LAKE RIVER REMEDY PREDESIGN SAMPLING REPORT

FORMER PACIFIC WOOD TREATING CO. SITE

Prepared for

PORT OF RIDGEFIELD

June 14, 2013 Project No. 9003.01.40

Prepared by Maul Foster & Alongi, Inc. 400 East Mill Plain Blvd., Suite 400 Vancouver, WA 98660

LAKE RIVER REMEDY PREDESIGN SAMPLING REPORT

FORMER PACIFIC WOOD-TREATING CO. SITE

The material and data in this report were prepared under the supervision and direction of the undersigned.

MAUL FOSTER & ALONGI, INC.

Madi Warah

Madi Novak

Senior Environmental Scientist

2498 12 Sed Geology

Alan R. Hughes

Alan R. Hughes, LG

Senior Geologist

Phil Wiescher, PhD

Staff Environmental Scientist

CONTENTS

TABLES	AND I	ILLUSTRATIONS	V
ACRO	NYMS ,	and abbreviations	VI
1	INTRC 1.1	DDUCTION BACKGROUND	1 1
2	INVES 2.1 2.2	STIGATION OBJECTIVES REMEDIAL ACTION AREA SEDIMENT PHYSICAL CHARACTERIZATION	2 3 3
3	3.1 3.2 3.3	MENT SAMPLING SAMPLING METHODS MANAGEMENT OF INVESTIGATION-DERIVED WASTE SAMPLE PROCESSING SAMPLE LABORATORY ANALYSIS DATA REDUCTION, VALIDATION, AND REPORTING	4 6 6 6 7
4	RESUL 4.1 4.2 4.3 4.4	NATURE AND EXTENT REMEDY DELINEATION SEDIMENT CHARACTERISTICS LAKE RIVER POST-REMEDY	7 7 8 10 10
LIMITA	TIONS		
REFERE	ENCES		
TABLES	;		
FIGURE	ES		
APPEN		ACE SEDIMENT PHOTOGRAPHS	
APPEN		MENT CORE PHOTOGRAPHS	
APPEN		NG LOGS	
APPEN		HAEOLOGICAL MONITORING REPORT	
APPEN		YTICAL REPORTS	
APPEN		VALIDATION MEMORANDUM	
APPEN	DIX G		

DIOXIN AND FURAN ANALYSIS, DATA VALIDATION, AND TEQ CALCULATION RULES

CONTENTS (CONTINUED)

APPENDIX H
INTERPOLATION EVALUATION

TABLES AND ILLUSTRATIONS

FOLLOWING REPORT:

TABLES

- 3-1 SAMPLE LOCATION COORDINATES
- 3-2 SURFACE SAMPLE SUMMARY
- 3-3 SUBSURFACE SAMPLE SUMMARY
- 3-4 PHYSICAL DATA SAMPLE SUMMARY
- 4-1 SURFACE AND SUBSURFACE SEDIMENT RESULTS
- 4-2 PHYSICAL PARAMETER RESULTS
- 4-3 REMEDY AREAS AND ESTIMATED POST-REMEDY CONDITIONS

FIGURES

- 1-1 SITE LOCATION
- 1-2 SITE VICINITY
- 3-1 2012 SEDIMENT SAMPLE LOCATIONS
- 4-1 LAKE RIVER DIOXIN TEQ IN SEDIMENT
- 4-2 DISTRIBUTION OF SURFACE AND SUBSURFACE DIOXIN USING IDW INTERPOLATION
- 4-3 PROPOSED REMEDIAL ACTION AREAS BASED ON 10X10-FOOT GRID
- 4-4 POST-REMEDY DISTRIBUTION OF DIOXIN IN SEDIMENT

ACRONYMS AND ABBREVIATIONS

cm centimeter
CUL cleanup level
cy cubic yard

dioxins polychlorinated dibenzo dioxins and furans draft RI/FS former PWT site draft remedial investigation and

feasibility study

Ecology Washington State Department of Ecology

ENR enhanced natural recovery

IDW inverse-distance weighted/weighting

LRIS Lake River Industrial Site
MFA Maul Foster & Alongi, Inc.
MTCA Model Toxics Control Act
ng/kg nanograms per kilogram
NN Natural Neighbor interpolation

PAH polycyclic aromatic hydrocarbon

PCP pentachlorophenol Port Port of Ridgefield

PSAP predesign sampling and analysis plan
PSEP Puget Sound Estuary Program
PWT Pacific Wood Treating Company
QA/QC quality assurance and quality control
RNWR Ridgefield National Wildlife Refuge
SMS sediment management standards

SRM Puget Sound Sediment Reference Material SWAC surface-weighted average concentration

TEQ toxicity equivalent
TOC total organic carbon
TP Thiessen polygon

USEPA U.S. Environmental Protection Agency WAC Washington Administrative Code

1 INTRODUCTION

On behalf of the Port of Ridgefield (Port), Maul Foster & Alongi, Inc. (MFA) has prepared this document to summarize predesign sampling and analytical results and to delineate remedial action areas in Lake River offshore of the former Pacific Wood Treating Co. (PWT) site in Ridgefield, Washington (see Figure 1-1). PWT operated a wood-treating facility from 1963 to 1993 at the Port's Lake River Industrial Site (LRIS); historical operations resulted in sediment contamination in Lake River. This document has been prepared under the authority of Agreed Order No. 01TCPSR-3119 between the Port and Washington State Department of Ecology (Ecology) to satisfy the requirements of the Model Toxics Control Act (MTCA) and sediment management standards (SMS), and addresses the substantive requirements of Washington Administrative Code (WAC) 173-340, 350, and 360 (MTCA) and WAC 173-204 (SMS).

This report describes activities conducted to support the design of remedial actions targeting contaminated sediment in Lake River. The selected remedy includes dredging and disposal of contaminated sediment and enhancing natural recovery of remaining low-level and residual contamination through placement of clean sand. Lake River sediment characterization, cleanup level (CUL) development, and remedial alternatives evaluation are detailed in the former PWT site draft remedial investigation and feasibility study (draft RI/FS) (MFA, 2012a). This report provides information regarding environmental field sampling, sample handling and analysis, quality assurance protocols, and laboratory analytical results and interpretation. Further, the results are used to refine the remedial action area and to anticipate post-remedy conditions. Physical data collected and reported here will be used to evaluate sediment-handling methods and will be discussed in the initial remedial design report (MFA, forthcoming).

Sampling and reporting were conducted in accordance with the Ecology approved predesign sampling and analysis plan (PSAP) (Mercuri, 2012; MFA, 2012b); further sampling activities were generally consistent with current Puget Sound Estuary Program (PSEP) and U.S. Environmental Protection Agency (USEPA) protocols for sampling and analysis (PSEP, 1986, 1997a,b; USEPA, 1993) and standard USEPA methods based on USEPA test methods for evaluating solid waste, physical/chemical methods (also known as SW-846) requirements, as amended (USEPA, 1986). Sampling activities were consistent with guidance provided in Ecology's Sediment Source Control Standards User Manual, Sediment Sampling and Analysis Plan appendix (Ecology, 2008).

1.1 Background

The approximately 40-acre LRIS is located within the Ridgefield city limits at 111 West Division Street, Ridgefield, Washington (see Figure 1-2). The LRIS is the former location of the PWT facility; former operations involved pressure-treating wood products with oil-based solutions and water-based mixtures. Constituents released to environmental media included creosote, pentachlorophenol (PCP), copper, chromium, arsenic, zinc, and polychlorinated dibenzo dioxins and furans (collectively referred to as dioxins) (MFA, 2012a). The LRIS is bounded on the north by the Ridgefield National

Wildlife Refuge (RNWR), which includes Carty Lake; on the west by Lake River; on the east by the Burlington Northern Santa Fe Railway tracks, which separate the LRIS from residential areas; and on the south by a Port-owned marina. The Port-owned marina adjoins the privately owned McCuddy marina, which contains residences, including houseboats. The RNWR is also located on the west side of Lake River, across from the LRIS.

The draft RI/FS (MFA, 2012a) identifies contaminants, characterizes their nature and extent, identifies potential sources and exposure pathways, develops CULs, and evaluates possible remedial actions in Lake River. Contaminants in Lake River sediment include chlorinated dibenzo-p-dioxins and dibenzofurans (collectively referred to as dioxins), PCP, m&p-cresol, and polycyclic aromatic hydrocarbons (PAHs). Dioxin concentrations exceeding CULs in Lake River sediment are collocated with other contaminants exceeding applicable screening criteria, and cleanup actions directed at dioxins will also remediate other contaminants. Therefore, dioxins were the only chemical data collected during predesign activities, and only dioxin concentrations are evaluated to define remedial action areas.

The preferred remedy identified in the draft RI/FS (MFA, 2012a) involves dredging Lake River sediment and placing clean sand to enhance natural recovery in areas of residual and low-level contamination. Following are components of the remedy:

- Removal of historical infrastructure such as dolphins and pilings
- Removal of Lake River sediment to significantly reduce site-wide concentrations of dioxins and other contaminants (i.e., PCP, m&p-cresol, PAHs) above screening criteria
- Disposal of dredged material as nonhazardous material waste at a Subtitle D landfill facility
- Placement of sand to enhance the natural recovery of sediments in areas of low-level and residual contamination
- Stabilization of the lower bank¹

INVESTIGATION OBJECTIVES

The PSAP identified the chemical and physical sediment characterization required to design the Lake River cleanup action (MFA, 2012b). The primary investigation objectives of sampling and analysis conducted were:

• Delineation of the dredge prism and the enhanced natural recovery (ENR) area

¹ The upper portions of the bank are being addressed as part of an upland interim action currently under way.

• Characterization of sediment physical parameters to evaluate sediment retrieval, handling, and disposal methods

These objectives are discussed further below.

2.1 Remedial Action Area

The nature and extent of Lake River contaminants are generally well understood (MFA, 2012a). PCP, m&p-cresol, and PAH exceedances of screening criteria are well defined and are collocated with elevated dioxin concentrations. Dioxin concentrations are generally elevated close to shore and near historical outfalls, and decrease substantially within the top 2 to 3 feet of the mudline. However, additional sediment was collected at 21 stations to delineate the vertical and/or lateral extent of dioxins to support remedy (dredge and ENR) delineation.

To evaluate remedial options, a variety of dredge prism scenarios were presented in the draft RI/FS (MFA, 2012a). The scenarios were evaluated in terms of technical feasibility, cost, and anticipated post-remedial surface-weighted average concentrations (SWACs) using the Thiessen polygon (TP) interpolation method. The preferred alternative presented in the draft RI/FS involved removing sediment with dioxin toxicity equivalent (TEQs) greater than 30 nanograms per kilogram (ng/kg) and ENR placement in areas with dioxin TEQs over 5 ng/kg. Under this alternative, initial evaluations determined that the SWAC would be reduced to levels approaching the CUL of 5 ng/kg dioxin TEQ, and the remediation levels (based on ecological CULs) would be met. The TP method was also used to estimate initial dredge and ENR volumes.

The predesign dioxin data described in this report are used, together with the dioxin data collected during RI activities, to evaluate additional remedial action area scenarios and update estimates of the post-remedy SWAC. Because the predesign sampling resulted in greater sample density than what had been available for evaluation in the RI/FS, data evaluation methods beyond the TP approach used in the RI/FS are applied to refine the remedial action areas. In addition, the final remedial action area considerations include dredging logistics, feasibility, and river bottom characteristics.

2.2 Sediment Physical Characterization

Sediment physical properties within the anticipated dredge prism were collected to inform the design of the remedy and to refine remedial cost estimates. The information is used to evaluate slope stability, river hydrodynamics, sediment transfer, dredge production rates, volumes, and handling requirements. A full understanding of all of these elements is valuable, as sedimentation or erosion during dredge operations may impact the volume of dredged material, as well as the length of time it takes to reach the design grades. Physical samples were collected at six stations of varying sediment characteristics (e.g., percent fines).

In addition to geotechnical laboratory analysis, a pilot study was conducted using the sediment obtained during this sampling event to evaluate how the material will likely behave during dredging, handling, and disposal processes. The pilot study included physical manipulation of the sediment in order to simulate dredging and handling methods. The pilot study tests are intended to show how

the sediment will react to handling, stacking, drying, and amending, among other characteristics that can be observed and recorded. The information is provided in this report and is further evaluated and incorporated into the Initial Remedial Design Report (MFA, forthcoming).

3 SEDIMENT SAMPLING

3.1 Sampling Methods

MFA conducted sediment sampling on December 2, 3, and 4, 2012 at 21 stations. Sampling was conducted consistent with the Ecology-approved PSAP (MFA, 2012b), except as noted below. Marine Sampling Systems of Burley, Washington, supplied the vessel, vessel support crew, a Van Veen power grab sampler, and a Vibracore sediment sampler. A Shelby tube sampler with pole extensions was used for physical parameter sampling. Figure 3-1 and Table 3-1 show and summarize sample stations, respectively. Sample stations were identified in the PSAP; however, some locations were modified based on field conditions. The rationale for field adjustment of stations is summarized for surface sampling, subsurface sampling, and physical parameter sampling in Tables 3-2 through 3-4, respectively. Sampling methods for each collection technique are described below.

3.1.1 Surface Sediment Sampling

Surface sediment samples collected for dioxin and total organic carbon (TOC) analysis were retrieved using a Van Veen power grab sampler, consistent with historical Lake River remedial investigation surface sampling (Anchor and MFA, 2011; MFA, 2012a). Surface samples were collected at 13 locations (see Table 3-1). The grab sampler was deployed using a winch from the support vessel and was equipped with mesh screens and rubber flaps to minimize the loss of surficial, fine-grained sediments. The speed of the grab sampler's descent was controlled to minimize sediment disturbance. Upon retrieval of an acceptable sediment sample (i.e., greater than 10 centimeters [cm] of undisturbed sediment recovered), a photograph was taken and the substrate was described. Photographs are provided in Appendix A. Field observations are summarized in Table 3-2.

Following retrieval of an acceptable sediment sample, excess water was decanted from the Van Veen. Samples were collected from the top 10 cm of retrieved material; placed in a decontaminated, stainless steel bowl; and thoroughly homogenized with a decontaminated, stainless spoon. Sediment in contact with the sides of the sampler was not collected. The PSAP specified that two 8-ounce jars would be filled for each sample; however, three 4-ounce jars were filled at each sample location, as recommended by the test laboratory. Sample containers were submitted to the laboratory for analysis or archiving. All equipment was decontaminated in accordance with the PSAP.

3.1.2 Subsurface Sediment Sampling

Subsurface sediment sampling was conducted using a vibratory core sampler (Vibracore) for dioxin and TOC characterization. Use of vibracore sampling is consistent with historical Lake River remedial investigation subsurface sampling (Anchor and MFA, 2011; MFA, 2012a). A support vessel with the vibracoring equipment maneuvered to sample stations (see Table 3-3). Subsurface samples were collected at 20 locations (see Table 3-1). A decontaminated, thin-walled aluminum core tube 8 feet long was secured to the vibratory assembly and deployed from the vessel, using a winch. The vibracore assembly was lowered perpendicular to the water surface and allowed to penetrate into the sediment under the weight of the device, after which the vibrating motor was engaged. The vibracore unit operated until the maximum depth of the core barrel was achieved or refusal was encountered. The vibracore unit was then withdrawn from the sediment, using the vessel winch. Once back on the support vessel, the core tube was separated from the vibracore head unit; vibracore samples were accepted if a minimum of 5 feet of material was recovered, 75 percent core recovery relative to drive length was achieved, and core surface and core tube were intact. If the minimum amount of material was not recovered, a new core barrel was affixed to the vibracore head unit and the location was resampled or field-adjusted if necessary. In some cases, sediment marginally less than 5 feet in length and/or 75 percent recovery was accepted because of field constraints (see Table 3-3).

Following retrieval of an acceptable core, the core was cut slightly above the sediment line to allow excess water to escape. The core was then capped and stored in a vertical position for transport to the upland core processing station. Aluminum cores were placed horizontally on a flat work surface and cut longitudinally, using a saw. The cores were photographed (see Appendix B) and then described, noting features such as sheen, woody debris, and biological features (see Appendix C). Archaeological monitoring was conducted by Willamette Cultural Resource Associates during core processing (Appendix D). Each 1-foot increment of the core was sampled after inspection, with care being taken not to sample material in contact with the core. Each increment was thoroughly homogenized before placement into three 4-ounce jars. Designated samples were submitted to the laboratory for analysis or archiving. All equipment was decontaminated in accordance with the PSAP. Boring logs are provided in Appendix C.

For stations at which physical parameter testing was identified, remaining sediment from the top 3 to five 5 feet of the vibracore sample was collected in a 5-gallon bucket. The material was used to perform pilot tests for drying, handling, and other material behaviors.

3.1.3 Physical Parameter Sampling

Sediment sampling for physical parameters was conducted by manually advancing Shelby tubes through the river substrate. The Shelby tube sampling method allows for retrieval of a relatively undisturbed, i.e., in situ, sample. Shelby tube sampling procedures were performed in conformance with American Society for Testing and Materials D1587. The support vessel navigated to the six sample locations (see Table 3-1), and a 3-inch-by-36-inch Shelby tube secured to pole extensions was advanced through the sediment a minimum of approximately 2 feet. Once collected, the Shelby tube sample was wiped clean of loose sediment cuttings (if necessary) and the sample length was

measured. Drive depth was difficult to assess because of the presence of loose sediment at the sediment/water interface. Therefore, percent recovery was not measured; however, approximately 2 feet of material sufficient for analysis was collected. This process was repeated if there was a significant loss of sediment (see Table 3-4). The sample was sealed at each end and stored upright for transportation to the laboratory. All equipment was decontaminated in accordance with the PSAP.

3.2 Management of Investigation-Derived Waste

Excess sediment and decontamination fluids were collected in sealed containers and placed on the LRIS in an area undergoing remedial action. The disposed-of material will be capped consistent with the LRIS Cells 1 and 2 interim action plan (MFA, 2011). Personal protective equipment was disposed of in a sanitary landfill.

3.3 Sample Processing

Samples for dioxin and TOC analysis were submitted to the Ecology-approved Test America Laboratory of Seattle, Washington. Coolers were transported to the laboratory by overnight shipping service. Shelby tube samples for physical parameter testing were submitted to GeoDesign, Inc., of Portland, Oregon. Sediment collected for physical parameter bench testing was placed in sealed 5-gallon buckets for future use. Chain-of-custody documentation was prepared at the time of sampling and maintained throughout the sample handling and testing process; it is included in the laboratory analytical reports (see Appendix E).

3.4 Sample Laboratory Analysis

The PSAP identified samples for analysis or archiving, based on a tiered approach, with Tier I samples to be analyzed and Tier II through IV samples to be archived and released for analysis only if the corresponding sample was above a threshold. Samples were analyzed for dioxins by USEPA Method 1613B and for TOC by USEPA Method 9060.

Laboratory quality assurance and quality control (QA/QC) were maintained through the use of standard USEPA methods, based on USEPA test methods for evaluating solid waste, physical/chemical methods (also known as SW-846) requirements, as amended (USEPA, 1986). The laboratory met QA/QC requirements specified in the 2010 Dredged Material Management Program clarification paper (Hoffman and Fox, 2010). Two containers of Puget Sound Sediment Reference Material (SRM) were requested and received through Ecology. The SRM sample is matrix-specific, with known concentrations of dioxins that have been certified by the provider, Shaw Environmental, Inc. The SRM was prepared and analyzed with each batch of samples analyzed for dioxins. The SRM was assessed by comparing laboratory results to the certified performance criteria found in the document Puget Sound Sediment Reference Material: Requesting and Analyzing the SRM, and Reporting Data (COE, 2012).

Rinsate blanks collected from reusable equipment coming into direct contact with sediment samples, i.e., bowls and spoons, were submitted for analysis of dioxins by USEPA Method 1613B.

Field duplicates were collected at station LRIS-LR-130. Duplicate samples were collected for both surface and subsurface sediment locations. The field duplicates were prepared by dividing aliquots of a homogenized sample into two distinct samples for laboratory analysis.

3.5 Data Reduction, Validation, and Reporting

The laboratory data produced were independently reviewed by MFA for data quality (see Appendix F). Dioxin data are reported consistent with the attached Dioxin and Furan Analysis, Data Validation, and TEQ Calculation Rules memorandum (see Appendix G) included with the PSAP approved by Ecology (2012). Consistent with WAC 173-340-840(5) and Ecology Toxics Cleanup Program Policy 840 (Data Submittal Requirements), data were submitted in both written and electronic formats.

4 RESULTS

The results of the predesign sampling, including delineation of the dredge prism and ENR area, are used to support the remedial design effort. Sample results are summarized in Table 4-1 (dioxins and TOC) and Table 4-2 (physical parameters). A summary of dioxin data collected during RI activities combined with the predesign samples collected in 2012 is provided in Table 4-3. The dataset summarized in Table 4-3 is used to evaluate remedial action areas and predict post-remedial conditions. The information provided in this report is further evaluated and incorporated into the initial remedial design report (MFA, forthcoming).

In developing initial estimates of dioxin extent and preliminary remedial areas, the draft RI/FS relied on the use of the TP interpolation method. The TP method was initially selected because of its simplicity and because insufficient data density precluded use of other interpolation methods. Predesign data collection increased data density such that more sophisticated and informative interpolation methods can be used. Inverse-distance weighting (IDW) and Natural Neighbor interpolation (NN) are commonly applied and predict sediment concentrations at a much finer resolution (e.g., for 1-by-1-foot cells) than TP (de Smith, 2008), enabling more precise development of dioxin concentration estimates and remedial action areas. These interpolation methods were evaluated (see Appendix H); IDW is selected as the interpolation methodology to carry forward for evaluating current dioxin extent, remedial actions, and post-remedial conditions.

4.1 Nature and Extent

Figure 4-1 shows dioxin data generated during remedial investigation and recent predesign sampling events for all stations and depth intervals analyzed. Figure 4-2 shows interpolated surface and subsurface concentrations based on IDW. The spatial distribution of dioxin concentrations is consistent with the conceptual site model (MFA, 2012a); sediment concentrations near historical outfalls are elevated and concentrations decrease significantly in nearshore areas not near outfalls, in the mid-channel, and in western portions of the river. Concentrations generally decrease significantly

with depth, with contamination occurring primarily in surface and shallow subsurface. To further verify the conceptual site model, Ecology requested analysis of a deeper sample at station LRIS-LR-132; the low dioxin TEQ (0.14 ng/kg) at 4 to 5 feet below mudline further supports the conclusion that subsurface sediment is not contaminated at this depth (Figure 4-1). In one case at station LRIS-LR-110, dioxin concentrations are generally similar over the 0-to-5-foot interval, with concentrations ranging from 46 to 79 ng/kg dioxin TEQ and with no indication of decreasing concentration with depth. However, dredging concentrations in surface and shallow subsurface are expected to result in the removal of the most significant mass of dioxins present in Lake River.

4.2 Remedy Delineation

The preferred remedy described in the draft RI/FS targets sediment exceeding 30 ng/kg dioxin TEQ for dredging, and subsequent ENR treatment (MFA, 2012a). Sediment exceeding 5 ng/kg in surface, but no more than 30 ng/kg, would receive ENR treatment only. See Figure 4-2 for areas above or below these thresholds in surface and subsurface sediment.

Remedial areas are shown in Figure 4-3 and were developed considering the following:

- Surface and subsurface remedial boundaries approximate the appropriate IDW contour (5 ng/kg or 30 ng/kg) based on a 10-by-10-foot grid; this grid size is appropriate to the approximate scale of construction equipment. Note that this approach is conservative, as IDW predicts slightly greater dioxin extent than NN in surface sediment (see Appendix H).
- Remedial areas account for Lake River bathymetry and construction feasibility. Nearshore dredge boundaries were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point² to the required dredge depth; ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope. To estimate upper bound dredge and ENR volumes, nearshore boundaries were extended an additional 20 feet towards shore (i.e., east) or to +12 Columbia River Datum (approximating ordinary high water). Note that the final nearshore boundary may not extend as far as east and this boundary will be further refined in the Initial Remedial Design Report [IDR, (MFA, forthcoming)].
- In some cases remedial actions were slightly modified from strict adherence to the above rationale to maintain consistency with adjacent areas and/or measured concentrations. Figure 4-3 identifies all 10-by-10-foot areas for which remedial actions were reassigned based on best professional judgment.
- Dredge depth near LRIS-LR-110 is selected at 3 feet neatline for several reasons:

² The term "shoreline inflection point" in this document is meant to identify the point at which the 3:1 shore slope naturally transitions to a flatter slope.

- The lowest concentration (46 ng/kg) occurs in the 3-to-4-foot interval; an additional foot of sand will be placed here (i.e., a total of 2-feet of sand) to more effectively sequester remaining subsurface contamination.
- Construction realities constrain a significantly deeper dredge (e.g., 6 feet or more) than would occur in adjacent areas; a 3-foot neatline dredge is in line with dredge depth identified for surrounding areas, facilitating construction feasibility.
- Upland archeological finds offshore of LR-110 impede upland bank excavation that would be necessary for a dredge to extend beyond approximately 4 feet.

See Appendix H for additional detail on how the remedial action area is defined.

Based on the remedial action areas shown in Figure 4-3 and compaction correction factors, approximate neatline remedy volumes were estimated. Sediment compaction can occur during sampling due to the vibrating action of the Vibracore. Compaction results in a reduced length of recovered core compared to the depth of sediment penetrated by the coring device. Therefore, analytical results for one-foot core intervals may integrate sediment that, in situ, extends beyond the interval length measured after retrieval. A compaction correction factor was developed by dividing the penetration depth by the recovery length and then multiplying by the recorded depth of the sample as measured from the top of the core. Cores in areas where multiple deployments occurred due to low recovery (i.e. sediment falling out due to large granular cobbles or debris) were not included in the analysis. A measure of penetration depth to sediment recovery was averaged across cores resulting in a correction factor of 1.17 per foot.³ The compaction correction factor was applied to each dredge depth for an appropriate depth correction as follows: 1.17 for the 1-foot dredge area, 1.34 for the 2-foot dredge area, 1.51 for the 3-foot dredge area. What this means functionally is that, for example, to remove contamination that is observed in a sample collected 3-feet below the mudline, the neatline dredge is extended an additional 0.51 feet to account for compaction. The estimated dredge and ENR volumes are:

- 10,080 total cubic yards (cy) of neatline sediment removal (including 20 percent contingency); this includes:
 - o 8,650 cy in the northern dredge unit
 - o 1,430 cy in the southern dredge unit
- 6,110 cy of ENR sand in dredge areas (1 foot of ENR, including 20 percent contingency); this includes an additional foot of ENR in an area of approximately 600 square feet near LRIS-LR-110
- 7,740 cy of sand in ENR-only areas (1 foot of ENR, including 20 percent contingency)

R:\9003.01 Port of Ridgefield\Report\40_2013.06.14 Predesign Sampling Report\Rf-Predesign Sampling.docx

³ Note that the compaction correction method does not account for other factors contributing to less recovery than penetration such as: the loss of sediment as the barrel is raised through the water column; the inability to see the core barrel encounter the sediment bottom, leading to an imprecise record of the starting depth; and non-linear compaction that might be observed in interbedded soft and hard sediment layers.

Note that remedial action areas are likely to decrease somewhat as the eastern boundary of the extent is refined during design. Additional construction details and data collection, including dredge bucket size, bucket reach, further compaction evaluation, and a preconstruction bathymetric survey, may also impact the estimates provided above. Note that overdredge volume (i.e., the amount of material that is removed beyond the target neatline surface due to dredging constraints on precision) is not accounted for in the estimates above. These factors will be further specified in the Initial Remedial Design Report (MFA, forthcoming).

4.3 Sediment Characteristics

The results of the geotechnical lab tests for physical parameters are summarized in Table 4-2. The results of the geotechnical properties investigation show that the sediment does not vary greatly in type or properties across the dredge area. All sediment samples were found to be nonplastic. The presence and amount of silt indicates that the material in the sampling area and within the reach is of a depositional nature. Additionally, seen here as well as in previous investigations, there is no notable vertical change in material within the proposed dredge prism. The observed relative homogeneity of the material indicates that similar dredging treatments are appropriate across the extent of the site.

Sediment for bench testing was collected during the environmental sampling event. The bench testing included physical manipulation of the sediment in order to simulate dredging and handling methods. The testing was intended to emulate how the sediment will react to handling, stacking, drying, and amending during dredging, as well as to gather any other characteristics that could be observed and recorded. Generally, the material was found to take significant agitating to remold. However, once remolded, the sediment became very flowable. It was observed that, as the mass of water added increased much beyond 10 percent (additional, by weight), the material became an unworkable slurry. It also required much larger amounts of admixture to restore workability. These sediment physical properties will further inform the design for handling, dewatering, and stabilizing the lake river sediment and is further discussed in the Initial Remedial Design Report (MFA, forthcoming).

4.4 Lake River Post-Remedy

Figure 4-4 shows the estimated post-remedy IDW surface contours based on the selected remedial area. The following procedure was followed to calculate the post-remedial SWAC:

- All stations were assigned a projected leave surface concentration based on the selected remedy (e.g., dredge depth) and available chemical data (see Table 4-3).
- To estimate the post-remedial concentration, the projected leave surface was assumed to mix fully with the clean sand layer, if applied (see Table 4-3); this evaluation is conservative, as full mixing of the sand layer with the leave surface is not expected and concentrations at the point of compliance (0 to 10 cm) are therefore likely to be lower (MFA, 2012a).

- IDW interpolation was used to estimate the post-remedial surface for the Lake River site (see Figure 4-4). This evaluation is conservative, as IDW predicts slightly greater extent of dioxin impacts than NN (see Appendix H).
- Post-remedy SWACs were calculated as follows. IDW interpolation is used (see Appendix H for details) to estimate concentrations in 1 x 1 square foot grids. The concentrations in the 1 x 1 square foot grids are averaged across the area of interest (i.e., either the remedial action area or more encompassing area off-shore of the site).
- Post-remedy SWACs were calculated for two different areas:
 - o Including only Lake River areas in the remedial action area (i.e., areas currently exceeding the CUL of 5 ng/kg).
 - Including all Lake River areas.
- SWACs were estimated to provide a range of post-remedy conditions. A SWAC was calculated based on the nearshore remedy boundary shown in Figure 4-3 (and described in Section 4.2) and a second SWAC was calculated based on a nearshore remedy boundary at the shoreline inflection point (approximately 20 feet to the west). The extent of the nearshore boundary will be further refined in the initial remedial design report (MFA, forthcoming).

A post-remedy SWAC between 4.2 and 4.4 ng/kg dioxin TEQ was calculated for Lake River areas in the remedial action area. A SWAC between 2.3 and 2.5 ng/kg dioxin TEQ was estimated for the entire Lake River site. The estimated post-remedy dioxin TEQ concentrations are below the CUL of 5 ng/kg.

LIMITATIONS

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

Anchor and MFA. 2011. Memorandum (re: sediment remedial investigation, Lake River industrial site). Prepared for Port of Ridgefield and Union Pacific Railroad Company. Anchor QEA, LLC, and Maul Foster & Alongi, Inc. February.

COE. 2012. Puget Sound sediment reference material: requesting and analyzing the SRM, and reporting data. U.S. Army Corps of Engineers. May.

de Smith, M., M. Goodchild., and P. Longley. 2008. Geospatial analysis: a comprehensive guide. Matador, Leicester, UK. Excerpt available from: http://www.spatialanalysisonline.com/output/.

Ecology. 2008. Sediment source control standards user manual. Appendix, sediment sampling and analysis plan. Ecology Publication No. 03-09-043. Washington State Department of Ecology Sediment Management Unit. Revised February 2008.

Mercuri. 2012. Electronic mail correspondence (Approval - Pacific Wood Treating Predesign Sampling Plan - Lake River) to L. Olin, Port of Ridgefield, from J. Mercuri, Washington State Department of Ecology. November 1.

Hoffman, E., and D. Fox. 2010. Polychlorinated dioxins and furans (PCDD/F): revisions to the supplemental quality assurance project plan (SQAPP). U.S. Environmental Protection Agency. November.

MFA. 2011. Cells 1 and 2 interim action work plan, former Pacific Wood Treating Corporation. Prepared for Port of Ridgefield. Maul Foster & Alongi, Inc. April 13.

MFA. 2012a. Former PWT site draft remedial investigation and feasibility study. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. March 16.

MFA. 2012b. Lake River predesign sampling plan. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington. September 29.

MFA. Forthcoming. Initial remedial design report. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington.

PSEP. 1986. Recommended protocols for measuring conventional sediment variables in Puget Sound. Prepared for the U.S. Environmental Protection Agency, Region 10, Seattle, Washington. Puget Sound Estuary Program.

PSEP. 1997a. Recommended guidelines for measuring organic compounds in Puget Sound sediment and tissue samples. Prepared for the U.S. Environmental Protection Agency, Region 10, and the Puget Sound Water Quality Authority. Puget Sound Estuary Program.

PSEP. 1997b. Recommended guidelines for sampling marine sediment, water column, and tissue in Puget Sound. Prepared for the U.S. Environmental Protection Agency, Region 10, and the Puget Sound Water Quality Authority. Puget Sound Estuary Program.

USEPA. 1986. Test methods for the evaluation of solid waste: physical/chemical methods. 3rd ed. EPA SW-846. U.S. Environmental Protection Agency.

USEPA. 1993. Test methods for evaluating solid waste, physical/chemical methods. 3rd ed., update 4B. EPA SW-846. August.

TABLES

Table 3-1 Sample Location Coordinates Former PWT Site Ridgefield, Washington

Station ID	Sample Collection Methodology	X Coordinate	Y Coordinate
LRIS-LR-103	Vibracore	1066355.736	185003.282
LRIS-LR-103	Van Veen	1066356.913	184998.323
LRIS-LR-103	Shelby Tube	1066354.909	185001.116
LRIS-LR-105	Shelby Tube	1066354.580	185148.873
LRIS-LR-106	Vibracore	1066261.464	185215.434
LRIS-LR-106	Van Veen	1066258.489	185218.437
LRIS-LR-108	Vibracore	1066155.676	185511.031
LRIS-LR-109	Vibracore	1066104.970	185420.670
LRIS-LR-109	Shelby Tube	1066102.613	185424.446
LRIS-LR-110	Vibracore	1066073.806	185698.814
LRIS-LR-119	Vibracore	1066578.968	184638.182
LRIS-LR-119	Shelby Tube	1066581.679	184636.341
LRIS-LR-120	Vibracore	1066454.548	184899.409
LRIS-LR-120	Shelby Tube	1066452.433	184901.293
LRIS-LR-122	Vibracore	1066250.187	185347.512
LRIS-LR-122	Van Veen	1066254.127	185347.035
LRIS-LR-124	Vibracore	1066157.348	185587.410
LRIS-LR-125	Vibracore	1065988.294	185814.165
LRIS-LR-126	Vibracore	1065896.913	186090.017
LRIS-LR-126	Van Veen	1065902.596	186089.551
LRIS-LR-126	Shelby Tube	1065897.178	186088.854
LRIS-LR-129	Vibracore	1065907.225	185781.460
LRIS-LR-129	Van Veen	1065907.767	185790.018
LRIS-LR-130	Vibracore	1066022.528	185426.248
LRIS-LR-130	Van Veen	1066023.219	185422.154
LRIS-LR-131	Vibracore	1066115.041	185340.125
LRIS-LR-131	Van Veen	1066112.718	185331.739
LRIS-LR-132	Vibracore	1066400.175	184811.644
LRIS-LR-132	Van Veen	1066394.885	184815.443
LRIS-LR-133	Vibracore	1066523.551	184591.244
LRIS-LR-133	Van Veen	1066521.463	184589.601
LRIS-LR-134	Vibracore	1066595.232	184543.658
LRIS-LR-134	Van Veen	1066596.503	184540.521
LRIS-LR-135	Vibracore	1066445.238	184528.666
LRIS-LR-135	Van Veen	1066447.198	184531.771
LRIS-LR-136	Vibracore	1066008.613	185323.101
LRIS-LR-136	Van Veen	1066010.969	185316.285
LRIS-LR-137	Vibracore	1065799.293	185896.176
LRIS-LR-137	Van Veen	1065791.847	185891.464

Horizontal Datum is NAD83 State Plane Washington South.

Table 3-2 Surface Sample Summary Former PWT Site Ridgefield, Washington

Date	Station ID	Collection Time	Sediment Recovery (cm)	Sampling Interval (cm)	Physical Description	Sample Notes
12/04/2012	LRIS-LR-126	8:55	>10	0-10	Medium sand with silt; trace woody debris	
12/04/2012	LRIS-LR-137	9:14	>10	0-10	Sandy silt	
12/04/2012	LRIS-LR-129	10:10	>10	0-10	Sandy silt	
12/04/2012	LRIS-LR-130	10:24	>10	0-10	Sandy silt; trace organic debris; trace woody debris	
12/04/2012	LRIS-LR-136	10:39	>10	0-10	Sandy silt; trace organic debris	
12/04/2012	LRIS-LR-131	11:15	>10	0-10	Sandy silt	
12/04/2012	LRIS-LR-122	11:27	>10	0-10	Sandy silt; trace organic debris; trace woody debris	
12/04/2012	LRIS-LR-106	11:42	>10	0-10	Sandy silt; trace woody debris; trace trash	
12/04/2012	LRIS-LR-103	11:55	>10	0-10	Sandy silt	
12/04/2012	LRIS-LR-132	12:06	>10	0-10	Sandy silt; trace woody debris	
12/04/2012	LRIS-LR-133	12:49	>10	0-10	Sandy silt; trace woody debris	
12/04/2012	LRIS-LR-135	13:01	>10	0-10	Sandy silt; trace woody debris	
12/04/2012	LRIS-LR-134	13:19	>10	0-10	Sandy silt; trace organic debris; trace woody debris	Two attempts were made to recover sediment; no recovery on first attempt (Van Veen twisted during deployment); sample collected after second, successful attempt.

NOTES:

All station IDs are colocated surface and subsurface sediment stations.

cm = centimeters.

Table 3-3 Subsurface Sample Summary Former PWT Site Ridgefield, Washington

Date	Station ID	Collection Time	Water Depth (feet)	Sediment Penetration (feet below mudline)	Sediment Recovery (feet)	Percent Recovery	Sample Notes
12/02/2012	LRIS-LR-134*	9:19	9.5	7	4.8	69%	
12/02/2012	LRIS-LR-126*	10:13	6.6	7	5.3	76%	
12/02/2012	LRIS-LR-137*	10:43	17.6	7	6.2	89%	
12/02/2012	LRIS-LR-129*	11:27	17.3	7	5.1	73%	
12/02/2012	LRIS-LR-125	12:31	8.6	7	4.2	60%	Two attempts; piston plug malfunction on first attempt led to no recovery.
12/02/2012	LRIS-LR-130*	13:37	15.1	7	6.2	89%	
12/02/2012	LRIS-LR-109	14:00	13.5	7	6	86%	
12/02/2012	LRIS-LR-136*	14:43	14.5	7	5.5	79%	
12/02/2012	LRIS-LR-131*	15:32	13	6.8	3.8	56%	Field-adjusted location because of buoy; two attempts, low recovery on first attempt due to woody debris.
12/02/2012	LRIS-LR-106*	16:33	10.3	7	6.3	90%	
12/03/2012	LRIS-LR-110	8:36	7.8	7	6.3	90%	
12/03/2012	LRIS-LR-124	9:04	7.2	7	4.7	67%	Moved location approximately 10 feet because of hard substrate on sediment surface near initial location.
12/03/2012	LRIS-LR-108	10:05	8.5	7	6.2	89%	Two attempts; debris encountered on first attempt, moved location approximately 5 feet on second attempt.
12/03/2012	LRIS-LR-122*	10:36	7.6	7	6	86%	
12/03/2012	LRIS-LR-103*	11:17	7.1	7	6.2	89%	
12/03/2012	LRIS-LR-120	11:41	7.2	7	5.6	80%	
12/03/2012	LRIS-LR-132*	12:47	8.7	7	6	86%	
12/03/2012	LRIS-LR-119	13:24	7	7	5.7	81%	
12/03/2012	LRIS-LR-133*	14:40	8.5	7	5.5	79%	Four attempts; moved location approximately 10 feet because of repeated encounter with hard substrate.
12/03/2012	LRIS-LR-135*	15:04	12.9	7	5.9	84%	

NOTES:

Water depth presented is at the time of sample collection. Water levels in Lake River are tidally and seasonally influenced.

*Station IDs are co-located surface and subsurface sediment stations.

Table 3-4
Physical Data Sample Summary
Former PWT Site
Ridgefield, Washington

Date	Station ID	Collection Time	Sediment Recovery (feet)	Water Depth (feet)	Sample Notes
12/04/2012	LRIS-LR-120	15:17	1.83	8	
12/04/2012	LRIS-LR-103	15:43	2	8	
12/04/2012	LRIS-LR-105	16:04	2.5	8.5	
12/04/2012	LRIS-LR-109	16:19	2.5	13.5	
12/04/2012	LRIS-LR-126	16:43	1.5	7.5	Two attempts; minimal recovery on first attempt.
12/04/2012	LRIS-LR-119	17:00	2.33	8	Three attempts; field-adjusted location, as grain size was too large for recovery.

NOTE:

Water depth presented is from the time of sample collection. Water levels in Lake River are tidally and seasonally influenced.

Table 4-1 Surface and Subsurface Sediment Results Former PWT Site Ridgefield, Washington

Sample ID	LRIS-LR-103	LRIS-LR-103-2	LRIS-LR-106	LRIS-LR-106-2	LRIS-LR-108-3	LRIS-LR-109-3	LRIS-LR-110-3	LRIS-LR-110-4	LRIS-LR-110-5	LRIS-LR-119-2	LRIS-LR-119-3	LRIS-LR-120-2	LRIS-LR-122
Location ID	LR-103	LR-103	LR-106	LR-106	LR-108	LR-109	LR-110	LR-110	LR-110	LR-119	LR-119	LR-120	LR-122
Sample Date	12/04/2012	12/03/2012	12/04/2012	12/02/2012	12/03/2012	12/02/2012	12/03/2012	12/03/2012	12/03/2012	12/03/2012	12/03/2012	12/03/2012	12/04/2012
Depth	0-10 cm	1-2 ft	0-10 cm	1-2 ft	2-3 ft	2-3 ft	2-3 ft	3-4 ft	4-5 ft	1-2 ft	2-3 ft	1-2 ft	0-10 cm
Tier	I	I	I	I	I	I	I	II	III	I	II	I	I
Conventional Parameters													
Total Organic Carbon (%)	1.2	1	1.8	0.53	1.2	1.2	1.2	1.1	1.3	1.6	1.2	1.2	0.8
Dioxins/Furans (ng/kg)													
1,2,3,4,6,7,8-HpCDD	120 J	190	450 J	0.38 U	1300	100 J	2100 J	1400	2100	1100	99	930 J	8300
1,2,3,4,6,7,8-HpCDF	16	22 J	56	0.077 U	170 J	12	180	110	160	120 J	17	92	1000 J
1,2,3,4,7,8,9-HpCDF	0.64 J	0.63 U	2.5 J	0.03 U	7.3 J	0.62 U	9.8 J	6.9	9.3	7.7 J	0.78 J	4.3 J	49 J
1,2,3,4,7,8-HxCDD	0.53 U	1.2 U	2.7 J	0.026 U	7.6	0.97 J	23	20	14	6.5	0.94 J	7.2	21
1,2,3,4,7,8-HxCDF	3.2 J	3.3 J	10	0.019 U	46 J	2.1 J	38	21	39	14 J	2.8 J	12	330 J
1,2,3,6,7,8-HxCDD	6.7	12	23	0.084 J	51	5.9	110	63	98	65	4.8	46	340
1,2,3,6,7,8-HxCDF	1.2 J	1.8 U	3.4 J	0.018 U	21 J	1.2 J	16	12	19	9.4 J	1.9 J	8.6	110 J
1,2,3,7,8,9-HxCDD	2.1 J	5.5	6.6	0.076 U	14	2.2 U	84	45	48	19	2.1 J	17	66
1,2,3,7,8,9-HxCDF	0.054 U	0.14 U	0.084 U	0.024 U	0.33 U	0.058 U	0.23 U	1.2 J	1.8 U	7.1	0.15 U	0.12 U	4.9
1,2,3,7,8-PeCDD	0.45 U	0.62 U	0.91 J	0.044 U	1.6 J	0.34 J	14	7.1	6.8	2.7 J	0.42 J	1.7 J	7.2
1,2,3,7,8-PeCDF	1 J	1.7 J	2.2 J	0.034 U	11	0.73 J	9.5 J	6.4	8.6	5.6	1 J	3.9	51
2,3,4,6,7,8-HxCDF	1.7 J	1.3 J	2.5 J	0.018 U	8.3 J	0.7 J	9.2 J	5.7	9.1	5.5 J	1 J	3.5 J	58 J
2,3,4,7,8-PeCDF	1.1 J	1.2 U	3.1 J	0.032 U	12	1.1 J	11 J	5.2	8.3	4.7	1 J	3 J	91
2,3,7,8-TCDD	0.21 J	0.37 J	0.35 J	0.023 U	0.83 J	0.14 U	3.2 J	1.4	2.4	0.69 J	0.2 U	0.46 J	0.53 U
2,3,7,8-TCDF	0.73 J	1.8 J	0.94 J	0.033 U	5 J	1 J	4 J	2.4 J	3.7	3.2 J	1.2 J	2.1 J	14 J
OCDD	1300	1600	4500	2 U	14000	920	20000	11000	14000	9000	1100	9500	73000
OCDF	32	41	88	0.15 U	160	14	250	130 J	180	290	20 J	120	490
Dioxin/Furan TEQ	4.2E+00	6.1E+00	1.4E+01	6.1E-02	4.1E+01	3.5E+00	7.8E+01	4.6E+01	6.2E+01	3.3E+01	3.8E+00	2.6E+01	2.5E+02
Total HpCDDs	240	410	890	1 U	2700	200	4200	3000	4400	2200	230	1800	17000
Total HpCDFs	56	77 U	190	0.077 U	580	37 U	560	350	520	480	50	300	3300
Total HxCDDs	28 U	75 U	90 U	0.6 U	330	33 U	810	500	740	320	33 U	260	1000
Total HxCDFs	40	60 U	130	0.024 U	550	32	440	320	590	340	43 U	210	3400
Total PeCDDs	2.7 U	7.1 U	5.9 U	0.044 U	33 U	2.5 U	160 U	110	180 U	37 U	5.4 U	23 U	28 U
Total PeCDFs	8.8 U	15 U	31 U	0.034 U	170 U	10 U	130 U	91 U	160 U	82 U	14 U	45 U	750 U
Total TCDDs	1.7 U	3.9 U	2.3 U	0.38 U	19 U	1.2 U	77 U	41 U	88 U	26 U	4.5 U	9.8 U	4.6 U
Total TCDFs	2.9 U	5.4 U	5.7 U	0.033 U	54 U	8.8 U	63 U	35	66 U	24 U	12 U	18 U	28 U

Table 4-1 Surface and Subsurface Sediment Results Former PWT Site Ridgefield, Washington

Sample ID	LRIS-LR-122-2	LRIS-LR-122-3	LRIS-LR-124-2	LRIS-LR-124-3	LRIS-LR-124-4	LRIS-LR-125-2	LRIS-LR-125-3	LRIS-LR-126	LRIS-LR-126-2	LRIS-LR-129	LRIS-LR-129-2	LRIS-LR-130	LRIS-LR-130-2
Location ID	LR-122	LR-122	LR-124	LR-124	LR-124	LR-125	LR-125	LR-126	LR-126	LR-129	LR-129	LR-130	LR-130
Sample Date	12/03/2012	12/03/2012	12/03/2012	12/03/2012	12/03/2012	12/02/2012	12/02/2012	12/04/2012	12/02/2012	12/04/2012	12/02/2012	12/04/2012	12/02/2012
Depth	1-2 ft	2-3 ft	1-2 ft	2-3 ft	3-4 ft	1-2 ft	2-3 ft	0-10 cm	1-2 ft	0-10 cm	1-2 ft	0-10 cm	1-2 ft
Tier	I	II	I	II	III	I	II	I	II	I	II	I	I
Conventional Parameters													
Total Organic Carbon (%)	1.2	0.83	0.85	1.7	0.56	0.67	0.24	0.92	0.76	1.3	0.73	0.61	0.37
Dioxins/Furans (ng/kg)													
1,2,3,4,6,7,8-HpCDD	1400 J	47	3300 J	1800	26	7300	63	4300 J	420 J	60 J	57 J	25 J	27 J
1,2,3,4,6,7,8-HpCDF	190	7	490	240	4.1	460 J	10	620	31	8.8	8.2	2.9 U	3.2 J
1,2,3,4,7,8,9-HpCDF	9.9 J	0.38 U	33 J	13	0.057 U	16 J	0.52 U	28 J	2.4 J	0.15 U	0.47 U	0.083 U	0.053 U
1,2,3,4,7,8-HxCDD	6.4	0.1 U	14	5	0.025 U	73	0.38 U	37	4.4	0.52 U	0.61 U	0.19 J	0.3 U
1,2,3,4,7,8-HxCDF	36	2.1 J	160	83	1.2 J	58 J	2.6	110	8.7	1.5 J	1.2 J	0.68 J	0.28 U
1,2,3,6,7,8-HxCDD	58	2.2 J	170	67	1.3 U	230	2.9	260	14	3.2 J	2.9 J	1.2 U	1.4 J
1,2,3,6,7,8-HxCDF	15	0.99 J	53	30	0.65 J	27 J	1.2 J	33	3.3	0.67 J	0.99 J	0.27 J	0.19 J
1,2,3,7,8,9-HxCDD	17	0.52 J	42	16	0.35 U	240	0.98 J	120	12	1.1 U	1.2 U	0.54 J	0.61 J
1,2,3,7,8,9-HxCDF	0.22 U	0.062 U	0.59 U	1 J	0.036 U	2.6 J	0.095 J	1.2 U	0.057 U	0.066 U	0.063 U	0.035 U	0.026 U
1,2,3,7,8-PeCDD	1.4 J	0.051 U	2.9 J	1.5 J	0.065 U	11	0.061 U	11	0.63 J	0.27 J	0.25 U	0.074 U	0.056 U
1,2,3,7,8-PeCDF	6.8 J	0.41 J	25 J	12	0.23 U	12	0.59 J	18 J	1.1 J	0.31 J	0.25 U	0.11 U	0.044 U
2,3,4,6,7,8-HxCDF	6.9 J	0.46 J	23 J	15	0.58 U	18 J	0.55 J	19 J	1.3 U	0.63 U	1.4 J	0.24 J	0.3 J
2,3,4,7,8-PeCDF	6.6 J	0.49 J	41 J	17	0.39 U	11	0.43 J	19 J	1.2 J	0.66 J	0.3 J	0.073 U	0.098 J
2,3,7,8-TCDD	0.081 U	0.023 U	1.1 J	0.51 J	0.079 U	2.5 J	0.33 J	2 J	0.56 J	0.31 U	0.29 U	0.044 U	0.16 U
2,3,7,8-TCDF	2.1 J	0.57 J	12 J	4.4 J	0.39 J	5.6 J	0.26 J	6.3 J	1.1 J	0.65 J	0.66 J	0.24 U	0.32 U
OCDD	15000	560	33000	18000	280	42000	970	37000	3400	540	510	250	270 J
OCDF	180	5.2 J	330	170 J	3.3 J	450	9.8 J	550	42	19	22	13 J	6.8 J
Dioxin/Furan TEQ	3.8E+01	1.6E+00	1.1E+02	5.6E+01	8.6E-01	1.7E+02	2.4E+00	1.4E+02	1.2E+01	2.2E+00	2.0E+00	6.8E-01	8.2E-01
Total HpCDDs	2700	98	6800	3800	61	22000	140	8900	940	110	110	47	49 J
Total HpCDFs	580	21	1500	820	11	1500	35	2100	98	29	28 U	12 U	9.6 J
Total HxCDDs	360	13 U	1000	420	7.6 J	2800	26 U	1600	130	15 U	17 U	6.5 U	7.4 U
Total HxCDFs	450	24 U	1800	890	13 U	1100	35	1600	74 U	20 U	17	6.3	6.1 U
Total PeCDDs	32 U	2.5 U	120 U	58 U	1.2 U	340 U	4.1 U	120	17 U	1.1 U	1.4 U	0.074 U	0.4 U
Total PeCDFs	97 U	7.6 U	570	240 U	6.8 U	240	7.6 U	260	18 U	4.8 U	3.8 U	0.76 J	1.1 U
Total TCDDs	21	1.1 U	60 U	25 U	1.2 U	110	2	36 U	5.5 U	0.8 U	0.57 U	0.38 U	0.39 U
Total TCDFs	36 U	3.7 U	170	69 U	3.8 U	61 U	2.2 U	83 U	12 U	3.2 U	3.4 U	0.83 U	0.66 U

Table 4-1 Surface and Subsurface Sediment Results Former PWT Site Ridgefield, Washington

Sample ID	LRIS-LR-130-FD	LRIS-LR-130-FD-1	LRIS-LR-131	LRIS-LR-131-2	LRIS-LR-132	LRIS-LR-132-2	LRIS-LR-132-5	LRIS-LR-133	LRIS-LR-133-2	LRIS-LR-134	LRIS-LR-134-2	LRIS-LR-137
Location ID	LR-130	LR-130	LR-131	LR-131	LR-132	LR-132	LR-132	LR-133	LR-133	LR-134	LR-134	LR-137
Sample Date	12/02/2012	12/04/2012	12/04/2012	12/02/2012	12/04/2012	12/03/2012	12/03/2012	12/04/2012	12/03/2012	12/04/2012	12/02/2012	12/04/2012
Depth	1-2 ft	0-10 cm	0-10 cm	1-2 ft	0-10 cm	1-2 ft	4-5 ft	0-10 cm	1-2 ft	0-10 cm	1-2 ft	0-10 cm
Tier	I	I	I	I	I	I	IV	I	I	I	I	I
Conventional Parameters												
Total Organic Carbon (%)	0.2	0.75	0.64	1.7	1.5	1.2	0.96	1.4	1.2	1.5	1	0.96
Dioxins/Furans (ng/kg)												
1,2,3,4,6,7,8-HpCDD	72 J	19 J	22 J	52 J	180	31 U	0.83 J	190	31 J	1100	550 J	36 J
1,2,3,4,6,7,8-HpCDF	7.1 J	2.9 J	3.4	5.2	24 J	6.8	0.23 U	27 J	6.3	150 J	79	6
1,2,3,4,7,8,9-HpCDF	0.19 U	0.056 U	0.12 U	0.086 U	1.6 J	0.22 U	0.038 U	1.5 J	0.15 U	8.9 J	3.7 J	0.24 U
1,2,3,4,7,8-HxCDD	0.54 J	0.23 U	0.18 J	0.5 J	0.9 U	0.64 J	0.037 U	1.4 J	0.31 J	4.8	3.5	0.36 J
1,2,3,4,7,8-HxCDF	0.57 U	0.47 J	0.5 J	1.1 J	3.5 J	0.3 U	0.071 U	3.8 J	0.74 J	14 J	8	0.83 J
1,2,3,6,7,8-HxCDD	3.6	1 J	1 U	2.4 J	8.9	1.4 J	0.11 U	8.5	1.6 J	44	32	2 J
1,2,3,6,7,8-HxCDF	0.35 J	0.22 J	0.21 J	0.63 U	1.5 J	0.33 U	0.059 U	1.5 U	0.52 J	6.2 J	5.1	0.35 U
1,2,3,7,8,9-HxCDD	0.96 J	0.42 U	0.55 J	1.1 U	4.4 J	2.1 U	0.092 U	2.7 U	0.85 U	13	9.4	0.88 J
1,2,3,7,8,9-HxCDF	0.091 U	0.025 U	0.05 U	0.038 U	0.19 U	0.11 U	0.061 U	0.17 U	0.062 U	0.23 U	0.097 U	0.057 U
1,2,3,7,8-PeCDD	0.19 U	0.051 U	0.099 U	0.22 U	0.74 J	0.27 U	0.055 U	0.72 J	0.11 U	1.7 J	1.6 J	0.1 U
1,2,3,7,8-PeCDF	0.18 U	0.15 J	0.089 U	0.089 U	0.77 U	0.2 U	0.04 U	1.2 J	0.19 U	2.9 J	2.5 J	0.14 U
2,3,4,6,7,8-HxCDF	0.72 J	0.25 J	0.043 U	0.58 U	0.91 J	0.093 U	0.023 U	0.98 J	0.47 U	4.6 J	3 J	0.48 U
2,3,4,7,8-PeCDF	0.2 U	0.15 J	0.11 U	0.27 U	1.4 J	0.25 U	0.041 U	1.1 U	0.21 U	3.7 J	2.3 J	0.33 J
2,3,7,8-TCDD	0.16 U	0.029 U	0.062 U	0.26 J	0.13 U	1.2 J	0.11 U	0.092 U	0.064 U	0.34 U	0.51 J	0.057 U
2,3,7,8-TCDF	0.12 U	0.3 J	0.059 U	0.61 J	0.19 U	0.48 J	0.13 J	0.82 J	0.56 J	1.6 J	1.8 J	0.47 J
OCDD	660 J	170	200	440	1600	240	6.6	1600	330	9500	5700	350
OCDF	14 J	7.2 J	7.4	9.8	66	11	0.22 U	73	17	710	290	15
Dioxin/Furan TEQ	1.9E+00	6.2E-01	6.2E-01	1.7E+00	5.8E+00	2.1E+00	1.4E-01	5.4E+00	1.0E+00	2.8E+01	1.7E+01	1.2E+00
Total HpCDDs	140 J	41	43	100	350	74 U	1.8 U	360	66	2100	1000	69
Total HpCDFs	24 J	9.1	11	16	87	17	0.37 U	110	23	700	310	18 U
Total HxCDDs	15	6 U	5.5 U	15 U	41 U	18 U	0.77 U	37 U	11 U	180 U	130 U	11 U
Total HxCDFs	15 U	5.1	5.8 U	12 U	54	4.7 U	0.45 U	57 U	9.4 U	270	160	11 U
Total PeCDDs	0.19 U	0.17 J	0.099 U	1.3 U	3.8 U	0.27 U	0.24 U	2.5 U	0.11 U	9.6 U	13 U	0.65 U
Total PeCDFs	1.1 J	1 U	0.93 J	4 U	21 U	0.25 U	0.38 U	12 U	3.4 U	41	34 U	2.1 U
Total TCDDs	0.16 U	0.12 U	0.5 U	0.73 U	2.3 U	1.2	0.82 U	2 U	1.1 U	5.4 U	8.7 U	0.55 J
Total TCDFs	0.12 U	0.99 U	0.059 U	5 U	5.3 U	1.7 U	0.85 U	3.2 U	4.1 U	5.3 U	9.5 U	0.69 U

Table 4-1 Surface and Subsurface Sediment Results Former PWT Site Ridgefield, Washington

TES:
= centimeter(s).
L = cleanup level
feet.
CDD = heptachlorodibenzo-p-dioxin.
CDF = heptachlorodibenzofuran.
CDD = hexachlorodibenzo-p-dioxin.
CDF = hexachlorodibenzofuran.
the reporting limit is an estimate.
/kg = nanograms per kilogram.
DD = octachlorodibenzo-p-dioxin.
DF = octachlorodibenzofuran.
CDD = pentachlorodibenzo-p-dioxin.
CDF = pentachlorodibenzofuran.
DD = tetrachlorodibenzo-p-dioxin.
DF = tetrachlorodibenzofuran.

TEQ = Toxicity equivalent.

U = not detected at or above the method reporting limit.

Sample ID		103			105			109			119			120		1:	26	
Location ID		LRIS-LR-10	03		LRIS-LR-105			LRIS-LR-109			LRIS-LR-119			LRIS-LR-120			LRIS-LR-126	
Sample Date		12/04/20	12		12/04/2012		12/04/2012			12/04/2012			12/04/2012			12/04/2012		
Sample Analysis Depth	1 ft	1.5 ft	2 ft	1 ft	1.5 ft	2 ft	0.5 ft	1 ft	1.5 ft	0.5 ft	1 ft	1.5 ft	0.5 ft	1 ft	1.5 ft	1.5 ft	2 ft	
Physical Parameters																		
Total solids (%)	64.7	nv	nv	67.2	nv	nv	nv	60.4	nv	60.3	nv	nv	62.3	nv	nv	46	nv	
Moisture Content (%)	nv	54	nv	nv	64	nv	nv	53	nv	nv	84	nv	nv	62	nv	nv	61	
Dry Density (pcf)	nv	65	nv	nv	61	nv	nv	65	nv	nv	49	nv	nv	60	nv	nv	69	
Liquid Limit (%)	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	
Plastic Limit (%)	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	
Plasticity Index (%)	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	nv	NP	nv	
Permeability Coefficient (cm/s)	nv	nv	1.5E-06	nv	nv	5.4E-07	nv	nv	1.9E-05	nv	nv	1.9E-06	nv	nv	1.3E-06	nv	nv	
Grain Size (%)																		
Clay	11	nv	nv	10	nv	nv	16	nv	nv	10	nv	nv	15	nv	nv	8	nv	
Gravel	0	nv	nv	0	nv	nv	0	nv	nv	0	nv	nv	0	nv	nv	0	nv	
Sand, Coarse ^a	0	nv	nv	0	nv	nv	0	nv	nv	0	nv	nv	0	nv	nv	4	nv	
Sand, Fine ^a	18	nv	nv	40	nv	nv	6	nv	nv	34	nv	nv	14	nv	nv	17	nv	
Sand, Medium ^a	0	nv	nv	1	nv	nv	0	nv	nv	2	nv	nv	1	nv	nv	6	nv	
Silt	70	nv	nv	48	nv	nv	78	nv	nv	54	nv	nv	70	nv	nv	64	nv	
Total Clay	11	nv	nv	10	nv	nv	16	nv	nv	10	nv	nv	15	nv	nv	8	nv	
Total Fines (silt and clay)	81	nv	nv	58	nv	nv	94	nv	nv	64	nv	nv	85	nv	nv	72	nv	
Total Gravel	0	nv	nv	0	nv	nv	0	nv	nv	0	nv	nv	0	nv	nv	1	nv	
Total Sand	18	nv	nv	41	nv	nv	6	nv	nv	36	nv	nv	15	nv	nv	27	nv	
Total Silt	70	nv	nv	48	nv	nv	78	nv	nv	54	nv	nv	70	nv	nv	64	nv	
Total Grain Size	99	nv	nv	99	nv	nv	100	nv										

NOTES:

% = percent.

cm/s = centimeters per second.

ft = feet.

NP = nonplastic.

nv = no value.

pcf = pounds per cubic foot.

^aValues approximated from grain size charts.

Table 4-3
Remedy Areas and Estimated Post-Remedy Conditions
Former PWT Site
Ridgefield, Washington

Station	Name	Date	Start Depth	End Depth	Depth Unit	Dioxin TEQ ^a	Neatline Dredge Depth (ft) ^b	Estimated post-dredge Concentration (ng/kg) ^c	Estimated post-remedial Concentration (ng/kg) ^d	
LRIS-LR-01	LRIS-LR-01-SS	04/19/2010	0	10	cm	37	1	6.4	3.4	
LKI3-LK-UT	LRIS-LR-01-SB-1-2	04/26/2010	1	2	ft	6.4	I	0.4	5.4	
LRIS-LR-02	LRIS-LR-02-SS	04/19/2010	0	10	cm	3.3	-	3.3	3.3	
LRIS-LR-103	LRIS-LR-103	12/04/2012	0	10	cm	4.2	ENR ^e	4.2	2.3	
LKI3-LK-103	LRIS-LR-103-2	12/03/2012	1	2	ft	6.1	EINK	4.2	2.3	
LRIS-LR-04	LRIS-LR-04-SS	04/19/2010	0	10	cm	1.6	-	1.6	1.6	
LRIS-LR-05	LRIS-LR-05-SS	04/19/2010	0	10	cm	30	ENR	30	15	
LRI3-LR-U3	LRIS-LR-05-SB-1-2	04/27/2010	1	2	ft	17	LIVIN	30	10	
LRIS-LR-106	LRIS-LR-106	12/04/2012	0	10	cm	14	ENR	14	7.2	
LKI3-LK-100	LRIS-LR-106-2	12/02/2012	1	2	ft	0.06	EINK	14		
LRIS-LR-07	LRIS-LR-07-SS	04/19/2010	0	10	cm	1.4	-	1.4	1.4	
	LRIS-LR-08-SS	04/19/2010	0	10	cm	220				
LRIS-LR-08	LRIS-LR-08-SB-1-2	04/28/2010	1	2	ft	910	3	6.9	3.6	
LNI3-LN-00	LRIS-LR-108-3	12/03/2012	2	3	ft	41	3	0.9	3.0	
	LRIS-LR-08-SB-3-4	04/28/2010	3	4	ft	6.9				
	LRIS-LR-09-SS	04/19/2010	0	10	cm	580				
LRIS-LR-09	LRIS-LR-09-SB-1-2	04/29/2010	1	2	ft	1.5	1	3.5	1.9	
LRIS-LR-U9	LRIS-LR-109-3	12/02/2012	2	3	ft	3.5	ı	3.5	1.7	
	LRIS-LR-09-SB-4-5	04/29/2010	4	5	ft	3.1				
	LRIS-LR-10-SS	04/19/2010	0	10	cm	57				
	LRIS-LR-10-SB-1-2	04/28/2010	1	2	ft	79				
LRIS-LR-10	LRIS-LR-110-3	12/03/2012	2	3	ft	78	3 ^f	46	23	
	LRIS-LR-110-4	12/03/2012	3	4	ft	46				
	LRIS-LR-110-5	12/03/2012	4	5	ft	62				
LRIS-LR-11	LRIS-LR-11-SS	04/20/2010	0	10	cm	2.5	-	2.5	2.5	

Table 4-3
Remedy Areas and Estimated Post-Remedy Conditions
Former PWT Site
Ridgefield, Washington

Station	Name	Date	Start Depth	End Depth	Depth Unit	Dioxin TEQ ^a	Neatline Dredge Depth (ft) ^b	Estimated post-dredge Concentration (ng/kg) ^c	Estimated post-remedial Concentration (ng/kg) ^d	
LRIS-LR-12	LRIS-LR-12-SS	04/20/2010	0	10	cm	61	1	9.7	5.0	
LRIS-LR-12	LRIS-LR-12-SB-1-2	04/28/2010	1	2	ft	9.7	1	9.1	5.0	
LRIS-LR-13	LRIS-LR-13-SS	04/20/2010	0	10	cm	16	ENR	16	8.2	
LRIS-LR-14	LRIS-LR-14-SS	04/20/2010	0	10	cm	13	ENR	13	6.7	
LRIS-LR-15	LRIS-LR-15-SS	04/20/2010	0	10	cm	1.2	-	1.2	1.2	
LRIS-LR-16 ^g	LRIS-LR-16-SS	04/20/2010	0	10	cm	14	-	-	-	
LRIS-LR-17 ^g	LRIS-LR-17-SS	04/20/2010	0	10	cm	4.3	-	•	-	
LRIS-LR-18	LRIS-LR-18-SS	04/20/2010	0	10	cm	1.7	-	1.7	1.7	
	LRIS-LR-19-SS	04/21/2010	0	10	cm	110				
LRIS-LR-19	LRIS-LR-119-2	12/03/2012	1	2	ft	33	2	3.8	2.1	
	LRIS-LR-119-3	12/03/2012	2	3	ft	3.8				
LRIS-LR-20	LRIS-LR-20-SS	04/21/2010	0	10	cm	260	1	26	13	
LNI3-LN-20	LRIS-LR-120-2	12/03/2012	1	2	ft	26	ı	20	13	
LRIS-LR-21	LRIS-LR-21-SS	04/21/2010	0	10	cm	0.51	-	0.51	0.51	
	LRIS-LR-122	12/04/2012	0	10	cm	250				
LRIS-LR-122	LRIS-LR-122-2	12/03/2012	1	2	ft	38	2	1.6	0.98	
	LRIS-LR-122-3	12/03/2012	2	3	ft	1.6				
LRIS-LR-23	LRIS-LR-23-SS	04/21/2010	0	10	cm	0.59	-	0.59	0.59	
	LRIS-LR-24-SS	04/21/2010	0	10	cm	170				
LRIS-LR-24	LRIS-LR-124-2	12/03/2012	1	2	ft	110	3	0.86	0.61	
LINIO-LIN-24	LRIS-LR-124-3	12/03/2012	2	3	ft	56	3	0.00	0.01	
	LRIS-LR-124-4	12/03/2012	3	4	ft	0.86				
	LRIS-LR-25-SS	04/21/2010	0	10	cm	260				
LRIS-LR-25	LRIS-LR-125-2	12/02/2012	1	2	ft	170	2	2.4	1.4	
	LRIS-LR-125-3	12/02/2012	2	3	ft	2.4				

Table 4-3
Remedy Areas and Estimated Post-Remedy Conditions
Former PWT Site
Ridgefield, Washington

Station	Name	Date	Start Depth	End Depth	Depth Unit	Dioxin TEQ ^a	Neatline Dredge Depth (ft) ^b	Estimated post-dredge Concentration (ng/kg) ^c	Estimated post-remedial Concentration (ng/kg) ^d
LRIS-LR-126	LRIS-LR-126	12/04/2012	0	10	cm	140	1	12	6.2
	LRIS-LR-126-2	12/02/2012	1	2	ft	12			
LRIS-LR-27	LRIS-LR-27-SS	04/21/2010	0	10	cm	0.93	-	0.93	0.93
LRIS-LR-28	LRIS-LR-28-SS	04/21/2010	0	10	cm	0.84	-	0.84	0.84
LRIS-LR-129	LRIS-LR-129	12/04/2012	0	10	cm	2.2	-	2.2	2.2
	LRIS-LR-129-2	12/02/2012	1	2	ft	2.0			
LRIS-LR-130	LRIS-LR-130	12/04/2012	0	10	cm	0.68	-	0.68	0.68
	LRIS-LR-130-2	12/02/2012	1	2	ft	0.82			
	LRIS-LR-130-FD-1	12/04/2012	0	10	cm	0.62			
	LRIS-LR-130-FD	12/02/2012	1	2	ft	1.9			
LRIS-LR-131	LRIS-LR-131	12/04/2012	0	10	cm	0.62	-	0.62	0.62
	LRIS-LR-131-2	12/02/2012	1	2	ft	1.7			
LRIS-LR-132	LRIS-LR-132	12/04/2012	0	10	cm	5.8	ENR	5.8	3.1
	LRIS-LR-132-2	12/03/2012	1	2	ft	2.1			
	LRIS-LR-132-5	12/03/2012	4	5	ft	0.14			
LRIS-LR-133	LRIS-LR-133	12/04/2012	0	10	cm	5.4	ENR	5.4	2.9
	LRIS-LR-133-2	12/03/2012	1	2	ft	1.0			
LRIS-LR-134	LRIS-LR-134	12/04/2012	0	10	cm	28	ENR	28	14
	LRIS-LR-134-2	12/02/2012	1	2	ft	17			
LRIS-LR-137	LRIS-LR-137	12/04/2012	0	10	cm	1.2	-	1.2	1.2

Table 4-3 Remedy Areas and Estimated Post-Remedy Conditions Former PWT Site Ridgefield, Washington

NOTES:

- = no action.

ENR = enhanced natural recovery.

cm = centimeters.

ft = feet.

ng/kg = nanograms per kilogram.

TEQ = toxicity equivalent.

^a**Bold** values exceed the cleanup level.

^bDredge depths for surrounding areas are shown on Figure 4-3.

^cValues indicate the post-dredge leave surface concentration used for estimating post-remedy surface concentration; the concentration of sediment below the presumed neatline dredge cut was applied.

^dIn estimating post-remedy concentration, ENR layer is assumed to contain 0.365 dioxin TEQ and to mix fully with remaining surface layer (MFA, 2012b).

^eAlthough below 5 ng/kg, this area was identified for ENR treatment (see Figure 4-3).

^f2 feet of ENR will be placed at this location (see main text for details).

^gAreas not within site boundary (MFA, 2012b); not included in evaluations.

FIGURES

Source: Topographic Quadrangle obtained from ArcGIS Online Services/NGS-USGS TOPO/US Geological Survey (1999) 7.5-minute topographic quadrangle: Ridgefield Address: Lake River Industrial Site 111 W. Division Street, Ridgefield, WA 98642 Section: 24 Township: 4N Range: 1W Of Willamette Meridian

Legend

Figure 1-1 Site Location

Former PWT Site Ridgefield, Washington

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Bv: rmaronn

piect: 9003.01.40/06

Source: Aerial photograph obtained from ESRI, Inc. ArcGIS Online/Bing Maps

Legend

- Private Outfall
- City of Ridgefield Outfall
- Historical Outfall

Surface Sediment Sample

- Chemical Only
- Physical Only

Chemical and Physical

Figure 3-1 2012 Sediment **Sample Locations**

Former PWT Site Ridgefield, Washington

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Notes:

1. **Bold** value exceeds cleanup level.

2. TEQ = Toxicity Equivalent.

3. ng/kg = nanograms per kilogram.

4. Sample stations with data associated with remedial investigation and predesign activities are designated here with predesign station nomenclature (e.g., LRIS-LR-119 was called LRIS-LR-19 for historical sampling)

sampling).

5. Values with * are data generated during remedial investigation activities.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Legend

Surface Sediment Sample Dioxin TEQ (ng/kg)

Private Outfall

City of Ridgefield Outfall

Historical Outfall

TEQ in Sediment

Former PWT Site Ridgefield, Washington

3 to 4 feet bgs

Source: Aerial photograph obtained from ESRI, Inc. ArcGIS Online/Bing Maps

Notes:

1. ENR = Enhanced Natural Recovery.
2. IDW = Inverse Distance Weighted.
3. TEQ = Toxicity Equivalent,
4. ng/kg = nanograms per kilogram.
5. bgs = below ground surface.
6. Surface Dioxin TEQ west of sample points was extrapolated to an assumed constant of 2.0 ng/kg.
7. Analysis extent has been clipped to the upshore extent of dredge feasibility plus 20 feet bankward. Dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth. ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope.
8. Sample concentrations were log-normalized prior to conducting interpolation because of a positively skewed histogram indicating the presence of a few very large concentrations.
9. IDW parameters: Power=1, 200-ft x 100-ft elliptical search neighborhood at 155°, minimum samples=1, smoothing factor=0.5.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Legend

▲ Surface Sediment Sample

Historical Outfall

Dioxin TEQ (ng/kg)

Figure 4-2 **DISTRIBUTION OF SURFACE** AND SUB-SURFACE DIOXIN using IDW Interpolation

Former PWT Site Ridgefield, Washington

Feet

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Notes:

1. ENR = Enhanced Natural Recovery.
2. IDW = Inverse Distance Weighted.
3. TEQ = Toxicity Equivalent.
4. ng/kg = nanograms per kilogram.
5. Post-remedy concentrations were log-normalized prior to conducting interpolation to maintain consistent methodology with the interpolation of the prenendy surface which presented a positively skewed histogram.
6. Analysis extent has been clipped to the upshore extent of dredge feasibility plus 20 feet bankward. Dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth. ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope.
7. IDW parameters: Power=1, 200-ft x 100-ft elliptical search neighborhood at 155°, minimum samples=1, smoothing factor=0.5.

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Legend

Surface Sediment Sample

Historical Outfall

Surface Dioxin TEQ (ng/kg)

Figure 4-4 Post-Remedy Distribution of Dioxin in Sediment

Former PWT Site Ridgefield, Washington

APPENDIX A SURFACE SEDIMENT PHOTOGRAPHS

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

Date

December 4, 2012

Description LRIS-LR-126

Photo No. 2

<u>Date</u>

December 4, 2012

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

<u>Date</u> December 4, 2012

Description LRIS-LR-129

Photo No.

<u>Date</u> December 4, 2012

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 5

<u>Date</u> December 4, 2012

Description LRIS-LR-136

Photo No.

<u>Date</u> December 4, 2012

LRIS-LR-13/ 17-4-12

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 7

<u>Date</u> December 4, 2012

Description LRIS-LR-122

Photo No. 8

<u>Date</u> December 4, 2012

Description LRIS-LR-106

LR15-LR-106 12-4-12

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

<u>Date</u> December 4, 2012

Description LRIS-LR-103

Photo No. 10

<u>Date</u> December 4, 2012

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 11

Date

December 4, 2012

Description LRIS-LR-133

<u>Photo No.</u> 12

Date

December 4, 2012

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 13

<u>Date</u>

December 4, 2012

APPENDIX B SEDIMENT CORE PHOTOGRAPHS

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

Date

December 2, 2012

Description LRIS-LR-134

Interval 0-2 feet bml

Photo No.

<u>Date</u>

December 2, 2012

<u>Description</u> LRIS-LR-134

Interval

1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

Date

December 2, 2012

Description LRIS-LR-134

Interval 2-4 feet bml

Photo No.

Date

December 2, 2012

Description LRIS-LR-134

Interval 3-5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

Date

December 2, 2012

Description LRIS-LR-137

Interval 0-2 feet bml

Photo No.

Date

December 2, 2012

Description LRIS-LR-137

Interval

1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

<u>Date</u> December 2, 2012

Description LRIS-LR-137

Interval
3-4 feet bml

Photo No. 8

<u>Date</u> December 2, 2012

Description LRIS-LR-137

Interval 4-6.2 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

Date

December 2, 2012

Description LRIS-LR-126

Interval 0-2 feet bml

Photo No. 10

Date

December 2, 2012

Description LRIS-LR-126

Interval

1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 11

Date

December 2, 2012

Description LRIS-LR-126

Interval
3-4 feet bml

<u>Photo No.</u> 12

Date

December 2, 2012

Description LRIS-LR-126

Interval

4-5.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 13

Date

December 2, 2012

Description LRIS-LR-125

Interval 0-2 feet bml

<u>Photo No.</u> 14

Date

December 2, 2012

Description LRIS-LR-125

Interval

1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 15

Date

December 2, 2012

Description LRIS-LR-125

Interval 3-4.2 feet bml

Photo No.

16

Date

December 2, 2012

Description

LRIS-LR-129

Interval

0-2 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 17

<u>Date</u> December 2, 2012

Description LRIS-LR-129

Interval 1-3 feet bml

<u>Photo No.</u> 18

<u>Date</u> December 2, 2012

Description LRIS-LR-129

Interval 3-5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 19

Date

December 2, 2012

Description LRIS-LR-130

Interval 0-2 feet bml

Photo No. 20

Date

December 2, 2012

Description LRIS-LR-130

Interval

1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

21

Date

December 2, 2012

Description LRIS-LR-130

Interval

3-4 feet bml

Photo No.

22

Date

December 2, 2012

 $\underline{Description}$

LRIS-LR-130

Interval

4-6.3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 23

Date

December 2, 2012

Description LRIS-LR-109

Interval 0-2 feet bml

Photo No. 24

Date

December 2, 2012

Description LRIS-LR-109

Interval 1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

25

Date

December 2, 2012

Description

LRIS-LR-109

Interval

3-5 feet bml

Photo No.

26

Date

December 2, 2012

<u>Description</u>

LRIS-LR-109

Interval

4-6.3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 27

<u>Date</u>

December 2, 2012

Description LRIS-LR-131

Interval 0-2 feet bml

Photo No. 28

<u>Date</u> December 2, 2012

Description LRIS-LR-131

Interval
1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 29

Date

December 2, 2012

Description LRIS-LR-131

Interval
2-4 feet bml

<u>Photo No.</u> 30

Date

December 2, 2012

Description LRIS-LR-136

Interval 0-2 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 31

Date

December 2, 2012

Description LRIS-LR-136

Interval 1-3 feet bml

Photo No. 32

Date

December 2, 2012

Description LRIS-LR-136

Interval 3-5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 33

Date

December 2, 2012

Description LRIS-LR-136

Interval 4-5.7 feet bml

Photo No. 34

<u>Date</u>

December 2, 2012

Description LRIS-LR-106

Interval 0-2 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

35

Date

December 2, 2012

Description LRIS-LR-106

Interval
1-3 feet bml

Photo No.

36

Date

December 2, 2012

Description

LRIS-LR-106

Interval

3-5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 37

Date

December 2, 2012

Description LRIS-LR-106

Interval 4-6.5 feet bml

<u>Photo No.</u> 38

Date

December 3, 2012

Description LRIS-LR-124

Interval 0-2 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 39

<u>Date</u>

December 3, 2012

Description LRIS-LR-124

Interval
1-3 feet bml

<u>Photo No.</u> 40

<u>Date</u>

December 3, 2012

Description LRIS-LR-124

Interval
3-4.7 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 41

<u>Date</u> December 3, 2012

Description LRIS-LR-110

Interval 0-2 feet bml

Photo No. 42

<u>Date</u> December 3, 2012

Description LRIS-LR-110

Interval 1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 43

<u>Date</u> December 3, 2012

Description LRIS-LR-110

Interval
3-4.5 feet bml

<u>Photo No.</u> 44

Date

December 3, 2012

Description LRIS-LR-110

Interval

4.5-6.6 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 45

Date

December 3, 2012

Description LRIS-LR-108

Interval 0-2 feet bml

<u>Photo No.</u> 46

Date

December 3, 2012

Description LRIS-LR-108

Interval

1.5-3.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 47

Date

December 3, 2012

Description LRIS-LR-108

Interval
3-5 feet bml

<u>Photo No.</u> 48

Date

December 3, 2012

<u>Description</u> LRIS-LR-108

Interval 5-6.2 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 49

<u>Date</u>

December 3, 2012

Description LRIS-LR-122

Interval 0-2 feet bml

Photo No. 50

<u>Date</u> December 3, 2012

Description LRIS-LR-122

Interval 1.5-3.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

51

Date

December 3, 2012

<u>Description</u>

LRIS-LR-122

Interval

3.5-5.5 feet bml

Photo No.

52

Date

December 3, 2012

Description

LRIS-LR-122

Interval

5.5-6.05 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 53

Date

December 3, 2012

Description LRIS-LR-120

Interval 0-2 feet bml

Photo No. 54

Date

December 3, 2012

Description LRIS-LR-120

Interval

1-3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 55

Date

December 3, 2012

Description LRIS-LR-120

Interval
3-4.5 feet bml

<u>Photo No.</u> 56

Date

December 3, 2012

Description LRIS-LR-120

Interval

4-5.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 57

<u>Date</u> December 3, 2012

Description LRIS-LR-103

Interval 0-2 feet bml

<u>Photo No.</u> 58

<u>Date</u> December 3, 2012

Description LRIS-LR-103

Interval 1-3.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 59

5)

<u>Date</u>

December 3, 2012

Description LRIS-LR-103

Interval
3.5-5 feet bml

<u>Photo No.</u> 60

Date

December 3, 2012

Description LRIS-LR-103

Interval

5-6.3 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 61

<u>Date</u> December 3, 2012

Description LRIS-LR-119

Interval 0-2 feet bml

Photo No. 62

<u>Date</u> December 3, 2012

Description LRIS-LR-119

Interval
1.5-3.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 63

Date

December 3, 2012

Description LRIS-LR-119

Interval
3.5-5.7 feet bml

<u>Photo No.</u> 64

<u>Date</u> December 3, 2012

Description LRIS-LR-133

Interval 0-2 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 65

<u>Date</u> December 3, 2012

Description LRIS-LR-133

Interval
1.5-3.5 feet bml

Photo No.

<u>Date</u> December 3, 2012

Description LRIS-LR-133

Interval 3.5-5.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 67

<u>Date</u> December 3, 2012

Description LRIS-LR-135

Interval 0-2 feet bml

Photo No. 68

<u>Date</u> December 3, 2012

Description LRIS-LR-135

Interval
1.5-3.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No. 69

<u>Date</u> December 3, 2012

Description LRIS-LR-135

Interval
3-5.5 feet bml

Photo No. 70

<u>Date</u>

December 3, 2012

Description LRIS-LR-135

Interval 4.5-6.1 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

Photo No.

71

Date

December 3, 2012

Description

LRIS-LR-132; mislabeled as LR-135 in field

Interval

0-2 feet bml

<u>Photo No.</u> 72

' -

Date

December 3, 2012

Description

LRIS-LR-132; mislabeled as LR-135 in field

Interval

1-3.5 feet bml

Project Name: Port of Ridgefield Predesign

Sampling

Project Number: 9003.01.40

<u>Photo No.</u> 73

Date

December 3, 2012

Description

LRIS-LR-132; mislabeled as LR-135 in field

Interval

3-5 feet bml

<u>Photo No.</u> 74

Date

December 3, 2012

Description

LRIS-LR-132; mislabeled as LR-135 in field

Interval

4.5-5.8 feet bml

APPENDIX C BORING LOGS

			G	eologic	Borehole Log/Well Con	struction
Mau	I Foster &	Alongi, Inc.			Well Number	Sheet 1 of 1
	•		9003.01.40		LRIS-LR-103	1 01 1
, -	ect Name	Port of Ridgefic	eld		TOC Elevation (fee	•
	ect Location	Ridgefield, WA			Surface Elevation	
1	t/End Date	12/3/2012 to 12			Northing	-84190.7
1	er/Equipment	-	ng Systems/Vibracore		Easting	1226042.9
Geo	logist/Engineer	Michael R. Mur	ray		Hole Depth	6.2-feet
Sam	ple Method	Vibracore			Outer Hole Diam	3.75-inch
(S)	Well	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sample Data	l o	Soil Descriptio	$oldsymbol{\eta}_{+}$
r, BG	Details	ctio	per s/6'	logi nn	•	
Depth (feet, BGS)		Interval Percent Recovery Collection Method	Name (Type) Name (Type) Name	Lithologic Column		
O.F.		E 00 05		70		
=	KV//XV//A			ПППППП	0.0 to 1.3 feet: SILT WITH SAND (ML); gray; wet; loose.
Ē					,	
_ 1						· ·
Ē .				+	1.3 to 6.2 feet: SILT (ML); gray; moist	
Ē 2		CB	LRIS-LR-103-2		@ 4.4 and 4.6 feet: sand lenses.	, 50,,,,
F -						<u> </u>
Ę		CB	LRIS-LR-103-3			•
_ 3		l CB	LN13-LN-103-3			<u> </u>
Ē						<u> </u>
E,		CB	LRIS-LR-103-4			
F 7						_
Ē.	(X())X()	CE	LRIS-LR-103-5			-
5			LN13-LK-103-3			
Ē	(XXI)XXI					•
E						
F	(XX//XX/)					<u>-</u>

			Geolo	gic E	Borehole Log/Well Const	ruction
Maul Foster & A	Alongi, Inc.	Project N 9003.0		Well Number LRIS-LR-106	Sheet 1 of 1	
Project Location Start/End Date Driller/Equipment Geologist/Engineer	Port of Ridgefie Ridgefield, WA 12/2/2012 to 12/ Marine Samplin Michael R. Muri Vibracore	/2/2012 ng Systems/Vibracor	re		TOC Elevation (feet) Surface Elevation (feet) Northing -7 Easting 12 Hole Depth 6. Outer Hole Diam 3.	
Well Details Well Details	Interval Percent Recovery Collection Method	Sample Data	Blows/6" Lithologic	Column	Soil Description	
2 2 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	CB CB CB	LRIS-LR-106-4	3		0.0 to 0.6 feet: SILT WITH SAND (ML); g 0.6 to 6.3 feet: SILT (ML); gray; stiff; mo @ 3.4 feet: sand lens; gray; loose;	ist.

