

A Report Prepared for:

Lake Stevens GRF2, LLC c/o: Gerrity Group, LLC 973 Lomas Santa Fe Drive Solana Beach, California

CLEANUP ACTION PLAN FORMER LAKE STEVENS CLEANERS LAKE STEVENS MARKETPLACE SHOPPING CENTER LAKE STEVENS, WASHINGTON

Site Identification Number: FS 11757 Cleanup Site ID Number: 13076

FEBRUARY 14, 2017

By:

Brian O'Neal, P.E. Associate Engineer

Associate Engineer

Project Engineer

1246.038.03

TABLE OF CONTENTS

LIST	OF TA	BLES		III	
LIST	OF ILI	LUSTRA	ATIONS	IV	
LIST	OF AC	RONY	MS AND ABBREVIATIONS	V	
1.0	INTR	INTRODUCTION			
	1.1	Defini	ition of "Site"	1	
	1.2	Purpo	se	1	
	1.3	Conta	ct Information	1	
	1.4		t Organization		
2.0	SITE BACKGROUND			3	
	2.1	Site Location and Description			
	2.2	· · · · · · · · · · · · · · · · · · ·			
	2.3	Regul	atory History	3	
3.0	ENVIRONMENTAL SETTING				
	3.1	•	cal Setting		
	3.2	Clima	ite	5	
	3.3	Regio	nal and Site Geology		
		3.3.1	Regional Geology		
		3.3.2	Site Geology		
	3.4	Regio	nal and Site Hydrogeology		
		3.4.1	Regional Hydrogeology		
		3.4.2	Site Hydrogeology		
4.0	SITE INVESTIGATIONS AND PREVIOUS CLEANUP ACTIONS				
	4.1		ous Investigation and Cleanup Activities		
		4.1.1	Remedial Investigation Activities		
			- · · · · · · · · · · · · · · · · · · ·		
	4.2		nt Remedial Investigation Activities		
			Limited Phase II Investigation – March 2016		
		4.2.2	Limited Phase II Investigation – July 2016	17	
			T &		
		4.2.4	Additional Groundwater Sampling – January 2017		
5.0			AL SITE MODEL		
	5.1		es and Transport Mechanisms		
			Contaminant Sources		
		5.1.2	Contaminant Fate and Transport Mechanisms		
	5.2		sure Pathways and Receptors		
		5.2.1	Soil		
		5.2.2	Groundwater		
		5.2.3	Summary of Exposure Pathways and Receptors		
6.0	NATURE AND EXTENT OF CONTAMINATION				
	6.1		up Levels		
		6.1.1	Soil Cleanup Levels		
		6.1.2	Groundwater Cleanup Levels		
		6.1.3	Soil Gas Screening Levels	28	

	6.2	Soil Quality	28				
	6.3	Groundwater Quality					
	6.4	Sub-Slab Soil Gas2					
7.0	DESCRIPTION OF SELECTED REMEDY						
	7.1	Site Description	30				
	7.2	Description of the Cleanup Action					
	7.3	Restoration Timeframe	31				
	7.4	Compliance Monitoring	31				
	7.5	Schedule for Implementation	31				
	7.6	Institutional/Engineering Controls					
8.0	REPO	REPORTING AND SCHEDULE					
	8.1	Reporting	32				
		8.1.1 Progress Reports					
		8.1.2 Completion Report	32				
	8.2	Schedule	32				
9.0	REFI	ERENCES	33				
T 4 D							
TAB		FIONG					
	JSTRAT						
APPI	ENDIC						
		ENDIX A – Boring Logs					
	APPENDIX B – Previous Consultant Tables, Figures, and EDRs						
	APPENDIX C – Laboratory Analytical Reports and Data Validation Memorandum						
	APPENDIX D – Groundwater Field Sampling Data Sheets						
	APPENDIX E – Terrestrial Ecological Evaluation						
	APPI	ENDIX F – Sampling and Analysis Plan					

LIST OF TABLES

Table 1	Monitoring Well and Temporary Well Completion Details
Table 2	Groundwater Elevations
Table 3	Soil Analytical Results
Table 4	Groundwater Analytical Results - PCE
Table 5	Soil Vapor Analytical Results
Table 6	Indoor Air Analytical Results
Table 7	Groundwater Sampling Field Parameters
Table 8	Groundwater Analytical Results – Other VOCs

S124603803R_2285 **iii**

LIST OF ILLUSTRATIONS

Plate 1	Site Location
Plate 2	Site Vicinity Map
Plate 3	Site Plan
Plate 4	Former Dry Cleaners Interior Details
Plate 5	Boring and Well Location Map
Plate 6	Cross Section A-A'
Plate 7	PCE Concentrations and Groundwater Contour Map – October 2016
Plate 8	PCE Concentrations and Groundwater Contour Map – January 2017
Plate 9	MW-2 PCE Concentrations vs. Time
Plate 10	Conceptual Site Model

LIST OF ACRONYMS AND ABBREVIATIONS

APS Applied Professional Services, Inc.

bgs Below Ground Surface
BTOC Below Top of Casing

COPC Contaminant of Potential Concern

Cis-1,2DCE cis-1,2,-Dichloroethene
COC Contaminant of Concern
CAP Cleanup Action Plan

CFC-12 dichlorodifluoromethane
CSM Conceptual Site Model

CUL Cleanup Level

DCU Dry Cleaning Unit
DO Dissolved Oxygen

Ecology State of Washington Department of Ecology

EDR Environmental Data Resources

EPA United States Environmental Protection Agency

ESC Lab Sciences

ESN Northwest Environmental Services

Fremont Fremont Analytical Services, Inc.

FS Feasibility Study

GPR Ground Penetrating Radar

HVOCs Halogenated Volatile Organic Compounds

mg/kg Milligrams Per Kilogram

ml/min Milliliters Per Minute

MTCA Model Toxics Control Act

NAVD88 North American Vertical Datum of 1988

NTU Nephelometric Turbidity Units
ORP Oxidation-Reduction Potential

PCE Tetrachloroethene

PES PES Environmental, Inc.
PID Photo-ionization Detector

ppm Parts Per Million

PQL Practical Quantitation Limit

SIM Select Ion Monitoring
RI Remedial Investigation

TCE Trichloroethene

TEE Terrestrial Ecological Evaluation

μg/m³ Micrograms Per Cubic Meter

μg/L Micrograms Per Liter

VC Vinyl Chloride

VCP Voluntary Cleanup Program VOA Volatile Organic Analysis

VOCs Volatile Organic Compounds

WAC Washington Administrative Code

1.0 INTRODUCTION

This Cleanup Action Plan (CAP) has been prepared on behalf of Lake Stevens GRF2, LLC (Gerrity) for the Site located at 303 91st Avenue Northeast, Lake Stevens, Washington (Property; Plate 1).

1.1 Definition of "Site"

For the purpose of this CAP, the word "Site" will refer to an area where contamination released at the Property is located, consistent with the definition of "site" or "facility" in the Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA, Chapter 173-340 of the Washington Administrative Code [WAC]). The word "Property" will refer to the area within the property boundary (Plate 2).

1.2 Purpose

The objective of this CAP is to present a summary of previous environmental investigations and cleanup actions and provide the details of the proposed cleanup action and confirmation monitoring. The CAP is intended to provide sufficient information to determine whether existing conditions at the Site have been adequately characterized and to determine whether the proposed cleanup action will comply with the requirements of a remedy under WAC 173-340-360. This CAP will be submitted to Ecology for review under Ecology's Voluntary Cleanup Program (VCP) with a request for Ecology's opinion that the actions described meet the substantive requirements contained in MTCA and its implementing regulations for characterizing and addressing the contamination at the Site.

1.3 Contact Information

The primary points of contact related to the Site include:

- **Property Owner:** Lake Stevens GRF2, LLC
- Environmental Consultant: PES Environmental, Inc.
- Ecology Site Manager: Unassigned

1.4 Report Organization

The CAP is organized into 9 sections as follows:

Section 1 – Introduction: Defines the Site, describes the purpose of the CAP, provides contact information, and presents the organization of this report.

Section 2 – Site Background: Provides a summary of the Site location, history and operations, and Site regulatory history.

Section 3 – Environmental Setting: Summarizes the hydrology and geology of the Site and the surrounding region.

S124603803R 2285

- **Section 4 Site Investigations and Previous Cleanup Actions:** Describes the previous investigations conducted at the Site, the evaluation of remedial alternatives, and the selected interim cleanup actions by the previous owner. This section also describes the additional investigations conducted by the current property owner.
- **Section 5 Conceptual Site Model:** Provides a summary of the potential sources, transport mechanisms, exposure media and pathways, and receptors of contamination.
- **Section 6 Nature and Extent of Contamination:** Presents the cleanup levels and describes the nature and extent of soil, groundwater, and vapor contamination.
- **Section 7 Description of Selected Remedy:** Describes the selected remedy.
- **Section 8 Reporting and Schedule:** Provides a description of the reports to be produced during the cleanup action and a schedule for implementation and reporting of cleanup action.
- **Section 9 References:** Lists the sources of information referenced in the document.

2.0 SITE BACKGROUND

This section summarizes the Site location and description and presents the regulatory history of the Site.

2.1 <u>Site Location and Description</u>

The Property is located within a mixed use commercial/retail/residential neighborhood, located in the West Lake Stevens area of the City of Lake Stevens, Snohomish County, Washington. The Property encompasses approximately 9.46 acres in the southwest quarter (SW½) of the northeast quarter (NE½) of Section 13 (S13), Township 29 North (T29N), Range 5 East (R5E). The City of Lake Stevens identifies zoning at the Property as "539 Other Retail Trade NEC". The surrounding area is primarily a mix of residential and commercial/retail use. The Property is comprised of Parcels 1 (0.75 acres), Parcel 3 (8.37 acres), and Parcel 5 (0.34 acres).

As shown on Plate 2, the Property includes two areas within the Lake Stevens Marketplace Shopping Center, consisting of retail stores, restaurants, professional businesses surrounded by associated paved parking areas and landscaping. Three commercial structures are present on the Property.

According to the United States Geological Survey (USGS) *Lake Stevens 7.5-minute Series Topographic Map* dated 2014 (photorevised 1968), the site is situated at an elevation of approximately 360 feet above mean sea level. The Property is located on relatively level ground, the general topography of the subject site decreases in elevation from east to west across the Property's parking lot towards 91st Avenue Northeast, and decreases in slightly elevation from south to north of the Property.

2.2 <u>Site Background, History, and Use</u>

The Property was mostly undeveloped with few rural residential properties from the 1940s to the early 1970s. The Property was bisected by 4th Street Northeast until 1993 when the shopping center was constructed. During the 1970s a septic tank service business (Tandem Service Corporation [Tandem]) operated in the northeast corner of the Property in the general vicinity of the northern portion of the north multi-tenant building. Since the construction of the shopping center in 1993, no significant changes have occurred to the buildings at the Property.

Since the shopping center was constructed, uses of the Site include a variety of commercial businesses, including a hardware store, restaurants, an animal hospital, a paint store, financial services, and general retail stores. Gerrity does not plan any substantive changes in the uses of the property. Lake Stevens Cleaners reportedly began operations in Suite #302 when the shopping center opened in 1993 and used chlorinated solvent-based cleaning solutions throughout their operations, ending in 2015 (Plates 3 and 4).

2.3 Regulatory History

The first environmental investigation of the Property was conducted in 2013 by the previous owner of the property, and a report of release was reported to Ecology on November 9, 2015 by Galloway Environmental, Inc. (Galloway, 2015a), the prior owner's environmental consultant.

Three environmental reports were submitted to Ecology with the release report including a *Focused Phase II Environmental Site Assessment* (Galloway, 2014), a *Remedial Investigation/Feasibility Study* (RI/FS; Galloway, 2015b), and an *Environmental Cleanup Report* (Galloway, 2015c). The Site was not entered into Ecology's VCP at that time, and a Request for an Opinion from Ecology was not made. Ecology assigned Facility and Site Identification Number "FS 11757" and Cleanup Site ID Number 13076 to the Site.

3.0 ENVIRONMENTAL SETTING

This section summarizes the regional and local geology and hydrogeological conditions at the Site. Site-specific geological and hydrogeological information is available from subsurface investigations related to the former Lake Stevens Cleaners.

3.1 Physical Setting

The Property is located in the Puget Sound Lowland, a topographic low between the Cascade Range and the Olympic Mountains. Alluvial valleys and plains, and glacially formed or modified hills and ridges dominate the lowland. The Property is in the south-central portion of the Getchell plateau, an uplands located immediately east of the Marysville Trough,

3.2 Climate

Air masses originating over the Pacific Ocean strongly affect the climate of the Puget Sound Lowland, with generally overcast, cool, damp, and mild weather during the autumn, winter, and spring, and relatively warm and dry weather during the summer. The annual precipitation ranges from about 30 to over 60 inches in the lowland. The average annual precipitation in the Lake Stevens area is about 38 inches, with 74 percent of it falling between October and April.

3.3 Regional and Site Geology

3.3.1 Regional Geology

The property lies in the north-central Puget Sound Lowland ("lowland"), as defined by Jones (1999). The Puget Sound Lowland is bordered by the Fraser River and the Canadian border on the north, the Cascade Range to the east, and the Olympic Mountains to the west. It is characterized by thick accumulations of unconsolidated deposits laid on top of Tertiary age (over 2 million years old) and older bedrock. Jones (1999) reports the thickness of the unconsolidated deposits near the property to be approximately 450 feet and the closest fault trace to be the inactive Mount Vernon Fault, located over 3 miles northeast of the property.

Repeated deposition and erosion during a series of continental and alpine glaciations have shaped the topographic features in the lowland (Vaccaro, 1998; Jones, 1999). The property sits in the south-central portion of the Getchell Plateau, which is bordered by the Snohomish and South Fork Stillaguamish River Valleys to the southwest and northeast, respectively, the Marysville Trough on the west, and the Pilchuck River to the southeast. The plateau and adjacent lowlands are thought to have been formed during the last glacial advance of the Puget Lobe of the Cordilleran ice sheet, which advanced from and retreated to British Columbia between approximately 18,000 and 13,000 years ago (Jones, 1999).

Five main types of unconsolidated geologic deposits associated with the advancing and retreating glaciers have been identified and mapped on the Getchell Plateau (Minard, 1985a,b; Jones, 1999). These include alluvium, recessional outwash, glacial till, advance outwash deposits, and transitional beds or interglacial floodplain deposits:

- The youngest deposits within the plateau are alluvium (Qal) which consists primarily of stream-laid stratified silt, sand, and gravel with lesser amount of floodplain fine sand, silt, and clay. The alluvium deposits are locally augmented by colluvium (slope debris) along parts of their boundaries with valley slopes. The distribution of alluvium within the plateau is discontinuous and variable due to the localized nature of the stream courses and recent deposition of the unit;
- Recessional outwash (Qvr), which is locally absent from the property, represents aerially small deposits within the plateau, mostly consisting of well-drained, stratified outwash sand and gravel deposited by melt water from the stagnant and receding glacier;
- Glacial till (Qvt) mantles much of the upland areas of the Getchell Plateau, including the area around the Site. As the glacier advanced over the outwash and underlying materials, it mixed, redeposited, and compacted the overridden materials, producing the concrete-like lodgement till. The till consists of very dense, compact, non-sorted mixtures of clay, silt, sand, pebbles, cobbles and boulders;
- Underlying the till throughout the plateau are advance outwash deposits (Qva). As the ice advanced southward, meltwater at the base of the glacial front transported sediment in braided streams, which built broad outwash plains in front of the glacier. The advance outwash deposits consist primarily of fine to coarse sand and gravel, with localized silt and fine sand lenses; and
- The oldest non-bedrock unit within the area consists of transitional beds (Qtb, also referred to as interglacial floodplain deposits). Transitional beds underlie the advance outwash deposits and were deposited before the last glacial advance. The transitional beds generally consist of thin-bedded clay and silt and fine-grained sand, which were deposited in ponded water and low-energy stream channels away from glacial activity.

3.3.2 Site Geology

The geologic materials encountered during drilling and installation of the borings and monitoring wells at the Property included angular rocks, gravel, sand, silty sand with gravel, silty sand, silt with sand, and silt. Angular rocks were found in three borings (MW-4 through MW-6) between the bottom of the asphalt and a maximum depth of 3.5 feet bgs, while the fine to coarse gravel and sand (encountered in MW-1, MW-2, TW-1, and TW-7) were found between the bottom of the asphalt and a maximum depth of 5 feet bgs. These materials appear to be fill added during site development. Brown to orange-brown silty sand found in the upper 5 feet of most borings is interpreted to be alluvium. The predominant lithology encountered during drilling was dense to very dense, silty sand with varying amount of gravel. The material appears to be consistent with the glacial till mapped in the area. It was encountered in all borings at depth, with the deepest occurrence at the bottom of MW-5 (at 40.5 feet bgs). The brown silt with sand encountered between depths of 6 and 10 feet bgs was also interpreted to be glacial till. Appendix A provides the logs for the monitoring wells and borings drilled at the Property, and Plates 5 and 6 present a geologic cross section aligned east-west on the south side of the Ace Hardware Garden Center. As shown on the cross section, site utilities were placed in the upper portion of the unit

interpreted to be glacial till, indicating that in certain locations at the Property, the till may have been reworked.

3.4 Regional and Site Hydrogeology

3.4.1 Regional Hydrogeology

The principal aquifer beneath the Getchell Plateau is the advance outwash unit. Locally, the alluvium and recessional outwash units function as aquifers. The primary aquitards (effective barriers to vertical groundwater movement) beneath the plateau include the glacial till and transitional beds units. The advance outwash aquifer, which is confined over much of its extent by the glacial till aquitard, is up to approximately 170 feet thick, with an average of thickness of 70 feet (Kirtland, 2006). The average hydraulic conductivity for the advance outwash aquifer is 80 feet/day, with a median depth to water of 53 feet below ground surface (bgs; Kirtland, 2006). Depth to water in the advance outwash aquifer near the Site is over 120 feet (Kirtland, 2006; Krazen & Associates, 2003), with groundwater perched seasonally in the upper 10 feet of the glacial till. Topography largely determines the groundwater flow within the advance outwash aquifer. Kirtland (2006) provides generalized groundwater contours indicating groundwater flow in the regional advance outwash aquifer approximately to the south near the Site.

Although limited groundwater resources have been documented in both the alluvium and recessional outwash aquifers, neither is used for widespread production. Groundwater wells within the alluvium aquifer are generally shallow (less than 30 feet deep) and are prone to seasonal drying. Groundwater within the recessional outwash generally exists as discontinuous perched aquifers, which limits widespread use (Kirtland, 2006).

Six water wells are located within a 1-mile search radius of the Site per the Environmental Data Resources (EDR) report (PES, 2016a). None of the wells are identified as public drinking supply wells, and none of the wells are located within or adjacent to the Property. One well was located less than 0.25 miles southwest of the Property. The well was reported with a depth of 66 feet bgs, and a 1992 water level measurement of 59 feet bgs. The EDR Report map is included in Appendix B.

A search of the Ecology well log database for water wells did not identify any drinking water wells within a one-mile radius of the Property.

The Ecology well log database for the portions of the T29N R5E S13 that includes the Property contains resource protection logs associated with wells located on the Property, and soil boring and vapor sampling logs associated with the Site. No other significant information regarding onsite or nearby wells was identified, and no specific information regarding groundwater quality, flow direction or velocity was available in the Ecology well database.

3.4.2 Site Hydrogeology

The construction details for wells installed on the Site are summarized in Table 1 and presented on Plate 6. Shallow groundwater is located at depths ranging from approximately 2 to 10 feet (Table 2). Groundwater monitoring data indicates that shallow (perched) groundwater has generally been documented to flow to the northwest, with some measurements suggesting a

potentially northerly or even northeasterly flow direction in the vicinity of the former dry cleaners. A recent groundwater contour map indicates a northwestern flow direction (Plate 7).

\$124603803R_2285

4.0 SITE INVESTIGATIONS AND PREVIOUS CLEANUP ACTIONS

This section provides a summary of environmental investigations and cleanup actions conducted at the Site.

4.1 Previous Investigation and Cleanup Activities

4.1.1 Remedial Investigation Activities

The first environmental investigation of the Lake Stevens Cleaners operation occurred in October 2013, with the installation of four shallow soil borings and the collection of soil and soil vapor samples (ADR, 2013). The four borings (B-1 to B-4) were advanced within and adjacent to the dry cleaners suite. Borings were located next to the dry cleaning unit (DCU), near the boiler room drain, in the location of a former DCU, and outside the back door. The borings were drilled by ESN Northwest Environmental Services (ESN) using a direct push drill rig. Discrete soil samples were collected at a depth of 4 feet bgs with a "large bore" sampler containing an acrylic tubing liner. The soil samples were collected using 40-ml TerraCore samplers. The soil vapor samples were collected from temporary 5-foot deep soil vapor probes constructed with a 1-inch long soil vapor sampling probe attached to ¼-inch outside diameter polyethylene tubing installed near the bottom of each soil borehole. A sand pack extended 6-inches above and below the probe tip and the borehole was sealed with hydrated granular bentonite. The probes were allowed to equilibrate for at least 2 hours prior to sample collection. One-liter of air was purged from each probe prior to sample collection using a 1-liter Tedlar bag attached to a vacuum sampling box. The samples were collected in 1-liter Tedlar bags.

The soil and vapor samples were submitted to OnSite Environmental, Inc. (OnSite) for analysis of halogenated volatile organic compounds (HVOCs) by United States Environmental Protection Agency (EPA) Method 8260. Tetrachloroethene (PCE) was detected above the applicable MTCA Method A cleanup level (CUL) in the soil samples collected from B-1, B-2, and B-4 and in soil vapor above the applicable screening level in the vapor sample collected from B-3.

Subsequent investigations were conducted by Galloway in 2014 and 2015, which included installing four direct-push borings (P-1 to P-4) and collecting soil and water samples in October 2014 (Galloway, 2014) and the installation of four shallow groundwater monitoring wells (MW-1 to MW-4) and the collection of soil and water samples in January 2015 (Galloway, 2015b). Soil borings P-1 to P-4 were advanced by Cascade Drilling Co. (Cascade) using a truck-mounted direct push drill rig. Two 20-foot borings (P-1 and P-2) were drilled west and north of the dry cleaning suite, one 10-foot boring (P-3) was drilled in the parking area east of the dry cleaning suite, and one 12-foot boring (P-4) was drilled in the asphalt area south of the adjoining Rite Aid, south of the dry cleaning suite. Continuous soil samples were collected using 1 ½-inch diameter, 5-foot long samplers.

Monitoring wells MW-1 through MW-4 were installed by Cascade using a hollow stem auger drill rig. Continuous soil samples were collected from the ground surface to the maximum depths ranging from 13 to 15 feet bgs. The wells were constructed from two-inch diameter 0.010-inch slotted schedule 40 PVC screen with 2-inch diameter solid PVC risers. The well construction details are provided in Appendix A. Galloway developed and sampled the wells

\$124603803R_2285

using dedicated, disposable PVC bailers. Three to five well casing volumes of water were purged from each well as part of well development, and field parameters were monitored and recorded.

The soil samples were collected following EPA Method 5035A guidelines. The soil and water samples were submitted to OnSite for analysis of HVOCs using EPA Method 8260. The soil, groundwater, and soil vapor analytical results are summarized in Tables 3, 4, and 5, respectively, and the sampling locations are shown on Plate 5. The laboratory analytical reports were provided to Ecology with the original report submittals. The primary findings were as follows:

- The PCE concentration in soil vapor collected behind the dry cleaners suite was 30,000 µg/m³, exceeding the then current screening level of 4,200 µg/m³;
- Soil with PCE concentrations of up to 0.140 mg/kg were found in soil beneath the then existing DCU along the southern side of the tenant suite, above the MTCA Method A CUL of 0.050 milligrams per kilogram (mg/kg);
- Samples collected from the landscape area behind the tenant suite contained concentrations of PCE in both soil and groundwater above their respective CULs. PCE in soil was found at 0.065 mg/kg, and groundwater from a temporary well contained PCE at 31 micrograms per liter (µg/L), above the MTCA Method A CUL of 5 µg/L; and
- A sample of shallow groundwater collected from a monitoring well located north of the tenant suite (MW-2) contained PCE at concentrations of 450 µg/L.

Galloway concluded that the PCE had entered the subsurface at two locations: beneath the DCU and in the landscaped area out the back door of the tenant suite.

The following constituents were also detected in soil, groundwater, and vapor samples collected during these investigations:

- Trichloroethene (TCE) was detected in the water sample collected from P-3 at a concentration of 0.78 μ g/L, significantly below the MTCA Method A CUL of 5 μ g/L;
- TCE was detected in the soil samples collected from B-3 and B-4 at concentrations up to 0.0078 mg/kg, significantly below the CUL of 0.03 mg/kg;
- Cis-1,2-dichloroethene (Cis-1,2-DCE) was detected in the soil sample collected from B-3 at a concentration of 0.011 mg/kg, significantly below the CUL of 160 mg/kg;
- Chloroform was detected in the water sample collected from P3 at a concentration of 1.5 μ g/L, significantly below the MTCA Method B CUL of 80 μ g/L;
- Dichlorodifluoromethane (CFC-12 or Freon 12) was detected in the water samples collected from MW-3, MW-4, and P3 at concentrations up to 3.5 μ g/L, significantly below the MTCA Method B CUL of 1,600 μ g/L; and
- Dichlorodifluoromethane (CFC-12 or Freon 12) was detected in the soil sample collected from MW-3 at a concentration of 0.0035 mg/kg, significantly below the MTCA Method B CUL of 16,600 mg/kg.

Galloway presented the results and evaluated remedial actions in the RI/FS report.

4.1.2 Previous Cleanup Actions

The RI/FS presented the remedial action objectives to: (1) remove the impacted soil from the "source areas(s)" to minimize the potential for the continued migration of the contaminants of concern (COCs); and (2) to treat and/or monitor contaminants levels in groundwater in the vicinity of the Site to ensure that contaminant concentrations meet the MTCA Method A cleanup levels at the Points of Compliance (throughout the Site). Remedial action options and applicable technologies were presented in the RI/FS. The following four remedial alternatives were evaluated in the RI/FS:

- Alternative 1 No action;
- Alternative 2 Soil excavation with off-site disposal and groundwater monitoring;
- Alternative 3 Soil excavation with off-site disposal, *in situ* biotreatment, and groundwater monitoring; and
- Alternative 4 Soil excavation with off-site disposal, *in situ* biotreatment, air sparging, vapor extraction, and groundwater monitoring.

The four alternatives were evaluated based on the following criteria:

- Technical feasibility;
- Protection of human health and the environment;
- Long-term effectiveness;
- Permanent toxicity and mobility reduction;
- Compliance with regulatory requirements; and
- Cost

A summary of the evaluation was presented in Table 7-1 of the RI/FS and is included in Appendix B. The selected remedy was soil excavation and disposal, *in situ* biotreatment, and groundwater monitoring (Alternative 3).

Galloway initiated cleanup actions during March and April 2015, which are documented in the *Environmental Cleanup Report* (Galloway, 2015c). These actions included:

- Excavation and disposal of approximately 43 tons of PCE-impacted soil from the landscaped area behind the tenant suite. Confirmation soil samples collected at the limits of the excavation were either non-detect or contained below-CUL concentrations of PCE and TCE;
- Excavation and disposal of approximately 20 tons of PCE-impacted soil from inside the tenant suite beneath the former DCU. Confirmation soil samples collected at the limits of the excavation were either non-detect or contained below-CUL concentrations of PCE and TCE; and
- *In situ* treatment beneath the floor of the former dry cleaners suite. A total of 10 pounds of "CL-Out" (a freeze-dried microbial culture) and chemical oxidation products (potassium permanganate) were injected into temporary borings.

The soil excavation confirmation sampling locations are presented in Appendix B and the results are summarized in Table 3. After these cleanup actions were conducted, Galloway collected an

additional round of groundwater samples from the four shallow monitoring wells and also collected confirmation soil vapor samples from within the backfilled excavation area beneath the slab inside the tenant suite. PCE was detected in monitoring well MW-2 at 110 μ g/L, above the CUL. PCE was not detected in the two soil vapor samples (LS-VI1 and LS-VI2) above the method reporting limit of 1,000 μ g per cubic meter (μ g/m³), although the detection limit was above the current screening level of 321 μ g/m³. Although not discussed in Galloway's report, lab data for the same two soil vapor samples also had concentrations of CFC-12 at 50,000 μ g/m³ and 32,000 μ g/m³, respectively. The soil vapor screening level for dichlorodifluoromethane is 1,520 μ g/m³. The post-cleanup groundwater and soil vapor results are summarized in the *Environmental Cleanup Report* (Galloway, 2015c) and presented in Tables 4 and 5, respectively.

Galloway conducted additional rounds of groundwater monitoring of wells MW-1 through MW-4 in July and October 2015 and in January and April of 2016 (Galloway, 2015d, 2015e, 2016a, and 2016b). PCE was detected only in well MW-2 during these monitoring events, at concentrations of 320 μ g/L, 370 μ g/L, 100, and 71 μ g/L, respectively. CFC-12 continued to be detected in MW-3 and MW-4 at concentrations up to 3.7 μ g/L, below the CUL. The PCE results are summarized in Table 4.

Summary and Conclusions

The soil, groundwater PCE concentrations, and soil vapor analytical results are summarized in Tables 3, 4, and 5, respectively. Galloway concluded the following (Galloway, 2015c):

- The results of the soil sampling at the limits of the removal excavations, and soil sampling in the groundwater monitoring well borings, indicated that the HVOC impacts to soil had been adequately removed to comply with MTCA Method A CULs for unrestricted land use;
- The results of the groundwater sampling confirmed that HVOC concentrations in groundwater collected from one of the wells exceeded the then allowable MTCA CUL in one well (MW-2). This well is situated directly downgradient of the landscaped area north of the facility the HVOCs were not detected in water collected from the remaining three wells; and
- The results of the air gas sampling beneath the floor of the suite confirmed that the HVOC impacts to the subfloor had been adequately removed in compliance with Ecology's Vapor Intrusion Guidance Screening Levels.

Galloway re-evaluated the following pathways following the cleanup actions:

- Product to groundwater and surface water;
- Soil to groundwater;
- Soil particulate to air;
- Soil direct contact; and
- Terrestrial ecological evaluation.

Based on their evaluation, only the soil to groundwater pathway was considered a concern, and continued monitoring was to be performed to track the contaminant concentrations in the wells. Galloway concluded that the remedial investigations and actions were sufficient to protect human health and the environment provided that continued groundwater monitoring confirms HVOC concentrations meet the CULs in all of the wells for at least four consecutive quarters of monitoring (Galloway, 2015c).

4.2 <u>Current Remedial Investigation Activities</u>

Prior to and after Gerrity acquired the Property in June 2016, PES conducted additional site characterization activities that were conducted based on a review of the previous investigation and cleanup actions (summarized in Section 4.1). These additional investigation activities were conducted to evaluate the extent of the shallow groundwater contamination, confirm the groundwater flow direction, evaluate subsurface utilities as potential preferential pathways, evaluate vapor intrusion, and to evaluate deeper groundwater conditions. The results are summarized in Tables 1 through 8 and the sampling locations are presented on Plate 5.

PES conducted a data quality review of the investigation chemistry data consistent with EPA data review guidelines (EPA, 2008). Data completeness, holding times, laboratory instrument calibrations, surrogate recoveries, matrix spike and matrix spike duplicates, laboratory control samples, quantitation limits, method blanks, and trip blanks were reviewed. PES assigned the following data qualifiers, as needed:

• J qualifier: result is an estimate based on laboratory quality control results.

No data were rejected based on the data validation review, and PES judged all of the data acceptable for use. The laboratory analytical reports and data validation memoranda are included in Appendix C and the groundwater field sampling data sheets are included in Appendix D.

4.2.1 Limited Phase II Investigation – March 2016

Prior to Gerrity's acquisition of the Property, PES conducted a limited Phase II investigation (PES, 2016b) on March 17 and 18, 2016 to evaluate conditions within the former dry cleaners suite. As part of the investigation, indoor air, sub-slab soil gas, and soil samples were collected inside the former dry cleaning tenant space to further evaluate vapor intrusion risks. In addition, soil and groundwater samples were collected from exterior locations northeast of the former dry cleaners suite (TW-1 and TW-2) to evaluate groundwater and soil conditions in the area potentially downgradient of the former dry cleaners operation. Finally, subsurface utilities associated with the former dry cleaning tenant space were evaluated to assess the potential for the sanitary sewer to be a release mechanism or preferential contaminant migration pathway for residual chlorinated solvents in the subsurface.

4.2.1.1 Field Procedures

Indoor Air Sampling. PES collected one indoor air sample (IA-031716) from within the former dry cleaners suite and one ambient outdoor air sample (OA-031716) on the northeast corner of the roof of the former dry cleaners building, located upwind of the suite. Sampling procedures

and methods were performed consistent with Ecology's "Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action" (Ecology's VI Guidance, October 2009). The samples were collected in 6-liter summa canisters over an 8-hour time period on March 17, 2016. The air samples were submitted to ESC Lab Sciences (ESC), of Mt Juliet, Tennessee, a Washington State accredited analytical laboratory, for analysis of VOCs using EPA Method TO-15 with selective ion monitoring (TO-15-SIM).

Sub-Slab Soil Gas Sampling. Three soil gas samples (SV-1, SV-2, and SV-3) were collected on March 18, 2016, at locations shown on the attached Plate 4. A small hole was drilled through the concrete slab using a rotohammer drill bit and Teflon tubing was installed through the hole into the soil beneath the slab. The annular space between the sample tubing and concrete was filled with sand, dry bentonite, and sealed at the top with hydrated bentonite. Upon sealing of the surface entry points, the sampling train was connected. A shut-in test was performed to check the sampling train for leaks, and a helium leak test was performed to check for surface air infiltration below the slab. Air was purged from the sampling train prior to sample collection. The sub-slab samples (SV1-031816, SV2-031816, and SV3-031816) were collected in 6-Liter summa canisters with flow regulators set to fill at a rate of 200 milliliters per minute (ml/min). The soil gas samples were submitted to ESC for analysis of VOCs using EPA Method TO-15-SIM.

Utility Location. On March 17, 2016, under subcontract to PES, Applied Professional Services, Inc. (APS), of North Bend, Washington, located the subsurface utilities around the planned drilling locations. APS used radio frequency and Ground Penetrating Radar (GPR) locating equipment to locate conductible utilities in the suite and north and west of the building around the planned drilling locations. On March 18, 2016, APS used a video camera to locate and document the integrity of the sanitary sewer pipeline within the former dry cleaners suite and west to the parking lot.

Soil Borings and Temporary Well Installations. Soil borings TW-1 and TW-2 were installed with a limited access direct-push drill rig northeast of the former dry cleaners building on March 17, 2016; soil borings SV-1 through SV-3 were installed with a hand-auger within the former dry cleaners suite on March 18, 2016. The direct-push borings were installed by ESN. The boring locations are shown on Plates 4 and 5.

The hand-auger borings SV-1 through SV-3 first required concrete coring through the 6-inch thick floor slab within the suite, and the direct-push borings were installed within a grassy/vegetated area. Soil samples from the full bore depth of TW-1 and TW-2 were collected during drilling using 4-foot-long core barrels lined with new acetate sleeves. In all locations, the borings were advanced to the maximum depth possible (6 to 9 feet deep for TW-1 and TW-2 and 2 to 2.5 feet for SV-1 through SV-3). PES observed the soil samples for lithologic characterization and field-screened the soil cores for VOCs with a photo-ionization detector (PID). One sample was collected from each boring for analysis of VOCs using EPA Method 8260. Soil samples were collected using syringe samplers, consistent with the EPA Method 5035 protocols, and placed in laboratory-provided bottles preserved with methanol or sodium bisulfate. Additional sample volume was collected in unpreserved glass soil sample jars for analysis of soil moisture content. Sample bottles were sealed, labeled, and placed in coolers on ice and shipped under chain-of-custody seal to ESC.

Temporary wells were installed in TW-1 and TW-2. TW-1 was constructed with nominal ³/₄-inch-diameter, flush-threaded Schedule 40 PVC and a 5-foot-long well screen (from 4 to 9 feet bgs) and TW-2 was constructed with a ³/₄-inch-diameter pre-pack well screen (from 1 to 6 feet bgs). The temporary well construction details are summarized in Table 1. The annular space around TW-1's well screen was backfilled with sand. The temporary wells were allowed to stabilize for a minimum of one hour prior to purging and sampling. Approximately three pore volumes of water was purged from TW-1 and a sample was collected using low-flow sampling methods (TW-1-W). A peristaltic pump was used to purge and sample the water at a rate less than 100 millimeters per minute (ml/min). Minimal purging was possible in TW-2, due to the very low re-charge rate, and the sample was effectively a grab sample (TW-2-W). New disposable polyethylene tubing (silicon tubing at the pump head) was used, with the sample intakes located at approximately 8 and 6 feet bgs in TW-1 and TW-2, respectively. PES monitored field parameters (pH, temperature, specific conductance, dissolved oxygen [DO], and oxidation-reduction potential [ORP]) during well purging in TW-1.

Groundwater samples were collected from the discharge end of the peristaltic pump tubing. The same pump rate used at the end of well purging was used during sample collection. The volatile organic analysis (VOA) vials were filled by allowing the sample water to pour down the inside of the sample bottles without splashing directly onto the base. All sample containers were prepared and provided by the project laboratory. Following water sample collection, the sample containers were labeled for identification and immediately placed in insulated coolers containing ice. The coolers containing the samples were then delivered under chain-of-custody protocol to the laboratory.

After the temporary well was sampled, the borings were abandoned by filling the boring with bentonite as the PVC was extracted, consistent with Chapter 173-160 WAC. The top of the abandoned borings within the former dry cleaners suite were completed with concrete. The groundwater samples were submitted to the laboratory for analysis of VOCs by EPA Method 8260.

The boring logs are included in Appendix A.

4.2.1.2 Results

Sanitary Sewer. The sanitary sewer line was scoped beginning at a cleanout located in the former boiler room in the southeastern portion of the dry cleaners suite, as shown on the attached Plate 4. The sanitary line runs north/south and is constructed of 3-inch diameter ABS piping. The sanitary line connects into 6-inch diameter piping within the bathroom, where it makes several turns before running west until it leaves the front of the suite. In the parking lot, it continues for several feet and bends northwest, changing material to polyvinyl chloride (PVC). A floor drain west of the bathroom near one of the former dry cleaning unit runs east and tees into the previously described 3-inch diameter sanitary line in the bathroom. The depth of the line within the back portion of the suite is approximately 2.5 to 3 feet bgs. The line slopes down to approximately 5 feet 7 inches toward the front of the suite and slopes to approximately 6 feet within the parking lot in front of the suite. A section of the pipe dips down (a belly) west of the bathroom. No obvious breaks or joint failures were observed with the video inspection.

A review of Galloway's water elevations in monitoring well MW-1, located immediately west of the former dry cleaners suite indicate depth to water ranges from 6.5 to 10.3 feet below the top of the well casing. This indicates that the sanitary sewer line and backfill within the suite likely does not intersect with the shallow perched water table until under the parking lot, northwest of the suite.

Sub-Slab and Indoor Air. The sub-slab soil gas sample results are summarized in Table 5. A total of eight VOCs (benzene, carbon tetrachloride, chloroform, 1,4-dichlorobenzene, cis-1,2-DCE, ethylbenzene, PCE, and TCE) were detected in the sub-slab soil gas samples, generally at low levels. PCE was detected at elevated concentrations up to 1,170 μ g/m³. The concentrations were above Ecology's Method B sub-slab screening levels in samples SV-2 and SV-3.

The results of the indoor and ambient air sampling are summarized in Table 6. A total of five VOCs were detected in the indoor air sample, four of which (benzene, carbon tetrachloride, chloromethane, and toluene) were detected at similar concentrations in the ambient (background) sample. The other VOC (PCE) was not detected in the ambient air sample. As indicated in Table 6, all of these VOC compounds are well below their associated indoor air CULs.

Lithology and Hydrogeology Results. The soil types observed during drilling to the maximum drilled depth of 9 feet bgs consisted of gravel, silty sand, silt with sand, sand, and sand with gravel. TW-1 and TW-2 were terminated when refusal was met (9 and 6 feet bgs, respectively). Wet soil was observed at depths of 3 and 5.5 feet bgs in TW-1 and TW-2, respectively, and perched on a very dense silty sand unit. Of note, the ground surface of TW-1 is at a lower elevation than TW-2. Very little water accumulated in the temporary well installed in TW-2 after being allowed to sit for two hours. Depth to water measurements in TW-1 and TW-2 at the time of purging and sampling were 3.05 and 4.2 feet bgs, respectively.

Field Screening Results. Field PID measurements of the retrieved soil samples were typically less than 20 parts per million (ppm). Field PID measurements and observations are included on the attached boring logs.

Soil Matrix Results. Table 3 summarizes the soil analytical results. PCE was the only VOC detected and was detected at concentrations up to 0.00573 mg/kg in the three interior shallow soil samples (SV1-1.5, SV2-1, and SV3-1.5). These concentrations are significantly below the MTCA Method A CUL of 0.05 mg/kg. VOCs were not detected in the two exterior boring soil samples (TW-1-8 and TW-2-6).

Groundwater Results. Field parameters are summarized in Table 7 and Tables 4 and 8 summarize the PCE and other VOC water analytical results, respectively. VOCs were not detected in the two groundwater samples collected from temporary wells TW-1 and TW-2.

4.2.1.3 Conclusions

Based on the results of this investigation, PES concluded the following (PES, 2016b):

- PCE was detected in all three of the sub-slab soil gas samples collected from beneath the suite, and in two of the three at concentrations above conservative screening levels; however, as noted below, the PCE in the subslab vapors did not result in an exceedance of the risk-based indoor air CUL. PCE was also detected in shallow soil samples collected from beneath the slab at concentrations well below its risk-based CUL;
- The measured concentration of PCE in indoor air was well below its risk-based CUL; PCE was not detected in the ambient (outdoor) air sample. Other VOCs detected in indoor air were at concentrations similar to those found in the ambient air sample and below their respective risk-based CULs;
- No VOCs were detected in either of the water or soil samples collected at the two
 locations along the eastern property boundary, indicating that the shallow perched
 groundwater contamination does not appear to extend to the northeast; and
- The sanitary sewer beneath the former dry cleaning suite appeared to be constructed of solvent-welded ABS pipe. The video survey did not identify any obvious issues with the integrity of the sanitary sewer pipe. The pipe appears to be at a depth that would indicate that the pipe trench is not a preferential migration pathway.

4.2.2 Limited Phase II Investigation – July 2016

Subsequent to Gerrity's acquisition of the Property, PES evaluated vapor intrusion within the suite north of the former dry cleaners suite (occupied by Boeing Employee Credit Union [BECU]) by collecting one indoor air sample and one ambient outdoor air sample. PES evaluated the possibility of preferential migration pathways and the possibility of the sanitary sewer as a release mechanism by surveying the depth and orientation of utilities downgradient of the former dry cleaners suite using push-rod transmitters and video camera inspections. Additionally, PES advanced five soil borings (TW-3 through TW-7) and installed four temporary wells (TW-4 through TW-7), collecting three groundwater samples and five soil samples (one from each boring location).

Following evaluation of the utility survey and temporary well data, PES installed one deep monitoring well (MW-5) and two shallow monitoring wells (MW-6 and MW-7) and collected three soil samples. PES monitored the new wells concurrent with four existing wells, collecting seven groundwater samples and measuring water levels. The purpose of this well installation and sampling was to evaluate groundwater downgradient of MW-2, to evaluate the effectiveness of till at the Site as an aquitard, and to evaluate shallow groundwater immediately behind the former dry cleaners suite (PES, 2016c). The investigation locations are shown on Plate 5.

4.2.2.1 Field Procedures

Indoor Air Sampling. PES collected one indoor air sample (Indoor-070716) from within the adjacent suite north of the former dry cleaners suite and one ambient outdoor air sample (Ambient-070716) on the northeast corner of the roof of the former cleaners building, upwind of the suite's heating, ventilating, and air conditioning system. Sampling procedures and methods were performed consistent with Ecology's guidance (Ecology, 2009). The samples were collected over an 8-hour time period on July 7, 2016. The air samples were submitted to Fremont Analytical (Fremont), of Seattle, Washington, a Washington State accredited analytical laboratory, for analysis of VOCs using EPA Method TO-15-SIM.

Utility Location. On July 1, 2016, APS located subsurface utilities around the former dry cleaners suite and planned drilling locations. APS conducted a radio-frequency locate for private utilities, identified the utility alignments with GPR, and performed sewer insert locates and inspections of the sanitary sewer and storm sewer lines; public utilities were marked by one-call services.

On July 1, 2016, PES subcontracted Lanktree Land Surveying, Inc. (Lanktree), of Auburn, Washington surveyed utility lines, vault alignments and rim/invert elevations, existing monitoring well locations and elevations, and surface elevations in the surrounding parking and driveways. The features were surveyed relative to the Washington State Plane System North Zone (NAD 83) for the horizontal locations and the North American Vertical Datum of 1988 (NAVD 88) for vertical locations.

Groundwater. Groundwater depths were measured on July 1, 2016 in monitoring wells MW-1, MW-2, MW-3, and MW-4. PES used an electronic water level probe to measure the depth to water from the top of the PVC well casing. Groundwater depths were measured in several rounds at approximately 30-minute intervals until depth measurements stabilized within 0.02 feet. The probe was decontaminated with a distilled water rinse between wells.

Groundwater depths were also measured, using the same procedures, on July 26, 2016 following the installation of MW-5, MW-6, and MW-7. PES measured groundwater depths in monitoring wells MW-1 through MW-7.

Soil Borings and Temporary Well Installations. Soil borings TW-3, TW-3a, TW-4, TW-5, TW-6, and TW-7 were installed with a truck-mounted direct-push drill rig north of the former cleaners building on July 7, 2016. The direct-push borings were installed by PES's subcontractor ESN. Refusal was reached in TW-3 because a rock was encountered; TW-3a was advanced approximately one foot from TW-3. The boring locations are shown on Plate 5.

The soil borings were cleared for utilities by ESN using an air-knife and vacuum combination to depths between 2 and 5.5 feet bgs. Soil samples were collected using a hand-auger at 3 feet bgs. Soil samples below the utility-cleared depth were collected during drilling using 5-foot-long core barrels lined with new acetate sleeves. In all locations, the borings were advanced to the maximum depth possible (10 to 15 feet bgs). PES observed the soil samples for lithologic characterization and field-screened the soil cores for VOCs with a PID. One sample was collected from each boring for analysis of VOCs using EPA Method 8260. Soil samples were

collected using syringe samplers, consistent with EPA Method 5035 protocols, and placed in laboratory-provided bottles preserved with methanol. Additional sample volume was collected in unpreserved glass soil sample jars for analysis of soil moisture content. Sample bottles were sealed, labeled, and placed in coolers on ice for transport under chain-of-custody protocol to Fremont.

Temporary wells were installed in borings TW-3a, TW-5, TW-6, and TW-7. Drill rig tooling became stuck in boring TW-4 during installation of the temporary well screen. Upon removal of the tooling, the boring collapsed, preventing groundwater sampling at that location. The temporary wells were constructed with nominal ¾-inch-diameter, flush-threaded Schedule 40 PVC and a 5-foot-long well screen with 0.020-inch wide slots installed in the bottom 5 feet of each boring. The annular space around the temporary well screens was backfilled with sand. Due to the low infiltration of water into the wells, the temporary wells were allowed to accumulate water for a minimum of 12 hours prior to purging and sampling. Temporary well TW-7, located immediately behind the former dry cleaners suite in the exterior excavation, did not accumulate any water overnight, and could not be sampled. In the remaining three wells, a peristaltic pump was used to purge and sample the water at a rate less than 100 ml/min. Minimal purging was possible due to the very low re-charge rate, and the samples were effectively grab samples. New disposable polyethylene tubing (silicon tubing at the pump head) was used, with the sample intakes located at between 10 and 14 feet bgs.

Groundwater samples were collected from the discharge end of the peristaltic pump tubing. The same pumping rate used at the end of well purging was used during sample collection. The VOA vials were filled by allowing the sample water to pour down the inside of the sample bottles without splashing directly onto the base. All sample containers were prepared and provided by the laboratory. Following water sample collection, the sample containers were labeled for identification and immediately placed in insulated coolers containing ice. Sample bottles were sealed, labeled, and placed in coolers on ice for transport under chain-of-custody protocol to Fremont. The groundwater samples were submitted to the laboratory for analysis of VOCs by EPA Method 8260.

After the temporary well was sampled, the borings were abandoned by removing the casing and filling the boring with bentonite (hydrated with potable water above the water level in the boring), consistent with Chapter 173-160 WAC. The top of the abandoned borings were completed with concrete.

The boring logs are provided in Appendix A, and the temporary well completion details are summarized in Table 1.

Deep Well Installation. Monitoring well MW-5 was installed with a truck-mounted hollow stem-auger drill rig north of the former cleaners building on July 20, 2016. The well was installed by PES's subcontractor Cascade Drilling, L.P. (Cascade). The well location is shown on Plate 3.

The soil boring was cleared for utilities by Cascade using an air-knife and vacuum combination to a depth of 5 feet bgs. Given the proximity of monitoring well MW-5 to shallow well MW-2 where elevated concentrations of PCE had been detected, a step-casing technique was used

during drilling of the deeper monitoring well boring to reduce the potential for the shallow PCE contamination to be dragged down into the depth range of the deeper well screen. Nominal 10-inch inner diameter (i.d.) hollow-stem augers were used to advance the boring to 25 feet bgs. Because no water was observed in the boring and the sampled soil did not appear wet, the 10-inch i.d. augers were left from 0 to 25 feet bgs, and 4-inch i.d. hollow-stem augers were used to drill to 40 feet bgs.

Soil samples were collected using a hand-auger at 3 feet bgs, during clearing. Soil samples below the utility-cleared depth were collected at 2.5-foot intervals during drilling using 3-inch-diameter split-spoon samplers, which were decontaminated between samples. PES observed the soil samples for lithologic characterization and field-screened the soil cores for VOCs with a PID. One sample was collected from the boring for analysis of VOCs using EPA Method 8260. The soil sample was collected using a syringe sampler consistent with the EPA Method 5035 protocols and placed in laboratory-provided bottles preserved with methanol. Additional sample volume was collected in unpreserved glass soil sample jars for analysis of soil moisture content. Sample bottles were sealed, labeled, and placed in coolers on ice and transported under chain-of-custody protocol to Fremont.

Monitoring well MW-5 was screened between 30 and 40 feet bgs. The well was constructed of nominal 2-inch-diameter, flush-threaded Schedule 40 PVC and well screens with 0.010-inch wide slots. The annular space around the well screen was backfilled with Cemex 10x20 Silica Sand as the augers were removed from the boring. The annular space above the filter pack was filled with bentonite chips (hydrated with potable water above the water level in the boring) as the augers were removed from the boring. A steel monument was installed on top of the well. The monument was secured in place by a concrete collar poured slightly raised from the ground surface to prevent stormwater infiltration into the monument. An expansion cap with rubbergasket was placed in the top opening of the PVC casing to prevent surface water leakage into the casing.

The deep well log is provided in Appendix A, and the well completion details are summarized in Table 1.

Shallow Well Installation. Monitoring wells MW-6 and MW-7 were installed with a truck-mounted hollow stem-auger drill rig north of the former cleaners building on July 21, 2016. The wells were installed by PES's subcontractor Cascade. The well locations are shown on Plate 3.

The soil borings were cleared for utilities by Cascade using an air-knife and vacuum combination to between 3 and 5 feet bgs. Monitoring wells MW-6 and MW-7 were advanced to 15 feet bgs. Soil samples were collected using a hand-auger at 3 feet bgs during clearing. Soil samples below the utility-cleared depth were collected at 2.5-foot intervals using split-spoon samplers during drilling. The samplers were decontaminated between samples. PES observed the soil samples for lithologic characterization and field-screened the soil cores for VOCs with a PID. One sample was collected from each boring for analysis of VOCs using EPA Method 8260. Soil samples were collected using syringe samplers, consistent with the EPA Method 5035 protocols, and placed in laboratory-provided bottles preserved with methanol. Additional sample volume was collected in unpreserved glass soil sample jars for analysis of soil moisture content. Sample

bottles were sealed, labeled, and placed in coolers on ice for transport under chain-of-custody protocol to Fremont.

Wells MW-6 and MW-7 were screened between 5 and 15 feet bgs. The wells were constructed of nominal 2-inch-diameter, flush-threaded Schedule 40 PVC and well screens with 0.010-inch wide slots. The annular space around the well screens was backfilled with Cemex 10x20 Silica Sand as the augers were removed from the borings. The annular space above the filter pack was filled with bentonite chips (hydrated with potable water above the water level in the boring) as the augers were removed from the boring. Steel monuments were installed on top of each well. The monuments were secured in place by concrete collars poured slightly raised from the ground surface to prevent stormwater infiltration into the monument. An expansion cap with rubbergasket was placed in the top opening of the PVC casing to prevent surface water leakage into the casing.

The shallow well logs are also provided in Appendix A, and the well completion details are summarized in Table 1.

Well Development. PES developed wells MW-5, MW-6, and MW-7 on July 25, 2016 to remove solids accumulated within each well and filter pack. To develop the wells, PES used a submersible or peristaltic pump and a stainless steel bailer to alternately surge, bail, and pump the wells. Because of the low recharge rate of the wells, they were developed until they pumped dry. During development, PES removed approximately 7 gallons of water from MW-5, 3 gallons of water from MW-6, and 3 gallons of water from MW-7. PES measured turbidity during well development, with final field turbidity measurements of greater than 1,000 nephelometric turbidity units (NTUs). During sampling, groundwater collected from MW-6 and MW-7 was clear and groundwater collected from MW-5 was slightly turbid.

Groundwater Sampling. PES collected groundwater samples from monitoring wells MW-1 through MW-7 on July 26, 2016. The samples were collected using low-flow sampling methods. A peristaltic pump was used to purge and sample groundwater from each well. New disposable polyethylene tubing (silicon tubing at the pump head) was used, with the sample intake at the midpoint of each well screen. PES monitored pumping rates and field parameters (pH, temperature, specific conductance, DO, and ORP) during well purging. Each well was purged at approximately 50 to 80 ml/min until the field parameters were stable.

Upon completion of purging of each well, a groundwater sample was collected from the discharge end of the peristaltic pump tubing. The same pumping rate used at the end of well purging was used during sample collection. The VOA vials were filled by allowing the sample water to pour down the inside of the sample bottles without splashing directly onto the base. All sample containers were prepared and provided by the laboratory. Following water sample collection, the sample containers were labeled for identification and immediately placed in insulated coolers containing ice. The coolers containing the samples were then delivered under chain-of-custody protocol to Fremont.

Groundwater sampling forms are included in Appendix D.

4.2.2.2 <u>Results</u>

Subsurface Utilities. The utility corridor in the driveway north of MW-2 contains a natural gas pipeline, electric power and telecommunication lines, a sanitary sewer, and a storm drain. These utilities are oriented east-west along the driveway. The natural gas, power, and telecommunication lines are assumed to be buried within the upper 5 feet of the subsurface and would likely not intersect the groundwater table.

The sanitary sewer and storm drain pipelines were inspected using a video camera between manholes and catch basins to track their alignment, measure their depth, and assess their conditions. The storm drain is composed of 24-inch diameter corrugated metal and slopes downward to the east. The interior of the storm drain is located approximately 9 feet bgs near MW-6 and approximately 7 feet bgs near MW-7 (note: ground surface elevation at MW-7 is approximately 2 feet lower in elevation than MW-6). The sanitary sewer line is composed of 8-inch diameter PVC and slopes downward to the west. The interior of the sanitary sewer is located approximately 12 feet bgs near MW-6 and approximately 9 feet bgs near MW-7. The groundwater depths measured on July 26, 2016 were 9.31 feet below the top of the well casing in MW-6 and 7.58 feet below the top of the well casing in MW-7. These groundwater depths are expected to be shallower than the utility trench depths. Both utility lines appeared to be in good condition, and no infiltration of groundwater into the pipes was apparent. Standing water was observed in the eastern portion of the storm drain. It had not rained in the area for several days and the source of the standing water is unclear.

The location and alignment of the storm drain and sanitary sewer lines are shown on Plate 5. A cross section showing groundwater and utility line depths is presented on Plate 6.

Lithology and Hydrogeology Results. The soil types observed during drilling to the maximum drilled depth of 40.5 feet bgs consisted of gravel, silty sand, silty sand with gravel, and silt with sand. Borings TW-3 to TW-7 were terminated when refusal was met (9 to 15 feet bgs). Silty sand was encountered below the ground surface to 5 feet bgs, except in borings TW-4, TW-5, MW-5, MW-6, and TW-7. Borings TW-4, TW-5, MW-5, and MW-6 contained coarse angular rock fill beneath a vacated roadway (4th Street NE), and TW-7 contained pea gravel used as backfill following the exterior excavation described in Section 4.1. Where encountered, these fills were present up to 5 feet bgs. Very dense, till-like silty sand, and silty sand with gravel was generally encountered from 3 to 5 feet bgs to the maximum drilled depth of 40.5 feet bgs.

The stabilized depth to water measured in the deep well (MW-5) was approximately 20 feet below top of casting (btoc). The stabilized depth to water measured in the shallow wells ranged from approximately 4.5 to 9.5 feet btoc (surface elevation varies across the Site). Groundwater flow appeared to be north-northwest, with flow curving toward MW-6 and MW-7.

Groundwater depths and elevations are presented in Table 2.

Field Screening Results. Field PID measurements of the retrieved soil samples were typically less than 20 ppm. PID measurements of soil from 5 to 10 feet bgs were slightly higher (50 to 100 ppm) in MW-5 and MW-6. No unusual odors were noted, and no evidence of non-aqueous

phase liquid or discoloration was observed in the soil samples retrieved during drilling. Field PID measurements and observations are included on the attached boring logs.

Soil Matrix Results. VOCs were only detected above the practical quantitation limits (PQLs) in two of the eight samples submitted for VOC analysis during the investigation. PCE was the only VOC detected and was detected at concentrations of 0.681 mg/kg in the sample collected at 7.5 feet bgs in MW-5 and 0.112 mg/kg in the sample collected at 8 feet bgs in SB-5. These concentrations are above Ecology's MTCA Method A CUL for soil of 0.050 mg/kg. Given the sample from MW-5 was collected below the seasonal high water table and the groundwater PCE concentrations in the adjacent shallow well MW-2, it is likely that the detected concentration is due to the presence of contaminated groundwater. The sample from SB-5 was collected from beneath the area behind the former dry cleaners suite that underwent excavation and removal of soil containing concentrations of PCE above the MTCA Method A CUL. It is likely that the detected concentration in SB-5 is due to the same release that contaminated the nearby soil.

Table 3 summarizes the soil analytical results.

Groundwater Results. VOCs were detected above the PQL in 7 of the 10 samples collected for this investigation. Concentrations of PCE were measured at 128 and 43.5 μ g/L in water samples collected from MW-2 and MW-7, respectively. These concentrations are above the MTCA Method A CUL for groundwater of 5 μ g/L. PCE was also detected in the water sample collected from MW-6 at a concentration of 1.68 μ g/L.

Other VOCs detected included low levels of CFC-12 in the groundwater samples collected from MW-3 and MW-4 (consistent with previous results), chloroform at a concentration of 1.88 μ g/L in the groundwater sample collected from MW-5, significantly below the CUL of 80 μ g/L, and ethylbenzene and total xylenes at concentrations of 1.36 and 8.76 μ g/L, respectively, in the water sample collected from temporary well TW-6, significantly below the MTCA Method A CULs of 70 and 1,000 μ g/L, respectively.

Table 7 summarizes groundwater sample field parameters. Table 4 summarizes the PCE groundwater analytical results, and PCE concentrations in groundwater are presented on Plate 7. Additional VOCs detected in the groundwater samples are summarized in Table 8.

Indoor Air. A total of eight VOCs were detected above their PQLs in the indoor air sample from the credit union tenant suite, all of which were detected at similar concentrations in the ambient outdoor (background) sample. Corrected for ambient air concentrations, all of these VOC compounds are below their associated MTCA indoor air CULs.

Table 6 summarizes the results of the indoor and ambient air sampling.

4.2.2.3 Conclusions

Based on the sampling conducted around the former dry cleaners suite in July 2016, the following conclusions were made (PES, 2016c):

• The measured concentration of PCE in indoor air in the suite adjacent to the former cleaner tenant space were well below risk-based CUL, and PCE was detected at similar

concentrations in the indoor and ambient outdoor air samples. Other VOCs detected in indoor air were also found at concentrations similar to those found in the ambient air sample, and corrected concentrations were below their respective risk-based CULs. Vapor intrusion exposure in the building suite immediately downgradient of the former dry cleaners suite does not appear to be a concern.

- PCE was detected at concentrations above the MTCA Method A CUL in soil samples
 collected from behind the former cleaners suite beneath the previous excavation and
 north of the building suites. PCE impacts to soil north of the building is likely due to
 contaminated groundwater at that location. PCE impacts to soil behind the former dry
 cleaners suite is likely residual contamination associated with the release that prompted
 removal of impacted soil by Galloway in that area.
- Very dense silty sands encountered below approximately 5 feet bgs to the maximum
 depth of drilling are consistent with glacial till deposits. PCE was not detected at
 concentrations above the PQL in the groundwater sample collected from the deep well
 (MW-5) adjacent to MW-2. It appears that the glacial till effectively limits downward
 migration of contaminants.
- Groundwater flow direction continues to be to the north-northwest, consistent with previous results.
- PCE was detected above the PQL in groundwater samples collected from three
 monitoring wells (MW-2, MW-6, and MW-7). PCE was detected at concentrations
 above the MTCA Method A CUL for groundwater in samples collected from MW-2 and
 MW-7. PCE concentrations in the groundwater sample collected from MW-2 were
 greater than the April 2016 sample, but were within the range of previously measured
 concentrations.

4.2.3 Additional Groundwater Sampling – October 2016

PES conducted a groundwater sampling event on October 18, 2016 (PES, 2016d) and collected groundwater samples from monitoring wells MW-1 through MW-7. PCE was not detected at or above the PQL in the samples collected from MW-1, MW-3, MW-4, MW-5, and MW-6. Concentrations of PCE were measured at 214 and 10.6 μ g/L in water samples collected from MW-2 and MW-7, respectively. These concentrations are above the MTCA Method A CUL of 5 μ g/L for groundwater. The PCE concentration in MW-2 is within the range of concentrations detected during the quarterly sampling conducted in 2015 and 2016. The PCE concentration in MW-7 is significantly lower than the July 26, 2016 result of 43.5 μ g/L (the initial sample from this well). Other VOCs detected include low levels of CFC-12 in MW-3 and methylene chloride in the sample collected from MW-5 at a concentration of 1.34 μ g/L, below the MTCA Method A CUL of 5.0 μ g/L.

Table 4 summarizes the PCE groundwater analytical results. Plate 7 shows the PCE concentrations as well as the groundwater contours and flow direction. Other VOCs detected in groundwater are summarized in Table 8.

4.2.4 Additional Groundwater Sampling – January 2017

PES conducted a groundwater sampling event on January 19, 2017 (PES, 2017) and collected groundwater samples from monitoring wells MW-1 through MW-7. PCE was not detected at or above the PQL in the samples collected from MW-1, MW-3, MW-4, and MW-5. Concentrations of PCE were measured at 114, 1.44, and 126 μ g/L in water samples collected from MW-2, MW-6, and MW-7, respectively. The concentrations in MW-2 and MW-7 are above the MTCA Method A CUL of 5 μ g/L for groundwater. The PCE concentration in MW-2 is within the range of concentrations detected during the quarterly sampling conducted in 2015 and 2016, and may be exhibiting a decreasing trend. The PCE concentration in MW-7 is greater than the July and October 2016 results.

Table 4 summarizes the PCE groundwater analytical results. Plate 8 shows the PCE concentrations in groundwater as well as the groundwater contours and flow direction. A graph showing the PCE concentrations in MW-2 versus time is shown on Plate 9. Other VOCs detected in groundwater are summarized in Table 8.

5.0 CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) was originally presented in the RI/FS prepared by Galloway. An updated CSM is presented in this section. The CSM identifies potential or suspected sources of hazardous substances, types of contaminants, potentially contaminated media, and actual or potential exposure pathways and receptors. The CSM is presented on Plate 10.

5.1 Sources and Transport Mechanisms

5.1.1 Contaminant Sources

The primary sources of contamination are: (1) spills and releases of PCE-containing liquids from the former dry cleaning operations, primarily in the vicinity of the DCU, and (2) the presumed release of PCE-contaminated waste to the landscaped area outside the back door of the dry cleaning suite. Both contaminant sources were at the ground surface. Contaminants include PCE with only very limited amounts of PCE-degradation products present (e.g., TCE, cis-1,2-DCE).

5.1.2 Contaminant Fate and Transport Mechanisms

The potential fate and transport mechanisms currently applicable to the Site include:

- Adsorption of PCE to soil;
- Biodegradation or abiotic degradation of PCE in the subsurface;
- Migration of PCE-containing liquids through the soil and into the shallow groundwater;
- Leaching of contaminants in the shallow soils to shallow groundwater;
- Volatilization of contaminants from soil; and
- Volatilization of contaminants from shallow groundwater.

5.2 Exposure Pathways and Receptors

Based on the previous investigation results, the following potentially complete exposure pathways and receptors were identified.

5.2.1 Soil

The Site is currently covered with pavement or buildings. There is the potential that human receptors (site workers) could be exposed to contaminants present in the soil via direct contact (and potential incidental ingestion) during subsurface construction activities. Human exposure to the soil is a potentially complete current and future exposure pathway.

Ecological exposure to the soil does not appear to be a complete exposure pathway. Given the buildings and pavement covering the soil and the commercial/industrial use of the property and surrounding area, terrestrial ecological exposure to the soil is unlikely. Consistent with

WAC 173-340-7490, PES performed a simplified terrestrial ecological evaluation (TEE) and indicated that the site does not have a substantial potential for posing a threat of significant adverse effects to terrestrial ecological receptors, as the total area of soil contamination is less than 350 square feet (Appendix E).

The indoor air sampling indicates that the soil to indoor air pathway is not a concern.

5.2.2 Groundwater

There are no active water supply wells located on or within one-mile of the Property. Therefore, there is no potential for ingestion of contaminated groundwater from potable uses of groundwater. The potential for transport of contaminated groundwater to a deeper aquifer used by the wells is low based on the groundwater monitoring results from the deeper well MW-5.

Consistent with the requirements of WAC 173-340-720(2) related to the definition of potable groundwater, the shallow groundwater beneath the Property is determined to be non-potable. Shallow groundwater at the Property does not currently serve as a drinking water source (WAC 173-340-720(2)(a)), and the glacial till, which extends to at least 40.5 feet deep, is of low permeability, with a very low likelihood that a water well completed in the unit would be able to achieve the minimum flow rate for potable groundwater (0.5 gallons per minute; WAC 173-340-720(2)(b)(i)). Therefore, ingestion of groundwater is not a current or potential future exposure pathway.

Similar to soil, there is the potential that human receptors (site workers) could be exposed to contaminants present in shallow groundwater soil via direct contact (and potential incidental ingestion) during subsurface construction activities. Therefore, human exposure to shallow groundwater is a potentially complete current and future exposure pathway.

The indoor air sampling indicates that there is not a potential that indoor workers in an occupational setting could be exposed to the volatile COCs through inhalation of vapors originating from contaminated groundwater beneath the building. Due to the limited extent of groundwater with COCs above the SLs, this pathway is also considered incomplete off of the property.

5.2.3 Summary of Exposure Pathways and Receptors

The current complete, but minor, exposure pathways include:

- Exposure to site workers through direct contact with contaminated soil during site
 maintenance activities that disturb the existing structures or pavement (i.e., soil
 excavation); and
- Exposure to site workers through direct contact and incidental ingestion with contaminated shallow groundwater during site maintenance activities (including utility maintenance and repair) that disturb the existing structures or pavement to a depth sufficient to encounter groundwater (i.e., soil excavation).

6.0 NATURE AND EXTENT OF CONTAMINATION

This section presents a summary of the Site soil, groundwater, vapor, and indoor air data following the previous investigation and cleanup actions and presents an update to the summaries presented in the RI/FS and the Cleanup Report. The primary COC identified for the Site is PCE due to its presence above cleanup levels in soil and groundwater. PCE and CFC-12 are also considered COCs in sub-slab soil gas due to their detections above their respective screening levels.

6.1 Cleanup Levels

The soil and groundwater cleanup levels selected in the RI/FS (MTCA Method A CULs for unrestricted land uses) are still appropriate for the Site and are summarized below for the COCs. The sub-slab soil gas screening levels are summarized below as well:

6.1.1 Soil Cleanup Levels

• PCE - 0.05 mg/kg

6.1.2 Groundwater Cleanup Levels

• PCE - 5 μg/L

6.1.3 Soil Gas Screening Levels

- PCE $321 \,\mu g/m^3$
- CFC-12 1,520 μ g/m³

6.2 **Soil Quality**

Following the soil removal activities, the primary sources of PCE contamination and the majority of soil exceeding CULs has been removed from the Site. Two soil samples collected during the 2016 investigations contained residual PCE concentrations above the CUL. The soil sample collected from MW-5 at 8 feet bgs contained PCE at a concentration of 0.681 mg/kg and TW-7 at 8 feet bgs contained PCE at a concentration of 0.112 mg/kg. TW-7 was located in the area of the previous remedial soil excavation and the residual PCE is likely limited in extent. The PCE impacts to soil north of the building near MW-5 are likely due to contaminated groundwater at that location.

6.3 **Groundwater Quality**

Shallow groundwater downgradient of the former dry cleaners (MW-2 and MW-7) contains PCE above the CUL. PCE was detected below the CUL in MW-6 and non-detect in wells to the east, west, and southeast of the former cleaners suite. Deeper groundwater has not been shown to be impacted, based on the results from deep well MW-5.

The concentrations in both MW-2 and MW-7 appear to vary seasonally. As shown on Plate 9, the concentrations in MW-2 appear to be trending downward, potentially showing the effects of the source area treatment implemented in 2015. At MW-7, there have only been three quarterly sampling events and due to the apparent seasonal variations, it is not yet clear whether a trend is present. Based on these results, and pending the results of additional rounds of quarterly monitoring (see Section 7 for details), the extent of shallow groundwater contamination has been adequately delineated. If the additional monitoring indicates that PCE concentrations at MW-7 are rising or do not appear to be trending towards reaching the CUL, additional investigation downgradient of MW-7 may be appropriate.

6.4 Sub-Slab Soil Gas

Sub-slab soil gas concentrations beneath the former cleaners contain PCE and CFC-12 above their respective screening levels, however the indoor air samples collected in both the former cleaners suite and the adjacent suite to the north did not contain VOC concentrations above applicable CULs.

7.0 DESCRIPTION OF SELECTED REMEDY

This section describes the previously completed interim cleanup actions and well as the cleanup action that will be implemented to address the remaining area of groundwater contamination identified in Section 5.3.

7.1 <u>Site Description</u>

The Site originally consisted of contaminated soil beneath the concrete slab of the former cleaners and in the landscaped area behind the facility and contaminated shallow groundwater east (behind) and north of the facility. Following the source area cleanup actions implemented by the previous owner, the Site consists of residual PCE concentrations in shallow groundwater located downgradient of the former cleaners, and residual PCE in soil behind and north of the former cleaners.

7.2 <u>Description of the Cleanup Action</u>

Previous cleanup actions included excavating contaminated soils beneath the former cleaners suite (in the vicinity of B-1 and B-2) and in the landscaped area behind the former dry cleaners suite (in the vicinity of B-4) and injecting a microbial bioremediation product into the subsurface beneath the floor of the former dry cleaners suite. Approximately 43 tons of soil was excavated from the landscaped area and eight confirmation soil samples collected at the limits of the excavation were either non-detect or contained below-CUL concentrations of PCE and TCE. Approximately 20 tons of soil was excavated from beneath the former DCU and five confirmation soil samples collected at the limits of the excavation were either non-detect or contained below-CUL concentrations of PCE. In addition, a total of 10 pounds of "CL-Out" (a freeze-dried microbial culture) and chemical oxidation products (potassium permanganate) were injected into four temporary borings to facilitate additional source reduction in the saturated zone beneath the former cleaners.

As evidenced by the downward trending PCE concentrations at MW-2, it appears that the previous source removal activities are having a positive impact on PCE concentrations in shallow groundwater downgradient of the former cleaners. Furthermore, based on the indoor air sampling results which show PCE and all other COCs to be below CULs, the source removal actions appear to have mitigated the potential risk to building occupants via the vapor intrusion pathway.

In order to confirm that the downward trend in PCE concentrations in groundwater at MW-2 continues, and also document the effects of the source treatment further downgradient at MW-7, continued quarterly groundwater monitoring will be conducted as described below.

