CARTY LAKE PREDESIGN SAMPLING REPORT

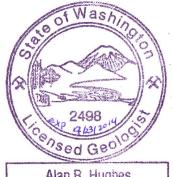
FORMER PACIFIC WOOD TREATING CO. SITE

Prepared for

PORT OF RIDGEFIELD

RIDGEFIELD, WA January 8, 2014 Project No. 9003.01.40

M A U L FOSTER ALONGI


Prepared by
Maul Foster & Alongi, Inc.
400 E Mill Plain Blvd., Suite 400, Vancouver WA 98660

CARTY LAKE PREDESIGN SAMPLING REPORT

FORMER PACIFIC WOOD TREATING CO. SITE

The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

Alan R. Hughes

Alan R. Hughes, LG

Senior Geologist

Madi Warah Madi Novak

Project Manager/Senior Environmental Scientist

Phil Wiescher, PhD

Staff Environmental Scientist

CONTENTS

TAB	BLES AND ILLUSTRATIONS	I۱
AC	CRONYMS AND ABBREVIATIONS	\
1	INTRODUCTION	1
2	INVESTIGATION OBJECTIVES 2.1 REMEDIAL ACTION AREA 2.2 SEDIMENT PHYSICAL CHARACTERIZATION	1 2 3
3	SEDIMENT SAMPLING 3.1 SAMPLING METHODS 3.2 MANAGEMENT OF INVESTIGATION-DERIVED WASTE 3.3 SAMPLE PROCESSING 3.4 LABORATORY CHEMICAL SAMPLE PROCESSING AND ANALYSIS 3.5 LABORATORY PHYSICAL SAMPLE PROCESSING AND ANALYSIS 3.6 DATA REDUCTION, VALIDATION, AND REPORTING	3 5 5 6 6
4	RESULTS	ϵ
LIM	MITATIONS	
REF	FERENCES	
TAB	BLES	
FIG	GURES	
APF	PENDIX A PHOTO ARRAY	
APF	PENDIX B ANALYTICAL REPORTS	
APF	PENDIX C DATA VALIDATION MEMORANDUM	
APF	PENDIX D	

DIOXIN AND FURAN ANALYSIS, DATA VALIDATION, AND TEQ CALCULATION RULES

TABLES AND ILLUSTRATIONS

FOLLOWING REPORT:

TABLES

- 3-1 SAMPLE LOCATIONS
- 3-2 SURFACE SAMPLE SUMMARY
- 3-3 SUBSURFACE SAMPLE SUMMARY
- 4-1 SEDIMENT RESULTS

FIGURES

- 1-1 SITE LOCATION
- 3-1 CARTY LAKE SAMPLE LOCATIONS
- 4-1 SEDIMENT SAMPLING RESULTS

ACRONYMS AND ABBREVIATIONS

CAP cleanup action plan

cm centimeters

COE U.S. Army Corps of Engineers

CUL cleanup level

dioxins chlorinated dibenzo-p-dioxins and dibenzofurans

DU decision unit

Ecology Washington State Department of Ecology

ISM incremental sampling methodology

LRIS Lake River Industrial Site
MFA Maul Foster & Alongi, Inc.
MTCA Model Toxics Control Act

Order Agreed Order No. 01TCPSR-3119 between the Port and

Ecology

Port of Ridgefield

PSAP Predesign Sampling and Analysis Plan

PWT Pacific Wood Treating Co.
QA/QC quality assurance/quality control

RI/FS remedial investigation and feasibility study

RNWR Ridgefield National Wildlife Refuge SMS Sediment Management Standards SRM sediment reference material

TEQ toxicity equivalency TOC total organic carbon

USFWS U.S. Fish and Wildlife Service WAC Washington Administrative Code

1 INTRODUCTION

On behalf of the Port of Ridgefield (Port), Maul Foster & Alongi, Inc. (MFA) has prepared this report to summarize Carty Lake predesign sampling and analytical results. Carty Lake is located in the Ridgefield National Wildlife Refuge Carty Unit adjacent to the former Pacific Wood Treating Co. (PWT) site in Ridgefield, Washington (see Figure 1-1). PWT operated a wood-treating facility from 1964 to 1993 at the Port's Lake River Industrial Site (LRIS); historical operations resulted in sediment contamination in Carty Lake. This document has been prepared under the authority of Agreed Order No. 01TCPSR-3119 between the Port and the Washington State Department of Ecology (Ecology) to satisfy the requirements of the Model Toxics Control Act (MTCA) and sediment management standards (SMS), and addresses the substantive requirements of Washington Administrative Code (WAC) 173-340, 350, and 360 (MTCA) and WAC 173-204 (SMS).

This report describes activities conducted to support the design of remedial actions targeting contaminated sediment in Carty Lake. The selected remedy includes removal and disposal of contaminated sediment and addressing low-level residual contamination through placement of clean sand. Carty Lake sediment characterization, cleanup level (CUL) development, and remedial alternatives evaluation are detailed in the Ecology-approved former PWT site remedial investigation and feasibility study (RI/FS) (MFA, 2013b) and in the cleanup action plan (CAP), Exhibit A of consent decree 13-2-03830-1 issued November 5, 2013. This report provides information regarding environmental field sampling, sample handling and analysis, quality assurance protocols, and laboratory analytical results and interpretation.

Sampling and reporting were conducted in accordance with the Ecology-approved predesign sampling and analysis plan (PSAP) (Mercuri, 2013; MFA, 2013a) that incorporated input from the U.S. Fish and Wildlife Service (USFWS); sampling activities were generally consistent with current Puget Sound Estuary Program (PSEP) and U.S. Environmental Protection Agency (USEPA) protocols for sampling and analysis (PSEP, 1986, 1997a,b; USEPA, 1993) and standard USEPA methods based on USEPA test methods for evaluating solid waste, physical/chemical methods (also known as SW-846) requirements, as amended (USEPA, 1986). Sampling activities were consistent with guidance provided in Ecology's Sediment Source Control Standards User Manual, Sediment Sampling and Analysis Plan appendix (Ecology, 2008).

2 INVESTIGATION OBJECTIVES

The PSAP identified the chemical and physical sediment characterization needed to design the Carty Lake cleanup action (MFA, 2013a). The primary investigation objectives of sampling and analysis conducted were:

- Delineation of the remedy area, including excavation (horizontal and vertical extent) and residuals cap areas
- Collection of remedial action confirmation samples
- Characterization of sediment physical parameters to evaluate sediment retrieval, handling, and disposal methods

These objectives are discussed further below.

2.1 Remedial Action Area

The nature and extent of hazardous substances in Carty Lake are generally well understood (MFA, 2013b). Significantly elevated dioxin concentrations are largely limited to the extreme southern portion of the lake at locations LRIS-CL-01, -02, and -04, although elevated (i.e., higher than the CUL of 5 nanograms per kilogram) dioxin toxicity equivalent concentrations occur at multiple locations. Dioxin concentrations decrease substantially within the top 1 to 2 feet of the mudline. Metals (arsenic and chromium) and pentachlorophenol exceedances of screening criteria are well defined and are collocated with significantly elevated dioxin concentrations in the extreme southern portion of the lake at LRIS-CL-01, -02, and -04. Based on elevated chemical concentrations, the extreme southern portion was identified as the minimum area for remedial action (MFA, 2013a).

To support delineation of other areas for potential remedial action, additional subsurface discrete sampling and surface incremental sampling (i.e., the incremental sampling methodology [ISM]) was conducted in five decision units to the north of the extreme southern portion of Carty Lake (MFA, 2013a). ISM consisted of combining ten individual samples (termed "increments") into one increment composite for each predefined decision unit. ISM is further discussed in the PSAP (MFA, 2013a) and references therein (ADEC, 2009; HDOH, 2009, 2011; ITRC, 2012).

The RI/FS (MFA, 2013b) evaluated a variety of remedial action scenarios on the basis of technical feasibility, cost and anticipated postremedial surface-weighted average concentrations (using the Thiessen polygon (TP) interpolation method). The preferred alternative presented in the RI/FS involved removing sediment with dioxins above levels protective of ecological receptors, i.e., at the risk-based ecological factors for dioxin congeners. Following removal, clean sand would be placed in an approximately 1-foot-thick layer over dredged areas and the resulting residuals. The TP method was used to estimate initial removal and clean sand volumes.

The predesign data described in this report, together with the data collected during RI activities, are used to inform the excavation and clean sand footprint (see the main text initial design report). The final remedy area will also consider removal logistics, feasibility, and lakebed characteristics, and will be developed in consultation with Ecology and USFWS.

Data collected during the predesign sampling effort are also used to confirm that the remedy will meet sediment criteria. As a result, additional confirmation samples will not be required during or immediately upon completion of the remedial action.

2.2 Sediment Physical Characterization

Information regarding the physical properties of sediment in the anticipated remedy area was collected to inform the design of the remedy and to refine remedial cost estimates. These properties inform evaluation of slope stability, hydrodynamics, sediment transfer, removal production rates, volumes, and handling requirements.

The sediment physical properties not only inform the handling requirements and excavation methods for sediment, but also provide a better understanding of hydrodynamics and sediment transfer information. One physical sample was collected from the remedy area, using a Shelby tube.

3 SEDIMENT SAMPLING

3.1 Sampling Methods

MFA conducted sediment sampling on June 24, 25, and 26, 2013. Sampling was conducted consistent with the Ecology-approved PSAP (MFA, 2013a), or as noted below. Figure 3-1 and Table 3-1 show and summarize sample stations, respectively. Sampling methods for each collection technique are described below.

3.1.1 Surface Sediment Sampling

Surface sediment samples for ISM composite samples were collected from decision units in the "island" area (decision units 3 and 5) and in the "in-water" area (decision units 1, 2, and 4) to account for varying sediment and vegetation conditions between areas (see Figure 3-1). Sample locations were accessed by foot, by wading, or with a small vessel. Sampling was first conducted in island areas, followed by sampling in-water areas. In both cases, a differential global positioning system was used to navigate to locations; care was taken to avoid stepping on locations before sampling. A 2-inch-diameter, thin-walled, stainless steel sediment sampling tube was used to retrieve increments from in-water decision units; however, a smaller, 1.75-inch-diameter tube was used for island decision units. Use of the smaller tube in the island area accounted for differing sediment density between in-water and island areas, providing sufficient (greater than 1.5 kilograms) and similar mass for all decision units (see Table 3-2). See Appendix A for photographs of sampling areas and representative samples collected.

In the in-water areas, a sampling tube was manually advanced to a depth greater than 10 centimeters (cm), water was decanted, and sediment was then extruded onto a clean work surface, using a plunger. The increments were measured, trimmed to 10 cm, weighed, and placed in the laboratory-supplied decision-unit-dedicated sampling container. Only sediment from the biologically active zone (i.e., sediment occurring above the non-biologically-active clay layer) was retained (see Appendix A). In some cases (see Table 3-2), a second core was retrieved from within 3 feet of the first core to achieve the total length (10 cm) and mass (within 20 percent of the decision unit mean

mass) of the biologically active layer required for a location. This ensured a similar contribution from each location increment to the increment composite sample (see Table 3-2). Triplicate samples were collected in decision unit 1, as specified in the PSAP.

In the island area, a sampling tube was manually advanced to a depth greater than 10 cm and extruded onto a clean work surface, using a plunger. Reed canary grass mats covering sediment were removed before the sampling tube was advanced. This effort ensured that minimal organic matter was included in sediment collected, as well as ensuring substrate consistency between sample increments. In addition, significant remaining organic matter (e.g., reed canary grass mat), if present, was removed from retrieved cores prior to processing. The increments were then measured, trimmed to 10 cm, weighed, and placed in the laboratory-supplied decision-unit-dedicated sampling container. See Table 3-2 for a summary of increment characteristics.

All sample containers were kept on ice before submittal to the laboratory for analysis. All equipment was decontaminated in accordance with the PSAP.

3.1.2 Subsurface Sediment Sampling

Twelve discrete subsurface sediment samples (and one duplicate) were collected using a stainless-steel hand auger (see Table 3-3). Locations were accessed by wading or by small boat (see Figure 3-1). If present, reed canary grass mats covering sediment were removed before sampling.

All sediment was homogenized over the target depth interval before it was placed in laboratory-supplied sample containers. Two 8-ounce jars were filled at sample locations for the ten 1- to 2-foot samples. One 8-ounce jar was submitted for analysis. The other sample container was submitted to the laboratory for archiving. In decision unit 1, two 2- to 3-foot samples were collected. Two 8-ounce jars were filled for each sample and submitted to the laboratory for archiving. All sample containers were kept on ice prior to submittal to the laboratory. Tier I samples were analyzed initially, while Tier II samples were archived pending the results of the Tier I analysis (see Table 3-3). All equipment was decontaminated in accordance with the PSAP.

3.1.3 QA/QC Samples

The following quality assurance and quality control (QA/QC) sampling was conducted.

Rinsate blanks collected from reusable equipment coming into direct contact with sediment samples (e.g., bowls and spoons) were submitted for analysis by the same methods used for the collected sediment samples. Rinsate blanks were collected for each day of sampling.

One discrete sample, field duplicate was collected at sample location LRIS-CL-17. This field duplicate was prepared by dividing aliquots of a homogenized sample into two distinct samples for laboratory analysis.

Triplicate ISM composite samples were collected across decision unit 1. Replicates were processed and analyzed consistent with the methods used for the primary sample.

3.1.4 Shelby Tube Sampling

Sediment sampling for physical parameters was conducted by manually advancing Shelby tubes through the lake substrate. The Shelby tube sampling method allows for retrieval of a relatively undisturbed (i.e., in situ) sample.

The PSAP specified four sample locations (MFA, 2013a). However, only one sample was collected (see Figure 3-1). The clay layer (generally present at less than 2 feet below mudline) led to refusal and subsequent equipment failure following retrieval of the first sample. For the sample collected, a 3-inch-by-36-inch, thin-walled Shelby tube was secured to pole extensions and advanced through the sediment to 30 inches. The Shelby tube was removed from the sediment; each end of the Shelby tube was wiped clean of loose sediment cuttings; and the sample length was measured at 25.5 inches (85 percent of drive depth), achieving the minimum of 2 feet and more than the minimum of 75 percent retrieval specified in the PSAP. The sample was sealed at each end with a leak proof cap and stored upright for transportation to the geotechnical laboratory. All equipment was decontaminated in accordance with the PSAP.

3.2 Management of Investigation-Derived Waste

Use of dedicated sampling equipment significantly reduced the amount of decontamination fluids generated during the sampling event. Nondisposable incremental sampling equipment was decontaminated only between decision units (i.e., not decontaminated between increments within the same decision unit). Decontamination of nondisposable sampling equipment (i.e., hand augers, incremental sampling equipment) utilized disposable, single-use paper towels that were containerized, along with used personal protective equipment, and disposed of in a sanitary landfill.

3.3 Sample Processing

Samples for incremental sampling processing and chemical analysis were submitted to the Ecology-approved Apex Laboratories (Apex) of Tigard, Oregon. The Shelby tube sample for physical parameter testing was submitted to GeoDesign, Inc. (GeoDesign), of Portland, Oregon. Chain-of-custody documentation was prepared at the time of sampling and was maintained throughout the sample handling and testing process; it is included in the laboratory analytical reports (see Appendix B).

3.4 Laboratory Chemical Sample Processing and Analysis

Prior to analysis, decision unit composite samples were processed by Apex, using PSAP-identified ISM processing procedures. As part of the ISM processing, precise volumes (as identified in the PSAP) of composites were collected as aliquots for each individual laboratory analysis and QA/QC requirements. Apex conducted the following analyses of ISM aliquots and discrete samples by the methods indicated:

- Pentachlorophenol by USEPA Method 8270D
- Total arsenic and chromium by USEPA Method 6020A

• Total organic carbon by PSEP/SM 5310B Modified

Apex provided Maxxam Analytics Inc. (Maxxam) with ISM composite aliquots and discrete sample aliquots. Maxxam analyzed those aliquots for dioxins by USEPA Method 1613B.

Laboratory QA/QC requirements were maintained through the use of standard USEPA methods, based on USEPA test methods for evaluating solid waste, physical/chemical methods (also known as SW-846) requirements, as amended (USEPA, 1986).

One Puget Sound Sediment Reference Material (SRM) was requested and received through Ecology. The SRM sample is matrix-specific, with known concentrations of dioxins and furans that have been certified by the provider, Shaw Environmental, Inc. The SRM was prepared and analyzed for dioxins and furans, using USEPA Method 1613B. The SRM was prepared and analyzed with each batch of samples analyzed for dioxins and furans. The SRM was assessed by comparing laboratory results to the certified performance criteria found in the document Puget Sound Sediment Reference Material: Requesting and Analyzing the SRM, and Reporting Data (COE, 2012).

3.5 Laboratory Physical Sample Processing and Analysis

GeoDesign processed and analyzed the Shelby tube sample consistent with the methods identified in the PSAP.

3.6 Data Reduction, Validation, and Reporting

The laboratory data produced were independently reviewed by MFA for data quality (see Appendix C). Analytical results were evaluated according to applicable sections of USEPA procedures (USEPA, 2008, 2010, 2011), appropriate laboratory and method-specific guidelines (Apex, 2013; Maxxam, 2013; USEPA, 1986), and the Dioxin and Furan Analysis, Data Validation, and TEQ Calculation Rules memorandum (see Appendix D) developed by MFA and included with the PSAP approved by Ecology (2013). SRM, discrete field duplicates, ISM replicates, and rinsate blanks were assessed as part of the data validation. Sample results were qualified appropriately to reflect any criteria not satisfied during the aforementioned assessments. All data are considered acceptable for use with associated qualifiers. Consistent with WAC 173-340-840(5) and Ecology Toxics Cleanup Program Policy 840 (Data Submittal Requirements), data were submitted in both written and electronic formats.

4 RESULTS

The results of the predesign sampling, including delineation of the remedy area, are used to support the remedial design effort. Sample results for chemical constituents are shown in Figure 4-1 and Table 4-1. Sediment characteristics, development of the remedy area, and characterization of post-remedy sediment conditions are described in Carty Lake design reports.

LIMITATIONS

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

ADEC. 2009. Draft guidance on multi increment soil sampling. Division of Spill Prevention and Response, Contaminated Sites Program. Alaska Department of Environmental Conservation. March.

Apex. 2013. Quality assurance manual. Apex Laboratories, Tigard, Oregon.

COE. 2012. Puget Sound sediment reference material: requesting and analyzing the SRM, and reporting data. U.S. Army Corps of Engineers. May.

Ecology. 2008. Sediment source control standards user manual. Appendix, sediment sampling and analysis plan. Ecology Publication No. 03-09-043. Washington State Department of Ecology Sediment Management Unit. Revised February 2008.

Ecology. 2013. Electronic mail correspondence (Carty Lake Predesign Sampling Plan Approval) to M. Novak, Maul Foster & Alongi, Inc., from J. Mercuri, Washington State Department of Ecology. June 10.

HDOH. 2009. Interim final technical guidance manual for the implementation of the Hawai'i state contingency plan. Office of Hazard Evaluation and Emergency Response. Hawai'i Department of Health. November 12.

HDOH. 2011. Technical guidance manual notes: decision unit and multi-increment* sample investigations. Office of Hazard Evaluation and Emergency Response. Hawai'i Department of Health. March.

ITRC. 2012. Technical and regulatory guidance: incremental sampling methodology. The Interstate Technology & Regulatory Council Incremental Sampling Methodology Team. February.

Maxxam. 2013. Quality assurance manual. Maxxam Analytics International Corporation o/a Maxxam Analytics, Mississauga, Ontario, Canada.

Mercuri. 2013. Electronic mail correspondence (re: Carty Lake predesign sampling plan approval) to M. Novak, Maul Foster & Alongi, Inc., from J. Mercuri, Washington State Department of Ecology. June 10.

MFA. 2013a. Carty Lake predesign sampling and analysis plan. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. May 28.

MFA. 2013b. Former PWT site remedial investigation and feasibility study. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. July 1.

PSEP. 1986. Recommended protocols for measuring conventional sediment variables in Puget Sound. Prepared for the U.S. Environmental Protection Agency, Region 10, Seattle, Washington. Puget Sound Estuary Program.

REFERENCES (CONTINUED)

PSEP. 1997a. Recommended guidelines for measuring organic compounds in Puget Sound sediment and tissue samples. Prepared for the U.S. Environmental Protection Agency, Region 10, and the Puget Sound Water Quality Authority. Puget Sound Estuary Program.

PSEP. 1997b. Recommended guidelines for sampling marine sediment, water column, and tissue in Puget Sound. Prepared for the U.S. Environmental Protection Agency, Region 10, and the Puget Sound Water Quality Authority. Puget Sound Estuary Program.

USEPA. 1986. Test methods for the evaluation of solid waste: physical/chemical methods. 3rd ed. EPA SW-846. U.S. Environmental Protection Agency.

USEPA. 1993. Test methods for evaluating solid waste, physical/chemical methods. 3rd ed., update 4B. EPA SW-846. U.S. Environmental Protection Agency. August.

USEPA. 2008. USEPA contract laboratory program, national functional guidelines for organics data review. EPA 540/R-08/01. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. June.

USEPA. 2010. USEPA contract laboratory program national functional guidelines for inorganic Superfund data review. EPA 540/R-10/011. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

USEPA. 2011. USEPA contract laboratory program national functional guidelines for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) data review. EPA-540-R-11-016. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. September.

TABLES

Table 3-1 Sample Locations Former PWT Site Ridgefield, Washington

	Surface	Subsurface	X	Υ	_
Station ID	Sample	Sample	Coordinate	Coordinate	Туре
LRIS-CL-DU1A-1	ISM	NA	1066525.740	186370.630	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-2	ISM	NA	1066550.036	186370.630	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-3	ISM	NA	1066574.332	186370.630	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-4	ISM	NA	1066513.592	186391.671	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-5	ISM	NA	1066537.888	186391.671	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-6	ISM	NA	1066562.184	186391.671	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-7	ISM	NA	1066586.480	186391.671	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-8	ISM	NA	1066501.444	186412.712	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-9	ISM	NA	1066525.740	186412.712	Incremental Sample (Replicate 1)
LRIS-CL-DU1A-10	ISM	NA	1066550.036	186412.712	Incremental Sample (Replicate 1)
LRIS-CL-DU1B-1	ISM	NA	1066534.400	186370.630	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-2	ISM	NA	1066558.696	186370.630	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-3	ISM	NA	1066582.992	186370.630	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-4	ISM	NA	1066522.252	186391.671	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-5	ISM	NA	1066546.548	186391.671	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-6	ISM	NA	1066570.844	186391.671	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-7	ISM	NA	1066595.140	186391.671	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-8	ISM	NA	1066510.104	186412.712	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-9	ISM	NA	1066534.400	186412.712	Incremental Sample (Replicate 2)
LRIS-CL-DU1B-10	ISM	NA	1066558.696	186412.712	Incremental Sample (Replicate 2)
LRIS-CL-DU1C-1	ISM	NA	1066530.070	186378.130	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-2	ISM	NA	1066554.366	186378.130	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-3	ISM	NA	1066578.662	186378.130	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-4	ISM	NA	1066517.922	186399.171	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-5	ISM	NA	1066542.218	186399.171	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-6	ISM	NA	1066566.514	186399.171	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-7	ISM	NA	1066590.810	186399.171	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-8	ISM	NA	1066505.774	186420.212	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-9	ISM	NA	1066530.070	186420.212	Incremental Sample (Replicate 3)
LRIS-CL-DU1C-10	ISM	NA	1066554.366	186420.212	Incremental Sample (Replicate 3)
LRIS-CL-DU2-1	ISM	NA	1066499.108	186446.342	Incremental Sample
LRIS-CL-DU2-2	ISM	NA	1066524.022	186446.342	Incremental Sample
LRIS-CL-DU2-3	ISM	NA	1066548.935	186446.342	Incremental Sample
LRIS-CL-DU2-4	ISM	NA	1066511.565	186467.918	Incremental Sample
LRIS-CL-DU2-5	ISM	NA	1066536.478	186467.918	Incremental Sample
LRIS-CL-DU2-6	ISM	NA	1066499.108	186489.493	Incremental Sample
LRIS-CL-DU2-7	ISM	NA	1066524.022	186489.493	Incremental Sample
LRIS-CL-DU2-8	ISM	NA	1066486.652	186511.069	Incremental Sample
LRIS-CL-DU2-9	ISM	NA	1066511.565	186511.069	Incremental Sample
LRIS-CL-DU2-10	ISM	NA	1066536.478	186511.069	Incremental Sample

Table 3-1 Sample Locations Former PWT Site Ridgefield, Washington

Station ID	Surface	Subsurface	Х	Υ	Туре
Station id	Sample	Sample	Coordinate	Coordinate	туре
LRIS-CL-DU3-1	ISM	NA	1066590.360	186419.718	Incremental Sample
LRIS-CL-DU3-2	ISM	NA	1066575.978	186444.629	Incremental Sample
LRIS-CL-DU3-3	ISM	NA	1066604.742	186444.629	Incremental Sample
LRIS-CL-DU3-4	ISM	NA	1066561.595	186469.540	Incremental Sample
LRIS-CL-DU3-5	ISM	NA	1066590.360	186469.540	Incremental Sample
LRIS-CL-DU3-6	ISM	NA	1066575.978	186494.451	Incremental Sample
LRIS-CL-DU3-7	ISM	NA	1066604.742	186494.451	Incremental Sample
LRIS-CL-DU3-8	ISM	NA	1066561.595	186519.362	Incremental Sample
LRIS-CL-DU3-9	ISM	NA	1066590.360	186519.362	Incremental Sample
LRIS-CL-DU3-10	ISM	NA	1066619.125	186519.362	Incremental Sample
LRIS-CL-DU4-1	ISM	NA	1066499.242	186533.159	Incremental Sample
LRIS-CL-DU4-2	ISM	NA	1066483.947	186559.651	Incremental Sample
LRIS-CL-DU4-3	ISM	NA	1066514.537	186559.651	Incremental Sample
LRIS-CL-DU4-4	ISM	NA	1066468.652	186586.142	Incremental Sample
LRIS-CL-DU4-5	ISM	NA	1066499.242	186586.142	Incremental Sample
LRIS-CL-DU4-6	ISM	NA	1066529.832	186586.142	Incremental Sample
LRIS-CL-DU4-7	ISM	NA	1066453.357	186612.634	Incremental Sample
LRIS-CL-DU4-8	ISM	NA	1066483.947	186612.634	Incremental Sample
LRIS-CL-DU4-9	ISM	NA	1066514.537	186612.634	Incremental Sample
LRIS-CL-DU4-10	ISM	NA	1066545.127	186612.634	Incremental Sample
LRIS-CL-DU5-1	ISM	NA	1066544.302	186550.219	Incremental Sample
LRIS-CL-DU5-2	ISM	NA	1066573.859	186550.219	Incremental Sample
LRIS-CL-DU5-3	ISM	NA	1066603.416	186550.219	Incremental Sample
LRIS-CL-DU5-4	ISM	NA	1066632.973	186550.219	Incremental Sample
LRIS-CL-DU5-5	ISM	NA	1066559.081	186575.816	Incremental Sample
LRIS-CL-DU5-6	ISM	NA	1066588.638	186575.816	Incremental Sample
LRIS-CL-DU5-7	ISM	NA	1066618.195	186575.816	Incremental Sample
LRIS-CL-DU5-8	ISM	NA	1066573.859	186601.413	Incremental Sample
LRIS-CL-DU5-9	ISM	NA	1066603.416	186601.413	Incremental Sample
LRIS-CL-DU5-10	ISM	NA	1066588.638	186627.011	Incremental Sample
LRIS-CL-16	NA	С	1066538.012	186380.409	Discrete Subsurface
LRIS-CL-17	NA	С	1066563.172	186413.215	Discrete Subsurface
LRIS-CL-18	NA	С	1066526.088	186436.551	Discrete Subsurface
LRIS-CL-19	NA	С	1066524.177	186509.284	Discrete Subsurface
LRIS-CL-20	NA	С	1066584.539	186447.288	Discrete Subsurface
LRIS-CL-21	NA	С	1066582.489	186509.513	Discrete Subsurface
LRIS-CL-22	NA	С	1066489.725	186559.479	Discrete Subsurface
LRIS-CL-23	NA	С	1066515.902	186604.392	Discrete Subsurface
LRIS-CL-24	NA	С	1066568.930	186557.111	Discrete Subsurface

Table 3-1 Sample Locations Former PWT Site Ridgefield, Washington

Station ID	Surface Sample	Subsurface Sample	X Coordinate	Y Coordinate	Туре
LRIS-CL-25	NA	С	1066585.385	186604.416	Discrete Subsurface
LRIS-CL-26	NA	Р	1066596.220	186338.516	Discrete Subsurface

NOTES:

Coordinates based on Washington South State Plane HARN (NAD83).

C = discrete chemical data collection.

ISM = incremental sampling methodology.

NA = not applicable.

P = discrete physical data collection.

Sample Location	Sample Type	Depth (cm)	Date	Time	Measured Length (cm) ^a	Measured Mass (g)	Description	Notes
LRIS-CL-DU1A-1	ISM	0-10	06/25/2013	1446	10	190	Loose, wet, dark, gray, nonplastic silt, trace fine sand	Trace organics
LRIS-CL-DU1A-2	ISM	0-10	06/25/2013	1420	10	179	Loose, wet, dark, gray, nonplastic silt, trace fine sand	
LRIS-CL-DU1A-3	ISM	0-10	06/25/2013	1457	10	179	Loose, wet, dark, gray, nonplastic silt, trace fine sand	
LRIS-CL-DU1A-4	ISM	0-10	06/25/2013	1515	10	184	Loose, wet, dark, gray, firm, trace fine sand	Trace organics
LRIS-CL-DU1A-5	ISM	0-10	06/25/2013	1520	10	204	Loose, wet, dark, gray, trace fine sand	Trace organics
LRIS-CL-DU1A-6	ISM	0-10	06/25/2013	1535	10	178	Loose, wet, dark, gray, trace fine sand	Trace organics
RIS-CL-DU1A-7	ISM	0-10	06/25/2013	1500	10	190	Medium plasticity, silt/clay	Trace organics
_RIS-CL-DU1A-8	ISM	0-10	06/25/2013	1549	10	199	Soft, medium plasticity, silt/clay	Trace organics
RIS-CL-DU1A-9	ISM	0-10	06/25/2013	1600	10	177	Soft, medium plasticity, silt/clay	Trace organics
RIS-CL-DU1A-10	ISM	0-10	06/25/2013	1615	10	173	Medium firm, medium plasticity, silt/clay	Trace organics
RIS-CL-DU1A (Summary Parameters)	ISM	0-10	06/25/2013	NA	10	185	NA	NA
RIS-CL-DU1B-1	ISM	0-10	06/25/2013	1440	10 (5+5)	193	Loose, wet, silt, gray, trace fines, sand, nonplastic	Trace organics, two cores
RIS-CL-DU1B-2	ISM	0-10	06/25/2013	1430	10	186	Loose, wet, silt, gray, trace fines, sand, nonplastic	
RIS-CL-DU1B-3	ISM	0-10	06/25/2013	1455	10	179	Loose, wet, silt, gray, trace fines, sand, nonplastic	
RIS-CL-DU1B-4	ISM	0-10	06/25/2013	1525	10	171	Loose, wet, silt, gray, trace fines, sand, nonplastic, medium firm	Trace organics
RIS-CL-DU1B-5	ISM	0-10	06/25/2013	1522	10	173	Loose, wet, silt, gray, trace fines, sand, non-plastic	Trace organics
RIS-CL-DU1B-6	ISM	0-10	06/25/2013	1535	10	178	Loose, wet, silt, gray, trace fines, sand, non-plastic	Trace organics
RIS-CL-DU1B-7	ISM	0-10	06/25/2013	1505	10	197	Silt/clay, medium plasticity, stiff	Trace organics
RIS-CL-DU1B-8	ISM	0-10	06/25/2013	1549	10	193	Soft, silt, trace fines, sand	Trace organics
RIS-CL-DU1B-9	ISM	0-10	06/25/2013	1604	10	184	Soft, silt, trace fines, sand	Trace organics
_RIS-CL-DU1B-10	ISM	0-10	06/25/2013	1620	10	178	Medium firm, soft, silt, trace fines, subangular	Trace organics
.RIS-CL-DU1B (Summary Parameters)	ISM	0-10	06/25/2013	NA	10	183	NA	NA
_RIS-CL-DU1C-1	ISM	0-10	06/25/2013	1444	10	189	Loose, wet, silt, gray, trace fine sand, nonplastic	Trace organics
RIS-CL-DU1C-2	ISM	0-10	06/25/2013	1426	10 (5+5)	198	Loose, wet, silt, gray, trace fine sand, nonplastic	Two cores
_RIS-CL-DU1C-3	ISM	0-10	06/25/2013	1453	10	171	Loose, wet, silt, gray, trace fine sand, nonplastic	
_RIS-CL-DU1C-4	ISM	0-10	06/25/2013	1528	10	212	Loose, wet, silt, gray, trace fine sand, nonplastic, medium firm	Trace organics
LRIS-CL-DU1C-5	ISM	0-10	06/25/2013	1536	10	204	Loose, wet, silt, gray, trace fine sand, nonplastic, medium firm	Trace organics
_RIS-CL-DU1C-6	ISM	0-10	06/25/2013	1542	10	197	Loose, wet, silt, gray, trace fine sand, nonplastic, medium firm	Trace organics
RIS-CL-DU1C-7	ISM	0-10	06/25/2013	1508	10	205	Silt/clay, dark gray, firm	Trace organics
RIS-CL-DU1C-8	ISM	0-10	06/25/2013	1554	10	191	Loose, fine sand, silt	Trace organics
LRIS-CL-DU1C-9	ISM	0-10	06/25/2013	1610	10	187	Loose, subangular	Trace organics
_RIS-CL-DU1C-10	ISM	0-10	06/25/2013	1625	10	202	Medium firm, subangular	Trace organics
LRIS-CL-DU1C (Summary Parameters)	ISM	0-10	06/25/2013	NA	10	196	NA	NA
_RIS-CL-DU2-1	ISM	0-10	06/25/2013	1036	10	182	Silt with clay, top 1 cm saturated, bottom 9 cm medium plasticity, gray	Minimal organics
RIS-CL-DU2-2	ISM	0-10	06/25/2013	1032	10	230	Silt with clay, saturated, nonplastic, gray	Minimal organics
RIS-CL-DU2-3	ISM	0-10	06/25/2013	1045	10	198	Silt with clay, saturated, nonplastic, gray	Minimal organics
RIS-CL-DU2-4	ISM	0-10	06/25/2013	1011	10 (8+2)	187	Silt with clay, saturated, nonplastic	Some organics, two cores
RIS-CL-DU2-5	ISM	0-10	06/25/2013	1021	10	200	Silt with clay, saturated, nonplastic	Minimal organics
LRIS-CL-DU2-6	ISM	0-10	06/25/2013	930	10	197	Silt with clay, top 2 cm saturated and nonplastic, bottom 8 cm medium plasticity	Some organics
LRIS-CL-DU2-7	ISM	0-10	06/25/2013	945	10 (6.5+3.5)	189	Silty with clay, nonplastic, saturated	Some organics, two cores
LRIS-CL-DU2-8	ISM	0-10	06/25/2013	947	10 (0.5+3.5)	196	Silt with clay, medium plastic, near shore—unsaturated	Minimal organics
LRIS-CL-DU2-9	ISM	0-10	06/25/2013	955	10	216	Silt with clay, nonplastic, riear shore—unsaturated	Minimal organics

Sample Location	Sample Type	Depth (cm)	Date	Time	Measured Length (cm) ^a	Measured Mass (g)	Description	Notes
LRIS-CL-DU2-10	ISM	0-10	06/25/2013	1005	10	217	Silty with clay, saturated, low plasticity	Minimal organics
LRIS-CL-DU2 (Summary Parameters)	ISM	0-10	06/25/2013	NA	10	201	NA	NA
LRIS-CL-DU3-1	ISM	0-10	06/24/2013	1440	10	185	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3-2	ISM	0-10	06/24/2013	1430	10	182	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3-3	ISM	0-10	06/24/2013	1425	10	194	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3-4	ISM	0-10	06/24/2013	1410	10	213	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3-5	ISM	0-10	06/24/2013	1420	10	197	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3-6	ISM	0-10	06/24/2013	1405	10	201	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3-7	ISM	0-10	06/24/2013	1410	10	193	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3-8	ISM	0-10	06/24/2013	1348	10	190	Silt with clay, nonplastic	Minimal organics
LRIS-CL-DU3-9	ISM	0-10	06/24/2013	1355	10	197	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3-10	ISM	0-10	06/24/2013	1400	10	189	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU3 (Summary Parameters)	ISM	0-10	06/24/2013	NA	10	194	NA	NA
LRIS-CL-DU4-1	ISM	0-10	06/25/2013	1100	10	192	Silt with clay, low plasticity	Trace organics
LRIS-CL-DU4-2	ISM	0-10	06/25/2013	1110	10 (5+5)	191	Silt with clay, low plasticity	Trace organics, two cores
LRIS-CL-DU4-3	ISM	0-10	06/25/2013	1103	10 (5+5)	188	Silt, trace clay, dark gray, trace fine sand	Trace organics, two cores
LRIS-CL-DU4-4	ISM	0-10	06/25/2013	1120	10 (5+5)	184	Silt with clay, fine sand	Trace organics, two cores
LRIS-CL-DU4-5	ISM	0-10	06/25/2013	1128	10	205	Silt loose, low plasticity, trace fine sand	Trace organics
LRIS-CL-DU4-6	ISM	0-10	06/25/2013	1134	10 (7+3)	182	Silt loose, low plasticity, trace fine sand	Trace organics, two cores
LRIS-CL-DU4-7	ISM	0-10	06/25/2013	1217	10 (5+5)	180	Silt, loose, dark gray, low plasticity, wet	Trace organics, two cores
LRIS-CL-DU4-8	ISM	0-10	06/25/2013	1204	10 (8+10)	190	Silt, loose, low plasticity, trace fine sand	Trace organics, two cores
LRIS-CL-DU4-9	ISM	0-10	06/25/2013	1156	10	198	Silt, loose, low plasticity, trace fine sand	Trace organics
LRIS-CL-DU4-10	ISM	0-10	06/25/2013	1144	10	197	Silt, loose, low plasticity, trace fine sand	Trace organics
LRIS-CL-DU4 (Summary Parameters)	ISM	0-10	06/25/2013	NA	10	191	NA	NA
LRIS-CL-DU5-1	ISM	0-10	06/24/2013	1115	10	210	Silt with clay, medium plasticity	Some organics
LRIS-CL-DU5-2	ISM	0-10	06/24/2013	1125	10	213	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU5-3	ISM	0-10	06/24/2013	1135	10	211	Silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU5-4	ISM	0-10	06/24/2013	1145	10	221	Silt with clay, medium plasticity	Minimal organics, dense
LRIS-CL-DU5-5	ISM	0-10	06/24/2013	1155	10	234	Silt with clay, medium plasticity	Minimal organics, dense
LRIS-CL-DU5-6	ISM	0-10	06/24/2013	1205	10	203	Silt with clay, medium plasticity	Minimal organics, dense
LRIS-CL-DU5-7	ISM	0-10	06/24/2013	1210	10	202	Silt with clay, medium plasticity	Minimal organics, dense
LRIS-CL-DU5-8	ISM	0-10	06/24/2013	1215	10	237	Silt with clay, medium plasticity	Minimal organics, dense
LRIS-CL-DU5-9	ISM	0-10	06/24/2013	1220	10	194	Top 4 cm loose, wet silt, bottom 6 cm silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU5-10	ISM	0-10	06/24/2013	1225	10	197	Top 4 cm loose, wet silt, bottom 6 cm silt with clay, medium plasticity	Minimal organics
LRIS-CL-DU5 (Summary Parameters)	ISM	0-10	06/24/2013	NA	10	212	NA	NA

NOTES:

Summary parameters provide the mean increment length and mass for each decision unit.

cm = centimeters.

g = gram(s).

NA = not applicable.

ISM = incremental sampling methodology.

^aIn cases where two cores were collected, total length is shown and length of each core is shown in ().

Table 3-3 Subsurface Sample Summary Former PWT Site Ridgefield, Washington

Sample Location	Sample Type	Depth	Analytical Tier	Date	Time	Measured Length (feet)	Description
LRIS-CL-16	Discrete	1-2 ft	Tier I	06/26/2013	1150	1-2 ft	Trace organics, soft, gray fines over stiff gray, silt with clay, plastic
LRIS-CL-16	Discrete	2-3 ft	Tier II	06/26/2013	1200	2-3 ft	Trace organics, soft, gray fines over stiff gray, silt with clay, plastic
LRIS-CL-17	Discrete	1-2 ft	Tier I	06/26/2013	1150	1-2 ft	Trace organics, soft, gray fines over stiff gray, silt with clay, plastic
LRIS-CL-17	Discrete	2-3 ft	Tier II	06/26/2013	1200	2-3 ft	Trace organics, dark gray to light gray
LRIS-CL-17-DUP	Discrete	1-2 ft	Tier I	06/26/2013	1150	1-2 ft	Trace organics, soft, gray fines over stiff gray, silt with clay, plastic
LRIS-CL-18	Discrete	1-2 ft	Tier II	06/26/2013	1110	1-2 ft	Trace organics, soft, gray fines over stiff gray, silt with clay, plastic
LRIS-CL-19	Discrete	1-2 ft	Tier II	06/26/2013	1053	1-2 ft	Trace organics, soft, gray fines over stiff gray, silt with clay, plastic
LRIS-CL-20	Discrete	1-2 ft	Tier II	06/26/2013	1015	1-2 ft	Trace organics, solid clay silt, dark gray to orange, plastic
LRIS-CL-21	Discrete	1-2 ft	Tier II	06/26/2013	1000	1-2 ft	Three inches soft fines, trace organics, solid clay, silt, dark gray, plastic
LRIS-CL-22	Discrete	1-2 ft	Tier II	06/26/2013	1055	1-2 ft	Trace organics, solid clay silt, dark gray to orange, plastic
LRIS-CL-23	Discrete	1-2 ft	Tier II	06/26/2013	1110	1-2 ft	Trace organics, solid clay silt, dark gray to orange, plastic
LRIS-CL-24	Discrete	1-2 ft	Tier II	06/26/2013	1020	1-2 ft	Two inches soft fines, organics, solid clay silt, dark gray, plastic
LRIS-CL-25	Discrete	1-2 ft	Tier II	06/26/2013	1000	1-2 ft	Two inches soft fines, organics, solid clay silt, dark gray, plastic

Table 4-1 Sediment Results Former PWT Site Ridgefield, Washington

				Location ID	LRIS-CL-16	LRIS-CL-16	LRIS-CL-17	LRIS-CL-17-DUP	LRIS-CL-18	LRIS-CL-19	LRIS-CL-22	LRIS-CL-23
				Sample ID	LRIS-CL-16-1.5	LRIS-CL-16-2.5	LRIS-CL-17-1.5	LRIS-CL-17-1.5-DUP	LRIS-CL-18-1.5	LRIS-CL-19-1.5	LRIS-CL-22-1.5	LRIS-CL-23-1.5
				Sample Date	06/26/2013	06/26/2013	06/26/2013	06/26/2013	06/26/2013	06/26/2013	06/26/2013	06/26/2013
				Depth	1-2 ft	2-3 ft	1-2 ft	1-2 ft	1-2 ft	1-2 ft	1-2 ft	1-2 ft
Analyta	Units	CUL	REL	Screening								
Analyte	UTIILS	CUL	KEL	Criteria ^a								
Pentachlorophenol	μg/kg	NV	NV	200 ^b	198 U	NV	177 U	165 U	161 U	176 U	NV	NV
Arsenic	mg/kg	NV	NV	14	11.2	NV	2.55	2.16	NV	NV	NV	NV
Chromium	mg/kg	NV	NV	72	34.2	NV	27.7	29.8	NV	NV	NV	NV
Dioxin/Furan TEQ	ng/kg	5	NV	NV	3.2E+02	4.6E+01	2.2E+01	1.9E+01	1.2E+02	2.6E+01	3.6E+01	2.4E+01
1,2,3,4,6,7,8,9-OCDF	ng/kg	NV	10000000	NV	1540	157	78.3	73.2	487	90.3	125	82.7
1,2,3,4,6,7,8,9-OCDD	ng/kg	NV	10000000	NV	78200 J	11900 J	7560 J	6480 J	32700 J	6930 J	9290 J	6210 J
1,2,3,4,6,7,8-HpCDF	ng/kg	NV	250000	NV	1180	154	74.7	66.2	397	85	116	79.6
1,2,3,4,6,7,8-HpCDD	ng/kg	NV	310000	NV	10800 J	1640 J	840 J	741 J	3960 J	950 J	1320 J	879 J
1,2,3,4,7,8,9-HpCDF	ng/kg	NV	250000	NV	69.6	9.02	3.9 J	3.14 J	22.7	4.72 J	6.53	3.96 J
1,2,3,4,7,8-HxCDF	ng/kg	NV	980	NV	256	32.8	12.8	10.2	74.4	15.4	22.8	14.6
1,2,3,4,7,8-HxCDD	ng/kg	NV	200	NV	77.3	10.4	4.8 J	4.18 J	30.5	6.51	9.02	6.34
1,2,3,6,7,8-HxCDF	ng/kg	NV	980	NV	97.7	11.6	5.04	4.34 J	29.6	6.11	8.93	6.03
1,2,3,6,7,8-HxCDD	ng/kg	NV	1200	NV	600	86.2	39.5	34.1	224	46.4	63.5	44.4
1,2,3,7,8,9-HxCDF	ng/kg	NV	980	NV	5.33 J	0.935 J	0.406 J	0.337 J	2.18 J	0.459 J	0.635 J	0.369 J
1,2,3,7,8,9-HxCDD	ng/kg	NV	1200	NV	204	37.6	13.3	12.9	104	23.1	32.8	19.6
1,2,3,7,8-PeCDF	ng/kg	NV	550	NV	46.1	5.5	2.25 J	1.94 J	14	2.90 J	3.84 J	2.62 J
1,2,3,7,8-PeCDD	ng/kg	NV	98	NV	23.1	3.1 J	1.43 J	1.32 J	9.31	1.78 J	2.65 J	1.85 J
2,3,4,6,7,8-HxCDF	ng/kg	NV	980	NV	56	6.77	3.4 J	2.63 J	16.7	3.51 J	5.13	3.09 J
2,3,4,7,8-PeCDF	ng/kg	NV	6.5	NV	56.3	6.49	2.72 J	2.17 J	15.2	2.97 J	4.21 J	2.93 J
2,3,7,8-TCDF	ng/kg	NV	86	NV	23.5	2.71	0.981 J	0.873 J	7.43	1.66	2.04	1.36
2,3,7,8-TCDD	ng/kg	NV	3.3	NV	1.74	0.224 J	0.173 J	0.102 U	0.608 J	0.202 J	0.242 J	0.128 U

				Location ID	LRIS-CL-DU1	LRIS-CL-DU1	LRIS-CL-DU1	LRIS-CL-DU2	LRIS-CL-DU3	LRIS-CL-DU4	LRIS-CL-DU5
				Sample ID	LRIS-CL-DU1A	LRIS-CL-DU1B	LRIS-CL-DU1C	LRIS-CL-DU2	LRIS-CL-DU3	LRIS-CL-DU4	LRIS-CL-DU5
				Sample Date	06/25/2013	06/25/2013	06/25/2013	06/25/2013	06/24/2013	06/25/2013	06/24/2013
				Depth	0-10 cm	0-10 cm	0-10 cm	0-10 cm	0-10 cm	0-10 cm	0-10 cm
Amaluta	Units	CUL	REL	Screening							
Analyte	UTIILS	CUL	KEL	Criteria ^a							
Pentachlorophenol	μg/kg	NV	NV	200 ^b	293	331	334 J	266 J	104 U	162	104 U
Arsenic	mg/kg	NV	NV	14	12.1	10.1	10.9	9.04	4.53	7.52	4.03
Chromium	mg/kg	NV	NV	72	38.2	35.7	37.2	32.4	19.2	26.5	17.2
Dioxin/Furan TEQ	ng/kg	5	NV	NV	6.0E+02	4.7E+02	3.5E+02	3.7E+02	3.9E+01	2.7E+02	2.7E+01
1,2,3,4,6,7,8,9-OCDF	ng/kg	NV	10000000	NV	4050 J	1800 J	1120 J	1370 J	207 J	1610 J	91.6 J
1,2,3,4,6,7,8,9-OCDD	ng/kg	NV	10000000	NV	161000 J	76500 J	52100 J	95300 J	6860 J	81800 J	6540 J
1,2,3,4,6,7,8-HpCDF	ng/kg	NV	250000	NV	2360	1950	1310	1390	154	1060	96.4
1,2,3,4,6,7,8-HpCDD	ng/kg	NV	310000	NV	22100 J	18900 J	12700 J	14100 J	1150 J	11100 J	1100 J
1,2,3,4,7,8,9-HpCDF	ng/kg	NV	250000	NV	122	98.9	63.4	70.9	7.73	54.1	4.52
1,2,3,4,7,8-HxCDF	ng/kg	NV	980	NV	376	322 U	283 U	218	22.6	160 U	15.3 U
1,2,3,4,7,8-HxCDD	ng/kg	NV	200	NV	152	125	88.8	97.8	12	76	7.65
1,2,3,6,7,8-HxCDF	ng/kg	NV	980	NV	160	133	117	98.8	9.93	69.5 U	6.6 U
1,2,3,6,7,8-HxCDD	ng/kg	NV	1200	NV	1110	982	699	677	83.9	499	56.1
1,2,3,7,8,9-HxCDF	ng/kg	NV	980	NV	12.1 J	9.65 J	8.7 J	6.79 J	0.812 J	4.75 J	0.503 U
1,2,3,7,8,9-HxCDD	ng/kg	NV	1200	NV	332	341 U	237 U	243	37.5	186 U	21.6 U
1,2,3,7,8-PeCDF	ng/kg	NV	550	NV	80.7	68	63.8	48	4.28	34.1	3.48
1,2,3,7,8-PeCDD	ng/kg	NV	98	NV	47	38.8	35.8	29.6	3.69	21.4	2.52
2,3,4,6,7,8-HxCDF	ng/kg	NV	980	NV	91.6	78.5	69.9	56.8	6.5	40	4.07
2,3,4,7,8-PeCDF	ng/kg	NV	6.5	NV	89.4	75.5	70.9	47.9	5.38	36.1	3.84
2,3,7,8-TCDF	ng/kg	NV	86	NV	37.5	31.4	30.7	24	2.26	18.3	2.05
2,3,7,8-TCDD	ng/kg	NV	3.3	NV	2.61	2.09	1.98	1.78	0.291 J	1.48	0.229 J

NOTES:

Bold indicates values that exceed screening levels (for dioxins, if values were non-detects ["U" or "UJ"], half the reported concentration was used for comparison).

cm = centimeter(s).

