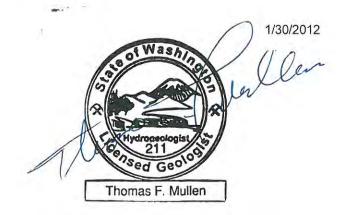


Imagine the result

BP West Coast Products, LLC


Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

January 30, 2012

a Alexander Lopez III, LG

Alexander Lopez III, LG Project Geologist

Thomas F. Mullen, LHG Senior Hydrogeologist

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

Prepared for: BP West Coast Products, LLC

Prepared by: ARCADIS U.S., Inc. 111 SW Columbia Street Suite 670 Portland, Oregon 97201 Tel 503.220.8201 Fax 503.220.8209

Our Ref.: GP09BPNA.WA60.C0000

Date: January 30, 2012

Table of Contents

1. Introduction									
	1.1	Site Description	2						
	1.2	Previous Investigations	2						
2.	Sedime	ent Screening and Sampling	3						
3.	Terrest	trial Ecological Evaluation	3						
4.	Site Inv	vestigation	4						
	4.1	Underground Utility Clearance	4						
	4.2	Soil Boring and Monitoring Well Installation	4						
	4.3	Soil Screening and Lithology	5						
	4.4	Soil Sample Collection	5						
	4.5	Monitoring Well Construction and Development	6						
	4.6	Groundwater Sample Collection	7						
	4.7	Decontamination Activities	8						
	4.8	Investigation Derived Waste Management	8						
5.	Data Va	alidation	8						
	5.1	Data Quality Assessment	8						
	5.2	Quality Assurance/Quality Control Procedures	9						
	5.3	Data Usability	9						
		5.3.1 Data Completeness	9						
		5.3.2 Holding Times	10						
		5.3.3 Blind Duplicates	10						
		5.3.4 Trip Blanks	10						
		5.3.5 Laboratory Quality Control Standards	11						
	5.4	Results of Data Validation	12						
6.	Conce	ptual Site Model	12						
	6.1	Sources of Contamination	12						
	6.2	Constituents of Concern	13						

Table of Contents

Re	ferences		21
8.	Conclu	sions	20
	7.4	Groundwater Analytical Results	20
	7.3	Tidal Influence Evaluation	18
	7.2	Soil Analytical Results	17
	7.1	Sediment Analytical Results	17
7.	Results	and Discussion	16
	6.6	Identification of Preliminary Cleanup Levels	16
	6.5	Potential Receptor and Exposure Pathway Evaluation	15
	6.4	Current and Future Land and Resource Uses	14
	6.3	Potentially Impacted Media	14

Tables

7.

8.

	Table 1	Historical Soil Analytical Results
	Table 2	Historical Groundwater Analytical Results
	Table 3	Soil Analytical Results – August 23-25, 2010
	Table 4	Select Groundwater Analytical Results – October 1, 2010- September 22, 2011
	Table 5	Groundwater Elevation Data
	Table 6	Electrical Conductivity Versus High and Low Tide
Figu	res	
	Figure 1	Site Location Map
	Figure 2	Site Plan with Geoprobe and Monitoring Well Locations
	Figure 3	Site Plan with Historical Sampling Locations
	Figure 4	Historical TPH-G, TPH-D, and cPAH Concentrations in Soil (1-3 Feet BGS)
	Figure 5	Historical TPH-G, TPH-D, and cPAH Concentrations in Soil (3-6 Feet BGS)
	Figure 6	Historical TPH-G, TPH-D, and cPAH Concentrations in Soil (6-9 Feet BGS)

Table of Contents

ARCADIS

Figure 7	Cross-Section Location Map
Figure 8	Cross-Section A-A'
Figure 9	Cross-Section B-B'
Figure 10	TPH-G, TPH-D and cPAH Concentrations in Soil (2-2.5 FT BGS) – August 2010
Figure 11	TPH-G, TPH-D and cPAH Concentrations in Soil (4-4.5 FT BGS) – August 2010
Figure 12	TPH-G, TPH-D and cPAH Concentrations in Soil (6-6.5 FT BGS) – August 2010
Figure 13	Groundwater Elevation Contour and Analytical Summary Map
Figure 14	Estimated Horizontal Extent of Soil Impacted above MTCA-A
Figure 15	Groundwater Elevation Contour – High and Low Tide- 6/2/2011

Appendices

- A Integral Consulting, Inc., Sediment Screening Sampling Report
- B Terrestrial Ecological Evaluation Form
- C Standard Operating Procedures
 - a. Monitoring Well Installation
 - b. Soil Drilling and Sample Collection
 - c. Chain of Custody Handling, Packing and Shipping
 - d. Monitoring Well Development
 - e. Low-Flow Groundwater Purging and Sampling Procedures for Monitoring Wells
 - f. Field Equipment Decontamination
 - g. Investigation Derived Waste Handling and Storage
- D Soil Boring and Monitoring Well Installation Logs
- E Laboratory Analytical Reports
- F Groundwater Monitoring Field Data Sheets
- G Drinking Water Protection Area Maps
- H Hydrograph

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

1. Introduction

On behalf of BP West Coast Products, LLC (BP), ARCADIS U.S., Inc. (ARCADIS) has prepared this revised Remedial Investigation Report (Report) for the lowland portion of the former Industrial Petroleum Distributors (IPD) site located at 1120 West Bay Drive in Olympia, Washington (the "Site"). The objective of this remedial investigation was to complete site characterization and define the extent of impacted soil and groundwater exceeding the Model Toxics Control Act (MTCA) Method A cleanup levels. This remedial investigation and report are being performed in accordance with Agreed Order No. DE 00TCPSR-1628. Soil and groundwater analytical data collected during this remedial investigation, as well as four subsequent quarters of groundwater analytical data, were compared to the MTCA Method A cleanup levels pursuant to Washington Administrative Code (WAC) Chapter 173-340-704 (2007). This revised report was prepared in response to the *Transmittal of Ecology Comments on the Remedial Investigation Report* dated October 31, 2011.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

1.1 Site Description

The former IPD site includes two parcels of land (parcel Nos. 0903-000-5000 and 0903-000-3000) on the west side of West Bay Drive, and is also affiliated with a lowland area, which is not explicitly listed in the Agreed Order. The Site appears to have been assigned parcel No. 0903-000-1000 by Thurston County, but a line adjustment performed in 2010 is in the process of being reviewed by ARCADIS to confirm the current parcel number. The Site is located east of West Bay Drive. The majority of the Site is currently owned by the Port of Olympia (the "Port"), but a 0.02acre parcel located on the west side of the Site is owned by BNSF Railroad. This report addresses the lowland parcel, which is located at 1120 West Bay Drive in Olympia, Washington on the east side of West Bay Drive. A site location map is presented in Figure 1. The Site was formerly used as a bulk petroleum distribution facility by Atlantic Richfield Company (ARCO) and IPD, which provided infrastructure for a bulk petroleum storage facility (bulk plant) operated on the upland portion of the former IPD site. The upland portion of the former IPD site was owned by Industrial Petroleum Distributors. An underground pipeline on the north side of the Site was used to transfer petroleum products (gasoline and oil) from barges into above-ground storage tanks located at the bulk plant. An abandoned pier originating on the Site extends approximately 400 feet into West Bay. The Site is currently vacant. A site plan is presented in Figure 2. The upland portion of the former IPD site was issued a No Further Action letter on June 25, 2003 and reports pertaining to the remedial investigations conducted at the upland IPD site are available in public record through the Washington State Department of Ecology (Ecology).

1.2 Previous Investigations

The bulk terminal and Site infrastructure have been out of use since approximately 1989. The former storage tanks associated with the bulk plant, which were located west of the Site, were decommissioned and removed in 1999 (SECOR, 2001).

Several independent consultants performed subsurface investigations at the Site between 2000 and 2004 following the completion of a Limited Environmental Site Assessment conducted by SECOR in 2000 (SECOR, 2000) on behalf of ARCO Products, Inc. The site investigations focused on the north side of the Site near the underground pipeline formerly used to transfer petroleum products. A total of 15 soil samples (IPD-1 through IPD-6, S-1 through S-6, and WBTP-01 through WBTP-03) were collected at depths ranging from 2.5 feet to 7 feet below ground surface (bgs). Groundwater samples were collected from 10 of these locations (IPD-1 through IPD-5,

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

W-1[S-1] and W-2 [S-2], and WBTP-01 through WBTP-03) (SECOR, 2007). The approximate locations of historic soil and groundwater sampling locations are presented in **Figure 3** and results are summarized in **Figures 4** through **6**. The results of soil samples collected at the Site historically are included in **Table 1** and of historical groundwater samples in **Table 2**. Soil and groundwater samples collected as a result of these site investigations were submitted for analysis of petroleum hydrocarbon constituents and metals. The results of these analyses detected petroleum constituents including total petroleum hydrocarbons–diesel range organics (TPH-DRO) and total petroleum hydrocarbons-heavy oils (TPH-HO), metals, and volatile organic compounds (VOCs) in both soil and groundwater samples.

TPH in the gasoline range (TPH-GRO) was not detected above laboratory method reporting limits in any of the soil samples submitted for analysis. TPH-DRO and TPH-HO, as well as polycyclic aromatic hydrocarbons (PAHs) and metals were detected in several soil samples. However, only TPH-DRO and PAHs were detected at concentrations exceeding the applicable MTCA Method A cleanup levels.

TPH-GRO, TPH-DRO, TPH-HO, benzene, toluene, total xylenes, PAHs, and metals were detected in several groundwater samples. Of these, only TPH-GRO, TPH-DRO, TPH-HO, arsenic and lead were detected at concentrations exceeding MTCA Method A cleanup levels (SECOR, 2001 & 2007).

2. Sediment Screening and Sampling

An investigation of marine sediments bordering the Site was conducted in August 2009 by Integral Consulting, Inc (Integral). The objective of the sediment sampling was to screen intertidal sediments for petroleum hydrocarbon impacts. The investigation included the collection of sediment samples at four locations along the abandoned pier. The sampling locations, depths of sediment samples collected, and analytical screening requirements were specified by Ecology. The samples were analyzed for total petroleum hydrocarbon identification (TPH-HCID). A detailed summary of the sampling methodology is presented in the Integral Sediment Screening and Sampling Report, dated December 17, 2009. The full report, including figures indicating sampling locations, is included in **Appendix A**.

3. Terrestrial Ecological Evaluation

A terrestrial ecological evaluation was conducted for the Site in accordance with WAC 173-340-7491. The terrestrial ecological evaluation was performed to determine

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

whether a release to soil threatens the terrestrial environment, to characterize potential threats to terrestrial plants and animals, and to establish site-specific cleanup standards for the protection of terrestrial plants and animals. Per subsection 7491(c)(i) of Chapter 173-340 WAC, the Site qualifies for an exclusion from terrestrial ecological evaluation because there are less than 1.5-acres of contiguous undeveloped land on or within 500 feet of the Site. The Terrestrial Ecological Evaluation Form is included in **Appendix B**.

4. Site Investigation

ARCADIS conducted a site investigation between August and October 2010. The objective of this investigation was to complete site characterization and define the extent of impacted soil and groundwater exceeding the MTCA Method A cleanup levels. ARCADIS installed 16 soil borings to characterize the extent of hydrocarbon impacted soil at the Site. Seven borings were completed as monitoring wells, and both soil and groundwater samples were collected. Subsequently, four additional quarters of groundwater samples were collected at the newly installed wells.

4.1 Underground Utility Clearance

Washington State One Call was contacted by ARCADIS on August 17, 2010 to provide mark-outs of public utilities in the vicinity of the proposed boring locations. In addition, a private utility locate was performed by ULS to locate potential on-site utilities not identified by the public utility locate. Potential utilities and subsurface structures were marked-out on the surface with paint. The proposed boring locations were not found to conflict with potential underground utilities or structures. Finally, ARCADIS staff conducted a visual inspection of the Site to identify potential utility lines. In this way ARCADIS established three lines of evidence of utility location prior to implementation of drilling activities.

4.2 Soil Boring and Monitoring Well Installation

From August 23 to 25, 2010, Cascade Drilling, Inc. (Cascade), of Woodinville, Washington installed 16 borings (GP-1 through GP-9, MW-6R, and MW-7 through MW-12) under the direct supervision of ARCADIS personnel. Borings MW-6R and MW-7 through MW-12 were completed as groundwater monitoring wells. Locations of the soil borings and monitoring wells are shown in **Figure 2**. The Soil Drilling and Sample Collection Standard Operating Procedure (SOP) and Monitoring Well Installation SOP are included in **Appendix C**.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

Borings GP-1 through GP-9 were advanced with a hand auger to a completed depth of 6.5 feet bgs unless refusal was encountered. Upon completion, soil borings were abandoned by backfilling with hydrated bentonite chips. Monitoring wells were installed to depths of 12 feet bgs (MW-6R), or 13 feet bgs (MW-7 through MW-12) using a limited-access hollow stem auger drill rig, following initial borehole clearance to 5 feet by hand auger. A cross section location map and two cross sections depicting selected boring locations are presented as **Figures 7**, **8** and **9**, respectively. Soil boring and monitoring well installation logs are included as **Appendix D**.

4.3 Soil Screening and Lithology

During hand-augering, soil samples were collected for field screening and lithologic documentation at approximate 2-foot intervals. During drilling, soil samples were collected continuously for lithologic documentation with field screening using a photo-ionization detector (PID) conducted at approximate 2-foot intervals. Field screening was conducted by measuring approximately 30 grams of soil from a relatively undisturbed soil sample and placing the sample in a resealable plastic bag. The collected soil was broken up and allowed to rest for approximately 20 minutes. The head space within the bag was tested for total organic vapor, measured in parts per million (ppm), by inserting the polyvinyl tubing of the PID into the bag. The PID results were noted on the field boring logs. PID concentrations of 10 ppm or less were used as a proxy to indicate no hydrocarbon impacts. PID readings are recorded in the soil boring logs presented in **Appendix D**.

Subsurface material observed during site investigation activities generally consisted of silty clays and sandy silt to approximately 6 feet bgs, and fine to medium sand and fine gravel between 6 and 13 feet bgs. Wood debris and bark dust were observed in borings MW-6R, MW-8, MW-10, MW-12, GP-1, GP-2, GP-4, GP-5, GP-6 and GP-7, between 3 and 9 feet bgs. Based on observations made throughout the drilling activities, groundwater elevation is highly variable and appears to be tidally influenced. Groundwater was encountered at approximately 7 feet bgs at low tide and 3 feet bgs at high tide across the Site.

4.4 Soil Sample Collection

Between August 23 and 25, 2010, at least two soil samples were collected from each borehole for chemical analysis:

• One sample at 2 to 2.5 feet bgs

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

- One sample at 4 to 4.5 feet bgs
- One sample at 6 to 6.5 feet (with the exception of soil boring locations GP-2 through GP-4)

Soil samples were collected at these prescribed depth intervals unless soil screening methods indicated additional hydrocarbon-impacted intervals. In this case, soil samples were collected from the hydrocarbon impacted area. Soil samples were placed in ice-chilled coolers and submitted to Pace Analytical Services, Inc. (Pace), located in Seattle, Washington, under chain-of-custody procedure for the following analyses:

- TPH-GRO by Northwest Method NWTPH-Gx
- TPH-DRO and TPH-HO by Northwest Method NWTPH-Dx
- RCRA 8 metals via U. S. Environmental Protection Agency (USEPA) method 6010, and mercury via USEPA Method SW7471A
- Selected VOCs including benzene, toluene, ethylbenzene and total xylenes (BTEX) by USEPA Method 5035/SW-846 8260B
- Carcinogenic PAHs (cPAHs) by USEPA Method 625/SW-846 8270

Soil analytical data are summarized in **Table 3** and **Figures 10** through **12.** Laboratory analytical reports are included in **Appendix E.** The Chain-of-Custody, Handling, Packing, and Shipping SOP is included in **Appendix C**.

4.5 Monitoring Well Construction and Development

Monitoring wells were constructed of 2-inch diameter, schedule 40 PVC piping with 10 feet of 0.010-inch slotted screen. The boring annulus was filled with 2/12 sand to approximately 1 foot above the screen, followed by 1 foot of hydrated bentonite chips to form the annular seal. Monitoring wells were finished with a concrete monument pad and flush mounted steel surface casing. At well location MW-6R, which is screened near the ground surface, there was insufficient room to complete the boring with a hydrated bentonite annular seal. At this location, the 2/12 sand pack extends to 1 foot above the screen, followed immediately by a concrete monument pad. One

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

bollard was constructed immediately adjacent to each monitoring well to protect the well head and provide a highly visible location marker.

A combination of pumping and surging was used to develop the monitoring wells. A minimum of 10 casing volumes were removed from each well, and pumping and surging continued until flow was free and clear of sediment as described in the attached SOP for Monitoring Well Development (**Appendix C**).

4.6 Groundwater Sample Collection

On October 1, 2010, Blaine Tech Services, Inc., collected one groundwater sample from each monitoring well for chemical analysis. Groundwater monitoring field data sheets are included in **Appendix F**. Monitoring wells MW-6R, MW-7, MW-8, MW-9, MW-10, MW-11, and MW-12 were gauged and low-flow purged and sampled using a peristaltic pump with dedicated disposable polyethylene tubing and a Yellow Spring Instruments (YSI) multi parameter meter. Field parameters including pH, temperature, conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential, were collected during the purging process. Groundwater samples were collected, placed in ice-chilled coolers, and submitted to TestAmerica Laboratories, Inc. (TestAmerica), located in Tacoma, Washington following chain-of-custody procedures. Groundwater samples were submitted for the following analyses:

- TPH-GRO by Northwest Method NWTPH-Gx
- TPH-DRO and TPH-HO by Northwest Method NWTPH-Dx
- Total and dissolved lead via USEPA Method 6020
- Selected VOCs including benzene, toluene, ethylbenzene and total xylenes (BTEX) by USEPA Method 5035/SW-846 8260B
- Carcinogenic polyaromatic hydrocarbons (cPAHs) by USEPA Method 625/SW-846 8270

Groundwater analytical data are summarized in **Table 4** and presented in **Figure 13**. Laboratory analytical reports are included in **Appendix E**. The Low Flow Groundwater Purging and Sampling SOP and the Chain of Custody, Handling, Packing, and Shipping SOP are included in **Appendix C**.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

Additionally, four quarters of groundwater monitoring have been conducted at the site subsequent to the installation of wells MW-6R through MW-12. The methodology and results of these events were compiled as groundwater monitoring reports submitted to DOE under separate cover (ARCADIS 2011a-d).

4.7 Decontamination Activities

Downhole drilling equipment was steamcleaned following the completion of each soil boring. Decontamination of sampling equipment and nondedicated or nondisposable field equipment was conducted using an Alconox[®] solution and deionized water rinse to prevent potential crosscontamination. The Field Equipment Decontamination SOP is included in **Appendix C**.

4.8 Investigation Derived Waste Management

Soil cuttings generated during drilling operations were containerized in appropriately labeled 55-gallon drums, which were temporarily stored on the Site pending characterization and transportation to an appropriate disposal facility.

Groundwater produced during well purging activities, as well as water used during decontamination procedures, was containerized in 55-gallon drums and temporarily stored on Site pending characterization and transportation to an appropriate disposal facility. The Investigation Derived Waste Handling and Storage SOP is included in **Appendix C**.

5. Data Validation

The following sections describe the data quality assessment, quality assurance (QA) and quality control (QC) procedures, and the data usability for the analytical results presented in this Report.

5.1 Data Quality Assessment

ARCADIS performed data validation on the 2010 site investigation analytical data upon receipt of the final laboratory reports. The data validation included a data completeness review of each data package, and a review of QA/QC parameters to ensure that all project analytical data were of reliable and comparable data quality. Data validation was also performed on historical analytical data to the extent feasible, based on the availability of laboratory reports for review. Laboratory analytical reports were not

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

reviewed for soil samples collected in August 2004 (MW-IP-1, -3, -5, -7 and MW-IP-9, all collected during the installation of MW-6). All associated analytical data and information for the samples was requested in the file review but never provided by Ecology, therefore, it is assumed this information is not on file. This sampling location was replicated later by well MW-6R. Thus, no conclusions need to be drawn from these data and the validation of data quality for these historic results is not critical to this assessment.

5.2 Quality Assurance/Quality Control Procedures

QA/QC procedures established by the analytical laboratories were used for this Report. The data for these QC samples were reviewed as part of the data validation, along with laboratory QC results. The following performance parameters were evaluated for each data set:

- Data completeness
- Holding times
- Blind duplicate samples
- Trip blanks
- Laboratory control standards and matrix spike/matrix spike sample duplicates
- Field duplicates/confirmatory samples
- Compound identification and quantification

5.3 Data Usability

The following sections detail the results of the data evaluation in each of the aforementioned categories.

5.3.1 Data Completeness

Data were reviewed for completeness. The chain-of-custody forms for samples submitted to the laboratory were reviewed to ensure that analytical results were received for all samples submitted and analyses requested. Based on a review of the

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

chain-of-custody forms and the analytical data received, all samples submitted were analyzed for the indicated analyses except in 2004, where analysis for pesticides and polychlorinated biphenyls (PCBs) were performed but not requested on the chain-ofcustody forms for one soil and groundwater sample collected at the Site. The analysis of additional data is not considered a significant data quality concern.

5.3.2 Holding Times

Analytical data were reviewed to ensure that holding times were met for all samples analyzed. Based on a comparison of the sample extraction dates to the sample collection dates, all samples were analyzed within the specified holding times.

5.3.3 Blind Duplicates

Blind duplicate samples were collected as part of the 2010 site assessment to ensure the accuracy and repeatability of the laboratory analyses and to confirm that samples were not compromised by contact with contaminants during sample collection or transport. During the October 2010 groundwater sampling event, one blind duplicate (Dup-1) groundwater sample was collected at MW-12. The results of the duplicate sample analysis are included in the laboratory analytical reports in **Appendix E**. Results of the comparison between duplicate and primary sample analytical results indicate that laboratory analytical data are acceptable. Historical reports do not indicate that duplicate samples were collected.

5.3.4 Trip Blanks

During the 2010 site investigation, laboratory-prepared and sealed trip blank containers were sent by the laboratory to accompany the laboratory-supplied sample containers. The trip blank containers were stored with the samples and one set of trip blank containers was sent inside each shipped cooler. Three trip blanks were shipped with the soil samples and one trip blank was shipped with the groundwater samples collected during the site assessment. Soil sample trip blanks were submitted for analysis of BTEX and GRO by EPA Method 8260 and Method NWTPH-GX, respectively, and the groundwater sample trip blank was submitted for analysis of BTEX by EPA Method 8260B. These analyses were selected because volatile compounds are most likely to be compromised during handling and shipping. The trip blank sample analyses exhibited no detectable concentrations of BTEX and/or GRO, which indicates that sample quality was not compromised during handling and

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

shipping. Thus, this quality control measure indicates that the quality of the data collected during the 2010 site investigation is acceptable.

Historical reports for 2004 data do not report the analysis of trip blanks. Sediment data collected in 2009 included the analysis of trip blanks, but small bubbles were noted in the volatile vials of the trip blank. . However, analytical results did not indicate any data quality issues despite the presence of headspace in the trip blank vials.

5.3.5 Laboratory Quality Control Standards

Laboratory quality control results were reviewed in each laboratory report to ensure that data met laboratory criteria. Specifically, the laboratory reports were reviewed to ensure that laboratory method blanks did not contain target analytes and laboratory control standards and matrix spike/matrix spike sample duplicates were within acceptable ranges (unless otherwise noted).

Quality control testing was conducted by Pace and TestAmerica for each batch of soil and groundwater samples analyzed during the 2010 site investigation. Pace reported that surrogate recoveries and percent recoveries/relative percent differences for matrix spike/matrix spike duplicate (MS/MSD) were within QC limits with a few exceptions during USEPA 8270 SIM, USEPA 8260, and USEPA 6010 analyses of soil samples. Pace noted that surrogate recoveries and MS/MSD were outside QC limits because of matrix interferences. Batches where QC limits were not met were accepted based on separate quality control measures, such as the laboratory control sample recovery or analysis of re-extracted sample, falling within required limits. TestAmerica noted that all groundwater samples were re-analyzed by USEPA 8260 because surrogate recovery was low for one compound. TestAmerica also explains that lead data analyzed by USEPA 6020 is qualified because the inductively coupled plasma mass spectrometry (ICP-MS) standard contains trace impurities derived from the manufacturing process, which may cause the standards to fail method QC criteria.

Historical data were analyzed by ESN Northwest Chemical Laboratory and Analytical Resources, Inc., and comparable QA/QC methods were utilized by these laboratories. Based on a review of the laboratory narrative for each batch report, reported data quality issues are not indicative of any significant data quality issues.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

5.4 Results of Data Validation

ARCADIS reviewed laboratory data to ensure that the QA/QC procedures met prescribed standards and to ensure that the project analytical data are of reliable and comparable data quality. Based on a review of the above parameters, all of the data collected at the Site have been deemed valid and acceptable for use in the evaluation presented herein. Laboratory analytical reports were not reviewed for soil samples collected in August 2004 (MW-IP-1, -3, -5, -7 and MW-IP-9, all collected from the installation of MW-6). This sampling location was replicated later by well MW-6R. Thus, no conclusions need to be drawn from these data and the validation of data quality for these historic results is not critical to this assessment. Conclusions are drawn based only on data collected during the 2010 site investigation as indicated in the following sections.

6. Conceptual Site Model

The conceptual site model (CSM) presented in this Report was conducted in accordance with the methods and procedures described in the MTCA (WAC 173-340-708). This CSM was also performed pursuant to Section 6.3 of the Guidance for Remediation of Petroleum Contaminated Sites (Ecology 2011). The purpose of this section is to describe possible pathways of exposure to residual concentrations of petroleum hydrocarbon constituents detected in Site media and to identify screening criteria that define levels deemed by Ecology to be safe for human and ecological exposure in various scenarios. This CSM follows MTCA guidelines, which emphasize protection of human health and the environment by incorporating conservative assumptions when estimating potential health risks associated with constituents of potential concern at a site. In general, the toxicity, exposure, and transport assumptions made in a CSM are intentionally conservative in order to provide a health-protective approach.

6.1 Sources of Contamination

The Site was formerly used as a bulk petroleum distribution facility ARCO and IPD, which provided infrastructure for a bulk petroleum storage facility (bulk plant) operated west of the Site. Gasoline and oil are known to have been stored at the bulk plant west of the Site. Based on the observed impacts at the Site, diesel also may have been stored at the bulk plant, though available records do not reference diesel storage. An underground pipeline on the north side of the Site was used to transfer petroleum products from barges into above-ground storage tanks located at the bulk plant. Confirmed and/or suspected spills and/or leaks of gasoline, diesel and/or oil from on-

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

site infrastructure constitute release mechanisms of petroleum-related constituents at the Site.

6.2 Constituents of Concern

The former use of the Site included infrastructure for a gasoline, diesel and oil bulk plant. The specific type of oil transferred through Site infrastructure is not known and is conservatively assumed to have potentially included naphtha, mineral spirits, middle distillates, heavy oils, and/or mineral oil. The storage of waste oil and/or crude oil on-Site is not known to have occurred. Thus, constituents of interest (COIs) include the following chemicals based on Ecology guidance (Ecology 2011):

- TPH-GRO
- TPH-DRO
- TPH-HO
- Benzene
- Toluene
- Ethylbenzene
- Total xylenes
- n-Hexane
- Methyl tertiary butyl ether
- 1,2-Dichloroethane (EDC)
- Ethylene dibromide or 1,2-Dibromoethane (EDB)
- cPAHs
- Naphthalenes (Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene)
- Lead
- Polychlorinated biphenyls

TPH-GRO, TPH-DRO, TPH-HO, benzene, toluene, ethylbenzene, total xylenes, cPAHs, naphthalenes, and lead were analyzed in soil and groundwater samples collected during the 2010 site investigation as well as during previous investigations. All of these constituents have been detected in soil and groundwater at the Site above laboratory reporting limits. Full suite USEPA Method 8260B analysis was performed on soil and groundwater samples in 2001 (samples IPD-1 through IPD-6). The 8260B analysis included assessment of n-hexane, methyl tertiary-butyl ether, EDC, and EDB. None of these compounds were reported to have been detected in soil or groundwater samples collected at the Site (SECOR 2001). PCBs were analyzed in soil and groundwater at the Site in 2004 and were not detected (Parametrix 2004). Thus, all

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

constituents of concern have been analyzed in both soil and groundwater samples collected at the Site.

6.3 Potentially Impacted Media

The Site is an unpaved lot located on Budd Inlet within the city limits of Olympia, Washington. Soil, groundwater, sediment and surface water are present on Site and constitute potentially impacted media.

6.4 Current and Future Land and Resource Uses

The majority of the Site is zoned Industrial according to the Thurston County Geodata Center. The Site is located within a mixed commercial/industrial and residential district of the city of Olympia, Washington. Adjacent properties include West Bay Drive and a residential and commercial condominium complex to the west, commercial/industrial properties to the north, and West Bay to the south and east. Based on information provided by Ecology, the city of Olympia may plan to redevelop the Site for use as a public park in the future. However, no definite plan for redevelopment of the Site has been created. In the interest of conservative estimation, future uses are assumed to potentially include residential development.

Water is the only known site resource. The Site is located within the city of Olympia water service area. The city of Olympia provides drinking water from eight wellhead zones (City of Olympia 2009). The Site is located 8 miles northwest of the McAllister Springs drinking water protection area (DWPA), 6 miles north of Indian Summer DWPA, 5 miles northwest of the Shana Park DWPA, 4 miles northwest of the Hoffman DWPA, 3 miles northwest of Briggs DWPA, 2 miles east of the Kaiser DWPA, and 1.5 miles northeast of the Allison DWPA. Drinking water protection area maps are included in **Appendix G**. No drinking water wells are located on site. Groundwater at the Site is not currently used for potable purposes and, based on the location of the Site within the city of Olympia water service area, future use of groundwater at the Site for potable purposes is unlikely. However, the future installation of a drinking water well at the Site would not be prohibited by the city of Olympia. Thus, for the purpose of conservative estimation, it is assumed that groundwater use at the Site may include drinking water beneficial uses in the future provided that the groundwater at the Site is considered potable under WAC 173-340-720(2).

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

6.5 Potential Receptor and Exposure Pathway Evaluation

Potential on-site receptors may be exposed to constituents in surface and subsurface soils by direct contact. Routes of exposure by direct contact include incidental ingestion of soil and/or dermal contact with soil. The Site is not currently improved, thus no current on-site human receptors have been identified. However, it is assumed the Site may be redeveloped in the future to industrial, occupational, residential, or public park land use. Thus, potential receptors that may be directly exposed to constituents in surface and/or subsurface soil at the Site in the future may include on-site residents, children, recreational users, commercial workers, industrial workers, and construction workers.

Constituents may leach from soil to groundwater beneath the Site by percolation, resulting in potential direct contact exposures to constituents in groundwater. Routes of exposure by direct contact include ingestion of tap water, dermal contact with tap water, and inhalation of volatile constituents released from tap water. However, groundwater at the Site is not currently used as a potable water source. Therefore, tap water ingestion, dermal contact with tap water, and inhalation of volatile constituents released from tap water source. Therefore, tap water ingestion, dermal contact with tap water, and inhalation of volatile constituents in tap water are not complete exposure pathways for current on-site and off-site receptors. However, exposure pathways are potentially complete for future on-site and off-site receptors provided that the groundwater at the Site is considered potable under WAC 173-340-720(2).

Groundwater at the Site is generally encountered at depths ranging from approximately 3 to 5 feet bgs. In the future, it is possible that the Site or properties immediately adjacent to the Site may be redeveloped and construction workers may encounter groundwater at shallow depths. Thus, direct contact (e.g., incidental ingestion and dermal contact) with groundwater may be a complete exposure pathway for construction workers.

Another potential release mechanism at the Site may include volatilization of constituents in soil and/or groundwater to outdoor air and/or indoor air of future on-site or off-site buildings, or air within a trench used by future on-site or off-site construction workers. Because the Site is not currently developed, no human receptors are likely to be affected under the current Site use. However, assuming hypothetical redevelopment for residential, commercial or industrial uses, the potential receptors that may be directly exposed to constituents in outdoor and/or indoor air at the Site in the future may include on-site residents/children, commercial workers, industrial workers and construction workers.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

A terrestrial ecological evaluation was conducted for the Site in accordance with WAC 173-340-7491. The purpose of the terrestrial ecological evaluation includes determining whether a release to soil threatens the terrestrial environment, to characterize potential threats to terrestrial plants and animals, and to establish site-specific cleanup standards for the protection of terrestrial plants and animals. Per subsection 7491(c)(i) of Chapter 173-340 WAC, the Site qualifies for an exclusion from terrestrial ecological evaluation because there are less than 1.5 acres of contiguous undeveloped land on or within 500 feet of the Site. Based on the small size of the Site and because the vicinity is generally developed for residential, commercial and industrial purposes, terrestrial receptors (e.g., soil biota, plants, and animals) are unlikely to have direct contact with surface soil or groundwater.

Potential on-site receptors may be exposed to constituents in surface water and sediments by direct contact. Routes of exposure by direct contact include incidental ingestion of and/or dermal contact with surface water and/or sediments. The Site is not currently developed, thus residents, children and recreational users are not likely to have direct contact with surface water or sediment. However, assuming hypothetical future development of the Site for residential purposes, residents, children and recreational users could have direct contact with surface water and/or sediments in the future. Benthic organisms and fish may have direct contact with surface water and/or sediments based on current Site use.

6.6 Identification of Preliminary Cleanup Levels

Based on the evaluation of potential receptors and exposure pathways, the following cleanup levels are appropriate for use at the Site:

- MTCA Method A soil cleanup levels for unrestricted land use
- MTCA Method A cleanup levels for groundwater

Additionally, a screening level of 100 milligrams per kilogram (mg/kg) was designated by Ecology for evaluation of hydrocarbon identification for all petroleum ranges in sediments (Ecology 2006).

7. Results and Discussion

This section summarizes results of soil and groundwater sampling activities.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

7.1 Sediment Analytical Results

The results of the 2009 sediment investigation indicated no measureable levels of petroleum hydrocarbons at the four sampling locations (Integral, 2009). The results of the sediment laboratory results are summarized in Table 2 of the Integral Sediment Screening and Sampling Report, included as **Appendix A**. No further analysis of sediments was necessary because all sample results were less than the reporting limits (and thus less than the established screening level of 100 mg/kg) according to Ecology (Ecology 2006).

7.2 Soil Analytical Results

The soil analytical results are compared to the MTCA Method A soil cleanup levels for unrestricted land uses presented in Table 740-1 of Chapter 173-340 WAC. Naphthalenes, cPAHs, TPH-GRO and TPH-DRO were detected above the applicable MTCA Method A cleanup levels in soil samples collected from several locations. The results of the soil analysis are presented in **Table 3**, and results that exceed the applicable cleanup levels are emboldened and highlighted. **Figures 10** through **12** summarize the results of soil analytical data.

Laboratory practical quantitation limits (PQLs) for each sample are appropriate for comparison to MTCA Method A cleanup levels, with the exception of the PQLs for cadmium in all soil samples and for arsenic at one soil sample location. In all cases, the laboratory method detection limits (MDLs) are appropriate for comparison to the MTCA Method A cleanup levels. Laboratory analytical reports are included as **Appendix E**.

Per Ecology's request, ARCADIS has calculated the volume of soil impacted above CULs at the Site. Thus, ARCADIS determined the approximate horizontal and vertical extent of soil impacts above CULs. The horizontal extent of impacts above CULs was determined using GRO, DRO and cPAH concentrations, because the combination of these three COIs rendered the most conservative estimate of the extent of soil impacts. The maximum concentration of GRO, DRO and cPAHs detected in soil samples collected from each boring was used in the calculation. ARCADIS assumed logarithmic concentration gradients between impacted and unimpacted areas. Where no COIs were detected, the reporting limit was conservatively used as a proxy concentration. Soil impacts above CULs at the Site affect approximately 7,573 square feet of the Site, the extent of which is depicted in **Figure 14**.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

To determine the vertical extent of soil impacts, ARCADIS evaluated the soil analytical data, PID readings provided on boring logs, and depth to water at the Site. An evaluation of soil analytical data indicated that while some impacts above CULs were delineated to 4 feet bgs, impacts above CULs were observed at the maximum depth of several borings (6.5-feet bgs). Thus, soil analytical data does not vertically delineate soil impacts at every boring location. To supplement this data, ARCADIS considered PID readings collected during boring installation. A reading of 10 ppm was used as a proxy for no hydrocarbon impacts in the field. Given that PID readings collected below 5 feet bgs were less than 10 ppm, petroleum-hydrocarbon impacts are not considered to extend below the depth of the deepest impacted soil sample (e.g., 6.5 feet bgs).

ARCADIS also examined tidal and seasonal variations in depth to groundwater across the Site. A hydrograph showing depth to groundwater below top of casing over time is included in **Appendix H**. A discussion of tidal influences at the Site is provided in Section 7.3 of this Report. There was no apparent correlation between groundwater elevation fluctuations and proximity to Budd Inlet. The results of this evaluation indicate that depth to groundwater varies seasonally, with high groundwater (approximately 2 feet below top of casing [bTOC]) during the wet season and low groundwater (up to 7 feet bTOC) in the dry season. Petroleum hydrocarbon impacts generally remain in or above the smear zone because of the relative density of petroleum compared to water. The greatest vertical width of the vadose and smear zone would occur during the dry season when groundwater elevation is lowest. The vadose zone extends to a maximum of 7 feet bgs during the dry season. Based on these data, ARCADIS conservatively estimates that the maximum depth of impacted soil at the Site is approximately 8 feet bgs. **Figure 8** and **Figure 9** indicate the approximated vertical extent of soil impacts at the Site.

Thus, based on the horizontal extent depicted in **Figure 14** and a maximum vertical extent of 8 feet bgs, the estimated volume of soil impacted above CULs is approximately 2,243 cubic yards.

7.3 Tidal Influence Evaluation

Prior to June 2011, groundwater samples were collected between moderate and high tide events to ensure an adequate amount of water for sampling. However, due to possible inflow of bay water during high tide conditions, concentrations of constituents reported by the laboratory may reflect constituent levels found in groundwater as well as bay water. Historical groundwater elevations, tidal stages during sampling events,

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

and groundwater electrical conductivity readings have been evaluated to determine if brackish bay water is intruding on-site groundwater.

On June 2, 2011, the on-site wells were gauged during subsequent high and low tide events. The groundwater elevations were used to create a contour map (**Figure 15**) depicting the high and low tide potentiometric groundwater surfaces. The groundwater elevations were plotted on cross-section A-A' (**Figure 8**) providing an apparent groundwater flow direction. The groundwater flow was generally toward the southeast at a hydraulic gradient of approximately 0.033 foot/foot (ft/ft) and 0.031 ft/ft at high and low tides, respectively. Groundwater elevations recorded from each well during subsequent high and low tide events demonstrated fluctuations ranging from 0.04 to 0.28 feet. There was no apparent correlation in groundwater level fluctuations and proximity to Budd Inlet. Groundwater elevation data is presented in **Table 5**.

An analysis was conducted comparing measurements of historical groundwater electrical conductivity with tidal times. Wells MW-6R, MW-10, MW-11, and MW-12, located upland from the bank, have consistently lower electrical conductivity measurements than wells MW-7, MW-8, and MW-9, located next to the bank and Budd Inlet. Brackish and saline water have significantly higher conductivity values than fresh to marginal water. Electrical conductivity measurements ranged from 0.145 to 0.313 mS/cm at high tide and 0.166 to 0.215 mS/cm at low tide in wells MW-6R, MW-10, MW-11, and MW-12. Electrical conductivity ranged from 0.358 to 3.051 mS/cm at high tide and 0.363 to 3.17 mS/cm at low tide in Wells MW-7, MW-8, and MW-9. Electrical conductivity increases in wells MW-6R, MW-10, MW-11, and MW-12 at high tide when comparing the high and low tide averages for each well. Electrical conductivity decreases in wells MW-7, MW-8, and MW-9 at high tide when comparing the high and low tide averages for each well. Groundwater conductivity data is presented in **Table 6**.

Groundwater in wells MW-7, MW-8, and MW-9 are likely experiencing influence from tidal fluctuation. The significance of this effect cannot be determined without additional collection of groundwater elevation and electrical conductivity data.

Groundwater samples collected during monitoring events conducted in second, third, and fourth quarter 2011 were timed as close to low tide as practicable. In the future, groundwater samples will continue to be collected during low tide events to ensure the best representation of groundwater quality is achieved.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

7.4 Groundwater Analytical Results

Groundwater analytical results for the Site are compared to the MTCA Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 WAC. Concentrations of TPH-GRO, TPH-DRO, benzene, total lead, and several cPAHs have been detected in the groundwater samples above the laboratory reporting limits. However, groundwater samples did not exhibit concentrations of analyzed chemicals in exceedance of the MTCA Method A groundwater cleanup levels. TPH-HO, toluene, ethylbenzene, total xylenes, and dissolved lead have not been detected in the groundwater samples above reporting limits. In total, six quarters of groundwater analytical data indicating concentrations not exceeding MTCA Method A groundwater cleanup levels have been collected. A seventh monitoring event was conducted in December 2011,however, as of the date of this report results of this analysis have not yet been finalized. Results of groundwater sample analyses for October 2010 through September 2011 are summarized in **Table 4.** Groundwater analytical results from the initial site investigation in October 2010 are presented in **Figure 13**. Laboratory analytical reports are included as **Appendix E**.

8. Conclusions

ARCADIS has completed remedial investigation activities for the former IPD site at 1120 West Bay Drive, Olympia, Washington.

Sediment screening and sampling was conducted at the site to assess possible hydrocarbon impacts to intertidal sediments. The results of the sediment screening indicate no measureable hydrocarbon impact to intertidal sediments at the four sampling locations.

ARCADIS installed 16 soil borings to characterize the extent of hydrocarbon impacted soil at the Site. Seven borings were completed as monitoring wells, and both soil and groundwater samples were collected. Laboratory analytical results for soil indicate concentrations of cPAHs, naphthalenes, TPH-GRO and TPH-DRO in exceedance of the applicable MTCA Method A cleanup levels in soil samples collected from several locations at the Site.

No contaminants of concern have been identified in groundwater samples collected at the Site at concentrations in exceedance of the MTCA Method A cleanup levels. In total, six quarters of groundwater analytical data indicating concentrations not exceeding MTCA Method A groundwater cleanup levels have been collected. In order

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

to collect the most conservative groundwater data, ARCADIS will collect future groundwater samples at low tide, when groundwater is less likely to be experiencing influence from tidal fluctuation.

Surface water has not been evaluated at the Site. However, based on the results of sediment sampling, which indicated no detectable impacts, and groundwater, which indicated no impacts greater than MTCA Method A cleanup levels for groundwater, no analysis of surface water is warranted.

References

ARCADIS 2011a. Fourth Quarter 2010 Groundwater Monitoring Report, Industrial Petroleum Distributors Site (Ecology ID No. 1436; Agreed Order No. DE00TCPSR-1628), 1117 West Bay Drive, Olympia, Washington. February 10.

ARCADIS 2011b. First Quarter 2011 Groundwater Monitoring Report, Industrial Petroleum Distributors Site (Ecology ID No. 1436; Agreed Order No. DE00TCPSR-1628), 1117 West Bay Drive, Olympia, Washington. August 24.

ARCADIS 2011c. Second Quarter 2011 Groundwater Monitoring Report, Industrial Petroleum Distributors Site (Ecology ID No. 1436; Agreed Order No. DE00TCPSR-1628), 1117 West Bay Drive, Olympia, Washington. September 20.

ARCADIS 2011d. Draft Third Quarter 2011 Groundwater Monitoring Report, Industrial Petroleum Distributors Site (Ecology ID No. 1436; Agreed Order No. DE00TCPSR-1628), 1117 West Bay Drive, Olympia, Washington. Not yet submitted.

City of Olympia 2009. City of Olympia Water System Plan for 2009-2014. July.

Integral Consulting, Inc. 2009. Final Former IPD West Olympia Site Budd Inlet Sediment Screening Sampling Report. December 17.

Parametrix 2004. West Bay Phase II Environmental Site Assessment, Prepared for City of Olympia Parks, Arts, and Recreation Department. June.

SECOR 2000. Limited Environmental Site Assessment Report, Former Industrial Petroleum Distributors, 1117 West Bay Drive, Olympia, Washington. March 20.

Remedial Investigation Report

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors Site 1120 West Bay Drive Olympia, Washington 98502 Facility Identification No. 1436

SECOR 2001. Final Remedial Investigation and Feasibility Study, Former Industrial Petroleum Distributors, 1117 West Bay Drive, Olympia, Washington. October 30.

SECOR 2007. Draft Remedial Investigation Work Plan, Former Industrial Petroleum Distributors, 1117 West Bay Drive, Olympia, Washington. February 14.

Washington State Department of Ecology (Ecology) 2006. Letter from Steve Teel to Bob May and Scott Hooton Re: Sediment Screening Requirement and Potential Interim Action Former Industrial Petroleum Distributors (IPD) Site, Olympia, WA. July 31.

Washington State Department of Ecology 2007. Chapter 173-340 Washington Administrative Code, *Model Toxics Control Act*. Updated October 12, 2007.

Washington State Department of Ecology 2011. Guidance for Remediation of Petroleum Contaminated Sites. September.

Tables

TABLE 1 HISTORICAL SOIL ANALYTICAL RESULTS REMEDIAL INVESTIGATION REPORT Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors 1117 West Bay Drive Olympia, Washington

Support N N N N </th <th></th> <th>Sam</th> <th>ple ID</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>												Sam	ple ID									
number number number number </th <th>Analysis</th> <th></th> <th colspan="11">Date Collected</th> <th></th> <th></th>	Analysis		Date Collected																			
bis	Analysis											IPD-4-4.5	IPD-5-4.5					(MW-6)	(MW-6)	(MW-6)		(MW-6)
beam beam <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																						
Support N N N N </th <th>Volatile Organic Compounds</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>mg/Kg</th> <th>mg/Kg</th> <th>mg/Kg</th> <th>mg/Kg</th> <th>mg/Kg</th> <th>mg/Kg</th> <th>mg/Kg</th> <th>mg/Kg</th> <th></th> <th>mg/Kg</th> <th>mg/Kg</th> <th>mg/Kg</th> <th>mg/Kg</th>	Volatile Organic Compounds									mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Benzene	0.03	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.100								-					
13.1 Matcheman PI Pi Pi Pi Pi	Naphthalene	5							<0.200													
bit	1,2,4-Trimethylbenzene	NE							<0.100													
cont second	1.3.5-Trimethylbenzene	NE							<0.100													
sinder Spright bit	Total Xylenes	9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	23.9	<0.200													
beek beek beek beek beek beek beek beek	TPH - HCID																					
beryle	Gasoline Range Organics																					
Text. Protect seriesText seriesT																						
Same Supple 30 -10 - - - - <th< td=""><td></td><td></td><td>ma/Ka</td><td>ma/Ka</td><td>ma/Ka</td><td></td><td>ma/Ka</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ma/Ka</td><td>ma/Ka</td><td>ma/Ka</td><td></td></th<>			ma/Ka	ma/Ka	ma/Ka		ma/Ka												ma/Ka	ma/Ka	ma/Ka	
Deace is space is a part of pa							 								 	 						
learle						<20	<20								570	1.100						
Char (1) (n) (n	Heavy Oil Range Organics	2,000	<40	<40	<40	<40	<40	<40	296									<100	<100	<100	<100	<100
Char 1 (b) (c)	PCBs	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
CB-182 (a) a<																						
CB-142(a)(b)(c) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																						
CD-1243(i)iii																						
CB-1244 (a)																						
C)C Marcial··· <td>PCB-1254</td> <td></td>	PCB-1254																					
beaksmg/kg <th< td=""><td>PCB-1260</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	PCB-1260		-																			
Network<	PCB Mixtures																					
Ansamé Ans Ans<																						
Saturn NHE NHE N- N- N- N- N- N-N N-N <td></td>																						
Cadmiant 2 </td <td></td>																						
Chronam (a) (b) (c)																						
under (304)150151	Chromium	(a)							17.6	-						10	ND^					
Mercay 2 ND ^A	Copper									-					ND^							
Nickel N n n n n n n n ND ⁿ </td <td>Lead (Total)</td> <td></td> <td>8.28</td> <td></td>	Lead (Total)																				8.28	
SeleniamNE··	Mercury																					
Sher NE n n n n n n n n ND ND ND ND n n n n Dall NE n <																						
Imalian NE NE Imalian Imalian<																						
s-Polyannaic Hydrocarbons mg/Kg mg	Thallium																					
Naphtanen (b) ··· ··· ···· ··· ··· ···<	Zinc								39.5			-				ND^	ND^					
i-Metryinapithalene (b) ···· ···			mg/Kg			mg/Kg						mg/Kg									mg/Kg	
2-Met/mapthalene (b) -																						
Naphthelenes 5 0.201 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40<																						
Accenangementen NE ··· ··· ··· <																						
Anthracene NE ··· ··· ··· ··· ··· ··· ··· ··· ···· ···· ··· ···· ···· ···· ··· ···· ···· ···· ···· ···· ···· ···· ···· ···· ····	Acenaphthene																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Acenaphthylene	NE							<0.134													
Benzo (a) prene 0.1 ···· ··· ···	Anthracene																					
Benzo (h) huranthene (n) n- n- 0.18 n-																						
Benzo (h) perform NE ···																						
Benzo (k) Huoranthene (c) ···· ··· ··· ·					-																	
Chysene (c) ··· ··· ··· 0.18 ···																						
Debraca (h) antracene (c) ··· ··	Chrysene																					
Horantene NE	Dibenzo (a,h) anthracene	(c)																				
Indep (1,2,3cd) pyrene (c) ··· ·	Fluoranthene			-		-				-				-	-							
NE ·· ·· ·· ·· 0.212 ··	Fluorene																					
Pyrene NE																						
					-																	
	cPAH B(a)P Equivalents	0.1			-				0.235													

TABLE 1 HISTORICAL SOIL ANALYTICAL RESULTS REMEDIAL INVESTIGATION REPORT Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors 1117 West Bay Drive Olympia, Washington

Notes:

- Concentrations compared to the Model Toxics Control Act (MTCA) Method A soil cleanup levels for unrestricted land uses presented in Table 740-1 of Chapter 173-340 of the Washington Administrative Code (WAC)
- The MTCA detaup level of gasoline range total performance washington Administrative Obe (VAC) The MTCA detaup level of gasoline range total performance and a performance and 30-mg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 30-mg/kg was utilized. If a feet

bgs = below ground surface

- mg/sg = milligram per kilogram NS = Depth not specified. Previous consultant stated that test pit soil samples were collected above the highest apparent water level. Water level was not specified.
- NE = Cleanup level not evaluated under MTCA
- ND = Not Detected (Hydrocarbon Identification Method) ND^ = Reported by previous consultant as "Not Detected". Reporting and/or detection limit was not specified.
- -- not analyzed
- TPH = Total Petroleum Hydrocarbons
- HCID = Hydrocarbon Identification NWTPH = Northwest Method Total Petroleum Hydrocarbons
- cPAH = Carcinogenic polyaromatic hydrocarbons
- B(a)P = Benzo(a)pyrene
- Star = Delizaciapyrine
 < = Not detected above the laboratory reporting limit (RL) and/or method detection limit Bold = Chemical detected at a concentration above the laboratory reporting limit Bolded and highlighted font indicates results above the MTCA cleanup level</p>

- (a) = Analysis is for total chromium. No MTCA cleanup level has been established for total chromium. (b) = MTCA cleanup level is 5-mg/kg for total concentration of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene. Total concentration conservatively assumed
- to be the sum any detected concentration and/or of half of the value of each RL if not detected
- (c) = See MTCA cleanup level for PGB/IP. Total concentration of PAHs calculated using the toxicity equivalency method in WAC 173-340-708(8) (d) = See MTCA cleanup level for PGB Mixtures. Per MTCA, cleanup level based on applicable federal law (40 CFR 761.61). This is a total value for all PCBs, conservatively assumed to be the sum any detected concentration and/or of half of the value of each RL if not detected.
- NA = Not applicable
- Laboratory practical quantitation limit is elevated above the MTCA Method A cleanup level, but chemical was not observed above the laboratory method detection limit

TABLE 2 HISTORICAL GROUNDWATER ANALYTICAL RESULTS REMEDIAL INVESTIGATION REPORT Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors 1117 West Bay Drive

Analysis	MTCA Method A					:	Sample Lo	ole ID cation Typ ollected	e				
Allalysis	Cleanup Levels	W-1 9/20/2000	W-2 9/20/2000	IPD-1 TP 2001	IPD-2 TP 2001	IPD-3 TP 2001	IPD-4 TP 2001	IPD-5 TP 2001	WBTP-01 TP 3/9/2004	WBTP-02 TP 3/9/2004	MW-6 MW 8/26/2004		
Volatile Organic Compounds	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Benzene	5	<1'	<1'	<1.00	<1.00	<1.00	1.64	<1.00					
Ethylbenzene	700	<1	<1	<1.00	<1.00	<1.00	<1.00	<1.00					
Toluene	1,000	<1	<1	<1.00	<1.00	4.38	<1.00	<1.00					
Total Xylenes	1,000	<1	170	<2.00	<2.00	<2.00	31.1	6.9					
TPH - HCID		•											
Gasoline Range Organics				ND		ND	ND	ND			<250	<250	<250
Diesel Range Organics				ND	DET	DET	ND	ND			<500	<500	<500
Heavy Oil Range Organics				ND	ND	DET	ND	ND			<500	<500	<500
TPH-NWTPH	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			μg/L
Gasoline Range Organics	800	<100	<100	<80		1,930	149	254					
Diesel Range Organics	500	35,000	280,000	<333	1,020	14,100	<250	<250	<200**	<400**			
Heavy Oil Range Organics	500	<400	<400	<240	<500	590	<500	<500	<200	<400			
Metals	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			μg/L
Antimony	NE			1.10	<1.00	<1.00	<1.00	<1.00	<2.5	<2.5			
Arsenic	5			21.9	<1.00	2.01	1.32	<1.00	2.74	0.865			
Barium	NE			112	18.6	72.2	31.40	27.9					
Beryllium	NE			<1.00	<1.00	<1.00	<1.00	<1.00	<0.5	<0.5			
Cadmium	5			<1.00	<1.00	<1.00	<1.00	<1.00	< 0.5	< 0.5			
Chromium	50			24.0	4.92	20.7	7.76	6.33	3.57	6.05			
Copper	NE			44.5	5.22	20.4	8.34	6.12	< 0.5	< 0.5			
Lead (Total)	15	<1		49.9	2.64	5.15	1.78	1.40	0.535	<0.5	ND^		
Lead (Dissolved) Mercurv	15								<0.2		ND^		
Nickel	2 NE			28.0	4.75	20.3	8.77	6.13	<0.2 2.44	< 0.2			
Selenium	NE			28.0	4.75	<1.00	8.77 <1.00	<1.00	<1 <1	3.85 <1			
Silver	NE				<1.00	<1.00	<1.00	<1.00	<0.5	<0.5			
Thallium	NE								<0.5	< 0.5			
Zinc	NE			85.7	18.3	35.6	21.5	11.7	7.89	8.58			
c-Polvaromatic Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			μg/L
Naphthalene	(a)			<1.33	10.6	6.30	<1.00	5.73	<0.1	<0.1			
1-Methylnaphthalene	(a)								3.4	28			
2-Methylnaphthalene	(a)								11	33			
Naphthalenes	160			0.67	10.6	6.30	0.50	5.73					
Acenaphthene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Acenaphthylene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Anthracene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Benzo (a) anthracene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Benzo (a) pyrene	0.1			<1.33*	<1.00*	<1.00*	<1.00*	<1.00*	<0.1	<0.1	-		
Benzo (b) fluoranthene							<1.00	<1.00					
	(b)			<1.33	<1.00	<1.00			<0.1	<0.1			
Benzo (g,h,i) perylene	NE (b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Benzo (k) fluoranthene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Chrysene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Dibenzo (a,h) anthracene	(b)			<2.67	<2.00	<2.00	<2.00	<2.00	<0.1	<0.1			
Fluoranthene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Fluorene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Indeno (1,2,3-cd) pyrene	(b)			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
Phenanthrene	NE			<1.33	<1.00	2.28	<1.00	<1.00	<0.1	<0.1			
Pyrene	NE			<1.33	<1.00	<1.00	<1.00	<1.00	<0.1	<0.1			
cPAH B(a)P Equivalents	0.1			1.88	0.86	0.81	0.81	0.81					

TABLE 2 HISTORICAL GROUNDWATER ANALYTICAL RESULTS REMEDIAL INVESTIGATION REPORT Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors

1117 West Bay Drive Olympia, Washington

Notes

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

TP = test pit

MW = monitoring well

μg/L = micrograms per kilogram

NE = Cleanup level not established under MTCA

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

ND = Not Detected (Hydrocarbon Identification Method)

ND[^] = Reported by previous consultant as "Not Detected". Reporting and/or detection limit was not specified.

** Laboratory report in Appendix B of Parametrix's 2004 West Bay Phase II ESA indicated these constituents were ND. Table 2 of Delta's 2008 Remedial Investigation Work Plan reported TPH-D concentrations as 10,000 and 59,000 µg/L (WBTP-01 and WBTP-02, respectively). The 2008 RIWP did not provide a laboratory report. -- = not applicable or analyzed

< = Chemical not detected above the laboratory reporting limit, method detection limit, or practical quantitation limit

Italics = Value calculated for comparison to MTCA cleanup level

ND' = Laboratory practical quantitation limit is elevated above the MTCA Method A cleanup level, but

chemical was not observed above the laboratory reporting limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Bolded and highlighted font indicates results above the MTCA cleanup level

(a) = See MTCA cleanup level for naphthalenes. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

(b) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)

Former ARCO Olympia Bulk Terminal

Industrial Petroleum Distributors

1117 West Bay Drive

	MTCA Method A			Sample ID (Dept	h below ground Date Collected	surface in feet)		
Analysis	Cleanup Levels	GP-1 (2-2.5) 8/25/2010	GP-1 (4-4.5) 8/25/2010	GP-1 (6-6.5) 8/25/2010	GP-2 (2-2.5) 8/25/2010	GP-2 (4-4.5) 8/25/2010	GP-3 (2-2.5) 8/24/2010	GP-3 (4-4.5) 8/24/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03	<0.0047	< 0.019		< 0.0042	<0.0086	< 0.0034	<0.0038
Ethylbenzene	6	<0.0047	< 0.019		< 0.0042	<0.0086	< 0.0034	< 0.0038
Toluene	7	< 0.0047	0.0342		< 0.0042	<0.0086	< 0.0034	< 0.0038
Total Xylenes	9	< 0.014	< 0.0567		< 0.0126	< 0.0259	<0.0101	<0.0113
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	<8.6	<47*		<9.8	264	<6.2	<8.6
Diesel Range Organics	2,000	30.4	60.9		732	3,120	<21.8	31.1
Residual Range/Heavy Oil Organics	2,000	198	481		<124	296	<87.1	<103
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20	<12.3	<4.8		<13.3	<4.4	<10.9	<12.4
Barium	NE	80.6	52.7		53.6	50.0	107	101
Cadmium	2	<6.2*	<2.4*		<6.6*	<2.2*	<5.5*	<6.2*
Chromium (total)	(a)	26.7	10.4		24.6	17.5	34.5	40.4
Lead	250	4.7	5.2		4.1	4.9	5.2	4.0
Mercury	2	<0.12	<0.27		<0.15	<0.24	<0.11	<0.12
Selenium	NE	<6.2	<2.4		<6.6	<2.2	<5.5	<6.2
Silver	NE	<6.2	<2.4		<6.6	<2.2	<5.5	<6.2
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	0.0087	<0.0178	<0.0451	< 0.0104	0.192	< 0.0075	< 0.0087
1-Methylnaphthalene	(b)	<0.0087	<0.0178	<0.0451	0.0217	0.449	< 0.0075	0.0143
2-Methylnaphthalene	(b)	0.0111	<0.0178	<0.0451	0.0228	0.463	< 0.0075	0.0199
Naphthalenes	5	0.0242	0.0267	0.0677	0.0497	1.10	0.011	0.039
Acenaphthene	NE	<0.0087	<0.0178	<0.0451	<0.0104	0.0896	<0.0075	<0.0087
Acenaphthylene	NE	<0.0087	<0.0178	<0.0451	0.0107	0.0688	<0.0075	<0.0087
Anthracene	NE	<0.0087	< 0.0178	<0.0451	<0.0104	0.194	< 0.0075	< 0.0087
Benzo (a) anthracene	(c)	< 0.0087	< 0.0178	<0.0451	< 0.0104	0.315	< 0.0075	< 0.0087
Benzo (a) pyrene Benzo (b) fluoranthene	0.1	<0.0087	<0.0178	<0.0451	<0.0104	0.233	< 0.0075	< 0.0087
Benzo (g,h,i) perylene	(c) NE	<0.0087 <0.0087	<0.0178 <0.0178	<0.0451 <0.0451	<0.0104 <0.0104	0.165 0.0429	<0.0075 <0.0075	<0.0087 <0.0087
Benzo (k) fluoranthene	(C)	<0.0087	<0.0178	<0.0451	<0.0104	0.0429	<0.0075	<0.0087
Chrysene	(C) (C)	<0.0087	<0.0178	<0.0451	<0.0104	0.205	<0.0075	<0.0087
Dibenzo (a,h) anthracene	(C)	<0.0087	<0.0178	<0.0451	<0.0104	0.0498	<0.0075	<0.0087
Fluoranthene	NE	<0.0087	0.0237	0.0540	<0.0104	0.488	<0.0075	<0.0087
Fluorene	NE	<0.0087	< 0.0178	<0.0451	0.0136	0.294	<0.0075	<0.0087
Indeno (1,2,3-cd) pyrene	(C)	<0.0087	<0.0178	<0.0451	< 0.0104	0.0550	< 0.0075	<0.0087
Phenanthrene	NE	0.0114	0.0302	< 0.0451	0.0383	0.999	< 0.0075	0.0103
Pyrene	NE	<0.0087	<0.0178	0.0625	< 0.0104	0.522	< 0.0075	<0.0087
cPAH B(a)P Equivalents	0.1	0.0044	0.0089	0.0226	0.00785	0.315	0.0038	0.0044

Former ARCO Olympia Bulk Terminal

Industrial Petroleum Distributors

1117 West Bay Drive

	MTCA Method A		Sample ID (Depth below ground surface in feet) Date Collected									
Analysis	Cleanup Levels	GP-4 (2-2.5) 8/23/2010	GP-4 (4-4.5) 8/23/2010	GP-5 (2-2.5) 8/23/2010	GP-5 (4-4.5) 8/23/2010	GP-5 (6-6.5) 8/23/2010	GP-6 (2-2.5) 8/25/2010	GP-6 (4-4.5) 8/25/2010				
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Benzene	0.03	< 0.0033	< 0.0033	< 0.0034	< 0.0095		< 0.0031	<0.0029				
Ethylbenzene	6	< 0.0033	< 0.0033	<0.0034	<0.0095		<0.0031	<0.0029				
Toluene	7	<0.0033	< 0.0033	< 0.0034	<0.0095		< 0.0031	<0.0029				
Total Xylenes	9	< 0.0099	< 0.0099	<0.0102	0.107		< 0.0094	<0.0087				
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Gasoline Range Hydrocarbons	30	<7.6	<7.4	<7.2	875		<6.6	486				
Diesel Range Organics	2,000	<24.7	<26.2	31.8	3,780		<23.3	899				
Residual Range/Heavy Oil Organics	2,000	<98.6	<105	<98.8	1,040		<93.1	<98.7				
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Arsenic	20	<13.1	<12.6	<12.4	<21.0*		<11.5	<12.1				
Barium	NE	120	115	107	130		127	139				
Cadmium	2	<6.5*	<6.3*	<6.2*	<10.5*		<5.7*	<6.1*				
Chromium (total)	(a)	48.1	48.3	35.1	40.7		41.5	42.4				
Lead	250	4.6	7.1	8.6	31.0		6.4	6.3				
Mercury	2	<0.13	<0.13	<0.11	<0.17		<0.093	<0.11				
Selenium	NE	<6.5	<6.3	<6.2	<10.5		<5.7	<6.1				
Silver	NE	<6.5	<6.3	<6.2	<10.5		<5.7	<6.1				
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Naphthalene	(b)	< 0.0086	< 0.0089	0.0556	4.090	0.988	< 0.0079	0.141				
1-Methylnaphthalene	(b)	<0.0086	<0.0089	0.0397	9.56	2.580	< 0.0079	0.532				
2-Methylnaphthalene	(b)	< 0.0086	<0.0089	0.0771	12.300	2.840	< 0.0079	0.627				
Naphthalenes	5	0.013	0.013	0.172	25.95	6.408	0.019	1.30				
Acenaphthene	NE	<0.0086	<0.0089	< 0.0083	0.205	0.0646	< 0.0079	0.0331				
Acenaphthylene	NE	<0.0086	<0.0089	0.0105	0.155	0.0524	<0.0079	0.0323				
Anthracene	NE	< 0.0086	<0.0089	0.0214	0.0802	<0.0288	< 0.0079	0.0113				
Benzo (a) anthracene	(C)	< 0.0086	<0.0089	0.0227	0.0231	<0.0288	< 0.0079	0.0177				
Benzo (a) pyrene	0.1	<0.0086	<0.0089	0.0216	<0.0147	<0.0288	<0.0079	0.0124				
Benzo (b) fluoranthene	(C)	<0.0086	<0.0089	0.0269	0.0152	<0.0288	<0.0079	0.0081				
Benzo (g,h,i) perylene	ŇÉ	<0.0086	<0.0089	0.0185	<0.0147	<0.0288	<0.0079	<0.0077				
Benzo (k) fluoranthene	(C)	<0.0086	<0.0089	0.0219	< 0.0147	<0.0288	< 0.0079	0.0120				
Chrysene	(C)	< 0.0086	< 0.0089	0.0312	0.0352	<0.0288	< 0.0079	0.0202				
Dibenzo (a,h) anthracene	(C)	< 0.0086	< 0.0089	< 0.0083	< 0.0147	<0.0288	< 0.0079	<0.0077				
Fluoranthene	NE	<0.0086	< 0.0089	0.0645	0.0864	0.0517	0.0140	0.0359				
Fluorene	NE	<0.0086	< 0.0089	< 0.0083	0.856	0.262	< 0.0079	0.113				
Indeno (1,2,3-cd) pyrene	(C)	<0.0086	<0.0089	0.0164	< 0.0147	<0.0288	< 0.0079	<0.0077				
Phenanthrene	NE	<0.0086	<0.0089	0.0594	1.460	0.289	0.0109	0.152				
Pyrene	NE	<0.0086	<0.0089	0.0530	0.125	0.048	0.0100	0.0426				
cPAH B(a)P Equivalents	0.1	0.0043	0.0045	0.0307	0.0123	0.022	0.0056	0.016				

Former ARCO Olympia Bulk Terminal

Industrial Petroleum Distributors

1117 West Bay Drive

	MTCA Method A			Sample ID (Dept	h below ground Date Collected	surface in feet)		
Analysis	Cleanup Levels	GP-6 (6-6.5) 8/25/2010	GP-7 (2-2.5) 8/24/2010	GP-7 (6-6.5) 8/24/2010	GP-8 (2-2.5) 8/25/2010	GP-8 (4-4.5) 8/25/2010	GP-8 (6-6.5) 8/25/2010	GP-9 (2-2.5) 8/24/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03	< 0.0038	< 0.0041	< 0.0031	< 0.003		< 0.0031	< 0.0031
Ethylbenzene	6	< 0.0038	<0.0041	< 0.0031	< 0.003		< 0.0031	<0.0031
Toluene	7	< 0.0038	<0.0041	< 0.0031	< 0.003		< 0.0031	<0.0031
Total Xylenes	9	<0.0114	< 0.0122	< 0.0093	< 0.009		< 0.0093	< 0.0092
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	94.4	<7.3	<7.2	<6.2		<6.6	<7.2
Diesel Range Organics	2,000	57.1	<23	<24.5	<19.3		<22.3	<24.9
Residual Range/Heavy Oil Organics	2,000	<108	<92.1	<98.2	<77.1		<89.3	<99.6
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20	<13.9	<11.5	<12.7	<10.3		<11.8	12.4
Barium	NE	112	154	113	51		71.8	129
Cadmium	2	<7.0*	<5.8*	<6.3*	<5.2*		<5.9*	<6.2*
Chromium (total)	(a)	44.2	45	39.9	26.7		32.8	42.7
Lead	250	7.1	6.8	4.3	8.8		10.1	7.3
Mercury	2	<0.11	<0.11	<0.12	< 0.096		<0.10	<0.12
Selenium	NE	<7.0	<5.8	<6.3	<5.2		<5.9	<6.2
Silver	NE	<7.0	<5.8	<6.3	<5.2		<5.9	<6.2
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	0.0135	<0.0081	< 0.0085	0.0092	0.0089	0.0112	0.0181
1-Methylnaphthalene	(b)	0.0218	<0.0081	< 0.0085	0.0090	0.0075	0.0102	0.0162
2-Methylnaphthalene	(b)	0.0217	<0.0081	< 0.0085	0.0125	0.0109	0.0148	0.0248
Naphthalenes	5	0.0570	0.012	0.013	0.031	0.027	0.0362	0.0591
Acenaphthene	NE	<0.0097	<0.0081	<0.0085	<0.0070	< 0.0071	< 0.0077	<0.0084
Acenaphthylene	NE	< 0.0097	<0.0081	<0.0085	<0.0070	<0.0071	< 0.0077	<0.0084
Anthracene	NE	<0.0097	<0.0081	< 0.0085	< 0.0070	< 0.0071	< 0.0077	0.0126
Benzo (a) anthracene	(C)	< 0.0097	<0.0081	< 0.0085	< 0.0070	< 0.0071	< 0.0077	0.0162
Benzo (a) pyrene	0.1	<0.0097	<0.0081	< 0.0085	< 0.0070	< 0.0071	< 0.0077	0.0147
Benzo (b) fluoranthene	(C)	< 0.0097	<0.0081	<0.0085	0.0105	0.0085	0.0089	0.0239
Benzo (g,h,i) perylene	NE	< 0.0097	<0.0081	< 0.0085	<0.0070	< 0.0071	< 0.0077	0.0113
Benzo (k) fluoranthene	(C)	<0.0097	<0.0081	<0.0085	0.0078	< 0.0071	< 0.0077	0.0139
Chrysene	(C)	<0.0097	<0.0081	<0.0085	0.0111	0.0089	0.0092	0.0220
Dibenzo (a,h) anthracene	(C)	<0.0097	<0.0081	<0.0085	< 0.0070	< 0.0071	< 0.0077	<0.0084
Fluoranthene	NE	<0.0097	<0.0081	<0.0085	0.0158	0.0143	0.0142	0.0424
Fluorene	NE	<0.0097	<0.0081	<0.0085	< 0.0070	< 0.0071	< 0.0077	<0.0084
Indeno (1,2,3-cd) pyrene	(C)	<0.0097	<0.0081	<0.0085	<0.0070	<0.0071	<0.0077	0.0112
Phenanthrene	NE	<0.0097	<0.0081	<0.0085	0.0127	0.0122	0.0134	0.0323
Pyrene	NE	<0.0097	<0.0081	<0.0085	0.0124	0.0120	0.0110	0.0290
cPAH B(a)P Equivalents	0.1	0.0064	0.0041	0.0043	0.0054	0.0048	0.0052	0.0214

Former ARCO Olympia Bulk Terminal

Industrial Petroleum Distributors

1117 West Bay Drive

	MTCA Method A	Sample ID (Depth below ground surface in feet) Date Collected										
Analysis	Cleanup Levels	GP-9 (4-4.5) 8/24/2010	GP-9 (5.5-6) 8/24/2010	MW-6R (2-2.5) 8/23/2010	MW-6R (4-4.5) 8/23/2010	MW-6R (6-6.5) 8/23/2010	MW-7 (2-2.5) 8/24/2010	MW-7 (6-6.5) 8/24/2010				
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Benzene	0.03		< 0.0031	< 0.0031	< 0.0215		< 0.0030	<0.0031				
Ethylbenzene	6		< 0.0031	< 0.0031	<0.0215		< 0.0030	<0.0031				
Toluene	7		< 0.0031	< 0.0031	<0.0215		< 0.0030	< 0.0031				
Total Xylenes	9		< 0.0092	< 0.0094	< 0.0644		< 0.0090	< 0.0094				
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Gasoline Range Hydrocarbons	30		13.8	<6.5	665		<4.9	<6.8				
Diesel Range Organics	2,000		<25.0	<22.5	7,060		<20.3	<24.3				
Residual Range/Heavy Oil Organics	2,000		<100	<89.9	1,360		<81.0	<97.4				
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Arsenic	20		<13.0	<12.0	<10.0		<10.5	<12.5				
Barium	NE		102	110	<100		84.1	123				
Cadmium	2		<6.5*	<6.0*	<5.0*		<5.2*	<6.2*				
Chromium (total)	(a)		36.5	39.4	5.0		22.8	34.4				
Lead	250		10.7	4.3	12.6		6.6	10.7				
Mercury	2		<0.11	<0.11	< 0.43		<0.11	<0.12				
Selenium	NE		<6.5	<6.0	<5.0		<5.2	<6.2				
Silver	NE		<6.5	<6.0	<5.0		<5.2	<6.2				
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Naphthalene	(b)	0.0110	0.0184	< 0.0080	2.4800	0.0177	< 0.0072	0.0092				
1-Methylnaphthalene	(b)	<0.0089	0.0108	< 0.0080	13.0000	0.0623	< 0.0072	< 0.0085				
2-Methylnaphthalene	(b)	0.0123	0.018	<0.0080	16.7000	0.0568	< 0.0072	<0.0085				
Naphthalenes	5	0.028	0.047	0.012	32.18	0.137	0.0108	0.0170				
Acenaphthene	NE	<0.0089	<0.0086	<0.0080	0.4860	<0.0101	<0.0072	<0.0085				
Acenaphthylene	NE	<0.0089	0.0086	<0.0080	0.3300	<0.0101	<0.0072	<0.0085				
Anthracene	NE	< 0.0089	0.0205	<0.0080	0.1190	<0.0101	<0.0072	<0.0085				
Benzo (a) anthracene	(c)	0.0143	0.0339	<0.0080	< 0.0358	<0.0101	<0.0072	<0.0085				
Benzo (a) pyrene	0.1	0.0142	0.0317	<0.0080	< 0.0358	<0.0101	<0.0072	<0.0085				
Benzo (b) fluoranthene	(c)	0.0163	0.0277	<0.0080	< 0.0358	<0.0101	<0.0072	<0.0085				
Benzo (g,h,i) perylene	NE	<0.0089	0.0177	<0.0080	<0.0358	<0.0101	<0.0072	<0.0085				
Benzo (k) fluoranthene	(c)	0.0148	0.029	<0.0080	< 0.0358	<0.0101	< 0.0072	<0.0085				
Chrysene	(c)	0.0184	0.0334	<0.0080	0.0395	<0.0101	< 0.0072	<0.0085				
Dibenzo (a,h) anthracene	(C)	<0.0089	< 0.0086	<0.0080	< 0.0358	<0.0101	< 0.0072	<0.0085				
Fluoranthene	NE	0.0405	0.0932	<0.0080	0.0544	<0.0101	< 0.0072	<0.0085				
Fluorene	NE	<0.0089	0.0167	<0.0080	1.6900	<0.0101	< 0.0072	<0.0085				
Indeno (1,2,3-cd) pyrene	(c)	0.0093	0.0172	<0.0080	< 0.0358	<0.0101	< 0.0072	<0.0085				
Phenanthrene	NE	0.0253	0.0877	<0.0080	2.9000	<0.0101	< 0.0072	<0.0085				
Pyrene	NE	0.0290	0.0652	<0.0080	0.2120	<0.0101	<0.0072	<0.0085				
cPAH B(a)P Equivalents	0.1	0.0199	0.0428	0.0040	0.0183	0.00510	0.0036	0.0043				

TABLE 3SOIL ANALYTICAL RESULTS - AUGUST 23-25, 2010REMEDIAL INVESTIGATION REPORT

Former ARCO Olympia Bulk Terminal

Industrial Petroleum Distributors

1117 West Bay Drive

Olympia, Washington

	MTCA Method A	hod A Sample ID (Depth below ground surface in feet)								
Analysis	Cleanup Levels	MW-8 (2-2.5) 8/24/2010	MW-8 (6-6.5) 8/24/2010	MW-9 (2-2.5) 8/24/2010	MW-9 (6-6.5) 8/24/2010	MW-10 (2-2.5) 8/24/2010	MW-10 (4-4.5) 8/24/2010	MW-11 (2-2.5) 8/25/2010		
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
Benzene	0.03	< 0.0036	< 0.0036	< 0.0042	< 0.0032	< 0.0039	< 0.0033	< 0.0033		
Ethylbenzene	6	< 0.0036	< 0.0036	< 0.0042	< 0.0032	< 0.0039	< 0.0033	< 0.0033		
Toluene	7	< 0.0036	< 0.0036	< 0.0042	< 0.0032	< 0.0039	< 0.0033	< 0.0033		
Total Xylenes	9	<0.011	< 0.0109	<0.013	< 0.0097	<0.0116	<0.010	<0.010		
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
Gasoline Range Hydrocarbons	30	<7.0	<7.9	<9.0	<8.36	<8.1	<7.8	<7.0		
Diesel Range Organics	2,000	<21.6	<25.4	<24.7	<25.6	<23.4	<26.9	72.3		
Residual Range/Heavy Oil Organics	2,000	<86.3	<102	<98.7	<102	<93.4	<107	176		
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
Arsenic	20	<10.9	<13.1	<10.0	<11.1	<12.4	<13.2	<11.2		
Barium	NE	131	140	156	126	118	126	131		
Cadmium	2	<5.5*	<6.6*	<5.0*	<5.6*	<6.2*	<6.6*	<5.6*		
Chromium (total)	(a)	41.7	41.9	49.0	46.0	45.8	42.0	28		
Lead	250	5	4.1	7.7	6.1	4.9	14.0	58.3		
Mercury	2	<0.11	<0.12	<0.13	<0.11	<0.12	<0.14	0.12		
Selenium	NE	<5.5	<6.6	<5.0	<5.6	<6.2	<6.6	<5.6		
Silver	NE	<5.5	<6.6	<5.0	<5.6	<6.2	<6.6	<5.6		
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		
Naphthalene	(b)	< 0.0074	< 0.0090	< 0.0087	< 0.0089	< 0.0081	<0.0089	0.106		
1-Methylnaphthalene	(b)	< 0.0074	< 0.0090	<0.0087	< 0.0089	< 0.0081	<0.0089	0.146		
2-Methylnaphthalene	(b)	< 0.0074	<0.0090	<0.0087	< 0.0089	< 0.0081	< 0.0089	0.180		
Naphthalenes	5	0.011	0.014	0.013	0.014	0.012	0.014	0.432		
Acenaphthene	NE	< 0.0074	<0.0090	<0.0087	< 0.0089	<0.0081	<0.0089	<0.0076		
Acenaphthylene	NE	< 0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0147		
Anthracene	NE	< 0.0074	< 0.0090	<0.0087	<0.0089	< 0.0081	<0.0089	0.0277		
Benzo (a) anthracene	(C)	< 0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0461		
Benzo (a) pyrene	0.1	<0.0074	< 0.0090	<0.0087	< 0.0089	< 0.0081	<0.0089	0.0460		
Benzo (b) fluoranthene	(C)	< 0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0566		
Benzo (g,h,i) perylene	NÉ	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0231		
Benzo (k) fluoranthene	(c)	< 0.0074	< 0.0090	< 0.0087	< 0.0089	< 0.0081	< 0.0089	0.0356		
Chrysene	(c)	< 0.0074	< 0.0090	< 0.0087	< 0.0089	< 0.0081	< 0.0089	0.0701		
Dibenzo (a,h) anthracene	(C)	< 0.0074	<0.0090	< 0.0087	< 0.0089	< 0.0081	< 0.0089	0.0087		
Fluoranthene	NE	< 0.0074	< 0.0090	< 0.0087	< 0.0089	<0.0081	< 0.0089	0.0943		
Fluorene	NE	< 0.0074	< 0.0090	<0.0087	< 0.0089	< 0.0081	< 0.0089	0.0120		
Indeno (1,2,3-cd) pyrene	(C)	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0210		
Phenanthrene	NE	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.125		
Pyrene	NE	<0.0074	<0.0090	<0.0087	<0.0089	<0.0081	<0.0089	0.0860		
cPAH B(a)P Equivalents	0.1	0.0037	0.0045	0.0044	0.0045	0.0041	0.0045	0.0635		

TABLE 3SOIL ANALYTICAL RESULTS - AUGUST 23-25, 2010REMEDIAL INVESTIGATION REPORT

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors

1117 West Bay Drive

Olympia, Washington

Anchroin	MTCA Method A		Sample ID (Dep	th below ground Date Collected	surface in feet)	
Analysis	Cleanup Levels	MW-11 (4-4.5) 8/25/2010	MW-11 (6-6.5) 8/25/2010	MW-12 (2-2.5) 8/25/2010	MW-12 (4-4.5) 8/25/2010	MW-12 (6-6.5) 8/25/2010
Volatile Organic Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzene	0.03	< 0.0036		< 0.0034	<0.0035	
Ethylbenzene	6	< 0.0036		< 0.0034	<0.0035	
Toluene	7	< 0.0036		< 0.0034	<0.0035	
Total Xylenes	9	<0.0108		<0.010	<0.011	
Total Petroleum Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Gasoline Range Hydrocarbons	30	<7.4		<6.9	<7.2	
Diesel Range Organics	2,000	52.9		75.7	43.1	
Residual Range/Heavy Oil Organics	2,000	142		153	154	
RCRA 8 Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	20	<11.5		<12.3	<11.4	
Barium	NE	132		146	103	
Cadmium	2	<5.8*		<6.2*	<5.7*	
Chromium (total)	(a)	31.6		39.9	27.9	
Lead	250	55.2		17.0	49.7	
Mercury	2	0.2		<0.12	<0.11	
Selenium	NE	<5.8		<6.2	<5.7	
Silver	NE	<5.8		<6.2	<5.7	
c-Polyaromatic Hydrocarbons	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Naphthalene	(b)	0.0585	0.0891	0.147	0.101	0.0785
1-Methylnaphthalene	(b)	0.0814	0.105	0.141	0.110	0.0282
2-Methylnaphthalene	(b)	0.101	0.134	0.194	0.149	0.0458
Naphthalenes	5	0.241	0.3281	0.482	0.360	0.153
Acenaphthene	NE	<0.0078	0.0726	0.0186	0.0093	<0.0117
Acenaphthylene	NE	0.0105	0.0210	0.0205	0.0232	<0.0117
Anthracene	NE	0.0209	0.112	0.0517	0.0561	0.0225
Benzo (a) anthracene	(C)	0.0314	0.154	0.0871	0.0849	0.108
Benzo (a) pyrene	0.1	0.0328	0.168	0.0941	0.0861	0.114
Benzo (b) fluoranthene	(C)	0.0445	0.181	0.118	0.136	0.106
Benzo (g,h,i) perylene	ŇÉ	0.0181	0.0745	0.0504	0.0472	0.0548
Benzo (k) fluoranthene	(C)	0.0352	0.120	0.0866	0.0877	0.0882
Chrysene	(c)	0.0477	0.171	0.146	0.134	0.116
Dibenzo (a,h) anthracene	(c)	<0.0078	0.0270	0.0198	0.0174	0.0231
Fluoranthene	NE	0.0690	0.415	0.292	0.219	0.244
Fluorene	NE	<0.0078	0.0367	0.0206	0.0136	0.0126
Indeno (1,2,3-cd) pyrene	(c)	0.0173	0.0708	0.0480	0.0492	0.0532
Phenanthrene	NE	0.0733	0.426	0.257	0.143	0.0945
Pyrene	NE	0.0564	0.358	0.228	0.165	0.195
cPAH B(a)P Equivalents	0.1	0.0465	0.225	0.132	0.125	0.153

TABLE 3 SOIL ANALYTICAL RESULTS - AUGUST 23-25, 2010 REMEDIAL INVESTIGATION REPORT Former ARCO Olympia Bulk Terminal

Industrial Petroleum Distributors 1117 West Bay Drive

Olympia, Washington

Notes

Concentrations compared to the Model Toxics Control Act (MTCA) Method A soil cleanup levels for unrestricted land uses

presented in Table 740-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 100-mg/kg without benzene and 30-mg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 30-mg/kg was utilized.

ft = Feet

bgs = Below ground surface

mg/kg = milligram per kilogram

NE = Cleanup level not established under MTCA

-- = not applicable or analyzed

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Chemical not detected above the laboratory reporting limit

* = Laboratory practical quantitation limit is elevated above the MTCA Method A cleanup level, but chemical was

not observed above the laboratory method detection limit

Italics = Value calculated for comparison to MTCA cleanup level

Bold = Chemical detected at a concentration above the laboratory reporting limit

Bolded and highlighted font indicates results above the MTCA cleanup level

(a) = Analysis is for total chromium. No MTCA cleanup level has been established for total chromium.

(b) = MTCA cleanup level is 5-mg/kg for total concentration of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

(c) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)

Lab QA/QC surrogate recovery was outside control limits due to matrix interference for samples GP1-4-4.5, GP1-6-6.5, GP2-4-4.5, GP5-4-4.5, GP6-6-4.5, GP6-6-6.5

	MTCA Method			MW-	-6R					
Analysis	A Groundwater	Date Collected								
Alidiysis	Cleanup Levels	10/1/2010	12/30/2010	12/30/2010 (dup)	3/17/2011	6/11/2011	9/22/2011			
Volatile Organic Compounds	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			
Benzene	5	<1.0	<0.20	<0.20	<1.0	<0.20	<0.20			
Toluene	1,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0			
Total Xylenes	1,000	<2.0	<3.0	<3.0	<2.0	<3.0	<3.0			
Total Petroleum Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			
Gasoline Range Organics	800	<50	<50.0	<50.0	<50	<50.0	<50.0			
Diesel Range Organics	500	<120	<76	<76	<120	<85	<75			
Residual Range/Heavy Oil Organics	500	<240	<380	<380	<240^	<430	<380			
Metals	μg/L	μα/L	μα/L	μα/L	μα/L	μα/L	μα/L			
Lead (Total)	15	<2.0^	<10.0	<10.0	5.4	<10.0	<10.0			
Lead (Dissolved)	NE	<2.0^	<10.0	<10.0	<2.0	<10.0	<10.0			
c-Polyaromatic Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			
Naphthalene	(a)	0.010	<0.095	<0.095	<0.47	<0.11	< 0.094			
1-Methylnaphthalene	(a)	< 0.0097	<0.095	<0.095	<0.14	<0.11	< 0.094			
2-Methylnaphthalene	(a)	<0.013	<0.095	<0.095	< 0.094	<0.11	< 0.094			
Naphthalenes	160	0.0210	0.143	0.143	0.352	0.165	0.141			
Acenaphthene	NE	< 0.0097	<0.095	<0.095	< 0.094	<0.11	< 0.094			
Acenaphthylene	NE	<0.0097	<0.095	<0.095	< 0.094	<0.11	< 0.094			
Anthracene	NE	< 0.0097	<0.095	<0.095	< 0.047	<0.11	< 0.094			
Benzo (a) anthracene	(b)	< 0.0097	< 0.095	<0.095	< 0.094	<0.11	< 0.094			
Benzo (a) pyrene	0.1	0.019	< 0.095	<0.095	< 0.094	<0.11	< 0.094			
Benzo (b) fluoranthene	(b)	0.017	<0.095	<0.095	< 0.094	<0.11	< 0.094			
Benzo (g,h,i) perylene	ŃÉ	0.013	<0.095	<0.095	< 0.094	<0.11	< 0.094			
Benzo (k) fluoranthene	(b)	<0.0097	< 0.095	<0.095	< 0.094	<0.11	< 0.094			
Chrysene	(b)	0.011	<0.095	<0.095	< 0.061	<0.11	< 0.094			
Dibenzo (a,h) anthracene	(b)	< 0.0097	< 0.095	<0.095	< 0.094	<0.11	< 0.094			
Fluoranthene	ŇÉ	0.013	<0.095	<0.095	< 0.061	<0.11	<0.094			
Fluorene	NE	< 0.0097	< 0.095	<0.095	< 0.094	<0.11	< 0.094			
Indeno (1,2,3-cd) pyrene	(b)	0.011	<0.095	<0.095	< 0.094	<0.11	< 0.094			
Phenanthrene	ŇÉ	<0.0097	<0.095	<0.095	< 0.094	<0.11	<0.094			
Pyrene	NE	0.017	<0.095	<0.095	< 0.061	<0.11	<0.094			
cPAH B(a)P Equivalents	0.1	0.0234	0.0717	0.0717	0.0708	0.0831	0.0710			

Notes

Volatile Organic Compounds analyzed by USEPA Method 8260 Total petroleum hydrocarbons-gasoline range organics analyzed by Northwest Method NWTPH-Gx Total petroleum hydrocarbons-diesel and residual/heavy oil range organics analyzed by Northwest Method NWTPH-Dx

Total and dissolved lead analyzed by USEPA Method 6010

c-Polyaromatic hydrocarbons analyzed by USEPA Method 8270

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

ug/L = micrograms per liter

dup = Duplicate sample

NE = Cleanup level not established under MTCA cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Chemical not detected above the laboratory reporting limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Italics = Value calculated for comparison to MTCA cleanup level

(a) = See MTCA cleanup level for naphthalenes. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

(b) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8) ^ = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK, or MRL standard: Instrument related QC exceeds the control limits

	MTCA Method			MV	V-7		
	A Groundwater				ollected		
Analysis	Cleanup			Date Co	Dilected		
	Levels	10/1/2010	12/29/2010	3/17/2011	6/11/2011	6/11/2011 (dup)	9/22/2011
Volatile Organic Compounds	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Benzene	5	<1.0	<0.20	<1.0	<0.20	<0.20	<0.20
Toluene	1,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Total Xylenes	1,000	<2.0	<3.0	<2.0	<3.0	<3.0	<3.0
Total Petroleum Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Gasoline Range Organics	800	<50	<50.0	<50	<50.0	<50.0	<50.0
Diesel Range Organics	500	150 Y	<77	<120	<87	<86	<75
Residual Range/Heavy Oil Organics	500	<250	<380	<240^	<430	<430	<380
Metals	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Lead (Total)	15	<2.0^	<10.0	<2.0	<10.0	<10.0	<10.0
Lead (Dissolved)	NE	<2.0^	<10.0	<2.0	<10.0	<10.0	<10.0
c-Polyaromatic Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Naphthalene	(a)	0.086	<0.096	<0.47	<0.11	<0.11	<0.094
1-Methylnaphthalene	(a)	0.23	< 0.096	<0.14	<0.11	0.15	0.16
2-Methylnaphthalene	(a)	0.16	<0.096	<0.094	<0.11	0.11	0.13
Naphthalenes	160	0.48	0.144	0.352	0.165	0.308	0.337
Acenaphthene	NE	0.051	< 0.096	<0.094	<0.11	< 0.095	< 0.094
Acenaphthylene	NE	<0.0097	<0.096	<0.094	<0.11	<0.095	<0.094
Anthracene	NE	0.011	< 0.096	<0.047	<0.11	< 0.095	< 0.094
Benzo (a) anthracene	(b)	0.017	< 0.096	<0.094	<0.11	< 0.095	< 0.094
Benzo (a) pyrene	0.1	0.019	<0.096	<0.094	<0.11	<0.095	<0.094
Benzo (b) fluoranthene	(b)	<0.0097	< 0.096	<0.094	<0.11	< 0.095	< 0.094
Benzo (g,h,i) perylene	NE	<0.0097	< 0.096	<0.094	<0.11	<0.095	< 0.094
Benzo (k) fluoranthene	(b)	<0.0097	< 0.096	<0.094	<0.11	< 0.095	< 0.094
Chrysene	(b)	<0.0097	<0.096	<0.061	<0.11	<0.095	<0.094
Dibenzo (a,h) anthracene	(b)	<0.0097	< 0.096	<0.094	<0.11	<0.095	<0.094
Fluoranthene	NE	0.010	<0.096	<0.061	<0.11	<0.095	<0.094
Fluorene	NE	0.063	<0.096	<0.094	<0.11	<0.095	<0.094
Indeno (1,2,3-cd) pyrene	(b)	<0.0097	<0.096	<0.094	<0.11	<0.095	<0.094
Phenanthrene	NE	0.048	< 0.096	<0.094	<0.11	< 0.095	< 0.094
Pyrene	NE	<0.0097	< 0.096	<0.061	<0.11	< 0.095	<0.094
cPAH B(a)P Equivalents	0.1	0.0132	0.0725	0.0708	0.0831	0.0717	0.0710

Notes

Volatile Organic Compounds analyzed by USEPA Method 8260 Total petroleum hydrocarbons-gasoline range organics analyzed by Northwest Method NWTPH-Gx Total petroleum hydrocarbons-diesel and residual/heavy oil range organics analyzed by Northwest Method NWTPH-Dx

Total and dissolved lead analyzed by USEPA Method 6010

c-Polyaromatic hydrocarbons analyzed by USEPA Method 8270

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

dup = Duplicate sample

Dup = Duplicate sample

NE = Cleanup level not established under MTCA

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Chemical not detected above the laboratory reporting limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Italics = Value calculated for comparison to MTCA cleanup level

(a) = See MTCA cleanup level for naphthalenes. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

(b) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8) ^ = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK, or MRL standard: Instrument related QC exceeds the control limits

Y = The chromatographic response resembles a typical fuel pattern

	MTCA Method			MV	V-8		
Analysis	A Groundwater			Date Co	ollected		
Anaysis	Cleanup Levels	10/1/2010	12/29/2010	3/17/2011	3/17/2011 (dup)	6/11/2011	9/22/2011
Volatile Organic Compounds	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Benzene	5	<1.0	0.21	<1.0	<1.0	0.26	0.35
Toluene	1,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Total Xylenes	1,000	<2.0	<3.0	<2.0	<2.0	<3.0	<3.0
Total Petroleum Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Gasoline Range Hydrocarbons	800	<50	<50.0	<50	<50	<50.0	<50.0
Diesel Range Organics	500	200 Y	<77	<120	<120	<83	<75
Residual Range/Heavy Oil Organics	500	<240	<380	<240^	<240^	<420	<380
Metals	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Lead (Total)	15	<2.0^	<10.0	<2.0	<2.0	<10.0	<10.0
Lead (Dissolved)	NE	<2.0^	<10.0	<2.0	<2.0	<10.0	<10.0
c-Polyaromatic Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Naphthalene	(a)	0.085	< 0.096	<0.47	<0.47	< 0.096	0.12
1-Methylnaphthalene	(a)	0.11	< 0.096	<0.14	<0.14	< 0.096	0.13
2-Methylnaphthalene	(a)	0.038	< 0.096	<0.094	< 0.094	< 0.096	<0.094
Naphthalenes	160	0.23	0.144	0.352	0.352	0.144	0.297
Acenaphthene	NE	0.033	< 0.096	<0.094	< 0.094	< 0.096	< 0.094
Acenaphthylene	NE	<0.0097	< 0.096	<0.094	< 0.094	< 0.096	< 0.094
Anthracene	NE	0.018	< 0.096	<0.047	<0.047	< 0.096	< 0.094
Benzo (a) anthracene	(b)	<0.0097	< 0.096	<0.094	< 0.094	< 0.096	< 0.094
Benzo (a) pyrene	0.1	<0.019	< 0.096	<0.094	< 0.094	< 0.096	<0.094
Benzo (b) fluoranthene	(b)	<0.0097	< 0.096	<0.094	< 0.094	< 0.096	< 0.094
Benzo (g,h,i) perylene	ŇÉ	< 0.0097	< 0.096	< 0.094	< 0.094	< 0.096	< 0.094
Benzo (k) fluoranthene	(b)	<0.0097	< 0.096	<0.094	< 0.094	< 0.096	< 0.094
Chrysene	(b)	0.053	< 0.096	<0.061	< 0.061	< 0.096	< 0.094
Dibenzo (a,h) anthracene	(b)	< 0.0097	< 0.096	< 0.094	< 0.094	< 0.096	< 0.094
Fluoranthene	ŇÉ	0.011	< 0.096	<0.061	<0.061	< 0.096	< 0.094
Fluorene	NE	0.029	< 0.096	<0.094	< 0.094	< 0.096	< 0.094
Indeno (1,2,3-cd) pyrene	(b)	<0.0097	< 0.096	<0.094	<0.094	< 0.096	<0.094
Phenanthrene	ŇÉ	0.028	< 0.096	<0.094	< 0.094	< 0.096	< 0.094
Pyrene	NE	0.010	< 0.096	<0.061	<0.061	< 0.096	< 0.094
cPAH B(a)P Equivalents	0.1	0.0125	0.0725	0.0708	0.0708	0.0725	0.0710

Notes

Volatile Organic Compounds analyzed by USEPA Method 8260 Total petroleum hydrocarbons-gasoline range organics analyzed by Northwest Method NWTPH-Gx Total petroleum hydrocarbons-diesel and residual/heavy oil range organics analyzed by Northwest Method NWTPH-Dx

Total and dissolved lead analyzed by USEPA Method 6010

c-Polyaromatic hydrocarbons analyzed by USEPA Method 8270

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

dup = Duplicate sample

Dup = Duplicate sample

NE = Cleanup level not established under MTCA

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Chemical not detected above the laboratory reporting limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Italics = Value calculated for comparison to MTCA cleanup level

(a) = See MTCA cleanup level for naphthalenes. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

(b) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8) ^ = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK, or MRL standard: Instrument related QC exceeds the control limits

Y = The chromatographic response resembles a typical fuel pattern

Analysis	MTCA Method A Groundwater	MW-9 Date Collected							
	Cleanup Levels	10/1/2010	12/292010	3/17/2002	6/11/2011	9/22/2011			
Volatile Organic Compounds	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			
Benzene	5	<1.0	0.21	<1.0	<0.20	0.37			
Toluene	1,000	<1.0	<1.0	<1.0	<1.0	<1.0			
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0			
Total Xylenes	1,000	<2.0	<3.0	<2.0	<3.0	<3.0			
Total Petroleum Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			
Gasoline Range Hydrocarbons	800	110	56.5	<50	84.4	241			
Diesel Range Organics	500	160 Y	<76	<120	<88	<75			
Residual Range/Heavy Oil Organics	500	<250	<380	<240^	<440	<380			
Metals	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			
Lead (Total)	15	<2.0^	<10.0	<2.0	<10.0	<10.0			
Lead (Dissolved)	NE	<2.0^	<10.0	<2.0	<10.0	<10.0			
c-Polyaromatic Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			
Naphthalene	(a)	0.400	0.59	<1.9	0.36	< 0.094			
1-Methylnaphthalene	(a)	0.019	<0.095	<0.38	<0.11	< 0.094			
2-Methylnaphthalene	(a)	0.013	<0.095	<0.94	<0.11	<0.094			
Naphthalenes	160	0.43	0.390	0.352	0.470	0.141			
Acenaphthene	NE	< 0.0094	<0.095	<0.094	<0.11	<0.094			
Acenaphthylene	NE	< 0.0094	<0.095	<0.094	<0.11	< 0.094			
Anthracene	NE	< 0.0094	<0.095	<0.047	<0.11	<0.094			
Benzo (a) anthracene	(b)	< 0.0094	<0.095	< 0.094	<0.11	< 0.094			
Benzo (a) pyrene	0.1	<0.019	< 0.095	< 0.094	<0.11	< 0.094			
Benzo (b) fluoranthene	(b)	< 0.0094	<0.095	< 0.094	<0.11	< 0.094			
Benzo (g,h,i) perylene	ŇÉ	< 0.0094	< 0.095	< 0.094	<0.11	< 0.094			
Benzo (k) fluoranthene	(b)	< 0.0094	<0.095	< 0.094	<0.11	< 0.094			
Chrysene	(b)	< 0.0094	< 0.095	<0.061	<0.11	< 0.094			
Dibenzo (a,h) anthracene	(b)	< 0.0094	<0.095	< 0.094	<0.11	< 0.094			
Fluoranthene	NÉ	< 0.0094	< 0.095	< 0.061	<0.11	< 0.094			
Fluorene	NE	< 0.0094	<0.095	<0.094	<0.11	< 0.094			
Indeno (1,2,3-cd) pyrene	(b)	<0.0094	<0.095	<0.094	<0.11	<0.094			
Phenanthrene	ŇÉ	0.011	<0.095	<0.094	<0.11	< 0.094			
Pyrene	NE	< 0.0094	<0.095	<0.061	<0.11	< 0.094			
cPAH B(a)P Equivalents	0.1	0.0119	0.0717	0.0708	0.0831	0.0710			

Notes

Volatile Organic Compounds analyzed by USEPA Method 8260

Total petroleum hydrocarbons-gasoline range organics analyzed by Northwest Method NWTPH-Gx Total petroleum hydrocarbons-diesel and residual/heavy oil range organics analyzed by Northwest Method NWTPH-Dx

Total and dissolved lead analyzed by USEPA Method 6010

c-Polyaromatic hydrocarbons analyzed by USEPA Method 8270

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

ug/L = micrograms per liter

dup = Duplicate sample

NE = Cleanup level not established under MTCA

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Chemical not detected above the laboratory reporting limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Italics = Value calculated for comparison to MTCA cleanup level

(a) = See MTCA cleanup level for naphthalenes. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

(b) = See MTCA cleanup level for B(a)P. Total concentration of CPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)
 ^ = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK, or MRL standard: Instrument related QC exceeds the control limits

Y = The chromatographic response resembles a typical fuel pattern

	MTCA Method	MW-10						
Analysis	A Groundwater		D	ate Collecte	d			
	Cleanup Levels	10/1/2010	12/29/2010	3/17/2011	6/11/2011	9/22/2011		
Volatile Organic Compounds	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Benzene	5	<1.0	<0.20	<1.0	<0.20	<0.20		
Toluene	1,000	<1.0	<1.0	<1.0	<1.0	<1.0		
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0		
Total Xylenes	1,000	<2.0	<3.0	<2.0	<3.0	<3.0		
Total Petroleum Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Gasoline Range Hydrocarbons	800	<50	<50.0	<50	<50.0	<50.0		
Diesel Range Organics	500	<120	<77	<120	<86	<75		
Residual Range/Heavy Oil Organics	500	<240	<380	<240^	<430	<380		
Metals	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Lead (Total)	15	<2.0^	<10.0	<2.0	<10.0	<10.0		
Lead (Dissolved)	NE	<2.0^	<10.0	<2.0	<10.0	<10.0		
c-Polyaromatic Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Naphthalene	(a)	<0.0094	<0.096	<0.47	<0.11	< 0.094		
1-Methylnaphthalene	(a)	<0.0094	< 0.096	<0.14	<0.11	< 0.094		
2-Methylnaphthalene	(a)	<0.012	< 0.096	<0.094	<0.11	< 0.094		
Naphthalenes	160	0.015	0.144	0.352	0.165	0.141		
Acenaphthene	NE	<0.0094	< 0.096	<0.47	<0.11	< 0.094		
Acenaphthylene	NE	<0.0094	< 0.096	<0.38	<0.11	< 0.094		
Anthracene	NE	<0.0094	< 0.096	<0.19	<0.11	< 0.094		
Benzo (a) anthracene	(b)	<0.0094	< 0.096	<0.28	<0.11	< 0.094		
Benzo (a) pyrene	0.1	<0.019	< 0.096	<0.19	<0.11	< 0.094		
Benzo (b) fluoranthene	(b)	<0.0094	< 0.096	<0.38	<0.11	< 0.094		
Benzo (g,h,i) perylene	NÉ	<0.0094	< 0.096	<0.28	<0.11	< 0.094		
Benzo (k) fluoranthene	(b)	<0.0094	< 0.096	<0.28	<0.11	< 0.094		
Chrysene	(b)	<0.0094	< 0.096	<0.19	<0.11	< 0.094		
Dibenzo (a,h) anthracene	(b)	< 0.0094	< 0.096	<0.28	<0.11	< 0.094		
Fluoranthene	ŇÉ	< 0.0094	< 0.096	<0.24	<0.11	< 0.094		
Fluorene	NE	< 0.0094	< 0.096	<0.28	<0.11	< 0.094		
Indeno (1,2,3-cd) pyrene	(b)	< 0.0094	< 0.096	<0.28	<0.11	< 0.094		
Phenanthrene	ŇÉ	< 0.0094	< 0.096	<0.38	<0.11	< 0.094		
Pyrene	NE	< 0.0094	< 0.096	<0.28	<0.11	<0.094		
cPAH B(a)P Equivalents	0.1	0.0119	0.0725	0.0708	0.0831	0.0710		

Notes

Volatile Organic Compounds analyzed by USEPA Method 8260

Total petroleum hydrocarbons-gasoline range organics analyzed by Northwest Method NWTPH-Gx Total petroleum hydrocarbons-diesel and residual/heavy oil range organics analyzed by Northwest Method NWTPH-Dx

Total and dissolved lead analyzed by USEPA Method 6010

c-Polyaromatic hydrocarbons analyzed by USEPA Method 8270

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

ug/L = micrograms per liter

dup = Duplicate sample

NE = Cleanup level not established under MTCA

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Chemical not detected above the laboratory reporting limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Italics = Value calculated for comparison to MTCA cleanup level

(a) = See MTCA cleanup level for naphthalenes. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene
 (b) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)
 ^ = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK, or MRL standard: Instrument related QC exceeds the control limits

	MTCA Method	MW-11						
Analysis	A Groundwater		D	ate Collecte	d			
	Cleanup Levels	10/1/2010	12/30/2010	3/17/2011	6/11/2011	9/22/2011		
Volatile Organic Compounds	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Benzene	5	<1.0	<0.20	<1.0	<0.20	<0.20		
Toluene	1,000	<1.0	<1.0	<1.0	<1.0	<1.0		
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0		
Total Xylenes	1,000	<2.0	<3.0	<2.0	<3.0	<3.0		
Total Petroleum Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Gasoline Range Hydrocarbons	800	<50	<50.0	<50	<50.0	<50.0		
Diesel Range Organics	500	<120	110	<120	<84	<75		
Residual Range/Heavy Oil Organics	500	<240	<380	<240^	<420	<380		
Metals	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Lead (Total)	15	<2.0^	<10.0	<2.0	<10.0	<10.0		
Lead (Dissolved)	NE	<2.0^	<10.0	<2.0	<10.0	<10.0		
c-Polyaromatic Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
Naphthalene	(a)	0.012	< 0.095	<0.47	<0.11	< 0.094		
1-Methylnaphthalene	(a)	<0.0098	< 0.095	<0.14	<0.11	< 0.094		
2-Methylnaphthalene	(a)	<0.013	< 0.095	< 0.094	<0.11	< 0.094		
Naphthalenes	160	0.023	0.143	0.352	0.165	0.141		
Acenaphthene	NE	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Acenaphthylene	NE	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Anthracene	NE	<0.0098	< 0.095	<0.047	<0.11	< 0.094		
Benzo (a) anthracene	(b)	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Benzo (a) pyrene	0.1	<0.020	< 0.095	< 0.094	<0.11	< 0.094		
Benzo (b) fluoranthene	(b)	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Benzo (g,h,i) perylene	ŃÉ	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Benzo (k) fluoranthene	(b)	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Chrysene	(b)	<0.0098	< 0.095	<0.061	<0.11	< 0.094		
Dibenzo (a,h) anthracene	(b)	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Fluoranthene	ŇÉ	<0.0098	< 0.095	< 0.061	<0.11	< 0.094		
Fluorene	NE	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Indeno (1,2,3-cd) pyrene	(b)	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Phenanthrene	NÉ	<0.0098	< 0.095	< 0.094	<0.11	< 0.094		
Pyrene	NE	<0.0098	< 0.095	< 0.061	<0.11	< 0.094		
cPAH B(a)P Equivalents	0.1	0.0125	0.0717	0.0708	0.0831	0.0710		

Notes

Volatile Organic Compounds analyzed by USEPA Method 8260

Total petroleum hydrocarbons-gasoline range organics analyzed by Northwest Method NWTPH-Gx Total petroleum hydrocarbons-diesel and residual/heavy oil range organics analyzed by Northwest Method NWTPH-Dx

Total and dissolved lead analyzed by USEPA Method 6010

c-Polyaromatic hydrocarbons analyzed by USEPA Method 8270

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

ug/L = micrograms per liter

dup = Duplicate sample

NE = Cleanup level not established under MTCA

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Chemical not detected above the laboratory reporting limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Italics = Value calculated for comparison to MTCA cleanup level

(a) = See MTCA cleanup level for naphthalenes. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene
 (b) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8)
 ^ = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK, or MRL standard: Instrument related QC exceeds the control limits

	MTCA Method			MW	-12		
Analysis	A Groundwater			Date Co	ollected		
, and joint	Cleanup Levels	10/1/2010	10/1/2010 (dup)	12/30/2011	3/17/2011	6/11/2011	9/22/2011
Volatile Organic Compounds	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Benzene	5	<1.0	<1.0	<0.20	<1.0	<0.20	<0.20
Toluene	1,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Total Xylenes	1,000	<2.0	<2.0	<3.0	<2.0	<3.0	<3.0
Total Petroleum Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Gasoline Range Hydrocarbons	800	<50	<50	<50.0	<50	<50.0	<50.0
Diesel Range Organics	500	<120	<120	89	<120	<82	<75
Residual Range/Heavy Oil Organics	500	<240	<240	<380	<240^	<410	<380
Metals	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Lead (Total)	15	<2.0^	<2.0^	<10.0	<2.0	<10.0	<10.0
Lead (Dissolved)	NE	<2.0^	<2.0^	<10.0	<2.0	<10.0	<10.0
c-Polyaromatic Hydrocarbons	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Naphthalene	(a)	0.019	0.020	< 0.096	<0.47	<0.11	<0.094
1-Methylnaphthalene	(a)	<0.0097	<0.0096	< 0.096	<0.14	<0.11	<0.094
2-Methylnaphthalene	(a)	<0.013	<0.012	< 0.096	<0.094	<0.11	< 0.094
Naphthalenes	160	0.031	0.031	0.144	0.352	0.165	0.141
Acenaphthene	NE	<0.0097	<0.0096	< 0.096	<0.094	<0.11	< 0.094
Acenaphthylene	NE	<0.0097	<0.0096	< 0.096	<0.094	<0.11	<0.094
Anthracene	NE	<0.0097	<0.0096	< 0.096	<0.047	<0.11	<0.094
Benzo (a) anthracene	(b)	<0.0097	<0.0096	< 0.096	<0.094	<0.11	< 0.094
Benzo (a) pyrene	0.1	<0.019	<0.019	< 0.096	<0.094	<0.11	<0.094
Benzo (b) fluoranthene	(b)	<0.0097	<0.0096	< 0.096	<0.094	<0.11	<0.094
Benzo (g,h,i) perylene	NE	<0.0097	<0.0096	< 0.096	<0.094	<0.11	<0.094
Benzo (k) fluoranthene	(b)	<0.0097	<0.0096	< 0.096	<0.094	<0.11	<0.094
Chrysene	(b)	<0.0097	< 0.0096	< 0.096	<0.061	<0.11	< 0.094
Dibenzo (a,h) anthracene	(b)	<0.0097	< 0.0096	< 0.096	<0.094	<0.11	<0.094
Fluoranthene	ŇÉ	<0.0097	<0.0096	< 0.096	<0.061	<0.11	<0.094
Fluorene	NE	<0.0097	<0.0096	< 0.096	<0.094	<0.11	<0.094
Indeno (1,2,3-cd) pyrene	(b)	<0.0097	<0.0096	< 0.096	<0.094	<0.11	<0.094
Phenanthrene	NÉ	<0.0097	<0.0096	< 0.096	<0.094	<0.11	<0.094
Pyrene	NE	<0.0097	<0.0096	< 0.096	<0.061	<0.11	<0.094
cPAH B(a)P Equivalents	0.1	0.0120	0.0119	0.0725	0.0708	0.0831	0.0710

Notes

Volatile Organic Compounds analyzed by USEPA Method 8260 Total petroleum hydrocarbons-gasoline range organics analyzed by Northwest Method NWTPH-Gx Total petroleum hydrocarbons-diesel and residual/heavy oil range organics analyzed by Northwest Method NWTPH-Dx

Total and dissolved lead analyzed by USEPA Method 6010

c-Polyaromatic hydrocarbons analyzed by USEPA Method 8270

Concentrations compared to the Model Toxics Control Act (MTCA) Method A groundwater cleanup levels presented in Table 720-1 of Chapter 173-340 of the Washington Administrative Code (WAC)

The MTCA cleanup level for gasoline range total petroleum hydrocarbons is 1000-µg/kg without benzene and 800-µg/kg with benzene present. Benzene was observed in groundwater collected from sample ID-4 in 2001, thus the cleanup level of 800-µg/kg was utilized.

ug/L = micrograms per liter

dup = Duplicate sample

NE = Cleanup level not established under MTCA

cPAH = Carcinogenic polyaromatic hydrocarbons

B(a)P = Benzo(a)pyrene

< = Chemical not detected above the laboratory reporting limit

Bold = Chemical detected at a concentration above the laboratory reporting limit

Italics = Value calculated for comparison to MTCA cleanup level

(a) = See MTCA cleanup level for naphthalenes. This is a total value for naphthalene, 1-methylnaphthalene and 2-methylnaphthalene (b) = See MTCA cleanup level for B(a)P. Total concentration of cPAHs calculated using the toxicity equivalency method in WAC 173-340-708(8) ^ = ICV, CCV, ICB, CCB, ISA, ISB, CRI, CRA, DLCK, or MRL standard: Instrument related QC exceeds the control limits

TABLE 5GROUNDWATER ELEVATION DATAREMEDIAL INVESTIGATION REPORTFormer ARCO Olympia Bulk Terminal

Industrial Petroleum Distributors 1117 West Bay Drive Olympia, Washington

Groundwater				Well ID			
Elevation Data	MW-6R	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12
Date Measured	feet	feet	feet	feet	feet	feet	feet
10/1/2010	11.92^	9.74^	10.05^	11.41^	11.47^	13.00^	12.97^
12/29/2010	12.34*	12.33*	11.73*	12.12*	12.33*	13.65*	13.65*
3/17/2011	12.54*	12.30*	11.79*	12.34*	12.11*	14.01*	14.04*
4/19/2011	12.38^	10.93^	11.30^	11.41^	11.95^	13.81^	13.74^
6/2/2011	12.33*	9.74*	10.37*	10.65*	11.84*	13.79*	13.71*
6/2/2011	12.26^	9.64^	10.34^	10.93^	11.91^	13.63^	13.59^

Notes *

۸

High Tide

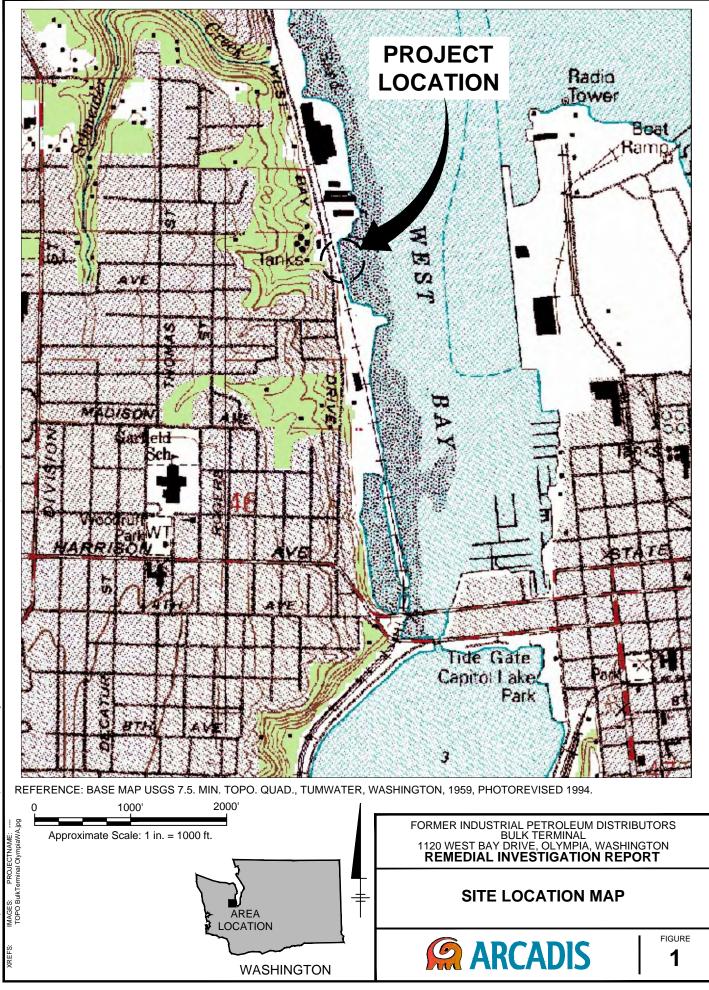
Low Tide

The groundwater elevation data approximately measured at high or low tides.

