

June 27, 2017

Mr. Steve Teel Site Manager/Hydrogeologist Washington State Department of Ecology Toxics Cleanup Program, Southwest Regional Office P.O. Box 47775 Olympia, Washington 98504-7775

Subject: Groundwater Monitoring Report, May 2017 CenturyLink Longview Facility 1305 Washington Way, Longview, Washington 98632

Dear Mr. Teel:

This letter provides a summary of the groundwater sampling event conducted on May 4, 2017. Groundwater monitoring events are being conducted as a continuation of the Groundwater Monitoring Plan developed in 2008 under the Voluntary Cleanup Program. Groundwater monitoring was conducted in accordance with the Final Direct-Push Sampling Plan, dated March 2, 2015, and approved by Washington State Department of Ecology (Ecology).

Groundwater Levels

The depth to groundwater was measured using an electronic static water level indicator that was lowered into each well. Depth to groundwater was measured to the nearest hundredth of a foot from the top of the well casing. Static water levels ranged from 4.04 to 4.22 feet above mean sea level (amsl), and are summarized in the table below and shown on Figure 1. Groundwater levels were approximately 2.49 feet higher than observed in October 2016.

Location	Surveyed Top of Casing (ft amsl)	May 4, 2017 Depth to Water (ft)	May 4, 2017 Groundwater Elevation (ft amsl)
MW-01	15.64	10.86	4.78
MW-02	16.17	11.49	4.68
MW-03	15.02	10.26	4.76
MW-04	14.55	9.85	4.70
MW-05	14.75	10.10	4.65

MAY 4, 2017 GROUNDWATER ELEVATIONS

Notes:

ft Feet ft amsl Feet above mean sea level

Based on groundwater level data shown on Figure 1, the direction of groundwater flow appears to be toward the west, with a relatively flat gradient of approximately 0.0007 foot per foot. Historically, groundwater flow direction has ranged from west to northwest.

Groundwater Sampling from Permanent Monitoring Wells

Groundwater samples were obtained from all five permanent monitoring wells at the facility on May 4, 2017 and a duplicate sample was collected from well MW-05. After groundwater level measurements were documented, field personnel collected groundwater samples using a peristaltic pump. New dedicated tubing was used to collect the sample at each well. In accordance with the work plan, low-flow sampling procedures were used. Sampling flow rates ranged from 200 to 350 milliliters per minute for purging and groundwater sample collection.

A calibrated YSI 600 multi-probe water meter was used to measure field parameters during well purging, and before and after sampling. A HACH 2100Q meter was used to measure turbidity. Water quality parameters measured with the YSI 600 included pH, dissolved oxygen, oxidation-reduction potential, and specific conductance. Low-flow pumping continued until field parameters stabilized within acceptable parameter limits, before samples were collected. Attachment A includes the logs of field parameters measured during the low-flow sampling.

Groundwater Sample Analysis

Once obtained, groundwater samples were labeled in accordance with Tetra Tech, Inc. (Tetra Tech) standard operating procedures, placed in a cooler, and chilled to below 4 degrees Celsius. Samples were delivered directly to ALS Laboratories (ALS), located at 1317 S. 13th Avenue in Kelso, Washington. Samples were delivered following standard chain-of-custody protocol. Chain-of-custody forms are included with the laboratory data packages in Attachment B.

ALS analyzed the samples for total petroleum hydrocarbons-diesel (TPH-DRO) and total petroleum hydrocarbons-residual range organics (TPH-RRO) by Method Northwest Total Petroleum Hydrocarbons-Diesel Extended Range (Ecology 1997), without silica gel cleanup. ALS also analyzed the samples for polycyclic aromatic hydrocarbons (PAH) by modified U.S. Environmental Protection Agency Method 625-Selected Ion Monitoring. The samples were filtered with a 0.7-micron (μ m) filter before analysis by the PAH method.

Groundwater Sample Analytical Results

Table 1 presents analyte concentrations for the sample analyses of permanent groundwater wells sampled during the May 2017 event. TPH-DRO was detected in in the sample from well MW-02 at a concentration of 570 micrograms per liter (μ g/L). Low concentrations of TPH-DRO were detected in samples from the remaining wells; concentrations ranged from 23 to 47 μ g/L. Four of the five monitoring wells had levels below the Washington Model Toxic Control Act (MTCA) Method A cleanup level for groundwater of 500 μ g/L.

TPH-RRO was detected in all five wells, ranging from 31 to 200 μ g/L. Concentrations from all five wells were below the 500 μ g/L TPH-RRO MTCA Method A cleanup level for groundwater.

Most of the TPH-DRO and TPH-RRO detections have an associated J qualifier which indicates the concentration is estimated because the constituent was detected below the reporting limit, but above the method detection limit.

The laboratory method blank contained TPH-DRO at a concentration of 27 μ g/L with a J qualifier and TPH-RRO at 53 μ g/L with a J qualifier. These detections could be used to revise and lower the reported concentrations for the field samples, but such revisions would not significantly affect the results or change the conclusions in this report.

Low concentrations of PAHs were detected in all monitoring wells; Table 1 summarizes these results. There are no total PAH or compound-specific MTCA Method A cleanup levels for PAHs. The MTCA Method A cleanup level of 0.1 μ g/L for PAHs is based on the benzo(a)pyrene toxic equivalent quotient (BaP TEQ). Table 1 also shows the BaP TEQ results, which are based on the individual PAH analytical results in Appendix B.

Table 2 summarizes the historical results for DRO and RRO for each well. Table 3 summarizes the historical results for BaP TEQ for each well.

Conclusions and Recommendations

For this first sampling event of 2017, analytical results for samples from all five wells were below MTCA Method A cleanup levels for BaP TEQ and TPH-RRO. Four of the wells were below the MTCA Method A cleanup level for TPH-DRO, however, the sample from MW-02 contained a concentration of TPH-DRO that slightly exceeded the MTCA Method A cleanup level.

The results from the May 2017 event were similar to the March 2016 results, when concentrations from well MW-02 also exceeded the cleanup level for TPH-DRO, though the concentration was not as high in May 2017 as March 2016. Both concentrations that exceeded the MTCA Method A cleanup level occurred in spring after historically high groundwater levels. It is possible that residual TPH contamination may be present in the smear zone and during high groundwater level events, this residual TPH soil contamination dissolves into the groundwater. In the subsequent July, October, and December 2016 groundwater monitoring events, TPH concentrations at MW-02 decreased significantly, indicating that the newly dissolved TPH rapidly degrades. Continued low groundwater TPH concentrations at downgradient wells MW-04 and MW-05 indicate that the TPH plume is stable and not migrating downgradient at significant concentrations.

Tetra Tech recommends that groundwater sampling at the five monitoring wells continue every 18 months to monitor plume stability and continued attenuation of contaminant concentrations to below MTCA Method A cleanup levels. These groundwater sampling events would alternate between spring and fall to obtain groundwater concentration data from high and low groundwater conditions, respectively. This monitoring schedule was discussed with you during our March 22, 2017 teleconference. Accordingly, the next groundwater monitoring events will be conducted in fall 2018 and spring 2020.

If you have any questions or concerns, please contact me at (303) 312-8856 or <u>david.berestka@tetratech.com</u>.

Sincerely,

D- 12

David Berestka, P.E. Project Manager Tetra Tech, Inc.

Rob Tisdale, Ph.D. Chemist and Program Manager Tetra Tech, Inc.

cc: Ed Clement, Regional Environmental Health and Safety Manager, CenturyLink

Attachments:

- A Low-Flow Groundwater Sampling Parameter Forms
- B Laboratory Analytical Reports and Chain-of-Custody Records

ANALYTICAL RESULTS TABLES

TABLE 1 GROUNDWATER SAMPLE ANALYTICAL RESULTS CENTURYLINK LONGVIEW, WASHINGTON FACILITY

Analy	rte	TPH-DRO	TPH-RRO	Total PAH	BaP TEQ
MTCA Method A Clea	anup Level	500 (μg/L)	500 (μg/L)	NA	0.1 (µg/L)
Location	Date				
MW-01	5/04/2017	42 J	86 J	0.015	0.00026
MW-02	5/04/2017	570 Y	200 J	0.70	<0.020
MW-03	5/04/2017	47 J	54 J	0.010	<0.00020
MW-04	5/04/2017	24 J	37 J	0.017	0.00023
MW-05	5/04/2017	23 J	31 J	0.0096	0.00024
MW-05-DUP	5/04/2017	27 J	48 J	0.020	0.00024

Notes:

All concentrations in micrograms per liter (µg/L)

BaP TEQ	Benzo(a)Pyrene Toxic Equivalent Quotient
J	Data qualifier indicating that the result is an estimated quantity below the reporting limit
MTCA	Model Toxics Control Act Method A for groundwater
NA	Not applicable (no applicable MTCA standard)
PAH	Polycyclic aromatic hydrocarbon
TPH-DRO	Total petroleum hydrocarbons diesel range organics
TPH-RRO	Total petroleum hydrocarbons residual range organics
Y	The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct
	carbon range, but the elution pattern does not match the calibration standard
< 0.01	Concentration is less than the method detection limit shown