Groundwater Monitoring Network. The groundwater monitoring well locations are shown Plate 3 and include the monitoring wells with previous detections of PCE (MW-2, MW-6, and MW-7) as well as deep well MW-5 (to be sampled until four consecutive quarters of results below CULs are obtained).

Groundwater Sampling Parameters. The constituents include:

• Halogenated VOCs (PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride) using EPA Method 8260C

Groundwater Sampling Procedures. Groundwater sampling will be performed using low-flow methodologies and in general accordance with EPA recommended low-flow sampling procedures. Field parameters to be measured during groundwater monitoring include: depth to water, temperature, pH, conductivity, dissolved oxygen, oxidation-reduction potential, and the volume purged.

Sampling Schedule. Groundwater monitoring and sampling will be conducted quarterly.

7.3 Restoration Timeframe

As described above, it appears that the previous source removal actions have: (1) reduced PCE concentrations downgradient of the former cleaners and (2) mitigated the indoor air risk via the vapor intrusion pathway. The ongoing monitoring proposed as part of the cleanup action will document these trends going forward, but at this time it is difficult to accurately predict a restoration timeframe. It is expected that another 1 to 2 years of monitoring may be required.

7.4 <u>Compliance Monitoring</u>

Groundwater monitoring will continue until four consecutive quarters with PCE concentrations below the CUL are achieved. A Sampling and Analysis Plan (SAP) is included in Appendix F and describes the proposed groundwater sampling methods, consistent with the requirements of WAC 173-340-410.

Groundwater samples will be analyzed for Halogenated VOCs (PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride) using EPA Method 8260C.

7.5 Schedule for Implementation

Quarterly groundwater monitoring is on-going and the next event is to be conducted in January 2017.

7.6 <u>Institutional/Engineering Controls</u>

If groundwater concentrations remain above the CUL, the applicability of institutional controls, such as a deed restriction limiting groundwater use, should be evaluated.

8.0 REPORTING AND SCHEDULE

The cleanup action will be performed as an independent action under Ecology's VCP. At the completion of the cleanup actions, a Cleanup Action Completion report will be prepared and submitted to Ecology for review and to request an opinion of No Further Action.

8.1 Reporting

8.1.1 Progress Reports

An annual report documenting the quarterly groundwater monitoring and sampling activities will be prepared and submitted to Ecology. The report will include the data tables summarizing the groundwater monitoring and analytical results, laboratory analytical reports and data validation memorandums, groundwater contour maps, and field sampling data sheets.

8.1.2 Completion Report

At the completion of the cleanup action, a draft report will be prepared summarizing the scope of work, field activities, data analyses and evaluation, and conclusions. The Draft Completion Report will include updated groundwater elevation contour maps, presentation and evaluation of the data generated, and conclusions based on the work performed.

Two paper copies and one electronic copy of the Draft Completion Report will be submitted to Ecology for review and comment. Any comments received from Ecology will be addressed, and after approval from Ecology, Gerrity will submit a final Completion Report.

8.2 Schedule

Quarterly groundwater monitoring is on-going. The first annual report will be prepared and submitted to Ecology within four weeks of receiving the fourth quarter 2017 groundwater analytical results.

9.0 REFERENCES

- ADR Environmental Group, Inc. 2013. *Preliminary Subsurface Investigation Report*. Prepared for Lake Stevens Marketplace, LLC c/o Powers & Therrien, P.S. December 17.
- Environmental Data Resources, Inc. 2016. The EDR Radius MapTM with GeoCheck[®], 6 Armstrong Road. Shelton, Connecticut 064684, Inquiry Number 4568624.2s. March 21.
- Galloway Environmental, Inc. 2014. Focused Phase II Environmental Site Assessment at the Lake Stevens Cleaners. Prepared for Lake Stevens Marketplace, LLC c/o Powers & Therrien, P.S. November 11.
- Galloway Environmental, Inc. 2015a. Report of Release at the Lake Stevens Cleaners Facility, Marketplace Shopping Center, Lake Stevens, Washington. November 9.
- Galloway Environmental, Inc. 2015b. *Remedial Investigation/Feasibility Study at the Lake Stevens Cleaners Site*. Prepared for Lake Stevens Marketplace, LLC c/o Powers & Therrien, P.S. March 23.
- Galloway Environmental, Inc. 2015c. Environmental Cleanup Report at the Lake Stevens Cleaners Site. Prepared for Lake Stevens Marketplace, LLC c/o Powers & Therrien, P.S. May 27.
- Galloway Environmental, Inc. 2015d. *Groundwater Monitoring Report Lake Stevens Marketplace Shopping Center*, 202 91st Avenue NE, Suite C-302, Everett, Washington. July 28.
- Galloway Environmental, Inc. 2015e. *Groundwater Monitoring Report Lake Stevens Marketplace Shopping Center*, 202 91st Avenue NE, Suite C-302, Everett, Washington. October 11.
- Galloway Environmental, Inc. 2016a. *Groundwater Monitoring Report Lake Stevens Marketplace Shopping Center*, 202 91st Avenue NE, Suite C-302, Everett, Washington. January 29.
- Galloway Environmental, Inc. 2016b. Groundwater Monitoring Report Lake Stevens Marketplace Shopping Center, 202 91st Avenue NE, Suite C-302, Everett, Washington. April 19.
- Jones, M.A. 1999. *Geologic Framework for the Puget Sound Aquifer System, Washington and British Columbia*. U.S. Geological Survey Professional Paper 1424-C.
- Kirtland, J.A. 2006. *Getchell Plateau Groundwater Investigation*. Snohomish County Public Works, Surface Water Management Division. March.
- Krazan & Associates. 2003. *Phase I Environmental Site Assessment, Lake Stevens Marketplace Property, 303 91st Avenue Northeast, Everett, Washington.* Prepared for Merrill Lynch Mortgage Lending, Inc. August 4.

- Minard, J.P. 1985a. *Geologic map of the Arlington East quadrangle, Snohomish County, Washington.* U.S. Geological Survey Miscellaneous Field Studies Map MF-1739.
- Minard, J.P. 1985b. *Geologic map of the Arlington West 7.5 minute quadrangle, Snohomish County, Washington.* U.S. Geological Survey Miscellaneous Field Studies Map MF-1740.
- PES Environmental, Inc. 2016a. Phase I Environmental Site Assessment. Lake Stevens Marketplace, 303 91st Avenue Northeast, Lake Stevens, Washington. April 15.
- PES Environmental, Inc. 2016b. Summary of Limited Phase II Investigation Results. Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington. March 29.
- PES Environmental, Inc. 2016c. Summary of Phase II Investigation Results. Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington. August 16.
- PES Environmental, Inc. 2016d. Summary of Groundwater Sampling Results October 2016. Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington. October 28.
- PES Environmental, Inc. 2017. Summary of Groundwater Sampling Results January 2017. Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington. February 14.
- U.S. Environmental Protection Agency. 2008. USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review. Office of Superfund Remediation and Technology Innovation. USEPA 540-R-08-01. June.
- Vaccaro, J.J., A.J. Hansen, and M.A. Jones. 1998. *Hydrogeologic Framework of the Puget Sound Aquifer System, Washington and British Columbia*. U.S. Geological Survey Professional Paper 1424-D.
- Washington State Department of Ecology. 2009. Guidance for Evaluating Soil Vapor Intrusion in Washington State: Investigation and Remedial Action.

TABLES

Table 1 Monitoring Well and Temporary Well Completion Details Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

	Ecology				Monitoring	Surface	Ground					Surface
	Well Tag	Date			Point	Casing Rim	Surface	Boring	Screen	Filter Pack	Bentonite	Concrete
Well	Number	Installed	Northing	Easting	Elevation	Elevation	Elevation	Depth	Depth	Depth	Seal Depth	Depth
Shallow M	onitoring V	Vells										
MW-1	BID972	1/21/15	1,328,610.23	367,217.30	361.70	361.61	361.34	15	5 - 15	4 - 15	2 - 4	0 -2
MW-2	BID973	1/21/15	1,328,670.40	367,243.65	360.30	360.23	359.92	15	5 - 15	4 - 15	2 - 4	0 -2
MW-3	BID975	1/27/15	1,328,767.24	367,203.55	357.30	357.28	356.98	13	3 - 13	2 - 13	1 - 2	0 - 1
MW-4	BID974	1/27/15	1,328,773.93	367,126.15	358.00	357.84	357.65	13	3 - 13	2 - 13	1 - 2	0 - 1
MW-6	BJY108	7/21/16	1,328,642.41	367,271.85	361.20	361.21	360.77	15.5	5 - 15	4 - 15.5	2 - 4	0 - 2
MW-7	BJY109	7/21/16	1,328,690.20	367,269.54	359.30	359.34	358.94	15.5	5 - 15	4 - 15.5	2 - 4	0 - 2
Deep Moni	toring Well							,				
MW-5	BJY107	7/20/16	1,328,677.95	367,242.22	360.00	360.03	359.67	40.5	30 - 40	29 - 40.5	4 - 29	0 - 4
Temporary	/ Monitorin	g Wells										
TW-1	_	3/17/16	_	-	_	_	_	9	4 - 9	3 - 9	_	_
TW-2	_	3/17/16	_	_	_	_	_	6	1 - 6	1 - 6	_	_
TW-3/SB-1	_	7/7/16	_	_	_	_	_	11	6 - 11	6 - 11	_	_
TW-5/SB-3	_	7/7/16	_	_	_	_	_	14	9 - 14	8 - 14	_	_
TW-6/SB-4	_	7/7/16	_	_	_	_	_	10.5	4.5 - 10.5	3.5 - 14.5	_	_
TW-7/SB-5	1	7/7/16	_	-	_	_	_	10	5 - 10	4 - 10	-	_

Notes:

- 1. Northing/Easting in feet relative to the WA State Plane System North Zone (NAD 83)
- 2. Elevations in feet relative to the North American Vertical Datum (NAVD 88)
- 3. All depths shown in feet below ground surface
- 4. Monitoring point = top of the PVC well casing; all wells completed flush with grade
- 5. Surveyed locations = north side of completion or the ground surface to the north of completion
- 6. -= not available or not applicable

Table 2
Groundwater Elevations
Lake Stevens Marketplace Shopping Center
Lake Stevens, Washington

			Depth	Monitoring	
			to	Point	Water
Location	Date	Time	Water	Elevation	Elevation
	Monitoring				
MW-1	01/31/15	-	7.45	361.34	353.89
	04/29/15	_	7.73	361.34	353.61
	07/21/15	-	9.81	361.34	351.53
	10/06/15	-	10.26	361.34	351.08
	01/21/16	-	6.58	361.34	354.76
	04/08/16	-	7.90	361.34	353.44
	07/01/16	8:23	8.90	361.34	352.44
	07/26/16	6:42	9.35	361.34	351.99
	10/18/16	8:16	9.15	361.34	352.19
	01/19/17	8:26	7.94	361.34	353.40
MW-2	01/31/15	-	6.14	359.92	353.78
	04/29/15	ı	6.48	359.92	353.44
	07/21/15	-	8.70	359.92	351.22
	10/06/15	-	9.04	359.92	350.88
	01/21/16	-	5.91	359.92	354.01
	04/08/16	-	7.01	359.92	352.91
	07/01/16	8:24	8.15	359.92	351.77
	07/26/16	6:45	8.44	359.92	351.48
	10/18/16	8:26	7.44	359.92	352.48
	01/19/17	8:35	6.88	359.92	353.04
MW-3	01/31/15	-	2.25	356.98	354.73
	04/29/15	ı	2.51	356.98	354.47
	07/21/15	-	5.71	356.98	351.27
	10/06/15	-	4.99	356.98	351.99
	01/21/16	-	2.62	356.98	354.36
	04/08/16	-	3.15	356.98	353.83
	07/01/16	8:26	4.21	356.98	352.77
	07/26/16	9:00	4.81	356.98	352.17
	10/18/16	8:20	3.09	356.98	353.89
	01/19/17	8:28	1.78	356.98	355.20
MW-4	01/31/15	-	2.10	357.65	355.55
	04/29/15	-	2.46	357.65	355.19
	07/21/15	-	5.64	357.65	352.01
	10/06/15	-	4.83	357.65	352.82
	01/21/16	-	3.10	357.65	354.55
	04/08/16		3.16	357.65	354.49
	07/01/16	10:01	3.55	357.65	354.10
	07/26/16	6:50	4.54	357.65	353.11
	10/18/16	9:31	2.34	357.65	355.31
	01/19/17	8:29	1.21	357.65	356.44

S124603803R_2285_T1-8 Page 1 of 2

Table 2
Groundwater Elevations
Lake Stevens Marketplace Shopping Center
Lake Stevens, Washington

			-	Monitoring	***
T 4	D-4-	TC*	to	Point	Water
Location	Date	Time	Water	Elevation	Elevation
MW-6	07/26/16	6:43	9.31	360.77	351.46
	10/18/16	8:24	8.63	360.77	352.14
	01/19/17	8:34	8.58	360.77	352.19
MW-7	07/26/16	6:47	7.58	358.94	351.36
	10/18/16	8:28	6.81	358.94	352.13
	01/19/17	8:33	6.74	358.94	352.20
Deep mor	nitoring W	ell			
MW-5	07/26/16	6:46	20.68	360.00	339.32
	10/18/16	9:26	20.67	360.00	339.33
	01/19/17	8:31	18.92	360.00	341.08

Notes:

- 1. Data collected prior to 7/1/16 provided by Galloway Environmental, Inc.
- 2. Elevations in feet relative to the North American Vertical Datum (NAVD 88)
- 3. All depths shown in feet below monitoring point
- 4. Monitoring point elevation = top of the north side of the PVC casing (wells)

S124603803R_2285_T1-8 Page 2 of 2

Table 3 Summary of Soil Analytical Results Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

G 1	g ,	D 4	Sample		D 4	4 137 1 47 0		G 1	,	<i>n</i> >	
Sample	Sample	Date	Depth		Detec	ted Volatile O	rgani			, 0,	
ID	Location	Sampled	(feet bgs)	PCE		TCE		cis-1,2-DC	E	CFC-12	
Soil Borings (0.00		0.0012		0.0012		0.0012	
B-1 @ 4' *	B-1	10/21/13	4	0.087		0.0012	U	0.0012	U	0.0012	U
B-2 @ 4' *	B-2	10/21/13	4	0.14		0.0011	U	0.0011	U	0.0011	U
B-3 @ 4'	B-3	10/21/13	4	0.0013	U	0.0078		0.011		0.0013	U
B-4 @ 4' *	B-4	10/21/13	4	0.065		0.0019		0.00079	U	0.00079	U
P-1 @ 18'	P-1	10/28/14	18	0.00080	U	0.00080	U	0.00080	U	0.0020	U
P-2 @ 20'	P-2	10/28/14	20	0.025		0.00087	U	0.00087	U	0.0022	U
P-3 @ 4'	P-3	10/28/14	4	0.0010	U	0.0010	U	0.0010	U	0.0025	U
P-4 @ 7'	P-4	10/28/14	7	0.0011	U	0.0011	U	0.0011	U	0.0027	U
MW1@8'	MW-1	1/22/15	8	0.00089	U	0.00089	U	0.00089	U	0.00089	U
MW2@8'	MW-2	1/22/15	8	0.0082		0.00088	U	0.00088	U	0.00088	U
MW3@8'	MW-3	1/22/15	8	0.00078	U	0.00078	U	0.00078	U	0.0035	
MW4@8'	MW-4	1/22/15	8	0.00082	U	0.00082	U	0.00082	U	0.00082	U
Soil Excavation	1				nc.)						
EXC-1	EXC-1	4/9/15	7	0.026		0.0012		0.0011	U	0.0011	U
EXC-2	EXC-2	4/9/15	6	0.028		0.00094	U	0.00094	U	0.00094	U
EXC-3	EXC-3	4/9/15	1.5	0.0024		0.00097	U	0.00097	U	0.00097	U
EXC-4	EXC-4	4/9/15	6	0.010		0.0011	U	0.0011	U	0.0011	U
EXC-5	EXC-5	4/9/15	6	0.012		0.00083	U	0.00083	U	0.00083	U
EXC-6	EXC-6	4/9/15	6	0.0064		0.00085	U	0.00085	U	0.00085	U
EXC-7	EXC-7	4/9/15	7	0.012		0.0013	U	0.0013	U	0.0013	U
EXC-8	EXC-8	4/9/15	7	0.011		0.00079	U	0.00079	U	0.00079	U
EXC-E	EXC-E	4/23/15	5	0.0015	U	0.0015	U	0.0015	U	0.0015	U
EXC-W	EXC-W	4/23/15	5	0.0065		0.0014	U	0.0014	U	0.0014	U
EXC-S	EXC-S	4/23/15	5	0.0041		0.0016	U	0.0016	U	0.0016	U
EXC-N	EXC-N	4/23/15	5	0.00087	U	0.00087	U	0.00087	U	0.00087	U
EXC-BOT	EXC-BOT	4/23/15	6	0.0030		0.0010	U	0.0010	U	0.0010	U
Soil Borings (
SV-1-1.5	SV-1	3/18/16	2	0.00167		0.00107	U	0.00107	U	0.00534	U
SV-2-1	SV-2	3/18/16	1	0.00573		0.00109	U	0.00109	U	0.00545	U
SV-3-1.5	SV-3	3/18/16	2	0.00442		0.00106	U	0.00106	U	0.00529	U
TW-1	TW-1	3/17/16	8	0.00111	U	0.00111	U	0.00111	U	0.00553	U
TW-2	TW-2	3/17/16	6	0.00115	U	0.00115	U	0.00115	U	0.00573	U
SB-1a-8	TW-3a	7/7/16	8	0.0208	U	0.0208	U	0.0208	U	0.0623	U
SB-2-6	TW-4	7/7/16	6	0.0210	U	0.0210	U	0.0210	U	0.0629	U
SB-3-7	TW-5	7/7/16	7	0.0197	U	0.0197	U	0.0197	U	0.0592	U
SB-4-7	TW-6	7/7/16	7	0.0224	U	0.0224	U	0.0224	U	0.0673	U
SB-5-8	TW-7	7/7/16	8	0.112		0.0206	U	0.0206	U	0.0617	U
MW-5-7.5	MW-5	7/20/16	8	0.681		0.0268	U	0.0268	U	0.0803	U
MW-6-5	MW-6	7/21/16	5	0.0235	U	0.0235	U	0.0235	U	0.0705	U
MW-7-5	MW-7	7/21/16	5	0.0268	U	0.0268	U	0.0268	U	0.0804	U
	Meth	od A/B Unre	stricted CUL	0.05		0.03		160		16,000	

Notes:

- 1. bgs = below ground surface
- 2. U = result is less than the laboratory detection limit [laboratory practical quantitation limit (PQL)].
- 3. mg/kg = miilligrams per killogram
- 4. MTCA Method A/B soil cleanup levels (CULs for unrestricted land use, shown for screening purposes) is from the Ecology CLARC searchable database (researched August 2016)
- 5. Bold indicates that the compound was detected above the PQL, and shading indicates the concentration exceeds the MTCA Method A CUL
- 6. Samples were analyzed using USEPA Method 8260C.
- 7. PCE = tetrachloroethene
- 8. TCE = trichloroethene
- 9. cis-1,2-DCE = cis-1,2-dichloroethene
- 10. CFC-12 = dichlorodifluoromethane (Freon-12)
- * = this sample location was excavated

S124603803R_2285_T1-8 Page 1 of 1

Groundwater Analytical Results - PCE
Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington

Table 4

Well	Date	Tetrachloroethene
ID	Sampled	(micrograms per liter)
Shallow	Monitoring W	Vells
MW-1	01/31/15	0.20 U
	04/29/15	0.20 U
	07/21/15	0.20 U
	10/06/15	0.20 U
	01/21/16	0.20 U
	04/08/16	0.20 U
	07/26/16	1.00 U
	10/18/16	1.00 U
MW-2	01/31/15	450
	04/29/15	110
	07/21/15	320
	10/06/15	370
	01/21/16	100
	04/08/16	71
	07/26/16	128
	10/18/16	214
MW-3	01/31/15	0.20 U
	04/29/15	0.20 U
	07/21/15	0.20 U
	10/06/15	0.20 U
	01/21/16	0.20 U
	04/08/16	0.20 U
	07/26/16	1.00 U
	10/18/16	1.00 U
MW-4	01/31/15	0.20 U
	04/29/15	0.20 U
	07/21/15	0.20 U
	10/06/15	0.20 U
	01/21/16	0.20 U
	04/08/16	0.20 U
	07/26/16	1.00 U
	10/18/16	1.00 U
MW-6	07/26/16	1.68
	10/18/16	1.00 U
MW-7	07/26/16	43.5
	10/18/16	10.6

S124603803R_2285_T1-8 1 of 2

Table 4

Groundwater Analytical Results - PCE Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington

Well	Date	Tetrachloroeth	iene			
ID	Sampled	(micrograms per liter)				
Deeper N	Monitoring W	ell				
MW-5	07/26/16	1.00	U			
	10/18/16	1.00	U			
Tempora	ry Monitorin	g Wells				
P1	10/28/14	0.20	U			
P2	10/28/14	40				
Р3	10/28/14	31				
P4	10/28/14	0.20	U			
TW-1	03/17/16	1.00	U			
TW-2	03/17/16	1.00	U			
TW-3	07/08/16	1.00	U			
TW-5	07/08/16	1.00	U			
TW-6	07/08/16	1.00	U			
MTCA M	Iethod A	5.0				

Notes:

- 1. Data collected prior to 7/1/16 provided by Galloway Environmental, Inc. TW-1 and TW-2 Data and data collected on/after 7/8/16 by PES Environmental, Inc.
- 2. U = result is less than the practical quantitation limit (PQL)
- 3. PCE = tetrachloroethene
- 4. Bold indicates compound detected above the PQL
- 5. Shading indicates the concentration exceeds the MTCA Method A cleanup level
- 6. See Table 8 for additional VOCs detected for samples collected by PES.

S124603803R_2285_T1-8 2 of 2

Table 5 Summary of Detected VOCs in Sub-Slab Soil Gas Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

	B1 @ 5' *	B2 @ 5' *	B3 @ 5' *	B4 @ 5' *	LS-VI 1	LS-VI 2	SV1-031816	SV2-031816	SV3-031816	Sub-Slab
	10/21/13	10/21/13	10/21/13	10/21/13	05/05/15	05/05/15	03/18/16	03/18/16	03/18/16	Screening Level
Compound	(μg/m ³)									
Benzene	NA	NA	NA	NA	NA	NA	0.241 B	0.294 B	2.02	10.7
Carbon Tetrachloride	7,000 U	0.429	0.429	0.391	13.9					
Chloroform	1,000 U	0.314	1.22	3.15	3.62					
1,4-Dichlorobenzene	1,000 U	0.379	0.413	0.756	7.58					
cis-1,2-Dichloroethene	1,000 U	0.0793 U	0.336	0.821	NL					
Dichlorodifluoromethane	1,000 U	1,000 U	1,000 U	1,000 U	50,000	32,000	NA	NA	NA	1,520
Ethylbenzene	NA	NA	NA	NA	NA	NA	0.819	1.54	52.0 U	15,200
Tetrachloroethene	1,000 U	1,000 U	3,800	30,000	1,000 U	1,000 U	75.0	515	1,170	321
Trichloroethene	1,000 U	1.36	4.43	42.9 U	12.3					

Notes:

- 1. All results reported in micrograms per cubic meter (µg/m³)
- 2. Detected VOCs are summarized in this table; see laboratory analytical report for entire VOC analytical results.
- 3. Analyses for volatile ogranic compounds (VOCs) using EPA 8260C (10/21/13 and 5/5/15 samples; data provided by Galloway Environmental, Inc.) and USEPA Method TO-15-SIM (3/18/16 samples).
- 4. * = The 10/21/13 samples were collected prior to the cleanup actions.
- 5. Detected results shown in **bold**.
- 6. U = not detected at or above the concentration shown; B = Analyte detected in the associated method blank.
- 7. Sub-slab screening levels (Method B) obtained from Ecology's CLARC database, August 2015.
- 8. Concentrations greater than the sub-slab soil vapor screening level are

shaded

9. NL = Not listed; NA = Not analyzed

S124603803R_2285_T1-8 Page 1 of 1

Table 6 Summary of Select VOCs in Indoor Air Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

	Indoor Air	Ambient Air	Indoor Air	Indoor Air	Ambient Air	Indoor Air	
	IA-031716	OA-031716	Corrected for Ambient	Corrected for Ambient Indoor-070716		Corrected for Ambient	Method B
	3/17/2016	3/17/2016	3/17/2016	7/7/2016	7/7/2016	7/7/2016	Indoor Air
Constituent	8-hour (µg/m³)	8-hour (µg/m³)	8-hour (µg/m³)	8-hour (µg/m³)	8-hour (µg/m³)	8-hour (μg/m³)	Cleanup Level (µg/m3)
Benzene	0.831	0.859	NC	0.511	0.319	0.192	0.321
Carbon Tetrachloride	0.454	0.440	0.014	0.503	0.503	0.000	0.417
Chloromethane	1.14	1.27	NC	0.826 U	0.826 U	NC	41.1
Ethylbenzene	0.380	0.404	NC	2.56	2.43	0.13	457
m,p-Xylene	NA	NA	NC	2.08	1.91	0.17	45.7
o-Xylene	NA	NA	NC	2.30	2.17	0.13	45.7
Toluene	NA	NA	NC	3.32	2.26	1.06	2,290
Dichlorodiflouromethane	NA	NA	NC	1.48 U	1.48 U	NC	45.7
Methlyene Chloride	NA	NA	NC	0.764	0.695	0.07	250
Trichloroethene	0.107 U	0.107 U	NC	0.0914 U	0.0914 U	NC	0.370
Tetrachloroethene	1.04	0.136 U	1.04	1.09	0.95	0.14	9.62

Notes:

- 1. All results in $\mu g/m^3$ (micrograms per cubic meter).
- 2. Selected VOCs are summarized in this table; see laboratory analytical report for entire VOC analytical results.
- 3. Volatile Organic Compound (VOC) analysis by EPA Method TO-15-SIM.
- 4. Detected results shown in **bold**.
- 5. U = not detected at or above the concentration shown.
- 6. NA = not analyzed.
- 7. Method B cleanup levels obtained from Ecology's CLARC database, August 2016.
- 8. Measured indoor air concentrations corrected for ambient air concentrations consistent Ecology's Draft Vapor Intrusion Guidance, 2009.
- 9. NC = Not calculable. Indicates measured indoor air concentration less than ambient air concentrations.

S124603803R_2285_T1-8 Page 1 of 1

Table 7
Groundwater Sample Field Parameters
Lake Stevens MarketplaceShopping Center
Lake Stevens, Washington

		Approximate		Specific		Dissolved	
	Date	Sample		Conductance	Temperature	Oxygen	ORP
Sample	Collected	Depth	pН	(µS/cm)	(°C)	(mg/L)	(mv)
Shallow Monit	oring Wells						
MW-1	7/26/16	12	6.14	508.3	17.9	2.33	144.5
	10/18/16	10	6.02	213	14.7	1.09	64.3
	1/19/17	10	7.65	850	10.2	1.87	22.3
MW-2	7/26/16	12	6.45	378.2	19.6	1.74	156.7
	10/18/16	10	5.96	379.8	14.7	2.96	106.2
	1/19/17	10	7.27	421.3	9.4	NA	18.6
MW-3	7/26/16	10	6.90	211.5	21.0	3.20	129.6
	10/18/16	10	6.30	190.6	14.4	3.81	110.4
	1/19/17	8	6.84	223.0	8.1	2.49	47
MW-4	7/26/16	10	6.57	203.4	19.7	3.05	157.6
	10/18/16	10	6.27	136.4	14.8	1.03	113.2
	1/19/17	8	7.78	363.2	8.2	NA	36.3
MW-6	7/26/16	12	6.88	676.0	17.4	6.16	143.0
	10/18/16	10	6.11	649.0	14.0	2.56	71.7
	1/19/17	10	8.66	583.9	7.5	NA	31.8
MW-7	7/26/16	12	7.36	373.8	18.1	5.69	135.2
	10/18/16	10	6.00	250.9	13.8	1.96	85.7
	1/19/17	10	8.96	344.8	8.6	NA	27.0
Deeper Monito	ring Well		-	-			
MW-5	7/26/16	35	9.68	485.1	19.1	1.05	162.7
	10/18/16	35	6.82	203.3	14.2	1.07	96.6
	1/19/17	35	7.70	216.2	10.4	NA	-4.1

Notes:

- 1. Sample depths relative to ground surface
- 2. μ S/cm = micro-Siemens per centimeter
- 3. °C = degrees Celsius
- 4. mg/L = milligrams per liter
- 5. mv = millivolts
- 6. ORP = oxidation-reduction potential
- 7. NA = not available

Table 8
Groundwater Analytical Results - Other VOCs
Lake Stevens Marketplace Shopping Center
Lake Stevens, Washington

Well	Date	Ethylber	zene	Total Xy	lenes	Chlorof	orm	CFC-	12	Methylene (Chloride
ID	Sampled	(μg/L	4)	(μg/I	Ĺ)	$(\mu g/L)$		(µg/L)		(µg/L)	
Shallow I	Monitoring \	Wells									
MW-1	07/26/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	10/18/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	01/19/17	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
MW-2	07/26/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	10/18/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	01/19/17	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
MW-3	07/26/16	1.00	U	1.00	U	1.00	U	14.7		1.00	U
	10/18/16	1.00	U	1.00	U	1.00	U	16.6		1.00	U
	01/19/17	1.00	U	1.00	U	1.00	U	2.95		1.00	U
MW-4	07/26/16	1.00	U	1.00	U	1.00	U	1.13		1.00	U
	10/18/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	01/19/17	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
MW-6	07/26/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	10/18/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	01/19/17	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
MW-7	07/26/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	10/18/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
	01/19/17	1.00	U	1.00	U	1.04		1.00	U	1.00	U
Deeper M	Ionitoring V										
MW-5	07/26/16	1.00	U	1.00	U	1.88		1.00	U	1.00	U
	10/18/16	1.00	U	1.00	U	1.00	U	1.00	U	1.34	
	01/19/17	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
Tempora	ry Monitori	ng Wells									
TW-1	03/17/16	1.00	U	3.00	U	5.00	U	5.00	U	5.00	U
TW-2	03/17/16	1.00	U	3.00	U	5.00	U	5.00	U	5.00	U
TW-3	07/08/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
TW-5	07/08/16	1.00	U	1.00	U	1.00	U	1.00	U	1.00	U
TW-6	07/08/16	1.36		8.76		1.00	U	1.00	U	1.00	U
MTCA M	Iethod A/B	70		1,000		80		1,600		5.0	

Notes:

- 1. $\mu g/L = micrograms per liter$
- 2. U = result is less than the practical quantitation limit (PQL).
- 3. CFC-12 = dichlorodifluoromethane (Freon-12).
- 4. MTCA Method B groundwater cleanup levels (CUL) obtained from Ecology's CLARC in August 2015.
- 5. **Bold i**ndicates compound detected above the PQL.

ILLUSTRATIONS

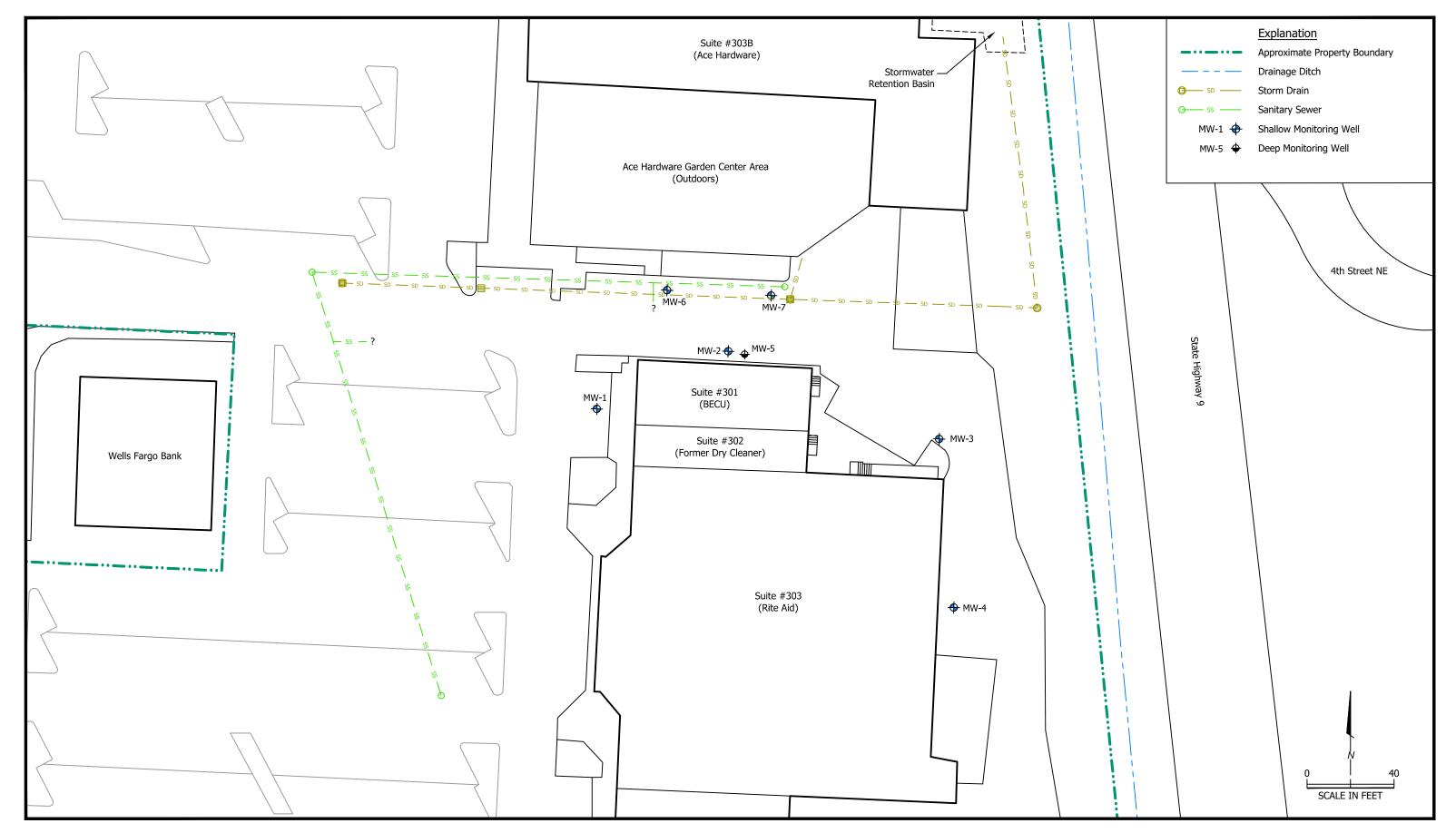


Site Location

Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

PLATE

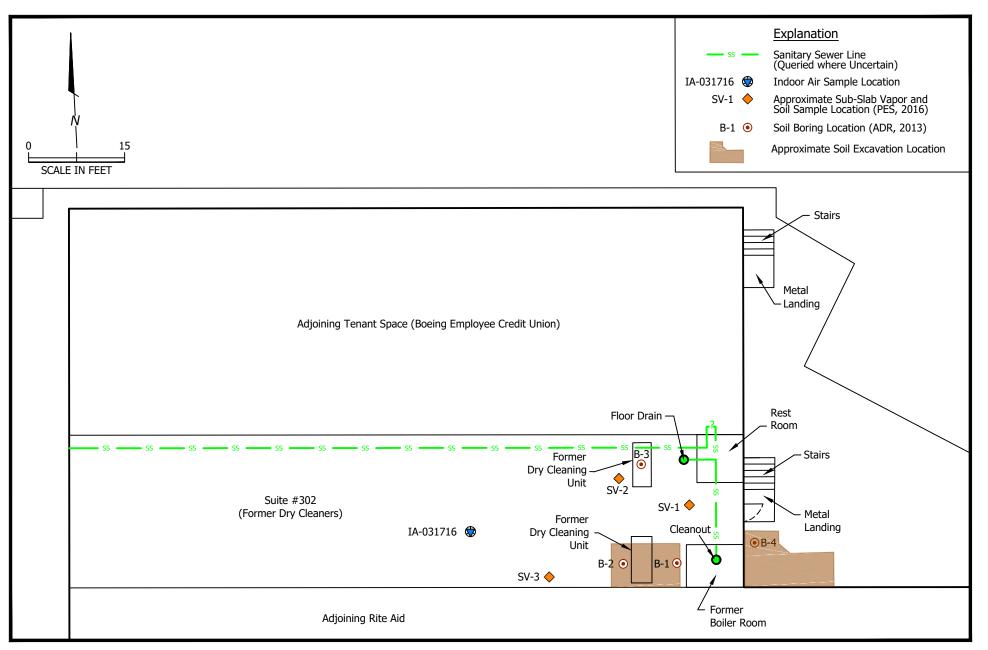
KLR 1246.038.03.002 124603803002_ESA_1 2/17 REVIEWED BY



Site Vicinity MapLake Stevens Marketplace Shopping Center

Lake Stevens, Washington

PLATE


Site Plan Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

1246.038.03.002 124603803002_ESA_3 JOB NUMBER

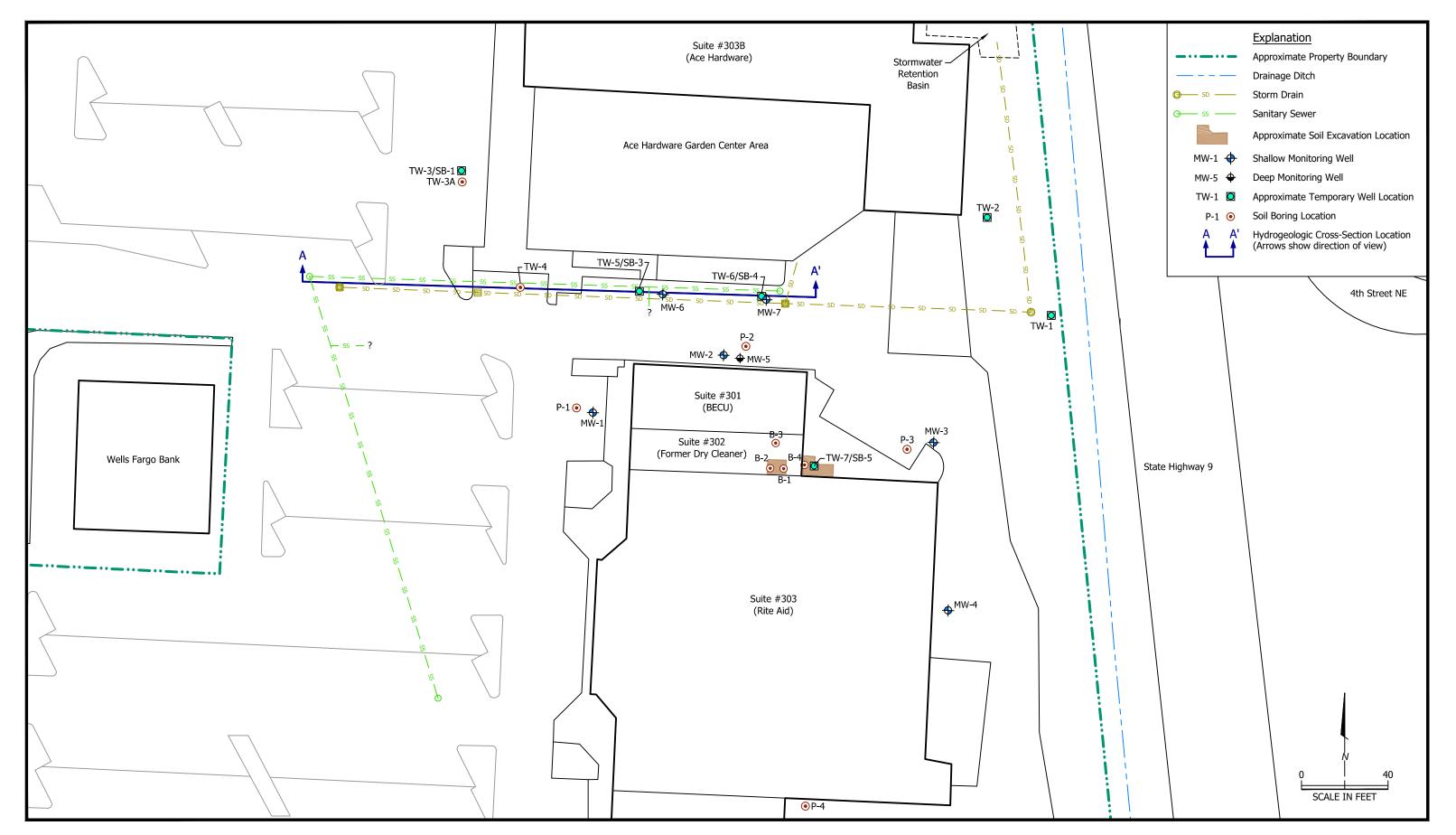
DRAWING NUMBER

KLR REVIEWED BY

2/17

Former Dry Cleaners Interior Details

Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

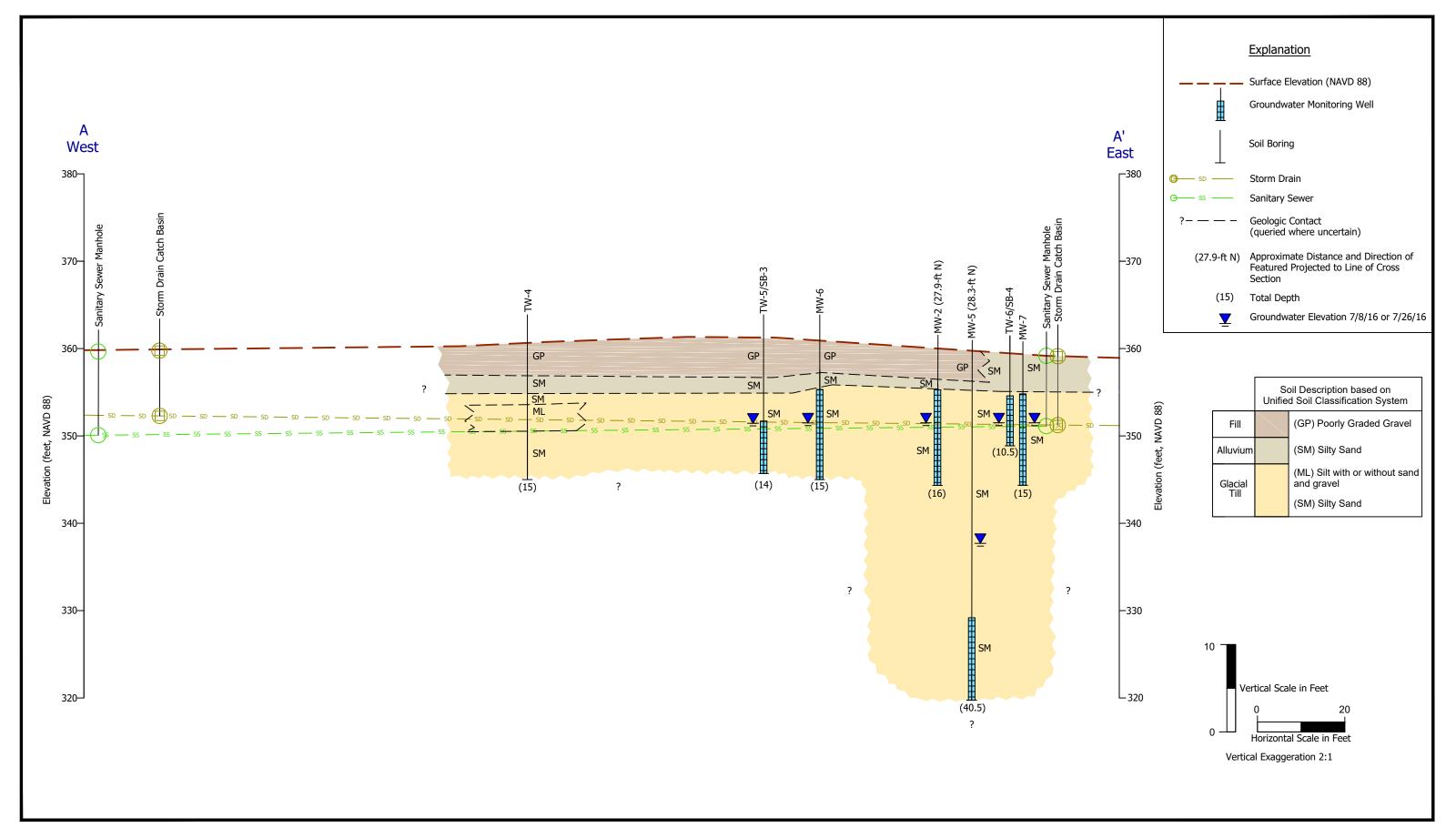

PLATE

1246.038.03.002 124603803002_ESA_4

JOB NUMBER

DRAWING NUMBER

KLR REVIEWED BY


Boring and Well Location Map Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

PLATE

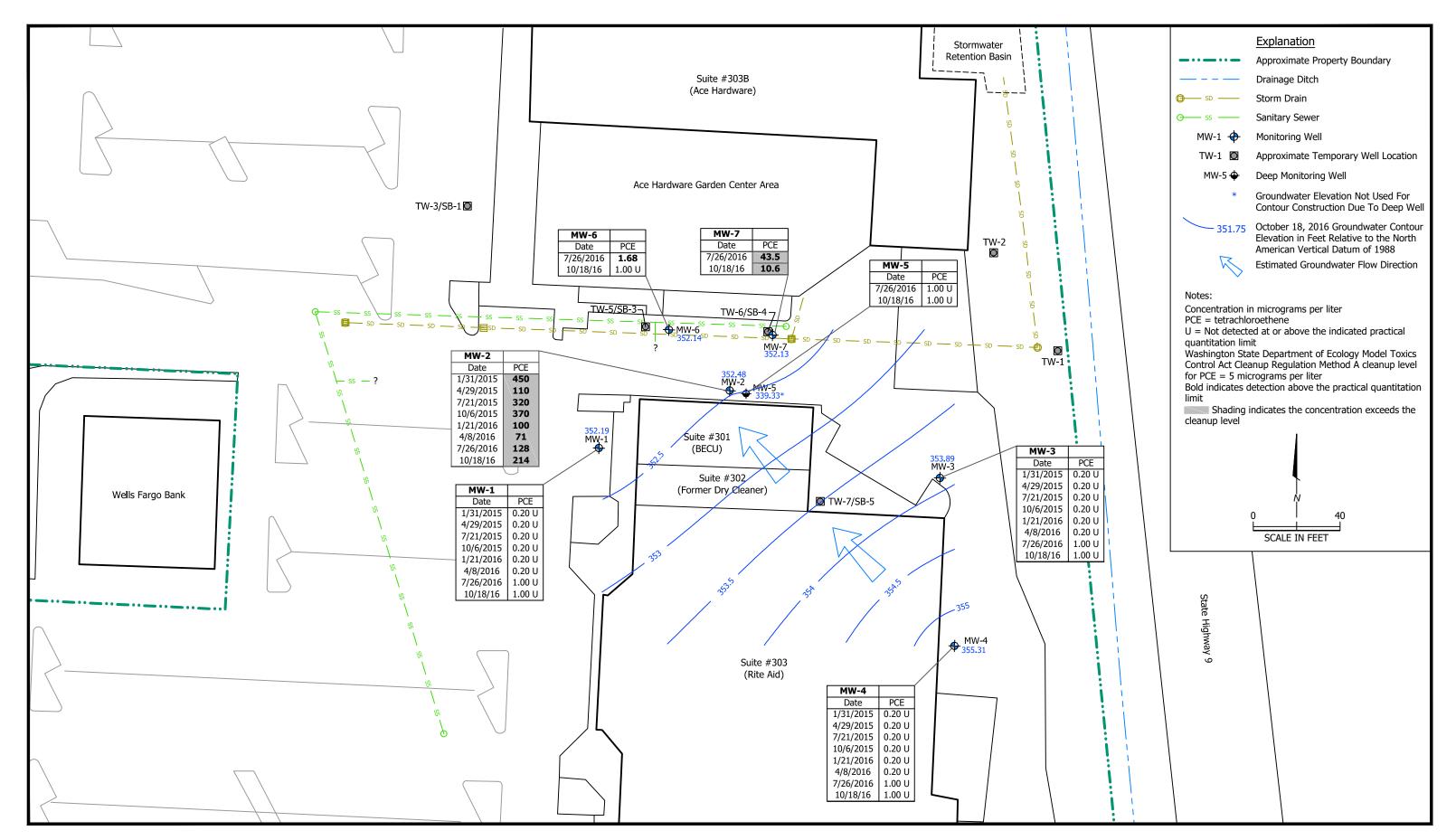
1246.038.03.002 JOB NUMBER

KLR

REVIEWED BY

Cross Section A-A' Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

PLATE 6


1246.038.03.002

JOB NUMBER

124603803002_ESA_6

DRAWING NUMBER

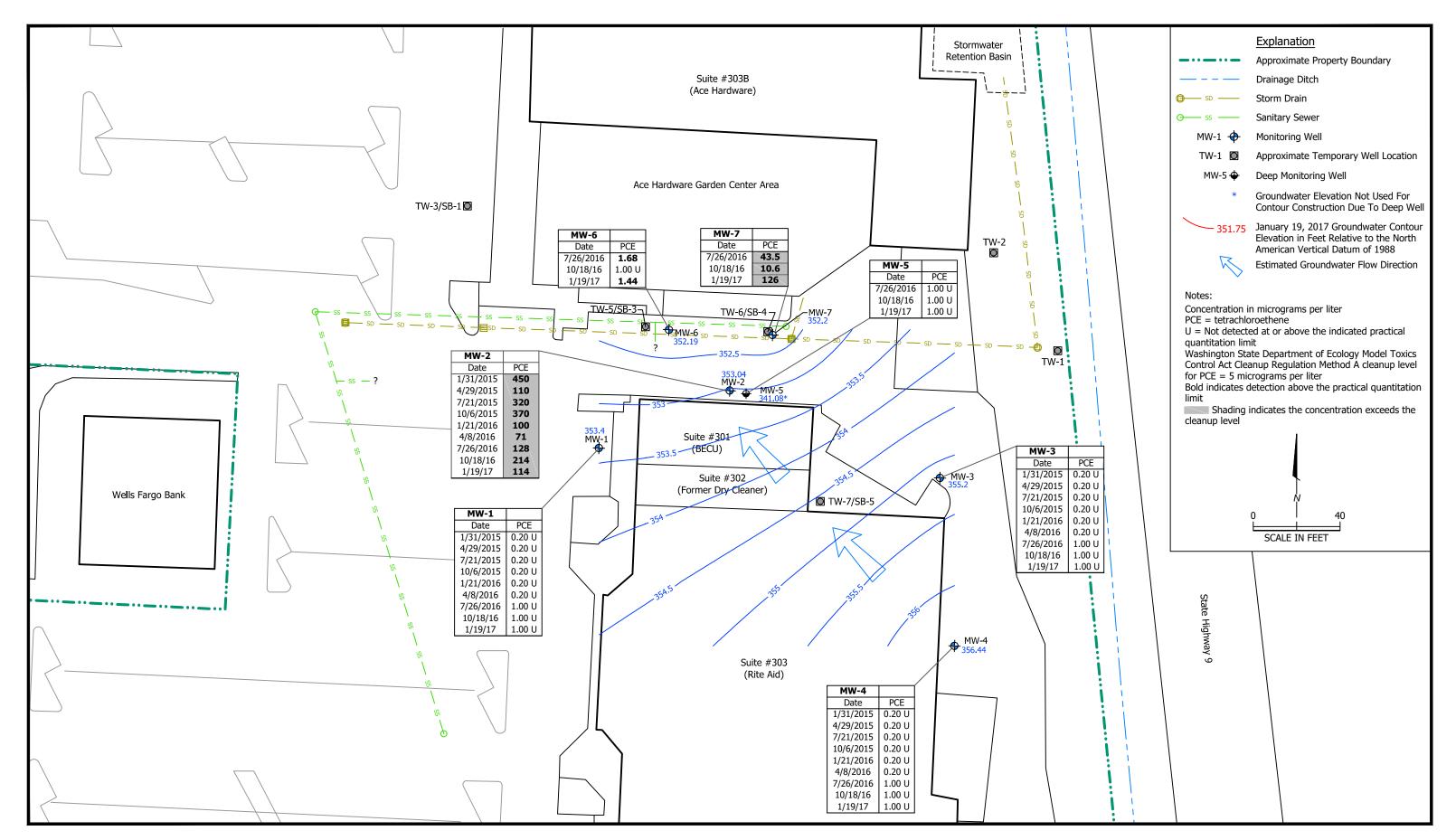
KLR REVIEWED BY

PCE Concentrations and Groundwater Contour Map - October 2016Lake Stevens Marketplace Shopping Center

Lake Stevens, Washington

7

1246.038.03.002

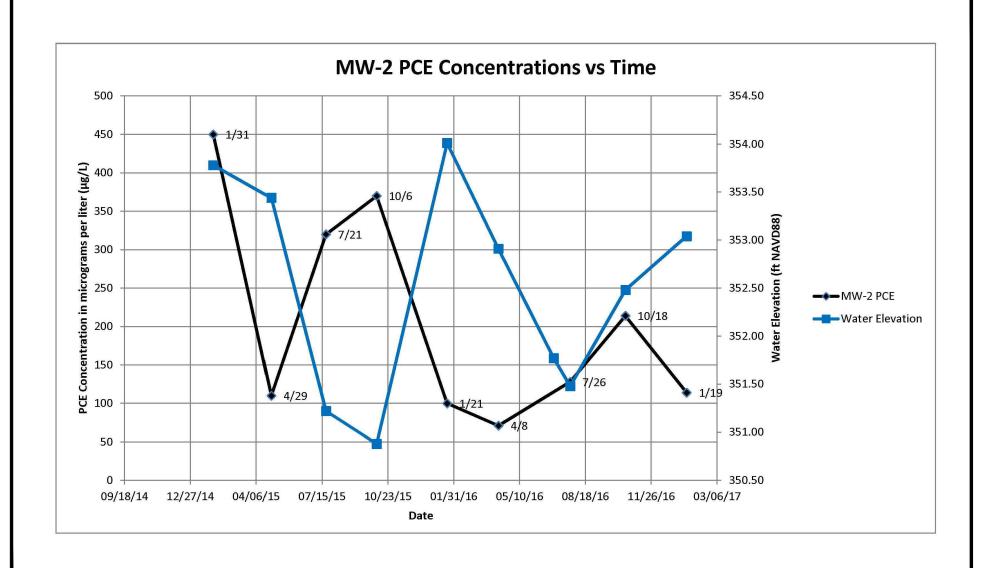

JOB NUMBER

124603803002_ESA_7

DRAWING NUMBER

KLR REVIEWED BY

2/17



PCE Concentrations and Groundwater Contour Map - January 2017

Lake Stevens Marketplace Shopping Center Lake Stevens, Washington 8

1246.038.03.002 124603803002 JOB NUMBER DRAWING NUM

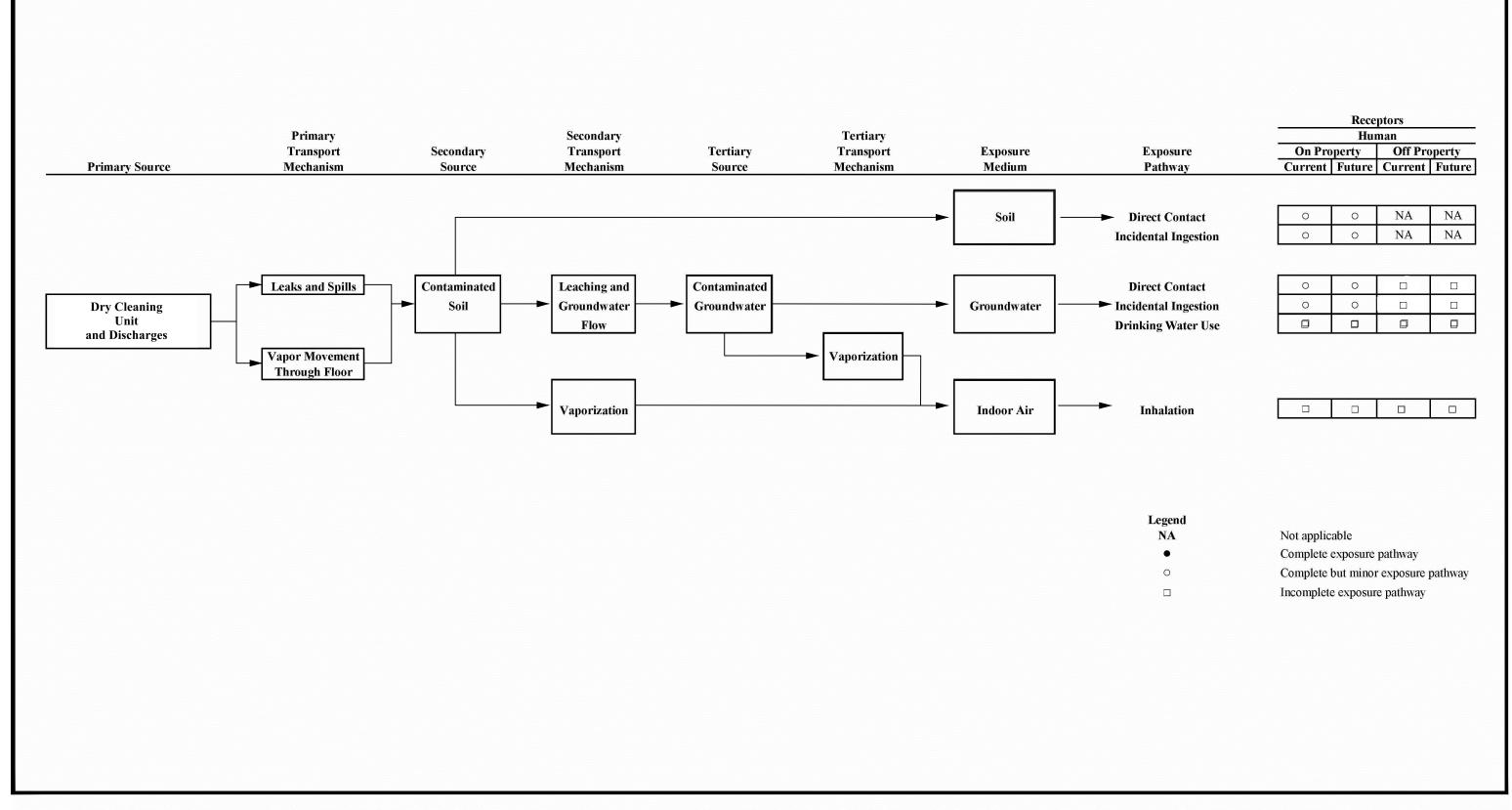
124603803002_ESA_8 KLR
DRAWING NUMBER REVIEWED BY

MW-2 PCE Concentrations vs Time

Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

PLATE

1246.038.03.002 12460


JOB NUMBER

124603803002_ESA_9-10

DRAWING NUMBER

KLR

2/17

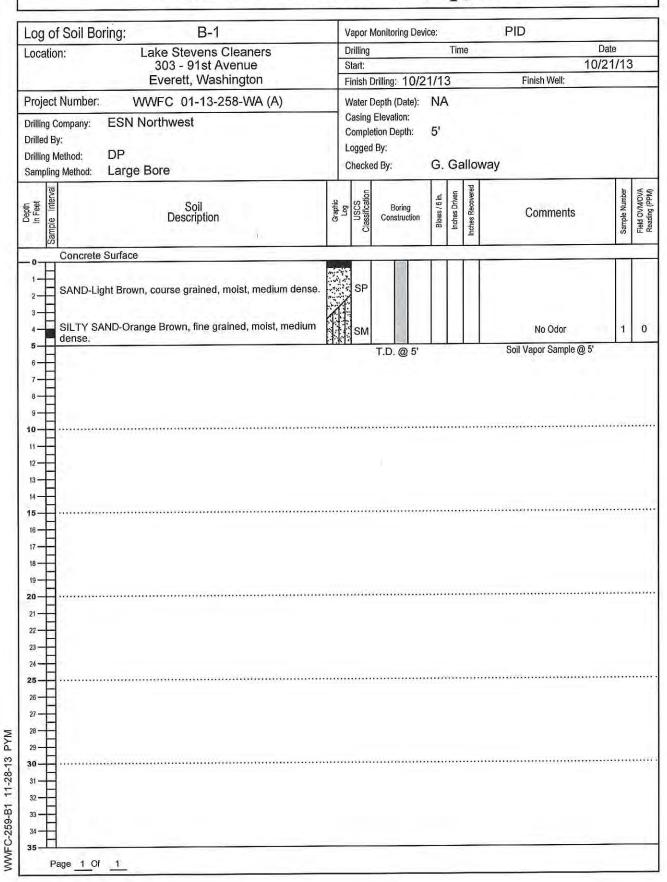
Conceptual Site Model Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

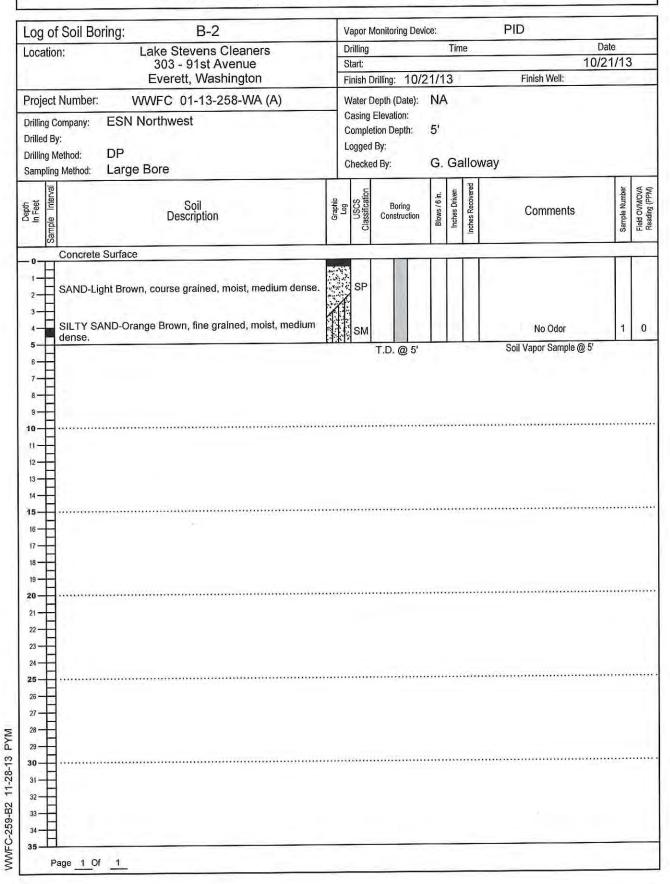
PLATE

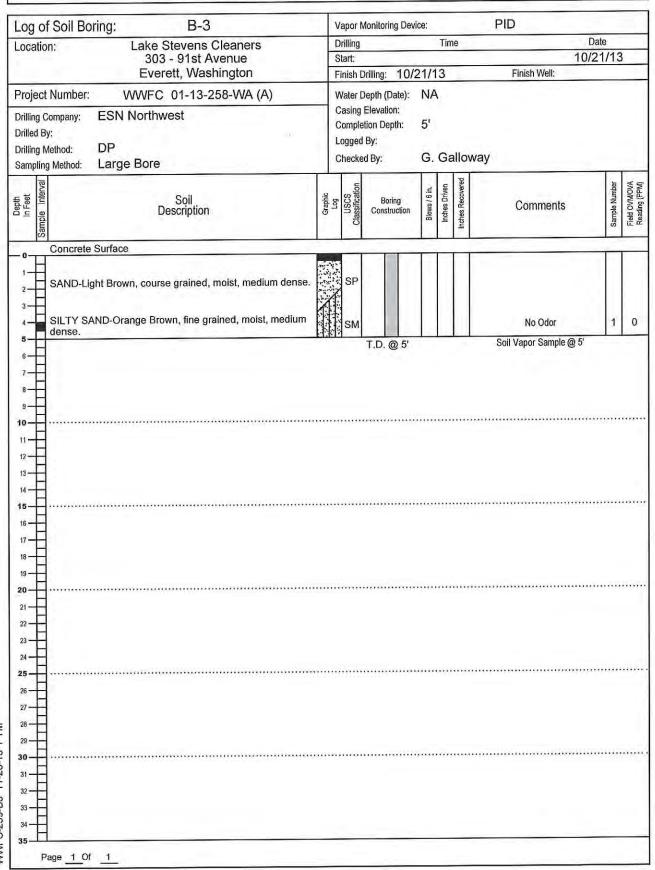
1246.038.03.002

JOB NUMBER

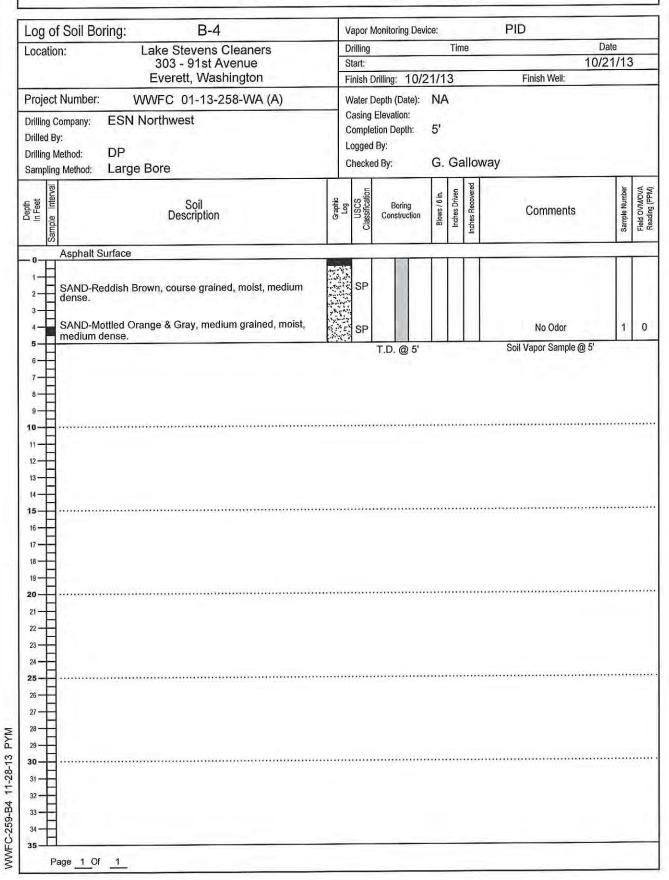
124603803002_ESA_9-10 DRAWING NUMBER


REVIEWED BY


KLR


PES Environmental, Inc.