CUL = cleanup level.

dup = duplicate sample.

ft = feet.

HpCDD = heptachlorodibenzo-p-dioxin.

HpCDF = heptachlorodibenzofuran.

HxCDD = hexachlorodibenzo-p-dioxin.

HxCDF = hexachlorodibenzofuran.

J = estimated value. mg/kg = milligrams per kilogram.

μg/kg = micrograms per kilogram.

ng/kg = nanograms per kilogram (parts per trillion).

NV = no value.

OCDD = octachlorodibenzo-p-dioxin.

OCDF = octachlorodibenzofuran.

PeCDD = pentachlorodibenzo-p-dioxin.

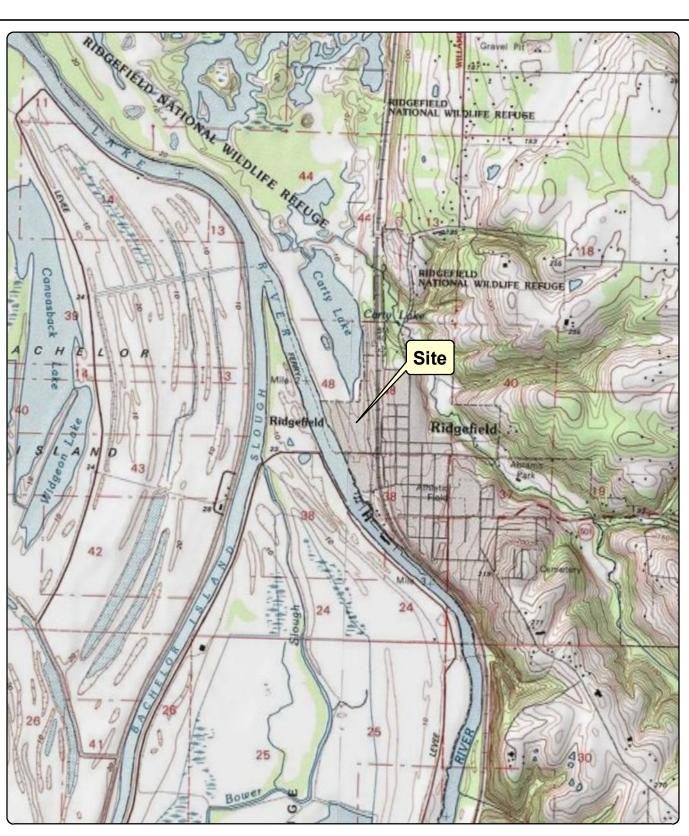
PeCDF = pentachlorodibenzofuran.

REL = remediation level (based on ecological CULs).

TCDD = tetrachlorodibenzo-p-dioxin.

TCDF = tetrachlorodibenzofuran.

TEQ = toxicity equivalent.

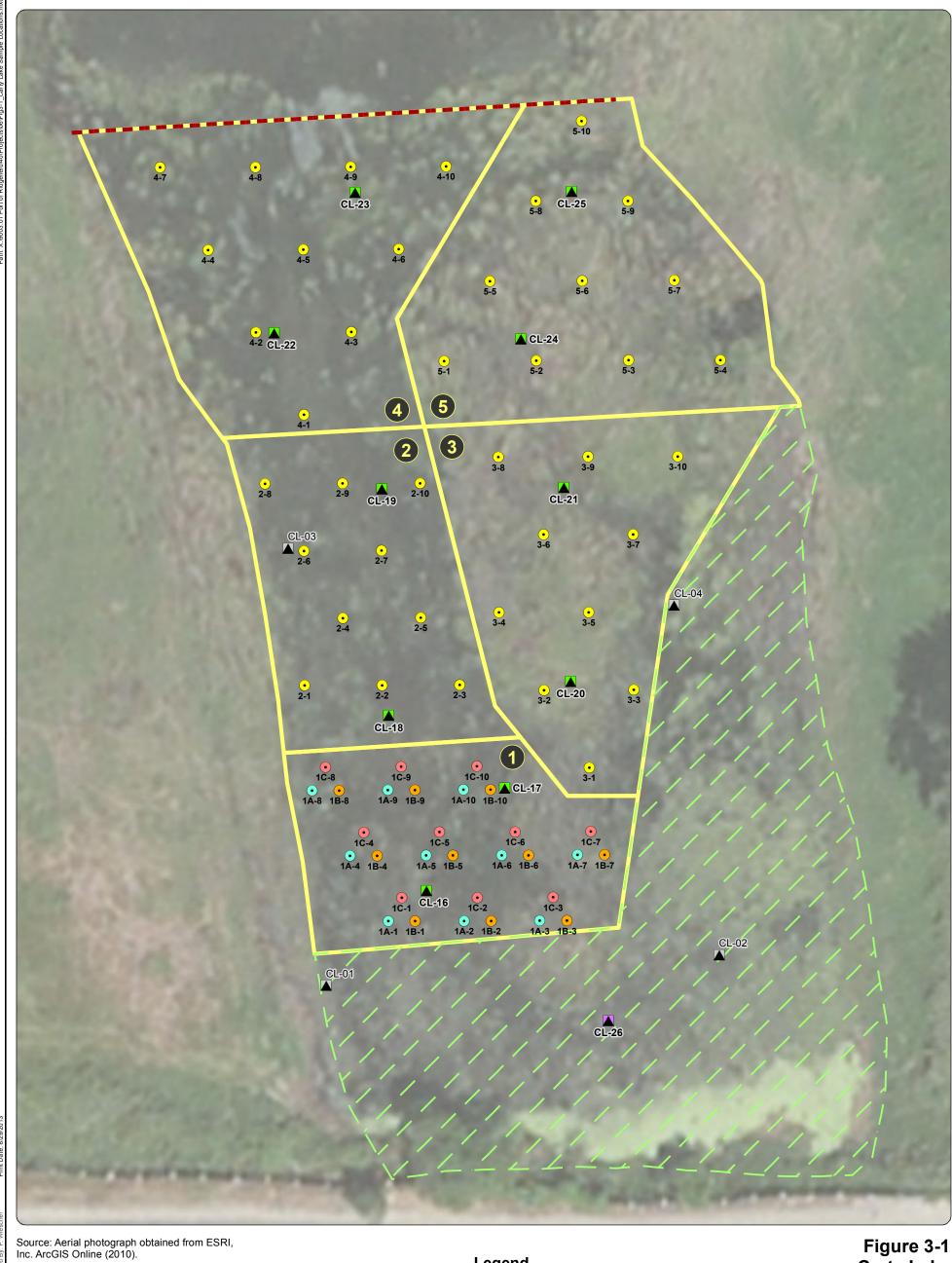

U = Compound analyzed, but not detected above detection limit.

^aScreening criteria described in MFA (2013).

^bU.S. Fish and Wildlife Service screening criteria.

FIGURES

Source: Topographic Quadrangle obtained from ArcGIS Online Services/NGS-USGS TOPO! US Geological Survey (1999) 7.5-minute topographic quadrangle: Ridgefield Address: Lake River Industrial Site 111 W. Division Street, Ridgefield, WA 98642 Section: 24 Township: 4N Range: 1W Of Willamette Meridian


Figure 1-1 Site Location

Former PWT Site Ridgefield, Washington

Feet

Note: Site boundary is approximate. Boundary is based on a 2013 vegetation survey and includes a 5 foot buffer.

Incremental Sample Locations

Incremental Sample (Replicate 1)

- Incremental Sample (Replicate 2)
- Incremental Sample Location

Legend

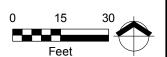
Discrete Subsurface Sample Locations

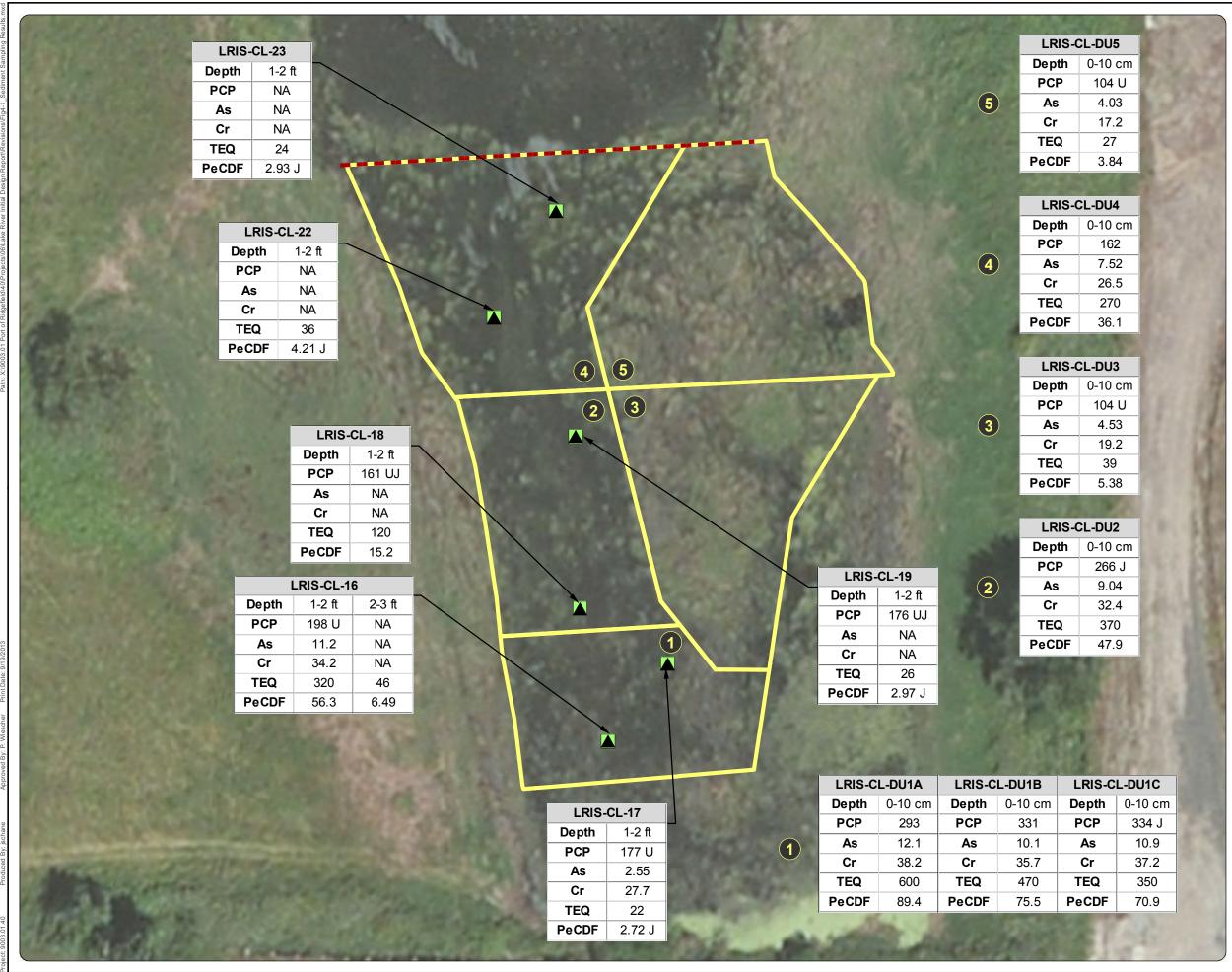
- Chemical
- Physical
- Historical Sediment Sample Location

Figure 3-1 **Carty Lake Sample Locations**

Former PWT Site Ridgefield, Washington

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.


Incremental Sample (Replicate 3)


Former Berm (Approximate)

Decision Unit

Site Features

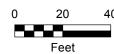
Remedial action area identified based on previous data collection activities

Figure 4-1 Sediment Sampling Results

Former PWT Site Ridgefield, Washington

Legend

Sediment Sample (June, 2013)



Decision Unit

■ ■ Former Berm (Approximate)

Notes:

- 1. As = Arsenic
- 2. Cr = Chromium
- 3. J = estimated value
- 4. NA = not analyzed
- 5. PCP = Pentachlorophenol
- 6. PeCDF = 2,3,4,7,8-Pentachlorodibenzofuran
- 7. TEQ = Toxicity Equivalent 8. TEQ measured in ng/kg
- (nanograms per kilogram)
 PCP in ug/kg
 (micrograms per kilogram)
 As and Cr in mg/kg
 (milligrams per kilogram)
- 9. U = non-detection

Source: Aerial photograph (2010) obtained from Esri ArcGIS Online

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Project Number: 9003.01.40

Location: 111 West Division Street Ridgefield, Washington

Photo No. 1

Site Overview.
"Island" area shown with orange border,
"in-water" area shown with blue border. April 24, 2013.

Photo No. 2

Representative core from island area (1.75-inch diameter, 10 centimeters). Reed canary grass roots have been removed. June 24, 2013.

Project Number: 9003.01.40

Location: 111 West Division Street Ridgefield, Washington

Photo No. 3

Representative core No. 2 from island area (1.75-inch diameter). Note that reed canary grass organic matter at top of core has yet to be removed. June 24, 2013.

Photo No. 4

Representative core No. 1 from in-water area (2-inch diameter). June 25, 2013.

Project Number: 9003.01.40

Location: 111 West Division Street Ridgefield, Washington

Photo No. 5

Representative core No. 2 from in-water area (2-inch diameter). Core is cut at 10 centimeters; note transition from silt to clay at approximately 11 centimeters. June 25, 2013.

Photo No. 6 Carty Lake looking northeast. June 25, 2013.

Project Number: 9003.01.40

Location: 111 West Division Street Ridgefield, Washington

Photo No.7

Workstation with decision-unit-dedicated 1-gallon sampling jar. June 25, 2013.

Photo No.8 Carty Lake looking

Carty Lake looking southeast. June 25, 2013.

APPENDIX B ANALYTICAL REPORTS

15575 SW Sequoia Parkway Suite 100, Portland OR 97224 2121 S Towne Centre Place Suite 130. Anaheim CA 92806 14300 NE 20th Avenue Suite D-102-362, Vancouver WA 98686 10700 Meridian Avenue North Suite 210, Seattle WA 98133

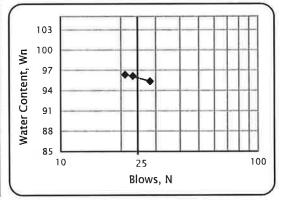
LABORATORY TESTING REPORT

ASTM D2216 - LABORATORY DETERMINATION OF WATER (MOISTURE) CONTENT OF SOIL AND ROCK BY MASS ASTM D7263 - LABORATORY DETERMINATION OF SOIL DENSITY

	P	ROJECT	IUMBER: T NAME: ANAGER:	Port of		eld Cart	y Lake			W		TED BY: Tested:	MB					Mi Average	xx Moisture 61.1 Max DD 65.5 Min DD 65.5 Min DD 65.5 Moisture: 55.7 Average DD 65.5
EQU					18														MEASURING DEVICE ID:
* L	1B -	use th	ie same	scale	for all	meas	ureme	nts of the	same te	st sample	. Also,	input o	only one	moistu	re for m	ultiple	tests i	under	the same sample depth.
Exploration	No.	Depth	Grab, Shelby,		Phase		Pan	Tare	W+T	D+T	DIAM	HT	AREA	VOL	D		DD D	w	Soil Description/Comments
Exploi	ž	Del	Core, SPT, D&M	ij	ij	111	No.	(grams)	(grams)	(grams)	(in)	(in)	(in ²)	(in³)	(grams)	pcf	kg/m³	(%)	
CL	26	0.5	Shelby	ATT-P	- 0	34.	u11	326.45	887.74	686.29					359.84			56.0	Dark gray SILT with clay, trace sand and organics (MH)
CL	26	0.5	Shelby	HYD		25 - Park	m16	1234.50	1556.00	1434.10					199.60			61.1	Dark gray SILT with clay, trace sand and organics (MH)
CL	26	1.0	Shelby	DEN-S			u11	326.45	887.74	686.29	2.870	3.235	6.469	20.928	359.84	65.5	1049	56.0	Dark gray SILT with clay, trace sand and organics (MH)
CL	26	1.5	Shelby	PERM-3	>=:		98	54.20	96.72	82.58					28.38			49.8	Dark gray SILT with clay, trace sand and organics (MH)
•	•	0.0	=		3.4														
-	-	0.0	t:	•	re:	•													
-	-	0.0		•	I E	-													
-	-	0.0	-	•					223000 112300 11430		20000111 eestoood								
	3	0.0	-											41001100000000000					
-	-	0.0	-	-5	•	- 5													
	-	0.0	-			15							1000111110001749						
-	-	0.0		*1															
•	3	0.0	-			1.00							1560(11550061546						
V.T.(-	0.0			20	i ë													
2.53	=	0.0	-	•	•	-													
17	.= (0.0	*	-	5)	5	Patier no August				- Christian (1975)								
	_	0.0				_		2000 SESTIMENT ALVANDAL PARTIES				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALIE AND STANGERS	477.47101099705-5	1.511				

LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX (ATTERBERG LIMITS) OF SOIL

1	ASTM D4318	AASHTO T89 & T90
✓	Multi-point method	Single-point method

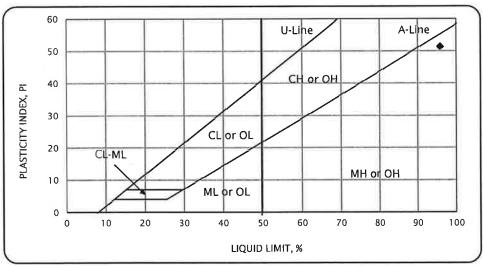

WORK ORDER NO:

6299

PROJECT NO:	MFAInc-15-01		TESTED BY: MB	DATE: 7/10/2013
PROJECT NAME:	Port of Ridgefield Carty Lake		CHECKED BY: VZ	DATE: 7/23/2013
EXPLORATION:	CL-26	DEPTH (ft): 0.5		SAMPLE NO:
DESCRIPTION:	Dark gray SILT with clay, trace	e sand and organ	ics (MH)	

OVEN 185 GLASS PLATE 261 LL DEVICE 245 GROOVING TOOL SCALE 243 SIEVE 259

	Number of Blows, N	23	21	28
	Drying Container ID	s1	s2	s3
L	(A) Drying container tare, g	20.82	20.58	20.94
LIQUID LIMIT	(B) Wet Soil + tare mass, g	27.96	28.12	29.03
	(C) Dry Soil + tare mass, g	24.46	24.42	25.08
	(D) Water mass, g	3.50	3.70	3.95
	(E ₁) Water Content, Wn (%)	96.2	96.4	95.4
	(F) LIQUID LIMIT, LLn	95.2	94.3	96.7
	(G) LIQUID LIMIT, LL (PLOT ²⁵)	95.8	LLn (Ave)	95.4



LIMIT	Drying Container ID	s5	s6
	(A) Drying container tare, g	20.95	20.74
	(B) Wet Soil + tare mass, g	27.30	26.85
PLASTIC	(C) Dry Soil + tare mass, g	25.36	24.96
	(D) Water mass, g	1.94	1.89
	(H) PLASTIC LIMIT, PL	44.0	44.8

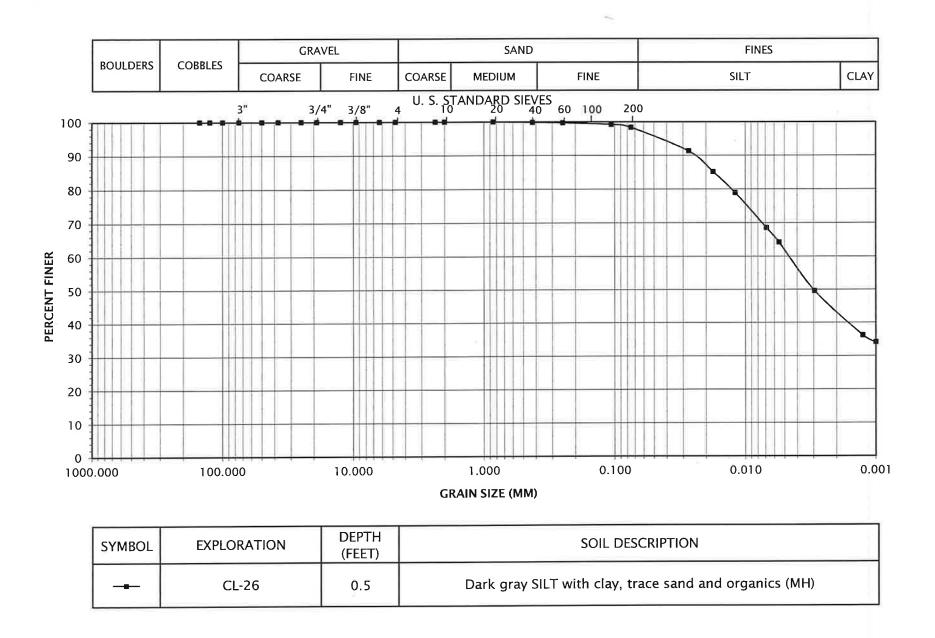
E	Drying Container ID	ull
TEN	(A) Drying container tare, g	326.45
ON	(B) Wet Soil + tare mass, g	887.74
ER C	(C) Dry Soil + tare mass, g	686.29
1 24	(D) Water mass, g	201.45
~	(E ₃) Water Content, W (%)	56.0

TEST RESULTS

NON-PLASTIC 96 LIQUID LIMIT 44 PLASTIC LIMIT 51 PLASTICITY INDEX 0.2 LIQUIDITY INDEX

CALCULATIONS

WATER CONTENT


Water mass, D = B-C $Plastic\ Limit,\ H = Average\ (PL1,PL2,PL3)$

56

Plasticity Index = G-H Water Content, $E_{1,2,3} = (D/(C-A)x100)$

Liquid Limit LLn, $F = Wn \times (N/25)^{0.121}$ Liquidity Index = $(E_3-H)/Plasticity$ Index

DEVIATIONS/COMMENTS

TOTAL SOLIDS

1	TOTAL	SOLIDS -	EPA -	Puget	Sound
J		001100		5	

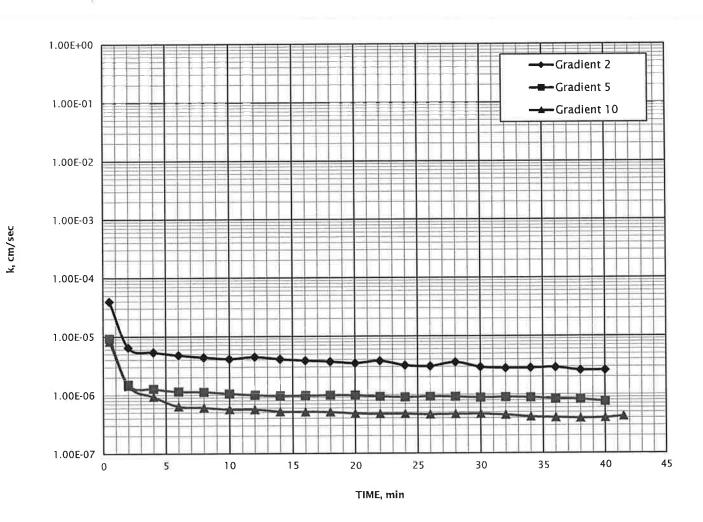
6299 WORK ORDER NO.

PROJECT NO:	MFAInc-15-01		TESTED BY: MB	DATE: 7/22/2013
PROJECT NAME:	Port of Ridgefie	ld Carty Lake	CHECKED BY: VZ	DATE: 7/23/2013
SOURCE:	Onsite	N N		
THERMOMETER ID	10	SCALE ID 243	OVEN ID 185	FURNACE ID 1

SAMPLE LOCATION AND DESCRIPTION

SAMPLE NO	EXPLORATION	DEPTH (FT)	SOIL DESCRIPTION
1	CL-26	1.5	Dark gray SILT with clay, trace sand and organics (MH)

TOTAL SOLIDS


SAMPLE NUMBER	1	0	0	
DRYING CONTAINER ID	C2			
DRYING CONTAINER + LID TARE (B)	114.78			
WEIGHT OF WET SOIL + TARE + LID (C)	175.88			
WEIGHT OF DRY SOIL + TARE + LID (A)	156.49			
WEIGHT OF MOISTURE	19.39			
MOISTURE CONTENT, (%)	46.5			
PERCENT SOLIDS, (%)	68.3			

GEO DESIGNE

ASTM D5084-Flexible Wall Permeability

Project No	MFAInc-15-01	Lab No	6299
Project Name	Carty Lake	Date Tested	7/26/2013
Exploration	CL-26	Tested By	MB/CMC
Depth	16.5"	 Sample Type	Shelby
Sample Description	Dark gray SILT with	clay, trace sand and o	rganics (MH)
Sample Parameters	for Test		
		Confining Pressure	3 psi
Test Sample Measu	rements	Sample weight w/tube:	N/A g
•		Tube:	N/A g
		Height:	6.35 in
		Wet Weight w/o tube:	1230.48 g
		Diameter:	2.859 in
		Volume:	0.02360 cu. Ft
		Moist Density:	
		Dry Density:	
		, , .	
Water (Moisture) Co	ontent Testing		
		Initial Test	After Test
	Pan Identification		<u>j19</u>
	Tare mass	s:53.69_g	249.5 g
	Wet with tare mass	s:152.07 g	1482.21 g
	Dry with tare mass	s: <u>123.21</u> g	1120.42 g
W	/ater (Moisture) Conten	t: 41.5 %	41.5 %
Permeability Data			
Gradient = 7	2 Temperature Begi	n 24.8 C	
Gradient = .	Z Temperature Begi		
	k - measure	350 C	
	k - correcte	CIII/S	
Gradient =	5 Temperature Begi	in 24.7 °C	
	Temperature En		
	k - measure		
	k - correcte		
Gradient = 1	0 Temperature Beg	in 24.6 °C	
	Temperature Er	nd 24.5 °C	
	k - measure	-	
	k - correcte		
Comment	s		
Comment			

EXPLORATION NUMBER	SAMPLE DEPTH (FEET)	MOISTURE CONTENT (PERCENT)	DRY DENSITY (PCF)	CONFINING PRESSURE (PSI)
CL-26	1.5	41.5	81	3

GEO DESIGNE	MFAInc-15-01	FLEXIBLE WALL PERMEABILITY TEST	
15575 SW Sequola Parkway - Suite 100 Portland OR 97724 Off 503 968 8787 Fax 503 968 3068	July, 2013	Port of Ridgefield Carty Lake	FIGURE

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Friday, July 26, 2013

Madi Novak Maul Foster & Alongi, INC. 2001 NW 19th Ave, STE 200 Portland, OR 97209

RE: Port of Ridgefield ISM / 9003.01.40

Enclosed are the results of analyses for work order <u>A3F0629</u>, which was received by the laboratory between 6/25/2013 at 4:36:00PM and 6/27/2013 at 4:00:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
LRIS-CL-DU1AISM Composite	A3F0629-08	Sediment	07/01/13 18:00	06/25/13 16:36
LRIS-CL-DU1BISM Composite	A3F0629-09	Sediment	07/01/13 18:00	06/25/13 16:36
LRIS-CL-DU1CISM Composite	A3F0629-10	Sediment	07/01/13 18:00	06/25/13 16:36
LRIS-CL-DU2ISM Composite	A3F0629-11	Sediment	07/01/13 18:00	06/25/13 16:36
LRIS-CL-DU3ISM Composite	A3F0629-12	Sediment	07/01/13 18:00	06/25/13 16:36
LRIS-CL-DU4ISM Composite	A3F0629-13	Sediment	07/01/13 18:00	06/25/13 16:36
LRIS-CL-DU5ISM Composite	A3F0629-14	Sediment	07/02/13 09:30	06/25/13 16:36
LRIS-CL-DU1AISM Composite0.25mr	n A3F0629-15	Sediment	07/05/13 17:00	06/25/13 16:36
LRIS-CL-DU1BISM Composite0.25mn	n A3F0629-16	Sediment	07/05/13 17:00	06/25/13 16:36
LRIS-CL-DU1CISM Composite0.25mr	n A3F0629-17	Sediment	07/05/13 17:00	06/25/13 16:36
LRIS-CL-DU2ISM Composite0.25mm	G A3F0629-18	Sediment	07/05/13 17:00	06/25/13 16:36
LRIS-CL-DU3ISM Composite0.25mm	G A3F0629-19	Sediment	07/05/13 17:00	06/25/13 16:36
LRIS-CL-DU4ISM Composite0.25mm	G A3F0629-20	Sediment	07/05/13 17:00	06/25/13 16:36
LRIS-CL-DU5ISM Composite0.25mm	G A3F0629-21	Sediment	07/05/13 17:00	06/25/13 16:36
Grind BlankISM Composite0.25mm G	riı A3F0629-22	Solid	07/05/13 17:00	06/25/13 16:36

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

ANALYTICAL CASE NARRATIVE

Work Order: A3F0629

Per client request, the below sample IDs have been altered from the COC.

LRIS-CL-003 has been changed to LRIS-CL-DU3 LRIS-CL-005 has been changed to LRIS-CL-DU5

Allison Greiner Client Services Manager 7-1-13

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

ANALYTICAL SAMPLE RESULTS

		P	entachlorop	henol by EPA	8270D			
			Reporting	<u></u>				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
LRIS-CL-DU1AISM Composite (A3I	-0629-08RE2)		Matrix: Se	diment	Batch: 3070	219		
Pentachlorophenol (PCP)	293	104	209	ug/kg dry	5	07/17/13 19:10	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Ì	Recovery: 92 %	Limits: 40-125	% "	"	"	
LRIS-CL-DU1BISM Composite (A3F	F0629-09RE2)		Matrix: Se	diment	Batch: 3070	219		
Pentachlorophenol (PCP)	331	107	214	ug/kg dry	5	07/17/13 21:00	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Re	ecovery: 102 %	Limits: 40-125	% "	"	"	
LRIS-CL-DU1CISM Composite (A3I	F0629-10RE2)		Matrix: Se	diment	Batch: 3070	219		
Pentachlorophenol (PCP)	543	110	219	ug/kg dry	5	07/17/13 22:13	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		R	ecovery: 110 %	Limits: 40-125	% "	"	"	
LRIS-CL-DU1CISM Composite (A3I	F0629-10RE3)		Matrix: Se	diment	Batch: 3070	459		H-08
Pentachlorophenol (PCP)	334	91.8	184	ug/kg dry	2	07/19/13 14:00	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Ro	ecovery: 107 %	Limits: 40-125	% "	"	"	Q-41
LRIS-CL-DU2ISM Composite (A3F0	629-11RE2)		Matrix: Se	diment	Batch: 3070	219		
Pentachlorophenol (PCP)	254	104	208	ug/kg dry	5	07/17/13 18:33	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Re	ecovery: 103 %	Limits: 40-125	% "	"	"	
LRIS-CL-DU2ISM Composite (A3F0	629-11RE3)		Matrix: Se	diment	Batch: 3070	459		H-08
Pentachlorophenol (PCP)	266	94.3	189	ug/kg dry	2	07/19/13 15:09	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		R	ecovery: 115 %	Limits: 40-125	% "	"	"	Q-41
LRIS-CL-DU3ISM Composite (A3F0	629-12RE2)		Matrix: Se	diment	Batch: 3070	219		R-04
Pentachlorophenol (PCP)	ND	104	208	ug/kg dry	5	07/17/13 16:48	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		i	Recovery: 75 %	Limits: 40-125	% "	"	"	
LRIS-CL-DU4ISM Composite (A3F0	629-13RE2)		Matrix: Se	diment	Batch: 3070	219		
Pentachlorophenol (PCP)	162	107	214	ug/kg dry	5	07/17/13 21:37	EPA 8270D PCP	J
Surrogate: 2,4,6-Tribromophenol (Surr)		i	Recovery: 97 %	Limits: 40-125	% "	"	"	
LRIS-CL-DU5ISM Composite (A3F0	629-14RE2)		Matrix: Se	diment	Batch: 3070	219		R-04
Pentachlorophenol (PCP)	ND	104	208	ug/kg dry	5	07/17/13 17:22	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)			Recovery: 97 %	Limits: 40-125	% "	"	"	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)										
			Reporting							
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes		
LRIS-CL-DU1AISM Composite0.	.25mm Grind	(A3F0629-1	Matrix: Se	diment						
Batch: 3070345										
Arsenic	12.1	0.265	0.530	mg/kg dry	5	07/17/13 11:33	EPA 6020A			
Chromium	38.2	0.530	1.06	"	"	"	"			
LRIS-CL-DU1BISM Composite0.	.25mm Grind	(A3F0629-1	Matrix: Se	diment						
Batch: 3070307										
Arsenic	10.1	0.261	0.521	mg/kg dry	5	07/17/13 11:08	EPA 6020A			
Chromium	35.7	0.521	1.04	"	"	"	"			
LRIS-CL-DU1CISM Composite0.	.25mm Grind	(A3F0629-1	Matrix: Se	diment						
Batch: 3070306										
Arsenic	10.9	0.265	0.530	mg/kg dry	5	07/16/13 17:24	EPA 6020A			
Chromium	37.2	0.530	1.06	"	"	"	"			
_RIS-CL-DU2ISM Composite0.2	5mm Grind (A	A3F0629-18I	Matrix: Se	diment						
Batch: 3070383										
Arsenic	9.04	0.260	0.520	mg/kg dry	5	07/17/13 16:50	EPA 6020A			
Chromium	32.4	0.520	1.04	"	"	"	"			
LRIS-CL-DU3ISM Composite0.2	5mm Grind (A	A3F0629-19)	Matrix: Se	diment						
Batch: 3070293										
Arsenic	4.53	0.258	0.515	mg/kg dry	5	07/17/13 10:57	EPA 6020A			
Chromium	19.2	0.515	1.03	"	"	"	"			
LRIS-CL-DU4ISM Composite0.2	5mm Grind (A	A3F0629-20)	Matrix: Se	diment						
Batch: 3070266										
Arsenic	7.52	0.258	0.517	mg/kg dry	5	07/15/13 12:31	EPA 6020A			
Chromium	26.5	0.517	1.03	"	"	"	"			
LRIS-CL-DU5ISM Composite0.2	5mm Grind (A	A3F0629-21)	Matrix: Se	diment						
Batch: 3070252										
Arsenic	4.03	0.260	0.521	mg/kg dry	5	07/15/13 12:17	EPA 6020A			
Chromium	17.2	0.521	1.04	"	"	"	"			
Grind BlankISM Composite0.25	mm Grind (A3	BF0629-22)	Matrix: So	id						
Batch: 3070212										
	ND	0.249	0.499	Л	_	07/12/12 12 41	EDA (020 A			
Arsenic	ND	0.249	0.499	mg/kg	5	07/12/13 13:41	EPA 6020A			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

ANALYTICAL SAMPLE RESULTS

		Con	ventional C	hemistry Paran	neters			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
LRIS-CL-DU1AISM Composite	e0.25mm Grind(A3F0629-1	Matrix: Sec	diment				
Batch: 3070189								
Total Organic Carbon	2.7	0.010	0.020	% by Weight	1	07/10/13 15:45	PSEP/SM 5310B MOD	
LRIS-CL-DU1BISM Composite	e0.25mm Grind (A3F0629-1	Matrix: Sec	diment				
Batch: 3070189								
Total Organic Carbon	2.7	0.010	0.020	% by Weight	1	07/10/13 15:45	PSEP/SM 5310B MOD	
LRIS-CL-DU1CISM Composite	e0.25mm Grind(A3F0629-1	Matrix: Sec	diment				
Batch: 3070189								
Total Organic Carbon	2.5	0.010	0.020	% by Weight	1	07/10/13 15:45	PSEP/SM 5310B MOD	
LRIS-CL-DU2ISM Composite-	-0.25mm Grind (A	3F0629-18)	Matrix: Sec	diment				
Batch: 3070189								
Total Organic Carbon	2.2	0.010	0.020	% by Weight	1	07/10/13 15:45	PSEP/SM 5310B MOD	
LRIS-CL-DU3ISM Composite-	-0.25mm Grind (A	3F0629-19)	Matrix: Sec	diment				
Batch: 3070189								
Total Organic Carbon	2.1	0.010	0.020	% by Weight	1	07/10/13 15:45	PSEP/SM 5310B MOD	
LRIS-CL-DU4ISM Composite-	-0.25mm Grind (A	3F0629-20)	Matrix: Sec	diment				
Batch: 3070189								
Total Organic Carbon	2.7	0.010	0.020	% by Weight	1	07/10/13 15:45	PSEP/SM 5310B MOD	
LRIS-CL-DU5ISM Composite-	-0.25mm Grind (A	3F0629-21)	Matrix: Sec	diment				
Batch: 3070189								
Total Organic Carbon	2.0	0.010	0.020	% by Weight	1	07/10/13 15:45	PSEP/SM 5310B MOD	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

ANALYTICAL SAMPLE RESULTS

			Per	cent Dry Weight				
			Repor	ting				
Analyte	Result	MDL	Lim	Cints	Dilution	Date Analyzed	Method	Notes
LRIS-CL-DU1AISM Composite				Sediment	Batch: 307020			
% Solids	95.7		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU1BISM Composite	(A3F0629-09)		Matrix:	Sediment	Batch: 307020	00		
% Solids	95.2		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU1CISM Composite	(A3F0629-10)		Matrix:	Sediment	Batch: 307020	00		
% Solids	92.9		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU2ISM Composite (A3F0629-11)		Matrix:	Sediment	Batch: 307020	00		
% Solids	95.1		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU3ISM Composite (A3F0629-12)		Matrix:	Sediment	Batch: 307020	00		
% Solids	95.7		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU4ISM Composite (A3F0629-13)		Matrix:	Sediment	Batch: 307020	00		
% Solids	95.5		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU5ISM Composite (A3F0629-14)		Matrix:	Sediment	Batch: 307020	00		
% Solids	95.2		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU1AISM Composite	0.25mm Grind(A3F0629-1	Matrix:	Sediment	Batch: 307020	00		
% Solids	96.1		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU1BISM Composite	0.25mm Grind(A3F0629-1	Matrix:	Sediment	Batch: 307020	00		
% Solids	95.4		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU1CISM Composite	0.25mm Grind(A3F0629-1	Matrix:	Sediment	Batch: 307020	00		
% Solids	93.9		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU2ISM Composite	0.25mm Grind (A	3F0629-18)	Matrix:	Sediment	Batch: 307020	00		
% Solids	95.5		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU3ISM Composite(0.25mm Grind (A	3F0629-19)	Matrix:	Sediment	Batch: 307020	00		
% Solids	96.0		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU4ISM Composite	0.25mm Grind (A	3F0629-20)	Matrix:	Sediment	Batch: 307020	00	-	
% Solids	96.1		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	
LRIS-CL-DU5ISM Composite	0.25mm Grind(A	3F0629-21)	Matrix:	Sediment	Batch: 307020	00	•	
% Solids	95.6		1.00	% by Weigh	nt 1	07/10/13 10:05	Apex SOP	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 26

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Penta	chloropher	ioi by l	EPA 82/0E	, 					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070219 - EPA 3546							Sec	liment				
Blank (3070219-BLK1)				Prepa	red: 07/	10/13 11:21	Analyzed:	07/10/13	19:03			
EPA 8270D PCP												
Pentachlorophenol (PCP)	ND	39.1	78.1	ug/kg wet	1							
Surr: 2,4,6-Tribromophenol (Surr)		Rec	overy: 89 %	Limits: 40-1.	25 %	Dilı	ution: 1x					
LCS (3070219-BS1)				Prepa	red: 07/	10/13 11:21	Analyzed:	07/10/13 1	19:39			
EPA 8270D PCP												
Pentachlorophenol (PCP)	661	125	250	ug/kg wet	1	800		83	25-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Reco	very: 104 %	Limits: 40-1.	25 %	Dilı	ution: 1x					
Duplicate (3070219-DUP2)				Prepa	red: 07/	10/13 11:21	Analyzed:	07/11/13 1	9:22			R-0
QC Source Sample: LRIS-CL-DU5- EPA 8270D PCP	ISM Compo	site (A3F062	9-14)									
Pentachlorophenol (PCP)	ND	419	837	ug/kg dry	10		ND				30%	
Surr: 2,4,6-Tribromophenol (Surr)		Rec	overy: 69 %	Limits: 40-1.	25 %	Dilı	ution: 10x					
Duplicate (3070219-DUP3)				Prepa	red: 07/	10/13 11:22	Analyzed:	07/17/13	17:57			
QC Source Sample: LRIS-CL-DU5- EPA 8270D PCP	ISM Compo	site (A3F062	9-14RE2)									
Pentachlorophenol (PCP)	ND	105	209	ug/kg dry	5		ND				30%	
Surr: 2,4,6-Tribromophenol (Surr)		Rec	overy: 74 %	Limits: 40-1.	25 %	Dilı	ution: 5x					
Matrix Spike (3070219-MS2)				Prepa	red: 07/	10/13 11:22	Analyzed:	07/17/13 1	19:46			
QC Source Sample: LRIS-CL-DU1. EPA 8270D PCP	AISM Comp	osite (A3F00	629-08RE2)									
Pentachlorophenol (PCP)	544	107	214	ug/kg dry	5	274	293	92	25-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Reco	very: 106 %	Limits: 40-1.	25 %	Dilı	ution: 5x					
Matrix Spike Dup (3070219-MS	D2)			Prepa	red: 07/	10/13 11:22	Analyzed:	07/17/13 2	20:23			
QC Source Sample: LRIS-CL-DU1. EPA 8270D PCP	AISM Comp	osite (A3F00	629-08RE2)									
Pentachlorophenol (PCP)	574	107	213	ug/kg dry	5	273	293	103	25-125%	5	35%	
Surr: 2,4,6-Tribromophenol (Surr)		Reco	very: 104 %	Limits: 40-1.	25 %	Dilı	ution: 5x					

Apex Laboratories

Batch 3070459 - EPA 3546

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sediment

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Penta	chlorophe	nol by	EPA 8270D)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070459 - EPA 3546							Sec	liment				
Blank (3070459-BLK1)				Prep	oared: 07/	19/13 07:24	Analyzed:	07/19/13 1	2:50			
EPA 8270D PCP												
Pentachlorophenol (PCP)	ND	41.7	83.3	ug/kg wet	1							
Surr: 2,4,6-Tribromophenol (Surr)		Reco	very: 111 %	Limits: 40-	125 %	Dilı	ution: 1x					Q-41
LCS (3070459-BS1)				Prep	oared: 07/	19/13 07:24	Analyzed:	07/19/13 1	3:25			
EPA 8270D PCP												
Pentachlorophenol (PCP)	995	50.0	100	ug/kg wet	1	800		124	25-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Recon	very: 124 %	Limits: 40-	125 %	Dilı	ution: 1x					Q-41
Duplicate (3070459-DUP1)				Prep	oared: 07/	19/13 07:24	Analyzed:	07/19/13 1	4:34			H-08
QC Source Sample: LRIS-CL-DU10	CISM Com	posite (A3F06	529-10RE3)									
EPA 8270D PCP												
Pentachlorophenol (PCP)	438	103	206	ug/kg dry	2		334			27	30%	
Surr: 2,4,6-Tribromophenol (Surr)		Reco	very: 117 %	Limits: 40-	125 %	Dilı	ution: 2x					Q-41
Matrix Spike (3070459-MS1)				Prep	oared: 07/	19/13 07:24	Analyzed:	07/19/13 1	5:44			H-08
QC Source Sample: LRIS-CL-DU2-	-ISM Compo	osite (A3F062	9-11RE3)									
EPA 8270D PCP												
Pentachlorophenol (PCP)	1100	238	476	ug/kg dry	2	761	266	110	25-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Recor	very: 122 %	Limits: 40-	125 %	Dilı	tion: 2x					Q-41