TABLE 2 HISTORICAL GROUNDWATER SAMPLE RESULTS - DRO AND RRO **CENTURYLINK LONGVIEW, WASHINGTON FACILITY**

Analyte	Date	Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05
	3/25/1992	Bailer	82	112	<50		
	12/16/2003	Bailer	<250	<250	<250		
	8/10/2006	Bailer	<50	140	<50		
	9/23/2008	Bailer				<50	140
	2/26/2010	Bailer				<25	100
	9/2/2011	Bailer				73	120
	2/26/2013	Bailer				1,700	<51
	6/3/2013	Bailer	<50	66	<50	210	<50
TPH-DRO	12/5/2013	Bailer	97	72	47	1,500	100
	3/27/2014	Bailer	63	87	<250	550	47
(MTCA Method A Cleanup Level =	6/25/2014	Bailer	50	33	<260	1,100	<260
500 µg/L)	9/10/2014	Bailer	240	90	36	790	48
,	3/5/2015	Low Flow	22	82	20	20	27
	7/20/2015	Low Flow	22	77	21	24	30
	12/18/15	Low Flow	38	83	46	96	120
	3/31/16	Low Flow	41	1,500	58	30	30
	7/7/2016	Low Flow	24	330	22	34	21
	10/13/2016	Low Flow	23	130	39	39	48
	12/09/2016	Low Flow	37	120	63	70	67
	5/04/2017	Low Flow	42	570	47	24	23
	3/25/1992	Bailer	<200	<200	<200		
	8/10/2006	Bailer	<250	<250	<250		
	9/23/2008	Bailer				<250	<250
	2/26/2010	Bailer				140	200
	9/2/2011	Bailer				350	210
	2/26/2013	Bailer				11,000	220
	6/3/2013	Bailer	150	<100	<100	1,600	<100
TPH-RRO	12/5/2013	Bailer	440	120	120	11,000	170
II II-KKO	3/27/2014	Bailer	370	63	<500	3,900	190
(MTCA Method A	6/25/2014	Bailer	340	62	21	8,400	51
Cleanup Level =	9/10/2014	Bailer	1,500	140	120	6,600	82
500 μg/L)	3/5/2015	Low Flow	43	70	37	48	53
	7/20/2015	Low Flow	52	71	49	52	42
	12/18/15	Low Flow	84	160	81	81	82
	3/31/16	Low Flow	83	340	110	54	53
	7/7/2016	Low Flow	44	140	41	33	34
	10/13/2016	Low Flow	94	130	98	90	100
	12/09/2016	Low Flow	140	180	130	110	110
	5/04/2017	Low Flow	86	200	54	37	31

Notes:

All concentrations in micrograms per liter (µg/L) **Bold** values indicate exceedance of the MTCA Method A Cleanup Level For wells with duplicate samples, the highest value reported is shown for each constituent MTCA Model Toxics Control Act Method A for groundwater TDU PDC

TPH-DRO Total petroleum hydrocarbons diesel range organics

TPH-RRO Total petroleum hydrocarbons residual range organics Not sampled

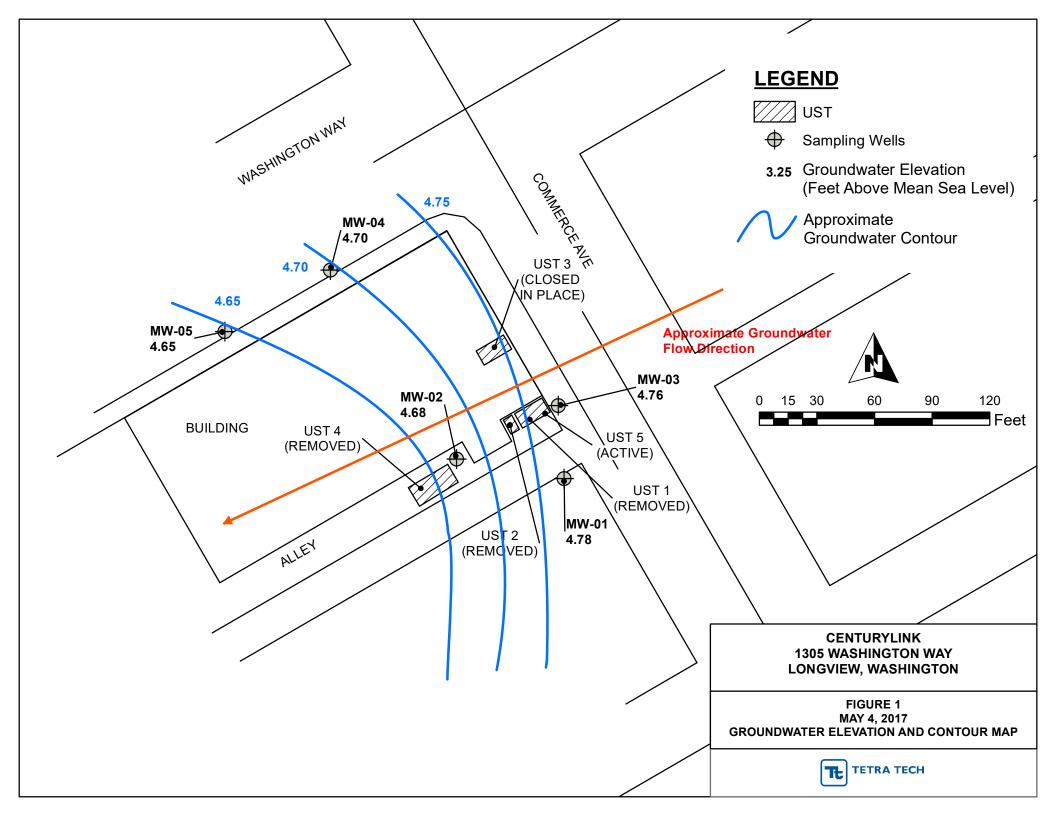

< 0.01 Concentration is less than the method detection limit shown

TABLE 3 HISTORICAL GROUNDWATER SAMPLE ANALYTICAL RESULTS – BAP TEQ AND TOTAL PAH CENTURYLINK LONGVIEW, WASHINGTON FACILITY

Analyte	Date	Sampling Method	MW-01	MW-02	MW-03	MW-04	MW-05
BaP TEQ	6/3/2013	Bailer	2.2	< 0.1	< 0.1	0.36	< 0.1
	12/5/2013	Bailer	0.20	0.027	0.074	1.4	0.0062
Unfiltered analysis	3/27/2014	Bailer	0.37	0.080	0.049	0.27	0.073
(MTCA Method A Cleanup Level = 0.1	6/25/2014	Bailer	0.39	0.012	0.00033	0.40	0.0054
μg/L)	9/10/2014	Bailer	0.14	0.090	0.0037	0.39	0.0051
	12/5/2013	Bailer	0.00033		0.00068	0.00084	
	3/27/2014	Bailer	< 0.019	< 0.019		< 0.019	< 0.019
	6/25/2014	Bailer	< 0.020			< 0.200	
BaP TEQ	9/10/2014	Bailer	0.00030	0.00027		< 0.020	
	3/5/2015	Low Flow	0.00074	0.00038	< 0.019	0.00044	0.00029
Filtered analysis	7/20/2015	Low Flow	0.00029	< 0.020	< 0.021	< 0.021	< 0.021
(MTCA Method A	12/18/2015	Low Flow	0.0065	0.00029	< 0.019	0.00050	0.00039
Cleanup Level = 0.1	3/31/2016	Low Flow	0.00035	< 0.020	< 0.020	0.00026	< 0.020
μg/L)	7/7/2016	Low Flow	< 0.020	< 0.020	0.00027	0.00035	< 0.020
	10/13/2016	Low Flow	<0.0026	<0.0026	0.00028	0.00040	0.00041
	12/09/2016	Low Flow	0.00028	<0.020	0.00032	0.00032	<0.020
	5/04/2017	Low Flow	0.00026	<0.020	0.00020	0.00023	0.00024
Total PAH	6/3/2013	Bailer	16	1.6	< 0.1	8.7	< 0.1
	12/5/2013	Bailer	1.7	0.83	0.85	16	2.4
Unfiltered analysis	3/27/2014	Bailer	3.5	1.3	0.50	3.1	0.80
(No MTCA Method A	6/25/2014	Bailer	3.9	2.3	0.12	4.8	0.37
Cleanup Level)	9/10/2014	Bailer	1.2	1.5	0.049	6.0	5.5
	12/5/2013	Bailer	0.028		0.043	0.52	
	3/27/2014	Bailer	0.018	0.21		0.080	0.064
	6/25/2014	Bailer	0.063			0.11	
Total PAH	9/10/2014	Bailer	0.012	0.041		0.42	
	3/5/2015	Low Flow	0.046	0.58	0.013	0.24	0.26
Filtered analysis	7/20/2015	Low Flow	0.0077	0.019	0.0056	0.29	0.15
	12/18/2015	Low Flow	0.039	1.9	< 0.019	9.7	8.5
(No MTCA Method A Cleanup Level)	3/31/2016	Low Flow	0.0035	0.032	< 0.020	0.041	0.0092
	7/7/2016	Low Flow	< 0.020	0.019	0.0092	2.2	0.024
	10/13/2016	Low Flow	0.0083	0.034	0.016	0.68	2.8
	12/09/2016	Low Flow	0.0028	0.0070	0.029	4.7	1.1
	5/04/2017	Low Flow	0.015	0.70	0.01	0.017	0.0096

Notes:

All concentrations in micrograms per liter (µg/L) **Bold** values indicate exceedance of the MTCA Cleanup Level For wells with duplicate samples, the highest value reported is shown for each constituent BaP TEQ Benzo(a)Pyrene Toxic Equivalent Quotient MTCA Model Toxics Control Act Method A for groundwater PAH Polycyclic aromatic hydrocarbon -- Not analyzed < 0.01 Concentration is less than the method detection limit shown FIGURE