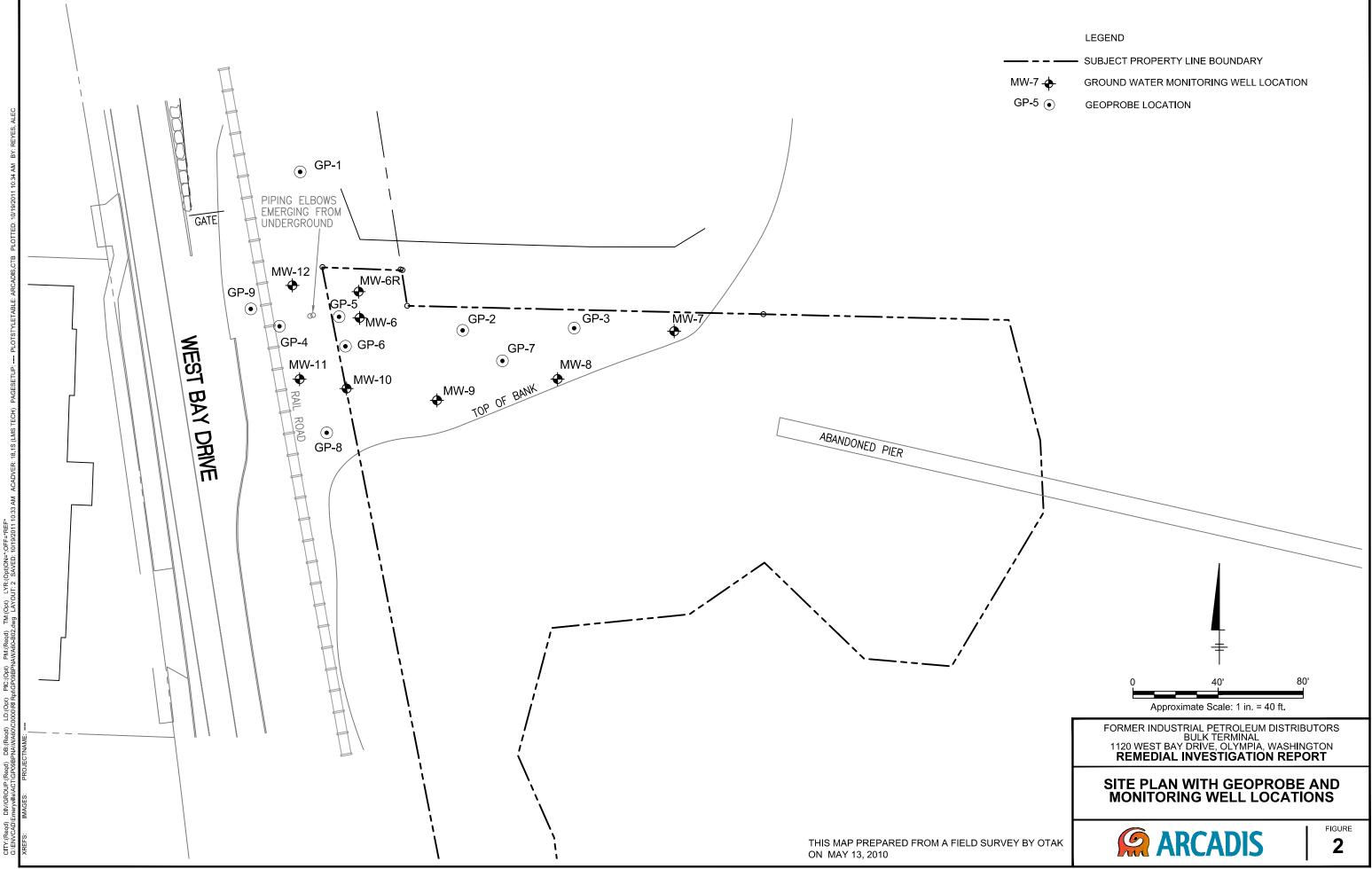
TABLE 6ELECTRICAL CONDUCTIVITY VERSUS HIGH AND LOW TIDEREMEDIAL INVESTIGATION REPORT

Former ARCO Olympia Bulk Terminal Industrial Petroleum Distributors 1117 West Bay Drive Olympia, Washington

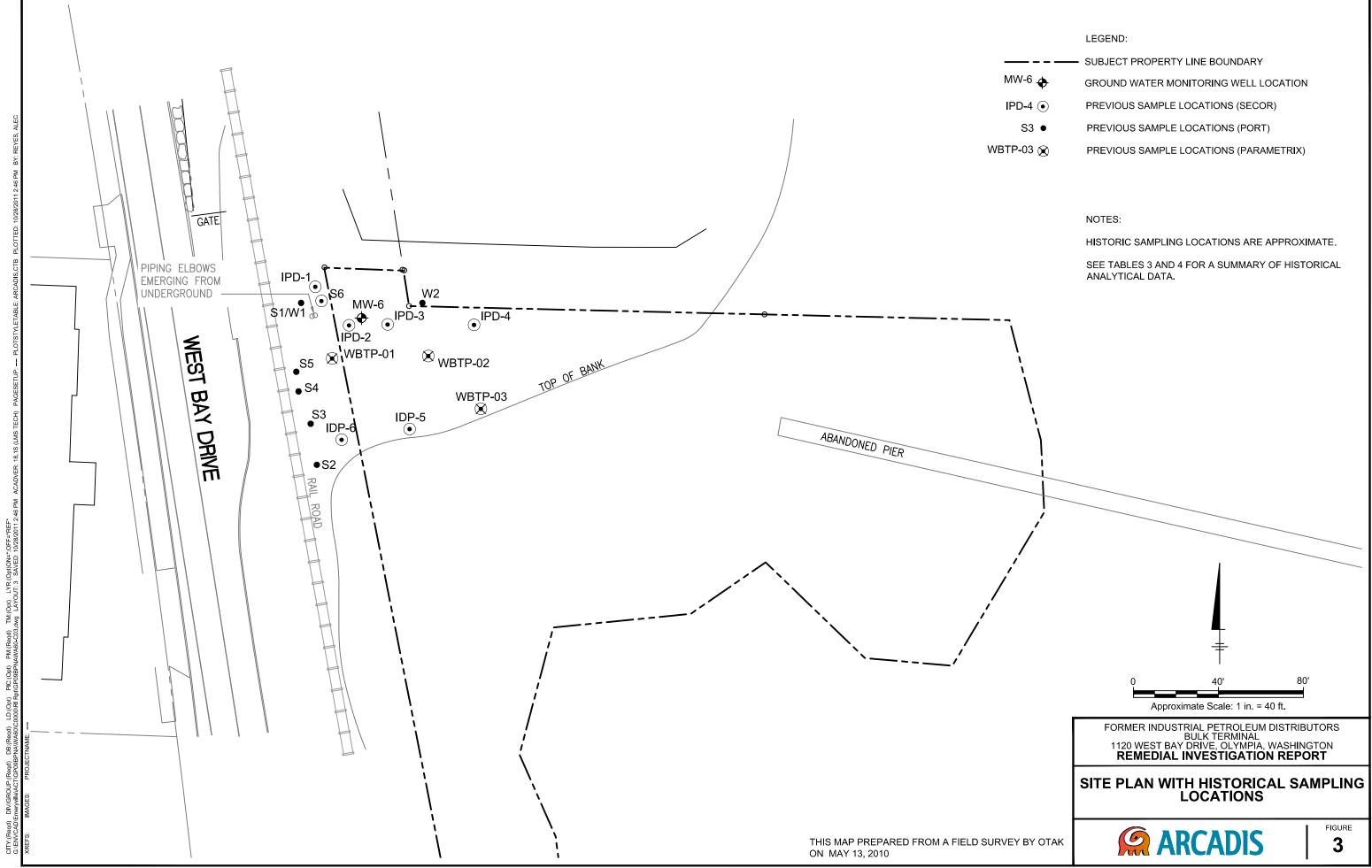
Electrical	High or Low	Well ID							
Conductivity	Tide	MW-6R	MW-7	MW-8	MW-9	MW-10	MW-11	MW-12	
Date Measured		mS/cm	mS/cm	mS/cm	mS/cm	mS/cm	mS/cm	mS/cm	
10/1/2010	High	0.145	1.795	2.71	0.220	0.185	0.175	0.174	
10/1/2010	Low								
12/30/2010	High	0.175	0.774	2.51	0.358	0.241		0.240	
12/30/2010	Low								
3/17/2011	High	0.189	0.359	3.051	0.496	0.276	0.313	0.278	
3/17/2011	Low								
6/3/2011	High								
6/3/2011	Low	0.166	1.520	3.17	0.363	0.215	0.202	0.192	


Notes

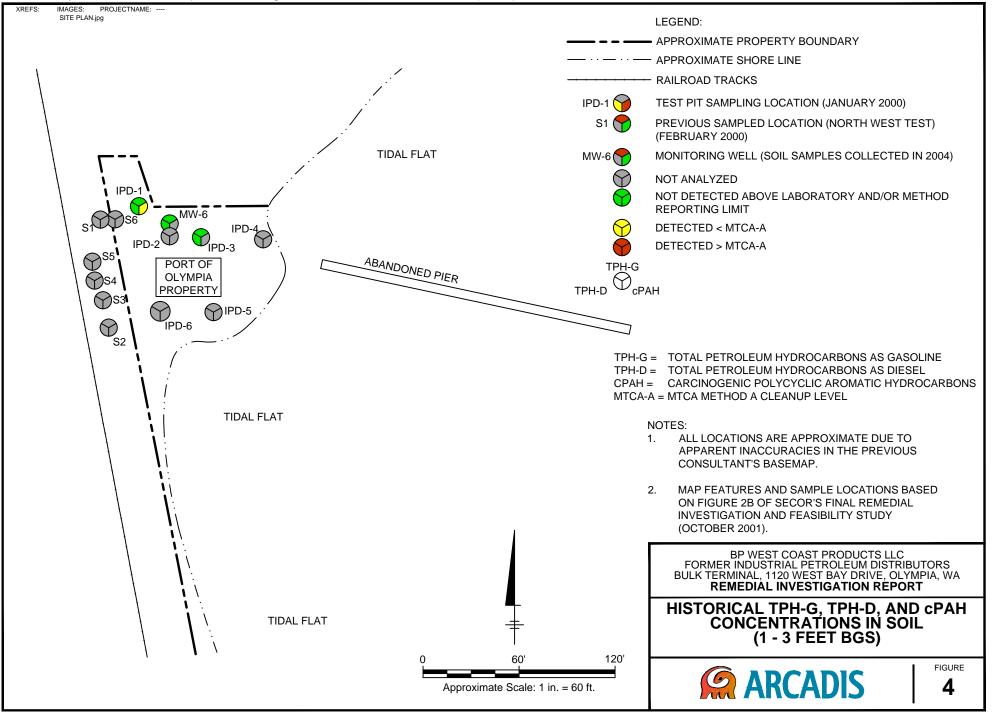
mS/cm millisiemens per centimeter


-- not recorded

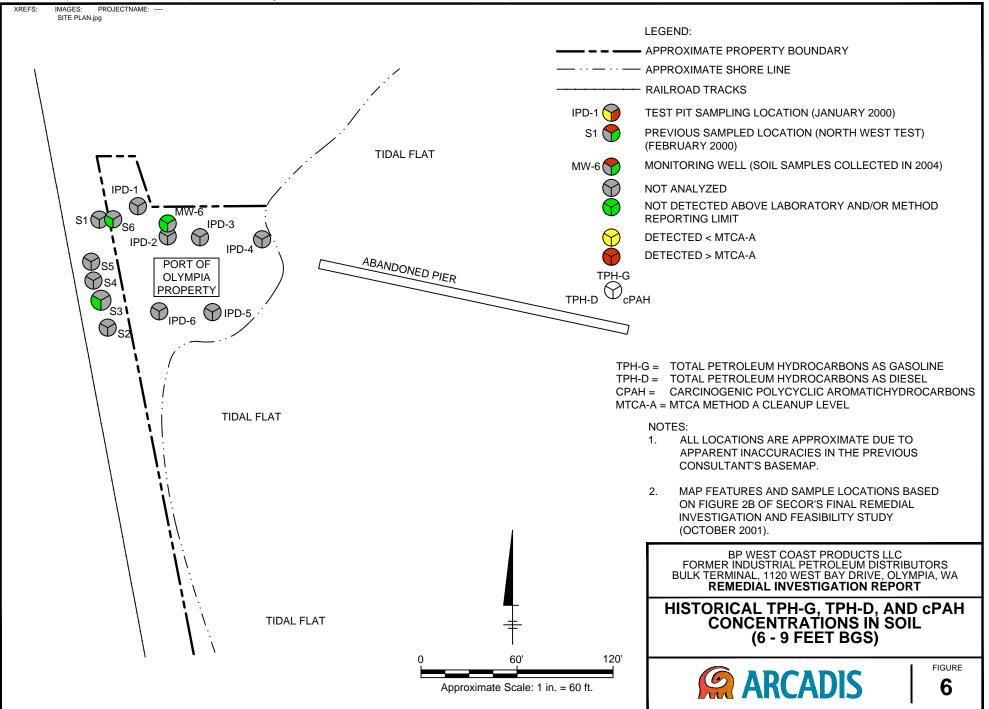
ARCADIS

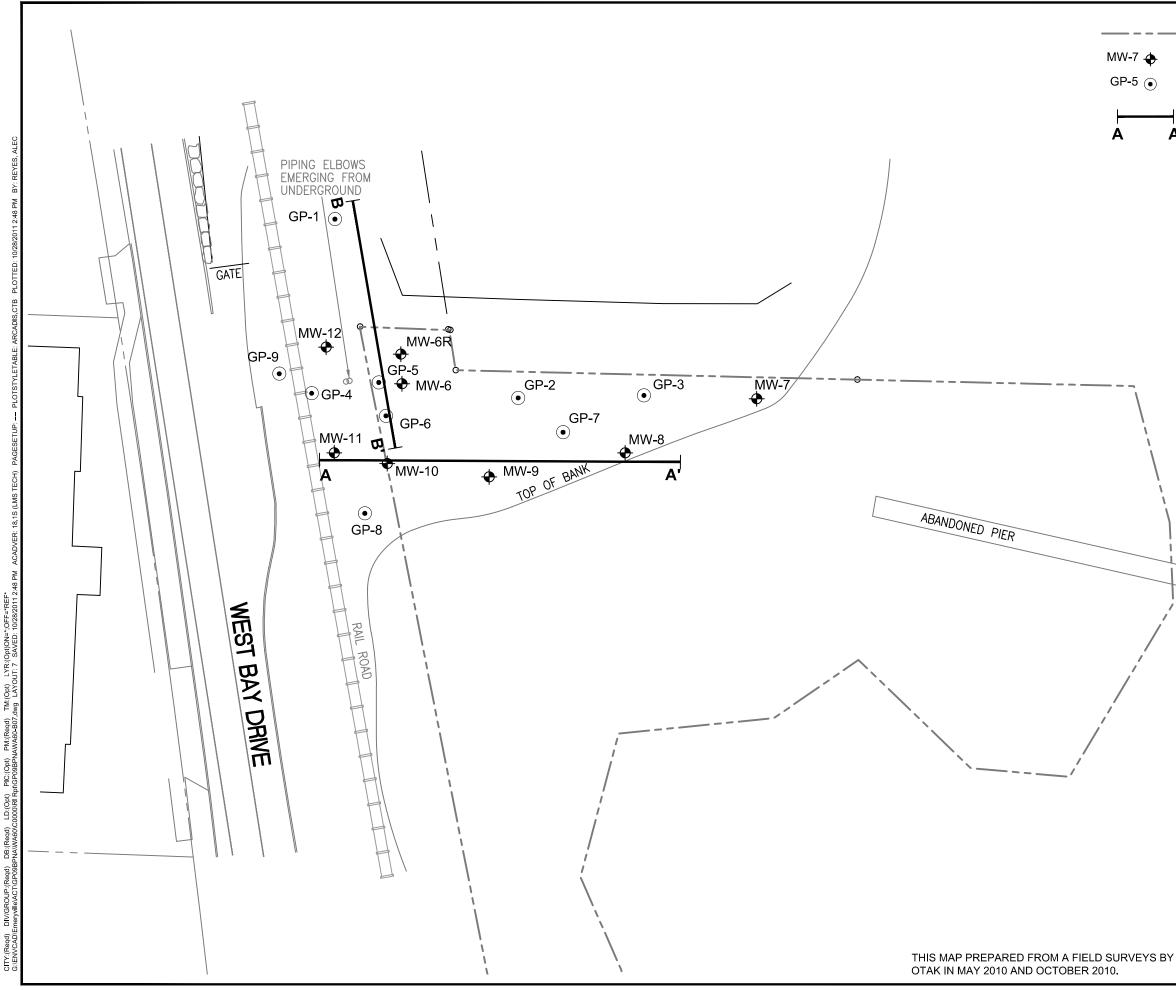

Figures

BY: REYES, ALEC PLOTTED: 10/19/2011 10:32 AM PLOTSTYLETABLE: ARCADIS.CTB PAGESETUP: ACADVER: 18.1S (LMS TECH) 10:30 AM TM:(Opt) LYR:(Opt)ON=*;OFF=*REF* dwg LAYOUT: 1 SAVED: 10/19/2011 PIC:(Opt) PM:(Reqd) Rpt/GP09BPNAWA60-N01. DIV/GROUP:(Reqd) DB:(Reqd) LD:(Opt) meryville\ACT\GP09BPNA\WA60\C0000\RI Rr CITY:(Reqd) G:\ENVCAD\Er



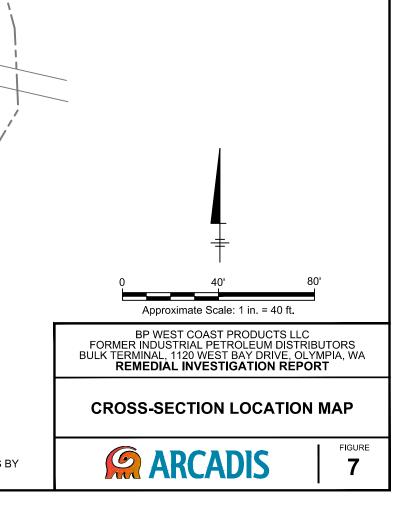
	LEGEND
	SUBJECT PROPERTY LINE BOUNDARY
MW-7 🔶	GROUND WATER MONITORING WELL LOCATION
GP-5 💿	GEOPROBE LOCATION

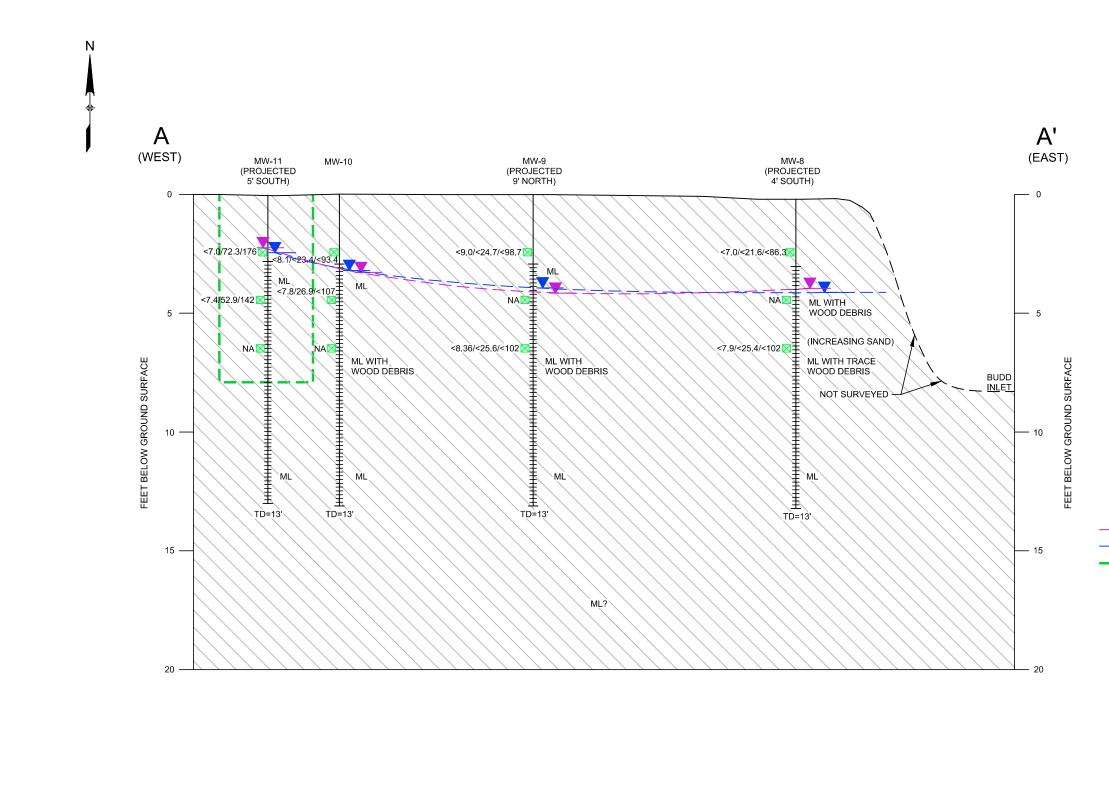

	SUBJECT PROPERTY LINE BOUNDARY
√-6 🔶	GROUND WATER MONITORING WELL LOCATION
D-4 •	PREVIOUS SAMPLE LOCATIONS (SECOR)
S3 •	PREVIOUS SAMPLE LOCATIONS (PORT)
-03 🛞	PREVIOUS SAMPLE LOCATIONS (PARAMETRIX)

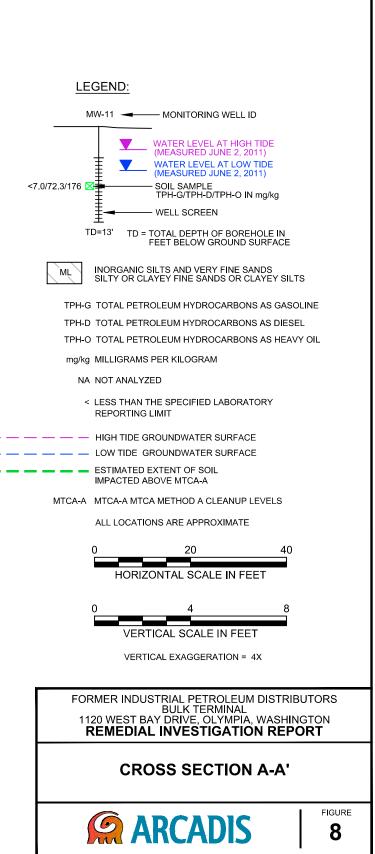

CITY: (Reqd) DIV/GROUP: (Reqd) DB: (Reqd) LD: (Opt) PIC: (Opt) PM: (Reqd) TM: (Opt) LYR: (Opt) ON=*; OFF=*REF* G: ENVCAD\Emeryville\ACT\GP09BPNA\WA60\C0000\RI Rpt\GP09BPNAWA60-B04.dwg LAYOUT: 4 SAVED: 10/28/2011 2:57 PM ACADVER: 18.1S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: ARCADIS.CTB PLOTTED: 10/28/2011 2:57 PM BY: REYES, ALEC

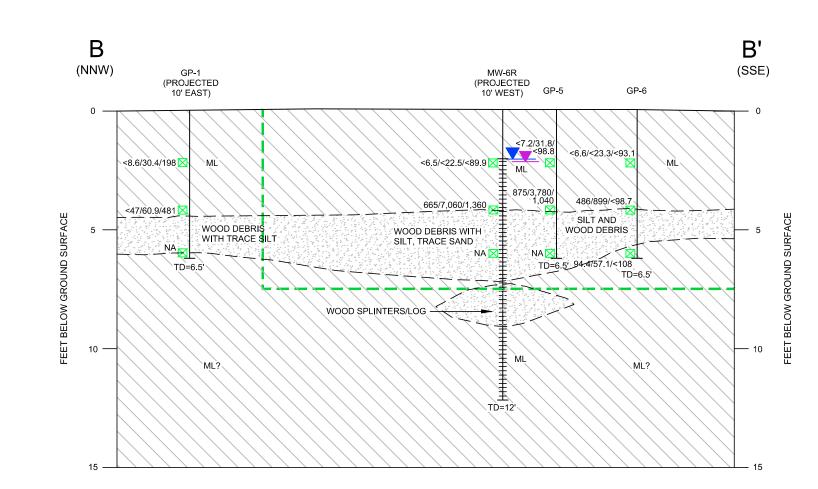
CITY:(Regd) DIV/GROUP:(Regd) DB:(Regd) LD:(Opt) PIC:(Opt) PIC:(Opt) TM:(Opt) LYR:(Opt)ON=",OFF=*REF* G\ENVCAD\Emeryville\ACT\GP09BPNA\WA60\C0000\RI Rpt\GP09BPNAWA60-B05.dwg LAYOUT: 5 SAVED: 10/28/2011 2:55 PM BY: REYES, ALEC IMAGES: PROJECTNAME: ----XREFS: SITE PLAN.jpg LEGEND: APPROXIMATE PROPERTY BOUNDARY APPROXIMATE SHORE LINE RAILROAD TRACKS IPD-1 **TEST PIT SAMPLING LOCATION (JANUARY 2000)** S1 🅎 PREVIOUS SAMPLED LOCATION (NORTH WEST TEST) (FEBRUARY 2000) MW-6 MONITORING WELL (SOIL SAMPLES COLLECTED IN 2004) TIDAL FLAT (\mathbf{f}) NOT ANALYZED NOT DETECTED ABOVE LABORATORY AND/OR METHOD REPORTING LIMIT MW-6 DETECTED < MTCA-A DETECTED > MTCA-A IPD-2 IPD-3 IPD-4 ABANDONED PIER D PORT OF TPH-G OLYMPIA **S**4 PROPERTY TPH-D \bigcirc S31 \bigtriangledown \bigtriangledown \bigcirc_{s_2} IPD-5 IPD-6 TPH-G = TOTAL PETROLEUM HYDROCARBONS AS GASOLINE TPH-D = TOTAL PETROLEUM HYDROCARBONS AS DIESEL TIDAL FLAT CPAH = CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS MTCA-A = MTCA METHOD A CLEANUP LEVEL NOTES: 1. ALL LOCATIONS ARE APPROXIMATE DUE TO INACCURACIES IN THE PREVIOUSLY SUBMITTED. BASEMAPs. 2. MAP FEATURES AND SAMPLE LOCATIONS BASED ON FIGURE 2B OF THE FINAL REMEDIAL INVESTIGATION AND FEASIBILITY STUDY BY SECOR IN OCTOBER 2001. BP WEST COAST PRODUCTS LLC FORMER INDUSTRIAL PETROLEUM DISTRIBUTORS BULK TERMINAL, 1120 WEST BAY DRIVE, OLYMPIA, WA **REMEDIAL INVESTIGATION REPORT** TIDAL FLAT HISTORICAL TPH-G, TPH-D, AND cPAH **CONCENTRATIONS IN SOIL** (3 - 6 FEET BGS) 120' FIGURE **ARCADIS** 5 Approximate Scale: 1 in. = 60 ft.

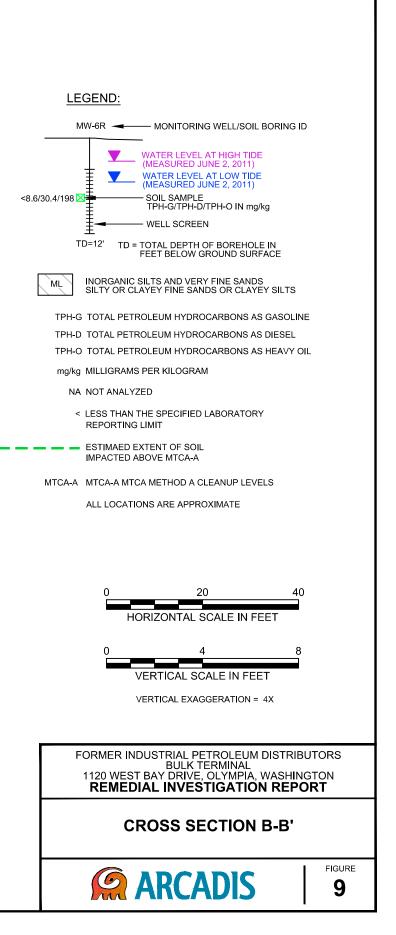
CITY: (Reqd) DIV/GROUP: (Reqd) DB: (Reqd) DB: (Reqd) DB: (Reqd) TM: (Opt) PM: (Reqd) LY: (Opt) LYR: (Opt) LYR: (Opt) ON=*, OFF=*REF* G: ENVCADIEmeryville ACT/GP09BPNA/WA60/C0000/RI Rpt/GP09BPNAWA60-B06.dwg LAYOUT: 6 SAVED: 10/28/2011 2:53 PM ACADVER: 18.1S (LMS TECH) PAGESETUP: ---- PLOTSTYLETABLE: ARCADIS.CTB PLOTTED: 10/28/2011 2:54 PM BY: REYES, ALEC

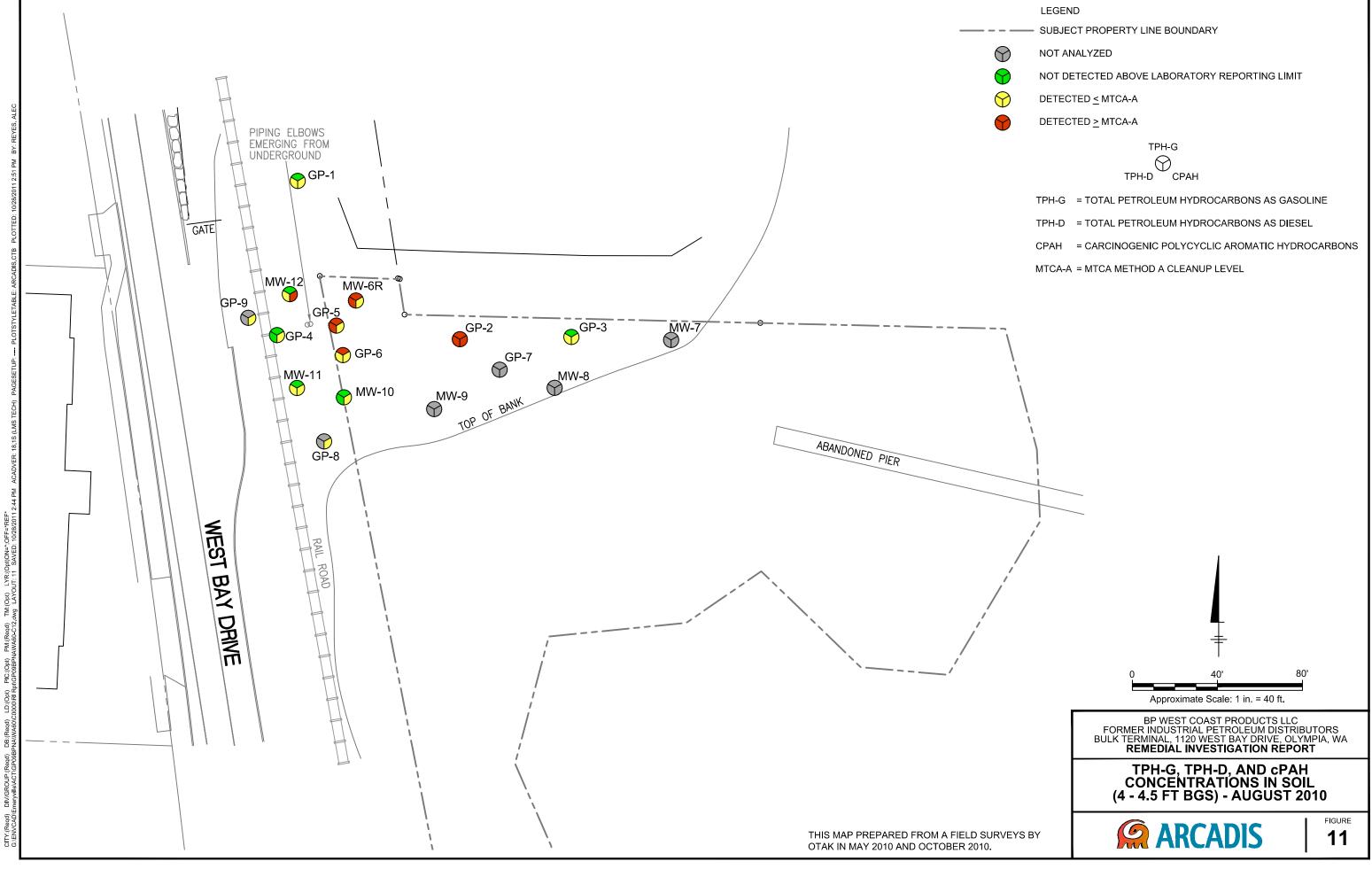


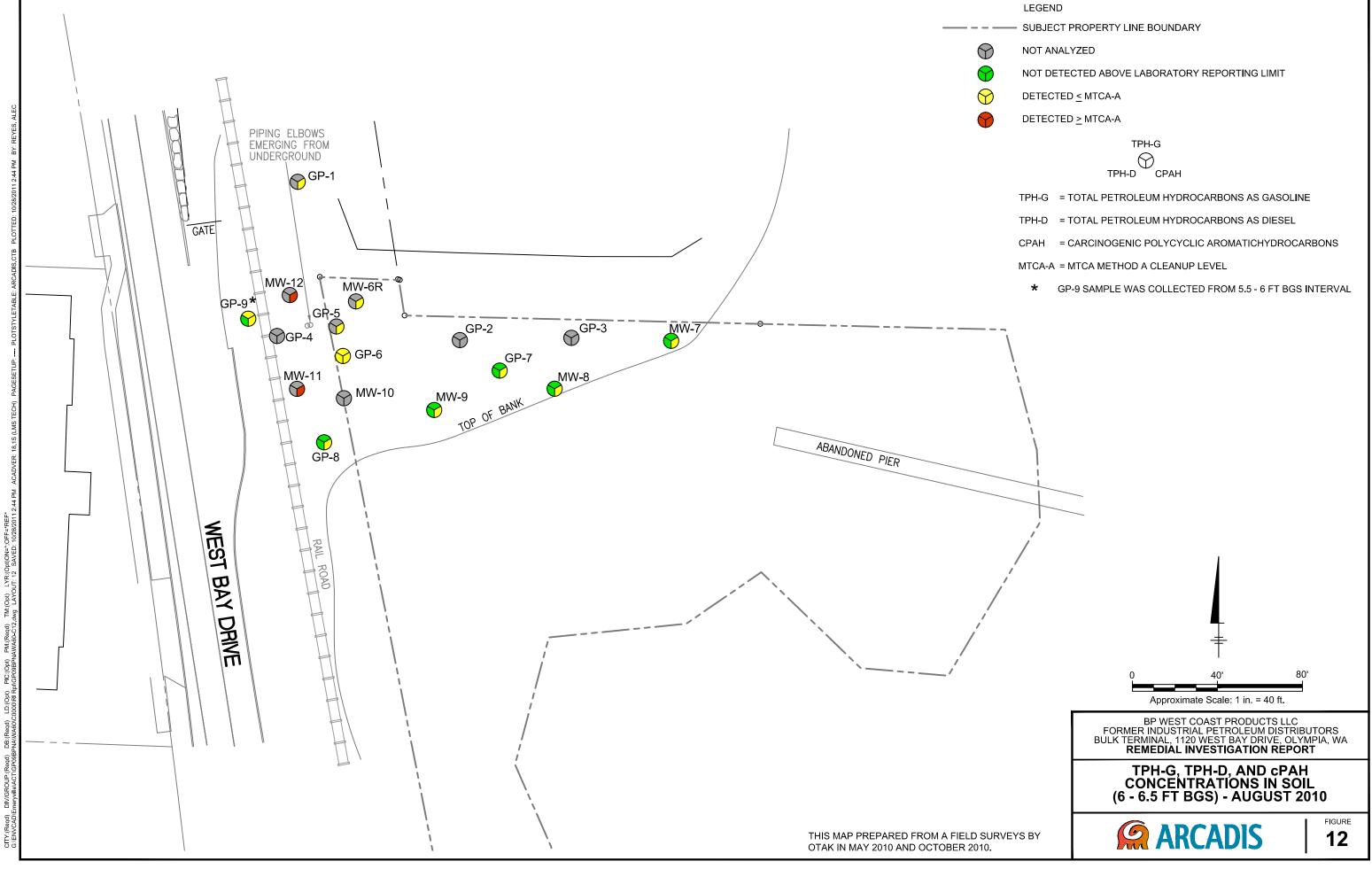


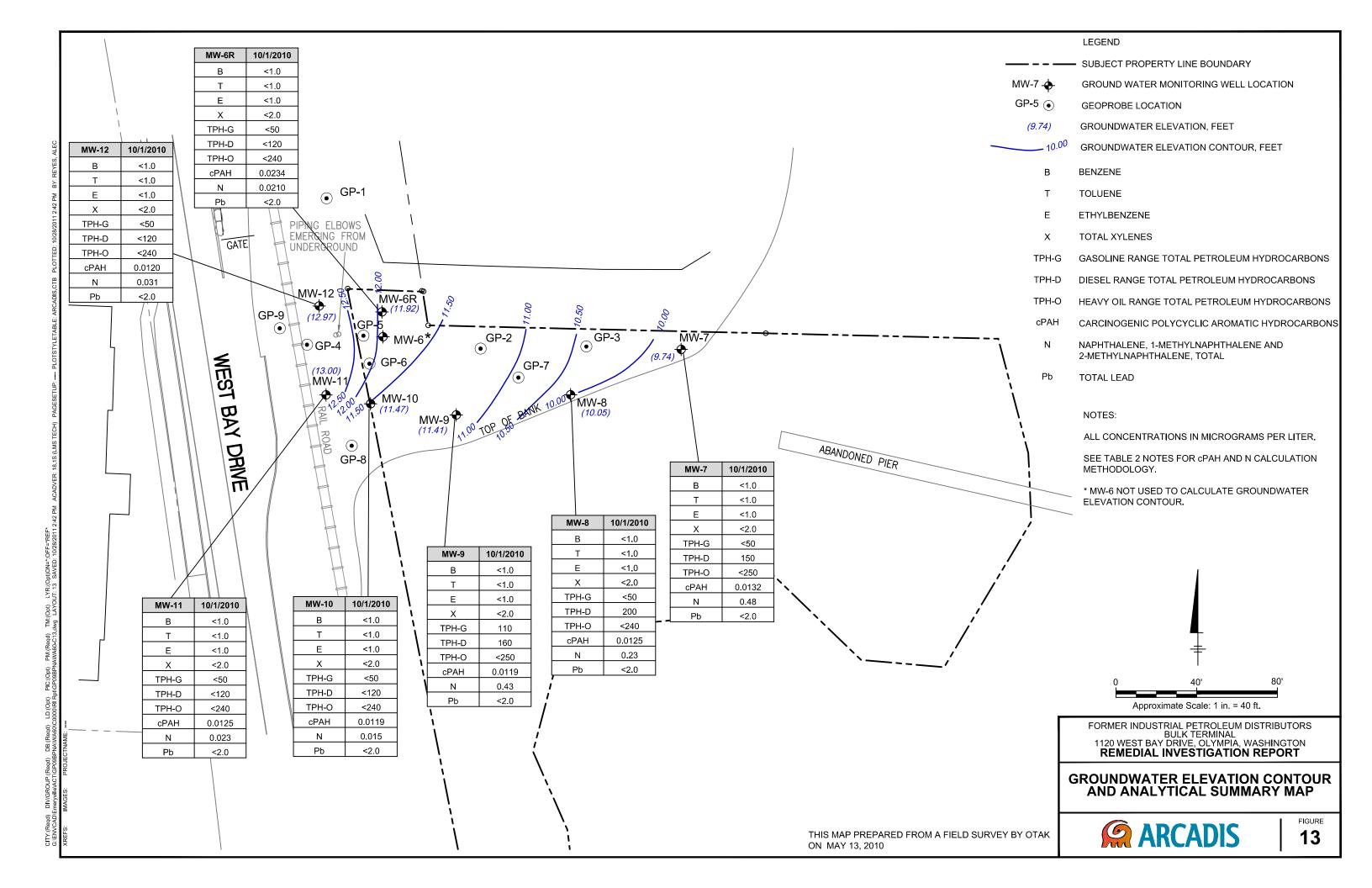

- GROUNDWATER MONITORING WELL LOCATION
- SOIL BORING LOCATION

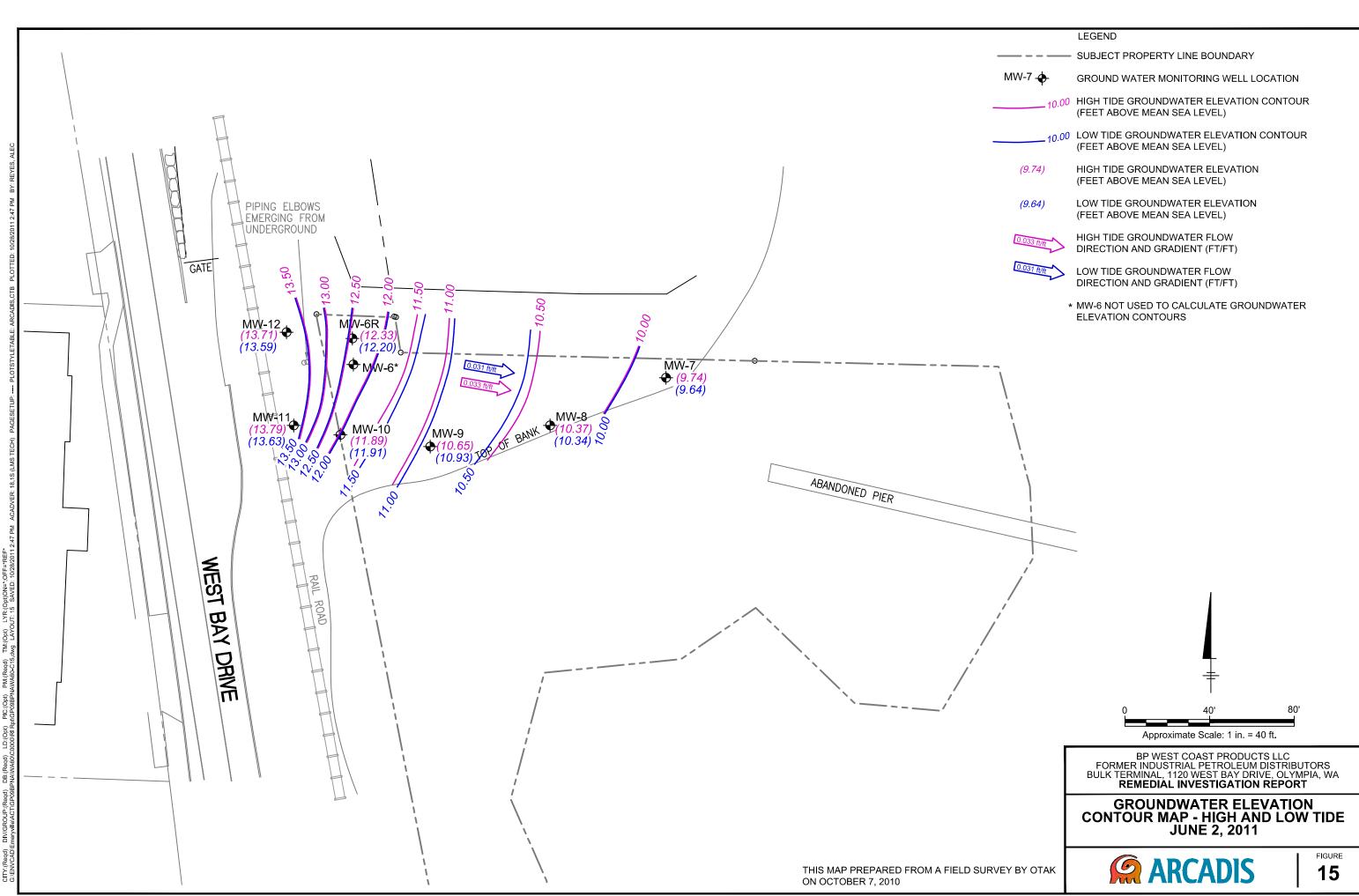











LEGEND

ARCADIS

Appendices

ARCADIS

Appendix **A**

Integral Consulting, Inc., Sediment Screening Sampling Report

FINAL

FORMER IPD WEST OLYMPIA SITE BUDD INLET SEDIMENT SCREENING

Sampling Report

December 17, 2009

Prepared for Delta Consultants 4006 148th Avenue NE Redmond, WA 98052

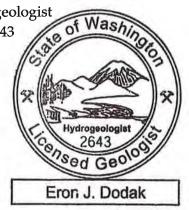
Prepared by:

1Sh

David Serdar Scientist

Reviewed by:

Hanly Binnie


Sandy Browning Managing Scientist

4/22/10

Eron J. Dodak, L.H.G. Senior Hydrogeologist License No. 2643

integra consulting inc.

1205 West Bay Drive NW Olympia, WA 98502

CONTENTS

	ST OF FIGURES	
LIS	ST OF TABLES	iii
AC	CRONYMS AND ABBREVIATIONS	iv
1	INTRODUCTION	1-1
2	SAMPLING METHODS AND LABORATORY ANALYSIS	2-1
3	RESULTS	3-1
4	CONCLUSIONS	4-1
5	REFERENCES	5-1
Ар	pendix A. Letter from Steve Teel, Department of Ecology	

- Appendix B. Field Notes
- Appendix C. Chain of Custody Documentation
- Appendix D. Complete ARI Laboratory Report

LIST OF FIGURES

Figure 1. Schematic of Planned Sediment Sample Locations at the Former IPD Site

Figure 2. Actual Sediment Sample Locations at the Former IPD Site

LIST OF TABLES

Table 1. Sample Location Coordinates for Sediment Screening at Former IPD SiteTable 2. Summary of Laboratory Results for Sediments Collected August 20, 2009 at the Former IPD Site

ACRONYMS AND ABBREVIATIONS

ARI	Analytical Resources, Inc.
GC/FID	gas chromatography/flame ionization detection
GPS	global positioning system
HCID	hydrocarbon identification
IPD	Industrial Petroleum Distributors
MLLW	mean lower low water
TPH	total petroleum hydrocarbons
VOC	volatile organic compound

1 INTRODUCTION

Integral Consulting Inc. (Integral) conducted a screening survey of intertidal sediments located adjacent to the former Industrial Petroleum Distributors (IPD) Site in Olympia, Washington, during August 2009. The survey was requested by the Washington State Department of Ecology (Ecology) to assess whether marine sediments have been impacted by upland contamination or historical activities at the site. Ecology specified the approximate sampling locations, depth of sediments to be collected, and analytical screening requirements to be used for the survey (Teel 2006). These specifications were used as the basis for the sediment sampling section of the remedial investigation work plan for the site (Delta 2008).

This report describes the sediment sampling conducted at the site and results of the laboratory analysis. Copies of Ecology's letter requesting the survey, field notes, chain of custody documentation, and the laboratory data report are included in the appendices.

The objective of the survey was to screen intertidal sediments for petroleum hydrocarbons at the former IPD Site on the western side of Budd Inlet in Olympia, Washington, and to determine if subsequent sampling and analysis is warranted based on the screening results.

2 SAMPLING METHODS AND LABORATORY ANALYSIS

The sample design was based on the sampling scheme requested by Ecology (Teel 2006, Appendix A) and was incorporated in the remedial investigation work plan (Delta 2008). Samples were collected by Integral staff on August 20, 2009, with the assistance of Delta Environmental (Delta). Steve Teel from Ecology was onsite to discuss the sampling plan and to oversee sampling activities.

The sampling date and time was selected to coincide with a mid-day minus tide (–2.1 feet MLLW at 12:15 p.m.) so that all locations were accessible by foot. Four sampling locations were established along the entire length of the former pier at equidistant intervals of approximately 140 feet. Figure 1 shows a schematic of the planned sampling locations. Figure 2 shows actual sampling locations superimposed on an aerial photograph.

Sampling location coordinates were recorded at each location using a Garmin GPS V Personal Navigator with differential correction and subsequently resolved to within 1 meter of accuracy using offsets from known landmark positions. Sample coordinates are shown in Table 1.

Station Id	Latitude North	Longitude West
ST01	47º 03' 17.4"	122º 54' 40.4"
ST02	47º 03' 17.6"	122º 54' 43.0"
ST03	47º 03' 18.1"	122º 54' 44.6"
ST04	47º 03' 18.2"	122º 54' 46.8"

 Table 1. Sample Location Coordinates for Sediment Screening at Former IPD Site

Samples were collected using a 10-cm internal diameter stainless steel hand coring device designed to collect a core from the sediment surface to a depth of 10 cm below surface. Several cores were required to provide sufficient sample volume at each location. Upon extraction of the initial core at each location, samples for volatile organic compound (VOC) analysis were collected from the side wall of the hole using a specially designed open-barrel syringe and placed in vials for VOC analysis. Observations on sediment consistency, content, odor, etc., were recorded in a field logbook. A copy of the field notes is included as Appendix B.

Extracted material was placed in a stainless steel bowl, homogenized, and placed in appropriate jars specially cleaned for priority pollutant analysis. Prior to sampling, all equipment coming into contact with samples was decontaminated by scrubbing with 1 percent Alconox solution, triple-rinsed with tap water, rinsed with distilled water, and then allowed to air-dry. Once dry, equipment was wrapped in aluminum foil (dull side in).

Samples were submitted to Analytical Resources, Incorporated (ARI; Tukwila, WA) for analysis of petroleum hydrocarbon identification (NWTPH-HCID Method) using Prep Method SW3550B and gas chromatography/flame ionization detection (GC/FID). Chain of custody documentation is in Appendix C. Samples were analyzed at maximum screening level of 100 mg/kg. Samples collected for analysis of VOCs using Method 5035 were available for analysis pending results of the HCID screen.

3 RESULTS

A summary of the laboratory results are shown in Table 2. The complete laboratory report is shown in Appendix D. Overall quality of the data was good. The method blank and o-terphenyl surrogate was within acceptable limits for all samples. No petroleum hydrocarbons were detected at 20 mg/kg in the gas range, 50 mg/kg in the diesel range, and 100 mg/kg in the oil range. Analysis of VOCs was not necessary based on these results.

Table 2. Summary of Laboratory Results for Sediments Collected August 20, 2009 at the Former IPD Site (concentrations in mg/kg [ppm], dry weight basis)

Station		Analysis			
ID	Sample ID	Date	Gas	Diesel	Oil
ST01	Sediment-1	8/22/09	20 U	50 U	100 <i>U</i>
ST02	Sediment-2	8/22/09	20 U	50 U	100 <i>U</i>
ST03	Sediment-3	8/22/09	20 U	50 U	100 <i>U</i>
ST04	Sediment-4	8/22/09	20 U	50 U	100 <i>U</i>

U = Not detected at value shown.

4 CONCLUSIONS

Intertidal surface sediments located in Budd Inlet off of the former IPD Site have no measurable levels of petroleum hydrocarbons when analyzed at a maximum screening level of 100 mg/kg. Gas, diesel, and oil range hydrocarbons are not detectable at concentrations of 20, 50, and 100 mg/kg, respectively.

5 **REFERENCES**

Delta. 2008. Remedial Investigation Work Plan, Former Industrial Distributors Site, 1117 West Bay Drive Olympia, Washington. Delta Project G0CLG. Prepared for Atlantic Richfield Company, La Palma, CA. Delta Consultants, Redmond, WA.

Teel. 2006. Sediment Screening Requirement and Potential Interim Action, Former Industrial Petroleum Distributors (IPD) Site, Olympia, WA. Letter from Steve Teel, Department of Ecology, to Bob May, Disclaimer Trust of John J. O'Connell and Scott Hooten, Atlantic Richfield Company. July 31, 2006.

FIGURES

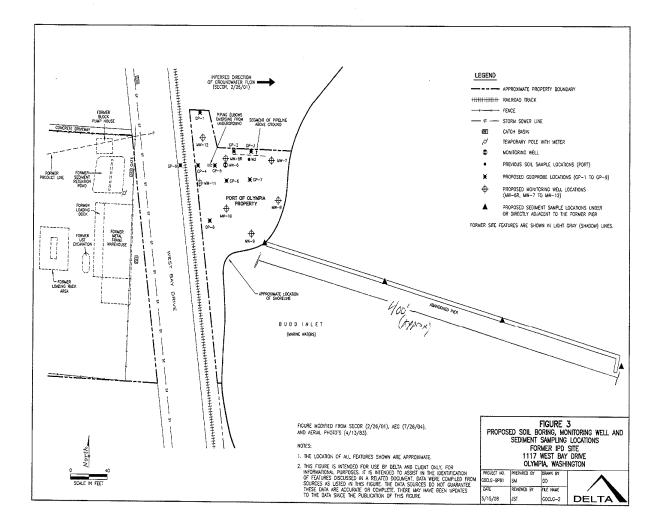


Figure 1. Schematic of Planned Sediment Sample Locations at the Former IPD Site.

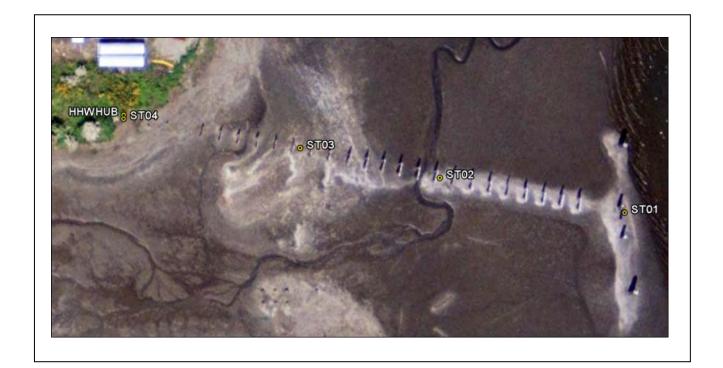


Figure 2. Actual Sediment Sample Locations at the Former IPD Site (HHWHUB is a benchmark established by survey on August 20, 2009)

APPENDIX A

RECEIVED BY

AUG 0 3 2006

Delta Environmental-Seattle

STATE OF A

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY PO Box 47775 • Olympia, Washington 98504-7775 • (360) 407-6300

CERTIFIED MAIL

July 31, 2006

Disclaimer Trust of John J. O'Connell c/o Mr. Bob May, Trust Representative 18047 NE 88th Ct. Redmond, WA 98052

Mr. Scott T. Hooton Atlantic Richfield Company 295 SW 41st Street, Bldg. 13, STE N Renton, WA 98055

Dear Mr. May and Mr. Hooton:

Re: Sediment Screening Requirement and Potential Interim Action Former Industrial Petroleum Distributors (IPD) Site, Olympia, WA

As you know, further investigation is needed for the Port of Olympia portion of the site. Our letter of October 25, 2005 requested that a Remedial Investigation (RI) Work Plan be prepared and submitted to Ecology for review and comment. We understand that prior to beginning the RI, property access agreements would need to be negotiated by the Trust and ARCO from all affected property owners. The above letter also stated that the additional RI work shall include the further definition of the extent and type of residual soil contamination and groundwater characterization.

However, the potential for impact to sediments also needs to be assessed. To accomplish this, it will be necessary to collect four sediment screening samples (three locations beneath the former pier and one from the end of the pier). Sample locations beneath the pier should be spaced a consistent distance apart such that the entire length of the pier is characterized, beginning at the approximate mean higher high water level and ending at the sample location at the end of the pier. Samples should be collected from the top 10-centimeters only. Analyses shall initially consist of the hydrocarbon identification method (HCID) for all petroleum ranges. A screening level of **100 mg/kg** shall be used. If all sample results are less than this value, then no additional sediment characterization

c/o Mr. Bob May, Trust Representative Mr. Scott Hooton July 31, 2006 Page 2

will be necessary. However, if any sample results exceed this value, then additional analyses and/or sediment characterization will be necessary. Prior to conducting this work, a sediment sampling plan should be prepared and submitted to Ecology for review and approval. Sample methods should be consistent with the Ecology guidance document *Sediment Sampling and Analysis Plan Appendix (03-09-043, revised April 2003)*.

On July 20, Mr. Hooton and I visited the site. During this visit, Mr. Hooton expressed the willingness to conduct an interim remedial action consisting of excavation and offsite disposal for soil contamination associated with the former product pipeline. Grab groundwater samples would also be collected during this work. Ecology supports the option of conducting such an interim action at the site. However, in order to do this, the Agreed Order (AO) will need to be amended, the Interim Action Work Plan would need to be reviewed and approved by Ecology. Following this, both the Interim Action Work Plan and the AO Amendment would need to undergo a 30-day public review and comment period. After considering public comments, the Interim Action Work Plan and AO Amendment can be finalized and implemented.

Please let me know as soon as possible if you would still like to conduct an interim remedial action so I can begin preparing the AO Amendment. You can contact me at (360) 407-6247 or via e-mail at <u>stee461@ecy.wa.gov</u> if you have questions about this letter or if you would like to schedule a meeting to further discuss these issues.

Sincerely,

25 teel

Steve Teel, LHG Hydrogeologist Toxics Cleanup Program Southwest Regional Office

ST/ksc:07062006 Port of Olympia

Cc: Mr. Jeffrey S. Thompson, Delta Environmental Consultants
 Mr. Heber Kennedy, Port of Olympia
 Bojo Investments LLC
 Mr. Steve Wise, Code Enforcement Officer, City of Olympia, Public Works Dept.
 Bob Warren – Ecology

APPENDIX **B**

"Outdoor writing products... ...for outdoor writing people."

Integal Detta - Former IPO Olympia Site (BPOLY)

No. 311

August 2009 Intertidal Scaliment Sampling

"Rite in the Rain" - A unique All-Weather Writing paper created to shed water and enhance the written image. It is widely used throughout the world for recording critical field data in all kinds of weather.

Available in a variety of standard and custom printed case-bound field books, loose leaf, spiral and stapled notebooks, multi-copy sets and copier paper.

For best results, use a pencil or an all-weather pen

a product of

J. L. DARLING CORPORATION Tacoma, WA 98424-1017 USA www.RiteintheRain.com

> Item No. 311 ISBN: 978-1-932149-29-6

BPOLY (Former EPA site) 8/20/04 D. Serdar BPsly Sediment Sampling On Site; D. Sorder, I. Stopate of (Integral) C. Counford, S. Kennesly (Milikan), D. Tumow (Octta) 1030 - Met C crantord on site - surveying high water station. 1100 - Met remainder of DeHa crew. Went over Safety plan and sampling plan. Discussions about determining sampling locations, Will uset peto measure those End to Hu survey, then take equidestant measures. 1156-Start of GPS readings at HWM surveyed by Delta. 1200-Steve Teel on site-explained Sampling method to hims 230 - Walked out to end of pier to estublish route. 1303 - Commenced sampling at Whating 1/2t end of par (see opposite page) Some heavy sheen-appeared like NAPL but then dissipated. Shells cleared from top surface. Many polychaetes, clams in hole, Sampled VOAs with 5035 springer Kemaining

4 BPOLY BPOLY 8/20/09 D.Serter O.Serder 2/2 Samples collected with hand cover. 10 cm deep 1334 - Station 2] sampled. Similar to Station 1 but more watery and more mussel shells. Less sheen. 1402 - [Station 3] - Sample at higher elevation - Schimes was much more de-watered. Feiner shells. Slight ana sie / bluck layer on surface / below surface, Shells on surface w/juminile crubs. (is) clam shells below surface. 1435 [station 4]-sampled at high higher Notes water. Sandy sediment with here (Bocho under denses mat of by J.S.) sult grass (seculeut) ato shell debuts and no marine noms. 1500 - Sampling completed. Cocs tilled out and all Jas likelled. Sarah M. assigned sample numes. Station = Sectionent 1 Station 2 = Sediment 2 Station 3 = Jelinut 3 Station 4 = Sediment 4 \mathcal{O} 1500 - Sorah M will deliver sungeles to ART -Palphin 1000 Relinguished sample to her. 1825 Decon and mobe back to office - (Oly) Scule Dow for Vay This @ Station 1

APPENDIX C

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: PL36	Turn-around	-			Page:	1	of	1					al Resources,	
ARI Client Company: Client Contact: Client Project Name:	Consulta	Phone: 36	8-705	-3534	Date: 8/20/04 Present? Yes			Analytical Chemists and Consultant 4611 South 134th Place, Suite 100 Tukwila, WA 98168			e, Suite 100			
Client Contact: Dave Ser	der	7			No. of Coolers:	1	Coole Temp:	s: l. 6, l					5-6200 206-69	95-6201 (fax)
BPOLY-	1							Analysis I	Requested	[I	1	Notes/Co	mments
Client Project #: C578~091		tegral			рнQ.	f.	1000							
Sample ID	Date	r Time	Matrix	No. Containers	Herd	TPH	JUFHL SOLI							
Sediment-f	8/20/09	1250	SEOIMEN	- 8	X	X*	X							
Sediment 2	1' <u>;</u>	1320	2	\sum	X	Χ*	X							
Sediment-3	ζ	1400		>	\boldsymbol{X}	X*	X							
Sediment-4	V	1450	$\underline{\mathbb{V}}$	V	X	χ *	\times							
· · · · · · · · · · · · · · · · · · ·														
													-	
			:											
Comments/Special Instructions	Relinquished by: (Signature)	Dils	h	Received by (Signature)	vant	Mu		Relinquished (Signature)	MI RAN	Nhu	· / · · ·	Received by:	terson	
results of HELD	Printed Name:	ave Ser	Lar	Printed Name	Mill	7		Printed Nam		11/18	2 (_	Printed Nam	e:	······
sureq.	Company:	frant		Company: Delta		soltar		Company:	$r (+ \gamma)$	Canco	Hant	Company:	1 T	
	Date & Time:	1-9 1-	530	Date & Time:		530		Date & Time	<u>169</u>	18:0		Date & Time	2) 2) 29	1808-

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

A SAN A S

Analytical Resources, Incorporated Analytical Chemists and Consultants	Cooler Receipt	Form)
ARI Client: <u>Snteepral Cons</u> , COC No(s): <u>NA</u> Assigned ARI Job No: <u>PL36</u>	Project Name: <u>BPOLL</u> Delivered by: Fed-Ex UPS Courier Hand D Tracking No:	BP0 relivered Othe	
Preliminary Examination Phase:			
Were intact, properly signed and dated custody seals attached to	the outside of to cooler?	YES	Ng
Were custody papers included with the cooler?		(FES)	NO
Were custody papers properly filled out (ink, signed, etc.)		YES)	NO

___Date: Complete custody forms and attach all shipping documents

1.6

8/20/29

1.8

Time:

Temp Gun ID#: 10188

YES

(ES)

YES

YES

YES

YES

YES

YES

YES

YEŞ (ES) NO

NO

60

NO

NO

NO

NO

NO

NO

(NO)

NO

18:09

NA

(NA

NA

0840

Did all bottle labels and tags agree with custody papers? Were all bottles used correct for the requested analyses? Do any of the analyses (bottles) require preservation? (attach preservation sheet, excluding VOCs). Were all VOC vials free of air bubbles? Was sufficient amount of sample sent in each bottle?

Was sufficient ice used (if appropriate)?

Were all bottles sealed in individual plastic bags?

Did all bottles arrive in good condition (unbroken)?

Were all bottle labels complete and legible?

Did the number of containers listed on COC match with the number of containers received?

Temperature of Cooler(s) (°C) (recommended 2.0-6.0 °C for chemistry)......

Was a temperature blank included in the cooler?

VP,

If cooler temperature is out of compliance fill out form 00070F

Cooler Accepted by:

Log-In Phase:

Samples Logged by: ____

Date: 8/21/09 UUC Time:

What kind of packing material was used? ... Bubble Wrap Wet Ice Gel Packs Baggies Foam Block Paper Other:

** Notify Project Manager of discrepancies or concerns **

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	ttle Sample ID on COC			
		· · · · · · · · · · · · · · · · · · ·				
·····			******			
Inparit Lor L	pb viels					
By: 50 D Small Air Rubbles Peabo	Date: 8/2_\/of Jobles' [LARGE Air Bubbles] S	mall → "sm"				
By: 50 D Small Air Rubbles Peabo	Date: 8/2-1/01 Ibbles' [LARGE Air Bubbles] S					
Small Air Rubbles Peabu	Date: 8/2.1/01 hbbles' LARGE Air Bubbles S min 4 min p	mall \rightarrow "sm" cabubbles \rightarrow "pb" arge \rightarrow "lg"				

APPENDIX D

ORGANICS ANALYSIS DATA SHEET

NWTPH-HCID Method by GC/FID Page 1 of 1 Matrix: Sediment QC Report No: PL36-Integral Consulting Project: BPOLY-1 C578-001

Data Release Authorized:

ARI ID	Sample ID	Extraction Date	Analysis Date	DL	Range	Result
MB-082209 09-19572	Method Blank	08/22/09	08/22/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 104%
PL36A 09-19572	Sediment-1 HC ID:	08/22/09	08/22/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 101%
PL36B 09-19573	Sediment-2 HC ID:	08/22/09	08/22/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 86.4%
PL36C 09-19574	Sediment-3 HC ID:	08/22/09	08/22/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 102%
PL36D 09-19575	Sediment-4 HC ID:	08/22/09	08/22/09	1.0	Gas Diesel Oil o-Terphenyl	< 20 U < 50 U < 100 U 103%

Reported in mg/kg (ppm)

Gas value based on total peaks in the range from Toluene to C12. Diesel value based on the total peaks in the range from C12 to C24. Oil value based on the total peaks in the range from C24 to C38.

HCID SURROGATE RECOVERY SUMMARY

Matrix: Sediment

QC Report No: PL36-Integral Consulting Project: BPOLY-1 C578-001

Client ID	O-TER TOT OUT
082209MB	104% 0
Sediment-1	101% 0
Sediment-2	86.4% 0
Sediment-3	1028 0
Sediment-4	103% 0

LCS/MB	LIMITS	QC :	LIMITS
--------	--------	------	--------

(68-122) (50-150)

Prep Method: SW3550B Log Number Range: 09-19572 to 09-19575

(O-TER) = o-Terphenyl

FORM-II HCID

Page 1 for PL36

TOTAL HCID RANGE HYDROCARBONS-EXTRACTION REPORT

	ARI Job:	PL36
Matrix: Sediment	Project:	BPOLY-1
Date Received: 08/20/09		C578-001

ARI ID	Client ID	Sample Amt	Final Vol	Basis	Prep Date
ARI ID		Time			
09-19572-082209MB	Method Blank	10.0 g	5.00 mL	_	08/22/09
09-19572-PL36A	Sediment-1	4.62 g	5.00 mL	D	08/22/09
09-19573-PL36B	Sediment-2	3.81 g	5.00 mL	D	08/22/09
09-19574-PL36C	Sediment-3	6.27 g	5.00 mL	D	08/22/09
09-19575-PL36D	Sediment-4	8.51 g	5.00 mL	D	08/22/09

Basis: D=Dry Weight W=As Received HCID Extraction Report

Appendix **B**

Terrestrial Ecological Evaluation Form

Mr. Steve Teel State of Washington Department of Ecology Southwest Regional Office P.O. Box 47775 Olympia, WA 98504-7775

Re: Terrestrial Ecological Evaluation Form, Former ARCO Olympia Bulk Terminal, Industrial Petroleum Distributors Site (Facility Identification No. 1436), 1117 West Bay Drive, Olympia, Washington

Dear Mr. Teel,

On behalf of BP West Coast Products, LLC (BP), ARCADIS U.S. Inc. (ARCADIS) is pleased to present the enclosed *Terrestrial Ecological Evaluation Form* for former ARCO Olympia Bulk Terminal, Industrial Petroleum Distributors Site (site). Per subsection 7491(c)(i) of Chapter 173-340 WAC, the site qualifies for an exclusion from a terrestrial ecological evaluation because there are less than 1.5 acres of contiguous undeveloped land on or within 500 feet of the site.

If you have questions or comments regarding this form, please contact Alexander Lopez at 503.220.8201 x1122 or by email at alex.lopez.iii@arcadis-us.com.

Sincerely,

ARCADIS U.S., Inc.

Alexander Lopez III, L.G. Project Geologist

Weling Blonch

Melissa Blanchette, L.G. Senior Geologist

ARCADIS U.S., Inc. 111 SW Columbia Street Suite 670 Portland Oregon 97201 Tel 503.220.8201 Fax 503.220.8209 www.arcadis-us.com

ENVIRONMENTAL

Date: June 10, 2011

Contact: Alexander Lopez III

Phone: 503.220.8201 x 1122

Email: alex.lopez.iii@arcadisus.com

Our ref: GP09BPNA.WA60.C0000

Imagine the result

Voluntary Cleanup Program

Washington State Department of Ecology Toxics Cleanup Program

Title: Environmental Scientist

TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation. You still need to submit your evaluation as part of your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to www.ecy.wa.gov/programs/tcp/policies/terrestrial/TEEHome.htm.

Step 1: IDENTIFY HAZARDOUS WASTE SITE

Please identify below the hazardous waste site for which you are documenting an evaluation.

Facility/Site Name: ARCO Facility Id. OLYMP

Facility/Site Address: 1117 West Bay Drive, Olympia, WA

Facility/Site No: 1436

VCP Project No.: NA

Step 2: IDENTIFY EVALUATOR

Please identify below the person who conducted the evaluation and their contact information.

Name: Lynne Stewart

Organization: ARCADIS-US

Mailing address: 111 SW Columbia, Ste. 670

City: Portland		State: Oregon	Zip code: 97201
Phone: 503-220-8201	Fax: 503-220-8209	E-mail: lynr	ne.stewart@arcadis-us.com

A.	Exclusion	n from further evaluation.
1.	Does the	Site qualify for an exclusion from further evaluation?
		Yes If you answered "YES," then answer Question 2.
		No or If you answered "NO" or "UKNOWN," then skip to Step 3B of this form.
2.	What is th	e basis for the exclusion? Check all that apply. Then skip to Step 4 of this form.
	Point of C	ompliance: WAC 173-340-7491(1)(a)
		All soil contamination is, or will be,* at least 15 feet below the surface.
		All soil contamination is, or will be,* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination.
	Barriers to	Exposure: WAC 173-340-7491(1)(b)
		All contaminated soil, is or will be,* covered by physical barriers (such as buildings or paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination.
	Undevelop	bed Land: WAC 173-340-7491(1)(c)
		There is less than 0.25 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene.
	\boxtimes	For sites not containing any of the chemicals mentioned above, there is less than 1.5 acres of contiguous [#] undeveloped [±] land on or within 500 feet of any area of the Site.
	Backgroun	d Concentrations: WAC 173-340-7491(1)(d)
		Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709.
aco	ceptable to E	
ore	vent wildlife	d land" is land that is not covered by building, roads, paved areas, or other barriers that would from feeding on plants, earthworms, insects, or other food in or on the soil.
hig	Contiguous" hways, exter wildlife.	undeveloped land is an area of undeveloped land that is not divided into smaller areas of nsive paving, or similar structures that are likely to reduce the potential use of the overall area

В.	Simplifi	ed evaluation.
1.	Does the	e Site qualify for a simplified evaluation?
		Yes If you answered "YES," then answer Question 2 below.
	□ Unl	No or <i>If you answered "NO" or "UNKNOWN," then skip to</i> Step 3C of this form.
2.	Did you	conduct a simplified evaluation?
		Yes If you answered "YES," then answer Question 3 below.
		No If you answered "NO," then skip to Step 3C of this form.
3.	Was furt	her evaluation necessary?
		Yes If you answered "YES," then answer Question 4 below.
		No If you answered "NO," then answer Question 5 below.
4.	If further	evaluation was necessary, what did you do?
		Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to Step 4 of this form.
		Conducted a site-specific evaluation. If so, then skip to Step 3C of this form.
5.	to Step 4	her evaluation was necessary, what was the reason? Check all that apply. Then skip of this form. Analysis: WAC 173-340-7492(2)(a)
	. 🗆	Area of soil contamination at the Site is not more than 350 square feet.
		Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.
	Pathway	Analysis: WAC 173-340-7492(2)(b)
		No potential exposure pathways from soil contamination to ecological receptors.
	Contamir	nant Analysis: WAC 173-340-7492(2)(c)
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations that exceed the values listed in Table 749-2.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.
		No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, an institutional controls are used to manage remaining contamination.

	the problem	m, and (2) select	A site-specific evaluation process consists of two parts: (1) formulating ing the methods for addressing the identified problem. Both steps and approval by Ecology. See WAC 173-340-7493(1)(c).	
1. 1	Was there a problem? See WAC 173-340-7493(2).			
	Yes If you answered "YES," then answer Question 2 below.			
		lo <i>lf you ans</i> below:	If you answered "NO," then identify the reason here and then skip to Question 5 below:	
			No issues were identified during the problem formulation step.	
			While issues were identified, those issues were addressed by the cleanup actions for protecting human health.	
2. 1	What did y	ou do to resolv	re the problem? See WAC 173-340-7493(3).	
	Used the concentrations listed in Table 749-3 as cleanup levels. <i>If so, then skip to</i> <i>Question 5</i> <i>below</i> .			
	Used one or more of the methods listed in WAC 173-340-7493(3) to evaluate and address the identified problem. <i>If so, then answer</i> Questions 3 and 4 below.			
			site-specific evaluations, what methods did you use? AC 173-340-7493(3).	
	Literature surveys.			
		Soil bioassays.		
	Wildlife exposure model.			
		Biomarkers.		
		Site-specific field studies.		
		Weight of evidence.		
		Other methods	approved by Ecology. If so, please specify:	
4. \	What was	the result of the	ose evaluations?	
		Confirmed ther	e was no problem.	
		Confirmed ther	e was a problem and established site-specific cleanup levels.	
		already obtaine esolution steps	d Ecology's approval of both your problem formulation and ?	
	ΠY	es If so, pleas	se identify the Ecology staff who approved those steps:	
	□ N	0		

Step 4: SUBMITTAL

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.

If you need this publication in an alternate format, please call the Toxics Cleanup Program at 360-407-7170. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

Appendix **C**

Standard Operating Procedures

Imagine the result

Monitoring Well Installation

Rev. #: 3

Rev Date: February 2, 2011

Approval Signatures

Prepared by: <u>Michael J. Seful</u> Date: <u>2/2/2011</u> Reviewed by: <u>Michael J. Sefull</u> Date: <u>2/2/2011</u>

(Technical Expert)

c:\users\ljohnson2\documents\new sops\1723199 - monitoring well installation.doc

I. Scope and Application

The procedures set out herein are designed to produce standard groundwater monitoring wells suitable for: (1) groundwater sampling, (2) water level measurement, (3) bulk hydraulic conductivity testing of formations adjacent to the open interval of the well.

Monitoring well boreholes in unconsolidated (overburden) materials are typically drilled using the hollow-stem auger drilling method. Other drilling methods that are also suitable for installing overburden monitoring wells, and are sometimes necessary due to site-specific geologic conditions, include: drive-and-wash, spun casing, Rotasonic, dual-rotary (Barber Rig), and fluid/mud rotary with core barrel or roller bit. Direct-push techniques (e.g., Geoprobe or cone penetrometer) and driven well points may also be used in some cases within the overburden. Monitoring wells within consolidated materials such as bedrock are commonly drilled using water-rotary (coring or tri-cone roller bit), air rotary or Rotasonic methods. The drilling method to be used at a given site will be selected based on site-specific consideration of anticipated drilling/well depths, site or regional geologic knowledge, type of monitoring to be conducted using the installed well, and cost.

No oils or grease will be used on equipment introduced into the boring (e.g., drill rod, casing, or sampling tools). No polyvinyl chloride (PVC) glue/cement will be used in constructing or retrofitting monitoring wells that will be used for water-quality monitoring. No coated bentonite pellets will be used in the well drilling or construction process. Specifications of materials to be installed in the well will be obtained prior to mobilizing onsite, including:

- well casing;
- bentonite;
- sand; and
- grout.

Well materials will be inspected and, if needed, cleaned prior to installation.

II. Personnel Qualifications

Monitoring well installation activities will be performed by persons who have been trained in proper well installation procedures under the guidance of an experienced field geologist, engineer, or technician. Where field sampling is performed for soil or

bedrock characterization, field personnel will have undergone in-field training in soil or bedrock description methods, as described in the appropriate SOP(s) for those activities.

III. Equipment List

The following materials will be available during soil boring and monitoring well installation activities, as required:

- Site Plan with proposed soil boring/well locations;
- Work Plan or Field Sampling Plan (FSP), and site Health and Safety Plan (HASP);
- personal protective equipment (PPE), as required by the HASP;
- traffic cones, delineators, caution tape, and/or fencing as appropriate for securing the work area, if such are not provided by drillers;
- appropriate soil sampling equipment (e.g., stainless steel spatulas, knife);
- soil and/or bedrock logging equipment as specified in the appropriate SOPs;
- appropriate sample containers and labels;
- drum labels as required for investigation derived waste handling;
- chain-of-custody forms;
- insulated coolers with ice, when collecting samples requiring preservation by chilling;
- photoionization detector (PID) or flame ionization detector (FID);
- ziplock style bags;
- water level or oil/water interface meter;
- locks and keys for securing the well after installation;
- decontamination equipment (bucket, distilled or deionized water, cleansers appropriate for removing expected chemicals of concern, paper towels);

• field notebook.

Prior to mobilizing to the site, ARCADIS personnel will contact the drilling subcontractor or in-house driller (as appropriate) to confirm that appropriate sampling and well installation equipment will be provided. Specifications of the sampling and well installation equipment are expected to vary by project, and so communication with the driller will be necessary to ensure that the materials provided will meet the project objectives. Equipment typically provided by the driller could include:

- drilling equipment required by the American Society of Testing and Materials (ASTM) D 1586, when performing split-spoon sampling;
- disposable plastic liners, when drilling with direct-push equipment;
- drums for investigation derived waste;
- drilling and sampling equipment decontamination materials;
- decontamination pad materials, if required; and
- well construction materials.

IV. Cautions

Prior to beginning field work, underground utilities in the vicinity of the drilling areas will be delineated by the drilling contractor or an independent underground utility locator service. See separate SOP for utility clearance.

Some regulatory agencies require a minimum annular space between the well or permanent casing and the borehole wall. When specified, the minimum clearance is typically 2 inches on all sides (e.g., a 2-inch diameter well requires a 6-inch diameter borehole). In addition, some regulatory agencies have specific requirements regarding grout mixtures. Determine whether the oversight agency has any such requirements prior to finalizing the drilling and well installation plan.

If dense non-aqueous phase liquids (DNAPL) are known or expected to exist at the site, refer to the DNAPL Contingency Plan SOP for additional details regarding drilling and well installation to reduce the potential for inadvertent DNAPL remobilization.

Similarly, if light non-aqueous phase liquids (LNAPLs) are known or expected to be present as "perched" layers above the water table, refer to the DNAPL Contingency

Plan. Follow the general provisions and concepts in the DNAPL contingency plan during drilling above the water table at known or expected LNAPL sites.

Avoid using drilling fluids or materials that could impact groundwater or soil quality, or could be incompatible with the subsurface conditions.

Similarly, consider the material compatibility between the well materials and the surrounding environment. For example, PVC well materials are not preferred when DNAPL is present. In addition, some groundwater conditions leach metals from stainless steel.

Water used for drilling and sampling of soil or bedrock, decontamination of drilling/sampling equipment, or grouting boreholes upon completion will be of a quality acceptable for project objectives. Testing of water supply should be considered.

Specifications of materials used for backfilling bore hole will be obtained, reviewed and approved to meet project quality objectives. Bentonite is not recommended where DNAPLs are likely to be present. In these situations, neat cement grout is preferred.

No coated bentonite pellets will be used in monitoring well construction, as the coating could impact the water quality in the completed well.

Monitoring wells may be installed with Schedule 40 polyvinyl chloride (PVC) to a maximum depth of 200 feet below ground surface (bgs). PVC monitoring wells between 200 and 400 feet total depth will be constructed using Schedule 80 PVC. Monitoring wells deeper than 400 feet will be constructed using steel.

V. Health and Safety Considerations

Field activities associated with monitoring well installation will be performed in accordance with a site-specific HASP, a copy of which will be present on site during such activities.

VI. Procedures

The procedures for installing groundwater monitoring wells are presented below:

Hollow-Stem Auger, Drive-and-Wash, Spun Casing, Fluid/Mud Rotary, Rotasonic, and Dual-Rotary Drilling Methods

1. Locate boring/well location, establish work zone, and set up sampling equipment decontamination area.

c:\users\ljohnson2\documents\new sops\1723199 - monitoring well installation.doc

- 2. Advance boring to desired depth. Collect soil and/or bedrock samples at appropriate interval as specified in the Work Plan and/or FSP. Collect, document, and store samples for laboratory analysis as specified in the Work Plan and/or FSP. Decontaminate equipment between samples in accordance with the Work Plan and/or FSP. A common sampling method that produces high-quality soil samples with relatively little soil disturbance is the ASTM D 1586 Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils. Split-spoon samples are obtained during drilling using hollow-stem auger, drive-and-wash, spun casing, and fluid/mud rotary. Rotasonic drilling produces large-diameter soil cores that tend to be more disturbed than split-spoon samples due to the vibratory action of the drill casing. Dual-rotary removes cuttings by compressed air and allows only a general assessment of geology. High-quality bedrock samples can be obtained by coring.
- 3. Describe each soil or bedrock sample as outlined in the appropriate SOP. Record descriptions in the field notebook and/or personal digital assistant (PDA). It should be noted that PDA logs must be electronically backed up and transferred to a location accessible to other project team members as soon as feasible to retain and protect the field data. During soil boring advancement, document all drilling events in field notebook, including blow counts (number of blows required to advance split-spoon sampler in 6-inch increments) and work stoppages. Blow counts will not be available if Rotasonic, dual-rotary, or directpush methods are used. When drilling in bedrock, the rate of penetration (minutes per foot) is recorded.
- 4. If it is necessary to install a monitor well into a permeable zone below a confining layer, particularly if the deeper zone is believed to have water quality that differs significantly from the zone above the confining layer, then a telescopic well construction should be considered. In this case, the borehole is advanced approximately 3 to 5 feet into the top of the confining layer, and a permanent casing (typically PVC, black steel or stainless steel) is installed into the socket drilled into the top of the confining layer. The casing is then grouted in place. The preferred methods of grouting telescoping casings include: pressure-injection grouting using an inflatable packer installed temporarily into the base of the casing, such that grout is injected out the bottom of the casing until it is observed at ground surface outside the casing; displacement-method grouting (also known as the Halliburton method), which entails filling the casing with grout and displacing the grout out the bottom of the casing by pushing a drillable plug, typically made of wood to the bottom of the casing, following by tremie grouting the remainder of the annulus outside the casing; or tremie grouting the annulus surrounding the casing using a tremie pipe installed to the base of the borehole. In all three cases, the casing is grouted to the ground

surface, and the grout is allowed to set prior to drilling deeper through the casing. Site-specific criteria and work plans should be created for the completion of non-standard monitoring wells, including telescopic wells.

- 5. In consolidated formations such as competent bedrock, a monitoring well may be completed with an open borehole interval without a screen and sandpack. In these cases, the borehole is advanced to the targeted depth of the top of the open interval. A permanent casing is then grouted in place following the procedures described in Step 4 above. After the grout sets, the borehole is advanced by drilling through the permanent casing to the targeted bottom depth of the open interval, which then serves as the monitoring interval for the well. If open-borehole interval stability is found to be questionable or if a specific depth interval is later selected for monitoring, a screened monitoring well may later be installed within the open-borehole interval, depending on the annular space and well diameter requirements.
- 6. Before installing a screened well or after drilling an open-bedrock well –, it is important to confirm that the borehole has been advanced into the saturated zone. This is particularly important for wells installed to monitor the water table and/or the shallow saturated zone, as the capillary fringe may cause soils above the water table to appear saturated. If one or more previously installed monitoring wells exist nearby, use the depth to water at such well(s) to estimate the water-table depth at the new borehole location.

To verify that the borehole has been advanced into the saturated zone, it is necessary to measure the water level in the borehole. For boreholes drilled without using water (e.g., hollow-stem auger, cable-tool, air rotary, air hammer), verify the presence of groundwater (and /or LNAPL, if applicable) in the borehole using an electronic water level probe, oil-water interface probe, or a new or decontaminated bailer. For boreholes drilled using water (e.g., drive and wash, spun-casing with roller-bit wash, rotasonic, or water rotary with core or roller bit), monitor the water level in the borehole as it re-equilibrates to the static level. In low-permeability units like clay, fine-grained glacial tills, shale and other bedrock formations, it may be necessary to wait overnight to allow the water level to equilibrate. To the extent practicable, ensure that the depth of the well below the apparent water table is deep enough so that the installed well can monitor groundwater year-round, accounting for seasonal water-table fluctuations. In most cases, the well should be installed at least five feet below the water-table depth, determined as described above. When in doubt, err on the side of slightly deeper well installation.

8

If necessary, the borehole should be drilled deeper to ensure that the well may intersects the water table or a permeable water-bearing zone.

- 7. Upon completing the borehole to the desired depth, if a screened well construction is desired, install the monitoring well by lowering the screen and casing assembly with sump through the augers or casing. Monitoring wells typically will be constructed of 2-inch-diameter, flush-threaded PVC or stainless steel slotted well screen and blank riser casing. Smaller diameters may be used if wells are installed using direct-push methodology or if multiple wells are to be installed in a single borehole. The screen length will be specified in the Work Plan or FSP based on regulatory requirements and specific monitoring objectives. Monitoring well screens are usually 5 to 10 feet long, but may be up to 25 feet long in very low permeability, thick geologic formations. The screen length will depend on the purpose for the well and the objectives of the groundwater investigation. Typically, the slot size will be 0.010 inch and the sand pack will be 20-40, Morie No. 0, or equivalent. In very fine-grained formations where sample turbidity needs to be minimized, it may be preferred to use a 0.006-inch slot size and 30-65, Morie No. 00, or equivalent sand pack. Alternatively, where monitoring wells are installed in coarse-grained deposits and higher well yield is required, a 0.020-inch slot size and 10-20, Morie No. 1, or equivalent sand pack may be preferred. To the extent practicable, the slot size and sand pack gradation may be predetermined in the Work Plan or FSP based on site-specific grain-size analysis or other geologic considerations or monitoring objectives. A blank sump may be attached below the well screen if the well is being installed for DNAPL recovery/monitoring purposes. If so, the annular space around the sump will be backfilled with neat cement grout to the bottom of the well screen prior to placing the sand pack around the screen. A blank riser will extend from the top of the screen to approximately 2.5 feet above grade or, if necessary, just below grade where conditions warrant a flushmounted monitoring well. For wells greater than 50 feet deep, centralizers may be desired to assist in centralizing the monitoring well in the borehole during construction.
- 8. When the monitoring well assembly has been set in place and the grout has been placed around the sump (if any), place a washed silica sand pack in the annular space from the bottom of the boring to a height of 1 to 2 feet above the top of the well screen. The sand pack is placed and drilling equipment extracted in increments until the top of the sand pack is at the appropriate depth. The sand pack will be consistent with the screen slot size and the soil particle size in the screened interval, as specified in the Work Plan or FSP. A hydrated bentonite seal (a minimum of 2 feet thick) will then be placed in the annular space above the sand pack. If non-hydrated bentonite is used, the bentonite

should be permitted to hydrate in place for a minimum of 30 minutes before proceeding. No coated bentonite pellets will be used in monitoring well drilling or construction. Potable water may be added to hydrate the bentonite if the seal is above the water table. Monitor the placement of the sand pack and bentonite with a weighted tape measure. During the extraction of the augers or casing, a cement/bentonite or neat cement grout will be placed in the annular space from the bentonite seal to a depth approximately 2 feet bgs.

9. Place a locking, steel protective casing (extended at least 1.5 feet below grade and 2 feet above grade) over the riser casing and secure with a neat cement seal. Alternatively, for flush-mount completions, place a steel curb box with a bolt-down lid over the riser casing and secure with a neat cement seal. In either case, the cement seal will extend approximately 1.5 to 2.0 feet below grade and laterally at least 1 foot in all directions from the protective casing, and should slope gently away to promote drainage away from the well. Monitoring wells will be labeled with the appropriate designation on both the inner and outer well casings or inside of the curb box lid.

When an above-grade completion is used, the PVC riser will be sealed using an expandable locking plug and the top of the well will be vented by drilling a smalldiameter (1/8 inch) hole near the top of the well casing or through the locking plug, or by cutting a vertical slot in the top of the well casing. When a flushmount installation is used, the PVC riser will be sealed using an unvented, expandable locking plug.

- 10. During well installation, record construction details and actual measurements relayed by the drilling contractor and tabulate materials used (e.g., screen and riser footages; bags of bentonite, cement, and sand) in the field notebook.
- 11. After completing the well installation, lock the well, clean the area, and dispose of materials in accordance with the procedures outlined in Section VII below.

Direct-Push Method

The direct-push drilling method may also be used to complete soil borings and install monitoring wells. Examples of this technique include the Diedrich ESP vibratory probe system, GeoProbe®, or AMS Power Probe® dual-tube system. Environmental probe systems typically use a hydraulically operated percussion hammer. Depending on the equipment used, the hammer delivers 140- to 350-foot pounds of energy with each blow. The hammer provides the force needed to penetrate very stiff/medium dense soil formations. The hammer simultaneously advances an outer steel casing that contains a dual-tube liner for sampling soil. The outside diameter (OD) of the outer

casing ranges from 1.75 to 2.4 inches and the OD of the inner sampling tube ranges from 1.1 to 1.8 inches. The outer casing isolates shallow layers and permits the unit to continue to probe at depth. The double-rod system provides a borehole that may be tremie-grouted from the bottom up. Alternatively, the inside diameter (ID) of the steel casing provides clearance for the installation of small-diameter (e.g., 0.75- to 1-inch ID) micro-wells. The procedures for installing monitoring wells in soil using the direct-push method are described below.

- 1. Locate boring/well location, establish work zone, and set up sample equipment decontamination area.
- 2. Advance soil boring to designated depth, collecting samples at intervals specified in the Work Plan. Samples will be collected using dedicated, disposable, plastic liners. Describe samples in accordance with the procedures outlined in Step 3 above. Collect samples for laboratory analysis as specified in the Work Plan and/or FSP.
- 3. Upon advancing the borehole to the desired depth, install the micro-well through the inner drill casing. The micro-well will consist of approximately 1-inch ID PVC or stainless steel slotted screen and blank riser. The sand pack, bentonite seal, and cement/bentonite grout will be installed as described, where applicable, in Step 7 and 8 above.
- 4. Install protective steel casing or flush-mount, as appropriate, as described in Step 9 above. During well installation, record construction details and tabulate materials used.
- 5. After completing the well installation, lock the well, clean the area, and dispose of materials in accordance with the procedures outlined in Section VII below.

Driven Well Point Installation

Well points will be installed by pushing or driving using a drilling rig or direct-push rig, or hand-driven where possible. The well point construction materials will consist of a 1- to 2-inch-diameter threaded steel casing with either 0.010- or 0.020-inch slotted stainless steel screen. The screen length will vary depending on the hydrogeologic conditions of the site. The casings will be joined together with threaded couplings and the terminal end will consist of a steel well point. Because they are driven or pushed to the desired depth, well points do not have annular backfill materials such as sand pack or grout.

VII. Waste Management

Investigation-derived wastes (IDW), including soil cuttings and excess drilling fluids (if used), decontamination liquids, and disposable materials (well material packages, PPE, etc.), will be placed in clearly labeled, appropriate containers, or managed as otherwise specified in the Work Plan, FSP, and/or IDW management SOP.

VIII. Data Recording and Management

Drilling activities will be documented in a field notebook. Pertinent information will include personnel present on site, times of arrival and departure, significant weather conditions, timing of well installation activities, soil descriptions, well construction specifications (screen and riser material and diameter, sump length, screen length and slot size, riser length, sand pack type), and quantities of materials used. In addition, the locations of newly-installed wells will be documented photographically or in a site sketch. If appropriate, a measuring wheel or engineer's tape will be used to determine approximate distances between important site features.

The well or piezometer location, ground surface elevation, and inner and outer casing elevations will be surveyed using the method specified in the site Work Plan. Generally, a local baseline control will be set up. This local baseline control can then be tied into the appropriate vertical and horizontal datum, such as the National Geodetic Vertical Datum of 1929 or 1988 and the State Plane Coordinate System. At a minimum, the elevation of the top of the inner casing used for water-level measurements should be measured to the nearest 0.01 foot. Elevations will be established in relation to the National Geodetic Vertical Datum of 1929. A permanent mark will be placed on top of the inner casing to mark the point for water-level measurements.

IX. Quality Assurance

All drilling equipment and associated tools (including augers, drill rods, sampling equipment, wrenches, and any other equipment or tools) that may have come in contact with soil will be cleaned in accordance with the procedures outlined in the appropriate SOP. Well materials will also be cleaned prior to well installation.

X. References

American Society of Testing and Materials (ASTM) D 1586 - *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils.*

Imagine the result

Soil Drilling and Sample Collection

Rev. #: 2

Rev Date: March 8, 2011

Approval Signatures

mor Prepared by: 1

Date: 03/08/2011

Reviewed by:

(Technical Expert)

Date: 03/08/2011

I. Scope and Application

Overburden drilling is commonly performed using the hollow-stem auger drilling method. Other drilling methods suitable for overburden drilling, which are sometimes necessary due to site-specific geologic conditions, include: drive-and-wash, spun casing, Rotasonic, dual-rotary (Barber Rig), and fluid/mud rotary. Direct-push techniques (e.g., Geoprobe or cone penetrometer) may also be used. The drilling method to be used at a given site will be selected based on site-specific consideration of anticipated drilling depths, site or regional geologic knowledge, types of sampling to be conducted, required sample quality and volume, and cost.

No oils or grease will be used on equipment introduced into the boring (e.g., drill rod, casing, or sampling tools).

II. Personnel Qualifications

The Project Manager (a qualified geologist, environmental scientist, or engineer) will identify the appropriate soil boring locations, depth and soil sample intervals in a written plan.

Personnel responsible for overseeing drilling operations must have at least 16 hours of prior training overseeing drilling activities with an experienced geologist, environmental scientist, or engineer with at least 2 years of prior experience.

III. Equipment List

The following materials will be available during soil boring and sampling activities, as required:

- Site Plan with proposed soil boring/well locations;
- Work Plan or Field Sampling Plan (FSP), and site Health and Safety Plan (HASP);
- personal protective equipment (PPE), as required by the HASP;
- drilling equipment required by the American Society for Testing and Materials (ASTM) D 1586, when performing split-spoon sampling;
- disposable plastic liners, when drilling with direct-push equipment;
- appropriate soil sampling equipment (e.g., stainless steel spatulas, knife);

- equipment cleaning materials;
- appropriate sample containers and labels;
- chain-of-custody forms;
- insulated coolers with ice, when collecting samples requiring preservation by chilling;
- photoionization detector (PID) or flame ionization detector (FID); and
- field notebook and/or personal digital assistant (PDA).