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 60	20 (ICPMS))					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070212 - EPA 3051 <i>A</i>	4						Sol	id				
Blank (3070212-BLK1)				Pre	pared: 07/	10/13 09:18	Analyzed:	07/12/13 13	3:22			
EPA 6020A												
Arsenic	ND	0.250	0.500	mg/kg	5							
Chromium	ND	0.500	1.00	"	"							
LCS (3070212-BS1)				Pre	pared: 07/	10/13 09:18	Analyzed:	07/12/13 13	3:27			
EPA 6020A												
Arsenic	24.0	0.250	0.500	mg/kg	5	25.0		96	80-120%			
Chromium	26.2	0.500	1.00	"	"	"		105	"			
LCS Dup (3070212-BSD1)				Pre	pared: 07/	10/13 09:18	Analyzed:	07/12/13 13	3:30			
EPA 6020A												
Arsenic	23.9	0.250	0.500	mg/kg	5	25.0		96	80-120%	0.5	20%	
Chromium	26.2	0.500	1.00	"	"	"		105	"	0.06	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 3070252 - EPA 3051 <i>A</i>	4						Sec	diment						
Blank (3070252-BLK1)				Prep	ared: 07/	11/13 09:43	Analyzed:	07/15/13 12	2:02					
EPA 6020A														
Arsenic	ND	0.250	0.500	mg/kg wet	5									
Chromium	ND	0.500	1.00	"	"									
LCS (3070252-BS1)				Prep	ared: 07/	11/13 09:43	Analyzed:	07/15/13 12	2:05					
EPA 6020A														
Arsenic	25.7	0.250	0.500	mg/kg wet	5	25.0		103	80-120%					
Chromium	26.3	0.500	1.00	"	"	"		105	"					
LCS Dup (3070252-BSD1)				Prep	ared: 07/	11/13 09:43	Analyzed:	07/15/13 12	2:08					
EPA 6020A														
Arsenic	24.2	0.250	0.500	mg/kg wet	5	25.0		97	80-120%	6	20%			
Chromium	24.7	0.500	1.00	"	"	"		99	"	6	20%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020 (ICPMS)													
Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
1						Sec	diment						
			Prep	ared: 07/	11/13 15:53	Analyzed:	07/15/13 12	2:23					
ND	0.250	0.500	mg/kg wet	5									
ND	0.500	1.00	"	"									
			Prep	ared: 07/	11/13 15:53	Analyzed:	07/15/13 12	2:25					
24.4	0.250	0.500	mg/kg wet	5	25.0		98	80-120%					
25.0	0.500	1.00	"	"	"		100	"					
			Prep	ared: 07/	11/13 15:53	Analyzed:	07/15/13 12	2:28					
25.6	0.250	0.500	mg/kg wet	5	25.0		102	80-120%	5	20%			
26.1	0.500	1.00	"	"	"		104	"	4	20%			
	ND ND 24.4 25.0	ND 0.250 ND 0.500 24.4 0.250 25.0 0.500	Result MDL Reporting Limit ND 0.250 0.500 ND 0.500 1.00 24.4 0.250 0.500 25.0 0.500 1.00 25.6 0.250 0.500	Result MDL Reporting Limit Units ND 0.250 0.500 mg/kg wet ND 0.500 1.00 " Preporting Preporting " 24.4 0.250 0.500 mg/kg wet 25.0 0.500 1.00 " Preporting Preporting Preporting 24.4 0.250 0.500 mg/kg wet 25.0 0.500 1.00 " 25.6 0.250 0.500 mg/kg wet	Result MDL Reporting Limit Units Dil. ND 0.250 0.500 mg/kg wet 5 ND 0.500 1.00 " " Prepared: 07/ 24.4 0.250 0.500 mg/kg wet 5 25.0 0.500 1.00 " " Prepared: 07/ 25.6 0.250 0.500 mg/kg wet 5	Result MDL Reporting Limit Units Dil. Spike Amount ND 0.250 0.500 mg/kg wet 5 ND 0.500 1.00 " " Prepared: 07/11/13 15:53 24.4 0.250 0.500 mg/kg wet 5 25.0 25.0 0.500 1.00 " " " Prepared: 07/11/13 15:53 25.6 0.250 0.500 mg/kg wet 5 25.0	Result MDL Reporting Limit Units Dil. Spike Amount Source Result Sec Prepared: 07/11/13 15:53 Analyzed: ND 0.250 0.500 mg/kg wet 5 ND 0.500 1.00 " " Prepared: 07/11/13 15:53 Analyzed: 24.4 0.250 0.500 mg/kg wet 5 25.0 25.0 0.500 1.00 " " " " Prepared: 07/11/13 15:53 Analyzed:	Result MDL Reporting Limit Units Dil. Spike Amount Source Result %REC Sediment ND 0.250 0.500 mg/kg wet 5 ND 0.500 1.00 " " ND 0.500 1.00 " " Prepared: 07/11/13 15:53 Analyzed: 07/15/13 12 98 25.0 0.500 1.00 " " " 100 Prepared: 07/11/13 15:53 Analyzed: 07/15/13 12 100	Result MDL Reporting Limit Units Dil. Spike Amount Spike Result Source Result %REC Limits ND 0.250 0.500 mg/kg wet 5	Result MDL Reporting Limit Units Dil. Spike Amount Source Result %REC Limits RPD A Sediment Prepared: 07/11/13 15:53 Analyzed: 07/15/13 12:23 ND 0.250 0.500 mg/kg wet 5 <	Result MDL Reporting Units Dil. Spike Amount Result WREC Limits RPD Limit		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by I	EPA 60	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070293 - EPA 3051 <i>A</i>	١						Sec	diment				
Blank (3070293-BLK1)				Prep	ared: 07/	12/13 14:17	Analyzed:	07/17/13 1	0:49			
EPA 6020A												
Arsenic	ND	0.250	0.500	mg/kg wet	5							
Chromium	ND	0.500	1.00	"	"							
LCS (3070293-BS1)				Prep	ared: 07/	12/13 14:17	Analyzed:	07/17/13 1	2:22			
EPA 6020A												
Arsenic	29.2	0.250	0.500	mg/kg wet	5	25.0		117	80-120%			
Chromium	29.7	0.500	1.00	"	"	"		119	"			
LCS Dup (3070293-BSD1)				Prep	ared: 07/	12/13 14:17	Analyzed:	07/17/13 1	0:54			
EPA 6020A												
Arsenic	26.6	0.250	0.500	mg/kg wet	5	25.0		106	80-120%	9	20%	
Chromium	29.7	0.500	1.00	"	"	"		119	"	0.05	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

Result MD	Reporting L Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
					804	!! a 4				
					Sed	liment				
		Prep	ared: 07/	14/13 12:16	Analyzed:	07/16/13 17	7:16			
ND 0.2	50 0.500	mg/kg wet	5							
ND 0.5	00 1.00	"	"							
		Prep	ared: 07/	14/13 12:16	Analyzed:	07/16/13 17	7:19			
4.7 0.2	50 0.500	mg/kg wet	5	25.0		99	80-120%			
5.1 0.5	00 1.00	"	"	"		100	"			
		Prep	ared: 07/	14/13 12:16	Analyzed:	07/16/13 17	7:22			
4.1 0.2	50 0.500	mg/kg wet	5	25.0		96	80-120%	2	20%	
4.6 0.5	00 1.00	"	"	"		98	"	2	20%	
1,4	4.7 0.2 5.1 0.5	4.7 0.250 0.500 5.1 0.500 1.00 4.1 0.250 0.500	D 0.250 0.500 mg/kg wet D 0.500 1.00 " Prep. 4.7 0.250 0.500 mg/kg wet 5.1 0.500 1.00 " Prep. 4.1 0.250 0.500 mg/kg wet	D 0.250 0.500 mg/kg wet 5 D 0.500 1.00 " " Prepared: 07/ 4.7 0.250 0.500 mg/kg wet 5 5.1 0.500 1.00 " " Prepared: 07/ 4.1 0.250 0.500 mg/kg wet 5	D 0.250 0.500 mg/kg wet 5 Prepared: 07/14/13 12:16 4.7 0.250 0.500 mg/kg wet 5 25.0 5.1 0.500 1.00 " " " Prepared: 07/14/13 12:16 Prepared: 07/14/13 12:16	D 0.250 0.500 mg/kg wet 5 Prepared: 07/14/13 12:16 Analyzed: 0.250 0.500 mg/kg wet 5 25.0 1.00 " " " " Prepared: 07/14/13 12:16 Analyzed: 1.1 0.250 0.500 mg/kg wet 5 25.0 Prepared: 07/14/13 12:16 Analyzed:	D 0.250 0.500 mg/kg wet 5	Prepared: 07/14/13 12:16 Analyzed: 07/16/13 17:19 4.7	D 0.250 0.500 mg/kg wet 5	ID 0.250 0.500 mg/kg wet 5 ID 0.500 1.00 " " "

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 60	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070307 - EPA 3051	Α						Sec	diment				
Blank (3070307-BLK1)				Prep	ared: 07/	/14/13 12:53	Analyzed:	07/17/13 1	1:00			
EPA 6020A												
Arsenic	ND	0.250	0.500	mg/kg wet	5							
Chromium	ND	0.500	1.00	"	"							
LCS (3070307-BS1)				Prep	ared: 07/	/14/13 12:53	Analyzed:	07/17/13 1	1:03			
EPA 6020A												
Arsenic	22.4	0.250	0.500	mg/kg wet	5	25.0		89	80-120%			
Chromium	25.0	0.500	1.00	"	"	"		100	"			
LCS Dup (3070307-BSD1)				Prep	ared: 07/	/14/13 12:53	Analyzed:	07/17/13 1	1:05			
EPA 6020A												
Arsenic	21.8	0.250	0.500	mg/kg wet	5	25.0		87	80-120%	3	20%	
Chromium	24.4	0.500	1.00	"	"	"		98	"	3	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported: 07/26/13 11:57

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 60:	20 (ICPMS)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070345 - EPA 3051	A						Sed	liment				
Blank (3070345-BLK1)				Prep	ared: 07/	16/13 08:13	Analyzed:	07/17/13 1	1:11			
EPA 6020A												
Arsenic	ND	0.250	0.500	mg/kg wet	5							
Chromium	ND	0.500	1.00	"	"							
Blank (3070345-BLK2)				Prep	ared: 07/	16/13 08:13	Analyzed:	07/17/13 1	1:19			
EPA 6020A												
Arsenic	ND	0.250	0.500	mg/kg wet	5							
Chromium	ND	0.500	1.00	"	"							
Blank (3070345-BLK3)				Prep	ared: 07/	16/13 08:13	Analyzed:	07/17/13 1	1:22			
EPA 6020A												
Arsenic	ND	0.250	0.500	mg/kg wet	5							
Chromium	ND	0.500	1.00	"	"							
LCS (3070345-BS1)				Prep	ared: 07/	16/13 08:13	Analyzed:	07/17/13 1	1:25			
EPA 6020A												
Arsenic	23.8	0.250	0.500	mg/kg wet	5	25.0		95	80-120%			
Chromium	24.3	0.500	1.00	"	"	"		97	"			
LCS (3070345-BS2)				Prep	ared: 07/	16/13 08:13	Analyzed:	07/17/13 1	1:27			
EPA 6020A												
Arsenic	24.3	0.250	0.500	mg/kg wet	5	25.0		97	80-120%			
Chromium	24.8	0.500	1.00	"	"	"		99	"			
LCS (3070345-BS3)				Prep	ared: 07/	16/13 08:13	Analyzed:	07/17/13 1	1:30			
EPA 6020A												
Arsenic	22.6	0.250	0.500	mg/kg wet	5	25.0		90	80-120%			
Chromium	23.0	0.500	1.00	"	"	"		92	"			
Matrix Spike (3070345-MS1)				Prep	ared: 07/	16/13 08:13	Analyzed:	07/17/13 1	1:36			
QC Source Sample: LRIS-CL-DU1	AISM Comp	osite0.25n	nm Grind (A31	F0629-15)								
EPA 6020A												
Arsenic	36.3	0.259	0.517	mg/kg dry	5	24.7	12.1	98	75-125%			
Chromium	63.9	0.517	1.03	"	"	"	38.2	104	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by I	PA 60	20 (ICPMS))					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070345 - EPA	3051A						Sed	liment				
Matrix Spike Dup (30703	45-MSD1)			Prep	ared: 07/	16/13 08:13	Analyzed:	07/17/13 1	1:38			
QC Source Sample: LRIS-C	CL-DU1AISM Comp	osite0.25m	m Grind (A3F	(0629-15)								
EPA 6020A												
Arsenic	36.6	0.258	0.515	mg/kg dry	5	25.8	12.1	95	75-125%	1	40%	
Chromium	64.3	0.515	1.03	"	"	"	38.2	101	"	0.6	40%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 60	20 (ICPMS)					Total Metals by EPA 6020 (ICPMS)														
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes														
Batch 3070356 - EPA 305	51A						Soli	id																		
Blank (3070356-BLK1)				Pre	pared: 07/	16/13 10:59	Analyzed:	07/16/13 1:	5:21																	
EPA 6020A																										
Arsenic	ND	0.250	0.500	mg/kg	5																					
Chromium	ND	0.500	1.00	"	"																					
LCS (3070356-BS1)				Pre	pared: 07/	16/13 10:59	Analyzed:	07/16/13 1:	5:12																	
EPA 6020A																										
Arsenic	24.9	0.250	0.500	mg/kg	5	25.0		100	80-120%																	
Chromium	25.4	0.500	1.00	"	"	"		102	"																	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

	Total Metals by EPA 6020 (ICPMS)													
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 3070383 - EPA 3051 <i>A</i>	\						Sec	diment						
Blank (3070383-BLK1)				Prep	ared: 07/	17/13 08:41	Analyzed:	07/17/13 16	5:41					
EPA 6020A														
Arsenic	ND	0.250	0.500	mg/kg wet	5									
Chromium	ND	0.500	1.00	"	"									
LCS (3070383-BS1)				Prep	ared: 07/	17/13 08:41	Analyzed:	07/17/13 16	5:43					
EPA 6020A														
Arsenic	23.2	0.250	0.500	mg/kg wet	5	25.0		93	80-120%					
Chromium	23.4	0.500	1.00	"	"	"		94	"					
LCS Dup (3070383-BSD1)				Prep	ared: 07/	17/13 08:41	Analyzed:	07/17/13 16	6:46					
EPA 6020A														
Arsenic	24.8	0.250	0.500	mg/kg wet	5	25.0		99	80-120%	7	20%			
Chromium	25.1	0.500	1.00	"	"	"		100	"	7	20%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conver	ntional Ch	emistry	Paramete	rs					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070189 - PSEP TOC							Sed	iment				
Blank (3070189-BLK1)				Prep	pared: 07/0	09/13 09:15	Analyzed: (07/10/13 12	:40			
PSEP/SM 5310B MOD												
Total Organic Carbon	ND	0.010	0.020	% by Weight	1							
LCS (3070189-BS1)				Prep	pared: 07/0	09/13 09:15	Analyzed: (07/10/13 12	:40			
PSEP/SM 5310B MOD											•	
Total Organic Carbon	9300			mg/kg	1	10000		93	85-115%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight						
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070200 - To	otal Solids (Dry We	eight)					Soil					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

SAMPLE PREPARATION INFORMATION

			Pentachloropheno	ol by EPA 8270D			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070219							
A3F0629-08RE2	Sediment	EPA 8270D PCP	07/01/13 18:00	07/10/13 11:22	31.29g/5mL	10g/5mL	0.32
A3F0629-09RE2	Sediment	EPA 8270D PCP	07/01/13 18:00	07/10/13 11:21	30.69g/5mL	10g/5mL	0.33
A3F0629-10RE2	Sediment	EPA 8270D PCP	07/01/13 18:00	07/10/13 11:21	30.71g/5mL	10g/5mL	0.33
A3F0629-11RE2	Sediment	EPA 8270D PCP	07/01/13 18:00	07/10/13 11:21	31.66g/5mL	10g/5mL	0.32
A3F0629-12RE2	Sediment	EPA 8270D PCP	07/01/13 18:00	07/10/13 11:21	31.42g/5mL	10g/5mL	0.32
A3F0629-13RE2	Sediment	EPA 8270D PCP	07/01/13 18:00	07/10/13 11:21	30.56g/5mL	10g/5mL	0.33
A3F0629-14RE2	Sediment	EPA 8270D PCP	07/02/13 09:30	07/10/13 11:21	31.56g/5mL	10g/5mL	0.32
Batch: 3070459							
A3F0629-10RE3	Sediment	EPA 8270D PCP	07/01/13 18:00	07/19/13 07:24	11.73g/5mL	10g/5mL	0.85
A3F0629-11RE3	Sediment	EPA 8270D PCP	07/01/13 18:00	07/19/13 07:24	11.15g/5mL	10g/5mL	0.90
			Total Metals by EF	PA 6020 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070212							
A3F0629-22	Solid	EPA 6020A	07/05/13 17:00	07/10/13 09:18	10.029 g / 1000 m L	0.5g/50mL	1.00
Batch: 3070252							
A3F0629-21	Sediment	EPA 6020A	07/05/13 17:00	07/11/13 09:43	10.039g/1000mL	0.5g/50mL	1.00
Batch: 3070266							
A3F0629-20	Sediment	EPA 6020A	07/05/13 17:00	07/11/13 15:53	10.066g/1000mL	0.5g/50mL	0.99
Batch: 3070293							
A3F0629-19	Sediment	EPA 6020A	07/05/13 17:00	07/12/13 14:17	10.112g/1000mL	0.5g/50mL	0.99
Batch: 3070306							
A3F0629-17	Sediment	EPA 6020A	07/05/13 17:00	07/14/13 12:16	10.548g/1050mL	0.5g/50mL	1.00
Batch: 3070307					Č		
A3F0629-16	Sediment	EPA 6020A	07/05/13 17:00	07/14/13 12:53	10.055g/1000mL	0.5g/50mL	1.00
Batch: 3070345					C	Č	
A3F0629-15	Sediment	EPA 6020A	07/05/13 17:00	07/16/13 08:13	10.791g/1100mL	0.5g/50mL	1.02
					_	~	
Batch: 3070383							

Conventional Chemistry Parameters

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

SAMPLE PREPARATION INFORMATION

			Conventional Chem	nistry Parameters			
Prep: PSEP TOC					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070189							
A3F0629-15	Sediment	PSEP/SM 5310B MOD	07/05/13 17:00	07/09/13 09:15	5g/5g	5g/5g	NA
A3F0629-16	Sediment	PSEP/SM 5310B MOD	07/05/13 17:00	07/09/13 09:15	5g/5g	5g/5g	NA
A3F0629-17	Sediment	PSEP/SM 5310B MOD	07/05/13 17:00	07/09/13 09:15	5g/5g	5g/5g	NA
A3F0629-18	Sediment	PSEP/SM 5310B MOD	07/05/13 17:00	07/09/13 09:15	5g/5g	5g/5g	NA
A3F0629-19	Sediment	PSEP/SM 5310B MOD	07/05/13 17:00	07/09/13 09:15	5g/5g	5g/5g	NA
A3F0629-20	Sediment	PSEP/SM 5310B MOD	07/05/13 17:00	07/09/13 09:15	5g/5g	5g/5g	NA
A3F0629-21	Sediment	PSEP/SM 5310B MOD	07/05/13 17:00	07/09/13 09:15	5g/5g	5g/5g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

Notes and Definitions

Qualifiers:

H-08 Sample hold time extended by freezing at -18 degrees C. Total time at 4 degrees C was less than the standard hold time.

J Estimated Result . Result detected below the lowest point of the calibration curve, but above the specified MDL.

Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely

biased high.

R-04 Reporting levels elevated due to dilution necessary for analysis.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

--- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 24 of 26

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

APEX LABS				Ö	₹	O N	Ē	CHAIN OF CUSTODY	TC	ĕ	>		Lab	ASFORD COC.	3	Ŋ	Ŝ	07	99	þ	
12222 S.H. Garden Place, Tigand, OR 97223 Ph. 503-716-2323 Fax: 503-718-0333	7223 PN: 50.	3-718-2323	Far: 503	-218-0	333																
Commony May Foske & Alongi Project Mps	Hongi	Project Mgr:						- 1	roject	Name	12	1×4	Project Name: Port of Riche Field Project of	deep	10/8	/	900		88	9003.01.40	0
MADESS 2001 NW 19th Are SK 200	Are Sh	200				£	5	Phone: 503-50 -5243 Fax:	0	524	Fix			> S	Smailt	212	1				
Sompledes: Erik Naylor	,												ANALYSIS REQUEST	089940		191					
Site Lecation: OR (AZZ) Other: SAMPLE ID	£018AJ	SINIT	N OF CONTAINERS	WATPH-HCID	30-Halans	8760 VOC NWTPH-Gx	8500 BRD94 AOC?	X318 0978	SEZO SINI DVH ²	2032 PCBs	OTT 002	RCRA Memb (8)	TCLP Metab (8) 11 Sh. (6) Inc. Inc. Ch. (12 Sh. Ma. No. No. No. No. No. No. No. No. No. No		1310-COF8	NOVINT/NIXOIC	Rotachlosoph	70L	a W5/		
LR15-CL-003	5 6/24 1440	1440		П	Н				-				K6020	╙	+		X	X	×	\vdash	
	7-6/24 1225	1225			H	L		-	-	_			Kann	2	⊦	X	X	X			
Normed Turn Acount Time (TAT) = 7-10 Bustness Days TAT Requested (circle) 4 DAY	t Day	2 Day S DAY	3 Day	- I		-11 1		SPECIAL INSTRUCTIONS MANOR: ISM	Je in	STRUC	S]	SPECIAL INSTRUCTIONS.	- Ž	- 3	ĝ	-de -				
	SAMPLES ARE HELD FOR 30 DAYS	DR 30 DAYS					Г														
RELINQUISHED BY:	-	ECEIVED BY	75	١.		`	-	RELINQUISHED BY:	SUSH	SD BY:				RE	SEIVE	RECEIVED BY:					Γ
Space Ally Stryet Due 425/ Diene	* 6/25/13	7	1.0	Ž		9	Z	Date: (9/25/ Beautile					Date	S	Serence				Date		
WHISTONIA MACY BENZINGETINE 1636 PRINGING	ne 1636	rinol Name.	انح	Suff	- 1	- 100 min	18	103/0 Prival Name	ija.				The	Ē.	Printed Name	ä			Time		
Coepay		Company	4				Ť	Conguests	ا					å	Company						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield ISM

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/26/13 11:57

01.10. 5003 1 613 to Chair K processing Ribachield \$100° COLS 6030 6020 0000 90709 *=ISM somple TCLP Meals (8) 七品 RCRA Metals (8) SPECIAL INSTRUCTIONS: 503-501-5243 CHAIN OF CUSTODY 8087 PCBs SETO SINI PAHS 8330 SAOC 8360 BTEX 8500 BBD91 AOC Princel Name: Marcy Brazongettine: 0800 8560 VOC AWTPH-Ga 12232 S.W. Garden Place, Tigard, OR 97223 Ph. 503-718-2323 Fav. 503-718-0333 MATPH-HCID 3 Day # OF CONTAINERS XDLLVIN Ī 3 3 (635 51,01 SDAY જુ 1317 2 Day IIME 56/9 этла Along 4 DAY I Day # OLBY1 Foster -RIS-CL-DU18 RIS-CL-DUI FAT Requested (elrele) LRIS-62-003 Mary: Moust 200 Sher

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Tuesday, July 16, 2013

Madi Novak Maul Foster & Alongi, INC. 2001 NW 19th Ave, STE 200 Portland, OR 97209

RE: Port of Ridgefield Discrete / 9003.01.40

Enclosed are the results of analyses for work order <u>A3F0664</u>, which was received by the laboratory on 6/27/2013 at 12:35:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMA	TION	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
RB-062413	A3F0664-01	Water	06/26/13 16:00	06/27/13 12:35
RB-062513	A3F0664-02	Water	06/26/13 16:10	06/27/13 12:35
RB-062613	A3F0664-03	Water	06/26/13 16:20	06/27/13 12:35

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Newsberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

ANALYTICAL SAMPLE RESULTS

		Per	ntachlorop	henol by EPA	8270D			
			Reporting	;				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
RB-062413 (A3F0664-01RE1)			Matrix: Wa	ater	Batch: 30700)89		
Pentachlorophenol (PCP)	ND	0.500	1.00	ug/L	1	07/03/13 15:21	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Re	covery: 85 %	Limits: 40-125 9	6 "	"	"	
RB-062513 (A3F0664-02RE1)			Matrix: Wa	ater	Batch: 30700	189		
Pentachlorophenol (PCP)	ND	0.515	1.03	ug/L	1	07/03/13 14:44	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Re	covery: 76 %	Limits: 40-125 9	6 "	"	"	
RB-062613 (A3F0664-03)			Matrix: Wa	ater	Batch: 30700	189		
Pentachlorophenol (PCP)	ND	0.472	0.943	ug/L	1	07/03/13 14:05	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Re	covery: 80 %	Limits: 40-125 %	6 "	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

ANALYTICAL SAMPLE RESULTS

		Tot	al Metals by E	PA 6020 (IC	CPMS)			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
RB-062413 (A3F0664-01)			Matrix: Water					
Batch: 3070248								
Arsenic	ND	0.250	0.500	ug/L	1	07/12/13 16:24	EPA 6020A	
Chromium	ND	0.500	2.00	"	"	"	"	
RB-062513 (A3F0664-02)			Matrix: Water					
Batch: 3070248								
Arsenic	ND	0.250	0.500	ug/L	1	07/12/13 16:27	EPA 6020A	
Chromium	ND	0.500	2.00	"	"	"	"	
RB-062613 (A3F0664-03)			Matrix: Water					
Batch: 3070248								
Arsenic	ND	0.250	0.500	ug/L	1	07/12/13 16:30	EPA 6020A	
Chromium	ND	0.500	2.00	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

ANALYTICAL SAMPLE RESULTS

		Con	ventional Ch	emistry Para	meters			
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
RB-062413 (A3F0664-01)			Matrix: Wate	er				
Batch: 3070053								
Total Organic Carbon	1.07	1.00	1.00	mg/L	1	07/02/13 20:51	SM 5310 B	
RB-062513 (A3F0664-02)			Matrix: Wate	er				
Batch: 3070053								
Total Organic Carbon	1.04	1.00	1.00	mg/L	1	07/02/13 21:56	SM 5310 B	
RB-062613 (A3F0664-03)			Matrix: Wate	er				
Batch: 3070053								
Total Organic Carbon	ND	1.00	1.00	mg/L	1	07/02/13 23:01	SM 5310 B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

QUALITY CONTROL (QC) SAMPLE RESULTS

			Penta	achloroph	enol by	EPA 8270D)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070089 - EPA 35100	C (Acid Ex	traction)					Wat	ter				
Blank (3070089-BLK2)				Pre	pared: 07/	03/13 07:07	Analyzed:	07/03/13 11	:06			
EPA 8270D PCP												
Pentachlorophenol (PCP)	ND	0.455	0.909	ug/L	1							
Surr: 2,4,6-Tribromophenol (Surr)		Red	covery: 86 %	Limits: 40	-125 %	Dilu	ution: 1x					
LCS (3070089-BS2)				Pre	pared: 07/	03/13 07:07	Analyzed:	07/03/13 11	:43			
EPA 8270D PCP												
Pentachlorophenol (PCP)	7.12	0.500	1.00	ug/L	1	8.00		89	40-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Reco	overy: 106 %	Limits: 40	-125 %	Dilu	ution: 1x					
LCS Dup (3070089-BSD2)				Pre	pared: 07/	03/13 07:07	Analyzed:	07/03/13 12	:19			Q-19
EPA 8270D PCP												
Pentachlorophenol (PCP)	7.38	0.500	1.00	ug/L	1	8.00		92	40-125%	4	30%	
Surr: 2,4,6-Tribromophenol (Surr)		Reco	overy: 103 %	Limits: 40	-125 %	Dilu	ıtion: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by	EPA 60	20 (ICPMS))					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070248 - EPA 3015	A - HNO3	ONLY					Wat	ter				
Blank (3070248-BLK1)				Pre	pared: 07/	12/13 09:17	Analyzed:	07/12/13 1	6:10			
EPA 6020A												
Arsenic	ND	0.250	0.500	ug/L	1							
Chromium	ND	0.500	2.00	"	"							
LCS (3070248-BS1)				Pre	pared: 07/	12/13 09:17	Analyzed:	07/12/13 1	6:13			
EPA 6020A												
Arsenic	55.2	0.250	0.500	ug/L	1	55.6		99	85-115%			
Chromium	54.3	0.500	2.00	"	"	"		98	80-120%			
Duplicate (3070248-DUP1)				Pre	pared: 07/	12/13 09:17	Analyzed:	07/12/13 1	6:33			
QC Source Sample: RB-062613 (A3	3F0664-03)											
EPA 6020A												
Arsenic	ND	0.250	0.500	ug/L	1		ND				20%	
Chromium	ND	0.500	2.00	"	"		ND				20%	
Matrix Spike (3070248-MS1)				Pre	pared: 07/	12/13 09:17	Analyzed:	07/12/13 1	6:36			
QC Source Sample: RB-062613 (A3	3F0664-03)											
EPA 6020A												
Arsenic	54.6	0.250	0.500	ug/L	1	55.6	ND	98	70-130%			
Chromium	54.9	0.500	2.00	"	"	"	ND	99	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conve	ntional Ch	emistry	Paramete	rs					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070053 - Method P	rep: Aq						Wat	er				
Blank (3070053-BLK1)				Pre	pared: 07/	02/13 10:36	Analyzed:	07/02/13 19	9:18			
SM 5310 B												
Total Organic Carbon	ND	1.00	1.00	mg/L	1							
LCS (3070053-BS1)				Pre	pared: 07/	02/13 10:36	Analyzed:	07/02/13 19	9:41			
SM 5310 B												
Total Organic Carbon	10.4	1.00	1.00	mg/L	1	10.0		104	85-115%			
Duplicate (3070053-DUP1)				Pre	pared: 07/	02/13 10:36	Analyzed:	07/02/13 2	1:12			
QC Source Sample: RB-062413 (A SM 5310 B	3F0664-01)											
Total Organic Carbon	ND	1.00	1.00	mg/L	1		1.07			***	20%	
Matrix Spike (3070053-MS1)				Pre	pared: 07/	02/13 10:36	Analyzed:	07/02/13 2	1:35			
QC Source Sample: RB-062413 (A SM 5310 B	3F0664-01)											
Total Organic Carbon	10.6	1.01	1.01	mg/L	1	10.1	1.07	95	75-125%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

SAMPLE PREPARATION INFORMATION

			5 () ;	554 00505			
			Pentachloropheno	ol by EPA 8270D			
Prep: EPA 3510C (Acid Extra	ction)			Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070089							
A3F0664-01RE1	Water	EPA 8270D PCP	06/26/13 16:00	07/03/13 07:07	1000 mL/2 mL	1000mL/2mL	1.00
A3F0664-02RE1	Water	EPA 8270D PCP	06/26/13 16:10	07/03/13 07:07	970mL/2mL	1000mL/2mL	1.03
A3F0664-03	Water	EPA 8270D PCP	06/26/13 16:20	07/03/13 07:07	1060mL/2mL	1000mL/2mL	0.94
			Total Metals by EF	A 6020 (ICPMS)			
Prep: EPA 3015A -	HNO3 ONL	<u>.Y</u>			Sample	Default	RL Pre
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070248							
A3F0664-01	Water	EPA 6020A	06/26/13 16:00	07/12/13 09:17	45mL/50mL	45mL/50mL	1.00
A3F0664-02	Water	EPA 6020A	06/26/13 16:10	07/12/13 09:17	45 mL/50 mL	45mL/50mL	1.00
A3F0664-03	Water	EPA 6020A	06/26/13 16:20	07/12/13 09:17	45mL/50mL	45mL/50mL	1.00
			Conventional Chem	istry Parameters			
Prep: Method Prep): Aq				Sample	Default	RL Pre
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
3070053							
A3F0664-01	Water	SM 5310 B	06/26/13 16:00	07/02/13 10:36	40mL/40mL	1mL/1mL	1.00
A3F0664-02	Water	SM 5310 B	06/26/13 16:10	07/02/13 10:36	40mL/40mL	1mL/1mL	1.00
A3F0664-03	Water	SM 5310 B	06/26/13 16:20	07/02/13 10:36	40mL/40mL	1mL/1mL	1.00

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

Notes and Definitions

Qualifiers:

Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 10 of 11

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/16/13 17:24

APEX LABS						E	AII	0	CHAIN OF CUSTODY	S	2	DY			Labe ASPOUR	E	戊	3	4		000 of	
12232 S.W. Gurdon Place, Tigard, OR 97223 Phr. 503-718-2323 Fav. 501-718-0333	7223	Ph: 50	3-718-2	323 Fa	: 503	718-0	333															
Company: Mand Foster & Along	اق	- 1	Project Mgn	dgn.						£	N tool	Project Name: Pock	さる	4	Ridge Field	1	4	Proje	4 10	ŝ	Project 9 9003.01, 40	
Address JOOL Now 194h	And	o]	3.5	9				Phono:	1 8	503 - 501. 51x3 Fac	á	57.05	Ĕ			E.	Email:					
Sampled by Gerk Narylos													*	NALY	ANALYSIS REQUEST	ST						
Size Location: OR Other:	# 01	1		XIX	SKEINIVENS	SH-HCID	PH-D4		SDDM AGC?	NOC STEX	SHA9 KG	ves.		(8) Metals (8)	(8) Ba, Ba, Cd. (9) Ba, Ba, Cd. (0) Ca, Ca, Fq. Ph. (2) Dia, Ma, M, K, (2) Dia, Ma, M, K, (3) Dia, Ma, M, K, (4) Dia, M, Cd. (5) Dia, M, Cd. (6) Dia, M, Cd. (7) Dia, M, Cd. (B Birria Kan	7	and fordan		
SAMPLE ID	ยงา	DATI	3831.1	TAM	40#			8360				7808	L 009		in the tree	-0021 (VID	1500-S	513)	미	%≥ &		
RB-062413	3	25/2	1600	3	5				\vdash	-	_		H	\vdash	9(9)		-	×	X	×		
RB-062513		U)	1610	3	2	\vdash	L		-	-	L		+	┝	3	-		X	×	×		
88-062613		97/9	0(3)	3	J	-	_			H	_		┢	H	0109	0	-	ÿ	×	×		
4							_		-					\vdash	L	-	L			+		
27									Н	Н							L					
	\forall					\dashv	\dashv	\Box						\dashv								
	\dashv				\neg	\dashv	\dashv		\dashv	-	_		\dashv	-								
	Ť					-	-		\dashv	_												
9	1				T		-		\dashv	4												
9						-	\dashv			_												
Normal Turn Around Tima (TAT) = 7-10 Business Days	92 Day	2		VES		2			88	SPECIAL INSTRUCTIONS	INST	RUCT	SNO									
TAT Requested (circle)	1 Day		2 Day		3 Day																	
	4 DAY		5 DAY	•	Other:			1														
SAMPLES ARE HELD FOR 39 DAYS	ARE	HELD F	OR 39 D	8AV					Τ													_
RELENQUISHED BY:	۱ ۱	Ī.	RECEIVED BY:	äaa		,		`	Ĕ,	RELINQUISHED IN:	SHEE	ŝ				H	RECEIVED BY	8.7				Τ
Synature: C	200	Dac. 47-413 Signam	Signature	7	1	3	Date	岩	January 3	S) Aller					Date	Signature	(Jame)			Desc	60	
Prindrang Ecil No-ylos n	Time		Printed Name:	13			ă	77	20	Printed Name	50			ĺ	Tine	Print	Printed Norse			Time	,	
Company		·	Contrato		Ä	0)				Comme						į						
									1							Constitution of the last	5					7

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, August 28, 2013

Madi Novak Maul Foster & Alongi, INC. 2001 NW 19th Ave, STE 200 Portland, OR 97209

RE: Port of Ridgefield Discrete / 9003.01.40

Enclosed are the results of analyses for work order <u>A3F0670</u>, which was received by the laboratory on 6/27/2013 at 12:35:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: cwoodcock@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Switenicky lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

ANALYTICAL REPORT FOR SAMPLES

SA	MPLE INFORMATIO	N	
Laboratory ID	Matrix	Date Sampled	Date Received
A3F0670-01	Sediment	06/26/13 11:50	06/27/13 12:35
A3F0670-03	Sediment	06/26/13 11:50	06/27/13 12:35
A3F0670-05	Sediment	06/26/13 11:50	06/27/13 12:35
A3F0670-06	Sediment	06/26/13 11:10	06/27/13 12:35
A3F0670-07	Sediment	06/26/13 10:53	06/27/13 12:35
	Laboratory ID A3F0670-01 A3F0670-03 A3F0670-05 A3F0670-06	Laboratory ID Matrix A3F0670-01 Sediment A3F0670-03 Sediment A3F0670-05 Sediment A3F0670-06 Sediment	A3F0670-01 Sediment 06/26/13 11:50 A3F0670-03 Sediment 06/26/13 11:50 A3F0670-05 Sediment 06/26/13 11:50 A3F0670-06 Sediment 06/26/13 11:10

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwiten My lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

ANALYTICAL CASE NARRATIVE

Work Order: A3F0670

Amended Report Revision 1

Additional Sample Analyses Requested:

Per client request on 7/19/13 via email, the following analyses were added to the corresponding sample ID's.

A3F0670-02/ CL-16-2.5: 1613 Dioxins (10g extraction)

A3F0670-06/ CL-18: 1613 Dioxins (10g extraction), 8270D PCP A3F0670-07/ CL-19: 1613 Dioxins (10g extraction), 8270D PCP

A3F0670-10/ CL-22: 1613 Dioxins (10g extraction) A3F0670-11/ CL-23: 1613 Dioxins (10g extraction)

Christina Woodcock Project Manager August 28, 2013

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Switenicky lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

ANALYTICAL SAMPLE RESULTS

		Pei	ntachlorop	henol by EPA	8270D				
			Reporting	3					
Analyte	Result	MDL	Limit	Units	Dilu	tion	Date Analyzed	Method	Notes
CL-16-1.5 (A3F0670-01RE1)			Matrix: Se	diment	Batch: 3	0701	27		
Pentachlorophenol (PCP)	ND	198	397	ug/kg dry		1	07/08/13 12:46	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Re	covery: 73 %	Limits: 40-125	%	"	"	"	
CL-17-1.5 (A3F0670-03RE1)			Matrix: Se	ediment	Batch: 3	0701	27		
Pentachlorophenol (PCP)	ND	177	353	ug/kg dry		1	07/08/13 13:58	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Re	covery: 78 %	Limits: 40-125	%	"	"	"	
CL-17-1.5-DUP (A3F0670-05RE1)			Matrix: Se	ediment	Batch: 3	0701	27		
Pentachlorophenol (PCP)	ND	165	329	ug/kg dry		1	07/08/13 14:34	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Re	covery: 77 %	Limits: 40-125	%	"	"	"	
CL-18 (A3F0670-06RE2)			Matrix: Se	ediment	Batch: 3	0706 [.]	14		H-08
Pentachlorophenol (PCP)	ND	161	321	ug/kg dry		1	07/26/13 10:51	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Rec	overy: 124 %	Limits: 40-125	%	"	"	"	
CL-19 (A3F0670-07RE1)			Matrix: Se	ediment	Batch: 3	0706 ⁻	14		H-08
Pentachlorophenol (PCP)	ND	176	353	ug/kg dry		1	07/26/13 12:03	EPA 8270D PCP	
Surrogate: 2,4,6-Tribromophenol (Surr)		Rec	overv: 124 %	Limits: 40-125	%		"	п	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chuiten My Coal coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

ANALYTICAL SAMPLE RESULTS

		Tot	al Metals by	EPA 6020 (IC	PMS)			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
CL-16-1.5 (A3F0670-01)			Matrix: Sedi	ment				
Batch: 3070196								
Arsenic	11.2		0.847	mg/kg dry	5	07/10/13 11:02	EPA 6020A	
Chromium	34.2		1.69	"	"	"	"	
CL-17-1.5 (A3F0670-03)			Matrix: Sedi	ment				
Batch: 3070196								
Arsenic	2.55		0.736	mg/kg dry	5	07/10/13 11:12	EPA 6020A	
Chromium	27.7		1.47	"	"	"	"	
CL-17-1.5-DUP (A3F0670-05)			Matrix: Sedi	ment				
Batch: 3070196								
Arsenic	2.16		0.696	mg/kg dry	5	07/10/13 11:14	EPA 6020A	
Chromium	29.8		1.39	"	"	"	"	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwiten My lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

ANALYTICAL SAMPLE RESULTS

		Con	ventional Ch	nemistry Paran	neters			
			Reporting	·				
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CL-16-1.5 (A3F0670-01)			Matrix: Sed	iment				
Batch: 3070061								
Total Organic Carbon	1.6		0.020	% by Weight	1	07/09/13 13:55	PSEP/SM 5310B	
							MOD	
CL-17-1.5 (A3F0670-03)			Matrix: Sed	iment				
Batch: 3070061								
Total Organic Carbon	0.88		0.020	% by Weight	1	07/09/13 13:55	PSEP/SM 5310B	
							MOD	
CL-17-1.5-DUP (A3F0670-05)			Matrix: Sed	iment				
Batch: 3070061								
Total Organic Carbon	0.61		0.020	% by Weight	1	07/09/13 13:55	PSEP/SM 5310B	
							MOD	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwiten My lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

ANALYTICAL SAMPLE RESULTS

			Percen	t Dry Weight				
			Reporting					
Analyte	Result	MDL	Limit	Units	Dilution	Date Analyzed	Method	Notes
CL-16-1.5 (A3F0670-01)			Matrix: Sec	diment B	atch: 30700	18		
% Solids	62.9		1.00	% by Weight	1	07/02/13 11:38	Apex SOP	
CL-17-1.5 (A3F0670-03)			Matrix: Sec	diment B	atch: 30700	18		
% Solids	70.1		1.00	% by Weight	1	07/02/13 11:38	Apex SOP	
CL-17-1.5-DUP (A3F0670-05)			Matrix: Sec	diment B	atch: 30700	18		
% Solids	70.7		1.00	% by Weight	1	07/02/13 11:38	Apex SOP	
CL-18 (A3F0670-06)			Matrix: Sec	diment B	atch: 30705	77		
% Solids	59.2		1.00	% by Weight	1	07/25/13 10:03	Apex SOP	
CL-19 (A3F0670-07)			Matrix: Sec	diment B	atch: 30705	77		
% Solids	68.8		1.00	% by Weight	1	07/25/13 10:03	Apex SOP	

Apex Laboratories
Churten My load Coth

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

QUALITY CONTROL (QC) SAMPLE RESULTS

			Penta	chlorophe	nol by	EPA 82700	<u> </u>					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070127 - EPA 3546							Sed	liment				
Blank (3070127-BLK1)				Prepa	ared: 07/	05/13 09:59	Analyzed:	07/05/13 1	5:55			
EPA 8270D PCP												
Pentachlorophenol (PCP)	ND	114	227	ug/kg wet	1							
Surr: 2,4,6-Tribromophenol (Surr)		Rec	overy: 82 %	Limits: 40-1	25 %	Dilı	ution: 1x					
LCS (3070127-BS1)				Prepa	ared: 07/	05/13 09:59	Analyzed:	07/05/13 1	6:32			
EPA 8270D PCP												
Pentachlorophenol (PCP)	615	125	250	ug/kg wet	1	800		77	25-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Rec	overy: 90 %	Limits: 40-1	25 %	Dilı	ution: 1x					
Duplicate (3070127-DUP2)				Prepa	ared: 07/	05/13 09:59	Analyzed:	07/08/13 1	3:22			
QC Source Sample: CL-16-1.5 (A3F EPA 8270D PCP	0670-01RE1))										
Pentachlorophenol (PCP)	ND	186	373	ug/kg dry	1		ND				30%	
Surr: 2,4,6-Tribromophenol (Surr)		Rec	overy: 87 %	Limits: 40-1	25 %	Dilt	ution: 1x					
Matrix Spike (3070127-MS2)				Prepa	ared: 07/	05/13 09:59	Analyzed:	07/08/13 1	5:10			
QC Source Sample: CL-17-1.5-DUP EPA 8270D PCP	(A3F0670-05	5RE1)										
Pentachlorophenol (PCP)	1020	177	354	ug/kg dry	1	1130	ND	90	25-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Rec	overy: 90 %	Limits: 40-1	25 %	Dilı	ution: 1x					
Batch 3070614 - EPA 3546							Sed	liment				
Blank (3070614-BLK1)				Prepa	ared: 07/	25/13 13:38	Analyzed:	07/25/13 1	5:45			
EPA 8270D PCP												
Pentachlorophenol (PCP)	ND	90.9	182	ug/kg wet	1							
Surr: 2,4,6-Tribromophenol (Surr)		Reco	overy: 111 %	Limits: 40-1	25 %	Dilt	ution: 1x					
LCS (3070614-BS1)				Prepa	ared: 07/	25/13 13:38	Analyzed:	07/25/13 1	6:21			
EPA 8270D PCP												
Pentachlorophenol (PCP)	883	100	200	ug/kg wet	1	800		110	25-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Reco	very: 114 %	Limits: 40-1	25 %	Dilı	ution: 1x					
Duplicate (3070614-DUP2)				Prep	ared: 07/	25/13 13:38	Analyzed:	07/26/13 1	1:27			Н-
QC Source Sample: CL-18 (A3F0670	0.0CDE2)						· · ·					

Christina M. Woodcock For Philip Nerenberg, Lab Director

Switer My lood coch

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

QUALITY CONTROL (QC) SAMPLE RESULTS

			Penta	achlorophe	nol by	EPA 8270D)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070614 - EPA 3546							Sed	liment				
Duplicate (3070614-DUP2)				Prep	pared: 07	7/25/13 13:38	Analyzed:	07/26/13 1	1:27			H-08
QC Source Sample: CL-18 (A3F067 EPA 8270D PCP	70-06RE2)											
Pentachlorophenol (PCP)	ND	166	332	ug/kg dry	1		ND				30%	
Surr: 2,4,6-Tribromophenol (Surr)		Reco	overy: 121 %	Limits: 40-	125 %	Dilu	ution: 1x					
Matrix Spike (3070614-MS1)				Prep	pared: 07	//25/13 13:38	Analyzed:	07/26/13 1	2:40			H-08
QC Source Sample: CL-19 (A3F067	'0-07RE1)											
EPA 8270D PCP												
Pentachlorophenol (PCP)	1340	177	354	ug/kg dry	1	1130	ND	118	25-125%			
Surr: 2,4,6-Tribromophenol (Surr)		Reco	overy: 122 %	Limits: 40-	125 %	Dilu	tion: 1x					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwitenk My lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total	Metals by E	PA 602	20 (ICPMS	5)					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070196 - EPA 3051	Α						Sec	diment				
Blank (3070196-BLK1)				Prepa	red: 07/0	09/13 11:19	Analyzed:	07/10/13 1	0:56			
EPA 6020A												
Arsenic	ND		0.500	mg/kg wet	5							
Chromium	ND		1.00	"	"							
LCS (3070196-BS1)				Prepa	red: 07/0	09/13 11:19	Analyzed:	07/10/13 1	0:59			
EPA 6020A												
Arsenic	24.9		0.500	mg/kg wet	5	25.0		99	80-120%			
Chromium	25.5		1.00	"	"	"		102	"			
Duplicate (3070196-DUP1)				Prepa	red: 07/0	09/13 11:19	Analyzed:	07/10/13 1	1:17			
QC Source Sample: CL-17-1.5-DUI	P (A3F0670-0	5)										
EPA 6020A												
Arsenic	2.74		0.749	mg/kg dry	5		2.16			24	40%	
Chromium	31.4		1.50	"	"		29.8			5	40%	
Matrix Spike (3070196-MS1)				Prepa	ared: 07/0	09/13 11:19	Analyzed:	07/10/13 1	1:20			
QC Source Sample: CL-17-1.5-DUI	P (A3F0670-0	5)										
EPA 6020A												
Arsenic	39.4		0.786	mg/kg dry	5	39.3	2.16	95	75-125%			
Chromium	68.4		1.57	"	"	"	29.8	98	"			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwitenk My lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conve	ntional Ch	emistry	Paramete	rs					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070061 - PSEP TC	С						Sed	liment				
Blank (3070061-BLK1)				Prep	oared: 07/	02/13 12:43	Analyzed:	07/09/13 13	3:55			
PSEP/SM 5310B MOD												
Total Organic Carbon	ND		0.020	% by Weight	1							
LCS (3070061-BS1)				Prej	oared: 07/	02/13 12:43	Analyzed:	07/09/13 13	3:55			
PSEP/SM 5310B MOD												
Total Organic Carbon	9400			mg/kg	1	10000		94	85-115%			
Duplicate (3070061-DUP1)				Prep	oared: 07/	02/13 12:43	Analyzed:	07/09/13 13	3:55			
QC Source Sample: CL-16-1.5 (A	3F0670-01)											
PSEP/SM 5310B MOD												
Total Organic Carbon	1.7		0.020	% by Weight	1		1.6			6	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwiten My lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	Dry We	ight					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD Limit	Notes
Batch 3070018 - Tota	al Solids (Dry We	eight)					Soil				

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Batch 3070577 - Total Solids (Dry Weight)

Soil

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Churten Chy Oad Coth

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

SAMPLE PREPARATION INFORMATION

			Pentachloropheno	ol by EPA 8270D			
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070127							
A3F0670-01RE1	Sediment	EPA 8270D PCP	06/26/13 11:50	07/05/13 09:59	10.02g/5mL	10g/5mL	1.00
A3F0670-03RE1	Sediment	EPA 8270D PCP	06/26/13 11:50	07/05/13 09:59	10.09g/5mL	10g/5mL	0.99
A3F0670-05RE1	Sediment	EPA 8270D PCP	06/26/13 11:50	07/05/13 09:59	10.74g/5mL	10g/5mL	0.93
Batch: 3070614							
A3F0670-06RE2	Sediment	EPA 8270D PCP	06/26/13 11:10	07/25/13 13:38	10.51g/5mL	10g/5mL	0.95
A3F0670-07RE1	Sediment	EPA 8270D PCP	06/26/13 10:53	07/25/13 13:38	10.3g/5mL	10g/5mL	0.97
			Total Metals by EF	PA 6020 (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070196							
A3F0670-01	Sediment	EPA 6020A	06/26/13 11:50	07/09/13 11:19	0.938g/100mL	0.5g/50mL	1.07
A3F0670-03	Sediment	EPA 6020A	06/26/13 11:50	07/09/13 11:19	$0.969 \\ g/100 \\ mL$	0.5g/50mL	1.03
A3F0670-05	Sediment	EPA 6020A	06/26/13 11:50	07/09/13 11:19	1.016g/100mL	0.5g/50mL	0.98
			Conventional Chem	nistry Parameters			
Prep: PSEP TOC					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070061							
A3F0670-01	Sediment	PSEP/SM 5310B MOD	06/26/13 11:50	07/02/13 12:43	5g/5g	5g/5g	NA
A3F0670-03	Sediment	PSEP/SM 5310B MOD	06/26/13 11:50	07/02/13 12:43	5g/5g	5g/5g	NA
A3F0670-05	Sediment	PSEP/SM 5310B MOD	06/26/13 11:50	07/02/13 12:43	5g/5g	5g/5g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwiten My lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

Notes and Definitions

Qualifiers:

H-08 Sample hold time extended by freezing at -18 degrees C. Total time at 4 degrees C was less than the standard hold time.