ATTACHMENT A LOW-FLOW GROUNDWATER SAMPLING PARAMETER FORMS

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	of
Date	5/4/17

Well Name <u>PIVO ~ I</u>	Screen Interval	
Project Century Link Longview	Station Elevation 10.30' GND TOC	Immiscible Phases Present 🔲 Yes 🗌 No
Project No.	Static Water Level (from TOC)	Туре
Well Location	Well Stick Up	Measured with
Sample Date 5-4-17	Static Elevation	PID Readings (background)
Sampling Personnel	Well Depth MEAS RPTD	PID Reading (TOC)
	Feet of Water	Wells Installed by
Sample ID MW - 1	Gallons/Foot	Installation Date
Duplicate ID	Casing Volume	Development Date(s)
FIELD CHEMISTRY CALIBRATIONS		
Date/Time	Spec. Conductance: Standard µmhos/cm at 2	25. C Reading µmhos/cm at C
pH: pH 4.00 at · C	pH 7.00 at · C pH 10.00	at · C Slope NA
Dissolved Oxygen: D.O. Meter mg/L at	C PID: Calibration Gas Isobutylene P	PM 100 Span NA Reading

							PUR	GING		All de C				
	Discharge	Dissolved				Specific Conduct.		Cumulative Volume of Water Removed (Purged)		PID/OVA	Reading	Depth to		
Time	Rate (mL/min)	Oxygen (mg/L)	рН	Eh/ORP (mV)	Temp. (·C)	(µm hos/cm at ⋅ C)	Turbidity (NTU)	Gallons	Casing Vol.	Location	Value	Water (ft)	Comments	
HOD	250	4-41	6.48	1319	15.14	0,276	a.89							
1405	250	4.05	6.40	141.2	15.20	0.277	a .58	0,25						
1410	250	3.88	6.39	144.3	15.18	0.278	2.49	0-75						
1415	250	4.00	638	146.5	15,39	0,279	1.85	1.5						
1420	250	4.00	6.37	148.1	15.12	0.279	1.88	2						
1428	250	3.26		149.3	15.22	0.280	1.83	2.25						
1450	25D	3,33	6.39	148.8	15.6	0,285	1.54	3091						
								Ű						
	25	0											s a scence lies	
SAMPL	E PARAM													
14£	3.78-	->	6,36	150.5	15.18	0.28	1.83							
Conditio	n of well:													
Remarks	s: <u>-ju</u> l	0100	36	31 45	5,5'	6210	w -	107	3-50	DML (Mbr	- , 1- 8	00 mLond	
		\sim										(D)	V HCI	
	CUIPMEN		>		Coriol	Number				Field Chemistry Calibrations				
Spec. Cond. Meter YSI 56 650 Serial Number Pump Dedicated Bladder Pump Serial Number NA														
									Number of Bottles					
	D.O. Meter YSI 556 650 Serial Number Filter Apparatus Filters													
• •					_ 1 11010					Sample Met				
Temperature Measure						Number								
Interface Probe Serial Number PID/OVA Serial Number								Discharge Water Containerized Yes No						

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	of
Date _	514/17

Well Name MN - 2	Screen Interval	_
Project Conduny Link LONOVILW	Station Elevation GND TOC	_ Immiscible Phases Present 🔲 Yes 🛄 No
Project No.	Static Water Level (from TOC)	_ Туре
Well Location MW-2, porking 4	やWell Stick Up	Measured with
Sample Date 5-21-17	Static Elevation 11,49	PID Readings (background)
Sampling Personnel SD, VP	Well Depth MEAS 🔨 RPTD	PID Reading (TOC)
	Feet of Water	Wells Installed by
Sample ID MW-2	Gallons/Foot	Installation Date
Duplicate ID	Casing Volume	Development Date(s)
FIELD CHEMISTRY CALIBRATIONS	-	
Date/Time	Spec. Conductance: Standard µmhos/cm at	25. C Reading µmhos/cm at C
pH: pH 4.00 at · C	pH 7.00 at · C pH 10.00	at · C Slope NA
Dissolved Oxygen: D.O. Meter mg/L a	t C PID: Calibration Gas Isobutylene	PPM <u>100</u> Span <u>NA</u> Reading
	PURGING	

		Discharge	Dissolved				Specific Conduct.		Cumulative Water Remo		PID/OVA	Reading	Depth to	
	Time	Rate (mL/min)	Oxygen (mg/L)	pН	Eh/ORP (mV)	Temp. (·C)	(µmhos/cm at ⋅ C)	Turbidity (NTU)	Gallons	Casing Vol.	Location	Value	Water (ft)	Comments
153D	1525	350	2.31	(del	141.1	16.33	0.524	0.55	0.25					
	1535	250	1.38	653	143.9	16.44	F12.0	0.50						
	540	250	0.99	6.48	1-169	16.24	0.485	0.48	1					
	1545	250			149.2	16.22		0.39	1.5					
	1550	250	0.75	6.45	149.6	16.22	0.464		1.75					
	1555	250	0.07	6.43	123	16.30		0.34						
		the second s			150.3			0,37						
	1625	250	0:82	6,44	151.1	16.23	0.428	0.32	3,75					
	SAMPL	E PARAM	ETERS											
1605		250	0.63	6.48	151.1	6.41	0.439	0.33	3					
	Condition of well: Goud													
	Remark	s: phr	ging	Ste	rted	157	20						-	
										I	Field Chem	istry Calibi	ations	
	pH Mete	YSI-566	650			_ Serial	Number			F	-ractions			

pH Meter YSI 565 650	Serial Number	Fractions
Spec. Cond. Meter YSI.555 650	Serial Number	
Pump Dedicated Bladder Pump	Serial Number NA	
Water Level Meter Solinst	Serial Number	Number of Bottles
D.O. Meter YSI 555 650	Serial Number	Sample Depth
Filter Apparatus	Filters	Field Notebook
Temperature Measure		Sample Method Micropurge
Interface Probe	Serial Number	
PID/OVA	Serial Number	Discharge Water Containerized 🔲 Yes 🗌 No

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	<u> </u>	of	
Date	5.4	Γŀ	

Well Name MW-3	Screen Interval	
Project CALULY LINK LONDINIEN		Immiscible Phases Present 🔲 Yes 🗌 No
Project No.	Static Water Level (from TOC) <u>10-26</u>	Туре
Well Location MW-3, Sidewalk	Well Stick Up	Measured with
Sample Date 54.17	Static Elevation 10.26	PID Readings (background)
Sampling Personnel SD, VP	Well Depth <u>19.95</u> MEAS <u>/</u> RPTD	PID Reading (TOC)
	Feet of Water	Wells Installed by
Sample ID	Gallons/Foot	Installation Date
Duplicate ID	Casing Volume	Development Date(s)
FIELD CHEMISTRY CALIBRATIONS	-	
Date/Time	Spec. Conductance: Standard µmhos/cm at 2	25. C Reading µmhos/cm at C
pH: pH 4.00 at · C	pH 7.00 at · C pH 10.00	atC Slope NA
Dissolved Oxygen: D.O. Meter mg/L a	t C PID: Calibration Gas <u>Isobutylene</u> F	PPM 100 Span NA Reading

		(2.0	8			PUR	GING					
	Discharge	Dissolved				Specific Conduct.		Cumulative Water Remo	Volume of ved (Purged)	PID/OVA	Reading	Depth to	
Time	Rate (mL/min)	Oxygen (mg/L)	рН	Eh/ORP (mV)	Temp. (·C)	(µmhos/cm at · C)	Turbidity (NTU)	Gallons	Casing Vol.	Location	Value	Water (ft)	Comments
0905	360	ant	6.74	2020	14.01	0.285	11.1					10.26	Nodur
ard	200		6.50		14.22	0.295	8:27	1.5				10-26	±1
OPPIS	250	1.90	6.41	118.0	14.25	0.290	5.05	1.75				10.26	11
0920	200	1.10	6.46	111.6	14.24	0.293	4.62	2.0				10-16	14
0925	200	1.71	6.43	105.1	14.16	0.1915	3.99	2.25				10.26	ξŧ.
6430	200	1.52	6.43	104.1	14.13	0.295	2.44	2.5				10.25	1. E
0935	200	1.49	6.42	102.9	14.19	0.295	1.80	7.75				10.25	fi.
0440	200	1.43	6.43	104.1	14.15	0.295	1:79	3.0				10.25	~1
0945	200	1.40	6-44	104.3	14.10	0.296	1.71	3.25				10.25	(1

SAMPLE PARAMETERS 0950 200 14-70 0-799 4.0 1.43 6-46104 1.6 16.7 Condition of well: boton TUC Remarks: _______ 3- 500 mL Set 1-SOO mL Amber tubing DISS Ambei WHC1 FIELD EQUIPMENT **Field Chemistry Calibrations** 034992 pH Meter YSI 558 650 Serial Number Fractions Spec. Cond. Meter YSI 556- 650 Serial Number Pump Dedicated Bladder Pump Serial Number NA U Serial Number __________ Water Level Meter Solinst Number of Bottles D.O. Meter YSI 556 (034992 \mathcal{S}^{0} Serial Number Sample Depth Field Notebook Filter Apparatus Filters 125 650 034 992 Sample Method Micropurge Temperature Measure Interface Probe Serial Number NA