IV. Cautions

Prior to beginning field work, underground utilities in the vicinity of the drilling areas will be identified by one of the following three actions (lines of evidence):

- Contact the State One Call
- Obtain a detailed site utility plan drawn to scale, preferably an "as-built" plan
- Conduct a detailed visual site inspection

In the event that one or more of the above lines of evidence cannot be conducted, or if the accuracy of utility location is questionable, a minimum of one additional line of evidence will be utilized as appropriate or suitable to the conditions. Examples of additional lines of evidence include but are not limited to:

- Private utility locating service
- Research of state, county or municipal utility records and maps including computer drawn maps or geographical information systems (GIS)
- Contact with the utility provider to obtain their utility location records
- Hand augering or digging
- Hydro-knife
- Air-knife
- Radio Frequency Detector (RFD)

- Ground Penetrating Radar (GPR)
- Any other method that may give ample evidence of the presence or location of subgrade utilities.

Overhead power lines also present risks and the following safe clearance must be maintained from them.

Power Line Voltage Phase to Phase (kV)	Minimum Safe Clearance (feet)
50 or below	10
Above 50 to 200	15
Above 200 to 350	20
Above 350 to 500	25
Above 500 to 750	35
Above 750 to 1,000	35

ANSI Standard B30.5-1994, 5-3.4.5

Avoid using drilling fluids or materials that could impact groundwater or soil quality, or could be incompatible with the subsurface conditions.

Water used for drilling and sampling of soil or bedrock, decontamination of drilling/sampling equipment, or grouting boreholes upon completion will be of a quality acceptable for project objectives. Testing of water supply should be considered.

Specifications of materials used for backfilling borehole will be obtained, reviewed and approved to meet project quality objectives.

V. Health and Safety Considerations

Field activities associated with overburden drilling and soil sampling will be performed in accordance with a site-specific HASP, a copy of which will be present on site during such activities.

VI. Procedure

Drilling Procedures

The drilling contractor will be responsible for obtaining accurate and representative samples; informing the supervising geologist of changes in drilling pressure; and

keeping a separate general log of soils encountered, including blow counts (i.e., the number of blows from a soil sampling drive weight [140 pounds] required to drive the split-barrel sampler in 6-inch increments). The term "samples" means soil materials from particular depth intervals, whether or not portions of these materials are submitted for laboratory analysis. Records will also be kept of occurrences of premature refusal due to boulders or construction materials that may have been used as fill. Where a boring cannot be advanced to the desired depth, the boring will be abandoned and an additional boring will be advanced at an adjacent location to obtain the required sample. Where it is desirable to avoid leaving vertical connections between depth intervals, the borehole will be sealed using cement and/or bentonite. Multiple refusals may lead to a decision by the supervising geologist to abandon that sampling location.

Soil Characterization Procedures

Soils encountered while drilling soil borings will be collected using one of the following methods:

- 2-inch split-barrel (split-spoon) sampler, if using the ASTM D 1586 Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils
- Plastic internal soil sample sleeves if using direct-push drilling.

Soils are typically field screened with an FID or PID at sites where volatile organic compounds are present in the subsurface. Field screening is performed using one of the following methods:

- Upon opening the sampler, the soil is split open and the PID or FID probe is placed in the opening and covered with a gloved hand. Such readings should be obtained at several locations along the length of the sample
- A portion of the collected soil is placed in a jar, which is covered with aluminum foil, sealed, and allowed to warm to room temperature. After warming, the cover is removed, the foil is pieced with the FID or PID probe, and a reading is obtained.

Samples selected for laboratory analysis will be handled, packed, and shipped in accordance with the procedures outlined in the Work Plan, FSP, or Chain-of-Custody, Handling, Packing, and Shipping SOP.

A geologist will be onsite during drilling and sampling operations to describe each soil interval on the soil boring log, including:

- percent recovery;
- structure and degree of sample disturbance;
- soil type;
- color;
- moisture condition;
- density;
- grain-size;
- consistency; and
- other observations, particularly relating to the presence of waste materials

Further details regarding geologic description of soils are presented in the Soil Description SOP.

Particular care will be taken to fully describe any sheens observed, oil saturation, staining, discoloration, evidence of chemical impacts, or unnatural materials.

VII. Waste Management

Water generated during cleaning procedures will be collected and contained onsite in appropriate containers for future analysis and appropriate disposal.

PPE (such as gloves, disposable clothing, and other disposable equipment) resulting from personnel cleaning procedures and soil sampling/handling activities will be placed in plastic bags. These bags will be transferred into appropriately labeled 55-gallon drums or a covered roll-off box for appropriate disposal.

Soil materials will be placed in sealed 55-gallon steel drums or covered roll-off boxes and stored in a secured area. Once full, the material will be analyzed to determine the appropriate disposal method.

VIII. Data Recording and Management

The supervising geologist or scientist will be responsible for documenting drilling events using a bound field notebook and/or PDA to record all relevant information in a clear and concise format. The record of drilling events will include:

- start and finish dates of drilling;
- name and location of project;
- project number, client, and site location;
- sample number and depths;
- blow counts and recovery;
- depth to water;
- type of drilling method;
- drilling equipment specifications, including the diameter of drilling tools;
- documentation of any elevated organic vapor readings;
- names of drillers, inspectors, or other people onsite; and
- weather conditions.

IX. Quality Assurance

Equipment will be cleaned prior to use onsite, between each drilling location, and prior to leaving the site. Drilling equipment and associated tools, including augers, drill rods, sampling equipment, wrenches, and other equipment or tools that may have come in contact with soils and/or waste materials will be cleaned with high-pressure steam-cleaning equipment using a potable water source. The drilling equipment will be cleaned in an area designated by the supervising engineer or geologist that is located outside of the work zone. More elaborate cleaning procedures may be required for reusable soil samplers (split-spoons) when soil samples are obtained for laboratory analysis of chemical constituents.

X. References

American Society of Testing and Materials (ASTM) D 1586 - *Standard Test Method for Penetration Test and Split-Barrel Sampling of Soils.*

Imagine the result

Chain-of-Custody, Handling, Packing and Shipping

Rev. #: 2

Rev Date: March 6, 2009

SOP: Chain-of-Custody, Handling, Packing and Shipping 1 Rev. #: 2 | Rev Date: March 6, 2009

an 3/6/09 Prepared by: Date: Caron Koll Reviewed by: Date: 3/6/09 Jane Kennedy(Technical Exp

Approval Signatures

\arcadis-us\officedata\newtown-pa\sop-library\reformatted sops 2008\general sops\1663199 - chain-of-custody, handling, packing and shipping.doc

SOP: Chain-of-Custody, Handling, Packing and Shipping Rev. #: 2 | Rev Date: March 6, 2009

I. Scope and Application

This Standard Operating Procedure (SOP) describes the chain-of-custody, handling, packing, and shipping procedures for the management of samples to decrease the potential for cross-contamination, tampering, mis-identification, and breakage, and to insure that samples are maintained in a controlled environment from the time of collection until receipt by the analytical laboratory.

II. Personnel Qualifications

ARCADIS field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, Department of Transportation (DOT) training, site supervisor training, and site-specific training, as needed. In addition, ARCADIS field sampling personnel will be versed in the relevant SOPs and possess the skills and experience necessary to successfully complete the desired field work.

III. Equipment List

The following list provides materials that may be required for each project. Project documents and sample collection requirements should be reviewed prior to initiating field operations:

- indelible ink pens (black or blue);
- polyethylene bags (resealable-type);
- clear packing tape, strapping tape, duct tape;
- chain of custody
- DOT shipping forms, as applicable
- custody seals or tape;
- appropriate sample containers and labels,;
- insulated coolers of adequate size for samples and sufficient ice to maintain 4°C during collection and transfer of samples;
- wet ice;
- cushioning and absorbent material (i.e., bubble wrap or bags);

SOP: Chain-of-Custody, Handling, Packing and Shipping 3 Rev. #: 2 | Rev Date: March 6, 2009

- temperature blank
- sample return shipping papers and addresses; and
- field notebook.

IV. Cautions

Review project requirements and select appropriate supplies prior to field mobilization.

Insure that appropriate sample containers with applicable preservatives, coolers, and packing material have been supplied by the laboratory.

Understand the offsite transfer requirements for the facility at which samples are collected.

If overnight courier service is required schedule pick-up or know where the drop-off service center is located and the hours of operation. Prior to using air transportation, confirm air shipment is acceptable under DOT and International Air Transport Association (IATA) regulation

Schedule pick-up time for laboratory courier or know location of laboratory/service center and hours of operation.

Understand DOT and IATA shipping requirements and evaluate dangerous goods shipping regulations relative to the samples being collected (i.e. complete an ARCADIS shipping determination). Review the ARCADIS SOPs for shipping, packaging and labeling of dangerous goods. Potential samples requiring compliance with this DOT regulation include:

- Methanol preservation for Volatile Organic Compounds in soil samples
- Non-aqueous phase liquids (NAPL)

V. Health and Safety Considerations

Follow health and safety procedures outlined in the project/site Health and Safety Plan (HASP).

Use caution and appropriate cut resistant gloves when tightening lids to 40 mL vials. These vials can break while tightening and can lacerate hand. Amber vials (thinner glass) are more prone to breakage.

Some sample containers contain preservatives.

- The preservatives must be retained in the sample container and should in no instance be rinsed out.
- Preservatives may be corrosive and standard care should be exercised to reduce potential contact to personnel skin or clothing. Follow project safety procedures if spillage is observed.
- If sample container caps are broken discard the bottle. Do not use for sample collection.

VI. Procedure

Chain-of-Custody Procedures

- Prior to collecting samples, complete the chain-of-custody record header information by filling in the project number, project name, and the name(s) of the sampling technician(s) and other relevant project information. Attachment 1 provides an example chain-o- custody record
- 2. Chain-of-custody information MUST be printed legibly using indelible ink (black or blue).
- 3. After sample collection, enter the individual sample information on the chain-ofcustody:
 - a. Sample Identification indicates the well number or soil location that the sample was collected from. Appropriate values for this field include well locations, grid points, or soil boring identification numbers (e.g., MW-3, X-20, SB-30). When the depth interval is included, the complete sample ID would be "SB-30 (0.5-1.0) where the depth interval is in feet. Please note it is very important that the use of hyphens in sample names and depth units (i.e., feet or inches) remain consistent for all samples entered on the chain-of-custody form. DO NOT use the apostrophe or quotes in the sample ID. Sample names may also use the abbreviations "FB,"
 "TB," and "DUP" as prefixes or suffixes to indicate that the sample is a field blank, trip blank, or field duplicate, respectively. NOTE: The sample

5

nomenclature may be dictated by the project database and require unique identification for each sample collected for the project. Consult the project data management plan for additional information regarding sample identification.

- b. List the date of sample collection. The date format to be followed should be mm/dd/yy (e.g., 03/07/09) or mm/dd/yyyy (e.g. 03/07/2009).
- c. List the time that the sample was collected. The time value should be presented using military format. For example, 3:15 P.M. should be entered as 15:15.
- d. The composite field should be checked if the sample is a composite over a period of time or from several different locations and mixed prior to placing in sample containers.
- e. The "Grab". field should be marked with an "X" if the sample was collected as an individual grab sample. (e.g. monitoring well sample or soil interval).
- f. Any sample preservation should be noted.
- g. The analytical parameters that the samples are being analyzed for should be written legibly on the diagonal lines. As much detail as possible should be presented to allow the analytical laboratory to properly analyze the samples. For example, polychlorinated biphenyl (PCB) analyses may be represented by entering "PCBs" or "Method 8082." Multiple methods and/or analytical parameters may be combined for each column (e.g., PCBs/VOCs/SVOCs or 8082/8260/8270). These columns should also be used to present project-specific parameter lists (e.g., Appendix IX+3 target analyte list. Each sample that requires a particular parameter analysis will be identified by placing the number of containers in the appropriate analytical parameter column. For metals in particular, indicate which metals are required.
- h. Number of containers for each method requested. This information may be included under the parameter or as a total for the sample based on the chain of custody form used.
- i. Note which samples should be used for site specific matrix spikes.
- j. Indicate any special project requirements.

- k. Indicate turnaround time required.
- I. Provide contact name and phone number in the event that problems are encountered when samples are received at the laboratory.
- m. If available attach the Laboratory Task Order or Work Authorization forms
- n. The remarks field should be used to communicate special analytical requirements to the laboratory. These requirements may be on a per sample basis such as "extract and hold sample until notified," or may be used to inform the laboratory of special reporting requirements for the entire sample delivery group (SDG). Reporting requirements that should be specified in the remarks column include: 1) turnaround time; 2) contact and address where data reports should be sent; 3) name of laboratory project manager; and 4) type of sample preservation used.
- o. The "Relinquished By" field should contain the signature of the sampling technician who relinquished custody of the samples to the shipping courier or the analytical laboratory.
- p. The "Date" field following the signature block indicates the date the samples were relinquished. The date format should be mm/dd/yyyy (e.g., 03/07/2005).
- q. The "Time" field following the signature block indicates the time that the samples were relinquished. The time value should be presented using military format. For example, 3:15 P.M. should be entered as 15:15.
- r. The "Received By" section is signed by sample courier or laboratory representative who received the samples from the sampling technician or it is signed upon laboratory receipt from the overnight courier service.
- 3. Complete as many chain-of-custody forms as necessary to properly document the collection and transfer of the samples to the analytical laboratory.
- 4. Upon completing the chain-of-custody forms, forward two copies to the analytical laboratory and retain one copy for the field records.
- 5. If electronic chain-of-custody forms are utilized, sign the form and make 1 copy for ARCADIS internal records and forward the original with the samples to the laboratory.

\arcadis-us\officedata\newtown-pa\sop-library\reformatted sops 2008\general sops\1663199 - chain-of-custody, handling, packing and shipping.doc

SOP: Chain-of-Custody, Handling, Packing and Shipping Rev. #: 2 | Rev Date: March 6, 2009

Handling Procedures

- 1. After completing the sample collection procedures, record the following information in the field notebook with indelible ink:
 - project number and site name; •
 - sample identification code and other sample identification information, if appropriate;
 - sampling method;
 - date;
 - name of sampler(s);
 - time;
 - location (project reference);
 - location of field duplicates and both sample identifications;
 - locations that field QC samples were collected including equipment blanks, • field blanks and additional sample volume for matrix spikes; and
 - any comments. •
- 2. Complete the sample label with the following information in indelible ink:
 - sample type (e.g., surface water); •
 - sample identification code and other sample identification information, if applicable;
 - analysis required;
 - date;
 - time sampled; and
 - initials of sampling personnel;

\\arcadis-us\officedata\newtown-pa\sop-library\reformatted sops 2008\general sops\1663199 - chain-of-custody, handling, packing and shipping.doc

7

- sample matrix; and
- preservative added, if applicable.
- 3. Cover the label with clear packing tape to secure the label onto the container and to protect the label from liquid.
- 4. Confirm that all caps on the sample containers are secure and tightly closed.
- 5. In some instances it may be necessary to wrap the sample container cap with clear packing tape to prevent it from becoming loose.
- 6. For some projects individual custody seals may be required. Custody seal evidence tape may be placed on the shipping container or they may be placed on each sample container such that the cooler or cap cannot be opened without breaking the custody seal. The custody seal should be initialed and dated prior to relinquishing the samples.

Packing Procedures

Following collection, samples must be placed on wet ice to initiate cooling to 4°C immediately. Retain samples on ice until ready to pack for shipment to the laboratory.

- 1. Secure the outside and inside of the drain plug at the bottom of the cooler being used for sample transport with "Duct" tape.
- 2. Place a new large heavy duty plastic garbage bag inside each cooler
- 3. Place each sample bottle wrapped in bubble wrap inside the garbage bag. VOC vials may be grouped by sample in individual resealable plastic bags). If a cooler temperature blank is supplied by the laboratory, it should be packaged following the same procedures as the samples. If the laboratory did not include a temperature blank, do not add one. Place 1 to 2 inches of cushioning material (i.e., vermiculite) at the bottom of the cooler.
- 4. Place the sealed sample containers upright in the cooler.
- 5. Package ice in large resealable plastic bags and place inside the large garbage bag in the cooler. Samples placed on ice will be cooled to and maintained at a temperature of approximately 4°C.

SOP: Chain-of-Custody, Handling, Packing and Shipping Rev. #: 2 | Rev Date: March 6, 2009

- Fill the remaining space in the cooler with cushioning material such as bubble wrap. The cooler must be securely packed and cushioned in an upright position and be surrounded (Note: to comply with 49 CFR 173.4, filled cooler must not exceed 64 pounds).
- 7. Place the completed chain-of-custody record(s) in a large resealable bag and tape the bag to the inside of the cooler lid.
- 8. Close the lid of the cooler and fasten with packing tape.
- 9. Wrap strapping tape around both ends of the cooler.
- 10. Mark the cooler on the outside with the following information: shipping address, return address, "Fragile, Handle with Care" labels on the top and on one side, and arrows indicating "This Side Up" on two adjacent sides.
- 11. Place custody seal evidence tape over front right and back left of the cooler lid, initial and date, then cover with clear plastic tape.

Note: Procedure numbers 2, 3, 5, and 6 may be modified in cases where laboratories provide customized shipping coolers. These cooler types are designed so the sample bottles and ice packs fit snugly within preformed styrofoam cushioning and insulating packing material.

Shipping Procedures

- 1. All samples will be delivered by an express carrier within 48 hours of sample collection. Alternatively, samples may be delivered directly to the laboratory or laboratory service center or a laboratory courier may be used for sample pickup.
- If parameters with short holding times are required (e.g., VOCs [EnCore[™] Sampler], nitrate, nitrite, ortho-phosphate and BOD), sampling personnel will take precautions to ship or deliver samples to the laboratory so that the holding times will not be exceeded.
- Samples must be maintained at 4°C±2°C until shipment and through receipt at the laboratory
- 4. All shipments must be in accordance with DOT regulations and ARCADIS dangerous goods shipping SOPs.

\\arcadis-us\officedata\newtown-pa\sop-library\reformatted sops 2008\general sops\1663199 - chain-of-custody, handling, packing and shipping.doc

9

SOP: Chain-of-Custody, Handling, Packing and Shipping 10 Rev. #: 2 | Rev Date: March 6, 2009

5. When the samples are received by the laboratory, laboratory personnel will complete the chain-of-custody by recording the date and time of receipt of samples, measuring and recording the internal temperature of the shipping container, and checking the sample identification numbers on the containers to ensure they correspond with the chain-of-custody forms.

Any deviations between the chain-of-custody and the sample containers, broken containers, or temperature excursions will be communicated to ARCADIS immediately by the laboratory.

VII. Waste Management

Not applicable

VIII. Data Recording and Management

Chain-of-custody records will be transmitted to the ARCADIS PM or designee at the end of each day unless otherwise directed by the ARCADIS PM. The sampling team leader retains copies of the chain-of-custody forms for filing in . the project file. Record retention shall be in accordance with project requirements.

IX. Quality Assurance

Chain-of-custody forms will be legibly completed in accordance with the applicable project documents such as Sampling and Analysis Plan (SAP), Quality Assurance Project Plan (QAPP), Work Plan, or other project guidance documents. A copy of the completed chain-of-custody form will be sent to the ARCADIS Project Manager or designee for review.

X. References

Not Applicable

SOP: Chain-of-Custody, Handling, Packing and Shipping 1 Rev. #: 2 | Rev Date: March 6, 2009

Attachment 1

ARCADIS Instructure, environment, facilities				СНА		OF CUSTODY & LABORATORY Lab Work Order # ALYSIS REQUEST FORM Page of									
Contact & Company Name	Telepho	ne:				Preservative			1			1		1	Keys
to:						Filtered (*)	8			-		1		Preservation Key: A. H.SO.	Container Information Key: 1. 40 ml Vial
Address:	Fsx:					/ of Containe	rs							A. H ₂ SO ₄ B. HCL C. HNO ₂	2 1 L Amber 3. 250 ml Plastic
R		E-mail Address					Container Information							D NaOH 4 500 ml Plastic E None 5 Encore	4 500 ml Plastic
Results State	Zip E-mail A						PARAMETER ANALYSIS & METHOD								6. 2 oz. Glass
							/	/	1	1	/ /	/ /		G. Other	7 4 02. Glass 8 8 02. Glass
Project Name/Location (City, State)	Project	ά [*]					/	/	/	/	/	/	/	H. Other	9, Other: 10.0ther:
Sampler's Printed Name.	Sample	Sampler's Signature,						/	/ /	/	/ /	/	/	Matrix Key: SO - Sol	SE - Sedment NL - NAPL/OI
Sample ID	Da	Collection Date Time		e (~) Grab	Matrix		/	/	/	/	/	/	/	W - Water T - Tissue	SL - Sludge SW - Sample Wipe A - Air Other
Special Instructions/Comments:								8	□ Special C	A/QC Instru	ictions(√):	1			
Laboratory Information and Receipt					Relinquished By			Received By			Relinquished By			Laboratory Received By	
Lab Name.	Cool	Cooler Custody Seal (*) Printed				ted Name.			Printed Name.		Printed Name.		Printed	Name.	
Cooler packed with ice (*)		Intact Not Intact Signate			aðure.			Signature.			Signature.		Signate	μ¢.	
Specify Turnaround Requirements	Sam	Sample Receipt: Firm						Firm/Couner Date/Time:			Firm/Counter: Date/Time:		Firm:		
Shipping Tracking #.	Conc	Condition/Cooler Temp: Date/Te											Date/T	ine:	

20730826 ColC AR Form 01.12.2007 Distribution: WHITE - Laboratory returns with results YELLOW - Lab copy PINK – Retained by BBL \\arcadis-us\officedata\newtown-pa\sop-library\reformatted sops 2008\general sops\1663199 - chain-of-custody, handling, packing and shipping.doc

Imagine the result

Monitoring Well Development

Rev. #: 2.2

Rev. Date: March 22, 2010

Approval Signatures

Prepared by:

Date: 03/22/2010

Duil S. Ligor Michel J. Seflel Reviewed by:

Date: 03/22/2010

(Technical Expert)

I. Scope and Application

Monitoring wells (or piezometers, well points, or micro-wells) will be developed to clear them of fine-grained sediment to enhance the hydraulic connection between the well and the surrounding geologic formation. Development will be accomplished by evacuating well water by either pumping or bailing. Prior to pumping or bailing, the screened interval will be gently surged using a surge block, bailer, or inertia pump with optional surgeblock fitting as appropriate. Accumulated sediment in the bottom of the well (if present) will be removed by bailing with a bottom-loading bailer or via pumping using a submersible or inertia pump with optional surge-block fitting. Wells will also be gently brushed with a weighted brush to assist in removing loose debris, silt or flock attached to the inside of the well riser and/or screen prior to development. Pumping methods will be selected based on site-specific geologic conditions, anticipated well yield, water table depth, and groundwater monitoring objectives, and may include one or more of the following:

- submersible pump
- inertial pump (Waterra[™] pump or equivalent)
- bladder pump
- peristaltic pump
- centrifugal pump

When developing a well using the pumping method, the pump (or, with inertial pumps, the tubing) is lowered to the screened portion of the well. During purging, the pump or tubing is moved up and down the screened interval until the well yields relatively clear water.

Submersible pumps have a motor-driven impeller that pushes the groundwater through discharge tubing to the ground surface. Inertial pumps have a check valve at the bottom of stiff tubing which, when operated up and down, lifts water to the ground surface. Bladder pumps have a bottom check valve and a flexible internal bladder that fills from below and is then compressed using pressurized air to force water out the top of the bladder through the discharge tubing to the ground surface. These three types of pumps have a wide range of applicability in terms of well depth and water depth.

Centrifugal and peristaltic pumps use atmospheric pressure to lift water from the well, and therefore can only be practically used where the depth to water is less than 25 feet.

II. Personnel Qualifications

Monitoring well development activities will be performed by persons who have been trained in proper well development procedures under the guidance of an experienced field geologist, engineer, or technician.

III. Equipment List

Materials for monitoring well development using a pump include the following:

- health and safety equipment, as required by the site Health and Safety Plan (HASP):
- cleaning equipment
- photoionization detector (PID) to measure headspace vapors
- pump
- polyethylene pump discharge tubing
- plastic sheeting
- power source (generator or battery)
- field notebook and/or personal digital assistant (PDA)
- graduated pails
- appropriate containers

- monitoring well keys
- water level indicator

Materials for monitoring well development using a bailer include the following:

- personal protective equipment (PPE) as required by the HASP
- cleaning equipment
- PID to measure headspace vapors
- bottom-loading bailer, sand bailer
- polypropylene or nylon rope
- plastic sheeting
- graduated pails
- appropriate containers
- keys to wells
- field notebook and/or PDA
- water level indicator
- weighted brush for well brushing

IV. Cautions

Where surging is performed to assist in removing fine-grained material from the sand pack, surging must be performed in a gentle manner. Excessive suction could promote fine-grained sediment entry into the outside of the sand pack from the formation.

Avoid using development fluids or materials that could impact groundwater or soil quality, or could be incompatible with the subsurface conditions.

In some cases it may be necessary to add potable water to a well to allow surging and development, especially for new monitoring wells installed in low permeability formations. Before adding potable water to a well, the Project Manager (PM) must be notified and the PM shall make the decision regarding the appropriateness and applicability of adding potable water to a well during well development procedures. If potable water is to be added to a well as part of development, the potable water source should be sampled and analyzed for constituents of concern, and the results evaluated by the PM prior to adding the potable water to the well. If potable water is added to a well for development purposes, at the end of development the well will be purged dry to remove the potable water, or if the well no longer goes dry then the well will be purged to remove at least three times the volume of potable water that was added.

V. Health and Safety Considerations

Field activities associated with monitoring well development will be performed in accordance with a site-specific HASP, a copy of which will be present on site during such activities.

VI. Procedure

The procedures for monitoring well development are described below. (Note: Steps 7, 8, and 10 can be performed at the same time using an inertial pump with a surge-block fitting.)

- 1. Don appropriate PPE (as required by the HASP).
- 2. Place plastic sheeting around the well.
- Clean all equipment entering each monitoring well, except for new, disposable materials that have not been previously used.

- 4. Open the well cover while standing upwind of the well, remove well cap. Insert PID probe approximately 4 to 6 inches into the casing or the well headspace and cover with gloved hand. Record the PID reading in the field notebook. If the well headspace reading is less than 5 PID units, proceed; if the headspace reading is greater than 5 PID units, screen the air within the breathing zone. If the PID reading in the breathing zone is below 5 PID units, proceed. If the PID reading is above 5 PID units, move upwind from well for 5 minutes to allow the volatiles to dissipate. Repeat the breathing zone test. If the reading is still above 5 PID units, don the appropriate respiratory protection in accordance with the requirements of the HASP. Record all PID readings.
- 5. Obtain an initial measurement of the depth to water and the total well depth from the reference point at the top of the well casing. Record these measurements in the field log book.
- 6. Prior to redeveloping older wells that may contain solid particulate debris along the inside of the well casing and screen, gently lower and raise a weighted brush along the entire length of the well screen and riser to free and assist in removing loose debris, silt or flock. Perform a minimum of 4 "passes" along the screened and cased intervals of the well below the static water level in the well. Allow the resulting suspended material to settle for a minimum of one day prior to continuing with redevelopment activities.
- 7. Lower a surge block or bailer into the screened portion of the well. Gently raise and lower the surge block or bailer within the screened interval of the well to force water in and out of the screen slots and sand pack. Continue surging for 15 to 30 minutes.
- 8. Lower a bottom-loading bailer, submersible pump, or inertia pump tubing with check valve to the bottom of the well and gently bounce the bailer, pump, pump tubing on the bottom of the well to collect/remove accumulated sediment, if any. Remove and empty the bailer, if used. Repeat until the bailed/pumped water is free of excessive sediment and the bottom of the well feels solid. Alternatively, measurement of the well depth with a water level indicator can be used to verify that sediment and/or silt has been removed to the extent practicable, based on a comparison with the well installation log or previous measurement of total well depth.
- 9. After surging the well and removing excess accumulated sediment from the bottom of the well, re-measure the depth-to-water and the total well depth from the reference point at the top of the well casing. Record these measurements in the field log book.
- Remove formation water by pumping or bailing. Where pumping is used, measure and record the pre-pumping water level. Operate the pump at a relatively constant rate. Measure the pumping rate using a calibrated container and stop watch, and record the pumping rate in the field log book. Measure and record the water level in the well at least

once every 5 minutes during pumping. Note any relevant observations in terms of water color, visual level of turbidity, sheen, odors, etc. Pump or bail until termination criteria specified in the Field Sampling Plan (FSP) are reached. Record the total volume of water purged from the well.

- 11. If the well goes dry, stop pumping or bailing. Note the time that the well went dry. After allowing the well to recover, note the time and depth to water. Resume pumping or bailing when sufficient water has recharged the well.
- 12. Contain all water in appropriate containers.
- 13. When complete, secure the lid back on the well.
- 14. Place disposable materials in plastic bags for appropriate disposal and decontaminate reusable, downhole pump components and/or bailer.

VII. Waste Management

Materials generated during monitoring well installation and development will be placed in appropriate labeled containers and disposed of as described in the Work Plan or Field Sampling Plan.

VIII. Data Recording and Management

Well development activities will be documented in a proper field notebook and/or PDA. Pertinent information will include personnel present on site; times of arrival and departure; significant weather conditions; timing of well development activities; development method(s); observations of purge water color, turbidity, odor, sheen, etc.; purge rate; and water levels before and during pumping.

IX. Quality Assurance

All reused, non-disposable, downhole well development equipment will be cleaned in accordance with the procedures outlined in the Field Equipment Cleaning-Decontamination SOP.

X. References

Not applicable.

Imagine the result

Standard Groundwater Sampling for Monitoring Wells

Rev. #: 1

Rev Date: July 16, 2008

SOP: Standard Groundwater Sampling for Monitoring Wells 1 Rev. #: 1 | Rev Date: July 16, 2008

Approval Signatures

Prepared by: <u>Song</u> a Cadle Date: <u>7/16/08</u>

Date: 7/16/08

SOP: Standard Groundwater Sampling for Monitoring Wells Rev. #: 1 | Rev Date: July 16, 2008

I. Scope and Application

This Standard Operating Procedure (SOP) describes the procedures to be used to collect groundwater samples using traditional purging and sampling techniques. For low-flow purging techniques, please refer to the Low Flow Purging SOP. Monitoring wells must be developed after installation at least 1 week prior to groundwater sample collection. Monitoring wells will not be sampled until the well has been developed. During precipitation events, groundwater sampling will be discontinued until precipitation ceases or a cover has been erected over the sampling area and monitoring well.

Both filtered and unfiltered groundwater samples may be collected using this SOP. Filtered samples may be obtained using a 1.0-, 0.45-, or 0.1-micron disposable filter.

II. Personnel Qualifications

ARCADIS personnel directing, supervising, or leading groundwater sample collection activities should have a minimum of 2 years of previous groundwater sampling experience. Field employees with less than 6 months of experience should be accompanied by a supervisor (as described above) to ensure that proper sample collection techniques are employed.

III. Equipment List

The following materials shall be available, as required, during groundwater sampling:

- site plan of monitoring well locations and site Field Sampling Plan (FSP);
- appropriate health and safety equipment, as specified in the site Health and Safety Plan (HASP);
- photoionization detector (PID) or flame ionization detector (FID), as needed, in accordance with the HASP;
- monitoring well construction logs or tables and historical water level information, if available;
- dedicated plastic sheeting or other clean surface to prevent sample contact with the ground;
- if bailers are to be used in sampling:

- appropriate dedicated bottom-loading, bottom-emptying bailers (i.e., polyvinyl chloride [PVC], Teflon, or stainless steel);
- o polypropylene rope;
- if submersible pumps are to be used in sampling:
 - o dedicated tubing and other equipment necessary for purging;
 - o generator or battery for operation of pumps, if required;
 - a pump selected in accordance with the FSP or Work Plan (parameter-specific [e.g., submersible, bladder, peristaltic]);
- graduated buckets to measure purge water;
- water-level or oil/water interface probe, in accordance with the FSP or Work Plan;
- conductivity/temperature/pH meter;
- down-hole dissolved oxygen meter, oxidation reduction potential meter, and/or turbidity meter, if specified in the FSP;
- water sample containers appropriate for the analytical method(s) with preservative, as needed (parameter-specific);
- filter, as needed, in accordance with the analytical method and parameter;
- appropriate blanks (trip blank supplied by the laboratory), as specified in the FSP;
- Ziploc-type freezer bags for use as ice containers;
- appropriate transport containers (coolers) with ice and appropriate labeling, packing, and shipping materials;
- appropriate groundwater sampling log (example attached);
- chain-of-custody forms;
- site map with well locations and groundwater contour maps;

g:\sop-library\reformatted sops 2008\groundwater - surface water sops\1833199 - standard gw sampling for monitoring wells r1.doc

- keys to wells and contingent bolt cutters for rusted locks and replacement keyedalike locks; and
- drums or other containers for purge water, as specified by the site investigation derived waste (IDW) management plan.

IV. Cautions

If heavy precipitation occurs and no cover over the sampling area and monitoring well can be erected, sampling must be discontinued until adequate cover is provided. Rain water could contaminate groundwater samples.

Remember that field logs and some forms are considered to be legal documents. All field logs and forms should therefore be filled out in indelible ink.

It may be necessary to field filter some parameters (e.g., metals) prior to collection, depending on preservation, analytical method, and project quality objectives.

Check monitoring well logs for use of bentonite pellets. Make note of potential use of bentonite pellets on the groundwater sampling log. Coated bentonite pellets have been found to contaminate monitoring wells with elevated levels of acetone.

Store and/or stage empty and full sample containers and coolers out of direct sunlight.

To mitigate potential cross-contamination, groundwater samples are to be collected in a pre-determined order from least impacted to more impacted based on previous analytical data. If no analytical data are available, samples are to be collected in the following order:

- 1. First sample the upgradient well(s).
- Next, sample the well located furthest downgradient of the interpreted or known source.
- The remaining wells should be progressively sampled in order from downgradient to upgradient, such that the wells closest to the interpreted or known source are sampled last.

Be careful not to over-tighten lids with Teflon liners or septa (e.g., 40 mL vials). Overtightening can impair the integrity of the seal.

V. Health and Safety Considerations

If thunder or lighting is present, discontinue sampling until 30 minutes have passed after the last occurrence of thunder or lighting.

VI. Procedure

The procedures to sample monitoring wells will be as follows:

- 1. Don safety equipment, as required in the HASP. Depending on site-specific security and safety considerations, this often must be done prior to entering the work area.
- 2. Review equipment list (Section III above) to confirm that the appropriate equipment has been acquired.
- 3. Record site and monitoring well identification on the groundwater sampling log, along with date, arrival time, and weather conditions. Also identify the personnel present, equipment utilized, and other relevant data requested on the log.
- 4. Label all sample containers with indelible ink.
- 5. Place plastic sheeting adjacent to the well for use as a clean work area, if conditions allow. Otherwise, prevent sampling equipment from contacting the ground or other surface that could compromise sample integrity.
- 6. Remove lock from well and if rusted or broken, replace with a new brass keyedalike lock.
- 7. Unlock and open the well cover while standing upwind of the well. Remove well cap and place on the plastic sheeting.
- 8. Set the sampling device, meters, and other sampling equipment on the plastic sheeting. If a dedicated sampling device stored in the well is to be used, this may also be set temporarily on the plastic sheeting, for convenience. However, if a dedicated sampling device is stored below the water table, removing it may compromise water-level data, so water level measurements should be taken prior to removing the device.
- 9. Obtain a water-level depth and bottom-of-well depth using an electric well probe and record on the groundwater sampling log using indelible ink. Clean the probe(s) after each use in accord with the FSP or the equipment

6

decontamination SOP.

Note: Water levels may be measured at all wells prior to initiating any sampling activities, depending on FSP requirements.

- Calculate the number of gallons of water in the well using the length of water column (in feet). Record the well volume on the groundwater sampling log using indelible ink.
- 11. Remove the required purge volume of water from the well (measure purge water volume in measuring buckets). The required purge volume will be three to five well volumes (the water column in the well screen and casing) unless the well runs dry, in which case, the water that comes into the well will be sampled (USEPA, 1996). In any case, the pumping rate will be decreased during sampling to limit the potential for volatilization of organics potentially present in the groundwater.
- 12. Field parameter measurements will be periodically collected in accord with FSP specifications. The typical time intervals of field parameter measurement are (1) after each well volume removed, and (2) before sampling. If the field parameters are being measured above-ground (rather than with a downhole probe), then the final pre-sampling parameter measurement should be collected at the reduced flow rate to be used during sampling. The physical appearance of the purged water should be noted on the groundwater sampling log. In addition, water level measurements should be collected and recorded to verify that the well purging is in accord with the guidelines set forth in the previous step.
- 13. Unless otherwise specified by the applicable regulatory agencies, all purge water will be contained. Contained purge water will be managed in accordance with the FSP or Work Plan. If historical concentrations in the well are less than federal or state regulated concentrations appropriate for current land use, *and permission has been granted by the oversight regulatory agency* to dispose of clean purge water on the ground next to the well(s), then purge water will be allowed to infiltrate into the ground surface downgradient from the monitoring well after the well is sampled.
- 14. After the appropriate purge volume of groundwater in the well has been removed, or if the well has been bailed dry and allowed to recover, obtain the groundwater sample needed for analysis with the dedicated bailer or from the dedicated sampling tubing, pour the groundwater directly from the sampling device into the appropriate container in the order of volatilization sensitivity of

g:\sop-library\reformatted sops 2008\groundwater - surface water sops\1833199 - standard gw sampling for monitoring wells r1.doc

the parameters sampled, and tightly screw on the cap (snug, but not too tight). The suggested order for sample parameter collection, based on volatilization sensitivity, is presented below:

- a. volatile organic compounds (VOCs);
- b. semi-volatile organic compounds (SVOCs);
- c. polychlorinated biphenyls (PCBs)/pesticides;
- d. metals; and
- e. wet chemistry.
- 15. When sampling for volatiles, water samples will be collected directly from the bailer or dedicated tubing into 40 mL vials with Teflon-lined septa.
- 16. For other analytical samples, sample containers for each analyte type should be filled in the order specified by the FSP. If a bailer is used, then the sample for dissolved metals and/or filtered PCBs should either be placed directly from the bailer into a pressure filter apparatus or pumped directly from the bailer with a peristaltic pump, through an in-line filter, into the pre-preserved sample bottle. If dedicated sample tubing is used, then the filter should be installed in-line just prior to filtered sample collection.
- 17. If sampling for total and filtered metals and/or PCBs, a filtered and unfiltered sample will be collected. Sample filtration for the filtered sample will be performed in the field utilizing a pump prior to preservation. Attach (clamp) a new 1.0-, 0.45-, or 0.1-micron filter to the discharge tubing of the pump (note the filter flow direction). Turn the pump on and allow 100 mL (or manufacturer recommended amount) of fluid through the filter before sample collection. Dispense the filtered liquid directly into the laboratory sample bottles. If bailers are used for purging and sampling, a proper volume of purge water will be placed in a disposable or decontaminated polyethylene container and pumped through the filter and into the sample container using a peristaltic pump.
- 18. Place the custody seal around the cap and the sampler container, if required. Note the time on the sample label. Secure with packing material and maintain at approximately 4°C on wet ice contained in double Ziploc-type freezer bags during storage in an insulated, durable transport container.
- 19. Replace the well cap and lock well, or install a new lock if needed.

- 20. Record the time sampling procedures were completed on the appropriate field logs (using indelible ink).
- 21. Complete the procedures for chain-of-custody, handling, packing, and shipping. Chain-of-custody forms should be filled out and checked against the labels on the sample containers progressively after each sample is collected.
- 22. Place all disposable sampling materials (such as plastic sheeting, disposable tubing or bailers, and health and safety equipment) in appropriate containers.
- 23. If new locks were installed, forward copies of the keys to the client Project Manager (PM) and ARCADIS PM at the end of the sampling activities.

VII. Waste Management

Purge water will be managed as specified in the FSP or Work Plan, and according to state and/or federal requirements. Personal protective equipment (PPE) and decontaminated fluids will be contained separately and staged at the sampling location. Containers must be labeled at the time of collection. Labels will include date, location(s), site name, city, state, and description of matrix contained (e.g., soil, groundwater, PPE). General guidelines for IDW management are set forth in a separate IDW management SOP.

VIII. Data Recording and Management

Initial field logs and chain-of-custody records will be transmitted to the ARCADIS PM at the end of each day unless otherwise directed by the PM. The groundwater team leader retains copies of the groundwater sampling logs. All field data should be recorded in indelible ink.

IX. Quality Assurance

Field-derived quality assurance blanks will be collected as specified in the FSP, depending on the project quality objectives. Typically, field rinse blanks will be collected when non-dedicated equipment is used during groundwater sampling. Field rinse blanks will be used to confirm that decontamination procedures are sufficient and samples are representative of site conditions. Trip blanks for VOCs, which aid in the detection of contaminates from other media, sources, or the container itself, will be kept with the coolers and the sample containers throughout the sampling activities.

Χ. References

USEPA. 1986. RCRA Groundwater Monitoring Technical Enforcement Guidance Document (September 1986).

USEPA. 1991. Handbook Groundwater, Volume ii Methodology, Office of Research and Development, Washington, DC. USEPN62S, /6-90/016b (July, 1991).

U.S. Geological Survey (USGS). 1977. National Handbook of Recommended Methods for Water-Data Acquisition: USGS Office of Water Data Coordination. Reston, Virginia.

Imagine the result

Field Equipment Decontamination

Rev. #: 3

Rev Date: April 26, 2010

2

Approval Signatures

Date: 4/26/2010

Keith Shepherd

Reviewed by:

Prepared by:

Richard Murphy (Technical Expert)

Date: 4/26/2010

I. Scope and Application

Equipment decontamination is performed to ensure that sampling equipment that contacts a sample, or monitoring equipment that is brought into contact with environmental media to be sampled, is free from analytes of interest and/or constituents that would interfere with laboratory analysis for analytes of interest. Equipment must be cleaned prior to use for sampling or contact with environmental media to be sampled, and prior to shipment or storage. The effectiveness of the decontamination procedure should be verified by collecting and analyzing equipment blank samples.

The equipment cleaning procedures described herein includes pre-field, in the field, and post-field cleaning of sampling tools which will be conducted at an established equipment decontamination area (EDA) on site (as appropriate). Equipment that may require decontamination at a given site includes: soil sampling tools; groundwater, sediment, and surface-water sampling devices; water testing instruments; down-hole instruments; and other activity-specific sampling equipment. Non-disposable equipment will be cleaned before collecting each sample, between sampling events, and prior to leaving the site. Cleaning procedures for sampling equipment will be monitored by collecting equipment blank samples as specified in the applicable work plan or field sampling plan. Dedicated and/or disposable (not to be re-used) sampling equipment will not require decontamination.

II. Personnel Qualifications

ARCADIS field sampling personnel will have current health and safety training, including 40-hour HAZWOPER training, site supervisor training, and site-specific training, as needed. In addition, ARCADIS field sampling personnel will be versed in the relevant SOPs and possess the skills and experience necessary to successfully complete the desired fieldwork. The project HASP and other documents will identify any other training requirements such as site specific safety training or access control requirements.

III. Equipment List

- health and safety equipment, as required in the site Health and Safety Plan (HASP)
- distilled water

- Non-phosphate detergent such as Alconox or, if sampling for phosphorus phosphorus-containing compounds, Luminox (or equivalent).
- tap water
- rinsate collection plastic containers
- DOT-approved waste shipping container(s), as specified in the work plan or field sampling plan (if decontamination waste is to be shipped for disposal)
- brushes
- large heavy-duty garbage bags
- spray bottles
- (Optional) Isoprophyl alcohol (free of ketones) or methanol
- Ziploc-type bags
- plastic sheeting

IV. Cautions

Rinse equipment thoroughly and allow the equipment to dry before re-use or storage to prevent introducing solvent into sample medium. If manual drying of equipment is required, use clean lint-free material to wipe the equipment dry.

Store decontaminated equipment in a clean, dry environment. Do not store near combustion engine exhausts.

If equipment is damaged to the extent that decontamination is uncertain due to cracks or dents, the equipment should not be used and should be discarded or submitted for repair prior to use for sample collection.

A proper shipping determination will be performed by a DOT-trained individual for cleaning materials shipped by ARCADIS.

V. Health and Safety Considerations

Review the material safety data sheets (MSDS) for the cleaning materials used in decontamination. If solvent is used during decontamination, work in a well-ventilated area and stand upwind while applying solvent to equipment. Apply solvent in a manner that minimizes potential for exposure to workers. Follow health and safety procedures outlined in the HASP.

VI. Procedure

A designated area will be established to clean sampling equipment in the field prior to sample collection. Equipment cleaning areas will be set up within or adjacent to the specific work area, but not at a location exposed to combustion engine exhaust. Detergent solutions will be prepared in clean containers for use in equipment decontamination.

Cleaning Sampling Equipment

- 1. Wash the equipment/pump with potable water.
- 2. Wash with detergent solution (Alconox, Liquinox or equivalent) to remove all visible particulate matter and any residual oils or grease.
- 3. If equipment is very dirty, precleaning with a brush and tap water may be necessary.
- 4. (Optional) Flush with isopropyl alcohol (free of ketones) or with methanol. This step is optional but should be considered when sampling in highly impacted media such as non-aqueous phase liquids or if equipment blanks from previous sampling events showed the potential for cross contamination of organics.
- 5. Rinse with distilled/deionized water.

Decontaminating Submersible Pumps

Submersible pumps may be used during well development, groundwater sampling, or other investigative activities. The pumps will be cleaned and flushed before and between uses. This cleaning process will consist of an external detergent solution wash and tap water rinse, a flush of detergent solution through the pump, followed

by a flush of potable water through the pump. Flushing will be accomplished by using an appropriate container filled with detergent solution and another contained filled with potable water. The pump will run long enough to effectively flush the pump housing and hose (unless new, disposable hose is used). Caution should be exercised to avoid contact with the pump casing and water in the container while the pump is running (do not use metal drums or garbage cans) to avoid electric shock. Disconnect the pump from the power source before handling. The pump and hose should be placed on or in clean polyethylene sheeting to avoid contact with the ground surface.

VII. Waste Management

Equipment decontamination rinsate will be managed in conjunction with all other waste produced during the field sampling effort. Waste management procedures are outlined in the work plan or Waste Management Plan (WMP).

VIII. Data Recording and Management

Equipment cleaning and decontamination will be noted in the field notebook. Information will include the type of equipment cleaned, the decontamination location and any deviations from this SOP. Specific factors that should be noted include solvent used (if any), and source of water.

Any unusual field conditions should be noted if there is potential to impact the efficiency of the decontamination or subsequent sample collection.

An inventory of the solvents brought on site and used and removed from the site will be maintained in the files. Records will be maintained for any solvents used in decontamination, including lot number and expiration date.

Containers with decontamination fluids will be labeled.

IX. Quality Assurance

Equipment blanks should be collected to verify that the decontamination procedures are effective in minimizing potential for cross contamination. The equipment blank is prepared by pouring deionized water over the clean and dry tools and collecting the deionized water into appropriate sample containers. Equipment blanks should be analyzed for the same set of parameters that are performed on the field samples collected with the equipment that was cleaned. Equipment blanks are collected per equipment set, which represents all of the tools needed to collect a specific sample.

X. References

- USEPA Region 9, Field Sampling Guidance #1230, Sampling Equipment Decontamination.
- USEPA Region 1, Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells.

Imagine the result

Investigation-Derived Waste Handling and Storage

Rev. #: 2

Rev Date: March 6, 2009

SOP: Investigation-Derived Waste Handling and Storage 1 Rev. #: 2 | Rev Date: March 6, 2009

Approval Signatures

Johnew Kanik Date: _____ Prepared by: <u>3/6/09</u> Reviewed by: Date: 3/6/09 (Tecinical Expert)

I. Scope and Application

The objective of this Standard Operating Procedure (SOP) is to describe the procedures to manage investigation-derived wastes (IDW), both hazardous and nonhazardous, generated during site activities, which may include, but are not limited to drilling, trenching/excavation, construction, demolition, monitoring well sampling, soil sampling, decontamination and remediation. Please note that this SOP is intended for materials that have been deemed a solid waste as defined by 40 CFR § 261.2 (which may includes liquids, solids, and sludges). In some cases, field determinations will be made based on field screening or previous data that materials are not considered a solid waste. IDW may include soil, groundwater, drilling fluids, decontamination liquids, personal protective equipment (PPE), sorbent materials, construction and demolition debris, and disposable sampling materials that may have come in contact with potentially impacted materials. IDW will be collected and staged at the point of generation. Quantities small enough to be containerized in 55-gallon drums will be taken to a designated temporary storage area (discussed in further detail under Drum Storage) onsite pending characterization and disposal. Waste materials will be analyzed for constituents of concern to evaluate proper disposal methods. PPE and disposable sampling equipment will be placed in DOT-approved drums prior to disposal and typically does not require laboratory analysis. This SOP describes the necessary equipment, field procedures, materials, regulatory references, and documentation procedures necessary for proper handling and storage of IDW up to the time it is properly disposed. The procedures for handling IDW are based on the United States Environmental Protection Agency's Guide to Management of Investigation Derived Wastes (USEPA, 1992). IDW is assumed to be contaminated with the site constituents of concern (COCs) until analytical evidence indicates otherwise. IDW will be managed to ensure the protection of human health and the environment and will comply with all applicable or relevant and appropriate requirements (ARAR). The following Laws and Regulations on Hazardous Waste Management are potential ARAR for this site.

State Laws and Regulations

 To Be Determined Based on Location of Site and Location of Treatment, Storage, and/or Disposal Facility (TSDF) to be utilized

Federal Laws and Regulations

- Resource Conservation and Recovery Act (RCRA) 42 USC § 6901-6987
- Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) 42 USC § 9601-9675

3

- Superfund Amendments and Reauthorization Act (SARA)
- Department of Transportation (DOT) Hazardous Materials Transportation

Pending characterization, IDW will be stored appropriately within each area of contamination (AOC). Under RCRA, "storage" is defined as the holding of hazardous waste for a temporary period, at the end of which the hazardous waste is treated, disposed of, or stored elsewhere" (40 CFR § 260.10). The onsite waste staging area will be in a secure and controlled area. Waste characterization can either be based on generator knowledge, such as using materials safety data sheets (MSDS'), or can be based upon analytical results. The laboratory used for waste characterization analysis must have the appropriate state and federal certifications and be approved by ARCADIS and Client. IDW will be classified as RCRA hazardous or non-regulated under RCRA based on the waste characterization.

If IDW is characterized as RCRA hazardous waste, RCRA and DOT requirements must be followed for packaging, labeling, transporting, storing, and record keeping as described in 40 CFR § 262 and 49 CFR § 171-178. Wastes judged to potentially meet the criteria for hazardous wastes shall be stored in DOT approved packaging. Waste material classified as RCRA non-hazardous may be handled and disposed of as an industrial waste.

Liquid wastes judged to potentially meet the criteria for hazardous wastes shall be stored in DOT approved 55 gallon drums or other approved containers that are compatible with the type of material stored therein. Solid materials deemed to potentially meet hazardous criteria will be drummed where practicable. Large quantities of potentially hazardous solid materials must be containerized (such as in a roll-off box) for up to a maximum of 90 or 180 days as described in the Excavated Solids Section. Waste material classified as non-hazardous may be handled and disposed of as an industrial waste and is not subject to the 90-day or 180-day on-site storage limitation.

This is a standard (i.e., typically applicable) operating procedure which may be varied or changed as required, dependent upon site conditions, equipment limitations, or limitations imposed by the procedure. The ultimate procedure employed will be documented in the project work plans or reports. If changes to the sampling procedures are required due to unanticipated field conditions, the changes will be discussed with the Project Manager and Client as soon as practicable and documented in the report.

4

II. Personnel Qualifications

ARCADIS field sampling personnel will have current health and safety training including 40-hour HAZWOPER training, site supervisor training, site-specific training, first aid, and CPR, as needed. ARCADIS personnel may sign manifests on a case-to-case basis for clients, provided the appropriate agreement is in place between ARCADIS and the client documenting that ARCADIS is not the generator, but is acting as authorized representative for the generator. ARCADIS personnel who sign hazardous waste manifests will have the current DOT hazardous materials transportation training according to 49 CFR § 172.704. ARCADIS field personnel will also comply with client-specific training such as LPS. In addition, ARCADIS field sampling personnel will be versed in the relevant SOPs and posses the required skills and experience necessary to successfully complete the desired field work.

III. Equipment List

The following materials, as required, shall be available for IDW handling and storage:

Appropriate personal protective equipment as specified in the Site Health and Safety Plan

- 55-gallon steel drums, DOT 1A2 or equivalent
- ³/₄ -inch socket wrench
- Hammer
- Leather gloves
- Drum dolly
- Appropriate drum labels (outdoor waterproof self adhesive)
- Polyethylene storage tank
- Appropriate labeling, packing, chain-of-custody forms, and shipping materials as specified in the *Chain-of-Custody* SOP and *Field Sampling Handling, Packing, and Shipping* SOP.
- Indelible ink and/or permanent marking pens
- Plastic sheeting

g:\sop-library/reformatted sops 2008\general sops\3136199-investigation-derived waste handling and storage.doc

- Appropriate sample containers, labels, and forms
- Stainless-steel bucket auger
- Stainless steel spatula or knife
- Stainless steel hand spade
- Stainless steel scoop
- Digital camera
- Field logbook.

IV. Cautions

- Filled drums can be very heavy, always use appropriate moving techniques and equipment.
- Similar media will be stored in the same drums to aid in sample analysis and disposal.
- Drum lids must be secured to prevent rainwater from entering the drums.
- Drums containing solid material may not contain any free liquids.
- Waste containers stored for extended periods of time may be subject to deterioration. Drum over packs may be used as secondary containment.
- All drums must be in good condition to prevent potential leakage and facilitate subsequent disposal. Inspect the drums for dents and rust, and verify the drum has a secure lid prior to use.

V. Health and Safety Considerations

- Appropriate personal protective equipment must be worn by all field personnel within the designated work area.
- Air monitoring may be required during certain field activities as required in the Site Health and Safety Plan.

6

- If excavating in potentially hazardous areas is possible, contingency plans should be developed to address the potential for encountering gross contamination or non-aqueous phase liquids.
- ARCADIS field personnel will be familiar and compliant with Client-specific health and safety requirements such as Chevron's hand safety policy including the prohibition of fixed and/or folding blade knives.

VI. Procedure

Waste storage and handling procedures to be used depend upon the type of generated waste. For this reason, IDW should be stored in a secure location onsite in separate 55-gallon storage drums, solids can be stockpiled onsite (if non-hazardous), and purge water may be stored in polyethylene tanks. Waste materials such as broken sample bottles or equipment containers and wrappings will be stored in 55-gallon drums unless they were not in contact with sample media.

Management of IDW

Minimization of IDW should be considered by the Project Manager during all phases of the project. Site managers may want to consider techniques such as replacing solventbased cleaners with aqueous-based cleaners for decontamination of equipment, reuse of equipment (where it can be decontaminated), limitation of traffic between exclusion and support zones, and drilling methods and sampling techniques that generate little waste. Alternative drilling and subsurface sampling methods may include the use of small diameter boreholes, as well as borehole testing methods such as a core penetrometer or direct push technique instead of coring (EPA, 1993).

Drum Storage

Drums containing hazardous waste shall be stored in accordance with the requirements of 40 CFR 265 Subpart I (for containers) and 265 Subpart DD (for containment buildings). All 55-gallon drums will be stored at a secure, centralized onsite location that is readily accessible for vehicular pick-up. Drums confirmed as, or believed to contain hazardous waste will be stored over an impervious surface provided with secondary containment. The storage location will, for drums containing liquid, have a containment system that can contain at least the larger of 10% of the aggregate volume of staged materials or 100% of the volume of the largest container. Drums will be closed during storage and be in good condition in accordance with the Guide to Management of Investigation-Derived Wastes (USEPA, 1992).

7

Hazardous Waste Determination

Waste material must be characterized to determine if it meets any of the federal definitions of hazardous waste as required by 40 CFR § 262.11. If the waste does not meet any of the federal definitions, it must then be established if any state-specific hazardous waste criteria exist/apply.

Generator Status

Once hazardous waste determination has been made, the generator status will be determined. Large quantity generators (LQG) are generators who generate more than 1,000 kilograms of hazardous waste in a calendar month. Small quantity generators (SQG) of hazardous waste are generators who generate greater than 100 kilograms but less than 1,000 kilograms of hazardous waste in a calendar month. Conditionally exempt small quantity generators (CESQG) are generators who generate less than 100 kilograms of hazardous waste per month. Please note that a generator status may change from month to month and that a notice of this change is usually required by the generator's state agency.

Accumulation Time for Hazardous Waste

A LQG may accumulate hazardous waste on site for 90 days or less without a permit and without having interim status provided that such accumulation is in compliance with specifications in 40 CFR § 262.34. A SQG may accumulate hazardous waste on site for 180 days or less without a permit or without having interim status subject to the requirements of 40 CFR § 262.34(d). CESQG requirements are found in 40 CFR § 261.5. **NOTE**: The CESQG and SQG provisions of 40 CFR § 261.5, 262.20(e), 262.42(b) and 262.44 may not be recognized by some states (e.g. Rhode Island). **State-specific regulations must be reviewed and understood prior to the generation of hazardous waste.**

Satellite Accumulation of Hazardous Waste

Satellite accumulation (SAA) shall mean the accumulation of as much as fifty-five (55) gallons of hazardous waste, or the accumulation of as much as one quart of acutely hazardous waste, in containers at or near any point of generation where the waste initially accumulates, which is under the control of the operator of the process generating the waste, without a permit or interim status and without complying with the requirements of 40 CFR § 262.34(a) and without any storage time limit, provided that the generator complies with 40 CFR § 262.34(c)(1)(i).

Once more than 55 gallons of hazardous waste accumulates in SAA, the generator has three days to move this waste into storage.

Storage recommendations for hazardous waste include:

- Ignitable Hazardous wastes must be >50 feet from the property line per 40 CFR § 265.176 (LQG generators only).
- Hazardous waste must be stored on a concrete slab (asphalt is acceptable if there are no free liquids in the waste) per 40 CFR § 265.176.
- Drainage must be directed away from the accumulation area.
- Area must be properly vented.
- Area must be secure.

Drum/Container Labeling

Drums will be labeled on both the side and lid of the drum using a permanent marking pen. Old drum labels must be removed to the extent possible, descriptions crossed out should any information remain, and new labels affixed on top of the old labels. Other containers used to store various types of waste (polyethylene tanks, roll-off boxes, end-dump trailers, etc.) will be labeled with an appropriate "Waste Container" or "Testing in Progress" label pending characterization. Drums and containers will be labeled as follows:

- Appropriate waste characterization label (Testing In Progress, Hazardous, or Non-Hazardous)
- Waste generator's name (e.g., client name)
- Project name
- Name and telephone number of ARCADIS project manager
- Composition of contents (e.g., used oil, acetone 40%, toluene 60%)
- Media (e.g., solid, liquid)
- Accumulation start date

 Drum number of total drums as reconciled with the Drum Inventory maintained in the field log book.

IDW containers will remain closed except when adding or removing waste. Immediately upon beginning to place waste into the drum/container, a "Waste Container" or "Testing in Progress" label will be filled out to include the information specified above, and affixed to the container. Once the contents of the container are identified as either non-hazardous or hazardous, the following additional labels will be applied. Containers with waste determined to be non-hazardous will be labeled with a green and white "Non-Hazardous Waste" label over the "Waste Container" label. Containers with waste determined to be hazardous will be stored in an onsite storage area and will be labeled with the "Hazardous Waste" label and affixed over the "Waste Container" label. The ACCUMULATION DATE for the hazardous waste is the date the waste is first placed in the container and is the same date as the date on the "Waste Container" label. DOT hazardous class labels must be applied to all hazardous waste containers for shipment offsite to an approved disposal or recycling facility. In addition a DOT proper shipping name shall be included on the hazardous waste label. The transporter should be equipped with the appropriate DOT placards. However, placarding or offering placards to the initial transporter is the responsibility of the generator per 40 CFR § 262.33.

Inspections and Documentation

All IDW will be documented as generated on a Drum Inventory Log maintained in the field log book. The Drum Inventory will record the generation date, type, quantity, matrix and origin (e.g. Boring-1, Test Pit 3, etc) of materials in every drum, as well as a unique identification number for each drum. The drum inventory will be used during drum pickup to assist with labeling of drums. The drum storage area and any other areas of temporarily staged waste, such as soil/debris piles, will be inspected weekly. The weekly inspections will be recorded in the field notebook or on a Weekly Inspection Log. Digital photographs will be taken upon the initial generation and drumming/staging of waste, and final labeling after characterization to document compliance with labeling and storage protocols, and condition of the container. Evidence of damage, tampering or other discrepancy should be documented photographically.

Emergency Response and Notifications

Specific procedures for responding to site emergencies will be detailed in the HASP. If the generator is designated as a LQG, a Contingency Plan will need to be prepared to include emergency response and notification procedures per 40 CFR § 265 Subpart D. In the event of a fire, explosion, or other release which could threaten human health

9

outside of the site or when Client or ARCADIS has knowledge of a spill that has reached surface water, Client or ARCADIS must immediately notify the National Response Center (800-424-8802) in accordance with 40 CFR § 262.34. Other notifications to state agencies may also be necessary.

Drilling Soil Cuttings and Muds

Soil cuttings are solid to semi-solid soils generated during trenching activities, subsurface soil sampling, or installation of monitoring wells. Depending on the drilling method, drilling fluids known as "muds" may be used to remove soil cuttings. Drilling fluids flushed from the borehole must be directed into a settling section of a mud pit. This allows reuse of the decanted fluids after removal of the settled sediments. Soil cuttings will be labeled and stored in 55-gallon drums with bolt-sealed lids.

Excavated Solids

Excavated solids may include, but are not limited to soil, fill and construction and demolition debris. Excavated solids may be temporarily stockpiled onsite as long as the material is a RCRA non-hazardous waste and the solids will be treated onsite pursuant to a certified, authorized, or permitted treatment method, or properly disposed off-site. Stockpiled materials characterized as hazardous must be immediately containerized and removed from the site within 90 days of generation (except for soils using satellite accumulation). Excavated solids should be stockpiled and maintained in a secure area onsite. At a minimum, the floor of the stockpile area will be covered with a 20-mil high density polyethylene liner that is supported by a foundation or at least a 60-mil high density polyethylene liner that is not supported by a foundation. The excavated material will not contain free liquids. The owner/operator will provide controls for windblown dispersion, run-on control, and precipitation runoff. The run-on control system will prevent flow onto the active portion of the pile during peak discharge from at least a 25-year storm and the run-off management system will collect and control at least the water volume resulting from a 24-hour, 25-year storm (EPA, 1992). Additionally, the stockpile area will be inspected on a weekly basis and after storm events. Individual states may require that the stockpile be inspected/certified by a licensed professional engineer. Stockpiled material will be covered with a 6-mil polyvinyl chloride (PVC) liner. The stockpile cover will be secured in place with appropriate material (concrete blocks, weights, etc.) to prevent the movement of the cover. Excavated solids may also be placed in roll off containers and covered with a 6-mil PVC liner pending results for waste characterization.

SOP: Investigation-Derived Waste Handling and Storage 11 Rev. #: 2 | Rev Date: March 6, 2009

Decontamination Solutions

Decontamination solutions are generated during the decontamination of personal protective equipment and sampling equipment. Decontamination solutions may range from detergents, organic solvents and acids used to decontaminate small field sampling equipment to steam cleaning rinsate used to wash heavy field equipment. These solutions are to be labeled and stored in 55-gallon drums with bolt-sealed lids.

Disposable Equipment

Disposable equipment includes personal protective equipment (tyvek coveralls, gloves, booties and APR cartridges) and disposable sampling equipment such as trowels or disposable bailers. If the media sampled exhibits hazardous characteristics per results of waste characterization sampling, disposable equipment will also be disposed of as a hazardous waste. These materials will be stored onsite in labeled 55-gallon drums pending analytical results for waste characterization.

Purge Water

Purge water includes groundwater generated during well development, groundwater sampling, or aquifer testing. The volume of groundwater generated will dictate the appropriate storage procedure. Monitoring well development and groundwater sampling may generate three well volumes of groundwater or more. This volume will be stored in labeled 55-gallon drums. Aquifer tests may generate significantly greater volumes of groundwater depending on the well yield and the duration of the test. Therefore, large-volume portable polyethylene tanks will be considered for temporary storage pending groundwater-waste characterization.

Purged Water Storage Tank Decontamination and Removal

The following procedures will be used for inspection, cleaning, and offsite removal of storage tanks used for temporary storage of purge water. These procedures are intended to be used for rented portable tanks such as Baker Tanks or Rain for Rent containers. Storage tanks will be made of inert polyethylene materials.

The major steps for preparing a rented tank for return to a vendor include characterizing the purge water, disposing of the purge water, decontaminating the tank, final tank inspection, and mobilization. Decontamination and inspection procedures are describe in further detail below.

 Tank Cleaning: Most vendors require that tanks be free of any sediment and water before returning, a professional cleaning service may be required. Each

specific vendor should be consulted concerning specific requirements for returning tanks.

 Tank Inspection: After emptying the tank, purged water storage tanks should be inspected for debris, chemical staining, and physical damage. The vendors require that tanks be returned in the original condition (i.e., free of sediment, staining and no physical damage).

VII. Waste Characterization Sampling and Shipping

Soil/Solids Characterization

Waste characterization will be conducted in accordance with waste hauler, waste handling facility, and state/federal requirements. In general, RCRA hazardous wastes are those solid wastes determined by a Toxicity Characteristic Leaching Procedure (TCLP) test or to contain levels of certain toxic metals, pesticides, or other organic chemicals above specific federally regulated thresholds. If the one or more of 40 toxic compounds listed in Table I of 40 CFR § 261.24 are detected in the sample at levels above the maximum unregulated concentrations, the waste must be characterized as a toxic hazardous waste. Wastes can also be considered "listed" hazardous waste depending on site-specific processes.

Composite soil samples will be collected at a frequency of one sample per 10 cubic yard basis for stockpiled soil or one per 55-gallon drum for containerized. A four point composite sample will be collected per 10 cubic yards of stockpiled material and for each drum. Sample and composite frequencies may be adjusted in accordance with the waste handling facility's requirements. Waste characterization samples may be analyzed for the TCLP volatile organic compounds (VOCs), TCLP semi-volatile organic compounds (SVOCs), TCLP RCRA metals, and polychlorinated biphenyls, as well as corrosivity (pH), reactivity and flammability (flashpoint). Additional samples may be collected and analyzed by the laboratory on a contingency basis.

Wastewater Characterization

Waste characterization will be conducted in accordance with the requirements of the waste hauler, waste handling facility, and state/federal governments. In general, purge water should be analyzed by methods appropriate for the known contaminants, if any, that have been historically detected in the monitoring wells. Samples will be collected and analyzed in accordance with the requirements of the waste disposal facility.

Wastewater characterization samples may be analyzed for TCLP volatile organic compounds (VOCs), TCLP semi-volatile organic compounds (SVOCs), TCLP RCRA

metals, and polychlorinated biphenyls, as well as corrosivity (pH), reactivity and flammability (flashpoint). Additional samples may be collected and analyzed by the laboratory on a contingency basis.

Sample Handling and Shipping

All samples will be appropriately labeled, packed, and shipped, and the chain-ofcustody will be filled out in accordance with the Chain-of-Custody SOP and Field Sampling Handling, Packing, and Shipping SOP and Hazardous Materials Packaging and Shipping SOP.

It should be noted that additional training is required for packaging and shipping of hazardous and/or dangerous materials. Please reference the following ARCADIS intranet team page for more information: http://team/sites/hazmat/default.aspx.

Preparing Waste Shipment Documentation (Hazardous and Non-Hazardous)

Waste profiles will be prepared by the ARCADIS PM and forwarded, along with laboratory analytical data to the Client PM for approval/signature. The Client PM will then return the profile to ARCADIS who will then forward to the waste removal contractor for preparation of a manifest. The manifest will be reviewed by ARCADIS prior to forwarding to the Client PM for approval. Upon approval of the manifest, the Client PM will return the original signed manifest directly to the waste contractor or to the ARCADIS PM for forwarding to the waste contractor.

Final drum labeling and pickup will be supervised by an ARCADIS representative who is experienced with waste labeling procedures. The ARCADIS representative will have a copy of the drum inventory maintained in the field book and will reconcile the drum inventory with the profile numbers on the labels and on the manifest. Different profile numbers will be generated for different matrices or materials in the drums. For example, the profile number for drill cuttings will be different than the profile number for purge water. When there are multiple profiles it is critical that the proper label, with the profile number appropriate to a specific material be affixed to the proper drums. A copy of the ARCADIS drum inventory will be provided to the waste transporter during drum pickup and to the facility receiving the waste.

VIII. Data Recording and Management

Waste characterization sample handling, packing, and shipping procedures will be documented in accordance with the *Quality Assurance Project Plan*, if one exists. Copies of the chains-of-custody forms will be maintained in the project file.

Following waste characterization, IDW containers will be re-labeled with the appropriate waste hazardous or non-hazardous waste labels and the client will initiate disposal at the appropriate waste disposal facility.

IX. Quality Assurance

The chain-of-custody and sample labels for waste characterization samples will be filled out in accordance with the *Quality Assurance Project Plan*.

X. References

United States Environmental Protection Agency (USEPA). 1992. Guide to Management of Investigation-Derived Wastes. Office of Remedial and Emergency Response. Hazardous Site Control Division. January 1992.

USEPA. 1991. *Guide to Discharging CERCLA Aqueous Wastes to Publicly Owned Treatment Works (POTWs)*. Office of Remedial and Emergency Response. Hazardous Site Control Division 0S-220W. March 1991.

Appendix **D**

Soil Boring and Monitoring Well Installation Logs

Dril Dril Dril San	ling (ler's ling l nplin	rt/Fini Compa Name Methoo g Meth a: HA/H	any: (: d: HA nod:	Casca /HSA	de	10		Northing: Easting: Casing Elevation: Borehole Depth: 12' Surface Elevation: Descriptions By: Colleen Martin	Well/Boring ID: MW-6R Client: BP Location: BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Well/Boring Construction
-95	-5-	 MW-6R- 2-2.5 MW-6R- 4-4.5		100 100 100	1.5 43.8 0.2			ravel packed soil surface. rown SILT with clay and trace sand, no odor. /et at 3' bgs. rown SILT with wood debris, moderate hydrocarbon-like odor, wet et WOOD.	Public ap. Concrete. 2" PVC riser.
	Infra	2 A	ire, env	ironme	ent, bui			ring terminated at 12' bgs. Remarks: bgs: below ground surface HSA: Hollow Stem Auger HA: Hand Auger OMMON\LogPlot Shared Files\LogPlot 7	Page: 1 of 1

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:MW-6R

Dri Dri Dri Sar	lling ller's lling l nplin	art/Fin Comp Name Metho Ig Meti e: HA/	any: : d: HA hod:	Casca VHSA	de	010		Easting: Casing Elevation: Borehole Depth: 13' Surface Elevation:		g ID: MW-7 BP Olympia Bulk Terminal 1117 West Bay Drive Olympia, Washington			
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction			
	9 0 MW-7- 2-2.5			2.5 100	5 100	5 100	100	1.7			Gravel packed soil surface. Brown sandy SILT, trace fine subrounded and subangular gravel, f accasional organics, no odor or staining.	ne sand, dry,	Flushmount well lid. Well cap. Concrete. 2" PVC riser. Bentonite.
- 5	-5-	MW-7- 4-4.5	4-4.5	100	0.4								
	-	MW-7- 6-6.5	6-6.5	100	1.4					HEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	rown silty SAND, trace gravel, fine to medium sand, subrounded f creasing silts, moist, no odor or staining.	ne gravel,	2/12 silica sand pack.
	-			100	0.3	SM	H H H H H H H H H H H H H H H H H H H			0.010 slot PVC screen.			
- 10	-10 -			100	0.2			rown sandy SILT, fine sand, no odor or staining, wet at 11.5' bgs.					
	-			100		ML		pring terminated at 13' bgs.					
		2 A				ilding	5	Remarks: bgs: below ground surface HSA: Hollow Stem Auger HA: Hand Auger					

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:MW-7

Dril Dril Dril San	ling (ler's ling M npling	Compa Name Netho	d: HA nod: I	Cascad /HSA	de	10		Northing: Easting: Casing Elevation: Borehole Depth: 13' Surface Elevation: Descriptions By: Colleen Martin	Easting: Client: BP Casing Elevation: Location: BP Olympia Bulk Terminal Surface Elevation: 1117 West Bay Drive Olympia, Washington Olympia, Washington		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction	
-		MW-8- 2-2.5	2-2.5	100	2.9			avel packed soil surface. ht brown sandy SILT with clay, trace fine subrounded gravel, f casional organics, no odor or staining.	fine sand, moist,	Flushmount well lid. Well cap. Concrete. 2" PVC riser. Bentonite.	
-5	-5 -	MW-8- 4-4.5	4-4.5	100	1.1			own clayey SILT, trace very fine sand, wood debris, moderate or or staining.	plasticity, moist, no		
- 10	-10 -	MW-8- 6-6.5	6-6.5	100		ML	ананананананананананан Нанинананананан	own SILT with clay, trace very fine sand, trace wood debris, ind sticity, moist, no odor or staining.	creasing sand, low	2/12 silica sand pack. 0.010 slot PVC screen.	
-	-			100	-			own sandy SILT with trace gravel, fine sand, fine rounded grav ining, wet at 12' bgs. ring terminated at 13' bgs.	el, no odor or		
			ARC			ilding	15	Remarks: bgs: below ground surface HSA: Hollow Stem Auger HA: Hand Auger			

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7
Data File:MW-8 Date: 11/3/2010 Barb Schnurr

Dril Dril Dril San	ling ler's ling l nplin	nt/Fini Compa Name Metho g Metl a: HA/I	any: (: d: HA hod:	Cascad /HSA	de			Easting: Casing Elevation: Borehole Depth: 13' Surface Elevation:		g ID: MW-9 BP Olympia Bulk Terminal 117 West Bay Drive Dlympia, Washington		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description	Stratigraphic Description			
	-5-	MW-9- 2-2.5 MW-9- 4-4.5	2-2.5	100	1.3	-		avel packed soil surface. ht brown sandy SILT with clay, trace fine rounded gravel, fine s st, no odor or staining.	and, non-plastic,	Flushmount well lid. Well cap. Concrete. Bentonite. 2" PVC riser.		
	1	MW-9- 6-6.5	6-6.5	100	1.9	ML		wn SILT with sand, very fine sand, some wood debris, increasi sticity, moist, no odor or staining.	ng sand, low	2/12 silica sand pack. 0.010 slot PVC screen.		
- 10	-10 -			100	-			at 10' bgs.				
	-			100	-			ng terminated at 13' bgs.				
	Infra	2 A	RC Ire, env	AD	IS ent, bu	ilding	5	emarks: bgs: below ground surface HSA: Hollow Stem Auger HA: Hand Auger				

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7
Data File:MW-9
Date: 11/3/2010 Barb Schnurr

Dril Dril Dril San	ling (ler's ling l nplin	art/Fini Compa Name Metho g Metho g Metho e: HA/h	any: (: d: HA nod:	Cascao /HSA	de			Northing: Easting: Casing Elevation: Borehole Depth: 13' Surface Elevation: Descriptions By: Colleen Martin	Easting: Client: BP Casing Elevation: Location: BP Olympia Borehole Depth: 13' Location: BP Olympia Surface Elevation: 1117 West Olympia, W		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction	
	-5-	MW-10- 2-2.5 MW-10- 4-4.5 MW-10- 6-6.5	4-4.5	100 100 100 100	2.7	ML		Gravel packed soil surface. Light brown SILT with sand and trace gravel, non-plastic, fine sand gravel, no odor or staining. Wet at 4' bgs. Brown SILT with sand, trace clay, low plasticity, very fine sand, no wet. Brown sandy SILT with wood debris (30%), fine sand, wet, no odor	odor or staining,	Flushmount we lid. Well cap. Concrete. Bentonite. 2" PVC riser. 2" PVC riser.	
	-			0		-	<u> </u>	No recovery. Boring terminated at 13' bgs.			
		2 A				ilding	75	Remarks: bgs: below ground surface HSA: Hollow Stem Auger HA: Hand Auger			

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:MW-10

Drill Drill Drill San	ling (ler's ling M npling	rt/Fini Compa Name Metho g Meth g Meth	any: (: d: HA nod: H	Cascac /HSA	le			Surface Elevation: 1117 West E		ID: MW-11 P Olympia Bulk Terminal 117 West Bay Drive Dlympia, Washington
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction
-0	-0							vel packed soil surface.		Flushmount well Iid. Well cap.
-	-							nt brown SILT with sand and gravel, non-plastic, fine sand, me rounded gravel, no odor or staining.	edium to coarse	lid. Well cap. Concrete.
_	1									Bentonite. 2" PVC riser.
		MW-11- 2-2.5	2-2.5	100	2.1					
		MW-11- 4-4.5	4-4.5	100	2.0					
-5	-5-									
		MW-11-	6-6.5	100	1.4	ML		at 6' bgs. wn sandy SILT with trace gravel, fine sand, medium rounded or or staining.	gravel, wet, no	
		6-6.5					11111			
	4						EEEE			2/12 silica sand pack. 0.010 slot PVC
				100						screen.
							E E E E E			
- 10	-10 -			100						
	4							recovery.		
-				0						
								ng terminated at 13' bgs.		
		a A				uilding	<i>75</i>	Remarks: bgs: below ground surface HSA: Hollow Stem Auger HA: Hand Auger		

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:MW-11 Date: 11/3/2010 Barb Schnurr

Dril Dril Dril San	lling (ller's lling l nplin	nt/Fini Compa Name Metho g Meth a: HA/H	any: (: d: HA nod:	Cascac /HSA	le			Northing: Easting: Casing Elevation: Borehole Depth: 13' Surface Elevation: Descriptions By: Colleen Martin	Client: BP Location: E	B ID: MW-12 BP Olympia Bulk Terminal 117 West Bay Drive Olympia, Washington
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction
- 0	-	MW-12- 2-2.5	2-2.5	100	0.4			Gravel packed soil surface. Brown SILT with sand, trace fine subrounded gravel, fine sand, noi to odor or staining.	n-plastic, moist,	Flushmount well lid. Well cap. Concrete. 2" PVC riser. Bentonite.
- 5	-5 -	MW-12- 4-4.5 MW-12- 6-6.5		100	0.6	ML		brown sandy SILT with gravel and wood debris, fine sand, fine rou dor or staining, wet at 6' bgs.	nded gravel, no	
	1 1 1			100		The second s				2/12 silica sand pack. 0.010 slot PVC screen.
- 10	-10 -			100	-					
				100	-			oring terminated at 13' bgs.		
	F Infra	astructu	NRC	AD	IS ent, bu	iilding	15	Remarks: bgs: below ground surface HSA: Hollow Stem Auger HA: Hand Auger		

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7
Data File:MW-12 Date: 11/3/2010 Barb Schnurr

Date Start/Finish: Drilling Company: Driller's Name: Drilling Method: H Sampling Method: Rig Type: HA	Cascade	2010		Northing: Easting: Casing Elevation: Borehole Depth: 6.5' Surface Elevation: Descriptions By: Colleen Martin	11	g ID: GP-1 BP Olympia Bulk Terminal 117 West Bay Drive Dlympia, Washington		
DEPTH ELEVATION Sample Run Number Sample/Int/Type	Recovery % PID Headspace (nnm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction		
GP-1- -5 -5 - -10 -10 - -10 -10 - - - - - - - - - - - - - -	5 0.1 5 0.1	2		vel packed soil surface. y sandy SILT mixed with bark dust and gravel, moist, fine s ning. at 3.5' bgs. wn WOOD debris, trace silt, wet, no odor or staining. ng terminated at 6.5' bgs. emarks: bgs: below ground surface HA: Hand Auger	sand, no odor or	Bentonite backfilled to surface.		

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:GP-1

Dril Dril Dril San	lling (ller's lling I npling	Compa Name Metho	ish: A any: (: d: HA hod: I	Cascad	25, 20 Je	910		Northing: Easting: Casing Elevation: Borehole Depth: 6.5' Surface Elevation: Descriptions By: Colleen Martin	11			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction		
5		GP-2- 2-2.5 GP-2- 4-4.5	2-2.5		9.1 17.5 4.6	ML		Gravel packed soil surface. Brown SILT with sand and wood debris (20%), no odor or staining the source of the sou	ing.	Bentonite backfilled to surface.		
			RC			ilding	5	Remarks: bgs: below ground surface HA: Hand Auger				

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:GP-2

Page: 1 of 1

Sampling Me Rig Type: HA	ne: od: HA ethod:	Cascad	24, 20 le	010		Northing: Easting: Casing Elevation: Borehole Depth: 5' Surface Elevation: Descriptions By: Colleen Martin	1117	g ID: GP-3 BP Olympia Bulk Terminal 1117 West Bay Drive Dlympia, Washington		
DEPTH ELEVATION Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction		
0 0 	5 3- 4-4.5		1.1	ML		el packed soil surface. ge brown sandy SILT, trace gravel, fine sand, subrounded fin sional organics, dry, no odor or staining. n sandy SILT, fine sand, wood debris, moist, no odor or staini g terminated at 5' bgs (refusal).		Bentonite backfilled to surface.		

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7
Data File:GP-3 Date: 11/3/2010 Barb Schnurr

Dril Dril Dril San	lling (ller's lling N	Comp Name Netho g Met	ish: A any: (: d: HA hod:	Cascad	23, 20 de	010		Northing: Easting: Casing Elevation: Borehole Depth: 5' Surface Elevation: Descriptions By: Colleen Martin	Easting: Casing Elevation:Client: BPBorehole Depth: 5' Surface Elevation:Location: B 1	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction
		GP-4- 2-2.5 GP-4- 4-4.5	2-2.5		1.2			Gravel packed soil surface. Brown SILT with clay, trace sand, low plasticity, very fine sand, so noist, no odor or staining. VOOD debris with some silt, trace sand, few cobbles, no odor or rgs. Boring terminated at 5' bgs (refusal).		Bentonite backfilled to surface.
			RC			ldings	5	Remarks: bgs: below ground surface HA: Hand Auger		

Dril Dril Dril San	lling (ller's lling l	Comp Name Vetho g Met	ish: A any: (:: d: HA hod:	Cascad	23, 20 de	10		Northing: Easting: Casing Elevation: Borehole Depth: 6.5' Surface Elevation: Descriptions By: Colleen Martin	1117	P Olympia Bulk Terminal 117 West Bay Drive Olympia, Washington		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction		
		GP-5- 2-2.5	2-2.5		5.5	 ML		Gravel packed soil surface. Brown SILT with clay and trace sand, non-plastic, very fine sand, m staining. Wet at 3' bgs.	noist, no odor or	Bentonite		
-5	-5-	GP-5- 4-4.5 GP-5- 6-6.5	4-4.5 6-6.5		97.5 3.7	 ML		Bark and WOOD debris with some silt, moderate odor, wet. Brown SILT with clay, trace sand, lots of wood debris and bark, fain Boring terminated at 6.5' bgs.	t odor, wet.	backfilled to surface.		
- 10	10 -											
			RC			ldings	Ŧ	Remarks: bgs: below ground surface HA: Hand Auger				

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:GP-5

Dril Dril Dril San	ling (ler's ling l npling	Compa Name Metho	ish: A any: (: d: HA hod:	Cascad	25, 20 de	010		Northing: Easting: Casing Elevation: Borehole Depth: 6.5' Surface Elevation: Descriptions By: Colleen Martin	ID: GP-6 P Olympia Bulk Terminal 117 West Bay Drive Ilympia, Washington		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction	
-0						-	\bigcirc	vel packed soil surface. vn SILT with sand and gravel, non-plastic, fine sand, subround dor or staining, increasing wood debris.	ded gravel, moist,		
		GP-6- 2-2.5	2-2.5		1.0					Bentonite	
		GP-6- 4-4.5	4-4.5		243	ML				backfilled to surface.	
-5	-5-	GP-6- 6-6.5	6-6.5		9.8			on SILT with trace fine sand, faint odor, wet at 5' bgs. ng terminated at 6.5' bgs.			
	-							4			
	-										
- 10	-10 -										
	-										
	-										
			RC			ilding	5	emarks: bgs: below ground surface HA: Hand Auger			

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7
Data File:GP-6 Date: 11/3/2010 Barb Schnurr

Dril Dril Dril San	ling (ler's ling N	Compa Name Metho g Meth	sh: A any: (: d: HA nod: I	Cascad	24, 20 Je	10		Northing: Easting: Casing Elevation: Borehole Depth: 6.5' Surface Elevation: Descriptions By: Colleen Martin	111	g ID: GP-7 BP Olympia Bulk Terminal 117 West Bay Drive Olympia, Washington		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction		
		GP-7- 2-2.5 GP-7- 4-4.5 GP-7- 6-6.5	2-2.5 4-4.5 6-6.5		1.8	ML		ravel packed soil surface. ght brown sandy SILT, trace gravel, non-plastic, fine sand, sul y, no odor or staining, occasional organics. own sandy SILT, non-plastic, little wood debris, moist, no odo own SILT with fine sand, trace clay, low plasticity, moist, no o ring terminated at 6.5' bgs.	r or staining.	Bentonite backfilled to surface.		
	Infra	astructo	RC	vironme	ent, bu			Remarks: bgs: below ground surface HA: Hand Auger	3	Page: 1 of 1		

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:GP-7

Dril Dril Dril San	ling (ler's ling N	Compa Name Aetho g Metl	ish: A any: (: d: HA hod: H	Cascad	25, 20 de	010		Northing: Easting: Casing Elevation: Borehole Depth: 6.5' Surface Elevation: Descriptions By: Colleen Martin	11	P Olympia Bulk Terminal 117 West Bay Drive Dlympia, Washington		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction		
- 5	-5-	GP-8- 2-2.5 GP-8- 4-4.5 GP-8- 6-6.5	2-2.5 4-4.5 6-6.5		0.4	 ML		ravel packed soil surface. ght brown sandy SILT, trace gravel, non-plastic, fine sand, subro oist, no odor or staining. own SAND with trace silt and gravel, fine to medium sand, fine n oist, no odor or staining.		Bentonite backfilled to surface.		
- 10			RC ure, env			lilding	15	Remarks: bgs: below ground surface HA: Hand Auger				

Dril Dril Dril San	ling (ler's ling M npling	Compa Name Metho	ish: A any: (: d: HA hod:	Cascad	24, 20 Je	10		Northing: Easting: Casing Elevation: Borehole Depth: 6.2' Surface Elevation: Descriptions By: Colleen Martin	B ID: GP-9 BP Olympia Bulk Terminal 117 West Bay Drive Dlympia, Washington	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery %	PID Headspace (ppm)	USCS Code	Geologic Column	Stratigraphic Description		Well/Boring Construction
- 0	-	GP-9- 2-2.5	2-2.5		0.9	 ML		avel packed soil surface. wn SILT with clay, trace sand, non-plastic, very fine sand, mois ining, occasional organics.	it, no odor or	Bentonite backfilled to
-5	-5-	GP-9- 4-4.5 GP-9- <u>5.5-6</u>	4-4.5 5.5-6		0.6	CL		wn silty CLAY, trace sand, moderate plasticity, very fine sand, ning. ing terminated at 6.2 bgs.	moist, no odor or	surface.
	-10 -									
-	Infra	2 A	RC	AD	Sent, bu	ilding	s	Remarks: bgs: below ground surface HA: Hand Auger		

Project: GP09BPNA.WA60.C0000 Template:G:\COMMON\LogPlot Shared Files\LogPlot 7 Data File:GP-9

,

ARCADIS

Appendix **E**

Laboratory Analytical Reports

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

September 30, 2010

Alex Lopez Arcadis 111 SW Columbia St. Ste. 725 Portland, OR 97201

RE: Project: BPOLY Pace Project No.: 254662

Dear Alex Lopez:

Enclosed are the analytical results for sample(s) received by the laboratory on August 24, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Revised Report - PAHs added to samples GP-5 6-6.5, MW-6R 6-6.5, and GP-9 4-4.5 at client's request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regine Ste. Marie

Regina SteMarie

regina.stemarie@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 47

CERTIFICATIONS

Project: BPOLY

Pace Project No.: 254662

Washington Certification IDs 940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025 Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: BPOLY Pace Project No.: 254662

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
254662001	GP4-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662002	GP4-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	ATH	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54662003	GP5-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54662004	GP5-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54662005	GP5-6-6.5	EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54662006	MW6R-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 47

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

SAMPLE ANALYTE COUNT

Project: BPOLY Pace Project No.: 254662

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
254662007	MW6R-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	7	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662008	MW6R-6-6.5	EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662009	GP9-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662010	GP9-4-4.5	EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662011	GP9-5.5-6	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662012	MW7-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	LPM	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662013	MW7-4-4.5	ASTM D2974-87	KJ1	1	PASI-S
254662014	MW7-6-6.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 4 of 47

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

SAMPLE ANALYTE COUNT

Project: Pace Project N	BPOLY lo.: 254662				
Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662015	MW8-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254662016	Trip Blank	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	LPM	8	PASI-S

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254662

Method: NWTPH-Dx

Description:NWTPH-Dx GCS SGClient:Arcadis ORDate:September 30, 2010

General Information:

11 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 6 of 47

Project: BPOLY Pace Project No.: 254662

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:Arcadis ORDate:September 30, 2010

General Information:

12 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with NWTPH-Gx with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254662

Method:EPA 6010Description:6010 MET ICPClient:Arcadis ORDate:September 30, 2010

General Information:

11 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254662

Method:EPA 7471Description:7471 MercuryClient:Arcadis ORDate:September 30, 2010

General Information:

11 samples were analyzed for EPA 7471. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254662

Method: EPA 8270 by SIM

Description:8270 MSSV PAH by SIMClient:Arcadis ORDate:September 30, 2010

General Information:

14 samples were analyzed for EPA 8270 by SIM. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: OEXT/2573

S0: Surrogate recovery outside laboratory control limits.

- GP5-6-6.5 (Lab ID: 254662005)
 - Terphenyl-d14 (S)
- MW6R-4-4.5 (Lab ID: 254662007)
 - 2-Fluorobiphenyl (S)
 - Terphenyl-d14 (S)
- MW6R-6-6.5 (Lab ID: 254662008)
- Terphenyl-d14 (S)
- MW7-2-2.5 (Lab ID: 254662012)
 - Terphenyl-d14 (S)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BPOLY Pace Project No.: 254662

Method:	EPA 8270 by SIM	
		-

Description:8270 MSSV PAH by SIMClient:Arcadis ORDate:September 30, 2010

Additional Comments:

Analyte Comments:

QC Batch: OEXT/2573

1n: Analyte recovery is below control limits. Associated samples reporting the analyte may be biased low.

- LCS (Lab ID: 38058)
 - 1-Methylnaphthalene

2n: Results for all reported compounds were confirmed by the analysis of an out-of-hold re-extract sample. This sample was associated with an acceptable method blank and LCS, and had acceptable surrogate recoveries.