APPENDIX A


Boring Logs

WWFC-259-B3 11-28-13 PYM

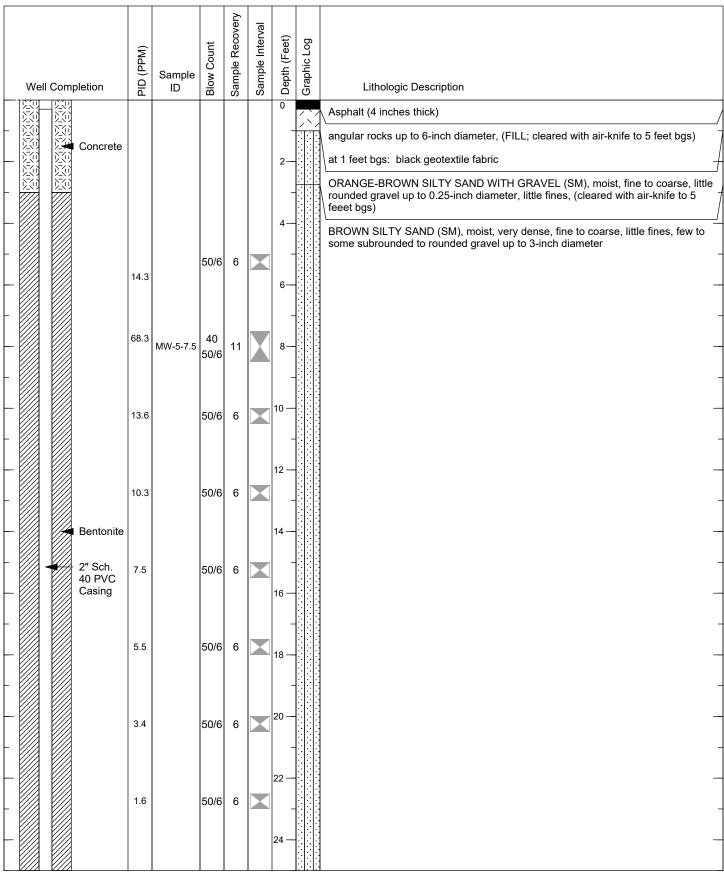
Project No34040 SOIL BORING LOG Sheet1of4										
Project Name Lake Stevens Cleaners Boring No. P-1 Date & Time Started 10/27/2014 Project Location 303 91st Ave NE, Lake Stevens Boring Location See Figure 1-1 Drilling Contractor Cascade Drilling Co. Drilling Method GeoProbe Total Depth 20' Client Powers & Therrien Sample Retrieval Method Liner Diameter, Wt., Drop Site Manager Gary Galloway Logged By Gary Galloway Max Depth 20' Closure Method Bentonite Water Depth 7' Date & Time Completed 10/27/2014										
DESCRIPTION DESCRIPTION Asphalt 0 to 0.25 feet bgs 0.25' to 0.75' - Brown, fine to course grained sand, damp, medium dense (md), no odors or stains 0.75' to 2' - Light gray,, course grained sand, damp, dense pieces of broken concrete, no odors, etc. 2' to 5' - Brown, medium to course grained sand, damp, dense	<u></u>									
pieces of broken concrete, no odors, etc. 0.0 5' to 7' - Till - Grayish tan, silty to fine grained sand, damp, dense 7' to 7.5' - Grayish tan with black, well-rounded gravel & pebbles (10%), wet 7.5' to 17' - Tan, fine grained silty sand, dense, damp, no odors, etc. 10 17' to 20' - Gray, fine grained sand, wet, dense, no odors or stains	<u>s</u> etc.									
0.0 Collect soil and water samples from 18', PID = 0.0 NOTE: Water appears to be seeping into hole from approx. 7' bgs										
Signature Many Mellany Date October 27, 2014										

Proje	ct No.	340	40			_	SOIL BORING LOG Sheet 2 of 4			
Project Name Lake Stevens Cleaners Boring No. P-2 Date & Time Started 10/27/2014 Project Location 303 91st Ave NE, Lake Stevens Boring Location See Figure 1-1 Drilling Contractor Cascade Drilling Co. Drilling Method GeoProbe Total Depth 20' Client Powers & Therrien Sample Retrieval Method Liner Diameter, Wt., Drop Site Manager Gary Galloway Logged By Gary Galloway Max Depth 20' Closure Method Bentonite Water Depth 8' Date & Time Completed 10/27/2014										
Depth (feet)	Sample No.	Blows per 6"	PID/OVA(ppm)	Sheen	Odor	Discolored	DESCRIPTION Asphalt 0 to 0.25 feet bgs			
							0.25' to 1' - Brown, crushed rock (base), damp, dense			
			0.0				1' to 3.5' - Dark brown, fine to med. grained sand, damp, md			
							3.5' to 5' - Dark brown, fine to med. grained sand, damp, dense			
							pieces of broken concrete, no odors, etc.			
5							5' to 7.5'- Till - Dark brown, medium to course grained sand,			
			0.0				damp, no odors, etc.			
			0.0				7.5' to 8.2' - Till - Grayish brown, fine grained sand, moist to wet,			
			0.0				dense Grayish tan with black, well-rounded gravel & pebbles 8.2' to 17' - Gray, fine grained silty sand, very dense, (10%), damp			
			0.0				0.2 to 17 Gray, the granted sitty stated, very defise, (1076), dainip			
10										
			0.0							
							Collect soil and water samples from 20', PID = 0.0			
							NOTE: Water appears to be seeping into hole from approx.			
15			0.0				8' bgs			
			0.0							
20										
C.		12	any.	1	L	len	Data October 27, 2014			

Project No. 34040 SOIL BORING LOG Sheet 3 of 4									
Project Name Lake Stevens Cleaners Boring No. P-3 Date & Time Started 10/27/2014 Project Location 303 91st Ave NE, Lake Stevens Boring Location See Figure 1-1 Drilling Contractor Cascade Drilling Co. Drilling Method GeoProbe Total Depth 10' Client Powers & Therrien Sample Retrieval Method Liner Diameter, Wt., Drop Site Manager Gary Galloway Logged By Gary Galloway Max Depth 10' Closure Method Bentonite Water Depth 4.5' Date & Time Completed 10/27/2014									
Depth (feet)	Sample No.	Blows per 6"	PID/OVA(ppm)	Sheen	Odor	Discolored	DESCRIPTION Asphalt 0 to 0.25 feet bgs		
			0.0				0.25' to 1' - Dark brown, top soil damp, medium dense (md)		
			0.0				1' to 4' - Tan, fine grained silty sand, moist at bottom, md, no odors or stains		
			5.6				4' to 5' - Dark brown, fine to med. grained sand, damp, dense.		
5							5' to 10'- Till - Tan to light brown, fine grained silty sand, water at		
							4.5' bgs,, no odors, etc.		
			1.2						
			0.0						
			0.0						
10			0.0						
							Collect soil and water samples from 4', PID = 0.0		
15									
20									
Sian	ature	12	any.	10	C	len	Date October 27, 2014		

Proje	ct No.	340	40			_ 9	SOIL BORING LOG Sheet 4 of 4		
Project Name Lake Stevens Cleaners Boring No. P-4 Date & Time Started 10/27/2014 Project Location 303 91st Ave NE, Lake Stevens Boring Location See Figure 1-1 Drilling Contractor Cascade Drilling Co. Drilling Method GeoProbe Total Depth 12' Client Powers & Therrien Sample Retrieval Method Liner Diameter, Wt., Drop Site Manager Gary Galloway Logged By Gary Galloway Max Depth 12' Closure Method Bentonite Water Depth no water Date & Time Completed 10/27/2014									
Depth (feet)	Sample No.	Blows per 6"	PID/OVA(ppm)	Sheen	Odor	Discolored	DESCRIPTION Asphalt 0 to 0.25 feet bgs		
							0.25' to 1.25' - Grayish brown, crushed rock (base), dense, damp		
			0.0				1.25' to 4' - Greenish gray, fine to course grained sand, damp, no		
							odors or stains		
_			0.0				4' to 5' - Dark brown, fine to med. grained sand (top soil), damp,		
5			0.0				medium dense to dense		
			0.0				5' to 7.5'- Till - Tan to light brown, fine grained silty sand, damp very dense, no odors or stains		
			0.0				7.5' to 12' - Tan, fine grained silty sand, damp, very dense, no		
							odors or stains, minor water seeping from approximately 7'		
							below the ground surface (not enough water to sample)		
10			0.0						
							Collect soil and water samples from 7', PID = 0.0		
15									
20									
Sion		12	any.	16	L	len	Date October 27, 2014		

Proje	ect No.	350	03				SOIL BORING LOG Sheet 1 of 4		
Proje Drill Clier Site I	Project Name Lake Stevens Cleaners Boring No. MW-1 Date & Time Started 1/21/2015 Project Location 303 91st Ave NE, Lake Stevens Boring Location See Figure 3-1 Drilling Contractor Cascade Drilling Co. Drilling Method Hollow Stem Au Total Depth 15' Client Lake Stevens Marketplace Sample Retrieval Method Spl Spoon Diameter, Wt., Drop Site Manager Gary Galloway Logged By Gary Galloway Max Depth 15' Closure Method GW Wells Water Depth 7' Date & Time Completed January 21, 2015								
Depth (feet)	Sample No.	Blows per 6"	PID/OVA(ppm)	Sheen	Odor	Discolored	DESCRIPTION Asphalt 0 to 0.25 feet bgs		
							0.25' to 0.75' - Brown, fine to course grained sand, damp, medium		
ļ	ļ			_			dense (md), no odors or stains		
				-	-		0.75' to 2' - Light gray,, course grained sand, damp, dense		
		}	-	ļ	 -		pieces of broken concrete, no odors, etc.		
5		-	 	-			2' to 5' - Brown, medium to course grained sand, damp, dense		
		-	 				pieces of broken concrete, no odors, etc.		
		 	0,0				5' to 7' - Till - Grayish tan, silty to fine grained sand, damp, dense		
			 	-			7' to 7.5' - Grayish tan with black, well-rounded gravel & pebbles		
-			-		ļ		(10%), wet		
<u> </u>	ļ	-	<u> </u>	-	ļ		7.5' to 15' - Tan, fine grained silty sand, dense, damp, no odors, etc.		
10				-					
			 	┼	ļ				
		<u> </u>	0.0	+-					
			 	+	-		Collect soil sample at 8'		
1=		 	100	\vdash	\vdash		NOTE: Water appears to be seeping into hole from approx. 7'		
15			0.0	+-	 				
	ļ			 	-	 			
			0.0	1-		 			
			0.0	1					
20		<u> </u>							
Sign	ature _	12	<u>~</u>) [[. 6	e e e e	Date <u>January 21, 2015</u>		


Project N	o. <u>350</u>	003			{	SOIL BORING LOG Sheet 2 of 4
Project L Drilling (Client <u>L</u> Site Man	ocation (Contract ake Steve ager <u>C</u>	303 91s or <u>Ca</u> ens Ma Gary Ga	t Av scad rket allov	e NI le D plac vay	E, Lak rilling e_Sa	Boring NoMW-2Date & Time Started1/21/2015 See Stevens
Depth (feet) Sample No.	Blows per 6"	PID/OVA(ppm)	Sheen	Odor	Discolored	DESCRIPTION
			ļ	<u> </u>	ļ	Asphalt 0 to 0.25 feet bgs
		-	_	<u> </u>		0.25' to 0.75' - Brown, fine to course grained sand, damp, medium
			_	_		dense (md), no odors or stains
			_	_		0.75' to 2' - Light gray,, course grained sand, damp, dense
		1	_	_	<u> </u>	pieces of broken concrete, no odors, etc.
5	_		-	-	-	2' to 5' - Brown, medium to course grained sand, damp, dense
		 	_	<u> </u>	1	pieces of broken concrete, no odors, etc.
	<u> </u>	0.0	-			5' to 7' - Till - Grayish tan, silty to fine grained sand, damp, dense
	-	ļ	<u> </u>	<u> </u>	<u> </u>	7' to 7.5' - Grayish tan with black, well-rounded gravel & pebbles
		<u> </u>	-		1	(10%), wet
\Box		-	ļ	 		7.5' to 15' - Tan, fine grained silty sand, dense, damp, no odors, etc.
10		1	_	-		
		 	1	 	_	
		0.0	-		-	
		-	+			Collect soil sample at 8'
		-	+	\vdash	-	NOTE: Water appears to be seeping into hole from approx. 6.5'
15		0.0	-	 	-	
		+	+	-	-	
		1	+	-	 	
 		+			 	
		-	-	-	-	
20				<u> </u>	1	
Signatur	~ /J	and.	/~	-, 6	Carrie	Date January 21 2015

Project	t No.	340	40			{	SOIL BORING LOG Sheet 3 of 4			
Project Drillin Client Site Ma	Project Name Lake Stevens Cleaners Boring No. MW-3 Date & Time Started 1/27/2015 Project Location 303 91st Ave NE, Lake Stevens Boring Location See Figure 3-1 Drilling Contractor Cascade Drilling Co. Drilling Method HSA Total Depth 13' Client LS Marketplace LLC Sample Retrieval Method Split spoon Diameter, Wt., Drop Site Manager Gary Galloway Logged By Gary Galloway Max Depth 13' Closure Method Bentonite Water Depth 3' Date & Time Completed 1/27/2015									
Depth (feet)	Sample No.	Blows per 6"	PID/OVA(ppm)	Sheen	Odor	Discolored	DESCRIPTION Asphalt 0 to 0.25 feet bgs			
							0.25' to 1' - Dark brown, top soil damp, medium dense (md)			
			0.0				1' to 4' - Tan, fine grained silty sand, moist at bottom, md, no			
	-			\vdash	-	-	odors or stains			
			5.6	\vdash			4' to 5' - Dark brown, fine to med. grained sand, damp, dense.			
5			<u> </u>	╁┈		-	5' to 10'- Till - Tan to light brown, fine grained silty sand, water at			
			1.0	-			4.5' bgs,, no odors, etc.			
- +-			1.2	\vdash	-	<u> </u>				
			0.0	 						
			0.0		<u> </u>					
10			0.0							
				1						
			ļ. <u></u>	<u> </u>	ļ		Collect soil 8', PID = 0.0			
				-		-				
15			-	-	-					
			-							
			+		-					
			1							
20				_	-					
Signat	hira	12	<u> </u>		I	<u> </u>	Date January 27, 2015			

Projec	t No.	340	40				SOIL BORING LOG Sheet 4 of 4
Project Drillin Client Site M	et Loca ng Coi t <u>Pow</u> Ianage	ntion <u>3</u> ntracto vers & er <u>G</u>	03 91st or <u>Ca</u> Therri ary Ga	scad en llow	e NI le Di vay	E, Lak rilling Sar	Boring NoMW-4Date & Time Started1/27/2014
Depth (feet)	Sample No.	Blows per 6"	PID/OVA(ppm)	Sheen	Odor	Discolored	DESCRIPTION Asphalt 0 to 0.25 feet bgs
							0.25' to 1.25' - Grayish brown, crushed rock (base), dense, damp
			0.0		-		1.25' to 4' - Greenish gray, fine to course grained sand, damp, no
	<u></u>			-		:	odors or stains
			0.0	1	-		4' to 5' - Dark brown, fine to med. grained sand (top soil), damp,
5		<u> </u>		+		 	medium dense to dense
-			0.0				5' to 7.5'- Till - Tan to light brown, fine grained silty sand, damp very dense, no odors or stains
-			0.0	 		 	7.5' to 12' - Tan, fine grained silty sand, damp, very dense, no
		 	0.0			-	odors or stains, minor water seeping from approximately 7'
							below the ground surface (not enough water to sample)
10			0.0	1 -			
		<u> </u>		↓		ļ	Collect soil sample from 8', PID = 0.0
		<u> </u>	<u> </u>	╽		-	
15	ļ	1	-	ļ		<u> </u>	
		 -	-	-	 	-	
		-	-	-	 	-	
-			-		 	 	
			 		+	-	
20		┼		+-	+	╁	
L	ļ		<u> </u>			<u> </u>	Date January 27, 2015

Project: Lake Stevens Phase II Project Number: 1246.038.03.001 Site Location: Lake Stevens, WA

Logged By: Chris DeBoer

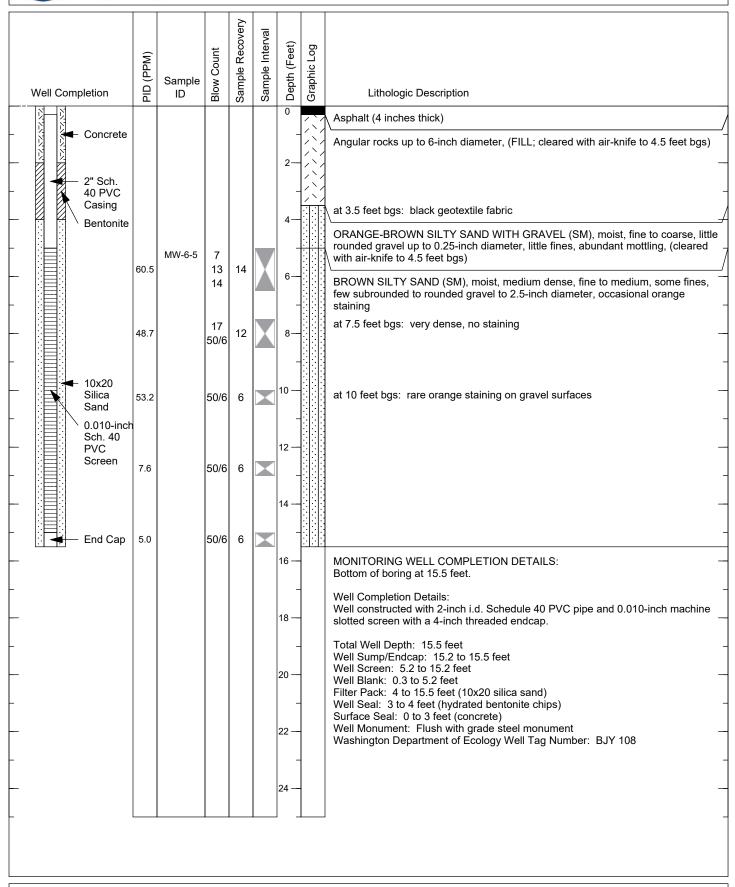
Notes:

Total Drilled Depth: 40.5 feet
Diameter of Boring: 14 and 8 inches

Drill Date: 7/20/16

Drilled By: Cascade Drilling, L.P. Drill Method: Hollow Stem Auger

				very	val			
Well Completion	PID (PPM)	Sample ID	Blow Count	Sample Recovery	Sample Interval	Depth (Feet)	D Lithologic Description	
	2.1		50/6				199	
- Bentonite	15.8		50/6	5	×	26 — - 28 —	GRAY SILTY SAND (SM), moist, fine to medium, some fines, few to little subangular to subrounded gravel up to 3-inch diameter	-
- 2 2 - : : : : : : : : : : : : : : : : : : :	3.2		50/6	6	×	30 —		_
-	2.6		50/6	6		32 —	at 32 feet bgs: higher moisture content	-
10x20 Silica Sand 0.010-inc Sch. 40 PVC	1.3		50/6	6		36 —	at 35 feet bgs: wet, little fines	_
Screen	2.3		50/6	6		38 —	at 37.5 feet bgs: moist	_
End Cap	1.6		50/6	6		40 —	MONITORING WELL COMPLETION DETAILS:	
_						42 —	Bottom of boring at 40.5 feet. Well Completion Details: Well constructed with 2-inch i.d. Schedule 40 PVC pipe and 0.010-inch machinal slotted screen with a 4-inch threaded endcap.	 ne -
-						44 —	Total Well Depth: 40.5 feet Well Sump/Endcap: 40.2 to 40.5 feet Well Screen: 30.2 to 40.2 feet Well Blank: 0.3 to 30.2 feet (10x20 silica sand) Well Scal: 3 to 30 feet (hydrotod bentonite chips)	-
-						46 —	Well Seal: 3 to 29 feet (hydrated bentonite chips) Surface Seal: 0 to 3 feet (concrete) Well Monument: Flush with grade steel monument Washington Department of Ecology Well Tag Number: BJY 107 Note: 10 inch i.d. auger drilled to 25 feet, and 4 inch i.d. auger advanced to	-
_						48 —	bottom of boring	-
						50		
Project: Lake Stave							Total Drillad Donth: 40 F foot	


Project: Lake Stevens Phase II Project Number: 1246.038.03.001 Site Location: Lake Stevens, WA Logged By: Chris DeBoer

Notes:

Total Drilled Depth: 40.5 feet Diameter of Boring: 14 and 8 inches

Drill Date: 7/20/16
Drilled By: Cascade Drilling, L.P.
Drill Method: Hollow Stem Auger

1 of 1

Project: Lake Stevens Phase II Project Number: 1246.038.03.001 Site Location: Lake Stevens, WA

Logged By: Chris DeBoer

Notes:

Total Drilled Depth: 15.5 feet Diameter of Boring: 9 inches

Drill Date: 7/21/16

Drilled By: Cascade Drilling, L.P.
Drill Method: Hollow Stem Auger

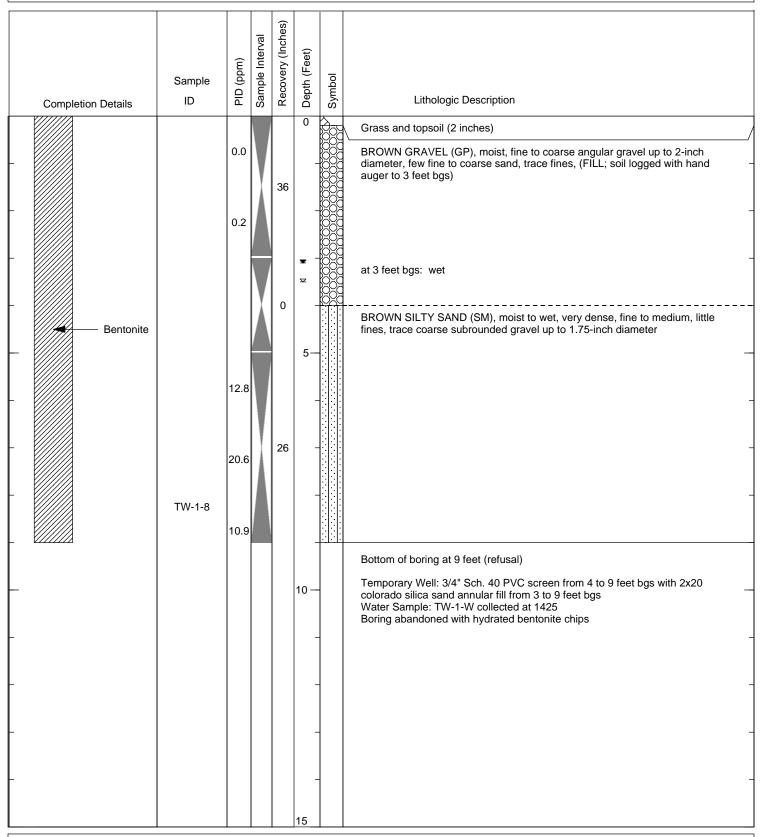
1 of 1

Sample Recovery Sample Interval Depth (Feet) Graphic Log **Blow Count** PID (PPM) Sample Well Completion Lithologic Description ID Asphalt (4 inches thick) Concrete ORANGE-BROWN SILTY SAND WITH GRAVEL (SM), moist, fine to coarse, little rounded gravel up to 0.25-inch diameter, little fines, abundant mottling, (cleared with air-knife to 5 feet bgs) 2" Sch. 40 PVC Casing Bentonite MW-7-5 13 BROWN SILTY SAND (SM), moist, dense, fine to medium, some fines, few up to 13 8.0 16 little subrounded to rounded gravel to 2-inch diameter 17 at 7.5 feet bgs: very dense, no staining, fine to coarse 30 0.2 12 50/6 10x20 Silica at 10 feet bgs: rare orange staining, rare rootlets 0.5 50/6 6 Sand 0.010-inch Sch. 40 PVC 12 Screen at 12.5 feet bgs: moist to wet, no rootlets 30 30 0.7 14 25 50/6 End Cap 0.5 6 16 MONITORING WELL COMPLETION DETAILS: Bottom of boring at 15.5 feet. Well Completion Details: Well constructed with 2-inch i.d. Schedule 40 PVC pipe and 0.010-inch machine 18 slotted screen with a 4-inch threaded endcap. Total Well Depth: 15.5 feet Well Sump/Endcap: 15.2 to 15.5 feet Well Screen: 5.2 to 15.2 feet 20 Well Blank: 0.3 to 5.2 feet Filter Pack: 4 to 15.5 feet (10x20 silica sand) Well Seal: 3 to 4 feet (hydrated bentonite chips) Surface Seal: 0 to 3 feet (concrete) Well Monument: Flush with grade steel monument 22 Washington Department of Ecology Well Tag Number: BJY 109 24

Project: Lake Stevens Phase II Project Number: 1246.038.03.001 Site Location: Lake Stevens, WA

Logged By: Chris DeBoer

Notes:


Total Drilled Depth: 15.5 feet Diameter of Boring: 9 inches

Drill Date: 7/21/16

Drilled By: Cascade Drilling, L.P.
Drill Method: Hollow Stem Auger

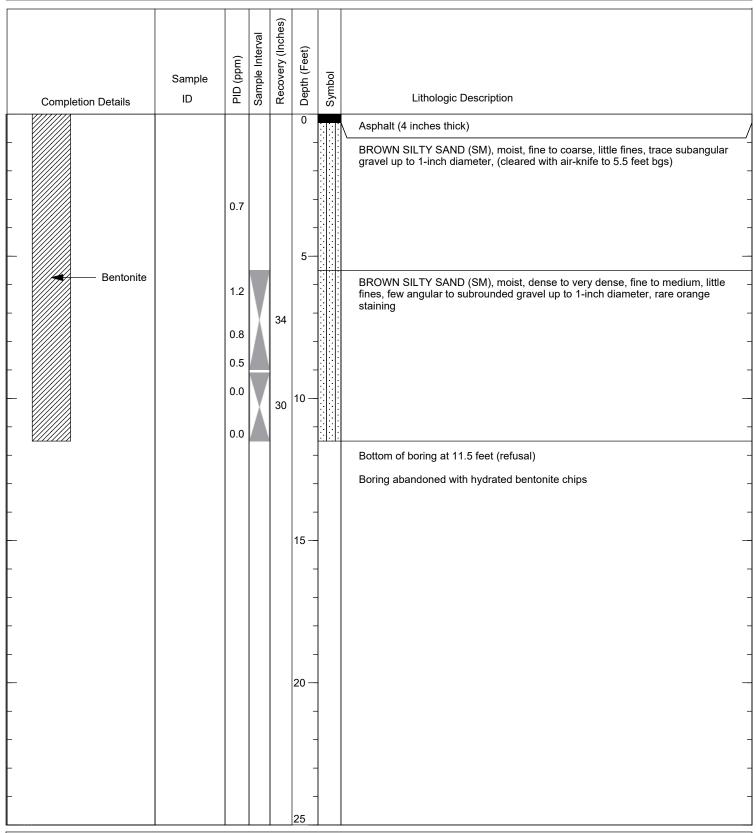
1 of 1

Project: Lake Stevens Due Dilligence

Project Number: 1246.038.02.001
Site Location: Lake Stevens, WA
Logged By: Chris DeBoer
Sample Method: Direct Push

Total Boring Depth: 9 feet
Diameter of Boring: 2.25 inches
Date Drilled: 3/17/16
Drilled By: ESN Northwest,
Drill Method: Direct Push

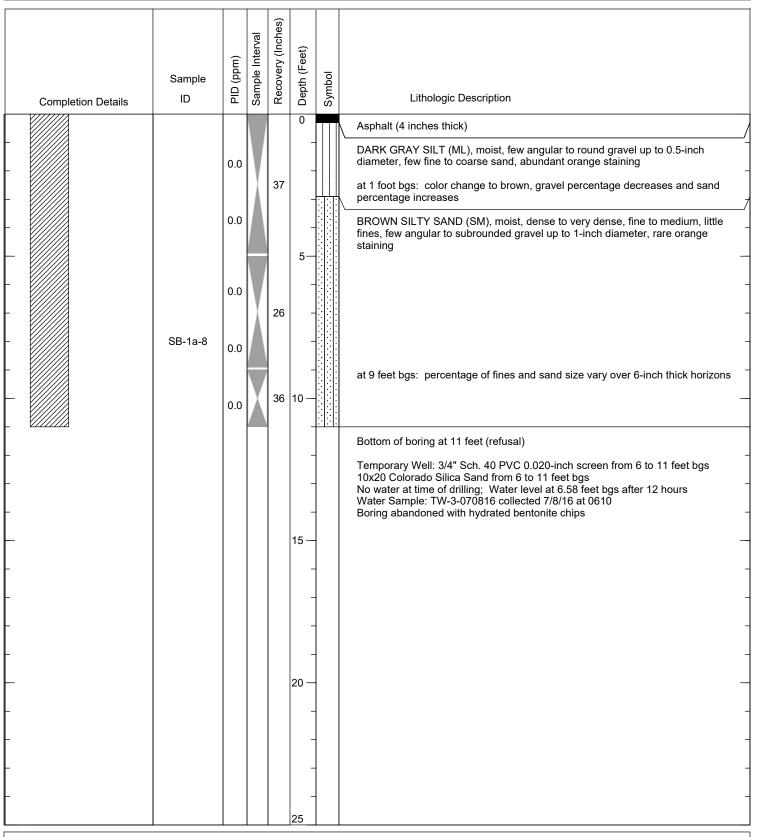
1 of 1


Project: Lake Stevens Due Dilligence

Project Number: 1246.038.02.001
Site Location: Lake Stevens, WA
Logged By: Chris DeBoer
Sample Method: Direct Push

Total Boring Depth: 6 feet
Diameter of Boring: 2.25 inches
Date Drilled: 3/17/16
Drilled By: ESN Northwest,
Drill Method: Direct Push

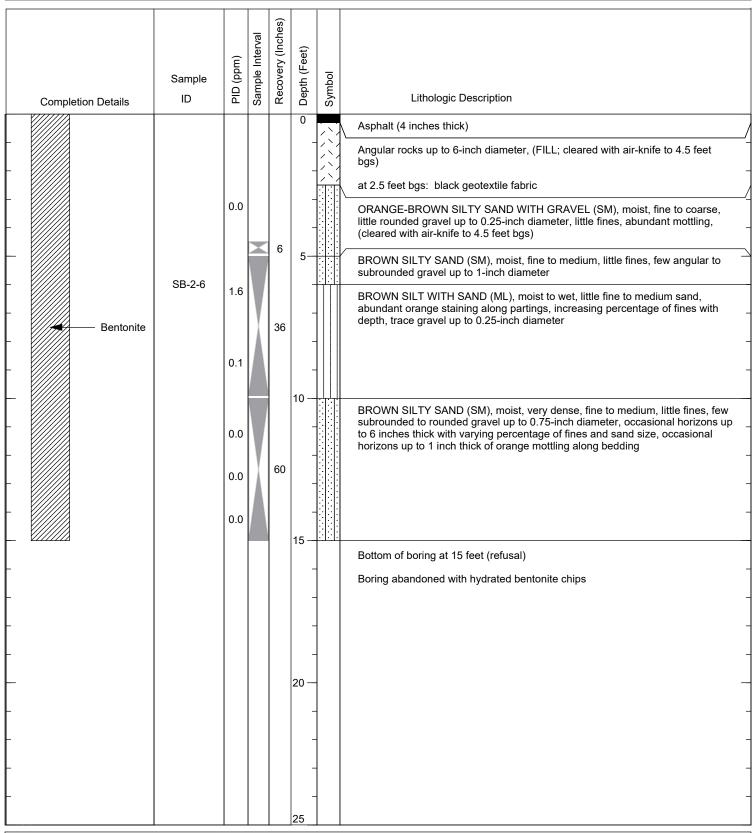
1 of 1


Project: Lake Stevens Phase II
Project Number: 1246.038.03.001
Site Location: Lake Stevens, WA
Logged By: Chris DeBoer
Sample Method: Direct Push

Total Boring Depth: 11.5 feet
Diameter of Boring: 2.25 inches
Date Drilled: 7/7/16

Drilled By: ESN Northwest, Inc.

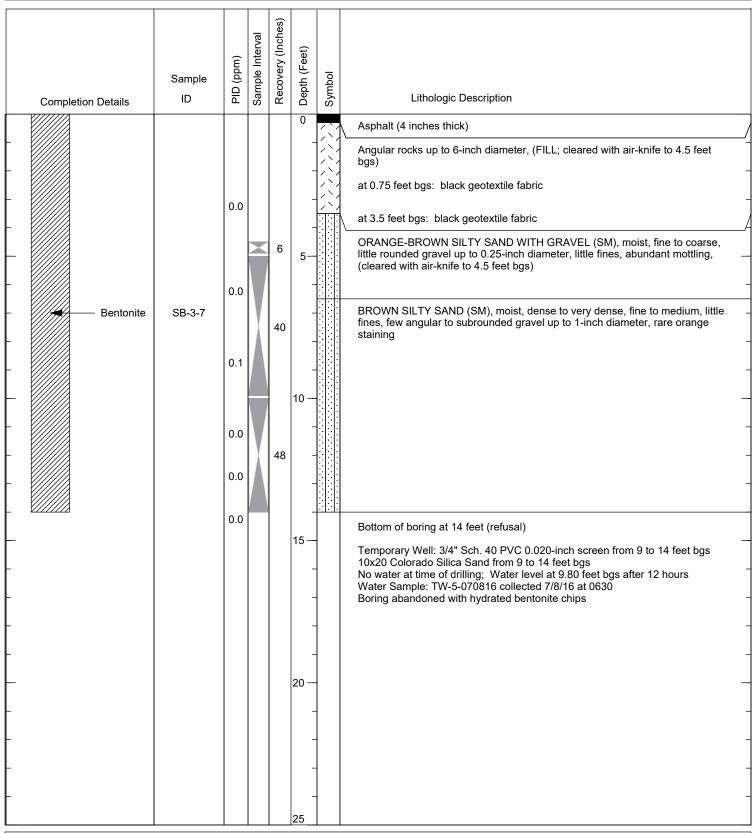
1 of 1


Project: Lake Stevens Phase II
Project Number: 1246.038.03.001
Site Location: Lake Stevens, WA
Logged By: Chris DeBoer
Sample Method: Direct Push

Total Boring Depth: 11 feet
Diameter of Boring: 2.25 inches
Date Drilled: 7/7/16

Drilled By: ESN Northwest, Inc.

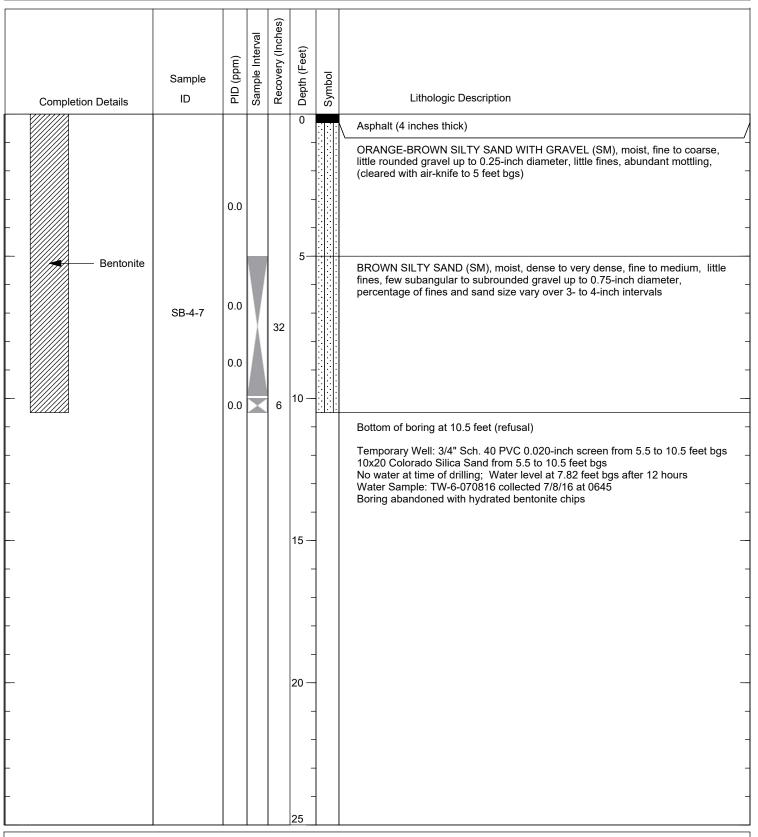
1 of 1



Project: Lake Stevens Phase II
Project Number: 1246.038.03.001
Site Location: Lake Stevens, WA
Logged By: Chris DeBoer
Sample Method: Direct Push

Total Boring Depth: 15 feet
Diameter of Boring: 2.25 inches
Date Drilled: 7/7/16
Drilled By: ESN Northwest, Inc.

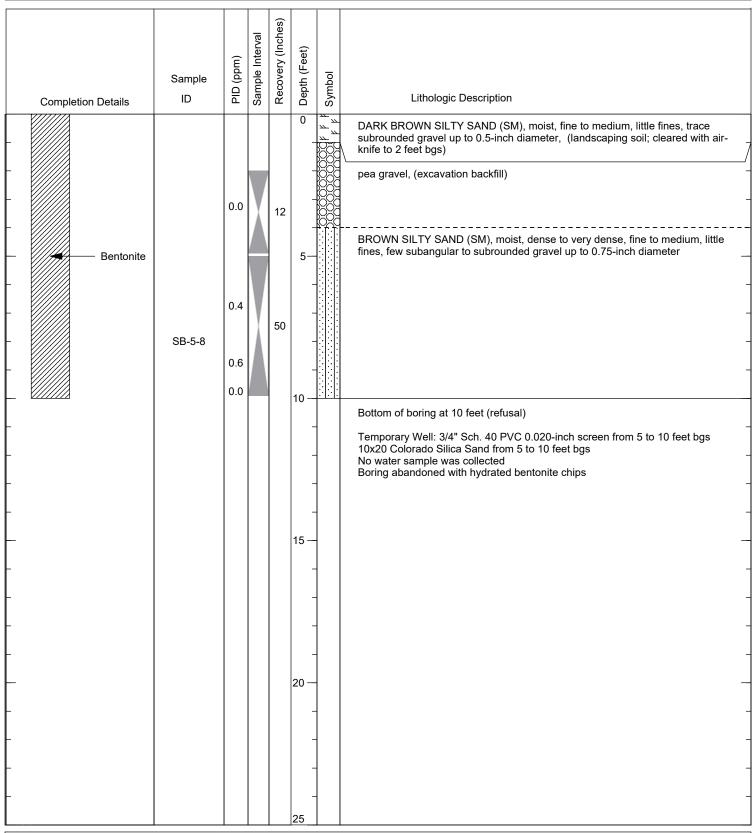
1 of 1


Project: Lake Stevens Phase II
Project Number: 1246.038.03.001
Site Location: Lake Stevens, WA
Logged By: Chris DeBoer
Sample Method: Direct Push

Total Boring Depth: 14 feet
Diameter of Boring: 2.25 inches
Date Drilled: 7/7/16
Drilled By: 58N Northwe

Drilled By: ESN Northwest, Inc.

1 of 1


Project: Lake Stevens Phase II
Project Number: 1246.038.03.001
Site Location: Lake Stevens, WA
Logged By: Chris DeBoer
Sample Method: Direct Push

Total Boring Depth: 10.5 feet
Diameter of Boring: 2.25 inches
Date Drilled: 7/7/16

Drilled By: ESN Northwest, Inc.

1 of 1

Project: Lake Stevens Phase II Project Number: 1246.038.03.001 Site Location: Lake Stevens, WA Logged By: Chris DeBoer Sample Method: Direct Push

Total Boring Depth: 10 feet Diameter of Boring: 2.25 inches Date Drilled: 7/7/16 Drilled By: ESN Northwest, Inc.

APPENDIX B

Previous Consultant Tables, Figures, and EDRs

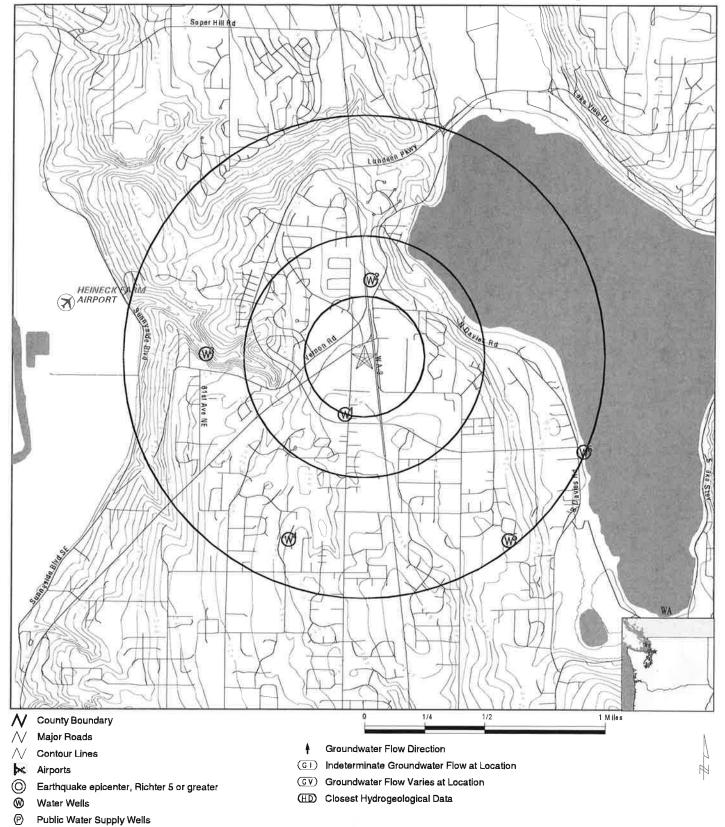


FIGURE 4-1 — POST EXCAVATION SOIL AND VAPOR SAMPLE MAP

Lake Stevens Cleaners Environmental Cleanup Report

Source: Google Maps 2013, GEI Project #35002

PHYSICAL SETTING SOURCE MAP - 4786492.2s

SITE NAME: Parcels 00493400300207 and 00493400300208

ADDRESS: 511 91st Avenue NE Lake Stevens WA 98258 LAT/LONG: 48.001896 / 122.10706

Cluster of Multiple Icons

CLIENT: PES Environmental CONTACT: Russell Stolsen

INQUIRY #: 4786492.2s DATE: November 21, 2016 1:48 pm

7.0 SUMMARY OF REMEDIAL ALTERNATIVES EVALUATION

A summary of the costs, advantages and disadvantages for each alternative is presented in Table 7-1. These costs are based on certain assumptions and are specific to the site and the remedial alternative

TA	BLE 7-1 SUMMARY C	OF REMEDIAL A	LTERNATIVES	
Re	medial Alternative	Estimated Total Costs	Advantages	Disadvantages
1)	No Action	Not applicable	-Low costs -No cleanup time required	-Long-term liability -Does not meet regulatory requirements
2)	Off-site disposal of source area soils	\$75,000 (includes long- term groundwater monitoring)	-May meet regulatory requirements, but does not treat the impacted groundwater	-Least-cost alternative - May not achieve cleanup levels in groundwater an acceptable time frame -Potential long-term liability at an additional site
3)	Off-site disposal of source area soils, bioremediation, and chemical oxidation	\$100,000 (includes groundwater monitoring)	-Meets regulatory requirements -Permanent reduction in toxicity -Reduced long-term liability	-Will achieve cleanup goals at the site in a limited amount of time
4)	Off-site disposal of source area soils, vapor extraction, air sparging, bioremediation, and chemical oxidation	\$200,000 (includes groundwater monitoring)	-Meets regulatory requirements -Permanent reduction in toxicity -Reduced long- term liability	-Will achieve cleanup goals at the site in a minimum of time Air sparging and vapor extraction may not be necessary at this site due to the limited volume of impacted media.

7.1 PROPOSED REMEDIAL ALTERNATIVE DISCUSSION

Based on our comparison of potential remedial options, we proposed to use Remedial Alternative Number 3 — Excavation of accessible impacted soils, insitu chemical

APPENDIX C

Laboratory Analytical Reports and Data Validation Memorandum

ANALYTICAL REPORT March 22, 2016

PES Environmental, Inc.- WA

Sample Delivery Group: L824454

Samples Received: 03/19/2016

Project Number:

Description:

Site: LAKE STEVENS

Report To: Chris DeBoer

1215 Fourth Ave., Suite 1350

Seattle, WA 98161

Entire Report Reviewed By: Jarred Willy

Jarred Willis

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	5
⁵ Sr: Sample Results	6
SV1-031816 L824454-01	6
SV2-031816 L824454-02	7
SV3-031816 L824454-03	8
TW-1-8 L824454-04	9
TW-2-6 L824454-05	11
SV1-1.5 L824454-06	13
SV2-1 L824454-07	15
SV3-1.5 L824454-08	17
TW-1-W L824454-09	19
TW-2-W L824454-10	21
TRIP BLANK L824454-11	23
IA-031716 L824454-12	25
OA-031716 L824454-13	26
⁶ Qc: Quality Control Summary	27
Total Solids by Method 2540 G-2011	27
Volatile Organic Compounds (MS) by Method TO-15	29
Volatile Organic Compounds (GC/MS) by Method 8260C	31
⁷ Gl: Glossary of Terms	46
⁸ Al: Accreditations & Locations	47

⁹Sc: Chain of Custody

SAMPLE SUMMARY

		NINT	\cap	$\backslash \backslash \backslash \backslash \square \square \square$
CINE	LAD.	IVAI	IUIV	WIDE

SV1-031816 L824454-01 Air			Collected by CJD	Collected date/time 03/18/16 09:37	Received date/time 03/19/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG857955	1	03/21/16 12:18	03/21/16 12:18	SNH
Volatile Organic Compounds (MS) by Method TO-15	WG857955	20	03/21/16 19:23	03/21/16 19:23	SNH
SV2-031816 L824454-02 Air			Collected by CJD	Collected date/time 03/18/16 09:50	Received date/time 03/19/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG857955	1	03/21/16 12:59	03/21/16 12:59	SNH
Volatile Organic Compounds (MS) by Method TO-15	WG857955	200	03/21/16 19:58	03/21/16 19:58	SNH
SV3-031816 L824454-03 Air			Collected by CJD	Collected date/time 03/18/16 10:10	Received date/time 03/19/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (MS) by Method TO-15	WG857955	1	03/21/16 13:40	03/21/16 13:40	SNH
Volatile Organic Compounds (MS) by Method TO-15	WG857955	400	03/21/16 20:35	03/21/16 20:35	SNH
TW-1-8 L824454-04 Solid			Collected by CJD	Collected date/time 03/17/16 12:10	Received date/time 03/19/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG858087	1	03/21/16 15:27	03/21/16 15:36	MEL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG858268	1	03/22/16 02:48	03/22/16 08:59	ACG
TW-2-6 L824454-05 Solid			Collected by CJD	Collected date/time 03/17/16 13:10	Received date/time 03/19/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG857989	1	03/21/16 11:42	03/21/16 11:50	MEL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG857902	1	03/21/16 13:21	03/22/16 00:29	JAH
			Collected by	Collected date/time	Received date/time
SV1-1.5 L824454-06 Solid			CJD	03/18/16 12:05	03/19/16 09:00

Method

Method

Total Solids by Method 2540 G-2011

SV2-1 L824454-07 Solid

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260C

Volatile Organic Compounds (GC/MS) by Method 8260C

Batch

Batch

WG857989

WG857902

WG857989

WG857902

Dilution

1

1

Dilution

1

Preparation

date/time

03/21/16 11:42

03/21/16 13:21

Collected by

Preparation

date/time

03/21/16 11:42

03/21/16 13:21

CJD

Analysis

date/time

03/21/16 11:50

03/22/16 01:53

03/18/16 12:30

Analysis

date/time

03/21/16 11:50

03/22/16 02:13

Collected date/time

Analyst

MEL

JAH

Received date/time

Analyst

MEL

JAH

03/19/16 09:00

ONE	LAB.	NATIONWIDE.

			Collected by CJD	Collected date/time 03/18/16 13:10	Received date/time 03/19/16 09:00
SV3-1.5 L824454-08 Solid			CJD	03/10/10 13.10	03/19/10 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG857989	1	03/21/16 11:42	03/21/16 11:50	MEL
Volatile Organic Compounds (GC/MS) by Method 8260C	WG857902	1	03/21/16 13:21	03/22/16 03:41	JAH
			Collected by	Collected date/time	Received date/time
TW-1-W L824454-09 GW			CJD	03/17/16 14:25	03/19/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260C	WG858242	1	03/22/16 07:10	03/22/16 07:10	DWR
Volatile Organic Compounds (GC/MS) by Method 8260C	WG858383	1	03/22/16 13:41	03/22/16 13:41	JHH
			Collected by	Collected date/time	Received date/time
TW-2-W L824454-10 GW			CJD	03/17/16 15:15	03/19/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260C	WG858242	1	03/22/16 07:30	03/22/16 07:30	DWR
Volatile Organic Compounds (GC/MS) by Method 8260C	WG858383	1	03/22/16 14:02	03/22/16 14:02	JHH
			Collected by	Collected date/time	Received date/time
TRIP BLANK L824454-11 GW			CJD	03/17/16 00:00	03/19/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260C	WG858242	1	03/22/16 06:51	03/22/16 06:51	DWR
Volatile Organic Compounds (GC/MS) by Method 8260C	WG858383	1	03/22/16 12:59	03/22/16 12:59	JHH
			Collected by	Collected date/time	Received date/time
IA-031716 L824454-12 Air			CJD	03/17/16 17:30	03/19/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	

WG857955

Batch

WG857955

SAMPLE SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

Volatile Organic Compounds (MS) by Method TO-15

OA-031716 L824454-13 Air

Method

03/21/16 18:46

Collected by

Preparation

03/21/16 15:04

date/time

CJD

Dilution

03/21/16 18:46

03/17/16 17:37

Analysis

date/time

03/21/16 15:04

Collected date/time

SNH

Received date/time

Analyst

SNH

03/19/16 09:00

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the

Technical Service Representative

forred Willer

ONE LAB. NATIONWIDE.

WG857955

Collected date/time: 03/18/16 09:37

(S) 1,4-Bromofluorobenzene 460-00-4

824454

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.0755	0.241	В	1	WG857955
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0681	0.429		1	WG857955
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG857955
Chloroform	67-66-3	119	0.0200	0.0973	0.0645	0.314		1	WG857955
Chloromethane	74-87-3	50.50	0.0300	0.0620	ND	ND		1	WG857955
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG857955
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0630	0.379		1	WG857955
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG857955
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG857955
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG857955
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG857955
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG857955
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG857955
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG857955
Ethylbenzene	100-41-4	106	0.0300	0.130	0.189	0.819		1	WG857955
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG857955
Tetrachloroethylene	127-18-4	166	0.400	2.72	11.0	75.0		20	WG857955
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG857955
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG857955
Trichloroethylene	79-01-6	131	0.0200	0.107	0.254	1.36		1	WG857955
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG857955
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG857955

107

60.0-140

ONE LAB. NATIONWIDE.

WG857955

Collected date/time: 03/18/16 09:50

175

(S) 1,4-Bromofluorobenzene 460-00-4

60.0-140

824454

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.0920	0.294	В	1	WG857955
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0682	0.429		1	WG857955
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG857955
Chloroform	67-66-3	119	0.0200	0.0973	0.250	1.22		1	WG857955
Chloromethane	74-87-3	50.50	0.0300	0.0620	ND	ND		1	WG857955
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG857955
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0688	0.413		1	WG857955
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG857955
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG857955
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	0.0847	0.336		1	WG857955
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG857955
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG857955
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG857955
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG857955
Ethylbenzene	100-41-4	106	0.0300	0.130	0.356	1.54		1	WG857955
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG857955
Tetrachloroethylene	127-18-4	166	4.00	27.2	75.8	515		200	WG857955
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG857955
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG857955
Trichloroethylene	79-01-6	131	0.0200	0.107	0.827	4.43		1	WG857955
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG857955
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG857955

ONE LAB. NATIONWIDE.

WG857955

Collected date/time: 03/18/16 10:10

(S) 1,4-Bromofluorobenzene 460-00-4

175

60.0-140

824454

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.634	2.02		1	WG857955
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0621	0.391		1	WG857955
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG857955
Chloroform	67-66-3	119	0.0200	0.0973	0.647	3.15		1	WG857955
Chloromethane	74-87-3	50.50	0.0300	0.0620	ND	ND		1	WG857955
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG857955
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.126	0.756		1	WG857955
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG857955
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG857955
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	0.207	0.821		1	WG857955
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG857955
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG857955
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG857955
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG857955
Ethylbenzene	100-41-4	106	12.0	52.0	ND	ND		400	WG857955
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG857955
Tetrachloroethylene	127-18-4	166	8.00	54.3	173	1170		400	WG857955
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG857955
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG857955
Trichloroethylene	79-01-6	131	8.00	42.9	ND	ND		400	WG857955
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG857955
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG857955

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 12:10

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.4		1	03/21/2016 15:36	WG858087

Ss

⁴ Cn

	Result (dry) Qualifie		Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg	mg/kg		date / time		
Acetone	ND	0.0553	1	03/22/2016 08:59	WG858268	
Acrylonitrile	ND	0.0111	1	03/22/2016 08:59	WG858268	
Benzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
Bromobenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
Bromodichloromethane	ND	0.00111	1	03/22/2016 08:59	WG858268	
Bromoform	ND	0.00111	1	03/22/2016 08:59	WG858268	
Bromomethane	ND	0.00553	1	03/22/2016 08:59	WG858268	
n-Butylbenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
sec-Butylbenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
tert-Butylbenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
Carbon tetrachloride	ND	0.00111	1	03/22/2016 08:59	WG858268	
Chlorobenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
Chlorodibromomethane	ND	0.00111	1	03/22/2016 08:59	WG858268	
Chloroethane	ND	0.00553	1	03/22/2016 08:59	WG858268	
2-Chloroethyl vinyl ether	ND	0.0553	1	03/22/2016 08:59	WG858268	
Chloroform	ND	0.00553	1	03/22/2016 08:59	WG858268	
Chloromethane	ND	0.00277	1	03/22/2016 08:59	WG858268	
2-Chlorotoluene	ND	0.00111	1	03/22/2016 08:59	WG858268	
4-Chlorotoluene	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,2-Dibromo-3-Chloropropane	ND	0.00553	1	03/22/2016 08:59	WG858268	
1,2-Dibromoethane	ND	0.00111	1	03/22/2016 08:59	WG858268	
Dibromomethane	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,2-Dichlorobenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,3-Dichlorobenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,4-Dichlorobenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
Dichlorodifluoromethane	ND	0.00553	1	03/22/2016 08:59	WG858268	
1,1-Dichloroethane	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,2-Dichloroethane	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,1-Dichloroethene	ND	0.00111	1	03/22/2016 08:59	WG858268	
cis-1,2-Dichloroethene	ND	0.00111	1	03/22/2016 08:59	WG858268	
trans-1,2-Dichloroethene	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,2-Dichloropropane	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,1-Dichloropropene	ND	0.00111	1	03/22/2016 08:59	WG858268	
1,3-Dichloropropane	ND	0.00111	1	03/22/2016 08:59	WG858268	
cis-1,3-Dichloropropene	ND	0.00111	1	03/22/2016 08:59	WG858268	
trans-1,3-Dichloropropene	ND	0.00111	1	03/22/2016 08:59	WG858268	
2,2-Dichloropropane	ND	0.00111	1	03/22/2016 08:59	WG858268	
Di-isopropyl ether	ND	0.00111	1	03/22/2016 08:59	WG858268	
Ethylbenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
Hexachloro-1,3-butadiene	ND	0.00111	1	03/22/2016 08:59	WG858268	
sopropylbenzene	ND	0.00111	1	03/22/2016 08:59	WG858268	
o-Isopropyltoluene	ND	0.00111	1	03/22/2016 08:59	WG858268	
2-Butanone (MEK)	ND	0.00111	1	03/22/2016 08:59	WG858268	
Methylene Chloride	ND ND	0.00553	1	03/22/2016 08:59	WG858268	
Metrylene Chloride	IND	0.00555		03/22/2010 06.39	W0000200	

ND

ND

ND

ND

ND

ND

4-Methyl-2-pentanone (MIBK)

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

Naphthalene

Styrene

n-Propylbenzene

0.0111

0.00111

0.00553

0.00111

0.00111

0.00111

1

03/22/2016 08:59

03/22/2016 08:59

03/22/2016 08:59

03/22/2016 08:59

03/22/2016 08:59

03/22/2016 08:59

WG858268

WG858268

WG858268

WG858268

WG858268

WG858268

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 12:10

L824454

L024454

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND		0.00111	1	03/22/2016 08:59	WG858268
1,1,2-Trichlorotrifluoroethane	ND		0.00111	1	03/22/2016 08:59	WG858268
Tetrachloroethene	ND		0.00111	1	03/22/2016 08:59	WG858268
Toluene	ND		0.00553	1	03/22/2016 08:59	WG858268
1,2,3-Trichlorobenzene	ND		0.00111	1	03/22/2016 08:59	WG858268
1,2,4-Trichlorobenzene	ND		0.00111	1	03/22/2016 08:59	WG858268
1,1,1-Trichloroethane	ND		0.00111	1	03/22/2016 08:59	WG858268
1,1,2-Trichloroethane	ND		0.00111	1	03/22/2016 08:59	WG858268
Trichloroethene	ND		0.00111	1	03/22/2016 08:59	WG858268
Trichlorofluoromethane	ND		0.00553	1	03/22/2016 08:59	WG858268
1,2,3-Trichloropropane	ND		0.00277	1	03/22/2016 08:59	WG858268
1,2,4-Trimethylbenzene	ND		0.00111	1	03/22/2016 08:59	WG858268
1,2,3-Trimethylbenzene	ND		0.00111	1	03/22/2016 08:59	WG858268
Vinyl chloride	ND		0.00111	1	03/22/2016 08:59	WG858268
1,3,5-Trimethylbenzene	ND		0.00111	1	03/22/2016 08:59	WG858268
Xylenes, Total	ND		0.00332	1	03/22/2016 08:59	WG858268
(S) Toluene-d8	102		88.7-115		03/22/2016 08:59	WG858268
(S) Dibromofluoromethane	112		76.3-123		03/22/2016 08:59	WG858268
(S) 4-Bromofluorobenzene	97.8		69.7-129		03/22/2016 08:59	WG858268

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.2		1	03/21/2016 11:50	WG857989

	Result (dry) Qualifier	RDL (dry)	Dilution	Analysis	Batch_
nalyte	mg/kg	mg/kg		date / time	
cetone	ND ND	0.0573	1	03/22/2016 00:29	WG857902
crylonitrile	ND	0.0115	1	03/22/2016 00:29	WG857902
enzene	ND	0.00115	1	03/22/2016 00:29	WG857902
romobenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
romodichloromethane	ND	0.00115	1	03/22/2016 00:29	WG857902
romoform	ND	0.00115	1	03/22/2016 00:29	WG857902
romomethane	ND	0.00573	1	03/22/2016 00:29	WG857902
-Butylbenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
ec-Butylbenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
ert-Butylbenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
arbon tetrachloride	ND	0.00115	1	03/22/2016 00:29	WG857902
hlorobenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
hlorodibromomethane	ND	0.00115	1	03/22/2016 00:29	WG857902
hloroethane	ND	0.00573	1	03/22/2016 00:29	WG857902
-Chloroethyl vinyl ether	ND	0.0573	1	03/22/2016 00:29	WG857902
hloroform	ND	0.00573	1	03/22/2016 00:29	WG857902
hloromethane	ND	0.00287	1	03/22/2016 00:29	WG857902
-Chlorotoluene	ND	0.00115	1	03/22/2016 00:29	WG857902
-Chlorotoluene	ND	0.00115	1	03/22/2016 00:29	WG857902
2-Dibromo-3-Chloropropane	ND	0.00573	1	03/22/2016 00:29	WG857902
2-Dibromoethane	ND	0.00375	1	03/22/2016 00:29	W6857902
ibromomethane	ND	0.00115	1	03/22/2016 00:29	WG857902
2-Dichlorobenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
3-Dichlorobenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
4-Dichlorobenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
ichlorodifluoromethane	ND	0.00113	1	03/22/2016 00:29	WG857902
1-Dichloroethane	ND	0.00373	1	03/22/2016 00:29	WG857902
2-Dichloroethane	ND	0.00115	1	03/22/2016 00:29	WG857902
1-Dichloroethene	ND	0.00115	1	03/22/2016 00:29	WG857902 WG857902
s-1,2-Dichloroethene	ND	0.00115	1	03/22/2016 00:29	WG857902
ans-1,2-Dichloroethene	ND	0.00115	1	03/22/2016 00:29	WG857902
,	ND	0.00115	1	03/22/2016 00:29	WG857902
2-Dichloropropane	ND	0.00115	1	03/22/2016 00:29	
1-Dichloropropene		0.00115	1		WG857902
3-Dichloropropane	ND ND	0.00115	•	03/22/2016 00:29	WG857902
is-1,3-Dichloropropene	ND	0.00115	1	03/22/2016 00:29 03/22/2016 00:29	WG857902
ans-1,3-Dichloropropene	ND	0.00115	1	03/22/2016 00:29	WG857902
,2-Dichloropropane			1		WG857902
i-isopropyl ether	ND	0.00115	1	03/22/2016 00:29 03/22/2016 00:29	WG857902
thylbenzene	ND	0.00115	1		WG857902
exachloro-1,3-butadiene	ND	0.00115	1	03/22/2016 00:29 03/22/2016 00:29	WG857902
opropylbenzene	ND	0.00115	1		WG857902
Isopropyltoluene	ND	0.00115	1	03/22/2016 00:29	WG857902
-Butanone (MEK)	ND ND	0.0115	1	03/22/2016 00:29	WG857902
ethylene Chloride	ND ND	0.00573	1	03/22/2016 00:29	WG857902
Methyl-2-pentanone (MIBK)	ND	0.0115	1	03/22/2016 00:29	WG857902
ethyl tert-butyl ether	ND	0.00115	1	03/22/2016 00:29	WG857902
aphthalene	ND	0.00573	1	03/22/2016 00:29	WG857902
Propylbenzene	ND	0.00115	1	03/22/2016 00:29	WG857902
tyrene	ND	0.00115	1	03/22/2016 00:29	WG857902
1,1,2-Tetrachloroethane	ND	0.00115	1	03/22/2016 00:29	WG857902

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 13:10

L824454

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND	<u>J4</u>	0.00115	1	03/22/2016 00:29	WG857902
1,1,2-Trichlorotrifluoroethane	ND	<u>J3</u>	0.00115	1	03/22/2016 00:29	WG857902
Tetrachloroethene	ND		0.00115	1	03/22/2016 00:29	WG857902
Toluene	ND		0.00573	1	03/22/2016 00:29	WG857902
1,2,3-Trichlorobenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
1,2,4-Trichlorobenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
1,1,1-Trichloroethane	ND		0.00115	1	03/22/2016 00:29	WG857902
1,1,2-Trichloroethane	ND	<u>J4</u>	0.00115	1	03/22/2016 00:29	WG857902
Trichloroethene	ND		0.00115	1	03/22/2016 00:29	WG857902
Trichlorofluoromethane	ND		0.00573	1	03/22/2016 00:29	WG857902
1,2,3-Trichloropropane	ND		0.00287	1	03/22/2016 00:29	WG857902
1,2,4-Trimethylbenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
1,2,3-Trimethylbenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
Vinyl chloride	ND		0.00115	1	03/22/2016 00:29	WG857902
1,3,5-Trimethylbenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
Xylenes, Total	ND		0.00344	1	03/22/2016 00:29	WG857902
(S) Toluene-d8	102		88.7-115		03/22/2016 00:29	WG857902
(S) Dibromofluoromethane	104		76.3-123		03/22/2016 00:29	WG857902
(S) 4-Bromofluorobenzene	91.4		69.7-129		03/22/2016 00:29	WG857902

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 12:05

Total Solids by Method 2540 G-2011

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.6		1	03/21/2016 11:50	WG857989

Ss

⁴ Cn

	Result (dry) Qualifie		Dilution	Analysis	<u>Batch</u>	
Analyte	mg/kg	mg/kg		date / time		
Acetone	ND	0.0534	1	03/22/2016 01:53	WG857902	
Acrylonitrile	ND	0.0107	1	03/22/2016 01:53	WG857902	
Benzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
Bromobenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
Bromodichloromethane	ND	0.00107	1	03/22/2016 01:53	WG857902	
Bromoform	ND	0.00107	1	03/22/2016 01:53	WG857902	
Bromomethane	ND	0.00534	1	03/22/2016 01:53	WG857902	
n-Butylbenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
sec-Butylbenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
tert-Butylbenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
Carbon tetrachloride	ND	0.00107	1	03/22/2016 01:53	WG857902	
Chlorobenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
Chlorodibromomethane	ND	0.00107	1	03/22/2016 01:53	WG857902	
Chloroethane	ND	0.00534	1	03/22/2016 01:53	WG857902	
2-Chloroethyl vinyl ether	ND	0.0534	1	03/22/2016 01:53	WG857902	
Chloroform	ND	0.00534	1	03/22/2016 01:53	WG857902	
Chloromethane	ND	0.00267	1	03/22/2016 01:53	WG857902	
2-Chlorotoluene	ND	0.00107	1	03/22/2016 01:53	WG857902	
4-Chlorotoluene	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,2-Dibromo-3-Chloropropane	ND	0.00534	1	03/22/2016 01:53	WG857902	
1,2-Dibromoethane	ND	0.00107	1	03/22/2016 01:53	WG857902	
Dibromomethane	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,2-Dichlorobenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,3-Dichlorobenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,4-Dichlorobenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
Dichlorodifluoromethane	ND	0.00534	1	03/22/2016 01:53	WG857902	
1,1-Dichloroethane	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,2-Dichloroethane	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,1-Dichloroethene	ND	0.00107	1	03/22/2016 01:53	WG857902	
cis-1,2-Dichloroethene	ND	0.00107	1	03/22/2016 01:53	WG857902	
trans-1,2-Dichloroethene	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,2-Dichloropropane	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,1-Dichloropropene	ND	0.00107	1	03/22/2016 01:53	WG857902	
1,3-Dichloropropane	ND	0.00107	1	03/22/2016 01:53	WG857902	
cis-1,3-Dichloropropene	ND	0.00107	1	03/22/2016 01:53	WG857902	
rans-1,3-Dichloropropene	ND	0.00107	1	03/22/2016 01:53	WG857902	
2,2-Dichloropropane	ND	0.00107	1	03/22/2016 01:53	WG857902	
Di-isopropyl ether	ND	0.00107	1	03/22/2016 01:53	WG857902	
Ethylbenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
Hexachloro-1,3-butadiene	ND	0.00107	1	03/22/2016 01:53	WG857902	
sopropylbenzene	ND	0.00107	1	03/22/2016 01:53	WG857902	
p-Isopropyltoluene	ND	0.00107	1	03/22/2016 01:53	WG857902	
2-Butanone (MEK)	ND	0.0107	1	03/22/2016 01:53	WG857902 WG857902	
Methylene Chloride	ND	0.00534	1	03/22/2016 01:53	WG857902	
Methylene Chloride	NU	0.00534		03/22/2010 01.33	WG03/30Z	

ND

ND

ND

ND

ND

ND

4-Methyl-2-pentanone (MIBK)

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

Naphthalene

Styrene

n-Propylbenzene

0.0107

0.00107

0.00534

0.00107

0.00107

0.00107

1

03/22/2016 01:53

03/22/2016 01:53

03/22/2016 01:53

03/22/2016 01:53

03/22/2016 01:53

03/22/2016 01:53

WG857902

WG857902

WG857902

WG857902

WG857902

WG857902

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 12:05

L824454

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND	<u>J4</u>	0.00107	1	03/22/2016 01:53	WG857902
1,1,2-Trichlorotrifluoroethane	ND	<u>J3</u>	0.00107	1	03/22/2016 01:53	WG857902
Tetrachloroethene	0.00167		0.00107	1	03/22/2016 01:53	WG857902
Toluene	ND		0.00534	1	03/22/2016 01:53	WG857902
1,2,3-Trichlorobenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
1,2,4-Trichlorobenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
1,1,1-Trichloroethane	ND		0.00107	1	03/22/2016 01:53	WG857902
1,1,2-Trichloroethane	ND	<u>J4</u>	0.00107	1	03/22/2016 01:53	WG857902
Trichloroethene	ND		0.00107	1	03/22/2016 01:53	WG857902
Trichlorofluoromethane	ND		0.00534	1	03/22/2016 01:53	WG857902
1,2,3-Trichloropropane	ND		0.00267	1	03/22/2016 01:53	WG857902
1,2,4-Trimethylbenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
1,2,3-Trimethylbenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
Vinyl chloride	ND		0.00107	1	03/22/2016 01:53	WG857902
1,3,5-Trimethylbenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
Xylenes, Total	ND		0.00321	1	03/22/2016 01:53	WG857902
(S) Toluene-d8	103		88.7-115		03/22/2016 01:53	WG857902
(S) Dibromofluoromethane	105		76.3-123		03/22/2016 01:53	WG857902
(S) 4-Bromofluorobenzene	89.9		69.7-129		03/22/2016 01:53	WG857902

SAMPLE RESULTS - 07 ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 12:30

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.8		1	03/21/2016 11:50	WG857989

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND		0.0545	1	03/22/2016 02:13	WG857902
Acrylonitrile	ND		0.0109	1	03/22/2016 02:13	WG857902
Benzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Bromobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Bromodichloromethane	ND		0.00109	1	03/22/2016 02:13	WG857902
Bromoform	ND		0.00109	1	03/22/2016 02:13	WG857902
Bromomethane	ND		0.00545	1	03/22/2016 02:13	WG857902
n-Butylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
ec-Butylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
ert-Butylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Carbon tetrachloride	ND		0.00109	1	03/22/2016 02:13	WG857902
Chlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Chlorodibromomethane	ND		0.00109	1	03/22/2016 02:13	WG857902
Chloroethane	ND		0.00545	1	03/22/2016 02:13	WG857902
2-Chloroethyl vinyl ether	ND		0.00343	1	03/22/2016 02:13	WG857902
Chloroform	ND		0.00545	1	03/22/2016 02:13	WG857902
Chloromethane	ND		0.00343	1	03/22/2016 02:13	WG857902
2-Chlorotoluene	ND		0.00272	1	03/22/2016 02:13	WG857902
I-Chlorotoluene	ND		0.00109	1	03/22/2016 02:13	WG857902
,2-Dibromo-3-Chloropropane	ND		0.00103	1	03/22/2016 02:13	WG857902
,2-Dibromoethane	ND		0.00343	1	03/22/2016 02:13	WG857902
Dibromomethane	ND		0.00109	1	03/22/2016 02:13	WG857902
,2-Dichlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
,3-Dichlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
,4-Dichlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Dichlorodifluoromethane	ND		0.00109	1	03/22/2016 02:13	WG857902
,1-Dichloroethane	ND		0.00343	1	03/22/2016 02:13	WG857902
,	ND		0.00109	1		
,2-Dichloroethane					03/22/2016 02:13	WG857902
,1-Dichloroethene	ND		0.00109	1	03/22/2016 02:13	WG857902
cis-1,2-Dichloroethene	ND		0.00109	1	03/22/2016 02:13	WG857902
rans-1,2-Dichloroethene	ND		0.00109	1	03/22/2016 02:13	WG857902
,2-Dichloropropane	ND		0.00109	1	03/22/2016 02:13	WG857902
,1-Dichloropropene	ND		0.00109	1	03/22/2016 02:13	WG857902
,3-Dichloropropane	ND		0.00109	1	03/22/2016 02:13	WG857902
cis-1,3-Dichloropropene	ND		0.00109	1	03/22/2016 02:13	WG857902
rans-1,3-Dichloropropene	ND		0.00109	1	03/22/2016 02:13	WG857902
2,2-Dichloropropane	ND		0.00109	1	03/22/2016 02:13	WG857902
Di-isopropyl ether	ND		0.00109	1	03/22/2016 02:13	WG857902
thylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Hexachloro-1,3-butadiene	ND		0.00109	1	03/22/2016 02:13	WG857902
sopropylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
-Isopropyltoluene	ND		0.00109	1	03/22/2016 02:13	WG857902
-Butanone (MEK)	ND		0.0109	1	03/22/2016 02:13	WG857902
Methylene Chloride	ND		0.00545	1	03/22/2016 02:13	WG857902
I-Methyl-2-pentanone (MIBK)	ND		0.0109	1	03/22/2016 02:13	WG857902
Methyl tert-butyl ether	ND		0.00109	1	03/22/2016 02:13	WG857902
laphthalene	ND		0.00545	1	03/22/2016 02:13	WG857902
n-Propylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Styrene	ND		0.00109	1	03/22/2016 02:13	WG857902
I,1,1,2-Tetrachloroethane	ND		0.00109	1	03/22/2016 02:13	WG857902

PAGE:

15 of 50

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 12:30

L824454

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND	<u>J4</u>	0.00109	1	03/22/2016 02:13	WG857902
1,1,2-Trichlorotrifluoroethane	ND	<u>J3</u>	0.00109	1	03/22/2016 02:13	WG857902
Tetrachloroethene	0.00573		0.00109	1	03/22/2016 02:13	WG857902
Toluene	ND		0.00545	1	03/22/2016 02:13	WG857902
1,2,3-Trichlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
1,2,4-Trichlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
1,1,1-Trichloroethane	ND		0.00109	1	03/22/2016 02:13	WG857902
1,1,2-Trichloroethane	ND	<u>J4</u>	0.00109	1	03/22/2016 02:13	WG857902
Trichloroethene	ND		0.00109	1	03/22/2016 02:13	WG857902
Trichlorofluoromethane	ND		0.00545	1	03/22/2016 02:13	WG857902
1,2,3-Trichloropropane	ND		0.00272	1	03/22/2016 02:13	WG857902
1,2,4-Trimethylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
1,2,3-Trimethylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Vinyl chloride	ND		0.00109	1	03/22/2016 02:13	WG857902
1,3,5-Trimethylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Xylenes, Total	ND		0.00327	1	03/22/2016 02:13	WG857902
(S) Toluene-d8	103		88.7-115		03/22/2016 02:13	WG857902
(S) Dibromofluoromethane	104		76.3-123		03/22/2016 02:13	WG857902
(S) 4-Bromofluorobenzene	90.4		69.7-129		03/22/2016 02:13	WG857902

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.5		1	03/21/2016 11:50	WG857989

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 13:10

L824454

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND	<u>J4</u>	0.00106	1	03/22/2016 03:41	WG857902
1,1,2-Trichlorotrifluoroethane	ND	<u>J3</u>	0.00106	1	03/22/2016 03:41	WG857902
Tetrachloroethene	0.00442		0.00106	1	03/22/2016 03:41	WG857902
Toluene	ND		0.00529	1	03/22/2016 03:41	WG857902
1,2,3-Trichlorobenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
1,2,4-Trichlorobenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
1,1,1-Trichloroethane	ND		0.00106	1	03/22/2016 03:41	WG857902
1,1,2-Trichloroethane	ND	<u>J4</u>	0.00106	1	03/22/2016 03:41	WG857902
Trichloroethene	ND		0.00106	1	03/22/2016 03:41	WG857902
Trichlorofluoromethane	ND		0.00529	1	03/22/2016 03:41	WG857902
1,2,3-Trichloropropane	ND		0.00264	1	03/22/2016 03:41	WG857902
1,2,4-Trimethylbenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
1,2,3-Trimethylbenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
Vinyl chloride	ND		0.00106	1	03/22/2016 03:41	WG857902
1,3,5-Trimethylbenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
Xylenes, Total	ND		0.00317	1	03/22/2016 03:41	WG857902
(S) Toluene-d8	103		88.7-115		03/22/2016 03:41	WG857902
(S) Dibromofluoromethane	106		76.3-123		03/22/2016 03:41	WG857902
(S) 4-Bromofluorobenzene	90.4		69.7-129		03/22/2016 03:41	WG857902

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Collected date/time: 03/17/16 14:25

Volatile Organic Com	pounds (GC	C/MS) by Me	ethod 826	60C		
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
Acetone	ND		50.0	1	03/22/2016 07:10	WG858242
Acrolein	ND		50.0	1	03/22/2016 07:10	WG858242
Acrylonitrile	ND		10.0	1	03/22/2016 07:10	WG858242
Benzene	ND		1.00	1	03/22/2016 07:10	WG858242
Bromobenzene	ND		1.00	1	03/22/2016 07:10	WG858242
Bromodichloromethane	ND		1.00	1	03/22/2016 07:10	WG858242
Bromoform	ND		1.00	1	03/22/2016 07:10	WG858242
Bromomethane	ND		5.00	1	03/22/2016 07:10	WG858242
n-Butylbenzene	ND		1.00	1	03/22/2016 07:10	WG858242
sec-Butylbenzene	ND		1.00	1	03/22/2016 07:10	WG858242
tert-Butylbenzene	ND		1.00	1	03/22/2016 07:10	WG858242
Carbon tetrachloride	ND		1.00	1	03/22/2016 07:10	WG858242
Chlorobenzene	ND		1.00	1	03/22/2016 07:10	WG858242
Chlorodibromomethane	ND		1.00	1	03/22/2016 07:10	WG858242
Chloroethane	ND		5.00	1	03/22/2016 07:10	WG858242
2-Chloroethyl vinyl ether	ND		50.0	1	03/22/2016 13:41	WG858383
Chloroform	ND		5.00	1	03/22/2016 07:10	<u>WG858242</u>
Chloromethane	ND		2.50	1	03/22/2016 07:10	<u>WG858242</u>
2-Chlorotoluene	ND		1.00	1	03/22/2016 07:10	WG858242
4-Chlorotoluene	ND		1.00	1	03/22/2016 07:10	<u>WG858242</u>
1,2-Dibromo-3-Chloropropane	ND		5.00	1	03/22/2016 07:10	<u>WG858242</u>
1,2-Dibromoethane	ND		1.00	1	03/22/2016 07:10	<u>WG858242</u>
Dibromomethane	ND		1.00	1	03/22/2016 07:10	<u>WG858242</u>
1,2-Dichlorobenzene	ND		1.00	1	03/22/2016 07:10	WG858242
1,3-Dichlorobenzene	ND		1.00	1	03/22/2016 07:10	WG858242
1,4-Dichlorobenzene	ND		1.00	1	03/22/2016 07:10	WG858242
Dichlorodifluoromethane	ND		5.00	1	03/22/2016 07:10	WG858242
1,1-Dichloroethane	ND		1.00	1	03/22/2016 07:10	WG858242
1,2-Dichloroethane	ND		1.00	1	03/22/2016 07:10	WG858242
1,1-Dichloroethene	ND		1.00	1	03/22/2016 07:10	WG858242
cis-1,2-Dichloroethene	ND		1.00	1	03/22/2016 07:10	WG858242
trans-1,2-Dichloroethene	ND		1.00	1	03/22/2016 07:10	WG858242
1,2-Dichloropropane	ND		1.00	1	03/22/2016 07:10	WG858242
1,1-Dichloropropene	ND		1.00	1	03/22/2016 07:10	WG858242
1,3-Dichloropropane cis-1,3-Dichloropropene	ND ND		1.00	1	03/22/2016 07:10	WG858242
	ND		1.00		03/22/2016 07:10	WG858242 WG858242
trans-1,3-Dichloropropene 2,2-Dichloropropane	ND		1.00	1	03/22/2016 07:10 03/22/2016 07:10	WG858242
Di-isopropyl ether	ND		1.00	1	03/22/2016 07:10	WG858242
Ethylbenzene	ND		1.00	1	03/22/2016 07:10	W6858242
Hexachloro-1,3-butadiene	ND		1.00	1	03/22/2016 07:10	W6858242
Isopropylbenzene	ND		1.00	1	03/22/2016 07:10	WG858242
p-lsopropyltoluene	ND		1.00	1	03/22/2016 07:10	WG858242
2-Butanone (MEK)	ND		10.0	1	03/22/2016 07:10	W6858242
Methylene Chloride	ND		5.00	1	03/22/2016 07:10	WG858242
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	03/22/2016 07:10	WG858242
Methyl tert-butyl ether	ND		1.00	1	03/22/2016 07:10	WG858242
Naphthalene	ND		5.00	1	03/22/2016 07:10	WG858242
n-Propylbenzene	ND		1.00	1	03/22/2016 07:10	WG858242
Styrene	ND		1.00	1	03/22/2016 07:10	WG858242
1,1,1,2-Tetrachloroethane	ND		1.00	1	03/22/2016 07:10	WG858242
1,1,2,2-Tetrachloroethane	ND		1.00	1	03/22/2016 07:10	WG858242
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	03/22/2016 07:10	WG858242
Tetrachloroethene	ND		1.00	1	03/22/2016 07:10	WG858242
Toluene	ND		5.00	1	03/22/2016 07:10	WG858242

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 14:25

L824454

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
1,2,4-Trichlorobenzene	ND		1.00	1	03/22/2016 07:10	WG858242
1,1,1-Trichloroethane	ND		1.00	1	03/22/2016 07:10	WG858242
1,1,2-Trichloroethane	ND		1.00	1	03/22/2016 07:10	WG858242
Trichloroethene	ND		1.00	1	03/22/2016 07:10	WG858242
Trichlorofluoromethane	ND		5.00	1	03/22/2016 07:10	WG858242
1,2,3-Trichloropropane	ND		2.50	1	03/22/2016 07:10	WG858242
1,2,4-Trimethylbenzene	ND		1.00	1	03/22/2016 07:10	WG858242
1,2,3-Trimethylbenzene	ND		1.00	1	03/22/2016 07:10	WG858242
1,3,5-Trimethylbenzene	ND		1.00	1	03/22/2016 07:10	WG858242
Vinyl chloride	ND		1.00	1	03/22/2016 07:10	WG858242
Xylenes, Total	ND		3.00	1	03/22/2016 07:10	WG858242
(S) Toluene-d8	105		90.0-115		03/22/2016 07:10	WG858242
(S) Dibromofluoromethane	114		79.0-121		03/22/2016 07:10	WG858242
(S) 4-Bromofluorobenzene	100		80.1-120		03/22/2016 07:10	WG858242

PAGE:

20 of 50

Collected date/time: 03/17/16 15:15

Volatile Organic Compounds (GC/MS) by Method 8260C

SAMPLE	RESULTS - 10
	L824454

ONE LAB. NATIONWIDE.