Total recovery = 6.3 feet.

						G	eologic	Borehole Log/Well Cons	struction
Mau	l Foster &	Alongi, I	nc.					Well Number	Sheet
					9003.	01.40		LRIS-LR-108	1 of 1
Proje Stan Drille	ect Name ect Location t/End Date er/Equipment logist/Engineer	d 2/2012 1 Syst	ems/Vibraco	ore		TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth	•		
Sam	ple Method	Vibracore						Outer Hole Diam	3.75-inch
Depth (feet, BGS)	Well Details	Interval Percent Recovery	Collection Method So	Ample Number	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description	1
	N///XV///A							0.0 to 0.5 feet: SANDY SILT (MLS); gr	av: loose: wet
_ 1								0.5 to 3.5 feet: SILT WITH SAND (ML) @ 2.0 feet: wood debris.	• • • • • • • • • • • • • • • • • • • •
_ 2			CB	L	RIS-LR-108	2			
_ 3			CB		RIS-LR-108				
- ⁴			CB		RIS-LR-108			3.5 to 4.9 feet: WOODY DEBRIS; with	sandy silt (ML).
5 6			CB	. L	RIS-LR-108	-5		4.9 to 6.0 feet: SANDY SILT (MLS); gr	ay; moist; stiff.

Total recovery = 6.0 feet.

				Geologic	Borehole Log/Well Construction		
Mau	l Foster & .	Alongi, Inc			Well Number	Sheet	
			9003.01.	40	LRIS-LR-109	1 of 1	
Proje	ect Name	Port of Ridgefi	eld		TOC Elevation (fee	<i>t</i>)	
Proje	ect Location	Ridgefield, WA			Surface Elevation (•	
Star	t/End Date	12/2/2012 to 12			Northing	-59259.1	
1	er/Equipment	•	ng Systems/Vibracore		Easting	1210603.2	
1	logist/Engineer	Michael R. Mur	ray		Hole Depth	6.0-feet	
Sam	ple Method	Vibracore			Outer Hole Diam	3.75-inch	
(§)	Well	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sample Data		Soil Description	·	
ا ' 186	Details	ctio	[je 2	"5/6" "10gij			
Depth (feet, BGS)		Interval Percent Recovery Collection	Name (Type)	Blows/6" Lithologic Column			
O#		F UK 05		OL B	-		
E	K//XX//A				0 to 1.3 feet: SILT WITH SAND (ML);	gray; loose; wet.	
Ē							
<u> 1</u>		•					
<u>E</u>				HHHHH	1.3 to 4.7 feet: SILT (ML); gray, stiff, m	noist.	
2		CE	B LRIS-LR-109 2		(A.), 3 3, ,		
F							
Ē,		CE	LRIS-LR-109-3			1	
3							
Ė		CE	LRIS-LR-109-4				
<u> 4</u>			LKI3-LK-109-4			_	
E							
E 5		CE	B LRIS-LR-109-5	H:H:H:H:H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H	4.7 to 6.0 feet: SAND (SW); gray; coar	rse: stiff: moist.	
Ē,				0. 0. 0	@ 4.8 feet: debris layer including	broken bottle identified as	
È.				0 0	post-1930's.	<u>-</u>	
<u>E</u> 6	X//XX//A						

Total recovery = 6.0 feet.

				Geologic	Borehole Log/Well Const	ruction
Maul	Foster &	Alongi, Ind	Project Nu 9003.01		Well Number LRIS-LR-110	Sheet 1 of 1
Proje Start Drille Geole	oct Name oct Location /End Date r/Equipment ogist/Engineer ple Method	Port of Ridge Ridgefield, W. 12/3/2012 to 1 Marine Sampl Michael R. Mu Vibracore	field A 2/3/2012 ling Systems/Vibracore		TOC Elevation (feet) Surface Elevation (fe Northing Easting Hole Depth Outer Hole Diam	
Depth (feet, BGS)	Well Details	Interval Percent Recovery Collection	Sample Data Sample Data Name (Type)	Blows/6" Lithologic Column	Soil Description	
1 2		0	:в LRIS-LR-110-2		0.0 to 2.2 feet: SILT (ML); gray; loose; w	/et.
_ 3			EB		2.2 to 6.3 feet: SILT WITH SAND (ML); @ 6.0 to 6.3 feet: woody debris.	gray; stiff; moist.
- 4 _ 5			EB LRIS-LR-110-5			
- 6						

Total recovery = 6.3 feet.

	·	Ge	eologic	Borehole Log/Well Cons	struction
Maul Foster &	Alongi, Inc.	Project Numbe 9003.01.40	er	Well Number LRIS-LR-119	Sheet 1 of 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method	Port of Ridgefield Ridgefield, WA 12/3/2012 to 12/3/2 Marine Sampling Michael R. Murray Vibracore	2012 Systems/Vibracore		TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth Outer Hole Diam	′
Depth (feet, BGS) Well Details	Interval Percent Recovery Collection Method SS	mple Data Name (Type) Blows/some	Lithologic Column	Soil Description	
2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CB CB CB	LRIS-LR-119-3 LRIS-LR-119-4 LRIS-LR-119-5		0.0 to 1.0 feet: SAND WITH SILT (SW 1.0 to 1.4 feet: WOODY DEBRIS; loos 1.4 to 5.7 feet: SILT WITH SAND (ML, @ 2.3 and 3.4 feet: wood debris.	e; wet; with gray sand.

Total recovery = 5.7 feet.

		G	eologic	Borehole Log/Well Const	ruction
Maul Foster 8	Alongi, Inc.	Project Number	er .	Well Number	Sheet
	_	9003.01.40		LRIS-LR-120	1 of 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method		9/2012 g Systems/Vibracore		TOC Elevation (feet) Surface Elevation (fee Northing Easting Hole Depth Outer Hole Diam	et) -90375.6 1232104.8 5.6-feet 3.75-inch
Well Details (teet, BGS) Details	Interval Percent Recovery Collection Method &	ample Data John Name (Type) Name (Type)	Lithologic Column	Soil Description	
1				0.0 to 1.0 feet: SILT (ML); gray; wet; loos	
2	СВ	LRIS-LR-120-2		1.0 to 5.2 feet: SILT (ML); gray; moist; si @ 3.6 to 4.1 feet: SAND (SP) lense	tiff. es.
. 3	СВ	LRIS-LR-120-3			
4	СВ	LRIS-LR-120-4			
5	СВ	LRIS-LR-120-5		5.2 to 5.6 feet: WOODY DEBRIS; loose; \ (MLS).	wet; with gray SANDY SILT

						Ge	eologic	Borehole Log/Well Cons	struction
Mau	Foster &	Alongi, l	nc.		Project i		er	Well Number	Sheet 1 of 1
					9003.	01.40		LRIS-LR-122	1 01 1
Proje	ect Name	Port of Rid	lgefiel	d				TOC Elevation (fee	t)
Proje	ect Location	Ridgefield	, WA		*			Surface Elevation (feet)
Start	/End Date	12/3/2012	to 12/3	/2012				Northing	-63584.3
Drille	er/Equipment	Marine Sai	mpling	Syste	ems/Vibraco	ore		Easting	1219456.3
Geo	logist/Engineer	Michael R.	Murra	y .				Hole Depth	6.0-feet
	ple Method	Vibracore						Outer Hole Diam	3.75-inch
S	Well		_s Sa	ample i	Data		-	Soil Description	1
Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method C			9/8	Lithologic Column		
et,		Interval Percent Recove	ollec	Number	Name (Type)	3/swol8	loth		
Q #)		2 2 2	υŞ	Ž		B	70		
	X///XX///A					T		0.0 to 2.8 feet: SILT WITH SAND (ML,); grav; loose; wet.
E								@ 2.1 and 2.7 feet: wood debris.	,, 9,, , ,
E 1									
Ē									
Ē 2			CB	L	RIS-LR-122	2			
E '									
E			СВ	,	RIS-LR-122	,			= = = = = = = = = = = = = = = = = = = =
3			CB	_	NI3-LN-122	٦	1.1.1.1.1.1.1.1.1.1	2.8 to 3.2 feet: SAND (SW); gray; stiff,	moist; with wood debris.
E							FFFF	3.2 to 3.9 feet: SANDY SILT (MLS); gi	
E 4			CB	L	RIS-LR-122	4		debris.	Ĭ
F 7							1777	3.9 to 4.4 feet: WOODY DEBRIS with	SANDY SILT (ML); gray; loose;
E			СВ	,	RIS-LR-122	5	ללללל	wet.	
5				-		ا ا		4.4 to 5.5 feet: SILT WITH SAND (ML)); gray; rnoist; stiπ.
E							ЩЩЩЩ		
Ē 6							Miller St.	5.5 to 6.0 feet: WOODY DEBRIS with	SANDY SILT (ML); gray; wet.

Total recovery = 6.0 feet.

		<u> </u>		Ge	ologic	Borehole Log/Well Constr	uction
Maul	I Foster &	Alongi, Inc.	Project Nu	mber		Well Number	Sheet
		<u> </u>	9003.01	.40		LRIS-LR-124	1 of 1
Proje	ect Name	Port of Ridgefie	ld			TOC Elevation (feet)	
Proje	ect Location	Ridgefield, WA			•	Surface Elevation (fee	*)
Start	t/End Date	12/3/2012 to 12/	3/2012			Northing	-49231.0
Drille	er/Equipment	Marine Sampling	g Systems/Vibracore	•		Easting	1213704.1
Geol	logist/Engineer	ay			Hole Depth	4.7-feet	
Sam	ple Method	Vibracore				Outer Hole Diam	3.75-inch
S	Well	, ₅ S	ample Data			Soil Description	
Depth (feet, BGS)	Details	Interval Percent Recovery Collection	Name (Type)	Blows/6"	Lithologic Column		
- _ 1						0.0 to 1.7 feet: SILT WITH SAND (ML); gr	ay; loose; wet; wood debris. -
_ 2		CB	LRIS-LR-124-2 LRIS-LR-124-3			1.7 to 3.1 feet: SILT (ML); gray; wet; loose	e; trace wood debris.
_ 3 . 4		СВ	LRIS-LR-124-4			3.1 to 4.7 feet: SILT (ML); gray; moist; stil	f; trace wood debris.
- -		СВ	LRIS-LR-124-5				

Total recovery = 4.7 feet.

					-	Ge	eologic	Borehole Log/Well Cons	struction
Mau	l Foster & .	Alongi, l	nc.	Project Number				Well Number	Sheet
					9003.	01.40		LRIS-LR-125	1 of 1
Proje Stan Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer aple Method		2/2012 y Syste	ems/Vibraco	ore		TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth Outer Hole Diam	•	
Depth (feet, BGS)	i i			ample I	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description	ו
_ 1			СВ		RIS-LR-125	2		0.0 to 1.7 feet: SILTY SAND (SM); gra	y; loose; wet.
_ 2 _ 3			СВ		RIS-LR-125			1.7 to 2.7 feet: SAND (SP); gray; stiff; 2.7 to 4.2 feet: SANDY SILT (MLS); gr	
_ 4			СВ	L	RIS-LR-125	4		@ 3.2 feet: trace organic debirs.	

Total recovery = 4.2 feet.

						G	eologic	Borehole Log/Well Con	struction	
Maul	Foster &	Alongi, lı	nc. 🏻		Project I			Well Number	Sheet	
					9003.0	LRIS-LR-126	1 of 1			
Projec Start/i Driller Geolo	ct Name ct Location (End Date r/Equipment ogist/Engineer ole Method	gefield WA o 12/2/ opling Murra	/2012 I Systems/Vibracore IY				TOC Elevation (fe Surface Elevation Northing Easting Hole Depth Outer Hole Diam	-		
Depth (feet, BGS)	Mell Details Interval Recovery Collection Method Co.				Data Name (Type)	Blows/6"	Lithologic Column	Soil Description		
_ 1								0.0 to 1.3 feet: SANDY SILT (MLS); g @ 0.4 to 0.9 feet: woody debris. @ 1.3 feet: woody debris.		
_ 2			СВ	L	RIS-LR-126	2		1.3 to 4.2 feet: SAND WITH SILT (SF @ 2.4 to 3.0 feet: gravel and col		
_ 3			СВ		RIS-LR-126					
5			CB CB		RIS-LR-126 RIS-LR-126			4.2 to 5.3 feet: SANDY SILT (MLS); g @ 5.3 feet: cobble.	gray; moist; firm.	

Total recovery = 5.3 feet.

					Geologic	Borehole Log/Well Cons	struction
Maul	Foster &	Alongi, Ind	c. 🗀	Project Nui	nber	Well Number	Sheet
				9003.01.	40	LRIS-LR-129	1 of 1
Proje Start Drille Geol	ect Name ect Location VEnd Date er/Equipment logist/Engineer ple Method	Port of Ridge Ridgefield, W 12/2/2012 to 1 Marine Samp Michael R. Mi Vibracore	'A 12/2/20 ling Sy	12 rstems/Vibracore		TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth Outer Hole Diam	1
(\$)	Well		Samp	le Data	9	Soil Description	n
Depth (feet, BGS)	Details	Interval Percent Recovery	Method S	Name (Type)	Lithologic Column		
1						0.0 to 2.5 feet: SILT WITH SAND (ML); gray; wet; loose.
2			В	LRIS-LR-129-2			·
3			B	LRIS-LR-129-3		2.5 to 5.1 feet: SANDY SILT (MLS); g material.	ray; firm; moist; trace organic
4			В	LRIS-LR-129 4			
5			B	LRIS-LR-129-5			

Total recovery = 5.1 feet.

					G	eologic	Borehole Log/Well Construction			
Maul	Foster &	Alongi, In	с.	Project i	Numbe	ər	Well Number	Sheet		
		_		9003.	01.40		LRIS-LR-130	1 of 1		
Proje Start Drille Geol	ect Name ect Location /End Date r/Equipment ogist/Engineer ple Method	Port of Ridge Ridgefield, W 12/2/2012 to Marine Samp Michael R. M Vibracore	VA 12/2/201. oling Sys		ore		TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam	-58959.3 1205595.0 6.2-feet 3.75-inch		
6	Well		Sample	Data			Soil Description			
Depth (feet, BGS)	Details	Interval Percent Recovery	Method Samble Number Idams	Name (Type)	Blows/6"	Lithologic Column				
	V//ZV//A			<u> </u>	ı	ia rakasa	0.0 to 1.1 feet: SILTY SAND (SM); gray; loc	ose: wet: trace organic		
1							debris.	,,		
							1.1 to 1.8 feet: SAND WITH SILT (SP-SM);	gray; stiff; moist.		
2			CB	LRIS-LR-130	2		1.8 to 4.1 feet: SILTY SAND (SM); gray; stil	ff. wet		
			,				1.0 to 4.1 100t. GIET T GAND (GIVI), gray, Gin	,, wot.		
3			CB	LRIS-LR-130	3					
			СВ	LRIS-LR-130	,			•		
. 4		'	J	LKIS-LK-130	1 **					
_			СВ	LRIS-LR-130	5		4.1 to 6.2 feet: SILT (ML); gray; damp; stiff.			
. 5										
6										
	/X///X// .									

Total recovery = 6.2 feet.

					G	eologic	Borehole Log/Well Con	struction		
Mau	I Foster &	Alongi, li	nc. 🗀	Project I			Well Number	Sheet		
		0,		9003.0	01.40		LRIS-LR-131	1 of 1		
Proje Stan Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer aple Method	Port of Ride Ridgefield, 12/2/2012 to Marine San Michael R. Vibracore	WA o 12/2/2 opling S	Systems/Vibraco	ore		TOC Elevation (fe Surface Elevation Northing Easting Hole Depth Outer Hole Diam	(feet)	-64087.8 1211252.4 3.8-feet 3.75-inch	
Depth (feet, BGS)	Well Details	Interval Percent Recovery	Collection Method S	nple Data อื่อ Name (Type)	Blows/6"	Lithologic Column	Soil Descriptio	n		
1			СВ	LRIS-LR-131	2		0.0 to 1.6 feet: SANDY SILT (MLS); g debris. @ 1.2 t o1.4 feet: WOOD DEBR	IS; wet.		
3			CB	LRIS-LR-131	3	a a a	1.6 to 2.7 feet: SILT (ML); gray; moisi (roots). 2.7 to 3.8 feet: SAND (SW); gray; mo		<i></i>	

Total recovery = 3.8 feet.

				Ge	eologic	Borehole Log/Well Cons	struction
Mau	Foster &	Alongi, Inc.			er	Well Number	Sheet
			9003	.01.40		LRIS-LR-132	1 of 1
Proje	ect Name	Port of Ridgefic	eld	TOC Elevation (fee	<i>t)</i>		
Proje	ect Location	Ridgefield, WA				Surface Elevation (i	,
Start	/End Date	12/3/2012 to 12	/3/2012			Northing	-95668.7
Drille	er/Equipment	Marine Samplin	ng Systems/Vibrac	ore		Easting	1228844.6
1	logist/Engineer	Michael R. Mur	ray			Hole Depth	6.0-feet
Sam	ple Method	Vibracore				Outer Hole Diam	3.75-inch
S)	Well		Sample Data			Soil Description	
, BG	Details	al very) per		logi		
Depth (feet, BGS)		Interval Percent Recovery Collection	Name (Type	Blows/6"	Lithologic Column		
Q#)		F F F O 5	: <	В	10		
=	X//XX//A					0.0 to 6.0 feet: SANDY SILT (MLS); gr	ay; wet; loose.
Ē						@ 1.9 and 3.1 feet: sand lenses.	- toda
<u> </u>						@ 3.4, 4.5 and 6.0 feet: woody de	epris.
Ē							
Ē 2		CE	LRIS-LR-13	2+2			
E							
Ē 3		CE	LRIS-LR-13	2 3			
E '							
F		CE	LRIS-LR-13	1			
_ 4			LING-LIN-102	<u>ין</u>			
E							
5	Y///X///	CE	B LRIS-LR-13	2+5			
E				1.			•
Ē,						·	
5 6		CE	LRIS-LR-13:	2-5			

Total recovery = 6.0 feet.

						G	eologic	Borehole Log/Well Cons	truction	
Maul	Foster &	Alongi, l	lnc.		Project i	Numbe		Well Number	Sheet 1 of	
					9003.	07.40		LRIS-LR-133	1 01	<u> </u>
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method Port of Ridgefield Ridgefield, WA 12/3/2012 to 12/3/ Marine Sampling Michael R. Murra				2/2012 g Syst		ore		TOC Elevation (feet) Surface Elevation (feet) Northing - Easting 1 Hole Depth 5 Outer Hole Diam 3		
Depth (feet, BGS)	Well Details	Interval Percent Recovery	Collection Method So	Number Number	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description		
1			СВ	L	RIS-LR-133	-2		0.0 to 1.9 feet: SILT WITH SAND (ML); 1.9 to 2.6 feet: WOODY DEBRIS with S		
. 3			СВ	L	RIS-LR-133	3		2.6 to 5.5 feet: SILT WITH SAND (ML); @ 4.5 to 4.8 feet: SAND (SW) lens	gray; moist; stiff.	
. 4			СВ		RIS-LR-133 RIS-LR-133					

Total recovery = 5.5 feet.

						G	eologic	Borehole Log/Well Con	struction
Maul	Maul Foster & Alongi, Inc.				Project	Numbe	ər	Well Number	Sheet
		•			9003.	01.40		LRIS-LR-134	1 of 1
Proje	ect Name	Port of Rid	gefiel	d				TOC Elevation (fee	et)
	ect Location	Ridgefield,	WA					Surface Elevation	(feet)
Start	/End Date	12/2/2012 to	o 12/2	/2012				Northing	-111651.5
Drille	er/Equipment	Marine San	npling	Syst	ems/Vibrace	ore		Easting	1240858.4
Geol	logist/Engineer	Michael R.	Murra	ay .				Hole Depth	4.8-feet
Sam	ple Method	Vibracore						Outer Hole Diam	3.75-inch
S	Well Sa				Data			Soil Descriptio	n
BG B	Details	al al	1 stig			%	nn		
Depth (feet, BGS)		Interval Percent Recovery	Collection Method C	Number	Name (Type)	3/smoje	Lithologic Column		
9,8		. E Q.G.	ŭΣ	Z		B	70		
1								0.0 to 2.4 feet: SANDY SILT (MLS); g debris.	ray; wet; loose. Trace organic
2			СВ	L	RIS-LR-134	2			
3			СВ	L	RIS-LR-134	3		2.4 to 3.0 feet: WOODY DEBRIS with with rounded cobbles.	
4			СВ	ı	RIS-LR-134	4		3.0 to 3.7 feet: SILT WITH SAND (ML 3.7 to 4.8 feet: SILTY SAND (SM); we	``` ._
F I			CB	` <i>L</i>	.RIS-LR-134	5			

Total recovery = 4.8 feet.

					G	eologic	Borehole Log/Well Consti	ruction	
Mau	I Foster &	Alongi, In	ոշ. 🧀	Project i	Numbe	er	Well Number	Sheet	
				9003.	01.40		LRIS-LR-135	1 of 1	
,	ect Name ect Location	Port of Ridg Ridgefield, V			TOC Elevation (feet) Surface Elevation (fee	et)			
Stan	t/End Date	12/3/2012 to		012			Northing	-112627.1	
Drille	er/Equipment	Marine Sam	pling S	ystems/Vibraco	ore		Easting	1231736.6	
Geo	logist/Engineer	Michael R. N	/lurray				Hole Depth	5.9-feet	
Sam	ple Method	Vibracore					Outer Hole Diam	3.75-inch	
S	Well		_ Sam	ple Data			Soil Description		
Depth (feet, BGS)	Details	Interval Percent Recovery	2 '	Name (Type)	Blows/6"	Lithologic Column	·		
1							0.0 to 1.4 feet: SANDY SILT (MLS); gray,	; wet; loose.	
2			СВ	LRIS-LR-135	2		1.4 to 3.4 feet: SAND WITH SILT (SW-SI @ 2.3, 2.5 and 2.7 feet: SILT (ML) lo	M); gray; moist; stiff. enses.	
3			СВ	LRIS-LR-135	3				
4			СВ	LRIS-LR-135	4		3.4 to 5.9: SILT WITH SAND (ML); gray;	moist; stiff.	
5			СВ	LRIS-LR-135	-5				

Total recovery = 5.9 feet.

						G	eologic	Borehole Log/Well Cons	struction
Maul Foster & Alongi, Inc.					Project I	Numb		Well Number	Sheet 1 of 1
					9003.	01.40		LRIS-LR-136	1 01 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method Port of Ridgefiel Ridgefield, WA 12/2/2012 to 12/2 Marine Sampling Michael R. Murra Vibracore				2/2012 g Syst		ore		TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth Outer Hole Diam	
(S9)	Well Details	il ery	Sa d tion	ample ៤ ត	Data I	, <u>"</u> 9	gic	Soil Description	1
Depth (feet, BGS)		Interval Percent Recovery	Collection Method g	Number	Name (Type)	Blows/6"	Lithologic Column		
1								0.0 to 1.1 feet: SILT WITH SAND (ML, sand. @ 1.1 feet: wood. 1.1 to 5.5 feet: SAND (SW); gray; firm	
_ 2			СВ	<i>L</i>	.RIS-LR-136	2	o a o	@ 3.3 feet: redox banding.	
_ 3			СВ		RIS-LR-136		o o o		
- 4			CB CB		.RIS-LR-136 .RIS-LR-136		0 0 0		
_ 5			CB	"	-NIG-LK-130]	ō 'o' 'o'		

Total recovery = 5.5 feet.

			G	ction		
Maul	Foster &	Alongi, Inc.	Project Numl 9003.01.4 0		Well Number LRIS-LR-137	Sheet 1 of 1
		D. C. EDI L. E.)		1 01 1
,	ect Name ect Location	Port of Ridgefiel Ridgefield, WA	a		TOC Elevation (feet) Surface Elevation (feet)	
,	t/End Date	12/2/2012 to 12/2	2/2012		Northing	-30850.0
	er/Equipment		g Systems/Vibracore		Easting	1191847.9
	logist/Engineer	Michael R. Murra			Hole Depth	6.2-feet
Sam	ple Method	Vibracore			Outer Hole Diam	3.75-inch
(\$)	Well	\ S	ample Data	0	Soil Description	
h BG	Details	ent ent very	per	logic		
Depth (feet, BGS)		Interval Percent Recovery Collection	Name (Type) Nome (Lithologic Column		•
70		1 44 02		1,0		
. 1					0.0 to 6.0 feet: SANDY SILT (MLS); gray; w	et; loose.
_ 2		СВ	LRIS-LR-137-2			
_ 3		СВ	LRIS-LR-137-3		2.5 to 6.2 feet: SILTY SAND (SM); gray; mo	ist; stiff.
_ 4		СВ	LRIS-LR-137-4			
- _ 5		СВ	LRIS-LR-137-5			
6						

Total recovery = 6.2 feet.

APPENDIX D ARCHAEOLOGICAL MONITORING REPORT

Willamette Cultural Resources Associates, Ltd. 623 SE Mill Street Portland, Oregon 97214

Date: January 8, 2013

To: Madi Novak

Maul Foster & Alongi, Inc.

2001 NW 19th Avenue, Suite 200, Portland, OR 97209

From: Paul S. Solimano, M.A., RPA

WillametteCRA Portland, Oregon.

Subject: Archaeological Monitoring of Coring Operations for the

Port of Ridgefield's Lake River Industrial Site Remediation Project

Letter Report No. 12-35

This letter report summarizes archaeological monitoring by Willamette Cultural Resources Associates, Ltd. (WillametteCRA), of coring operations for the Port of Ridgefield's Lake River Industrial Site (LRIS) Remediation Project. Maul Foster & Alongi, Inc. (MFA) is undertaking the project on behalf of the Port of Ridgefield (Port). Coring occurred in Lake River, in Ridgefield, Washington, Township 4 North, 1 West, Donation Land Claims 38 and 48, Willamette Meridian (Figure 1). The coring in Lake River required obtaining a permit from the U.S. Army Corps of Engineers (ACOE) (NWP-2012-401). As a condition of that permit, the ACOE required the presence of a professional archaeologist to inspect the cores to determine if any cores indicated the presence of archaeological or other cultural resources. MFA contracted with WillametteCRA to provide the services of a professional archaeologist for monitoring the coring and inspect the retrieved cores.

The following letter report provides a summary of the archaeological monitoring and provides recommendations for future work. First, the project background is provided, with some basic information on the coring process. A short discussion of local archaeological work is presented, focused on nearby archaeological sites but also local sites that might have submerged deposits. The methods employed for archaeological monitoring as well as the results of that monitoring are provided. Finally, a short discussion of the results and recommendations for additional archaeological work are presented. The complete coring logs are attached to this letter report.

.

Project Background and Coring Methodology

The Pacific Wood Treatment Company (PWT) operated a wood treatment facility at the Port's LRIS adjacent to Lake River immediately west of Ridgefield, Washington (MFA 2012). The PWT facility, which operated from the 1960s to the early 1990s, pressure-treated wood products with a range of products, releasing creosote, PCPs, copper, arsenic, zinc, chromium and dioxins on the LRIS property and into the adjacent Lake River. MFA is designing remediation measures of these contaminated sediments. Previous remediation alternative design work has included field study and sampling in both upland and in-river locations. The current effort included 20, in-water vibracore samples from the Lake River bed to characterize sediments and contamination.

Sediment sampling consisted of removing ca. 3.75-inch diameter cores from the river bottom. Core locations are depicted in Figure 2. Cores were excavated in near shore and mid-channel locations, but all coring was staged from a boat and the actual coring process itself occurs underwater. The cores were brought to shore, opened, examined, and documented, and soil samples collected. Core soil not collected for sampling was disposed of in accordance with the Lake River Predesign Sampling Plan (MFA 2012).

Archaeological Background

A large number of sites have been found and excavated in the area, but little of these data has been synthesized into a usable format and consists primarily of site specific descriptions. Areas around Vancouver Lake are somewhat better known, at least in terms of the amount of data available, although even there, data has not been organized to allow clear discussions of hunter-gatherer mobility, resource intensification, and land-use.

The lowlands adjacent to the Columbia River have fairly extensive and often dense archaeological deposits. Sites range from large dense residential sites with house and processing features to small limited-task sites probably related to resource procurement or processing and consisting primarily of lithic artifacts or a narrow range of features. Sparse, widespread artifact scatters are also common. Generally, lowland sites post-date about 3,000 years ago and most are much younger. Several older sites are known, however, by typological cross-dating.

Two precontact sites are adjacent to the cored reach of Lake River. Site 45-CL-4 is immediately adjacent to the downstream cores (126, 125, 110, 129 and 137; see Figure 2) on the east bank of Lake River. Excavations in and near the site have been undertaken by several researchers (;Abramowitz 1980; Minor and Topel 1984; Ross and Starky 1975), with most work attempting to verify the site as the location of the ethnographically described village of Cathlapotle, a village visited and described by Lewis and Clark. Minor and Topel's work was the most extensive and suggested the site consists of a series of smaller, sometimes dense, limited task sites, without house features.

Relatively large-scale erosion has removed portions of the site along Lake River. Hearth features were found, with lithic debitage, tools and bone recovered from over a meter below the surface. Use began about 2,000 years ago at the downstream end and continued until the historic period in the upstream portion (Minor and Topel 1984).

Site 45-CL-108 is also adjacent to the downstream cores (137, 129, 130 and 138; see Figure 2), but located on the west shore of Lake River. Little is known about the site, but it appears large, shallow, and heavily looted.

Work upstream in and around Vancouver Lake, however, provides somewhat more pertinent information to the current undertaking. A large and unusually diverse collection of precontact artifacts were recovered during dredging of the lake (Wesson 1983). Recovered artifacts include projectile points, scrapers, bifaces mortars, pestles and other groundstone fragments, net sinkers, hammerstones and cores. Interestingly, several edge-ground cobbles and large, leaf shaped points suggest at least some of the deposits are from a Mid Holocene occupation.

While site descriptions are vague, rendering the exact configuration, location and depths of the materials unclear, several sites near the confluence of Lake River and Vancouver Lake have submerged deposits (Stenger 1989). Materials include a number of fir branch, lined pits and stakes at 45-CL-12, 45-CL-402, and possibly 45-CL-15. Some or all of these features appear to be submerged at low water (Stenger 1989).

Archaeological Methods

Inspection of the cores was conducted by WillametteCRA archaeologists Paul S. Solimano, M.A., on December 2 and Kanani Paraso, M.A., on December 3, 2012. Due to soil contamination, archaeological monitoring consisted of examining the sediment when the core was opened and as soil was removed for analysis or disposal. No screening occurred. The sediment in each core was described and photographed. Precontact and historic-era materials were found in two cores (see below). Archaeological materials were described and their depth and associated soils noted. Fire-cracked rock (FCR) was discarded with excess core sediment after documentation due to potential contamination of the coarse-grained material. Several fragments of more recent bottle glass were also discarded. A single, fine-grained tool fragment, however, was cleaned sufficiently and retained. The artifact was bagged and labeled.

Results

Pertinent data from the 20 excavated cores is summarized in Table 1 while core locations are shown in Figure 2. Water depth at core locations ranged from two to over five meters. The depth of cores

Table 1. Summary of Core Recovery and Depth.

Core ID	Water	Depth	Sediment Recovery		Archaeological Recovery			
	Feet	Meters	Feet	Meters	Precontact	Historic	Comments	
103	7.1	2.2	6.2	1.9	No	No		
106	10.3	3.1	6.3	1.9	No	No		
108	8.5	2.6	6.0	1.8	No	No		
109	13.5	4.1	6.0	1.8	No	Yes	Bottle fragments	
110	7.8	2.4	6.3	1.9	No	No		
119	7.0	2.1	5.7	1.7	No	No		
120	7.2	2.2	5.6	1.7	No	No		
122	7.6	2.3	6.0	1.8	No	No		
124	7.2	2.2	4.7	1.4	No	No		
125	8.6	2.6	4.2	1.3	No	No		
126	6.6	2.0	5.3	1.6	Yes	No	Lithic tool, FCR	
129	17.3	5.3	5.1	1.6	No	No		
130	15.1	4.6	6.2	1.9	No	No		
131	13.0	4.0	3.8	1.2	No	No		
132	8.7	2.7	6.0	1.8	No	No		
133	8.5	2.6	5.5	1.7	No	No		
134	9.5	2.9	4.8	1.5	No	No		
135	12.9	3.9	5.9	1.8	No	No		
136	14.5	4.4	5.5	1.7	No	No		
137	17.6	5.4	6.2	1.9	No	No		

from the mudline (bed of Lake River channel) was between about one and two meters, but averaged about 1.6 meters of sediment.

Sediment encountered ranged from silt to sand, with woody debris lenses and layers present in approximately half of the cores. Silt and sand was present as relatively massive layers but also included lenses. Wood included unburned twigs branches, but most was wood chips and one possible fragment of milled lumber was found in Core 109. Organic layers and lenses were also observed.

Archaeological materials were found in two cores (109 and 126) (see Figure 2). All other cores were culturally sterile. The ACOE was notified of the find in accordance with the permit on December 3, 2012. In Core 109, a bottle fragment was found over 125 cm below the riverbed (Figure 3). The bottle fragment is a colorless bottle neck and finish shard with a continuous external thread for a screw cap closure. Neither material type nor manufacture technique are particularly diagnostic. True colorless glass that would not become tinted with sun exposure was introduced around 1920 and has been in use ever since. Although the bottle seams indicate it was machine-made, this has been the most common type of bottle manufacturing technique from 1905 to present. The best

indication of manufacture date is probably the external threads, which were not common on small mouth bottles until the 1930s (Rock 1981).

In Core 126, four possible fragments of fire cracked rock (FCR) and one tool fragment were identified (Figure 4). Three FCR fragments were at about 80 cm below the riverbed, while the tool was approximately 100 cm below the riverbed. An additional FCR fragment was found at the base of the core at around 125 cm. The tool fragment is small (ca. 1 cm.), unifacially pressure flaked (Figure 5). The raw material is yellow-brown and translucent; possibly chalcedony. The collected artifact is temporarily curated at the WillametteCRA office in Portland.

Discussion

Overall, there was little clear horizontal or vertical patterning in the sediments, wood, or organic layers among cores. Precontact materials were found in only one core, but whether these materials are in place or redeposited is unknown. Large numbers of precontact sites are known along Lake River and two sites are in close proximity. Moreover, many local sites exhibit extensive erosion or historic disturbances, so precontact materials redeposited in the river would not be unexpected. Submerged, possibly intact deposits are suggested at other nearby locales, however, but these sites are poorly understood.

The historic bottle fragment was about 125 cm (ca. 4 feet) below the mudline, while precontact materials were found between 80 and 125 cm (ca. 2.5 to 4 feet) below the mudline. Comparing these core locations to the sediment accumulation since 1970 suggests (Figure 6) these core locations are areas with more limited sedimentation. While it seems unlikely, it is possible the precontact materials in Core 126 represent intact deposits.

Recommendations

Precontact archaeological materials were found in Core 126, but their context is unclear. The material may represent intact deposits, but with the large number of local sites and well known river side erosion at these sites, it is more likely these materials represent eroded deposits, possibly quite far from their original location.

As a result, we recommend archaeological monitoring of any ground-disturbing activity below the mudline of Lake River including dredging. An archaeologist should be consulted during cleanup planning to develop a monitoring plan in coordination with the ACOE, the appropriate Tribes, and the Washington Department of Archaeology and Historic Preservation.

References Cited

Abramowitz, Alan,

1980 Cultural Resources Assessment of the Carty Unit, Ridgefield Wildlife Refuge, Clark County, Washington. Prepared by the Office of Public Archaeology, Institute for Environmental Studies, University of Washington, Seattle. Submitted to U.S. Fish and Wildlife Service, Portland. Oregon, under contract number 14-16-0001-7917S. On file, Washington DAHP, Olympia.

Maul Foster and Alongi, Inc.

2012 Lake River Predesign Sampling Plan. Prepared for Port of Ridgefield, Ridgefield, Washington.

Minor, Rick and Kathryn Topel

1984 Archaeological Investigations at 45-CL-4, Ridgefield National Wildlife Refuge, Ridgefield, Washington. Heritage Research Associates Report No 37 Submitted to U.S. Fish and Wildlife Service Portland. Oregon, under contract number FWS No. 14-16-0001-84082. On file, Washington DAHP, Olympia.

Stenger, Alison

1989 Marine Archaeological Surveys Site Record Form, Site 45-CL-402. On file, Washington DAHP, Olympia.

Wessen, Gary.

1983 Archaeological Investigations at Vancouver Lake, Washington. Prepared by Western Heritage, Inc. Submitted to Cooper and Associates, Inc, Portland, Oregon. On file, Washington DAHP, Olympia.

Figure 1. Location of the LRIS and area cored.

Figure 2. Configuration of the project area, location of cores as well as nearby archaeological sites.

Figure 3. Core log (above) and core photograph (below) for Core 109.

Figure 4. Core log (above) and core photograph (below) for Core 126.

Figure 5. Lithic tool fragment recovered from Core 126.

Figure 6. Core locations in relation to sediment accumulation since 1970 (base map from MFA 2012)

				Geologic Borehole Log/Well Construction						
Maul	l Foster &	Alongi, Ir	1C. 🗀	Project :	Numbe		Well Number .	Sheet 1 of 1		
	·			9003.01.40			LRIS-LR-103			
Project Name Port of Ridgefiel Project Location Ridgefield, WA Start/End Date 12/3/2012 to 12/3 Driller/Equipment Marine Sampling Geologist/Engineer Sample Method Vibracore					ore		TOC Elevation (feet) Surface Elevation (fe Northing Easting Hole Depth Outer Hole Diam			
Depth (feet, BGS)	Well Details	Interval Percent Recovery		ple Data ja E Name (Type) V	Blows/6"	Lithologic Column	Soil Description			
1							0.0 to 1.3 feet: SILT WITH SAND (ML);	gray; wet; loose.		
2			СВ	LRIS-LR-103	2		1.3 to 6.2 feet: SILT (ML); gray; moist; s @ 4.4 and 4.6 feet: sand lenses. @ 5.3 and 5.9 feet: wood debris.	tiff.		
3			СВ	LRIS-LR-103	3			· ·		
4			CB	LRIS-LR-103						
5 6			СВ	LRIS-LR-103	Ð					

			Geologic Borehole Log/Well Construction				
Maul Foster	& Alongi, Inc			er	Well Number	Sheet	
		9003.	01.40		LRIS-LR-106	1 of 1	
Project Name	Port of Ridgef	ield			TOC Elevation (feet,)	
Project Location	Ridgefield, WA	l			Surface Elevation (f	eet)	
Start/End Date	12/2/2012 to 12	2/2/2012			Northing	<i>-71504.5</i>	
Driller/Equipment	Marine Sampli	ng Systems/Vibrac	ore		Easting	1220206.6	
Geologist/Engine	er Michael R. Mu	rray			Hole Depth	6.3-feet	
Sample Method	Vibracore				Outer Hole Diam	3.75-inch	
ගි W ell		Sample Data			Soil Description		
Details (feet, BGS)	Interval Percent Recovery Collection	ĕ g	1.9%	Lithologic Column	·		
epti 3et,	Interval Percent Recove	Double Name (Type)	Blows/6'	thol			
Q. (E.)	E 44 0:	Σ Z	Ø	20			
	1				0.0 to 0.6 feet: SILT WITH SAND (ML);	gray; loose; wet; wood debris.	
					, -		
_ 1 🛚 🗸 🗸					0.6 to 6.3 feet: SILT (ML); gray; stiff; me @ 3.4 feet: sand lens; gray; loose,	OIST.	
					@ 3.4 reet. Saird felis, gray, 100se,	, 4401.	
2 1/////	CI	3 LRIS-LR-106	2				
10000000000000000000000000000000000					•		
	C	B LRIS-LR-106	3				
- ³		7					
4	Ci	3 L RIS-LR-106	4				
					,		
	C	B LRIS-LR-106	5				
- 5							
_ 6 🛚 🗸 💢							

Total recovery = 6.3 feet.

						G	eologic	Borehole Log/Well Cons	orehole Log/Well Construction		
Maul	Foster &	Alongi, I	nc.		Project I			Well Number	Sheet		
		_			9003.0	01.40		LRIS-LR-108	. 1 of 1		
Geologist/Engineer Michael R. Murra Sample Method Vibracore			r/2012 y Systems/Vibracore yy				TOC Elevation (feet, Surface Elevation (fe Northing Easting Hole Depth Outer Hole Diam				
Depth (feet, BGS)	Well Details	Interval Percent Recovery	Collection Method S	ample Data James (Type) Name (Type) Name (Type)			Lithologic Column	Soil Description			
		1				l		0.0 to 0.5 feet: SANDY SILT (MLS); gra	ay; loose; wet.		
. 1								0.5 to 3.5 feet: SILT WITH SAND (ML); @ 2.0 feet: wood debris.			
. 2			СВ	L	RIS-LR-108-	2					
3			CB	L	RIS-LR-108-	3					
. 4			CB	L	RIS-LR-108	4		3.5 to 4.9 feet: WOODY DEBRIS; with	sandy silt (ML).		
_ 5			CB	L	RIS-LR-108-	5		4.9 to 6.0 feet: SANDY SILT (MLS); gra	ny; moist; stiff.		
6											

			G	eologic	Borehole Log/Well Constr	uction
Mau	Foster &	Alongi, Inc.	Project Numbe 9003.01.40	ər	Well Number LRIS-LR-109	Sheet 1 of 1
Proje Start Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer ple Method	Port of Ridgefiel Ridgefield, WA 12/2/2012 to 12/2 Marine Sampling Michael R. Murra Vibracore	//2012 y Systems/Vibracore		TOC Elevation (feet) Surface Elevation (fee Northing Easting Hole Depth Outer Hole Dlam	t) -59259.1 1210603.2 6.0-feet 3.75-inch
Depth (feet, BGS)	Well Details	Interval Percent Recovery Collection Method go	ample Data James (Type) Name (Type)	Lithologic Column	Soil Description	
1					0 to 1.3 feet: SILT WITH SAND (ML); gra	y; loose; wet. - -
2		СВ	LRIS-LR-109-2		1.3 to 4.7 feet: SILT (ML); gray, stiff, mois	st
<u>.</u> 3		СВ	LRIS-LR-109-3			-
4		СВ	LRIS-LR-109-4			- -
5		СВ	LRIS-LR-109-5	0 0 0	4.7 to 6.0 feet: SAND (SW); gray; coarse @ 4.8 feet: debris layer including bro post-1930's.	; stiff; moist. oken bottle identified as

		G	eologic	Borehole Log/Well Cons	struction
Maul Foster 8	Alongi, Inc.	Project Numb 9003.01.40	er	Well Number LRIS-LR-110	Sheet 1 of 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method		/2012 Systems/Vibracore		TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth Outer Hole Diam	•
(S) Well Details	Interval Percent Recovery Collection Method S	ample Data language Language	Lithologic Column	Soil Description	
1	СВ	LRIS-LR-110-2		0.0 to 2.2 feet: SILT (ML); gray; loose;	wet.
3	CB	LRIS-LR-110-3 LRIS-LR-110-4		2.2 to 6.5 feet: SILT WITH SAND (ML) @ 6.0 to 6.5 feet: woody debris.	; gray; stiff; moist.
5	СВ	LRIS-LR-110-5			
6					

		Geologic Borehole Log/Well Construction				
Maul Foster 8	Alongi, Inc.	Project Numb 9003.01.40		Well Number LRIS-LR-119	Sheet 1 of 1	
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method	•	3/2012 g Systems/Vibracore	TOC Elevation (feet) Surface Elevation (feet Northing Easting Hole Depth Outer Hole Diam	-105987.9 -1239815.7 5.7-feet 3.75-inch		
Well Details West BGS)	interval Percent Recovery Collection Method	ample Data John Name (Type) Name (Type	Lithologic Column	Soil Description		
1 2 3 4 4 5 5	CB CB CB	LRIS-LR-119-2 LRIS-LR-119-3 LRIS-LR-119-4 LRIS-LR-119-5		0.0 to 1.0 feet; SAND WITH SILT (SW-SM-1.0 to 1.4 feet; WOODY DEBRIS; loose; v 1.4 to 5.7 feet; SILT WITH SAND (ML); gi @ 2.3 and 3.4 feet; wood debris.	vet; with gray sand.	

			Geologic	Borehole Log/Well Constr	uction	
Maul Foste	r & Alongi, Ind		lumber	Well Number	Sheet 1 of 1	
,		9003.0	1.40	LRIS-LR-120	7 01 1	
Project Name Project Locatic Start/End Date Driller/Equipme Geologist/Engl Sample Metho	12/3/2012 to 1 ent Marine Sampl neer Michael R. Mu	4 2/3/2012 ing Systems/Vibracol	re	TOC Elevation (feet) Surface Elevation (fee Northing Easting Hole Depth Outer Hole Diam	t) -90375.6 1232104.8 5.6-feet 3.75-inch	
Depth (freet, BGS)		Sample Data Output O	Blows/6" Lithologic Column	Soil Description		
1				0.0 to 1.0 feet: SILT (ML); gray; wet; loos	9,	
2		B LRIS-LR-120-	2	1.0 to 5.2 feet: SILT (ML); gray; moist; sti @ 3.6 to 4.1 feet: SAND (SP) lenses	п. ————————————————————————————————————	
3		B LRIS-LR-120-	3			
4		B LRIS-LR-120-	4			
5		B LRIS-LR-120	5			
			15011	5.2 to 5.6 feet: WOODY DEBRIS; loose; (MLS).	wet; with gray SANDY SILT	

		Geologic Borehole Log/Well Construction				
Maul Foster 8	k Alongi, Inc.	Project Numl 9003.01.4 0		Well Number LRIS-LR-122	Sheet 1 of 1	
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method		/2012 Systems/Vibracore		TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam	-63584.3 1219456.3 6.0-feet 3.75-inch	
Depth (feet, BGS) Well Details	Interval Percent Recovery Collection Method Col	mple Data Lapping Name (Type) Name (Type)	Lithologic Column	Soil Description		
. 1	СВ	LRIS-LR-122-2		0.0 to 2.8 feet: SILT WITH SAND (ML); gray, @ 2.1 and 2.7 feet: wood debris.	loose; wet.	
3	CB	LRIS-LR-122-3 LRIS-LR-122-4		2.8 to 3.2 feet: SAND (SW); gray; stiff; moist 3.2 to 3.9 feet: SANDY SILT (MLS); gray; mo debris. 3.9 to 4.4 feet: WOODY DEBRIS with SAND	oist; stiff; trace wood	
5 6	СВ	LRIS-LR-122-5		wet. 4.4 to 5.5 feet: SILT WITH SAND (ML); gray. 5.5 to 6.0 feet: WOODY DEBRIS with SAND		

					Ge	eologic	Borehole Log/Well Constr	uction
Mau	Foster &	Alongi, Ir	nc. 🗀	Project	Numbe	ər	Well Number	Sheet
				9003.	01.40	<u>.</u>	LRIS-LR-124	1 of 1
Proje	ect Name	Port of Ridg	jefield				TOC Elevation (feet)	
Proje	Project Location Ridgefield, WA					,	Surface Elevation (fee	•
Start	/End Date	12/3/2012 to	12/3/2	2012			Northing	-49231.0
Drille	er/Equipment			Systems/Vibrac	ore		Easting	1213704.1
	logist/Engineer	Michael R. I	Murray	,			Hole Depth	4.7-feet
Sam	ple Method	Vibracore					Outer Hole Diam	3.75-inch
(S)	െ Well		san	nple Data		U	Soil Description	
Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method co	Name (Type) Syon Name (Type) Name (Typ		Lithologic Column		
1 2 3			CB CB	LRIS-LR-124 LRIS-LR-124 LRIS-LR-124	1-3		0.0 to 1.7 feet: SILT WITH SAND (ML); graves and to 3.1 feet: SILT (ML); graves wet; loose 3.1 to 4.7 feet: SILT (ML); gray; moist; stirled	e; trace wood debris.
			СВ	LRIS-LR-124	5			

	**************************************				Ge	eologic	Borehole Log/Well Cons	truction	
Mau	Foster &	Alongi, In	ic.	Project i 9003.		er	Well Number LRIS-LR-125	Sheet 1 of	
Proje Start Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer ple Method	Port of Ridg Ridgefield, V 12/2/2012 to Marine Sam Michael R. N Vibracore	VA 12/2/2012 oling Syst	?			TOC Elevation (feet, Surface Elevation (fe Northing Easting Hole Depth Outer Hole Diam)	-35696.7 1203344.1 4.2-feet 3.75-inch
Depth (feet, BGS)	Well Details	Interval Percent Recovery	Sample Sample Number Nu	Data Name (Type)	Blows/6"	Lithologic Column	Soll Description		
_ 1			СВ	LRIS-LR-125	2		0.0 to 1.7 feet: SILTY SAND (SM); gray		
3				LRIS-LR-125 LRIS-LR-125			2.7 to 4.2 feet: SANDY SILT (MLS); gra @ 3.2 feet: trace organic debirs.	ny; loose; moist.	-

						G	eologic	Borehole Log/Well Cons	struction
Maul	Foster &	Alongi,	Inc.		Project i		er -	Well Number	Sheet
					9003.	01.40		LRIS-LR-126	1 of 1
Proje Start Drille Geol	ect Name ect Location E/End Date er/Equipment logist/Engineer ple Method	Port of R Ridgefiel 12/2/2012 Marine S Michael I Vibracore	d, WA 2 to 12/2 ampling R. Murra	2/2012 g Syst	ems/Vibraco	ore		TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth Outer Hole Diam	
(8)	Well		₂ S	ample	Data		0	Soil Description	7
Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method o	Number	Name (Type)	Blows/6"	Lithologic Column		
1								0.0 to 1.3 feet: SANDY SILT (MLS); gr @ 0.4 to 0.9 feet: woody debris. @ 1.3 feet: woody debris.	ray; wet; loose.
2			СВ	L	RIS-LR-126	2		1.3 to 4.2 feet: SAND WITH SILT (SP @ 2.4 to 3.0 feet: gravel and cob	
_ 3		***************************************	СВ	L	RIS-LR-126	3			-
4			СВ	L	RIS-LR-126	4		4.2 to 5.3 feet: SANDY SILT (MLS); gi	row majot: firm
5			СВ	L	RIS-LR-126	5		4.2 to 3.3 feet: SANDY SILT (WLS), gi @ 5.3 feet: cobble.	ay, most, mm

						Ge	eologic	Borehole Log/Well Con	struction
Maul Fo	ster & .	Alongi, l	nc.		Project I 9003.	Numbe		Well Number LRIS-LR-129	Sheet 1 of 1
Project Na Project Loc Start/End of Driller/Equ Geologist/ Sample M	cation Date ilpment 'Engineer	Port of Rid Ridgefield, 12/2/2012 (Marine Sar Michael R. Vibracore	, WA to 12/2 mpling	/2012 g Syst	ems/Vibraco	ore		TOC Elevation (fe Surface Elevation Northing Easting Hole Depth Outer Hole Diam	-
Depth (feet, BGS)	Well Details	Collection Method So	ample Namper	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description	n	
_ 1			CB		RIS-LR-129 RIS-LR-129			0.0 to 2.5 feet: SILT WITH SAND (M. 2.5 to 4.9 feet: SANDY SILT (MLS);	
_ 4		CB CB	L.	RIS-LR-129 RIS-LR-129 RIS-LR-129	4		material.	gray, min, morag araba arganio	

Total recovery = 4.9 feet.

						G	eologic	Borehole Log/Well Constru	ıction
Maul	Foster &	Alongi, I	nc.		Project I 9003.	Numb		Well Number LRIS-LR-130	Sheet 1 of 1
Proje Start Drille Geol	ect Name ect Location /End Date er/Equipment logist/Engineer ple Method	Port of Rid Ridgefield, 12/2/2012 to Marine San Michael R. Vibracore	WA o 12/2 npling	2/2012 g Syst	tems/Vibraco	ore		TOC Elevation (feet) Surface Elevation (feet) Northing Easting Hole Depth Outer Hole Diam	-58959.3 1205595.0 6.2-feet 3.75-inch
Depth (feet, BGS)	Well Details	Interval Percent Recovery	Collection Method go	Number aldure	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description	
1			-					0.0 to 1.1 feet: SILTY SAND (SM); gray; lo debris. 1.1 to 1.8 feet: SAND WITH SILT (SP-SM)	
_ 2			CB	ı.	RIS-LR-130	2		1.8 to 4.1 feet: SILTY SAND (SM); gray; st	
_ 3			CB CB		LRIS-LR-130 LRIS-LR-130				
_ 4 - _ 5			СВ		LRIS-LR-130			4.1 to 6.2 feet: SILT (ML); gray; damp; stiff	
6			,	,					

Total recovery = 6.2 feet.

			G	eologic	Borehole Log/Well Con	struction
Vlau	l Foster &	Alongi, Inc.	Project Numb	er	Well Number	Sheet
			9003.01.40		LRIS-LR-131	1 of 1
Proje Star	ect Name ect Location t/End Date er/Equipment	Port of Ridgefie Ridgefield, WA 12/2/2012 to 12/ Marine Samplin	•		TOC Elevation (fee Surface Elevation (Northing Easting	•
	logist/Engineer	Michael R. Muri			Hole Depth	3.8-feet
	ple Method	Vibracore	•		Outer Hole Diam	3.75-inch
Depth (feet, BGS)	Well Details	Interval Percent Recovery Collection Method	Sample Data Japan	Lithologic Column	Soil Description	n
1					0.0 to 1.6 feet: SANDY SILT (MLS); g debris. @ 1.2 t o1.4 feet: WOOD DEBRI	-
2		CB			1.6 to 2.7 feet: SILT (ML); gray; moist (roots).	· · · · · · · · · · · · · · · · · · ·
. 3		СВ		0. 0 0	2.7 to 3.8 feet: SAND (SW); gray; moi	SC, Still.

		G	eologic	Borehole Log/Well Cons	truction
Maul Foster 8	k Alongi, Inc.	Project Numb 9003.01.40		Well Number LRIS-LR-132	Sheet 1 of 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineel Sample Method		3/2012 g Systems/Vibracore		TOC Elevation (feet, Surface Elevation (fe Northing Easting Hole Depth Outer Hole Diam	
Well (Leet, BGS) Well Details	Interval Percent Recovery Collection Method co	ample Data Jequin Name (Type) Name (Ty	Lithologic Column	Soil Description	
2	СВ	LRIS-LR-132-2 LRIS-LR-132-3		0.0 to 6.0 feet: SANDY SILT (MLS); gra @ 1.9 and 3.1 feet: sand lenses. @ 3.4, 4.5 and 6.0 feet: woody de	
3	СВ	LRIS-LR-132-4 LRIS-LR-132-5			
6					

	,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Ge	ologic	Borehole Log/Well Constr	uction
Maul	l Foster &	Alongi, Ind	c. 💳	Project I		er	Well Number	Sheet 1 of 1
				9003.0	01.40		LRIS-LR-133	1 01 1
Proje Stan Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer uple Method	Port of Ridge Ridgefield, W 12/3/2012 to 1 Marine Samp Michael R. Mi Vibracore	/A 12/3/201 ling Sys		ore		TOC Elevation (feet) Surface Elevation (feet Northing Easting Hole Depth Outer Hole Diam	f) -108832.8 1236469.2 5.4-feet 3.75-inch
(SS)	Well Details	7.5.2	Sample		o". I	. sic	Soil Description	
Depth (feet, BGS)	Dotano	Interval Percent Recovery	Method S.	Name (Type)	Blows/6	Lithologic Column		
1							0.0 to 1.9 feet: SILT WITH SAND (ML); gr	ay; wet; loose.
2			B	LRIS-LR-133	2		1.9 to 2.6 feet: WOODY DEBRIS with SA	ND (SW).
3			СВ	LRIS-LR-133	3		2.6 to 5.4 feet: SILT WITH SAND (ML); gi @ 4.5 to 4.8 feet: SAND (SW) lens;	ray; moist; stiff. gray; wet; loose.
_ 4			CB	LRIS-LR-133	4			
5			В	LRIS-LR-133	5			

Total recovery = 5.4 feet.

					G	eologic	Borehole Log/Well Constr	uction
Maul	Foster &	Alongi, Ir	nc. 🗀	•	ct Numb		Well Number	Sheet
				. 90	03.01.40		LRIS-LR-134	1 of 1
Projec	ct Name	Port of Ridg	jefield				TOC Elevation (feet)	
Projec	ct Location	Ridgefield,	WA				Surface Elevation (feet)
Start/I	En d Date	12/2/2012 to	12/2/2	2012			Northing	-111651.5
Driller	r/Equipment	Marine Sam	pling \$	Systems/Vibr	acore		Easting	1240858.4
Geolo	gist/Engineer	Michael R. I	<i>Murray</i>	•			Hole Depth	4.8-feet
Samp	le Method	Vibracore					Outer Hole Diam	3,75-inch
(5)	Well		_ San	nple Data			Soil Description	
Depth (feet, BGS)	Details	Interval Percent Recovery	Collection Method c	Name (Ty	Blows/6"	Lithologic Column	_	
. 1			СВ	LRIS-LR-1		715	0.0 to 2.4 feet: SANDY SILT (MLS); gray; debris. 2.4 to 3.0 feet: WOODY DEBRIS with SAI	
3			CB CB	LRIS-LR-1 LRIS-LR-1			with rounded cobbles. 3.0 to 3.7 feet: SILT WITH SAND (ML); gr 3.7 to 4.8 feet: SILTY SAND (SM); well so	ay; moist; firm.
			СВ	LRIS-LR-1	34-5			

						G	eologic	Borehole Log/Well Const	ruction
Mau	l Foster &	Alongi, Ir	nc.		Project i 9003.	Numbe		Well Number LRIS-LR-135	Sheet 1 of 1
Proje Star Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer aple Method	Port of Ridg Ridgefield, 12/3/2012 to Marine Sam Michael R. I Vibracore	WA 12/3 pling	/2012 Syste	ems/Vibraco	ore	·	TOC Elevation (feet) Surface Elevation (fe Northing Easting Hole Depth Outer Hole Diam	et) -112627.1 1231736.6 5.8-feet 3.75-inch
Depth (feet, BGS)	Well Details	Collection Method Co	Number I	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description		
1								0.0 to 1.4 feet: SANDY SILT (MLS); gray	y; wet; loose.
_ 2			СВ	L	RIS-LR-135	2		1.4 to 3.4 feet: SAND WITH SILT (SW-S @ 2.3, 2.5 and 2.7 feet: SILT (ML)	SM); gray; moist; stiff. lenses
_ 3			CB	L	RIS-LR-135	3			
_ 4			CB	L	RIS-LR-135	4		3.4 to 5.8: SILT WITH SAND (ML); gray	; moist; stiff.
5			CB	L	RIS-LR-135	5		·	

					1.10	G	eologic	Borehole Log/Well Const	ruction
Maul	l Foster &	Alongi, l	Inc.		Project I 9003.	Numbe		Well Number LRIS-LR-136	Sheet 1 of 1
Proje Start Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer aple Method	Port of Rid Ridgefield 12/2/2012 of Marine Sal Michael R. Vibracore	, WA to 12/2 mpling	/2012 Syste	ems/Vibraco	ore		TOC Elevation (feet) Surface Elevation (fee Northing Easting Hole Depth Outer Hole Diam	ef) -65154.4 1204796.6 5.5-f ee t 3.75-inch
Depth (feet, BGS)					Data Name (Type)	Blows/6"	Lithologic Column	Soil Description	
_ 1								0.0 to 1.1 feet: SILT WITH SAND (ML); sand. @ 1.1 feet: wood. 1.1 to 5.5 feet: SAND (SW); gray; firm; n	
. 2			СВ	L	RIS-LR-136	2	o o a	@ 3.3 feet: redox banding.	
_ 3			CB		RIS-LR-136 RIS-LR-136		а ' а ' а ' а ' а ' а ' а ' а ' а ' а '		
_ 4 _ 	GE CE				RIS-LR-136		a a a		

					A. A	G	eologic	Borehole Log/Well Cons	struction	
Mau	I Foster &	Alongi, I	nc.		Project i 9003.		ər	Well Number LRIS-LR-137	Sheet 1 of 1	
Proje Stan Drille Geo	ect Name ect Location t/End Date er/Equipment logist/Engineer uple Method	Port of Rid Ridgefield, 12/2/2012 to Marine San Michael R. Vibracore	WA o 12/2 npling	/2012 Syste	ems/Vibraco	ore		TOC Elevation (fee Surface Elevation (Northing Easting Hole Depth Outer Hole Diam	feet) -30 11: 6.0	9850.0 91847.9 -feet '5-inch
Depth (feet, BGS)	Well Details	Interval Percent Recovery	Collection Method So	Number	Data Name (Type)	Blows/6"	Lithologic Column	Soil Description	1	
12			СВ	L	RIS-LR-137	-2		0.0 to 6.0 feet: SANDY SILT (MLS); g	ray; wet; loose.	
3		A STATE OF THE STA	CB CB		RIS-LR-137 RIS-LR-137			2.5 to 6.0 feet: SILTY SAND (SM); gra	y; moist; sliff.	 _
5			СВ	L	RIS-LR-137	5				

APPENDIX E ANALYTICAL REPORTS

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-36242-1 Client Project/Site: Port of Ridgefield

For:

Maul Foster & Alongi Inc 2001 NW 19th Avenue, Suite 200 Portland, Oregon 97239

Attn: Ms. Madi Novak

Pamela R. Johnson

Authorized for release by: 12/13/2012 11:39:57 AM

Pam Johnson
Project Manager I
pamr.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	26
Chronicle	28
Certification Summary	32
Sample Summary	33
Chain of Custody	34
Receipt Checklists	43

4

5

8

9

10

4.

Case Narrative

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Job ID: 580-36242-1

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/7/2012 8:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 8 coolers at receipt time were 2.6° C, 2.9° C, 3.4° C, 4.3° C, 4.5° C, 4.6° C, 5.9° C and 6.0° C.

Except:

The container labels for the following samples LRIS-LR-122-2 (580-36242-31), LRIS-LR-122-3 (580-36242-32), LRIS-LR-122-4 (580-36242-33), LRIS-LR-122-5 (580-36242-34), LRIS-LR-126 (580-36242-47) did not match the information listed on the Chain-of-Custody (COC). Sample 31, 32, 33, 34: The container labels list a time of 11:45, 11:50, 11:55, and 12:00 for samples 31, 32, 33, and 34 respectively. The Chain-of-Custody (COC) lists a time of 15:22 for these samples. Sample 47: Container labels list 08:55 while the Chain-of-Custody (COC) lists 08:56 as the sampling time.

In both cases listed above, the samples have been logged in per the information provided on the Chain-of-Custody (COC).

The container label for the following samples LRIS-LR-130-FD (580-36242-54), LRIS-LR-130-FD-1 (580-36242-59), LRIS-LR-134 (580-36242-78) did not match the information listed on the Chain-of-Custody (COC). LRIS-LR-134 has a time of 13:19 on the label. Logged in according to the information provided on the Chain-of-Custody (COC).

LRIS-LR-130-FD is labeled on the container as LRIS-LR-130-2-DUP. LRIS-LR-130-FD-1 is labeled on the container as LRIS-LR-130-DUP. Both samples were lined up per sample time and logged in according to the Chain-of-Custody (COC). CG

General Chemistry

No analytical or quality issues were noted.

5

6

1

1 0

TestAmerica Seattle 12/13/2012

Definitions/Glossary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 580-36242-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

4

5

6

0

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Client Sample ID: LRIS-LR-103

Date Collected: 12/04/12 11:55 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-5

Matrix: Solid

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	12000		2000	610	mg/Kg			12/11/12 12:57	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	52		0.10		%			12/10/12 16:41	1
Percent Moisture	48		0.10		%			12/10/12 16:41	1

-

0

0

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-10

Matrix: Solid

Client Sample ID: LRIS-LR-106 Date Collected: 12/04/12 11:42

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	18000		2000	610	mg/Kg			12/11/12 13:12	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	48		0.10		%			12/10/12 16:41	1
Percent Moisture	52		0.10		%			12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Client Sample ID: LRIS-LR-109-3 Lab Sample ID: 580-36242-16

Date Collected: 12/02/12 15:15 Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	12000		2000	610	mg/Kg			12/11/12 13:16	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	60		0.10		%			12/10/12 16:41	1
Percent Moisture	40		0.10		%			12/10/12 16:41	1

5

7

8

4.6

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Client Sample ID: LRIS-LR-110-3 Lab Sample ID: 580-36242-20

Date Collected: 12/03/12 10:35 Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	12000		2000	610	mg/Kg			12/11/12 13:20	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	58		0.10		%			12/10/12 16:41	1

4

5

7

8

9

10

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-120-2

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-27

Matrix: Solid

Date Collected: 12/03/12 12:20 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	12000		2000	610	mg/Kg			12/11/12 13:24	1
						_	_		
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Percent Solids	Result	Qualifier	0.10 RL	RL	Wnit %	D	Prepared	Analyzed 12/10/12 16:41	Dil Fac

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-122-2

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-31

Matrix: Solid

Date Collected: 12/03/12 15:22 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	12000		2000	610	mg/Kg			12/11/12 13:28	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	65		0.10		%			12/10/12 16:41	1
Percent Moisture	35		0.10		%			12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Client Sample ID: LRIS-LR-124-2

Lab Sample ID: 580-36242-36

Date Collected: 12/03/12 09:50 Date Received: 12/07/12 08:50 Matrix: Solid

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	8500		2000	610	mg/Kg			12/11/12 13:32	1
Amelute	D14	O	D.	ъ.	Unit	_	Dronorod	A malumad	Dil Fac
Analyte	Result	Qualifier	RL	KL	Unit	D	Prepared	Analyzed	Diriac
Percent Solids	Result 65	Quaimer	0.10	- KL	%	— - -	Prepared	12/10/12 16:41	1

5

7

0

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-43

Matrix: Solid

Client Sample ID: LRIS-LR-126-2 Date Collected: 12/02/12 12:40

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	7600		2000	610	mg/Kg			12/11/12 13:37	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Percent Solids	Result 69	Qualifier	RL 0.10	RL	Unit %	D	Prepared	Analyzed 12/10/12 16:41	Dil Fac

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-47

Client Sample ID: LRIS-LR-126 Date Collected: 12/04/12 08:56

Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	9200		2000	610	mg/Kg			12/11/12 13:41	1
I									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Percent Solids	Result 62	Qualifier	0.10 —	RL	Unit %	D	Prepared	Analyzed 12/10/12 16:41	Dil Fac

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-48

Matrix: Solid

Date Collected: 12/02/12 13:50 Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-129-2

General Chemistry						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	7300		2000	610	mg/Kg			12/11/12 13:45	1
Analyte	Result	Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fac
					O.I.I.	_	. roparoa	Allalyzou	
Percent Solids	65		0.10		%	— <u>-</u> -	Tropulou	12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Client Sample ID: LRIS-LR-129

Lab Sample ID: 580-36242-52

Matrix: Solid

Date Collected: 12/04/12 10:10 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	13000		2000	610	mg/Kg			12/11/12 13:54	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	53		0.10		%			12/10/12 16:41	1
1 or contract	•••		0.10		, 0				

0

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

2 52

Client Sample ID: LRIS-LR-130-2

Lab Sample ID: 580-36242-53

Matrix: Solid

Date Collected: 12/02/12 14:40 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	3700		2000	610	mg/Kg			12/11/12 13:58	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	74		0.10		%			12/10/12 16:41	1
Percent Moisture	26		0.10		%			12/10/12 16:41	1

5

7

0

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Client Sample ID: LRIS-LR-130-FD Lab Sample ID: 580-36242-54 Date Collected: 12/02/12 14:40

Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2000		2000	610	mg/Kg			12/11/12 14:02	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	73		0.10		%			12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-130

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-58

Matrix: Solid

Date Collected: 12/04/12 10:24 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	6100		2000	610	mg/Kg			12/11/12 14:06	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	62		0.10		%			12/10/12 16:41	1
Percent Moisture	38		0.10		%			12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Client Sample ID: LRIS-LR-130-FD-1 Lab Sample ID: 580-36242-59

Date Collected: 12/04/12 10:24

Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	7500		2000	610	mg/Kg			12/11/12 14:11	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	60		0.10		%			12/10/12 16:41	1
Percent Moisture	40		0.10		%			12/10/12 16:41	1

4

5

7

8

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-60

Matrix: Solid

Date Collected: 12/02/12 16:30 Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-131-2

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	17000		2000	610	mg/Kg			12/11/12 14:15	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	58		0.10		%			12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-131

TestAmerica Job ID: 580-36242-1

12/10/12 16:41

Lab Sample ID: 580-36242-63

Matrix: Solid

Date Collected: 12/04/12 11:15 Date Received: 12/07/12 08:50

Percent Moisture

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	6400		2000	610	mg/Kg			12/11/12 14:19	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	62		0.10		%			12/10/12 16:41	1

0.10

6

7

8

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-132-2

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-64

Matrix: Solid

Date Collected: 12/03/12 14:00 Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	12000		2000	610	mg/Kg			12/11/12 14:23	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	70		0.10		%			12/10/12 16:41	1
Percent Moisture	30		0.10		%			12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Percent Solids

Percent Moisture

TestAmerica Job ID: 580-36242-1

12/10/12 16:41 12/10/12 16:41

Client Sample ID: LRIS-LR-133-2 Lab Sample ID: 580-36242-69

Date Collected: 12/03/12 15:15
Date Received: 12/07/12 08:50
Matrix: Solid

64

36

General Chemistry Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 12000 2000 610 mg/Kg 12/11/12 14:27 **Total Organic Carbon** Result Qualifier RL RL Unit D Analyte Analyzed Dil Fac Prepared

0.10

0.10

%

%

5

6

8

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-134-2

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-74

Matrix: Solid

Metuiss Solie

Date Collected: 12/02/12 10:20 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	10000		2000	610	mg/Kg			12/11/12 14:31	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	62		0.10		%			12/10/12 16:41	1
Percent Moisture	38		0.10		%			12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Lab Sample ID: 580-36242-93

Matrix: Solid

Client Sample ID: LRIS-LR-137 Date Collected: 12/04/12 09:14

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	9600		2000	610	mg/Kg			12/11/12 15:31	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	58		0.10		%			12/10/12 16:41	1
Percent Moisture	42		0.10		%			12/10/12 16:41	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Method: 9060_PSEP - TOC (Puget Sound)

Lab Sample ID: MB 580-126310/3 Client Sample ID: Method Blank **Matrix: Solid**

Prep Type: Total/NA

Analysis Batch: 126310

мв мв

Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 2000 12/11/12 12:50 **Total Organic Carbon** ND 610 mg/Kg

Lab Sample ID: LCS 580-126310/4 Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 126310

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Organic Carbon 2850 3080 mg/Kg 108 27.8 - 170

Lab Sample ID: LCSD 580-126310/5 Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 126310

LCSD LCSD RPD Spike %Rec. Added Result Qualifier Unit D %Rec Limits RPD Limit 2850 2840 Total Organic Carbon mg/Kg 27.8 - 170

Lab Sample ID: 580-36242-5 MS Client Sample ID: LRIS-LR-103 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 126310

Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits 12000 122000 Total Organic Carbon 143000 mg/Kg 108 50 - 140

Lab Sample ID: 580-36242-5 MSD Client Sample ID: LRIS-LR-103 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 126310

Sample Sample Spike MSD MSD %Rec. RPD Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit 12000 107000 108 50 - 140 Total Organic Carbon 127000 35 mg/Kg

Lab Sample ID: 580-36242-5 DU Client Sample ID: LRIS-LR-103 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 126310

Sample Sample DU DU RPD Result Qualifier Result Qualifier Analyte Unit RPD Limit **Total Organic Carbon** 12000 11800 mg/Kg

Lab Sample ID: MB 580-126317/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 126317

мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Organic Carbon ND 2000 610 mg/Kg 12/11/12 15:24

Lab Sample ID: LCS 580-126317/4

Matrix: Solid

Analysis Batch: 126317

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits 2850 **Total Organic Carbon** 3150 mg/Kg 110 27.8 - 170

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

QC Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-1

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 580-126317/5

Lab Sample ID: 580-36242-93 MS

Lab Sample ID: 580-36242-93 MSD

Matrix: Solid

Matrix: Solid

Matrix: Solid

Analysis Batch: 126317

Spike LCSD LCSD %Rec. RPD Added Result Qualifier RPD Limit Analyte Unit Limits %Rec 2850 Total Organic Carbon 3630 127 27.8 _ 170 mg/Kg 14

Client Sample ID: LRIS-LR-137

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 126317

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D Total Organic Carbon 9600 109000 130000 mg/Kg 111 50 - 140

Client Sample ID: LRIS-LR-137

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 126317

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits RPD Limit Total Organic Carbon 9600 104000 125000 mg/Kg

Lab Sample ID: 580-36242-93 DU Client Sample ID: LRIS-LR-137 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 126317

Sample Sample DU DU RPD Result Qualifier Result Qualifier Unit Limit Total Organic Carbon 9600 9050 mg/Kg 50

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-36242-74 DU Client Sample ID: LRIS-LR-134-2

Matrix: Solid

Analysis Batch: 126165

Analysis Daton. 120100									
	Sample	Sample	DU	DU				RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit	
Percent Solids	62		64		%		 3	20	
Percent Moisture	38		36		%		4	20	

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-103

Date Collected: 12/04/12 11:55 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-5

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 12:57	RB	TAL SEA

Client Sample ID: LRIS-LR-106 Lab Sample ID: 580-36242-10

Date Collected: 12/04/12 11:42

Date Received: 12/07/12 08:50

_								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060 PSEP		1	126310	12/11/12 13:12	RB	TAL SEA

Client Sample ID: LRIS-LR-109-3 Lab Sample ID: 580-36242-16

Date Collected: 12/02/12 15:15

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 13:16	RB	TAL SEA

Client Sample ID: LRIS-LR-110-3 Lab Sample ID: 580-36242-20

Date Collected: 12/03/12 10:35

Date Received: 12/07/12 08:50

		Batch	Batch		Dilution	Batch	Prepared		
Pre	ер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Tot	al/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA
Tot	al/NA	Analysis	9060_PSEP		1	126310	12/11/12 13:20	RB	TAL SEA

Client Sample ID: LRIS-LR-120-2 Lab Sample ID: 580-36242-27

Date Collected: 12/03/12 12:20

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 13:24	RB	TAL SEA

Client Sample ID: LRIS-LR-122-2 Lab Sample ID: 580-36242-31

Date Collected: 12/03/12 15:22

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-122-2

Lab Sample ID: 580-36242-31

Matrix: Solid

Date Collected: 12/03/12 15:22 Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 13:28	RB	TAL SEA

Client Sample ID: LRIS-LR-124-2 Lab Sample ID: 580-36242-36

Date Collected: 12/03/12 09:50

Matrix: Solid

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 13:32	RB	TAL SEA

Client Sample ID: LRIS-LR-126-2 Lab Sample ID: 580-36242-43

Date Collected: 12/02/12 12:40 Date Received: 12/07/12 08:50

Matrix: Solid

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis D 2216 126165 12/10/12 16:41 JL TAL SEA 9060 PSEP 126310 12/11/12 13:37 RB TAL SEA Total/NA Analysis 1

Client Sample ID: LRIS-LR-126 Lab Sample ID: 580-36242-47

Date Collected: 12/04/12 08:56 Date Received: 12/07/12 08:50

Matrix: Solid

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Туре Run Factor Number Analyst Lab Total/NA D 2216 126165 12/10/12 16:41 JL TAL SEA Analysis 126310 Total/NA Analysis 9060_PSEP 1 12/11/12 13:41 RR TAL SEA

Client Sample ID: LRIS-LR-129-2 Lab Sample ID: 580-36242-48

Date Collected: 12/02/12 13:50 Date Received: 12/07/12 08:50

Matrix: Solid

Batch Dilution Batch Prepared Batch Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis D 2216 126165 12/10/12 16:41 JL TAL SEA TAL SEA Total/NA Analysis 9060_PSEP 1 126310 12/11/12 13:45 RB

Client Sample ID: LRIS-LR-129 Lab Sample ID: 580-36242-52

Date Collected: 12/04/12 10:10

Matrix: Solid

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 13:54	RB	TAL SEA

2

TestAmerica Job ID: 580-36242-1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-130-2

Date Collected: 12/02/12 14:40 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-53

Matrix: Solid

Matrix: Solid

Matrix: Solid

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis D 2216 126165 12/10/12 16:41 JL TAL SEA 9060_PSEP 126310 12/11/12 13:58 Total/NA Analysis 1 RB TAL SEA

Client Sample ID: LRIS-LR-130-FD Lab Sample ID: 580-36242-54

Date Collected: 12/02/12 14:40

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 14:02	RB	TAL SEA

Client Sample ID: LRIS-LR-130 Lab Sample ID: 580-36242-58

Date Collected: 12/04/12 10:24

Date Received: 12/07/12 08:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 14:06	RB	TAL SEA

Client Sample ID: LRIS-LR-130-FD-1 Lab Sample ID: 580-36242-59

Date Collected: 12/04/12 10:24

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		- 1 dotol 1	126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 14:11	RB	TAL SEA

Client Sample ID: LRIS-LR-131-2 Lab Sample ID: 580-36242-60

Date Collected: 12/02/12 16:30

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126310	12/11/12 14:15	RB	TAL SEA

Client Sample ID: LRIS-LR-131 Lab Sample ID: 580-36242-63

Date Collected: 12/04/12 11:15

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA

TestAmerica Seattle

Page 30 of 43

12/13/2012

5

6

1

9

10

11

0-36242-60 Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Lab Sample ID: 580-36242-63

Date Collected: 12/04/12 11:15 Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-131

Matrix: Solid

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 9060 PSEP 126310 12/11/12 14:19 RB TAL SEA

Lab Sample ID: 580-36242-64

Client Sample ID: LRIS-LR-132-2 Date Collected: 12/03/12 14:00 Matrix: Solid

Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed Prep Type Type Run Analyst Lab Total/NA Analysis D 2216 1 126165 12/10/12 16:41 JL TAL SEA Total/NA 9060_PSEP 126310 12/11/12 14:23 RB TAL SEA Analysis

1

Client Sample ID: LRIS-LR-133-2 Lab Sample ID: 580-36242-69

Date Collected: 12/03/12 15:15 Matrix: Solid

Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis D 2216 126165 12/10/12 16:41 JL TAL SEA 126310 12/11/12 14:27 RB TAL SEA Total/NA Analysis 9060 PSEP 1

Client Sample ID: LRIS-LR-134-2 Lab Sample ID: 580-36242-74

Date Collected: 12/02/12 10:20 Matrix: Solid

Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Туре Run Factor Number Analyst Lab Total/NA D 2216 126165 12/10/12 16:41 JL TAL SEA Analysis Total/NA Analysis 9060_PSEP 1 126310 12/11/12 14:31 RR TAL SEA

Client Sample ID: LRIS-LR-137 Lab Sample ID: 580-36242-93

Date Collected: 12/04/12 09:14 **Matrix: Solid**

Date Received: 12/07/12 08:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	126165	12/10/12 16:41	JL	TAL SEA
Total/NA	Analysis	9060_PSEP		1	126317	12/11/12 15:31	RB	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Maul Foster & Alongi Inc
Project/Site: Port of Ridgefield
TestAmerica Job ID: 580-36242-1

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date			
Alaska (UST)	State Program	10	UST-022	03-04-13			
California	NELAC	9	1115CA	01-31-13			
L-A-B	DoD ELAP		L2236	01-19-13			
L-A-B	ISO/IEC 17025		L2236	01-19-13			
Montana (UST)	State Program	8	N/A	04-30-20			
Oregon	NELAC	10	WA100007	11-06-13			
USDA	Federal		P330-11-00222	05-20-14			
Washington	State Program	10	C553	02-17-13			

2

4

5

6

8

g

10

Sample Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-36242-5	LRIS-LR-103	Solid	12/04/12 11:55	12/07/12 08:50
580-36242-10	LRIS-LR-106	Solid	12/04/12 11:42	12/07/12 08:50
580-36242-16	LRIS-LR-109-3	Solid	12/02/12 15:15	12/07/12 08:50
580-36242-20	LRIS-LR-110-3	Solid	12/03/12 10:35	12/07/12 08:50
580-36242-27	LRIS-LR-120-2	Solid	12/03/12 12:20	12/07/12 08:50
580-36242-31	LRIS-LR-122-2	Solid	12/03/12 15:22	12/07/12 08:50
580-36242-36	LRIS-LR-124-2	Solid	12/03/12 09:50	12/07/12 08:50
580-36242-43	LRIS-LR-126-2	Solid	12/02/12 12:40	12/07/12 08:50
580-36242-47	LRIS-LR-126	Solid	12/04/12 08:56	12/07/12 08:50
580-36242-48	LRIS-LR-129-2	Solid	12/02/12 13:50	12/07/12 08:50
580-36242-52	LRIS-LR-129	Solid	12/04/12 10:10	12/07/12 08:50
580-36242-53	LRIS-LR-130-2	Solid	12/02/12 14:40	12/07/12 08:50
580-36242-54	LRIS-LR-130-FD	Solid	12/02/12 14:40	12/07/12 08:50
580-36242-58	LRIS-LR-130	Solid	12/04/12 10:24	12/07/12 08:50
580-36242-59	LRIS-LR-130-FD-1	Solid	12/04/12 10:24	12/07/12 08:50
580-36242-60	LRIS-LR-131-2	Solid	12/02/12 16:30	12/07/12 08:50
580-36242-63	LRIS-LR-131	Solid	12/04/12 11:15	12/07/12 08:50
580-36242-64	LRIS-LR-132-2	Solid	12/03/12 14:00	12/07/12 08:50
580-36242-69	LRIS-LR-133-2	Solid	12/03/12 15:15	12/07/12 08:50
580-36242-74	LRIS-LR-134-2	Solid	12/02/12 10:20	12/07/12 08:50
580-36242-93	LRIS-LR-137	Solid	12/04/12 09:14	12/07/12 08:50

4

5

6

8

9

9

ž

Trip Blank?