Serial Number

Yes No

PID/OVA

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	_ of	
Date 514	1/17	

Well N	ame	MW -	4		Scree	n Interval							
Project	Cen	Aurr	INK	Longvie	J Statio	n Elevation		GND	тос	 Immis	cible Phase	es Present	Yes No
	No.	~		-	01-1-1-	10/04001	-1 /6 7		1.85	_			
•	· · · · · · · · · · · · · · · · · · ·		I. No	shinden	No Wells	Stick Up Elevation _ Depth [? .	(
		514			Static	Elevation	9.8	5					
-						Depth (9	75	MEAS V					
			1 • 1		-								
					<u> </u>								
Sample	e ID	MW-H			- Gallor	ns/Foot				Install	ation Date		
Duplic	ate ID				Casin	g Volume _				Devel	opment Dat	e(s)	
FIELD	CHEMIST		BRATIO	NS									
													nhos/cm at C
				· C									NA
Dissolv	ed Oxyger	n: D.O. Me	ter	mg/L	at	C	PID: Ca	alibration Ga	s Isobutylene	PPM 10	0 Span	NA Re	ading
				-			DUID	RGING					
		<u></u>	<u> </u>	1					Volume of			1 1	
	Discharge	Dissolved				Specific Conduct			ved (Purged)	PID/OVA	Reading	Depth to	
Time	Rate (mL/min)	Oxygen (mg/L)	рН	Eh/ORP (mV)	Temp. (C)	(µmhos/cm at · C)	Turbidity (NTU)	Gallons	Casing Vol	Location	Value	Water (ft)	Comments
230	250	2,31	1.12	150.9	14 01	0 222	1.04	lagi				(17	
20	167		6.12	153.4	1420	0.225	0 64	ISgal					
200	200	1.90	10.12	100 1	19.51	0.200	252	1					
140	000		6.13	199.2	1945	0.21	2.74	1.75 99.1					
245	<u>950</u>	1.91	0.11	140.0	MAS	0.200	0.99	2gal					
250	250	1.85	6.11	191.0	14.3	0.201		2.5001				0.90	
305	990	1.85	6.14	1321	14.18	0.241	0.40	<u>3gal</u>				9.861	
		ļ	<u> </u>					ļ					
								<u> </u>				ļ	
	250	ETERS ;	00										
	1-23		101	139	1110	0.237		12 700					
		CO O								lack		Ϋ́.	_
	- 1		INC					MONU		Tack		1	
emarks	: <u>501</u>	tur a	OIN	15	<u>b' k</u>	DIBIUL	<u>s</u> I	OC,	<u>5 0</u>	<u>NML</u>	ambe	c, 1e	500 mL am
IELD E		лт		5				,		Field Chem	nistrv Calib	rations	w) HC
	r YSI 566	- 65	Ø		Serial	Number				Fractions	-		
	ond. Meter		65	5		Number							
		adder Pum		\sim		Number Number							
			F						1	Number of F	Bottles		
	evel Meter	-				Number							
		e (55)				Number					÷		
•	paratus				Filters					Field Notebo			
	ature Meas		14	50						Sample Met	nod _microp	urge	
terface	Probe	421	0	<u>50</u>	_ Serial	Number						_	
NO/OV	7				Serial	Number				Discharge V	Vater Conta	inerized	Yes No

feed

MICROPURGING GROUNDWATER SAMPLING DATA SHEET

Page	1		of_	
Date	5.	4	11	

Well Name MW - 5	Screen Interval	
Project Lentury Link Longview	Station Elevation GND TOC	Immiscible Phases Present Yes No
Project No.	Static Water Level (from TOC)	Туре
Well Location MW-S, Washington Wa-	7 Well Stick Up	Measured with
Sample Date 5.4.11	Static Elevation 10.10'	PID Readings (background)
Sampling Personnel VP, SD	Well Depth <u>19.01</u> MEAS <u>/</u> RPTD	PID Reading (TOC)
	Feet of Water	Wells Installed by
Sample ID	Gallons/Foot	Installation Date
Duplicate ID DUP - 5.4.17	Casing Volume	Development Date(s)
FIELD CHEMISTRY CALIBRATIONS		
Date/Time	Spec. Conductance: Standard µmhos/cm at 2	25. C Reading µmhos/cm at C
pH: pH 4.00 at · C	рН 7.00 at · С рН 10.00	atC Slope NA
Dissolved Oxygen: D.O. Meter mg/L at	C PID: Calibration Gas Isobutylene F	PPM 100 Span NA Reading

							PUR	GING					
	Discharge	Dissolved				Specific Conduct.			e Volume of oved (Purged)	PID/OVA	Reading	Depth to	
Time	Rate (mL/min)	Oxygen (mg/L)	pН	Eh/ORP (mV)	Temp. (·C)	(µmhos/cm at ⋅ C)	Turbidity (NTU)	Gallons	Casing Vol.	Location	Value	Water (ft)	Comments
1100	30	4.95	6.38	124.9	13.FB	0,337	D.4	0.25					
1105	300	4.55	627	134.7	13:22	0.337	0.46	0.5					
1110	200	4.63	6.20	141-0	13:15	0.333	0.41	0.15					
1115	300	4.61	6-19	146-1	13.75	0.335	0.30	-					
1120	300	4.55	6.15	153.0	13.72	0.335	0.27	1.25					
1125	300	4.49	6-14	157.7	13.76	0.737,	0.26	1.50					

SAMPLE PARAMETERS

1130 300 4.43 6.14 159.0	13.91 0.231 0.24 9.25	10.2'
Remarks: Set tibing & is.s' h	pelow Toc, 3-500ml Amber, 1	Mant, purging storted loss
FIELD EQUIPMENT pH Meter YSI 556 650	Serial Number 034982	Field Chemistry Calibrations Fractions
Spec. Cond. Meter YSK-996 650	Serial Numbert	
Pump Dedicated Bladder Pump Water Level Meter Solinst	_ Serial Number <u>NA</u> _ Serial Number <u>00 4489</u>	Number of Bottles
D.O. Meter YSI 566 (SO	_ Serial Number	Sample Depth Field Notebook
Temperature Measure 19 650		Sample Method Micropurge
Interface Probe PID/OVANA	_ Serial Number _ Serial Number	Discharge Water Containerized Yes No

Chain of Custody

ADDRESS 1317 South 13th Ave., Kelso, WA 98626 PHONE 1 360 577 7222 FAX 1 360 636 1068 Columbia Analytical Services, Inc.

Work Order No.:

	Columbia Analytical Services, Inc. Part of the ALS Group A Cambbe	di	rices, Inc. Campbe	rvices, Inc. A Campbell Brothers Limited Comnany	mited Co.	Vueun							
Project Manager: D	David Berestka								Bill to:	Vanesca Pineda	Pinada		
me:	Tetra Tech								Company:	Tetra Tech	- h		
	216 16th Street	f							Address:	216 16th	216 16th Street Suite 1500		
City, State ZIP: De	Denver, CO 80202	0202							City, State ZIP:		Denver. CO 80202		
Email: Di	David.Berestka@tetratech.com	a@tetrat	ech.com		Phone:	m	03-312-8856	3856	Email:	vanessa.r	ineda@tetratech.c	Phone	303-312-8812
Project Name: Ce	CenturyLink Longview WA	Ingview	NA						REQUES	TED ANALYS	REQUESTED ANALYSIS		
Project Number: 10	103P3080219	6				10							Dour
P.O. Number:						T							
Sampler's Name: Mi	Mike Pavarini/Vanessa Pineda	/Vaness	a Pined	R		<u> </u>							Next Day ***
	SAMPLE	SAMPLE RECEIPT	PT										
Temperature (°C):			Temp Bla	Temp Blank Present		, lio	_			÷			
Received Intact:	Yes	No	N/A	Wet Ice /	Blue Ice								
Cooler Custody Seals:	Yes	No	N/A	Total Containers:	tainers:			_					*** Please call for
Sample Custody Seals:	Yes	No	N/A										availability
Sample Identification	on Matrix		Date Sampled	Time Sampled	Lab ID	nistnoJ fo . 1910x diese	HU) WIS SZ9 H						Due Date:
MW-3	(J)		17-2	× 1			aia						Comments
1		Γ	+	10.01			\ - -						
i l	ິ ອ	Τ	+++	0011		r	2			_			
NW-4	39		5 4 17	1255		J	3						
NW-1	С С		4-17	1430		t	e e						
MW-2	0 M	_	5-417	1605		L L	3						
F1-205-700	39		5-4-17	2000		Ч Ч	Ð						
		-				-							
		_				\rightarrow							
	_		+										
Total		An Al	Ac R R									_	
Discolved		IN THE				~		NIG, MIR, N	re, N, Li, My, Min, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Ti, V, Zn, Zr	e, SI, SN, Sr, TI	, V, Zn, Zr	Additional	Additional Methods Available
navioceia		RFI INDIJISHED RV	AS, B, B	Ag, Al, As, B, Ba, Be, Ca, Cd, FI INDIIISHED RV	5	Cr, Cu, Fe,	k, Ľí,	Mg, Mn, N	Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Ti, V, Zn, Zr	e, Si, Sn, Sr, Ti	, V, Zn, Zr		Upon Request
											KECEIVED BY	٢	
Print Name	e	-	Sić	Signature			Date/Time	me	Print Name	ne	Signature	tture	Date/Time
V NOTED X	dan	R.	$\left \right $	4	æ	SHI	I FI	SOF	L'Smith		A Driv	,	51417 1705
20					2 Y								
	C	Environmental	nental		www.caslab.com	caslab	.com	- ww	www.alsglobal.com				

Revised . 500017

TETRA TECH, INC. DAILY TAILGATE SAFETY MEETING FORM

Date: 5/4/17 Time: 900 Project No.:
Client: Century Link Site Location: Longview, WA
Site Activities Planned for Today: Goundwooder Scupling
Weather Conditions: <u>Sunny</u> , ~ 70°F
Safety Topics Discussed
Protective clothing and equipment:
steel toe boots, safety glasses, safety vests
Chemical and physical hazards:
bottles have HCl
Emergency procedures:
Go to hospital
Equipment hazards:
none
Other:
Attendees
Printed Name Signature
Scott Duzan Ant And
KinberlyWaller

Meeting Conducted by:

Vonessa Pineda Name

Signature

I
U
Ш́.
F
Z
2
H
ш
-
Ł

APPROVAL AND SIGN-OFF FORM

Project No.:

I have read, understood, and agree with the information set forth in this Health and Safety Plan and will follow the direction of the Site Safety Coordinator (SSC) as well as procedures and guidelines established in the Tetra Tech, Inc., Health and Safety Manual. I understand the training and medical requirements for conducting field work and have met these requirements. Tetra Tech has prepared this plan solely for the purpose of the health and safety protection of Tetra Tech employees. Subcontractors, visitors, and others at the site, while