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

*** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Switen My God Coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC.

Project: Port of Ridgefield Discrete

2001 NW 19th Ave, STE 200

Portland, OR 97209

Project Number: 9003.01.40 Project Manager: Madi Novak

Reported:

ager: Madi Novak 08/28/13 14:33

APEX LABS					CE	AII	0	F.C	CHAIN OF CUSTODY	Į.	ρχ	_		LADY ASFORTO COC 1 or 3	2	IT	Ğ.	Æ.	0	기	4)
12232 S.W. Gawden Place, Tigard, OR 97223 Ph; 503-718-2323 Fax: 503-718-0333	7223 PN	: 503-71	8-2323	Fee: 503	-278-0	333															
Company, Maud Foster & A	Alongi		Project Mgr:						Æ	Project Name: Poct-	ame:	700	48	Ridgefield	Stell.	-95	Project 8		é	1003.00	e P
Address: 7001 No 19th Ave	1	강	200	o			Phon	S,	Phone: 503 - 501-5,243	15.	_	500		3	Email	di di					
Sampled by: 65 KNorylog													NALY	ANALYSIS REQUEST	Ţ						
Sie Leczien: OR				SHERE	aı	-		*OOA		511				1, 10, 24, 24, 35, 11, 12, 24, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35	4731		975 VY		prospo	عديم	
	* GI BY	эм	XIRIX	OF CONTA	OH-H41V	VTPH-Gx	20A 09	MOSS 69	DOAS 00 X318 09	Vd WIS 02	83 bCB2	OTT 0	Intell ASI:	व कि पड तर के अ तर के अ त क क क क क क क क क क क क क क क क क क क	STOO -00	Z-00	ાં ફ છેટી	70	والحاء براجاة	52 M 64	
1 CL - 16 - 1.5		- 0	13		-		-	\rightarrow	_		08		-	1 (3 41) (3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		13	91 义	-12	₹ ×	4 ,	+
. 16 . 3.5	2 61%		3	C.					\vdash					2	-			4		1 x	
22-17-1.5	3 6/26		1,50 Sect	~		-		-	_				-	60,00	-		×	×	İx	×	
4.2.5	10	6/26 cars 62/3	3	e-4		_							-		-					1	
5-1-5-1-5-04P	5	6/26 115056	5050	ent ಆಗ										6020			×	×	V	1 1	
81-27	د- ه و	6/36 1110 Sel	υ	\rightarrow				-	_											1	
	-	6/26 1053	3 55	حر.		-		\dashv	-											K	
24-70	\neg	6/26 rons Sc/2	30	_		\dashv		\dashv	_				\vdash					Г		X	
CL-21	3	6/26 1000 50	20 500	۲,		_														X	
0 66-77	6(36	36 10	los sol	رخ سے											_			Г		X	
Normal Turn Around Time (TAT) = 7-10 Business Days	sa Days		YES		NO			Ť	SPECIAL INSTRUCTIONS	. INST	RUCT	TONS						1	1		
	1 Day	2 Day	ay	3 Day																	
TAT Requested (circle) 4 D	4 DAY	SDAY	Α.	Other:				_													
SAMPLES ARE HELD FOR 30 DAYS	VRE HEL	D FOR 3	O DAYS					Т													
RELINQUISHED BY:		RECE	RECEIVED BY:	-	-		.	12	RELINQUISHED BY:	ISHED	9,6				RECI	RECEIVED BY:	BY:				T
Speaker	E E (3)	Date 6/37 Signature		1	¥	Dang	12/2	7/1 Santon	arrient.			ĺ		Date	Simonno	1000			٦	Date	
mentane 60 1/2 No. 7/6" Tenes 1000 mentanes	2007	Priva	, Mark		2	Time	(Z)	Ř.	Printed Name	8				Tinc	Prints	Prised Nase			,	Tine	
Сопрат		Company	3690	A	>			S	Conputer.						Company	É					
				-																	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chwiten My Joak Coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 08/28/13 14:33

CHA	JR 9722	35	503-71	8.2323	Fax: 50	ರ ಕ್ಷ	HA 6333	Ž	OF	5	CHAIN OF CUSTODY	9	>		7	# # # # # # # # # # # # # # # # # # #	H	\forall	3	Ĕ.	วั	Lab # 21070670 coc 2 4 a	å	a
Company: Maril Fooder &	Alengi	1,5	Proj	Project Mgr.							Project	Project Name:		16	took Yout		40	9.5	Project	- n	100	of Ridgeling mount 7003 .cl.	2	
Address pool No C	1.0 th	4.5	7,4	- 1	200			-	hone: §	5	Phone: ≶ ~ 5 ~ 5 ~ 5 ~ 5 }	3	S Fax:				Email:	4						
Sampled by: Gall As-	N-7(00	L												ANA	CYSIS	ANALYSIS REQUEST								
She Lecusion: OR GPA	e GII s	31		XIXI	CONTAINERS	GIDH-H41	za-H41	79-H4T	RRDW AOC	X3T8	DOVE	PCBs SINI PAHs		(g) शकामुर V	(8) datate %	ارش، العمالات (كل الكارة، العمالات العمالات العمالات العمالات العمالات العمالات العمالات العمالات العمالات الم المالة المالات	4131 SSB 1035	Z-	ة المُحدِّم الرحم	75	Jando soldo de	SMA: 10		
SAMPLE ID	IV1	LVC	INIT	_		AW	LANN		_	_	_	_	. 009	всв	TOL	v *s v ⊈h 3 '≠0		1300	gE191	27	4.5)	0191		
56-77	=	6/36	0111	Sed	4			Н	H			_	_				Ļ	L			ŕ	1		-
んぐ-77	2	77/9	20) 7	3	~	_		\vdash				-	-				_	L.		Г	Ė	14		-
58-77	10	31/9	900		4	<u> </u>		-	_			⊢		_			L	L		T	1	+		+
	_			+	-			-	-			\vdash	\vdash				H				\vdash	H		-
	_		+	+	+-	\perp		+			+	+	+-	_				_		+	\uparrow	+		\rightarrow
			-					\vdash			\vdash	-	-				L	_		\vdash	\dagger			-
						Ш			-				_							T				-
	_		_	+	+	_		+			\vdash	+	+							П	H			-
	4	_	4	4	4	_		\dashv	4			-	4				_	_		٦	\neg	-		_
T Day	1 Day	all A	2 Day	4 483	3 Day	2 .				× ×	SPECIAL INSTRUCTIONS:	STRU		Si .										
(a) requested (circle)	4 DAY	`~	SDAY	à	Other	;;																		
SAMP	SAMPLES ARE HELD FOR 30 DAYS	E HEL	FOR	8 DAYS																				
RELEXQUISHED BY:	V ä	7 nas: 6/37		RECEIVED BY:	1/4	1/1/2	62	9	12	Reason	Retunquished by:	E0 B2			ľ		RECEIV	RECEIVED BY:	E.		1 6	à		1
Printed Names Coll (R. NoryCor	Tone	39	Tone (GGO Printed Name)	Name	B	<u> </u>	100	1	12	į	Printed Name				-	Dime	Prime	Printed Name			1 -	Time		
Company			Continue	202	T	- E				Company	500						Corrector	2						
					00											-4								1

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Chuitena My lood coch

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Wednesday, July 17, 2013

Madi Novak Maul Foster & Alongi, INC. 2001 NW 19th Ave, STE 200 Portland, OR 97209

RE: Port of Ridgefield Discrete / 9003.01.40

Enclosed are the results of analyses for work order <u>A3F0672</u>, which was received by the laboratory on 6/27/2013 at 12:35:00PM.

Thank you for using Apex Labs. We appreciate your business and strive to provide the highest quality services to the environmental industry.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/17/13 16:26

ANALYTICAL REPORT FOR SAMPLES

	SA	MPLE INFORMATIO	N	
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
PS-SRM-062713	A3F0672-01	Sediment	06/27/13 10:00	06/27/13 12:35

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/17/13 16:26

ANALYTICAL SAMPLE RESULTS

		Conv	ventional C	hemistry Paran	neters			
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Date Analyzed	Method	Notes
PS-SRM-062713 (A3F0672-01)			Matrix: Sec	diment				
Batch: 3070061 Total Organic Carbon	1.9	0.010	0.020	% by Weight	1	07/09/13 13:55	PSEP/SM 5310B MOD	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/17/13 16:26

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conve	ntional Ch	emistry	Paramete	rs					
Analyte	Result	MDL	Reporting Limit	Units	Dil.	Spike Amount	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3070061 - PSEP TOC	;						Sed	liment				
Blank (3070061-BLK1)				Prep	pared: 07/	02/13 12:43	Analyzed:	07/09/13 13	:55			
PSEP/SM 5310B MOD												
Total Organic Carbon	ND	0.010	0.020	% by Weight	1							
LCS (3070061-BS1)				Prep	pared: 07/	02/13 12:43	Analyzed:	07/09/13 13	:55			
PSEP/SM 5310B MOD												
Total Organic Carbon	9400			mg/kg	1	10000		94	85-115%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/17/13 16:26

SAMPLE PREPARATION INFORMATION

			Conventional Chen	nistry Parameters			
Prep: PSEP TOC					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 3070061							
A3F0672-01	Sediment	PSEP/SM 5310B MOD	06/27/13 10:00	07/02/13 12:43	5g/5g	5g/5g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/17/13 16:26

Notes and Definitions

Qualifiers:

Notes and Conventions:

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. Results listed as 'wet' or without 'dry'designation are not dry weight corrected.

RPD Relative Percent Difference

MDL If MDL is not listed, data has been evaluated to the Method Reporting Limit only.

WMSC Water Miscible Solvent Correction has been applied to Results and MRLs for volatiles soil samples per EPA 8000C.

Batch QC

Unless specifically requested, this report contains only results for Batch QC derived from client samples included in this report. All analyses were performed with the appropriate Batch QC (including Sample Duplicates, Matrix Spikes and/or Matrix Spike Duplicates) in order to meet or exceed method and regulatory requirements. Any exceptions to this will be qualified in this report. Complete Batch QC results are available upon request. In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) is analyzed to demonstrate accuracy and precision of the extraction and analysis.

Blank Policy Apex assesses blank data for potential high bias down to a level equal to ½ the method reporting limit (MRL), except for conventional chemistry and HCID analyses which are assessed only to the MRL. Sample results flagged with a B or B-02 qualifier are potentially biased high if they are less than ten times the level found in the blank for inorganic analyses or less than five times the level found in the blank for organic analyses.

For accurate comparison of volatile results to the level found in the blank; water sample results should be divided by the dilution factor, and soil sample results should be divided by 1/50 of the sample dilution to account for the sample prep factor.

Results qualified as reported below the MRL may include a potential high bias if associated with a B or B-02 qualified blank. B and B-02 qualifications are not applied to J qualified results reported below the MRL.

- QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- *** Used to indicate a possible discrepency with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 6 of 7

12232 S.W. Garden Place Tigard, OR 97223 503-718-2323 Phone 503-718-0333 Fax

Maul Foster & Alongi, INC. Project: Port of Ridgefield Discrete

 2001 NW 19th Ave, STE 200
 Project Number: 9003.01.40
 Reported:

 Portland, OR 97209
 Project Manager: Madi Novak
 07/17/13 16:26

OR 97223 Ptc 503-718-23 A. A.J. S. S. S. TINE DATE TIME	A OF CONTAINERS	MALEH-HCID	Them	Project Name: Pat	Project	Name	Project Name: Part		4.0	135	l.	Debugan Contraction		
Project N	VINTUM S	M-Halms.	Them	505	Project	Name:	oğ.		A Rich	100	t.	90		1
OR (C)	VINIVIN S	VG-Halann	Phon	505			ļ				~	Control of the last	04.10 KG	
OR (%) LABID# DATE TIME		M-Halms		95500,520	Ś	35	E E			Email:				
OR (%) LABID# DATE TIME		M-Halwa						NALA	ANALYSIS REQUEST	100000				933
EAJ TAG	_	LAN	VOC PH-Gg	SBDM AOC?	20.49	CBS		(8) sleeds (8)	As Ber Be, Cd. As Ber Be, Cd. Co. Co. Fe, Ft. As Do. M. K. As Do. M. K. As Do. M. K.			ביאייי (יפון		
_	~ Y*S		8390			1 E808	T 603		70 (A) 10 (A) 10 (A) 10 (A)	1200-0	Z-0071	0 L		
PS-5RM-061713 417 1000 3				4								×		-
	1	#	7	+		+				\Box				\vdash
		-	Ŧ	+	1	+		+		4		+		\rightarrow
				-		-	Ĺ	+-			✝	+		+
						Н		Н						+-
			1	-	1	_		+						-
	1	1				_		-			\dashv			
			1	+	+	-		+		\perp				-
Normal Turn Around Time (TAT) = 7-10 Business Days	YES	ON.		SPE	SPECIAL INSTRUCTIONS:	STRUC	TIONS	١.			1			
	3 Day													
4 BAY SDAY	Other:													
RELINQUISHED IN: SAMPLES ARE HELD FOR 30 DAYS	Sund // Ukun			MELLIN	RELINQUISHED BY:	ED BY:				RECE	RECEIVED BY:			
Strante Osc 6/77/13 Street	11/1	Page 100	14/2	2 Zamenec	200				Date	Semone	1:		à	
Princi Name Seile May los Time Princi Princi Name	Ž	F II	The: 1/23	11	Printed Name:				Teec	Prinand Norse	pere		Tinc	
Company	1400			Company	:. 8					Conpany				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nevenberg

Your Project #: A3F0664 Your C.O.C. #: na

Attention: Philip Nerenberg
Apex Laboratories
12232 SW Garden Place
Tigard, OR
USA 97223

Report Date: 2013/07/16

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3A4675 Received: 2013/07/02, 12:48

Sample Matrix: Water # Samples Received: 3

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Dioxins/Furans in Water (1613B) (1)	3	2013/07/04	2013/07/15	5 BRL SOP-00410	EPA 1613B mod.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- (1) Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.
- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ivana Vukovic, Env Project Manager Email: IVukovic@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 1

Apex Laboratories Client Project #: A3F0664

DIOXINS AND FURANS BY HRMS (WATER)

Maxxam ID		SC3111						
Sampling Date		2013/06/26 16:00						
COC Number					TOXIC EQUIVA	LENCY	# of	
	Units	RB-062413	EDL	RDL	TEF (2005 WHO)		Isomers	QC Batch
2,3,7,8-Tetra CDD *	na/l	1.13 U	1.13	10.9	1.00	1.13	1	3272206
	pg/L		_	54.3				
1,2,3,7,8-Penta CDD	pg/L	1.15 U	+	+	1.00	1.15		3272206
1,2,3,4,7,8-Hexa CDD	pg/L	1.11 U	1.11	54.3	0.100	0.111		3272206
1,2,3,6,7,8-Hexa CDD	pg/L	1.19 U	1.19	54.3	0.100	0.119		3272206
1,2,3,7,8,9-Hexa CDD	pg/L	1.11 U	1.11	54.3	0.100	0.111		3272206
1,2,3,4,6,7,8-Hepta CDD	pg/L	7.78 J	1.13	54.3	0.0100	0.0778		3272206
Octa CDD	pg/L	64.4 J	1.10	109	0.000300	0.0193		3272206
Total Tetra CDD	pg/L	1.13 U	1.13	10.9				3272206
Total Penta CDD	pg/L	1.15 U	1.15	54.3				3272206
Total Hexa CDD	pg/L	1.15 U	1.15	54.3				3272206
Total Hepta CDD	pg/L	13.1 J	1.13	54.3				3272206
2,3,7,8-Tetra CDF **	pg/L	1.10 U	1.10	10.9	0.100	0.110		3272206
1,2,3,7,8-Penta CDF	pg/L	1.20 U	1.20	54.3	0.0300	0.0360		3272206
2,3,4,7,8-Penta CDF	pg/L	1.15 U	1.15	54.3	0.300	0.345		3272206
1,2,3,4,7,8-Hexa CDF	pg/L	1.06 U	1.06	54.3	0.100	0.106		3272206
1,2,3,6,7,8-Hexa CDF	pg/L	1.10 U	1.10	54.3	0.100	0.110		3272206
2,3,4,6,7,8-Hexa CDF	pg/L	1.08 U	1.08	54.3	0.100	0.108		3272206
1,2,3,7,8,9-Hexa CDF	pg/L	1.12 U	1.12	54.3	0.100	0.112		3272206
1,2,3,4,6,7,8-Hepta CDF	pg/L	1.56 U (1)	1.56	54.3	0.0100	0.0156		3272206
1,2,3,4,7,8,9-Hepta CDF	pg/L	1.12 U	1.12	54.3	0.0100	0.0112		3272206
Octa CDF	pg/L	5.93 J	1.15	109	0.000300	0.00178		3272206
Total Tetra CDF	pg/L	1.10 U	1.10	10.9				3272206
Total Penta CDF	pg/L	1.17 U	1.17	54.3				3272206
Total Hexa CDF	pg/L	1.09 U	1.09	54.3				3272206
Total Hepta CDF	pg/L	1.36 J	1.12	54.3				3272206
TOTAL TOXIC EQUIVALENCY	pg/L					3.67		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	90						3272206

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan
TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

Apex Laboratories Client Project #: A3F0664

DIOXINS AND FURANS BY HRMS (WATER)

Maxxam ID		SC3111						
Sampling Date		2013/06/26						1
		16:00						
COC Number		na			TOXIC EQUIVA		# of	
	Units	RB-062413	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	somers	QC Batch
								_
C13-1234678 HeptaCDD *	%	85						3272206
C13-1234678 HeptaCDF **	%	98						3272206
C13-123478 HexaCDD	%	76						3272206
C13-123478 HexaCDF	%	96						3272206
C13-1234789 HeptaCDF	%	90						3272206
C13-123678 HexaCDD	%	85						3272206
C13-123678 HexaCDF	%	92						3272206
C13-12378 PentaCDD	%	78						3272206
C13-12378 PentaCDF	%	84						3272206
C13-123789 HexaCDF	%	81						3272206
C13-234678 HexaCDF	%	94						3272206
C13-23478 PentaCDF	%	95						3272206
C13-2378 TetraCDD	%	73						3272206
C13-2378 TetraCDF	%	76						3272206
C13-OCDD	%	82						3272206

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0664

DIOXINS AND FURANS BY HRMS (WATER)

Maxxam ID		SC3112						
Sampling Date		2013/06/26 16:10						
COC Number		na	+		TOXIC EQUIVA	LENCY	# of	
	Units	RB-062513	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/L	1.14 U	1.14	11.1	1.00	1.14		3272206
1,2,3,7,8-Penta CDD	pg/L	1.20 U	1.20	55.6	1.00	1.20		3272206
1,2,3,4,7,8-Hexa CDD	pg/L	1.16 U	1.16	55.6	0.100	0.116		3272206
1,2,3,6,7,8-Hexa CDD	pg/L	1.24 U	1.24	55.6	0.100	0.124		3272206
1,2,3,7,8,9-Hexa CDD	pg/L	1.16 U	1.16	55.6	0.100	0.116		3272206
1,2,3,4,6,7,8-Hepta CDD	pg/L	5.81 J	1.18	55.6	0.0100	0.0581		3272206
Octa CDD	pg/L	43.8 J	1.19	111	0.000300	0.0131		3272206
Total Tetra CDD	pg/L	1.14 U	1.14	11.1				3272206
Total Penta CDD	pg/L	1.20 U	1.20	55.6				3272206
Total Hexa CDD	pg/L	1.20 U	1.20	55.6				3272206
Total Hepta CDD	pg/L	10.1 J	1.18	55.6				3272206
2,3,7,8-Tetra CDF **	pg/L	1.17 U	1.17	11.1	0.100	0.117		3272206
1,2,3,7,8-Penta CDF	pg/L	1.22 U	1.22	55.6	0.0300	0.0366		3272206
2,3,4,7,8-Penta CDF	pg/L	1.18 U	1.18	55.6	0.300	0.354		3272206
1,2,3,4,7,8-Hexa CDF	pg/L	1.16 U	1.16	55.6	0.100	0.116		3272206
1,2,3,6,7,8-Hexa CDF	pg/L	1.20 U	1.20	55.6	0.100	0.120		3272206
2,3,4,6,7,8-Hexa CDF	pg/L	1.19 U	1.19	55.6	0.100	0.119		3272206
1,2,3,7,8,9-Hexa CDF	pg/L	1.23 U	1.23	55.6	0.100	0.123		3272206
1,2,3,4,6,7,8-Hepta CDF	pg/L	1.16 U (1)	1.16	55.6	0.0100	0.0116		3272206
1,2,3,4,7,8,9-Hepta CDF	pg/L	1.21 U	1.21	55.6	0.0100	0.0121		3272206
Octa CDF	pg/L	3.16 J	1.17	111	0.000300	0.000948		3272206
Total Tetra CDF	pg/L	1.17 U	1.17	11.1				3272206
Total Penta CDF	pg/L	1.20 U	1.20	55.6				3272206
Total Hexa CDF	pg/L	1.19 U	1.19	55.6				3272206
Total Hepta CDF	pg/L	1.20 U	1.20	55.6				3272206
TOTAL TOXIC EQUIVALENCY	pg/L					3.78		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	110						3272206

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3F0664

DIOXINS AND FURANS BY HRMS (WATER)

Maxxam ID		SC3112						
Sampling Date		2013/06/26						
		16:10						
COC Number		na			TOXIC EQUIVA		# of	
	Units	RB-062513	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
						T		
C13-1234678 HeptaCDD *	%	85						3272206
C13-1234678 HeptaCDF **	%	97						3272206
C13-123478 HexaCDD	%	76						3272206
C13-123478 HexaCDF	%	98						3272206
C13-1234789 HeptaCDF	%	88						3272206
C13-123678 HexaCDD	%	84						3272206
C13-123678 HexaCDF	%	92						3272206
C13-12378 PentaCDD	%	88						3272206
C13-12378 PentaCDF	%	98						3272206
C13-123789 HexaCDF	%	83						3272206
C13-234678 HexaCDF	%	95						3272206
C13-23478 PentaCDF	%	108						3272206
C13-2378 TetraCDD	%	74						3272206
C13-2378 TetraCDF	%	84						3272206
C13-OCDD	%	84						3272206

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0664

DIOXINS AND FURANS BY HRMS (WATER)

Maxxam ID		SC3113						
Sampling Date		2013/06/26						
COC Number		16:20 na			TOXIC EQUIVA	LENCY	# of	
	Units	RB-062613	EDL	RDL	TEF (2005 WHO)		Isomers	QC Batch
2 2 7 9 Totro CDD *	na/l	4.45.11	1 15	11.6	1.00	4.45	1	2272206
2,3,7,8-Tetra CDD *	pg/L	1.15 U	1.15	11.6	1.00	1.15		3272206
1,2,3,7,8-Penta CDD	pg/L	1.25 U	₩.	58.1	1.00	1.25		3272206
1,2,3,4,7,8-Hexa CDD	pg/L	1.12 U	1.12	58.1	0.100	0.112		3272206
1,2,3,6,7,8-Hexa CDD	pg/L	1.20 U	1.20	58.1	0.100	0.120		3272206
1,2,3,7,8,9-Hexa CDD	pg/L	1.12 U	1.12	58.1	0.100	0.112		3272206
1,2,3,4,6,7,8-Hepta CDD	pg/L	5.27 J	1.24	58.1	0.0100	0.0527		3272206
Octa CDD	pg/L	39.0 J	1.19	116	0.000300	0.0117		3272206
Total Tetra CDD	pg/L	1.15 U	1.15	11.6				3272206
Total Penta CDD	pg/L	1.25 U	1.25	58.1				3272206
Total Hexa CDD	pg/L	1.16 U	1.16	58.1				3272206
Total Hepta CDD	pg/L	9.00 J	1.24	58.1				3272206
2,3,7,8-Tetra CDF **	pg/L	1.20 U	1.20	11.6	0.100	0.120		3272206
1,2,3,7,8-Penta CDF	pg/L	1.23 U	1.23	58.1	0.0300	0.0369		3272206
2,3,4,7,8-Penta CDF	pg/L	1.19 U	1.19	58.1	0.300	0.357		3272206
1,2,3,4,7,8-Hexa CDF	pg/L	1.12 U	1.12	58.1	0.100	0.112		3272206
1,2,3,6,7,8-Hexa CDF	pg/L	1.16 U	1.16	58.1	0.100	0.116		3272206
2,3,4,6,7,8-Hexa CDF	pg/L	1.14 U	1.14	58.1	0.100	0.114		3272206
1,2,3,7,8,9-Hexa CDF	pg/L	1.19 U	1.19	58.1	0.100	0.119		3272206
1,2,3,4,6,7,8-Hepta CDF	pg/L	1.21 U	1.21	58.1	0.0100	0.0121		3272206
1,2,3,4,7,8,9-Hepta CDF	pg/L	1.22 U	1.22	58.1	0.0100	0.0122		3272206
Octa CDF	pg/L	1.99 U (1)	1.99	116	0.000300	0.000597		3272206
Total Tetra CDF	pg/L	1.20 U	1.20	11.6				3272206
Total Penta CDF	pg/L	1.21 U	1.21	58.1				3272206
Total Hexa CDF	pg/L	1.15 U	1.15	58.1				3272206
Total Hepta CDF	pg/L	1.21 U	1.21	58.1				3272206
TOTAL TOXIC EQUIVALENCY	pg/L					3.81		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	91						3272206

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Apex Laboratories Client Project #: A3F0664

DIOXINS AND FURANS BY HRMS (WATER)

Maxxam ID		SC3113						
Sampling Date		2013/06/26						
		16:20						
COC Number		na			TOXIC EQUIVA		# of	
	Units	RB-062613	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDD *	%	85						3272206
C13-1234678 HeptaCDF **	%	99						3272206
C13-123478 HexaCDD	%	73						3272206
C13-123478 HexaCDF	%	95						3272206
C13-1234789 HeptaCDF	%	94						3272206
C13-123678 HexaCDD	%	86						3272206
C13-123678 HexaCDF	%	92						3272206
C13-12378 PentaCDD	%	81						3272206
C13-12378 PentaCDF	%	88						3272206
C13-123789 HexaCDF	%	81						3272206
C13-234678 HexaCDF	%	95						3272206
C13-23478 PentaCDF	%	97						3272206
C13-2378 TetraCDD	%	63						3272206
C13-2378 TetraCDF	%	65						3272206
C13-OCDD	%	88						3272206

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0664

Test Summary

Maxxam ID SC3111 **Collected** 2013/06/26

Sample ID RB-062413 Shipped

Matrix Water Received 2013/07/02

Test DescriptionInstrumentationBatchExtractedAnalyzedAnalystDioxins/Furans in Water (1613B)HRMS/MS32722062013/07/042013/07/15Owen Cosby

Maxxam ID SC3112 Collected 2013/06/26

Sample ID RB-062513 Shipped

Matrix Water Received 2013/07/02

Test DescriptionInstrumentationBatchExtractedAnalyzedAnalystDioxins/Furans in Water (1613B)HRMS/MS32722062013/07/042013/07/15Owen Cosby

Maxxam ID SC3113 **Collected** 2013/06/26

Sample ID RB-062613 Shipped

Matrix Water Received 2013/07/02

Test DescriptionInstrumentationBatchExtractedAnalyzedAnalystDioxins/Furans in Water (1613B)HRMS/MS32722062013/07/042013/07/15Owen Cosby

Apex Laboratories Client Project #: A3F0664

Package 1 6.9°C

Each temperature is the average of up to three cooler temperatures taken at receipt

GENERAL COMMENTS

Results relate only to the items tested.

Apex Laboratories Attention: Philip Nerenberg Client Project #: A3F0664

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: GB3A4675

QA/QC			Date			
Batch	00.7	ъ.	Analyzed	V 1 0/D		001: "
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limit
3272206 OBC	Spiked Blank	37CL4 2378 Tetra CDD	2013/07/14	98	%	35 - 19
		C13-1234678 HeptaCDD	2013/07/14	91	%	23 - 14
		C13-1234678 HeptaCDF	2013/07/14	107	%	28 - 14
		C13-123478 HexaCDD	2013/07/14	84	%	32 - 14
		C13-123478 HexaCDF	2013/07/14	105	%	26 - 15
		C13-1234789 HeptaCDF	2013/07/14	97	%	28 - 14
		C13-123678 HexaCDD	2013/07/14	93	%	28 - 13
		C13-123678 HexaCDF	2013/07/14	102	%	26 - 12
		C13-12378 PentaCDD	2013/07/14	75	%	25 - 18
		C13-12378 PentaCDF	2013/07/14	80	%	24 - 18
		C13-123789 HexaCDF	2013/07/14	89	%	28 - 13
		C13-234678 HexaCDF	2013/07/14	104	%	29 - 14
		C13-23478 PentaCDF	2013/07/14	91	%	21 - 17
		C13-2378 TetraCDD	2013/07/14	73	%	24 - 16
		C13-2378 TetraCDF	2013/07/14	75	%	24 - 16
		C13-OCDD	2013/07/14	92	%	17 - 15
		2,3,7,8-Tetra CDD	2013/07/14	102	%	67 - 15
				110	% %	70 - 14
		1,2,3,7,8-Penta CDD	2013/07/14			
		1,2,3,4,7,8-Hexa CDD	2013/07/14	116	%	70 - 16
		1,2,3,6,7,8-Hexa CDD	2013/07/14	116	%	76 - 13
		1,2,3,7,8,9-Hexa CDD	2013/07/14	108	%	64 - 16
		1,2,3,4,6,7,8-Hepta CDD	2013/07/14	111	%	70 - 14
		Octa CDD	2013/07/14	113	%	78 - 14
		2,3,7,8-Tetra CDF	2013/07/14	98	%	75 - 1
		1,2,3,7,8-Penta CDF	2013/07/14	113	%	80 - 13
		2,3,4,7,8-Penta CDF	2013/07/14	102	%	68 - 10
		1,2,3,4,7,8-Hexa CDF	2013/07/14	102	%	72 - 13
		1,2,3,6,7,8-Hexa CDF	2013/07/14	107	%	84 - 13
		2,3,4,6,7,8-Hexa CDF	2013/07/14	104	%	70 - 15
		1,2,3,7,8,9-Hexa CDF	2013/07/14	106	%	78 - 13
		1,2,3,4,6,7,8-Hepta CDF	2013/07/14	105	%	82 - 12
		1,2,3,4,7,8,9-Hepta CDF	2013/07/14	105	%	78 - 13
		Octa CDF	2013/07/14	110	%	63 - 17
	Method Blank	37CL4 2378 Tetra CDD	2013/07/15	86	%	35 - 19
	Wictiod Blank	C13-1234678 HeptaCDD	2013/07/15	85	%	23 - 14
		C13-1234678 HeptaCDF	2013/07/15	74	% %	28 - 14
		•		74 78		
		C13-123478 HexaCDD	2013/07/15		%	32 - 14
		C13-123478 HexaCDF	2013/07/15	74	%	26 - 19
		C13-1234789 HeptaCDF	2013/07/15	93	%	28 - 14
		C13-123678 HexaCDD	2013/07/15	87	%	28 - 13
		C13-123678 HexaCDF	2013/07/15	70	%	26 - 12
		C13-12378 PentaCDD	2013/07/15	78	%	25 - 18
		C13-12378 PentaCDF	2013/07/15	82	%	24 - 18
		C13-123789 HexaCDF	2013/07/15	84	%	28 - 13
		C13-234678 HexaCDF	2013/07/15	99	%	29 - 1
		C13-23478 PentaCDF	2013/07/15	99	%	21 - 1
		C13-2378 TetraCDD	2013/07/15	56	%	24 - 1
		C13-2378 TetraCDF	2013/07/15	66	%	24 - 1
		C13-OCDD	2013/07/15	82	%	17 - 1
		2,3,7,8-Tetra CDD	2013/07/15	1.33 U, EDL=1.33	pg/L	
		1,2,3,7,8-Penta CDD	2013/07/15	1.32 U, EDL=1.32	pg/L pg/L	
		1,2,3,4,7,8-Hexa CDD	2013/07/15	1.25 U, EDL=1.25		
				*	pg/L	
		1,2,3,6,7,8-Hexa CDD	2013/07/15	1.42 U, EDL=1.42 (1)	pg/L	
		1,2,3,7,8,9-Hexa CDD	2013/07/15	1.71 J, EDL=1.25	pg/L	
		1,2,3,4,6,7,8-Hepta CDD	2013/07/15	10.1 J, EDL=1.33	pg/L	

Apex Laboratories Attention: Philip Nerenberg Client Project #: A3F0664

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3A4675

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3272206 OBC	Method Blank	Octa CDD	2013/07/15	56.8 J, EDL=1.30	pg/L	QO EIIIIIIO
02/2200 000	Wictilioa Blank	Total Tetra CDD	2013/07/15	1.33 U, EDL=1.33	pg/L	
		Total Penta CDD	2013/07/15	1.32 U, EDL=1.32	pg/L	
		Total Hexa CDD	2013/07/15	1.71 J, EDL=1.29	pg/L	
		Total Hepta CDD	2013/07/15	16.4 J, EDL=1.33	pg/L pg/L	
		2,3,7,8-Tetra CDF	2013/07/15	1.30 U. EDL=1.30	pg/L pg/L	
		1,2,3,7,8-Penta CDF	2013/07/15	1.39 U, EDL=1.39	pg/L	
		2,3,4,7,8-Penta CDF	2013/07/15	1.34 U, EDL=1.34	pg/L	
		1,2,3,4,7,8-Hexa CDF	2013/07/15	1.63 U, EDL=1.63	pg/L pg/L	
		1,2,3,6,7,8-Hexa CDF	2013/07/15	1.69 U. EDL=1.69	pg/L pg/L	
		2,3,4,6,7,8-Hexa CDF	2013/07/15	1.67 U, EDL=1.67	pg/L pg/L	
		1,2,3,7,8,9-Hexa CDF	2013/07/15	1.74 U, EDL=1.74	pg/L pg/L	
			2013/07/15	3.06 U, EDL=3.06 (1)		
		1,2,3,4,6,7,8-Hepta CDF	2013/07/15	3.19 J, EDL=3.06 (I)	pg/L	
		1,2,3,4,7,8,9-Hepta CDF		•	pg/L	
		Octa CDF	2013/07/15	13.4 J, EDL=1.30	pg/L	
		Total Tetra CDF	2013/07/15	1.30 U, EDL=1.30	pg/L	
		Total Penta CDF	2013/07/15	1.37 U, EDL=1.37	pg/L	
		Total Hexa CDF	2013/07/15	1.68 U, EDL=1.68	pg/L	
		Total Hepta CDF	2013/07/15	3.19 J, EDL=1.35	pg/L	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Validation Signature Page

Maxxam ,	Job	#:	B3	A4675
----------	-----	----	-----------	-------

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Owen Cosby, BSc.C.Chem, Supervisor, HRMS Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: A3F0670 Your C.O.C. #: na

Attention: Philip Nerenberg
Apex Laboratories
12232 SW Garden Place
Tigard, OR
USA 97223

Report Date: 2013/07/17

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3A4694 Received: 2013/07/02, 12:48

Sample Matrix: Soil # Samples Received: 3

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Dioxins/Furans in Soil (1613B) (1)	3	2013/07/09	2013/07/14	BRL SOP-00410	EPA 1613B mod.
2378TCDF Confirmation in Soil	1	N/A	2013/07/15	BRL SOP-00406	EPA 8290A mod.
Moisture	3	N/A	2013/07/03	CAM SOP-00445	R.Carter,1993

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

U = Undetected at the limit of quantitation.

J = Estimated concentration between the EDL & RDL.

B = Blank Contamination.

Q = One or more quality control criteria failed.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ivana Vukovic, Env Project Manager Email: IVukovic@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 1

Apex Laboratories Client Project #: A3F0670

RESULTS OF ANALYSES OF SOIL

Maxxam ID		SC3184	SC3185	SC3186		
Sampling Date		2013/06/26	2013/06/26	2013/06/26		
		11:50	11:50	11:50		
COC Number		na	na	na		
	Units	CL-16-1.5	CL-17-1.5	CL-17-1.5-DUP	RDL	QC Batch

Moisture	%	39	33	33	1.0	3266651	
----------	---	----	----	----	-----	---------	--

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Apex Laboratories
Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		SC3184						
Sampling Date		2013/06/26						
COC Number		11:50 na			TOXIC EQUIVAL	FNCY	# of	
oce Hamber	Units	CL-16-1.5	EDL	RDL	TEF (2005 WHO)			QC Batch
			1		T		1	
2,3,7,8-Tetra CDD *	pg/g	1.74	0.103	0.989	1.00	1.74		3277521
1,2,3,7,8-Penta CDD	pg/g	23.1	0.101	4.94	1.00	23.1		3277521
1,2,3,4,7,8-Hexa CDD	pg/g	77.3	0.0978	4.94	0.100	7.73		3277521
1,2,3,6,7,8-Hexa CDD	pg/g	600	0.105	4.94	0.100	60.0		3277521
1,2,3,7,8,9-Hexa CDD	pg/g	204	0.0978	4.94	0.100	20.4		3277521
1,2,3,4,6,7,8-Hepta CDD	pg/g	10800 (1)	2.07	49.4	0.0100	108		3277521
Octa CDD	pg/g	78200 (1)	3.82	98.9	0.000300	23.5		3277521
Total Tetra CDD	pg/g	27.3	0.103	0.989				3277521
Total Penta CDD	pg/g	223	0.101	4.94				3277521
Total Hexa CDD	pg/g	2710	0.101	4.94				3277521
Total Hepta CDD	pg/g	20000 (1)	2.07	49.4				3277521
2,3,7,8-Tetra CDF **	pg/g	23.5	0.108	0.989	0.100	2.35		3277521
1,2,3,7,8-Penta CDF	pg/g	46.1	0.108	4.94	0.0300	1.38		3277521
2,3,4,7,8-Penta CDF	pg/g	56.3	0.104	4.94	0.300	16.9		3277521
1,2,3,4,7,8-Hexa CDF	pg/g	256	0.0963	4.94	0.100	25.6		3277521
1,2,3,6,7,8-Hexa CDF	pg/g	97.7	0.100	4.94	0.100	9.77		3277521
2,3,4,6,7,8-Hexa CDF	pg/g	56.0	0.0988	4.94	0.100	5.60		3277521
1,2,3,7,8,9-Hexa CDF	pg/g	5.33	0.103	4.94	0.100	0.533		3277521
1,2,3,4,6,7,8-Hepta CDF	pg/g	1180	0.100	4.94	0.0100	11.8		3277521
1,2,3,4,7,8,9-Hepta CDF	pg/g	69.6	0.101	4.94	0.0100	0.696		3277521
Octa CDF	pg/g	1540	0.208	9.89	0.000300	0.462		3277521
Total Tetra CDF	pg/g	89.4	0.108	0.989				3277521
Total Penta CDF	pg/g	501	0.106	4.94				3277521
Total Hexa CDF	pg/g	2900	0.0994	4.94				3277521
Total Hepta CDF	pg/g	3490	0.101	4.94				3277521
Confirmation 2,3,7,8-Tetra CDF	pg/g	14.7	0.10	0.99	0.100	1.47		3280098
TOTAL TOXIC EQUIVALENCY	pg/g					319		

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

⁽¹⁾ From 20x dilution.

3277521

3277521

3277521

3277521

3277521

3277521

3277521

3277521

3277521

3280098

Maxxam Job #: B3A4694 Report Date: 2013/07/17 Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		SC3184						
Sampling Date		2013/06/26						
		11:50						
COC Number		na			TOXIC EQUIVA		# of	
	Units	CL-16-1.5	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	117						3277521
C13-1234678 HeptaCDD	%	106 (1)						3277521
C13-1234678 HeptaCDF **	%	103						3277521
C13-123478 HexaCDD	%	75						3277521
C13-123478 HexaCDF	%	98						3277521
C13-1234789 HeptaCDF	%	93						3277521
C13-123678 HexaCDD	%	86						3277521

RDL = Reportable Detection Limit EDL = Estimated Detection Limit QC Batch = Quality Control Batch

Confirmation C13-2378 TetraCDF

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

%

%

%

%

%

%

%

%

%

90

89

101

84

94

113

81

90

106

118 (1)

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) From 20x dilution.

C13-123678 HexaCDF

C13-12378 PentaCDD

C13-12378 PentaCDF

C13-123789 HexaCDF

C13-234678 HexaCDF

C13-23478 PentaCDF

C13-2378 TetraCDD

C13-2378 TetraCDF

C13-OCDD

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		SC3185						
Sampling Date		2013/06/26 11:50						
COC Number		na			TOXIC EQUIVAI	LENCY	# of	
	Units	CL-17-1.5	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/g	0.173 U (1)	0.173	0.987	1.00	0.173		3277521
1,2,3,7,8-Penta CDD	pg/g	1.43 J	0.103	4.93	1.00	1.43		3277521
1,2,3,4,7,8-Hexa CDD	pg/g	4.80 J	0.0985	4.93	0.100	0.480		3277521
1,2,3,6,7,8-Hexa CDD	pg/g	39.5	0.106	4.93	0.100	3.95		3277521
1,2,3,7,8,9-Hexa CDD	pg/g	13.3	0.0985	4.93	0.100	1.33		3277521
1,2,3,4,6,7,8-Hepta CDD	pg/g	840	0.103	4.93	0.0100	8.40		3277521
Octa CDD	pg/g	7560 (2)	4.09	98.7	0.000300	2.27		3277521
Total Tetra CDD	pg/g	0.917 J	0.102	0.987				3277521
Total Penta CDD	pg/g	10.6	0.103	4.93				3277521
Total Hexa CDD	pg/g	173	0.102	4.93				3277521
Total Hepta CDD	pg/g	1520	0.103	4.93				3277521
2,3,7,8-Tetra CDF **	pg/g	0.981 J	0.102	0.987	0.100	0.0981		3277521
1,2,3,7,8-Penta CDF	pg/g	2.25 J	0.104	4.93	0.0300	0.0675		3277521
2,3,4,7,8-Penta CDF	pg/g	2.72 J	0.100	4.93	0.300	0.816		3277521
1,2,3,4,7,8-Hexa CDF	pg/g	12.8	0.0965	4.93	0.100	1.28		3277521
1,2,3,6,7,8-Hexa CDF	pg/g	5.04	0.100	4.93	0.100	0.504		3277521
2,3,4,6,7,8-Hexa CDF	pg/g	3.40 J	0.0990	4.93	0.100	0.340		3277521
1,2,3,7,8,9-Hexa CDF	pg/g	0.406 J	0.103	4.93	0.100	0.0406		3277521
1,2,3,4,6,7,8-Hepta CDF	pg/g	74.7	0.102	4.93	0.0100	0.747		3277521
1,2,3,4,7,8,9-Hepta CDF	pg/g	3.90 J	0.102	4.93	0.0100	0.0390		3277521
Octa CDF	pg/g	78.3	0.205	9.87	0.000300	0.0235		3277521
Total Tetra CDF	pg/g	3.26	0.102	0.987				3277521
Total Penta CDF	pg/g	20.7	0.102	4.93				3277521
Total Hexa CDF	pg/g	151	0.0995	4.93				3277521
Total Hepta CDF	pg/g	218	0.102	4.93				3277521
TOTAL TOXIC EQUIVALENCY	pg/g					22.0		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	82						3277521

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

- (1) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.
- (2) From 20x dilution.

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		SC3185						
Sampling Date		2013/06/26						
		11:50		<u> </u>		. =		
COC Number	1114	na OL 47.4.5	EDL	 	TOXIC EQUIVA		# of	00 D-(-1
	Units	CL-17-1.5	EDL	RDL	TEF (2005 WHO)	IEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDD *	%	94						3277521
C13-1234678 HeptaCDF **	%	103						3277521
C13-123478 HexaCDD	%	81						3277521
C13-123478 HexaCDF	%	99						3277521
C13-1234789 HeptaCDF	%	93						3277521
C13-123678 HexaCDD	%	89						3277521
C13-123678 HexaCDF	%	92						3277521
C13-12378 PentaCDD	%	79						3277521
C13-12378 PentaCDF	%	80						3277521
C13-123789 HexaCDF	%	85						3277521
C13-234678 HexaCDF	%	98						3277521
C13-23478 PentaCDF	%	93						3277521
C13-2378 TetraCDD	%	55						3277521
C13-2378 TetraCDF	%	60						3277521
C13-OCDD	%	81 (1)						3277521

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) From 20x dilution.

