AM Colour Colour

Sit 3,1

AmTest Inc.

Professional Analytical Services

14603 N.E. 87th St. Redmond, WA 98052

Fax: 206 883 3495

Tel: 206 885 1664

March 18, 1996

SAIC 18706 North Creek Parkway, Suite 110 Bothell, WA 98011 attn. Mark Herrenkohl

Dear Mark,

Enclosed you will find the analytical data for the Corps of Engineers Channel Navigation Dredging project at Kenmore, Washington (contract DACW67-95-D-1020, delivery order #1).

On the 23rd of February 1996, Am Test Inc. received a total of fifteen (15) sediment samples from SAIC for chemical analysis (collected 2/21 and 2/22/96). A total of five sample containers were received for each sample. Please refer to the chain of custody form for additional information relative to sample submittal.

At the time of receipt, the samples were logged-in, stored, and handled in accordance with EPA protocols. The samples were prepared and analyzed for the following groups of parameters:

PSDDA COC's
Conventionals
Grain Size
Metals
Phenols
Polyaromatic Hydrocarbons
Chlorinated Aromatics and Aliphatics
Phthalate Esters
Volatile Organic Compounds
Miscellaneous Compounds
Pesticides and PCB's

The methods, holding times, QA/QC documentation, and the data report package reflect the analytical protocols described in

"Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound", Puget Sound Estuary Program (PSEP), 1986.

Protocols for Conventional Sediment Variables 3/86
Protocols for Organic Compounds in Sediment and Tissue
Samples 12/89
Protocols for Metals in Sediment and Tissue Samples 12/89

Although these documents specifically address environmental analyses in Puget Sound, the majority of the methods are derived from two notable EPA documents:

"Test Methods for Evaluating Solid Waste Physical/Chemical Methods", SW-846, June 1988

"Methods for Chemical Analysis of Water and Wastes", EPA 600/4-82-055, December 1982

The detection limits reported are in accordance with the PSDDA SL values defined in Phase II PSDDA Management Plan Report, September 1989.

The specific information relative to the chemical analyses for the Chemicals of Concern are summarized in the attached table. This table provides a detailed listing of the parameters, the reported units, method references, nominal detection limits, and the PSDDA SL's and ML's. A second table addresses the instrument detection limits.

The sediment samples were analyzed for metals using the Total Acid Digestion (TAD) described in the PSEP documentation. Following the digestion with nitric, hydrochloric, and hydrofluoric acids, the subsequent solutions were analyzed by Graphite Furnace Atomic Absorption (GFAA) for Arsenic, Antimony, Cadmium, Silver (all samples diluted 1:5 due to the resulting TAD matrix). With the exception of Mercury (Cold Vapor), the remaining metals (Copper,

A / Secretary

Lead, Nickel and Zinc) were analyzed by Inductively Coupled Plasma Emission Spectroscopy (ICP).

In order to obtain the lower limits of detection that were required for the analysis of the Semi-Volatile Organic compounds, two separate 35 gram subsamples were extracted (EPA 3550) and combined prior to the instrumental analysis (8270, 1ml final extract volume). All of the samples were subjected to GPC clean-up.

The Dichlorobenzenes were analyzed with the other Volatile Organic Compounds (8260), in order to obtain detection limits that were below PSDDA SL values.

Separate 35 gram subsamples were extracted (EPA 3540) and analyzed for the Pesticides and PCB's (method 8080, final extract volume 5ml). The clean-up techniques documented in the respective analytical procedures (florisil, alumina etc.) were employed in order to reduce any matrix problems. Dual column confirmation was utilized in the samples where target compounds were detected. Due to the resulting matrix, dilutions (1:3) were required in several of the samples (Pesticide fractions 96-A002769-96-A002773).

There were no major problems with any of the analyses. In spite of the low Total Solids content of several of the samples (range 32-81%), there was a favorable relationship between the Method Detection Limits (MDL's) and the PSDDA Screening Levels (SL's). None of the MDL's exceeded any of the PSDDA SL's. However in three of the samples (S8, S10, S12), the Hexachlorobutadiene and Hexachlorobenzene were quantitated as a part of the Pesticide analysis (8080), as opposed to the Semi-Volatile Organic analysis (8270), in order to facilitate this task. Furthermore, there were Chemicals of Concern (i.e. LPAH's, Pesticides) in sample S1 (96-A002759) and in sample S10 (96-A002768) that had "hits" which exceeded PSDDA SL values.

Following the analytical data you will find the quality control

AMEST

summary. Information in this section includes dates of analyses, sample weights, results of standard reference materials, blanks, duplicates (or MSD's), triplicates and matrix spikes.

For the organic parameters (8240, 8270, 8080), the surrogate spike recoveries, the matrix spike recoveries, and the method blanks were within the acceptable limits defined by the analytical procedures, as well as those of the laboratory.

The results of both the Pesticide and the PCB reference materials, certified using EPA methods, were well within the control limits established by the respective manufacturers.

Since the Standard Reference Material (HS-3) for the PAH's is not certified using the extraction (sonication) and instrumental methods (GC/MS) of PSEP, data quality assessment is somewhat difficult. For your assistance I have included the laboratory control limits so that you may compare the data with past laboratory performances using this material.

As a result of the lack of documented quality control information specific to the Total Acid Digestion (TAD) procedure, a true assessment of the data quality for metals is somewhat difficult. Due to the smaller sample size, the resulting matrix, and the potential for contamination, normal EPA QC criteria (i.e. spike recoveries between 75 and 125% Recovery, duplicates within 20% RPD, SRM's between 80 and 120% Recovery) will, with a significant data base, be adjusted.

In spite of these limitations, the data quality, in terms of the EPA criteria, would have to be considered excellent. All of the matrix spikes (% recovery), duplicates (RPD) and SRM's were within the EPA limits with the exception of Antimony (both SRM's) and Copper (one of the two SRM's) in the Standard Reference Materials (NBS 2704). However, in all three of these situations, the values obtained for the SRM's were within the acceptable laboratory control limits.

For the organic parameters, all of the detection limits are listed in terms of the specific sample detection limits. This is calculated as a function of the original sample weight, the final volume of the extract, the moisture content of the sample, and the instrument detection limit.

If you should have any questions pertaining to the data package, please feel free to contact me.

Sincerely,

Mark A. Fugiel Technical Director

nue c. J

Am Test Inc.

Professional Analytical Services

14603 N.E. 87th St

Redmond, WA

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

2/23/96

3/18/96

Project #: 01-0440-04-0272

Date Received:

Date Reported:

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110 .

SAIC

96-A002759

S1

DILLE DIN	11 1110	2/21/90			
		RESULT	Q	S.L.	M.L.
CONVENT	IONALS (DRY WEIGHT)				
	Solids (%)	59.0		•	
	Volatile Solids (%)	5.50			
	Organic Carbon (%)	3.7			
	a (mg/kg)	64.			
Total S	Sulfides (mg/kg)	12.			
GRAIN SI	ZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTION			
	1 35 05 1/	11 4			
74 3	4.75 grovel 4.00 Say	11.4 1.20			
-1,	2.00	2.40	nunco-scouseous esectedos s	00010-00-40-100-1000100-10000000000	250000000000000000000000000000000000000
0,	2.00	3.40			
+1,	0.50	5.90		obornálity, po spopra propri ocernosti, balastoras	200.Augustion (200.Augustion (200.Au
-	0.25	11.9	() }		
+3, _±4,	0.125 	12.2 12.2)1		
+5,		7.00			
watto yanam		/ / 10.3			
+7,	0.008	9.80	******************		
****	<u>0,004</u>	and a second of the control of the c			
+9, +10	0.002 0.001 (<i>(a</i>	1.40 49 0.40			
>+10,	<0.001	4.10			
•	,	,,,,,			
METALS ((MG/KG DRY WEIGHT)				
	Antimony			20 57	200
	Arsenic				
	Cadmium Copper	0.30 26		0.96 81	10 810
90000000000000000000000000000000000000				66	660
	Lead Mercury			0.21	
	Nickel Silver	46.		140	
					5
\$0828\$285\$989029.0382828	Zinc	89.		160	1,600

AMEST

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002759 S1 2/21/96

32	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)	<u>.</u>			
LPAH				
Acenaphthalene Acenaphthene	< 24 6.8		64 63	640 630
Anthracene Fluorene	170 86		130 64	1,300 640
Naphthalene	< 24		210	2,100
Phenanthrene 2-Methylnaphthalene	330 < 24		320 67	3,200 670
НРАН				
Benzo(a)anthracene Benzo(a)pyrene	200 120		450 680	4,500 6,800
Benzo(b)fluoranthene	190		800	8,000
Benzo(k)fluoranthene Benzo(ghi)perylene	130 63		540	5,400
Chrysene Dibenzo(a,h)anthracene	< 24		67.0 12.0	6,700 5,400
Fluoranthene Indeno(1,2,3-cd)pyrene	.500 66		630 69	6,300 5,200
Pyrene	39.0		430	7,300
CHLORINATED HYDROCARBONS			· .	
Hexachlorobenzene	< 14 < 4		23 19	230 350
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 4 < 4		170 26	260
1,2,4-Trichlorobenzene	< 7		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	240 < 24		3,100 470	
Diethyl phthalate	7.4		97	
Dimethyl phthalate Di-n-butyl phthalate	< 24		160 1,400	
Di=n-octyl phthalate	< 24		6,200	
PHENOLSPentachlorophenol	< 59		100	690
Phenol	< 24		120	1,200
2 Methylphenol 4 Methylphenol	< 12 < 24		20 120	72 1,200
2,4-Dimethylphenol	< 12		29	50

AVIEST

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

VALUES ARE IN UG/KG DRY WEIGHT

96-A002759 S1

****	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid Benzyl alcohol	< 120 < 14		400 25	690 7.3
Dibenzofuran Hexachlorobutadiene	33 < 19		54 29	540 290
N-Nitrosodiphenylamine	< 24 < 14		1400 28	14,000 220
SURROGATES (% RECOVERY)	70.0			
2-Fluorophenol D-6-Phenol	70.0 74.0			
D-5-Nitrobenzene	70.0			
2-Fluorobiphenyl	85.0			
2,4,6-Tribromophenol	91.0			
D14-Terphenyl	97.0			
VOLATILE ORGANICS				•
Ethylbenzene Tetrachloroethene			10 14	50 210
Trichloroethene Xylene	< 4 < 4		160 12	1,600 160
SURROGATES (% RECOVERY)				
D4-1,2-Dichloroethane	101.			
D8-Toluene 4-Bromofluorobenzene	103. 95.0			
PESTICIDES & PCB's				
Aldrin	< 0.7	\$0.000.000.000.000.000.000.000.000.000.	10	
Chlordane	< 0.7		10	
DDD DDE	< 1.5		6.9	69
DDT	< 1			
Dieldrin	< 2.4 < 1		10	
Heptachlor	< 0.7		10	
Lindane A-1016	< 0.7 < 12		10 130	2,500
A-1221	< 47		Total	Total
A-1232 A-1242	< 12 < 12			
A-1248 A-1254	< 12 17			
A-1260	< 12			
SURROGATE (% RECOVERY)				
Hexabromobenzene	60.			
Tetrachloro-m-xylene	37.			