21		(44. ¹ 43)							ive with the	12	ITEM#	Lab Quote #:	PM email	Phone/Fax:	Lab PM:		Address:	Lab:	Lab Info	
	LRIS-LR-110-4	LRIS-LR-110-3	LRIS-LR-110-2	LRIS-LR-109-5	LRIS-LR-109-4	LRIS-LR-109-3	LRIS-LR-109-2	LRIS-LR-108-5	LRIS-LR-108-4	LRIS-LR-108-3	Field Sample	te#:		ax: //				Unknown Laboratory	Lab Information:	
											Field Sample No. //dentification	PM Email:	Phone/Fax:	PM Name	City	Site Address		Site Code: Lake	Project Information:	
20	o SI	SI	St	SI	SI	S	0 81	o s	O St	St					State, Zip			Lake River Industrial Site	on:	The
SUB_S	GES-O S ⁻ BNS	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S	MATRIX CODE							ite		Chain-of-Cus
		ი	0	n	റ	ଜ	n	0	0	0	G=GRAB C=COMP			(0			,		^	ody is a LE
12/03/2012 10:45	12/03/2012 10:40	12/03/2012 10:35	12/03/2012 10:30	12/02/2012 15:25	12/02/2012 15:20	12/02/2012 15:15	12/02/2012 15:10	12/03/2012 11:35	12/03/2012 11:30	12/03/2012 11:25	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chain-of-Cuetody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.
12 10:45	12 10:40	2 10:35	2 10:30	2 15:25	2 15:20	2 15:15	2 15:10	2 11:35	2 11:30	2 11:25									on:	evant fields must be con
ω	ω	ω	ω	ω	3	ω	ယ	ω	3	ယ	#OF CONTAINERS									pjeted and
											Comment	Preserv	ativ			Phone #:				
×	×	×	×	×	×	×	×	×	×	$\lceil \times \rceil$	Archive	Preserv	ally Ske	e	Ead	ivotes	Notes:	TAT	 ota	Task:
		×				×					1613B - Dioxin/Furan						Ţ	ĺ	lotal # of Samples:	2
		×				×					Total Organic Carbon - COE 9060						Field Filtered, H= Hold		ies: yr	
							ļ .						_				= Hold			201
																		Rush	. 17	2012_LR_SED
								-											Event Complete	- LOamploto
																			Ĺ	

2012_LR_SED

및 및

\$ 300 miles			90 W. J. S				6			23	ITEM#	Lab Quote #:	PM email	Phone/Fa	Lab PM:		Address:	Lab:	Lab Information:	
LRIS-LR-122-4	LRIS-LR-122-3	LRIS-LR-122-2	LRIS-LR-120-5	LRIS-LR-120-4	LRIS-LR-120-3	LRIS-LR-120-2	LRIS-LR-119-5	LRIS-LR-119-4	LRIS-LR-119-3	LRIS-LR-119-2	Field Sample	te #:		X: /				Unknown Laboratory	rmation:	
											Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City State, Zip	Site Address	Project#	Site Code: Lake River Industrial Site	Project Information:	
SUB_S O-SED	SUB_S	SUB_S O-SED	SUB_S O-SED	S_B_S	SUB_S	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							al Site		The Chain-of-C
		C	0	n	ര .	ര	0	0	O,	n	G=GRAB C=COMP			(0)	77		Δ.	(0	0	ustody is a LEG
12/03/2012 15:22	12/03/2012 15:22	12/03/2012 15:22	12/03/2012 12:35	12/03/2012 12:30	12/03/2012 12:25	12/03/2012 12:20	12/03/2012 14:45	12/03/2012 14:40	12/03/2012 14:35	12/03/2012 14:30	SAMPLE DATE	CC Hardcopy to	C Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.
ω	ω.	ω	ω	ω	ω	ω	ω	ω	ω.	ω	#OF CONTAINERS									ust be complete
											Comment					Phone #:				
×	×	×	×	×	×	×	×	×	×	×	Analysis Archive	Preserv	ativ	/e	Lat	Notes	Notes:	TAT	lotai	lask:
		×				×					1613B - Dioxin/Furan						F= Field	_	lotal # of Samples:	- L
		×				×					Total Organic Carbon - COE 9060	-					F= Field Filtered , H= Hold		pies: 9/	
																	PPOH =H			707
																		Rush		2012_LK_SED
														•					Event Complete r	Disant Camplatas
				<u> </u>	1	Pa	 ge 36	of 4	3							•] 12	L /1:]	<u> </u>

menter de la compaction de la compaction

LRIS-LR-126-3

SUB_S O-SED

12/02/2012 12:45

Lab PM:
Phone/Fax: /
PM email
Lab Quote #:

ITEM#

Color Colo					1011101		1							2
Project Intervention: Proj			he Chain-d-Cus	shodyis a Li	EGAL DOCUMENT. All relevant fields must be	completed and		ask:	1 # of Com	plac: 07	201	2_LR_SED)1 2
	formation:	Project Information:			Other Information:							1	<u> </u>	3/2
Co-100-11 Co-1	Unknown Laboratory	Site Code: Lake River Industria	Site		Send Invoice to:			25 -	e: E= Field		H= Hold	Nesi		2/1
	58:	Project #			Address:			erc)	3, 1 1 1 1 1 1 1 1 1 1 1					12
Column C		Site Address			City/State.) Woles						
Pinklation Pin	A:				PO#		202	La	ļ.					
Priority	Fax: /				Send EDD to			ve						
PM Emple No. Mediatification PREFIXED PROCESSING	<u>a.</u>	Phone/Fax:			CC Hardcopy to									
Field Sample No. Identification	iote#:	PM Email:			CC Hardcopy to			erv						
Field Sample No. Adentification Supplie No. Adentification Supplie No. Adentification Supplie No. Adentification Supplie No. Adentification Supplie No. Adentification Supplie No. Adentification Supplie No. S	, ;							Pres						
Field Sample No. Reput Matrix CO. Substitute			DE	ОМР	ATE	NERS			uran	rbon -				
SUB-S C 120022012 12:50 S X X X X X X X X X	Field Sample	No. /Identification	MATRIX COL	G≖GRAB C=C	SAMPLE DA	#OF CONTAIN		ACCOUNT OF STATE OF S						
SUB_S C 120022012 12:50 3	LRIS-LR-126-4		SUB_S O-SED	n	12/02/2012 12:47	ω								
SOIL- C 120042012 13:50 3	LRIS-LR-126-5		SUB_S O-SED	C	12/02/2012 12:50	ω			^					3
SUB_S C 12/02/2012 13:50 3	LRIS-LR-126		SED SED	n	12/04/2012 08:56	ω				×				3 of 43
SUB_S G 12/02/2012 13:55 3	LRIS-LR-129-2		SUB_S O-SED	0	12/02/2012 13:50	ω				×				ge 38
SUB_S O-SED G 12/02/2012 14:00 3 X </td <td>LRIS-LR-129-3</td> <td></td> <td>SUB_S O-SED</td> <td>െ</td> <td>12/02/2012 13:55</td> <td>ω</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Pa</td>	LRIS-LR-129-3		SUB_S O-SED	െ	12/02/2012 13:55	ω								Pa
SUB_S O-SED C 12/02/2012 14:05 3 X </td <td>LRIS-LR-129-4</td> <td></td> <td>SUB_S O-SED</td> <td>െ</td> <td>12/02/2012 14:00</td> <td>ω</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td>	LRIS-LR-129-4		SUB_S O-SED	െ	12/02/2012 14:00	ω			×					
SOIL- SED C 12/04/2012 10:10 3 X X X X SUB_S O-SED C 12/02/2012 14:40 3 X <td< td=""><td>LRIS-LR-129-5</td><td></td><td>SUB_S O-SED</td><td>C</td><td>12/02/2012 14:05</td><td>ω.</td><td></td><td></td><td> × </td><td> </td><td></td><td></td><td></td><td></td></td<>	LRIS-LR-129-5		SUB_S O-SED	C	12/02/2012 14:05	ω.			× 					
SUB_S O-SED C 12/02/2012 14:40 3 X X X QAQC 12/02/2012 14:40 3 X X SUB_S O-SED 12/02/2012 14:45 3 X X	LRIS-LR-129		SOIL-	n	12/04/2012 10:10	ω				×		-		
QAQC 12/02/2012 14:40 3 X X SUB_S 12/02/2012 14:45 3 X X	LRIS-LR-130-2		SUB_S O-SED	ဂ	12/02/2012 14:40	ω			-	×				
SUB_S 12/02/2012 14:45 3 0-SED	LRIS-LR-130-FD		QAQC		12/02/2012 14:40	ω		yes and years the same		×				
			SUB_S O-SED		12/02/2012 14:45	ω			×					

욕 육

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

8 8 8 8 ERIS										LRIS-	ПЕМ#	Lab Quote #:	PM email	Phone/Fax: /	Lab PM:		ess:	Lab: Unl	Lab Information:	
LRIS-LR-132-2 LRIS-LR-132-3	LR-132-2		LRIS-LR-131	LRIS-LR-131-4	LRIS-LR-131-3	LRIS-LR-131-2	LRIS-LR-130-FD-1	LRIS-LR-130	LRIS-LR-130-5	LRIS-LR-130-4	Field Sample							Unknown Laboratory	on:	
							:				Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address		Site Code: La	Project Information:	
											a				State, Zip			Lake River Industrial Site	ation:	4
ν Ε	SUB_S	SUB_S O-SED	SOIL-	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	QAQC	SOIL-	SUB_S O-SED	SUB_S O- SE D	MATRIX CODE							Site		њ Chain-of-С
		. 0	ი	O	ര	ര	C _c	C	n	ο,	G=GRAB C=COMP						į		_	ustody Is a LE
12/03/2012 14:10	12/03/2012 14:05	12/03/2012 14:00	12/04/2012 11:15	12/02/2012 16:40	12/02/2012 16:35	12/02/2012 16:30	12/04/2012 10:24	12/04/2012 10:24	12/02/2012 14:55	12/02/2012 14:50	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chain-of-Custody is a LEGAL DOCLIMENT, All relevant fields must be completed and accurate.
4:10	4:05	4:00	1:15	6:40	6:35	6:30	0:24	0:24	4:55	4:50			Ī							fields must be
ω	ω	ω	ω	ω	ω	ω	မ	ω	ω	ω	#OF CONTAINERS									completed and
											Com					Phone #:				accurate.
					75						Ommodent	Presen				Notes				T-I
×	×	×	×	×	×	×	×	×	×	×	Archive				i intracio		Notes:	TAT	10101 #	Task:
		×	×			×	×	×			1613B - Dioxin/Furan			••••		,	F= Field		Total # of Campies.	-60
		×	×			×	×	×			Total Organic Carbon - COE 9060						Field Filtered, H= Hold		100	07
																	H= Hold			201
																		Rush		2012_LR_SED
																			- F	ij
		ļ .																	Lydia Complete:	a market
																			•	٦

LRIS-LR-134-5

LRIS-LR-134-4

SUB_S

12/02/2012 10:30

SUB_S O-SED

12/02/2012 10:35

 \times

 \times

LRIS-LR-136

12/04/2012 10:39

 \times

2012_LR_SED

	97	96	93	Ē.	8	92 22	9	90	88	ITEM#	Lab Qı	PM email	Phone/Fax:	Lab PM:		Address:	Lab:	Lab in		
	LRIS-LR-PS-SRM	LRIS-LR-RB-20121204	LRIS-LR-RB-20121203	LRIS-LR-RB-20121202	LRIS-LR-137	LRIS-LR-137-5	LRIS-LR-137-4	LRIS-LR-137-3	LRIS-LR-137-2	Field Sample	Lab Quote #:	nail	/Fax: /	M:		88: -	Lab: Unknown Laboratory	formation:		
										Field Sample No. Adentification	PM Email:	Phone/Fax:	PM Name	City	Site Address	Project #	Site Code: Lake F	Project Information:		
	(0 S)	۵	O.	ည	(0 ⁽⁰)	ဂု ႘	့	ဝှ ဋ	ဝှ ရ					State, Zip			Lake River Industrial Site	1:	The C	
	SOIL- SED	QAQC	OAQC	QAQC	SOIL-	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							ਰ		hain-of-Cus	
	C	ი	ი	മ	စ	n	0	O.	0	G≃GRAB C=COMP			(1)			7	(0		body is a LE	
	11/26/2012 10:00	12/04/2012 17:35	12/03/2012 17:30	12/02/2012 17:00	12/04/2012 09:14	12/02/2012 12:20	12/02/2012 12:17	12/02/2012 12:15	12/02/2012 12:10	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chair-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.	
	2 10:00	2 17:35	2 17:30	2 17:00	2 09:14	2 12:20	2 12:17	2 12:15	2 12:10									on:	vant fields must be compl	
٠	2		N	2	ω	ω	ယ	ω	ω	#OF CONTAINERS									eted and a	
										Comment					Phone #:		A SALAN AND AND AND AND AND AND AND AND AND A	, my 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ourate.	
ji						1				Analysis	Preserv	ativ	/e	Lai) Notes		Calaba		To To	- Jack
	×	×	×	×	×	×	×	×	×	Archive						Notes: F=	1		otal # of	_
	×	×			×			ļ		1613B - Dioxin/Furan						Field Fi			Total # of Samples:	
					×					Total Organic Carbon - COE 9060						Field Filtered, H= Hold			s: 97	
																무				2
											-						Rush	1	E/ E/ C/ OF D	フースの団造
																			Event Complete?	
															÷				3/2	

Login Sample Receipt Checklist

Client: Maul Foster & Alongi Inc Job Number: 580-36242-1

Login Number: 36242 List Source: TestAmerica Seattle

List Number: 1 Creator: Riley, Nicole

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Not requested on COC.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

5

7

9

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-36242-2

Client Project/Site: Port of Ridgefield

Revision: 1

For:

Maul Foster & Alongi Inc 2001 NW 19th Avenue, Suite 200 Portland, Oregon 97239

Attn: Ms. Madi Novak

Pamela R. Johnson

Authorized for release by: 2/6/2013 12:50:00 PM

Pam Johnson
Project Manager I
pamr.johnson@testamericainc.com

..... LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	5
Client Sample Results	6
QC Sample Results	32
Chronicle	38
Certification Summary	43
Sample Summary	44
Chain of Custody	45
Receipt Checklists	54
Isotope Dilution Summary	59

Case Narrative

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-2

3

Job ID: 580-36242-2

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/7/2012 8:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 8 coolers at receipt time were 2.6° C, 2.9° C, 3.4° C, 4.3° C, 4.5° C, 4.6° C, 5.9° C and 6.0° C.

Except:

The container labels for the following samples LRIS-LR-122-2 (580-36242-31), LRIS-LR-122-3 (580-36242-32), LRIS-LR-122-4 (580-36242-33), LRIS-LR-122-5 (580-36242-34), LRIS-LR-126 (580-36242-47) did not match the information listed on the Chain-of-Custody (COC). Sample 31, 32, 33, 34: The container labels list a time of 11:45, 11:50, 11:55, and 12:00 for samples 31, 32, 33, and 34 respectively. The Chain-of-Custody (COC) lists a time of 15:22 for these samples. Sample 47: Container labels list 08:55 while the Chain-of-Custody (COC) lists 08:56 as the sampling time.

In both cases listed above, the samples have been logged in per the information provided on the Chain-of-Custody (COC).

The container label for the following samples LRIS-LR-130-FD (580-36242-54), LRIS-LR-130-FD-1 (580-36242-59), LRIS-LR-134 (580-36242-78) did not match the information listed on the Chain-of-Custody (COC). LRIS-LR-134 has a time of 13:19 on the label. Logged in according to the information provided on the Chain-of-Custody (COC).

LRIS-LR-130-FD is labeled on the container as LRIS-LR-130-2-DUP. LRIS-LR-130-FD-1 is labeled on the container as LRIS-LR-130-DUP. Both samples were lined up per sample time and logged in according to the Chain-of-Custody (COC). CG

Dioxin - Method 1613B

lon abundance ratios are outside criteria for the following samples and for the MB: (MB 320-7287/1-A), LRIS-LR-103 (580-36242-5), LRIS-LR-109-3 (580-36242-16), LRIS-LR-126-2 (580-36242-43), LRIS-LR-129-2 (580-36242-48). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC).

lon abundance ratios are outside criteria for the following samples: LRIS-LR-129 (580-36242-52), LRIS-LR-130 (580-36242-58), LRIS-LR-130-2 (580-36242-53), LRIS-LR-130-FD (580-36242-54), LRIS-LR-130-FD-1 (580-36242-59), LRIS-LR-131-2 (580-36242-60). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC).

Ion abundance ratios are outside criteria for the following samples: LRIS-LR-131 (580-36242-63), LRIS-LR-132-2 (580-36242-64), LRIS-LR-133-2 (580-36242-69), LRIS-LR-PS-SRM (580-36242-97). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC).

Ion abundance ratios are outside criteria for the following samples and in the MB: (MB 320-7414/1-A), LRIS-LR-137 (580-36242-93), LRIS-LR-PS-SRM (580-36242-97). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC).

The concentration of OCDD associated with the following sample exceeded the instrument calibration range: 580-36242-74. This analyte has been qualified with an E flag; however, the peak did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

The concentrations of OCDD associated with the following samples exceeded the instrument calibration range: 580-36242-20, 580-36242-21, 580-36242-31, 580-36242-43. This analyte has been qualified; however, the peaks did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

The concentrations of 580-36242-1, 580-36242-2, 580-36242-3, 580-36242-4, 580-36242-6, 580-36242-7, 580-36242-8 HpCDD associated with the following samples exceeded the instrument calibration range: <&commamerge&>. This analyte has been qualified; however, the peaks did not saturate the instrument detector. Historical data indicate that for the isotope dilution method, dilution and re-analysis will not produce significantly different results from those reported above the calibration range.

Case Narrative

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Job ID: 580-36242-2 (Continued)

Laboratory: TestAmerica Seattle (Continued)

Ion abundance ratios are outside criteria for the following sample: LRIS-LR-RB-20121203 (580-36242-95). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC).

The following samples exhibited elevated noise or matrix interferences for 580-36242-1,580-36242-2, 580-36242-3, 580-36242-4, 580-36242-6, 580-36242-7, 580-36242-8 HpCDD and OCDD requiring the detection limits to be raised appropriately. These analytes were flagged with the "G" qualifier.

Sample LRIS-LR-PS-SRM (580-36242-97) is an SRM that was provied by the client. This sample was prepped twice as two batches were required for job 580-36242. The results for sample LRIS-LR-PS-SRM (580-36242-97) were reported as both primary (prep date 12/12/12) and secondary (prep date 12/14/12) in the final report and billed accordingly.

The following samples LRIS-LR-106 (580-36242-10), LRIS-LR-110-3 (580-36242-20), LRIS-LR-120-2 (580-36242-27), LRIS-LR-122-2 (580-36242-31), LRIS-LR-126-2 (580-36242-43), LRIS-LR-134-2 (580-36242-74) were diluted due to the high OCDD levels. Elevated reporting limits (RLs) for this compound are provided and flagged with a "G" qualifier.

The following samples LRIS-LR-110-3 (580-36242-20), LRIS-LR-122-2 (580-36242-31) were diluted due to the nature of the sample matrix. Elevated reporting limits (RLs) for HpCDD are provided and flagged with a "G" qualifier.

No other analytical or quality issues were noted.

Dioxin Prep

No analytical or quality issues were noted.

Definitions/Glossary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-2

Qualifiers

Dioxin

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio for these samples.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference

Glossary

RL

RPD

TEF

TEQ

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
/IDC	Minimum detectable concentration
MDL	Method Detection Limit
ΛL	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/04/12 11:55

Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-103

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

TestAmerica Job ID: 580-36242-2

Lab Sample ID: 580-36242-5

Matrix: Solid

Percent Solids: 51.6

:	5
Ī	
I	
l	
I	

Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.21	J	0.77	0.040	pg/g	#	12/12/12 13:29	12/13/12 20:11	1
2,3,7,8-TCDF	0.73	JB	0.77	0.051	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
1,2,3,7,8-PeCDD	0.45	J q	3.9	0.083	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
1,2,3,7,8-PeCDF	1.0	J	3.9	0.071	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
2,3,4,7,8-PeCDF	1.1	J	3.9	0.077	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
1,2,3,4,7,8-HxCDD	0.53	J q	3.9	0.055	pg/g	₽	12/12/12 13:29	12/13/12 20:11	1
1,2,3,6,7,8-HxCDD	6.7		3.9	0.056	pg/g	\$	12/12/12 13:29	12/13/12 20:11	1
1,2,3,7,8,9-HxCDD	2.1	J	3.9	0.050	pg/g	₽	12/12/12 13:29	12/13/12 20:11	1
1,2,3,4,7,8-HxCDF	3.2	J	3.9	0.055	pg/g	₽	12/12/12 13:29	12/13/12 20:11	1
1,2,3,6,7,8-HxCDF	1.2	J	3.9	0.051	pg/g	\$	12/12/12 13:29	12/13/12 20:11	1
1,2,3,7,8,9-HxCDF	ND		3.9	0.054	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
2,3,4,6,7,8-HxCDF	1.7	J	3.9	0.053	pg/g	₽	12/12/12 13:29	12/13/12 20:11	1
1,2,3,4,6,7,8-HpCDD	120	В	3.9	0.30	pg/g		12/12/12 13:29	12/13/12 20:11	1
1,2,3,4,6,7,8-HpCDF	16	В	3.9	0.12	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
1,2,3,4,7,8,9-HpCDF	0.64	J	3.9	0.15	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
OCDD	1300	В	7.7	0.68	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
OCDF	32		7.7	0.13	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
Total TCDD	1.7	Вq	0.77	0.040	pg/g	₽	12/12/12 13:29	12/13/12 20:11	1
Total TCDF	2.9	Bq	0.77	0.051	pg/g		12/12/12 13:29	12/13/12 20:11	1
Total PeCDD	2.7	Jq	3.9	0.083	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
Total PeCDF	8.8	q	3.9	0.074	pg/g	₩	12/12/12 13:29	12/13/12 20:11	1
Total HxCDD	28	q	3.9	0.054	pg/g		12/12/12 13:29	12/13/12 20:11	1
Total HxCDF	40		3.9	0.053		₽	12/12/12 13:29	12/13/12 20:11	1
Total HpCDD	240	В	3.9	0.30	pg/g	₽	12/12/12 13:29	12/13/12 20:11	1
Total HpCDF	56	В	3.9	0.14		φ	12/12/12 13:29	12/13/12 20:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD			25 - 164				12/12/12 13:29	12/13/12 20:11	
13C-2,3,7,8-TCDF	78		24 - 169				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,7,8-PeCDD	62		25 - 181				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,7,8-PeCDF	61		24 - 185				12/12/12 13:29	12/13/12 20:11	1
13C-2,3,4,7,8-PeCDF	65		21 - 178				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,4,7,8-HxCDD	62		32 - 141				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,6,7,8-HxCDD	57		28 - 130				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,4,7,8-HxCDF	66		26 - 152				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,6,7,8-HxCDF	69		26 - 123				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,7,8,9-HxCDF	69		29 - 147				12/12/12 13:29	12/13/12 20:11	1
13C-2,3,4,6,7,8-HxCDF	68		28 - 136				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,4,6,7,8-HpCDD	50		23 - 140				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,4,6,7,8-HpCDF	57		28 - 143				12/12/12 13:29	12/13/12 20:11	1
13C-1,2,3,4,7,8,9-HpCDF	62		26 - 138				12/12/12 13:29	12/13/12 20:11	1
13C-OCDD	59		17 - 157				12/12/12 13:29	12/13/12 20:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Client Sample ID: LRIS-LR-106

Date Collected: 12/04/12 11:42 Date Received: 12/07/12 08:50

Lab Sample ID: 580-36242-10

Matrix: Solid

Percent Solids: 47.8

Method: 1613B - Dioxins and	Furans (HRGC/HR	PMS)							
Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	0.35	J	0.84	0.044	pg/g		12/12/12 13:29	12/13/12 20:55	
2,3,7,8-TCDF	0.94	В	0.84	0.055	pg/g	₽	12/12/12 13:29	12/14/12 14:49	
1,2,3,7,8-PeCDD	0.91	J	4.2	0.11	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
1,2,3,7,8-PeCDF	2.2	J	4.2	0.11	pg/g	₽	12/12/12 13:29	12/13/12 20:55	· · · · · · · · ·
2,3,4,7,8-PeCDF	3.1	J	4.2	0.12	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
1,2,3,4,7,8-HxCDD	2.7	J	4.2	0.082	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
1,2,3,6,7,8-HxCDD	23		4.2	0.090	pg/g	\$	12/12/12 13:29	12/13/12 20:55	
1,2,3,7,8,9-HxCDD	6.6		4.2	0.078	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
1,2,3,4,7,8-HxCDF	10		4.2	0.091	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
1,2,3,6,7,8-HxCDF	3.4	J	4.2	0.083	pg/g	\$	12/12/12 13:29	12/13/12 20:55	
1,2,3,7,8,9-HxCDF	ND		4.2	0.084	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
2,3,4,6,7,8-HxCDF	2.5	J	4.2	0.082	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
1,2,3,4,6,7,8-HpCDD	450	В	4.2	0.49	pg/g	\$	12/12/12 13:29	12/13/12 20:55	
1,2,3,4,6,7,8-HpCDF	56	В	4.2	0.29	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
1,2,3,4,7,8,9-HpCDF	2.5	J	4.2	0.35	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
OCDD	4500	BG	290	290	pg/g	\$	12/12/12 13:29	01/11/13 01:01	20
OCDF	88		8.4	0.14	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
Total TCDD	2.3	Вq	0.84	0.044	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
Total TCDF		Bq	0.84	0.052	pg/g		12/12/12 13:29	12/13/12 20:55	
Total PeCDD	5.9		4.2	0.11	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
Total PeCDF	31	-	4.2	0.12	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
Total HxCDD	90		4.2	0.083	pg/g	φ.	12/12/12 13:29	12/13/12 20:55	
Total HxCDF	130	•	4.2	0.085		₽	12/12/12 13:29	12/13/12 20:55	
Total HpCDD	890	В	4.2	0.49	pg/g	₽	12/12/12 13:29	12/13/12 20:55	
Total HpCDF	190	B	4.2	0.32	pg/g	ф.	12/12/12 13:29	12/13/12 20:55	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD	62		25 - 164				12/12/12 13:29	12/13/12 20:55	
13C-2,3,7,8-TCDD	56		25 - 164				12/12/12 13:29	12/14/12 14:49	
13C-2,3,7,8-TCDF	73		24 - 169				12/12/12 13:29	12/13/12 20:55	
13C-2,3,7,8-TCDF	58		24 - 169				12/12/12 13:29	12/14/12 14:49	
13C-1,2,3,7,8-PeCDD	59		25 - 181				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,7,8-PeCDF	59		24 - 185				12/12/12 13:29	12/13/12 20:55	
13C-2,3,4,7,8-PeCDF	61		21 - 178				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,4,7,8-HxCDD	60		32 - 141				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,6,7,8-HxCDD	55		28 - 130				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,4,7,8-HxCDF	64		26 - 152				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,6,7,8-HxCDF	68		26 - 123				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,7,8,9-HxCDF	69		29 - 147				12/12/12 13:29	12/13/12 20:55	
13C-2,3,4,6,7,8-HxCDF	66		28 - 136				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,4,6,7,8-HpCDD	49		23 - 140				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,4,6,7,8-HpCDF	54		28 - 143				12/12/12 13:29	12/13/12 20:55	
13C-1,2,3,4,7,8,9-HpCDF	61		26 - 138				12/12/12 13:29	12/13/12 20:55	
13C-OCDD	46		17 ₋ 157				12/12/12 13:29	01/11/13 01:01	20
13C-OCDD	57		17 - 157				12/12/12 13:29	12/13/12 20:55	
									Dil Fac
Curromata			l imit-						
Surrogate 37Cl4-2,3,7,8-TCDD	%Recovery 101	Qualifier	35 ₋ 197				Prepared 12/12/12 13:29	Analyzed 12/13/12 20:55	Dirac

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/02/12 15:15

Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-109-3

TestAmerica Job ID: 580-36242-2

Lab Sample ID: 580-36242-16

Matrix: Solid

Percent Solids: 60.4

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.14	J q	0.66	0.061	pg/g	<u></u>	12/12/12 13:29	12/13/12 21:40	1
2,3,7,8-TCDF	1.0	В	0.66	0.037	pg/g	₽	12/12/12 13:29	12/14/12 15:26	1
1,2,3,7,8-PeCDD	0.34	J	3.3	0.11	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,7,8-PeCDF	0.73	J	3.3	0.11	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
2,3,4,7,8-PeCDF	1.1	J	3.3	0.12	pg/g	☼	12/12/12 13:29	12/13/12 21:40	1
1,2,3,4,7,8-HxCDD	0.97	J	3.3	0.075	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,6,7,8-HxCDD	5.9		3.3	0.077	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,7,8,9-HxCDD	2.2	J q	3.3	0.069	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,4,7,8-HxCDF	2.1	J	3.3	0.056	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,6,7,8-HxCDF	1.2	J	3.3	0.055	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,7,8,9-HxCDF	ND		3.3	0.058	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
2,3,4,6,7,8-HxCDF	0.70	J	3.3	0.052	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,4,6,7,8-HpCDD	100	В	3.3	0.30	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,4,6,7,8-HpCDF	12	В	3.3	0.12	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
1,2,3,4,7,8,9-HpCDF	0.62	J q	3.3	0.16	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
OCDD	920	В	6.6	0.59	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
OCDF	14		6.6	0.097	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
Total TCDD	1.2	Вq	0.66	0.061	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
Total TCDF	8.8	Вq	0.66	0.056	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
Total PeCDD	2.5	Jq	3.3	0.11	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
Total PeCDF	10	q	3.3	0.12	pg/g	₩	12/12/12 13:29	12/13/12 21:40	1
Total HxCDD	33	q	3.3	0.074	pg/g	₽	12/12/12 13:29	12/13/12 21:40	1
Total HxCDF	32		3.3	0.055	pg/g	₩	12/12/12 13:29	12/13/12 21:40	1
Total HpCDD	200	В	3.3	0.30	pg/g	₩	12/12/12 13:29	12/13/12 21:40	1
Total HpCDF	37	Bq	3.3	0.14	pg/g		12/12/12 13:29	12/13/12 21:40	1

Iotal HPCDF	3/ 60	q 0.0	0.14 pg/g	12/12/12 13.29	12/13/12 21.40	· ·
Isotope Dilution	%Recovery Qu	ualifier Limits		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	80	25 - 164		12/12/12 13:29	12/13/12 21:40	1
13C-2,3,7,8-TCDD	71	25 - 164		12/12/12 13:29	12/14/12 15:26	1
13C-2,3,7,8-TCDF	96	24 - 169		12/12/12 13:29	12/13/12 21:40	1
13C-2,3,7,8-TCDF	72	24 - 169		12/12/12 13:29	12/14/12 15:26	1
13C-1,2,3,7,8-PeCDD	77	25 - 181		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,7,8-PeCDF	76	24 - 185		12/12/12 13:29	12/13/12 21:40	1
13C-2,3,4,7,8-PeCDF	80	21 - 178		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,4,7,8-HxCDD	76	32 - 141		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,6,7,8-HxCDD	78	28 - 130		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,4,7,8-HxCDF	85	26 - 152		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,6,7,8-HxCDF	92	26 - 123		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,7,8,9-HxCDF	90	29 - 147		12/12/12 13:29	12/13/12 21:40	1
13C-2,3,4,6,7,8-HxCDF	92	28 - 136		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,4,6,7,8-HpCDD	70	23 - 140		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,4,6,7,8-HpCDF	81	28 - 143		12/12/12 13:29	12/13/12 21:40	1
13C-1,2,3,4,7,8,9-HpCDF	86	26 - 138		12/12/12 13:29	12/13/12 21:40	1
13C-OCDD	86	17 - 157		12/12/12 13:29	12/13/12 21:40	1
Surrogate	%Recovery Qu	ualifier Limits		Prepared	Analyzed	Dil Fac

TestAmerica Seattle

12/13/12 21:40

12/14/12 15:26

12/12/12 13:29

12/12/12 13:29

35 - 197

35 _ 197

107

96

4

6

8

4.0

1 1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-2

2

Client Sample ID: LRIS-LR-110-3

Lab Sample ID: 580-36242-20
Matrix: Solid

Date Collected: 12/03/12 10:35 Date Received: 12/07/12 08:50

Percent Solids: 58.3

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	3.2		0.69	0.10	pg/g	*	12/12/12 13:29	12/13/12 22:24	
2,3,7,8-TCDF	4.0	В	0.69	0.045	pg/g	₽	12/12/12 13:29	12/14/12 16:04	
1,2,3,7,8-PeCDD	14		3.4	0.18	pg/g	₽	12/12/12 13:29	12/13/12 22:24	
1,2,3,7,8-PeCDF	9.5		3.4	0.25	pg/g	₽	12/12/12 13:29	12/13/12 22:24	
2,3,4,7,8-PeCDF	11		3.4	0.28	pg/g	₽	12/12/12 13:29	12/13/12 22:24	
1,2,3,4,7,8-HxCDD	23		3.4	0.20	pg/g	₩	12/12/12 13:29	12/13/12 22:24	
1,2,3,6,7,8-HxCDD	110		3.4	0.20	pg/g	\$	12/12/12 13:29	12/13/12 22:24	
1,2,3,7,8,9-HxCDD	84		3.4	0.18	pg/g	₩	12/12/12 13:29	12/13/12 22:24	
1,2,3,4,7,8-HxCDF	38		3.4	0.23	pg/g	₩	12/12/12 13:29	12/13/12 22:24	
1,2,3,6,7,8-HxCDF	16		3.4	0.22	pg/g	₽	12/12/12 13:29	12/13/12 22:24	
1,2,3,7,8,9-HxCDF	ND		3.4		pg/g	₽	12/12/12 13:29	12/13/12 22:24	
2,3,4,6,7,8-HxCDF	9.2		3.4		pg/g	₽	12/12/12 13:29	12/13/12 22:24	
1,2,3,4,6,7,8-HpCDD	2100	BG	190		pg/g		12/12/12 13:29	01/11/13 01:46	2
1,2,3,4,6,7,8-HpCDF	180		3.4		pg/g	₽	12/12/12 13:29	12/13/12 22:24	
1,2,3,4,7,8,9-HpCDF	9.8	_	3.4		pg/g	₽	12/12/12 13:29	12/13/12 22:24	
OCDD	20000	B G	450		pg/g		12/12/12 13:29	01/11/13 01:46	2
OCDF	250		6.9		pg/g	₽	12/12/12 13:29	12/13/12 22:24	-
Total TCDD		Bq	0.69		pg/g	₩	12/12/12 13:29	12/13/12 22:24	
Total TCDF		Bq	0.69		pg/g		12/12/12 13:29	12/13/12 22:24	
Total PeCDD	160	q	3.4	0.18		₩	12/12/12 13:29	12/13/12 22:24	
Total PeCDF	130	•	3.4		pg/g	₩	12/12/12 13:29	12/13/12 22:24	
Total HxCDD	810	. Ч	3.4		pg/g		12/12/12 13:29	12/13/12 22:24	
Total HxCDF	440		3.4		pg/g	*	12/12/12 13:29	12/13/12 22:24	
Total HpCDD	4300	B.C	190		pg/g	*	12/12/12 13:29	01/11/13 01:46	:
Total HpCDF	560		3.4		pg/g		12/12/12 13:29	12/13/12 22:24	
-				0.00	P9/9				57.5
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared 40.40.40.40.	Analyzed	Dil Fa
13C-2,3,7,8-TCDD	88		25 - 164				12/12/12 13:29	12/13/12 22:24	
13C-2,3,7,8-TCDD	81		25 - 164				12/12/12 13:29	12/14/12 16:04	
13C-2,3,7,8-TCDF	107		24 - 169				12/12/12 13:29	12/13/12 22:24	
13C-2,3,7,8-TCDF	80		24 - 169				12/12/12 13:29	12/14/12 16:04	
13C-1,2,3,7,8-PeCDD	87		25 - 181				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,7,8-PeCDF	90		24 - 185				12/12/12 13:29	12/13/12 22:24	
13C-2,3,4,7,8-PeCDF	89		21 - 178				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,4,7,8-HxCDD	90		32 - 141				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,6,7,8-HxCDD	89		28 - 130				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,4,7,8-HxCDF	101		26 - 152				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,6,7,8-HxCDF	101		26 - 123				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,7,8,9-HxCDF	101		29 - 147				12/12/12 13:29	12/13/12 22:24	
13C-2,3,4,6,7,8-HxCDF	101		28 - 136				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,4,6,7,8-HpCDD	74		23 - 140				12/12/12 13:29	01/11/13 01:46	
13C-1,2,3,4,6,7,8-HpCDD	82		23 - 140				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,4,6,7,8-HpCDF	89		28 - 143				12/12/12 13:29	12/13/12 22:24	
13C-1,2,3,4,7,8,9-HpCDF	97		26 - 138				12/12/12 13:29	12/13/12 22:24	
13C-OCDD	73		17 - 157				12/12/12 13:29	01/11/13 01:46	
13C-OCDD	106		17 - 157				12/12/12 13:29	12/13/12 22:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
37Cl4-2,3,7,8-TCDD	111		35 _ 197				12/12/12 13:29	12/13/12 22:24	

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/03/12 12:20

Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-120-2

TestAmerica Job ID: 580-36242-2

Lab Sample ID: 580-36242-27

Matrix: Solid
Percent Solids: 57.2

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.46	J	0.70	0.047	pg/g	₩	12/12/12 13:29	12/13/12 23:09	1
2,3,7,8-TCDF	2.1	В	0.70	0.055	pg/g	☼	12/12/12 13:29	12/14/12 16:41	1
1,2,3,7,8-PeCDD	1.7	J	3.5	0.16	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,7,8-PeCDF	3.9		3.5	0.14	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
2,3,4,7,8-PeCDF	3.0	J	3.5	0.16	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,4,7,8-HxCDD	7.2		3.5	0.13	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,6,7,8-HxCDD	46		3.5	0.13	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,7,8,9-HxCDD	17		3.5	0.11	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,4,7,8-HxCDF	12		3.5	0.12	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,6,7,8-HxCDF	8.6		3.5	0.12	pg/g	\$	12/12/12 13:29	12/13/12 23:09	1
1,2,3,7,8,9-HxCDF	ND		3.5	0.12	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
2,3,4,6,7,8-HxCDF	3.5		3.5	0.11	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,4,6,7,8-HpCDD	930	В	3.5	0.61	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,4,6,7,8-HpCDF	92	В	3.5	0.40	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
1,2,3,4,7,8,9-HpCDF	4.3		3.5	0.51	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
OCDD	9500	BG	410	410	pg/g	₽	12/12/12 13:29	01/11/13 02:30	20
OCDF	120		7.0	0.15	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
Total TCDD	9.8	Вq	0.70	0.047	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
Total TCDF	18	Вq	0.70	0.089	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
Total PeCDD	23	q	3.5	0.16	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
Total PeCDF	45	q	3.5	0.15	pg/g	₩	12/12/12 13:29	12/13/12 23:09	1
Total HxCDD	260		3.5	0.12	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1
Total HxCDF	210		3.5	0.12	pg/g	₩	12/12/12 13:29	12/13/12 23:09	1
Total HpCDD	1800	В	3.5	0.61	pg/g	₩	12/12/12 13:29	12/13/12 23:09	1
Total HpCDF	300	В	3.5	0.45	pg/g	₽	12/12/12 13:29	12/13/12 23:09	1

тогат проде	300 E	5.5	0.43 pg/g	T 12	112/12 13.29	12/13/12 23.09	
Isotope Dilution	%Recovery G	Qualifier Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	71	25 _ 164		12	2/12/12 13:29	12/13/12 23:09	1
13C-2,3,7,8-TCDD	65	25 - 164		12	2/12/12 13:29	12/14/12 16:41	1
13C-2,3,7,8-TCDF	84	24 - 169		12	2/12/12 13:29	12/13/12 23:09	1
13C-2,3,7,8-TCDF	66	24 - 169		12	2/12/12 13:29	12/14/12 16:41	1
13C-1,2,3,7,8-PeCDD	64	25 - 181		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,7,8-PeCDF	66	24 - 185		12	2/12/12 13:29	12/13/12 23:09	1
13C-2,3,4,7,8-PeCDF	69	21 - 178		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,4,7,8-HxCDD	63	32 - 141		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,6,7,8-HxCDD	62	28 - 130		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,4,7,8-HxCDF	72	26 - 152		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,6,7,8-HxCDF	70	26 - 123		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,7,8,9-HxCDF	76	29 - 147		12	2/12/12 13:29	12/13/12 23:09	1
13C-2,3,4,6,7,8-HxCDF	73	28 - 136		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,4,6,7,8-HpCDD	54	23 - 140		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,4,6,7,8-HpCDF	58	28 - 143		12	2/12/12 13:29	12/13/12 23:09	1
13C-1,2,3,4,7,8,9-HpCDF	67	26 - 138		12	2/12/12 13:29	12/13/12 23:09	1
13C-OCDD	43	17 - 157		12	2/12/12 13:29	01/11/13 02:30	20
13C-OCDD	65	17 - 157		12	2/12/12 13:29	12/13/12 23:09	1
Surrogate	%Recovery G	Qualifier Limits			Prepared	Analyzed	Dil Fac
37Cl4-2,3,7,8-TCDD	106	35 _ 197		12	2/12/12 13:29	12/13/12 23:09	1

TestAmerica Seattle

12/12/12 13:29 12/14/12 16:41

35 - 197

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-122-2

Date Collected: 12/03/12 15:22 Date Received: 12/07/12 08:50

Lab Sample ID: 580-36242-31

Matrix: Solid Percent Solids: 64.6

Method: 1613B - Dioxins and Analyte	•	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	ND		0.62	0.081	pg/g	\tilde{\pi}	12/12/12 13:29	12/13/12 23:54	
2,3,7,8-TCDF	2.1	В	0.62	0.052	pg/g	₩	12/12/12 13:29	12/14/12 17:19	
1,2,3,7,8-PeCDD	1.4	J	3.1	0.14	pg/g	₩	12/12/12 13:29	12/13/12 23:54	
1,2,3,7,8-PeCDF	6.8		3.1	0.19	pg/g		12/12/12 13:29	12/13/12 23:54	
2,3,4,7,8-PeCDF	6.6		3.1	0.21	pg/g	₩	12/12/12 13:29	12/13/12 23:54	
1,2,3,4,7,8-HxCDD	6.4		3.1	0.12	pg/g	₩	12/12/12 13:29	12/13/12 23:54	
1,2,3,6,7,8-HxCDD	58		3.1	0.13	pg/g		12/12/12 13:29	12/13/12 23:54	
1,2,3,7,8,9-HxCDD	17		3.1	0.11	pg/g	₽	12/12/12 13:29	12/13/12 23:54	
1,2,3,4,7,8-HxCDF	36		3.1	0.22	pg/g	₽	12/12/12 13:29	12/13/12 23:54	
1,2,3,6,7,8-HxCDF	15		3.1		pg/g	ф.	12/12/12 13:29	12/13/12 23:54	
1,2,3,7,8,9-HxCDF	ND		3.1		pg/g	₽	12/12/12 13:29	12/13/12 23:54	
2,3,4,6,7,8-HxCDF	6.9		3.1		pg/g	₽	12/12/12 13:29	12/13/12 23:54	
1,2,3,4,6,7,8-HpCDD	1400	BG	150		pg/g		12/12/12 13:29	01/11/13 03:15	2
1,2,3,4,6,7,8-HpCDF	190		3.1			₩	12/12/12 13:29	12/13/12 23:54	
1,2,3,4,7,8,9-HpCDF	9.9		3.1		pg/g	₩	12/12/12 13:29	12/13/12 23:54	
OCDD	15000	BG	340	340	pg/g		12/12/12 13:29	01/11/13 03:15	2
OCDF	180		6.2		pg/g	₽	12/12/12 13:29	12/13/12 23:54	
Total TCDD	21	В	0.62	0.081	pg/g	₽	12/12/12 13:29	12/13/12 23:54	
Total TCDF		Bq	0.62	0.098		ф	12/12/12 13:29	12/13/12 23:54	
Total PeCDD	32	•	3.1	0.14		₽	12/12/12 13:29	12/13/12 23:54	
Total PeCDF	97	•	3.1	0.20		₩	12/12/12 13:29	12/13/12 23:54	
Total HxCDD	360	. • • • • • • • • • • • • • • • • • • •	3.1		pg/g		12/12/12 13:29	12/13/12 23:54	
Total HxCDF	450		3.1	0.21	pg/g	₩	12/12/12 13:29	12/13/12 23:54	
Total HpCDD	2700	R.G	150	150	pg/g pg/g	₩	12/12/12 13:29	01/11/13 03:15	2
Total HpCDF	580		3.1		pg/g		12/12/12 13:29	12/13/12 23:54	
•				0.01	P9/9				
Isotope Dilution	%Recovery90	Quaimer	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD			25 ₋ 164				12/12/12 13:29	12/13/12 23:54	
13C-2,3,7,8-TCDD	82		25 - 164				12/12/12 13:29	12/14/12 17:19	
13C-2,3,7,8-TCDF	109		24 - 169				12/12/12 13:29	12/13/12 23:54	
13C-2,3,7,8-TCDF	83		24 - 169				12/12/12 13:29	12/14/12 17:19	
13C-1,2,3,7,8-PeCDD	90		25 - 181				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,7,8-PeCDF	87		24 - 185				12/12/12 13:29	12/13/12 23:54	
13C-2,3,4,7,8-PeCDF	93		21 - 178				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,4,7,8-HxCDD	88		32 - 141				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,6,7,8-HxCDD	89		28 - 130				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,4,7,8-HxCDF	101		26 - 152				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,6,7,8-HxCDF	101		26 - 123				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,7,8,9-HxCDF	102		29 - 147				12/12/12 13:29	12/13/12 23:54	
13C-2,3,4,6,7,8-HxCDF	102		28 - 136				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,4,6,7,8-HpCDD	72		23 - 140				12/12/12 13:29	01/11/13 03:15	2
13C-1,2,3,4,6,7,8-HpCDD	78		23 - 140				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,4,6,7,8-HpCDF	88		28 - 143				12/12/12 13:29	12/13/12 23:54	
13C-1,2,3,4,7,8,9-HpCDF	96		26 - 138				12/12/12 13:29	12/13/12 23:54	
13C-OCDD	72		17 - 157				12/12/12 13:29	01/11/13 03:15	2
13C-OCDD	101		17 - 157				12/12/12 13:29	12/13/12 23:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
	<u>-</u>								
37CI4-2,3,7,8-TCDD	108		35 - 197				12/12/12 13:29	12/13/12 23:54	

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-124-2

Date Collected: 12/03/12 09:50 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-36

Matrix: Solid

Percent Solids: 65.4

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	1.1		0.61	0.087	pg/g	<u> </u>	12/12/12 13:29	12/14/12 00:38	
2,3,7,8-TCDF	12	В	0.61	0.070	pg/g	₽	12/12/12 13:29	12/14/12 17:56	
1,2,3,7,8-PeCDD	2.9	J	3.1	0.33	pg/g	₩	12/12/12 13:29	12/14/12 00:38	
1,2,3,7,8-PeCDF	25		3.1	0.39	pg/g	\$	12/12/12 13:29	12/14/12 00:38	
2,3,4,7,8-PeCDF	41		3.1	0.44	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
1,2,3,4,7,8-HxCDD	14		3.1	0.19	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
1,2,3,6,7,8-HxCDD	170		3.1	0.20	pg/g	\$	12/12/12 13:29	12/14/12 00:38	
1,2,3,7,8,9-HxCDD	42		3.1	0.17	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
1,2,3,4,7,8-HxCDF	160		3.1	0.63	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
1,2,3,6,7,8-HxCDF	53		3.1	0.64	pg/g	\$	12/12/12 13:29	12/14/12 00:38	
1,2,3,7,8,9-HxCDF	ND		3.1	0.59	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
2,3,4,6,7,8-HxCDF	23		3.1	0.57	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
1,2,3,4,6,7,8-HpCDD	3300	BG	120	120	pg/g	*	12/12/12 13:29	12/27/12 12:37	20
1,2,3,4,6,7,8-HpCDF	490	В	3.1	1.4	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
1,2,3,4,7,8,9-HpCDF	33		3.1	1.7	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
OCDD	33000	BG	280	280	pg/g	₽	12/12/12 13:29	12/27/12 12:37	20
OCDF	320		6.1	0.25	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
Total TCDD	60	q B	0.61	0.087	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
Total TCDF	170	В	0.61	0.17	pg/g	\$	12/12/12 13:29	12/14/12 00:38	· · · · · · · · ·
Total PeCDD	120	q	3.1	0.33	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
Total PeCDF	570		3.1	0.41	pg/g	₩	12/12/12 13:29	12/14/12 00:38	
Total HxCDD	1000		3.1	0.19	pg/g		12/12/12 13:29	12/14/12 00:38	
Total HxCDF	1800		3.1	0.61	pg/g	₽	12/12/12 13:29	12/14/12 00:38	
Total HpCDD	6800	B G	120	120	pg/g	₽	12/12/12 13:29	12/27/12 12:37	20
Total HpCDF	1500	В	3.1	1.5	pg/g	\$	12/12/12 13:29	12/14/12 00:38	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD			25 - 164				12/12/12 13:29	12/14/12 00:38	
13C-2,3,7,8-TCDD	60		25 - 164				12/12/12 13:29	12/14/12 17:56	
13C-2,3,7,8-TCDF	79		24 - 169				12/12/12 13:29	12/14/12 00:38	
13C-2,3,7,8-TCDF	62		24 - 169				12/12/12 13:29	12/14/12 17:56	
13C-1,2,3,7,8-PeCDD	63		25 - 181				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,7,8-PeCDF	63		24 - 185				12/12/12 13:29	12/14/12 00:38	
13C-2,3,4,7,8-PeCDF	66		21 - 178				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,4,7,8-HxCDD	62		32 - 141				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,6,7,8-HxCDD	59		28 - 130				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,4,7,8-HxCDF	70		26 - 152				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,6,7,8-HxCDF	67		26 - 123				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,7,8,9-HxCDF	72		29 - 147				12/12/12 13:29	12/14/12 00:38	
13C-2,3,4,6,7,8-HxCDF	67		28 - 136				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,4,6,7,8-HpCDD	52		23 - 140				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,4,6,7,8-HpCDD	72		23 - 140				12/12/12 13:29	12/27/12 12:37	20
13C-1,2,3,4,6,7,8-HpCDF	56		28 - 143				12/12/12 13:29	12/14/12 00:38	
13C-1,2,3,4,7,8,9-HpCDF	63		26 - 138				12/12/12 13:29	12/14/12 00:38	
13C-OCDD	66		17 - 157				12/12/12 13:29	12/14/12 00:38	
13C-OCDD	60		17 - 157				12/12/12 13:29	12/27/12 12:37	2
	00		101						_
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	100		35 _ 197				12/12/12 13:29	12/14/12 00:38	
37CI4-2,3,7,8-TCDD	90		35 - 197				12/12/12 13:29	12/14/12 17:56	

TestAmerica Seattle

2

4

<u>و</u>

4.6

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-2

Client Sample ID: LRIS-LR-126-2

Date Collected: 12/02/12 12:40 Date Received: 12/07/12 08:50

13C-OCDD

13C-OCDD

Surrogate

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-43

Matrix: Solid
Percent Solids: 69.0

- 12/0//12 00.50								Percent Son	us. 69.0
Method: 1613B - Dioxins and	•	RMS) Qualifier	DI	EDI	Unit	ь	Drawarad	Analysed	Dil Fa
Analyte			RL	0.032		D	Prepared 42/42/42 42:20	Analyzed	
2,3,7,8-TCDD	0.56					*	12/12/12 13:29	12/14/12 01:22	
2,3,7,8-TCDF	1.1		0.58	0.048		~ \$	12/12/12 13:29	12/14/12 18:34	
1,2,3,7,8-PeCDD	0.63		2.9	0.084			12/12/12 13:29	12/14/12 01:22	
1,2,3,7,8-PeCDF	1.1		2.9	0.080		₩	12/12/12 13:29	12/14/12 01:22	
2,3,4,7,8-PeCDF	1.2		2.9	0.092			12/12/12 13:29	12/14/12 01:22	•
1,2,3,4,7,8-HxCDD	4.4		2.9	0.077		.	12/12/12 13:29	12/14/12 01:22	
1,2,3,6,7,8-HxCDD	14		2.9		pg/g	₩	12/12/12 13:29	12/14/12 01:22	•
1,2,3,7,8,9-HxCDD	12		2.9	0.074		₩	12/12/12 13:29	12/14/12 01:22	
1,2,3,4,7,8-HxCDF	8.7		2.9	0.060			12/12/12 13:29	12/14/12 01:22	
1,2,3,6,7,8-HxCDF	3.3		2.9	0.059		*	12/12/12 13:29	12/14/12 01:22	,
1,2,3,7,8,9-HxCDF	ND		2.9	0.057		*	12/12/12 13:29	12/14/12 01:22	•
2,3,4,6,7,8-HxCDF		Jq	2.9	0.055			12/12/12 13:29	12/14/12 01:22	
1,2,3,4,6,7,8-HpCDD	420	В	2.9		pg/g	₽	12/12/12 13:29	12/14/12 01:22	
1,2,3,4,6,7,8-HpCDF	31	В	2.9	0.18	pg/g	₽	12/12/12 13:29	12/14/12 01:22	
1,2,3,4,7,8,9-HpCDF	2.4	J	2.9	0.20	pg/g		12/12/12 13:29	12/14/12 01:22	
OCDD	3400	BG	320	320	pg/g	₩	12/12/12 13:29	01/11/13 03:59	20
OCDF	42		5.8	0.080	pg/g	₩	12/12/12 13:29	12/14/12 01:22	
Total TCDD	5.5	q B	0.58	0.032	pg/g	₽	12/12/12 13:29	12/14/12 01:22	
Total TCDF	12	q B	0.58	0.055	pg/g	₽	12/12/12 13:29	12/14/12 01:22	
Total PeCDD	17	q	2.9	0.084	pg/g	₽	12/12/12 13:29	12/14/12 01:22	•
Total PeCDF	18	q	2.9	0.086	pg/g	₩	12/12/12 13:29	12/14/12 01:22	•
Total HxCDD	130		2.9	0.080	pg/g	₽	12/12/12 13:29	12/14/12 01:22	
Total HxCDF	74	q	2.9	0.058	pg/g	₽	12/12/12 13:29	12/14/12 01:22	
Total HpCDD	940	В	2.9	0.33	pg/g	₽	12/12/12 13:29	12/14/12 01:22	
Total HpCDF	98	В	2.9	0.19	pg/g	₽	12/12/12 13:29	12/14/12 01:22	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD	70		25 - 164				12/12/12 13:29	12/14/12 01:22	
13C-2,3,7,8-TCDD	63		25 - 164				12/12/12 13:29	12/14/12 18:34	
13C-2,3,7,8-TCDF	83		24 - 169				12/12/12 13:29	12/14/12 01:22	
13C-2,3,7,8-TCDF	63		24 - 169				12/12/12 13:29	12/14/12 18:34	
13C-1,2,3,7,8-PeCDD	67		25 - 181				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,7,8-PeCDF	67		24 - 185				12/12/12 13:29	12/14/12 01:22	
13C-2,3,4,7,8-PeCDF	70		21 - 178				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,4,7,8-HxCDD	71		32 - 141				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,6,7,8-HxCDD	59		28 - 130				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,4,7,8-HxCDF	73		26 - 152				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,6,7,8-HxCDF	74		26 - 123				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,7,8,9-HxCDF	77		29 - 147				12/12/12 13:29	12/14/12 01:22	
13C-2,3,4,6,7,8-HxCDF	74		28 - 136				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,4,6,7,8-HpCDD	55		23 - 140				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,4,6,7,8-HpCDF	60		28 - 143				12/12/12 13:29	12/14/12 01:22	
13C-1,2,3,4,7,8,9-HpCDF	69		26 - 138				12/12/12 13:29	12/14/12 01:22	
	09		20 - 100						

TestAmerica Seattle

20

1

Dil Fac

12/12/12 13:29 01/11/13 03:59

12/14/12 01:22

Analyzed

12/14/12 01:22

12/14/12 18:34

12/12/12 13:29

Prepared

12/12/12 13:29

12/12/12 13:29

17 - 157

17 - 157

Limits

35 - 197

35 - 197

40

64

%Recovery Qualifier

106

92

6

8

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-126 Lab Sample ID: 580-36242-47

Date Collected: 12/04/12 08:56 Matrix: Solid Date Received: 12/07/12 08:50 Percent Solids: 61.6

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	2.0		0.65	0.081	pg/g	<u> </u>	12/12/12 13:29	12/14/12 02:07	
2,3,7,8-TCDF	6.3	В	0.65	0.099	pg/g	₽	12/12/12 13:29	12/14/12 19:11	
1,2,3,7,8-PeCDD	11		3.2	0.16	pg/g	₽	12/12/12 13:29	12/14/12 02:07	
1,2,3,7,8-PeCDF	18		3.2	0.34	pg/g	₽	12/12/12 13:29	12/14/12 02:07	
2,3,4,7,8-PeCDF	19		3.2	0.39	pg/g	≎	12/12/12 13:29	12/14/12 02:07	
1,2,3,4,7,8-HxCDD	37		3.2	0.21	pg/g	₽	12/12/12 13:29	12/14/12 02:07	
1,2,3,6,7,8-HxCDD	260		3.2	0.22	pg/g	₽	12/12/12 13:29	12/14/12 02:07	
1,2,3,7,8,9-HxCDD	120		3.2	0.19	pg/g	₽	12/12/12 13:29	12/14/12 02:07	
1,2,3,4,7,8-HxCDF	110		3.2	1.2	pg/g	₽	12/12/12 13:29	12/14/12 02:07	
1,2,3,6,7,8-HxCDF	33		3.2	1.2	pg/g	\$	12/12/12 13:29	12/14/12 02:07	
1,2,3,7,8,9-HxCDF	ND		3.2	1.2	pg/g	₩	12/12/12 13:29	12/14/12 02:07	
2,3,4,6,7,8-HxCDF	19		3.2	1.2	pg/g	₩	12/12/12 13:29	12/14/12 02:07	
1,2,3,4,6,7,8-HpCDD	4300	G B	180	180	pg/g	₽	12/12/12 13:29	12/27/12 13:20	2
1,2,3,4,6,7,8-HpCDF	620	В	3.2	1.6	pg/g	₽	12/12/12 13:29	12/14/12 02:07	
1,2,3,4,7,8,9-HpCDF	28		3.2	1.7		₽	12/12/12 13:29	12/14/12 02:07	
OCDD	37000	G B	380	380	pg/g		12/12/12 13:29	12/27/12 13:20	2
OCDF	580		6.5		pg/g	₩	12/12/12 13:29	12/14/12 02:07	
Total TCDD		q B	0.65	0.081		₽	12/12/12 13:29	12/14/12 02:07	
Total TCDF		q B	0.65		pg/g		12/12/12 13:29	12/14/12 02:07	
Total PeCDD	120	45	3.2		pg/g	₩	12/12/12 13:29	12/14/12 02:07	
Total PeCDF	260		3.2		pg/g	₽	12/12/12 13:29	12/14/12 02:07	
Total HxCDD	1600		3.2		pg/g		12/12/12 13:29	12/14/12 02:07	
Total HxCDF	1600		3.2		pg/g	*	12/12/12 13:29	12/14/12 02:07	
Total HpCDD	8900	C P	180	180			12/12/12 13:29	12/27/12 13:20	2
Total HpCDF	2100		3.2		pg/g		12/12/12 13:29	12/14/12 02:07	
•				1.0	P9/9				
Isotope Dilution	%Recovery 80	Qualifier	25 ₋ 164				Prepared 12/12/12 13:29	Analyzed 12/14/12 02:07	Dil Fa
13C-2,3,7,8-TCDD	69		25 - 164 25 - 164				12/12/12 13:29	12/14/12 02:07	
13C-2,3,7,8-TCDD									
13C-2,3,7,8-TCDF	96		24 - 169				12/12/12 13:29	12/14/12 02:07	
13C-2,3,7,8-TCDF	73		24 - 169				12/12/12 13:29	12/14/12 19:11	
13C-1,2,3,7,8-PeCDD	76		25 - 181				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,7,8-PeCDF	76		24 - 185				12/12/12 13:29	12/14/12 02:07	
13C-2,3,4,7,8-PeCDF	79		21 - 178				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,4,7,8-HxCDD	74		32 - 141				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,6,7,8-HxCDD	75		28 - 130				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,4,7,8-HxCDF	85		26 - 152				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,6,7,8-HxCDF	86		26 - 123				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,7,8,9-HxCDF	90		29 - 147				12/12/12 13:29	12/14/12 02:07	
13C-2,3,4,6,7,8-HxCDF	85		28 - 136				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,4,6,7,8-HpCDD	68		23 - 140				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,4,6,7,8-HpCDD	85		23 - 140				12/12/12 13:29	12/27/12 13:20	2
13C-1,2,3,4,6,7,8-HpCDF	69		28 - 143				12/12/12 13:29	12/14/12 02:07	
13C-1,2,3,4,7,8,9-HpCDF	82		26 - 138				12/12/12 13:29	12/14/12 02:07	
13C-OCDD	83		17 - 157				12/12/12 13:29	12/14/12 02:07	
13C-OCDD	68		17 - 157				12/12/12 13:29	12/27/12 13:20	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
37CI4-2,3,7,8-TCDD	101		35 - 197				12/12/12 13:29	12/14/12 02:07	
37CI4-2,3,7,8-TCDD	89		35 - 197				12/12/12 13:29	12/14/12 19:11	

TestAmerica Seattle

2/6/2013

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-2

Client Sample ID: LRIS-LR-129-2

Date Collected: 12/02/12 13:50 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-48

Matrix: Solid Percent Solids: 64.8

5

7

9

10

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	ND		0.62	0.29	pg/g	*	12/12/12 13:29	12/14/12 02:51	
2,3,7,8-TCDF	0.66	В	0.62	0.059	pg/g	₩	12/12/12 13:29	12/14/12 19:49	
1,2,3,7,8-PeCDD	0.25	J q	3.1	0.082	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
1,2,3,7,8-PeCDF	0.25	Jq	3.1	0.071	pg/g	₽	12/12/12 13:29	12/14/12 02:51	
2,3,4,7,8-PeCDF	0.30	J	3.1	0.076	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
1,2,3,4,7,8-HxCDD	0.61	Jq	3.1	0.062	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
1,2,3,6,7,8-HxCDD	2.9	J	3.1	0.062	pg/g	₽	12/12/12 13:29	12/14/12 02:51	
1,2,3,7,8,9-HxCDD	1.2	Jq	3.1	0.056	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
1,2,3,4,7,8-HxCDF	1.2	J	3.1	0.062	pg/g	₽	12/12/12 13:29	12/14/12 02:51	
1,2,3,6,7,8-HxCDF	0.99	J	3.1	0.058	pg/g	₽	12/12/12 13:29	12/14/12 02:51	
1,2,3,7,8,9-HxCDF	ND		3.1	0.063	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
2,3,4,6,7,8-HxCDF	1.4	J	3.1	0.055	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
1,2,3,4,6,7,8-HpCDD	57	В	3.1	0.18	pg/g		12/12/12 13:29	12/14/12 02:51	
1,2,3,4,6,7,8-HpCDF	8.2	В	3.1	0.12		₩	12/12/12 13:29	12/14/12 02:51	
1,2,3,4,7,8,9-HpCDF	0.47	Jq	3.1	0.16		₩	12/12/12 13:29	12/14/12 02:51	
OCDD	510	В	6.2	0.39	pg/g		12/12/12 13:29	12/14/12 02:51	
OCDF	22		6.2	0.073	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
Total TCDD	0.57	JqB	0.62	0.29	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
Total TCDF	3.4	q B	0.62	0.047	pg/g	φ.	12/12/12 13:29	12/14/12 02:51	
Total PeCDD		J q	3.1	0.082	pg/g	₩	12/12/12 13:29	12/14/12 02:51	
Total PeCDF	3.8	q	3.1	0.074	pg/g	₽	12/12/12 13:29	12/14/12 02:51	
Total HxCDD	17		3.1	0.060	pg/g	φ.	12/12/12 13:29	12/14/12 02:51	
Total HxCDF	17	•	3.1	0.059	pg/g	₽	12/12/12 13:29	12/14/12 02:51	
Total HpCDD	110	В	3.1	0.18	pg/g	₽	12/12/12 13:29	12/14/12 02:51	
Total HpCDF		q B	3.1	0.14	pg/g		12/12/12 13:29	12/14/12 02:51	
Isotope Dilution	%Recovery		Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD	72		25 - 164				12/12/12 13:29	12/14/12 02:51	
13C-2,3,7,8-TCDD	64		25 - 164				12/12/12 13:29	12/14/12 19:49	
13C-2,3,7,8-TCDF	86		24 - 169				12/12/12 13:29	12/14/12 02:51	
13C-2,3,7,8-TCDF	64						12/12/12 13:29	12/14/12 19:49	
	• .		24 - 109						
13C-1.2.3.7.8-PeCDD	71		24 ₋ 169 25 - 181						
	71 69		25 - 181				12/12/12 13:29	12/14/12 02:51	
13C-1,2,3,7,8-PeCDF	69		25 - 181 24 - 185				12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	69 73		25 - 181 24 - 185 21 - 178				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD	69 73 73		25 - 181 24 - 185 21 - 178 32 - 141				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	69 73 73 67		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF	69 73 73 67 77		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	69 73 73 67 77 82		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF	69 73 73 67 77 82 81		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF	69 73 73 67 77 82 81		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	69 73 73 67 77 82 81 81 63		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD	69 73 73 67 77 82 81 81 63 71		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143				12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	69 73 73 67 77 82 81 81 63 71		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143 26 - 138				12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF	69 73 73 67 77 82 81 81 63 71		25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143				12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDD	69 73 73 67 77 82 81 81 63 71	Qualifier	25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143 26 - 138				12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51	
13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDD Surrogate 37CI4-2,3,7,8-TCDD	69 73 73 67 77 82 81 81 63 71 76	Qualifier	25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143 26 - 138 17 - 157				12/12/12 13:29 12/12/12 13:29	12/14/12 02:51 12/14/12 02:51	

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Client Sample ID: LRIS-LR-129

Date Collected: 12/04/12 10:10 Date Received: 12/07/12 08:50

Surrogate

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-52

Matrix: Solid Percent Solids: 52.9

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.31	Jq	0.75	0.051	pg/g	<u> </u>	12/12/12 13:29	12/15/12 13:56	1
2,3,7,8-TCDF	0.65	JB	0.75	0.044	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
1,2,3,7,8-PeCDD	0.27	J	3.8	0.098	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
1,2,3,7,8-PeCDF	0.31	J	3.8	0.097	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
2,3,4,7,8-PeCDF	0.66	J	3.8	0.11	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
1,2,3,4,7,8-HxCDD	0.52	J q	3.8	0.050	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
1,2,3,6,7,8-HxCDD	3.2	J	3.8	0.051	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
1,2,3,7,8,9-HxCDD	1.1	J q	3.8	0.046	pg/g	☼	12/12/12 13:29	12/15/12 13:56	1
1,2,3,4,7,8-HxCDF	1.5	J	3.8	0.058	pg/g	₩	12/12/12 13:29	12/15/12 13:56	1
1,2,3,6,7,8-HxCDF	0.67	J	3.8	0.056	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
1,2,3,7,8,9-HxCDF	ND		3.8	0.066	pg/g	☼	12/12/12 13:29	12/15/12 13:56	1
2,3,4,6,7,8-HxCDF	0.63	J q	3.8	0.056	pg/g	₩	12/12/12 13:29	12/15/12 13:56	1
1,2,3,4,6,7,8-HpCDD	60	В	3.8	0.27	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
1,2,3,4,6,7,8-HpCDF	8.8	В	3.8	0.12	pg/g	₩	12/12/12 13:29	12/15/12 13:56	1
1,2,3,4,7,8,9-HpCDF	ND		3.8	0.15	pg/g	₩	12/12/12 13:29	12/15/12 13:56	1
OCDD	540	В	7.5	0.61	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
OCDF	19		7.5	0.13	pg/g	☼	12/12/12 13:29	12/15/12 13:56	1
Total TCDD	0.80	Вq	0.75	0.051	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
Total TCDF	3.2	Вq	0.75	0.044	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
Total PeCDD	1.1	Jq	3.8	0.098	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
Total PeCDF	4.8	q	3.8	0.10	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
Total HxCDD	15	q	3.8	0.049	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
Total HxCDF	20	q	3.8	0.059	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
Total HpCDD	110	В	3.8	0.27	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
Total HpCDF	29	В	3.8	0.14	pg/g	₽	12/12/12 13:29	12/15/12 13:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	81	-	25 - 164				12/12/12 13:29	12/15/12 13:56	1
13C-2,3,7,8-TCDF	98		24 - 169				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,7,8-PeCDD	75		25 - 181				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,7,8-PeCDF	79		24 - 185				12/12/12 13:29	12/15/12 13:56	1
13C-2,3,4,7,8-PeCDF	81		21 - 178				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,4,7,8-HxCDD	70		32 - 141				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,6,7,8-HxCDD	74		28 - 130				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,4,7,8-HxCDF	79		26 - 152				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,6,7,8-HxCDF	83		26 - 123				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,7,8,9-HxCDF	85		29 - 147				12/12/12 13:29	12/15/12 13:56	1
13C-2,3,4,6,7,8-HxCDF	82		28 - 136				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,4,6,7,8-HpCDD	62		23 - 140				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,4,6,7,8-HpCDF	71		28 - 143				12/12/12 13:29	12/15/12 13:56	1
13C-1,2,3,4,7,8,9-HpCDF	81		26 - 138				12/12/12 13:29	12/15/12 13:56	1

Analyzed

12/12/12 13:29 12/15/12 13:56

Prepared

Limits

35 - 197

%Recovery Qualifier

118

Dil Fac

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/02/12 14:40

Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-130-2

Lab Sample ID: 580-36242-53

Matrix: Solid

Percent Solids: 73.9

5

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.16	Jq	0.54	0.037	pg/g	<u> </u>	12/12/12 13:29	12/15/12 14:40	1
2,3,7,8-TCDF	0.32	JBq	0.54	0.027	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,7,8-PeCDD	ND		2.7	0.056	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,7,8-PeCDF	ND		2.7	0.044	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
2,3,4,7,8-PeCDF	0.098	J	2.7	0.048	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,4,7,8-HxCDD	0.30	J q	2.7	0.030	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,6,7,8-HxCDD	1.4	J	2.7	0.029	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,7,8,9-HxCDD	0.61	J	2.7	0.027	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,4,7,8-HxCDF	0.28	Jq	2.7	0.025	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,6,7,8-HxCDF	0.19	J	2.7	0.024	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,7,8,9-HxCDF	ND		2.7	0.026	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
2,3,4,6,7,8-HxCDF	0.30	J	2.7	0.024	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,4,6,7,8-HpCDD	27	В	2.7	0.15	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,4,6,7,8-HpCDF	3.2	В	2.7	0.041	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
1,2,3,4,7,8,9-HpCDF	ND		2.7	0.053	pg/g	☼	12/12/12 13:29	12/15/12 14:40	1
OCDD	270	В	5.4	0.31	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
OCDF	6.8		5.4	0.064	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
Total TCDD	0.39	JBq	0.54	0.037	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
Total TCDF	0.66	Bq	0.54	0.027	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
Total PeCDD	0.40	Jq	2.7	0.056	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
Total PeCDF	1.1	Jq	2.7	0.046	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
Total HxCDD	7.4	q	2.7	0.029	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
Total HxCDF	6.1	q	2.7	0.025	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
Total HpCDD	49	В	2.7	0.15	pg/g	₽	12/12/12 13:29	12/15/12 14:40	1
Total HnCDF	9.6	R	27	0.047	na/a	₩	12/12/12 13:29	12/15/12 14:40	1

Iotal HpCDF	9.6 B	2.7	0.047 pg/g	240	12/12/12 13:29	12/15/12 14:40	1
Isotope Dilution	%Recovery Quali	fier Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	87	25 - 164			12/12/12 13:29	12/15/12 14:40	1
13C-2,3,7,8-TCDF	102	24 - 169			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,7,8-PeCDD	80	25 - 181			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,7,8-PeCDF	84	24 - 185			12/12/12 13:29	12/15/12 14:40	1
13C-2,3,4,7,8-PeCDF	87	21 - 178			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,4,7,8-HxCDD	73	32 - 141			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,6,7,8-HxCDD	80	28 - 130			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,4,7,8-HxCDF	87	26 - 152			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,6,7,8-HxCDF	91	26 - 123			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,7,8,9-HxCDF	92	29 - 147			12/12/12 13:29	12/15/12 14:40	1
13C-2,3,4,6,7,8-HxCDF	89	28 - 136			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,4,6,7,8-HpCDD	66	23 - 140			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,4,6,7,8-HpCDF	76	28 - 143			12/12/12 13:29	12/15/12 14:40	1
13C-1,2,3,4,7,8,9-HpCDF	87	26 - 138			12/12/12 13:29	12/15/12 14:40	1
13C-OCDD	72	17 - 157			12/12/12 13:29	12/15/12 14:40	1
Surrogate	%Recovery Quali	fier Limits			Prepared	Analyzed	Dil Fac

12/12/12 13:29 12/15/12 14:40

35 - 197

RL

0.55

0.55

2.7

2.7

2.7

2.7

2.7

2.7

2.7

2.7

2.7

2.7

2.7

2.7

2.7

5.5

5.5

0.55

0.55

2.7

2.7

2.7

2.7

EDL Unit

0.16 pg/g

0.12 pg/g

0.19 pg/g

0.18 pg/g

0.20 pg/g

0.095 pg/g

0.094 pg/g

0.085 pg/g

0.083 pg/g

0.079 pg/g

0.091 pg/g

0.078 pg/g

0.36 pg/g

0.15 pg/g

0.19 pg/g

0.85 pg/g

0.21 pg/g

0.16 pg/g

0.12 pg/g

0.19 pg/g

0.19 pg/g

0.091 pg/g

0.083 pg/g

D

₩

₩

₩

₩

₽

12/12/12 13:29

12/12/12 13:29

12/12/12 13:29

12/12/12 13:29

12/12/12 13:29

12/12/12 13:29

12/12/12 13:29

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/02/12 14:40

Date Received: 12/07/12 08:50

2,3,7,8-TCDD

2,3,7,8-TCDF

1,2,3,7,8-PeCDD

1,2,3,7,8-PeCDF

2,3,4,7,8-PeCDF

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

1,2,3,7,8,9-HxCDD

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF

2,3,4,6,7,8-HxCDF

1,2,3,4,6,7,8-HpCDD

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

OCDD

OCDF

Total TCDD

Total TCDF

Total PeCDD

Total PeCDF

Total HxCDD

Total HxCDF

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-130-FD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

ND

ND

ND

ND

ND

0.54

3.6

0.35

ND

0.72 J

72 B

7.1 B

660 B

ND

14

ND

ND

ND

15

113

1.1 J

15 q

0.96 J

0.57 J q

TestAmerica Job ID: 580-36242-2

Lab Sample ID: 580-36242-54

Matrix: Solid

ids: 73.2	Percent Soli	
Dil Fac	Analyzed	Prepared
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29
1	12/15/12 15:25	12/12/12 13:29

12/15/12 15:25

12/15/12 15:25

12/15/12 15:25

12/15/12 15:25

12/15/12 15:25

12/15/12 15:25

12/15/12 15:25

Total HpCDD	140	В	2.7	0.36	pg/g	₩	12/12/12 13:29	12/15/12 15:25	1
Total HpCDF	24	В	2.7	0.17	pg/g	₽	12/12/12 13:29	12/15/12 15:25	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	94		25 - 164				12/12/12 13:29	12/15/12 15:25	1
13C-2,3,7,8-TCDF	109		24 - 169				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,7,8-PeCDD	88		25 - 181				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,7,8-PeCDF	93		24 - 185				12/12/12 13:29	12/15/12 15:25	1
13C-2,3,4,7,8-PeCDF	90		21 - 178				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,4,7,8-HxCDD	84		32 - 141				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,6,7,8-HxCDD	93		28 - 130				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,4,7,8-HxCDF	102		26 - 152				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,6,7,8-HxCDF	105		26 - 123				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,7,8,9-HxCDF	104		29 - 147				12/12/12 13:29	12/15/12 15:25	1
13C-2,3,4,6,7,8-HxCDF	105		28 - 136				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,4,6,7,8-HpCDD	77		23 - 140				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,4,6,7,8-HpCDF	92		28 - 143				12/12/12 13:29	12/15/12 15:25	1
13C-1,2,3,4,7,8,9-HpCDF	105		26 - 138				12/12/12 13:29	12/15/12 15:25	1
13C-OCDD	95		17 - 157				12/12/12 13:29	12/15/12 15:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

12/12/12 13:29 12/15/12 15:25

35 - 197

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-130

Date Collected: 12/04/12 10:24 Date Received: 12/07/12 08:50

Lab Sample ID: 580-36242-58

Matrix: Solid Percent Solids: 61.9

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.65	0.044	pg/g	*	12/12/12 13:29	12/15/12 16:09	1
2,3,7,8-TCDF	0.24	J B q	0.65	0.045	pg/g	₩	12/12/12 13:29	12/15/12 16:09	1
1,2,3,7,8-PeCDD	ND		3.2	0.074	pg/g	₽	12/12/12 13:29	12/15/12 16:09	1
1,2,3,7,8-PeCDF	ND		3.2	0.11	pg/g	¢	12/12/12 13:29	12/15/12 16:09	1
2,3,4,7,8-PeCDF	ND		3.2	0.073	pg/g	₽	12/12/12 13:29	12/15/12 16:09	1
1,2,3,4,7,8-HxCDD	0.19	J	3.2	0.039	pg/g	₩	12/12/12 13:29	12/15/12 16:09	1
1,2,3,6,7,8-HxCDD	1.2	Jq	3.2	0.042	pg/g	₩	12/12/12 13:29	12/15/12 16:09	1
1,2,3,7,8,9-HxCDD	0.54	J	3.2	0.037	pg/g	₽	12/12/12 13:29	12/15/12 16:09	1
1,2,3,4,7,8-HxCDF	0.68	J	3.2	0.036	pg/g	≎	12/12/12 13:29	12/15/12 16:09	1
1,2,3,6,7,8-HxCDF	0.27	J	3.2	0.034	pg/g	φ	12/12/12 13:29	12/15/12 16:09	1
1,2,3,7,8,9-HxCDF	ND		3.2	0.035	pg/g	₽	12/12/12 13:29	12/15/12 16:09	1
2,3,4,6,7,8-HxCDF	0.24	J	3.2	0.032	pg/g	₽	12/12/12 13:29	12/15/12 16:09	1
1,2,3,4,6,7,8-HpCDD	25		3.2		pg/g	ф.	12/12/12 13:29	12/15/12 16:09	1
1,2,3,4,6,7,8-HpCDF		JBq	3.2	0.073		₩	12/12/12 13:29	12/15/12 16:09	1
1,2,3,4,7,8,9-HpCDF	ND.	. = 4	3.2	0.083		₩	12/12/12 13:29	12/15/12 16:09	1
OCDD	250	В	6.5		pg/g	ф	12/12/12 13:29	12/15/12 16:09	1
OCDF	13	_	6.5		pg/g	₽	12/12/12 13:29	12/15/12 16:09	1
Total TCDD		JBq	0.65	0.044		₽	12/12/12 13:29	12/15/12 16:09	1
Total TCDF		Bq	0.65	0.045			12/12/12 13:29	12/15/12 16:09	1
Total PeCDD	ND	БЧ	3.2	0.074		₽	12/12/12 13:29	12/15/12 16:09	. 1
Total PeCDF	0.76		3.2	0.091		₩	12/12/12 13:29	12/15/12 16:09	. 1
Total HxCDD	6.5		3.2	0.039		ф	12/12/12 13:29	12/15/12 16:09	
	6.3	Ч	3.2	0.034		₩	12/12/12 13:29	12/15/12 16:09	1
Total HxCDF			3.2			₩	12/12/12 13:29	12/15/12 16:09	1
Total HpCDD	47				pg/g				' 1
Total HpCDF		Вq	3.2	0.078	pg/g	**	12/12/12 13:29	12/15/12 16:09	'
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	92		25 - 164				12/12/12 13:29	12/15/12 16:09	1
13C-2,3,7,8-TCDF	109		24 - 169				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,7,8-PeCDD	80		25 - 181				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,7,8-PeCDF	89		24 - 185				12/12/12 13:29	12/15/12 16:09	1
13C-2,3,4,7,8-PeCDF	93		21 - 178				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,4,7,8-HxCDD	79		32 - 141				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,6,7,8-HxCDD	76		28 - 130				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,4,7,8-HxCDF	89		26 - 152				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,6,7,8-HxCDF	90		26 - 123				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,7,8,9-HxCDF	97		29 - 147				12/12/12 13:29	12/15/12 16:09	1
13C-2,3,4,6,7,8-HxCDF	90		28 - 136				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,4,6,7,8-HpCDD	64		23 - 140				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,4,6,7,8-HpCDF	72		28 - 143				12/12/12 13:29	12/15/12 16:09	1
13C-1,2,3,4,7,8,9-HpCDF	90		26 - 138				12/12/12 13:29	12/15/12 16:09	1
13C-OCDD	68		17 - 157				12/12/12 13:29	12/15/12 16:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD		- Quantitei	35 - 197				12/12/12 13:29	12/15/12 16:09	DII Fac

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/04/12 10:24

Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-130-FD-1

Lab Sample ID: 580-36242-59

Matrix: Solid

Percent Solids: 60.0

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.67	0.029	pg/g	<u> </u>	12/12/12 13:29	12/15/12 16:54	1
2,3,7,8-TCDF	0.30	JB	0.67	0.017	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,7,8-PeCDD	ND		3.3	0.051	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,7,8-PeCDF	0.15	J	3.3	0.038	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
2,3,4,7,8-PeCDF	0.15	J	3.3	0.044	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,4,7,8-HxCDD	0.23	Jq	3.3	0.019	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,6,7,8-HxCDD	1.0	J	3.3	0.021	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,7,8,9-HxCDD	0.42	Jq	3.3	0.018	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,4,7,8-HxCDF	0.47	J	3.3	0.023	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,6,7,8-HxCDF	0.22	J	3.3	0.021	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,7,8,9-HxCDF	ND		3.3	0.025	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
2,3,4,6,7,8-HxCDF	0.25	J	3.3	0.022	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,4,6,7,8-HpCDD	19	В	3.3	0.098	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,4,6,7,8-HpCDF	2.9	JB	3.3	0.045	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
1,2,3,4,7,8,9-HpCDF	ND		3.3	0.056	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
OCDD	170	В	6.7	0.24	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
OCDF	7.2		6.7	0.063	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
Total TCDD	0.12	JqB	0.67	0.029	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
Total TCDF	0.99	q B	0.67	0.017	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
Total PeCDD	0.17	J	3.3	0.051	pg/g	☼	12/12/12 13:29	12/15/12 16:54	1
Total PeCDF	1.0	Jq	3.3	0.041	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
Total HxCDD	6.0	q	3.3	0.020	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
Total HxCDF	5.1		3.3	0.023	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
Total HpCDD	41	В	3.3	0.098	pg/g	☼	12/12/12 13:29	12/15/12 16:54	1
Total HpCDF	9.1	В	3.3	0.051	pg/g	₽	12/12/12 13:29	12/15/12 16:54	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	88		25 - 164				12/12/12 13:29	12/15/12 16:54	1
13C-2,3,7,8-TCDF	105		24 - 169				12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,7,8-PeCDD	84		25 - 181				12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,7,8-PeCDF	90		24 - 185				12/12/12 13:29	12/15/12 16:54	1
13C-2,3,4,7,8-PeCDF	92		21 - 178				12/12/12 13:29	12/15/12 16:54	1

Isotope Dilution	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	88	25 - 164	12/12/12 13:29	12/15/12 16:54	1
13C-2,3,7,8-TCDF	105	24 - 169	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,7,8-PeCDD	84	25 - 181	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,7,8-PeCDF	90	24 - 185	12/12/12 13:29	12/15/12 16:54	1
13C-2,3,4,7,8-PeCDF	92	21 - 178	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,4,7,8-HxCDD	80	32 - 141	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,6,7,8-HxCDD	85	28 - 130	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,4,7,8-HxCDF	92	26 - 152	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,6,7,8-HxCDF	96	26 - 123	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,7,8,9-HxCDF	97	29 - 147	12/12/12 13:29	12/15/12 16:54	1
13C-2,3,4,6,7,8-HxCDF	97	28 - 136	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,4,6,7,8-HpCDD	69	23 - 140	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,4,6,7,8-HpCDF	82	28 - 143	12/12/12 13:29	12/15/12 16:54	1
13C-1,2,3,4,7,8,9-HpCDF	91	26 - 138	12/12/12 13:29	12/15/12 16:54	1
13C-OCDD	75	17 - 157	12/12/12 13:29	12/15/12 16:54	1
Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac

12/12/12 13:29 12/15/12 16:54

35 - 197

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Client Sample ID: LRIS-LR-131-2

Date Collected: 12/02/12 16:30 Date Received: 12/07/12 08:50

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

13C-OCDD

Surrogate

Lab Sample ID: 580-36242-60

Matrix: Solid
Percent Solids: 58.4

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.26	J	0.68	0.068	pg/g	\	12/12/12 13:29	12/15/12 17:38	1
2,3,7,8-TCDF	0.61	JB	0.68	0.031	pg/g	₽	12/12/12 13:29	12/15/12 02:04	1
1,2,3,7,8-PeCDD	0.22	Jq	3.4	0.076	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,7,8-PeCDF	ND		3.4	0.089	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
2,3,4,7,8-PeCDF	0.27	Jq	3.4	0.10	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,4,7,8-HxCDD	0.50	J	3.4	0.039	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,6,7,8-HxCDD	2.4	J	3.4	0.039	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,7,8,9-HxCDD	1.1	Jq	3.4	0.035	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,4,7,8-HxCDF	1.1	J	3.4	0.041	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,6,7,8-HxCDF	0.63	Jq	3.4	0.035	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,7,8,9-HxCDF	ND		3.4	0.038	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
2,3,4,6,7,8-HxCDF	0.58	Jq	3.4	0.037	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,4,6,7,8-HpCDD	52	В	3.4	0.23	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,4,6,7,8-HpCDF	5.2	В	3.4	0.072	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
1,2,3,4,7,8,9-HpCDF	ND		3.4	0.086	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
OCDD	440	В	6.8	0.50	pg/g	\$	12/12/12 13:29	12/15/12 17:38	1
OCDF	9.8		6.8	0.092	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
Total TCDD	0.73	Вq	0.68	0.068	pg/g	₩	12/12/12 13:29	12/15/12 17:38	1
Total TCDF	5.0	Bq	0.68	0.074	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
Total PeCDD	1.3	Jq	3.4	0.076	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
Total PeCDF	4.0	q	3.4	0.097	pg/g	₩	12/12/12 13:29	12/15/12 17:38	1
Total HxCDD	15	q	3.4	0.038	pg/g	\$	12/12/12 13:29	12/15/12 17:38	1
Total HxCDF	12	q	3.4	0.038	pg/g	₩	12/12/12 13:29	12/15/12 17:38	1
Total HpCDD	100	В	3.4	0.23	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
Total HpCDF	16	В	3.4	0.079	pg/g	₽	12/12/12 13:29	12/15/12 17:38	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	75		25 - 164				12/12/12 13:29	12/15/12 02:04	1
13C-2,3,7,8-TCDD	84		25 - 164				12/12/12 13:29	12/15/12 17:38	1
13C-2,3,7,8-TCDF	77		24 - 169				12/12/12 13:29	12/15/12 02:04	1
13C-2,3,7,8-TCDF	99		24 - 169				12/12/12 13:29	12/15/12 17:38	1
13C-1,2,3,7,8-PeCDD	81		25 - 181				12/12/12 13:29	12/15/12 17:38	1
13C-1,2,3,7,8-PeCDF	84		24 - 185				12/12/12 13:29	12/15/12 17:38	1
13C-2,3,4,7,8-PeCDF	84		21 - 178				12/12/12 13:29	12/15/12 17:38	1
13C-1,2,3,4,7,8-HxCDD	81		32 - 141				12/12/12 13:29	12/15/12 17:38	1
13C-1,2,3,6,7,8-HxCDD	83		28 - 130				12/12/12 13:29	12/15/12 17:38	1
13C-1,2,3,4,7,8-HxCDF	93		26 - 152				12/12/12 13:29	12/15/12 17:38	1
13C-1,2,3,6,7,8-HxCDF	98		26 - 123				12/12/12 13:29	12/15/12 17:38	1

TestAmerica Seattle

Dil Fac

12/12/12 13:29 12/15/12 17:38

12/12/12 13:29 12/15/12 17:38

12/12/12 13:29 12/15/12 17:38

12/12/12 13:29 12/15/12 17:38

12/15/12 17:38

Analyzed

12/15/12 02:04

12/15/12 17:38

12/12/12 13:29

Prepared

12/12/12 13:29

12/12/12 13:29

28 - 136

23 - 140

28 - 143

26 - 138

17 - 157

Limits

35 - 197

35 - 197

97

75

89

97

87

%Recovery Qualifier

98

107

3

-

6

8

46

11

2

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-131

Date Collected: 12/04/12 11:15

Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-63

Matrix: Solid

Date Received: 12/07/12 08:			Percent Soli	ds: 61.6					
Method: 1613B - Dioxins a	•	•							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.65	0.062		*	12/12/12 13:29	12/17/12 23:06	1
2,3,7,8-TCDF	ND		0.65	0.059	pg/g	\$	12/12/12 13:29	12/17/12 23:06	1
1,2,3,7,8-PeCDD	ND		3.2	0.099	pg/g		12/12/12 13:29	12/17/12 23:06	1
1,2,3,7,8-PeCDF	ND		3.2	0.089	pg/g	₽ .	12/12/12 13:29	12/17/12 23:06	1
2,3,4,7,8-PeCDF	ND		3.2	0.11	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
1,2,3,4,7,8-HxCDD	0.18	J	3.2	0.050	pg/g		12/12/12 13:29	12/17/12 23:06	1
I,2,3,6,7,8-HxCDD	1.0	J q	3.2	0.050	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
1,2,3,7,8,9-HxCDD	0.55	J	3.2	0.045	pg/g	₩	12/12/12 13:29	12/17/12 23:06	1
I,2,3,4,7,8-HxCDF	0.50	J	3.2	0.044	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
,2,3,6,7,8-HxCDF	0.21	J	3.2	0.041	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
,2,3,7,8,9-HxCDF	ND		3.2	0.050	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
,3,4,6,7,8-HxCDF	ND		3.2	0.043	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
,2,3,4,6,7,8-HpCDD	22	В	3.2	0.29	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
,2,3,4,6,7,8-HpCDF	3.4	В	3.2	0.092	pg/g	₩	12/12/12 13:29	12/17/12 23:06	1
,2,3,4,7,8,9-HpCDF	ND		3.2	0.12	pg/g	₩	12/12/12 13:29	12/17/12 23:06	1
OCDD	200	В	6.5	0.41	pg/g	₩	12/12/12 13:29	12/17/12 23:06	1
OCDF	7.4		6.5	0.16	pg/g	₩	12/12/12 13:29	12/17/12 23:06	1
Total TCDD	0.50	JB	0.65	0.062	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
otal TCDF	ND		0.65	0.059	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
otal PeCDD	ND		3.2	0.099	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
otal PeCDF	0.93	J	3.2	0.10	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
otal HxCDD	5.5	q	3.2	0.049	pg/g	₽	12/12/12 13:29	12/17/12 23:06	1
Total HxCDF	5.8	q	3.2	0.045	pg/g	₩	12/12/12 13:29	12/17/12 23:06	1
Total HpCDD	43	В	3.2	0.29	pg/g	₩	12/12/12 13:29	12/17/12 23:06	1
otal HpCDF	11	В	3.2	0.11	pg/g	\$	12/12/12 13:29	12/17/12 23:06	1
sotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	81		25 - 164				12/12/12 13:29	12/17/12 23:06	1
13C-2,3,7,8-TCDF	99		24 - 169				12/12/12 13:29	12/17/12 23:06	1
13C-1,2,3,7,8-PeCDD	71		25 - 181				12/12/12 13:29	12/17/12 23:06	1
13C-1 2 3 7 8-PeCDE	78		24 185				12/12/12 13:20	12/17/12 23:06	1

