012	11.0000
Calcium, dissolved	MG/L	MW-16	03/12/2013	10.0000
Calcium, dissolved	MG/L	MW-16	06/04/2013	10.0000
Calcium, dissolved	MG/L	MW-16	09/05/2013	11.0000
Calcium, dissolved	MG/L	MW-16	12/16/2013	11.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Calcium, dissolved	MG/L	MW-16	03/05/2014	9.8000
Calcium, dissolved	MG/L	MW-16	06/02/2014	8.8000
Calcium, dissolved	MG/L	MW-16	09/22/2014	9.9000
Calcium, dissolved	MG/L	MW-16	11/18/2014	11.0000
Calcium, dissolved	MG/L	MW-16	02/23/2015	9.5000
Calcium, dissolved	MG/L	MW-16	05/20/2015	10.0000
Calcium, dissolved	MG/L	MW-16	08/26/2015	9.8000
Calcium, dissolved	MG/L	MW-16	11/11/2015	12.0000
Calcium, dissolved	MG/L	MW-16	02/24/2016	7.7000
Calcium, dissolved	MG/L	MW-16	05/16/2016	8.4000
Calcium, dissolved	MG/L	MW-16	08/31/2016	12.0000
Calcium, dissolved	MG/L	MW-16	11/14/2016	9.6000
Calcium, dissolved	MG/L	MW-35	03/22/2005	13.9000
Calcium, dissolved	MG/L	MW-35	06/14/2005	12.9000
Calcium, dissolved	MG/L	MW-35	09/27/2005	14.8000
		MW-35		
Calcium, dissolved	MG/L		12/15/2005	13.2000
Calcium, dissolved	MG/L	MW-35	03/28/2006	14.0000
Calcium, dissolved	MG/L	MW-35	06/21/2006	14.0000
Calcium, dissolved	MG/L	MW-35	09/26/2006	13.0000
Calcium, dissolved	MG/L	MW-35	12/12/2006	14.0000
Calcium, dissolved	MG/L	MW-35	03/27/2007	13.0000
Calcium, dissolved	MG/L	MW-35	06/20/2007	14.0000
Calcium, dissolved	MG/L	MW-35	09/18/2007	14.0000
Calcium, dissolved	MG/L	MW-35	12/20/2007	13.0000
Calcium, dissolved	MG/L	MW-35	03/25/2008	13.0000
Calcium, dissolved	MG/L	MW-35	06/18/2008	13.0000
Calcium, dissolved	MG/L	MW-35	09/18/2008	13.0000
Calcium, dissolved	MG/L	MW-35	12/19/2008	12.0000
Calcium, dissolved	MG/L	MW-35	03/24/2009	13.0000
Calcium, dissolved	MG/L	MW-35	06/16/2009	13.0000
Calcium, dissolved	MG/L	MW-35	09/10/2009	12.0000
Calcium, dissolved	MG/L	MW-35	12/03/2009	13.0000
Calcium, dissolved	MG/L	MW-35	03/25/2010	13.0000
Calcium, dissolved	MG/L	MW-35	06/23/2010	13.0000
Calcium, dissolved	MG/L	MW-35	09/23/2010	13.0000
Calcium, dissolved	MG/L	MW-35	12/09/2010	14.0000
Calcium, dissolved	MG/L	MW-35	03/30/2011	14.0000
Calcium, dissolved	MG/L	MW-35	06/06/2011	13.0000
Calcium, dissolved	MG/L	MW-35	09/26/2011	14.0000
Calcium, dissolved	MG/L	MW-35	12/13/2011	14.0000
Calcium, dissolved	MG/L	MW-35	03/21/2012	14.0000
Calcium, dissolved	MG/L	MW-35	06/06/2012	13.0000
Calcium, dissolved	MG/L	MW-35	09/26/2012	13.0000
Calcium, dissolved	MG/L	MW-35	12/04/2012	14.0000
Calcium, dissolved	MG/L	MW-35	03/13/2013	14.0000
Calcium, dissolved	MG/L	MW-35	06/06/2013	13.0000
Calcium, dissolved	MG/L	MW-35	09/05/2013	13.0000
Calcium, dissolved	MG/L	MW-35	12/16/2013	14.0000
Calcium, dissolved	MG/L	MW-35	03/04/2014	14.0000
Calcium, dissolved	MG/L	MW-35	06/02/2014	14.0000
Calcium, dissolved	MG/L	MW-35	09/22/2014	13.0000
Calcium, dissolved Calcium, dissolved	MG/L	MW-35	11/17/2014	14.0000
	MG/L	MW-35 MW-35	02/25/2015	15.0000 13.0000
Calcium, dissolved	MG/L		05/19/2015	
Calcium, dissolved	MG/L	MW-35 MW-35	08/26/2015	13.0000
Calcium, dissolved	MG/L		11/10/2015	15.0000
Calcium, dissolved	MG/L	MW-35	02/22/2016	15.0000
Calcium, dissolved	MG/L	MW-35	05/16/2016	14.0000
Calcium, dissolved	MG/L	MW-35	08/31/2016	15.0000
Calcium, dissolved	MG/L	MW-35	11/15/2016	14.0000
Chloride	MG/L	MW-13A	03/22/2005	2.6000
Chloride	MG/L	MW-13A	06/15/2005	1.9000
Chloride	MG/L	MW-13A	09/27/2005	2.4000
Chloride	MG/L	MW-13A	12/15/2005	2.1000
Chloride	MG/L	MW-13A	03/28/2006	3.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Chloride	MG/L	MW-13A	06/21/2006	2.4000
Chloride	MG/L	MW-13A	09/26/2006	2.6000
Chloride	MG/L	MW-13A	12/13/2006	3.0000
Chloride	MG/L	MW-13A	03/27/2007	2.8000
Chloride	MG/L	MW-13A	06/19/2007	2.6000
Chloride	MG/L	MW-13A	09/19/2007	2.6000
Chloride	MG/L	MW-13A	12/19/2007	2.6000
Chloride	MG/L	MW-13A	03/25/2008	2.5000
Chloride	MG/L	MW-13A	06/18/2008	2.6000
Chloride	MG/L	MW-13A	09/17/2008	2.5000
Chloride	MG/L	MW-13A	12/17/2008	3.1000
Chloride	MG/L	MW-13A	03/24/2009	2.7000
Chloride	MG/L	MW-13A	06/17/2009	2.4000
Chloride	MG/L	MW-13A	09/10/2009	2.1000
Chloride	MG/L	MW-13A	12/03/2009	3.4000
Chloride	MG/L	MW-13A	03/25/2010	2.2000
Chloride	MG/L	MW-13A	06/23/2010	2.6000
Chloride	MG/L	MW-13A	09/23/2010	2.8000
Chloride	MG/L	MW-13A	12/08/2010	2.9000
Chloride	MG/L	MW-13A	03/30/2011	2.9000
Chloride	MG/L	MW-13A	06/06/2011	3.0000
Chloride	MG/L	MW-13A	09/27/2011	3.8000
Chloride	MG/L	MW-13A	12/14/2011	4.4000
Chloride	MG/L	MW-13A	03/21/2012	2.7000
Chloride	MG/L	MW-13A	06/08/2012	3.0000
Chloride	MG/L	MW-13A	09/26/2012	2.6000
Chloride	MG/L	MW-13A	12/03/2012	1.8000
Chloride	MG/L	MW-13A	03/11/2013	3.0000
Chloride	MG/L	MW-13A	06/05/2013	1.7000
Chloride	MG/L	MW-13A	12/03/2013	1.7000
Chloride	MG/L	MW-13A	03/04/2014	1.7000
Chloride	MG/L	MW-13A	06/02/2014	2.0000
Chloride	MG/L	MW-13A	09/22/2014	1.7000
Chloride	MG/L	MW-13A	11/17/2014	1.9000
Chloride	MG/L	MW-13A	02/23/2015	1.8000
Chloride	MG/L	MW-13A	05/19/2015	1.9000
Chloride	MG/L	MW-13A	08/26/2015	2.1000
Chloride	MG/L	MW-13A	11/10/2015	1.9000
Chloride	MG/L	MW-13A	02/22/2016	1.9000
Chloride	MG/L	MW-13A	05/16/2016	1.9000
Chloride	MG/L	MW-13A	08/31/2016	1.9000
Chloride	MG/L	MW-13A	11/14/2016	1.8000
Chloride	MG/L	MW-13B	03/22/2005	3.0000
Chloride	MG/L	MW-13B	06/15/2005	2.3000
Chloride	MG/L	MW-13B	09/27/2005	2.8000
Chloride	MG/L	MW-13B	12/15/2005	2.4000
Chloride	MG/L	MW-13B	03/29/2006	3.2000
Chloride	MG/L	MW-13B	06/21/2006	2.9000
Chloride	MG/L	MW-13B	09/26/2006	2.7000
Chloride	MG/L	MW-13B	12/13/2006	3.3000
Chloride	MG/L	MW-13B	03/27/2007	3.0000
Chloride	MG/L	MW-13B	06/19/2007	2.8000
Chloride	MG/L	MW-13B	09/18/2007	2.8000
Chloride	MG/L	MW-13B	12/19/2007	2.8000
Chloride	MG/L	MW-13B	03/25/2008	2.7000
Chloride	MG/L	MW-13B	06/18/2008	2.8000
Chloride	MG/L	MW-13B	09/17/2008	2.7000
Chloride	MG/L	MW-13B	12/16/2008	3.2000
Chloride	MG/L	MW-13B	03/24/2009	2.6000
Chloride	MG/L	MW-13B	06/17/2009	3.0000
Chloride	MG/L	MW-13B	09/10/2009	2.3000
Chloride	MG/L	MW-13B	12/03/2009	2.9000
Chlorida	MG/L	MW-13B	03/25/2010	2.5000
Chlorida	MG/L	MW-13B	06/23/2010	2.8000
Chloride	MG/L	MW-13B	09/23/2010	3.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Chloride	MG/L	MW-13B	12/08/2010		2.5000
Chloride	MG/L	MW-13B	03/30/2011		3.1000
Chloride	MG/L	MW-13B	06/06/2011		3.2000
Chloride	MG/L	MW-13B	09/27/2011		3.7000
Chloride	MG/L	MW-13B	12/14/2011		3.4000
Chloride	MG/L	MW-13B	03/21/2012		2.8000
Chloride	MG/L	MW-13B	06/08/2012		3.4000
Chloride	MG/L	MW-13B	09/26/2012		2.9000
Chloride	MG/L	MW-13B	12/03/2012		2.1000
Chloride	MG/L	MW-13B	03/11/2013		2.1000
Chloride	MG/L	MW-13B	06/05/2013		2.0000
Chloride	MG/L	MW-13B	12/03/2013		1.9000
Chloride	MG/L	MW-13B	03/04/2014		1.9000
Chloride	MG/L	MW-13B	06/02/2014		2.1000
Chloride	MG/L	MW-13B	09/22/2014		1.9000
Chloride	MG/L	MW-13B	11/17/2014		2.1000
Chloride	MG/L	MW-13B	02/23/2015		2.0000
Chloride	MG/L	MW-13B	05/19/2015		2.0000
Chloride	MG/L	MW-13B	08/26/2015		2.1000
Chloride	MG/L	MW-13B	11/10/2015		2.0000
Chloride	MG/L	MW-13B	02/22/2016		2.0000
Chloride	MG/L	MW-13B	05/16/2016		2.0000
Chloride	MG/L	MW-13B	08/31/2016		2.0000
Chloride	MG/L	MW-13B	11/14/2016		1.9000
Chloride	MG/L	MW-16	03/24/2009		2.1000
Chloride	MG/L	MW-16	06/16/2009		2.2000
Chloride	MG/L	MW-16	09/09/2009		1.3000
Chloride	MG/L	MW-16	12/03/2009		1.9000
Chloride	MG/L	MW-16	03/25/2010		1.7000
Chloride	MG/L	MW-16	06/24/2010		1.6000
Chloride	MG/L	MW-16	09/24/2010		1.7000
Chloride	MG/L	MW-16	12/09/2010		2.3000
Chloride	MG/L	MW-16	03/30/2011		3.6000
Chloride	MG/L	MW-16	06/07/2011		2.4000
Chloride	MG/L	MW-16	09/27/2011		3.9000
Chloride	MG/L	MW-16	12/13/2011		2.1000
Chloride	MG/L	MW-16	03/21/2012		2.2000
Chloride	MG/L	MW-16	06/08/2012		2.8000
Chloride	MG/L	MW-16	09/27/2012		1.0000
Chloride	MG/L	MW-16	12/04/2012		1.3000
Chloride	MG/L	MW-16	03/12/2013		1.3000
Chloride	MG/L	MW-16	06/04/2013		1.3000
Chloride	MG/L	MW-16	09/05/2013		1.3000
Chloride	MG/L	MW-16	12/16/2013	ND	1.0000
Chloride	MG/L	MW-16	03/05/2014		1.0000
Chloride	MG/L	MW-16	06/02/2014		1.4000
Chloride	MG/L	MW-16	09/22/2014		1.1000
Chloride	MG/L	MW-16	11/18/2014		1.5000
Chloride	MG/L	MW-16	02/23/2015		1.2000
Chloride	MG/L	MW-16	05/20/2015		1.4000
Chloride	MG/L	MW-16	08/26/2015		1.1000
Chloride	MG/L	MW-16	11/11/2015	ND	1.0000
Chloride	MG/L	MW-16	02/24/2016		1.2000
Chloride	MG/L	MW-16	05/16/2016		1.2000
Chloride	MG/L	MW-16	08/31/2016		1.1000
Chloride	MG/L	MW-16	11/14/2016		1.0000
Chloride	MG/L	MW-35	03/22/2005		2.2000
Chloride	MG/L	MW-35	06/14/2005		2.2000
Chloride	MG/L	MW-35	09/27/2005		2.6000
Chloride	MG/L	MW-35	12/15/2005		1.9000
Chloride	MG/L	MW-35	03/28/2006		2.9000
Chloride	MG/L	MW-35	06/21/2006		2.8000
Chloride	MG/L	MW-35	09/26/2006		2.5000
Chloride	MG/L	MW-35	12/12/2006		3.0000
Chloride	MG/L	MW-35	03/27/2007		2.8000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Chloride	MG/L	MW-35	06/20/2007		2.6000
Chloride	MG/L	MW-35	09/18/2007		2.4000
Chloride	MG/L	MW-35	12/20/2007		2.3000
Chloride	MG/L	MW-35	03/25/2008		2.4000
Chloride	MG/L	MW-35	06/18/2008		2.6000
Chloride	MG/L	MW-35	09/18/2008		2.4000
Chloride	MG/L	MW-35	12/19/2008		2.9000
Chloride	MG/L	MW-35	03/24/2009		2.3000
Chloride	MG/L	MW-35	06/16/2009		2.4000
Chloride	MG/L	MW-35	09/10/2009		2.5000
Chloride	MG/L	MW-35	12/03/2009		2.8000
Chloride	MG/L	MW-35	03/25/2010		2.0000
Chloride	MG/L	MW-35	06/23/2010		2.1000
Chloride	MG/L	MW-35	09/23/2010		2.6000
Chloride	MG/L	MW-35	12/09/2010		2.7000
Chloride	MG/L	MW-35	03/30/2011		3.2000
Chloride	MG/L	MW-35	06/06/2011		2.3000
Chloride	MG/L	MW-35	09/26/2011		3.0000
Chloride	MG/L	MW-35	12/13/2011		3.2000
Chloride	MG/L	MW-35	03/21/2012		2.9000
Chloride	MG/L	MW-35	06/06/2012		1.3000
Chloride	MG/L	MW-35	09/26/2012		2.4000
Chloride	MG/L	MW-35	12/04/2012		1.9000
Chloride	MG/L	MW-35	03/13/2013		1.8000
Chloride	MG/L	MW-35	06/06/2013		1.7000
Chloride	MG/L	MW-35	09/05/2013		1.8000
Chloride	MG/L	MW-35	12/16/2013		1.7000
Chloride	MG/L	MW-35	03/04/2014		1.8000
Chloride	MG/L	MW-35	06/02/2014		2.0000
Chloride	MG/L	MW-35	09/22/2014		1.7000
Chloride	MG/L	MW-35	11/17/2014		1.8000
Chloride	MG/L	MW-35	02/25/2015		1.8000
Chloride	MG/L	MW-35	05/19/2015		1.9000
Chloride	MG/L	MW-35	08/26/2015		1.9000
Chloride	MG/L	MW-35	11/10/2015		1.8000
Chloride	MG/L	MW-35	02/22/2016		2.1000
Chloride	MG/L	MW-35	05/16/2016		1.9000
Chloride	MG/L	MW-35	08/31/2016		1.9000
Chloride	MG/L	MW-35	11/15/2016		1.8000
Chromium, total	MG/L	MW-13A	12/03/2013	ND	0.0030
Chromium, total	MG/L	MW-13A	03/04/2014	ND	0.0030
Chromium, total	MG/L	MW-13A	06/02/2014	ND	0.0030
Chromium, total	MG/L	MW-13A	09/22/2014	ND	0.0030
Chromium, total	MG/L	MW-13A	11/17/2014	ND	0.0030
Chromium, total	MG/L	MW-13A	02/23/2015	ND	0.0030
Chromium, total	MG/L	MW-13A	05/19/2015	ND	0.0030
Chromium, total	MG/L	MW-13A	08/26/2015	ND	0.0030
Chromium, total	MG/L	MW-13A	11/10/2015	ND	0.0030
Chromium, total	MG/L	MW-13A	02/22/2016	ND	0.0030
Chromium, total	MG/L	MW-13A	05/16/2016	ND	0.0030
Chromium, total	MG/L	MW-13A	08/31/2016	ND	0.0030
Chromium, total	MG/L	MW-13A	11/14/2016	ND	0.0030
Chromium, total	MG/L	MW-13B	12/03/2013		0.0030
Chromium, total	MG/L	MW-13B	03/04/2014		0.0032
Chromium, total	MG/L	MW-13B	06/02/2014		0.0033
Chromium, total	MG/L	MW-13B	09/22/2014	ND	0.0030
Chromium, total	MG/L	MW-13B	11/17/2014		0.0032
Chromium, total	MG/L	MW-13B	02/23/2015	ND	0.0030
Chromium, total	MG/L	MW-13B	05/19/2015		0.0030
Chromium, total	MG/L	MW-13B	08/26/2015	ND	0.0030
Chromium, total	MG/L	MW-13B	11/10/2015		0.0033
Chromium, total	MG/L	MW-13B	02/22/2016		0.0033
Chromium, total	MG/L	MW-13B	05/16/2016		0.0032
Chromium, total	MG/L	MW-13B	08/31/2016		0.0031
Chromium, total	MG/L	MW-13B	11/14/2016		0.0036

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Chromium, total	MG/L	MW-16	09/05/2013		0.0063
Chromium, total	MG/L	MW-16	12/16/2013		0.0080
Chromium, total	MG/L	MW-16	03/05/2014		0.0085
Chromium, total	MG/L	MW-16	06/02/2014		0.0087
Chromium, total	MG/L	MW-16	09/22/2014		0.0073
Chromium, total	MG/L	MW-16	11/18/2014		0.0077
Chromium, total	MG/L	MW-16	02/23/2015		0.0090
Chromium, total	MG/L	MW-16	05/20/2015		0.0070
Chromium, total	MG/L	MW-16	08/26/2015		0.0064
Chromium, total	MG/L	MW-16	11/11/2015		0.0071
Chromium, total	MG/L	MW-16	02/24/2016		0.0077
Chromium, total	MG/L	MW-16	05/16/2016		0.0066
Chromium, total	MG/L	MW-16	08/31/2016		0.0092
Chromium, total	MG/L	MW-16	11/14/2016		0.0085
Chromium, total	MG/L	MW-35	09/05/2013	ND	0.0030
Chromium, total	MG/L	MW-35	12/16/2013	ND	0.0030
Chromium, total	MG/L	MW-35	03/04/2014	ND	0.0030
Chromium, total	MG/L	MW-35	06/02/2014	ND	0.0030
Chromium, total	MG/L	MW-35	09/22/2014	ND	0.0030
Chromium, total	MG/L	MW-35	11/17/2014	ND	0.0030
Chromium, total	MG/L MG/L	MW-35	02/25/2015	ND ND	0.0030
Chromium, total	MG/L MG/L	MW-35	05/19/2015 08/26/2015		0.0030
Chromium, total Chromium, total	MG/L MG/L	MW-35 MW-35	11/10/2015	ND ND	0.0030 0.0030
Chromium, total	MG/L	MW-35	02/22/2016	ND	0.0030
Chromium, total	MG/L	MW-35	05/16/2016	ND	0.0030
Chromium, total	MG/L	MW-35	08/31/2016	ND	0.0030
Chromium, total	MG/L	MW-35	11/15/2016	ND	0.0030
Cobalt, total	MG/L	MW-13A	12/03/2013	ND	0.0030
Cobalt, total	MG/L	MW-13A	03/04/2014	ND	0.0030
Cobalt, total	MG/L	MW-13A	06/02/2014	ND	0.0030
Cobalt, total	MG/L	MW-13A	09/22/2014	ND	0.0030
Cobalt, total	MG/L	MW-13A	11/17/2014	ND	0.0030
Cobalt, total	MG/L	MW-13A	02/23/2015	ND	0.0030
Cobalt, total	MG/L	MW-13A	05/19/2015	ND	0.0030
Cobalt, total	MG/L	MW-13A	08/26/2015	ND	0.0030
Cobalt, total	MG/L	MW-13A	11/10/2015	ND	0.0030
Cobalt, total	MG/L	MW-13A	02/22/2016	ND	0.0030
Cobalt, total	MG/L	MW-13A	05/16/2016	ND	0.0030
Cobalt, total	MG/L	MW-13A	08/31/2016	ND	0.0030
Cobalt, total	MG/L	MW-13A	11/14/2016	ND	0.0030
Cobalt, total	MG/L	MW-13B	12/03/2013	ND	0.0030
Cobalt, total	MG/L	MW-13B	03/04/2014	ND	0.0030
Cobalt, total	MG/L	MW-13B	06/02/2014	ND	0.0030
Cobalt, total	MG/L	MW-13B	09/22/2014	ND	0.0030
Cobalt, total	MG/L	MW-13B	11/17/2014	ND	0.0030
Cobalt, total	MG/L	MW-13B	02/23/2015	ND	0.0030
Cobalt, total	MG/L	MW-13B	05/19/2015	ND	0.0030
Cobalt, total	MG/L	MW-13B	08/26/2015	ND	0.0030
Cobalt, total	MG/L	MW-13B	11/10/2015	ND	0.0030
Cobalt, total	MG/L	MW-13B	02/22/2016	ND	0.0030
Cobalt, total	MG/L	MW-13B	05/16/2016	ND	0.0030
Cobalt, total	MG/L	MW-13B	08/31/2016	ND	0.0030
Cobalt, total	MG/L	MW-13B	11/14/2016	ND	0.0030
Cobalt, total	MG/L	MW-16 MW-16	09/05/2013	ND	0.0030
Cobalt total	MG/L	MW-16	12/16/2013	ND	0.0030
Cobalt, total	MG/L MG/L	MW-16	03/05/2014 06/02/2014	ND ND	0.0030
Cobalt total	MG/L MG/L	MW-16		ND ND	0.0030
Cobalt, total Cobalt, total	MG/L MG/L	MW-16	09/22/2014 11/18/2014	ND ND	0.0030 0.0030
Cobalt, total	MG/L	MW-16	02/23/2015	ND	0.0030
Cobalt, total	MG/L	MW-16	05/20/2015	ND	0.0030
Cobalt, total	MG/L	MW-16	08/26/2015	ND	0.0030
Cobalt, total	MG/L	MW-16	11/11/2015	ND	0.0030
Joban, iotai	MG/L	MW-16	02/24/2016	ND	0.0030

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Cobalt, total	MG/L	MW-16	05/16/2016	ND	0.0030
Cobalt, total	MG/L	MW-16	08/31/2016	ND	0.0030
Cobalt, total	MG/L	MW-16	11/14/2016	ND	0.0030
Cobalt, total	MG/L	MW-35	09/05/2013	ND	0.0030
Cobalt, total Cobalt, total	MG/L MG/L	MW-35 MW-35	12/16/2013 03/04/2014	ND ND	0.0030 0.0030
Cobalt, total	MG/L	MW-35	06/02/2014	ND	0.0030
Cobalt, total	MG/L	MW-35	09/22/2014	ND	0.0030
Cobalt, total	MG/L	MW-35	11/17/2014	ND	0.0030
Cobalt, total	MG/L	MW-35	02/25/2015	ND	0.0030
Cobalt, total	MG/L	MW-35	05/19/2015	ND	0.0030
Cobalt, total	MG/L	MW-35	08/26/2015	ND	0.0030
Cobalt, total	MG/L	MW-35	11/10/2015	ND	0.0030
Cobalt, total	MG/L	MW-35	02/22/2016	ND	0.0030
Cobalt, total	MG/L	MW-35	05/16/2016	ND	0.0030
Cobalt, total	MG/L MG/L	MW-35 MW-35	08/31/2016 11/15/2016	ND ND	0.0030 0.0030
Cobalt, total Copper, total	MG/L	MW-13A	12/03/2013	ND	0.0030
Copper, total	MG/L	MW-13A	03/04/2014	ND	0.0020
Copper, total	MG/L	MW-13A	06/02/2014	ND	0.0020
Copper, total	MG/L	MW-13A	09/22/2014	ND	0.0020
Copper, total	MG/L	MW-13A	11/17/2014	ND	0.0020
Copper, total	MG/L	MW-13A	02/23/2015	ND	0.0020
Copper, total	MG/L	MW-13A	05/19/2015	ND	0.0020
Copper, total	MG/L	MW-13A	08/26/2015	ND	0.0020
Copper, total	MG/L	MW-13A	11/10/2015	ND	0.0020
Copper, total	MG/L	MW-13A	02/22/2016 05/16/2016	ND ND	0.0020
Copper, total Copper, total	MG/L MG/L	MW-13A MW-13A	08/31/2016	ND	0.0020 0.0020
Copper, total	MG/L	MW-13A	11/14/2016	ואט	0.0020
Copper, total	MG/L	MW-13B	12/03/2013	ND	0.0021
Copper, total	MG/L	MW-13B	03/04/2014	ND	0.0020
Copper, total	MG/L	MW-13B	06/02/2014	ND	0.0020
Copper, total	MG/L	MW-13B	09/22/2014	ND	0.0020
Copper, total	MG/L	MW-13B	11/17/2014	ND	0.0020
Copper, total	MG/L	MW-13B	02/23/2015	ND	0.0020
Copper, total	MG/L	MW-13B	05/19/2015	ND ND	0.0020
Copper, total Copper, total	MG/L MG/L	MW-13B MW-13B	08/26/2015 11/10/2015	ND	0.0020 0.0020
Copper, total	MG/L	MW-13B	02/22/2016	ND	0.0020
Copper, total	MG/L	MW-13B	05/16/2016	ND	0.0020
Copper, total	MG/L	MW-13B	08/31/2016	ND	0.0020
Copper, total	MG/L	MW-13B	11/14/2016	ND	0.0020
Copper, total	MG/L	MW-16	09/05/2013	ND	0.0020
Copper, total	MG/L	MW-16	12/16/2013	ND	0.0020
Copper, total	MG/L	MW-16	03/05/2014	ND	0.0020
Copper, total	MG/L MG/L	MW-16 MW-16	06/02/2014 09/22/2014	ND ND	0.0020 0.0020
Copper, total Copper, total	MG/L	MW-16	11/18/2014	ND	0.0020
Copper, total	MG/L	MW-16	02/23/2015	ND	0.0020
Copper, total	MG/L	MW-16	05/20/2015	ND	0.0020
Copper, total	MG/L	MW-16	08/26/2015	ND	0.0020
Copper, total	MG/L	MW-16	11/11/2015	ND	0.0020
Copper, total	MG/L	MW-16	02/24/2016	ND	0.0020
Copper, total	MG/L	MW-16	05/16/2016	ND	0.0020
Copper, total	MG/L	MW-16	08/31/2016	ND	0.0020
Copper, total	MG/L MG/L	MW-16 MW-35	11/14/2016 09/05/2013	ND ND	0.0020 0.0020
Copper, total Copper, total	MG/L MG/L	MW-35	12/16/2013	ND ND	0.0020
Copper, total	MG/L	MW-35	03/04/2014	ND	0.0020
Copper, total	MG/L	MW-35	06/02/2014	ND	0.0020
Copper, total	MG/L	MW-35	09/22/2014	ND	0.0020
Copper, total	MG/L	MW-35	11/17/2014	ND	0.0020
Copper, total	MG/L	MW-35	02/25/2015	ND	0.0020
Copper, total	MG/L	MW-35	05/19/2015	ND	0.0020