Analyto	Result <u>Qualifier</u>	RDL	Dilution	Analysis date / time	<u>Batch</u>	
Analyte	ug/l	ug/l	4		WCCECOAO	
Acetone	ND	50.0	1	03/22/2016 07:30	WG858242	
Acrolein	ND	50.0	1	03/22/2016 07:30	WG858242	
Acrylonitrile	ND	10.0	1	03/22/2016 07:30	WG858242	
Benzene	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
Bromobenzene	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
Bromodichloromethane	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
Bromoform	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
Bromomethane	ND	5.00	1	03/22/2016 07:30	WG858242	
n-Butylbenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
sec-Butylbenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
tert-Butylbenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
Carbon tetrachloride	ND	1.00	1	03/22/2016 07:30	WG858242	
Chlorobenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
Chlorodibromomethane	ND	1.00	1	03/22/2016 07:30	WG858242	
Chloroethane	ND	5.00	1	03/22/2016 07:30	WG858242	
2-Chloroethyl vinyl ether	ND	50.0	1	03/22/2016 14:02	WG858383	
Chloroform	ND	5.00	1	03/22/2016 07:30	WG858242	
Chloromethane	ND	2.50	1	03/22/2016 07:30	WG858242	
2-Chlorotoluene	ND	1.00	1	03/22/2016 07:30	WG858242	
4-Chlorotoluene	ND	1.00	1	03/22/2016 07:30	WG858242	
1,2-Dibromo-3-Chloropropane	ND	5.00	1	03/22/2016 07:30	WG858242	
1,2-Dibromoethane	ND	1.00	1	03/22/2016 07:30	WG858242	
Dibromomethane	ND	1.00	1	03/22/2016 07:30	WG858242	
	ND	1.00	1	03/22/2016 07:30		
1,2-Dichlorobenzene					WG858242	
1,3-Dichlorobenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
1,4-Dichlorobenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
Dichlorodifluoromethane	ND	5.00	1	03/22/2016 07:30	WG858242	
1,1-Dichloroethane	ND	1.00	1	03/22/2016 07:30	WG858242	
1,2-Dichloroethane	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
1,1-Dichloroethene	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
cis-1,2-Dichloroethene	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
trans-1,2-Dichloroethene	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
1,2-Dichloropropane	ND	1.00	1	03/22/2016 07:30	WG858242	
1,1-Dichloropropene	ND	1.00	1	03/22/2016 07:30	WG858242	
1,3-Dichloropropane	ND	1.00	1	03/22/2016 07:30	WG858242	
cis-1,3-Dichloropropene	ND	1.00	1	03/22/2016 07:30	WG858242	
trans-1,3-Dichloropropene	ND	1.00	1	03/22/2016 07:30	WG858242	
2,2-Dichloropropane	ND	1.00	1	03/22/2016 07:30	WG858242	
Di-isopropyl ether	ND	1.00	1	03/22/2016 07:30	WG858242	
Ethylbenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
Hexachloro-1,3-butadiene	ND	1.00	1	03/22/2016 07:30	WG858242	
Isopropylbenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
p-lsopropyltoluene	ND	1.00	1	03/22/2016 07:30	WG858242	
2-Butanone (MEK)	ND	10.0	1	03/22/2016 07:30	WG858242	
Methylene Chloride	ND	5.00	1	03/22/2016 07:30	WG858242	
4-Methyl-2-pentanone (MIBK)	ND	10.0	1	03/22/2016 07:30	WG858242	
Methyl tert-butyl ether	ND	1.00	1	03/22/2016 07:30	WG858242	
Naphthalene	ND	5.00	1	03/22/2016 07:30	WG858242	
·						
n-Propylbenzene Styrono	ND ND	1.00	1	03/22/2016 07:30	WG858242	
Styrene 111.2 Totro chloro othono	ND	1.00	1	03/22/2016 07:30	WG858242	
1,1,1,2-Tetrachloroethane	ND	1.00	1	03/22/2016 07:30	WG858242	
1,1,2,2-Tetrachloroethane	ND	1.00	1	03/22/2016 07:30	WG858242	
1,1,2-Trichlorotrifluoroethane	ND	1.00	1	03/22/2016 07:30	WG858242	
Tetrachloroethene	ND	1.00	1	03/22/2016 07:30	<u>WG858242</u>	
Toluene	ND	5.00	1	03/22/2016 07:30	<u>WG858242</u>	
1,2,3-Trichlorobenzene	ND	1.00	1	03/22/2016 07:30	WG858242	
ACCOUNT	٠.	PP∩	JECT:	SDG:	DATE/TIME:	PAG

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 15:15

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l		date / time	
1,2,4-Trichlorobenzene	ND		1.00	1	03/22/2016 07:30	WG858242
1,1,1-Trichloroethane	ND		1.00	1	03/22/2016 07:30	WG858242
1,1,2-Trichloroethane	ND		1.00	1	03/22/2016 07:30	WG858242
Trichloroethene	ND		1.00	1	03/22/2016 07:30	WG858242
Trichlorofluoromethane	ND		5.00	1	03/22/2016 07:30	WG858242
1,2,3-Trichloropropane	ND		2.50	1	03/22/2016 07:30	WG858242
1,2,4-Trimethylbenzene	ND		1.00	1	03/22/2016 07:30	WG858242
1,2,3-Trimethylbenzene	ND		1.00	1	03/22/2016 07:30	WG858242
1,3,5-Trimethylbenzene	ND		1.00	1	03/22/2016 07:30	WG858242
Vinyl chloride	ND		1.00	1	03/22/2016 07:30	WG858242
Xylenes, Total	ND		3.00	1	03/22/2016 07:30	WG858242
(S) Toluene-d8	106		90.0-115		03/22/2016 07:30	WG858242
(S) Dibromofluoromethane	113		79.0-121		03/22/2016 07:30	WG858242
(S) 4-Bromofluorobenzene	102		80.1-120		03/22/2016 07:30	WG858242

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 00:00

L8244

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	<u></u>
Acetone	ND		50.0	1	03/22/2016 06:51	WG858242
Acrolein	ND		50.0	1	03/22/2016 06:51	WG858242
Acrylonitrile	ND		10.0	1	03/22/2016 06:51	WG858242
Benzene	ND		1.00	1	03/22/2016 06:51	WG858242
Bromobenzene	ND		1.00	1	03/22/2016 06:51	WG858242
Bromodichloromethane	ND		1.00	1	03/22/2016 06:51	W6858242
Bromoform	ND		1.00	1	03/22/2016 06:51	W6858242
Bromomethane	ND		5.00	1	03/22/2016 06:51	WG858242
n-Butylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
sec-Butylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
tert-Butylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
Carbon tetrachloride	ND		1.00	1	03/22/2016 06:51	WG858242
Chlorobenzene	ND		1.00	1	03/22/2016 06:51	WG858242
Chlorodibromomethane	ND		1.00	1	03/22/2016 06:51	WG858242
Chloroethane	ND		5.00	1	03/22/2016 06:51	W6858242
	ND		50.0	1		
2-Chloroethyl vinyl ether Chloroform	ND ND		5.00	1	03/22/2016 12:59 03/22/2016 06:51	WG858383 WG858242
	ND		2.50	1	03/22/2016 06:51	WG858242
Chloromethane 2-Chlorotoluene	ND ND		1.00	1	03/22/2016 06:51	WG858242 WG858242
4-Chlorotoluene	ND		1.00	1	03/22/2016 06:51	WG858242
1,2-Dibromo-3-Chloropropane	ND		5.00	1	03/22/2016 06:51	WG858242
	ND		1.00	1		
1,2-Dibromoethane Dibromomethane	ND		1.00	1	03/22/2016 06:51	WG858242
	ND		1.00	1	03/22/2016 06:51	WG858242
1,2-Dichlorobenzene 1,3-Dichlorobenzene	ND		1.00	1	03/22/2016 06:51	WG858242
	ND ND		1.00	1	03/22/2016 06:51	WG858242
1,4-Dichlorobenzene Dichlorodifluoromethane	ND		5.00	1	03/22/2016 06:51	WG858242
	ND		1.00	1	03/22/2016 06:51	WG858242
1,1-Dichloroethane 1,2-Dichloroethane	ND		1.00	1	03/22/2016 06:51	WG858242
	ND		1.00	1	03/22/2016 06:51 03/22/2016 06:51	WG858242 WG858242
1,1-Dichloroethene cis-1,2-Dichloroethene	ND		1.00			
trans-1,2-Dichloroethene	ND		1.00	1	03/22/2016 06:51 03/22/2016 06:51	WG858242 WG858242
			1.00			
1,2-Dichloropropane	ND ND		1.00	1	03/22/2016 06:51 03/22/2016 06:51	WG858242
1,1-Dichloropropene 1,3-Dichloropropane	ND		1.00			WG858242
	ND		1.00	1	03/22/2016 06:51	WG858242
cis-1,3-Dichloropropene					03/22/2016 06:51	WG858242
trans-1,3-Dichloropropene	ND		1.00	1	03/22/2016 06:51	WG858242
2,2-Dichloropropane	ND		1.00	1	03/22/2016 06:51 03/22/2016 06:51	WG858242
Di-isopropyl ether	ND		1.00	1		WG858242
Ethylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
Hexachloro-1,3-butadiene	ND		1.00	1	03/22/2016 06:51	WG858242
Isopropylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
p-Isopropyltoluene	ND		1.00	1	03/22/2016 06:51	WG858242
2-Butanone (MEK)	ND		10.0	1	03/22/2016 06:51	WG858242
Methylene Chloride	ND		5.00	1	03/22/2016 06:51	WG858242
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	03/22/2016 06:51	WG858242
Methyl tert-butyl ether	ND		1.00	1	03/22/2016 06:51	WG858242
Naphthalene n Prandhannana	ND		5.00	1	03/22/2016 06:51	WG858242
n-Propylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
Styrene	ND		1.00	1	03/22/2016 06:51	WG858242
1,1,1,2-Tetrachloroethane	ND		1.00	1	03/22/2016 06:51	WG858242
1,1,2,2-Tetrachloroethane	ND		1.00	1	03/22/2016 06:51	WG858242
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	03/22/2016 06:51	WG858242
Tetrachloroethene	ND		1.00	1	03/22/2016 06:51	<u>WG858242</u>
Toluene	ND		5.00	1	03/22/2016 06:51	WG858242
1,2,3-Trichlorobenzene	ND		1.00	1	03/22/2016 06:51	<u>WG858242</u>

Ss

Cn

Gl

TRIP BLANK

SAMPLE RESULTS - 11

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 00:00

L824454

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
1,2,4-Trichlorobenzene	ND		1.00	1	03/22/2016 06:51	WG858242
1,1,1-Trichloroethane	ND		1.00	1	03/22/2016 06:51	WG858242
1,1,2-Trichloroethane	ND		1.00	1	03/22/2016 06:51	WG858242
Trichloroethene	ND		1.00	1	03/22/2016 06:51	WG858242
Trichlorofluoromethane	ND		5.00	1	03/22/2016 06:51	WG858242
1,2,3-Trichloropropane	ND		2.50	1	03/22/2016 06:51	WG858242
1,2,4-Trimethylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
1,2,3-Trimethylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
1,3,5-Trimethylbenzene	ND		1.00	1	03/22/2016 06:51	WG858242
Vinyl chloride	ND		1.00	1	03/22/2016 06:51	WG858242
Xylenes, Total	ND		3.00	1	03/22/2016 06:51	WG858242
(S) Toluene-d8	104		90.0-115		03/22/2016 06:51	WG858242
(S) Dibromofluoromethane	112		79.0-121		03/22/2016 06:51	WG858242
(S) 4-Bromofluorobenzene	101		80.1-120		03/22/2016 06:51	WG858242

ONE LAB. NATIONWIDE.

WG857955

Collected date/time: 03/17/16 17:30

(S) 1,4-Bromofluorobenzene 460-00-4

824454

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.260	0.831		1	WG857955
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0721	0.454		1	WG857955
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG857955
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG857955
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.553	1.14		1	WG857955
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG857955
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG857955
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG857955
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG857955
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG857955
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG857955
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG857955
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG857955
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG857955
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0876	0.380		1	WG857955
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG857955
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.153	1.04		1	WG857955
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG857955
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG857955
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG857955
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG857955
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG857955

104

60.0-140

175

ONE LAB. NATIONWIDE.

WG857955

Collected date/time: 03/17/16 17:37

(S) 1,4-Bromofluorobenzene 460-00-4

L824454

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.269	0.859		1	WG857955
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0698	0.440		1	WG857955
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG857955
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG857955
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.617	1.27		1	WG857955
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG857955
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG857955
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG857955
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG857955
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG857955
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG857955
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG857955
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG857955
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG857955
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0933	0.404		1	WG857955
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG857955
Tetrachloroethylene	127-18-4	166	0.0200	0.136	ND	ND		1	WG857955
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG857955
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG857955
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG857955
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG857955
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG857955

108

60.0-140

175

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L824454-05,06,07,08

Method Blank (MB)

(MB) 03/21/16 11:50			
	MB Result	MB Qualifier	MB RDL
Analyte	%		%
Total Solids	0.000500		

(OS) 03/21/16 11:50 • (DUP) 03/2	21/16 11:50					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	69.9	69.7	1	0.293		5

(LCS) 03/21/16 11:50					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L824454-04

Method Blank (MB)

(MB) 03/21/16 15:36			
	MB Result	MB Qualifier	MB RDL
Analyte	%		%
Total Solids	0.00100		

²Tc

L824039-35 Original Sample (OS) • Duplicate (DUP)

(OS) 03/21/16 15:36 • (DUP) 03/21/1	6 15:36					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	73.8	73.8	1	0.0418		5

(LCS) 03/21/16 15:36					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L824454-01,02,03,12,13

Method Blank (MB)

(MB) 03/21/16 11:19				
	MB Result	MB Qualifier	MB RDL	
Analyte	ppbv		ppbv	
Benzene	ND		0.0200	
Carbon tetrachloride	ND		0.0200	
Chloroethane	ND		0.0400	
Chloroform	ND		0.0200	
Chloromethane	ND		0.0300	
1,2-Dibromoethane	ND		0.0200	
1,4-Dichlorobenzene	ND		0.0200	
1,1-Dichloroethane	ND		0.0200	
1,1-Dichloroethene	ND		0.0200	
cis-1,2-Dichloroethene	ND		0.0200	
trans-1,2-Dichloroethene	ND		0.0200	
1,2-Dichloropropane	ND		0.0300	
cis-1,3-Dichloropropene	ND		0.0200	
trans-1,3-Dichloropropene	ND		0.0300	
Ethylbenzene	ND		0.0300	
1,1,2,2-Tetrachloroethane	ND		0.0200	
Tetrachloroethylene	ND		0.0200	
1,1,1-Trichloroethane	ND		0.0200	
1,1,2-Trichloroethane	ND		0.0300	
Trichloroethylene	ND		0.0200	
Vinyl chloride	ND		0.0200	
Vinyl acetate	ND		0.0200	
(S) 1,4-Bromofluorobenzene	99.5		60.0-140	

${\tt Laboratory\ Control\ Sample\ (LCS)} \bullet {\tt Laboratory\ Control\ Sample\ Duplicate\ (LCSD)}$

(LCS) 03/21/16 09:59 • (LCSD) 03/21/16 10:40											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Benzene	0.500	0.451	0.449	90.2	89.9	70.0-130			0.370	25	
Carbon tetrachloride	0.500	0.475	0.466	94.9	93.2	70.0-130			1.85	25	
Chloroethane	0.500	0.501	0.444	100	88.7	70.0-130			12.2	25	
Chloroform	0.500	0.469	0.456	93.8	91.1	70.0-130			2.91	25	
Chloromethane	0.500	0.489	0.483	97.8	96.6	70.0-130			1.24	25	
1,2-Dibromoethane	0.500	0.479	0.472	95.8	94.4	70.0-130			1.43	25	
1,4-Dichlorobenzene	0.500	0.507	0.484	101	96.8	70.0-130			4.64	25	

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (MS) by Method TO-15

L824454-01,02,03,12,13

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I CS) 03/21/16	(I CSD)	03/21/16 10:40

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
1,1-Dichloroethane	0.500	0.489	0.464	97.7	92.9	70.0-130			5.05	25
1,1-Dichloroethene	0.500	0.513	0.444	103	88.9	70.0-130			14.4	25
cis-1,2-Dichloroethene	0.500	0.478	0.468	95.6	93.6	70.0-130			2.13	25
trans-1,2-Dichloroethene	0.500	0.509	0.453	102	90.6	70.0-130			11.6	25
1,2-Dichloropropane	0.500	0.481	0.473	96.3	94.5	70.0-130			1.81	25
cis-1,3-Dichloropropene	0.500	0.490	0.476	97.9	95.1	70.0-130			2.91	25
trans-1,3-Dichloropropene	0.500	0.493	0.485	98.6	96.9	70.0-130			1.74	25
Ethylbenzene	0.500	0.526	0.519	105	104	70.0-130			1.23	25
1,1,2,2-Tetrachloroethane	0.500	0.464	0.462	92.9	92.4	70.0-130			0.480	25
Tetrachloroethylene	0.500	0.481	0.478	96.2	95.5	70.0-130			0.760	25
1,1,1-Trichloroethane	0.500	0.472	0.464	94.3	92.9	70.0-130			1.54	25
1,1,2-Trichloroethane	0.500	0.477	0.472	95.4	94.5	70.0-130			0.920	25
Trichloroethylene	0.500	0.457	0.458	91.3	91.7	70.0-130			0.370	25
Vinyl chloride	0.500	0.478	0.452	95.7	90.3	70.0-130			5.72	25
Vinyl acetate	0.500	0.519	0.526	104	105	70.0-130			1.21	25

60.0-140

105

104

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

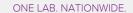
L824454-05,06,07,08

Method Blank (MB)

(MB) 03/21/16 20:05			
•	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
Acetone	ND		0.0500
Acrylonitrile	ND		0.0100
Benzene	ND		0.00100
Bromobenzene	ND		0.00100
Bromodichloromethane	ND		0.00100
Bromoform	ND		0.00100
Bromomethane	ND		0.00500
n-Butylbenzene	ND		0.00100
sec-Butylbenzene	ND		0.00100
tert-Butylbenzene	ND		0.00100
Carbon tetrachloride	ND		0.00100
Chlorobenzene	ND		0.00100
Chlorodibromomethane	ND		0.00100
Chloroethane	ND		0.00500
2-Chloroethyl vinyl ether	ND		0.0500
Chloroform	ND		0.00500
Chloromethane	ND		0.00250
2-Chlorotoluene	ND		0.00100
4-Chlorotoluene	ND		0.00100
1,2-Dibromo-3-Chloropropane	ND		0.00500
1,2-Dibromoethane	ND		0.00100
Dibromomethane	ND		0.00100
1,2-Dichlorobenzene	ND		0.00100
1,3-Dichlorobenzene	ND		0.00100
1,4-Dichlorobenzene	ND		0.00100
Dichlorodifluoromethane	ND		0.00500
1,1-Dichloroethane	ND		0.00100
1,2-Dichloroethane	ND		0.00100
1,1-Dichloroethene	ND		0.00100
cis-1,2-Dichloroethene	ND		0.00100
trans-1,2-Dichloroethene	ND		0.00100
1,2-Dichloropropane	ND		0.00100
1,1-Dichloropropene	ND		0.00100
1,3-Dichloropropane	ND		0.00100
cis-1,3-Dichloropropene	ND		0.00100
trans-1,3-Dichloropropene	ND		0.00100

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C


L824454-05,06,07,08

Method Blank (MB)

(MB) 03/21/16 20:05			
	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
2,2-Dichloropropane	ND		0.00100
Di-isopropyl ether	ND		0.00100
Ethylbenzene	ND		0.00100
Hexachloro-1,3-butadiene	ND		0.00100
Isopropylbenzene	ND		0.00100
p-Isopropyltoluene	ND		0.00100
2-Butanone (MEK)	ND		0.0100
Methylene Chloride	ND		0.00500
4-Methyl-2-pentanone (MIBK)	ND		0.0100
Methyl tert-butyl ether	ND		0.00100
Naphthalene	ND		0.00500
n-Propylbenzene	ND		0.00100
Styrene	ND		0.00100
1,1,1,2-Tetrachloroethane	ND		0.00100
1,1,2,2-Tetrachloroethane	ND		0.00100
Tetrachloroethene	ND		0.00100
Toluene	ND		0.00500
1,1,2-Trichlorotrifluoroethane	ND		0.00100
1,2,3-Trichlorobenzene	ND		0.00100
1,2,4-Trichlorobenzene	ND		0.00100
1,1,1-Trichloroethane	ND		0.00100
1,1,2-Trichloroethane	ND		0.00100
Trichloroethene	ND		0.00100
Trichlorofluoromethane	ND		0.00500
1,2,3-Trichloropropane	ND		0.00250
1,2,3-Trimethylbenzene	ND		0.00100
1,2,4-Trimethylbenzene	ND		0.00100
1,3,5-Trimethylbenzene	ND		0.00100
Vinyl chloride	ND		0.00100
Xylenes, Total	ND		0.00300
(S) Toluene-d8	102		88.7-115
(S) Dibromofluoromethane	98.4		76.3-123
(S) 4-Bromofluorobenzene	91.8		69.7-129

Ss

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-05,06,07,08

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 03/21/16 18:27 • (LCSD) 03/21/16 18:46

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.125	0.0755	0.0774	60.4	61.9	25.3-178			2.40	22.9
Acrylonitrile	0.125	0.101	0.100	80.7	80.1	57.8-143			0.780	20
Benzene	0.0250	0.0219	0.0216	87.6	86.5	72.6-120			1.30	20
Bromobenzene	0.0250	0.0204	0.0202	81.4	80.9	80.3-115			0.630	20
Bromodichloromethane	0.0250	0.0204	0.0207	81.7	82.9	75.3-119			1.38	20
Bromoform	0.0250	0.0212	0.0208	84.8	83.4	69.1-135			1.64	20
Bromomethane	0.0250	0.0167	0.0169	66.6	67.5	23.0-191			1.33	20
n-Butylbenzene	0.0250	0.0227	0.0217	90.9	86.6	74.2-134			4.77	20
sec-Butylbenzene	0.0250	0.0225	0.0212	90.1	84.9	77.8-129			6.00	20
tert-Butylbenzene	0.0250	0.0224	0.0216	89.6	86.2	77.2-129			3.90	20
Carbon tetrachloride	0.0250	0.0199	0.0191	79.8	76.6	69.4-129			4.10	20
Chlorobenzene	0.0250	0.0221	0.0216	88.5	86.5	78.9-122			2.29	20
Chlorodibromomethane	0.0250	0.0218	0.0222	87.0	88.8	76.4-126			1.98	20
Chloroethane	0.0250	0.0195	0.0198	78.1	79.1	47.2-147			1.23	20
2-Chloroethyl vinyl ether	0.125	0.121	0.123	96.5	98.6	16.7-162			2.23	23.7
Chloroform	0.0250	0.0211	0.0206	84.3	82.6	73.3-122			2.08	20
Chloromethane	0.0250	0.0210	0.0200	83.9	80.0	53.1-135			4.79	20
2-Chlorotoluene	0.0250	0.0232	0.0225	92.7	90.2	74.6-127			2.79	20
4-Chlorotoluene	0.0250	0.0220	0.0215	87.9	86.2	79.5-123			2.02	20
1,2-Dibromo-3-Chloropropane	0.0250	0.0176	0.0188	70.6	75.2	64.9-131			6.39	20
1,2-Dibromoethane	0.0250	0.0214	0.0217	85.6	87.0	67.2-121			1.53	20
Dibromomethane	0.0250	0.0213	0.0211	85.4	84.2	78.5-117			1.34	20
1,2-Dichlorobenzene	0.0250	0.0228	0.0220	91.1	87.9	83.6-119			3.61	20
1,3-Dichlorobenzene	0.0250	0.0226	0.0221	90.2	88.6	75.9-129			1.88	20
1,4-Dichlorobenzene	0.0250	0.0219	0.0216	87.5	86.3	81.0-115			1.44	20
Dichlorodifluoromethane	0.0250	0.0202	0.0193	80.8	77.2	50.9-139			4.53	20
1,1-Dichloroethane	0.0250	0.0227	0.0221	90.8	88.6	71.7-125			2.48	20
1,2-Dichloroethane	0.0250	0.0203	0.0201	81.1	80.5	67.2-121			0.660	20
1,1-Dichloroethene	0.0250	0.0208	0.0174	83.0	69.6	60.6-133			17.6	20
cis-1,2-Dichloroethene	0.0250	0.0208	0.0204	83.2	81.7	76.1-121			1.92	20
trans-1,2-Dichloroethene	0.0250	0.0205	0.0198	82.1	79.2	70.7-124			3.65	20
1,2-Dichloropropane	0.0250	0.0238	0.0239	95.2	95.6	76.9-123			0.360	20

0.0250

0.0250

0.0250

0.0250

0.0224

0.0232

0.0220

0.0197

0.0219

0.0232

0.0223

0.0197

1,1-Dichloropropene

1,3-Dichloropropane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

89.7

92.7

88.2

78.6

87.8

92.7

89.4

78.8

71.2-126

80.3-114

77.3-123

73.0-127

2.21

1.35

0.270

0.0500 20

20

20

20

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-05,06,07,08

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(1 (CC)	02/21/16	10.27	(I CCD)	03/21/16 18:46	
ILCO	1 03/21/10	10.2/ •	LUSUI	03/21/10 10.40	

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
2,2-Dichloropropane	0.0250	0.0201	0.0202	80.5	80.8	61.9-132			0.280	20
Di-isopropyl ether	0.0250	0.0220	0.0215	87.9	86.2	67.2-131			2.01	20
Ethylbenzene	0.0250	0.0220	0.0214	88.0	85.4	78.6-124			2.98	20
Hexachloro-1,3-butadiene	0.0250	0.0247	0.0233	98.9	93.3	69.2-136			5.80	20
Isopropylbenzene	0.0250	0.0220	0.0211	87.8	84.3	79.4-126			4.06	20
p-Isopropyltoluene	0.0250	0.0233	0.0223	93.4	89.2	75.4-132			4.56	20
2-Butanone (MEK)	0.125	0.0881	0.0892	70.5	71.3	44.5-154			1.16	21.3
Methylene Chloride	0.0250	0.0218	0.0216	87.3	86.4	68.2-119			1.04	20
4-Methyl-2-pentanone (MIBK)	0.125	0.0988	0.101	79.0	81.0	61.1-138			2.50	20
Methyl tert-butyl ether	0.0250	0.0196	0.0192	78.4	77.0	70.2-122			1.81	20
Naphthalene	0.0250	0.0210	0.0204	83.9	81.5	69.9-132			2.94	20
n-Propylbenzene	0.0250	0.0225	0.0218	90.2	87.3	80.2-124			3.24	20
Styrene	0.0250	0.0210	0.0210	83.9	83.8	79.4-124			0.130	20
1,1,1,2-Tetrachloroethane	0.0250	0.0215	0.0211	85.9	84.5	76.7-127			1.61	20
1,1,2,2-Tetrachloroethane	0.0250	0.0191	0.0192	76.4	76.9	78.8-124	<u>J4</u>	<u>J4</u>	0.610	20
Tetrachloroethene	0.0250	0.0213	0.0211	85.3	84.3	71.1-133			1.24	20
Toluene	0.0250	0.0214	0.0215	85.4	86.0	76.7-116			0.680	20
1,1,2-Trichlorotrifluoroethane	0.0250	0.0232	0.0185	92.9	73.9	62.6-138		<u>J3</u>	22.8	20
1,2,3-Trichlorobenzene	0.0250	0.0222	0.0218	88.7	87.1	72.5-137			1.83	20
1,2,4-Trichlorobenzene	0.0250	0.0220	0.0213	88.2	85.1	74.0-137			3.53	20
1,1,1-Trichloroethane	0.0250	0.0199	0.0192	79.7	76.7	69.9-127			3.74	20
1,1,2-Trichloroethane	0.0250	0.0199	0.0207	79.7	82.8	81.9-119	<u>J4</u>		3.77	20
Trichloroethene	0.0250	0.0225	0.0219	90.0	87.8	77.2-122			2.48	20
Trichlorofluoromethane	0.0250	0.0185	0.0185	74.1	74.2	51.5-151			0.150	20
1,2,3-Trichloropropane	0.0250	0.0204	0.0212	81.5	84.7	74.0-124			3.85	20
1,2,3-Trimethylbenzene	0.0250	0.0217	0.0207	86.9	82.8	79.4-118			4.84	20
1,2,4-Trimethylbenzene	0.0250	0.0224	0.0212	89.7	84.8	77.1-124			5.59	20
1,3,5-Trimethylbenzene	0.0250	0.0216	0.0209	86.6	83.7	79.0-125			3.37	20
Vinyl chloride	0.0250	0.0210	0.0202	83.9	80.6	58.4-134			3.99	20
Xylenes, Total	0.0750	0.0651	0.0635	86.7	84.6	78.1-123			2.48	20
(S) Toluene-d8				99.7	101	88.7-115				
(S) Dibromofluoromethane				97.9	97.4	76.3-123				

PAGE:

34 of 50

95.4

94.4

69.7-129

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-05,06,07,08

L824541-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 03/22/16 00:10 • (MS) 03/21/16 23:12 • (MSD) 03/21/16 23:31

(OS) 03/22/16 00:10 • (MS) 03/21/		ınt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%	Dilation	%	WS Qualifier	MSD Qualifier	%	%
Acetone	0.125	0.0723	0.0697	0.0544	0.000	0.000	1	5.00-182	<u>J6</u>	<u>J6</u>	24.8	31.5
Acrylonitrile	0.125	ND	0.0945	0.0750	75.6	60.0	1	39.3-152			23.0	27.2
Benzene	0.0250	0.000324	0.0220	0.0211	86.8	83.0	1	47.8-131			4.37	22.8
Bromobenzene	0.0250	ND	0.0186	0.0179	74.4	71.7	1	40.0-130			3.69	27.4
Bromodichloromethane	0.0250	ND	0.0201	0.0199	80.5	79.6	1	50.6-128			1.11	22.8
Bromoform	0.0250	ND	0.0182	0.0181	72.8	72.3	1	43.3-139			0.740	25.9
Bromomethane	0.0250	ND	0.0147	0.0138	58.8	55.2	1	5.00-189			6.22	26.7
n-Butylbenzene	0.0250	ND	0.0231	0.0218	92.3	87.2	1	23.6-146			5.73	39.2
sec-Butylbenzene	0.0250	ND	0.0199	0.0194	79.6	77.6	1	31.0-142			2.56	34.7
tert-Butylbenzene	0.0250	ND	0.0202	0.0198	80.9	79.1	1	36.9-142			2.27	31.7
Carbon tetrachloride	0.0250	ND	0.0192	0.0190	76.9	75.8	1	46.0-140			1.41	27.2
Chlorobenzene	0.0250	ND	0.0212	0.0200	84.8	80.2	1	44.1-134			5.58	25.7
Chlorodibromomethane	0.0250	ND	0.0207	0.0202	82.7	80.6	1	49.7-134			2.57	24
Chloroethane	0.0250	ND	0.0181	0.0187	72.4	74.8	1	5.00-164			3.36	28.4
2-Chloroethyl vinyl ether	0.125	ND	0.113	0.116	90.4	92.9	1	5.00-159			2.68	40
Chloroform	0.0250	ND	0.0214	0.0205	85.7	82.2	1	51.2-133			4.21	22.8
Chloromethane	0.0250	ND	0.0189	0.0179	75.5	71.5	1	31.4-141			5.50	24.6
2-Chlorotoluene	0.0250	ND	0.0212	0.0202	84.7	80.8	1	36.1-137			4.76	28.9
4-Chlorotoluene	0.0250	ND	0.0207	0.0196	82.8	78.3	1	35.4-137			5.53	29.8
1,2-Dibromo-3-Chloropropane	0.0250	ND	0.0174	0.0170	69.7	68.2	1	40.4-138			2.23	30.8
1,2-Dibromoethane	0.0250	ND	0.0200	0.0197	80.1	78.8	1	50.2-133			1.58	23.6
Dibromomethane	0.0250	ND	0.0200	0.0208	79.9	83.2	1	52.4-128			4.11	23
1,2-Dichlorobenzene	0.0250	ND	0.0218	0.0209	87.2	83.5	1	34.6-139			4.36	29.9
1,3-Dichlorobenzene	0.0250	ND	0.0191	0.0184	76.2	73.4	1	28.4-142			3.75	31.2
1,4-Dichlorobenzene	0.0250	ND	0.0222	0.0206	88.8	82.3	1	35.0-133			7.59	31.1
Dichlorodifluoromethane	0.0250	ND	0.0173	0.0158	69.1	63.4	1	31.2-144			8.67	30.2
1,1-Dichloroethane	0.0250	ND	0.0232	0.0220	92.8	88.0	1	49.1-136			5.29	22.9
1,2-Dichloroethane	0.0250	ND	0.0204	0.0199	81.5	79.6	1	47.1-129			2.34	22.7
1,1-Dichloroethene	0.0250	ND	0.0205	0.0190	81.8	75.9	1	36.1-142			7.60	25.6
cis-1,2-Dichloroethene	0.0250	ND	0.0206	0.0201	82.4	80.5	1	50.6-133			2.31	23
trans-1,2-Dichloroethene	0.0250	ND	0.0201	0.0188	80.5	75.0	1	43.8-135			7.09	24.8
1,2-Dichloropropane	0.0250	ND	0.0241	0.0232	96.4	93.0	1	50.3-134			3.66	22.7
1,1-Dichloropropene	0.0250	ND	0.0225	0.0212	90.0	84.9	1	43.0-137			5.83	26.4
1,3-Dichloropropane	0.0250	ND	0.0220	0.0219	88.0	87.5	1	51.4-127			0.640	23.1

0.0250

0.0250

ND

ND

0.0211

0.0186

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

0.0207

0.0184

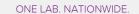
84.5

74.4

82.9

73.7

48.4-134


46.6-135

1.89

0.920

23.6

25.3

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-05,06,07,08

L824541-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 03/22/16 00:10 • (MS) 03/21/16 23:12 • (MSD) 03/21/16 23:31

	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
2,2-Dichloropropane	0.0250	ND	0.0216	0.0221	86.4	88.5	1	45.2-141			2.34	26.8
Di-isopropyl ether	0.0250	ND	0.0220	0.0217	87.9	86.8	1	46.7-140			1.24	23.5
Ethylbenzene	0.0250	ND	0.0215	0.0207	86.0	82.7	1	44.8-135			3.88	26.9
Hexachloro-1,3-butadiene	0.0250	ND	0.0163	0.0156	65.1	62.4	1	10.0-149			4.36	40
Isopropylbenzene	0.0250	ND	0.0207	0.0200	82.6	80.0	1	41.9-139			3.23	29.3
p-Isopropyltoluene	0.0250	ND	0.0204	0.0202	81.7	80.9	1	27.3-146			0.950	35.1
2-Butanone (MEK)	0.125	0.00572	0.0785	0.0774	58.3	57.3	1	23.9-170			1.47	28.3
Methylene Chloride	0.0250	ND	0.0221	0.0209	88.2	83.4	1	46.7-125			5.61	22.2
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.0886	0.0922	70.9	73.8	1	42.4-146			4.01	26.7
Methyl tert-butyl ether	0.0250	ND	0.0189	0.0192	75.6	76.9	1	50.4-131			1.69	24.8
Naphthalene	0.0250	0.000267	0.0124	0.0131	48.4	51.5	1	18.4-145			6.03	34
n-Propylbenzene	0.0250	ND	0.0213	0.0203	85.2	81.1	1	35.2-139			4.93	31.9
Styrene	0.0250	ND	0.0195	0.0185	77.8	74.0	1	39.7-137			5.07	28.2
1,1,1,2-Tetrachloroethane	0.0250	ND	0.0205	0.0197	82.1	79.0	1	48.8-136			3.94	25.5
1,1,2,2-Tetrachloroethane	0.0250	ND	0.0169	0.0170	67.5	68.1	1	45.7-140			0.830	26.4
Tetrachloroethene	0.0250	ND	0.0209	0.0199	83.6	79.5	1	37.7-140			4.98	29.2
Toluene	0.0250	0.000185	0.0230	0.0219	91.4	86.9	1	47.8-127			5.03	24.3
1,1,2-Trichlorotrifluoroethane	0.0250	ND	0.0214	0.0199	85.7	79.5	1	35.7-146			7.51	28.8
1,2,3-Trichlorobenzene	0.0250	0.000148	0.0127	0.0128	50.4	50.6	1	10.0-150			0.410	38.5
1,2,4-Trichlorobenzene	0.0250	ND	0.0144	0.0150	57.7	60.2	1	10.0-153			4.27	39.3
1,1,1-Trichloroethane	0.0250	ND	0.0197	0.0195	79.0	77.9	1	49.0-138			1.35	25.3
1,1,2-Trichloroethane	0.0250	ND	0.0192	0.0189	76.7	75.8	1	52.3-132			1.17	23.4
Trichloroethene	0.0250	ND	0.0214	0.0208	85.7	83.0	1	48.0-132			3.13	24.8
Trichlorofluoromethane	0.0250	ND	0.0176	0.0176	70.5	70.5	1	12.8-169			0.0300	29.7
1,2,3-Trichloropropane	0.0250	ND	0.0179	0.0180	71.7	72.0	1	44.4-138			0.420	26.3
1,2,3-Trimethylbenzene	0.0250	ND	0.0227	0.0217	90.8	86.7	1	41.0-133			4.54	27.6
1,2,4-Trimethylbenzene	0.0250	ND	0.0202	0.0199	81.0	79.7	1	32.9-139			1.59	30.6
1,3,5-Trimethylbenzene	0.0250	ND	0.0199	0.0194	79.5	77.6	1	37.1-138			2.37	30.6
Vinyl chloride	0.0250	ND	0.0189	0.0181	75.6	72.3	1	32.0-146			4.41	26.3
Xylenes, Total	0.0750	ND	0.0647	0.0615	86.3	82.0	1	42.7-135			5.09	26.6
(S) Toluene-d8					100	101		88.7-115				
(S) Dibromofluoromethane					99.3	98.0		76.3-123				

86.7

87.6

(S) 4-Bromofluorobenzene

69.7-129

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-09,10,11

Method Blank (MB)

(MB) 03/22/16 05:31			
(5, 00/22/10 00.01	MB Result	MB Qualifier	MB RDL
Analyte	mg/l	Wib Gadinier	mg/l
Acetone	ND		0.0500
Acrolein	ND		0.0500
Acrylonitrile	ND		0.0100
Benzene	ND		0.00100
Bromobenzene	ND		0.00100
Bromodichloromethane	ND		0.00100
Bromoform	ND		0.00100
Bromomethane	ND		0.00100
	ND		0.00300
n-Butylbenzene	ND		0.00100
sec-Butylbenzene			
tert-Butylbenzene	ND		0.00100 0.00100
Carbon tetrachloride	ND		
Chlorobenzene	ND		0.00100
Chlorodibromomethane	ND		
Chloroethane	ND		0.00500
Chloroform	ND		0.00500
Chloromethane	ND		0.00250
2-Chlorotoluene	ND		0.00100
4-Chlorotoluene	ND		0.00100
1,2-Dibromo-3-Chloropropane	ND		0.00500
1,2-Dibromoethane	ND		0.00100
Dibromomethane	ND		0.00100
1,2-Dichlorobenzene	ND		0.00100
1,3-Dichlorobenzene	ND		0.00100
1,4-Dichlorobenzene	ND		0.00100
Dichlorodifluoromethane	ND		0.00500
1,1-Dichloroethane	ND		0.00100
1,2-Dichloroethane	ND		0.00100
1,1-Dichloroethene	ND		0.00100
cis-1,2-Dichloroethene	ND		0.00100
trans-1,2-Dichloroethene	ND		0.00100
1,2-Dichloropropane	ND		0.00100
1,1-Dichloropropene	ND		0.00100
1,3-Dichloropropane	ND		0.00100
cis-1,3-Dichloropropene	ND		0.00100
trans-1,3-Dichloropropene	ND		0.00100

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-09,10,11

Method Blank (MB)

(MB) 03/22/16 05:31				
	MB Result	MB Qualifier	MB RDL	Ī
Analyte	mg/l		mg/l	
2,2-Dichloropropane	ND		0.00100	L
Di-isopropyl ether	ND		0.00100	
Ethylbenzene	ND		0.00100	l
Hexachloro-1,3-butadiene	ND		0.00100	Г
Isopropylbenzene	ND		0.00100	
p-Isopropyltoluene	ND		0.00100	L
2-Butanone (MEK)	ND		0.0100	
Methylene Chloride	ND		0.00500	
4-Methyl-2-pentanone (MIBK)	ND		0.0100	
Methyl tert-butyl ether	ND		0.00100	ı
Naphthalene	ND		0.00500	
n-Propylbenzene	ND		0.00100	
Styrene	ND		0.00100	
1,1,1,2-Tetrachloroethane	ND		0.00100	ī
1,1,2,2-Tetrachloroethane	ND		0.00100	
Tetrachloroethene	ND		0.00100	١
Toluene	ND		0.00500	
1,1,2-Trichlorotrifluoroethane	ND		0.00100	
1,2,3-Trichlorobenzene	ND		0.00100	
1,2,4-Trichlorobenzene	ND		0.00100	
1,1,1-Trichloroethane	ND		0.00100	
1,1,2-Trichloroethane	ND		0.00100	
Trichloroethene	ND		0.00100	
Trichlorofluoromethane	ND		0.00500	
1,2,3-Trichloropropane	ND		0.00250	
1,2,3-Trimethylbenzene	ND		0.00100	
1,2,4-Trimethylbenzene	ND		0.00100	
1,3,5-Trimethylbenzene	ND		0.00100	
Vinyl chloride	ND		0.00100	
Xylenes, Total	ND		0.00300	
(S) Toluene-d8	104		90.0-115	
(S) Dibromofluoromethane	111		79.0-121	
(S) 4-Bromofluorobenzene	100		80.1-120	

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-09,10,11

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

/1	001	00/00/40	04.44	// CCD/	00/00/40	04.04
(L	.C.S.I	03/22/16	04:14 •	(LCSD)	03/22/16	04:34

According 1,25	(LCS) 03/22/16 04:14 • (LCSD) 03										
cectories 0.128 0.126 0.118 100 94.3 28.7475 6.33 20.9 ccrollarin 0.125 0.134 0.126 107 101 85.2445 3.55 20 learnee 0.0250 0.0251 0.0249 100 99.6 730-122 0.750 20 temodicitoriomethane 0.0250 0.0243 0.0244 95.4 97.5 115-115 2.11 20 temodicitoriomethane 0.0250 0.0243 0.0244 95.4 97.5 755-121 0.0360 20 temodicitoriomethane 0.0250 0.0230 0.0199 81.4 79.7 715-131 2.11 20 temodicitoriomethane 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0250 0.0260 0.0261 80.2 81.6 75.9134 0.950 2.0 collegatione 0.0250 0.0260 0.0224 89.0 87.6 79.122		•						LCS Qualifier	LCSD Qualifier		
Name	Analyte										
National National	Acetone										
Personang Question Question	Acrolein	0.125	0.108	0.105	86.3	83.7	40.4-172			3.06	20
kromobenzene 0.0250 0.0239 0.0244 95.4 97.5 815-115 2.11 20 kromodichloromethane 0.0250 0.0243 0.0242 97.1 96.7 75.5-121 0.360 20 kromomethane 0.0250 0.0203 0.0396 129 131 22.4-187 133 20 kelbythenzene 0.0250 0.0215 0.0221 86.1 182 26.6-126 2.42 20 ee-Butythenzene 0.0250 0.0215 0.0219 86.0 87.6 79.3-127 190 20 acthory benzene 0.0250 0.0215 0.0214 88.0 87.6 79.3-127 190 0.04 chlorodebrane 0.0250 0.0244 88.0 89.5 79.7-129 0.04 0.04 chlorodebrane 0.0250 0.0274 0.0218 86.7 87.3 79.122 10.0 0.04 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Acrylonitrile	0.125	0.134	0.126	107	101	58.2-145			5.55	
None None None None No.	Benzene				100					0.750	
Name	Bromobenzene	0.0250	0.0239	0.0244	95.4	97.5	81.5-115			2.11	20
Remomethane 0.0250 0.0322 0.0326 129 131 2.24.187 1.33 20	Bromodichloromethane	0.0250	0.0243	0.0242	97.1	96.7	75.5-121			0.360	20
Buylbenzene 0.0250 0.0260 0.0262 104 105 75.9·134 0.950 20 ec-Buylbenzene 0.0250 0.0215 0.0221 86.1 88.2 80.6·126 2.42 20 arbuylbenzene 0.0250 0.0216 0.0219 86.0 87.6 79.3·127 190 20 Carbon tetrachloride 0.0250 0.0246 0.0244 98.2 97.7 70.9·129 0.480 20 Chlorobenzene 0.0250 0.0217 0.0218 86.7 87.3 78.2·124 170 20 Chlorofethane 0.0250 0.0274 0.0270 10 108 41.2·153 151 20 Chlorofolm 0.0250 0.0260 0.0260 104 104 73.2·125 0.330 20 Chlorofoluene 0.0250 0.0251 0.0251 103 100 55.4·144 2.4 2.4 2.0 Chlorofoluene 0.0250 0.0218 0.0218 87.0 86.6	Bromoform	0.0250	0.0203	0.0199	81.4	79.7	71.5-131			2.11	20
ec-Butylbenzene 0,0250 0,0215 0,0212 86.1 88.2 80,6-126 2,42 20 ext-Butylbenzene 0,0250 0,0215 0,0219 86.0 87.6 79,3-127 19.0 20 achbor detrachloride 0,0250 0,0220 0,0224 88.0 89.5 79,7-122 17.0 20 chlorodibromomethane 0,0250 0,0277 0,0218 86.7 87.3 78,2-124 0,710 20 chlorodibromomethane 0,0250 0,0274 0,0270 100 108 41,2-153 151 20 chlorodorm 0,0250 0,0260 0,0260 104 104 73,2-125 0,330 20 chlorodorm 0,0250 0,0267 0,0251 103 100 55,9-134 2,47 20 chlorodormethane 0,0250 0,0218 0,0218 87.3 85,2 64,125 0,54 2,07 chlorodorma-Chloropropane 0,0250 0,0218 0,0218 87.3	Bromomethane	0.0250	0.0322	0.0326	129	131	22.4-187			1.33	20
ert-Buylbenzene 0.0250 0.0215 0.0219 86.0 87.6 79.3-127 1.90 20 carbon tetrachloride 0.0250 0.0246 0.0244 98.2 97.7 70.9-129 0.480 20 carbon tetrachloride 0.0250 0.0224 88.0 89.5 79.7-122 1.70 20 carbon tetrachloride 0.0250 0.0227 0.0224 88.0 89.5 79.7-122 1.70 20 carbon tetrachloride 0.0250 0.0217 0.0218 86.7 87.3 78.2-124 0.710 20 carbon tetrachloride 0.0250 0.0250 0.0274 0.0218 86.7 87.3 78.2-124 0.710 20 carbon tetrachloride 0.0250 0.0250 0.0274 0.0218 86.7 87.3 1.00 100 100 100 100 100 100 100 100 10	n-Butylbenzene	0.0250	0.0260	0.0262	104	105	75.9-134			0.950	20
Carbon tetrachloride 0.0250 0.0246 0.0244 98.2 97.7 70.9-129 0.480 20 Chlorodberzene 0.0250 0.0220 0.0224 88.0 89.5 79.7-122 1.70 20 Chlorodbromomethane 0.0250 0.0217 0.0288 86.7 87.3 78.2-124 0.710 20 Chloroform 0.0250 0.0260 0.0260 104 104 73.2-125 0.330 20 Chloromethane 0.0250 0.0257 0.0251 103 100 55.8-134 2.47 20 Chlorotoluene 0.0250 0.0251 0.0216 87.0 86.6 76.4-125 0.540 20 Chlorotoluene 0.0250 0.0235 0.0238 93.8 95.0 815-121 1.26 20 2-Dibromora-Chloropropane 0.0250 0.0231 0.0233 82.2 64.8-131 2.48 20 2-Dibromora-Chloropropane 0.0250 0.0231 0.0230 95.0 95.7	sec-Butylbenzene	0.0250	0.0215	0.0221	86.1	88.2	80.6-126			2.42	20
Chlorobenzene 0.0250 0.0220 0.0224 88.0 89.5 79.7-122 1.70 20 Chlorodibromomethane 0.0250 0.0217 0.0218 86.7 87.3 78.2-124 0.710 20 Chlorodethane 0.0250 0.0260 0.0260 104 104 73.2-125 0.330 20 Chloromethane 0.0250 0.0257 0.0251 103 100 55.8-134 2.47 20 Chlorotoluene 0.0250 0.0218 0.0218 86.6 76.4-125 0.540 20 2-Dibromo-3-Chloropropane 0.0250 0.0218 0.0218 87.3 85.2 64.8-131 2.48 20 2-Dibromo-3-Chloropropane 0.0250 0.0231 0.033 93.8 95.0 81.5-121 126 20 2-Dibromoethane 0.0250 0.0231 0.0233 93.2 92.2 79.8-122 19.8-122 10.3 20 2-Dichlorobenzene 0.0250 0.0243 0.0244 95.0	tert-Butylbenzene	0.0250	0.0215	0.0219	86.0	87.6	79.3-127			1.90	20
Chlorodibromomethane 0.0250 0.0217 0.0218 86.7 87.3 78.2-124 0.710 20 Chlorostehane 0.0250 0.0264 0.0270 110 108 41.2-153 151 20 Chloroform 0.0250 0.0260 0.0261 104 104 73.2-125 0.330 20 Chlorotoluene 0.0250 0.0218 0.0216 87.0 86.6 76.4-125 0.540 2.47 20 Chlorotoluene 0.0250 0.0218 0.0218 87.0 86.6 76.4-125 0.540 2 Chlorotoluene 0.0250 0.0235 0.0238 93.8 95.0 815-121 126 2 Chlorotoluene 0.0250 0.0218 0.0238 93.8 95.0 815-121 126 2 2-Dibromoethane 0.0250 0.0213 0.0230 92.2 79.8-122 79.8-122 79.8-122 79.8-122 79.8-122 79.8-129 79.8-112 12 12 12 <t< td=""><td>Carbon tetrachloride</td><td>0.0250</td><td>0.0246</td><td>0.0244</td><td>98.2</td><td>97.7</td><td>70.9-129</td><td></td><td></td><td>0.480</td><td>20</td></t<>	Carbon tetrachloride	0.0250	0.0246	0.0244	98.2	97.7	70.9-129			0.480	20
Chloroethane 0.0250 0.0274 0.0270 110 108 41.2-153 1.51 20 Chloroform 0.0250 0.0260 0.0260 104 104 73.2-125 0.330 20 Chlorotoluene 0.0250 0.0251 0.0251 103 100 55.8-134 2.47 20 Chlorotoluene 0.0250 0.0218 0.0216 87.0 86.6 76.4-125 0.540 20 Chlorotoluene 0.0250 0.0235 0.0238 93.8 95.0 815-121 1.26 20 2-Dibromo-3-Chloropropane 0.0250 0.0218 0.0213 87.3 85.2 64.8-131 2.48 20 2-Dibromo-thane 0.0250 0.0231 0.0230 92.2 92.2 79.8-122 0.0300 20 2-Dibromo-thane 0.0250 0.0231 0.0240 96.9 95.9 78.8-119 103 20 2-Dibromo-thane 0.0250 0.0233 0.0244 83.7 85.6	Chlorobenzene	0.0250	0.0220	0.0224	88.0	89.5	79.7-122			1.70	20
Chloroform 0.0250 0.0260 0.0260 104 104 73.2-125 0.330 20 Chloromethane 0.0250 0.0257 0.0251 103 100 55.8-134 2.47 20 Chlorotoluene 0.0250 0.0238 0.0238 93.8 95.0 81.5-121 1.26 20 2-Dibromo-3-Chloropropane 0.0250 0.0218 0.0213 87.3 85.2 64.8-131 2.48 20 2-Dibromoethane 0.0250 0.0231 0.0230 92.2 92.2 79.8-122 0.0300 20 2-Dibromoethane 0.0250 0.0242 0.0240 96.9 95.9 78.8-119 1.03 20 2-Dichlorobenzene 0.0250 0.0242 0.0240 96.9 95.9 78.8-119 1.03 20 3-Dichlorobenzene 0.0250 0.0242 0.0244 95.0 96.7 84.7-118 1.1 1.6 2 4-Dichlorobenzene 0.0250 0.0299 0.0214 83.7<	Chlorodibromomethane	0.0250	0.0217	0.0218	86.7	87.3	78.2-124			0.710	20
Chloromethane 0.0250 0.0257 0.0251 103 100 55.8-134 2.47 20 Chlorotoluene 0.0250 0.0218 0.0216 87.0 86.6 76.4-125 0.540 20 Chlorotoluene 0.0250 0.0235 0.0238 93.8 95.0 81.5-121 1.26 20 2-Dibromo-3-Chloropropane 0.0250 0.0218 0.0213 87.3 85.2 64.8-131 2.48 20 2-Dibromoethane 0.0250 0.0231 0.0230 92.2 92.2 79.8-122 0.0300 20 2-Dichlorobenzene 0.0250 0.0242 0.0240 96.9 95.9 78.8-119 1.03 20 2-Dichlorobenzene 0.0250 0.0238 0.0242 95.0 96.7 84.7-118 1.72 20 3-Dichlorobenzene 0.0250 0.0294 0.0228 89.5 91.0 82.2-114 1.66 20 0-Chlorobenzene 0.0250 0.0224 0.0292 119 <t< td=""><td>Chloroethane</td><td>0.0250</td><td>0.0274</td><td>0.0270</td><td>110</td><td>108</td><td>41.2-153</td><td></td><td></td><td>1.51</td><td>20</td></t<>	Chloroethane	0.0250	0.0274	0.0270	110	108	41.2-153			1.51	20
Chlorotoluene 0.0250 0.0218 0.0216 87.0 86.6 76.4-125 0.540 20 Chlorotoluene 0.0250 0.0235 0.0238 93.8 95.0 81.5-121 1.26 20 2-Dibromo-3-Chloropropane 0.0250 0.0218 0.0213 87.3 85.2 64.8-131 2.48 20 2-Dibromoethane 0.0250 0.0231 0.0230 92.2 79.8-122 0.0030 20 Dibromomethane 0.0250 0.0238 0.0242 95.0 96.7 84.7-118 1.72 20 2-Dichlorobenzene 0.0250 0.0238 0.0242 95.0 96.7 84.7-118 1.72 20 3-Dichlorobenzene 0.0250 0.0299 0.0214 83.7 85.6 77.6-127 2.30 20 4-Dichlorobenzene 0.0250 0.0297 0.0292 19 117 56.0-134 1.66 20 0-I-Dichlorobthane 0.0250 0.0268 0.0263 106 105	Chloroform	0.0250	0.0260	0.0260	104	104	73.2-125			0.330	20
Chlorotoluene 0.0250 0.0235 0.0238 93.8 95.0 81.5-121 1.26 20 2-Dibromo-3-Chloropropane 0.0250 0.0218 0.0213 87.3 85.2 64.8-131 2.48 20 2-Dibromoethane 0.0250 0.0231 0.0230 92.2 92.2 79.8-122 0.0300 20 2-Dibromoethane 0.0250 0.0242 0.0240 96.9 95.9 78.8-119 1.03 20 2-Dichlorobenzene 0.0250 0.0238 0.0242 95.0 96.7 84.7-118 1.7 2.30 20 3-Dichlorobenzene 0.0250 0.0209 0.0214 83.7 85.6 77.6-127 2.30 20 4-Dichlorobenzene 0.0250 0.0294 0.0228 89.5 91.0 82.2-114 1.66 20 1-Dichloroethane 0.0250 0.0265 0.0263 106 105 71.7-127 0.650 20 2-Dichloroethane 0.0250 0.0268 0.0265	Chloromethane	0.0250	0.0257	0.0251	103	100	55.8-134			2.47	20
2-Dibromo-3-Chloropropane 0.0250 0.0218 0.0213 87.3 85.2 64.8-131 2.48 20 2-Dibromoethane 0.0250 0.0231 0.0230 92.2 92.2 79.8-122 0.0300 20 2-Dichlorobenzene 0.0250 0.0242 0.0240 96.9 95.9 78.8-119 1.03 20 2-Dichlorobenzene 0.0250 0.0238 0.0242 95.0 96.7 84.7-118 1.72 20 3-Dichlorobenzene 0.0250 0.0209 0.0214 83.7 85.6 77.6-127 2.30 20 4-Dichlorobenzene 0.0250 0.0224 0.0228 89.5 91.0 82.2-114 1.66 20 1-Dichlorobenzene 0.0250 0.0297 0.0292 119 117 56.0-134 1.43 20 1-Dichlorobenzene 0.0250 0.0265 0.0263 106 105 71.7-127 0.650 20 2-Dichlorobenzene 0.0250 0.0268 0.0265 107 106 59.9-137 1.14 20 1-Dichlorobenzene <td< td=""><td>2-Chlorotoluene</td><td>0.0250</td><td>0.0218</td><td>0.0216</td><td>87.0</td><td>86.6</td><td>76.4-125</td><td></td><td></td><td>0.540</td><td>20</td></td<>	2-Chlorotoluene	0.0250	0.0218	0.0216	87.0	86.6	76.4-125			0.540	20
2-Dibromoethane 0.0250 0.0231 0.0230 92.2 92.2 79.8-122 0.0300 20 2-Dichlorobenzene 0.0250 0.0242 0.0240 96.9 95.9 78.8-119 1.03 20 2-Dichlorobenzene 0.0250 0.0238 0.0242 95.0 96.7 84.7-118 1.72 20 3-Dichlorobenzene 0.0250 0.0290 0.0214 83.7 85.6 77.6-127 2.30 20 4-Dichlorodifluoromethane 0.0250 0.0224 0.0228 89.5 91.0 82.2-114 1.66 20 1-Dichlorodifluoromethane 0.0250 0.0297 0.0292 119 117 56.0-134 1.43 20 1-Dichloroethane 0.0250 0.0265 0.0263 106 105 71.7-127 0.650 20 2-Dichloroethane 0.0250 0.0280 0.0277 112 111 79.8-122 1.14 20 1-Dichloroethane 0.0250 0.0268 0.0265 107 106 59.9-137 1.19 20 is-1,2-Dichloroethane	4-Chlorotoluene	0.0250	0.0235	0.0238	93.8	95.0	81.5-121			1.26	20
bitoromomethane 0.0250 0.0242 0.0240 96.9 95.9 78.8-119 1.03 20 2-Dichlorobenzene 0.0250 0.0238 0.0242 95.0 96.7 84.7-118 1.72 20 3-Dichlorobenzene 0.0250 0.0290 0.0214 83.7 85.6 77.6-127 2.30 20 4-Dichlorobenzene 0.0250 0.0224 0.0228 89.5 91.0 82.2-114 1.66 20 0.01-Indichloromethane 0.0250 0.0297 0.0292 119 117 56.0-134 1.43 20 1-Dichloroethane 0.0250 0.0265 0.0263 106 105 71.7-127 0.650 20 2-Dichloroethane 0.0250 0.0280 0.0277 112 111 79.8-122 1.14 20 1-Dichloroethene 0.0250 0.0268 0.0262 107 106 59.9-137 1.19 20 1-Sarat-1,2-Dichloroethene 0.0250 0.0245 0.0244 97.9	1,2-Dibromo-3-Chloropropane	0.0250	0.0218	0.0213	87.3	85.2	64.8-131			2.48	20
2-Dichlorobenzene0.02500.02380.024295.096.784.7-1181.72203-Dichlorobenzene0.02500.02090.021483.785.677.6-1272.30204-Dichlorobenzene0.02500.02240.022889.591.082.2-1141.66200.02500.02500.02970.029211911756.0-1341.43201-Dichloroethane0.02500.02650.026310610571.7-1270.650202-Dichloroethane0.02500.02800.027711211179.8-1221.14201-Dichloroethene0.02500.02680.026510710659.9-1371.1920is-1,2-Dichloroethene0.02500.02510.026210010577.3-1224.3020rans-1,2-Dichloroethene0.02500.02450.024497.997.572.6-1250.370202-Dichloropropane0.02500.02420.024896.799.277.4-1252.50201-Dichloropropane0.02500.02730.027210910972.5-1270.2700.270203-Dichloropropane0.02500.02430.023997.295.680.6-1151.7120	1,2-Dibromoethane	0.0250	0.0231	0.0230	92.2	92.2	79.8-122			0.0300	20
3-Dichlorobenzene 0.0250 0.0209 0.0214 83.7 85.6 77.6-127 2.30 20 4-Dichlorobenzene 0.0250 0.0224 0.0228 89.5 91.0 82.2-114 1.66 20 5-Cichlorodifluoromethane 0.0250 0.0297 0.0292 119 117 56.0-134 1.43 20 5-Cichloroethane 0.0250 0.0265 0.0263 106 105 71.7-127 0.650 20 5-Cichloroethane 0.0250 0.0280 0.0277 112 111 79.8-122 1.14 20 5-Cichloroethane 0.0250 0.0268 0.0265 107 106 59.9-137 1.19 20 5-Cichloroethene 0.0250 0.0251 0.0262 100 105 77.3-122 4.30 20 5-Cichloroethene 0.0250 0.0245 0.0244 97.9 97.5 72.6-125 0.370 20 5-Cichloropropane 0.0250 0.0242 0.0248 96.7 99.2 77.4-125 2.50 20 5-Cichloropropane 0.0250 0.0243 0.0272 109 109 72.5-127 0.270 20 5-Cichloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 1.71 20	Dibromomethane	0.0250	0.0242	0.0240	96.9	95.9	78.8-119			1.03	20
4-Dichlorobenzene0.02500.02240.022889.591.082.2-1141.662050chlorodifluoromethane0.02500.02970.029211911756.0-1341.43201.1-Dichloroethane0.02500.02650.026310610571.7-1270.65020,2-Dichloroethane0.02500.02800.027711211179.8-1221.1420,1-Dichloroethene0.02500.02680.026510710659.9-1371.1920,1-Dichloroethene0.02500.02510.026210010577.3-1224.3020,2-Dichloroethene0.02500.02450.024497.997.572.6-1250.37020,2-Dichloropropane0.02500.02420.024896.799.277.4-1252.5020,1-Dichloropropane0.02500.02730.027210910972.5-1270.2700.27020,3-Dichloropropane0.02500.02430.023997.295.680.6-1151.7120	1,2-Dichlorobenzene	0.0250	0.0238	0.0242	95.0	96.7	84.7-118			1.72	20
Dicklorodifluoromethane 0.0250 0.0297 0.0292 119 117 56.0-134 1.43 20 1-Dickloroethane 0.0250 0.0265 0.0263 106 105 71.7-127 0.650 20 1-Dickloroethane 0.0250 0.0280 0.0277 112 111 79.8-122 1.14 20 1-Dickloroethene 0.0250 0.0268 0.0265 107 106 59.9-137 1.19 20 ris-1,2-Dickloroethene 0.0250 0.0251 0.0262 100 105 77.3-122 4.30 20 rans-1,2-Dickloroethene 0.0250 0.0245 0.0244 97.9 97.5 72.6-125 0.370 20 2-Dickloropropane 0.0250 0.0242 0.0248 96.7 99.2 77.4-125 2.50 20 3-Dickloropropane 0.0250 0.0273 0.0272 109 109 72.5-127 0.270 20 3-Dickloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 80.6-115 1.71 20	1,3-Dichlorobenzene	0.0250	0.0209	0.0214	83.7	85.6	77.6-127			2.30	20
1-Dichloroethane 0.0250 0.0265 0.0263 106 105 71.7-127 0.650 20 2.2-Dichloroethane 0.0250 0.0280 0.0277 112 111 79.8-122 1.14 20 2.1-Dichloroethene 0.0250 0.0268 0.0265 107 106 59.9-137 1.19 20 2.1-Dichloroethene 0.0250 0.0251 0.0262 100 105 77.3-122 4.30 20 2.2-Dichloroethene 0.0250 0.0245 0.0244 97.9 97.5 72.6-125 0.370 20 2.2-Dichloropropane 0.0250 0.0242 0.0248 96.7 99.2 77.4-125 2.50 20 2.2-Dichloropropane 0.0250 0.0273 0.0272 109 109 72.5-127 0.270 0.270 20 2.3-Dichloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 1.71 20	1,4-Dichlorobenzene	0.0250	0.0224	0.0228	89.5	91.0	82.2-114			1.66	20
2-Dichloroethane 0.0250 0.0280 0.0277 112 111 79.8-122 1.14 20 1-Dichloroethene 0.0250 0.0268 0.0265 107 106 59.9-137 1.19 20 1-Dichloroethene 0.0250 0.0251 0.0262 100 105 77.3-122 4.30 20 1-Pochloroethene 0.0250 0.0245 0.0244 97.9 97.5 72.6-125 0.370 20 1-Dichloropropane 0.0250 0.0242 0.0248 96.7 99.2 77.4-125 2.50 20 1-Dichloropropane 0.0250 0.0273 0.0272 109 109 72.5-127 0.270 20 1-Dichloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 1.71 20	Dichlorodifluoromethane	0.0250	0.0297	0.0292	119	117	56.0-134			1.43	20
1-Dichloroethene 0.0250 0.0268 0.0265 107 106 59.9-137 1.19 20 ins-1,2-Dichloroethene 0.0250 0.0251 0.0262 100 105 77.3-122 4.30 20 ins-1,2-Dichloroethene 0.0250 0.0245 0.0244 97.9 97.5 72.6-125 0.370 20 ins-1,2-Dichloropropane 0.0250 0.0242 0.0248 96.7 99.2 77.4-125 2.50 20 ins-1,2-Dichloropropane 0.0250 0.0273 0.0272 109 109 72.5-127 0.270 20 ins-1,2-Dichloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 1.71 20	1,1-Dichloroethane	0.0250	0.0265	0.0263	106	105	71.7-127			0.650	20
ris-1,2-Dichloroethene 0.0250 0.0251 0.0262 100 105 77.3-122 4.30 20 rans-1,2-Dichloroethene 0.0250 0.0245 0.0244 97.9 97.5 72.6-125 0.370 20 20 2-Dichloropropane 0.0250 0.0242 0.0248 96.7 99.2 77.4-125 2.50 20 20 20 20 20 20 20 20 20 20 20 20 20	1,2-Dichloroethane	0.0250	0.0280	0.0277	112	111	79.8-122			1.14	20
rans-1,2-Dichloroethene 0.0250 0.0245 0.0244 97.9 97.5 72.6-125 0.370 20 ,2-Dichloropropane 0.0250 0.0242 0.0248 96.7 99.2 77.4-125 2.50 20 ,1-Dichloropropene 0.0250 0.0273 0.0272 109 109 72.5-127 0.270 20 ,3-Dichloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 1.71 20	1,1-Dichloroethene	0.0250	0.0268	0.0265	107	106	59.9-137			1.19	20
2-Dichloropropane 0.0250 0.0242 0.0248 96.7 99.2 77.4-125 2.50 20 1-Dichloropropene 0.0250 0.0273 0.0272 109 109 72.5-127 0.270 20 3-Dichloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 1.71 20	cis-1,2-Dichloroethene	0.0250	0.0251	0.0262	100	105	77.3-122			4.30	20
1-Dichloropropene 0.0250 0.0273 0.0272 109 109 72.5-127 0.270 20 3-Dichloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 1.71 20	trans-1,2-Dichloroethene	0.0250	0.0245	0.0244	97.9	97.5	72.6-125			0.370	20
3-Dichloropropane 0.0250 0.0243 0.0239 97.2 95.6 80.6-115 1.71 20	1,2-Dichloropropane	0.0250	0.0242	0.0248	96.7	99.2	77.4-125			2.50	20
	1,1-Dichloropropene	0.0250	0.0273	0.0272	109	109	72.5-127			0.270	20
is-1,3-Dichloropropene 0.0250 0.0247 0.0249 98.6 99.7 77.7-124 1.06 20	1,3-Dichloropropane	0.0250	0.0243	0.0239	97.2	95.6	80.6-115			1.71	20
	cis-1,3-Dichloropropene	0.0250	0.0247	0.0249	98.6	99.7	77.7-124			1.06	20

0.0250

0.0245

trans-1,3-Dichloropropene

98.1

98.9

0.0247

73.5-127

20

0.800

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-09,10,11

Laboratory Control Sam	bie (rc2) • i	Laboratory	Control Samp	ne Duplica	ate (LCSD))		
(LCS) 03/22/16 04:14 • (LCSD) 03/	/22/16 04:34							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	Ļ
				01	0.4	0.1		