- GP4-2-2.5 (Lab ID: 254662001)
 - 2-Fluorobiphenyl (S)
- GP4-4-4.5 (Lab ID: 254662002) • 2-Fluorobiphenyl (S)
- GP5-2-2.5 (Lab ID: 254662003)
 - 2-Fluorobiphenyl (S)
- GP5-4-4.5 (Lab ID: 254662004)
 2-Fluorobiphenyl (S)
- GP5-6-6.5 (Lab ID: 254662005) • Terphenyl-d14 (S)
- GP9-2-2.5 (Lab ID: 254662009) • 2-Fluorobiphenyl (S)
- GP9-4-4.5 (Lab ID: 254662010) • 2-Fluorobiphenyl (S)
- GP9-5.5-6 (Lab ID: 254662011) • 2-Fluorobiphenyl (S)
- MW6R-2-2.5 (Lab ID: 254662006) • 2-Fluorobiphenyl (S)
- MW6R-4-4.5 (Lab ID: 254662007) • 2-Fluorobiphenyl (S)
- MW6R-6-6.5 (Lab ID: 254662008) • Terphenyl-d14 (S)
- MW7-2-2.5 (Lab ID: 254662012) • Terphenyl-d14 (S)
- MW7-6-6.5 (Lab ID: 254662014)

• 2-Fluorobiphenyl (S)

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254662

Method: EPA 8260

Description:8260/5035A Volatile OrganicsClient:Arcadis ORDate:September 30, 2010

General Information:

12 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards: All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: MSV/2918

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- GP5-4-4.5 (Lab ID: 254662004)
 - 4-Bromofluorobenzene (S)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Project: BPOLY

Pace Project No.: 254662

Sample: GP4-2-2.5	Lab ID: 2546	62001	Collected: 08/23/1	0 16:20	0 Received: 08	/24/10 15:15 N	latrix: Solid	
Results reported on a "dry-weig Parameters	ght" basis Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qu
T drameters		Onits		ы				
WTPH-Dx GCS SG	Analytical Meth	od: NWTPH-	-Dx Preparation Me	ethod: E	EPA 3546			
Diesel Range SG	ND mg	/kg	24.7	1	08/31/10 22:45	09/01/10 18:17		
Motor Oil Range SG	ND mg	/kg	98.6	1	08/31/10 22:45	09/01/10 18:17	64742-65-0	
n-Octacosane (S) SG	96 %		50-150	1	08/31/10 22:45	09/01/10 18:17	630-02-4	
o-Terphenyl (S) SG	96 %		50-150	1	08/31/10 22:45	09/01/10 18:17	84-15-1	
NWTPH-Gx GCV	Analytical Meth	od: NWTPH	-Gx Preparation Me	ethod: I	NWTPH-Gx			
Gasoline Range Organics	ND mg	/kg	7.6	1	08/28/10 07:15	08/28/10 16:47		
a,a,a-Trifluorotoluene (S)	109 %		50-150	1	08/28/10 07:15	08/28/10 16:47	98-08-8	
4-Bromofluorobenzene (S)	107 %		50-150	1	08/28/10 07:15	08/28/10 16:47	460-00-4	
6010 MET ICP	Analytical Meth	od: EPA 601	0 Preparation Meth	nod: EP	PA 3050			
Arsenic	ND mg	/kg	13.1	5	08/27/10 07:06	08/30/10 12:22	7440-38-2	
Barium	120 mg	/kg	26.1	1	08/27/10 07:06	08/30/10 13:31	7440-39-3	
Cadmium	ND mg	/kg	6.5	5	08/27/10 07:06	08/30/10 12:22	7440-43-9	
Chromium	48.1 mg	-	1.3	1	08/27/10 07:06	08/30/10 13:31	7440-47-3	
ead	4.6 mg	/kg	1.3	1	08/27/10 07:06	08/30/10 13:31	7439-92-1	
Selenium	ND mg	/kg	6.5	5	08/27/10 07:06	08/30/10 12:22	7782-49-2	
Silver	ND mg	/kg	6.5	5	08/27/10 07:06	08/30/10 12:22	7440-22-4	
471 Mercury	Analytical Meth	od: EPA 747	1 Preparation Meth	nod: EP	PA 7471			
Mercury	ND mg	/kg	0.13	1	08/26/10 08:21	08/26/10 12:07	7439-97-6	
3270 MSSV PAH by SIM	Analytical Meth	od: EPA 827	0 by SIM Preparati	ion Met	hod: EPA 3546			
Acenaphthene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	83-32-9	
Acenaphthylene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	208-96-8	
Anthracene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	120-12-7	
Benzo(a)anthracene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	56-55-3	
Benzo(a)pyrene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	50-32-8	
Benzo(b)fluoranthene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	205-99-2	
Benzo(g,h,i)perylene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	191-24-2	
Benzo(k)fluoranthene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	207-08-9	
Chrysene	ND ug/	kg	8.6	1	08/27/10 14:45	08/31/10 21:22	218-01-9	
Dibenz(a,h)anthracene	ND ug/	-	8.6	1	08/27/10 14:45	08/31/10 21:22	53-70-3	
luoranthene	ND ug/	-	8.6	1	08/27/10 14:45	08/31/10 21:22	206-44-0	
luorene	ND ug/	-	8.6	1	08/27/10 14:45	08/31/10 21:22	86-73-7	
ndeno(1,2,3-cd)pyrene	ND ug/		8.6	1		08/31/10 21:22		
I-Methylnaphthalene	ND ug/	0	8.6	1		08/31/10 21:22		
2-Methylnaphthalene	ND ug/	-	8.6	1		08/31/10 21:22		
Naphthalene	ND ug/	-	8.6	1		08/31/10 21:22		
Phenanthrene	ND ug/	-	8.6	1		08/31/10 21:22		
	ND ug/	-	8.6	1		08/31/10 21:22		
Pyrene								
Pyrene 2-Fluorobiphenyl (S)	78 %	Ng	55-136	1		08/31/10 21:22		2n

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 13 of 47

Project: BPOLY

Pace Project No.: 254662

Somelar CD4 2 2 5		1660004	Collectoric 00/00/	10.40-00	Dessived: 00	0/04/40 45-45		
Sample: GP4-2-2.5	Lab ID: 254	1062001	Collected: 08/23/	10 16:20	Received: 08	s/∠4/10 15:15 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260/5035A Volatile Organics	Analytical Met	hod: EPA 82	60					
Benzene	ND ug	g/kg	3.3	1		08/25/10 15:47	71-43-2	
Ethylbenzene	ND ug	g/kg	3.3	1		08/25/10 15:47	7 100-41-4	
Toluene	ND ug	g/kg	3.3	1		08/25/10 15:47	108-88-3	
Xylene (Total)	ND ug	g/kg	9.9	1		08/25/10 15:47	1330-20-7	
Dibromofluoromethane (S)	96 %		80-136	1		08/25/10 15:47	1868-53-7	
Toluene-d8 (S)	93 %)	80-120	1		08/25/10 15:47	2037-26-5	
4-Bromofluorobenzene (S)	91 %)	72-122	1		08/25/10 15:47	460-00-4	
1,2-Dichloroethane-d4 (S)	88 %		80-143	1		08/25/10 15:47		
Percent Moisture	Analytical Met	hod: ASTM I	D2974-87					
Percent Moisture	24.2 %)	0.10	1		08/27/10 11:29)	
Sample: GP4-4-4.5	Lab ID: 254	662002	Collected: 08/23/	10 16:30	Received: 08	3/24/10 15:15	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Met	hod: NWTPI	H-Dx Preparation M	ethod: E	PA 3546			
Diesel Range SG	ND m	a/ka	26.2	1	08/31/10 22:45	09/01/10 18:34	Ļ	
Notor Oil Range SG	ND m	0 0	105	1		09/01/10 18:34		
n-Octacosane (S) SG	88 %	0 0	50-150	1		09/01/10 18:34		
p-Terphenyl (S) SG	89 %		50-150	1		09/01/10 18:34		
NWTPH-Gx GCV	Analytical Met	hod: NWTPI	H-Gx Preparation M	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND m	a/ka	7.4	1	08/28/10 07:15	08/28/10 17:24	ŀ	
a,a,a-Trifluorotoluene (S)	105 %		50-150	1		08/28/10 17:24		
4-Bromofluorobenzene (S)	106 %		50-150	1		08/28/10 17:24		
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Met	hod: EPA	A 3050			
Arsenic	ND m	a/ka	12.6	5	08/27/10 07:06	08/30/10 12:25	5 7440-38-2	
Barium	115 m		25.1	1		08/30/10 13:34		
Cadmium	ND m		6.3	5		08/30/10 12:25		
Chromium	48.3 m		1.3	1		08/30/10 13:34		
_ead	7.1 m		6.3	5		08/30/10 12:25		
Selenium	ND m		6.3	5		08/30/10 12:25		
Silver	ND m		6.3	5		08/30/10 12:25		
7471 Mercury			71 Preparation Met	hod: EPA	A 7471			
Mercury	ND m	g/kg	0.13	1	08/26/10 08:21	08/26/10 12:10	7439-97-6	
8270 MSSV PAH by SIM	Analytical Met	hod: EPA 82	70 by SIM Preparat	tion Meth	nod: EPA 3546			
	ND ug	a/ka	8.9	1	08/27/10 14:45	08/31/10 21:39	83-32-9	
Acenaphthene		9/109						
Acenaphthene Acenaphthylene	ND ug		8.9	1	08/27/10 14:45	08/31/10 21:39	208-96-8	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 14 of 47

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BPOLY

Pace Project No.: 254662

ND ug/k ND ug/k	kg kg kg kg kg kg kg kg kg kg kg kg kg k	Report Li 270 by SIM Pre		1 1 1 1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	Analyzed 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	Qual
Analytical Metho ND ug/k ND ug/k	od: EPA 8/ (g (g (g (g (g (g (g (g (g (g (g (g (g		8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	n Metho 1 1 1 1 1 1 1 1 1	bd: EPA 3546 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	Qual
ND ug/k ND ug/k	kg kg kg kg kg kg kg kg kg kg kg kg kg k	270 by SIM Pre	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
ND ug/H ND ug/H	kg kg kg kg kg kg kg kg kg kg kg kg kg k		8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
ND ug/H ND ug/H	kg kg kg kg kg kg kg kg kg kg kg kg kg k		8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
ND ug/H ND ug/H	kg kg kg kg kg kg kg kg kg kg kg kg kg k		8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k	kg kg kg kg kg kg kg kg		8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k	kg kg kg kg kg kg kg kg		8.9 8.9 8.9 8.9 8.9	1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k	kg kg kg kg kg kg		8.9 8.9 8.9 8.9	1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39 08/31/10 21:39	53-70-3 206-44-0 86-73-7 193-39-5	
ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k	kg kg kg kg kg		8.9 8.9 8.9	1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:39 08/31/10 21:39	206-44-0 86-73-7 193-39-5	
ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k	kg kg kg kg kg		8.9 8.9	1 1	08/27/10 14:45 08/27/10 14:45	08/31/10 21:39	86-73-7 193-39-5	
ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k	kg kg kg		8.9	1	08/27/10 14:45		193-39-5	
ND ug/k ND ug/k ND ug/k ND ug/k ND ug/k	kg kg kg					08/31/10 21:39		
ND ug/k ND ug/k ND ug/k ND ug/k	kg kg		8.9					
ND ug/k ND ug/k ND ug/k	kg			1	08/27/10 14:45	08/31/10 21:39	90-12-0	
ND ug/ł ND ug/ł	-		8.9	1	08/27/10 14:45	08/31/10 21:39	91-57-6	
ND ug/k	kg		8.9	1	08/27/10 14:45	08/31/10 21:39	91-20-3	
-			8.9	1	08/27/10 14:45	08/31/10 21:39	85-01-8	
77 %	kg		8.9	1	08/27/10 14:45	08/31/10 21:39	129-00-0	
11 /0		55-	-136	1	08/27/10 14:45	08/31/10 21:39	321-60-8	2n
70 %		60-	-144	1	08/27/10 14:45	08/31/10 21:39	1718-51-0	
Analytical Metho	od: EPA 82	260						
ND ug/k	kg		3.3	1		08/25/10 16:06	71-43-2	
ND ug/k	kg		3.3	1		08/25/10 16:06	100-41-4	
-	-		3.3	1		08/25/10 16:06	108-88-3	
-	-		10.0	1		08/25/10 16:06	1330-20-7	
95 %	-	80-	-136	1		08/25/10 16:06	1868-53-7	
91 %		80-	-120	1		08/25/10 16:06	2037-26-5	
93 %		72-	-122	1		08/25/10 16:06	460-00-4	
85 %		80-	-143	1		08/25/10 16:06	17060-07-0	
Analytical Metho	od: ASTM	D2974-87						
25.6 %		(0.10	1		08/27/10 11:35		
Lab ID: 2546	62003	Collected: 08	8/23/10	15:45	Received: 08	8/24/10 15:15 N	Aatrix: Solid	
is								
Results	Units	Report Li	imit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Metho	od: NWTP	H-Dx Preparati	on Met	hod: EF	PA 3546			
31.8 ma/	/kg		24.7	1	08/31/10 22:45	09/01/10 18:50		
-	-						64742-65-0	
84 %	3							
86 %								
Analytical Metho	od: NWTP	H-Gx Preparati	ion Met	hod: N\	WTPH-Gx			
ND ma/	/kg		7.2	1	08/28/10 19:00	08/29/10 06:27		
	77 % 70 % Analytical Metho ND ug/l ND ug/l ND ug/l ND ug/l 95 % 91 % 93 % 85 % Analytical Metho 25.6 % Lab ID: 2546 <i>is</i> Results Analytical Metho 31.8 mg/ ND mg/ 84 % 86 %	70 % Analytical Method: EPA 83 ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg 95 % 91 % 93 % 85 % Analytical Method: ASTM 25.6 % Lab ID: 254662003 is Units Analytical Method: NWTP 31.8 mg/kg 84 % 86 %	77 % 55- 70 % 60- Analytical Method: EPA 8260 ND ug/kg ND ug/kg ND ug/kg ND ug/kg 80- 95 % 80- 91 % 80- 93 % 72- 85 % 80- 93 % 72- 85 % 80- 93 % 72- 85 % 80- 93 % 72- 85 % 80- 93 % 72- 85 % 80- 93 % 72- 85 % 80- 93 % 72- 85 % 80- 93 % 72- 85 % 80- Analytical Method: ASTM D2974-87 25.6 is Results Units Report Li Analytical Method: NWTPH-Dx Preparation and analytical Method: NWTPH-Gx 50- Analytical Method: NWTPH-Gx Preparation and analytical Method: NWTPH-Gx Preparation and analytical Method: NWTPH-Gx	77 % 55-136 70 % 60-144 Analytical Method: EPA 8260 ND ug/kg 3.3 ND ug/kg 10.0 95 % 80-136 91 % 80-120 93 % 72-122 85 % 80-143 Analytical Method: ASTM D2974-87 25.6 % 0.10 Lab ID: 254662003 Collected: 08/23/10 is Results Units Report Limit Analytical Method: NWTPH-Dx Preparation Met 31.8 mg/kg 24.7 ND mg/kg 98.8 84 % 50-150 86 % 50-150 Analytical Method: NWTPH-Gx Preparation Met	77 % 55-136 1 70 % 60-144 1 Analytical Method: EPA 8260 ND ug/kg 3.3 1 ND ug/kg 10.0 1 95 % 80-136 1 91 % 80-120 1 93 % 72-122 1 85 % 80-143 1 Analytical Method: ASTM D2974-87 25.6 % 25.6 % 0.10 1 Lab ID: 254662003 Collected: 08/23/10 15:45 is Report Limit DF Analytical Method: NWTPH-Dx Preparation Method: EF 31.8 mg/kg 24.7 1 1 ND mg/kg 98.8 1 1 84 % 50-150 1 1 86 % 50-150 1 1 Analytical Method: NWTPH-Gx Preparation Method: NW	77 % 55-136 1 08/27/10 14:45 Analytical Method: EPA 8260 08/27/10 14:45 Analytical Method: EPA 8260 08/27/10 14:45 Analytical Method: EPA 8260 3.3 1 ND ug/kg 3.3 1 ND ug/kg 3.3 1 ND ug/kg 3.3 1 ND ug/kg 10.0 1 95 % 80-136 1 91 % 80-120 1 93 % 72-122 1 85 % 80-143 1 Analytical Method: ASTM D2974-87 25.6 0.10 Itab ID: 254662003 Collected: 08/23/10 15:45 Received: 08/35 Results Units Report Limit DF Prepared Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 31.8 mg/kg 98.8 1 08/31/10 22:45 84 % 50-150 1 08/31/10 22:45 86 % 50-150 1 08/31/10 22:45	77 % 55-136 1 08/27/10 14:45 08/31/10 21:39 70 % 60-144 1 08/27/10 14:45 08/31/10 21:39 Analytical Method: EPA 8260 ND ug/kg 3.3 1 08/25/10 16:06 ND ug/kg 3.3 1 08/25/10 16:06 08/25/10 16:06 ND ug/kg 3.3 1 08/25/10 16:06 ND ug/kg 3.3 1 08/25/10 16:06 95 % 80-136 1 08/25/10 16:06 91 % 80-120 1 08/25/10 16:06 93 % 72-122 1 08/25/10 16:06 85 % 80-143 1 08/25/10 16:06 85 % 80-143 1 08/25/10 16:06 85 % 80-143 1 08/25/10 16:06 85 % 80-143 1 08/25/10 16:06 Analytical Method: ASTM D2974-87 25.6 0.10 1 08/27/10 11:35 Is Image: State S	77 % 55-136 1 08/27/10 14:45 08/31/10 21:39 321-60-8 70 % 60-144 1 08/27/10 14:45 08/31/10 21:39 1718-51-0 Analytical Method: EPA 8260 ND ug/kg 3.3 1 08/25/10 16:06 71-43-2 ND ug/kg 3.3 1 08/25/10 16:06 100-41-4 ND ug/kg 100-1 08/25/10 16:06 108-88-3 ND ug/kg 10.0 1 08/25/10 16:06 1330-20-7 95 % 80-136 1 08/25/10 16:06 1868-53-7 91 % 80-120 1 08/25/10 16:06 1300-20-7 95 % 80-136 1 08/25/10 16:06 106-06 106-07-0 Analytical Method: ASTM D2974-87 25.6 80-143 1 08/27/10 11:35 Matrix: Solid Lab ID: 254662003 Collected: 08/23/10 15:45 Received: 08/24/10 15:15 Matrix: Solid Matrix: VITPH-Dx Prepared Analyzed CAS No. Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 31.8 mg/kg 24.7 1 08/31/10 22:45 09/01/10 18:50

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 47

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Sample: GP5-2-2.5	Lab ID: 254	662003	Collected:	08/23/1	0 15:45	Received: 08	/24/10 15:15	Aatrix: Solid	
Results reported on a "dry-weight	" basis								
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Meth	nod: NWTP	H-Gx Prepar	ration Me	ethod: N	WTPH-Gx			
a,a,a-Trifluorotoluene (S)	107 %		:	50-150	1	08/28/10 19:00	08/29/10 06:27	98-08-8	
4-Bromofluorobenzene (S)	102 %		:	50-150	1	08/28/10 19:00	08/29/10 06:27	460-00-4	
6010 MET ICP	Analytical Meth	nod: EPA 6	010 Preparat	tion Meth	nod: EPA	3050			
Arsenic	ND mg	g/kg		12.4	5	08/27/10 07:06	08/30/10 12:28	7440-38-2	
Barium	107 mg	g/kg		24.8	1	08/27/10 07:06	08/30/10 13:36	7440-39-3	
Cadmium	ND mg	g/kg		6.2	5	08/27/10 07:06	08/30/10 12:28	7440-43-9	
Chromium	35.1 mg	g∕kg		1.2	1	08/27/10 07:06	08/30/10 13:36	7440-47-3	
_ead	8.6 mg			1.2	1	08/27/10 07:06	08/30/10 13:36	7439-92-1	
Selenium	ND mg	-		6.2	5		08/30/10 12:28		
Silver	ND mg	-		6.2	5	08/27/10 07:06	08/30/10 12:28	7440-22-4	
7471 Mercury	Analytical Meth	nod: EPA 7	471 Preparat	tion Meth	nod: EPA	7471			
Mercury	ND mg	g/kg		0.11	1	08/26/10 08:21	08/26/10 12:12	7439-97-6	
270 MSSV PAH by SIM	Analytical Meth	nod: EPA 8	270 by SIM F	Preparati	on Meth	od: EPA 3546			
Acenaphthene	ND ug	/kg		8.3	1	08/27/10 14:45	08/31/10 23:51	83-32-9	
Acenaphthylene	10.5 ug	/kg		8.3	1	08/27/10 14:45	08/31/10 23:51	208-96-8	
Anthracene	21.4 ug	/kg		8.3	1	08/27/10 14:45	08/31/10 23:51	120-12-7	
Benzo(a)anthracene	22.7 ug	-		8.3	1	08/27/10 14:45	08/31/10 23:51	56-55-3	
Benzo(a)pyrene	21.6 ug	-		8.3	1	08/27/10 14:45	08/31/10 23:51	50-32-8	
Benzo(b)fluoranthene	26.9 ug	0		8.3	1		08/31/10 23:51		
Benzo(g,h,i)perylene	18.5 ug	-		8.3	1		08/31/10 23:51		
Benzo(k)fluoranthene	21.9 ug	-		8.3	1		08/31/10 23:51		
Chrysene	31.2 ug	-		8.3	1	08/27/10 14:45			
Dibenz(a,h)anthracene	ND ug	-		8.3	1		08/31/10 23:51		
Fluoranthene	64.5 ug			8.3	1		08/31/10 23:51		
Fluorene	ND ug			8.3	1		08/31/10 23:51		
	-	-		8.3	1		08/31/10 23:51		
ndeno(1,2,3-cd)pyrene	16.4 ug								
I-Methylnaphthalene	39.7 ug			8.3	1	08/27/10 14:45			
2-Methylnaphthalene	77.1 ug			8.3	1		08/31/10 23:51		
Naphthalene	55.6 ug			8.3	1	08/27/10 14:45			
Phenanthrene	59.4 ug			8.3	1		08/31/10 23:51		
Pyrene	53.0 ug	/kg		8.3	1	08/27/10 14:45			_
2-Fluorobiphenyl (S)	73 %			55-136	1	08/27/10 14:45			2n
Terphenyl-d14 (S)	73 %			60-144	1	08/27/10 14:45	08/31/10 23:51	1718-51-0	
3260/5035A Volatile Organics	Analytical Meth	nod: EPA 8	260						
Benzene	ND ug	/kg		3.4	1		08/25/10 16:25	71-43-2	
Ethylbenzene	ND ug	/kg		3.4	1		08/25/10 16:25	100-41-4	
Toluene	ND ug	/kg		3.4	1		08/25/10 16:25	108-88-3	
Xylene (Total)	ND ug	/kg		10.2	1		08/25/10 16:25	1330-20-7	
Dibromofluoromethane (S)	96 %	-	:	80-136	1		08/25/10 16:25		
Toluene-d8 (S)	93 %			80-120	1		08/25/10 16:25		
4-Bromofluorobenzene (S)	93 %			72-122	1		08/25/10 16:25		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 16 of 47

		000	O alla at a la colocit	0 45 45	Decent 1 C	0/04/40 45 45	Materia O - 11	
Sample: GP5-2-2.5	Lab ID: 254662	2003	Collected: 08/23/1	0 15:45	Received: 0	8/24/10 15:15	Matrix: Solid	
Results reported on a "dry-weigh		11-16-	Demonst Linet		December			0
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Method	: EPA 826	0					
1,2-Dichloroethane-d4 (S)	85 %		80-143	1		08/25/10 16:2	5 17060-07-0	
Percent Moisture	Analytical Method	: ASTM D	2974-87					
Percent Moisture	21.0 %		0.10	1		08/27/10 11:39	Э	
Sample: GP5-4-4.5	Lab ID: 254662	2004	Collected: 08/23/1	0 16:00	Received: 0	8/24/10 15:15	Matrix: Solid	
Results reported on a "dry-weigl	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method	: NWTPH	Dx Preparation Me	ethod: E	PA 3546			
Diesel Range SG	3780 mg/kg	9	43.6	1	09/01/10 19:05	5 09/02/10 15:52	2	
Notor Oil Range SG	1040 mg/kg)	175	1	09/01/10 19:05	5 09/02/10 15:52	2 64742-65-0	
n-Octacosane (S) SG	95 %		50-150	1	09/01/10 19:05	5 09/02/10 15:52	2 630-02-4	
o-Terphenyl (S) SG	114 %		50-150	1	09/01/10 19:05	5 09/02/10 15:52	2 84-15-1	
NWTPH-Gx GCV	Analytical Method	: NWTPH	Gx Preparation Me	ethod: N	WTPH-Gx			
Gasoline Range Organics	875 mg/kg	9	125	5	08/30/10 12:00	08/31/10 02:5	7	
a,a,a-Trifluorotoluene (S)	104 %		50-150	5	08/30/10 12:00	08/31/10 02:5	7 98-08-8	
I-Bromofluorobenzene (S)	120 %		50-150	5	08/30/10 12:00	0 8/31/10 02:5	7 460-00-4	
6010 MET ICP	Analytical Method	: EPA 601	0 Preparation Meth	nod: EPA	A 3050			
Arsenic	ND mg/kg	9	21.0	5	08/27/10 07:06	6 08/30/10 12:30	0 7440-38-2	
Barium	130 mg/kg	j	41.9	1	08/27/10 07:06	6 08/30/10 13:44	4 7440-39-3	
Cadmium	ND mg/kg	j	10.5	5	08/27/10 07:06	6 08/30/10 12:30	0 7440-43-9	
Chromium	40.7 mg/kg		2.1	1	08/27/10 07:06	6 08/30/10 13:44	4 7440-47-3	
_ead	31.0 mg/kg		2.1	1	08/27/10 07:06	6 08/30/10 13:44	4 7439-92-1	
Selenium	ND mg/kg		10.5	5	08/27/10 07:06	6 08/30/10 12:30	0 7782-49-2	
Silver	ND mg/kg		10.5	5	08/27/10 07:06	6 08/30/10 12:30	0 7440-22-4	
7471 Mercury	Analytical Method	: EPA 747	1 Preparation Meth	nod: EP/	7471			
Mercury	ND mg/kg)	0.17	1	08/26/10 08:21	08/26/10 12:18	8 7439-97-6	
3270 MSSV PAH by SIM	Analytical Method	: EPA 827	0 by SIM Preparati	on Meth	od: EPA 3546			
Acenaphthene	205 ug/kg		14.7	1	08/27/10 14:45	5 09/01/10 00:08	8 83-32-9	
Acenaphthylene	155 ug/kg		14.7	1		5 09/01/10 00:08		
Anthracene	80.2 ug/kg		14.7	1	08/27/10 14:45	5 09/01/10 00:08	8 120-12-7	
Benzo(a)anthracene	23.1 ug/kg		14.7	1		5 09/01/10 00:08		
Benzo(a)pyrene	ND ug/kg		14.7	1	08/27/10 14:45	5 09/01/10 00:08	8 50-32-8	
Benzo(b)fluoranthene	15.2 ug/kg		14.7	1	08/27/10 14:45	5 09/01/10 00:08	8 205-99-2	
Benzo(g,h,i)perylene	ND ug/kg		14.7	1	08/27/10 14:45	5 09/01/10 00:08	8 191-24-2	
Benzo(k)fluoranthene	ND ug/kg		14.7	1	08/27/10 14:45	5 09/01/10 00:08	8 207-08-9	
Chrysene	35.2 ug/kg		14.7	1	08/27/10 14:45	5 09/01/10 00:08	8 218-01-9	
Dibenz(a,h)anthracene	ND ug/kg		14.7	1	08/27/10 14:45	00/04/40 00 0		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 17 of 47

Project: BPOLY

Pace Project No.: 254662

Sample: GP5-4-4.5	Lab ID: 254	662004	Collected: 08/23/	10 16:00	Received: 08	8/24/10 15:15 N	fatrix: Solid	
Results reported on a "dry-weigh								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 8	270 by SIM Preparat	tion Meth	nod: EPA 3546			
Fluoranthene	86.4 ug	/kg	14.7	1	08/27/10 14:45	09/01/10 00:08	206-44-0	
Fluorene	856 ug	/kg	14.7	1	08/27/10 14:45	09/01/10 00:08	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug	/kg	14.7	1	08/27/10 14:45	09/01/10 00:08	193-39-5	
1-Methylnaphthalene	9560 ug	/kg	147	10	08/27/10 14:45	09/03/10 20:00	90-12-0	
2-Methylnaphthalene	12300 ug	-	147	10	08/27/10 14:45	09/03/10 20:00	91-57-6	
Naphthalene	4090 ug	-	147	10	08/27/10 14:45	09/03/10 20:00	91-20-3	
Phenanthrene	1460 ug	/kg	14.7	1	08/27/10 14:45	09/01/10 00:08	85-01-8	
Pyrene	125 ug		14.7	1		09/01/10 00:08		
2-Fluorobiphenyl (S)	61 %		55-136	1		09/01/10 00:08		2n
Terphenyl-d14 (S)	63 %		60-144	1		09/01/10 00:08		
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 8	260					
Benzene	, ND ug		9.5	1		08/25/10 16:44	71 /2 2	
Ethylbenzene	ND ug	-	9.5	1		08/25/10 16:44		
Toluene	-	-	9.5	1		08/25/10 16:44		
	ND ug	-						
Xylene (Total)	107 ug	/кд	28.4	1		08/25/10 16:44		
Dibromofluoromethane (S)	101 %		80-136	1		08/25/10 16:44		
Toluene-d8 (S)	92 %		80-120	1		08/25/10 16:44		~-
4-Bromofluorobenzene (S)	241 %		72-122	1		08/25/10 16:44		S5
1,2-Dichloroethane-d4 (S)	96 %		80-143	1		08/25/10 16:44	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	54.6 %		0.10	1		08/27/10 11:41		
Sample: GP5-6-6.5	Lab ID: 254	662005	Collected: 08/23/	10 16:10	Received: 08	8/24/10 15:15 M	latrix: Solid	
Results reported on a "dry-weigh								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 8	270 by SIM Preparat	tion Meth	nod: EPA 3546			
Acenaphthene	64.6 ug	/kg	28.8	1	08/27/10 14:45	09/01/10 01:14	83-32-9	
Acenaphthylene	52.4 ug	/kg	28.8	1	08/27/10 14:45	09/01/10 01:14	208-96-8	
Anthracene	ND ug	/kg	28.8	1	08/27/10 14:45	09/01/10 01:14	120-12-7	
Benzo(a)anthracene	ND ug	-	28.8	1	08/27/10 14:45	09/01/10 01:14	56-55-3	
Benzo(a)pyrene	ND ua	/Kg	28.8	1	08/27/10 14:45	09/01/10 01.14		
Benzo(a)pyrene Benzo(b)fluoranthene	ND ug ND ug	-		1 1				
Benzo(b)fluoranthene	ND ug	/kg	28.8	1	08/27/10 14:45	09/01/10 01:14	205-99-2	
Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND ug ND ug	/kg /kg	28.8 28.8	1 1	08/27/10 14:45 08/27/10 14:45	09/01/10 01:14 09/01/10 01:14	205-99-2 191-24-2	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND ug ND ug ND ug	/kg /kg /kg	28.8 28.8 28.8	1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	09/01/10 01:14 09/01/10 01:14 09/01/10 01:14	205-99-2 191-24-2 207-08-9	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	ND ug ND ug ND ug ND ug	/kg /kg /kg /kg	28.8 28.8 28.8 28.8 28.8	1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14	205-99-2 191-24-2 207-08-9 218-01-9	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	ND ug ND ug ND ug ND ug ND ug	/kg /kg /kg /kg	28.8 28.8 28.8 28.8 28.8 28.8 28.8	1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14	205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	ND ug ND ug ND ug ND ug ND ug 51.7 ug	/kg /kg /kg /kg /kg	28.8 28.8 28.8 28.8 28.8 28.8 28.8 28.8	1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14	205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	ND ug ND ug ND ug ND ug 51.7 ug 262 ug	/kg /kg /kg /kg /kg /kg	28.8 28.8 28.8 28.8 28.8 28.8 28.8 28.8	1 1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14	205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	ND ug ND ug ND ug ND ug ND ug 51.7 ug	/kg /kg /kg /kg /kg /kg /kg	28.8 28.8 28.8 28.8 28.8 28.8 28.8 28.8	1 1 1 1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14 09/01/10 01:14	205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 18 of 47

Sample: GP5-6-6.5	Lab ID: 2546	62005	Collected:	08/23/1	0 16:10	Received: 08	3/24/10 15:15 N	Aatrix: Solid	
Results reported on a "dry-weig	ght" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV PAH by SIM	Analytical Metho	od: EPA 82	270 by SIM	Preparati	on Meth	od: EPA 3546			
2-Methylnaphthalene	2840 ug/ł	kg		28.8	1	08/27/10 14:45	09/01/10 01:14	91-57-6	
Naphthalene	988 ug/l	kg		28.8	1	08/27/10 14:45	09/01/10 01:14	91-20-3	
Phenanthrene	289 ug/ł			28.8	1	08/27/10 14:45	09/01/10 01:14	85-01-8	
Pyrene	47.8 ug/ł	kg		28.8	1	08/27/10 14:45	09/01/10 01:14	129-00-0	
2-Fluorobiphenyl (S)	59 %			55-136	1	08/27/10 14:45	09/01/10 01:14	321-60-8	
Terphenyl-d14 (S)	44 %			60-144	1	08/27/10 14:45	09/01/10 01:14	1718-51-0	2n,S0
Percent Moisture	Analytical Metho	od: ASTM	D2974-87						
Percent Moisture	76.9 %			0.10	1		08/27/10 11:45		
Sample: MW6R-2-2.5	Lab ID: 2546	62006	Collected:	08/23/1	0 13:30	Received: 08	8/24/10 15:15 N	Aatrix: Solid	
Results reported on a "dry-weig	ght" basis								
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical Metho	od: NWTP	H-Dx Prepa	ration Me	ethod: El	PA 3546			
Diesel Range SG	ND mg/	/kg		22.5	1	09/01/10 19:05	09/02/10 16:24		
Votor Oil Range SG	ND mg/	/kg		89.9	1	09/01/10 19:05	09/02/10 16:24	64742-65-0	
n-Octacosane (S) SG	105 %			50-150	1	09/01/10 19:05	09/02/10 16:24	630-02-4	
o-Terphenyl (S) SG	105 %			50-150	1	09/01/10 19:05	09/02/10 16:24	84-15-1	
NWTPH-Gx GCV	Analytical Metho	od: NWTP	H-Gx Prepa	ration Me	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/	/kg		6.5	1	08/28/10 19:00	08/29/10 07:15		
a,a,a-Trifluorotoluene (S)	112 %	•		50-150	1	08/28/10 19:00	08/29/10 07:15	98-08-8	
4-Bromofluorobenzene (S)	109 %			50-150	1	08/28/10 19:00	08/29/10 07:15	460-00-4	
6010 MET ICP	Analytical Metho	od: EPA 60	010 Prepara	tion Meth	nod: EPA	A 3050			
Arsenic	ND mg/	/kg		12.0	5	08/27/10 07:06	08/30/10 12:33	7440-38-2	
Barium	110 mg/	/kg		23.9	1	08/27/10 07:06	08/30/10 13:47	7440-39-3	
Cadmium	ND mg/	-		6.0	5	08/27/10 07:06	08/30/10 12:33	7440-43-9	
Chromium	39.4 mg/	/kg		1.2	1	08/27/10 07:06	08/30/10 13:47	7440-47-3	
_ead	4.3 mg/			1.2	1		08/30/10 13:47		
Selenium	ND mg/	-		6.0	5	08/27/10 07:06	08/30/10 12:33	7782-49-2	
Silver	ND mg/	-		6.0	5	08/27/10 07:06	08/30/10 12:33	7440-22-4	
7471 Mercury	Analytical Metho	od: EPA 74	171 Prepara	tion Meth	nod: EPA	A 7471			
	ND mg/	/kg		0.11	1	08/26/10 08:21	08/26/10 12:21	7439-97-6	
-	ND IIIg				on Moth	od: EPA 3546			
Mercury	Analytical Metho	od: EPA 82	270 by SIM	Preparati	on men				
Mercury 8270 MSSV PAH by SIM	_		270 by SIM I	Preparati 8.0	1		08/31/10 21:55	83-32-9	
Mercury 3270 MSSV PAH by SIM Acenaphthene	Analytical Metho	kg	270 by SIM I			08/27/10 14:45	08/31/10 21:55 08/31/10 21:55		
Mercury 8270 MSSV PAH by SIM Acenaphthene Acenaphthylene	Analytical Metho ND ug/l	kg kg	270 by SIM F	8.0	1	08/27/10 14:45 08/27/10 14:45		208-96-8	
Mercury 8270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Analytical Metho ND ug/l ND ug/l	kg kg kg	270 by SIM F	8.0 8.0	1 1	08/27/10 14:45 08/27/10 14:45 08/27/10 14:45	08/31/10 21:55	208-96-8 120-12-7	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 19 of 47

Project: BPOLY

Pace Project No.: 254662

Sampler MWGD 2.2.5		Collected: 00/02/40.4	2.20 0-		0/21/10 15.15	Actrive Calid	
Sample: MW6R-2-2.5	Lab ID: 254662006	Collected: 08/23/10 1	3:30 Re	Selvea: 08	8/24/10 15:15 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Unit	Report Limit D	DF P	repared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Method: EP/	8270 by SIM Preparation	Method: E	PA 3546			
Benzo(b)fluoranthene	ND ug/kg	8.0	1 08/27	7/10 14:45	08/31/10 21:55	205-99-2	
Benzo(g,h,i)perylene	ND ug/kg	8.0	1 08/27	7/10 14:45	08/31/10 21:55	5 191-24-2	
Benzo(k)fluoranthene	ND ug/kg	8.0	1 08/27	7/10 14:45	08/31/10 21:55	5 207-08-9	
Chrysene	ND ug/kg	8.0	1 08/27	7/10 14:45	08/31/10 21:55	5 218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	8.0	1 08/27	7/10 14:45	08/31/10 21:55	5 53-70-3	
Fluoranthene	ND ug/kg	8.0	1 08/27	7/10 14:45	08/31/10 21:55	5 206-44-0	
Fluorene	ND ug/kg	8.0	1 08/27	7/10 14:45	08/31/10 21:55	5 86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug/kg	8.0			08/31/10 21:55		
1-Methylnaphthalene	ND ug/kg				08/31/10 21:55		
2-Methylnaphthalene	ND ug/kg				08/31/10 21:55		
Naphthalene	ND ug/kg				08/31/10 21:55		
Phenanthrene	ND ug/kg				08/31/10 21:55		
Pyrene	ND ug/kg				08/31/10 21:55		
2-Fluorobiphenyl (S)	78 %				08/31/10 21:55		2n
Terphenyl-d14 (S)	76 %				08/31/10 21:55		211
8260/5035A Volatile Organics	Analytical Method: EP/			,	00,01,1021100		
-	-						
Benzene	ND ug/kg		1		08/25/10 17:03		
Ethylbenzene	ND ug/kg	-	1		08/25/10 17:03		
Toluene	ND ug/kg		1		08/25/10 17:03		
Xylene (Total)	ND ug/kg	9.4	1		08/25/10 17:03	3 1330-20-7	
Dibromofluoromethane (S)	100 %	80-136	1		08/25/10 17:03	8 1868-53-7	
Toluene-d8 (S)	90 %	80-120	1		08/25/10 17:03	8 2037-26-5	
4-Bromofluorobenzene (S)	95 %	72-122	1		08/25/10 17:03	3 460-00-4	
1,2-Dichloroethane-d4 (S)	90 %	80-143	1		08/25/10 17:03	3 17060-07-0	
Percent Moisture	Analytical Method: AS	FM D2974-87					
Percent Moisture	18.0 %	0.10	1		08/27/10 11:49)	
Sample: MW6R-4-4.5	Lab ID: 254662007	Collected: 08/23/10 1	3:45 Rec	reived: 0	8/24/10 15:15 I	Matrix: Solid	
Results reported on a "dry-weight			0.40 1101		0/24/10 10:10 1		
Parameters	Results Unit	s Report Limit D)F P	repared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Metho	od: EPA 35	46			-
Diesel Range SG	7060 mg/kg	106	1 09/0 [,]	1/10 10.05	09/02/10 16:41		
Motor Oil Range SG	1360 mg/kg				09/02/10 16:41		
n-Octacosane (S) SG	62 %				6 09/02/10 10:41 6 09/02/10 16:41		
o-Terphenyl (S) SG	75 %				6 09/02/10 10:41 6 09/02/10 16:41		
NWTPH-Gx GCV		TPH-Gx Preparation Metho					
	. ,			-			
					00/04/10 00 -		
Gasoline Range Organics	665 mg/kg				08/31/10 03:21		
Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	665 mg/kg 107 % 121 %	50-150	1 08/30	0/10 12:00	08/31/10 03:21 08/31/10 03:21 08/31/10 03:21	98-08-8	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 20 of 47

Project: BPOLY

Pace Project No.: 254662

Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS 6010 MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3050 EPA 3050 Arsenic ND mg/kg 10 1 08/27/10 07:06 08/30/10 13:49 7440-3 7440-3 Barium ND mg/kg 100 1 08/27/10 07:06 08/30/10 13:49 7440-3 Cadmium ND mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4 Chromium 5.0 mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4	2 3 9 1 2
6010 MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3050 Arsenic ND mg/kg 10 1 08/27/10 07:06 08/30/10 13:49 7440-3 Barium ND mg/kg 100 1 08/27/10 07:06 08/30/10 13:49 7440-3 Cadmium ND mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4 Chromium 5.0 mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4	2 3 9 1 2
Arsenic ND mg/kg 10 1 08/27/10 07:06 08/30/10 13:49 7440-33 Barium ND mg/kg 100 1 08/27/10 07:06 08/30/10 13:49 7440-33 Cadmium ND mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-43 Chromium 5.0 mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-43	-3 -9 -3 -1
Barium ND mg/kg 100 1 08/27/10 07:06 08/30/10 13:49 7440-3 Cadmium ND mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4 Chromium 5.0 mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4	-3 -9 -3 -1
Cadmium ND mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4 Chromium 5.0 mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4	-9 -3 -1 -2
Cadmium ND mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4 Chromium 5.0 mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4	7-3 9-1 1-2
Chromium 5.0 mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-4	-1 -2
	-2
Lead 12.6 mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7439-9	
Selenium ND mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7782-4	-4
Silver ND mg/kg 5.0 1 08/27/10 07:06 08/30/10 13:49 7440-2	•
7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471	
Mercury ND mg/kg 0.43 1 08/26/10 08:21 08/26/10 12:23 7439-5	-6
8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546	
Acenaphthene 486 ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 83-32-	
Acenaphthylene 330 ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 208-96	3
Anthracene 119 ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 120-12	7
Benzo(a)anthracene ND ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 56-55-	
Benzo(a)pyrene ND ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 50-32-	
Benzo(b)fluoranthene ND ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 205-99	2
Benzo(g,h,i)perylene ND ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 191-24	2
Benzo(k)fluoranthene ND ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 207-08	Э
Chrysene 39.5 ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 218-01	Э
Dibenz(a,h)anthracene ND ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 53-70-	
Fluoranthene 54.4 ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 206-44	C
Fluorene 1690 ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 86-73-	
Indeno(1,2,3-cd)pyrene ND ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 193-39	5
1-Methylnaphthalene 13000 ug/kg 358 10 08/27/10 14:45 09/09/10 15:11 90-12-	
2-Methylnaphthalene 16700 ug/kg 358 10 08/27/10 14:45 09/09/10 15:11 91-57-	
Naphthalene 2480 ug/kg 358 10 08/27/10 14:45 09/09/10 15:11 91-20-	
Phenanthrene 2900 ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 85-01-	
Pyrene 212 ug/kg 35.8 1 08/27/10 14:45 09/01/10 02:03 129-00	C
2-Fluorobiphenyl (S) 39 % 55-136 1 08/27/10 14:45 09/01/10 02:03 321-60	8 2n,S0
Terphenyl-d14 (S) 31 % 60-144 1 08/27/10 14:45 09/01/10 02:03 1718-5	-0 S0
8260/5035A Volatile Organics Analytical Method: EPA 8260	
Benzene ND ug/kg 21.5 1 08/25/10 17:21 71-43-	
Ethylbenzene ND ug/kg 21.5 1 08/25/10 17:21 100-41	4
Toluene ND ug/kg 21.5 1 08/25/10 17:21 108-88	3
Xylene (Total) ND ug/kg 64.4 1 08/25/10 17:21 1330-2	-7
Dibromofluoromethane (S) 99 % 80-136 1 08/25/10 17:21 1868-5	
Toluene-d8 (S) 97 % 80-120 1 08/25/10 17:21 2037-2	
1,2-Dichloroethane-d4 (S) 90 % 80-143 1 08/25/10 17:21 17060	7-0
Percent Moisture Analytical Method: ASTM D2974-87	
Percent Moisture 81.8 % 0.10 1 08/27/10 11:52	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 21 of 47

Project: BPOLY

Pace Project No.: 254662

Sample: MW6R-6-6.5	Lab ID: 254	662008	Collected: 08/23/1	0 14:15	Received: 08	/24/10 15:15 N	latrix: Solid	
Results reported on a "dry-weig								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Met	nod: EPA 82	270 by SIM Preparati	on Meth	nod: EPA 3546			
Acenaphthene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	83-32-9	
Acenaphthylene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	208-96-8	
Anthracene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	120-12-7	
Benzo(a)anthracene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	56-55-3	
Benzo(a)pyrene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	50-32-8	
Benzo(b)fluoranthene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	205-99-2	
Benzo(g,h,i)perylene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	191-24-2	
Benzo(k)fluoranthene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	207-08-9	
Chrysene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	218-01-9	
Dibenz(a,h)anthracene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	53-70-3	
Fluoranthene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	206-44-0	
Fluorene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	193-39-5	
1-Methylnaphthalene	62.3 ug		10.1	1	08/27/10 14:45	08/31/10 22:12	90-12-0	
2-Methylnaphthalene	56.8 ug	-	10.1	1	08/27/10 14:45	08/31/10 22:12	91-57-6	
Naphthalene	17.7 ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	91-20-3	
Phenanthrene	ND ug	-	10.1	1		08/31/10 22:12		
Pyrene	ND ug	/kg	10.1	1	08/27/10 14:45	08/31/10 22:12	129-00-0	
2-Fluorobiphenyl (S)	59 %		55-136	1		08/31/10 22:12		
Terphenyl-d14 (S)	47 %		60-144	1	08/27/10 14:45	08/31/10 22:12	1718-51-0	2n,S0
Percent Moisture	Analytical Met	nod: ASTM	D2974-87					
Percent Moisture	34.6 %		0.10	1		08/27/10 11:55		
Sample: GP9-2-2.5	Lab ID: 254	662009	Collected: 08/24/1	0 09:15	Received: 08	/24/10 15:15 M	latrix: Solid	
•								
Results reported on a "dry-weig Parameters		Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Results reported on a "dry-weig Parameters	ght" basis Results	Units				Analyzed	CAS No.	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG	ght" basis Results Analytical Met	Units nod: NWTP	Report Limit H-Dx Preparation Me	ethod: E	PA 3546		CAS No.	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG	ght" basis Results Analytical Met ND m	Units nod: NWTP g/kg	Report Limit H-Dx Preparation Me 24.9	ethod: E	PA 3546 09/01/10 19:05	09/02/10 16:57		Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	g ht" basis Results Analytical Met ND m ND m	Units nod: NWTP g/kg	Report Limit H-Dx Preparation Me 24.9 99.6	ethod: E 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05	09/02/10 16:57 09/02/10 16:57	64742-65-0	Qual
Results reported on a "dry-weig Parameters	ght" basis Results Analytical Met ND m	Units nod: NWTP g/kg	Report Limit H-Dx Preparation Me 24.9	ethod: E	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	09/02/10 16:57	64742-65-0 630-02-4	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	ght" basis Results Analytical Met ND m ND m 91 % 100 %	Units nod: NWTP g/kg g/kg	Report Limit H-Dx Preparation Me 24.9 99.6 50-150	ethod: E 1 1 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	09/02/10 16:57 09/02/10 16:57 09/02/10 16:57	64742-65-0 630-02-4	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	ght" basis Results Analytical Met ND m ND m 91 % 100 % Analytical Met	Units nod: NWTP g/kg g/kg nod: NWTP	Report Limit H-Dx Preparation Me 24.9 99.6 50-150 50-150	ethod: E 1 1 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 IWTPH-Gx	09/02/10 16:57 09/02/10 16:57 09/02/10 16:57	64742-65-0 630-02-4	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	ght" basis Results Analytical Met ND m ND m 91 % 100 %	Units nod: NWTP g/kg g/kg nod: NWTP g/kg	Report Limit H-Dx Preparation Me 24.9 99.6 50-150 50-150 H-Gx Preparation Me	ethod: E 1 1 1 1 ethod: N	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 IWTPH-Gx 08/28/10 19:00	09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 09/02/10 16:57	64742-65-0 630-02-4 84-15-1	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	ght" basis Results Analytical Met ND m ND m 91 % 100 % Analytical Met ND m	Units nod: NWTP g/kg g/kg nod: NWTP g/kg	Report Limit H-Dx Preparation Me 24.9 99.6 50-150 50-150 H-Gx Preparation Me 7.2	ethod: E 1 1 1 1 ethod: N 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 IWTPH-Gx 08/28/10 19:00 08/28/10 19:00	09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 08/29/10 08:26	64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	ght" basis Results Analytical Met ND m ND m 91 % 100 % Analytical Met ND m 107 % 105 %	Units nod: NWTP g/kg g/kg nod: NWTP g/kg	Report Limit H-Dx Preparation Me 24.9 99.6 50-150 50-150 H-Gx Preparation Me 7.2 50-150	ethod: E 1 1 1 1 ethod: N 1 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 IWTPH-Gx 08/28/10 19:00 08/28/10 19:00 08/28/10 19:00	09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 08/29/10 08:26 08/29/10 08:26	64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	ght" basis Results Analytical Met ND m ND m 91 % 100 % Analytical Met ND m 107 % 105 %	Units hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60	Report Limit H-Dx Preparation Me 24.9 99.6 50-150 50-150 H-Gx Preparation Me 7.2 50-150 50-150	ethod: E 1 1 1 1 ethod: N 1 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/28/10 19:00 08/28/10 19:00 08/28/10 19:00 A 3050	09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 08/29/10 08:26 08/29/10 08:26 08/29/10 08:26	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qua
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP	ght" basis Results Analytical Met ND m ND m 91 % 100 % Analytical Met 105 % Analytical Met	Units nod: NWTP g/kg g/kg nod: NWTP g/kg nod: EPA 60	Report Limit H-Dx Preparation Me 24.9 99.6 50-150 50-150 H-Gx Preparation Me 7.2 50-150 50-150 010 Preparation Meth	ethod: E 1 1 1 1 1 ethod: N 1 1 1 1 nod: EP/	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 IWTPH-Gx 08/28/10 19:00 08/28/10 19:00 08/28/10 19:00 A 3050 08/27/10 07:06	09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 09/02/10 16:57 08/29/10 08:26 08/29/10 08:26	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2	Qual

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 22 of 47

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BPOLY

Pace Project No.: 254662

Oto MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3050 Anomatic Method: EPA 3050 Mark 12 1 08/27/10 07:06 08/30/10 13:52 7439-92-1 Sead and 7.3 mg/kg 1.2 1 08/27/10 07:06 08/30/10 12:44 7440-47-3 Seadenium ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:44 7440-22-4 VD mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:44 7440-22-4 471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 346 EPA 7471 440-22-4 471 Mercury ND mg/kg 0.12 1 08/26/10 08:21 08/26/10 12:25 7439-97-6 270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 346 83-32-9 excenphthylene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 83-32-9 Koenaphthylene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 28-96-85 Verzo(gh.Injpenylene 13.3 ug/kg 8.4 1 08/27/10 14:45 <td< th=""><th>Sample: GP9-2-2.5</th><th>Lab ID: 25466</th><th>2009</th><th>Collected: 08/24/1</th><th>0 09:15</th><th>5 Received: 08</th><th>8/24/10 15:15 N</th><th>Aatrix: Solid</th><th></th></td<>	Sample: GP9-2-2.5	Lab ID: 25466	2009	Collected: 08/24/1	0 09:15	5 Received: 08	8/24/10 15:15 N	Aatrix: Solid	
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Quad Oto MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3050 Chromium 42.7 mg/kg 1.2 1 08/27/10 07:06 08/30/10 13:52 7440-47-3 aad 7.3 mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:24 7789-92-1 Benium ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:24 7789-92-1 Silver ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:24 7789-92-1 Ar1 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 3546 08/26/10 08:21 08/26/10 12:25 7439-97-6 Z70 MSSV PAH by SM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 08/27/10 14:45 09/01/10 00:24 83-32-9 Keenaphthene ND <utd>ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 83-32-9 Minhaccene 12.0ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24</utd>	Results reported on a "dry-weight	t" basis							
Approximation 42.7 mg/kg 1.2 1 08/27/10 07:06 08/30/10 13:52 7430-87-3 aed 7.3 mg/kg 1.2 1 08/27/10 07:06 08/30/10 13:52 7439-92-1 silver ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:44 742-49-2 471 Mercury Analytical Method: EPA 7471 Preparation KET 7439-97-6 270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation KET 7439-97-6 270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation KET 5001/10 00:24 203-96-8 canaphthylene ND ug/kg 8.4 1 08/27/10 1445 0901/10 00:24 203-96-8 canaphthylene 1.2 ug/kg 8.4 1 08/27/10 1445 0901/10 00:24 203-96-8 canaphthylene 1.2 ug/kg 8.4 1 08/27/10 1445 0901/10 00:24 203-92 kerzo(b/litoranthene 2.3 ug/kg 8.4 1 08/27/10 1445 0901/10 00:24 216-01-9			Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
aad 7.3 mg/rg 1.2 1 08/27/10 07:06 08/30/10 13:52 7438-92:1 Salenium ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 13:52 7439-92:1 Salenium ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 13:52 7439-97:6 AT1 Mercury ND mg/kg 0.12 1 08/26/10 08:21 08/26/10 12:55 7439-97:6 Z70 MSSV PAH by SIM Analytical Method: EPA 7471 Preparation EPA 354 Cenaphthene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 23:32-9 Genaphthene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 20:32-9 Genaphthene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 20:92-9 Genaphthene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 20:92-9 Genaphthene 12.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 20:93-9 Genazolgh.Jiporeni 13.0 ug	6010 MET ICP	Analytical Metho	d: EPA 60	10 Preparation Meth	hod: EP	A 3050			
aad 7.3 mp/sq 1.2 1 08/27/10 07:06 08/30/10 12:24 7 743-92:2 balenium ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:4 7 471 Mongkg 6.2 5 08/27/10 07:06 08/30/10 12:4 7 471 Mongkg 0.12 1 08/26/10 08:21 7 7439-97-6 270 MSV PAH by SIM Analytical Method: EPA 3270 by SIM Preparation EPA 3546 1 08/27/10 14:45 09/01/10 02:4 20:96-6 3 Vennaphthyne ND <u kg<="" pt="" td=""> 8.4 1 08/27/10 14:45 09/01/10 02:4 20:92-2 14:45 09/01/10 02:4 20:92-2 14:45 09/01/10 02:4 20:92-2 14:45 09/01/10 02:4 20:92-2 14:45 09/01/10 02:4 20:92-2 14:45 09/01/10 02:4 20:92-2 14:45 09/01/10 02:4</u>	Chromium	42.7 mg/k	kg	1.2	1	08/27/10 07:06	08/30/10 13:52	7440-47-3	
ND mp/rg 6.2 5 08/27/10 07:06 08/30/10 12:4 7782-49-2 AT1 MD mg/rg 6.2 5 08/27/10 07:06 08/30/10 12:4 7440-22-4 AT1 Manjutical Method: EPA 7471 Preparation Value 7439-97-6 7439-97-6 Arcury ND mg/rg 0.12 1 08/26/10 08/26/10 743 7439-97-6 Compathemen ND ug/rg 8.4 1 08/27/10 14:45 09/01/10 00:24 20-3-2-7 Keenaphthylene ND ug/rg 8.4 1 08/27/10 14:45 09/01/10 02:4 6-55-3 Keenaphthylene 12.2 ug/rg 8.4 1 08/27/10 14:45 09/01/10 02:4 6-55-3 Keenaphthene 13.2 ug/rg 8.4 1 08/27/10 14:45 09/01/10 02:4 20-92-2 Keenaphthene 13.3 ug/rg 8.4	Lead	7.3 mg/k	g	1.2	1	08/27/10 07:06	08/30/10 13:52	7439-92-1	
ND mg/kg 6.2 6 98/27/10 70:0 98/30/10 12:4 7440-22-4 471 Mercury Analytical Method: EPA 7471 Preparation Method: EVA Array ND mg/kg 0.12 1 98/26/10 82:5 7439-97-6 Array Analytical Method: EPA 8270 by SIM Preparation Method: EVA 82/2010 12:5 7439-97-6 Array Method: ND mg/kg 8.4 1 08/27/10 14:45 90/11/0 00:24 20-8-8 Koenaphthylene ND ug/kg 8.4 1 08/27/10 14:45 90/01/10 00:24 20-8-8 Koenaphthylene 12.6 ug/kg 8.4 1 08/27/10 14:45 90/01/10 00:24 20-8-8 Kortopkinene 13.1 ug/kg 8.4 1 08/27/10 14:45 90/01/10 00:24 20-8-2 Verzo(sh.1)pervisene 13.9 ug/kg 8.4 1 08/27/10 14:45 90/01/10 00:24 20-8-2 Verzo(sh.1)pervisene 13.9 ug/kg 8.4 1 08/27/10 14:45 90/01/10 00:24 20-7-0-8-3 Verzo(sh)pervisene 13.9 ug/kg 8.4	Selenium	-	-	6.2	5	08/27/10 07:06	08/30/10 12:44	7782-49-2	
Arcury ND mg/kg 0.12 1 08/26/10 08:21 08/26/10 12:25 7439-97-6 Z70 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Locenaphthylene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 233-29 Locenaphthylene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 208-96-8 Inthracene 12.6 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 208-96-8 Derzo(a)phyrene 14.7 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-92-2 Jenzo(a)filuoranthene 23.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-92-2 Jenzo(b)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-08-9 Juoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-73-7 Juoranthene 12.0 ug/kg 8.4	Silver	-	-	6.2	5	08/27/10 07:06	08/30/10 12:44	7440-22-4	
Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 28-352-9 Acenaphthylene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 208-96-8 Berzo(a)anthracene 12.6 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 50-55-3 Berzo(a)anthracene 13.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-92-2 Berzo(a)filuoranthene 23.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-92-2 Berzo(a)filuoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-92-2 Diberz(a, h)anthracene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-93-3 Uarone ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-73-7 Uarone ND ug/kg 8.4 1	7471 Mercury	Analytical Metho	d: EPA 74	71 Preparation Meth	hod: EP	A 7471			
ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 83-32-9 kcenaphthylene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 208-96-8 knthracene 12.6 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 120-12-7 Benzo(a)pyrene 14.7 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 205-93-2 Benzo(k)fluoranthene 23.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 205-93-2 Benzo(k)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 207-08-9 Shenzo(k)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 207-08-9 Shenzo(k)fluoranthene 13.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 26-	Mercury	ND mg/k	g	0.12	1	08/26/10 08:21	08/26/10 12:25	7439-97-6	
ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 208-96-8 Nnthracene 12.6 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 208-96-8 Benzo(a)prene 14.7 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 56-55-3 Benzo(h)prene 13.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-99-2 Benzo(h)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-08-9 Benzo(h)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-08-9 Dibenz(a, h)anthracene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 26-44-0 Uorene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 26-44-0 Uorene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 26-47-0 Hoten/12 ug/kg <td>8270 MSSV PAH by SIM</td> <td>Analytical Metho</td> <td>d: EPA 82</td> <td>70 by SIM Preparati</td> <td>ion Metl</td> <td>hod: EPA 3546</td> <td></td> <td></td> <td></td>	8270 MSSV PAH by SIM	Analytical Metho	d: EPA 82	70 by SIM Preparati	ion Metl	hod: EPA 3546			
Nnthracene 12.6 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 120-12-7 Benzo(a)prinzene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 56-55-3 Benzo(a)prinzene 1.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-99-2 Benzo(b)fluoranthene 2.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-08- Benzo(k)fluoranthene 1.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-08- Benzo(k)fluoranthene 2.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-07-3 Benzo(k)fluoranthene 2.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-07-3 Benzo(k)fluoranthene 2.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 206-44-0 Benzo(k)fluoranthene 2.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 21-20-3<	Acenaphthene	ND ug/k	g	8.4	1	08/27/10 14:45	09/01/10 00:24	83-32-9	
Benzo(a)anthracene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 56-55-3 Benzo(a)pyrene 14.7 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 50-32-8 Benzo(b)fluoranthene 23.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 25-92-2 Benzo(b)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-08-9 Dibenz(a,h)anthracene 10.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 28-70-3 Uoranthene 22.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 25-70-3 Uoranthene 22.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 26-44-0 Uoranthene 12.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 19-75 Iuoranthene 12.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 19-75 Iuoranthene 12.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 12-75 Iuoranthene 12.2 ug/kg 8.4 1 </td <td>Acenaphthylene</td> <td>ND ug/kg</td> <td>g</td> <td>8.4</td> <td>1</td> <td>08/27/10 14:45</td> <td>09/01/10 00:24</td> <td>208-96-8</td> <td></td>	Acenaphthylene	ND ug/kg	g	8.4	1	08/27/10 14:45	09/01/10 00:24	208-96-8	
Banzo(a)pyrene 14.7 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 50-32-8 Banzo(b)fluoranthene 23.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-99-2 Banzo(b,f)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 216-99-2 Banzo(b,f)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 218-01-9 Banzo(b,f)fuoranthene 22.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 266-44-0 Buoranthene 42.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 86-73-7 Huoranthene 12.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 87-37 Hudhol(1,2,3-cd)pyrene 11.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 87-37 Hudhylnaphthalene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 87-37 Hudhylnaphthalene 16.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-20-3 Henthylnaphthalene 16.1 u	Anthracene	12.6 ug/kg	g	8.4	1	08/27/10 14:45	09/01/10 00:24	120-12-7	
Benzo(b)fluoranthene 23.9 u/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 205-99-2 Benzo(k), h)perylene 11.3 u/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 121-24-2 Benzo(k), fluoranthene 13.9 u/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 218-01-9 Benzo(k), fluoranthene 22.0 u/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 28-01-9 Bibenz(a, h) anthracene ND u/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 26-6-4-0 Biopranthene 42.4 u/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 26-73-7 Iuorene ND u/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-2-0 Methylnaphthalene 16.2 u/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-2-0 Phenanthrene 32.3 u/kg 8.4 1 08/27/10	Benzo(a)anthracene	16.2 ug/kg	g	8.4	1	08/27/10 14:45	09/01/10 00:24	56-55-3	
Banzo(g, h, i)perylene 11.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 191-24-2 Benzo(k)(iluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 207-08-9 Diberz(a, h)anthracene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:22 218-01-9 Diberz(a, h)anthracene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 268-44-0 Cluoranthene 42.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 268-73-7 Cluoranthene 11.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-37-6 Anden(12.3-cd)pyrene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 85-01-8 Prene 23.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 85-01-8 Strophonphenyl (S) 63 % 55-136 <td>Benzo(a)pyrene</td> <td>14.7 ug/kg</td> <td>g</td> <td>8.4</td> <td>1</td> <td>08/27/10 14:45</td> <td>09/01/10 00:24</td> <td>50-32-8</td> <td></td>	Benzo(a)pyrene	14.7 ug/kg	g	8.4	1	08/27/10 14:45	09/01/10 00:24	50-32-8	
Benzo(k)fluoranthene 13.9 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 207-08-9 Chrysene 22.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 218-01-9 Dibenz(a,h)anthracene ND <ug kg<="" td=""> 8.4 1 08/27/10 14:45 09/01/10 00:24 206-44-0 Uoranthene 42.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 206-44-0 Uoranthene 42.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 206-44-0 Uoranthene 42.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 206-44-0 Hothylinaphthalene 11.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Methylinaphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Vehenathrene 22.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-20-3 Vehenathrene 23.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 82-10-8 Verene 29.0 ug/kg 8.4</ug>	Benzo(b)fluoranthene	23.9 ug/kg	g	8.4	1	08/27/10 14:45	09/01/10 00:24	205-99-2	
Schrysene 22.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 218-01-9 Dibenz(a,h)anthracene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 206-44-0 Diuoranthene 42.4 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 86-73-7 Iduoranthene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 86-73-7 Iduoranthene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 89-39-5 -Methylnaphthalene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-2-0 -Methylnaphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-2-0 -Methylnaphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-20-3 -Methylnaphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 85-01-8 -Mehanthrene 32.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 85-01-8 -Fluorobiphenyl (S) 63 55-136	Benzo(g,h,i)perylene	11.3 ug/k	g	8.4	1	08/27/10 14:45	09/01/10 00:24	191-24-2	
Chrysene 22.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 218-01-9 Dibenz(a,h)anthracene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 206-44-0 Dionene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 86-73-7 Iduoranthene ND ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 87-37-3 Indeno(1,2,3-cd)pyrene 11.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 87-37-3 -Methylnaphthalene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 87-37-3 -Methylnaphthalene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 19-39-5 -Methylnaphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 12-0-3 -Methylnaphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 12-0-3 -Preme 2.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 12-0-3 -Fluorobiphenyl (S) 63 55-136	Benzo(k)fluoranthene	13.9 ug/k	g	8.4	1	08/27/10 14:45	09/01/10 00:24	207-08-9	
Provention42.4 ug/kg8.4108/27/10 14:4509/01/10 00:24206-44-0ProveneND ug/kg8.4108/27/10 14:4509/01/10 00:2486-73-7Adeno(1,2,3-cd)pyrene11.2 ug/kg8.4108/27/10 14:4509/01/10 00:2491-30-5-Methylnaphthalene16.2 ug/kg8.4108/27/10 14:4509/01/10 00:2491-57-6-Methylnaphthalene18.1 ug/kg8.4108/27/10 14:4509/01/10 00:2491-57-6-Methylnaphthalene18.1 ug/kg8.4108/27/10 14:4509/01/10 00:2491-57-6-Nprene29.0 ug/kg8.4108/27/10 14:4509/01/10 00:2491-50-3-Prone32.3 ug/kg8.4108/27/10 14:4509/01/10 00:2491-50-3-Prone29.0 ug/kg8.4108/27/10 14:4509/01/10 00:24129-00-0-Fluorobiphenyl (S)63 %55-136108/27/10 14:4509/01/10 00:24129-00-0-Fluorobiphenyl (S)63 %55-136108/27/10 14:4509/01/10 00:24129-00-0-SenzeneND ug/kg3.1108/27/10 14:4509/01/10 00:241718-51-0-SenzeneND ug/kg3.1108/25/10 17:40171-43-2-SenzeneND ug/kg3.1108/25/10 17:40100-41-4-Solutoromethane (S)101 %80-136108/25/10 17:40133-20-7-Dibromofluoromethane (S)101 %80-136108/25/10 17:4013	Chrysene	22.0 ug/k	g	8.4	1	08/27/10 14:45	09/01/10 00:24	218-01-9	
Tuorene ND <ug kg<="" th=""> 8.4 1 08/27/10 14:45 09/01/10 00:24 86-73-7 Andeno(1,2,3-cd)pyrene 11.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 193-39-5 -Methylnaphthalene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 -Methylnaphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Aphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Aphthalene 13.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Aphthalene 32.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 82-0-8 2n Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 260/5035A 101 Kag 71 % 60-144</ug>	Dibenz(a,h)anthracene	ND ug/k	g	8.4	1	08/27/10 14:45	09/01/10 00:24	53-70-3	
Indeno(1,2,3-cd)pyrene 11.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 193-39-5 -Methylnaphthalene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 90-12-0 P-Methylnaphthalene 24.8 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Japhthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-20-3 Phenanthrene 32.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-0-0 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Pyrene 29.0 ug/kg 8.1 1 08/27/10 14:45 09/01/10 00:24 171-8-5 2005035A Volatile Organics Analytical Method: EPA 8260 <t< td=""><td>Fluoranthene</td><td>42.4 ug/k</td><td>g</td><td>8.4</td><td>1</td><td>08/27/10 14:45</td><td>09/01/10 00:24</td><td>206-44-0</td><td></td></t<>	Fluoranthene	42.4 ug/k	g	8.4	1	08/27/10 14:45	09/01/10 00:24	206-44-0	
Indeno(1,2,3-cd)pyrene 11.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 193-39-5 -Methylnaphthalene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 90-12-0 P-Methylnaphthalene 24.8 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Japhthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-20-3 Phenanthrene 32.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-0-0 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Pyrene 29.0 ug/kg 8.1 1 08/27/10 14:45 09/01/10 00:24 171-8-5 2005035A Volatile Organics Analytical Method: EPA 8260 <t< td=""><td>Fluorene</td><td>ND ug/k</td><td>g</td><td>8.4</td><td>1</td><td>08/27/10 14:45</td><td>09/01/10 00:24</td><td>86-73-7</td><td></td></t<>	Fluorene	ND ug/k	g	8.4	1	08/27/10 14:45	09/01/10 00:24	86-73-7	
-Methylnaphthalene 16.2 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 90-12-0 Methylnaphthalene 24.8 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Alaphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-20-3 Phenanthrene 32.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 85-01-8 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 F-Fluorobiphenyl (S) 63 % 55-136 1 08/27/10 14:45 09/01/10 00:24 129-00-0 260/5035A Volatile Organics Analytical Method: EPA 8260 1 08/27/10 14:45 09/01/10 00:24 171-65-10 260/5035A Volatile Organics Analytical Method: EPA 8260 1 08/25/10 17:40 100-41-4 30lene ND ug/kg 3.1 1 08/25/10 17:40 104-43-2 30lene ND ug/kg 9.2 1 08/25/10 17:40 100-41-4 30lene ND ug/kg 9.2 1 08/25/10 17:40 108-83-3 30l	Indeno(1,2,3-cd)pyrene	-	-	8.4	1	08/27/10 14:45	09/01/10 00:24	193-39-5	
Perform 24.8 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-57-6 Japhthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-20-3 Prenanthrene 32.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 85-01-8 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 E-Fluorobiphenyl (S) 63 % 55-136 1 08/27/10 14:45 09/01/10 00:24 321-60-8 21 Cephenyl-d14 (S) 71 % 60-144 1 08/27/10 14:45 09/01/10 00:24 321-60-8 21 Cedo/5035A Volatile Organics Analytical Method: EPA 8260 1 08/25/10 17:40 01-43-2 171-851-0 Senzene ND ug/kg 3.1 1 08/25/10 17:40 10-41-4 100-41-4 Oluene ND ug/kg 3.1 1 08/25/10 17:40 103-20-7 100-41-4 Obloromfluoromethane (S) 101 % 80-136 1 08/25/10 17:40 108-88-3 100-41-4 108-88-3 -Promofluorobenzene (S) 84 %	1-Methylnaphthalene	-	-	8.4	1	08/27/10 14:45	09/01/10 00:24	90-12-0	
Naphthalene 18.1 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 91-20-3 Phenanthrene 32.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 85-01-8 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Prene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Prene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Prene 63 % 55-136 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Prene 71 % 60-144 1 08/27/10 14:45 09/01/10 00:24 121-60-8 2n Prene 71 % 60-144 1 08/27/10 14:45 09/01/10 00:24 1718-51-0 Precente ND ug/kg 3.1 1 08/25/10 17:40 174-3-2 Precente ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Oluene ND ug/kg 9.2 1 08/25/10 17:40 1868-53-7 Oluene-d8 (S) 84 % <td>2-Methylnaphthalene</td> <td></td> <td></td> <td>8.4</td> <td>1</td> <td>08/27/10 14:45</td> <td>09/01/10 00:24</td> <td>91-57-6</td> <td></td>	2-Methylnaphthalene			8.4	1	08/27/10 14:45	09/01/10 00:24	91-57-6	
Phenanthrene 32.3 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 85-01-8 Pyrene 29.0 ug/kg 8.4 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Price 63 % 55-136 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Price 63 % 55-136 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Price 63 % 55-136 1 08/27/10 14:45 09/01/10 00:24 129-00-0 Price 71 % 60-144 1 08/27/10 14:45 09/01/10 00:24 1718-51-0 Price 71 % 60-144 1 08/27/10 14:45 09/01/10 00:24 1718-51-0 Price 71 % 60-144 1 08/27/10 14:45 09/01/10 00:24 1718-51-0 Price 71 % 60-144 1 08/27/10 17:40 1743-2 1743-2 Price ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Price ND ug/kg 9.2 1	Naphthalene	-	-	8.4	1	08/27/10 14:45	09/01/10 00:24	91-20-3	
Pyrene29.0 ug/kg8.4108/27/10 14:4509/01/10 00:24129-00-0P-Fluorobiphenyl (S)63 %55-136108/27/10 14:4509/01/10 00:24321-60-82nTerphenyl-d14 (S)71 %60-144108/27/10 14:4509/01/10 00:241718-51-0260/5035A Volatile OrganicsAnalytical Method: EPA 8260BenzeneND ug/kg3.1108/25/10 17:4071-43-2EthylbenzeneND ug/kg3.1108/25/10 17:40100-41-4TolueneND ug/kg3.1108/25/10 17:40100-41-4TolueneND ug/kg9.2108/25/10 17:401330-20-7Dibromofluoromethane (S)101 %80-136108/25/10 17:40130-20-7Oluene-d8 (S)84 %80-120108/25/10 17:401368-53-7Fercent MoistureAnalytical Method: ASTM D2974-87108/25/10 17:4017060-07-0	Phenanthrene	-	-	8.4	1	08/27/10 14:45	09/01/10 00:24	85-01-8	
E-Fluorobiphenyl (S) 63 % 55-136 1 08/27/10 14:45 09/01/10 00:24 321-60-8 2n Terphenyl-d14 (S) 71 % 60-144 1 08/27/10 14:45 09/01/10 00:24 1718-51-0 2n 2260/5035A Volatile Organics Analytical Method: EPA 8260 3.1 1 08/25/10 17:40 71-43-2 Senzene ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Foluene ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Foluene ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Foluene ND ug/kg 9.2 1 08/25/10 17:40 108-88-3 Kylene (Total) ND ug/kg 9.2 1 08/25/10 17:40 1330-20-7 Dibromofluoromethane (S) 101 % 80-136 1 08/25/10 17:40 1308-25-7 Foluene-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 I-Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 -2-Dichloroethane-d4 (S) 88 % 80-143 1	Pyrene	-	-	8.4	1	08/27/10 14:45	09/01/10 00:24	129-00-0	
Terphenyl-d14 (S) T1 % 60-144 1 08/27/10 14:45 09/01/10 00:24 1718-51-0 260/5035A Volatile Organics Analytical Method: EPA 8260 Senzene ND ug/kg 3.1 1 08/25/10 17:40 71-43-2 Senzene ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Senzene ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Stylene ND ug/kg 9.2 1 08/25/10 17:40 108-88-3 Sylene (Total) ND ug/kg 9.2 1 08/25/10 17:40 1330-20-7 Dibromofluoromethane (S) 101 % 80-136 1 08/25/10 17:40 1868-53-7 Oluene-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 I-Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 Q-2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 80-143 1 08/25/10 17:40 17060-07-0	5		0	55-136	1	08/27/10 14:45	09/01/10 00:24	321-60-8	2n
Benzene ND ug/kg 3.1 1 08/25/10 17:40 71-43-2 Ethylbenzene ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Toluene ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Toluene ND ug/kg 3.1 1 08/25/10 17:40 108-88-3 Kylene (Total) ND ug/kg 9.2 1 08/25/10 17:40 1330-20-7 Dibromofluoromethane (S) 101 % 80-136 1 08/25/10 17:40 1868-53-7 Toluene-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 I-Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 .2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17060-07-0	Terphenyl-d14 (S)	71 %		60-144	1	08/27/10 14:45	09/01/10 00:24	1718-51-0	
Kithylbenzene ND ug/kg 3.1 1 08/25/10 17:40 100-41-4 Toluene ND ug/kg 3.1 1 08/25/10 17:40 108-88-3 Valuene (Total) ND ug/kg 9.2 1 08/25/10 17:40 1330-20-7 Dibromofluoromethane (S) 101 % 80-136 1 08/25/10 17:40 1868-53-7 Toluene-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 I-Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 .2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 1760-07-0	8260/5035A Volatile Organics	Analytical Metho	d: EPA 82	60					
ND ug/kg 3.1 1 08/25/10 17:40 108-88-3 (ylene (Total) ND ug/kg 9.2 1 08/25/10 17:40 1330-20-7 Dibromofluoromethane (S) 101 % 80-136 1 08/25/10 17:40 1868-53-7 Olucne-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 I-Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 .2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17660-07-0	Benzene	ND ug/k	g	3.1	1		08/25/10 17:40	71-43-2	
ND ug/kg 9.2 1 08/25/10 17:40 1330-20-7 Dibromofluoromethane (S) 101 % 80-136 1 08/25/10 17:40 1868-53-7 Oluene-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 I-Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 _2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17060-07-0	Ethylbenzene	ND ug/k	g	3.1	1		08/25/10 17:40	100-41-4	
ND ug/kg 9.2 1 08/25/10 17:40 1330-20-7 Dibromofluoromethane (S) 101 % 80-136 1 08/25/10 17:40 1868-53-7 Oluene-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 I-Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 _2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17060-07-0	Toluene	ND ug/k	g	3.1	1		08/25/10 17:40	108-88-3	
Dibromofluoromethane (S) 101 % 80-136 1 08/25/10 17:40 1868-53-7 Foluene-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 I-Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 .2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17060-07-0	Xylene (Total)	-	-	9.2	1		08/25/10 17:40	1330-20-7	
Followene-d8 (S) 84 % 80-120 1 08/25/10 17:40 2037-26-5 Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 J-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 S <th< td=""><td>Dibromofluoromethane (S)</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></th<>	Dibromofluoromethane (S)				1				
Bromofluorobenzene (S) 95 % 72-122 1 08/25/10 17:40 460-00-4 ,2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 V V V V V	Toluene-d8 (S)	84 %		80-120	1		08/25/10 17:40	2037-26-5	
,2-Dichloroethane-d4 (S) 88 % 80-143 1 08/25/10 17:40 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87 88 % 80-143 1	4-Bromofluorobenzene (S)			72-122	1		08/25/10 17:40	460-00-4	
	1,2-Dichloroethane-d4 (S)	88 %		80-143	1		08/25/10 17:40	17060-07-0	
Percent Moisture 22.5 % 0.10 1 08/27/10 12:00	Percent Moisture	Analytical Metho	d: ASTM [02974-87					
	Percent Moisture	22.5 %		0.10	1		08/27/10 12:00		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Project: BPOLY

Pace Project No.: 254662

Sample: GP9-4-4.5	Lab ID: 2546	62010	Collected: 08/24/1	0 09:30	Received: 08	/24/10 15:15 N	latrix: Solid	
Results reported on a "dry-weig	aht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Meth	od: EPA 8	270 by SIM Preparati	ion Meth	od: EPA 3546			
Acenaphthene	ND ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	83-32-9	
Acenaphthylene	ND ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	208-96-8	
Anthracene	ND ug/	-	8.9	1	08/27/10 14:45	09/01/10 00:41	120-12-7	
Benzo(a)anthracene	14.3 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	56-55-3	
Benzo(a)pyrene	14.2 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	50-32-8	
Benzo(b)fluoranthene	16.3 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	205-99-2	
Benzo(g,h,i)perylene	ND ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	191-24-2	
Benzo(k)fluoranthene	14.8 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	207-08-9	
Chrysene	18.4 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	218-01-9	
Dibenz(a,h)anthracene	ND ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	53-70-3	
Fluoranthene	40.5 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	206-44-0	
Fluorene	ND ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	86-73-7	
Indeno(1,2,3-cd)pyrene	9.3 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	193-39-5	
1-Methylnaphthalene	ND ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	90-12-0	
2-Methylnaphthalene	12.3 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	91-57-6	
Naphthalene	11.0 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	91-20-3	
Phenanthrene	25.3 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	85-01-8	
Pyrene	29.0 ug/	kg	8.9	1	08/27/10 14:45	09/01/10 00:41	129-00-0	
2-Fluorobiphenyl (S)	67 %		55-136	1	08/27/10 14:45	09/01/10 00:41	321-60-8	2n
Terphenyl-d14 (S)	67 %		60-144	1	08/27/10 14:45	09/01/10 00:41	1718-51-0	
Percent Moisture	Analytical Meth	od: ASTM	D2974-87					
Percent Moisture	26.2 %		0.10	1		08/27/10 12:03		
Sample: GP9-5.5-6	Lab ID: 2546	62011	Collected: 08/24/1	0 09:45	Received: 08	/24/10 15:15 N	latrix: Solid	
•		62011	Collected: 08/24/1	0 09:45	Received: 08	/24/10 15:15 N	latrix: Solid	
Sample: GP9-5.5-6 Results reported on a "dry-weig Parameters		6 2011 Units	Collected: 08/24/1 Report Limit	0 09:45 DF	Received: 08 Prepared	/24/10 15:15 N Analyzed	fatrix: Solid CAS No.	Qual
Results reported on a "dry-weig Parameters	i ght" basis Results	Units		DF	Prepared			Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG	ght" basis Results Analytical Meth	Units od: NWTF	Report Limit	DF	Prepared PA 3546			Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG	ght" basis Results Analytical Meth ND mg	Units od: NWTP /kg	Report Limit PH-Dx Preparation Me	DF ethod: E	Prepared PA 3546 09/01/10 19:05	Analyzed	CAS No.	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	ght" basis Results Analytical Meth ND mg ND mg	Units od: NWTP /kg	Report Limit PH-Dx Preparation Me 25.0	DF ethod: E 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05	Analyzed 09/02/10 17:13 09/02/10 17:13	CAS No. 64742-65-0	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG	ght" basis Results Analytical Meth ND mg	Units od: NWTP /kg	Report Limit PH-Dx Preparation Me 25.0 100	DF ethod: E 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	Analyzed 09/02/10 17:13	CAS No. 64742-65-0 630-02-4	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	ght" basis Results Analytical Meth ND mg ND mg 89 % 98 %	Units od: NWTP /kg /kg	Report Limit PH-Dx Preparation Me 25.0 100 50-150	DF ethod: E 1 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	Analyzed 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13	CAS No. 64742-65-0 630-02-4	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	ght" basis Results Analytical Meth ND mg ND mg 89 % 98 %	Units od: NWTF /kg /kg od: NWTF	Report Limit PH-Dx Preparation Me 25.0 100 50-150 50-150	DF ethod: E 1 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	Analyzed 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13	CAS No. 64742-65-0 630-02-4	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	ght" basis Results Analytical Meth ND mg ND mg 89 % 98 % Analytical Meth	Units od: NWTF /kg /kg od: NWTF	Report Limit PH-Dx Preparation Ma 25.0 100 50-150 50-150 PH-Gx Preparation Ma	DF ethod: E 1 1 1 1 ethod: N	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00	Analyzed 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13	CAS No. 64742-65-0 630-02-4 84-15-1	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	ght" basis Results Analytical Meth ND mg ND mg 89 % 98 % Analytical Meth 13.8 mg	Units od: NWTF /kg /kg od: NWTF	Report Limit PH-Dx Preparation Me 25.0 100 50-150 50-150 PH-Gx Preparation Me 6.9	DF ethod: E 1 1 1 1 ethod: N 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 08/31/10 01:43	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Analytical Meth ND mg ND mg 89 % 98 % Analytical Meth 13.8 mg 110 % 105 %	Units od: NWTF /kg od: NWTF /kg	Report Limit 2H-Dx Preparation Me 25.0 100 50-150 50-150 2H-Gx Preparation Me 6.9 50-150	DF ethod: E 1 1 1 1 1 ethod: N 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 08/31/10 01:43 08/31/10 01:43	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Analytical Meth ND mg ND mg 89 % 98 % Analytical Meth 13.8 mg 110 % 105 %	Units od: NWTF /kg od: NWTF /kg od: EPA 6	Report Limit PH-Dx Preparation Me 25.0 100 50-150 50-150 PH-Gx Preparation Me 6.9 50-150 50-150	DF ethod: E 1 1 1 1 1 ethod: N 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050	Analyzed 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 08/31/10 01:43 08/31/10 01:43	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP	Analytical Meth ND mg ND mg 89 % 98 % Analytical Meth 13.8 mg 110 % 105 % Analytical Meth	Units od: NWTF /kg od: NWTF /kg od: EPA 6 /kg	Report Limit PH-Dx Preparation Me 25.0 100 50-150 50-150 PH-Gx Preparation Me 6.9 50-150 50-150 50-150	DF ethod: E 1 1 1 1 ethod: N 1 1 1 1 nod: EP/	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06	Analyzed 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 09/02/10 17:13 08/31/10 01:43 08/31/10 01:43 08/31/10 01:43	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2	Qual

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 24 of 47

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Sto M +CCOROTHO

Project: BPOLY

Pace Project No.: 254662

Sample: GP9-5.5-6	Lab ID: 254	662011	Collected: 08/24/1	10 09:45	Received: 08	3/24/10 15:15 N	latrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Met	hod: EP	A 3050			
Chromium	36.5 m	g/kg	1.3	1	08/27/10 07:06	08/30/10 13:55	7440-47-3	
Lead	10.7 m	g/kg	1.3	1	08/27/10 07:06	08/30/10 13:55	7439-92-1	
Selenium	ND m	g/kg	6.5	5	08/27/10 07:06	08/30/10 12:46	7782-49-2	
Silver	ND m	g/kg	6.5	5	08/27/10 07:06	08/30/10 12:46	7440-22-4	
7471 Mercury	Analytical Met	hod: EPA 74	71 Preparation Met	hod: EP	A 7471			
Mercury	ND m	g/kg	0.11	1	08/26/10 08:21	08/26/10 12:27	7439-97-6	
8270 MSSV PAH by SIM	Analytical Met	hod: EPA 82	270 by SIM Preparat	ion Meth	nod: EPA 3546			
Acenaphthene	ND ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	83-32-9	
Acenaphthylene	8.6 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	208-96-8	
Anthracene	20.5 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	120-12-7	
Benzo(a)anthracene	33.9 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	56-55-3	
Benzo(a)pyrene	31.7 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	50-32-8	
Benzo(b)fluoranthene	27.7 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	205-99-2	
Benzo(g,h,i)perylene	17.7 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	191-24-2	
Benzo(k)fluoranthene	29.0 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	207-08-9	
Chrysene	33.4 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	218-01-9	
Dibenz(a,h)anthracene	ND ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	53-70-3	
Fluoranthene	93.2 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	206-44-0	
Fluorene	16.7 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	86-73-7	
Indeno(1,2,3-cd)pyrene	17.2 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	193-39-5	
1-Methylnaphthalene	10.8 ug	g/kg	8.6	1	08/27/10 14:45	08/31/10 22:28	90-12-0	
2-Methylnaphthalene	18.0 ug		8.6	1	08/27/10 14:45	08/31/10 22:28	91-57-6	
Naphthalene	18.4 ug		8.6	1	08/27/10 14:45	08/31/10 22:28	91-20-3	
Phenanthrene	87.7 ug		8.6	1	08/27/10 14:45	08/31/10 22:28	85-01-8	
Pyrene	65.2 ug		8.6	1	08/27/10 14:45	08/31/10 22:28	129-00-0	
2-Fluorobiphenyl (S)	72 %		55-136	1	08/27/10 14:45	08/31/10 22:28	321-60-8	2n
Terphenyl-d14 (S)	68 %)	60-144	1	08/27/10 14:45	08/31/10 22:28	1718-51-0	
8260/5035A Volatile Organics	Analytical Met	hod: EPA 82	260					
Benzene	ND ug	g/kg	3.1	1		08/25/10 18:00	71-43-2	
Ethylbenzene	ND ug		3.1	1		08/25/10 18:00	100-41-4	
Toluene	ND ug		3.1	1		08/25/10 18:00	108-88-3	
Xylene (Total)	ND ug		9.2	1		08/25/10 18:00	1330-20-7	
Dibromofluoromethane (S)	97 %		80-136	1		08/25/10 18:00		
Toluene-d8 (S)	89 %		80-120	1		08/25/10 18:00		
4-Bromofluorobenzene (S)	92 %		72-122	1		08/25/10 18:00		
1,2-Dichloroethane-d4 (S)	88 %		80-143	1		08/25/10 18:00		
Percent Moisture	Analytical Met	hod: ASTM	D2974-87					
Percent Moisture	23.3 %)	0.10	1		08/27/10 12:06		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Project: BPOLY

Pace Project No.: 254662

Sample: MW7-2-2.5 Results reported on a "dry-weig	Lab ID: 2546620	12 Collected: 08	3/24/10 10:3	30 Received: 08	8/24/10 15:15 N	latrix: Solid	
Parameters		Jnits Report Li	mit DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Dx GCS SG	Analytical Method:	NWTPH-Dx Preparati	on Method:	EPA 3546			
Diesel Range SG	ND mg/kg	:	20.3 1	09/01/10 19:05	09/02/10 17:30		
Motor Oil Range SG	ND mg/kg	8	31.0 1	09/01/10 19:05	09/02/10 17:30	64742-65-0	
n-Octacosane (S) SG	97 %	50-	150 1	09/01/10 19:05	09/02/10 17:30	630-02-4	
o-Terphenyl (S) SG	106 %	50-	150 1	09/01/10 19:05	09/02/10 17:30	84-15-1	
NWTPH-Gx GCV	Analytical Method:	NWTPH-Gx Preparati	on Method:	NWTPH-Gx			
Gasoline Range Organics	ND mg/kg		4.9 1	08/28/10 19:00	08/29/10 09:37		
a,a,a-Trifluorotoluene (S)	109 %	50-	150 1	08/28/10 19:00	08/29/10 09:37	98-08-8	
4-Bromofluorobenzene (S)	106 %	50-	150 1	08/28/10 19:00	08/29/10 09:37	460-00-4	
6010 MET ICP	Analytical Method:	EPA 6010 Preparation	Method: E	PA 3050			
Arsenic	ND mg/kg		10.5 5	08/27/10 07:06	08/30/10 12:49	7440-38-2	
Barium	84.1 mg/kg	2	20.9 1	08/27/10 07:06	08/30/10 13:58	7440-39-3	
Cadmium	ND mg/kg		5.2 5	08/27/10 07:06	08/30/10 12:49	7440-43-9	
Chromium	22.8 mg/kg		1.0 1	08/27/10 07:06	08/30/10 13:58	7440-47-3	
_ead	6.6 mg/kg		1.0 1	08/27/10 07:06	08/30/10 13:58	7439-92-1	
Selenium	ND mg/kg		5.2 5	08/27/10 07:06	08/30/10 12:49	7782-49-2	
Silver	ND mg/kg		5.2 5	08/27/10 07:06	08/30/10 12:49	7440-22-4	
7471 Mercury	Analytical Method:	EPA 7471 Preparation	Method: E	PA 7471			
Mercury	ND mg/kg		D.11 1	08/26/10 08:21	08/26/10 12:29	7439-97-6	
3270 MSSV PAH by SIM	Analytical Method:	EPA 8270 by SIM Pre	paration Me	ethod: EPA 3546			
Acenaphthene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	83-32-9	
Acenaphthylene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	208-96-8	
Anthracene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	120-12-7	
Benzo(a)anthracene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	56-55-3	
Benzo(a)pyrene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	50-32-8	
Benzo(b)fluoranthene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	205-99-2	
Benzo(g,h,i)perylene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	191-24-2	
Benzo(k)fluoranthene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	207-08-9	
Chrysene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	53-70-3	
Fluoranthene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	206-44-0	
Fluorene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	86-73-7	
ndeno(1,2,3-cd)pyrene	ND ug/kg		7.2 1		09/01/10 02:20		
1-Methylnaphthalene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	90-12-0	
2-Methylnaphthalene	ND ug/kg		7.2 1		09/01/10 02:20		
Naphthalene	ND ug/kg		7.2 1		09/01/10 02:20		
Phenanthrene	ND ug/kg		7.2 1	08/27/10 14:45	09/01/10 02:20	85-01-8	
Pyrene	ND ug/kg		7.2 1		09/01/10 02:20		
2-Fluorobiphenyl (S)	61 %	55-	136 1		09/01/10 02:20		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 26 of 47

Project: BPOLY

Pace Project No.: 254662

Sample: MW7-2-2.5	Lab ID: 254	662012	Collected: 08/24/1	0 10:30	Received: 08	3/24/10 15:15	Matrix: Solid	
Results reported on a "dry-weigh								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Met	hod: EPA 82	260			_		
Benzene	ND ug	g/kg	3.0	1		08/25/10 18:18	3 71-43-2	
Ethylbenzene	ND ug		3.0	1		08/25/10 18:18	3 100-41-4	
Toluene	ND uç		3.0	1		08/25/10 18:18	3 108-88-3	
Xylene (Total)	ND uç		9.0	1		08/25/10 18:18	3 1330-20-7	
Dibromofluoromethane (S)	96 %		80-136	1		08/25/10 18:18	1868-53-7	
Toluene-d8 (S)	91 %		80-120	1		08/25/10 18:18	8 2037-26-5	
4-Bromofluorobenzene (S)	92 %		72-122	1		08/25/10 18:18	460-00-4	
1,2-Dichloroethane-d4 (S)	88 %		80-143	1		08/25/10 18:18	3 17060-07-0	
Percent Moisture	Analytical Met	hod: ASTM	D2974-87					
Percent Moisture	8.2 %		0.10	1		08/27/10 12:10)	
Sample: MW7-4-4.5	Lab ID: 254	662013	Collected: 08/24/1	10 10:40	Received: 08	B/24/10 15:15	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Met	hod: ASTM	D2974-87					
Percent Moisture	10.6 %		0.10	1		08/27/10 12:13	3	
Sample: MW7-6-6.5	Lab ID: 254	662014	Collected: 08/24/1	10 10:50	Received: 08	3/24/10 15:15 I	Matrix: Solid	
Results reported on a "dry-weigh								
	t" basis							
Parameters	<i>t" basis</i> Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Parameters	Results		Report Limit		·	Analyzed	CAS No.	Qual
Parameters NWTPH-Dx GCS SG	Analytical Met	hod: NWTP	H-Dx Preparation M	ethod: El	PA 3546			Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG	Results Analytical Met ND m	hod: NWTP g/kg	H-Dx Preparation M 24.3	ethod: El	PA 3546 09/01/10 19:05	09/02/10 18:18	3	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	Results Analytical Met ND m ND m	hod: NWTP g/kg g/kg	H-Dx Preparation M 24.3 97.4	ethod: El	PA 3546 09/01/10 19:05 09/01/10 19:05	09/02/10 18:18 09/02/10 18:18	3 64742-65-0	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	Results Analytical Met ND m	hod: NWTP g/kg g/kg	H-Dx Preparation M 24.3	ethod: El 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	09/02/10 18:18	3 3 64742-65-0 3 630-02-4	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	Results Analytical Met ND m ND m 104 % 106 %	hod: NWTP g/kg g/kg	H-Dx Preparation M 24.3 97.4 50-150	ethod: El 1 1 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18	3 3 64742-65-0 3 630-02-4	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	Results Analytical Met ND m ND m 104 % 106 % Analytical Met	hod: NWTP g/kg g/kg hod: NWTP	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M	ethod: El 1 1 1 1 ethod: N	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18	64742-65-0 630-02-4 8 84-15-1	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	Results Analytical Met ND m ND m 104 % 106 %	hod: NWTP g/kg g/kg hod: NWTP g/kg	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M	ethod: El 1 1 1 1 ethod: N	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18	64742-65-0 630-02-4 8 84-15-1	Qual
	Results Analytical Met ND m ND m 104 % 106 % Analytical Met ND m	hod: NWTP g/kg g/kg hod: NWTP g/kg	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M 6.8	ethod: El 1 1 1 1 ethod: N	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18	 64742-65-0 630-02-4 84-15-1 98-08-8 	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Results Analytical Met ND m 104 % 106 % Analytical Met ND m 115 % 103 %	hod: NWTP g/kg g/kg hod: NWTP g/kg	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M 6.8 50-150	ethod: El 1 1 1 1 ethod: N 1 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 08/31/10 02:08	 64742-65-0 630-02-4 84-15-1 98-08-8 	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Results Analytical Met ND m 104 % 106 % Analytical Met ND m 115 % 103 %	hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M 6.8 50-150 50-150	ethod: El 1 1 1 1 ethod: N 1 1 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 08/31/10 02:08	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic	Results Analytical Met ND m ND m 104 % 106 % Analytical Met 115 % 103 % Analytical Met	hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60 g/kg	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M 6.8 50-150 50-150 50-150	ethod: El 1 1 1 1 tethod: N 1 1 1 1 hod: EPA	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 07:06	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 08/31/10 02:08 08/31/10 02:08	 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP	Results Analytical Met ND m ND m 104 % 106 % Analytical Met 115 % 103 % Analytical Met ND m	hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60 g/kg g/kg	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M 6.8 50-150 50-150 010 Preparation Met 12.5	ethod: El 1 1 1 1 ethod: N 1 1 1 hod: EPA 5	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 07:06 08/27/10 07:06	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 08/31/10 02:08 08/31/10 02:08 08/31/10 02:08	 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic Barium	Results Analytical Met ND m ND m 104 % 106 % Analytical Met ND m 115 % 103 % Analytical Met ND m 123 m	hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60 g/kg g/kg g/kg	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M 6.8 50-150 50-150 010 Preparation Met 12.5 25.0	ethod: El 1 1 1 1 ethod: N 1 1 hod: EPA 5 1	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/27/10 07:06 08/27/10 07:06	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 08/31/10 02:08 08/31/10 02:08 08/31/10 02:08 08/30/10 12:51 08/30/10 12:51	 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9 	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic Barium Cadmium	Results Analytical Met ND m ND m 104 % 106 % Analytical Met ND m 115 % 103 % Analytical Met ND m 123 m ND m	hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60 g/kg g/kg g/kg g/kg	H-Dx Preparation M 24.3 97.4 50-150 50-150 H-Gx Preparation M 6.8 50-150 50-150 010 Preparation Met 12.5 25.0 6.2	ethod: El 1 1 1 t ethod: N 1 1 hod: EPA 5 1 5	PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 09/02/10 18:18 08/31/10 02:08 08/31/10 02:08 08/31/10 02:08 08/30/10 12:51 08/30/10 12:51	 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9 7440-47-3 	Qual

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 27 of 47

Project: BPOLY

Pace Project No.: 254662

Results reported on a "dry-weight" basis Parameters Results Units Report Limit DF Prepared Analyzed CAS 6010 MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3050 EIA 5 08/27/10 07:06 08/30/10 12:51 7440-1 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 EPA 7471 08/26/10 08:21 08/26/10 12:31 7439-1 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 08/27/10 14:45 08/31/10 23:01 83-32- Acenaphthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 83-32- Acenaphthylene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 120-11 Benzo(a)antracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 120-12 Benzo(a)hyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 120-12 Benzo(a)hyrene ND ug/kg 8.5 1 08/27/10 14:45	
6010 MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3050 Silver ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:51 7440-7 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 Obs 20 08/26/10 08:21 08/26/10 12:31 7439-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Accenaphthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 83-32- 208-90 Accenaphthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 23:01 26-55- 20:03-20 20:05-20 Benzo(a)antracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 20:05-20 Benzo(a)apyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 20:05-30 Benzo(a)apyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 20:05-30 Benzo(g), hj)perylene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 20:05-30 <th></th>	
Silver ND mg/kg 6.2 5 08/27/10 07:06 08/30/10 12:51 7440-3 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 Mercury ND mg/kg 0.12 1 08/26/10 08:21 08/26/10 12:31 7439-3 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 83-32-32 Acenaphthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 203-32-32 Acenaphthylene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 206-55 Benzo(a)anthracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 205-532-32 Benzo(a)apyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 205-32-32-33 Benzo(b/fluoranthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 207-03-24-33 Benzo(b/fluoranthene ND ug/kg 8.5 1 <th>No. Qual</th>	No. Qual
7471 Mercury ND mg/kg 0.12 1 08/26/10 08:21 08/26/10 08:21 7473 Mercury ND mg/kg 0.12 1 08/26/10 08:21 08/26/10 12:31 7439-4 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 83-32 Acenaphthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 208-91 Anthracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 208-91 Anthracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 205-91 Benzo(a)anthracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 205-91 Benzo(g), i)perylene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 191-24 Benzo(g, h, i)perylene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10	
MercuryND mg/kg0.12108/26/10 08:2108/26/10 12:317439-48270 MSSV PAH by SIMAnalytical Method: EPA 8270 by SIMPreparationMethod: EPA 3546AcenaphtheneND ug/kg8.5108/27/10 14:4508/31/10 23:0183-32-AcenaphthyleneND ug/kg8.5108/27/10 14:4508/31/10 23:01208-90AnthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01201-12Benzo(a)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:0156-55-Benzo(a)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:0150-32-Benzo(g),hi)peryleneND ug/kg8.5108/27/10 14:4508/31/10 23:01205-99Benzo(g),hi)peryleneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-90ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-90Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-90FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-90Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-90FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-90ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-90Dibenz(a,h)anthraceneND ug/kg8.5 <td>2-4</td>	2-4
8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 83:32: Acenaphthylene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 208-90 Anthracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 12:0-12 Benzo(a)anthracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 56-55 Benzo(a)anthracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 50-32 Benzo(a)pyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 205-99 Benzo(b)fluoranthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 207-02 Chrysene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 <t< td=""><td></td></t<>	
AcenaphtheneND ug/kg8.5108/27/10 14:4508/31/10 23:0183-32-AcenaphthyleneND ug/kg8.5108/27/10 14:4508/31/10 23:01208-94AnthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01120-12Benzo(a)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01120-12Benzo(a)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:0156-55-Benzo(a)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:0150-32-Benzo(b)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01205-95Benzo(g,h,i)peryleneND ug/kg8.5108/27/10 14:4508/31/10 23:01205-95Benzo(k)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-96ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-96Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01218-07FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:0123-70FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:0123-70FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:0123-70FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-44FluoreneND ug/kg8.51	7-6
AcenaphthyleneND ug/kg8.5108/27/10 14:4508/31/10 23:01208-90AnthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01120-11Benzo(a)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:0156-55Benzo(a)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:0150-32Benzo(b)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01205-95Benzo(g,h,i)peryleneND ug/kg8.5108/27/10 14:4508/31/10 23:01205-95Benzo(k)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-02ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-02Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01218-02FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:0123-70FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:0123-70FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:0123-70FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:0123-70Indeno(1,2,3-cd)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:0119-331-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:0119-332-MethylnaphthaleneND ug/kg </td <td></td>	
AnthraceneNDug/kg8.5108/27/1014:4508/31/1023:01120-12Benzo(a)anthraceneNDug/kg8.5108/27/1014:4508/31/1023:0156-55Benzo(a)pyreneNDug/kg8.5108/27/1014:4508/31/1023:0150-32Benzo(b)fluorantheneNDug/kg8.5108/27/1014:4508/31/1023:0150-32Benzo(g,h,i)peryleneNDug/kg8.5108/27/1014:4508/31/1023:01205-92Benzo(k)fluorantheneNDug/kg8.5108/27/1014:4508/31/1023:01191-24Benzo(k)fluorantheneNDug/kg8.5108/27/1014:4508/31/1023:01207-02ChryseneNDug/kg8.5108/27/1014:4508/31/1023:01207-02Dibenz(a,h)anthraceneNDug/kg8.5108/27/1014:4508/31/1023:01218-02FluorantheneNDug/kg8.5108/27/1014:4508/31/1023:0123:0123:01FluoreneNDug/kg8.5108/27/1014:4508/31/1023:01206-44FluoreneNDug/kg8.5108/27/1014:4508/31/1023:01206-44FluoreneNDug/kg8.5108/27/1014:4508/31/1023:0123:01<	Э
Benzo(a) anthraceneNDug/kg8.5108/27/1014:4508/31/1023:0156-55Benzo(a) pyreneNDug/kg8.5108/27/1014:4508/31/1023:0150-32Benzo(b) fluorantheneNDug/kg8.5108/27/1014:4508/31/1023:01205-93Benzo(g,h,i) peryleneNDug/kg8.5108/27/1014:4508/31/1023:01205-93Benzo(k) fluorantheneNDug/kg8.5108/27/1014:4508/31/1023:01207-03ChryseneNDug/kg8.5108/27/1014:4508/31/1023:01207-03Dibenz(a,h) anthraceneNDug/kg8.5108/27/1014:4508/31/1023:01218-03FluorantheneNDug/kg8.5108/27/1014:4508/31/1023:01218-03FluoreneNDug/kg8.5108/27/1014:4508/31/1023:0123:0123:01FluoreneNDug/kg8.5108/27/1014:4508/31/1023:01206-44FluoreneNDug/kg8.5108/27/1014:4508/31/1023:01206-44FluoreneNDug/kg8.5108/27/1014:4508/31/1023:01206-44FluoreneNDug/kg8.5108/27/1014:4508/31/1023:0123:01 <tr< td=""><td>-8</td></tr<>	-8
Benzo(a)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:0150-32-Benzo(b)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01205-91Benzo(g,h,i)peryleneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-24Benzo(k)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-24Benzo(k)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-02ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01218-02Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:0153-70-FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-44FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-44FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:0186-73-Indeno(1,2,3-cd)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-331-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-332-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-242-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-242-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-57	-7
Benzo(b)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01205-99Benzo(g,h,i)peryleneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-20Benzo(k)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-02ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01218-02Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:01218-02FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:0153-70-FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:0153-70-FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-44FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:0186-73-Indeno(1,2,3-cd)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-331-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-332-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-27	3
Benzo(g,h,i)peryleneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-24Benzo(k)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-00ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01218-00Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:0153-70-FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-44FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-44FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:0186-73-Indeno(1,2,3-cd)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-391-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-392-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01191-24	3
Benzo(k)fluoranthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 207-02 Chrysene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 218-02 Dibenz(a,h)anthracene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 218-02 Fluoranthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 53-70- Fluoranthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 206-44 Fluorene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 206-44 Fluorene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 206-44 Indeno(1,2,3-cd)pyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-33 1-Methylnaphthalene ND ug/kg 8.5 1 08/27/10<	-2
Benzo(k)fluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01207-04ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01218-01Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:0153-70-FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:0153-70-FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-44FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:0186-73-Indeno(1,2,3-cd)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-391-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-392-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:0190-12-	-2
ChryseneND ug/kg8.5108/27/10 14:4508/31/10 23:01218-07Dibenz(a,h)anthraceneND ug/kg8.5108/27/10 14:4508/31/10 23:0153-70FluorantheneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-4FluoreneND ug/kg8.5108/27/10 14:4508/31/10 23:01206-4Indeno(1,2,3-cd)pyreneND ug/kg8.5108/27/10 14:4508/31/10 23:0186-73-91-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:01193-392-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:0190-12-92-MethylnaphthaleneND ug/kg8.5108/27/10 14:4508/31/10 23:0191-57-9	
Diberz(a,h)anthracene ND ug/kg 8.5 1 08/27/10 08/31/10 23:01 53-70- Fluoranthene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 206-4 Fluorene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 206-4 Fluorene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 86-73- Indeno(1,2,3-cd)pyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-39 1-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-39 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-39 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 191-57-	
Fluoranthene ND ug/kg 8.5 1 08/27/10 08/31/10 23:01 206-44 Fluorene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 206-44 Fluorene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 86-73 Indeno(1,2,3-cd)pyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-39 1-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-39 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 90-12- 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 91-57-	
Fluorene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 86-73- Indeno(1,2,3-cd)pyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-32 1-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-32 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 90-12- 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 91-57-	
Indeno(1,2,3-cd)pyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-39 1-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 193-39 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 90-12- 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 91-57-	
1-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 90-12- 2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 90-12-	
2-Methylnaphthalene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 91-57-	
$N_{2} = 0.000 = 0.0000 = 0.0000 = 0.00000 = 0.00000 = 0.00000000$	
Phenanthrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 85-01-	
Pyrene ND ug/kg 8.5 1 08/27/10 14:45 08/31/10 23:01 129-00	
2-Fluorobiphenyl (S) 73 % 55-136 1 08/27/10 14:45 08/31/10 23:01 321-60	
Terphenyl-d14 (S) 62 % 60-144 1 08/27/10 14:45 08/31/10 23:01 321-00	
8260/5035A Volatile Organics Analytical Method: EPA 8260	
Benzene ND ug/kg 3.1 1 08/26/10 19:13 71-43-	2
Ethylbenzene ND ug/kg 3.1 1 08/26/10 19:13 100-4	
Toluene ND ug/kg 3.1 1 08/26/10 19:13 108-8	
Xylene (Total) ND ug/kg 9.4 1 08/26/10 19:13 1330-2	
Dibromofluoromethane (S) 97 % 80-136 1 08/26/10 19:13 1868-5	
Toluene-d8 (S) 90 % 80-120 1 08/26/10 19:13 2037-2	
4-Bromofluorobenzene (S) 92 % 72-122 1 08/26/10 19:13 460-00	
1,2-Dichloroethane-d4 (S) 85 % 80-143 1 08/26/10 19:13 17060	
Percent Moisture Analytical Method: ASTM D2974-87	
Percent Moisture 22.2 % 0.10 1 08/27/10 12:16	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BPOLY

Pace Project No.: 254662

Sample: MW8-2-2.5	Lab ID: 254662015	Collected: 08/24/1	0 11:00	Received: 08	8/24/10 15:15	Matrix: Solid	
Results reported on a "dry-wei	ght" basis						
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Me	ethod: E	PA 3546			
Diesel Range SG	ND mg/kg	21.6	1	09/01/10 19:05	09/02/10 18:3	5	
Motor Oil Range SG	ND mg/kg	86.3	1	09/01/10 19:05	09/02/10 18:3	5 64742-65-0	
n-Octacosane (S) SG	99 %	50-150	1	09/01/10 19:05	09/02/10 18:3	5 630-02-4	
o-Terphenyl (S) SG	101 %	50-150	1	09/01/10 19:05	09/02/10 18:3	5 84-15-1	
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Me	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	7.0	1	08/30/10 12:00	08/31/10 02:32	2	
a,a,a-Trifluorotoluene (S)	91 %	50-150	1	08/30/10 12:00	08/31/10 02:32	2 98-08-8	
4-Bromofluorobenzene (S)	82 %	50-150	1	08/30/10 12:00	08/31/10 02:32	2 460-00-4	
6010 MET ICP	Analytical Method: EPA	6010 Preparation Meth	nod: EP	A 3050			
Arsenic	ND mg/kg	10.9	5	08/27/10 07:06	08/30/10 12:54	4 7440-38-2	
Barium	131 mg/kg	21.9	1	08/27/10 07:06			
Cadmium	ND mg/kg	5.5	5	08/27/10 07:06			
Chromium	41.7 mg/kg	1.1	1	08/27/10 07:06			
_ead	5.0 mg/kg	1.1	1	08/27/10 07:06			
Selenium	ND mg/kg	5.5	5	08/27/10 07:06			
Silver	ND mg/kg	5.5	5	08/27/10 07:06			
7471 Mercury		A 7471 Preparation Meth	nod: EP	A 7471			
Mercury	ND mg/kg	0.11	1	08/26/10 08:21	08/26/10 12:34	4 7439-97-6	
8270 MSSV PAH by SIM	Analytical Method: EPA	A 8270 by SIM Preparati	on Metl	hod: EPA 3546			
Acenaphthene	ND ug/kg	7.4	1	09/03/10 11:10	09/03/10 17:3 [,]	1 83-32-9	
Acenaphthylene	ND ug/kg	7.4	1	09/03/10 11:10	09/03/10 17:3 [,]	1 208-96-8	
Anthracene	ND ug/kg	7.4	1	09/03/10 11:10			
Benzo(a)anthracene	ND ug/kg	7.4	1	09/03/10 11:10			
Benzo(a)pyrene	ND ug/kg	7.4	1	09/03/10 11:10			
Benzo(b)fluoranthene	ND ug/kg	7.4	1	09/03/10 11:10			
Benzo(g,h,i)perylene	ND ug/kg	7.4	1	09/03/10 11:10			
Benzo(k)fluoranthene	ND ug/kg	7.4	1	09/03/10 11:10			
Chrysene	ND ug/kg	7.4	1	09/03/10 11:10			
Dibenz(a,h)anthracene	ND ug/kg	7.4	1	09/03/10 11:10			
Fluoranthene	ND ug/kg	7.4	1	09/03/10 11:10			
Fluorene	ND ug/kg	7.4	1	09/03/10 11:10			
ndeno(1,2,3-cd)pyrene	ND ug/kg	7.4	1	09/03/10 11:10			
	ND ug/kg	7.4	1	09/03/10 11:10			
1-Mothylnanhthalana				09/03/10 11:10			
		7.4	1	09/03/10 11:10			
2-Methylnaphthalene	ND ug/kg	7 4			UM/U3/10 17/3	1 91-20-3	
2-Methylnaphthalene Naphthalene	ND ug/kg	7.4	1				
2-Methylnaphthalene Naphthalene Phenanthrene	ND ug/kg ND ug/kg	7.4	1	09/03/10 11:10	09/03/10 17:3	1 85-01-8	
2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	ND ug/kg ND ug/kg ND ug/kg	7.4 7.4	1 1	09/03/10 11:10 09/03/10 11:10	09/03/10 17:3 [.] 09/03/10 17:3 [.]	1 85-01-8 1 129-00-0	
1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene 2-Fluorobiphenyl (S) Terphenyl-d14 (S)	ND ug/kg ND ug/kg	7.4	1	09/03/10 11:10	09/03/10 17:3 ⁻ 09/03/10 17:3 ⁻ 09/03/10 17:3 ⁻	1 85-01-8 1 129-00-0 1 321-60-8	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 29 of 47

Project: BPOLY

Pace Project No.: 254662

Sample: MW8-2-2.5	Lab ID: 25466	2015	Collected: 08/24/1	0 11:00	Received: 08	/24/10 15:15 I	Aatrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Metho	d: EPA 82	260					
Benzene	ND ug/kg	g	3.6	1		08/26/10 19:32	71-43-2	
Ethylbenzene	ND ug/kg	g	3.6	1		08/26/10 19:32	100-41-4	
Toluene	ND ug/kg	g	3.6	1		08/26/10 19:32	108-88-3	
Xylene (Total)	ND ug/kg	g	10.9	1		08/26/10 19:32	1330-20-7	
Dibromofluoromethane (S)	99 %		80-136	1		08/26/10 19:32	1868-53-7	
Toluene-d8 (S)	90 %		80-120	1		08/26/10 19:32	2037-26-5	
4-Bromofluorobenzene (S)	92 %		72-122	1		08/26/10 19:32	460-00-4	
1,2-Dichloroethane-d4 (S)	87 %		80-143	1		08/26/10 19:32	17060-07-0	
Percent Moisture	Analytical Metho	d: ASTM	D2974-87					
Percent Moisture	11.2 %		0.10	1		08/27/10 12:19		
	Lab ID: 25466	2016	Collected: 08/24/1	0.00:00	Received: 08	/24/10 15:15 I	Matrix: Solid	
Sample: Trip Blank	Lab ID: 25466 t" basis	2016	Collected: 08/24/1	0 00:00	Received: 08	3/24/10 15:15 I	Matrix: Solid	
Sample: Trip Blank		2016 Units	Collected: 08/24/1	0 00:00 DF	Received: 08 Prepared	/24/10 15:15 I Analyzed	Matrix: Solid CAS No.	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters	t" basis Results	Units		DF	Prepared			Qual
Sample: Trip Blank Results reported on a "wet-weigh	t" basis Results	Units d: NWTP	Report Limit	DF	Prepared WTPH-Gx		CAS No.	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics	t" basis Results Analytical Methor	Units d: NWTP	Report Limit H-Gx Preparation M	DF ethod: N	Prepared WTPH-Gx	Analyzed 08/31/10 01:19	CAS No.	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	t" basis Results Analytical Methor ND mg/k	Units d: NWTP	Report Limit H-Gx Preparation M 5.0	DF ethod: N 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19	CAS No. 98-08-8	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV	t" basis Results Analytical Methor ND mg/k 109 %	Units d: NWTP	Report Limit H-Gx Preparation M 5.0 50-150 50-150	DF ethod: N 1 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19 08/31/10 01:19	CAS No. 98-08-8	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	t" basis Results Analytical Method ND mg/k 109 % 97 %	Units d: NWTP kg d: EPA 82	Report Limit H-Gx Preparation M 5.0 50-150 50-150	DF ethod: N 1 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19 08/31/10 01:19	CAS No. 98-08-8 460-00-4	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics	t" basis Results Analytical Method ND mg/k 109 % 97 % Analytical Method	Units d: NWTP kg d: EPA 82 g	Report Limit H-Gx Preparation M 5.0 50-150 50-150 260	DF ethod: N 1 1 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19 08/31/10 01:19 08/31/10 01:19	CAS No. 98-08-8 460-00-4 71-43-2	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene	t" basis Results Analytical Method ND mg/k 109 % 97 % Analytical Method ND ug/kg	Units d: NWTP kg d: EPA 82 g g	Report Limit H-Gx Preparation M 5.0 50-150 50-150 260 3.0	DF ethod: N 1 1 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19 08/31/10 01:19 08/31/10 01:19 08/25/10 13:33	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene	t" basis Results Analytical Method ND mg/k 109 % 97 % Analytical Method ND ug/k ND ug/k	Units d: NWTP kg d: EPA 82 g g g	Report Limit H-Gx Preparation M 5.0 50-150 50-150 260 3.0 3.0	DF ethod: N 1 1 1 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19 08/31/10 01:19 08/31/10 01:19 08/25/10 13:33 08/25/10 13:33	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4 108-88-3	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total)	t" basis Results Analytical Method ND mg/k 109 % 97 % Analytical Method ND ug/k ND ug/k ND ug/k	Units d: NWTP kg d: EPA 82 g g g	Report Limit H-Gx Preparation M 5.0 50-150 50-150 260 3.0 3.0 3.0 3.0	DF ethod: N 1 1 1 1 1 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19 08/31/10 01:19 08/31/10 01:19 08/25/10 13:33 08/25/10 13:33	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4 108-88-3 1330-20-7	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total)	t" basis Results Analytical Method ND mg/k 109 % 97 % Analytical Method ND ug/k ND ug/k ND ug/k ND ug/k	Units d: NWTP kg d: EPA 82 g g g	Report Limit H-Gx Preparation M 5.0 50-150 50-150 260 3.0 3.0 3.0 9.0	DF ethod: N 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19 08/31/10 01:19 08/31/10 01:19 08/25/10 13:33 08/25/10 13:33 08/25/10 13:33	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7	Qual
Sample: Trip Blank Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total) Dibromofluoromethane (S)	t" basis Results Analytical Method ND mg/k 109 % 97 % Analytical Method ND ug/k ND ug/k ND ug/k 98 %	Units d: NWTP kg d: EPA 82 g g g	Report Limit H-Gx Preparation M 5.0 50-150 50-150 260 3.0 3.0 3.0 9.0 80-136	DF ethod: N 1 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 08/31/10 01:19 08/31/10 01:19 08/31/10 01:19 08/25/10 13:33 08/25/10 13:33 08/25/10 13:33 08/25/10 13:33	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7 2037-26-5	Qual

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Project: BF	POLY							
Pace Project No.: 25	4662							
QC Batch: 0	DEXT/2590		Analysis M	lethod:	NV	VTPH-Dx		
QC Batch Method: E	EPA 3546		Analysis D	escription:	NV	VTPH-Dx GO	CS	
Associated Lab Sample	es: 2546620	01, 254662002, 25	4662003					
METHOD BLANK: 38	442		Matr	x: Solid				
Associated Lab Sample	es: 2546620	01, 254662002, 25	4662003					
			Blank	Reportir	g			
Paramete	er	Units	Result	Limit		Analyze	d Qual	ifiers
Diesel Range SG		mg/kg	N	5	20.0	09/01/10 1	7:12	
Motor Oil Range SG		mg/kg	N	C	80.0	09/01/10 1	7:12	
n-Octacosane (S) SG		%	9	3 50	150	09/01/10 17	7:12	
o-Terphenyl (S) SG		%	9	7 50	150	09/01/10 17	7:12	
LABORATORY CONTR	ROL SAMPLE:	38443						
			Spike	LCS		LCS	% Rec	
Paramete	er	Units	Conc.	Result	9	% Rec	Limits	Qualifiers
Diesel Range SG		mg/kg	500	341		68	56-124	
Motor Oil Range SG		mg/kg	500	372		74	50-150	
n-Octacosane (S) SG		%				80	50-150	
o-Terphenyl (S) SG		%				92	50-150	

SAMPLE DUPLICATE: 38444

		254684010	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Diesel Range SG	mg/kg	832	727	13	
Motor Oil Range SG	mg/kg	127	108	17	
n-Octacosane (S) SG	%	87	80	12	
o-Terphenyl (S) SG	%	82	76	11	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