Professional Analytical Services

14603 N.E. 87th 5:

Redmond, WA

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

2/23/96

3/18/96

Project #: 01-0440-04-0272

Date Received:

Date Reported:

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002760

S2

DAIR DAN DED	2/21/30			
	RESULT	Q	S.L.	M.L.
ONVENTIONALS (DRY WEIGHT)				
Total Solids (%)	70.7		•	
Total Volatile Solids (%)	2.90			
Total Organic Carbon (%)	1.5			
Ammonia (mg/kg)	24.			
Total Sulfides (mg/kg)	4.4			
GRAIN SIZE DISTRIBUTION				
PHI OPENING (MM)	% RETENTION			
4.75 -2, 4.00	13.7	b.A796328323333		
-1 2 00	7 10		0.750.00 (\$4.00 000, v. 2010000000000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.10			
+1 0 50	15 4			Consideration of the Considera
+1, 0.50 +2, 0.25	23.9	J P		
+2, 0.25 +3, 0.125 +4, 0.063	9.80			
+5 0.032	5 00	~~~~ ~		
+5, 0.032 +6, 0.016	3.60			
+7, 0.008	4.50	,	or 1 (A. C.	
+7, 0.008 +8, 0.004	3,20			
+9, 0.002 +10, 0.001	0.30			
<0.001	0.60			
METALS (MG/KG DRY WEIGHT)				
Antimony Arsenic	1.2 7.4		20 57	200 700
Cadmium	0.18		0.96	10
Cadmium Copper	12			810
Lead	21.			
Lead Mercury	< 0.028		0.21	2
Nickel	38.		1.40	
Silver	< 0.1		1.2	
Zinc	54,	roscou scongenance	160	
		wasan saka asaa 2000 ka ahaa ahaa ahaa ahaa ahaa ahaa aha		
		•		

AVIIISI

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002760 S2

	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH			C.1	C 4 0
Acenaphthalene Acenaphthene	< 24 < 24		64 63	640 630
Anthracene Fluorene	< 24 < 24		130 64	1,300 640
Naphthalene Phenanthrene	< 24 99		210 320	2,100 3,200
2-Methylnaphthalene	< 24		67	670
НРАН				4 500
Benzo(a)anthracene Benzo(a)pyrene	63 < 24		450 680	4,500 6,800
Benzo(b)fluoranthene Benzo(k)fluoranthene	56 43		800	8,000
Benzo(ghi)perylene Chrysene	< 24 81		540 670	5,400 6,700
Dibenzo(a,h)anthracene Fluoranthene	< 24		120 630	5,400 6,300
Indeno(1,2,3-cd)pyrene	< 24		69 430	5,200 7,300
Pyrene	110		HOU	
CHLORINATED HYDROCARBONS Hexachlorobenzene	< 15	· · · · · · · · · · · · · · · · · · ·	23	230
1,2-Dichlorobenzene 1,3-Dichlorobenzene	< 5		19 170	350
1,4-Dichlorobenzene	< 5		26	
1,2,4-Trichlorobenzene	< 7		13	64
PHTHALATES Bis(2-ethylhexyl)phthalate	140		3,100	
Butyl benzyl phthalate Diethyl phthalate	< 24 < 24		470 97	
Dimethyl phthalate	< 24		160	
Di-n-butyl phthalate Di-n-octyl phthalate	< 24 < 24		1,400 6,200	
PHENOLS				
Pentachlorophenol Phenol	< 61 < 24		100 120	690 1,200
2 Methylphenol	< 12		20 120	7.2
4 Methylphenol 2,4-Dimethylphenol	< 24 < 12		29	1,200 50

A Michael Canada

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002760 S2

2/21/96

	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid Benzyl alcohol	< 120 < 15		400 25	690 73
Dibenzofuran Hexachlorobutadiene	< 24 < 20		54 29	540 290
Hexachloroethane N-Nitrosodiphenylamine	< 24 < 15		1400 28	14,000
SURROGATES (% RECOVERY)				
2-Fluorophenol D-6-Phenol	43.0 47.0			
D-5-Nitrobenzene	42.0			
2-Fluorobiphenyl	64.0			
2,4,6-Tribromophenol	71.0			
D14-Terphenyl	76.0			
VOLATILE ORGANICS				
Ethylbenzene	< 5		10	50
Tetrachloroethene			14	210
Trichloroethene Xylene	< 5 < 5		160 12	1,600 160
SURROGATES (% RECOVERY)			2	
D4-1,2-Dichloroethane	90.0	•		
D8-Toluene	98.0			
4-Bromofluorobenzene	99.0		• -	•
PESTICIDES & PCB's				
Aldrin	< 0.74		10	
Chlordane DDD	< 0.74 < 1.5		10 6.9	69
DDE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		0.9	0.9
DDT	< 2.5	***************		
Dieldrin	< 1		10	
Heptachlor :Lindane	< 0.74		10	
A-1016	< 0.74 < 12		10 130	2,500
A-1221	< 49		Total	
A-1232	< 12			
A+1242	< 12			
A-1248 A-1254	< 12 < 12			
A-1260	< 12			
SURROGATE (% RECOVERY)				
Hexabromobenzene	63.			
Tetrachloro-m-xylene	66.			

VALUES ARE IN UG/KG DRY WEIGHT

Am'lest Inc.

Professional Analytical Services

14603 N.E. 87th St.

Redmond, WA

98052

2/23/96

3/18/96

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel Project #: 01-0440-04-0272

Date Received:

Date Reported:

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002761

S3

DATE SAL	ALTED		2/21/90			
			RESULT	Q	S.L.	M.L.
CONVENT	IONALS (DRY	WEIGHT)				
	Solids (%)	,	73.0			
Total V	Volatile Sol		3.00			
	Organic Carb	on (%)	1.2			
	a (mg/kg)	/3 \	42.			
Total S	Sulfides (mg	J/kg)	9.6			
	IZE DISTRIBU					
PHI	OPENING	(MM)	% RETENTION			
e 6 7500 (105007) (2010/0000)	4,75		15.5			
-2,	4.00		0.50			
-1,	2.00		2.10 1.20			
+1.	0.50	ngsistat nystyt de bru nyfyddiothdag moddosdadd	3.70	57	\$ 000 TO THE RESERVE TO THE TOTAL PROPERTY OF THE TOTAL PROPERTY O	
	0.25		3.70 11.4 11.0 8.50	7.4		
+3,	0.125	40. ser 204.4 no 42 320 deseggio con 3000	11.0			
+4,	0.063		8 4 5 0			
+5,	0.032		8.00 11.3			
+7	0.008		0.30			
48.	0.004		9.30 8.00			
+9,	0.002		3.30			
	0.001		3.30 1.40			
>+10,	<0.001		4.90			
METALS	(MG/KG DRY V	YEIGHT)				
879-1970 (oo 80-804-4)	Antimony	*	0.6		20	200
	Arsenic		4.6		57	
	Cadmium		0.13 16.		0.96	10
	Copper		16. 21		81 66	810 660
	Mercury		21. 0.029		0.21	
	Nickel		46.		140	***************************************
	Silver				1.2	5
000 000 	Zinc		53.		160	1,600

AVIISI

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002761 S3

	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH Acenaphthalene	< 20	(1.000).compage_crossourrespage	64	640
Acenaphthene Anthracene			63 130	630 1,300
Fluorene Naphthalene	< 20		64 210	640 2,100
Phenanthrene	44 < 20		320 67	3,200 670
2-Methylnaphthalene	< 20		0 /	670
HPAH Benzo(a)anthracene	29	16 - 100 . ;	450	4,500
Benzo(a)pyrene Benzo(b)fluoranthene	21 24		680 800	6,800 8,000
Benzo(k)fluoranthene	20		540	5,400
Chrysene	36		670	6,700
Dibenzo(a,h)anthracene Fluoranthene	6.4		120 630	5,400 6,300
Indeno(1,2,3-cd)pyrene Pyrene	< 20 86		69 430	5,200 7,300
CHLORINATED HYDROCARBONS				
Hexachlorobenzene 1,2-Dichlorobenzene	< 12 < 4		23 19	230 350
1,3-Dichlorobenzene	< 4 < 4		170 26	260
1,2,4-Trichlorobenzene	< 6		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate			3,100 470	
Diethyl phthalate Dimethyl phthalate	< 20 < 20		97 160	
Di-n-butyl phthalate	< 20		1,400	
Disn-octyl phthalate	~::Z.U		:07ZUU	
PHENOLS Pentachlorophenol	< 49		100	690
Phenol 2 Methylphenol	< 10		120 20	1,200 72
4 Methylphenol	< 20		120	1,200
2,4-Dimethylphenol	< 10		29	50

AMEST

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

VALUES ARE IN UG/KG DRY WEIGHT

96-A002761

S3

	2,21,30			
	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid	< 99		400	690
Benzyl alcohol	< 12		25	73
Dibenzofuran	< 20		54	540
Hexachlorobutadiene			29	290
Hexachloroethane	< 20		1400 28	14,000 220
N-Nitrosodiphenylamine SURROGATES (% RECOVERY)	S 12		∠0	220
2-Fluorophenol	55.0			
D-6-Phenol	64.0.			
D-5-Nitrobenzene	69.0			
2-Fluorobiphenyl	87.0			
2,4,6-Tribromophenol	87.0			
D14-Terphenyl	103.			
OLATILE ORGANICS			1.0	50
Ethylbenzene «Tetrachloroethene	< 4 < 4		10 14	210
Trichloroethene	< 4	(or less traces or accordance)	160	1,600
Xylene	< 4		120	160
SURROGATES (% RECOVERY)	· •		and the second s	
D4-1,2-Dichloroethane	88.0			
D8-Toluene	94.0			
4-Bromofluorobenzene	94.0		٠	
PESTICIDES & PCB's	. 0. 6		1.0	
Aldrin			10 ,	
Chlordane			10	69
DDD DDE			6.9	09
DDT	< 2			
Dieldrin	< 0.8		10	
Heptachlor	< 0.6		10	**************************************
Lindane	< 0.6		$\tilde{10}$	
A-1016	< 9,9		130	2,500
A-1221	< 40		Total	Total
A-1232	< 9.9	o: 1500C 20050000000000000		
A-1242	< 9.9			
A-1248	< 9.9			
A-1254	< 9.9			
A-1260	< 9.9			
SURROGATE (% RECOVERY)				
Hexabromobenzene	68.			
Tetrachloro-m-xylene	74.			