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Copper, total	MG/L	MW-35	08/26/2015	ND	0.0020
Copper, total	MG/L	MW-35	11/10/2015	ND	0.0020
Copper, total	MG/L	MW-35	02/22/2016	ND	0.0020
Copper, total	MG/L	MW-35	05/16/2016	ND	0.0020
Copper, total	MG/L	MW-35	08/31/2016	ND	0.0020
Copper, total	MG/L	MW-35	11/15/2016	ND	0.0020
Iron, total	MG/L	MW-13A	12/03/2013	ND	0.0600
Iron, total	MG/L	MW-13A	03/04/2014	ND	0.0600
Iron, total	MG/L	MW-13A	06/02/2014	ND	0.0600
Iron, total	MG/L	MW-13A	09/22/2014	ND	0.0600
Iron, total	MG/L	MW-13A	11/17/2014	ND	0.0600
Iron, total	MG/L	MW-13A	02/23/2015	ND	0.0600
Iron, total	MG/L	MW-13A	05/19/2015	ND	0.0600
Iron, total	MG/L	MW-13A	08/26/2015	ND	0.0600
Iron, total	MG/L	MW-13A	11/10/2015	ND	0.0600
Iron, total	MG/L	MW-13A	02/22/2016	ND	0.0600
Iron, total	MG/L	MW-13A	05/16/2016	ND	0.0600
Iron, total	MG/L	MW-13A	08/31/2016	ND	0.0600
Iron, total	MG/L	MW-13A	11/14/2016		0.0730
Iron, total	MG/L	MW-13B	12/03/2013	ND	0.0600
Iron, total	MG/L	MW-13B	03/04/2014	ND	0.0600
Iron, total	MG/L	MW-13B	06/02/2014	ND	0.0600
Iron, total	MG/L	MW-13B	09/22/2014	ND	0.0600
Iron, total	MG/L	MW-13B	11/17/2014	ND	0.0600
Iron, total	MG/L	MW-13B	02/23/2015	ND	0.0600
Iron, total	MG/L	MW-13B	05/19/2015	ND	0.0600
Iron, total	MG/L	MW-13B	08/26/2015	ND	0.0600
Iron, total	MG/L	MW-13B	11/10/2015	ND	0.0600
Iron, total	MG/L	MW-13B	02/22/2016	ND	0.0600
Iron, total	MG/L	MW-13B	05/16/2016	ND	0.0600
II -	MG/L	MW-13B	08/31/2016	ND	0.0600
Iron, total	MG/L	MW-13B	11/14/2016	ND	0.0600
Iron, total	MG/L	MW-16	09/05/2013	IND	0.1200
Iron, total	MG/L	MW-16	12/16/2013		0.0680
Iron, total	MG/L	MW-16	03/05/2014		0.2000
Iron, total	1	MW-16		ND	
Iron, total	MG/L MG/L		06/02/2014		0.0600
Iron, total	1	MW-16	09/22/2014	ND	0.0600
Iron, total	MG/L	MW-16	11/18/2014		0.1800
Iron, total	MG/L	MW-16 MW-16	02/23/2015	ND	0.3100
Iron, total	MG/L		05/20/2015		0.0600
Iron, total	MG/L	MW-16	08/26/2015	ND	0.0600
Iron, total	MG/L	MW-16	11/11/2015	ND	0.0600
Iron, total	MG/L	MW-16 MW-16	02/24/2016	ND	0.0600
Iron, total	MG/L	MW-16	05/16/2016	ND	0.0600
Iron, total	MG/L		08/31/2016	ND	0.0600
Iron, total	MG/L	MW-16	11/14/2016 09/05/2013	ND	0.1200
Iron, total	MG/L	MW-35 MW-35			0.0600
Iron, total	MG/L		12/16/2013	ND	0.0600
Iron, total	MG/L	MW-35	03/04/2014	ND	0.0600
Iron, total	MG/L	MW-35	06/02/2014	ND	0.0600
Iron, total	MG/L	MW-35	09/22/2014	ND	0.0600
Iron, total	MG/L	MW-35	11/17/2014	ND	0.0600
Iron, total	MG/L	MW-35	02/25/2015	ND	0.0600
Iron, total	MG/L	MW-35	05/19/2015	ND	0.0600
Iron, total	MG/L	MW-35	08/26/2015	ND	0.0600
Iron, total	MG/L	MW-35	11/10/2015	ND	0.0600
Iron, total	MG/L	MW-35	02/22/2016	ND	0.0600
Iron, total	MG/L	MW-35	05/16/2016	ND	0.0600
Iron, total	MG/L	MW-35	08/31/2016	ND	0.0600
Iron, total	MG/L	MW-35	11/15/2016	ND	0.0600
Lead, total	MG/L	MW-13A	12/03/2013	ND	0.0010
Lead, total	MG/L	MW-13A	03/04/2014	ND	0.0010
Lead, total	MG/L	MW-13A	06/02/2014	ND	0.0010
Lead, total	MG/L	MW-13A	09/22/2014	ND	0.0010
Lead, total	MG/L	MW-13A	11/17/2014	ND	0.0010

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Lead, total	MG/L	MW-13A	02/23/2015	ND	0.0010
Lead, total	MG/L	MW-13A	05/19/2015	ND	0.0010
Lead, total	MG/L	MW-13A	08/26/2015	ND	0.0010
Lead, total	MG/L	MW-13A	11/10/2015	ND	0.0010
Lead, total	MG/L	MW-13A	02/22/2016	ND	0.0010
Lead, total	MG/L	MW-13A	05/16/2016	ND	0.0010
Lead, total	MG/L	MW-13A	08/31/2016	ND	0.0010
Lead, total Lead, total	MG/L MG/L	MW-13A MW-13B	11/14/2016 12/03/2013	ND ND	0.0010 0.0010
Lead, total	MG/L	MW-13B	03/04/2014	ND	0.0010
Lead, total	MG/L	MW-13B	06/02/2014	ND	0.0010
Lead, total	MG/L	MW-13B	09/22/2014	ND	0.0010
Lead, total	MG/L	MW-13B	11/17/2014	ND	0.0010
Lead, total	MG/L	MW-13B	02/23/2015	ND	0.0010
Lead, total	MG/L	MW-13B	05/19/2015	ND	0.0010
Lead, total	MG/L	MW-13B	08/26/2015	ND	0.0010
Lead, total	MG/L	MW-13B	11/10/2015	ND	0.0010
Lead, total	MG/L	MW-13B	02/22/2016	ND	0.0010
Lead, total	MG/L	MW-13B	05/16/2016	ND	0.0010
Lead, total	MG/L	MW-13B	08/31/2016	ND	0.0010
Lead, total	MG/L	MW-13B	11/14/2016	ND	0.0010
Lead, total	MG/L	MW-16 MW-16	09/05/2013	ND ND	0.0010
Lead, total Lead, total	MG/L MG/L	MW-16	12/16/2013 03/05/2014	ND ND	0.0010 0.0010
Lead, total	MG/L	MW-16	06/02/2014	ND	0.0010
Lead, total	MG/L	MW-16	09/22/2014	ואט	0.0014
Lead, total	MG/L	MW-16	11/18/2014	ND	0.0014
Lead, total	MG/L	MW-16	02/23/2015	ND	0.0010
Lead, total	MG/L	MW-16	05/20/2015	ND	0.0010
Lead, total	MG/L	MW-16	08/26/2015	ND	0.0010
Lead, total	MG/L	MW-16	11/11/2015	ND	0.0010
Lead, total	MG/L	MW-16	02/24/2016	ND	0.0010
Lead, total	MG/L	MW-16	05/16/2016	ND	0.0010
Lead, total	MG/L	MW-16	08/31/2016	ND	0.0010
Lead, total	MG/L	MW-16	11/14/2016	ND	0.0010
Lead, total	MG/L	MW-35	09/05/2013	ND	0.0010
Lead, total	MG/L	MW-35	12/16/2013	ND	0.0010
Lead, total	MG/L MG/L	MW-35 MW-35	03/04/2014 06/02/2014	ND ND	0.0010 0.0010
Lead, total Lead, total	MG/L	MW-35	09/22/2014	ND	0.0010
Lead, total	MG/L	MW-35	11/17/2014	ND	0.0010
Lead, total	MG/L	MW-35	02/25/2015	ND	0.0010
Lead, total	MG/L	MW-35	05/19/2015	ND	0.0010
Lead, total	MG/L	MW-35	08/26/2015	ND	0.0010
Lead, total	MG/L	MW-35	11/10/2015	ND	0.0010
Lead, total	MG/L	MW-35	02/22/2016	ND	0.0010
Lead, total	MG/L	MW-35	05/16/2016	ND	0.0010
Lead, total	MG/L	MW-35	08/31/2016	ND	0.0010
Lead, total	MG/L	MW-35	11/15/2016	ND	0.0010
Magnesium, dissolved	MG/L	MW-13A	03/22/2005		9.2000
Magnesium, dissolved	MG/L	MW-13A	06/15/2005		8.2000
Magnesium, dissolved	MG/L	MW-13A	09/27/2005		8.4000
Magnesium, dissolved Magnesium, dissolved	MG/L MG/L	MW-13A MW-13A	12/15/2005 03/28/2006		8.6000 9.2000
Magnesium, dissolved	MG/L	MW-13A	06/21/2006		9.2000
Magnesium, dissolved	MG/L	MW-13A	09/26/2006		9.2000
Magnesium, dissolved	MG/L	MW-13A	12/13/2006		9.3000
Magnesium, dissolved	MG/L	MW-13A	03/27/2007		9.3000
Magnesium, dissolved	MG/L	MW-13A	06/19/2007		9.0000
Magnesium, dissolved	MG/L	MW-13A	09/19/2007		9.4000
Magnesium, dissolved	MG/L	MW-13A	12/19/2007		8.6000
Magnesium, dissolved	MG/L	MW-13A	03/25/2008		9.1000
Magnesium, dissolved	MG/L	MW-13A	06/18/2008		9.3000
Magnesium, dissolved	MG/L	MW-13A	09/17/2008		9.2000
Magnesium, dissolved	MG/L	MW-13A	12/17/2008		9.3000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Magnesium, dissolved	MG/L	MW-13A	03/24/2009	9.6000
Magnesium, dissolved	MG/L	MW-13A	06/17/2009	9.6000
Magnesium, dissolved	MG/L	MW-13A	09/10/2009	9.3000
Magnesium, dissolved	MG/L	MW-13A	12/03/2009	9.1000
Magnesium, dissolved	MG/L	MW-13A	03/25/2010	8.7000
Magnesium, dissolved	MG/L	MW-13A	06/23/2010	9.7000
Magnesium, dissolved	MG/L	MW-13A	09/23/2010	9.4000
Magnesium, dissolved	MG/L	MW-13A	12/08/2010	8.1000
Magnesium, dissolved	MG/L	MW-13A	03/30/2011	9.6000
Magnesium, dissolved	MG/L	MW-13A	06/06/2011	10.0000
Magnesium, dissolved	MG/L	MW-13A	09/27/2011	9.7000
Magnesium, dissolved	MG/L	MW-13A	12/14/2011	9.3000
	MG/L			
Magnesium, dissolved		MW-13A	03/21/2012	9.9000
Magnesium, dissolved	MG/L	MW-13A	06/08/2012	8.9000
Magnesium, dissolved	MG/L	MW-13A	09/26/2012	9.6000
Magnesium, dissolved	MG/L	MW-13A	12/03/2012	9.2000
Magnesium, dissolved	MG/L	MW-13A	03/11/2013	9.4000
Magnesium, dissolved	MG/L	MW-13A	06/05/2013	9.8000
Magnesium, dissolved	MG/L	MW-13A	12/03/2013	9.4000
Magnesium, dissolved	MG/L	MW-13A	03/04/2014	9.8000
Magnesium, dissolved	MG/L	MW-13A	06/02/2014	9.2000
Magnesium, dissolved	MG/L	MW-13A	09/22/2014	8.7000
Magnesium, dissolved	MG/L	MW-13A	11/17/2014	9.3000
Magnesium, dissolved	MG/L	MW-13A	02/23/2015	9.2000
Magnesium, dissolved	MG/L	MW-13A	05/19/2015	9.5000
Magnesium, dissolved	MG/L	MW-13A	08/26/2015	9.3000
Magnesium, dissolved	MG/L	MW-13A	11/10/2015	9.1000
Magnesium, dissolved	MG/L	MW-13A	02/22/2016	9.7000
Magnesium, dissolved	MG/L	MW-13A	05/16/2016	9.5000
	1			
Magnesium, dissolved	MG/L	MW-13A	08/31/2016	8.6000
Magnesium, dissolved	MG/L	MW-13A	11/14/2016	10.0000
Magnesium, dissolved	MG/L	MW-13B	03/22/2005	8.6000
Magnesium, dissolved	MG/L	MW-13B	06/15/2005	8.0000
Magnesium, dissolved	MG/L	MW-13B	09/27/2005	8.7000
Magnesium, dissolved	MG/L	MW-13B	12/15/2005	8.0000
Magnesium, dissolved	MG/L	MW-13B	03/29/2006	8.1000
Magnesium, dissolved	MG/L	MW-13B	06/21/2006	8.3000
Magnesium, dissolved	MG/L	MW-13B	09/26/2006	8.5000
Magnesium, dissolved	MG/L	MW-13B	12/13/2006	8.7000
Magnesium, dissolved	MG/L	MW-13B	03/27/2007	8.4000
Magnesium, dissolved	MG/L	MW-13B	06/19/2007	7.9000
Magnesium, dissolved	MG/L	MW-13B	09/18/2007	8.7000
Magnesium, dissolved	MG/L	MW-13B	12/19/2007	7.6000
Magnesium, dissolved	MG/L	MW-13B	03/25/2008	8.0000
Magnesium, dissolved	MG/L	MW-13B	06/18/2008	8.2000
Magnesium, dissolved	MG/L	MW-13B	09/17/2008	8.3000
Magnesium, dissolved	MG/L	MW-13B	12/16/2008	8.3000
Magnesium, dissolved	MG/L	MW-13B	03/24/2009	8.5000
Magnesium, dissolved	MG/L	MW-13B	06/17/2009	8.5000
Magnesium, dissolved	MG/L	MW-13B	09/10/2009	8.3000
Magnesium, dissolved	MG/L	MW-13B	12/03/2009	8.0000
Magnesium, dissolved	MG/L	MW-13B	03/25/2010	
	1			8.1000
Magnesium, dissolved	MG/L	MW-13B	06/23/2010	8.7000
Magnesium, dissolved	MG/L	MW-13B	09/23/2010	8.3000
Magnesium, dissolved	MG/L	MW-13B	12/08/2010	9.3000
Magnesium, dissolved	MG/L	MW-13B	03/30/2011	8.2000
Magnesium, dissolved	MG/L	MW-13B	06/06/2011	9.0000
Magnesium, dissolved	MG/L	MW-13B	09/27/2011	8.4000
Magnesium, dissolved	MG/L	MW-13B	12/14/2011	8.1000
Magnesium, dissolved	MG/L	MW-13B	03/21/2012	8.5000
Magnesium, dissolved	MG/L	MW-13B	06/08/2012	8.1000
Magnesium, dissolved	MG/L	MW-13B	09/26/2012	8.6000
Magnesium, dissolved	MG/L	MW-13B	12/03/2012	8.2000
Magnesium, dissolved	MG/L	MW-13B	03/11/2013	8.6000
Magnesium, dissolved	MG/L	MW-13B	06/05/2013	8.9000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Magnesium, dissolved	MG/L	MW-13B	12/03/2013	8.9000
Magnesium, dissolved	MG/L	MW-13B	03/04/2014	8.7000
Magnesium, dissolved	MG/L	MW-13B	06/02/2014	8.3000
Magnesium, dissolved	MG/L	MW-13B	09/22/2014	7.7000
Magnesium, dissolved	MG/L	MW-13B	11/17/2014	8.7000
Magnesium, dissolved	MG/L	MW-13B	02/23/2015	8.6000
Magnesium, dissolved	MG/L	MW-13B	05/19/2015	8.9000
Magnesium, dissolved	MG/L	MW-13B	08/26/2015	8.8000
Magnesium, dissolved	MG/L	MW-13B	11/10/2015	8.6000
Magnesium, dissolved	MG/L	MW-13B	02/22/2016	9.1000
Magnesium, dissolved	MG/L	MW-13B	05/16/2016	8.6000
Magnesium, dissolved	MG/L	MW-13B	08/31/2016	8.1000
	MG/L	MW-13B		9.3000
Magnesium, dissolved			11/14/2016	
Magnesium, dissolved	MG/L	MW-16	03/24/2009	7.2000
Magnesium, dissolved	MG/L	MW-16	06/16/2009	5.9000
Magnesium, dissolved	MG/L	MW-16	09/09/2009	6.9000
Magnesium, dissolved	MG/L	MW-16	12/03/2009	8.0000
Magnesium, dissolved	MG/L	MW-16	03/25/2010	5.1000
Magnesium, dissolved	MG/L	MW-16	06/24/2010	6.9000
Magnesium, dissolved	MG/L	MW-16	09/24/2010	7.4000
Magnesium, dissolved	MG/L	MW-16	12/09/2010	8.3000
Magnesium, dissolved	MG/L	MW-16	03/30/2011	5.8000
Magnesium, dissolved	MG/L	MW-16	06/07/2011	5.6000
Magnesium, dissolved	MG/L	MW-16	09/27/2011	6.6000
Magnesium, dissolved	MG/L	MW-16	12/13/2011	6.2000
Magnesium, dissolved	MG/L	MW-16	03/21/2012	5.5000
Magnesium, dissolved	MG/L	MW-16	06/08/2012	5.0000
Magnesium, dissolved	MG/L	MW-16	09/27/2012	6.4000
Magnesium, dissolved	MG/L	MW-16	12/04/2012	6.6000
Magnesium, dissolved	MG/L	MW-16	03/12/2013	5.6000
	MG/L	MW-16		
Magnesium, dissolved			06/04/2013	5.8000
Magnesium, dissolved	MG/L	MW-16	09/05/2013	6.0000
Magnesium, dissolved	MG/L	MW-16	12/16/2013	5.9000
Magnesium, dissolved	MG/L	MW-16	03/05/2014	6.6000
Magnesium, dissolved	MG/L	MW-16	06/02/2014	5.0000
Magnesium, dissolved	MG/L	MW-16	09/22/2014	5.5000
Magnesium, dissolved	MG/L	MW-16	11/18/2014	6.4000
Magnesium, dissolved	MG/L	MW-16	02/23/2015	5.7000
Magnesium, dissolved	MG/L	MW-16	05/20/2015	5.7000
Magnesium, dissolved	MG/L	MW-16	08/26/2015	5.9000
Magnesium, dissolved	MG/L	MW-16	11/11/2015	6.7000
Magnesium, dissolved	MG/L	MW-16	02/24/2016	4.5000
Magnesium, dissolved	MG/L	MW-16	05/16/2016	5.0000
Magnesium, dissolved	MG/L	MW-16	08/31/2016	5.4000
Magnesium, dissolved	MG/L	MW-16	11/14/2016	5.9000
Magnesium, dissolved	MG/L	MW-35	03/22/2005	8.6000
Magnesium, dissolved	MG/L	MW-35	06/14/2005	8.1000
Magnesium, dissolved	MG/L	MW-35	09/27/2005	9.2000
Magnesium, dissolved	MG/L	MW-35	12/15/2005	8.0000
Magnesium, dissolved	MG/L	MW-35	03/28/2006	8.3000
Magnesium, dissolved	MG/L	MW-35	06/21/2006	8.4000
Magnesium, dissolved	MG/L	MW-35	09/26/2006	8.2000
Magnesium, dissolved	MG/L	MW-35	12/12/2006	8.8000
Magnesium, dissolved	MG/L	MW-35	03/27/2007	8.6000
Magnesium, dissolved	MG/L	MW-35	06/20/2007	8.4000
Magnesium, dissolved	MG/L	MW-35	09/18/2007	9.1000
Magnesium, dissolved	MG/L	MW-35	12/20/2007	8.1000
Magnesium, dissolved	MG/L	MW-35	03/25/2008	8.2000
Magnesium, dissolved	MG/L	MW-35	06/18/2008	8.1000
Magnesium, dissolved	MG/L	MW-35	09/18/2008	8.1000
Magnesium, dissolved	MG/L	MW-35	12/19/2008	8.1000
Magnesium, dissolved	MG/L	MW-35	03/24/2009	8.7000
Magnesium, dissolved	MG/L	MW-35	06/16/2009	8.1000
Magnesium, dissolved	MG/L	MW-35	09/10/2009	8.1000
Magnesium, dissolved	MG/L	MW-35	12/03/2009	8.3000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Magnesium, dissolved	MG/L	MW-35	03/25/2010		7.9000
Magnesium, dissolved	MG/L	MW-35	06/23/2010		8.8000
Magnesium, dissolved	MG/L	MW-35	09/23/2010		8.7000
Magnesium, dissolved	MG/L	MW-35	12/09/2010		9.3000
Magnesium, dissolved	MG/L	MW-35	03/30/2011		8.8000
Magnesium, dissolved	MG/L	MW-35	06/06/2011		9.0000
Magnesium, dissolved	MG/L	MW-35	09/26/2011		8.7000
Magnesium, dissolved	MG/L	MW-35	12/13/2011		8.8000
Magnesium, dissolved	MG/L	MW-35	03/21/2012		9.0000
Magnesium, dissolved	MG/L	MW-35	06/06/2012		8.3000
Magnesium, dissolved	MG/L	MW-35	09/26/2012		8.9000
Magnesium, dissolved	MG/L	MW-35	12/04/2012		8.6000
Magnesium, dissolved	MG/L	MW-35	03/13/2013		9.2000
	1				II.
Magnesium, dissolved	MG/L	MW-35	06/06/2013		8.5000
Magnesium, dissolved	MG/L	MW-35	09/05/2013		8.1000
Magnesium, dissolved	MG/L	MW-35	12/16/2013		8.4000
Magnesium, dissolved	MG/L	MW-35	03/04/2014		9.2000
Magnesium, dissolved	MG/L	MW-35	06/02/2014		8.6000
Magnesium, dissolved	MG/L	MW-35	09/22/2014		8.2000
Magnesium, dissolved	MG/L	MW-35	11/17/2014		8.7000
Magnesium, dissolved	MG/L	MW-35	02/25/2015		9.3000
Magnesium, dissolved	MG/L	MW-35	05/19/2015		8.5000
Magnesium, dissolved	MG/L	MW-35	08/26/2015		9.0000
Magnesium, dissolved	MG/L	MW-35	11/10/2015		9.3000
Magnesium, dissolved	MG/L	MW-35	02/22/2016		9.3000
Magnesium, dissolved	MG/L	MW-35	05/16/2016		9.0000
Magnesium, dissolved	MG/L	MW-35	08/31/2016		8.1000
Magnesium, dissolved	MG/L	MW-35	11/15/2016		10.0000
Manganese, total	MG/L	MW-13A	12/03/2013	ND	0.0010
Manganese, total	MG/L	MW-13A	03/04/2014	ND	0.0010
Manganese, total	MG/L	MW-13A	06/02/2014	ND	0.0010
Manganese, total	MG/L	MW-13A	09/22/2014	ND	0.0010
11 -	MG/L	MW-13A	11/17/2014	ND	II.
Manganese, total	1			ND	0.0010
Manganese, total	MG/L	MW-13A	02/23/2015		0.0010
Manganese, total	MG/L	MW-13A	05/19/2015	ND	0.0010
Manganese, total	MG/L	MW-13A	08/26/2015	ND	0.0010
Manganese, total	MG/L	MW-13A	11/10/2015	ND	0.0010
Manganese, total	MG/L	MW-13A	02/22/2016	ND	0.0010
Manganese, total	MG/L	MW-13A	05/16/2016	ND	0.0010
Manganese, total	MG/L	MW-13A	08/31/2016	ND	0.0010
Manganese, total	MG/L	MW-13A	11/14/2016	ND	0.0010
Manganese, total	MG/L	MW-13B	12/03/2013	ND	0.0010
Manganese, total	MG/L	MW-13B	03/04/2014	ND	0.0010
Manganese, total	MG/L	MW-13B	06/02/2014		0.0020
Manganese, total	MG/L	MW-13B	09/22/2014	ND	0.0010
Manganese, total	MG/L	MW-13B	11/17/2014	ND	0.0010
Manganese, total	MG/L	MW-13B	02/23/2015	ND	0.0010
Manganese, total	MG/L	MW-13B	05/19/2015	ND	0.0010
Manganese, total	MG/L	MW-13B	08/26/2015	ND	0.0010
Manganese, total	MG/L	MW-13B	11/10/2015	ND	0.0010
Manganese, total	MG/L	MW-13B	02/22/2016	ND	0.0010
Manganese, total	MG/L	MW-13B	05/16/2016	ND	0.0010
Manganese, total	MG/L	MW-13B	08/31/2016	ND	0.0010
Manganese, total	MG/L	MW-13B	11/14/2016	ND	0.0010
Manganese, total	MG/L	MW-16	09/05/2013		0.0160
Manganese, total	MG/L	MW-16	12/16/2013		0.0130
Manganese, total	MG/L	MW-16	03/05/2014		0.0200
Manganese, total	MG/L	MW-16	06/02/2014		0.0200
11 -	MG/L MG/L	MW-16			II.
Manganese, total			09/22/2014		0.0140
Manganese, total	MG/L	MW-16	11/18/2014		0.0320
Manganese, total	MG/L	MW-16	02/23/2015		0.0620
Manganese, total	MG/L	MW-16	05/20/2015		0.0035
Manganese, total	MG/L	MW-16	08/26/2015		0.0012
Manganese, total	MG/L	MW-16	11/11/2015		0.0014
Manganese, total	MG/L	MW-16	02/24/2016		0.0019

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Manganese, total	MG/L	MW-16	05/16/2016	ND	0.0010
Manganese, total	MG/L	MW-16	08/31/2016		0.0024
Manganese, total	MG/L	MW-16	11/14/2016		0.0170
Manganese, total	MG/L	MW-35	09/05/2013	ND	0.0010
Manganese, total	MG/L	MW-35	12/16/2013	ND	0.0010
Manganese, total	MG/L	MW-35	03/04/2014	ND	0.0010
Manganese, total	MG/L	MW-35	06/02/2014	ND	0.0010
Manganese, total	MG/L MG/L	MW-35 MW-35	09/22/2014 11/17/2014	ND ND	0.0010 0.0010
Manganese, total Manganese, total	MG/L	MW-35	02/25/2015	ND	0.0010
Manganese, total	MG/L	MW-35	05/19/2015	ואט	0.0014
Manganese, total	MG/L	MW-35	08/26/2015	ND	0.0010
Manganese, total	MG/L	MW-35	11/10/2015	ND	0.0010
Manganese, total	MG/L	MW-35	02/22/2016	ND	0.0010
Manganese, total	MG/L	MW-35	05/16/2016	ND	0.0010
Manganese, total	MG/L	MW-35	08/31/2016	ND	0.0010
Manganese, total	MG/L	MW-35	11/15/2016	ND	0.0010
Nickel, total	MG/L	MW-13A	12/03/2013	ND	0.0040
Nickel, total	MG/L	MW-13A	03/04/2014	ND	0.0040
Nickel, total	MG/L	MW-13A	06/02/2014	ND	0.0040
Nickel, total	MG/L	MW-13A	09/22/2014	ND	0.0040
Nickel, total	MG/L	MW-13A	11/17/2014	ND	0.0040
Nickel, total	MG/L	MW-13A	02/23/2015	ND	0.0040
Nickel, total	MG/L MG/L	MW-13A	05/19/2015	ND ND	0.0040
Nickel, total Nickel, total	MG/L	MW-13A MW-13A	08/26/2015 11/10/2015	ND	0.0040 0.0040
Nickel, total	MG/L	MW-13A	02/22/2016	ND	0.0040
Nickel, total	MG/L	MW-13A	05/16/2016	ND	0.0040
Nickel, total	MG/L	MW-13A	08/31/2016	ND	0.0040
Nickel, total	MG/L	MW-13A	11/14/2016	ND	0.0040
Nickel, total	MG/L	MW-13B	12/03/2013	ND	0.0040
Nickel, total	MG/L	MW-13B	03/04/2014	ND	0.0040
Nickel, total	MG/L	MW-13B	06/02/2014	ND	0.0040
Nickel, total	MG/L	MW-13B	09/22/2014	ND	0.0040
Nickel, total	MG/L	MW-13B	11/17/2014	ND	0.0040
Nickel, total	MG/L	MW-13B	02/23/2015	ND	0.0040
Nickel, total	MG/L	MW-13B	05/19/2015	ND	0.0040
Nickel, total	MG/L	MW-13B	08/26/2015	ND	0.0040
Nickel, total Nickel, total	MG/L MG/L	MW-13B MW-13B	11/10/2015 02/22/2016	ND ND	0.0040 0.0040
Nickel, total	MG/L	MW-13B	05/16/2016	ND	0.0040
Nickel, total	MG/L	MW-13B	08/31/2016	ND	0.0040
Nickel, total	MG/L	MW-13B	11/14/2016	ND	0.0040
Nickel, total	MG/L	MW-16	09/05/2013	ND	0.0040
Nickel, total	MG/L	MW-16	12/16/2013	ND	0.0040
Nickel, total	MG/L	MW-16	03/05/2014	ND	0.0040
Nickel, total	MG/L	MW-16	06/02/2014	ND	0.0040
Nickel, total	MG/L	MW-16	09/22/2014	ND	0.0040
Nickel, total	MG/L	MW-16	11/18/2014	ND	0.0040
Nickel, total	MG/L	MW-16	02/23/2015	V.D.	0.0041
Nickel, total	MG/L	MW-16	05/20/2015	ND	0.0040
Nickel, total	MG/L	MW-16	08/26/2015	ND	0.0040
Nickel, total Nickel, total	MG/L MG/L	MW-16 MW-16	11/11/2015 02/24/2016	ND ND	0.0040 0.0040
Nickel, total	MG/L MG/L	MW-16	05/16/2016	ND	0.0040
Nickel, total	MG/L	MW-16	08/31/2016	ND	0.0040
Nickel, total	MG/L	MW-16	11/14/2016	ND	0.0040
Nickel, total	MG/L	MW-35	09/05/2013	ND	0.0040
Nickel, total	MG/L	MW-35	12/16/2013	ND	0.0040
Nickel, total	MG/L	MW-35	03/04/2014	ND	0.0040
Nickel, total	MG/L	MW-35	06/02/2014	ND	0.0040
Nickel, total	MG/L	MW-35	09/22/2014	ND	0.0040
Nickel, total	MG/L	MW-35	11/17/2014	ND	0.0040
Nickel, total	MG/L	MW-35	02/25/2015	ND	0.0040
Nickel, total	MG/L	MW-35	05/19/2015	ND	0.0040