QC Batch: OEX	T/2598	Analysis Me	ethod: N	WTPH-Dx			
QC Batch Method: EPA	3546	Analysis De	scription: N	WTPH-Dx G	CS		
Associated Lab Samples:	254662004, 254662006,	254662007, 254662	009, 254662011	, 254662012	, 2546620	14, 254	662015
METHOD BLANK: 38662		Matrix	: Solid				
Associated Lab Samples:	254662004, 254662006,	254662007, 254662	009, 254662011	, 254662012	, 2546620	14, 254	662015
_		Blank	Reporting				
Parameter	Units	Result	Limit	Analyz	ed	Qualifie	ers
Diesel Range SG	mg/kg	ND					
Motor Oil Range SG	mg/kg	ND					
n-Octacosane (S) SG	%	104					
o-Terphenyl (S) SG	%	106	50-150	09/02/10 ⁻	15:18		
LABORATORY CONTROL	SAMPLE: 38663						
		Spike	LCS	LCS	% Re	С	
Parameter	Units	Conc.	Result	% Rec	Limits	6	Qualifiers
Diesel Range SG	mg/kg	500	410	82	56	6-124	
Motor Oil Range SG	mg/kg	500	464	93	50	0-150	
n-Octacosane (S) SG	%			104	50	0-150	
o-Terphenyl (S) SG	%			114	50	0-150	
SAMPLE DUPLICATE: 3	8664						
		254662004	Dup				
Parameter	Units	Result	Result	RPD	Qu	ualifiers	
Diesel Range SG	mg/kg	3780	3310		13		
Motor Oil Range SG	mg/kg	1040	782		29		
n-Octacosane (S) SG	%	95	92		8		
o-Terphenyl (S) SG	%	114	114		5		
SAMPLE DUPLICATE: 3	8665						
		254703004	Dup				
Parameter	Units	Result	Result	RPD	Q	ualifiers	
Diesel Range SG	mg/kg	ND	3.4J				
	mg/kg	ND					
Motor Oil Range SG	%	102			7		
Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	%	105			8		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 32 of 47

Project: BPOLY Pace Project No.: 254662								
QC Batch: GCV/1	804	Analysis M	lethod:	NV	NTPH-Gx			
QC Batch Method: NWTF	PH-Gx	Analysis D	Description:	N۷	WTPH-Gx So	lid GCV		
Associated Lab Samples:	254662001, 254662002							
METHOD BLANK: 38022		Matr	ix: Solid					
Associated Lab Samples:	254662001, 254662002							
5		Blank	Reporting	g				
Parameter	Units	Result	Limit		Analyzed	d Qualit	iers	
Gasoline Range Organics	mg/kg	N		5.0	08/28/10 08			
4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S)	%	9 10		150 150	08/28/10 08			
a,a,a- minuorototuene (3)	70	10	JU 30-	150	00/20/10 00	5.02		
LABORATORY CONTROL S	AMPLE: 38023							
		Spike	LCS		LCS	% Rec		
Parameter	Units	Conc.	Result	9	% Rec	Limits	Qualifiers	
Gasoline Range Organics	mg/kg	12.5	14.6		117	54-156		
4-Bromofluorobenzene (S)	%				118	50-150		
a,a,a-Trifluorotoluene (S)	%				123	50-150		
SAMPLE DUPLICATE: 382	290							
		254584008	Dup					
Parameter	Units	Result	Result		RPD	Qualifier	6	
Gasoline Range Organics	mg/kg	N	D	1.4J				
4-Bromofluorobenzene (S)	%	g	99	89		11		
a,a,a-Trifluorotoluene (S)	%	10)4	101		3		
SAMPLE DUPLICATE: 382	291							
	-	254639002	Dup					
Parameter	Units	Result	Result		RPD	Qualifier	6	
Gasoline Range Organics	mg/kg	N	D ;;	3.2J				
4-Bromofluorobenzene (S)	%	10)6	110		4		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 33 of 47

Project: BPOLY	(
Pace Project No.: 254662	2						
QC Batch: GCV/	/1807	Analysis Me	ethod: N	WTPH-Gx			
QC Batch Method: NWT	PH-Gx	Analysis De	escription: N	WTPH-Gx Sc	olid GCV		
Associated Lab Samples:	254662003, 254662006, 2	54662009, 254662	012				
METHOD BLANK: 38288		Matrix	:: Solid				
Associated Lab Samples:	254662003, 254662006, 2	54662009, 254662	012				
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Qualif	ers	
Gasoline Range Organics	mg/kg		5.0	08/29/10 06	6:03		
4-Bromofluorobenzene (S)	%	115	50-150	08/29/10 06	6:03		
a,a,a-Trifluorotoluene (S)	%	115	50-150	08/29/10 00	8.03		
	<i>,</i> ,,	110	00 100	00/23/10 00	0.00		
				00/23/10 00			
LABORATORY CONTROL	SAMPLE: 38289	Spike	LCS	LCS	% Rec		
			LCS			Qualifiers	
LABORATORY CONTROL Parameter Gasoline Range Organics	SAMPLE: 38289 Units mg/kg	Spike	LCS	LCS % Rec 132	% Rec Limits 54-156	Qualifiers	
LABORATORY CONTROL Parameter Gasoline Range Organics 4-Bromofluorobenzene (S)	SAMPLE: 38289 Units mg/kg %	Spike Conc.	LCS Result	LCS % Rec 132 102	% Rec Limits 54-156 50-150	Qualifiers	
LABORATORY CONTROL Parameter Gasoline Range Organics 4-Bromofluorobenzene (S)	SAMPLE: 38289 Units mg/kg	Spike Conc.	LCS Result	LCS % Rec 132	% Rec Limits 54-156	Qualifiers	
LABORATORY CONTROL Parameter Gasoline Range Organics 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S)	SAMPLE: 38289 Units mg/kg %	Spike Conc.	LCS Result	LCS % Rec 132 102	% Rec Limits 54-156 50-150	Qualifiers	
LABORATORY CONTROL Parameter Gasoline Range Organics 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S)	SAMPLE: 38289 Units mg/kg % %	Spike Conc. 12.5	LCS Result 16.5	LCS % Rec 132 102	% Rec Limits 54-156 50-150	Qualifiers	
LABORATORY CONTROL Parameter Gasoline Range Organics 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S)	SAMPLE: 38289 Units mg/kg % %	Spike Conc.	LCS Result	LCS % Rec 132 102	% Rec Limits 54-156 50-150		
LABORATORY CONTROL Parameter Gasoline Range Organics 4-Bromofluorobenzene (S) a,a,a-Trifluorotoluene (S) SAMPLE DUPLICATE: 38	SAMPLE: 38289 Units mg/kg % %	Spike Conc. 12.5	LCS Result 16.5 Dup Result	LCS % Rec 132 102 111 RPD	% Rec Limits 54-156 50-150 50-150		

107

104

2

Date: 09/30/2010 11:17 AM

a,a,a-Trifluorotoluene (S)

%

REPORT OF LABORATORY ANALYSIS

Page 34 of 47

Project: BPOL	(
Pace Project No.: 254662	2					
QC Batch: GCV	/1813	Analysis Me	thod: N	WTPH-Gx		
QC Batch Method: NWT	PH-Gx	Analysis De	scription: N	WTPH-Gx So	lid GCV	
Associated Lab Samples:	254662004, 254662007,	, 254662011, 2546620	014, 254662015	, 254662016		
METHOD BLANK: 38341		Matrix	Solid			
Associated Lab Samples:	254662004, 254662007,		014, 254662015	, 254662016		
_		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	d Qualifi	ers
Gasoline Range Organics	mg/kg	ND	5.0			
4-Bromofluorobenzene (S)	%	72	50-150		-	
a,a,a-Trifluorotoluene (S)	%	79	50-150	08/30/10 20):04	
LABORATORY CONTROL	SAMPLE: 38342					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Gasoline Range Organics	mg/kg	12.5	11.8	94	54-156	
4-Bromofluorobenzene (S)	%			93	50-150	
a,a,a-Trifluorotoluene (S)	%			102	50-150	
SAMPLE DUPLICATE: 38	3497					
		254702002	Dup			
Parameter	Units	Result	Result	RPD	Qualifiers	
Gasoline Range Organics	mg/kg	ND	2.9J			
4-Bromofluorobenzene (S)	%	99	100		1	
a,a,a-Trifluorotoluene (S)	%	107	106		.8	
SAMPLE DUPLICATE: 38	3498					
		254703001	Dup			
	Units	Result	Result	RPD	Qualifiers	
Parameter	Offits					
Parameter Gasoline Range Organics	<u></u>	ND	3.1J			
		ND 93	3.1J 83		12	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

QC Batch: MI	PRP/1732		Analys	is Method	EI	PA 6010					
QC Batch Method: EF	PA 3050		Analys	is Descrip	tion: 60	010 MET					
Associated Lab Samples	: 254662001, 25466 254662014, 25466		662003, 25	4662004, :	254662006	, 254662007	7, 2546620	009, 254662	2011, 2546	62012,	
METHOD BLANK: 375	84		N	Aatrix: Sol	id						
Associated Lab Samples	: 254662001, 25466 254662014, 25466	,	662003, 25	4662004, 3	254662006	, 254662007	7, 2546620	009, 254662	2011, 2546	62012,	
			Blank	K R	eporting						
Parameter	L	Jnits	Resul	t	Limit	Analyz	ed	Qualifiers			
Arsenic	mg/kg			ND	2.0	08/30/10	12:09		-		
Barium	mg/kg			ND	20.0	08/30/10	12:09				
Cadmium	mg/kg			ND	1.0						
Chromium	mg/kg			ND	1.0						
Lead	mg/kg			ND	1.0						
Selenium	mg/kg			ND	1.0						
Silver	mg/kg			ND	1.0	08/30/10	12:09				
LABORATORY CONTRO	DL SAMPLE: 37585										
			.								
			Spike	LCS	6	LCS	% Re	с			
Parameter	L	Jnits	Spike Conc.	LCS Resu		LCS % Rec	% Ree Limits		ualifiers		
		Jnits	•	Resu			Limits		ualifiers	-	
Arsenic		Jnits	Conc.	Resu	ılt	% Rec	Limits	s Qu	ualifiers	-	
Arsenic Barium	mg/kg	Jnits	Conc.	Resu	llt	% Rec 89	Limits 80 80	s Qu D-120	ualifiers	-	
Arsenic Barium Cadmium Chromium	mg/kg mg/kg mg/kg mg/kg	Jnits	Conc. 25 25 25 25 25	Resu	llt 22.2 22.2 22.8 22.6	% Rec 89 89 91 90	Limits 80 80 80 80	S Qu D-120 D-120 D-120 D-120 D-120	ualifiers	-	
Arsenic Barium Cadmium Chromium Lead	mg/kg mg/kg mg/kg mg/kg mg/kg	Jnits	Conc. 25 25 25 25 25 25	Resu	lt 22.2 22.2 22.8 22.6 23.2	% Rec 89 89 91 90 93	Limits 80 80 80 80 80 80	S Qu D-120 D-120 D-120 D-120 D-120 D-120 D-120	ualifiers	-	
Arsenic Barium Cadmium Chromium Lead Selenium	mg/kg mg/kg mg/kg mg/kg mg/kg	Jnits	Conc. 25 25 25 25 25 25 25	Resu	22.2 22.2 22.8 22.6 23.2 22.5	% Rec 89 91 90 93 90	Limits 80 80 80 80 80 80 80 80	s Qu D-120 D-120 D-120 D-120 D-120 D-120 D-120 D-120	ualifiers	-	
Arsenic Barium Cadmium Chromium Lead	mg/kg mg/kg mg/kg mg/kg mg/kg	Jnits	Conc. 25 25 25 25 25 25	Resu	lt 22.2 22.2 22.8 22.6 23.2	% Rec 89 89 91 90 93	Limits 80 80 80 80 80 80 80 80	S Qu D-120 D-120 D-120 D-120 D-120 D-120 D-120	ualifiers		
Arsenic Barium Cadmium Chromium Lead Selenium	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		Conc. 25 25 25 25 25 25 25	Resu	22.2 22.2 22.8 22.6 23.2 22.5	% Rec 89 91 90 93 90	Limits 80 80 80 80 80 80 80 80	s Qu D-120 D-120 D-120 D-120 D-120 D-120 D-120 D-120	ualifiers		
Arsenic Barium Cadmium Chromium Lead Selenium Silver	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		Conc. 25 25 25 25 25 25 25	Resu	22.2 22.2 22.8 22.6 23.2 22.5 11.1	% Rec 89 91 90 93 90	Limits 80 80 80 80 80 80 80 80	s Qu D-120 D-120 D-120 D-120 D-120 D-120 D-120 D-120	ualifiers		
Arsenic Barium Cadmium Chromium Lead Selenium Silver	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg		Conc. 25 25 25 25 25 25 25 12.5	Resu	22.2 22.2 22.8 22.6 23.2 22.5 11.1	% Rec 89 91 90 93 90	Limits 80 80 80 80 80 80 80 80	s Qu D-120 D-120 D-120 D-120 D-120 D-120 D-120 D-120	valifiers		
Arsenic Barium Cadmium Chromium Lead Selenium Silver	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	: 37586	Conc. 25 25 25 25 25 25 25 12.5 MS	MSD	22.2 22.2 22.8 22.6 23.2 22.5 11.1 37587	% Rec 89 91 90 93 90 89	Limits 80 80 80 80 80 80	S Qu D-120 D-120 D-120 D-120 D-120 D-120 D-120 D-120		RPD	Qua
Arsenic Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATR Parameter	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg IX SPIKE DUPLICATE	: 37586 54661001 Result ND	Conc. 25 25 25 25 25 25 25 12.5 MS Spike	MSD Spike	alt 22.2 22.2 22.8 22.6 23.2 22.5 11.1 37587 MS	% Rec 89 91 90 93 90 89 MSD	Limits 80 80 80 80 80 80 80 80 80 80	S Qu D-120 D-120 D-120 D-120 D-120 D-120 D-120 D-120 D-120 MSD	% Rec		Qua
Arsenic Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATR Parameter Arsenic	IX SPIKE DUPLICATE	: 37586 54661001 Result ND 55.3	Conc. 25 25 25 25 25 25 25 12.5 MS Spike Conc.	MSD Spike Conc.	22.2 22.2 22.8 22.6 23.2 22.5 11.1 37587 MS Result	% Rec 89 91 90 93 90 89 MSD Result	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	S Qu Q-120 Q-1	% Rec Limits	9 .2	Qua
Arsenic Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATR Parameter Arsenic Barium Cadmium	IX SPIKE DUPLICATE	: 37586 54661001 Result ND 55.3 ND	Conc. 25 25 25 25 25 25 12.5 12.5 MS Spike Conc. 27.8 27.8 27.8 27.8	MSD Spike Conc. 28 28 28 28	Alt 22.2 22.2 22.8 22.6 23.2 22.5 11.1 37587 MS Result 33.4 81.6 31.0	% Rec 89 91 90 93 90 89 MSD Result 36.5 81.5 32.7	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	S Qu Q-120 Q-1	% Rec Limits 75-125 75-125 75-125	9 .2 5	Qua
Arsenic Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATR Parameter Arsenic Barium Cadmium Chromium	IX SPIKE DUPLICATE	: 37586 54661001 Result ND 55.3 ND 30.1	Conc. 25 25 25 25 25 25 12.5 12.5 8 Spike Conc. 27.8 27.8 27.8 27.8 27.8	MSD Spike Conc. 28 28 28 28 28 28 28	alt 22.2 22.2 22.8 22.6 23.2 22.5 11.1 37587 MS Result 33.4 81.6 31.0 53.3	% Rec 89 91 90 93 90 89 MSD Result 36.5 81.5 32.7 56.4	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	S Qu -120	% Rec Limits 75-125 75-125 75-125 75-125 75-125	9 .2 5 6	Qua
Arsenic Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATR Parameter Arsenic Barium Cadmium Chromium Lead	IX SPIKE DUPLICATE	: 37586 54661001 Result ND 55.3 ND 30.1 2.4	Conc. 25 25 25 25 25 25 12.5 12.5 8 Spike Conc. 27.8 27.8 27.8 27.8 27.8 27.8	MSD Spike Conc. 28 28 28 28 28 28 28 28 28 28 28 28	alt 22.2 22.2 22.8 22.6 23.2 22.5 11.1 37587 MS Result 33.4 81.6 31.0 53.3 26.0	% Rec 89 91 90 93 90 89 MSD Result 36.5 81.5 32.7 56.4 27.1	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	S Qu -120	% Rec Limits 75-125 75-125 75-125 75-125 75-125 75-125	9 .2 5 6 4	Qua
Arsenic Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATR	IX SPIKE DUPLICATE	: 37586 54661001 Result ND 55.3 ND 30.1	Conc. 25 25 25 25 25 25 12.5 12.5 8 Spike Conc. 27.8 27.8 27.8 27.8 27.8	MSD Spike Conc. 28 28 28 28 28 28 28	alt 22.2 22.2 22.8 22.6 23.2 22.5 11.1 37587 MS Result 33.4 81.6 31.0 53.3	% Rec 89 91 90 93 90 89 MSD Result 36.5 81.5 32.7 56.4	Limits 80 80 80 80 80 80 80 80 80 80 80 80 80	S Qu -120	% Rec Limits 75-125 75-125 75-125 75-125 75-125	9 .2 5 6	Qua

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 36 of 47

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project:	BPOLY											
Pace Project No.:	254662											
QC Batch:	MERF	P/1236		Analys	sis Method:	E	PA 7471					
QC Batch Method:	EPA 7	471		Analys	sis Descript	ion: 74	471 Mercury	1				
Associated Lab San	nples:	254662001, 25 254662014, 25	,	662003, 25	4662004, 2	254662006	, 254662007	7, 2546620	09, 254662	2011, 2546	62012,	
METHOD BLANK:	37588			Ν	Matrix: Soli	id						
Associated Lab San	nples:	254662001, 25 254662014, 25	,	662003, 25	4662004, 2	254662006	, 254662007	7, 2546620	09, 254662	2011, 2546	62012,	
				Blank	K R	eporting						
Paran			Units	Resul	t	Limit	Analyz	ed	Qualifiers			
1 0101	neter		Units									
	meter				ND	0.10	08/26/10	11:54		_		
	meter	mg/				-	08/26/10	11:54		_		
Mercury			kg			-	08/26/10	11:54				
Mercury			kg	Spike		0.10	08/26/10	11:54				
Mercury	NTROL S		kg		ND	0.10			;	ualifiers		
Mercury LABORATORY COM Paran	NTROL S		kg 589 Units	Spike	ND LCS Resu	0.10	LCS	% Rec	;	ualifiers		
Mercury LABORATORY COM Paran Mercury	NTROL S	GAMPLE: 375	kg 589 Units kg	Spike Conc. .5	ND LCS Resu	0.10	LCS % Rec	% Rec	; Q(ualifiers	-	
Mercury LABORATORY COM Paran Mercury	NTROL S	GAMPLE: 375	kg 589 Units kg	Spike Conc. .5	ND LCS Resu	0.10 6.11 11 0.51	LCS % Rec	% Rec	; Q(ualifiers	-	
Mercury	NTROL S	GAMPLE: 375	kg 589 Units kg	Spike Conc.	ND LCS Resu	0.10 6.11 11 0.51	LCS % Rec	% Rec	; Q(ualifiers % Rec	-	
Mercury LABORATORY COM Paran Mercury	NTROL S meter MATRIX S	GAMPLE: 375	kg Units kg ATE: 37590	Spike Conc. .5 MS	ND LCS Resu MSD	0.10 6.11 0.51 37591	LCS % Rec 101	% Rec Limits 80	-120		RPD	Qual

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 37 of 47

Project: BI	POLY					
Pace Project No.: 25	54662					
QC Batch:	OEXT/2573		Analysis Meth	nod: EF	PA 8270 by SIM	
QC Batch Method:	EPA 3546		Analysis Desc	cription: 82	70/3546 MSSV PA	H by SIM
Associated Lab Sample			4662003, 25466200 4662012, 25466201		254662006, 25466	2007, 254662008, 254662009,
METHOD BLANK: 38	3057		Matrix:	Solid		
Associated Lab Sample		, ,	4662003, 25466200 4662012, 25466201	, ,	254662006, 25466	2007, 254662008, 254662009,
			Blank	Reporting		
Paramete	er	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene		ug/kg		6.7	08/31/10 20:00	
2-Methylnaphthalene		ug/kg	ND	6.7	08/31/10 20:00	
Acenaphthene		ug/kg	ND	6.7	08/31/10 20:00	
Acenaphthylene		ug/kg	ND	6.7	08/31/10 20:00	
Anthracene		ug/kg	ND	6.7	08/31/10 20:00	
Benzo(a)anthracene		ug/kg	ND	6.7	08/31/10 20:00	
Benzo(a)pyrene		ug/kg	ND	6.7	08/31/10 20:00	
Benzo(b)fluoranthene		ug/kg	ND	6.7	08/31/10 20:00	
Benzo(g,h,i)perylene		ug/kg	ND	6.7	08/31/10 20:00	
Benzo(k)fluoranthene		ug/kg	ND	6.7	08/31/10 20:00	
Chrysene		ug/kg	ND	6.7	08/31/10 20:00	
Dibenz(a,h)anthracene		ug/kg	ND	6.7	08/31/10 20:00	
Fluoranthene		ug/kg	ND	6.7	08/31/10 20:00	
Fluorene		ug/kg	ND	6.7	08/31/10 20:00	
Indeno(1,2,3-cd)pyrene	e	ug/kg	ND	6.7	08/31/10 20:00	
Naphthalene		ug/kg	ND	6.7	08/31/10 20:00	
Phenanthrene		ug/kg	ND	6.7	08/31/10 20:00	
Pyrene		ug/kg	ND	6.7	08/31/10 20:00	
2-Fluorobiphenyl (S)		%	72	55-136	08/31/10 20:00	
Terphenyl-d14 (S)		%	76	60-144	08/31/10 20:00	

LABORATORY CONTROL SAMPLE: 38058

LABORATORT CONTROL SAMI EL.	30030					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	79.7	60	63-126	In
2-Methylnaphthalene	ug/kg	133	79.7	60	60-145	
Acenaphthene	ug/kg	133	88.2	66	44-138	
Acenaphthylene	ug/kg	133	86.5	65	43-140	
Anthracene	ug/kg	133	91.0	68	58-138	
Benzo(a)anthracene	ug/kg	133	91.5	69	50-154	
Benzo(a)pyrene	ug/kg	133	95.9	72	47-154	
Benzo(b)fluoranthene	ug/kg	133	85.3	64	43-164	
Benzo(g,h,i)perylene	ug/kg	133	93.6	70	54-153	
Benzo(k)fluoranthene	ug/kg	133	109	82	61-145	
Chrysene	ug/kg	133	86.8	65	59-141	
Dibenz(a,h)anthracene	ug/kg	133	98.0	73	54-161	
Fluoranthene	ug/kg	133	92.5	69	43-160	
Fluorene	ug/kg	133	90.0	67	41-149	
Indeno(1,2,3-cd)pyrene	ug/kg	133	97.2	73	48-158	
Naphthalene	ug/kg	133	77.7	58	44-131	
•						

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 38 of 47

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

iout the written consent of 1 ace Analytical befores, inc..

Project: BPOLY Pace Project No.: 254662

LABORATORY CONTROL SAMPLE: 38058

Phenanthrene ug/kg 133 83.7 63 46-144	Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
	Phenanthrene	ug/kg	133	83.7	63	46-144	
Pyrene ug/kg 133 91.3 69 57-142	Pyrene	ug/kg	133	91.3	69	57-142	
2-Fluorobiphenyl (S) % 65 55-136	2-Fluorobiphenyl (S)	%			65	55-136	
Terphenyl-d14 (S) % 69 60-144	Terphenyl-d14 (S)	%			69	60-144	

38060

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 38059

Parameter	Units	254693002 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	<1.0	155	152	103	116	66	76	-3.6-171	12	
2-Methylnaphthalene	ug/kg	<2.1	155	152	104	118	67	77	3-188	13	
Acenaphthene	ug/kg	<1.8	155	152	112	139	73	91	-1-182	21	
Acenaphthylene	ug/kg	<0.26	155	152	114	134	74	89	31-156	16	
Anthracene	ug/kg	<0.43	155	152	115	118	74	78	20-171	3	
Benzo(a)anthracene	ug/kg	<0.12	155	152	114	123	74	81	24-181	7	
Benzo(a)pyrene	ug/kg	<0.18	155	152	118	128	76	84	26-174	8	
Benzo(b)fluoranthene	ug/kg	<0.76	155	152	105	113	68	75	33-173	8	
Benzo(g,h,i)perylene	ug/kg	<0.34	155	152	114	122	74	80	15-178	7	
Benzo(k)fluoranthene	ug/kg	<0.55	155	152	130	140	84	92	20-167	8	
Chrysene	ug/kg	<0.35	155	152	107	117	69	77	15-174	9	
Dibenz(a,h)anthracene	ug/kg	<0.31	155	152	120	129	77	85	26-189	7	
Fluoranthene	ug/kg	<0.89	155	152	117	131	75	86	21-104	11	
Fluorene	ug/kg	<2.0	155	152	115	135	75	89	25-173	16	
Indeno(1,2,3-cd)pyrene	ug/kg	<0.29	155	152	118	126	76	83	19-182	6	
Naphthalene	ug/kg	<2.0	155	152	102	114	65	75	-3-165	11	
Phenanthrene	ug/kg	<3.6	155	152	104	117	67	77	25-163	12	
Pyrene	ug/kg	<0.34	155	152	113	126	73	83	30-165	11	
2-Fluorobiphenyl (S)	%						70	85	55-136		
Terphenyl-d14 (S)	%						70	78	60-144		

REPORT OF LABORATORY ANALYSIS

Page 39 of 47

EPA 8270 by SIM

8270/3546 MSSV PAH by SIM

Analysis Method:

Analysis Description:

Matrix: Solid

Project: BPOLY 254662

Pace Project No.:

QC Batch: OEXT/2630 QC Batch Method: EPA 3546

Associated Lab Samples: 254662015

METHOD BLANK: 39417

Associated Lab Samples: 254662015

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
i alametei					Quaimers
1-Methylnaphthalene	ug/kg	ND	6.7	09/03/10 15:18	
2-Methylnaphthalene	ug/kg	ND	6.7	09/03/10 15:18	
Acenaphthene	ug/kg	ND	6.7	09/03/10 15:18	
Acenaphthylene	ug/kg	ND	6.7	09/03/10 15:18	
Anthracene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(a)anthracene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(a)pyrene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(b)fluoranthene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(k)fluoranthene	ug/kg	ND	6.7	09/03/10 15:18	
Chrysene	ug/kg	ND	6.7	09/03/10 15:18	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	09/03/10 15:18	
Fluoranthene	ug/kg	ND	6.7	09/03/10 15:18	
Fluorene	ug/kg	ND	6.7	09/03/10 15:18	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	09/03/10 15:18	
Naphthalene	ug/kg	ND	6.7	09/03/10 15:18	
Phenanthrene	ug/kg	ND	6.7	09/03/10 15:18	
Pyrene	ug/kg	ND	6.7	09/03/10 15:18	
2-Fluorobiphenyl (S)	%	68	55-136	09/03/10 15:18	
Terphenyl-d14 (S)	%	75	60-144	09/03/10 15:18	

LABORATORY CONTROL SAMPLE: 39418

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	88.2	66	63-126	
2-Methylnaphthalene	ug/kg	133	92.8	70	60-145	
Acenaphthene	ug/kg	133	79.3	59	44-138	
Acenaphthylene	ug/kg	133	77.1	58	43-140	
Anthracene	ug/kg	133	94.9	71	58-138	
Benzo(a)anthracene	ug/kg	133	103	77	50-154	
Benzo(a)pyrene	ug/kg	133	108	81	47-154	
Benzo(b)fluoranthene	ug/kg	133	104	78	43-164	
Benzo(g,h,i)perylene	ug/kg	133	107	80	54-153	
Benzo(k)fluoranthene	ug/kg	133	108	81	61-145	
Chrysene	ug/kg	133	95.8	72	59-141	
Dibenz(a,h)anthracene	ug/kg	133	113	85	54-161	
Fluoranthene	ug/kg	133	103	77	43-160	
Fluorene	ug/kg	133	86.5	65	41-149	
ndeno(1,2,3-cd)pyrene	ug/kg	133	111	83	48-158	
Naphthalene	ug/kg	133	81.2	61	44-131	
Phenanthrene	ug/kg	133	90.7	68	46-144	

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 40 of 47

Project: BPOLY Pace Project No.: 254662

LABORATORY CONTROL SAMPLE: 39418

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	97.1	73	57-142	
2-Fluorobiphenyl (S)	%			64	55-136	
Terphenyl-d14 (S)	%			79	60-144	

MATRIX SPIKE & MATRIX SPIKE DUPLIC.	ATE: 39419			39420						
		MS	MSD							
	254662015	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene ug/kg	ND	149	150	93.8	94.8	63	63	-3.6-171	1	
2-Methylnaphthalene ug/kg	ND	149	150	94.8	95.0	63	63	3-188	.3	
Acenaphthene ug/kg	ND	149	150	92.5	91.1	62	61	-1-182	1	
Acenaphthylene ug/kg	ND	149	150	93.6	94.0	63	63	31-156	.4	
Anthracene ug/kg	ND	149	150	94.6	94.5	63	63	20-171	.1	
Benzo(a)anthracene ug/kg	ND	149	150	97.5	99.1	65	66	24-181	2	
Benzo(a)pyrene ug/kg	ND	149	150	99.9	100	67	67	26-174	.5	
Benzo(b)fluoranthene ug/kg	ND	149	150	97.3	95.9	65	64	33-173	1	
Benzo(g,h,i)perylene ug/kg	ND	149	150	95.0	96.0	64	64	15-178	1	
Benzo(k)fluoranthene ug/kg	ND	149	150	102	103	68	69	20-167	.6	
Chrysene ug/kg	ND	149	150	90.6	92.6	61	62	15-174	2	
Dibenz(a,h)anthracene ug/kg	ND	149	150	100	101	67	68	26-189	.9	
Fluoranthene ug/kg	ND	149	150	100	99.8	67	66	21-104	.3	
Fluorene ug/kg	ND	149	150	95.5	95.2	64	64	25-173	.3	
Indeno(1,2,3-cd)pyrene ug/kg	ND	149	150	99.2	99.9	67	67	19-182	.7	
Naphthalene ug/kg	ND	149	150	89.5	91.8	60	61	-3-165	3	
Phenanthrene ug/kg	ND	149	150	92.1	91.9	61	61	25-163	.2	
Pyrene ug/kg	ND	149	150	97.1	98.6	65	66	30-165	2	
2-Fluorobiphenyl (S) %						59	64	55-136		
Terphenyl-d14 (S) %						63	70	60-144		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 41 of 47

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BPC	DLY										
Pace Project No.: 254	662										
QC Batch: M	SV/2918		Analysi	s Method:	EF	PA 8260					
QC Batch Method: EF	PA 8260		Analysi	s Descriptio	on: 82	60 MSV	5035A V	olatile Orga	anics		
Associated Lab Samples	25466200 2546620	01, 254662002, 25 16	4662003, 254	4662004, 2	54662006,	254662	007, 254	662009, 25	4662011, 2	54662012,	
METHOD BLANK: 375	71		N	latrix: Solid	1						
Associated Lab Samples	25466200 2546620	01, 254662002, 25 16	4662003, 254	4662004, 2	54662006,	254662	007, 254	662009, 25	4662011, 2	54662012,	
			Blank	Re	porting						
Parameter		Units	Result	: I	Limit	Ana	lyzed	Qualif	iers		
Benzene		ug/kg		ND	3.0	08/25/	10 11:23				
Ethylbenzene		ug/kg		ND	3.0	08/25/	10 11:23				
Toluene		ug/kg		ND	3.0	08/25/	10 11:23				
Xylene (Total)		ug/kg		ND	9.0		10 11:23				
1,2-Dichloroethane-d4 (S	6)	%		96	80-143	08/25/	10 11:23				
4-Bromofluorobenzene (S)	%		89	72-122		10 11:23				
Dibromofluoromethane (S)	%		104	80-136		10 11:23				
Toluene-d8 (S)		%		82	80-120	08/25/	10 11:23				
LABORATORY CONTRO	DL SAMPLE 8	LCSD: 37572		37	7573						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter		Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifier
Benzene		ug/kg	50	59.6	58.4	119	117	75-133	2	30	
Ethylbenzene		ug/kg	50	46.3	46.8	93	94	68-131	1	30	
Toluene		ug/kg	50	49.1	47.1	98	94	73-124	4	30	
Xylene (Total)		ug/kg	150	143	141	95	94	68-130	1	30	
1,2-Dichloroethane-d4 (S	3)	%				86	83	80-143			
4-Bromofluorobenzene (S)	%				97	100	72-122			
Dibromofluoromethane (S)	%				101	98	80-136			
•		%				87	84	80-120			

REPORT OF LABORATORY ANALYSIS

EPA 8260

8260 MSV 5035A Volatile Organics

Analysis Method:

Analysis Description:

Matrix: Solid

Project: BPOLY

Pace Project No.: 254662

QC Batch: MSV/2934 QC Batch Method: EPA 8260

Associated Lab Samples: 254662014, 254662015

METHOD BLANK: 37943

Associated Lab Samples: 254662014, 254662015

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	08/26/10 18:16	
Ethylbenzene	ug/kg	ND	3.0	08/26/10 18:16	
Toluene	ug/kg	ND	3.0	08/26/10 18:16	
Xylene (Total)	ug/kg	ND	9.0	08/26/10 18:16	
1,2-Dichloroethane-d4 (S)	%	83	80-143	08/26/10 18:16	
4-Bromofluorobenzene (S)	%	92	72-122	08/26/10 18:16	
Dibromofluoromethane (S)	%	94	80-136	08/26/10 18:16	
Toluene-d8 (S)	%	92	80-120	08/26/10 18:16	

LABORATORY CONTROL SAMP	PLE & LCSD: 37944		37	7945						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	50.6	50.0	101	100	75-133	1	30	
Ethylbenzene	ug/kg	50	45.0	44.4	90	89	68-131	1	30	
Toluene	ug/kg	50	50.6	47.8	101	96	73-124	6	30	
Xylene (Total)	ug/kg	150	139	137	93	91	68-130	1	30	
1,2-Dichloroethane-d4 (S)	%				82	81	80-143			
4-Bromofluorobenzene (S)	%				94	97	72-122			
Dibromofluoromethane (S)	%				96	96	80-136			
Toluene-d8 (S)	%				92	89	80-120			

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 43 of 47

Project:	BPOLY					
Pace Project No.:	254662					
QC Batch:	PMST/1320		Analysis Meth	od: A	STM D2974-87	7
QC Batch Method:	ASTM D2974-8	7	Analysis Desc	ription: D	ory Weight/Perc	ent Moisture
Associated Lab Sa		, ,	4662003, 25466200 4662012, 25466201	,	, ,	254662007, 254662008, 254662009,
SAMPLE DUPLICA	ATE: 38047					
			254662001	Dup		
Para	meter	Units	Result	Result	RPD	Qualifiers
Percent Moisture		%	24.2	24.7	,	2
SAMPLE DUPLICA	ATE: 38048					
SAMPLE DUPLICA	ATE: 38048		254662012	Dup		
	ATE: 38048 meter	Units	254662012 Result	Dup Result	RPD	Qualifiers

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 44 of 47

QUALIFIERS

Pro	ject:		BPOLY
_	_		

Pace Project No.: 254662

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

- 1n Analyte recovery is below control limits. Associated samples reporting the analyte may be biased low.
- 2n Results for all reported compounds were confirmed by the analysis of an out-of-hold re-extract sample. This sample was
- associated with an acceptable method blank and LCS, and had acceptable surrogate recoveries.
- S0 Surrogate recovery outside laboratory control limits.
- S5 Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	BPOLY
Pace Project No .:	254662

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
254662001	GP4-2-2.5	EPA 3546	OEXT/2590	NWTPH-Dx	GCSV/1853
254662002	GP4-4-4.5	EPA 3546	OEXT/2590	NWTPH-Dx	GCSV/1853
254662003	GP5-2-2.5	EPA 3546	OEXT/2590	NWTPH-Dx	GCSV/1853
254662004	GP5-4-4.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254662006	MW6R-2-2.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254662007	MW6R-4-4.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254662009	GP9-2-2.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254662011	GP9-5.5-6	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
54662012	MW7-2-2.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
54662014	MW7-6-6.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
54662015	MW8-2-2.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
54662001	GP4-2-2.5	NWTPH-Gx	GCV/1804	NWTPH-Gx	GCV/1808
54662002	GP4-4-4.5	NWTPH-Gx	GCV/1804	NWTPH-Gx	GCV/1808
254662003	GP5-2-2.5	NWTPH-Gx	GCV/1807	NWTPH-Gx	GCV/1835
54662004	GP5-4-4.5	NWTPH-Gx	GCV/1813	NWTPH-Gx	GCV/1816
254662006	MW6R-2-2.5	NWTPH-Gx	GCV/1807	NWTPH-Gx	GCV/1835
54662007	MW6R-4-4.5	NWTPH-Gx	GCV/1813	NWTPH-Gx	GCV/1816
54662009	GP9-2-2.5	NWTPH-Gx	GCV/1807	NWTPH-Gx	GCV/1835
54662011	GP9-5.5-6	NWTPH-Gx	GCV/1813	NWTPH-Gx	GCV/1816
54662012	MW7-2-2.5	NWTPH-Gx	GCV/1807	NWTPH-Gx	GCV/1835
54662014	MW7-6-6.5	NWTPH-Gx	GCV/1813	NWTPH-Gx	GCV/1816
54662015	MW8-2-2.5	NWTPH-Gx	GCV/1813	NWTPH-Gx	GCV/1816
54662016	Trip Blank	NWTPH-Gx	GCV/1813	NWTPH-Gx	GCV/1816
54662001	GP4-2-2.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662002	GP4-4-4.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662003	GP5-2-2.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662004	GP5-4-4.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
254662006	MW6R-2-2.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662007	MW6R-4-4.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662009	GP9-2-2.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662011	GP9-5.5-6	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662012	MW7-2-2.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662014	MW7-6-6.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662015	MW8-2-2.5	EPA 3050	MPRP/1732	EPA 6010	ICP/1652
54662001	GP4-2-2.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
54662002	GP4-4-4.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
54662003	GP5-2-2.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
54662004	GP5-4-4.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
54662006	MW6R-2-2.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
254662007	MW6R-4-4.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
54662009	GP9-2-2.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
54662011	GP9-5.5-6	EPA 7471	MERP/1236	EPA 7471	MERC/1252
254662012	MW7-2-2.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

Page 46 of 47

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	BPOLY
Pace Project No .:	254662

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
254662014	 MW7-6-6.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
254662015	MW8-2-2.5	EPA 7471	MERP/1236	EPA 7471	MERC/1252
254662001	GP4-2-2.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662002	GP4-4-4.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662003	GP5-2-2.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662004	GP5-4-4.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662005	GP5-6-6.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662006	MW6R-2-2.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662007	MW6R-4-4.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662008	MW6R-6-6.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662009	GP9-2-2.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662010	GP9-4-4.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662011	GP9-5.5-6	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662012	MW7-2-2.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662014	MW7-6-6.5	EPA 3546	OEXT/2573	EPA 8270 by SIM	MSSV/1371
254662015	MW8-2-2.5	EPA 3546	OEXT/2630	EPA 8270 by SIM	MSSV/1377
254662001	GP4-2-2.5	EPA 8260	MSV/2918		
254662002	GP4-4-4.5	EPA 8260	MSV/2918		
254662003	GP5-2-2.5	EPA 8260	MSV/2918		
254662004	GP5-4-4.5	EPA 8260	MSV/2918		
254662006	MW6R-2-2.5	EPA 8260	MSV/2918		
254662007	MW6R-4-4.5	EPA 8260	MSV/2918		
254662009	GP9-2-2.5	EPA 8260	MSV/2918		
254662011	GP9-5.5-6	EPA 8260	MSV/2918		
254662012	MW7-2-2.5	EPA 8260	MSV/2918		
254662014	MW7-6-6.5	EPA 8260	MSV/2934		
254662015	MW8-2-2.5	EPA 8260	MSV/2934		
254662016	Trip Blank	EPA 8260	MSV/2918		
254662001	GP4-2-2.5	ASTM D2974-87	PMST/1320		
254662002	GP4-4-4.5	ASTM D2974-87	PMST/1320		
254662003	GP5-2-2.5	ASTM D2974-87	PMST/1320		
254662004	GP5-4-4.5	ASTM D2974-87	PMST/1320		
254662005	GP5-6-6.5	ASTM D2974-87	PMST/1320		
254662006	MW6R-2-2.5	ASTM D2974-87	PMST/1320		
254662007	MW6R-4-4.5	ASTM D2974-87	PMST/1320		
254662008	MW6R-6-6.5	ASTM D2974-87	PMST/1320		
254662009	GP9-2-2.5	ASTM D2974-87	PMST/1320		
254662010	GP9-4-4.5	ASTM D2974-87	PMST/1320		
254662011	GP9-5.5-6	ASTM D2974-87	PMST/1320		
254662012	MW7-2-2.5	ASTM D2974-87	PMST/1320		
254662013	MW7-4-4.5	ASTM D2974-87	PMST/1320		
254662014	MW7-6-6.5	ASTM D2974-87	PMST/1320		
254662015	MW8-2-2.5	ASTM D2974-87	PMST/1320		

Date: 09/30/2010 11:17 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

20rev.07, 15-May-2007	F-ALL-Q		087410		(MM/DD/YY):	ςı γ	any invoices not paid within 30 days.		any invoices not	ER:	SIGNATURE of SAMPL	IGNATURE	d agreeing to	nent terms an	day payi	ice's NET 30	are accepting Pa	ing this form you	SIGNATURE of SAMPLER: "Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month-	*Impo	
mple	emp				I DATES	QT			יול	XC			-								
tody Coc /N)) in °				4	3	2	P P	Ē	1	PRINT Name of SAMPLER:	RINT Name				AL	OLICINAL				
) oler	°C			~						URE	D SIGNAT	NAME AN	SAMPLER NAME AND SIGNATURE			2					
						-															
		15/12																			
YYY	9.2	まれ	OIH73		Swan	oth	5	_													
SAMPLE CONDITIONS		TIME	DATE,	TION	ACCEPTED BY / AFFILIATION	PTED BY	ACCE		TIME		DATE	z	RELINQUISHED BY / AFFILIATION	HED BY / /		RE		OMMENTS	ADDITIONAL COMMENTS	Þ	
																					12
																					1
												_									10 4
									U 		ĺ	4				_		<u> </u>			• •
ちててあ	Ķ					_			4		E N	F			\langle	Z					∞
-				A X	Š		-			n	3	_			_				101	32	7
					X				<u></u>	$\overline{\Omega}$	J.							1 1 1	21	NE	o
来らって来	×										919	*						10:0	, - 6	0790	CT.
	5			K	2					N I	1600							N.H.	1.0	GPC	4
				XX	XX				E	S	2 2 2 2 2 3							ろう	2 - 2	971	3
				X X X X	X X					1	02:01				_			t'S	1 4- 4	apy	2
				XXX	XX	<u>+-</u>			×	5	1620	062310	0		Þ	10			- 2-	(ap4	
		Ī				-	Ī	I	, i			_		r T	,	5					ļ
Pace Project No./ Lab I.D.	Residual Chlorine				Metals(Total NWTPH GX	Other Analysis Test	NaOH Na ₂ S ₂ O ₃ Methanol	HNO ₃ HCI	Unpreserved H ₂ SO ₄	SAMPLE TEMP AT	TIME	DATE	TIME	DATE	SAMPLE TYPE (G				SAMPLE ID (A-Z, 0-9 /,-) Sample IDs MUST BE UNIQUE	Sample ID	ITEM #
	ə (Y/N)		· · · ·	SG UD Jomod	⇒L)6020 <	t Ş						COMPOSITE END/GRAB	Ē	COMPOSITE START	=GRAB C=C	⊇ µ ⊇ ∑ ד א ד א פ (see valid codes	ng Water Water tt blid		1) ≥	*****
						Y/ N 🛔	Preservatives .	Presen				CTED	COLLECTED		OMP)		ğ e	17	t Information	Section D Required Client Information	T /2
		red (Y/N)	ysis Filter	Requested Analysis Filtered		╞			1											5	
			STATE:			3	153	2	ace Profile #:	Pac	ľ	CX DQ7	۲	Project Number:	E	C Number				Requested Due Date/TAT:	Requ
	Þ	~	Site Location	Site			i.		Manager:	Man					2	-LORANGE		101810 400 -	P	1072208201 × (1724	203 201
T OTHER	P	☐ RCRA	UST	-					Reference:	Refe					No.:	Purchase Order No.:			oper	Nex LOPEZ	
٦	GROUND WATER	GRO	ES	L .												-		9720	AND OF	PALAR	P
	A.C.	Y AGENC	치	REC		.				2							6	Lie ye	COL UMLIS	MSW	
		L						пр.	Nany Nan					6 pez	~	Conv To			VIV	ALCODIN ALCODIN	
1 338850								nation:	Invoice Information: Attention:	Ιηνι				ation:	t Inform	Report To:	Req		normation:	uired Client in	Comp
of -	Page:	P ₂							Section C	Sec						Section B	Sec			Section A	Secti
		1							: 	5 5 								" 1	Pace Analytical www.pacelabs.com	Pace	
7 004 S			ment	CHAIN-OF-CUSIOUT / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately	eques	nt fields	All releva				The Chain-OF-CUS I OUT / Analyt	TAIN The Chain-C							2	0	
	١) 	トファシー	- 1				うっく	1207										Conservation of the second	

*Importar							AD	12	1	10	<u>v</u>] v 6	4/24- 8	S WM 7		5 M M J	AMW	- 6450 E	2027-	- Gpal-		ITEM # Sample IDs I	0	Section D Required Client Information		Requested Due Date/TAT:	Phone: 10820	ACT X22	Portland	Address: SW C	CATCA1	Required Client Information:	Section A	Hace +	
*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.		(OR				ADDITIONAL COMMENTS			91-1	A Com		- 2-2.5	1 0-0-1	14-4-2	1-2-2.5	5,5-6	5-4-4	1-2.5)	(A-Z, 0-9 / ,-) Wipe (A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue Other	Drinking Water Water Waste Water Product Soil/Solid Oil			е/ТАТ:	20131205201×11226072208269	robez	102-97201	15: SW Columbia	ADIS	rmation:		PACE ANALYTICAL www.pacelabs.com	
epting Pace's NET 30 day pay		(; ; ;	ORIGINAL				RELINQUI				8	6	96	20	ହ ଜୁନ୍		<u> </u>	Sha	Ó	2	MATRIX CODE	은 쓴 고 옷 듯 및 (see valid codes 글=GRAB C=C	to left)	-	Project NPOEGERPNAWA	Protect Name - Y	Purchase Order No.:		Copy To:	Report To: Alex	Required Project Information:	Section B		
ment terms and agreeing to I	S	łd	SAMPLER I				RELINQUISHED BY / AFFILIATION									0	0	20	A A A A A A A A A A A A A A A A A A A		DATE	COMPOSITE START	COLLECTED		ANANAG				-	x Logez	nation:			T
ate charges of 1.5% per mor	SIGNATURE of SAMPLER	PRINT Name of SAMPLER	SAMPLER NAME AND SIGNATURE				U DATE						1 100	<u>8</u>	1 1040	0524/10 10 30	S nbath 20	1824100736	08410 915		TIME SAMPLE TEMP AT				(a). CO000					E				The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.
th for any invoices not pai		Me/	R				TIME					4	ן א ו	8	ন স	R V	8	8	~		# OF CONTAINER Unpreserved H ₂ SO ₄ HNO ₃ HCI]		Pace Profile #:	Pace Project Manager:	Pace Quote Reference:	Address:	Company Name:	Attention:	Invoice Information:	Section C		A LEGAL DOCUMEN
d within 30 days.		acy Mar		1	1	Jyothi	ACCEPTED BY / AFFILIATION						N X	8 8	र्षेष्ठ	× <	8	××	X X		NaOH Na ₂ S ₂ O ₃ Methanol Other Analysis Tes	t J.	Preservatives.	,	×.							- 1000 (1998) A 11 - 1		II All relevant fields r
1_	DATE Signed	17			1	Swann	AFFILIATION					XX	XXXXXX	XXXXX		XXXXX	XXXXX		XXXX		Metals(T 1WTPHGX NWTPHDX BIEX 82 OPAHS 97	<u>.</u> 60		Requested Ana		si			RE					niist he completed ac
000000	8 J J			· ·	/ /	8/24/10 15-15	DATE TIME				<u> </u>													Requested Analysis Filtered (Y/N)	STATE: VV	Site Location	UST [RCRA	NPDES T GR	REGULATORY AGENCY				-	ninatelv.
F-ALL-Q-020	Rece	np in	lon			N 8,151									1401			Ð		T	Residual Chlorin	e (Y/N)				P	RA	GROUND WATER	ICY	-	-	Page:		
F-ALL-Q-020rev.07, 15-May-2007	Cu Seale	e (Y/N ustod ed Cc Y/N)	ly poler			7	SAMPLE CONDITIONS								Ă			9			ace Project No./						T OTHER	DRINKING WATER		33884		of		
		les li Y/N)				4	3							:						Lan 1.0.	Lab I.D.							VATER		G				

F-SEA-C-014-rev.0, 14Jan2010

14

BP1N BG1U 1 liter unpreserved glass BG1H 1 liter HCL clear glass BP20 500mL NaOH plastic BP2N 500mL HNO3 plastic BP1U 1 liter unpreserved plastic BP1S 1 liter H2SO4 plastic AG3S 250mL H2SO4 amber glass AG2U 500mL unpreserved amber glass AG2S 500mL H2SO4 amber glass AG1U 1liter unpreserved amber glass BP1Z 1 liter NaOH, Zn, Ac AG1H 1 liter HCL amber glass 1 liter HNO3 plastic DG9M DG9U 40mL unpreserved amber vial DG9H BP3N DG9B 40mL Na Bisulfate amber vial BP3U BP3S BP2U 500mL unpreserved plastic BP3C 250mL NaOH plastic DG9T 40mL Na Thio amber vial BP2Z 500mL NaOH, Zn Ac BP2S 500mL H2SO4 plastic 40mL MeOH clear vial Wipe/Swab 40mL HCL amber voa vial 250mL H2SO4 plastic 250mL HNO3 plastic 250mL unpreserved plastic WGFU 4oz clear soil jar WGFX 4oz wide jar w/hexane wipe VG9W 40mL glass vial preweighted (EPA 5035) VG9H 40mL HCL clear vial VG9U 40mL unpreserved clear vial VG9T 40mL Na Thio. clear vial ZPLC Ziploc Bag JGFU 4oz unpreserved amber wide VSG Headspace septa vial & HCL R terra core kit U Summa Can

Trip Blank? No						-								12
														1
														10
		4												9
	く	1	-	1										ω
	r	-	1	1										7
	2.	1		1		-								л
	2	بعومر		1										л
	7	~	, -	-/-										4
	2	~	-	-										ω
	2			-										N
	r	-		(
Comments	BP2S WGFU WGKU DGan UGAN	DCan	WGKU	WGFU	BP2S	BP2N	BP3U	BP2U	BP1U	BG1H	AG1U	AG1H	VG9H	ne
-				•								058	1338850	COC PAGE
Pace Analytical"		ا								S.	Acadis	2	*	CLIENT:
										***		>		

Sample Container Count

Sam
2
6
S S
0
tai
Ξ
ler
\cap
ò
ī.

CLIENT: Acadis

Face Analytical*

	COC PAGE
132854 4	of

	C
	ŧ
,	ψ
	b
	N
	K
	ŀ

	12	 10	g	8	7	6	сл v	4	ω	2		Sample Line Item
												VG9H
												AG1H
												AG1U BG1H BP1U
												BG1H
												BP1U
												BP2U BP3U
												BP3U
	-					-						BP2N
												BP2S
					_		_	_ <u>_</u>	1		<u> </u>	WGFU
					181		1	•	(١	-	WGKU
			1	~		-	-	-	Į	1	~~~,	NGAM
				Ч	٢	<u>٢</u>	ب ر	ۍ د ر ا	r .	?	θ	WGFU WGKU NGAN NGAN
C	Trip Blank? 4CS											Comments

BP20 500mL NaOH plastic	BP2N 500mL HNO3 plastic	BP1Z 1 liter NaOH, Zn, Ac	BP1U 1 liter unpreserved plastic	BP1S 1 liter H2SO4 plastic	BP1N 1 liter HNO3 plastic	BG1U 1 liter unpreserved glass	BG1H 1 liter HCL clear glass	AG3S 250mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG2S 500mL H2SO4 amber glass	AG1U 1liter unpreserved amber glass	AG1H 1 liter HCL amber glass
I Wipe/Swab	DG9U 40mL unpreserved amber vial	DG9T 40mL Na Thio amber vial	DG9M 40mL MeOH clear vial	DG9H 40mL HCL amber voa vial	DG9B 40mL Na Bisulfate amber vial	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	BP3N 250mL HNO3 plastic	BP3C 250mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	BP2U 500mL unpreserved plastic	BP2S 500mL H2SO4 plastic
		ZPLC Ziploc Bag	WGFX 4oz wide jar w/hexane wipe	WGFU 4oz clear soil jar	VSG Headspace septa vial & HCL	VG9W 40mL glass vial preweighted (EPA 5035)	VG9U 40mL unpreserved clear vial	VG9T 40mL Na Thio. clear vial	VG9H 40mL HCL clear vial	U Summa Can	R terra core kit	JGFU 4oz unpreserved amber wide

F-SEA-C-014-rev.0, 14Jan2010

14

	Sample Cond	ition Upon Receipt
Pace Analytical Client Name	: Arco	dis Project # 254662
Courier: Fed Ex UPS USPS Clier	nt Commercial	Pace Other
Custody Seal on Cooler/Box Present:	No Seals	intact: 🛛 Yes 🔲 No
Packing Material: Bubble Wrap Bubble	Bags None	Other Temp. Blank (es) No
Thermometer Used 1320 (3 or 101731962 or 22609	9 Type of Ice: (Wet	Blue None Samples on ice, cooling process has begun
Cooler Temperature $1.83.4$ Temp should be above freezing $\leq 6^{\circ}C$	Biological Tissue	is Frozen: Yes No Date and Initials of person examining contents:
Chain of Custody Present:	ØYes □No □N/A	1.
Chain of Custody Filled Out:	⊠Yes □No □N/A	2.
Chain of Custody Relinquished:	₽Yes □No □N/A	3.
Sampler Name & Signature on COC:	₽¶es □No □N/A	4.
Samples Arrived within Hold Time:	ØYes □No □N/A	5.
Short Hold Time Analysis (<72hr):	⊡Yes ⊠No □N/A	6.
Rush Turn Around Time Requested:	□Yes CINo □N/A	7.
Sufficient Volume:	ØYes □No □N/A	8.
Correct Containers Used:	∕⊠Yes ⊡No ⊡N/A	9.
-Pace Containers Used:	⊠Yes □No □N/A	
Containers Intact:	RYes □No □N/A	10.
Filtered volume received for Dissolved tests	□Yes □No □MA	11.
Sample Labels match COC:		12.
-Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked.	Soll []Yes []No []N/A	13 (, , , , , , , , , , , , , , , , , ,
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No □N/A	13. Terracore Kits
Exceptions: VOA, coliform, TOC, O&G		Initial when Lot # of added completed preservative
Samples checked for dechlorination:	□Yes □No □N/A	14.
Headspace in VOA Vials (>6mm):	□Yes □No □M/A	15.
Trip Blanks Present:	ØYes □No □N/A	16.
Trip Blank Custody Seals Present	□Yes □N/A	
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution: Person Contacted: <u>Alex Lepez</u> Comments/ Resolution:	Date/	
Hold Samples: Extract & /	told PAHs	on hold samples per Alex.
6010 Metals: Alex approv	red 6010 .	For this project.
Project Manager Review:	m	Date: 09/08/10 1014

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

1

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

September 30, 2010

Alex Lopez Arcadis 111 SW Columbia St. Ste. 725 Portland, OR 97201

RE: Project: BPOLY Pace Project No.: 254681

Dear Alex Lopez:

Enclosed are the analytical results for sample(s) received by the laboratory on August 25, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Revised Report - PAHs added to samples MW-12 6-6.5 and MW-11 6-6.5 at client's request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regine Ste. Marie

Regina SteMarie

regina.stemarie@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

Page 1 of 59

CERTIFICATIONS

Project: BPOLY

Pace Project No.: 254681

Washington Certification IDs 940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025 Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254681

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
254681001	 MW8-4-4.5	ASTM D2974-87	KJ1	1	PASI-S
254681002	MW8-6-6.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254681003	MW9-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681004	MW9-4-4.5	ASTM D2974-87	KJ1	1	PASI-S
54681005	MW9-6-6.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254681006	MW12-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681007	MW12-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 59

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BPOLY Pace Project No.: 254681

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
254681008	MW12-6-6.5	EPA 8270 by SIM	DMT		PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254681009	MW11-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254681010	MW11-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681011	MW11-6-6.5	EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681012	GP6-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681013	GP6-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681014	GP6-6-6.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 4 of 59

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BPOLY Pace Project No.: 254681

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254681015	GP7-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681016	GP7-4-4.5	ASTM D2974-87	KJ1	1	PASI-S
54681017	GP7-6-6.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681018	MW10-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681019	MW10-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54681020	MW10-6-6.5	ASTM D2974-87	KJ1	1	PASI-S
54681021	GP3-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 5 of 59

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project:BPOLYPace Project No.:254681

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254681022	GP3-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254681023	Trip Blank	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	ATH	8	PASI-S

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 6 of 59

PROJECT NARRATIVE

Project: BPOLY Pace Project No.: 254681

Method: NWTPH-Dx

Description:NWTPH-Dx GCS SGClient:Arcadis ORDate:September 30, 2010

General Information:

16 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: BPOLY Pace Project No.: 254681

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:Arcadis ORDate:September 30, 2010

General Information:

17 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with NWTPH-Gx with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254681

Method:EPA 6010Description:6010 MET ICPClient:Arcadis ORDate:September 30, 2010

General Information:

16 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/1737

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 254681002

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 37965)
 - Barium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254681

Method:EPA 7471Description:7471 MercuryClient:Arcadis ORDate:September 30, 2010

General Information:

16 samples were analyzed for EPA 7471. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254681

Method: EPA 8270 by SIM

Description:8270 MSSV PAH by SIMClient:Arcadis ORDate:September 30, 2010

General Information:

18 samples were analyzed for EPA 8270 by SIM. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: OEXT/2591

1n: Analyte was detected in the associated method blank. Analyte presence in method blank was less than 10 times that found in the sample, therefore acceptable per NELAC standard.

- GP6-4-4.5 (Lab ID: 254681013)
 - 2-Methylnaphthalene
 - Naphthalene

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

w #cca_{ka}

Project: BPOLY Pace Project No.: 254681

Method:	EPA 8270 by SIM
Description:	8270 MSSV PAH by SIM
Client:	Arcadis OR
Date:	September 30, 2010

Analyte Comments:

QC Batch: OEXT/2591

1n: Analyte was detected in the associated method blank. Analyte presence in method blank was less than 10 times that found in the sample, therefore acceptable per NELAC standard.

- MW11-2-2.5 (Lab ID: 254681009)
 - 2-Methylnaphthalene
 - Naphthalene
- MW12-2-2.5 (Lab ID: 254681006)
 - 2-Methylnaphthalene
 - Naphthalene
- MW12-4-4.5 (Lab ID: 254681007)
 - 2-Methylnaphthalene
 - Naphthalene

2n: Reported result is above the reporting limit for this analyte.

- BLANK (Lab ID: 38446)
 - 2-Methylnaphthalene
 - Naphthalene

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254681

Method: EPA 8260

Description:8260/5035A Volatile OrganicsClient:Arcadis ORDate:September 30, 2010

General Information:

17 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: MSV/2938

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- GP6-4-4.5 (Lab ID: 254681013)
 - 4-Bromofluorobenzene (S)
- GP6-6-6.5 (Lab ID: 254681014)
 - 4-Bromofluorobenzene (S)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

Project: BPOLY Pace Project No.: 254681							
Sample: MW8-4-4.5	Lab ID: 254681001	Collected: 08/24/10 1	2:45	Received: 08	8/25/10 14:40 N	Aatrix: Solid	
Results reported on a "dry-weig	ght" basis						
Parameters	Results Un	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Method: AS	TM D2974-87					
Percent Moisture	26.1 %	0.10	1		08/27/10 12:32		
Sample: MW8-6-6.5	Lab ID: 254681002	Collected: 08/24/10 1	13:00	Received: 08	8/25/10 14:40	Matrix: Solid	
Results reported on a "dry-weig	ght" basis						
Parameters	ResultsUn	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: N	VTPH-Dx Preparation Metho	od: EPA	3546			
Diesel Range SG	ND mg/kg	25.4	1 0	9/01/10 19:05	09/02/10 20:13		
Notor Oil Range SG	ND mg/kg		-		09/02/10 20:13		
n-Octacosane (S) SG	85 %				09/02/10 20:13		
o-Terphenyl (S) SG	88 %	50-150	1 0	9/01/10 19:05	09/02/10 20:13	84-15-1	
NWTPH-Gx GCV	Analytical Method: NV	VTPH-Gx Preparation Meth	od: NW	TPH-Gx			
Gasoline Range Organics	ND mg/kg	7.9	1 0	8/30/10 12:00	08/31/10 07:24		
a,a,a-Trifluorotoluene (S)	106 %	-	-		08/31/10 07:24		
4-Bromofluorobenzene (S)	101 %		-		08/31/10 07:24		
6010 MET ICP	Analytical Method: EF	A 6010 Preparation Method	I: EPA 3	8050			
Arsenic	ND mg/kg	13.1	5 0	8/27/10 07.06	08/30/10 14:45	7440-38-2	
Barium	140 mg/kg				08/30/10 15:43		
Cadmium	ND mg/kg		-		08/30/10 14:45		
Chromium	41.9 mg/kg				08/30/10 15:43		
_ead	4.1 mg/kg				08/30/10 15:43		
Selenium	ND mg/kg		-		08/30/10 14:45		
Silver	ND mg/kg				08/30/10 14:45		
7471 Mercury	Analytical Method: EF	A 7471 Preparation Method	I: EPA 7	471			
Mercury	ND mg/kg	0.12	1 0	8/27/10 08:59	08/27/10 15:26	7439-97-6	
8270 MSSV PAH by SIM	Analytical Method: EF	A 8270 by SIM Preparation	Method	d: EPA 3546			
Acenaphthene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	83-32-9	
Acenaphthylene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	208-96-8	
Anthracene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	120-12-7	
Benzo(a)anthracene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	56-55-3	
Benzo(a)pyrene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	50-32-8	
Benzo(b)fluoranthene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	205-99-2	
Benzo(g,h,i)perylene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	191-24-2	
Benzo(k)fluoranthene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	207-08-9	
Chrysene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	9.0	1 0	8/31/10 22:00	09/02/10 03:36	53-70-3	
Fluoranthene	ND ug/kg				09/02/10 03:36		
Fluorene	ND ug/kg				09/02/10 03:36		
ndeno(1,2,3-cd)pyrene	ND ug/kg			8/31/10 22:00			

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 14 of 59

Project: BPOLY

Pace Project No.: 254681

Sample: MW8-6-6.5	Lab ID: 25468	1002	Collected: 08/24/1	0 13:00	Received: 08	/25/10 14:40 N	Aatrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3270 MSSV PAH by SIM	Analytical Method	d: EPA 827	70 by SIM Preparati	ion Meth	od: EPA 3546			
1-Methylnaphthalene	ND ug/kg	3	9.0	1	08/31/10 22:00	09/02/10 03:36	90-12-0	
2-Methylnaphthalene	ND ug/kg	9	9.0	1	08/31/10 22:00	09/02/10 03:36	91-57-6	B-
Naphthalene	ND ug/kg	-	9.0	1	08/31/10 22:00	09/02/10 03:36	91-20-3	B-
Phenanthrene	ND ug/kg	-	9.0	1	08/31/10 22:00	09/02/10 03:36	85-01-8	
^D yrene	ND ug/kg	-	9.0	1	08/31/10 22:00	09/02/10 03:36	129-00-0	
2-Fluorobiphenyl (S)	91 %	5	55-136	1	08/31/10 22:00	09/02/10 03:36	321-60-8	
Ferphenyl-d14 (S)	91 %		60-144	1		09/02/10 03:36		
3260/5035A Volatile Organics	Analytical Method	d: EPA 826	50					
Benzene		-	3.6	1		08/26/10 10.51	71 /2 2	
	ND ug/kg	-	3.6	1		08/26/10 19:51		
Ethylbenzene	ND ug/kg	-	3.6	1		08/26/10 19:51		
	ND ug/kg	5	3.6	1		08/26/10 19:51		
Kylene (Total)	ND ug/kg	9	10.9	1		08/26/10 19:51		
Dibromofluoromethane (S)	100 %		80-136	1		08/26/10 19:51		
Γoluene-d8 (S)	89 %		80-120	1		08/26/10 19:51		
1-Bromofluorobenzene (S)	90 %		72-122	1		08/26/10 19:51	460-00-4	
,2-Dichloroethane-d4 (S)	87 %		80-143	1		08/26/10 19:51	17060-07-0	
Percent Moisture	Analytical Method	d: ASTM D	02974-87					
Percent Moisture	25.3 %		0.10	1		08/27/10 16:01		
Percent Moisture	25.3 %		0.10	1		08/27/10 16:01		
	25.3 % Lab ID: 25468	1003	0.10 Collected: 08/24/1		Received: 08		Aatrix: Solid	
Sample: MW9-2-2.5	Lab ID: 25468	1003			Received: 08		latrix: Solid	
Sample: MW9-2-2.5	Lab ID: 25468	1003 Units			Received: 08 Prepared		fatrix: Solid CAS No.	Qual
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters	Lab ID: 25468 t" basis Results	Units	Collected: 08/24/1	0 13:30 DF	Prepared	/25/10 14:40 N		Qual
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG	Lab ID: 25468 t" basis Results	Units d: NWTPH	Collected: 08/24/1 Report Limit	0 13:30 DF	Prepared PA 3546	/25/10 14:40 N		Qual
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG	Lab ID: 25468 t" basis Results Analytical Methor ND mg/k	Units d: NWTPH g	Collected: 08/24/1 Report Limit	0 13:30 DF ethod: E	Prepared PA 3546 09/01/10 19:05	/25/10 14:40 N Analyzed	CAS No.	Qual
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	Lab ID: 25468 t" basis Results Analytical Methor	Units d: NWTPH g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7	0 13:30 DF ethod: E 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29	CAS No. 64742-65-0	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	Lab ID: 25468 t" basis Results Analytical Method ND mg/k ND mg/k	Units d: NWTPH g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7	0 13:30 DF ethod: E 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	/25/10 14:40 M Analyzed 09/02/10 20:29	CAS No. 64742-65-0 630-02-4	Qual
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG	Lab ID: 25468 t" basis Results Analytical Method ND mg/k ND mg/k 96 % 96 %	Units d: NWTPH g g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7 50-150	0 13:30 DF ethod: E 1 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29	CAS No. 64742-65-0 630-02-4	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	Lab ID: 25468 t" basis Results Analytical Method ND mg/k ND mg/k 96 % 96 % Analytical Method	Units d: NWTPH g g d: NWTPH	Collected: 08/24/1 Report Limit I-Dx Preparation Ma 24.7 98.7 50-150 50-150 1-Gx Preparation Ma	0 13:30 DF ethod: E 1 1 1 1 1 ethod: N	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29	CAS No. 64742-65-0 630-02-4	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k	Units d: NWTPH g g d: NWTPH	Collected: 08/24/1 Report Limit I-Dx Preparation Ma 24.7 98.7 50-150 50-150 I-Gx Preparation Ma 9.0	0 13:30 DF ethod: E 1 1 1 1 ethod: N 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 09:01	CAS No. 64742-65-0 630-02-4 84-15-1	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k 107 %	Units d: NWTPH g g d: NWTPH	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7 50-150 50-150 I-Gx Preparation Me 9.0 50-150	0 13:30 DF ethod: E 1 1 1 1 ethod: N 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 08/31/10 09:01	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k	Units d: NWTPH g g d: NWTPH	Collected: 08/24/1 Report Limit I-Dx Preparation Ma 24.7 98.7 50-150 50-150 I-Gx Preparation Ma 9.0	0 13:30 DF ethod: E 1 1 1 1 ethod: N 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 09:01	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG D-Octacosane (S) SG D-Octacosane (S) SG WTPH-Gx GCV Sasoline Range Organics a,a,a-Trifluorotoluene (S) I-Bromofluorobenzene (S)	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k 96 % 96 %	Units d: NWTPH g g d: NWTPH g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7 50-150 50-150 I-Gx Preparation Me 9.0 50-150	0 13:30 DF ethod: E 1 1 1 1 ethod: N 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 08/31/10 09:01	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG WTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k 107 % 98 % Analytical Method ND mg/k	Units d: NWTPH g d: NWTPH g d: EPA 601 g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7 50-150 50-150 I-Gx Preparation Me 9.0 50-150 50-150	0 13:30 DF ethod: E 1 1 1 1 ethod: N 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 08/31/10 09:01 08/31/10 09:01 08/31/10 09:01 08/30/10 14:52	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG WTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k 107 % 98 % Analytical Method	Units d: NWTPH g d: NWTPH g d: EPA 601 g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7 50-150 50-150 I-Gx Preparation Me 9.0 50-150 50-150 10 Preparation Met	0 13:30 DF ethod: E 1 1 1 1 ethod: N 1 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 08/31/10 09:01 08/31/10 09:01	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG h-Octacosane (S) SG b-Terphenyl (S) SG WTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic Barium	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k 107 % 98 % Analytical Method ND mg/k	Units d: NWTPH g d: NWTPH g d: EPA 601 g g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7 50-150 50-150 I-Gx Preparation Me 50-150 10 Preparation Met 10.0	0 13:30 DF ethod: E 1 1 1 ethod: N 1 1 1 nod: EP/ 5	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 08/31/10 09:01 08/31/10 09:01 08/31/10 09:01 08/30/10 14:52	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Notor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG WTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic Barium Cadmium	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k 107 % 98 % Analytical Method ND mg/k 107 mg/k 156 mg/k	Units d: NWTPH g d: NWTPH g d: EPA 601 g g g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7 50-150 50-150 I-Gx Preparation Me 9.0 50-150 10 Preparation Met 10.0 20.0	0 13:30 DF ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP/ 5 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/27/10 07:06 08/27/10 07:06	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 08/31/10 09:01 08/31/10 09:01 08/31/10 09:01 08/30/10 14:52 08/30/10 15:51	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-38-2 7440-39-3 7440-43-9	Qua
Sample: MW9-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	Lab ID: 25468 t" basis Results Analytical Method ND mg/k 96 % 96 % Analytical Method ND mg/k 107 % 98 % Analytical Method ND mg/k 156 mg/k ND mg/k	Units d: NWTPH g d: NWTPH g d: EPA 601 g g g g	Collected: 08/24/1 Report Limit I-Dx Preparation Me 24.7 98.7 50-150 50-150 I-Gx Preparation Me 50-150 50-150 10 Preparation Meth 10.0 20.0 5.0	0 13:30 DF ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP/ 5 1 5	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	/25/10 14:40 M Analyzed 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 09/02/10 20:29 08/31/10 09:01 08/31/10 09:01 08/31/10 09:01 08/30/10 14:52 08/30/10 14:52	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-38-2 7440-39-3 7440-43-9 7440-47-3	Qua

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 59

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BPOLY

Pace Project No.: 254681

Sample: MW9-2-2.5	Lab ID: 254681003	Collected: 08/24/1	0 13:30	D Received: 08	B/25/10 14:40 N	fatrix: Solid	
Results reported on a "dry-weight	" basis						
Parameters	ResultsUni	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method: EP	A 6010 Preparation Met	nod: EP	A 3050			
Silver	ND mg/kg	5.0	5	08/27/10 07:06	08/30/10 14:52	7440-22-4	
7471 Mercury	Analytical Method: EP	A 7471 Preparation Met	nod: EP	PA 7471			
Mercury	ND mg/kg	0.13	1	08/27/10 08:59	08/27/10 15:33	7439-97-6	
8270 MSSV PAH by SIM	Analytical Method: EP	A 8270 by SIM Preparat	ion Met	hod: EPA 3546			
Acenaphthene	ND ug/kg	8.7	1	08/31/10 22:00	09/02/10 04:25	83-32-9	
Acenaphthylene	ND ug/kg	8.7	1	08/31/10 22:00	09/02/10 04:25	208-96-8	
Anthracene	ND ug/kg	8.7	1	08/31/10 22:00	09/02/10 04:25	120-12-7	
Benzo(a)anthracene	ND ug/kg	8.7	1	08/31/10 22:00	09/02/10 04:25	56-55-3	
Benzo(a)pyrene	ND ug/kg	8.7	1		09/02/10 04:25		
Benzo(b)fluoranthene	ND ug/kg	8.7	1	08/31/10 22:00	09/02/10 04:25	205-99-2	
Benzo(g,h,i)perylene	ND ug/kg	8.7	1	08/31/10 22:00	09/02/10 04:25	191-24-2	
Benzo(k)fluoranthene	ND ug/kg	8.7	1	08/31/10 22:00	09/02/10 04:25	207-08-9	
Chrysene	ND ug/kg	8.7	1	08/31/10 22:00	09/02/10 04:25	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	8.7	1		09/02/10 04:25		
Fluoranthene	ND ug/kg	8.7	1		09/02/10 04:25		
Fluorene	ND ug/kg	8.7	1		09/02/10 04:25		
Indeno(1,2,3-cd)pyrene	ND ug/kg	8.7	1		09/02/10 04:25		
1-Methylnaphthalene	ND ug/kg	8.7	1		09/02/10 04:25		
2-Methylnaphthalene	ND ug/kg	8.7	1		09/02/10 04:25		B-
Naphthalene	ND ug/kg	8.7	1		09/02/10 04:25		B-
Phenanthrene	ND ug/kg	8.7	1		09/02/10 04:25		-
Pyrene	ND ug/kg	8.7	1		09/02/10 04:25		
2-Fluorobiphenyl (S)	81 %	55-136	1		09/02/10 04:25		
Terphenyl-d14 (S)	81 %	60-144	1		09/02/10 04:25		
8260/5035A Volatile Organics	Analytical Method: EP	A 8260					
Benzene	ND ug/kg	4.2	1		08/26/10 20:10	71-43-2	
Ethylbenzene	ND ug/kg	4.2	1		08/26/10 20:10		
Toluene	ND ug/kg	4.2	1		08/26/10 20:10	108-88-3	
Xylene (Total)	ND ug/kg	12.5	1		08/26/10 20:10		
Dibromofluoromethane (S)	97 %	80-136	1		08/26/10 20:10		
Toluene-d8 (S)	89 %	80-120	1		08/26/10 20:10		
4-Bromofluorobenzene (S)	92 %	72-122	1		08/26/10 20:10		
1,2-Dichloroethane-d4 (S)	89 %	80-143	1		08/26/10 20:10		
Percent Moisture	Analytical Method: AS	ГM D2974-87					
Percent Moisture	24.4 %	0.10	1		08/27/10 16:03		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Sample: MW9-4-4.5	Lab ID: 254681	004	Collected: 08/24/	10 13.45	Received: 08	8/25/10 14·40 M	Aatrix: Solid	
Results reported on a "dry-weig		004	Conected. 00/24/	10 13.45	Received. 00	23/10 14.40		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Demonst Malation								
Percent Moisture	Analytical Method:	: ASTML	02974-87					
Percent Moisture	15.0 %		0.10	1		08/27/10 16:04		
Sample: MW9-6-6.5	Lab ID: 254681	005	Collected: 08/24/	10 14:00	Received: 08	8/25/10 14:40	Matrix: Solid	
Results reported on a "dry-weig	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method:	: NWTPH	I-Dx Preparation M	ethod: El	PA 3546			
Diesel Range SG	ND mg/kg]	25.6	1	09/01/10 19:05	09/02/10 21:19		
Motor Oil Range SG	ND mg/kg		102	1	09/01/10 19:05	09/02/10 21:19	64742-65-0	
n-Octacosane (S) SG	92 %		50-150	1	09/01/10 19:05	09/02/10 21:19	630-02-4	
o-Terphenyl (S) SG	94 %		50-150	1	09/01/10 19:05	09/02/10 21:19	84-15-1	
NWTPH-Gx GCV	Analytical Method:	: NWTPH	I-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg/kg	1	8.3	1	08/30/10 12:00	08/31/10 09:25		
a,a,a-Trifluorotoluene (S)	106 %		50-150	1	08/30/10 12:00	08/31/10 09:25	98-08-8	
4-Bromofluorobenzene (S)	96 %		50-150	1	08/30/10 12:00	08/31/10 09:25	460-00-4	
6010 MET ICP	Analytical Method:	: EPA 60	10 Preparation Met	hod: EPA	3050			
Arsenic	ND mg/kg	J	11.1	5	08/27/10 07:06	08/30/10 14:55	7440-38-2	
Barium	126 mg/kg)	22.2	1	08/27/10 07:06	08/30/10 15:54	7440-39-3	
Cadmium	ND mg/kg)	5.6	5	08/27/10 07:06	08/30/10 14:55	7440-43-9	
Chromium	46.0 mg/kg)	1.1	1	08/27/10 07:06	08/30/10 15:54	7440-47-3	
Lead	6.1 mg/kg	J	5.6	5	08/27/10 07:06	08/30/10 14:55	7439-92-1	
Selenium	ND mg/kg	J	5.6	5	08/27/10 07:06	08/30/10 14:55	7782-49-2	
Silver	ND mg/kg	J	5.6	5	08/27/10 07:06	08/30/10 14:55	7440-22-4	
7471 Mercury	Analytical Method:	: EPA 74	71 Preparation Met	hod: EPA	7471			
Mercury	ND mg/kg	J	0.11	1	08/27/10 08:59	08/27/10 15:35	7439-97-6	
8270 MSSV PAH by SIM	Analytical Method:	: EPA 82	70 by SIM Preparat	ion Meth	od: EPA 3546			
Acenaphthene	ND ug/kg		8.9	1		09/03/10 18:20		
Acenaphthylene	ND ug/kg		8.9	1		09/03/10 18:20		
Anthracene	ND ug/kg		8.9	1	09/03/10 11:10	09/03/10 18:20	120-12-7	
Benzo(a)anthracene	ND ug/kg		8.9	1		09/03/10 18:20		
Benzo(a)pyrene	ND ug/kg		8.9	1		09/03/10 18:20		
Benzo(b)fluoranthene	ND ug/kg		8.9	1		09/03/10 18:20		
Benzo(g,h,i)perylene	ND ug/kg		8.9	1		09/03/10 18:20		
Benzo(k)fluoranthene	ND ug/kg		8.9	1		09/03/10 18:20		
Chrysene	ND ug/kg		8.9	1		09/03/10 18:20		
Dibenz(a,h)anthracene	ND ug/kg		8.9	1		09/03/10 18:20		
Fluoranthene	ND ug/kg		8.9	1		09/03/10 18:20		
Fluorene	ND ug/kg		8.9	1	09/03/10 11:10	09/03/10 18:20	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug/kg		8.9	1	09/03/10 11:10		100 00 5	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 17 of 59

POLY

Pace Project No.: 254681

	Lab ID: 2540	681005	Collected: 08/24/1	0 14:00	Received: 08	25/10 14:40 N	latrix: Solid	
Results reported on a "dry-weigh	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3270 MSSV PAH by SIM	Analytical Meth	od: EPA 82	70 by SIM Preparat	ion Meth	nod: EPA 3546			
1-Methylnaphthalene	ND ug	/kg	8.9	1	09/03/10 11:10	09/03/10 18:20	90-12-0	
2-Methylnaphthalene	ND ug	/kg	8.9	1	09/03/10 11:10	09/03/10 18:20	91-57-6	
Naphthalene	ND ug	-	8.9	1	09/03/10 11:10	09/03/10 18:20	91-20-3	
Phenanthrene	ND ug	-	8.9	1		09/03/10 18:20		
Pyrene	ND ug		8.9	1		09/03/10 18:20		
2-Fluorobiphenyl (S)	71 %	5	55-136	1		09/03/10 18:20		
Terphenyl-d14 (S)	71 %		60-144	1		09/03/10 18:20		
8260/5035A Volatile Organics	Analytical Meth	od: EPA 82						
-	-						74.40.0	
Benzene	ND ug	-	3.2	1		08/26/10 20:29		
Ethylbenzene	ND ug	-	3.2	1		08/26/10 20:29		
Toluene	ND ug	0	3.2	1		08/26/10 20:29		
Xylene (Total)	ND ug	′kg	9.7	1		08/26/10 20:29		
Dibromofluoromethane (S)	97 %		80-136	1		08/26/10 20:29	1868-53-7	
Toluene-d8 (S)	91 %		80-120	1		08/26/10 20:29	2037-26-5	
4-Bromofluorobenzene (S)	90 %		72-122	1		08/26/10 20:29	460-00-4	
1,2-Dichloroethane-d4 (S)	84 %		80-143	1		08/26/10 20:29	17060-07-0	
Percent Moisture	Analytical Meth	od: ASTM E	02974-87					
Percent Moisture	25.1 %		0.10	1		08/27/10 16:06		
•	Lab ID: 2546	681006	Collected: 08/25/1	0 11:00	Received: 08	6/25/10 14:40 N	fatrix: Solid	
•		681006	Collected: 08/25/1	0 11:00	Received: 08	5/25/10 14:40 M	latrix: Solid	
•		6 81006 Units	Collected: 08/25/1	0 11:00 DF	Received: 08 Prepared	/25/10 14:40 M	fatrix: Solid CAS No.	Qual
Results reported on a "dry-weigh Parameters	ht" basis Results	Units		DF	Prepared			Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG	ht" basis Results	Units	Report Limit	DF	Prepared PA 3546			Qual
Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG	ht" basis Results Analytical Meth	Units lod: NWTPH	Report Limit	DF ethod: E	Prepared PA 3546 09/01/10 19:05	Analyzed	CAS No.	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	ht" basis Results Analytical Meth 75.7 mg	Units lod: NWTPH	Report Limit H-Dx Preparation Me 25.0	DF ethod: E 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05	Analyzed	CAS No. 64742-65-0	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	ht" basis Results Analytical Meth 75.7 mg 153 mg	Units lod: NWTPH	Report Limit H-Dx Preparation Me 25.0 100	DF ethod: E 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	Analyzed 09/02/10 21:35 09/02/10 21:35	CAS No. 64742-65-0 630-02-4	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 %	Units lod: NWTPH //kg //kg	Report Limit H-Dx Preparation Me 25.0 100 50-150	DF ethod: E 1 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35	CAS No. 64742-65-0 630-02-4	Qual
NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth	Units Iod: NWTPF I/kg I/kg	Report Limit H-Dx Preparation Me 25.0 100 50-150 50-150 H-Gx Preparation Me	DF ethod: E 1 1 1 1 ethod: N	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35	CAS No. 64742-65-0 630-02-4	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg	Units Iod: NWTPF I/kg I/kg	Report Limit H-Dx Preparation Mo 25.0 100 50-150 50-150 H-Gx Preparation Mo 6.9	DF ethod: E 1 1 1 1 ethod: N 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14	CAS No. 64742-65-0 630-02-4 84-15-1	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg 109 %	Units Iod: NWTPF I/kg I/kg	Report Limit H-Dx Preparation Mo 25.0 100 50-150 50-150 H-Gx Preparation Mo 6.9 50-150	DF ethod: E 1 1 1 1 ethod: N 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg 109 % 97 %	Units lod: NWTPF /kg lod: NWTPF /kg	Report Limit H-Dx Preparation Me 25.0 100 50-150 50-150 H-Gx Preparation Me 6.9 50-150 50-150	DF ethod: E 1 1 1 1 ethod: N 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg 109 % 97 %	Units lod: NWTPF /kg lod: NWTPF /kg	Report Limit H-Dx Preparation Mo 25.0 100 50-150 50-150 H-Gx Preparation Mo 6.9 50-150	DF ethod: E 1 1 1 1 ethod: N 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg 109 % 97 %	Units lod: NWTPH /kg lod: NWTPH /kg lod: EPA 60	Report Limit H-Dx Preparation Me 25.0 100 50-150 50-150 H-Gx Preparation Me 6.9 50-150 50-150	DF ethod: E 1 1 1 1 ethod: N 1 1 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg 109 % 97 % Analytical Meth	Units Iod: NWTPH /kg Iod: NWTPH /kg Iod: EPA 60 /kg	Report Limit H-Dx Preparation Me 25.0 100 50-150 50-150 H-Gx Preparation Me 6.9 50-150 50-150 10 Preparation Met	DF ethod: E 1 1 1 1 ethod: N 1 1 1 1 nod: EP/	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14 08/31/10 11:14	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic Barium	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg Analytical Meth ND mg	Units lod: NWTPH /kg lod: NWTPH /kg lod: EPA 60 /kg /kg	Report Limit H-Dx Preparation Me 25.0 100 50-150 50-150 H-Gx Preparation Me 6.9 50-150 50-150 10 Preparation Met 12.3	DF 1 1 1 1 2 1 1 1 1 1 0 5	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14 08/31/10 11:14 08/31/10 11:14	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic Barium Cadmium	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg 97 % Analytical Meth ND mg 146 mg	Units Iod: NWTPH /kg /kg Iod: NWTPH /kg Iod: EPA 60 /kg /kg /kg	Report Limit H-Dx Preparation Me 25.0 100 50-150 50-150 H-Gx Preparation Me 6.9 50-150 50-150 10 Preparation Met 12.3 24.6	DF ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP/ 5 1	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/27/10 07:06 08/27/10 07:06	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14 08/31/10 11:14 08/31/10 11:14 08/30/10 14:58 08/30/10 15:56	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-38-3 7440-39-3 7440-43-9	Qual
Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic	ht" basis Results Analytical Meth 75.7 mg 153 mg 107 % 105 % Analytical Meth ND mg 109 % 97 % Analytical Meth ND mg 146 mg ND mg	Units Iod: NWTPH /kg /kg Iod: NWTPH /kg Iod: EPA 60 /kg /kg /kg /kg	Report Limit H-Dx Preparation Me 25.0 100 50-150 50-150 H-Gx Preparation Me 6.9 50-150 50-150 10 Preparation Met 12.3 24.6 6.2	DF ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP/ 5 1 5	Prepared PA 3546 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 09/01/10 19:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	Analyzed 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 09/02/10 21:35 08/31/10 11:14 08/31/10 11:14 08/31/10 11:14 08/30/10 14:58 08/30/10 14:58	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-39-3 7440-43-9 7440-43-9	Qual

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 18 of 59

Project: BPOLY

Pace Project No.: 254681

Sample: MW12-2-2.5	Lab ID: 254681006	Collected: 08/25/1	0 11:00) Received: 08	8/25/10 14:40 N	latrix: Solid	
Results reported on a "dry-weight"	" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method: EPA	6010 Preparation Meth	nod: EP	A 3050			
Silver	ND mg/kg	6.2	5	08/27/10 07:06	08/30/10 14:58	7440-22-4	
7471 Mercury	Analytical Method: EPA	7471 Preparation Meth	nod: EP	PA 7471			
Mercury	ND mg/kg	0.12	1	08/27/10 08:59	08/27/10 15:37	7439-97-6	
8270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparati	on Met	hod: EPA 3546			
Acenaphthene	18.6 ug/kg	8.4	1	08/31/10 22:00	09/02/10 08:16	83-32-9	
Acenaphthylene	20.5 ug/kg	8.4	1	08/31/10 22:00	09/02/10 08:16	208-96-8	
Anthracene	51.7 ug/kg	8.4	1	08/31/10 22:00	09/02/10 08:16	120-12-7	
Benzo(a)anthracene	87.1 ug/kg	8.4	1	08/31/10 22:00	09/02/10 08:16	56-55-3	
Benzo(a)pyrene	94.1 ug/kg	8.4	1	08/31/10 22:00	09/02/10 08:16	50-32-8	
Benzo(b)fluoranthene	118 ug/kg	8.4	1	08/31/10 22:00	09/02/10 08:16	205-99-2	
Benzo(g,h,i)perylene	50.4 ug/kg	8.4	1		09/02/10 08:16		
Benzo(k)fluoranthene	86.6 ug/kg	8.4	1		09/02/10 08:16		
Chrysene	146 ug/kg	8.4	1		09/02/10 08:16		
Dibenz(a,h)anthracene	19.8 ug/kg	8.4	1		09/02/10 08:16		
Fluoranthene	292 ug/kg	8.4	1		09/02/10 08:16		
Fluorene	20.6 ug/kg	8.4	1		09/02/10 08:16		
ndeno(1,2,3-cd)pyrene	48.0 ug/kg	8.4	1		09/02/10 08:16		
I-Methylnaphthalene	141 ug/kg	8.4	1		09/02/10 08:16		
2-Methylnaphthalene	194 ug/kg	8.4	1		09/02/10 08:16		1n
	00	8.4	1		09/02/10 08:16		
Naphthalene	147 ug/kg		1		09/02/10 08:16		1n
Phenanthrene	257 ug/kg	8.4 8.4	1				
Pyrene	228 ug/kg	-			09/02/10 08:16		
2-Fluorobiphenyl (S)	77 %	55-136	1		09/02/10 08:16		
Ferphenyl-d14 (S)	83 %	60-144	1	08/31/10 22:00	09/02/10 08:16	1718-51-0	
3260/5035A Volatile Organics	Analytical Method: EPA	8260					
Benzene	ND ug/kg	3.4	1		08/27/10 12:51	71-43-2	
Ethylbenzene	ND ug/kg	3.4	1		08/27/10 12:51	100-41-4	
Toluene	ND ug/kg	3.4	1		08/27/10 12:51	108-88-3	
Kylene (Total)	ND ug/kg	10.1	1		08/27/10 12:51	1330-20-7	
Dibromofluoromethane (S)	96 %	80-136	1		08/27/10 12:51	1868-53-7	
Toluene-d8 (S)	87 %	80-120	1		08/27/10 12:51	2037-26-5	
4-Bromofluorobenzene (S)	90 %	72-122	1		08/27/10 12:51	460-00-4	
1,2-Dichloroethane-d4 (S)	86 %	80-143	1		08/27/10 12:51	17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87					
Percent Moisture	20.3 %	0.10	1		08/27/10 16:07		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BPOLY

Pace Project No.: 254681

Sample: MW12-4-4.5	Lab ID: 254	681007	Collected: 08/25/1	0 11:10	Received: 08	8/25/10 14:40 N	latrix: Solid	
Results reported on a "dry-weig Parameters	nt" basis Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical Meth	nod: NWTPH	-Dx Preparation Me	ethod: E	EPA 3546			
Diesel Range SG	43.1 mg		21.4	1	09/01/10 19:05	09/02/10 21:52		
Motor Oil Range SG	154 mg	g/kg	85.4	1	09/01/10 19:05	09/02/10 21:52	64742-65-0	
n-Octacosane (S) SG	106 %		50-150	1		09/02/10 21:52		
o-Terphenyl (S) SG	105 %		50-150	1	09/01/10 19:05	09/02/10 21:52	84-15-1	
NWTPH-Gx GCV	Analytical Meth	nod: NWTPH	-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg	g/kg	7.2	1	08/30/10 12:00	08/31/10 11:38		
a,a,a-Trifluorotoluene (S)	108 %		50-150	1	08/30/10 12:00	08/31/10 11:38	98-08-8	
4-Bromofluorobenzene (S)	96 %		50-150	1	08/30/10 12:00	08/31/10 11:38	460-00-4	
6010 MET ICP	Analytical Meth	nod: EPA 601	0 Preparation Meth	nod: EP	A 3050			
Arsenic	ND mg	a/ka	11.4	5	08/27/10 07:06	08/30/10 15:00	7440-38-2	
Barium	103 mg		22.8	1		08/30/10 15:59		
Cadmium	ND mg		5.7	5		08/30/10 15:00		
Chromium	27.9 mg		1.1	1		08/30/10 15:59		
_ead	49.7 mg		1.1	1		08/30/10 15:59		
Selenium	ND mg		5.7	5		08/30/10 15:00		
Silver	ND mg		5.7	5		08/30/10 15:00		
7471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Meth	nod: EP	A 7471			
Mercury	ND mg	g/kg	0.11	1	08/27/10 08:59	08/27/10 15:40	7439-97-6	
3270 MSSV PAH by SIM	Analytical Meth	nod: EPA 827	0 by SIM Preparati	ion Met	hod: EPA 3546			
Acenaphthene	9.3 ug	/kg	7.5	1	08/31/10 22:00	09/02/10 08:32	83-32-9	
Acenaphthylene	23.2 ug	/kg	7.5	1	08/31/10 22:00	09/02/10 08:32	208-96-8	
Anthracene	56.1 ug	-	7.5	1	08/31/10 22:00	09/02/10 08:32	120-12-7	
Benzo(a)anthracene	84.9 ug	-	7.5	1	08/31/10 22:00	09/02/10 08:32	56-55-3	
Benzo(a)pyrene	86.1 ug	/kg	7.5	1	08/31/10 22:00	09/02/10 08:32	50-32-8	
Benzo(b)fluoranthene	136 ug		7.5	1		09/02/10 08:32		
Benzo(g,h,i)perylene	47.2 ug	-	7.5	1	08/31/10 22:00	09/02/10 08:32	191-24-2	
Benzo(k)fluoranthene	87.7 ug	-	7.5	1	08/31/10 22:00	09/02/10 08:32	207-08-9	
Chrysene	134 ug	-	7.5	1		09/02/10 08:32		
Dibenz(a,h)anthracene	17.4 ug		7.5	1		09/02/10 08:32		
Fluoranthene	219 ug		7.5	1		09/02/10 08:32		
Fluorene	13.6 ug	-	7.5	1		09/02/10 08:32		
ndeno(1,2,3-cd)pyrene	49.2 ug		7.5	1		09/02/10 08:32		
	110 ug		7.5	1		09/02/10 08:32		
· · · ·			7.5	1		09/02/10 08:32		1n
1-Methylnaphthalene	149 10		1.5					1n
I-Methylnaphthalene 2-Methylnaphthalene	149 ug	0	75	1	()8/31/10 22:00	(10/(12/(11)) + 12(32))		
I-Methylnaphthalene 2-Methylnaphthalene Naphthalene	101 ug	/kg	7.5 7.5	1	08/31/10 22:00			
1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene	101 ug 143 ug	/kg /kg	7.5	1	08/31/10 22:00	09/02/10 08:32	85-01-8	
1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene 2-Fluorobiphenyl (S)	101 ug	/kg /kg			08/31/10 22:00 08/31/10 22:00		85-01-8 129-00-0	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 20 of 59

Project: BPOLY

Pace Project No.: 254681

Sample: MW12-4-4.5	Lab ID: 254	681007	Collected: 08/25/1	10 11:10	Received: 08	3/25/10 14:40	Matrix: Solid	
Results reported on a "dry-weight								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260					
Benzene	ND ug	/kg	3.5	1		08/27/10 13:11	71-43-2	
Ethylbenzene	ND ug	-	3.5	1		08/27/10 13:11	100-41-4	
Toluene	ND ug	-	3.5	1		08/27/10 13:11	108-88-3	
Xylene (Total)	ND ug	-	10.5	1		08/27/10 13:11	1330-20-7	
Dibromofluoromethane (S)	99 %	5	80-136	1		08/27/10 13:11		
Toluene-d8 (S)	91 %		80-120	1		08/27/10 13:11		
4-Bromofluorobenzene (S)	94 %		72-122	1		08/27/10 13:11		
1,2-Dichloroethane-d4 (S)	86 %		80-143	1		08/27/10 13:11		
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	12.3 %		0.10	1		08/27/10 16:09	Э	
Sample: MW12-6-6.5	Lab ID: 254	681008	Collected: 08/25/1	10 11:45	Received: 08	3/25/10 14:40	Matrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	270 by SIM Preparat	ion Meth	od: EPA 3546			
Acenaphthene	ND ug	/kg	11.7	1	09/02/10 18:00	09/04/10 00:42	2 83-32-9	
Acenaphthylene	ND ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 208-96-8	
Anthracene	22.5 ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 120-12-7	
Benzo(a)anthracene	108 ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 56-55-3	
Benzo(a)pyrene	114 ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 50-32-8	
Benzo(b)fluoranthene	106 ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 205-99-2	
Benzo(g,h,i)perylene	54.8 ug	-	11.7	1		09/04/10 00:42		
Benzo(k)fluoranthene	88.2 ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 207-08-9	
Chrysene	116 ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 218-01-9	
Dibenz(a,h)anthracene	23.1 ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 53-70-3	
Fluoranthene	244 ug	-	11.7	1	09/02/10 18:00	09/04/10 00:42	2 206-44-0	
Fluorene	12.6 ug	-	11.7	1		09/04/10 00:42		
Indeno(1,2,3-cd)pyrene	53.2 ug	-	11.7	1	09/02/10 18:00			
1-Methylnaphthalene	28.2 ug	-	11.7	1		09/04/10 00:42		
2-Methylnaphthalene	45.8 ug	-	11.7	1		09/04/10 00:42		
Naphthalene	78.5 ug	-	11.7	1		09/04/10 00:42		
Phenanthrene	94.5 ug		11.7	1		09/04/10 00:42		
Pyrene	195 ug	-	11.7	1		09/04/10 00:42		
2-Fluorobiphenyl (S)	69 %	3	55-136	1		09/04/10 00:42		
Terphenyl-d14 (S)	65 %		60-144	1		09/04/10 00:42		
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	42.9 %		0.10	1		08/27/10 16:10)	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Project: BPOLY

Pace Project No.: 254681

Sample: MW11-2-2.5	Lab ID: 2540	681009	Collected: 08/25/1	0 09:50) Received: 08	8/25/10 14:40 N	Aatrix: Solid	
Results reported on a "dry-weig Parameters	ght" basis Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qu
NWTPH-Dx GCS SG	Analytical Meth	od: NWTPH	-Dx Preparation Me	ethod: E	EPA 3546			
Diesel Range SG	72.3 mg	j/kg	22.1	1	09/01/10 19:05	09/02/10 22:08		
Motor Oil Range SG	176 mg	/kg	88.2	1	09/01/10 19:05	09/02/10 22:08	64742-65-0	
n-Octacosane (S) SG	103 %	-	50-150	1	09/01/10 19:05	09/02/10 22:08	630-02-4	
o-Terphenyl (S) SG	104 %		50-150	1	09/01/10 19:05	09/02/10 22:08	84-15-1	
NWTPH-Gx GCV	Analytical Meth	od: NWTPH	-Gx Preparation Me	ethod: N	NWTPH-Gx			
Gasoline Range Organics	ND mg	j/kg	7.0	1	08/30/10 12:00	08/31/10 12:02		
a,a,a-Trifluorotoluene (S)	108 %		50-150	1	08/30/10 12:00	08/31/10 12:02	98-08-8	
4-Bromofluorobenzene (S)	94 %		50-150	1	08/30/10 12:00	08/31/10 12:02	460-00-4	
6010 MET ICP	Analytical Meth	od: EPA 601	0 Preparation Meth	nod: EP	A 3050			
Arsenic	ND mg	j/kg	11.2	5	08/27/10 07:06	08/30/10 15:03	7440-38-2	
Barium	131 mg	j/kg	22.4	1	08/27/10 07:06	08/30/10 16:02	7440-39-3	
Cadmium	ND mg	j/kg	5.6	5	08/27/10 07:06	08/30/10 15:03	7440-43-9	
Chromium	28.0 mg	j/kg	1.1	1	08/27/10 07:06	08/30/10 16:02	7440-47-3	
_ead	58.3 mg	j/kg	1.1	1	08/27/10 07:06	08/30/10 16:02	7439-92-1	
Selenium	ND mg	j/kg	5.6	5	08/27/10 07:06	08/30/10 15:03	7782-49-2	
Silver	ND mg	/kg	5.6	5	08/27/10 07:06	08/30/10 15:03	7440-22-4	
7471 Mercury	Analytical Meth	od: EPA 747	1 Preparation Meth	nod: EP	A 7471			
Mercury	0.12 mg	J/kg	0.099	1	08/27/10 08:59	08/27/10 15:46	7439-97-6	
3270 MSSV PAH by SIM	Analytical Meth	od: EPA 827	0 by SIM Preparati	on Met	hod: EPA 3546			
Acenaphthene	ND ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	83-32-9	
Acenaphthylene	14.7 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	208-96-8	
Anthracene	27.7 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	120-12-7	
Benzo(a)anthracene	46.1 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	56-55-3	
Benzo(a)pyrene	46.0 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	50-32-8	
Benzo(b)fluoranthene	56.6 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	205-99-2	
Benzo(g,h,i)perylene	23.1 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	191-24-2	
Benzo(k)fluoranthene	35.6 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	207-08-9	
Chrysene	70.1 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	218-01-9	
Dibenz(a,h)anthracene	8.7 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	53-70-3	
Fluoranthene	94.3 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	206-44-0	
Fluorene	12.0 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	86-73-7	
ndeno(1,2,3-cd)pyrene	21.0 ug		7.6	1	08/31/10 22:00	09/02/10 08:49	193-39-5	
1-Methylnaphthalene	146 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	90-12-0	
2-Methylnaphthalene	180 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	91-57-6	1n
Naphthalene	106 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	91-20-3	1n
Phenanthrene	125 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	85-01-8	
^D yrene	86.0 ug	/kg	7.6	1	08/31/10 22:00	09/02/10 08:49	129-00-0	
	74 %		55-136	1	08/31/10 22:00	09/02/10 08:49	321-60-8	
2-Fluorobiphenyl (S)	14 70		55-150		00/01/10 22.00	00/02/10 00.10	021 00 0	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 22 of 59

Project: BPOLY

Pace Project No.: 254681

Lab ID: 254	681009	Collected: 08/25/2	10 09:50	Received: 08	8/25/10 14:40	Matrix: Solid	
t" basis							
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Met	hod: EPA 82	260					
ND ug	/kg	3.3	1		08/27/10 13:30) 71-43-2	
ND uc	ı/kg	3.3	1		08/27/10 13:30) 100-41-4	
-	-		1		08/27/10 13:30) 108-88-3	
-	-						
-	-						
					00/27/10 13.50	11000-01-0	
	Analytical Method: ASTM D2974-87						
13.4 %		0.10	1		08/27/10 16:11		
Lab ID: 254	681010	Collected: 08/25/	10 10:00	Received: 08	8/25/10 14:40	Matrix: Solid	
t" basis							
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Met	hod: NWTP	H-Dx Preparation M	ethod: El	PA 3546			
52.9 m	a/ka	21.8	1	09/01/10 19:05	5 09/02/10 22:24	1	
	0 0						
					00,02,10 22.2		
		•					
96 %		50-150	1	08/30/10 12:00	08/31/10 12:26	6 460-00-4	
Analytical Met	hod: EPA 60	010 Preparation Met	hod: EPA	3050			
ND m	g/kg	11.5	5	08/27/10 07:06	08/30/10 15:11	7440-38-2	
132 mg	g/kg	23.1	1	08/27/10 07:06	6 08/30/10 16:04	1 7440-39-3	
		5.8	5	08/27/10 07:06	6 08/30/10 15:11	7440-43-9	
		1.2	1	08/27/10 07:06	6 08/30/10 16:04	4 7440-47-3	
	0 0	5.8	5				
Analytical Met	hod: EPA 74	171 Preparation Met	hod: EPA	7471			
0.15 mg	g/kg	0.096	1	08/27/10 08:59	08/27/10 15:48	3 7439-97-6	
Analytical Met	hod: EPA 82	270 by SIM Preparat	ion Meth	od: EPA 3546			
	ı/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	9 83-32-9	
ND ug 10.5 ug		7.8 7.8	1 1		09/04/10 00:09		
	** basis Results Analytical Mett ND ug 103 % 92 % Analytical Mett 13.4 % Lab ID: 254 ** basis Results Analytical Mett 105 % 104 % Analytical Mett ND m 103 % 96 % Analytical Mett ND m 132 m ND m 31.6 m S5.2 m ND m Analytical Mett	ResultsUnitsAnalytical Method: EPA 82ND ug/kgND ug/kgND ug/kgND ug/kgND ug/kgND ug/kgND ug/kg103 %87 %95 %92 %Analytical Method: ASTM13.4 %Lab ID: 254681010t" basisResultsUnitsAnalytical Method: NWTP52.9 mg/kg142 mg/kg105 %104 %Analytical Method: NWTPND mg/kg103 %96 %Analytical Method: EPA 60ND mg/kg132 mg/kgND mg/kg31.6 mg/kgND mg/kgND mg/kgND mg/kgND mg/kgND mg/kgND mg/kgAnalytical Method: EPA 60ND mg/kgND mg/kg	Results Units Report Limit Analytical Method: EPA 8260 ND ug/kg 3.3 ND ug/kg 10 103 % 80-136 87 % 80-120 95 % 72-122 92 % 80-143 Analytical Method: ASTM D2974-87 13.4 % 13.4 % 0.10 Lab ID: 254681010 Collected: 08/25/ t" basis Report Limit Analytical Method: NWTPH-Dx Preparation M 52.9 mg/kg 21.8 142 mg/kg 87.4 105 % 50-150 Analytical Method: NWTPH-Dx Preparation M 104 % 50-150 Analytical Method: EPA 6010 Preparation Met ND mg/kg 5.8 31.6 mg/kg 1.2 ND mg/kg 5.8	r" basis Results Units Report Limit DF Analytical Method: EPA 8260 ND ug/kg 3.3 1 ND ug/kg 10 1 103 % 80-136 1 87 % 80-120 1 95 % 72-122 1 92 % 80-143 1 Analytical Method: ASTM D2974-87 1 1 13.4 % 0.10 1 Collected: 08/25/10 10:000 thasis Results Units Report Limit DF Analytical Method: NWTPH-Dx Preparation Method: E E 52.9 mg/kg 21.8 1 142 mg/kg 87.4 1 105 % 50-150 1 104 % 50-150 1 103 % 50-150 1 <td< td=""><td>Product Units Report Limit DF Prepared Analytical Method: EPA 8260 ND ug/kg 3.3 1 ND ug/kg 0 1 103 % 80-136 1 87 % 80-120 1 95 % 72-122 1 92 % 80-143 1 Analytical Method: ASTM D2974-87 1 4 13.4 % 0.10 1 Lab ID: 254681010 Collected: 08/25/10 10:00 Results Units Report Limit DF Prepared Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 52.9 mg/kg 21.8 1 09/01/10 19:05 142 mg/kg 87.4 1 09/01/10 19:05 104 % 50-150 1 09/01/10 19:05 104 %</td><td>r* basis Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 8260 ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg 80-136 08/27/10 13:30 95 % 72-122 1 08/27/10 13:30 95 % 72-122 1 08/27/10 13:30 Analytical Method: ASTM D2974-87 1 08/27/10 16:11 13.4 % 0.10 1 08/27/10 16:11 ** basis Results Units Report Limit DF Prepared Analyzed Analytical Method: NWTPH-Dx Preparetion Method: EPA 3546 52.9 mg/kg 21.8 1 09/01/10 19:05 09/02/10 22:24 105 % 50-150 1 08/30/10 12:00 08/31/10 12:24 105 09/02/10 22:24</td><td>Presults Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 8260 </td></td<>	Product Units Report Limit DF Prepared Analytical Method: EPA 8260 ND ug/kg 3.3 1 ND ug/kg 0 1 103 % 80-136 1 87 % 80-120 1 95 % 72-122 1 92 % 80-143 1 Analytical Method: ASTM D2974-87 1 4 13.4 % 0.10 1 Lab ID: 254681010 Collected: 08/25/10 10:00 Results Units Report Limit DF Prepared Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 52.9 mg/kg 21.8 1 09/01/10 19:05 142 mg/kg 87.4 1 09/01/10 19:05 104 % 50-150 1 09/01/10 19:05 104 %	r* basis Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 8260 ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg 3.3 1 08/27/10 13:30 ND ug/kg 80-136 08/27/10 13:30 95 % 72-122 1 08/27/10 13:30 95 % 72-122 1 08/27/10 13:30 Analytical Method: ASTM D2974-87 1 08/27/10 16:11 13.4 % 0.10 1 08/27/10 16:11 ** basis Results Units Report Limit DF Prepared Analyzed Analytical Method: NWTPH-Dx Preparetion Method: EPA 3546 52.9 mg/kg 21.8 1 09/01/10 19:05 09/02/10 22:24 105 % 50-150 1 08/30/10 12:00 08/31/10 12:24 105 09/02/10 22:24	Presults Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 8260