Professional Anaiytical Services

14603 N E. 87th St.

Redmond, WA

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

2/23/96

3/18/96

Project #: 01-0440-04-0272

Date Received:

Date Reported:

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002762

S4

DAIL SA	MARCD	2/21/96			
		RESULT	Q	S.L.	M.L.
	IONALS (DRY WEIGHT)		- 		
	Solids (%)	64.2			
	Volatile Solids (%)	4.40			
	Organic Carbon (%) a (mg/kg)	2.1 75.			
	a (mg/kg) Sulfides (mg/kg)	9.8			
TO GOT	outifues (mg/ng)	2.0			
	IZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTION			
	4,75	2,20			
	4.00				
~ 0	2,00 1,00	2.00			
+1, +2,	0.50 0.25	6.90 17.9	-59		
43	0 125	167			
+4,	0.063		•		
	0.032 0.016	9.50			
+7.	0.008	7 50			
+8,	0.008 0.004	7.50 7.10			
		· · ·			
*+10,	0.002				
>+10,	<0.001	3.60			
METALS	(MG/KG DRY WEIGHT)				
	Antimony	1.0	······································	20	200
	Arsenic			57	7.00
	Cadmium Copper	0.18		0.96 81	10 810
	Lead			66	660
	Mercury			0.21	
	Nickel	43.		140	
	Silver			1.2	5
	Zinc	55.		160	1,600
www. www.usseness-bogcoop.co					

AMEST

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED 96-A002762 S4 2/21/96

	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)			-	
LPAH				
Acenaphthalene Acenaphthene	< 23 < 23		64 63	640 630
Anthracene Fluorene	< 23 < 23		130 64	1,300 640
Naphthalene	< 23 -63		210 320	2,100 3,200
Phenanthrene 2-Methylnaphthalene	< 23		67	670
НРАН				
Benzo(a)anthracene Benzo(a)pyrene	47 24		450 680	4,500 6,800
Benzo(b)fluoranthene	43		800	8,000
Benzo(k)fluoranthene Benzo(ghi)perylene Chrysene	< 23		540	5,400
Dibenzo(a h)anthracene	< 23		670 120	6,700 5,400
Fluoranthene	140		630 69	6,300 5,200
Indeno(1,2,3-cd)pyrene Pyrene	120.		430	7,300
CHLORINATED HYDROCARBONS			•• .	
Hexachlorobenzene 1,2-Dichlorobenzene	< 14 < 4		23 19	230 350
1.3-Dichlorobenzene	< 4		170	260
l,4-Dichlorobenzene 1,2,4-Trichlorobenzene	< 4 < 7		26 13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	180 < 23		3,100 470	
Diethyl phthalate	< 23		97	
Dimethyl phthalate Di-n-butyl phthalate	< 23 < 23		160 1,400	
Di-n-octyl phthalate	< 23		6,200	
PHENOLS	. ro		100	(00
Pentachlorophenol Phenol	< 59 < 23		100 120	690 1 , 200
2 Methylphenol 4 Methylphenol	< 12 < 23		20 120	72 1,200
2,4-Dimethylphenol	< 12	1414100	29	50

AVIII

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002762 S4

MISCELLANEOUS COMPOUNDS Benzoic acid < 120 400 690		RESULT	Q	S.L.	M.L.
Benzoic acid < 120	MISCELLANEOUS COMPOUNDS				
Dibenzofuran < 23	Benzoic acid	< 120 < 14		85805 W WW.008686966666666666666	
N-Nitrosodiphenylamine 14 28 220 SURROGATES (% RECOVERY) 52.0 2-Fluorophenol 58.0 D-6-Phenol 58.0 D-5-Nitrobenzene 56.0 2-Fluorobiphenyl 77.0 2,4,6-Tribromophenol 81.0 D14-Terphenyl 81.0				29	290
2-Fluorophenol 52.0 D-6-Phenol 58.0 D-5-Nitrobenzene 56.0 2-Fluorobiphenyl 77.0 2,4,6-Tribromophenol 81.0 D14-Terphenyl 81.0					
D-6-Phenol 58.0 D-5-Nitrobenzene 56.0 2-Fluorobiphenyl 77.0 2,4,6-Tribromophenol 81.0 D14-Terphenyl 81.0	· · · · · · · · · · · · · · · · · · ·				
D-5-Nitrobenzene 56.0 2-Fluorobiphenyl 77.0 2,4,6-Tribromophenol 81.0 D14-Terphenyl 81.0					
2-Fluorobiphenyl 77.0 2,4,6-Tribromophenol 81.0 D14-Terphenyl 81.0					
2,4,6-Tribromophenol 81.0 D14-Terphenyl 81.0					
D14-Terphenyl 81.0					
£ 4					
UOI AMITE ODGAMIGG	DI. IOIPHONII	0			
	VOLATILE ORGANICS				
Ethylbenzene < 4 10 50 Tetrachloroethene < 4 14 210				14	210
Trichloroethene < 4 160 1,600 Xylene < 4 12 160					
SURROGATES (% RECOVERY)	SURROGATES (% RECOVERY)				
D4-1,2-Dichloroethane 102.					
D8-Toluene 110.					
4-Bromofluorobenzene 112.	4-Bromofluorobenzene	112.		** ;	
PESTICIDES & PCB's	PESTICIDES & PCB's				
Aldrin < 0.7 10		< 0.7		10	
Chlordane × 0.7 10	Chlordane			~~~~~	
DDD < 2 6.9 6.9				6.9	6.9
DDE < 1	DDE	'			
DDT < 2.3 Dieldrin < 1 10	DDT	****			
Dieldrin <1 10	Dieldrin				
Heptachlor < 0.7 10	7000000000000000000000000000000000000				
Lindane < 0.7 10 A-1016 < 14 130 2,500					2 500
A-1016 < 14 130 2,500 A-1221 < 46 Total Total				******	
A-1232 < 14				rocar	1000
$A = 1242 \qquad \qquad \leq 14$					
A-1248 < 14					
A-1254 < 14					
A-1260 < 14		< 14			
SURROGATE (% RECOVERY)					
Hexabromobenzene 63.					
Tetrachloro-m-xylene 69.	retrachloro-m-xylene	69.			

Professional Analytical Services

14603 N.E. 87th St.

Redmond, WA

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

2/23/96

3/18/96

Project #: 01-0440-04-0272

Date Received:

Date Reported:

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002763

S5

	2/21/96			
	RESULT	Q	S.L.	M.L.
ONVENTIONALS (DRY WEIGHT	!)			
Total Solids (%)	55.3			
Total Volatile Solids (%				
Total Organic Carbon (%)				
Ammonia (mg/kg)	8.3			
Total Sulfides (mg/kg)	4.9			
RAIN SIZE DISTRIBUTION				
HI OPENING (MM)	% RETENTION			
4,75	0.40			
-2, 4.00 -1, 2.00	0 50			
-1, 2.00 0, 1.00	0.50 0.70			
+1, 0.50 +2, 0.25	2.40			
		76		
+3, 0.125 +4, 0.063	31.3	('		
+4, 0.063	11.9	· a		
+5, 0.032 +6, 0.016	7,50 4,40			
+7. 0.008	5.70	~~~~		***************************************
+7, 0.008 +8, 0.004	3.60			
+9, 0,002	0.30			
+10, 0.001				
+10, <0.001	0.90			
METALS (MG/KG DRY WEIGHT)	1			
Antimony	0.6		20	200
	7.5 0.12			700 10
Copper	7.1		81 81	810
T ~ ~ ~ ~	0.0		6.6	660
Mercury	< 0.036		0.21	2
Nickel Silver	26.	00100010000000000000000000000	140	5
O 4 1 44 4 5	< 0.1		1.2	5
Zinc	41.		1.6.0	1,600

AMIS

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002763 S5 2/21/96

	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH				
Acenaphthalene Acenaphthene	< 26 < 26		64 63	640 630
Anthracene	< 26		130	1,300
Fluorene	< 26		64 210	640 2,100
Naphthalene Phenanthrene	< 26 < 26		320	3,200
2-Methylnaphthalene	< 26		67	670
нран				
Benzo(a)anthracene	< 26 < 26		450 680	4,500 6,800
Benzo(a)pyrene Benzo(b)fluoranthene	< 26		800	8,000
Benzo(k)fluoranthene			540	5 400
Benzo(ghi)perylene Chrysene	< 26 < 26		540 670	5,400 6,700
Dibenzo(a,h)anthracene	< 26		120	5,400
Fluoranthene	32		630 69	6,300 5,200
Indeno(1,2,3-cd)pyrene Pyrene	< 26 40			7,300
CHLORINATED HYDROCARBONS			··· .	
Hexachlorobenzene	< 16		23	230
1,2-Dichlorobenzene 1,3-Dichlorobenzene	< 5 < 5		19 170	35.0
1,4-Dichlorobenzene			. 26	260
1,2,4-Trichlorobenzene	< 8		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	94 < 26		3,100 470	
Diethyl phthalate	< 26		97	
Dimethyl phthalate	< 26		160	
Di-n-butyl phthalate Di-n-octyl phthalate	< 26 < 26		1,400 6,200	
PHENOLS				
Pentachlorophenol	< 66		100	690
Phenol 2 Methylphenol	< 26 < 13		120 20	1,200 72
4 Methylphenol	< 26		120	1,200
2,4-Dimethylphenol	< 13		29	50

AVIIISI

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002763

S5

··· - ~	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid	< 130		400	690
Benzyl alcohol	< 16		25	7.3
Dibenzofuran Hexachlorobutadiene			54 29	540 290
Hexachloroethane N=Nitrosodiphenylamine	< 26 < 16		1400 28	14,000 220
SURROGATES (% RECOVERY)				
2-Fluorophenol	50.0			
D-6-Phenol	57.0			
D-5-Nitrobenzene	57.0			
2-Fluorobiphenyl	72.0			
2,4,6-Tribromophenol	72.0 77.0			
D14-Terphenyl	11.0			
VOLATILE ORGANICS				
Ethylbenzene	< 5		10	50
Tetrachloroethene			14	210
Trichloroethene	< 5	800000000000000000000000000000000000000	160	1,600
Xylene	< 5		12	160
SURROGATES (% RECOVERY)	00.0			
D4-1,2-Dichloroethane	92.0 95.0			
D8-Toluene 4-Bromofluorobenzene	84.0		• •	
4 Bromorraoropenzene	04.0			
PESTICIDES & PCB's				
Aldrin Aldrin	< 0.8		10	
Chlordane			10	
DDD	< 2.5		6.9	69
DDE	< 1			
DDT	< 2.6		10	
Dieldrin	< 1 < 0.8		10	
Heptachlor Lindane	< 0.8		10	
A-1016	< 13		130	2,500
A=1221	< 52		Total	Total
A-1232	< 13	****		
A-1242	< 13			
A-1248 A-1254	< 13 < 13			
A-1260	< 13		yen.e.eee.	
SURROGATE (% RECOVERY)	, 10			
Hexabromobenzene	70.			
Tetrachloro-m-xylene	76.			•
-				