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		SC3186						
Sampling Date		2013/06/26 11:50						
COC Number		na			TOXIC EQUIVAI	LENCY	# of	
	Units	CL-17-1.5-DUP	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/g	0.102 U	0.102	0.986	1.00	0.102		3277521
1,2,3,7,8-Penta CDD	pg/g	1.32 J	0.103	4.93	1.00	1.32		3277521
1,2,3,4,7,8-Hexa CDD	pg/g	4.18 J	0.0976	4.93	0.100	0.418		3277521
1,2,3,6,7,8-Hexa CDD	pg/g	34.1	0.105	4.93	0.100	3.41		3277521
1,2,3,7,8,9-Hexa CDD	pg/g	12.9	0.0976	4.93	0.100	1.29		3277521
1,2,3,4,6,7,8-Hepta CDD	pg/g	741	0.106	4.93	0.0100	7.41		3277521
Octa CDD	pg/g	6480 (1)	4.08	98.6	0.000300	1.94		3277521
Total Tetra CDD	pg/g	0.936 J	0.102	0.986				3277521
Total Penta CDD	pg/g	7.15	0.103	4.93				3277521
Total Hexa CDD	pg/g	151	0.101	4.93				3277521
Total Hepta CDD	pg/g	1370	0.106	4.93				3277521
2,3,7,8-Tetra CDF **	pg/g	0.873 J	0.102	0.986	0.100	0.0873		3277521
1,2,3,7,8-Penta CDF	pg/g	1.94 J	0.105	4.93	0.0300	0.0582		3277521
2,3,4,7,8-Penta CDF	pg/g	2.17 J	0.101	4.93	0.300	0.651		3277521
1,2,3,4,7,8-Hexa CDF	pg/g	10.2	0.0998	4.93	0.100	1.02		3277521
1,2,3,6,7,8-Hexa CDF	pg/g	4.34 J	0.104	4.93	0.100	0.434		3277521
2,3,4,6,7,8-Hexa CDF	pg/g	2.63 J	0.102	4.93	0.100	0.263		3277521
1,2,3,7,8,9-Hexa CDF	pg/g	0.337 J	0.106	4.93	0.100	0.0337		3277521
1,2,3,4,6,7,8-Hepta CDF	pg/g	66.2	0.100	4.93	0.0100	0.662		3277521
1,2,3,4,7,8,9-Hepta CDF	pg/g	3.14 J	0.101	4.93	0.0100	0.0314		3277521
Octa CDF	pg/g	73.2	0.201	9.86	0.000300	0.0220		3277521
Total Tetra CDF	pg/g	2.38	0.102	0.986				3277521
Total Penta CDF	pg/g	12.8	0.103	4.93				3277521
Total Hexa CDF	pg/g	100	0.103	4.93				3277521
Total Hepta CDF	pg/g	207	0.100	4.93				3277521
TOTAL TOXIC EQUIVALENCY	pg/g					19.2		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	81						3277521

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) From 20x dilution.

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		SC3186						
Sampling Date		2013/06/26						
		11:50						
COC Number		na		ļ	TOXIC EQUIVA		# of	
	Units	CL-17-1.5-DUP	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDD *	%	89						3277521
C13-1234678 HeptaCDF **	%	64						3277521
C13-123478 HexaCDD	%	74						3277521
C13-123478 HexaCDF	%	64						3277521
C13-1234789 HeptaCDF	%	93						3277521
C13-123678 HexaCDD	%	81						3277521
C13-123678 HexaCDF	%	58						3277521
C13-12378 PentaCDD	%	78						3277521
C13-12378 PentaCDF	%	80						3277521
C13-123789 HexaCDF	%	81						3277521
C13-234678 HexaCDF	%	92						3277521
C13-23478 PentaCDF	%	94						3277521
C13-2378 TetraCDD	%	59						3277521
C13-2378 TetraCDF	%	65						3277521
C13-OCDD	%	75 (1)						3277521

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) From 20x dilution.

Moisture

Apex Laboratories Client Project #: A3F0670

Test Summary

Maxxam ID SC3184 Collected 2013/06/26 Sample ID CL-16-1.5 **Shipped**

Matrix Soil Received 2013/07/02

Analyst **Test Description** Instrumentation Batch Extracted Analyzed Dioxins/Furans in Soil (1613B) HRMS/MS 3277521 2013/07/09 2013/07/14 Owen Cosby 2378TCDF Confirmation in Soil HRMS/MS 3280098 2013/07/15 N/A Vica Cioranic BAL 2013/07/03 Min Yang

N/A

Maxxam ID SC3185 Collected 2013/06/26

3266651

Sample ID CL-17-1.5 Shipped

Matrix Soil Received 2013/07/02

Test Description Instrumentation **Batch Extracted** Analyzed **Analyst** 2013/07/09 2013/07/14 Dioxins/Furans in Soil (1613B) HRMS/MS 3277521 Owen Cosby Min Yang Moisture BAL 3266651 N/A 2013/07/03

Maxxam ID SC3186 Collected 2013/06/26 Sample ID CL-17-1.5-DUP **Shipped**

Matrix Soil Received 2013/07/02

Test Description Instrumentation **Batch** Extracted Analyzed Analyst Dioxins/Furans in Soil (1613B) HRMS/MS 3277521 2013/07/09 2013/07/14 Owen Cosby Moisture BAL 3266651 N/A 2013/07/03 Min Yang

Apex Laboratories Client Project #: A3F0670

Package 1 6.9°C

Each temperature is the average of up to three cooler temperatures taken at receipt

GENERAL COMMENTS

Results relate only to the items tested.

Apex Laboratories Attention: Philip Nerenberg Client Project #: A3F0670

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: GB3A4694

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3266651 JV1	RPD -)))),,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,		
	Sample/Sample					
	Dup	Moisture	2013/07/03	NC	%	20
3277521 OBC	Spiked Blank	37CL4 2378 Tetra CDD	2013/07/13	59	%	35 - 197
		C13-1234678 HeptaCDD	2013/07/13	86	%	23 - 140
		C13-1234678 HeptaCDF	2013/07/13	95	%	28 - 143
		C13-123478 HexaCDD	2013/07/13	78	%	32 - 141
		C13-123478 HexaCDF	2013/07/13	95	%	26 - 152
		C13-1234789 HeptaCDF	2013/07/13	88	%	26 - 138
		C13-123678 HexaCDD	2013/07/13	87	%	28 - 130
		C13-123678 HexaCDF	2013/07/13	95	%	26 - 123
		C13-12378 PentaCDD	2013/07/13	77	%	25 - 181
		C13-12378 PentaCDF	2013/07/13	78	%	24 - 185
		C13-123789 HexaCDF	2013/07/13	83	%	29 - 147
		C13-234678 HexaCDF	2013/07/13	98	%	28 - 136
		C13-23478 PentaCDF	2013/07/13	94	%	21 - 178
		C13-2378 TetraCDD	2013/07/13	57	%	25 - 164
		C13-2378 TetraCDF	2013/07/13	60	%	24 - 169
		C13-OCDD	2013/07/13	88	%	17 - 157
		2,3,7,8-Tetra CDD	2013/07/13	108	%	67 - 158
		1,2,3,7,8-Penta CDD	2013/07/13	111	%	70 - 142
		1,2,3,4,7,8-Hexa CDD	2013/07/13	124	%	70 - 164
		1,2,3,6,7,8-Hexa CDD	2013/07/13	120	%	76 - 134
		1,2,3,7,8,9-Hexa CDD	2013/07/13	119	%	64 - 162
		1,2,3,4,6,7,8-Hepta CDD	2013/07/13	113	%	70 - 140
		Octa CDD	2013/07/13	112	%	78 - 144
		2,3,7,8-Tetra CDF	2013/07/13	114	%	75 - 158
		1,2,3,7,8-Penta CDF	2013/07/13	116	%	80 - 134
		2,3,4,7,8-Penta CDF	2013/07/13	109	%	68 - 160
		1,2,3,4,7,8-Hexa CDF	2013/07/13	105	%	72 - 134
		1,2,3,6,7,8-Hexa CDF	2013/07/13	114	%	84 - 130
		2,3,4,6,7,8-Hexa CDF	2013/07/13	108	%	70 - 156
		1,2,3,7,8,9-Hexa CDF	2013/07/13	114	%	78 - 130
		1,2,3,4,6,7,8-Hepta CDF	2013/07/13	111	%	82 - 122
		1,2,3,4,7,8,9-Hepta CDF	2013/07/13	112	%	78 - 138
		Octa CDF	2013/07/13	110	%	63 - 170
	Method Blank	37CL4 2378 Tetra CDD	2013/07/13	90	%	35 - 197
		C13-1234678 HeptaCDD	2013/07/13	75	%	23 - 140
		C13-1234678 HeptaCDF	2013/07/13	76	%	28 - 143
		C13-123478 HexaCDD	2013/07/13	73	%	32 - 141
		C13-123478 HexaCDF	2013/07/13	82	%	26 - 152
		C13-1234789 HeptaCDF	2013/07/13	82	%	26 - 138
		C13-123678 HexaCDD	2013/07/13	82	%	28 - 130
		C13-123678 HexaCDF	2013/07/13	80	%	26 - 123
		C13-12378 PentaCDD	2013/07/13	68	%	25 - 181
		C13-12378 PentaCDF	2013/07/13	72	%	24 - 185
		C13-123789 HexaCDF	2013/07/13	76	%	29 - 147
		C13-234678 HexaCDF	2013/07/13	90	%	28 - 136
		C13-23478 PentaCDF	2013/07/13	87	%	21 - 178
		C13-2378 TetraCDD	2013/07/13	60	%	25 - 164
		C13-2378 TetraCDF	2013/07/13	59	%	24 - 169
		C13-OCDD	2013/07/13	72	%	17 - 157
		2,3,7,8-Tetra CDD	2013/07/13	0.104 U, EDL=0.104	pg/g	
		1,2,3,7,8-Penta CDD	2013/07/13	0.104 U, EDL=0.104	pg/g	
		1,2,3,4,7,8-Hexa CDD	2013/07/13	0.103 U, EDL=0.103	pg/g	

Apex Laboratories Attention: Philip Nerenberg Client Project #: A3F0670

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3A4694

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3277521 OBC	Method Blank	1,2,3,6,7,8-Hexa CDD	2013/07/13	0.111 U, EDL=0.111	pg/g	
		1,2,3,7,8,9-Hexa CDD	2013/07/13	0.103 U, EDL=0.103	pg/g	
		1,2,3,4,6,7,8-Hepta CDD	2013/07/13	0.535 J, EDL=0.106	pg/g	
		Octa CDD	2013/07/13	2.06 J, EDL=0.206	pg/g	
		Total Tetra CDD	2013/07/13	0.104 U, EDL=0.104	pg/g	
		Total Penta CDD	2013/07/13	0.104 U, EDL=0.104	pg/g	
		Total Hexa CDD	2013/07/13	0.107 U, EDL=0.107	pg/g	
		Total Hepta CDD	2013/07/13	0.790 J, EDL=0.106	pg/g	
		2,3,7,8-Tetra CDF	2013/07/13	0.105 U, EDL=0.105	pg/g	
		1,2,3,7,8-Penta CDF	2013/07/13	0.103 U, EDL=0.103	pg/g	
		2,3,4,7,8-Penta CDF	2013/07/13	0.0998 U, EDL=0.0998	pg/g	
		1,2,3,4,7,8-Hexa CDF	2013/07/13	0.0978 U, EDL=0.0978	pg/g	
		1,2,3,6,7,8-Hexa CDF	2013/07/13	0.102 U, EDL=0.102	pg/g	
		2,3,4,6,7,8-Hexa CDF	2013/07/13	0.100 U, EDL=0.100	pg/g	
		1,2,3,7,8,9-Hexa CDF	2013/07/13	0.104 U, EDL=0.104	pg/g	
		1,2,3,4,6,7,8-Hepta CDF	2013/07/13	0.139 U, EDL=0.139 (1)	pg/g	
		1,2,3,4,7,8,9-Hepta CDF	2013/07/13	0.245 J, EDL=0.107	pg/g	
		Octa CDF	2013/07/13	0.950 J, EDL=0.203	pg/g	
		Total Tetra CDF	2013/07/13	0.105 U, EDL=0.105	pg/g	
		Total Penta CDF	2013/07/13	0.102 U, EDL=0.102	pg/g	
		Total Hexa CDF	2013/07/13	0.101 U, EDL=0.101	pg/g	
		Total Hepta CDF	2013/07/13	0.245 J, EDL=0.107	pg/g	
3280098 VCI	Method Blank	Confirmation C13-2378 TetraCDF	2013/07/15	75	%	40 - 135
		Confirmation 2,3,7,8-Tetra CDF	2013/07/15	0.11 U, EDL=0.11	pg/g	
	RPD -					
	Sample/Sample Dup	Confirmation 2,3,7,8-Tetra CDF	2013/07/15	NC	%	100

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Validation Signature Page

Maxxam Job #: B3A4694

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina Carriere, Scientific Services

Owen Cosby, BSc.C.Chem, Supervisor, HRMS Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: A3F0672 Your C.O.C. #: na

Attention: Philip Nerenberg
Apex Laboratories
12232 SW Garden Place
Tigard, OR
USA 97223

Report Date: 2013/07/16

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3A4701 Received: 2013/07/02, 12:48

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Dioxins/Furans in Soil (1613B) (1)	1	2013/07/09	2013/07/14	BRL SOP-00410	EPA 1613B mod.
Moisture	1	N/A	2013/07/03	CAM SOP-00445	R.Carter 1993

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ivana Vukovic, Env Project Manager Email: IVukovic@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 1

Apex Laboratories Client Project #: A3F0672

RESULTS OF ANALYSES OF SOIL

	Units	PS-SRM-062713	RDL	QC Batch
COC Number		na		
		10:00		
Sampling Date		2013/06/27		
Maxxam ID		SC3196		

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3F0672

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		SC3196						
Sampling Date		2013/06/27 10:00						
COC Number		na			TOXIC EQUIVA	LENCY	# of	
	Units	PS-SRM-062713	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/g	0.871 J	0.199	1.95	1.00	0.871	Ι	3277521
1,2,3,7,8-Penta CDD	pg/g	0.730 J	-	9.75	1.00	0.730		3277521
1,2,3,4,7,8-Hexa CDD	pg/g	1.35 J	0.201	9.75	0.100	0.135		3277521
1,2,3,6,7,8-Hexa CDD	pg/g	5.13 J	0.216	9.75	0.100	0.513		3277521
1,2,3,7,8,9-Hexa CDD	pg/g	3.55 J	0.201	9.75	0.100	0.355		3277521
1,2,3,4,6,7,8-Hepta CDD	pg/g	146	0.209	9.75	0.0100	1.46		3277521
Octa CDD	pg/g	1400	0.400	19.5	0.000300	0.420		3277521
Total Tetra CDD	pg/g	2.32	0.199	1.95				3277521
Total Penta CDD	pg/g	2.29 J	0.212	9.75				3277521
Total Hexa CDD	pg/g	34.4	0.208	9.75				3277521
Total Hepta CDD	pg/g	316	0.209	9.75				3277521
2,3,7,8-Tetra CDF **	pg/g	1.39 J	0.196	1.95	0.100	0.139		3277521
1,2,3,7,8-Penta CDF	pg/g	0.875 J	0.215	9.75	0.0300	0.0263		3277521
2,3,4,7,8-Penta CDF	pg/g	0.644 J	0.207	9.75	0.300	0.193		3277521
1,2,3,4,7,8-Hexa CDF	pg/g	2.67 J	0.203	9.75	0.100	0.267		3277521
1,2,3,6,7,8-Hexa CDF	pg/g	0.865 J	0.210	9.75	0.100	0.0865		3277521
2,3,4,6,7,8-Hexa CDF	pg/g	1.13 J	0.208	9.75	0.100	0.113		3277521
1,2,3,7,8,9-Hexa CDF	pg/g	0.216 U	0.216	9.75	0.100	0.0216		3277521
1,2,3,4,6,7,8-Hepta CDF	pg/g	16.7	0.203	9.75	0.0100	0.167		3277521
1,2,3,4,7,8,9-Hepta CDF	pg/g	1.30 J	0.204	9.75	0.0100	0.0130		3277521
Octa CDF	pg/g	46.6	0.394	19.5	0.000300	0.0140		3277521
Total Tetra CDF	pg/g	7.10	0.196	1.95				3277521
Total Penta CDF	pg/g	6.04 J	0.211	9.75				3277521
Total Hexa CDF	pg/g	24.4	0.209	9.75				3277521
Total Hepta CDF	pg/g	56.9	0.204	9.75				3277521
TOTAL TOXIC EQUIVALENCY	pg/g					5.52		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	117						3277521

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0672

DIOXINS AND FURANS BY HRMS (SOIL)

Maxxam ID		SC3196	1		i		İ	
Sampling Date		2013/06/27						
Camping Date		10:00						i l
COC Number		na			TOXIC EQUIVA	LENCY	# of	
	Units	PS-SRM-062713	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	somers	QC Batch
C13-1234678 HeptaCDD *	%	90						3277521
C13-1234678 HeptaCDF **	%	98						3277521
C13-123478 HexaCDD	%	79						3277521
C13-123478 HexaCDF	%	96						3277521
C13-1234789 HeptaCDF	%	91						3277521
C13-123678 HexaCDD	%	85						3277521
C13-123678 HexaCDF	%	94						3277521
C13-12378 PentaCDD	%	79						3277521
C13-12378 PentaCDF	%	84						3277521
C13-123789 HexaCDF	%	82						3277521
C13-234678 HexaCDF	%	95						3277521
C13-23478 PentaCDF	%	95						3277521
C13-2378 TetraCDD	%	76						3277521
C13-2378 TetraCDF	%	72						3277521
C13-OCDD	%	92						3277521

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0672

Test Summary

Maxxam ID SC3196

Sample ID PS-SRM-062713

Matrix Soil

Collected 2013/06/27

Shipped

Received 2013/07/02

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3277521	2013/07/09	2013/07/14	Owen Cosby
Moisture	BAL	3266651	N/A	2013/07/03	Min Yang

Apex Laboratories Client Project #: A3F0672

Package 1 6.9°C

Each temperature is the average of up to three cooler temperatures taken at receipt

GENERAL COMMENTS

Results relate only to the items tested.

Apex Laboratories Attention: Philip Nerenberg Client Project #: A3F0672

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: GB3A4701

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %R	ecovery	Units	QC Limits
3266651 JV1	RPD -		7,7,7				
	Sample/Sample						
	Dup	Moisture	2013/07/03	NC		%	20
3277521 OBC	Spiked Blank	37CL4 2378 Tetra CDD	2013/07/13		59	%	35 - 197
		C13-1234678 HeptaCDD	2013/07/13		86	%	23 - 140
		C13-1234678 HeptaCDF	2013/07/13		95	%	28 - 143
		C13-123478 HexaCDD	2013/07/13		78	%	32 - 141
		C13-123478 HexaCDF	2013/07/13		95	%	26 - 152
		C13-1234789 HeptaCDF	2013/07/13		88	%	26 - 138
		C13-123678 HexaCDD	2013/07/13		87	%	28 - 130
		C13-123678 HexaCDF	2013/07/13		95	%	26 - 123
		C13-12378 PentaCDD	2013/07/13		77	%	25 - 181
		C13-12376 FentaCDF	2013/07/13		78	%	24 - 185
		C13-12376 FemaCDF	2013/07/13		83	%	29 - 147
		C13-123769 HexaCDF	2013/07/13		98	% %	28 - 136
		C13-23478 PentaCDF	2013/07/13		94	%	21 - 178
		C13-2378 TetraCDD	2013/07/13		57	%	25 - 164
		C13-2378 TetraCDF	2013/07/13		60	%	24 - 169
		C13-OCDD	2013/07/13		88	%	17 - 157
		2,3,7,8-Tetra CDD	2013/07/13		108	%	67 - 158
		1,2,3,7,8-Penta CDD	2013/07/13		111	%	70 - 142
		1,2,3,4,7,8-Hexa CDD	2013/07/13		124	%	70 - 164
		1,2,3,6,7,8-Hexa CDD	2013/07/13		120	%	76 - 134
		1,2,3,7,8,9-Hexa CDD	2013/07/13		119	%	64 - 162
		1,2,3,4,6,7,8-Hepta CDD	2013/07/13		113	%	70 - 140
		Octa CDD	2013/07/13		112	%	78 - 144
		2,3,7,8-Tetra CDF	2013/07/13		114	%	75 - 158
		1,2,3,7,8-Penta CDF	2013/07/13		116	%	80 - 134
		2,3,4,7,8-Penta CDF	2013/07/13		109	%	68 - 160
		1,2,3,4,7,8-Hexa CDF	2013/07/13		105	%	72 - 134
		1,2,3,6,7,8-Hexa CDF	2013/07/13		114	%	84 - 130
		2,3,4,6,7,8-Hexa CDF	2013/07/13		108	%	70 - 156
		1,2,3,7,8,9-Hexa CDF	2013/07/13		114	%	78 - 130
		1,2,3,4,6,7,8-Hepta CDF	2013/07/13		111	%	82 - 122
		1,2,3,4,7,8,9-Hepta CDF	2013/07/13		112	%	78 - 138
		Octa CDF	2013/07/13		110	%	63 - 170
	Method Blank	37CL4 2378 Tetra CDD	2013/07/13		90	%	35 - 197
		C13-1234678 HeptaCDD	2013/07/13		75	%	23 - 140
		C13-1234678 HeptaCDF	2013/07/13		76	%	28 - 143
		C13-123478 HexaCDD	2013/07/13		73	%	32 - 141
		C13-123478 HexaCDF	2013/07/13		82	%	26 - 152
		C13-1234789 HeptaCDF	2013/07/13		82	%	26 - 138
		C13-123678 HexaCDD	2013/07/13		82	%	28 - 130
		C13-123678 HexaCDF	2013/07/13		80	%	26 - 123
		C13-12378 PentaCDD	2013/07/13		68	%	25 - 181
		C13-12378 PentaCDF	2013/07/13		72	%	24 - 185
		C13-123789 HexaCDF	2013/07/13		76	%	29 - 147
		C13-234678 HexaCDF	2013/07/13		90	%	28 - 136
		C13-23478 PentaCDF	2013/07/13		87	%	21 - 178
		C13-23776 TetraCDD	2013/07/13		60	%	25 - 164
		C13-2376 TetraCDF	2013/07/13		59	%	24 - 169
		C13-2576 TellaCDI	2013/07/13		72	%	17 - 157
		2,3,7,8-Tetra CDD	2013/07/13	0.104 U, EDL=			17 - 137
		2,3,7,8-1etta CDD 1,2,3,7,8-Penta CDD	2013/07/13	0.104 U, EDL=		pg/g	
		1,2,3,7,8-Penta CDD 1,2,3,4,7,8-Hexa CDD	2013/07/13	0.104 U, EDL=		pg/g	
		1,2,3,4,1,0-Hexa CDD	2013/07/13	0.103 U, EDL=	-0.103	pg/g	

Apex Laboratories Attention: Philip Nerenberg Client Project #: A3F0672

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3A4701

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3277521 OBC	Method Blank	1,2,3,6,7,8-Hexa CDD	2013/07/13	0.111 U, EDL=0.111	pg/g	
		1,2,3,7,8,9-Hexa CDD	2013/07/13	0.103 U, EDL=0.103	pg/g	
		1,2,3,4,6,7,8-Hepta CDD	2013/07/13	0.535 J, EDL=0.106	pg/g	
		Octa CDD	2013/07/13	2.06 J, EDL=0.206	pg/g	
		Total Tetra CDD	2013/07/13	0.104 U, EDL=0.104	pg/g	
		Total Penta CDD	2013/07/13	0.104 U, EDL=0.104	pg/g	
		Total Hexa CDD	2013/07/13	0.107 U, EDL=0.107	pg/g	
		Total Hepta CDD	2013/07/13	0.790 J, EDL=0.106	pg/g	
		2,3,7,8-Tetra CDF	2013/07/13	0.105 U, EDL=0.105	pg/g	
		1,2,3,7,8-Penta CDF	2013/07/13	0.103 U, EDL=0.103	pg/g	
		2,3,4,7,8-Penta CDF	2013/07/13	0.0998 U, EDL=0.0998	pg/g	
		1,2,3,4,7,8-Hexa CDF	2013/07/13	0.0978 U, EDL=0.0978	pg/g	
		1,2,3,6,7,8-Hexa CDF	2013/07/13	0.102 U, EDL=0.102	pg/g	
		2,3,4,6,7,8-Hexa CDF	2013/07/13	0.100 U, EDL=0.100	pg/g	
		1,2,3,7,8,9-Hexa CDF	2013/07/13	0.104 U, EDL=0.104	pg/g	
		1,2,3,4,6,7,8-Hepta CDF	2013/07/13	0.139 U, EDL=0.139 (1)	pg/g	
		1,2,3,4,7,8,9-Hepta CDF	2013/07/13	0.245 J, EDL=0.107	pg/g	
		Octa CDF	2013/07/13	0.950 J, EDL=0.203	pg/g	
		Total Tetra CDF	2013/07/13	0.105 U, EDL=0.105	pg/g	
		Total Penta CDF	2013/07/13	0.102 U, EDL=0.102	pg/g	
		Total Hexa CDF	2013/07/13	0.101 U, EDL=0.101	pg/g	
		Total Hepta CDF	2013/07/13	0.245 J, EDL=0.107	pg/g	

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

(1) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

Validation Signature Page

Maxxam Job #: B3A4701

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina Carriere, Scientific Services

Owen Cosby, BSc.C.Chem, Supervisor, HRMS Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: A3F0629 Your C.O.C. #: na, NA

Attention: Philip Nerenberg
Apex Laboratories
12232 SW Garden Place
Tigard, OR
USA 97223

Report Date: 2013/07/22

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3A5623 Received: 2013/07/03, 14:22

Sample Matrix: SEDIMENT # Samples Received: 7

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Dioxins/Furans in Soil (1613B) (1)	3	2013/07/06	2013/07/12 BRL SOP-00410	EPA 1613B mod.
Dioxins/Furans in Soil (1613B) (1)	3	2013/07/06	2013/07/15 BRL SOP-00410	EPA 1613B mod.
Dioxins/Furans in Soil (1613B) (1)	1	2013/07/06	2013/07/16 BRL SOP-00410	EPA 1613B mod.
2378TCDF Confirmation in Soil	3	N/A	2013/07/15 BRL SOP-00406	EPA 8290A mod.
2378TCDF Confirmation in Soil	4	N/A	2013/07/16 BRL SOP-00406	EPA 8290A mod.
Moisture	6	N/A	2013/07/04 CAM SOP-00445	R.Carter,1993
Moisture	1	N/A	2013/07/19 CAM SOP-00445	R.Carter,1993

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ivana Vukovic, Env Project Manager Email: IVukovic@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: A3F0629 Your C.O.C. #: na, NA

Attention: Philip Nerenberg
Apex Laboratories
12232 SW Garden Place
Tigard, OR
USA 97223

Report Date: 2013/07/22

This report supersedes all previous reports with the same Maxxam job number

CERTIFICATE OF ANALYSIS

-2-

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 2

Apex Laboratories Client Project #: A3F0629

RESULTS OF ANALYSES OF SEDIMENT

Maxxam ID		SC7084	SC7085	SC7086	SC7172		
Sampling Date		2013/07/01	2013/07/01	2013/07/01	2013/07/01		
		18:00	18:00	18:00	18:00		
COC Number		na	na	na	na		
	Unite	LRIS-CL-DU1CISM	I RIS-CI -DU2ISM	I RIS-CI -DU3ISM	LRIS-CL-DU1AISM	RDI	QC Batch
	Omics	LINIO OL DOTO TOM	0_ 0_ 000	0_ 0_ 000 .0			
	Offics	COMPOSITE	COMPOSITE	COMPOSITE	COMPOSITE		40 Duto
	Omis						

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		SC7173	SC7203		SC7204	SC7204		
Sampling Date		2013/07/01	2013/07/01		2013/07/02	2013/07/02		
		18:00	18:00		09:30	09:30		
COC Number		na	NA		NA	NA		
	Units	LRIS-CL-DU1BISM	LRIS-CL-DU4ISM	QC Batch	LRIS-CL-DU5ISM	LRIS-CL-DU5ISM	RDL	QC Batch
		COMPOSITE	COMPOSITE		COPOSITE	COPOSITE		
						Lab-Dup		
Moisture	%	4.9	5.0	3269689	5.0	4.5	1.0	3286123

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7084						
Sampling Date		2013/07/01						
COC Number		18:00 na			TOXIC EQUIVA	FNCV	# of	
COC Number	Units	LRIS-CL-DU1CISM	EDL	RDL	TEF (2005 WHO)	TEQ(DL)		QC Batch
		COMPOSITE			,			
2,3,7,8-Tetra CDD *	20/0	1.98	0.0321	0.307	1.00	1.98		3273119
	pg/g					-		
1,2,3,7,8-Penta CDD	pg/g	35.8	0.0361	1.54	1.00	35.8		3273119
1,2,3,4,7,8-Hexa CDD	pg/g	88.8 (1)	0.606	30.7	0.100	8.88		3273119
1,2,3,6,7,8-Hexa CDD	pg/g	699 (1)	0.650	30.7	0.100	69.9		3273119
1,2,3,7,8,9-Hexa CDD	pg/g	237 (2)	0.607	30.7	0.100	23.7		3273119
1,2,3,4,6,7,8-Hepta CDD	pg/g	12700 (3)	0.654	30.7	0.0100	127		3273119
Octa CDD	pg/g	52100 (3)	0.637	61.5	0.000300	15.6		3273119
Total Tetra CDD	pg/g	68.5	0.0321	0.307				3273119
Total Penta CDD	pg/g	305	0.0361	1.54				3273119
Total Hexa CDD	pg/g	3140 (1)	0.627	30.7				3273119
Total Hepta CDD	pg/g	22900 (1)	0.654	30.7				3273119
2,3,7,8-Tetra CDF **	pg/g	30.7	0.0329	0.307	0.100	3.07		3273119
1,2,3,7,8-Penta CDF	pg/g	63.8	0.109	1.54	0.0300	1.91		3273119
2,3,4,7,8-Penta CDF	pg/g	70.9	0.105	1.54	0.300	21.3		3273119
1,2,3,4,7,8-Hexa CDF	pg/g	283 (4)	0.0324	1.54	0.100	28.3		3273119
1,2,3,6,7,8-Hexa CDF	pg/g	117	0.0337	1.54	0.100	11.7		3273119
2,3,4,6,7,8-Hexa CDF	pg/g	69.9	0.0332	1.54	0.100	6.99		3273119
1,2,3,7,8,9-Hexa CDF	pg/g	8.70	0.0345	1.54	0.100	0.870		3273119
1,2,3,4,6,7,8-Hepta CDF	pg/g	1310 (1)	0.633	30.7	0.0100	13.1		3273119
1,2,3,4,7,8,9-Hepta CDF	pg/g	63.4 (1)	0.636	30.7	0.0100	0.634		3273119
Octa CDF	pg/g	1120 (1)	0.665	61.5	0.000300	0.336		3273119
Total Tetra CDF	pg/g	213	0.0329	0.307				3273119
Total Penta CDF	pg/g	1520	0.107	1.54				3273119

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

- (1) Results are from 20xdilution
- 2) EMPC / Merged Peak

Results are from 20xdilution

(3) Results are from 20xdilution

EMCL - PCDD/DF analysis - Exceeds Maximum Calibration Limit

4) EMPC / Merged Peak

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7084						
Sampling Date		2013/07/01						
COC Number		18:00 na			TOXIC EQUIVA	ENCY	# of	
COC Number	Units	LRIS-CL-DU1CISM	EDL	RDL	TEF (2005 WHO)			QC Batch
		COMPOSITE						
Total Hexa CDF **	pg/g	4340	0.0334	1.54				3273119
Total Hepta CDF	pg/g	3760 (1)	0.635	30.7				3273119
Confirmation 2,3,7,8-Tetra CDF	pg/g	19.6	0.031	0.31	0.100	1.96		3282191
TOTAL TOXIC EQUIVALENCY	pg/g					370		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	121						3273119
C13-1234678 HeptaCDD	%	131						3273119
C13-1234678 HeptaCDF	%	122						3273119
C13-123478 HexaCDD	%	104						3273119
C13-123478 HexaCDF	%	89						3273119
C13-1234789 HeptaCDF	%	126						3273119
C13-123678 HexaCDD	%	121						3273119
C13-123678 HexaCDF	%	81						3273119
C13-12378 PentaCDD	%	86						3273119
C13-12378 PentaCDF	%	87						3273119
C13-123789 HexaCDF	%	77						3273119
C13-234678 HexaCDF	%	84						3273119
C13-23478 PentaCDF	%	97						3273119
C13-2378 TetraCDD	%	84						3273119
C13-2378 TetraCDF	%	83						3273119
C13-OCDD	%	159 (2)						3273119
Confirmation C13-2378 TetraCDF	%	95						3282191

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

⁽¹⁾ Results are from 20xdilution

⁽²⁾ Result exceeds method acceptance criteria 17% -157% due to matrix interference.

High levels of native OCDD present in sample

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7085						
Sampling Date		2013/07/01						
COC Number		18:00 na			TOXIC EQUIVA	 FNCY	# of	
o varibor	Units	LRIS-CL-DU2ISM COMPOSITE	EDL	RDL	TEF (2005 WHO)		Isomers	QC Batch
		1			1	1	1	1
2,3,7,8-Tetra CDD *	pg/g	1.78		0.319	1.00	1.78		3273119
1,2,3,7,8-Penta CDD	pg/g	29.6	0.0361	1.60	1.00	29.6		3273119
1,2,3,4,7,8-Hexa CDD	pg/g	97.8 (1)	2.54	31.9	0.100	9.78		3273119
1,2,3,6,7,8-Hexa CDD	pg/g	677 (1)	2.72	31.9	0.100	67.7		3273119
1,2,3,7,8,9-Hexa CDD	pg/g	243 (1)	2.54	31.9	0.100	24.3		3273119
1,2,3,4,6,7,8-Hepta CDD	pg/g	14100 (2)	0.527	31.9	0.0100	141		3273119
Octa CDD	pg/g	95300 (2)	15.4	63.9	0.000300	28.6		3273119
Total Tetra CDD	pg/g	74.9	0.0347	0.319				3273119
Total Penta CDD	pg/g	321	0.0361	1.60				3273119
Total Hexa CDD	pg/g	3460 (1)	2.63	31.9				3273119
Total Hepta CDD	pg/g	25900 (1)	0.527	31.9				3273119
2,3,7,8-Tetra CDF **	pg/g	24.0	0.0398	0.319	0.100	2.40		3273119
1,2,3,7,8-Penta CDF	pg/g	48.0	0.0785	1.60	0.0300	1.44		3273119
2,3,4,7,8-Penta CDF	pg/g	47.9	0.0758	1.60	0.300	14.4		3273119
1,2,3,4,7,8-Hexa CDF	pg/g	218	0.342	1.60	0.100	21.8		3273119
1,2,3,6,7,8-Hexa CDF	pg/g	98.8	0.355	1.60	0.100	9.88		3273119
2,3,4,6,7,8-Hexa CDF	pg/g	56.8	0.351	1.60	0.100	5.68		3273119
1,2,3,7,8,9-Hexa CDF	pg/g	6.79	0.364	1.60	0.100	0.679		3273119
1,2,3,4,6,7,8-Hepta CDF	pg/g	1390 (1)	0.626	31.9	0.0100	13.9		3273119
1,2,3,4,7,8,9-Hepta CDF	pg/g	70.9 (1)	0.629	31.9	0.0100	0.709		3273119
Octa CDF	pg/g	1370 (1)	1.07	63.9	0.000300	0.411		3273119
Total Tetra CDF	pg/g	195	0.0398	0.319				3273119
Total Penta CDF	pg/g	1170	0.0772	1.60				3273119
Total Hexa CDF	pg/g	3530	0.353	1.60				3273119
Total Hepta CDF	pg/g	4160 (1)	0.627	31.9				3273119

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like

Compounds (1) ** From 20X Dilution **

(2) ** From 20X Dilution **

EMCL - PCDD/DF analysis - Exceeds Maximum Calibration Limit

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7085						
Sampling Date		2013/07/01						
		18:00			TOYIO FOLINA			
COC Number	Units	na LRIS-CL-DU2ISM	EDL	RDL	TOXIC EQUIVA		# of Isomers	QC Batch
	Units	COMPOSITE	LDL	KDL	1E1 (2003 W110)	I LQ(DL)	isomers	QC Daten
			l	1			1	1
Confirmation 2,3,7,8-Tetra CDF **	pg/g	16.3	0.034	0.32	0.100	1.63		3280098
TOTAL TOXIC EQUIVALENCY	pg/g					373		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	110						3273119
C13-1234678 HeptaCDD	%	73 (1)						3273119
C13-1234678 HeptaCDF	%	71 (1)						3273119
C13-123478 HexaCDD	%	58 (1)						3273119
C13-123478 HexaCDF	%	79						3273119
C13-1234789 HeptaCDF	%	66 (1)						3273119
C13-123678 HexaCDD	%	79 (1)						3273119
C13-123678 HexaCDF	%	74						3273119
C13-12378 PentaCDD	%	74						3273119
C13-12378 PentaCDF	%	76						3273119
C13-123789 HexaCDF	%	71						3273119
C13-234678 HexaCDF	%	79						3273119
C13-23478 PentaCDF	%	87						3273119
C13-2378 TetraCDD	%	73						3273119
C13-2378 TetraCDF	%	72						3273119
C13-OCDD	%	75 (1)						3273119
Confirmation C13-2378 TetraCDF	%	99						3280098

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

^{(1) **} From 20X Dilution **

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7086						
Sampling Date		2013/07/01						
COC Number		18:00 na			TOXIC EQUIVA	_ENCY	# of	
	Units	LRIS-CL-DU3ISM COMPOSITE	EDL	RDL	TEF (2005 WHO)		Isomers	QC Batch
	_	1			1	1	1	
2,3,7,8-Tetra CDD *	pg/g	0.291 J	0.0385	0.312	1.00	0.291		3273119
1,2,3,7,8-Penta CDD	pg/g	3.69	0.0375	1.56	1.00	3.69		3273119
1,2,3,4,7,8-Hexa CDD	pg/g	12.0	0.0325	1.56	0.100	1.20		3273119
1,2,3,6,7,8-Hexa CDD	pg/g	83.9	0.0349	1.56	0.100	8.39		3273119
1,2,3,7,8,9-Hexa CDD	pg/g	37.5	0.0325	1.56	0.100	3.75		3273119
1,2,3,4,6,7,8-Hepta CDD	pg/g	1150 (1)	0.745	15.6	0.0100	11.5		3273119
Octa CDD	pg/g	6860 (1)	2.66	31.2	0.000300	2.06		3273119
Total Tetra CDD	pg/g	6.47	0.0385	0.312				3273119
Total Penta CDD	pg/g	26.0	0.0375	1.56				3273119
Total Hexa CDD	pg/g	382	0.0336	1.56				3273119
Total Hepta CDD	pg/g	2000 (1)	0.745	15.6				3273119
2,3,7,8-Tetra CDF **	pg/g	2.26	0.0472	0.312	0.100	0.226		3273119
1,2,3,7,8-Penta CDF	pg/g	4.28	0.0565	1.56	0.0300	0.128		3273119
2,3,4,7,8-Penta CDF	pg/g	5.38	0.0545	1.56	0.300	1.61		3273119
1,2,3,4,7,8-Hexa CDF	pg/g	22.6	0.0632	1.56	0.100	2.26		3273119
1,2,3,6,7,8-Hexa CDF	pg/g	9.93	0.0656	1.56	0.100	0.993		3273119
2,3,4,6,7,8-Hexa CDF	pg/g	6.50	0.0648	1.56	0.100	0.650		3273119
1,2,3,7,8,9-Hexa CDF	pg/g	0.812 J	0.0673	1.56	0.100	0.0812		3273119
1,2,3,4,6,7,8-Hepta CDF	pg/g	154	0.0298	1.56	0.0100	1.54		3273119
1,2,3,4,7,8,9-Hepta CDF	pg/g	7.73	0.0299	1.56	0.0100	0.0773		3273119
Octa CDF	pg/g	207	0.113	3.12	0.000300	0.0621		3273119
Total Tetra CDF	pg/g	16.5	0.0472	0.312				3273119
Total Penta CDF	pg/g	94.3	0.0555	1.56				3273119
Total Hexa CDF	pg/g	312	0.0652	1.56				3273119
Total Hepta CDF	pg/g	409	0.0298	1.56				3273119
Confirmation 2,3,7,8-Tetra CDF	pg/g	1.55	0.033	0.31	0.100	0.155		3280098
TOTAL TOXIC EQUIVALENCY	pg/g					38.4		

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

^{(1) **} From 10X Dilution **

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7086						
Sampling Date		2013/07/01						
		18:00						
COC Number	Units	na LRIS-CL-DU3ISM	EDL	RDL	TOXIC EQUIVAL		# of	QC Batch
	Units	COMPOSITE	EDL	KDL	1EF (2005 WHO)	I EQ(DL)	Isomers	QC Balcii
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	106						3273119
C13-1234678 HeptaCDD	%	83 (1)						3273119
C13-1234678 HeptaCDF **	%	78						3273119
C13-123478 HexaCDD	%	69						3273119
C13-123478 HexaCDF	%	85						3273119
C13-1234789 HeptaCDF	%	74						3273119
C13-123678 HexaCDD	%	73						3273119
C13-123678 HexaCDF	%	79						3273119
C13-12378 PentaCDD	%	80						3273119
C13-12378 PentaCDF	%	82						3273119
C13-123789 HexaCDF	%	73						3273119
C13-234678 HexaCDF	%	82						3273119
C13-23478 PentaCDF	%	94						3273119
C13-2378 TetraCDD	%	73						3273119
C13-2378 TetraCDF	%	74						3273119
C13-OCDD	%	83 (1)						3273119
Confirmation C13-2378 TetraCDF	%	109						3280098

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

** From 10X Dilution ** (1)

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7172						
Sampling Date		2013/07/01						
COC Number		18:00 na			TOXIC EQUIVA	LENCY	# of	
	Units	LRIS-CL-DU1AISM COMPOSITE	EDL	RDL	TEF (2005 WHO)		Isomers	QC Batch
2,3,7,8-Tetra CDD *	pg/g	2.61	0.0301	0.320	1.00	2.61		3273119
1,2,3,7,8-Penta CDD	pg/g	47.0	0.0432	1.60	1.00	47.0		3273119
1,2,3,4,7,8-Hexa CDD	pg/g	152 (1)	3.02	32.0	0.100	15.2		3273119
1,2,3,6,7,8-Hexa CDD	pg/g	1110 (1)	3.23	32.0	0.100	111		3273119
1,2,3,7,8,9-Hexa CDD	pg/g	332 (1)	3.02	32.0	0.100	33.2		3273119
1,2,3,4,6,7,8-Hepta CDD	pg/g	22100 (1)	0.994	32.0	0.0100	221		3273119
Octa CDD	pg/g	161000 (1)	2.43	64.1	0.000300	48.3		3273119
Total Tetra CDD	pg/g	84.3	0.0301	0.320				3273119
Total Penta CDD	pg/g	405	0.0432	1.60				3273119
Total Hexa CDD	pg/g	4910 (1)	3.12	32.0				3273119
Total Hepta CDD	pg/g	38100 (1)	0.994	32.0				3273119
2,3,7,8-Tetra CDF **	pg/g	37.5	0.0579	0.320	0.100	3.75		3273119
1,2,3,7,8-Penta CDF	pg/g	80.7	0.125	1.60	0.0300	2.42		3273119
2,3,4,7,8-Penta CDF	pg/g	89.4	0.121	1.60	0.300	26.8		3273119
1,2,3,4,7,8-Hexa CDF	pg/g	376	0.0432	1.60	0.100	37.6		3273119
1,2,3,6,7,8-Hexa CDF	pg/g	160	0.0449	1.60	0.100	16.0		3273119
2,3,4,6,7,8-Hexa CDF	pg/g	91.6	0.0443	1.60	0.100	9.16		3273119
1,2,3,7,8,9-Hexa CDF	pg/g	12.1	0.0460	1.60	0.100	1.21		3273119
1,2,3,4,6,7,8-Hepta CDF	pg/g	2360 (1)	0.902	32.0	0.0100	23.6		3273119
1,2,3,4,7,8,9-Hepta CDF	pg/g	122 (1)	0.906	32.0	0.0100	1.22		3273119
Octa CDF	pg/g	4050 (1)	2.18	64.1	0.000300	1.22		3273119
Total Tetra CDF	pg/g	271	0.0579	0.320				3273119
Total Penta CDF	pg/g	1960	0.123	1.60				3273119
Total Hexa CDF	pg/g	5590	0.0446	1.60				3273119
Total Hepta CDF	pg/g	7080	0.904	32.0				3273119
Confirmation 2,3,7,8-Tetra CDF	pg/g	22.9	0.034	0.32	0.100	2.29		3280098
TOTAL TOXIC EQUIVALENCY	pg/g					600		

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

^{(1) **} From 20X Dilution **

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7172						
Sampling Date		2013/07/01						
COC Number		18:00			TOXIC EQUIVA	LENCY	# of	
COC Number	Units	na LRIS-CL-DU1AISM	EDL	RDL	TEF (2005 WHO)		# of Isomers	QC Batch
	- Cinto	COMPOSITE			121 (2000 11110)	1.24(22)		QO Buton
				1	1			
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	107						3273119
C13-1234678 HeptaCDD	%	50 (1)						3273119
C13-1234678 HeptaCDF **	%	57 (1)						3273119
C13-123478 HexaCDD	%	52 (1)						3273119
C13-123478 HexaCDF	%	74						3273119
C13-1234789 HeptaCDF	%	58 (1)						3273119
C13-123678 HexaCDD	%	71 (1)						3273119
C13-123678 HexaCDF	%	69						3273119
C13-12378 PentaCDD	%	69						3273119
C13-12378 PentaCDF	%	73						3273119
C13-123789 HexaCDF	%	65						3273119
C13-234678 HexaCDF	%	70						3273119
C13-23478 PentaCDF	%	88						3273119
C13-2378 TetraCDD	%	73						3273119
C13-2378 TetraCDF	%	71						3273119
C13-OCDD	%	29 (1)						3273119
Confirmation C13-2378 TetraCDF	%	92						3280098

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) ** From 20X Dilution **

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7173						
Sampling Date		2013/07/01						
COC Number		18:00 na			TOXIC EQUIVA	FNCV	# of	
COC Nullibel	Units	LRIS-CL-DU1BISM	EDL	RDL	TEF (2005 WHO)			QC Batch
		COMPOSITE				` ′		
0.000	1 ,		l				1	
2,3,7,8-Tetra CDD *	pg/g	2.09		0.317	1.00	2.09		3273119
1,2,3,7,8-Penta CDD	pg/g	38.8	0.0338	1.58	1.00	38.8		3273119
1,2,3,4,7,8-Hexa CDD	pg/g	125 (1)	0.612	31.7	0.100	12.5		3273119
1,2,3,6,7,8-Hexa CDD	pg/g	982 (1)	0.656	31.7	0.100	98.2		3273119
1,2,3,7,8,9-Hexa CDD	pg/g	341 (2)	0.613	31.7	0.100	34.1		3273119
1,2,3,4,6,7,8-Hepta CDD	pg/g	18900 (3)	0.680	31.7	0.0100	189		3273119
Octa CDD	pg/g	76500 (3)	0.671	63.3	0.000300	23.0		3273119
Total Tetra CDD	pg/g	68.1	0.0337	0.317				3273119
Total Penta CDD	pg/g	329	0.0338	1.58				3273119
Total Hexa CDD	pg/g	4360 (1)	0.633	31.7				3273119
Total Hepta CDD	pg/g	34200 (1)	0.680	31.7				3273119
2,3,7,8-Tetra CDF **	pg/g	31.4	0.0431	0.317	0.100	3.14		3273119
1,2,3,7,8-Penta CDF	pg/g	68.0	0.128	1.58	0.0300	2.04		3273119
2,3,4,7,8-Penta CDF	pg/g	75.5	0.123	1.58	0.300	22.7		3273119
1,2,3,4,7,8-Hexa CDF	pg/g	322 (4)	0.0312	1.58	0.100	32.2		3273119
1,2,3,6,7,8-Hexa CDF	pg/g	133	0.0324	1.58	0.100	13.3		3273119
2,3,4,6,7,8-Hexa CDF	pg/g	78.5	0.0320	1.58	0.100	7.85		3273119
1,2,3,7,8,9-Hexa CDF	pg/g	9.65	0.0332	1.58	0.100	0.965		3273119
1,2,3,4,6,7,8-Hepta CDF	pg/g	1950 (1)	0.668	31.7	0.0100	19.5		3273119
1,2,3,4,7,8,9-Hepta CDF	pg/g	98.9 (1)	0.671	31.7	0.0100	0.989		3273119
Octa CDF	pg/g	1800 (1)	0.638	31.7	0.000300	0.540		3273119
Total Tetra CDF	pg/g	217	0.0431	0.317				3273119
Total Penta CDF	pg/g	1610	0.125	1.58				3273119

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

- (1) Results are from 20xdilution
- 2) EMPC / Merged Peak

Results are from 20xdilution

(3) Results are from 20xdilution

EMCL - PCDD/DF analysis - Exceeds Maximum Calibration Limit

4) EMPC / Merged Peak

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7173						
Sampling Date		2013/07/01						
COC Number		18:00 na			TOXIC EQUIVA	ENCY	# of	
COC Number	Units	LRIS-CL-DU1BISM	EDL	RDL	TEF (2005 WHO)			QC Batch
		COMPOSITE						
Total Hexa CDF **	pg/g	4710	0.0322	1.58				3273119
Total Hepta CDF	pg/g	5640 (1)	0.670	31.7				3273119
Confirmation 2,3,7,8-Tetra CDF	pg/g	19.9	0.032	0.32	0.100	1.99		3282191
TOTAL TOXIC EQUIVALENCY	pg/g					500		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	134						3273119
C13-1234678 HeptaCDD	%	112						3273119
C13-1234678 HeptaCDF	%	101						3273119
C13-123478 HexaCDD	%	88						3273119
C13-123478 HexaCDF	%	91						3273119
C13-1234789 HeptaCDF	%	100						3273119
C13-123678 HexaCDD	%	101						3273119
C13-123678 HexaCDF	%	84						3273119
C13-12378 PentaCDD	%	89						3273119
C13-12378 PentaCDF	%	90						3273119
C13-123789 HexaCDF	%	80						3273119
C13-234678 HexaCDF	%	85						3273119
C13-23478 PentaCDF	%	96						3273119
C13-2378 TetraCDD	%	87						3273119
C13-2378 TetraCDF	%	83						3273119
C13-OCDD	%	129						3273119
Confirmation C13-2378 TetraCDF	%	88						3282191

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) Results are from 20xdilution

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7203						
Sampling Date		2013/07/01						
COC Number		18:00 NA			TOXIC EQUIVAI	ENCY	# of	
COC Number	Units	LRIS-CL-DU4ISM	EDL	RDL	TEF (2005 WHO)			QC Batch
		COMPOSITE				` ′		
		ı			1			
2,3,7,8-Tetra CDD *	pg/g	1.48	0.0394	0.330	1.00	1.48		3273119
1,2,3,7,8-Penta CDD	pg/g	21.4	0.0352	1.65	1.00	21.4		3273119
1,2,3,4,7,8-Hexa CDD	pg/g	76.0	0.0431	1.65	0.100	7.60		3273119
1,2,3,6,7,8-Hexa CDD	pg/g	499	0.0462	1.65	0.100	49.9		3273119
1,2,3,7,8,9-Hexa CDD	pg/g	186 (1)	0.0431	1.65	0.100	18.6		3273119
1,2,3,4,6,7,8-Hepta CDD	pg/g	11100 (2)	0.692	33.0	0.0100	111		3273119
Octa CDD	pg/g	81800 (3)	1.07	65.9	0.000300	24.5		3273119
Total Tetra CDD	pg/g	59.3	0.0394	0.330				3273119
Total Penta CDD	pg/g	241	0.0352	1.65				3273119
Total Hexa CDD	pg/g	2370	0.0446	1.65				3273119
Total Hepta CDD	pg/g	19500 (2)	0.692	33.0				3273119
2,3,7,8-Tetra CDF **	pg/g	18.3	0.0960	0.330	0.100	1.83		3273119
1,2,3,7,8-Penta CDF	pg/g	34.1	0.218	1.65	0.0300	1.02		3273119
2,3,4,7,8-Penta CDF	pg/g	36.1	0.211	1.65	0.300	10.8		3273119
1,2,3,4,7,8-Hexa CDF	pg/g	160 (1)	0.0325	1.65	0.100	16.0		3273119
1,2,3,6,7,8-Hexa CDF	pg/g	69.5 U (4)	69.5	1.65	0.100	6.95		3273119
2,3,4,6,7,8-Hexa CDF	pg/g	40.0	0.0333	1.65	0.100	4.00		3273119
1,2,3,7,8,9-Hexa CDF	pg/g	4.75	0.0346	1.65	0.100	0.475		3273119
1,2,3,4,6,7,8-Hepta CDF	pg/g	1060 (2)	0.665	33.0	0.0100	10.6		3273119
1,2,3,4,7,8,9-Hepta CDF	pg/g	54.1 (2)	0.668	33.0	0.0100	0.541		3273119
Octa CDF	pg/g	1610 (2)	0.663	65.9	0.000300	0.483		3273119
Total Tetra CDF	pg/g	156	0.0960	0.330				3273119
Total Penta CDF	pg/g	837	0.214	1.65				3273119

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

- (1) EMPC / Merged Peak
- Results are from 20xdilution (2)
- (3) Results are from 20xdilution

EMCL - PCDD/DF analysis - Exceeds Maximum Calibration Limit

(4) EMPC / DPE - Diphenylether interference present caused dibenzofuran detected to become a "non-detect" with an elevated detection limit.