	Company / Agency / Organization	Signature	Date
SCOTT DUZAN	TETRA TECH INC (EMI)	Just M Ing	L.h.s
	•	7	
I have read, understood, and agree with the information set fo established in the Tetra Tech, Inc., Health and Safety Manual.	I have read, understood, and agree with the information set forth in this Health and Safety Plan and comply with and will enforce this HASP, as well as procedures and guidelines established in the Tetra Tech, Inc., Health and Safety Manual.	ind comply with and will enforce this HASP, as w	ell as procedures and guidelines
Name	Project-Specific Position	Signature	Date
	Project Manager		
Vonossa Pinada.	Field Team Leader	la h	たートーシ
	Site Safety Coordinator		
5 Kenberty Walke	Subcontractor SSC	A a	5-4-17
Tetra Tech has prepared this plan solely for the purpose of the health	Tetra Tech has prepared this plan solely for the purpose of the health and safety protection of Tetra Tech employees. Subcontractors, visitors, and others at the site, while	itra Tech employees. Subcontractors, visitors, a	Subcontractors, visitors, and others at the site, while

11 February 2010

ATTACHMENT B LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS MAY 2017 SAMPLING EVENT

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T**:+1 360 577 7222 **F**:+1 360 636 1068 www.alsglobal.com

Analytical Report for Service Request No: K1704466

May 26, 2017

Rob Tisdale Tetra Tech EM, Incorporated 216 16th St, Suite 1500 Denver, CO 80202

RE: CenturyLink Longview WA / 103P3080219

Dear Rob,

Enclosed are the results of the sample(s) submitted to our laboratory May 04, 2017 For your reference, these analyses have been assigned our service request number **K1704466**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3275. You may also contact me via email at Chris.Leaf@ALSGlobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Chris Leáf Project Manager

ALS Environmental ALS Group USA, Corp 1317 South 13th Avenue Kelso, WA 98626 **T :** +1 360 577 7222 **F :** +1 360 636 1068 www.alsglobal.com

Table of Contents

Acronyms Qualifiers State Certifications, Accreditations, And Licenses Case Narrative Chain of Custody Diesel and Residual Range Organics

Polynuclear Aromatic Hydrocarbons

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
M MCL	Modified Maximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH tr	Total Petroleum Hydrocarbons Trace level is the concentration of an analyte that is less than the PQL but greater than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Page 4 of 31

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L14-51
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	_
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
North Carolina DEQ	https://deq.nc.gov/about/divisions/water-resources/water-resources- data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Case Narrative

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 6 of 31

ALS ENVIRONMENTAL

Client:Tetra Tech EM, IncorporatedProject:CenturyLink Longview WA/103P3080219Sample Matrix:Water

Service Request No.: Date Received: K1704466 05/04/17

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Control Sample (LCS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Six water samples were received for analysis at ALS Environmental on 05/04/17. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory. Per instructions, the samples were passed through a 0.7 um filter prior to extraction for Polynuclear Aromatic Hydrocarbons by EPA Method 8270.

Diesel and Residual Range Organics

Sample Notes and Discussion:

Insufficient sample volume was received to perform a Matrix Spike/Matrix Spike Duplicate (MS/MSD). A Laboratory Control Sample/Duplicate Laboratory Control Sample (LCS/DLCS) was analyzed and reported in lieu of the MS/MSD for these samples.

No other anomalies associated with the analysis of these samples were observed.

Polynuclear Aromatic Hydrocarbons by EPA Method 8270

Matrix Spike Recovery Exceptions:

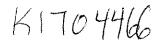
The recoveries of Carbazole in replicate Matrix Spikes (MS/DMS) KWG1703800-1 and KWG1703800-2 were outside the control limits listed in the results summary. The limits are default. Based on the method and historic data, the recoveries observed were in the range expected for this procedure. No further corrective action was taken.

Lab Control Sample Exceptions:

The recoveries of Carbazole in replicate Laboratory Control Samples (LCS/DLCS) KWG1703800-3 and KWG1703800-4 were outside the control limits listed in the results summary. The limits were charted from data generated utilizing a sample extraction technique other than the one used for this sample batch. The values are temporarily in use until sufficient data points are generated to calculate statistical control limits based on the current extraction technique. Based on the method and historic data, the recoveries observed were in the range expected for this procedure. No further corrective action was taken.

No other anomalies associated with the analysis of these samples were observed.

Approved by


Chain of Custody

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 8 of 31

Chain of Custody

•	A	
	ALS)	

ADDRESS 1317 South 13th Ave., Kelso, WA 98626

Part of the ALS Group A Campbell Brothers Limited Company

PHONE 1 360 577 7222 FAX 1 360 636 1068 Columbia Analytical Services, Inc.

Work Order No.:

Project Manager:	David Be	erestka									Bill 1	0:	\mathcal{D}	Van	iessa l	Pined	a							
Client Name:	Tetra Te	ch									Com	pany:		Tet	ra Tec	h								
Address:	216 16th	Street									Add	ress:		216	5 16th	Stre	et Sui	te 15	00					
City, State ZIP:	Denver,	CO 80202	2								City,	State	ZIP:	Der	nver, C	:O 8	0202							
Email:	David.Be	erestka@te	etratech.com	1	Phone:	30	331	12-88	356		Ema				essa.p		@tetr	atech	.com	Pho	ne 3	03-312		
Project Name:	and the second se	ink Longv.	iew WA									REQL	JESTE	D AN	IALYS	IS SA	SSA 1		9976				ТА	,T eleberg
Project Number:	103P308	80219					le l	â														M	Routine	
P.O. Number:	<u> </u>						B	cleanup)														Γ Î	Same D	ay ***
Sampler's Name:	Mike Pav	/arini/Vai	nessa Pined	la			sili	8														П	Next Da	ıy ***
	S/	AMPLE RI	ECEIPT		heer of the second s		Ê	gel														Ē	3 Day	
Femperature (°C):			Temp Bl	ank Present			r oil	silica															6 Day	
Received Intact:			No N/A	Wet Ice / I			15	no s																
Cooler Custody Sea	ls:		No N/A	Total Cont	ainers:		5	ģ															" Please availal	call for
ample Custody Sea	als:	Yes	No N/A			ners	au	(filtered-															avallal	אוונא
Sample Identific	cation	Matrix	Date Sampled	Time Sampled	Lab ID	. of Containers	NWTPHDx diesel and motor oll (no silica gel cleanun)	H 625 SIM (f															Due D	late:
			<u> a di mand</u>	1. K. (1999)	10339		Ž -																Comm	ents
MW-3		60	5-4-17	10.0950		4	t	3																
MW-5		GW	5.4.17	1130		J L		3																
MW-4		GW	5-4.17	1255	1	4	1	3																<u> </u>
MW-1		GW	6-417	1430	[4	1	3						1-1			-	\top				+		
MW-2		GW	5-4-17	1005	<u> </u>	i.	Î	3						+										
DUP-504-	13	GW	5-4-17			L.	6	3		+	┼──╆			┼──┦		+		+				+		
<u>UM - 30 F</u>	<u></u>	600		pun _		<u> </u>	<u>├</u>	 ```			++			╞──┤				+	┝━━┼	-+		-		
** <u>***********************************</u>		[+	<u> </u>		╂───		┟──┼			┢──┢			╂──┤				+	$ \rightarrow $					
			<u></u>		ļ			┝──┤						┢━─┤				+	┝──╁					
			<u> </u>	ļ				┝──┝			┨┈┄┈┠╸			┟──┤					 			–,		
			<u> </u>			┣───	ļ	┞──┼			 			-+				ļ				_		
		L	<u> </u>	<u> </u>	l	\Box												L				<u> </u>		
otal				Ba, Be, Ca, Co				· · ·												Add	A. 1 A. 1. A. 15.	and the second	いいていん いいろくせい	vailable
Dissolved		<u>م </u>	g, Al, As, B,	Ba, Be, Ca, Co	d, Co, Cr	, Cu,	Fe, k	(, Li, N	1 <u>g, Mn</u> ,	Mo, N	la, Ni,	P, Pb, 1	Sb, Se,	, Si, Sr	1, Sr, T	i, V, Z	in, Zr					pon R	lequest	
		RE	LINQUISH	HED BY												R	ECEI	VED	BY					
Print N	Vame		S	ignature			Da	te/Tii	me			Prin	t Nan	1e				Sig	Inatu	re	interne. Alterne for		Date/T	Ime
Marco	Pinack	$\overline{}$	Van		- do	SK	11.	4.1	105	1	- C.	A. 1 1	1.			17	$\overline{}$			<u> </u>	<u></u>	51	ulin	1705
VIVILLE	1 Mar		<u></u>		<u> </u>	26	-11	<u>۲</u>	405			nit	K .	<u> </u>		4	<u>Y</u>			<u>***</u>		+4	11+	1712
X. /			inemmente		www	.cəs	lab.	com	• W1	NW. 3	lsglo	oo.led	m											