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Nickel, total	MG/L	MW-35	08/26/2015	ND	0.0040
Nickel, total	MG/L	MW-35	11/10/2015	ND	0.0040
Nickel, total	MG/L	MW-35	02/22/2016	ND	0.0040
Nickel, total	MG/L	MW-35	05/16/2016	ND	0.0040
Nickel, total	MG/L	MW-35	08/31/2016	ND	0.0040
Nickel, total	MG/L	MW-35	11/15/2016	ND	0.0040
Nitrate (as n)	MG/L	MW-13A	03/22/2005		0.5100
Nitrate (as n)	MG/L	MW-13A	06/15/2005		0.4400
Nitrate (as n)	MG/L	MW-13A	09/27/2005		1.8000
Nitrate (as n)	MG/L	MW-13A	12/15/2005		0.4700
Nitrate (as n)	MG/L	MW-13A	03/28/2006		0.4400
Nitrate (as n)	MG/L	MW-13A	06/21/2006		0.5400
Nitrate (as n)	MG/L	MW-13A	09/26/2006		0.4400
Nitrate (as n)	MG/L MG/L	MW-13A MW-13A	12/13/2006		0.4600
Nitrate (as n)	MG/L	MW-13A	03/27/2007 06/19/2007		0.4200 0.4600
Nitrate (as n) Nitrate (as n)	MG/L	MW-13A	09/19/2007		0.4600
Nitrate (as n)	MG/L	MW-13A	12/19/2007		0.4100
Nitrate (as n)	MG/L	MW-13A	03/25/2008		0.4900
Nitrate (as n)	MG/L	MW-13A	06/18/2008		0.5100
Nitrate (as n)	MG/L	MW-13A	09/17/2008		0.4400
Nitrate (as n)	MG/L	MW-13A	12/17/2008		0.4800
Nitrate (as n)	MG/L	MW-13A	03/24/2009		0.4700
Nitrate (as n)	MG/L	MW-13A	06/17/2009		0.4900
Nitrate (as n)	MG/L	MW-13A	09/10/2009		0.4500
Nitrate (as n)	MG/L	MW-13A	12/03/2009		0.4100
Nitrate (as n)	MG/L	MW-13A	03/25/2010		0.4800
Nitrate (as n)	MG/L	MW-13A	06/23/2010		0.4700
Nitrate (as n)	MG/L	MW-13A	09/23/2010		0.5100
Nitrate (as n)	MG/L	MW-13A	12/08/2010		0.4900
Nitrate (as n)	MG/L	MW-13A	03/30/2011		0.5300
Nitrate (as n)	MG/L	MW-13A	06/06/2011		0.4600
Nitrate (as n)	MG/L	MW-13A	09/27/2011		0.4800
Nitrate (as n)	MG/L	MW-13A	12/14/2011		0.4800
Nitrate (as n)	MG/L	MW-13A	03/21/2012		9.4000 *
Nitrate (as n)	MG/L	MW-13A	06/08/2012		0.4500
Nitrate (as n)	MG/L	MW-13A	09/26/2012		0.4200
Nitrate (as n)	MG/L MG/L	MW-13A MW-13A	12/03/2012		0.5400
Nitrate (as n) Nitrate (as n)	MG/L	MW-13A	03/11/2013 06/05/2013		0.4600 0.4900
Nitrate (as n)	MG/L	MW-13A	12/03/2013		0.4700
Nitrate (as n)	MG/L	MW-13A	03/04/2014		0.4800
Nitrate (as n)	MG/L	MW-13A	06/02/2014		0.4800
Nitrate (as n)	MG/L	MW-13A	09/22/2014		0.4400
Nitrate (as n)	MG/L	MW-13A	11/17/2014		0.4600
Nitrate (as n)	MG/L	MW-13A	02/23/2015		0.4700
Nitrate (as n)	MG/L	MW-13A	05/19/2015		0.4500
Nitrate (as n)	MG/L	MW-13A	08/26/2015		0.4100
Nitrate (as n)	MG/L	MW-13A	11/10/2015		0.4400
Nitrate (as n)	MG/L	MW-13A	02/22/2016		0.4200
Nitrate (as n)	MG/L	MW-13A	05/16/2016		0.4500
Nitrate (as n)	MG/L	MW-13A	08/31/2016		0.4500
Nitrate (as n)	MG/L	MW-13A	11/14/2016		0.4800
Nitrate (as n)	MG/L	MW-13B	03/22/2005		0.5000
Nitrate (as n)	MG/L	MW-13B	06/15/2005		0.7400
Nitrate (as n)	MG/L	MW-13B	09/27/2005		0.4600
Nitrate (as n) Nitrate (as n)	MG/L MG/L	MW-13B MW-13B	12/15/2005 03/29/2006		0.4900 0.4400
Nitrate (as n)	MG/L	MW-13B	06/21/2006		0.5600
Nitrate (as n)	MG/L	MW-13B	09/26/2006		0.4400
Nitrate (as n)	MG/L	MW-13B	12/13/2006		0.4000
Nitrate (as n)	MG/L	MW-13B	03/27/2007		0.4300
Nitrate (as n)	MG/L	MW-13B	06/19/2007		0.4800
Nitrate (as n)	MG/L	MW-13B	09/18/2007		0.4800
Nitrate (as n)	MG/L	MW-13B	12/19/2007		0.8900

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Nitrate (as n)	MG/L	MW-13B	03/25/2008	0.4800
Nitrate (as n)	MG/L	MW-13B	06/18/2008	0.9500
Nitrate (as n)	MG/L	MW-13B	09/17/2008	0.4600
Nitrate (as n)	MG/L	MW-13B	12/16/2008	0.5300
Nitrate (as n)	MG/L	MW-13B	03/24/2009	0.4600
Nitrate (as n)	MG/L	MW-13B	06/17/2009	0.4900
Nitrate (as n)	MG/L	MW-13B	09/10/2009	0.4600
Nitrate (as n)	MG/L	MW-13B	12/03/2009	0.4000
Nitrate (as n)	MG/L	MW-13B	03/25/2010	0.4600
Nitrate (as n)	MG/L	MW-13B	06/23/2010	0.4500
Nitrate (as n)	MG/L	MW-13B	09/23/2010	0.4800
Nitrate (as n)	MG/L	MW-13B	12/08/2010	0.5000
Nitrate (as n)	MG/L	MW-13B	03/30/2011	0.5100
Nitrate (as n)	MG/L	MW-13B	06/06/2011	0.4300
Nitrate (as n)	MG/L	MW-13B	09/27/2011	0.4600
Nitrate (as n)	MG/L	MW-13B	12/14/2011	0.4700
Nitrate (as n)	MG/L	MW-13B	03/21/2012	9.7000 *
Nitrate (as n)	MG/L	MW-13B	06/08/2012	0.4500
Nitrate (as n)	MG/L	MW-13B	09/26/2012	0.4000
Nitrate (as n)	MG/L	MW-13B	12/03/2012	0.4200
Nitrate (as n)	MG/L	MW-13B	03/11/2013	0.4300
Nitrate (as n)	MG/L	MW-13B	06/05/2013	0.4900
Nitrate (as n)	MG/L	MW-13B	12/03/2013	0.5100
Nitrate (as n)	MG/L	MW-13B	03/04/2014	0.4500
Nitrate (as n)	MG/L	MW-13B	06/02/2014	0.5300
Nitrate (as n)	MG/L	MW-13B	09/22/2014	0.4500
Nitrate (as n)	MG/L	MW-13B	11/17/2014	0.4700
Nitrate (as n)	MG/L	MW-13B	02/23/2015	0.4500
Nitrate (as n)	MG/L	MW-13B	05/19/2015	0.4500
Nitrate (as n)	MG/L	MW-13B	08/26/2015	0.4400
Nitrate (as n)	MG/L	MW-13B	11/10/2015	0.4500
Nitrate (as n)	MG/L	MW-13B	02/22/2016	0.4300
Nitrate (as n)	MG/L	MW-13B	05/16/2016	0.4600
Nitrate (as n)	MG/L	MW-13B	08/31/2016	0.4500
Nitrate (as n)	MG/L	MW-13B	11/14/2016	0.6400
Nitrate (as n)	MG/L	MW-16	03/24/2009	0.2800
Nitrate (as n)	MG/L	MW-16	06/16/2009	0.3300
Nitrate (as n)	MG/L	MW-16	09/09/2009	0.3100
Nitrate (as n)	MG/L	MW-16	12/03/2009	0.4000
Nitrate (as n)	MG/L	MW-16	03/25/2010	0.2900
Nitrate (as n)	MG/L	MW-16	06/24/2010	0.1600
Nitrate (as n)	MG/L	MW-16	09/24/2010	0.5100
Nitrate (as n)	MG/L	MW-16	12/09/2010	0.9000
Nitrate (as n)	MG/L	MW-16	03/30/2011	0.5200
Nitrate (as n)	MG/L	MW-16	06/07/2011	0.4600
Nitrate (as n)	MG/L	MW-16	09/27/2011	0.7300
Nitrate (as n)	MG/L	MW-16	12/13/2011	1.1000
Nitrate (as n)	MG/L	MW-16	03/21/2012	0.8900 *
Nitrate (as n)	MG/L	MW-16	06/08/2012	1.4000
Nitrate (as n)	MG/L	MW-16	09/27/2012	0.9600
Nitrate (as n)	MG/L	MW-16	12/04/2012	0.8600
Nitrate (as n)	MG/L	MW-16	03/12/2013	1.6000
Nitrate (as n)	MG/L	MW-16	06/04/2013	1.5000
Nitrate (as n)	MG/L	MW-16	09/05/2013	0.7200
Nitrate (as n)	MG/L	MW-16	12/16/2013	0.7500
Nitrate (as n)	MG/L	MW-16	03/05/2014	0.5500
Nitrate (as n)	MG/L	MW-16	06/02/2014	1.2000
Nitrate (as n)	MG/L	MW-16	09/22/2014	0.3600
Nitrate (as n)	MG/L	MW-16	11/18/2014	0.2800
Nitrate (as n)	MG/L	MW-16	02/23/2015	0.2600
Nitrate (as n)	MG/L	MW-16	05/20/2015	0.5500
Nitrate (as n)	MG/L	MW-16	08/26/2015	0.3800
Nitrate (as n)	MG/L	MW-16	11/11/2015	0.1900
Nitrate (as n)	MG/L	MW-16	02/24/2016	0.5000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Nitrate (as n) MG/L MW-16 08/31/2016 0.22	
Nitrate (as n)	00
Nitrate (as n) MG/L MW-35 06/14/2005 0.33 Nitrate (as n) MG/L MW-35 09/27/2005 0.26 Nitrate (as n) MG/L MW-35 12/15/2005 0.26 Nitrate (as n) MG/L MW-35 03/28/2006 0.34 Nitrate (as n) MG/L MW-35 06/21/2006 0.34 Nitrate (as n) MG/L MW-35 09/26/2006 0.35 Nitrate (as n) MG/L MW-35 03/27/2007 0.33 Nitrate (as n) MG/L MW-35 06/20/2007 0.33 Nitrate (as n) MG/L MW-35 06/20/2007 0.34 Nitrate (as n) MG/L MW-35 09/18/2007 0.34 Nitrate (as n) MG/L MW-35 03/25/2008 0.30 Nitrate (as n) MG/L MW-35 03/25/2008 0.30 Nitrate (as n) MG/L MW-35 09/18/2008 0.35 Nitrate (as n) MG/L MW-35 03/24/2009 0.35 Nitrate (as n) MG/L MW-35 03/24/2009 0.35 Nitrate (as n) MG/L MW-35 03/24/2009 0.35 Nitrate (as n) MG/L MW-35 03/24/2009 0.35 Nitrate (as n) MG/L MW-35 03/24/2009 0.35 Nitrate (as n) MG/L MW-35 03/24/2009 0.35 Nitrate (as n) MG/L MW-35 03/24/2010 0.35 Nitrate (as n) MG/L MW-35 03/24/2010 0.35 Nitrate (as n) MG/L MW-35 03/24/2010 0.35 Nitrate (as n) MG/L MW-35 03/24/2010 0.35 Nitrate (as n) MG/L MW-35 03/24/2010 0.35 Nitrate (as n) MG/L MW-35 03/24/2010 0.35 Nitrate (as n) MG/L MW-35 03/24/2010 0.36 Nitrate (as n) MG/L MW-35 03/24/2011 0.36 Nitrate (as n) MG/L MW-35 03/24/2011 0	00
Nitrate (as n) MG/L MW-35 12/15/2005 0.96	00
Nitrate (as n)	00
Nitrate (as n) MG/L MW-35 03/28/2006 0.34 Nitrate (as n) MG/L MW-35 06/21/2006 0.43 Nitrate (as n) MG/L MW-35 09/26/2006 0.35 Nitrate (as n) MG/L MW-35 09/26/2006 0.35 Nitrate (as n) MG/L MW-35 03/27/2007 0.35 Nitrate (as n) MG/L MW-35 06/20/2007 0.36 Nitrate (as n) MG/L MW-35 06/20/2007 0.34 Nitrate (as n) MG/L MW-35 09/18/2007 0.32 Nitrate (as n) MG/L MW-35 09/18/2007 0.32 Nitrate (as n) MG/L MW-35 03/25/2008 0.30 Nitrate (as n) MG/L MW-35 03/25/2008 0.30 Nitrate (as n) MG/L MW-35 03/25/2008 0.30 Nitrate (as n) MG/L MW-35 09/18/2008 0.30 Nitrate (as n) MG/L MW-35 09/18/2008 0.35 Nitrate (as n) MG/L MW-35 09/18/2008 0.37 Nitrate (as n) MG/L MW-35 03/24/2009 0.35 Nitrate (as n) MG/L MW-35 09/10/2009 0.35 Nitrate (as n) MG/L MW-35 09/25/2010 0.36 Nitrate (as n) MG/L MW-35 09/25/2010 0.36 Nitrate (as n) MG/L MW-35 09/23/2010 0.36 Nitrate (as n) MG/L MW-35 09/23/2010 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.37 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.36 Nitrate (as n) MG/L MW-35 09/26/2011 0.44 Nitrate (as n) MG/L MW-35 09/26/2011 0.44 Nitrate (as n) MG/L MW-35 09/26/2015 0.44 Nitrate (as n)	00
Nitrate (as n)	00
Nitrate (as n)	00
Nitrate (as n)	00
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n) MG/L MW-35 03/24/2009 0.35 Nitrate (as n) MG/L MW-35 06/16/2009 0.37 Nitrate (as n) MG/L MW-35 09/10/2009 0.35 Nitrate (as n) MG/L MW-35 12/03/2009 0.52 Nitrate (as n) MG/L MW-35 03/25/2010 0.36 Nitrate (as n) MG/L MW-35 06/23/2010 0.36 Nitrate (as n) MG/L MW-35 09/23/2010 0.40 Nitrate (as n) MG/L MW-35 09/23/2010 0.30 Nitrate (as n) MG/L MW-35 12/09/2010 0.32 Nitrate (as n) MG/L MW-35 09/26/2010 0.39 Nitrate (as n) MG/L MW-35 03/30/2011 0.39 Nitrate (as n) MG/L MW-35 09/26/2011 0.45 Nitrate (as n) MG/L MW-35 09/26/2012	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n) Nitrat	
Nitrate (as n) Nitrat	
Nitrate (as n) Nitrat	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	00
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n) MG/L MW-35 03/21/2012 0.45 Nitrate (as n) MG/L MW-35 06/06/2012 0.43 Nitrate (as n) MG/L MW-35 09/26/2012 0.37 Nitrate (as n) MG/L MW-35 09/26/2012 0.42 Nitrate (as n) MG/L MW-35 03/13/2013 0.47 Nitrate (as n) MG/L MW-35 06/06/2013 0.45 Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 03/04/2013 0.40 Nitrate (as n) MG/L MW-35 03/04/2014 0.42 Nitrate (as n) MG/L MW-35 06/02/2014 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 02/25/2015 0.41	
Nitrate (as n) MG/L MW-35 06/06/2012 0.43 Nitrate (as n) MG/L MW-35 09/26/2012 0.37 Nitrate (as n) MG/L MW-35 12/04/2012 0.42 Nitrate (as n) MG/L MW-35 03/13/2013 0.47 Nitrate (as n) MG/L MW-35 06/06/2013 0.45 Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 03/04/2013 0.42 Nitrate (as n) MG/L MW-35 00/05/2013 0.42 Nitrate (as n) MG/L MW-35 00/02/2014 0.42 Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 02/25/2015 0.41	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n) MG/L MW-35 03/13/2013 0.47 Nitrate (as n) MG/L MW-35 06/06/2013 0.45 Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 12/16/2013 0.40 Nitrate (as n) MG/L MW-35 03/04/2014 0.42 Nitrate (as n) MG/L MW-35 06/02/2014 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 11/17/2014 0.42 Nitrate (as n) MG/L MW-35 02/25/2015 0.41 Nitrate (as n) MG/L MW-35 05/19/2015 0.40 Nitrate (as n) MG/L MW-35 08/26/2015 0.40 Nitrate (as n) MG/L MW-35 02/22/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 05/16/2016 0.44	
Nitrate (as n) MG/L MW-35 06/06/2013 0.45 Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 12/16/2013 0.40 Nitrate (as n) MG/L MW-35 03/04/2014 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 01/17/2014 0.42 Nitrate (as n) MG/L MW-35 02/25/2015 0.41 Nitrate (as n) MG/L MW-35 05/19/2015 0.40 Nitrate (as n) MG/L MW-35 08/26/2015 0.40 Nitrate (as n) MG/L MW-35 02/22/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 05/16/2016 0.43	
Nitrate (as n) MG/L MW-35 09/05/2013 0.42 Nitrate (as n) MG/L MW-35 12/16/2013 0.40 Nitrate (as n) MG/L MW-35 03/04/2014 0.42 Nitrate (as n) MG/L MW-35 06/02/2014 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 01/17/2014 0.42 Nitrate (as n) MG/L MW-35 02/25/2015 0.41 Nitrate (as n) MG/L MW-35 08/26/2015 0.40 Nitrate (as n) MG/L MW-35 01/10/2015 0.41 Nitrate (as n) MG/L MW-35 02/22/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 08/31/2016 0.43	
Nitrate (as n) MG/L MW-35 12/16/2013 0.40 Nitrate (as n) MG/L MW-35 03/04/2014 0.42 Nitrate (as n) MG/L MW-35 06/02/2014 0.42 Nitrate (as n) MG/L MW-35 09/22/2014 0.42 Nitrate (as n) MG/L MW-35 11/17/2014 0.42 Nitrate (as n) MG/L MW-35 02/25/2015 0.41 Nitrate (as n) MG/L MW-35 08/26/2015 0.40 Nitrate (as n) MG/L MW-35 01/10/2015 0.41 Nitrate (as n) MG/L MW-35 02/22/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 08/31/2016 0.43	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n)	
Nitrate (as n) MG/L MW-35 11/17/2014 0.42 Nitrate (as n) MG/L MW-35 02/25/2015 0.41 Nitrate (as n) MG/L MW-35 05/19/2015 0.40 Nitrate (as n) MG/L MW-35 08/26/2015 0.40 Nitrate (as n) MG/L MW-35 08/26/2015 0.40 Nitrate (as n) MG/L MW-35 02/22/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 11/15/2016 0.43 Nitrate (as n) MG/L MW-35 11/15/2016 0.44 Nitrate (as n) MG/L MW-35 11/15/2016 0.45 Nitrate (as n) MG/L MW-35 11/15/2016 0.45 Nitrate (as n) MG/L MW-35 11/15/2016 0.45	
Nitrate (as n) MG/L MW-35 02/25/2015 0.41 Nitrate (as n) MG/L MW-35 05/19/2015 0.40 Nitrate (as n) MG/L MW-35 08/26/2015 0.40 Nitrate (as n) MG/L MW-35 11/10/2015 0.41 Nitrate (as n) MG/L MW-35 02/22/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 11/15/2016 0.44 Nitrate (as n) MG/L MW-35 11/15/2016 0.45	
Nitrate (as n)	
Nitrate (as n) MG/L MW-35 08/26/2015 0.40 Nitrate (as n) MG/L MW-35 11/10/2015 0.41 Nitrate (as n) MG/L MW-35 02/22/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 11/15/2016 0.47	
Nitrate (as n) MG/L MW-35 11/10/2015 0.41 Nitrate (as n) MG/L MW-35 02/22/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 11/15/2016 0.47 Nitrate (as n) MG/L MW-35 0.47 Nitrate (as n) MG/L MW-35 0.47 Nitrate (as n) MG/L MW-35 0.47 Nitrate (as n) MG/L MW-35 0.47 Nitrate (as n) MG/L MW-35 0.47 Nitrate (as n) MG/L MW-35 0.47 Nitrate (as n) MG/L MW-35 0.47 Nitrate (as n) MG/L MW-35	
Nitrate (as n) MG/L Nitrate (as n) MG/L MW-35 05/16/2016 0.41 Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 11/15/2016 0.47	
Nitrate (as n) MG/L MW-35 05/16/2016 0.44 Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 11/15/2016 0.47	
Nitrate (as n) MG/L MW-35 08/31/2016 0.43 Nitrate (as n) MG/L MW-35 11/15/2016 0.47	
Nitrate (as n) MG/L MW-35 11/15/2016 0.47	
PH Units MW-13A 06/15/2005 7.21	
PH PH Units MW-13A 09/27/2005 7.10 PH PH Units MW-13A 12/15/2005 6.34	
'	
PH PH Units MW-13A 06/21/2006 7.25 PH PH Units MW-13A 09/26/2006 7.25	
pH	
pH pH Units MW-13A 03/27/2007 7.32 pH pH Units MW-13A 09/19/2007 6.68	
pH	
pH	
pH	
pH	
pH pH Units MW-13A 09/17/2008 7.00 pH pH Units MW-13A 12/17/2008 6.51	

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
pH	pH Units	MW-13A	03/24/2009	6.8500
pH	pH Units	MW-13A	06/17/2009	7.0700
pH	pH Units	MW-13A	12/03/2009	7.0300
pH	pH Units	MW-13A	03/25/2010	6.9600
pH	pH Units	MW-13A	06/23/2010	6.9900
pH	pH Units	MW-13A	09/23/2010	6.7800
pH	pH Units	MW-13A	12/08/2010	7.4800
рH	pH Units	MW-13A	03/30/2011	6.9500
рH	pH Units	MW-13A	06/06/2011	7.4500
pH	pH Units	MW-13A	09/27/2011	6.9100
pH	pH Units	MW-13A	12/14/2011	7.1300
pH	pH Units	MW-13A	03/21/2012	6.7800
рН	pH Units	MW-13A	06/08/2012	6.7200
pH	pH Units	MW-13A	09/26/2012	7.3500
pH	pH Units	MW-13A	12/03/2012	6.9500
рН	pH Units	MW-13A	03/11/2013	7.1800
pH	pH Units	MW-13A	06/05/2013	7.3300
pH	pH Units	MW-13A	12/03/2013	7.1600
pH	pH Units	MW-13A	03/04/2014	7.4800
рН	pH Units	MW-13A	06/02/2014	7.2600
pH	pH Units	MW-13A	09/22/2014	7.2600
pH	pH Units	MW-13A	11/17/2014	6.9900
pH	pH Units	MW-13A	05/19/2015	7.0300
рН	pH Units	MW-13A	08/26/2015	7.0700
pН	pH Units	MW-13A	11/10/2015	6.6800
pH	pH Units	MW-13A	02/22/2016	6.6900
pH	pH Units	MW-13A	05/16/2016	6.8700
pH	pH Units	MW-13A	08/31/2016	6.6500
pН	pH Units	MW-13A	11/14/2016	6.5000
рН	pH Units	MW-13B	03/22/2005	7.4900
рН	pH Units	MW-13B	06/15/2005	7.8100
рН	pH Units	MW-13B	09/27/2005	7.7300
рН	pH Units	MW-13B	12/15/2005	6.9300
pH	pH Units	MW-13B	03/29/2006	7.4500
pH	pH Units	MW-13B	06/21/2006	7.7600
рН	pH Units	MW-13B	09/26/2006	7.7800
pH	pH Units	MW-13B	12/13/2006	7.3200
pH	pH Units	MW-13B	03/27/2007	7.7600
pH	pH Units	MW-13B	09/18/2007	7.4800
pH	pH Units	MW-13B	12/19/2007	7.8500
pH	pH Units	MW-13B	03/25/2008	7.7800
pH	pH Units	MW-13B	06/18/2008	7.7400
pH	pH Units	MW-13B	09/17/2008	7.5700
pH	pH Units	MW-13B	12/16/2008	7.2300
pH	pH Units	MW-13B	03/24/2009	7.3700
pH	pH Units	MW-13B	06/17/2009	7.5600
pH	pH Units	MW-13B	12/03/2009	6.9300
Hq	pH Units	MW-13B	03/25/2010	7.4900
pH	pH Units	MW-13B	06/23/2010	7.2700
pH	pH Units	MW-13B	09/23/2010	7.1100
pH	pH Units	MW-13B	12/08/2010	7.0500
pH	pH Units	MW-13B	03/30/2011	7.5100
pH	pH Units	MW-13B	06/06/2011	7.5800
pH	pH Units	MW-13B	09/27/2011	7.0800
pH	pH Units	MW-13B	12/14/2011	7.5300
pH	pH Units	MW-13B	03/21/2012	7.0900
pH	pH Units	MW-13B	06/08/2012	7.1500
pH	pH Units	MW-13B	09/26/2012	7.3200
pH	pH Units	MW-13B	12/03/2012	7.3200
pH	pH Units	MW-13B	03/11/2013	7.4200
pH	pH Units	MW-13B	06/05/2013	7.2700
pH	pH Units	MW-13B	12/03/2013	7.3400
pH	pH Units	MW-13B	03/04/2014	7.4000
pH	pH Units	MW-13B	06/02/2014	7.3500
рН	pH Units	MW-13B	09/22/2014	7.6800

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
рН	pH Units	MW-13B	11/17/2014	7.0800
рH	pH Units	MW-13B	05/19/2015	7.6500
pH	pH Units	MW-13B	08/26/2015	7.5900
рH	pH Units	MW-13B	11/10/2015	7.2800
pH	pH Units	MW-13B	02/22/2016	7.0100
рH	pH Units	MW-13B	05/16/2016	7.3100
pH	pH Units	MW-13B	08/31/2016	7.2300
pН	pH Units	MW-13B	11/14/2016	7.1700
рН	pH Units	MW-16	03/24/2009	6.2700
pH	pH Units	MW-16	06/16/2009	6.3300
pH	pH Units	MW-16	12/03/2009	6.2700
pH	pH Units	MW-16	03/25/2010	6.2600
pH	pH Units	MW-16	06/24/2010	6.0400
pH	pH Units	MW-16	09/24/2010	5.9000
pH	pH Units	MW-16	12/09/2010	6.1700
рН	pH Units	MW-16	03/30/2011	6.3100
pH	pH Units	MW-16	06/07/2011	6.1500
pH	pH Units	MW-16	09/27/2011	6.4400
pH	pH Units	MW-16	12/13/2011	6.3000
pH	pH Units	MW-16	03/21/2012	6.3200
pH	pH Units	MW-16	06/08/2012	6.2500
pH	pH Units	MW-16	09/27/2012	6.2600
pH	pH Units	MW-16	12/04/2012	6.2200
pH	pH Units	MW-16	03/12/2013	6.3500
pH	pH Units	MW-16	06/04/2013	6.4500
pH	pH Units	MW-16	09/05/2013	6.6200
pH	pH Units	MW-16	12/16/2013	6.3200
pН	pH Units	MW-16	03/05/2014	6.5000
pH	pH Units	MW-16	06/02/2014	6.6100
pH	pH Units	MW-16	09/22/2014	6.4000
pH	pH Units	MW-16	11/18/2014	6.3800
pH	pH Units	MW-16	02/23/2015	6.4800
pH	pH Units	MW-16	05/20/2015	6.5100
pH	pH Units	MW-16	08/26/2015	6.3500
рН	pH Units	MW-16	11/11/2015	6.1300
рН	pH Units	MW-16	02/24/2016	6.4900
pH	pH Units	MW-16	05/16/2016	6.1100
рН	pH Units	MW-16	08/31/2016	5.9300
pН	pH Units	MW-16	11/14/2016	5.8900
рН	pH Units	MW-35	03/22/2005	7.0600
рН	pH Units	MW-35	06/14/2005	7.4300
pH	pH Units	MW-35	09/27/2005	7.3900
pH	pH Units	MW-35	12/15/2005	6.4100
pH	pH Units	MW-35	03/28/2006	7.1000
pH	pH Units	MW-35	06/21/2006	7.4600
pH	pH Units	MW-35	09/26/2006	7.5000
pH	pH Units	MW-35	12/12/2006	6.9900
pH	pH Units	MW-35	03/27/2007	7.5100
pH	pH Units	MW-35	09/18/2007	6.9700
pH	pH Units	MW-35	12/20/2007	7.2500
pH	pH Units	MW-35	03/25/2008	7.4000
pH	pH Units	MW-35	06/18/2008	7.4400
pH	pH Units	MW-35	09/18/2008	7.4200
pH	pH Units	MW-35	12/19/2008	7.1900
pH	pH Units	MW-35	03/24/2009	7.2100
pH	pH Units	MW-35	06/16/2009	7.1500
pH	pH Units	MW-35	12/03/2009	7.2200
pH	pH Units	MW-35	03/25/2010	7.2400
pH	pH Units	MW-35	06/23/2010	7.3700
pH	pH Units	MW-35	09/23/2010	6.8500
pH	pH Units	MW-35	12/09/2010	7.3900
pH	pH Units	MW-35	03/30/2011	7.3700
pH	pH Units	MW-35	06/06/2011	7.2300
pH	pH Units	MW-35	09/26/2011	6.8600
рН	pH Units	MW-35	12/13/2011	7.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
pH	pH Units	MW-35	03/21/2012		7.0200
pH	pH Units	MW-35	06/06/2012		6.9800
pH	pH Units	MW-35	09/26/2012		7.1100
pH	pH Units	MW-35	12/04/2012		7.1600
pH	pH Units	MW-35	03/13/2013		7.0600
pH	pH Units	MW-35	06/06/2013		7.3700
pH	pH Units	MW-35	09/05/2013		7.1000
pH	pH Units	MW-35	12/16/2013		7.1500
pH	pH Units	MW-35	03/04/2014		7.5300
pH	pH Units	MW-35	06/02/2014		7.1700
pH	pH Units	MW-35	09/22/2014		6.6200
pH	pH Units	MW-35	11/17/2014		7.4800
pH	pH Units	MW-35	02/25/2015		7.7700
pH	pH Units	MW-35	05/19/2015		6.7200
pH	pH Units	MW-35	08/26/2015		7.2500
pH	pH Units	MW-35	11/10/2015		6.9200
pH	pH Units	MW-35	02/22/2016		6.5800
pH	pH Units	MW-35	05/16/2016		6.9500
pH	pH Units	MW-35	08/31/2016		7.0900
Hq	pH Units	MW-35	11/15/2016		6.6100
Potassium, dissolved	MG/L	MW-13A	03/22/2005		0.5700
Potassium, dissolved	MG/L	MW-13A	06/15/2005		0.5200
Potassium, dissolved	MG/L	MW-13A	09/27/2005		0.4800
Potassium, dissolved	MG/L	MW-13A	12/15/2005		0.5000
Potassium, dissolved	MG/L	MW-13A	03/28/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/21/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	09/26/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	12/13/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	03/27/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/19/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	09/19/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	12/19/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	03/25/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/18/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	09/17/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	12/17/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	03/24/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/17/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	09/10/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	12/03/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	03/25/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/23/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	09/23/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	12/08/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	03/30/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/06/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	09/27/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	12/14/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	03/21/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/08/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	09/26/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	12/03/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	03/11/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/05/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	12/03/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	03/04/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	06/02/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	09/22/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	11/17/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	02/23/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	05/19/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	08/26/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	11/10/2015	ND	1.0000
	MG/L	MW-13A	02/22/2016	ND	1.0000
Potassium, dissolved					