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
2,2-Dichloropropane	0.0250	0.0251	0.0255	101	102	61.3-134			1.45	20
Di-isopropyl ether	0.0250	0.0251	0.0248	100	99.1	65.1-135			1.19	20
Ethylbenzene	0.0250	0.0226	0.0229	90.5	91.5	80.9-121			1.11	20
Hexachloro-1,3-butadiene	0.0250	0.0207	0.0209	82.7	83.6	73.7-133			1.07	20
Isopropylbenzene	0.0250	0.0219	0.0223	87.7	89.1	81.6-124			1.53	20
p-lsopropyltoluene	0.0250	0.0220	0.0224	87.8	89.6	77.6-129			2.04	20
2-Butanone (MEK)	0.125	0.124	0.119	99.3	95.4	46.4-155			4.05	20
Methylene Chloride	0.0250	0.0241	0.0240	96.4	95.8	69.5-120			0.560	20
4-Methyl-2-pentanone (MIBK)	0.125	0.120	0.114	95.9	91.2	63.3-138			5.01	20
Methyl tert-butyl ether	0.0250	0.0260	0.0251	104	101	70.1-125			3.34	20
Naphthalene	0.0250	0.0219	0.0222	87.5	88.9	69.7-134			1.57	20
n-Propylbenzene	0.0250	0.0235	0.0240	94.1	95.8	81.9-122			1.83	20
Styrene	0.0250	0.0225	0.0229	90.2	91.6	79.9-124			1.51	20
1,1,1,2-Tetrachloroethane	0.0250	0.0213	0.0216	85.3	86.3	78.5-125			1.20	20
1,1,2,2-Tetrachloroethane	0.0250	0.0212	0.0208	84.9	83.0	79.3-123			2.20	20
Tetrachloroethene	0.0250	0.0209	0.0212	83.4	84.7	73.5-130			1.53	20
Toluene	0.0250	0.0234	0.0239	93.6	95.5	77.9-116			2.02	20
1,1,2-Trichlorotrifluoroethane	0.0250	0.0255	0.0253	102	101	62.0-141			0.540	20
1,2,3-Trichlorobenzene	0.0250	0.0208	0.0212	83.2	84.7	75.7-134			1.75	20
1,2,4-Trichlorobenzene	0.0250	0.0228	0.0229	91.3	91.5	76.1-136			0.250	20
1,1,1-Trichloroethane	0.0250	0.0254	0.0253	102	101	71.1-129			0.330	20
1,1,2-Trichloroethane	0.0250	0.0230	0.0230	92.0	92.0	81.6-120			0.000	20
Trichloroethene	0.0250	0.0222	0.0230	88.7	91.9	79.5-121			3.50	20
Trichlorofluoromethane	0.0250	0.0251	0.0256	100	102	49.1-157			2.05	20
1,2,3-Trichloropropane	0.0250	0.0227	0.0224	90.7	89.7	74.9-124			1.08	20
1,2,3-Trimethylbenzene	0.0250	0.0239	0.0243	95.8	97.4	79.9-118			1.68	20
1,2,4-Trimethylbenzene	0.0250	0.0219	0.0227	87.8	90.7	79.0-122			3.33	20
1,3,5-Trimethylbenzene	0.0250	0.0216	0.0219	86.3	87.7	81.0-123			1.57	20
Vinyl chloride	0.0250	0.0275	0.0269	110	107	61.5-134			2.20	20
Xylenes, Total	0.0750	0.0650	0.0665	86.7	88.6	79.2-122			2.20	20
(S) Toluene-d8				106	107	90.0-115				
(S) Dibromofluoromethane				113	111	79.0-121				
(S) 4-Bromofluorobenzene				103	102	80.1-120				

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-04

Method Blank (MB)

(MB) 03/22/16 05:39			
,	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
Acetone	ND		0.0500
Acrylonitrile	ND		0.0100
Benzene	ND		0.00100
Bromobenzene	ND		0.00100
Bromodichloromethane	ND		0.00100
Bromoform	ND		0.00100
Bromomethane	ND		0.00500
n-Butylbenzene	ND		0.00100
sec-Butylbenzene	ND		0.00100
tert-Butylbenzene	ND		0.00100
Carbon tetrachloride	ND		0.00100
Chlorobenzene	ND		0.00100
Chlorodibromomethane	ND		0.00100
Chloroethane	ND		0.00500
2-Chloroethyl vinyl ether	ND		0.0500
Chloroform	ND		0.00500
Chloromethane	ND		0.00250
2-Chlorotoluene	ND		0.00100
4-Chlorotoluene	ND		0.00100
1,2-Dibromo-3-Chloropropane	ND		0.00500
1,2-Dibromoethane	ND		0.00100
Dibromomethane	ND		0.00100
1,2-Dichlorobenzene	ND		0.00100
1,3-Dichlorobenzene	ND		0.00100
1,4-Dichlorobenzene	ND		0.00100
Dichlorodifluoromethane	ND		0.00500
1,1-Dichloroethane	ND		0.00100
1,2-Dichloroethane	ND		0.00100
1,1-Dichloroethene	ND		0.00100
cis-1,2-Dichloroethene	ND		0.00100
trans-1,2-Dichloroethene	ND		0.00100
1,2-Dichloropropane	ND		0.00100
1,1-Dichloropropene	ND		0.00100
1,3-Dichloropropane	ND		0.00100
cis-1,3-Dichloropropene	ND		0.00100
trans-1,3-Dichloropropene	ND		0.00100

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-04

Method Blank (MB)

(MB) 03/22/16 05:39				L
	MB Result	MB Qualifier	MB RDL	Ē
Analyte	mg/kg		mg/kg	ľ
2,2-Dichloropropane	ND		0.00100	L
Di-isopropyl ether	ND		0.00100	3
Ethylbenzene	ND		0.00100	L
Hexachloro-1,3-butadiene	ND		0.00100	Z
Isopropylbenzene	ND		0.00100	l
p-lsopropyltoluene	ND		0.00100	L
2-Butanone (MEK)	ND		0.0100	1
Methylene Chloride	ND		0.00500	L
4-Methyl-2-pentanone (MIBK)	ND		0.0100	6
Methyl tert-butyl ether	ND		0.00100	ſ
Naphthalene	ND		0.00500	
n-Propylbenzene	ND		0.00100	7
Styrene	ND		0.00100	L
1,1,1,2-Tetrachloroethane	ND		0.00100	8
1,1,2,2-Tetrachloroethane	ND		0.00100	l
Tetrachloroethene	ND		0.00100	L
Toluene	ND		0.00500	9
1,1,2-Trichlorotrifluoroethane	ND		0.00100	L
1,2,3-Trichlorobenzene	ND		0.00100	
1,2,4-Trichlorobenzene	ND		0.00100	
1,1,1-Trichloroethane	ND		0.00100	
1,1,2-Trichloroethane	ND		0.00100	
Trichloroethene	ND		0.00100	
Trichlorofluoromethane	ND		0.00500	
1,2,3-Trichloropropane	ND		0.00250	
1,2,3-Trimethylbenzene	ND		0.00100	
1,2,4-Trimethylbenzene	ND		0.00100	
1,3,5-Trimethylbenzene	ND		0.00100	
Vinyl chloride	ND		0.00100	
Xylenes, Total	ND		0.00300	
(S) Toluene-d8	104		88.7-115	
(S) Dibromofluoromethane	103		76.3-123	

94.6

(S) 4-Bromofluorobenzene

69.7-129

Volatile Organic Compounds (GC/MS) by Method 8260C

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 03/22/16 04:07 • (LCSD) 03/22/16 04:26

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.125	0.0904	0.0891	72.3	71.3	25.3-178			1.45	22.9
Acrylonitrile	0.125	0.114	0.110	91.1	87.6	57.8-143			3.88	20
Benzene	0.0250	0.0222	0.0223	88.9	89.3	72.6-120			0.420	20
Bromobenzene	0.0250	0.0228	0.0236	91.2	94.4	80.3-115			3.40	20
Bromodichloromethane	0.0250	0.0227	0.0232	91.0	92.7	75.3-119			1.86	20
Bromoform	0.0250	0.0220	0.0227	88.1	90.9	69.1-135			3.15	20
Bromomethane	0.0250	0.0343	0.0359	137	143	23.0-191			4.37	20
n-Butylbenzene	0.0250	0.0236	0.0237	94.2	94.8	74.2-134			0.590	20
sec-Butylbenzene	0.0250	0.0230	0.0236	91.9	94.2	77.8-129			2.52	20
tert-Butylbenzene	0.0250	0.0225	0.0237	89.8	94.9	77.2-129			5.46	20
Carbon tetrachloride	0.0250	0.0224	0.0227	89.6	90.7	69.4-129			1.28	20
Chlorobenzene	0.0250	0.0236	0.0244	94.5	97.5	78.9-122			3.09	20
Chlorodibromomethane	0.0250	0.0239	0.0240	95.5	96.0	76.4-126			0.590	20
Chloroethane	0.0250	0.0298	0.0308	119	123	47.2-147			3.29	20
2-Chloroethyl vinyl ether	0.125	0.141	0.143	113	114	16.7-162			0.850	23.7
Chloroform	0.0250	0.0234	0.0237	93.7	94.9	73.3-122			1.20	20
Chloromethane	0.0250	0.0237	0.0238	94.9	95.4	53.1-135			0.530	20
2-Chlorotoluene	0.0250	0.0217	0.0229	86.7	91.7	74.6-127			5.60	20
4-Chlorotoluene	0.0250	0.0240	0.0237	96.0	94.6	79.5-123			1.42	20
1,2-Dibromo-3-Chloropropane	0.0250	0.0214	0.0208	85.6	83.3	64.9-131			2.68	20
1,2-Dibromoethane	0.0250	0.0237	0.0237	94.7	95.0	67.2-121			0.280	20
Dibromomethane	0.0250	0.0233	0.0240	93.3	95.9	78.5-117			2.75	20
1,2-Dichlorobenzene	0.0250	0.0229	0.0233	91.6	93.1	83.6-119			1.69	20
1,3-Dichlorobenzene	0.0250	0.0223	0.0226	89.0	90.6	75.9-129			1.75	20
1,4-Dichlorobenzene	0.0250	0.0233	0.0230	93.1	92.0	81.0-115			1.13	20
Dichlorodifluoromethane	0.0250	0.0290	0.0284	116	113	50.9-139			2.07	20
1,1-Dichloroethane	0.0250	0.0227	0.0228	90.7	91.3	71.7-125			0.620	20
1,2-Dichloroethane	0.0250	0.0231	0.0234	92.4	93.8	67.2-121			1.49	20
1,1-Dichloroethene	0.0250	0.0271	0.0285	109	114	60.6-133			4.97	20
cis-1,2-Dichloroethene	0.0250	0.0234	0.0240	93.8	95.8	76.1-121			2.17	20
trans-1,2-Dichloroethene	0.0250	0.0240	0.0244	96.0	97.5	70.7-124			1.52	20
1,2-Dichloropropane	0.0250	0.0230	0.0227	92.1	90.8	76.9-123			1.43	20

0.0250

0.0250

0.0250

0.0250

0.0245

0.0229

0.0238

0.0249

0.0245

0.0230

0.0243

0.0242

1,1-Dichloropropene

1,3-Dichloropropane

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

98.0

91.5

95.1

99.6

98.0

91.9

97.0

96.9

71.2-126

80.3-114

77.3-123

73.0-127

0.0100

0.480

2.02

2.73

20

20 20

20

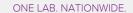
1,2,3-Trichloropropane

1,2,3-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

(S) Dibromofluoromethane


(S) 4-Bromofluorobenzene

Vinyl chloride

Xylenes, Total

(S) Toluene-d8

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260C

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 03/22/16 04:07 • (LCSD) 03	3/22/16 04:26									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
2,2-Dichloropropane	0.0250	0.0234	0.0247	93.7	98.9	61.9-132			5.46	20
Di-isopropyl ether	0.0250	0.0224	0.0223	89.8	89.0	67.2-131			0.810	20
Ethylbenzene	0.0250	0.0238	0.0246	95.3	98.5	78.6-124			3.24	20
Hexachloro-1,3-butadiene	0.0250	0.0217	0.0213	87.0	85.2	69.2-136			2.15	20
Isopropylbenzene	0.0250	0.0226	0.0238	90.5	95.0	79.4-126			4.85	20
p-Isopropyltoluene	0.0250	0.0234	0.0240	93.8	96.1	75.4-132			2.50	20
2-Butanone (MEK)	0.125	0.104	0.100	83.0	80.3	44.5-154			3.33	21.3
Methylene Chloride	0.0250	0.0225	0.0228	90.1	91.4	68.2-119			1.38	20
4-Methyl-2-pentanone (MIBK)	0.125	0.117	0.115	93.4	91.7	61.1-138			1.85	20
Methyl tert-butyl ether	0.0250	0.0218	0.0225	87.1	89.8	70.2-122			3.05	20
Naphthalene	0.0250	0.0203	0.0204	81.4	81.5	69.9-132			0.200	20
n-Propylbenzene	0.0250	0.0235	0.0243	94.1	97.3	80.2-124			3.34	20
Styrene	0.0250	0.0236	0.0244	94.2	97.7	79.4-124			3.56	20
1,1,1,2-Tetrachloroethane	0.0250	0.0230	0.0245	92.1	98.0	76.7-127			6.16	20
1,1,2,2-Tetrachloroethane	0.0250	0.0223	0.0231	89.4	92.2	78.8-124			3.14	20
Tetrachloroethene	0.0250	0.0232	0.0236	92.9	94.6	71.1-133			1.78	20
Toluene	0.0250	0.0226	0.0226	90.4	90.4	76.7-116			0.0200	20
1,1,2-Trichlorotrifluoroethane	0.0250	0.0294	0.0294	118	118	62.6-138			0.100	20
1,2,3-Trichlorobenzene	0.0250	0.0212	0.0214	84.7	85.7	72.5-137			1.14	20
1,2,4-Trichlorobenzene	0.0250	0.0220	0.0217	88.0	87.0	74.0-137			1.16	20
1,1,1-Trichloroethane	0.0250	0.0240	0.0241	96.0	96.5	69.9-127			0.500	20
1,1,2-Trichloroethane	0.0250	0.0234	0.0235	93.6	94.1	81.9-119			0.580	20
Trichloroethene	0.0250	0.0230	0.0237	91.8	94.7	77.2-122			3.09	20
Trichlorofluoromethane	0.0250	0.0257	0.0263	103	105	51.5-151			2.28	20

0.0250

0.0250

0.0250

0.0250

0.0250

0.0750

0.0228

0.0227

0.0233

0.0228

0.0266

0.0709

0.0231

0.0233

0.0241

0.0237

0.0263

0.0732

91.1

90.6

93.1

91.4

107

94.5

102

101

97.9

92.2

93.0

96.3

94.7

105

97.5

104

101

101

74.0-124

79.4-118

77.1-124

79.0-125

58.4-134

78.1-123

88.7-115

76.3-123

69.7-129

20

20

20

20

20

20

1.26

2.64

3.42

3.54

1.08

3.14

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

L824454-09,10,11

Method Blank (MB)

2-Chloroethyl vinyl ether

(MB) 03/22/16 12:37

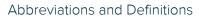
Analyte

MB Result	MB Qualifier	MB RDL
mg/l		mg/l
ND		0.0500

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 03/22/16 11:14 • (LCSD) 03/22/16 11:35

(LCS) 03/22/10 11.14 (LCSD) 0	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
2-Chloroethyl vinyl ether	0.125	0.132	0.134	105	107	23.4-162			1.41	23.5



GLOSSARY OF TERMS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
В	The same analyte is found in the associated blank.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
-lorida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
daho	TN00003	Oklahoma	9915
Ilinois	200008	Oregon	TN200002
ndiana	C-TN-01	Pennsylvania	68-02979
owa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
ouisiana	Al30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

and the second s	MARKET TO THE	l pi	Billing Informa	ation:			T			Ana	alysis / Cu	ontainer	/ Preservat	tive	Total I	- C	Chain of Custody	Pageof
ES Environmental, In 215 Fourth Ave., Suite 1350 eattle, WA 98161	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A	Attn: Accou	ounts Payab rth Ave., Ste VA 98161										1	YOUR LAB O	□ (ve)-5		
eport to: hris DeBoer		-		DeBoer@peser	env.coi	m			-		J-BIK					N P P	Mount Juliet, TN 37122 Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859	
oject escription:	et 🦠			City/State Collected:					MeO		ib-HC	res				-	L# L8244	BBIT ALCOHOL: NO THE RESIDENCE
hone: 206-529-3980	Client Project #	#		Lab Project # PESENVSV		MR			14/Syr/	ō	40mIAmb-HCI-BIk	4ozCir-NoPres		L122	2	1	A09	
ollected by (print):	Site/Facility ID	Heven	5	P.O. #	te P	esults Needed		Summa	/NaHSC	Amb-H	Trip Blank 40	TS 402C					Acctnum: PESEN Template:T1105 Prelogin: P5466	587
ollected by (signature): older of the control of t	Rush? (La	Day	Notified) 200% 100%	Email?	il?No	No X_Yes	No. of	0-15SIM Sum	V8260C 40ml/NaHSO4/Syr/MeOH	V8260C 40mlamb-HCl	V8260C- Trip B	Screen /					TSR: 358 - Jarred PB: 3 - 14-1 Shipped Vio: Fed	d Willis
Sample ID	Comp/Grab		Depth	Date		Time	Cntrs	Marie Control	V8.	V8.	8	VOC	-			100	Rem./Contaminant	CONTRACTOR OF THE PARTY OF THE
IA -031716	Grab	Air	NA	3/17/1	11	173019	***	X						3		12		
0A-031716	Washington.	Air	NA	3/17/	16	1737	42	X				1000		100		100		-0
SV1-03(816		Air	.5	3 18 1	160	937	1	1000 CONTRACTOR		1000	17 - 1	100 mm		1	1	10 M (S)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0
5v2-03186	e and the later which	Air	.5	3/18/	16	950	1	X		1		100000					The second secon	0
5V3-031816		Air	.5	3/18/	16	1010	4 2				1	10000	1	100		1		0
tw-1-8		Coxir55	/	3/7	16	1310	91	20000000	V		1	X	1		1			6
tw-2-6		SS	6	13/17	No	1310	4	-	X	1000		X		W. 1.4	1		1	. 0
5v1-1.5	0.00	SS	1,5	3/18	116	1205	4	E0000000	X	1000		X				1 N / 2 N	Maria de la companya del companya de la companya de la companya del companya de la companya de l	0
Sv2-1	12.12	SS	1	3/18	116	1230	4	100000000000000000000000000000000000000	X	100	-	X				200 mg	doc to	0
S112 1 B	4	SS	1.5	13/18	3/16	1310	4	7	X		127	1 ^		V				The state of the s
* Matrix: SS - Soil GW - Groundwat Remarks:	ater WW - Waste\	water DW - L	orinking Wa	or-Oth			C				pH _			essible.		told #	A STATE OF THE STA	167
Contract of States and State	erganist Com				1 4			The P			Flow_		Other_		_ Ho	ondition	(lab	b use only); y i u
Relinguished by : (Signature)		Date:	1.1.	Time:	· 1. 123	Received by: (Sign	nature)	1	1	1.1		FedEx [rned via: C	r 🗆		Tortio	(18	GIL
Relinquished by : (Signature)		Date	716	Time:	R	Received by: (Sign	mature)	A			Temp:		°C Bottl	tles Receive	ved:	C Sev	ai Intact: / Y	NN
Relinquished by : (Signature)	CONTRACTOR OF THE PARTY OF THE	Date:	Gray G	Time:	R	Received for lab.	by: (S)g	nature)			10000000	19/16	And the second	-	CONTRACTOR DESCRIPTION	oH Check	The second second	
Remidusires of the second	Normal and	Wall Profession			1	074	4		0617	2/10			Market San			120000		

CHARLEST PERSONAL AND THE	and the second	(Law	Billing Infor	mation:					A	nalysis /	Contain	er / Prese	rvativ	e		1 1 1 1 1 1	Chain of Custody	Page of_	
215 Fourth Ave., Suite 1350 eattle, WA 98161			Attn: Acc	Attn: Accounts Payable 1215 Fourth Ave., Ste. 1350 Seattle, WA 98161												4	LA-B S-C-	SC	
eport to: Chris DeBoer	THE STATE OF THE S	111	Email To: C	DeBoer@pesenv.				BIK						26	12065 Lebanon Rd Mount Juliet, TN 3712 Phone: 615-758-5858 Phone: 800-767-5859				
oject escription:				City/State Collected:				ЛеОН		-HCI-	sə.						L# 2821	1454	
Phone: 206-529-3980	Client Project		Moderly.	Lab Project # PESENVSWA	-AIR		4/Syr/N		ımlAmb	Ir-NoPr						Table #			
Collected by (print): Collected by (signature): Collected by (signature):	nature): Rush? (Lab MUST Be Notif Same Day Next Day Two Day			Email?	Results Needed _No X_Yes _NoYes	No X_Yes		V8260C 40ml/NaHSO4/Syr/MeOH	V8260C 40mlAmb-HCl	V8260C- Trip Blank 40mlAmb-HCI-Blk	C Screen / TS 4ozClr-NoPres					10 M	Acctnum: PESENVSWA Template:T110587 Prelogin: P546003 TSR: 358 - Jarred Willis PB: 3 - 1 4 16 Mg Shipped Via: FedEX 2nd Day		
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	TO-15SIM	V82	1000000	V82	VOC			Street		or Albe	Rem./Contaminant	Sample # (lab only	
TW-1-W	GRAB	GW	9	317/16	1425	3			Х			100,412		2.7.1		907900	terro au na	'0'	
tw-2-w		GW	6	3/17/16	1515	3			X				3.17	3	Con Co			10	
		GW		1		3			X					-					
TRIP BLANK		GW				1				Х		\vdash			1000			11	
	100 m							-				\vdash				1 1 2 2 2			
								_		_		-		-					
																-			
建设工程									-							17	4		
The second secon	elletoniq six time.	Land Progra		at at			Time!							Si c	98.0		Courtles or Special		
and the second s																			
* Matrix: SS - Soil GW - Groundwater	WW - WasteW	ater DW - I	Orinking Wat	er OT - Other						pН	13090	Tem	p	7	- 20 - 12 - 1			14 14 17 17 17	
Remarks:		+								Flow		Othe	r		Но	old#			
Relinquished by : (Signature)	A CONTRACTOR	Date:		Time:	Received by: (Sig	nature)	.A			Sampl	es retur	ned via:	UP	S	Co	ndition	: (lab	use only Goo	
Rehaquished by: (Signature)		116	1610		100			9.7	100000	-	Courie	W1000000000000000000000000000000000000	T1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000					
		1.	Time:	Received by: (Sig	nature)	K			Temp		°C Bo	30		5955 36	or Saal	Intact: J v	N NA		
Control of the contro	10.75 SERVICES	Date:	1.19	Time:	Received for lab	by: (Sign	nature)	100		- Discouling	STATE OF THE PARTY	CONTRACTOR STATE	1000		Market Sales	COC Seel Intact: J Y N NA pH Checked: NCF:			
Relinquished by : (Signature)		Dute.			Time: Received for lab by: (Sign					3/19/12 Typo						pri circucu.			

Non-Conformance Form ESC Lab Sciences

Non-Conformance (check applicable items)

		1		
	Sample Integrity		Chain of Custody Clarification	
	Parameter(s) past holding	×	Login Clarification Needed	If Broken Container:
1	dillo	_	nogui communication income	
	Improper			
	temperature		Chain of custody is incomplete	Insufficient packing material around container
	Improper container		Please specify Metals requested.	Insufficient packing material inside
	type			cooler
	Improper		Please specify TCLP requested	
	preservation		manage against the state against	Improper handling by carrier (FedEx / UPS / Court
	Insufficient sample volume.		Received additional samples not listed on coc.	Sample was frozen
			Sample ids on containers do not match ids on	
	Sample is biphasic.		000	Container lid not intact
	Vials received with headspace.	,	Trip Blank not received.	If no Chain of Custody:
	Broken container		Client did not "X" analysis.	Received by:
	Broken container:		Chain of Custody is missing	Date/Time:
	Sufficient sample remains			Temp./Cont. Rec./pH:
				Carrier:
				Tracking#

<u>Login Comments:</u> Client sent SS samples for TW-1-8 has TO-15SIM marked on COC. Please advise

Client informed by:	Call	Email X	Voice Mail	Date: 3/21/16	Time: 1045	
TSR Initials: IW	Client Cont	act: Chris DeBo	er			

Login Instructions: Log sample "TW-1-8" for V8260C and TS. Add to L824454 as R2 due 3/22.

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

ONE LAB. NATIONWIDE.

Collected date/time: 03/17/16 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.2		1	03/21/2016 11:50	WG857989

_			1
B		ī	1
	Cr		ı

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND		0.0573	1	03/22/2016 00:29	WG857902
Acrylonitrile	ND		0.0115	1	03/22/2016 00:29	WG857902
Benzene	ND		0.00115	1	03/22/2016 00:29	WG857902
Bromobenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
Bromodichloromethane	ND		0.00115	1	03/22/2016 00:29	WG857902
Bromoform	ND		0.00115	1	03/22/2016 00:29	WG857902
Bromomethane	ND		0.00573	1	03/22/2016 00:29	WG857902
n-Butylbenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
sec-Butylbenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
tert-Butylbenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
Carbon tetrachloride	ND		0.00115	1	03/22/2016 00:29	WG857902
Chlorobenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
Chlorodibromomethane	ND		0.00115	1	03/22/2016 00:29	WG857902
Chloroethane	ND		0.00573	1	03/22/2016 00:29	WG857902
2-Chloroethyl vinyl ether	ND		0.0573	1	03/22/2016 00:29	WG857902
Chloroform	ND		0.00573	1	03/22/2016 00:29	WG857902
Chloromethane	ND		0.00287	1	03/22/2016 00:29	WG857902
2-Chlorotoluene	ND		0.00115	1	03/22/2016 00:29	WG857902
4-Chlorotoluene	ND		0.00115	1	03/22/2016 00:29	WG857902
1,2-Dibromo-3-Chloropropane	ND		0.00573	1	03/22/2016 00:29	WG857902
1,2-Dibromoethane	ND		0.00115	1	03/22/2016 00:29	WG857902
Dibromomethane	ND		0.00115	1	03/22/2016 00:29	WG857902
1,2-Dichlorobenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
1,3-Dichlorobenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
1.4-Dichlorobenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
Dichlorodifluoromethane	ND		0.00573	1	03/22/2016 00:29	WG857902
1,1-Dichloroethane	ND		0.00115	1	03/22/2016 00:29	WG857902
1.2-Dichloroethane	ND		0.00115	1	03/22/2016 00:29	WG857902
1,1-Dichloroethene	ND		0.00115	1	03/22/2016 00:29	WG857902
cis-1,2-Dichloroethene	ND		0.00115	1	03/22/2016 00:29	WG857902
trans-1,2-Dichloroethene	ND		0.00115	1	03/22/2016 00:29	WG857902
1,2-Dichloropropane	ND		0.00115	1	03/22/2016 00:29	WG857902
1,1-Dichloropropene	ND		0.00115	1	03/22/2016 00:29	WG857902
1,3-Dichloropropane	ND		0.00115	1	03/22/2016 00:29	WG857902
cis-1,3-Dichloropropene	ND		0.00115	1	03/22/2016 00:29	WG857902
trans-1,3-Dichloropropene	ND		0.00115	1	03/22/2016 00:29	WG857902
2,2-Dichloropropane	ND		0.00115	1	03/22/2016 00:29	WG857902
Di-isopropyl ether	ND		0.00115	1	03/22/2016 00:29	WG857902
Ethylbenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
Hexachloro-1,3-butadiene	ND		0.00115	1	03/22/2016 00:29	WG857902
Isopropylbenzene	ND		0.00115	1	03/22/2016 00:29	WG857902
p-Isopropyltoluene	ND		0.00115	1	03/22/2016 00:29	WG857902
2-Butanone (MEK)	ND		0.00115	1	03/22/2016 00:29	WG857902
Methylene Chloride	ND		0.00573	1	03/22/2016 00:29	WG857902
			0.00575	1	03/22/2016 00:29	WG857902
4-Methyl-2-pentanone (MIBK)	ND		0.0115	1	03/22/2016 00:29	WG857902
Methyl tert-butyl ether	ND		0.00115	1	03/22/2016 00:29	WG857902
Naphthalene	ND			1	03/22/2016 00:29	WG857902
n-Propylbenzene	ND		0.00115	1		
Styrene	ND		0.00115	1	03/22/2016 00:29	WG857902
1,1,1,2-Tetrachloroethane	ND		0.00115		03/22/2016 00:29	WG857902

Collected date/time: 03/17/16 13:10

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

	Resu	ilt (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/k	g		mg/kg		date / time		
1,1,2,2-Tetrachloroethane	ND	V.T	<u>J4</u>	0.00115	1	03/22/2016 00:29	WG857902	
1,1,2-Trichlorotrifluoroethane	ND		<u>J3</u>	0.00115	1	03/22/2016 00:29	WG857902	
Tetrachloroethene	ND			0.00115	1	03/22/2016 00:29	WG857902	
Toluene	ND			0.00573	1	03/22/2016 00:29	WG857902	
1,2,3-Trichlorobenzene	ND			0.00115	1	03/22/2016 00:29	WG857902	
1,2,4-Trichlorobenzene	ND			0.00115	1	03/22/2016 00:29	WG857902	
1,1,1-Trichloroethane	ND			0.00115	1	03/22/2016 00:29	WG857902	
1,1,2-Trichloroethane	ND		<u>J4</u>	0.00115	1	03/22/2016 00:29	WG857902	
Trichloroethene	ND			0.00115	1	03/22/2016 00:29	WG857902	
Trichlorofluoromethane	ND			0.00573	1	03/22/2016 00:29	WG857902	
1,2,3-Trichloropropane	ND			0.00287	1	03/22/2016 00:29	WG857902	
1,2,4-Trimethylbenzene	ND			0.00115	1	03/22/2016 00:29	WG857902	
1,2,3-Trimethylbenzene	ND			0.00115	1	03/22/2016 00:29	WG857902	
Vinyl chloride	ND			0.00115	1	03/22/2016 00:29	WG857902	
1,3,5-Trimethylbenzene	ND			0.00115	1	03/22/2016 00:29	WG857902	
Xylenes, Total	ND			0.00344	1	03/22/2016 00:29	WG857902	
(S) Toluene-d8	102			88.7-115		03/22/2016 00:29	WG857902	
(S) Dibromofluoromethane	104			76.3-123		03/22/2016 00:29	WG857902	
(S) 4-Bromofluorobenzene	91.4			69.7-129		03/22/2016 00:29	WG857902	

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 12:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.6		1	03/21/2016 11:50	WG857989

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND		0.0534	1	03/22/2016 01:53	WG857902
Acrylonitrile	ND		0.0107	1	03/22/2016 01:53	WG857902
Benzene	ND		0.00107	1	03/22/2016 01:53	WG857902
Bromobenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
Bromodichloromethane	ND		0.00107	1	03/22/2016 01:53	WG857902
Bromoform	ND		0.00107	1	03/22/2016 01:53	WG857902
Bromomethane	ND		0.00534	1	03/22/2016 01:53	WG857902
n-Butylbenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
sec-Butylbenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
tert-Butylbenzene	ND		0.00107	.1	03/22/2016 01:53	WG857902
Carbon tetrachloride	ND		0.00107	1	03/22/2016 01:53	WG857902
Chlorobenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
Chlorodibromomethane	ND		0.00107	1	03/22/2016 01:53	WG857902
Chloroethane	ND		0.00534	1	03/22/2016 01:53	WG857902
2-Chloroethyl vinyl ether	ND		0.0534	1	03/22/2016 01:53	WG857902
Chloroform	ND		0.00534	1	03/22/2016 01:53	WG857902
Chloromethane	ND		0.00267	1	03/22/2016 01:53	WG857902
2-Chlorotoluene	ND		0.00107	1	03/22/2016 01:53	WG857902
4-Chlorotoluene	ND		0.00107	1	03/22/2016 01:53	WG857902
1,2-Dibromo-3-Chloropropane	ND		0.00534	1	03/22/2016 01:53	WG857902
1,2-Dibromoethane	ND		0.00107	1	03/22/2016 01:53	WG857902
Dibromomethane	ND		0.00107	1	03/22/2016 01:53	WG857902
1,2-Dichlorobenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
1,3-Dichlorobenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
1.4-Dichlorobenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
Dichlorodifluoromethane	ND		0.00534	1	03/22/2016 01:53	WG857902
1,1-Dichloroethane	ND		0.00107	1	03/22/2016 01:53	WG857902
1,2-Dichloroethane	ND		0.00107	1	03/22/2016 01:53	WG857902
1,1-Dichloroethene	ND		0.00107	1	03/22/2016 01:53	WG857902
cis-1,2-Dichloroethene	ND		0.00107	1	03/22/2016 01:53	WG857902
trans-1,2-Dichloroethene	ND		0.00107	1	03/22/2016 01:53	WG857902
1,2-Dichloropropane	ND		0.00107	1	03/22/2016 01:53	WG857902
1,1-Dichloropropene	ND		0.00107	1	03/22/2016 01:53	WG857902
1,3-Dichloropropane	ND		0.00107	1	03/22/2016 01:53	WG857902
cis-1,3-Dichloropropene	ND		0.00107	1	03/22/2016 01:53	WG857902
trans-1,3-Dichloropropene	ND		0.00107	1	03/22/2016 01:53	WG857902
2,2-Dichloropropane	ND		0.00107	1	03/22/2016 01:53	WG857902
	ND		0.00107	1	03/22/2016 01:53	WG857902
Di-isopropyl ether Ethylbenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
Hexachloro-1,3-butadiene	ND		0.00107	1	03/22/2016 01:53	WG857902
The Account of Control (Control (Contro	ND		0.00107	1	03/22/2016 01:53	WG857902
Isopropylbenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
p-Isopropyltoluene			0.0107	1	03/22/2016 01:53	WG857902
2-Butanone (MEK)	ND		0.00534	1	03/22/2016 01:53	WG857902
Methylene Chloride	ND		0.00534	1	03/22/2016 01:53	WG857902
4-Methyl-2-pentanone (MIBK)	ND			1		WG857902
Methyl tert-butyl ether	ND		0.00107		03/22/2016 01:53	
Naphthalene	ND		0.00534	1	03/22/2016 01:53	WG857902
n-Propylbenzene	ND		0.00107	1	03/22/2016 01:53	WG857902
Styrene	ND		0.00107	1	03/22/2016 01:53	WG857902
1,1,1,2-Tetrachloroethane	ND		0.00107	1	03/22/2016 01:53	WG857902

Collected date/time: 03/18/16 12:05

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

L824

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result	(dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg			mg/kg		date / time	
1,1,2,2-Tetrachloroethane	ND	UJ	<u>J4</u>	0.00107	1	03/22/2016 01:53	WG857902
1,1,2-Trichlorotrifluoroethane	ND		<u>J3</u>	0.00107	1	03/22/2016 01:53	WG857902
Tetrachloroethene	0.0016	57		0.00107	1	03/22/2016 01:53	WG857902
Toluene	ND			0.00534	1	03/22/2016 01:53	WG857902
1,2,3-Trichlorobenzene	ND			0.00107	1	03/22/2016 01:53	WG857902
1,2,4-Trichlorobenzene	ND			0.00107	1	03/22/2016 01:53	WG857902
1,1,1-Trichloroethane	ND			0.00107	1	03/22/2016 01:53	WG857902
1,1,2-Trichloroethane	ND		J4	0.00107	1	03/22/2016 01:53	WG857902
Trichloroethene	ND			0.00107	1	03/22/2016 01:53	WG857902
Trichlorofluoromethane	ND			0.00534	1	03/22/2016 01:53	WG857902
1,2,3-Trichloropropane	ND			0.00267	1	03/22/2016 01:53	WG857902
1,2,4-Trimethylbenzene	ND			0.00107	1	03/22/2016 01:53	WG857902
1,2,3-Trimethylbenzene	ND			0.00107	1	03/22/2016 01:53	WG857902
Vinyl chloride	ND			0.00107	1	03/22/2016 01:53	WG857902
1,3,5-Trimethylbenzene	ND			0.00107	1	03/22/2016 01:53	WG857902
Xylenes, Total	ND			0.00321	1	03/22/2016 01:53	WG857902
(S) Toluene-d8	103			88.7-115		03/22/2016 01:53	WG857902
(S) Dibromofluoromethane	105			76.3-123		03/22/2016 01:53	WG857902
(S) 4-Bromofluorobenzene	89.9			69.7-129		03/22/2016 01:53	WG857902

3/23/10

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 12:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	91.8		1	03/21/2016 11:50	WG857989

Ss

1.4	
1.	0-
	CII

		_
_		_
_		
ы		-

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Acetone	ND		0.0545	1	03/22/2016 02:13	WG857902
Acrylonitrile	ND		0.0109	1	03/22/2016 02:13	WG857902
Benzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Bromobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Bromodichloromethane	ND		0.00109	1	03/22/2016 02:13	WG857902
Bromoform	ND		0.00109	1	03/22/2016 02:13	WG857902
Bromomethane	ND		0.00545	1	03/22/2016 02:13	WG857902
n-Butylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
sec-Butylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
tert-Butylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Carbon tetrachloride	ND		0.00109	1	03/22/2016 02:13	WG857902
Chlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Chlorodibromomethane	ND		0.00109	1	03/22/2016 02:13	WG857902
Chloroethane	ND		0.00545	1	03/22/2016 02:13	WG857902
2-Chloroethyl vinyl ether	ND		0.0545	1	03/22/2016 02:13	WG857902
Chloroform	ND		0.00545	1	03/22/2016 02:13	WG857902
Chloromethane	ND		0.00272	1	03/22/2016 02:13	WG857902
2-Chlorotoluene	ND		0.00109	1	03/22/2016 02:13	WG857902
4-Chlorotoluene	ND		0.00109	1	03/22/2016 02:13	WG857902
1,2-Dibromo-3-Chloropropane	ND		0.00545	1	03/22/2016 02:13	WG857902
1,2-Dibromoethane	ND		0.00109	1	03/22/2016 02:13	WG857902
Dibromomethane	ND		0.00109	1	03/22/2016 02:13	WG857902
1,2-Dichlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
1,3-Dichlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
1,4-Dichlorobenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Dichlorodifluoromethane	ND		0.00545	1	03/22/2016 02:13	WG857902
1,1-Dichloroethane	ND		0.00109	1	03/22/2016 02:13	WG857902
1,2-Dichloroethane	ND		0.00109	1	03/22/2016 02:13	WG857902
1,1-Dichloroethene	ND		0.00109	1	03/22/2016 02:13	WG857902
cis-1,2-Dichloroethene	ND		0.00109	1	03/22/2016 02:13	WG857902
trans-1,2-Dichloroethene	ND		0.00109	1	03/22/2016 02:13	WG857902
1,2-Dichloropropane	ND		0.00109	1	03/22/2016 02:13	WG857902
1,1-Dichloropropene	ND		0.00109	1	03/22/2016 02:13	WG857902
1,3-Dichloropropane	ND		0.00109	1	03/22/2016 02:13	WG857902
cis-1,3-Dichloropropene	ND		0.00109	1	03/22/2016 02:13	WG857902
trans-1,3-Dichloropropene	ND		0.00109	1	03/22/2016 02:13	WG857902
2,2-Dichloropropane	ND		0.00109	1	03/22/2016 02:13	WG857902
Di-isopropyl ether	ND		0.00109	1	03/22/2016 02:13	WG857902
Ethylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
Hexachloro-1,3-butadiene	ND		0.00109	1	03/22/2016 02:13	WG857902
Isopropylbenzene	ND		0.00109	1	03/22/2016 02:13	WG857902
p-Isopropyltoluene	ND		0.00109	1	03/22/2016 02:13	WG857902
2-Butanone (MEK)	ND		0.0109	1	03/22/2016 02:13	WG857902
Methylene Chloride	ND		0.00545	1	03/22/2016 02:13	WG857902
4-Methyl-2-pentanone (MIBK)	ND		0.0109	1	03/22/2016 02:13	WG857902
Methyl tert-butyl ether	ND		0.00109	1	03/22/2016 02:13	WG857902
Naphthalene	ND		0.00545	1	03/22/2016 02:13	WG857902
	ND		0.00109	1	03/22/2016 02:13	WG857902
n-Pronylhenzene					- WI SHALL SHIT I'M WALLING	
n-Propylbenzene Styrene	ND		0.00109	1	03/22/2016 02:13	WG857902

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (da	ry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg			mg/kg		date / time		L
1,1,2,2-Tetrachloroethane	ND	U5	J4	0.00109	1	03/22/2016 02:13	WG857902	2
1,1,2-Trichlorotrifluoroethane	ND		<u>J3</u>	0.00109	1	03/22/2016 02:13	WG857902	
Tetrachloroethene	0.00573			0.00109	1	03/22/2016 02:13	WG857902	E
Toluene	ND			0.00545	1	03/22/2016 02:13	WG857902	
1,2,3-Trichlorobenzene	ND			0.00109	1	03/22/2016 02:13	WG857902	L
1,2,4-Trichlorobenzene	ND			0.00109	1	03/22/2016 02:13	WG857902	4
1,1,1-Trichloroethane	ND			0.00109	1	03/22/2016 02:13	WG857902	L
1,1,2-Trichloroethane	ND		J4	0.00109	1	03/22/2016 02:13	WG857902	
Trichloroethene	ND			0.00109	1	03/22/2016 02:13	WG857902	
Trichlorofluoromethane	ND			0.00545	1	03/22/2016 02:13	WG857902	
1,2,3-Trichloropropane	ND			0.00272	1	03/22/2016 02:13	WG857902	
1,2,4-Trimethylbenzene	ND			0.00109	1	03/22/2016 02:13	WG857902	
1,2,3-Trimethylbenzene	ND			0.00109	1	03/22/2016 02:13	WG857902	Г
Vinyl chloride	ND			0.00109	1	03/22/2016 02:13	WG857902	
1,3,5-Trimethylbenzene	ND			0.00109	1	03/22/2016 02:13	WG857902	L
Xylenes, Total	ND			0.00327	1	03/22/2016 02:13	WG857902	
(S) Toluene-d8	103			88.7-115		03/22/2016 02:13	WG857902	L
(S) Dibromofluoromethane	104			76.3-123		03/22/2016 02:13	WG857902	F
(S) 4-Bromofluorobenzene	90.4			69.7-129		03/22/2016 02:13	WG857902	

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.5		1	03/21/2016 11:50	WG857989

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
nalyte	mg/kg		mg/kg		date / time	
cetone	ND		0.0529	1	03/22/2016 03:41	WG857902
crylonitrile	ND		0.0106	1	03/22/2016 03:41	WG857902
enzene	ND		0.00106	1	03/22/2016 03:41	WG857902
romobenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
romodichloromethane	ND		0.00106	1	03/22/2016 03:41	WG857902
romoform	ND		0.00106	1	03/22/2016 03:41	WG857902
romomethane	ND		0.00529	1	03/22/2016 03:41	WG857902
Butylbenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
oc-Butylbenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
rt-Butylbenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
arbon tetrachloride	ND		0.00106	1	03/22/2016 03:41	WG857902
nlorobenzene	ND		0.00106	1	03/22/2016 03:41	WG857902
nlorodibromomethane	ND		0.00106	1	03/22/2016 03:41	WG857902
nloroethane	ND		0.00529	1	03/22/2016 03:41	WG857902
Chloroethyl vinyl ether	ND		0.0529	1	03/22/2016 03:41	WG857902
hloroform	ND		0.00529	1	03/22/2016 03:41	WG857902
nloromethane	ND		0.00264	1	03/22/2016 03:41	WG857902
Chlorotoluene	ND		0.00106	1	03/22/2016 03:41	WG85790
Chlorotoluene	ND		0.00106	1	03/22/2016 03:41	WG85790
2-Dibromo-3-Chloropropane	ND		0.00529	1	03/22/2016 03:41	WG857902
2-Dibromoethane	ND		0.00106	1	03/22/2016 03:41	WG85790
bromomethane	ND		0.00106	1	03/22/2016 03:41	WG85790
2-Dichlorobenzene	ND		0.00106	1	03/22/2016 03:41	WG85790
3-Dichlorobenzene	ND		0.00106	1	03/22/2016 03:41	WG85790
I-Dichlorobenzene	ND		0.00106	1	03/22/2016 03:41	WG85790
chlorodifluoromethane	ND		0.00529	1	03/22/2016 03:41	WG85790
-Dichloroethane	ND		0.00106	1	03/22/2016 03:41	WG85790
2-Dichloroethane	ND		0.00106	1	03/22/2016 03:41	WG85790
			0.00106	1	03/22/2016 03:41	WG85790
I-Dichloroethene	ND			1	03/22/2016 03:41	WG85790
s-1,2-Dichloroethene ans-1,2-Dichloroethene	ND		0.00106	1	03/22/2016 03:41	-
- The state of the	ND		0.00106	1		WG85790
2-Dichloropropane	ND		0.00106		03/22/2016 03:41	WG85790
1-Dichloropropene	ND		0.00106	1	03/22/2016 03:41	WG85790
3-Dichloropropane	ND		0.00106	1	03/22/2016 03:41	WG85790
s-1,3-Dichloropropene	ND		0.00106	1	03/22/2016 03:41	WG85790
ans-1,3-Dichloropropene	ND		0.00106	1	03/22/2016 03:41	WG85790
2-Dichloropropane	ND		0.00106	1	03/22/2016 03:41	WG85790
i-isopropyl ether	ND		0.00106	1	03/22/2016 03:41	WG85790
thylbenzene	ND		0.00106	1	03/22/2016 03:41	WG85790
exachloro-1,3-butadiene	ND		0.00106	1	03/22/2016 03:41	WG85790
opropylbenzene	ND		0.00106	1	03/22/2016 03:41	WG85790
Isopropyltoluene	ND		0.00106	1	03/22/2016 03:41	WG85790
Butanone (MEK)	ND		0.0106	1	03/22/2016 03:41	WG85790
ethylene Chloride	ND		0.00529	1	03/22/2016 03:41	WG85790
Methyl-2-pentanone (MIBK)	ND		0.0106	1	03/22/2016 03:41	WG85790
ethyl tert-butyl ether	ND		0.00106	1	03/22/2016 03:41	WG85790
aphthalene	ND		0.00529	1	03/22/2016 03:41	WG85790
Propylbenzene	ND		0.00106	1	03/22/2016 03:41	WG85790
yrene	ND		0.00106	1	03/22/2016 03:41	WG85790
1,1,2-Tetrachloroethane	ND		0.00106	1	03/22/2016 03:41	WG85790

ONE LAB. NATIONWIDE.

Collected date/time: 03/18/16 13:10

Volatile Organic Compounds (GC/MS) by Method 8260C

	Result (dr)	y)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg			mg/kg		date / time		
.1,2,2-Tetrachloroethane	ND	US	<u>J4</u>	0.00106	1	03/22/2016 03:41	WG857902	
.1,2-Trichlorotrifluoroethane	ND		<u>J3</u>	0.00106	1	03/22/2016 03:41	WG857902	
Tetrachloroethene	0.00442			0.00106	1	03/22/2016 03:41	WG857902	
Toluene	ND			0.00529	1	03/22/2016 03:41	WG857902	
,2,3-Trichlorobenzene	ND			0.00106	1	03/22/2016 03:41	WG857902	
,2,4-Trichlorobenzene	ND			0.00106	1	03/22/2016 03:41	WG857902	
,1,1-Trichloroethane	ND			0.00106	1	03/22/2016 03:41	WG857902	
1,1,2-Trichloroethane	ND		J4	0.00106	1	03/22/2016 03:41	WG857902	
richloroethene	ND			0.00106	1	03/22/2016 03:41	WG857902	
richlorofluoromethane	ND			0.00529	1	03/22/2016 03:41	WG857902	
,2,3-Trichloropropane	ND			0.00264	1	03/22/2016 03:41	WG857902	
,2,4-Trimethylbenzene	ND			0.00106	1	03/22/2016 03:41	WG857902	
,2,3-Trimethylbenzene	ND			0.00106	1	03/22/2016 03:41	WG857902	
/inyl chloride	ND			0.00106	1	03/22/2016 03:41	WG857902	
,3,5-Trimethylbenzene	ND			0.00106	1	03/22/2016 03:41	WG857902	
(ylenes, Total	ND			0.00317	1	03/22/2016 03:41	WG857902	
(S) Toluene-d8	103			88.7-115		03/22/2016 03:41	WG857902	
(S) Dibromofluoromethane	106			76.3-123		03/22/2016 03:41	WG857902	
(S) 4-Bromofluorobenzene	90.4			69.7-129		03/22/2016 03:41	WG857902	

MEMORANDUM

TO: Project File DATE: March 23, 2016

FROM: Jessie Compeau

SUBJECT: Laboratory Data Validation Review

PROJECT: Lake Stevens Marketplace

PROJECT #: 1246.038.02.002

TASK: March 17-18, 2016 Sampling Event

LAB: ESC Lab Sciences Analytical Report No. L824454

Two groundwater, five soil, three sub-slab vapor, and two air (ambient and an indoor grab) samples along with one trip blank sample were collected March 17 -18, 2016 from the Lake Stevens Marketplace in Snohomish County, Washington. The samples were collected as part of a Limited Phase II Environmental Investigation. The samples were submitted to ESC Lab Sciences (ESC) of Mount Juliet, Tennessee for laboratory analyses. The air and sub-slab vapor samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method TO-15. Soil and groundwater samples were analyzed for VOCs by USEPA 8260C. Soils were also measured for total solids (percent) by Standard Methods for Water and Wastewater (SM) 2540 Method G (Editorial Revisions, 2011).

The results were reported in laboratory report ESC L824454. The quality assurance review of the laboratory data is summarized below.

DATA QUALIFICATIONS

Guidelines established by USEPA for review of analytical data were used to validate the data. The comments presented in this memorandum refer to the laboratory's performance in meeting the quality control criteria outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999).

DATA VALIDATION

Sample Receipt, Preservation and Handling

The laboratory supplied Summa canisters for the air (includes sub-slab vapor samples) samples. The samples were shipped by courier and received in good condition by the laboratory. Summa canisters do not require preservation or cooling. The samples were collected, handled, and delivered in an appropriate manner. No data qualifications were warranted based upon sampling and preservation techniques.

The soil and groundwater samples were delivered to the project laboratory in coolers under standard chain-of-custody protocols with the following discussion:

Review of ESC's Non-Conformance Form indicated Sample TW-1-8 was recorded on the chain of custody (COC) as an air sample. On March 21, 2016 PES contacted ESC to correct the matrix to read "soil" on the COC. In addition PES clarified the COC analysis request for VOC and total solids analysis on the associated sample.

Review of ESC's Non-Conformance Form and COC indicates that all samples were received in good condition at a cooler temperature of 3.2 degrees Centigrade (°C) within the recommended preservation temperature range of $4.0^{\circ}\text{C} \pm 2.0^{\circ}\text{C}$. The sample receipt log indicated that the samples in the coolers were received properly stored in a cooler, preserved, and cooled with ice/gel packs and in good condition at the time of laboratory receipt. No data qualifications were assigned due to temperature preservation issues.

Holding Times

USEPA Method TO-15 (VOCs):

The analysis for VOCs was performed within the thirty day recommended holding time limit for air samples collected in a Summa canister. No data was qualified based upon holding times.

USEPA Method 8260C (VOCs):

All samples were analyzed for VOCs within the EPA recommended holding time of 14 days (soils and preserved waters) from the data of sample collection. All holding time criteria were met.

Initial and Continuing Calibration

Initial and continuing calibration data for this project are retained by the laboratory and available for review if necessary. The case narrative did not indicate any issues with calibration; therefore no qualifications were warranted.

Method Blank Results

USEPA Method TO-15 (VOCs):

A laboratory method blank was included with the analytical batch per method requirement. The method blank results did not report any compounds at concentrations at or above the Reported Detection Limit (RDL) with the following discussion:

• Benzene results for sub-slab vapor samples SV1-031816 and SV2-031816 are qualified 'B' by the laboratory indicating that benzene was detected at a low level in the associated blank. ESC indicated that benzene was detected at less than half the Reported Detection Limit (RDL) for benzene (0.02 ppbv). The low level benzene detection in the method blank has no impact on associated sample results for benzene. No action was taken on this basis. No data qualifications were warranted.

USEPA Method 8260C (VOCs):

Laboratory method blanks for soil and water were included with the analytical batches per method requirement. The target analytes were not detected in the method blanks for soil or waters at or above the RDLs. No qualifications of the data were made due to the results of the method blank analyses.

Total Solids by SM 2540 G-2011:

Percent solids were measured at negligible levels in the method blanks. No qualifications of the data were made due to the results of the method blank analyses.

Trip Blank Results

USEPA Method TO-15 (VOCs):

A trip blank was not required for the TO-15 analyses.

USEPA Method 8260C (VOCs):

A trip blank was collected. No compounds were detected in the trip blank at concentrations at or above the RDLs. No data qualifications were warranted.

Field, Rinsate, or Equipment Blank Results

USEPA Method 8260C (VOCs):

No field, rinsate, or equipment blanks were collected.

Laboratory Duplicate Analyses

USEPA Method TO-15 (VOCs):

A laboratory duplicate analysis was not performed. Refer to laboratory control sample and laboratory control sample duplicate results for precision information.

USEPA Method 8260C (VOCs):

Laboratory duplicate analyses were not performed on soils or waters. Refer to laboratory control sample and/or matrix spike data for precision information.

Total Solids by SM 2540 G-2011:

Laboratory duplicate analysis was performed on non-client samples within each analytical batch. The primary/duplicate RPDs were within the laboratory control limit of 5%. Duplicate data are acceptable.

Field Duplicate Analyses

USEPA Method TO-15 (VOCs) and USEPA Method 8260C (VOCs):

Field duplicate samples were not collected. Refer laboratory duplicate results for precision data.

Surrogate Recoveries

USEPA Method TO-15 (VOCs):

The surrogate % R results for the air samples, method blank, and laboratory control samples were within the laboratory surrogate control limits of 70 to 130% R. No data qualifications were warranted.

USEPA Method 8260C (VOCs):

The surrogate recovery results for soil and water samples, associated laboratory control samples, matrix spikes, and method blanks were within the laboratory surrogate control limits for all of the analyses.

Matrix Spike/ Matrix Spike Duplicates

USEPA Method TO-15 (VOCs):

An MS/MSD is not required for the TO-15 method. Refer to laboratory control sample results for accuracy and precision data.

USEPA Method 8260C (VOCs):

A matrix spike (MS) analysis was performed a non-client soil sample within the analytical batch. The MS percent recoveries (%Rs) for all 8260C target analytes were within the laboratory control criteria with the following exceptions:

• MS/MSD (Batch ID WG857902) results for spike compound acetone were not recovered. No action is taken since the spike was performed on a non-client sample. LCS/LCSD acetone spike recoveries were acceptable.

A matrix spike analysis was not performed on water samples. Refer to laboratory control sample results for precision and accuracy data.

Laboratory Control Samples

USEPA Method TO-15 (VOCs):

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) analyses were performed with the analytical batch. The LCS recovery results for all control compounds met the % R and RPD acceptance criteria (70-130%R and 25% RPD). LCS/LCSD results are acceptable.

USEPA Method 8260C (VOCs):

LCS/LCSD analyses were performed along with each analytical batch for soils and waters. The LCS/LCSD %R's and RPDs for the control analytes (VOCs) were within the laboratory control criteria for soils and waters with the following exceptions:

• LCS/LCSD (Batch ID WG857902) compound 1,1,2,2-tetrachloroethane was recovered slightly below laboratory control limit criteria. **Associated sample 1,1,2,2-tetrachloroethane results (samples TW-2-6, SV1-1.5, SV2-1, and SV3-1.5) are estimated and qualified (UJ) due to slightly low LCS/LCSD recoveries.**

- LCS/LCSD (Batch ID WG857902) compound 1,1,2-trichlorotrifluoroethane RPD is at 23% and above ESC's acceptance criteria of 20%. No action is taken in this case since both LCS/LCSD 1,1,2-trichlorotrifluoroethane recoveries were within ESC's criteria.
- LCS (Batch ID WG857902) compound 1,1,2-trichloroethane was recovered slightly below ESC's laboratory control limit criteria. No action is taken in this case since the LCSD 1,1,2-trichloroethane recovery is within criteria.

Total Solids by SM 2540 G-2011:

An LCS was performed with each analytical batch. The LCS recovery results for the spiked blank met the % R acceptance criteria (85-115%R). LCS results are acceptable.

Quantitation Limits

Results of all analyses were reported based on standard laboratory RDLs. The reported RDLs are considered appropriate for this project. Air samples submitted for VOC analysis via USEPA Method TO-15 were analyzed for 22 VOC compounds. Soil and groundwater samples submitted for VOC analysis via USEPA 8260C were analyzed for 66 VOC compounds. No data qualifiers were warranted based upon standard or dilution-elevated detection limits.

Completeness

The samples were collected and analyzed as requested. The results in all cases were reported based upon standard Reporting Detection Limits (RDLs). Data completeness is 100%.

Data Assessment

The laboratory data reported for this project were reviewed based on the criteria outlined in:

• USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999)

Data qualifiers were assigned and laboratory report pages with qualifiers are attached. All data are judged to be acceptable for their intended use.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

PES Environmental, Inc.

Brian O'Neal 1215 Fourth Avenue, Suite 1350 Seattle, WA 98161

RE: Lake Stevens Marketplace

Lab ID: 1607053

July 14, 2016

Attention Brian O'Neal:

Fremont Analytical, Inc. received 5 sample(s) on 7/7/2016 for the analyses presented in the following report.

Sample Moisture (Percent Moisture)
Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

CLIENT: PES Environmental, Inc. Work Order Sample Summary

Project: Lake Stevens Marketplace

Lab Order: 1607053

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1607053-001	SB-1a-8	07/07/2016 10:30 AM	07/07/2016 4:51 PM
1607053-002	SB-2-6	07/07/2016 11:10 AM	07/07/2016 4:51 PM
1607053-003	SB-3-7	07/07/2016 12:20 PM	07/07/2016 4:51 PM
1607053-004	SB-4-7	07/07/2016 12:45 PM	07/07/2016 4:51 PM
1607053-005	SB-5-8	07/07/2016 1:20 PM	07/07/2016 4:51 PM

Case Narrative

WO#: **1607053**Date: **7/14/2016**

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1607053**

Date Reported: 7/14/2016

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: **1607053**Date Reported: **7/14/2016**

Client: PES Environmental, Inc. Collection Date: 7/7/2016 10:30:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607053-001 **Matrix:** Soil

Client Sample ID: SB-1a-8

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14232 Analyst: EM Dichlorodifluoromethane (CFC-12) ND 0.0623 mg/Kg-dry 1 7/13/2016 9:59:02 AM Chloromethane ND 0.0623 mg/Kg-dry 1 7/13/2016 9:59:02 AM Vinyl chloride ND 0.00208 mg/Kg-dry 1 7/13/2016 9:59:02 AM Bromomethane ND 0.0934 1 7/13/2016 9:59:02 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0519 mg/Kg-dry 1 7/13/2016 9:59:02 AM Chloroethane ND 7/13/2016 9:59:02 AM 0.0623 mg/Kg-dry 1 1,1-Dichloroethene ND 0.0519 mg/Kg-dry 1 7/13/2016 9:59:02 AM ND Methylene chloride 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM trans-1,2-Dichloroethene ND 0.0208 1 7/13/2016 9:59:02 AM mg/Kg-dry ND Methyl tert-butyl ether (MTBE) 0.0519 1 7/13/2016 9:59:02 AM mg/Kg-dry ND 7/13/2016 9:59:02 AM 1,1-Dichloroethane 0.0208 mg/Kg-dry 1 2,2-Dichloropropane ND 0.0519 O 7/13/2016 9:59:02 AM mg/Kg-dry 1 cis-1.2-Dichloroethene ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM Chloroform ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM 1,1,1-Trichloroethane (TCA) ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM 1,1-Dichloropropene ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM Carbon tetrachloride ND 7/13/2016 9:59:02 AM 0.0208 mg/Kg-dry 1 1,2-Dichloroethane (EDC) ND 0.0311 7/13/2016 9:59:02 AM mg/Kg-dry 1 Benzene ND 0.0208 1 7/13/2016 9:59:02 AM mg/Kg-dry Trichloroethene (TCE) ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM ND 1,2-Dichloropropane 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM Bromodichloromethane ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM ND Dibromomethane 0.0415 mg/Kg-dry 1 7/13/2016 9:59:02 AM cis-1,3-Dichloropropene ND 0.0208 1 7/13/2016 9:59:02 AM mg/Kg-dry Toluene ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM trans-1,3-Dichloropropylene ND 0.0311 mg/Kg-dry 1 7/13/2016 9:59:02 AM 1,1,2-Trichloroethane ND 0.0311 7/13/2016 9:59:02 AM mg/Kg-dry 1 ND 1,3-Dichloropropane 0.0519 1 7/13/2016 9:59:02 AM mg/Kg-dry Tetrachloroethene (PCE) ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM ND 7/13/2016 9:59:02 AM Dibromochloromethane 0.0311 mg/Kg-dry 1 1.2-Dibromoethane (EDB) ND 0.00519 1 7/13/2016 9:59:02 AM mg/Kg-dry Chlorobenzene ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM 1.1.1.2-Tetrachloroethane ND 0.0311 1 7/13/2016 9:59:02 AM mg/Kg-dry Ethylbenzene ND 0.0311 mg/Kg-dry 1 7/13/2016 9:59:02 AM m,p-Xylene ND 7/13/2016 9:59:02 AM 0.0208 mg/Kg-dry 1 o-Xylene ND 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM ND Styrene 0.0208 mg/Kg-dry 1 7/13/2016 9:59:02 AM Isopropylbenzene ND 0.0830 mg/Kg-dry 1 7/13/2016 9:59:02 AM

ND

0.0208

mg/Kg-dry

1

7/13/2016 9:59:02 AM

Bromoform

WO#: **1607053**

Date Reported: 7/14/2016

Client: PES Environmental, Inc. Collection Date: 7/7/2016 10:30:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607053-001 **Matrix:** Soil

Client Sample ID: SB-1a-8

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batch	ID:	14232 Analyst: EM
1,1,2,2-Tetrachloroethane	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
n-Propylbenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
Bromobenzene	ND	0.0311		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,3,5-Trimethylbenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
2-Chlorotoluene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
4-Chlorotoluene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
tert-Butylbenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,2,3-Trichloropropane	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,2,4-Trichlorobenzene	ND	0.0519		mg/Kg-dry	1	7/13/2016 9:59:02 AM
sec-Butylbenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
4-Isopropyltoluene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,3-Dichlorobenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,4-Dichlorobenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
n-Butylbenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,2-Dichlorobenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,2-Dibromo-3-chloropropane	ND	0.519		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,2,4-Trimethylbenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
Hexachlorobutadiene	ND	0.104		mg/Kg-dry	1	7/13/2016 9:59:02 AM
Naphthalene	ND	0.0311		mg/Kg-dry	1	7/13/2016 9:59:02 AM
1,2,3-Trichlorobenzene	ND	0.0208		mg/Kg-dry	1	7/13/2016 9:59:02 AM
Surr: Dibromofluoromethane	99.6	56.5-129		%Rec	1	7/13/2016 9:59:02 AM
Surr: Toluene-d8	96.9	64.3-131		%Rec	1	7/13/2016 9:59:02 AM
Surr: 1-Bromo-4-fluorobenzene	100	63.1-141		%Rec	1	7/13/2016 9:59:02 AM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 9.51 0.500 wt% 1 7/11/2016 10:18:11 AM

Batch ID: R30464

Analyst: ME

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607053**Date Reported: **7/14/2016**

Client: PES Environmental, Inc. Collection Date: 7/7/2016 11:10:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607053-002 **Matrix:** Soil

Client Sample ID: SB-2-6

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14232 Analyst: EM Dichlorodifluoromethane (CFC-12) ND 7/13/2016 7:03:31 AM 0.0629 mg/Kg-dry 1 Chloromethane ND 0.0629 mg/Kg-dry 1 7/13/2016 7:03:31 AM Vinyl chloride ND 0.00210 mg/Kg-dry 1 7/13/2016 7:03:31 AM Bromomethane ND 0.0943 1 7/13/2016 7:03:31 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) 7/13/2016 7:03:31 AM ND 0.0524 mg/Kg-dry 1 Chloroethane ND 7/13/2016 7:03:31 AM 0.0629 mg/Kg-dry 1 1,1-Dichloroethene ND 0.0524 mg/Kg-dry 1 7/13/2016 7:03:31 AM ND Methylene chloride 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM trans-1,2-Dichloroethene ND 0.0210 1 7/13/2016 7:03:31 AM mg/Kg-dry ND Methyl tert-butyl ether (MTBE) 0.0524 1 7/13/2016 7:03:31 AM mg/Kg-dry ND 7/13/2016 7:03:31 AM 1,1-Dichloroethane 0.0210 mg/Kg-dry 1 2,2-Dichloropropane ND 0.0524 O 7/13/2016 7:03:31 AM mg/Kg-dry 1 cis-1.2-Dichloroethene ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM Chloroform ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM 1,1,1-Trichloroethane (TCA) ND 7/13/2016 7:03:31 AM 0.0210 mg/Kg-dry 1 1,1-Dichloropropene ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM Carbon tetrachloride ND 7/13/2016 7:03:31 AM 0.0210 mg/Kg-dry 1 1,2-Dichloroethane (EDC) ND 0.0314 7/13/2016 7:03:31 AM mg/Kg-dry 1 ND 7/13/2016 7:03:31 AM Benzene 0.0210 1 mg/Kg-dry Trichloroethene (TCE) ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM ND 1,2-Dichloropropane 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM Bromodichloromethane ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM ND 7/13/2016 7:03:31 AM Dibromomethane 0.0419 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0210 1 7/13/2016 7:03:31 AM mg/Kg-dry Toluene ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM trans-1,3-Dichloropropylene ND 0.0314 mg/Kg-dry 1 7/13/2016 7:03:31 AM 1,1,2-Trichloroethane ND 7/13/2016 7:03:31 AM 0.0314 mg/Kg-dry 1 ND 1,3-Dichloropropane 0.0524 1 7/13/2016 7:03:31 AM mg/Kg-dry Tetrachloroethene (PCE) ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM ND 7/13/2016 7:03:31 AM Dibromochloromethane 0.0314 mg/Kg-dry 1 1.2-Dibromoethane (EDB) ND 0.00524 1 7/13/2016 7:03:31 AM mg/Kg-dry Chlorobenzene ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM 1.1.1.2-Tetrachloroethane ND 0.0314 1 7/13/2016 7:03:31 AM mg/Kg-dry Ethylbenzene ND 0.0314 mg/Kg-dry 1 7/13/2016 7:03:31 AM m,p-Xylene ND 7/13/2016 7:03:31 AM 0.0210 mg/Kg-dry 1 o-Xylene ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM ND Styrene 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM Isopropylbenzene ND 0.0838 mg/Kg-dry 1 7/13/2016 7:03:31 AM Bromoform ND 0.0210 mg/Kg-dry 1 7/13/2016 7:03:31 AM

WO#: **1607053**

Date Reported: 7/14/2016

Client: PES Environmental, Inc. Collection Date: 7/7/2016 11:10:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607053-002 **Matrix:** Soil

Client Sample ID: SB-2-6

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batch	ID:	14232 Analyst: EM
1,1,2,2-Tetrachloroethane	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
n-Propylbenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
Bromobenzene	ND	0.0314		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,3,5-Trimethylbenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
2-Chlorotoluene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
4-Chlorotoluene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
tert-Butylbenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,2,3-Trichloropropane	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,2,4-Trichlorobenzene	ND	0.0524		mg/Kg-dry	1	7/13/2016 7:03:31 AM
sec-Butylbenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
4-Isopropyltoluene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,3-Dichlorobenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,4-Dichlorobenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
n-Butylbenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,2-Dichlorobenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,2-Dibromo-3-chloropropane	ND	0.524		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,2,4-Trimethylbenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
Hexachlorobutadiene	ND	0.105		mg/Kg-dry	1	7/13/2016 7:03:31 AM
Naphthalene	ND	0.0314		mg/Kg-dry	1	7/13/2016 7:03:31 AM
1,2,3-Trichlorobenzene	ND	0.0210		mg/Kg-dry	1	7/13/2016 7:03:31 AM
Surr: Dibromofluoromethane	97.8	56.5-129		%Rec	1	7/13/2016 7:03:31 AM
Surr: Toluene-d8	99.6	64.3-131		%Rec	1	7/13/2016 7:03:31 AM
Surr: 1-Bromo-4-fluorobenzene	106	63.1-141		%Rec	1	7/13/2016 7:03:31 AM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 13.0 0.500 wt% 1 7/11/2016 10:18:11 AM

Batch ID: R30464

Analyst: ME

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607053**Date Reported: **7/14/2016**

Client: PES Environmental, Inc. Collection Date: 7/7/2016 12:20:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607053-003 **Matrix:** Soil

Client Sample ID: SB-3-7

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14232 Analyst: EM Dichlorodifluoromethane (CFC-12) ND 0.0592 mg/Kg-dry 1 7/13/2016 10:28:18 AM Chloromethane ND 0.0592 mg/Kg-dry 1 7/13/2016 10:28:18 AM Vinyl chloride ND 0.00197 mg/Kg-dry 1 7/13/2016 10:28:18 AM Bromomethane ND 0.0888 1 7/13/2016 10:28:18 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0493 mg/Kg-dry 1 7/13/2016 10:28:18 AM Chloroethane ND 7/13/2016 10:28:18 AM 0.0592 mg/Kg-dry 1 1.1-Dichloroethene ND 0.0493 mg/Kg-dry 1 7/13/2016 10:28:18 AM ND Methylene chloride 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM trans-1,2-Dichloroethene ND 0.0197 1 7/13/2016 10:28:18 AM mg/Kg-dry ND 7/13/2016 10:28:18 AM Methyl tert-butyl ether (MTBE) 0.0493 1 mg/Kg-dry ND 7/13/2016 10:28:18 AM 1,1-Dichloroethane 0.0197 mg/Kg-dry 1 2,2-Dichloropropane ND 0.0493 O 7/13/2016 10:28:18 AM mg/Kg-dry 1 cis-1.2-Dichloroethene ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM Chloroform ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM 1,1,1-Trichloroethane (TCA) ND 7/13/2016 10:28:18 AM 0.0197 mg/Kg-dry 1 1,1-Dichloropropene ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM Carbon tetrachloride ND 7/13/2016 10:28:18 AM 0.0197 mg/Kg-dry 1 1,2-Dichloroethane (EDC) ND 7/13/2016 10:28:18 AM 0.0296 mg/Kg-dry 1 ND 7/13/2016 10:28:18 AM Benzene 0.0197 1 mg/Kg-dry Trichloroethene (TCE) ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM ND 1,2-Dichloropropane 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM Bromodichloromethane ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM ND 7/13/2016 10:28:18 AM Dibromomethane 0.0394 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0197 1 7/13/2016 10:28:18 AM mg/Kg-dry Toluene ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM trans-1,3-Dichloropropylene ND 0.0296 mg/Kg-dry 1 7/13/2016 10:28:18 AM 1,1,2-Trichloroethane ND 7/13/2016 10:28:18 AM 0.0296 mg/Kg-dry 1 ND 1,3-Dichloropropane 0.0493 1 7/13/2016 10:28:18 AM mg/Kg-dry Tetrachloroethene (PCE) ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM ND 7/13/2016 10:28:18 AM Dibromochloromethane 0.0296 mg/Kg-dry 1 1.2-Dibromoethane (EDB) ND 0.00493 1 7/13/2016 10:28:18 AM mg/Kg-dry Chlorobenzene ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM 1.1.1.2-Tetrachloroethane ND 0.0296 1 7/13/2016 10:28:18 AM mg/Kg-dry Ethylbenzene ND 0.0296 mg/Kg-dry 1 7/13/2016 10:28:18 AM m,p-Xylene ND 7/13/2016 10:28:18 AM 0.0197 mg/Kg-dry 1 o-Xylene ND 0.0197 1 7/13/2016 10:28:18 AM mg/Kg-dry ND Styrene 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM Isopropylbenzene ND 0.0789 mg/Kg-dry 1 7/13/2016 10:28:18 AM Bromoform ND 0.0197 mg/Kg-dry 1 7/13/2016 10:28:18 AM

WO#: **1607053**Date Reported: **7/14/2016**

Analyst: ME

Batch ID: R30464

Client: PES Environmental, Inc. Collection Date: 7/7/2016 12:20:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607053-003 **Matrix:** Soil

Client Sample ID: SB-3-7

Analyses	Result	RL	Qual	Units	DF	Date Analyzed		
Volatile Organic Compounds by	EPA Method 8	3260C		Batch	ı ID:	14232 Analyst: EM		
1,1,2,2-Tetrachloroethane	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
n-Propylbenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
Bromobenzene	ND	0.0296		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,3,5-Trimethylbenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
2-Chlorotoluene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
4-Chlorotoluene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
tert-Butylbenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,2,3-Trichloropropane	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,2,4-Trichlorobenzene	ND	0.0493		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
sec-Butylbenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
4-Isopropyltoluene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,3-Dichlorobenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,4-Dichlorobenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
n-Butylbenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,2-Dichlorobenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,2-Dibromo-3-chloropropane	ND	0.493		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,2,4-Trimethylbenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
Hexachlorobutadiene	ND	0.0986		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
Naphthalene	ND	0.0296		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
1,2,3-Trichlorobenzene	ND	0.0197		mg/Kg-dry	1	7/13/2016 10:28:18 AM		
Surr: Dibromofluoromethane	98.8	56.5-129		%Rec	1	7/13/2016 10:28:18 AM		
Surr: Toluene-d8	99.8	64.3-131		%Rec	1	7/13/2016 10:28:18 AM		
Surr: 1-Bromo-4-fluorobenzene	100	63.1-141		%Rec	1	7/13/2016 10:28:18 AM		