Professional Analytical Services

14603 N.E. 87th St.

Date Received: 2/23/96

Redmond, WA 98052

18706 North Creek Pkwy suite 110 Bothell, WA 98011

Date Reported: 3/18/96

Attention: M. Herrenkohl

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel 885 1664

Project #: 01-0440-04-0272

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID

SAIC

96-A002764

S6

DATE SAMPLED	2/21/96			
	RESULT	Q	S.L.	M.L.
CONVENTIONALS (DRY WEIGHT)				
Total Solids (%)	43.8			
Total Volatile Solids (%)	7.90			
Total Organic Carbon (%)	. 3.6			
Ammonia (mg/kg)	87.			
Total Sulfides (mg/kg)	66.			
GRAIN SIZE DISTRIBUTION				
PHI OPENING (MM)	% RETENTION			
4.75 -2, 4.00	0,20			
				·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.80			
+1, 0.50 +2, 0.25	7.50 28.3	<i>o</i> \		
+3, 0.125 +4, 0.063	12.1 <u>12.8</u>			
**b; 0.016	6.50			
+7, 0.008 +8, 0.004	10.0			
+9, 0.002	0.00			
+9, 0.002 +10, 0.001	0.60 < 0.1			
>+10, <0.001	1.10			
METALS (MG/KG DRY WEIGHT)				
Antimony	1.0		.20	200
Arsenic	98		57	
Cadmium	0.28		0.96	10
cobber	14.		81	
Lead Mercury	28.		66 0.21	660 2
Mercury Nickel			U.∠1 140	L
Silver	n 11			5
Zinc	- A		160	
	¥ .		** * *	

AVIISI

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002764 S6

a	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LРАН				2.22
Acenaphthalene Acenaphthene	< 33 < 33		64 63	640 630
Anthracene Fluorene	< 33 < 33		130 64	1,300 640
Naphthalene Phenanthrene	< 33 7.0		210 320	2,100 3,200
2-Methylnaphthalene	< 33		67	670
НРАН				
Benzo(a)anthracene Benzo(a)pyrene	66 60		450 680	4,500 6,800
Benzo(b)fluoranthene Benzo(k)fluoranthene	81 52		800	8,000
Benzo(ghi)perylene	40		540	5,400
Chrysene Dibenzo(a,h)anthracene	97 < 33		67.0 120	5,700 5,400
Fluoranthene Indeno(1,2,3-cd)pyrene	160 41		630 69	6,300 5,200
Pyrene	140		430	7,300
CHLORINATED HYDROCARBONS	. 20		~ .	
Hexachlorobenzene 1,2-Dichlorobenzene	< 20 < 7		23 19	230 350
1,3-Dichlorobenzene	< 7 < 7		170 26	260
1,2,4-Trichlorobenzene	< 10		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	420 < 33		3,100 47.0	
Diethyl phthalate Dimethyl phthalate	< 33 < 33		97 160	
Di-n-butyl phthalate	< 33		1,400	
Di=n=octyl phthalate	< 3.3		6,200	
PHENOLS Pentachlorophenol	< 83		100	690
Phenol 2 Methylphenol	< 33 < 17		120 20	1,200 72
4 Methylphenol	< 33		120	1,200
2,4-Dimethylphenol	< 17		29	50

AMESI

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002764

S6

	2, 22, 20			
··· · · ·	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid	< 170		400	690
Benzyl alcohol	< 2.0		25	73 540
Dibenzofuran Hexachlorobutadiene	< 33 < 27		54 29	540 290
Hexachloroethane	< 33		1400	14,000
N-Nitrosodiphenylamine			28	
URROGATES (% RECOVERY)				
2-Fluorophenol	60.0			
D-6-Phenol	69.0	•		
D-5-Nitrobenzene	89.0 86.0			
2-Fluorobiphenyl 2,4,6-Tribromophenol	91.0			
D14-Terphenyl	94.0			
bu. soupon, i				
OLATILE ORGANICS			4.0	# 0
Ethylbenzene	< 7		10 14	50 210
Tetrachloroethene	< 7 < 7		160	1,600
Trichloroethene	< 7 € 7			160
Xylene URROGATES (% RECOVERY)	**************************************			200
D4-1,2-Dichloroethane	93.0	*		
D8-Toluene	96.0			
4-Bromofluorobenzene	90.0		· .	
PESTICIDES & PCB's				
Aldrin	1.3		10	
Chlordane	< 1		10	
DDD	4.6		6.9	69
DDE	< 1.6			
DDT Dieldrin	< 3.4 < 1.6		10	
Heptachlor	< 1		10	
Lindane	< Î		10	
A-1016	< 17	\$0-86*;**00000000000000	130	2,500
A-1221	< 67		Total	Total
A-1232	< 17			
A-1242	< 17			
A-1248 Δ-1254	< 17 18			
A=1254 A-1260	< 17			
GURROGATE (% RECOVERY)	` 11 .			
Hexabromobenzene	68.			
Tetrachloro-m-xylene	74.			

Professional Analytical Services

14603 N.F. 87th St.

Redmond, WA

98052

2/23/96

3/18/96

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel Project #: 01-0440-04-0272

Date Received:

Date Reported:

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

.....

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002765

S7

		2,21,30			
		RESULT	Q	S.L.	M.L.
CONVENTI	ONALS (DRY WEIGHT)				
	olids (%)	52.4			
	olatile Solids (%)	5.40			
	rganic Carbon (%)	2.6			
	(mg/kg)	130			
Total S	ulfides (mg/kg)	44.			
GRAIN SI	ZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTION			
	4.75 4.00	0.20			
	2.00 .1.00	0.40			
	· A				
4.)	\mathbf{n}	and the contract of the contra	3'1		
+3, 41	0.125 0.063 0.032 0.016	19.5			
+5.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.00	•		
+6,	0.016	14.1			
+7,	0.008	16.0	***************************************		
+8,	0.008 0.004	10.3			
+9,	0.002 0.001	4,80	****		
+10,	<0.001	6.70			
	MG/KG DRY WEIGHT)				
	Antimony Arsenic	0.9 8.7		20	200 700
				57 0.96	10
	Cadmium Copper	12		0.98 81	810
00000000 000000 00 000000000	Lead	24.		6.6	660
	Mercury	0.046		0.21	2
	Nickel	41.		140	
	Silver	0.11			
	Zinc	58.	Dast serverenenser:	160	1,600

AMIS

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002765 S7 2/21/96

	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH			- 4	540
Acenaphthalene Acenaphthene	< 27 < 27		64 63	640 630
Anthracene Fluorene	< 27 < 27		130 64	1,300 640
Naphthalene	< 27		210 320	2,100 3,200
Phenanthrene 2-Methylnaphthalene	34 < 27		67	670
НРАН				
Benzo(a)anthracene	32 33		450 680	4,500 6,800
Benzo(a)pyrene Benzo(b)fluoranthene	47		800	8,000
Benzo(k)fluoranthene Benzo(ghi)perylene	33 < 27		540	5,400
Chrysene Dibenzo(a,h)anthracene	46 < 27		67.0 120	6,700 5,400
Fluoranthene	86		630	6,300
Indeno(1,2,3-cd)pyrene Pyrene	< 27 7.0		69 430	5,200 7,300
CHLORINATED HYDROCARBONS				
Hexachlorobenzene 1,2=Dichlorobenzene	< 16 < 5		23 19	230 350
1,3-Dichlorobenzene	< 5		170	260
1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	< 5 < 8		26 13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate	290 < 27		3,100 470	
Butyl benzyl phthalate Diethyl phthalate	< 27		97	
Dimethyl phthalate Di-n-butyl phthalate	< 27 < 27		160 1,400	
	< 27			
PHENOLS				
Pentachlorophenol Phenol	< 68 < 27		100 120	690 1,200
2 Methylphenol	< 14 < 27		20 120	, 72 1,200
4 Methylphenol 2,4-Dimethylphenol	< 14		29	50

AMERICA

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002765

S7

2/21/96

	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid Benzyl alcohol	< 140 < 16		400 25	690 73
Dibenzofuran Hexachlorobutadiene	< 27 < 22		54 29	540 290
Hexachloroethane N-Nitrosodiphenylamine	< 27 < 16		1400 28	14,000 220
SURROGATES (% RECOVERY)				
2-Fluorophenol	46.0			
D-6-Phenol	56.0			
D-5-Nitrobenzene	47.0 66.0			
2-Fluorobiphenyl	79.0			
2,4,6-Tribromophenol D14-Terphenyl	85.0			
pr4 rerbuenAr	03.0			
VOLATILE ORGANICS				
Ethylbenzene Tetrachloroethene	< 5 < 5		10 14	50 210
Trichloroethene Xylene	< 5 < 5		160 12	1,600 160
SURROGATES (% RECOVERY)				
D4-1,2-Dichloroethane	91.0			
D8-Toluene	98.0			
4-Bromofluorobenzene	102.		- .	•
PESTICIDES & PCB's				
Aldrin	1.6		10	
Chlordane	< 0.8		10	
DDD	< 1.5	ar vers en	6.9	69
DDE	< 1			
DDT Dieldrin	< 2.7 < 1		10	
Heptachlor	< 0.8		10	
Lindane A-1016	< 0.8 < 13		10 130	2,500
A=1221	< 54		Total	Total
A-1232 A-1242	< 13 < 13			
A-1248 A-1254	< 13 < 13			
A-1260	< 13			
SURROGATE (% RECOVERY)				
Hexabromobenzene	70.			
Tetrachloro-m-xylene	79.			
_				

VALUES ARE IN UG/KG DRY WEIGHT

Professional Analytical Services

14603 N.E. 87th St.

Redmond, WA

2/23/96

3/18/96

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

Project #: 01-0440-04-0272

Date Received:

Date Reported:

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002766

S8

		RESULT	Q	S.L.	М. L.
CONVENT	IONALS (DRY WEIGHT)				
	Solids (%)	35.4			
	Volatile Solids (%)	13.1			
	Organic Carbon (%)	4.1			
	a (mg/kg)	130			
Total S	Sulfides (mg/kg)	82.		•	
GRAIN S: PHI	IZE DISTRIBUTION OPENING (MM)	% RETENTION			
	4,75 4,00	0.30			
,					
0/	2.00 1.00	1.40			
	0.25	1.70 6.80 U	7		
+3, +4,	0.125 0.063	11.9 20.6			
%+6 ₇	0.032 0.016	12.4			
+7, +8,	0.008 0.004	14.6 14.5			
+9,	0.002 0.001	2,30	******************************		
+10,	0.001	< 0.1			
+10,	<0.001	8.50			
IETALS	(MG/KG DRY WEIGHT)				
	Antimony			20	200
	Arsenic				700
	Cadmium Copper	.14.			•
	Lead Mercury	27.		66	660
	***			140	
	Nickel Silver				5
	Zinc			160	