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Potassium, dissolved	MG/L	MW-13A	08/31/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-13A	11/14/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/22/2005		0.6000
Potassium, dissolved	MG/L	MW-13B	06/15/2005		0.5500
Potassium, dissolved	MG/L	MW-13B	09/27/2005		0.5500
Potassium, dissolved	MG/L	MW-13B	12/15/2005		0.5200
Potassium, dissolved	MG/L	MW-13B	03/29/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/21/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	09/26/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	12/13/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/27/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/19/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	09/18/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	12/19/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/25/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/18/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	09/17/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	12/16/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/24/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/17/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	09/10/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	12/03/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/25/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/23/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	09/23/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	12/08/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/30/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/06/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	09/27/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	12/14/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/21/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/08/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	09/26/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	12/03/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/11/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/05/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	12/03/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	03/04/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	06/02/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	09/22/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	11/17/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	02/23/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	05/19/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	08/26/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	11/10/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	02/22/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	05/16/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	08/31/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-13B	11/14/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-16	03/24/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-16	06/16/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-16	09/09/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-16	12/03/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-16	03/25/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-16	06/24/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-16	09/24/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-16	12/09/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-16	03/30/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-16	06/07/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-16	09/27/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-16	12/13/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-16	03/21/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-16	06/08/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-16	09/27/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-16	12/04/2012	ND	1.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Potassium, dissolved	MG/L	MW-16	03/12/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-16	06/04/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-16	09/05/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-16	12/16/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-16	03/05/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-16	06/02/2014		1.2000
Potassium, dissolved	MG/L	MW-16	09/22/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-16	11/18/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-16	02/23/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-16	05/20/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-16	08/26/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-16	11/11/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-16	02/24/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-16	05/16/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-16	08/31/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-16	11/14/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/22/2005		0.5200
Potassium, dissolved	MG/L	MW-35	06/14/2005		0.4800
Potassium, dissolved	MG/L	MW-35	09/27/2005		0.5200
Potassium, dissolved	MG/L	MW-35	12/15/2005		0.4600
Potassium, dissolved	MG/L	MW-35	03/28/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-35	06/21/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-35	09/26/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-35	12/12/2006	ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/27/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-35	06/20/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-35	09/18/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-35	12/20/2007	ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/25/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-35	06/18/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-35	09/18/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-35	12/19/2008	ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/24/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-35	06/16/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-35	09/10/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-35	12/03/2009	ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/25/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-35	06/23/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-35	09/23/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-35	12/09/2010	ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/30/2011	ND ND	1.0000
Potassium, dissolved Potassium, dissolved	MG/L MG/L	MW-35 MW-35	06/06/2011 09/26/2011	ND	1.0000 1.0000
Potassium, dissolved	MG/L	MW-35	12/13/2011	ND	1.0000
Potassium, dissolved	MG/L	MW-35		ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/21/2012 06/06/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-35	09/26/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-35	12/04/2012	ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/13/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-35	06/06/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-35	09/05/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-35	12/16/2013	ND	1.0000
Potassium, dissolved	MG/L	MW-35	03/04/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-35	06/02/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-35	09/22/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-35	11/17/2014	ND	1.0000
Potassium, dissolved	MG/L	MW-35	02/25/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-35	05/19/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-35	08/26/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-35	11/10/2015	ND	1.0000
Potassium, dissolved	MG/L	MW-35	02/22/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-35	05/16/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-35	08/31/2016	ND	1.0000
Potassium, dissolved	MG/L	MW-35	11/15/2016	ND	1.0000
Selenium, total	MG/L	MW-13A	12/03/2013	ND	0.0010

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Selenium, total	MG/L	MW-13A	03/04/2014	ND	0.0010
Selenium, total	MG/L	MW-13A	06/02/2014	ND	0.0010
Selenium, total	MG/L	MW-13A	09/22/2014	ND	0.0010
Selenium, total	MG/L	MW-13A	11/17/2014	ND	0.0010
Selenium, total	MG/L	MW-13A	02/23/2015	ND	0.0010
Selenium, total	MG/L	MW-13A	05/19/2015	ND	0.0010
Selenium, total	MG/L	MW-13A	08/26/2015	ND	0.0010
Selenium, total	MG/L	MW-13A	11/10/2015	ND	0.0010
Selenium, total	MG/L	MW-13A	02/22/2016	ND	0.0010
Selenium, total	MG/L	MW-13A	05/16/2016	ND	0.0010
Selenium, total	MG/L	MW-13A	08/31/2016	ND	0.0010
Selenium, total	MG/L	MW-13A	11/14/2016	ND	0.0010
Selenium, total	MG/L	MW-13B	12/03/2013	ND	0.0010
Selenium, total	MG/L	MW-13B	03/04/2014	ND	0.0010
Selenium, total	MG/L	MW-13B	06/02/2014	ND	0.0010
Selenium, total	MG/L	MW-13B	09/22/2014	ND	0.0010
Selenium, total	MG/L	MW-13B	11/17/2014	ND	0.0010
Selenium, total	MG/L	MW-13B	02/23/2015	ND	0.0010
Selenium, total	MG/L	MW-13B	05/19/2015	ND	0.0010
Selenium, total	MG/L	MW-13B	08/26/2015	ND	0.0010
Selenium, total	MG/L	MW-13B	11/10/2015	ND	0.0010
Selenium, total	MG/L	MW-13B	02/22/2016	ND	0.0010
Selenium, total	MG/L	MW-13B	05/16/2016	ND	0.0010
Selenium, total	MG/L	MW-13B	08/31/2016	ND	0.0010
Selenium, total	MG/L	MW-13B	11/14/2016	ND	0.0010
Selenium, total	MG/L	MW-16	09/05/2013	ND	0.0010
Selenium, total	MG/L	MW-16	12/16/2013	ND	0.0010
Selenium, total	MG/L	MW-16	03/05/2014	ND	0.0010
Selenium, total	MG/L	MW-16	06/02/2014	ND	0.0010
Selenium, total	MG/L	MW-16	09/22/2014	ND	0.0010
Selenium, total	MG/L	MW-16	11/18/2014	ND	0.0010
Selenium, total	MG/L	MW-16	02/23/2015	ND	0.0010
Selenium, total	MG/L	MW-16	05/20/2015	ND	0.0010
Selenium, total	MG/L	MW-16	08/26/2015	ND	0.0010
Selenium, total	MG/L	MW-16	11/11/2015	ND	0.0010
Selenium, total	MG/L	MW-16	02/24/2016	ND	0.0010
Selenium, total	MG/L	MW-16	05/16/2016	ND	0.0010
Selenium, total	MG/L	MW-16	08/31/2016	ND	0.0010
Selenium, total	MG/L	MW-16	11/14/2016	ND	0.0010
Selenium, total	MG/L	MW-35	09/05/2013	ND	0.0010
Selenium, total	MG/L	MW-35	12/16/2013	ND	0.0010
Selenium, total	MG/L	MW-35	03/04/2014	ND	0.0010
Selenium, total	MG/L	MW-35	06/02/2014	ND	0.0010
Selenium, total	MG/L	MW-35	09/22/2014	ND	0.0010
Selenium, total	MG/L	MW-35	11/17/2014	ND	0.0010
Selenium, total	MG/L	MW-35	02/25/2015	ND	0.0010
Selenium, total	MG/L	MW-35	05/19/2015	ND	0.0010
Selenium, total	MG/L	MW-35	08/26/2015	ND	0.0010
Selenium, total	MG/L	MW-35	11/10/2015	ND	0.0010
Selenium, total	MG/L	MW-35	02/22/2016	ND	0.0010
Selenium, total	MG/L	MW-35	05/16/2016	ND	0.0010
Selenium, total	MG/L	MW-35	08/31/2016	ND	0.0010
Selenium, total	MG/L	MW-35	11/15/2016	ND	0.0010
Silver, total	MG/L	MW-13A	12/03/2013	ND	0.0020
Silver, total	MG/L	MW-13A	03/04/2014	ND	0.0020
Silver, total	MG/L	MW-13A	06/02/2014	ND	0.0020
Silver, total	MG/L	MW-13A	09/22/2014	ND	0.0020
Silver, total	MG/L	MW-13A	11/17/2014	ND	0.0020
Silver, total	MG/L	MW-13A	02/23/2015	ND	0.0020
Silver, total	MG/L	MW-13A	05/19/2015	ND	0.0020
Silver, total	MG/L	MW-13A	08/26/2015	ND	0.0020
Silver, total	MG/L	MW-13A	11/10/2015	ND	0.0020
Silver, total	MG/L	MW-13A	02/22/2016	ND	0.0020
Silver, total	MG/L	MW-13A	05/16/2016	ND	0.0020
Silver, total	MG/L	MW-13A	08/31/2016	ND	0.0020

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Silver, total	MG/L	MW-13A	11/14/2016	ND	0.0020
Silver, total	MG/L	MW-13B	12/03/2013	ND	0.0020
Silver, total	MG/L	MW-13B	03/04/2014	ND	0.0020
Silver, total	MG/L	MW-13B	06/02/2014	ND	0.0020
Silver, total	MG/L	MW-13B	09/22/2014	ND	0.0020
Silver, total	MG/L	MW-13B	11/17/2014	ND	0.0020
Silver, total	MG/L	MW-13B	02/23/2015	ND	0.0020
Silver, total	MG/L	MW-13B	05/19/2015	ND	0.0020
Silver, total	MG/L	MW-13B	08/26/2015	ND	0.0020
Silver, total	MG/L	MW-13B	11/10/2015	ND	0.0020
Silver, total	MG/L	MW-13B	02/22/2016	ND	0.0020
Silver, total	MG/L	MW-13B	05/16/2016	ND	0.0020
Silver, total	MG/L	MW-13B	08/31/2016	ND	0.0020
Silver, total	MG/L	MW-13B	11/14/2016	ND	0.0020
Silver, total	MG/L	MW-16	09/05/2013	ND	0.0020
Silver, total	MG/L	MW-16	12/16/2013	ND	0.0020
Silver, total	MG/L	MW-16	03/05/2014	ND	0.0020
Silver, total	MG/L	MW-16	06/02/2014	ND	0.0020
Silver, total	MG/L	MW-16	09/22/2014	ND	0.0020
Silver, total	MG/L	MW-16	11/18/2014	ND	0.0020
Silver, total	MG/L	MW-16	02/23/2015	ND	0.0020
Silver, total	MG/L	MW-16	05/20/2015	ND	0.0020
Silver, total	MG/L	MW-16	08/26/2015	ND	0.0020
Silver, total	MG/L	MW-16	11/11/2015	ND	0.0020
Silver, total	MG/L	MW-16	02/24/2016	ND	0.0020
Silver, total	MG/L	MW-16	05/16/2016	ND	0.0020
Silver, total	MG/L	MW-16	08/31/2016	ND	0.0020
Silver, total	MG/L	MW-16	11/14/2016	ND	0.0020
Silver, total	MG/L	MW-35	09/05/2013	ND	0.0020
Silver, total	MG/L	MW-35	12/16/2013	ND	0.0020
Silver, total	MG/L	MW-35	03/04/2014	ND	0.0020
Silver, total	MG/L	MW-35	06/02/2014	ND	0.0020
Silver, total	MG/L	MW-35	09/22/2014	ND	0.0020
Silver, total	MG/L	MW-35	11/17/2014	ND	0.0020
Silver, total	MG/L	MW-35	02/25/2015	ND	0.0020
Silver, total	MG/L	MW-35	05/19/2015	ND	0.0020
Silver, total	MG/L	MW-35	08/26/2015	ND	0.0020
Silver, total	MG/L	MW-35	11/10/2015	ND	0.0020
Silver, total	MG/L	MW-35	02/22/2016	ND	0.0020
Silver, total	MG/L	MW-35	05/16/2016	ND	0.0020
Silver, total Silver, total	MG/L MG/L	MW-35 MW-35	08/31/2016 11/15/2016	ND ND	0.0020
				טא	0.0020
Sodium, dissolved Sodium, dissolved	MG/L MG/L	MW-13A MW-13A	03/22/2005 06/15/2005		5.4000 4.4000
Sodium, dissolved	MG/L	MW-13A	09/27/2005		4.5000
Sodium, dissolved	MG/L	MW-13A	12/15/2005		4.8000
Sodium, dissolved	MG/L	MW-13A	03/28/2006		5.4000
Sodium, dissolved	MG/L	MW-13A	06/21/2006		5.2000
Sodium, dissolved	MG/L	MW-13A	09/26/2006		5.5000
Sodium, dissolved	MG/L	MW-13A	12/13/2006		4.8000
Sodium, dissolved	MG/L	MW-13A	03/27/2007		5.4000
Sodium, dissolved	MG/L	MW-13A	06/19/2007		5.5000
Sodium, dissolved	MG/L	MW-13A	09/19/2007		5.4000
Sodium, dissolved	MG/L	MW-13A	12/19/2007		4.9000
Sodium, dissolved	MG/L	MW-13A	03/25/2008		5.5000
Sodium, dissolved	MG/L	MW-13A	06/18/2008		5.5000
Sodium, dissolved	MG/L	MW-13A	09/17/2008		5.2000
Sodium, dissolved	MG/L	MW-13A	12/17/2008		5.5000
Sodium, dissolved	MG/L	MW-13A	03/24/2009		5.3000
Sodium, dissolved	MG/L	MW-13A	06/17/2009		5.4000
Sodium, dissolved	MG/L	MW-13A	09/10/2009		5.2000
Sodium, dissolved	MG/L	MW-13A	12/03/2009		5.6000
Sodium, dissolved	MG/L	MW-13A	03/25/2010		6.1000
Sodium, dissolved	MG/L	MW-13A	06/23/2010		5.7000
	I IVIO/L	INIAA IOU	00/20/2010		0.7000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Sodium, dissolved	MG/L	MW-13A	12/08/2010	5.2000
Sodium, dissolved	MG/L	MW-13A	03/30/2011	5.4000
Sodium, dissolved	MG/L	MW-13A	06/06/2011	5.4000
Sodium, dissolved	MG/L	MW-13A	09/27/2011	5.6000
Sodium, dissolved	MG/L	MW-13A	12/14/2011	5.5000
Sodium, dissolved	MG/L	MW-13A	03/21/2012	5.3000
Sodium, dissolved	MG/L	MW-13A	06/08/2012	5.2000
Sodium, dissolved	MG/L	MW-13A	09/26/2012	5.2000
Sodium, dissolved	MG/L	MW-13A	12/03/2012	5.5000
Sodium, dissolved	MG/L	MW-13A	03/11/2013	5.7000
Sodium, dissolved	MG/L	MW-13A	06/05/2013	5.6000
Sodium, dissolved	MG/L	MW-13A	12/03/2013	5.5000
Sodium, dissolved	MG/L	MW-13A	03/04/2014	5.4000
Sodium, dissolved	MG/L	MW-13A	06/02/2014	5.2000
Sodium, dissolved	MG/L	MW-13A	09/22/2014	5.2000
Sodium, dissolved	MG/L	MW-13A	11/17/2014	5.4000
Sodium, dissolved	MG/L	MW-13A	02/23/2015	5.2000
Sodium, dissolved	MG/L	MW-13A	05/19/2015	5.5000
Sodium, dissolved	MG/L	MW-13A	08/26/2015	5.3000
Sodium, dissolved	MG/L	MW-13A	11/10/2015	5.4000
Sodium, dissolved	MG/L	MW-13A	02/22/2016	5.9000
Sodium, dissolved	MG/L	MW-13A	05/16/2016	5.5000
Sodium, dissolved	MG/L	MW-13A	08/31/2016	5.4000
Sodium, dissolved	MG/L	MW-13A	11/14/2016	5.4000
Sodium, dissolved	MG/L	MW-13B	03/22/2005	5.3000
Sodium, dissolved	MG/L	MW-13B	06/15/2005	4.8000
Sodium, dissolved	MG/L	MW-13B	09/27/2005	5.0000
Sodium, dissolved	MG/L	MW-13B	12/15/2005	4.8000
Sodium, dissolved	MG/L	MW-13B	03/29/2006	4.9000
Sodium, dissolved	MG/L	MW-13B	06/21/2006	5.0000
Sodium, dissolved	MG/L	MW-13B	09/26/2006	5.5000
Sodium, dissolved	MG/L	MW-13B	12/13/2006	4.8000
Sodium, dissolved	MG/L	MW-13B	03/27/2007	5.2000
Sodium, dissolved	MG/L	MW-13B	06/19/2007	5.2000
Sodium, dissolved	MG/L	MW-13B	09/18/2007	5.2000
Sodium, dissolved	MG/L	MW-13B	12/19/2007	4.9000
Sodium, dissolved	MG/L	MW-13B	03/25/2008	5.3000
Sodium, dissolved	MG/L	MW-13B	06/18/2008	5.3000
Sodium, dissolved	MG/L	MW-13B	09/17/2008	5.0000
Sodium, dissolved	MG/L	MW-13B	12/16/2008	5.1000
Sodium, dissolved	MG/L	MW-13B	03/24/2009	5.1000
Sodium, dissolved	MG/L	MW-13B	06/17/2009	5.3000
Sodium, dissolved	MG/L	MW-13B	09/10/2009	5.1000
Sodium, dissolved	MG/L	MW-13B	12/03/2009	5.3000
Sodium, dissolved	MG/L	MW-13B	03/25/2010	5.3000
Sodium, dissolved	MG/L	MW-13B	06/23/2010	5.3000
Sodium, dissolved	MG/L	MW-13B	09/23/2010	4.8000
Sodium, dissolved	MG/L	MW-13B	12/08/2010	5.6000
Sodium, dissolved	MG/L	MW-13B	03/30/2011	5.1000
Sodium, dissolved	MG/L	MW-13B	06/06/2011	5.2000
Sodium, dissolved	MG/L	MW-13B	09/27/2011	5.2000
Sodium, dissolved	MG/L	MW-13B	12/14/2011	5.1000
Sodium, dissolved	MG/L	MW-13B	03/21/2012	4.9000
Sodium, dissolved	MG/L	MW-13B	06/08/2012	5.1000
Sodium, dissolved	MG/L	MW-13B	09/26/2012	5.0000
Sodium, dissolved	MG/L	MW-13B	12/03/2012	5.7000
Sodium, dissolved	MG/L	MW-13B	03/11/2013	5.3000
Sodium, dissolved	MG/L	MW-13B	06/05/2013	5.4000
Sodium, dissolved	MG/L	MW-13B	12/03/2013	5.4000
Sodium, dissolved	MG/L	MW-13B	03/04/2014	5.1000
Sodium, dissolved	MG/L	MW-13B	06/02/2014	4.9000
Sodium, dissolved	MG/L	MW-13B	09/22/2014	5.0000
Sodium, dissolved	MG/L	MW-13B	11/17/2014	5.3000
Sodium, dissolved	MG/L	MW-13B	02/23/2015	5.0000
Sodium, dissolved	MG/L	MW-13B	05/19/2015	5.5000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Sodium, dissolved	MG/L	MW-13B	08/26/2015	5.2000
Sodium, dissolved	MG/L	MW-13B	11/10/2015	5.2000
Sodium, dissolved	MG/L	MW-13B	02/22/2016	5.8000
Sodium, dissolved	MG/L	MW-13B	05/16/2016	5.2000
Sodium, dissolved	MG/L	MW-13B	08/31/2016	5.8000
Sodium, dissolved	MG/L	MW-13B	11/14/2016	5.1000
Sodium, dissolved	MG/L	MW-16	03/24/2009	5.4000
Sodium, dissolved	MG/L	MW-16	06/16/2009	5.3000
Sodium, dissolved	MG/L	MW-16	09/09/2009	5.4000
Sodium, dissolved	MG/L	MW-16	12/03/2009	6.2000
Sodium, dissolved	MG/L	MW-16	03/25/2010	4.9000
Sodium, dissolved	MG/L	MW-16	06/24/2010	5.7000
Sodium, dissolved	MG/L	MW-16	09/24/2010	5.7000
Sodium, dissolved	MG/L	MW-16	12/09/2010	5.2000
Sodium, dissolved	MG/L	MW-16	03/30/2011	4.7000
Sodium, dissolved	MG/L	MW-16	06/07/2011	5.0000
Sodium, dissolved	MG/L	MW-16	09/27/2011	5.8000
Sodium, dissolved	MG/L	MW-16	12/13/2011	5.3000
Sodium, dissolved	MG/L	MW-16	03/21/2012	4.7000
Sodium, dissolved	MG/L	MW-16	06/08/2012	4.8000
Sodium, dissolved	MG/L	MW-16	09/27/2012	5.4000
Sodium, dissolved	MG/L	MW-16	12/04/2012	4.7000
Sodium, dissolved	MG/L	MW-16	03/12/2013	5.1000
Sodium, dissolved	MG/L	MW-16	06/04/2013	5.3000
Sodium, dissolved	MG/L	MW-16	09/05/2013	6.2000
Sodium, dissolved	MG/L	MW-16	12/16/2013	5.7000
Sodium, dissolved	MG/L	MW-16	03/05/2014	4.9000
Sodium, dissolved	MG/L	MW-16	06/02/2014	4.5000
Sodium, dissolved	MG/L	MW-16	09/22/2014	4.9000
Sodium, dissolved	MG/L	MW-16	11/18/2014	4.8000
Sodium, dissolved	MG/L	MW-16	02/23/2015	4.7000
Sodium, dissolved	MG/L	MW-16	05/20/2015	4.6000
Sodium, dissolved	MG/L	MW-16	08/26/2015	4.9000
Sodium, dissolved	MG/L	MW-16	11/11/2015	5.7000
Sodium, dissolved	MG/L	MW-16	02/24/2016	4.4000
Sodium, dissolved	MG/L	MW-16	05/16/2016	4.8000
Sodium, dissolved	MG/L	MW-16	08/31/2016	5.4000
Sodium, dissolved	MG/L	MW-16	11/14/2016	5.0000
Sodium, dissolved	MG/L	MW-35	03/22/2005	5.1000
Sodium, dissolved	MG/L	MW-35	06/14/2005	4.5000
Sodium, dissolved	MG/L	MW-35	09/27/2005	5.1000
Sodium, dissolved	MG/L	MW-35	12/15/2005	4.6000
Sodium, dissolved	MG/L	MW-35	03/28/2006	5.0000
Sodium, dissolved	MG/L	MW-35	06/21/2006	4.9000
Sodium, dissolved	MG/L	MW-35	09/26/2006	5.1000
Sodium, dissolved	MG/L	MW-35	12/12/2006	4.7000
Sodium, dissolved	MG/L	MW-35	03/27/2007	5.1000
Sodium, dissolved	MG/L	MW-35	06/20/2007	5.2000
Sodium, dissolved	MG/L	MW-35	09/18/2007	5.2000
Sodium, dissolved	MG/L	MW-35	12/20/2007	4.8000
Sodium, dissolved	MG/L	MW-35	03/25/2008	5.1000
Sodium, dissolved	MG/L	MW-35	06/18/2008	4.9000
Sodium, dissolved	MG/L	MW-35	09/18/2008	4.8000
Sodium, dissolved	MG/L	MW-35	12/19/2008	4.7000
Sodium, dissolved	MG/L	MW-35	03/24/2009	5.0000
Sodium, dissolved	MG/L	MW-35	06/16/2009	5.1000
Sodium, dissolved	MG/L	MW-35	09/10/2009	4.9000
Sodium, dissolved	MG/L	MW-35	12/03/2009	5.3000
Sodium, dissolved	MG/L	MW-35	03/25/2010	5.0000
Sodium, dissolved	MG/L	MW-35	06/23/2010	5.1000
Sodium, dissolved	MG/L	MW-35	09/23/2010	4.7000
Sodium, dissolved	MG/L	MW-35	12/09/2010	4.8000
Sodium, dissolved	MG/L	MW-35	03/30/2011	4.9000
Sodium, dissolved	MG/L	MW-35	06/06/2011	5.1000
Sodium, dissolved	MG/L	MW-35	09/26/2011	5.2000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Sodium, dissolved	MG/L	MW-35	12/13/2011	5.1000
Sodium, dissolved	MG/L	MW-35	03/21/2012	5.0000
Sodium, dissolved	MG/L	MW-35	06/06/2012	4.8000
Sodium, dissolved	MG/L	MW-35	09/26/2012	4.9000
Sodium, dissolved	MG/L	MW-35	12/04/2012	4.5000
Sodium, dissolved	MG/L	MW-35	03/13/2013	4.9000
Sodium, dissolved	MG/L	MW-35	06/06/2013	4.9000
Sodium, dissolved	MG/L	MW-35	09/05/2013	4.9000
Sodium, dissolved	MG/L	MW-35	12/16/2013	5.9000
Sodium, dissolved	MG/L	MW-35	03/04/2014	5.1000
Sodium, dissolved	MG/L	MW-35	06/02/2014	4.9000
Sodium, dissolved	MG/L	MW-35	09/22/2014	5.1000
Sodium, dissolved	MG/L	MW-35	11/17/2014	5.2000
Sodium, dissolved	MG/L	MW-35	02/25/2015	5.2000
Sodium, dissolved	MG/L	MW-35	05/19/2015	4.8000
Sodium, dissolved	MG/L	MW-35	08/26/2015	5.1000
Sodium, dissolved	MG/L	MW-35	11/10/2015	5.5000
Sodium, dissolved	MG/L	MW-35	02/22/2016	5.6000
Sodium, dissolved	MG/L	MW-35	05/16/2016	5.2000
Sodium, dissolved	MG/L	MW-35	08/31/2016	5.1000
Sodium, dissolved	MG/L	MW-35	11/15/2016	6.3000
Specific conductivity	mS/cm	MW-13A	03/22/2005	0.1580
Specific conductivity	mS/cm	MW-13A	06/15/2005	0.1670
Specific conductivity	mS/cm	MW-13A	09/27/2005	0.1610
Specific conductivity	mS/cm	MW-13A	12/15/2005	0.1590
Specific conductivity	mS/cm	MW-13A	03/28/2006	0.1520
Specific conductivity	mS/cm	MW-13A	06/21/2006	0.1690
Specific conductivity	mS/cm	MW-13A	09/26/2006	0.1710
Specific conductivity	mS/cm	MW-13A	12/13/2006	0.1700
Specific conductivity	mS/cm	MW-13A	03/27/2007	0.1670
Specific conductivity	mS/cm	MW-13A	09/19/2007	0.1670
Specific conductivity	mS/cm	MW-13A	12/19/2007	0.1690
Specific conductivity	mS/cm	MW-13A	03/25/2008	0.1660
Specific conductivity	mS/cm	MW-13A	06/18/2008	0.1700
Specific conductivity	mS/cm	MW-13A	09/17/2008	0.1680
Specific conductivity	mS/cm	MW-13A	12/17/2008	0.1390
Specific conductivity	mS/cm	MW-13A	03/24/2009	0.1680
Specific conductivity	mS/cm	MW-13A	06/17/2009	0.1740
Specific conductivity	mS/cm	MW-13A	12/03/2009	0.1730
Specific conductivity	mS/cm	MW-13A	03/25/2010	0.0930
Specific conductivity	mS/cm	MW-13A	06/23/2010	0.1450
Specific conductivity	mS/cm	MW-13A	09/23/2010	0.1700
Specific conductivity	mS/cm	MW-13A	12/08/2010	0.0700
Specific conductivity	mS/cm	MW-13A	03/30/2011	0.1510
Specific conductivity	mS/cm	MW-13A	06/06/2011	0.1580
Specific conductivity	mS/cm	MW-13A	09/27/2011	0.1580
Specific conductivity	mS/cm	MW-13A	12/14/2011	0.1760
Specific conductivity	mS/cm	MW-13A	03/21/2012	0.1710
Specific conductivity	mS/cm	MW-13A	06/08/2012	0.1800
Specific conductivity	mS/cm	MW-13A	09/26/2012	0.1500
Specific conductivity	mS/cm	MW-13A	12/03/2012	0.1070
Specific conductivity	mS/cm	MW-13A	03/11/2013	0.1450
Specific conductivity	mS/cm	MW-13A	06/05/2013	0.1470
Specific conductivity	mS/cm	MW-13A	12/03/2013	0.1560
Specific conductivity	mS/cm	MW-13A	03/04/2014	0.1410
Specific conductivity	mS/cm	MW-13A	06/02/2014	0.1540
Specific conductivity	mS/cm	MW-13A	09/22/2014	0.1660
Specific conductivity	mS/cm	MW-13A	11/17/2014	0.1720
Specific conductivity	mS/cm	MW-13A	02/23/2015	0.1650
Specific conductivity	mS/cm	MW-13A	05/19/2015	0.1640
Specific conductivity	mS/cm	MW-13A	08/26/2015	0.1660
Specific conductivity	mS/cm	MW-13A	11/10/2015	0.1690
Specific conductivity	mS/cm	MW-13A	02/22/2016	0.1770
Specific conductivity	mS/cm	MW-13A	05/16/2016	0.1690
Specific conductivity	mS/cm	MW-13A	08/31/2016	0.1710

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Specific conductivity Specific conductivity Specific conductivity Specific conductivity	mS/cm mS/cm	MW-13A MW-13B	11/14/2016	0.1690
Specific conductivity		MM 12D	00/00/000	
	C/	10100-130	03/22/2005	0.1550
Specific conductivity	mS/cm	MW-13B	06/15/2005	0.1650
	mS/cm	MW-13B	09/27/2005	0.1590
Specific conductivity	mS/cm	MW-13B	12/15/2005	0.1570
Specific conductivity	mS/cm	MW-13B	03/29/2006	0.1510
Specific conductivity	mS/cm	MW-13B	06/21/2006	0.1650
Specific conductivity	mS/cm	MW-13B	09/26/2006	0.1680
Specific conductivity	mS/cm	MW-13B	12/13/2006	0.1650
Specific conductivity	mS/cm	MW-13B	03/27/2007	0.1610
Specific conductivity	mS/cm	MW-13B	09/18/2007	0.1680
Specific conductivity	mS/cm	MW-13B	12/19/2007	0.1640
Specific conductivity	mS/cm	MW-13B	03/25/2008	0.1620
Specific conductivity	mS/cm	MW-13B	06/18/2008	0.1650
Specific conductivity	mS/cm	MW-13B	09/17/2008	0.1640
Specific conductivity	mS/cm	MW-13B	12/16/2008	0.1630
Specific conductivity	mS/cm	MW-13B	03/24/2009	0.1670
Specific conductivity	mS/cm	MW-13B	06/17/2009	0.1690
Specific conductivity	mS/cm	MW-13B	12/03/2009	0.1670
Specific conductivity	mS/cm mS/cm	MW-13B	03/25/2010	0.0900
Specific conductivity Specific conductivity	mS/cm	MW-13B MW-13B	06/23/2010 09/23/2010	0.1410 0.1620
Specific conductivity	mS/cm	MW-13B	12/08/2010	0.1620
Specific conductivity	mS/cm	MW-13B	03/30/2011	0.0730
Specific conductivity	mS/cm	MW-13B	06/06/2011	0.1350
Specific conductivity	mS/cm	MW-13B	09/27/2011	0.1510
Specific conductivity	mS/cm	MW-13B	12/14/2011	0.1690
Specific conductivity	mS/cm	MW-13B	03/21/2012	0.1650
Specific conductivity	mS/cm	MW-13B	06/08/2012	0.1750
Specific conductivity	mS/cm	MW-13B	09/26/2012	0.1480
Specific conductivity	mS/cm	MW-13B	12/03/2012	0.1400
Specific conductivity	mS/cm	MW-13B	03/11/2013	0.1440
Specific conductivity	mS/cm	MW-13B	06/05/2013	0.1440
Specific conductivity	mS/cm	MW-13B	12/03/2013	0.1540
Specific conductivity	mS/cm	MW-13B	03/04/2014	0.1390
Specific conductivity	mS/cm	MW-13B	06/02/2014	0.1540
Specific conductivity	mS/cm	MW-13B	09/22/2014	0.1670
Specific conductivity	mS/cm	MW-13B	11/17/2014	0.1720
Specific conductivity	mS/cm	MW-13B	02/23/2015	0.1640
Specific conductivity	mS/cm	MW-13B	05/19/2015	0.1650
Specific conductivity	mS/cm	MW-13B	08/26/2015	0.1640
Specific conductivity	mS/cm	MW-13B	11/10/2015	0.1690
Specific conductivity	mS/cm	MW-13B	02/22/2016	0.1760
Specific conductivity	mS/cm	MW-13B	05/16/2016	0.1680
Specific conductivity	mS/cm	MW-13B	08/31/2016	0.1710
Specific conductivity	mS/cm	MW-13B	11/14/2016	0.1710
Specific conductivity	mS/cm	MW-16	03/24/2009	0.1350
Specific conductivity	mS/cm	MW-16	06/16/2009	0.1230
Specific conductivity	mS/cm	MW-16	12/03/2009	0.1600
Specific conductivity	mS/cm	MW-16	03/25/2010	0.1180
Specific conductivity	mS/cm	MW-16	06/24/2010	0.1550
Specific conductivity	mS/cm mS/cm	MW-16 MW-16	09/24/2010 12/09/2010	0.1480
Specific conductivity Specific conductivity	mS/cm mS/cm	MW-16		0.1500
Specific conductivity	mS/cm	MW-16	03/30/2011	0.1020 0.0960
Specific conductivity	mS/cm	MW-16	09/27/2011	0.0680
Specific conductivity	mS/cm	MW-16	12/13/2011	0.0660
Specific conductivity	mS/cm	MW-16	03/21/2012	0.1200
Specific conductivity	mS/cm	MW-16	06/08/2012	0.0790
Specific conductivity	mS/cm	MW-16	09/27/2012	0.1060
Specific conductivity	mS/cm	MW-16	12/04/2012	0.0850
Specific conductivity	mS/cm	MW-16	03/12/2013	0.0030
Specific conductivity	mS/cm	MW-16	06/04/2013	0.1180
Specific conductivity	mS/cm	MW-16	09/05/2013	0.1100
Specific conductivity	mS/cm	MW-16	12/16/2013	0.0960