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 10.5 0.500 wt% 1 7/11/2016 10:18:11 AM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607053**Date Reported: **7/14/2016**

Client: PES Environmental, Inc. Collection Date: 7/7/2016 12:45:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607053-004 **Matrix:** Soil

Client Sample ID: SB-4-7

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14232 Analyst: EM Dichlorodifluoromethane (CFC-12) ND 0.0673 mg/Kg-dry 1 7/13/2016 10:57:28 AM Chloromethane ND 0.0673 mg/Kg-dry 1 7/13/2016 10:57:28 AM Vinyl chloride ND 0.00224 mg/Kg-dry 1 7/13/2016 10:57:28 AM Bromomethane ND 0.101 1 7/13/2016 10:57:28 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0561 mg/Kg-dry 1 7/13/2016 10:57:28 AM Chloroethane ND 7/13/2016 10:57:28 AM 0.0673 mg/Kg-dry 1 1.1-Dichloroethene ND 0.0561 mg/Kg-dry 1 7/13/2016 10:57:28 AM ND Methylene chloride 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM trans-1,2-Dichloroethene ND 0.0224 1 7/13/2016 10:57:28 AM mg/Kg-dry ND Methyl tert-butyl ether (MTBE) 0.0561 1 7/13/2016 10:57:28 AM mg/Kg-dry ND 1,1-Dichloroethane 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM 2,2-Dichloropropane ND 0.0561 O 7/13/2016 10:57:28 AM mg/Kg-dry 1 cis-1.2-Dichloroethene ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM Chloroform ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM 1,1,1-Trichloroethane (TCA) ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM 1,1-Dichloropropene ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM Carbon tetrachloride ND 7/13/2016 10:57:28 AM 0.0224 mg/Kg-dry 1 1,2-Dichloroethane (EDC) ND 0.0336 7/13/2016 10:57:28 AM mg/Kg-dry 1 ND Benzene 0.0224 1 7/13/2016 10:57:28 AM mg/Kg-dry Trichloroethene (TCE) ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM ND 1,2-Dichloropropane 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM Bromodichloromethane ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM ND Dibromomethane 0.0448 mg/Kg-dry 1 7/13/2016 10:57:28 AM cis-1,3-Dichloropropene ND 0.0224 1 7/13/2016 10:57:28 AM mg/Kg-dry Toluene ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM trans-1,3-Dichloropropylene ND 0.0336 mg/Kg-dry 1 7/13/2016 10:57:28 AM 1,1,2-Trichloroethane ND 7/13/2016 10:57:28 AM 0.0336 mg/Kg-dry 1 ND 1,3-Dichloropropane 0.0561 1 7/13/2016 10:57:28 AM mg/Kg-dry Tetrachloroethene (PCE) ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM ND Dibromochloromethane 0.0336 mg/Kg-dry 1 7/13/2016 10:57:28 AM 1.2-Dibromoethane (EDB) ND 0.00561 1 7/13/2016 10:57:28 AM mg/Kg-dry Chlorobenzene ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM 1.1.1.2-Tetrachloroethane ND 0.0336 1 7/13/2016 10:57:28 AM mg/Kg-dry Ethylbenzene ND 0.0336 mg/Kg-dry 1 7/13/2016 10:57:28 AM m,p-Xylene ND 7/13/2016 10:57:28 AM 0.0224 mg/Kg-dry 1 o-Xylene ND 0.0224 1 7/13/2016 10:57:28 AM mg/Kg-dry ND Styrene 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM Isopropylbenzene ND 0.0897 mg/Kg-dry 1 7/13/2016 10:57:28 AM Bromoform ND 0.0224 mg/Kg-dry 1 7/13/2016 10:57:28 AM

WO#: **1607053**

Date Reported: **7/14/2016**

Client: PES Environmental, Inc. Collection Date: 7/7/2016 12:45:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607053-004 **Matrix:** Soil

Client Sample ID: SB-4-7

Analyses	Result	Result RL Qual				Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batch	ı ID:	14232 Analyst: EM
1,1,2,2-Tetrachloroethane	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
n-Propylbenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
Bromobenzene	ND	0.0336		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,3,5-Trimethylbenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
2-Chlorotoluene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
4-Chlorotoluene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
tert-Butylbenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,2,3-Trichloropropane	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,2,4-Trichlorobenzene	ND	0.0561		mg/Kg-dry	1	7/13/2016 10:57:28 AM
sec-Butylbenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
4-Isopropyltoluene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,3-Dichlorobenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,4-Dichlorobenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
n-Butylbenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,2-Dichlorobenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,2-Dibromo-3-chloropropane	ND	0.561		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,2,4-Trimethylbenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
Hexachlorobutadiene	ND	0.112		mg/Kg-dry	1	7/13/2016 10:57:28 AM
Naphthalene	ND	0.0336		mg/Kg-dry	1	7/13/2016 10:57:28 AM
1,2,3-Trichlorobenzene	ND	0.0224		mg/Kg-dry	1	7/13/2016 10:57:28 AM
Surr: Dibromofluoromethane	99.0	56.5-129		%Rec	1	7/13/2016 10:57:28 AM
Surr: Toluene-d8	99.6	64.3-131		%Rec	1	7/13/2016 10:57:28 AM
Surr: 1-Bromo-4-fluorobenzene	102	63.1-141		%Rec	1	7/13/2016 10:57:28 AM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 9.31 0.500 wt% 1 7/11/2016 10:18:11 AM

Batch ID: R30464

Analyst: ME

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607053**Date Reported: **7/14/2016**

Client: PES Environmental, Inc. Collection Date: 7/7/2016 1:20:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607053-005 **Matrix:** Soil

Client Sample ID: SB-5-8

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14232 Analyst: EM Dichlorodifluoromethane (CFC-12) ND 0.0617 mg/Kg-dry 1 7/13/2016 11:26:50 AM Chloromethane ND 0.0617 mg/Kg-dry 1 7/13/2016 11:26:50 AM Vinyl chloride ND 0.00206 mg/Kg-dry 1 7/13/2016 11:26:50 AM Bromomethane ND 0.0926 1 7/13/2016 11:26:50 AM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0514 mg/Kg-dry 1 7/13/2016 11:26:50 AM Chloroethane ND 7/13/2016 11:26:50 AM 0.0617 mg/Kg-dry 1 1.1-Dichloroethene ND 0.0514 mg/Kg-dry 1 7/13/2016 11:26:50 AM ND Methylene chloride 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM trans-1,2-Dichloroethene ND 0.0206 1 7/13/2016 11:26:50 AM mg/Kg-dry ND Methyl tert-butyl ether (MTBE) 0.0514 1 7/13/2016 11:26:50 AM mg/Kg-dry ND 7/13/2016 11:26:50 AM 1,1-Dichloroethane 0.0206 mg/Kg-dry 1 2,2-Dichloropropane ND 0.0514 O 7/13/2016 11:26:50 AM mg/Kg-dry 1 cis-1.2-Dichloroethene ND 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM Chloroform ND 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM 1,1,1-Trichloroethane (TCA) ND 7/13/2016 11:26:50 AM 0.0206 mg/Kg-dry 1 1,1-Dichloropropene ND 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM Carbon tetrachloride ND 7/13/2016 11:26:50 AM 0.0206 mg/Kg-dry 1 1,2-Dichloroethane (EDC) ND 7/13/2016 11:26:50 AM 0.0309 mg/Kg-dry 1 ND Benzene 0.0206 1 7/13/2016 11:26:50 AM mg/Kg-dry Trichloroethene (TCE) ND 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM ND 1,2-Dichloropropane 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM Bromodichloromethane ND 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM ND 7/13/2016 11:26:50 AM Dibromomethane 0.0412 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0206 1 7/13/2016 11:26:50 AM mg/Kg-dry Toluene ND 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM trans-1,3-Dichloropropylene ND 0.0309 mg/Kg-dry 1 7/13/2016 11:26:50 AM 1,1,2-Trichloroethane ND 7/13/2016 11:26:50 AM 0.0309 mg/Kg-dry 1 ND 1,3-Dichloropropane 0.0514 1 7/13/2016 11:26:50 AM mg/Kg-dry Tetrachloroethene (PCE) 0.112 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM ND 7/13/2016 11:26:50 AM Dibromochloromethane 0.0309 mg/Kg-dry 1 1.2-Dibromoethane (EDB) ND 0.00514 1 7/13/2016 11:26:50 AM mg/Kg-dry Chlorobenzene ND 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM 1.1.1.2-Tetrachloroethane ND 0.0309 1 7/13/2016 11:26:50 AM mg/Kg-dry Ethylbenzene ND 0.0309 mg/Kg-dry 1 7/13/2016 11:26:50 AM m,p-Xylene ND 7/13/2016 11:26:50 AM 0.0206 mg/Kg-dry 1 o-Xylene ND 0.0206 1 7/13/2016 11:26:50 AM mg/Kg-dry ND Styrene 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM Isopropylbenzene ND 0.0823 mg/Kg-dry 1 7/13/2016 11:26:50 AM Bromoform ND 0.0206 mg/Kg-dry 1 7/13/2016 11:26:50 AM

WO#: **1607053**Date Reported: **7/14/2016**

Client: PES Environmental, Inc. Collection Date: 7/7/2016 1:20:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607053-005 **Matrix:** Soil

Client Sample ID: SB-5-8

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batch		14232 Analyst: EM
1,1,2,2-Tetrachloroethane	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
n-Propylbenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
Bromobenzene	ND	0.0309		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,3,5-Trimethylbenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
2-Chlorotoluene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
4-Chlorotoluene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
tert-Butylbenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,2,3-Trichloropropane	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,2,4-Trichlorobenzene	ND	0.0514		mg/Kg-dry	1	7/13/2016 11:26:50 AM
sec-Butylbenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
4-Isopropyltoluene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,3-Dichlorobenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,4-Dichlorobenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
n-Butylbenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,2-Dichlorobenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,2-Dibromo-3-chloropropane	ND	0.514		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,2,4-Trimethylbenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
Hexachlorobutadiene	ND	0.103		mg/Kg-dry	1	7/13/2016 11:26:50 AM
Naphthalene	ND	0.0309		mg/Kg-dry	1	7/13/2016 11:26:50 AM
1,2,3-Trichlorobenzene	ND	0.0206		mg/Kg-dry	1	7/13/2016 11:26:50 AM
Surr: Dibromofluoromethane	97.3	56.5-129		%Rec	1	7/13/2016 11:26:50 AM
Surr: Toluene-d8	99.3	64.3-131		%Rec	1	7/13/2016 11:26:50 AM
Surr: 1-Bromo-4-fluorobenzene	101	63.1-141		%Rec	1	7/13/2016 11:26:50 AM

NOTES:

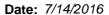
Sample Moisture (Percent Moisture)

Percent Moisture 8.23 0.500 wt% 1 7/11/2016 10:18:11 AM

Batch ID: R30464

Analyst: ME

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).


Work Order: 1607053

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-14232	SampType: LCS			Units: µg/L		Prep Da	te: 7/12/2 0	016	RunNo: 30	519	
Client ID: LCSS	Batch ID: 14232					Analysis Da	te: 7/12/2 0)16	SeqNo: 57	6047	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.15	0.0600	1.000	0	115	34.5	141				
Chloromethane	0.993	0.0600	1.000	0	99.3	38.8	132				
Vinyl chloride	1.02	0.00200	1.000	0	102	44	142				
Bromomethane	1.20	0.0900	1.000	0	120	40.9	157				
Trichlorofluoromethane (CFC-11)	1.39	0.0500	1.000	0	139	42.9	147				
Chloroethane	1.11	0.0600	1.000	0	111	37.1	144				
1,1-Dichloroethene	1.07	0.0500	1.000	0	107	49.7	142				
Methylene chloride	1.03	0.0200	1.000	0	103	46.3	140				
trans-1,2-Dichloroethene	0.988	0.0200	1.000	0	98.9	68	130				
Methyl tert-butyl ether (MTBE)	0.887	0.0500	1.000	0	88.7	59.1	138				
1,1-Dichloroethane	1.03	0.0200	1.000	0	103	61.9	137				
2,2-Dichloropropane	0.840	0.0500	1.000	0	84.0	28.1	149				Q
cis-1,2-Dichloroethene	0.988	0.0200	1.000	0	98.8	71.3	135				
Chloroform	0.993	0.0200	1.000	0	99.3	67.5	129				
1,1,1-Trichloroethane (TCA)	0.953	0.0200	1.000	0	95.3	69	132				
1,1-Dichloropropene	0.976	0.0200	1.000	0	97.6	72.7	131				
Carbon tetrachloride	1.18	0.0200	1.000	0	118	63.4	137				
1,2-Dichloroethane (EDC)	0.958	0.0300	1.000	0	95.8	61.9	136				
Benzene	0.966	0.0200	1.000	0	96.6	64.3	133				
Trichloroethene (TCE)	0.975	0.0200	1.000	0	97.5	65.5	137				
1,2-Dichloropropane	0.972	0.0200	1.000	0	97.2	63.2	142				
Bromodichloromethane	1.03	0.0200	1.000	0	103	73.2	131				
Dibromomethane	0.967	0.0400	1.000	0	96.7	70	130				
cis-1,3-Dichloropropene	0.961	0.0200	1.000	0	96.1	59.1	143				
Toluene	0.985	0.0200	1.000	0	98.5	67.3	138				
trans-1,3-Dichloropropylene	0.935	0.0300	1.000	0	93.5	49.2	149				
1,1,2-Trichloroethane	0.959	0.0300	1.000	0	95.9	74.5	129				
1,3-Dichloropropane	0.940	0.0500	1.000	0	94.0	70	130				
Tetrachloroethene (PCE)	1.02	0.0200	1.000	0	102	52.7	150				
Dibromochloromethane	1.00	0.0300	1.000	0	100	70.6	144				
1,2-Dibromoethane (EDB)	0.949	0.00500	1.000	0	94.9	70	130				

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-14232	SampType: LCS		Prep Date: 7/12/2016			RunNo: 30519					
Client ID: LCSS	Batch ID: 14232					Analysis Da	te: 7/12/2 0)16	SeqNo: 57	6047	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	0.988	0.0200	1.000	0	98.8	76.1	123				
1,1,1,2-Tetrachloroethane	1.02	0.0300	1.000	0	102	65.9	141				
Ethylbenzene	0.992	0.0300	1.000	0	99.2	74	129				
m,p-Xylene	1.99	0.0200	2.000	0	99.7	70	124				
o-Xylene	0.978	0.0200	1.000	0	97.9	72.7	124				
Styrene	0.976	0.0200	1.000	0	97.6	76.8	130				
Isopropylbenzene	0.997	0.0800	1.000	0	99.7	70	130				
Bromoform	1.02	0.0200	1.000	0	102	67	154				
1,1,2,2-Tetrachloroethane	0.910	0.0200	1.000	0	91.0	60	130				
n-Propylbenzene	1.00	0.0200	1.000	0	100	74.8	125				
Bromobenzene	0.980	0.0300	1.000	0	98.0	49.2	144				
1,3,5-Trimethylbenzene	0.994	0.0200	1.000	0	99.4	74.6	123				
2-Chlorotoluene	0.986	0.0200	1.000	0	98.6	76.7	129				
4-Chlorotoluene	0.980	0.0200	1.000	0	98.0	77.5	125				
tert-Butylbenzene	0.994	0.0200	1.000	0	99.4	66.2	130				
1,2,3-Trichloropropane	0.894	0.0200	1.000	0	89.4	67.9	136				
1,2,4-Trichlorobenzene	0.994	0.0500	1.000	0	99.4	62.6	143				
sec-Butylbenzene	1.00	0.0200	1.000	0	100	75.6	133				
4-Isopropyltoluene	0.984	0.0200	1.000	0	98.4	76.8	131				
1,3-Dichlorobenzene	1.03	0.0200	1.000	0	103	72.8	128				
1,4-Dichlorobenzene	1.03	0.0200	1.000	0	103	72.6	126				
n-Butylbenzene	1.06	0.0200	1.000	0	106	65.3	136				
1,2-Dichlorobenzene	1.01	0.0200	1.000	0	101	72.8	126				
1,2-Dibromo-3-chloropropane	0.986	0.500	1.000	0	98.6	61.2	139				
1,2,4-Trimethylbenzene	1.01	0.0200	1.000	0	101	77.5	129				
Hexachlorobutadiene	1.04	0.100	1.000	0	104	42	151				
Naphthalene	0.938	0.0300	1.000	0	93.8	62.3	134				
1,2,3-Trichlorobenzene	0.980	0.0200	1.000	0	98.0	54.8	143				
Surr: Dibromofluoromethane	1.35		1.250		108	56.5	129				
Surr: Toluene-d8	1.19		1.250		95.4	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.28		1.250		103	63.1	141				

Work Order: 1607053

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-14232 SampType: LCS Units: μg/L Prep Date: 7/12/2016 RunNo: 30519

Client ID: LCSS Batch ID: 14232 Analysis Date: 7/12/2016 SeqNo: 576047

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID MB-14232	SampType: MBLK	E MBLK Units: μg/L Prep Date:						016	RunNo: 30		
Client ID: MBLKS	Batch ID: 14232					Analysis Da	ite: 7/13/2	016	SeqNo: 57	6048	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600									
Chloromethane	ND	0.0600									
Vinyl chloride	ND	0.00200									
Bromomethane	ND	0.0900									
Trichlorofluoromethane (CFC-11)	ND	0.0500									
Chloroethane	ND	0.0600									
1,1-Dichloroethene	ND	0.0500									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.0500									Q
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0200									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane (EDC)	ND	0.0300									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0400									
cis-1,3-Dichloropropene	ND	0.0200									

Work Order: 1607053

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-14232	SampType: MBLK			Units: µg/L		Prep Da	ite: 7/12/20	RunNo: 30519			
Client ID: MBLKS	Batch ID: 14232				,	Analysis Dat	te: 7/13/20	116	SeqNo: 576	1048	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									
Dibromochloromethane	ND	0.0300									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0200									
1,1,1,2-Tetrachloroethane	ND	0.0300									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Styrene	ND	0.0200									
Isopropylbenzene	ND	0.0800									
Bromoform	ND	0.0200									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0200									
Bromobenzene	ND	0.0300									
1,3,5-Trimethylbenzene	ND	0.0200									
2-Chlorotoluene	ND	0.0200									
4-Chlorotoluene	ND	0.0200									
tert-Butylbenzene	ND	0.0200									
1,2,3-Trichloropropane	ND	0.0200									
1,2,4-Trichlorobenzene	ND	0.0500									
sec-Butylbenzene	ND	0.0200									
4-Isopropyltoluene	ND	0.0200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.500									

Work Order: 1607053

QC SUMMARY REPORT

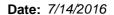
CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-14232	SampType: MBLK		Units: µg/L Prep Date: 7/12/2016				16	RunNo: 30			
Client ID: MBLKS	Batch ID: 14232					Analysis Dat	e: 7/13/20	16	SeqNo: 57 (6048	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene	ND	0.0200									
Hexachlorobutadiene	ND	0.100									
Naphthalene	ND	0.0300									
1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	1.25		1.250		99.9	56.5	129				
Surr: Toluene-d8	1.24		1.250		98.8	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.19		1.250		95.0	63.1	141				
NOTES:											

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1607099-002BDUP	SampType: DUP				Units: mg/	Kg-dry	Prep Dat	e: 7/12/2 0	016	RunNo: 30519		
Client ID: BATCH	Batch ID:	14232					Analysis Da	e: 7/13/2 0	016	SeqNo: 576	6040	
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		ND	0.0399						0		30	
Chloromethane		ND	0.0399						0		30	
Vinyl chloride		ND	0.00133						0		30	
Bromomethane		ND	0.0599						0		30	
Trichlorofluoromethane (CFC-11)		ND	0.0333						0		30	
Chloroethane		ND	0.0399						0		30	
1,1-Dichloroethene		ND	0.0333						0		30	
Methylene chloride		ND	0.0133						0		30	
trans-1,2-Dichloroethene		ND	0.0133						0		30	
Methyl tert-butyl ether (MTBE)		ND	0.0333						0		30	
1,1-Dichloroethane		ND	0.0133						0		30	
2,2-Dichloropropane		ND	0.0333						0		30	Q
cis-1,2-Dichloroethene		ND	0.0133						0		30	
Chloroform		ND	0.0133						0		30	
1,1,1-Trichloroethane (TCA)		ND	0.0133						0		30	
1,1-Dichloropropene		ND	0.0133						0		30	
Carbon tetrachloride		ND	0.0133						0		30	


Work Order: 1607053

QC SUMMARY REPORT

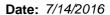
CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607099-002BDUP	SampType: DUP			Units: mg/Kg-dry		Prep Date: 7/12/2016			RunNo: 30519		
Client ID: BATCH	Batch ID: 14232					Analysis Date	e: 7/13/2 0	016	SeqNo: 570	6040	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane (EDC)	ND	0.0200						0		30	
Benzene	ND	0.0133						0		30	
Trichloroethene (TCE)	ND	0.0133						0		30	
1,2-Dichloropropane	ND	0.0133						0		30	
Bromodichloromethane	ND	0.0133						0		30	
Dibromomethane	ND	0.0266						0		30	
cis-1,3-Dichloropropene	ND	0.0133						0		30	
Toluene	ND	0.0133						0		30	
trans-1,3-Dichloropropylene	ND	0.0200						0		30	
1,1,2-Trichloroethane	ND	0.0200						0		30	
1,3-Dichloropropane	ND	0.0333						0		30	
Tetrachloroethene (PCE)	ND	0.0133						0		30	
Dibromochloromethane	ND	0.0200						0		30	
1,2-Dibromoethane (EDB)	ND	0.00333						0		30	
Chlorobenzene	ND	0.0133						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0200						0		30	
Ethylbenzene	ND	0.0200						0		30	
m,p-Xylene	ND	0.0133						0		30	
o-Xylene	ND	0.0133						0		30	
Styrene	ND	0.0133						0		30	
Isopropylbenzene	ND	0.0532						0		30	
Bromoform	ND	0.0133						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0133						0		30	
n-Propylbenzene	ND	0.0133						0		30	
Bromobenzene	ND	0.0200						0		30	
1,3,5-Trimethylbenzene	ND	0.0133						0		30	
2-Chlorotoluene	ND	0.0133						0		30	
4-Chlorotoluene	ND	0.0133						0		30	
tert-Butylbenzene	ND	0.0133						0		30	
1,2,3-Trichloropropane	ND	0.0133						0		30	
1,2,4-Trichlorobenzene	ND	0.0333						0		30	

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

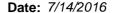

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607099-002BDUP	SampType: DUP				Units: mg/Kg-dry		Prep Date: 7/12/2016			RunNo: 30519		
Client ID: BATCH	Batch ID:	14232					Analysis Da	te: 7/13/2 0	016	SeqNo: 570	6040	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene		ND	0.0133						0		30	
4-Isopropyltoluene		ND	0.0133						0		30	
1,3-Dichlorobenzene		ND	0.0133						0		30	
1,4-Dichlorobenzene		ND	0.0133						0		30	
n-Butylbenzene		ND	0.0133						0		30	
1,2-Dichlorobenzene		ND	0.0133						0		30	
1,2-Dibromo-3-chloropropane		ND	0.333						0		30	
1,2,4-Trimethylbenzene		ND	0.0133						0		30	
Hexachlorobutadiene		ND	0.0665						0		30	
Naphthalene		ND	0.0200						0		30	
1,2,3-Trichlorobenzene		ND	0.0133						0		30	
Surr: Dibromofluoromethane		0.852		0.8317		102	56.5	129		0		
Surr: Toluene-d8		0.833		0.8317		100	64.3	131		0		
Surr: 1-Bromo-4-fluorobenzene		0.816		0.8317		98.2	63.1	141		0		
NOTES:												

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1607053-002BMS	SampType: MS		Units: mg/Kg-dry		Prep Date: 7/12/20)16	RunNo: 30519				
Client ID: SB-2-6	Batch ID: 14232			Analysis D			te: 7/13/2 0	e: 7/13/2016		SeqNo: 576027		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Dichlorodifluoromethane (CFC-12)	1.23	0.0629	1.048	0	118	43.5	121					
Chloromethane	0.975	0.0629	1.048	0	93.0	45	130					
Vinyl chloride	1.05	0.00210	1.048	0	101	51.2	146					
Bromomethane	1.07	0.0943	1.048	0	102	21.3	120					
Trichlorofluoromethane (CFC-11)	1.79	0.0524	1.048	0	171	35	131				S	
Chloroethane	1.06	0.0629	1.048	0	101	43.8	117					
1,1-Dichloroethene	1.07	0.0524	1.048	0	102	61.9	141					
Methylene chloride	1.00	0.0210	1.048	0	95.9	54.7	142					
trans-1,2-Dichloroethene	0.925	0.0210	1.048	0	88.2	52	136					
Methyl tert-butyl ether (MTBE)	0.887	0.0524	1.048	0	84.6	54.4	132					



QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

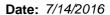
Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607053-002BMS	SampType: MS	pType: MS Units: mg/Kg-dry P		Prep Date: 7/12/2016			RunNo: 30519				
Client ID: SB-2-6	Batch ID: 14232					Analysis Da	te: 7/13/20	16	SeqNo: 570	6027	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethane	0.996	0.0210	1.048	0	95.0	51.8	141				
2,2-Dichloropropane	0.632	0.0524	1.048	0	60.3	36	123				Q
cis-1,2-Dichloroethene	0.949	0.0210	1.048	0	90.6	58.6	136				
Chloroform	0.939	0.0210	1.048	0.01415	88.2	53.2	129				
1,1,1-Trichloroethane (TCA)	0.924	0.0210	1.048	0	88.2	58.3	145				
1,1-Dichloropropene	0.957	0.0210	1.048	0	91.3	55.1	138				
Carbon tetrachloride	1.04	0.0210	1.048	0	99.5	53.3	144				
1,2-Dichloroethane (EDC)	0.921	0.0314	1.048	0	87.9	51.3	139				
Benzene	0.917	0.0210	1.048	0	87.5	63.5	133				
Trichloroethene (TCE)	0.948	0.0210	1.048	0	90.4	68.6	132				
1,2-Dichloropropane	0.944	0.0210	1.048	0	90.1	59	136				
Bromodichloromethane	0.974	0.0210	1.048	0	92.9	50.7	141				
Dibromomethane	0.955	0.0419	1.048	0	91.2	50.6	137				
cis-1,3-Dichloropropene	0.916	0.0210	1.048	0	87.5	50.4	138				
Toluene	0.961	0.0210	1.048	0	91.7	63.4	132				
trans-1,3-Dichloropropylene	0.923	0.0314	1.048	0	88.1	44.1	147				
1,1,2-Trichloroethane	0.936	0.0314	1.048	0	89.3	51.6	137				
1,3-Dichloropropane	0.941	0.0524	1.048	0	89.8	53.1	134				
Tetrachloroethene (PCE)	0.985	0.0210	1.048	0	94.0	35.6	158				
Dibromochloromethane	0.996	0.0314	1.048	0	95.0	55.3	140				
1,2-Dibromoethane (EDB)	0.950	0.00524	1.048	0	90.7	50.4	136				
Chlorobenzene	0.931	0.0210	1.048	0	88.9	60	133				
1,1,1,2-Tetrachloroethane	0.955	0.0314	1.048	0	91.1	53.1	142				
Ethylbenzene	0.946	0.0314	1.048	0	90.3	54.5	134				
m,p-Xylene	1.90	0.0210	2.096	0	90.4	53.1	132				
o-Xylene	0.967	0.0210	1.048	0	92.3	53.3	139				
Styrene	0.954	0.0210	1.048	0	91.0	51.1	132				
Isopropylbenzene	0.985	0.0838	1.048	0	94.0	58.9	138				
Bromoform	1.00	0.0210	1.048	0	95.9	57.9	130				
1,1,2,2-Tetrachloroethane	0.854	0.0210	1.048	0	81.4	51.9	131				
n-Propylbenzene	0.978	0.0210	1.048	0	93.3	53.6	140				

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

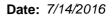

Sample ID 1607053-002BMS	SampType: MS		Units: mg/Kg-dry		Prep Date: 7/12/2016			RunNo: 30519			
Client ID: SB-2-6	Batch ID: 14232					Analysis Da	te: 7/13/20 1	16	SeqNo: 576	6027	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	0.955	0.0314	1.048	0	91.2	54.2	140				
1,3,5-Trimethylbenzene	0.973	0.0210	1.048	0	92.9	51.8	136				
2-Chlorotoluene	0.953	0.0210	1.048	0	90.9	51.6	136				
4-Chlorotoluene	0.954	0.0210	1.048	0	91.0	50.1	139				
tert-Butylbenzene	1.00	0.0210	1.048	0	95.4	50.5	135				
1,2,3-Trichloropropane	0.922	0.0210	1.048	0	88.0	50.5	131				
1,2,4-Trichlorobenzene	0.985	0.0524	1.048	0	94.0	50.8	130				
sec-Butylbenzene	0.999	0.0210	1.048	0	95.4	52.6	141				
4-Isopropyltoluene	0.988	0.0210	1.048	0	94.2	52.9	134				
1,3-Dichlorobenzene	0.989	0.0210	1.048	0	94.4	52.6	131				
1,4-Dichlorobenzene	0.984	0.0210	1.048	0	93.9	52.9	129				
n-Butylbenzene	1.05	0.0210	1.048	0	100	52.6	130				
1,2-Dichlorobenzene	0.969	0.0210	1.048	0	92.5	55.8	129				
1,2-Dibromo-3-chloropropane	0.995	0.524	1.048	0	95.0	40.5	131				
1,2,4-Trimethylbenzene	0.984	0.0210	1.048	0	93.9	50.6	137				
Hexachlorobutadiene	0.999	0.105	1.048	0	95.4	40.6	158				
Naphthalene	0.990	0.0314	1.048	0	94.5	52.3	124				
1,2,3-Trichlorobenzene	0.947	0.0210	1.048	0	90.4	54.4	124				
Surr: Dibromofluoromethane	1.40		1.310		107	56.5	129				
Surr: Toluene-d8	1.33		1.310		101	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.36		1.310		104	63.1	141				

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1607053-002BMSD	SampType: MSD	Units: mg/Kg-dry			Prep Date: 7/12/2016			RunNo: 30519			
Client ID: SB-2-6	Batch ID: 14232			Analysis Date: 7/13/2016 SeqNo:						6028	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.22	0.0629	1.048	0	116	43.5	121	1.232	1.33	30	
Chloromethane	0.993	0.0629	1.048	0	94.8	45	130	0.9746	1.92	30	

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

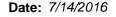


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607053-002BMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Da	te: 7/12/2 0)16	RunNo: 30		
Client ID: SB-2-6	Batch ID: 14232					Analysis Da	te: 7/13/2 0)16	SeqNo: 576	6028	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Vinyl chloride	1.09	0.00210	1.048	0	104	51.2	146	1.053	3.09	30	
Bromomethane	1.08	0.0943	1.048	0	103	21.3	120	1.072	0.779	30	
Trichlorofluoromethane (CFC-11)	1.99	0.0524	1.048	0	190	35	131	1.791	10.7	30	S
Chloroethane	1.07	0.0629	1.048	0	102	43.8	117	1.056	1.18	30	
1,1-Dichloroethene	1.12	0.0524	1.048	0	106	61.9	141	1.066	4.47	30	
Methylene chloride	1.01	0.0210	1.048	0	96.8	54.7	142	1.005	0.934	30	
trans-1,2-Dichloroethene	0.936	0.0210	1.048	0	89.4	52	136	0.9248	1.24	30	
Methyl tert-butyl ether (MTBE)	0.888	0.0524	1.048	0	84.7	54.4	132	0.8871	0.0590	30	
1,1-Dichloroethane	1.00	0.0210	1.048	0	95.7	51.8	141	0.9956	0.682	30	
2,2-Dichloropropane	0.645	0.0524	1.048	0	61.6	36	123	0.6319	2.05	30	Q
cis-1,2-Dichloroethene	0.941	0.0210	1.048	0	89.8	58.6	136	0.9489	0.832	30	
Chloroform	0.956	0.0210	1.048	0.01415	89.9	53.2	129	0.9390	1.77	30	
1,1,1-Trichloroethane (TCA)	0.973	0.0210	1.048	0	92.9	58.3	145	0.9243	5.14	30	
1,1-Dichloropropene	0.995	0.0210	1.048	0	95.0	55.1	138	0.9568	3.92	30	
Carbon tetrachloride	1.19	0.0210	1.048	0	114	53.3	144	1.043	13.5	30	
1,2-Dichloroethane (EDC)	0.905	0.0314	1.048	0	86.4	51.3	139	0.9212	1.78	30	
Benzene	0.938	0.0210	1.048	0	89.5	63.5	133	0.9170	2.26	30	
Trichloroethene (TCE)	0.979	0.0210	1.048	0	93.4	68.6	132	0.9479	3.21	30	
1,2-Dichloropropane	0.951	0.0210	1.048	0	90.8	59	136	0.9442	0.719	30	
Bromodichloromethane	1.00	0.0210	1.048	0	95.5	50.7	141	0.9736	2.76	30	
Dibromomethane	0.937	0.0419	1.048	0	89.4	50.6	137	0.9552	1.88	30	
cis-1,3-Dichloropropene	0.957	0.0210	1.048	0	91.3	50.4	138	0.9164	4.31	30	
Toluene	0.974	0.0210	1.048	0	92.9	63.4	132	0.9610	1.30	30	
trans-1,3-Dichloropropylene	0.958	0.0314	1.048	0	91.4	44.1	147	0.9227	3.73	30	
1,1,2-Trichloroethane	0.935	0.0314	1.048	0	89.2	51.6	137	0.9358	0.112	30	
1,3-Dichloropropane	0.925	0.0524	1.048	0	88.3	53.1	134	0.9405	1.63	30	
Tetrachloroethene (PCE)	1.02	0.0210	1.048	0	97.0	35.6	158	0.9851	3.14	30	
Dibromochloromethane	0.990	0.0314	1.048	0	94.5	55.3	140	0.9956	0.528	30	
1,2-Dibromoethane (EDB)	0.932	0.00524	1.048	0	88.9	50.4	136	0.9505	2.00	30	
Chlorobenzene	0.954	0.0210	1.048	0	91.1	60	133	0.9311	2.45	30	
1,1,1,2-Tetrachloroethane	0.968	0.0314	1.048	0	92.4	53.1	142	0.9547	1.42	30	



QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

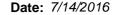
Sample ID 1607053-002BMSD	SampType: MSD			Units: mg/h	(g-dry	Prep Da	te: 7/12/20	16	RunNo: 30	519	
Client ID: SB-2-6	Batch ID: 14232					Analysis Da	te: 7/13/2 0	16	SeqNo: 576	6028	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	0.967	0.0314	1.048	0	92.2	54.5	134	0.9463	2.14	30	
m,p-Xylene	1.95	0.0210	2.096	0	92.8	53.1	132	1.896	2.56	30	
o-Xylene	0.976	0.0210	1.048	0	93.2	53.3	139	0.9673	0.917	30	
Styrene	0.967	0.0210	1.048	0	92.2	51.1	132	0.9536	1.36	30	
Isopropylbenzene	1.01	0.0838	1.048	0	96.4	58.9	138	0.9851	2.47	30	
Bromoform	1.01	0.0210	1.048	0	96.8	57.9	130	1.004	0.935	30	
1,1,2,2-Tetrachloroethane	0.845	0.0210	1.048	0	80.6	51.9	131	0.8536	0.987	30	
n-Propylbenzene	1.01	0.0210	1.048	0	96.4	53.6	140	0.9777	3.27	30	
Bromobenzene	0.978	0.0314	1.048	0	93.3	54.2	140	0.9552	2.33	30	
1,3,5-Trimethylbenzene	0.993	0.0210	1.048	0	94.8	51.8	136	0.9730	2.03	30	
2-Chlorotoluene	0.982	0.0210	1.048	0	93.7	51.6	136	0.9526	3.03	30	
4-Chlorotoluene	0.980	0.0210	1.048	0	93.5	50.1	139	0.9536	2.71	30	
tert-Butylbenzene	1.03	0.0210	1.048	0	98.6	50.5	135	0.9998	3.25	30	
1,2,3-Trichloropropane	0.903	0.0210	1.048	0	86.2	50.5	131	0.9222	2.12	30	
1,2,4-Trichlorobenzene	0.987	0.0524	1.048	0	94.2	50.8	130	0.9851	0.159	30	
sec-Butylbenzene	1.04	0.0210	1.048	0	99.0	52.6	141	0.9992	3.76	30	
4-Isopropyltoluene	1.01	0.0210	1.048	0	96.7	52.9	134	0.9877	2.51	30	
1,3-Dichlorobenzene	1.00	0.0210	1.048	0	95.5	52.6	131	0.9893	1.16	30	
1,4-Dichlorobenzene	0.999	0.0210	1.048	0	95.3	52.9	129	0.9835	1.53	30	
n-Butylbenzene	1.07	0.0210	1.048	0	102	52.6	130	1.051	2.12	30	
1,2-Dichlorobenzene	0.978	0.0210	1.048	0	93.4	55.8	129	0.9688	0.969	30	
1,2-Dibromo-3-chloropropane	0.998	0.524	1.048	0	95.2	40.5	131	0.9950	0.263	30	
1,2,4-Trimethylbenzene	0.999	0.0210	1.048	0	95.3	50.6	137	0.9835	1.53	30	
Hexachlorobutadiene	1.02	0.105	1.048	0	97.1	40.6	158	0.9992	1.82	30	
Naphthalene	0.975	0.0314	1.048	0	93.1	52.3	124	0.9903	1.55	30	
1,2,3-Trichlorobenzene	0.949	0.0210	1.048	0	90.6	54.4	124	0.9468	0.221	30	
Surr: Dibromofluoromethane	1.40		1.310		107	56.5	129		0		
Surr: Toluene-d8	1.32		1.310		101	64.3	131		0		
Surr: 1-Bromo-4-fluorobenzene	1.38		1.310		106	63.1	141		0		

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607053-002BMSD SampType: MSD Units: mg/Kg-dry Prep Date: 7/12/2016 RunNo: 30519


Client ID: SB-2-6 Batch ID: 14232 Analysis Date: 7/13/2016 SeqNo: 576028

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Project:

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Lake Stevens Marketplace

Sample Moisture (Percent Moisture)

Sample ID 1607053-001ADUP SampType: DUP Units: wt% Prep Date: 7/11/2016 RunNo: 30464

Client ID: SB-1a-8 Batch ID: R30464 Analysis Date: 7/11/2016 SeqNo: 574824

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 9.03 0.500 9.511 5.18 20

Sample Log-In Check List

С	lient Name:	PES		Work Order Number	er: 1607053		
Lo	ogged by:	Erica Silva		Date Received:	7/7/2016	4:51:00 PM	
Cha	nin of Custo	ody					
		ustody complete?		Yes 🗸	No 🗌	Not Present	
2.	How was the	sample delivered?		Client			
Log	ı İn						
_	Coolers are p	present?		Yes 🗸	No 🗌	NA \square	
J.	200.0.0 a.o p			. 33			
4.	Shipping con	tainer/cooler in good condition	1?	Yes 🗸	No \square		
5.		s present on shipping contain ments for Custody Seals not		Yes	No \square	Not Required ✓	
6.	Was an atten	npt made to cool the samples	?	Yes 🗸	No \square	NA 🗌	
7.	Were all item	s received at a temperature of	f >0°C to 10.0°C*	Yes 📙	No 🗹	NA 📙	
			Samples	received at appropria		<u>ire</u>	
8.		proper container(s)?		Yes ✓	No 🗀		
9.	Sufficient sar	nple volume for indicated test	(s)?	Yes 🔽	No 🗆		
10.	Are samples	properly preserved?		Yes 🔽	No 🗀		
11.	Was preserva	ative added to bottles?		Yes 🗌	No 🗸	NA 📙	
12.	Is there head	space in the VOA vials?		Yes	No 🗌	NA 🗸	
13.	Did all sample	es containers arrive in good c	ondition(unbroken)?	Yes 🗸	No \square		
		ork match bottle labels?		Yes 🗸	No \square		
15.	Are matrices	correctly identified on Chain of	of Custody?	Yes 🗹	No 🗀		
16.	Is it clear wha	at analyses were requested?		Yes 🔽	No 🗀		
17.	Were all hold	ing times able to be met?		Yes 🗸	No 🗀		
Spe	cial Handli	ing (if applicable)					
-		otified of all discrepancies with	this order?	Yes	No \square	NA 🗸	
	Person		Da	to T			
	By Who		Via	,	one Fax	In Person	
	Regardi		Vic	a eiviaii Filo	one		
	_	estructions:					
		· · · · · · · · · · · · · · · · · · ·					
19.	Additional rer	пагкѕ:					
<u>Item</u>	<u>Information</u>						
		Item #	Temp °C				
	Cooler		11.4				

2.7

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	5 3 +	Chain of Custody Record and Laboratory Services Agreement	boratory Services Agreeme
45		Date: 47/6	Laboratory Project No (internal): 1607053
.<	Tel: 206-352-3790		Page:lof:
Seattle, WA 98103 Fax	rax: 200-332-7176		@ Mentexplace
Address: (2) CV	the Prof. Coste 180	Location: Local Stevens WA	Collected by:
e, zip: Sattle	x 85161	(PM): Brian O'Neal	9:50 min (m)
390C)	71-398) Fax: (206) 579-385	PM Email: boneal @ Desenvicor	The Desire Control of the Control of
*Matrix Codes: A = Air, AQ = Aqueous, B	B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SI	Solid, W = Water, DW = Dri	orm Water, WW = Waste Water
Sample Name	Sample Sample Type Sample Sample Sample Sample Sample Type	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Comments
5B-1a-86	X		
3-2-6	1) x 2 0111 31/4/t		an standard og dere majder og pegenner standard Spesie en som
58-3-7	7/4/6 S X	Control Sealewith I was the War Sea Sea Control of the Sea	The second of the second of the second second of the second second of the second secon
53-4-7	7 4/6 1345 S X		All the All the control of the Contr
38-5-8	7 2 OCE 1 1/4/2		Superior of the South Section States of the Superior of the Su
	CEST TWO ESTAGES TO DESCRIPTION OF THE OWNER OWNER OF THE OWNER		EATHERS SALES SALES SECTION ASSESSED BASINGS
			Trace a 5.6 d is buying land, southing as physical
and the second second			는 기계 기계 등에 가지 등을 하는 것이 되었다. 그런 사람들은 이번 기계를 받는데 되었다. 그런데
**Metals Analysis (Circle): MTCA-5	RCRA-8 Priority Pollutants TAL Individual: Ag	Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb	b Sb Se Sr Sn Ti Tl U V Zn
**Anions (Circle): Nitrate Nitrite	Chloride Sulfate Bromide O-Phos	Fluoride Nitrate+Nitrite	Special Remarks:
Sample Disposal: Return to Client	Disposal by Lab (Samples will be he assessed if samples are retained at	yys unless otherwise noted. A fee may be on the following business day.	The Control of the second of t
represent that I am authorized to en	I represent that I am authorized to enter into this Agreement with Fremont Analytical on b agreement to each of the terms on the front and backside of this Agreement.	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	e a medale eggs on 14 i fileskon endigge og populatiged
Relinquished D	Date/Time Received x M	8hr 7/7 1651	a de la companya de l
Relinquished D	Date/Time Received x	V Date/Time	TAT → SameDay^ NextDay^ 2 Day 3 Day (STD)
	>		^Please coordinate with the lab in advance

Chain of Custody Record and Laboratory Services Agreement

MEMORANDUM

TO: Project File DATE: July 27, 2016

FROM: Jessie Compeau

SUBJECT: Laboratory Data Validation Review

PROJECT: Lake Stevens Marketplace

PROJECT #: 1246.038.03.002

TASK: July 7, 2015 Soil Samples

LAB: Fremont Analytical Service Request No. 1607053

Five soil samples were collected at the Lake Stevens Marketplace Site in Snohomish County on July 7, 2016. The samples were collected as part of a Limited Phase II Investigation at the Site. The samples were delivered to Fremont Analytical (Fremont) of Seattle, Washington for laboratory analysis. Samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The results were reported in Fremont Lab Package 1607053.

The Limited Phase II Investigation occurred in July of 2016 and associated sample data are reported in FA Project Number 1607053 along with FA Project numbers 1607054, and 1607063. The quality assurance review of the laboratory data is summarized below.

DATA QUALIFICATIONS

Guidelines established by USEPA for review of analytical data were used to validate the data. The comments presented in this memorandum refer to the laboratory's performance in meeting the quality control criteria outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999).

DATA VALIDATION

Sample Receipt, Preservation and Handling

The samples were delivered to the project laboratory in coolers under standard chain-of-custody protocols. Review of Fremont's Sample Log-In Check List Form indicates that all samples were received in good condition at a cooler temperature of 11.0 degrees Centigrade (°C) and samples in the cooler were recorded at a temperature of 2.7°C within the recommended preservation temperature range of $4.0^{\circ}\text{C} \pm 2.0^{\circ}\text{C}$. The sample receipt log indicated that the samples in the coolers were received properly stored in a cooler, preserved, and cooled with ice/gel packs and in good condition at the time of laboratory receipt. No data qualifications were assigned due to temperature preservation issues.

Holding Times

USEPA Method 8260C (VOCs):

All samples were analyzed for VOCs within the EPA recommended holding time of 14 days (soils) from the data of sample collection. All holding time criteria were met.

Initial and Continuing Calibration

Initial and continuing calibration data for this project are retained by the laboratory and available for review if necessary. Case narrative notes and qualifiers indicate that either initial or continuing calibration criteria was not met for 2,2-dichloropropane. All associated 2,2-dichloropropane results are all non-detect and qualified as estimated (UJ).

Method Blank Results

USEPA Method 8260C (VOCs):

Laboratory method blank for soil was included with the analytical batch per method requirement. The target analytes were not detected in the method blank for soil at or above the method reporting limits (MRLs). No qualifications of the data were made due to the results of the method blank analyses.

Trip Blank Results

USEPA Method 8260C (VOCs):

No trip blank was collected. No action was taken other than to note this.

Field, Rinsate, or Equipment Blank Results

USEPA Method 8260C (VOCs):

Field, rinsate, or equipment blanks were not collected.

Laboratory Duplicate Analyses

USEPA Method 8260C (VOCs):

Laboratory duplicate analysis was performed on a non-client soil sample within the analytical batch. The primary/duplicate RPDs were within the laboratory control limit of 30%. Duplicate data are acceptable.

Field Duplicate Analyses

USEPA Method 8260C (VOCs):

Soil field duplicate sample was not collected. Refer laboratory duplicate and matrix spike results for precision data.

Surrogate Recoveries

USEPA Method 8260C (VOCs):

The surrogate recovery results for the sample, laboratory duplicate, laboratory control sample, matrix spike, and the method blank were within the laboratory surrogate control limits for all of the analyses.

Matrix Spike/ Matrix Spike Duplicates

USEPA Method 8260C (VOCs):

A matrix spike and matrix spike duplicate (MS/MSD) analysis was performed on soil sample SB-2-6. One MS is required for each sample event (maximum of 20 samples in a group); therefore, the MS analysis meets this required frequency. The MS/MSD percent recoveries (%Rs) and RPDs for all 8260C target analytes were within the laboratory control criteria with the following exception:

MS/MSD % R's for trichlorofluoromethane (CFC-11) were elevated and above FA's control limit criteria. No action is taken in this case since trichlorofluoromethane (CFC-11) was not detected in sample SB-2-6.

Laboratory Control Samples

USEPA Method 8260C (VOCs):

Laboratory control sample (LCS) analysis was performed along with the analytical batch. The LCS %Rs for the control analytes (VOCs) were within the laboratory control criteria for soil. No data qualifications were warranted.

Quantitation Limits

Results of all analyses were reported based on standard laboratory MRLs. The reported MRLs are considered appropriate for this project. No data qualifiers were warranted based upon standard or dilution-elevated detection limits.

Completeness

The samples were collected and analyzed as requested. The results in all cases were reported based upon standard Method Reporting Limits (MRLs). Data completeness is 100%.

Data Assessment

The laboratory data reported for this project were reviewed based on the criteria outlined in:

• USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999)

Data qualifiers were assigned and laboratory report pages with qualifiers are attached. All data are judged to be acceptable for their intended use.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

PES Environmental, Inc.

Brian O'Neal 1215 Fourth Avenue, Suite 1350 Seattle, WA 98161

RE: Lake Stevens Marketplace

Lab ID: 1607054

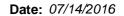
July 14, 2016

Attention Brian O'Neal:

Fremont Analytical, Inc. received 2 sample(s) on 7/7/2016 for the analyses presented in the following report.

Volatile Organic Compounds-EPA Method TO-15 (SIM)

This report consists of the following:


- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

CLIENT: PES Environmental, Inc. Work Order Sample Summary

Project: Lake Stevens Marketplace

Lab Order: 1607054

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1607054-001
 Ambient_070716
 07/07/2016 8:27 AM
 07/07/2016 4:51 PM

 1607054-002
 Indoor_070716
 07/07/2016 8:37 AM
 07/07/2016 4:51 PM

Case Narrative

WO#: **1607054**Date: **7/14/2016**

CLIENT: PES Environmental, Inc.

Project: Lake Stevens Marketplace

WorkOrder Narrative:

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Air samples are reported in ppbv and ug/m3.

The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Standard temperature and pressure assumes 24.45 = (25C and 1 atm).

Qualifiers & Acronyms

WO#: **1607054**

Date Reported: 7/14/2016

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WorkOrder: 1607054

Project: Lake Stevens Marketplace

 Client Sample ID:
 Ambient_070716
 Date Sampled:
 7/7/2016

 Lab ID:
 1607054-001A
 Date Received:
 7/7/2016

Sample Type: Summa Canister

Analyte	Concen	Concentration		g Limit	Qual	Method	Date/Analyst	
Volatile Organic Compounds-EPA	Method TO-15	5 (SIM)						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	<0.00500	<0.0273	0.00500	0.0273		EPA-TO-15SIM	07/14/2016	ВС
1,1,2,2-Tetrachloroethane	<0.00620	<0.0426	0.00620	0.0426		EPA-TO-15SIM	07/14/2016	ВС
1,1,2-Trichloroethane (TCA)	< 0.0200	<0.109	0.0200	0.109		EPA-TO-15SIM	07/14/2016	ВС
1,1-Dichloroethane	<0.00800	<0.0324	0.00800	0.0324		EPA-TO-15SIM	07/14/2016	ВС
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	07/14/2016	ВС
1,2,4-Trichlorobenzene	<0.0500	<0.371	0.0500	0.371		EPA-TO-15SIM	07/14/2016	ВС
1,2,4-Trimethylbenzene	< 0.0730	<0.359	0.0730	0.359		EPA-TO-15SIM	07/14/2016	ВС
1,2-Dibromoethane (EDB)	< 0.0200	<0.154	0.0200	0.154		EPA-TO-15SIM	07/14/2016	ВС
1,2-Dichloroethane	< 0.0200	<0.0809	0.0200	0.0809		EPA-TO-15SIM	07/14/2016	ВС
Benzene	0.100	0.319	0.0400	0.128		EPA-TO-15SIM	07/14/2016	ВС
Carbon tetrachloride	0.0800	0.503	0.0200	0.126		EPA-TO-15SIM	07/14/2016	ВС
Chlorobenzene	< 0.0700	<0.322	0.0700	0.322		EPA-TO-15SIM	07/14/2016	ВС
Chloroethane	<0.0980	<0.259	0.0980	0.259		EPA-TO-15SIM	07/14/2016	ВС
Chloroform	< 0.0200	<0.0977	0.0200	0.0977		EPA-TO-15SIM	07/14/2016	ВС
Chloromethane	<0.400	<0.826	0.400	0.826		EPA-TO-15SIM	07/14/2016	ВС
cis-1,2-Dichloroethene	< 0.0200	< 0.0793	0.0200	0.0793		EPA-TO-15SIM	07/14/2016	ВС
Dichlorodifluoromethane (CFC-12)	<0.300	<1.48	0.300	1.48		EPA-TO-15SIM	07/14/2016	ВС
Ethylbenzene	0.560	2.43	0.0500	0.217		EPA-TO-15SIM	07/14/2016	ВС
Hexachlorobutadiene	< 0.0166	<0.177	0.0166	0.177		EPA-TO-15SIM	07/14/2016	ВС
m,p-Xylene	0.440	1.91	0.0600	0.261		EPA-TO-15SIM	07/14/2016	ВС
Methylene chloride	0.200	0.695	0.0600	0.208		EPA-TO-15SIM	07/14/2016	ВС
Naphthalene	<0.300	<1.57	0.300	1.57		EPA-TO-15SIM	07/14/2016	ВС
Hexane	< 0.0700	<0.247	0.0700	0.247		EPA-TO-15SIM	07/14/2016	ВС
o-Xylene	0.500	2.17	0.0400	0.174		EPA-TO-15SIM	07/14/2016	ВС
Methyl tert-butyl ether (MTBE)	< 0.00900	< 0.0324	0.00900	0.0324		EPA-TO-15SIM	07/14/2016	ВС
Tetrachloroethene (PCE)	0.140	0.950	0.0500	0.339		EPA-TO-15SIM	07/14/2016	ВС
Toluene	0.600	2.26	0.0500	0.188		EPA-TO-15SIM	07/14/2016	ВС
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238		EPA-TO-15SIM	07/14/2016	ВС
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914		EPA-TO-15SIM	07/14/2016	ВС
Vinyl chloride	<0.0850	<0.217	0.0850	0.217		EPA-TO-15SIM	07/14/2016	ВС

WorkOrder: 1607054

Project: Lake Stevens Marketplace

 Client Sample ID:
 Ambient_070716
 Date Sampled:
 7/7/2016

 Lab ID:
 1607054-001A
 Date Received:
 7/7/2016

Sample Type: Summa Canister

Analyte Concentration Reporting Limit Qual Method Date/Analyst

Volatile Organic Compounds-EPA Method TO-15 (SIM)

(ppbv) (ug/m³) (ppbv) (ug/m³)

Surr: 4-Bromofluorobenzene 96.3 %Rec -- 70-130 -- EPA-TO-15SIM 07/14/2016 BC

WorkOrder: 1607054

Project: Lake Stevens Marketplace

 Client Sample ID:
 Indoor_070716
 Date Sampled:
 7/7/2016

 Lab ID:
 1607054-002A
 Date Received:
 7/7/2016

Sample Type: Summa Canister

Analyte Conc		centration R		g Limit	Qual	Method	Date/Analy	st
Volatile Organic Compounds-EPA	Method TO-15	5 (SIM)						
	(ppbv)	(ug/m³)	(ppbv)	(ug/m³)				
1,1,1-Trichloroethane	<0.00500	<0.0273	0.00500	0.0273		EPA-TO-15SIM	07/14/2016	ВС
1,1,2,2-Tetrachloroethane	<0.00620	<0.0426	0.00620	0.0426		EPA-TO-15SIM	07/14/2016	ВС
1,1,2-Trichloroethane (TCA)	< 0.0200	<0.109	0.0200	0.109		EPA-TO-15SIM	07/14/2016	ВС
1,1-Dichloroethane	<0.00800	< 0.0324	0.00800	0.0324		EPA-TO-15SIM	07/14/2016	ВС
1,1-Dichloroethene (DCE)	<0.00900	<0.0357	0.00900	0.0357		EPA-TO-15SIM	07/14/2016	ВС
1,2,4-Trichlorobenzene	< 0.0500	<0.371	0.0500	0.371		EPA-TO-15SIM	07/14/2016	ВС
1,2,4-Trimethylbenzene	< 0.0730	<0.359	0.0730	0.359		EPA-TO-15SIM	07/14/2016	ВС
1,2-Dibromoethane (EDB)	< 0.0200	<0.154	0.0200	0.154		EPA-TO-15SIM	07/14/2016	ВС
1,2-Dichloroethane	< 0.0200	<0.0809	0.0200	0.0809		EPA-TO-15SIM	07/14/2016	ВС
Benzene	0.160	0.511	0.0400	0.128		EPA-TO-15SIM	07/14/2016	ВС
Carbon tetrachloride	0.0800	0.503	0.0200	0.126		EPA-TO-15SIM	07/14/2016	ВС
Chlorobenzene	< 0.0700	<0.322	0.0700	0.322		EPA-TO-15SIM	07/14/2016	ВС
Chloroethane	< 0.0980	<0.259	0.0980	0.259		EPA-TO-15SIM	07/14/2016	ВС
Chloroform	< 0.0200	<0.0977	0.0200	0.0977		EPA-TO-15SIM	07/14/2016	ВС
Chloromethane	<0.400	<0.826	0.400	0.826		EPA-TO-15SIM	07/14/2016	ВС
cis-1,2-Dichloroethene	< 0.0200	< 0.0793	0.0200	0.0793		EPA-TO-15SIM	07/14/2016	ВС
Dichlorodifluoromethane (CFC-12)	<0.300	<1.48	0.300	1.48		EPA-TO-15SIM	07/14/2016	ВС
Ethylbenzene	0.590	2.56	0.0500	0.217		EPA-TO-15SIM	07/14/2016	ВС
Hexachlorobutadiene	<0.0166	<0.177	0.0166	0.177		EPA-TO-15SIM	07/14/2016	ВС
m,p-Xylene	0.480	2.08	0.0600	0.261		EPA-TO-15SIM	07/14/2016	ВС
Methylene chloride	0.220	0.764	0.0600	0.208		EPA-TO-15SIM	07/14/2016	ВС
Naphthalene	<0.300	<1.57	0.300	1.57		EPA-TO-15SIM	07/14/2016	ВС
Hexane	< 0.0700	<0.247	0.0700	0.247		EPA-TO-15SIM	07/14/2016	ВС
o-Xylene	0.530	2.30	0.0400	0.174		EPA-TO-15SIM	07/14/2016	ВС
Methyl tert-butyl ether (MTBE)	<0.00900	< 0.0324	0.00900	0.0324		EPA-TO-15SIM	07/14/2016	ВС
Tetrachloroethene (PCE)	0.160	1.09	0.0500	0.339		EPA-TO-15SIM	07/14/2016	ВС
Toluene	0.880	3.32	0.0500	0.188		EPA-TO-15SIM	07/14/2016	ВС
trans-1,2-Dichloroethene	<0.00600	<0.0238	0.00600	0.0238		EPA-TO-15SIM	07/14/2016	ВС
Trichloroethene (TCE)	<0.0170	<0.0914	0.0170	0.0914		EPA-TO-15SIM	07/14/2016	ВС
Vinyl chloride	<0.0850	<0.217	0.0850	0.217		EPA-TO-15SIM	07/14/2016	ВС

WorkOrder: 1607054

Project: Lake Stevens Marketplace

 Client Sample ID:
 Indoor_070716
 Date Sampled:
 7/7/2016

 Lab ID:
 1607054-002A
 Date Received:
 7/7/2016

Sample Type: Summa Canister

Analyte Concentration Reporting Limit Qual Method Date/Analyst

Volatile Organic Compounds-EPA Method TO-15 (SIM)

(ppbv) (ug/m³) (ppbv) (ug/m³)

Surr: 4-Bromofluorobenzene 95.6 %Rec -- 70-130 -- EPA-TO-15SIM 07/14/2016 BC

Date: 7/14/2016

Work Order: 1607054

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID LCS-R30561	SampType: LCS			Units: ppbv		Prep Da	te: 7/14/2 0	16	RunNo: 30 5	561	
Client ID: LCSW	Batch ID: R30561					Analysis Da	te: 7/14/2 0	16	SeqNo: 576	6570	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	2.46	0.300	2.500	0	98.4	70	130				
Chloromethane	2.48	0.400	2.500	0	99.2	70	130				
Vinyl chloride	2.41	0.0850	2.500	0	96.4	70	130				
Chloroethane	2.40	0.0980	2.500	0	96.0	70	130				
1,1-Dichloroethene (DCE)	2.49	0.00900	2.500	0	99.6	70	130				
Methylene chloride	2.41	0.0600	2.500	0	96.4	70	130				
trans-1,2-Dichloroethene	2.72	0.00600	2.500	0	109	70	130				
Methyl tert-butyl ether (MTBE)	2.43	0.00900	2.500	0	97.2	70	130				
Hexane	2.47	0.0700	2.500	0	98.8	70	130				
1,1-Dichloroethane	2.51	0.00800	2.500	0	100	70	130				
cis-1,2-Dichloroethene	2.34	0.0200	2.500	0	93.6	70	130				
Chloroform	2.49	0.0200	2.500	0	99.6	70	130				
1,1,1-Trichloroethane	2.49	0.00500	2.500	0	99.6	70	130				
Carbon tetrachloride	2.50	0.0200	2.500	0	100	70	130				
1,2-Dichloroethane	2.51	0.0200	2.500	0	100	70	130				
Benzene	2.42	0.0400	2.500	0	96.8	70	130				
Trichloroethene (TCE)	2.48	0.0170	2.500	0	99.2	70	130				
Toluene	2.40	0.0500	2.500	0	96.0	70	130				
1,1,2-Trichloroethane (TCA)	2.50	0.0200	2.500	0	100	70	130				
Tetrachloroethene (PCE)	2.50	0.0500	2.500	0	100	70	130				
1,2-Dibromoethane (EDB)	2.49	0.0200	2.500	0	99.6	70	130				
Chlorobenzene	2.53	0.0700	2.500	0	101	70	130				
Ethylbenzene	2.46	0.0500	2.500	0	98.4	70	130				
m,p-Xylene	4.99	0.0600	5.000	0	99.8	70	130				
o-Xylene	2.46	0.0400	2.500	0	98.4	70	130				
1,1,2,2-Tetrachloroethane	2.56	0.00620	2.500	0	102	70	130				
1,3,5-Trimethylbenzene	2.50	0.300	2.500	0	100	70	130				
1,2,4-Trimethylbenzene	2.50	0.0730	2.500	0	100	70	130				
1,2,4-Trichlorobenzene	2.42	0.0500	2.500	0	96.8	70	130				
Hexachlorobutadiene	2.29	0.0166	2.500	0	91.6	70	130				
Naphthalene	2.38	0.300	2.500	0	95.2	70	130				

Date: 7/14/2016

Work Order: 1607054

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID LCS-R30561	SampType: LCS	Units: ppbv	Prep Date: 7/14/2016	RunNo: 30561

Client ID: **LCSW** Batch ID: **R30561** Analysis Date: **7/14/2016** SeqNo: **576570**

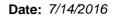
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Surr: 4-Bromofluorobenzene 10.2 10.00 102 70 130

Sample ID MB-R30561	SampType: MBLK			Units: ppbv		Prep Da	ite: 7/14/2 0	016	RunNo: 30	561	
Client ID: MBLKW	Batch ID: R30561					Analysis Da	ite: 7/14/2 0	016	SeqNo: 570	6571	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.300									
Chloromethane	ND	0.400									
Vinyl chloride	ND	0.0850									
Chloroethane	ND	0.0980									
1,1-Dichloroethene (DCE)	ND	0.00900									
Methylene chloride	ND	0.0600									
trans-1,2-Dichloroethene	ND	0.00600									
Methyl tert-butyl ether (MTBE)	ND	0.00900									
Hexane	ND	0.0700									
1,1-Dichloroethane	ND	0.00800									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane	ND	0.00500									
Carbon tetrachloride	ND	0.0200									
1,2-Dichloroethane	ND	0.0200									
Benzene	ND	0.0400									
Trichloroethene (TCE)	ND	0.0170									
Toluene	ND	0.0500									
1,1,2-Trichloroethane (TCA)	ND	0.0200									
Tetrachloroethene (PCE)	ND	0.0500									
1,2-Dibromoethane (EDB)	ND	0.0200									
Chlorobenzene	ND	0.0700									
Ethylbenzene	ND	0.0500									
m,p-Xylene	ND	0.0600									

Date: 7/14/2016

Work Order: 1607054


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID MB-R30561	SampType: MBLK			Units: ppbv		Prep Da	te: 7/14/2	2016	RunNo: 30 5	561	
Client ID: MBLKW	Batch ID: R30561					Analysis Da	te: 7/14/2	2016	SeqNo: 570	6571	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	ND	0.0400									
1,1,2,2-Tetrachloroethane	ND	0.00620									
1,3,5-Trimethylbenzene	ND	0.300									
1,2,4-Trimethylbenzene	ND	0.0730									
1,2,4-Trichlorobenzene	ND	0.0500									
Hexachlorobutadiene	ND	0.0166									
Naphthalene	ND	0.300									
Surr: 4-Bromofluorobenzene	9.51		10.00		95.1	70	130	ı			

Sample ID 1607122-001AREP	SampType:	REP			Units: ppbv		Prep Da	te: 7/14/2 0	016	RunNo: 305	561	
Client ID: BATCH	Batch ID:	R30561					Analysis Da	te: 7/14/2 0	016	SeqNo: 576	5567	
Analyte	Re	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		ND	0.300						0		30	
Chloromethane		ND	0.400						0		30	
Vinyl chloride		ND	0.0850						0		30	
Chloroethane		ND	0.0980						0		30	
1,1-Dichloroethene (DCE)		ND	0.00900						0		30	
Methylene chloride	0.	590	0.0600						0.5600	5.22	30	
trans-1,2-Dichloroethene		ND	0.00600						0		30	
Methyl tert-butyl ether (MTBE)		ND	0.00900						0		30	
Hexane	0.	620	0.0700						0.5500	12.0	30	
1,1-Dichloroethane		ND	0.00800						0		30	
cis-1,2-Dichloroethene		ND	0.0200						0		30	
Chloroform	0.0	200	0.0200						0.02000	0	30	
1,1,1-Trichloroethane		ND	0.00500						0		30	
Carbon tetrachloride	0.0	008	0.0200						0.07000	13.3	30	
1,2-Dichloroethane	0.0	200	0.0200						0.01000	66.7	30	
Benzene	0.	210	0.0400						0.2100	0	30	
Trichloroethene (TCE)	0.0	600	0.0170						0.06000	0	30	

Project:

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Lake Stevens Marketplace

Volatile Organic Compounds-EPA Method TO-15 (SIM)

Sample ID 1607122-001AREP	SampType: REP			Units: ppbv		Prep Da	ite: 7/14/2	016	RunNo: 30	561	
Client ID: BATCH	Batch ID: R30561					Analysis Da	ite: 7/14/2	016	SeqNo: 57	6567	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	1.01	0.0500						0.9900	2.00	30	
1,1,2-Trichloroethane (TCA)	ND	0.0200						0		30	
Tetrachloroethene (PCE)	0.0500	0.0500						0.05000	0	30	
1,2-Dibromoethane (EDB)	ND	0.0200						0		30	
Chlorobenzene	ND	0.0700						0		30	
Ethylbenzene	0.590	0.0500						0.5900	0	30	
m,p-Xylene	0.510	0.0600						0.5100	0	30	
o-Xylene	0.530	0.0400						0.5300	0	30	
1,1,2,2-Tetrachloroethane	0.0100	0.00620						0.01000	0	30	
1,2,4-Trimethylbenzene	0.500	0.0730						0.5100	1.98	30	
1,2,4-Trichlorobenzene	ND	0.0500						0		30	
Hexachlorobutadiene	ND	0.0166						0		30	
Naphthalene	ND	0.300						0		30	
Surr: 4-Bromofluorobenzene	9.49		10.00		94.9	70	130		0		

Sample Log-In Check List

CI	ient Name:	PES	Work Order Numb	er: 1607054	
Lo	gged by:	Erica Silva	Date Received:	7/7/2016 4:5	51:00 PM
<u>Cha</u>	in of Custo	<u>ody</u>			
1.	Is Chain of C	sustody complete?	Yes 🗹	No 🗌	Not Present
2.	How was the	sample delivered?	<u>Client</u>		
Log	<u>In</u>				
3.	Coolers are p	present?	Yes	No 🗸	NA \square
			Air samples		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No \square	
5.	•	Is present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌 N	Not Required 🗹
6.	Was an atten	npt made to cool the samples?	Yes	No 🗌	NA 🗹
7.	Were all item	ns received at a temperature of >0°C to 10.0°C*	Yes	No 🗆	NA 🗹
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗸	No \square	
10.	Are samples	properly preserved?	Yes 🗸	No \square	
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA 🗌
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🗸
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗸	No \square	
14.	Does paperw	ork match bottle labels?	Yes 🗸	No \square	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16.	Is it clear wha	at analyses were requested?	Yes 🗸	No \square	
17.	Were all hold	ling times able to be met?	Yes 🗸	No 🗌	
<u>Spe</u>	cial Handl	ing (if applicable)			
-		otified of all discrepancies with this order?	Yes 🗸	No 🗌	NA \square
	Person	Notified: Chris DeBoer Date		7/7/2016	
	By Who		eMail Pho	one 🗌 Fax 🗸	In Person
	Regardi	ing: Confirming TO-15 SIM request - full list.	. + Freon12		
	Client Ir	nstructions: Confirmed			

19. Additional remarks:

Item Information

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

3600 Fremont Ave N.	
P.N. Tel: 206-352-3790	-remont

Air Chain of Custody Record & Laboratory Services Agreement

×	Relinquished x Relinquished	I represent the verified Client	Condition:					4		4		Indoor		Ambien	Samp		** Container Codes:	* Gas Matrix Codes:	Telephone:	City, State, Zip:	Address:	Client:		3600 Fremont Ave N. Seattle, WA 98103	
	Jished Debut 7	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.										Indoor _070716		Ambient_Ototil	Sample Name		6L = Six Liter Canister (Summa)		(306)529-3980	Septitle V	1216 yr	PES		S.N.	Am
	Date/Time	ed to enter into		Flow Reg	Canister	Flow Reg.	Canister	Flow Keg.		Canister	Flow Reg.	17244 Çanister	Flow Reg	15422 Canister	Canister / Flow Reg Sample Date & Serial # Time		(Summa) TB = Tedlar Bag	SS = Subslab L = Landfill S	3980	seattle WA 28161	215 you Am Suite			Tel: 206-352-3790 Fax: 206-352-7178	4nalytical
	50	this Agree	Seals Intact:	Time	Date	Time	Date	i me		Date	Time	0837	Time	1230	ample Date & Time			SG = Soil Gas		_	te 1357				
		ement with ront and b	z z												Gas Matrix Code *		BV = 1 Liter Bottle Vac	M = Plume Mapping	Fax: (306)		57				
		h Fremon backside o	N/A									8hr		8hr	Anticipated Fill Time				3828-165						
×	Received Received	t Analyt of this Ag										19		D 19	Sample Volume		MC = 1 Liter MiniCan	Q = Fuel Gas Quality	39.85						
	Ely	ical on b	Turn- follow									Summa		Summa	Container Type **		1					1			
		ehalf of the t.	Turn-around times for samples received after 4:00pm will begin on the following business day.	Date	Pressure	Date	Pressure	Dale of	7	Pressure	7/5/16 17:00 Date	10 mTorr Pressure	7/5/16 17:00 Date	10 mTorr		Evacuation	HP = High Pressure Cylinder	L = LEED (Consult Client Services)							
	Date/Time Date/Time	Client na	r samples rec ay.	Date/Time	Pressure	Date/Time	Pressure	Dale) linie	Data/Time	Pressure	Date/Time	Pressure	Date/Time	Pressure	Time of Pick- up (" Hg)	Pressure at	0	nt Services)	Email (PM):	Reports To (PM):	Location:	Project No:	Project Name:		
	7	med above	eived after 4:0	Regulator	Container	Regulator	Container	Segmano	Doguestor	Container	Regulator	Container	Regulator	Container	Certificaton Code	Equipment	HJ = Glass Headspace Jar		bo	M): Brian	Lake	1246			
	165	, that I ha	00pm will beg	Tinte	Pressure	Time	Pressure		Timo	Pressure	458	120 re	S. J. May	W.	_	Field Initial	ar		borneal @		Stew	1346, 638.03.001	Lake Stevens	_	1
7		ave		Time	Pressure	Time	Pressure		1	Pressure	1500	-5	E01500	Pressure	Pressure (" Hg)	Field Final		•	Deselv.	O'Mea!	Stevens WA			Date: 77	Laboratory Project No (Internal):
TAT> (ID)			Special Remarks:										0	1	>				. Com		A	Collected by:	Marketa	116	ect No (Interna
												-15+		0-15	Analysis Requested							S D	toluce		9
Rush (specify)												T1)-15 + Frem 7		+ FROND 7	ested								(0	Page: of:	
											1 / +	14		1/4	Receipt Date									_	
												2		6	70	Final	ernal			1	1		I	1	1

3600 Fremont Ave N. Seattle, WA 98103		
t Ave N. 98103	16	
Tel: 206-352-3790 Fax: 206-352-7178	Amalylinat	

Air Chain of Custody Record & Laboratory Services Agreement

*	Relinquished	Relinquished x	I represent verified Cl	Condition:			5		4		Indo	Amb	1	** Container Codes:	* Gas Matrix Codes:	Telephone:	City, State, Zip:	Address:	Client:		3600 Fremont Ave N Seattle, WA 98103	or district
		Ine letre	it that I ar								3	iest	Sample Name		Codes: I = Indoor		1	93	- -		ont Ave N. A 98103	
		ĺ .	n authoriz								Indoor _070716	Ambient_07074		6L = Six Liter Canister (Summa)	door SS = Subslab	306)527-3980	subtle 1	316 46	PES			
	ıte/Time	OSIH 911/4/E	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.		Flow Reg	Car	Flow Reg	Çar	Flow Reg	Car	172	154	Canister / Flov Serial #	- 1	oslab L = Landfill	-3480	Seathly INA 28161	you Ame Swite			Tel: 206-352-3790 Fax: 206-352-7178	
		0314	into this Ag terms on th	Seals Intact:		Canister		Canister		Canister	Aster 083	281.	Reg	TB = Tedlar Bag	fill SG = Soil Gas		1518	5 mg			3790 7178	
			greement v	ct: ×	Time	Date	Time	Date	Time	Cate	Time are	Date	ate & Gas Mat	BV = 1 Liter Bottle Vac	1	Fax: (1357				
	þ	2 2	vith Fremo	N/A							8hr	8hr	Anticipated Fill Time	1	M = Plume Mapping	(306) 52A-35 BOX)						
×	Received	Received ×	ont Analy of this A							-	6L	6L	ed Sample Volume	MC = 1 Liter MiniCan	Q = Fuel Gas Quality	1-368						
	7	Ely	tical on b	Turn- follov							Summa	Summa	Container Type **	- 1		2						
	/		ehalf of the	Turn-around times for samples received after following business day.	Date	Pressure	Date	Pressure	Date	Pressure	10 mTorr Pressure 7/5/16 17:00 Date	10 mTom Pressure 7/5/16 17:00 Date	Evacuation Pressure (mtorr)	HP = High Pressure Cylinder Int	L = LEED (Consult Client Services)							
	Date/Time	Date/Time	e Client na	or samples reclay.	Date/Time	Pressure	p Date/Time	e Pressure	e Date/Time	e Pressure	e Pressure	e Pressure e Date/Time	Pressure at Time of Pick- up (" Hg)	(0)	lient Services)	Email (PM):	Reports To (PM):	Location:	Project No:	Project Name:		
		4/9	med above	ceived after 4:	Regulator	Container	Regulator	Container	Regulator	Container	Contain: Regulate	Contain Regulate	Equipment Certificaton Code	HJ = Glass Headspace Jar			1	5	124			
		165	e, that I ha	4:00pm will begin on the	Time	Pressure	Time	Fressure	Time	Pressure	130 m					meal @	Brian O'Mea	Lake Stevens WA	1346,038.03.001	le Ste		
			ive		Time	Pressure	Time	Pressure	The second	Pressure	15 mg	Pressure Pressure Pressure	Field Final Sample Pressure (" Hg)		•	Deser	Meal	ens h	\$.001	iems	Date: 7/7/16	
TAT -> CID		C.D	plus	Special Remarks:								. 1				Doneal @ peseur com		À	Collected by:	Lake Stevens Market place	3/16	
		Boce	Free	70-16)-15 +	0-15	Analysis Requested						A BO	Halan		
Rush (specify)		C. DeBar 7/7/16	plus Freon 12	cial Remarks:							TU-15 + Fremia	+ 5	quested							ğ	Page:	
		011	per	Voc				-				+ Feron 12/7	-								of:	
		#)	181			-				4/4	4/4	Receipt Date	Intern							-	
		V	, s								9-	6	Final Pressure ("Hg)	al			•	. 1		1 10		

MEMORANDUM

TO: Project File DATE: July 26, 2016

FROM: Jessie Compeau

SUBJECT: Laboratory Data Validation Review

PROJECT: Lake Stevens Marketplace

PROJECT #: 1246.038.03.002

TASK: July 7, 2016 Soil

LAB: Fremont Analytical Service Request No. 1607054

Two air samples were collected at the Lake Stevens Marketplace in Snohomish County on July 7, 2016. The samples were collected as part of a Limited Phase II Investigation at the Site. The air samples (ambient and indoor air) were analyzed for VOCs including dichlorodifluoromethane (CFC-12 or Freon-12) by USEPA Method TO-15. Laboratory analytical services were provided by Fremont Analytical (FA) of Seattle, Washington. FA Project number: 1607054.