AM

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002766 S8 2/21/96

	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LРАН	2.0		<i>C.</i> 4	640
Acenaphthalene Acenaphthene	< 39 < 39		64 63	640 630
Anthracene Fluorene	< 39 < 39		130 64	1,300
Naphthalene	< 39 45		210 320	2,100 3,200
Phenanthrene 2-Methylnaphthalene	< 39		67	670
НРАН				
Benzo(a)anthracene Benzo(a)pyrene	< 39 < 39		450 680	4,500 6,800
Benzo(b)fluoranthene	47 < 39		800	8,000
Benzo(k)fluoranthene Benzo(ghi)perylene	< 39		540	5,400
Chrysene Dibenzo(a,h)anthracene	47 < 39		67.0 120	6,700 5,400
Fluoranthene Indeno(1,2,3-cd)pyrene	87 < 39		630 69	6,300 5,200
Pyrene	9.3		43.0	7,30.0
CHLORINATED HYDROCARBONS			· · .	
Hexachlorobenzene 1,2-Dichlorobenzene	< 12 < 9		23 19	230 350
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 9 < 9		170 26	260
1,2,4-Trichlorobenzene	< 12		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	350 < 39		3,100 470	
Diethyl phthalate	46 < 39		97 160	
Dimethyl phthalate Di-n-butyl phthalate	< 39		1,400	
Di-n-octyl phthalate	< 39		6,200	
PHENOLS Pentachlorophenol	< 98		100	690
Phenol	< 39		120	1,200
2 Methylphenol 4 Methylphenol	< 20 < 39		20 120	72 1,200
2,4-Dimethylphenol	< 20		29	50

AMERICA

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002766

S8

2/21/96

DATE SAMPLED	2/21/96			
35 . / S	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid	< 200		400	690
Benzyl alcohol	< 24		25	7.3
Dibenzofuran	< 39 < 20		54 29	540 290
Hexachlorobutadiene	/ 20		1400	14,000
Hexachloroethane N-Nitrosodiphenylamine			28	220
SURROGATES (% RECOVERY)	·			
2-Fluorophenol	56.0			
D-6-Phenol	66.0			
D-5-Nitrobenzene	60.0			
2-Fluorobiphenyl	80.0			
2,4,6-Tribromophenol	83.0			
D14-Terphenyl	96.0			
VOLATILE ORGANICS				
Ethylbenzene	< 9		10	50
Tetrachloroethene			14	210
Trichloroethene	< 9		160	1,600
Xylene	< .9		12	160
SURROGATES (% RECOVERY)	06.0			
D4-1,2-Dichloroethane	96.0 99.0			
D8-Toluene 4-Bromofluorobenzene	97.0		·	
4-Bromoridoropenzene	51.0			
PESTICIDES & PCB's	. 1 4		1.0	
Aldrin	< 1.2 < 1.2		10 10	
Chlordane	3,9		6.9	69
DDD DDE	A P		0.9	07
DDm	< 3 Q	00000000000000000000000000000000000000		Mesoscope (1990)
Dieldrin	< 1.6		10	
Heptachlor	2 1 2		10	***************************************
Lindane			10	
A-1016	< 20	200220000 20000000000000000000000000000	130	2,500
A=1221			Total	- Total
A-1232	< 20			
A+1242				
A-1248 A-1254	< 20			
A=1254 A=1260	< 20			
SURROGATE (% RECOVERY)	` 20			
OURINATE TO RELATER T				
Hexabromobenzene	64.			

VALUES ARE IN UG/KG DRY WEIGHT

Professional Analytical Services

14603 N.E. 87th St.

Redmond, WA

2/23/96

3/18/96

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

Project #: 01-0440-04-0272

Date Received:

Date Reported:

PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

....

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002767

S9 ·

2/22/96

DILLE DILL	1 1110	1,22,50			
		RESULT	Q	S.L.	M.L.
	ONALS (DRY WEIGHT)				
	olids (%)	45.6			
	olatile Solids (%)	9.40			
	rganic Carbon (%)	4.0			
	(mg/kg)	220			
rotal S	ulfides (mg/kg)	68.			
	ZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTION			
	4.75	0.20			
	4.00				
-1,	2.00 1.00	0.90 1.10			
+1,	1.00 0.50 0.25 0.125	1,10	**********************		
+2,	0.25	9:90	coi		
+3,	0,125 0,063	28.3) (
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U.UD3	10.0	•		
+5,	0.032 0.016	15.0			
+6,	0.016	6.20			
+/,	0.008 0.004	9.70 6.00			
+9,	0.002 0.001	0.80	v-000-41.*9017-4449-43941-4		
>+10,	<0.001	2.20			
METALS (	MG/KG DRY WEIGHT)				
78607807-4000080-40000000	Antimony	1,2	e. 1002 100 100 00 00 00 00 00 00 00 00 00 00 0	20	200
	Arsenic				
****	Cadmium Copper	0.37		0.96	10
	Copper	18.		81	
	Lead Mercury	36. 0.080		66 0,21	6.60
www.u.wumineneesessassassassassassassassassassassassa	Nickel			140	
	Silver	0.10		140	5
	Zinc	0.1		160	1,600
				~ × ×	

### AMES

### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002767 S9 2/22/96

** ** **	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH			c 4	640
Acenaphthalene Acenaphthene	< 28 < 28		64 63	640 630
Anthracene Fluorene			130 64	1,300 640
Naphthalene Phenanthrene	. 20		210 320	2,100 3,200
2-Methylnaphthalene	< 28	on 1992 h 1994 h 1994 h 1997 h 1997 b 1997 b	67	670
нран				
Benzo(a)anthracene Benzo(a)pyrene	57 61		450 680	4,500 6,800
Benzo(b)fluoranthene Benzo(k)fluoranthene	76		800	8,000
Benzo(ghi)perylene	49		540 670	5,400 6,700
Chrysene Dibenzo(a,h)anthracene	< 28		120	5,400
Fluoranthene Indeno(1,2,3-cd)pyrene	170 51		630 69	6,300 5,200
	150		430	7,300
CHLORINATED HYDROCARBONS	. 10		23	230
Hexachlorobenzene 1,2-Dichlorobenzene	< 17 < 7		19	350
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 7 < 7		170 26	260
1,2,4-Trichlorobenzene	< 9		13	64
PHTHALATES			0 100	
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	850 < 28		3,100 470	
Diethyl phthalate Dimethyl phthalate	< 28 < 28		97 160	
Di-n-butyl phthalate	< 28	cara le republicación de consta	1,400	
Di-n-octyl phthalate	< 2.8 		O ,	
PHENOLS Pentachlorophenol	< 71		100	690
Phenol	< 28		120 20	1,200 72
2 Methylphenol 4 Methylphenol	< 14 < 28		120	1,200
2,4-Dimethylphenol	< 14		29	50

### AM

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002767 S9

2/22/96

10 · 1 · 3	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid Benzyl alcohol	< 140 < 17		400 25	690 73
Dibenzofuran	< 28		54.	540 290
Hexachlorobutadiene Hexachloroethane	< 23 < 28		29 1400	290 14,000
N-Nitrosodiphenylamine	< 17		28	220
SURROGATES (% RECOVERY)	46.0			
2-Fluorophenol D-6-Phenol	58.0			
D-5-Nitrobenzene	50.0			
2-Fluorobiphenyl	72.0			
2,4,6-Tribromophenol D14-Terphenyl	78.0 98.0			
bit telphenyi	5000			
VOLATILE ORGANICS	< 7		10	50
Ethylbenzene Tetrachloroethene	< 7		14	210
Trichloroethene	< 7	*********************	160	1,600
Xylene	< 7		12	160
SURROGATES (% RECOVERY) D4-1,2-Dichloroethane	88.0			
D8-Toluene	94.0			
4-Bromofluorobenzene	91.0		٠- ٠	•
PESTICIDES & PCB's				
Aldrin	1.7		10	
Chlordane DDD	< 1.4 4.2		10 6,9	69
DDE	2.2		V.7	V,
DDT	< 2.8		1.0	
Dieldrin Heptachlor	< 1.1 < 0.9		10 10	
Lindane	< 0.9			
A-1016	< 14		130	2,500
A=1221 A-1232	4 1 4		TOtal	Total
A-1232 A-1242	< 14			
A-1248 A=1254	< 14			
A-1254 A-1260	15 < 15			
SURROGATE (% RECOVERY)	- 40			
Hexabromobenzene	76.			
Tetrachloro-m-xylene	74.			

VALUES ARE IN UG/KG DRY WEIGHT

Professional Analytical Services

14603 N.E. 87th St.

SAIC

18706 North Creek Pkwy suite 110

Bothell, WA 98011

Attention: M. Herrenkohl

Date Received: 2/23/96

3/18/96 Date Reported:

Redmond, WA 98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

Project #: 01-0440-04-0272

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED 96-A002768

S10

		RESULT	Q	S.L.	M.L.
CONVENT	IONALS (DRY WEIGHT)				
	Solids (%)	34.2			
Total	Volatile Solids (%)	13.0			
	Organic Carbon (%)	5.3			
	a (mg/kg)	280			
Total	Sulfides (mg/kg)	91.			
GRAIN S	IZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTION			
** * . *. *. *	4.75	< 0.1			
-2,	4.00	< 0.1			
-1,	2.00 1.00	< 0.1		*******************	
0,	1.00	0.60			
+1,	0.50 0.25	0.90	× 20 y 400gaa-3000000000000		
.42,	0.25	2.30	78		
+3,	0.125 0.063	7.30	<i>d</i>		
+4,	0.063	18.4			
+5,	0.032	26.0			
~ +b;	0.016	11.7			
†/,	0.008 0.004	17.6 9.80			
±0,***	0.002	9.780			
3/n	0.002 0.001	2,10 0 70			
>+10,	<0.001	2.60			
* = 0 /	101001	2.00			
METALS	(MG/KG DRY WEIGHT)				
	Antimony	1.5		20	200
	Arsenic			57	
	Cadmium	0.53		0.96	10
	Copper			81	810
	Lead Mercury	45.		66	660 2
2007 - 635, S. M. 2006 (657)	Nickel	U•1U			
	Nickel Silver	47.		140	Ē
/ 100 100 100 100 100 100 100 100 100 10	77 å	0.0		160	
X.20000-90000-9000000	ZINC	93.		エロリ	1,600