• • • •					
Isotope Dilution	%Recovery Qualifier	Limits	Prepa	nred Analyzed	Dil Fac
13C-2,3,7,8-TCDD	81	25 - 164	12/12/12	2 13:29 12/17/12 23:06	1
13C-2,3,7,8-TCDF	99	24 - 169	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,7,8-PeCDD	71	25 - 181	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,7,8-PeCDF	78	24 - 185	12/12/12	2 13:29 12/17/12 23:06	1
13C-2,3,4,7,8-PeCDF	76	21 - 178	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,4,7,8-HxCDD	69	32 - 141	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,6,7,8-HxCDD	66	28 - 130	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,4,7,8-HxCDF	70	26 - 152	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,6,7,8-HxCDF	79	26 - 123	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,7,8,9-HxCDF	73	29 - 147	12/12/12	2 13:29 12/17/12 23:06	1
13C-2,3,4,6,7,8-HxCDF	72	28 - 136	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,4,6,7,8-HpCDD	52	23 - 140	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,4,6,7,8-HpCDF	61	28 - 143	12/12/12	2 13:29 12/17/12 23:06	1
13C-1,2,3,4,7,8,9-HpCDF	66	26 - 138	12/12/12	2 13:29 12/17/12 23:06	1
13C-OCDD	51	17 - 157	12/12/12	2 13:29 12/17/12 23:06	1
Surrogate	%Recovery Qualifier	Limits	Prepa	nred Analyzed	Dil Fac

12/12/12 13:29 12/17/12 23:06

35 - 197

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-132-2 Lab Sample ID: 580-36242-64

Date Collected: 12/03/12 14:00

Date Received: 12/07/12 08:50

Matrix: Solid
Percent Solids: 70.2

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	1.2		0.57	0.17	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
2,3,7,8-TCDF	0.48	J B	0.57	0.029	pg/g	₽	12/12/12 13:29	12/15/12 03:19	1
1,2,3,7,8-PeCDD	ND		2.8	0.27	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,7,8-PeCDF	ND		2.8	0.20	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
2,3,4,7,8-PeCDF	ND		2.8	0.25	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,4,7,8-HxCDD	0.64	J	2.8	0.12	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,6,7,8-HxCDD	1.4	J	2.8	0.12	pg/g	\$	12/12/12 13:29	12/17/12 23:51	1
1,2,3,7,8,9-HxCDD	2.1	J q	2.8	0.11	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,4,7,8-HxCDF	0.30	J q	2.8	0.10	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,6,7,8-HxCDF	0.33	Jq	2.8	0.089	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,7,8,9-HxCDF	ND		2.8	0.11	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
2,3,4,6,7,8-HxCDF	ND		2.8	0.093	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,4,6,7,8-HpCDD	31	Вq	2.8	0.35	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,4,6,7,8-HpCDF	6.8	В	2.8	0.16	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
1,2,3,4,7,8,9-HpCDF	ND		2.8	0.22	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
OCDD	240	В	5.7	0.67	pg/g	\$	12/12/12 13:29	12/17/12 23:51	1
OCDF	11		5.7	0.26	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
Total TCDD	1.2	В	0.57	0.17	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
Total TCDF	1.7	Вq	0.57	0.19	pg/g	*	12/12/12 13:29	12/17/12 23:51	1
Total PeCDD	ND		2.8	0.27	pg/g	₩	12/12/12 13:29	12/17/12 23:51	1
Total PeCDF	ND		2.8	0.25	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
Total HxCDD	18	q	2.8	0.12	pg/g	\$	12/12/12 13:29	12/17/12 23:51	1
Total HxCDF	4.7	q	2.8	0.099	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
Total HpCDD	74	Вq	2.8	0.35	pg/g	₽	12/12/12 13:29	12/17/12 23:51	1
Total HpCDF	17	В	2.8	0.19	pg/g	\$	12/12/12 13:29	12/17/12 23:51	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	89		25 - 164				12/12/12 13:29	12/17/12 23:51	1
13C-2,3,7,8-TCDF	106		24 - 169				12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,7,8-PeCDD	83		25 - 181				12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,7,8-PeCDF	89		24 - 185				12/12/12 13:29	12/17/12 23:51	1
13C-2,3,4,7,8-PeCDF	82		21 - 178				12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,4,7,8-HxCDD	83		32 - 141				12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,6,7,8-HxCDD	95		28 - 130				12/12/12 13:29	12/17/12 23:51	1
100 100 170 11 005	•		00 450				10/10/10 10 00	10/17/10 00 51	

Isotope Dilution	%Recovery Qual	ifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	89	25 - 164	12/12/12 13:29	12/17/12 23:51	1
13C-2,3,7,8-TCDF	106	24 - 169	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,7,8-PeCDD	83	25 - 181	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,7,8-PeCDF	89	24 - 185	12/12/12 13:29	12/17/12 23:51	1
13C-2,3,4,7,8-PeCDF	82	21 - 178	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,4,7,8-HxCDD	83	32 - 141	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,6,7,8-HxCDD	95	28 - 130	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,4,7,8-HxCDF	91	26 - 152	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,6,7,8-HxCDF	106	26 - 123	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,7,8,9-HxCDF	95	29 - 147	12/12/12 13:29	12/17/12 23:51	1
13C-2,3,4,6,7,8-HxCDF	100	28 - 136	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,4,6,7,8-HpCDD	77	23 - 140	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,4,6,7,8-HpCDF	91	28 - 143	12/12/12 13:29	12/17/12 23:51	1
13C-1,2,3,4,7,8,9-HpCDF	95	26 - 138	12/12/12 13:29	12/17/12 23:51	1
13C-OCDD	79	17 - 157	12/12/12 13:29	12/17/12 23:51	1
Surrogate	%Recovery Qual	ifier Limits	Prepared	Analyzed	Dil Fac

12/12/12 13:29 12/17/12 23:51

35 - 197

97

8

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Received: 12/07/12 08:50

TestAmerica Job ID: 580-36242-2

_

Client Sample ID: LRIS-LR-133-2

Date Collected: 12/03/12 15:15

Lab Sample ID: 580-36242-69

Matrix: Solid

Matrix: Solid Percent Solids: 63.7

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.63	0.064	pg/g		12/12/12 13:29	12/18/12 00:35	-
2,3,7,8-TCDF	0.56	J B	0.63	0.034	pg/g	₩	12/12/12 13:29	12/15/12 03:57	
1,2,3,7,8-PeCDD	ND		3.1	0.11	pg/g	₽	12/12/12 13:29	12/18/12 00:35	•
1,2,3,7,8-PeCDF	0.19	Jq	3.1	0.095	pg/g	\$	12/12/12 13:29	12/18/12 00:35	
2,3,4,7,8-PeCDF	0.21	J q	3.1	0.11	pg/g	₽	12/12/12 13:29	12/18/12 00:35	•
1,2,3,4,7,8-HxCDD	0.31	J	3.1	0.055	pg/g	₽	12/12/12 13:29	12/18/12 00:35	•
1,2,3,6,7,8-HxCDD	1.6	J	3.1	0.060	pg/g	\$	12/12/12 13:29	12/18/12 00:35	
1,2,3,7,8,9-HxCDD	0.85	Jq	3.1	0.052	pg/g	₩	12/12/12 13:29	12/18/12 00:35	•
1,2,3,4,7,8-HxCDF	0.74	J	3.1	0.062	pg/g	₩	12/12/12 13:29	12/18/12 00:35	
1,2,3,6,7,8-HxCDF	0.52	J	3.1	0.054	pg/g	\$	12/12/12 13:29	12/18/12 00:35	
1,2,3,7,8,9-HxCDF	ND		3.1	0.062	pg/g	₽	12/12/12 13:29	12/18/12 00:35	
2,3,4,6,7,8-HxCDF	0.47	Jq	3.1	0.055	pg/g	₽	12/12/12 13:29	12/18/12 00:35	
1,2,3,4,6,7,8-HpCDD	31		3.1	0.27	pg/g	φ.	12/12/12 13:29	12/18/12 00:35	
1,2,3,4,6,7,8-HpCDF	6.3	В	3.1	0.10	pg/g	₽	12/12/12 13:29	12/18/12 00:35	
1,2,3,4,7,8,9-HpCDF	ND		3.1	0.15		₽	12/12/12 13:29	12/18/12 00:35	
OCDD	330	В	6.3	0.47			12/12/12 13:29	12/18/12 00:35	,
OCDF	17	_	6.3		pg/g	₽	12/12/12 13:29	12/18/12 00:35	
Total TCDD		Ва	0.63	0.064		₽	12/12/12 13:29	12/18/12 00:35	
Total TCDF		Bq	0.63	0.067		ф.	12/12/12 13:29	12/18/12 00:35	
Total PeCDD	ND	- 4	3.1		pg/g	₽	12/12/12 13:29	12/18/12 00:35	
Total PeCDF	3.4		3.1		pg/g	₽	12/12/12 13:29	12/18/12 00:35	
Total HxCDD			3.1	0.056			12/12/12 13:29	12/18/12 00:35	
Total HxCDF	9.4	•	3.1	0.058		₩	12/12/12 13:29	12/18/12 00:35	
Total HpCDD	66	•	3.1		pg/g	₩	12/12/12 13:29	12/18/12 00:35	
Total HpCDF	23		3.1	0.12			12/12/12 13:29	12/18/12 00:35	,
Isotope Dilution	%Recovery		Limits		133		Prepared		Dil Fac
		Qualifier	25 - 164				12/12/12 13:29	Analyzed 12/15/12 03:57	DII Fac
13C-2,3,7,8-TCDD	78						12/12/12 13:29	12/18/12 03:37	
13C-2,3,7,8-TCDD							12/12/12 13.29		
			25 - 164						
13C-2,3,7,8-TCDF	72		24 - 169				12/12/12 13:29	12/15/12 03:57	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF	72 93		24 - 169 24 - 169				12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD	72 93 75		24 - 169 24 - 169 25 - 181				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF	72 93 75 75		24 - 169 24 - 169 25 - 181 24 - 185				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	:
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF	72 93 75 75 79		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD	72 93 75 75 79 79		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD	72 93 75 75 79		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD	72 93 75 75 79 79 71 75		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	72 93 75 75 79 79 71 75		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	72 93 75 75 79 79 71 75 84 79		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	72 93 75 75 79 79 71 75 84 79		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	72 93 75 75 79 79 71 75 84 79		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147				12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF	72 93 75 75 79 79 71 75 84 79		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136				12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	72 93 75 75 79 79 71 75 84 79 83		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140				12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD	72 93 75 75 79 79 71 75 84 79 83 58		24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143				12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDD	72 93 75 75 79 79 71 75 84 79 83 58 71 72	Qualifier	24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143 26 - 138				12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35	
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF	72 93 75 75 79 79 71 75 84 79 83 58 71	Qualifier	24 - 169 24 - 169 25 - 181 24 - 185 21 - 178 32 - 141 28 - 130 26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143 26 - 138 17 - 157				12/12/12 13:29 12/12/12 13:29	12/15/12 03:57 12/18/12 00:35 12/18/12 00:35	

3

5

7

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-134-2

Date Collected: 12/02/12 10:20 Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-74

Matrix: Solid

Percent Solids: 62.0

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.51	J	0.65	0.038	pg/g		12/14/12 13:58	12/17/12 22:49	-
2,3,7,8-TCDF	1.8		0.65	0.068	pg/g	₩	12/14/12 13:58	12/17/12 14:56	
1,2,3,7,8-PeCDD	1.6	J	3.2	0.089	pg/g	₽	12/14/12 13:58	12/17/12 22:49	•
1,2,3,7,8-PeCDF	2.5	J	3.2	0.10	pg/g	\$	12/14/12 13:58	12/17/12 22:49	1
2,3,4,7,8-PeCDF	2.3	J	3.2	0.11	pg/g	₽	12/14/12 13:58	12/17/12 22:49	1
1,2,3,4,7,8-HxCDD	3.5		3.2	0.065	pg/g	₽	12/14/12 13:58	12/17/12 22:49	1
1,2,3,6,7,8-HxCDD	32		3.2	0.067	pg/g	\$	12/14/12 13:58	12/17/12 22:49	1
1,2,3,7,8,9-HxCDD	9.4		3.2	0.060	pg/g	₽	12/14/12 13:58	12/17/12 22:49	•
1,2,3,4,7,8-HxCDF	8.0		3.2	0.11	pg/g	₽	12/14/12 13:58	12/17/12 22:49	•
1,2,3,6,7,8-HxCDF	5.1		3.2	0.10	pg/g	\$	12/14/12 13:58	12/17/12 22:49	,
1,2,3,7,8,9-HxCDF	ND		3.2	0.097	pg/g	₽	12/14/12 13:58	12/17/12 22:49	1
2,3,4,6,7,8-HxCDF	3.0	J	3.2	0.093	pg/g	₽	12/14/12 13:58	12/17/12 22:49	
1,2,3,4,6,7,8-HpCDD	550	В	3.2	0.43	pg/g	\$	12/14/12 13:58	12/17/12 22:49	1
1,2,3,4,6,7,8-HpCDF	79		3.2	0.26		₽	12/14/12 13:58	12/17/12 22:49	
1,2,3,4,7,8,9-HpCDF	3.7		3.2	0.35	pg/g	₽	12/14/12 13:58	12/17/12 22:49	
OCDD	5700	BG	290	290	pg/g	φ.	12/14/12 13:58	01/11/13 04:44	20
OCDF	290		6.5		pg/g	₽	12/14/12 13:58	12/17/12 22:49	
Total TCDD		q B	0.65	0.038		₽	12/14/12 13:58	12/17/12 22:49	
Total TCDF	9.5		0.65	0.076			12/14/12 13:58	12/17/12 22:49	,
Total PeCDD	13	•	3.2	0.089		₽	12/14/12 13:58	12/17/12 22:49	
Total PeCDF	34	•	3.2		pg/g	₽	12/14/12 13:58	12/17/12 22:49	
Total HxCDD	130		3.2	0.064			12/14/12 13:58	12/17/12 22:49	,
Total HxCDF	160	1	3.2	0.10		₽	12/14/12 13:58	12/17/12 22:49	1
Total HpCDD	1000	В	3.2		pg/g	₽	12/14/12 13:58	12/17/12 22:49	1
Total HpCDF	310		3.2	0.31		φ.	12/14/12 13:58	12/17/12 22:49	,
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	71 - 71	- Qualifier	25 ₋ 164				12/14/12 13:58	12/17/12 22:49	Dirac
13C-2,3,7,8-TCDF	70		24 - 169				12/14/12 13:58	12/17/12 14:56	1
13C-2,3,7,8-TCDF	89		24 - 169				12/14/12 13:58	12/17/12 22:49	1
13C-1,2,3,7,8-PeCDD	63		25 - 181				12/14/12 13:58	12/17/12 22:49	1
13C-1,2,3,7,8-PeCDF	71		24 - 185				12/14/12 13:58	12/17/12 22:49	1
	75		21 - 178				12/14/12 13:58	12/17/12 22:49	1
13C-2,3,4,7,8-PeCDF	73		32 - 141				12/14/12 13:58	12/17/12 22:49	· · · · · · · · · · · · · · · · · · ·
13C-1,2,3,4,7,8-HxCDD	73		32 - 141 28 - 130				12/14/12 13:58		
13C-1,2,3,6,7,8-HxCDD	73 83							12/17/12 22:49 12/17/12 22:40	1
13C-1,2,3,4,7,8-HxCDF			26 ₋ 152 26 - 123				12/14/12 13:58	12/17/12 22:49	
13C-1,2,3,6,7,8-HxCDF	87						12/14/12 13:58	12/17/12 22:49	1
13C-1,2,3,7,8,9-HxCDF	83 87		29 ₋ 147 28 ₋ 136				12/14/12 13:58	12/17/12 22:49	1
13C-2,3,4,6,7,8-HxCDF							12/14/12 13:58	12/17/12 22:49	
13C-1,2,3,4,6,7,8-HpCDD	74		23 ₋ 140				12/14/12 13:58	12/17/12 22:49	1
13C-1,2,3,4,6,7,8-HpCDF	85		28 - 143				12/14/12 13:58	12/17/12 22:49	1
13C-1,2,3,4,7,8,9-HpCDF	89		26 - 138				12/14/12 13:58	12/17/12 22:49	
13C-OCDD	41		17 ₋ 157				12/14/12 13:58	01/11/13 04:44	20
13C-OCDD	84		17 - 157				12/14/12 13:58	12/17/12 22:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	102		35 - 197				12/14/12 13:58	12/17/12 14:56	

TestAmerica Seattle

12/14/12 13:58 12/17/12 22:49

35 - 197

89

4

6

8

9

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Client Sample ID: LRIS-LR-137

Date Collected: 12/04/12 09:14 Date Received: 12/07/12 08:50

Lab Sample ID: 580-36242-93

Matrix: Solid

Percent Solids: 57.7

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	ND		0.69	0.057	pg/g		12/14/12 13:58	12/17/12 23:32	
2,3,7,8-TCDF	0.47	J	0.69	0.10	pg/g	₩	12/14/12 13:58	12/17/12 23:32	
1,2,3,7,8-PeCDD	ND		3.5	0.10	pg/g	₽	12/14/12 13:58	12/17/12 23:32	•
1,2,3,7,8-PeCDF	ND		3.5	0.14	pg/g	\$	12/14/12 13:58	12/17/12 23:32	
2,3,4,7,8-PeCDF	0.33	J	3.5	0.15	pg/g	₽	12/14/12 13:58	12/17/12 23:32	•
1,2,3,4,7,8-HxCDD	0.36	J	3.5	0.085	pg/g	₩	12/14/12 13:58	12/17/12 23:32	
1,2,3,6,7,8-HxCDD	2.0	J	3.5	0.086	pg/g		12/14/12 13:58	12/17/12 23:32	,
1,2,3,7,8,9-HxCDD	0.88	J	3.5	0.077	pg/g	₩	12/14/12 13:58	12/17/12 23:32	•
1,2,3,4,7,8-HxCDF	0.83	J	3.5	0.064	pg/g	₽	12/14/12 13:58	12/17/12 23:32	•
1,2,3,6,7,8-HxCDF	0.35	Jq	3.5	0.063	pg/g		12/14/12 13:58	12/17/12 23:32	· · · · · · · · ·
1,2,3,7,8,9-HxCDF	ND		3.5	0.057	pg/g	₽	12/14/12 13:58	12/17/12 23:32	
2,3,4,6,7,8-HxCDF	0.48	Jq	3.5	0.058	pg/g	₽	12/14/12 13:58	12/17/12 23:32	
1,2,3,4,6,7,8-HpCDD	36		3.5	0.15		φ.	12/14/12 13:58	12/17/12 23:32	
1,2,3,4,6,7,8-HpCDF	6.0		3.5	0.078		₽	12/14/12 13:58	12/17/12 23:32	
1,2,3,4,7,8,9-HpCDF	0.24	Jq	3.5	0.091	pg/g	₽	12/14/12 13:58	12/17/12 23:32	
OCDD	350	В	6.9	0.35	pg/g	φ.	12/14/12 13:58	12/17/12 23:32	
OCDF	15		6.9		pg/g	₽	12/14/12 13:58	12/17/12 23:32	
Total TCDD	0.55	JB	0.69	0.057		₽	12/14/12 13:58	12/17/12 23:32	
Total TCDF	0.69	α	0.69	0.10			12/14/12 13:58	12/17/12 23:32	,
Total PeCDD	0.65	•	3.5		pg/g	₽	12/14/12 13:58	12/17/12 23:32	
Total PeCDF		Jq	3.5		pg/g	₽	12/14/12 13:58	12/17/12 23:32	
Total HxCDD	11	.	3.5	0.083		-	12/14/12 13:58	12/17/12 23:32	,
Total HxCDF	11		3.5	0.061		₽	12/14/12 13:58	12/17/12 23:32	
Total HpCDD	69		3.5	0.15		₽	12/14/12 13:58	12/17/12 23:32	
Total HpCDF	18		3.5	0.084		ф	12/14/12 13:58	12/17/12 23:32	
Isotope Dilution	%Recovery	-	Limits		100		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	63		25 - 164				12/14/12 13:58	12/17/12 23:32	Dirac
13C-2,3,7,8-TCDF	80		24 - 169				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,7,8-PeCDD	55		25 - 181				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,7,8-PeCDF	61		24 - 185				12/14/12 13:58	12/17/12 23:32	
13C-2,3,4,7,8-PeCDF	65		21 - 178				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,4,7,8-HxCDD	56		32 - 141				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,6,7,8-HxCDD	56		28 - 130				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,4,7,8-HxCDF	68		26 - 152 26 - 123				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,6,7,8-HxCDF	68		26 - 123				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,7,8,9-HxCDF	70		29 - 147 29 - 126				12/14/12 13:58	12/17/12 23:32	
13C-2,3,4,6,7,8-HxCDF	66		28 ₋ 136				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,4,6,7,8-HpCDD	56		23 - 140				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,4,6,7,8-HpCDF	60		28 - 143				12/14/12 13:58	12/17/12 23:32	
13C-1,2,3,4,7,8,9-HpCDF	72		26 - 138				12/14/12 13:58	12/17/12 23:32	
13C-OCDD	49		17 - 157				12/14/12 13:58	12/17/12 23:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	91		35 - 197				12/14/12 13:58	12/17/12 23:32	

2

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-RB-20121202

Date Collected: 12/02/12 17:00 Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-94

Matrix: Water

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	9.9	0.41	pg/L		12/17/12 09:33	12/19/12 05:02	1
2,3,7,8-TCDF	ND	9.9	0.24	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,7,8-PeCDD	ND	49	0.64	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,7,8-PeCDF	ND	49	0.45	pg/L		12/17/12 09:33	12/19/12 05:02	1
2,3,4,7,8-PeCDF	ND	49	0.51	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,4,7,8-HxCDD	ND	49	0.30	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,6,7,8-HxCDD	ND	49	0.28	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,7,8,9-HxCDD	ND	49	0.26	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,4,7,8-HxCDF	ND	49	0.58	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,6,7,8-HxCDF	ND	49	0.17	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,7,8,9-HxCDF	ND	49	0.54	pg/L		12/17/12 09:33	12/19/12 05:02	1
2,3,4,6,7,8-HxCDF	ND	49	0.17	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,4,6,7,8-HpCDD	ND	49	0.42	pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,4,6,7,8-HpCDF	ND	49		pg/L		12/17/12 09:33	12/19/12 05:02	1
1,2,3,4,7,8,9-HpCDF	ND	49	0.46	pg/L		12/17/12 09:33	12/19/12 05:02	1
OCDD	3.8 JB	99	0.53	pg/L		12/17/12 09:33	12/19/12 05:02	1
OCDF	ND	99	0.65	pg/L		12/17/12 09:33	12/19/12 05:02	1
Total TCDD	ND	9.9	0.41	pg/L		12/17/12 09:33	12/19/12 05:02	1
Total TCDF	ND	9.9	0.24	pg/L		12/17/12 09:33	12/19/12 05:02	1
Total PeCDD	ND	49	0.64	pg/L		12/17/12 09:33	12/19/12 05:02	1
Total PeCDF	ND	49	0.51	pg/L		12/17/12 09:33	12/19/12 05:02	1
Total HxCDD	ND	49	0.30	pg/L		12/17/12 09:33	12/19/12 05:02	1
Total HxCDF	ND	49	0.58	pg/L		12/17/12 09:33	12/19/12 05:02	1
Total HpCDD	ND	49		pg/L		12/17/12 09:33	12/19/12 05:02	1
Total HpCDF	ND	49		pg/L		12/17/12 09:33	12/19/12 05:02	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	75	25 - 164				12/17/12 09:33	12/19/12 05:02	1
13C-2,3,7,8-TCDF	86	24 - 169				12/17/12 09:33	12/19/12 05:02	1
13C-1,2,3,7,8-PeCDD	76	25 - 181				12/17/12 09:33	12/19/12 05:02	. 1
13C-1,2,3,7,8-PeCDF	78	24 - 185				12/17/12 09:33	12/19/12 05:02	1
13C-2,3,4,7,8-PeCDF	82	21 - 178				12/17/12 09:33	12/19/12 05:02	. 1
13C-1,2,3,4,7,8-HxCDD	79	32 - 141				12/17/12 09:33	12/19/12 05:02	1
13C-1,2,3,6,7,8-HxCDD	83	28 - 130				12/17/12 09:33	12/19/12 05:02	1
13C-1,2,3,4,7,8-HxCDF	80	26 - 152				12/17/12 09:33	12/19/12 05:02	. 1
13C-1,2,3,6,7,8-HxCDF	87	26 - 123				12/17/12 09:33	12/19/12 05:02	1
13C-1,2,3,7,8,9-HxCDF	80	29 - 147				12/17/12 09:33	12/19/12 05:02	
13C-2,3,4,6,7,8-HxCDF	86	29 - 147 28 - 136				12/17/12 09:33	12/19/12 05:02	1
13C-1,2,3,4,6,7,8-HpCDD	65	23 - 140				12/17/12 09:33	12/19/12 05:02	1
13C-1,2,3,4,6,7,8-HpCDF	75	28 - 143				12/17/12 09:33	12/19/12 05:02	
13C-1,2,3,4,7,8,9-HpCDF	76	26 - 143 26 - 138				12/17/12 09:33	12/19/12 05:02	1
13C-0CDD	68						12/19/12 05:02	•
130-0000	00	17 - 157				12/17/12 09:33	12/19/12 00.02	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
270/400707000		05 407				40/47/40 00:00	40/40/40 05:00	

12/17/12 09:33 12/19/12 05:02

35 - 197

2

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-RB-20121203

Date Collected: 12/03/12 17:30

Lab Sample ID: 580-36242-95 Matrix: Water

Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Analyte	Result Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND ND	9.8	0.40	pg/L		12/17/12 09:33	12/19/12 05:47	1
2,3,7,8-TCDF	ND	9.8	0.27	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,7,8-PeCDD	ND	49	0.66	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,7,8-PeCDF	ND	49	0.40	pg/L		12/17/12 09:33	12/19/12 05:47	1
2,3,4,7,8-PeCDF	ND	49	0.48	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,4,7,8-HxCDD	ND	49	0.33	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,6,7,8-HxCDD	ND	49	0.33	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,7,8,9-HxCDD	ND	49	0.30	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,4,7,8-HxCDF	ND	49	0.19	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,6,7,8-HxCDF	ND	49	0.54	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,7,8,9-HxCDF	ND	49	0.21	pg/L		12/17/12 09:33	12/19/12 05:47	1
2,3,4,6,7,8-HxCDF	ND	49	0.17	pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,4,6,7,8-HpCDD	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,4,6,7,8-HpCDF	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	1
1,2,3,4,7,8,9-HpCDF	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	1
OCDD	4.0 JB	98		pg/L		12/17/12 09:33	12/19/12 05:47	1
OCDF	6.9 J q	98	1.1	pg/L		12/17/12 09:33	12/19/12 05:47	1
Total TCDD	ND	9.8		pg/L		12/17/12 09:33	12/19/12 05:47	1
Total TCDF	ND	9.8		pg/L		12/17/12 09:33	12/19/12 05:47	1
Total PeCDD	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	1
Total PeCDF	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	1
Total HxCDD	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	
Total HxCDF	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	1
Total HpCDD	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	1
Total HpCDF	ND	49		pg/L		12/17/12 09:33	12/19/12 05:47	1
•				P 3· –				Dil For
Isotope Dilution	%Recovery Qualifier	Limits				Prepared 40,47,40,00,22	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	80	25 - 164				12/17/12 09:33	12/19/12 05:47	1
13C-2,3,7,8-TCDF	91	24 - 169				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,7,8-PeCDD	77	25 - 181				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,7,8-PeCDF	82	24 - 185				12/17/12 09:33	12/19/12 05:47	1
13C-2,3,4,7,8-PeCDF	82	21 - 178				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,4,7,8-HxCDD	92	32 - 141				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,6,7,8-HxCDD	80	28 - 130				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,4,7,8-HxCDF	87	26 - 152				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,6,7,8-HxCDF	94	26 - 123				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,7,8,9-HxCDF	86	29 - 147					12/19/12 05:47	1
13C-2,3,4,6,7,8-HxCDF	93	28 - 136				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,4,6,7,8-HpCDD	67	23 - 140				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,4,6,7,8-HpCDF	82	28 - 143				12/17/12 09:33	12/19/12 05:47	1
13C-1,2,3,4,7,8,9-HpCDF	76	26 - 138				12/17/12 09:33	12/19/12 05:47	1
13C-OCDD	68	17 - 157				12/17/12 09:33	12/19/12 05:47	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

12/17/12 09:33 12/19/12 05:47

35 - 197

Lab Sample ID: 580-36242-96

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-RB-20121204

Date Collected: 12/04/12 17:35 Matrix: Water

Date Received: 12/07/12 08:50

Method: 1613B - Dioxins and Analyte	Result Qualifie	er RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	9.8	0.48	pg/L		12/17/12 09:33	12/19/12 06:31	1
2,3,7,8-TCDF	ND	9.8	0.34	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,7,8-PeCDD	ND	49	0.77	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,7,8-PeCDF	ND	49	0.53	pg/L		12/17/12 09:33	12/19/12 06:31	1
2,3,4,7,8-PeCDF	ND	49	0.55	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,4,7,8-HxCDD	ND	49	0.37	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,6,7,8-HxCDD	ND	49	0.35	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,7,8,9-HxCDD	ND	49		pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,4,7,8-HxCDF	ND	49	0.20	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,6,7,8-HxCDF	ND	49	0.20	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,7,8,9-HxCDF	ND	49	0.24	pg/L		12/17/12 09:33	12/19/12 06:31	1
2,3,4,6,7,8-HxCDF	ND	49	0.19	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,4,6,7,8-HpCDD	ND	49	1.2	pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,4,6,7,8-HpCDF	ND	49		pg/L		12/17/12 09:33	12/19/12 06:31	1
1,2,3,4,7,8,9-HpCDF	ND	49	0.43	pg/L		12/17/12 09:33	12/19/12 06:31	1
OCDD	ND	98	3.8	pg/L		12/17/12 09:33	12/19/12 06:31	1
OCDF	ND	98		pg/L		12/17/12 09:33	12/19/12 06:31	1
Total TCDD	ND	9.8	0.48	pg/L		12/17/12 09:33	12/19/12 06:31	1
Total TCDF	ND	9.8	0.34	pg/L		12/17/12 09:33	12/19/12 06:31	1
Total PeCDD	ND	49	0.77			12/17/12 09:33	12/19/12 06:31	1
Total PeCDF	ND	49	0.55	pg/L		12/17/12 09:33	12/19/12 06:31	1
Total HxCDD	ND	49	0.37	pg/L		12/17/12 09:33	12/19/12 06:31	1
Total HxCDF	ND	49	0.24	pg/L		12/17/12 09:33	12/19/12 06:31	1
Total HpCDD	ND	49	1.2	pg/L		12/17/12 09:33	12/19/12 06:31	1
Total HpCDF	ND	49	0.78	pg/L		12/17/12 09:33	12/19/12 06:31	1
Isotope Dilution	%Recovery Qualific	er Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	65	25 - 164				12/17/12 09:33	12/19/12 06:31	
13C-2,3,7,8-TCDF	74	24 - 169				12/17/12 09:33	12/19/12 06:31	1
13C-1,2,3,7,8-PeCDD	66	25 - 181				12/17/12 09:33	12/19/12 06:31	1
13C-1,2,3,7,8-PeCDF	63	24 - 185				12/17/12 09:33	12/19/12 06:31	
13C-2,3,4,7,8-PeCDF	70	21 - 178				12/17/12 09:33	12/19/12 06:31	1
13C-1,2,3,4,7,8-HxCDD	71	32 - 141				12/17/12 09:33	12/19/12 06:31	1
13C-1,2,3,6,7,8-HxCDD	74	28 - 130				12/17/12 09:33	12/19/12 06:31	1
13C-1,2,3,4,7,8-HxCDF	75	26 - 152				12/17/12 09:33	12/19/12 06:31	1
13C-1,2,3,6,7,8-HxCDF	76	26 - 123				12/17/12 09:33	12/19/12 06:31	1
13C-1,2,3,7,8,9-HxCDF	74	29 - 147				12/17/12 09:33	12/19/12 06:31	
13C-2,3,4,6,7,8-HxCDF	76	28 - 136				12/17/12 09:33	12/19/12 06:31	
13C-1,2,3,4,6,7,8-HpCDD	57	23 - 140				12/17/12 09:33	12/19/12 06:31	1
13C-1,2,3,4,6,7,8-HpCDF	66	28 - 143				12/17/12 09:33	12/19/12 06:31	
13C-1,2,3,4,7,8,9-HpCDF	64	26 - 138				12/17/12 09:33	12/19/12 06:31	1
13C-OCDD	59	17 - 157				12/17/12 09:33	12/19/12 06:31	1
Surrogate	%Recovery Qualific	er Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	88	35 - 197				12/17/12 09:33	12/19/12 06:31	1

Client Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Lab Sample ID: 580-36242-97

Matrix: Solid

Client Sample ID: LRIS-LR-PS-SRM Date Collected: 11/26/12 10:00

Date Received: 12/07/12 08:50

1.7 ND 1.8 0.64 ND ND	JdB Jd	5.1 4.9 5.1 4.9 25	0.29 0.45 2.2	pg/g		Prepared 12/14/12 13:58 12/12/12 13:29	Analyzed 12/18/12 00:14 12/18/12 01:20	Dil Fa
1.7 ND 1.8 0.64 ND ND	J q B	5.1 4.9	2.2	pg/g		12/12/12 13:29	12/18/12 01:20	
ND 1.8 0.64 ND ND	JqB	4.9	2.2				,,	
0.64 ND ND ND				pg/g		12/14/12 13:58	12/18/12 00:14	
0.64 ND ND ND			0.37	pg/g		12/12/12 13:29	12/18/12 01:20	
ND ND ND				pg/g		12/14/12 13:58	12/18/12 00:14	
ND ND		25	0.78			12/12/12 13:29	12/18/12 01:20	
ND		25		pg/g		12/14/12 13:58	12/18/12 00:14	
		25		pg/g		12/12/12 13:29	12/18/12 01:20	
26	Jq	25		pg/g		12/14/12 13:58	12/18/12 00:14	
	Jq	25	0.62			12/12/12 13:29	12/18/12 01:20	
1.5		25	0.31			12/14/12 13:58	12/18/12 00:14	
	J							
15	Jq	25	0.30	pg/g		12/14/12 13:58	12/18/12 00:14	
	В	25	0.51	pg/g		12/12/12 13:29	12/18/12 01:20	
			0.41	pg/g		12/14/12 13:58	12/18/12 00:14	
ND		25				12/12/12 13:29	12/18/12 01:20	
640	В	51				12/14/12 13:58	12/18/12 00:14	
1200	В	49	2.6	pg/g		12/12/12 13:29	12/18/12 01:20	
64		51	0.48	pg/g		12/14/12 13:58	12/18/12 00:14	
82		49	0.97	pg/g		12/12/12 13:29	12/18/12 01:20	
5.6	q B	5.1	0.29	pg/g		12/14/12 13:58	12/18/12 00:14	
1.7	JqB	4.9	0.45	pg/g		12/12/12 13:29	12/18/12 01:20	
ND		5.1	2.2	pg/g		12/14/12 13:58	12/18/12 00:14	
3.4	J q B	4.9	0.37	pg/g		12/12/12 13:29	12/18/12 01:20	
5.4	J q	25	0.50	pg/g		12/14/12 13:58	12/18/12 00:14	
ND		25	0.78	pg/g		12/12/12 13:29	12/18/12 01:20	
9.2	Jq	25	0.65	pg/g		12/14/12 13:58	12/18/12 00:14	
		25	0.56	pg/g		12/12/12 13:29	12/18/12 01:20	
27		25	0.30	pg/g		12/14/12 13:58	12/18/12 00:14	
30	q	25				12/12/12 13:29	12/18/12 01:20	
		25				12/14/12 13:58	12/18/12 00:14	
						12/12/12 13:29	12/18/12 01:20	
	В							
	3.0 5.1 2.2 2.9 3.2 3.7 1.1 1.4 ND 0.85 1.5 67 140 15 26 ND ND 640 1200 64 82 5.6 1.7 ND 3.4 5.4 ND 9.2 7.2 27 30 23 31 170 280	ND 0.85 J q 1.5 J 67 B 140 B 15 J q 26 B ND ND 640 B 1200 B 64 82 5.6 q B 1.7 J q B ND 3.4 J q B 5.4 J q ND 9.2 J q 7.2 J q 27 30 q 23 J q	3.0 J 25 5.1 Jq 25 2.2 J 25 2.9 Jq 25 3.2 J 25 3.7 J 25 1.1 Jq 25 1.4 J 25 ND 25 ND 25 ND 25 0.85 Jq 25 1.5 J 25 140 B 25 ND 25 ND 25 ND 25 ND 25 ND 25 15 Jq 25 26 B 25 ND 25	3.0 J	3.0 J 25 0.31 pg/g 5.1 Jq 25 0.31 pg/g 2.2 J 25 0.28 pg/g 2.9 Jq 25 0.28 pg/g 3.2 J 25 0.28 pg/g 3.7 J 25 0.27 pg/g 3.7 J 25 0.33 pg/g 1.1 Jq 25 0.31 pg/g ND 25 0.31 pg/g ND 25 0.31 pg/g 0.85 Jq 25 0.36 pg/g 0.85 Jq 25 0.36 pg/g 1.5 J 25 0.31 pg/g 67 B 25 0.52 pg/g 140 B 25 0.52 pg/g ND 25 0.51 pg/g 1200 B 49 2.6 pg/g 15 Jq 2 9 9g/g 1.7 Jq B 4.9 0.45 pg/g ND 5.1 2.2 pg/g 3.4 Jq B 4.9 0.37 pg/g 5.4 Jq 25 0.50 pg/g 9.2 Jq 25 0.56 pg/g 9.2 Jq 25 0.50 pg/g	3.0 J 25 0.31 pg/g 5.1 Jq 25 0.31 pg/g 2.2 J 25 0.28 pg/g 2.9 Jq 25 0.28 pg/g 3.2 J 25 0.27 pg/g 3.7 J 25 0.33 pg/g 1.1 Jq 25 0.37 pg/g ND 25 0.36 pg/g 1.5 J 25 0.37 pg/g 1.6 B 25 0.25 pg/g 14 B 25 0.31 pg/g 15 Jq 25 0.31 pg/g ND 25 0.36 pg/g 15 Jq 25 0.31 pg/g 16 B 25 0.52 pg/g 17 Jq B 49 0.45 pg/g ND 5.1 0.29 pg/g 1.7 Jq B 4.9 0.45 pg/g ND 25 0.36 pg/g ND 25 0.37 pg/g 1.7 Jq 25 0.50 pg/g 1.8 Jq 25 0.50 pg/g 1.9 Jq 25 0.50 pg/g 1.0 B 4.9 0.45 pg/g ND 25 0.78 pg/g ND 25 0.78 pg/g 1.7 Jq 25 0.50 pg/g 1.7 Jq B 4.9 0.45 pg/g ND 25 0.78 pg/g ND 25 0.78 pg/g ND 25 0.78 pg/g ND 25 0.78 pg/g ND 25 0.79 pg/g 1.7 Jq D 25 0.50 pg/g ND 25 0.78 pg/g ND 25 0.78 pg/g ND 25 0.79 pg/g 1.7 Jq D 25 0.50 pg/g ND 25 0.78 pg/g 1.7 Jq D 25 0.50 pg/g 1.7 Jq D 2	3.0 J 25 0.31 pg/g 12/14/12 13:58 5.1 Jq 25 0.31 pg/g 12/14/12 13:29 2.2 J 25 0.28 pg/g 12/14/12 13:58 2.9 Jq 25 0.28 pg/g 12/14/12 13:58 3.7 J 25 0.38 pg/g 12/14/12 13:58 3.7 J 25 0.39 pg/g 12/14/12 13:58 3.7 J 25 0.39 pg/g 12/14/12 13:58 3.7 J 25 0.39 pg/g 12/14/12 13:58 3.7 J 25 0.31 pg/g 12/14/12 13:58 3.7 J 25 0.31 pg/g 12/14/12 13:58 3.8 DD 25 0.27 pg/g 12/14/12 13:58 3.9 DD 25 0.27 pg/g 12/14/12 13:58 3.9 DD 25 0.27 pg/g 12/14/12 13:58 3.9 DD 25 0.27 pg/g 12/14/12 13:59 3.0 D 25 0.36 pg/g 12/12/12 13:29 3.1 D 25 0.36 pg/g 12/12/12 13:29 3.2 D 3.3 Dg/g 12/14/12 13:58 3.3 D 25 0.31 pg/g 12/14/12 13:58 3.4 D 25 0.30 pg/g 12/14/12 13:58 3.5 D 30 Dg/g 12/14/12 13:59 3.6 D 30 Dg/g 12/14/12 13:59 3.7 D 30 Dg/g 12/14/12 13:59 3.8 D 30 Dg/g 12/14/12 13:59 3.9 D 30 Dg/g 12/14/12 13:59 3.0 D 30 Dg/g 12/14/12 13:59 3.1 D 30 Dg/g 12/14/12 13:59 3.2 D 30 Dg/g 12/14/12 13:59 3.3 D 30 Dg/g 12/14/12 13:59 3.4 Dg 8 D 30 Dg/g 12/14/12 13:58 3.5 D 30 Dg/g 12/14/12 13:59 3.6 D 30 Dg/g 12/14/12 13:59 3.7 D 30 Dg/g 12/14/12 13:59 3.8 D 30 Dg/g 12/14/12 13:59 3.9 D 31 Dg/g 12/14/12 13:59 3.0 D 32 D 3	3.0 J 25 0.31 pg/g 12/14/12 13:58 12/18/12 00:14 5.1 Jq 25 0.31 pg/g 12/12/12 13:29 12/18/12 01:20 2.2 J 25 0.28 pg/g 12/12/12 13:58 12/18/12 01:14 2.9 Jq 25 0.28 pg/g 12/12/12 13:58 12/18/12 01:14 2.9 Jq 25 0.28 pg/g 12/12/12 13:58 12/18/12 01:14 3.7 J 25 0.33 pg/g 12/12/12 13:29 12/18/12 01:20 1.1 Jq 25 0.27 pg/g 12/14/12 13:58 12/18/12 01:14 1.4 J 25 0.31 pg/g 12/12/12 13:29 12/18/12 01:20 1.1 Jq 25 0.27 pg/g 12/14/12 13:58 12/18/12 00:14 1.4 J 25 0.31 pg/g 12/12/12 13:29 12/18/12 01:20 1.5 0.36 pg/g 12/12/12 13:29 12/18/12 01:20 1.6 0.85 Jq 25 0.25 pg/g 12/14/12 13:58 12/18/12 00:14 1.5 J 25 0.31 pg/g 12/12/12 13:29 12/18/12 01:20 1.5 J 25 0.31 pg/g 12/14/12 13:58 12/18/12 00:14 1.5 J 25 0.31 pg/g 12/14/12 13:58 12/18/12 00:14 1.6 J 25 0.31 pg/g 12/14/12 13:58 12/18/12 00:14 1.6 J 25 0.31 pg/g 12/14/12 13:59 12/18/12 01:20 1.6 G B 25 0.52 pg/g 12/14/12 13:59 12/18/12 00:14 1.4 U B 25 1.2 pg/g 12/14/12 13:59 12/18/12 00:14 1.5 Jq 25 0.30 pg/g 12/14/12 13:59 12/18/12 00:14 1.6 Dq 25 0.30 pg/g 12/14/12 13:59 12/18/12 00:14 1.6 Dq 25 0.30 pg/g 12/14/12 13:59 12/18/12 00:14 1.6 Dq 25 0.30 pg/g 12/14/12 13:59 12/18/12 00:14 1.6 Dq 25 0.31 pg/g 12/14/12 13:59 12/18/12 00:14 1.6 Dq 25 0.31 pg/g 12/14/12 13:59 12/18/12 00:14 1.6 Dq 25 0.41 pg/g 12/14/12 13:59 12/18/12 00:14 1.7 Jq 25 0.44 pg/g 12/14/12 13:59 12/18/12 00:10 1.8 Dq 26 0.49 pg/g 12/14/12 13:58 12/18/12 00:10 1.8 Dq 26 0.49 pg/g 12/14/12 13:58 12/18/12 00:10 1.8 Dq 26 0.57 pg/g 12/14/12 13:59 12/18/12 00:20 1.6 Dq 27 pg/g 12/14/12 13:58 12/18/12 00:20 1.6 Dq 27 pg/g 12/14/12 13:58 12/18/12 00:20 1.7 Dq 25 0.50 pg/g 12/14/12 13:58 12/18/12 00:20 1.8 Dq 26 0.50 pg/g 12/14/12 13:58 12/18/12 00:20 1.8 Dq 26 0.50 pg/g 12/14/12 13:58 12/18/12 00:20 1.7 Dq 25 0.50 pg/g 12/14/12 13:58 12/18/12 00:20 1.7 Dq 25 0.50 pg/g 12/14/12 13:58 12/18/12 00:20 1.7 Dq 25 0.50 pg/g 12/14/12 13:58 12/18/12 00:20 1.7 Dq 25 0.50 pg/g 12/14/12 13:58 12/18/12 00:20 1.7 Dq 25 0.50 pg/g 12/14/12 13:58 12/18/12 00:20 1.7 Dq 25 0.50 pg/g 12/14/12 13:59 12/18/12 00:14 1.2 Dq 25 0.50 p

TestAmerica Seattle

Page 30 of 64

Client Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Lab Sample ID: 580-36242-97

Matrix: Solid

Client Sample ID: LRIS-LR-PS-SRM

Date Collected: 11/26/12 10:00 Date Received: 12/07/12 08:50

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
Total HpCDF	86	В	25	0.62	pg/g		12/12/12 13:29	12/18/12 01:20	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	67		25 - 164				12/14/12 13:58	12/18/12 00:14	1
13C-2,3,7,8-TCDD	88		25 - 164				12/12/12 13:29	12/18/12 01:20	1
13C-2,3,7,8-TCDF	86		24 - 169				12/14/12 13:58	12/18/12 00:14	1
13C-2,3,7,8-TCDF	104		24 - 169				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,7,8-PeCDD	62		25 - 181				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,7,8-PeCDD	84		25 - 181				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,7,8-PeCDF	70		24 - 185				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,7,8-PeCDF	89		24 - 185				12/12/12 13:29	12/18/12 01:20	1
13C-2,3,4,7,8-PeCDF	73		21 - 178				12/14/12 13:58	12/18/12 00:14	1
13C-2,3,4,7,8-PeCDF	89		21 - 178				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,4,7,8-HxCDD	75		32 - 141				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,4,7,8-HxCDD	88		32 - 141				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,6,7,8-HxCDD	77		28 - 130				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,6,7,8-HxCDD	90		28 - 130				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,4,7,8-HxCDF	94		26 - 152				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,4,7,8-HxCDF	95		26 - 152				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,6,7,8-HxCDF	95		26 - 123				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,6,7,8-HxCDF	100		26 - 123				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,7,8,9-HxCDF	82		29 - 147				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,7,8,9-HxCDF	93		29 - 147				12/12/12 13:29	12/18/12 01:20	1
13C-2,3,4,6,7,8-HxCDF	93		28 - 136				12/14/12 13:58	12/18/12 00:14	1
13C-2,3,4,6,7,8-HxCDF	98		28 - 136				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,4,6,7,8-HpCDD	83		23 - 140				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,4,6,7,8-HpCDD	75		23 - 140				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,4,6,7,8-HpCDF	98		28 - 143				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,4,6,7,8-HpCDF	91		28 - 143				12/12/12 13:29	12/18/12 01:20	1
13C-1,2,3,4,7,8,9-HpCDF	98		26 - 138				12/14/12 13:58	12/18/12 00:14	1
13C-1,2,3,4,7,8,9-HpCDF	88		26 - 138				12/12/12 13:29	12/18/12 01:20	1
13C-OCDD	82		17 - 157				12/14/12 13:58	12/18/12 00:14	1
13C-OCDD	77		17 - 157				12/12/12 13:29	12/18/12 01:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37Cl4-2,3,7,8-TCDD	81		35 - 197				12/14/12 13:58	12/18/12 00:14	
37CI4-2,3,7,8-TCDD	108		35 ₋ 197				12/12/12 13:29	12/18/12 01:20	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

37CI4-2,3,7,8-TCDD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-7287/1-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.50	0.018	pg/g		12/12/12 13:29	12/13/12 18:42	1
2,3,7,8-TCDF	0.0649	J	0.50	0.015	pg/g		12/12/12 13:29	12/13/12 18:42	1
1,2,3,7,8-PeCDD	ND		2.5	0.031	pg/g		12/12/12 13:29	12/13/12 18:42	1
1,2,3,7,8-PeCDF	ND		2.5	0.021	pg/g		12/12/12 13:29	12/13/12 18:42	1
2,3,4,7,8-PeCDF	ND		2.5	0.036	pg/g		12/12/12 13:29	12/13/12 18:42	1
1,2,3,4,7,8-HxCDD	ND		2.5	0.015	pg/g		12/12/12 13:29	12/13/12 18:42	1
1,2,3,6,7,8-HxCDD	ND		2.5	0.015	pg/g		12/12/12 13:29	12/13/12 18:42	1
1,2,3,7,8,9-HxCDD	ND		2.5	0.013	pg/g		12/12/12 13:29	12/13/12 18:42	1
1,2,3,4,7,8-HxCDF	ND		2.5	0.010			12/12/12 13:29	12/13/12 18:42	1
1,2,3,6,7,8-HxCDF	ND		2.5	0.0094	pg/g		12/12/12 13:29	12/13/12 18:42	1
1,2,3,7,8,9-HxCDF	ND		2.5	0.011	pg/g		12/12/12 13:29	12/13/12 18:42	1
2,3,4,6,7,8-HxCDF	ND		2.5	0.0093	pg/g		12/12/12 13:29	12/13/12 18:42	1
1,2,3,4,6,7,8-HpCDD	0.0581	J	2.5	0.018			12/12/12 13:29	12/13/12 18:42	1
1,2,3,4,6,7,8-HpCDF	0.0379		2.5	0.011			12/12/12 13:29	12/13/12 18:42	1
1,2,3,4,7,8,9-HpCDF	ND		2.5	0.015			12/12/12 13:29	12/13/12 18:42	1
OCDD	0.103	Ja	5.0	0.015			12/12/12 13:29	12/13/12 18:42	1
OCDF	ND		5.0	0.046			12/12/12 13:29	12/13/12 18:42	1
Total TCDD	0.132	Ja	0.50	0.018			12/12/12 13:29	12/13/12 18:42	1
Total TCDF	0.0649	:	0.50	0.015			12/12/12 13:29	12/13/12 18:42	1
Total PeCDD	ND		2.5	0.031			12/12/12 13:29	12/13/12 18:42	1
Total PeCDF	ND		2.5	0.036			12/12/12 13:29	12/13/12 18:42	1
Total HxCDD	ND		2.5		pg/g		12/12/12 13:29	12/13/12 18:42	1
Total HxCDF	ND		2.5	0.011			12/12/12 13:29	12/13/12 18:42	1
Total HpCDD	0.124	J a	2.5	0.018			12/12/12 13:29	12/13/12 18:42	1
Total HpCDF	0.0379		2.5	0.013			12/12/12 13:29	12/13/12 18:42	1
Total Tipobi		MB	2.0	0.010	P9/9		12/12/12 10:20	12/10/12 10:12	
Isotope Dilution	%Recovery		Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	79		25 - 164				12/12/12 13:29	12/13/12 18:42	1
13C-2,3,7,8-TCDF	93		24 - 169				12/12/12 13:29	12/13/12 18:42	1
13C-1,2,3,7,8-PeCDD	79		25 - 181				12/12/12 13:29	12/13/12 18:42	1
13C-1,2,3,7,8-PeCDF	77		24 - 185				12/12/12 13:29	12/13/12 18:42	1
13C-2,3,4,7,8-PeCDF	78		21 - 178				12/12/12 13:29	12/13/12 18:42	1
13C-1,2,3,4,7,8-HxCDD	79		32 - 141				12/12/12 13:29	12/13/12 18:42	1
13C-1,2,3,6,7,8-HxCDD	76		28 - 130				12/12/12 13:29	12/13/12 18:42	1
13C-1,2,3,4,7,8-HxCDF	86		26 - 152				12/12/12 13:29	12/13/12 18:42	. 1
13C-1,2,3,6,7,8-HxCDF	95		26 - 123				12/12/12 13:29	12/13/12 18:42	1
13C-1,2,3,7,8,9-HxCDF	88		29 - 147				12/12/12 13:29	12/13/12 18:42	1
13C-2,3,4,6,7,8-HxCDF	94		28 - 136				12/12/12 13:29	12/13/12 18:42	. 1
13C-1,2,3,4,6,7,8-HpCDD	69		23 - 140				12/12/12 13:29	12/13/12 18:42	. 1
13C-1,2,3,4,6,7,8-HpCDF	82		28 - 143				12/12/12 13:29	12/13/12 18:42	1
13C-1,2,3,4,7,8,9-HpCDF	82		26 - 138				12/12/12 13:29	12/13/12 18:42	1
13C-OCDD	82		17 ₋ 157				12/12/12 13:29	12/13/12 18:42	1
.00 0000	02		11 - 101				.2.12.12.13.29	.2.10/12 10.72	,
		MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

12/12/12 13:29 12/13/12 18:42

35 _ 197

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-7287/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 7371**

Prep Batch: 7287

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	20.0	21.6		pg/g		108	67 - 158	
2,3,7,8-TCDF	20.0	21.3		pg/g		107	75 - 158	
1,2,3,7,8-PeCDD	100	101		pg/g		101	70 - 142	
1,2,3,7,8-PeCDF	100	119		pg/g		119	80 - 134	
2,3,4,7,8-PeCDF	100	113		pg/g		113	68 - 160	
1,2,3,4,7,8-HxCDD	100	111		pg/g		111	70 - 164	
1,2,3,6,7,8-HxCDD	100	110		pg/g		110	76 - 134	
1,2,3,7,8,9-HxCDD	100	113		pg/g		113	64 - 162	
1,2,3,4,7,8-HxCDF	100	104		pg/g		104	72 - 134	
1,2,3,6,7,8-HxCDF	100	105		pg/g		105	84 - 130	
1,2,3,7,8,9-HxCDF	100	104		pg/g		104	78 ₋ 130	
2,3,4,6,7,8-HxCDF	100	104		pg/g		104	70 - 156	
1,2,3,4,6,7,8-HpCDD	100	106		pg/g		106	70 - 140	
1,2,3,4,6,7,8-HpCDF	100	105		pg/g		105	82 - 122	
1,2,3,4,7,8,9-HpCDF	100	104		pg/g		104	78 - 138	
OCDD	200	213		pg/g		107	78 - 144	
OCDF	200	223		pg/g		111	63 _ 170	

LCS LCS Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 20 - 175 78 13C-2,3,7,8-TCDF 91 22 - 152 13C-1,2,3,7,8-PeCDD 78 21 - 227 13C-1,2,3,7,8-PeCDF 76 21 - 192 79 13C-2,3,4,7,8-PeCDF 13 - 328 13C-1,2,3,4,7,8-HxCDD 83 21 - 193 13C-1,2,3,6,7,8-HxCDD 76 25 - 163 13C-1,2,3,4,7,8-HxCDF 88 19 - 202 13C-1,2,3,6,7,8-HxCDF 94 21 - 159 13C-1,2,3,7,8,9-HxCDF 91 17 - 205 13C-2,3,4,6,7,8-HxCDF 93 22 - 176 13C-1,2,3,4,6,7,8-HpCDD 72 26 - 166 13C-1,2,3,4,6,7,8-HpCDF 85 21 - 158

LCS LCS Surrogate %Recovery Qualifier Limits 37CI4-2,3,7,8-TCDD 96 35 - 197

84

85

Lab Sample ID: MB 320-7414/1-A

Matrix: Solid

Analysis Batch: 7556

13C-1,2,3,4,7,8,9-HpCDF

13C-OCDD

Client Sample ID: Meth	nod Blank
------------------------	-----------

Prep Type: Total/NA Prep Batch: 7414

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.50	0.036	pg/g		12/14/12 13:58	12/17/12 21:24	1
2,3,7,8-TCDF	ND		0.50	0.068	pg/g		12/14/12 13:58	12/17/12 21:24	1
1,2,3,7,8-PeCDD	ND		2.5	0.062	pg/g		12/14/12 13:58	12/17/12 21:24	1
1,2,3,7,8-PeCDF	ND		2.5	0.080	pg/g		12/14/12 13:58	12/17/12 21:24	1
2,3,4,7,8-PeCDF	ND		2.5	0.089	pg/g		12/14/12 13:58	12/17/12 21:24	1

20 - 186

13 - 199

TestAmerica Seattle

Page 33 of 64

Client Sample ID: Method Blank

12/17/12 21:24

12/17/12 21:24

12/17/12 21:24

12/17/12 21:24

Prep Type: Total/NA

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Lab Sample ID: MB 320-7414/1-A

Matrix: Solid

Total HxCDD

Total HxCDF

Total HpCDD

Total HpCDF

6

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Analysis Batch: 7556 Prep Batch: 7414 MB MB Result Qualifier RL **EDL** Unit Dil Fac Analyte D Prepared Analyzed 1,2,3,4,7,8-HxCDD ND 2.5 12/14/12 13:58 12/17/12 21:24 0.039 pg/g 1,2,3,6,7,8-HxCDD ND 2.5 0.040 pg/g 12/14/12 13:58 12/17/12 21:24 ND 1,2,3,7,8,9-HxCDD 2.5 0.035 pg/g 12/14/12 13:58 12/17/12 21:24 1,2,3,4,7,8-HxCDF ND 2.5 0.026 pg/g 12/14/12 13:58 12/17/12 21:24 ND 2.5 12/14/12 13:58 12/17/12 21:24 1,2,3,6,7,8-HxCDF 0.025 pg/g 1,2,3,7,8,9-HxCDF ND 2.5 12/14/12 13:58 12/17/12 21:24 0.037 pg/g 12/17/12 21:24 2,3,4,6,7,8-HxCDF ND 2.5 0.024 12/14/12 13:58 pg/g 1,2,3,4,6,7,8-HpCDD 0.0602 Jq 2.5 0.029 pg/g 12/14/12 13:58 12/17/12 21:24 1,2,3,4,6,7,8-HpCDF ND 2.5 0.023 pg/g 12/14/12 13:58 12/17/12 21:24 1,2,3,4,7,8,9-HpCDF ND 2.5 0.035 pg/g 12/14/12 13:58 12/17/12 21:24 OCDD 0.283 5.0 0.062 pg/g 12/14/12 13:58 12/17/12 21:24 OCDF ND 5.0 0.053 pg/g 12/14/12 13:58 12/17/12 21:24 0.036 Total TCDD 0.101 0.50 12/14/12 13:58 12/17/12 21:24 pg/g Total TCDF ND 0.50 0.068 pg/g 12/14/12 13:58 12/17/12 21:24 Total PeCDD 12/17/12 21:24 ND 2.5 0.35 pg/g 12/14/12 13:58 Total PeCDF ND 12/14/12 13:58 12/17/12 21:24 2.5 0.089 pg/g

2.5

2.5

2.5

2.5

0.14 pg/g

0.037 pg/g

0.035 pg/g

pg/g

0.029

MB MB

87

ND

ND

ND

0.159 Jq

	MB	МВ				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	76		25 - 164	12/14/12 13:58	12/17/12 21:24	1
13C-2,3,7,8-TCDF	95		24 - 169	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,7,8-PeCDD	71		25 - 181	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,7,8-PeCDF	78		24 - 185	12/14/12 13:58	12/17/12 21:24	1
13C-2,3,4,7,8-PeCDF	82		21 - 178	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,4,7,8-HxCDD	73		32 - 141	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,6,7,8-HxCDD	79		28 - 130	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,4,7,8-HxCDF	92		26 - 152	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,6,7,8-HxCDF	97		26 - 123	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,7,8,9-HxCDF	87		29 - 147	12/14/12 13:58	12/17/12 21:24	1
13C-2,3,4,6,7,8-HxCDF	91		28 - 136	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,4,6,7,8-HpCDD	85		23 - 140	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,4,6,7,8-HpCDF	99		28 - 143	12/14/12 13:58	12/17/12 21:24	1
13C-1,2,3,4,7,8,9-HpCDF	98		26 - 138	12/14/12 13:58	12/17/12 21:24	1
13C-OCDD	86		17 - 157	12/14/12 13:58	12/17/12 21:24	1

Surrogate %Recovery Qualifier

Lab Sample ID: LCS 320-7414/2-A

Matrix: Solid

37CI4-2,3,7,8-TCDD

Analysis Batch: 7556

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 7414

Analyzed

12/17/12 21:24

12/14/12 13:58

12/14/12 13:58

12/14/12 13:58

12/14/12 13:58

Prepared

12/14/12 13:58

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	 20.0	20.0		pg/g		100	67 - 158	
2,3,7,8-TCDF	20.0	22.1		pg/g		111	75 - 158	

Limits

35 - 197

TestAmerica Seattle

Dil Fac

TestAmerica Job ID: 580-36242-2

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCS 320-7414/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 7556** Prep Batch: 7414

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3,7,8-PeCDD	100	86.6		pg/g		87	70 - 142	
1,2,3,7,8-PeCDF	100	103		pg/g		103	80 _ 134	
2,3,4,7,8-PeCDF	100	97.8		pg/g		98	68 - 160	
1,2,3,4,7,8-HxCDD	100	94.9		pg/g		95	70 - 164	
1,2,3,6,7,8-HxCDD	100	99.6		pg/g		100	76 ₋ 134	
1,2,3,7,8,9-HxCDD	100	98.5		pg/g		99	64 - 162	
1,2,3,4,7,8-HxCDF	100	94.8		pg/g		95	72 _ 134	
1,2,3,6,7,8-HxCDF	100	103		pg/g		103	84 _ 130	
1,2,3,7,8,9-HxCDF	100	99.4		pg/g		99	78 - 130	
2,3,4,6,7,8-HxCDF	100	99.5		pg/g		99	70 - 156	
1,2,3,4,6,7,8-HpCDD	100	92.6		pg/g		93	70 - 140	
1,2,3,4,6,7,8-HpCDF	100	100		pg/g		100	82 _ 122	
1,2,3,4,7,8,9-HpCDF	100	95.2		pg/g		95	78 ₋ 138	
OCDD	200	202		pg/g		101	78 ₋ 144	
OCDF	200	232		pg/g		116	63 - 170	

OCDF			200
	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	66		20 - 175
13C-2,3,7,8-TCDF	83		22 - 152
13C-1,2,3,7,8-PeCDD	59		21 - 227
13C-1,2,3,7,8-PeCDF	66		21 - 192
13C-2,3,4,7,8-PeCDF	70		13 - 328
13C-1,2,3,4,7,8-HxCDD	70		21 - 193
13C-1,2,3,6,7,8-HxCDD	70		25 - 163
13C-1,2,3,4,7,8-HxCDF	80		19 - 202
13C-1,2,3,6,7,8-HxCDF	83		21 - 159
13C-1,2,3,7,8,9-HxCDF	82		17 - 205
13C-2,3,4,6,7,8-HxCDF	83		22 - 176
13C-1,2,3,4,6,7,8-HpCDD	75		26 - 166
13C-1,2,3,4,6,7,8-HpCDF	88		21 - 158
13C-1,2,3,4,7,8,9-HpCDF	89		20 - 186
13C-OCDD	79		13 - 199
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
37CI4-2,3,7,8-TCDD	83		35 - 197

Lab Sample ID: MB 320-7437/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 7570 Prep Batch: 7437 MB MB

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		10	0.36	pg/L		12/17/12 09:33	12/18/12 23:51	1
2,3,7,8-TCDF	ND		10	0.45	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,7,8-PeCDD	ND		50	0.56	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,7,8-PeCDF	ND		50	0.38	pg/L		12/17/12 09:33	12/18/12 23:51	1
2,3,4,7,8-PeCDF	ND		50	2.2	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,4,7,8-HxCDD	ND		50	0.26	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,6,7,8-HxCDD	ND		50	0.26	pg/L		12/17/12 09:33	12/18/12 23:51	1

TestAmerica Seattle

Page 35 of 64

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: MB 320-7437/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA Analysis Batch: 7570** Prep Batch: 7437

	MB	MB							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,7,8,9-HxCDD	ND		50	0.23	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,4,7,8-HxCDF	ND		50	0.18	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,6,7,8-HxCDF	ND		50	0.17	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,7,8,9-HxCDF	ND		50	0.99	pg/L		12/17/12 09:33	12/18/12 23:51	1
2,3,4,6,7,8-HxCDF	ND		50	0.16	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,4,6,7,8-HpCDD	ND		50	0.39	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,4,6,7,8-HpCDF	ND		50	0.20	pg/L		12/17/12 09:33	12/18/12 23:51	1
1,2,3,4,7,8,9-HpCDF	ND		50	0.33	pg/L		12/17/12 09:33	12/18/12 23:51	1
OCDD	2.58	J	100	0.41	pg/L		12/17/12 09:33	12/18/12 23:51	1
OCDF	ND		100	0.63	pg/L		12/17/12 09:33	12/18/12 23:51	1
Total TCDD	ND		10	0.36	pg/L		12/17/12 09:33	12/18/12 23:51	1
Total TCDF	ND		10	0.45	pg/L		12/17/12 09:33	12/18/12 23:51	1
Total PeCDD	ND		50	0.56	pg/L		12/17/12 09:33	12/18/12 23:51	1
Total PeCDF	ND		50	2.2	pg/L		12/17/12 09:33	12/18/12 23:51	1
Total HxCDD	ND		50	0.26	pg/L		12/17/12 09:33	12/18/12 23:51	1
Total HxCDF	ND		50	0.99	pg/L		12/17/12 09:33	12/18/12 23:51	1
Total HpCDD	ND		50	0.39	pg/L		12/17/12 09:33	12/18/12 23:51	1
Total HpCDF	ND		50	0.33	pg/L		12/17/12 09:33	12/18/12 23:51	1
	MB	MB							
i e e e e e e e e e e e e e e e e e e e									

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	87	-	25 - 164	12/17/12 09:33	12/18/12 23:51	
13C-2,3,7,8-TCDF	98		24 - 169	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,7,8-PeCDD	83		25 - 181	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,7,8-PeCDF	90		24 - 185	12/17/12 09:33	12/18/12 23:51	
13C-2,3,4,7,8-PeCDF	94		21 - 178	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,4,7,8-HxCDD	90		32 - 141	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,6,7,8-HxCDD	91		28 - 130	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,4,7,8-HxCDF	88		26 - 152	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,6,7,8-HxCDF	97		26 - 123	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,7,8,9-HxCDF	88		29 - 147	12/17/12 09:33	12/18/12 23:51	
13C-2,3,4,6,7,8-HxCDF	97		28 - 136	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,4,6,7,8-HpCDD	71		23 - 140	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,4,6,7,8-HpCDF	86		28 - 143	12/17/12 09:33	12/18/12 23:51	
13C-1,2,3,4,7,8,9-HpCDF	80		26 - 138	12/17/12 09:33	12/18/12 23:51	
13C-OCDD	72		17 - 157	12/17/12 09:33	12/18/12 23:51	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
37CI4-2,3,7,8-TCDD	110		35 _ 197	12/17/12 09:33	12/18/12 23:51	1

MB MB

Lab Sample ID: LCS 320-7437/2-A **Matrix: Water**

Analysis Batch: 7570

1,2,3,7,8-PeCDF

Prep Batch: 7437 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 2,3,7,8-TCDD 200 216 pg/L 108 67 - 158 2,3,7,8-TCDF 200 191 96 75 - 158 pg/L 1,2,3,7,8-PeCDD 1000 944 pg/L 94 70 - 142

1030

pg/L

TestAmerica Seattle

2/6/2013

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

80 - 134

103

Page 36 of 64

QC Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Matrix: Water

Surrogate

37CI4-2,3,7,8-TCDD

Analysis Batch: 7570

Lab Sample ID: LCS 320-7437/2-A

TestAmerica Job ID: 580-36242-2

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 7437

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,4,7,8-PeCDF	1000	1020		pg/L		102	68 - 160	
1,2,3,4,7,8-HxCDD	1000	964		pg/L		96	70 - 164	
1,2,3,6,7,8-HxCDD	1000	963		pg/L		96	76 ₋ 134	
1,2,3,7,8,9-HxCDD	1000	943		pg/L		94	64 - 162	
1,2,3,4,7,8-HxCDF	1000	954		pg/L		95	72 _ 134	
1,2,3,6,7,8-HxCDF	1000	996		pg/L		100	84 - 130	
1,2,3,7,8,9-HxCDF	1000	956		pg/L		96	78 ₋ 130	
2,3,4,6,7,8-HxCDF	1000	992		pg/L		99	70 - 156	
1,2,3,4,6,7,8-HpCDD	1000	993		pg/L		99	70 - 140	
1,2,3,4,6,7,8-HpCDF	1000	1000		pg/L		100	82 _ 122	
1,2,3,4,7,8,9-HpCDF	1000	946		pg/L		95	78 ₋ 138	
OCDD	2000	2000		pg/L		100	78 ₋ 144	
OCDF	2000	1990		pg/L		100	63 - 170	

OCDF			2000
	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	78		20 - 175
13C-2,3,7,8-TCDF	88		22 - 152
13C-1,2,3,7,8-PeCDD	78		21 - 227
13C-1,2,3,7,8-PeCDF	74		21 - 192
13C-2,3,4,7,8-PeCDF	84		13 - 328
13C-1,2,3,4,7,8-HxCDD	91		21 - 193
13C-1,2,3,6,7,8-HxCDD	86		25 - 163
13C-1,2,3,4,7,8-HxCDF	85		19 - 202
13C-1,2,3,6,7,8-HxCDF	95		21 - 159
13C-1,2,3,7,8,9-HxCDF	86		17 - 205
13C-2,3,4,6,7,8-HxCDF	90		22 - 176
13C-1,2,3,4,6,7,8-HpCDD	67		26 - 166
13C-1,2,3,4,6,7,8-HpCDF	80		21 - 158
13C-1,2,3,4,7,8,9-HpCDF	78		20 - 186
13C-OCDD	70		13 - 199
	LCS	LCS	

%Recovery Qualifier

104

TestAmerica Seattle

Limits 35 - 197

Client Sample ID: LRIS-LR-103

Date Collected: 12/04/12 11:55 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-5

Matrix: Solid
Percent Solids: 51.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/13/12 20:11	MG	TAL WSC

Client Sample ID: LRIS-LR-106 Lab Sample ID: 580-36242-10

Date Collected: 12/04/12 11:42 Date Received: 12/07/12 08:50 Matrix: Solid
Percent Solids: 47.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/13/12 20:55	MG	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/14/12 14:49	MG	TAL WSC
Total/NA	Analysis	1613B		20	8576	01/11/13 01:01	MG	TAL WSC

Client Sample ID: LRIS-LR-109-3 Lab Sample ID: 580-36242-16

Date Collected: 12/02/12 15:15 Date Received: 12/07/12 08:50 Matrix: Solid
Percent Solids: 60.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/13/12 21:40	MG	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/14/12 15:26	MG	TAL WSC

Client Sample ID: LRIS-LR-110-3 Lab Sample ID: 580-36242-20

Date Collected: 12/03/12 10:35 Date Received: 12/07/12 08:50 Matrix: Solid
Percent Solids: 58.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/13/12 22:24	MG	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/14/12 16:04	MG	TAL WSC
Total/NA	Analysis	1613B		20	8576	01/11/13 01:46	MG	TAL WSC

Client Sample ID: LRIS-LR-120-2 Lab Sample ID: 580-36242-27

Date Collected: 12/03/12 12:20 Date Received: 12/07/12 08:50 Matrix: Solid
Percent Solids: 57.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/13/12 23:09	MG	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/14/12 16:41	MG	TAL WSC
Total/NA	Analysis	1613B		20	8576	01/11/13 02:30	MG	TAL WSC

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Lab Sample ID: 580-36242-31

Matrix: Solid

Percent Solids: 64.6

Client Sample ID: LRIS-LR-122-2

Date Collected: 12/03/12 15:22 Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/13/12 23:54	MG	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/14/12 17:19	MG	TAL WSC
Total/NA	Analysis	1613B		20	8576	01/11/13 03:15	MG	TAL WSC

Client Sample ID: LRIS-LR-124-2 Lab Sample ID: 580-36242-36

Date Collected: 12/03/12 09:50 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 65.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/14/12 00:38	MG	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/14/12 17:56	MG	TAL WSC
Total/NA	Analysis	1613B		20	7945	12/27/12 12:37	MG	TAL WSC

Client Sample ID: LRIS-LR-126-2 Lab Sample ID: 580-36242-43

Date Collected: 12/02/12 12:40 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 69.0

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/14/12 01:22	MG	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/14/12 18:34	MG	TAL WSC
Total/NA	Analysis	1613B		20	8576	01/11/13 03:59	MG	TAL WSC

Client Sample ID: LRIS-LR-126 Lab Sample ID: 580-36242-47

Date Collected: 12/04/12 08:56 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 61.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/14/12 02:07	MG	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/14/12 19:11	MG	TAL WSC
Total/NA	Analysis	1613B		20	7945	12/27/12 13:20	MG	TAL WSC

Client Sample ID: LRIS-LR-129-2 Lab Sample ID: 580-36242-48

Date Collected: 12/02/12 13:50 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 64.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7371	12/14/12 02:51	MG	TAL WSC

TestAmerica Seattle

2/6/2013

Page 39 of 64

Client Sample ID: LRIS-LR-129-2

Date Collected: 12/02/12 13:50

Date Received: 12/07/12 08:50

Lab Sample ID: 580-36242-48

Matrix: Solid Percent Solids: 64.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1613B		1	7427	12/14/12 19:49	MG	TAL WSC

Client Sample ID: LRIS-LR-129 Lab Sample ID: 580-36242-52

Date Collected: 12/04/12 10:10 Matrix: Solid Date Received: 12/07/12 08:50 Percent Solids: 52.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7426	12/15/12 13:56	AM	TAL WSC

Client Sample ID: LRIS-LR-130-2 Lab Sample ID: 580-36242-53

Date Collected: 12/02/12 14:40 **Matrix: Solid**

Date Received: 12/07/12 08:50 Percent Solids: 73.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7426	12/15/12 14:40	AM	TAL WSC

Client Sample ID: LRIS-LR-130-FD Lab Sample ID: 580-36242-54

Date Collected: 12/02/12 14:40 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 73.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7426	12/15/12 15:25	AM	TAL WSC

Client Sample ID: LRIS-LR-130 Lab Sample ID: 580-36242-58

Date Collected: 12/04/12 10:24 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 61.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7426	12/15/12 16:09	AM	TAL WSC

Client Sample ID: LRIS-LR-130-FD-1 Lab Sample ID: 580-36242-59

Date Collected: 12/04/12 10:24 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 60.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7426	12/15/12 16:54	AM	TAL WSC

TestAmerica Seattle

Lab Sample ID: 580-36242-60

Matrix: Solid Percent Solids: 58.4

Client Sample ID: LRIS-LR-131-2 Date Collected: 12/02/12 16:30

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7426	12/15/12 17:38	AM	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/15/12 02:04	MG	TAL WSC

Client Sample ID: LRIS-LR-131 Lab Sample ID: 580-36242-63 **Matrix: Solid**

Date Collected: 12/04/12 11:15

Date Received: 12/07/12 08:50 Percent Solids: 61.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7500	12/17/12 23:06	MG	TAL WSC

Client Sample ID: LRIS-LR-132-2 Lab Sample ID: 580-36242-64

Date Collected: 12/03/12 14:00 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 70.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/15/12 03:19	MG	TAL WSC
Total/NA	Analysis	1613B		1	7500	12/17/12 23:51	MG	TAL WSC

Client Sample ID: LRIS-LR-133-2 Lab Sample ID: 580-36242-69

Date Collected: 12/03/12 15:15 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 63.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7287	12/12/12 13:29	WS	TAL WSC
Total/NA	Analysis	1613B		1	7427	12/15/12 03:57	MG	TAL WSC
Total/NA	Analysis	1613B		1	7500	12/18/12 00:35	MG	TAL WSC

Client Sample ID: LRIS-LR-134-2 Lab Sample ID: 580-36242-74

Date Collected: 12/02/12 10:20 **Matrix: Solid**

Date Received: 12/07/12 08:50 Percent Solids: 62.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7414	12/14/12 13:58	AM	TAL WSC
Total/NA	Analysis	1613B		1	7497	12/17/12 14:56	KS	TAL WSC
Total/NA	Analysis	1613B		1	7556	12/17/12 22:49	SA	TAL WSC
Total/NA	Analysis	1613B		20	8576	01/11/13 04:44	MG	TAL WSC

TestAmerica Seattle

Client Sample ID: LRIS-LR-137

Lab Sample ID: 580-36242-93

Date Collected: 12/04/12 09:14	Matrix: Solid
Date Received: 12/07/12 08:50	Percent Solids: 57.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			7414	12/14/12 13:58	AM	TAL WSC
Total/NA	Analysis	1613B		1	7556	12/17/12 23:32	SA	TAL WSC

Client Sample ID: LRIS-LR-RB-20121202

Lab Sample ID: 580-36242-94

Date Collected: 12/02/12 17:00 **Matrix: Water** Date Received: 12/07/12 08:50

Dilution Batch Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Total/NA Prep 1613B 7437 12/17/12 09:33 CS TAL WSC Total/NA 1613B TAL WSC Analysis 1 7570 12/19/12 05:02 MG

Client Sample ID: LRIS-LR-RB-20121203 Lab Sample ID: 580-36242-95

Date Collected: 12/03/12 17:30 Matrix: Water

Date Received: 12/07/12 08:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1613B			7437	12/17/12 09:33	CS	TAL WSC
Total/NA	Analysis	1613B		1	7570	12/19/12 05:47	MG	TAL WSC

Client Sample ID: LRIS-LR-RB-20121204 Lab Sample ID: 580-36242-96

Date Collected: 12/04/12 17:35 Matrix: Water

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	1613B			7437	12/17/12 09:33	CS	TAL WSC
Total/NA	Analysis	1613B		1	7570	12/19/12 06:31	MG	TAL WSC

Client Sample ID: LRIS-LR-PS-SRM Lab Sample ID: 580-36242-97

Date Collected: 11/26/12 10:00 Matrix: Solid Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Prep Total/NA HRMS-Sox 7287 12/12/12 13:29 WS TAL WSC Total/NA 1613B 1 7500 12/18/12 01:20 MG

Analysis TAL WSC Total/NA TAL WSC Prep HRMS-Sox 7414 12/14/12 13:58 AM Total/NA Analysis 1613B 7556 12/18/12 00:14 SA TAL WSC

Laboratory References:

TAL WSC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Certification Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-2

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-13
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-13

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	DoD ELAP		2928-01	01-31-14
Alaska (UST)	State Program	10	UST-055	12-18-13
Arizona	State Program	9	AZ0708	08-11-13
Arkansas DEQ	State Program	6	88-0691	06-17-13
California	NELAP	9	1119CA	01-31-14
Colorado	State Program	8	N/A	08-31-13
Connecticut	State Program	1	PH-0691	06-30-13
Florida	NELAP	4	E87570	06-30-13
Guam	State Program	9	N/A	08-31-13
Hawaii	State Program	9	N/A	01-31-14
Illinois	NELAP	5	200060	03-17-14
Kansas	NELAP	7	E-10375	10-31-13
Louisiana	NELAP	6	30612	06-30-13
Michigan	State Program	5	9947	01-31-13
Nevada	State Program	9	CA44	07-31-13
New Jersey	NELAP	2	CA005	06-30-13
New York	NELAP	2	11666	04-01-13
Northern Mariana Islands	State Program	9	MP0007	01-31-13
Oregon	NELAP	10	CA200005	03-28-13
Pennsylvania	NELAP	3	68-01272	03-31-13
South Carolina	State Program	4	87014	06-30-13
Texas	NELAP	6	T104704399-08-TX	05-31-13
US Fish & Wildlife	Federal		LE148388-0	12-31-13
USDA	Federal		P330-11-00436	12-30-14
USEPA UCMR	Federal	1	CA00044	11-06-14
Utah	NELAP	8	QUAN1	01-31-13
Washington	State Program	10	C581	05-05-13
West Virginia	State Program	3	9930C	12-31-13
West Virginia DEP	State Program	3	334	07-31-13
Wyoming	State Program	8	8TMS-Q	01-31-14

Sample Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

580-36242-97

LRIS-LR-PS-SRM

TestAmerica Job ID: 580-36242-2

11/26/12 10:00

12/07/12 08:50

3

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-36242-5	LRIS-LR-103	Solid	12/04/12 11:55	12/07/12 08:50
580-36242-10	LRIS-LR-106	Solid	12/04/12 11:42	12/07/12 08:50
580-36242-16	LRIS-LR-109-3	Solid	12/02/12 15:15	12/07/12 08:50
580-36242-20	LRIS-LR-110-3	Solid	12/03/12 10:35	12/07/12 08:50
580-36242-27	LRIS-LR-120-2	Solid	12/03/12 12:20	12/07/12 08:50
580-36242-31	LRIS-LR-122-2	Solid	12/03/12 15:22	12/07/12 08:50
580-36242-36	LRIS-LR-124-2	Solid	12/03/12 09:50	12/07/12 08:50
580-36242-43	LRIS-LR-126-2	Solid	12/02/12 12:40	12/07/12 08:50
580-36242-47	LRIS-LR-126	Solid	12/04/12 08:56	12/07/12 08:50
580-36242-48	LRIS-LR-129-2	Solid	12/02/12 13:50	12/07/12 08:50
580-36242-52	LRIS-LR-129	Solid	12/04/12 10:10	12/07/12 08:50
580-36242-53	LRIS-LR-130-2	Solid	12/02/12 14:40	12/07/12 08:50
580-36242-54	LRIS-LR-130-FD	Solid	12/02/12 14:40	12/07/12 08:50
580-36242-58	LRIS-LR-130	Solid	12/04/12 10:24	12/07/12 08:50
580-36242-59	LRIS-LR-130-FD-1	Solid	12/04/12 10:24	12/07/12 08:50
580-36242-60	LRIS-LR-131-2	Solid	12/02/12 16:30	12/07/12 08:50
580-36242-63	LRIS-LR-131	Solid	12/04/12 11:15	12/07/12 08:50
580-36242-64	LRIS-LR-132-2	Solid	12/03/12 14:00	12/07/12 08:50
580-36242-69	LRIS-LR-133-2	Solid	12/03/12 15:15	12/07/12 08:50
580-36242-74	LRIS-LR-134-2	Solid	12/02/12 10:20	12/07/12 08:50
580-36242-93	LRIS-LR-137	Solid	12/04/12 09:14	12/07/12 08:50
580-36242-94	LRIS-LR-RB-20121202	Water	12/02/12 17:00	12/07/12 08:50
580-36242-95	LRIS-LR-RB-20121203	Water	12/03/12 17:30	12/07/12 08:50
580-36242-96	LRIS-LR-RB-20121204	Water	12/04/12 17:35	12/07/12 08:50

Solid

4

7

q

9

ž

Trip Blank?

Lab Information: Lab: Unknow

Address:

Phone/Fax: /
PM email
Lab Quote #:

ITEM#

Lab PM:

36242

앜 앜

LRIS-LR-110-4 LRIS-LR-110-3 LRIS-LR-110-2 LRIS-LR-109-5 LRIS-LR-109-4 LRIS-LR-109-2 LRIS-LR-108-5 LRIS-LR-108-4 LRIS-LR-109-3 LRIS-LR-108-3 LRIS-LR-110-5 Field Sample No. /Identification City PM Name Phone/Fax: Site Code: PM Email: Site Address Project# Lake River Industrial Site State, Zip SUB_S SUB_S O-SED SUB_S SUB_S SUB_S SUB_S SUB_S SUB_S O-SED SUB_S SUB_S The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate SUB_S MATRIX CODE O C G=GRAB C=COMP O O (n a O PO#
Send EDD to
CC Hardcopy to
CC Hardcopy to City/State. Send Invoice to: Address: 12/03/2012 11:30 12/03/2012 10:45 12/03/2012 10:40 12/03/2012 10:35 12/03/2012 10:30 12/02/2012 15:25 12/02/2012 15:20 12/02/2012 15:15 12/02/2012 15:10 12/03/2012 11:35 12/03/2012 11:25 SAMPLE DATE **#OF CONTAINERS** ယ ယ ω ω Phone #: Comment TAT | Notes: F= Field Filtered , H= Hold Total # of Samples: Archive \times \times \times × × 1613B - Dioxin/Furan Total Organic Carbon -× 97 2012_LR_SED Rush Event Complete?