The Limited Phase II Investigation occurred in July of 2016 and associated sample data are reported in FA Project Number 1607054 along with FA Project numbers 1607053 and 1607063. The quality assurance review of the laboratory data is summarized below.

DATA QUALIFICATIONS

Guidelines established by USEPA for review of analytical data were used to validate the data. The comments presented in this memorandum refer to the laboratory's performance in meeting the quality control criteria outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999).

DATA VALIDATION

Completeness

All samples were collected and analyzed as requested. No concerns, issues, or anomalies were identified in the laboratory report.

Sample Collection and Preservation

The laboratory supplied Summa canisters for the air samples. The sample was hand delivered and received in good condition by the laboratory. Summa canisters do not require preservation or cooling. The samples were collected, handled, and delivered in an appropriate manner. No data qualifications were warranted based upon sampling and preservation techniques.

Holding Times

The analysis for TO-15 VOCs was performed within the thirty day recommended holding time limit for air samples collected in the Summa canisters. No data was qualified based upon holding times.

Method Blank Results

A laboratory method blank was included with the analytical batch per method requirement. The method blank results did not report any compounds at concentrations at or above the MRLs. No data qualifications were warranted.

Trip Blank Results

A trip blank was not required for the TO-15 analyses.

Field Duplicate Analyses

No field duplicates were required or collected during this field event. Refer to laboratory duplicate results for precision data.

Laboratory Duplicate Analyses

A laboratory duplicate was performed on a non-client sample analyzed within the same analytical batch. The relative percent differences (RPDs) for the VOC compounds were within FA laboratory control limits.

Surrogate Recoveries

The surrogate % R results for the TO-15 air sample, method blank, duplicate, and laboratory control sample were within the laboratory surrogate control limits of 70 to 130% R. No data qualifications were warranted.

Laboratory Control Samples

One laboratory control sample (LCS) was run for the TO-15 analytical group sample. The LCS was run at the appropriate frequency for this project. The LCS recovery results for all control compounds met the % R acceptance criteria of 70 to 130%. LCS results are acceptable.

Matrix Spike/Matrix Spike Duplicates

A MS/MSD is not required for the TO-15 method.

Other Quality Control Issues

No other laboratory quality control issues were identified in the laboratory report.

Quantitation Limits

Results of the TO-15 VOC analysis were reported based on laboratory MRLs. Standard temperature and pressure assumes 24.45 (25° Celsius and 1 atmosphere). The MRLs indicate the minimum quantity of a target analyte that can be confidently determined by the reference method. The MRLs and MDL were acceptable for the project; therefore, no data qualifications were warranted.

Data Assessment

No data qualifiers were assigned. All data are judged to be acceptable for their intended use.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

PES Environmental, Inc.

Brian O'Neal 1215 Fourth Avenue, Suite 1350 Seattle, WA 98161

RE: Lake Stevens Marketplace

Lab ID: 1607063

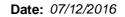
July 12, 2016

Attention Brian O'Neal:

Fremont Analytical, Inc. received 4 sample(s) on 7/8/2016 for the analyses presented in the following report.

Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:


- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

CLIENT: PES Environmental, Inc. Work Order Sample Summary

Project: Lake Stevens Marketplace

Lab Order: 1607063

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1607063-001	TW-3-070816	07/08/2016 6:10 AM	07/08/2016 10:08 AM
1607063-002	TW-5-070816	07/08/2016 6:30 AM	07/08/2016 10:08 AM
1607063-003	TW-6-070816	07/08/2016 6:45 AM	07/08/2016 10:08 AM
1607063-004	Trip Blank	07/05/2016 1:10 PM	07/08/2016 10:08 AM

Case Narrative

WO#: **1607063**Date: **7/12/2016**

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 1607063

Date Reported: 7/12/2016

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: **1607063**Date Reported: **7/12/2016**

Client: PES Environmental, Inc. Collection Date: 7/8/2016 6:10:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607063-001 Matrix: Groundwater

Client Sample ID: TW-3-070816

RL Qual Units DF **Analyses** Result **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: R30505 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 7/8/2016 10:17:13 PM Chloromethane ND 1.00 µg/L 1 7/8/2016 10:17:13 PM ND Vinyl chloride 0.200 µg/L 1 7/8/2016 10:17:13 PM Bromomethane ND 1.00 1 7/8/2016 10:17:13 PM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/8/2016 10:17:13 PM Chloroethane ND 1.00 μg/L 7/8/2016 10:17:13 PM 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/8/2016 10:17:13 PM ND Methylene chloride 1.00 µg/L 1 7/8/2016 10:17:13 PM trans-1,2-Dichloroethene ND 1.00 1 7/8/2016 10:17:13 PM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/8/2016 10:17:13 PM μg/L ND 1,1-Dichloroethane 1.00 µg/L 1 7/8/2016 10:17:13 PM 2,2-Dichloropropane ND 2.00 7/8/2016 10:17:13 PM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/8/2016 10:17:13 PM Chloroform ND 1.00 µg/L 1 7/8/2016 10:17:13 PM 1,1,1-Trichloroethane (TCA) ND 1.00 7/8/2016 10:17:13 PM μg/L 1 1,1-Dichloropropene ND 1.00 µg/L 1 7/8/2016 10:17:13 PM Carbon tetrachloride ND 1.00 7/8/2016 10:17:13 PM µg/L 1 1,2-Dichloroethane (EDC) ND 7/8/2016 10:17:13 PM 1.00 µg/L 1 ND Benzene 1.00 1 7/8/2016 10:17:13 PM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/8/2016 10:17:13 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/8/2016 10:17:13 PM Bromodichloromethane ND 1.00 µg/L 1 7/8/2016 10:17:13 PM ND Dibromomethane 1.00 µg/L 1 7/8/2016 10:17:13 PM cis-1,3-Dichloropropene ND 1.00 1 7/8/2016 10:17:13 PM µg/L Toluene ND 1.00 µg/L 1 7/8/2016 10:17:13 PM trans-1,3-Dichloropropene ND 1.00 µg/L 1 7/8/2016 10:17:13 PM 1,1,2-Trichloroethane ND 7/8/2016 10:17:13 PM 1.00 µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/8/2016 10:17:13 PM Tetrachloroethene (PCE) ND 1.00 µg/L 1 7/8/2016 10:17:13 PM Dibromochloromethane ND 1.00 μg/L 1 7/8/2016 10:17:13 PM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/8/2016 10:17:13 PM Chlorobenzene ND 1.00 µg/L 1 7/8/2016 10:17:13 PM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/8/2016 10:17:13 PM µg/L Ethylbenzene ND 1.00 µg/L 1 7/8/2016 10:17:13 PM ND 1.00 7/8/2016 10:17:13 PM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 7/8/2016 10:17:13 PM ND Styrene 1.00 µg/L 1 7/8/2016 10:17:13 PM Isopropylbenzene ND 1.00 μg/L 1 7/8/2016 10:17:13 PM Bromoform ND 1.00 µg/L 1 7/8/2016 10:17:13 PM

WO#: **1607063**Date Reported: **7/12/2016**

Client: PES Environmental, Inc. Collection Date: 7/8/2016 6:10:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607063-001 Matrix: Groundwater

97.4

Client Sample ID: TW-3-070816

Surr: 1-Bromo-4-fluorobenzene

Analyses	Result	Qual	Units	DF	Da	Date Analyzed		
Volatile Organic Compounds by	y EPA Method 8	3260C		Batc	h ID:	R30505	Analyst: NG	
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
n-Propylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
Bromobenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
2-Chlorotoluene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
4-Chlorotoluene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
tert-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/8/2	016 10:17:13 PM	
sec-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
4-Isopropyltoluene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
n-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
Hexachlorobutadiene	ND	4.00		μg/L	1	7/8/2	016 10:17:13 PM	
Naphthalene	ND	1.00		μg/L	1	7/8/2	016 10:17:13 PM	
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/8/2	016 10:17:13 PM	
Surr: Dibromofluoromethane	102	45.4-152		%Rec	1	7/8/2	016 10:17:13 PM	
Surr: Toluene-d8	97.8	40.1-139		%Rec	1	7/8/2	016 10:17:13 PM	

64.2-128

%Rec

7/8/2016 10:17:13 PM

WO#: **1607063**Date Reported: **7/12/2016**

Client: PES Environmental, Inc. Collection Date: 7/8/2016 6:30:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607063-002 Matrix: Groundwater

Client Sample ID: TW-5-070816

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: R30505 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 7/8/2016 10:47:54 PM Chloromethane ND 1.00 µg/L 1 7/8/2016 10:47:54 PM ND 0.200 Vinyl chloride µg/L 1 7/8/2016 10:47:54 PM Bromomethane ND 1.00 1 7/8/2016 10:47:54 PM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/8/2016 10:47:54 PM Chloroethane ND 1.00 μg/L 7/8/2016 10:47:54 PM 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/8/2016 10:47:54 PM ND Methylene chloride 1.00 µg/L 1 7/8/2016 10:47:54 PM trans-1,2-Dichloroethene ND 1.00 1 7/8/2016 10:47:54 PM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/8/2016 10:47:54 PM μg/L ND 7/8/2016 10:47:54 PM 1,1-Dichloroethane 1.00 µg/L 1 2,2-Dichloropropane ND 2.00 7/8/2016 10:47:54 PM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/8/2016 10:47:54 PM Chloroform ND 1.00 µg/L 1 7/8/2016 10:47:54 PM 1,1,1-Trichloroethane (TCA) ND 1.00 7/8/2016 10:47:54 PM μg/L 1 1,1-Dichloropropene ND 1.00 µg/L 1 7/8/2016 10:47:54 PM Carbon tetrachloride ND 1.00 7/8/2016 10:47:54 PM µg/L 1 1,2-Dichloroethane (EDC) ND 1.00 7/8/2016 10:47:54 PM µq/L 1 ND Benzene 1.00 1 7/8/2016 10:47:54 PM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/8/2016 10:47:54 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/8/2016 10:47:54 PM Bromodichloromethane ND 1.00 µg/L 1 7/8/2016 10:47:54 PM ND Dibromomethane 1.00 µg/L 1 7/8/2016 10:47:54 PM cis-1,3-Dichloropropene ND 1.00 1 7/8/2016 10:47:54 PM µg/L Toluene ND 1.00 µg/L 1 7/8/2016 10:47:54 PM trans-1,3-Dichloropropene ND 1.00 µg/L 1 7/8/2016 10:47:54 PM 1,1,2-Trichloroethane ND 1.00 7/8/2016 10:47:54 PM µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/8/2016 10:47:54 PM ND Tetrachloroethene (PCE) 1.00 µg/L 1 7/8/2016 10:47:54 PM Dibromochloromethane ND 1.00 μg/L 1 7/8/2016 10:47:54 PM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/8/2016 10:47:54 PM Chlorobenzene ND 1.00 µg/L 1 7/8/2016 10:47:54 PM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/8/2016 10:47:54 PM µg/L Ethylbenzene ND 1.00 µg/L 1 7/8/2016 10:47:54 PM ND 1.00 7/8/2016 10:47:54 PM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 7/8/2016 10:47:54 PM ND Styrene 1.00 µg/L 1 7/8/2016 10:47:54 PM Isopropylbenzene ND 1.00 μg/L 1 7/8/2016 10:47:54 PM Bromoform ND 1.00 µg/L 1 7/8/2016 10:47:54 PM

WO#: 1607063 Date Reported: 7/12/2016

Collection Date: 7/8/2016 6:30:00 AM Client: PES Environmental, Inc.

Project: Lake Stevens Marketplace

Lab ID: 1607063-002 Matrix: Groundwater

Client Sample ID: TW-5-070816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed			
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: F	R30505	Analyst: NG		
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
n-Propylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
Bromobenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
2-Chlorotoluene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
4-Chlorotoluene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
tert-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/8/2	016 10:47:54 PM		
sec-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
4-Isopropyltoluene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
n-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
Hexachlorobutadiene	ND	4.00		μg/L	1	7/8/2	016 10:47:54 PM		
Naphthalene	ND	1.00		μg/L	1	7/8/2	016 10:47:54 PM		
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/8/2	016 10:47:54 PM		
Surr: Dibromofluoromethane	102	45.4-152		%Rec	1	7/8/2	016 10:47:54 PM		
Surr: Toluene-d8	99.0	40.1-139		%Rec	1	7/8/2	016 10:47:54 PM		
Surr: 1-Bromo-4-fluorobenzene	97.8	64.2-128		%Rec	1	7/8/2	016 10:47:54 PM		

WO#: **1607063**Date Reported: **7/12/2016**

Client: PES Environmental, Inc. Collection Date: 7/8/2016 6:45:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607063-003 Matrix: Groundwater

Client Sample ID: TW-6-070816

RL Qual Units DF **Analyses** Result **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: R30505 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 7/8/2016 11:18:31 PM Chloromethane ND 1.00 µg/L 1 7/8/2016 11:18:31 PM ND Vinyl chloride 0.200 µg/L 1 7/8/2016 11:18:31 PM Bromomethane ND 1.00 1 7/8/2016 11:18:31 PM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/8/2016 11:18:31 PM Chloroethane ND 1.00 μg/L 7/8/2016 11:18:31 PM 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/8/2016 11:18:31 PM ND Methylene chloride 1.00 µg/L 1 7/8/2016 11:18:31 PM trans-1,2-Dichloroethene ND 1.00 1 7/8/2016 11:18:31 PM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/8/2016 11:18:31 PM μg/L ND 1,1-Dichloroethane 1.00 µg/L 1 7/8/2016 11:18:31 PM 2,2-Dichloropropane ND 2.00 7/8/2016 11:18:31 PM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/8/2016 11:18:31 PM Chloroform ND 1.00 µg/L 1 7/8/2016 11:18:31 PM 1,1,1-Trichloroethane (TCA) ND 1.00 7/8/2016 11:18:31 PM μg/L 1 1,1-Dichloropropene ND 1.00 µg/L 1 7/8/2016 11:18:31 PM Carbon tetrachloride ND 1.00 7/8/2016 11:18:31 PM µg/L 1 1,2-Dichloroethane (EDC) ND 7/8/2016 11:18:31 PM 1.00 µq/L 1 ND Benzene 1.00 1 7/8/2016 11:18:31 PM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/8/2016 11:18:31 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/8/2016 11:18:31 PM Bromodichloromethane ND 1.00 µg/L 1 7/8/2016 11:18:31 PM ND Dibromomethane 1.00 µg/L 1 7/8/2016 11:18:31 PM cis-1,3-Dichloropropene ND 1.00 1 7/8/2016 11:18:31 PM µg/L Toluene ND 1.00 µg/L 1 7/8/2016 11:18:31 PM trans-1,3-Dichloropropene ND 1.00 µg/L 1 7/8/2016 11:18:31 PM 1,1,2-Trichloroethane ND 1.00 7/8/2016 11:18:31 PM µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/8/2016 11:18:31 PM ND Tetrachloroethene (PCE) 1.00 µg/L 1 7/8/2016 11:18:31 PM Dibromochloromethane ND 1.00 μg/L 1 7/8/2016 11:18:31 PM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/8/2016 11:18:31 PM Chlorobenzene ND 1.00 µg/L 1 7/8/2016 11:18:31 PM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/8/2016 11:18:31 PM µg/L Ethylbenzene 1.36 1.00 µg/L 1 7/8/2016 11:18:31 PM 6.25 1.00 m,p-Xylene µg/L 1 7/8/2016 11:18:31 PM o-Xylene 2.51 1.00 µg/L 1 7/8/2016 11:18:31 PM ND Styrene 1.00 µg/L 1 7/8/2016 11:18:31 PM Isopropylbenzene ND 1.00 μg/L 1 7/8/2016 11:18:31 PM Bromoform ND 1.00 µg/L 1 7/8/2016 11:18:31 PM

WO#: **1607063**Date Reported: **7/12/2016**

Client: PES Environmental, Inc. Collection Date: 7/8/2016 6:45:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607063-003 Matrix: Groundwater

Client Sample ID: TW-6-070816

Analyses	Result	Qual	Units	DF	Date Analyzed			
Volatile Organic Compounds by	EPA Method	3260C		Batc	h ID: R	30505	Analyst: NG	
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
n-Propylbenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
Bromobenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
2-Chlorotoluene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
4-Chlorotoluene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
tert-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/8/2	016 11:18:31 PM	
sec-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
4-Isopropyltoluene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
n-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
Hexachlorobutadiene	ND	4.00		μg/L	1	7/8/2	016 11:18:31 PM	
Naphthalene	ND	1.00		μg/L	1	7/8/2	016 11:18:31 PM	
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/8/2	016 11:18:31 PM	
Surr: Dibromofluoromethane	102	45.4-152		%Rec	1	7/8/2	016 11:18:31 PM	
Surr: Toluene-d8	98.8	40.1-139		%Rec	1	7/8/2	016 11:18:31 PM	
Surr: 1-Bromo-4-fluorobenzene	97.2	64.2-128		%Rec	1	7/8/2	016 11:18:31 PM	

WO#: **1607063**Date Reported: **7/12/2016**

Client: PES Environmental, Inc. Collection Date: 7/5/2016 1:10:00 PM

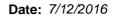
Project: Lake Stevens Marketplace

Lab ID: 1607063-004 **Matrix**: Water

Client Sample ID: Trip Blank

RL Qual Units DF **Analyses** Result **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: R30505 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 7/8/2016 9:46:32 PM Chloromethane ND 1.00 µg/L 1 7/8/2016 9:46:32 PM ND Vinyl chloride 0.200 µg/L 1 7/8/2016 9:46:32 PM Bromomethane ND 1.00 1 7/8/2016 9:46:32 PM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/8/2016 9:46:32 PM Chloroethane ND 1.00 μg/L 7/8/2016 9:46:32 PM 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/8/2016 9:46:32 PM ND Methylene chloride 1.00 µg/L 1 7/8/2016 9:46:32 PM trans-1,2-Dichloroethene ND 1.00 1 7/8/2016 9:46:32 PM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/8/2016 9:46:32 PM μg/L ND 7/8/2016 9:46:32 PM 1,1-Dichloroethane 1.00 µg/L 1 2,2-Dichloropropane ND 2.00 7/8/2016 9:46:32 PM µg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/8/2016 9:46:32 PM Chloroform ND 1.00 µg/L 1 7/8/2016 9:46:32 PM 1,1,1-Trichloroethane (TCA) ND 1.00 7/8/2016 9:46:32 PM μg/L 1 1,1-Dichloropropene ND 1.00 µg/L 1 7/8/2016 9:46:32 PM Carbon tetrachloride ND 1.00 7/8/2016 9:46:32 PM µg/L 1 1,2-Dichloroethane (EDC) ND 7/8/2016 9:46:32 PM 1.00 µg/L 1 ND Benzene 1.00 1 7/8/2016 9:46:32 PM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/8/2016 9:46:32 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/8/2016 9:46:32 PM Bromodichloromethane ND 1.00 µg/L 1 7/8/2016 9:46:32 PM ND Dibromomethane 1.00 µg/L 1 7/8/2016 9:46:32 PM cis-1,3-Dichloropropene ND 1.00 1 7/8/2016 9:46:32 PM µg/L Toluene ND 1.00 µg/L 1 7/8/2016 9:46:32 PM trans-1,3-Dichloropropene ND 1.00 µg/L 1 7/8/2016 9:46:32 PM 1,1,2-Trichloroethane ND 1.00 7/8/2016 9:46:32 PM µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/8/2016 9:46:32 PM Tetrachloroethene (PCE) ND 1.00 µg/L 1 7/8/2016 9:46:32 PM Dibromochloromethane ND 1.00 µg/L 1 7/8/2016 9:46:32 PM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/8/2016 9:46:32 PM Chlorobenzene ND 1.00 µg/L 1 7/8/2016 9:46:32 PM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/8/2016 9:46:32 PM µg/L Ethylbenzene ND 1.00 µg/L 1 7/8/2016 9:46:32 PM ND 1.00 7/8/2016 9:46:32 PM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 7/8/2016 9:46:32 PM ND Styrene 1.00 µg/L 1 7/8/2016 9:46:32 PM Isopropylbenzene ND 1.00 μg/L 1 7/8/2016 9:46:32 PM Bromoform ND 1.00 µg/L 1 7/8/2016 9:46:32 PM

WO#: **1607063**Date Reported: **7/12/2016**

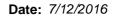

Client: PES Environmental, Inc. Collection Date: 7/5/2016 1:10:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607063-004 **Matrix:** Water

Client Sample ID: Trip Blank

Analyses	Result	RL	Qual	Units	DF	Da	te Analyzed
Volatile Organic Compounds by EF	PA Method	8260C		Batc	h ID: R	30505	Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
n-Propylbenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
Bromobenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
2-Chlorotoluene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
4-Chlorotoluene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
tert-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/8/2	016 9:46:32 PM
sec-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
n-Butylbenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
Hexachlorobutadiene	ND	4.00		μg/L	1	7/8/2	016 9:46:32 PM
Naphthalene	ND	1.00		μg/L	1	7/8/2	016 9:46:32 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/8/2	016 9:46:32 PM
Surr: Dibromofluoromethane	103	45.4-152		%Rec	1	7/8/2	016 9:46:32 PM
Surr: Toluene-d8	99.1	40.1-139		%Rec	1	7/8/2	016 9:46:32 PM
Surr: 1-Bromo-4-fluorobenzene	94.1	64.2-128		%Rec	1	7/8/2	016 9:46:32 PM

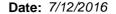

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-R30505	SampType: LCS			Units: µg/L		Prep Da	te: 7/8/201	6	RunNo: 30	505	
Client ID: LCSW	Batch ID: R30505					Analysis Da	te: 7/8/201	6	SeqNo: 575	5579	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	20.6	1.00	20.00	0	103	43	136				
Chloromethane	22.7	1.00	20.00	0	114	43.9	139				
Vinyl chloride	21.4	0.200	20.00	0	107	53.6	139				
Bromomethane	26.2	1.00	20.00	0	131	42.5	152				
Trichlorofluoromethane (CFC-11)	23.2	1.00	20.00	0	116	63.7	133				
Chloroethane	22.2	1.00	20.00	0	111	53	141				
1,1-Dichloroethene	24.9	1.00	20.00	0	124	65.6	136				
Methylene chloride	69.6	1.00	20.00	0	348	67.1	131				BS
trans-1,2-Dichloroethene	23.0	1.00	20.00	0	115	71.7	129				
Methyl tert-butyl ether (MTBE)	21.9	1.00	20.00	0	109	67.7	131				
1,1-Dichloroethane	23.1	1.00	20.00	0	116	67.9	134				
2,2-Dichloropropane	41.0	2.00	20.00	0	205	33.7	152				S
cis-1,2-Dichloroethene	23.7	1.00	20.00	0	118	71.1	130				
Chloroform	23.0	1.00	20.00	0	115	66.3	131				
1,1,1-Trichloroethane (TCA)	22.3	1.00	20.00	0	111	71	131				
1,1-Dichloropropene	22.4	1.00	20.00	0	112	69.9	124				
Carbon tetrachloride	22.0	1.00	20.00	0	110	66.2	134				
1,2-Dichloroethane (EDC)	22.4	1.00	20.00	0	112	68.8	123				
Benzene	23.0	1.00	20.00	0	115	69.3	132				
Trichloroethene (TCE)	22.3	0.500	20.00	0	111	65.2	136				
1,2-Dichloropropane	22.6	1.00	20.00	0	113	70.5	130				
Bromodichloromethane	22.6	1.00	20.00	0	113	67.2	137				
Dibromomethane	22.4	1.00	20.00	0	112	75.5	126				
cis-1,3-Dichloropropene	23.8	1.00	20.00	0	119	62.6	137				
Toluene	23.5	1.00	20.00	0	118	61.3	145				
trans-1,3-Dichloropropene	23.3	1.00	20.00	0	116	58.5	142				
1,1,2-Trichloroethane	22.2	1.00	20.00	0	111	71.7	131				
1,3-Dichloropropane	22.2	1.00	20.00	0	111	73.5	127				
Tetrachloroethene (PCE)	22.6	1.00	20.00	0	113	47.5	147				
Dibromochloromethane	21.6	1.00	20.00	0	108	67.2	134				
1,2-Dibromoethane (EDB)	22.3	0.0600	20.00	0	111	73.6	125				

Original Page 13 of 23


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-R30505	SampType: LCS			Units: µg/L		Prep Da	te: 7/8/20 1	6	RunNo: 30	505	
Client ID: LCSW	Batch ID: R30505					Analysis Da	te: 7/8/20 1	6	SeqNo: 575	5579	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	23.4	1.00	20.00	0	117	73.9	126				
1,1,1,2-Tetrachloroethane	22.4	1.00	20.00	0	112	76.8	124				
Ethylbenzene	23.2	1.00	20.00	0	116	72	130				
m,p-Xylene	46.4	1.00	40.00	0	116	70.3	134				
o-Xylene	23.1	1.00	20.00	0	115	72.1	131				
Styrene	23.0	1.00	20.00	0	115	64.3	140				
Isopropylbenzene	22.7	1.00	20.00	0	114	73.9	128				
Bromoform	21.5	1.00	20.00	0	107	55.3	141				
1,1,2,2-Tetrachloroethane	22.7	1.00	20.00	0	114	62.9	132				
n-Propylbenzene	23.0	1.00	20.00	0	115	74.5	127				
Bromobenzene	22.7	1.00	20.00	0	114	71	131				
1,3,5-Trimethylbenzene	23.0	1.00	20.00	0	115	73.1	128				
2-Chlorotoluene	23.2	1.00	20.00	0	116	70.8	130				
4-Chlorotoluene	23.4	1.00	20.00	0	117	70.1	131				
tert-Butylbenzene	22.2	1.00	20.00	0	111	68.2	131				
1,2,3-Trichloropropane	22.1	1.00	20.00	0	111	67.7	131				
1,2,4-Trichlorobenzene	22.4	2.00	20.00	0	112	51.8	152				
sec-Butylbenzene	22.2	1.00	20.00	0	111	72	129				
4-Isopropyltoluene	22.5	1.00	20.00	0	113	69.2	130				
1,3-Dichlorobenzene	23.3	1.00	20.00	0	116	71	115				S
1,4-Dichlorobenzene	22.8	1.00	20.00	0	114	66.8	119				
n-Butylbenzene	23.2	1.00	20.00	0	116	73.8	127				
1,2-Dichlorobenzene	22.7	1.00	20.00	0	114	69.7	119				
1,2-Dibromo-3-chloropropane	20.8	1.00	20.00	0	104	63.1	136				
1,2,4-Trimethylbenzene	23.1	1.00	20.00	0	116	73.4	127				
Hexachlorobutadiene	22.2	4.00	20.00	0	111	58.6	138				
Naphthalene	20.9	1.00	20.00	0	104	41.8	165				
1,2,3-Trichlorobenzene	22.2	4.00	20.00	0	111	48.7	156				
Surr: Dibromofluoromethane	25.6		25.00		102	45.4	152				
Surr: Toluene-d8	25.6		25.00		102	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.9		25.00		104	64.2	128				

Original Page 14 of 23

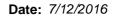
QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

 Sample ID
 LCS-R30505
 SampType: LCS
 Units: μg/L
 Prep Date: 7/8/2016
 RunNo: 30505

Client ID: **LCSW** Batch ID: **R30505** Analysis Date: **7/8/2016** SeqNo: **575579**

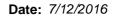

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required. Methylene Chloride is a common laboratory solvent.

Sample ID LCSD-R30505	SampType: LCS			Units: µg/L		Prep Da	te: 7/8/2016		RunNo: 305	505	
Client ID: LCSW	Batch ID: R30505					Analysis Da	te: 7/8/2016		SeqNo: 575	5578	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	PD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	21.4	1.00	20.00	0	107	43	136				
Chloromethane	22.8	1.00	20.00	0	114	43.9	139				
Vinyl chloride	21.8	0.200	20.00	0	109	53.6	139				
Bromomethane	27.0	1.00	20.00	0	135	42.5	152				
Trichlorofluoromethane (CFC-11)	24.0	1.00	20.00	0	120	63.7	133				
Chloroethane	22.5	1.00	20.00	0	112	53	141				
1,1-Dichloroethene	25.0	1.00	20.00	0	125	65.6	136				
Methylene chloride	68.5	1.00	20.00	0	342	67.1	131				BS
trans-1,2-Dichloroethene	23.0	1.00	20.00	0	115	71.7	129				
Methyl tert-butyl ether (MTBE)	21.8	1.00	20.00	0	109	67.7	131				
1,1-Dichloroethane	23.1	1.00	20.00	0	115	67.9	134				
2,2-Dichloropropane	38.3	2.00	20.00	0	192	33.7	152				S
cis-1,2-Dichloroethene	22.6	1.00	20.00	0	113	71.1	130				
Chloroform	23.0	1.00	20.00	0	115	66.3	131				
1,1,1-Trichloroethane (TCA)	22.6	1.00	20.00	0	113	71	131				
1,1-Dichloropropene	22.5	1.00	20.00	0	113	69.9	124				
Carbon tetrachloride	22.0	1.00	20.00	0	110	66.2	134				
1,2-Dichloroethane (EDC)	22.4	1.00	20.00	0	112	68.8	123				
Benzene	23.0	1.00	20.00	0	115	69.3	132				
Trichloroethene (TCE)	22.3	0.500	20.00	0	112	65.2	136				
1,2-Dichloropropane	22.6	1.00	20.00	0	113	70.5	130				
Bromodichloromethane	22.6	1.00	20.00	0	113	67.2	137				
Dibromomethane	22.3	1.00	20.00	0	112	75.5	126				

Original Page 15 of 23


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

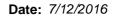
Sample ID LCSD-R30505	SampType: LCS			Units: µg/L		Prep Dat	e: 7/8/201	6	RunNo: 30	505	
Client ID: LCSW	Batch ID: R30505					Analysis Dat	e: 7/8/201	16	SeqNo: 57	5578	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	23.4	1.00	20.00	0	117	62.6	137				
Toluene	23.5	1.00	20.00	0	118	61.3	145				
trans-1,3-Dichloropropene	23.3	1.00	20.00	0	116	58.5	142				
1,1,2-Trichloroethane	21.7	1.00	20.00	0	109	71.7	131				
1,3-Dichloropropane	22.1	1.00	20.00	0	111	73.5	127				
Tetrachloroethene (PCE)	22.8	1.00	20.00	0	114	47.5	147				
Dibromochloromethane	21.5	1.00	20.00	0	107	67.2	134				
1,2-Dibromoethane (EDB)	22.6	0.0600	20.00	0	113	73.6	125				
Chlorobenzene	22.4	1.00	20.00	0	112	73.9	126				
1,1,1,2-Tetrachloroethane	22.2	1.00	20.00	0	111	76.8	124				
Ethylbenzene	23.1	1.00	20.00	0	115	72	130				
m,p-Xylene	45.9	1.00	40.00	0	115	70.3	134				
o-Xylene	22.9	1.00	20.00	0	114	72.1	131				
Styrene	22.7	1.00	20.00	0	114	64.3	140				
Isopropylbenzene	22.7	1.00	20.00	0	114	73.9	128				
Bromoform	20.7	1.00	20.00	0	103	55.3	141				
1,1,2,2-Tetrachloroethane	22.4	1.00	20.00	0	112	62.9	132				
n-Propylbenzene	23.0	1.00	20.00	0	115	74.5	127				
Bromobenzene	22.3	1.00	20.00	0	111	71	131				
1,3,5-Trimethylbenzene	23.1	1.00	20.00	0	116	73.1	128				
2-Chlorotoluene	23.0	1.00	20.00	0	115	70.8	130				
4-Chlorotoluene	23.2	1.00	20.00	0	116	70.1	131				
tert-Butylbenzene	22.2	1.00	20.00	0	111	68.2	131				
1,2,3-Trichloropropane	22.7	1.00	20.00	0	113	67.7	131				
1,2,4-Trichlorobenzene	23.9	2.00	20.00	0	119	51.8	152				
sec-Butylbenzene	22.6	1.00	20.00	0	113	72	129				
4-Isopropyltoluene	22.8	1.00	20.00	0	114	69.2	130				
1,3-Dichlorobenzene	24.2	1.00	20.00	0	121	71	115				S
1,4-Dichlorobenzene	23.6	1.00	20.00	0	118	66.8	119				-
n-Butylbenzene	24.4	1.00	20.00	0	122	73.8	127				
1,2-Dichlorobenzene	23.4	1.00	20.00	0	117	69.7	119				

Original Page 16 of 23

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

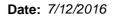

Sample ID LCSD-R30505	SampType: LCS			Units: µg/L	/L Prep Date: 7/8/2016			16	RunNo: 30	505	
Client ID: LCSW	Batch ID: R30505				Analysis Date: 7/8/2016			16	SeqNo: 57	5578	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromo-3-chloropropane	21.7	1.00	20.00	0	108	63.1	136				
1,2,4-Trimethylbenzene	23.2	1.00	20.00	0	116	73.4	127				
Hexachlorobutadiene	23.5	4.00	20.00	0	117	58.6	138				
Naphthalene	22.5	1.00	20.00	0	112	41.8	165				
1,2,3-Trichlorobenzene	23.2	4.00	20.00	0	116	48.7	156				
Surr: Dibromofluoromethane	25.9		25.00		103	45.4	152				
Surr: Toluene-d8	25.7		25.00		103	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	25.5		25.00		102	64.2	128				
NOTES.											

NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required. Methylene Chloride is a common laboratory solvent.

Sample ID MB-R30505	SampType	: MBLK			Units: µg/L				16	RunNo: 30	RunNo: 30505		
Client ID: MBLKW	Batch ID:	R30505					Analysis Da	te: 7/8/20	16	SeqNo: 57	5580		
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Dichlorodifluoromethane (CFC-12)		ND	1.00										
Chloromethane		ND	1.00										
Vinyl chloride		ND	0.200										
Bromomethane		ND	1.00										
Trichlorofluoromethane (CFC-11)		ND	1.00										
Chloroethane		ND	1.00										
1,1-Dichloroethene		ND	1.00										
Methylene chloride		65.2	1.00										
trans-1,2-Dichloroethene		ND	1.00										
Methyl tert-butyl ether (MTBE)		ND	1.00										
1,1-Dichloroethane		ND	1.00										
2,2-Dichloropropane		ND	2.00										
cis-1,2-Dichloroethene		ND	1.00										
Chloroform		ND	1.00										
1,1,1-Trichloroethane (TCA)		ND	1.00										

Original Page 17 of 23


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

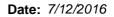
Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-R30505	SampType: MBLK			Units: µg/L					RunNo: 30	505	
Client ID: MBLKW	Batch ID: R30505					Analysis Da	ate: 7/8/201	16	SeqNo: 575	5580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.00									
Carbon tetrachloride	ND	1.00									
1,2-Dichloroethane (EDC)	ND	1.00									
Benzene	ND	1.00									
Trichloroethene (TCE)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
Bromodichloromethane	ND	1.00									
Dibromomethane	ND	1.00									
cis-1,3-Dichloropropene	ND	1.00									
Toluene	ND	1.00									
trans-1,3-Dichloropropene	ND	1.00									
1,1,2-Trichloroethane	ND	1.00									
1,3-Dichloropropane	ND	1.00									
Tetrachloroethene (PCE)	ND	1.00									
Dibromochloromethane	ND	1.00									
1,2-Dibromoethane (EDB)	ND	0.0600									
Chlorobenzene	ND	1.00									
1,1,1,2-Tetrachloroethane	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Styrene	ND	1.00									
Isopropylbenzene	ND	1.00									
Bromoform	ND	1.00									
1,1,2,2-Tetrachloroethane	ND	1.00									
n-Propylbenzene	ND	1.00									
Bromobenzene	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
2-Chlorotoluene	ND	1.00									
4-Chlorotoluene	ND	1.00									
tert-Butylbenzene	ND	1.00									
											40.50

Original Page 18 of 23

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace


Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-R30505	SampType: MBLK			Units: µg/L		Prep Date:	7/8/201	6	RunNo: 305	505	
Client ID: MBLKW	Batch ID: R30505					Analysis Date:	7/8/201	6	SeqNo: 575	5580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,3-Trichloropropane	ND	1.00									
1,2,4-Trichlorobenzene	ND	2.00									
sec-Butylbenzene	ND	1.00									
4-Isopropyltoluene	ND	1.00									
1,3-Dichlorobenzene	ND	1.00									
1,4-Dichlorobenzene	ND	1.00									
n-Butylbenzene	ND	1.00									
1,2-Dichlorobenzene	ND	1.00									
1,2-Dibromo-3-chloropropane	ND	1.00									
1,2,4-Trimethylbenzene	ND	1.00									
Hexachlorobutadiene	ND	4.00									
Naphthalene	ND	1.00									
1,2,3-Trichlorobenzene	ND	4.00									
Surr: Dibromofluoromethane	25.2		25.00		101	45.4	152				
Surr: Toluene-d8	24.7		25.00		99.0	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	24.0		25.00		95.8	64.2	128				
NOTES:											
Methylene Chloride is a common	laboratory solvent.										

Methylene Chloride is a common laboratory solvent.

Sample ID 1607056-004DDUP	SampType: DUP			Units: µg/L	•	Prep Da	te: 7/9/20	16	RunNo: 305	505	
Client ID: BATCH	Batch ID: R30505					Analysis Da	te: 7/9/20	16	SeqNo: 575	5563	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00						0		30	
Chloromethane	ND	1.00						0		30	
Vinyl chloride	ND	0.200						0		30	
Bromomethane	ND	1.00						0		30	
Trichlorofluoromethane (CFC-11)	ND	1.00						0		30	
Chloroethane	ND	1.00						0		30	
1,1-Dichloroethene	ND	1.00						0		30	
Methylene chloride	ND	1.00						0		30	

Original Page 19 of 23

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607056-004DDUP	SampType: DUP			Units: µg/L		Prep Dat	e: 7/9/20	16	RunNo: 30	505	
Client ID: BATCH	Batch ID: R30505					Analysis Dat	e: 7/9/20	16	SeqNo: 57	5563	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,2-Dichloroethene	ND	1.00						0		30	
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,1-Dichloroethane	ND	1.00						0		30	
2,2-Dichloropropane	ND	2.00						0		30	
cis-1,2-Dichloroethene	ND	1.00						0		30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.0600						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	

Original Page 20 of 23

Date: 7/12/2016

Work Order: 1607063

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607056-004DDUP	SampType: DUP			Units: µg/L		Prep Da	te: 7/9/20	16	RunNo: 30	505	
Client ID: BATCH	Batch ID: R30505					Analysis Da	te: 7/9/20	16	SeqNo: 575	5563	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachlorobutadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	25.7		25.00		103	45.4	152		0		
Surr: Toluene-d8	24.6		25.00		98.4	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	23.9		25.00		95.4	64.2	128		0		

Original Page 21 of 23

Sample Log-In Check List

С	lient Name:	PES	Work Order Numb	er: 1607063	
Lo	ogged by:	Erica Silva	Date Received:	7/8/2016	10:08:00 AM
Cha	ain of Cust	<u>ody</u>			
1.	Is Chain of C	sustody complete?	Yes 🗹	No 🗌	Not Present
2.	How was the	sample delivered?	Client		
Log	ı İn				
_	Coolers are	present?	Yes 🗹	No 🗌	NA \square
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No □	
5.		Is present on shipping container/cooler? nments for Custody Seals not intact)	Yes 🗌	No 🗀	Not Required ✓
6.	Was an atter	mpt made to cool the samples?	Yes 🗸	No 🗌	NA \square
7.	Were all item	ns received at a temperature of >0°C to 10.0°C*	Yes 🗸	No 🗆	na 🗆
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🗸	No 🗌	
10.	Are samples	properly preserved?	Yes 🗸	No 🗌	
11.	Was preserv	ative added to bottles?	Yes	No 🗸	NA 🗆
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗸	NA 🗌
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗸	No \square	
14.	Does paperw	vork match bottle labels?	Yes 🗹	No 🗌	
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
16.	Is it clear wh	at analyses were requested?	Yes 🗹	No 🗌	
17.	Were all hold	ling times able to be met?	Yes 🗸	No \square	
<u>Spe</u>	ecial Handl	ing (if applicable)			
-		otified of all discrepancies with this order?	Yes	No 🗌	NA 🗸
	Person	Notified: Dat	e		
	By Who	om: Via	: eMail Pho	one 🗌 Fax	☐ In Person
	Regard	ing:			
	Client Ir	nstructions:			
19	Additional re	marks:			

Item Information

Item #	Temp ⁰C
Cooler	1.6
Sample	5.7
Temp Blank	4.0

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Original

agreement to each of the terms on the front and backside of this Agreemen Relinguished Date/Time	Sample Disposal: Return to Client	***Anions (Circle): Nitrate Nitrite	**Metals Analysis (Circle): MTCA-5	9	7	6	CA	4 TRIP BLANK	3 TW-6-070816	2 TW-5-070816	1TW-3-070816	Sample Name	Burneys, professional and control of the control of	*Matrix Codes: A = Air, AQ = Aqueous, B	City, State, Zip: Seattle W. Telephone: (206) 529-3	Address: 1215 4th	3600 Fremont Ave N. Tel: Seattle, WA 98103 Fax:	Fren
e front and bac Date/Time	1	Chloride	RCRA-8 P				ē.	1	4-		7/8/6	Sample Date		= Bulk, 0 = Oth	3980	iren men	206-352-3790 206-352-7178	nont
Agreement with Fremorekside of this Agreemen	Disposal by Lab (Samples assessed if samples are re	Sulfate	Priority Pollutants					1	645	630	610	Sample Time		Other, P = Product,	Fax:	to 12	78	
Agreemen	mples are re		ants TAL	2	i i			<	GW	6W	6W	Sample Type (Matrix)*		uct, S≃Soil	(26)5	20 1		- 100 - 100 - 100

	Chain
	9
	of Custody
	Record and
	and
	Laboratory
	atory Services
•	Agreement

	Applications with the lab in advantage of the party of th	Carry time		×						×
	TAT A Samonawa Nowthawa Than Samonawa Strong	Date/Time		Received			Date/Time		Relinquished	Re
		79/10 (0-17%)		Received ×		1007	Date/Time	lebes	Relinquished	× æ
	THE THE THE THE ACT OF THE THE THE THE THE THE THE THE THE THE	t represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's greement to each of the terms on the front and backside of this Agreement.	half of the Client named	t Analytical on be	represent that I am authorized to enter into this Agreement with Fremont agreement to each of the terms on the front and backside of this Agreement.	his Agreeme I backside o	n the front and	h of the terms	represent that	ag
	SERVICE CONTRIBUTION OF A SERVICES OF SERV	on the following business day.	Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.)	Disposal by Lab (Samples will be held for 30 day assessed if samples are retained after 30 days.)	by Lab (Samples v d if samples are ret	Disposa	Return to Client	Reg	Sample Disposal:	Sa
	Special Remarks:	Nitrate+Nitrite Turn-around times for samples received after 4:00pm will begin	e Fluoride Nitrat	de O-Phosphate	Sulfate Bromide	Chloride St	Nitrite Ch): Nitrate	** Anions (Circle):	*
CONTRACTOR OF THE PROPERTY OF	Pb Sb Se Sr Sn Ti Tl U V Zn	Co Cr Cu Fe Hg K Mg Mn Mo Na Ni F	Al As B Ba Be Ca Cd	Individual: Ag	ollutants TAL	Priority Pollutants	A-5 RCRA-8	s (Circle): MTCA-5	**Metals Analysis (Circle):	*
	was ostana filo i sulli piloteinetene uki Yifekija			100 mm		1000				10
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30,00	1000			9
	THE RESIDENCE OF THE PARTY OF T									00
	rapidat ou maugascas que que que aumions la des		The supplier of the last		The Date of the Control	#		8		7
37.000	WASCING A LANCOLOGIAN SECRET FREDERICKE									6
THE SOLD AND	पत्र वर्ष गामि केविकात्मा है। इस्त स्थल्लाहर									5
	And the company of the control of th			<u> </u>	٤	1	1	LP BLANK	TRIP	4
	[1] 기타이 (경 - 1784년 - 1888년 - 1				5 GW	645	4	18040-9-M	TW-6-	ω
	ार्थ है जिसके हैं के प्राप्त कर के अपने कार्य के अपने के किए के किए के किए के किए के अपने के किए के अपने के अप जिस्सा के किए के किए के किए के किए के किए के किए के किए के किए के किए के किए के किए के किए के किए के किए के कि			X	6W	630	5 32 m 23 gravita	1W-5-070816	TW-5-	2
				X	0 6W	610	9/8/4	9180	TW-3-070816	}~~
Contain head	Comments	25 C 27 1 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	Property of the state of the st	CO GERA CO CON	Sample Type (Matrix)*	ple Sample te Time	Sample Date	SANSER COR	Sample Name	10
200 200 CO	orm Water, WW = Waste Water	ing Water, GW = Ground Wate		S = Soil, SD = Sediment, SL = Solid,	P = Product, S = Soil,	0 = Other, P =	AQ = Aqueous, B = Bulk, C		*Matrix Codes: A = Air,	*
			PM Email:	(26)529-3985	Fax: (26)57		20	0	Telephone:	
		-	Report To (PM):				·WA 9		City, State, Zip:	
	1	>	Location:		1350		215 4th Ave Suite	1315	Address:	
	Collected by: CTD	\$	Project No:		Inc	acutal	Eurivenmental	RES	Client:	
Page	or and reserved to a reserve root broken all aspet of	Lake stevens Mustertal	Project Name:			2-7178	Fax: 206-352-7178	98103	Seattle, WA 98103	
23 (Page: of:					2-3790	Tel: 206-352-3790	it Ave N.	3600 Fremont Ave N.	dependent
f 23	Laboratory Project No (internal):	Date: 7 8 16								to the second of

MEMORANDUM

TO: Project File DATE: July 27, 2016

FROM: Jessie Compeau

SUBJECT: Laboratory Data Validation Review

PROJECT: Lake Stevens Marketplace

PROJECT #: 1246.038.03.002

TASK: July 8, 2016 Groundwater Samples

LAB: Fremont Analytical Service Request No. 1607063

Three groundwater samples and a trip blank were collected at the Lake Stevens Marketplace Site in Snohomish County on July 8, 2016. The samples were collected as part of a Limited Phase II Investigation at the Site. The samples were delivered to Fremont Analytical (Fremont) of Seattle, Washington for laboratory analysis. Samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The results were reported in Fremont Lab Package 1607063.

The Limited Phase II Investigation occurred in July of 2016 and associated sample data are reported in FA Project Number1607063 along with FA Project numbers 1607053 and 1607054. The quality assurance review of the laboratory data is summarized below. The quality assurance review of the laboratory data is summarized below.

DATA QUALIFICATIONS

Guidelines established by USEPA for review of analytical data were used to validate the data. The comments presented in this memorandum refer to the laboratory's performance in meeting the quality control criteria outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999).

DATA VALIDATION

Sample Receipt, Preservation and Handling

The samples were delivered to the project laboratory in coolers under standard chain-of-custody protocols. Review of Fremont's Sample Log-In Check List Form indicates that all samples were received in good condition within the recommended preservation temperature range of 4.0° C \pm 2.0° C. The sample receipt log indicated that the samples in the coolers were received properly stored in a cooler, preserved, and cooled with ice/gel packs and in good condition at the time of laboratory receipt. No data qualifications were assigned due to temperature preservation issues.

Holding Times

All samples were analyzed for VOCs within the USEPA recommended holding time of fourteen days for preserved waters from the date of sample collection. All holding time criteria were met.

Initial and Continuing Calibration

Initial and continuing calibration data for this project are retained by the laboratory and available for review if necessary. The case narrative did not indicate any issues with calibration; therefore no qualifications were warranted.

Method Blank Results

A laboratory method blank was included with the analytical batch per method requirement. The target analytes were not detected in the method blank at or above the method reporting limits (MRLs). No qualifications of the data were made due to the results of the method blank analyses.

Trip Blank Results

A trip blank was collected and analyzed. The target analytes were not detected in the method blanks at or above the MRL. No qualifications of the data were made due to the results of the trip blank analyses.

Laboratory Duplicate Analyses

Laboratory duplicate sample analyses were performed on a non-client sample within the analytical batch. The primary/duplicate relative percent differences (RPDs) for VOCs were within the laboratory control limit of 30%. Duplicate data are acceptable.

Field Duplicate Analyses

Field duplicate samples were not collected. Refer to laboratory duplicate data for precision data.

Surrogate Recoveries

The surrogate recovery results for the samples, laboratory duplicates, laboratory control samples (LCS), matrix spike, and the method blank were within the laboratory surrogate control limits for all of the analyses.

Matrix Spike/ Matrix Spike Duplicates

A matrix spike (MS) analysis was not performed. Refer to LCS/LCSD and laboratory duplicate data for accuracy and precision.

Laboratory Control Samples

An LCS/LCSD was analyzed by USEPA Method 8260C per method requirement. The LCS/LCSD %Rs for the all target compounds were within the laboratory control criteria for water with the following exceptions:

VOC compounds methylene chloride, 2,2-dichloropropane, and 1,3-dichlorobenzene %
R's were elevated and above acceptance criteria. Methylene chloride was also qualified
(B) due to blank contamination. No action was taken as these compounds were not detected at or above the MRL in the associated samples.

Quantitation Limits

Results of all analyses were reported based on standard laboratory MRLs. The reported MRLs are considered appropriate for this project. No data qualifiers were warranted based upon standard detection limits.

Completeness

The samples were collected and analyzed as requested. The results in all cases were reported based upon standard Method Reporting Limits (MRLs). Data completeness is 100%.

Data Assessment

The laboratory data reported for this project were reviewed based on laboratory control limit acceptance criteria and criteria outlined in:

• USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999);

No data qualifiers were assigned. All data are judged to be acceptable for their intended use.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

PES Environmental, Inc.

Brian O'Neal 1215 Fourth Avenue, Suite 1350 Seattle, WA 98161

RE: Lake Stevens Marketplace

Lab ID: 1607216

July 28, 2016

Attention Brian O'Neal:

Fremont Analytical, Inc. received 3 sample(s) on 7/21/2016 for the analyses presented in the following report.

Sample Moisture (Percent Moisture)
Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

DoD/ELAP Certification #L2371, ISO/ICC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

Date: 07/28/2016

CLIENT: PES Environmental, Inc. Work Order Sample Summary

Project: Lake Stevens Marketplace

Lab Order: 1607216

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1607216-001	MW-5-7.5	07/20/2016 10:10 AM	07/21/2016 2:26 PM
1607216-002	MW-6-5	07/21/2016 8:40 AM	07/21/2016 2:26 PM
1607216-003	MW-7-5	07/21/2016 11:00 AM	07/21/2016 2:26 PM

Case Narrative

WO#: **1607216**Date: **7/28/2016**

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1607216**

Date Reported: 7/28/2016

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: **1607216**

Date Reported: 7/28/2016

Client: PES Environmental, Inc. Collection Date: 7/20/2016 10:10:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607216-001 **Matrix:** Soil

Client Sample ID: MW-5-7.5

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14376 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 0.0803 7/27/2016 6:47:11 PM mg/Kg-dry 1 Chloromethane ND 0.0803 mg/Kg-dry 1 7/27/2016 6:47:11 PM Vinyl chloride ND 0.00268 mg/Kg-dry 1 7/27/2016 6:47:11 PM Bromomethane ND 0.120 1 7/27/2016 6:47:11 PM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0669 mg/Kg-dry 1 7/27/2016 6:47:11 PM Chloroethane ND 0.0803 7/27/2016 6:47:11 PM mg/Kg-dry 1 1.1-Dichloroethene ND 0.0669 mg/Kg-dry 1 7/27/2016 6:47:11 PM ND Methylene chloride 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM trans-1,2-Dichloroethene ND 0.0268 1 7/27/2016 6:47:11 PM mg/Kg-dry ND Methyl tert-butyl ether (MTBE) 0.0669 1 7/27/2016 6:47:11 PM mg/Kg-dry ND 1,1-Dichloroethane 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM 2,2-Dichloropropane ND 0.0669 O 7/27/2016 6:47:11 PM mg/Kg-dry 1 cis-1.2-Dichloroethene ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM Chloroform ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM 1,1,1-Trichloroethane (TCA) ND 7/27/2016 6:47:11 PM 0.0268 mg/Kg-dry 1 1,1-Dichloropropene ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM Carbon tetrachloride ND 7/27/2016 6:47:11 PM 0.0268 mg/Kg-dry 1 1,2-Dichloroethane (EDC) ND 7/27/2016 6:47:11 PM 0.0401 mg/Kg-dry 1 ND Benzene 0.0268 1 7/27/2016 6:47:11 PM mg/Kg-dry Trichloroethene (TCE) ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM ND 1,2-Dichloropropane 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM Bromodichloromethane ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM ND 7/27/2016 6:47:11 PM Dibromomethane 0.0535 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0268 1 7/27/2016 6:47:11 PM mg/Kg-dry Toluene ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM trans-1,3-Dichloropropylene ND 0.0401 mg/Kg-dry 1 7/27/2016 6:47:11 PM 1,1,2-Trichloroethane ND 7/27/2016 6:47:11 PM 0.0401 mg/Kg-dry 1 ND 1,3-Dichloropropane 0.0669 1 7/27/2016 6:47:11 PM mg/Kg-dry Tetrachloroethene (PCE) 0.681 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM ND 7/27/2016 6:47:11 PM Dibromochloromethane 0.0401 mg/Kg-dry 1 1.2-Dibromoethane (EDB) ND 0.00669 1 7/27/2016 6:47:11 PM mg/Kg-dry Chlorobenzene ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM 1.1.1.2-Tetrachloroethane ND 0.0401 1 7/27/2016 6:47:11 PM mg/Kg-dry Ethylbenzene ND 0.0401 mg/Kg-dry 1 7/27/2016 6:47:11 PM m,p-Xylene ND 7/27/2016 6:47:11 PM 0.0268 mg/Kg-dry 1 o-Xylene ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM ND Styrene 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM Isopropylbenzene ND 0.107 mg/Kg-dry 1 7/27/2016 6:47:11 PM Bromoform ND 0.0268 mg/Kg-dry 1 7/27/2016 6:47:11 PM

WO#: **1607216**

Date Reported: 7/28/2016

Client: PES Environmental, Inc. Collection Date: 7/20/2016 10:10:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607216-001 **Matrix**: Soil

Client Sample ID: MW-5-7.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batch	ı ID:	14376 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
n-Propylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
Bromobenzene	ND	0.0401		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,3,5-Trimethylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
2-Chlorotoluene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
4-Chlorotoluene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
tert-Butylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,2,3-Trichloropropane	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,2,4-Trichlorobenzene	ND	0.0669		mg/Kg-dry	1	7/27/2016 6:47:11 PM
sec-Butylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
4-Isopropyltoluene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,3-Dichlorobenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,4-Dichlorobenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
n-Butylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,2-Dichlorobenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,2-Dibromo-3-chloropropane	ND	0.669		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,2,4-Trimethylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
Hexachlorobutadiene	ND	0.134		mg/Kg-dry	1	7/27/2016 6:47:11 PM
Naphthalene	ND	0.0401		mg/Kg-dry	1	7/27/2016 6:47:11 PM
1,2,3-Trichlorobenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 6:47:11 PM
Surr: Dibromofluoromethane	102	56.5-129		%Rec	1	7/27/2016 6:47:11 PM
Surr: Toluene-d8	103	64.3-131		%Rec	1	7/27/2016 6:47:11 PM
Surr: 1-Bromo-4-fluorobenzene	95.5	63.1-141		%Rec	1	7/27/2016 6:47:11 PM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 11.9 0.500 wt% 1 7/22/2016 9:11:26 AM

Batch ID: R30721

Analyst: ME

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607216**

Date Reported: 7/28/2016

Client: PES Environmental, Inc. Collection Date: 7/21/2016 8:40:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607216-002 **Matrix:** Soil

Client Sample ID: MW-6-5

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14376 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 0.0705 7/27/2016 7:16:48 PM mg/Kg-dry 1 Chloromethane ND 0.0705 mg/Kg-dry 1 7/27/2016 7:16:48 PM Vinyl chloride ND 0.00235 mg/Kg-dry 1 7/27/2016 7:16:48 PM Bromomethane ND 0.106 1 7/27/2016 7:16:48 PM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0588 mg/Kg-dry 1 7/27/2016 7:16:48 PM Chloroethane ND 0.0705 7/27/2016 7:16:48 PM mg/Kg-dry 1 1.1-Dichloroethene ND 0.0588 mg/Kg-dry 1 7/27/2016 7:16:48 PM ND Methylene chloride 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM trans-1,2-Dichloroethene ND 0.0235 1 7/27/2016 7:16:48 PM mg/Kg-dry ND Methyl tert-butyl ether (MTBE) 0.0588 1 7/27/2016 7:16:48 PM mg/Kg-dry ND 7/27/2016 7:16:48 PM 1,1-Dichloroethane 0.0235 mg/Kg-dry 1 2,2-Dichloropropane ND 0.0588 O 7/27/2016 7:16:48 PM mg/Kg-dry 1 cis-1.2-Dichloroethene ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM Chloroform ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM 1,1,1-Trichloroethane (TCA) ND 7/27/2016 7:16:48 PM 0.0235 mg/Kg-dry 1 1,1-Dichloropropene ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM Carbon tetrachloride ND 7/27/2016 7:16:48 PM 0.0235 mg/Kg-dry 1 1,2-Dichloroethane (EDC) ND 0.0353 7/27/2016 7:16:48 PM mg/Kg-dry 1 ND Benzene 0.0235 1 7/27/2016 7:16:48 PM mg/Kg-dry Trichloroethene (TCE) ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM ND 1,2-Dichloropropane 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM Bromodichloromethane ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM ND 7/27/2016 7:16:48 PM Dibromomethane 0.0470 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0235 1 7/27/2016 7:16:48 PM mg/Kg-dry Toluene ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM trans-1,3-Dichloropropylene ND 0.0353 mg/Kg-dry 1 7/27/2016 7:16:48 PM 1,1,2-Trichloroethane ND 7/27/2016 7:16:48 PM 0.0353 mg/Kg-dry 1 ND 1,3-Dichloropropane 0.0588 1 7/27/2016 7:16:48 PM mg/Kg-dry Tetrachloroethene (PCE) ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM ND 7/27/2016 7:16:48 PM Dibromochloromethane 0.0353 mg/Kg-dry 1 1.2-Dibromoethane (EDB) ND 0.00588 1 7/27/2016 7:16:48 PM mg/Kg-dry Chlorobenzene ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM 1.1.1.2-Tetrachloroethane ND 0.0353 1 7/27/2016 7:16:48 PM mg/Kg-dry Ethylbenzene ND 0.0353 mg/Kg-dry 1 7/27/2016 7:16:48 PM m,p-Xylene ND 7/27/2016 7:16:48 PM 0.0235 mg/Kg-dry 1 o-Xylene ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM ND Styrene 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM Isopropylbenzene ND 0.0940 mg/Kg-dry 1 7/27/2016 7:16:48 PM Bromoform ND 0.0235 mg/Kg-dry 1 7/27/2016 7:16:48 PM

WO#: **1607216**

Date Reported: 7/28/2016

Client: PES Environmental, Inc. Collection Date: 7/21/2016 8:40:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607216-002 **Matrix:** Soil

Client Sample ID: MW-6-5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batch	ID:	14376 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
n-Propylbenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
Bromobenzene	ND	0.0353		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,3,5-Trimethylbenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
2-Chlorotoluene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
4-Chlorotoluene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
tert-Butylbenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,2,3-Trichloropropane	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,2,4-Trichlorobenzene	ND	0.0588		mg/Kg-dry	1	7/27/2016 7:16:48 PM
sec-Butylbenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
4-Isopropyltoluene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,3-Dichlorobenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,4-Dichlorobenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
n-Butylbenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,2-Dichlorobenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,2-Dibromo-3-chloropropane	ND	0.588		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,2,4-Trimethylbenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
Hexachlorobutadiene	ND	0.118		mg/Kg-dry	1	7/27/2016 7:16:48 PM
Naphthalene	ND	0.0353		mg/Kg-dry	1	7/27/2016 7:16:48 PM
1,2,3-Trichlorobenzene	ND	0.0235		mg/Kg-dry	1	7/27/2016 7:16:48 PM
Surr: Dibromofluoromethane	103	56.5-129		%Rec	1	7/27/2016 7:16:48 PM
Surr: Toluene-d8	98.6	64.3-131		%Rec	1	7/27/2016 7:16:48 PM
Surr: 1-Bromo-4-fluorobenzene	100	63.1-141		%Rec	1	7/27/2016 7:16:48 PM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 11.9 0.500 wt% 1 7/22/2016 9:11:26 AM

Batch ID: R30721

Analyst: ME

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607216**

Date Reported: 7/28/2016

Client: PES Environmental, Inc. Collection Date: 7/21/2016 11:00:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607216-003 **Matrix:** Soil

Client Sample ID: MW-7-5

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14376 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 0.0804 7/27/2016 7:46:20 PM mg/Kg-dry 1 Chloromethane ND 0.0804 mg/Kg-dry 1 7/27/2016 7:46:20 PM Vinyl chloride ND 0.00268 mg/Kg-dry 1 7/27/2016 7:46:20 PM Bromomethane ND 0.121 1 7/27/2016 7:46:20 PM mg/Kg-dry Trichlorofluoromethane (CFC-11) ND 0.0670 mg/Kg-dry 1 7/27/2016 7:46:20 PM Chloroethane ND 0.0804 7/27/2016 7:46:20 PM mg/Kg-dry 1 1.1-Dichloroethene ND 0.0670 mg/Kg-dry 1 7/27/2016 7:46:20 PM ND Methylene chloride 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM trans-1,2-Dichloroethene ND 0.0268 1 7/27/2016 7:46:20 PM mg/Kg-dry ND Methyl tert-butyl ether (MTBE) 0.0670 mg/Kg-dry 1 7/27/2016 7:46:20 PM ND 7/27/2016 7:46:20 PM 1,1-Dichloroethane 0.0268 mg/Kg-dry 1 2,2-Dichloropropane ND 0.0670 O 7/27/2016 7:46:20 PM mg/Kg-dry 1 cis-1.2-Dichloroethene ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM Chloroform ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM 1,1,1-Trichloroethane (TCA) ND 7/27/2016 7:46:20 PM 0.0268 mg/Kg-dry 1 1,1-Dichloropropene ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM Carbon tetrachloride ND 0.0268 7/27/2016 7:46:20 PM mg/Kg-dry 1 1,2-Dichloroethane (EDC) ND 7/27/2016 7:46:20 PM 0.0402 mg/Kg-dry 1 ND Benzene 0.0268 1 7/27/2016 7:46:20 PM mg/Kg-dry Trichloroethene (TCE) ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM ND 1,2-Dichloropropane 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM Bromodichloromethane ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM ND 7/27/2016 7:46:20 PM Dibromomethane 0.0536 mg/Kg-dry 1 cis-1,3-Dichloropropene ND 0.0268 1 7/27/2016 7:46:20 PM mg/Kg-dry Toluene ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM trans-1,3-Dichloropropylene ND 0.0402 mg/Kg-dry 1 7/27/2016 7:46:20 PM 1,1,2-Trichloroethane ND 7/27/2016 7:46:20 PM 0.0402 mg/Kg-dry 1 ND 1,3-Dichloropropane 0.0670 1 7/27/2016 7:46:20 PM mg/Kg-dry Tetrachloroethene (PCE) ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM ND 7/27/2016 7:46:20 PM Dibromochloromethane 0.0402 mg/Kg-dry 1 1.2-Dibromoethane (EDB) ND 0.00670 1 7/27/2016 7:46:20 PM mg/Kg-dry Chlorobenzene ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM 1.1.1.2-Tetrachloroethane ND 0.0402 1 7/27/2016 7:46:20 PM mg/Kg-dry Ethylbenzene ND 0.0402 mg/Kg-dry 1 7/27/2016 7:46:20 PM m,p-Xylene ND 7/27/2016 7:46:20 PM 0.0268 mg/Kg-dry 1 o-Xylene ND 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM ND Styrene 0.0268 mg/Kg-dry 1 7/27/2016 7:46:20 PM Isopropylbenzene ND 0.107 mg/Kg-dry 1 7/27/2016 7:46:20 PM Bromoform ND 7/27/2016 7:46:20 PM 0.0268 mg/Kg-dry 1

WO#: 1607216

Date Reported: 7/28/2016

Client: PES Environmental, Inc. Collection Date: 7/21/2016 11:00:00 AM

Batch ID: R30721

Project: Lake Stevens Marketplace

Lab ID: 1607216-003 Matrix: Soil

Client Sample ID: MW-7-5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by I	EPA Method 8	3260C		Batch	ID:	14376 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
n-Propylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
Bromobenzene	ND	0.0402		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,3,5-Trimethylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
2-Chlorotoluene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
4-Chlorotoluene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
tert-Butylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,2,3-Trichloropropane	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,2,4-Trichlorobenzene	ND	0.0670		mg/Kg-dry	1	7/27/2016 7:46:20 PM
sec-Butylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
4-Isopropyltoluene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,3-Dichlorobenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,4-Dichlorobenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
n-Butylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,2-Dichlorobenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,2-Dibromo-3-chloropropane	ND	0.670		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,2,4-Trimethylbenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
Hexachlorobutadiene	ND	0.134		mg/Kg-dry	1	7/27/2016 7:46:20 PM
Naphthalene	ND	0.0402		mg/Kg-dry	1	7/27/2016 7:46:20 PM
1,2,3-Trichlorobenzene	ND	0.0268		mg/Kg-dry	1	7/27/2016 7:46:20 PM
Surr: Dibromofluoromethane	101	56.5-129		%Rec	1	7/27/2016 7:46:20 PM
Surr: Toluene-d8	99.0	64.3-131		%Rec	1	7/27/2016 7:46:20 PM
Surr: 1-Bromo-4-fluorobenzene	98.3	63.1-141		%Rec	1	7/27/2016 7:46:20 PM

NOTES:

Sample Moisture (Percent Moisture)

Percent Moisture 8.80 0.500 7/22/2016 9:11:26 AM

Analyst: ME

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-14376	SampType: LCS			Units: mg/Kg		Prep Da	te: 7/27/20)16	RunNo: 30 8	345	
Client ID: LCSS	Batch ID: 14376					Analysis Da	te: 7/27/2 0)16	SeqNo: 582	2254	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.94	0.0600	1.000	0	194	34.5	141				S
Chloromethane	1.33	0.0600	1.000	0	133	38.8	132				S
Vinyl chloride	1.31	0.00200	1.000	0	131	44	142				
Bromomethane	1.49	0.0900	1.000	0	149	40.9	157				
Trichlorofluoromethane (CFC-11)	1.73	0.0500	1.000	0	173	42.9	147				S
Chloroethane	1.42	0.0600	1.000	0	142	37.1	144				
1,1-Dichloroethene	1.16	0.0500	1.000	0	116	49.7	142				
Methylene chloride	1.11	0.0200	1.000	0	111	46.3	140				
trans-1,2-Dichloroethene	1.04	0.0200	1.000	0	104	68	130				
Methyl tert-butyl ether (MTBE)	0.846	0.0500	1.000	0	84.6	59.1	138				
1,1-Dichloroethane	1.08	0.0200	1.000	0	108	61.9	137				
2,2-Dichloropropane	1.04	0.0500	1.000	0	104	28.1	149				Q
cis-1,2-Dichloroethene	1.03	0.0200	1.000	0	103	71.3	135				
Chloroform	1.03	0.0200	1.000	0	103	67.5	129				
1,1,1-Trichloroethane (TCA)	0.961	0.0200	1.000	0	96.1	69	132				
1,1-Dichloropropene	1.03	0.0200	1.000	0	103	72.7	131				
Carbon tetrachloride	1.01	0.0200	1.000	0	101	63.4	137				
1,2-Dichloroethane (EDC)	0.956	0.0300	1.000	0	95.6	61.9	136				
Benzene	1.01	0.0200	1.000	0	101	64.3	133				
Trichloroethene (TCE)	0.990	0.0200	1.000	0	99.0	65.5	137				
1,2-Dichloropropane	0.982	0.0200	1.000	0	98.2	63.2	142				
Bromodichloromethane	1.02	0.0200	1.000	0	102	73.2	131				
Dibromomethane	0.960	0.0400	1.000	0	96.0	70	130				
cis-1,3-Dichloropropene	0.968	0.0200	1.000	0	96.8	59.1	143				
Toluene	1.03	0.0200	1.000	0	103	67.3	138				
trans-1,3-Dichloropropylene	0.911	0.0300	1.000	0	91.1	49.2	149				
1,1,2-Trichloroethane	0.961	0.0300	1.000	0	96.1	74.5	129				
1,3-Dichloropropane	0.954	0.0500	1.000	0	95.4	70	130				
Tetrachloroethene (PCE)	1.06	0.0200	1.000	0	106	52.7	150				
Dibromochloromethane	1.03	0.0300	1.000	0	103	70.6	144				
1,2-Dibromoethane (EDB)	0.948	0.00500	1.000	0	94.8	70	130				