# AMTEST

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED 96-A002768 S10 2/21/96

	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT	)	. ** ***		
<b>L</b> РАН				
Acenaphthalene Acenaphthene	< 43 < 43		64 63	640 630
Anthracene Fluorene	< 43		130	1,300 640
Naphthalene Phenanthrene			64 210	2,100
Phenanthrene 2-Methylnaphthalene	7.6 < 4.3		320 67	3,200 670
НРАН				
Pongo (a) anthragona	48	N.C. 370 (0000000000000000000000000000000000	450	4,500
Benzo(a) anchracene  Benzo(a) pyrene  Benzo(b) fluoranthene	50 69		680 800	6,800 8,000
Benzo(K) Lluorantnene	50		540	
Benzo(ghi)perylene Chrysene	77		670	5,400 6,700
Dibenzo(a,h)anthracene Fluoranthene	< 43 150		120 630	5,400 6,300
Indeno(1,2,3-cd)pyrene	< 43		69	5,200
Pyrene			430	7,300
CHLORINATED HYDROCARBONS Hexachlorobenzene	< 12		23	230
1,2-Dichlorobenzene	< 10		19	26 - COCCOCC 46 - COCCOCC 20 - COCCOCC 46 - COCCOCC 47 -
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 10 < 10		170 26	260
1,2,4-Trichlorobenzene	< 13		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthala: Butyl benzyl phthalate			3,100 470	
Diethyl phthalate Dimethyl phthalate	< 43		9.7	
Di-n-butyl phthalate	< 43 < 43		160 1,400	
Di-n-octyl phthalate	< .43		6,200	
PHENOLS	. 05			600
Pentachlorophenol Phenol	< 87 < 43		100 120	690 1,200
2 Mothylphonol	< 17 < 43		20 120	. 72 1,200
2,4-Dimethylphenol	< 22		29	50

# AMEST

### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002768 S10

	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid Benzyl alcohol	< 220 < 21		400	690
Dibenzofuran	< 43		25 54	7.3 54.0
Hexachlorobutadiene	< 20		29	290
Hexachloroethane N=Nitrosodiphenylamine	< 43 < 26		1400 28	14,000 220
SURROGATES (% RECOVERY)			-	
2-Fluorophenol D-6-Phenol	61.0			
D-5-Nitrobenzene	71.0 69.0			
2-Fluorobiphenyl	82.0			
2,4,6-Tribromophenol	90.0			
D14-Terphenyl	100.			
VOLATILE ORGANICS				
Ethylbenzene Tetrachloroethene	< 10 < 10		10	50
Trichloroethene	. 10		14 160	210 1,600
Xylene	< 10		$\tilde{1}2$	
SURROGATES (% RECOVERY)	00.0			
D4-1,2-Dichloroethane D8-Toluene	92.0 97.0			
4-Bromofluorobenzene	91.0			,
PESTICIDES & PCB's				
Aldrin	< 1.3		10	,
Chlordane DDD	< 1.3		10	
DDD	6.8 3.0		6.9	69
DDT	< 4.3			
Dieldrin Heptachlor	< 1.7		10	
Lindane	< 1.3 < 1.3		10 10	
A-1016	< 22	***************************************	130	2,500
A=1221 A-1232	< 87 < 22		Total	Total
A=1242	< 22			
A-1248	< 22			
A+1254 A-1260	26 < 22			
SURROGATE (% RECOVERY)	\			
Hexabromobenzene	63.			
Tetrachloro-m-xylene	53.			
VALUES ARE IN UG/KG DRY WEIGHT	1			

Professional Analytical Servicus

14603 N.E. 87th St.

Redmond, WA

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

2/23/96

3/18/96

Project #: 01-0440-04-0272

Date Received:

Date Reported:

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002769 S11 2/22/96

		RESULT	Q	S.L.	M.L.
CONVENTI	ONALS (DRY WEIGHT)				
	Solids (%)	44.0			
	Volatile Solids (%)	11.3			
	rganic Carbon (%)	4.4			
	ı (mg/kg)	270			
Total S	Sulfides (mg/kg)	86.			
GRAIN SI	ZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTION			
Juga agazzanomi ting in	4.75	< 0.1	****		
-2,	4.00	0.20			
-1,	2.00 1.00	0.20 0.70			
4 1	0.50	1 40	200 - 20 - 20 - 20 - 20 - 20 - 20 - 20	D0000000000000000000000000000000000000	
+2,	0.50 0.25	3.00,,,	v		
+3,	0.125 0.063	18.2			
+4,	0.063	202			
+5,	0.032 0.016	16.8			
**. <del>+</del> .6 ,	0.016	10.0			
+7, -+8.	0.008 0.004	12.7 6.80			
+9,	0.002 0.001	4.00			
+10,	0.001	2.20			
>+10,	<0.001	3.60			
METALS (	(MG/KG DRY WEIGHT)				
	Antimony Arsenic	1.3		20	200
	Arsenic	10:		57	700
·	Cadmium	0.36		0.96	10
	Copper	19.		8.T	
	Lead Mercury	35.		55	660
		U. U68		U v Z 1	
	Nickel Silver	43.		140 1.2	Ē
		* U.I. 81.		160	1,600
200000000000000000000000000000000000000	Zinc	δ1,		TOO	1,000

# AVI BUILDE

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002769 S11 2/22/96

••••	RESULT	Q	S.L.	М. L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH	. 22		6.4	640
Acenaphthalene Acenaphthene	< 33 < 33		6.3	630
Anthracene Fluorene	< 33 < 33		130 64	1,300 640
Naphthalene Phenanthrene	< 33 110		210 320	2,100 3,200
2-Methylnaphthalene	< 33		67	670
НРАН	<b>7.</b> 0		4.5.0	4 500
Benzo(a)anthracene Benzo(a)pyrene	78 96		450 6.80	4,500 6,800
Benzo(b)fluoranthene Benzo(k)fluoranthene	100 83		800	8,000
Benzo(ghi)perylene Chrysene	75 120		540 670	5,400 6,700
Dibenzo(a,h)anthracene Fluoranthene	< 33		120 630	5,400 6,300
Indeno(1,2,3-cd)pyrene	68		69	5,200
Pyrene	200		430	7,300
CHLORINATED HYDROCARBONS Hexachlorobenzene	< 20		23	230
1,2-Dichlorobenzene	< 8		19 170	350
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 8 < 8		26	260
1,2,4-Trichlorobenzene	< 10		13	64
PHTHALATES Bis(2-ethylhexyl)phthalate	1000		3,100	
Butyl benzyl phthalate	< 33		470	
Diethyl phthalate Dimethyl phthalate	< 33 < 33		97 160	
Di-n-butyl phthalate Di-n-octyl phthalate	< 33		1,400 6,200	
PHENOLS Pentachlorophenol	< 83		100	690
Phenol 2 Methylphenol	< 33 < 17		120 20	1,200 72
4 Methylphenol	< 33 < 17		120 29	1,200 50
2,4-Dimethylphenol	S 1.7		43	30

## AVE BEE

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

VALUES ARE IN UG/KG DRY WEIGHT

96-A002769

S11 2/22/96

DATE SAMPLED	2/22/96			
	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid Benzyl alcohol	< 170 < 20		400	.690 .7.3
Dibenzofuran Hexachlorobutadiene	< 33 < 27		54 29	540 290
Hexachloroethane	< 33			14,000
N-Nitrosodiphenylamine SURROGATES (% RECOVERY)	e < 20		28	220
2-Fluorophenol	55.0			
D-6-Phenol	61.0			
D-5-Nitrobenzene	67.0 79.0			
2-Fluorobiphenyl 2,4,6-Tribromophenol	75.0			
D14-Terphenyl	91.0			
OLATILE ORGANICS				
Ethylbenzene	< 8		10	50
Tetrachloroethene	< 8 < 8		14 160	210 1,600
Trichloroethene Xylene	< 8		12	160
SURROGATES (% RECOVERY)				
D4-1,2-Dichloroethane	93.0			
D8-Toluene	97.0			
4-Bromofluorobenzene	93.0		·	
PESTICIDES & PCB's	< 3	D	10	
Aldrin Chlordane	< 3	D	10	
DDD DDE	< 5 < 4	D D	6.9	69
DDT	< 6,9	D		
Dieldrin Heptachlor	< 4 < 3	D D	10 10	
Lindane	< 3		10	
A-1016 A-1221	< 17 < 68		130 Total	2,500 Total
A-1232 A-1242	120 (100) 100 (100)			
A-1248 A-1254	23			
A-1260	< 17			
SURROGATE (% RECOVERY) Hexabromobenzene	66.			
Tetrachloro-m-xylene	74.			

Professional Analytical Services

14503 N.E. 87th St.

Redmond, WA

98052

Fax: 206 883 3495

2/23/96

3/18/96

Project Name: Kenmore Nav. Channel

Project #: 01-0440-04-0272

Date Received:

Date Reported:

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002770 S12 2/21/96

DATE DA	at Tra	2,21,30			
•		RESULT	Q	S.L.	M.L.
CONVENT	IONALS (DRY WEIGHT)				
	Solids (%)	31.5			
	Volatilè Śolids (%)	12.1			
	Organic Carbon (%)	6.2			
	a (mg/kg)	100			
Total :	Sulfides (mg/kg)	67.			
GRAIN S	IZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTION			
togrator montocations	4.75	0.60	•		
	4.73	< 0.1			
-1/	2.00 1.00	0.30 1.30			
	1.UU	1.00			
42	0.50 0.25	4.80			
+3,	0.125	19.0	1 5		
+4	0.063				
+5,	0.032 0.016	16.6			
.+6,	0.016	10.2			
+7.,	0.008 0.004	11.6 9.90			
+9.	0.002	1 1 1 1 1 1		***************************************	
+10.	0.002 0.001	1.10 < 0.1			
+10,	<0.001	3.20			
METALS	(MG/KG DRY WEIGHT)				
0.05045000486.eneed1100	Antimony	1.2	***********	20	200
	Arsenic				7.0.0
\$#84000000000000000000000000000000000000	Cadmium Gopper	0,30		0.96	10
	Copper	15.		81	810
	Lead Mercury	26.		66 0.21	660
	Mercury	S U.Ub3		1.4.0	
	Nickel Silver	∠ (n 1		1.2	Ę
	Zinc	61.		160	1,600
					,