Raw Corrected Cooler Temp Blank Corrected Temp Blank Corrected Temp Blank Corrected Temp Blank Tracking Number NA 5.8 5.9 5.9 6.0 4.0 4.0.1 3644 NA NA 5.5 5.4 5.9 5.7 0.1 373 NA NA Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves NA NA Were custody papers properly filled out (ink, signed, etc.)? NA NA NA NA Were all sample labels complete (i.e analysis, preservation, etc.)? NA NA NA NA Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Y Were appropriate bottles/containers and volumes received for the tests indicate? NA Y	N File
Samples were received via? USPS Fed Ex UPS DHL PDX Courier fand Delivered Samples were received in: (circle) Cooler Box Envelope Other	N N N
Samples were received in: (circle) Cooler Bax Envelope Other	N N N
Were custody seals on coolers? NA Y N If yes, how many and where? If present, were custody seals intact? Y N If present, were they signed and dated? Y Rew corrected cooler femp Corrected Temp Blank Corrected Factor Cooler/COC ID Tracking Number Soler femp Corrected Temp Blank Corrected Factor Cooler/COC ID Tracking Number NA Soler femp Soler femp Soler femp Soler femp Soler femp Soler femp NA NA Soler femp Corrected Temp Blank Corrected Factor Cooler/COC ID Tracking Number NA Soler femp Soler femp Soler femp Soler femp Soler femp NA NA Soler femp Soler femp Soler femp Soler femp NA NA NA Soler femp Soler femp Soler femp Soler femp Soler femp NA NA NA Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves NA V Were custody papers properly filled out (ink, signed, etc.)?	N N N
Raw observed bools Corrected Temp Blank Factor ID NA NA 5.8 5.9 5.9 6.0 + 0.1 3/24 NA	N N N
Description Temp Blank Factor ID NA 5.8 5.9 5.9 2.00 4.0.1 3.64/	N N N
5.8 5.9 5.9 6.0 70.1 3/23 5.5 5.4 5.8 5.7 0.1 3/23 Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? Were samples received in good condition (temperature, unbroken)? Indicate in the table below. If applicable, tissue samples were received: Frozen Partially Thawed Thawed NA Were all sample labels complete (i.e analysis, preservation, etc.)? NA NA Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA NA Were appropriate bottles/containers and volumes received for the tests indicated? NA V Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA V	N N N
5.5 5.4 5.8 5.7 0.1 373 Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? NA V Were samples received in good condition (temperature, unbroken)? Indicate in the table below. If applicable, tissue samples were received: Frozen Partially Thawed Thawed NA V Were all sample labels complete (i.e analysis, preservation, etc.)? NA V Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA V Were appropriate bottles/containers and volumes received at the appropriate pH? Indicate in the table below NA V Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA V	N N
Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? NA Vere custody papers properly filled out (ink, signed, etc.)? Were samples received in good condition (temperature, unbroken)? Indicate in the table below. NA Vere custody papers If applicable, tissue samples were received: Frozen Partially Thawed Thawed NA Vere custody papers Did all sample labels complete (i.e analysis, preservation, etc.)? NA Vere appropriate bottles/containers and volumes received for the tests indicated? NA Vere appropriate bottles/containers and volumes received at the appropriate pH? Indicate in the table below NA Vere NA	N N
Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? NA Vere custody papers properly filled out (ink, signed, etc.)? Were samples received in good condition (temperature, unbroken)? Indicate in the table below. NA Vere custody papers If applicable, tissue samples were received: Frozen Partially Thawed Thawed NA Vere custody papers Did all sample labels complete (i.e analysis, preservation, etc.)? NA Vere paperopriate bottles/containers and volumes received for the tests indicated? NA Vere appropriate bottles/containers and volumes received at the appropriate pH? Indicate in the table below NA Vere NA	N N
Packing material: Inserts Baggies Bubble Wrap Gel Packs Wet Ice Dry Ice Sleeves Were custody papers properly filled out (ink, signed, etc.)? NA V Were samples received in good condition (temperature, unbroken)? Indicate in the table below. NA V Were all sample labels complete (i.e analysis, preservation, etc.)? NA V NA V Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA V Were appropriate bottles/containers and volumes received at the appropriate pH? Indicate in the table below NA V	N N
Were custody papers properly filled out (ink, signed, etc.)? NA V Were samples received in good condition (temperature, unbroken)? Indicate in the table below. NA V If applicable, tissue samples were received: Frozen Partially Thawed Thawed NA V Were all sample labels complete (i.e analysis, preservation, etc.)? NA V Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA V Were appropriate bottles/containers and volumes received for the tests indicated? NA V Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA V	N N
Were samples received in good condition (temperature, unbroken)? Indicate in the table below. If applicable, tissue samples were received: Frozen Partially Thawed Thawed NA V Were all sample labels complete (i.e analysis, preservation, etc.)? NA V Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA V Were appropriate bottles/containers and volumes received for the tests indicated? NA V Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA V	N N
If applicable, tissue samples were received: Frozen Partially Thawed Thawed Were all sample labels complete (i.e analysis, preservation, etc.)? NA V Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA V Were appropriate bottles/containers and volumes received for the tests indicated? NA V Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA V	N
Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on page 2. NA Y Were appropriate bottles/containers and volumes received for the tests indicated? NA Y Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA Y	
Were appropriate bottles/containers and volumes received for the tests indicated? NA V Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below NA Y	N
. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below (NA) Y	
	N
	N
	N N
Was Cr2/Res negative?	
Sample ID on Bottle Sample ID on COC Identified by:	
]
Bottle Count Out of Head- Volume Reagent Lot	
Sample ID Bottle Type Temp space Broke pH Reagent added Number Initials Time	e
	•

Notes, Discrepancies, & Resolutions:_

,

.

ł

Diesel and Residual Range Organics

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 11 of 31

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Diesel and Residual Range Organics

Sample Name:	MW-3	Units:	e
Lab Code:	K1704466-001	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	47 J	260	12	1	05/09/17	05/16/17	KWG1703722	
Residual Range Organics (RRO)	54 J	520	20	1	05/09/17	05/16/17	KWG1703722	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	85	50-150	05/16/17	Acceptable
n-Triacontane	84	50-150	05/16/17	Acceptable

Comments:

Merged

Form 1A - Organic Page 12 of 31

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Diesel and Residual Range Organics

Sample Name:	MW-5	Units:	e
Lab Code:	K1704466-002	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	23 J	260	12	1	05/09/17	05/16/17	KWG1703722	
Residual Range Organics (RRO)	31 J	520	20	1	05/09/17	05/16/17	KWG1703722	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	97	50-150	05/16/17	Acceptable
n-Triacontane	91	50-150	05/16/17	Acceptable

Comments:

Merged

Form 1A - Organic Page 13 of 31

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Diesel and Residual Range Organics

Sample Name:	MW-4	Units:	e
Lab Code:	K1704466-003	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	24 J	260	12	1	05/09/17	05/16/17	KWG1703722	
Residual Range Organics (RRO)	37 J	520	20	1	05/09/17	05/16/17	KWG1703722	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	71	50-150	05/16/17	Acceptable
n-Triacontane	70	50-150	05/16/17	Acceptable

Comments:

Merged

Form 1A - Organic Page 14 of 31

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Diesel and Residual Range Organics

Sample Name:	MW-1	Units:	e
Lab Code:	K1704466-004	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	42 J	260	12	1	05/09/17	05/16/17	KWG1703722	
Residual Range Organics (RRO)	86 J	520	20	1	05/09/17	05/16/17	KWG1703722	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	86	50-150	05/16/17	Acceptable
n-Triacontane	85	50-150	05/16/17	Acceptable

Comments:

Merged

Form 1A - Organic Page 15 of 31

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Diesel and Residual Range Organics

Sample Name:	MW-2	Units:	e
Lab Code:	K1704466-005	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	570 Y	270	12	1	05/09/17	05/16/17	KWG1703722	
Residual Range Organics (RRO)	200 J	530	20	1	05/09/17	05/16/17	KWG1703722	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	93	50-150	05/16/17	Acceptable
n-Triacontane	89	50-150	05/16/17	Acceptable

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Diesel and Residual Range Organics

Sample Name:	DUP-5-04-17	Units:	0
Lab Code:	K1704466-006	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	27 J	260	12	1	05/09/17	05/16/17	KWG1703722	
Residual Range Organics (RRO)	48 J	510	20	1	05/09/17	05/16/17	KWG1703722	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	102	50-150	05/16/17	Acceptable
n-Triacontane	96	50-150	05/16/17	Acceptable

Comments:

Merged

Form 1A - Organic Page 17 of 31

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Diesel and Residual Range Organics

Sample Name:	Method Blank	Units:	e
Lab Code:	KWG1703722-3	Basis:	
Extraction Method: Analysis Method:	EPA 3510C NWTPH-Dx	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	MDL	Factor	Extracted	Analyzed	Lot	Note
Diesel Range Organics (DRO)	27 J	250	11	1	05/09/17	05/15/17	KWG1703722	
Residual Range Organics (RRO)	53 J	500	19	1	05/09/17	05/15/17	KWG1703722	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
o-Terphenyl	94	50-150	05/15/17	Acceptable
n-Triacontane	95	50-150	05/15/17	Acceptable

Comments:

Merged

Form 1A - Organic Page 18 of 31

SuperSet Reference: RR198443

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080219
Sample Matrix:	Water

Surrogate Recovery Summary Diesel and Residual Range Organics

Extraction Method:	EPA 3510C
Analysis Method:	NWTPH-Dx

Units: Percent Level: Low

Service Request: K1704466

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>
MW-3	K1704466-001	85	84
MW-5	K1704466-002	97	91
MW-4	K1704466-003	71	70
MW-1	K1704466-004	86	85
MW-2	K1704466-005	93	89
DUP-5-04-17	K1704466-006	102	96
Method Blank	KWG1703722-3	94	95
Lab Control Sample	KWG1703722-1	95	92
Duplicate Lab Control Sample	KWG1703722-2	98	95

Surrogate Recovery Control Limits (%)

Sur1 = o-Terphenyl Sur2 = n-Triacontane 50-150 50-150

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

0A	/OC	Re	nort
VЛ	$/\mathcal{O}\mathcal{C}$	nu	pon

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Extracted:	05/09/2017
Sample Matrix:	Water	Date Analyzed:	05/15/2017

Lab Control Spike/Duplicate Lab Control Spike Summary Diesel and Residual Range Organics

Extraction Method:EPA 33Analysis Method:NWTP) I	Units: Basis: Level: n Lot:	NA
	ł	b Control Samp KWG1703722-1 Lab Control Spike		KW	Lab Control S VG1703722-2 e Lab Control				
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Diesel Range Organics (DRO) Residual Range Organics (RRO)	3320 1870	3200 1600	104 117	3110 1690	3200 1600	97 105	46-140 45-159	7 11	30 30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Polynuclear Aromatic Hydrocarbons