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7203						
Sampling Date		2013/07/01						
COC Number		18:00 NA			TOYIC FOLIVAL	ENCY	# of	
COC Number	Units	LRIS-CL-DU4ISM	EDL	RDL	TOXIC EQUIVAL			QC Batch
		COMPOSITE			(2000 11110)	()		40 Zuitoi:
		1	1		_	1	1	
Total Hexa CDF **	pg/g	1380	0.0335	1.65				3273119
Total Hepta CDF	pg/g	3050 (1)	0.666	33.0				3273119
Confirmation 2,3,7,8-Tetra CDF	pg/g	11.8	0.034	0.33	0.100	1.18		3282191
TOTAL TOXIC EQUIVALENCY	pg/g					287		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	97						3273119
C13-1234678 HeptaCDD	%	71						3273119
C13-1234678 HeptaCDF	%	79						3273119
C13-123478 HexaCDD	%	70						3273119
C13-123478 HexaCDF	%	84						3273119
C13-1234789 HeptaCDF	%	76						3273119
C13-123678 HexaCDD	%	76						3273119
C13-123678 HexaCDF	%	78						3273119
C13-12378 PentaCDD	%	82						3273119
C13-12378 PentaCDF	%	80						3273119
C13-123789 HexaCDF	%	73						3273119
C13-234678 HexaCDF	%	81						3273119
C13-23478 PentaCDF	%	91						3273119
C13-2378 TetraCDD	%	72						3273119
C13-2378 TetraCDF	%	68						3273119
C13-OCDD	%	52						3273119
Confirmation C13-2378 TetraCDF	%	79						3282191

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

⁽¹⁾ Results are from 20xdilution

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7204						
Sampling Date		2013/07/02						
COC Number		09:30 NA			TOXIC EQUIVA	FNCY	# of	
o varibor	Units	LRIS-CL-DU5ISM COPOSITE	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
	<u> </u>				i	1	1	1
2,3,7,8-Tetra CDD *	pg/g	0.229 J		0.326	1.00	0.229		3273119
1,2,3,7,8-Penta CDD	pg/g	2.52	0.0354	1.63	1.00	2.52		3273119
1,2,3,4,7,8-Hexa CDD	pg/g	7.65	0.0341	1.63	0.100	0.765		3273119
1,2,3,6,7,8-Hexa CDD	pg/g	56.1	0.0366	1.63	0.100	5.61		3273119
1,2,3,7,8,9-Hexa CDD	pg/g	21.6 (1)	0.0342	1.63	0.100	2.16		3273119
1,2,3,4,6,7,8-Hepta CDD	pg/g	1100 (2)	0.174	8.16	0.0100	11.0		3273119
Octa CDD	pg/g	6540 (2)	0.168	16.3	0.000300	1.96		3273119
Total Tetra CDD	pg/g	6.66	0.0337	0.326				3273119
Total Penta CDD	pg/g	23.3	0.0354	1.63				3273119
Total Hexa CDD	pg/g	260	0.0353	1.63				3273119
Total Hepta CDD	pg/g	1930 (2)	0.174	3.26				3273119
2,3,7,8-Tetra CDF **	pg/g	2.05	0.0337	0.326	0.100	0.205		3273119
1,2,3,7,8-Penta CDF	pg/g	3.48	0.0333	1.63	0.0300	0.104		3273119
2,3,4,7,8-Penta CDF	pg/g	3.84	0.0321	1.63	0.300	1.15		3273119
1,2,3,4,7,8-Hexa CDF	pg/g	15.3 (1)	0.0346	1.63	0.100	1.53		3273119
1,2,3,6,7,8-Hexa CDF	pg/g	6.60 U (3)	6.60	1.63	0.100	0.660		3273119
2,3,4,6,7,8-Hexa CDF	pg/g	4.07	0.0355	1.63	0.100	0.407		3273119
1,2,3,7,8,9-Hexa CDF	pg/g	0.503 J	0.0368	1.63	0.100	0.0503		3273119
1,2,3,4,6,7,8-Hepta CDF	pg/g	96.4	0.0322	1.63	0.0100	0.964		3273119
1,2,3,4,7,8,9-Hepta CDF	pg/g	4.52	0.0323	1.63	0.0100	0.0452		3273119
Octa CDF	pg/g	91.6	0.0324	3.26	0.000300	0.0275		3273119
Total Tetra CDF	pg/g	16.8	0.0337	0.326				3273119
Total Penta CDF	pg/g	87.6	0.0327	1.63				3273119
Total Hexa CDF	pg/g	228	0.0357	1.63				3273119
Total Hepta CDF	pg/g	255	0.0323	1.63				3273119

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

- (1) EMPC / Merged Peak
- (2) Results are from 5xdilution
- (3) EMPC / DPE Diphenylether interference present caused dibenzofuran detected to become a "non-detect" with an elevated detection limit.

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7204						
Sampling Date		2013/07/02						
COC Number		09:30 NA			TOXIC EQUIVA	LENCY	# of	
COC Number	Units	LRIS-CL-DU5ISM	EDL	RDL	TEF (2005 WHO)			QC Batch
		COPOSITE				` ′		
Confirmation 2,3,7,8-Tetra CDF **	ng/g	1.61	0.031	0.33	0.100	0.161		3280098
	pg/g	1.01	0.031	0.33	0.100			3200090
TOTAL TOXIC EQUIVALENCY	pg/g					29.3		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	118						3273119
C13-1234678 HeptaCDD	%	110						3273119
C13-1234678 HeptaCDF	%	84						3273119
C13-123478 HexaCDD	%	78						3273119
C13-123478 HexaCDF	%	92						3273119
C13-1234789 HeptaCDF	%	83						3273119
C13-123678 HexaCDD	%	83						3273119
C13-123678 HexaCDF	%	89						3273119
C13-12378 PentaCDD	%	79						3273119
C13-12378 PentaCDF	%	82						3273119
C13-123789 HexaCDF	%	82						3273119
C13-234678 HexaCDF	%	91						3273119
C13-23478 PentaCDF	%	92						3273119
C13-2378 TetraCDD	%	82						3273119
C13-2378 TetraCDF	%	78						3273119
C13-OCDD	%	116						3273119
Confirmation C13-2378 TetraCDF	%	101						3280098

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7204						
Sampling Date		2013/07/02						1
COC Number		09:30 NA			TOXIC EQUIVAI	_ENCY	# of	
	Units	LRIS-CL-DU5ISM COPOSITE Lab-Dup	EDL	RDL	TEF (2005 WHO)			QC Batch
2,3,7,8-Tetra CDD *	pg/g	0.237 J	0.0522	0.326	1.00	0.237		3273119
1,2,3,7,8-Penta CDD	pg/g	2.01	0.0448	1.63	1.00	2.01		3273119
1,2,3,4,7,8-Hexa CDD	pg/g	6.49	0.0367	1.63	0.100	0.649		3273119
1,2,3,6,7,8-Hexa CDD	pg/g	48.0	0.0393	1.63	0.100	4.80		3273119
1,2,3,7,8,9-Hexa CDD	pg/g	19.4	0.0367	1.63	0.100	1.94		3273119
1,2,3,4,6,7,8-Hepta CDD	pg/g	921 (1)	0.599	16.3	0.0100	9.21		3273119
Octa CDD	pg/g	5980 (1)	3.09	32.6	0.000300	1.79		3273119
Total Tetra CDD	pg/g	5.99	0.0522	0.326				3273119
Total Penta CDD	pg/g	16.7	0.0448	1.63				3273119
Total Hexa CDD	pg/g	223	0.0379	1.63				3273119
Total Hepta CDD	pg/g	1660 (1)	0.599	16.3				3273119
2,3,7,8-Tetra CDF **	pg/g	1.79	0.0701	0.326	0.100	0.179		3273119
1,2,3,7,8-Penta CDF	pg/g	2.72	0.0566	1.63	0.0300	0.0816		3273119
2,3,4,7,8-Penta CDF	pg/g	2.73	0.0547	1.63	0.300	0.819		3273119
1,2,3,4,7,8-Hexa CDF	pg/g	11.4	0.0356	1.63	0.100	1.14		3273119
1,2,3,6,7,8-Hexa CDF	pg/g	5.12	0.0369	1.63	0.100	0.512		3273119
2,3,4,6,7,8-Hexa CDF	pg/g	3.80	0.0365	1.63	0.100	0.380		3273119
1,2,3,7,8,9-Hexa CDF	pg/g	0.424 J	0.0379	1.63	0.100	0.0424		3273119
1,2,3,4,6,7,8-Hepta CDF	pg/g	84.1	0.0563	1.63	0.0100	0.841		3273119
1,2,3,4,7,8,9-Hepta CDF	pg/g	3.81	0.0566	1.63	0.0100	0.0381		3273119
Octa CDF	pg/g	93.9	0.0575	3.26	0.000300	0.0282		3273119
Total Tetra CDF	pg/g	13.7	0.0701	0.326				3273119
Total Penta CDF	pg/g	61.5	0.0556	1.63				3273119
Total Hexa CDF	pg/g	177	0.0367	1.63				3273119
Total Hepta CDF	pg/g	221	0.0564	1.63				3273119
Confirmation 2,3,7,8-Tetra CDF	pg/g	1.57	0.036	0.33	0.100	0.157		3280098

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested.

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

⁽¹⁾ ** From 10X Dilution **

Apex Laboratories Client Project #: A3F0629

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SC7204						
Sampling Date		2013/07/02						
COC Number		09:30 NA			TOXIC EQUIVA	ENCY	# of	
COC Number	Units	LRIS-CL-DU5ISM	EDL	RDL	TEF (2005 WHO)		# of	QC Batch
		COPOSITE			(,	(,		
		Lab-Dup						
TOTAL TOXIC EQUIVALENCY	pg/g					24.7		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	100						3273119
C13-1234678 HeptaCDD	%	68 (1)						3273119
C13-1234678 HeptaCDF **	%	72						3273119
C13-123478 HexaCDD	%	68						3273119
C13-123478 HexaCDF	%	79						3273119
C13-1234789 HeptaCDF	%	67						3273119
C13-123678 HexaCDD	%	71						3273119
C13-123678 HexaCDF	%	73						3273119
C13-12378 PentaCDD	%	82						3273119
C13-12378 PentaCDF	%	77						3273119
C13-123789 HexaCDF	%	67						3273119
C13-234678 HexaCDF	%	77						3273119
C13-23478 PentaCDF	%	87						3273119
C13-2378 TetraCDD	%	67						3273119
C13-2378 TetraCDF	%	69						3273119
C13-OCDD	%	67 (1)						3273119
Confirmation C13-2378 TetraCDF	%	93						3280098

RDL = Reportable Detection Limit EDL = Estimated Detection Limit QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

(1) ** From 10X Dilution **

Apex Laboratories Client Project #: A3F0629

Test Summary

Maxxam ID SC7084

Collected 2013/07/01

Sample ID LRIS-CL-DU1C--ISM COMPOSITE

Shipped

Matrix SEDIMENT

Received 2013/07/03

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3273119	2013/07/06	2013/07/15	Owen Cosby
2378TCDF Confirmation in Soil	HRMS/MS	3282191	N/A	2013/07/16	Vica Cioranic
Moisture	BAL	3269689	N/A	2013/07/04	Chamika Deeyagaha

Maxxam ID SC7085

Collected 2013/07/01

Sample ID LRIS-CL-DU2--ISM COMPOSITE

Shipped

Matrix SEDIMENT

Received 2013/07/03

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3273119	2013/07/06	2013/07/12	Owen Cosby
2378TCDF Confirmation in Soil	HRMS/MS	3280098	N/A	2013/07/15	Vica Cioranic
Moisture	BAL	3269689	N/A	2013/07/04	Chamika Deeyagaha

Maxxam ID SC7086

Collected 2013/07/01

Sample ID LRIS-CL-DU3--ISM COMPOSITE Matrix SEDIMENT

Shipped

Received 2013/07/03

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3273119	2013/07/06	2013/07/12	Owen Cosby
2378TCDF Confirmation in Soil	HRMS/MS	3280098	N/A	2013/07/15	Vica Cioranic
Moisture	BAI	3269689	N/A	2013/07/04	Chamika Deeyagaha

Maxxam ID SC7172

Collected 2013/07/01

Sample ID LRIS-CL-DU1A--ISM COMPOSITE Matrix SEDIMENT

Shipped

Received 2013/07/03

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3273119	2013/07/06	2013/07/12	Owen Cosby
2378TCDF Confirmation in Soil	HRMS/MS	3280098	N/A	2013/07/15	Vica Cioranic
Moisture	BAL	3269689	N/A	2013/07/04	Chamika Deeyagaha

Maxxam ID SC7173

Collected 2013/07/01

Sample ID LRIS-CL-DU1B--ISM COMPOSITE

Shipped

Matrix SEDIMENT Received 2013/07/03

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3273119	2013/07/06	2013/07/15	Owen Cosby
2378TCDF Confirmation in Soil	HRMS/MS	3282191	N/A	2013/07/16	Vica Cioranic
Moisture	BAL	3269689	N/A	2013/07/04	Chamika Deeyagaha

Apex Laboratories Client Project #: A3F0629

Test Summary

Maxxam ID SC7203

Collected 2013/07/01

Sample ID LRIS-CL-DU4--ISM COPOSITE

Shipped

Matrix SEDIMENT

Received 2013/07/03

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3273119	2013/07/06	2013/07/15	Owen Cosby
2378TCDF Confirmation in Soil	HRMS/MS	3282191	N/A	2013/07/16	Vica Cioranic
Moisture	BAL	3269689	N/A	2013/07/04	Chamika Deeyagaha

Maxxam ID SC7204

Matrix SEDIMENT

Collected 2013/07/02

Sample ID LRIS-CL-DU5--ISM COPOSITE

Shipped

Received 2013/07/03

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3273119	2013/07/06	2013/07/16	Owen Cosby
2378TCDF Confirmation in Soil	HRMS/MS	3280098	N/A	2013/07/16	Vica Cioranic
Moisture	BAL	3286123	N/A	2013/07/19	Thoai Truyen Huynh

Maxxam ID SC7204 Dup

Collected 2013/07/02

Sample ID LRIS-CL-DU5--ISM COPOSITE Matrix SEDIMENT

Shipped

Received 2013/07/03

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3273119	2013/07/06	2013/07/12	Owen Cosby
2378TCDF Confirmation in Soil	HRMS/MS	3280098	N/A	2013/07/15	Vica Cioranic
Moisture	BAL	3286123	N/A	2013/07/19	Thoai Truyen Huynh

Apex Laboratories Client Project #: A3F0629

Package 1 4.4°C

Each temperature is the average of up to three cooler temperatures taken at receipt

GENERAL COMMENTS

Revised report (2013/07/19): Moisture was re-analysed on sample SC7204 LRIS-CL-DU5-ISM.

VOA (D) was originally used to calculate % moisture. According to client, the % moisture for this sample is unreasonable high. The VOA for dry weight determination may have been compromised during transit. Thus moisture was redone on VOA (A) as per client's request.

Dry weight was performed on the following voas:

LRIS-CL-DU2--ISM COMPOSITE SC7085-D

LRIS-CL-DU5--ISM COPOSITESC7204-D

LRIS-CL-DU4--ISM COMPOSITE SC7203-D

LRIS-CL-DU1B--ISM COMPOSITE SC7173-E

LRIS-CL-DU1C--ISM COMPOSITE SC7084-D

LRIS-CL-DU3--ISM COMPOSITESC7086-D

LRIS-CL-DU1A--ISM COMPOSITE SC7172-F

30g Extraction was performed.

LRIS-CL-DU2--ISM COMPOSITESC7085-B

LRIS-CL-DU5--ISM COPOSITE SC7204-B

LRIS-CL-DU4--ISM COMPOSITESC7203-A

LRIS-CL-DU1B--ISM COMPOSITE SC7173-B

LRIS-CL-DU1C--ISM COMPOSITE SC7084-C

LRIS-CL-DU3--ISM COMPOSITE SC7086-B

LRIS-CL-DU1A--ISM COMPOSITESC7172- E, B & C

The EPA 1613 method uses labelled (or C13) compounds to quantitate the individual compounds. This involves spiking the samples prior to extraction with a known amount of Carbon 13 isotopes and then quantitating the recovery of them in the final extract. This recovery percentage is then used to quantitate the native compound to correct for any losses due to sample preparation. In the case of these samples, the level of the native hepta and octa compounds were too high when compared to the spiked C13 internal standards. If the extracts were diluted to bring the native compounds within the calibration range, the C13 isotopes would no longer be detectable and therefore we could no longer correct for losses from the extraction and cleanup procedures.

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Spiked Blank Dioxins/Furans in Soil (1613B): ** Native percent recoveries were calculated with respect to the Method Spike **

Results relate only to the items tested.

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: GB3A5623

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3269689 JV1	RPD -	- diameter	<i>yyyy</i> ,	7 000	70.100010.5	0	Ψ =
	Sample/Sample						
	Dup	Moisture	2013/07/05	0.3		%	20
3273119 OBC	Matrix Spike	37CL4 2378 Tetra CDD	2013/07/16		94	%	35 - 197
	Matrix Spike DUP	37CL4 2378 Tetra CDD	2013/07/16		101	%	35 - 197
	Matrix Spike	C13-1234678 HeptaCDD	2013/07/16		38	%	23 - 140
	Matrix Spike DUP	C13-1234678 HeptaCDD	2013/07/16		43	%	23 - 140
	Matrix Spike	C13-1234678 HeptaCDF	2013/07/16		60	%	28 - 143
	Matrix Spike DUP	C13-1234678 HeptaCDF	2013/07/16		66	%	28 - 143
	Matrix Spike	C13-123478 HexaCDD	2013/07/16		63	%	32 - 141
	Matrix Spike DUP	C13-123478 HexaCDD	2013/07/16		67	%	32 - 141
	Matrix Spike	C13-123478 HexaCDF	2013/07/16		77	%	26 - 152
	Matrix Spike DUP	C13-123478 HexaCDF	2013/07/16		81	%	26 - 152
	Matrix Spike	C13-1234789 HeptaCDF	2013/07/16		62	%	26 - 138
	Matrix Spike DUP	C13-1234789 HeptaCDF	2013/07/16		68	%	26 - 138
	Matrix Spike	C13-123678 HexaCDD	2013/07/16		68	%	28 - 130
	Matrix Spike DUP	C13-123678 HexaCDD	2013/07/16		75	%	28 - 130
	Matrix Spike	C13-123678 HexaCDF	2013/07/16		72	%	26 - 123
	Matrix Spike DUP	C13-123678 HexaCDF	2013/07/16		75	%	26 - 123
	Matrix Spike	C13-12378 PentaCDD	2013/07/16		75	%	25 - 181
	Matrix Spike DUP	C13-12378 PentaCDD	2013/07/16		83	%	25 - 181
	Matrix Spike	C13-12378 PentaCDF	2013/07/16		74	%	24 - 185
	Matrix Spike DUP	C13-12378 PentaCDF	2013/07/16		83	%	24 - 185
	Matrix Spike	C13-123789 HexaCDF	2013/07/16		54	%	29 - 147
	Matrix Spike DUP	C13-123789 HexaCDF	2013/07/16		72	%	29 - 147
	Matrix Spike	C13-234678 HexaCDF	2013/07/16		73	%	28 - 136
	Matrix Spike DUP	C13-234678 HexaCDF	2013/07/16		79	%	28 - 136
	Matrix Spike	C13-23478 PentaCDF	2013/07/16		84	%	21 - 178
	Matrix Spike DUP	C13-23478 PentaCDF	2013/07/16		95	%	21 - 178
	Matrix Spike	C13-2378 TetraCDD	2013/07/16		68	%	25 - 164
	Matrix Spike DUP	C13-2378 TetraCDD	2013/07/16		69	%	25 - 164
	Matrix Spike	C13-2378 TetraCDF	2013/07/16		63	%	24 - 169
	Matrix Spike DUP	C13-2378 TetraCDF	2013/07/16		71	%	24 - 169
	Matrix Spike	C13-OCDD	2013/07/16		24	%	17 - 157
	Matrix Spike DUP Matrix Spike	C13-OCDD	2013/07/16		26	%	17 - 157
	(SC7172) Matrix Spike DUP	2,3,7,8-Tetra CDD	2013/07/16		116	%	67 - 158
	(SC7172)	2,3,7,8-Tetra CDD	2013/07/16		126	%	67 - 158
	MS/MSD RPD Matrix Spike	2,3,7,8-Tetra CDD	2013/07/16	8.3		%	25
	(SC7172) Matrix Spike DUP	1,2,3,7,8-Penta CDD	2013/07/16		108	%	70 - 142
	(SC7172)	1,2,3,7,8-Penta CDD	2013/07/16		112	%	70 - 142
	MS/MSD RPD Matrix Spike	1,2,3,7,8-Penta CDD	2013/07/16	3.6		%	25
	(SC7172) Matrix Spike DUP	1,2,3,4,7,8-Hexa CDD	2013/07/16		100	%	70 - 164
	(SC7172)	1,2,3,4,7,8-Hexa CDD	2013/07/16		110	%	70 - 164
	MS/MSD RPD Matrix Spike	1,2,3,4,7,8-Hexa CDD	2013/07/16	9.5		%	25
	(SC7172) Matrix Spike DUP	1,2,3,6,7,8-Hexa CDD	2013/07/16		299 (1)	%	76 - 134
	(SC7172)	1,2,3,6,7,8-Hexa CDD	2013/07/16		145 (1)	%	76 - 134
	MS/MSD RPD	1,2,3,6,7,8-Hexa CDD	2013/07/16	69.4 (1		%	25

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3A5623

QA/QC			Date				
Batch	OC Type	Doromotor	Analyzed	Value	9/ Bossyon	Lloito	OC Limita
Num Init 3273119 OBC	QC Type Matrix Spike	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
32/3119 OBC	(SC7172)	1,2,3,7,8,9-Hexa CDD	2013/07/16		201 (1)	%	64 - 162
	Matrix Spike DUP	1,2,5,7,6,5 110,44 000	2013/01/10		201 (1)	70	04 102
	(SC7172)	1,2,3,7,8,9-Hexa CDD	2013/07/16		201 (1)	%	64 - 162
	MS/MSD RPD	1,2,3,7,8,9-Hexa CDD	2013/07/16	0 (1)		%	25
	Matrix Spike	.,_,0,. ,0,0 022	20.070.710	G (.)		,0	
	(SC7172)	1,2,3,4,6,7,8-Hepta CDD	2013/07/16		NC (2)	%	70 - 140
	Matrix Spike DUP				`,		
	(SC7172)	1,2,3,4,6,7,8-Hepta CDD	2013/07/16		NC (2)	%	70 - 140
	MS/MSD RPD	1,2,3,4,6,7,8-Hepta CDD	2013/07/16	NC (2)		%	25
	Matrix Spike						
	(SC7172)	Octa CDD	2013/07/16		NC (2)	%	78 - 144
	Matrix Spike DUP						
	(SC7172)	Octa CDD	2013/07/16		NC (2)	%	78 - 144
	MS/MSD RPD	Octa CDD	2013/07/16	NC (2)		%	25
	Matrix Spike						
	(SC7172)	Total Tetra CDD	2013/07/16		10	%	N/A
	Matrix Spike DUP						
	(SC7172)	Total Tetra CDD	2013/07/16		11	%	N/A
	MS/MSD RPD	Total Tetra CDD	2013/07/16	5.8		%	25
	Matrix Spike	T	0040/07/40		0.4	0.4	> 1/ >
	(SC7172)	Total Penta CDD	2013/07/16		81	%	N/A
	Matrix Spike DUP	Total Donta CDD	2042/07/46		00	0/	NI/A
	(SC7172) MS/MSD RPD	Total Penta CDD Total Penta CDD	2013/07/16	4 5	83	%	N/A
	Matrix Spike	Total Penta CDD	2013/07/16	1.5		%	25
	(SC7172)	Total Hexa CDD	2013/07/16		1790	%	N/A
	Matrix Spike DUP	Total Flexa CDD	2013/07/10		1790	/0	IN/A
	(SC7172)	Total Hexa CDD	2013/07/16		1740	%	N/A
	MS/MSD RPD	Total Hexa CDD	2013/07/16	2.6	1740	%	25
	Matrix Spike	Total Florid GDD	2010/01/10	2.0		70	20
	(SC7172)	Total Hepta CDD	2013/07/16		10100	%	N/A
	Matrix Spike DUP					,-	
	(SC7172)	Total Hepta CDD	2013/07/16		9350	%	N/A
	MS/MSD RPD	Total Hepta CDD	2013/07/16	7.2		%	25
	Matrix Spike						
	(SC7172)	2,3,7,8-Tetra CDF	2013/07/16		112	%	75 - 158
	Matrix Spike DUP						
	(SC7172)	2,3,7,8-Tetra CDF	2013/07/16		108	%	75 - 158
	MS/MSD RPD	2,3,7,8-Tetra CDF	2013/07/16	3.6		%	25
	Matrix Spike						
	(SC7172)	1,2,3,7,8-Penta CDF	2013/07/16		122	%	80 - 134
	Matrix Spike DUP	400708 4 005	0040/07/40		440	0.4	00 101
	(SC7172)	1,2,3,7,8-Penta CDF	2013/07/16	0.5	119	%	80 - 134
	MS/MSD RPD	1,2,3,7,8-Penta CDF	2013/07/16	2.5		%	25
	Matrix Spike	2,3,4,7,8-Penta CDF	2012/07/16		114	%	60 160
	(SC7172) Matrix Spike DUP	2,3,4,7,6-Penta CDF	2013/07/16		114	70	68 - 160
	(SC7172)	2,3,4,7,8-Penta CDF	2013/07/16		112	%	68 - 160
	MS/MSD RPD	2,3,4,7,8-Penta CDF	2013/07/16	1.8	112	% %	25
	Matrix Spike	2,5,4,7,0-1 enta ODI	2013/07/10	1.0		70	23
	(SC7172)	1,2,3,4,7,8-Hexa CDF	2013/07/16		122	%	72 - 134
	Matrix Spike DUP	.,=,0, 1,1,0 110/4 001	2010/01/10		122	70	.2 104
	(SC7172)	1,2,3,4,7,8-Hexa CDF	2013/07/16		110	%	72 - 134
	MS/MSD RPD	1,2,3,4,7,8-Hexa CDF	2013/07/16	10.3		%	25
		, , , , , ,					

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3A5623

QA/QC			Date				
Batch		_	Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value ^o	%Recovery	Units	QC Limits
3273119 OBC	Matrix Spike	40007011 005	0040/07/40		400	0.4	0.4 400
	(SC7172)	1,2,3,6,7,8-Hexa CDF	2013/07/16		109	%	84 - 130
	Matrix Spike DUP	4.0.0.0.7.0.Have CDE	2042/07/46		400	0/	04 400
	(SC7172)	1,2,3,6,7,8-Hexa CDF	2013/07/16	0.0	108	%	84 - 130
	MS/MSD RPD	1,2,3,6,7,8-Hexa CDF	2013/07/16	0.9		%	25
	Matrix Spike (SC7172)	2.2.4.6.7.9 Hove CDE	2013/07/16		130	%	70 - 156
	Matrix Spike DUP	2,3,4,6,7,8-Hexa CDF	2013/07/16		130	70	70 - 136
	(SC7172)	2,3,4,6,7,8-Hexa CDF	2013/07/16		119	%	70 - 156
	MS/MSD RPD	2,3,4,6,7,8-Hexa CDF	2013/07/16	8.8	119	%	70 - 130 25
	Matrix Spike	2,5,4,0,7,0-1 lexa CDI	2013/07/10	0.0		70	23
	(SC7172)	1,2,3,7,8,9-Hexa CDF	2013/07/16		63 (3)	%	78 - 130
	Matrix Spike DUP	1,2,0,1,0,0 110,10 021	2010/01/10		00 (0)	70	70 100
	(SC7172)	1,2,3,7,8,9-Hexa CDF	2013/07/16		98	%	78 - 130
	MS/MSD RPD	1,2,3,7,8,9-Hexa CDF	2013/07/16	43.5 (4)		%	25
	Matrix Spike	.,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(4		, •	
	(SC7172)	1,2,3,4,6,7,8-Hepta CDF	2013/07/16		NC (2)	%	82 - 122
	Matrix Spike DUP	, , , , , , , , , , , , , , , , , , , ,			- ()		
	(SC7172)	1,2,3,4,6,7,8-Hepta CDF	2013/07/16		NC (2)	%	82 - 122
	MS/MSD RPD	1,2,3,4,6,7,8-Hepta CDF	2013/07/16	NC (2)	` '	%	25
	Matrix Spike	•		• • • • • • • • • • • • • • • • • • • •			
	(SC7172)	1,2,3,4,7,8,9-Hepta CDF	2013/07/16		123	%	78 - 138
	Matrix Spike DUP						
	(SC7172)	1,2,3,4,7,8,9-Hepta CDF	2013/07/16		130	%	78 - 138
	MS/MSD RPD	1,2,3,4,7,8,9-Hepta CDF	2013/07/16	5.5		%	25
	Matrix Spike						
	(SC7172)	Octa CDF	2013/07/16		170	%	63 - 170
	Matrix Spike DUP						
	(SC7172)	Octa CDF	2013/07/16		NC (2)	%	63 - 170
	MS/MSD RPD	Octa CDF	2013/07/16	NC (2)		%	25
	Matrix Spike	T. 17	22.42.42				
	(SC7172)	Total Tetra CDF	2013/07/16		45	%	N/A
	Matrix Spike DUP	T-1-1 T-1 ODE	0040/07/40		4.4	0/	N1/A
	(SC7172)	Total Tetra CDF	2013/07/16	0.0	44	%	N/A
	MS/MSD RPD	Total Tetra CDF	2013/07/16	0.6		%	25
	Matrix Spike (SC7172)	Total Penta CDF	2013/07/16		246	%	N/A
	Matrix Spike DUP	Total Felita CDF	2013/07/10		240	/0	IN/A
	(SC7172)	Total Penta CDF	2013/07/16		244	%	N/A
	MS/MSD RPD	Total Penta CDF	2013/07/16	0.8	244	%	25
	Matrix Spike	Total Total ODI	2010/01/10	0.0		70	20
	(SC7172)	Total Hexa CDF	2013/07/16		775	%	N/A
	Matrix Spike DUP	Total Florid ODT	2010/01/10		7.70	70	14/71
	(SC7172)	Total Hexa CDF	2013/07/16		778	%	N/A
	MS/MSD RPD	Total Hexa CDF	2013/07/16	0.5		%	25
	Matrix Spike					, •	
	(SC7172)	Total Hepta CDF	2013/07/16		2310	%	N/A
	Matrix Spike DUP	•					
	(SC7172)	Total Hepta CDF	2013/07/16		2180	%	N/A
	MS/MSD RPD	Total Hepta CDF	2013/07/16	5.7		%	25
	Spiked Blank	37CL4 2378 Tetra CDD	2013/07/12		107	%	35 - 197
		C13-1234678 HeptaCDD	2013/07/12		79	%	23 - 140
		C13-1234678 HeptaCDF	2013/07/12		88	%	28 - 143
		C13-123478 HexaCDD	2013/07/12		76	%	32 - 141
		C13-123478 HexaCDF	2013/07/12		94	%	26 - 152

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3A5623

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3273119 OBC	Spiked Blank	C13-1234789 HeptaCDF	2013/07/12	78	%	26 - 138
		C13-123678 HexaCDD	2013/07/12	87	%	28 - 130
		C13-123678 HexaCDF	2013/07/12	93	%	26 - 123
		C13-12378 PentaCDD	2013/07/12	83	%	25 - 181
		C13-12378 PentaCDF	2013/07/12	87	%	24 - 185
		C13-123789 HexaCDF	2013/07/12	80	%	29 - 147
		C13-234678 HexaCDF	2013/07/12	95	%	28 - 136
		C13-23478 PentaCDF	2013/07/12	98	%	21 - 178
		C13-2378 TetraCDD	2013/07/12	74	%	25 - 164
		C13-2378 TetraCDF	2013/07/12	76	%	24 - 169
		C13-OCDD	2013/07/12	71	%	17 - 157
		2,3,7,8-Tetra CDD	2013/07/12	116	%	67 - 158
		1,2,3,7,8-Penta CDD	2013/07/12	121	%	70 - 142
		1,2,3,4,7,8-Hexa CDD	2013/07/12	131	%	70 - 164
		1,2,3,6,7,8-Hexa CDD	2013/07/12	118	%	76 - 134
		1,2,3,7,8,9-Hexa CDD	2013/07/12	121	%	64 - 162
		1,2,3,4,6,7,8-Hepta CDD	2013/07/12	117	%	70 - 140
		Octa CDD	2013/07/12	123	%	78 - 144
		2,3,7,8-Tetra CDF	2013/07/12	122	%	75 - 158
		1,2,3,7,8-Penta CDF	2013/07/12	118	%	80 - 134
		2,3,4,7,8-Penta CDF	2013/07/12	109	%	68 - 160
		1,2,3,4,7,8-Hexa CDF	2013/07/12	109	%	72 - 134
		1,2,3,6,7,8-Hexa CDF	2013/07/12	114	%	84 - 130
		2,3,4,6,7,8-Hexa CDF	2013/07/12	110	%	70 - 156
		1,2,3,7,8,9-Hexa CDF	2013/07/12	113	%	78 - 130
		1,2,3,4,6,7,8-Hepta CDF	2013/07/12	118	%	82 - 122
		1,2,3,4,7,8,9-Hepta CDF	2013/07/12	118	%	78 - 138
		Octa CDF	2013/07/12	119	%	63 - 170
	Method Blank	37CL4 2378 Tetra CDD	2013/07/12	67	%	35 - 197
		C13-1234678 HeptaCDD	2013/07/12	59	%	23 - 140
		C13-1234678 HeptaCDF	2013/07/12	65	%	28 - 143
		C13-123478 HexaCDD	2013/07/12	55	%	32 - 141
		C13-123478 HexaCDF	2013/07/12	65	%	26 - 152
		C13-1234789 HeptaCDF	2013/07/12	61	%	26 - 138
		C13-123678 HexaCDD	2013/07/12	60	%	28 - 130
		C13-123678 HexaCDF	2013/07/12	65	%	26 - 123
		C13-12378 PentaCDD	2013/07/12	60	%	25 - 181
		C13-12378 PentaCDF	2013/07/12	63	%	24 - 185
		C13-123789 HexaCDF	2013/07/12	60	%	29 - 147
		C13-234678 HexaCDF	2013/07/12	68	%	28 - 136
		C13-23478 PentaCDF	2013/07/12	68	%	21 - 178
		C13-2378 TetraCDD	2013/07/12	49	%	25 - 164
		C13-2378 TetraCDF	2013/07/12	51	%	24 - 169
		C13-OCDD	2013/07/12	58	%	17 - 157
		2,3,7,8-Tetra CDD	2013/07/12	0.0478 U, EDL=0.0478	pg/g	
		1,2,3,7,8-Penta CDD	2013/07/12	0.0514 U, EDL=0.0514	pg/g	
		1,2,3,4,7,8-Hexa CDD	2013/07/12	0.0633 J, EDL=0.0289	pg/g	
		1,2,3,6,7,8-Hexa CDD	2013/07/12	0.0669 J, EDL=0.0310	pg/g	
		1,2,3,7,8,9-Hexa CDD	2013/07/12	0.0985 J, EDL=0.0289	pg/g	
		1,2,3,4,6,7,8-Hepta CDD	2013/07/12	0.280 J, EDL=0.0274	pg/g	
		Octa CDD	2013/07/12	1.24 J, EDL=0.0499	pg/g	
		Total Tetra CDD	2013/07/12	0.0478 U, EDL=0.0478	pg/g	
		Total Penta CDD	2013/07/12	0.0514 U, EDL=0.0514	pg/g	
		Total Hexa CDD	2013/07/12	0.281 J, EDL=0.0299	pg/g	
		Total Hepta CDD	2013/07/12	0.509 J, EDL=0.0274	pg/g	

Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3A5623

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Lim
273119 OBC	Method Blank	2,3,7,8-Tetra CDF	2013/07/12	0.0360 U, EDL=0.0360	pg/g	
		1,2,3,7,8-Penta CDF	2013/07/12	0.0485 U, EDL=0.0485	pg/g	
		2,3,4,7,8-Penta CDF	2013/07/12	0.0468 U, EDL=0.0468	pg/g	
		1,2,3,4,7,8-Hexa CDF	2013/07/12	0.0724 J, EDL=0.0357	pg/g	
		1,2,3,6,7,8-Hexa CDF	2013/07/12	0.0558 J, EDL=0.0370	pg/g	
		2,3,4,6,7,8-Hexa CDF	2013/07/12	0.0882 U, EDL=0.0882 (5)	pg/g	
		1,2,3,7,8,9-Hexa CDF	2013/07/12	0.112 J, EDL=0.0380	pg/g	
		1,2,3,4,6,7,8-Hepta CDF	2013/07/12	0.191 J, EDL=0.0326	pg/g	
		1,2,3,4,7,8,9-Hepta CDF	2013/07/12	0.281 J, EDL=0.0327	pg/g	
		Octa CDF	2013/07/12	0.910 J, EDL=0.0340	pg/g	
		Total Tetra CDF	2013/07/12	0.0360 U, EDL=0.0360	pg/g	
		Total Penta CDF	2013/07/12	0.0477 U, EDL=0.0477	pg/g	
		Total Hexa CDF	2013/07/12	0.240 J, EDL=0.0368	pg/g	
		Total Hepta CDF	2013/07/12	0.473 J, EDL=0.0326	pg/g	
	RPD -					
	Sample/Sample	0.0.7.0.Tatas ODD	0040/07/40	NO	0/	
	Dup	2,3,7,8-Tetra CDD	2013/07/12	NC NO	%	
		1,2,3,7,8-Penta CDD	2013/07/12	NC	%	
		1,2,3,4,7,8-Hexa CDD	2013/07/12	NC	%	
		1,2,3,6,7,8-Hexa CDD	2013/07/12	15.6	%	
		1,2,3,7,8,9-Hexa CDD	2013/07/12	10.7	%	
		1,2,3,4,6,7,8-Hepta CDD	2013/07/12	17.9 (6)	%	
		Octa CDD	2013/07/12	9.0 (6)	%	
		Total Tetra CDD	2013/07/12	10.6	%	
		Total Penta CDD	2013/07/12	32.6 (4)	%	
		Total Hexa CDD	2013/07/12	15.4	%	
		Total Hepta CDD	2013/07/12	15.3 (6)	%	
		2,3,7,8-Tetra CDF	2013/07/12	13.4	%	
		1,2,3,7,8-Penta CDF	2013/07/12	NC	%	
		2,3,4,7,8-Penta CDF	2013/07/12	NC	%	
		1,2,3,4,7,8-Hexa CDF	2013/07/12	29.0 (4)	%	
		1,2,3,6,7,8-Hexa CDF	2013/07/12	NC	%	
		2,3,4,6,7,8-Hexa CDF	2013/07/12	NC	%	
		1,2,3,7,8,9-Hexa CDF	2013/07/12	NC	%	
		1,2,3,4,6,7,8-Hepta CDF	2013/07/12	13.6	%	
		1,2,3,4,7,8,9-Hepta CDF	2013/07/12	NC	%	
		Octa CDF	2013/07/12	2.5	%	
		Total Tetra CDF	2013/07/12	20.6	%	
		Total Penta CDF	2013/07/12	34.9 (4)	%	
		Total Hexa CDF	2013/07/12	25.5 (4)	%	
		Total Hepta CDF	2013/07/12	14.3	%	
280098 VCI	Method Blank	Confirmation C13-2378 TetraCDF	2013/07/15	75	%	40 - 1
		Confirmation 2,3,7,8-Tetra CDF	2013/07/15	0.11 U, EDL=0.11	pg/g	
	RPD - Sample/Sample					
	Sample/Sample Dup	Confirmation 2,3,7,8-Tetra CDF	2013/07/15	NC	%	
282191 VCI	Method Blank	Confirmation C13-2378 TetraCDF	2013/07/16	63	%	40 - 1
_02101 VOI	Wichioa Dialik	Confirmation 2,3,7,8-Tetra CDF	2013/07/16	0.54 J, EDL=0.11	pg/g	40 -
286123 THT	RPD -	John Madon 2,3,7,0-16tta JDF	2013/01/10	0.04 0, EDE-0.11	P9/9	
-55125 1111	Sample/Sample					
	Dup	Moisture	2013/07/19	NC	%	

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Apex Laboratories Attention: Philip Nerenberg Client Project #: A3F0629 P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3A5623

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was not sufficiently significant to permit a reliable recovery calculation.

NC (RPD): The RPD was not calculated. The level of analyte detected in the parent sample and its duplicate was not sufficiently significant to permit a reliable calculation.

- (1) Recovery exceed method acceptance criteria 80% 140% due to matrix interference and sample heterogenity
- (2) Recovery was not calculated.

The natural sample had a high level of native present as compared to the spike added and was heterogeneous.