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Specific conductivity	mS/cm	MW-16	03/05/2014	0.0990
Specific conductivity	mS/cm	MW-16	06/02/2014	0.0940
Specific conductivity	mS/cm	MW-16	09/22/2014	0.1220
Specific conductivity	mS/cm	MW-16	11/18/2014	0.1260
Specific conductivity	mS/cm	MW-16	02/23/2015	0.0800
Specific conductivity	mS/cm	MW-16	05/20/2015	0.1010
Specific conductivity	mS/cm	MW-16	08/26/2015	0.0970
Specific conductivity	mS/cm	MW-16	11/11/2015	0.1360
Specific conductivity	mS/cm	MW-16	02/24/2016	0.0910
Specific conductivity	mS/cm	MW-16	05/16/2016	0.1020
Specific conductivity	mS/cm	MW-16	08/31/2016	0.1230
Specific conductivity	mS/cm	MW-16	11/14/2016	0.1100
Specific conductivity	mS/cm	MW-35	03/22/2005	0.1430
Specific conductivity	mS/cm	MW-35	06/14/2005	0.1530
Specific conductivity	mS/cm	MW-35	09/27/2005	0.1480
Specific conductivity	mS/cm	MW-35	12/15/2005	0.1450
Specific conductivity	mS/cm	MW-35	03/28/2006	0.1360
Specific conductivity	mS/cm	MW-35	06/21/2006	0.1520
Specific conductivity	mS/cm	MW-35	09/26/2006	0.1550
Specific conductivity	mS/cm	MW-35	12/12/2006	0.1510
Specific conductivity	mS/cm	MW-35	03/27/2007	0.1480
Specific conductivity	mS/cm	MW-35	09/18/2007	0.1520
Specific conductivity	mS/cm	MW-35	12/20/2007	0.1520
Specific conductivity	mS/cm	MW-35	03/25/2008	0.1470
Specific conductivity	mS/cm	MW-35	06/18/2008	0.1510
Specific conductivity	mS/cm	MW-35	09/18/2008	0.1420
Specific conductivity	mS/cm	MW-35	12/19/2008	0.1440
Specific conductivity	mS/cm	MW-35	03/24/2009	0.1500
Specific conductivity	mS/cm	MW-35	06/16/2009	0.1550
Specific conductivity	mS/cm	MW-35	12/03/2009	0.1520
Specific conductivity	mS/cm	MW-35	03/25/2010	0.0840
Specific conductivity	mS/cm	MW-35	06/23/2010	0.1280
Specific conductivity	mS/cm	MW-35	09/23/2010	0.1510
Specific conductivity	mS/cm	MW-35	12/09/2010	0.1500
Specific conductivity	mS/cm	MW-35	03/30/2011	0.1320
Specific conductivity	mS/cm	MW-35	06/06/2011	0.1230
Specific conductivity	mS/cm	MW-35	09/26/2011	0.1310
Specific conductivity	mS/cm	MW-35	12/13/2011	0.1480
Specific conductivity	mS/cm	MW-35	03/21/2012	0.1520
Specific conductivity	mS/cm	MW-35	06/06/2012	0.1380
Specific conductivity	mS/cm	MW-35	09/26/2012	0.1350
Specific conductivity	mS/cm	MW-35	12/04/2012	0.1480
Specific conductivity	mS/cm	MW-35	03/13/2013	0.1320
Specific conductivity	mS/cm	MW-35	06/06/2013	0.1330
Specific conductivity	mS/cm	MW-35	09/05/2013	0.1320
Specific conductivity	mS/cm	MW-35	12/16/2013	0.1210
Specific conductivity	mS/cm	MW-35	03/04/2014	0.1290
Specific conductivity	mS/cm	MW-35	06/02/2014	0.1400
Specific conductivity	mS/cm	MW-35	09/22/2014	0.1610
Specific conductivity	mS/cm	MW-35	11/17/2014	0.1600
Specific conductivity	mS/cm	MW-35	02/25/2015	0.1520
Specific conductivity	mS/cm	MW-35	05/19/2015	0.1350
Specific conductivity	mS/cm	MW-35	08/26/2015	0.1530
Specific conductivity	mS/cm	MW-35	11/10/2015	0.1560
Specific conductivity	mS/cm	MW-35	02/22/2016	0.1640
Specific conductivity	mS/cm	MW-35	05/16/2016	0.1560
Specific conductivity	mS/cm	MW-35	08/31/2016	0.1590
Specific conductivity	mS/cm	MW-35	11/15/2016	0.1580
Sulfate	MG/L	MW-13A	03/22/2005	2.8000
Sulfate	MG/L	MW-13A	06/15/2005	2.9000
Sulfate	MG/L	MW-13A	09/27/2005	3.2000
Sulfate	MG/L	MW-13A	12/15/2005	2.1000
Sulfate	MG/L	MW-13A	03/28/2006	3.2000
Sulfate	MG/L	MW-13A	06/21/2006	3.1000
Sulfate	MG/L	MW-13A	09/26/2006	2.5000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Sulfate	MG/L	MW-13A	12/13/2006	2.3000
Sulfate	MG/L	MW-13A	03/27/2007	2.5000
Sulfate	MG/L	MW-13A	06/19/2007	2.5000
Sulfate	MG/L	MW-13A	09/19/2007	2.5000
Sulfate	MG/L	MW-13A	12/19/2007	2.5000
Sulfate	MG/L	MW-13A	03/25/2008	2.4000
Sulfate	MG/L	MW-13A	06/18/2008	2.6000
Sulfate	MG/L	MW-13A	09/17/2008	2.4000
Sulfate	MG/L	MW-13A	12/17/2008	2.4000
Sulfate	MG/L	MW-13A	03/24/2009	2.5000
Sulfate	MG/L	MW-13A	06/17/2009	2.1000
Sulfate	MG/L	MW-13A	09/10/2009	2.2000
Sulfate	MG/L	MW-13A	12/03/2009	2.3000
Sulfate	MG/L	MW-13A	03/25/2010	2.3000
Sulfate	MG/L	MW-13A	06/23/2010	2.1000
Sulfate	MG/L	MW-13A	09/23/2010	2.3000
Sulfate	MG/L	MW-13A	12/08/2010	3.7000
Sulfate	MG/L	MW-13A	03/30/2011	2.2000
Sulfate	MG/L	MW-13A	06/06/2011	2.2000
Sulfate	MG/L	MW-13A	09/27/2011	2.3000
Sulfate	MG/L	MW-13A	12/14/2011	2.5000
Sulfate	MG/L	MW-13A	03/21/2012	1.9000
Sulfate	MG/L	MW-13A	06/08/2012	2.1000
Sulfate	MG/L	MW-13A	09/26/2012	2.1000
Sulfate	MG/L	MW-13A	12/03/2012	2.2000
Sulfate	MG/L	MW-13A	03/11/2013	1.9000
Sulfate	MG/L	MW-13A	06/05/2013	1.7000
Sulfate	MG/L	MW-13A	12/03/2013	1.6000
Sulfate	MG/L	MW-13A	03/04/2014	2.1000
Sulfate	MG/L	MW-13A	06/02/2014	2.2000
Sulfate	MG/L	MW-13A	09/22/2014	2.2000
Sulfate	MG/L	MW-13A	11/17/2014	2.1000
Sulfate	MG/L	MW-13A	02/23/2015	2.1000
Sulfate	MG/L	MW-13A	05/19/2015	2.1000
Sulfate	MG/L	MW-13A	08/26/2015	2.3000
Sulfate	MG/L	MW-13A	11/10/2015	2.1000
Sulfate	MG/L	MW-13A	02/22/2016	2.1000
Sulfate	MG/L	MW-13A	05/16/2016	2.2000
Sulfate	MG/L	MW-13A	08/31/2016	2.3000
Sulfate	MG/L	MW-13A	11/14/2016	2.0000
Sulfate	MG/L	MW-13B	03/22/2005	4.6000
Sulfate	MG/L	MW-13B	06/15/2005	4.7000
Sulfate	MG/L	MW-13B	09/27/2005	4.5000
Sulfate	MG/L	MW-13B	12/15/2005	3.6000
Sulfate	MG/L	MW-13B	03/29/2006	4.5000
Sulfate	MG/L	MW-13B	06/21/2006	4.4000
Sulfate	MG/L	MW-13B	09/26/2006	4.1000
Sulfate	MG/L	MW-13B	12/13/2006	3.9000
Sulfate	MG/L	MW-13B	03/27/2007	4.1000
Sulfate	MG/L	MW-13B	06/19/2007	4.1000
Sulfate	MG/L	MW-13B	09/18/2007	4.2000
Sulfate	MG/L	MW-13B	12/19/2007	4.1000
Sulfate	MG/L	MW-13B	03/25/2008	4.0000
Sulfate	MG/L	MW-13B	06/18/2008	4.1000
Sulfate	MG/L	MW-13B	09/17/2008	4.2000
Sulfate	MG/L	MW-13B	12/16/2008	4.2000
Sulfate	MG/L	MW-13B	03/24/2009	4.2000
Sulfate	MG/L	MW-13B	06/17/2009	3.7000
Sulfate	MG/L	MW-13B	09/10/2009	3.7000
Sulfate	MG/L	MW-13B	12/03/2009	4.1000
Sulfate	MG/L	MW-13B	03/25/2010	3.9000
Sulfate	MG/L	MW-13B	06/23/2010	3.6000
Sulfate	MG/L	MW-13B	09/23/2010	3.8000
Sulfate	MG/L	MW-13B	12/08/2010	2.4000
Sulfate	MG/L	MW-13B	03/30/2011	4.4000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Sulfate	MG/L	MW-13B	06/06/2011		3.7000
Sulfate	MG/L	MW-13B	09/27/2011		3.7000
Sulfate	MG/L	MW-13B	12/14/2011		3.5000
Sulfate	MG/L	MW-13B	03/21/2012		3.2000
Sulfate	MG/L	MW-13B	06/08/2012		3.5000
Sulfate	MG/L	MW-13B	09/26/2012		3.6000
Sulfate	MG/L	MW-13B	12/03/2012		3.5000
Sulfate	MG/L	MW-13B	03/11/2013		3.0000
Sulfate	MG/L	MW-13B	06/05/2013		3.5000
Sulfate	MG/L	MW-13B	12/03/2013		3.1000
Sulfate	MG/L	MW-13B	03/04/2014		3.7000
Sulfate	MG/L	MW-13B	06/02/2014		3.6000
Sulfate	MG/L	MW-13B	09/22/2014		4.1000
Sulfate	MG/L	MW-13B	11/17/2014		3.7000
Sulfate	MG/L	MW-13B	02/23/2015		3.4000
Sulfate	MG/L	MW-13B	05/19/2015		
		MW 10D			3.1000
Sulfate	MG/L	MW-13B	08/26/2015		3.7000
Sulfate	MG/L	MW-13B	11/10/2015		3.2000
Sulfate	MG/L	MW-13B	02/22/2016		3.4000
Sulfate	MG/L	MW-13B	05/16/2016		3.5000
Sulfate	MG/L	MW-13B	08/31/2016		3.7000
Sulfate	MG/L	MW-13B	11/14/2016		3.0000
Sulfate	MG/L	MW-16	03/24/2009		3.0000
Sulfate	MG/L	MW-16	06/16/2009		2.2000
Sulfate	MG/L	MW-16	09/09/2009		4.3000
Sulfate	MG/L	MW-16	12/03/2009		3.6000
Sulfate	MG/L	MW-16	03/25/2010		9.9000
Sulfate	MG/L	MW-16	06/24/2010		2.5000
Sulfate	MG/L	MW-16	09/24/2010		2.3000
Sulfate	MG/L	MW-16	12/09/2010		2.7000
Sulfate	MG/L	MW-16	03/30/2011		7.1000
Sulfate	MG/L	MW-16	06/07/2011		2.4000
Sulfate	MG/L	MW-16	09/27/2011		4.1000
Sulfate	MG/L	MW-16	12/13/2011		2.3000
Sulfate	MG/L	MW-16	03/21/2012		1.6000
Sulfate	MG/L	MW-16	06/08/2012		3.0000
Sulfate	MG/L	MW-16	09/27/2012		3.1000
Sulfate	MG/L	MW-16	12/04/2012		3.0000
Sulfate	MG/L	MW-16	03/12/2013		1.9000
Sulfate	MG/L	MW-16	06/04/2013		2.7000
Sulfate	MG/L	MW-16	09/05/2013		1.7000
Sulfate	MG/L	MW-16	12/16/2013		2.3000
Sulfate	MG/L	MW-16	03/05/2014		2.8000
Sulfate	MG/L	MW-16	06/02/2014		3.8000
Sulfate	MG/L	MW-16	09/22/2014		2.9000
Sulfate	MG/L	MW-16	11/18/2014		3.3000
Sulfate	MG/L	MW-16	02/23/2015		2.9000
	MG/L				
Sulfate		MW-16	05/20/2015		2.1000
Sulfate	MG/L	MW-16	08/26/2015		3.4000
Sulfate	MG/L	MW-16	11/11/2015		2.8000
Sulfate	MG/L	MW-16	02/24/2016		2.9000
Sulfate	MG/L	MW-16	05/16/2016		2.6000
Sulfate	MG/L	MW-16	08/31/2016		1.7000
Sulfate	MG/L	MW-16	11/14/2016		1.6000
Sulfate	MG/L	MW-35	03/22/2005		2.5000
Sulfate	MG/L	MW-35	06/14/2005		1.6000
Sulfate	MG/L	MW-35	09/27/2005		1.3000
Sulfate	MG/L	MW-35	12/15/2005	ND	1.0000
Sulfate	MG/L	MW-35	03/28/2006		3.0000
Sulfate	MG/L	MW-35	06/21/2006		3.0000
Sulfate	MG/L	MW-35	09/26/2006		2.4000
Sulfate	MG/L	MW-35	12/12/2006		2.2000
Sulfate	MG/L	MW-35	03/27/2007		2.5000
Sulfate	MG/L	MW-35	06/20/2007		2.4000
Sulfate	MG/L	MW-35	09/18/2007		2.6000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Sulfate Sulfate	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	MW-35 MW-35 MW-35 MW-35 MW-35 MW-35 MW-35 MW-35 MW-35 MW-35	12/20/2007 03/25/2008 06/18/2008 09/18/2008 12/19/2008 03/24/2009 06/16/2009 09/10/2009 12/03/2009	2.4000 2.4000 2.6000 2.3000 2.6000 2.7000 2.2000 2.4000
Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	MW-35 MW-35 MW-35 MW-35 MW-35 MW-35 MW-35 MW-35	06/18/2008 09/18/2008 12/19/2008 03/24/2009 06/16/2009 09/10/2009 12/03/2009	2.6000 2.3000 2.6000 2.7000 2.2000
Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	MW-35 MW-35 MW-35 MW-35 MW-35 MW-35 MW-35	09/18/2008 12/19/2008 03/24/2009 06/16/2009 09/10/2009 12/03/2009	2.3000 2.6000 2.7000 2.2000
Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate	MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	MW-35 MW-35 MW-35 MW-35 MW-35 MW-35	12/19/2008 03/24/2009 06/16/2009 09/10/2009 12/03/2009	2.3000 2.6000 2.7000 2.2000
Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate Sulfate N	MG/L MG/L MG/L MG/L MG/L MG/L MG/L	MW-35 MW-35 MW-35 MW-35 MW-35	03/24/2009 06/16/2009 09/10/2009 12/03/2009	2.7000 2.2000
Sulfate Note Sulfate Note Sulfate Note Sulfate Note Sulfate Note Sulfate Note Sulfate Note Sulfate Note Sulfate Sulfate Note Sulfate S	MG/L MG/L MG/L MG/L MG/L MG/L	MW-35 MW-35 MW-35 MW-35	06/16/2009 09/10/2009 12/03/2009	2.2000
Sulfate No. Sulfat	MG/L MG/L MG/L MG/L MG/L	MW-35 MW-35 MW-35	09/10/2009 12/03/2009	
Sulfate N	MG/L MG/L MG/L MG/L	MW-35 MW-35	12/03/2009	
Sulfate N	MG/L MG/L MG/L	MW-35		
	MG/L MG/L			2.5000
l a 16 .	MG/L		03/25/2010	2.6000
		MW-35	06/23/2010	2.3000
		MW-35	09/23/2010	2.5000
	MG/L	MW-35	12/09/2010	2.2000
Sulfate N	MG/L	MW-35	03/30/2011	2.6000
	MG/L	MW-35	06/06/2011	2.5000
	MG/L	MW-35	09/26/2011	2.6000
	MG/L	MW-35	12/13/2011	2.5000
Sulfate N	MG/L	MW-35	03/21/2012	2.1000
	MG/L	MW-35	06/06/2012	2.4000
	MG/L	MW-35	09/26/2012	2.4000
	MG/L	MW-35	12/04/2012	2.5000
	MG/L	MW-35	03/13/2013	2.3000
	MG/L	MW-35	06/06/2013	2.0000
	MG/L	MW-35	09/05/2013	2.1000
	MG/L	MW-35	12/16/2013	2.6000
	MG/L	MW-35	03/04/2014	2.7000
	MG/L	MW-35	06/02/2014	2.5000
	MG/L	MW-35	09/22/2014	3.2000
	MG/L	MW-35	11/17/2014	2.5000
	MG/L	MW-35	02/25/2015	2.4000
	MG/L	MW-35	05/19/2015	2.3000
	MG/L	MW-35	08/26/2015	2.4000
	MG/L	MW-35	11/10/2015	2.5000
	MG/L	MW-35	02/22/2016	2.6000
	MG/L	MW-35	05/16/2016	2.5000
	MG/L	MW-35	08/31/2016	2.8000
	MG/L	MW-35	11/15/2016	2.2000
	deg C	MW-13A	03/22/2005	9.0800
	deg C	MW-13A	06/15/2005	9.3700
	deg C	MW-13A	09/27/2005	9.6500
		MW-13A	12/15/2005	8.6000
	deg C	MW-13A	03/28/2006	9.4400
	deg C	MW-13A	06/21/2006	9.4100
	deg C	MW-13A	09/26/2006	9.7100
	deg C deg C	MW-13A	12/13/2006	8.7900
	0	MW-13A	03/27/2007	9.1400
l 	deg C	MW-13A	09/19/2007	9.2600
	deg C	MW-13A	12/19/2007	8.1700
	deg C deg C	MW-13A	03/25/2008	8.4700
		MW-13A MW-13A	06/18/2008	9.3000
	deg C deg C	MW-13A	09/17/2008 12/17/2008	8.8000 8.7500
	deg C	MW-13A	03/24/2009	
	deg C	MW-13A	06/17/2009	8.3200 9.8500
	deg C	MW-13A	12/03/2009	8.9200
	deg C	MW-13A	03/25/2010	9.2200
	deg C	MW-13A	06/23/2010	9.5800
	deg C	MW-13A	09/23/2010	
	deg C	MW-13A	12/08/2010	9.4200 9.4500
	deg C	MW-13A	03/30/2011	9.3700
	deg C	MW-13A	06/06/2011	10.4000
	deg C	MW-13A		
	deg C	MW-13A	09/27/2011 12/14/2011	9.5800 8.9200
	deg C	MW-13A	03/21/2012	8.7400
	deg C	MW-13A	06/08/2012	9.3000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Temperature	deg C	MW-13A	09/26/2012	10.0400
Temperature	deg C	MW-13A	12/03/2012	9.2000
Temperature	deg C	MW-13A	03/11/2013	9.2200
Temperature	deg C	MW-13A	06/05/2013	11.9600
Temperature	deg C	MW-13A	12/03/2013	8.9300
Temperature	deg C	MW-13A	03/04/2014	8.9800
Temperature	deg C	MW-13A	06/02/2014	11.1500
Temperature	deg C	MW-13A	09/22/2014	10.5800
Temperature	deg C	MW-13A	11/17/2014	9.4000
Temperature	deg C	MW-13A	02/23/2015	9.4100
Temperature	deg C	MW-13A	05/19/2015	9.8900
Temperature	deg C	MW-13A	08/26/2015	10.6900
Temperature	deg C	MW-13A	11/10/2015	9.4900
Temperature	deg C	MW-13A	02/22/2016	9.5900
Temperature	deg C	MW-13A	05/16/2016	9.7700
Temperature	deg C	MW-13A	08/31/2016	9.9800
Temperature	deg C	MW-13A	11/14/2016	9.5700
Temperature	deg C	MW-13B	03/22/2005	9.5500
Temperature	deg C	MW-13B	06/15/2005	9.9200
Temperature	deg C	MW-13B	09/27/2005	10.7900
Temperature	deg C	MW-13B	12/15/2005	8.1100
Temperature	deg C	MW-13B	03/29/2006	8.8000
Temperature	deg C	MW-13B	06/21/2006	9.7600
Temperature	deg C	MW-13B	09/26/2006	10.3200
Temperature	deg C	MW-13B	12/13/2006	8.8500
Temperature	deg C	MW-13B	03/27/2007	9.0400
Temperature	deg C	MW-13B	09/18/2007	10.0100
Temperature	deg C	MW-13B	12/19/2007	8.0800
Temperature	deg C	MW-13B	03/25/2008	8.0900
Temperature	deg C	MW-13B	06/18/2008	9.2300
Temperature	deg C	MW-13B	09/17/2008	9.0100
Temperature	deg C	MW-13B	12/16/2008	8.4300
Temperature	deg C	MW-13B	03/24/2009	8.3700
Temperature	deg C	MW-13B	06/17/2009	10.8100
Temperature	deg C	MW-13B	12/03/2009	8.7900
Temperature	deg C	MW-13B	03/25/2010	9.2300
Temperature	deg C	MW-13B	06/23/2010	9.9700
Temperature	deg C	MW-13B	09/23/2010	9.6000
Temperature	deg C	MW-13B	12/08/2010	9.2500
Temperature	deg C	MW-13B	03/30/2011	9.3200
Temperature	deg C	MW-13B	06/06/2011	11.3000
Temperature	deg C	MW-13B	09/27/2011	10.5700
Temperature	deg C	MW-13B	12/14/2011	8.7600
Temperature	deg C	MW-13B	03/21/2012	8.5000
Temperature	deg C	MW-13B	06/08/2012	9.4000
Temperature	deg C	MW-13B	09/26/2012	10.5900
Temperature	deg C	MW-13B	12/03/2012	9.2000
Temperature	deg C	MW-13B	03/11/2013	9.1500
Temperature	deg C	MW-13B	06/05/2013	11.4100
Temperature	deg C	MW-13B	12/03/2013	9.4400
Temperature	deg C	MW-13B	03/04/2014	9.0000
Temperature	deg C	MW-13B	06/02/2014	14.3200
Temperature	deg C	MW-13B	09/22/2014	11.0200
Temperature	deg C	MW-13B	11/17/2014	9.4000
Temperature	deg C	MW-13B	02/23/2015	9.7600
Temperature	deg C	MW-13B	05/19/2015	10.2300
Temperature	deg C	MW-13B	08/26/2015	10.5300
Temperature	deg C	MW-13B	11/10/2015	9.5900
Temperature	deg C	MW-13B	02/22/2016	9.3000
Temperature	deg C	MW-13B	05/16/2016	9.9300
Temperature	deg C	MW-13B	08/31/2016	10.4300
Temperature	deg C	MW-13B	11/14/2016	10.4100
Temperature	deg C	MW-16	03/24/2009	9.0800
Temperature	deg C	MW-16	06/16/2009	9.9800
Temperature	deg C	MW-16	12/03/2009	9.0800