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360)577-7222 Fax (360)636-1068 www.alsglobal.com

RIGHT SOLUTIONS | RIGHT PARTNER

Page 21 of 31

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:	MW-3	Units:	U
Lab Code:	K1704466-001	Basis:	
Extraction Method: Analysis Method:	EPA 3511 8270D SIM	Level:	Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.0030	J	0.020	0.0014	1	05/11/17	05/12/17	KWG1703800	
2-Methylnaphthalene	0.0020	J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
1-Methylnaphthalene	0.0018	J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Acenaphthylene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Acenaphthene	ND	U	0.020	0.0012	1	05/11/17	05/12/17	KWG1703800	
Dibenzofuran	0.0012	J	0.020	0.00096	1	05/11/17	05/12/17	KWG1703800	
Fluorene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Phenanthrene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Anthracene	ND	U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Carbazole	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	*
Fluoranthene	ND	U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Pyrene	ND	U	0.020	0.0010	1	05/11/17	05/12/17	KWG1703800	
Benz(a)anthracene	0.0020	J	0.020	0.00097	1	05/11/17	05/12/17	KWG1703800	
Chrysene	ND	U	0.020	0.00076	1	05/11/17	05/12/17	KWG1703800	
Benzo(b)fluoranthene†	ND	U	0.020	0.00083	1	05/11/17	05/12/17	KWG1703800	
Benzo(k)fluoranthene	ND	U	0.020	0.00094	1	05/11/17	05/12/17	KWG1703800	
Benzo(a)pyrene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	0.00089	1	05/11/17	05/12/17	KWG1703800	
Dibenz(a,h)anthracene	ND	U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Benzo(g,h,i)perylene	ND	U	0.020	0.00086	1	05/11/17	05/12/17	KWG1703800	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	86	42-131	05/12/17	Acceptable
Fluoranthene-d10	99	42-133	05/12/17	Acceptable
Terphenyl-d14	75	32-129	05/12/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:	MW-5	Units:	C
Lab Code:	K1704466-002	Basis:	
Extraction Method: Analysis Method:	EPA 3511 8270D SIM	Level:	Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.0046	J	0.020	0.0014	1	05/11/17	05/12/17	KWG1703800	
2-Methylnaphthalene	0.0016	J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
1-Methylnaphthalene	ND	U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Acenaphthylene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Acenaphthene	ND	U	0.020	0.0012	1	05/11/17	05/12/17	KWG1703800	
Dibenzofuran	0.0010	J	0.020	0.00096	1	05/11/17	05/12/17	KWG1703800	
Fluorene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Phenanthrene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Anthracene	ND	U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Carbazole	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	*
Fluoranthene	ND	U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Pyrene	ND	U	0.020	0.0010	1	05/11/17	05/12/17	KWG1703800	
Benz(a)anthracene	0.0024	J	0.020	0.00097	1	05/11/17	05/12/17	KWG1703800	
Chrysene	ND	U	0.020	0.00076	1	05/11/17	05/12/17	KWG1703800	
Benzo(b)fluoranthene†	ND	U	0.020	0.00083	1	05/11/17	05/12/17	KWG1703800	
Benzo(k)fluoranthene	ND	U	0.020	0.00094	1	05/11/17	05/12/17	KWG1703800	
Benzo(a)pyrene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Indeno(1,2,3-cd)pyrene	ND	U	0.020	0.00089	1	05/11/17	05/12/17	KWG1703800	
Dibenz(a,h)anthracene	ND	U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Benzo(g,h,i)perylene	ND	U	0.020	0.00086	1	05/11/17	05/12/17	KWG1703800	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	88	42-131	05/12/17	Acceptable
Fluoranthene-d10	99	42-133	05/12/17	Acceptable
Terphenyl-d14	80	32-129	05/12/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:	MW-4	Units:	U
Lab Code:	K1704466-003	Basis:	
Extraction Method: Analysis Method:	EPA 3511 8270D SIM	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.0068 J	0.020	0.0014	1	05/11/17	05/12/17	KWG1703800	
2-Methylnaphthalene	0.0020 J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
1-Methylnaphthalene	ND U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Acenaphthylene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Acenaphthene	ND U	0.020	0.0012	1	05/11/17	05/12/17	KWG1703800	
Dibenzofuran	0.0011 J	0.020	0.00096	1	05/11/17	05/12/17	KWG1703800	
Fluorene	0.0013 J	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Phenanthrene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Anthracene	ND U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Carbazole	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	*
Fluoranthene	ND U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Pyrene	0.0038 J	0.020	0.0010	1	05/11/17	05/12/17	KWG1703800	
Benz(a)anthracene	0.0023 J	0.020	0.00097	1	05/11/17	05/12/17	KWG1703800	
Chrysene	ND U	0.020	0.00076	1	05/11/17	05/12/17	KWG1703800	
Benzo(b)fluoranthene†	ND U	0.020	0.00083	1	05/11/17	05/12/17	KWG1703800	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	05/11/17	05/12/17	KWG1703800	
Benzo(a)pyrene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	05/11/17	05/12/17	KWG1703800	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	05/11/17	05/12/17	KWG1703800	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	80	42-131	05/12/17	Acceptable
Fluoranthene-d10	90	42-133	05/12/17	Acceptable
Terphenyl-d14	75	32-129	05/12/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:	MW-1	Units:	0
Lab Code:	K1704466-004	Basis:	
Extraction Method: Analysis Method:	EPA 3511 8270D SIM	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.0076 J	0.020	0.0014	1	05/11/17	05/12/17	KWG1703800	
2-Methylnaphthalene	0.0015 J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
1-Methylnaphthalene	0.0019 J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Acenaphthylene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Acenaphthene	ND U	0.020	0.0012	1	05/11/17	05/12/17	KWG1703800	
Dibenzofuran	ND U	0.020	0.00096	1	05/11/17	05/12/17	KWG1703800	
Fluorene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Phenanthrene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Anthracene	ND U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Carbazole	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	*
Fluoranthene	ND U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Pyrene	0.0013 J	0.020	0.0010	1	05/11/17	05/12/17	KWG1703800	
Benz(a)anthracene	0.0026 J	0.020	0.00097	1	05/11/17	05/12/17	KWG1703800	
Chrysene	ND U	0.020	0.00076	1	05/11/17	05/12/17	KWG1703800	
Benzo(b)fluoranthene†	ND U	0.020	0.00083	1	05/11/17	05/12/17	KWG1703800	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	05/11/17	05/12/17	KWG1703800	
Benzo(a)pyrene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	05/11/17	05/12/17	KWG1703800	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	05/11/17	05/12/17	KWG1703800	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	90	42-131	05/12/17	Acceptable
Fluoranthene-d10	103	42-133	05/12/17	Acceptable
Terphenyl-d14	85	32-129	05/12/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:	MW-2	Units:	U
Lab Code:	K1704466-005	Basis:	
Extraction Method: Analysis Method:	EPA 3511 8270D SIM	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.61	0.020	0.0014	1	05/11/17	05/12/17	KWG1703800	
2-Methylnaphthalene	0.0015 J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
1-Methylnaphthalene	0.018 J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Acenaphthylene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Acenaphthene	0.028	0.020	0.0012	1	05/11/17	05/12/17	KWG1703800	
Dibenzofuran	0.0062 J	0.020	0.00096	1	05/11/17	05/12/17	KWG1703800	
Fluorene	0.0083 J	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Phenanthrene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Anthracene	ND U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Carbazole	0.013 J	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	*
Fluoranthene	0.0017 J	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Pyrene	0.013 J	0.020	0.0010	1	05/11/17	05/12/17	KWG1703800	
Benz(a)anthracene	ND U	0.020	0.00097	1	05/11/17	05/12/17	KWG1703800	
Chrysene	ND U	0.020	0.00076	1	05/11/17	05/12/17	KWG1703800	
Benzo(b)fluoranthene†	ND U	0.020	0.00083	1	05/11/17	05/12/17	KWG1703800	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	05/11/17	05/12/17	KWG1703800	
Benzo(a)pyrene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	05/11/17	05/12/17	KWG1703800	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	05/11/17	05/12/17	KWG1703800	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	86	42-131	05/12/17	Acceptable
Fluoranthene-d10	98	42-133	05/12/17	Acceptable
Terphenyl-d14	80	32-129	05/12/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	05/04/2017
Sample Matrix:	Water	Date Received:	05/04/2017

Polynuclear Aromatic Hydrocarbons

Sample Name:	DUP-5-04-17	Units:	0
Lab Code:	K1704466-006	Basis:	
Extraction Method: Analysis Method:	EPA 3511 8270D SIM	Level:	Low

Analyte Name	Result Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.0060 J	0.020	0.0014	1	05/11/17	05/12/17	KWG1703800	
2-Methylnaphthalene	0.0014 J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
1-Methylnaphthalene	0.0016 J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Acenaphthylene	0.0057 J	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Acenaphthene	ND U	0.020	0.0012	1	05/11/17	05/12/17	KWG1703800	
Dibenzofuran	0.0012 J	0.020	0.00096	1	05/11/17	05/12/17	KWG1703800	
Fluorene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Phenanthrene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Anthracene	ND U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Carbazole	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	*
Fluoranthene	ND U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Pyrene	0.0019 J	0.020	0.0010	1	05/11/17	05/12/17	KWG1703800	
Benz(a)anthracene	0.0024 J	0.020	0.00097	1	05/11/17	05/12/17	KWG1703800	
Chrysene	ND U	0.020	0.00076	1	05/11/17	05/12/17	KWG1703800	
Benzo(b)fluoranthene†	ND U	0.020	0.00083	1	05/11/17	05/12/17	KWG1703800	
Benzo(k)fluoranthene	ND U	0.020	0.00094	1	05/11/17	05/12/17	KWG1703800	
Benzo(a)pyrene	ND U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Indeno(1,2,3-cd)pyrene	ND U	0.020	0.00089	1	05/11/17	05/12/17	KWG1703800	
Dibenz(a,h)anthracene	ND U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Benzo(g,h,i)perylene	ND U	0.020	0.00086	1	05/11/17	05/12/17	KWG1703800	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	101	42-131	05/12/17	Acceptable
Fluoranthene-d10	115	42-133	05/12/17	Acceptable
Terphenyl-d14	84	32-129	05/12/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