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 23 of 59

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BPOLY

Pace Project No.: 254681

Sample: MW11-4-4.5	Lab ID: 2546810	010 Collected: 08/25	/10 10:00	Received: 08	B/25/10 14:40 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results	Units Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Method:	EPA 8270 by SIM Prepara	ition Meth	nod: EPA 3546			
Benzo(a)anthracene	31.4 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	56-55-3	
Benzo(a)pyrene	32.8 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	50-32-8	
Benzo(b)fluoranthene	44.5 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	205-99-2	
Benzo(g,h,i)perylene	18.1 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	191-24-2	
Benzo(k)fluoranthene	35.2 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	207-08-9	
Chrysene	47.7 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	53-70-3	
Fluoranthene	69.0 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	206-44-0	
Fluorene	ND ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	86-73-7	
Indeno(1,2,3-cd)pyrene	17.3 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	193-39-5	
1-Methylnaphthalene	81.4 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	90-12-0	
2-Methylnaphthalene	101 ug/kg	7.8	1	09/03/10 11:10	09/04/10 00:09	91-57-6	
Naphthalene	58.5 ug/kg	7.8			09/04/10 00:09		
Phenanthrene	73.3 ug/kg	7.8	1		09/04/10 00:09		
Pyrene	56.4 ug/kg	7.8			09/04/10 00:09		
2-Fluorobiphenyl (S)	68 %	55-136			09/04/10 00:09		
Terphenyl-d14 (S)	75 %	60-144			09/04/10 00:09		
8260/5035A Volatile Organics	Analytical Method:	EPA 8260					
Benzene	ND ug/kg	3.6	1		08/27/10 13:48	71-43-2	
Ethylbenzene	ND ug/kg	3.6	1		08/27/10 13:48	100-41-4	
Toluene	ND ug/kg	3.6	1		08/27/10 13:48	108-88-3	
Xylene (Total)	ND ug/kg	10.8	1		08/27/10 13:48	1330-20-7	
Dibromofluoromethane (S)	99 %	80-136	1		08/27/10 13:48		
Toluene-d8 (S)	92 %	80-120	1		08/27/10 13:48	2037-26-5	
4-Bromofluorobenzene (S)	94 %	72-122	1		08/27/10 13:48		
1,2-Dichloroethane-d4 (S)	89 %	80-143			08/27/10 13:48		
Percent Moisture	Analytical Method:	ASTM D2974-87					
Percent Moisture	15.8 %	0.10	1		08/27/10 16:12		
Sample: MW11-6-6.5	Lab ID: 2546810	011 Collected: 08/25	/10 10:20	Received: 0	B/25/10 14:40 N	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results	Units Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Method:	EPA 8270 by SIM Prepara	tion Meth	nod: EPA 3546			

-				
Acenaphthene	72.6 ug/kg	8.0	1	09/02/10 18:00 09/04/10 02:05 83-32-9
Acenaphthylene	21.0 ug/kg	8.0	1	09/02/10 18:00 09/04/10 02:05 208-96-8
Anthracene	112 ug/kg	8.0	1	09/02/10 18:00 09/04/10 02:05 120-12-7
Benzo(a)anthracene	154 ug/kg	8.0	1	09/02/10 18:00 09/04/10 02:05 56-55-3
Benzo(a)pyrene	168 ug/kg	8.0	1	09/02/10 18:00 09/04/10 02:05 50-32-8
Benzo(b)fluoranthene	181 ug/kg	8.0	1	09/02/10 18:00 09/04/10 02:05 205-99-2
Benzo(g,h,i)perylene	74.5 ug/kg	8.0	1	09/02/10 18:00 09/04/10 02:05 191-24-2

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 24 of 59

Project: BPOLY

Pace Project No.: 254681

Sample: MW11-6-6.5	Lab ID: 254	681011	Collected: 08/25/1	0 10:20	Received: 08	/25/10 14:40 N	latrix: Solid	
Results reported on a "dry-weig	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparati	ion Meth	nod: EPA 3546			
Benzo(k)fluoranthene	120 ug	/kg	8.0	1	09/02/10 18:00	09/04/10 02:05	207-08-9	
Chrysene	171 ug	/kg	8.0	1	09/02/10 18:00	09/04/10 02:05	218-01-9	
Dibenz(a,h)anthracene	27.0 ug	/kg	8.0	1	09/02/10 18:00	09/04/10 02:05	53-70-3	
Fluoranthene	415 ug	/kg	8.0	1	09/02/10 18:00	09/04/10 02:05	206-44-0	
Fluorene	36.7 ug	/kg	8.0	1	09/02/10 18:00	09/04/10 02:05	86-73-7	
ndeno(1,2,3-cd)pyrene	70.8 ug	/kg	8.0	1	09/02/10 18:00	09/04/10 02:05	193-39-5	
1-Methylnaphthalene	105 ug	/kg	8.0	1	09/02/10 18:00	09/04/10 02:05	90-12-0	
2-Methylnaphthalene	134 ug	-	8.0	1	09/02/10 18:00	09/04/10 02:05	91-57-6	
Naphthalene	89.1 ug	-	8.0	1	09/02/10 18:00	09/04/10 02:05	91-20-3	
- Phenanthrene	426 ug	-	8.0	1	09/02/10 18:00	09/04/10 02:05	85-01-8	
^D yrene	358 ug		8.0	1		09/04/10 02:05		
2-Fluorobiphenyl (S)	72 %	5	55-136	1		09/04/10 02:05		
Terphenyl-d14 (S)	75 %		60-144	1		09/04/10 02:05		
Percent Moisture	Analytical Meth	nod: ASTM [02974-87					
Percent Moisture	16.3 %		0.10	1		08/27/10 16:14		
	10.5 /6		0.10	I		00/21/10 10.14		
Sample: GP6-2-2.5	Lab ID: 254	681012	Collected: 08/25/1	0.09.15	Received: 08	2/25/10 14·40 N	1atrix: Solid	
	LUDID. LU4			0.00.10	110001100	20/10 14.40 N		
Results reported on a "dry-weig	ght" basis							
Results reported on a "dry-weig Parameters	ght" basis Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Results reported on a "dry-weig Parameters NWTPH-Dx GCS SG	Results		Report Limit			Analyzed	CAS No.	Qual
Parameters	Analytical Meth	nod: NWTPH	H-Dx Preparation Me	ethod: E	PA 3546		CAS No.	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG	Results Analytical Meth ND mg	nod: NWTPH g/kg	H-Dx Preparation Me 23.3	ethod: E 1	PA 3546 09/02/10 16:05	09/03/10 21:35		Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	Results Analytical Meth ND mg ND mg	nod: NWTPH g/kg	H-Dx Preparation Me 23.3 93.1	ethod: E 1 1	PA 3546 09/02/10 16:05 09/02/10 16:05	09/03/10 21:35 09/03/10 21:35	64742-65-0	Qual
Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG h-Octacosane (S) SG	Results Analytical Meth ND mg	nod: NWTPH g/kg	H-Dx Preparation Me 23.3	ethod: E 1	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05	09/03/10 21:35	64742-65-0 630-02-4	Qual
Parameters IWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG O-Octacosane (S) SG D-Terphenyl (S) SG	Results Analytical Meth ND mg ND mg 98 % 100 %	nod: NWTPH g/kg g/kg	H-Dx Preparation Me 23.3 93.1 50-150	ethod: E 1 1 1 1	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35	64742-65-0 630-02-4	Qual
Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG h-Octacosane (S) SG b-Terphenyl (S) SG WTPH-Gx GCV	Results Analytical Meth ND mg 98 % 100 % Analytical Meth	nod: NWTPH g/kg g/kg nod: NWTPH	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me	ethod: E 1 1 1 1 ethod: N	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35	64742-65-0 630-02-4	Qual
Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg	nod: NWTPH g/kg g/kg nod: NWTPH	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6	ethod: E 1 1 1 1 ethod: N 1	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50	64742-65-0 630-02-4 84-15-1	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 %	nod: NWTPH g/kg g/kg nod: NWTPH	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150	ethod: E 1 1 1 1 ethod: N 1 1	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50	64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 %	nod: NWTPH y/kg y/kg nod: NWTPH y/kg	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 50-150	ethod: E 1 1 1 1 ethod: N 1 1 1	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50	64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth	nod: NWTPH g/kg g/kg nod: NWTPH g/kg nod: EPA 60	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 50-150 10 Preparation Meth	ethod: E 1 1 1 1 ethod: N 1 1 1 1 nod: EP,	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth ND mg	nod: NWTPH g/kg g/kg nod: NWTPH g/kg nod: EPA 60 g/kg	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 50-150 10 Preparation Meth 11.5	ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP, 5	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG n-Octacosane (S) SG D-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) H-Bromofluorobenzene (S) H-Bro	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth ND mg 127 mg	nod: NWTPH g/kg g/kg nod: NWTPH g/kg nod: EPA 60 g/kg g/kg	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 50-150 10 Preparation Met 11.5 23.0	ethod: E 1 1 1 1 ethod: N 1 1 nod: EP, 5 1	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06 08/27/10 07:06	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50 08/30/10 15:14 08/30/10 16:07	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG O-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic Barium Cadmium	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth ND mg 127 mg ND mg	nod: NWTPH g/kg g/kg nod: NWTPH g/kg g/kg g/kg g/kg	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 50-150 10 Preparation Met 11.5 23.0 5.7	ethod: E 1 1 1 1 ethod: N 1 1 nod: EP, 5 1 5	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06 08/27/10 07:06	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50 08/30/10 15:14 08/30/10 15:14	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic Barium Cadmium Chromium	Results Analytical Meth ND mg ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth ND mg 127 mg ND mg 127 mg	nod: NWTPH g/kg g/kg nod: NWTPH g/kg g/kg g/kg g/kg g/kg	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 50-150 10 Preparation Met 11.5 23.0 5.7 1.1	ethod: E 1 1 1 1 ethod: N 1 1 nod: EP, 5 1 5 1 5	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50 08/30/10 15:14 08/30/10 15:14 08/30/10 15:14	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9 7440-47-3	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic Barium Cadmium Chromium Lead	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth ND mg 127 mg ND mg 127 mg 0 ND mg 6.4 mg	nod: NWTPH y/kg y/kg nod: NWTPH y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 50-150 10 Preparation Met 11.5 23.0 5.7 1.1 1.1	ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP, 5 1 5 1 1 5 1 1	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50 08/30/10 15:14 08/30/10 15:14 08/30/10 15:14 08/30/10 15:14 08/30/10 16:07 08/30/10 16:07	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9 7440-43-9 7440-47-3 7439-92-1	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG WWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic Barium Cadmium Chromium Lead Selenium	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth ND mg 127 mg ND mg 41.5 mg 6.4 mg ND mg	nod: NWTPH y/kg y/kg nod: NWTPH y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 10 Preparation Met 11.5 23.0 5.7 1.1 1.1 5.7	ethod: E 1 1 1 1 ethod: N 1 1 1 5 1 5 1 5 1 5 1 5 5 1 5 5	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50 08/30/10 15:14 08/30/10 15:14 08/30/10 16:07 08/30/10 16:07 08/30/10 15:14	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG O-Octacosane (S) SG O-Octacosane (S) SG O-Octacosane (S) SG O-OCTOPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) H-Bromofluorobenzene (S) GO10 MET ICP Arsenic Barium Cadmium Chromium Lead	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth ND mg 127 mg ND mg 127 mg 0 ND mg 6.4 mg	nod: NWTPH y/kg y/kg nod: NWTPH y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg y/kg	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 50-150 10 Preparation Met 11.5 23.0 5.7 1.1 1.1	ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP, 5 1 5 1 1 5 1 1	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50 08/30/10 15:14 08/30/10 15:14 08/30/10 15:14 08/30/10 15:14 08/30/10 16:07 08/30/10 16:07	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2	Qual
Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG O-Octacosane (S) SG O-Octacosane (S) SG O-Octacosane (S) SG O-OCTOPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) H-Bromofluorobenzene (S) GO10 MET ICP Arsenic Garium Cadmium Chromium Lead Selenium	Results Analytical Meth ND mg 98 % 100 % Analytical Meth ND mg 104 % 93 % Analytical Meth ND mg 127 mg ND mg 41.5 mg 6.4 mg ND mg	nod: NWTPH g/kg g/kg nod: NWTPH g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/k	H-Dx Preparation Me 23.3 93.1 50-150 50-150 H-Gx Preparation Me 6.6 50-150 10 Preparation Met 11.5 23.0 5.7 1.1 1.1 5.7	ethod: E 1 1 1 1 thod: N 1 1 1 5 1 5 1 5 1 5 5 5	PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00 A 3050 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 09/03/10 21:35 08/31/10 12:50 08/31/10 12:50 08/31/10 12:50 08/30/10 15:14 08/30/10 15:14 08/30/10 16:07 08/30/10 16:07 08/30/10 15:14	64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2	Qual

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 25 of 59

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BPOLY

Pace Project No.: 254681

Sample: GP6-2-2.5	Lab ID: 254681012	Collected: 08/25/10	09:15	Received: 08	8/25/10 14:40 I	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Units	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparatio	on Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	83-32-9	
Acenaphthylene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 208-96-8	
Anthracene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	5 120-12-7	
Benzo(a)anthracene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	56-55-3	
Benzo(a)pyrene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	50-32-8	
Benzo(b)fluoranthene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	8 205-99-2	
Benzo(g,h,i)perylene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	§ 191-24-2	
Benzo(k)fluoranthene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 207-08-9	
Chrysene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	53-70-3	
Fluoranthene	14.0 ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 206-44-0	
Fluorene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 193-39-5	
1-Methylnaphthalene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 90-12-0	
2-Methylnaphthalene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 91-57-6	
Naphthalene	ND ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 91-20-3	
Phenanthrene	10.9 ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	85-01-8	
Pyrene	10 ug/kg	7.9	1	09/03/10 11:10	09/04/10 00:26	6 129-00-0	
2-Fluorobiphenyl (S)	73 %	55-136	1		09/04/10 00:26		
Terphenyl-d14 (S)	81 %	60-144	1		09/04/10 00:26		
8260/5035A Volatile Organics	Analytical Method: EPA	8260					
Benzene	ND ug/kg	3.1	1		08/27/10 14:07	71-43-2	
Ethylbenzene	ND ug/kg	3.1	1		08/27/10 14:07	7 100-41-4	
Toluene	ND ug/kg	3.1	1		08/27/10 14:07	108-88-3	
Xylene (Total)	ND ug/kg	9.4	1		08/27/10 14:07	1330-20-7	
Dibromofluoromethane (S)	99 %	80-136	1		08/27/10 14:07	1868-53-7	
Toluene-d8 (S)	86 %	80-120	1		08/27/10 14:07	2037-26-5	
4-Bromofluorobenzene (S)	92 %	72-122	1		08/27/10 14:07	460-00-4	
1,2-Dichloroethane-d4 (S)	90 %	80-143	1		08/27/10 14:07	7 17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87					
Percent Moisture	17.1 %	0.10	1		08/27/10 16:15	5	

Sample: GP6-4-4.5Lab ID: 254681013Collected: 08/25/10 09:30Received: 08/25/10 14:40Matrix: SolidResults reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Me	thod: NWTPH-I	Dx Preparation M	ethod: I	EPA 3546			
Diesel Range SG	899 m	ng/kg	24.7	1	09/02/10 16:05	09/03/10 22:08		
Motor Oil Range SG	ND m	ng/kg	98.7	1	09/02/10 16:05	09/03/10 22:08	64742-65-0	
n-Octacosane (S) SG	104 %	, D	50-150	1	09/02/10 16:05	09/03/10 22:08	630-02-4	
o-Terphenyl (S) SG	105 %	, D	50-150	1	09/02/10 16:05	09/03/10 22:08	84-15-1	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 26 of 59

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

W +CCOR

Sample: GP6-4-4.5	Lab ID: 254	681013	Collected: 08/25/	10 09:30	Received: 08	/25/10 14:40 N	latrix: Solid	
Results reported on a "dry-weight	" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
NWTPH-Gx GCV	Analytical Met	hod: NWTP	H-Gx Preparation M	ethod: I	NWTPH-Gx			
Gasoline Range Organics	486 m	g/kg	67.9	10	08/30/10 12:00	08/31/10 13:15		
a,a,a-Trifluorotoluene (S)	103 %)	50-150	10	08/30/10 12:00	08/31/10 13:15	98-08-8	
1-Bromofluorobenzene (S)	135 %)	50-150	10	08/30/10 12:00	08/31/10 13:15	460-00-4	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Met	hod: EP	A 3050			
Arsenic	ND m	g/kg	12.1	5	08/27/10 07:06	08/30/10 15:17	7440-38-2	
Barium	139 m	g/kg	24.2	1	08/27/10 07:06	08/30/10 16:15	7440-39-3	
Cadmium	ND m	g/kg	6.1	5	08/27/10 07:06	08/30/10 15:17	7440-43-9	
Chromium	42.4 m		1.2	1	08/27/10 07:06	08/30/10 16:15	7440-47-3	
₋ead	6.3 m		1.2	1	08/27/10 07:06	08/30/10 16:15	7439-92-1	
Selenium	ND m		6.1	5	08/27/10 07:06	08/30/10 15:17	7782-49-2	
Silver	ND m		6.1	5	08/27/10 07:06	08/30/10 15:17	7440-22-4	
471 Mercury	Analytical Met	hod: EPA 74	71 Preparation Met	hod: EP	PA 7471			
Mercury	ND m	g/kg	0.11	1	08/27/10 08:59	08/27/10 15:53	7439-97-6	
270 MSSV PAH by SIM	Analytical Met	hod: EPA 82	270 by SIM Preparat	ion Met	hod: EPA 3546			
Acenaphthene	33.1 ug	g/kg	7.7	1	08/31/10 22:00	09/02/10 04:58	83-32-9	
cenaphthylene	32.3 ug	g/kg	7.7	1	08/31/10 22:00	09/02/10 04:58	208-96-8	
Anthracene	11.3 ug		7.7	1	08/31/10 22:00	09/02/10 04:58	120-12-7	
Benzo(a)anthracene	17.7 ug	g/kg	7.7	1	08/31/10 22:00	09/02/10 04:58	56-55-3	
Benzo(a)pyrene	12.4 ug		7.7	1	08/31/10 22:00	09/02/10 04:58	50-32-8	
Benzo(b)fluoranthene	8.1 ug		7.7	1	08/31/10 22:00	09/02/10 04:58	205-99-2	
Benzo(g,h,i)perylene	ND ug		7.7	1	08/31/10 22:00	09/02/10 04:58	191-24-2	
Benzo(k)fluoranthene	12.0 ug		7.7	1	08/31/10 22:00	09/02/10 04:58	207-08-9	
Chrysene	20.2 ug	5 0	7.7	1	08/31/10 22:00	09/02/10 04:58	218-01-9	
Dibenz(a,h)anthracene	ND ug	5 0	7.7	1	08/31/10 22:00	09/02/10 04:58	53-70-3	
Fluoranthene	35.9 ug		7.7	1		09/02/10 04:58		
luorene	113 ug		7.7	1	08/31/10 22:00	09/02/10 04:58	86-73-7	
ndeno(1,2,3-cd)pyrene	ND ug		7.7	1		09/02/10 04:58		
-Methylnaphthalene	532 ug		7.7	1		09/02/10 04:58		
2-Methylnaphthalene	627 ug		7.7	1		09/02/10 04:58		1n
Naphthalene	141 ug		7.7	1		09/02/10 04:58		1n
Phenanthrene	152 ug		7.7	1		09/02/10 04:58		
Pyrene	42.6 ug		7.7	1		09/02/10 04:58		
2-Fluorobiphenyl (S)	80 %		55-136	1		09/02/10 04:58		
Ferphenyl-d14 (S)	88 %		60-144	1		09/02/10 04:58		
260/5035A Volatile Organics	Analytical Met	hod: EPA 82	260					
Benzene	ND ug	g/kg	2.9	1		08/27/10 14:26	71-43-2	
Ethylbenzene	ND ug		2.9	1		08/27/10 14:26		
Toluene	ND ug		2.9	1		08/27/10 14:26		
Kylene (Total)	ND ug		8.7	1		08/27/10 14:26		
Dibromofluoromethane (S)	97 %		80-136	1		08/27/10 14:26		
Foluene-d8 (S)	89 %		80-130	1		08/27/10 14:26		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 27 of 59

Sample: GP6-4-4.5	Lab ID: 254	681013	Collected: 08/2	5/10 09:3	Received:	08/25/10 14:40	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qual
3260/5035A Volatile Organics	Analytical Met	hod: EPA 82	260					
4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)	387 % 88 %		72-12 80-14			08/27/10 14:2 08/27/10 14:2	26 460-00-4 26 17060-07-0	S5
Percent Moisture	Analytical Met	hod: ASTM	D2974-87					
Percent Moisture	20.7 %		0.7	0 1		08/27/10 16:1	7	
Sample: GP6-6-6.5	Lab ID: 254	681014	Collected: 08/2	5/10 09:4	5 Received:	08/25/10 14:40	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Met	hod: NWTP	H-Dx Preparatior	Method: I	EPA 3546			
Diesel Range SG	57.1 m	a/ka	27	0 1	09/02/10 16:0	05 09/03/10 22:2	24	
Notor Oil Range SG	ND m		1(-		05 09/03/10 22:2		
n-Octacosane (S) SG	97 %		50-1	-		05 09/03/10 22:2		
-Terphenyl (S) SG	98 %		50-1	-		05 09/03/10 22:2		
NWTPH-Gx GCV			H-Gx Preparation					
Gasoline Range Organics	94.4 m	a/ka	g	91	08/30/10 12.0	00 08/31/10 14:0	13	
a,a,a-Trifluorotoluene (S)	104 %		50-1			00 08/31/10 14:0	-	
4-Bromofluorobenzene (S)	136 %		50-1	-		00 08/31/10 14:0		
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation N	lethod: EF	PA 3050			
Arsenic	ND m	a/ka	13	95	08/27/10 07.	06 08/30/10 15:1	9 7440-38-2	
Barium	112 m		27			06 08/30/10 16:1		
Cadmium	ND m			05		06 08/30/10 15:1		
Chromium	44.2 m			4 1		06 08/30/10 16:1		
_ead	7.1 m	0 0		4 1		06 08/30/10 16:1		
Selenium	ND m			0 5		06 08/30/10 15:1		
Silver	ND m			05		06 08/30/10 15:1		
7471 Mercury			471 Preparation N				0 1110 22 1	
Mercury	ND m		0.1			59 08/27/10 15:5	5 7439-97-6	
3270 MSSV PAH by SIM	Analytical Met	hod: EPA 82	270 by SIM Prepa	ration Met	hod: EPA 3546	i		
Acenaphthene	ND uç	ı/ka	9	7 1	09/03/10 11:	10 09/03/10 18:3	7 83-32-9	
Acenaphthylene	ND ug			7 1		10 09/03/10 18:3		
Anthracene	ND ug	-		7 1		10 09/03/10 18:3		
Benzo(a)anthracene	ND ug	-		7 1		10 09/03/10 18:3		
Benzo(a)pyrene	ND ug	-		7 1		10 09/03/10 18:3		
Benzo(b)fluoranthene	ND ug	-		7 1		10 09/03/10 18:3 10 09/03/10 18:3		
Benzo(g,h,i)perylene	ND ug	-		7 1		10 09/03/10 18:3		
201120(9,11,1)PEI VIEITE	ע שא	<i>y</i> ny	9	, I	00/00/10 11.	10 00/00/10 10.0	·· ·····	
Benzo(k)fluoranthene	ND ug	n/ka	0	71	00/03/10 11.4	10 09/03/10 18:3	7 207-08-0	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 28 of 59

Project: BPOLY

Pace Project No.: 254681

Sample: GP6-6-6.5	Lab ID: 254	681014	Collected: 08/25/1	0 09:45	Received: 08	/25/10 14:40 N	latrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparati	on Meth	od: EPA 3546			
Dibenz(a,h)anthracene	ND ug	/kg	9.7	1	09/03/10 11:10	09/03/10 18:37	53-70-3	
Fluoranthene	ND ug	/kg	9.7	1	09/03/10 11:10	09/03/10 18:37	206-44-0	
Fluorene	ND ug	/kg	9.7	1	09/03/10 11:10	09/03/10 18:37	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug	/kg	9.7	1	09/03/10 11:10	09/03/10 18:37	193-39-5	
1-Methylnaphthalene	21.8 ug	/kg	9.7	1	09/03/10 11:10	09/03/10 18:37	90-12-0	
2-Methylnaphthalene	21.7 ug	/kg	9.7	1	09/03/10 11:10	09/03/10 18:37	91-57-6	
Naphthalene	13.5 ug		9.7	1	09/03/10 11:10	09/03/10 18:37	91-20-3	
Phenanthrene	ND ug	-	9.7	1	09/03/10 11:10	09/03/10 18:37	85-01-8	
Pyrene	ND ug	-	9.7	1	09/03/10 11:10	09/03/10 18:37	129-00-0	
2-Fluorobiphenyl (S)	73 %	0	55-136	1	09/03/10 11:10	09/03/10 18:37	321-60-8	
Terphenyl-d14 (S)	73 %		60-144	1	09/03/10 11:10	09/03/10 18:37	1718-51-0	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260					
Benzene	ND ug	/ka	3.8	1		08/27/10 14:46	71-43-2	
Ethylbenzene	ND ug	-	3.8	1		08/27/10 14:46		
Toluene	ND ug	0	3.8	1		08/27/10 14:46		
Xylene (Total)	ND ug	-	11.4	1		08/27/10 14:46		
Dibromofluoromethane (S)	94 %	, ng	80-136	1		08/27/10 14:46		
Toluene-d8 (S)	90 %		80-120	1		08/27/10 14:46		
4-Bromofluorobenzene (S)	127 %		72-122	1		08/27/10 14:46		S5
1,2-Dichloroethane-d4 (S)	82 %		80-143	1		08/27/10 14:46		00
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
						08/27/10 16:18		
Percent Moisture	31.6 %		0.10	1				
		681015			Received: 08	/25/10 14·40 M	latrix: Solid	
Sample: GP7-2-2.5	Lab ID: 254	681015	0.10 Collected: 08/24/1		Received: 08	/25/10 14:40 M	latrix: Solid	
	Lab ID: 254	681015 Units			Received: 08 Prepared	/25/10 14:40 M	latrix: Solid CAS No.	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters	Lab ID: 254 t" basis 	Units	Collected: 08/24/1	0 15:45 DF	Prepared			Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG	Lab ID: 254 t" basis Results Analytical Meth	Units nod: NWTPI	Collected: 08/24/1 Report Limit H-Dx Preparation Me	0 15:45 DF ethod: E	Prepared PA 3546	Analyzed		Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG	Lab ID: 254 t" basis Results Analytical Meth ND mg	Units nod: NWTPI g/kg	Collected: 08/24/1 Report Limit H-Dx Preparation Me 23.0	0 15:45 DF ethod: E 1	Prepared PA 3546 09/02/10 16:05	Analyzed 09/03/10 23:14	CAS No.	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	Lab ID: 254 t" basis Results Analytical Meth ND mg ND mg	Units nod: NWTPI g/kg	Collected: 08/24/1 Report Limit H-Dx Preparation Me 23.0 92.1	0 15:45 DF ethod: E 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05	Analyzed 09/03/10 23:14 09/03/10 23:14	CAS No. 64742-65-0	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	Lab ID: 254 t" basis Results Analytical Meth ND mg	Units nod: NWTPI g/kg	Collected: 08/24/1 Report Limit H-Dx Preparation Me 23.0	0 15:45 DF ethod: E 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05	Analyzed 09/03/10 23:14	CAS No. 64742-65-0 630-02-4	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	Lab ID: 254 t" basis Results Analytical Meth ND mg ND mg 99 % 101 %	Units nod: NWTPI g/kg g/kg	Collected: 08/24/1 Report Limit H-Dx Preparation Me 23.0 92.1 50-150 50-150	0 15:45 DF ethod: E 1 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05	Analyzed 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14	CAS No. 64742-65-0 630-02-4	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	Lab ID: 254 t" basis Results Analytical Meth ND mg 99 % 101 % Analytical Meth	Units nod: NWTPI g/kg nod: NWTPI	Collected: 08/24/1 Report Limit H-Dx Preparation Me 23.0 92.1 50-150 50-150 H-Gx Preparation Me	0 15:45 DF ethod: E 1 1 1 1 2	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx	Analyzed 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14	CAS No. 64742-65-0 630-02-4	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	Lab ID: 254 t" basis Results Analytical Meth ND mg 99 % 101 % Analytical Meth ND mg	Units nod: NWTPI g/kg nod: NWTPI	Collected: 08/24/1 Report Limit H-Dx Preparation Ma 23.0 92.1 50-150 50-150 H-Gx Preparation Ma 7.3	0 15:45 DF ethod: E 1 1 1 1 ethod: N 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/30/10 12:00	Analyzed 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 08/31/10 20:30	CAS No. 64742-65-0 630-02-4 84-15-1	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Lab ID: 254 t" basis Results Analytical Meth ND mg 99 % 101 % Analytical Meth ND mg 104 %	Units nod: NWTPI g/kg nod: NWTPI	Collected: 08/24/1 Report Limit H-Dx Preparation Ma 23.0 92.1 50-150 50-150 H-Gx Preparation Ma 7.3 50-150	0 15:45 DF ethod: E 1 1 1 1 ethod: N 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 08/31/10 20:30 08/31/10 20:30	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Lab ID: 254 t" basis Results Analytical Meth ND mg 99 % 101 % Analytical Meth ND mg	Units nod: NWTPI g/kg nod: NWTPI	Collected: 08/24/1 Report Limit H-Dx Preparation Ma 23.0 92.1 50-150 50-150 H-Gx Preparation Ma 7.3	0 15:45 DF ethod: E 1 1 1 1 ethod: N 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00	Analyzed 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 08/31/10 20:30	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Lab ID: 254 t" basis Results Analytical Meth ND mg 99 % 101 % Analytical Meth ND mg 104 % 91 %	Units hod: NWTPI g/kg hod: NWTPI	Collected: 08/24/1 Report Limit H-Dx Preparation Ma 23.0 92.1 50-150 50-150 H-Gx Preparation Ma 7.3 50-150	0 15:45 DF ethod: E 1 1 1 1 ethod: N 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00	Analyzed 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 08/31/10 20:30 08/31/10 20:30 08/31/10 20:30	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qual
Sample: GP7-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	Lab ID: 254 t" basis Results Analytical Meth ND mg 99 % 101 % Analytical Meth ND mg 104 % 91 %	Units nod: NWTPI g/kg g/kg nod: NWTPI g/kg nod: EPA 60	Collected: 08/24/1 Report Limit H-Dx Preparation Me 23.0 92.1 50-150 50-150 H-Gx Preparation Me 7.3 50-150 50-150	0 15:45 DF ethod: E 1 1 1 1 ethod: N 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/30/10 12:00 08/30/10 12:00 08/30/10 12:00	Analyzed 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 09/03/10 23:14 08/31/10 20:30 08/31/10 20:30	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qual

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 29 of 59

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BPOLY

Pace Project No.: 254681

Sample: GP7-2-2.5	Lab ID: 254681	015 Collected: 08/2	24/10 15:45	5 Received: 08	3/25/10 14:40 N	Aatrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results	Units Report Lim	it DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method	: EPA 6010 Preparation N	lethod: EP	A 3050			
Cadmium	ND mg/kg	y 5	.8 5	08/27/10 07:06	08/30/10 15:22	7440-43-9	
Chromium	45.0 mg/kg	, 1	.2 1	08/27/10 07:06	08/30/10 16:20	7440-47-3	
Lead	6.8 mg/kg		.8 5	08/27/10 07:06	08/30/10 15:22	7439-92-1	
Selenium	ND mg/kg		.8 5	08/27/10 07:06	08/30/10 15:22	7782-49-2	
Silver	ND mg/kg	•	.8 5	08/27/10 07:06	08/30/10 15:22	7440-22-4	
7471 Mercury	Analytical Method	: EPA 7471 Preparation N	/lethod: EP	PA 7471			
Mercury	ND mg/kg	g 0. ⁻	11 1	08/27/10 08:59	08/27/10 15:57	7439-97-6	
8270 MSSV PAH by SIM	Analytical Method	: EPA 8270 by SIM Prepa	aration Met	hod: EPA 3546			
Acenaphthene	ND ug/kg	8	.1 1	09/03/10 11:10	09/03/10 23:19	83-32-9	
Acenaphthylene	ND ug/kg	8	.1 1	09/03/10 11:10	09/03/10 23:19	208-96-8	
Anthracene	ND ug/kg	8	.1 1	09/03/10 11:10	09/03/10 23:19	120-12-7	
Benzo(a)anthracene	ND ug/kg	8	.1 1	09/03/10 11:10	09/03/10 23:19	56-55-3	
Benzo(a)pyrene	ND ug/kg	8	.1 1	09/03/10 11:10	09/03/10 23:19	50-32-8	
Benzo(b)fluoranthene	ND ug/kg		.1 1	09/03/10 11:10	09/03/10 23:19	205-99-2	
Benzo(g,h,i)perylene	ND ug/kg		.1 1		09/03/10 23:19		
Benzo(k)fluoranthene	ND ug/kg		.1 1	09/03/10 11:10	09/03/10 23:19	207-08-9	
Chrysene	ND ug/kg		.1 1	09/03/10 11:10	09/03/10 23:19	218-01-9	
Dibenz(a,h)anthracene	ND ug/kg		.1 1	09/03/10 11:10	09/03/10 23:19	53-70-3	
Fluoranthene	ND ug/kg		.1 1	09/03/10 11:10	09/03/10 23:19	206-44-0	
Fluorene	ND ug/kg		.1 1		09/03/10 23:19		
Indeno(1,2,3-cd)pyrene	ND ug/kg		.1 1	09/03/10 11:10	09/03/10 23:19	193-39-5	
1-Methylnaphthalene	ND ug/kg		.1 1		09/03/10 23:19		
2-Methylnaphthalene	ND ug/kg		.1 1		09/03/10 23:19		
Naphthalene	ND ug/kg		.1 1		09/03/10 23:19		
Phenanthrene	ND ug/kg		.1 1		09/03/10 23:19		
Pyrene	ND ug/kg		.1 1		09/03/10 23:19		
2-Fluorobiphenyl (S)	70 %	55-13			09/03/10 23:19		
Terphenyl-d14 (S)	78 %	60-14			09/03/10 23:19		
8260/5035A Volatile Organics	Analytical Method	: EPA 8260					
Benzene	ND ug/kg	4	.1 1		08/27/10 15:05	71-43-2	
Ethylbenzene	ND ug/kg		.1 1		08/27/10 15:05		
Toluene	ND ug/kg		.1 1		08/27/10 15:05		
Xylene (Total)	ND ug/kg				08/27/10 15:05		
Dibromofluoromethane (S)	98 %	80-13			08/27/10 15:05		
Toluene-d8 (S)	90 %	80-12			08/27/10 15:05		
4-Bromofluorobenzene (S)	93 %	72-12			08/27/10 15:05		
1,2-Dichloroethane-d4 (S)	88 %	80-14			08/27/10 15:05		
Percent Moisture	Analytical Method	: ASTM D2974-87					
Percent Moisture	18.3 %	0.4	10 1		08/27/10 16:19		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ut the whiten consent of Face Analytical Services, inc

Semple: CD7 4 4 5	Lak ID. 054	04040	Collectoric 00/04/4	0.40.00	Dessived: 00		Actring Callel	
Sample: GP7-4-4.5 Results reported on a "dry-weig	Lab ID: 254	001010	Collected: 08/24/1	00:01:00	Received: 08	o/∠o/10 14:40 ľ	Aatrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Percent Moisture	Analytical Meth	nod: ASTM [02974-87					
Percent Moisture	23.6 %		0.10	1		08/30/10 14:42		
Sample: GP7-6-6.5	Lab ID: 254	681017	Collected: 08/24/1	10 16:15	Received: 08	3/25/10 14:40 I	Matrix: Solid	
Results reported on a "dry-weig	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Meth	nod: NWTPH	H-Dx Preparation Me	ethod: El	PA 3546			
Diesel Range SG	ND mg	g∕kg	24.5	1	09/02/10 16:05	09/03/10 23:30		
Motor Oil Range SG	ND mg		98.2	1		09/03/10 23:30		
n-Octacosane (S) SG	102 %		50-150	1		09/03/10 23:30		
o-Terphenyl (S) SG	100 %		50-150	1		09/03/10 23:30		
NWTPH-Gx GCV	Analytical Meth	nod: NWTPH	H-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg	ı/ka	7.2	1	08/30/10 12:00	08/31/10 21:19		
a,a,a-Trifluorotoluene (S)	105 %	g/itg	50-150	1		08/31/10 21:19		
4-Bromofluorobenzene (S)	97 %		50-150	1		08/31/10 21:19		
6010 MET ICP		nod: EPA 60	10 Preparation Met	hod: EPA				
Arsenic	ND mg	n/ka	12.7	5	08/27/10 07:06	08/30/10 15:25	7440-38-2	
Barium	113 mg		25.3	1		08/30/10 15:23		
Cadmium	ND mg	-	6.3	5		08/30/10 15:25		
Chromium	39.9 mg		1.3	1		08/30/10 15:23		
Lead	4.3 mg	-	1.3	1		08/30/10 16:23		
Selenium			6.3	5		08/30/10 15:25		
Silver	ND mg ND mg	-	6.3	5 5		08/30/10 15:25		
						00/30/10 13.23	7440-22-4	
7471 Mercury			71 Preparation Met			00/07/40 45.50	7400.07.0	
Mercury 8270 MSSV PAH by SIM	ND mg		0.12 70 by SIM Preparat	1 ion Moth		08/27/10 15:59	7439-97-0	
5270 WISSY FAIT BY SIW				Ion Meth	00. EFA 3340			
Acenaphthene	ND ug	-	8.5	1		09/02/10 05:48		
Acenaphthylene	ND ug	-	8.5	1		09/02/10 05:48		
Anthracene	ND ug	/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	120-12-7	
Benzo(a)anthracene	ND ug	/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	56-55-3	
Benzo(a)pyrene	ND ug	/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	50-32-8	
Benzo(b)fluoranthene	ND ug	-	8.5	1		09/02/10 05:48		
Benzo(g,h,i)perylene	ND ug	-	8.5	1		09/02/10 05:48		
Benzo(k)fluoranthene	ND ug	-	8.5	1		09/02/10 05:48		
Chrysene	ND ug	/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	218-01-9	
Dibenz(a,h)anthracene	ND ug	/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	53-70-3	
Fluoranthene	ND ug	/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	206-44-0	
Fluorene	ND ug	/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug	/1	8.5	1	08/31/10 22:00	00/00/40 05 40	400.00 5	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 31 of 59

Sample: GP7-6-6.5	Lab ID: 254	681017	Collected: 08/24/1	0 16:15	Received: 08	/25/10 14:40 N	Aatrix: Solid	
Results reported on a "dry-weight				0 10.10		20,10 1110 1		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV PAH by SIM	Analytical Met	hod: EPA 82	70 by SIM Preparati	on Met	nod: EPA 3546	_	_	
1-Methylnaphthalene	ND uç	g/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	90-12-0	
2-Methylnaphthalene	ND ug	g/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	91-57-6	B-
Naphthalene	ND ug	g/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	91-20-3	B-
Phenanthrene	ND ug	g/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	85-01-8	
Pyrene	ND ug	g/kg	8.5	1	08/31/10 22:00	09/02/10 05:48	129-00-0	
2-Fluorobiphenyl (S)	86 %		55-136	1	08/31/10 22:00	09/02/10 05:48	321-60-8	
Terphenyl-d14 (S)	87 %		60-144	1	08/31/10 22:00	09/02/10 05:48	1718-51-0	
8260/5035A Volatile Organics	Analytical Met	hod: EPA 82	60					
Benzene	ND ug	g/kg	3.1	1		08/27/10 15:24	71-43-2	
Ethylbenzene	ND ug		3.1	1		08/27/10 15:24	100-41-4	
Toluene	ND ug	g/kg	3.1	1		08/27/10 15:24	108-88-3	
Xylene (Total)	ND ug		9.3	1		08/27/10 15:24	1330-20-7	
Dibromofluoromethane (S)	98 %		80-136	1		08/27/10 15:24		
Toluene-d8 (S)	91 %		80-120	1		08/27/10 15:24		
4-Bromofluorobenzene (S)	93 %		72-122	1		08/27/10 15:24		
1,2-Dichloroethane-d4 (S)	89 %		80-143	1		08/27/10 15:24		
Percent Moisture	Analytical Met	hod: ASTM [02974-87					
Percent Moisture	22.5 %	,	0.10	1		08/30/10 14:45		
Sample: MW10-2-2.5	Lab ID: 254	681018	Collected: 08/24/1	0 14:40	Received: 08	3/25/10 14:40 N	Aatrix: Solid	
•		681018	Collected: 08/24/1	0 14:40	Received: 08	5/25/10 14:40 N	Aatrix: Solid	
•		681018 Units	Collected: 08/24/1 Report Limit	0 14:40 DF) Received: 08 Prepared	/25/10 14:40 M	Aatrix: Solid CAS No.	Qua
Results reported on a "dry-weight Parameters	t" <i>basis</i> Results	Units		DF	Prepared			Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG	t" <i>basis</i> Results	Units hod: NWTPF	Report Limit	DF	Prepared PA 3546		CAS No.	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG	t" basis Results Analytical Met	Units hod: NWTPF g/kg	Report Limit	DF ethod: E	Prepared PA 3546 09/02/10 16:05	Analyzed	CAS No.	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	t" basis Results Analytical Met ND m	Units hod: NWTPH g/kg g/kg	Report Limit I-Dx Preparation Me 23.4	DF ethod: E 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05	Analyzed	CAS No. 64742-65-0	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	t" basis Results Analytical Met ND m ND m	Units hod: NWTPF g/kg g/kg	Report Limit H-Dx Preparation Me 23.4 93.4	DF ethod: E 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05	Analyzed 09/03/10 23:47 09/03/10 23:47	CAS No. 64742-65-0 630-02-4	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	t" basis Results Analytical Met ND m ND m 100 % 103 %	Units hod: NWTPH g/kg g/kg	Report Limit H-Dx Preparation Me 23.4 93.4 50-150	DF ethod: E 1 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47	CAS No. 64742-65-0 630-02-4	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV	t" basis Results Analytical Met ND m ND m 100 % 103 %	Units hod: NWTPF g/kg g/kg hod: NWTPF	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150	DF ethod: E 1 1 1 1	Prepared EPA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47	CAS No. 64742-65-0 630-02-4 84-15-1	Qua
Sample: MW10-2-2.5 Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	t" basis Results Analytical Met ND m ND m 100 % 103 % Analytical Met	Units hod: NWTPF g/kg g/kg hod: NWTPF g/kg	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150 H-Gx Preparation Me	DF ethod: E 1 1 1 1 ethod: N	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47	CAS No. 64742-65-0 630-02-4 84-15-1	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	t" basis Results Analytical Met ND m ND m 100 % 103 % Analytical Met ND m	Units hod: NWTPF g/kg g/kg hod: NWTPF g/kg	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150 H-Gx Preparation Me 8.1	DF ethod: E 1 1 1 1 ethod: N 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	t" basis Results Analytical Met ND m ND m 100 % 103 % Analytical Met ND m 101 % 89 %	Units hod: NWTPF g/kg g/kg hod: NWTPF g/kg	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150 H-Gx Preparation Me 8.1 50-150	DF ethod: E 1 1 1 1 2 ethod: N 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 JWTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/01/10 04:09 09/01/10 04:09	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP	t" basis Results Analytical Met ND m ND m 100 % 103 % Analytical Met ND m 101 % 89 %	Units hod: NWTPH g/kg g/kg hod: NWTPH g/kg hod: EPA 60	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150 H-Gx Preparation Me 8.1 50-150 50-150	DF ethod: E 1 1 1 1 2 ethod: N 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 A 3050	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/01/10 04:09 09/01/10 04:09	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic	t" basis Results Analytical Met ND m ND m 100 % 103 % Analytical Met 89 % Analytical Met	Units hod: NWTPH g/kg g/kg hod: NWTPH g/kg hod: EPA 60 g/kg	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150 H-Gx Preparation Me 8.1 50-150 50-150 10 Preparation Meth	DF ethod: E 1 1 1 1 ethod: N 1 1 1 0 00d: EP	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 A 3050 08/27/10 07:06	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/01/10 04:09 09/01/10 04:09	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic Barium	t" basis Results Analytical Met ND m ND m 100 % 103 % Analytical Met 89 % Analytical Met ND m	Units hod: NWTPH g/kg g/kg hod: NWTPH g/kg hod: EPA 60 g/kg g/kg	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150 H-Gx Preparation Me 8.1 50-150 50-150 10 Preparation Meth 12.4	DF ethod: E 1 1 1 1 ethod: N 1 1 1 0 0 0 5	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 A 3050 08/27/10 07:06 08/27/10 07:06	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/01/10 04:09 09/01/10 04:09 09/01/10 04:09 08/30/10 15:27	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 6010 MET ICP Arsenic Barium Cadmium	t" basis Results Analytical Met ND m ND m 100 % 103 % Analytical Met ND m 101 % 89 % Analytical Met ND m 118 m ND m	Units hod: NWTPH g/kg g/kg hod: NWTPH g/kg hod: EPA 60 g/kg g/kg g/kg	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150 H-Gx Preparation Me 8.1 50-150 50-150 10 Preparation Meth 12.4 24.7	DF ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP 5 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 A 3050 08/27/10 07:06 08/27/10 07:06	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/01/10 04:09 09/01/10 04:09 09/01/10 04:09 09/01/10 04:09 08/30/10 15:27 08/30/10 15:27	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9	Qua
Results reported on a "dry-weight Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	t" basis Results Analytical Met ND m ND m 100 % 103 % Analytical Met ND m 101 % 89 % Analytical Met ND m 1118 m	Units hod: NWTPF g/kg g/kg hod: NWTPF g/kg hod: EPA 60 g/kg g/kg g/kg	Report Limit H-Dx Preparation Me 23.4 93.4 50-150 50-150 H-Gx Preparation Me 8.1 50-150 50-150 10 Preparation Meth 12.4 24.7 6.2	DF ethod: E 1 1 1 1 ethod: N 1 1 1 nod: EP 5 1 5	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 IWTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 A 3050 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	Analyzed 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/03/10 23:47 09/01/10 04:09 09/01/10 04:09 09/01/10 04:09 09/01/10 04:09 08/30/10 15:27 08/30/10 15:27	CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9 7440-47-3	Qua

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 32 of 59

Project: BPOLY

Pace Project No.: 254681

Sample: MW10-2-2.5	Lab ID: 25468101	B Collected: 08/24/	10 14:40	0 Received: 08	3/25/10 14:40 N	Aatrix: Solid	
Results reported on a "dry-weight	" basis						
Parameters	Results U	hits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Method: E	PA 6010 Preparation Met	hod: EF	PA 3050			
Silver	ND mg/kg	6.2	5	08/27/10 07:06	08/30/10 15:27	7440-22-4	
7471 Mercury	Analytical Method: E	PA 7471 Preparation Met	hod: EF	PA 7471			
Mercury	ND mg/kg	0.12	1	08/27/10 08:59	08/27/10 16:01	7439-97-6	
8270 MSSV PAH by SIM	Analytical Method: E	PA 8270 by SIM Preparat	ion Met	hod: EPA 3546			
Acenaphthene	ND ug/kg	8.1	1	08/31/10 22:00	09/02/10 06:04	83-32-9	
Acenaphthylene	ND ug/kg	8.1	1	08/31/10 22:00	09/02/10 06:04	208-96-8	
Anthracene	ND ug/kg	8.1	1	08/31/10 22:00	09/02/10 06:04	120-12-7	
Benzo(a)anthracene	ND ug/kg	8.1	1	08/31/10 22:00	09/02/10 06:04	56-55-3	
Benzo(a)pyrene	ND ug/kg	8.1	1	08/31/10 22:00	09/02/10 06:04	50-32-8	
Benzo(b)fluoranthene	ND ug/kg	8.1	1		09/02/10 06:04		
Benzo(g,h,i)perylene	ND ug/kg	8.1	1		09/02/10 06:04		
Benzo(k)fluoranthene	ND ug/kg	8.1	1		09/02/10 06:04		
Chrysene	ND ug/kg	8.1	1		09/02/10 06:04		
Dibenz(a,h)anthracene	ND ug/kg	8.1	1		09/02/10 06:04		
Fluoranthene	ND ug/kg	8.1	1		09/02/10 06:04		
Fluorene	ND ug/kg	8.1	1		09/02/10 06:04		
Indeno(1,2,3-cd)pyrene	ND ug/kg	8.1	1		09/02/10 06:04		
1-Methylnaphthalene	ND ug/kg	8.1	1		09/02/10 06:04		
2-Methylnaphthalene	ND ug/kg	8.1	1		09/02/10 06:04		B-
Naphthalene	ND ug/kg	8.1	1		09/02/10 06:04		B-
Phenanthrene	ND ug/kg	8.1	1		09/02/10 06:04		D
Pyrene	ND ug/kg	8.1	1		09/02/10 06:04		
2-Fluorobiphenyl (S)	83 %	55-136	1		09/02/10 06:04		
Terphenyl-d14 (S)	85 %	60-144	1		09/02/10 06:04		
8260/5035A Volatile Organics	Analytical Method: E	PA 8260					
Benzene	ND ug/kg	3.9	1		08/27/10 15:43	71-43-2	
Ethylbenzene	ND ug/kg	3.9	1		08/27/10 15:43	100-41-4	
Toluene	ND ug/kg	3.9	1		08/27/10 15:43	108-88-3	
Xylene (Total)	ND ug/kg	11.6	1		08/27/10 15:43	1330-20-7	
Dibromofluoromethane (S)	103 %	80-136	1		08/27/10 15:43	1868-53-7	
Toluene-d8 (S)	86 %	80-120	1		08/27/10 15:43	2037-26-5	
4-Bromofluorobenzene (S)	92 %	72-122	1		08/27/10 15:43	460-00-4	
1,2-Dichloroethane-d4 (S)	90 %	80-143	1		08/27/10 15:43		
Percent Moisture	Analytical Method: A	STM D2974-87					
Percent Moisture	20.7 %	0.10	1		08/30/10 14:46		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BPOLY

Pace Project No.: 254681

Sample: MW10-4-4.5	Lab ID: 254681019	Collected: 08/24/1	0 14:50	0 Received: 08	/25/10 14:40 N	latrix: Solid	
Results reported on a "dry-weig	-			_			_
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Dx GCS SG	Analytical Method: NV	/TPH-Dx Preparation Me	ethod: E	EPA 3546			
Diesel Range SG	ND mg/kg	26.9	1	09/02/10 16:05	09/04/10 00:03		
Notor Oil Range SG	ND mg/kg	107	1	09/02/10 16:05	09/04/10 00:03	64742-65-0	
n-Octacosane (S) SG	98 %	50-150	1	09/02/10 16:05	09/04/10 00:03	630-02-4	
o-Terphenyl (S) SG	99 %	50-150	1	09/02/10 16:05	09/04/10 00:03	84-15-1	
IWTPH-Gx GCV	Analytical Method: NV	/TPH-Gx Preparation M	ethod: I	NWTPH-Gx			
Gasoline Range Organics	ND mg/kg	7.8	1	08/31/10 12:00	09/01/10 04:58		
a,a,a-Trifluorotoluene (S)	98 %	50-150	1	08/31/10 12:00	09/01/10 04:58	98-08-8	
I-Bromofluorobenzene (S)	91 %	50-150	1	08/31/10 12:00	09/01/10 04:58	460-00-4	
010 MET ICP	Analytical Method: EP	A 6010 Preparation Met	nod: EF	PA 3050			
Arsenic	ND mg/kg	13.2	5	08/27/10 07:06	08/30/10 15:30	7440-38-2	
Barium	126 mg/kg	26.3	1	08/27/10 07:06	08/30/10 16:28	7440-39-3	
Cadmium	ND mg/kg	6.6	5	08/27/10 07:06	08/30/10 15:30	7440-43-9	
Chromium	42.0 mg/kg	1.3	1	08/27/10 07:06	08/30/10 16:28	7440-47-3	
ead	14.0 mg/kg	1.3	1	08/27/10 07:06	08/30/10 16:28	7439-92-1	
Selenium	ND mg/kg	6.6	5	08/27/10 07:06	08/30/10 15:30	7782-49-2	
Silver	ND mg/kg	6.6	5	08/27/10 07:06	08/30/10 15:30	7440-22-4	
471 Mercury	Analytical Method: EP	A 7471 Preparation Met	nod: EF	PA 7471			
<i>l</i> ercury	ND mg/kg	0.14	1	08/27/10 08:59	08/27/10 16:03	7439-97-6	
270 MSSV PAH by SIM	Analytical Method: EP	A 8270 by SIM Preparat	ion Met	hod: EPA 3546			
		8.9	1	08/31/10 22:00	09/02/10 06:21	02 22 0	
cenaphthene	ND ug/kg	0.0			00/02/10 00121	03-32-9	
-	ND ug/kg	8.9	1		09/02/10 06:21		
cenaphthylene				08/31/10 22:00		208-96-8	
cenaphthylene Inthracene	ND ug/kg	8.9	1	08/31/10 22:00 08/31/10 22:00	09/02/10 06:21	208-96-8 120-12-7	
acenaphthylene Inthracene Benzo(a)anthracene	ND ug/kg ND ug/kg	8.9 8.9	1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3	
acenaphthylene anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ug/kg ND ug/kg ND ug/kg	8.9 8.9 8.9	1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9	1 1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9	1 1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	
Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9	
Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	
Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	
Accenaphthylene Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Cluoranthene	ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	
Accenaphthylene Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene I-Methylnaphthalene	ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0	В-
Accenaphthylene Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene -Methylnaphthalene	ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6	В- В-
Accenaphthylene Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene -Methylnaphthalene Iaphthalene	ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3	В- В-
Accenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene -Methylnaphthalene Penanthrene	ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3 85-01-8	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene ndeno(1,2,3-cd)pyrene I-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene 2-Fluorobiphenyl (S)	ND ug/kg ND ug/kg	8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	1 1 1 1 1 1 1 1 1 1 1 1 1	08/31/10 22:00 08/31/10 22:00	09/02/10 06:21 09/02/10 06:21	208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3 85-01-8 129-00-0	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 34 of 59

Project: BPOLY

Pace Project No.: 254681

Sample: MW10-4-4.5	Lab ID: 254	681019	Collected: 08/24/	10 14:50	Received: 08	3/25/10 14:40 I	Matrix: Solid	
Results reported on a "dry-weigh								
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260/5035A Volatile Organics	Analytical Met	hod: EPA 82	260			_		
Benzene	ND ug	g/kg	3.3	1		08/27/10 16:02	71-43-2	
Ethylbenzene	ND ug	g/kg	3.3	1		08/27/10 16:02	100-41-4	
Toluene	ND ug		3.3	1		08/27/10 16:02	108-88-3	
Xylene (Total)	ND ug		10.0	1		08/27/10 16:02	1330-20-7	
Dibromofluoromethane (S)	98 %		80-136	1		08/27/10 16:02	1868-53-7	
Toluene-d8 (S)	90 %		80-120	1		08/27/10 16:02	2037-26-5	
4-Bromofluorobenzene (S)	93 %		72-122	1		08/27/10 16:02	460-00-4	
1,2-Dichloroethane-d4 (S)	90 %		80-143	1		08/27/10 16:02	17060-07-0	
Percent Moisture	Analytical Met	hod: ASTM	D2974-87					
Percent Moisture	26.2 %		0.10	1		08/30/10 14:48		
Sample: MW10-6-6.5	Lab ID: 254	681020	Collected: 08/24/*	10 15:10	Received: 08	3/25/10 14:40 I	Matrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Percent Moisture	Analytical Met	hod: ASTM	D2974-87					
Percent Moisture	37.7 %		0.10	1		08/30/10 14:51		
	•••••		0.10			00/00/10 14:01		
					Received: 08			
Sample: GP3-2-2.5	Lab ID: 254		Collected: 08/24/		Received: 08		Matrix: Solid	
Sample: GP3-2-2.5	Lab ID: 254				Received: 08 Prepared			Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters	Lab ID: 254 t" basis Results	681021 Units	Collected: 08/24/	10 14:15 DF	Prepared	B/25/10 14:40 I	Matrix: Solid	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG	Lab ID: 254 at" basis Results Analytical Met	681021 Units hod: NWTP	Collected: 08/24/ Report Limit H-Dx Preparation M	10 14:15 DF ethod: E	Prepared PA 3546	3/25/10 14:40 I Analyzed	Matrix: Solid CAS No.	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG	Lab ID: 254 of basis Results Analytical Met ND m	681021 Units hod: NWTP g/kg	Collected: 08/24/ Report Limit H-Dx Preparation M 21.8	10 14:15 DF ethod: E 1	Prepared PA 3546 09/02/10 16:05	3/25/10 14:40 I Analyzed 09/04/10 00:19	Matrix: Solid CAS No.	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG	Lab ID: 254 ht" basis Results Analytical Met ND m ND m	681021 Units hod: NWTP g/kg g/kg	Collected: 08/24/ Report Limit H-Dx Preparation M 21.8 87.1	10 14:15 DF ethod: E 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19	Matrix: Solid CAS No. 64742-65-0	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG h-Octacosane (S) SG	Lab ID: 254 of basis Results Analytical Met ND m	4 681021 Units hod: NWTP g/kg g/kg	Collected: 08/24/ Report Limit H-Dx Preparation M 21.8	10 14:15 DF ethod: E 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05	3/25/10 14:40 I Analyzed 09/04/10 00:19	Matrix: Solid CAS No. 64742-65-0 630-02-4	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG	Lab ID: 254 at" basis Results Analytical Met ND m ND m 98 % 98 %	681021 Units hod: NWTP g/kg g/kg	Collected: 08/24/ Report Limit H-Dx Preparation M 21.8 87.1 50-150	10 14:15 DF ethod: E 1 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19	Matrix: Solid CAS No. 64742-65-0 630-02-4	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters WWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG WWTPH-Gx GCV	Lab ID: 254 at" basis Results Analytical Met ND m 98 % 98 % Analytical Met	d 681021 Units hod: NWTP g/kg g/kg hod: NWTP	Collected: 08/24/ Report Limit H-Dx Preparation M 21.8 87.1 50-150 50-150 50-150	I0 14:15 DF ethod: E 1 1 1 1 1 ethod: N	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics	Lab ID: 254 tt" basis Results Analytical Met ND m 98 % 98 % Analytical Met ND m	681021 Units hod: NWTP g/kg g/kg hod: NWTP g/kg	Collected: 08/24/ Report Limit H-Dx Preparation M 21.8 87.1 50-150 50-150 WH-Gx Preparation M 6.2	10 14:15 DF ethod: E 1 1 1 1 ethod: N 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/01/10 05:22	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	Lab ID: 254 at" basis Results Analytical Met ND m 98 % 98 % Analytical Met	d 681021 Units hod: NWTP g/kg g/kg hod: NWTP g/kg	Collected: 08/24/ Report Limit H-Dx Preparation M 21.8 87.1 50-150 50-150 50-150	I0 14:15 DF ethod: E 1 1 1 1 1 ethod: N	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG WTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	Lab ID: 254 at" basis Results Analytical Met ND m 98 % 98 % Analytical Met ND m 98 % 98 % Analytical Met ND m 96 % 88 %	681021 Units hod: NWTP g/kg g/kg hod: NWTP g/kg	Collected: 08/24/ <u>Report Limit</u> H-Dx Preparation M 21.8 87.1 50-150 50-150 WH-Gx Preparation M 6.2 50-150	I0 14:15 DF ethod: E 1 1 1 1 ethod: N 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00	3/25/10 14:40 Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 05:22 09/01/10 05:22	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG D-Terphenyl (S) SG WTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP	Lab ID: 254 at" basis Results Analytical Met ND m ND m 98 % 98 % Analytical Met ND m 96 % 88 % Analytical Met	F681021 Units hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60	Collected: 08/24/ Report Limit PH-Dx Preparation M 21.8 87.1 50-150 50-150 PH-Gx Preparation M 6.2 50-150 50-150 50-150 50-150 010 Preparation Met	DF DF ethod: E 1 1 1 1 ethod: N 1 1 1 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 A 3050	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 05:22 09/01/10 05:22 09/01/10 05:22	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic	Lab ID: 254 at" basis Results Analytical Met ND m ND m 98 % 98 % Analytical Met ND m 96 % 88 % Analytical Met ND m	F681021 Units hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60 g/kg	Collected: 08/24/ Report Limit PH-Dx Preparation M 21.8 87.1 50-150 50-150 PH-Gx Preparation M 6.2 50-150 50-150 010 Preparation Met 10.9	I0 14:15 DF ethod: E 1 1 1 ethod: N 1 1 hod: EPA 5	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 A 3050 08/27/10 07:06	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters NWTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG p-Terphenyl (S) SG NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic Barium	Lab ID: 254 at" basis Results Analytical Met ND m 98 % 98 % Analytical Met ND m 96 % 88 % Analytical Met ND m 107 m	F681021 Units hod: NWTP g/kg g/kg hod: NWTP g/kg hod: EPA 60 g/kg g/kg	Collected: 08/24/ Report Limit PH-Dx Preparation M 21.8 87.1 50-150 50-150 PH-Gx Preparation M 6.2 50-150 50-150 010 Preparation Met 10.9 21.9	I0 14:15 DF ethod: E 1 1 1 1 ethod: N 1 1 hod: EPA 5 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 08/31/10 07:06 08/27/10 07:06	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 08/30/10 15:33 08/30/10 15:33	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh Parameters WTPH-Dx GCS SG Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG WTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 5010 MET ICP Arsenic Barium Cadmium	Lab ID: 254 Analytical Met ND m ND m ND m 98 % 98 % Analytical Met ND m 96 % 88 % Analytical Met ND m 107 m ND m	F681021 Units hod: NWTP g/kg g/kg hod: NWTP g/kg g/kg g/kg g/kg	Collected: 08/24/ Report Limit PH-Dx Preparation M 21.8 87.1 50-150 50-150 PH-Gx Preparation M 6.2 50-150 50-150 010 Preparation Met 10.9 21.9 5.5	I0 14:15 DF ethod: E 1 1 1 ethod: N 1 1 hod: EPA 5 1 5	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 08/31/10 07:06 08/27/10 07:06 08/27/10 07:06	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 15:33 08/30/10 15:33	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9	Qua
Sample: GP3-2-2.5 Results reported on a "dry-weigh	Lab ID: 254 at" basis Results Analytical Met ND m 98 % 98 % Analytical Met ND m 96 % 88 % Analytical Met ND m 107 m	e681021 Units hod: NWTP g/kg g/kg g/kg g/kg g/kg g/kg g/kg g/k	Collected: 08/24/ Report Limit PH-Dx Preparation M 21.8 87.1 50-150 50-150 PH-Gx Preparation M 6.2 50-150 50-150 010 Preparation Met 10.9 21.9	I0 14:15 DF ethod: E 1 1 1 1 ethod: N 1 1 hod: EPA 5 1	Prepared PA 3546 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 09/02/10 16:05 WTPH-Gx 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 08/31/10 12:00 08/27/10 07:06 08/27/10 07:06 08/27/10 07:06	3/25/10 14:40 I Analyzed 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/04/10 00:19 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 09/01/10 05:22 08/30/10 15:33 08/30/10 15:33	Matrix: Solid CAS No. 64742-65-0 630-02-4 84-15-1 98-08-8 460-00-4 7440-38-2 7440-39-3 7440-43-9 7440-43-9 7440-47-3	Qua

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 35 of 59

BPOLY

Project:

Qual

ANALYTICAL RESULTS

Pace Project No.: 254681							
Sample: GP3-2-2.5	Lab ID: 25	4681021	Collected: 08/24/1	0 14:15	5 Received: 08	/25/10 14:40 N	latrix: Solid
Results reported on a "dry-weight	t" basis						
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No
6010 MET ICP	Analytical Me	thod: EPA 601	0 Preparation Met	nod: EP	A 3050		
Silver	ND m	ng/kg	5.5	5	08/27/10 07:06	08/30/10 15:33	7440-22-4
7471 Mercury	Analytical Me	thod: EPA 747	1 Preparation Met	nod: EP	A 7471		
Mercury	ND m	ng/kg	0.11	1	08/27/10 08:59	08/27/10 16:10	7439-97-6
8270 MSSV PAH by SIM	Analytical Me	thod: EPA 827	0 by SIM Preparat	ion Met	hod: EPA 3546		
Acenaphthene	ND u	g/kg	7.5	1	09/02/10 18:00	09/03/10 22:13	83-32-9
Acenaphthylene	ND u	g/kg	7.5	1	09/02/10 18:00	09/03/10 22:13	208-96-8
Anthracene	ND u	g/kg	7.5	1	09/02/10 18:00	09/03/10 22:13	120-12-7
Benzo(a)anthracene	ND u	g/kg	7.5	1	09/02/10 18:00	09/03/10 22:13	56-55-3
Benzo(a)pyrene	ND u		7.5	1	09/02/10 18:00	09/03/10 22:13	50-32-8
Benzo(b)fluoranthene	ND u	g/kg	7.5	1	09/02/10 18:00	09/03/10 22:13	205-99-2
Benzo(g,h,i)perylene	ND u	0 0	7.5	1	09/02/10 18:00	09/03/10 22:13	191-24-2
Benzo(k)fluoranthene	ND u		7.5	1		09/03/10 22:13	
Chrysene	ND u		7.5	1		09/03/10 22:13	
Dibenz(a,h)anthracene	ND u	0 0	7.5	1		09/03/10 22:13	
Fluoranthene	ND u	0 0	7.5	1		09/03/10 22:13	
Fluorene	ND u	0 0	7.5	1		09/03/10 22:13	
ndeno(1,2,3-cd)pyrene	ND u		7.5	1		09/03/10 22:13	
1-Methylnaphthalene	ND u	0 0	7.5	1		09/03/10 22:13	
2-Methylnaphthalene	ND u	0 0	7.5	1		09/03/10 22:13	
Naphthalene	ND u	0 0	7.5	1		09/03/10 22:13	
Phenanthrene	ND u	0 0	7.5	1		09/03/10 22:13	
Pyrene	ND u	0 0	7.5	1		09/03/10 22:13	
2-Fluorobiphenyl (S)	67 %	0 0	55-136	1		09/03/10 22:13	
Terphenyl-d14 (S)	74 %		60-144	1		09/03/10 22:13	
3260/5035A Volatile Organics	Analytical Me	thod: EPA 826	0				
Benzene	ND u	g/kg	3.4	1		08/27/10 16:21	71-43-2
Ethylbenzene	ND u		3.4	1		08/27/10 16:21	100-41-4
Toluene	ND u	0 0	3.4	1		08/27/10 16:21	108-88-3
Xylene (Total)	ND u	0 0	10.1	1		08/27/10 16:21	1330-20-
Dibromofluoromethane (S)	97 %		80-136	1		08/27/10 16:21	1868-53-
Foluene-d8 (S)	90 %	, D	80-120	1		08/27/10 16:21	
4-Bromofluorobenzene (S)	93 %	, D	72-122	1		08/27/10 16:21	
1,2-Dichloroethane-d4 (S)	87 %		80-143	1		08/27/10 16:21	
Percent Moisture	Analytical Me	thod: ASTM D	2974-87				
Percent Moisture	12.1 %	, D	0.10	1		08/30/10 14:52	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BPOLY

Pace Project No.: 254681

Sample: GP3-4-4.5	Lab ID: 254681022	Collected: 08/24/1	0 14:25	Received: 08	/25/10 14:40 I	Matrix: Solid	
Results reported on a "dry-weig	ght" basis						
Parameters	Results Unit	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Me	ethod: E	PA 3546			
Diesel Range SG	31.1 mg/kg	25.7	1	09/02/10 16:05	09/04/10 00:36		
Motor Oil Range SG	ND mg/kg	103	1	09/02/10 16:05	09/04/10 00:36	64742-65-0	
n-Octacosane (S) SG	87 %	50-150	1	09/02/10 16:05	09/04/10 00:36	630-02-4	
o-Terphenyl (S) SG	100 %	50-150	1	09/02/10 16:05	09/04/10 00:36	84-15-1	
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Me	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	8.6	1	08/31/10 12:00	09/01/10 06:11		
a,a,a-Trifluorotoluene (S)	103 %	50-150	1	08/31/10 12:00	09/01/10 06:11	98-08-8	
4-Bromofluorobenzene (S)	97 %	50-150	1	08/31/10 12:00	09/01/10 06:11	460-00-4	
6010 MET ICP	Analytical Method: EP	A 6010 Preparation Meth	nod: EP	A 3050			
Arsenic	ND mg/kg	12.4	5	08/27/10 07:06	08/30/10 15:35	7440-38-2	
Barium	101 mg/kg	24.7	1	08/27/10 07:06	08/30/10 16:33	7440-39-3	
Cadmium	ND mg/kg	6.2	5	08/27/10 07:06	08/30/10 15:35	7440-43-9	
Chromium	40.4 mg/kg	1.2	1	08/27/10 07:06	08/30/10 16:33	7440-47-3	
Lead	4.0 mg/kg	1.2	1	08/27/10 07:06			
Selenium	ND mg/kg	6.2	5	08/27/10 07:06			
Silver	ND mg/kg	6.2	5		08/30/10 15:35		
7471 Mercury	Analytical Method: EP	A 7471 Preparation Meth	nod: EP	A 7471			
-	Analytical Method: EP/ ND_mg/kg	A 7471 Preparation Meth 0.12	nod: EP		08/27/10 16:12	7439-97-6	
7471 Mercury Mercury 8270 MSSV PAH by SIM	ND mg/kg	•	1	08/27/10 08:59	08/27/10 16:12	7439-97-6	
Mercury 8270 MSSV PAH by SIM	ND mg/kg Analytical Method: EP/	0.12	1	08/27/10 08:59 nod: EPA 3546	08/27/10 16:12		
Mercury 3270 MSSV PAH by SIM Acenaphthene	ND mg/kg Analytical Method: EP/ ND ug/kg	0.12 A 8270 by SIM Preparati	1 on Meth	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00		83-32-9	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7	1 on Meth 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29	83-32-9 208-96-8	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7	1 on Meth 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7	1 on Meth 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Indeno(1,2,3-cd)pyrene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
Mercury B270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)apyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3	
Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene ndeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg 14.3 ug/kg 19.9 ug/kg 10.3 ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3 85-01-8	
Mercury	ND mg/kg Analytical Method: EP/ ND ug/kg ND ug/kg	0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	1 on Meth 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08/27/10 08:59 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/03/10 22:29 09/03/10 22:29	83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3 85-01-8 129-00-0	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 37 of 59

Project: BPOLY

Pace Project No.: 254681

Sample: GP3-4-4.5	Lab ID: 254681	022	Collected: 08/24/1	0 14:25	Received: 08	8/25/10 14:40 N	Aatrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Method:	: EPA 8260	0					
Benzene	ND ug/kg		3.8	1		08/27/10 16:41	71-43-2	
Ethylbenzene	ND ug/kg		3.8	1		08/27/10 16:41	100-41-4	
Toluene	ND ug/kg		3.8	1		08/27/10 16:41	108-88-3	
Xylene (Total)	ND ug/kg		11.3	1		08/27/10 16:41	1330-20-7	
Dibromofluoromethane (S)	99 %		80-136	1		08/27/10 16:41	1868-53-7	
Toluene-d8 (S)	91 %		80-120	1		08/27/10 16:41	2037-26-5	
4-Bromofluorobenzene (S)	94 %		72-122	1		08/27/10 16:41	460-00-4	
1,2-Dichloroethane-d4 (S)	85 %		80-143	1		08/27/10 16:41	17060-07-0	
Percent Moisture	Analytical Method:	: ASTM D2	2974-87					
Percent Moisture	24.4 %		0.10	1		08/30/10 14:53		
			<u> </u>					
Sample: Trip Blank	Lab ID: 254681	023	Collected: 08/24/1	10 00:00	Received: 08	8/25/10 14:40	Aatrix: Solid	
Results reported on a "wet-weigh	t" basis							Qual
		023 Units	Collected: 08/24/1	10 00:00 DF	Received: 08 Prepared	8/25/10 14:40 M	Aatrix: Solid CAS No.	Qual
Results reported on a "wet-weigh Parameters	t" basis	Units	Report Limit	DF	Prepared			Qual
Results reported on a "wet-weigh	t" basis Results	Units : NWTPH-	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV	t" basis Results Analytical Method:	Units : NWTPH-	Report Limit Gx Preparation M	DF ethod: N	Prepared WTPH-Gx	Analyzed 09/01/10 04:33	CAS No.	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics	t" basis Results Analytical Method: ND mg/kg	Units : NWTPH-	Report Limit Gx Preparation M 5.0	DF ethod: N 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33	CAS No. 98-08-8	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S)	t" basis Results Analytical Method: ND mg/kg 107 %	Units : NWTPH-	Report Limit Gx Preparation M 5.0 50-150 50-150	DF ethod: N 1 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33 09/01/10 04:33	CAS No. 98-08-8	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S)	t" basis Results Analytical Method: ND mg/kg 107 % 98 %	Units : NWTPH- : EPA 8260	Report Limit Gx Preparation M 5.0 50-150 50-150	DF ethod: N 1 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33 09/01/10 04:33	CAS No. 98-08-8 460-00-4	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics	t" basis Results Analytical Method: ND mg/kg 107 % 98 % Analytical Method:	Units : NWTPH- : EPA 8260	Report Limit Gx Preparation M 5.0 50-150 50-150	DF ethod: N 1 1 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33 09/01/10 04:33 09/01/10 04:33	CAS No. 98-08-8 460-00-4 71-43-2	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene	t" basis Results Analytical Method: ND mg/kg 107 % 98 % Analytical Method: ND ug/kg	Units : NWTPH- : EPA 8260	Report Limit Gx Preparation M 5.0 50-150 50-150 0 3.0	DF ethod: N 1 1 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33 09/01/10 04:33 09/01/10 04:33 08/27/10 12:32	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene	t" basis Results Analytical Method: ND mg/kg 107 % 98 % Analytical Method: ND ug/kg ND ug/kg	Units : NWTPH- : EPA 8260	Report Limit Gx Preparation M 5.0 50-150 50-150 0 3.0 3.0 3.0	DF ethod: N 1 1 1 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33 09/01/10 04:33 09/01/10 04:33 08/27/10 12:32 08/27/10 12:32	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4 108-88-3	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene	t" basis Results Analytical Method: ND mg/kg 107 % 98 % Analytical Method: ND ug/kg ND ug/kg ND ug/kg ND ug/kg	Units : NWTPH- : EPA 8260	Report Limit Gx Preparation M 5.0 50-150 50-150 0 3.0 3.0 3.0 3.0	DF ethod: N 1 1 1 1 1 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33 09/01/10 04:33 09/01/10 04:33 09/01/10 04:33 08/27/10 12:32 08/27/10 12:32	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4 108-88-3 1330-20-7	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total)	t" basis Results Analytical Method: ND mg/kg 107 % 98 % Analytical Method: ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	Units : NWTPH- : EPA 8260	Report Limit Gx Preparation M 5.0 50-150 50-150 0 3.0 3.0 3.0 9.0	DF ethod: N 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33 09/01/10 04:33 09/01/10 04:33 08/27/10 12:32 08/27/10 12:32 08/27/10 12:32	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7	Qual
Results reported on a "wet-weigh Parameters NWTPH-Gx GCV Gasoline Range Organics a,a,a-Trifluorotoluene (S) 4-Bromofluorobenzene (S) 8260/5035A Volatile Organics Benzene Ethylbenzene Toluene Xylene (Total) Dibromofluoromethane (S)	t" basis Results Analytical Method: ND mg/kg 107 % 98 % Analytical Method: ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg 96 %	Units : NWTPH- : EPA 8260	Report Limit Gx Preparation M 50-150 50-150 50-150 0 3.0 3.0 3.0 9.0 80-136	DF ethod: N 1 1 1 1 1 1 1 1 1	Prepared WTPH-Gx 08/31/10 12:00 08/31/10 12:00	Analyzed 09/01/10 04:33 09/01/10 04:33 09/01/10 04:33 09/01/10 04:33 08/27/10 12:32 08/27/10 12:32 08/27/10 12:32 08/27/10 12:32	CAS No. 98-08-8 460-00-4 71-43-2 100-41-4 108-88-3 1330-20-7 1868-53-7 2037-26-5	Qual

REPORT OF LABORATORY ANALYSIS

QC Batch Method: EPA 3546 Associated Lab Samples: 2546	}	Analysis Meth	od: N\	NTPH-Dx		
Associated Lab Samples: 2546		Analysis Desc	ription: N	NTPH-Dx G	CS	
	81002, 254681003, 25	54681005, 25468100	6, 254681007,	254681009	, 254681010	
METHOD BLANK: 38662		Matrix:	Solid			
Associated Lab Samples: 2546	81002, 254681003, 25	54681005, 25468100	6, 254681007,	254681009	, 254681010	
_		Blank	Reporting			
Parameter	Units	Result	Limit	Analyze	ed Qualifi	iers
Diesel Range SG	mg/kg	ND	20.0	09/02/10 1		
Motor Oil Range SG	mg/kg	ND	80.0			
n-Octacosane (S) SG	%	104	50-150	09/02/10 1		
o-Terphenyl (S) SG	%	106	50-150	09/02/10 1	5:18	
LABORATORY CONTROL SAMP	LE: 38663					
		Spike L	CS	LCS	% Rec	
Parameter	Units	•		% Rec	Limits	Qualifiers
Diesel Range SG	mg/kg	500	410	82	56-124	
Motor Oil Range SG	mg/kg	500	464	93	50-150	
n-Octacosane (S) SG	%			104	50-150	
o-Terphenyl (S) SG	%			114	50-150	
		254662004	Dup			
	Units	254662004 Result	Dup Result	RPD	Qualifiers	\$
SAMPLE DUPLICATE: 38664 Parameter				RPD	Qualifiers	<u>.</u>
SAMPLE DUPLICATE: 38664 Parameter Diesel Range SG	Units mg/kg kg	Result	Result	RPD		<u> </u>
SAMPLE DUPLICATE: 38664	mg/kg	Result	Result 3310	RPD	13	3
SAMPLE DUPLICATE: 38664 Parameter Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG	mg/kg mg/kg	Result 3780 1040	Result 3310 782	RPD	13 29	3
SAMPLE DUPLICATE: 38664 Parameter Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	mg/kg mg/kg %	Result 3780 1040 95	Result 3310 782 92	RPD	13 29 8	3
SAMPLE DUPLICATE: 38664 Parameter Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	mg/kg mg/kg %	Result 3780 1040 95	Result 3310 782 92 114	RPD	13 29 8	5
SAMPLE DUPLICATE: 38664 Parameter Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG	mg/kg mg/kg %	Result 3780 1040 95 114	Result 3310 782 92	RPD	13 29 8	
SAMPLE DUPLICATE: 38664 Parameter Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG SAMPLE DUPLICATE: 38665 Parameter	mg/kg mg/kg % %	Result 3780 1040 95 114 254703004 Result	Result 3310 782 92 114 Dup Result		13 29 8 5	
SAMPLE DUPLICATE: 38664 Parameter Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG SAMPLE DUPLICATE: 38665 Parameter Diesel Range SG	mg/kg mg/kg % % 	Result 3780 1040 95 114 254703004 Result ND	Result 3310 782 92 114 Dup Result 3.4J		13 29 8 5	
SAMPLE DUPLICATE: 38664 Parameter Diesel Range SG Motor Oil Range SG n-Octacosane (S) SG o-Terphenyl (S) SG SAMPLE DUPLICATE: 38665	mg/kg mg/kg % %	Result 3780 1040 95 114 254703004 Result	Result 3310 782 92 114 Dup Result		13 29 8 5	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 39 of 59

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

		Analysis Met		WTPH-Dx		
QC Batch Method: EPA 3546		Analysis Des	cription: N	WTPH-Dx G	CS	
Associated Lab Samples: 254681	012, 254681013, 25	54681014, 2546810	15, 254681017	, 254681018,	254681019, 254	4681021, 254681022
METHOD BLANK: 38791		Matrix:	Solid			
Associated Lab Samples: 254687	012, 254681013, 25	54681014, 2546810 Blank	15, 254681017 Reporting	, 254681018,	254681019, 254	4681021, 254681022
Parameter	Units	Result	Limit	Analyze	d Qualifi	ers
Diesel Range SG	mg/kg	ND	20.0	09/03/10 2	1:02	
Motor Oil Range SG	mg/kg	ND	80.0	09/03/10 2	1:02	
n-Octacosane (S) SG	%	98	50-150	09/03/10 2	1:02	
o-Terphenyl (S) SG	%	99	50-150	09/03/10 2	1:02	
LABORATORY CONTROL SAMPLE	: 38792					
		Spike	LCS	LCS	% Rec	
Parameter	Units	•		% Rec	Limits	Qualifiers
Diesel Range SG	mg/kg	500	400	80	56-124	
Motor Oil Range SG	mg/kg	500	450	90	50-150	
n-Octacosane (S) SG	%			98	50-150	
o-Terphenyl (S) SG	%			86	50-150	
SAMPLE DUPLICATE: 38793						
		254681012	Dup			
Parameter	Units	Result	Result	RPD	Qualifiers	;
Diesel Range SG	mg/kg	ND	4J			
Motor Oil Range SG	mg/kg	ND	ND			
n-Octacosane (S) SG	%	98	99		.2	
o-Terphenyl (S) SG	%	100	103		2	
SAMPLE DUPLICATE: 38794			Dup			
SAMPLE DUPLICATE: 38794		254717001	Dup			
SAMPLE DUPLICATE: 38794 Parameter	Units	254717001 Result	Result	RPD	Qualifiers	;
	Units mg/kg		•	RPD	Qualifiers	<u> </u>
Parameter Diesel Range SG Motor Oil Range SG	mg/kg mg/kg	Result 30.4 198	Result 27.9 191	RPD	9 4	<u>. </u>
Parameter	mg/kg		Result 27.9		9	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 40 of 59

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: Pace Project No.:	BPOLY 254681								
QC Batch:	GCV/	1814	Analysi	s Method:	N	WTPH-Gx			
QC Batch Method:	NWT	PH-Gx	Analysi	s Descripti	on: N\	NTPH-Gx So	olid GCV		
Associated Lab Sam	ples:	254681002, 2546810 254681014, 2546810	, ,	681006, 2	54681007,	254681009,	2546810	10, 254	681012, 254681013,
METHOD BLANK:	38413		М	atrix: Solid	ł				
Associated Lab Sam	ples:	254681002, 2546810 254681014, 2546810				254681009,	2546810	10, 254	681012, 254681013,
			Blank		porting				
Param	neter	Uni	ts Result		Limit	Analyze	ed	Qualifie	rs
Gasoline Range Org		mg/kg		ND	5.0	08/30/10 1			
4-Bromofluorobenze	. ,	%		106	50-150	08/30/10 1			
a,a,a-Trifluorotoluen	e (S)	%		105	50-150	08/30/10 1	2:44		
LABORATORY CON	ITROL S	SAMPLE: 38414							
			Spike	LCS		LCS	% Red	;	
Param	neter	Uni	ts Conc.	Resul	t g	% Rec	Limits		Qualifiers
Gasoline Range Org	anics	mg/kg	12.5		15.8	126	54	-156	
4-Bromofluorobenze	ene (S)	%				117	50	-150	
a,a,a-Trifluorotoluen	e (S)	%				124	50	-150	
SAMPLE DUPLICAT	E: 38	494							
			2546810	02	Dup				
Param	neter	Uni	ts Result	F	Result	RPD	Qu	alifiers	
Gasoline Range Org	anics	mg/kg		ND	23.2				
4-Bromofluorobenze		%		101	103		2		
a,a,a-Trifluorotoluen	e (S)	%		106	104		1		
SAMPLE DUPLICAT	E: 38	495							
	00		2546810	14	Dup				
	otor	Uni			Result	RPD	Qı	alifiers	
Param	letei			94.4	95.3		1		_
Param Gasoline Range Org		mg/kg		94.4	95.5				
	anics	mg/kg %		94.4 136 104	138		1		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 41 of 59

Project:	BPOLY							
Pace Project No.:	254681							
QC Batch:	GCV/1821		Analysis Met	hod: N	WTPH-Gx			
QC Batch Method:	NWTPH-Gx		Analysis Des	cription: N	WTPH-Gx So	olid GCV		
Associated Lab Sam	ples: 254681	018, 254681019, 254	4681021, 2546810	22, 254681023				
METHOD BLANK:	38623		Matrix:	Solid				
Associated Lab Sam	ples: 254681	018, 254681019, 254	4681021, 2546810	22, 254681023				
_			Blank	Reporting				
Param	eter	Units	Result	Limit	Analyze	ed Qualifi	ers	
Gasoline Range Org		mg/kg	ND	5.0				
4-Bromofluorobenzei		%	98	50-150		-		
a,a,a-Trifluorotoluene	e (S)	%	113	50-150	08/31/10 1	7:16		
LABORATORY CON	TROL SAMPLE	: 38624						
			Spike	LCS	LCS	% Rec		
Param	eter	Units	Conc. F	Result	% Rec	Limits	Qualifiers	
Gasoline Range Org	anics	mg/kg	12.5	13.7	110	54-156		
4-Bromofluorobenzei	. ,	%			100	50-150		
a,a,a-Trifluorotoluene	e (S)	%			111	50-150		
SAMPLE DUPLICAT	E: 38653							
			254681018	Dup				
Param	eter	Units	Result	Result	RPD	Qualifiers		
Gasoline Range Org	anics	mg/kg	ND	1.8J				
4-Bromofluorobenzei	()	%	89	96		8		
a,a,a-Trifluorotoluene	e (S)	%	101	101		.1		
SAMPLE DUPLICAT	E: 38654							
			254711005	Dup				
Param	eter	Units	Result	Result	RPD	Qualifiers		
Gasoline Range Org	anics	mg/kg	ND	1.7J				
4-Bromofluorobenzei	. ,	%	80	96		18		
a,a,a-Trifluorotoluene	e (S)	%	88	100		13		

REPORT OF LABORATORY ANALYSIS

Page 42 of 59

Project:	BPOLY	,						
Pace Project No.:	25468	I						
QC Batch:	MPR	P/1737	Analysis I	/lethod:	EPA 6010			
QC Batch Method:	EPA :	3050	Analysis [Description:	6010 MET			
Associated Lab Sar	nples:	254681002, 254681003, 254681014, 254681015,			007, 254681009	9, 254681010, 28	54681012, 254681	1013,
METHOD BLANK:	37963		Mat	ix: Solid				
Associated Lab Sar	nples:	254681002, 254681003, 254681014, 254681015,	,	,	019, 254681021	, ,	54681012, 254681	1013,
Parar	neter	Units	Result	Limit	9 Analyz	ed Quali	fiers	
Arsenic		mg/kg		 D	2.0 08/30/10			
Barium		mg/kg			2.0 08/30/10 20.0 08/30/10			
Cadmium		mg/kg			1.0 08/30/10			
Chromium		mg/kg			1.0 08/30/10			
Lead		mg/kg	Ν	D	1.0 08/30/10			
Selenium		mg/kg	Ν	D	1.0 08/30/10	14:39		
Silver		mg/kg	Ν	D	1.0 08/30/10	14:39		
LABORATORY CO	NTROL	SAMPLE: 37964						
			Spike	LCS	LCS	% Rec		
Parar	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Arsenic		mg/kg	25	22.3	89	80-120		
Barium		mg/kg	25	22.4	90	80-120		
Cadmium		mg/kg	25	23.3	93	80-120		
Chromium		mg/kg	25	23.1	92	80-120		
Lead		mg/kg	25	23.4	94	80-120		
Selenium		mg/kg	25	22.8	91	80-120		
Silver		mg/kg	12.5	11.3	90	80-120		

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 37965			37966						
		254681002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	³⁶ Rec	RPD	Qual
Arsenic	mg/kg	ND	32.5	32.8	40.3	40.5	114	113	75-125	.3	
Barium	mg/kg	140	32.5	32.8	163	171	70	92	75-125	4 M1	
Cadmium	mg/kg	ND	32.5	32.8	35.5	36.9	109	113	75-125	4	
Chromium	mg/kg	41.9	32.5	32.8	70.1	75.2	87	101	75-125	7	
Lead	mg/kg	4.1	32.5	32.8	30.9	32.1	83	85	75-125	4	
Selenium	mg/kg	ND	32.5	32.8	33.3	33.5	102	102	75-125	.8	
Silver	mg/kg	ND	16.2	16.5	18.8	19.1	116	117	75-125	2	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 43 of 59

	BPOLY											
Pace Project No.:	254681											
QC Batch:	MERF	P/1242		Analys	sis Method:	E	PA 7471					
QC Batch Method:	EPA 7	471		Analys	sis Descript	ion: 74	471 Mercury	,				
Associated Lab Sar	mples:	254681002, 254 254681014, 254	,	,	,		,	,	,	1012, 2546	681013,	
METHOD BLANK:	37959			Ν	Matrix: Soli	d						
Associated Lab Sar	mples:	254681002, 254 254681014, 254	,	,	,		,	·	,	1012, 2546	681013,	
				Blank	K R	eporting						
Parar	meter		Units	Resul	t	Limit	Analyz	ed	Qualifiers			
Mercury		mg/kg	l		ND	0.10	08/27/10	15:22		_		
ABORATORY CO	NTROLS	SAMPLE: 3796	0									
LABORATORY CO	NTROL S	SAMPLE: 37960	0	Spike	LCS		LCS	% Rec	;			
LABORATORY COI Parar		SAMPLE: 37960) Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		ualifiers		
Parar		SAMPLE: 37960	Units	•	Resu			Limits		ualifiers		
Parar			Units	Conc.	Resu	lt	% Rec	Limits	Q	ualifiers		
Parar Mercury	meter	mg/kg	Units	Conc.	Resu	lt	% Rec	Limits	Q	ualifiers	-	
Parar Mercury	meter	mg/kg	Units	Conc.	Resu	lt 0.53	% Rec	Limits	Q	ualifiers	_	
Parar Mercury	meter	mg/kg	Units	Conc.	Resu	lt 0.53	% Rec	Limits	Q	ualifiers % Rec		
LABORATORY COI Parar Mercury MATRIX SPIKE & M Parame	meter MATRIX S	mg/kg	Units E: 37961	MS	Resu	lt 0.53 37962	% Rec 106	Limits 80	-120 Qi		RPD	Qual

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 44 of 59

BPOLY Project: Pace Project No .: 254681 QC Batch: OEXT/2591 Analysis Method: EPA 8270 by SIM QC Batch Method: EPA 3546 Analysis Description: 8270/3546 MSSV PAH by SIM 254681002, 254681003, 254681006, 254681007, 254681009, 254681013, 254681017, 254681018, 254681019 Associated Lab Samples: METHOD BLANK: 38446 Matrix: Solid Associated Lab Samples: 254681002, 254681003, 254681006, 254681007, 254681009, 254681013, 254681017, 254681018, 254681019 Reporting Blank Parameter Units Result Limit Qualifiers Analyzed 1-Methylnaphthalene ND 09/02/10 02:46 ug/kg 6.7 2-Methylnaphthalene ug/kg 9.6 67 09/02/10 02:46 2n Acenaphthene ug/kg ND 6.7 09/02/10 02:46 Acenaphthylene ND 09/02/10 02:46 ug/kg 6.7 Anthracene ug/kg ND 6.7 09/02/10 02:46 Benzo(a)anthracene ug/kg ND 6.7 09/02/10 02:46 Benzo(a)pyrene ug/kg ND 6.7 09/02/10 02:46 Benzo(b)fluoranthene ug/kg ND 6.7 09/02/10 02:46 Benzo(g,h,i)perylene ug/kg ND 6.7 09/02/10 02:46

ND

ND

ND

ND

ND

ND

9.4

ND

ND

89

95

6.7

6.7

6.7

6.7

6.7

6.7

6.7

6.7

6.7

55-136

60-144

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

09/02/10 02:46

2n

LABORATORY CONTROL SAMPLE: 38447

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

%

%

Benzo(k)fluoranthene

Dibenz(a,h)anthracene

Indeno(1,2,3-cd)pyrene

2-Fluorobiphenyl (S)

Terphenyl-d14 (S)

Chrysene

Fluorene

Pyrene

Fluoranthene

Naphthalene

Phenanthrene

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	117	88	63-126	
2-Methylnaphthalene	ug/kg	133	118	89	60-145	
Acenaphthene	ug/kg	133	116	87	44-138	
Acenaphthylene	ug/kg	133	122	92	43-140	
Anthracene	ug/kg	133	121	91	58-138	
Benzo(a)anthracene	ug/kg	133	126	95	50-154	
Benzo(a)pyrene	ug/kg	133	131	98	47-154	
Benzo(b)fluoranthene	ug/kg	133	121	90	43-164	
Benzo(g,h,i)perylene	ug/kg	133	127	95	54-153	
Benzo(k)fluoranthene	ug/kg	133	143	107	61-145	
Chrysene	ug/kg	133	116	87	59-141	
Dibenz(a,h)anthracene	ug/kg	133	134	100	54-161	
Fluoranthene	ug/kg	133	129	96	43-160	
Fluorene	ug/kg	133	127	95	41-149	
ndeno(1,2,3-cd)pyrene	ug/kg	133	132	99	48-158	
Naphthalene	ug/kg	133	111	83	44-131	
Phenanthrene	ug/kg	133	117	88	46-144	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 45 of 59

Project: BPOLY Pace Project No.: 254681

LABORATORY CONTROL SAMPLE: 38447

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg		124	93	57-142	
2-Fluorobiphenyl (S)	%			88	55-136	
Terphenyl-d14 (S)	%			91	60-144	

MATRIX SPIKE & MATRIX SPIKE DUPLIC	ATE: 38448			38449						
		MS	MSD							
	254681002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene ug/kg	ND	173	173	153	151	87	86	-3.6-171	1	
2-Methylnaphthalene ug/kg	ND	173	173	154	153	87	86	3-188	.4	
Acenaphthene ug/kg	ND	173	173	157	151	91	87	-1-182	4	
Acenaphthylene ug/kg	ND	173	173	160	159	93	92	31-156	1	
Anthracene ug/kg	ND	173	173	150	154	87	89	20-171	3	
Benzo(a)anthracene ug/kg	ND	173	173	157	156	91	90	24-181	.6	
Benzo(a)pyrene ug/kg	ND	173	173	163	166	94	96	26-174	2	
Benzo(b)fluoranthene ug/kg	ND	173	173	151	150	87	87	33-173	.2	
Benzo(g,h,i)perylene ug/kg	ND	173	173	155	159	90	92	15-178	2	
Benzo(k)fluoranthene ug/kg	ND	173	173	171	179	99	103	20-167	5	
Chrysene ug/kg	ND	173	173	144	146	83	84	15-174	2	
Dibenz(a,h)anthracene ug/kg	ND	173	173	163	166	95	96	26-189	2	
Fluoranthene ug/kg	ND	173	173	160	163	92	93	21-104	1	
Fluorene ug/kg	ND	173	173	164	159	95	92	25-173	3	
Indeno(1,2,3-cd)pyrene ug/kg	ND	173	173	162	165	94	95	19-182	2	
Naphthalene ug/kg	ND	173	173	147	142	83	80	-3-165	3	
Phenanthrene ug/kg	ND	173	173	149	148	85	85	25-163	.5	
Pyrene ug/kg	ND	173	173	156	156	90	90	30-165	.01	
2-Fluorobiphenyl (S) %						90	90	55-136		
Terphenyl-d14 (S) %						88	90	60-144		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 46 of 59

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Matrix: Solid

Project: BPOLY

Pace Project No.: 254681

QC Batch: OEXT/2601 QC Batch Method: EPA 3546 Analysis Method:EPA 8270 by SIMAnalysis Description:8270/3546 MSSV PAH by SIM

Associated Lab Samples: 254681008, 254681011, 254681021, 254681022

METHOD BLANK: 38719

Associated Lab Samples: 254681008, 254681011, 254681021, 254681022

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	6.7	09/03/10 20:17	
2-Methylnaphthalene	ug/kg	ND	6.7	09/03/10 20:17	
Acenaphthene	ug/kg	ND	6.7	09/03/10 20:17	
Acenaphthylene	ug/kg	ND	6.7	09/03/10 20:17	
Anthracene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(a)anthracene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(a)pyrene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(b)fluoranthene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(k)fluoranthene	ug/kg	ND	6.7	09/03/10 20:17	
Chrysene	ug/kg	ND	6.7	09/03/10 20:17	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	09/03/10 20:17	
Fluoranthene	ug/kg	ND	6.7	09/03/10 20:17	
Fluorene	ug/kg	ND	6.7	09/03/10 20:17	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	09/03/10 20:17	
Naphthalene	ug/kg	ND	6.7	09/03/10 20:17	
Phenanthrene	ug/kg	ND	6.7	09/03/10 20:17	
Pyrene	ug/kg	ND	6.7	09/03/10 20:17	
2-Fluorobiphenyl (S)	%	74	55-136	09/03/10 20:17	
Terphenyl-d14 (S)	%	81	60-144	09/03/10 20:17	

LABORATORY CONTROL SAMPLE: 38720

	00120					
Demonster	11-16-	Spike	LCS	LCS	% Rec	0
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	96.1	72	63-126	
2-Methylnaphthalene	ug/kg	133	95.2	71	60-145	
Acenaphthene	ug/kg	133	98.0	73	44-138	
Acenaphthylene	ug/kg	133	101	76	43-140	
Anthracene	ug/kg	133	103	77	58-138	
Benzo(a)anthracene	ug/kg	133	108	81	50-154	
Benzo(a)pyrene	ug/kg	133	112	84	47-154	
Benzo(b)fluoranthene	ug/kg	133	97.4	73	43-164	
Benzo(g,h,i)perylene	ug/kg	133	108	81	54-153	
Benzo(k)fluoranthene	ug/kg	133	127	96	61-145	
Chrysene	ug/kg	133	99.2	74	59-141	
Dibenz(a,h)anthracene	ug/kg	133	114	86	54-161	
Fluoranthene	ug/kg	133	111	83	43-160	
Fluorene	ug/kg	133	106	79	41-149	
Indeno(1,2,3-cd)pyrene	ug/kg	133	113	85	48-158	
Naphthalene	ug/kg	133	91.4	69	44-131	
Phenanthrene	ug/kg	133	98.0	74	46-144	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 47 of 59

Project: BPOLY Pace Project No.: 254681

LABORATORY CONTROL SAMPLE: 38720

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	105	79	57-142	
2-Fluorobiphenyl (S)	%			73	55-136	
Terphenyl-d14 (S)	%			80	60-144	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 38721			38722						
			MS	MSD							
	:	254933001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene	ug/kg	ND	133	130	99.9	96.0	75	74	-3.6-171	4	
2-Methylnaphthalene	ug/kg	ND	133	130	102	95.8	76	73	3-188	6	
Acenaphthene	ug/kg	ND	133	130	93.5	95.4	71	74	-1-182	2	
Acenaphthylene	ug/kg	ND	133	130	98.8	98.8	75	76	31-156	.01	
Anthracene	ug/kg	ND	133	130	98.1	93.4	74	72	20-171	5	
Benzo(a)anthracene	ug/kg	ND	133	130	105	99.1	79	77	24-181	6	
Benzo(a)pyrene	ug/kg	ND	133	130	107	102	81	79	26-174	5	
Benzo(b)fluoranthene	ug/kg	ND	133	130	95.6	90.1	72	70	33-173	6	
Benzo(g,h,i)perylene	ug/kg	ND	133	130	105	96.9	79	75	15-178	8	
Benzo(k)fluoranthene	ug/kg	ND	133	130	120	116	91	89	20-167	4	
Chrysene	ug/kg	ND	133	130	96.1	90.3	72	69	15-174	6	
Dibenz(a,h)anthracene	ug/kg	ND	133	130	111	105	84	81	26-189	6	
Fluoranthene	ug/kg	ND	133	130	111	105	82	80	21-104	5	
Fluorene	ug/kg	ND	133	130	105	103	79	80	25-173	1	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	133	130	109	102	82	78	19-182	7	
Naphthalene	ug/kg	ND	133	130	93.2	87.2	69	66	-3-165	7	
Phenanthrene	ug/kg	ND	133	130	99.4	94.5	73	71	25-163	5	
Pyrene	ug/kg	ND	133	130	101	96.1	76	74	30-165	5	
2-Fluorobiphenyl (S)	%						76	76	55-136		
Terphenyl-d14 (S)	%						81	77	60-144		

REPORT OF LABORATORY ANALYSIS

Page 48 of 59

Project: BPOLY Pace Project No.: 254681

QC Batch: OEXT/2630 QC Batch Method: EPA 3546

Associated Lab Samples:

Analysis Method: EPA 8270 by SIM Analysis Description: 8270/3546 MSSV PAH by SIM 254681005, 254681010, 254681012, 254681014, 254681015

METHOD BLANK: 39417

Matrix: Solid Associated Lab Samples: 254681005, 254681010, 254681012, 254681014, 254681015

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	6.7	09/03/10 15:18	
2-Methylnaphthalene	ug/kg	ND	6.7	09/03/10 15:18	
Acenaphthene	ug/kg	ND	6.7	09/03/10 15:18	
Acenaphthylene	ug/kg	ND	6.7	09/03/10 15:18	
Anthracene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(a)anthracene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(a)pyrene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(b)fluoranthene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	09/03/10 15:18	
Benzo(k)fluoranthene	ug/kg	ND	6.7	09/03/10 15:18	
Chrysene	ug/kg	ND	6.7	09/03/10 15:18	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	09/03/10 15:18	
Fluoranthene	ug/kg	ND	6.7	09/03/10 15:18	
Fluorene	ug/kg	ND	6.7	09/03/10 15:18	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	09/03/10 15:18	
Naphthalene	ug/kg	ND	6.7	09/03/10 15:18	
Phenanthrene	ug/kg	ND	6.7	09/03/10 15:18	
Pyrene	ug/kg	ND	6.7	09/03/10 15:18	
2-Fluorobiphenyl (S)	%	68	55-136	09/03/10 15:18	
Terphenyl-d14 (S)	%	75	60-144	09/03/10 15:18	

LABORATORY CONTROL SAMPLE: 39418

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	88.2	66	63-126	
2-Methylnaphthalene	ug/kg	133	92.8	70	60-145	
Acenaphthene	ug/kg	133	79.3	59	44-138	
Acenaphthylene	ug/kg	133	77.1	58	43-140	
Anthracene	ug/kg	133	94.9	71	58-138	
Benzo(a)anthracene	ug/kg	133	103	77	50-154	
Benzo(a)pyrene	ug/kg	133	108	81	47-154	
Benzo(b)fluoranthene	ug/kg	133	104	78	43-164	
Benzo(g,h,i)perylene	ug/kg	133	107	80	54-153	
Benzo(k)fluoranthene	ug/kg	133	108	81	61-145	
Chrysene	ug/kg	133	95.8	72	59-141	
Dibenz(a,h)anthracene	ug/kg	133	113	85	54-161	
Fluoranthene	ug/kg	133	103	77	43-160	
Fluorene	ug/kg	133	86.5	65	41-149	
ndeno(1,2,3-cd)pyrene	ug/kg	133	111	83	48-158	
Naphthalene	ug/kg	133	81.2	61	44-131	
Phenanthrene	ug/kg	133	90.7	68	46-144	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 49 of 59