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Temperature	deg C	MW-16	03/25/2010	9.1100
Temperature	deg C	MW-16	06/24/2010	9.3900
Temperature	deg C	MW-16	09/24/2010	9.4400
Temperature	deg C	MW-16	12/09/2010	9.1300
Temperature	deg C	MW-16	03/30/2011	9.1400
Temperature	deg C	MW-16	06/07/2011	9.4600
Temperature	deg C	MW-16	09/27/2011	9.4300
Temperature	deg C	MW-16	12/13/2011	8.8400
Temperature	deg C	MW-16	03/21/2012	8.8200
Temperature	deg C	MW-16	06/08/2012	9.2000
Temperature	deg C	MW-16	09/27/2012	9.0600
Temperature	deg C	MW-16	12/04/2012	9.1000
Temperature	deg C	MW-16	03/12/2013	9.0200
Temperature	deg C	MW-16	06/04/2013	9.4700
Temperature	deg C	MW-16	09/05/2013	9.3600
Temperature	deg C	MW-16	12/16/2013	9.0400
Temperature	deg C	MW-16	03/05/2014	9.4000
Temperature	deg C	MW-16	06/02/2014	9.5600
Temperature	deg C	MW-16	09/22/2014	10.7300
Temperature	deg C	MW-16	11/18/2014	8.9000
Temperature	deg C	MW-16	02/23/2015	9.0200
Temperature	deg C	MW-16	05/20/2015	9.3000
Temperature	deg C	MW-16	08/26/2015	9.4800
Temperature	deg C	MW-16	11/11/2015	9.0100
Temperature	deg C	MW-16	02/24/2016	9.0200
Temperature	deg C	MW-16	05/16/2016	9.3800
Temperature	deg C	MW-16	08/31/2016	9.6600
Temperature	deg C	MW-16	11/14/2016	9.8100
Temperature	deg C	MW-35	03/22/2005	9.8000
Temperature	deg C	MW-35	06/14/2005	10.2800
Temperature	deg C	MW-35	09/27/2005	10.4900
Temperature	deg C	MW-35	12/15/2005	8.8600
Temperature	deg C	MW-35	03/28/2006	9.5300
Temperature	deg C	MW-35	06/21/2006	10.3100
Temperature	deg C	MW-35	09/26/2006	10.6200
Temperature	deg C	MW-35	12/12/2006	9.2600
Temperature	deg C	MW-35 MW-35	03/27/2007	9.4000
Temperature	deg C deg C	MW-35	09/18/2007	10.2400
Temperature Temperature	deg C	MW-35	12/20/2007 03/25/2008	8.6900 8.7500
Temperature	deg C	MW-35	06/18/2008	9.7300
Temperature	deg C	MW-35	09/18/2008	9.9800
Temperature	deg C	MW-35	12/19/2008	8.5000
Temperature	deg C	MW-35	03/24/2009	9.3200
Temperature	deg C	MW-35	06/16/2009	11.7600
Temperature	deg C	MW-35	12/03/2009	9.5700
Temperature	deg C	MW-35	03/25/2010	9.8200
Temperature	deg C	MW-35	06/23/2010	10.0700
Temperature	deg C	MW-35	09/23/2010	10.0700
Temperature	deg C	MW-35	12/09/2010	9.8500
Temperature	deg C	MW-35	03/30/2011	9.7200
Temperature	deg C	MW-35	06/06/2011	10.2000
Temperature	deg C	MW-35	09/26/2011	10.1400
Temperature	deg C	MW-35	12/13/2011	9.4100
Temperature	deg C	MW-35	03/21/2012	9.7800
Temperature	deg C	MW-35	06/06/2012	10.3000
Temperature	deg C	MW-35	09/26/2012	10.2000
Temperature	deg C	MW-35	12/04/2012	9.8000
Temperature	deg C	MW-35	03/13/2013	9.7500
Temperature	deg C	MW-35	06/06/2013	10.8300
Temperature	deg C	MW-35	09/05/2013	10.0900
Temperature	deg C	MW-35	12/16/2013	9.8400
Temperature	deg C	MW-35	03/04/2014	9.7600
Temperature	deg C	MW-35	06/02/2014	11.7900
Temperature	deg C	MW-35	09/22/2014	13.7000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Temperature	10.4000 9.9000 10.3000 13.0900 10.3400 10.3100 10.1200 10.7800
Temperature	10.3000 13.0900 10.3400 10.3100 10.1200 10.7800
Temperature	13.0900 10.3400 10.3100 10.1200 10.7800
Temperature	10.3400 10.3100 10.1200 10.7800
Temperature	10.3100 10.1200 10.7800
Temperature	10.1200 10.7800
Temperature	10.7800
Temperature	
Thallium, total MG/L MW-13A 12/03/2013 ND Thallium, total MG/L MW-13A 03/04/2014 ND Thallium, total MG/L MW-13A 03/04/2014 ND Thallium, total MG/L MW-13A 09/22/2014 ND Thallium, total MG/L MW-13A 09/22/2014 ND Thallium, total MG/L MW-13A 09/22/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND MG/L MW-13A 08/26/2015 ND MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2015 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 09/05/2015 ND Thall	
Thallium, total MG/L MW-13A 03/04/2014 ND Thallium, total MG/L MW-13A 06/02/2014 ND Thallium, total MG/L MW-13A 06/02/2014 ND Thallium, total MG/L MW-13A 11/17/2014 ND Thallium, total MG/L MW-13A 11/17/2014 ND Thallium, total MG/L MW-13A 02/23/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 01/10/2015 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 06/02/2015 ND Thallium, total MG/L MW-16 06/02/2015 ND Thallium, total MG/L	10.4100
Thallium, total MG/L MW-13A 06/02/2014 ND Thallium, total MG/L MW-13A 09/22/2014 ND Thallium, total MG/L MW-13A 09/22/2015 ND Thallium, total MG/L MW-13A 02/23/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 11/10/2015 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-13B 06/02/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 06/06/2015 ND Thallium, total MG/L	0.0010
Thallium, total MG/L MW-13A 09/22/2014 ND Thallium, total MG/L MW-13A 11/17/2014 ND Thallium, total MG/L MW-13A 02/23/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW	0.0010
Thallium, total MG/L MW-13A 11/17/2014 ND Thallium, total MG/L MW-13A 02/23/2015 ND Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 11/10/2015 ND Thallium, total MG/L MW-13A 11/10/2015 ND Thallium, total MG/L MW-13A 02/22/2016 ND ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 11/17/2014 ND Thallium, total MG/L MW-13B 11/17/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L	0.0010
Thallium, total MG/L MW-13A 02/23/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 11/10/2015 ND Thallium, total MG/L MW-13A 08/26/2016 ND Thallium, total MG/L MW-13A 08/26/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2016 ND Thallium, total MG/L MW-13B 08/26/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-	0.0010
Thallium, total MG/L MW-13A 05/19/2015 ND Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 11/10/2015 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 02/23/2015 ND	0.0010
Thallium, total MG/L MW-13A 08/26/2015 ND Thallium, total MG/L MW-13A 11/10/2015 ND Thallium, total MG/L MW-13A 02/22/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 05/10/2016 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 05/16/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16	0.0010
Thallium, total	0.0010
Thallium, total	0.0010
Thallium, total MG/L MW-13A 05/16/2016 ND Thallium, total MG/L MW-13A 08/31/2016 ND Thallium, total MG/L MW-13A 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/02/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-35 09	0.0010
Thallium, total MG/L MW-13A 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2015 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2016 ND Thallium, total MG/L MW-16 08/26/2016 ND Thallium, total MG/L MW-16 08/26/2016 ND Thallium, total MG/L MW-16 08/26/2016 ND Thallium, total MG/L MW-16 08/26/2016 ND Thallium, total MG/L MW-16 08/26/2016 ND Thallium, total MG/L MW-16 08/26/2016 ND Thallium, total MG/L MW-16 08/	0.0010
Thallium, total MG/L MW-13A 11/14/2016 ND Thallium, total MG/L MW-13B 12/03/2013 ND ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 09/22/2015 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 09/05/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 09/05/2016 ND Thallium, total MG/L MW-16 09/05/2016 ND Thallium, total MG/L MW-16 09/05/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35	0.0010
Thallium, total MG/L MW-13B 12/03/2013 ND Thallium, total MG/L MW-13B 03/04/2014 ND Thallium, total MG/L MW-13B 06/02/2014 ND Thallium, total MG/L MW-13B 09/02/2014 ND Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 11/17/2014 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2016 ND Thallium, total MG/L MW-13B 08/21/2016 ND Thallium, total MG/L MW-13B 08/21/2016 ND	0.0010
Thallium, total	0.0010
Thallium, total	0.0010
Thallium, total MG/L MW-13B 09/22/2014 ND Thallium, total MG/L MW-13B 11/17/2014 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 06/02/2014 ND	0.0010
Thallium, total MG/L MW-13B 11/17/2014 ND Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 01/10/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/30/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 09/05/2014 ND	0.0010
Thallium, total MG/L MW-13B 02/23/2015 ND Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 01/10/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/30/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND	0.0010
Thallium, total MG/L MW-13B 05/19/2015 ND Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 11/10/2015 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 03/05/2013 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 02/23/2015 ND <	0.0010
Thallium, total MG/L MW-13B 08/26/2015 ND Thallium, total MG/L MW-13B 11/10/2015 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 09/02/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 05/20/2015 ND <	0.0010
Thallium, total MG/L MW-13B 11/10/2015 ND Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND <t< td=""><td>0.0010</td></t<>	0.0010
Thallium, total MG/L MW-13B 02/22/2016 ND Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 01/05/2014 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND	0.0010
Thallium, total MG/L MW-13B 05/16/2016 ND Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 12/16/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/05/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 01/18/2014 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND	0.0010
Thallium, total MG/L MW-13B 08/31/2016 ND Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 01/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND	0.0010
Thallium, total MG/L MW-13B 11/14/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 12/16/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 01/14/2016 ND	0.0010
Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-16 12/16/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND	0.0010
Thallium, total MG/L MW-16 12/16/2013 ND Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 01/11/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND	0.0010
Thallium, total MG/L MW-16 03/05/2014 ND Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 01/23/2015 ND Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 01/24/2016 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND	0.0010
Thallium, total MG/L MW-16 06/02/2014 ND Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 11/18/2014 ND Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 11/11/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 09/22/2014 ND Thallium, total MG/L MW-16 11/18/2014 ND Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 11/11/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-16 09/05/2013 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 11/18/2014 ND Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 11/11/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 02/23/2015 ND Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 11/11/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 05/20/2015 ND Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 11/11/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 08/26/2015 ND Thallium, total MG/L MW-16 11/11/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 11/11/2015 ND Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 02/24/2016 ND Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 05/16/2016 ND Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 08/31/2016 ND Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-16 11/14/2016 ND Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010 0.0010
Thallium, total MG/L MW-35 09/05/2013 ND Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
Thallium, total MG/L MW-35 12/16/2013 ND	0.0010
The Mark	0.0010
Thallium, total MG/L MW-35 03/04/2014 ND	0.0010
Thallium, total MG/L MW-35 03/04/2014 ND Thallium, total MG/L MW-35 06/02/2014 ND	0.0010
Thallium, total MG/L MW-35 06/02/2014 ND MG/L MW-35 09/22/2014 ND	0.0010
Thallium, total MG/L MW-35 09/22/2014 ND MG/L MW-35 11/17/2014 ND	0.0010
Thallium, total MG/L MW-35 11777/2014 ND MG/L MW-35 02/25/2015 ND	0.0010
Thallium, total MG/L MW-35 02/23/2015 ND MG/L MW-35 05/19/2015 ND	0.0010
Thailium, total MG/L MW-35 03/19/2015 ND MG/L MW-35 08/26/2015 ND	0.0010
Thallium, total MG/L MW-35 06/26/2015 ND MG/L MW-35 11/10/2015 ND	0.0010
Thallium, total MG/L MW-35 11/10/2013 ND MG/L MW-35 02/22/2016 ND	0.0010
Thallium, total MG/L MW-35 02/22/2016 ND MG/L MW-35 05/16/2016 ND	0.0010
Thallium, total MG/L MW-35 03/16/2016 ND MG/L MW-35 08/31/2016 ND	0.0010
Thallium, total MG/L MW-35 06/31/2016 ND MG/L MW-35 11/15/2016 ND	0.0010
	113.0000
	111.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Total dissolved solids (tds)	MG/L	MW-13A	09/27/2005	175.0000
Total dissolved solids (tds)	MG/L	MW-13A	12/15/2005	166.0000
Total dissolved solids (tds)	MG/L	MW-13A	03/28/2006	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	06/21/2006	120.0000
Total dissolved solids (tds)	MG/L	MW-13A	09/26/2006	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	12/13/2006	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	03/27/2007	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	06/19/2007	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	09/19/2007	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	12/19/2007	84.0000
Total dissolved solids (tds)	MG/L	MW-13A	03/25/2008	99.0000
Total dissolved solids (tds)	MG/L	MW-13A	06/18/2008	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	09/17/2008	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	12/17/2008	90.0000
Total dissolved solids (tds)	MG/L	MW-13A	03/24/2009	95.0000
Total dissolved solids (tds)	MG/L MG/L	MW-13A	06/17/2009	110.0000
Total dissolved solids (tds)	MG/L MG/L	MW-13A	09/10/2009	100.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L MG/L	MW-13A MW-13A	12/03/2009 03/25/2010	100.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L MG/L	MW-13A	06/23/2010	120.0000
Total dissolved solids (tds)	MG/L	MW-13A	09/23/2010	98.0000
Total dissolved solids (tds)	MG/L	MW-13A	12/08/2010	90.0000
Total dissolved solids (tds)	MG/L	MW-13A	03/30/2011	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	06/06/2011	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	09/27/2011	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	12/14/2011	97.0000
Total dissolved solids (tds)	MG/L	MW-13A	03/21/2012	93.0000
Total dissolved solids (tds)	MG/L	MW-13A	06/08/2012	120.0000
Total dissolved solids (tds)	MG/L	MW-13A	09/26/2012	120.0000
Total dissolved solids (tds)	MG/L	MW-13A	12/03/2012	88.0000
Total dissolved solids (tds)	MG/L	MW-13A	03/11/2013	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	06/05/2013	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	12/03/2013	98.0000
Total dissolved solids (tds)	MG/L	MW-13A	03/04/2014	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	06/02/2014	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	09/22/2014	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	11/17/2014	110.0000
Total dissolved solids (tds)	MG/L	MW-13A	02/23/2015	99.0000
Total dissolved solids (tds)	MG/L	MW-13A	05/19/2015	100.0000
Total dissolved solids (tds)	MG/L	MW-13A	08/26/2015	97.0000
Total dissolved solids (tds)	MG/L	MW-13A	11/10/2015	100.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L MG/L	MW-13A MW-13A	02/22/2016 05/16/2016	100.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L MG/L	MW-13A	08/31/2016	130.0000
Total dissolved solids (tds)	MG/L	MW-13A	11/14/2016	110.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/22/2005	108.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/15/2005	114.0000
Total dissolved solids (tds)	MG/L	MW-13B	09/27/2005	111.0000
Total dissolved solids (tds)	MG/L	MW-13B	12/15/2005	130.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/29/2006	89.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/21/2006	110.0000
Total dissolved solids (tds)	MG/L	MW-13B	09/26/2006	100.0000
Total dissolved solids (tds)	MG/L	MW-13B	12/13/2006	98.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/27/2007	100.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/19/2007	99.0000
Total dissolved solids (tds)	MG/L	MW-13B	09/18/2007	99.0000
Total dissolved solids (tds)	MG/L	MW-13B	12/19/2007	91.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/25/2008	99.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/18/2008	120.0000
Total dissolved solids (tds)	MG/L	MW-13B	09/17/2008	110.0000
Total dissolved solids (tds)	MG/L	MW-13B	12/16/2008	93.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/24/2009	94.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/17/2009	100.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L MG/L	MW-13B MW-13B	09/10/2009	100.0000
l otal dissolved solids (tds)	IVIG/L	INIAN-13R	12/03/2009	110.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date	Result
Total dissolved solids (tds)	MG/L	MW-13B	03/25/2010	100.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/23/2010	110.0000
Total dissolved solids (tds)	MG/L	MW-13B	09/23/2010	94.0000
Total dissolved solids (tds)	MG/L	MW-13B	12/08/2010	94.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/30/2011	110.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/06/2011	99.0000
Total dissolved solids (tds)	MG/L	MW-13B	09/27/2011	100.0000
Total dissolved solids (tds)	MG/L	MW-13B	12/14/2011	91.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/21/2012	100.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/08/2012	110.0000
Total dissolved solids (tds)	MG/L	MW-13B	09/26/2012	110.0000
Total dissolved solids (tds)	MG/L	MW-13B	12/03/2012	93.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/11/2013	100.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/05/2013	98.0000
Total dissolved solids (tds)	MG/L	MW-13B	12/03/2013	99.0000
Total dissolved solids (tds)	MG/L	MW-13B	03/04/2014	99.0000
Total dissolved solids (tds)	MG/L	MW-13B	06/02/2014	100.0000
Total dissolved solids (tds)	MG/L	MW-13B	09/22/2014	110.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L MG/L	MW-13B MW-13B	11/17/2014 02/23/2015	110.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-13B	05/19/2015	110.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-13B	08/26/2015	98.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-13B	11/10/2015	100.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-13B	02/22/2016	100.0000
Total dissolved solids (tds)	MG/L	MW-13B	05/16/2016	99.0000
Total dissolved solids (tds)	MG/L	MW-13B	08/31/2016	120.0000
Total dissolved solids (tds)	MG/L	MW-13B	11/14/2016	100.0000
Total dissolved solids (tds)	MG/L	MW-16	03/24/2009	87.0000
Total dissolved solids (tds)	MG/L	MW-16	06/16/2009	85.0000
Total dissolved solids (tds)	MG/L	MW-16	09/09/2009	89.0000
Total dissolved solids (tds)	MG/L	MW-16	12/03/2009	97.0000
Total dissolved solids (tds)	MG/L	MW-16	03/25/2010	83.0000
Total dissolved solids (tds)	MG/L	MW-16	06/24/2010	95.0000
Total dissolved solids (tds)	MG/L	MW-16	09/24/2010	120.0000
Total dissolved solids (tds)	MG/L	MW-16	12/09/2010	100.0000
Total dissolved solids (tds)	MG/L	MW-16	03/30/2011	91.0000
Total dissolved solids (tds)	MG/L	MW-16	06/07/2011	94.0000
Total dissolved solids (tds)	MG/L	MW-16	09/27/2011	100.0000
Total dissolved solids (tds)	MG/L	MW-16	12/13/2011	93.0000
Total dissolved solids (tds)	MG/L	MW-16	03/21/2012	71.0000
Total dissolved solids (tds)	MG/L	MW-16	06/08/2012	95.0000
Total dissolved solids (tds)	MG/L	MW-16	09/27/2012	87.0000
Total dissolved solids (tds)	MG/L	MW-16	12/04/2012	100.0000
Total dissolved solids (tds)	MG/L	MW-16	03/12/2013	100.0000
Total dissolved solids (tds)	MG/L	MW-16	06/04/2013	68.0000
Total dissolved solids (tds)	MG/L	MW-16	09/05/2013	100.0000
Total dissolved solids (tds)	MG/L	MW-16	12/16/2013	92.0000
Total dissolved solids (tds)	MG/L	MW-16	03/05/2014	82.0000
Total dissolved solids (tds)	MG/L	MW-16	06/02/2014	79.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L MG/L	MW-16 MW-16	09/22/2014 11/18/2014	93.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L MG/L	MW-16		100.0000 80.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-16	02/23/2015 05/20/2015	99.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-16	08/26/2015	93.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-16	11/11/2015	99.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-16	02/24/2016	79.0000
Total dissolved solids (tds)	MG/L	MW-16	05/16/2016	83.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-16	08/31/2016	93.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-16	11/14/2016	86.0000
Total dissolved solids (tds)	MG/L	MW-35	03/22/2005	100.0000
Total dissolved solids (tds)	MG/L	MW-35	06/14/2005	88.0000
Total dissolved solids (tds)	MG/L	MW-35	09/27/2005	123.0000
Total dissolved solids (tds)	MG/L	MW-35	12/15/2005	87.0000
Total dissolved solids (tds)	MG/L	MW-35	03/28/2006	91.0000
Total dissolved solids (tds)	MG/L	MW-35	06/21/2006	110.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Total dissolved solids (tds)	MG/L	MW-35	09/26/2006		110.0000
Total dissolved solids (tds)	MG/L	MW-35	12/12/2006		90.0000
Total dissolved solids (tds)	MG/L	MW-35	03/27/2007		93.0000
Total dissolved solids (tds)	MG/L	MW-35	06/20/2007		110.0000
Total dissolved solids (tds)	MG/L	MW-35	09/18/2007		90.0000
Total dissolved solids (tds)	MG/L	MW-35	12/20/2007		120.0000
Total dissolved solids (tds)	MG/L	MW-35	03/25/2008		76.0000
Total dissolved solids (tds)	MG/L	MW-35	06/18/2008		93.0000
Total dissolved solids (tds)	MG/L	MW-35	09/18/2008		92.0000
Total dissolved solids (tds)	MG/L	MW-35	12/19/2008		93.0000
Total dissolved solids (tds)	MG/L	MW-35	03/24/2009		84.0000
Total dissolved solids (tds)	MG/L	MW-35	06/16/2009		95.0000
Total dissolved solids (tds)	MG/L	MW-35	09/10/2009		83.0000
Total dissolved solids (tds)	MG/L	MW-35	12/03/2009		85.0000
Total dissolved solids (tds)	MG/L	MW-35	03/25/2010		96.0000
Total dissolved solids (tds)	MG/L	MW-35	06/23/2010		100.0000
Total dissolved solids (tds)	MG/L	MW-35	09/23/2010		86.0000
Total dissolved solids (tds)	MG/L	MW-35	12/09/2010		97.0000
Total dissolved solids (tds)	MG/L	MW-35	03/30/2011		91.0000
Total dissolved solids (tds)	MG/L	MW-35	06/06/2011		96.0000
Total dissolved solids (tds)	MG/L	MW-35	09/26/2011		100.0000
Total dissolved solids (tds)	MG/L	MW-35	12/13/2011		95.0000
Total dissolved solids (tds)	MG/L	MW-35	03/21/2012		85.0000
Total dissolved solids (tds)	MG/L	MW-35	06/06/2012		120.0000
Total dissolved solids (tds)	MG/L	MW-35	09/26/2012		110.0000
Total dissolved solids (tds)	MG/L MG/L	MW-35	12/04/2012		100.0000
Total dissolved solids (tds)	MG/L	MW-35	03/13/2013		96.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-35 MW-35	06/06/2013		90.0000
Total dissolved solids (tds)	MG/L	MW-35	09/05/2013 12/16/2013		100.0000
Total dissolved solids (tds) Total dissolved solids (tds)	MG/L	MW-35	03/04/2014		95.0000 94.0000
Total dissolved solids (tds)	MG/L	MW-35	06/02/2014		92.0000
Total dissolved solids (tds)	MG/L	MW-35	09/22/2014		99.0000
Total dissolved solids (tds)	MG/L	MW-35	11/17/2014		100.0000
Total dissolved solids (tds)	MG/L	MW-35	02/25/2015		93.0000
Total dissolved solids (tds)	MG/L	MW-35	05/19/2015		110.0000
Total dissolved solids (tds)	MG/L	MW-35	08/26/2015		99.0000
Total dissolved solids (tds)	MG/L	MW-35	11/10/2015		98.0000
Total dissolved solids (tds)	MG/L	MW-35	02/22/2016		93.0000
Total dissolved solids (tds)	MG/L	MW-35	05/16/2016		100.0000
Total dissolved solids (tds)	MG/L	MW-35	08/31/2016		95.0000
Total dissolved solids (tds)	MG/L	MW-35	11/15/2016		120.0000
Total organic carbon (toc)	MG/L	MW-13A	03/22/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/15/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	09/27/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	12/15/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/28/2006	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/21/2006		2.2000
Total organic carbon (toc)	MG/L	MW-13A	09/26/2006		6.0000
Total organic carbon (toc)	MG/L	MW-13A	12/13/2006	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/27/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/19/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	09/19/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	12/19/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/25/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/18/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	09/17/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	12/17/2008		1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/24/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/17/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	09/10/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	12/03/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/25/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/23/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	09/23/2010	ND	1.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Total organic carbon (toc)	MG/L	MW-13A	12/08/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/30/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/06/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	09/27/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	12/14/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/21/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/08/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	09/26/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	12/03/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/11/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/05/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	12/03/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	03/04/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	06/02/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	09/22/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	11/17/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	05/19/2015	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	02/22/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	05/16/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	08/31/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13A	11/14/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/22/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/15/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/27/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	12/15/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/29/2006	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/21/2006	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/26/2006		4.8000
Total organic carbon (toc)	MG/L	MW-13B	12/13/2006	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/27/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/19/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/18/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	12/19/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/25/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/18/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/17/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	12/16/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/24/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/17/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/10/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	12/03/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/25/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/23/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/23/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	12/08/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/30/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/06/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/27/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	12/14/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/21/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/08/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/26/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	12/03/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/11/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/05/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	12/03/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	03/04/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	06/02/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	09/22/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	11/17/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	05/19/2015	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	02/22/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	05/16/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	08/31/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-13B	11/14/2016	ND	1.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Total organic carbon (toc)	MG/L	MW-16	03/24/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	06/16/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	09/09/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	12/03/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	03/25/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	06/24/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	09/24/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	12/09/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	03/30/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	06/07/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	09/27/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	12/13/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	03/21/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	06/08/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	09/27/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	12/04/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	03/12/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	06/04/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	09/05/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	12/16/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	03/05/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	06/02/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	09/22/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	11/18/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	05/20/2015	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	02/24/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	05/16/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	08/31/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-16	11/14/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/22/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/14/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/27/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	12/15/2005	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/28/2006	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/21/2006		2.1000
Total organic carbon (toc)	MG/L	MW-35	09/26/2006		4.3000
Total organic carbon (toc)	MG/L	MW-35	12/12/2006	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/27/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/20/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/18/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	12/20/2007	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/25/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/18/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/18/2008	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	12/19/2008	NID.	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/24/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/16/2009	ND ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/10/2009		1.0000
Total organic carbon (toc)	MG/L	MW-35	12/03/2009	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/25/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/23/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/23/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	12/09/2010	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/30/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/06/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/26/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	12/13/2011	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/21/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/06/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/26/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	12/04/2012	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	03/13/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/06/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/05/2013	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	12/16/2013	ND	1.0000

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Total organic carbon (toc)	MG/L	MW-35	03/04/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	06/02/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	09/22/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	11/17/2014	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	05/19/2015	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	02/22/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	05/16/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	08/31/2016	ND	1.0000
Total organic carbon (toc)	MG/L	MW-35	11/15/2016	ND	1.0000
Vanadium, total	MG/L	MW-13A	12/03/2013		0.0042
Vanadium, total	MG/L	MW-13A	03/04/2014		0.0042
Vanadium, total	MG/L	MW-13A	06/02/2014		0.0048
Vanadium, total	MG/L	MW-13A	09/22/2014		0.0039
Vanadium, total	MG/L	MW-13A	11/17/2014		0.0042
Vanadium, total	MG/L	MW-13A	02/23/2015		0.0042
Vanadium, total	MG/L	MW-13A	05/19/2015		0.0034
Vanadium, total	MG/L	MW-13A	08/26/2015		0.0039
Vanadium, total	MG/L	MW-13A	11/10/2015		0.0040
Vanadium, total	MG/L	MW-13A	02/22/2016		0.0040
Vanadium, total	MG/L	MW-13A	05/16/2016		0.0039
Vanadium, total	MG/L	MW-13A	08/31/2016		0.0041
Vanadium, total	MG/L	MW-13A	11/14/2016		0.0039
Vanadium, total	MG/L	MW-13B	12/03/2013		0.0058
Vanadium, total	MG/L	MW-13B	03/04/2014		0.0057
Vanadium, total	MG/L	MW-13B	06/02/2014		0.0057
Vanadium, total	MG/L	MW-13B	09/22/2014		0.0050
Vanadium, total	MG/L	MW-13B	11/17/2014		0.0055
Vanadium, total	MG/L	MW-13B	02/23/2015		0.0054
Vanadium, total	MG/L	MW-13B	05/19/2015		0.0054
Vanadium, total	MG/L	MW-13B	08/26/2015		0.0056
Vanadium, total	MG/L	MW-13B	11/10/2015		0.0058
Vanadium, total	MG/L	MW-13B	02/22/2016		0.0058
Vanadium, total	MG/L	MW-13B	05/16/2016		0.0056
Vanadium, total	MG/L	MW-13B	08/31/2016		0.0054
Vanadium, total	MG/L	MW-13B	11/14/2016		0.0061
Vanadium, total	MG/L	MW-16	09/05/2013		0.0034
Vanadium, total	MG/L	MW-16	12/16/2013		0.0039
Vanadium, total	MG/L	MW-16	03/05/2014		0.0042
Vanadium, total	MG/L	MW-16	06/02/2014		0.0042
Vanadium, total	MG/L	MW-16	09/22/2014		0.0042
Vanadium, total	MG/L	MW-16	11/18/2014		0.0040
Vanadium, total	MG/L	MW-16	02/23/2015		0.0051
Vanadium, total	MG/L	MW-16	05/20/2015		0.0042
Vanadium, total	MG/L	MW-16	08/26/2015		0.0032
Vanadium, total	MG/L	MW-16	11/11/2015		0.0034
Vanadium, total	MG/L	MW-16	02/24/2016		0.0043
Vanadium, total	MG/L	MW-16	05/16/2016		0.0034
Vanadium, total	MG/L	MW-16	08/31/2016		0.0042
Vanadium, total	MG/L	MW-16	11/14/2016		0.0049
Vanadium, total	MG/L	MW-35	09/05/2013		0.0042
Vanadium, total	MG/L	MW-35	12/16/2013		0.0046
Vanadium, total	MG/L	MW-35	03/04/2014		0.0047
Vanadium, total	MG/L	MW-35	06/02/2014		0.0042
Vanadium, total	MG/L	MW-35	09/22/2014		0.0044
Vanadium, total	MG/L	MW-35	11/17/2014		0.0042
Vanadium, total	MG/L	MW-35	02/25/2015		0.0048
Vanadium, total	MG/L	MW-35	05/19/2015		0.0042
Vanadium, total	MG/L	MW-35	08/26/2015		0.0041
Vanadium, total	MG/L	MW-35	11/10/2015		0.0043
Vanadium, total	MG/L	MW-35	02/22/2016		0.0045
Vanadium, total	MG/L	MW-35	05/16/2016		0.0046
Vanadium, total	MG/L	MW-35	08/31/2016		0.0046
Vanadium, total	MG/L	MW-35	11/15/2016		0.0043
Zinc, total	MG/L	MW-13A	12/03/2013	ND	0.0050
Zinc, total	MG/L	MW-13A	03/04/2014	ND	0.0050

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Constituent	Units	Well	Date		Result
Zinc, total	MG/L	MW-13A	06/02/2014	ND	0.0050
Zinc, total	MG/L	MW-13A	09/22/2014	ND	0.0050
Zinc, total	MG/L	MW-13A	11/17/2014	ND	0.0050
Zinc, total	MG/L	MW-13A	02/23/2015	ND	0.0050
Zinc, total	MG/L	MW-13A	05/19/2015	ND	0.0050
Zinc, total	MG/L	MW-13A	08/26/2015	ND	0.0050
Zinc, total	MG/L	MW-13A	11/10/2015	ND	0.0050
Zinc, total	MG/L	MW-13A	02/22/2016	ND	0.0050
Zinc, total	MG/L	MW-13A	05/16/2016	ND	0.0050
Zinc, total	MG/L	MW-13A	08/31/2016	ND	0.0050
Zinc, total	MG/L	MW-13A	11/14/2016	ND	0.0050
Zinc, total	MG/L	MW-13B	12/03/2013	ND	0.0050
Zinc, total	MG/L	MW-13B	03/04/2014	ND	0.0050
Zinc, total	MG/L	MW-13B	06/02/2014	ND	0.0050
Zinc, total	MG/L	MW-13B	09/22/2014	ND	0.0050
Zinc, total	MG/L	MW-13B	11/17/2014	ND	0.0050
Zinc, total	MG/L	MW-13B	02/23/2015	ND	0.0050
Zinc, total	MG/L	MW-13B	05/19/2015	ND	0.0050
Zinc, total	MG/L	MW-13B	08/26/2015	ND	0.0050
Zinc, total	MG/L	MW-13B	11/10/2015	ND	0.0050
Zinc, total	MG/L	MW-13B	02/22/2016	ND	0.0050
Zinc, total	MG/L	MW-13B	05/16/2016	ND	0.0050
Zinc, total	MG/L	MW-13B	08/31/2016	ND	0.0050
Zinc, total	MG/L	MW-13B	11/14/2016	ND	0.0050
Zinc, total	MG/L	MW-16	09/05/2013	ND	0.0050
Zinc, total	MG/L	MW-16	12/16/2013	ND	0.0050
Zinc, total	MG/L	MW-16	03/05/2014	ND	0.0050
Zinc, total	MG/L	MW-16	06/02/2014	ND	0.0050
Zinc, total	MG/L	MW-16	09/22/2014	ND	0.0050
Zinc, total	MG/L	MW-16	11/18/2014	ND	0.0050
Zinc, total	MG/L	MW-16	02/23/2015	ND	0.0050
Zinc, total	MG/L	MW-16	05/20/2015	ND	0.0050
Zinc, total	MG/L	MW-16	08/26/2015	ND	0.0050
Zinc, total	MG/L	MW-16	11/11/2015	ND	0.0050
Zinc, total	MG/L	MW-16	02/24/2016	ND	0.0050
Zinc, total	MG/L	MW-16	05/16/2016	ND	0.0050
Zinc, total	MG/L	MW-16	08/31/2016	ND	0.0050
Zinc, total	MG/L	MW-16	11/14/2016		0.0056
Zinc, total	MG/L	MW-35	09/05/2013	ND	0.0050
Zinc, total	MG/L	MW-35	12/16/2013	ND	0.0050
Zinc, total	MG/L	MW-35	03/04/2014	ND	0.0050
Zinc, total	MG/L	MW-35	06/02/2014	ND	0.0050
Zinc, total	MG/L	MW-35	09/22/2014	ND	0.0050
Zinc, total	MG/L	MW-35	11/17/2014	ND	0.0050
Zinc, total	MG/L	MW-35	02/25/2015	ND	0.0050
Zinc, total	MG/L	MW-35	05/19/2015	ND	0.0050
Zinc, total	MG/L	MW-35	08/26/2015	ND	0.0050
Zinc, total	MG/L	MW-35	11/10/2015	ND	0.0050
Zinc, total	MG/L	MW-35	02/22/2016	ND	0.0050
Zinc, total	MG/L	MW-35	05/16/2016	ND	0.0050
Zinc, total	MG/L	MW-35	08/31/2016	ND	0.0050
Zinc, total	MG/L	MW-35	11/15/2016	ND	0.0050

^{* -} Outlier for that well and constituent. ND = Not detected, result = detection limit.