Analytical Results

Client:	Tetra Tech EM, Incorporated	Service Request:	K1704466
Project:	CenturyLink Longview WA/103P3080219	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

Polynuclear Aromatic Hydrocarbons

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG1703800-5	Basis:	
Extraction Method: Analysis Method:	EPA 3511 8270D SIM	Level:	Low

Analyte Name	Result	Q	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Naphthalene	0.0034	J	0.020	0.0014	1	05/11/17	05/12/17	KWG1703800	
2-Methylnaphthalene	0.0051	J	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
1-Methylnaphthalene	ND	U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Acenaphthylene	0.0031	J	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Acenaphthene	ND	U	0.020	0.0012	1	05/11/17	05/12/17	KWG1703800	
Dibenzofuran	ND	U	0.020	0.00096	1	05/11/17	05/12/17	KWG1703800	
Fluorene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Phenanthrene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Anthracene	ND	U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Carbazole	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	*
Fluoranthene	ND	U	0.020	0.00082	1	05/11/17	05/12/17	KWG1703800	
Pyrene	ND	U	0.020	0.0010	1	05/11/17	05/12/17	KWG1703800	
Benz(a)anthracene	0.0023	J	0.020	0.00097	1	05/11/17	05/12/17	KWG1703800	
Chrysene	ND	U	0.020	0.00076	1	05/11/17	05/12/17	KWG1703800	
Benzo(b)fluoranthene†	ND	U	0.020	0.00083	1	05/11/17	05/12/17	KWG1703800	
Benzo(k)fluoranthene	ND	U	0.020	0.00094	1	05/11/17	05/12/17	KWG1703800	
Benzo(a)pyrene	ND	U	0.020	0.0011	1	05/11/17	05/12/17	KWG1703800	
Indeno(1,2,3-cd)pyrene	0.00098	J	0.020	0.00089	1	05/11/17	05/12/17	KWG1703800	
Dibenz(a,h)anthracene	ND	U	0.020	0.0013	1	05/11/17	05/12/17	KWG1703800	
Benzo(g,h,i)perylene	0.0018	J	0.020	0.00086	1	05/11/17	05/12/17	KWG1703800	

* See Case Narrative

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Fluorene-d10	90	42-131	05/12/17	Acceptable
Fluoranthene-d10	103	42-133	05/12/17	Acceptable
Terphenyl-d14	74	32-129	05/12/17	Acceptable

† Analyte Comments

Benzo(b)fluoranthene

This analyte cannot be separated from Benzo(j)fluoranthene.

Comments:

Merged

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080219
Sample Matrix:	Water

Surrogate Recovery Summary **Polynuclear Aromatic Hydrocarbons**

Extraction Method:	EPA 3511
Analysis Method:	8270D SI

IM

<u>Sample Name</u>	Lab Code	<u>Sur1</u>	Sur2	<u>Sur3</u>
Batch QC	K1704203-017	84	96	64
MW-3	K1704466-001	86	99	75
MW-5	K1704466-002	88	99	80
MW-4	K1704466-003	80	90	75
MW-1	K1704466-004	90	103	85
MW-2	K1704466-005	86	98	80
DUP-5-04-17	K1704466-006	101	115	84
Method Blank	KWG1703800-5	90	103	74
Batch QCMS	KWG1703800-1	100	113	85
Batch QCDMS	KWG1703800-2	82	98	67
Lab Control Sample	KWG1703800-3	84	98	77
Duplicate Lab Control Sample	KWG1703800-4	88	101	76

Surrogate Recovery Control Limits (%)

Sur1 = Fluorene-d10	42-131	
Sur2 = Fluoranthene-d10	42-133	
Sur3 = Terphenyl-d14	32-129	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Page 29 of 31

Service Request: K1704466

Units: Percent Level: Low

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080219
Sample Matrix:	Water

Service Request: K1704466 **Date Extracted:** 05/11/2017 **Date Analyzed:** 05/12/2017

Matrix Spike/Duplicate Matrix Spike Summary **Polynuclear Aromatic Hydrocarbons**

Sample Name: Lab Code:	Batch QC K1704203-017	Units: Basis:	e
Extraction Method:	EPA 3511	Level:	
Analysis Method:	8270D SIM	Extraction Lot:	KWG1703800

		KV	Batch QCMS WG1703800-1 Matrix Spike	l	Ba KV Duplia					
Analyte Name	Sample Result	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits RPD	RPD	RPD Limit
Naphthalene	0.0027	2.12	2.78	76	2.25	2.78	81	45-123	6	30
2-Methylnaphthalene	ND	2.14	2.78	77	2.28	2.78	82	58-111	6	30
1-Methylnaphthalene	ND	2.28	2.78	82	2.44	2.78	88	57-113	7	30
Acenaphthylene	ND	2.40	2.78	86	2.58	2.78	93	61-118	7	30
Acenaphthene	ND	2.27	2.78	82	2.40	2.78	87	63-121	6	30
Dibenzofuran	ND	2.38	2.78	86	2.51	2.78	91	62-127	6	30
Fluorene	ND	2.30	2.78	83	2.44	2.78	88	66-123	6	30
Phenanthrene	ND	2.55	2.78	92	2.66	2.78	96	65-124	4	30
Anthracene	ND	2.21	2.78	79	2.29	2.78	82	69-125	4	30
Carbazole	ND	1.39	2.78	50 *	1.43	2.78	51 *	70-130	3	30
Fluoranthene	ND	2.35	2.78	85	2.48	2.78	89	69-125	5	30
Pyrene	0.014	2.45	2.78	88	2.51	2.78	90	59-134	2	30
Benz(a)anthracene	0.0080	2.41	2.78	86	2.61	2.78	94	71-127	8	30
Chrysene	ND	2.20	2.78	79	2.32	2.78	83	75-130	5	30
Benzo(b)fluoranthene	ND	2.16	2.78	78	2.45	2.78	88	65-139	12	30
Benzo(k)fluoranthene	ND	2.23	2.78	80	2.38	2.78	86	65-137	7	30
Benzo(a)pyrene	ND	2.24	2.78	81	2.38	2.78	86	69-132	6	30
Indeno(1,2,3-cd)pyrene	ND	2.46	2.78	89	2.74	2.78	98	62-142	10	30
Dibenz(a,h)anthracene	ND	2.38	2.78	86	2.56	2.78	92	61-138	7	30
Benzo(g,h,i)perylene	ND	2.36	2.78	85	2.51	2.78	90	63-129	6	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page 30 of 31

QA/QC Report

Client:	Tetra Tech EM, Incorporated
Project:	CenturyLink Longview WA/103P3080219
Sample Matrix:	Water

Service Request: K1704466 **Date Extracted:** 05/11/2017 **Date Analyzed:** 05/12/2017

Lab Control Spike/Duplicate Lab Control Spike Summary **Polynuclear Aromatic Hydrocarbons**

Extraction Method:	EPA 3511	Units:	ug/L
Analysis Method:	8270D SIM	Basis:	NA
		Level:	Low
		Extraction Lot:	KWG1703800

	Lab (KW Lab	KW	Lab Control S /G1703800-4 e Lab Control S						
Analyte Name	Result	Spike Amount	%Rec	Result	Spike Amount	%Rec	%Rec Limits	RPD	RPD Limit
Naphthalene	2.15	2.78	78	2.20	2.78	79	52-115	2	30
2-Methylnaphthalene	2.12	2.78	76	2.22	2.78	80	48-120	5	30
1-Methylnaphthalene	2.31	2.78	83	2.38	2.78	86	47-119	3	30
Acenaphthylene	2.37	2.78	85	2.46	2.78	89	58-124	4	30
Acenaphthene	2.24	2.78	81	2.31	2.78	83	63-121	3	30
Dibenzofuran	2.73	2.78	98	2.79	2.78	101	56-132	2	30
Fluorene	2.25	2.78	81	2.31	2.78	83	68-121	3	30
Phenanthrene	2.35	2.78	85	2.51	2.78	90	64-126	7	30
Anthracene	2.21	2.78	80	2.21	2.78	80	68-127	0	30
Carbazole	1.36	2.78	49 *	1.40	2.78	50 *	68-135	3	30
Fluoranthene	2.28	2.78	82	2.33	2.78	84	70-127	2	30
Pyrene	2.25	2.78	81	2.36	2.78	85	72-127	5	30
Benz(a)anthracene	2.28	2.78	82	2.34	2.78	84	74-124	2	30
Chrysene	2.13	2.78	77	2.21	2.78	79	74-132	4	30
Benzo(b)fluoranthene	2.30	2.78	83	2.37	2.78	85	73-136	3	30
Benzo(k)fluoranthene	2.31	2.78	83	2.42	2.78	87	74-134	5	30
Benzo(a)pyrene	2.23	2.78	80	2.34	2.78	84	75-131	5	30
Indeno(1,2,3-cd)pyrene	2.40	2.78	87	2.52	2.78	91	63-136	5	30
Dibenz(a,h)anthracene	2.24	2.78	81	2.33	2.78	84	59-135	4	30
Benzo(g,h,i)perylene	2.32	2.78	84	2.42	2.78	87	63-127	4	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page 31 of 31