# AM

### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002770 S12 2/21/96

	RESULT	Q	S.L.	М.L.
ORGANICS (UG/KG DRY WEIGHT)				
РАН			- 4	540
Acenaphthalene Acenaphthene	< 44 < 44		64 63	640 630
Anthracene Fluorene	< 44 < 44		130 64	1,300 640
Naphthalene	< 44		210 320	2,100 3,200
Phenanthrene 2-Methylnaphthalene	< 44		67	670
гран			450	4 500
Benzo(a)anthracene Benzo(a)pyrene	< 44 < 44		450 680	•
Benzo(b)fluoranthene Benzo(k)fluoranthene	58 < 44		800	8,000
Benzo(ghi)perylene Chrysene	< 44		540 670	5,400 6,700
Dibenzo(a,h)anthracene Fluoranthene			120 630	5,400 6,300
Indeno(1,2,3-cd)pyrene Pyrene			69 430	5,200 7,300
CHLORINATED HYDROCARBONS			• •	
Hexachlorobenzene 1,2-Dichlorobenzene	< 12 < 10		23 19	230 350
1,3-Dichlorobenzene	< 10		170 26	260
1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	< 13		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate			3,100 470	
Diethyl phthalate	< 44		97	
Dimethyl phthalate Di-n-butyl phthalate			160 1,400	
Di-n-octyl phthalate	< 44		6,200	
PHENOLS	. 07		100	600
Pentachlorophenol Phenol	< 87 < 44		100 120	690 1 <b>,2</b> 00
2 Methylphenol 4 Methylphenol	< 17		20 120	72 1,200
2,4-Dimethylphenol	< 22		29	50

# AMISE

### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

VALUES ARE IN UG/KG DRY WEIGHT

96-A002770 S12 2/21/96

4- · · · · · · ·	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid Benzyl alcohol	< 220 < 21		400 25	690 73
Dibenzofuran Hexachlorobutadiene	< 44 < 20		54 29	540 290
Hexachloroethane	< 44 < 26		1400 28	14,000
N-Nitrosodiphenylamine SURROGATES (% RECOVERY)	≲ .Zb		20	220
2-Fluorophenol	61.0			
D-6-Phenol	69.0			
D-5-Nitrobenzene	59.0			
2-Fluorobiphenyl	85.0			
2,4,6-Tribromophenol	92.0			
D14-Terphenyl	105.			
VOLATILE ORGANICS				
Ethylbenzene	< 10		10	50 210
Tetrachloroethene	< 10 < 10		14 160	1,600
Trichloroethene Xylene	< 10		12	160
SURROGATES (% RECOVERY)				
D4-1,2-Dichloroethane	91.0			
D8-Toluene 4-Bromofluorobenzene	91.0 83.0		· <u>·</u> .	,
r bromorradiosensene	00.0			
PESTICIDES & PCB's Aldrin	< 4	D	10	
Chlordane	< 4	D D	10	
DDD	< 6.6	D	6,9	69
DDE		D		
DDT	< 6.9	D		
Dieldrin	<53		10	
Heptachlor Lindane	< 4 < 4	D D	10 10	
A-1016	< 22	.D	130	2,500
A=1221	< 88		Total	
A-1232 A-1242	< 22 < 22			
A-1248 A-1254	< 22 < 22			
A-1260	< 22			
SURROGATE (% RECOVERY)				
Hexabromobenzene	76.			
Tetrachloro-m-xylene	82.			

Professional Analytical Services

14603 N.E. 87th St.

SAIC

18706 North Creek Pkwy suite 110

Bothell, WA 98011

Attention: M. Herrenkohl

Date Received: 2/23/96

3/18/96 Date Reported:

Redmond, WA

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

Project #: 01-0440-04-0272

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED 96-A002771 S13 2/22/96

	RESULT	Q	S.L.	M.L.
ONVENTIONALS (DRY WEIGHT)				
Total Solids (%)	45.0			
Total Volatile Solids (%)	7.00			
Total Organic Carbon (%)	3.7			
Ammonia (mg/kg)	200 58.			
Total Sulfides (mg/kg)	50.			
RAIN SIZE DISTRIBUTION HI OPENING (MM)	% RETENTION			
4.75	< 0.1			
-2, 4.00				
-1, 2.00 0, 1.00	< 0.1 0.40			
+1. 0.50	0.90			
+1, 0.50 +2, 0.25	1.80	7		
+3, 0.125 +4, 0.063	12.7	-5H		
	13.1			
+5, 0.032 +6, 0.016	11.6 13.1			
+7. 0.008	15.3			***************************************
+7, 0.008 +8, 0.004	13.7			
+9, 0.002 +10, 0.001	5.80			
+10, 0.001	2.80			
-+10, <0.001	8.90			
METALS (MG/KG DRY WEIGHT)				0.00
Antimony	1.2 9.4		20 57	200 700
Arsenic	***************************************		0.96	10
Cadmium Copper			81	810
Lead .			6.6	6.6.0
Mercury	0.080		0.21	2
Nickel	43.		140	<u>-</u>
Silver	< 0.1 79.		1.2 160	5 1,600
Zinc				

## AVIESE

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED 96-A002771 S13 2/22/96

*****	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH			C.4	C 4 O
Acenaphthalene Acenaphthene	< 32 < 32		64 63	640 630
Anthracene Fluorene	< 32 < 32		130 64	1,300 640
Naphthalene	< 32		210 320	2,100
Phenanthrene 2-Methylnaphthalene	62 < 32		67	3 <b>,200</b> 670
НРАН				
Benzo(a)anthracene Benzo(a)pyrene	48 55		450 680	4,500 6,800
Benzo(b)fluoranthene	6.2		800	8,000
Benzo(k)fluoranthene Benzo(ghi)perylene	51 47		540	5,400
Chrysene Dibenzo(a,h)anthracene	73		670 120	6,700 5,400
Fluoranthene	120		630 69	6,300 5,200
Indeno(1,2,3-cd)pyrene Pyrene	43 130		430	
CHLORINATED HYDROCARBONS			·	
Hexachlorobenzene 1,2=Dichlorobenzene	< 19		23 19	230 350
1,3-Dichlorobenzene	< 8		170	
1,4-Dichlorobenzene 1,2,4-Trichlorobenzene	< 10		26 13	260 64
PHTHALATES				
Bis(2-ethylhexyl)phthalate	700		3,100 470	
Butyl benzyl phthalate Diethyl phthalate	40 < 32		97	
Dimethyl phthalate Di-n-butyl phthalate	< 32 < 32		160 1,400	
Di-n-octyl phthalate			6,200	
PHENOLS				
Pentachlorophenol Phenol	< 81 < 32		100 120	690 1,200
2 Methylphenol 4 Methylphenol	< 16 < 32		20 120	72 1,200
2,4-Dimethylphenol	< 16		29	50

# AMESE

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED 96-A002771 S13 2/22/96

	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				500
Benzoic acid Benzyl alcohol	< 160 < 19		400	690 73 540
Dibenzofuran Hexachlorobutadiene	< 32		54 29 1400	290 14,000
Hexachloroethane N-Nitrosodiphenylamine	< 32 < 19		28	220
SURROGATES (% RECOVERY)	56.0			
2-Fluorophenol	62.0			
D-6-Phenol	67.0			
D-5-Nitrobenzene 2-Fluorobiphenyl	82.0			
2,4,6-Tribromophenol	77.0			
D14-Terphenyl	95.0			
VOLATILE ORGANICS				
Ethylbenzene Tetrachloroethene	< 8 < 8		10 14	50 210
Trichloroethene Xylene	< 8 < 8		160 12	1,600 160
SURROGATES (% RECOVERY)				
D4-1,2-Dichloroethane	95.0			
D8-Toluene	98.0			
4-Bromofluorobenzene	91.0			
PESTICIDES & PCB's	. 2	D	10	
Aldrin Chlordane	< 3 < 3	D D	10	69
DDD DDE	< 5 < 4		6.9	03
DDT Dieldrin	< 6.9 < 3	D D	10	
Heptachlor Lindane	< 3 < 3	D D	4444	
A-1016 A-122·l	< 16 < 65		130 Total	2,500 Total
A-1232 A-1242	< 16 < 16			
A-1248 A-1254	< 16 < 16			
A-1260	< 16			
SURROGATE (% RECOVERY)				
Hexabromobenzene	69.			
Tetrachloro-m-xylene	82.			
				•

Professional Analytical Services

14603 N.E. 87th St.

Redmond, WA

98052

Fax: 206 883 3495

Date Received:

Date Reported:

Project Name: Kenmore Nav. Channel Project #: 01-0440-04-0272

2/23/96

3/18/96

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

.....

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002772 S14

2/22/96

		RESULT	Q	S.L.	M.L.
CONVENTI	ONALS (DRY WEIGHT)				
	olids (%)	56.8			
	olatile Solids (%)	5.00			
	rganic Carbon (%)	4.4			
	(mg/kg)	130			
Total S	ulfides (mg/kg)	13.			
	ZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTION			
2	4.75 4.00	0.20 < 0.1			
∞ #2 y	2.00	0.40			
_ ; ,	2.00	0.40			
+1.	0.50	0.50		***************************************	
+2	0.50 0.25	3.90	1.7		
		20.6	<b>∤</b> ♥		
+4,	0.125 0.063	15.8			
+5,	0.032 0.016	11.1			
+6 ,	0.016	15.0			
+/, -10	0.008 0.004	13.1			
+9,		3.10			
	0.001	1.30			
>+10,	<0.001	5.60			
METALS (	MG/KG DRY WEIGHT)				
	Antimony	1.1	*********	20	200
	Arsenic	5.6		57	70.0
	Cadmium	0.13		0.96	10
	Copper	12.		81	810
	Lead	24. 0.049		66	660
	Mercury Nickel	0.049 40.		0.21 140	Z
	Nickei Silver	40. < 0.1		140	5
rana samma and sam an and and	Zinc	55.		160	1,600
				<b>4</b> U U	+, · · ·

# AM sa

### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002772 S14 2/22/96

4	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
<b>LPA</b> H				440
Acenaphthalene Acenaphthene	< 25 < 25		64 63	640 630
Anthracene Fluorene	26 < 25		130 64	1,300 640
Naphthalene Phenanthrene	< 25 26		210 320	2,100 3,200
2-Methylnaphthalene	< 25		67	670
НРАН				
Benzo(a)anthracene Benzo(a)pyrene	< 25 < 25		450 680	4,500 6,800
Benzo(b)fluoranthene	< 25 < 25		800	8,000
Benzo(ghi)perylene	< 25		540	5,400
Chrysene Dibenzo(a,h)anthracene	31 < 25		670 120	5,400
Fluoranthene Indeno(1,2,3-cd)pyrene	50 < 25		630 69	6,300 5,200
Pyrene	51		430	7,300
CHLORINATED HYDROCARBONS			~ .	
Hexachlorobenzene 1,2-Dichlorobenzene	< 15 < 6		23 19	230 350
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 6 < 6		170 26	260
1,2,4-Trichlorobenzene	< 8		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	380 < 25		3,100 470	
Diethyl phthalate Dimethyl phthalate	< 25		97 160	
Di-n-butyl phthalate	< 25		1,400	
Di-n-octyl phthalate			∞o,,∠∪∪	
PHENOLS Pentachlorophenol	< 63		100	690
Phenol	< 25.		120	1,200
2 Methylphenol 4 Methylphenol	< 13 < 25		20 120	72 1,200
2,4-Dimethylphenol	< 13		29	50