Shapiro Wilk Test of Normality for Multiple Groups

Constituent	N (Detects)	Detect Freq	G raw	G log	Critical Value	Limit Type
Alkalinity, bicarbonate (as caco3)	170	1.000	2.736	3.816	2.326	nonpar
Alkalinity, total (as caco3)	174	1.000	2.851	3.706	2.326	nonpar
Ammonia (as n)	72	0.424	8.003	7.564	2.326	nonpar
Antimony, total	3	0.056				nonpar
Arsenic, total	61	1.000	2.896	2.753	2.326	nonpar
Barium, total	54	1.000	0.320	0.320	2.326	normal
Beryllium, total	0	0.000				nonpar
Cadmium, total	0	0.000				nonpar
Calcium, dissolved	174	1.000	7.066	6.748	2.326	nonpar
Chloride	172	0.989	5.341	4.467	2.326	nonpar
Chromium, total	24	0.444	0.567	0.566	2.326	nonpar
Cobalt, total	0	0.000				nonpar
Copper, total	1	0.019				nonpar
Iron, total	7	0.130	0.318	0.575	2.326	nonpar
Lead, total	1	0.019				nonpar
Magnesium, dissolved	174	1.000	1.990	1.405	2.326	normal
Manganese, total	15	0.278	2.889	2.825	2.326	nonpar
Nickel, total	1	0.019				nonpar
Nitrate (as n)	170	1.000	14.320	12.846	2.326	nonpar
pH	165	1.000	0.913	1.338	2.326	normal
Potassium, dissolved	13	0.075	0.153	0.091	2.326	nonpar
Selenium, total	0	0.000				nonpar
Silver, total	0	0.000				nonpar
Sodium, dissolved	174	1.000	5.017	4.634	2.326	nonpar
Specific conductivity	167	1.000	7.943	8.050	2.326	nonpar
Sulfate	173	0.994	6.080	5.446	2.326	nonpar
Temperature	167	1.000	6.656	5.040	2.326	nonpar
Thallium, total	0	0.000				nonpar
Total dissolved solids (tds)	174	1.000	6.214	5.054	2.326	nonpar
Total organic carbon (toc)	7	0.043	0.146	1.287	2.326	nonpar
Vanadium, total	54	1.000	1.586	1.586	2.326	normal
Zinc, total	1	0.019				nonpar

1

Fit to distribution is confirmed if G < critical value. If detection frequency is < 50% nonparametric or Poisson limit is use

Data in this table are based on pooled data shown in Table 2-3, outliers excluded

COMPARISON OF UPDATED (2017) PREDICTION LIMITS[†] TO PREVIOUS YEAR (2016) PREDICTION LIMITS

Olympic View Sanitary Landfill

	2016		Distributional		2017		Distributional
Constituent	Pred. Limit	unit	Assumption	Constituent	Pred. Limit	unit	Assumption
Alkalinity, bicarbonate (as CaCO3)	96	mg/L	nonparametric	Alkalinity, bicarbonate (as CaCO3)	96	mg/L	nonparametric
Alkalinity, total (as CaCO3)	96	mg/L	nonparametric	Alkalinity, total (as CaCO3)	96	mg/L	nonparametric
Ammonia (as N)	0.30	mg/L	nonparametric	Ammonia (as N)	0.30	mg/L	nonparametric
Antimony, total	0.0013	mg/L	nonparametric	Antimony, total	0.0013	mg/L	nonparametric
Arsenic, total	0.479	ugL	normal	Arsenic, total	0.430	ugL	normal
Barium, total	0.0045	mg/L	normal	Barium, total	0.0045	mg/L	normal
Beryllium, total	Current RL*	mg/L	nonparametric	Beryllium, total	Current RL*	mg/L	nonparametric
Cadmium, total	Current RL*	mg/L	nonparametric	Cadmium, total	Current RL*	mg/L	nonparametric
Calcium, dissolved	17.1	mg/L	nonparametric	Calcium, dissolved	18.0	mg/L	nonparametric
Chloride	4.4	mg/L	nonparametric	Chloride	4.4	mg/L	nonparametric
Chromium, total	0.0090	mg/L	nonparametric	Chromium, total	0.0092	mg/L	nonparametric
Cobalt, total	Current RL*	mg/L	nonparametric	Cobalt, total	Current RL*	mg/L	nonparametric
Copper, total	Current RL*	mg/L	nonparametric	Copper, total	0.0021	mg/L	nonparametric
Iron, total	0.31	mg/L	nonparametric	Iron, total	0.31	mg/L	nonparametric
Lead, total	0.0014	mg/L	nonparametric	Lead, total	0.0014	mg/L	nonparametric
Magnesium, dissolved	11.0	mg/L	normal	Magnesium, dissolved	11.2	mg/L	normal
Manganese, total	0.062	mg/L	nonparametric	Manganese, total	0.062	mg/L	nonparametric
Nickel, total	0.0041	mg/L	nonparametric	Nickel, total	0.0041	mg/L	nonparametric
Nitrate (as N)	1.8	mg/L	nonparametric	Nitrate (as N)	1.8	mg/L	nonparametric
рН	5.88 - 8.24	units	normal	рН	5.81 - 8.23	units	normal
Potassium, dissolved	1.2	mg/L	nonparametric	Potassium, dissolved	1.2	mg/L	nonparametric
Selenium, total	Current RL*	mg/L	nonparametric	Selenium, total	Current RL*	mg/L	nonparametric
Silver, total	Current RL*	mg/L	nonparametric	Silver, total	Current RL*	mg/L	nonparametric
Sodium, dissolved	6.2	mg/L	nonparametric	Sodium, dissolved	6.3	mg/L	nonparametric
Specific conductivity	0.18	mS/cm	nonparametric	Specific conductivity	0.18	mS/cm	nonparametric
Sulfate	9.9	mg/L	nonparametric	Sulfate	9.9	mg/L	nonparametric
Temperature	14.32	deg C	nonparametric	Temperature	14.32	deg C	nonparametric
Thallium, total	Current RL*	mg/L	nonparametric	Thallium, total	Current RL*	mg/L	nonparametric
Total dissolved solids (tds)	175	mg/L	nonparametric	Total dissolved solids (tds)	175	mg/L	nonparametric
Total organic carbon (toc)	6.0	mg/L	nonparametric	Total organic carbon (toc)	6.0	mg/L	nonparametric
Vanadium, total	0.0063	mg/L	normal	Vanadium, total	0.0063	mg/L	normal
Zinc, dissolved	0.0050	mg/L	nonparametric	Zinc, total	0.0056	mg/L	nonparametric

[†] Note that beginning in 2016, Prediction Limits for Trace Metals became based on "total" analyses vs "dissolved" previously

mg/L = milligrams per liter

ug/L = micrograms per liter

mS/cm = milliSiemens per centimeter

deg C = degrees Celsius

^{*} for background data sets with all non-detected values, a nonparametric prediction limit is the current constituent-specific laboratory reporting limit (RL)

3. Annual UCL Calculations using Preliminary Groundwater Cleanup Goals

- 2016 Annual Preliminary Groundwater Cleanup Goals Statistical Evaluation Summary (Table 3-1)

Olympic View Sanitary Landfill

Statistical Methodology: calculation of 95% UCL of mean per MTCAStat

Data Input (general): 3-year "moving window", updated annually

Data Input (specific): January 1, 2014 through December 31, 2016

Wells Evaluated: (1) Compliance -- MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43; (2) Downgradient -- MW-9⁺, MW-29A, MW-32, MW-33A, MW-33C, MW-36A

Monitoring	Monitoring	Corrective Action	N ^[1]	%	M ax ^[2]	95% UCL of		Nata	Groundwater Cleanup	Units ^[4]	Does 95% UCL Exceed Cleanup	Significant
Well	Well Type	Monitoring Parameter	N.	Detect	Max	Mean ^[3]	Units	Note	Level	Units	Level?	Trend? ^[6]
MW-15R	Compliance	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50	ug/L	No	No
MW-15R	Compliance	1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84		В		ug/L	No	No
MW-15R	Compliance	Arsenic, total	12	100%	0.238	0.22		LN	0.462		No	No
MW-15R	Compliance	Iron, total	11 ^[7]	18%	0.11		mg/L	Α	0.30	mg/L	No	No
MW-15R	Compliance	Manganese, total	12	100%	0.021	0.01	mg/L	LN	0.05	mg/L	No	No
MW-15R	Compliance	cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35	ug/L	No	No
MW-15R	Compliance	Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50	ug/L	No	No
MW-15R	Compliance	Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
MW-15R	Compliance	Vinyl Chloride	12	0.0%	0.02 (ND)	0.02	ug/L	В	0.20	ug/L	No	No
MW-15R	Compliance	Ammonia as N	12	8.3%	0.036	0.036	mg/L	Α	0.19	mg/L	No	No
MW-34A	Compliance	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	U	В		ug/L	No	No
MW-34A	Compliance	1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84		В		ug/L	No	No
MW-34A	Compliance	Arsenic, total	12	100%	0.50	0.45	•	LN	0.462	•	No	No
MW-34A	Compliance	Iron, total	12	8.3%	0.06	0.06	mg/L	Α		mg/L	No	No
MW-34A	Compliance	Manganese, total	12	67%	0.0044	0.003	•	LN		mg/L	No	No
MW-34A	Compliance	cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	•	В		ug/L	No	No
MW-34A	Compliance	Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50	ug/L	No	No
MW-34A	Compliance	Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0	ug/L	No	No
MW-34A	Compliance	Vinyl Chloride	12	8.3%	0.03	0.03	ug/L	Α	0.20	ug/L	No	No
MW-34A	Compliance	Ammonia as N	12	0%	0.03 (ND)	0.03	mg/L	В	0.19	mg/L	No	No
MW-34C	Compliance	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50	ug/L	No	No
MW-34C	Compliance	1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В		ug/L	No	No
MW-34C	Compliance	Arsenic, total	12	100%	84.6	84.6	•	A**	0.462	•	Yes	No
MW-34C	Compliance	Iron, total	12	100%	100	148	mg/L	LN		mg/L	Yes	No
MW-34C	Compliance	Manganese, total	12	100%	14		mg/L	Z		mg/L	Yes	No
MW-34C	Compliance	cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35	ug/L	No	No

Olympic View Sanitary Landfill

Statistical Methodology: calculation of 95% UCL of mean per MTCAStat

Data Input (general): 3-year "moving window", updated annually
Data Input (specific): January 1, 2014 through December 31, 2016

Wells Evaluated: (1) Compliance -- MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43; (2) Downgradient -- MW-9+, MW-29A, MW-32, MW-33A, MW-33C, MW-36A

						95%			Groundwater	Does 95% UCL	
Monitoring	Monitoring	Corrective Action	F41	%	101	UCL of			Cleanup	Exceed Cleanup	Significant
Well	Well Type	Monitoring Parameter	N ^[1]	Detect	Max ^[2]		Units ^[4]	Note	Level ^[5] Units ^[4]	Level?	Trend? ^[6]
MW-34C	Compliance	Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50 ug/L	No	No
MW-34C	Compliance	Trichloroethene	12	0%	0.46 (ND)	0.46	•	В	1.0 ug/L	No	No
MW-34C	Compliance	Vinyl Chloride	12	100%	0.16	0.12		LN	0.20 ug/L	No	Yes (▼)
MW-34C	Compliance	Ammonia as N	12	25%	0.031	0.031	mg/L	Α	0.19 mg/L	No	No
MW-39	Compliance	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	•	В	50 ug/L	No	No
MW-39	Compliance	1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0 ug/L	No	No
MW-39	Compliance	Arsenic, total	12	100%	2.16	1.70	ug/L	N	0.462 ug/L	Yes	No
MW-39	Compliance	Iron, total	12	100%	40	33.6	mg/L	Z	0.30 mg/L	Yes	No
MW-39	Compliance	Manganese, total	12	100%	0.49	0.43	mg/L	Z	0.05 mg/L	Yes	No
MW-39	Compliance	cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35 ug/L	No	No
MW-39	Compliance	Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50 ug/L	No	No
MW-39	Compliance	Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0 ug/L	No	No
MW-39	Compliance	Vinyl Chloride	12	0%	0.02 (ND)	0.02	ug/L	В	0.20 ug/L	No	No
MW-39	Compliance	Ammonia as N	12	92%	0.48	0.39	mg/L	Z	0.19 mg/L	Yes	No
MW-42	Compliance	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38		В	50 ug/L	No	No
MW-42	Compliance	1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0 ug/L	No	No
MW-42	Compliance	Arsenic, total	12	100%	1.93	1.73	ug/L	LN	0.462 ug/L	Yes	No
MW-42	Compliance	Iron, total	12	100%	32	26.8	mg/L	LN	0.30 mg/L	Yes	No
MW-42	Compliance	Manganese, total	12	100%	5.3		mg/L	LN	0.05 mg/L	Yes	No
MW-42	Compliance	cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81		В	35 ug/L	No	No
MW-42	Compliance	Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50 ug/L	No	No
MW-42	Compliance	Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0 ug/L	No	No
MW-42	Compliance	Vinyl Chloride	12	92%	0.16	0.13	ug/L	LN	0.20 ug/L	No	No
MW-42	Compliance	Ammonia as N	12	100%	6.7	6.2	mg/L	LN	0.19 mg/L	Yes	No
MW-43	Compliance	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50 ug/L	No	No
MW-43	Compliance	1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0 ug/L	No	No

Olympic View Sanitary Landfill

Statistical Methodology: calculation of 95% UCL of mean per MTCAStat

Data Input (general): 3-year "moving window", updated annually

Data Input (specific): January 1, 2014 through December 31, 2016

Wells Evaluated: (1) Compliance -- MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43; (2) Downgradient -- MW-9+, MW-29A, MW-32, MW-33A, MW-33C, MW-36A

Monitoring	Monitoring	Corrective Action		%		95% UCL of			Groundwater Cleanup	Does 95% UCL Exceed Cleanup	Significant
Well	Well Type	Monitoring Parameter	$N^{[1]}$	Detect	Max ^[2]	Mean ^[3]	Units ^[4]	Note	Level ^[5] Units ^[4]	Level?	Trend? ^[6]
MW-43	Compliance	Arsenic, total	12	17%	0.05	0.05	ug/L	Α	0.462 ug/L	No	No
MW-43	Compliance	Iron, total	11 ^[8]	100%	1.7	1.23	mg/L	LN	0.30 mg/L	Yes	No
MW-43	Compliance	Manganese, total	12	100%	0.26	0.34	mg/L	LN	0.05 mg/L	Yes	No
MW-43	Compliance	cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35 ug/L	No	No
MW-43	Compliance	Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50 ug/L	No	No
MW-43	Compliance	Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0 ug/L	No	No
MW-43	Compliance	Vinyl Chloride	12	0%	0.02 (ND)	0.02	ug/L	В	0.20 ug/L	No	No
MW-43	Compliance	Ammonia as N	12	58%	0.12	0.08	mg/L	LN	0.19 mg/L	No	Yes (▼)
MW-29A	Downgradient	1,1-Dichloroethane	6	0%	0.38 (ND)	0.38		В	50 ug/L	No	No
MW-29A	Downgradient	1,4-Dichlorobenzene	6	0%	0.84 (ND)	0.84	ug/L	В	2.0 ug/L	No	No
MW-29A	Downgradient	Arsenic, total	6	100%	1.99	1.94	ug/L	LN	0.462 ug/L	Yes	No
MW-29A	Downgradient	Iron, total	6	100%	4.7		mg/L	LN	0.30 mg/L	Yes	No
MW-29A	Downgradient	Manganese, total	6	100%	1.4	1.39	mg/L	Z	0.05 mg/L	Yes	No
MW-29A		cis-1,2-dichloroethene	6	0%	0.81 (ND)	0.81	ug/L	В	35 ug/L	No	No
MW-29A	Downgradient	Ethyl ether	6	0%	0.72 (ND)	0.72	ug/L	В	50 ug/L	No	No
MW-29A	Downgradient	Trichloroethene	6	0%	0.46 (ND)	0.46	ug/L	В	1.0 ug/L	No	No
MW-29A	Downgradient	Vinyl Chloride	6	0%	0.02 (ND)	0.02	ug/L	В	0.20 ug/L	No	No
MW-29A	Downgradient	Ammonia as N	6	100%	0.095	0.09	mg/L	LN	0.19 mg/L	No	Yes (▼)
MW-32		1,1-Dichloroethane	12	0%	0.38 (ND)	0.38		В	50 ug/L	No	No
MW-32		1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84		В	2.0 ug/L	No	No
MW-32	Downgradient	Arsenic, total	12	100%	26.6	13.8	ug/L	Z	0.462 ug/L	Yes	No
MW-32	Downgradient	*	12	100%	6.3	2.0	mg/L	Z	0.30 mg/L	Yes	No
MW-32		Manganese, total	12	100%	4.1		mg/L	LN	0.05 mg/L	Yes	No
MW-32	Downgradient	cis-1,2-dichloroethene	12	8.3%	0.81 (ND)	0.81	•	Α*	35 ug/L	No	No
MW-32	Downgradient	Ethyl ether	11	0%	0.72 (ND)	0.72	ug/L	В	50 ug/L	No	No
MW-32	Downgradient	Trichloroethene	12	67%	0.50	0.50	ug/L	A***	1.0 ug/L	No	No
MW-32	Downgradient	Vinyl Chloride	12	100%	0.54	0.43	ug/L	LN	0.20 ug/L	Yes	No

Olympic View Sanitary Landfill

Statistical Methodology: calculation of 95% UCL of mean per MTCAStat

Data Input (general): 3-year "moving window", updated annually

Data Input (specific): January 1, 2014 through December 31, 2016

Wells Evaluated: (1) Compliance -- MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43; (2) Downgradient -- MW-9+, MW-29A, MW-32, MW-33A, MW-33C, MW-36A

						95%			Groundwater	Does 95% UCL	a
Monitoring	3	Corrective Action	F41	%	[9]	UCL of	[4]		Cleanup	Exceed Cleanup	Significant
Well	•	Monitoring Parameter	N ^[1]	Detect	Max ^[2]	Mean ^[3]		Note	Level ^[5] Units ^[4]	Level?	Trend? ^[6]
MW-32	Downgradient	Ammonia as N	11	18%	0.039	0.039	mg/L	Α	0.19 mg/L	No	No
MW-33A		1,1-Dichloroethane	6	0%	0.38 (ND)	0.38	•	В	50 ug/L	No	No
MW-33A	Downgradient	1,4-Dichlorobenzene	6	0%	0.84 (ND)	0.84	ug/L	В	2.0 ug/L	No	No
MW-33A	Downgradient	Arsenic, total	6	100%	0.509	0.468	ug/L	LN	0.462 ug/L	Yes	No
MW-33A	Downgradient	Iron, total	6	100%	5.0	5.0	mg/L	A**	0.30 mg/L	Yes	No
MW-33A	Downgradient	Manganese, total	6	100%	0.10	0.08	mg/L	Ζ	0.05 mg/L	Yes	No
MW-33A	Downgradient	cis-1,2-dichloroethene	6	0%	0.81 (ND)	0.81	ug/L	В	35 ug/L	No	No
MW-33A	Downgradient	Ethyl ether	6	0%	0.72 (ND)	0.72	ug/L	В	50 ug/L	No	No
MW-33A	Downgradient	Trichloroethene	6	0%	0.46 (ND)	0.46	ug/L	В	1.0 ug/L	No	No
MW-33A	Downgradient	Vinyl Chloride	6	0%	0.02 (ND)	0.02	ug/L	В	0.20 ug/L	No	No
MW-33A	Downgradient	Ammonia as N	6	67%	0.30	0.30	mg/L	Α	0.19 mg/L	Yes	No
MW-33C	Downgradient	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50 ug/L	No	No
MW-33C	Downgradient	1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0 ug/L	No	No
MW-33C	Downgradient	Arsenic, total	12	100%	2.67	2.55	ug/L	LN	0.462 ug/L	Yes	No
MW-33C	Downgradient	Iron, total	12	83%	0.38	0.30	mg/L	LN	0.3 mg/L	No	No
MW-33C	Downgradient	Manganese, total	12	100%	0.29	0.22	mg/L	LN	0.05 mg/L	Yes	No
MW-33C	Downgradient	cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81	ug/L	В	35 ug/L	No	No
MW-33C	Downgradient	Ethyl ether	12	0%	0.72 (ND)	0.72	ug/L	В	50 ug/L	No	No
MW-33C	Downgradient	Trichloroethene	12	0%	0.46 (ND)	0.46	ug/L	В	1.0 ug/L	No	No
MW-33C	Downgradient	Vinyl Chloride	12	0%	0.02 (ND)	0.02	ug/L	В	0.20 ug/L	No	No
MW-33C	Downgradient	Ammonia as N	12	0%	0.03 (ND)	0.03	mg/L	В	0.19 mg/L	No	No
	_										
MW-36A	Downgradient	1,1-Dichloroethane	12	0%	0.38 (ND)	0.38	ug/L	В	50 ug/L	No	No
MW-36A	Downgradient	1,4-Dichlorobenzene	12	0%	0.84 (ND)	0.84	ug/L	В	2.0 ug/L	No	No
MW-36A	Downgradient	Arsenic, total	12	100%	0.68	0.586		LN	0.462 ug/L	Yes	No
MW-36A	Downgradient	Iron, total	12	50%	0.18	0.13	mg/L	LN	0.3 mg/L	No	No
MW-36A	Downgradient	Manganese, total	12	83%	0.0068	0.006	mg/L	LN	0.05 mg/L	No	No

Olympic View Sanitary Landfill

Statistical Methodology: calculation of 95% UCL of mean per MTCAStat

Data Input (general): 3-year "moving window", updated annually

Data Input (specific): January 1, 2014 through December 31, 2016

Wells Evaluated: (1) Compliance -- MW-15R, MW-34A, MW-34C, MW-39, MW-42, MW-43; (2) Downgradient -- MW-9*, MW-29A, MW-32, MW-33A, MW-33C, MW-36A

Monitoring Well	Monitoring Well Type	Corrective Action Monitoring Parameter	N ^[1]	% Detect	Max ^[2]	95% UCL of Mean ^[3] Units ^[4]	Note	Groundwater Cleanup Level ^[5]		Does 95% UCL Exceed Cleanup Level?	Significant Trend? ^[6]
MW-36A	Downgradient	cis-1,2-dichloroethene	12	0%	0.81 (ND)	0.81 ug/L	В	35	ug/L	No	No
MW-36A	Downgradient	Ethyl ether	12	0%	0.72 (ND)	0.72 ug/L	В	50	ug/L	No	No
MW-36A	Downgradient	Trichloroethene	12	0%	0.46 (ND)	0.46 ug/L	В	1.0	ug/L	No	No
MW-36A	Downgradient	Vinyl Chloride	12	0%	0.02 (ND)	0.02 ug/L	В	0.20	ug/L	No	No
MW-36A	Downgradient	Ammonia as N	12	8.3%	0.03	0.03 mg/L	Α	0.19	mg/L	No	No
NOTES:											

NOTES:

Well MW-9 is no longer routinely sampled and no longer included on this table

^[1] N = number of data points used for UCL calculation of the mean; only SIM results used for Vinyl Chloride (e.g., duplicate results with higher RLs by non-SIM were omitted).

^[2] MAX = maximum detected result in the data set; if no detected results, then = maximum reporting limit for non-detect results (indicated with ND).

^[3] A 3-year moving data set is used for calculation of the UCL.

^[4] ug/L - micrograms per liter; mg/L = milligrams per liter.

^[5] Groundwater Cleanup Levels are listed on Table 3 of the October 2010 Draft Cleanup Action Plan.

^[6] Trend analysis results are based on data for the period January 2005 through December 2016; arrows indicated increasing (🔺) or decreasing (🔻) trends.

 $^{^{[7]}}$ For MW-15R, outlier of 0.41 mg/L from 2-24-15 sampling event was removed prior to UCL calculation

^[8] For MW-43, outlier of 24 mg/L from 6-2-14 sampling event was removed prior to UCL calculation

A = Detection frequency of data set too low and/or N too few to calculate 95% UCL of mean; therefore, the highest detected result in the data set used to represent 95% UCL of mean.

A* = Same as note "A" except that the highest value in the data set is below the reporting limit of one or more non-detected results; therefore, the highest reporting limit is used to represent the 95% UCL of the mean.

A** = MTCAStat suggests use of lognormal formula but calculation of 95% UCL of mean by Land's formula provides unrealistic result; therefore, the highest detected result is used to represent the 95% UCL of the mean.

A*** = MTCAStat suggests use of the Z-score method but then cites inability to calculate due to presence of censored values; therefore, the highest detected result is used to represent the 95% UCL of the mean.

B = Detection frequency = 0; therefore, the highest reporting limit in the data set is used to represent the 95% UCL of mean.

LN = The 95% UCL of the mean is calculated using Land's formula since lognormal distribution is indicated.

N = The 95% UCL of the mean is calculated using a normal-based t-statistic since a normal distribution is indicated.

Z = the 95% UCL of the mean is calculated using the Z-score method in MTCAStat since neither normal nor lognormal distribution can be determined.

APPENDIX D

FOURTH QUARTER 2016 GROUNDWATER GEOCHEMICAL EVALUATION

DESCRIPTION:	Piper Di	agram, Fourth	Quarter 2016 Annual Monitoring Report		
		PROJECT:	Olympic View Sanitary Landfill	PROJECT NO:	04204027.19
		CLIENT:	Waste Management Closed Sites	DATE:	February 2017

Location MW-13A Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	<0.00	<0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 5.40 <1.00 16.00 10.00	<0.000 0.23 <0.026 0.80 0.82	
	Sum of	Cations	1.88	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	1.80 2.00 0.48 110.40	0.05 0.04 0.01 1.81	
	Sum o	f Anions	1.91	meq/L
Balance (% difference) *			-0.73	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-13B Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.00	0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 5.10 <1.00 17.00 9.30	<0.000 0.22 <0.026 0.85 0.77	
	Sum of	Cations	1.86	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	1.90 3.00 0.64 96.00	0.05 0.06 0.01 1.57	
	Sum o	f Anions	1.7	meq/L
Balance (% difference) *			4.53	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-15R Sample Date 11/15/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.00	0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 6.30 <1.00 13.00 9.40	<0.000 0.27 <0.026 0.65 0.77	
	Sum of	Cations	1.722	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	2.30 4.80 0.20 85.20	0.06 0.10 0.00 1.40	
	Sum o	f Anions	1.564	meq/L
Balance (% difference) *			4.79	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-16 Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.00	0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 5.00 <1.00 9.60 5.90	<0.000 0.22 <0.026 0.48 0.49	
	Sum of	Cations	1.208	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	1.00 1.60 0.24 67.20	0.03 0.03 0.00 1.10	
	Sum o	f Anions	1.167	meq/L
Balance (% difference) *			1.73	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-19C Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	1.20	0.044	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	0.06 6.10 1.50 16.00 8.80	0.000 0.27 0.038 0.80 0.72	
	Sum of	Cations	1.87	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	5.70 3.70 <0.05 88.80	0.16 0.08 <0.00 1.46	
	Sum o	f Anions	1.694	meq/L
Balance (% difference) *			4.94	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-20 Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	<0.00	<0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 9.30 3.10 19.00 11.00	<0.000 0.40 0.079 0.95 0.91	
	Sum of	Cations	2.337	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	8.30 4.20 6.00 90.00	0.23 0.09 0.10 1.47	
	Sum o	f Anions	1.893	meq/L
Balance (% difference) *			10.49	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-23A Sample Date 11/16/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.04	0.001	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 3.50 <1.00 7.80 3.40	<0.000 0.15 <0.026 0.39 0.28	
	Sum of	Cations	0.848	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	<1.00 2.30 0.24 48.00	<0.03 0.05 0.00 0.79	
	Sum o	f Anions	0.867	meq/L
Balance (% difference) *			-1.08	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-24 Sample Date 11/17/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.70	0.025	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 5.00 <1.00 11.00 6.50	<0.000 0.22 <0.026 0.55 0.53	
	Sum of	Cations	1.352	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	2.50 3.50 0.16 68.40	0.07 0.07 0.00 1.12	
	Sum o	f Anions	1.267	meq/L
Balance (% difference) *			3.26	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-29A Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	1.40	0.051	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	4.10 3.60 <1.00 7.40 4.50	0.000 0.16 <0.026 0.37 0.37	
	Sum of	Cations	0.973	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	1.70 <1.00 <0.05 56.40	0.05 <0.02 <0.00 0.92	
	Sum o	f Anions	0.994	meq/L
Balance (% difference) *			-1.08	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-2B1 Sample Date 11/15/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	2.50	0.091	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	0.31 11.00 2.80 18.00 5.60	0.000 0.48 0.072 0.90 0.46	
	Sum of	Cations	2.0	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	14.00 6.00 1.80 98.40	0.39 0.13 0.03 1.61	
	Sum o	f Anions	2.16	meq/L
Balance (% difference) *			-3.88	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-32 Sample Date 11/16/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	1.70	0.062	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	0.50 12.00 1.00 20.00 10.00	0.000 0.52 0.026 1.00 0.82	
	Sum of	Cations	2.43	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	7.00 8.30 <0.05 132.00	0.20 0.17 <0.00 2.16	
	Sum o	f Anions	2.534	meq/L
Balance (% difference) *			-2.10	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-33A Sample Date 11/17/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.09	0.003	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	2.50 3.00 <1.00 8.60 4.10	0.000 0.13 <0.026 0.43 0.34	
	Sum of	Cations	0.926	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	2.20 1.80 <0.05 46.80	0.06 0.04 <0.00 0.77	
	Sum o	f Anions	0.867	meq/L
Balance (% difference) *			3.26	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-33C Sample Date 11/17/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.15	0.005	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	0.08 4.20 1.30 17.00 7.40	0.000 0.18 0.033 0.85 0.61	
	Sum of	Cations	1.68	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	2.80 7.40 <0.05 81.60	0.08 0.15 <0.00 1.34	
	Sum o	f Anions	1.57	meq/L
Balance (% difference) *			3.30	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-34A Sample Date 11/15/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.00	0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 9.70 <1.00 15.00 8.50	<0.000 0.42 <0.026 0.75 0.70	
	Sum of	Cations	1.896	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	3.20 3.00 <0.05 96.00	0.09 0.06 <0.00 1.57	
	Sum o	f Anions	1.727	meq/L
Balance (% difference) *			4.66	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-34C Sample Date 11/15/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.54	0.020	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	0.62 12.00 <5.00 24.00 11.00	0.000 0.52 <0.128 1.20 0.91	
	Sum of	Cations	2.77	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	4.40 4.60 <0.05 132.00	0.12 0.10 <0.00 2.16	
	Sum o	f Anions	2.384	meq/L
Balance (% difference) *			7.53	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-35 Sample Date 11/15/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	<0.00	<0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 6.30 <1.00 14.00 10.00	<0.000 0.27 <0.026 0.70 0.82	
	Sum of	Cations	1.82	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	1.80 2.20 0.47 109.20	0.05 0.05 0.01 1.79	
	Sum o	f Anions	1.894	meq/L
Balance (% difference) *			-1.96	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-36A Sample Date 11/15/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	<0.00	<0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 7.30 <1.00 10.00 8.00	<0.000 0.32 <0.026 0.50 0.66	
	Sum of	Cations	1.5	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	1.70 2.50 0.49 72.00	0.05 0.05 0.01 1.18	
	Sum o	f Anions	1.288	meq/L
Balance (% difference) *			7.62	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-39 Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.02	0.001	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	0.37 4.80 <1.00 13.00 6.10	0.000 0.21 <0.026 0.65 0.50	
	Sum of	Cations	1.386	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	<1.00 1.40 1.60 68.40	<0.03 0.03 0.03 1.12	
	Sum o	f Anions	1.204	meq/L
Balance (% difference) *			7.01	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-4 Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.02	0.001	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 3.00 <1.00 4.30 2.00	<0.000 0.13 <0.026 0.21 0.16	
	Sum of	Cations	0.536	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	1.40 2.00 0.33 50.40	0.04 0.04 0.01 0.83	
	Sum o	f Anions	0.912	meq/L
Balance (% difference) *			-25.99	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-42 Sample Date 11/16/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	4.50	0.164	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	27.00 21.00 8.70 42.00 14.00	0.000 0.91 0.223 2.10 1.15	
	Sum of	Cations	4.55	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	12.00 6.30 <0.05 264.00	0.34 0.13 <0.00 4.33	
	Sum o	f Anions	4.8	meq/L
Balance (% difference) *			-2.67	%