Lab information:	Lab:	ess:		Lab PM:	Phone/Fax:	PM email	Lab Quote #:	, c		TEM#											
nation:	Unknown Laboratory	-					#	7		Field Sampl	LRIS-LR-119-2	LRIS-LR-119-3	LRIS-LR-119-4	LRIS-LR-119-5	LRIS-LR-120-2	LRIS-LR-120-3	LRIS-LR-120-4	LRIS-LR-120-5	LRIS-LR-122-2	LRIS-LR-122-3	LRIS-LR-122-4
Project Information:	Site Code: Lake Rivi	Project#	Site Address	City		Phone/Fax:	PM Email:		-	Field Sample No. /Identification		THE PARTY TO THE P									
	Lake River Industrial Site			State, Zip					ODE	MATRIX C	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	S_BUS
									=COMP	G=GRAB C	S.G	ς Ο 0	S C	C S.G	G G	S G	C C	D'S	D _. S	D'S	i 'ω
Other Information:	Send Invoice to:	Address:	City/State.	PO#	Send EDD to	CC Hardcopy to	CC Hardcopy to		DATE	SAMPLE [12/03/2012 14:30	12/03/2012 14:35	12/03/2012 14:40	12/03/2012 14:45	12/03/2012 12:20	12/03/2012 12:25	12/03/2012 12:30	12/03/2012 12:35	12/03/2012 15:22	12/03/2012 15:22	12/03/2012 15:22
									AINERS	#OF CONTA	ယ	ω	ω	ω	ω	ω	မ	ပ	ω	ω	ω
			Phone #:	and the second s						Comment											
io	_	Notes:	Notes	Lat	/6	ativ	arva	Prese		Proposition - Proposition of the Party											
al # of S	TAT	es: F=F						-		Archive	×	×	×	×	×	×	×	×	×	×	<u>×</u>
lotal # of Samples:		F= Field Filtered , H= Hold								1613B - Dioxin/ Total Organic (×				×		
,		ed, H=F	•							COE 9060					×				×		
		Pio										- '				_					
	Rush																				
1 %	1									l				ļ	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
Event Complete												-									

LRIS-LR-126-3

SUB_S O-SED

12/02/2012 12:45

Page: Cooler#

5 **of**

Lab Information:	12	The Chain-di-C	ustody is a L	The Chain-dr-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate. Other Information:	mpleted and a		Task:	Total # of Samples:	ples: 97	2012_LR_SED	7 ∣13
Lab: Unknown Laboratory	Site Code: Lake River Industrial Site	al Site		Address:			Notes:	7	Filtered	Field Filtered , H= Hold	
Address	Site Address			City/State.		Phone #:	Notes				
Lab PM:	City State, Zip			PO#			Lab	-			7
Phone/Fax: /	Name		1	Send EDD to			ve				
PM email	Phone/Fax:			CC Hardcopy to			ati				_
Lab Quote #:	PM Email:			CC Hardcopy to		,	serv				
							Pres				1
		CODE	=COMP	DATE	AINERS			n/Furan	Carbon -		
Field Sampl	Field Sample No. Identification	MATRIX C	G=GRAB C	SAMPLE	#OF CONT	Comment	Analysis Archive	1613B - Dioxir	Total Organic COE 9060		
LRIS-LR-126-4		SUB_S O-SED	n	12/02/2012 12:47	ω		×				
LRIS-LR-126-5		SUB_S O-SED	C	12/02/2012 12:50	ယ		×				+
LRIS-LR-126		SOIL- SED	C	12/04/2012 08:56	ω		×	×	×		
LRIS-LR-129-2		SUB_S O-SED	n	12/02/2012 13:50	ω		×	×	×		
LRIS-LR-129-3		SUB_S	G	12/02/2012 13:55	ω		×				
LRIS-LR-129-4		SUB_S	G	12/02/2012 14:00	ω		×				
LRIS-LR-129-5		SUB_S O-SED	c	12/02/2012 14:05	ω		×				4
LRIS-LR-129		SOIL- SED	C	12/04/2012 10:10	ω		×	×	×		
LRIS-LR-130-2		SUB_S O-SED	C	12/02/2012 14:40	ω		×	×	×		
LRIS-LR-130-FD		QAQC		12/02/2012 14:40	ω		×	×	×		1
LRIS-LR-130-3	-	SUB_S O-SED		12/02/2012 14:45	ယ	:	×			:	

		2		ing en				· 22	57. L	56	ITEM#	Lab Quote #:	PM email	Phone/Fax:	Lab PM:		Address:	Lab:	Lab Info
LRIS-LR-132-4	LRIS-LR-132-3	LRIS-LR-132-2	LRIS-LR-131	LRIS-1R-131-4	LRIS-LR-131-3	LRIS-LR-131-2	LRIS-LR-130-FD-1	LRIS-LR-130	LRIS-LR-130-5	LRIS-LR-130-4	Field Sampl	(0 #)		3X: /				Lab: Unknown Laboratory	rmation:
				,							Field Sample No. /Identification	FM Email:	Phone/Fax:	PM Name	City	Site Address	Project#	Site Code: L	Project Information:
											5				State, Zip			Lake River Industrial Site	
O-SED S_BUS	SUB_S O-SED	SUB_S O-SED	SOIL-	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	QAQC .	SOIL-	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							Site	ne Chain-oi-Cu
		C	ი	O	ດ	റ	С	C	n	Ω.	G=GRAB C=COMP							(0)	stody is a LE
12/03/20	12/03/20	12/03/20	12/04/20	12/02/20	12/02/20	12/02/20	12/04/20	12/04/20	12/02/20	12/02/20	CAMPLEDATE	Jo Hardcopy II	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	The Chair-of-Custory is a resolut forchmark it. An resolution make on companies and accurate to the Companies of the Companie
12/03/2012 14:10	12/03/2012 14:05	12/03/2012 14:00	12/04/2012 11:15	12/02/2012 16:40	12/02/2012 16:35	12/02/2012 16:30	12/04/2012 10:24	12/04/2012 10:24	12/02/2012 14:55	12/02/2012 14:50	SAMPLE DATE							, , , , , , , , , , , , , , , , , , ,	tion:
ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	#OF CONTAINERS								ompieusa sac
											Comment					Phone #:			adouting.
											Analysis	Presen	*****	9278		Notes			
×	×	×	×	×	×	×	×	×	×	×	Archive						Notes:	TAT	Total # of Samples:
		×	×			×	×	×			1613B - Dioxin/Furan					,	F= Field	-	of Samp
		×	×			×	. ×	×			Total Organic Carbon - COE 9060						F= Field Filtered , H= Hold		oles: 97
																	H= Hold		
																		Rush	
																		Ĺ	Event
																			Event Complete?
																			3.5

7		75	74	73		77	70	69	8	7.9	FTEM#	Lab Quote #:	PM email	Phone/Fax:	Lab PM:		Address:	Lab:	Lab Inf
LRIS-LR-134-5	LRIS-LR-134-4	LRIS-LR-134-3	LRIS-LR-134-2	LRIS-LR-133	LRIS-LR-133-5	LRIS-LR-133-4	LRIS-LR-133-3	LRIS-LR-133-2	LRIS-LR-132	LRIS-LR-132-5	Field Sample	cte #:	ail	Fax; /				Unknown Laboratory	Lab Information:
			-				-				Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address		Site Code: L	Project Information:
											ä				State, Zip			Lake River Industrial Site	nation:
SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SOIL- SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SOIL- SED	SUB_S O-SED	MATRIX CODE							al Site	
		ဂ	O	O	ົດ	ດ	O	n	ი	ი	G=GRAB C=COMP								
12/02/2012 10:35	12/02/2012 10:30	12/02/2012 10:28	12/02/2012 10:20	12/04/2012 12:49	12/03/2012 15:30	12/03/2012 15:25	12/03/2012 15:20	12/03/2012 15:15	12/04/2012 12:06	12/03/2012 14:15	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:
ယ	ယ	ω	ω	ω	ω	ω	ω	ω	ω	ω	#OF CONTAINERS	,							
											Comment					Phone #:			
	()							<u> </u>		I	Analysis	Preserv	ativ	•	Lab	Notes	Z		
×	×	×	×	×	×	×	×	×	×	×	Archive						Notes: F= Field Filtered , H= Hold	TAT	otal # o
- 1			×					×			1613B - Dioxin/Furan						Field Fi		Total # of Samples: 97
			×					×			Total Organic Carbon - COE 9060						ltered , l)S: 97
																	∓ Hold		
																		Rush	
							<u> </u>												Event Complete?

-	Lab Information:	ess:		Lab PM:	Phone/Fax:	PM email	Lab Quote #:	Law Addor		ITEM#	78 LR		3 60 00	i kany	ж 						<u>.</u>
:	Unknown Laboratory				C /		#	1		Field Sampl	LRIS-LR-134	LRIS-LR-135-2	LRIS-LR-135-3	LRIS-LR-135-4	LRIS-LR-135-5	LRIS-LR-135	LRIS-LR-136-2	LRIS-LR-136-3	LRIS-LR-136-4	LRIS-1-R-136-5	LRIS-LR-136
	Project Information: Site Code: Lake Riv	L	Site Address	City	PM Name	Phone/Fax:	PM Email:			Field Sample No. /Identification					•						
	mation: Lake River Industrial Site			State, Zip																	
The Champon	Site								CODE	MATRIX	SOIL-	SUB_S	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SOIL- SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S	SOIL-
Weight and a c									C=COMP	G=GRAB (C	င	С	C	G	G	С	С	С		
The Chairtyle-Cabudy as a Lebort Dobbouriers. At answer index the polytherms are account. Other Information.	Send Invoice to:	Address:	City/State.	PO#	Send EDD to	CC Hardcopy to	CC Hardcopy to		DATE	SAMPLE	12/04/2012 13:10	12/03/2012 15:45	12/03/2012 15:50	12/03/2012 15:55	12/03/2012 16:00	12/04/2012 13:01	12/02/2012 16:50	12/02/2012 16:55	12/02/2012 17:00	12/02/2012 17:05	12/04/2012 10:39
VALA HUNGO FIRMON DOT TOUR	ă										2 13:10	2 15:45	2 15:50	2 15:55	2 16:00	2 13:01	2 16:50	2 16:55	2 17:00	2 17:05	2 10:39
417									AINERS	#OF CONT	ယ	ω	ω	ω	ω	ω	ω	ω	. ω	ယ	ω
			Phone #:							Comment											
To	_	No	Notes	Lat	e	ativ	erv	Preser		Analysis					nomppeodocas						
tal # of S	TAT	les: F≖ F					1			Archive	×	×	×	×	×	×	×	×	·×	×	×
Total # of Samples:		Notes: F= Field Filtered, H= Hold								1613B - Dioxin											
97		ed, H=†								COE 9060											
	70	.		_																	•
Ψ	Rush																				
Event Complete?																					
olet				-				ļ									-				

		79	96	93	eg.	8	8	Z	90	68	ITEM #	Lab Quote #:	PM email	Phone/F	Lab PM:		Address:	Lab:	Lab Info			
		LRIS-LR-PS-SRM	LRIS-LR-RB-20121204	LRIS-LR-RB-20121203	LRIS-LR-RB-20121202	LRIS-LR-137	LRIS-LR-137-5	LRIS-LR-137-4	LRIS-LR-137-3	LRIS-LR-137-2	Field Sample	ote #:	311	ax: /				Unknown Laboratory	Lab Information:			
											Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address	Project#	Site Code: Lake Riv	Project Inform			
									,		ח				State, Zip			Lake River Industrial Site	lation:			
		SOIL-	QAQC	OAQC	QAQC	SOIL-	SUB_S O-SED	SUB_S	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							al Site		The Chain-of-c		CHAIN-
		C	C	n	ഹ	ဓ	O	n	Ç	n	G=GRAB C=COMP									Custody is a L		OF-CUS
•		11/26/2012 10:00	12/04/2012 17:35	12/03/2012 17:30	12/02/2012 17:00	12/04/2012 09:14	12/02/2012 12:20	12/02/2012 12:17	12/02/2012 12:15	12/02/2012 12:10	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chair-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.	20121202-MFA	CHAIN-OF-CUSTODY / Analytical Request Document
		12 10:00	12 17:35	12 17:30	12 17:00	12 09:14	12 12:20	12 12:17	12 12:15	12 12:10	OANI LE BATE								ion:	devant fields must be com)2-MFA	tical Request i
		2	1	2	2	ω	ω	ω	ω	ω	#OF CONTAINERS									pleted and ac		ocume
											Comment					Phone #:				ocurate.		ent
								×	×		Analysis Archive	Preserv	ativ	/e	Lai	o Notes	Notes:	_		Task:		Ĺ
		×	×	×	×	×	×			×	1613B - Djoxin/Furan						77	1	out # or our proof.	#		(
		×	×			× ×					Total Organic Carbon -				-		eld Filtere					
											COE 9060						Field Filtered, H= Hold		5	97 2	Cooler#	Page:
	-																Д	Rush		2012_LR_SED		
																		5h	- - - - -	SED		9
																			000	Event Complete?	9,	약
																			3	ρ̈́		9
						Pa	ae 53	3 of 6	4								2	/6	/20	13		

Client: Maul Foster & Alongi Inc Job Number: 580-36242-2

Login Number: 36242 List Source: TestAmerica Seattle

List Number: 1 Creator: Riley, Nicole

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Not requested on COC.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

J

4

6

_

9

44

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-2

Login Number: 36242
List Source: TestAmerica Sacramento
List Number: 1
List Creation: 12/11/12 01:42 PM

Creator: Mantri, Anil

Creator: Mantri, Anii		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	-0.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.# 94 & 95
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

10

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-2

List Source: TestAmerica Sacramento
List Number: 2
List Creation: 01/10/13 02:54 PM

Creator: Cortes, Cesar C

oroator, cortos, cocar c		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

3

4

5

0

3

11

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-2

List Source: TestAmerica Sacramento
List Number: 3
List Creation: 01/16/13 11:09 AM

Creator: Tecson, Jeffrey

Answer	Comment
True	
True	622805, 622806
True	
True	
True	545176167352
True	0.8
True	
N/A	
True	
True	
True	
True	
N/A	
	True True True True True True True True

4

Ī

_

10

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-2

List Source: TestAmerica Sacramento
List Number: 4
List Creation: 01/17/13 01:52 PM

Creator: Tecson, Jeffrey

Answer	Comment
True	
True	
True	622807
True	
True	
True	0.4
True	
N/A	
True	
True	
True	
True	
N/A	
	True True True True True True True True

6

8

9

11

Ш

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

3

3

А

5

11

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

			P	ercent Isotop	e Dilution Re	ecovery (Acc	eptance Limi	ts)	
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1
Lab Sample ID	Client Sample ID	(25-164)	(24-169)	(25-181)	(24-185)	(21-178)	(32-141)	(28-130)	(26-152
580-36242-5	LRIS-LR-103	66	78	62	61	65	62	57	66
580-36242-10	LRIS-LR-106	62	73	59	59	61	60	55	64
580-36242-10	LRIS-LR-106	56	58						
580-36242-10	LRIS-LR-106								
580-36242-16	LRIS-LR-109-3	80	96	77	76	80	76	78	85
580-36242-16	LRIS-LR-109-3	71	72						
580-36242-20	LRIS-LR-110-3	88	107	87	90	89	90	89	101
580-36242-20	LRIS-LR-110-3	81	80						
580-36242-20	LRIS-LR-110-3								
580-36242-27	LRIS-LR-120-2	71	84	64	66	69	63	62	72
580-36242-27	LRIS-LR-120-2	65	66						
580-36242-27	LRIS-LR-120-2								
580-36242-31	LRIS-LR-122-2	90	109	90	87	93	88	89	101
580-36242-31	LRIS-LR-122-2	82	83						
580-36242-31	LRIS-LR-122-2								
580-36242-36	LRIS-LR-124-2	66	79	63	63	66	62	59	70
580-36242-36	LRIS-LR-124-2	60	62						
580-36242-36	LRIS-LR-124-2								
580-36242-43	LRIS-LR-126-2	70	83	67	67	70	71	59	73
580-36242-43	LRIS-LR-126-2	63	63						
580-36242-43	LRIS-LR-126-2								
580-36242-47	LRIS-LR-126	80	96	76	76	79	74	75	85
580-36242-47	LRIS-LR-126	69	73						
580-36242-47	LRIS-LR-126								
580-36242-48	LRIS-LR-129-2	72	86	71	69	73	73	67	77
580-36242-48	LRIS-LR-129-2	64	64						
580-36242-52	LRIS-LR-129	81	98	75	79	81	70	74	79
580-36242-53	LRIS-LR-130-2	87	102	80	84	87	73	80	87
580-36242-54	LRIS-LR-130-FD	94	109	88	93	90	84	93	102
580-36242-58	LRIS-LR-130	92	109	80	89	93	79	76	89
580-36242-59	LRIS-LR-130-FD-1	88	105	84	90	92	80	85	92
580-36242-60	LRIS-LR-131-2	84	99	81	84	84	81	83	93
580-36242-60	LRIS-LR-131-2	75	77						
580-36242-63	LRIS-LR-131	81	99	71	78	76	69	66	70
580-36242-64	LRIS-LR-132-2	89	106	83	89	82	83	95	91
580-36242-69	LRIS-LR-133-2	70	72						
580-36242-69	LRIS-LR-133-2	78	93	75	75	79	79	71	75
580-36242-74	LRIS-LR-134-2		70						
580-36242-74	LRIS-LR-134-2	71	89	63	71	75	71	73	83
580-36242-74	LRIS-LR-134-2								
580-36242-93	LRIS-LR-137	63	80	55	61	65	56	56	68
580-36242-97	LRIS-LR-PS-SRM	88	104	84	89	89	88	90	95
580-36242-97	LRIS-LR-PS-SRM	67	86	62	70	73	75	77	94
MB 320-7287/1-A	Method Blank	79	93	79	77	78	79	76	86
MB 320-7414/1-A	Method Blank	76	95	71	78	82	73	79	92
						ecovery (Acc			
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	HxCDF1
I ah Sample ID	Client Samula ID	(26-123)	(29-147)	(28-136)	(23-140)	(28-143)	(26-138)	(17-157)	(26-152)
Lab Sample ID 580-36242-5	Client Sample ID LRIS-LR-103	69	69	68	50	57	62	59	66

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Solid Prep Type: Total/NA

			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limit	s)	
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	HxCDF1
Lab Sample ID	Client Sample ID	(26-123)	(29-147)	(28-136)	(23-140)	(28-143)	(26-138)	(17-157)	(26-152)
580-36242-10	LRIS-LR-106	68	69	66	49	54	61	57	64
580-36242-10	LRIS-LR-106								
580-36242-10	LRIS-LR-106							46	
580-36242-16	LRIS-LR-109-3	92	90	92	70	81	86	86	85
580-36242-16	LRIS-LR-109-3								
580-36242-20	LRIS-LR-110-3	101	101	101	82	89	97	106	101
580-36242-20	LRIS-LR-110-3								
580-36242-20	LRIS-LR-110-3				74			73	
580-36242-27	LRIS-LR-120-2	70	76	73	54	58	67	65	72
580-36242-27	LRIS-LR-120-2								
580-36242-27	LRIS-LR-120-2							43	
580-36242-31	LRIS-LR-122-2	101	102	102	78	88	96	101	101
580-36242-31	LRIS-LR-122-2								
580-36242-31	LRIS-LR-122-2				72			72	
580-36242-36	LRIS-LR-124-2	67	72	67	52	56	63	66	70
580-36242-36	LRIS-LR-124-2								
580-36242-36	LRIS-LR-124-2				72			60	
580-36242-43	LRIS-LR-126-2	74	77	74	55	60	69	64	73
580-36242-43	LRIS-LR-126-2				-		•	•	
580-36242-43	LRIS-LR-126-2							40	
580-36242-47	LRIS-LR-126	86	90	85	68	69	82	83	85
580-36242-47	LRIS-LR-126	00	90	03	00	09	02	00	03
580-36242-47	LRIS-LR-126				85			68	
580-36242-48			01	01		71	76		
	LRIS-LR-129-2	82	81	81	63	7 1	76	73	77
580-36242-48	LRIS-LR-129-2	00	0.5	00	60	71	04	70	70
580-36242-52	LRIS-LR-129	83	85	82	62	71	81	72	79
580-36242-53	LRIS-LR-130-2	91	92	89	66	76	87	72	87
580-36242-54	LRIS-LR-130-FD	105	104	105	77	92	105	95	102
580-36242-58	LRIS-LR-130	90	97	90	64	72	90	68	89
580-36242-59	LRIS-LR-130-FD-1	96	97	97	69	82	91	75	92
580-36242-60	LRIS-LR-131-2	98	102	97	75	89	97	87	93
580-36242-60	LRIS-LR-131-2								
580-36242-63	LRIS-LR-131	79	73	72	52	61	66	51	70
580-36242-64	LRIS-LR-132-2	106	95	100	77	91	95	79	91
580-36242-69	LRIS-LR-133-2								
580-36242-69	LRIS-LR-133-2	84	79	83	58	71	72	58	75
580-36242-74	LRIS-LR-134-2								
580-36242-74	LRIS-LR-134-2	87	83	87	74	85	89	84	83
580-36242-74	LRIS-LR-134-2							41	
580-36242-93	LRIS-LR-137	68	70	66	56	60	72	49	68
580-36242-97	LRIS-LR-PS-SRM	100	93	98	75	91	88	77	95
580-36242-97	LRIS-LR-PS-SRM	95	82	93	83	98	98	82	94
MB 320-7287/1-A	Method Blank	95	88	94	69	82	82	82	86
MB 320-7414/1-A	Method Blank	97	87	91	85	99	98	86	92
			Р	ercent Isotop	e Dilution Re	covery (Acc	eptance Limit	s)	
		HxCDF2	HxCDF2	HxCDF4	HxCDF4	HxCDF3	HxCDF3	HpCDD	HpCDD
Lab Sample ID	Client Sample ID	(21-159)	(26-123)	(17-205)	(29-147)	(22-176)	(28-136)	(23-140)	(26-166)
580-36242-5	LRIS-LR-103		69		69		68	50	
			68		69		50	50	

TestAmerica Seattle

Page 60 of 64

2/6/2013

2

4

b

0

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Solid Prep Type: Total/NA

		HxCDF2	P HxCDF2	ercent Isotop HxCDF4	e Dilution Re HxCDF4	covery (Acc	eptance Limit HxCDF3	s) HpCDD	HpCDD
Lab Sample ID	Client Sample ID	(21-159)	(26-123)	(17-205)	(29-147)	(22-176)	(28-136)	(23-140)	(26-166)
580-36242-10	LRIS-LR-106								-
580-36242-10	LRIS-LR-106								
580-36242-16	LRIS-LR-109-3		92		90		92	70	
580-36242-16	LRIS-LR-109-3								
580-36242-20	LRIS-LR-110-3		101		101		101	82	
580-36242-20	LRIS-LR-110-3								
580-36242-20	LRIS-LR-110-3							74	
580-36242-27	LRIS-LR-120-2		70		76		73	54	
580-36242-27	LRIS-LR-120-2								
580-36242-27	LRIS-LR-120-2								
580-36242-31	LRIS-LR-122-2		101		102		102	78	
580-36242-31	LRIS-LR-122-2								
580-36242-31	LRIS-LR-122-2							72	
580-36242-36	LRIS-LR-124-2		67		72		67	52	
580-36242-36	LRIS-LR-124-2		٠.				0.	02	
580-36242-36	LRIS-LR-124-2							72	
580-36242-43	LRIS-LR-126-2		74		77		74	55	
580-36242-43	LRIS-LR-126-2							00	
580-36242-43	LRIS-LR-126-2								
580-36242-47	LRIS-LR-126		86		90		85	68	
580-36242-47	LRIS-LR-126		00		50		00	00	
580-36242-47	LRIS-LR-126							85	
580-36242-48	LRIS-LR-129-2		82		81		81	63	
580-36242-48	LRIS-LR-129-2		02		01		01	03	
580-36242-52	LRIS-LR-129-2 LRIS-LR-129		83		85		82	62	
580-36242-53	LRIS-LR-130-2		91		92		89	66	
580-36242-54	LRIS-LR-130-FD		105		104		105	77	
580-36242-58	LRIS-LR-130		90		97		90	64	
580-36242-59	LRIS-LR-130-FD-1		96		97		97	69	
580-36242-60	LRIS-LR-130-FD-1 LRIS-LR-131-2		98		102		97 97	75	
	LRIS-LR-131-2 LRIS-LR-131-2		90		102		91	75	
580-36242-60			70						
580-36242-63	LRIS-LR-131		79		73		72	52	
580-36242-64	LRIS-LR-132-2		106		95		100	77	
580-36242-69	LRIS-LR-133-2								
580-36242-69	LRIS-LR-133-2		84		79		83	58	
580-36242-74	LRIS-LR-134-2								
580-36242-74	LRIS-LR-134-2		87		83		87	74	
580-36242-74	LRIS-LR-134-2								
580-36242-93	LRIS-LR-137		68		70		66	56	
580-36242-97	LRIS-LR-PS-SRM		100		93		98	75	
580-36242-97	LRIS-LR-PS-SRM		95		82		93	83	
MB 320-7287/1-A	Method Blank		95		88		94	69	
MB 320-7414/1-A	Method Blank		97		87		91	85	
			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limit	s)	
		HpCDF1	HpCDF1	HpCDF2	HpCDF2	OCDD	OCDD		
Lab Sample ID	Client Sample ID	(21-158)	(28-143)	(20-186)	(26-138)	(13-199)	(17-157)		
580-36242-5	LRIS-LR-103		57		62		59		
580-36242-10	LRIS-LR-106		54		61		57		
580-36242-10	LRIS-LR-106								

TestAmerica Seattle

Page 61 of 64

2/6/2013

_

3

5

7

9

10

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Solid Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		HpCDF1	HpCDF1	HpCDF2	HpCDF2	OCDD	OCDD		
Lab Sample ID	Client Sample ID	(21-158)	(28-143)	(20-186)	(26-138)	(13-199)	(17-157)		
580-36242-10	LRIS-LR-106						46		
580-36242-16	LRIS-LR-109-3		81		86		86		
580-36242-16	LRIS-LR-109-3								
580-36242-20	LRIS-LR-110-3		89		97		106		
580-36242-20	LRIS-LR-110-3								
580-36242-20	LRIS-LR-110-3						73		
580-36242-27	LRIS-LR-120-2		58		67		65		
580-36242-27	LRIS-LR-120-2								
580-36242-27	LRIS-LR-120-2						43		
580-36242-31	LRIS-LR-122-2		88		96		101		
580-36242-31	LRIS-LR-122-2								
580-36242-31	LRIS-LR-122-2						72		
580-36242-36	LRIS-LR-124-2		56		63		66		
580-36242-36	LRIS-LR-124-2								
580-36242-36	LRIS-LR-124-2						60		
580-36242-43	LRIS-LR-126-2		60		69		64		
580-36242-43	LRIS-LR-126-2								
580-36242-43	LRIS-LR-126-2						40		
580-36242-47	LRIS-LR-126		69		82		83		
580-36242-47	LRIS-LR-126								
580-36242-47	LRIS-LR-126						68		
580-36242-48	LRIS-LR-129-2		71		76		73		
580-36242-48	LRIS-LR-129-2								
580-36242-52	LRIS-LR-129		71		81		72		
580-36242-53	LRIS-LR-130-2		76		87		72		
580-36242-54	LRIS-LR-130-FD		92		105		95		
580-36242-58	LRIS-LR-130		72		90		68		
580-36242-59	LRIS-LR-130-FD-1		82		91		75		
580-36242-60	LRIS-LR-131-2		89		97		87		
580-36242-60	LRIS-LR-131-2								
580-36242-63	LRIS-LR-131		61		66		51		
580-36242-64	LRIS-LR-132-2		91		95		79		
580-36242-69	LRIS-LR-133-2								
580-36242-69	LRIS-LR-133-2		71		72		58		
580-36242-74	LRIS-LR-134-2								
580-36242-74	LRIS-LR-134-2		85		89		84		
580-36242-74	LRIS-LR-134-2						41		
580-36242-93	LRIS-LR-137		60		72		49		
580-36242-97	LRIS-LR-PS-SRM		91		88		77		
580-36242-97	LRIS-LR-PS-SRM		98		98		82		
MB 320-7287/1-A	Method Blank		82		82		82		
MB 320-7414/1-A	Method Blank		99		98		86		

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

TestAmerica Seattle

2/6/2013

Page 62 of 64

2

3

6

8

10

1

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF

HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)									
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1		
Lab Sample ID	Client Sample ID	(20-175)	(22-152)	(21-227)	(21-192)	(13-328)	(21-193)	(25-163)	(19-202)		
LCS 320-7287/2-A	Lab Control Sample	78	91	78	76	79	83	76	88		
LCS 320-7414/2-A	Lab Control Sample	66	83	59	66	70	70	70	80		
		Percent Isotope Dilution Recovery (Acceptance Limits)									
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD			
Lab Sample ID	Client Sample ID	(21-159)	(17-205)	(22-176)	(26-166)	(21-158)	(20-186)	(13-199)			
LCS 320-7287/2-A	Lab Control Sample	94	91	93	72	85	84	85			
LCS 320-7414/2-A	Lab Control Sample	83	82	83	75	88	89	79			

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1
Lab Sample ID	Client Sample ID	(25-164)	(24-169)	(25-181)	(24-185)	(21-178)	(32-141)	(28-130)	(26-152)
580-36242-94	LRIS-LR-RB-20121202	75	86	76	78	82	79	83	80
580-36242-95	LRIS-LR-RB-20121203	80	91	77	82	82	92	80	87
580-36242-96	LRIS-LR-RB-20121204	65	74	66	63	70	71	74	75
MB 320-7437/1-A	Method Blank	87	98	83	90	94	90	91	88

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)						
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD
Lab Sample ID	Client Sample ID	(26-123)	(29-147)	(28-136)	(23-140)	(28-143)	(26-138)	(17-157)
580-36242-94	LRIS-LR-RB-20121202	87	80	86	65	75	76	68
580-36242-95	LRIS-LR-RB-20121203	94	86	93	67	82	76	68
580-36242-96	LRIS-LR-RB-20121204	76	74	76	57	66	64	59
MB 320-7437/1-A	Method Blank	97	88	97	71	86	80	72

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF

HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Water Prep Type: Total/NA

			e Dilution Re						
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1
Lab Sample ID	Client Sample ID	(20-175)	(22-152)	(21-227)	(21-192)	(13-328)	(21-193)	(25-163)	(19-202)
LCS 320-7437/2-A	Lab Control Sample	78	88	78	74	84	91	86	85
		Percent Isotope Dilution Recovery (Acceptance Limits)							
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	
Lab Sample ID	Client Sample ID	(21-159)	(17-205)	(22-176)	(26-166)	(21-158)	(20-186)	(13-199)	
LCS 320-7437/2-A	Lab Control Sample	95	86	90	67	80	78	70	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF

HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

TestAmerica Seattle

Page 64 of 64

3

6

8

4.0

4 4

40

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-36242-3

Client Project/Site: Port of Ridgefield

Revision: 1

For:

Maul Foster & Alongi Inc 2001 NW 19th Avenue, Suite 200 Portland, Oregon 97239

Attn: Ms. Madi Novak

Pamela R. Johnson

Authorized for release by: 4/25/2013 12:07:27 PM

Pam Johnson
Project Manager I
pamr.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	22
Chronicle	24
Certification Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	38
Isotope Dilution Summary	44

2

4

5

6

8

9

10

Case Narrative

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

3

Job ID: 580-36242-3

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/7/2012 8:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 8 coolers at receipt time were 2.6° C, 2.9° C, 3.4° C, 4.3° C, 4.5° C, 4.6° C, 5.9° C and 6.0° C.

Except:

Sample was received broken. The sample was transfered into a new container: LRIS-LR-132 (580-36242-68).

The container label for the following sample LRIS-LR-134 (580-36242-78) did not match the information listed on the Chain-of-Custody (COC). LRIS-LR-134 has a time of 13:19 on the label. The sample was logged in according to the Chain-of-Custody (COC).

Dioxin - Method 1613B

The following samples LRIS-LR-108-3 (580-36242-12), LRIS-LR-119-2 (580-36242-23), LRIS-LR-122 (580-36242-35), LRIS-LR-125-2 (580-36242-40), LRIS-LR-134 (580-36242-78) were diluted due to the nature of the sample matrix. Elevated reporting limits (RLs) are provided for OCDD.

The following samples LRIS-LR-122 (580-36242-35), LRIS-LR-125-2 (580-36242-40) were diluted due to the nature of the sample matrix. Elevated reporting limits (RLs) are provided for HpCDD.

lon abundance ratios are outside criteria for the following samples LRIS-LR-103-2 (580-36242-1), LRIS-LR-106-2 (580-36242-6), LRIS-LR-108-3 (580-36242-12), LRIS-LR-119-2 (580-36242-23), LRIS-LR-122 (580-36242-35), LRIS-LR-125-2 (580-36242-40), LRIS-LR-132 (580-36242-68), LRIS-LR-133 (580-36242-73), LRIS-LR-134 (580-36242-78), LRIS-LR-PS-SRM (580-36242-97) and the method blank (MB 320-8566/1-A). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC).

These samples LRIS-LR-108-3 (580-36242-12), LRIS-LR-122 (580-36242-35), LRIS-LR-134 (580-36242-78) exhibited elevated noise or matrix interferences for one or more analytes requiring the detection limits to be raised appropriately. These analytes are flagged with a "G" qualifier

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Dioxin Prep

No analytical or quality issues were noted.

6

a

10

11

Definitions/Glossary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Qualifiers

Dioxin

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio for these samples.
G	The reported quantitation limit has been raised due to an exhibited elevated noise or matrix interference
1	Ion Ratio outside of limits, value is EMPC.

Glossary

RL

RPD

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ı	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
NF	Contains no Free Liquid
ER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
1DA	Minimum detectable activity
DL	Estimated Detection Limit
1DC	Minimum detectable concentration
1DL	Method Detection Limit
1L	Minimum Level (Dioxin)
ID	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
C	Quality Control
RER	Relative error ratio

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-103-2

Date Collected: 12/03/12 13:30 Date Received: 12/07/12 08:50

Surrogate

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-1

Matrix: Solid Percent Solids: 59.6

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.37	J	0.67	0.050	pg/g	<u>\$</u>	01/11/13 10:18	01/16/13 10:28	1
2,3,7,8-TCDF	1.8		0.67	0.066	pg/g	₽	01/11/13 10:18	01/17/13 15:25	1
1,2,3,7,8-PeCDD	0.62	Jq	3.4	0.15	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,7,8-PeCDF	1.7	J	3.4	0.11	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
2,3,4,7,8-PeCDF	1.2	Jq	3.4	0.10	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,4,7,8-HxCDD	1.2	JqB	3.4	0.12	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,6,7,8-HxCDD	12		3.4	0.13	pg/g	\$	01/11/13 10:18	01/16/13 10:28	1
1,2,3,7,8,9-HxCDD	5.5	В	3.4	0.11	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,4,7,8-HxCDF	3.3	J B	3.4	0.11	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,6,7,8-HxCDF	1.8	JqB	3.4	0.11	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,7,8,9-HxCDF	ND		3.4	0.14	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
2,3,4,6,7,8-HxCDF	1.3	JB	3.4	0.10	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,4,6,7,8-HpCDD	190	В	3.4	0.75	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,4,6,7,8-HpCDF	22	В	3.4	0.28	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
1,2,3,4,7,8,9-HpCDF	0.63	J q	3.4	0.34	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
OCDD	1600	В	6.7	1.0	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
OCDF	41	В	6.7	0.22	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Total TCDD	3.9	q B	0.67	0.050	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Total TCDF	5.4	q	0.67	0.079	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Total PeCDD	7.1	q	3.4	0.15	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Total PeCDF	15	q	3.4	0.10	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Total HxCDD	75	q B	3.4	0.12	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Total HxCDF	60	q B	3.4	0.11	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Total HpCDD	410	В	3.4	0.75	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Total HpCDF	77	q B	3.4	0.31	pg/g	₽	01/11/13 10:18	01/16/13 10:28	1
Isotono Dilution	% Pacayony	Ouglifier	Limite				Drongrad	Analyzod	Dil Eac

Isotope Dilution	%Recovery Qua	lifier Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	47	25 - 164	01/11/13 10:18	01/16/13 10:28	1
13C-2,3,7,8-TCDF	55	24 - 169	01/11/13 10:18	01/16/13 10:28	1
13C-2,3,7,8-TCDF	50	24 - 169	01/11/13 10:18	01/17/13 15:25	1
13C-1,2,3,7,8-PeCDD	38	25 - 181	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,7,8-PeCDF	41	24 - 185	01/11/13 10:18	01/16/13 10:28	1
13C-2,3,4,7,8-PeCDF	47	21 - 178	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,4,7,8-HxCDD	50	32 - 141	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,6,7,8-HxCDD	53	28 - 130	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,4,7,8-HxCDF	57	26 - 152	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,6,7,8-HxCDF	59	26 - 123	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,7,8,9-HxCDF	52	29 - 147	01/11/13 10:18	01/16/13 10:28	1
13C-2,3,4,6,7,8-HxCDF	57	28 - 136	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,4,6,7,8-HpCDD	45	23 - 140	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,4,6,7,8-HpCDF	46	28 - 143	01/11/13 10:18	01/16/13 10:28	1
13C-1,2,3,4,7,8,9-HpCDF	53	26 - 138	01/11/13 10:18	01/16/13 10:28	1
13C-OCDD	54	17 - 157	01/11/13 10:18	01/16/13 10:28	1

TestAmerica Seattle

Dil Fac

Analyzed

01/17/13 15:25

Prepared

01/11/13 10:18

01/11/13 10:18 01/16/13 10:28

Limits

35 _ 197

35 _ 197

%Recovery Qualifier

84

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-103-2

TestAmerica Job ID: 580-36242-3

Lab Sample ID: 580-36242-1

Matrix: Solid

01/16/13 15:11

Date Collected: 12/03/12 13:30 Date Received: 12/07/12 08:50

Percent Moisture

General Chemistry							
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	60	0.10	0.10 %			01/16/13 15:11	1

0.10

40

0.10 %

5

0

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/02/12 17:25 Date Received: 12/07/12 08:50

Surrogate

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-106-2

Lab Sample ID: 580-36242-6

Percent Solids: 67.0

ID: 500-36242-6	
Matrix: Solid	

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.59	0.023	pg/g	₩	01/11/13 10:18	01/16/13 11:11	1
2,3,7,8-TCDF	ND		0.59	0.033	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
1,2,3,7,8-PeCDD	ND		2.9	0.044	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
1,2,3,7,8-PeCDF	ND		2.9	0.034	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
2,3,4,7,8-PeCDF	ND		2.9	0.032	pg/g	☼	01/11/13 10:18	01/16/13 11:11	1
1,2,3,4,7,8-HxCDD	ND		2.9	0.026	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
1,2,3,6,7,8-HxCDD	0.084	J	2.9	0.026	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
1,2,3,7,8,9-HxCDD	0.076	JqB	2.9	0.022	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
1,2,3,4,7,8-HxCDF	ND		2.9	0.019	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
1,2,3,6,7,8-HxCDF	ND		2.9	0.018	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
1,2,3,7,8,9-HxCDF	ND		2.9	0.024	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
2,3,4,6,7,8-HxCDF	ND		2.9	0.018	pg/g	☼	01/11/13 10:18	01/16/13 11:11	1
1,2,3,4,6,7,8-HpCDD	0.38	JB	2.9	0.054	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
1,2,3,4,6,7,8-HpCDF	0.077	JB	2.9	0.023	pg/g	☼	01/11/13 10:18	01/16/13 11:11	1
1,2,3,4,7,8,9-HpCDF	ND		2.9	0.030	pg/g	₩	01/11/13 10:18	01/16/13 11:11	1
OCDD	2.0	JqB	5.9	0.062	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
OCDF	0.15	JqB	5.9	0.039	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
Total TCDD	0.38	JqB	0.59	0.023	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
Total TCDF	ND		0.59	0.033	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
Total PeCDD	ND		2.9	0.044	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
Total PeCDF	ND		2.9	0.034	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
Total HxCDD	0.60	JqB	2.9	0.025	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
Total HxCDF	ND		2.9	0.024	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
Total HpCDD	1.0	JB	2.9	0.054	pg/g	₽	01/11/13 10:18	01/16/13 11:11	1
Total HpCDF	0.077	JB	2.9	0.026	pg/g		01/11/13 10:18	01/16/13 11:11	1

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78	25 - 164	01/11/13 10:18	01/16/13 11:11	1
13C-2,3,7,8-TCDF	92	24 - 169	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,7,8-PeCDD	68	25 - 181	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,7,8-PeCDF	72	24 - 185	01/11/13 10:18	01/16/13 11:11	1
13C-2,3,4,7,8-PeCDF	82	21 - 178	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,4,7,8-HxCDD	92	32 - 141	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,6,7,8-HxCDD	91	28 - 130	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,4,7,8-HxCDF	96	26 - 152	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,6,7,8-HxCDF	97	26 - 123	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,7,8,9-HxCDF	86	29 - 147	01/11/13 10:18	01/16/13 11:11	1
13C-2,3,4,6,7,8-HxCDF	98	28 - 136	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,4,6,7,8-HpCDD	77	23 - 140	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,4,6,7,8-HpCDF	85	28 - 143	01/11/13 10:18	01/16/13 11:11	1
13C-1,2,3,4,7,8,9-HpCDF	95	26 - 138	01/11/13 10:18	01/16/13 11:11	1
13C-OCDD	91	17 - 157	01/11/13 10:18	01/16/13 11:11	1

General Chemistry							
Analyte	Result Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	67	0.10	0.10 %			01/16/13 15:11	1
Percent Moisture	33	0.10	0.10 %			01/16/13 15:11	1

Limits

35 - 197

%Recovery Qualifier

104

TestAmerica Seattle

Analyzed

01/16/13 11:11

Prepared

01/11/13 10:18

Dil Fac

Page 7 of 46

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

_

Client Sample ID: LRIS-LR-108-3

Date Collected: 12/03/12 11:25 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-12

Matrix: Solid
Percent Solids: 61.2

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.83		0.65	0.049	pg/g	<u> </u>	01/11/13 10:18	01/16/13 11:54	1
2,3,7,8-TCDF	5.0		0.65	0.072	pg/g	₩	01/11/13 10:18	01/17/13 16:03	1
1,2,3,7,8-PeCDD	1.6	J	3.3	0.14	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,7,8-PeCDF	11		3.3	0.20	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
2,3,4,7,8-PeCDF	12		3.3	0.19	pg/g	₩	01/11/13 10:18	01/16/13 11:54	1
1,2,3,4,7,8-HxCDD	7.6	В	3.3	0.14	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,6,7,8-HxCDD	51		3.3	0.15	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,7,8,9-HxCDD	14	В	3.3	0.13	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,4,7,8-HxCDF	46	В	3.3	0.30	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,6,7,8-HxCDF	21	В	3.3	0.30	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,7,8,9-HxCDF	ND		3.3	0.33	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
2,3,4,6,7,8-HxCDF	8.3	В	3.3	0.27	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,4,6,7,8-HpCDD	1300	В	3.3	2.0	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,4,6,7,8-HpCDF	170	В	3.3	0.68	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
1,2,3,4,7,8,9-HpCDF	7.3		3.3	0.90	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
OCDD	14000	G B	74	74	pg/g	₽	01/11/13 10:18	01/18/13 04:43	10
OCDF	160	В	6.5	0.19	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
Total TCDD	19	q B	0.65	0.049	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
Total TCDF	54	q	0.65	0.15	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
Total PeCDD	33	q	3.3	0.14	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
Total PeCDF	170	q	3.3	0.19	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
Total HxCDD	330	В	3.3	0.14	pg/g	\$	01/11/13 10:18	01/16/13 11:54	1
Total HxCDF	550	В	3.3	0.30	pg/g	₩	01/11/13 10:18	01/16/13 11:54	1
Total HpCDD	2700	В	3.3	2.0	pg/g	₩	01/11/13 10:18	01/16/13 11:54	1
Total HpCDF	580	В	3.3	0.79	pg/g	₽	01/11/13 10:18	01/16/13 11:54	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	61		25 - 164				01/11/13 10:18	01/16/13 11:54	1
13C-2,3,7,8-TCDF	70		24 - 169				01/11/13 10:18	01/16/13 11:54	1
13C-2,3,7,8-TCDF	63		24 - 169				01/11/13 10:18	01/17/13 16:03	1
13C-1,2,3,7,8-PeCDD	55		25 - 181				01/11/13 10:18	01/16/13 11:54	1
13C-1,2,3,7,8-PeCDF	59		24 - 185				01/11/13 10:18	01/16/13 11:54	1
12C 2 2 4 7 8 PaCDE	65		21 179				01/11/12 10:10	01/16/12 11:54	1

3 11:54 1 3 11:54 1 3 16:03 1 3 11:54 1
3 16:03 1 3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 11:54 1
3 04:43 10
1: 1: 1: 1: 1: 1:

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	103		35 - 197	01/11/13 10:18	01/16/13 11:54	1
37CI4-2,3,7,8-TCDD	107		35 - 197	01/11/13 10:18	01/17/13 16:03	1

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-108-3 Lab Sample Date Collected: 12/03/12 11:25

Lab Sample ID: 580-36242-12

Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	61		0.10	0.10	%			01/16/13 15:11	1
Percent Moisture	39		0.10	0.10	%			01/16/13 15:11	1

O

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Lab Sample ID: 580-36242-23

Matrix: Solid

Percent Solids: 61.2

Client Sample ID: LRIS-LR-119-2	
Date Collected: 12/03/12 14:30	

Date Received: 12/07/12 08:50

13C-1,2,3,4,7,8,9-HpCDF

13C-OCDD

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.69		0.65	0.075	pg/g	<u> </u>	01/11/13 10:18	01/16/13 12:36	1
2,3,7,8-TCDF	3.2		0.65	0.077	pg/g	₽	01/11/13 10:18	01/17/13 16:40	1
1,2,3,7,8-PeCDD	2.7	J	3.3	0.14	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
1,2,3,7,8-PeCDF	5.6		3.3	0.16	pg/g	\$	01/11/13 10:18	01/16/13 12:36	1
2,3,4,7,8-PeCDF	4.7		3.3	0.15	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
1,2,3,4,7,8-HxCDD	6.5	В	3.3	0.17	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
1,2,3,6,7,8-HxCDD	65		3.3	0.17	pg/g	\$	01/11/13 10:18	01/16/13 12:36	1
1,2,3,7,8,9-HxCDD	19	В	3.3	0.14	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
1,2,3,4,7,8-HxCDF	14	В	3.3	0.16	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
1,2,3,6,7,8-HxCDF	9.4	В	3.3	0.16	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
1,2,3,7,8,9-HxCDF	7.1		3.3	0.20	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
2,3,4,6,7,8-HxCDF	5.5	В	3.3	0.15	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
1,2,3,4,6,7,8-HpCDD	1100	В	3.3	1.6	pg/g	\$	01/11/13 10:18	01/16/13 12:36	1
1,2,3,4,6,7,8-HpCDF	120	В	3.3	0.66	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
1,2,3,4,7,8,9-HpCDF	7.7		3.3	0.84	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
OCDD	9000	В	65	62	pg/g	\$	01/11/13 10:18	01/18/13 05:26	10
OCDF	290	В	6.5	0.27	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
Total TCDD	26	q B	0.65	0.075	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
Total TCDF	24	q	0.65	0.087	pg/g	\$	01/11/13 10:18	01/16/13 12:36	1
Total PeCDD	37	q	3.3	0.14	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
Total PeCDF	82	q	3.3	0.16	pg/g	₩	01/11/13 10:18	01/16/13 12:36	1
Total HxCDD	320	В	3.3	0.16	pg/g	φ.	01/11/13 10:18	01/16/13 12:36	1
Total HxCDF	340	В	3.3	0.17	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
Total HpCDD	2200	В	3.3	1.6	pg/g	₽	01/11/13 10:18	01/16/13 12:36	1
Total HpCDF	480	В	3.3	0.75	pg/g	\$	01/11/13 10:18	01/16/13 12:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD			25 - 164				01/11/13 10:18	01/16/13 12:36	1
13C-2,3,7,8-TCDF	77		24 - 169				01/11/13 10:18	01/16/13 12:36	1
13C-2,3,7,8-TCDF	67		24 - 169				01/11/13 10:18	01/17/13 16:40	1
13C-1,2,3,7,8-PeCDD	60		25 - 181				01/11/13 10:18	01/16/13 12:36	1
13C-1,2,3,7,8-PeCDF	62		24 - 185				01/11/13 10:18	01/16/13 12:36	1
13C-2,3,4,7,8-PeCDF	73		21 - 178				01/11/13 10:18	01/16/13 12:36	1
13C-1,2,3,4,7,8-HxCDD	76		32 - 141				01/11/13 10:18	01/16/13 12:36	1
13C-1,2,3,6,7,8-HxCDD	73		28 - 130				01/11/13 10:18	01/16/13 12:36	1
13C-1,2,3,4,7,8-HxCDF	86		26 - 152				01/11/13 10:18	01/16/13 12:36	1
13C-1,2,3,6,7,8-HxCDF	82		26 - 123				01/11/13 10:18	01/16/13 12:36	1
13C-1,2,3,7,8,9-HxCDF	73		29 - 147				01/11/13 10:18	01/16/13 12:36	1
13C-2,3,4,6,7,8-HxCDF	83		28 - 136				01/11/13 10:18	01/16/13 12:36	1
13C-1,2,3,4,6,7,8-HpCDD	70		23 - 140				01/11/13 10:18	01/16/13 12:36	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	104		35 - 197	01/11/13 10:18	01/16/13 12:36	1
37CI4-2,3,7,8-TCDD	106		35 - 197	01/11/13 10:18	01/17/13 16:40	1

26 - 138

17 - 157

81

64

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-119-2

Lab Sample ID: 580-36242-23

Matrix: Solid

Date Collected: 12/03/12 14:30 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	61		0.10	0.10	%			01/16/13 15:11	1
Percent Moisture	39		0.10	0.10	%			01/16/13 15:11	1

4

5

6

8

46

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

13C-1,2,3,7,8,9-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

13C-OCDD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Client Sample ID: LRIS-LR-122 Lab Sample ID: 580-36242-35

Date Collected: 12/04/12 11:27

Date Received: 12/07/12 08:50

Matrix: Solid
Percent Solids: 59.6

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.53	Jq	0.67	0.050	pg/g	<u> </u>	01/11/13 10:18	01/16/13 13:19	1
2,3,7,8-TCDF	14		0.67	0.14	pg/g	₩	01/11/13 10:18	01/17/13 17:18	1
1,2,3,7,8-PeCDD	7.2		3.4	0.12	pg/g	₩	01/11/13 10:18	01/16/13 13:19	1
1,2,3,7,8-PeCDF	51		3.4	0.93	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
2,3,4,7,8-PeCDF	91		3.4	0.86	pg/g	₩	01/11/13 10:18	01/16/13 13:19	1
1,2,3,4,7,8-HxCDD	21	В	3.4	0.22	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
1,2,3,6,7,8-HxCDD	340		3.4	0.22	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
1,2,3,7,8,9-HxCDD	66	В	3.4	0.19	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
1,2,3,4,7,8-HxCDF	330	В	3.4	0.78	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
1,2,3,6,7,8-HxCDF	110	В	3.4	0.75	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
1,2,3,7,8,9-HxCDF	4.9		3.4	0.90	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
2,3,4,6,7,8-HxCDF	58	В	3.4	0.66	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
1,2,3,4,6,7,8-HpCDD	8300	GB	1200	1200	pg/g	₽	01/11/13 10:18	01/18/13 06:51	50
1,2,3,4,6,7,8-HpCDF	1000	В	3.4	3.3	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
1,2,3,4,7,8,9-HpCDF	49	G	4.3	4.3	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
OCDD	73000	GB	1800	1800	pg/g	₽	01/11/13 10:18	01/18/13 06:51	50
OCDF	490	В	6.7	0.26	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
Total TCDD	4.6	q B	0.67	0.050	pg/g	₩	01/11/13 10:18	01/16/13 13:19	1
Total TCDF	28	q	0.67	0.090	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
Total PeCDD	28	q	3.4	0.12	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
Total PeCDF	750	q	3.4	0.90	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
Total HxCDD	1000	В	3.4	0.21	pg/g	₽	01/11/13 10:18	01/16/13 13:19	1
Total HxCDF	3400	В	3.4	0.77	pg/g	₩	01/11/13 10:18	01/16/13 13:19	1
Total HpCDD	17000	G B	1200	1200	pg/g	₽	01/11/13 10:18	01/18/13 06:51	50
Total HpCDF	3300	GB	3.8	3.8	pg/g	\$	01/11/13 10:18	01/16/13 13:19	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	65		25 - 164				01/11/13 10:18	01/16/13 13:19	1
13C-2,3,7,8-TCDF	75		24 - 169				01/11/13 10:18	01/16/13 13:19	1
13C-2,3,7,8-TCDF	67		24 - 169				01/11/13 10:18	01/17/13 17:18	1
13C-1,2,3,7,8-PeCDD	58		25 - 181				01/11/13 10:18	01/16/13 13:19	1
13C-1,2,3,7,8-PeCDF	64		24 - 185				01/11/13 10:18	01/16/13 13:19	1
13C-2,3,4,7,8-PeCDF	71		21 - 178				01/11/13 10:18	01/16/13 13:19	1
13C-1,2,3,4,7,8-HxCDD	77		32 - 141				01/11/13 10:18	01/16/13 13:19	1
13C-1,2,3,6,7,8-HxCDD	73		28 - 130				01/11/13 10:18	01/16/13 13:19	1
13C-1,2,3,4,7,8-HxCDF	80		26 - 152				01/11/13 10:18	01/16/13 13:19	1
13C-1,2,3,6,7,8-HxCDF	79		26 - 123				01/11/13 10:18	01/16/13 13:19	1

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
37Cl4-2,3,7,8-TCDD	105	35 _ 197	01/11/13 10:18	01/16/13 13:19	1
37Cl4-2,3,7,8-TCDD	104	35 - 197	01/11/13 10:18	01/17/13 17:18	1

29 - 147

28 - 136

23 - 140

28 - 143

26 - 138

17 - 157

72

81

46

67

80

95

TestAmerica Seattle

01/11/13 10:18

01/11/13 10:18

01/11/13 10:18

01/11/13 10:18

01/11/13 10:18

01/11/13 10:18

01/16/13 13:19

01/16/13 13:19

01/18/13 06:51

01/16/13 13:19

01/16/13 13:19

01/18/13 06:51

50

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-122 Lab Sample ID: 580-36242-35

Date Collected: 12/04/12 11:27 Matrix: Solid Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	60		0.10	0.10	%			01/16/13 15:11	1
Percent Moisture	40		0.10	0.10	%			01/16/13 15:11	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-125-2

Lab Sample ID: 580-36242-40

Matrix: Solid

Date Collected: 12/02/12 13:10 Date Received: 12/07/12 08:50

Percent Solids: 72.7

1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,7,8,9-HpCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDD 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF	1.5 6.6 11 12 11 73 B	0.55 0.55 2.8 2.8	0.13 0.21	pg/g		01/11/13 10:18	01/16/13 14:02	1
1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 7 1,2,3,4,7,8,9-HpCDF 7 10tal TCDD 10tal TCDF 10tal TCDD 10tal HxCDD 10tal HxCDD 10tal HyCDD 10tal HyCDF 11 18sotope Dilution 13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	11 12 11	2.8		nala	Y-4			
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF Total TCDD Total TCDD Total PeCDD Total HxCDF 10tal HxCDF 11total HxCDF 11total HyCDD 10tal HpCDD 10tal HpCDD 10tal HpCDF 11sotope Dilution 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	12 11			pg/g	₩	01/11/13 10:18	01/17/13 17:55	1
2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF Total TCDD Total TCDD Total PeCDD Total HxCDD 10tal HxCDD 11tal HxCDD 11tal HyCDD 11tal HyCDD 11tal HyCDD 11tal HyCDF	11	2.8	0.73	pg/g	₩	01/11/13 10:18	01/16/13 14:02	1
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF Total TCDD Total TCDD Total PeCDD Total HxCDD 10tal HxCDD 10tal HyCDD 10tal HpCDD 10tal HpCDD 10tal HpCDD 10tal HpCDD 10tal HyCDF 11sotope Dilution 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF			0.24	pg/g	\$	01/11/13 10:18	01/16/13 14:02	1
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDD 42 OCDF Total TCDD Total TCDD Total PeCDF Total HxCDD 22 Total HxCDD 15 total HpCDD 25 total HpCDF 1 total HpCDD 26 total HpCDF 1 total HpCDD 18 total HpCDF 1	73 B	2.8	0.21	pg/g	₩	01/11/13 10:18	01/16/13 14:02	1
1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 10tal TCDD 10tal TCDF 10tal PeCDD 10tal HxCDD 10tal HxCDD 10tal HyCDD 10tal HyCDF 11 18otope Dilution 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF		2.8	0.42	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,3,2,3,7,8-PCDF 1,3,2,3,7,8-PCDF 1,3,3,4,7,8-HxCDD 1,3,3,4,7,8-HxCDD 1,3,3,4,7,8-HxCDD 1,3,3,4,7,8-HxCDD 1,3,3,4,7,8-HxCDF 1,3,3,4,7,8-HxCDF 1,3,3,4,7,8-HxCDF 1,3,3,4,7,8-HxCDF 1,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,3,3,4,6,7,8-HxCDF	30	2.8	0.43	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDD 42 OCDF Total TCDD Total TCDD Total PeCDD Total HxCDD 22 Total HyCDF 10	40 B	2.8	0.37	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDD 42 0CDF Total TCDD Total TCDD Total PeCDD Total HxCDD Total HxCDD 10tal HpCDF 10tal HpCDF 10tal HpCDF 10tal HpCDF 11 Isotope Dilution 13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	58 B	2.8	0.37	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF Total TCDD Total TCDD Total PeCDD Total HxCDD Total HxCDF 11 Total HpCDD 12 Total HpCDD 13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	27 B	2.8	0.38	pg/g	\$	01/11/13 10:18	01/16/13 14:02	1
2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDD 7 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDD 0CDF Total TCDD Total TCDD Total PeCDD Total HxCDD Total HxCDF 11 Total HpCDD 12 Total HpCDD 13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	6 J	2.8	0.43	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF OCDD OCDF Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HyCDD Total HpCDD Total HpCDD Total HpCDD Total HpCDF 1 Isotope Dilution 3C-2,3,7,8-TCDF 13C-2,3,7,8-PCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	18 B	2.8	0.35	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
1,2,3,4,7,8,9-HpCDF OCDD	00 GB	300	300	pg/g	\$	01/11/13 10:18	01/17/13 00:47	20
1,2,3,4,7,8,9-HpCDF OCDD	60 B	2.8	1.6	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
OCDD 42 OCDF Total TCDD Total TCDF Total PeCDD Total PeCDF Total HxCDD 22 Total HyCDD 22 Total HyCDD 32 Total HyCDD 41 Isotope Dilution 8/Recon 33C-2,3,7,8-TCDD 33C-2,3,7,8-TCDF 33C-2,3,7,8-PCDD 33C-2,3,7,8-PCDD 33C-1,2,3,7,8-PeCDD 33C-1,2,3,7,8-PeCDF 33C-1,2,3,4,7,8-HxCDD 33C-1,2,3,4,7,8-HxCDD 33C-1,2,3,4,7,8-HxCDD 33C-1,2,3,4,7,8-HxCDD 33C-1,2,3,4,7,8-HxCDF 33C-1,2,3,4,7,8-HxCDF 33C-1,2,3,4,7,8-HxCDF 33C-1,2,3,4,6,7,8-HxCDF	16	2.8	2.1	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
Total TCDD Total PeCDD Total PeCDD Total PeCDF Total HxCDD Total HxCDD Total HpCDD Total HpCDD Total HpCDF Total HpCDF 1 Isotope Dilution 3C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	00 GB	310	310	pg/g	Φ.	01/11/13 10:18	01/17/13 00:47	20
Total TCDF Total PeCDD Total PeCDF Total HxCDD Total HxCDF Total HpCDD Total HpCDD Total HpCDD Total HpCDD Total HpCDD Total HpCDF Isotope Dilution 3C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	50 B	5.5	0.28		₽	01/11/13 10:18	01/16/13 14:02	1
Total PeCDD Total PeCDF Total HxCDD Total HxCDF Total HpCDD 22 Total HpCDD 18 Sotope Dilution 3C-2,3,7,8-TCDD 3C-2,3,7,8-TCDF 3C-1,2,3,7,8-PeCDF 3C-1,2,3,4,7,8-PeCDF 3C-1,2,3,4,7,8-HxCDD 3C-1,2,3,4,7,8-HxCDD 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,6,7,8-HxCDF 3C-1,2,3,4,6,7,8-HxCDF	10 B	0.55	0.13	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
Total PeCDD Total PeCDF Total HxCDD Total HxCDF Total HpCDD 22 Total HpCDD 18 Sotope Dilution 3C-2,3,7,8-TCDD 3C-2,3,7,8-TCDF 3C-1,2,3,7,8-PeCDF 3C-1,2,3,4,7,8-PeCDF 3C-1,2,3,4,7,8-HxCDD 3C-1,2,3,4,7,8-HxCDD 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,7,8-HxCDF 3C-1,2,3,4,6,7,8-HxCDF 3C-1,2,3,4,6,7,8-HxCDF	61 q	0.55	0.16	pg/g		01/11/13 10:18	01/16/13 14:02	1
Total PeCDF Total HxCDD Total HxCDF 1 Total HpCDD 22 Total HpCDD 13 Isotope Dilution 33C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	40 q	2.8	0.73		₽	01/11/13 10:18	01/16/13 14:02	1
Total HxCDD Total HxCDF 11 Total HpCDD 22 Total HpCDF 11 Isotope Dilution 3C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	40	2.8	0.23		₽	01/11/13 10:18	01/16/13 14:02	1
Total HxCDF Total HpCDD 22 Total HpCDF 1 Isotope Dilution 3C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	00 B	2.8	0.41		-	01/11/13 10:18	01/16/13 14:02	1
Total HpCDD Total HpCDF 1 Isotope Dilution 3C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	00 B	2.8	0.38	pg/g	₽	01/11/13 10:18	01/16/13 14:02	1
Total HpCDF 1 Isotope Dilution %Recovered	00 GB	300	300	pg/g	₽	01/11/13 10:18	01/17/13 00:47	20
Isotope Dilution	00 B	2.8	1.9	pg/g	ф	01/11/13 10:18	01/16/13 14:02	1
13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-PeCDF 13C-2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	ry Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDF 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	61	25 - 164				01/11/13 10:18	01/16/13 14:02	
13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	69	24 - 169				01/11/13 10:18	01/16/13 14:02	1
13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF	60	24 - 169				01/11/13 10:18	01/17/13 17:55	1
13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	54	25 - 181				01/11/13 10:18	01/16/13 14:02	1
13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	58	24 - 185				01/11/13 10:18	01/16/13 14:02	1
13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	64	21 - 178				01/11/13 10:18	01/16/13 14:02	. 1
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	70	32 - 141				01/11/13 10:18	01/16/13 14:02	1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	68	28 - 130				01/11/13 10:18	01/16/13 14:02	1
13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	73	26 - 152				01/11/13 10:18	01/16/13 14:02	1
13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	72	26 - 123				01/11/13 10:18	01/16/13 14:02	
13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	67	20 - 123 29 - 147				01/11/13 10:18	01/16/13 14:02	1
13C-1,2,3,4,6,7,8-HpCDD	69	28 - 136				01/11/13 10:18	01/16/13 14:02	1
•	55 71	23 - 140				01/11/13 10:18	01/17/13 00:47	20
13C-1,2,3,4,6,7,8-HpCDF	60	28 ₋ 143				01/11/13 10:18	01/16/13 14:02	1
13C-1,2,3,4,7,8,9-HpCDF	78	26 - 138				01/11/13 10:18	01/16/13 14:02	1
	03	20 - 136 17 - 157				01/11/13 10:18	01/17/13 14.02	20
	ry Qualifier	Limits				Prepared	Analyzed	Dil Fac
37Cl4-2,3,7,8-TCDD 37Cl4-2,3,7,8-TCDD	07	35 ₋ 197 35 ₋ 197				01/11/13 10:18 01/11/13 10:18	01/16/13 14:02 01/17/13 17:55	1 1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-125-2

Lab Sample ID: 580-36242-40

Matrix: Solid

Date Collected: 12/02/12 13:10 Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	73		0.10	0.10	%			01/16/13 15:11	1
Percent Moisture	27		0.10	0.10	%			01/16/13 15:11	1

D

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-132

Date Collected: 12/04/12 12:06

Total PeCDF

Total HxCDD

Total HxCDF

Total HpCDD

Surrogate

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-68

Matrix: Solid

01/16/13 14:45

01/16/13 14:45

01/16/13 14:45

01/16/13 14:45

01/11/13 10:18

01/11/13 10:18

01/11/13 10:18

01/11/13 10:18

Prepared

01/11/13 10:18

01/11/13 10:18 01/16/13 14:45

₩

Date Received: 12/07/12 08:50								Percent Soli	ds: 43.2
_ Method: 1613B - Dioxins and	l Furans (HRGC/HF	RMS)							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.92	0.13	pg/g	<u></u>	01/11/13 10:18	01/16/13 14:45	1
2,3,7,8-TCDF	ND		0.92	0.19	pg/g	₽	01/11/13 10:18	01/24/13 17:12	1
1,2,3,7,8-PeCDD	0.74	J	4.6	0.26	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,7,8-PeCDF	0.77	Jq	4.6	0.093	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
2,3,4,7,8-PeCDF	1.4	J	4.6	0.096	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,4,7,8-HxCDD	0.90	JqB	4.6	0.24	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,6,7,8-HxCDD	8.9		4.6	0.25	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,7,8,9-HxCDD	4.4	JB	4.6	0.21	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,4,7,8-HxCDF	3.5	JB	4.6	0.16	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,6,7,8-HxCDF	1.5	JB	4.6	0.16	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,7,8,9-HxCDF	ND		4.6	0.19	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
2,3,4,6,7,8-HxCDF	0.91	JB	4.6	0.14	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,4,6,7,8-HpCDD	180	В	4.6	0.68	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,4,6,7,8-HpCDF	24	В	4.6	0.29	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
1,2,3,4,7,8,9-HpCDF	1.6	J	4.6	0.37	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
OCDD	1600	В	9.2	1.4	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
OCDF	66	В	9.2	0.23	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
Total TCDD	2.3	q B	0.92	0.13	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
Total TCDF	5.3	q	0.92	0.11	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1
Total PeCDD	3.8	Jq	4.6	0.26	pg/g	₽	01/11/13 10:18	01/16/13 14:45	1

4.6

4.6

4.6

4.6

21 q

54 B

%Recovery Qualifier

100

85

41 qB

0.095 pg/g

0.23 pg/g

0.16 pg/g

0.68 pg/g

Total HpCDF	87	В	4.6	0.33 pg/g	₩	01/11/13 10:18	01/16/13 14:45	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	63		25 - 164			01/11/13 10:18	01/16/13 14:45	1
13C-2,3,7,8-TCDF	71		24 - 169			01/11/13 10:18	01/16/13 14:45	1
13C-2,3,7,8-TCDF	59		24 - 169			01/11/13 10:18	01/24/13 17:12	1
13C-1,2,3,7,8-PeCDD	53		25 - 181			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,7,8-PeCDF	59		24 - 185			01/11/13 10:18	01/16/13 14:45	1
13C-2,3,4,7,8-PeCDF	62		21 - 178			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,4,7,8-HxCDD	71		32 - 141			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,6,7,8-HxCDD	70		28 - 130			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,4,7,8-HxCDF	80		26 - 152			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,6,7,8-HxCDF	77		26 - 123			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,7,8,9-HxCDF	72		29 - 147			01/11/13 10:18	01/16/13 14:45	1
13C-2,3,4,6,7,8-HxCDF	76		28 - 136			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,4,6,7,8-HpCDD	66		23 - 140			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,4,6,7,8-HpCDF	70		28 - 143			01/11/13 10:18	01/16/13 14:45	1
13C-1,2,3,4,7,8,9-HpCDF	82		26 - 138			01/11/13 10:18	01/16/13 14:45	1
13C-OCDD	83		17 - 157			01/11/13 10:18	01/16/13 14:45	1

Analyzed

01/24/13 17:12

Limits

35 - 197

35 _ 197

1

Dil Fac

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-132 Lab Sample ID: 580-36242-68 Date Collected: 12/04/12 12:06

Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	43		0.10	0.10	%			01/14/13 11:37	1
Percent Moisture	57		0.10	0.10	%			01/14/13 11:37	1

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-133

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Date Collected: 12/04/12 12:49 Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-73

. Matrix: Solid

Percent Solids: 46.6

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND	_	0.85	0.092	pg/g	<u> </u>	01/11/13 10:18	01/16/13 15:27	
2,3,7,8-TCDF	0.82	J	0.85	0.11	pg/g	₽	01/11/13 10:18	01/24/13 17:50	
1,2,3,7,8-PeCDD	0.72	J	4.2	0.19	pg/g	₩	01/11/13 10:18	01/16/13 15:27	
1,2,3,7,8-PeCDF	1.2	J	4.2	0.091	pg/g	₩	01/11/13 10:18	01/16/13 15:27	
2,3,4,7,8-PeCDF	1.1	Jq	4.2	0.086	pg/g	₩	01/11/13 10:18	01/16/13 15:27	•
1,2,3,4,7,8-HxCDD	1.4	JB	4.2	0.18	pg/g	₽	01/11/13 10:18	01/16/13 15:27	
1,2,3,6,7,8-HxCDD	8.5		4.2	0.18	pg/g	₽	01/11/13 10:18	01/16/13 15:27	
1,2,3,7,8,9-HxCDD	2.7	JqB	4.2	0.15	pg/g	₽	01/11/13 10:18	01/16/13 15:27	•
1,2,3,4,7,8-HxCDF	3.8	JB	4.2	0.14	pg/g	₽	01/11/13 10:18	01/16/13 15:27	•
1,2,3,6,7,8-HxCDF	1.5	JqB	4.2	0.14	pg/g	₽	01/11/13 10:18	01/16/13 15:27	•
1,2,3,7,8,9-HxCDF	ND		4.2	0.17	pg/g	₽	01/11/13 10:18	01/16/13 15:27	•
2,3,4,6,7,8-HxCDF	0.98	JB	4.2	0.12	pg/g	₽	01/11/13 10:18	01/16/13 15:27	•
1,2,3,4,6,7,8-HpCDD	190	В	4.2	0.66	pg/g	₽	01/11/13 10:18	01/16/13 15:27	
1,2,3,4,6,7,8-HpCDF	27	В	4.2	0.30	pg/g	₽	01/11/13 10:18	01/16/13 15:27	•
1,2,3,4,7,8,9-HpCDF	1.5	J	4.2	0.38	pg/g	₽	01/11/13 10:18	01/16/13 15:27	•
OCDD	1600	В	8.5	1.4	pg/g	\$	01/11/13 10:18	01/16/13 15:27	,
OCDF	73	В	8.5		pg/g	₽	01/11/13 10:18	01/16/13 15:27	
Total TCDD	2.0	q B	0.85	0.092	pg/g	₽	01/11/13 10:18	01/16/13 15:27	
Total TCDF	3.2	q	0.85	0.061	pg/g	\$	01/11/13 10:18	01/16/13 15:27	· · · · · · · · ·
Total PeCDD	2.5	Jq	4.2	0.19	pg/g	₩	01/11/13 10:18	01/16/13 15:27	
Total PeCDF	12	q	4.2	0.089	pg/g	₽	01/11/13 10:18	01/16/13 15:27	
Total HxCDD	37	q B	4.2	0.17	pg/g	₽	01/11/13 10:18	01/16/13 15:27	,
Total HxCDF	57	q B	4.2	0.14	pg/g	₩	01/11/13 10:18	01/16/13 15:27	
Total HpCDD	360	В	4.2	0.66	pg/g	₩	01/11/13 10:18	01/16/13 15:27	
Total HpCDF	110	В	4.2	0.34	pg/g	₽	01/11/13 10:18	01/16/13 15:27	•
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD			25 - 164				01/11/13 10:18	01/16/13 15:27	
13C-2,3,7,8-TCDF	59		24 - 169				01/11/13 10:18	01/16/13 15:27	
13C-2,3,7,8-TCDF	50		24 - 169				01/11/13 10:18	01/24/13 17:50	
13C-1,2,3,7,8-PeCDD	43		25 - 181				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,7,8-PeCDF	46		24 - 185				01/11/13 10:18	01/16/13 15:27	
13C-2,3,4,7,8-PeCDF	52		21 - 178				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,4,7,8-HxCDD	58		32 - 141				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,6,7,8-HxCDD	54		28 - 130				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,4,7,8-HxCDF	61		26 - 152				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,6,7,8-HxCDF	57		26 - 123				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,7,8,9-HxCDF	54		29 - 147				01/11/13 10:18		
13C-2,3,4,6,7,8-HxCDF	60		28 - 136				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,4,6,7,8-HpCDD	48		23 - 140				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,4,6,7,8-HpCDF	51		28 - 143				01/11/13 10:18	01/16/13 15:27	
13C-1,2,3,4,7,8,9-HpCDF	60		26 - 138				01/11/13 10:18	01/16/13 15:27	
13C-OCDD	64		17 - 157				01/11/13 10:18	01/16/13 15:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
37CI4-2,3,7,8-TCDD	91	-	35 - 197				01/11/13 10:18	01/16/13 15:27	
270/4 0 2 7 0 7000			05 407				04/44/40 10 10	04/04/40 47 50	

35 - 197

77

2

4

ວ

9

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-133

Lab Sample ID: 580-36242-73

Matrix: Solid

Date Collected: 12/04/12 12:49 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	47		0.10	0.10	%			01/14/13 11:37	1
Percent Moisture	53		0.10	0.10	%			01/14/13 11:37	1

4

J

0

9

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-134

Date Collected: 12/04/12 13:10 Date Received: 12/07/12 08:50

Surrogate

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-78

Matrix: Solid
Percent Solids: 48.8

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.34	J q	0.81	0.077	pg/g		01/11/13 10:18	01/16/13 16:10	1
2,3,7,8-TCDF	1.6		0.81	0.22	pg/g	₩	01/11/13 10:18	01/17/13 18:33	1
1,2,3,7,8-PeCDD	1.7	J	4.1	0.17	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
1,2,3,7,8-PeCDF	2.9	J	4.1	0.094	pg/g	\$	01/11/13 10:18	01/16/13 16:10	1
2,3,4,7,8-PeCDF	3.7	J	4.1	0.090	pg/g	₩	01/11/13 10:18	01/16/13 16:10	1
1,2,3,4,7,8-HxCDD	4.8	В	4.1	0.17	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
1,2,3,6,7,8-HxCDD	44		4.1	0.19	pg/g	\$	01/11/13 10:18	01/16/13 16:10	1
1,2,3,7,8,9-HxCDD	13	В	4.1	0.15	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
1,2,3,4,7,8-HxCDF	14	В	4.1	0.20	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
1,2,3,6,7,8-HxCDF	6.2	В	4.1	0.18	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
1,2,3,7,8,9-HxCDF	ND		4.1	0.23	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
2,3,4,6,7,8-HxCDF	4.6	В	4.1	0.18	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
1,2,3,4,6,7,8-HpCDD	1100	В	4.1	1.5	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
1,2,3,4,6,7,8-HpCDF	150	В	4.1	0.91	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
1,2,3,4,7,8,9-HpCDF	8.9		4.1	1.2	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
OCDD	9500	GB	82	82	pg/g	₽	01/11/13 10:18	01/18/13 06:09	10
OCDF	710	В	8.1	0.55	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
Total TCDD	5.4	q B	0.81	0.077	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
Total TCDF	5.3	q	0.81	0.066	pg/g	\$	01/11/13 10:18	01/16/13 16:10	1
Total PeCDD	9.6	q	4.1	0.17	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
Total PeCDF	41	1	4.1	0.092	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
Total HxCDD	180	q B	4.1	0.17	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
Total HxCDF	270	В	4.1	0.20	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
Total HpCDD	2100	В	4.1	1.5	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1
Total HpCDF	700	В	4.1	1.0	pg/g	₽	01/11/13 10:18	01/16/13 16:10	1

			. 1.3.3			
Isotope Dilution	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	53	25 - 164		01/11/13 10:18	01/16/13 16:10	1
13C-2,3,7,8-TCDF	61	24 - 169		01/11/13 10:18	01/16/13 16:10	1
13C-2,3,7,8-TCDF	57	24 - 169		01/11/13 10:18	01/17/13 18:33	1
13C-1,2,3,7,8-PeCDD	49	25 - 181		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,7,8-PeCDF	51	24 - 185		01/11/13 10:18	01/16/13 16:10	1
13C-2,3,4,7,8-PeCDF	58	21 - 178		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,4,7,8-HxCDD	60	32 - 141		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,6,7,8-HxCDD	59	28 - 130		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,4,7,8-HxCDF	68	26 - 152		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,6,7,8-HxCDF	63	26 - 123		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,7,8,9-HxCDF	59	29 - 147		01/11/13 10:18	01/16/13 16:10	1
13C-2,3,4,6,7,8-HxCDF	63	28 - 136		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,4,6,7,8-HpCDD	57	23 - 140		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,4,6,7,8-HpCDF	56	28 - 143		01/11/13 10:18	01/16/13 16:10	1
13C-1,2,3,4,7,8,9-HpCDF	64	26 - 138		01/11/13 10:18	01/16/13 16:10	1
13C-OCDD	57	17 - 157		01/11/13 10:18	01/18/13 06:09	10

TestAmerica Seattle

Analyzed

01/17/13 18:33

01/11/13 10:18 01/16/13 16:10

Prepared

01/11/13 10:18

Limits

35 _ 197

35 - 197

%Recovery Qualifier

93

92

Dil Fac

2

6

8

9

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-134

Lab Sample ID: 580-36242-78

Matrix: Solid

Date Collected: 12/04/12 13:10 Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	49		0.10	0.10	%			01/16/13 15:11	1
Percent Moisture	51		0.10	0.10	%			01/16/13 15:11	1

_

R

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

13C-1,2,3,4,7,8,9-HpCDF

13C-OCDD

C31/AITICITCA 300 ID. 300-302-42-0

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-8566/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 8762	Prep Batch: 8566
MB MB	

Analysis Batch. 0702	МВ	МВ						r rep batt	000C
Analyte		Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.50	0.030	pg/g		01/11/13 10:18	01/16/13 09:45	1
2,3,7,8-TCDF	ND		0.50	0.044	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,7,8-PeCDD	ND		2.5	0.057	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,7,8-PeCDF	ND		2.5	0.041	pg/g		01/11/13 10:18	01/16/13 09:45	1
2,3,4,7,8-PeCDF	ND		2.5	0.13	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,4,7,8-HxCDD	0.0755	Jq	2.5	0.029	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,6,7,8-HxCDD	ND		2.5	0.069	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,7,8,9-HxCDD	0.0928	J	2.5	0.026	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,4,7,8-HxCDF	0.0853	J	2.5	0.026	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,6,7,8-HxCDF	0.0793	J	2.5	0.023	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,7,8,9-HxCDF	ND		2.5	0.031			01/11/13 10:18	01/16/13 09:45	1
2,3,4,6,7,8-HxCDF	0.0657	J q	2.5	0.023	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,4,6,7,8-HpCDD	0.152	J	2.5	0.036	pg/g		01/11/13 10:18	01/16/13 09:45	1
1,2,3,4,6,7,8-HpCDF	0.0979	Jq	2.5	0.027			01/11/13 10:18	01/16/13 09:45	1
1,2,3,4,7,8,9-HpCDF	ND		2.5	0.039	pg/g		01/11/13 10:18	01/16/13 09:45	1
OCDD	0.391	J	5.0	0.057			01/11/13 10:18	01/16/13 09:45	1
OCDF	0.169	J	5.0	0.057			01/11/13 10:18	01/16/13 09:45	1
Total TCDD	0.0903	Jq	0.50	0.030			01/11/13 10:18	01/16/13 09:45	1
Total TCDF	ND		0.50	0.044			01/11/13 10:18	01/16/13 09:45	1
Total PeCDD	ND		2.5	0.086			01/11/13 10:18	01/16/13 09:45	1
Total PeCDF	ND		2.5		pg/g		01/11/13 10:18	01/16/13 09:45	1
Total HxCDD	0.168	Jq	2.5	0.041	pg/g		01/11/13 10:18	01/16/13 09:45	1
Total HxCDF	0.230	Jq	2.5	0.026			01/11/13 10:18	01/16/13 09:45	1
Total HpCDD	0.266		2.5	0.036			01/11/13 10:18	01/16/13 09:45	1
Total HpCDF	0.0979	Jq	2.5	0.033			01/11/13 10:18	01/16/13 09:45	1
	МВ	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	51		25 - 164				01/11/13 10:18	01/16/13 09:45	1
13C-2,3,7,8-TCDF	56		24 - 169				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,7,8-PeCDD	45		25 - 181				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,7,8-PeCDF	48		24 - 185				01/11/13 10:18	01/16/13 09:45	1
13C-2,3,4,7,8-PeCDF	49		21 - 178				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,4,7,8-HxCDD	66		32 - 141				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,6,7,8-HxCDD	65		28 - 130				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,4,7,8-HxCDF	72		26 - 152				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,6,7,8-HxCDF	71		26 - 123				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,7,8,9-HxCDF	59		29 - 147				01/11/13 10:18	01/16/13 09:45	1
13C-2,3,4,6,7,8-HxCDF	67		28 - 136				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,4,6,7,8-HpCDD	55		23 - 140				01/11/13 10:18	01/16/13 09:45	1
13C-1,2,3,4,6,7,8-HpCDF	62		28 - 143				01/11/13 10:18	01/16/13 09:45	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	98		35 - 197	01/11/13 10:18	01/16/13 09:45	1

26 - 138

17 - 157

66

63

MB MB

TestAmerica Seattle

5

7

9

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Lab Sample ID: LCS 320-8566/2-A

Matrix: Solid

Analysis Batch: 8762

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 8566

7 , 0.0 20 0.02	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD		20.2		pg/g		101	67 - 158	
2,3,7,8-TCDF	20.0	20.0		pg/g		100	75 - 158	
1,2,3,7,8-PeCDD	100	101		pg/g		101	70 - 142	
1,2,3,7,8-PeCDF	100	113		pg/g		113	80 - 134	
2,3,4,7,8-PeCDF	100	106		pg/g		106	68 - 160	
1,2,3,4,7,8-HxCDD	100	95.6		pg/g		96	70 - 164	
1,2,3,6,7,8-HxCDD	100	121		pg/g		121	76 - 134	
1,2,3,7,8,9-HxCDD	100	99.3		pg/g		99	64 - 162	
1,2,3,4,7,8-HxCDF	100	95.3		pg/g		95	72 - 134	
1,2,3,6,7,8-HxCDF	100	107		pg/g		107	84 - 130	
1,2,3,7,8,9-HxCDF	100	108		pg/g		108	78 - 130	
2,3,4,6,7,8-HxCDF	100	106		pg/g		106	70 - 156	
1,2,3,4,6,7,8-HpCDD	100	104		pg/g		104	70 - 140	
1,2,3,4,6,7,8-HpCDF	100	107		pg/g		107	82 _ 122	
1,2,3,4,7,8,9-HpCDF	100	98.6		pg/g		99	78 - 138	
OCDD	200	192		pg/g		96	78 ₋ 144	
OCDF	200	226		pg/g		113	63 - 170	

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	54		20 - 175
13C-2,3,7,8-TCDF	61		22 - 152
13C-1,2,3,7,8-PeCDD	49		21 _ 227
13C-1,2,3,7,8-PeCDF	54		21 - 192
13C-2,3,4,7,8-PeCDF	57		13 _ 328
13C-1,2,3,4,7,8-HxCDD	67		21 - 193
13C-1,2,3,6,7,8-HxCDD	63		25 - 163
13C-1,2,3,4,7,8-HxCDF	75		19 - 202
13C-1,2,3,6,7,8-HxCDF	71		21 - 159
13C-1,2,3,7,8,9-HxCDF	65		17 _ 205
13C-2,3,4,6,7,8-HxCDF	70		22 - 176
13C-1,2,3,4,6,7,8-HpCDD	61		26 - 166
13C-1,2,3,4,6,7,8-HpCDF	65		21 _ 158
13C-1,2,3,4,7,8,9-HpCDF	70		20 _ 186
13C-OCDD	71		13 - 199
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
37CI4-2,3,7,8-TCDD	82		35 _ 197

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-36242-1 DU

Matrix: Solid

Analysis Batch: 128243

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Solids	60		60		%	_	 	0.7	20
Percent Moisture	40		40		%			1	20

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: LRIS-LR-103-2

Page 23 of 46

4/25/2013

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/03/12 13:30

Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-103-2

Lab Sample ID: 580-36242-1

Matrix: Solid

Percent Solids: 59.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 10:28	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	9068	01/17/13 15:25	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Client Sample ID: LRIS-LR-106-2 Lab Sample ID: 580-36242-6

Date Collected: 12/02/12 17:25 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 67.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 11:11	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Lab Sample ID: 580-36242-12 Client Sample ID: LRIS-LR-108-3

Date Collected: 12/03/12 11:25 Matrix: Solid Date Received: 12/07/12 08:50 Percent Solids: 61.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 11:54	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		10	8906	01/18/13 04:43	SA	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	9068	01/17/13 16:03	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Client Sample ID: LRIS-LR-119-2 Lab Sample ID: 580-36242-23

Date Collected: 12/03/12 14:30 Matrix: Solid Date Received: 12/07/12 08:50 Percent Solids: 61.2

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 12:36	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		10	8906	01/18/13 05:26	SA	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	9068	01/17/13 16:40	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-122

Date Collected: 12/04/12 11:27 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-35

Matrix: Solid
Percent Solids: 59.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 13:19	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		50	8906	01/18/13 06:51	SA	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	9068	01/17/13 17:18	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Client Sample ID: LRIS-LR-125-2 Lab Sample ID: 580-36242-40

 Date Collected: 12/02/12 13:10
 Matrix: Solid

 Date Received: 12/07/12 08:50
 Percent Solids: 72.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		20	8762	01/17/13 00:47	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 14:02	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	9068	01/17/13 17:55	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Client Sample ID: LRIS-LR-132 Lab Sample ID: 580-36242-68

Date Collected: 12/04/12 12:06 Matrix: Solid
Date Received: 12/07/12 08:50 Percent Solids: 43.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 14:45	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	9279	01/24/13 17:12	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128054	01/14/13 11:37	JL	TAL SEA

Client Sample ID: LRIS-LR-133 Lab Sample ID: 580-36242-73

 Date Collected: 12/04/12 12:49
 Matrix: Solid

 Date Received: 12/07/12 08:50
 Percent Solids: 46.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 15:27	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	9279	01/24/13 17:50	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128054	01/14/13 11:37	JL	TAL SEA

TestAmerica Seattle

Lab Chronicle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

Client Sample ID: LRIS-LR-134

Date Collected: 12/04/12 13:10 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-78

Matrix: Solid

Percent Solids: 48.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	8762	01/16/13 16:10	MG	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		10	8906	01/18/13 06:09	SA	TAL SAC
Total/NA	Prep	HRMS-Sox			8566	01/11/13 10:18	CR	TAL SAC
Total/NA	Analysis	1613B		1	9068	01/17/13 18:33	MG	TAL SAC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

G

Ė

9

10

11

Certification Summary

Client: Maul Foster & Alongi Inc
Project/Site: Port of Ridgefield

TestAmerica

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-14
California	NELAP	9	01115CA	01-31-14
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-14

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

- Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	DoD ELAP		2928-01	01-31-14
Alaska (UST)	State Program	10	UST-055	12-18-13
Arizona	State Program	9	AZ0708	08-11-13 *
Arkansas DEQ	State Program	6	88-0691	06-17-13
California	NELAP	9	1119CA	01-31-14
Colorado	State Program	8	N/A	08-31-13
Connecticut	State Program	1	PH-0691	06-30-13
Florida	NELAP	4	E87570	06-30-13
Guam	State Program	9	N/A	08-31-13
Hawaii	State Program	9	N/A	01-31-14
Illinois	NELAP	5	200060	03-17-14
Kansas	NELAP	7	E-10375	10-31-13
Louisiana	NELAP	6	30612	06-30-13
Michigan	State Program	5	9947	01-31-14
Nevada	State Program	9	CA44	07-31-13
New Jersey	NELAP	2	CA005	06-30-13
New York	NELAP	2	11666	04-01-14
Northern Mariana Islands	State Program	9	MP0007	02-01-14
Oregon	NELAP	10	CA200005	03-28-14
Pennsylvania	NELAP	3	68-01272	03-31-14
South Carolina	State Program	4	87014	06-30-13
Texas	NELAP	6	T104704399-08-TX	05-31-13
US Fish & Wildlife	Federal		LE148388-0	12-31-13
USDA	Federal		P330-11-00436	12-30-14
USEPA UCMR	Federal	1	CA00044	11-06-14
Utah	NELAP	8	QUAN1	01-31-14
Washington	State Program	10	C581	05-05-13
West Virginia	State Program	3	9930C	12-31-13
West Virginia DEP	State Program	3	334	07-31-13
Wyoming	State Program	8	8TMS-Q	01-31-14

TestAmerica Job ID: 580-36242-3

3

6

8

9

4 4

 $^{^{\}star}$ Expired certification is currently pending renewal and is considered valid.