# AMEST

### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002772 S14 2/22/96

April 1 Ma	RESULT	Q	S.L.	M.L.
MISCELLANEOUS COMPOUNDS				
Benzoic acid Benzyl alcohol	< 130 < 15		400 25	690 73
Dibenzofuran Hexachlorobutadiene			54 29	540 290
Hexachloroethane N=Nitrosodiphenylamine	< 25 < 15		1400 28	14,000 220
SURROGATES (% RECOVERY)				
2-Fluorophenol	48.0			
D-6-Phenol	54.0			
D-5-Nitrobenzene	59.0 80.0			
2-Fluorobiphenyl 2,4,6-Tribromophenol	70.0			
D14-Terphenyl	86.0			
OLATILE ORGANICS	·			
Ethylbenzene Tetrachloroethene	< 6 < 6		10 14	50 210
Trichloroethene	< 6	**********	160	1,600
Xylene	< 6		12	160
URROGATES (% RECOVERY)				
D4-1,2-Dichloroethane	92.0	•		
D8-Toluene	96.0			
4-Bromofluorobenzene	89.0		·· .	•
PESTICIDES & PCB's		_		
Aldrin Chlordane	< 2,3	D D	10 10	
DDD	< 2.3 < 4	D D	10 6.9	69
DDE		D	0.3	0.3
DDT	< 6.9	D	A	
Dieldrin	< 3	D	10	
Heptachlor Lindane	< 2.3 < 2.3	D D	10 10	
A-1016	< 13		130	2,500
A=1221 A=1232	< 50		Total	Total
A=1232 A=1242	< 13 < 13			
A-1248 A-1254	< 13 < 13			
A-1260	< 13	-		
SURROGATE (% RECOVERY)				
Hexabromobenzene	75.			•
Tetrachloro-m-xylene	77.			

VALUES ARE IN UG/KG DRY WEIGHT

Professional Analytical Services

14603 N.E. 87th St.

Redmond, WA

98052

Fax: 206 883 3495

Project Name: Kenmore Nav. Channel

2/23/96

3/18/96

Project #: 01-0440-04-0272

Date Received:

Date Reported:

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

Bothell, WA 98011

Attention: M. Herrenkohl

18706 North Creek Pkwy suite 110

SAIC

96-A002773

S15

2/22/96

DATE SAM	SPED	2/22/96			
		RESULT	Q	S.L.	M.L.
CONVENTIO	ONALS (DRY WEIGH	Γ)		***	
	olids (%)	59.2			
	olatilė Šolids (				
	rganic Carbon (%	1.6			
Ammonia		73.			
Total Su	ulfides (mg/kg)	49.			
	ZE DISTRIBUTION				
PHI	OPENING (MM)	% RETENTIO	N		
6-62*5-00 <u>15</u> -200015-00000	4.75 4.00	0.50			
::::::::::::::::::::::::::::::::::::::	4.700	0.20			
-1,	2.00	0.30 0.50			
+ 1	0.50	1 90			
42.000	0.30 0.35	15.4	,		
+3.	0.125	12.0	38		
+4,	0.063	1.90 15.4 12.0 9.80			
+5,	0.032	12.5 15.9			····
#6,	0.016	15.9			
+7,	0.008	12.5 8.30			
+8,	0.004	8.30			
+9,	0.002	4.00 2.10			
>+10,	<0.001	4.20			
METALS (1	MG/KG DRY WEIGHT				
	Antimony	1.0		20	200
	Arsenic			57	700
	Cadmium Copper	0.11 10.		0.96 81	10 810
				66	660
	Mercury				2
		. 39.		140	
	Silver				5
	7 i	50,		160	1,600

# AM Francis

#### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED 96-A002773 S15 2/22/96

· · ·	RESULT	Q	S.L.	M.L.
ORGANICS (UG/KG DRY WEIGHT)				
LPAH	. 0.4		64	640
Acenaphthalene Acenaphthene	< 24 < 24		63	630
Anthracene Fluorene	< 24 < 24		130 64	1,300 640
Naphthalene Phenanthrene	< 24 < 24		210 320	2,100 3,200
2-Methylnaphthalene	< 24		67	670
НРАН				
Benzo(a)anthracene Benzo(a)pyrene	< 24 < 24		450 680	4,500 6,800
Benzo(b)fluoranthene	< 24 < 24		800	8,000
Benzo(k)fluoranthene Benzo(ghi)perylene	< 24		540 670	5,400 6,700
Chrysene Dibenzo(a,h)anthracene	< 24		120	5,400
Fluoranthene Indeno(1,2,3-cd)pyrene	34 < 24		630 69	6,300 5,200
Pyrene	$\overline{32}$		430	
CHLORINATED HYDROCARBONS			~ .	. 220
Hexachlorobenzene 1,2-Dichlorobenzene	< 14 < 5		23 19	230 350
1,3-Dichlorobenzene 1,4-Dichlorobenzene	< 5		170 26	260
1,2,4-Trichlorobenzene	< 7		13	64
PHTHALATES				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	98 < 24		3,100 470	
Diethyl phthalate	< 24 < 24		97 160	
Dimethyl phthalate Di-n-butyl phthalate	< 24		1,400	
Di-n-octyl phthalate	< 24		6,200	
PHENOLS Pentachlorophenol	< 60		100	690
Phenol Phenol	< 24		120	1,200
2 Methylphenol 4 Methylphenol	< 12 < 24		20 120	72 1,200
2,4-Dimethylphenol	< 12		29	50

# A Marie Com

### PSDDA CHEMICALS OF CONCERN

AM TEST ID CLIENT ID DATE SAMPLED

96-A002773 S15 2/22/96

*** ***	RESULT	Q	S.L.	M.L.
ISCELLANEOUS COMPOUNDS			400	600
Benzoic acid Benzyl alcohol	< 120 < 14		400 25	690 73
Dibenzofuran Hexachlorobutadiene	< 24 < 19		54 29	540 290
Hexachloroethane N-Nitrosodiphenylamine	< 24 < 14		1400 28	14,000 220
URROGATES (% RECOVERY)				
2-Fluorophenol	57.0		•	
D-6-Phenol	60.0			
D-5-Nitrobenzene	63.0			
2-Fluorobiphenyl	85.0			
2,4,6-Tribromophenol	74.0			
D14-Terphenyl	87.0			
OLATILE ORGANICS	. F		10	50
Ethylbenzene Tetrachloroethene	< 5 < 5		14	210
Trichloroethene Xylene	< 5 < 5		160 12	1,600 160
JRROGATES (% RECOVERY)				
D4-1,2-Dichloroethane	93.0			
D8-Toluene	96.0			
4-Bromofluorobenzene	96.0		٠	
ESTICIDES & PCB's	. •		` 10	
Aldrin Chlordane	< 2 < 2	D D	10 10	
DDD	< 4	D	6.9	69
DDE	< 3	D		
DDT Dieldrin	< 6,9 < 3	D D	10	
Heptachlor Lindane	< 2 < 2	D D	10 10	
A-1016 A-1221	< 12 < 47		130 · Total	2,500 Total
A-1232	< 12			
A=1242 A=1248	< 12 < 12			
A=1254	< 12			
A-1260	< 12			
URROGATE (% RECOVERY)				
Hexabromobenzene	81.			
Tetrachloro-m-xylene	77.			

### AVIISI

	]	PSDDA		
METALS (PPM) Antimony Arsenic Cadmium Copper Lead Mercury Nickel Silver Zinc	D.L. 2.5 2.5 0.3 15.0 5.0 0.02 2.5 0.2 15.0	S.L. 20 57 0.96 81 66 0.21 140 1.2	700 10 810 660 2	METHODS PSEP APPEN D GFAA PSEP APPEN D GFAA PSEP APPEN D GFAA PSEP APPEN D ICP PSEP APPEN D ICP 7471 CV PSEP APPEN D ICP PSEP APPEN D ICP PSEP APPEN D ICP PSEP APPEN D ICP
ORGANICS (PPB)				
LPAH Acenaphthalene Acenaphthene Anthracene Fluorene 2-Methylnaphthalene Naphthalene Phenanthrene	20 20 20 20 20 20 20	64 63 130 64 67 210 320	640 630 1,300 640 670 2,100 3,200	3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270
HPAH Benzo(a) anthracene Benzo(a) pyrene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(ghi) perylene Chrysene Dibenzo(a,h) anthracene Fluoranthene Indeno(1,2,3-cd) pyrene Pyrene	20 20 20 20 20 20 20 20 20 20	450 680 800 540 670 120 630 69 430	4,500 6,800 8,000 5,400 6,700 1,200 6,300 5,200 7,300	3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270
CHLORINATED HYDROCARBONS 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Hexachlorobenzene 1,2,4-Trichlorobenzene	3.2 3.2 3.2 12 6.0	19 170 26 23 13	350 260 230 64	8240 8240 8240 3550/8270 3550/8270
PHTHALATES Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate	20 20 20 20 20 20	3,100 470 97 160 1,400 6,200		3550/8270 3550/8270 3550/8270 3550/8270 3550/8270 3550/8270
PHENOLS 2,4-Dimethylphenol 2 Methylphenol 4 Methylphenol Pentachlorophenol	10 10 20 61	29 20 120 100	50 72 1,200 690	3550/8270 3550/8270 3550/8270 3550/8270

### AMERICA

PSEP p17 PSEP p20 SM 5310B Plumb, 1981 PSEP p32 PSEP p9

Phenol	20	120	1,200	3550/8270
MISCELLANEOUS COMPOUNDS				
Benzoic acid	100	400	690	3550/8270
Benzyl alcohol	10	25	73	3550/8270
Dibenzofuran	20	54	540	3550/8270
Hexachloroethane	20	1,400	14,000	3550/8270
Hexachlorobutadiene	20	29	290	3550/8270
N-Nitrosodiphenylamine	15	28	220	3550/8270
NOT A MILL OF CANAGE				
VOLATILE ORGANICS Ethylbenzene	3.2	10	50	8240
Tetrachloroethene	3.2	14	210	8240 8240
Trichloroethene	3.2		1,600	8240
Xylene	3.2	12	160	8240
xyrene	3.2	12	100	0240
PESTICIDES				
DDD	3.3	6.9	69	3540/8080
DDE	2.3			3540/8080
DDT	6.7			3540/8080
Aldrin	1.7	10		3540/8080
Chlordane	1.7	10		3540/8080
Dieldrin	2.3	10		3540/8080
Heptachlor	1.7	10		3540/8080
Lindane	1.7	10		3540/8080
Total PCB's	67	130	2,500	3540/8080

All values are on a dry weight basis * 8270 Compounds MDL's based on two 35g extracts (70% solids)

CONVENT	TIONALS
Total	Solids
Total	Volatile Solids
Total	Organic Carbon
Ammon	la -
	Sulfides
Grain	Size Distribution