- (3) Recovery below method acceptance criteria 80% 140% due to matrix interference and sample heterogenity.
- (4) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (5) EMPC / NDR Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.
- (6) ** From 10X Dilution **

Validation Signature Page

Maxxam Job #: B3A5623

Brad Newman, Scientific Specialist

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina Carriere, Scientific Services

Owen Cosby, BSc.C.chem, Supervisor, HRMS Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your Project #: A3F0670

Attention: Kent Patton
Apex Laboratories
12232 SW Garden Place
Tigard, OR
USA 97223

Report Date: 2013/08/26

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3D6144 Received: 2013/08/16, 20:59

Sample Matrix: SEDIMENT # Samples Received: 5

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Dioxins/Furans in Soil (1613B) (1)	4	2013/08/18	2013/08/21 BRL SOP-00410	EPA 1613B mod.
Dioxins/Furans in Soil (1613B) (1)	1	2013/08/20	2013/08/25 BRL SOP-00410	EPA 1613B mod.
2378TCDF Confirmation in Soil	4	N/A	2013/08/22 BRL SOP-00406	EPA 8290A mod.
2378TCDF Confirmation in Soil	1	N/A	2013/08/26 BRL SOP-00406	EPA 8290A mod.
Moisture	4	N/A	2013/08/17 CAM SOP-00445	R.Carter,1993
Moisture	1	N/A	2013/08/21 CAM SOP-00445	R.Carter,1993

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) Soils are reported on a dry weight basis unless otherwise specified.

Confirmatory runs for 2,3,7,8-TCDF are performed only if the primary result is greater than the RDL.

- U = Undetected at the limit of quantitation.
- J = Estimated concentration between the EDL & RDL.
- B = Blank Contamination.
- Q = One or more quality control criteria failed.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ivana Vukovic, Env Project Manager Email: IVukovic@maxxam.ca Phone# (905) 817-5700

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam Analytics Inc. is a NELAC accredited laboratory. Certificate # CANA001. Use of the NELAC logo however does not insure that

Your Project #: A3F0670

Attention: Kent Patton Apex Laboratories 12232 SW Garden Place Tigard, OR 97223 USA

Report Date: 2013/08/26

CERTIFICATE OF ANALYSIS -2-

Maxxam is accredited for all of the methods indicated. This certificate shall not be reproduced except in full, without the written approval of Maxxam Analytics Inc. Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section.

Total cover pages: 2

Apex Laboratories Client Project #: A3F0670

RESULTS OF ANALYSES OF SEDIMENT

Maxxam ID		SR7534	SR7535	SR7536	SR7537		SS5504		
Sampling Date		2013/06/26	2013/06/26	2013/06/26	2013/06/26		2013/06/26		
		12:00	11:10	10:53	10:55		11:10		
L	Units	CL-16-2.5	CL-18	CL-19	CL-22	QC Batch	CL-23	RDL	QC Batch

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

1,2,3,7,8-Penta CDD pg/g 3.10 J 0.106 5.00 1.00 3.10 332197 1,2,3,4,7,8-Hexa CDD pg/g 10.4 0.124 5.00 0.100 1.04 332197 1,2,3,6,7,8-Hexa CDD pg/g 86.2 0.133 5.00 0.100 8.62 332197 1,2,3,4,6,7,8-Hepta CDD pg/g 1640 0.0837 5.00 0.0100 16.4 332197 Octa CDD pg/g 11900 (1) 2.00 200 0.000300 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 3.57 332197 Total Tetra CDD pg/g 20.4 0.106 5.00 0.000300 3.57 332197 Total Hexa CDD pg/g 380 0.133 5.00 0.000300 332197 Total Hepta CDD pg/g 380 0.133 5.00 32197 2,3,7,8-Penta CDF pg/g 2.71 0.106 1.00 0.100 0.271 332197 <	Maxxam ID		SR7534						
Units CL-16-2.5 EDL RDL TEF (2005 WHO) TEQ(DL) Isomers QC Bate	Sampling Date					TOXIC EQUIVA	LENCY	# of	
2,3,7,8-Tetra CDD * pg/g 0.224 J 0.110 1.00 1.00 0.224 332197 1,2,3,7,8-Penta CDD pg/g 3.10 J 0.106 5.00 1.00 3.10 332197 1,2,3,4,7,8-Hexa CDD pg/g 10.4 0.124 5.00 0.100 1.04 332197 1,2,3,6,7,8-Hexa CDD pg/g 86.2 0.133 5.00 0.100 3.76 332197 1,2,3,4,6,7,8-Hepta CDD pg/g 1640 0.0837 5.00 0.0100 16.4 332197 Octa CDD pg/g 11900 (t) 2.00 200 0.000300 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 332197 Total Penta CDD pg/g 380 0.133 5.00 332197 Total Hexa CDD pg/g 3.40 0.106 5.00 332197 Total Hepta CDD pg/g 2.940 0.0837 5.00 332197 1,2,3,7,8-Tetra CDF *** pg/g 5.50		Unite		FDI	BDI	TEE (2005 WHO)	TEO(DL)	Isomers	OC Batch
1,2,3,7,8-Penta CDD pg/g 3.10 J 0.106 5.00 1.00 3.10 332197 1,2,3,4,7,8-Hexa CDD pg/g 10.4 0.124 5.00 0.100 1.04 332197 1,2,3,6,7,8-Hexa CDD pg/g 86.2 0.133 5.00 0.100 8.62 332197 1,2,3,4,6,7,8-Hexa CDD pg/g 1640 0.0837 5.00 0.0100 16.4 332197 Octa CDD pg/g 11900 (1) 2.00 200 0.000300 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 3.00 332197 Total Hexa CDD pg/g 3.00 0.133 5.00 332197 Total Hexa CDD pg/g 380 0.133 5.00 332197 Total Hexa CDD pg/g 2.940 0.0837 5.00 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.		Joints	OL-10-2.5	LDL	INDL	TET (2003 WITO)	ILQ(DL)	jouners	RO Batch
1,2,3,4,7,8-Hexa CDD pg/g 10.4 0.124 5.00 0.100 1.04 332197 1,2,3,6,7,8-Hexa CDD pg/g 86.2 0.133 5.00 0.100 8.62 332197 1,2,3,7,8,9-Hexa CDD pg/g 37.6 0.135 5.00 0.100 3.76 332197 1,2,3,4,6,7,8-Hepta CDD pg/g 1640 0.0837 5.00 0.0100 16.4 332197 Octa CDD pg/g 11900 (1) 2.00 200 0.000300 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 332197 Total Penta CDD pg/g 20.4 0.106 5.00 332197 Total Hexa CDD pg/g 380 0.133 5.00 332197 Total Hepta CDD pg/g 2940 0.0837 5.00 32197 2,3,7,8-Tetra CDF *** pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 6.49	2,3,7,8-Tetra CDD *	pg/g	0.224 J	0.110	1.00	1.00	0.224		3321976
1,2,3,6,7,8-Hexa CDD pg/g 86.2 0.133 5.00 0.100 8.62 332197 1,2,3,7,8,9-Hexa CDD pg/g 37.6 0.135 5.00 0.100 3.76 332197 1,2,3,4,6,7,8-Hepta CDD pg/g 1640 0.0837 5.00 0.0100 16.4 332197 Octa CDD pg/g 11900 (f) 2.00 200 0.000300 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 332197 Total Penta CDD pg/g 20.4 0.106 5.00 332197 Total Hexa CDD pg/g 380 0.133 5.00 332197 Total Hepta CDD pg/g 2940 0.0837 5.00 332197 2,3,7,8-Tetra CDF *** pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 1.95 332197 1,2,3,4,7,8-Penta CDF pg/g 32.8	1,2,3,7,8-Penta CDD	pg/g	3.10 J	0.106	5.00	1.00	3.10		3321976
1,2,3,7,8,9-Hexa CDD pg/g 37.6 0.135 5.00 0.100 3.76 332197 1,2,3,4,6,7,8-Hepta CDD pg/g 1640 0.0837 5.00 0.0100 16.4 332197 Octa CDD pg/g 11900 (1) 2.00 200 0.000300 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 332197 Total Penta CDD pg/g 20.4 0.106 5.00 332197 Total Hepta CDD pg/g 380 0.133 5.00 332197 Total Hepta CDD pg/g 2940 0.0837 5.00 332197 2,3,7,8-Tetra CDF *** pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 1.6	1,2,3,4,7,8-Hexa CDD	pg/g	10.4	0.124	5.00	0.100	1.04		3321976
1,2,3,4,6,7,8-Hepta CDD pg/g 1640 0.0837 5.00 0.0100 16.4 332197 Octa CDD pg/g 11900 (t) 2.00 200 0.000300 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 332197 Total Penta CDD pg/g 20.4 0.106 5.00 332197 Total Hexa CDD pg/g 380 0.133 5.00 332197 Total Hepta CDD pg/g 2940 0.0837 5.00 332197 2,3,7,8-Tetra CDF pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 1,2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 2,3,4,6,7,8-Hexa CDF pg/g 6.77	1,2,3,6,7,8-Hexa CDD	pg/g	86.2	0.133	5.00	0.100	8.62		3321976
Octa CDD pg/g 11900 (1) 2.00 200 0.000300 3.57 332197 Total Tetra CDD pg/g 3.16 0.110 1.00 332197 Total Penta CDD pg/g 20.4 0.106 5.00 332197 Total Hexa CDD pg/g 380 0.133 5.00 332197 Total Hepta CDD pg/g 2940 0.0837 5.00 332197 2,3,7,8-Tetra CDF pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 1,2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 2,3,4,6,7,8-Hexa CDF pg/g 6.77 0.0652 5.00 0.100 1.16 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154	1,2,3,7,8,9-Hexa CDD	pg/g	37.6	0.135	5.00	0.100	3.76		3321976
Total Tetra CDD pg/g 3.16 0.110 1.00 332197 Total Penta CDD pg/g 20.4 0.106 5.00 332197 Total Hexa CDD pg/g 380 0.133 5.00 332197 Total Hepta CDD pg/g 2940 0.0837 5.00 332197 2,3,7,8-Tetra CDF ** pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 2,3,4,6,7,8-Hexa CDF pg/g 0.935 0.0742 5.00 0.100 0.677 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 </td <td>1,2,3,4,6,7,8-Hepta CDD</td> <td>pg/g</td> <td>1640</td> <td>0.0837</td> <td>5.00</td> <td>0.0100</td> <td>16.4</td> <td></td> <td>3321976</td>	1,2,3,4,6,7,8-Hepta CDD	pg/g	1640	0.0837	5.00	0.0100	16.4		3321976
Total Penta CDD pg/g 20.4 0.106 5.00 332197 Total Hexa CDD pg/g 380 0.133 5.00 332197 Total Hepta CDD pg/g 2940 0.0837 5.00 332197 2,3,7,8-Tetra CDF ** pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 1,2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.677 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.100 0.0935 332197 1,2,3,4,7	Octa CDD	pg/g	11900 (1)	2.00	200	0.000300	3.57		3321976
Total Hexa CDD pg/g 380 0.133 5.00 332197 Total Hepta CDD pg/g 2940 0.0837 5.00 332197 2,3,7,8-Tetra CDF ** pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.677 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 0.935 J 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 </td <td>Total Tetra CDD</td> <td>pg/g</td> <td>3.16</td> <td>0.110</td> <td>1.00</td> <td></td> <td></td> <td></td> <td>3321976</td>	Total Tetra CDD	pg/g	3.16	0.110	1.00				3321976
Total Hepta CDD pg/g 2940 0.0837 5.00 332197 2,3,7,8-Tetra CDF *** pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 2,3,4,6,7,8-Hexa CDF pg/g 6.77 0.0652 5.00 0.100 0.677 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00	Total Penta CDD	pg/g	20.4	0.106	5.00				3321976
2,3,7,8-Tetra CDF ** pg/g 2.71 0.106 1.00 0.100 0.271 332197 1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 2,3,4,6,7,8-Hexa CDF pg/g 6.77 0.0652 5.00 0.100 0.677 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 <td< td=""><td>Total Hexa CDD</td><td>pg/g</td><td>380</td><td>0.133</td><td>5.00</td><td></td><td></td><td></td><td>3321976</td></td<>	Total Hexa CDD	pg/g	380	0.133	5.00				3321976
1,2,3,7,8-Penta CDF pg/g 5.50 0.105 5.00 0.0300 0.165 332197 2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 2,3,4,6,7,8-Hexa CDF pg/g 6.77 0.0652 5.00 0.100 0.677 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 <t< td=""><td>Total Hepta CDD</td><td>pg/g</td><td>2940</td><td>0.0837</td><td>5.00</td><td></td><td></td><td></td><td>3321976</td></t<>	Total Hepta CDD	pg/g	2940	0.0837	5.00				3321976
2,3,4,7,8-Penta CDF pg/g 6.49 0.103 5.00 0.300 1.95 332197 1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 2,3,4,6,7,8-Hexa CDF pg/g 6.77 0.0652 5.00 0.100 0.677 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 0.106 1.00 0.000300 0.0471 332197	2,3,7,8-Tetra CDF **	pg/g	2.71	0.106	1.00	0.100	0.271		3321976
1,2,3,4,7,8-Hexa CDF pg/g 32.8 0.0691 5.00 0.100 3.28 332197 1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 2,3,4,6,7,8-Hexa CDF pg/g 6.77 0.0652 5.00 0.100 0.677 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 0.106 1.00 332197	1,2,3,7,8-Penta CDF	pg/g	5.50	0.105	5.00	0.0300	0.165		3321976
1,2,3,6,7,8-Hexa CDF pg/g 11.6 0.0719 5.00 0.100 1.16 332197 2,3,4,6,7,8-Hexa CDF pg/g 6.77 0.0652 5.00 0.100 0.677 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 0.106 1.00 332197	2,3,4,7,8-Penta CDF	pg/g	6.49	0.103	5.00	0.300	1.95		3321976
2,3,4,6,7,8-Hexa CDF pg/g 6.77 0.0652 5.00 0.100 0.677 332197 1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 0.106 1.00 332197	1,2,3,4,7,8-Hexa CDF	pg/g	32.8	0.0691	5.00	0.100	3.28		3321976
1,2,3,7,8,9-Hexa CDF pg/g 0.935 J 0.0742 5.00 0.100 0.0935 332197 1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 0.106 1.00 332197	1,2,3,6,7,8-Hexa CDF	pg/g	11.6	0.0719	5.00	0.100	1.16		3321976
1,2,3,4,6,7,8-Hepta CDF pg/g 154 0.0937 5.00 0.0100 1.54 332197 1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 0.106 1.00 332197	2,3,4,6,7,8-Hexa CDF	pg/g	6.77	0.0652	5.00	0.100	0.677		3321976
1,2,3,4,7,8,9-Hepta CDF pg/g 9.02 0.0949 5.00 0.0100 0.0902 332197 Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 0.106 1.00 332197	1,2,3,7,8,9-Hexa CDF	pg/g	0.935 J	0.0742	5.00	0.100	0.0935		3321976
Octa CDF pg/g 157 0.172 10.0 0.000300 0.0471 332197 Total Tetra CDF pg/g 11.0 0.106 1.00 332197	1,2,3,4,6,7,8-Hepta CDF	pg/g	154	0.0937	5.00	0.0100	1.54		3321976
Total Tetra CDF pg/g 11.0 0.106 1.00 332197	1,2,3,4,7,8,9-Hepta CDF	pg/g	9.02	0.0949	5.00	0.0100	0.0902		3321976
	Octa CDF	pg/g	157	0.172	10.0	0.000300	0.0471		3321976
Total Penta CDF pg/g 51.2 0.104 5.00 332197	Total Tetra CDF	pg/g	11.0	0.106	1.00				3321976
	Total Penta CDF	pg/g	51.2	0.104	5.00				3321976
Total Hexa CDF pg/g 363 0.0699 5.00 332197	Total Hexa CDF	pg/g	363	0.0699	5.00				3321976
Total Hepta CDF pg/g 458 0.0943 5.00 332197	Total Hepta CDF	pg/g	458	0.0943	5.00				3321976
Confirmation 2,3,7,8-Tetra CDF pg/g 2.3 0.10 1.0 0.100 0.230 332384	Confirmation 2,3,7,8-Tetra CDF	pg/g	2.3	0.10	1.0	0.100	0.230		3323848
TOTAL TOXIC EQUIVALENCY pg/g 45.9	TOTAL TOXIC EQUIVALENCY	pg/g					45.9		
Surrogate Recovery (%)	Surrogate Recovery (%)								
37CL4 2378 Tetra CDD % 150 332197	37CL4 2378 Tetra CDD	%	150						3321976

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SR7534						
Sampling Date		2013/06/26			TOXIC EQUIVA	LENCY	# of	
		12:00			TEE (0005 14/110)	TEO(DI)		000 1
	Units	CL-16-2.5	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDD *	%	139						3321976
C13-1234678 HeptaCDF **	%	121						3321976
C13-123478 HexaCDD	%	101						3321976
C13-123478 HexaCDF	%	95						3321976
C13-1234789 HeptaCDF	%	127						3321976
C13-123678 HexaCDD	%	91						3321976
C13-123678 HexaCDF	%	94						3321976
C13-12378 PentaCDD	%	147						3321976
C13-12378 PentaCDF	%	134						3321976
C13-123789 HexaCDF	%	113						3321976
C13-234678 HexaCDF	%	114						3321976
C13-23478 PentaCDF	%	151						3321976
C13-2378 TetraCDD	%	105						3321976
C13-2378 TetraCDF	%	119						3321976
C13-OCDD	%	107 (1)						3321976
Confirmation C13-2378 TetraCDF	%	98						3323848

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SR7535						
Sampling Date		2013/06/26			TOXIC EQUIVA	LENCY	# of	
	Units	11:10 CL-18	EDL	RDL	TEF (2005 WHO)	TEO(DL)	Isomers	QC Batch
	Omes	<u> </u>	LUL	INDL	121 (2000 11110)	ILQ(DL)	Johners	QO Duton
2,3,7,8-Tetra CDD *	pg/g	0.608 J	0.0995	1.00	1.00	0.608		3321976
1,2,3,7,8-Penta CDD	pg/g	9.31	0.0972	5.00	1.00	9.31		3321976
1,2,3,4,7,8-Hexa CDD	pg/g	30.5	0.285	5.00	0.100	3.05		3321976
1,2,3,6,7,8-Hexa CDD	pg/g	224	0.308	5.00	0.100	22.4		3321976
1,2,3,7,8,9-Hexa CDD	pg/g	104	0.311	5.00	0.100	10.4		3321976
1,2,3,4,6,7,8-Hepta CDD	pg/g	3960 (1)	1.00	100	0.0100	39.6		3321976
Octa CDD	pg/g	32700 (1)	2.05	200	0.000300	9.81		3321976
Total Tetra CDD	pg/g	16.8	0.0995	1.00				3321976
Total Penta CDD	pg/g	86.2	0.0972	5.00				3321976
Total Hexa CDD	pg/g	1090	0.308	5.00				3321976
Total Hepta CDD	pg/g	7410 (1)	1.00	100				3321976
2,3,7,8-Tetra CDF **	pg/g	7.43	0.111	1.00	0.100	0.743		3321976
1,2,3,7,8-Penta CDF	pg/g	14.0	0.0968	5.00	0.0300	0.420		3321976
2,3,4,7,8-Penta CDF	pg/g	15.2	0.0945	5.00	0.300	4.56		3321976
1,2,3,4,7,8-Hexa CDF	pg/g	74.4	0.0737	5.00	0.100	7.44		3321976
1,2,3,6,7,8-Hexa CDF	pg/g	29.6	0.0767	5.00	0.100	2.96		3321976
2,3,4,6,7,8-Hexa CDF	pg/g	16.7	0.0695	5.00	0.100	1.67		3321976
1,2,3,7,8,9-Hexa CDF	pg/g	2.18 J	0.0792	5.00	0.100	0.218		3321976
1,2,3,4,6,7,8-Hepta CDF	pg/g	397	0.254	5.00	0.0100	3.97		3321976
1,2,3,4,7,8,9-Hepta CDF	pg/g	22.7	0.258	5.00	0.0100	0.227		3321976
Octa CDF	pg/g	487	0.119	10.0	0.000300	0.146		3321976
Total Tetra CDF	pg/g	41.0	0.111	1.00				3321976
Total Penta CDF	pg/g	138	0.0956	5.00				3321976
Total Hexa CDF	pg/g	986	0.0746	5.00				3321976
Total Hepta CDF	pg/g	1180	0.256	5.00				3321976
Confirmation 2,3,7,8-Tetra CDF	pg/g	6.0	0.10	1.0	0.100	0.600		3323848
TOTAL TOXIC EQUIVALENCY	pg/g					117		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	146						3321976

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SR7535						
Sampling Date		2013/06/26			TOXIC EQUIVA	LENCY	# of	
	I I mit a	11:10	FDI	DDI	TEE (2005 M/LO)	TEO(DL)		OC Detak
	Units	CL-18	EDL	KUL	TEF (2005 WHO)	IEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDD *	%	139 (1)						3321976
C13-1234678 HeptaCDF **	%	130						3321976
C13-123478 HexaCDD	%	101						3321976
C13-123478 HexaCDF	%	101						3321976
C13-1234789 HeptaCDF	%	131						3321976
C13-123678 HexaCDD	%	96						3321976
C13-123678 HexaCDF	%	98						3321976
C13-12378 PentaCDD	%	146						3321976
C13-12378 PentaCDF	%	138						3321976
C13-123789 HexaCDF	%	111						3321976
C13-234678 HexaCDF	%	112						3321976
C13-23478 PentaCDF	%	152						3321976
C13-2378 TetraCDD	%	103						3321976
C13-2378 TetraCDF	%	119						3321976
C13-OCDD	%	127 (1)						3321976
Confirmation C13-2378 TetraCDF	%	95						3323848

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SR7536						
Sampling Date		2013/06/26			TOXIC EQUIVA	LENCY	# of	
	Units	10:53 CL-19	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
	_		1		,	, ,	1	
2,3,7,8-Tetra CDD *	pg/g	0.202 J	0.113	0.998	1.00	0.202		3321976
1,2,3,7,8-Penta CDD	pg/g	1.78 J	0.111	4.99	1.00	1.78		3321976
1,2,3,4,7,8-Hexa CDD	pg/g	6.51	0.0797	4.99	0.100	0.651		3321976
1,2,3,6,7,8-Hexa CDD	pg/g	46.4	0.0859	4.99	0.100	4.64		3321976
1,2,3,7,8,9-Hexa CDD	pg/g	23.1	0.0868	4.99	0.100	2.31		3321976
1,2,3,4,6,7,8-Hepta CDD	pg/g	950	0.0848	4.99	0.0100	9.50		3321976
Octa CDD	pg/g	6930 (1)	2.09	200	0.000300	2.08		3321976
Total Tetra CDD	pg/g	3.03	0.113	0.998				3321976
Total Penta CDD	pg/g	15.5	0.111	4.99				3321976
Total Hexa CDD	pg/g	241	0.0859	4.99				3321976
Total Hepta CDD	pg/g	1710	0.0848	4.99				3321976
2,3,7,8-Tetra CDF **	pg/g	1.66	0.103	0.998	0.100	0.166		3321976
1,2,3,7,8-Penta CDF	pg/g	2.90 J	0.0842	4.99	0.0300	0.0870		3321976
2,3,4,7,8-Penta CDF	pg/g	2.97 J	0.0823	4.99	0.300	0.891		3321976
1,2,3,4,7,8-Hexa CDF	pg/g	15.4	0.0826	4.99	0.100	1.54		3321976
1,2,3,6,7,8-Hexa CDF	pg/g	6.11	0.0859	4.99	0.100	0.611		3321976
2,3,4,6,7,8-Hexa CDF	pg/g	3.51 J	0.0779	4.99	0.100	0.351		3321976
1,2,3,7,8,9-Hexa CDF	pg/g	0.459 J	0.0887	4.99	0.100	0.0459		3321976
1,2,3,4,6,7,8-Hepta CDF	pg/g	85.0	0.0893	4.99	0.0100	0.850		3321976
1,2,3,4,7,8,9-Hepta CDF	pg/g	4.72 J	0.0905	4.99	0.0100	0.0472		3321976
Octa CDF	pg/g	90.3	0.0998	9.98	0.000300	0.0271		3321976
Total Tetra CDF	pg/g	7.36	0.103	0.998				3321976
Total Penta CDF	pg/g	22.4	0.0832	4.99				3321976
Total Hexa CDF	pg/g	173	0.0836	4.99				3321976
Total Hepta CDF	pg/g	232	0.0899	4.99				3321976
Confirmation 2,3,7,8-Tetra CDF	pg/g	1.5	0.10	1.0	0.100	0.150		3323848
TOTAL TOXIC EQUIVALENCY	pg/g					25.8		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	128						3321976

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

^{(1) **} From 20X Dilution Run **

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SR7536						
Sampling Date		2013/06/26			TOXIC EQUIVA	LENCY	# of	
	Units	10:53 CL-19	EDL	DDI	TEE (200E WHO)	TEO/DL\	laamara	QC Batch
	Units	CL-19	EDL	RDL	TEF (2005 WHO)	I EQ(DL)	isomers	QC Batch
C13-1234678 HeptaCDD *	%	126						3321976
C13-1234678 HeptaCDF **	%	108						3321976
C13-123478 HexaCDD	%	83						3321976
C13-123478 HexaCDF	%	83						3321976
C13-1234789 HeptaCDF	%	118						3321976
C13-123678 HexaCDD	%	79						3321976
C13-123678 HexaCDF	%	83						3321976
C13-12378 PentaCDD	%	128						3321976
C13-12378 PentaCDF	%	114						3321976
C13-123789 HexaCDF	%	94						3321976
C13-234678 HexaCDF	%	95						3321976
C13-23478 PentaCDF	%	126						3321976
C13-2378 TetraCDD	%	90						3321976
C13-2378 TetraCDF	%	100						3321976
C13-OCDD	%	111 (1)						3321976
Confirmation C13-2378 TetraCDF	%	72						3323848

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SR7537						
Sampling Date		2013/06/26			TOXIC EQUIVA	LENCY	# of	
	Units	10:55 CL-22	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
		· ·			1	1	1	
2,3,7,8-Tetra CDD *	pg/g	0.242 J	0.0997	0.999	1.00	0.242		3321976
1,2,3,7,8-Penta CDD	pg/g	2.65 J	0.0812	5.00	1.00	2.65		3321976
1,2,3,4,7,8-Hexa CDD	pg/g	9.02	0.156	5.00	0.100	0.902		3321976
1,2,3,6,7,8-Hexa CDD	pg/g	63.5	0.168	5.00	0.100	6.35		3321976
1,2,3,7,8,9-Hexa CDD	pg/g	32.8	0.170	5.00	0.100	3.28		3321976
1,2,3,4,6,7,8-Hepta CDD	pg/g	1320	0.0737	5.00	0.0100	13.2		3321976
Octa CDD	pg/g	9290 (1)	2.01	200	0.000300	2.79		3321976
Total Tetra CDD	pg/g	3.25	0.0997	0.999				3321976
Total Penta CDD	pg/g	19.1	0.0812	5.00				3321976
Total Hexa CDD	pg/g	322	0.168	5.00				3321976
Total Hepta CDD	pg/g	2340	0.0737	5.00				3321976
2,3,7,8-Tetra CDF **	pg/g	2.04	0.116	0.999	0.100	0.204		3321976
1,2,3,7,8-Penta CDF	pg/g	3.84 J	0.0863	5.00	0.0300	0.115		3321976
2,3,4,7,8-Penta CDF	pg/g	4.21 J	0.0843	5.00	0.300	1.26		3321976
1,2,3,4,7,8-Hexa CDF	pg/g	22.8	0.125	5.00	0.100	2.28		3321976
1,2,3,6,7,8-Hexa CDF	pg/g	8.93	0.130	5.00	0.100	0.893		3321976
2,3,4,6,7,8-Hexa CDF	pg/g	5.13	0.118	5.00	0.100	0.513		3321976
1,2,3,7,8,9-Hexa CDF	pg/g	0.635 J	0.135	5.00	0.100	0.0635		3321976
1,2,3,4,6,7,8-Hepta CDF	pg/g	116	0.126	5.00	0.0100	1.16		3321976
1,2,3,4,7,8,9-Hepta CDF	pg/g	6.53	0.127	5.00	0.0100	0.0653		3321976
Octa CDF	pg/g	125	0.100	9.99	0.000300	0.0375		3321976
Total Tetra CDF	pg/g	8.58	0.116	0.999				3321976
Total Penta CDF	pg/g	29.1	0.0853	5.00				3321976
Total Hexa CDF	pg/g	223	0.127	5.00				3321976
Total Hepta CDF	pg/g	322	0.127	5.00				3321976
Confirmation 2,3,7,8-Tetra CDF	pg/g	1.8	0.11	1.0	0.100	0.180		3323848
TOTAL TOXIC EQUIVALENCY	pg/g					36.0		
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD	%	159						3321976

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

^{(1) **} From 20X Dilution Run **

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SR7537						
Sampling Date		2013/06/26			TOXIC EQUIVA	LENCY	# of	
	I In:to	10:55	EDI	DDI	TEE (2005 WILO)	TEO(DL)		OC Betek
	Units	CL-22	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
C13-1234678 HeptaCDD *	%	139						3321976
C13-1234678 HeptaCDF **	%	117						3321976
C13-123478 HexaCDD	%	99						3321976
C13-123478 HexaCDF	%	85						3321976
C13-1234789 HeptaCDF	%	135						3321976
C13-123678 HexaCDD	%	91						3321976
C13-123678 HexaCDF	%	83						3321976
C13-12378 PentaCDD	%	155						3321976
C13-12378 PentaCDF	%	148						3321976
C13-123789 HexaCDF	%	116						3321976
C13-234678 HexaCDF	%	110						3321976
C13-23478 PentaCDF	%	160						3321976
C13-2378 TetraCDD	%	115						3321976
C13-2378 TetraCDF	%	126						3321976
C13-OCDD	%	152 (1)						3321976
Confirmation C13-2378 TetraCDF	%	94						3323848

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SS5504						
Sampling Date		2013/06/26 11:10			TOXIC EQUIVA	LENCY	# of	
	Units	CL-23	EDL	RDL	TEF (2005 WHO)	TEQ(DL)	Isomers	QC Batch
			1		1	1		
2,3,7,8-Tetra CDD *	pg/g	0.128 U (1)	 	0.997	1.00	0.128		3326936
1,2,3,7,8-Penta CDD	pg/g	1.85 J	0.107	4.99	1.00	1.85		3326936
1,2,3,4,7,8-Hexa CDD	pg/g	6.34	0.0939	4.99	0.100	0.634		3326936
1,2,3,6,7,8-Hexa CDD	pg/g	44.4	0.103	4.99	0.100	4.44		3326936
1,2,3,7,8,9-Hexa CDD	pg/g	19.6	0.101	4.99	0.100	1.96		3326936
1,2,3,4,6,7,8-Hepta CDD	pg/g	879	0.105	4.99	0.0100	8.79		3326936
Octa CDD	pg/g	6210 (2)	0.502	9.97	0.000300	1.86		3326936
Total Tetra CDD	pg/g	1.20	0.101	0.997				3326936
Total Penta CDD	pg/g	13.2	0.107	4.99				3326936
Total Hexa CDD	pg/g	228	0.101	4.99				3326936
Total Hepta CDD	pg/g	1640	0.105	4.99				3326936
2,3,7,8-Tetra CDF **	pg/g	1.36	0.100	0.997	0.100	0.136		3326936
1,2,3,7,8-Penta CDF	pg/g	2.62 J	0.106	4.99	0.0300	0.0786		3326936
2,3,4,7,8-Penta CDF	pg/g	2.93 J	0.102	4.99	0.300	0.879		3326936
1,2,3,4,7,8-Hexa CDF	pg/g	14.6	0.101	4.99	0.100	1.46		3326936
1,2,3,6,7,8-Hexa CDF	pg/g	6.03	0.104	4.99	0.100	0.603		3326936
2,3,4,6,7,8-Hexa CDF	pg/g	3.09 J	0.0943	4.99	0.100	0.309		3326936
1,2,3,7,8,9-Hexa CDF	pg/g	0.369 J	0.108	4.99	0.100	0.0369		3326936
1,2,3,4,6,7,8-Hepta CDF	pg/g	79.6	0.106	4.99	0.0100	0.796		3326936
1,2,3,4,7,8,9-Hepta CDF	pg/g	3.96 J	0.106	4.99	0.0100	0.0396		3326936
Octa CDF	pg/g	82.7	0.109	9.97	0.000300	0.0248		3326936
Total Tetra CDF	pg/g	3.71	0.100	0.997				3326936
Total Penta CDF	pg/g	15.3	0.104	4.99				3326936
Total Hexa CDF	pg/g	142	0.102	4.99				3326936
Total Hepta CDF	pg/g	219	0.106	4.99				3326936
Confirmation 2,3,7,8-Tetra CDF	pg/g	1.5	0.10	1.0	0.100	0.150		3327856
TOTAL TOXIC EQUIVALENCY	pg/g					24.0		

RDL = Reportable Detection Limit

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

^{*} CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

⁽¹⁾ EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

⁽²⁾ Results are from 5xdiln

3327856

Maxxam Job #: B3D6144 Report Date: 2013/08/26 Apex Laboratories Client Project #: A3F0670

DIOXINS AND FURANS BY HRMS (SEDIMENT)

Maxxam ID		SS5504						
Sampling Date		2013/06/26			TOXIC EQUIVA	LENCY	# of	
	Units	11:10 CL-23	EDL	RDL	TEF (2005 WHO)	TEO(DL)	Isomers	QC Batch
	Units	GL-23	LEDE	IKUL	TEF (2005 WHO)	IEQ(DL)	Isomers	QC Balcii
Surrogate Recovery (%)								
37CL4 2378 Tetra CDD *	%	101						3326936
C13-1234678 HeptaCDD	%	117						3326936
C13-1234678 HeptaCDF **	%	105						3326936
C13-123478 HexaCDD	%	100						3326936
C13-123478 HexaCDF	%	92						3326936
C13-1234789 HeptaCDF	%	108						3326936
C13-123678 HexaCDD	%	99						3326936
C13-123678 HexaCDF	%	93						3326936
C13-12378 PentaCDD	%	100						3326936
C13-12378 PentaCDF	%	92						3326936
C13-123789 HexaCDF	%	102						3326936
C13-234678 HexaCDF	%	117						3326936
C13-23478 PentaCDF	%	114						3326936
C13-2378 TetraCDD	%	77						3326936
C13-2378 TetraCDF	%	74						3326936
C13-OCDD	%	116 (1)						3326936

RDL = Reportable Detection Limit

Confirmation C13-2378 TetraCDF

EDL = Estimated Detection Limit

QC Batch = Quality Control Batch

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient,

The Total Toxic Equivalency (TEQ) value reported is the sum of Toxic Equivalent Quotients for the congeners tested. WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds

80

(1) Results are from 5xdiln

Apex Laboratories Client Project #: A3F0670

Test Summary

Maxxam ID SR7534 Sample ID CL-16-2.5

Shipped

Collected 2013/06/26

Matrix SEDIMENT

Received 2013/08/16

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3321976	2013/08/18	2013/08/21	Kay Shaw
2378TCDF Confirmation in Soil	HRMS/MS	3323848	N/A	2013/08/22	Vica Cioranic
Moisture	BAL	3318690	N/A	2013/08/17	Min Yang

Maxxam ID SR7535 Sample ID CL-18

Collected 2013/06/26

Shipped

Matrix SEDIMENT

Received 2013/08/16

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3321976	2013/08/18	2013/08/21	Kay Shaw
2378TCDF Confirmation in Soil	HRMS/MS	3323848	N/A	2013/08/22	Vica Cioranic
Moisture	BAL	3318690	N/A	2013/08/17	Min Yang

Maxxam ID SR7536 Sample ID CL-19

Matrix SEDIMENT

Collected 2013/06/26

Shipped

Received 2013/08/16

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3321976	2013/08/18	2013/08/21	Kay Shaw
2378TCDF Confirmation in Soil	HRMS/MS	3323848	N/A	2013/08/22	Vica Cioranic
Moisture	BAL	3318690	N/A	2013/08/17	Min Yang

Maxxam ID SR7537 Sample ID CL-22 Matrix SEDIMENT Collected 2013/06/26

Shipped

Received 2013/08/16

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3321976	2013/08/18	2013/08/21	Kay Shaw
2378TCDF Confirmation in Soil	HRMS/MS	3323848	N/A	2013/08/22	Vica Cioranic
Moisture	BAL	3318690	N/A	2013/08/17	Min Yang

Maxxam ID SS5504 Sample ID CL-23

Matrix SEDIMENT

Collected 2013/06/26

Shipped

Received 2013/08/16

Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Dioxins/Furans in Soil (1613B)	HRMS/MS	3326936	2013/08/20	2013/08/25	Kay Shaw
2378TCDF Confirmation in Soil	HRMS/MS	3327856	N/A	2013/08/26	Owen Cosby
Moisture	BAL	3321934	N/A	2013/08/21	Chun Yan

Apex Laboratories Client Project #: A3F0670

GFI	MERAI	L COM	MENT	rs

Results relate only to the items tested.

Apex Laboratories Attention: Kent Patton Client Project #: A3F0670

P.O. #: Site Location:

Quality Assurance Report Maxxam Job Number: GB3D6144

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limit
3318690 THT	RPD -						
	Sample/Sample						
	Dup	Moisture	2013/08/17	1.5		%	2
3321934 JV1	RPD -						
	Sample/Sample						
	Dup	Moisture	2013/08/21	2.2		%	2
3321976 KKS	Spiked Blank	37CL4 2378 Tetra CDD	2013/08/21		187	%	35 - 19
	Spiked Blank DUP	37CL4 2378 Tetra CDD	2013/08/21		149	%	35 - 19
	Spiked Blank	C13-1234678 HeptaCDD	2013/08/21		147 (1)	%	23 - 14
	Spiked Blank DUP	C13-1234678 HeptaCDD	2013/08/21		117	%	23 - 14
	Spiked Blank	C13-1234678 HeptaCDF	2013/08/21		129	%	28 - 14
	Spiked Blank DUP	C13-1234678 HeptaCDF	2013/08/21		111	%	28 - 14
	Spiked Blank	C13-123478 HexaCDD	2013/08/21		114	%	32 - 14
	Spiked Blank DUP	C13-123478 HexaCDD	2013/08/21		98	%	32 - 14
	Spiked Blank	C13-123478 HexaCDF	2013/08/21		102	%	26 - 15
	Spiked Blank DUP	C13-123478 HexaCDF	2013/08/21		91	%	26 - 15
	Spiked Blank	C13-1234789 HeptaCDF	2013/08/21		143 (2)	%	26 - 13
	Spiked Blank DUP	C13-1234789 HeptaCDF	2013/08/21		107	%	26 - 13
	Spiked Blank	C13-123678 HexaCDD	2013/08/21		106	%	28 - 13
	Spiked Blank DUP	C13-123678 HexaCDD	2013/08/21		90	%	28 - 13
	Spiked Blank	C13-123678 HexaCDF	2013/08/21		100	%	26 - 12
	Spiked Blank DUP	C13-123678 HexaCDF	2013/08/21		89	%	26 - 12
	Spiked Blank	C13-12378 PentaCDD	2013/08/21		169	%	25 - 18
	Spiked Blank DUP	C13-12378 PentaCDD	2013/08/21		143	%	25 - 18
	Spiked Blank	C13-12378 PentaCDF	2013/08/21		156		24 - 1
	Spiked Blank DUP	C13-12378 PentaCDF	2013/08/21		131		24 - 1
	Spiked Blank	C13-123789 HexaCDF	2013/08/21		127		29 - 14
	•	C13-123789 HexaCDF	2013/08/21		106		29 - 14
	Spiked Blank	C13-234678 HexaCDF	2013/08/21		128		28 - 13
	•	C13-234678 HexaCDF	2013/08/21		108		28 - 13
	Spiked Blank	C13-23478 PentaCDF	2013/08/21		173		21 - 1 ⁻
		C13-23478 PentaCDF	2013/08/21		152		21 - 17
	Spiked Blank	C13-2378 TetraCDD	2013/08/21		126		25 - 10
	•	C13-2378 TetraCDD	2013/08/21		104		25 - 1
	Spiked Blank	C13-2378 TetraCDF	2013/08/21		132		24 - 1
		C13-2378 TetraCDF	2013/08/21		114		24 - 1
	Spiked Blank	C13-OCDD	2013/08/21		141		17 - 1
	Spiked Blank DUP		2013/08/21		102	07 % 06 % 90 % 89 % 69 % 43 % 56 % 31 % 27 % 06 % 28 % 08 % 73 % 52 % 26 % 04 % 32 % 14 % 41 % 02 % 07 % 06 %	17 - 1
	Spiked Blank	2,3,7,8-Tetra CDD	2013/08/21		107		67 - 1
	Spiked Blank DUP		2013/08/21		106		67 - 1
	RPD	2,3,7,8-Tetra CDD	2013/08/21	0.9			
	Spiked Blank	1,2,3,7,8-Penta CDD	2013/08/21	0.0	99		70 - 14
		1,2,3,7,8-Penta CDD	2013/08/21		100		70 - 14
	RPD	1,2,3,7,8-Penta CDD	2013/08/21	1.0	100		70 1-
	Spiked Blank	1,2,3,4,7,8-Hexa CDD	2013/08/21	1.0	101	%	70 - 16
	•	1,2,3,4,7,8-Hexa CDD	2013/08/21		99	%	70 - 10
	RPD	1,2,3,4,7,8-Hexa CDD	2013/08/21	2.0	00	%	70 1
	Spiked Blank	1,2,3,6,7,8-Hexa CDD	2013/08/21	2.0	104	%	76 - 1
		1,2,3,6,7,8-Hexa CDD	2013/08/21		102	%	76 - 1
	RPD	1,2,3,6,7,8-Hexa CDD	2013/08/21	1.9	102		76-1
	Spiked Blank			1.9	124	% %	64 - 1
	Spiked Blank DUP	1,2,3,7,8,9-Hexa CDD 1,2,3,7,8,9-Hexa CDD	2013/08/21 2013/08/21			%	
			2013/08/21	4.0	122	%	64 - 1
	RPD	1,2,3,7,8,9-Hexa CDD		1.6	00	%	70 1
	Spiked Blank	1,2,3,4,6,7,8-Hepta CDD	2013/08/21		99	%	70 - 14
	Spiked Blank DUP	1,2,3,4,6,7,8-Hepta CDD	2013/08/21		99	%	70 - 14

Apex Laboratories Attention: Kent Patton Client Project #: A3F0670

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3D6144

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	%Recovery	Units	QC Limits
3321976 KKS	RPD .	1,2,3,4,6,7,8-Hepta CDD	2013/08/21	0	7011C00VC1Y	%	25
002107011110	Spiked Blank	Octa CDD	2013/08/21	Ü	101	%	78 - 144
	Spiked Blank DUP		2013/08/21		98	%	78 - 144
	RPD	Octa CDD	2013/08/21	3.0	00	%	25
	Spiked Blank	2,3,7,8-Tetra CDF	2013/08/21	5.0	108	%	75 - 158
	Spiked Blank DUP		2013/08/21		104	%	75 - 158 75 - 158
	RPD	2,3,7,8-Tetra CDF	2013/08/21	3.8	104	%	75 - 156 25
	Spiked Blank	1,2,3,7,8-Penta CDF	2013/08/21	5.0	97	%	80 - 134
	•	1,2,3,7,8-Penta CDF	2013/08/21		98	% %	80 - 134
	RPD	1,2,3,7,8-Penta CDF	2013/08/21	1.0	90	% %	25
	Spiked Blank	2,3,4,7,8-Penta CDF	2013/08/21	1.0	95	% %	68 - 160
	•				94	%	
	•	2,3,4,7,8-Penta CDF	2013/08/21	4.4	94		68 - 160
	RPD	2,3,4,7,8-Penta CDF	2013/08/21	1.1	100	%	25
	Spiked Blank	1,2,3,4,7,8-Hexa CDF	2013/08/21		103	%	72 - 134
		1,2,3,4,7,8-Hexa CDF	2013/08/21	0.0	101	%	72 - 134
	RPD	1,2,3,4,7,8-Hexa CDF	2013/08/21	2.0	07	%	25
	Spiked Blank	1,2,3,6,7,8-Hexa CDF	2013/08/21		97	%	84 - 130
		1,2,3,6,7,8-Hexa CDF	2013/08/21		96	%	84 - 130
	RPD	1,2,3,6,7,8-Hexa CDF	2013/08/21	1.0		%	25
	Spiked Blank	2,3,4,6,7,8-Hexa CDF	2013/08/21		89	%	70 - 156
	•	2,3,4,6,7,8-Hexa CDF	2013/08/21		88	%	70 - 156
	RPD	2,3,4,6,7,8-Hexa CDF	2013/08/21	1.1		%	25
	Spiked Blank	1,2,3,7,8,9-Hexa CDF	2013/08/21		101	%	78 - 130
		1,2,3,7,8,9-Hexa CDF	2013/08/21		100	%	78 - 130
	RPD	1,2,3,7,8,9-Hexa CDF	2013/08/21	1		%	25
	Spiked Blank	1,2,3,4,6,7,8-Hepta CDF	2013/08/21		99	%	82 - 122
	Spiked Blank DUP	1,2,3,4,6,7,8-Hepta CDF	2013/08/21		97	%	82 - 122
	RPD	1,2,3,4,6,7,8-Hepta CDF	2013/08/21	2.0		%	25
	Spiked Blank	1,2,3,4,7,8,9-Hepta CDF	2013/08/21		102	%	78 - 138
	Spiked Blank DUP	1,2,3,4,7,8,9-Hepta CDF	2013/08/21		99	%	78 - 138
	RPD	1,2,3,4,7,8,9-Hepta CDF	2013/08/21	3.0		%	25
	Spiked Blank	Octa CDF	2013/08/21		100	%	63 - 170
	Spiked Blank DUP	Octa CDF	2013/08/21		85	%	63 - 170
	RPD	Octa CDF	2013/08/21	16.2		%	25
	Method Blank	37CL4 2378 Tetra CDD	2013/08/21		157	%	35 - 197
		C13-1234678 HeptaCDD	2013/08/21		126	%	23 - 140
		C13-1234678 HeptaCDF	2013/08/21		117	%	28 - 143
		C13-123478 HexaCDD	2013/08/21		99	%	32 - 141
		C13-123478 HexaCDF	2013/08/21		91	%	26 - 152
		C13-1234789 HeptaCDF	2013/08/21		123	%	26 - 138
		C13-123678 HexaCDD	2013/08/21		94	%	28 - 130
		C13-123678 HexaCDF	2013/08/21		85	%	26 - 123
		C13-12378 PentaCDD	2013/08/21		151	%	25 - 181
		C13-12378 PentaCDF	2013/08/21		136	%	24 - 185
		C13-123789 HexaCDF	2013/08/21		115	%	29 - 147
		C13-234678 HexaCDF	2013/08/21		112	%	28 - 136
		C13-234076 FlexaCDF	2013/08/21		155	%	21 - 178
		C13-23478 FemaCDI C13-2378 TetraCDD	2013/08/21		107	% %	25 - 164
		C13-2378 TetraCDD				% %	25 - 164 24 - 169
			2013/08/21		112		
		C13-OCDD	2013/08/21	0.400 !!!	117 - DL 0 100	%	17 - 157
		2,3,7,8-Tetra CDD	2013/08/21		EDL=0.100	pg/g	
		1,2,3,7,8-Penta CDD	2013/08/21		EDL=0.0911	pg/g	
		1,2,3,4,7,8-Hexa CDD	2013/08/21		EDL=0.0820	pg/g	
		1,2,3,6,7,8-Hexa CDD	2013/08/21		EDL=0.0884	pg/g	
		1,2,3,7,8,9-Hexa CDD	2013/08/21	0.0893 U, I	EDL=0.0893	pg/g	