Project: BPOLY Pace Project No.: 254681

LABORATORY CONTROL SAMPLE: 39418

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	97.1	73	57-142	
2-Fluorobiphenyl (S)	%			64	55-136	
Terphenyl-d14 (S)	%			79	60-144	

MATRIX SPIKE & MATRIX SPIKE DUPLIC.	ATE: 39419			39420						
		MS	MSD							
	254662015	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1-Methylnaphthalene ug/kg	ND	149	150	93.8	94.8	63	63	-3.6-171	1	
2-Methylnaphthalene ug/kg	ND	149	150	94.8	95.0	63	63	3-188	.3	
Acenaphthene ug/kg	ND	149	150	92.5	91.1	62	61	-1-182	1	
Acenaphthylene ug/kg	ND	149	150	93.6	94.0	63	63	31-156	.4	
Anthracene ug/kg	ND	149	150	94.6	94.5	63	63	20-171	.1	
Benzo(a)anthracene ug/kg	ND	149	150	97.5	99.1	65	66	24-181	2	
Benzo(a)pyrene ug/kg	ND	149	150	99.9	100	67	67	26-174	.5	
Benzo(b)fluoranthene ug/kg	ND	149	150	97.3	95.9	65	64	33-173	1	
Benzo(g,h,i)perylene ug/kg	ND	149	150	95.0	96.0	64	64	15-178	1	
Benzo(k)fluoranthene ug/kg	ND	149	150	102	103	68	69	20-167	.6	
Chrysene ug/kg	ND	149	150	90.6	92.6	61	62	15-174	2	
Dibenz(a,h)anthracene ug/kg	ND	149	150	100	101	67	68	26-189	.9	
Fluoranthene ug/kg	ND	149	150	100	99.8	67	66	21-104	.3	
Fluorene ug/kg	ND	149	150	95.5	95.2	64	64	25-173	.3	
Indeno(1,2,3-cd)pyrene ug/kg	ND	149	150	99.2	99.9	67	67	19-182	.7	
Naphthalene ug/kg	ND	149	150	89.5	91.8	60	61	-3-165	3	
Phenanthrene ug/kg	ND	149	150	92.1	91.9	61	61	25-163	.2	
Pyrene ug/kg	ND	149	150	97.1	98.6	65	66	30-165	2	
2-Fluorobiphenyl (S) %						59	64	55-136		
Terphenyl-d14 (S) %						63	70	60-144		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 50 of 59

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BPOLY Pace Project No.: 254681

QC Batch: MSV/2934 QC Batch Method: EPA 8260

MSV/2934

Analysis Method: Analysis Description:

Matrix: Solid

EPA 8260 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 254681002, 254681003, 254681005

METHOD BLANK: 37943

Associated Lab Samples: 254681002, 254681003, 254681005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	08/26/10 18:16	
Ethylbenzene	ug/kg	ND	3.0	08/26/10 18:16	
Toluene	ug/kg	ND	3.0	08/26/10 18:16	
Xylene (Total)	ug/kg	ND	9.0	08/26/10 18:16	
1,2-Dichloroethane-d4 (S)	%	83	80-143	08/26/10 18:16	
4-Bromofluorobenzene (S)	%	92	72-122	08/26/10 18:16	
Dibromofluoromethane (S)	%	94	80-136	08/26/10 18:16	
Toluene-d8 (S)	%	92	80-120	08/26/10 18:16	

LABORATORY CONTROL SAMP	LE & LCSD: 37944		37	'945						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	50.6	50.0	101	100	75-133	1	30	
Ethylbenzene	ug/kg	50	45.0	44.4	90	89	68-131	1	30	
Toluene	ug/kg	50	50.6	47.8	101	96	73-124	6	30	
Xylene (Total)	ug/kg	150	139	137	93	91	68-130	1	30	
1,2-Dichloroethane-d4 (S)	%				82	81	80-143			
4-Bromofluorobenzene (S)	%				94	97	72-122			
Dibromofluoromethane (S)	%				96	96	80-136			
Toluene-d8 (S)	%				92	89	80-120			

REPORT OF LABORATORY ANALYSIS

Page 51 of 59

Project: BPOI	Y										
Pace Project No.: 2546	31										
QC Batch: MS	//2938		Analysi	s Method:	E	PA 8260					
QC Batch Method: EPA	8260		Analysi	s Descriptio	on: 82	260 MSV	5035A V	olatile Orga	anics		
Associated Lab Samples:		6, 254681007, 254 8, 254681019, 254				, 254681	013, 254	681014, 254	4681015, 2	54681017	3
METHOD BLANK: 3804	Э		Μ	latrix: Solic							
Associated Lab Samples:		6, 254681007, 254 8, 254681019, 254				254681	013, 254	681014, 254	4681015, 2	54681017	,
			Blank	Re	porting						
Parameter		Units	Result		_imit	Ana	lyzed	Qualifi	iers		
Benzene		ug/kg		ND	3.0	08/27/	10 12:13				
Ethylbenzene		ug/kg		ND	3.0	08/27/	10 12:13				
Toluene		ug/kg		ND	3.0	08/27/	10 12:13				
Xylene (Total)		ug/kg		ND	9.0	08/27/	10 12:13				
1,2-Dichloroethane-d4 (S)		%		94	80-143	08/27/	10 12:13				
4-Bromofluorobenzene (S)	%		88	72-122	08/27/	10 12:13				
Dibromofluoromethane (S	1	%		102	80-136	08/27/	10 12:13				
Toluene-d8 (S)		%		87	80-120	08/27/	10 12:13				
LABORATORY CONTROL	SAMPLE &	LCSD: 38050		38	3431						
		2002: 00000	Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter		Units	Conc.	Result	Result		% Rec	Limits	RPD	RPD	Qualifiers
Benzene		ug/kg	50	49.2	49.3	98	99	75-133	.3	30	
Ethylbenzene		ug/kg	50	43.7	44.7	87	89	68-131	2	30	
Toluene		ug/kg	50	44.7	48.2	89	96	73-124	7	30	
Xylene (Total)		ug/kg	150	135	137	90	92	68-130	1	30	
1,2-Dichloroethane-d4 (S)		%				84	84	80-143			
4-Bromofluorobenzene (S)	%				96	96	72-122			
Dibromofluoromethane (S)	%				99	99	80-136			
Toluene-d8 (S)		%				87	93	80-120			

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 52 of 59

Project:	BPOLY						
Pace Project No.:	254681						
QC Batch:	PMST/1320		Analysis Meth	iod:	ASTM D2974	1-87	
QC Batch Method:	ASTM D2974-8	7	Analysis Desc	cription:	Dry Weight/F	ercen	t Moisture
Associated Lab Sar	mples: 2546810	01					
SAMPLE DUPLICA	TE: 38047						
			254662001	Dup			
Parar	neter	Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	24.2	24	7	2	
SAMPLE DUPLICA	TE: 38048						
			254662012	Dup			
Parar	neter	Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	8.2	8	.1	.9	

REPORT OF LABORATORY ANALYSIS

Page 53 of 59

Project:	BPOLY						
Pace Project No.:	254681						
QC Batch:	PMST/1321		Analysis Meth	od:	ASTM D2974-	·87	
QC Batch Method:	ASTM D2974-8	7	Analysis Desc	ription: I	Dry Weight/Pe	ercent I	Moisture
Associated Lab Sar		, ,	4681004, 25468100 4681013, 25468101	,	, .	, 2546	81008, 254681009, 254681010,
SAMPLE DUPLICA	TE: 38175						
			254712001	Dup			
Parar	neter	Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	22.0	22.	0	.3	
SAMPLE DUPLICA	TE: 38176						
			254681006	Dup			
Parar	neter	Units	Result	Result	RPD		Qualifiers
Percent Moisture		%	20.3	20.	8	2	

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 54 of 59

Project:	BPOLY						
Pace Project No.:	254681						
QC Batch:	PMST/1322		Analysis Meth	od: A	ASTM D2974-8	37	
QC Batch Method:	ASTM D2974-8	7	Analysis Desc	ription: [Dry Weight/Per	cent Moisture	
Associated Lab Sar	mples: 2546810	16, 254681017, 25	4681018, 25468101	9, 25468102	0, 254681021,	254681022	
SAMPLE DUPLICA	TE: 38367						
			254734001	Dup			
Parar	meter	Units	Result	Result	RPD	Qualifiers	
Percent Moisture		%	4.9	4.9	5	8	-
SAMPLE DUPLICA	TE: 38368						
			254681022	Dup			
Parar	meter	Units	Result	Result	RPD	Qualifiers	_
Percent Moisture		%	24.4	23.8	8	2	_

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 55 of 59

QUALIFIERS

Project: BPOLY

Pace Project No.: 254681

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

- 1n Analyte was detected in the associated method blank. Analyte presence in method blank was less than 10 times that found in the sample, therefore acceptable per NELAC standard.
- 2n Reported result is above the reporting limit for this analyte.
- B- Analyte detected in method blank but was not detected in the associated samples.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- S5 Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	BPOLY
Pace Project No.:	254681

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
254681002	MW8-6-6.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254681003	MW9-2-2.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254681005	MW9-6-6.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254681006	MW12-2-2.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254681007	MW12-4-4.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254681009	MW11-2-2.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254681010	MW11-4-4.5	EPA 3546	OEXT/2598	NWTPH-Dx	GCSV/1855
254681012	GP6-2-2.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681013	GP6-4-4.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681014	GP6-6-6.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681015	GP7-2-2.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681017	GP7-6-6.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681018	MW10-2-2.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681019	MW10-4-4.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681021	GP3-2-2.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681022	GP3-4-4.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254681002	MW8-6-6.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681003	MW9-2-2.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681005	MW9-6-6.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681006	MW12-2-2.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681007	MW12-4-4.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681009	MW11-2-2.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681010	MW11-4-4.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681012	GP6-2-2.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681013	GP6-4-4.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681014	GP6-6-6.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681015	GP7-2-2.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681017	GP7-6-6.5	NWTPH-Gx	GCV/1814	NWTPH-Gx	GCV/1825
254681018	MW10-2-2.5	NWTPH-Gx	GCV/1821	NWTPH-Gx	GCV/1826
254681019	MW10-4-4.5	NWTPH-Gx	GCV/1821	NWTPH-Gx	GCV/1826
254681021	GP3-2-2.5	NWTPH-Gx	GCV/1821	NWTPH-Gx	GCV/1826
254681022	GP3-4-4.5	NWTPH-Gx	GCV/1821	NWTPH-Gx	GCV/1826
254681023	Trip Blank	NWTPH-Gx	GCV/1821	NWTPH-Gx	GCV/1826
254681002	MW8-6-6.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681003	MW9-2-2.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681005	MW9-6-6.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681006	MW12-2-2.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681007	MW12-4-4.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681009	MW11-2-2.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681010	MW11-4-4.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681012	GP6-2-2.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681013	GP6-4-4.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681014	GP6-6-6.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681015	GP7-2-2.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681017	GP7-6-6.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681018	MW10-2-2.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681019	MW10-4-4.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 57 of 59

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	BPOLY
Pace Project No.:	254681

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
254681021	GP3-2-2.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681022	GP3-4-4.5	EPA 3050	MPRP/1737	EPA 6010	ICP/1653
254681002	MW8-6-6.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681003	MW9-2-2.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681005	MW9-6-6.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681006	MW12-2-2.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681007	MW12-4-4.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681009	MW11-2-2.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681010	MW11-4-4.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681012	GP6-2-2.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681013	GP6-4-4.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681014	GP6-6-6.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681015	GP7-2-2.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681017	GP7-6-6.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681018	MW10-2-2.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681019	MW10-4-4.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681021	GP3-2-2.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681022	GP3-4-4.5	EPA 7471	MERP/1242	EPA 7471	MERC/1257
254681002	MW8-6-6.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681003	MW9-2-2.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681005	MW9-6-6.5	EPA 3546	OEXT/2630	EPA 8270 by SIM	MSSV/1377
254681006	MW12-2-2.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681007	MW12-4-4.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681008	MW12-6-6.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254681009	MW11-2-2.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681010	MW11-4-4.5	EPA 3546	OEXT/2630	EPA 8270 by SIM	MSSV/1377
254681011	MW11-6-6.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254681012	GP6-2-2.5	EPA 3546	OEXT/2630	EPA 8270 by SIM	MSSV/1377
254681013	GP6-4-4.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681014	GP6-6-6.5	EPA 3546	OEXT/2630	EPA 8270 by SIM	MSSV/1377
254681015	GP7-2-2.5	EPA 3546	OEXT/2630	EPA 8270 by SIM	MSSV/1377
254681017	GP7-6-6.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681018	MW10-2-2.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681019	MW10-4-4.5	EPA 3546	OEXT/2591	EPA 8270 by SIM	MSSV/1372
254681021	GP3-2-2.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254681022	GP3-4-4.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254681002	MW8-6-6.5	EPA 8260	MSV/2934		
254681003	MW9-2-2.5	EPA 8260	MSV/2934		
254681005	MW9-6-6.5	EPA 8260	MSV/2934		
254681006	MW12-2-2.5	EPA 8260	MSV/2938		
254681007	MW12-4-4.5	EPA 8260	MSV/2938		

Date: 09/30/2010 11:08 AM

REPORT OF LABORATORY ANALYSIS

Page 58 of 59

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	BPOLY
Pace Project No .:	254681

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
254681009	MW11-2-2.5	EPA 8260	MSV/2938	_	
254681010	MW11-4-4.5	EPA 8260	MSV/2938		
254681012	GP6-2-2.5	EPA 8260	MSV/2938		
254681013	GP6-4-4.5	EPA 8260	MSV/2938		
254681014	GP6-6-6.5	EPA 8260	MSV/2938		
254681015	GP7-2-2.5	EPA 8260	MSV/2938		
254681017	GP7-6-6.5	EPA 8260	MSV/2938		
254681018	MW10-2-2.5	EPA 8260	MSV/2938		
254681019	MW10-4-4.5	EPA 8260	MSV/2938		
254681021	GP3-2-2.5	EPA 8260	MSV/2938		
254681022	GP3-4-4.5	EPA 8260	MSV/2938		
254681023	Trip Blank	EPA 8260	MSV/2938		
254681001	MW8-4-4.5	ASTM D2974-87	PMST/1320		
254681002	MW8-6-6.5	ASTM D2974-87	PMST/1321		
254681003	MW9-2-2.5	ASTM D2974-87	PMST/1321		
254681004	MW9-4-4.5	ASTM D2974-87	PMST/1321		
254681005	MW9-6-6.5	ASTM D2974-87	PMST/1321		
254681006	MW12-2-2.5	ASTM D2974-87	PMST/1321		
254681007	MW12-4-4.5	ASTM D2974-87	PMST/1321		
254681008	MW12-6-6.5	ASTM D2974-87	PMST/1321		
254681009	MW11-2-2.5	ASTM D2974-87	PMST/1321		
254681010	MW11-4-4.5	ASTM D2974-87	PMST/1321		
254681011	MW11-6-6.5	ASTM D2974-87	PMST/1321		
254681012	GP6-2-2.5	ASTM D2974-87	PMST/1321		
254681013	GP6-4-4.5	ASTM D2974-87	PMST/1321		
254681014	GP6-6-6.5	ASTM D2974-87	PMST/1321		
254681015	GP7-2-2.5	ASTM D2974-87	PMST/1321		
254681016	GP7-4-4.5	ASTM D2974-87	PMST/1322		
254681017	GP7-6-6.5	ASTM D2974-87	PMST/1322		
254681018	MW10-2-2.5	ASTM D2974-87	PMST/1322		
254681019	MW10-4-4.5	ASTM D2974-87	PMST/1322		
254681020	MW10-6-6.5	ASTM D2974-87	PMST/1322		
254681021	GP3-2-2.5	ASTM D2974-87	PMST/1322		
254681022	GP3-4-4.5	ASTM D2974-87	PMST/1322		

REPORT OF LABORATORY ANALYSIS

Pace Analytical *		CHAIN The Chain-of	-OF-CU -Custody is a	STODY LEGAL DOC	/ / Analytica	CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.	cument I accurately.		50	189458		
Section A	Section B			Section C				Page:		of		
Required Client Information:	Report To: A Project Information:	1		Invoice Information: Attention:	lation:					1338	851	dan di kana kara
a/Calumits SR	72 Copy To:			Company Name:	ne:		REGULATORY AGENCY	Y AGENCY				Τ
00000				Address:			NPDES	GROUI	GROUND WATER	L DRIN	DRINKING WATER	
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Purchase Order No.:			Pace Quote Reference:			L UST	RCRA		T OTHER	R	
101200 Fa	Preject Name:			Pace Project Manager:			Site Location	A t A F				Γ
Requested Due Date/TAT:	PLand Barbar W	Abolo	2000	Pace Profile #:	22153		STATE:	5				
							Requested Analysis Filtered (Y/N)	ed (Y/N)				
Section D Matrix (Required Client Information MATRIX		COLLECTED			Preservatives	1 N /A					۸,	
Pro 88	2 → Š → Č	COMPOSITE COMPOSITE START END/GRAB				LSS SV SV	powal		(N/A			
	A≷P,		P AT CC			1 1201 201 201 201 201 201 201 201 201 201	28) əninə (<u></u>
Sample IDS MUST BE UNIQUE Tissue Other	ATRIX COI		MPLE TEMA	⁵ SO ⁴ ubreserved OF CONTA	ifher lefhanol a ₂ S ₂ O ₃ CI CI NO ₃	sisylsnA N KK HTW HTW HTW HTW HTW HTW	shoar		dO leubise			
- MWR-4-4 C	-H	TIME DATE	24C s		N N N H H		2			Pace Proje	HULDA	
		VIAC30	30)				X				•	
3 MW9-2-2.5		N82410	330									
1 MW9-4-4.5		014250	349						X	* tol	ンや	
5 MW9-6-55		OSPUR	8									
12		DR15/10	1100									
2-4-		082510	<u>(10</u>			XXX	×					
5-6-7		D	lith						**	* 500	0 x	
C.7-7 1/M/ 6		al	3000									
			000				>		\$			
(3P10-2-2	>	12200	915	>			X			よう		
ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	Y I AFFILIATION	DATE	TIME	ACCEPTI	ACCEPTED BY / AFFILIATION	DATE	TIME		SAMPLE CONDITIONS	DITIONS	
					17 uotri	1 Swam	825/10	14:40	5.4 4	7	7	
									2.0			
									1:4			
											<u></u>	
aO	ORIGINAL	SAMPLER NAME ANI	AND SIGNATURE			1				ojer y 1)	tact	
		PRINT Name	PRINT Name of SAMPLER:	Delle	Sen Me	NUR	ين. يور		ni qn 	Λ\Υ) e boteu oO be	(N/X)	()
	-	SIGNATURE	SIGNATURE of SAMPLER:	DING	OUNIN Der	(MM/DD/YY):	0,22010			loi C C	Samp	
"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month	epting Pace's NET 30 day payment terrr	is and agreeing to late charges c	f 1.5% per month	reny invoic	es not paid within 30 days.				F-ALL-Q-0	F-ALL-Q-020rev.07, 15-May-2007		

CHAIN-OF-CUSTODY / Analytical Request Document

Pace Analytical *			F	The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.	stody is a l	EGAL DO	CUMENT.	All relevan	nt fields m	ust be con	pleted accu	urately.	<u>.</u>				
Section A	Section B Recuired Project Information	formation.				Section C								Page:			
	Report To: Mex	1 DACT	1			Invoice information. Attention:	nation:								3	00 00 00 00	20
Columbia Serx	Copy To:					Company Name:	me:		-		REG	REGULATORY AGENCY	Y AGENC	7		5 N	
MANNOR 97201						Address:			2		1	NPDES	GRO	GROUND WATER	ER T	DRINKING WATER	WATER
	Purchase Order No.:					Pace Quote Reference:					L	UST	L RCRA	4	L	OTHER _	
Par 302.2.208709	Project Name: X					Pace Project Manager:					Site	Site Location	• • •	<			
	Project Number	AW AN	1	2000		ace Profile #:						STATE:	5	£			
										Reques	Requested Analysis Filtered (Y/N)	/sis Filte	ed (Y/N)				
Section D Matrix Codes Required Client Information MATRIX / CODE	(fiel c	(1141	COLLECTED	CTED			Preservatives	atives	1 N /A								
	은 Valid codes to	CCCOMPOSITE START START	DSITE RT	COMPOSITE END/GRAB	OLLECTION	s	·····		Î	55 - 2 51	2040			(N/A)			
SAMPLE ID OI (A-Z, 0-9 / ,-) Ar Sample IDs MUST BE UNIQUE Tissue Other	K CODE ^{(a}				TA 9M9T 3	оителие Волед	•		tsəT sis	29-112 29-112 29-112	18 SA			aninold) le			
# MƏTI	(IATAM 3J9MA2	DATE	TIME	DATE TIME		H ^s SO ⁴ Nubres # OF Co	HCI HNO ³	Methan Na ₂ S ₂ C NaOH	Uther Uther	IWN IWN	720 21.9			subis9Я	Pace	Pace Project No./ Lab I.D.	/ Lab I.D.
5.4-4-945/1	<u>ی</u> م	Ó		0	0	80		%		Ŕ							
2 GPh - 6-65			0	0	S				<u> </u>	R							
3027- 740E				1511014-80	Ś					XX	XX						
1077-4-4S				082410 1600	R										# FPOI	LA*	
			8		610					X	X						
6 MW10 - 2-29					25												
" MWID- 6-6.5				2					-						T R	4 A A	*
<u>G</u> 2				and the Villenia	S					XXX	XX				2		
10 GP3- 4-4.5	Ż	_	0		2						X						
- NATATA 1 =										×	$\overline{\mathbf{x}}$						
ADDITIONAL COMMENTS	RELINC	RELINQUISHED BY / AFFILIATION			DATE	TIME	_	ACCEP	TED BY /	ACCEPTED BY / AFFILIATION		DATE	TIME		SAMPL	SAMPLE CONDITIONS	NS
					1		43	Luchi	Suom	2		8 2570	14:40	5,4	7	7	2
																-	-
														チー			
ORIGINAL	INAL		SAMPLER	SAMPLER NAME AND SIGNATURE	NATURE									э.		oler	
			đ	PRINT Name of SAMPLER:	WPLER	Š,	Ŕ.	2		Tel	Þ	1		ui dm	oevie: I\Y) e	botsu bo Co (V/Y)	ll səlq (N/Y)
	~ _		S	SIGNATURE of S	URE of SAMPLER:	Š	Are Ne	ζ	,	DATE Signed (MM/DD/YY):		082510		IST		Seal	
*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.	ig Pace's NET 30 day	payment terms :	and agreeing to	late charges of 1.56	per month i	or any involce	s not paid wi	thin 30 days						E-ALL-(2-020rev.0	F-ALL-Q-020rev.07, 15-May-2007	007

Sample Container Count

Pace Analytical

Face Analytical	with persisten com	Comments												Trip Blank? · Y & S	JGFU 4oz unpreserved amber wide	R terra core kit	U Summa Can	VG9H 40mL HCL clear vial	VG9T 40mL Na Thio. clear vial	VG9U 40mL unpreserved clear vial	VG9W 40mL glass vial preweighted (EPA 5035)	VSG Headspace septa vial & HCL	WGFU 4oz clear soil jar	WGFX 4oz wide jar w/hexane wipe	ZPLC Ziploc Bag	
		C357	2	2	2	6)	6	.2	2	2	4	c)	2	\$												
	I	WGFU WGKU	-	-	1	1	~	~	1		 *	_	,													
		MGKL		}	Ľ,	(.)	,		~	~	1	-	~		ic					tic	· viel	ai			
	*		-			1-	1		1		-	-	\	<u> </u>	lastic	500mL unpreserved plastic	n Ac	astic	lastic	olastic	250mL unpreserved plastic	40mL Na Bisulfate amber vial	40mL HCL amber voa vial	ar vial	nber vial	
		BP2S													500mL H2SO4 plastic	unpreser	500mL NaOH, Zn Ac	250mL NaOH plastic	250mL HNO3 plastic	250mL H2SO4 plastic	unprese	a Bisulfa	HCL amb	40mL MeOH clear vial	40mL Na Thio amber vial	
		BP2N			-										1 1									40mL N		
		BP3U													BP2S	BP2U	BP2Z	BP3C	BP3N	BP3S	BP3U	DG9B	DG9H	DG9M	DG9T	
		BP2U																								
		BP1U																								
V IS		BG1H														ass	- 0	glass	6							
Arcadis		AG1U													glass	amber g	iber glas:	ed amber	iber glas:	ass	l glass	U	io I	plastic	0	
		AG1H													L amber	eserved	2SO4 am	preserve	2SO4 am	L clear gl	reserved	03 plasti	04 plast	eserved	1, Zn, A	
	1-012	VG9H													1 liter HCL amber glass	1liter unpreserved amber glass	500mL H2SO4 amber glass	500mL unpreserved amber glass	250mL H2SO4 amber glass	1 liter HCL clear glass	1 liter unpreserved glass	1 liter HNO3 plastic	BP1S 1 liter H2SO4 plastic	BP1U 1 liter unpreserved plastic	1 liter NaOH, Zn, Ac	111111111111
CLIENT:	COC PAGE	Sample Line Item		2	n	4	ہ ی	9	7	8	6	10	÷	12			AG2S	AG2U	AG3S	BG1H		BP1N	BP1S 1	BP1U ¹	BP1Z1	

F-SEA-C-014-rev.0, 14Jan2010

DG9U 40mL unpreserved amber vial

Wipe/Swab

BP20 500mL NaOH plastic

BP1Z I liter NaOH, Zn, Ac BP2N 500mL HNO3 plastic r!

Sample Container Count

Arcadis C \overline{C} CLIENT:

Face Analytical

	Comments												Trip Blank? 4 CS	JGFU 4oz unpreserved amber wide	R terra core kit	U Summa Can	VG9H 40mL HCL clear vial	VG9T 40mL Na Thio. clear vial	VG9U 40mL unpreserved clear vial	VG9W 40mL glass vial preweighted (EPA 5035)	VSG Headspace septa vial & HCL	WGFU 4oz clear soil jar	WGFX 4oz wide jar w/hexane wipe	
	16gu	5	2	6	ζ	c'	6	2	2	2	5	4						•		_		>	_	-
	WGFU WORN DGAM 109M		-		-					1 "	-	2												
	WGKU	-	~	~	•	-	-	-	-	~	-				ic					tic	vial	la I		
•		<i>`</i>	~	~			-	~	~	~	~			lastic	ved plasti	п Ас	astic	lastic	plastic	rved plast	te amber	er voa via	ar vial	•
	BP2S													BP2S 500mL H2SO4 plastic	BP2U 500mL unpreserved plastic	500mL NaOH, Zn Ac	250mL NaOH plastic	250mL HNO3 plastic	250mL H2SO4 plastic	250mL unpreserved plastic	40mL Na Bisulfate amber vial	40mL HCL amber voa vial	40mL MeOH clear vial	Ī
	BP2N													3 500mL	J 500mL				- I			f 40mL		
	BP3U													BP2S	BP2U	BP2Z	BP3C	BP3N	BP3S	BP3U	DG9B	DG9H	DG9M	
	BP2U																							
	H BP1U																							
	J BG1H														glass	SS	r glass	SS					1 1 1 1 1 1 1	
	AG1U													glass	amber (nber glas	ed ambe	nber glas	Jlass	d glass	ic	tic	I plastic	
2	AG1H													L amber	reserved	2SO4 ar	npreserv	2SO4 ar	iL clear g	oreserve	IO3 plast	SO4 plas	reservec	1
ot (1	VG9H													AG1H 1 liter HCL amber glass	AG1U 1liter unpreserved amber glass	AG2S 500mL H2SO4 amber glass	500mL unpreserved amber glass	AG3S 250mL H2SO4 amber glass	BG1H 1 liter HCL clear glass	1 liter unpreserved glass	1 liter HNO3 plastic	BP1S 1 liter H2SO4 plastic	BP1U 1 liter unpreserved plastic	1 1 1 1 1 1 1 1 1
coc PAGE <u>A</u> of <u>1</u> coc ID# <u>13357</u>	Sample Line Item		2	ю	4	۹ ک	ۍ ۹	- 2	ω	ഗ	10	11	12	AG1H	AG1U	AG2S	AG2U	AG3S	BG1H	BG1U	BP1N	BP1S 1	BP1U	

F-SEA-C-014-rev.0, 14Jan2010

ZPLC Ziploc Bag

ř¹

DG9T 40mL Na Thio amber vial DG9U 40mL unpreserved amber vial

Wipe/Swab

BP20 500mL NaOH plastic

BP1Z 1 liter NaOH, Zn, Ac BP2N 500mL HNO3 plastic

Project Manager Review:	U				Date: 08/3	01/97
Comments/ Resolution: Person Contacted: Comments/ Resolution:			T\ətsQ	;əmi	SbəriupəЯ sta Dləiə	N / Å
ace Trip Blank Lot # (if purchased):		-				
Trip Blank Custody Seals Present	səY 🗌	°N€				
Trip Blanks Present:	səy	⁰N□	∀/N□	.91		
:(mmð<) slsiV AOV ni əɔsqabsəH	səy 🗌	⁰N□	∀/M⊡	15.		
Samples checked for dechlorination:	səy 🗌	oN□	AND	۱4.		
Eaceptions: VOV, coliform, TOC, O&G				completed	preservative	
ll containers needing preservation are found to be sompliance with EPA recommendation.	səY□	oN□	A/NG			
ll containers needing preservation have been checked	səY□	⁰N□	∀/№⊡	anonorat "	st'7	
-Includes date/time/ID/Analysis Matrix:	1.05					
Sample Labels match COC:		0N□	A∖N□	12.		
-iltered volume received for Dissolved tests	səY 🗌	oN□	₩M⊡	.11		
Containers Intact:	səX[_]	⁰N□	∀/N□	.01		
-Pace Containers Used:	SOY	oN□	∀/N□			
Correct Containers Used:	Sey and a set of the s	⁰N□	∀/N□			
	sevel	oN□	∀/N□	.8		
:bətsəupəЯ əmiT bruorA rruT dşuF	səy 🗌	°Ŋ₽⊡	A\N□	΄Ζ		
:(זאסרל אופען אין אין אין אין אין אין אין אין אין אי	seY 🗌	٥NE	∀/N□	.9		
:amples Arrived within Hold Time:	səy 🗋	oN□	A\N□	.5.	·····	
Sampler Name & Signature on COC:	Sel C	oN□	∀/N□	<u>ط</u> .		
Chain of Custody Relinquished:	say El	oN□	A\N□	3.		
Chain of Custody Filled Out:	S9YA	⁰N□		2.		
Chain of Custody Present:	səyd	oN□	A\N□	٦.		
Chermometer Used 132013 (101731962) Cooler Temperature 5.4 0.1 Cooler Temperature 5.4 0.1 Fing should be above freezing s 6°C 0.1 0.1			i ənssi	Biue None 🗌 Sirezen: Y _{es} No Comments:	Samples on ice, cooling pro Date and Initials of per contents:	
Packing Material:Bubble Wrap	ble Bags	N 🗌] əu	Other	Saching . Gmart.	0 <u>N</u>
(Courtier: Tred Ex DPS DUSPS Courtier: Courtier: Courtier: Courtier: Cooler/Box Present: Cooler/Box Pres		yo Somme:		Pace Other	obnot stour	JC
Client Nail Client Na	:əu		00	U	roject # ک ^{راره}	

Pace Analytical Services, Inc - SEA Lab

F-SEA-C-021-rev.00 03Aug2010

Pace Analytical Services, Inc. 940 South Harney Seattle, WA 98108 (206)767-5060

September 30, 2010

Alex Lopez Arcadis 111 SW Columbia St. Ste. 725 Portland, OR 97201

RE: Project: BP Oly Pace Project No.: 254717

Dear Alex Lopez:

Enclosed are the analytical results for sample(s) received by the laboratory on August 27, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

Revised Report - PAH results added to GP-1 6-6.5 and GP-8 4-4.5 at client's request.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Regine Ste. Marie

Regina SteMarie

regina.stemarie@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: BP Oly

Pace Project No.: 254717

Washington Certification IDs 940 South Harney Street, Seattle, WA 98108 Alaska CS Certification #: UST-025 Alaska Drinking Water VOC Certification #: WA01230 Alaska Drinking Water Micro Certification #: WA01230

California Certification #: 01153CA Florida/NELAP Certification #: E87617 Oregon Certification #: WA200007 Washington Certification #: C1229

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: BP Oly Pace Project No.: 254717

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
254717001	GP1-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254717002	GP1-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254717003	GP1-6-6.5	EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54717004	GP2-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
254717005	GP2-4-4.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	KJ1	1	PASI-S
54717006	GP8-2-2.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S

REPORT OF LABORATORY ANALYSIS

Page 3 of 37

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

SAMPLE ANALYTE COUNT

Project: BP Oly Pace Project No.: 254717

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
254717007	GP8-4-4.5	EPA 8270 by SIM	DMT	20	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
254717008	GP8-6-6.5	NWTPH-Dx	ERB	4	PASI-S
		NWTPH-Gx	AY1	3	PASI-S
		EPA 6010	BGA	7	PASI-S
		EPA 7471	BGA	1	PASI-S
		EPA 8270 by SIM	DMT	20	PASI-S
		EPA 8260	ATH	8	PASI-S
		ASTM D2974-87	DMT	1	PASI-S
254717009	Trip Blank	NWTPH-Gx	AY1	3	PASI-S
		EPA 8260	ATH	8	PASI-S

REPORT OF LABORATORY ANALYSIS

Project: BP Oly Pace Project No.: 254717

Method: NWTPH-Dx

Description:NWTPH-Dx GCS SGClient:Arcadis ORDate:September 30, 2010

General Information:

6 samples were analyzed for NWTPH-Dx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 5 of 37

Project: BP Oly Pace Project No.: 254717

Method: NWTPH-Gx

Description:NWTPH-Gx GCVClient:Arcadis ORDate:September 30, 2010

General Information:

7 samples were analyzed for NWTPH-Gx. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with NWTPH-Gx with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BP Oly Pace Project No.: 254717

Method:EPA 6010Description:6010 MET ICPClient:Arcadis ORDate:September 30, 2010

General Information:

6 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MPRP/1739

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 254708001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 38268)
 - Barium
 - MSD (Lab ID: 38269)
 - Barium

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BP Oly Pace Project No.: 254717

Method:EPA 7471Description:7471 MercuryClient:Arcadis ORDate:September 30, 2010

General Information:

6 samples were analyzed for EPA 7471. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BP Oly Pace Project No.: 254717

Method: EPA 8270 by SIM

Description:8270 MSSV PAH by SIMClient:Arcadis ORDate:September 30, 2010

General Information:

8 samples were analyzed for EPA 8270 by SIM. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: OEXT/2601

S0: Surrogate recovery outside laboratory control limits.

- GP1-6-6.5 (Lab ID: 254717003)
 - Terphenyl-d14 (S)
- GP2-4-4.5 (Lab ID: 254717005)
 - Terphenyl-d14 (S)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

REPORT OF LABORATORY ANALYSIS

Project: BP Oly Pace Project No.: 254717

Method:EPA 8270 by SIMDescription:8270 MSSV PAH by SIMClient:Arcadis ORDate:September 30, 2010

Analyte Comments:

QC Batch: OEXT/2601

1n: Results for all reported compounds were confirmed by the analysis of an out-of-hold re-extract sample. This sample was associated with an acceptable method blank and LCS, and had passing surrogate recoveries.

• GP1-6-6.5 (Lab ID: 254717003)

• Terphenyl-d14 (S)

• GP2-4-4.5 (Lab ID: 254717005)

• Terphenyl-d14 (S)

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 10 of 37

Project: BP Oly Pace Project No.: 254717

Method: EPA 8260

Description:8260/5035A Volatile OrganicsClient:Arcadis ORDate:September 30, 2010

General Information:

7 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: MSV/2946

S5: Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

- GP2-4-4.5 (Lab ID: 254717005)
 - 1,2-Dichloroethane-d4 (S)
 - 4-Bromofluorobenzene (S)

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 11 of 37

Project: BP Oly

Pace Project No.: 254717

Sample: GP1-2-2.5	Lab ID: 254717001	Collected: 08/25/1	0 14:30	Received: 08	/27/10 10:15	Matrix: Solid	
Results reported on a "dry-weig	ght" basis						
Parameters	Results Uni	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: NW	TPH-Dx Preparation Me	ethod: E	PA 3546			
Diesel Range SG	30.4 mg/kg	25.0	1	09/02/10 16:05	09/04/10 01:09)	
Motor Oil Range SG	198 mg/kg	99.9	1	09/02/10 16:05	09/04/10 01:09	64742-65-0	
n-Octacosane (S) SG	116 %	50-150	1	09/02/10 16:05	09/04/10 01:09	630-02-4	
o-Terphenyl (S) SG	102 %	50-150	1	09/02/10 16:05	09/04/10 01:09	84-15-1	
NWTPH-Gx GCV	Analytical Method: NW	TPH-Gx Preparation Me	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND mg/kg	8.6	1	09/01/10 17:00	09/02/10 06:29)	
a,a,a-Trifluorotoluene (S)	104 %	50-150	1	09/01/10 17:00	09/02/10 06:29	98-08-8	
4-Bromofluorobenzene (S)	98 %	50-150	1	09/01/10 17:00	09/02/10 06:29	460-00-4	
6010 MET ICP	Analytical Method: EP	A 6010 Preparation Meth	nod: EP	A 3050			
Arsenic	ND mg/kg	12.3	5	08/28/10 13:15	08/31/10 10:35	7440-38-2	
Barium	80.6 mg/kg	24.6	1	08/28/10 13:15	08/31/10 11:05	7440-39-3	
Cadmium	ND mg/kg	6.2	5	08/28/10 13:15	08/31/10 10:35	7440-43-9	
Chromium	26.7 mg/kg	1.2	1	08/28/10 13:15	08/31/10 11:05	7440-47-3	
_ead	4.7 mg/kg	1.2	1	08/28/10 13:15			
Selenium	ND mg/kg	6.2	5	08/28/10 13:15			
Silver	ND mg/kg	6.2	5	08/28/10 13:15	08/31/10 10:35	7440-22-4	
Silver 7471 Mercury		6.2 A 7471 Preparation Meth			08/31/10 10:38	7440-22-4	
7471 Mercury							
	Analytical Method: EP/ ND_mg/kg	A 7471 Preparation Meth	nod: EP 1	A 7471 09/01/10 10:10			
7471 Mercury Mercury	Analytical Method: EP/ ND_mg/kg	A 7471 Preparation Meth 0.12	nod: EP 1	A 7471 09/01/10 10:10	09/01/10 14:20	7439-97-6	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati	nod: EP 1 on Metl	A 7471 09/01/10 10:10 nod: EPA 3546	09/01/10 14:20	7439-97-6 83-32-9	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7	nod: EP 1 on Metl 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38	7439-97-6 83-32-9 9 208-96-8	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7	nod: EP 1 on Metl 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	7439-97-6 8 83-32-9 9 208-96-8 9 120-12-7	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7	nod: EP 1 on Metl 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	7439-97-6 8 83-32-9 9 208-96-8 9 120-12-7 9 56-55-3	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7	nod: EP 1 on Metl 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	7439-97-6 8 83-32-9 9 208-96-8 9 120-12-7 9 56-55-3 9 50-32-8	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP 1 on Meth 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 	
7471 Mercury Mercury 8270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP 1 on Metl 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP 1 on Meti 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	Analytical Method: EP, ND mg/kg Analytical Method: EP, ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Meth 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Meth 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)apyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Metl 1 1 1 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Metl 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)apyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Meti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 	
7471 Mercury Mercury 8270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Meti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Meti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38	 7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 	
7471 Mercury Mercury 3270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg ND ug/kg ND ug/kg 11.1 ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Meti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38	7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3	
7471 Mercury Mercury 8270 MSSV PAH by SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Meti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38	7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3 85-01-8	
7471 Mercury Mercury 8270 MSSV PAH by SIM	Analytical Method: EP. ND mg/kg Analytical Method: EP. ND ug/kg ND ug/kg ND ug/kg ND ug/kg 11.1 ug/kg	A 7471 Preparation Meth 0.12 A 8270 by SIM Preparati 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	nod: EP. 1 on Meti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A 7471 09/01/10 10:10 nod: EPA 3546 09/02/10 18:00 09/02/10 18:00	09/01/10 14:20 09/04/10 02:38 09/04/10 02:38	7439-97-6 83-32-9 208-96-8 120-12-7 56-55-3 50-32-8 205-99-2 191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 90-12-0 91-57-6 91-20-3 85-01-8 129-00-0	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 12 of 37

Project: BP Oly

Pace Project No.: 254717

		Collected: 08/25/1	10 14.30	Received: 08	3/27/10 10.13 r	/latrix: Solid	
t" basis			-				
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical Met	hod: EPA 82	260					
ND uç	g/kg	4.7	1		08/27/10 20:37	71-43-2	
ND uc	a/ka	4.7	1		08/27/10 20:37	100-41-4	
-	-	4.7	1		08/27/10 20:37	108-88-3	
-							
-	-						
			I		00/21/10 20.37	17000-07-0	
•							
24.2 %		0.10	1		08/31/10 12:49		
Lab ID: 254	717002	Collected: 08/25/1	10 14:45	Received: 08	B/27/10 10:15	Aatrix: Solid	
t" basis							
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
Analytical Met	hod: NWTP	H-Dx Preparation M	ethod: El	PA 3546			
60.9 m	a/ka	51.0	1	09/02/10 16:05	09/04/10 02:14		
	0 0						
					00/04/10 02.14	04 10 1	
				WIFII-GX			
		47.0	1	09/02/10 17:00	09/03/10 02:50		
99 %		50-150	1	09/02/10 17:00	09/03/10 02:50	98-08-8	
76 %		50-150	1	09/02/10 17:00	09/03/10 02:50	460-00-4	
Analytical Metl	hod: EPA 60	010 Preparation Met	hod: EPA	3050			
ND m	g/kg	4.8	1	08/28/10 13:15	08/31/10 11:07	7440-38-2	
		47.7	1	08/28/10 13:15	08/31/10 11:07	7440-39-3	
	0 0						
		0.27	1		09/01/10 14:23	7439-97-6	
Analytical Metl	hod: EPA 82	270 by SIM Preparat	ion Meth	od: EPA 3546			
	-//.a	17.8	1	09/02/10 18:00	09/04/10 02:55	83-32-0	
ND ua	1/KQ					00-02-0	
ND ug ND ug		17.8	1		09/04/10 02:55		
	Analytical Met ND ug ND ug ND ug ND ug 97 % 90 % 92 % 86 % Analytical Met 24.2 % Lab ID: 254 t" basis Results Analytical Met 60.9 m 481 m 117 % 95 % Analytical Met ND m 99 % 76 % Analytical Met ND m 52.7 m ND m 52.7 m ND m 5.2 m ND m 5.2 m	Analytical Method: EPA 82 ND ug/kg ND ug/kg ND ug/kg ND ug/kg 97 % 90 % 92 % 86 % Analytical Method: ASTM 24.2 % Lab ID: 254717002 t" basis Results Units Analytical Method: NWTP 60.9 mg/kg 481 mg/kg 117 % 95 % Analytical Method: NWTP ND mg/kg 99 % 76 % Analytical Method: EPA 60 ND mg/kg 52.7 mg/kg ND mg/kg 5.2 mg/kg ND mg/kg 5.2 mg/kg ND mg/kg ND mg/kg Analytical Method: EPA 74 ND mg/kg	Analytical Method: EPA 8260 ND ug/kg 4.7 ND ug/kg 14.0 97 % 80-136 90 % 80-120 92 % 72-122 86 % 80-143 Analytical Method: ASTM D2974-87 24.2 % 24.2 % 0.10 Lab ID: 254717002 Collected: 08/25/* t" basis Results Units Results Units Report Limit Analytical Method: NWTPH-Dx Preparation M 60.9 mg/kg 51.0 481 mg/kg 204 117 % 50-150 Analytical Method: NWTPH-Gx Preparation M ND mg/kg 4.7 0.9 % 50-150 Analytical Method: EPA 6010 Preparation Met ND mg/kg 2.4 ND mg/kg 2.4 <	Analytical Method: EPA 8260 ND ug/kg 4.7 1 90 % 80-136 1 90 % 80-120 1 92 % 72-122 1 86 % 80-143 1 Analytical Method: ASTM D2974-87 24.2 % 0.10 1 Lab ID: 254717002 Collected: 08/25/10 14:45 results Units Report Limit DF Analytical Method: NWTPH-Dx Preparation Method: EI 60.9 mg/kg 51.0 1 481 mg/kg 204 1 117 % 50-150 1 95 % 50-150 1 Analytical Method: NWTPH-Gx Preparation Method: NM ND mg/kg 47.7 1 99 % 50-150 1 76 % <td>Analytical Method: EPA 8260 ND ug/kg 4.7 1 ND ug/kg 14.0 1 97 % 80-136 1 90 % 80-120 1 92 % 72-122 1 86 % 80-143 1 Analytical Method: ASTM D2974-87 24.2 % 0.10 1 Lab ID: 254717002 Collected: 08/25/10 14:45 Received: 08/25/10 14:45 Results Units Report Limit DF Prepared Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 60.9 mg/kg 204 1 09/02/10 16:05 481 mg/kg 204 1 09/02/10 16:05 95 % 50-150 1 09/02/10 17:00 Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx NUT mg/kg 4.7 1 09/02/10 17:00 99 % 50-150 1<td>Analytical Method: EPA 8260 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 14.0 1 08/27/10 20:37 90 % 80-136 1 08/27/10 20:37 90 % 80-120 1 08/27/10 20:37 90 % 80-120 1 08/27/10 20:37 92 % 72-122 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 87 # asis Collected: 08/25/10 14:45 Received: 08/27/10 10:15 87 # asis Units Report Limit DF Prepared Analyted Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 60.9 mg/kg 51.0 1 09/02/10 16:05 09/04/10 02:14 177 %</td><td>Analytical Method: EPA 8260 ND ug/kg 4.7 1 08/27/10 20:37 71-43-2 ND ug/kg 4.7 1 08/27/10 20:37 100-41-4 ND ug/kg 4.7 1 08/27/10 20:37 108-88-3 ND ug/kg 1.7 1 08/27/10 20:37 108-88-3 90 % 80-136 08/27/10 20:37 108-65-37 90 % 80-120 1 08/27/10 20:37 460-00-4 86 % 80-143 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 80 410 102 102/27 10:50 50/47/10 10:50 80/04/10 2:14 43 80</td></td>	Analytical Method: EPA 8260 ND ug/kg 4.7 1 ND ug/kg 14.0 1 97 % 80-136 1 90 % 80-120 1 92 % 72-122 1 86 % 80-143 1 Analytical Method: ASTM D2974-87 24.2 % 0.10 1 Lab ID: 254717002 Collected: 08/25/10 14:45 Received: 08/25/10 14:45 Results Units Report Limit DF Prepared Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 60.9 mg/kg 204 1 09/02/10 16:05 481 mg/kg 204 1 09/02/10 16:05 95 % 50-150 1 09/02/10 17:00 Analytical Method: NWTPH-Gx Preparation Method: NWTPH-Gx NUT mg/kg 4.7 1 09/02/10 17:00 99 % 50-150 1 <td>Analytical Method: EPA 8260 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 14.0 1 08/27/10 20:37 90 % 80-136 1 08/27/10 20:37 90 % 80-120 1 08/27/10 20:37 90 % 80-120 1 08/27/10 20:37 92 % 72-122 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 87 # asis Collected: 08/25/10 14:45 Received: 08/27/10 10:15 87 # asis Units Report Limit DF Prepared Analyted Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 60.9 mg/kg 51.0 1 09/02/10 16:05 09/04/10 02:14 177 %</td> <td>Analytical Method: EPA 8260 ND ug/kg 4.7 1 08/27/10 20:37 71-43-2 ND ug/kg 4.7 1 08/27/10 20:37 100-41-4 ND ug/kg 4.7 1 08/27/10 20:37 108-88-3 ND ug/kg 1.7 1 08/27/10 20:37 108-88-3 90 % 80-136 08/27/10 20:37 108-65-37 90 % 80-120 1 08/27/10 20:37 460-00-4 86 % 80-143 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 80 410 102 102/27 10:50 50/47/10 10:50 80/04/10 2:14 43 80</td>	Analytical Method: EPA 8260 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 4.7 1 08/27/10 20:37 ND ug/kg 14.0 1 08/27/10 20:37 90 % 80-136 1 08/27/10 20:37 90 % 80-120 1 08/27/10 20:37 90 % 80-120 1 08/27/10 20:37 92 % 72-122 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 86 % 80-143 1 08/27/10 20:37 87 # asis Collected: 08/25/10 14:45 Received: 08/27/10 10:15 87 # asis Units Report Limit DF Prepared Analyted Analytical Method: NWTPH-Dx Preparation Method: EPA 3546 60.9 mg/kg 51.0 1 09/02/10 16:05 09/04/10 02:14 177 %	Analytical Method: EPA 8260 ND ug/kg 4.7 1 08/27/10 20:37 71-43-2 ND ug/kg 4.7 1 08/27/10 20:37 100-41-4 ND ug/kg 4.7 1 08/27/10 20:37 108-88-3 ND ug/kg 1.7 1 08/27/10 20:37 108-88-3 90 % 80-136 08/27/10 20:37 108-65-37 90 % 80-120 1 08/27/10 20:37 460-00-4 86 % 80-143 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 86 86 0.10 1 08/27/10 20:37 460-00-4 80 410 102 102/27 10:50 50/47/10 10:50 80/04/10 2:14 43 80

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 13 of 37

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BP Oly

Pace Project No.: 254717

Sample: GP1-4-4.5	Lab ID: 254	717002	Collected: 08/25/1	0 14:45	6 Received: 08	3/27/10 10:15 N	latrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV PAH by SIM	Analytical Meth	od: EPA 82	70 by SIM Preparati	ion Meth	nod: EPA 3546			
Benzo(a)anthracene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	56-55-3	
Benzo(a)pyrene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	50-32-8	
Benzo(b)fluoranthene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	205-99-2	
Benzo(g,h,i)perylene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	191-24-2	
Benzo(k)fluoranthene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	207-08-9	
Chrysene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	218-01-9	
Dibenz(a,h)anthracene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	53-70-3	
Fluoranthene	23.7 ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	206-44-0	
Fluorene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	193-39-5	
1-Methylnaphthalene	ND ug	/kg	17.8	1	09/02/10 18:00	09/04/10 02:55	90-12-0	
2-Methylnaphthalene	ND ug	-	17.8	1	09/02/10 18:00	09/04/10 02:55	91-57-6	
Naphthalene	ND ug	-	17.8	1	09/02/10 18:00	09/04/10 02:55	91-20-3	
Phenanthrene	30.2 ug	-	17.8	1	09/02/10 18:00	09/04/10 02:55	85-01-8	
Pyrene	ND ug	-	17.8	1	09/02/10 18:00	09/04/10 02:55	129-00-0	
2-Fluorobiphenyl (S)	59 %	0	55-136	1		09/04/10 02:55		
Terphenyl-d14 (S)	60 %		60-144	1		09/04/10 02:55		
8260/5035A Volatile Organics	Analytical Meth	od: EPA 82	60					
Benzene	ND ug	/kg	18.9	1		08/27/10 20:56	71-43-2	
Ethylbenzene	ND ug	-	18.9	1		08/27/10 20:56	100-41-4	
Toluene	34.2 ug	-	18.9	1		08/27/10 20:56		
Xylene (Total)	ND ug	0	56.7	1		08/27/10 20:56	1330-20-7	
Dibromofluoromethane (S)	99 %	5	80-136	1		08/27/10 20:56		
Toluene-d8 (S)	95 %		80-120	1		08/27/10 20:56		
4-Bromofluorobenzene (S)	102 %		72-122	1		08/27/10 20:56		
1,2-Dichloroethane-d4 (S)	89 %		80-143	1		08/27/10 20:56		
Percent Moisture	Analytical Meth	od: ASTM E	02974-87					
Percent Moisture	62.6 %		0.10	1		08/31/10 12:51		
Sample: GP1-6-6.5	Lab ID: 254	717003	Collected: 08/25/1	0 14:55	Received: 08	8/27/10 10:15 N	latrix: Solid	
Results reported on a "dry-weigh	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV PAH by SIM	Analytical Meth	od: EPA 82 ⁻	70 by SIM Preparati	ion Meth	nod: EPA 3546			
Acenaphthene	ND ug	/kg	45.1	1	09/02/10 18:00	09/03/10 22:46	83-32-9	
Acenaphthylene	ND ug	0	45.1	1		09/03/10 22:46		
						00/00/40 00 10	_00 00 0	

ND ug/kg 45.1 09/02/10 18:00 09/03/10 22:46 120-12-7 1 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 56-55-3 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 50-32-8 ND ug/kg 45.1 09/02/10 18:00 09/03/10 22:46 205-99-2 1 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 191-24-2

Date: 09/30/2010 10:52 AM

Anthracene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(a)pyrene

REPORT OF LABORATORY ANALYSIS

Page 14 of 37

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BP Oly

Pace Project No.: 254717

<i>ht" basis</i> Results	Units						
	l Inits						
	Onita	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Meth	od: EPA 82	70 by SIM Preparati	on Metł	nod: EPA 3546			
ND ug/	′kg	45.1	1	09/02/10 18:00	09/03/10 22:46	207-08-9	
ND ug/	′kg	45.1	1	09/02/10 18:00	09/03/10 22:46	218-01-9	
-	-	45.1	1	09/02/10 18:00	09/03/10 22:46	53-70-3	
-	-	45.1	1	09/02/10 18:00	09/03/10 22:46	206-44-0	
ND ug/	′kg	45.1	1	09/02/10 18:00	09/03/10 22:46	86-73-7	
ND ug/	′kg	45.1	1	09/02/10 18:00	09/03/10 22:46	193-39-5	
-	-	45.1	1	09/02/10 18:00	09/03/10 22:46	90-12-0	
-	-	45.1	1	09/02/10 18:00	09/03/10 22:46	91-57-6	
-	-	45.1	1	09/02/10 18:00	09/03/10 22:46	91-20-3	
-	-	45.1	1	09/02/10 18:00	09/03/10 22:46	85-01-8	
-	-	45.1	1	09/02/10 18:00	09/03/10 22:46	129-00-0	
59 %		55-136	1	09/02/10 18:00	09/03/10 22:46	321-60-8	
45 %		60-144	1	09/02/10 18:00	09/03/10 22:46	1718-51-0	1n,S0
Analytical Meth	od: ASTM E	02974-87					
85.4 %		0.10	1		08/31/10 12:53		
	747004	Collected: 08/25/4	0 12.40	Dessived: 00	07/10 10.15 N	Actrive Colid	
	17004	Collected: 08/25/1	0 13:40	Received. 06	VZ1/10 10:15 IV	atrix: Solid	
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Meth	od: NWTPH	H-Dx Preparation Me	ethod: E	PA 3546			
732 mg	/kg	31.1	1	09/02/10 16:05	09/04/10 02:31		
•	-	124	1	09/02/10 16:05	09/04/10 02:31	64742-65-0	
98 %	0	50-150	1	09/02/10 16:05	09/04/10 02:31	630-02-4	
103 %		50-150	1				
Analytical Meth	od: NWTPH	H-Gx Preparation Me	ethod: N	IWTPH-Gx			
ND ma	/ka	9.8	1	09/01/10 17:00	09/02/10 07:43		
-						98-08-8	
96 %		50-150	1				
Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP	A 3050			
ND ma	/kg	13.3	5	08/28/10 13:15	08/31/10 10:41	7440-38-2	
		26.6	1				
-	-	6.6	5				
-	-	1.3	1				
-	-	1.3	1				
-	-	6.6	5				
ND mg		6.6	5		08/31/10 10:41		
ND IIIg	/ ····9						
		71 Preparation Meth	nod: EP	A 7471			
•	ND ug/ ND ug/ ND ug/ S4.0 ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ ND ug/ 62.5 ug/ 59 % 45 % Analytical Meth 85.4 % Lab ID: 2547 ht" basis Results Analytical Meth 732 mg ND mg 98 % 103 % Analytical Meth ND mg 100 % 96 % Analytical Meth ND mg 53.6 mg ND mg 24.6 mg 4.1 mg	ND ug/kg S9 % 45 % Analytical Method: ASTM I 85.4 % Lab ID: 254717004 ht" basis Results Units Analytical Method: NWTPH 732 mg/kg ND mg/kg 98 % 103 % Analytical Method: NWTPH ND mg/kg 100 % 96 % Analytical Method: EPA 60 ND mg/kg 100 % 96 % Analytical Method: EPA 60 ND mg/kg 53.6 mg/kg ND mg/kg 2	ND ug/kg 45.1 Sets 60-144 Analytical Method: ASTM D2974-87 85.4 % Results Units Report Limit Analytical Method: NWTPH-Dx Preparation Method: NWTPH-Dx ND mg/kg 124 98 % 98 % 50-150 Analytical Method: NWTPH-Gx Preparation Method: ND mg/kg ND mg/kg 9.8 100 % 50-150 Analytical Method: EPA 6010 Preparation Method: S0-150 <td>ND ug/kg 45.1 1 ND ug/kg 45.1 1 Station 45.4 60-144 Analytical Method: ASTM D2974-87 85.4 % Results Units Report Limit DF Analytical Method: NWTPH-Dx Preparation Method: E 732 mg/kg 31.1 1 ND mg/kg 124 1 98 % 50-150 1 103 %<td>ND ug/kg 45.1 1 09/02/10 18:00 ND ug/kg 45.1 1 09/02/10 18:00 S4.0 ug/kg 45.1 1 09/02/10 18:00 ND ug/kg 45.1 1 09/02/10 18:00 S9 % 55-136 09/02/10 18:00 45 % 60-144 1 09/02/10 18:00 45 % 0.10 1 1 1 1 Lab ID: 254717004 Collected: 08/25/10 13:40 Received: 08 Mt" basis Results Units Report Limit<td>ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 S4.0 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 50</td><td>ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 207-08-9 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 218-01-9 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 237-03 54.0 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 268-44-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 90-12-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 91-2-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 129-00-0 59 % 55-136 1 09/02/10 18:0</td></td></td>	ND ug/kg 45.1 1 Station 45.4 60-144 Analytical Method: ASTM D2974-87 85.4 % Results Units Report Limit DF Analytical Method: NWTPH-Dx Preparation Method: E 732 mg/kg 31.1 1 ND mg/kg 124 1 98 % 50-150 1 103 % <td>ND ug/kg 45.1 1 09/02/10 18:00 ND ug/kg 45.1 1 09/02/10 18:00 S4.0 ug/kg 45.1 1 09/02/10 18:00 ND ug/kg 45.1 1 09/02/10 18:00 S9 % 55-136 09/02/10 18:00 45 % 60-144 1 09/02/10 18:00 45 % 0.10 1 1 1 1 Lab ID: 254717004 Collected: 08/25/10 13:40 Received: 08 Mt" basis Results Units Report Limit<td>ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 S4.0 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 50</td><td>ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 207-08-9 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 218-01-9 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 237-03 54.0 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 268-44-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 90-12-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 91-2-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 129-00-0 59 % 55-136 1 09/02/10 18:0</td></td>	ND ug/kg 45.1 1 09/02/10 18:00 ND ug/kg 45.1 1 09/02/10 18:00 S4.0 ug/kg 45.1 1 09/02/10 18:00 ND ug/kg 45.1 1 09/02/10 18:00 S9 % 55-136 09/02/10 18:00 45 % 60-144 1 09/02/10 18:00 45 % 0.10 1 1 1 1 Lab ID: 254717004 Collected: 08/25/10 13:40 Received: 08 Mt" basis Results Units Report Limit <td>ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 S4.0 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 50</td> <td>ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 207-08-9 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 218-01-9 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 237-03 54.0 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 268-44-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 90-12-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 91-2-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 129-00-0 59 % 55-136 1 09/02/10 18:0</td>	ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 S4.0 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 50	ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 207-08-9 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 218-01-9 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 237-03 54.0 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 268-44-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 90-12-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 91-2-0 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 ND ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 87-01-8 62.5 ug/kg 45.1 1 09/02/10 18:00 09/03/10 22:46 129-00-0 59 % 55-136 1 09/02/10 18:0

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 15 of 37

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BP Oly

Pace Project No.: 254717

Sample: GP2-2-2.5	Lab ID: 254717004	Collected: 08/25/10	13:40	Received: 08	3/27/10 10:15	Matrix: Solid	
Results reported on a "dry-weight	t" basis						
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Method: EPA	8270 by SIM Preparation	n Meth	od: EPA 3546			
Acenaphthene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 83-32-9	
Acenaphthylene	10.7 ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 208-96-8	
Anthracene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 120-12-7	
Benzo(a)anthracene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 56-55-3	
Benzo(a)pyrene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 50-32-8	
Benzo(b)fluoranthene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 205-99-2	
Benzo(g,h,i)perylene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 191-24-2	
Benzo(k)fluoranthene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 207-08-9	
Chrysene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 218-01-9	
Dibenz(a,h)anthracene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 53-70-3	
Fluoranthene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 206-44-0	
Fluorene	13.6 ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 193-39-5	
1-Methylnaphthalene	21.7 ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 90-12-0	
2-Methylnaphthalene	22.8 ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 91-57-6	
Naphthalene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 91-20-3	
Phenanthrene	38.3 ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 85-01-8	
Pyrene	ND ug/kg	10.4	1	09/02/10 18:00	09/03/10 23:03	3 129-00-0	
2-Fluorobiphenyl (S)	76 %	55-136	1	09/02/10 18:00	09/03/10 23:03	3 321-60-8	
Terphenyl-d14 (S)	64 %	60-144	1	09/02/10 18:00	09/03/10 23:03	3 1718-51-0	
8260/5035A Volatile Organics	Analytical Method: EPA	8260					
Benzene	ND ug/kg	4.2	1		08/27/10 21:10	6 71-43-2	
Ethylbenzene	ND ug/kg	4.2	1		08/27/10 21:10	6 100-41-4	
Toluene	ND ug/kg	4.2	1		08/27/10 21:10	6 108-88-3	
Xylene (Total)	ND ug/kg	12.6	1		08/27/10 21:10	6 1330-20-7	
Dibromofluoromethane (S)	101 %	80-136	1		08/27/10 21:10	6 1868-53-7	
Toluene-d8 (S)	91 %	80-120	1		08/27/10 21:10	6 2037-26-5	
4-Bromofluorobenzene (S)	95 %	72-122	1		08/27/10 21:10	6 460-00-4	
1,2-Dichloroethane-d4 (S)	91 %	80-143	1		08/27/10 21:10	6 17060-07-0	
Percent Moisture	Analytical Method: AST	M D2974-87					
Percent Moisture	36.2 %	0.10	1		08/31/10 12:5	5	

Sample: GP2-4-4.5 Lab ID: 254717005

Collected:	08/25/10 13:50	Received:	08/27/10 10:15	Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Method: NWTPH-Dx Preparation Method: EPA 3546							
Diesel Range SG	3120 mg/kg		45.5	1	09/02/10 16:05	09/04/10 02:47		
Motor Oil Range SG	296 mg/kg		182	1	09/02/10 16:05	09/04/10 02:47	64742-65-0	
n-Octacosane (S) SG	120 %	, 0	50-150	1	09/02/10 16:05	09/04/10 02:47	630-02-4	
o-Terphenyl (S) SG	92 %	, 0	50-150	1	09/02/10 16:05	09/04/10 02:47	84-15-1	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 16 of 37

Project: BP Oly

Pace Project No.: 254717

Sample: GP2-4-4.5	Lab ID: 2547	17005	Collected: 08/25/1	0 13:50	Received: 08	/27/10 10:15 N	Aatrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
WTPH-Gx GCV	Analytical Meth	od: NWTPH	-Gx Preparation M	ethod: N	WTPH-Gx			
Gasoline Range Organics	264 mg	/kg	22.8	1	09/02/10 17:00	09/03/10 03:39		
a,a,a-Trifluorotoluene (S)	90 %		50-150	1	09/02/10 17:00	09/03/10 03:39	98-08-8	
4-Bromofluorobenzene (S)	101 %		50-150	1	09/02/10 17:00	09/03/10 03:39	460-00-4	
010 MET ICP	Analytical Meth	od: EPA 601	0 Preparation Met	nod: EP/	A 3050			
Arsenic	ND mg	/kg	4.4	1	08/28/10 13:15	08/31/10 11:13	7440-38-2	
Barium	50.0 mg	/kg	44.4	1	08/28/10 13:15	08/31/10 11:13	7440-39-3	
Cadmium	ND mg	/kg	2.2	1	08/28/10 13:15	08/31/10 11:13	7440-43-9	
Chromium	17.5 mg	-	2.2	1	08/28/10 13:15	08/31/10 11:13	7440-47-3	
_ead	4.9 mg		2.2	1	08/28/10 13:15	08/31/10 11:13	7439-92-1	
Selenium	ND mg	-	2.2	1		08/31/10 11:13		
Silver	ND mg	-	2.2	1		08/31/10 11:13		
471 Mercury	Analytical Meth	od: EPA 747	71 Preparation Met	nod: EP/	A 7471			
Mercury	ND mg	/kg	0.24	1	09/01/10 10:10	09/01/10 14:31	7439-97-6	
270 MSSV PAH by SIM	Analytical Meth	od: EPA 827	70 by SIM Preparat	ion Meth	od: EPA 3546			
Acenaphthene	89.6 ug/	kg	16.3	1	09/02/10 18:00	09/04/10 01:48	83-32-9	
Acenaphthylene	68.8 ug/		16.3	1		09/04/10 01:48		
nthracene	194 ug/	-	16.3	1	09/02/10 18:00	09/04/10 01:48	120-12-7	
Benzo(a)anthracene	315 ug/		16.3	1		09/04/10 01:48	-	
enzo(a)pyrene	233 ug/		16.3	1		09/04/10 01:48		
Benzo(b)fluoranthene	165 ug/		16.3	1		09/04/10 01:48		
Benzo(g,h,i)perylene	42.9 ug/		16.3	1		09/04/10 01:48		
Benzo(k)fluoranthene	205 ug/	-	16.3	1		09/04/10 01:48		
Chrysene	338 ug/	-	16.3	1		09/04/10 01:48		
Dibenz(a,h)anthracene	49.8 ug/		16.3	1		09/04/10 01:48		
luoranthene	488 ug/		16.3	1		09/04/10 01:48		
luorene	294 ug/	-	16.3	1		09/04/10 01:48		
ndeno(1,2,3-cd)pyrene	55.0 ug/	0	16.3	1		09/04/10 01:48		
	449 ug/		16.3	1		09/04/10 01:48		
-Methylnaphthalene			16.3	1		09/04/10 01:48		
, ,	463 ug/			1				
Naphthalene	192 ug/		16.3			09/04/10 01:48		
Phenanthrene	999 ug/	-	16.3	1		09/04/10 01:48		
Pyrene	522 ug/	кд	16.3	1		09/04/10 01:48		
P-Fluorobiphenyl (S) ērphenyl-d14 (S)	60 % 53 %		55-136 60-144	1 1		09/04/10 01:48 09/04/10 01:48		1n,S0
260/5035A Volatile Organics	Analytical Meth	od: EPA 826			00,02,10,10.00	00,0-7,10 01.40	110010	,00
U				1		00/00/40 45.00	71 42 0	
Senzene	ND ug/	-	8.6	1		08/28/10 15:30		
Ethylbenzene	ND ug/	-	8.6	1		08/28/10 15:30		
	ND ug/	-	8.6	1		08/28/10 15:30		
(Vilene (Total)	ND ug/	кд	25.9	1		08/28/10 15:30		
Dibromofluoromethane (S)	90 %		80-136	1		08/28/10 15:30		
Toluene-d8 (S)	98 %		80-120	1		08/28/10 15:30	2037-26-5	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 17 of 37

Sample: GP2-4-4.5	Lab ID: 254	717005	Collected: 08/25/1	0 13:50	Received: 08	8/27/10 10:15 N	/latrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260					
4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S)	191 % 68 %		72-122 80-143	1 1		08/28/10 15:30 08/28/10 15:30		S5 S5
Percent Moisture	Analytical Mether	nod: ASTM	D2974-87					
Percent Moisture	59.7 %		0.10	1		08/31/10 12:57		
Sample: GP8-2-2.5	Lab ID: 254	717006	Collected: 08/25/1	0 09:55	Received: 08	8/27/10 10:15 N	Aatrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Dx GCS SG	Analytical Mether	nod: NWTP	H-Dx Preparation Me	ethod: E	PA 3546			
Diesel Range SG	ND mg	a/ka	19.3	1	09/02/10 16:05	09/04/10 03:04		
Motor Oil Range SG	ND mg		77.1	1	09/02/10 16:05	09/04/10 03:04	64742-65-0	
n-Octacosane (S) SG	106 %	5 5	50-150	1		09/04/10 03:04	630-02-4	
o-Terphenyl (S) SG	100 %		50-150	1		09/04/10 03:04		
NWTPH-Gx GCV	Analytical Mether	nod: NWTP	H-Gx Preparation Me	ethod: N	WTPH-Gx			
Gasoline Range Organics	ND mg	a/ka	6.2	1	09/01/10 17:00	09/02/10 08:07		
a,a,a-Trifluorotoluene (S)	110 %	99	50-150	1		09/02/10 08:07	98-08-8	
4-Bromofluorobenzene (S)	102 %		50-150	1		09/02/10 08:07		
6010 MET ICP	Analytical Mether	nod: EPA 60	010 Preparation Meth	nod: EPA	3050			
Arsenic	ND mg	a/ka	10.3	5	08/28/10 13:15	08/31/10 10:52	7440-38-2	
Barium	50.9 mg		20.7	1		08/31/10 11:15		
Cadmium	ND mg	5 0	5.2	5		08/31/10 10:52		
Chromium	26.7 mg		1.0	1		08/31/10 11:15		
Lead	8.8 mg		1.0	1		08/31/10 11:15		
Selenium	ND mg	5 0	5.2	5		08/31/10 10:52		
Silver	ND mg		5.2	5		08/31/10 10:52		
7471 Mercury	Analytical Mether	nod: EPA 74	171 Preparation Meth	nod: EPA	7471			
Mercury	ND mg	g/kg	0.096	1	09/01/10 10:10	09/01/10 14:33	7439-97-6	
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	270 by SIM Preparati	ion Meth	od: EPA 3546			
Acenaphthene	ND ug	/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	83-32-9	
Acenaphthylene	ND ug	/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	208-96-8	
Anthracene	ND ug	/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	120-12-7	
Benzo(a)anthracene	ND ug	-	7.0	1	09/02/10 18:00	09/04/10 00:59	56-55-3	
Benzo(a)pyrene	ND ug	-	7.0	1		09/04/10 00:59		
Benzo(b)fluoranthene	10.5 ug	-	7.0	1		09/04/10 00:59		
Benzo(g,h,i)perylene	ND ug	-	7.0	1		09/04/10 00:59		
Benzo(k)fluoranthene	7.8 ug	-	7.0	1		09/04/10 00:59		

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 18 of 37

Project: BP Oly

Pace Project No.: 254717

Sample: GP8-2-2.5	Lab ID: 2547170	06 Collected: 08/25/	10 09.55	Received: 08	27/10 10·15	Matrix: Solid	
Results reported on a "dry-weight			10 00.00		<i>21/10</i> 10.10		
Parameters		Units Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
			Lan Math				
8270 MSSV PAH by SIM	Analytical Method:	EPA 8270 by SIM Prepara	tion weth	100: EPA 3546			
Dibenz(a,h)anthracene	ND ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	53-70-3	
Fluoranthene	15.8 ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	206-44-0	
Fluorene	ND ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	193-39-5	
1-Methylnaphthalene	9.0 ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	90-12-0	
2-Methylnaphthalene	12.5 ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	91-57-6	
Naphthalene	9.2 ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	91-20-3	
Phenanthrene	12.7 ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	85-01-8	
Pyrene	12.4 ug/kg	7.0	1	09/02/10 18:00	09/04/10 00:59	129-00-0	
2-Fluorobiphenyl (S)	65 %	55-136	1	09/02/10 18:00	09/04/10 00:59	321-60-8	
Terphenyl-d14 (S)	74 %	60-144	1	09/02/10 18:00	09/04/10 00:59	1718-51-0	
8260/5035A Volatile Organics	Analytical Method:	EPA 8260					
Benzene	ND ug/kg	3.0	1		08/28/10 15:49	71-43-2	
Ethylbenzene	ND ug/kg	3.0	1		08/28/10 15:49		
Toluene	ND ug/kg	3.0	1		08/28/10 15:49		
Xylene (Total)	ND ug/kg	9.0	1		08/28/10 15:49		
Dibromofluoromethane (S)	91 %	80-136	1		08/28/10 15:49		
Toluene-d8 (S)	91 %	80-120	1		08/28/10 15:49		
4-Bromofluorobenzene (S)	93 %	72-122	1		08/28/10 15:49		
1,2-Dichloroethane-d4 (S)	80 %	80-143	1		08/28/10 15:49		
Percent Moisture	Analytical Method:	ASTM D2974-87					
Percent Moisture	5.2 %	0.10	1		08/31/10 20:27		
Sample: GP8-4-4.5	Lab ID: 2547170	07 Collected: 08/25/	10 10:05	Received: 08	/27/10 10:15 M	Matrix: Solid	
Results reported on a "dry-weight Parameters		Units Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	-	EPA 8270 by SIM Prepara					
Acenaphthene	ND ug/kg	7.1	1		09/04/10 01:15		
Acenaphthylene	ND ug/kg	7.1	1		09/04/10 01:15		
Anthracene	ND ug/kg	7.1	1		09/04/10 01:15		
Benzo(a)anthracene	ND ug/kg	7.1	1		09/04/10 01:15		
Benzo(a)pyrene	ND ug/kg	7.1	1		09/04/10 01:15		
Benzo(b)fluoranthene	8.5 ug/kg	7.1	1		09/04/10 01:15		
Benzo(g,h,i)perylene	ND ug/kg	7.1	1		09/04/10 01:15		
Benzo(k)fluoranthene	ND ug/kg	7.1	1		09/04/10 01:15		
Chrysene	8.9 ug/kg	7.1	1		09/04/10 01:15		
Dibenz(a,h)anthracene	ND ug/kg	7.1	1		09/04/10 01:15		
Fluoranthene	14.3 ug/kg	7.1	1		09/04/10 01:15		
Fluorene	ND ug/kg	7.1	1		09/04/10 01:15		
Indeno(1,2,3-cd)pyrene	ND ug/kg	7.1	1	09/02/10 18:00	09/04/10 01:15	193-39-5	
		7.1	1	55, 5 <u>2</u> , 10 10.00	00/01/10 01.10	100 00 0	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 19 of 37

Project: BP Oly

Pace Project No.: 254717

,								
Sample: GP8-4-4.5	Lab ID: 25471	7007	Collected: 08/25/1	0 10:05	Received: 08	/27/10 10:15 N	latrix: Solid	
Results reported on a "dry-weig	ght" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	
270 MSSV PAH by SIM	Analytical Method	1: EPA 827	70 by SIM Preparati	on Meth	od: EPA 3546			
-Methylnaphthalene	7.5 ug/kg	1	7.1	1	09/02/10 18:00	09/04/10 01:15	90-12-0	
-Methylnaphthalene	10.9 ug/kg		7.1	1	09/02/10 18:00	09/04/10 01:15	91-57-6	
laphthalene	8.9 ug/kg		7.1	1	09/02/10 18:00	09/04/10 01:15	91-20-3	
henanthrene	12.2 ug/kg		7.1	1	09/02/10 18:00	09/04/10 01:15	85-01-8	
yrene	12.0 ug/kg		7.1	1	09/02/10 18:00	09/04/10 01:15	129-00-0	
-Fluorobiphenyl (S)	65 %	•	55-136	1		09/04/10 01:15		
erphenyl-d14 (S)	74 %		60-144	1		09/04/10 01:15		
ercent Moisture	Analytical Method	: ASTM D	2974-87					
Percent Moisture	6.3 %		0.10	1		08/31/10 20:28		
ample: GP8-6-6.5	Lab ID: 25471	7008	Collected: 08/25/1	0 10:15	Received: 08	/27/10 10:15	latrix: Solid	
Results reported on a "dry-weig		1000		0 10.15	Received. 00	/2//10/10:13 10	atrix. Solid	
Parameters	Results	Units	Poport Limit	DF	Prepared	Applyzod	CAS No.	Q
Parameters		Units	Report Limit	DF	Prepared	Analyzed	CAS NO.	
WTPH-Dx GCS SG	Analytical Method	: NWTPH	-Dx Preparation Me	ethod: El	PA 3546			
iesel Range SG	ND mg/k	g	22.3	1	09/02/10 16:05	09/04/10 03:20		
otor Oil Range SG	ND mg/k	g	89.3	1	09/02/10 16:05	09/04/10 03:20	64742-65-0	
Octacosane (S) SG	102 %		50-150	1	09/02/10 16:05	09/04/10 03:20	630-02-4	
Terphenyl (S) SG	100 %		50-150	1	09/02/10 16:05	09/04/10 03:20	84-15-1	
WTPH-Gx GCV	Analytical Method	: NWTPH	-Gx Preparation Me	ethod: N	WTPH-Gx			
Basoline Range Organics	ND mg/k	g	6.6	1	09/01/10 17:00	09/02/10 08:31		
,a,a-Trifluorotoluene (S)	125 %		50-150	1	09/01/10 17:00	09/02/10 08:31	98-08-8	
Bromofluorobenzene (S)	120 %		50-150	1	09/01/10 17:00	09/02/10 08:31	460-00-4	
010 MET ICP	Analytical Method	d: EPA 601	0 Preparation Meth	nod: EPA	3050			
rsenic	ND mg/k	g	44.0					
arium			11.8	5	08/28/10 13:15	08/31/10 10:54	7440-38-2	
	•	g	11.8 23.5	5 1		08/31/10 10:54 08/31/10 11:24		
	71.8 mg/k	-			08/28/10 13:15		7440-39-3	
admium	71.8 mg/k ND mg/k	g	23.5 5.9	1	08/28/10 13:15 08/28/10 13:15	08/31/10 11:24 08/31/10 10:54	7440-39-3 7440-43-9	
admium hromium	71.8 mg/k ND mg/k 32.8 mg/k	g g	23.5 5.9 1.2	1 5 1	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24	7440-39-3 7440-43-9 7440-47-3	
admium hromium ead	71.8 mg/k ND mg/k 32.8 mg/k 10.1 mg/k	g g	23.5 5.9 1.2 1.2	1 5 1 1	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24 08/31/10 11:24	7440-39-3 7440-43-9 7440-47-3 7439-92-1	
admium hromium ead elenium	71.8 mg/k ND mg/k 32.8 mg/k	g g g	23.5 5.9 1.2	1 5 1	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24	7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2	
admium hromium ead elenium ilver	71.8 mg/k ND mg/k 32.8 mg/k 10.1 mg/k ND mg/k	g g g	23.5 5.9 1.2 1.2 5.9	1 5 1 5 5	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24 08/31/10 11:24 08/31/10 10:54	7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2	
Cadmium Chromium ead Selenium Silver 471 Mercury	71.8 mg/k ND mg/k 32.8 mg/k 10.1 mg/k ND mg/k	g g g g g t: EPA 747	23.5 5.9 1.2 1.2 5.9 5.9	1 5 1 5 5	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24 08/31/10 11:24 08/31/10 10:54	7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2 7440-22-4	
admium hromium ead ielenium ilver 471 Mercury fercury	71.8 mg/k ND mg/k 32.8 mg/k 10.1 mg/k ND mg/k ND mg/k ND mg/k	g g g g g d: EPA 747 g	23.5 5.9 1.2 1.2 5.9 5.9 71 Preparation Meth	1 5 1 5 5 nod: EPA	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 7471 09/01/10 10:10	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24 08/31/10 11:24 08/31/10 10:54 08/31/10 10:54	7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2 7440-22-4	
Cadmium Chromium ead Selenium Silver 471 Mercury Nercury 270 MSSV PAH by SIM	71.8 mg/k ND mg/k 32.8 mg/k 10.1 mg/k ND mg/k ND mg/k ND mg/k	g g g g t: EPA 747 g t: EPA 827	23.5 5.9 1.2 1.2 5.9 5.9 71 Preparation Meth 0.10	1 5 1 5 5 nod: EPA	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 7471 09/01/10 10:10 od: EPA 3546	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24 08/31/10 11:24 08/31/10 10:54 08/31/10 10:54	7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2 7440-22-4 7439-97-6	
Cadmium Chromium ead Selenium Silver 471 Mercury Mercury 270 MSSV PAH by SIM scenaphthene	71.8 mg/k ND mg/k 32.8 mg/k 10.1 mg/k ND mg/k ND mg/k Analytical Method ND mg/k	g g g g t: EPA 747 g t: EPA 827 g	23.5 5.9 1.2 1.2 5.9 5.9 71 Preparation Meth 0.10 70 by SIM Preparati	1 5 1 5 5 nod: EPA 1 on Meth	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:10 08/28/10 13:15 08/28/10 13:15	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24 08/31/10 11:24 08/31/10 10:54 08/31/10 10:54 09/01/10 14:35	7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2 7440-22-4 7439-97-6 83-32-9	
Cadmium Chromium Selenium Selenium Silver 2471 Mercury Mercury 270 MSSV PAH by SIM Accenaphthene Accenaphthylene Anthracene	71.8 mg/k ND mg/k 32.8 mg/k 10.1 mg/k ND mg/k ND mg/k Analytical Method ND mg/k Analytical Method	g g g g d: EPA 747 g d: EPA 827 g	23.5 5.9 1.2 1.2 5.9 5.9 71 Preparation Meth 0.10 70 by SIM Preparati 7.7	1 5 1 5 5 nod: EPA 1 on Meth	08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 08/28/10 13:15 09/01/10 10:10 09/01/10 10:10 00: EPA 3546 09/02/10 18:00 09/02/10 18:00	08/31/10 11:24 08/31/10 10:54 08/31/10 11:24 08/31/10 11:24 08/31/10 10:54 08/31/10 10:54 09/01/10 14:35	7440-39-3 7440-43-9 7440-47-3 7439-92-1 7782-49-2 7440-22-4 7439-97-6 83-32-9 208-96-8	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 20 of 37

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Project: BP Oly

Pace Project No.: 254717

Sample: GP8-6-6.5	Lab ID: 254	717008	Collected: 08/25/1	0 10:15	Received: 08	/27/10 10:15 N	latrix: Solid	
Results reported on a "dry-weight	t" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3270 MSSV PAH by SIM	Analytical Met	hod: EPA 82	70 by SIM Preparati	ion Meth	nod: EPA 3546			
Benzo(a)pyrene	ND ug	g/kg	7.7	1	09/02/10 18:00	09/04/10 01:32	50-32-8	
Benzo(b)fluoranthene	8.9 ug	g/kg	7.7	1	09/02/10 18:00	09/04/10 01:32	205-99-2	
Benzo(g,h,i)perylene	ND uç	g/kg	7.7	1	09/02/10 18:00	09/04/10 01:32	191-24-2	
Benzo(k)fluoranthene	ND ug	g/kg	7.7	1	09/02/10 18:00	09/04/10 01:32	207-08-9	
Chrysene	9.2 ug	g/kg	7.7	1	09/02/10 18:00	09/04/10 01:32	218-01-9	
Dibenz(a,h)anthracene	ND ug	g/kg	7.7	1	09/02/10 18:00	09/04/10 01:32	53-70-3	
Fluoranthene	14.2 ug		7.7	1	09/02/10 18:00	09/04/10 01:32	206-44-0	
Fluorene	ND ug		7.7	1	09/02/10 18:00	09/04/10 01:32	86-73-7	
Indeno(1,2,3-cd)pyrene	ND ug		7.7	1	09/02/10 18:00	09/04/10 01:32	193-39-5	
1-Methylnaphthalene	10.2 ug		7.7	1		09/04/10 01:32		
2-Methylnaphthalene	14.8 ug		7.7	1		09/04/10 01:32		
Naphthalene	11.2 ug		7.7	1		09/04/10 01:32		
Phenanthrene	13.4 ug		7.7	1		09/04/10 01:32		
Pyrene	11.0 ug		7.7	1		09/04/10 01:32		
2-Fluorobiphenyl (S)	69 %		55-136	1		09/04/10 01:32		
Terphenyl-d14 (S)	79 %		60-144	1		09/04/10 01:32		
				I	09/02/10 18:00	09/04/10 01.32	1710-51-0	
8260/5035A Volatile Organics	Analytical Met	hod: EPA 82	60					
Benzene	ND uç		3.1	1		08/28/10 16:08	71-43-2	
Ethylbenzene	ND ug	g/kg	3.1	1		08/28/10 16:08	100-41-4	
Toluene	ND ug	g/kg	3.1	1		08/28/10 16:08	108-88-3	
Xylene (Total)	ND ug	g/kg	9.3	1		08/28/10 16:08	1330-20-7	
Dibromofluoromethane (S)	97 %		80-136	1		08/28/10 16:08	1868-53-7	
Toluene-d8 (S)	89 %		80-120	1		08/28/10 16:08	2037-26-5	
4-Bromofluorobenzene (S)	95 %		72-122	1		08/28/10 16:08	460-00-4	
1,2-Dichloroethane-d4 (S)	85 %		80-143	1		08/28/10 16:08	17060-07-0	
Percent Moisture	Analytical Met	hod: ASTM [02974-87					
Percent Moisture	15.1 %	1	0.10	1		08/31/10 20:29		
Sample: Trip Blank	Lab ID: 254	717000	Collected: 08/25/1	0.00.00	Received: 08	/27/10 10:15	latrix: Solid	
Results reported on a "wet-weight		111009	Collected. 00/23/1	0 00.00		/21/10 10.15 W		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
NWTPH-Gx GCV	Analytical Met	hod: NWTPH	I-Gx Preparation Me	ethod: N	IWTPH-Gx			
Gasoline Range Organics	ND m	a/ka	5.0	1	09/01/10 17:00	09/02/10 05:16		
a,a,a-Trifluorotoluene (S)	109 %		50-150	1		09/02/10 05:16	98-08-8	
4-Bromofluorobenzene (S)	102 %		50-150	1		09/02/10 05:16		
8260/5035A Volatile Organics	Analytical Met	hod: EPA 82	60					
Benzene	ND uç	g/kg	3.0	1		09/03/10 13:13	71-43-2	
E 41 U	ND ug		3.0	1		09/03/10 13:13		
Ethylbenzene	ND ut	J/Kg	3.0			03/03/10 13.13	100-41-4	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 21 of 37

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

LO IN ACCORO.

Project: BP Oly

Pace Project No.: 254717

Sample: Trip Blank	Lab ID: 254	717009	Collected: 08/25/2	00:00	Received: 0	8/27/10 10:15	Matrix: Solid	
Results reported on a "wet-weight	" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical Met	hod: EPA 826	0					
Xylene (Total)	ND ug	g/kg	9.0	1		09/03/10 13:13	3 1330-20-7	
Dibromofluoromethane (S)	99 %	,	80-136	1		09/03/10 13:13	1868-53-7	
Toluene-d8 (S)	86 %	,	80-120	1		09/03/10 13:13	3 2037-26-5	
4-Bromofluorobenzene (S)	89 %		72-122	1		09/03/10 13:13	460-00-4	
1,2-Dichloroethane-d4 (S)	86 %	,	80-143	1		09/03/10 13:13	3 17060-07-0	

REPORT OF LABORATORY ANALYSIS

Page 22 of 37

QC Batch: OEXT/2		Analysis Met		WTPH-Dx		
QC Batch Method: EPA 354	6	Analysis Des	cription: N	WTPH-Dx G	CS	
Associated Lab Samples: 2	54717001, 254717002, 25	4717004, 2547170	05, 254717006	, 254717008		
METHOD BLANK: 38791		Matrix:	Solid			
Associated Lab Samples: 2	54717001, 254717002, 25	4717004, 2547170	05, 254717006	, 254717008		
Parameter	Units	Blank Result	Reporting Limit	Analyze	d Qualifi	ore
Diesel Range SG						
Motor Oil Range SG	mg/kg	ND	20.0 80.0			
	mg/kg	98				
n-Octacosane (S) SG	%		50-150			
o-Terphenyl (S) SG	%	99	50-150	09/03/10 2	1.02	
LABORATORY CONTROL SA	MPLE: 38792					
		Spike	LCS	LCS	% Rec	
Parameter	Units		Result	% Rec	Limits	Qualifiers
Diesel Range SG	mg/kg	500	400	80	56-124	
Motor Oil Range SG	mg/kg	500	450	90	50-150	
n-Octacosane (S) SG	%			98	50-150	
o-Terphenyl (S) SG	%			86	50-150	
SAMPLE DUPLICATE: 3879	3					
		254681012	Dup			
Parameter	Units	Result	Result	RPD	Qualifiers	
Diesel Range SG	mg/kg	ND	4J			
Matan Oll Danas CO	mg/kg	ND	ND			
Motor Oil Range SG	0/	98	99		.2	
	%				2	
n-Octacosane (S) SG	%	100	103		-	
n-Octacosane (S) SG o-Terphenyl (S) SG	%	100	103		_	
n-Octacosane (S) SG o-Terphenyl (S) SG	%				_	
n-Octacosane (S) SG o-Terphenyl (S) SG	%	100 254717001 Result	103 Dup Result	RPD	Qualifiers	
n-Octacosane (S) SG o-Terphenyl (S) SG SAMPLE DUPLICATE: 3879 Parameter Diesel Range SG	%	254717001	Dup	RPD		
n-Octacosane (S) SG o-Terphenyl (S) SG SAMPLE DUPLICATE: 3879 Parameter Diesel Range SG Motor Oil Range SG	% 4 Units	254717001 Result 30.4 198	Dup Result	RPD	Qualifiers	
n-Octacosane (S) SG o-Terphenyl (S) SG SAMPLE DUPLICATE: 3879 Parameter Diesel Range SG	% 4 Units mg/kg	254717001 	Dup Result 27.9	RPD	Qualifiers	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 23 of 37

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BP Oly Pace Project No.: 254717								
QC Batch: GCV/		Analysis N	lethod:	NWTPH-0				
QC Batch Method: NWT	PH-Gx	Analysis D		NWTPH-0	Sx Solid	GCV		
Associated Lab Samples:	254717001, 254717004, 254	-		009				
METHOD BLANK: 38655		Matri	x: Solid					
Associated Lab Samples:	254717001, 254717004, 254	4717006, 25471 Blank	7008, 2547170 Reporting					
Parameter	Units	Result	Limit	An	alyzed	Qualifi	iers	
Gasoline Range Organics	mg/kg	NI	 D	5.0 09/02	/10 03:15	5		
4-Bromofluorobenzene (S)	%	10	2 50-1	50 09/02	/10 03:15	5		
a,a,a-Trifluorotoluene (S)	%	10	8 50-1	50 09/02	/10 03:15	5		
LABORATORY CONTROL	SAMPLE: 38656							
		Spike	LCS	LCS		% Rec		
Parameter	Units	Conc.	Result	% Rec		Limits	Qualifiers	
Gasoline Range Organics	mg/kg	12.5	12.7	1	01	54-156		
4-Bromofluorobenzene (S)	%			1	04	50-150		
a,a,a-Trifluorotoluene (S)	%				10	50-150		
SAMPLE DUPLICATE: 38	3929							
		254708007	Dup					
Parameter	Units	Result	Result	R	PD	Qualifiers	6	
Gasoline Range Organics	mg/kg	NI	D 2	.2J				
4-Bromofluorobenzene (S)	%	10	0 ·	06	5			
a,a,a-Trifluorotoluene (S)	%	10	8	113	5			
SAMPLE DUPLICATE: 38	3930							
		254717004	Dup					
Parameter	Units	Result	Result	R	PD	Qualifiers	6	
Gasoline Range Organics	mg/kg	NI) 3	.7J				
Gasoline Range Organics 4-Bromofluorobenzene (S)	mg/kg %	NI 9	-	.7J 98	2			

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 24 of 37

Project: BP Oly							
Pace Project No.: 25471	(
QC Batch: GCV	/1829	Analysis Me	ethod: N	IWTPH-Gx			
QC Batch Method: NWT	PH-Gx	Analysis De	escription: N	WTPH-Gx So	olid GCV		
Associated Lab Samples:	254717002, 254717005						
METHOD BLANK: 38891		Matrix	c: Solid				
Associated Lab Samples:	254717002, 254717005						
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	ed Qualifi	ers	
Gasoline Range Organics	mg/kg	ND					
4-Bromofluorobenzene (S)	%	101					
a,a,a-Trifluorotoluene (S)	%	112	50-150	0 09/03/10 0	12:26		
LABORATORY CONTROL	SAMPLE: 38892						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Gasoline Range Organics	mg/kg	12.5	13.5	108	54-156		
4-Bromofluorobenzene (S)	%			112	50-150		
a,a,a-Trifluorotoluene (S)	%			124	50-150		
SAMPLE DUPLICATE: 39	0037						
		254717005	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Gasoline Range Organics	mg/kg	264	250)	5		
4-Bromofluorobenzene (S)	%	101	129	9	25		
a,a,a-Trifluorotoluene (S)	%	90) 122	2	30		
SAMPLE DUPLICATE: 39	0038						
		254721017	Dup				
Parameter	Units	Result	Result	RPD	Qualifiers		
Gasoline Range Organics	mg/kg	19.6	j 19.()	3		
4-Bromofluorobenzene (S)	%	117)	11		
a,a,a-Trifluorotoluene (S)	%	110	125	5	12		

REPORT OF LABORATORY ANALYSIS

Page 25 of 37

Project: BP Oly 254717

Pace Project No.:

QC Batch: MPRP/1739 QC Batch Method: EPA 3050

Analysis Method: EPA 6010 Analysis Description: 6010 MET

Associated Lab Samples: 254717001, 254717002, 254717004, 254717005, 254717006, 254717008

METHOD BLANK: 38266

Matrix: Solid

Associated Lab Samples: 254717001, 254717002, 254717004, 254717005, 254717006, 254717008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	ND	2.0	08/31/10 10:22	
Barium	mg/kg	ND	20.0	08/31/10 10:22	
Cadmium	mg/kg	ND	1.0	08/31/10 10:22	
Chromium	mg/kg	ND	1.0	08/31/10 10:22	
Lead	mg/kg	ND	1.0	08/31/10 10:22	
Selenium	mg/kg	ND	1.0	08/31/10 10:22	
Silver	mg/kg	ND	1.0	08/31/10 10:22	

LABORATORY CONTROL SAMPLE: 38267

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg	25	23.1	92	80-120	
Barium	mg/kg	25	23.4	94	80-120	
Cadmium	mg/kg	25	22.4	90	80-120	
Chromium	mg/kg	25	24.7	99	80-120	
Lead	mg/kg	25	23.0	92	80-120	
Selenium	mg/kg	25	21.9	88	80-120	
Silver	mg/kg	12.5	11.6	92	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICAT	E: 38268			38269						
	:	254708001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Arsenic	mg/kg	ND	27.8	27.8	36.0	32.5	109	96	75-125	10	
Barium	mg/kg	67.6	27.8	27.8	110	111	154	154	75-125	.2 M1	
Cadmium	mg/kg	ND	27.8	27.8	29.1	25.4	105	91	75-125	14	
Chromium	mg/kg	31.8	27.8	27.8	60.7	60.7	104	104	75-125	.09	
Lead	mg/kg	7.4	27.8	27.8	28.6	30.8	76	84	75-125	7	
Selenium	mg/kg	ND	27.8	27.8	25.7	23.6	92	85	75-125	9	
Silver	mg/kg	ND	13.9	13.9	16.3	13.6	117	98	75-125	18	

REPORT OF LABORATORY ANALYSIS

Page 26 of 37

Project:	BP Oly											
Pace Project No.:	254717											
QC Batch:	MERP/124	5		Analys	is Method:	E	PA 7471					
QC Batch Method:	EPA 7471			Analys	is Descript	ion: 7	471 Mercury					
Associated Lab Sam	ples: 2547	17001, 254	717002, 254	717004, 25	4717005, 2	254717006	, 254717008	3				
METHOD BLANK:	38581			Ν	Aatrix: Soli	d						
Associated Lab Sam	ples: 2547	17001, 254	717002, 254	717004, 25	4717005, 2	254717006	, 254717008	3				
				Blank		eporting						
Param	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers	S		
Mercury		mg/kg]		ND	0.10	09/01/10	14:05				
LABORATORY CON	ITROL SAMP	LE: 3858	2									
				Spike	LCS	;	LCS	% Rec	;			
Param	neter		Units	Conc.	Resu	lt	% Rec	Limits	C	Qualifiers		
Manager												
Mercury		mg/kg)	.5		0.51	102	80	-120		-	
MATRIX SPIKE & M	ATRIX SPIKE			.5		0.51	102	80	-120		-	
	ATRIX SPIKE			5 	MSD		102	80	-120			
	ATRIX SPIKE	DUPLICAT					102 MSD	80 MS	-120 MSD	% Rec	-	
	-	DUPLICAT	E: 38583	MS	MSD	38584				% Rec Limits	RPD	Qual

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 27 of 37

Project: BP Oly

Pace Project No.: 254717

QC Batch: OEXT/2601 QC Batch Method: EPA 3546 Associated Lab Samples:

Analysis Method: Analysis Description:

Matrix: Solid

8270/3546 MSSV PAH by SIM 254717001, 254717002, 254717003, 254717004, 254717005, 254717006, 254717007, 254717008

EPA 8270 by SIM

METHOD BLANK: 38719

Associated Lab Samples: 254717001, 254717002, 254717003, 254717004, 254717005, 254717006, 254717007, 254717008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	ND	6.7	09/03/10 20:17	
2-Methylnaphthalene	ug/kg	ND	6.7	09/03/10 20:17	
Acenaphthene	ug/kg	ND	6.7	09/03/10 20:17	
Acenaphthylene	ug/kg	ND	6.7	09/03/10 20:17	
Anthracene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(a)anthracene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(a)pyrene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(b)fluoranthene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(g,h,i)perylene	ug/kg	ND	6.7	09/03/10 20:17	
Benzo(k)fluoranthene	ug/kg	ND	6.7	09/03/10 20:17	
Chrysene	ug/kg	ND	6.7	09/03/10 20:17	
Dibenz(a,h)anthracene	ug/kg	ND	6.7	09/03/10 20:17	
Fluoranthene	ug/kg	ND	6.7	09/03/10 20:17	
Fluorene	ug/kg	ND	6.7	09/03/10 20:17	
ndeno(1,2,3-cd)pyrene	ug/kg	ND	6.7	09/03/10 20:17	
Naphthalene	ug/kg	ND	6.7	09/03/10 20:17	
Phenanthrene	ug/kg	ND	6.7	09/03/10 20:17	
Pyrene	ug/kg	ND	6.7	09/03/10 20:17	
2-Fluorobiphenyl (S)	%	74	55-136	09/03/10 20:17	
Terphenyl-d14 (S)	%	81	60-144	09/03/10 20:17	

LABORATORY CONTROL SAMPLE: 38720

	00120					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	133	96.1	72	63-126	
2-Methylnaphthalene	ug/kg	133	95.2	71	60-145	
Acenaphthene	ug/kg	133	98.0	73	44-138	
Acenaphthylene	ug/kg	133	101	76	43-140	
Anthracene	ug/kg	133	103	77	58-138	
Benzo(a)anthracene	ug/kg	133	108	81	50-154	
Benzo(a)pyrene	ug/kg	133	112	84	47-154	
Benzo(b)fluoranthene	ug/kg	133	97.4	73	43-164	
Benzo(g,h,i)perylene	ug/kg	133	108	81	54-153	
Benzo(k)fluoranthene	ug/kg	133	127	96	61-145	
Chrysene	ug/kg	133	99.2	74	59-141	
Dibenz(a,h)anthracene	ug/kg	133	114	86	54-161	
Fluoranthene	ug/kg	133	111	83	43-160	
Fluorene	ug/kg	133	106	79	41-149	
ndeno(1,2,3-cd)pyrene	ug/kg	133	113	85	48-158	
Naphthalene	ug/kg	133	91.4	69	44-131	
Phenanthrene	ug/kg	133	98.0	74	46-144	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 28 of 37

Project: BP Oly Pace Project No.: 254717

LABORATORY CONTROL SAMPLE: 38720

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Pyrene	ug/kg	133	105	79	57-142	
2-Fluorobiphenyl (S)	%			73	55-136	
Terphenyl-d14 (S)	%			80	60-144	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 38721			38722						
			MS	MSD							
	:	254933001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
-Methylnaphthalene	ug/kg	ND	133	130	99.9	96.0	75	74	-3.6-171	4	
2-Methylnaphthalene	ug/kg	ND	133	130	102	95.8	76	73	3-188	6	
Acenaphthene	ug/kg	ND	133	130	93.5	95.4	71	74	-1-182	2	
cenaphthylene	ug/kg	ND	133	130	98.8	98.8	75	76	31-156	.01	
Anthracene	ug/kg	ND	133	130	98.1	93.4	74	72	20-171	5	
Benzo(a)anthracene	ug/kg	ND	133	130	105	99.1	79	77	24-181	6	
enzo(a)pyrene	ug/kg	ND	133	130	107	102	81	79	26-174	5	
Benzo(b)fluoranthene	ug/kg	ND	133	130	95.6	90.1	72	70	33-173	6	
Benzo(g,h,i)perylene	ug/kg	ND	133	130	105	96.9	79	75	15-178	8	
Benzo(k)fluoranthene	ug/kg	ND	133	130	120	116	91	89	20-167	4	
Chrysene	ug/kg	ND	133	130	96.1	90.3	72	69	15-174	6	
Dibenz(a,h)anthracene	ug/kg	ND	133	130	111	105	84	81	26-189	6	
Fluoranthene	ug/kg	ND	133	130	111	105	82	80	21-104	5	
luorene	ug/kg	ND	133	130	105	103	79	80	25-173	1	
ndeno(1,2,3-cd)pyrene	ug/kg	ND	133	130	109	102	82	78	19-182	7	
laphthalene	ug/kg	ND	133	130	93.2	87.2	69	66	-3-165	7	
Phenanthrene	ug/kg	ND	133	130	99.4	94.5	73	71	25-163	5	
yrene	ug/kg	ND	133	130	101	96.1	76	74	30-165	5	
-Fluorobiphenyl (S)	%						76	76	55-136		
erphenyl-d14 (S)	%						81	77	60-144		

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 29 of 37

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

Project: BP Oly

Pace Project No.: 254717

QC Batch: QC Batch Method:

MSV/2945 EPA 8260

Analysis Method: Analysis Description:

Matrix: Solid

EPA 8260 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 254717001, 254717002, 254717004

METHOD BLANK: 38202

Associated Lab Samples: 254717001, 254717002, 254717004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	08/27/10 17:05	
Ethylbenzene	ug/kg	ND	3.0	08/27/10 17:05	
Toluene	ug/kg	ND	3.0	08/27/10 17:05	
Xylene (Total)	ug/kg	ND	9.0	08/27/10 17:05	
1,2-Dichloroethane-d4 (S)	%	86	80-143	08/27/10 17:05	
4-Bromofluorobenzene (S)	%	92	72-122	08/27/10 17:05	
Dibromofluoromethane (S)	%	100	80-136	08/27/10 17:05	
Toluene-d8 (S)	%	89	80-120	08/27/10 17:05	

LABORATORY CONTROL SAMP	PLE & LCSD: 38203		38	3204						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	49.9	47.5	100	95	75-133	5	30	
Ethylbenzene	ug/kg	50	44.4	42.6	89	85	68-131	4	30	
Toluene	ug/kg	50	45.7	44.5	91	89	73-124	3	30	
Xylene (Total)	ug/kg	150	136	130	91	87	68-130	4	30	
1,2-Dichloroethane-d4 (S)	%				81	82	80-143			
4-Bromofluorobenzene (S)	%				101	99	72-122			
Dibromofluoromethane (S)	%				96	96	80-136			
Toluene-d8 (S)	%				90	92	80-120			

REPORT OF LABORATORY ANALYSIS

Page 30 of 37

Project: BP Oly

Pace Project No.: 254717

QC Batch: MSV/2946 QC Batch Method: EPA 8260

Analysis Method: Analysis Description:

Matrix: Solid

EPA 8260 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 254717005, 254717006, 254717008

METHOD BLANK: 38282

254717005, 254717006, 254717008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	08/28/10 14:52	
Ethylbenzene	ug/kg	ND	3.0	08/28/10 14:52	
Toluene	ug/kg	ND	3.0	08/28/10 14:52	
Xylene (Total)	ug/kg	ND	9.0	08/28/10 14:52	
1,2-Dichloroethane-d4 (S)	%	87	80-143	08/28/10 14:52	
4-Bromofluorobenzene (S)	%	92	72-122	08/28/10 14:52	
Dibromofluoromethane (S)	%	100	80-136	08/28/10 14:52	
Toluene-d8 (S)	%	87	80-120	08/28/10 14:52	

LABORATORY CONTROL SAMP	PLE & LCSD: 38283		38	3284						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	53.1	43.5	106	87	75-133	20	30	
Ethylbenzene	ug/kg	50	47.6	38.7	95	77	68-131	21	30	
Toluene	ug/kg	50	47.9	40.1	96	80	73-124	18	30	
Xylene (Total)	ug/kg	150	144	118	96	79	68-130	20	30	
1,2-Dichloroethane-d4 (S)	%				82	80	80-143			
4-Bromofluorobenzene (S)	%				98	99	72-122			
Dibromofluoromethane (S)	%				98	95	80-136			
Toluene-d8 (S)	%				90	92	80-120			

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 31 of 37

Project: BP Oly

Pace Project No.: 254717

QC Batch Method:

QC Batch:

MSV/2988

EPA 8260

Analysis Description:

Matrix: Solid

Analysis Method:

EPA 8260

8260 MSV 5035A Volatile Organics

Associated Lab Samples: 254717009

METHOD BLANK: 38963

Associated Lab Samples: 254717009

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	3.0	09/03/10 12:53	
Ethylbenzene	ug/kg	ND	3.0	09/03/10 12:53	
Toluene	ug/kg	ND	3.0	09/03/10 12:53	
Xylene (Total)	ug/kg	ND	9.0	09/03/10 12:53	
1,2-Dichloroethane-d4 (S)	%	96	80-143	09/03/10 12:53	
4-Bromofluorobenzene (S)	%	88	72-122	09/03/10 12:53	
Dibromofluoromethane (S)	%	105	80-136	09/03/10 12:53	
Toluene-d8 (S)	%	83	80-120	09/03/10 12:53	

LABORATORY CONTROL SAMP	PLE & LCSD: 38964		38	3965						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	ug/kg	50	55.5	56.5	111	113	75-133	2	30	
Ethylbenzene	ug/kg	50	47.6	47.9	95	96	68-131	.6	30	
Toluene	ug/kg	50	51.0	47.2	102	94	73-124	8	30	
Xylene (Total)	ug/kg	150	147	147	98	98	68-130	.01	30	
1,2-Dichloroethane-d4 (S)	%				85	85	80-143			
4-Bromofluorobenzene (S)	%				97	96	72-122			
Dibromofluoromethane (S)	%				100	105	80-136			
Toluene-d8 (S)	%				92	86	80-120			

REPORT OF LABORATORY ANALYSIS

Page 32 of 37

Project:	BP Oly							
Pace Project No.:	254717							
QC Batch:	PMST/1325		Analysis Meth	od:	ASTM D2974	-87		
QC Batch Method:	ASTM D2974-8	37	Analysis Desc	Analysis Description:		Dry Weight/Percent Moisture		
Associated Lab Sar	mples: 2547170	01, 254717002, 25	4717003, 25471700	4, 25471700)5			
SAMPLE DUPLICA	TE: 38489							
			254745001	Dup				
Parar	meter	Units	Result	Result	RPD		Qualifiers	
Percent Moisture		%	16.8	16	.7	.4		
SAMPLE DUPLICA	TE: 38490							
			254711002	Dup				
Parar	meter	Units	Result	Result	RPD		Qualifiers	
Percent Moisture			9.2		10	8		

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 33 of 37

Project:	BP Oly						
Pace Project No.:	254717						
QC Batch:	PMST/1326		Analysis Meth	od: A	ASTM D2974-8	87	
QC Batch Method:	ASTM D2974-8	7	Analysis Desc	ription: D	Dry Weight/Pe	rcent Mois	sture
Associated Lab Sar	mples: 2547170	06, 254717007, 25	4717008				
SAMPLE DUPLICA	TE: 38558						
			254748001	Dup			
Parar	neter	Units	Result	Result	RPD	Qu	alifiers
Percent Moisture		%	5.5	4.5	5	20	
SAMPLE DUPLICA	TE: 38559						
			254721004	Dup			
Parar	meter	Units	Result	Result	RPD	Qu	alifiers
Percent Moisture		%	9.1	8.6		6	

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 34 of 37

QUALIFIERS

Project: BP Oly

Pace Project No.: 254717

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

LABORATORIES

PASI-S Pace Analytical Services - Seattle

ANALYTE QUALIFIERS

- 1n Results for all reported compounds were confirmed by the analysis of an out-of-hold re-extract sample. This sample was associated with an acceptable method blank and LCS, and had passing surrogate recoveries.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- S0 Surrogate recovery outside laboratory control limits.
- S5 Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	BP Oly
Pace Project No.:	254717

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
254717001	GP1-2-2.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254717002	GP1-4-4.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254717004	GP2-2-2.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254717005	GP2-4-4.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254717006	GP8-2-2.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254717008	GP8-6-6.5	EPA 3546	OEXT/2608	NWTPH-Dx	GCSV/1861
254717001	GP1-2-2.5	NWTPH-Gx	GCV/1822	NWTPH-Gx	GCV/1832
254717002	GP1-4-4.5	NWTPH-Gx	GCV/1829	NWTPH-Gx	GCV/1834
254717004	GP2-2-2.5	NWTPH-Gx	GCV/1822	NWTPH-Gx	GCV/1832
254717005	GP2-4-4.5	NWTPH-Gx	GCV/1829	NWTPH-Gx	GCV/1834
254717006	GP8-2-2.5	NWTPH-Gx	GCV/1822	NWTPH-Gx	GCV/1832
254717008	GP8-6-6.5	NWTPH-Gx	GCV/1822	NWTPH-Gx	GCV/1832
254717009	Trip Blank	NWTPH-Gx	GCV/1822	NWTPH-Gx	GCV/1832
254717001	GP1-2-2.5	EPA 3050	MPRP/1739	EPA 6010	ICP/1655
254717002	GP1-4-4.5	EPA 3050	MPRP/1739	EPA 6010	ICP/1655
254717004	GP2-2-2.5	EPA 3050	MPRP/1739	EPA 6010	ICP/1655
254717005	GP2-4-4.5	EPA 3050	MPRP/1739	EPA 6010	ICP/1655
254717006	GP8-2-2.5	EPA 3050	MPRP/1739	EPA 6010	ICP/1655
254717008	GP8-6-6.5	EPA 3050	MPRP/1739	EPA 6010	ICP/1655
254717001	GP1-2-2.5	EPA 7471	MERP/1245	EPA 7471	MERC/1260
254717002	GP1-4-4.5	EPA 7471	MERP/1245	EPA 7471	MERC/1260
254717004	GP2-2-2.5	EPA 7471	MERP/1245	EPA 7471	MERC/1260
254717005	GP2-4-4.5	EPA 7471	MERP/1245	EPA 7471	MERC/1260
254717006	GP8-2-2.5	EPA 7471	MERP/1245	EPA 7471	MERC/1260
254717008	GP8-6-6.5	EPA 7471	MERP/1245	EPA 7471	MERC/1260
254717001	GP1-2-2.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254717002	GP1-4-4.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254717003	GP1-6-6.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254717004	GP2-2-2.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254717005	GP2-4-4.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254717006	GP8-2-2.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254717007	GP8-4-4.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254717008	GP8-6-6.5	EPA 3546	OEXT/2601	EPA 8270 by SIM	MSSV/1376
254717001	GP1-2-2.5	EPA 8260	MSV/2945		
254717002	GP1-4-4.5	EPA 8260	MSV/2945		
254717004	GP2-2-2.5	EPA 8260	MSV/2945		
254717005	GP2-4-4.5	EPA 8260	MSV/2946		
254717006	GP8-2-2.5	EPA 8260	MSV/2946		
254717008	GP8-6-6.5	EPA 8260	MSV/2946		
254717009	Trip Blank	EPA 8260	MSV/2988		
254717001	GP1-2-2.5	ASTM D2974-87	PMST/1325		
254717002	GP1-4-4.5	ASTM D2974-87	PMST/1325		
254717003	GP1-6-6.5	ASTM D2974-87	PMST/1325		

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

Page 36 of 37

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: BP Oly Pace Project No.: 254717

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
254717004	GP2-2-2.5	ASTM D2974-87	PMST/1325	_	
254717005	GP2-4-4.5	ASTM D2974-87	PMST/1325		
254717006	GP8-2-2.5	ASTM D2974-87	PMST/1326		
254717007	GP8-4-4.5	ASTM D2974-87	PMST/1326		
254717008	GP8-6-6.5	ASTM D2974-87	PMST/1326		

Date: 09/30/2010 10:52 AM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 37 of 37

								12	1	5	9	8	7	ŋ	5	4	ω	N	_ _	T	ITEM #				Re	ØÈ				35		s e	~~~	
*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month 10			ORIGINAL				ADDITIONAL COMMENTS		1110000	+018 B A R	5-9-0-6-C	5-4-4-545	GP8-2-2.5	GPT 6-65 CM	G72- 4-4-2	ar2-2-45	CAPI- 6-6-2	5-4-4-1XED	1911-2-2,5		(A-Z, 0-9 / ,-) (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Tissue Other	Drinking Water Water Product Soll/Solid Oil	Section D Matrix Codes Required Client Information MATRIX / CODE		Requested The Date TAT:	1, 9(12011 Eres - K		101101 PVG PVG	SIC I'IS	JIS- Mexupp-		Section A S	WWW.parelabs.com	
ıg Pace's NET 30 day payment te							RELINQUISHED			\ /	₽ ₽		00	\$					D C	7	역 경 춘 축 (MATRIX CODE SAMPLE TYPE (G DA	은 쓴 고 美 록 및 (see valid codes 글=GRAB C=Cd	to left)	-	Programment	KO-261	Purchase Urder No.:	-		Mexel	Required Project Information:	Section B		
rms and agreeing to late charge	SIGNATUR	PRINT Nan	SAMPLER NAME AND SIGNATURE				RELINQUISHED BY / AFFILIATION			(t		08280		€				062590		E TIME DATE	COMPOSITE COMPOSITE START END/GRAB	COLLECTED		RW A60,CC					obur-				The Chain
is of 1.5% per month for any	SIGNATURE of SAMPLER:	PRINT Name of SAMPLER	ND SIGNATURE				DATE TIME	- - -			1 Sal				4 200		145		0.011		SAMPLE TEMP AT	COLLECTION		-		Pace Project Manager:	Pace Quore Reference:	Address	A data	Atterition	Invoice	Section C		CHAIN-OF-CUSTODY / Analyti The Chain-of-Custody is a LEGAL DOCUMENT. All rele
id within 30 u	Alpan/1/	an Neone				J-1					XX X		8 X X X X X X X X								Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other		Preservatives .		THE AJES,		Lore	, or a constraint of the second se	Addissoo.		Invoice Information:			CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.
	DATE Signed	Ø)				othis Swamy	ACCEPTED BY / AFFILIATION		N N N	XX					XXXX			XXXX		<u> </u>	I Analysis Test TOTOL ME NWTPH-Gy NWTPH-D	4775 (14 (40)		1	1278171		states	رسو الم						cal Request Documen vant fields must be completed accurately.
100011	DINUE			-		127/10 1	DATE								ě						UPATIS D	U JANUA		Requested Analysis Filtered (Y/N)	STATE:	Site Location	UST	NPDES	REGULATORY AGENCY					
F-A	Ter	mp in	°C			6.15 38	TIME																				RCRA		AGENCY			Page:]	
LL-Q-020rev.	Rec	eivec	d on			- `` - (`	SAMP					CH PH		$\left \right $			20			Ť	Residual Chloring	e (Y/N)				-	-	VATER	18 ·	 	L L L			252
F-ALL-Q-020rev.07, 15-May-2007	Seal	ustod ed Co (Y/N)	ooler			S	SAMPLE CONDITIONS					HOLD &					A A				Pace Project No./ Lab I.D.						OTHER _	DRINKING WATER			α α	q		254717
		ples I (Y/N)				2	NS													- Lap	./ Lab I.D.							WATER			л v			

-	9			
\cap				
			Ű	2
			ЦБ	5
		ſ	ō	1
			Ð	,
			ç)
			a	F
			n	ï
			ę	
			Ç)
			2	
			Sample Container Count	5
				r .