TestAmerica Seattle

Sample Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-3

eceived	
7/12 08:50	
7/12 08:50	
7/12 08:50	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-36242-1	LRIS-LR-103-2	Solid	12/03/12 13:30	12/07/12 08:50
580-36242-6	LRIS-LR-106-2	Solid	12/02/12 17:25	12/07/12 08:50
580-36242-12	LRIS-LR-108-3	Solid	12/03/12 11:25	12/07/12 08:50
580-36242-23	LRIS-LR-119-2	Solid	12/03/12 14:30	12/07/12 08:50
580-36242-35	LRIS-LR-122	Solid	12/04/12 11:27	12/07/12 08:50
580-36242-40	LRIS-LR-125-2	Solid	12/02/12 13:10	12/07/12 08:50
580-36242-68	LRIS-LR-132	Solid	12/04/12 12:06	12/07/12 08:50
580-36242-73	LRIS-LR-133	Solid	12/04/12 12:49	12/07/12 08:50
580-36242-78	LRIS-LR-134	Solid	12/04/12 13:10	12/07/12 08:50
580-36242-97	LRIS-LR-PS-SRM	Solid	11/26/12 10:00	12/07/12 08:50

10

21				ON W						īz	ITEM#	Lab Quote #:	PM email	Phone/Fax: /	Lab PM:		Address:	Lab:	Lab Information:	
	LRIS-LR-110-4	LRIS-LR-110-3	LRIS-LR-110-2	LRIS-LR-109-5	LRIS-LR-109-4	LRIS-LR-109-3	LRIS-LR-109-2	LRIS-LR-108-5	LRIS-LR-108-4	LRIS-LR-108-3	Field Sample	9#		X: //				Unknown Laboratory	mation:	
											Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address	Project #	Site Code: Lake Riv	Project Inform	
											7				State, Zip			Lake River Industrial Site	ation:	
S BUS	SUB_S O-SED	SUB_S O-SED	GES-O S_BUS	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S	SUB_S O-SED	SUB_S O-SED	SUB_S	MATRIX CODE							Site		1
		n	ဂ	C	റ	ര	ი	0	n	С	G=GRAB C=COMP			100					_	
200000000000000000000000000000000000000	12/03/2012 10:40	12/03/2012 10:35	12/03/2012 10:30	12/02/2012 15:25	12/02/2012 15:20	12/02/2012 15:15	12/02/2012 15:10	12/03/2012 11:35	12/03/2012 11:30	12/03/2012 11:25	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Continue of Continue of the Continue of th
n l	:40	:35	:30	:25	:20	 	10	:35	.30	25										
	ω	3	ပ	ω	ω	ω	ω	ω	ω	ω	#OF CONTAINERS									
							· · ·				Comment		and the state of t			Phone #:				
- 	×	×	×	×	×	×	×	×	×	×	Analysis Archive	Preserv	ati	ve	Lab	Notes	Notes:	1	I Q	1
+		×			_	×					1613B - Djoxin/Furan						s: F=Fi	TAT	lotal # of Samples:	
-		×				×					Total Organic Carbon -						F= Field Filtered , H= Hold		unpies: ar	
							<u> </u> -				002444						1, H= K			•
													_				ild	Rush	1	ņ
					!			-											Event Complete	

2012_LR_SED Event Complete?

	1	Desirat Inform	16.		_	Other Information:				Total # of Campion		٤		Lyone Complete
Lab information:	Linknown Laboratory	Site Code: Lake Riv	Lake River Industrial Site	Site		Send invoice to:			_	TAT			Rush	
ess:	-	L				Address:			Note)S: F=Fj	eld Filter	Notes: F=Field Filtered , H=Hold		
		Site Address				City/State.		Phone #:	Notes			٠		
Lab PM:		City	State, Zip			PO#			Lat					
hone/Fax		PM Name			1	Send EDD to			ve .		_			
PM email		Phone/Fax:				CC Hardcopy to			ativ					
Lab Quote #:	#	PM Email:				CC Hardcopy to			eserv					
									Pr	<u> </u>	-			+
				Έ	OMP	ΓE	ERS			'an				
EM #	Field Sampl	Field Sample No. /Identification		MATRIX COD	G=GRAB C=CC	SAMPLE DAT	#OF CONTAINE	Comment	unalysis Archive	613B - Dioxin/Fura	otal Organic Carb	COE 9060		
	LRIS-LR-119-2			GES-O S ^T BNS	ဂ	12/03/2012 14:30	Ĺ		×					
	LRIS-LR-119-3			SUB_S O-SED	Ö	12/03/2012 14:35	ယ		×					-
	LRIS-LR-119-4			SUB_S	ဂ	12/03/2012 14:40	3			×				
	LRIS-LR-119-5			SUB_S	ဂ	12/03/2012 14:45	ы			×				
	LRIS-LR-120-2			SUB_S	۵	12/03/2012 12:20	3			×	×	×		
	LRIS-LR-120-3			SUB_S O-SED	G .	12/03/2012 12:25	ω			×				
(1944) A	LRIS-LR-120-4			SUB_S O-SED	C	12/03/2012 12:30	ω			×				
	LRIS-LR-120-5			SUB_S O-SED	n	12/03/2012 12:35	ω			×				
	LRIS-LR-122-2			SUB_S O-SED	ი	12/03/2012 15:22	ω			×	×	×		
0000000	LRIS-LR-122-3			O-SED S_BUS		12/03/2012 15:22	ω			×				
	LRIS-LR-122-4			5						×				

LRIS-LR-126-3

12/02/2012 12:45

LRIS-LR-130-3

12/02/2012 14:45

4/25/2013

		1
- 4		

Comparison Com	LRIS-	LRIS-		J. Bernel	leoji - te						LRIS-	ITEM#	Lab Quote #:	PM email	Phone/Fax: //	Lab PM:		ess:	Lab: Unl	Lab Information:			-
CHANNOR-CUSTONY Analytical Request Document 2012 Page: 120022012 120022012 12:00 2012 120022012 14:00 3	-LR-132-4	-LR-132-3	LR-132-2	ĿR-131	LR-131-4	LR-131-3	LR-131-2	.LR-130-FD-1	LR-130	LR-130-5	LR-130-4								known Laboratory	ion:			
CHANNOR-CUSTONY Analytical Request Document 20/2 Page: 120/2 20/2 120/2	.							:				No. /Identificatio	PM Email:	Phone/Fax:	PM Name	City	Site Address			Project Inform		÷	
R.O.GCultyTODY Analytical Request Document 20121202-MFA								·				n				State, Zip			ake River Industria	ation:			
Analysis Preservative Lab Notes Preservative	SUB_S	SUB_S O-SED	SUB_S O-SED	SED SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	QAQC	SED SED	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							Site		îhe Chain-of-Cu	0.15	OHAIN-
Analysis Preservative Lab Notes Preservative			0	c	О	ດ	G	. с.	C	0	ο.	G=GRAB C=COMP			5	Т		7	3	_	ustody ls a LE	2	ECUS.
Analysis Preservative List Notes Preservative Prese	12/03/2012 14:10	12/03/2012 14:05	12/03/2012 14:00	12/04/2012 11:15	12/02/2012 16:40	12/02/2012 16:35	12/02/2012 16:30	12/04/2012 10:24	12/04/2012 10:24	12/02/2012 14:55	12/02/2012 14:50	SAMPLE DATE	3C Hardcopy to	C Hardcopy to	Send EDD to	00#	City/State.	Address:	Send Invoice to:	Other Information:	GAL DOCUMENT, All relevant fields mus	20121202-MFA	IODY / Analytical Regu
Analysis Preservative List Notes Preservative Prese	ω	ω		ω	ω	ω	3	3	ω	ω	ω	#OF CONTAINERS									t be completed	i de	iest Doc
X X X X X X X X Archive																	Phone #:				and accurate.		ment
X X X X X X X X X Archive																							
Cooler # Cooler # Cooler #	×	×	×	×	×	×	×	×	×	×	×		Preserv	ativ	e	Lat) Note:	In the second	TΑ	- 6	Task:		Ò
Cooler # 2012_LR_SED 97 97 Rush R			×	×			×	×	×			1613B - Dioxin/Furan						; F= Fiel	-	9	# of San		2
Rush Rush			×	×			×	. ×	×			Total Organic Carbon - COE 9060					•	d Filtered ,					4
2_LR_SED Event Complete?										· .								H= Hold			201	oler#	Page:
Event Complete?																			Rush		2_LR_SE		
omplete?																					Event Co		
	-			-												-					mplete?		

LRIS-LR-134-5

LRIS-LR-134-4

SUB_S

12/02/2012 10:30

SUB_S O-SED

12/02/2012 10:35

 \times

 \times

Phone/Fax: 'PM email

City PM Name Phone/Fax:

State, Ζip

PO#
Send EDD to
CC Hardcopy to

CC Hardcopy to

City/State. Address: Send Invoice to:

Phone #:

PM Email:

Lab Quote #:

ITEM#

Field Sample No. /Identification

MATRIX CODE

G=GRAB C=COMP

SAMPLE DATE

#OF CONTAINERS

Comment

Lab PM:

Lab Information:
Lab: Unknown Laboratory
Address: ,

Project Information:
Site Code: |Lake River Industrial Site
Project #
Site Address

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

The Chain-of-Gustody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate

Other Information:

36242

Total # of Samples: 97

2012_LR_SED 읔 읔

Preservative Lab Notes Notes: F= Field Filtered , H= Hold TΑT \times × \times \times Archive \times \times × 1613B - Dioxin/Furan Total Organic Carbon -× COE 9060 Rush

Page	37	of	46
i ago	0,	O.	70

95

LRIS-LR-RB-20121203

LRIS-LR-RB-20121202

LRIS-LR-137

LRIS-LR-137-5

SUB_S O-SED

O

12/02/2012 12:20

SOIL-

ଉ

12/04/2012 09:14

O3S-O S_EUS

O

12/02/2012 12:17

LRIS-LR-137-4

LRIS-LR-137-3

SUB_S O-SED

O

12/02/2012 12:15

SUB_S O-SED

O

12/02/2012 12:10

LRIS-LR-137-2

LRIS-LR-RB-20121204

QAQC

O

12/04/2012 17:35

SED SOIL-

O

11/26/2012 10:00

OAQC

O

12/03/2012 17:30

QAQC

<u>۵</u>

12/02/2012 17:00

LRIS-LR-PS-SRM

Event Complete?

Client: Maul Foster & Alongi Inc

Job Number: 580-36242-3

Login Number: 36242 List Source: TestAmerica Seattle

List Number: 1 Creator: Riley, Nicole

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Not requested on COC.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Job Number: 580-36242-3

Login Number: 36242
List Source: TestAmerica Sacramento
List Number: 1
List Creation: 12/11/12 01:42 PM

Creator: Mantri, Anil

Answer	Comment
True	
False	Cooler temperature outside required temperature criteria.
True	-0.4
True	
True	
True	
N/A	
False	Received extra samples not listed on COC.# 94 & 95
True	
N/A	
True	
True	
True	
True	
N/A	
	True True True True False True True True True True True True Tru

4

5

7

9

10

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-3

List Source: TestAmerica Sacramento
List Number: 2
List Creation: 01/10/13 02:54 PM

Creator: Cortes, Cesar C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

4

5

6

Ω

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-3

List Source: TestAmerica Sacramento
List Number: 3
List Creation: 01/16/13 11:09 AM

Creator: Tecson, Jeffrey

True 622805, 622806 True 622805 622806 True 7 True 545176167352 True 0.8 True 7
frue 622805, 622806 frue frue frue 545176167352 frue 0.8 frue
rrue frue 545176167352 frue 0.8 frue
rue 545176167352 rue 0.8 rue
rue 545176167352 rue 0.8 rue
rue 0.8 rue
irue
irue
ruo
iue
rue
I/A
rue
rue
rue
rue
I/A
rue

4

0

9

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-3

List Source: TestAmerica Sacramento
List Number: 4
List Source: TestAmerica Sacramento
List Creation: 01/17/13 01:52 PM

Creator: Tecson, Jeffrey

Creator: Tecson, Jettrey		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	622807
he cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	0.4
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
here are no discrepancies between the containers received and the COC.	True	
amples are received within Holding Time.	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
sample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
ample bottles are completely filled.	True	
ample Preservation Verified.	N/A	
here is sufficient vol. for all requested analyses, incl. any requested //S/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
fultiphasic samples are not present.	True	
samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

0

9

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-3

List Source: TestAmerica Sacramento
List Number: 5
List Creation: 02/07/13 07:27 PM

Creator: Cortes, Cesar C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

2

4

5

7

10

11

TestAmerica Job ID: 580-36242-3

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)							
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF
Lab Sample ID	Client Sample ID	(25-164)	(24-169)	(25-181)	(24-185)	(21-178)	(32-141)	(28-130)	(26-152
580-36242-1	LRIS-LR-103-2	47	55	38	41	47	50	53	57
580-36242-1	LRIS-LR-103-2		50						
580-36242-6	LRIS-LR-106-2	78	92	68	72	82	92	91	96
580-36242-12	LRIS-LR-108-3	61	70	55	59	65	68	76	78
580-36242-12	LRIS-LR-108-3								
580-36242-12	LRIS-LR-108-3		63						
580-36242-23	LRIS-LR-119-2	65	77	60	62	73	76	73	86
580-36242-23	LRIS-LR-119-2								
580-36242-23	LRIS-LR-119-2		67						
580-36242-35	LRIS-LR-122	65	75	58	64	71	77	73	80
580-36242-35	LRIS-LR-122								
580-36242-35	LRIS-LR-122		67						
580-36242-40	LRIS-LR-125-2								
580-36242-40	LRIS-LR-125-2	61	69	54	58	64	70	68	73
580-36242-40	LRIS-LR-125-2		60						
580-36242-68	LRIS-LR-132	63	71	53	59	62	71	70	80
580-36242-68	LRIS-LR-132		59						
580-36242-73	LRIS-LR-133	50	59	43	46	52	58	54	61
580-36242-73	LRIS-LR-133		50						
580-36242-78	LRIS-LR-134	53	61	49	51	58	60	59	68
580-36242-78	LRIS-LR-134		٠.		•	00	•	•	
580-36242-78	LRIS-LR-134		57						
MB 320-8566/1-A	Method Blank	51	56	45	48	49	66	65	72
WB 020 0000/17(Wether Blank	01							
				_	e Dilution Re		-	-	
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	HxCDF
Lab Sample ID	Client Sample ID	(26-123)	(29-147)	(28-136)	(23-140)	(28-143)	(26-138)	(17-157)	(26-152
580-36242-1	LRIS-LR-103-2	59	52	57	45	46	53	54	57
580-36242-1	LRIS-LR-103-2								
580-36242-6	LRIS-LR-106-2								
580-36242-12		97	86	98	77	85	95	91	96
	LRIS-LR-108-3	77	86 69	98	77 64	85 66	95 76		96 78
	LRIS-LR-108-3 LRIS-LR-108-3							91 64	
580-36242-12	LRIS-LR-108-3								
580-36242-12 580-36242-12	LRIS-LR-108-3 LRIS-LR-108-3	77	69	77	64	66	76		78
580-36242-12 580-36242-12 580-36242-23	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2	77	69	77	64	66	76	64	78
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2	77	69	77	64	66	76	64	78
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2	77 82	69 73	77 83	64	68	76 81	64	78 86
580-36242-12 580-36242-12 580-36242-23 580-36242-23	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122	77 82	69 73	77 83	70	68	76 81	64	78 86
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35 580-36242-35	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122	77 82	69 73	77 83	70	68	76 81	64	78 86
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-35 580-36242-40	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122	77 82	69 73	77 83	70 46	68	76 81	64 64 95	78 86
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-35 580-36242-40 580-36242-40	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122 LRIS-LR-125-2	77 82 79	69 73 72	83 81	70 46	66 68 67	76 81 80	64 64 95	78 86 80
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-35	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122 LRIS-LR-125-2 LRIS-LR-125-2	77 82 79	69 73 72	83 81	70 46	66 68 67	76 81 80	64 64 95	78 86 80
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-40 580-36242-40 580-36242-40 580-36242-68	LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-125-2	77 82 79 72	69 73 72 67	77 83 81 69	64 70 46 71	66 68 67	76 81 80 78	64 64 95	78 86 80 73
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-35 580-36242-40 580-36242-40 580-36242-40 580-36242-68 580-36242-68	LRIS-LR-108-3 LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-132 LRIS-LR-132	77 82 79 72 77	69 73 72 67 72	77 83 81 69	64 70 46 71	66 68 67 60 70	76 81 80 78	64 64 95 103	78 86 80 73
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-35 580-36242-40 580-36242-40 580-36242-68 580-36242-68 580-36242-68	LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-132 LRIS-LR-132 LRIS-LR-133	77 82 79 72	69 73 72 67	77 83 81 69	64 70 46 71	66 68 67	76 81 80 78	64 64 95	78 86 80 73
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-35 580-36242-40 580-36242-40 580-36242-40 580-36242-68 580-36242-68 580-36242-73 580-36242-73	LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-132 LRIS-LR-133 LRIS-LR-133	77 82 79 72 77 57	69 73 72 67 72 54	77 83 81 69 76 60	64 70 46 71 66 48	66 68 67 60 70	76 81 80 78 82 60	64 64 95 103	78 86 80 73 80 61
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-35 580-36242-40 580-36242-40 580-36242-68 580-36242-68 580-36242-73 580-36242-73 580-36242-73	LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-132 LRIS-LR-133 LRIS-LR-133 LRIS-LR-133 LRIS-LR-134	77 82 79 72 77	69 73 72 67 72	77 83 81 69	64 70 46 71	66 68 67 60 70	76 81 80 78	64 64 95 103 83 64	78 86 80 73
580-36242-12 580-36242-12 580-36242-23 580-36242-23 580-36242-23 580-36242-35 580-36242-35 580-36242-40 580-36242-40 580-36242-40	LRIS-LR-108-3 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-119-2 LRIS-LR-122 LRIS-LR-122 LRIS-LR-122 LRIS-LR-125-2 LRIS-LR-125-2 LRIS-LR-132 LRIS-LR-133 LRIS-LR-133	77 82 79 72 77 57	69 73 72 67 72 54	77 83 81 69 76 60	64 70 46 71 66 48	66 68 67 60 70	76 81 80 78 82 60	64 64 95 103	78 86 80 73 80 61

TestAmerica Seattle

Page 44 of 46

4/25/2013

TestAmerica Job ID: 580-36242-3

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Solid Prep Type: Total/NA

		HxCDF2	HxCDF2	ercent Isotop HxCDF4	HxCDF4	HxCDF3	HxCDF3	HpCDD	HpCDI
Lab Sample ID	Client Sample ID	(21-159)	(26-123)	(17-205)	(29-147)	(22-176)	(28-136)	(23-140)	(26-166
580-36242-1	LRIS-LR-103-2		59		52		57	45	-
580-36242-1	LRIS-LR-103-2								
580-36242-6	LRIS-LR-106-2		97		86		98	77	
580-36242-12	LRIS-LR-108-3		77		69		77	64	
580-36242-12	LRIS-LR-108-3								
580-36242-12	LRIS-LR-108-3								
580-36242-23	LRIS-LR-119-2		82		73		83	70	
580-36242-23	LRIS-LR-119-2								
580-36242-23	LRIS-LR-119-2								
580-36242-35	LRIS-LR-122		79		72		81		
580-36242-35	LRIS-LR-122							46	
580-36242-35	LRIS-LR-122								
580-36242-40	LRIS-LR-125-2							71	
580-36242-40	LRIS-LR-125-2		72		67		69		
580-36242-40	LRIS-LR-125-2								
580-36242-68	LRIS-LR-132		77		72		76	66	
580-36242-68	LRIS-LR-132								
580-36242-73	LRIS-LR-133		57		54		60	48	
580-36242-73	LRIS-LR-133								
580-36242-78	LRIS-LR-134		63		59		63	57	
580-36242-78	LRIS-LR-134		00		00		00	O1	
580-36242-78	LRIS-LR-134								
MB 320-8566/1-A	Method Blank		71		59		67	55	
WID 320-0300/ 1-A	Wethod Blank								
				ercent Isotop			-	ts)	
		HpCDF1	HpCDF1	HpCDF2	HpCDF2	OCDD	OCDD		
Lab Sample ID	Client Sample ID	(21-158)	(28-143)	(20-186)	(26-138)	(13-199)	(17-157)		
580-36242-1	LRIS-LR-103-2		46		53		54		
580-36242-1	LRIS-LR-103-2								
580-36242-6	LRIS-LR-106-2		85		95		91		
580-36242-12	LRIS-LR-108-3		66		76				
580-36242-12	LRIS-LR-108-3						64		
580-36242-12	LRIS-LR-108-3								
580-36242-23	LRIS-LR-119-2		68		81				
580-36242-23	LRIS-LR-119-2						64		
580-36242-23	LRIS-LR-119-2								
580-36242-35	LRIS-LR-122		67		80				
580-36242-35	LRIS-LR-122						95		
580-36242-35	LRIS-LR-122								
580-36242-40	LRIS-LR-125-2						103		
580-36242-40	LRIS-LR-125-2		60		78				
580-36242-40	LRIS-LR-125-2								
580-36242-68	LRIS-LR-132		70		82		83		
580-36242-68	LRIS-LR-132								
580-36242-73	LRIS-LR-133		51		60		64		
580-36242-73	LRIS-LR-133								
580-36242-78	LRIS-LR-134		56		64				
580-36242-78	LRIS-LR-134						57		
J00-J02 4 2-70									
580-36242-78	LRIS-LR-134								

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

3

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF

HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

			Р	ercent Isotop	e Dilution Re	ecovery (Acc	eptance Limi	ts)	
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1
Lab Sample ID	Client Sample ID	(20-175)	(22-152)	(21-227)	(21-192)	(13-328)	(21-193)	(25-163)	(19-202)
LCS 320-8566/2-A	Lab Control Sample	54	61	49	54	57	67	63	75
			Р	ercent Isotop	e Dilution Re	ecovery (Acc	eptance Limi	ts)	
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	
Lab Sample ID	Client Sample ID	(21-159)	(17-205)	(22-176)	(26-166)	(21-158)	(20-186)	(13-199)	
LCS 320-8566/2-A	Lab Control Sample	71	65	70	61	65	70	71	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

TestAmerica Seattle

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-36242-4 Client Project/Site: Port of Ridgefield

For:

Maul Foster & Alongi Inc 2001 NW 19th Avenue, Suite 200 Portland, Oregon 97239

Attn: Ms. Madi Novak

Pamela R. Johnson

Authorized for release by: 1/15/2013 2:33:59 PM

Pam Johnson
Project Manager I
pamr.johnson@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-4

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	
Client Sample Results	5
QC Sample Results	14
Chronicle	15
Certification Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	28

-5

4

5

8

4.0

Case Narrative

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-4

3

Job ID: 580-36242-4

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/7/2012 8:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 8 coolers at receipt time were 2.6° C, 2.9° C, 3.4° C, 4.3° C, 4.5° C, 4.6° C, 5.9° C and 6.0° C.

General Chemistry - Method 9060 PSEP

Upon removal from the freezer, sample LRIS-LR-133 (580-36242-73) was too hard to be broken down to be weighed for analysis. The sample was then allowed to thaw slightly to be able to be used for analysis. While thawing, the bottom of the sample container cracked, the analyst placed the sample within a new non compromised container and relabeled the new jar before placing the sample back in the freezer for archiving purposes.

No other analytical or quality issues were noted.

TestAmerica Seattle 1/15/2013

Definitions/Glossary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 580-36242-4

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-4

Client Sample ID: LRIS-LR-103-2 Lab Sample ID: 580-36242-1

Date Collected: 12/03/12 13:30 Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	10000		2000	610	mg/Kg			01/14/13 17:31	1

2

4

5

6

8

10

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-106-2

TestAmerica Job ID: 580-36242-4

Lab Sample ID: 580-36242-6

Matrix: Solid

Date Collected: 12/02/12 17:25 Date Received: 12/07/12 08:50

General ChemistryAnalyteResult Organic CarbonQualifierRL MDL UnitD Prepared ManalyzedTotal Organic Carbon53002000610 mg/Kg01/14/13 17:35

-

5

Dil Fac

0

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-108-3

TestAmerica Job ID: 580-36242-4

Lab Sample ID: 580-36242-12

Matrix: Solid

Date Collected: 12/03/12 11:25 Date Received: 12/07/12 08:50

	General Chemistry									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total Organic Carbon	12000		2000	610	mg/Kg			01/14/13 17:40	1

4

5

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-119-2

TestAmerica Job ID: 580-36242-4

Lab Sample ID: 580-36242-23

Matrix: Solid

Date Collected: 12/03/12 14:30 Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	16000		2000	610	mg/Kg			01/14/13 17:44	1

5

6

8

46

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-4

Client Sample ID: LRIS-LR-122 Lab Sample ID: 580-36242-35

Date Collected: 12/04/12 11:27 Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	8000		2000	610	mg/Kg			01/14/13 17:54	1

3

5

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-125-2

TestAmerica Job ID: 580-36242-4

Lab Sample ID: 580-36242-40

Matrix: Solid

Date Collected: 12/02/12 13:10 Date Received: 12/07/12 08:50

 General Chemistry
 Analyte
 Result Qualifier
 RL MDL Unit
 Unit
 D Prepared
 Analyzed Analyzed
 Dil Fac

 Total Organic Carbon
 6700
 2000
 610 mg/Kg
 01/14/13 17:58
 1

-

5

<u>۾</u>

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-132

TestAmerica Job ID: 580-36242-4

Lab Sample ID: 580-36242-68

Matrix: Solid

Date Received: 12/07/12 08:50

Date Collected: 12/04/12 12:06

General Chemistry								
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	15000	2000	610	mg/Kg			01/14/13 18:02	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-4

Client Sample ID: LRIS-LR-133

Lab Sample ID: 580-36242-73 Date Collected: 12/04/12 12:49

Matrix: Solid

Date Received: 12/07/12 08:50

	General Chemistry									
l	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total Organic Carbon	14000		2000	610	mg/Kg			01/14/13 18:07	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-4

Client Sample ID: LRIS-LR-134 Lab Sample ID: 580-36242-78

Date Collected: 12/04/12 13:10 Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	15000		2000	610	mg/Kg			01/14/13 18:11	1

5

5

6

R

9

10

QC Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-4

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 9060_PSEP - TOC (Puget Sound)

Lab Sample ID: MB 580-128122/3

Matrix: Solid

Analysis Batch: 128122

MB MB

Result Qualifier RL MDL Unit Analyte D Prepared Analyzed Dil Fac Total Organic Carbon 2000 610 mg/Kg 01/14/13 16:45 ND

Lab Sample ID: LCS 580-128122/4

Matrix: Solid

Analysis Batch: 128122

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Total Organic Carbon 2850 2880 mg/Kg 101 27.8 - 170

Lab Sample ID: LCSD 580-128122/5

Matrix: Solid

Analysis Batch: 128122

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit %Rec Limits **RPD** Limit Total Organic Carbon 2850 2830 27.8 - 170 mg/Kg

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-103-2

Lab Sample ID: 580-36242-1

Matrix: Solid

Date Collected: 12/03/12 13:30 Date Received: 12/07/12 08:50

Total/NA

Batch Dilution Batch Batch Prepared Method Factor Prep Type Type Run Number or Analyzed Analyst Lab Analysis 9060 PSEP 128122 01/14/13 17:31 RB TAL SEA

Client Sample ID: LRIS-LR-106-2

Lab Sample ID: 580-36242-6

Matrix: Solid

Date Collected: 12/02/12 17:25 Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared or Analyzed Method Run Factor Prep Type Type Number Analyst Lab Total/NA 9060_PSEP 128122 01/14/13 17:35 RB TAL SEA Analysis

Lab Sample ID: 580-36242-12

Client Sample ID: LRIS-LR-108-3 Date Collected: 12/03/12 11:25

Matrix: Solid

Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst 9060 PSEP 128122 Total/NA Analysis 01/14/13 17:40 RB TAL SEA

Lab Sample ID: 580-36242-23 Client Sample ID: LRIS-LR-119-2

Date Collected: 12/03/12 14:30 Matrix: Solid

Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Method Factor Prep Type Туре Run Number or Analyzed Analyst Lab 9060_PSEP Total/NA Analysis 128122 01/14/13 17:44 RB TAL SEA

Client Sample ID: LRIS-LR-122 Lab Sample ID: 580-36242-35

Date Collected: 12/04/12 11:27 Matrix: Solid

Date Received: 12/07/12 08:50

Batch Dilution Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab TAL SEA 9060 PSEP 128122 01/14/13 17:54 Total/NA Analysis RB

Client Sample ID: LRIS-LR-125-2 Lab Sample ID: 580-36242-40

Date Collected: 12/02/12 13:10 **Matrix: Solid**

Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 9060_PSEP 01/14/13 17:58 RB TAL SEA

Lab Chronicle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-132

TestAmerica Job ID: 580-36242-4

Lab Sample ID: 580-36242-68

Matrix: Solid

Date Collected: 12/04/12 12:06

Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Total/NA Analysis 9060 PSEP 128122 01/14/13 18:02 RB TAL SEA

Client Sample ID: LRIS-LR-133 Lab Sample ID: 580-36242-73

Date Collected: 12/04/12 12:49 Matrix: Solid

Date Received: 12/07/12 08:50

Batch Batch Dilution Batch Prepared Number Method Factor Prep Type Туре Run or Analyzed Analyst Lab 9060 PSEP Total/NA Analysis 128122 01/14/13 18:07 RB TAL SEA

Client Sample ID: LRIS-LR-134 Lab Sample ID: 580-36242-78

Date Collected: 12/04/12 13:10 **Matrix: Solid**

Date Received: 12/07/12 08:50

Dilution Batch Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab TAL SEA Total/NA Analysis 9060_PSEP 128122 01/14/13 18:11 RB

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Maul Foster & Alongi Inc
Project/Site: Port of Ridgefield
TestAmerica Job ID: 580-36242-4

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-13
California	NELAP	9	1115CA	01-31-13
L-A-B	DoD ELAP		L2236	01-19-13
L-A-B	ISO/IEC 17025		L2236	01-19-13
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-13

-6

0

_

10

Sample Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-4

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-36242-1	LRIS-LR-103-2	Solid	12/03/12 13:30	12/07/12 08:50
580-36242-6	LRIS-LR-106-2	Solid	12/02/12 17:25	12/07/12 08:50
580-36242-12	LRIS-LR-108-3	Solid	12/03/12 11:25	12/07/12 08:50
580-36242-23	LRIS-LR-119-2	Solid	12/03/12 14:30	12/07/12 08:50
580-36242-35	LRIS-LR-122	Solid	12/04/12 11:27	12/07/12 08:50
580-36242-40	LRIS-LR-125-2	Solid	12/02/12 13:10	12/07/12 08:50
580-36242-68	LRIS-LR-132	Solid	12/04/12 12:06	12/07/12 08:50
580-36242-73	LRIS-LR-133	Solid	12/04/12 12:49	12/07/12 08:50
580-36242-78	LRIS-LR-134	Solid	12/04/12 13:10	12/07/12 08:50

3

4

5

7

Ö

9

Trip Blank?

Total # of Samples: 97 2012_LR_SED
Event Complete?

LRIS-LR-110-5	LRIS-LR-110-4	LRIS-LR-110-3	LRIS-LR-110-2	LRIS-LR-109-5	LRIS-LR-109-4	LRIS-LR-109-3	LRIS-LR-109-2	LRIS-LR-108-5	LRIS-LR-108-4	LRIS-LR-108-3	ITEM#	Lab Quote #:	PM email	Phone/Fax: /	Lab PM:		ess:	Lab Information:
10-5	10-4	10-3	10-2)9-5)9-4)9-3)9-2)8-5)8-4)8-3	Field Sample No. /Identification							mation: Unknown Laboratory
											. /Identification	PM Email:	Phone/Fax:	PM Name	City State, Zip	Site Address	L	Project Information: Site Code: Lake River Industrial Site
SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	S_B_S	MATRIX CODE				Zip			ustrial Site
		0	n	n	റ	ଜ	n	0	0	n	G=GRAB C=COMP			(0			_	<u> </u>
12/03/2012 10:45	12/03/2012 10:40	12/03/2012 10:35	12/03/2012 10:30	12/02/2012 15:25	12/02/2012 15:20	12/02/2012 15:15	12/02/2012 15:10	12/03/2012 11:35	12/03/2012 11:30	12/03/2012 11:25	SAMPLE DATE	3C Hardcopy to	CC Hardcopy to	send EDD to	PO#	City/State.	Address:	Other Information: Send Invoice to:
45	40	35	30	25	20	5	10	35	. 88	ß								
ယ	သ	3	ω	ω	బ	ယ	ω	ω	ω	ω	#OF CONTAINERS							
											Comment					Phone #:		-
											Analysis	Preserv	ativ	'e	Lab	Notes		
×	×	×	×	×	×	×	×	×	×	×	Archive				Straint)		Notes: F=	TAT
		×				×					1613B - Dioxin/Furan			•••				
		×				×					Total Organic Carbon - COE 9060				-		Field Filtered, H= Hold	
																	, H= Hol	
													-				ď	Rush
) -

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

Project Information:	Lab informaticab: Un Address: Address: Lab PN: Lab PN: Phone/Fax: Phone/Fax: Lab Quote #	ITEM#					27					900000	Sar:
Commontation State Commontation Commontatio	Unknown Laboratory ::	Field Samp	LRIS-LR-119-2	LRIS-LR-119-3	LRIS-LR-119-4	LRIS-LR-119-5	LRIS-LR-120-2	LRIS-LR-120-3	LRIS-LR-120-4	LRIS-1R-120-5	LRIS-LR-122-2	LRIS-LR-122-3	LRIS-LR-122-4
Comment Standard Secretaria Comment Co		le No. /Identification				-						-	
Analysis Preservative Lab Notes TAT Total # of Samples: 97 Total Organic Carbon - COE 9060 September Total Organic Carbon - COE 9060 September Total Organic Carbon - COE 9060 September Task: 2012 LR S	Industrial Site	MATRIX CODE	SUB.	SUB.	SUB_	SUB.	SUB.	ans	SUB.	SUB.		as-o ans	SUB.
Task: 2012_LR_SEP Total Organic Carbon-COE 9060 TAT Rush Rus	n n n n n n n n n n n n n n n n n n n	G=GRAB C=COMP										Θ'ω	⊞'ω
Task: 2012_LR_SEP Total Organic Carbon-COE 9060 TAT Rush Rus	Other Information: Send Invoice to: Address: City/State. PO # Send EDD to CC Hardcopy to CC Hardcopy to	SAMPLE DATE	12/03/2012 14:30	12/03/2012 14:35	12/03/2012 14:40	12/03/2012 14:45	12/03/2012 12:20	12/03/2012 12:25	12/03/2012 12:30	12/03/2012 12:35	12/03/2012 15:22	12/03/2012 15:22	12/03/2012 15:22
Comment	on person	#OF CONTAINERS	3	ω	ω	ω	ω	ω	ω	ω	ω	ω	ယ
X X X X X X X X Archive	Phone #:	Comment											
2012_LR_SED Rush H= ноід	Preservative Lab Notes	The state of the s											
2012_LR_SED Rush H= ноід	tal # of S tes: F=F		×	×	×	×	×		×	×	×	×	×
2012_LR_SED Rush H= ноід	Samples:						×				×		
Rush		COE 9060					×				×		
Rush	Ном					<u> </u>							
	Rush												
mplete?	event Co			-									
	mplete?			,									

LRIS-LR-126-3

SUB_S O-SED

12/02/2012 12:45

Phone/Fax: PM email

City
PM Name
Phone/Fax:
PM Email:

Ϊþ

PO #
Serid EDD to
CC Hardcopy to
CC Hardcopy to

Lab Quote #:

ITEM#

Field Sample No. /Identification

MATRIX CODE

G=GRAB C=COMP

SAMPLE DATE

#OF CONTAINERS

Comment

49

LRIS-LR-129-3

LRIS-LR-129-2

LRIS-LR-126

LRIS-LR-126-5

LRIS-LR-126-4

SUB_S O-SED

O

12/02/2012 12:47

SUB_S O-SED

O

12/02/2012 12:50

ယ

SED.

O

12/04/2012 08:56

8

LRIS-LR-129-4

LRIS-LR-129-5

SUB_S O-SED

12/02/2012 14:05

SUB_S O-SED

12/02/2012 14:00

ω

SUB_S

ഒ

12/02/2012 13:55

ω

SUB_S O-SED

O

12/02/2012 13:50

ω

Ç:

LRIS-LR-130-FD

LRIS-LR-130-3

SUB_S O-SED

12/02/2012 14:45

QAQC

12/02/2012 14:40

×

LRIS-LR-130-2

SUB_S O-SED

C

12/02/2012 14:40

ယ

SED SOI-

O

12/04/2012 10:10

ω

52

LRIS-LR-129

Lab PM:

Lab Information:
Lab: Unknown
Address:

Project Information:
Site Code: Lake Rive
Project #

Lake River Industrial Site

Site Address

City/State. Address: Send Invoice to:

Phone #:

The Chain-d-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate

36242

욕 욕

TAT | Notes: F=Field Filtered , H=Hold Total # of Samples: 97 \times Archive × × \times \times \times \times \times 1613B - Dioxin/Furan × × × × Total Organic Carbon -COE 9060 × × × × 2012_LR_SED Rush Event Complete

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

			J. Bernel	180% - 19					67 1	8	ITEM #	Lab Quote #.	PM ema	Phone/Fax:	Lab PM:		Address:	Lab:	Lab Info		
LRIS-LR-132-4	LRIS-LR-132-3	LRIS-LR-132-2	LRIS-LR-131	LRIS-LR-131-4	LRIS-LR-131-3	LRIS-LR-131-2	LRIS-LR-130-FD-1	LRIS-LR-130	LRIS-LR-130-5	LRIS-LR-130-4	Field Sample	*		ax: /				Unknown Laboratory	Lab Information:		
							:				Field Sample No. /Identification	TW EBAIL	Phone/Fax:	PM Name	City State, Zip	Site Address	Project#	Site Code: Lake River Industrial Site	Project Information:		
SUB_S O-SED	SUB_S	SUB_S O-SED	SOIL- SED	SUB_S O-SED	SUB_S O-SED	SUB_S	QAQC	SOIL.	SUB_S O-SED	SUB_S O-SED	MATRIX CODE				Đ			strial Site		The Chain-	
υs	O S	C	о ,	C	ດ	s G	C	0	C	G.	G=GRAB C=COMP									of-Custody Is a	
12/03/2012 14:10	12/03/2012 14:05	12/03/2012 14:00	12/04/2012 11:15	12/02/2012 16:40	12/02/2012 16:35	12/02/2012 16:30	12/04/2012 10:24	12/04/2012 10:24	12/02/2012 14:55	12/02/2012 14:50	SAMPLE DATE	Co I rai acoby so	CC Hardcopy to	Send EDU to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.	
ω	ı	ω	ω	ω	ω	3	3	ω	ω	ω	#OF CONTAINERS									t be completed a	
											Comment					Phone #:				d accurate.	
×	×	×	×	×	×	×	×	×	×	×	Analysis Archive	Preser	vati	ve	La	b Notes	A. PROPERTY	TAT		Task:	
		×	×			×	×	×			1613B - Dioxin/Furan						Notes: F= Fiel	1		K: of Samples:	
		×	×			×	. ×	×			Total Organic Carbon - COE 9060					•	Field Filtered,		-	nples: 97	
																	H= Hold			20	
																		Rush	ı	2012_LR_SED Event Complete?	
,																				nlete?	
-	J	1	<u> </u>			Pa	∟ ge 24	l of 28	1 B		1	<u></u>		-			」 1/	∟ ′15	5/2	013	1

36242

Page: Cooler# 2012_LR_SED

77.56		75 L	74 L	73 L		74 L	70 L	3		67	ITEM#	Lab Quote #:	PM email	Phone/Fax:	Lab PM:		Address:	Lab:	Lab Info	
LRIS-LR-134-5	LRIS-LR-134-4	LRIS-LR-134-3	LRIS-LR-134-2	LRIS-LR-133	.RIS-LR-133-5	LRIS-LR-133-4	LRIS-LR-133-3	LRIS-LR-133-2	LRIS-LR-132	LRIS-LR-132-5	Field Sampl	te #:		ax: /			-	Unknown Laboratory	Lab Information:	
											Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City State, Zip	Site Address	Project #	Site Code: Lake River Industrial Site	Project Information:	
SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SOIL-	SUB_S O-SED	SUB_S O-SED	SUB_S	SUB_S O-SED	SOIL-	SUB_S O-SED	MATRIX CODE							al Site		The Chain-of-
		C	С	C	ົດ	စ	. Ω	ი	ი	n	G=GRAB C=COMP									Custody is a L
12/02/2012 10:35	12/02/2012 10:30	12/02/2012 10:28	12/02/2012 10:20	12/04/2012 12:49	12/03/2012 15:30	12/03/2012 15:25	12/03/2012 15:20	12/03/2012 15:15	12/04/2012 12:06	12/03/2012 14:15	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.
ယ	ယ	ω	ယ	ω	ω	ω	ω	ω	ω	ω	#OF CONTAINERS									ompleted and
											Comment					Phone #:		THE REST OF THE PARTY OF THE PARTY.		accurate.
×	×	×	×	×	×	×	×	×	×	×	Analysis Archive	Preservi	ativ	e	Lai	Notes	Notes:	7	100	Task:
			×					×			1613B - Dioxin/Furan				-		s: F=Fi	TAT	# 01 06	-1 # ~£ 6;
<u> </u>			×					×			Total Organic Carbon - COE 9060						F= Field Filtered, H= Hold		Foral # of Samples. 31	lan-
											501. 3000			<u>.</u>			d, H= Ho		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
																	E	Rush		2012_LR_SED
				-					<u> </u>									sh	[V C]	SED
																			Evelit Collibera	+ 0 > m × lo
																			 	à
						Pa	ige 2	5 of 2	8								1	/1	5/2	013

으 로

	97	88	88	9 2	84	83	89	80		78	(TEM #	Lab Quote #:	PM email	Phone/F	Lab PM:		Address:	Lab:	Lab Info		
LRIS-LR-136	LRIS-LR-136-5	LRIS-LR-136-4	LRIS-LR-136-3	LRIS-LR-136-2	LRIS-LR-135	LRIS-LR-135-5	LRIS-LR-135-4	LRIS-LR-135-3	LRIS-LR-135-2	LRIS-LR-134	Field Sample	ote #:	aii .	ax: /			33	Unknown Laboratory	Lab Information:		
											Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City State, Zip	Site Address	Project #	Site Code: Lake River Industrial Site	Project Information:		
SOIL-	O-SED S_BUS	SUB_S O-SED	SUB_S	SUB_S O-SED	SOIL-	S_B_S	SUB_S	SUB_S	STB S	SED SOIL-	MATRIX CODE							al Site		The Chain-of-C	
		С	C	С	ດ	G	C	C	c	ი	G=GRAB C=COMP			-				-	_	Duskody is a LE	
12/04/2012 10:39	12/02/2012 17:05.	12/02/2012 17:00	12/02/2012 16:55	12/02/2012 16:50	12/04/2012 13:01	12/03/2012 16:00	12/03/2012 15:55	12/03/2012 15:50	12/03/2012 15:45	12/04/2012 13:10	SAMPLE DATE	CC Hardcopy to	C Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be complated and accurate	
ω	ω	ω	ω	ω	ы	.3	3	ω	ω	ω	#OF CONTAINERS									ompleted and	
											Comment		The state of the s			Phone #:				ocurate.	
×	×	×	×	×	×	×	×	×	×	×	Analysis Archive	Preservi	ativ	е	Lat	Notes	9211.5%	7		Task:	-
						^	-	^			1613B - Dioxin/Furan			·-·			Notes: F= Field Filtered , H= Hold	TAT		Total # of Samples:	
											Total Organic Carbon - COE 9060						Filtered,			oles: 97	
																	H= Hold			201;	22.
						-			j.									Rush		2012_LR_SED	,
															-					Event Complete?	
						Pa	ge 26	of 28	3								1/	L 15	 /2	013	3

Lab PM:
Phone/Fax: /
PM email
Lab Quote #:

ITEM#

Field Sample No. /Identification

LRIS-LR-RB-20121202

LRIS-LR-137

LRIS-LR-137-5

LRIS-LR-137-4

LRIS-LR-137-3

LRIS-LR-137-2

LRIS-LR-RB-20121203

LRIS-LR-RB-20121204

LRIS-LR-PS-SRM

Lab Information:
Lab: Unknown Laboratory
Address: .

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

36242

욕 육

				-							e No. /Identification	PM Email:	Phone/Fax:	DM Name		Site Address	Project #	Site Code: Lake Riv	Project Information		
							0.8		0.8	0.8				olate, Alp	Ctata 7in			Lake River Industrial Site		The	
		SED SOIL-	aAac	OAQC	QAQC	SED SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S	MATRIX CODE							Site		Chain-of-Gu	
		ი	ი	n	۵	ဓ	ი	ი	0	С	G=GRAB C=COMP						_			stody is a L£	
		11/26/2012 10:00	12/04/2012 17:35	12/03/2012 17:30	12/02/2012 17:00	12/04/2012 09:14	12/02/2012 12:20	12/02/2012 12:17	12/02/2012 12:15	12/02/2012 12:10	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send FDD to	DO #	City/State.	Address:	Send Invoice to:	Other Information:	The Chair-of-Gustody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.	
		2	-	Ŋ	2	. ω	ω	ω	ω	ω	#OF CONTAINERS									npleted and a	
	And the second s		and the second s								Comment					Phone #:					
											Analysis	Preserv	ative		ab t	lotes	Not	l_	 	Task:	1
·		×	×	×	×	×	×	×	×	×	Archive						Notes: F= F	TAT	lotal # of \$		
		×	×			×					1613B - Dioxin/Furan						ield Filt		Samples:		
						×					Total Organic Carbon - COE 9060						Field Filtered, H= Hold		76 :	3	
	-											-					ğ	Rush		2012_LK_SED	3043 - 0 0
																			Event Complete		9
	<u> </u>					Pa	ge 27	7 of 2	8						-	-	1/	15	5/20		3

Client: Maul Foster & Alongi Inc Job Number: 580-36242-4

Login Number: 36242 List Source: TestAmerica Seattle

List Number: 1 Creator: Riley, Nicole

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Not requested on COC.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

2

4

6

g

10

1.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-36242-5 Client Project/Site: Port of Ridgefield

For:

Maul Foster & Alongi Inc 2001 NW 19th Avenue, Suite 200 Portland, Oregon 97239

Attn: Ms. Madi Novak

Pamela R. Johnson

Authorized for release by: 1/31/2013 11:01:08 AM

Pam Johnson
Project Manager I
pamr.johnson@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-5

Table of Contents

1
2
3
4
5
16
18
20
21
22
31
36

Case Narrative

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-5

Job ID: 580-36242-5

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/7/2012 8:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 8 coolers at receipt time were 2.6° C, 2.9° C, 3.4° C, 4.3° C, 4.5° C, 4.6° C, 5.9° C and 6.0° C.

Except:

The container labels for the following sample LRIS-LR-122-3 (580-36242-32) did not match the information listed on the Chain-of-Custody (COC).

Sample LRIS-LR-122-3 (580-36242-32): The container labels list a time of 11:50 for sample 580-36242-32 respectively. The Chain-of-Custody (COC) lists a time of 15:22 for this sample, the sample was logged in per the Chain-of-Custody (COC).

Dioxin - Method 1613B

lon abundance ratios are outside criteria for the following samples: (MB 320-8878/1-A), LRIS-LR-110-4 (580-36242-21), LRIS-LR-119-3 (580-36242-24), LRIS-LR-122-3 (580-36242-32), LRIS-LR-124-3 (580-36242-37), LRIS-LR-125-3 (580-36242-41), LRIS-LR-132-5 (580-36242-67), LRIS-LR-PS-SRM (580-36242-97). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC).

lon abundance ratios are outside criteria for the following samples: (MB 320-8878/1-A), LRIS-LR-110-4 (580-36242-21), LRIS-LR-119-3 (580-36242-24), LRIS-LR-122-3 (580-36242-32), LRIS-LR-124-3 (580-36242-37), LRIS-LR-125-3 (580-36242-41), LRIS-LR-132-5 (580-36242-67), LRIS-LR-PS-SRM (580-36242-97). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC).

The following samples LRIS-LR-110-4 (580-36242-21), LRIS-LR-124-3 (580-36242-37) were diluted to bring the concentration of target analytes within the calibration range. Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Dioxin Prep

No analytical or quality issues were noted.

3

4

5

6

0

9

4 4

Definitions/Glossary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-5

Qualifiers

Dioxin

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio for these samples.

Glossary

RL

RPD

TEF TEQ Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

bbreviation	These commonly used abbreviations may or may not be present in this report.
¥	Listed under the "D" column to designate that the result is reported on a dry weight basis
6R	Percent Recovery
NF	Contains no Free Liquid
)ER	Duplicate error ratio (normalized absolute difference)
L, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
:DL	Estimated Detection Limit
:PA	United States Environmental Protection Agency
1DA	Minimum detectable activity
/IDC	Minimum detectable concentration
1DL	Method Detection Limit
1L	Minimum Level (Dioxin)
ID	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-110-4 Lab Sample ID: 580-36242-21

Date Collected: 12/03/12 10:40 Matrix: Solid Date Received: 12/07/12 08:50 Percent Solids: 61.0

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	1.4		0.65	0.043	pg/g	*	01/17/13 16:42	01/22/13 04:01	
2,3,7,8-TCDF	2.4		0.65	0.17	pg/g	₩	01/17/13 16:42	01/22/13 14:31	
1,2,3,7,8-PeCDD	7.1		3.3	0.10	pg/g	₽	01/17/13 16:42	01/22/13 04:01	
1,2,3,7,8-PeCDF	6.4		3.3	0.090	pg/g	₽	01/17/13 16:42	01/22/13 04:01	
2,3,4,7,8-PeCDF	5.2		3.3	0.087	pg/g	₽	01/17/13 16:42	01/22/13 04:01	
1,2,3,4,7,8-HxCDD	20	В	3.3	0.087	pg/g	₩	01/17/13 16:42	01/22/13 04:01	
1,2,3,6,7,8-HxCDD	63	В	3.3	0.091	pg/g	₽	01/17/13 16:42	01/22/13 04:01	
1,2,3,7,8,9-HxCDD	45	В	3.3	0.076	pg/g	₩	01/17/13 16:42	01/22/13 04:01	
1,2,3,4,7,8-HxCDF	21	В	3.3	0.15	pg/g	₩	01/17/13 16:42	01/22/13 04:01	
1,2,3,6,7,8-HxCDF	12	В	3.3	0.16	pg/g	₽	01/17/13 16:42	01/22/13 04:01	
1,2,3,7,8,9-HxCDF	1.2	J	3.3	0.18	pg/g	₩	01/17/13 16:42	01/22/13 04:01	
2,3,4,6,7,8-HxCDF	5.7	В	3.3	0.16	pg/g	₩	01/17/13 16:42	01/22/13 04:01	
1,2,3,4,6,7,8-HpCDF	110	В	3.3	0.54		\$	01/17/13 16:42	01/22/13 04:01	
1,2,3,4,7,8,9-HpCDF	6.9	В	3.3	0.66		₽	01/17/13 16:42	01/22/13 04:01	
OCDF	130	В	6.5	0.12	pg/g	₩	01/17/13 16:42	01/22/13 04:01	
Total TCDD	41	Bq	0.65	0.043		₽	01/17/13 16:42	01/22/13 04:01	
Total TCDF	35	•	0.65	0.070	pg/g	₽	01/17/13 16:42	01/22/13 04:01	
Total PeCDD	110		3.3	0.10	pg/g	₽	01/17/13 16:42	01/22/13 04:01	
Total PeCDF	91	q	3.3	0.088		φ.	01/17/13 16:42	01/22/13 04:01	
Total HxCDD	500		3.3		pg/g	₽	01/17/13 16:42	01/22/13 04:01	
Total HxCDF	320	В	3.3	0.16	pg/g	₽	01/17/13 16:42	01/22/13 04:01	
Total HpCDF	350		3.3		pg/g	φ-	01/17/13 16:42	01/22/13 04:01	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD	85		25 - 164				01/17/13 16:42	01/22/13 04:01	
13C-2,3,7,8-TCDF	92		24 - 169				01/17/13 16:42	01/22/13 04:01	
13C-2,3,7,8-TCDF	64		24 - 169				01/17/13 16:42	01/22/13 14:31	
13C-1,2,3,7,8-PeCDD	84		25 - 181				01/17/13 16:42	01/22/13 04:01	
13C-1,2,3,7,8-PeCDF	88		24 - 185				01/17/13 16:42	01/22/13 04:01	
13C-2,3,4,7,8-PeCDF	96		21 - 178				01/17/13 16:42	01/22/13 04:01	
13C-1,2,3,4,7,8-HxCDD	88		32 - 141				01/17/13 16:42	01/22/13 04:01	
13C-1,2,3,6,7,8-HxCDD	83		28 - 130				01/17/13 16:42	01/22/13 04:01	
13C-1,2,3,4,7,8-HxCDF	86		26 - 152				01/17/13 16:42	01/22/13 04:01	
13C-1,2,3,6,7,8-HxCDF	81		26 - 123				01/17/13 16:42	01/22/13 04:01	
13C-1,2,3,7,8,9-HxCDF	78		29 - 147				01/17/13 16:42	01/22/13 04:01	
13C-2,3,4,6,7,8-HxCDF	80		28 - 136				01/17/13 16:42	01/22/13 04:01	
13C-1,2,3,4,6,7,8-HpCDF	67		28 - 143				01/17/13 16:42	01/22/13 04:01	
13C-1,2,3,4,7,8,9-HpCDF	82		26 - 138				01/17/13 16:42	01/22/13 04:01	
13C-OCDD	95		17 - 157				01/17/13 16:42	01/22/13 04:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
37CI4-2,3,7,8-TCDD	99		35 - 197				01/17/13 16:42	01/22/13 04:01	
	99		00 - 101				5 // // // 10.72	J .,, . U U T. U I	

Method: 1613B - Dioxins and Fura	ns (HRGC/HF	RMS) - DL							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	1400	В	33	19	pg/g	*	01/17/13 16:42	01/25/13 04:07	10
OCDD	11000	В	65	34	pg/g	₩	01/17/13 16:42	01/25/13 04:07	10
Total HpCDD	3000	В	33	19	pg/g	₩	01/17/13 16:42	01/25/13 04:07	10

TestAmerica Seattle

1/31/2013

Page 5 of 38

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/03/12 10:40 Date Received: 12/07/12 08:50

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-110-4

TestAmerica Job ID: 580-36242-5

Lab Sample ID: 580-36242-21

01/17/13 16:42 01/25/13 04:07

Matrix: Solid
Percent Solids: 61.0

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-1,2,3,4,6,7,8-HpCDD	83	23 - 140	01/17/13 16:42	01/25/13 04:07	10
13C-OCDD	99	17 - 157	01/17/13 16:42	01/25/13 04:07	10
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	61		0.10	0.10	%			01/16/13 15:11	1
Percent Moisture	39		0.10	0.10	%			01/16/13 15:11	1

35 - 197

91

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/03/12 14:35

Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-119-3

TestAmerica Job ID: 580-36242-5

Lab Sample ID: 580-36242-24

Matrix: Solid
Percent Solids: 63.2

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.20	Jq	0.63	0.036	pg/g	\	01/17/13 16:42	01/22/13 04:43	1
2,3,7,8-TCDF	1.2		0.63	0.16	pg/g	₩	01/17/13 16:42	01/22/13 15:09	1
1,2,3,7,8-PeCDD	0.42	J	3.2	0.076	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
1,2,3,7,8-PeCDF	1.0	J	3.2	0.057	pg/g	₽	01/17/13 16:42	01/22/13 04:43	1
2,3,4,7,8-PeCDF	1.0	J	3.2	0.061	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
1,2,3,4,7,8-HxCDD	0.94	JB	3.2	0.047	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
1,2,3,6,7,8-HxCDD	4.8	В	3.2	0.053	pg/g	₽	01/17/13 16:42	01/22/13 04:43	1
1,2,3,7,8,9-HxCDD	2.1	JB	3.2	0.042	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
1,2,3,4,7,8-HxCDF	2.8	JB	3.2	0.046	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
1,2,3,6,7,8-HxCDF	1.9	JB	3.2	0.045	pg/g	₽	01/17/13 16:42	01/22/13 04:43	1
1,2,3,7,8,9-HxCDF	0.15	J q	3.2	0.050	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
2,3,4,6,7,8-HxCDF	1.0	JB	3.2	0.041	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
1,2,3,4,6,7,8-HpCDD	99	В	3.2	0.49	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
1,2,3,4,6,7,8-HpCDF	17	В	3.2	0.11	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
1,2,3,4,7,8,9-HpCDF	0.78	JB	3.2	0.14	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
OCDD	1100	В	6.3	0.47	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
OCDF	20	В	6.3	0.086	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
Total TCDD	4.5	Вq	0.63	0.036	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
Total TCDF	12	q	0.63	0.043	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
Total PeCDD	5.4	q	3.2	0.076	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
Total PeCDF	14	q	3.2	0.059	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
Total HxCDD	33	Вq	3.2	0.047	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
Total HxCDF	43	Вq	3.2	0.045	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
Total HpCDD	230	В	3.2	0.49	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1
Total HpCDF	50	В	3.2	0.12	pg/g	₩	01/17/13 16:42	01/22/13 04:43	1

Total Tipobi	30 1	D	0.2	0.12 pg/g	01/11/10 10:42	01/22/10 04:40	
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	78		25 - 164		01/17/13 16:42	01/22/13 04:43	1
13C-2,3,7,8-TCDF	84		24 - 169		01/17/13 16:42	01/22/13 04:43	1
13C-2,3,7,8-TCDF	61		24 - 169		01/17/13 16:42	01/22/13 15:09	1
13C-1,2,3,7,8-PeCDD	79		25 - 181		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,7,8-PeCDF	80		24 - 185		01/17/13 16:42	01/22/13 04:43	1
13C-2,3,4,7,8-PeCDF	84		21 - 178		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,4,7,8-HxCDD	79		32 - 141		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,6,7,8-HxCDD	81		28 - 130		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,4,7,8-HxCDF	83		26 - 152		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,6,7,8-HxCDF	77		26 - 123		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,7,8,9-HxCDF	75		29 - 147		01/17/13 16:42	01/22/13 04:43	1
13C-2,3,4,6,7,8-HxCDF	77		28 - 136		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,4,6,7,8-HpCDD	64		23 - 140		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,4,6,7,8-HpCDF	62		28 - 143		01/17/13 16:42	01/22/13 04:43	1
13C-1,2,3,4,7,8,9-HpCDF	76		26 - 138		01/17/13 16:42	01/22/13 04:43	1
13C-OCDD	74		17 - 157		01/17/13 16:42	01/22/13 04:43	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	98		35 - 197	01/17/13 16:42	01/22/13 04:43	1
37Cl4-2,3,7,8-TCDD	83		35 - 197	01/17/13 16:42	01/22/13 15:09	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-5

Lab Sample ID: 580-36242-24

Matrix: Solid

Date Collected: 12/03/12 14:35 Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-119-3

General Chemistry Analyte	Result Qualifier	RL	RL Un	nit	D	Prepared	Analyzed	Dil Fac
Percent Solids	63	0.10	0.10 %				01/21/13 16:20	1
Percent Moisture	37	0.10	0.10 %				01/21/13 16:20	1

4

ວ

a

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-122-3

Date Collected: 12/03/12 15:22 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-32

Matrix: Solid
Percent Solids: 67.0

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.59	0.023	pg/g	\	01/17/13 16:42	01/22/13 05:26	1
2,3,7,8-TCDF	0.57	J	0.59	0.033	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
1,2,3,7,8-PeCDD	ND		3.0	0.051	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
1,2,3,7,8-PeCDF	0.41	J	3.0	0.039	pg/g	\$	01/17/13 16:42	01/22/13 05:26	1
2,3,4,7,8-PeCDF	0.49	J	3.0	0.037	pg/g	₩	01/17/13 16:42	01/22/13 05:26	1
1,2,3,4,7,8-HxCDD	0.10	J B q	3.0	0.026	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
1,2,3,6,7,8-HxCDD	2.2	JB	3.0	0.029	pg/g	φ.	01/17/13 16:42	01/22/13 05:26	1
1,2,3,7,8,9-HxCDD	0.52	JB	3.0	0.023	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
1,2,3,4,7,8-HxCDF	2.1	JB	3.0	0.028	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
1,2,3,6,7,8-HxCDF	0.99	JB	3.0	0.029	pg/g	\$	01/17/13 16:42	01/22/13 05:26	1
1,2,3,7,8,9-HxCDF	0.062	Jq	3.0	0.032	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
2,3,4,6,7,8-HxCDF	0.46	JB	3.0	0.026	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
1,2,3,4,6,7,8-HpCDD	47	В	3.0	0.26	pg/g	\$	01/17/13 16:42	01/22/13 05:26	1
1,2,3,4,6,7,8-HpCDF	7.0	В	3.0	0.060	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
1,2,3,4,7,8,9-HpCDF	0.38	JB	3.0	0.080	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
OCDD	560	В	5.9	0.31	pg/g	\$	01/17/13 16:42	01/22/13 05:26	1
OCDF	5.2	JB	5.9	0.044	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
Total TCDD	1.1	Вq	0.59	0.023	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
Total TCDF	3.7	q	0.59	0.033	pg/g	\$	01/17/13 16:42	01/22/13 05:26	1
Total PeCDD	2.5	Jq	3.0	0.051	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
Total PeCDF	7.6	q	3.0	0.038	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
Total HxCDD	13	Вq	3.0	0.026	pg/g	φ.	01/17/13 16:42	01/22/13 05:26	1
Total HxCDF	24	Вq	3.0	0.029	pg/g	≎	01/17/13 16:42	01/22/13 05:26	1
Total HpCDD	98	В	3.0	0.26	pg/g	₽	01/17/13 16:42	01/22/13 05:26	1
Total HpCDF	21	В	3.0	0.070	pg/g	φ.	01/17/13 16:42	01/22/13 05:26	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
100 0 0 7 0 7000			05 404				04/47/40 40 40	04/00/40 05 00	

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	82	25 - 164	01/17/13 16:42	01/22/13 05:26	1
13C-2,3,7,8-TCDF	88	24 - 169	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,7,8-PeCDD	81	25 - 181	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,7,8-PeCDF	82	24 - 185	01/17/13 16:42	01/22/13 05:26	1
13C-2,3,4,7,8-PeCDF	89	21 - 178	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,4,7,8-HxCDD	88	32 - 141	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,6,7,8-HxCDD	90	28 - 130	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,4,7,8-HxCDF	93	26 - 152	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,6,7,8-HxCDF	87	26 - 123	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,7,8,9-HxCDF	84	29 - 147	01/17/13 16:42	01/22/13 05:26	1
13C-2,3,4,6,7,8-HxCDF	87	28 - 136	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,4,6,7,8-HpCDD	71	23 - 140	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,4,6,7,8-HpCDF	72	28 - 143	01/17/13 16:42	01/22/13 05:26	1
13C-1,2,3,4,7,8,9-HpCDF	84	26 - 138	01/17/13 16:42	01/22/13 05:26	1
13C-OCDD	87	17 - 157	01/17/13 16:42	01/22/13 05:26	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
37Cl4-2,3,7,8-TCDD	94		35 - 197	01/17/13 16:42	01/22/13 05:26	1

General Chemistry								
Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	67	0.10	0.10	%			01/16/13 15:11	1
Percent Moisture	33	0.10	0.10	%			01/16/13 15:11	1

TestAmerica Seattle

1/31/2013

Page 9 of 38

2

3

5

7

9

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-124-3

Date Collected: 12/03/12 10:00 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-37

Matrix: Solid
Percent Solids: 63.7

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.51	J	0.63	0.034	pg/g	<u> </u>	01/17/13 16:42	01/22/13 06:09	
2,3,7,8-TCDF	4.4		0.63	0.18	pg/g	₽	01/17/13 16:42	01/22/13 15:47	
1,2,3,7,8-PeCDD	1.5	J	3.1	0.12	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
1,2,3,7,8-PeCDF	12		3.1	0.15	pg/g	\$	01/17/13 16:42	01/22/13 06:09	
2,3,4,7,8-PeCDF	17		3.1	0.15	pg/g	₩	01/17/13 16:42	01/22/13 06:09	
1,2,3,4,7,8-HxCDD	5.0	В	3.1	0.13	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
1,2,3,6,7,8-HxCDD	67	В	3.1	0.13	pg/g	\$	01/17/13 16:42	01/22/13 06:09	
1,2,3,7,8,9-HxCDD	16	В	3.1	0.11	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
1,2,3,4,7,8-HxCDF	83	В	3.1	0.32	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
1,2,3,6,7,8-HxCDF	30	В	3.1	0.32	pg/g	\$	01/17/13 16:42	01/22/13 06:09	<i>.</i>
1,2,3,7,8,9-HxCDF	1.0	J	3.1	0.39	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
2,3,4,6,7,8-HxCDF	15	В	3.1	0.31	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
1,2,3,4,6,7,8-HpCDF	240	В	3.1	1.1	pg/g	\$	01/17/13 16:42	01/22/13 06:09	
1,2,3,4,7,8,9-HpCDF	13	В	3.1	1.3	pg/g	₩	01/17/13 16:42	01/22/13 06:09	
OCDF	170	В	6.3	0.15	pg/g	₩	01/17/13 16:42	01/22/13 06:09	
Total TCDD	25	Вq	0.63	0.034	pg/g	*	01/17/13 16:42	01/22/13 06:09	
Total TCDF	69	q	0.63	0.086	pg/g	₩	01/17/13 16:42	01/22/13 06:09	
Total PeCDD	58	q	3.1	0.12	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
Total PeCDF	240	q	3.1	0.15	pg/g	\$	01/17/13 16:42	01/22/13 06:09	
Total HxCDD	420	В	3.1	0.12	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
Total HxCDF	890	В	3.1	0.34	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
Total HpCDF	820	В	3.1	1.2	pg/g	₽	01/17/13 16:42	01/22/13 06:09	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD	76		25 - 164				01/17/13 16:42	01/22/13 06:09	
13C-2,3,7,8-TCDF	82		24 - 169				01/17/13 16:42	01/22/13 06:09	
13C-2,3,7,8-TCDF	58		24 - 169				01/17/13 16:42	01/22/13 15:47	
13C-1,2,3,7,8-PeCDD	73		25 - 181				01/17/13 16:42	01/22/13 06:09	
13C-1,2,3,7,8-PeCDF	74		24 - 185				01/17/13 16:42	01/22/13 06:09	
13C-2,3,4,7,8-PeCDF	80		21 - 178				01/17/13 16:42	01/22/13 06:09	
13C-1,2,3,4,7,8-HxCDD	75		32 - 141				01/17/13 16:42	01/22/13 06:09	
13C-1,2,3,6,7,8-HxCDD	79		28 - 130				01/17/13 16:42	01/22/13 06:09	
13C-1,2,3,4,7,8-HxCDF	77		26 - 152				01/17/13 16:42	01/22/13 06:09	
13C-1,2,3,6,7,8-HxCDF	80		26 - 123				01/17/13 16:42	01/22/13 06:09	
13C-1,2,3,7,8,9-HxCDF	70		29 - 147				01/17/13 16:42	01/22/13 06:09	
13C-2,3,4,6,7,8-HxCDF	76		28 - 136				01/17/13 16:42	01/22/13 06:09	
13C-1,2,3,4,6,7,8-HpCDF	64		28 - 143				01/17/13 16:42	01/22/13 06:09	
13C-1,2,3,4,7,8,9-HpCDF	73		26 - 138				01/17/13 16:42	01/22/13 06:09	
13C-OCDD	99		17 - 157				01/17/13 16:42	01/22/13 06:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	94		35 - 197				01/17/13 16:42	01/22/13 06:09	

Method: 1613B - Dioxins and Furans	(HRGC/HRMS) - DL
------------------------------------	------------------

37CI4-2,3,7,8-TCDD

Mictilod. 1010D - Dioxilia dila i dia	13 (111100/1111	(IVIO) - DE							
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3,4,6,7,8-HpCDD	1800	В	31	21	pg/g	*	01/17/13 16:42	01/25/13 04:50	10
OCDD	18000	В	63	44	pg/g	₩	01/17/13 16:42	01/25/13 04:50	10
Total HpCDD	3800	В	31	21	pg/g	₽	01/17/13 16:42	01/25/13 04:50	10

35 - 197

TestAmerica Seattle

Page 10 of 38

1/31/2013

4

_

9

10

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-5

Client Sample ID: LRIS-LR-124-3

Lab Sample ID: 580-36242-37 Date Collected: 12/03/12 10:00

Matrix: Solid

Date Received: 12/07/12 08:50 Percent Solids: 63.7

	Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	13C-1,2,3,4,6,7,8-HpCDD	69		23 - 140	01/17/13 16:42	01/25/13 04:50	10
	13C-OCDD	93		17 - 157	01/17/13 16:42	01/25/13 04:50	10
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analvzed	Dil Fac
	37CI4-2,3,7,8-TCDD	91		35 - 197	01/17/13 16:42	01/25/13 04:50	10
L	_	01		55 2 707	0111111010.12	3 23 0 0 1.00	,,

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	ı	D	Prepared	Analyzed	Dil Fac
Percent Solids	64		0.10	0.10	%				01/16/13 15:11	1
Davaget Majatura	26		0.10	0.10	0/_				01/16/13 15:11	1

Client Sample ID: LRIS-LR-125-3

Date Collected: 12/02/12 13:15 Date Received: 12/07/12 08:50

Surrogate

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

Client: Maul Foster & Alongi Inc

Project/Site: Port of Ridgefield

Lab Sample ID: 580-36242-41

Matrix: Solid Percent Solids: 79.8

Date Received: 12/07/12 08:50								Percent Soli	ds: 79.8
Method: 1613B - Dioxins and	•	RMS) Qualifier	RL	EDI	Unit		Drawavad	Analysed	Dil Fac
Analyte						D □	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.33		0.50	0.033	pg/g		01/17/13 16:42	01/22/13 06:51	1
2,3,7,8-TCDF	0.26	J	0.50	0.048	100	₽.	01/17/13 16:42	01/24/13 16:35	1
1,2,3,7,8-PeCDD	ND		2.5	0.061		₽	01/17/13 16:42	01/22/13 06:51	1
1,2,3,7,8-PeCDF	0.59	J	2.5	0.052	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
2,3,4,7,8-PeCDF	0.43	J	2.5	0.050	pg/g	₩	01/17/13 16:42	01/22/13 06:51	1
1,2,3,4,7,8-HxCDD	0.38	JBq	2.5	0.044	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
1,2,3,6,7,8-HxCDD	2.9	В	2.5	0.043	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
1,2,3,7,8,9-HxCDD	0.98	JB	2.5	0.037	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
1,2,3,4,7,8-HxCDF	2.6	В	2.5	0.042	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
1,2,3,6,7,8-HxCDF	1.2	JB	2.5	0.038	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
1,2,3,7,8,9-HxCDF	0.095	J	2.5	0.052	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
2,3,4,6,7,8-HxCDF	0.55	JB	2.5	0.040	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
1,2,3,4,6,7,8-HpCDD	63	В	2.5	0.47	pg/g	\$	01/17/13 16:42	01/22/13 06:51	1
1,2,3,4,6,7,8-HpCDF	10	В	2.5	0.092	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
1,2,3,4,7,8,9-HpCDF	0.52	JB	2.5	0.12	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
OCDD	970	В	5.0	0.50	pg/g	\$	01/17/13 16:42	01/22/13 06:51	1
OCDF	9.8	В	5.0	0.053	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
Total TCDD	2.0	В	0.50	0.033	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
Total TCDF	2.2		0.50	0.034	pg/g		01/17/13 16:42	01/22/13 06:51	1
Total PeCDD	4.1	•	2.5	0.061	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
Total PeCDF	7.6	q	2.5	0.051	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
Total HxCDD		Bq	2.5	0.041			01/17/13 16:42	01/22/13 06:51	1
Total HxCDF	35		2.5	0.043	pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
Total HpCDD	140		2.5		pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
		. -							

Total HpCDF	35	В	2.5	0.10 pg/g	₽	01/17/13 16:42	01/22/13 06:51	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	75		25 - 164			01/17/13 16:42	01/22/13 06:51	1
13C-2,3,7,8-TCDF	81		24 - 169			01/17/13 16:42	01/22/13 06:51	1
13C-2,3,7,8-TCDF	71		24 - 169			01/17/13 16:42	01/24/13 16:35	1
13C-1,2,3,7,8-PeCDD	69		25 - 181			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,7,8-PeCDF	71		24 - 185			01/17/13 16:42	01/22/13 06:51	1
13C-2,3,4,7,8-PeCDF	78		21 - 178			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,4,7,8-HxCDD	81		32 - 141			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,6,7,8-HxCDD	84		28 - 130			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,4,7,8-HxCDF	79		26 - 152			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,6,7,8-HxCDF	84		26 - 123			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,7,8,9-HxCDF	71		29 - 147			01/17/13 16:42	01/22/13 06:51	1
13C-2,3,4,6,7,8-HxCDF	79		28 - 136			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,4,6,7,8-HpCDD	66		23 - 140			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,4,6,7,8-HpCDF	64		28 - 143			01/17/13 16:42	01/22/13 06:51	1
13C-1,2,3,4,7,8,9-HpCDF	73		26 - 138			01/17/13 16:42	01/22/13 06:51	1
13C-OCDD	79		17 - 157			01/17/13 16:42	01/22/13 06:51	1

Limits

35 _ 197

35 _ 197

%Recovery Qualifier

92

77

TestAmerica Seattle

Analyzed

01/24/13 16:35

01/17/13 16:42 01/22/13 06:51

Prepared

01/17/13 16:42

Dil Fac

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-5

Client Sample ID: LRIS-LR-125-3

Lab Sample ID: 580-36242-41 Date Collected: 12/02/12 13:15

Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	80		0.10	0.10	%			01/16/13 15:11	1
Percent Moisture	20		0.10	0.10	%			01/16/13 15:11	1

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Total HxCDF

Total HpCDD

Surrogate

37CI4-2,3,7,8-TCDD

Client Sample ID: LRIS-LR-132-5

Lab Sample ID: 580-36242-67

© 01/17/13 16:42 01/22/13 07:34

© 01/17/13 16:42 01/22/13 07:34

Prepared

Date Collected: 12/03/12 14:15 **Matrix: Solid**

Date Received: 12/07/12 08:50	te Received: 12/07/12 08:50 Percent Solids: 64.5							ds: 64.5	
— Method: 1613B - Dioxins and Analyte	•	RMS) Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.11		0.62	0.028		<u></u>	01/17/13 16:42	01/22/13 07:34	1
2,3,7,8-TCDF	0.13	•	0.62	0.023	pg/g	₩	01/17/13 16:42	01/22/13 07:34	1
1,2,3,7,8-PeCDD	ND		3.1	0.055		₩	01/17/13 16:42	01/22/13 07:34	1
1,2,3,7,8-PeCDF	ND		3.1	0.040	pg/g		01/17/13 16:42	01/22/13 07:34	1
2,3,4,7,8-PeCDF	ND		3.1	0.041	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
1,2,3,4,7,8-HxCDD	ND		3.1	0.037	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
1,2,3,6,7,8-HxCDD	0.11	JB	3.1	0.037	pg/g		01/17/13 16:42	01/22/13 07:34	1
1,2,3,7,8,9-HxCDD	0.092	JB	3.1	0.031	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
1,2,3,4,7,8-HxCDF	0.071	JB	3.1	0.025	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
1,2,3,6,7,8-HxCDF	0.059	JB	3.1	0.024	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
1,2,3,7,8,9-HxCDF	ND		3.1	0.061	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
2,3,4,6,7,8-HxCDF	ND		3.1	0.023	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
1,2,3,4,6,7,8-HpCDD	0.83	JB	3.1	0.068	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
1,2,3,4,6,7,8-HpCDF	0.23	JB	3.1	0.029	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
1,2,3,4,7,8,9-HpCDF	ND		3.1	0.038	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
OCDD	6.6	В	6.2	0.10	pg/g		01/17/13 16:42	01/22/13 07:34	1
OCDF	0.22	JqB	6.2	0.038	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
Total TCDD	0.82	q B	0.62	0.028	pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
Total TCDF	0.85		0.62	0.023	pg/g		01/17/13 16:42	01/22/13 07:34	1
Total PeCDD	0.24	Jq	3.1	0.055	pg/g	₩	01/17/13 16:42	01/22/13 07:34	1
Total PeCDF	0.38	Jq	3.1	0.040		₽	01/17/13 16:42	01/22/13 07:34	1
Total HxCDD	0.77	JqB	3.1	0.035			01/17/13 16:42	01/22/13 07:34	1
T-4-LU-ODE	0.45	i i i	2.4	0.004		244	04/47/40 40:40	04/00/40 07:04	4

3.1

3.1

0.034 pg/g

0.068 pg/g

0.45 J q B

1.8 J q B

%Recovery Qualifier

102

Total HpCDF	0.37	JqB	3.1	0.034 pg/g	₽	01/17/13 16:42	01/22/13 07:34	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	77		25 - 164			01/17/13 16:42	01/22/13 07:34	1
13C-2,3,7,8-TCDF	84		24 - 169			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,7,8-PeCDD	75		25 - 181			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,7,8-PeCDF	77		24 - 185			01/17/13 16:42	01/22/13 07:34	1
13C-2,3,4,7,8-PeCDF	84		21 - 178			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,4,7,8-HxCDD	84		32 - 141			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,6,7,8-HxCDD	82		28 - 130			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,4,7,8-HxCDF	86		26 - 152			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,6,7,8-HxCDF	83		26 - 123			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,7,8,9-HxCDF	77		29 - 147			01/17/13 16:42	01/22/13 07:34	1
13C-2,3,4,6,7,8-HxCDF	79		28 - 136			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,4,6,7,8-HpCDD	63		23 - 140			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,4,6,7,8-HpCDF	66		28 - 143			01/17/13 16:42	01/22/13 07:34	1
13C-1,2,3,4,7,8,9-HpCDF	75		26 - 138			01/17/13 16:42	01/22/13 07:34	1
13C-OCDD	70		17 - 157			01/17/13 16:42	01/22/13 07:34	1

General Chemistry								
Analyte	Result Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	64	0.10	0.10	%			01/17/13 14:49	1
Percent Moisture	36	0.10	0.10	%			01/17/13 14:49	1

Limits

35 - 197

TestAmerica Seattle

1/31/2013

Analyzed

Dil Fac

Page 14 of 38

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-PS-SRM

Lab Sample ID: 580-36242-97 Date Collected: 11/26/12 10:00

Matrix: Solid

Date Received: 12/07/12 08:50

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fa
2,3,7,8-TCDD	1.2	Jq	5.1	0.19	pg/g		01/17/13 16:42	01/22/13 08:17	
2,3,7,8-TCDF	2.1	J	5.1	0.19	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,7,8-PeCDD	0.84	J	25	0.37	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,7,8-PeCDF	1.1	J	25	0.31	pg/g		01/17/13 16:42	01/22/13 08:17	
2,3,4,7,8-PeCDF	1.0	J	25	0.32	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,4,7,8-HxCDD	1.5	J B	25	0.20	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,6,7,8-HxCDD	3.5	JB	25	0.21	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,7,8,9-HxCDD	2.2	J B	25	0.18	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,4,7,8-HxCDF	2.8	JB	25	0.17	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,6,7,8-HxCDF	1.3	JqB	25	0.16	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,7,8,9-HxCDF	ND		25	0.19	pg/g		01/17/13 16:42	01/22/13 08:17	
2,3,4,6,7,8-HxCDF	1.1	JqB	25	0.15	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,4,6,7,8-HpCDD	82	В	25	1.7	pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,4,6,7,8-HpCDF	19	JqB	25		pg/g		01/17/13 16:42	01/22/13 08:17	
1,2,3,4,7,8,9-HpCDF	1.1	JB	25	0.46	pg/g		01/17/13 16:42	01/22/13 08:17	
OCDD	870	В	51	1.2	pg/g		01/17/13 16:42	01/22/13 08:17	
OCDF	89	В	51	0.40			01/17/13 16:42	01/22/13 08:17	
Total TCDD	5.8	q B	5.1	0.19	pg/g		01/17/13 16:42	01/22/13 08:17	
Total TCDF	9.3	q	5.1	0.19			01/17/13 16:42	01/22/13 08:17	
Total PeCDD		Jq	25	0.37	pg/g		01/17/13 16:42	01/22/13 08:17	
Total PeCDF	7.8		25	0.32	pg/g		01/17/13 16:42	01/22/13 08:17	
Total HxCDD	26	В	25	0.20	pg/g		01/17/13 16:42	01/22/13 08:17	
Total HxCDF	25	q B	25	0.17	pg/g		01/17/13 16:42	01/22/13 08:17	
Total HpCDD	220		25	1.7	pg/g		01/17/13 16:42	01/22/13 08:17	
Total HpCDF	73	q B	25	0.40	pg/g		01/17/13 16:42	01/22/13 08:17	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C-2,3,7,8-TCDD	79		25 - 164				01/17/13 16:42	01/22/13 08:17	
13C-2,3,7,8-TCDF	86		24 - 169				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,7,8-PeCDD	77		25 - 181				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,7,8-PeCDF	80		24 - 185				01/17/13 16:42	01/22/13 08:17	
13C-2,3,4,7,8-PeCDF	87		21 - 178				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,4,7,8-HxCDD	89		32 - 141				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,6,7,8-HxCDD	91		28 - 130				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,4,7,8-HxCDF	92		26 - 152				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,6,7,8-HxCDF	88		26 - 123				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,7,8,9-HxCDF	81		29 - 147				01/17/13 16:42	01/22/13 08:17	
13C-2,3,4,6,7,8-HxCDF	88		28 - 136				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,4,6,7,8-HpCDD	70		23 - 140				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,4,6,7,8-HpCDF	72		28 - 143				01/17/13 16:42	01/22/13 08:17	
13C-1,2,3,4,7,8,9-HpCDF	81		26 - 138				01/17/13 16:42	01/22/13 08:17	
13C-OCDD	80		17 - 157				01/17/13 16:42	01/22/13 08:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Lab Sample ID: MB 320-8878/1	- A					Client Sa	mple ID: Meth	od Blank
Matrix: Solid							Prep Type:	Total/NA
Analysis Batch: 9038							Prep Bat	tch: 8878
	MB	MB						
Analyte	Result	Qualifier	RL	EDL Unit	D	Prepared	Analyzed	Dil Fac

-	МВ	МВ						•	
Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.50	0.019	pg/g		01/17/13 16:42	01/22/13 00:27	1
2,3,7,8-TCDF	ND		0.50	0.072	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,7,8-PeCDD	ND		2.5	0.036	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,7,8-PeCDF	ND		2.5	0.041	pg/g		01/17/13 16:42	01/22/13 00:27	1
2,3,4,7,8-PeCDF	ND		2.5	0.041	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,4,7,8-HxCDD	0.0729	J	2.5	0.015	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,6,7,8-HxCDD	0.0548	Jq	2.5	0.015	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,7,8,9-HxCDD	0.0738	J	2.5	0.013	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,4,7,8-HxCDF	0.0584	J q	2.5	0.015	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,6,7,8-HxCDF	0.0558	Jq	2.5	0.015	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,7,8,9-HxCDF	ND		2.5	0.018	pg/g		01/17/13 16:42	01/22/13 00:27	1
2,3,4,6,7,8-HxCDF	0.0278	J q	2.5	0.014	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,4,6,7,8-HpCDD	0.116	J	2.5	0.028	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,4,6,7,8-HpCDF	0.166	J	2.5	0.015	pg/g		01/17/13 16:42	01/22/13 00:27	1
1,2,3,4,7,8,9-HpCDF	0.107	J	2.5	0.020	pg/g		01/17/13 16:42	01/22/13 00:27	1
OCDD	0.386	J	5.0	0.036	pg/g		01/17/13 16:42	01/22/13 00:27	1
OCDF	0.556	J	5.0	0.035	pg/g		01/17/13 16:42	01/22/13 00:27	1
Total TCDD	0.142	J q	0.50	0.019	pg/g		01/17/13 16:42	01/22/13 00:27	1
Total TCDF	ND		0.50	0.072	pg/g		01/17/13 16:42	01/22/13 00:27	1
Total PeCDD	ND		2.5	0.17	pg/g		01/17/13 16:42	01/22/13 00:27	1
Total PeCDF	ND		2.5	0.041	pg/g		01/17/13 16:42	01/22/13 00:27	1
Total HxCDD	0.202	J q	2.5	0.015	pg/g		01/17/13 16:42	01/22/13 00:27	1
Total HxCDF	0.142	J q	2.5	0.015	pg/g		01/17/13 16:42	01/22/13 00:27	1
Total HpCDD	0.241	J q	2.5	0.028	pg/g		01/17/13 16:42	01/22/13 00:27	1
Total HpCDF	0.273	J	2.5	0.017	pg/g		01/17/13 16:42	01/22/13 00:27	1

Total HpCDF	0.273	J	2.5	0.017 pg/g	01/17/13 16:42	01/22/13 00:27	1
	MB	MB					
Isotope Dilution	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	72		25 - 164		01/17/13 16:42	01/22/13 00:27	1
13C-2,3,7,8-TCDF	76		24 - 169		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,7,8-PeCDD	71		25 - 181		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,7,8-PeCDF	75		24 - 185		01/17/13 16:42	01/22/13 00:27	1
13C-2,3,4,7,8-PeCDF	83		21 - 178		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,4,7,8-HxCDD	78		32 - 141		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,6,7,8-HxCDD	86		28 - 130		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,4,7,8-HxCDF	81		26 - 152		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,6,7,8-HxCDF	85		26 - 123		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,7,8,9-HxCDF	70		29 - 147		01/17/13 16:42	01/22/13 00:27	1
13C-2,3,4,6,7,8-HxCDF	79		28 - 136		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,4,6,7,8-HpCDD	61		23 - 140		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,4,6,7,8-HpCDF	67		28 - 143		01/17/13 16:42	01/22/13 00:27	1
13C-1,2,3,4,7,8,9-HpCDF	72		26 - 138		01/17/13 16:42	01/22/13 00:27	1
13C-OCDD	71		17 - 157		01/17/13 16:42	01/22/13 00:27	1
	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
37CI4-2,3,7,8-TCDD	91	-	35 _ 197		01/17/13 16:42	01/22/13 00:27	1

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Lab Sample ID: LCS 320-8878/2-A

Matrix: Solid

OCDD

OCDF

Analysis Batch: 9038

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

104

108

78 - 144

63 _ 170

Prep Batch: 8878

	Бріке	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	20.0	18.8		pg/g		94	67 _ 158	
2,3,7,8-TCDF	20.0	20.1		pg/g		101	75 ₋ 158	
1,2,3,7,8-PeCDD	100	95.9		pg/g		96	70 - 142	
1,2,3,7,8-PeCDF	100	97.3		pg/g		97	80 _ 134	
2,3,4,7,8-PeCDF	100	90.3		pg/g		90	68 - 160	
1,2,3,4,7,8-HxCDD	100	88.8		pg/g		89	70 - 164	
1,2,3,6,7,8-HxCDD	100	93.8		pg/g		94	76 - 134	
1,2,3,7,8,9-HxCDD	100	89.2		pg/g		89	64 - 162	
1,2,3,4,7,8-HxCDF	100	95.1		pg/g		95	72 - 134	
1,2,3,6,7,8-HxCDF	100	105		pg/g		105	84 - 130	
1,2,3,7,8,9-HxCDF	100	104		pg/g		104	78 - 130	
2,3,4,6,7,8-HxCDF	100	103		pg/g		103	70 - 156	
1,2,3,4,6,7,8-HpCDD	100	101		pg/g		101	70 - 140	
1,2,3,4,6,7,8-HpCDF	100	97.5		pg/g		97	82 - 122	
1,2,3,4,7,8,9-HpCDF	100	93.6		pg/g		94	78 - 138	

200

200

Snika

100 100

207

216

pg/g

pg/g

	LCS	LCS		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C-2,3,7,8-TCDD	71		20 - 175	
13C-2,3,7,8-TCDF	76		22 - 152	
13C-1,2,3,7,8-PeCDD	70		21 - 227	
13C-1,2,3,7,8-PeCDF	74		21 - 192	
13C-2,3,4,7,8-PeCDF	81		13 - 328	
13C-1,2,3,4,7,8-HxCDD	77		21 - 193	
13C-1,2,3,6,7,8-HxCDD	88		25 - 163	
13C-1,2,3,4,7,8-HxCDF	84		19 - 202	
13C-1,2,3,6,7,8-HxCDF	88		21 - 159	
13C-1,2,3,7,8,9-HxCDF	76		17 _ 205	
13C-2,3,4,6,7,8-HxCDF	83		22 - 176	
13C-1,2,3,4,6,7,8-HpCDD	61		26 - 166	
13C-1,2,3,4,6,7,8-HpCDF	68		21 - 158	
13C-1,2,3,4,7,8,9-HpCDF	70		20 - 186	
13C-OCDD	65		13 - 199	
	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
37CI4-2,3,7,8-TCDD	89		35 _ 197	

63

37

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-36242-24 DU

Percent Solids

Percent Moisture

Matrix: Solid							Prep Type: Tot	al/NA
Analysis Batch: 128520								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit

63

37

%

%

TestAmerica Seattle

0.1

0.2

20

20

Client Sample ID: LRIS-LR-119-3

Page 17 of 38

1/31/2013

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/03/12 10:40

Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-110-4

Lab Sample ID: 580-36242-21

Matrix: Solid

Percent Solids: 61.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B		1	9038	01/22/13 04:01	NK	TAL WSC
Total/NA	Analysis	1613B		1	9074	01/22/13 14:31	MG	TAL WSC
Total/NA	Prep	HRMS-Sox	DL		8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B	DL	10	9265	01/25/13 04:07	MG	TAL WSC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Client Sample ID: LRIS-LR-119-3 Lab Sample ID: 580-36242-24

Date Collected: 12/03/12 14:35 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 63.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B		1	9038	01/22/13 04:43	NK	TAL WSC
Total/NA	Analysis	1613B		1	9074	01/22/13 15:09	MG	TAL WSC
Total/NA	Analysis	D 2216		1	128520	01/21/13 16:20	JL	TAL SEA

Client Sample ID: LRIS-LR-122-3 Lab Sample ID: 580-36242-32

Date Collected: 12/03/12 15:22 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 67.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B		1	9038	01/22/13 05:26	NK	TAL WSC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Client Sample ID: LRIS-LR-124-3 Lab Sample ID: 580-36242-37

Date Collected: 12/03/12 10:00 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 63.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B		1	9038	01/22/13 06:09	NK	TAL WSC
Total/NA	Analysis	1613B		1	9074	01/22/13 15:47	MG	TAL WSC
Total/NA	Prep	HRMS-Sox	DL		8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B	DL	10	9265	01/25/13 04:50	MG	TAL WSC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

TestAmerica Seattle

Lab Chronicle

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/02/12 13:15

Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-125-3

TestAmerica Job ID: 580-36242-5

Lab Sample ID: 580-36242-41

Matrix: Solid Percent Solids: 79.8

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox	 -	· ——	8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B		1	9038	01/22/13 06:51	NK	TAL WSC
Total/NA	Analysis	1613B		1	9279	01/24/13 16:35	MG	TAL WSC
Total/NA	Analysis	D 2216		1	128243	01/16/13 15:11	JL	TAL SEA

Client Sample ID: LRIS-LR-132-5 Lab Sample ID: 580-36242-67

Date Collected: 12/03/12 14:15 **Matrix: Solid** Date Received: 12/07/12 08:50 Percent Solids: 64.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B		1	9038	01/22/13 07:34	NK	TAL WSC
Total/NA	Analysis	D 2216		1	128243	01/17/13 14:49	JL	TAL SEA

Client Sample ID: LRIS-LR-PS-SRM Lab Sample ID: 580-36242-97

Date Collected: 11/26/12 10:00 **Matrix: Solid**

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			8878	01/17/13 16:42	AM	TAL WSC
Total/NA	Analysis	1613B		1	9038	01/22/13 08:17	NK	TAL WSC

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL WSC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TestAmerica Seattle

Certification Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-5

9

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-13
California	NELAP	9	1115CA	01-31-13
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-13

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	DoD ELAP		2928-01	01-31-14
Alaska (UST)	State Program	10	UST-055	12-18-13
Arizona	State Program	9	AZ0708	08-11-13
Arkansas DEQ	State Program	6	88-0691	06-17-13
California	NELAP	9	1119CA	01-31-14
Colorado	State Program	8	N/A	08-31-13
Connecticut	State Program	1	PH-0691	06-30-13
Florida	NELAP	4	E87570	06-30-13
Guam	State Program	9	N/A	08-31-13
Hawaii	State Program	9	N/A	01-31-13
Illinois	NELAP	5	200060	03-17-13
Kansas	NELAP	7	E-10375	10-31-13
Louisiana	NELAP	6	30612	06-30-13
Michigan	State Program	5	9947	01-31-13
Nevada	State Program	9	CA44	07-31-13
New Jersey	NELAP	2	CA005	06-30-13
New York	NELAP	2	11666	04-01-13
Northern Mariana Islands	State Program	9	MP0007	01-31-13
Oregon	NELAP	10	CA200005	03-28-13
Pennsylvania	NELAP	3	68-01272	03-31-13
South Carolina	State Program	4	87014	06-30-13
Texas	NELAP	6	T104704399-08-TX	05-31-13
US Fish & Wildlife	Federal		LE148388-0	02-28-13
USDA	Federal		P330-11-00436	12-30-14
USEPA UCMR	Federal	1	CA00044	11-06-14
Jtah	NELAP	8	QUAN1	01-31-13
Washington	State Program	10	C581	05-05-13
West Virginia	State Program	3	9930C	12-31-13
West Virginia DEP	State Program	3	334	07-31-13
Wyoming	State Program	8	8TMS-Q	01-31-13

3

-4

9

10

Sample Summary

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID

LRIS-LR-110-4

LRIS-LR-119-3

LRIS-LR-122-3

LRIS-LR-124-3

LRIS-LR-125-3

LRIS-LR-132-5

LRIS-LR-PS-SRM

Lab Sample ID

580-36242-21

580-36242-24

580-36242-32

580-36242-37

580-36242-41

580-36242-67

580-36242-97

TestAmerica Job ID: 580-36242-5

Collected	Received
12/03/12 10:40	12/07/12 08:50
12/03/12 14:35	12/07/12 08:50
12/03/12 15:22	12/07/12 08:50
12/03/12 10:00	12/07/12 08:50

12/02/12 13:15

12/03/12 14:15

11/26/12 10:00

3

4

6

12/07/12 08:50 12/07/12 08:50

12/07/12 08:50

a

10

11

ž

Trip Blank?