Apex Laboratories Attention: Kent Patton Client Project #: A3F0670

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3D6144

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limits
3321976 KKS	Method Blank	1,2,3,4,6,7,8-Hepta CDD	2013/08/21	0.0888 U, EDL=0.0888	pg/g	
		Octa CDD	2013/08/21	0.105 J, EDL=0.101	pg/g	
		Total Tetra CDD	2013/08/21	0.100 U, EDL=0.100	pg/g	
		Total Penta CDD	2013/08/21	0.0911 U, EDL=0.0911	pg/g	
		Total Hexa CDD	2013/08/21	0.0884 U, EDL=0.0884	pg/g	
		Total Hepta CDD	2013/08/21	0.0888 U, EDL=0.0888	pg/g	
		2,3,7,8-Tetra CDF	2013/08/21	0.0735 U, EDL=0.0735	pg/g	
		1,2,3,7,8-Penta CDF	2013/08/21	0.100 U, EDL=0.100	pg/g	
		2,3,4,7,8-Penta CDF	2013/08/21	0.0981 U, EDL=0.0981	pg/g	
		1,2,3,4,7,8-Hexa CDF	2013/08/21	0.0425 U, EDL=0.0425	pg/g	
		1,2,3,6,7,8-Hexa CDF	2013/08/21	0.0442 U, EDL=0.0442	pg/g	
		2,3,4,6,7,8-Hexa CDF	2013/08/21	0.0401 U, EDL=0.0401	pg/g	
		1,2,3,7,8,9-Hexa CDF	2013/08/21	0.0456 U, EDL=0.0456		
		1,2,3,4,6,7,8-Hepta CDF	2013/08/21		pg/g	
				0.0531 U, EDL=0.0531	pg/g	
		1,2,3,4,7,8,9-Hepta CDF	2013/08/21	0.0539 U, EDL=0.0539	pg/g	
		Octa CDF	2013/08/21	0.0857 U, EDL=0.0857	pg/g	
		Total Tetra CDF	2013/08/21	0.0735 U, EDL=0.0735	pg/g	
		Total Penta CDF	2013/08/21	0.0993 U, EDL=0.0993	pg/g	
		Total Hexa CDF	2013/08/21	0.0430 U, EDL=0.0430	pg/g	
		Total Hepta CDF	2013/08/21	0.0535 U, EDL=0.0535	pg/g	
3326936 KKS	Spiked Blank	37CL4 2378 Tetra CDD	2013/08/25	103	%	35 - 197
		C13-1234678 HeptaCDD	2013/08/25	105	%	23 - 140
		C13-1234678 HeptaCDF	2013/08/25	105	%	28 - 143
		C13-123478 HexaCDD	2013/08/25	100	%	32 - 141
		C13-123478 HexaCDF	2013/08/25	98	%	26 - 152
		C13-1234789 HeptaCDF	2013/08/25	104	%	26 - 138
		C13-123678 HexaCDD	2013/08/25	98	%	28 - 130
		C13-123678 HexaCDF	2013/08/25	101	%	26 - 123
		C13-12378 PentaCDD	2013/08/25	105	%	25 - 181
		C13-12378 PentaCDF	2013/08/25	91	%	24 - 185
		C13-123789 HexaCDF	2013/08/25	98	%	29 - 147
		C13-234678 HexaCDF	2013/08/25	112	%	28 - 136
		C13-23478 PentaCDF	2013/08/25	118	%	21 - 178
		C13-2378 TetraCDD	2013/08/25	73	%	25 - 164
		C13-2378 TetraCDF	2013/08/25	76	%	24 - 169
		C13-OCDD	2013/08/25	95	%	17 - 157
		2,3,7,8-Tetra CDD	2013/08/25	98	%	67 - 158
		1,2,3,7,8-Penta CDD	2013/08/25	92	%	70 - 142
		1,2,3,4,7,8-Hexa CDD	2013/08/25	94	%	70 - 164
		1,2,3,6,7,8-Hexa CDD	2013/08/25	98	%	76 - 134
		1,2,3,7,8,9-Hexa CDD	2013/08/25	99	%	64 - 162
		1,2,3,4,6,7,8-Hepta CDD	2013/08/25	94	%	70 - 140
		Octa CDD	2013/08/25	95	%	78 - 144
		2,3,7,8-Tetra CDF	2013/08/25	97	%	75 - 158
		1,2,3,7,8-Penta CDF	2013/08/25	97	%	80 - 134
		2,3,4,7,8-Penta CDF	2013/08/25	90	% %	68 - 160
		1,2,3,4,7,8-Hexa CDF	2013/08/25	97	%	72 - 134
		1,2,3,4,7,6-nexa CDF 1,2,3,6,7,8-Hexa CDF		93	%	
			2013/08/25			84 - 130 70 - 156
		2,3,4,6,7,8-Hexa CDF	2013/08/25	84	%	70 - 156
		1,2,3,7,8,9-Hexa CDF	2013/08/25	95	%	78 - 130
		1,2,3,4,6,7,8-Hepta CDF	2013/08/25	92	%	82 - 122
		1,2,3,4,7,8,9-Hepta CDF	2013/08/25	89	%	78 - 138
		Octa CDF	2013/08/25	85	%	63 - 170
	Method Blank	37CL4 2378 Tetra CDD	2013/08/25	89	%	35 - 197
		C13-1234678 HeptaCDD	2013/08/25	102	%	23 - 140

Apex Laboratories Attention: Kent Patton Client Project #: A3F0670

P.O. #: Site Location:

Quality Assurance Report (Continued)

Maxxam Job Number: GB3D6144

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value %Recovery	Units	QC Limit
3326936 KKS	Method Blank	C13-1234678 HeptaCDF	2013/08/25	104	%	28 - 14
		C13-123478 HexaCDD	2013/08/25	99	%	32 - 14
		C13-123478 HexaCDF	2013/08/25	94	%	26 - 15
		C13-1234789 HeptaCDF	2013/08/25	100	%	26 - 13
		C13-123678 HexaCDD	2013/08/25	91	%	28 - 13
		C13-123678 HexaCDF	2013/08/25	97	%	26 - 12
		C13-12378 PentaCDD	2013/08/25	104	%	25 - 1
		C13-12378 PentaCDF	2013/08/25	87	%	24 - 1
		C13-123789 HexaCDF	2013/08/25	98	%	29 - 1
		C13-234678 HexaCDF	2013/08/25	111	%	28 - 13
		C13-23478 PentaCDF	2013/08/25	107	%	21 - 1
		C13-2378 TetraCDD	2013/08/25	69	%	25 - 1
		C13-2378 TetraCDF	2013/08/25	70	%	24 - 1
		C13-OCDD	2013/08/25	93	%	17 - 1
		2,3,7,8-Tetra CDD	2013/08/25	0.104 U, EDL=0.104	pg/g	
		1,2,3,7,8-Penta CDD	2013/08/25	0.0953 U, EDL=0.0953	pg/g	
		1,2,3,4,7,8-Hexa CDD	2013/08/25	0.0834 U, EDL=0.0834	pg/g	
		1,2,3,6,7,8-Hexa CDD	2013/08/25	0.0912 U, EDL=0.0912	pg/g	
		1,2,3,7,8,9-Hexa CDD	2013/08/25	0.0898 U, EDL=0.0898	pg/g	
		1,2,3,4,6,7,8-Hepta CDD	2013/08/25	0.103 U, EDL=0.103	pg/g	
		Octa CDD	2013/08/25	0.130 J, EDL=0.109	pg/g	
		Total Tetra CDD	2013/08/25	0.104 U, EDL=0.104	pg/g	
		Total Penta CDD	2013/08/25	0.0953 U, EDL=0.0953	pg/g	
		Total Hexa CDD	2013/08/25	0.0899 U, EDL=0.0899	pg/g	
		Total Hepta CDD	2013/08/25	0.103 U, EDL=0.103	pg/g	
		2,3,7,8-Tetra CDF	2013/08/25	0.0833 U, EDL=0.0833	pg/g	
		1,2,3,7,8-Penta CDF	2013/08/25	0.105 U, EDL=0.105	pg/g	
		2,3,4,7,8-Penta CDF	2013/08/25	0.101 U, EDL=0.101	pg/g	
		1,2,3,4,7,8-Hexa CDF	2013/08/25	0.0701 U, EDL=0.0701	pg/g	
		1,2,3,6,7,8-Hexa CDF	2013/08/25	0.0726 U, EDL=0.0726	pg/g	
		2,3,4,6,7,8-Hexa CDF	2013/08/25	0.0657 U, EDL=0.0657	pg/g	
		1,2,3,7,8,9-Hexa CDF	2013/08/25	0.0754 U, EDL=0.0754	pg/g	
		1,2,3,4,6,7,8-Hepta CDF	2013/08/25	0.106 U, EDL=0.106	pg/g	
		1,2,3,4,7,8,9-Hepta CDF	2013/08/25	0.106 U, EDL=0.106	pg/g	
		Octa CDF	2013/08/25	0.104 U, EDL=0.104	pg/g	
		Total Tetra CDF	2013/08/25	0.0833 U, EDL=0.0833	pg/g	
		Total Penta CDF	2013/08/25	0.103 U, EDL=0.103	pg/g	
		Total Hexa CDF	2013/08/25	0.0708 U, EDL=0.0708	pg/g	
		Total Hepta CDF	2013/08/25	0.106 U, EDL=0.106	pg/g	
3327856 OBC	Method Blank	Confirmation C13-2378 TetraCDF	2013/08/25	85	% %	40 - 1
		Confirmation 2,3,7,8-Tetra CDF	2013/08/25	0.39 U, EDL=0.39	pg/g	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

- (1) Recovery meets EPA 1613B acceptance criteria for OPR (LCS) 26% 166%
- 2) Recovery meets EPA 1613B acceptance criteria for OPR (LCS) 20% 186%

Validation Signature Page

Maxxam Job #: B3D6144

Brad Newman, Scientific Specialist

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cristina Carriere, Scientific Services

Owen Cosby, BSc.C.Chem, Supervisor, HRMS Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

APPENDIX C DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 9003.01.40 | AUGUST 5, 2013 | PORT OF RIDGEFIELD

This report provides the results of the review of analytical results for sediment and rinsate samples collected by Maul Foster & Alongi, Inc. (MFA) in Carty Lake, Washington, offshore of the Port of Ridgefield-owned Lake River Industrial Site. The samples were collected in June 2013.

Apex Labs (Apex) and Maxxam Analytics Inc. (Maxxam) performed the analyses. Apex report numbers A3F0664 FINAL 07 16 13 1724 (A3F0664), A3F0672 FINAL 07 17 13 1626 (A3F0672), A3F0629 FINAL 07 26 13 1157 (A3F0629), and A3F0670 Amended FINAL 08 28 1433 (A3F0670), and Maxxam report numbers B3A4694-R2013-07-17_11-03-41_R006 (B3A4694), B3A5623-R2013-07-22_09-45-21_R006 (B3A5623), B3A4675-R2013-07-16_15-19-19_R006 (B3A4675), B3A4701-R2013-07-16_16-39-27_R006 (B3A4701), and B3D6144-R2013-08-26_16-41-05_R006 (B3D6144) were reviewed.

Decision unit samples received by Apex were processed following incremental sampling methodology (ISM) identified in the Carty Lake predesign sampling and analysis plan (MFA, 2013). ISM-prepared decision unit samples were provided to Maxxam by Apex for analysis of chlorinated dibenzo-p-dioxins and dibenzofurans (dioxins). The analyses performed on rinsate blanks, discrete and ISM-processed, decision unit samples are listed below.

Analysis	Reference
Total organic carbon	PSEP/SM 5310B Modified
Dioxins	USEPA Method 1613B/8290A Modified
Pentachlorophenol	USEPA Method 8270D
Total metals	USEPA Method 6020A

PSEP = Puget Sound Estuary Protocols (PSEP, 1997).

SM = Standard Methods for the Examination of Water and Wastewater.

USEPA = U.S. Environmental Protection Agency.

DATA OUALIFICATIONS

Analytical results were evaluated according to applicable sections of USEPA procedures (USEPA, 2008, 2010, 2011); appropriate laboratory, method-specific guidelines (Apex, 2013; Maxxam, 2013; USEPA, 1986); and the dioxin rules memorandum (MFA, 2012) developed by MFA and approved by the Washington State Department of Ecology.

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the functional guidelines (i.e., total organic carbon).

USEPA Method 1613B Modified detected results that were reported as an estimated maximum potential concentration (EMPC) were assigned a "U" qualifier (non-detect) at the reported EMPC value.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
B3A5623	LRIS-CL-DU1C—ISM Composite	1,2,3,7,8,9-HxCDD	237 EMPC	237 U
B3A5623	LRIS-CL-DU1C—ISM Composite	1,2,3,4,7,8-HxCDF	283 EMPC	283 U
B3A5623	LRIS-CL-DU1B—ISM Composite	1,2,3,7,8,9-HxCDD	341 EMPC	341 U
B3A5623	LRIS-CL-DU1B—ISM Composite	1,2,3,4,7,8-HxCDF	322 EMPC	322 U
B3A5623	LRIS-CL-DU4—ISM Composite	1,2,3,7,8,9-HxCDD	186 EMPC	186 U
B3A5623	LRIS-CL-DU4—ISM Composite	1,2,3,4,7,8-HxCDF	160 EMPC	160 U
B3A5623	LRIS-CL-DU4—ISM Composite	1,2,3,6,7,8-HxCDF	69.5 EMPC	69.5 U
B3A5623	LRIS-CL-DU5—ISM Composite	1,2,3,7,8,9-HxCDD	21.6 EMPC	21.6 U
B3A5623	LRIS-CL-DU5—ISM Composite	1,2,3,4,7,8-HxCDF	15.3 EMPC	15.3 U
B3A5623	LRIS-CL-DU5—ISM Composite	1,2,3,6,7,8-HxCDF	6.60 EMPC	6.60 U

EMPC = estimated maximum potential concentration.

In Maxxam report B3A5623, the laboratory noted that high-volume extraction was performed for USEPA Method 1613B Modified, and that some analytes exceeded instrument calibration range. These samples could not be further diluted without significant loss of the C13 labeled standards, which are added to each sample prior to extraction in order to quantify the individual target compounds. The compounds that exceeded instrument calibration range were flagged by the laboratory as exceeding the maximum calibration limit (EMCL) and have been qualified "J" as estimated. These compounds were also qualified "J" as estimated for sediment reference material (SRM) exceedances.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
B3A5623	LRIS-CL-DU1C—ISM Composite	1,2,3,4,6,7,8- HpCDD	12700 EMCL	12700 J
B3A5623	LRIS-CL-DU1C—ISM Composite	OCDD	52100 EMCL	52100 J
B3A5623	LRIS-CL-DU2—ISM Composite	1,2,3,4,6,7,8- HpCDD	14100 EMCL	14100 J
B3A5623	LRIS-CL-DU2—ISM Composite	OCDD	95300 EMCL	95300 J
B3A5623	LRIS-CL-DU1B—ISM Composite	1,2,3,4,6,7,8- HpCDD	18900 EMCL	18900 J
B3A5623	LRIS-CL-DU1B—ISM Composite	OCDD	76500 EMCL	76500 J
B3A5623	LRIS-CL-DU4—ISM Composite	OCDD	81800 EMCL	81800 J

EMCL = exceeds maximum calibration limit.

J = Result is an estimate.

pg/g = picograms per gram.

U = non-detect.

J = Result is an estimated value.

pg/g = picograms per gram.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

In Apex report A3F0670, samples CL-18 and CL-19 were removed from hold and extracted for pentachlorophenol (PCP) by USEPA Method 8270D after the recommended 14-day holding time; however, the laboratory extended the hold time by storing the samples at -18°C prior to the holding time exceedance. The results were not qualified.

All remaining extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately. Apex indicated that hold times were extended by freezing samples at -18°C. Before freezing, the total time that samples spent at 4°C was less than the standard hold time.

In Maxxam reports B3A4675, B3A4694, B3A4701, and BA5623 the samples were received at the laboratory above the upper recommended temperature limit of 4°C. The temperature exceedances were minor; thus, the results were not qualified.

In Maxxam report B3A5623, sample LRIS-CL-DU5--ISM COMPOSITE was reanalyzed for percent moisture because of an unusually high, post-ISM processing, percent moisture result. Upon further investigation, it was discovered that water had leaked into the sample because of improper sealing during transport from Apex to Maxxam. The reanalyzed percent moisture results were reported. The remaining samples had percent moisture results within the expected range and were not reanalyzed.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch.

Various method blank results associated with the USEPA Method 1613B analyses exhibited a blank detection between the estimated detection limit (EDL) and the reporting limit (RL) for various compounds. No actions were taken when the sample result was greater than five times the blank result or had already been qualified as non-detect because of laboratory qualification as an EMPC. Sample results that were not greater than five times the method blank detections resulted in the following qualifications:

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
B3A4675	RB-062413	1,2,3,4,6,7,8-HpCDD	7.78 J	7.78 U
B3A4675	RB-062413	OCDD	64.4 J	64.4 U
B3A4675	RB-062413	Total HpCDD	13.1 J	13.1 U
B3A4675	RB-062413	OCDF	5.93 J	5.93 U
B3A4675	RB-062413	Total HpCDF	1.36 J	1.36 U
B3A4675	RB-062513	1,2,3,4,6,7,8-HpCDD	5.81 J	5.81 U
B3A4675	RB-062513	OCDD	43.8 J	43.8 U
B3A4675	RB-062513	Total HpCDD	10.1 J	10.1 U
B3A4675	RB-062513	OCDF	3.16 J	3.16 U
B3A4675	RB-062613	1,2,3,4,6,7,8-HpCDD	5.27 J	5.27 U
B3A4675	RB-062613	OCDD	39.0 J	39.0 U
B3A4675	RB-062613	Total HpCDD	9.00 J	9.00 U
B3A5623	LRIS-CL-DU5—ISM-COMPOSITE	1,2,3,7,8,9-HxCDF	0.503 J	0.503 U

J = Result is an estimate. pg/g = picograms per gram. U = non-detect.

Trip Blanks

Trip blanks were not required for this sampling event.

Equipment Rinsate Blanks

Equipment rinsate blanks were collected for this sampling event. Low levels of OCDD and OCDF were detected; however, no qualifications were made based on the rinsate blank results, as all associated sample results were either significantly higher or, because of method blank contamination, were previously qualified as not detected.

Total organic carbon was detected in two of the equipment rinsate blanks; no actions were taken, as sample results were greater than five times the concentrations found in the rinsate blanks.

All other rinsate blank results were non-detect.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

Various surrogate recoveries associated with PCP results in Apex report A3F0629 were reported as estimated because of continuing calibration verification (CCV) surrogate recoveries above the upper control limit; no actions were taken, as all other batch quality

control (QC), including the surrogate recoveries from the associated samples themselves, met acceptance criteria.

All other surrogate recoveries were within acceptance limits.

LABELED ANALOG STANDARD RECOVERY RESULTS

All USEPA Method 1613B Modified and 8260A Modified samples were spiked with C13 labeled analog standards to quantify the recovery of individual target compounds.

In Maxxam report B3A5623, the C13-OCDD standard for sample LRIS-CL-DU1C—ISM COMPOSITE exceeded the upper acceptance limit because of matrix interference. The sample had high levels of OCDD, which were qualified "J" as estimated because of exceedances of the upper instrument calibration range and reference standard material recovery.

All other C13 labeled analog standard recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

MS/MSD results are used to evaluate laboratory precision and accuracy. MS/MSD samples were extracted and analyzed at the frequencies required by each analytical method.

Because of lack of rinsate blank volume, the laboratory prepared and analyzed a blank spike duplicate (a laboratory control sample duplicate, or LCSD) instead of an MS/MSD for certain samples in report A3F0664. All recoveries of the LCSD were within acceptance limits for percent recovery and relative percent differences (RPDs).

In Maxxam report B3A5623, the USEPA Method 1613B Modified MS/MSD exceeded percent recovery and RPD for some compounds. The laboratory noted that the exceedances were due to matrix interference and sample heterogeneity. Some MS/MSD recoveries and RPDs were not calculated because of high levels of analyte present in the sample. The remaining batch QC had acceptable recoveries, so no associated sample results were qualified.

All recoveries were within acceptance limits for percent recovery and RPDs.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. Duplicate samples were extracted and analyzed at the frequencies required by each analytical method. Laboratory duplicate samples are not required for USEPA Method 1613B Modified; however, a laboratory duplicate was included in Maxxam report B3A5623. The USEPA Method 1613B Modified laboratory duplicate exceeded RPD acceptance limits for some compounds, and the laboratory noted that the overall QC for the analysis was acceptable. The RPD exceedances were relatively minor; thus, the associated results were not qualified.

All remaining laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

In Apex report B3D6144, the LCS for batch 3321976 exceeded the upper acceptance limits for some compounds. The laboratory noted that the LCS recovery met USEPA Method 1613B acceptance criteria; thus, no associated results were qualified.

All remaining LCS/LCSD analytes were within acceptance limits for percent recovery.

FIELD DUPLICATE SAMPLE

Field duplicate samples measure both field and laboratory precision. A field duplicate was submitted for analysis for Apex report A3F0670 and Maxxam report B3A4694 (CL-17-1.5/CL-17-1.5-DUP), meeting the project-specific criteria.

MFA uses acceptance criteria of less than 100 percent RPD for results that are less than five times the RL, or less than 50 percent RPD for results that are greater than five times the RL. Non-detect data, data qualified as EMPCs, and/or data already qualified as estimates (J) are not qualified based on the RPD calculated for field duplicate results. Only field duplicate pairs were qualified based on RPD exceedances. Sample results that failed to meet RPD criteria for field duplicate pairs were qualified as estimates (J). Primary and field duplicate results and RPDs are summarized in the following table:

Sample	Field Duplicate	Analyte	Units	Sample Result	Field Duplicate Result	RPD
CL-17-1.5	CL-17-1.5-DUP	Pentachlorophenol	μg/kg	177 U	165 U	7.0
CL-17-1.5	CL-17-1.5-DUP	Arsenic	mg/kg	2.55	2.16	17
CL-17-1.5	CL-17-1.5-DUP	Chromium	mg/kg	27.7	29.8	7.3
CL-17-1.5	CL-17-1.5-DUP	Total Organic Carbon	%	0.88	0.61	36
CL-17-1.5	CL-17-1.5-DUP	Percent Solids	%	70.1	70.7	0.85
CL-17-1.5	CL-17-1.5-DUP	2,3,7,8-TCDD	pg/g	0.173 U	0.102 U	52
CL-17-1.5	CL-17-1.5-DUP	1,2,3,7,8-PeCDD	pg/g	1.43 J	1.32 J	8.0
CL-17-1.5	CL-17-1.5-DUP	1,2,3,4,7,8-HxCDD	pg/g	4.80 J	4.18 J	14
CL-17-1.5	CL-17-1.5-DUP	1,2,3,6,7,8-HxCDD	pg/g	39.5	34.1	15
CL-17-1.5	CL-17-1.5-DUP	1,2,3,7,8,9-HxCDD	pg/g	13.3	12.9	3.1
CL-17-1.5	CL-17-1.5-DUP	1,2,3,4,6,7,8-HpCDD	pg/g	840	741	13
CL-17-1.5	CL-17-1.5-DUP	OCDD	pg/g	7560	6480	15
CL-17-1.5	CL-17-1.5-DUP	Total TCDD	pg/g	0.917 J	0.936 J	2.1
CL-17-1.5	CL-17-1.5-DUP	Total PeCDD	pg/g	10.6	7.15	39

Sample	Field Duplicate	Analyte	Units	Sample Result	Field Duplicate Result	RPD
CL-17-1.5	CL-17-1.5-DUP	Total HxCDD	pg/g	173	151	14
CL-17-1.5	CL-17-1.5-DUP	Total HpCDD	pg/g	1520	1370	10
CL-17-1.5	CL-17-1.5-DUP	2,3,7,8-TCDF	pg/g	0.981 J	0.873 J	12
CL-17-1.5	CL-17-1.5-DUP	1,2,3,7,8-PeCDF	pg/g	2.25 J	1.94 J	15
CL-17-1.5	CL-17-1.5-DUP	2,3,4,7,8-PeCDF	pg/g	2.72 J	2.17 J	22
CL-17-1.5	CL-17-1.5-DUP	1,2,3,4,7,8-HxCDF	pg/g	12.8	10.2	23
CL-17-1.5	CL-17-1.5-DUP	1,2,3,6,7,8-HxCDF	pg/g	5.04	4.34 J	15
CL-17-1.5	CL-17-1.5-DUP	2,3,4,6,7,8-HxCDF	pg/g	3.40 J	2.63 J	26
CL-17-1.5	CL-17-1.5-DUP	1,2,3,7,8,9-HxCDF	pg/g	0.406 J	0.337 J	19
CL-17-1.5	CL-17-1.5-DUP	1,2,3,4,6,7,8-HpCDF	pg/g	74.7	66.2	12
CL-17-1.5	CL-17-1.5-DUP	1,2,3,4,7,8,9-HpCDF	pg/g	3.90 J	3.14 J	22
CL-17-1.5	CL-17-1.5-DUP	OCDF	pg/g	78.3	73.2	6.7
CL-17-1.5	CL-17-1.5-DUP	Total TCDF	pg/g	3.26	2.38	31
CL-17-1.5	CL-17-1.5-DUP	Total PeCDF	pg/g	20.7	12.8	47
CL-17-1.5	CL-17-1.5-DUP	Total HxCDF	pg/g	151	100	41
CL-17-1.5	CL-17-1.5-DUP	Total HpCDF	pg/g	218	207	5.2

J = Result is an estimate.

mg/kg = milligrams per kilogram.

μg/kg = micrograms per kilogram.

pg/g = picograms per gram.

RPD = relative percent difference.

U = non-detect.

ISM REPLICATE EVALUATION

A duplicate and triplicate composite sample collected from the same decision unit were submitted to Maxxam for USEPA 1613B Modified and to Apex for USEPA 8270D, USEPA 6020A, and PSEP/SM 5310B Modified (LRIS-CL-DU1A—ISM COMPOSITE / LRIS-CL-DU1B—ISM COMPOSITE / LRIS-CL-DU1C—ISM COMPOSITE). The relative standard deviation (RSD) for the triplicate dioxin and furan congener results was calculated.

Sample		LRIS-CL- DU1A—ISM COMPOSITE	LRIS-CL- DU1B—ISM COMPOSITE	LRIS-CL- DU1C—ISM COMPOSITE	
Analyte	Units	Original Result	Original Result	Original Result	RSD (%)
1,2,3,4,6,7,8-HpCDD	pg/g	22100	18900 J	12700 J	27
1,2,3,4,6,7,8-HpCDF	pg/g	2360	1950	1310	28
1,2,3,4,7,8,9-HpCDF	pg/g	122	98.9	63.4	31
1,2,3,4,7,8-HxCDD	pg/g	152	125	88.8	26

Sample		LRIS-CL- DU1A—ISM COMPOSITE	LRIS-CL- DU1B—ISM COMPOSITE	LRIS-CL- DU1C—ISM COMPOSITE	
1,2,3,4,7,8-HxCDF	pg/g	376	322 U	283 U	14
1,2,3,6,7,8-HxCDD	pg/g	1110	982	699	23
1,2,3,6,7,8-HxCDF	pg/g	160	133	117	16
1,2,3,7,8,9-HxCDD	pg/g	332	341 U	237 U	19
1,2,3,7,8,9-HxCDF	pg/g	12.1	9.65	8.7	17
1,2,3,7,8-PeCDD	pg/g	47	38.8	35.8	14
1,2,3,7,8-PeCDF	pg/g	80.7	68	63.8	12
2,3,4,6,7,8-HxCDF	pg/g	91.6	78.5	69.9	14
2,3,4,7,8-PeCDF	pg/g	89.4	75.5	70.9	12
2,3,7,8-TCDD	pg/g	2.61	2.09	1.98	15
2,3,7,8-TCDF	pg/g	37.5	31.4	30.7	11
OCDD	pg/g	161000	76500 J	52100 J	59
OCDF	pg/g	4050	1800	1120	66
Dioxin TEQ	pg/g	601	468	345	27
Total HpCDD	pg/g	38100	34200	22900	25
Total HpCDF	pg/g	7080	5640	3760	30
Total HxCDD	pg/g	4910	4360	3140	22
Total HxCDF	pg/g	5590	4710	4340	13
Total PeCDD	pg/g	405	329	305	15
Total PeCDF	pg/g	1960	1610	1520	14
Total TCDD	pg/g	84.3	68.1	68.5	13
Total TCDF	pg/g	271	217	213	14
PCP	μg/kg	293	331	334	7.2
Arsenic	mg/kg	12.1	10.1	10.9	9.1
Chromium	mg/kg	38.2	35.7	37.2	3.4

J = Result is an estimate.

mg/kg = milligrams per kilogram.

μg/kg = micrograms per kilogram.

pg/g = pictograms per gram.

RSD = relative standard deviation.

TEQ = toxicity equivalency.

U = non-detect.

With the exception of OCDD and OCDF, congener RSDs were below the 35% RSD criteria. The RSD for OCDD was 59 percent and the RSD for OCDF was 66 percent. All TEQ RSDs were below the 35 percent RSD criteria. OCDD results have been qualified because of an SRM exceedance, which is discussed below. OCDF results were qualified with "J" as estimated:

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
B3A5623	LRIS-CL-DU1C—ISM COMPOSITE	OCDF	1120	1120 J

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
B3A5623	LRIS-CL-DU2—ISM COMPOSITE	OCDF	1370	1370 J
B3A5623	LRIS-CL-DU3—ISM COMPOSITE	OCDF	207	207 J
B3A5623	LRIS-CL-DU1A—ISM COMPOSITE	OCDF	4050	4050 J
B3A5623	LRIS-CL-DU1B—ISM COMPOSITE	OCDF	1800	1800 J
B3A5623	LRIS-CL-DU4—ISM COMPOSITE	OCDF	1610	1610 J
B3A5623	LRIS-CL-DU5—ISM COMPOSITE	OCDF	91.6	91.6 J

J = Result is an estimate.

SEDIMENT REFERENCE MATERIAL

An SRM is used to help assess laboratory measurement accuracy and monitor laboratory performance when analyzing for dioxins. A Puget Sound SRM was prepared and analyzed by USEPA Method 1613B for each analytical batch. Sample results associated with SRM results that fell outside the acceptance limits set forth by the U.S. Army Corps of Engineers (COE, 2012) were qualified as estimates (J). Various results were qualified in each delivery group. Only detected concentrations were qualified as a result of SRM criteria exceedances. The following table lists SRM criteria exceedances:

SRM Prep Date	Report	Exceeding Analyte
06/27/2013	B3A4701	1,2,3,4,6,7,8-HpCDD
06/27/2013	B3A4701	1,2,3,7,8,9-HxCDF
06/27/2013	B3A4701	OCDD

Sample results exceeding SRM criteria were flagged as estimates (J) if detected. Some results associated with SRM exceedances were already flagged as estimates because of calibration limit exceedances, and are tabulated in the "Data Qualifications" section of this report.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
BA4694	CL-16-1.5	1,2,3,4,6,7,8-HpCDD	10800	10800 J
BA4694	CL-16-1.5	1,2,3,7,8,9-HxCDF	5.33	5.33 J
BA4694	CL-16-1.5	OCDD	78200	78200 J
BA4694	CL-17-1.5	1,2,3,4,6,7,8-HpCDD	840	840 J
BA4694	CL-17-1.5	OCDD	7560	7560 J
BA4694	CL-17-1.5-DUP	1,2,3,4,6,7,8-HpCDD	741	741 J
BA4694	CL-17-1.5-DUP	OCDD	6480	6480 J
B3A5623	LRIS-CL-DU1C—ISM COMPOSITE	1,2,3,4,6,7,8-HpCDD 12700		12700 J
B3A5623	LRIS-CL-DU1C—ISM COMPOSITE	1,2,3,7,8,9-HxCDF	8.70	8.70 J

pg/g = picograms per gram.

Report	Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
B3A5623	LRIS-CL-DU1C—ISM COMPOSITE	OCDD	52100	52100 J
B3A5623	LRIS-CL-DU2—ISM COMPOSITE	1,2,3,4,6,7,8-HpCDD	14100	14100 J
B3A5623	LRIS-CL-DU2—ISM COMPOSITE	1,2,3,7,8,9-HxCDF	6.79	6.79 J
B3A5623	LRIS-CL-DU2—ISM COMPOSITE	OCDD	95300	95300 J
B3A5623	LRIS-CL-DU3—ISM COMPOSITE	1,2,3,4,6,7,8-HpCDD	1150	1150 J
B3A5623	LRIS-CL-DU3—ISM COMPOSITE	OCDD	6860	6860 J
B3A5623	LRIS-CL-DU1A—ISM COMPOSITE	1,2,3,4,6,7,8-HpCDD	22100	22100 J
B3A5623	LRIS-CL-DU1A—ISM COMPOSITE	1,2,3,7,8,9-HxCDF	12.1	12.1 J
B3A5623	LRIS-CL-DU1A—ISM COMPOSITE	OCDD	161000	161000 J
B3A5623	LRIS-CL-DU1B—ISM COMPOSITE	1,2,3,4,6,7,8-HpCDD	18900	18900 J
B3A5623	LRIS-CL-DU1B—ISM COMPOSITE	1,2,3,7,8,9-HxCDF	9.65	9.65 J
B3A5623	LRIS-CL-DU1B—ISM COMPOSITE	OCDD 7650		76500 J
B3A5623	LRIS-CL-DU4—ISM COMPOSITE	1,2,3,4,6,7,8-HpCDD	11100	11100 J
B3A5623	LRIS-CL-DU4—ISM COMPOSITE	1,2,3,7,8,9-HxCDF	4.75	4.75 J
B3A5623	LRIS-CL-DU4—ISM COMPOSITE	OCDD	81800	81800 J
B3A5623	LRIS-CL-DU5—ISM COMPOSITE	1,2,3,4,6,7,8-HpCDD 1100		1100 J
B3A5623	LRIS-CL-DU5—ISM COMPOSITE	OCDD 6540		6540 J
B3D6144	CL-16-2.5	1,2,3,4,6,7,8-HpCDD	1640	1640 J
B3D6144	CL-16-2.5	OCDD	11900	11900 J
B3D6144	CL-18	1,2,3,4,6,7,8-HpCDD	3960	3960 J
B3D6144	CL-18	OCDD	32700	32700 J
B3D6144	CL-19	1,2,3,4,6,7,8-HpCDD 950		950 J
B3D6144	CL-19	OCDD 6930		6930 J
B3D6144	CL-22	1,2,3,4,6,7,8-HpCDD	1320	1320 J
B3D6144	CL-22	OCDD	9290	9290 J
B3D6144	CL-23	1,2,3,4,6,7,8-HpCDD 879		879 J
B3D6144	CL-23	OCDD	6210	6210 J

J = Result is an estimate. pg/g = picograms per gram.

CONTINUING CALIBRATION VERIFICATION RESULTS

CCV results are used to demonstrate instrument precision and accuracy through the end of the sample batch. In Apex report A3F0629, the laboratory reported USEPA Method 8270D upper limit CCV exceedances for samples LRIS-CL-DU1C—ISM Composite and LRIS-CL-DU2—ISM Composite. The results may be biased high, and have been qualified "J" as estimated:

Report	Sample	Analyte	Original Result (µg/kg)	Qualified Result (µg/kg)
A3F0629	LRIS-CL-DU1C—ISM Composite	PCP	334	334 J
A3F0629	LRIS-CL-DU2—ISM Composite	PCP	266	266 J

J = Result is an estimate.

REPORTING LIMITS

Apex and Maxxam used routine RLs and EDLs for non-detect results. Samples requiring dilutions because of high analyte concentrations and/or matrix interferences had adjusted RLs and EDLs.

Samples in reports A3F0629 and B3A5623 were extracted with increased sample volumes for USEPA Method 8270D and USEPA Method 1613B/8290A Modified, in order to achieve lower EDLs, method detection limits, and method reporting limits. The laboratories then diluted these samples prior to analysis. In report A3F0629, diluted samples LRIS-CL-DU3—ISM Composite and LRIS-CL-DU5—ISM Composite were non-detect for PCP by USEPA Method 8270D.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

In report B3A5623, the sample name for Maxxam sample ID SC7204 should be "LRIS-CL-DU5—ISM COMPOSITE."

No additional issues were found.

μg/kg = micrograms per kilogram.

- Apex. 2013. Quality assurance manual. Apex Labs, Tigard, Oregon.
- COE. 2012. Puget Sound sediment reference material: requesting, analyzing, validation and reporting data. U.S. Army Corps of Engineers. March.
- Maxxam. 2013. Quality assurance manual. Maxxam Analytics International Corporation o/a Maxxam Analytics Inc., Mississauga, Ontario, Canada.
- MFA. 2012. Dioxin and furan analysis, data validation, and TEQ calculation rules. Maul Foster & Alongi, Inc. December.
- MFA. 2013. Carty Lake predesign sampling and analysis plan. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. May 28.
- PSEP. 1997. Recommended guidelines. Prepared for the U.S. Environmental Protection Agency, Region 10, and the Puget Sound Water Quality Authority. Puget Sound Estuary Program. April.
- USEPA. 1986. Test methods for evaluating solid waste: physical/chemical methods. EPA-530/SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. September (revision 6, February 2007).
- USEPA. 2008. USEPA contract laboratory program, national functional guidelines for organics data review. EPA 540/R-08/01. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. June.
- USEPA. 2010. USEPA contract laboratory program national functional guidelines for inorganic superfund data review. EPA 540/R-10/011. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.
- USEPA. 2011. USEPA contract laboratory program national functional guidelines for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzo-furans (CDFs) data review. EPA-540-R-11-016. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. September.

APPENDIX D

DIOXIN AND FURAN ANALYSIS, DATA VALIDATION, AND TEQ CALCULATION RULES

To: File Date: September 28, 2012

From: Erik Naylor Project: 9003.01.40

RE: Dioxin and Furan Analysis, Data Validation, and TEQ Calculation Rules

The term dioxin is used to refer to a family of toxic chemicals that share a similar chemical structure and a common mechanism of toxic action. While there are 210 dioxin congeners, typically only the 17 most toxic congeners are reported by laboratories. The reported concentrations of the 17 dioxin congeners typically are validated to assess usability and then a toxicity equivalent concentration (TEQ) is calculated from the reported results to evaluate the toxicity of these compounds as a whole. The purpose of this memo is to provide an approach for dioxin data validation and TEQ calculation for the former Pacific Wood Treating site. Further, analytical method recommendations and requirements for laboratory deliverables are provided to enable consistent data validation and TEQ calculation using data from a variety of laboratories.

Critical to consistent data use is consistent use of terminology. Terms used in this memorandum are defined below.

- Method Detection Limit (MDL)—The minimum concentration of a compound that can
 be measured and reported with 99 percent confidence that the value is greater than zero
 according to the Washington State Department of Ecology's (Ecology), Model Toxics
 Control Act (MTCA) (Ecology, 2007).
- Estimated Detection Limit (EDL)—The sample- and analyte-specific EDL is an estimate made by the laboratory of the concentration of a given analyte that would have to be present to produce a signal with a peak height of at least 2.5 times the background noise signal level (U.S. Environmental Protection Agency [USEPA], 2005).
- Practical Quantitation Limit (PQL)—The lowest concentration that can be reliably measured within specified limits of precision, accuracy, representativeness, completeness, and comparability during routine laboratory operating conditions, using Ecology-approved methods (Ecology, 2007). This value is usually the lowest concentration used to calibrate the instrument after being adjusted for sample volume, sample extract volume, cleanups performed, and injection volume. PQLs should be no greater than 10 times the MDL (Ecology, 2007) and no greater than what is established by the USEPA in 40 Code of Federal Regulations (CFR) 136, 40 CFR 141-143, or 40 CFR 260-270.

- Estimated Maximum Potential Concentration (EMPC)—An EMPC is a value calculated for a reported analyte when the signal-to-noise ratio is at least 2.5:1 for both quantitation ions, but the ion abundance ratio criteria used for analyte confirmation are not met (USEPA, 2005). An EMPC value represents the maximum possible result of an analyte that could not be positively identified. The inability to positively identify the analyte could be a result of matrix interference, a coeluting compound, or low response.
- Toxic Equivalency Factor (TEF)—The factor by which each congener is multiplied in order to calculate its toxicity relative to 2,3,7,8-TCDD (Ecology, 2007). These values are summed to calculate the TEQ. TEFs depend on the endpoint being examined (i.e., birds, fish, mammals).
- TEQs—Concentrations of each congener are adjusted and summed to reflect their potency relative to 2,3,7,8-TCDD, one of the most toxic congeners. The TEQ is the sum of congener results multiplied by their specific TEF (Ecology, 2007).

ANALYTICAL METHODS

Dioxins are analyzed generally by USEPA Method 1613B or 8290, using a high-resolution gas chromatograph paired with a high-resolution mass spectrometer. A laboratory's PQL is usually the same for both methods. While the methods are very similar, Method 1613B is preferred, as it requires more rigorous quality assurance and quality control (QA/QC) through the use of six more internal standards than Method 8290. Because analytical technology and methodology have advanced rapidly since the methods were written, many laboratories combine elements of both methods to obtain the best results possible (Hoffman, E., and D. Fox 2010). Often the preparation and analyses are run using Method 1613B (for the additional QA/QC), while the calculations will be performed by Method 8290 (in order to obtain the sample- and analyte-specific EDLs). Method 1613B with calculated EDLs is the preferred method.

LABORATORY DELIVERABLES

It is important to work closely with the laboratory performing the dioxin analyses because different laboratories report data in different ways. The following items should be requested to ensure that the analytical report and electronic data deliverable (EDD) will contain all of the requisite information to validation the data and calculate TEQs:

- EDLs¹ and PQLs should be included in the final analytical report. EDLs, MDLs, and PQLs should all be included in the EDD.
- Results should be reported to the sample- and analyte-specific EDL. Results below the PQL but above the EDL will be qualified as estimates (J).

¹ Note that USEPA Method 1613B does not provide for the calculation of EDLs; therefore, the laboratory must use the calculation approach provided in Method 8290 to report the required limits.

• EMPC results should be reported at the EMPC value (EMPC values will be assigned a "U" qualifier [the analyte was not detected at or above the concentration qualified] at the time of validation).

TEQ concentrations will not be requested from the laboratory. If the laboratory provides TEQ concentrations, they will not be used because the data have not been validated TEQs should be calculated only after the data are validated.

VALIDATION

Dioxin data are validated much like other organic data, but there are a few issues that do not typically arise in other organic data sets. In addition to standard validation procedures (USEPA 2005), the following scenarios should be addressed in the fashion described below, consistent with other Ecology sites (Ecology and Environment and G. L. Glass, 2011):

- EMPC reported values should be assigned a U qualifier at the reported EMPC value.
- EMPC values that appear to be significantly elevated should be investigated further with the laboratory and may be assigned an R qualifier (unusable) when applicable.
- Non-detected results should be assigned a U qualifier and reported at the EDL value.

Further dioxin validation guidelines can be found in the National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (USEPA 2005). Data must be validated before TEQs are calculated.

TEQS

To express the overall toxicity of the 17 reported dioxins, the concentration of each congener is adjusted based on its toxicity relative to the most toxic congener, 2,3,7,8-TCDD, and then all 17 are added together. The adjustment factors, the TEFs, are provided by the 2005 World Health Organization. TEQs are commonly calculated by one of the following two methods:

- Non-detected values (U) are set as one half of the EDL. Values that are detected, even as estimates (J), should be used at face value. Multiply congener values by their corresponding TEF and then sum all of the products.
- Non-detected values (U) are set as 0. Values that are detected, even as estimates (J), should be used at face value. Multiply congener values by their corresponding TEF and then sum all of the products.

These methods result in two different TEQ values that can be shown as TEQ (U=1/2) and TEQ (U=0). TEQs should not be calculated to more significant figures than the original data. The table below illustrates these methods:

Dioxin	Result (ng/kg)	TEC ¹ (U=1/2) (ng/kg)	TEC ¹ (U=0) (ng/kg)	TEF Mammals
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	44	44	44	0.0003
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	3000 J	3000	3000	0.0003
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	41	41	41	0.01
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	510	510	510	0.01
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	2.9 U	1.45	0	0.01
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	6.9 U	3.45	0	0.1
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	7.4	7.4	7.4	0.1
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	5.2 U	2.6	0	0.1
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	27	27	27	0.1
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	0.5 U	0.25	0	0.1
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	22	22	22	0.1
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	3.4 U	1.7	0	0.03
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	3.2 U	1.6	0	1
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	2.4	2.4	2.4	0.1
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	3 U	1.5	0	0.3
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	1.4 U	0.7	0	0.1
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	0.23 U	0.115	0	1
Total Heptachlorodibenzofuran (HpCDF)	99	99	99	
Total Heptachlorodibenzo-p-dioxin (HpCDD)	1,100	1100	1100	
Total Hexachlorodibenzofuran (HxCDF)	97 J	97	97	
Total Hexachlorodibenzo-p-dioxin (HxCDD)	250	250	250	
Total Pentachlorodibenzofuran (PeCDF)	44	44	44	
Total Pentachlorodibenzo-p-dioxin (PeCDD)	32 J	32	32	
Total Tetrachlorodibenzofuran (TCDF)	19	19	19	
Total Tetrachlorodibenzo-p-dioxin (TCDD)	8.2	8.2	8.2	
TEQ (U=1/2)	15.2			
TEQ (U=0)	12.3			

NOTES:

ng/kg = nanograms per kilogram.

The difference between TEQ (U=1/2) and TEQ (U=0) values gives data reviewers an idea of how much the EDL substitution affects the TEQ summation (Hoffman, E., and D. Fox 2010). While

^{-- =} no value.

¹TEC is analyte-specific TEF adjusted concentration.

File September 28, 2012 Page 5

MTCA does not specify using the TEQ (U=1/2) method, it is the method that has been historically used at the Port of Ridgefield and will continue to be used.

SUMMARY

- USEPA Method 1613B is recommended for dioxin analysis (with Method 8290 EDL calculations).
- The laboratory must report a PQL and EDL for each sample and each congener, and provide a PQL, EDL, and MDL for each sample and each congener in the EDD.
- Results should be reported to the sample- and analyte-specific EDL. Results below the PQL but above the EDL will be qualified as estimates (J).
- EMPC results should be reported at the EMPC value (EMPC values will be assigned a "U" qualifier at the time of validation). However, if the EMPC is significantly elevated, additional qualification may be appropriate.
- Non-detected results should be assigned a U qualifier and reported at the EDL value.
- Laboratory data must be validated before a TEQ is calculated.
- TEQs should be calculated as follows: non-detected values (U) are set as one half of the EDL. Values that are detected, even as estimates (J), should be used at face value. Multiply congener values by their corresponding TEF and then sum all of the products.

REFERENCES

Ecology. 2007. Model Toxics Control Act statute and regulation. Publication No. 94-06. Washington State Department of Ecology. November.

Ecology and Environment Inc. and Gregory L. Glass. 2011. Rayonier Mill off-property soil dioxin study. June.

Hoffman, E., and D. Fox. 2010. Polychlorinated dioxins and furans (PCDD/F): revisions to the supplemental quality assurance project plan (SQAPP). U.S. Environmental Protection Agency. November.

USEPA. 2005. USEPA contract laboratory program national functional guidelines for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) data review. EPA 540-R-05-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. September.