Face Analytical

CLIENT:	Arcadis	212					Face Analytical
COC PAGE	of						uttra, parsuas Louin
	5 5385 EI			**			
Sample Line Item	VG9H AG1H AG1U	J BG1H BP1U BP2U	BP3U BP2N	BP2S WGFU WGKU	VGKU DG9M VG92	692	Comments
4						2	
2					1 1 2		
ω							
4				- 1	1. 12		
ហ				ľ	1 1 2		
љ				_	-		
7				~~~	1 1 2		
ω					-		
g						•	
10							
1-1	,						
12			1.1				Trip Blank? ひん
			· . *				
AG1H -	AG1H 1 liter HCL amber glass		BP2S 500mL H2SO4 plastic	2SO4 plastic		JGFU	JGFU 4oz unpreserved amber wide

AG1H 1 liter HCL amber glass	BP2S 500mL H2SO4 plastic	JGFU 4oz unpreserved amber wide
AG1U 1liter unpreserved amber glass	BP2U 500mL unpreserved plastic	R terra core kit
AG2S 500mL H2SO4 amber glass	BP2Z 500mL NaOH, Zn Ac	U Summa Can
AG2U 500mL unpreserved amber glass	BP3C 250mL NaOH plastic	VG9H 40mL HCL clear vial
AG3S 250mL H2SO4 amber glass	BP3N 250mL HNO3 plastic	VG9T 40mL Na Thio. clear vial
BG1H 1 liter HCL clear glass	BP3S 250mL H2SO4 plastic	VG9U 40mL unpreserved clear vial
BG1U 1 liter unpreserved glass	BP3U 250mL unpreserved plastic	VG9W 40mL glass vial preweighted (EPA 5035)
BP1N 1 liter HNO3 plastic	DG9B 40mL Na Bisulfate amber vial	VSG Headspace septa vial & HCL
BP1S 1 liter H2SO4 plastic	DG9H 40mL HCL amber voa vial	WGFU 4oz clear soil jar
BP1U 1 liter unpreserved plastic	DG9M 4 ^o mL MeOH clear vial	WGFX 4oz wide jar w/hexane wipe
BP1Z 1 liter NaOH, Zn, Ac	DG9T 40mL Na Thio amber vial	ZPLC Ziploc Bag
BP2N 500mL HNO3 plastic	DG9U 40mL unpreserved amber vial	
BP20 500mL NaOH plastic	I Wipe/Swab	

F-SEA-C-014-rev.0, 14Jan2010

,#

			<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Соттелts/ Resolution:				
		Date/Ti		
Client Notification/ Resolution:		iiT∖eteΩ	.80	
				Field Data Required? Y / N
Pace Trip Blank Lot # (if purchased):				
	ON S	∀/N□		
/	oN Sa	I ∀/N□	.91	
	oN Sa	I ANU	· 91	
	oN□ sa	I AND	14.	
Exceptions: VOA, colitiorm, TOC, O&G		1	nərki kitin pətəlqmo:	Lot # of added preservative
kii containets neeuing-preservation are robin to be in				Робер 30 и 10 1
ni od ot ballet era geitalegeare militare un di tra		1 1	210020121	i cho
			13. Terracole	Kits.
-Includes date/time/ID/Analysis Matrix:				
		· · .	12.	
		-	.11	
	oN□ s	I A\N□	.01	
*	oN[] si	∀/N□		
2 ⁴	oN∐ si	6 ∀/N□		
Sufficient Volume: - ا ² ey⊡ volume:	oN□ s	8 A/N 🗆	-{	
Austration Around Time Requested: الاوم المعالم محمل المعالم محمل المعالم المعالم المعالم المعالم محمل محمل محمل محمل محمل محمل محمل م	oŊ₽] s	Z V/N		
□ ••••••••••••••••••••••••••••••••••••	one s	9 ∀/N□	3. Terracore	rits.
		<u>д али</u>		
Sampler Name & Signature on COC: 고양 고아 그 이 그 그 이 그 그 이 그 그 그 그 그 그 그 그 그 그 그	oN□ s	₽ 4/N□		
Chain of Custody Relinquished:	oN□ \$	Е а\и□	.{	
Chain of Custody Filled Out: 🛛 🖓 🕫 🗆 🗤	oN□ s	S AND		
Chain of Custody Present: □xés □No □	⁰N∏ Ş	L A\N□	•	
Temp should be above theesing ≤ 6℃		5	:stnemmo	
		AN AND	oN seY :n9zo1] ;	Date and Initials of person examining contents: VTS 220
Thermometer Used 132013 61 101 731962 of B26099 Type of Ice: (Contraction of the second		Samples on ice, cooling process has begun
Packing Material: Bubble Wrap Bubble Bags Done		əu	Other	Temp. Blank Yes No.
	٥N	ni else2	ntact: 🗌 Yes 🗍	10
	-			
「 Courier: □ Fed Ex □ UPS □ USPS □ Client □ Commerci Tracking #:	Commer] lsio	Bace Other W	2
<u> </u>				
A :9me/ Nailo Client Name:	1	27F	spor	roject # 354717
			rdieceipt	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

¥

Pace Analytical Services, Inc - SEA Lab

Date:

O/

181X

F-SEA-C-021-rev.00 03Aug2010

Project Manager Review:

THE LEADER IN ENVIRONMENTAL TESTING

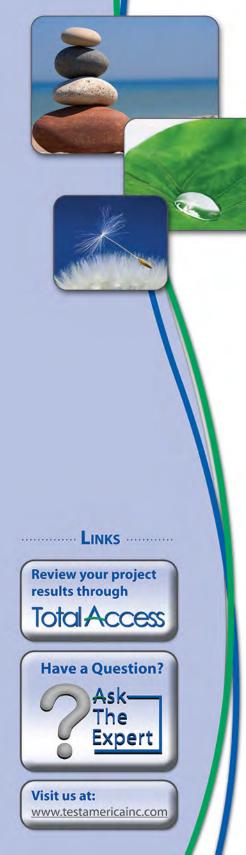
ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-22003-1 Client Project/Site: BP OLY

For:


ARCADIS U.S., Inc. 2300 Eastlake Avenue East Suite 200 Seattle, Washington 98102

Attn: Alex Lopez

Authorized for release by: 10/15/2010 12:52 PM

Melissa Armstrong Project Manager I melissa.armstrong@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Table of Contents2Case Narrative3Definitions4Client Sample Results5QC Sample Results22Chronicle27Certification Summary30Sample Summary31Chain of Custody32Sample Receipt Checklist34	Cover Page	1
Definitions4Client Sample Results5QC Sample Results22Chronicle27Certification Summary30Sample Summary31Chain of Custody32		
Definitions4Client Sample Results5QC Sample Results22Chronicle27Certification Summary30Sample Summary31Chain of Custody32	Case Narrative	3
QC Sample Results22Chronicle27Certification Summary30Sample Summary31Chain of Custody32		
Chronicle27Certification Summary30Sample Summary37Chain of Custody32	Client Sample Results	5
Certification Summary30Sample Summary31Chain of Custody32	QC Sample Results	22
Sample Summary 31 Chain of Custody 32	Chronicle	27
Chain of Custody 32	Certification Summary	30
-	Sample Summary	31
Sample Receipt Checklist 34	Chain of Custody	32
	Sample Receipt Checklist	34

Job Narrative 580-22003-1

Receipt

The following samples required pH adjustment for Dx in both containers and total metals analysis upon login. MW-7(10-1-10) MW-8(10-1-10) Preservative blank was created and added to workorder upon login for these analsys. Hydrochloric Acid lot # 50064 Nitric Acid lot # H14024

GC/MS VOA (NWTPH-Gx)

All samples were reanalyzed due to a low Bromofluorobenzene surrogate in the associated CCV.

GC Semi VOA (NWTPH-Dx)

For samples MW-7 (10-01-2010) (580-22003-2), MW-8 (10-01-2010) (580-22003-3), and MW-9 (10-01-2010) (580-22003-4), the results in the C10-C24 range are due to a mixture of heavily weathered diesel fuel and overlap from the results in the gasoline range. The affected analyte ranges are qualified with the "Y" qualifier and repoted.

Metals (6020)

For Lead, the ICP-MS ICSA standard contains trace impurities derived from the manufacturing process, which may cause these standards to fail method QC criteria. Regrettably corrective action can not be performed for any outliers other than to note deficiencies in the laboratory's QC report section. The data was qualified "^" and reported.

4
5
8
9

Qualifiers

GC Semi VOA

Qualifier **Qualifier Description**

Y	

Metals

Qualifier

Qualifier Description

The chromatographic response resembles a typical fuel pattern.

٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.
Glossary	,
Glossaly	

Glossary	Glossary Description
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis.

RL

1.0

1.0

2.0

1.0

1.0

2.0

Limits

75 - 120

80 - 120

80 - 120

85 - 120

80 - 120

MDL

Unit D

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Analyte

Benzene

o-Xylene

Toluene

Surrogate

Ethylbenzene

Xylenes, Total

Ethylbenzene-d10

Toluene-d8 (Surr)

Fluorobenzene (Surr)

Trifluorotoluene (Surr)

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Client Sample ID: MW-6R (10-01-10) Date Collected: 10/01/10 13:55 Date Received: 10/01/10 15:10

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

98

101

100

101

86

Qualifier

% Recovery

Lab Sam	ple ID: 58	80-22003-1

Prepared

TestAmerica Job ID: 580-22003-1

Matrix: Water

Analyzed

10/11/10 14:14

10/11/10 14:14

10/11/10 14:14

10/11/10 14:14

Dil Fac

1

1

1

1

10/11/10 14:14 1 10/11/10 14:14 1 Prepared Analyzed Dil Fac 10/11/10 14:14 1 10/11/10 14:14 1 10/11/10 14:14 1 10/11/10 14:14 1 10/11/10 14:14 1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte Gasoline	Result ND	Qualifier	RL 50	MDL	Unit ug/L	D	Prepared	Analyzed 10/13/10 02:57	Dil Fac
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		50 - 150					10/13/10 02:57	1
Trifluorotoluene (Surr)	106		50 - 150					10/13/10 02:57	1
Ethylbenzene-d10	99		50 - 150					10/13/10 02:57	1
Fluorobenzene (Surr)	104		50 - 150					10/13/10 02:57	1
Toluene-d8 (Surr)	104		50 - 150					10/13/10 02:57	1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.010		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
2-Methylnaphthalene	ND		0.013		ug/L	10/	06/10 15:47	10/08/10 17:51	1
1-Methylnaphthalene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Acenaphthylene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Acenaphthene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Fluorene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Phenanthrene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Anthracene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Fluoranthene	0.013		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Pyrene	0.017		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Benzo[a]anthracene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Chrysene	0.011		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Benzo[b]fluoranthene	0.017		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Benzo[k]fluoranthene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Benzo[a]pyrene	0.019		0.019		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Indeno[1,2,3-cd]pyrene	0.011		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Dibenz(a,h)anthracene	ND		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Benzo[g,h,i]perylene	0.013		0.0097		ug/L	10/	06/10 15:47	10/08/10 17:51	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	74		20 - 150			10/	06/10 15:47	10/08/10 17:51	1

Method: NWTPH-Dx - N	orthwest - Semi-Volatile	Petroleum	Products (G	C)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.12		mg/L	_	10/08/10 14:14	10/11/10 14:58	1

Client Sample ID: MW-6R (10-01-10) Date Collected: 10/01/10 13:55 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-1 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	ND		0.24		mg/L	_	10/08/10 14:14	10/11/10 14:58	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	73	-	50 - 150				10/08/10 14:14	10/11/10 14:58	1
Method: 6020 - Metals (ICF	· ·								
Method: 6020 - Metals (ICF Analyte	· ·	a <mark>ble</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
· · · · · · · · · · · · · · · · · · ·	· ·	Qualifier	RL	MDL	Unit ug/L	D 	Prepared	Analyzed	Dil Fac
Analyte	Result ND	Qualifier		MDL		<u>D</u>	· · · · · · · · · · · · · · · · · · ·		
Analyte Lead	P/MS) - Dissolved	Qualifier		MDL		_	· · · · · · · · · · · · · · · · · · ·		

RL

1.0

1.0

2.0

1.0

1.0

2.0

Limits

75 - 120

80 - 120

80 - 120

85 - 120

80 - 120

MDL

Unit D

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Analyte

Benzene

o-Xylene

Toluene

Surrogate

Ethylbenzene

Xylenes, Total

Ethylbenzene-d10

Toluene-d8 (Surr)

Fluorobenzene (Surr)

Trifluorotoluene (Surr)

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Client Sample ID: MW-7 (10-01-10) Date Collected: 10/01/10 08:25 Date Received: 10/01/10 15:10

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

98

101

101

101

96

Qualifier

% Recovery

Prepared

Prepared

TestAmerica Job ID: 580-22003-1

10/11/10 15:31 1 10/11/10 15:31 1 10/11/10 15:31 1 10/11/10 15:31 1 10/11/10 15:31 1 Analyzed Dil Fac 10/11/10 15:31 1 10/11/10 15:31 1 10/11/10 15:31 1 10/11/10 15:31 1

Matrix: Water

Analyzed

10/11/10 15:31

10/11/10 15:31

Dil Fac

1

1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products ((GC)	\$
method. Hurrin in ox inclument volution en of choice and in the		,

Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Gasoline	ND		50		ug/L		10/13/10 03:23	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		50 - 150				10/13/10 03:23	1
Trifluorotoluene (Surr)	98		50 - 150				10/13/10 03:23	1
Ethylbenzene-d10	99		50 - 150				10/13/10 03:23	1
Fluorobenzene (Surr)	105		50 - 150				10/13/10 03:23	1
Toluene-d8 (Surr)	105		50 - 150				10/13/10 03:23	1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Naphthalene	0.086		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
2-Methylnaphthalene	0.16		0.013		ug/L	10/06/10 15:47	10/08/10 18:11	1
1-Methylnaphthalene	0.23		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Acenaphthylene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Acenaphthene	0.051		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Fluorene	0.063		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Phenanthrene	0.048		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Anthracene	0.011		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Fluoranthene	0.010		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Pyrene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Benzo[a]anthracene	0.017		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Chrysene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Benzo[b]fluoranthene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Benzo[k]fluoranthene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Benzo[a]pyrene	ND		0.019		ug/L	10/06/10 15:47	10/08/10 18:11	1
Indeno[1,2,3-cd]pyrene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Dibenz(a,h)anthracene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Benzo[g,h,i]perylene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:11	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Terphenyl-d14	75		20 - 150			10/06/10 15:47	10/08/10 18:11	1

Method: NWTPH-Dx - Northwest -	Semi-Volatile	Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.15	Y	0.12		mg/L	_	10/08/10 14:14	10/11/10 15:18	1

Client Sample ID: MW-7 (10-01-10) Date Collected: 10/01/10 08:25 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-2 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	ND		0.25		mg/L		10/08/10 14:14	10/11/10 15:18	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	87		50 - 150				10/08/10 14:14	10/11/10 15:18	1
 Method: 6020 - Metals (ICP/MS) - 1									
Method: 6020 - Metals (ICP/MS) - 1 Analyte		<mark>able</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	MDL	Unit ug/L	<u>D</u>	Prepared	Analyzed	Dil Fac 5
Analyte	Result	Qualifier		MDL		D	•	<u> </u>	
Analyte Lead	Result ND	Qualifier		MDL			•	<u> </u>	

RL

1.0

1.0

2.0

1.0

1.0

2.0

MDL

Unit D

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Analyte

Benzene

o-Xylene

Toluene

Surrogate

Ethylbenzene

Xylenes, Total

Ethylbenzene-d10 Fluorobenzene (Surr)

Toluene-d8 (Surr)

Trifluorotoluene (Surr)

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Client Sample ID: MW-8 (10-01-10) Date Collected: 10/01/10 09:20 Date Received: 10/01/10 15:10

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

Prepared

Lab Sample ID: 580-22003-3 Matrix: Water

Analyzed

TestAmerica Job ID: 580-22003-1

Dil Fac

1

1

1

	10/11/10 16:47	1
	10/11/10 16:47	1
	10/11/10 16:47	1
	10/11/10 16:47	1
	10/11/10 16:47	1
	10/11/10 16:47	1
Prepared	Analyzed	Dil Fac
	10/11/10 16:47	1
	10/11/10 16:47	1

% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fa
98		75 - 120		10/11/10 16:47	
101		80 - 120		10/11/10 16:47	
101		80 - 120		10/11/10 16:47	
101		85 - 120		10/11/10 16:47	
87		80 - 120		10/11/10 16:47	

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		50		ug/L			10/13/10 05:30	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		50 - 150					10/13/10 05:30	1
Trifluorotoluene (Surr)	93		50 - 150					10/13/10 05:30	1
Ethylbenzene-d10	100		50 - 150					10/13/10 05:30	1
Fluorobenzene (Surr)	106		50 - 150					10/13/10 05:30	1
Toluene-d8 (Surr)	105		50 - 150					10/13/10 05:30	1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Naphthalene	0.085		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
2-Methylnaphthalene	0.038		0.013		ug/L	10/06/10 15:47	10/08/10 18:30	1
1-Methylnaphthalene	0.11		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Acenaphthylene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Acenaphthene	0.033		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Fluorene	0.029		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Phenanthrene	0.028		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Anthracene	0.018		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Fluoranthene	0.011		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Pyrene	0.0098		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Benzo[a]anthracene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Chrysene	0.053		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Benzo[b]fluoranthene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Benzo[k]fluoranthene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Benzo[a]pyrene	ND		0.019		ug/L	10/06/10 15:47	10/08/10 18:30	1
Indeno[1,2,3-cd]pyrene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Dibenz(a,h)anthracene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Benzo[g,h,i]perylene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 18:30	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Terphenyl-d14	67		20 - 150			10/06/10 15:47	10/08/10 18:30	1

Method: NWTPH-Dx - N	Iorthwest - Semi-Volatile	e Petroleum	Products (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.20	Y	0.12		mg/L	_	10/08/10 14:14	10/11/10 15:38	1

Client Sample ID: MW-8 (10-01-10) Date Collected: 10/01/10 09:20 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-3 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	ND		0.24		mg/L	_	10/08/10 14:14	10/11/10 15:38	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	82	-	50 - 150				10/08/10 14:14	10/11/10 15:38	1
Method: 6020 - Metals (ICP/	· ·					_			
Method: 6020 - Metals (ICP/ Analyte	· ·	able Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	· ·	Qualifier	RL	MDL	Unit ug/L	<u>D</u>	Prepared 10/12/10 09:55	Analyzed	Dil Fac
Analyte	Result	Qualifier		MDL		D	•		
Analyte Lead	MS) - Dissolved	Qualifier		MDL		_	•		

Client Sample ID: MW-9 (10-01-10) Date Collected: 10/01/10 10:15 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-4 Matrix: Water

TestAmerica Job ID: 580-22003-1

Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0		ug/L		10/11/10 17:13	1
Ethylbenzene	ND		1.0		ug/L		10/11/10 17:13	1
m-Xylene & p-Xylene	ND		2.0		ug/L		10/11/10 17:13	1
o-Xylene	ND		1.0		ug/L		10/11/10 17:13	1
Toluene	ND		1.0		ug/L		10/11/10 17:13	1
Xylenes, Total	ND		2.0		ug/L		10/11/10 17:13	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		75 - 120		_		10/11/10 17:13	1
Ethylbenzene-d10	102		80 - 120				10/11/10 17:13	1
Fluorobenzene (Surr)	100		80 - 120				10/11/10 17:13	1
Toluene-d8 (Surr)	100		85 - 120				10/11/10 17:13	1
Trifluorotoluene (Surr)	99		80 - 120				10/11/10 17:13	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	110		50		ug/L			10/13/10 05:55	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		50 - 150					10/13/10 05:55	1
Trifluorotoluene (Surr)	106		50 - 150					10/13/10 05:55	1
Ethylbenzene-d10	98		50 - 150					10/13/10 05:55	1
Fluorobenzene (Surr)	104		50 - 150					10/13/10 05:55	1
Toluene-d8 (Surr)	103		50 - 150					10/13/10 05:55	1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Naphthalene	0.40		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
2-Methylnaphthalene	0.013		0.012		ug/L	10/06/10 15:47	10/08/10 18:50	1
1-Methylnaphthalene	0.019		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Acenaphthylene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Acenaphthene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Fluorene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Phenanthrene	0.011		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Anthracene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Fluoranthene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Pyrene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Benzo[a]anthracene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Chrysene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Benzo[b]fluoranthene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Benzo[k]fluoranthene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Benzo[a]pyrene	ND		0.019		ug/L	10/06/10 15:47	10/08/10 18:50	1
Indeno[1,2,3-cd]pyrene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Dibenz(a,h)anthracene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Benzo[g,h,i]perylene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 18:50	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Terphenyl-d14	71		20 - 150			10/06/10 15:47	10/08/10 18:50	1

Method: NWTPH-Dx - Northwest -	Semi-Volatile Petr	roleum Products (G	iC)					
Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.16 Y	0.12		mg/L	_	10/08/10 14:14	10/11/10 15:57	1

Client Sample ID: MW-9 (10-01-10) Date Collected: 10/01/10 10:15 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-4 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	ND		0.25		mg/L	_	10/08/10 14:14	10/11/10 15:57	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	85		50 - 150				10/08/10 14:14	10/11/10 15:57	1
Method: 6020 - Metals (ICF	P/MS) - Total Recover	able							
Method: 6020 - Metals (ICP Analyte	,	able Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	,		RL	MDL	Unit ug/L	D 	Prepared	Analyzed	Dil Fac
Analyte	Result ND	Qualifier		MDL		<u>D</u>	· · · · · · · · · · · · · · · · · · ·		
Analyte Lead	P/MS) - Dissolved	Qualifier		MDL		_	· · · · · · · · · · · · · · · · · · ·		

RL

1.0

1.0

2.0

1.0

1.0

2.0

Limits

75 - 120

80 - 120

80 - 120

85 - 120

80 - 120

MDL

Unit D

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Analyte

Benzene

o-Xylene

Toluene

Surrogate

Ethylbenzene

Xylenes, Total

Ethylbenzene-d10

Toluene-d8 (Surr)

Fluorobenzene (Surr)

Trifluorotoluene (Surr)

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Client Sample ID: MW-10 (10-01-10) Date Collected: 10/01/10 11:10 Date Received: 10/01/10 15:10

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

97

102

100

100

99

Qualifier

% Recovery

Prepared

Prepared

Lab Sample ID: 580-22003-5 Matrix: Water

Analyzed

10/11/10 17:38

10/11/10 17:38

10/11/10 17:38

10/11/10 17:38

10/11/10 17:38	1
10/11/10 17:38	1
Analyzed	Dil Fac
10/11/10 17:38	1
10/11/10 17:38	1
10/11/10 17:38	1
10/11/10 17:38	1
10/11/10 17:38	1

Dil Fac

1

1

1

1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

			· · ·							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	ND		50		ug/L			10/13/10 06:20	1	
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	99		50 - 150					10/13/10 06:20	1	
Trifluorotoluene (Surr)	102		50 - 150					10/13/10 06:20	1	
Ethylbenzene-d10	99		50 - 150					10/13/10 06:20	1	
Fluorobenzene (Surr)	105		50 - 150					10/13/10 06:20	1	
Toluene-d8 (Surr)	104		50 - 150					10/13/10 06:20	1	

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
2-Methylnaphthalene	ND		0.012		ug/L	10/06/10 15:47	10/08/10 19:09	1
1-Methylnaphthalene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Acenaphthylene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Acenaphthene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Fluorene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Phenanthrene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Anthracene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Fluoranthene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Pyrene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Benzo[a]anthracene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Chrysene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Benzo[b]fluoranthene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Benzo[k]fluoranthene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Benzo[a]pyrene	ND		0.019		ug/L	10/06/10 15:47	10/08/10 19:09	1
Indeno[1,2,3-cd]pyrene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Dibenz(a,h)anthracene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Benzo[g,h,i]perylene	ND		0.0094		ug/L	10/06/10 15:47	10/08/10 19:09	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Terphenyl-d14	74		20 - 150			10/06/10 15:47	10/08/10 19:09	1

Method: NWTPH-Dx - Northwest -	Semi-Volatile Pe	etroleum Products (G	C)				
Analyte	Result Qu	ualifier RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND	0.12		mg/L	10/08/10 14:14	10/11/10 16:17	1

Client Sample ID: MW-10 (10-01-10) Date Collected: 10/01/10 11:10 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-5 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	ND		0.24		mg/L	_	10/08/10 14:14	10/11/10 16:17	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	85		50 - 150				10/08/10 14:14	10/11/10 16:17	1
Method: 6020 - Metals (ICI	· ·			MDI	11-14		Dermond	A b	D!! 5
Method: 6020 - Metals (ICI Analyte	· ·	able Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
· · · ·	· ·	Qualifier	RL	MDL	Unit ug/L	D 	Prepared 10/12/10 09:55	Analyzed	Dil Fac
Analyte	Result ND	Qualifier		MDL		D 	•	<u> </u>	
Analyte Lead	P/MS) - Dissolved	Qualifier		MDL		_	•	<u> </u>	

RL

MDL

Analyte

Benzene Ethylbenzene m-Xylene & p-Xylene

o-Xylene Toluene Xylenes, Total

Surrogate

Ethylbenzene-d10 Fluorobenzene (Surr) Toluene-d8 (Surr) Trifluorotoluene (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: MW-11 (10-01-10) Date Collected: 10/01/10 12:00 Date Received: 10/01/10 15:10

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

Dil Fac

5

Analyzed

Prepared

ND	1.0	ug/L	10/11/10 18:0)4 1
ND	1.0	ug/L	10/11/10 18:0)4 1
ND	2.0	ug/L	10/11/10 18:0)4 1
ND	1.0	ug/L	10/11/10 18:0)4 1
ND	1.0	ug/L	10/11/10 18:0)4 1
ND	2.0	ug/L	10/11/10 18:0)4 1
% Recovery	Qualifier Limits		Prepared Analyze	ed Dil Fac
% Recovery 98	QualifierLimits75 - 120		Prepared Analyze 10/11/10 18:0 10/11/10 18:0	
	·			04 1
98	75 - 120		10/11/10 18:0	04 <u>1</u> 04 1
98 103	75 - 120 80 - 120			04 1 04 1 04 1
98 103 101	75 - 120 80 - 120 80 - 120		10/11/10 18:0 10/11/10 18:0 10/11/10 18:0 10/11/10 18:0	04 1 04 1 04 1 04 1

Unit D

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		50		ug/L			10/13/10 06:46	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		50 - 150					10/13/10 06:46	1
Trifluorotoluene (Surr)	101		50 - 150					10/13/10 06:46	1
Ethylbenzene-d10	99		50 - 150					10/13/10 06:46	1
Fluorobenzene (Surr)	104		50 - 150					10/13/10 06:46	1
Toluene-d8 (Surr)	103		50 - 150					10/13/10 06:46	1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Naphthalene	0.012		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
2-Methylnaphthalene	ND		0.013		ug/L	10/06/10 15:47	10/08/10 19:29	1
1-Methylnaphthalene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Acenaphthylene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Acenaphthene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Fluorene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Phenanthrene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Anthracene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Fluoranthene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Pyrene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Benzo[a]anthracene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Chrysene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Benzo[b]fluoranthene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Benzo[k]fluoranthene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Benzo[a]pyrene	ND		0.020		ug/L	10/06/10 15:47	10/08/10 19:29	1
Indeno[1,2,3-cd]pyrene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Dibenz(a,h)anthracene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Benzo[g,h,i]perylene	ND		0.0098		ug/L	10/06/10 15:47	10/08/10 19:29	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Terphenyl-d14	69		20 - 150			10/06/10 15:47	10/08/10 19:29	1

Method: NWTPH-Dx - Northw	est - Semi-Volatile	Petroleum	n Products (O	SC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.12		ma/L	_	10/08/10 14:14	10/11/10 16:37	1

Client Sample ID: MW-11 (10-01-10) Date Collected: 10/01/10 12:00 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-6 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	ND		0.24		mg/L		10/08/10 14:14	10/11/10 16:37	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	83		50 - 150				10/08/10 14:14	10/11/10 16:37	1
Method: 6020 - Metals (ICP/	· ·								
Method: 6020 - Metals (ICP/ Analyte	· ·	able Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
•	· ·	Qualifier	RL	MDL	Unit ug/L	D	Prepared	Analyzed	Dil Fac
Analyte	Result ND	Qualifier		MDL		<u>D</u>			
Analyte	MS) - Dissolved	Qualifier		MDL					

TestAmerica Seattle

10/15/2010

RL

1.0

1.0

2.0

1.0

1.0

2.0

Limits

75 - 120

80 - 120

80 - 120

85 - 120

80 - 120

MDL

Unit D

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Analyte

Benzene

o-Xylene

Toluene

Surrogate

Ethylbenzene

Xylenes, Total

Ethylbenzene-d10

Toluene-d8 (Surr)

Fluorobenzene (Surr)

Trifluorotoluene (Surr)

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

Client Sample ID: MW-12 (10-01-10) Date Collected: 10/01/10 12:50 Date Received: 10/01/10 15:10

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

ND

ND

ND

ND

ND

98

102

100

101

97

Qualifier

% Recovery

Lab Sample ID: 580-22003-7 Matrix: Water

Analyzed

10/11/10 18:29

10/11/10 18:29

10/11/10 18:29

10/11/10 18:29

Dil Fac

1

1

1

1

	10/11/10 18:29	1
	10/11/10 18:29	1
Prepared	Analyzed	Dil Fac
	10/11/10 18:29	1
	10/11/10 18:29	1
	10/11/10 18:29	1
	10/11/10 18:29	1
	10/11/10 18:29	1

Prepared

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		50		ug/L			10/13/10 07:11	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		50 - 150					10/13/10 07:11	1
Trifluorotoluene (Surr)	101		50 - 150					10/13/10 07:11	1
Ethylbenzene-d10	99		50 - 150					10/13/10 07:11	1
Fluorobenzene (Surr)	104		50 - 150					10/13/10 07:11	1
Toluene-d8 (Surr)	104		50 - 150					10/13/10 07:11	1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Naphthalene	0.019		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
2-Methylnaphthalene	ND		0.013		ug/L	10/06/10 15:47	10/08/10 19:48	1
1-Methylnaphthalene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Acenaphthylene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Acenaphthene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Fluorene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Phenanthrene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Anthracene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Fluoranthene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Pyrene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Benzo[a]anthracene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Chrysene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Benzo[b]fluoranthene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Benzo[k]fluoranthene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Benzo[a]pyrene	ND		0.019		ug/L	10/06/10 15:47	10/08/10 19:48	1
Indeno[1,2,3-cd]pyrene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Dibenz(a,h)anthracene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Benzo[g,h,i]perylene	ND		0.0097		ug/L	10/06/10 15:47	10/08/10 19:48	1
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Terphenyl-d14	77		20 - 150			10/06/10 15:47	10/08/10 19:48	1

Method: NWTPH-Dx - Northwe	est - Semi-Volatile	Petroleum	Products (G	SC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.12		ma/L	_	10/08/10 14:14	10/11/10 16:57	1

Client Sample ID: MW-12 (10-01-10) Date Collected: 10/01/10 12:50 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-7 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	ND		0.24		mg/L		10/08/10 14:14	10/11/10 16:57	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	80		50 - 150			-	10/08/10 14:14	10/11/10 16:57	1
Method: 6020 - Metals (ICF	· · · · · · · · · · · · · · · · · · ·					_			
Method: 6020 - Metals (ICF Analyte	· · · · · · · · · · · · · · · · · · ·	able Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
· · · ·	· · · · · · · · · · · · · · · · · · ·	Qualifier	RL	MDL	Unit ug/L	D _	Prepared 10/12/10 09:55	Analyzed	Dil Fac
Analyte	Result ND	Qualifier		MDL		D — -	•		
Analyte Lead	P/MS) - Dissolved	Qualifier		MDL			•		

Client Sample ID: DUP-1 (10-01-10) Date Collected: 10/01/10 00:00 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-8
Matrix: Water

TestAmerica Job ID: 580-22003-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0		ug/L			10/11/10 18:55	1
Ethylbenzene	ND		1.0		ug/L			10/11/10 18:55	1
m-Xylene & p-Xylene	ND		2.0		ug/L			10/11/10 18:55	1
o-Xylene	ND		1.0		ug/L			10/11/10 18:55	1
Toluene	ND		1.0		ug/L			10/11/10 18:55	1
Xylenes, Total	ND		2.0		ug/L			10/11/10 18:55	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		75 - 120					10/11/10 18:55	1
Ethylbenzene-d10	103		80 - 120					10/11/10 18:55	1
Fluorobenzene (Surr)	101		80 - 120					10/11/10 18:55	1
Toluene-d8 (Surr)	101		85 - 120					10/11/10 18:55	1
Trifluorotoluene (Surr)	98		80 - 120					10/11/10 18:55	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		50		ug/L			10/13/10 07:37	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		50 - 150					10/13/10 07:37	1
Trifluorotoluene (Surr)	102		50 - 150					10/13/10 07:37	1
Ethylbenzene-d10	100		50 - 150					10/13/10 07:37	1
Fluorobenzene (Surr)	106		50 - 150					10/13/10 07:37	1
Toluene-d8 (Surr)	105		50 - 150					10/13/10 07:37	1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.020		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
2-Methylnaphthalene	ND		0.012		ug/L		10/06/10 15:47	10/08/10 20:08	1
1-Methylnaphthalene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Acenaphthylene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Acenaphthene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Fluorene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Phenanthrene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Anthracene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Fluoranthene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Pyrene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Benzo[a]anthracene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Chrysene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Benzo[b]fluoranthene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Benzo[k]fluoranthene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Benzo[a]pyrene	ND		0.019		ug/L		10/06/10 15:47	10/08/10 20:08	1
Indeno[1,2,3-cd]pyrene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Dibenz(a,h)anthracene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Benzo[g,h,i]perylene	ND		0.0096		ug/L		10/06/10 15:47	10/08/10 20:08	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	64		20 - 150			-	10/06/10 15:47	10/08/10 20:08	1

Method: NWTPH-Dx - Northw	est - Semi-Volatile	Petroleum	Products (C	SC)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		0.12		ma/L	_	10/08/10 14:14	10/11/10 17:17	1

Client Sample ID: DUP-1 (10-01-10) Date Collected: 10/01/10 00:00 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-8 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Motor Oil (>C24-C36)	ND		0.24		mg/L		10/08/10 14:14	10/11/10 17:17	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	85		50 - 150				10/08/10 14:14	10/11/10 17:17	1
Method: 6020 - Metals (ICF	· ·								
Method: 6020 - Metals (ICF Analyte	· ·	able Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	· ·		RL	MDL	Unit ug/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte	Result ND	Qualifier		MDL		D	· · · · · · · · · · · · · · · · · · ·		
Analyte Lead	P/MS) - Dissolved	Qualifier		MDL		_	· · · · · · · · · · · · · · · · · · ·		

Client Sample ID: Preservative Blank Lab Sample ID: 580-22003-10 Date Collected: 10/05/10 00:00 Matrix: Water Date Received: 10/05/10 15:10 Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) Analyte Result Qualifier MDL Prepared Dil Fac RL Unit D Analyzed #2 Diesel (C10-C24) ND 0.12 mg/L 10/08/10 14:14 10/11/10 17:37 1 Motor Oil (>C24-C36) ND 0.25 mg/L 10/08/10 14:14 10/11/10 17:37 1 Limits Surrogate % Recovery Qualifier Prepared Analyzed Dil Fac 50 - 150 10/08/10 14:14 10/11/10 17:37 o-Terphenyl 79 1 Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND ^ 2.0 ug/L 10/12/10 09:55 Lead 10/12/10 20:48 5

Analysis Batch: 73321

Matrix: Water

Lab Sample ID: MB 580-73321/4

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

TestAmerica Job ID: 580-22003-1 Client Sample ID: MB 580-73321/4 Prep Type: Total/NA 5 6

Unit D	Prenared	A nalyzed

Analyte	Result Qualifier	RL	MDL	Unit D	Prepared Anal	yzed	Dil Fac
Benzene	ND	1.0		ug/L	10/11/10 1	12:07	1
Ethylbenzene	ND	1.0		ug/L	10/11/10 1	12:07	1
m-Xylene & p-Xylene	ND	2.0		ug/L	10/11/10 1	12:07	1
o-Xylene	ND	1.0		ug/L	10/11/10 1	12:07	1
Toluene	ND	1.0		ug/L	10/11/10 1	12:07	1
Xylenes, Total	ND	2.0		ug/L	10/11/10 1	12:07	1
	MB MB						

Surrogate	% Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97	75 - 120		10/11/10 12:07	1
Ethylbenzene-d10	102	80 - 120		10/11/10 12:07	1
Fluorobenzene (Surr)	100	80 - 120		10/11/10 12:07	1
Toluene-d8 (Surr)	101	85 - 120		10/11/10 12:07	1
Trifluorotoluene (Surr)	99	80 - 120		10/11/10 12:07	1

Lab Sample ID: LCS 580-73321/5 Matrix: Water Analysis Batch: 73321

			Spike	LCS	LCS				% Rec.
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits
Benzene			25.0	22.7		ug/L		91	80 - 120
Ethylbenzene			25.0	24.7		ug/L		99	75 - 125
m-Xylene & p-Xylene			50.0	48.6		ug/L		97	75 - 130
o-Xylene			25.0	25.4		ug/L		101	80 - 120
Toluene			25.0	24.2		ug/L		97	75 - 120
	LCS	LCS							
Surrogate	% Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	98		75 - 120						
Ethylbenzene-d10	100		80 - 120						
Fluorobenzene (Surr)	100		80 - 120						
Toluene-d8 (Surr)	100		85 - 120						
Trifluorotoluene (Surr)	89		80 - 120						

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-73471/6 Matrix: Water						Client Samp	ole ID: MB 580- Prep Type: T	
Analysis Batch: 73471	МВ	МВ						
Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Gasoline	ND		50		ug/L		10/13/10 00:25	1
	MB	МВ						
Surrogate	% Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		50 - 150		_		10/13/10 00:25	1
Trifluorotoluene (Surr)	106		50 - 150				10/13/10 00:25	1
Ethylbenzene-d10	99		50 - 150				10/13/10 00:25	1
Fluorobenzene (Surr)	104		50 - 150				10/13/10 00:25	1
Toluene-d8 (Surr)	104		50 - 150				10/13/10 00:25	1

Client Sample ID: LCS 580-73321/5 Prep Type: Total/NA Spike

Added

Limits 50 - 150

50 - 150

50 - 150

50 - 150

50 - 150

1000

LCS LCS

977

Result Qualifier

Unit

ug/L

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

LCS LCS % Recovery Qualifier

102

103

100 99

101

Analysis Batch: 73471

4-Bromofluorobenzene (Surr)

Trifluorotoluene (Surr)

Fluorobenzene (Surr)

Ethylbenzene-d10

Toluene-d8 (Surr)

Matrix: Water

Matrix: Water

Analyte

Gasoline

Surrogate

Lab Sample ID: LCS 580-73471/9

Lab Sample ID: LCSD 580-73471/10

Client Sample ID: LCS 580-73471/9

% Rec.

Limits

79 - 110

% Rec

98

D

Prep Type: Total/NA

1 2 3 4 5 6 7 8

Client Sample ID: LCSD 580-73471/10

Client Sample ID: MW-7 (10-01-10)

Client Sample ID: MW-7 (10-01-10)

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 73471												
			Spike	LCSD	LCSD				% Rec.		RPD	
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit	
Gasoline			1000	940		ug/L		94	79 - 110	4	20	
	LCSD	LCSD										
Surrogate	% Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	101		50 - 150									
Trifluorotoluene (Surr)	97		50 - 150									
Ethylbenzene-d10	100		50 - 150									
Fluorobenzene (Surr)	100		50 - 150									
Toluene-d8 (Surr)	101		50 - 150									

Lab Sample ID: 580-22003-2 MS

Matrix: Water Analysis Batch: 73471

	Sample	Sample	Spike	MS	MS				% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits
Gasoline	ND		1160	1110		ug/L		94	50 - 150
	MS	MS							
Surrogate	% Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	100		50 - 150						
Trifluorotoluene (Surr)	96		50 - 150						
Ethylbenzene-d10	100		50 - 150						
Fluorobenzene (Surr)	100		50 - 150						
Toluene-d8 (Surr)	102		50 - 150						

Lab Sample ID: 580-22003-2 MSD Matrix: Water

Analysis Batch:	: 73471
-----------------	---------

	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Gasoline	ND		1160	1100		ug/L		93	50 - 150	1	35
	MSD	MSD									
Surrogate	% Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	102		50 - 150								
Trifluorotoluene (Surr)	98		50 - 150								
Ethylbenzene-d10	100		50 - 150								
Fluorobenzene (Surr)	101		50 - 150								
Toluene-d8 (Surr)	103		50 - 150								

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-73124/1-A Matrix: Water

Analysis Batch: 73260

Analyte

Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene

Benzo[a]anthracene

Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz(a,h)anthracene Benzo[g,h,i]perylene

Chrysene

Client Sample ID: MB 580-73124/1-A
Prep Type: Total/NA
Pren Batch: 73124

TestAmerica Job ID: 580-22003-1

3260							Prep Batch	: 73124
	MB	МВ						
	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.013		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.020		ug/L	10/06/10 14:39	10/08/10 15:55	1
9	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
e	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1
	ND		0.010		ug/L	10/06/10 14:39	10/08/10 15:55	1

	IVID	IVID				
Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	63		20 - 150	10/06/10 14:39	10/08/10 15:55	1

..... ...

Lab Sample ID: LCS 580-73124/2-A Matrix: Water

Analysis Batch: 73260

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit D % Rec Limits Naphthalene 1.00 0.636 ug/L 64 50 - 125 2-Methylnaphthalene 1.00 0.644 ug/L 64 60 - 130 1-Methylnaphthalene 1.00 0.645 64 50 - 125 ug/L Acenaphthylene 1.00 0.750 75 60 - 140 ug/L Acenaphthene 0.682 68 60 - 125 1.00 ug/L Fluorene 1.01 0.700 ug/L 69 65 - 125 Phenanthrene 0.713 71 60 - 125 1.00 ug/L Anthracene 1.00 0.762 ug/L 76 60 - 130 Fluoranthene 0.775 77 1.00 ug/L 70 - 140 Pyrene 1.00 0.741 ug/L 74 65 - 130 1.00 0.743 74 65 - 125 Benzo[a]anthracene ug/L Chrysene 1.00 0.944 ug/L 94 65 - 125 Benzo[b]fluoranthene 1.00 0.754 75 65 - 130 ug/L Benzo[k]fluoranthene 1.00 0.967 ug/L 97 65 - 130 Benzo[a]pyrene 1.00 0.839 ug/L 84 65 - 130 0.916 91 Indeno[1,2,3-cd]pyrene 1.00 ug/L 55 - 140 Dibenz(a,h)anthracene 1.00 0.940 ug/L 94 55 - 135 Benzo[g,h,i]perylene 1.00 0.906 ug/L 90 55 - 130 LCS LCS Surrogate % Recovery Qualifier Limits

Terphenyl-d14	67	20 - 150

Client Sample ID: LCS 580-73124/2-A

Prep Type: Total/NA

Prep Batch: 73124

5 6

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

_ Lab Sample ID: LCSD 580-73124	/3-A						Client S	Sample I	D: LCSD 5	80-7312	24/3-A
Matrix: Water									Prep Ty	pe: To	tal/NA
Analysis Batch: 73260									Prep	Batch:	73124
-			Spike	LCSD	LCSD				% Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Naphthalene			1.00	0.632		ug/L		63	50 - 125	1	20
2-Methylnaphthalene			1.00	0.640		ug/L		64	60 - 130	1	20
1-Methylnaphthalene			1.00	0.647		ug/L		64	50 - 125	0	20
Acenaphthylene			1.00	0.742		ug/L		74	60 - 140	1	20
Acenaphthene			1.00	0.678		ug/L		68	60 - 125	1	20
Fluorene			1.01	0.698		ug/L		69	65 - 125	0	20
Phenanthrene			1.00	0.735		ug/L		74	60 - 125	3	20
Anthracene			1.00	0.791		ug/L		79	60 - 130	4	20
Fluoranthene			1.00	0.809		ug/L		81	70 - 140	4	20
Pyrene			1.00	0.784		ug/L		78	65 - 130	6	20
Benzo[a]anthracene			1.00	0.765		ug/L		77	65 - 125	3	20
Chrysene			1.00	0.939		ug/L		94	65 - 125	0	20
Benzo[b]fluoranthene			1.00	0.809		ug/L		81	65 - 130	7	20
Benzo[k]fluoranthene			1.00	0.917		ug/L		92	65 - 130	5	20
Benzo[a]pyrene			1.00	0.847		ug/L		85	65 - 130	1	20
Indeno[1,2,3-cd]pyrene			1.00	0.918		ug/L		92	55 - 140	0	20
Dibenz(a,h)anthracene			1.00	0.944		ug/L		94	55 - 135	0	20
Benzo[g,h,i]perylene			1.00	0.900		ug/L		90	55 - 130	1	20
	LCSD	LCSD									
Surrogate	% Recovery	Qualifier	Limits								
Terphenyl-d14	72		20 - 150								

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-73267/1-B	•									Clier	nt Sample	D: MB 580-73	267/1-B
Matrix: Water												Prep Type: T	otal/NA
Analysis Batch: 73312												Prep Batch	: 73267
		MB	MB										
Analyte	Re	sult	Qualifier		RL	М	DL	Unit	D		Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)		ND			0.12			mg/L	_	10/08	8/10 14:14	10/11/10 13:19	1
Motor Oil (>C24-C36)		ND			0.25			mg/L		10/08	8/10 14:14	10/11/10 13:19	1
		ΜВ	МВ										
Surrogate	% Reco	very	Qualifier	Lin	nits						Prepared	Analyzed	Dil Fac
o-Terphenyl		86		50	- 150					10/0	8/10 14:14	10/11/10 13:19	1
_ Lab Sample ID: LCS 580-73267/2-	в									Client	Sample	ID: LCS 580-73	267/2-B
Matrix: Water	-											Prep Type: T	
Analysis Batch: 73312												Prep Batch	
				Spike		LCS	LCS					% Rec.	
Analyte				Added		Result	Qualifier	Unit		D	% Rec	Limits	
#2 Diesel (C10-C24)				5.00		4.11		mg/L			82	70 - 130	
Motor Oil (>C24-C36)				5.00		4.60		mg/L			92	70 - 130	
	LCS	LCS											
Surrogate %	Recovery	Qual	lifier	Limits									

Analysis Batch: 73312

Matrix: Water

Prep Type: Total/NA

Prep Batch: 73267

RPD

5

5

RPD

Limit

30

30

Client Sample ID: LCSD 580-73267/3-B

% Rec.

Limits

70 - 130

70 - 130

D % Rec

78

88

2 3 4 5 6 7 8 9

			Spike	LCSD	LCSD	
Analyte			Added	Result	Qualifier	Unit
#2 Diesel (C10-C24)			5.00	3.92		mg/L
Motor Oil (>C24-C36)			5.00	4.39		mg/L
	LCSD	LCSD				
Surrogate	% Recovery	Qualifier	Limits			
o-Terphenyl	89		50 - 150			

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: LCSD 580-73267/3-B

Lab Sample ID: MB 580-73409/1-A								C	lient	Sample	ID: MB 5	8 <mark>0-73</mark> 4	09/1-4
Matrix: Water										Prep Ty	pe: Total	Recov	erabl
Analysis Batch: 73534											Prep	Batch:	7340
		MB MB											
Analyte	R	esult Qualifier		RL	М	DL	Unit	D	I	Prepared	Ana	lyzed	Dil Fa
Lead		ND ^		2.0			ug/L	1	10/12/	/10 09:55	10/12/10	18:50	
Lab Sample ID: LCS 580-73409/2-A								Cli	ent	Sample	ID: LCS 5	80-734	09/2-/
Matrix: Water										Prep Ty	pe: Total	Recov	erable
Analysis Batch: 73534											Prep	Batch:	7340
			Spike		LCS	LCS					% Rec.		
Analyte			Added		Result	Qualifier	Unit		D	% Rec	Limits		
Lead			1000		985	^	ug/L			99	80 - 120		
Lab Sample ID: LCSD 580-73409/3-	Α							Clie	nt Sa	ample IC	: LCSD 5	80-734	09/3-A
Matrix: Water										Prep Ty	pe: Total	Recov	erable
Analysis Batch: 73534											Prep	Batch:	73409
			Spike		LCSD	LCSD					% Rec.		RPI
Analyte			Added		Result	Qualifier	Unit		D	% Rec	Limits	RPD	Limi
Lead			1000		995	^	ug/L			99	80 - 120	1	20
Lab Sample ID: 580-22003-1 MS								С	lien	t Sample	e ID: MW-(6R (10-	-01-10
Matrix: Water											pe: Total		
Analysis Batch: 73534											-	Batch:	
	Sample	Sample	Spike		MS	MS					% Rec.		
Analyte	Result	Qualifier	Added		Result	Qualifier	Unit		D	% Rec	Limits		
Lead	ND	<u>^</u>	1000		1020	٨	ug/L			102	80 - 120		
Lab Sample ID: 580-22003-1 MSD								с	lien	t Sample	e ID: MW-(6R (10-	-01-10
Matrix: Water										Prep Ty	pe: Total	Recov	erable
Analysis Batch: 73534											Prep	Batch:	73409
-	Sample	Sample	Spike		MSD	MSD					% Rec.		RPD
Analyte	Result	Qualifier	Added		Result	Qualifier	Unit		D	% Rec	Limits	RPD	Limi
Lead	ND	<u>^</u>	1000		1040	٨	ug/L			104	80 - 120	2	20
Lab Sample ID: 580-22003-1 DU								С	lien	t Sample	D: MW-	6R (10-	-01-10
Matrix: Water										Prep Ty	pe: Total	Recov	erable
Amelia Detala 70504											-	Batch:	
Analysis Batch: 73534					БШ	DU							RPD
Analysis Batch: 73534	Sample	Sample			00	00							
Analysis Batch: 73534	•	Sample Qualifier				Qualifier	Unit		D			RPD	Limi

Batch

73321

73471

73124

73260

73267

73312

73409

73534

73409

73534

Number

Prepared

10/11/10 14:14 JMB

10/13/10 02:57 JMB

10/06/10 15:47 DB

10/08/10 17:51 BT

10/08/10 14:14 SP

10/11/10 14:58 EK

10/12/10 09:55 SP

10/12/10 09:55 SP

10/12/10 20:55 FCW

10/12/10 19:03 FCW

Or Analyzed Analyst

Lab

TestAmerica Seattle

Dilution

Factor

1

1

1

1

5

5

Run

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Dissolved

Dissolved

Total Recoverable

Total Recoverable

Client Sample ID: MW-6R (10-01-10) Date Collected: 10/01/10 13:55 Date Received: 10/01/10 15:10

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Prep

Prep

Batch

Method

8260B

3520C

3520C

3005A

6020

3005A

6020

NWTPH-Gx

8270C SIM

NWTPH-Dx

Lab Sample ID: 580-22003-1 Matrix: Water

Lab Sample ID: 580-22003-2

Matrix: Water

Client Sample ID: MW-7 (10-01-10)

Date Collected: 10/01/10 08:25 Date Received: 10/01/10 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	73321	10/11/10 15:31	JMB	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Gx		1	73471	10/13/10 03:23	JMB	TestAmerica Seattle
Total/NA	Prep	3520C			73124	10/06/10 15:47	DB	TestAmerica Seattle
Total/NA	Analysis	8270C SIM		1	73260	10/08/10 18:11	вт	TestAmerica Seattle
Total/NA	Prep	3520C			73267	10/08/10 14:14	SP	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Dx		1	73312	10/11/10 15:18	EK	TestAmerica Seattle
Dissolved	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Dissolved	Analysis	6020		5	73534	10/12/10 21:02	FCW	TestAmerica Seattle
Total Recoverable	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Total Recoverable	Analysis	6020		5	73534	10/12/10 20:02	FCW	TestAmerica Seattle

Client Sample ID: MW-8 (10-01-10) Date Collected: 10/01/10 09:20 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-3 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	73321	10/11/10 16:47	JMB	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Gx		1	73471	10/13/10 05:30	JMB	TestAmerica Seattle
Total/NA	Prep	3520C			73124	10/06/10 15:47	DB	TestAmerica Seattle
Total/NA	Analysis	8270C SIM		1	73260	10/08/10 18:30	вт	TestAmerica Seattle
Total/NA	Prep	3520C			73267	10/08/10 14:14	SP	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Dx		1	73312	10/11/10 15:38	EK	TestAmerica Seattle
Dissolved	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Dissolved	Analysis	6020		5	73534	10/12/10 21:21	FCW	TestAmerica Seattle
Total Recoverable	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Total Recoverable	Analysis	6020		5	73534	10/12/10 20:09	FCW	TestAmerica Seattle

Batch

73321

73471

73124

73260

73267

73312

73409

73534

73409

73534

Number

Prepared

10/11/10 17:13 JMB

10/13/10 05:55 JMB

10/06/10 15:47 DB

10/08/10 18:50 BT

10/08/10 14:14 SP

10/11/10 15:57 EK

10/12/10 09:55 SP

10/12/10 09:55 SP

10/12/10 21:28 FCW

10/12/10 20:15 FCW

Or Analyzed Analyst

Lab

TestAmerica Seattle

Dilution

Factor

1

1

1

1

5

5

Run

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Dissolved

Dissolved

Total Recoverable

Total Recoverable

Client Sample ID: MW-9 (10-01-10) Date Collected: 10/01/10 10:15 Date Received: 10/01/10 15:10

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Prep

Prep

Batch

Method

8260B

3520C

3520C

3005A

6020

3005A

6020

NWTPH-Gx

8270C SIM

NWTPH-Dx

Lab Sample ID: 580-22003-5

Matrix: Water

Client Sample ID: MW-10 (10-01-10)

Date Collected: 10/01/10 11:10 Date Received: 10/01/10 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	73321	10/11/10 17:38	JMB	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Gx		1	73471	10/13/10 06:20	JMB	TestAmerica Seattle
Total/NA	Prep	3520C			73124	10/06/10 15:47	DB	TestAmerica Seattle
Total/NA	Analysis	8270C SIM		1	73260	10/08/10 19:09	BT	TestAmerica Seattle
Total/NA	Prep	3520C			73267	10/08/10 14:14	SP	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Dx		1	73312	10/11/10 16:17	EK	TestAmerica Seattle
Dissolved	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Dissolved	Analysis	6020		5	73534	10/12/10 21:35	FCW	TestAmerica Seattle
Total Recoverable	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Total Recoverable	Analysis	6020		5	73534	10/12/10 20:22	FCW	TestAmerica Seattle

Client Sample ID: MW-11 (10-01-10) Date Collected: 10/01/10 12:00 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-6 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	73321	10/11/10 18:04	JMB	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Gx		1	73471	10/13/10 06:46	JMB	TestAmerica Seattle
Total/NA	Prep	3520C			73124	10/06/10 15:47	DB	TestAmerica Seattle
Total/NA	Analysis	8270C SIM		1	73260	10/08/10 19:29	вт	TestAmerica Seattle
Total/NA	Prep	3520C			73267	10/08/10 14:14	SP	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Dx		1	73312	10/11/10 16:37	EK	TestAmerica Seattle
Dissolved	Prep	3005A			73409	10/12/10 09:58	SP	TestAmerica Seattle
Dissolved	Analysis	6020		5	73534	10/12/10 21:41	FCW	TestAmerica Seattle
Total Recoverable	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Total Recoverable	Analysis	6020		5	73534	10/12/10 20:29	FCW	TestAmerica Seattle

Client Sample ID: MW-12 (10-01-10) Date Collected: 10/01/10 12:50 Date Received: 10/01/10 15:10

Lab Sample ID: 580-22003-7 Matrix: Water

Lab Sample ID: 580-22003-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	73321	10/11/10 18:29	JMB	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Gx		1	73471	10/13/10 07:11	JMB	TestAmerica Seattle
Total/NA	Prep	3520C			73124	10/06/10 15:47	DB	TestAmerica Seattle
Total/NA	Analysis	8270C SIM		1	73260	10/08/10 19:48	BT	TestAmerica Seattle
Total/NA	Prep	3520C			73267	10/08/10 14:14	SP	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Dx		1	73312	10/11/10 16:57	EK	TestAmerica Seattle
Dissolved	Prep	3005A			73409	10/12/10 09:58	SP	TestAmerica Seattle
Dissolved	Analysis	6020		5	73534	10/12/10 21:48	FCW	TestAmerica Seattle
Total Recoverable	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Total Recoverable	Analysis	6020		5	73534	10/12/10 20:35	FCW	TestAmerica Seattle

Client Sample ID: DUP-1 (10-01-10) Date Collected: 10/01/10 00:00

Date Received: 10/01/10 15:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	73321	10/11/10 18:55	JMB	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Gx		1	73471	10/13/10 07:37	JMB	TestAmerica Seattle
Total/NA	Prep	3520C			73124	10/06/10 15:47	DB	TestAmerica Seattle
Total/NA	Analysis	8270C SIM		1	73260	10/08/10 20:08	BT	TestAmerica Seattle
Total/NA	Prep	3520C			73267	10/08/10 14:14	SP	TestAmerica Seattle
Total/NA	Analysis	NWTPH-Dx		1	73312	10/11/10 17:17	EK	TestAmerica Seattle
Dissolved	Prep	3005A			73409	10/12/10 09:58	SP	TestAmerica Seattle
Dissolved	Analysis	6020		5	73534	10/12/10 21:54	FCW	TestAmerica Seattle
Total Recoverable	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
Total Recoverable	Analysis	6020		5	73534	10/12/10 20:42	FCW	TestAmerica Seattle

Client Sample ID: Preservative Blank Date Collected: 10/05/10 00:00 Date Received: 10/05/10 15:10

Lab Sample ID: 580-22003-10 Matrix: Water

ſ	_	Batch	Batch		Dilution	Batch	Prepared		
	Ргер Туре	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
	Total/NA	Prep	3520C			73267	10/08/10 14:14	SP	TestAmerica Seattle
	Total/NA	Analysis	NWTPH-Dx		1	73312	10/11/10 17:37	EK	TestAmerica Seattle
	Total Recoverable	Prep	3005A			73409	10/12/10 09:55	SP	TestAmerica Seattle
	Total Recoverable	Analysis	6020		5	73534	10/12/10 20:48	FCW	TestAmerica Seattle

Certification Summary

Client: ARCADIS U.S., Inc. Project/Site: BP OLY

5
8
9

Laboratory	Authority	Program	EPA Region	Certification ID	Expiration Date
TestAmerica Seattle		USDA		P330-08-00099	05/22/11
TestAmerica Seattle	Alaska	Alaska UST	10	UST-022	03/04/11
TestAmerica Seattle	California	NELAC Secondary AB	9	1115CA	01/31/11
TestAmerica Seattle	Florida	NELAC Secondary AB	4	E871074	06/30/11
TestAmerica Seattle	L-A-B	DoD ELAP	0	L2236	01/19/13
TestAmerica Seattle	L-A-B	ISO/IEC 17025	0	L2236	01/19/13
TestAmerica Seattle	Montana	State Program	8		04/30/20
TestAmerica Seattle	Oregon	NELAC Primary AB	10	WA100007	11/06/10
TestAmerica Seattle	Washington	State Program	10	C553	02/17/11

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

Sample Summary

Client: ARCADIS U.S., Inc. Project/Site: BP OLY

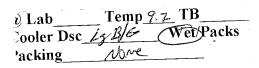
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-22003-1	MW-6R (10-01-10)	Water	10/01/10 13:55	10/01/10 15:10
580-22003-2	MW-7 (10-01-10)	Water	10/01/10 08:25	10/01/10 15:10
580-22003-3	MW-8 (10-01-10)	Water	10/01/10 09:20	10/01/10 15:10
580-22003-4	MW-9 (10-01-10)	Water	10/01/10 10:15	10/01/10 15:10
580-22003-5	MW-10 (10-01-10)	Water	10/01/10 11:10	10/01/10 15:10
580-22003-6	MW-11 (10-01-10)	Water	10/01/10 12:00	10/01/10 15:10
580-22003-7	MW-12 (10-01-10)	Water	10/01/10 12:50	10/01/10 15:10
580-22003-8	DUP-1 (10-01-10)	Water	10/01/10 00:00	10/01/10 15:10
580-22003-10	Preservative Blank	Water	10/05/10 00:00	10/05/10 15:10

Image: relation of the second sec		Project Manager: Alexander Lopez III Tel/Fax: 503.220.8201 x 1122 Analysis Turnaround Time Calendar (C) or Work Days (W) TAT if different from Below X 2 weeks Darie 1 week Darie Time Time Type Mathematical Sample Mathematical Sample Darie Time Time Type Mathematical Sample Mathematical Sample Darie Time Time Type Mathematical Sample W ØS25 Grab W ØS25 Grab W ØZ55 Grab W ØZ55 Grab W ØZ55 Grab		Image: Second	
MW-8 (10-61 - 10) Image: Constraint of the image: Company of th	MW-6R (10 -0 / -10) MW-7 (10 -0 / -10)		W 1)	X X X X X X X X X X X X X X X X X X X	1,2,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MW-9 (10- 2) - 10)	/0/5 Grab	w W	X X X X X	1,2,4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		///2 Grab	w w	X X X X X X X X	1,2,4
TB-1 (10-07 - 10) W W W ed: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other W W W Identification \Box Skin Irritant Poison B Unknown \Box rd Flammable Skin Irritant Poison B Unknown \Box ons/QC Requirements & Comments: Oompanys Date/Time; $Date/Time;$ Oompany: Company: Date/Time; Date/Time;		1250 Grab	w w 1	X X X X X X X X X X X X X X X X X X X	1,2,4
ions/QC Requirements & Comments: Company: Company: Compa	Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=N Possible Hazard Identification Con-Hazard Flammable Skin Irritant			Sample Disposal (A fee may be assessed if sample Return To Client X Disposal By Lab	les are refained longer than 1
Schedule Companys Date/Times Received by: Mod Schedule Company: Company: Company: Date/Time: Received by: Mod Schedule Company: Company: Date/Time: Received by: Company: Company:	Special Instructions/QC Requirements & Comments:				
	Relinquished by: State	Company: Company: Company:	5 5 3	Khaze-	T/

5

9 10

varar wor


10

Blaine tech

١.) ال

v Lab Temp <u>10,2</u> TB Cooler Dsc <u>Ly Blt</u> Wet/Packs Packing <u>Nowe</u>

frealis

1) Lab____ Temp_//_/ TB_____ Cooler Dsc_ /-s_ B/W (Wet/Packs acking NONE 8 W/ocs

10/15/2010

Client: ARCADIS U.S., Inc.

Login Number: 22003

Creator: Presley, Kim List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	no name
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Job Number: 580-22003-1

List Source: TestAmerica Seattle

ARCADIS

 $\mathsf{Appendix}\,\mathbf{F}$

Groundwater Monitoring and Field Data Sheets

WELL GAUGING DATA Project # 10/001-941 Date 10/1/10 Client Shell Site 1117 W. PAY, 01/MPiz

Site ____

					Thickness	Volume of	·	······································		
		Well		Depth to	of	Immiscible			Survey	1
Well ID		Size	Sheen /	Immiscible	Immiscible				Point:	
weit ID	Time	(in.)	Odor	Liquid (ft.)	Liquid (A)		Depth to water			
MALL 177	num.			<u> </u>		(ml)	(ft.)	bottom (ft.)	TOB or TOC	Notes
MW-6P	0750	2				the				110103
	·					pe	242	1244	١	
WW_{7}	MZIL	2				7				
1000/	<u>-77</u>						400	13/2		
MIS	m						1.80	$\Gamma \overline{P} O$		
1110-01	0171	2					20-	13.20		
AALL A		_				·····	2.17	11.20		
MW-9	0 140	2					~			
							3.21	13.25		
VIII-M	1747	7/	-					12-21		
100 10 1	74						7.56	17:24		
Mill all	mid	Z					1.10	1.20		
110-114	1/4/									
A 41 M							2.15	12.14		
NW-IZL	0741	2	·				- 1-7		-+/+	
		——— <u> </u> -	———				269	12711	14	
							2.01	<u></u>		
						<u>+</u> _				
										·
							1			
										İ
<u> </u>										
								·····	<u>-</u>	
<u>L</u> _	, I,									

BP LOW FLOW WE	LL MONITORING DATA SHEET				
	Station # BPOLY				
Sampler	Start Date: 10/01/10				
WellID. Mul 1+	Well Diamatan 2				
Total Wall David in 100					
Douth to D D	Depth to Water Pre: 2.42 Post: 2.45				
Defense and	nickness of Free Product (feet):				
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Flow Rate: 100 mQ/M	ow Cell Type: YSI 556 MPS / YSI 550A				
1343 13.52 7.17 148 1346 12.84 7.02 145 1349 12.92 6.96 145 1349 12.97 6.94 145	$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{$				
Ferrous Iron]Fe = [Nit	trate]NH3 = Sulfide =				
Did well dewater? Yes No	Amount actually evacuated: 1.52				
Sampling Time: 1355	Sampling Date: 10/11/19				
ample I.D.: MW-6R(10-01-10)	Labord				
analyzed for: See Co	Laboratory: TEST AMERICA				
quipment Blank I.D.: @	Duplicate I.D.:				

.

•

. : .

BP LOW FLOW	WELL MONITORING DATA SHEET				
Project #: 101001-911	Station # BPOLY				
Sampler: GC	Start Date: 10/01/10				
Well I.D.: MW-7	Well Diameter: $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ $\begin{pmatrix} 3 \\ 4 \\ 6 \\ 8 \end{pmatrix}$				
Total Well Depth: 17,10	Depth to Water Pre: 4.80 Post: 5.72				
Depth to Free Product:	Thickness of Free Product (feet):				
Referenced to: PVC Grade	Flow Cell Type: YSI 556 MPS / YSI 550A				
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Flow Rate: 00 M	Peristaltic Pump Bladder Pump New Tubing Other Pump Depth:				
Temp.Cond.Time(Cor °F)pH(mS or discussion)	Turbidity D.O. ORP Water Removed (NTUs) (mg/L) (mV) (gals. or m) DTW				
0808 13.46 5.44 1801	42 392 2277 300 5.00				
0811 13.40 9.94 1806					
0814 13.75 5.93 1802	- 18 2.80 2173 1200 5.08				
0817 13:78 5.93 1799	1 1.98 207.1 1500 517				
0820 13.30 5.92 1796	10 190 2047 1800 517				
0823 13.32 5.92 1795	9 1.98 2022 2100 5.22				
[Ferrous Iron]Fe =	[Nitrate]NH3 = Sulfide =				
Did well dewater? Yes No	Amount actually evacuated: 7, 12				
Sampling Time: 0825	Sampling Date: 10/1/10				
Sample I.D.: MW- (10-01-10					
Analyzed for: See Coc					
Equipment Blank I.D.: @	Duplicate I.D.:				

Project #: 101001-GL1	IStation # TAPA / I				
Sampler: GC	Station # BPOLY Start Date: 10/01/10				
Well I.D.: Mul-S	Well Diamateur				
Total Well Depth: 17.20	Well Diameter: 2 3 4 6 8				
Depth to Free Product:	Depth to Water Pre: 3.93 Post: 5,69				
Leferenced to: PVC Grade	Thickness of Free Product (feet):				
urge Method: 2" Grundfos Pump ampling Method: Dedicated Tubing ow Rate:	Flow Cell Type: YSI 556 MPS / YSI 550A Peristaltic Pump Bladder Pump Other Pump Depth:				
Time Temp. (O or °F) pH Cond. (mS or GS) 904 12.97 6.08 2786 907 12.97 6.05 2769 910 13.03 6.03 2724 917 13.05 6.03 2713 916 13.07 6.02 2710	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
errous Iron]Fe =	Nitrota Diutza				
d well dewater? Yes	Nitrate]NH3 = Sulfide =				
npling Time: A97 6	Amount actually evacuated: 3.0 2				
nple I.D.: MW-8 (10-01-10) alyzed for:	Sampling Date: 10/1/10				
alyzed for:	Laboratory: TEST AMERICA				

•

.

		BP LOV	V FLOW	WELL MO	ONITORI	NG DAT	'A SHEET		
Project	#:_ <u>1010</u>	001-9	511	Station # BPOLY					
Sampler	: 90				Start Date: 10/01/10				
WellID, Mul A				Well Dismotor					
Total W	ell Depth:	13.2	5						
	Free Proc				······································	Pre: 🔧	<u> </u>	7.96	
Reference	the second se	PVC	Grade	Flow Cell	of Free P	roduct (fe	eet): PS / YSI 550A		
Purge Met Sampling I Flow Rate:	Method:	2" Grund Dedicated			Perietaltic I Perietaltic I New Tubin Pump Dept	Pump	Bladder Pumj	p	
Time 0959 1002 1005 1008 1008	Temp. (O or °F) 12.49 12.51 12.51 12.49 12.39 12.43 12.45	рн 6:245 5.94 5:76 5:57 5:57	Cond. (mS or CS) 472 316 253 226 220 220	Turbidity (NTUs) 8 6 5 7 7 7 7	D.O. (mg/L) 2:08 0.93 0.62 0.57 0.57	ORP (mV) 167.4 172.8 176.0 179.7 180.5 182.3	Water Removed (gals. (m)) 300 600 900 1200 1200 1800	DTW 3.31 3.41 3.52 3.62 3.62 3.71 3.82	
	ron]Fe =			[Nitrate]NH	H3 =	5	Sulfide =		
		Yes C	No>		Amount a	ctually ev	acuated: 1.5	12	
ampling		215			Sampling			2/-	
	D.: MW-	<u>9 (ic</u>	01-10-10		Laborator		EST AMERICA		
nalyzed	for: 🧲	nel (202			· · · · ·			
quipmen	t Blank I.I	D.:	@ Time]	Duplicate	I.D.:			

.

.

Project #: 101001-511	VELL MONITORING DATA SHEET Station # アクレイ				
Sampler: GC	Start Date: 10/01/10				
Well I.D.: MW-10	Well Diamatan a				
Total Well Depth: 17.20	Depth to Water and a set				
Depth to Free Product:	Depth to Water Pre: 3.56 Post: 3.91 Thickness of Free Product (feet):				
Referenced to: PVC Grade	Flow Cell Type: YSI 556 MPS / YSI 550A				
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Flow Rate:	Peristaltic Pump Bladder Pump New Tubing Other Pump Depth:				
Time Cord Cond. Time Cor °F) pH (mS or as	(IIIV) (gais. dr mD) DTW				
05 7 13.29 6.62 252					
076 12.98 6.68 214	25 0.94 145.6 600 3.84				
054 13.06 6.69 196	14 0.98 140.7 900 3.91				
102 13.20 6.66 188 105 13.26 6.64 RS	8 0.98 140.4 1200 3.91				
108 1328 6.62 185	7 1.00 129.6 1500 3.91				
100 11,00 6.64 185	8 1.02 139.4 1800 3.91				
errous Iron]Fe =					
	[Nitrate]NH3 = Sulfide =				
mpling Time: 1110	Amount actually evacuated: 1.82				
mple I.D.: MW- 10 (10-01-10) halyzed for:	Sampling Date: 10/1/10				
01-10-01-10	Laboratory: TEST AMERICA				
halyzed for:					

•

Project #: 101001-GL1	Station # BPOLY				
Sampler: GC	Start Date: 10/01/10				
Well I.D.: MW-11	Well Diamaton				
Fotal Well Depth: 13.14	Donth to MV				
Depth to Free Product:	1 1050				
Referenced to: PVC Grade	Thickness of Free Product (feet): Flow Cell Type: YSI 556 MPS / YSI 550A				
urge Method: 2" Grundfos Pump ampling Method: Dedicated Tubing low Rate: 100 MIM	Peristaltic Pump Bladder Pump New Tubing Other Pump Depth:				
Temp. Cond. Time Oor °F) pH (mS or dis). 144 14.42 6.83 187	(mv) (gais. dr m)) DTW				
11 0 1 11	31 2.88 145.2 300 2.81				
100 1000 1000	2 1.67 1496 600 2.85				
90 1796 6.6 179	9 1.56 149.8 900 2.85				
17.010.57 76	9 1.54 149.8 1200 285				
9 1292 (1/20	8 1.53 150.1 1500 289				
71 17.176.48 175	7 1.52 1504 1800 2.85				
errous Iron]Fe =					
d well downstand	Nitrate]NH3 = Sulfide =				
npling Time: 700	Amount actually evacuated: 1.82				
nple I.D.: MW- 11 (10-01-10)	Sampling Date: 10/1/10				
alyzed for:	Laboratory: TEST AMERICA				

•

,

Project #: 101001-511	VELL MONITORING DATA SHEET Station # アクレイ					
Sampler: GC	Start Date: 10/01/10 Well Diameter					
Well I.D.: MW-12						
Total Well Depth: 1270	Depth to Water Pre: 7.67 Post: 7.70					
Depth to Free Product:						
Referenced to: PVC Grade	Thickness of Free Product (feet): Flow Cell Type: YSI 556 MPS / YSI 550A					
Purge Method: 2" Grundfos Pump Sampling Method: Dedicated Tubing Flow Rate: 100 M	Pump Depth: State Pump					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turbidity (NTUS) D.O. (mg/L) ORP (mV) Water Removed (gals. (mD)) DTW 11 2.63 190.2 300 2.70 9 2.76 156.1 600 2.70 7 1.82 153.2 900 2.70 6 1.80 193.3 1200 2.70 5 1.81 153.2 1560 2.70 9 2.76 1.80 1.93.7 1.900 2.70 10 1.80 1.93.7 1.200 2.70 2.70 10 1.81 153.2 1.500 2.70 2.70 10 1.81 153.2 1.500 2.70					
errous Iron]Fe =	Nitrate]NH3 = Sulfide =					
d well dewater? Yes No	Amount actually evacuated: 1.5					
mpling Time: 1250	Sampling Date: 10/1/10					
mple I.D.: MW-12-(10-01-10)	Laboratory: TEST AMERICA					

.

•

1917/12/#K&

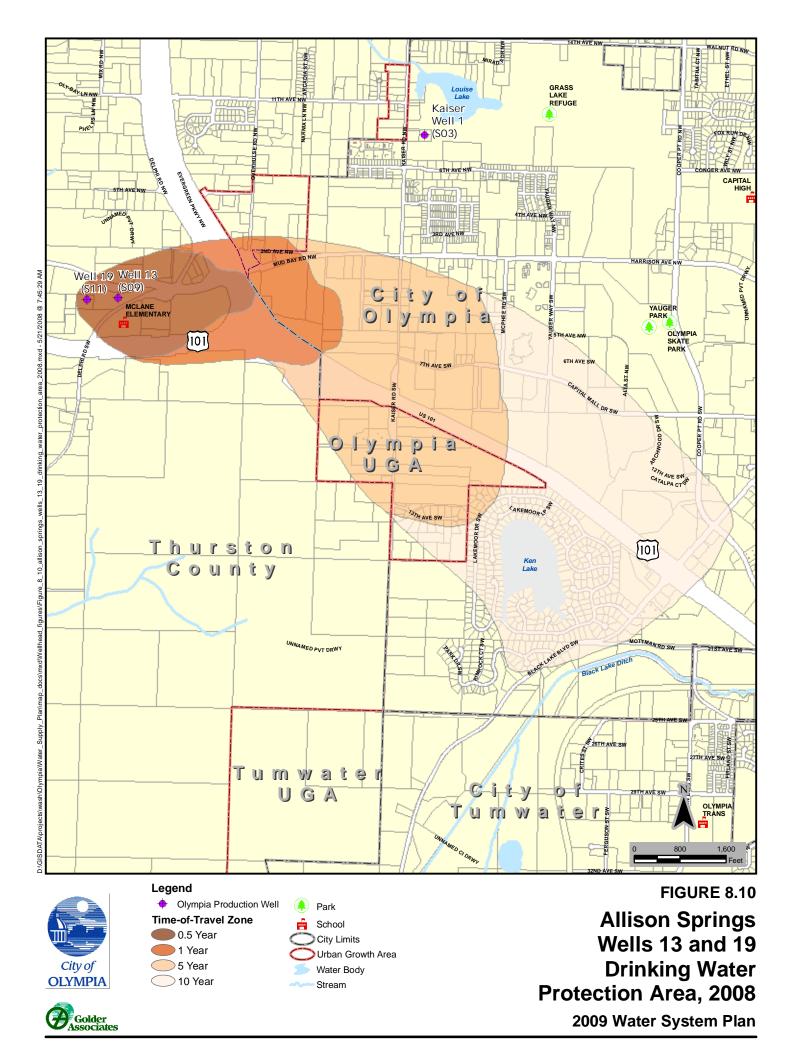
gehigh= 5:30 g+5@low = 12:15

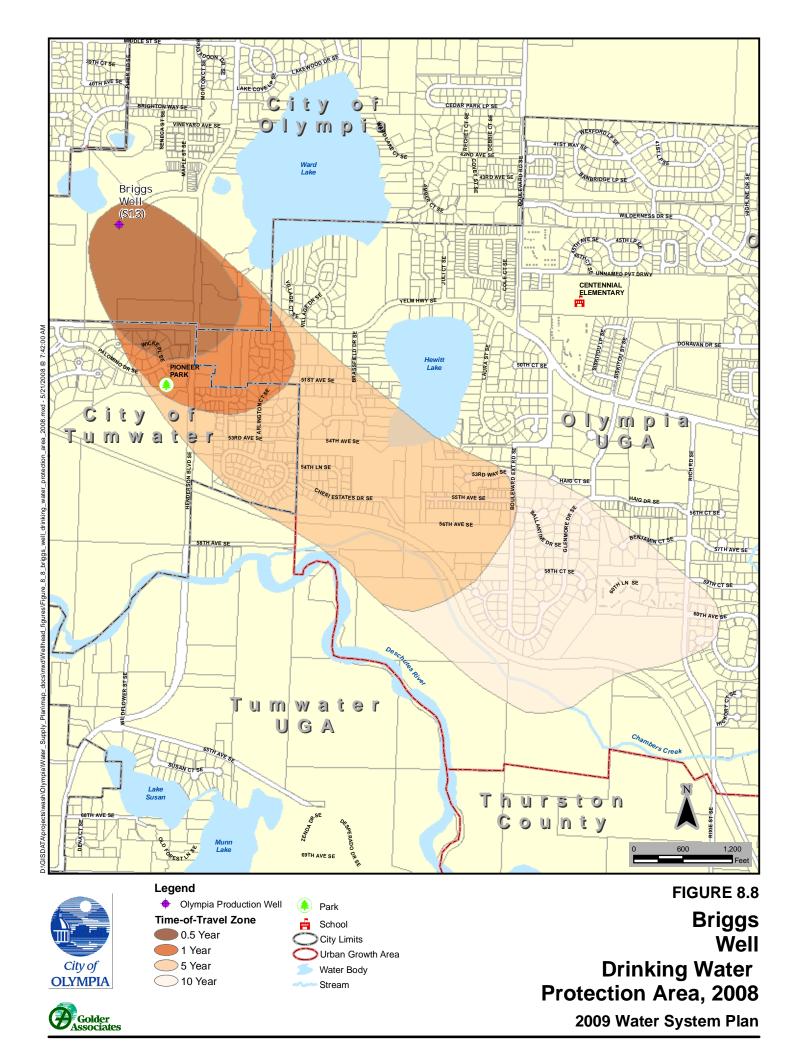
Groundwater Monitoring Well Gauging Form

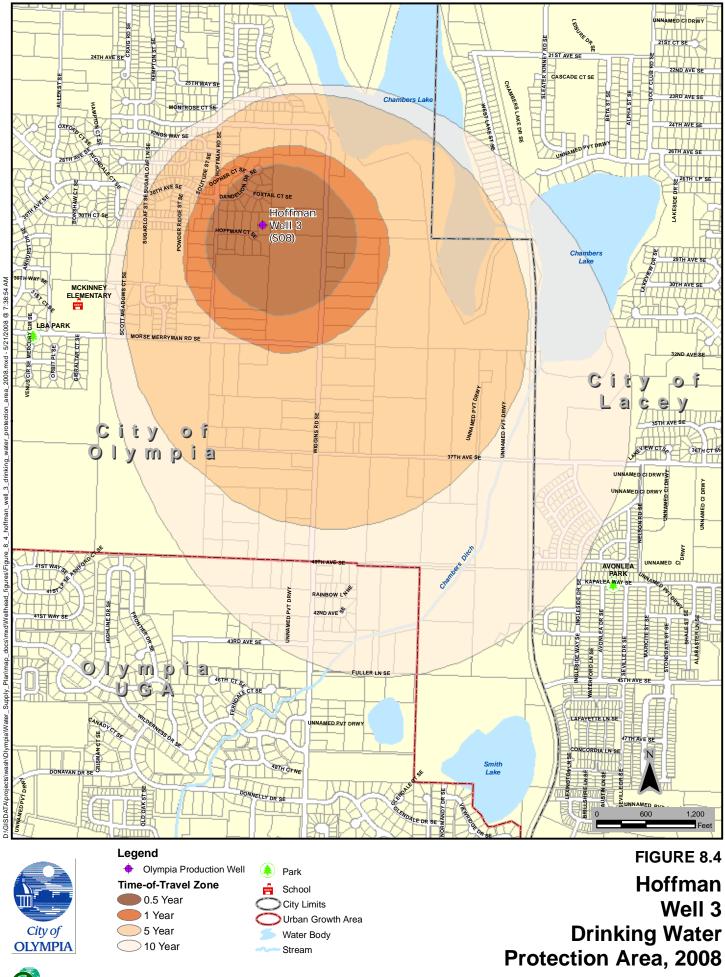
Site ID: WA-BP OLY

Project #: GP09BPNA.WA60.N0000

Site Address: 1117 West Bay Dr., Olympia, WA Date: 6.2.2011

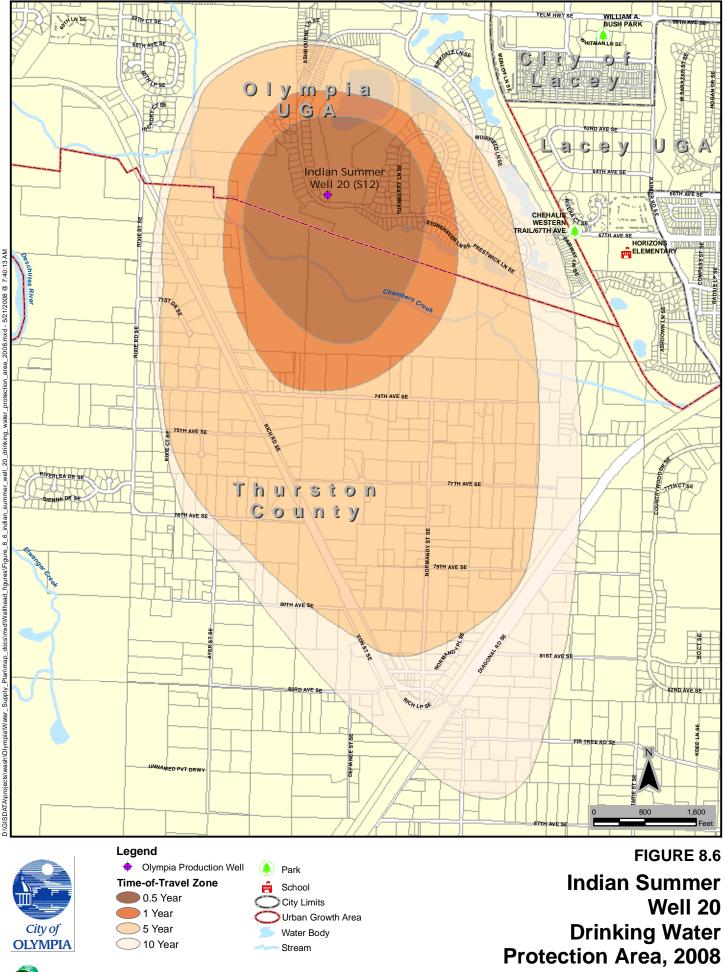

14	Well ID	Time	Sheen/	LNAPL	LNAPL	DTW	тр	Natas
1	weiriD	Time	Odor	Depth	Thinkness	DTW	TD	Notes Stick up
/	MW-6	0520	N	Ø	4	4.10	NM	P10=0.0
	MW GR	0525	2	Ø	¢	2.01		30f 3good P10=0.0
	MW-7	0530	N	ø	ø	4.80		Sof S gand PID=0.0
1	MW.8	6533	N	Ø	ø	3.61		3 of 3 good 210=0.0
	w-9	0537	N	Ø	¢	3.97		3053 good P10=0.0
	MW-10	0541	N	Ø	Ø	3.19		3 of 3 good P10=0.0
	MW-11	0 544	N	Ø	Ø	1.96		30f3 9004 P10=0.0
1	W-12	0545	N	Ø	Ø	1.89		3 of 3 good P10=0 0
1	.mw-6	1215	N	Ø	Ø	4.16		
	MW-GR	1218	2	Ø	Ø	2.08		
	.Mw. 7	1224	2	Ø	ø	4.90		
	MW-8	1230	N	Ø	Ø	3.64	-	e L
10	.nw-9	1234	N	Ø	Ø	3.69		ABOVE
	MW-10)	239	N	Ý	ø	3.102		X .
	MW-11 1	242	N	Ø	Ø	2.12		SAME
	MW-121	245	N	Ø	ø	2.01	L	Ń.

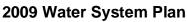

High Tide

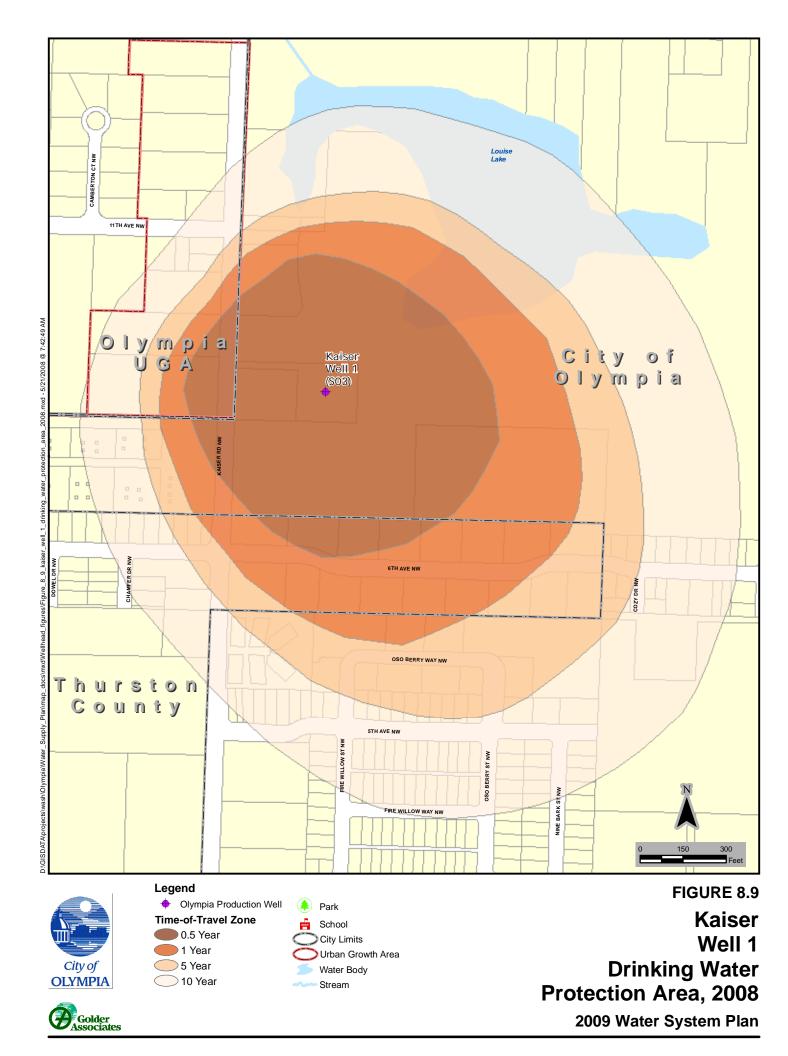

ARCADIS

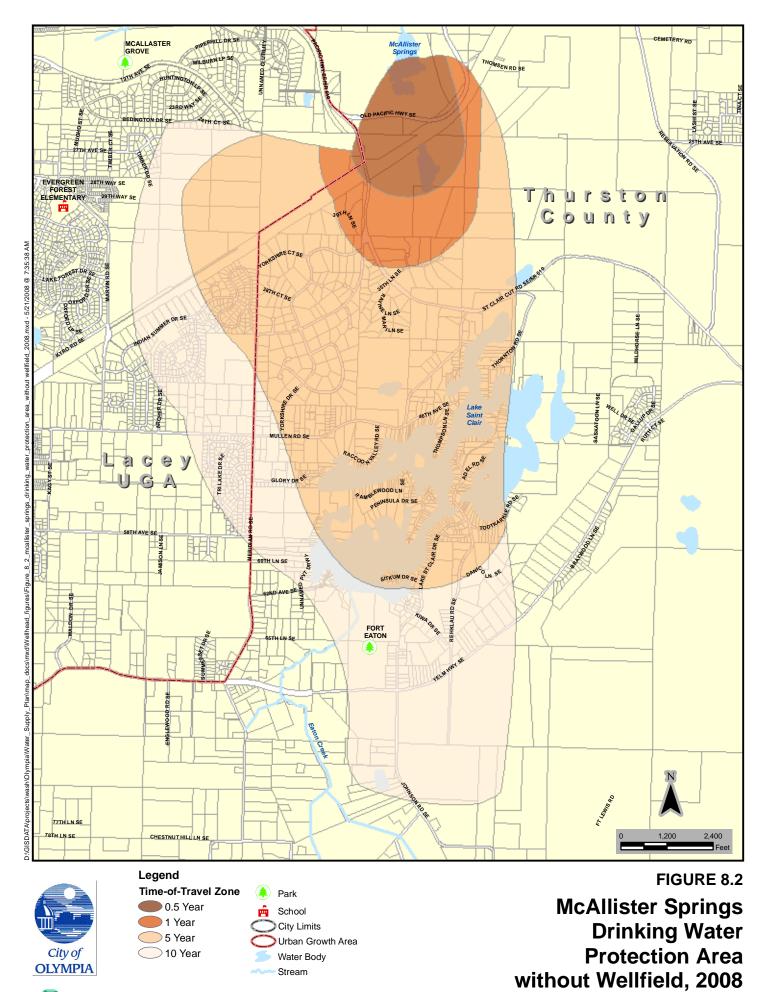
Appendix **G**

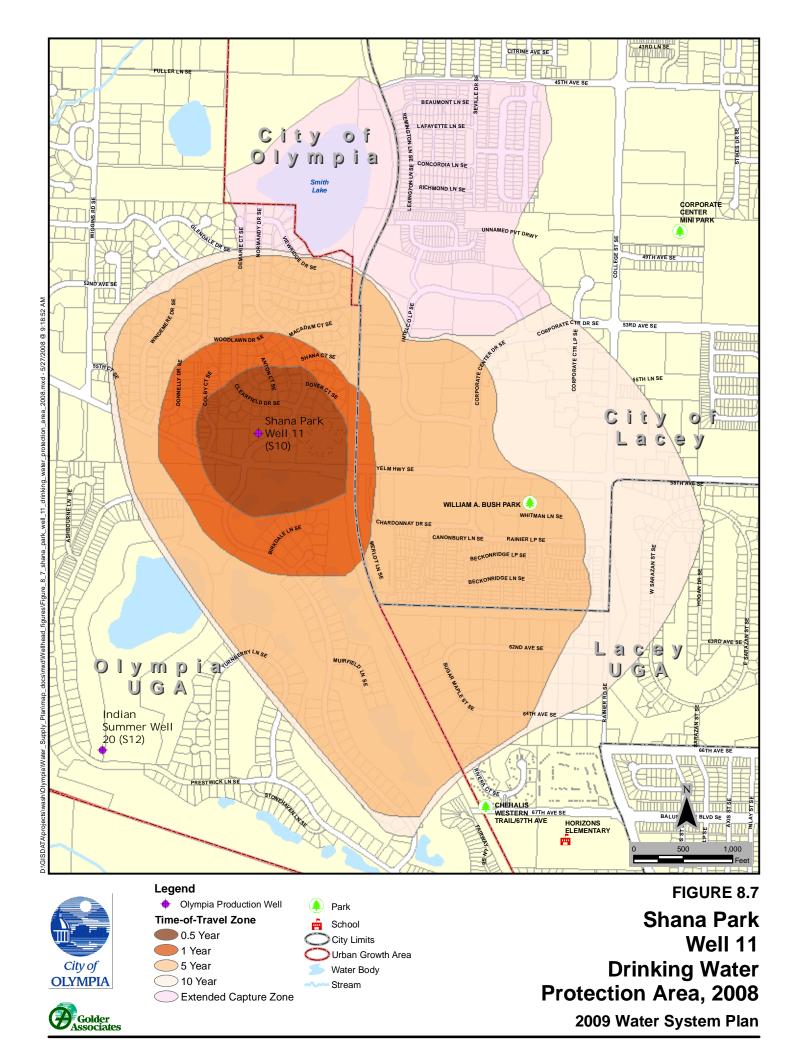
Drinking Water Protection Area Maps



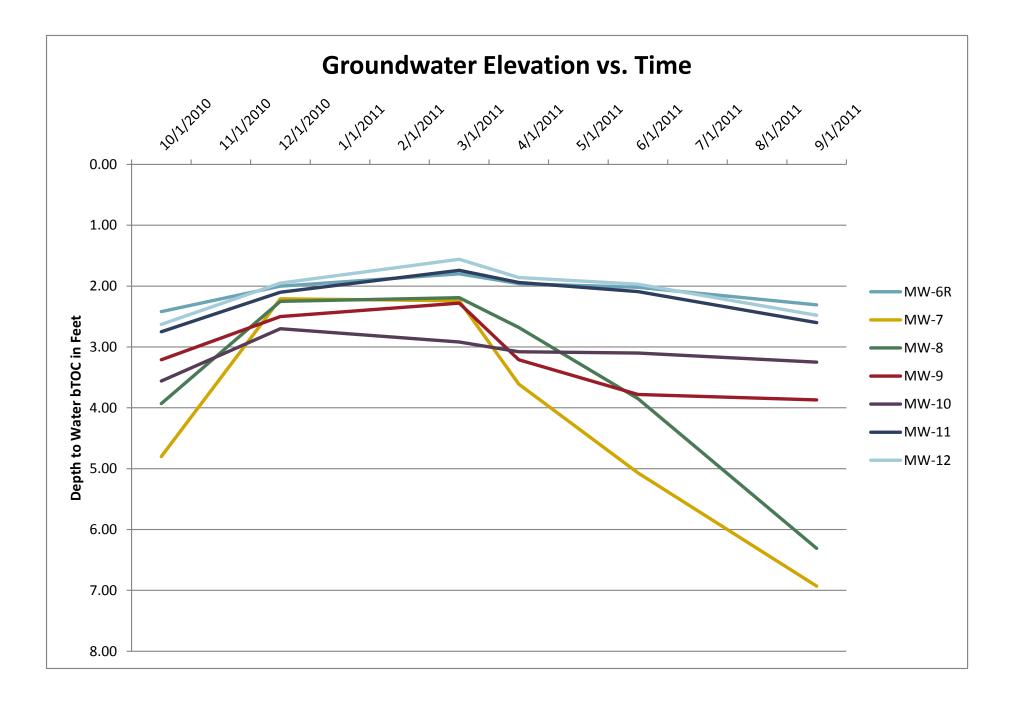



Golder


2009 Water System Plan



Golder


2009 Water System Plan

ARCADIS

Appendix **H**

Hydrograph