Lab Information: Lab: Unknown Laboratory Address:	CHA Project Information: Site Code: Lake River industrial Site Project #	CHAIN-	OF-CUS	CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA The Chain-of-Custody is a LEGAL DOCUMENT. All relovant fields must be completed and accurate. Other Information: Send Invoice to: Address:	nnpisted and			36242 R: Total # of Samples:	amples:	Page: Cooler # Cooler # Total # of Samples: 97 TAT TAT Notes: F= Field Filtered , H= Hold	# 2012_LR_SED	SED Ever	2 of of Event Complete?	ν ο
I ob pM.	ess			City/State.		Phone #	Lab Notes							
Phone/Fax: /	PM Name			Send EDD to			ive 1		_					.
PM email Lab Quote #:	Phone/Fax: PM Email:		-	CC Hardcopy to		entre de la constanta de la co	servati							
							Pres		· 					
пем#	Field Sample No. /Identification	MATRIX CODE	G=GRAB C=COMP	SAMPLE DATE	#OF CONTAINERS	Comment	Analysis Archive	1613B - Djoxin/Furan	Total Organic Carbon	COE 9060	·			
LRIS-LR-108-3		SUB_S	С	12/03/2012 11:25	ပ		×							
LRIS-LR-108-4		SUB_S	O	12/03/2012 11:30	ω		×							
LRIS-LR-108-5		SUB_S	c	12/03/2012 11:35	ω		×							
LRIS-LR-109-2		SUB_S O-SED	С	12/02/2012 15:10	ω		×	^						
LRIS-LR-109-3		SUB_S	G	12/02/2012 15:15	ω		×		×	×				
LRIS-LR-109-4		SUB_S O-SED	G	12/02/2012 15:20	ω		×	_						
LRIS-LR-109-5		SUB_S O-SED	C	12/02/2012 15:25	ယ		×							
LRIS-LR-110-2		SUB_S O-SED	С	12/03/2012 10:30	ယ		×							
LRIS-LR-110-3		SUB_S O-SED	n	12/03/2012 10:35	ω		×		×	×				<u> </u>
LRIS-LR-110-4		SUB_S O-SED		12/03/2012 10:40	ω		×	<u> </u>						
LRIS-LR-110-5		SUB_S O-SED		12/03/2012 10:45	ω		×							

Phone/Fax: /
PM email
Lab Quote #:

City
PM Name
Phone/Fax:
PM Email:

Send EDD to CC Hardcopy to CC Hardcopy to

State, , Zip

PO#

ITEM#

Field Sample No. /Identification

MATRIX CODE

G=GRAB C=COMP

SAMPLE DATE

LRIS-LR-122-4

SUB_S

12/03/2012 15:22

 \times

LRIS-LR-122-2

SUB_S O-SED

O

12/03/2012 15:22

SUB_S

12/03/2012 15:22

SUB_S O-SED

O

12/03/2012 12:35

S_BUS

O

12/03/2012 12:30

SUB_S

a

12/03/2012 12:25

SUB_S O-SED

១

12/03/2012 12:20

S_BUS

O

12/03/2012 14:45

SUB_S

12/03/2012 14:40

SUB_S

Ö

12/03/2012 14:35

SUB_S

O

12/03/2012 14:30

LRIS-LR-122-3

LRIS-LR-120-5

LRIS-LR-120-4

LRIS-LR-120-3

LRIS-LR-120-2

LRIS-LR-119-5

LRIS-LR-119-4

LRIS-LR-119-3

LRIS-LR-119-2

Lab PM:

Address:

Lab Information:

Unknown Laboratory

Project # Site Address

Project Information: Site Code: Lake Riv

Lake River Industrial Site

Send Invoice to: Address:

City/State.

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

36024Z

및 및

#OF CONTAINERS ω ω ယ ω ω ω Phone #: Comment TAT
Notes: F=Field Filtered , H=Hold Total # of Samples: 97 \times \times \times \times Archive × 1613B - Dioxin/Furan \times Total Organic Carbon -× 2012_LR_SED Rush Event Complete? Page 24 of 38 1/31/2013 LRIS-LR-126-3

SUB_S O-SED

12/02/2012 12:45

The Chain-d-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate

Phone/Fax: PM email

City
PM Name
Phone/Fax:
PM Email:

Įρ

PO #
Serid EDD to
CC Hardcopy to
CC Hardcopy to

Lab Quote #:

ITEM#

Field Sample No. /Identification

MATRIX CODE

G=GRAB C=COMP

SAMPLE DATE

#OF CONTAINERS

Comment

Archive

1613B - Dioxin/Furan

Total Organic Carbon -COE 9060

LRIS-LR-126-5

LRIS-LR-126-4

SUB_S O-SED

O

12/02/2012 12:47

SUB_S O-SED

O

12/02/2012 12:50

ယ

SED SOIL-

O

12/04/2012 08:56

×

×

×

 \times

LRIS-LR-126

LRIS-LR-129-2

8

LRIS-LR-129-4

LRIS-LR-129-3

LRIS-LR-129-5

SUB_S O-SED

12/02/2012 14:05

SUB_S O-SED

12/02/2012 14:00

ω

SUB_S

ഒ

12/02/2012 13:55

ω

 \times

 \times

×

×

×

SUB_S O-SED

O

12/02/2012 13:50

ω

Ç:

LRIS-LR-130-FD

LRIS-LR-130-3

SUB_S O-SED

12/02/2012 14:45

QAQC

12/02/2012 14:40

×

 \times

×

×

 \times

×

×

 \times

LRIS-LR-130-2

SUB_S O-SED

C

12/02/2012 14:40

ယ

SED SOI-

O

12/04/2012 10:10

ω

52

LRIS-LR-129

Lab PM:

Lab Information:
Lab: Unknown
Address:

Project Information:
Site Code: Lake Rive
Project #

Lake River Industrial Site

Site Address

Send Invoice to:
Address:
City/State.

Phone #:

36242

Cooler # 2012_LR_SED

of of

Page 26 of 38

Event Complete

TAT | Notes: F=Field Filtered , H=Hold

Rush

Total # of Samples: 97

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

36242

Page: Cooler#

o, o,

1/31/2013

Lab Information:	Address:		as DM.	Lab PIVI	DM amail	PM email	Lab Quote #:				ITEM #	a LR						froj - u				SS LR
nation:	Olikilowii Labolaloly			.			*	-		Field Samp		LRIS-LR-130-4	LRIS-LR-130-5	_RIS-LR-130	LRIS-LR-130-FD-1		LRIS-LR-131-3	LRIS-1R-131-4	LRIS-LR-131	LRIS-LR-132-2	LRIS-LR-132-3	LRIS-LR-132-4
Project Information:	Project #	Site Address	<u> </u>	City Name	Dhone/Fay	Pronentary.	PM Email:			Field Sample No. /Identification					:							
ion:	Lake Med Illiangulai Ore		Otato Zin	oldie, Clp								ဝု ဖွ	ဝ ရ	S	Б	o Sc	ဝ	٠ ٥	e e	S.	် &	ဝု ဗု
	ā		_	-					E	RIX COD	MATI	SUB_S O-SED	SUB_S O-SED	SOIL- SED	QAQC .	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SOIL- SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED
0	> (0		ר מ	2 6) (MP	AB C=CC	G=GRA	ი .	C	C	C	റ	റ	n	C	့ဂ		
Other Information:	Address:	City/State.	*	end FDD to	CC Hardcoov to	C landcopy to	C Hardcopy to		E	SPLE DAT	SAMI	12/02/2012 14:50	12/02/2012 14:55	12/04/2012 10:24	12/04/2012 10:24	12/02/2012 16:30	12/02/2012 16:35	12/02/2012 16:40	12/04/2012 11:15	12/03/2012 14:00	12/03/2012 14:05	12/03/2012 14:10
												:50	:55	:24	:24	:30	:35	40	15	:00	:05	:10
									RS	ONTAINE	#OF C	з	မ	u	3	ω	з	ω	ω	ω	ω	ω
The state of the s		Phone #:								Comment												
_		Votes	ab l	i	ive	vat	eserv	Pres			Analysis		1-1									
	Notes:				.0.000	23123.					Archive	×	×	×	×	×	×	×	×	×	×	×
┨.	F= Field	,							ŋ	Dioxin/Fura	1613B - D			×	×	×			×	×		
-	Notes: F= Field Filtered , H= Hold								on -	janic Carb 0	Total Org COE 9060			×	×	×			×	×		
	HOH																					
1	}																					

Page: Cooler#

3/3/04/36			7			71 L				67	ITEM#	Lab Quote #:	PM email	Phone/Fa	Lab PM:		Address:	Lab:	Lab Information:		
LRIS-LR-134-5	LRIS-LR-134-4	LRIS-LR-134-3	LRIS-LR-134-2	LRIS-LR-133	LRIS-LR-133-5	LRIS-LR-133-4	LRIS-LR-133-3	LRIS-LR-133-2	_RIS-LR-132	LRIS-LR-132-5	Field Sample	e#:		3X: /			-	Unknown Laboratory	mation:		
			-				·				Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address	Project #	Site Code: Lai	Project Information:		
				-	•										State, Zip			Lake River Industrial Site	tion:		
GES-O S_BUS	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SOIL- SED	SUB_S O-SED	SUB_S O-SED	O-SED S_BUS	SUB_S O-SED	SOIL-	SUB_S O-SED	MATRIX CODE							Site		The Chain-of-	
		ဂ	O	O	ัด	စ	. Ω	n	n	ი	G=GRAB C=COMP									Custody is a L	
12/02/2	12/02/2	12/02/2	12/02/2	12/04/2	12/03/2	12/03/2	12/03/2	12/03/2	12/04/2	12/03/2	·	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	EGAL DOCUMENT, A	701717
12/02/2012 10:35	12/02/2012 10:30	12/02/2012 10:28	12/02/2012 10:20	12/04/2012 12:49	12/03/2012 15:30	12/03/2012 15:25	12/03/2012 15:20	12/03/2012 15:15	12/04/2012 12:06	12/03/2012 14:15	SAMPLE DATE	ਰ 	to					Ö	ation:	The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed and accurate.	70 17 1202-IVIT 7
ω	ယ	ω	ယ	ω	ω	ω	ω	ယ	ω	ω	#OF CONTAINERS									completed and	
											0					Phone #:				d accurate.	
											Comment	·						*****			
											Ānalysis	Preservi	Seio		121	Notes				1-	ล
×	×	×	×	×	×	×	×	×	×	×	Archive	i leserv		520	Lai		Notes:	TAT	1 O G	Task:	
			×					×			1613B - Dioxin/Furan				-		F= Field	_	FOR FOI Campies	, 24 COM	1
			×					×			Total Organic Carbon - COE 9060						F= Field Filtered ,			100: 07	
																	H= Hold			20	3
																		Rush	-	2012_LR_SED	;
																			. F		}
																			Onipicio:	Event Completes	
1	<u> </u>			<u> </u>	<u> </u>	Pa	l ige 28	3 of 3	8	<u> </u>		<u> </u>] 1.	L /3	1/2	 01:	3

86

LRIS-LR-136-5

SUB_S

12/02/2012 17:05

SOIL-

12/04/2012 10:39

 \times

LRIS-LR-136

		LRIS-LR-PS-SRM	LRIS-LR-RB-20121204	LRIS-LR-RB-20121203	LRIS-LR-RB-20121202	LRIS-LR-137	LRIS-LR-137-5	LRIS-LR-137-4	LRIS-LR-137-3	LRIS-LR-137-2	Field Sampl		Lab Quote #:	PM email	Lab TM:		Address: ,	Lab: Unknown Laboratory	Lab Information:		
											Field Sample No. /Identification		PM Email:	Phone/Fax:	PM Name	Address	Project #	Site Code: Lake River Industrial Site	Project Information:		
		SOIL-	QAQC	OAQC	алас	SOIL- SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	MATRIX CODE	E			olate, Alp	545 77		r Industrial Site		The Chain-of-Gus	
		C 11/26	C 12/04	C 12/03/	G 12/02/	G 12/04/	C 12/02/	C 12/02/	C 12/02/	C 12/02/	G=GRAB C=CO	MP	CC Hardcopy to	CC Hardcopy to	Send EDD to	City/olate.	Address:	Send Invoice to:	Other Information:	lody is a LEGAL DOCUMENT.	20121
		11/26/2012 10:00	12/04/2012 17:35	12/03/2012 17:30	12/02/2012 17:00	12/04/2012 09:14	12/02/2012 12:20	12/02/2012 12:17	12/02/2012 12:15	12/02/2012 12:10	SAMPLE DAT	E	, б 	/ to				ō	nation:	The Chain-of-Gustody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.	20121202-MFA
		2		N	2	. ω	ω ·	3	3	ω	#OF CONTAINE	RS				7 6 7	J			eted and accurate.	
									and the second		Comment										
,											Analysis		Preserv	ative	1	ab Note	Carrie Year	oldets()	-	Task:	
		×	×	×	×	×	×	×	×	×	Archive						Notes: F= F	TAT	lotal # of Samples:		
		×	×			×					1613B - Dioxin/Fura						r= rieid rillered , n= noid				
						×					COE 9060						eu, n=n		7	3	Cooler #
	-														_		OIL	\perp	 	2012_LR_SED	
												· us						Kush	1	SED	
																			Evelit Combiere;	t Caralata	9

Client: Maul Foster & Alongi Inc Job Number: 580-36242-5

Login Number: 36242 List Source: TestAmerica Seattle

List Number: 1 Creator: Riley, Nicole

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Not requested on COC.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

TestAmerica Seattle

1/31/2013

Client: Maul Foster & Alongi Inc Job Number: 580-36242-5

Login Number: 36242
List Source: TestAmerica Sacramento
List Number: 1
List Creation: 12/11/12 01:42 PM

Creator: Mantri, Anil

Answer	Comment
True	
False	Cooler temperature outside required temperature criteria.
True	-0.4
True	
True	
True	
N/A	
False	Received extra samples not listed on COC.# 94 & 95
True	
N/A	
True	
True	
True	
True	
N/A	
	True True True True False True True True True True True True Tru

3

4

6

Ω

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-5

List Source: TestAmerica Sacramento
List Number: 2
List Creation: 01/10/13 02:54 PM

Creator: Cortes, Cesar C

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>Comment</td>	True	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

TestAmerica Seattle

Residual Chlorine Checked.

1/31/2013

Client: Maul Foster & Alongi Inc Job Number: 580-36242-5

Login Number: 36242
List Source: TestAmerica Sacramento
List Number: 3
List Creation: 01/16/13 11:09 AM

Creator: Tecson, Jeffrey

Residual Chlorine Checked.

Creator. Tecson, Jenney		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	622805, 622806
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	545176167352
Cooler Temperature is acceptable.	True	0.8
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

TestAmerica Seattle
Page 34 of 38 1/31/2013

2

4

6

_

9

10

11

Login Sample Receipt Checklist

Client: Maul Foster & Alongi Inc Job Number: 580-36242-5

List Source: TestAmerica Sacramento
List Number: 4
List Source: TestAmerica Sacramento
List Creation: 01/17/13 01:52 PM

Creator: Tecson, Jeffrey

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	622807
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	0.4
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

9

11

111

TestAmerica Job ID: 580-36242-5

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

			P	ercent Isotop	e Dilution Re	ecovery (Acc	eptance Limi	ts)	
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1
Lab Sample ID	Client Sample ID	(25-164)	(24-169)	(25-181)	(24-185)	(21-178)	(32-141)	(28-130)	(26-152)
580-36242-21	LRIS-LR-110-4	85	92	84	88	96	88	83	86
580-36242-21	LRIS-LR-110-4		64						
580-36242-21 - DL	LRIS-LR-110-4								
580-36242-24	LRIS-LR-119-3	78	84	79	80	84	79	81	83
580-36242-24	LRIS-LR-119-3		61						
580-36242-32	LRIS-LR-122-3	82	88	81	82	89	88	90	93
580-36242-37	LRIS-LR-124-3	76	82	73	74	80	75	79	77
580-36242-37	LRIS-LR-124-3		58						
580-36242-37 - DL	LRIS-LR-124-3								
580-36242-41	LRIS-LR-125-3	75	81	69	71	78	81	84	79
580-36242-41	LRIS-LR-125-3		71						
580-36242-67	LRIS-LR-132-5	77	84	75	77	84	84	82	86
580-36242-97	LRIS-LR-PS-SRM	79	86	77	80	87	89	91	92
MB 320-8878/1-A	Method Blank	72	76	71	75	83	78	86	81
		HxCDF2	HxCDF4	HxCDF3	HpCDD	ecovery (Acco	HpCDF2	OCDD	HxCDF1
Lab Camala ID	Olient Connels ID				•	•	•		
Lab Sample ID 580-36242-21	Client Sample ID LRIS-LR-110-4	<u>(26-123)</u> 81	(29-147) 78	(28-136) 80	(23-140)	(28-143) 67	(26-138) 82	95	(26-152)
580-36242-21	LRIS-LR-110-4	01	70	00		07	02	93	00
580-36242-21 - DL	LRIS-LR-110-4				83			99	
580-36242-24	LRIS-LR-119-3	77	75	77	64	62	76	74	83
580-36242-24	LRIS-LR-119-3	11	73	, ,	04	02	70	74	00
580-36242-32	LRIS-LR-122-3	87	84	87	71	72	84	87	93
580-36242-37	LRIS-LR-124-3	80	70	76		64	73	99	77
580-36242-37	LRIS-LR-124-3	00	70	70		04	73	33	,,
580-36242-37 - DL	LRIS-LR-124-3				69			93	
580-36242-41	LRIS-LR-125-3	84	71	79	66	64	73	79	79
580-36242-41	LRIS-LR-125-3	04	7 1	19	00	04	73	19	19
580-36242-67	LRIS-LR-132-5	83	77	79	63	66	75	70	86
580-36242-97	LRIS-LR-PS-SRM	88	81	88	70	72	81	80	92
MB 320-8878/1-A	Method Blank	85	70	79	61	67	72	71	81
IVID 320-0070/1-A	Method Blank	65							01
				-		ecovery (Acc	•	•	
		HxCDF2	HxCDF2	HxCDF4	HxCDF4	HxCDF3	HxCDF3	HpCDD	HpCDD
Lab Sample ID	Client Sample ID	(21-159)	(26-123)	(17-205)	(29-147)	(22-176)	(28-136)	(23-140)	(26-166)
580-36242-21	LRIS-LR-110-4		81		78		80		
580-36242-21	LRIS-LR-110-4								
580-36242-21 - DL	LRIS-LR-110-4							83	
580-36242-24	LRIS-LR-119-3		77		75		77	64	
580-36242-24	LRIS-LR-119-3								
580-36242-32	LRIS-LR-122-3		87		84		87	71	
580-36242-37	LRIS-LR-124-3		80		70		76		
580-36242-37	LRIS-LR-124-3								
580-36242-37 - DL	LRIS-LR-124-3							69	
580-36242-41	LRIS-LR-125-3		84		71		79	66	
580-36242-41	LRIS-LR-125-3								
580-36242-67	LRIS-LR-132-5		83		77		79	63	
580-36242-97	LRIS-LR-PS-SRM		88		81		88	70	
MB 320-8878/1-A	Method Blank		85		70		79	61	

TestAmerica Seattle

_

Δ

6

8

10

11

TestAmerica Job ID: 580-36242-5

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Matrix: Solid Prep Type: Total/NA

			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limits)	
		HpCDF1	HpCDF1	HpCDF2	HpCDF2	OCDD	OCDD	
Lab Sample ID	Client Sample ID	(21-158)	(28-143)	(20-186)	(26-138)	(13-199)	(17-157)	
580-36242-21	LRIS-LR-110-4		67		82		95	
580-36242-21	LRIS-LR-110-4							
580-36242-21 - DL	LRIS-LR-110-4						99	
580-36242-24	LRIS-LR-119-3		62		76		74	
580-36242-24	LRIS-LR-119-3							
580-36242-32	LRIS-LR-122-3		72		84		87	
580-36242-37	LRIS-LR-124-3		64		73		99	
580-36242-37	LRIS-LR-124-3							
580-36242-37 - DL	LRIS-LR-124-3						93	
580-36242-41	LRIS-LR-125-3		64		73		79	
580-36242-41	LRIS-LR-125-3							
580-36242-67	LRIS-LR-132-5		66		75		70	
580-36242-97	LRIS-LR-PS-SRM		72		81		80	
MB 320-8878/1-A	Method Blank		67		72		71	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF

HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

			Р	ercent Isotop	e Dilution Re	ecovery (Acce	eptance Limi	ts)	
Lab Sample ID	Client Sample ID	TCDD (20-175)	TCDF (22-152)	PeCDD (21-227)	PeCDF1 (21-192)	PeCDF2 (13-328)	HxCDD1 (21-193)	HxCDD2 (25-163)	HxCDF1 (19-202)
LCS 320-8878/2-A	Lab Control Sample	71	76	70	74	81	77	88	84
			Р	ercent Isotop	e Dilution Re	ecovery (Acce	eptance Limi	ts)	
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	
Lab Sample ID	Client Sample ID	(21-159)	(17-205)	(22-176)	(26-166)	(21-158)	(20-186)	(13-199)	
LCS 320-8878/2-A	Lab Control Sample	88	76	83	61	68	70	65	

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

TestAmerica Seattle

Page 37 of 38

2

3

6

8

9

Isotope Dilution Summary

TestAmerica Job ID: 580-36242-5

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF

HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDF

HpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

5

4

5

6

7

8

4 4

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-36242-6 Client Project/Site: Port of Ridgefield

For:

Maul Foster & Alongi Inc 2001 NW 19th Avenue, Suite 200 Portland, Oregon 97239

Attn: Ms. Madi Novak

Pamela R. Johnson

Authorized for release by: 1/17/2013 3:32:37 PM

Pam Johnson
Project Manager I
pamr.johnson@testamericainc.com

Review your project

results through
Total Access

.....LINKS

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-6

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	11
Chronicle	13
Certification Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	25

4

6

<u>۾</u>

9

Case Narrative

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-6

Job ID: 580-36242-6

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/7/2012 8:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice.

The temperatures of the 8 coolers at receipt time were 2.6° C, 2.9° C, 3.4° C, 4.3° C, 4.5° C, 4.6° C, 5.9° C and 6.0° C.

General Chemistry

No analytical or quality issues were noted.

3

5

10

Definitions/Glossary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 580-36242-6

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
₩	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-110-4

TestAmerica Job ID: 580-36242-6

Lab Sample ID: 580-36242-21

Analyzed

Matrix: Solid

Dil Fac

Date Collected: 12/03/12 10:40 Date Received: 12/07/12 08:50

General Chemistry

Analyte Result Qualifier RL MDL Unit D Prepared

 Total Organic Carbon
 11000
 2000
 610 mg/Kg
 01/16/13 15:28

5

Q

9

10

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-6

Client Sample ID: LRIS-LR-119-3 Lab Sample ID: 580-36242-24

Date Collected: 12/03/12 14:35 Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	12000	2000	610	mg/Kg			01/16/13 15:43	1

A

5

J

0

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-6

Client Sample ID: LRIS-LR-122-3 Lab Sample ID: 580-36242-32

Date Collected: 12/03/12 15:22 Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	8300		2000	610	mg/Kg			01/16/13 15:47	1

4

5

6

Я

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-6

Client Sample ID: LRIS-LR-124-3 Lab San

Lab Sample ID: 580-36242-37

Date Collected: 12/03/12 10:00 Matrix: Solid
Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	17000		2000	610	mg/Kg			01/16/13 15:52	1

7

5

10

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-6

Client Sample ID: LRIS-LR-125-3 Lab Sample ID: 580-36242-41

Date Collected: 12/02/12 13:15 Matrix: Solid

Date Received: 12/07/12 08:50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2400		2000	610	mg/Kg			01/16/13 15:56	1

3

Ω

9

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-132-5

TestAmerica Job ID: 580-36242-6

Lab Sample ID: 580-36242-67

Matrix: Solid

Date Collected: 12/03/12 14:15
Date Received: 12/07/12 08:50

General Chemistry

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Total Organic Carbon
 9600
 2000
 610 mg/Kg
 01/17/13 11:40

5

7

8

10

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 9060_PSEP - TOC (Puget Sound)

Lab Sample ID: MB 580-128254/3 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 128254

мв мв Result Qualifier RL MDL Unit D Dil Fac Analyte Prepared Analyzed 2000 01/16/13 15:21 **Total Organic Carbon** ND 610 mg/Kg

Lab Sample ID: LCS 580-128254/4 Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 128254

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Organic Carbon 2850 3200 mg/Kg 112 27.8 - 170

Lab Sample ID: LCSD 580-128254/5 Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 128254

LCSD LCSD RPD Spike %Rec. Added Result Qualifier Unit D %Rec Limits RPD Limit 2850 3100 Total Organic Carbon mg/Kg 27.8 - 170

Lab Sample ID: 580-36242-21 MS Client Sample ID: LRIS-LR-110-4 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 128254

Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits 11000 119000 **Total Organic Carbon** 128000 mg/Kg 98 50 - 140

Lab Sample ID: 580-36242-21 MSD Client Sample ID: LRIS-LR-110-4 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 128254

Sample Sample Spike MSD MSD %Rec. RPD Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit 124000 Total Organic Carbon 11000 134000 50 - 140 35 mg/Kg

Client Sample ID: LRIS-LR-110-4 Lab Sample ID: 580-36242-21 DU Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 128254

Sample Sample DU DU RPD Result Qualifier Result Qualifier Analyte Unit RPD Limit Total Organic Carbon 11000 11300 mg/Kg

Lab Sample ID: MB 580-128325/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 128325

мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Organic Carbon ND 2000 610 mg/Kg 01/17/13 11:33

Lab Sample ID: LCS 580-128325/4

Matrix: Solid

Analysis Batch: 128325

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits 2850 **Total Organic Carbon** 3300 mg/Kg 116 27.8 - 170

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

QC Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield Lab Sample ID: LCSD 580-128325/5 TestAmerica Job ID: 580-36242-6

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Solid Analysis Batch: 128325

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon	 2850	2890		mg/Kg		101	27.8 - 170	13	35

Lab Sample ID: 580-36242-67 MS Client Sample ID: LRIS-LR-132-5

Prep Type: Total/NA **Matrix: Solid**

Analysis Batch: 128325

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	9600		112000	118000		mg/Kg		97	50 - 140	

Lab Sample ID: 580-36242-67 MSD Client Sample ID: LRIS-LR-132-5

Matrix: Solid Prep Type: Total/NA

Analysis Batch: 128325

RPD Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Limits Limit Unit %Rec RPD Total Organic Carbon 9600 128000 133000 mg/Kg

Lab Sample ID: 580-36242-67 DU Client Sample ID: LRIS-LR-132-5 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 128325

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Organic Carbon	9600		9940		mg/Kg			4	50

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Lab Sample ID: 580-36242-21

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: LRIS-LR-110-4 Date Collected: 12/03/12 10:40

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP		1	128254	01/16/13 15:28	RB	TAL SEA

Client Sample ID: LRIS-LR-119-3 Lab Sample ID: 580-36242-24

Date Collected: 12/03/12 14:35

Matrix: Solid

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP			128254	01/16/13 15:43	RB	TAL SEA

Client Sample ID: LRIS-LR-122-3 Lab Sample ID: 580-36242-32

Date Collected: 12/03/12 15:22

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP		1	128254	01/16/13 15:47	RB	TAL SEA

Client Sample ID: LRIS-LR-124-3 Lab Sample ID: 580-36242-37

Date Collected: 12/03/12 10:00

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP		1	128254	01/16/13 15:52	RB	TAL SEA

Client Sample ID: LRIS-LR-125-3 Lab Sample ID: 580-36242-41

Date Collected: 12/02/12 13:15

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP			128254	01/16/13 15:56	RB	TAL SEA

Client Sample ID: LRIS-LR-132-5 Lab Sample ID: 580-36242-67

Date Collected: 12/03/12 14:15 Matrix: Solid

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9060_PSEP		1	128325	01/17/13 11:40	RB	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Certification Summary

Client: Maul Foster & Alongi Inc
Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-6

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-022	03-04-13
California	NELAP	9	1115CA	01-31-13
L-A-B	DoD ELAP		L2236	01-19-13
L-A-B	ISO/IEC 17025		L2236	01-19-13
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14
Washington	State Program	10	C553	02-17-13

3

4

5

6

8

9

10

Sample Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-6

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-36242-21	LRIS-LR-110-4	Solid	12/03/12 10:40	12/07/12 08:50
580-36242-24	LRIS-LR-119-3	Solid	12/03/12 14:35	12/07/12 08:50
580-36242-32	LRIS-LR-122-3	Solid	12/03/12 15:22	12/07/12 08:50
580-36242-37	LRIS-LR-124-3	Solid	12/03/12 10:00	12/07/12 08:50
580-36242-41	LRIS-LR-125-3	Solid	12/02/12 13:15	12/07/12 08:50
580-36242-67	LRIS-LR-132-5	Solid	12/03/12 14:15	12/07/12 08:50

3

4

6

8

9

Trip Blank?

nfor	Lab: Address:		Lab PM:	Phone/Fax	PM email	Lab Quote #:		ITEM #	; ;		100	5			pid isa				
nation:	Unknown Laboratory			c /		**		Field Sample	LRIS-LR-108-3	LRIS-LR-108-4	LRIS-LR-108-5	LRIS-LR-109-2	LRIS-LR-109-3	LRIS-LR-109-4	LRIS-LR-109-5	LRIS-LR-110-2	LRIS-LR-110-3	LRIS-LR-110-4	1 DIS 1 B 110-5
Project Infor	Site Code: Lake Rive	Site Address	City	PM Name	Phone/Fax:	PM Email:		Field Sample No. /Identification											
nation:	Lake River Industrial Site		State, Zip					OH OH											
, ,	al Site						DE	MATRIX CODE	ges-o s ^{ans}	SUB_S O-SED	SUB_S	SUB_S	SUB_S O-SED	SUB_S	SUB_S	SUB_S	SUB_S O-SED	SUB_S O-SED	SUB_S
					-		OMP	G=GRAB C=COI	C	C	С	С	G	റ	С	C	n		
Other Information:	Send Invoice to: Address:	City/State.	PO#	Send EDD to	CC Hardcopy to	CC Hardcopy to	TE	SAMPLE DATE	12/03/2012 11:25	12/03/2012 11:30	12/03/2012 11:35	12/02/2012 15:10	12/02/2012 15:15	12/02/2012 15:20	12/02/2012 15:25	12/03/2012 10:30	12/03/2012 10:35	12/03/2012 10:40	12/03/2012 10:45
							ERS	#OF CONTAINE	မ	ω	ω	ω	S	ω	ယ	ш	з	చ	w
***************************************		Phone #:			The state of the s			Comment											-
_		Notes	Lat	/e	/ati	Preserv		Analysis											
Total # c	Notes: F=							Archive	×	×	×	×	×	×	×	×	×	×	×
TAT	≓ Field F						ran	1613B - Dioxin/Furai					×				×		
38: 97	Field Filtered, H						ьоп -	Total Organic Carbo COE 9060					×				×		
}	H= Hold																		
- 1	KUSN		-																
Event Complete?											-								
npiete			1							-					1				

Phone/Fax: /
PM email
Lab Quote #:

City
PM Name
Phone/Fax:
PM Email:

Send EDD to CC Hardcopy to CC Hardcopy to

State, , Zip

PO#

ITEM#

Field Sample No. /Identification

MATRIX CODE

G=GRAB C=COMP

SAMPLE DATE

#OF CONTAINERS

Comment

Archive

1613B - Dioxin/Furan

Total Organic Carbon -

LRIS-LR-122-4

SUB_S

12/03/2012 15:22

LRIS-LR-122-3

LRIS-LR-122-2

SUB_S O-SED

O

12/03/2012 15:22

SUB_S

12/03/2012 15:22

 \times

 \times

 \times

 \times

 \times

 \times

SUB_S O-SED

O

12/03/2012 12:35

ω

S_BUS

O

12/03/2012 12:30

ω

SUB_S

a

12/03/2012 12:25

ယ

SUB_S O-SED

១

12/03/2012 12:20

ω

×

×

S_BUS

O

12/03/2012 14:45

ω

SUB_S

12/03/2012 14:40

ω

SUB_S

Ö

12/03/2012 14:35

SUB_S

O

12/03/2012 14:30

LRIS-LR-120-5

LRIS-LR-120-4

LRIS-LR-120-3

LRIS-LR-120-2

LRIS-LR-119-5

LRIS-LR-119-4

LRIS-LR-119-3

LRIS-LR-119-2

Lab PM:

Address:

Lab Information:

Unknown Laboratory

Project # Site Address

Project Information: Site Code: Lake Riv

Lake River Industrial Site

Send Invoice to: Address:

City/State.

Phone #:

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

36024Z

2012_LR_SED

및 및

Page 18 of 25

Event Complete?

TAT
Notes: F=Field Filtered , H=Hold

Rush

Total # of Samples: 97

LRIS-LR-126-2

LRIS-LR-126-3

SUB_S O-SED

12/02/2012 12:45

SUB_S

12/02/2012 12:40

×

×

욕 육

1/17/2013

¥										ITEM#	Lab Quote #:	PM email	Phone/Fax:	- Mod Ag		ess:	Lab. Linknow	ah Inform	
LRIS-LR-130-FD	LRIS-LR-130-2	LRIS-LR-129	LRIS-LR-129-5	LRIS-LR-129-4	LRIS-LR-129-3	LRIS-LR-129-2	LRIS-LR-126	LRIS-LR-126-5	LRIS-LR-126-4	Field Sampl	#		1				Unknown Laboratory		
-									-	Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address		Site Code: La	Project Information:	
								·	·					State, Zip			Lake River Industrial Site		
QAQC SUB_S	SUB_S O-SED	SOIL-	SUB_S	SUB_S O-SED	SUB_S	SUB_S O-SED	SOIL-	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							Site		re Chain-d-C
	C	n	C	G	G	C	n	C	n	G≃GRAB C=COMP									ushodyis a Li
12/02/2012 14:40 12/02/2012 14:45	12/02/2012 14:40	12/04/2012 10:10	12/02/2012 14:05	12/02/2012 14:00	12/02/2012 13:55	12/02/2012 13:50	12/04/2012 08:56	12/02/2012 12:50	12/02/2012 12:47	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chain-ਯ-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.
				E						#OF CONTAINEDS									ds must be complete
ယ ယ	ш	ω .	ω	ω		ω	ω	ы	ω	#OF CONTAINERS				_	Phone #:			,	d and accurate.
										Comment					e#.				
										Analysis	Preser	 /ati	/e	Lab	Notes	9. =0700			Task:
× ×	×	×	×	×	×	×	×	×	×	Archive						Notes: F=	TAT	otal # or Samples:	
×	×	×				×	×			1613B - Dioxin/Furan				ļ		Field Filtered,	-	Sample	3
×	×	×				×	×			Total Organic Carbon - COE 9060								16.3	
												_				H= Hold			21.07
																	Rush		רארימנות
																		Tvell (Į.
																		LARIT COMPRETED	àmploto.

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

66		24	P	2	83	S.	66	6 6	%	57	86	ITEM#	Lab Quote #:	PM email	Phone/	Lab PM:		Address:	Lab:	Lab Inf	
	LRIS-LR-132-4	LRIS-LR-132-3	LRIS-LR-132-2	LRIS-LR-131	LRIS-LR-131-4	LRIS-LR-131-3	LRIS-LR-131-2	LRIS-LR-130-FD-1	LRIS-LR-130	LRIS-LR-130-5	LRIS-LR-130-4	Field Sample	iote #:	ail	Fax: //	4:			Unknown Laboratory	Lab Information:	
				-				:				Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City State, Zip	Site Address	Project#	Site Code: Lake River Industrial Site	Project Information:	
	SUB_S	SUB_S O-SED	SUB_S O-SED	SOIL,	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	aAac	SOIL- SED	SUB_S O-SED	SUB_S O-SED	MATRIX CODE				, Zip			dustrial Site		The Ch
	S	S.G														-					ain-of-Custo
			ုဂ	с —	n	റ	ଜ	C	C	0	Ω.	G=GRAB C=COMP	Q	Ω	Se	प्र		Ą	တ္တ	Q	dyls a LEG
	12/03/2	12/03/2	12/03/2	12/04/2	12/02/20	12/02/2	12/02/2	12/04/2	12/04/2	12/02/20	12/02/20		C Hardcopy t	CC Hardcopy to	end EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	AL DOCUMENT, AII
	12/03/2012 14:10	12/03/2012 14:05	12/03/2012 14:00	12/04/2012 11:15	12/02/2012 16:40	12/02/2012 16:35	12/02/2012 16:30	12/04/2012 10:24	12/04/2012 10:24	12/02/2012 14:55	12/02/2012 14:50	SAMPLE DATE		ਰ					8	ation:	The Chair-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.
	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	#OF CONTAINERS						8			completed an
												Comment		TTTTTTT - 1.1.1.1.2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1		***************************************	Phone #:			and the state of t	d accurate.
												Analysis	Preserv	ativ	е	Lat	Notes			-	Task:
_	×	×	×	×	×	×	× ×	×	×	×	×	Archive 1613B - Dioxin/Furan						tes; F= Fie	TAT	Otal # of Campies.	t of no
			×	×			×	. ×	×			Total Organic Carbon - COE 9060					•	ld Filtered			mnlee: 07
																		F= Field Filtered, H= Hold			
																			Rush		2012_LR_SED
																			<u></u>	1	
				-																Compica	Event Complete?

36242 Page:

Part				74 - LF			74			88 	67 LF	ITEM#	Lab Quote #:	PM email	Phone/Fax:	Lab PM:		Address:	Lab:	Lab Infor	
Control Cont	LRIS-LR-134-5	LRIS-LR-134-4	LRIS-LR-134-3	LRIS-LR-134-2	LRIS-LR-133	LRIS-LR-133-5	LRIS-LR-133-4	LRIS-LR-133-3	LRIS-LR-133-2	LRIS-LR-132	LRIS-LR-132-5	Field Sampl	e#		IX.			-	Unknown Laboratory	mation:	
Control Cont							·					e No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address	Project #	Site Code: La	Project Inform	
Cother Information: Sand Involves to: Sa						•										State, Zip			ke River Industrial	ation:	1
Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold X X X X X X X X X X X X Archive 1613B - Dioxin/Furan Total Organic Carbon - COE 9960	SUB_S O-SED	SUB_S	SUB_S O-SED	SUB_S O-SED	SOIL-	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SUB_S O-SED	SOIL-	SUB_S O-SED	MATRIX CODE							Site		he Chain-of-Ci
Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold X X X X X X X X X X X X Archive 1613B - Dioxin/Furan Total Organic Carbon - COE 9960			ဂ	С	C	ົດ	o .	O	O	0	n	G=GRAB C=COMP			160				(0)		ustody is a LE
Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold X X X X X X X X X X X X Archive 1613B - Dioxin/Furan Total Organic Carbon - COE 9960	12/02/2012	12/02/2012	12/02/2012	12/02/2012	12/04/2012	12/03/2012	12/03/2012	12/03/2012	12/03/2012	12/04/2012	12/03/2012	SAMPLE DATE	CC Hardcopy to	C Hardcopy to	Send EDD to	ŏ #	City/State.	\ddress:	send Invoice to:	Other Information	GAL DOCUMENT: All reteva
Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold X X X X X X X X X X X X Archive 1613B - Dioxin/Furan Total Organic Carbon - COE 9960	10:35	10:30	10:28	10:20	12:49	15:30	15:25	15:20	15:15	12:06	14:15									#	nt fields must be co
Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold Analysis Preservative Lab Notes: FF Field Filtered , H-H Hold X X X X X X X X X X X X Archive 1613B - Dioxin/Furan Total Organic Carbon - COE 9960	ယ	ω	ω	3	ω	ω	3	ω	ω	ω	ω	#OF CONTAINERS									impleted and a
Total # of Samples: 97 TAT Total # of Samples: 97 Total Organic Carbon - COE 9060 Rush Rush												Comment					Phone #:				socurate.
X X X X X X X X Archive Archive Res. F= Field Filtered Filt												Analysis	Preserv	ativ	/e	Lab	Notes	- Copyrio			ds
Rush	×	×	×	×	×	×	×	×	×	×	×	Archive						lotes: F=	TAT	otal # o	
Rush				×					×			1613B - Dioxin/Furan						Field Fil	_	Sample	2-1-12
Rush				×					×							=		tered , H= }			
vent Complete?																		Plot	Г	ũ	7017 FV 9ED
																				vent Complete?	10

Information: Unknown Laboratory ess:	ect Information: Code: Lake Ri act # Address	The Chair-of-C	uslody is a l	The Chain-of-Cusicaly is a LEGAL DOCUMENT. All relevant fields must be completed and securate Other Information: I Site Send Invoice to: Address: City/State. Phon	mplated and	e 井	Task: Total # TAT Notes: Notes:	# of S	Total # of Samples: 97 TAT Notes: F= Field Filtered .	97 97 red , H= Hold	2012_	Event Complete? Rush
e/Fax: /	PM Name			Send EDD to			ive		_			
inde #	PHOTE/FAX:			CC Dardcopy to			vati	<u> </u>				
Juote #:	TM Email:			CC Hardcopy to			Preserv	1				
		E	MP	E	RS			٠				
Field Sample	Field Sample No. /Identification	MATRIX CODE	G=GRAB C=CO	SAMPLE DATE	#OF CONTAINE	Comment	Analysis Archive		1613B - Dioxin/Furar Total Organic Carbo	COE 9060		
LRIS-LR-134		SOIL-	ဂ	12/04/2012 13:10	ယ		×					
LRIS-LR-135-2		SUB_S	n	12/03/2012 15:45	ω		×					
LRIS-LR-135-3		SUB_S O-SED	c	12/03/2012 15:50	ω		×					
LRIS-LR-135-4		SUB_S O-SED	ဂ	12/03/2012 15:55	မ		×					
LRIS-LR-135-5		SUB_S O-SED	တ	12/03/2012 16:00	.3		×					
LRIS-LR-135		SOIL- SED	G	12/04/2012 13:01	3		×		<u>, </u>			
LRIS-LR-136-2		SUB_S O-SED	c	12/02/2012 16:50	з		×					
LRIS-LR-136-3		SUB_S O-SED	C	12/02/2012 16:55	ω		×					
LRIS-LR-136-4		SUB_S O-SED	ი	12/02/2012 17:00	ω		×					
LRIS-LR-136-5		SUB_S		12/02/2012 17:05	ω		×				-	
LRIS-LR-136		SOIL-		12/04/2012 10:39	ω		×					

CHAIN-OF-CUSTODY / Analytical Request Document 20121202-MFA

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.

Total # of Samples: 97 2012_LR_SED
Event Complete? 1/17/2013

	r. LRIS-LR-PS-SRM	LRIS-LR-RB-20121204	LRIS-LR-RB-20121203	LRIS-LR-RB-20121202	LRIS-LR-137	LRIS-LR-137-5	LRIS-LR-137-4	LRIS-LR-137-3	LRIS-LR-137-2	ITEM#	Lab Quote #:	PM email	Phone/Fax: /	Lab PM:		Address: ,	Lab Information: Lab: Unknown Laboratory	
	М	121204	121203	121202	·					Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address	Project #	Project Info	
·	SOIL-	алас	OAQC	алас	SOIL-	SUB_S O-SED	O-SED S_BUS	SUB_S O-SED	SUB_S O-SED	MATRIX CODE				State, Zip			rmation: Lake River Industrial Site	
	о 0	ິດ ດ	ñ o	<u>تر</u> ۵	ە ەر	ဂ	υ 	ω 	က်က	G=GRAB C=COMP								
	11/26/2012 10:00	12/04/2012 17:35	12/03/2012 17:30	12/02/2012 17:00	12/04/2012 09:14	12/02/2012 12:20	12/02/2012 12:17	12/02/2012 12:15	12/02/2012 12:10	SAMPLE DATE	CC narocopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Other Information: Send Invoice to:	: .
	2	-	22	2	. ω	ω	ယ	ω	ω	#OF CONTAINERS	_							
										Comment					Phone #:			
										Analysis	Preser	/ativ	/e	Lak	Notes			_
	×	×	×	×	×	×	×	×	×	Archive						Notes: F= Field Filtered, H= Hold	TAT	
	 ×	×			×					1613B - Dioxin/Furan Total Organic Carbon -						ield Filte		
					×					COE 9060						red, H=		
													•			Hold	Rush	
												•			-			

Login Sample Receipt Checklist

Client: Maul Foster & Alongi Inc Job Number: 580-36242-6

Login Number: 36242 List Source: TestAmerica Seattle

List Number: 1 Creator: Riley, Nicole

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Not requested on COC.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

3

7

0

9

10

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-36242-7 Client Project/Site: Port of Ridgefield

For:

Maul Foster & Alongi Inc 2001 NW 19th Avenue, Suite 200 Portland, Oregon 97239

Attn: Ms. Madi Novak

Pamela R. Johnson

Authorized for release by: 2/25/2013 3:11:26 PM

Pam Johnson
Project Manager I
pamr.johnson@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-7

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	4
Client Sample Results	5
QC Sample Results	10
Chronicle	14
Certification Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	26
Isotope Dilution Summary	32

Case Narrative

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-7

Job ID: 580-36242-7

Laboratory: TestAmerica Seattle

Narrative

Comments

No additional comments.

Receipt

The samples were received on 12/7/2012 8:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 8 coolers at receipt time were 2.6° C, 2.9° C, 3.4° C, 4.3° C, 4.5° C, 4.6° C, 5.9° C and 6.0° C.

Dioxin - Method 1613B

lon abundance ratios are outside criteria for sample LRIS-LR-PS-SRM (580-36242-97). Quantitation is based on the theoretical ion abundance ratio; therefore, these analytes have been reported as an estimated maximum possible concentration (EMPC). The affected analytes have been flagged.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Dioxin Prep

No analytical or quality issues were noted.

2

Λ

E

0

9

10

11

Definitions/Glossary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 580-36242-7

Qualifiers

Dioxin

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
q	The isomer is qualified as positively identified, but at an estimated quantity because the quantitation is based on the theoretical ratio for these samples.

Glossary

RL

RPD TEF

TEQ

bbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designate that the result is reported on a dry weight basis
6R	Percent Recovery
NF	Contains no Free Liquid
ER	Duplicate error ratio (normalized absolute difference)
L, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
DL	Estimated Detection Limit
PA .	United States Environmental Protection Agency
1DA	Minimum detectable activity
1DC	Minimum detectable concentration
1DL	Method Detection Limit
1L	Minimum Level (Dioxin)
ID	Not detected at the reporting limit (or MDL or EDL if shown)
QL	Practical Quantitation Limit
OC .	Quality Control
RER	Relative error ratio

TestAmerica Seattle

TestAmerica Job ID: 580-36242-7

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-110-5

Date Collected: 12/03/12 10:45 Date Received: 12/07/12 08:50

Surrogate

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

Lab Sample ID: 580-36242-22

Matrix: Solid
Percent Solids: 64.4

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
2,3,7,8-TCDD	2.4		0.62	0.044	pg/g	\$	02/08/13 13:50	02/11/13 20:01	
2,3,7,8-TCDF	3.7		0.62	0.069	pg/g	₩	02/08/13 13:50	02/11/13 23:40	
1,2,3,7,8-PeCDD	6.8		3.1	0.23		₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,7,8-PeCDF	8.6		3.1	0.16	pg/g	₩	02/08/13 13:50	02/11/13 20:01	
2,3,4,7,8-PeCDF	8.3		3.1	0.17	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,4,7,8-HxCDD	14	В	3.1	0.095	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,6,7,8-HxCDD	98		3.1	0.11	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,7,8,9-HxCDD	48		3.1	0.093	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,4,7,8-HxCDF	39		3.1	0.21	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,6,7,8-HxCDF	19		3.1	0.22	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,7,8,9-HxCDF	1.8	J	3.1	0.23	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
2,3,4,6,7,8-HxCDF	9.1		3.1	0.21	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,4,6,7,8-HpCDD	2100		31	12	pg/g		02/08/13 13:50	02/13/13 13:17	
1,2,3,4,6,7,8-HpCDF	160	В	3.1		pg/g	₽	02/08/13 13:50	02/11/13 20:01	
1,2,3,4,7,8,9-HpCDF	9.3		3.1	0.52	pg/g	₽	02/08/13 13:50	02/11/13 20:01	
OCDD	14000	В	62	23	pg/g	φ.	02/08/13 13:50	02/13/13 13:17	
OCDF	180	В	6.2	0.15		₽	02/08/13 13:50	02/11/13 20:01	
Total TCDD	88	a	0.62	0.044		₽	02/08/13 13:50	02/11/13 20:01	
Total TCDF	66		0.62	0.13		-	02/08/13 13:50	02/11/13 20:01	
Total PeCDD	180	•	3.1	0.23		₽	02/08/13 13:50	02/11/13 20:01	
Total PeCDF	160	•	3.1		pg/g	₽	02/08/13 13:50	02/11/13 20:01	
Total HxCDD	740		3.1	0.10		-	02/08/13 13:50	02/11/13 20:01	
Total HxCDF	590	•	3.1	0.22		₽	02/08/13 13:50	02/11/13 20:01	
Total HpCDD	4400	R	31		pg/g	₽	02/08/13 13:50	02/13/13 13:17	
Total HpCDF	520		3.1		pg/g	-	02/08/13 13:50	02/11/13 20:01	
•				0.10	P9'9				D::/
Isotope Dilution	%Recovery 78	Quaimer	25 ₋ 164				Prepared	Analyzed	Dil F
13C-2,3,7,8-TCDD							02/08/13 13:50	02/11/13 20:01	
13C-2,3,7,8-TCDD	73		25 - 164				02/08/13 13:50	02/11/13 23:40	
13C-2,3,7,8-TCDF	84		24 - 169				02/08/13 13:50	02/11/13 20:01	
13C-2,3,7,8-TCDF	70		24 - 169				02/08/13 13:50	02/11/13 23:40	
13C-1,2,3,7,8-PeCDD	79		25 - 181				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,7,8-PeCDF	80		24 - 185				02/08/13 13:50	02/11/13 20:01	
13C-2,3,4,7,8-PeCDF	87		21 - 178				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,4,7,8-HxCDD	98		32 - 141				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,6,7,8-HxCDD	77		28 - 130				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,4,7,8-HxCDF	88		26 - 152				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,6,7,8-HxCDF	83		26 - 123				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,7,8,9-HxCDF	80		29 - 147				02/08/13 13:50	02/11/13 20:01	
13C-2,3,4,6,7,8-HxCDF	83		28 - 136				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,4,6,7,8-HpCDD	69		23 - 140				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,4,6,7,8-HpCDD	44		23 - 140				02/08/13 13:50	02/13/13 13:17	
13C-1,2,3,4,6,7,8-HpCDF	75		28 - 143				02/08/13 13:50	02/11/13 20:01	
13C-1,2,3,4,7,8,9-HpCDF	81		26 - 138				02/08/13 13:50	02/11/13 20:01	
13C-OCDD	79		17 - 157				02/08/13 13:50	02/11/13 20:01	
13C-OCDD	52		17 _ 157				02/08/13 13:50	02/13/13 13:17	

TestAmerica Seattle

Analyzed

02/11/13 20:01

02/11/13 23:40

Prepared

02/08/13 13:50

02/08/13 13:50

Page 5 of 33

Limits

35 - 197

35 - 197

%Recovery Qualifier

104

83

2/25/2013

Dil Fac

4

J

9

1 4

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-7

Lab Sample ID: 580-36242-22

Matrix: Solid

Percent Solids: 64.4

Date Collected: 12/03/12 10:45 Date Received: 12/07/12 08:50

Percent Moisture

Method: 1613B - Dioxins an	d Furans (HRGC/H	RMS) (Cont	inued)						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
37Cl4-2,3,7,8-TCDD	96		35 - 197				02/08/13 13:50	02/13/13 13:17	10
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	13000		2000	610	mg/Kg			02/06/13 15:05	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	64		0.10	0.10	%			02/12/13 12:22	1
Percent Moisture	36		0.10	0.10	%			02/12/13 12:22	1

TestAmerica Job ID: 580-36242-7

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/03/12 10:05

Date Received: 12/07/12 08:50

Analyte

Total Organic Carbon

Client Sample ID: LRIS-LR-124-4

Lab Sample ID: 580-36242-38

Matrix: Solid

Percent Solids: 67.9

E

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	0.079	Jq	0.59	0.025	pg/g	<u></u>	02/08/13 13:50	02/11/13 20:45	1
2,3,7,8-TCDF	0.39	J	0.59	0.034	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,7,8-PeCDD	ND		2.9	0.065	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,7,8-PeCDF	0.23	Jq	2.9	0.050	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
2,3,4,7,8-PeCDF	0.39	J q	2.9	0.056	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,4,7,8-HxCDD	ND		2.9	0.025	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,6,7,8-HxCDD	1.3	Jq	2.9	0.025	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,7,8,9-HxCDD	0.35	J q	2.9	0.023	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,4,7,8-HxCDF	1.2	J	2.9	0.033	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,6,7,8-HxCDF	0.65	J	2.9	0.034	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,7,8,9-HxCDF	ND		2.9	0.036	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
2,3,4,6,7,8-HxCDF	0.58	J q	2.9	0.033	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,4,6,7,8-HpCDD	26		2.9	0.080	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,4,6,7,8-HpCDF	4.1	В	2.9	0.046	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
1,2,3,4,7,8,9-HpCDF	ND		2.9	0.057	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
OCDD	280	В	5.9	0.20	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
OCDF	3.3	JB	5.9	0.050	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
Total TCDD	1.2	q	0.59	0.025	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
Total TCDF	3.8	q	0.59	0.034	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
Total PeCDD	1.2	Jq	2.9	0.065	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
Total PeCDF	6.8	q	2.9	0.053	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
Total HxCDD	7.6	Вq	2.9	0.024	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
Total HxCDF	13	q	2.9	0.034	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
Total HpCDD	61	В	2.9	0.080	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1
Total HpCDF	11	В	2.9	0.052	pg/g	₽	02/08/13 13:50	02/11/13 20:45	1

Total Tipobi		2.0	0.00 <u>=</u> pg.g	02/00/10 10:00	02/11/10/20110	•
Isotope Dilution	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	93	25 - 164		02/08/13 13:50	02/11/13 20:45	1
13C-2,3,7,8-TCDF	100	24 - 169		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,7,8-PeCDD	93	25 - 181		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,7,8-PeCDF	94	24 - 185		02/08/13 13:50	02/11/13 20:45	1
13C-2,3,4,7,8-PeCDF	102	21 - 178		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,4,7,8-HxCDD	111	32 - 141		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,6,7,8-HxCDD	93	28 - 130		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,4,7,8-HxCDF	99	26 - 152		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,6,7,8-HxCDF	97	26 - 123		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,7,8,9-HxCDF	96	29 - 147		02/08/13 13:50	02/11/13 20:45	1
13C-2,3,4,6,7,8-HxCDF	97	28 - 136		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,4,6,7,8-HpCDD	82	23 - 140		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,4,6,7,8-HpCDF	85	28 - 143		02/08/13 13:50	02/11/13 20:45	1
13C-1,2,3,4,7,8,9-HpCDF	98	26 - 138		02/08/13 13:50	02/11/13 20:45	1
13C-OCDD	86	17 - 157		02/08/13 13:50	02/11/13 20:45	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac

37C14-2,3,7,8-1CDD	116	35 - 197	02/08/13 13:50	1
General Chemistry				

RL

2000

MDL Unit

610 mg/Kg

D

Prepared

Result Qualifier

5600

Analyzed

02/06/13 15:20

TestAmerica Seattle

Dil Fac

Client Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Client Sample ID: LRIS-LR-124-4

TestAmerica Job ID: 580-36242-7

Lab Sample ID: 580-36242-38

Matrix: Solid

Date Collected: 12/03/12 10:05 Date Received: 12/07/12 08:50

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	68		0.10	0.10	%			02/12/13 12:22	1
Percent Moisture	32		0.10	0.10	%			02/12/13 12:22	1

Client Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 11/26/12 10:00

Date Received: 12/07/12 08:50

13C-1,2,3,4,7,8-HxCDF

13C-1,2,3,6,7,8-HxCDF

13C-1,2,3,7,8,9-HxCDF

13C-2,3,4,6,7,8-HxCDF

13C-1,2,3,4,6,7,8-HpCDD

13C-1,2,3,4,6,7,8-HpCDF

13C-1,2,3,4,7,8,9-HpCDF

37CI4-2,3,7,8-TCDD

37CI4-2,3,7,8-TCDD

13C-OCDD

Surrogate

Client Sample ID: LRIS-LR-PS-SRM

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

TestAmerica Job ID: 580-36242-7

Lab Sample ID: 580-36242-97

Matrix: Solid

Analyte	Result	Qualifier	RL	EDL	Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	1.0		0.40	0.026	pg/g		02/08/13 13:50	02/11/13 21:28	1
2,3,7,8-TCDF	0.61		0.40	0.039	pg/g		02/08/13 13:50	02/12/13 00:17	1
1,2,3,7,8-PeCDD	0.86	J	2.0	0.072	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,7,8-PeCDF	0.99	J	2.0	0.038	pg/g		02/08/13 13:50	02/11/13 21:28	1
2,3,4,7,8-PeCDF	0.76	J	2.0	0.038	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,4,7,8-HxCDD	1.4	J B	2.0	0.033	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,6,7,8-HxCDD	3.9		2.0	0.037	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,7,8,9-HxCDD	3.0		2.0	0.031	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,4,7,8-HxCDF	3.4		2.0	0.039	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,6,7,8-HxCDF	1.1	Jq	2.0	0.038	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,7,8,9-HxCDF	ND		2.0	0.044	pg/g		02/08/13 13:50	02/11/13 21:28	1
2,3,4,6,7,8-HxCDF	1.5	J	2.0	0.040	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,4,6,7,8-HpCDD	100		2.0	0.12	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,4,6,7,8-HpCDF	20	В	2.0	0.093	pg/g		02/08/13 13:50	02/11/13 21:28	1
1,2,3,4,7,8,9-HpCDF	1.3	J	2.0	0.11	pg/g		02/08/13 13:50	02/11/13 21:28	1
OCDD	800	В	4.0	0.24	pg/g		02/08/13 13:50	02/11/13 21:28	1
OCDF	70	В	4.0	0.062	pg/g		02/08/13 13:50	02/11/13 21:28	1
Total TCDD	4.5	q	0.40	0.026	pg/g		02/08/13 13:50	02/11/13 21:28	1
Total TCDF	9.4	q	0.40	0.023	pg/g		02/08/13 13:50	02/11/13 21:28	1
Total PeCDD	5.4	q	2.0	0.072	pg/g		02/08/13 13:50	02/11/13 21:28	1
Total PeCDF	10	q	2.0	0.038	pg/g		02/08/13 13:50	02/11/13 21:28	1
Total HxCDD	32	В	2.0	0.034	pg/g		02/08/13 13:50	02/11/13 21:28	1
Total HxCDF	34	q	2.0	0.040	pg/g		02/08/13 13:50	02/11/13 21:28	1
Total HpCDD	250	В	2.0	0.12	pg/g		02/08/13 13:50	02/11/13 21:28	1
Total HpCDF	68	В	2.0	0.10	pg/g		02/08/13 13:50	02/11/13 21:28	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	91		25 - 164				02/08/13 13:50	02/11/13 21:28	1
13C-2,3,7,8-TCDF	99		24 - 169				02/08/13 13:50	02/11/13 21:28	1
13C-2,3,7,8-TCDF	81		24 - 169				02/08/13 13:50	02/12/13 00:17	1
13C-1,2,3,7,8-PeCDD	95		25 - 181				02/08/13 13:50	02/11/13 21:28	1
13C-1,2,3,7,8-PeCDF	94		24 - 185				02/08/13 13:50	02/11/13 21:28	1
13C-2,3,4,7,8-PeCDF	104		21 - 178				02/08/13 13:50	02/11/13 21:28	1
13C-1,2,3,4,7,8-HxCDD	101		32 - 141				02/08/13 13:50	02/11/13 21:28	1

26 - 152

26 - 123

29 - 147

28 - 136

23 - 140

28 - 143

26 - 138

17 - 157

Limits

35 - 197

35 - 197

99

94

91

94

80

83

94

89

115

90

Qualifier

%Recovery

02/08/13 13:50

02/08/13 13:50

02/08/13 13:50

02/08/13 13:50

02/08/13 13:50

02/08/13 13:50

02/08/13 13:50

Prepared

02/08/13 13:50

02/08/13 13:50 02/11/13 21:28

02/08/13 13:50 02/11/13 21:28

02/11/13 21:28

02/11/13 21:28

02/11/13 21:28

02/11/13 21:28

02/11/13 21:28

02/11/13 21:28

02/11/13 21:28

Analyzed

02/12/13 00:17

Dil Fac

Client Sample ID: Method Blank

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Surrogate

37CI4-2,3,7,8-TCDD

Lab Sample ID: MB 320-10098/1-A

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid								Prep Type: 1	
Analysis Batch: 10273								Prep Batch	ո։ 10098
Aurabata	MB		D.	EDI	11!4	_	Burnand	Amakanad	D!! E
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,3,7,8-TCDD	ND		0.50	0.016			02/08/13 13:50	02/11/13 17:09	
2,3,7,8-TCDF	ND		0.50	0.011			02/08/13 13:50	02/11/13 17:09	1
1,2,3,7,8-PeCDD	ND		2.5	0.022			02/08/13 13:50	02/11/13 17:09	1
1,2,3,7,8-PeCDF	ND		2.5	0.013			02/08/13 13:50	02/11/13 17:09	1
2,3,4,7,8-PeCDF	ND		2.5	0.015	pg/g		02/08/13 13:50	02/11/13 17:09	1
1,2,3,4,7,8-HxCDD	0.0451	Jq	2.5	0.0091	pg/g		02/08/13 13:50	02/11/13 17:09	1
1,2,3,6,7,8-HxCDD	ND		2.5	0.0094			02/08/13 13:50	02/11/13 17:09	1
1,2,3,7,8,9-HxCDD	ND		2.5	0.0083	pg/g		02/08/13 13:50	02/11/13 17:09	1
1,2,3,4,7,8-HxCDF	ND		2.5	0.0087	pg/g		02/08/13 13:50	02/11/13 17:09	1
1,2,3,6,7,8-HxCDF	ND		2.5	0.042	pg/g		02/08/13 13:50	02/11/13 17:09	1
1,2,3,7,8,9-HxCDF	ND		2.5	0.025	pg/g		02/08/13 13:50	02/11/13 17:09	1
2,3,4,6,7,8-HxCDF	ND		2.5	0.015	pg/g		02/08/13 13:50	02/11/13 17:09	1
1,2,3,4,6,7,8-HpCDD	ND		2.5	0.016			02/08/13 13:50	02/11/13 17:09	1
1,2,3,4,6,7,8-HpCDF	0.0698	J	2.5	0.012			02/08/13 13:50	02/11/13 17:09	1
1,2,3,4,7,8,9-HpCDF	ND		2.5	0.017			02/08/13 13:50	02/11/13 17:09	1
OCDD	0.161	Ja	5.0	0.024			02/08/13 13:50	02/11/13 17:09	1
OCDF	0.250	•	5.0	0.026			02/08/13 13:50	02/11/13 17:09	1
Total TCDD	ND		0.50	0.042			02/08/13 13:50	02/11/13 17:09	1
Total TCDF	ND		0.50	0.011			02/08/13 13:50	02/11/13 17:09	
Total PeCDD	ND		2.5	0.022			02/08/13 13:50	02/11/13 17:09	. 1
Total PeCDF	ND ND		2.5	0.022			02/08/13 13:50	02/11/13 17:09	1
Total HxCDD	0.0451	J q	2.5	0.0090			02/08/13 13:50	02/11/13 17:09	1
Total HxCDF	ND	1	2.5	0.042			02/08/13 13:50	02/11/13 17:09	1
Total HpCDD	0.0678		2.5	0.016			02/08/13 13:50	02/11/13 17:09	1
Total HpCDF	0.0698		2.5	0.015	pg/g		02/08/13 13:50	02/11/13 17:09	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C-2,3,7,8-TCDD	74		25 - 164				02/08/13 13:50	02/11/13 17:09	1
13C-2,3,7,8-TCDF	79		24 - 169				02/08/13 13:50	02/11/13 17:09	1
13C-1,2,3,7,8-PeCDD	72		25 - 181				02/08/13 13:50	02/11/13 17:09	1
13C-1,2,3,7,8-PeCDF	75		24 - 185				02/08/13 13:50	02/11/13 17:09	1
13C-2,3,4,7,8-PeCDF	80		21 - 178				02/08/13 13:50	02/11/13 17:09	1
13C-1,2,3,4,7,8-HxCDD	85		32 - 141				02/08/13 13:50	02/11/13 17:09	1
	00								1
13C-1,2,3,6,7,8-HxCDD	76		28 - 130				02/08/13 13:50	02/11/13 17:09	-
13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF			28 ₋ 130 26 - 152				02/08/13 13:50 02/08/13 13:50	02/11/13 17:09 02/11/13 17:09	1
	76								
13C-1,2,3,4,7,8-HxCDF	76 81		26 - 152				02/08/13 13:50	02/11/13 17:09	1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF	76 81 78 77		26 - 152 26 - 123				02/08/13 13:50 02/08/13 13:50	02/11/13 17:09 02/11/13 17:09	1 1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF	76 81 78 77 78		26 - 152 26 - 123 29 - 147 28 - 136				02/08/13 13:50 02/08/13 13:50 02/08/13 13:50 02/08/13 13:50	02/11/13 17:09 02/11/13 17:09 02/11/13 17:09 02/11/13 17:09	1 1 1 1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	76 81 78 77 78 67		26 - 152 26 - 123 29 - 147 28 - 136 23 - 140				02/08/13 13:50 02/08/13 13:50 02/08/13 13:50 02/08/13 13:50 02/08/13 13:50	02/11/13 17:09 02/11/13 17:09 02/11/13 17:09 02/11/13 17:09 02/11/13 17:09	1 1 1 1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF	76 81 78 77 78 67		26 - 152 26 - 123 29 - 147 28 - 136 23 - 140 28 - 143				02/08/13 13:50 02/08/13 13:50 02/08/13 13:50 02/08/13 13:50 02/08/13 13:50 02/08/13 13:50	02/11/13 17:09 02/11/13 17:09 02/11/13 17:09 02/11/13 17:09 02/11/13 17:09 02/11/13 17:09	1 1 1 1
13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD	76 81 78 77 78 67		26 - 152 26 - 123 29 - 147 28 - 136 23 - 140				02/08/13 13:50 02/08/13 13:50 02/08/13 13:50 02/08/13 13:50 02/08/13 13:50	02/11/13 17:09 02/11/13 17:09 02/11/13 17:09 02/11/13 17:09 02/11/13 17:09	1 1

Dil Fac

Analyzed

02/08/13 13:50 02/11/13 17:09

Prepared

Limits

35 _ 197

%Recovery Qualifier

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Matrix: Solid

OCDF

Analysis Batch: 10273

Lab Sample ID: LCS 320-10098/2-A

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

110

63 - 170

Prep Batch: 10098

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,3,7,8-TCDD	20.0	23.2		pg/g		116	67 - 158	
2,3,7,8-TCDF	20.0	20.8		pg/g		104	75 - 158	
1,2,3,7,8-PeCDD	100	104		pg/g		104	70 - 142	
1,2,3,7,8-PeCDF	100	111		pg/g		111	80 _ 134	
2,3,4,7,8-PeCDF	100	101		pg/g		101	68 - 160	
1,2,3,4,7,8-HxCDD	100	97.4		pg/g		97	70 - 164	
1,2,3,6,7,8-HxCDD	100	102		pg/g		102	76 - 134	
1,2,3,7,8,9-HxCDD	100	99.8		pg/g		100	64 - 162	
1,2,3,4,7,8-HxCDF	100	101		pg/g		101	72 - 134	
1,2,3,6,7,8-HxCDF	100	111		pg/g		111	84 - 130	
1,2,3,7,8,9-HxCDF	100	109		pg/g		109	78 - 130	
2,3,4,6,7,8-HxCDF	100	110		pg/g		110	70 - 156	
1,2,3,4,6,7,8-HpCDD	100	108		pg/g		108	70 - 140	
1,2,3,4,6,7,8-HpCDF	100	101		pg/g		101	82 - 122	
1,2,3,4,7,8,9-HpCDF	100	90.6		pg/g		91	78 - 138	
OCDD	200	205		pg/g		103	78 ₋ 144	

200

220

pg/g

LCS LCS

	LUS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C-2,3,7,8-TCDD	78		20 - 175
13C-2,3,7,8-TCDF	84		22 - 152
13C-1,2,3,7,8-PeCDD	79		21 - 227
13C-1,2,3,7,8-PeCDF	80		21 - 192
13C-2,3,4,7,8-PeCDF	87		13 - 328
13C-1,2,3,4,7,8-HxCDD	93		21 - 193
13C-1,2,3,6,7,8-HxCDD	81		25 - 163
13C-1,2,3,4,7,8-HxCDF	87		19 - 202
13C-1,2,3,6,7,8-HxCDF	79		21 - 159
13C-1,2,3,7,8,9-HxCDF	81		17 - 205
13C-2,3,4,6,7,8-HxCDF	82		22 - 176
13C-1,2,3,4,6,7,8-HpCDD	69		26 - 166
13C-1,2,3,4,6,7,8-HpCDF	75		21 - 158
13C-1,2,3,4,7,8,9-HpCDF	82		20 - 186
13C-OCDD	76		13 - 199
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits

106

Lab Sample ID: LCSD 320-10098/3-A

Matrix: Solid

37CI4-2,3,7,8-TCDD

Analysis Batch: 10273

Client Sample	ID: Lab	Control	Sample	Dup
---------------	---------	---------	--------	-----

Prep Type: Total/NA Prep Batch: 10098

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,3,7,8-TCDD	20.0	22.9		pg/g		115	67 - 158	1	50
2,3,7,8-TCDF	20.0	21.8		pg/g		109	75 - 158	5	50
1,2,3,7,8-PeCDD	100	101		pg/g		101	70 - 142	2	50
1,2,3,7,8-PeCDF	100	111		pg/g		111	80 - 134	1	50
2,3,4,7,8-PeCDF	100	101		pg/g		101	68 - 160	0	50
2,0,1,1,01.002.				P 9' 9			00 - 100	ŭ	00

35 - 197

TestAmerica Seattle

Page 11 of 33

2/25/2013

2

0

8

9

10

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS) (Continued)

Lab Sample ID: LCSD 320-10098/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 10273** Prep Batch: 10098

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3,4,7,8-HxCDD	100	101		pg/g		101	70 - 164	4	50
1,2,3,6,7,8-HxCDD	100	105		pg/g		105	76 - 134	2	50
1,2,3,7,8,9-HxCDD	100	103		pg/g		103	64 - 162	3	50
1,2,3,4,7,8-HxCDF	100	103		pg/g		103	72 - 134	2	50
1,2,3,6,7,8-HxCDF	100	111		pg/g		111	84 - 130	0	50
1,2,3,7,8,9-HxCDF	100	112		pg/g		112	78 - 130	2	50
2,3,4,6,7,8-HxCDF	100	109		pg/g		109	70 - 156	1	50
1,2,3,4,6,7,8-HpCDD	100	108		pg/g		108	70 - 140	0	50
1,2,3,4,6,7,8-HpCDF	100	101		pg/g		101	82 - 122	0	50
1,2,3,4,7,8,9-HpCDF	100	91.1		pg/g		91	78 - 138	1	50
OCDD	200	205		pg/g		103	78 - 144	0	50
OCDF	200	221		pg/g		110	63 _ 170	0	50

LCSD LCSD Isotope Dilution %Recovery Qualifier Limits 13C-2,3,7,8-TCDD 81 20 - 175 13C-2,3,7,8-TCDF 89 22 - 152 13C-1,2,3,7,8-PeCDD 83 21 - 227 82 21 - 192 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 88 13 - 328 89 21 - 193 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 87 25 - 163 13C-1,2,3,4,7,8-HxCDF 90 19 - 202 13C-1,2,3,6,7,8-HxCDF 86 21 - 159 13C-1,2,3,7,8,9-HxCDF 84 17 - 205 13C-2,3,4,6,7,8-HxCDF 87 22 - 176 13C-1,2,3,4,6,7,8-HpCDD 73 26 - 166 21 - 158 13C-1,2,3,4,6,7,8-HpCDF 81 13C-1,2,3,4,7,8,9-HpCDF 88 20 - 186 13C-OCDD 13 - 199 81 LCSD LCSD %Recovery Qualifier Surrogate Limits 37CI4-2,3,7,8-TCDD 108 35 - 197

Method: 9060_PSEP - TOC (Puget Sound)

Lab Sample ID: MB 580-129662/3 Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 129662

мв мв Result Qualifier MDL Unit Prepared Dil Fac Analyzed Total Organic Carbon ND 2000 610 mg/Kg 02/06/13 14:59

Lab Sample ID: LCS 580-129662/4 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Ratch: 129662

Analysis Batch. 120002								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Organic Carbon	2850	2870		mg/Kg		101	27.8 - 170	

TestAmerica Seattle

QC Sample Results

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 9060_PSEP - TOC (Puget Sound) (Continued)

TestAmerica Job ID: 580-36242-7

Client Sample ID: LRIS-LR-110-5

Client Sample ID: LRIS-LR-110-5

Client Sample ID: LRIS-LR-110-5

Client Sample ID: LRIS-LR-110-5

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: LCSD 580-129662/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 129662

Matrix: Solid

Spike LCSD LCSD %Rec. RPD Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D 2850 27.8 - 170 35 **Total Organic Carbon** 2840 mg/Kg 100

Lab Sample ID: 580-36242-22 MS

Matrix: Solid

Analysis Batch: 129662

MS MS %Rec. Sample Sample Spike Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Total Organic Carbon 13000 115000 122000 mg/Kg 94 50 - 140

Lab Sample ID: 580-36242-22 MSD

Matrix: Solid

Analysis Batch: 129662

Spike MSD MSD %Rec. RPD Sample Sample Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Total Organic Carbon 13000 116000 122000 mg/Kg

Lab Sample ID: 580-36242-22 DU

Matrix: Solid

Analysis Batch: 129662

DU DU RPD Sample Sample Result Qualifier Result Qualifier Unit Limit 13000 13200 **Total Organic Carbon** mg/Kg 50

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-36242-22 DU

Matrix: Solid

Analysis Batch: 130029

Sample Sample DU DU RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit D Percent Solids 64 62 20 36 38 % 20 Percent Moisture

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Date Collected: 12/03/12 10:45 Date Received: 12/07/12 08:50

Client Sample ID: LRIS-LR-110-5

Lab Sample ID: 580-36242-22

Percent Solids: 64.4

ab.	Sample	יטו:	300-30242-22
			Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			10098	02/08/13 13:50	NM	TAL WSC
Total/NA	Analysis	1613B		1	10273	02/11/13 20:01	MG	TAL WSC
Total/NA	Analysis	1613B		1	10282	02/11/13 23:40	MG	TAL WSC
Total/NA	Analysis	1613B		10	10474	02/13/13 13:17	MG	TAL WSC
Total/NA	Analysis	9060_PSEP		1	129662	02/06/13 15:05	RB	TAL SEA
Total/NA	Analysis	D 2216		1	130029	02/12/13 12:22	RS	TAL SEA

Client Sample ID: LRIS-LR-124-4

Date Collected: 12/03/12 10:05 Date Received: 12/07/12 08:50 Lab Sample ID: 580-36242-38

Lab Sample ID: 580-36242-97

Matrix: Solid Percent Solids: 67.9

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			10098	02/08/13 13:50	NM	TAL WSC
Total/NA	Analysis	1613B		1	10273	02/11/13 20:45	MG	TAL WSC
Total/NA	Analysis	9060_PSEP		1	129662	02/06/13 15:20	RB	TAL SEA
Total/NA	Analysis	D 2216		1	130029	02/12/13 12:22	RS	TAL SEA

Client Sample ID: LRIS-LR-PS-SRM

Date Collected: 11/26/12 10:00 Matrix: Solid

Date Received: 12/07/12 08:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	HRMS-Sox			10098	02/08/13 13:50	NM	TAL WSC
Total/NA	Analysis	1613B		1	10273	02/11/13 21:28	MG	TAL WSC
Total/NA	Analysis	1613B		1	10282	02/12/13 00:17	MG	TAL WSC

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

TAL WSC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

TestAmerica Seattle

_

5

8

9

10

Certification Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

TestAmerica Job ID: 580-36242-7

Laboratory: TestAmerica Seattle

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority Alaska (UST)	Program State Program	EPA Region	Certification ID UST-022	23-04-13 Expiration Date
California	NELAP	9	031-022 01115CA	01-31-14
Montana (UST)	State Program	8	N/A	04-30-20
Oregon	NELAP	10	WA100007	11-06-13
USDA	Federal		P330-11-00222	05-20-14

Laboratory: TestAmerica Sacramento

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
A2LA	DoD ELAP	; <u></u>	2928-01	01-31-14
Alaska (UST)	State Program	10	UST-055	12-18-13
Arizona	State Program	9	AZ0708	08-11-13
Arkansas DEQ	State Program	6	88-0691	06-17-13
California	NELAP	9	1119CA	01-31-14
Colorado	State Program	8	N/A	08-31-13
Connecticut	State Program	1	PH-0691	06-30-13
Florida	NELAP	4	E87570	06-30-13
Guam	State Program	9	N/A	08-31-13
Hawaii	State Program	9	N/A	01-31-14
Illinois	NELAP	5	200060	03-17-14
Kansas	NELAP	7	E-10375	10-31-13
Louisiana	NELAP	6	30612	06-30-13
Michigan	State Program	5	9947	01-31-14
Nevada	State Program	9	CA44	07-31-13
New Jersey	NELAP	2	CA005	06-30-13
New York	NELAP	2	11666	04-01-13
Northern Mariana Islands	State Program	9	MP0007	02-01-14
Oregon	NELAP	10	CA200005	03-28-14
Pennsylvania	NELAP	3	68-01272	03-31-13
South Carolina	State Program	4	87014	06-30-13
Texas	NELAP	6	T104704399-08-TX	05-31-13
US Fish & Wildlife	Federal		LE148388-0	12-31-13
USDA	Federal		P330-11-00436	12-30-14
USEPA UCMR	Federal	1	CA00044	11-06-14
Utah	NELAP	8	QUAN1	01-31-14
Washington	State Program	10	C581	05-05-13
West Virginia	State Program	3	9930C	12-31-13
West Virginia DEP	State Program	3	334	07-31-13
Wyoming	State Program	8	8TMS-Q	01-31-14

Sample Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield TestAmerica Job ID: 580-36242-7

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-36242-22	LRIS-LR-110-5	Solid	12/03/12 10:45	12/07/12 08:50
580-36242-38	LRIS-LR-124-4	Solid	12/03/12 10:05	12/07/12 08:50
580-36242-97	LRIS-LR-PS-SRM	Solid	11/26/12 10:00	12/07/12 08:50

9

4

5

6

8

9

10

11

4.0

ž

Trip Blank?