⁺ mg/l to meq/l

 $^{^{\}ast}$ [(Total anions - Total cations) / (Total anions + Total cations)]*100

Location MW-43 Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.03	0.001	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 2.30 <1.00 3.20 1.40	<0.000 0.10 <0.026 0.16 0.12	
	Sum of	Cations	0.402	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	<1.00 1.70 0.52 15.60	<0.03 0.04 0.01 0.26	
	Sum o	f Anions	0.328	meq/L
Balance (% difference) *			10.15	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location OBWL-TD Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.01	0.000	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	<0.06 5.70 2.10 24.00 2.90	<0.000 0.25 0.054 1.20 0.24	
	Sum of	Cations	1.738	meq/L
CI SO4 NO3 HCO3	0.02821 0.02082 0.01613 0.01639	<1.00 22.00 0.27 68.40	<0.03 0.46 0.00 1.12	
	Sum o	f Anions	1.612	meq/L
Balance (% difference) *			3.77	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location LP-LCD Sample Date 11/22/2016

Major Ions	Conversion Factor +	mg/l	meq/l	
Mn	0.0364	0.73	0.027	
Fe Na K Ca Mg	0.03581 0.04350 0.02258 0.04990 0.08229	0.54 740.00 76.00 58.00 34.00	0.000 32.19 1.944 2.89 2.80	
	Sum of	Cations	39.85	meq/L
CI SO4 NO3	0.02821 0.02082 0.01613	630.00 260.00	17.77 5.42	
HCO3	0.01639	948.00	15.54	
	Sum o	f Anions	38.7	meq/L
Balance (% difference) *			1.43	%

⁺ mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

Location L-INF Sample Date 11/14/2016

Major Ions	Conversion Factor +	mg/l	meq/l
Mh Fe Na K Ca	0.0364 0.03581 0.04350 0.02258 0.04990	2.70 0.42 690.00 100.00 150.00	0.098 0.000 30.01 2.558 7.49
Mg		94.00 Cations	7.74 47.9 meq/L
CI SO4 NC3 HCC3	0.02821 0.02082 0.01613 0.01639	680.00 280.00 0.36 1920.0	19.18 5.83 0.01 31.47
	Sumo	f Anions	56.5 meq/L
Balance (% difference) *			-8.24 %

⁺mg/l to meq/l

^{* [(}Total anions - Total cations) / (Total anions + Total cations)]*100

APPENDIX E LANDFILL GAS MONITORING RESULTS

Table E1. Historical Results of Methane (CH₄) Measurements 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Date Monitored	OV-GP-07	OV-GP-08	OV-GP-9S	OV-GP-9D	OV-GP10S	OV-GP10D	OV-GP11S	OV-GP11D	OV-GP12S	OV-GP12M	OV-GP12D	OV-GP13S	OV-GP13M	OV-GP13D	OV-GP14	OV-GP15	OV-GP16
11/15/2016	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	0.0
9/20/2016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6/27/2016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3/24/2016	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
12/15/2015	0.0		0.0		0.0	0.0	0.0	0.0	0.0			0.0	0.0		0.0	0.0	0.0
9/29/2015 5/7/2015	0.0	0.0	0.0	0.0	0.0	0.0	0.0	— 0.0 —	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3/30/2015	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
12/29/2014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0
9/24/2014 6/16/2014	0.0	0.0	0.0	0.0	0.0	0.0	0.0	— 0.0 —	0.0	0.0	— 0.0 —	0.0	0.0	0.0	0.0	1.0	0.0
3/28/2014	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	3.7	0.0
12/13/2013	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	0.0
7/13/2013	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7	0.0
5/13/2013	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2/13/2013	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0
11/12/2012	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0
8/12/2012	0.0	0.0	0.0	0.0	0.0	0.0	0.0	— —	0.0	0.0	— —	0.0	0.0	0.0	0.0	0.0	0.0
5/18/2012	0.0	0.0	0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	_	0.0	0.0	0.0	0.0	0.2	0.0
3/12/2012	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0
12/22/2011	0.0	0.0	0.0	_	0.0	_	0.0	_	0.0	0.0	_	0.0	0.0	_	0.0	1.5	0.0
9/27/2011	0.0	0.0	0.0	_	0.0	_	0.0	_	0.0	0.0	_	0.0	0.0	_	0.0	0.3	0.0
6/29/2011	0.1	0.0	0.0	_	0.0	_	0.0	_	0.0	0.0	_	0.0	0.0	_	0.0	1.0	0.0
3/16/2011	0.0	0.0	0.0	_	0.0	_	0.0	_	0.0	0.0	_	0.0	0.0	_	0.0	0.0	0.0
12/22/2010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9/27/2010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6/29/2010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3/16/2010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0
12/8/2009	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	0.0
9/4/2009	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
6/5/2009	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3/3/2009	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.1
12/1/2008	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	0.0
9/5/2008	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.8	0.0
6/23/2008	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.9	0.0
3/5/2008	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.4	0.0
12/28/2007	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.7	0.0
9/30/2007	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.3	0.0
6/15/2007	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.6	0.0
3/30/2007	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.2	1.6

Notes:

OV-GP = Gas Probe

S = Shallow Monitoring Zone

M = Middle Monitoring Zone

D = Deep Monitoring Zone

Detected CH4>0.3% vol.

— Screened interval submerged

Table E2. Historical Results of Carbon Dioxide (CO₂) Measurements 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Port Orchard, Washington

Date Monitored	OV-GP-07	OV-GP-08	OV-GP-9S	OV-GP-9D	OV-GP10S	OV-GP10D	OV-GP11S	OV-GP11D	OV-GP12S	OV-GP12M	OV-GP12D	OV-GP13S	OV-GP13M	OV-GP13D	OV-GP14	OV-GP15	OV-GP16
11/15/2016	8.2	3.6	2.1	1.4	0.9	0.7	2.2	1.5	1.2	1.3	0.4	3.0	2.6	0.2	5.6	6.6	1.5
9/20/2016	11.2	5.0	2.2	1.4	0.5	0.3	1.9	0.6	0.9	0.9	0.7	1.8	2.5	0.1	2.0	3.0	2.0
6/27/2016	7.3	2.8	1.9	1.0	0.7	0.5	1.0	2.9	1.0	1.1	0.5	2.8	2.4	0.3	5.8	3.3	2.5
3/24/2016	3.1	1.4	1.8	1.3	0.7	0.7	2.1	2.1	1.7	1.6	1.1	3.3	3.3	2.1	4.8	4.3	2.4
12/15/2015	6.4	2.3	1.9	1.6	0.9	0.7	2.6	2.0	1.2	1.0	1.0	3.9	3.5	1.6	5.9	3.5	3.8
9/29/2015	10.8	6.2	1.6	1.5	0.6	0.7	2.0	2.6	0.9	1.0	1.3	2.9	1.9	0.2	8.7	9.4	4.0
5/7/2015	7.9	3.6	2.6	1.7	0.9	0.8	3.6	_	1.1	2.4	—	3.4	3.3	0.0	6.1	5.0	4.5
3/30/2015	6.2	2.0	2.4	1.7	0.9	0.8	3.3	_	1.3	1.4		0.8	3.3	3.4	5.7	6.5	3.8
12/29/2014	8.3	2.6	2.6	1.8	1.0	0.9	3.2	3.5	1.3	1.2	1.7	3.6	3.5	0.1	6.8	7.3	3.9
9/24/2014	11.2	6.1	2.0	1.6	0.8	0.7	3.4	3.0	1.2	1.3	1.6	2.9	3.3	1.3	9.3	10.1	4.2
6/16/2014	8.9	4.0	2.9	1.8	1.2	1.0	4.2		2.0	1.7		3.7	3.3	1.1	6.6	6.1	5.0
3/28/2014	5.9	2.0	1.8	1.8	0.8	0.9	2.5	_	1.9	2.2	_	3.3	3.5	3.2	6.4	2.2	3.3
12/13/2013	9.6	5.4	2.6	1. <i>7</i>	1.1	0.9	3.5	3.6	1 <i>.7</i>	1.9	1. <i>7</i>	3.9	3.8	3.7	8.5	9.5	5.1
7/13/2013	9.6	4.5	2.9	1.5	1.1	0.7	3.9	0.4	1.8	1. <i>7</i>	0.4	3.5	3.1	3.1	7.8	7.8	7.4
5/13/2013	6.2	2.6	2.3	1. <i>7</i>	0.8	0.7	2.4	2.2	1.9	1.0	0.8	2.3	2.6	0.1	5.3	4.0	5.0
2/13/2013	4.2	2.5	1.7	1.5	0.7	0.7	1.8	2.4	1.1	0.9	0.8	2.3	2.4	0.8	5.1	6.2	3.9
11/20/2012	8.3	2.8	1.9	1.6	0.9	0.7	2.2	2.9	1.3	1.2	1.2	2.9	2.1	3.0	7.5	3.5	4.8
8/20/2012	9.6	4.6	2.5	1.4	0.8	0.6	2.8	2.8	1.8	1.5	_	3.5	2.1	1.6	7.9	1. <i>7</i>	6.1
5/18/2012	6.0	3.1	2.6	1. <i>7</i>	0.8	0.6	2.1	_	2.2	1.1		2.6	1. <i>7</i>	1.1	5.7	3.4	5.1
3/12/2012	4.2	1. <i>7</i>	2.3	1. <i>7</i>	0.7	0.7	1. <i>7</i>	2.4	1.9	1.9	0.1	3.0	3.2	2.8	_	6.2	4.4
12/22/2011	1.5	5.5	3.2	_	1.3	_	1.3	_	1.4	1.0		2.0	2.0	_	5.1	5.2	4.6
9/27/2011	9.7	4.7	1 <i>.7</i>	_	0.7	_	1.8	_	0.7	0.7	_	2.9	1.8	_	8.9	8.8	2.4
6/29/2011	6.6	3.0	3.0	_	0.7		2.1	_	2.3	0.9	_	3.4	3.0	_	6.4	3.9	6.2
3/16/2011	1.5	0.5	2.1	_	0.7		1.4	_	2.4	1. <i>7</i>	_	3	3.1	_	0.3	0.3	3.8
12/22/2010	8.3	2.4	2.3	1. <i>7</i>	3.2	2.8	2.4	2.1	2.2	1.8	1.0	3.9	3.5	0.4	3.4	1.3	6.7
9/27/2010	11.0	4.1	2.1	1.5	0.9	1.0	2.0	0.4	1.9	1.3	0.7	1.1	3.2	0.3	10.2	0.8	7.4
6/29/2010	8.0	0.2	3.5	1.6	0.9	0.7	2.5	1.6	2.3	2.2	0.7	2.7	3.0	2.4	7.3	0.2	9.3
3/16/2010	5.1	2.1	2.5	1.7	0.2	0.7	1.9	1.7	1.5	1.3	1.4	1.2	3.2	2.5	6.0	1.9	7.0
12/8/2009	6.9	6.1	2.3	1.7	0.1	0.4	1.8	0.2	1.5	1.8	0.2	1.5	3.3	3.3	10.0	2.8	7. 1
9/4/2009	11.3	6.8	2.7	2.0	0.9	0.9	2.6	2.0	2.4	2.7	2.2	3.4	3.8	3.9	11.7	5.1	1.9
6/5/2009	7.6	4.9	3.2	1.9	0.6	0.6	2.2	1.6	2.3	2.3	1.5	2.9	3.8	2.4	8.2	2.4	2.0
3/3/2009	7.7	2.8	2.1	1.4	0.6	0.6	1.6	1.4	1.5	1.4	1.3	2.1	4.0	3.6	8.0	2.4	1.1
12/1/2008	9.2	7.0	0.7	0.7	2.9	1.7	2.0	1.6	2.3	2.3	1.8	2.9	4.2	2.4	9.9	2.9	1.8
9/5/2008	10.3	6.2	3.0	1.9	1.0	0.8	2.8	2.1	3.1	2.6	2.3	4.2	4.7	3.9	9.8	14.3	1.9
6/23/2008	8.5	4.6	2.9	1.6	0.8	0.7	2.5	1.8	1.8	2.0	1.0	3.4	4.4	4.3	7.5	12.4	2.3
3/5/2008	4.9	2.6	2.3	1.6	0.6	0.7	2.0	1.7	1.0	0.8	1.1	2.3	4.7	5.0	6.6	8.9	1.2
12/28/2007	7.7	1.2	2.2	1.8	0.9	0.8	2.3	1.9	5.3	5.3	2.2	2.9	5.7	4.2	8.2	8.5	1.5
9/30/2007	11. <i>7</i>	<i>7</i> .1	2.4	1.6	1.0	0.7	2.7	1.7	2.7	3.1	2.2	4.4	5.9	6.0	11.0	18.1	1.5
6/15/2007	8.1	4.3	3.2	1.7	0.9	0.7	2.7	1.5	2.7	2.5	0.6	3.6	6.6	6.6	8.1	12.5	1.8
3/30/2007	4.7	0.8	2.5	2.0	0.7	0.7	1.8	1.5	2.2	2.1	1.1	2.7	7.5	8.2	0.1	8.8	19.1

Notes:

OV-GP = Gas Probe

S = Shallow Monitoring Zone

M = Middle Monitoring Zone

D = Deep Monitoring Zone

Detected CO2>0.3% vol.

— Screened interval submerged

Table E3. Historical Results of Oxygen (O₂) Measurements 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Port Orchard, Washington

Date Monitored	OV-GP-07	OV-GP-08	OV-GP-9S	OV-GP-9D	OV-GP10S	OV-GP10D	OV-GP11S	OV-GP11D	OV-GP12S	OV-GP12M	OV-GP12D	OV-GP13S	OV-GP13M	OV-GP13D	OV-GP14	OV-GP15	OV-GP16
		01-01-00						07-01115		0V-0112M							
11/15/2016	4.7	4.0	1 <i>7.</i> 5	18.9	19. <i>7</i>	19.4	18.3	19.1	18.3	18.1	20.0	16.6	1 <i>7</i> .8	20.7	8.2	0.0	17.3
9/20/2016	7.7	11.9	19.7	19.6	20.5	20.7	19.2	19.9	19.5	20.0	1 <i>7</i> .8	18.5	1 <i>7</i> .9	21.1	15.8	16.8	18.8
6/27/2016	6.8	11.3	19.3	18.6	20.2	19.3	18.7	18.2	19.7	19.9	19.4	18.5	1 <i>7</i> .5	20.6	8.0	7.0	18.5
3/24/2016	9.7	6.7	18.4	18.8	20.1	18.2	17.5	15.6	18. <i>7</i>	18.8	17.7	16.7	15.9	18.5	4.9	0.0	17.6
12/15/2015	5.9	3.7	18.6	19. <i>7</i>	20.1	19.3	18.3	17.5	20.7	20.3	18.8	16.6	17.3	19.0	5.0	5.7	16.1
9/29/2015	7.0	<i>7</i> .8	19.8	19.6	20.4	19.6	19.2	18.5	19.9	19.6	16.2	17.4	18.4	20.4	7.4	5.0	16.6
5/7/2015	4.1	7.0	19.0	19.4	20.2	18.9	17.6	_	18.9	18.3	_	16.9	16.6	20.7	5.5	5.5	16.0
3/30/2015	4.5	9.4	18.6	19.0	20.3	18.9	17.7	_	19.3	18.3	_	19. <i>7</i>	1 <i>7</i> .1	17.7	5.0	0.1	16.3
12/29/2014	3.6	5.3	18.5	19.6	20.5	19.8	17.9	14.4	20.1	19.5	16.4	1 <i>7</i> .5	1 <i>7.</i> 5	20.7	5.7	0.0	16.4
9/24/2014	8.3	8.6	19.9	19.6	20.4	19.4	18.6	17.4	19.5	18. <i>7</i>	15.2	18.5	1 <i>7.7</i>	19.5	7.0	3.2	17.7
6/16/2014	3.7	5.7	18.5	18.8	20.0	18.5	16.9	_	19.1	18.8	_	17.7	17.3	20.1	5.9	0.0	16.9
3/28/2014	4.8	3.3	19.0	19.5	20.9	18.8	18. <i>7</i>	_	18. <i>7</i>	18.2	_	18.3	18.1	18.2	5.5	5.8	16.8
12/13/2013	4.9	6.3	19.4	19.6	20.1	19.3	17.6	11.5	18.5	1 <i>7</i> .8	16.6	17.6	17.3	17.3	3.9	1.2	16.1
7/13/2013	4.4	5.8	18.5	19.1	20.0	19.2	16.9	20.2	1 <i>7</i> .3	16.3	19.1	1 <i>7</i> .0	1 <i>7.7</i>	18.0	0.0	0.0	13.6
5/13/2013	4.5	8.4	18.8	19.0	20.1	18.7	18.2	15.7	19.6	20.0	18. <i>7</i>	18.2	1 <i>7</i> .9	20.8	6.2	7.2	15.4
2/13/2013	4.0	7.4	19.2	18.2	20.4	18.4	18.9	14.2	20.5	20.2	18.1	18.6	1 <i>7</i> .1	20.2	5.8	0.3	15.9
11/20/2012	4.8	4.5	18.0	19.5	20.2	19. <i>7</i>	18.9	14.0	18.9	18.9	16.8	1 <i>7</i> .9	18.9	18.1	5.2	7.2	13.8
8/20/2012	5.0	6.7	18.5	18.4	19.3	18.6	1 <i>7</i> .9	12.5	18.3	18.0		16.9	17.5	18.4	4.3	19.1	15.3
5/18/2012	4.2	5.8	17.7	18. <i>7</i>	19.8	19.3	18.1	_	19.2	19.3	_	18.0	19.1	19.8	5.5	13.0	15.0
3/12/2012	3.5	5.4	18.6	19.0	20.1	18.6	19.1	15.4	18.0	1 <i>7.7</i>	21.4	18.2	17.6	18.3	<u>—</u>	0.0	15.6
12/22/2011	20.0	5.7	17.6	_	19.8	_	18.9	<u> </u>	19.6	19.3	_	1 <i>7.7</i>	18.4	_	6.7	12.4	15.2
9/27/2011	8.9	10.8	19.9	_	20.6	_	20.0	<u> </u>	20.4	19.9	_	18.3	18.8	_	7.6	4.4	18.8
6/29/2011	3.6	6.5	17.9		20.2	_	18. <i>7</i>	_	19.4	19.8	_	17.2	14.9	_	4.8	6.5	14.8
3/16/2011	20.1	20.7	18.3	_	20.5	_	16.5		16.7	17.4	_	16.6	15	_	20.6	20.4	15.3
12/22/2010	1.8	2.4	16.3	1 <i>7.</i> 8	11.1	10.1	16.5	16.4	16.1	16.1	18.8	14.7	14.5	19.5	18.6	19.4	11.2
9/27/2010	6.6	9.7	18.5	19.0	20.5	20.6	19.1	20.5	19.0	19.0	19.4	1 <i>7.</i> 5	15.3	20.7	8.2	20.3	12.6
6/29/2010	3.5	20.1	16.6	18.0	19.3	18.3	17.3	18.1	16.8	16.8	18.4	15.8	13.4	14.9	4.5	19.6	9.2
3/16/2010	3.0	8.5	18.4	19.3	21.6	19.3	18.0	18.9	20.9	20.9	18.0	1 <i>7</i> .0	12.7	15.6	2.8	10.0	10.4
12/8/2009	2.5	6.0	16.6	18.8	21.3	21.6	19.3	21.7	1 <i>7</i> .9	1 <i>7</i> .9	20.1	1 <i>7</i> .9	15.2	15.7	1.8	5.3	10.4
9/4/2009	7.5	6.4	19.8	19.8	21.1	20.2	20.1	19.6	15.9	15.9	14.3	1 <i>7</i> .3	14.3	13.9	3.0	3.3	19.3
6/5/2009	2.4	3.4	17.0	18.3	20.1	18.9	18.3	19.0	16.3	16.3	1 <i>7</i> .0	15.3	12.6	12.4	3.0	6.2	18.9
3/3/2009	2.9	7.5	18.8	18.9	20.4	18.9	18.8	19.3	19.0	19.0	16.7	16.3	13.4	13.7	2.7	0.0	19.5
12/1/2008	1.4	1.0	20.2	19.6	17.6	19.1	18.9	19.1	16.5	16.5	15.2	16.4	13.1	12.4	1.6	0.0	18.8
9/5/2008	6.8	8.0	18.9	19.3	20.5	19.7	19.1	19.4	17.1	1 <i>7</i> .1	14.4	15.8	11. <i>7</i>	13.0	5.0	0.0	19.5
6/23/2008	6.0	10.8	18.5	19.3	20.1	19.3	18.9	19.2	17.5	17.5	18.1	16.3	11.3	10.5	4.3	0.0	19.1
3/5/2008	4.0	13.6	19.3	19.5	20.2	18.7	18.8	18.2	20.0	20.0	18.4	15.4	8.8	8.5	5.5	0.0	20.3
12/28/2007	3.9	5.7	17.7	18.9	20.3	19.0	18.8	18.5	15.0	15.0	15.3	14.7	6.0	10.6	2.2	0.3	19.6
9/30/2007	6.2	5.7	19.7	19.3	20.0	19.5	19.2	19.6	16.4	13.9	12.2	14.5	7.8	6.5	4.3	0.0	19.7
6/15/2007	4.8	7.2	18.4	18.8	20.1	18.9	18.1	18.8	17.7	17.7	18.4	15.3	6.6	5.5	3.7	0.0	20.0
3/30/2007	4.6	6.8	17.7	18.1	19.9	18.4	1 <i>7.7</i>	16.7	17.1	1 <i>7</i> .1	1 <i>7</i> .0	12.7	2.5	2.1	20.9	0.0	18.8

Notes:

OV-GP = Gas Probe

S = Shallow Monitoring Zone

M = Middle Monitoring Zone

D = Deep Monitoring Zone

Depressed O2<20.3% vol.

— Screened interval submerged

Table E-4. 2016 Landfill Gas Collection (at Flare Inlet) 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Device Name	Date Time	CH4	CO ₂	O2 (O	Balance Gas	Temperature	Flow
OV 51 IN	1/4/201/ 0.44	(Methane %)	(Carbon Dioxide %)	(Oxygen %)	(%)	(°F)	(SCFM)
OV-FL-IN	1/4/2016 8:44 1/5/2016 8:36	28. <i>7</i> 30	19.6 20.2	2.4	49.3 47.8	56 56	227 216
OV-FL-IN	, ,	26.7	18.6	3.1	51.6	55	186
	1/7/2016 7:49	26.7	18.8	2.8	51.4	53	211
OV-FL-IN	1/11/2016 7:52						
	1/13/2016 8:58	30.5 28	20.1	1.9 2.2	47.5 49.7	61 60	193 175
OV-FL-IN	1/18/2016 7:41 1/19/2016 7:43	28.1	19.4	2.2	50.3	61	217
OV-FL-IN	1/21/2016 8:03	28	19.6	1.7	50.7	62	249
		24.3	17.7	3.4		62	228
OV-FL-IN OV-FL-IN	1/25/2016 7:39				54.6		
	1/28/2016 8:07	28.9	20.2	1.1	49.8	67	244
OV-FL-IN	2/1/2016 7:41	23.8	17.4	3.6	55.2	61	228
OV-FL-IN	2/9/2016 7:36	25.3	18.2	2.9	53.6	59	245
OV-FL-IN	2/10/2016 7:19	25.2	18.2	3	53.6	62	237
OV-FL-IN	2/15/2016 7:17	24.6	18.2	2.8	54.4	66	239
OV-FL-IN	2/17/2016 7:20	27.7	19.6	1.6	51.1	67	272
OV-FL-IN	2/22/2016 8:37	22.2	17.1	3.6	57.1	62	220
OV-FL-IN	2/23/2016 7:22	23.3	17	3.4	56.3	57	249
OV-FL-IN	2/25/2016 10:07	24.4	17.9	3.6	54.1	61.4	226
OV-FL-IN	2/25/2016 17:05	25.7	18.4	3.4	52.5	66.1	226
OV-FL-IN	2/29/2016 7:33	25.1	18.3	2.8	53.8	61	200
OV-FL-IN	3/7/2016 7:05	27.4	18.8	2.9	50.9	60	222
OV-FL-IN	3/8/2016 7:02	23.9	17	4	55.1	59	232
OV-FL-IN	3/14/2016 6:41	24.3	17.5	3.9	54.3	60	204
OV-FL-IN	3/21/2016 5:58	26.4	18.8	2.5	52.3	63	224
OV-FL-IN	3/22/2016 6:13	25	18	3.5	53.5	64	205
OV-FL-IN	3/28/2016 6:36	23.5	17.3	3.8	55.4	61	212
OV-FL-IN	3/31/2016 6:38	23.8	17.2	3.7	55.3	59	222
OV-FL-IN	4/4/2016 5:59	24	17.7	3.3	55	63	213
OV-FL-IN	4/6/2016 7:28	23.2	17.2	3.5	56.1	61	221
OV-FL-IN	4/7/2016 17:31	27	18.9	2.1	52	96.8	213
OV-FL-IN	4/8/2016 10:05	25.5	18.8	2.8	52.9	79.5	203
OV-FL-IN	4/11/2016 7:19	23.3	17.4	3.6	55.7	67	203
OV-FL-IN	4/13/2016 7:18	23.7	17.4	3.5	55.4	64	211
OV-FL-IN	4/18/2016 7:11	22.9	17	3.7	56.4	67	229
OV-FL-IN	4/20/2016 7:16	23.5	17.2	3.6	55.7	68	227
OV-FL-IN	4/25/2016 7:17	22.4	16.9	3.7	57	67	190
OV-FL-IN	4/28/2016 7:24	23.1	17.3	3.5	56.1	68	191
OV-FL-IN	5/2/2016 7:20	25	17.9	3.1	54	70	198
OV-FL-IN	5/23/2016 13:26	25.8	18.8	2.9	52.5	75.8	188
OV-FL-IN	5/24/2016 8:56	23.1	17.2	4.1	55.6	73.5	208
OV-FL-IN	5/25/2016 10:19	22.3	16.9	4	56.8	70.8	203
OV-FL-IN	5/26/2016 8:31	23.2	17.4	3.9	55.5	67.2	196
OV-FL-IN	5/26/2016 15:54	24.1	18.3	3.4	54.2	75	192
OV-FL-IN	6/22/2016 11:38	26	18.7	2.9	52.4	87.1	184
OV-FL-IN	7/11/2016 10:12	25.5	18.6	3.5	52.4	73	179
OV-FL-IN	7/18/2016 11:30	26.8	19.2	3.3	50.7	79	176
OV-FL-IN	7/25/2016 11:04	27	19.3	3	50.7	91	171
OV-FL-IN	8/1/2016 11:43	25	18.4	4.2	52.4	88	182
OV-FL-IN	8/8/2016 18:10	26	18.6	4.1	51.3	86	181
OV-FL-IN	8/22/2016 14:29	24.9	18.2	3.8	53.1	92	168
OV-FL-IN	8/25/2016 9:33	24.8	17.8	4.3	53.1	87	205
OV-FL-IN	8/25/2016 14:39	25.8	17.8	3.8	52.6	104.6	273
OV-FL-IN	8/26/2016 10:46	25.6	18.2	3.9	52.3	93.5	278
OV-FL-IN	8/29/2016 11:14	24.4	18.3	4.2	53.1	90	300
		26			51	75	
OV-FL-IN	9/6/2016 10:26	20	19.6	3.4	31	/3	287

Table E-4. 2016 Landfill Gas Collection (at Flare Inlet) 2016 Annual Monitoring Report Olympic View Sanitary Landfill, Kitsap County, Washington

Device Name	Date Time	CH4 (Methane %)	CO ₂ (Carbon Dioxide %)	O2 (Oxygen %)	Balance Gas (%)	Temperature (°F)	Flow (SCFM)
OV-FL-IN	9/19/2016 14:09	25.3	19	3.2	52.5	74	270
OV-FL-IN	9/26/2016 9:31	26.3	19.4	2.7	51.6	67	298
OV-FL-IN	9/29/2016 8:23	24.3	18.4	3.7	53.6	46	284
OV-FL-IN	10/4/2016 9:38	25.2	18.8	3	53	57	291
OV-FL-IN	10/10/2016 10:58	23.8	18.5	3.1	54.6	61	264
OV-FL-IN	10/11/2016 17:21	23.7	18.6	3.4	54.3	67.2	272
OV-FL-IN	10/12/2016 19:39	26.8	19.6	2.7	50.9	68.4	303
OV-FL-IN	10/13/2016 13:50	29.1	21	1.8	48.1	63.4	296
OV-FL-IN	10/13/2016 19:13	29.3	21.2	1.7	47.8	67.3	336
OV-FL-IN	10/17/2016 11:15	24.6	19.1	3.3	53	64	272
OV-FL-IN	10/25/2016 8:44	23.9	18.5	3.3	54.3	62	283
OV-FL-IN	10/31/2016 10:10	26.7	19.7	2.2	51.4		277
OV-FL-IN	11/7/2016 20:11	24.3	18.4	3	54.3	63	302
OV-FL-IN	11/14/2016 16:47	24.4	18.8	2.8	54		291
OV-FL-IN	11/21/2016 18:24	23	17.8	4	55.2	60	278
OV-FL-IN	11/28/2016 18:53	22	17.9	3.8	56.3	56	256
OV-FL-IN	11/29/2016 19:01	22.9	18.5	3.5	55.1	59	301
OV-FL-IN	12/2/2016 12:39	23.4	18.2	3.3	55.1	56.3	308
OV-FL-IN	12/5/2016 11:12	23.6	18.3	2.8	55.3	53	310
OV-FL-IN	12/12/2016 10:38	21.6	17.5	3.1	57.8		289
OV-FL-IN	12/19/2016 18:20	21.5	17.4	3.2	57.9	51	337
OV-FL-IN	12/29/2016 8:40	22.3	17.9	2.7	57.1	51	333
OV-FL-IN	12/29/2016 11:56	22.2	18	2.6	57.2		331
nnualized Av	•	25.02	18.40	3.16	53.42	67.31	239.76
Estimated Volume of LFG Removed During 2016 (MMscf)						126.02	