2/25/2013

at late mation	Dissiant Information:			Other Information:			T CORE	o campion			
Lab: Unknown Laboratory	Site Code: Lake River Industrial Site	dustrial Site		Send Invoice to:		-	TAT	-		Rush	-
ess:	L			Address:			Notes: I	≔ Field F	F= Field Filtered, H= Hold		
	Site Address			City/State.		Phone #:					
Lab PM:	City State, Zip	, Zip		PO#			3200				
hone/Fax: //	Name			Send EDD to		7					
PM email	Phone/Fax:			CC Hardcopy to		afix				_	
Lab Quote #:	PM Email:	•		CC Hardcopy to		eserv					
						Ph	2.8				
		DE	ЭМР	ΤE	ERS			an	эоп -		
***************************************		X COD	C=CC	LE DAT	NTAINE	Comment		xin/Fura	nic Carb		-
Field Sample	Field Sample No. /Identification	MATRIX	G=GRAB	SAMPL	#OF CON	Analysis.	Archive	1613B - Dio	Total Organ COE 9060		
LRIS-LR-108-3		S_B_S	ဂ	12/03/2012 11:25	<u></u>		×				
LRIS-LR-108-4	***	SUB_S O-SED	ი	12/03/2012 11:30	သ		×				
LRIS-LR-108-5		SUB_S O-SED	0	12/03/2012 11:35	ယ		×				-
LRIS-LR-109-2		SUB_S O-SED	ဂ	12/02/2012 15:10	ယ		×				
LRIS-LR-109-3		SUB_S O-SED	G	12/02/2012 15:15	ယ		×	×	×		
LRIS-LR-109-4		SUB_S O-SED	ଜ	12/02/2012 15:20	ယ		×				
LRIS-LR-109-5		SUB_S O-SED	C	12/02/2012 15:25	ω		×				
LRIS-LR-110-2		SUB_S O-SED	C	12/03/2012 10:30	ယ		×				
LRIS-LR-110-3		SUB_S O-SED	n	12/03/2012 10:35	ω		×	×	×		
LRIS-LR-110-4		SUB_S O-SED		12/03/2012 10:40	3		×				
LRIS-LR-110-5		SUB_S O-SED		12/03/2012 10:45	ω		×				

2012_LR_SED

LRIS-LR-119-5 LRIS-LR-120-2 LRIS-LR-120-3 LRIS-LR-120-4 LRIS-LR-120-5 LRIS-LR-122-2 LRIS-LR-122-2		8 8 22 25 B	2 2 2 2 2	S 2 8 3	29 86 87		8		LRIS-LR-119-3	LRIS-LR-119-2	ITEM#	Lab Quote #:	M email	Phone/Fax: /	Lab PM:		Address: .	ab: Unkno	ab Informatio	
\$\frac{120-2}{2}\$ \$\frac{120-3}{2}\$ \$\frac{120-4}{2}\$ \$\frac{122-2}{2}\$ \$\frac{122-2}{2}\$	\$-120-2 \$-120-3 \$-120-4 \$-120-5 \$-122-2	\$-120-2 \$-120-3 \$-120-4 \$-120-5	₹-120-2 ₹-120-3 ₹-120-4	₹-120-2 	₹-120-2		R-119-5	R-119-4	₹-119-3	२-119-2	Field Sample							Lab: Unknown Laboratory		
											Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address	Project#	Site Code: Lake Riv	Project Inforn	
											3				State, Zip			Lake River Industrial Site		
	SUB_S	SUB_S O-SED	GES-O S ^T BNS	SUB_S	CJES-O S_BUS	GBS-O S ^T BNS	SUB_S O-SED	SUB_S	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							ıl Site	C C C C C C C C C C C C C C C C C C C	
		ဂ	ဂ	c	6	G	C	С	Ú	C	G=GRAB C=COMP			100	- 77		,	(0	•	
	12/03/2012 15:22	12/03/2012 15:22	12/03/2012 12:35	12/03/2012 12:30	12/03/2012 12:25	12/03/2012 12:20	12/03/2012 14:45	12/03/2012 14:40	12/03/2012 14:35	12/03/2012 14:30	SAMPLE DATE	C Hardcopy to	CC Hardcopy to	end EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	THE PERSON NAMED IN COLUMN
	5:22	5:22	2:35	2:30	2:25	2:20	4:45	4:40	4:35	4:30										The second second second
J.	ω	ω	ပ	ယ	ω	3	ω	ω	ω	ω	#OF CONTAINERS									THE PARTY AND DE
					-							!				Phone #:				annunda.
					-						Comment									
											Analysis	Preser	/ati	ve	Lak) Notes				
-	×	×	×	×	×	×	×	×	×	×	Archive				\$ \$80.000 		Notes:	TAT	Total #	
		×				×					1613B - Dioxin/Furan						F= Field		Total # of Samples: 97	
		×				×					Total Organic Carbon - COE 9060						Filtered,		oles: 97	
																	PIOH =H			
																		Rush		ı
\dashv				<u> </u>															Event Complete?	
						ļ <u>.</u>													mple	

LRIS-LR-126-3

12/02/2012 12:45

Lab PM:
Phone/Fax: //
PM email
Lab Quote #:

ITEM#

욕 육

2/25/2013

	The Chain-d-Cu	stodyis a LE	The Chain-d-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate.	pleted and		10011			,			
			Other Information:			10001	total # of Samples.	es: 9/			LAGIT COMPIGNO	
Information: Project Information: Project Information: Lake River Industrial Site	Site		Send invoice to:		800	TAT	Н			Rush		25
Project #			Address:			Notes:	F= Field	Filtered , 1	H= Hold			
			City/State.		Phone #:	-						
M: City State, Zip			PO#		a	.,,,,,	1.					
/ PM Name			Send EDD to		ve							
nail Phone/Fax:			CC Hardcopy to		vati	OSCINICE .						
	•		CC Hardcopy to		, Presen	- Verdeverly Dische			.=.			
	CODE	=COMP	DATE -	AINERS			n/Furan	Carbon -				
Field Sample No. /Identification	MATRIX C	G=GRAB C	SAMPLE	#OF CONT/	Comment	Archive	1613B - Dioxin	Total Organic COE 9060				
LRIS-LR-126-4	SUB_S	n	12/02/2012 12:47	3		×						
LRIS-LR-126-5	SUB_S O-SED	റ	12/02/2012 12:50	ы		×						
LRIS-LR-126	SOIL- SED	n	12/04/2012 08:56	ы		×	×	×				of 3
LRIS-LR-129-2	SUB_S O-SED	0	12/02/2012 13:50	ω	7	×	×	×				
LRIS-LR-129-3	SUB_S O-SED	െ	12/02/2012 13:55	ω		×						
LRIS-LR-129-4	SUB_S O-SED	ര	12/02/2012 14:00	ω		×						
LRIS-LR-129-5	SUB_S O-SED	O	12/02/2012 14:05	ω [·]		×						
LRIS-LR-129	SOIL- SED	C	12/04/2012 10:10	ω		×	×	×			-	
LRIS-LR-130-2	SUB_S O-SED	င	12/02/2012 14:40	ယ		×	×	×				
LRIS-LR-130-FD	QAQC		12/02/2012 14:40	ω		×	×	×				
LRIS-LR-130-3	SUB_S O-SED		12/02/2012 14:45	ω		×						

			The st	fanja e ti				2		56 L	ITEM#	Lab Quote #:	PM email	Phone/Fax:	Lab PM:		Address:	Lab:	Lab Information:	
_RIS-LR-132-4	LRIS-LR-132-3	LRIS-LR-132-2	LRIS-LR-131	LRIS-LR-131-4	LRIS-LR-131-3	LRIS-LR-131-2	LRIS-LR-130-FD-1	LRIS-LR-130	LRIS-LR-130-5	LRIS-LR-130-4	Field Sample	Ф. 		X: /			-	Unknown Laboratory	mation:	
							:				Field Sample No. /Identification	PM Email:	Phone/Fax:	PM Name	City	Site Address	Project#	Site Code: Lake Riv	Project Information	
0.8	0.8	0.8			CS	0.8	0		0.8	0.8					State, Zip			Lake River Industrial Site		The
O-SED S_BUS	SUB_S O-SED	SUB_S O-SED	SOIL-	SUB_S O-SED	S_BUS	SUB_S O-SED	QAQC .	SOIL-	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							Site		Chain-of-Cu
		. 0	ი	O	റ	ര	C	n	n	Ω.	G=GRAB C=COMP									stody is a LE
12/03/2012 14:10	12/03/2012 14:05	12/03/2012 14:00	12/04/2012 11:15	12/02/2012 16:40	12/02/2012 16:35	12/02/2012 16:30	12/04/2012 10:24	12/04/2012 10:24	12/02/2012 14:55	12/02/2012 14:50	SAMPLE DATE	C Hardcopy to	C Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed and accurate.
1:10	1:05	1:00	55	40	:35	30):24):24	:55	:50										ields must be o
ı	ω	ω	ω	ω	ω	ω	ω	ω	ω	ω	#OF CONTAINERS									ompleted and
											Comment				A CONTRACTOR OF THE CONTRACTOR	Phone #:			e contra	accurate.
											Analysis	Preserv	ativ	ve.	Lat	Notes				ĪΞ
×	×	×	×	×	×	×	×	×	×	×	Archive		OMS/A		in and		Notes:	TAT	Total 7	Task:
		×	×			×	×	×			1613B - Dioxin/Furan						F= Field		Total # of Samples:	
		×	×			×	. ×	×			Total Organic Carbon - COE 9060						Field Filtered, H= Hold		oles: 97	
																	H= Hold			20
																		Rush		2012_LR_SED
																		Ē	Event	
																			Event Complete?	
																			6.	,

Lab: Unknown
Address:

Unknown Laboratory

Phone/Fax: //
PM email
Lab Quote #: Lab PM:

Field Sample No. /Identification City
PM Name
Phone/Fax:
PM Email: Project Information:
Site Code: Lake River industrial Site
Project # Site Address State, Zip SUB_S SUB_S O-SED SUB_S O-SED SUB_S SUB_S SUB_S SUB_S SUB_S O-SED SUB_S O-SED SOIL-SOIL-MATRIX CODE ဂ o O O G=GRAB C=COMP O Send EDD to CC Hardcopy to CC Hardcopy to Send Invoice to:
Address: City/State. #OP Other Information: 12/02/2012 10:28 12/02/2012 10:20 12/03/2012 15:15 12/04/2012 12:06 12/02/2012 10:35 12/02/2012 10:30 12/04/2012 12:49 12/03/2012 15:30 12/03/2012 15:25 12/03/2012 15:20 12/03/2012 14:15 SAMPLE DATE **#OF CONTAINERS** Phone #: Comment Preservative Notes: F= Field Filtered, H= Hold Total # of Samples: Ā \times \times \times \times \times \times \times × × × × Archive × 1613B - Dioxin/Furan Total Organic Carbon -COE 9060 × \times Page: Cooler# 97 2012_LR_SED Rush Event Complete? Page 23 of 33 2/25/2013

69

LRIS-LR-133-2

LRIS-LR-133-3

LRIS-LR-134-5

LRIS-LR-134-4

LRIS-LR-134-3

LRIS-LR-134-2

LRIS-LR-133

LRIS-LR-133-5

LRIS-LR-133-4

68

LRIS-LR-132

LRIS-LR-132-5

ITEM#

2012_LR_SED

					4 1000		Mily Littley		9 9	ITEM#	Lab Quote #.	PM email	Phone/Fax:	Lab PM:		Address:	Ĺab:	Lab Information:	
	LRIS-LR-PS-SRM	LRIS-LR-RB-20121204	LRIS-LR-RB-20121203	LRIS-LR-RB-20121202	LRIS-LR-137	LRIS-LR-137-5	LRIS-LR-137-4	LRIS-LR-137-3	LRIS-LR-137-2	Field Sample	*		x: /			-	Unknown Laboratory	mation:	
										Field Sample No. Adentification	PM Email:	Phone/Fax:	PM Name	City	Site Address	L	Site Code: L	Project Information:	
·										ă				State, Zip			Lake River Industrial Site		
	SOIL-	QAQC	OAQC	QAQC	SOIL- SED	SUB_S O-SED	SUB_S	SUB_S O-SED	SUB_S O-SED	MATRIX CODE							Site		
	റ	С	C	ဝ	6	ი	n	O	ဂ	G=GRAB C=COMP						_		I_	٠
	11/26/2012 10:00	12/04/2012 17:35	12/03/2012 17:30	12/02/2012 17:00	12/04/2012 09:14	12/02/2012 12:20	12/02/2012 12:17	12/02/2012 12:15	12/02/2012 12:10	SAMPLE DATE	CC Hardcopy to	CC Hardcopy to	Send EDD to	PO#	City/State.	Address:	Send Invoice to:	Other Information:	
	12 10:00	12 17:35	12 17:30	12 17:00	12 09:14	12 12:20	12 12:17	12 12:15	12 12:10									ion:	
	2	-	22	2	ω	ω	ယ	ω	ω	#OF CONTAINERS									
										Comment		- Marie - Company - Compan			Phone #:				
<u> </u>							<u> </u>	<u> </u>	l T	Analysis	Preserv	ati	ve	Lab	Notes	Year St		<u> </u>]
	×	×	×	×	×	×	×	×	×	Archive						otes: F=	TΑΤ	otal # of	
	×	×			×					1613B - Dioxin/Furan		•••••				Notes: F= Field Filtered,		Total # of Samples:	-
					×					Total Organic Carbon - COE 9060				-		ered, H		5: 97	ì
-																H= Hold			
																	Rush		
											1						-	Event c	1
			-].												Event Complete?	
				<u> </u>											-				•

Client: Maul Foster & Alongi Inc Job Number: 580-36242-7

List Source: TestAmerica Seattle

Login Number: 36242 List Number: 1 Creator: Riley, Nicole

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Not requested on COC.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

TestAmerica Seattle

Client: Maul Foster & Alongi Inc Job Number: 580-36242-7

Login Number: 36242
List Source: TestAmerica Sacramento
List Number: 1
List Creation: 12/11/12 01:42 PM

Creator: Mantri, Anil

Creator: Mantri, Anil		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Cooler temperature outside required temperature criteria.
Cooler Temperature is recorded.	True	-0.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.# 94 & 95
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

Л

5

_

9

10

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-7

List Source: TestAmerica Sacramento
List Number: 2
List Creation: 01/10/13 02:54 PM

Creator: Cortes, Cesar C

oroator, cortos, cocar c		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Seattle

3

4

Q

9

11

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-7

List Source: TestAmerica Sacramento
List Number: 3
List Creation: 01/16/13 11:09 AM

Creator: Tecson, Jeffrey

Creator: Tecson, Jeffrey		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	622805, 622806
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	545176167352
Cooler Temperature is acceptable.	True	0.8
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

4

6

10

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-7

List Source: TestAmerica Sacramento
List Number: 4
List Source: TestAmerica Sacramento
List Creation: 01/17/13 01:52 PM

Creator: Tecson, Jeffrey

Creator: Tecson, Jettrey		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	622807
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	0.4
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
fultiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

0

9

11

Client: Maul Foster & Alongi Inc Job Number: 580-36242-7

List Source: TestAmerica Sacramento
List Number: 5
List Creation: 02/07/13 07:27 PM

Creator: Cortes, Cesar C

Question Answer Comme
Radioactivity wasn't checked or is = background as measured by a survey True meter.</td
The cooler's custody seal, if present, is intact.
Sample custody seals, if present, are intact.
The cooler or samples do not appear to have been compromised or tampered with.
Samples were received on ice.
Cooler Temperature is acceptable.
Cooler Temperature is recorded. True 0.3
COC is present. True
COC is filled out in ink and legible.
COC is filled out with all pertinent information.
Is the Field Sampler's name present on COC? N/A
There are no discrepancies between the containers received and the COC.
Samples are received within Holding Time.
Sample containers have legible labels.
Containers are not broken or leaking.
Sample collection date/times are provided.
Appropriate sample containers are used.
Sample bottles are completely filled.
Sample Preservation Verified. N/A
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True
Containers requiring zero headspace have no headspace or bubble is True 6mm (1/4").
Multiphasic samples are not present.
Samples do not require splitting or compositing.
Residual Chlorine Checked. N/A

-5

4

6

8

40

11

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

				-		• •	eptance Limit	•	
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1
Lab Sample ID	Client Sample ID	(25-164)	(24-169)	(25-181)	(24-185)	(21-178)	(32-141)	(28-130)	(26-152)
580-36242-22	LRIS-LR-110-5	78	84	79	80	87	98	77	88
580-36242-22	LRIS-LR-110-5	73	70						
580-36242-22	LRIS-LR-110-5								
580-36242-38	LRIS-LR-124-4	93	100	93	94	102	111	93	99
580-36242-97	LRIS-LR-PS-SRM	91	99	95	94	104	101	96	99
580-36242-97	LRIS-LR-PS-SRM		81						
MB 320-10098/1-A	Method Blank	74	79	72	75	80	85	76	81
			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limit	ts)	
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD	HxCDF1
Lab Sample ID	Client Sample ID	(26-123)	(29-147)	(28-136)	(23-140)	(28-143)	(26-138)	(17-157)	(26-152)
580-36242-22	LRIS-LR-110-5	83	80	83	69	75	81	79	88
580-36242-22	LRIS-LR-110-5								
580-36242-22	LRIS-LR-110-5				44			52	
580-36242-38	LRIS-LR-124-4	97	96	97	82	85	98	86	99
580-36242-97	LRIS-LR-PS-SRM	94	91	94	80	83	94	89	99
580-36242-97	LRIS-LR-PS-SRM								
MB 320-10098/1-A	Method Blank	78	77	78	67	74	80	73	81
			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limit	ts)	
		HxCDF2	HxCDF2	-		• •	•	•	
				HxCDF4	HxCDF4	HxCDF3	HxCDF3	HpCDD	HpCDD
Lab Sample ID	Client Sample ID	(21-159)	(26-123)	(17-205)	HxCDF4 (29-147)	HxCDF3 (22-176)	HxCDF3 (28-136)	HpCDD (23-140)	HpCDD (26-166)
Lab Sample ID 580-36242-22	Client Sample ID LRIS-LR-110-5							•	•
	<u> </u>		(26-123)		(29-147)		(28-136)	(23-140)	•
580-36242-22	LRIS-LR-110-5		(26-123)		(29-147)		(28-136)	(23-140)	•
580-36242-22 580-36242-22	LRIS-LR-110-5 LRIS-LR-110-5		(26-123)		(29-147)		(28-136)	(23-140) 69	•
580-36242-22 580-36242-22 580-36242-22	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5		(26-123) 83		(29-147) 80		(28-136) 83	(23-140) 69 44	-
580-36242-22 580-36242-22 580-36242-22 580-36242-38	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4		(26-123) 83		(29-147) 80		(28-136) 83	(23-140) 69 44 82	•
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM		(26-123) 83		(29-147) 80		(28-136) 83	(23-140) 69 44 82	-
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 580-36242-97	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM		97 94	(17-205)	96 91	(22-176)	97 94	(23-140) 69 44 82 80	-
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 580-36242-97	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM	(21-159)	97 94 78	(17-205)	96 91 77	(22-176)	97 94	(23-140) 69 44 82 80	-
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 580-36242-97	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM Method Blank		97 94	(17-205)	96 91	(22-176)	97 94 78 eptance Limit	(23-140) 69 44 82 80	-
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 580-36242-97 MB 320-10098/1-A	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM	(21-159) HpCDF1	97 94 78 PHpCDF1	(17-205) ercent Isotop HpCDF2	96 91 77 96 Dilution Re	(22-176)	97 94 78 eptance Limit	(23-140) 69 44 82 80	•
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 580-36242-97 MB 320-10098/1-A	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM Method Blank Client Sample ID	(21-159) HpCDF1	97 94 78 PHpCDF1 (28-143)	(17-205) ercent Isotop HpCDF2	96 91 77 e Dilution Re HpCDF2 (26-138)	(22-176)	97 94 78 eptance Limit OCDD (17-157)	(23-140) 69 44 82 80	•
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 580-36242-97 MB 320-10098/1-A	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM Method Blank Client Sample ID LRIS-LR-110-5	(21-159) HpCDF1	97 94 78 PHpCDF1 (28-143)	(17-205) ercent Isotop HpCDF2	96 91 77 e Dilution Re HpCDF2 (26-138)	(22-176)	97 94 78 eptance Limit OCDD (17-157)	(23-140) 69 44 82 80	-
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 580-36242-97 MB 320-10098/1-A Lab Sample ID 580-36242-22 580-36242-22	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM Method Blank Client Sample ID LRIS-LR-110-5 LRIS-LR-110-5	(21-159) HpCDF1	97 94 78 PHpCDF1 (28-143)	(17-205) ercent Isotop HpCDF2	96 91 77 e Dilution Re HpCDF2 (26-138)	(22-176)	97 94 78 eptance Limit OCDD (17-157) 79	(23-140) 69 44 82 80	•
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 580-36242-97 MB 320-10098/1-A Lab Sample ID 580-36242-22 580-36242-22 580-36242-22	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM Method Blank Client Sample ID LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5	(21-159) HpCDF1	97 94 78 PHpCDF1 (28-143)	(17-205) ercent Isotop HpCDF2	96 91 77 96 Dilution Re HpCDF2 (26-138)	(22-176)	97 94 78 eptance Limit OCDD (17-157) 79	(23-140) 69 44 82 80	•
580-36242-22 580-36242-22 580-36242-22 580-36242-38 580-36242-97 MB 320-10098/1-A Lab Sample ID 580-36242-22 580-36242-22 580-36242-22 580-36242-38	LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4 LRIS-LR-PS-SRM LRIS-LR-PS-SRM Method Blank Client Sample ID LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-110-5 LRIS-LR-124-4	(21-159) HpCDF1	97 94 78 PHpCDF1 (28-143) 75	(17-205) ercent Isotop HpCDF2	96 91 77 96 Dilution Re HpCDF2 (26-138) 81	(22-176)	97 94 78 eptance Limit OCDD (17-157) 79 52 86	(23-140) 69 44 82 80	-

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

TestAmerica Seattle

Page 32 of 33

-

3

4

6

8

J 6

11

12

2/25/2013

Isotope Dilution Summary

Client: Maul Foster & Alongi Inc Project/Site: Port of Ridgefield

OCDD = 13C-OCDD

HxCDF3 = 13C-2,3,4,6,7,8-HxCDFHpCDD = 13C-1,2,3,4,6,7,8-HpCDDHpCDF1 = 13C-1,2,3,4,6,7,8-HpCDFHpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF TestAmerica Job ID: 580-36242-7

Method: 1613B - Dioxins and Furans (HRGC/HRMS)

Matrix: Solid Prep Type: Total/NA

			P	ercent Isotop	e Dilution Re	covery (Acc	eptance Limit	ts)					
		TCDD	TCDF	PeCDD	PeCDF1	PeCDF2	HxCDD1	HxCDD2	HxCDF1				
Lab Sample ID	Client Sample ID	(20-175)	(22-152)	(21-227)	(21-192)	(13-328)	(21-193)	(25-163)	(19-202)				
LCS 320-10098/2-A	Lab Control Sample	78	84	79	80	87	93	81	87				
LCSD 320-10098/3-A	Lab Control Sample Dup	81	89	83	82	88	89	87	90				
		Percent Isotope Dilution Recovery (Acceptance Limits)											
		HxCDF2	HxCDF4	HxCDF3	HpCDD	HpCDF1	HpCDF2	OCDD					
Lab Sample ID	Client Sample ID	(21-159)	(17-205)	(22-176)	(26-166)	(21-158)	(20-186)	(13-199)					
LCS 320-10098/2-A	Lab Control Sample	79	81	82	69	75	82	76					
LCSD 320-10098/3-A	Lab Control Sample Dup	86	84	87	73	81	88	81					

Surrogate Legend

TCDD = 13C-2,3,7,8-TCDD

TCDF = 13C-2,3,7,8-TCDF

PeCDD = 13C-1,2,3,7,8-PeCDD

PeCDF1 = 13C-1,2,3,7,8-PeCDF

PeCDF2 = 13C-2,3,4,7,8-PeCDF

HxCDD1 = 13C-1,2,3,4,7,8-HxCDD

HxCDD2 = 13C-1,2,3,6,7,8-HxCDD

HxCDF1 = 13C-1,2,3,4,7,8-HxCDF

HxCDF2 = 13C-1,2,3,6,7,8-HxCDF

HxCDF4 = 13C-1,2,3,7,8,9-HxCDF

HxCDF3 = 13C-2,3,4,6,7,8-HxCDF

HpCDD = 13C-1,2,3,4,6,7,8-HpCDD

HpCDF1 = 13C-1,2,3,4,6,7,8-HpCDFHpCDF2 = 13C-1,2,3,4,7,8,9-HpCDF

OCDD = 13C-OCDD

15575 SV	OFO	•	H	•	ÉP																	
	DESIGNE	LRIS-LR-109	LRIS-LR-105	LRIS-LR-103	EXPLORATION NUMBER	BOOLD	BOI I DEB		1,000	20		to the second se			80	90						
		0.5	1.0	1.0	SAMPLE DEPTH (FEET)		COBBLEC		100								≅					
DECEMBER 2012	MFAINC-11-01	u.	2	2	MOISTURE CONTENT (PERCENT)	COARSE FINE	GRAVEL		10								11/2" 3/4" 3/8" 					
		0.03	0.08	0.05	D60	COARSE		GRAIN					1				U.S. STANDARD SIEVE NOMBERS 3/8" 4 10 20					
		0.03	0.06	0.04	D50			AIN-SIZE								5	10					
		0.02	0.03	0.03	D30	MEDIUM	SAND	GRAIN-SIZE IN MILLIMETERS	1													
LAKE R		0.00	0.00	0.00	D10				METERS	METERS	/IETERS	NETERS	NETERS									40 60
(IVER LAB	GR/				D5	FINE				0.1					N		•	100 200				
LAKE RIVER LABORATORY TESTING RIDGEFIELD, WA	GRAIN-SIZE TEST RESULTS				GRAVEL (PERCENT)	S					3	•					00					
ING	ST RESULT	d	41	18	EN	SILT	FINES		0.01													
	S.	70	48	70	E	CLAY																
FIGURE		ā	16	3 =	CLAY (PERCENT)	Ĺ			0.001													

15575		 	M	•	KEY											
SW Sequoia Par Portland OR 968 8787 Fa			둤	둤	EXPLO					PERCENT FINER BY WEIGHT 10 20 30 40 50 60 70 80 90 90						
15575 SW Sequola Parkway - Suite 100 Portland 00R 97224 Off 503 968 8787 Fax 503 968 3068	ESICNS	LRIS-LR-126	LRIS-LR-120	LRIS-LR-119	EXPLORATION NUMBER	BOULDERS			1,000							
		1.5	0.5	0.5	SAMPLE DEPTH (FEET)	COBBLES			100							
DECEN	MFAII				MOISTU (PE	COARSE							1 1/2"			
DECEMBER 2012	MFAINC-11-01	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	2	MOISTURE CONTENT (PERCENT)	FINE	GRAVEL						ō	10		3/4" 3/8"
		0.05	0.04	0.07	D60	COARSE						3/8" 4 10 20				
		0.04	0.03	0.05	D50			METERS			-10 -					
		0.02	0.02	0.03	D30	MEDIUM	SAND		IN MILLIMETERS	IN MILLIMETERS	IN MILLIMETERS	N MILLIN	1			
LAKE R		0.01	0.00	0.01	D10	Ð								40 60		
IVER LABO	GRA	0.00			D5	FINE				0.1		100 200				
LAKE RIVER LABORATORY TESTING RIDGEFIELD, WA	GRAIN-SIZE TEST RESULTS	_			GRAVEL (PERCENT)	S					0					
TING	ST RESULT	27	15	36	SAND (PERCENT)	SILT	FINES		0.01							
	S.	64	70	54	SILT (PERCENT)	CLAY										
FIGURE		000	15	10	CLAY (PERCENT)				0.001							

SAMI	PLE INFORM	MATION	LAGIGTURE	DDV.		SIEVE		АТ	TERBERG LIM	ITS
EXPLORATION NUMBER	SAMPLE DEPTH (FEET)	ELEVATION (FEET)	MOISTURE CONTENT (PERCENT)	DRY DENSITY (PCF)	GRAVEL (PERCENT)	SAND (PERCENT)	P200 (PERCENT)	LIQUID LIMIT (PERCENT)	PLASTIC LIMIT (PERCENT)	PLASTICITY INDEX (PERCENT)
LRIS-LR-103	1.0		1		0	18	82	NP	NP	NP
LRIS-LR-103	1.5		54	65						
LRIS-LR-105	1.0				0	41	58	NP	NP	NP
LRIS-LR-105	1.5		64	61						
LRIS-LR-109	0.5				0	6	94	NP	NP	NP
LRIS-LR-109	1.0		53	65						
LRIS-LR-119	0.5				0	36	64	NP	NP	NP
LRIS-LR-119	1.0		84	49						
LRIS-LR-120	0.5				0	15	85	NP	NP	NP
LRIS-LR-120	1.0		62	60						
LRIS-LR-126	1.5				1	27	72	NP	NP	NP
LRIS-LR-126	2.0		61	69						

LAB SUMMARY MFAINC-11-01-LRIS_LR103,105,109,119,120,126.CPJ GEODESIGN.GDT PRINT DATE: 1/3/13:KDY

GEODESIGNE

15575 SW Sequoia Parkway - Suite 100
Portland OR 97224
Off 503.968.8787 Fax 503.968.3068

MFAINC-11-01

DECEMBER 2012

SUMMARY OF LABORATORY DATA

LAKE RIVER LABORATORY TESTING RIDGEFIELD, WA

FIGURE 3

TOTAL SOLIDS

TOTAL SOLIDS - EPA - Puget Sound

6048 WORK ORDER NO.

PROJECT NO:

MFAInc-11-01

TESTED BY: mab

DATE: 12.20.12

PROJECT NAME:

Lake River Industrial Site

CHECKED BY: kdy

DATE: 1.2.13

SOURCE:

Ridgefield, WA

THERMOMETER ID

10

SCALE ID 243

OVEN ID 185

FURNACE ID 1

SAMPLE LOCATION AND DESCRIPTION

SAMPLE NO	EXPLORATION	DEPTH (FT)	SOIL DESCRIPTION
119	LRIS-LR-119	0.5	Dark gray sandy SILT
120	LRIS-LR-120	0.5	Dark gray SILT with sand
126	LRIS-LR-126	1.5	Dark gray/black SILT with organics and sand
		the state of the state of	

TOTAL SOLIDS

SAMPLE NUMBER	119	120	126	
DRYING CONTAINER ID	C3	C2	C6	
DRYING CONTAINER + LID TARE (B)	111.07	114.77	132.83	
WEIGHT OF WET SOIL + TARE + LID (C)	151.78	160	190.69	
WEIGHT OF DRY SOIL + TARE + LID (A)	135.63	142.94	159.46	
WEIGHT OF MOISTURE	16.15	17.06	31.23	
MOISTURE CONTENT, (%)	65.8	60.6	117.3	
PERCENT SOLIDS, (%)	60.3	62.3	46.0	

TOTAL SOLIDS

TOTAL SOLIDS - EPA - Puget Sound

6048 WORK ORDER NO.

PROJECT NO:

MFAInc-11-01

TESTED BY: mab

DATE: 12.20.12

PROJECT NAME:

Lake River Industrial Site

CHECKED BY: kdy

SOURCE:

Ridgefield, WA

DATE: 1.2.13

THERMOMETER ID

10

SCALE ID 243

OVEN ID 185

FURNACE ID 1

SAMPLE LOCATION AND DESCRIPTION

SAMPLE NO	EXPLORATION	DEPTH (FT)	SOIL DESCRIPTION
103	LRIS-LR-103	1.0	Dark gray SILT with sand
105	LRIS-LR-105	1.0	Dark gray sandy SILT
109	LRIS-LR-109	1.0	Dark gray SILT

TOTAL SOLIDS

SAMPLE NUMBER	103	105	109	THE WAY
DRYING CONTAINER ID	C5	C4	C1	
DRYING CONTAINER + LID TARE (B)	135.60	129.03	138.72	
WEIGHT OF WET SOIL + TARE + LID (C)	191.90	182.84	207.05	
WEIGHT OF DRY SOIL + TARE + LID (A)	172.05	165.18	179.97	
WEIGHT OF MOISTURE	19.85	17.66	27.08	
MOISTURE CONTENT, (%)	54.5	48.9	65.6	
PERCENT SOLIDS, (%)	64.7	67.2	60.4	

SAMPLE INFORMATION		MOISTIPE		SIEVE			ATTERBERG LIMITS			
EXPLORATION NUMBER	SAMPLE DEPTH (FEET)	ELEVATION (FEET)	MOISTURE CONTENT (PERCENT)	ENT DENSITY	GRAVEL (PERCENT)	SAND (PERCENT)	P200 (PERCENT)	LIQUID LIMIT (PERCENT)	PLASTIC LIMIT (PERCENT)	PLASTICITY INDEX (PERCENT)
LRIS-LR-103	0.0		54	65	0	18	82	NP	NP	NP
LRIS-LR-105	0.0		64	61	0	41	58	NP	NP	NP
LRIS-LR-109	0.0		53	65	0	6	94	NP	NP	NP
LRIS-LR-119	0.0		84	49	0	36	64	NP	NP	NP
LRIS-LR-120	0.0		62	60	0	15	85	NP	NP	NP
LRIS-LR-126	0.0		61	69	1	27	72	NP	NP	NP

LAB SUMMARY MFAINC-11-01-LRIS_LR103,105,109,119,120,126.GPJ GEODESIGN.GDT PRINT DATE: 1/2/13:KDY

GEODESIGNS

15575 SW Sequoia Parkway - Suite 100
Portland OR 97224
Off 503 968.8787 Fax 503.968.3068

MFAINC-11-01

SUMMARY OF LABORATORY DATA

DECEMBER 2012 LAKE RIVER LABORATORY TESTING RIDGEFIELD, WA

FIGURE 3

TOTAL SET TECH CENTER Drive, Suite 160 Vancouver, WA 98683 Anaheim, CA 92806 15575 SW Sequoia Parkway, Suite 100 Portland, OR 97224

1200 NW Naito Parkway, Suite 500 Portland, OR 97209 10700 Meridian Avenue North, Suite 210 Seattle, WA 98133

COEFFICIENT OF PERMEABILITY

✓ Constant H	ead Method	d Method						
			Work	order nu	mber:	6048.2		
PROJECT NO:	MFAInc-11-01	TESTED BY:	: mab		DATE:	1/8/2013		
PROJECT NAME:	Lake River Industrial Site	CHECKED BY:	HECKED BY: smd		DATE:	1/17/2013		
EXPLORATION:	LRIS-LR-103		DEPTH: 2.0 ft SAMPLE		PLE NO:	103		
DESCRIPTION:	Dark gray sandy Silt (ML)							
SCALE ID:	243 THERMOMETER ID:		10		OVEN ID:		185	
RAMMER ID:	N/A	PERMEAMETER ID:	321.1		SIEVE ID:		N/A	

-S	Diameter, cm	6.35
JENT	Height (L), cm	14.07
SAMPLE MEASUREMENTS	Area (A), cm ²	31.65
EASI	Volume, cm ³	445.36
Σ Ψ	Mass, g	638.40
₩	Wet Density, lb/ft ³	89.5
Ś	Dry Density, lb/ft ³	58.9

	Tare ID	J12
ENT	Tare mass, g	248.86
CONTENT	Wet Soil and tare mass, g	853.53
	Dry Soil and tare mass, g	646.66
MOISTURE	Water mass, g	206.87
	Dry Soil mass, g	397.8
	Water Content, %	52.0

CONSTANT HEAD TEST

h =	62.3 cn	n <i>h/L</i> =	4.4			
	1	2	3	4	5	6
<i>t</i> , s	6960	8280	7020	58980		
Q, cm ³	3.23	2.51	1.68	11.03		
T, °C	22.3	22.4	22.0	21.9		
k _T , cm/s	3.3E-06	2.2E-06	1.7E-06	1.3E-06		

$$Avg. \ k_{T} = \underbrace{\frac{1.6\text{E-06}}{\text{Where,}} \ k_{T} = \frac{0.9525}{\text{CSee Table-Reverse}}} \qquad Avg. \ k_{20} = \underbrace{\frac{1.5\text{E-06}}{\text{Where,}} \ k_{20} = \alpha k_{T}} \text{cm/s}$$

DEVIATIONS

TEODESIGNS

155/5 SW Sequoia raikway, Suite 160
1201 SE Tech Center Drive, Suite 160
2121 S Towne Centre Place, Suite 130
Vancouver, WA 98683
Anaheim, CA 92806 15575 SW Sequoia Parkway, Suite 100 Portland, OR 97224

1200 NW Naito Parkway, Suite 500 Portland, OR 97209 10700 Meridian Avenue North, Suite 210 Seattle, WA 98133

COEFFICIENT OF PERMEABILITY

✓ Constant Head Method		Falling He	Falling Head Method						
				Work o	rder nu	mber:	6048.2		
PROJECT NO:	MFAInc-11-01			STED BY:	ED BY: mab		DATE:	ATE: 1/14/2013	
PROJECT NAME:	Lake River Industrial Site			CHECKED BY: smd			DATE:	1/18/2013	
EXPLORATION:	LRIS-LR-105		DEPTH:	EPTH: 2.0 ft SAMI		PLE NO:	105		
DESCRIPTION:	Dark gray sandy Silt (ML)								
SCALE ID:	243 THERMOMETER ID:			10		OVEN ID:		185	
RAMMER ID:	N/A	PERMEAMETER ID:		321.1		SIEVE ID:		N/A	

-S	Diameter, cm	6.35
JEN1	Height (L), cm	12.04
JREN	Area (A), cm ²	31.65
SAMPLE MEASUREMENTS	Volume, cm ³	381.10
E E	Mass, g	642.10
₩	Wet Density, lb/ft ³	105.2
Ś	Dry Density, lb/ft ³	67.1

	Tare ID	J24
ENT	Tare mass, g	206.57
CONTENT	Wet Soil and tare mass, g	805.42
MOISTURE CO	Dry Soil and tare mass, g	588.68
	Water mass, g	216.74
	Dry Soil mass, g	382.11
	Water Content, %	56.7

CONSTANT HEAD TEST

h =	62.3	cm <i>h/L</i> =	5.2			
	1	2	3	4	5	6
t, s	13620	17100	57900	15960		
Q, cm ³	1.57	1.72	4.85	1.37		
T, °C	22.1	20.8	21.1	21.7		
k _T , cm/s	7.0E-07	6.1E-07	5.1E-07	5.2E-07		

$$Avg. \ k_{T} = \underbrace{\begin{array}{c} 5.6 \text{E-}07 \\ Where, \ k_{T} = QL/Aht \end{array}}_{CM/S} \text{cm/s} \qquad Avg. \ \alpha = \underbrace{\begin{array}{c} 0.9738 \\ (See \ Table-Reverse) \end{array}}_{CSee \ Table-Reverse)} \text{Avg. } k_{20} = \underbrace{\begin{array}{c} 5.4 \text{E-}07 \\ Where, \ k_{20} = \alpha \, k_{T} \end{array}}_{Cm/S}$$

DEVIATIONS

15575 SW Sequoia Parkway, Suite 100 Portland, OR 97224
1201 SE Tech Center Drive, Suite 160 Vancouver, WA 98683
2121 S Towne Centre Place, Suite 130 Anaheim, CA 92806

1200 NW Naito Parkway, Suite 500 Portland, OR 97209 10700 Meridian Avenue North, Suite 210 Seattle, WA 98133

COEFFICIENT OF PERMEABILITY

✓ Constant Head Method		Falling Head	d Method					
					Work o	rder nu	mber:	6048.2
PROJECT NO:	MFAInc-11-01		TEST	ED BY:	mab		DATE:	1/17/2013
PROJECT NAME:	Lake River Industrial Site	CHECK	ED BY:	smd		DATE:	1/18/2013	
EXPLORATION:	LRIS-LR-109		DEPTH:	1	.5 ft SAMI		PLE NO:	109
DESCRIPTION:	Dark gray SAND with silt	(SP-SM)						
SCALE ID:	243	THERMOMETER ID:		10		OVEN ID:		185
RAMMER ID:	N/A	PERMEAMETER ID:	3	321.1		SIEVE ID:		N/A

S	Diameter, cm	6.35
MEASUREMENTS	Height (<i>L</i>), cm	11.35
	Area (A), cm ²	31.65
EASI	Volume, cm ³	359.26
	Mass, g	630.90
SAMPLE	Wet Density, lb/ft ³	109.6
	Dry Density, lb/ft ³	78.5

	Tare ID	Z28		
ENT	Tare mass, g	169.52		
CONTENT	Wet Soil and tare mass, g	767.85		
	Dry Soil and tare mass, g	598.17		
MOISTURE	Water mass, g	169.68		
MOIS	Dry Soil mass, g	428.65		
	Water Content, %	39.6		

CONSTANT HEAD TEST

h =	62.	.3 cm	h/L =	5.5			
	_	1	2	3	4	5	6
t, s		917	9240	4940	4116		
Q, cm ³		5.62	31.52	16.00	13.11		
T, °C		21.0	21.5	21.7	21.9		
k _T , cm/s		3.5E-05	2.0E-05	1.9E-05	1.8E-05		

$$Avg. \ k_{T} = \underbrace{2.0\text{E-}05}_{Where, \ k_{T} = QL/Aht} \text{cm/s} \qquad Avg. \ \alpha = \underbrace{0.9612}_{(See \ Table-Reverse)} \qquad Avg. \ k_{20} = \underbrace{1.9\text{E-}05}_{Where, \ k_{20} = \alpha k_{T}} \text{cm/s}$$

DEVIATIONS

15575 SW Sequoia Parkway, Suite 100 Portland, OR 97224 1201 SE Tech Center Drive, Suite 160
2121 S Towne Centre Place, Suite 130
Anaheim, CA 92806 1201 SE Tech Center Drive, Suite 160 Vancouver, WA 98683 1200 NW Naito Parkway, Suite 500 Portland, OR 97209 10700 Meridian Avenue North, Suite 210 Seattle, WA 98133

COEFFICIENT OF PERMEABILITY

✓ Constant Head Method		Falling Hea	Falling Head Method					
					Work o	rder nu	mber:	6048.2
PROJECT NO:	MFAInc-11-01	TESTE	D BY:	mab		DATE:	1/4/2013	
PROJECT NAME:	Lake River Industrial Site		CHECKE	D BY:	: smd		DATE:	1/17/2013
EXPLORATION:	LRIS-LR-119		DEPTH:	1.5 ft		SAMI	PLE NO:	119
DESCRIPTION:	Dark gray silty Sand (SM)							
SCALE ID:	243/228	THERMOMETER ID:	10			OVEN ID:	:	185
RAMMER ID:	N/A	PERMEAMETER ID:	321.1			SIEVE ID:		N/A

.s	Diameter, cm	6.35
ENT	Height (L), cm	10.88
SAMPLE MEASUREMENTS	Area (A), cm ²	31.65
	Volume, cm ³	344.39
	Mass, g	576.8
	Wet Density, lb/ft ³	104.6
'S	Dry Density, lb/ft ³	65.4

	Tare ID	J12		
ENT	Tare mass, g	248.85		
CONTENT	Wet Soil and tare mass, g	795.50		
	Dry Soil and tare mass, g	590.78		
MOISTURE	Water mass, g	204.72		
MOIS	Dry Soil mass, g	341.93		
	Water Content, %	59.9		

CONSTANT HEAD TEST

h =	62	.3 cm	h/L =	5.7			
		1	2	3	4	5	6
t, s		957	1114	1875	1892	60540	
Q, cm ³		0.54	0.64	0.93	0.91	20.17	
T, °C		21.6	21.2	21.5	21.2	20.0	
k _T , cm/s		3.1E-06	3.2E-06	2.7E-06	2.7E-06	1.8E-06	

$$Avg. \ k_T = \underbrace{1.9\text{E-}06}_{Where, \ k_T = QL/Aht} \text{cm/s} \qquad Avg. \ \alpha = \underbrace{0.9974}_{(See \ Table-Reverse)} \qquad Avg. \ k_{20} = \underbrace{1.9\text{E-}06}_{Where, \ k_{20} = \alpha k_T} \text{cm/s}$$

DEVIATIONS

ISS/S SW Sequola Falkway, Suite 160
1201 SE Tech Center Drive, Suite 160
2121 S Towne Centre Place, Suite 130
Anaheim, CA 92806 15575 SW Sequoia Parkway, Suite 100 Portland, OR 97224 1201 SE Tech Center Drive, Suite 160 Vancouver, WA 98683 1200 NW Naito Parkway, Suite 500 Portland, OR 97209 10700 Meridian Avenue North, Suite 210 Seattle, WA 98133

COEFFICIENT OF PERMEABILITY

✓ Constant H	Falling Head	d Method						
					Work o	rder nu	mber:	6048.2
PROJECT NO:	MFAInc-11-01			TED BY:	mab)	DATE:	1/7/2013
PROJECT NAME:	Lake River Industrial Site		CHEC	KED BY:	smd		DATE:	1/17/2013
EXPLORATION:	LRIS-LR-120		DEPTH:	1	.5 ft	SAMI	PLE NO:	120
DESCRIPTION:	Dark gray Silt with sand ((ML)						
SCALE ID:	228/243	THERMOMETER ID:	10			OVEN ID	:	185
RAMMER ID:	N/A	PERMEAMETER ID:	321.1			SIEVE ID:		N/A

s_	Diameter, cm	6.35
ËN	Height (L), cm	12.44
JREN	Area (A), cm ²	31.65
SAMPLE MEASUREMENTS	Volume, cm ³	393.77
	Mass, g	624.20
	Wet Density, lb/ft ³	99.0
	Dry Density, lb/ft ³	59.3

	Tare ID	J14
ENT	Tare mass, g	249.07
CONTENT	Wet Soil and tare mass, g	821.45
	Dry Soil and tare mass, g	592.03
MOISTURE	Water mass, g	229.42
MOE	Dry Soil mass, g	342.96
	Water Content, %	66.9

CONSTANT HEAD TEST

h =	62.3 cm	h/L =	5.0			
	1	2	3	4	5	6
t, s	92040	5220	3900	4140	6600	
Q, cm ³	21.14	0.82	0.55	0.58	0.97	
T, °C	22.0	23.2	23.8	25.1	23.3	
k _T , cm/s	1.4E-06	9.9E-07	8.9E-07	8.8E-07	9.3E-07	

$$Avg. \ k_T = \underbrace{1.4\text{E-06}}_{Where, \ k_T = QL/Aht} \text{cm/s} \qquad Avg. \ \alpha = \underbrace{0.9678}_{(See \ Table-Reverse)} \qquad Avg. \ k_{20} = \underbrace{1.3\text{E-06}}_{Where, \ k_{20} = \alpha k_T} \text{cm/s}$$

DEVIATIONS

WATER TEMPERATURE/VISCOSITY TABLE

TEMPERATURE C°	ABSOLUTE-DYNAMIC VISCOSITY POISE	VISCOSITY CORRECTION α
16	0.01118	1.10584
17	0.01092	1.08012
18	0.01065	1.05341
19	0.01038	1.02671
20	0.01011	1.00000
21	0.00985	0.97428
22	0.00963	0.95252
23	0.00941	0.93076
24	0.00920	0.90999
25	0.00898	0.88823
26	0.00877	0.86746
27	0.00857	0.84768
28	0.00839	0.82987
29	0.00821	0.81207
30	0.00803	0.79426

APPENDIX F DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY **CONTROL REVIEW**

PROJECT NO. 9003.01.40 | FEBRUARY 26, 2013 | PORT OF RIDGEFIELD

This report provides the results of the review of analytical results for sediment samples collected by Maul Foster & Alongi, Inc. (MFA) in Lake River, Washington, offshore of the Port of Ridgefield-owned Lake River Industrial Site. The samples were collected in December 2012.

Test America (TA) performed the analyses. TA report numbers 580-36242-1, 580-36242-2REV1, 580-36242-3REV1, 580-36242-4, 580-36242-5, 580-36242-6 and 580-36242-7 were reviewed. The analyses performed are listed below.

Analysis	Reference
Total organic carbon	USEPA Method 9060
Dioxins and furans	USEPA Method 1613b

USEPA = U.S. Environmental Protection Agency.

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of USEPA procedures (USEPA, 2005, 2008), appropriate laboratory, method-specific guidelines (TA, 2012; USEPA, 1986) and the dioxin rules memorandum (MFA, 2012) developed by MFA and approved by the Washington State Department of Ecology.

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the functional guidelines (i.e., total organic carbon).

Method 1613B results that were reported as an estimated maximum potential concentration (EMPC) were given a "U" qualifier (non-detect) at the reported EMPC value.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Total organic carbon analysis was conducted past the recommended holding time for samples associated with reports 580-36242-4 and 580-36242-6. Holding time exceedances were minor, thus no data were qualified. All other extractions and analyses were performed within the recommended holding time criteria.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. Various method blank results associated with the dioxin/furan analyses exhibited a blank detection between the estimated detection limit and the reporting limit (RL) for various compounds. No actions were taken when the sample result was greater than five times the blank result or had already been qualified as non-detect because of laboratory qualification as an EMPC. Sample results that were not greater than five times the method blank detections resulted in the following qualifications:

Sample	Analyte	Original Result (pg/g)	Qualified Result (pg/g)
LRIS-LR-131	Total TCDD	0.5 JB	0.5 U
LRIS-LR-RB-20121202	OCDD	3.8 JB	3.8 U
LRIS-LR-RB-20121203	OCDD	4.0 JB	4.0 U
LRIS-LR-106-2	1,2,3,4,6,7,8-HpCDD	0.25 JB	0.25 U
LRIS-LR-106-2	1,2,3,4,6,7,8-HpCDF	0.052 JB	0.052 U
LRIS-LR-106-2	Total HpCDD	0.69 JB	0.69 U
LRIS-LR-106-2	Total HpCDF	0.052 JB	0.052 U
LRIS-LR-122-3	1,2,3,4,7,8,9-HpCDF	0.38 JB	0.38 U
LRIS-LR-125-3	1,2,3,4,7,8,9-HpCDF	0.52 JB	0.52 U
LRIS-LR-132-5	1,2,3,6,7,8-HxCDD	0.11 JB	0.11 U
LRIS-LR-132-5	1,2,3,7,8,9-HxCDD	0.092 JB	0.092 U
LRIS-LR-132-5	1,2,3,4,7,8-HxCDF	0.071 JB	0.071 U
LRIS-LR-132-5	1,2,3,6,7,8-HxCDF	0.059 JB	0.059 U
LRIS-LR-132-5	1,2,3,4,6,7,8-HpCDF	0.23 JB	0.23 U

J = Result is an estimate

Trip Blanks

Trip blanks were not required for this sampling event.

B = Compound was found in the blank and sample.

pg/g = picograms per gram.

U = non-detect.

Equipment Rinsate Blanks

Equipment rinsate blanks were collected for this sampling event. There were minor detections for OCDD and OCDF; however, no qualifications were made based on the rinsate blank results, as all associated sample results were either significantly higher or, because of method blank contamination, were previously qualified as not detected.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples. All surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

MS/MSD results are used to evaluate laboratory precision and accuracy. All MS/MSD samples were extracted and analyzed at the required frequency for Method 9060. MS/MSD samples are not required for Method 1613b. All recoveries were within acceptance limits for percent recovery and relative percent differences (RPDs).

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. Duplicate samples were extracted and analyzed at the required frequency for Method 9060. Duplicate samples are not required for Method 1613b. All duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency. All LCS/LCSD analytes were within acceptance limits for percent recovery.

FIELD DUPLICATE SAMPLE

Field duplicate samples measure both field and laboratory precision. Two field duplicates were submitted for analysis (LRIS-LR-130-FD-1 and LRIS-LR-130-FD), meeting the project-specific criteria.

MFA uses acceptance criteria of less than 100 percent RPD for results that are less than five times the RL, or less than 50 percent RPD for results that are greater than five times the RL. Non-detect data, data qualified as EMPCs, and/or data already qualified as estimates (I) are not qualified based on the RPD calculated for field duplicate results. Only field duplicate pairs were qualified based on RPD exceedances. Primary and field duplicate results and RPDs are summarized in the following table:

Sample	Field Duplicate	Analyte	Sample Result (pg/g)	Field Duplicate Result (pg/g)	Relative Percent Difference
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,4,6,7,8- HpCDD	27 J	72 J	90.9
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,4,6,7,8- HpCDF	3.2	7.1	75.7
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,4,7,8,9- HpCDF	0.053 U	0.19 U	112.7
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,4,7,8- HxCDD	0.3 U	0.54 J	57.1
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,4,7,8-HxCDF	0.28 U	0.57 U	68.2
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,6,7,8- HxCDD	1.4 J	3.6	88
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,6,7,8-HxCDF	0.19 J	0.35 J	59.2
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,7,8,9- HxCDD	0.61 J	0.96 J	44.5
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,7,8,9-HxCDF	0.026 U	0.091 U	111.1
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,7,8-PeCDD	0.056 U	0.19 U	108.9
LRIS-LR-130-2	LRIS-LR-130-FD	1,2,3,7,8-PeCDF	0.044 U	0.18 U	121.4
LRIS-LR-130-2	LRIS-LR-130-FD	2,3,4,6,7,8-HxCDF	0.3 J	0.72 J	82.3
LRIS-LR-130-2	LRIS-LR-130-FD	2,3,4,7,8-PeCDF	0.098 J	0.2 U	68.4
LRIS-LR-130-2	LRIS-LR-130-FD	2,3,7,8-TCDD	0.16 U	0.16 U	0
LRIS-LR-130-2	LRIS-LR-130-FD	2,3,7,8-TCDF	0.32 U	0.12 J	90.9
LRIS-LR-130-2	LRIS-LR-130-FD	OCDD	270	660	83.8
LRIS-LR-130-2	LRIS-LR-130-FD	OCDF	6.8	14	69.2
LRIS-LR-130-2	LRIS-LR-130-FD	Total HpCDDs	49	140	96.2
LRIS-LR-130-2	LRIS-LR-130-FD	Total HpCDFs	9.6	24	85.7
LRIS-LR-130-2	LRIS-LR-130-FD	Total HxCDDs	7.4 U	15	67.8
LRIS-LR-130-2	LRIS-LR-130-FD	Total HxCDFs	6.1 U	15 U	84.3
LRIS-LR-130-2	LRIS-LR-130-FD	Total PeCDDs	0.4 U	0.19 U	71.1
LRIS-LR-130-2	LRIS-LR-130-FD	Total PeCDFs	1.1 U	1.1 J	0
LRIS-LR-130-2	LRIS-LR-130-FD	Total TCDDs	0.39 U	0.16 U	83.6
LRIS-LR-130-2	LRIS-LR-130-FD	Total TCDFs	0.66 U	0.12 U	138.4
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,4,6,7,8- HpCDD	25 J	19 J	27.2
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,4,6,7,8- HpCDF	2.9 U	2.9 J	0
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,4,7,8,9- HpCDF	0.083 U	0.056 U	38.8
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,4,7,8- HxCDD	0.19 J	0.23 U	19
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,4,7,8-HxCDF	0.68 J	0.47 J	36.5

Sample	Field Duplicate	Analyte	Sample Result (pg/g)	Field Duplicate Result (pg/g)	Relative Percent Difference
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,6,7,8- HxCDD	1.2 U	1 J	18.1
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,6,7,8-HxCDF	0.27 J	0.22 J	20.4
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,7,8,9- HxCDD	0.54 J	0.42 U	25
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,7,8,9-HxCDF	0.035 U	0.025 U	33.3
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,7,8-PeCDD	0.074 U	0.051 U	36.8
LRIS-LR-130	LRIS-LR-130-FD-1	1,2,3,7,8-PeCDF	0.11 U	0.15 J	30.7
LRIS-LR-130	LRIS-LR-130-FD-1	2,3,4,6,7,8-HxCDF	0.24 J	0.25 J	4
LRIS-LR-130	LRIS-LR-130-FD-1	2,3,4,7,8-PeCDF	0.073 U	0.15 J	69
LRIS-LR-130	LRIS-LR-130-FD-1	2,3,7,8-TCDD	0.044 U	0.029 U	41
LRIS-LR-130	LRIS-LR-130-FD-1	2,3,7,8-TCDF	0.24 U	0.3 J	22.2
LRIS-LR-130	LRIS-LR-130-FD-1	OCDD	250	170	38
LRIS-LR-130	LRIS-LR-130-FD-1	OCDF	13	7.2	57.4
LRIS-LR-130	LRIS-LR-130-FD-1	Total HpCDDs	47	41	13.6
LRIS-LR-130	LRIS-LR-130-FD-1	Total HpCDFs	12 U	9.1	27.4
LRIS-LR-130	LRIS-LR-130-FD-1	Total HxCDDs	6.5 U	6 U	8
LRIS-LR-130	LRIS-LR-130-FD-1	Total HxCDFs	6.3	5.1	21
LRIS-LR-130	LRIS-LR-130-FD-1	Total PeCDDs	0.074 U	0.17 J	78.6
LRIS-LR-130	LRIS-LR-130-FD-1	Total PeCDFs	0.76 J	1 U	27.2
LRIS-LR-130	LRIS-LR-130-FD-1	Total TCDDs	0.38 U	0.12 U	104
LRIS-LR-130	LRIS-LR-130-FD-1	Total TCDFs	0.83 U	0.99 U	17.4

pg/g = picograms per gram.

J = estimated.

U = non-detect.

Sample results that failed to meet RPD criteria for field duplicate pairs were qualified as estimates (J).

Sediment Reference Material

A sediment reference material (SRM) is used to help assess laboratory measurement accuracy and monitor laboratory performance when analyzing for chlorinated dioxins and furans. A Puget Sound SRM was prepared and analyzed by USEPA Method 1613b for each analytical batch. Sample results associated with SRM results that fell outside the acceptance limits set forth by the U.S. Army Corps of Engineers (COE, 2012) were qualified as estimates (J). Various results were qualified in each delivery group. Only detected concentrations were qualified as a result of SRM criteria exceedances. The following table lists SRM criteria exceedances:

		Τ
SRM Prep Date	Laboratory Report	Exceeding Analyte
12/14/2012	580-36242-2REV1	1,2,3,4,7,8,9-HpCDF
12/14/2012	580-36242-2REV1	1,2,3,7,8-PeCDF
12/14/2012	580-36242-2REV1	2,3,4,6,7,8-HxCDF
12/14/2012	580-36242-2REV1	2,3,4,7,8-PeCDF
12/14/2012	580-36242-2REV1	2,3,7,8-TCDF
12/12/2012	580-36242-2REV1	1,2,3,4,6,7,8-HpCDD
12/12/2012	580-36242-2REV1	1,2,3,4,7,8,9-HpCDF
12/12/2012	580-36242-2REV1	1,2,3,7,8-PeCDF
12/12/2012	580-36242-2REV1	2,3,7,8-TCDD
12/12/2012	580-36242-2REV1	2,3,7,8-TCDF
1/11/2013	580-36242-3REV1	1,2,3,4,6,7,8-HpCDF
1/11/2013	580-36242-3REV1	1,2,3,4,7,8,9-HpCDF
1/11/2013	580-36242-3REV1	1,2,3,4,7,8-HxCDF
1/11/2013	580-36242-3REV1	1,2,3,6,7,8-HxCDF
1/11/2013	580-36242-3REV1	2,3,4,6,7,8-HxCDF
1/11/2013	580-36242-3REV1	2,3,7,8-TCDD
1/11/2013	580-36242-3REV1	2,3,7,8-TCDF
1/17/2013	580-36242-5	1,2,3,7,8,9-HxCDF
1/17/2013	580-36242-5	2,3,7,8-TCDF
1/17/2013	580-36242-5	OCDF
2/8/2013	580-36242-7	1,2,3,7,8,9-HxCDF

Sample results associated with SRM exceedances were flagged as estimates (J) if detected.

REPORTING LIMITS

TA used routine RLs and estimated detection limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies. None were found.

- COE. 2012. Puget Sound sediment reference material: requesting and analyzing the SRM, and reporting data. U.S. Army Corps of Engineers. May.
- MFA. 2012. Dioxin and furan analysis, data validation, and TEQ calculation rules. Maul Foster and Alongi, Inc. December.
- TA. 2012. Quality assurance manual. Test America, Sacramento, California.
- USEPA. 1986. Test methods for evaluating solid waste: physical/chemical methods. EPA-530/SW-846. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. September (revision 6, February 2007).
- USEPA. 2005. USEPA Analytical Services Branch national functional guidelines for chlorinated dibenzo-p-dioxins and chlorinated dibenzofurans data review. EPA-540-R-05-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. February.
- USEPA. 2008. USEPA contract laboratory program, national functional guidelines for organics data review. EPA 540/R-08/01. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. June.

APPENDIX G

DIOXIN AND FURAN ANALYSIS, DATA VALIDATION, AND TEQ CALCULATION RULES

To: File Date: September 28, 2012

From: Erik Naylor Project: 9003.01.40

RE: Dioxin and Furan Analysis, Data Validation, and TEQ Calculation Rules

The term dioxin is used to refer to a family of toxic chemicals that share a similar chemical structure and a common mechanism of toxic action. While there are 210 dioxin congeners, typically only the 17 most toxic congeners are reported by laboratories. The reported concentrations of the 17 dioxin congeners typically are validated to assess usability and then a toxicity equivalent concentration (TEQ) is calculated from the reported results to evaluate the toxicity of these compounds as a whole. The purpose of this memo is to provide an approach for dioxin data validation and TEQ calculation for the former Pacific Wood Treating site. Further, analytical method recommendations and requirements for laboratory deliverables are provided to enable consistent data validation and TEQ calculation using data from a variety of laboratories.

Critical to consistent data use is consistent use of terminology. Terms used in this memorandum are defined below.

- Method Detection Limit (MDL)—The minimum concentration of a compound that can be measured and reported with 99 percent confidence that the value is greater than zero according to the Washington State Department of Ecology's (Ecology), Model Toxics Control Act (MTCA) (Ecology, 2007).
- Estimated Detection Limit (EDL)—The sample- and analyte-specific EDL is an estimate made by the laboratory of the concentration of a given analyte that would have to be present to produce a signal with a peak height of at least 2.5 times the background noise signal level (U.S. Environmental Protection Agency [USEPA], 2005).
- Practical Quantitation Limit (PQL)—The lowest concentration that can be reliably measured within specified limits of precision, accuracy, representativeness, completeness, and comparability during routine laboratory operating conditions, using Ecology-approved methods (Ecology, 2007). This value is usually the lowest concentration used to calibrate the instrument after being adjusted for sample volume, sample extract volume, cleanups performed, and injection volume. PQLs should be no greater than 10 times the MDL (Ecology, 2007) and no greater than what is established by the USEPA in 40 Code of Federal Regulations (CFR) 136, 40 CFR 141-143, or 40 CFR 260-270.

- Estimated Maximum Potential Concentration (EMPC)—An EMPC is a value calculated for a reported analyte when the signal-to-noise ratio is at least 2.5:1 for both quantitation ions, but the ion abundance ratio criteria used for analyte confirmation are not met (USEPA, 2005). An EMPC value represents the maximum possible result of an analyte that could not be positively identified. The inability to positively identify the analyte could be a result of matrix interference, a coeluting compound, or low response.
- Toxic Equivalency Factor (TEF)—The factor by which each congener is multiplied in order to calculate its toxicity relative to 2,3,7,8-TCDD (Ecology, 2007). These values are summed to calculate the TEQ. TEFs depend on the endpoint being examined (i.e., birds, fish, mammals).
- TEQs—Concentrations of each congener are adjusted and summed to reflect their potency relative to 2,3,7,8-TCDD, one of the most toxic congeners. The TEQ is the sum of congener results multiplied by their specific TEF (Ecology, 2007).

ANALYTICAL METHODS

Dioxins are analyzed generally by USEPA Method 1613B or 8290, using a high-resolution gas chromatograph paired with a high-resolution mass spectrometer. A laboratory's PQL is usually the same for both methods. While the methods are very similar, Method 1613B is preferred, as it requires more rigorous quality assurance and quality control (QA/QC) through the use of six more internal standards than Method 8290. Because analytical technology and methodology have advanced rapidly since the methods were written, many laboratories combine elements of both methods to obtain the best results possible (Hoffman, E., and D. Fox 2010). Often the preparation and analyses are run using Method 1613B (for the additional QA/QC), while the calculations will be performed by Method 8290 (in order to obtain the sample- and analyte-specific EDLs). Method 1613B with calculated EDLs is the preferred method.

LABORATORY DELIVERABLES

It is important to work closely with the laboratory performing the dioxin analyses because different laboratories report data in different ways. The following items should be requested to ensure that the analytical report and electronic data deliverable (EDD) will contain all of the requisite information to validation the data and calculate TEQs:

- EDLs¹ and PQLs should be included in the final analytical report. EDLs, MDLs, and PQLs should all be included in the EDD.
- Results should be reported to the sample- and analyte-specific EDL. Results below the PQL but above the EDL will be qualified as estimates (J).

¹ Note that USEPA Method 1613B does not provide for the calculation of EDLs; therefore, the laboratory must use the calculation approach provided in Method 8290 to report the required limits.

• EMPC results should be reported at the EMPC value (EMPC values will be assigned a "U" qualifier [the analyte was not detected at or above the concentration qualified] at the time of validation).

TEQ concentrations will not be requested from the laboratory. If the laboratory provides TEQ concentrations, they will not be used because the data have not been validated TEQs should be calculated only after the data are validated.

VALIDATION

Dioxin data are validated much like other organic data, but there are a few issues that do not typically arise in other organic data sets. In addition to standard validation procedures (USEPA 2005), the following scenarios should be addressed in the fashion described below, consistent with other Ecology sites (Ecology and Environment and G. L. Glass, 2011):

- EMPC reported values should be assigned a U qualifier at the reported EMPC value.
- EMPC values that appear to be significantly elevated should be investigated further with the laboratory and may be assigned an R qualifier (unusable) when applicable.
- Non-detected results should be assigned a U qualifier and reported at the EDL value.

Further dioxin validation guidelines can be found in the National Functional Guidelines for Chlorinated Dibenzo-p-Dioxins (CDDs) and Chlorinated Dibenzofurans (CDFs) Data Review (USEPA 2005). Data must be validated before TEQs are calculated.

TEQS

To express the overall toxicity of the 17 reported dioxins, the concentration of each congener is adjusted based on its toxicity relative to the most toxic congener, 2,3,7,8-TCDD, and then all 17 are added together. The adjustment factors, the TEFs, are provided by the 2005 World Health Organization. TEQs are commonly calculated by one of the following two methods:

- Non-detected values (U) are set as one half of the EDL. Values that are detected, even as estimates (J), should be used at face value. Multiply congener values by their corresponding TEF and then sum all of the products.
- Non-detected values (U) are set as 0. Values that are detected, even as estimates (J), should be used at face value. Multiply congener values by their corresponding TEF and then sum all of the products.

These methods result in two different TEQ values that can be shown as TEQ (U=1/2) and TEQ (U=0). TEQs should not be calculated to more significant figures than the original data. The table below illustrates these methods:

Dioxin	Result (ng/kg)	TEC ¹ (U=1/2) (ng/kg)	TEC ¹ (U=0) (ng/kg)	TEF Mammals
1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	44	44	44	0.0003
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	3000 J	3000	3000	0.0003
1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	41	41	41	0.01
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	510	510	510	0.01
1,2,3,4,7,8,9-Heptachlorodibenzofuran (HpCDF)	2.9 U	1.45	0	0.01
1,2,3,4,7,8-Hexachlorodibenzofuran (HxCDF)	6.9 U	3.45	0	0.1
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	7.4	7.4	7.4	0.1
1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	5.2 U	2.6	0	0.1
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	27	27	27	0.1
1,2,3,7,8,9-Hexachlorodibenzofuran (HxCDF)	0.5 U	0.25	0	0.1
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (HxCDD)	22	22	22	0.1
1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	3.4 U	1.7	0	0.03
1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	3.2 U	1.6	0	1
2,3,4,6,7,8-Hexachlorodibenzofuran (HxCDF)	2.4	2.4	2.4	0.1
2,3,4,7,8-Pentachlorodibenzofuran (PeCDF)	3 U	1.5	0	0.3
2,3,7,8-Tetrachlorodibenzofuran (TCDF)	1.4 U	0.7	0	0.1
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	0.23 U	0.115	0	1
Total Heptachlorodibenzofuran (HpCDF)	99	99	99	
Total Heptachlorodibenzo-p-dioxin (HpCDD)	1,100	1100	1100	
Total Hexachlorodibenzofuran (HxCDF)	97 J	97	97	
Total Hexachlorodibenzo-p-dioxin (HxCDD)	250	250	250	
Total Pentachlorodibenzofuran (PeCDF)	44	44	44	
Total Pentachlorodibenzo-p-dioxin (PeCDD)	32 J	32	32	
Total Tetrachlorodibenzofuran (TCDF)	19	19	19	
Total Tetrachlorodibenzo-p-dioxin (TCDD)	8.2	8.2	8.2	
TEQ (U=1/2)	15.2			
TEQ (U=0)	12.3			

NOTES:

ng/kg = nanograms per kilogram.

The difference between TEQ (U=1/2) and TEQ (U=0) values gives data reviewers an idea of how much the EDL substitution affects the TEQ summation (Hoffman, E., and D. Fox 2010). While

^{-- =} no value.

¹TEC is analyte-specific TEF adjusted concentration.

File September 28, 2012 Page 5

MTCA does not specify using the TEQ (U=1/2) method, it is the method that has been historically used at the Port of Ridgefield and will continue to be used.

SUMMARY

- USEPA Method 1613B is recommended for dioxin analysis (with Method 8290 EDL calculations).
- The laboratory must report a PQL and EDL for each sample and each congener, and provide a PQL, EDL, and MDL for each sample and each congener in the EDD.
- Results should be reported to the sample- and analyte-specific EDL. Results below the PQL but above the EDL will be qualified as estimates (J).
- EMPC results should be reported at the EMPC value (EMPC values will be assigned a "U" qualifier at the time of validation). However, if the EMPC is significantly elevated, additional qualification may be appropriate.
- Non-detected results should be assigned a U qualifier and reported at the EDL value.
- Laboratory data must be validated before a TEQ is calculated.
- TEQs should be calculated as follows: non-detected values (U) are set as one half of the EDL. Values that are detected, even as estimates (J), should be used at face value. Multiply congener values by their corresponding TEF and then sum all of the products.

REFERENCES

Ecology. 2007. Model Toxics Control Act statute and regulation. Publication No. 94-06. Washington State Department of Ecology. November.

Ecology and Environment Inc. and Gregory L. Glass. 2011. Rayonier Mill off-property soil dioxin study. June.

Hoffman, E., and D. Fox. 2010. Polychlorinated dioxins and furans (PCDD/F): revisions to the supplemental quality assurance project plan (SQAPP). U.S. Environmental Protection Agency. November.

USEPA. 2005. USEPA contract laboratory program national functional guidelines for chlorinated dibenzo-p-dioxins (CDDs) and chlorinated dibenzofurans (CDFs) data review. EPA 540-R-05-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. September.

APPENDIX H INTERPOLATION EVALUATION

APPENDIX H—INTERPOLATION EVALUATION

To develop initial estimates of pre- and post-remedy dioxin surface-weighted average concentrations and preliminary remedial action areas, the remedial investigation and feasibility study relied on the use of the Thiessen Polygons (TP) (MFA, forthcoming). The TP method was selected because of its simplicity and because data density was insufficient for the application of interpolation methods. The TP method was appropriate for initial evaluation of remedial alternatives and comparison of costs associated with varying remedies. However, the TP method is less appropriate for delineating the precise boundary of remedial actions because it does not account for concentration gradation, as it assumes that all sediment within a polygon exhibits the same chemical concentration.

Predesign data collection increased sediment data density such that more sophisticated and informative interpolation methods can be used. The interpolation methods predict sediment concentrations at a much finer resolution (e.g., for 1-by-1-foot [ft] cells) than TP (de Smith, Goodchild, and Longley, 2008), enabling more precise development of remedial prisms and pre- and post-remedial dioxin estimates. Note that all interpolation methods provide estimates of concentrations based on available data and therefore do not reflect actual concentrations. Commonly applied interpolation techniques, inverse-distance weighted method (IDW) and natural neighbor interpolation (NN), were evaluated to select the most appropriate method to delineate remedial action areas. The evaluation of interpolation methods and selection rationale is provided below.¹

IDW EVALUATION

IDW predicts cell values by calculating the weighted average of values available at known cells. Known values closest to the prediction cell have more influence (or weight) than those farther away. Weights are proportional to the inverse of the distance (between the known cell and the prediction cell) raised to the power value p. Lower p values more heavily weigh distant known cells and the converse is also true.

The search neighborhood parameters (search radius, shape, and minimum or maximum known data points) can also impact the resultant interpolation and act to limit the extent of the data used to determine the unknown cell values. The search radius is used to limit the distance from an unknown cell that the interpolation method can extend in search of known cells. The similarity of measured values to interpolated point values is expected to diminish with distance. The shape of the search radius is influenced by the available data and the surface to be created. If there is a discernable directional influence on the weighting of the data (e.g., due to river flow), or the data show directional attributes given what is known about the conceptual site model (CSM), the shape of the search radius may be modified

¹ Analysis extent for interpolations was clipped to the upshore extent of dredge feasibility; dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth, and ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope. Upshore extent may change slightly upon receipt of additional data (see report text for details).

from the default circular search shape to elliptical. When choosing the number of neighbors (minimum or maximum) used for interpolating the value of an unknown cell, it is important to consider enough points to yield a good prediction, and few enough points to be practical (de Smith, Goodchild, and Longley, 2008).

IDW interpolations were evaluated by varying values for the power and search neighborhood parameters. The resultant interpolations were reviewed to evaluate the model and predictions that were used to create the surface through quantifiers with statistical significance (Esri, 2001) and to select the interpolation surface expected to be most representative of actual site conditions. One important diagnostic tool is the root mean square error (RMSE). This cross validation tool in ArcGIS is used to compare a predicted value to a measured value at a known location by removing each measured value one at a time and then predicting its value using the data at the rest of the locations. The difference between the known and the predicted value is known as the root mean square prediction error. Through an iterative process, the cross validation tool calculates the root mean square prediction error using different power factors. Lower RMSE indicates that the interpolation better approximates measured values; therefore, IDW interpolations with lower RMSE, in general, better approximate actual conditions.

Data were natural log-transformed before evaluation; this is a standard feature in ArcGIS and is often used to achieve normality by reducing the influence of extreme and isolated values on the resulting contours (de Smith, Goodchild, and Longley, 2008). This transformation is particularly appropriate for the site, as data are skewed and extreme values often lie in close proximity (see Figure 4-1 in the report).

For IDW evaluation, a search radius of 200 ft was selected based on the spatial data density because known data points (i.e., sample locations) were generally within 200 ft of each other. The number of minimum neighbors (i.e., known locations) to include in interpolation was selected as 1 (i.e., at least one neighboring measured value was included in interpolation); changes to this parameter resulted in minor differences in resultant interpolations.

IDW interpolations were somewhat sensitive to power parameter variation (see Figure 1) when a circular search shape was used. A power factor of one results in the lowest RMSE, but generates discontinuous, jagged areas that are unlikely to be representative of actual conditions. Higher powers result in a smoothing of the surface but also increase the RMSE, indicating higher error in predicting known concentrations. Thus, an elliptical shape parameter was evaluated.

An elliptical search shape may better approximate actual site conditions, as sediment concentrations have a clear directional component. Sediment concentrations along the nearshore are more similar to each other than to concentrations in the midchannel; this pattern is consistent with the CSM of historical discharge from outfalls along the eastern shoreline (see Figure 4-1 in the report), and is consistent with limited mobility of dioxins, with some limited sediment transport north and south due to tidally driven river flow. An elliptical search shape is more likely to include sample concentrations to the north or south (approximately) of a prediction cell than those east or west of a prediction cell, therefore better accounting for the directionality observed in the dataset. The ellipse was oriented at 155 degrees (parallel to Lake River) with a major axis (running approximately north-south)

PAGE **H2** Evaluation doc

of 200 ft and a minor axis of 100 ft. Other major/minor axis lengths were also evaluated, but resulted in unrealistic interpolations.

The elliptical search shape resulted in a realistic (i.e., more continuous) surface interpolation that is consistent with the CSM, showing elevated concentrations occurring primarily in nearshore areas (see Figure 2). The RMSE was lowest for the power factor of one and was thus selected. A smoothing factor (0.5) was applied to further reduce "peaking" effects (see Figure 2). The smoothing factor reduces the likelihood that any one sample value will overly influence an estimated value for a given interpolation location. IDW is an exact interpolator, so where an interpolation location coincides with a sample location, a sharp "peak" or "valley" may result. Setting a smoothing factor > 0 reduces this peaking effect when it occurs.

In summary, an IDW (power factor=1 search radius=200 by 100 ft, shape=ellipse, minimum neighbors=1, smoothing factor=0.5) appeared to provide the most realistic interpolation and was carried forward for evaluation. This interpolation produces estimated surface concentrations that are most consistent with measured concentrations and the CSM, and results in smooth contouring that likely is the most representative of actual conditions.

NATURAL NEIGHBOR EVALUATION

NN calculates the value for each prediction cell by adding the cell location to the original set of locations and recalculating a set of TP (de Smith, Goodchild, and Longley, 2008); each cell's value is proportional to the average of the area of the original TP set covered by that cell's TP. It does not infer trends and will not produce peaks, pits, ridges, or valleys that are not already represented by the input samples. NN has the advantage over other spatial statistical algorithms of being fully defined, i.e., its algorithm does not rely on selection of parameters.² As with IDW, data were log-transformed to account for data skew.

INTERPOLATION COMPARISON

Resulting dioxin surface contours for TP, IDW, and NN are shown in Figure 3. TP results in a discontinuous surface with artificial peaks. IDW and NN generally predict similar extents of elevated concentrations in Lake River; a primary difference is that IDW predicts greater extent of elevated concentrations in the nearshore environment between OF-4 and OF-6. All three methods show significant overlap, reflecting sufficient data density to characterize extent of dioxin impacts at Lake River.

REMEDY DELINEATION

As discussed, IDW provides fine scale resolution that the TP method cannot provide, projects slightly greater extent of elevated dioxin concentrations than NN (and is therefore

R:\9003.01 Port of Ridgefield\Report\40_2013.06.14 Predesign Sampling Report\App H Interpolation Eval\Interpolation

Evaluation.doc

PAGE **H3**

-

² NN does not provide concentration estimates for areas beyond the polygon encompassing all measured data points; therefore "dummy points" equivalent to the nearest in-water sample were generated at +12 Columbia River Datum directly perpendicular to Lake River to provide estimates of the nearshore environment.

slightly more conservative), and is consistent with the CSM and measured site concentrations. Therefore, IDW is selected as the interpolation methodology for delineating remedial action areas.

Note that because interpolation methods project similar sediment concentrations, the differences between surface remedy areas based on different interpolation methods are minor (see Figure 4). The contour boundaries shown represent the extent of remedial actions to be conducted, i.e., enhanced natural recovery (ENR) for sediments between 5 nanograms per kilogram (ng/kg) and 30 ng/kg dioxin toxicity equivalent, and dredge and ENR for areas exceeding 30 ng/kg.

Figure 4-2 in the report shows distribution of dioxin extent in surface and subsurface, using the selected IDW interpolation. To delineate the remedial areas, one of three "values" was assigned to a 1-x-1-ft cell, based on the predicted dioxin concentration for each of the four interpolations shown in Figure 4-2 (surface, 1 to 2 ft, 2 to 3 ft, 3 to 4 ft):

- Concentrations in surface and subsurface greater than 30 ng/kg were assigned "Dredge."
- Surface locations with concentrations between 5 and 30 ng/kg were assigned "ENR."
- Concentrations from 0 to 5 ng/kg were assigned "No Action."

A composite remedial action surface was then generated by assigning the maximum value (4-ft dredge depth being maximum [this includes 1 ft of overdredge], No Action being minimum) from each of the four interpolations at surface and subsurface. The composite remedial action surface was first generated on a 1-x-1-ft grid, and then on a 10-x-10-ft grid. Remedial actions were assigned to a 10-x-10-ft grid to approximate a scale at which remedial actions can be feasibly conducted, i.e., dredge bucket size may be 7 x 7 ft.³

The majority value from the 1-x-1-ft grids comprised by a 10-x-10-ft grid was transferred to the 10x10-ft grid. For example, if the majority of 1-x-1-ft cells in the 10-x-10-ft grid are projected to exceed 30 ng/kg, then a "Dredge" action is assigned to that grid.⁴ The resulting remedial areas are shown in Figure 4-3 in the report.

POST-REMEDY CONDITIONS

The estimated post-remedy conditions following dredging and ENR placement are described in the report. Figure 5 shows projected conditions following dredging but prior to ENR placement. Note that residuals may increase concentrations above those shown; however, ENR is expected to cover and dilute any residuals through mixing.

R:\9003.01 Port of Ridgefield\Report\40_2013.06.14 Predesign Sampling Report\App H Interpolation Eval\Interpolation

Evaluation.doc

PAGE **H4**

_

³ Further detail on equipment to be used (dredge bucket size and reach) may modify the appropriate grid size, and therefore the appropriate remedial action for a particular grid could change; however, the overall change is expected to be minimal.

⁴ An approach assigning the action according to the maximum value (rather than the majority value) for cells in the larger grid was also considered (maximum method). This method resulted in a few additional areas targeted for remedial action, primarily in the midchannel. Empirical data indicate low concentrations (i.e., below cleanup levels) in the mid-channel, thus the majority method was selected.

REFERENCES

Esri. 2001. ArcGIS Geostatistical Analyst: statistical tools for data exploration, modeling, and advanced surface generation. Esri white paper, 15-16. http://www.esri.com/library/whitepapers/pdfs/geostat.pdf (March 15, 2013). August.

MFA. Forthcoming. Former PWT site remedial investigation and feasibility study. Prepared for the Port of Ridgefield. Maul Foster & Alongi, Inc., Vancouver, Washington.

de Smith, M., M. Goodchild., and P. Longley. 2008. Geospatial analysis: a comprehensive guide. Matador: Leicester, UK. Excerpt available from: http://www.spatialanalysisonline.com/output/.

FIGURES

Source: Aerial photograph obtained from ESRI, Inc. ArcGIS Online/Bing Maps

- Notes:

 1. ENR = Enhanced Natural Recovery.

 2. IDW = Inverse Distance Weighted.

 3. TEQ = Toxicity Equivalent.

 4. ng/kg = nanograms per kilogram.

 5. Dioxin TEQ values west of sampling extent were extrapolated to an assumed constant of 2.0 ng/kg.

 6. Analysis extent has been clipped to the upshore extent of dredge feasibility. Dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth. ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope.

 7. Sample concentrations were log-normalized prior to conducting interpolation because of a positively skewed histogram indicating the presence of a few very large concentrations.

 8. IDW parameters: 200-ft circular search neighborhood, minimum samples=1.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Legend

▲ Surface Sediment Sample

Historical Outfall

Figure 1 **DISTRIBUTION OF DIOXIN IN SEDIMENT Evaluation of Parameter Settings using IDW Interpolation with 200-ft Radius Circular Search Neighborhood**

Former PWT Site Ridgefield, Washington

Notes:

1. ENR = Enhanced Natural Recovery.

2. IDW = Inverse Distance Weighted.

3. TEQ = Toxicity Equivalent.

4. ng/kg = nanograms per kilogram.

5. Surface Dioxin TEQ west of sample points was extrapolated to an assumed constant of 2.0 ng/kg.

6. Analysis extent has been clipped to the upshore extent of dredge feasibility. Dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth. ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope.

7. Sample concentrations were log-normalized prior to conducting interpolation because of a positively skewed histogram indicating the presence of a few very large concentrations.

8. IDW parameters: Power=1, 200-ft x 100-ft elliptical search neighborhood at 155°, minimum samples=1, smoothing factor=0.5.

p. 971 544 2139 | www.maulfoster.com

Surface Dioxin TEQ (ng/kg)

Legend

Historical Outfall

Surface Sediment Sample

DISTRIBUTION OF DIOXIN IN SEDIMENT Evaluation of Parameter Settings using IDW Interpolation with 100-ft x 200-ft **Elliptical Search Neighborhood**

Former PWT Site Ridgefield, Washington

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Source: Aerial photograph obtained from ESRI, Inc. ArcGIS Online/Bing Maps

- Notes:

 1. ENR = Enhanced Natural Recovery.

 2. IDW = Inverse Distance Weighted.

 3. TEQ = Toxicity Equivalent.

 4. ng/kg = nanograms per kilogram.

 5. Dioxin TEQ values west of sampling extent were extrapolated to an assumed constant of 2.0 ng/kg.

 6. Analysis extent has been clipped to the upshore extent of dredge feasibility. Dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth. ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope.

 7. Sample concentrations were log-normalized prior to conducting interpolation because of a positively skewed histogram indicating the presence of a few very large concentrations.

 8. IDW parameters: Power=1, 200-ft x 100-ft elliptical search neighborhood at 155°, minimum samples=1, smoothing factor=0.5.

 M. A. U. L. F. O. S. T. E. R. A. L. O. N. G. I.

p. 971 544 2139 | www.maulfoster.com

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

Legend

Surface Sediment Sample

Historical Outfall

Surface Dioxin TEQ (ng/kg)

Figure 3 **DISTRIBUTION OF DIOXIN IN SEDIMENT Evaluation of Interpolation Methodology —** Thiessen Polygons, Natural Neighbor & IDW

Former PWT Site Ridgefield, Washington

Notes:

1. IDW = inverse distance weighted.
2. TEQ = toxicity equivalent.
3. ng/kg = nanograms per kilogram.
4. Surface Dioxin TEQ west of sample points was extrapolated to an assumed constant of 2.0 ng/kg.
5. Analysis extent has been clipped to the upshore extent of dredge feasibility. Dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth. ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope.
6. Sample concentrations were log-normalized prior to conducting interpolation because of a positively skewed histogram indicating the presence of a few very large concentrations.
7. IDW parameters: Power=1, 200-ft x 100-ft elliptical search neighborhood at 155°, minimum samples=1, smoothing factor=0.5.

MAUL FOSTER ALONGI

p. 971 544 2139 | www.maulfoster.com This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

DREDGE PRISM AND ENR DELINEATION Comparison of Extents based on **Various Interpolation Methods** Surface Sediment Sample

Former PWT Site Ridgefield, Washington

Legend

Notes:

1. ENR = Enhanced Natural Recovery.

2. IDW = Inverse Distance Weighted.

3. TEQ = Toxicity Equivalent.

4. ng/kg = nanograms per kilogram.

5. Analysis extent has been clipped to the upshore extent of dredge feasibility plus 20 feet bankward. Dredge boundaries near the shore were generally determined by projection of a 3:1 horizontal to vertical slope down from the shoreline inflection point to the required dredge depth. ENR boundaries near the shore were determined by the point where the shore slope transitions to less than a 5:1 horizontal to vertical slope.

6. Post-remedy concentrations were log-normalized prior to conducting interpolation to maintain consistent methodology with the interpolation of the preremedy surface.

7. IDW parameters: Power=1, 200-ft x 100-ft elliptical search neighborhood at 155°, minimum samples=1,

IDW parameters: Power=1, 200-ft x 100-ft elliptical search neighborhood at 155°, minimum samples=1, smoothing factor=0.5.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

MAUL FOSTER ALONGI p. 971 544 2139 | www.maulfoster.com

Legend

Surface Sediment Sample

Historical Outfall Surface Dioxin TEQ (ng/kg)

30 1

Figure 5 Post-Remedy Distribution of Dioxin in Sediment before ENR Treatment

Former PWT Site Ridgefield, Washington