Original Page 11 of 25

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-14376	SampType: LCS			Units: mg/Kg		Prep Da	te: 7/27/2 0)16	RunNo: 308	345	
Client ID: LCSS	Batch ID: 14376					Analysis Da	te: 7/27/2 0)16	SeqNo: 582	2254	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	1.01	0.0200	1.000	0	101	76.1	123				
1,1,1,2-Tetrachloroethane	0.992	0.0300	1.000	0	99.2	65.9	141				
Ethylbenzene	1.01	0.0300	1.000	0	101	74	129				
m,p-Xylene	2.07	0.0200	2.000	0	103	70	124				
o-Xylene	1.02	0.0200	1.000	0	102	72.7	124				
Styrene	1.01	0.0200	1.000	0	101	76.8	130				
Isopropylbenzene	1.04	0.0800	1.000	0	104	70	130				
Bromoform	0.988	0.0200	1.000	0	98.8	67	154				
1,1,2,2-Tetrachloroethane	0.946	0.0200	1.000	0	94.6	60	130				
n-Propylbenzene	1.09	0.0200	1.000	0	109	74.8	125				
Bromobenzene	1.01	0.0300	1.000	0	101	49.2	144				
1,3,5-Trimethylbenzene	1.04	0.0200	1.000	0	104	74.6	123				
2-Chlorotoluene	1.04	0.0200	1.000	0	104	76.7	129				
4-Chlorotoluene	1.05	0.0200	1.000	0	105	77.5	125				
tert-Butylbenzene	1.07	0.0200	1.000	0	107	66.2	130				
1,2,3-Trichloropropane	0.887	0.0200	1.000	0	88.7	67.9	136				
1,2,4-Trichlorobenzene	0.967	0.0500	1.000	0	96.7	62.6	143				
sec-Butylbenzene	1.09	0.0200	1.000	0	109	75.6	133				
4-Isopropyltoluene	1.06	0.0200	1.000	0	106	76.8	131				
1,3-Dichlorobenzene	1.04	0.0200	1.000	0	104	72.8	128				
1,4-Dichlorobenzene	1.05	0.0200	1.000	0	105	72.6	126				
n-Butylbenzene	1.10	0.0200	1.000	0	110	65.3	136				
1,2-Dichlorobenzene	1.01	0.0200	1.000	0	101	72.8	126				
1,2-Dibromo-3-chloropropane	0.832	0.500	1.000	0	83.2	61.2	139				
1,2,4-Trimethylbenzene	1.04	0.0200	1.000	0	104	77.5	129				
Hexachlorobutadiene	1.07	0.100	1.000	0	107	42	151				
Naphthalene	0.834	0.0300	1.000	0	83.4	62.3	134				
1,2,3-Trichlorobenzene	0.938	0.0200	1.000	0	93.8	54.8	143				
Surr: Dibromofluoromethane	1.34		1.250		108	56.5	129				
Surr: Toluene-d8	1.23		1.250		98.6	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.27		1.250		102	63.1	141				

Original Page 12 of 25

QC SUMMARY REPORT

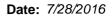
CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-14376 SampType: LCS Units: mg/Kg Prep Date: 7/27/2016 RunNo: 30845

Client ID: LCSS Batch ID: 14376 Analysis Date: 7/27/2016 SeqNo: 582254

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual


NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID MB-14376	SampType: MBLK			Units: mg/Kg		Prep Date: 7	7/27/2016	RunNo: 30845	
Client ID: MBLKS	Batch ID: 14376					Analysis Date: 7	7/27/2016	SeqNo: 582255	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit High	nLimit RPD Ref Val	%RPD RP	DLimit Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0600							
Chloromethane	ND	0.0600							
Vinyl chloride	ND	0.00200							
Bromomethane	ND	0.0900							
Trichlorofluoromethane (CFC-11)	ND	0.0500							
Chloroethane	ND	0.0600							
1,1-Dichloroethene	ND	0.0500							
Methylene chloride	ND	0.0200							
trans-1,2-Dichloroethene	ND	0.0200							
Methyl tert-butyl ether (MTBE)	ND	0.0500							
1,1-Dichloroethane	ND	0.0200							
2,2-Dichloropropane	ND	0.0500							Q
cis-1,2-Dichloroethene	ND	0.0200							
Chloroform	ND	0.0200							
1,1,1-Trichloroethane (TCA)	ND	0.0200							
1,1-Dichloropropene	ND	0.0200							
Carbon tetrachloride	ND	0.0200							
1,2-Dichloroethane (EDC)	ND	0.0300							
Benzene	ND	0.0200							
Trichloroethene (TCE)	ND	0.0200							
1,2-Dichloropropane	ND	0.0200							
Bromodichloromethane	ND	0.0200							
Dibromomethane	ND	0.0400							

Original Page 13 of 25

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-14376	SampType: MBLK			Units: mg/Kg	Prep Date: 7/27/2016			RunNo: 30845			
Client ID: MBLKS	Batch ID: 14376					Analysis Da	ite: 7/27/2 0	016	SeqNo: 58	2255	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
trans-1,3-Dichloropropylene	ND	0.0300									
1,1,2-Trichloroethane	ND	0.0300									
1,3-Dichloropropane	ND	0.0500									
Tetrachloroethene (PCE)	ND	0.0200									
Dibromochloromethane	ND	0.0300									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0200									
1,1,1,2-Tetrachloroethane	ND	0.0300									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Styrene	ND	0.0200									
Isopropylbenzene	ND	0.0800									
Bromoform	ND	0.0200									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0200									
Bromobenzene	ND	0.0300									
1,3,5-Trimethylbenzene	ND	0.0200									
2-Chlorotoluene	ND	0.0200									
4-Chlorotoluene	ND	0.0200									
tert-Butylbenzene	ND	0.0200									
1,2,3-Trichloropropane	ND	0.0200									
1,2,4-Trichlorobenzene	ND	0.0500									
sec-Butylbenzene	ND	0.0200									
4-Isopropyltoluene	ND	0.0200									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0200									
1,2-Dichlorobenzene	ND	0.0200									
											44.66

Original Page 14 of 25

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-14376	SampType: MBLK			Units: mg/Kg	Prep Date: 7/27/2016			RunNo: 308			
Client ID: MBLKS	Batch ID: 14376					Analysis Da	te: 7/27/2 0	016	SeqNo: 582	2255	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dibromo-3-chloropropane	ND	0.500									
1,2,4-Trimethylbenzene	ND	0.0200									
Hexachlorobutadiene	ND	0.100									
Naphthalene	ND	0.0300									
1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	1.22		1.250		97.2	56.5	129				
Surr: Toluene-d8	1.27		1.250		101	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.15		1.250		92.4	63.1	141				
NOTES:											

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1607216-003BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Dat	e: 7/27/2 0	116	RunNo: 308	45	
Client ID: MW-7-5	Batch ID: 14376					Analysis Dat	e: 7/27/2 0	116	SeqNo: 582	243	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	2.00	0.0804	1.340	0	149	43.5	121				S
Chloromethane	1.56	0.0804	1.340	0	117	45	130				
Vinyl chloride	1.55	0.00268	1.340	0	116	51.2	146				
Bromomethane	1.82	0.121	1.340	0	135	21.3	120				S
Trichlorofluoromethane (CFC-11)	2.23	0.0670	1.340	0	166	35	131				S
Chloroethane	1.82	0.0804	1.340	0	136	43.8	117				S
1,1-Dichloroethene	1.39	0.0670	1.340	0	104	61.9	141				
Methylene chloride	1.43	0.0268	1.340	0	107	54.7	142				
trans-1,2-Dichloroethene	1.27	0.0268	1.340	0	94.7	52	136				
Methyl tert-butyl ether (MTBE)	1.22	0.0670	1.340	0	91.2	54.4	132				
1,1-Dichloroethane	1.35	0.0268	1.340	0	101	51.8	141				
2,2-Dichloropropane	0.988	0.0670	1.340	0	73.7	36	123				Q
cis-1,2-Dichloroethene	1.31	0.0268	1.340	0	98.0	58.6	136				
Chloroform	1.34	0.0268	1.340	0	100	53.2	129				
1,1,1-Trichloroethane (TCA)	1.16	0.0268	1.340	0	86.6	58.3	145				
1,1-Dichloropropene	1.28	0.0268	1.340	0	95.8	55.1	138				

Page 15 of 25 Original

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607216-003BMS	SampType: MS			Units: mg/l	Units: mg/Kg-dry F			Prep Date: 7/27/2016			RunNo: 30845			
Client ID: MW-7-5	Batch ID: 14376					Analysis Dat	e: 7/27/2 0	16	SeqNo: 58	2243				
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual			
Carbon tetrachloride	1.29	0.0268	1.340	0	95.9	53.3	144							
1,2-Dichloroethane (EDC)	1.32	0.0402	1.340	0	98.8	51.3	139							
Benzene	1.27	0.0268	1.340	0	94.4	63.5	133							
Trichloroethene (TCE)	1.25	0.0268	1.340	0	92.9	68.6	132							
1,2-Dichloropropane	1.29	0.0268	1.340	0	95.9	59	136							
Bromodichloromethane	1.33	0.0268	1.340	0	98.9	50.7	141							
Dibromomethane	1.35	0.0536	1.340	0	100	50.6	137							
cis-1,3-Dichloropropene	1.22	0.0268	1.340	0	91.3	50.4	138							
Toluene	1.24	0.0268	1.340	0	92.2	63.4	132							
trans-1,3-Dichloropropylene	1.18	0.0402	1.340	0	87.9	44.1	147							
1,1,2-Trichloroethane	1.37	0.0402	1.340	0	102	51.6	137							
1,3-Dichloropropane	1.34	0.0670	1.340	0	100	53.1	134							
Tetrachloroethene (PCE)	1.29	0.0268	1.340	0	96.3	35.6	158							
Dibromochloromethane	1.37	0.0402	1.340	0	102	55.3	140							
1,2-Dibromoethane (EDB)	1.34	0.00670	1.340	0	100	50.4	136							
Chlorobenzene	1.30	0.0268	1.340	0	96.8	60	133							
1,1,1,2-Tetrachloroethane	1.27	0.0402	1.340	0	95.0	53.1	142							
Ethylbenzene	1.26	0.0402	1.340	0	94.3	54.5	134							
m,p-Xylene	2.58	0.0268	2.681	0	96.1	53.1	132							
o-Xylene	1.28	0.0268	1.340	0	95.7	53.3	139							
Styrene	1.30	0.0268	1.340	0	97.2	51.1	132							
Isopropylbenzene	1.29	0.107	1.340	0	96.2	58.9	138							
Bromoform	1.36	0.0268	1.340	0	101	57.9	130							
1,1,2,2-Tetrachloroethane	1.37	0.0268	1.340	0	102	51.9	131							
n-Propylbenzene	1.33	0.0268	1.340	0	99.5	53.6	140							
Bromobenzene	1.32	0.0402	1.340	0	98.5	54.2	140							
1,3,5-Trimethylbenzene	1.32	0.0268	1.340	0	98.2	51.8	136							
2-Chlorotoluene	1.33	0.0268	1.340	0	98.9	51.6	136							
4-Chlorotoluene	1.34	0.0268	1.340	0	99.8	50.1	139							
tert-Butylbenzene	1.32	0.0268	1.340	0	98.8	50.5	135							
1,2,3-Trichloropropane	1.31	0.0268	1.340	0	98.1	50.5	131							

Original Page 16 of 25

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607216-003BMS	SampType: MS	Units: mg/Kg-dry		Prep Date	Prep Date: 7/27/2016		RunNo: 30845				
Client ID: MW-7-5	Batch ID: 14376					Analysis Date	e: 7/27/20	16	SeqNo: 582	2243	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	1.20	0.0670	1.340	0	89.6	50.8	130				
sec-Butylbenzene	1.34	0.0268	1.340	0	100	52.6	141				
4-Isopropyltoluene	1.31	0.0268	1.340	0	97.5	52.9	134				
1,3-Dichlorobenzene	1.30	0.0268	1.340	0	97.0	52.6	131				
1,4-Dichlorobenzene	1.32	0.0268	1.340	0	98.3	52.9	129				
n-Butylbenzene	1.30	0.0268	1.340	0	97.2	52.6	130				
1,2-Dichlorobenzene	1.31	0.0268	1.340	0	97.5	55.8	129				
1,2-Dibromo-3-chloropropane	1.21	0.670	1.340	0	90.6	40.5	131				
1,2,4-Trimethylbenzene	1.31	0.0268	1.340	0	97.8	50.6	137				
Hexachlorobutadiene	1.24	0.134	1.340	0	92.3	40.6	158				
Naphthalene	1.19	0.0402	1.340	0	88.8	52.3	124				
1,2,3-Trichlorobenzene	1.24	0.0268	1.340	0	92.7	54.4	124				
Surr: Dibromofluoromethane	1.81		1.675		108	56.5	129				
Surr: Toluene-d8	1.66		1.675		99.3	64.3	131				
Surr: 1-Bromo-4-fluorobenzene	1.74		1.675		104	63.1	141				

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1607216-003BMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Date: 7/27/2016			RunNo: 308		
Client ID: MW-7-5	Batch ID: 14376					Analysis Da	te: 7/27/20	16	SeqNo: 582	2244	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	2.04	0.0804	1.340	0	152	43.5	121	2.004	1.69	30	S
Chloromethane	1.62	0.0804	1.340	0	121	45	130	1.562	3.46	30	
Vinyl chloride	1.60	0.00268	1.340	0	120	51.2	146	1.549	3.53	30	
Bromomethane	1.81	0.121	1.340	0	135	21.3	120	1.816	0.0738	30	S
Trichlorofluoromethane (CFC-11)	2.30	0.0670	1.340	0	171	35	131	2.229	2.93	30	S
Chloroethane	1.87	0.0804	1.340	0	140	43.8	117	1.824	2.57	30	S
1,1-Dichloroethene	1.47	0.0670	1.340	0	109	61.9	141	1.393	5.20	30	
Methylene chloride	1.49	0.0268	1.340	0	111	54.7	142	1.428	4.41	30	

Original Page 17 of 25

S - Outlying QC recoveries were associated with this sample. The method is in control as indicated by the LCS.

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607216-003BMSD	SampType: MSD			Units: mg/Kg-dry		Prep Da	te: 7/27/20	16	RunNo: 30 8		
Client ID: MW-7-5	Batch ID: 14376					Analysis Da	te: 7/27/2 0	16	SeqNo: 582	2244	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,2-Dichloroethene	1.35	0.0268	1.340	0	101	52	136	1.269	6.49	30	
Methyl tert-butyl ether (MTBE)	1.30	0.0670	1.340	0	96.6	54.4	132	1.223	5.75	30	
1,1-Dichloroethane	1.40	0.0268	1.340	0	105	51.8	141	1.352	3.84	30	
2,2-Dichloropropane	1.06	0.0670	1.340	0	79.3	36	123	0.9879	7.32	30	Q
cis-1,2-Dichloroethene	1.35	0.0268	1.340	0	101	58.6	136	1.314	2.82	30	
Chloroform	1.39	0.0268	1.340	0	103	53.2	129	1.342	3.24	30	
1,1,1-Trichloroethane (TCA)	1.25	0.0268	1.340	0	93.2	58.3	145	1.161	7.40	30	
1,1-Dichloropropene	1.33	0.0268	1.340	0	99.3	55.1	138	1.285	3.59	30	
Carbon tetrachloride	1.42	0.0268	1.340	0	106	53.3	144	1.286	9.95	30	
1,2-Dichloroethane (EDC)	1.38	0.0402	1.340	0	103	51.3	139	1.324	3.92	30	
Benzene	1.33	0.0268	1.340	0	99.1	63.5	133	1.266	4.86	30	
Trichloroethene (TCE)	1.31	0.0268	1.340	0	97.5	68.6	132	1.245	4.83	30	
1,2-Dichloropropane	1.34	0.0268	1.340	0	99.8	59	136	1.285	4.04	30	
Bromodichloromethane	1.40	0.0268	1.340	0	104	50.7	141	1.326	5.36	30	
Dibromomethane	1.40	0.0536	1.340	0	104	50.6	137	1.347	3.57	30	
cis-1,3-Dichloropropene	1.29	0.0268	1.340	0	96.3	50.4	138	1.224	5.38	30	
Toluene	1.35	0.0268	1.340	0	101	63.4	132	1.236	8.71	30	
trans-1,3-Dichloropropylene	1.27	0.0402	1.340	0	94.5	44.1	147	1.179	7.18	30	
1,1,2-Trichloroethane	1.42	0.0402	1.340	0	106	51.6	137	1.369	3.93	30	
1,3-Dichloropropane	1.40	0.0670	1.340	0	105	53.1	134	1.344	4.20	30	
Tetrachloroethene (PCE)	1.30	0.0268	1.340	0	97.3	35.6	158	1.291	1.08	30	
Dibromochloromethane	1.43	0.0402	1.340	0	106	55.3	140	1.365	4.37	30	
1,2-Dibromoethane (EDB)	1.41	0.00670	1.340	0	105	50.4	136	1.344	4.72	30	
Chlorobenzene	1.34	0.0268	1.340	0	100	60	133	1.298	3.40	30	
1,1,1,2-Tetrachloroethane	1.35	0.0402	1.340	0	100	53.1	142	1.273	5.53	30	
Ethylbenzene	1.31	0.0402	1.340	0	97.6	54.5	134	1.264	3.44	30	
m,p-Xylene	2.70	0.0268	2.681	0	101	53.1	132	2.578	4.55	30	
o-Xylene	1.33	0.0268	1.340	0	99.1	53.3	139	1.283	3.49	30	
Styrene	1.35	0.0268	1.340	0	101	51.1	132	1.303	3.44	30	
Isopropylbenzene	1.34	0.107	1.340	0	100	58.9	138	1.289	3.97	30	
Bromoform	1.43	0.0268	1.340	0	106	57.9	130	1.360	4.86	30	

Original Page 18 of 25

Date: 7/28/2016

Work Order: 1607216

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

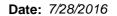
Sample ID 1607216-003BMSD	SampType: MSD	Units: mg/Kg-dry Prep Date: 7				e: 7/27/2 0	16	RunNo: 30845				
Client ID: MW-7-5	Batch ID: 14376					Analysis Dat	e: 7/27/2 0	SeqNo: 582	2244			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
1,1,2,2-Tetrachloroethane	1.44	0.0268	1.340	0	107	51.9	131	1.373	4.58	30		
n-Propylbenzene	1.38	0.0268	1.340	0	103	53.6	140	1.334	3.26	30		
Bromobenzene	1.38	0.0402	1.340	0	103	54.2	140	1.321	4.42	30		
1,3,5-Trimethylbenzene	1.36	0.0268	1.340	0	101	51.8	136	1.316	2.96	30		
2-Chlorotoluene	1.37	0.0268	1.340	0	102	51.6	136	1.326	3.48	30		
4-Chlorotoluene	1.39	0.0268	1.340	0	103	50.1	139	1.338	3.44	30		
tert-Butylbenzene	1.37	0.0268	1.340	0	102	50.5	135	1.324	3.29	30		
1,2,3-Trichloropropane	1.30	0.0268	1.340	0	97.0	50.5	131	1.315	1.08	30		
1,2,4-Trichlorobenzene	1.26	0.0670	1.340	0	94.0	50.8	130	1.201	4.79	30		
sec-Butylbenzene	1.39	0.0268	1.340	0	103	52.6	141	1.341	3.39	30		
4-Isopropyltoluene	1.35	0.0268	1.340	0	101	52.9	134	1.308	3.43	30		
1,3-Dichlorobenzene	1.35	0.0268	1.340	0	100	52.6	131	1.300	3.44	30		
1,4-Dichlorobenzene	1.37	0.0268	1.340	0	102	52.9	129	1.318	3.55	30		
n-Butylbenzene	1.35	0.0268	1.340	0	101	52.6	130	1.304	3.44	30		
1,2-Dichlorobenzene	1.35	0.0268	1.340	0	101	55.8	129	1.308	3.43	30		
1,2-Dibromo-3-chloropropane	1.30	0.670	1.340	0	96.7	40.5	131	1.214	6.51	30		
1,2,4-Trimethylbenzene	1.36	0.0268	1.340	0	101	50.6	137	1.312	3.27	30		
Hexachlorobutadiene	1.28	0.134	1.340	0	95.3	40.6	158	1.238	3.14	30		
Naphthalene	1.28	0.0402	1.340	0	95.2	52.3	124	1.190	6.96	30		
1,2,3-Trichlorobenzene	1.30	0.0268	1.340	0	96.7	54.4	124	1.243	4.17	30		
Surr: Dibromofluoromethane	1.82		1.675		109	56.5	129		0			
Surr: Toluene-d8	1.66		1.675		99.1	64.3	131		0			
Surr: 1-Bromo-4-fluorobenzene	1.73		1.675		103	63.1	141		0			

NOTES:

Original Page 19 of 25

S - Outlying QC recoveries were associated with this sample. The method is in control as indicated by the LCS.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607237-001BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	ite: 7/27/2 0	016	RunNo: 30 8	345	
Client ID: BATCH	Batch ID: 14376					Analysis Da	ite: 7/28/2 0	016	SeqNo: 582	2246	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0689						0		30	
Chloromethane	ND	0.0689						0		30	
Vinyl chloride	ND	0.00230						0		30	
Bromomethane	ND	0.103						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0574						0		30	
Chloroethane	ND	0.0689						0		30	
1,1-Dichloroethene	ND	0.0574						0		30	
Methylene chloride	ND	0.0230						0		30	
trans-1,2-Dichloroethene	ND	0.0230						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0574						0		30	
1,1-Dichloroethane	ND	0.0230						0		30	
2,2-Dichloropropane	ND	0.0574						0		30	Q
cis-1,2-Dichloroethene	ND	0.0230						0		30	
Chloroform	ND	0.0230						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0230						0		30	
1,1-Dichloropropene	ND	0.0230						0		30	
Carbon tetrachloride	ND	0.0230						0		30	
1,2-Dichloroethane (EDC)	ND	0.0344						0		30	
Benzene	ND	0.0230						0		30	
Trichloroethene (TCE)	ND	0.0230						0		30	
1,2-Dichloropropane	ND	0.0230						0		30	
Bromodichloromethane	ND	0.0230						0		30	
Dibromomethane	ND	0.0459						0		30	
cis-1,3-Dichloropropene	ND	0.0230						0		30	
Toluene	ND	0.0230						0		30	
trans-1,3-Dichloropropylene	ND	0.0344						0		30	
1,1,2-Trichloroethane	ND	0.0344						0		30	
1,3-Dichloropropane	ND	0.0574						0		30	
Tetrachloroethene (PCE)	ND	0.0230						0		30	
Dibromochloromethane	ND	0.0344						0		30	
1,2-Dibromoethane (EDB)	ND	0.00574						0		30	

Original Page 20 of 25

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607237-001BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 7/27/2 0	016	RunNo: 30	845	
Client ID: BATCH	Batch ID: 14376					Analysis Da	te: 7/28/2 0	016	SeqNo: 582	2246	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	0.0230						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0344						0		30	
Ethylbenzene	ND	0.0344						0		30	
m,p-Xylene	ND	0.0230						0		30	
o-Xylene	ND	0.0230						0		30	
Styrene	ND	0.0230						0		30	
Isopropylbenzene	ND	0.0918						0		30	
Bromoform	ND	0.0230						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0230						0		30	
n-Propylbenzene	ND	0.0230						0		30	
Bromobenzene	ND	0.0344						0		30	
1,3,5-Trimethylbenzene	ND	0.0230						0		30	
2-Chlorotoluene	ND	0.0230						0		30	
4-Chlorotoluene	ND	0.0230						0		30	
tert-Butylbenzene	ND	0.0230						0		30	
1,2,3-Trichloropropane	ND	0.0230						0		30	
1,2,4-Trichlorobenzene	ND	0.0574						0		30	
sec-Butylbenzene	ND	0.0230						0		30	
4-Isopropyltoluene	ND	0.0230						0		30	
1,3-Dichlorobenzene	ND	0.0230						0		30	
1,4-Dichlorobenzene	ND	0.0230						0		30	
n-Butylbenzene	ND	0.0230						0		30	
1,2-Dichlorobenzene	ND	0.0230						0		30	
1,2-Dibromo-3-chloropropane	ND	0.574						0		30	
1,2,4-Trimethylbenzene	ND	0.0230						0		30	
Hexachlorobutadiene	ND	0.115						0		30	
Naphthalene	ND	0.0344						0		30	
1,2,3-Trichlorobenzene	ND	0.0230						0		30	
Surr: Dibromofluoromethane	1.43		1.435		99.8	56.5	129		0		
Surr: Toluene-d8	1.49		1.435		104	64.3	131		0		
Surr: 1-Bromo-4-fluorobenzene	1.41		1.435		98.4	63.1	141		0		

Original Page 21 of 25

Date: 7/28/2016

Work Order: 1607216

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607237-001BDUP SampType: DUP Units: mg/Kg-dry Prep Date: 7/27/2016 RunNo: 30845

Client ID: **BATCH** Batch ID: **14376** Analysis Date: **7/28/2016** SeqNo: **582246**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Project:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Original Page 22 of 25

Date: 7/28/2016

Work Order: 1607216

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Sample Moisture (Percent Moisture)

Sample ID 1607109-003ADUP SampType: DUP Units: wt% Prep Date: 7/22/2016 RunNo: 30721

Client ID: BATCH Batch ID: R30721 Analysis Date: 7/22/2016 SeqNo: 579613

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 21.9 0.500 22.06 0.617 20

Original Page 23 of 25

Sample Log-In Check List

Client Name: PES Work Order Number: 1607216									
Lo	ogged by:	Erica Silva	Date Received:	7/21/2016	6 2:26:00 PM				
Cha	nin of Cust	ody							
		ustody complete?	Yes 🗸	No 🗌	Not Present				
2.	How was the	sample delivered?	<u>Client</u>						
Log	ı İn								
_	Coolers are p	present?	Yes 🗹	No 🗌	NA 🗆				
٠.									
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌					
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹				
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	NA 🗌				
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes 🗸	No 🗆	na 🗆				
8.	Sample(s) in	proper container(s)?	Yes 🗹	No 🗌					
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗹	No \square					
10.	Are samples	properly preserved?	Yes 🗸	No \square					
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA \square				
12.	Is there head	space in the VOA vials?	Yes	No 🗌	NA 🗸				
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🗸	No \square					
14.	Does paperw	ork match bottle labels?	Yes 🗹	No \square					
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌					
		at analyses were requested?	Yes 🗸	No \square					
17.	Were all hold	ing times able to be met?	Yes 🗸	No \square					
Spe	ecial Handlı	ing (if applicable)							
-		otified of all discrepancies with this order?	Yes	No \square	NA 🗹				
	Person	Notified: Date							
	By Who	m: Via:	eMail Ph	one 🗌 Fax	☐ In Person				
	Regardi	ng:							
	Client Ir	nstructions:							
19.	Additional rer	marks:							
	Information								

Item #	Temp ºC
Cooler	9.7
Sample	2.3

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Original

IAI → SameDay^ NextDay^ 2 Day 3 Day(STD)	×
TAT A Campana Alantonia a Daniel a Dani	Relinquished Date/Time Received Date/Time
	a lebor
THE STATE OF THE STATE OF THE STATE AND STATE OF THE STAT	to each of the terms on th
THE REPORT OF THE PROPERTY OF	Sample Disposal: Return to Client assessed if samples are retained after 30 days.) Return to Client assessed if samples are retained after 30 days.)
Special Remarks:	***Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite Turn-around times for samples
b Sb Se Sr Sn Ti Tl U V Zn	**Metals Analysis (Circle): MTCA-5 RCRA-8 Priority Pollutants TAL Individual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni Pb
PORTES ANY SERVICE OF ANY LOSS AND TAKE OF A TAKE OF A TAKE OF THE PARTY OF A TAKE OF	
Place Continued with Africa, and are according to the first of the second	
Co. 2715. Safety Stop Relation on the last pages on the confirmment of	
programment in the common part of the common in the common	
CONTRER WORTHERS, MORRETORY, OF MAY STELLING SERIES	2/2/18
विकास अनुसाम के उनके किए बुक्ति कर बुक्ति कर मुख्य कर मुख्य	
	4
CONTROL DISCHARGE CO. CO. CO. CO. CO. CO. CO. CO. CO. CO.	X 5 0011 11/10/2 5- 2-MME
ON THE SETTINGS OF SETTINGS OF THE SETTINGS OF	S 628 Migt S-9-MW
	5 72/16 1010 5 X
Comments	Sample Name Sample Sam
GW = Ground Water, SW = Storm Water, WW = Waste Water	ing Water,
	bonea
Appropriate the control of the contr	SIG Report To (PM): Bridge
Concernation of the Concer	135x Location: Lake stevens was
O PRIN	Project Name: Lake Howers Now North
Page: of:	3600 Fremont Ave N. Tel: 206-352-3790 Seattle, WA 98103 Fax: 206-352-7178
Laboratory Project No (internal): 1607216 5	Date: 721/6

Fremont

Chain of Custody Record and Laboratory Services Agreement

MEMORANDUM

TO: Project File **DATE:** August 9, 2016

FROM: Jessie Compeau

SUBJECT: Laboratory Data Validation Review

PROJECT: Lake Stevens Marketplace

PROJECT #: 1246.038.03.002

TASK: July 20-21, 2016 Soil Samples

LAB: Fremont Analytical Service Request No. 1607216

Three soil samples were collected at the Lake Stevens Marketplace Site in Snohomish County on July 20-21, 2016. The samples were collected as part of a Limited Phase II Investigation at the Site. The samples were delivered to Fremont Analytical (Fremont) of Seattle, Washington for laboratory analysis. Samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The results were reported in Fremont Lab Package 1607216.

The Limited Phase II Investigation occurred in July of 2016 and associated sample data are reported in FA Project Number 1607216 along with FA Project numbers 1607053,1607054, and 1607063. The quality assurance review of the laboratory data is summarized below.

DATA QUALIFICATIONS

Guidelines established by USEPA for review of analytical data were used to validate the data. The comments presented in this memorandum refer to the laboratory's performance in meeting the quality control criteria outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999).

DATA VALIDATION

Sample Receipt, Preservation and Handling

The samples were delivered to the project laboratory in coolers under standard chain-of-custody protocols. Review of Fremont's Sample Log-In Check List Form indicates that all samples were received in good condition at a cooler temperature of 9.7 degrees Centigrade (°C) and samples in the cooler were recorded at a temperature of 2.3° C within the recommended preservation temperature range of 4.0° C $\pm 2.0^{\circ}$ C. The sample receipt log indicated that the samples in the coolers were received properly stored in a cooler, preserved, and cooled with ice/gel packs and in good condition at the time of laboratory receipt. No data qualifications were assigned due to temperature preservation issues.

Holding Times

USEPA Method 8260C (VOCs):

All samples were analyzed for VOCs within the EPA recommended holding time of 14 days (soils) from the data of sample collection. All holding time criteria were met.

Initial and Continuing Calibration

Initial and continuing calibration data for this project are retained by the laboratory and available for review if necessary. Case narrative notes and qualifiers indicate that either initial or continuing calibration criteria was not met for 2,2-dichloropropane. Fremont was contacted for more information. Continuing calibration %D was slightly below Fremont's control limit criteria at 77.5%. All associated 2,2-dichloropropane results are all non-detect and qualified as estimated (UJ).

Method Blank Results

USEPA Method 8260C (VOCs):

Laboratory method blank for soil was included with the analytical batch per method requirement. The target analytes were not detected in the method blank for soil at or above the method reporting limits (MRLs). No qualifications of the data were made due to the results of the method blank analyses.

Trip Blank Results

USEPA Method 8260C (VOCs):

No trip blank was collected. No action was taken other than to note this.

Field, Rinsate, or Equipment Blank Results

USEPA Method 8260C (VOCs):

Field, rinsate, or equipment blanks were not collected.

Laboratory Duplicate Analyses

USEPA Method 8260C (VOCs):

Laboratory duplicate analysis was performed on a non-client soil sample within the analytical batch. The primary/duplicate RPDs were within the laboratory control limit of 30%. Duplicate data are acceptable.

Field Duplicate Analyses

USEPA Method 8260C (VOCs):

Soil field duplicate sample was not collected. Refer laboratory duplicate and matrix spike results for precision data.

Surrogate Recoveries

USEPA Method 8260C (VOCs):

The surrogate recovery results for the sample, laboratory duplicate, laboratory control sample, matrix spike/matrix spike duplicate, and the method blank were within the laboratory surrogate control limits for all of the analyses.

Matrix Spike/ Matrix Spike Duplicates

USEPA Method 8260C (VOCs):

A matrix spike and matrix spike duplicate (MS/MSD) analysis was performed on soil sample MW-7-5. One MS is required for each sample event (maximum of 20 samples in a group); therefore, the MS analysis meets this required frequency. The MS/MSD percent recoveries (%Rs) and RPDs for all 8260C target analytes were within the laboratory control criteria with the following exceptions:

MS/MSD % R's for dichlorodifluoromethane (CFC-12), bromomethane, chloromethane, and trichlorofluoromethane (CFC-11) were elevated and above FA's control limit criteria. No action is taken in this case since these compounds were not detected in sample MW-7-5.

Laboratory Control Samples

USEPA Method 8260C (VOCs):

Laboratory control sample (LCS) analysis was performed along with the analytical batch. The LCS %Rs for the control analytes (VOCs) were within the laboratory control criteria for soil with the following exceptions:

Three compounds dichlorodifluoromethane (CFC-12), chloromethane, and trichlorofluoromethane (CFC-11) were recovered above laboratory control limit criteria. These compounds were not detected in associated samples so no action was required.

Quantitation Limits

Results of all analyses were reported based on standard laboratory MRLs. The reported MRLs are considered appropriate for this project. No data qualifiers were warranted based upon standard or dilution-elevated detection limits.

Completeness

The samples were collected and analyzed as requested. The results in all cases were reported based upon standard Method Reporting Limits (MRLs). Data completeness is 100%.

Data Assessment

The laboratory data reported for this project were reviewed based on the criteria outlined in:

• USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999)

Data qualifiers were assigned and laboratory report pages with qualifiers are attached. Alare judged to be acceptable for their intended use.	l data
are judged to be acceptable for their intended use.	

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

PES Environmental, Inc.

Brian O'Neal 1215 Fourth Avenue, Suite 1350 Seattle, WA 98161

RE: Lake Stevens Marketplace

Lab ID: 1607286

August 02, 2016

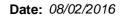
Attention Brian O'Neal:

Fremont Analytical, Inc. received 10 sample(s) on 7/26/2016 for the analyses presented in the following report.

Mercury by EPA Method 7471
Sample Moisture (Percent Moisture)
Total Metals by EPA Method 6020
Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

DoD/ELAP Certification #L2371, ISO/ICC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: PES Environmental, Inc. Work Order Sample Summary

Project: Lake Stevens Marketplace

Lab Order: 1607286

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1607286-001	Drum-S-072616	07/26/2016 6:50 AM	07/26/2016 2:09 PM
1607286-002	MW-1-072616	07/26/2016 7:40 AM	07/26/2016 2:09 PM
1607286-003	MW-6-072616	07/26/2016 8:40 AM	07/26/2016 2:09 PM
1607286-004	MW-7-072616	07/26/2016 9:35 AM	07/26/2016 2:09 PM
1607286-005	Drum-W-072616	07/26/2016 9:50 AM	07/26/2016 2:09 PM
1607286-006	MW-3-072616	07/26/2016 10:35 AM	07/26/2016 2:09 PM
1607286-007	MW-4-072616	07/26/2016 11:35 AM	07/26/2016 2:09 PM
1607286-008	MW-2-072616	07/26/2016 12:30 PM	07/26/2016 2:09 PM
1607286-009	MW-5-072616	07/26/2016 1:30 PM	07/26/2016 2:09 PM
1607286-010	Trip Blank	07/25/2016 10:39 AM	07/26/2016 2:09 PM

Case Narrative

WO#: **1607286**Date: **8/2/2016**

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1607286**

Date Reported: **8/2/2016**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 6:50:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-001 **Matrix:** Soil

Client Sample ID: Drum-S-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Mercury by EPA Method 7471				Batch	ID:	14415 Analyst: MW
Mercury	ND	0.249		mg/Kg-dry	1	8/1/2016 2:31:34 PM
Total Metals by EPA Method 6020				Batch	ID:	14398 Analyst: TN
Arsenic	2.62	0.0857		mg/Kg-dry	1	7/29/2016 3:23:04 PM
Barium	27.4	0.428		mg/Kg-dry	1	7/29/2016 3:23:04 PM
Cadmium	ND	0.171		mg/Kg-dry	1	7/29/2016 3:23:04 PM
Chromium	23.6	0.0857		mg/Kg-dry	1	7/29/2016 3:23:04 PM
Lead	6.79	0.171		mg/Kg-dry	1	7/29/2016 3:23:04 PM
Selenium	1.53	0.428		mg/Kg-dry	1	7/29/2016 3:23:04 PM
Silver	ND	0.0857		mg/Kg-dry	1	7/29/2016 3:23:04 PM
Sample Moisture (Percent Moisture	2)			Batch	ID:	R30817 Analyst: ME
Percent Moisture	8.82			wt%	1	7/27/2016 8:12:33 AM

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 7:40:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-002 **Matrix:** Water

Client Sample ID: MW-1-072616

RL Qual Units DF **Analyses** Result **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14381 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 7/28/2016 9:28:12 PM Chloromethane ND 1.00 µg/L 1 7/28/2016 9:28:12 PM ND 0.200 Vinyl chloride µg/L 1 7/28/2016 9:28:12 PM Bromomethane ND 1.00 1 7/28/2016 9:28:12 PM µg/L Q Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/28/2016 9:28:12 PM Chloroethane ND 1.00 7/28/2016 9:28:12 PM µg/L 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/28/2016 9:28:12 PM ND Methylene chloride 1.00 µg/L 1 7/28/2016 9:28:12 PM trans-1,2-Dichloroethene ND 1.00 1 7/28/2016 9:28:12 PM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/28/2016 9:28:12 PM μg/L ND 1,1-Dichloroethane 1.00 µg/L 1 7/28/2016 9:28:12 PM 2,2-Dichloropropane ND 2.00 7/28/2016 9:28:12 PM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 9:28:12 PM Chloroform ND 1.00 µg/L 1 7/28/2016 9:28:12 PM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 7/28/2016 9:28:12 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 9:28:12 PM Carbon tetrachloride ND 1.00 7/28/2016 9:28:12 PM µg/L 1 1,2-Dichloroethane (EDC) ND 7/28/2016 9:28:12 PM 1.00 µq/L 1 ND Benzene 1.00 1 7/28/2016 9:28:12 PM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/28/2016 9:28:12 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/28/2016 9:28:12 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 9:28:12 PM ND Dibromomethane 1.00 µg/L 1 7/28/2016 9:28:12 PM cis-1,3-Dichloropropene ND 1.00 1 7/28/2016 9:28:12 PM µg/L Toluene ND 1.00 µg/L 1 7/28/2016 9:28:12 PM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/28/2016 9:28:12 PM 1,1,2-Trichloroethane ND 1.00 7/28/2016 9:28:12 PM µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/28/2016 9:28:12 PM Tetrachloroethene (PCE) ND 1.00 µg/L 1 7/28/2016 9:28:12 PM Dibromochloromethane ND 1.00 μg/L 1 7/28/2016 9:28:12 PM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/28/2016 9:28:12 PM Chlorobenzene ND 1.00 µg/L 1 7/28/2016 9:28:12 PM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/28/2016 9:28:12 PM µg/L Ethylbenzene ND 1.00 µg/L 1 7/28/2016 9:28:12 PM m,p-Xylene ND 1.00 7/28/2016 9:28:12 PM µg/L 1 o-Xylene ND 1.00 µg/L 1 7/28/2016 9:28:12 PM ND 7/28/2016 9:28:12 PM Styrene 1.00 µg/L 1 Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 9:28:12 PM Bromoform ND 1.00 µg/L 1 7/28/2016 9:28:12 PM

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 7:40:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-002 **Matrix:** Water

Client Sample ID: MW-1-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID:	14381 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
n-Propylbenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
Bromobenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
2-Chlorotoluene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
4-Chlorotoluene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
tert-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/28/2016 9:28:12 PM
sec-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
n-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/28/2016 9:28:12 PM
Naphthalene	ND	1.00		μg/L	1	7/28/2016 9:28:12 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/28/2016 9:28:12 PM
Surr: Dibromofluoromethane	96.1	45.4-152		%Rec	1	7/28/2016 9:28:12 PM
Surr: Toluene-d8	93.6	40.1-139		%Rec	1	7/28/2016 9:28:12 PM
Surr: 1-Bromo-4-fluorobenzene	95.1	64.2-128		%Rec	1	7/28/2016 9:28:12 PM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 8:40:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-003 **Matrix:** Water

Client Sample ID: MW-6-072616

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14381 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 7/28/2016 9:58:49 PM Chloromethane ND 1.00 µg/L 1 7/28/2016 9:58:49 PM ND Vinyl chloride 0.200 µg/L 1 7/28/2016 9:58:49 PM Bromomethane ND 1.00 1 7/28/2016 9:58:49 PM µg/L Q Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/28/2016 9:58:49 PM Chloroethane ND 1.00 μg/L 7/28/2016 9:58:49 PM 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/28/2016 9:58:49 PM ND Methylene chloride 1.00 µg/L 1 7/28/2016 9:58:49 PM trans-1,2-Dichloroethene ND 1.00 1 7/28/2016 9:58:49 PM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/28/2016 9:58:49 PM μg/L ND 1,1-Dichloroethane 1.00 µg/L 1 7/28/2016 9:58:49 PM 2,2-Dichloropropane ND 2.00 7/28/2016 9:58:49 PM µg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 9:58:49 PM Chloroform ND 1.00 µg/L 1 7/28/2016 9:58:49 PM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 7/28/2016 9:58:49 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 9:58:49 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 9:58:49 PM 1,2-Dichloroethane (EDC) ND 7/28/2016 9:58:49 PM 1.00 µg/L 1 ND Benzene 1.00 1 7/28/2016 9:58:49 PM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/28/2016 9:58:49 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/28/2016 9:58:49 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 9:58:49 PM ND Dibromomethane 1.00 µg/L 1 7/28/2016 9:58:49 PM cis-1,3-Dichloropropene ND 1.00 1 7/28/2016 9:58:49 PM µg/L Toluene ND 1.00 µg/L 1 7/28/2016 9:58:49 PM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/28/2016 9:58:49 PM 1,1,2-Trichloroethane ND 1.00 7/28/2016 9:58:49 PM µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/28/2016 9:58:49 PM 1.68 Tetrachloroethene (PCE) 1.00 µg/L 1 7/28/2016 9:58:49 PM ND Dibromochloromethane 1.00 μg/L 1 7/28/2016 9:58:49 PM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/28/2016 9:58:49 PM Chlorobenzene ND 1.00 μg/L 1 7/28/2016 9:58:49 PM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/28/2016 9:58:49 PM µg/L Ethylbenzene ND 1.00 µg/L 1 7/28/2016 9:58:49 PM ND 1.00 7/28/2016 9:58:49 PM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 7/28/2016 9:58:49 PM ND 7/28/2016 9:58:49 PM Styrene 1.00 µg/L 1 Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 9:58:49 PM Bromoform ND 1.00 µg/L 1 7/28/2016 9:58:49 PM

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 8:40:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-003 **Matrix:** Water

Client Sample ID: MW-6-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID: 1	4381 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
n-Propylbenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
Bromobenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
2-Chlorotoluene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
4-Chlorotoluene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
tert-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/28/2016 9:58:49 PM
sec-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
n-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/28/2016 9:58:49 PM
Naphthalene	ND	1.00		μg/L	1	7/28/2016 9:58:49 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/28/2016 9:58:49 PM
Surr: Dibromofluoromethane	95.7	45.4-152		%Rec	1	7/28/2016 9:58:49 PM
Surr: Toluene-d8	92.6	40.1-139		%Rec	1	7/28/2016 9:58:49 PM
Surr: 1-Bromo-4-fluorobenzene	96.1	64.2-128		%Rec	1	7/28/2016 9:58:49 PM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 9:35:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-004 **Matrix:** Water

Client Sample ID: MW-7-072616

Volatile Organic Compounds by EPA Method 8260C Batch ID: 14381 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 μg/L 1 7728/2016 10:29:25 PM Chloromethane ND 1.00 μg/L 1 7728/2016 10:29:25 PM Vinyl chloride ND 1.00 μg/L 1 7728/2016 10:29:25 PM Bromomethane ND 1.00 μg/L 1 7728/2016 10:29:25 PM Trichlorofluoromethane (CFC-11) ND 1.00 μg/L 1 7728/2016 10:29:25 PM Chloroethane ND 1.00 μg/L 1 7728/2016 10:29:25 PM 1,1-Dichloroethane ND 1.00 μg/L 1 7728/2016 10:29:25 PM Methylene Chloride ND 1.00 μg/L 1 7728/2016 10:29:25 PM Methylene Chloride ND 1.00 μg/L 1 7728/2016 10:29:25 PM Methylene Chloride ND 1.00 μg/L 1 7728/2016 10:29:25 PM I,1-Dichloroethane (FMTEE) ND 1.00 μg/L	Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Chloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Vinyl chloride ND 0.200 µg/L 1 7/28/2016 10:29:25 PM Bromomethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Chloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 2,2-Dichloropropane ND 1.00 µg/L	Volatile Organic Compounds by	EPA Method 8	260C		Batc	h ID: 14	381 Analyst: NG
Vinyl chloride ND 0.200 µg/L 1 7/28/2016 10:29:25 PM Bromomethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichlorofluoromethane (CFC-11) ND 1.00 Q µg/L 1 7/28/2016 10:29:25 PM Chloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methyl tert-buryl ether (MTBE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methyl tert-buryl ether (MTBE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methyl tert-buryl ether (MTBE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Mthyl tert-buryl ether (MTBE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloroethene (MTBE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Gis-1	Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
Bromomethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.2-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.2-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.2-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.2-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1.1-	Chloromethane	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
Trichlorofluoromethane (CFC-11) ND 1.00 Q μg/L 1 7/28/2016 10:29:25 PM Chloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Methylene chloride ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Methyl tert-bulyl ether (MTBE) ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1.1-Dichloroerthane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 2.2-Dichloropropane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM cis-1,2-Dichloroerthane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloropropene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropropene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropropane	Vinyl chloride	ND	0.200		μg/L	1	7/28/2016 10:29:25 PM
Chloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methyle ne chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Itrans-1,2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methyl tert-butyl ether (MTBE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 2,2-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,2-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,2-Dichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloroethane (EDC)	Bromomethane	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,1-Dichloroethene	Trichlorofluoromethane (CFC-11)	ND	1.00	Q		1	7/28/2016 10:29:25 PM
1,1-Dichloroethene	Chloroethane	ND	1.00			1	7/28/2016 10:29:25 PM
Methylene chloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM trans-1,2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Methyl tert-butyl ether (MTBE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 2,2-Dichloropropane ND 2.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Chloroform ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND	1,1-Dichloroethene	ND	1.00			1	7/28/2016 10:29:25 PM
Itrans-1,2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM	Methylene chloride	ND	1.00			1	7/28/2016 10:29:25 PM
Methyl tert-butyl ether (MTBE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM c3-2,2-Dichloropropane ND 2.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Chloroform ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichloroethane (TCE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichloroethane ND <	trans-1,2-Dichloroethene	ND	1.00			1	7/28/2016 10:29:25 PM
2,2-Dichloropropane ND 2.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Chloroform ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,1-Tirchloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Benzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichloropethane (EDC) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM Benzene ND 0.00 µg/L 1 7/28/2016 10:29:25 PM Trichloropethane (TCE) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropropane ND 1.00	Methyl tert-butyl ether (MTBE)	ND	1.00			1	7/28/2016 10:29:25 PM
cis-1,2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Chloroform ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Benzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichloroethane (TCE) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM Trichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromochhane ND 1.00	1,1-Dichloroethane	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
cis-1,2-Dichloroethene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Chloroform ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Benzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichloroethane (TCE) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Cis-1,3-Dichloropropane ND 1.00	2,2-Dichloropropane	ND	2.00		μg/L	1	7/28/2016 10:29:25 PM
Chloroform ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Benzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichloroethene (TCE) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM Trichloroethene (TCE) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM Trichloroethene (TCE) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromoethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 µg	cis-1,2-Dichloroethene	ND	1.00			1	7/28/2016 10:29:25 PM
1,1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Benzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichloroethene (TCE) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM Trichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromomethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 µg/L	Chloroform	ND	1.00			1	7/28/2016 10:29:25 PM
1,1-Dichloropropene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Carbon tetrachloride ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloroethane (EDC) ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Benzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Trichloroethene (TCE) ND 0.500 μg/L 1 7/28/2016 10:29:25 PM Trichloropropane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Dibromomethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Cis-1,3-Dichloropropene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00	1,1,1-Trichloroethane (TCA)	ND	1.00			1	7/28/2016 10:29:25 PM
Carbon tetrachloride ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloroethane (EDC) ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Benzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Trichloroethene (TCE) ND 0.500 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropropane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Dibromomethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Cis-1,3-Dichloropropene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00	•	ND	1.00			1	7/28/2016 10:29:25 PM
1,2-Dichloroethane (EDC) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Benzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Trichloroethene (TCE) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromomethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,3-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Tetrachloroethane (PCE) 43.5 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane <td></td> <td>ND</td> <td>1.00</td> <td></td> <td></td> <td>1</td> <td>7/28/2016 10:29:25 PM</td>		ND	1.00			1	7/28/2016 10:29:25 PM
Benzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Trichloroethene (TCE) ND 0.500 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropropane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Dibromomethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM cis-1,3-Dichloropropene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 μg/L 1 7/28/2016 1	1,2-Dichloroethane (EDC)	ND	1.00			1	7/28/2016 10:29:25 PM
Trichloroethene (TCE) ND 0.500 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromomethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,3-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Tetrachloroethane (PCE) 43.5 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane (EDB) ND 0.0600 µg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND <t< td=""><td></td><td>ND</td><td>1.00</td><td></td><td></td><td>1</td><td>7/28/2016 10:29:25 PM</td></t<>		ND	1.00			1	7/28/2016 10:29:25 PM
1,2-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Bromodichloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromomethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,3-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Tetrachloroethane (PCE) 43.5 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane (EDB) ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00	Trichloroethene (TCE)	ND	0.500			1	7/28/2016 10:29:25 PM
Bromodichloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Dibromomethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM cis-1,3-Dichloropropene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Tetrachloroethene (PCE) 43.5 1.00 μg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dibromoethane (EDB) ND 0.0600 μg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND		ND	1.00			1	7/28/2016 10:29:25 PM
Dibromomethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM cis-1,3-Dichloropropene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Tetrachloroethene (PCE) 43.5 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Litylbenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00		ND	1.00			1	7/28/2016 10:29:25 PM
cis-1,3-Dichloropropene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Toluene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Tetrachloroethene (PCE) 43.5 1.00 μg/L 1 7/28/2016 10:29:25 PM Dibromoethloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dibromoethane (EDB) ND 0.0600 μg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 <td>Dibromomethane</td> <td>ND</td> <td>1.00</td> <td></td> <td></td> <td>1</td> <td>7/28/2016 10:29:25 PM</td>	Dibromomethane	ND	1.00			1	7/28/2016 10:29:25 PM
Toluene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM trans-1,3-Dichloropropylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,2-Trichloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Tetrachloroethene (PCE) 43.5 1.00 μg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dibromoethane (EDB) ND 0.0600 μg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg	cis-1,3-Dichloropropene	ND	1.00			1	7/28/2016 10:29:25 PM
trans-1,3-DichloropropyleneND1.00μg/L17/28/2016 10:29:25 PM1,1,2-TrichloroethaneND1.00μg/L17/28/2016 10:29:25 PM1,3-DichloropropaneND1.00μg/L17/28/2016 10:29:25 PMTetrachloroethene (PCE)43.51.00μg/L17/28/2016 10:29:25 PMDibromochloromethaneND1.00μg/L17/28/2016 10:29:25 PM1,2-Dibromoethane (EDB)ND0.0600μg/L17/28/2016 10:29:25 PMChlorobenzeneND1.00μg/L17/28/2016 10:29:25 PM1,1,1,2-TetrachloroethaneND1.00μg/L17/28/2016 10:29:25 PMEthylbenzeneND1.00μg/L17/28/2016 10:29:25 PMm,p-XyleneND1.00μg/L17/28/2016 10:29:25 PMO-XyleneND1.00μg/L17/28/2016 10:29:25 PMStyreneND1.00μg/L17/28/2016 10:29:25 PMIsopropylbenzeneND1.00μg/L17/28/2016 10:29:25 PM		ND	1.00			1	7/28/2016 10:29:25 PM
1,1,2-Trichloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,3-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Tetrachloroethene (PCE) 43.5 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM	trans-1,3-Dichloropropylene	ND	1.00			1	7/28/2016 10:29:25 PM
1,3-Dichloropropane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Tetrachloroethene (PCE) 43.5 1.00 µg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 µg/L 1 7/28/2016 10:29:25 PM		ND	1.00			1	7/28/2016 10:29:25 PM
Tetrachloroethene (PCE) 43.5 1.00 μg/L 1 7/28/2016 10:29:25 PM Dibromochloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dibromoethane (EDB) ND 0.0600 μg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM o-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM		ND	1.00			1	7/28/2016 10:29:25 PM
Dibromochloromethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,2-Dibromoethane (EDB) ND 0.0600 μg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM o-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM		43.5	1.00			1	7/28/2016 10:29:25 PM
1,2-Dibromoethane (EDB) ND 0.0600 μg/L 1 7/28/2016 10:29:25 PM Chlorobenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM o-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM		ND	1.00			1	7/28/2016 10:29:25 PM
Chlorobenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM 1,1,1,2-Tetrachloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM o-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM	1.2-Dibromoethane (EDB)	ND	0.0600			1	7/28/2016 10:29:25 PM
1,1,1,2-Tetrachloroethane ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Ethylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM o-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM		ND				1	7/28/2016 10:29:25 PM
Ethylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM m,p-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM o-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM							
m,p-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM o-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM							
o-Xylene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM	•						
Styrene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM							
Isopropylbenzene ND 1.00 μg/L 1 7/28/2016 10:29:25 PM							
	-						
		ND	1.00		μg/L	1	7/28/2016 10:29:25 PM

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 9:35:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-004 **Matrix:** Water

Client Sample ID: MW-7-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID: 14	4381 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
n-Propylbenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
Bromobenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
2-Chlorotoluene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
4-Chlorotoluene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
tert-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/28/2016 10:29:25 PM
sec-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
n-Butylbenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/28/2016 10:29:25 PM
Naphthalene	ND	1.00		μg/L	1	7/28/2016 10:29:25 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/28/2016 10:29:25 PM
Surr: Dibromofluoromethane	95.3	45.4-152		%Rec	1	7/28/2016 10:29:25 PM
Surr: Toluene-d8	93.3	40.1-139		%Rec	1	7/28/2016 10:29:25 PM
Surr: 1-Bromo-4-fluorobenzene	95.4	64.2-128		%Rec	1	7/28/2016 10:29:25 PM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 9:50:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-005 Matrix: Wastewater

Client Sample ID: Drum-W-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	260C		Batc	h ID: 14	381 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Chloromethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Vinyl chloride	ND	0.200		μg/L	1	7/29/2016 12:31:41 AM
Bromomethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Trichlorofluoromethane (CFC-11)	ND	1.00	Q	μg/L	1	7/29/2016 12:31:41 AM
Chloroethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,1-Dichloroethene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Methylene chloride	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,1-Dichloroethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
2,2-Dichloropropane	ND	2.00		μg/L	1	7/29/2016 12:31:41 AM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Chloroform	2.00	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,1-Dichloropropene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Carbon tetrachloride	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Benzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Trichloroethene (TCE)	ND	0.500		μg/L	1	7/29/2016 12:31:41 AM
1,2-Dichloropropane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Bromodichloromethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Dibromomethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Toluene	13.2	1.00		μg/L	1	7/29/2016 12:31:41 AM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,3-Dichloropropane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Dibromochloromethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	7/29/2016 12:31:41 AM
Chlorobenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Ethylbenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
m,p-Xylene	1.19	1.00		μg/L	1	7/29/2016 12:31:41 AM
o-Xylene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Styrene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Isopropylbenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Bromoform	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM

WO#: 1607286

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 9:50:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-005 Matrix: Wastewater

Client Sample ID: Drum-W-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	8260C		Batc	h ID: 1	14381 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
n-Propylbenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Bromobenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
2-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
4-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
tert-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/29/2016 12:31:41 AM
sec-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
n-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/29/2016 12:31:41 AM
Naphthalene	ND	1.00		μg/L	1	7/29/2016 12:31:41 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/29/2016 12:31:41 AM
Surr: Dibromofluoromethane	94.8	45.4-152		%Rec	1	7/29/2016 12:31:41 AM
Surr: Toluene-d8	93.4	40.1-139		%Rec	1	7/29/2016 12:31:41 AM
Surr: 1-Bromo-4-fluorobenzene	96.3	64.2-128		%Rec	1	7/29/2016 12:31:41 AM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 10:35:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-006 **Matrix:** Water

Client Sample ID: MW-3-072616

RL Qual Units DF **Analyses** Result **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14381 Analyst: NG Dichlorodifluoromethane (CFC-12) 1.00 14.7 µg/L 1 7/29/2016 1:02:18 AM Chloromethane ND 1.00 µg/L 1 7/29/2016 1:02:18 AM ND 0.200 Vinyl chloride μg/L 1 7/29/2016 1:02:18 AM Bromomethane ND 1.00 1 7/29/2016 1:02:18 AM µg/L Q Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/29/2016 1:02:18 AM Chloroethane ND 1.00 7/29/2016 1:02:18 AM µg/L 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/29/2016 1:02:18 AM ND Methylene chloride 1.00 µg/L 1 7/29/2016 1:02:18 AM trans-1,2-Dichloroethene ND 1.00 1 7/29/2016 1:02:18 AM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/29/2016 1:02:18 AM μg/L ND 7/29/2016 1:02:18 AM 1,1-Dichloroethane 1.00 μg/L 1 2,2-Dichloropropane ND 2.00 7/29/2016 1:02:18 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/29/2016 1:02:18 AM Chloroform ND 1.00 µg/L 1 7/29/2016 1:02:18 AM 1,1,1-Trichloroethane (TCA) ND 1.00 7/29/2016 1:02:18 AM μg/L 1 1,1-Dichloropropene ND 1.00 µg/L 1 7/29/2016 1:02:18 AM Carbon tetrachloride ND 1.00 7/29/2016 1:02:18 AM µg/L 1 1,2-Dichloroethane (EDC) ND 7/29/2016 1:02:18 AM 1.00 µq/L 1 ND Benzene 1.00 1 7/29/2016 1:02:18 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/29/2016 1:02:18 AM 1,2-Dichloropropane ND 1.00 µg/L 1 7/29/2016 1:02:18 AM Bromodichloromethane ND 1.00 µg/L 1 7/29/2016 1:02:18 AM ND Dibromomethane 1.00 µg/L 1 7/29/2016 1:02:18 AM cis-1,3-Dichloropropene ND 1.00 1 7/29/2016 1:02:18 AM µg/L Toluene ND 1.00 µg/L 1 7/29/2016 1:02:18 AM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/29/2016 1:02:18 AM 1,1,2-Trichloroethane ND 1.00 7/29/2016 1:02:18 AM µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/29/2016 1:02:18 AM Tetrachloroethene (PCE) ND 1.00 µg/L 1 7/29/2016 1:02:18 AM 7/29/2016 1:02:18 AM Dibromochloromethane ND 1.00 μg/L 1 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/29/2016 1:02:18 AM Chlorobenzene ND 1.00 μg/L 1 7/29/2016 1:02:18 AM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/29/2016 1:02:18 AM µg/L Ethylbenzene ND 1.00 µg/L 1 7/29/2016 1:02:18 AM ND 1.00 7/29/2016 1:02:18 AM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 7/29/2016 1:02:18 AM ND Styrene 1.00 µg/L 1 7/29/2016 1:02:18 AM Isopropylbenzene ND 1.00 μg/L 1 7/29/2016 1:02:18 AM Bromoform ND 1.00 µg/L 1 7/29/2016 1:02:18 AM

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 10:35:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-006 **Matrix:** Water

Client Sample ID: MW-3-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: 14	.381 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
n-Propylbenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
Bromobenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
2-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
4-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
tert-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/29/2016 1:02:18 AM
sec-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
n-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/29/2016 1:02:18 AM
Naphthalene	ND	1.00		μg/L	1	7/29/2016 1:02:18 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/29/2016 1:02:18 AM
Surr: Dibromofluoromethane	94.5	45.4-152		%Rec	1	7/29/2016 1:02:18 AM
Surr: Toluene-d8	91.8	40.1-139		%Rec	1	7/29/2016 1:02:18 AM
Surr: 1-Bromo-4-fluorobenzene	95.8	64.2-128		%Rec	1	7/29/2016 1:02:18 AM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 11:35:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-007 **Matrix:** Water

Client Sample ID: MW-4-072616

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14381 Analyst: NG Dichlorodifluoromethane (CFC-12) 1.00 1.13 µg/L 1 7/29/2016 1:32:50 AM Chloromethane ND 1.00 µg/L 1 7/29/2016 1:32:50 AM ND Vinyl chloride 0.200 μg/L 1 7/29/2016 1:32:50 AM Bromomethane ND 1.00 1 7/29/2016 1:32:50 AM µg/L Q Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/29/2016 1:32:50 AM Chloroethane ND 1.00 7/29/2016 1:32:50 AM µg/L 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/29/2016 1:32:50 AM ND Methylene chloride 1.00 µg/L 1 7/29/2016 1:32:50 AM trans-1,2-Dichloroethene ND 1.00 7/29/2016 1:32:50 AM µg/L 1 ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/29/2016 1:32:50 AM μg/L ND 1,1-Dichloroethane 1.00 μg/L 1 7/29/2016 1:32:50 AM 2,2-Dichloropropane ND 2.00 7/29/2016 1:32:50 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/29/2016 1:32:50 AM Chloroform ND 1.00 µg/L 1 7/29/2016 1:32:50 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 7/29/2016 1:32:50 AM 1,1-Dichloropropene ND 1.00 µg/L 1 7/29/2016 1:32:50 AM Carbon tetrachloride ND 1.00 7/29/2016 1:32:50 AM µg/L 1 1,2-Dichloroethane (EDC) ND 7/29/2016 1:32:50 AM 1.00 µq/L 1 ND Benzene 1.00 1 7/29/2016 1:32:50 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/29/2016 1:32:50 AM 1,2-Dichloropropane ND 1.00 µg/L 1 7/29/2016 1:32:50 AM Bromodichloromethane ND 1.00 µg/L 1 7/29/2016 1:32:50 AM ND Dibromomethane 1.00 µg/L 1 7/29/2016 1:32:50 AM cis-1,3-Dichloropropene ND 1.00 1 7/29/2016 1:32:50 AM µg/L Toluene ND 1.00 µg/L 1 7/29/2016 1:32:50 AM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/29/2016 1:32:50 AM 1,1,2-Trichloroethane ND 1.00 7/29/2016 1:32:50 AM µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/29/2016 1:32:50 AM Tetrachloroethene (PCE) ND 1.00 µg/L 1 7/29/2016 1:32:50 AM Dibromochloromethane ND 1.00 μg/L 1 7/29/2016 1:32:50 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/29/2016 1:32:50 AM Chlorobenzene ND 1.00 µg/L 1 7/29/2016 1:32:50 AM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/29/2016 1:32:50 AM µg/L Ethylbenzene ND 1.00 µg/L 1 7/29/2016 1:32:50 AM ND 1.00 m,p-Xylene µg/L 1 7/29/2016 1:32:50 AM o-Xylene ND 1.00 µg/L 1 7/29/2016 1:32:50 AM ND Styrene 1.00 µg/L 1 7/29/2016 1:32:50 AM Isopropylbenzene ND 1.00 μg/L 1 7/29/2016 1:32:50 AM Bromoform ND 1.00 µg/L 1 7/29/2016 1:32:50 AM

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 11:35:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1607286-007 **Matrix:** Water

Client Sample ID: MW-4-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: 1	4381 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
n-Propylbenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
Bromobenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
2-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
4-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
tert-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/29/2016 1:32:50 AM
sec-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
n-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/29/2016 1:32:50 AM
Naphthalene	ND	1.00		μg/L	1	7/29/2016 1:32:50 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/29/2016 1:32:50 AM
Surr: Dibromofluoromethane	94.9	45.4-152		%Rec	1	7/29/2016 1:32:50 AM
Surr: Toluene-d8	92.3	40.1-139		%Rec	1	7/29/2016 1:32:50 AM
Surr: 1-Bromo-4-fluorobenzene	94.4	64.2-128		%Rec	1	7/29/2016 1:32:50 AM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 12:30:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607286-008 **Matrix:** Water

Client Sample ID: MW-2-072616

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
olatile Organic Compounds by	EPA Method 8	260C		Batc	h ID: 14	381 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Chloromethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Vinyl chloride	ND	0.200		μg/L	1	7/29/2016 2:03:28 AM
Bromomethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Trichlorofluoromethane (CFC-11)	ND	1.00	Q	μg/L	1	7/29/2016 2:03:28 AM
Chloroethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,1-Dichloroethene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Methylene chloride	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,1-Dichloroethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
2,2-Dichloropropane	ND	2.00		μg/L	1	7/29/2016 2:03:28 AM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Chloroform	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,1-Dichloropropene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Carbon tetrachloride	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Benzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Trichloroethene (TCE)	ND	0.500		μg/L	1	7/29/2016 2:03:28 AM
1,2-Dichloropropane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Bromodichloromethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Dibromomethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Toluene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,3-Dichloropropane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Tetrachloroethene (PCE)	128	10.0	D	μg/L	10	8/2/2016 7:54:31 AM
Dibromochloromethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	7/29/2016 2:03:28 AM
Chlorobenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Ethylbenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
m,p-Xylene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
o-Xylene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Styrene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Isopropylbenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Bromoform	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 12:30:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607286-008 **Matrix:** Water

Client Sample ID: MW-2-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: 1	14381 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
n-Propylbenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Bromobenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
2-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
4-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
tert-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/29/2016 2:03:28 AM
sec-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
n-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/29/2016 2:03:28 AM
Naphthalene	ND	1.00		μg/L	1	7/29/2016 2:03:28 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/29/2016 2:03:28 AM
Surr: Dibromofluoromethane	94.3	45.4-152		%Rec	1	7/29/2016 2:03:28 AM
Surr: Toluene-d8	92.5	40.1-139		%Rec	1	7/29/2016 2:03:28 AM
Surr: 1-Bromo-4-fluorobenzene	94.3	64.2-128		%Rec	1	7/29/2016 2:03:28 AM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 1:30:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1607286-009 **Matrix:** Water

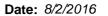
Client Sample ID: MW-5-072616

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 14381 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 7/29/2016 2:33:59 AM Chloromethane ND 1.00 µg/L 1 7/29/2016 2:33:59 AM ND Vinyl chloride 0.200 µg/L 1 7/29/2016 2:33:59 AM Bromomethane ND 1.00 1 7/29/2016 2:33:59 AM µg/L Q Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 7/29/2016 2:33:59 AM Chloroethane ND 1.00 7/29/2016 2:33:59 AM µg/L 1 1,1-Dichloroethene ND 1.00 µg/L 1 7/29/2016 2:33:59 AM ND Methylene chloride 1.00 µg/L 1 7/29/2016 2:33:59 AM trans-1,2-Dichloroethene ND 1.00 7/29/2016 2:33:59 AM µg/L 1 ND 1.00 Methyl tert-butyl ether (MTBE) 1 7/29/2016 2:33:59 AM μg/L ND 1,1-Dichloroethane 1.00 µg/L 1 7/29/2016 2:33:59 AM 2,2-Dichloropropane ND 2.00 7/29/2016 2:33:59 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 7/29/2016 2:33:59 AM Chloroform 1.88 1.00 µg/L 1 7/29/2016 2:33:59 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 7/29/2016 2:33:59 AM 1,1-Dichloropropene ND 1.00 µg/L 1 7/29/2016 2:33:59 AM Carbon tetrachloride ND 1.00 µg/L 1 7/29/2016 2:33:59 AM 1,2-Dichloroethane (EDC) ND 7/29/2016 2:33:59 AM 1.00 µq/L 1 ND Benzene 1.00 1 7/29/2016 2:33:59 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 7/29/2016 2:33:59 AM 1,2-Dichloropropane ND 1.00 µg/L 1 7/29/2016 2:33:59 AM Bromodichloromethane ND 1.00 µg/L 1 7/29/2016 2:33:59 AM ND Dibromomethane 1.00 µg/L 1 7/29/2016 2:33:59 AM cis-1,3-Dichloropropene ND 1.00 1 7/29/2016 2:33:59 AM µg/L Toluene ND 1.00 µg/L 1 7/29/2016 2:33:59 AM trans-1,3-Dichloropropylene ND 1.00 µg/L 1 7/29/2016 2:33:59 AM 1,1,2-Trichloroethane ND 1.00 7/29/2016 2:33:59 AM µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 7/29/2016 2:33:59 AM Tetrachloroethene (PCE) ND 1.00 µg/L 1 7/29/2016 2:33:59 AM Dibromochloromethane ND 1.00 μg/L 1 7/29/2016 2:33:59 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 7/29/2016 2:33:59 AM Chlorobenzene ND 1.00 µg/L 1 7/29/2016 2:33:59 AM 1.1.1.2-Tetrachloroethane ND 1.00 1 7/29/2016 2:33:59 AM µg/L Ethylbenzene ND 1.00 µg/L 1 7/29/2016 2:33:59 AM ND 1.00 7/29/2016 2:33:59 AM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 7/29/2016 2:33:59 AM ND 7/29/2016 2:33:59 AM Styrene 1.00 µg/L 1 Isopropylbenzene ND 1.00 μg/L 1 7/29/2016 2:33:59 AM Bromoform ND 1.00 µg/L 1 7/29/2016 2:33:59 AM

WO#: **1607286**

Date Reported: 8/2/2016

Client: PES Environmental, Inc. Collection Date: 7/26/2016 1:30:00 PM


Project: Lake Stevens Marketplace

Lab ID: 1607286-009 **Matrix:** Water

Client Sample ID: MW-5-072616

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: 1	14381 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
n-Propylbenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
Bromobenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
2-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
4-Chlorotoluene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
tert-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	7/29/2016 2:33:59 AM
sec-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
n-Butylbenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	7/29/2016 2:33:59 AM
Naphthalene	ND	1.00		μg/L	1	7/29/2016 2:33:59 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	7/29/2016 2:33:59 AM
Surr: Dibromofluoromethane	96.2	45.4-152		%Rec	1	7/29/2016 2:33:59 AM
Surr: Toluene-d8	92.8	40.1-139		%Rec	1	7/29/2016 2:33:59 AM
Surr: 1-Bromo-4-fluorobenzene	96.2	64.2-128		%Rec	1	7/29/2016 2:33:59 AM

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Project:		ens Marketplac	e							Total Me	tals by EP	A Metho	d 6020
Sample ID	MB-14398	SampType: I	MBLK			Units: mg/Kg		Prep Dat	te: 7/29/2 0)16	RunNo: 30 8	390	
Client ID:	MBLKS	Batch ID:	14398					Analysis Dat	te: 7/29/2 0)16	SeqNo: 583	3144	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	0.0763									
Barium			ND	0.382									
Cadmium			ND	0.153									
Chromium			ND	0.0763									
Lead			ND	0.153									
Selenium			ND	0.382									
Silver			ND	0.0763									
Sample ID	LCS-14398	SampType: I	LCS			Units: mg/Kg		Prep Dat	te: 7/29/20)16	RunNo: 308	390	
Client ID:	LCSS	Batch ID:	14398					Analysis Dat	te: 7/29/2 0)16	SeqNo: 583	3145	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		3	9.7	0.0787	39.37	0	101	80	120				
Barium		3	9.1	0.394	39.37	0	99.4	80	120				
Cadmium		2	.06	0.157	1.969	0	105	80	120				
Chromium		4	1.6	0.0787	39.37	0	106	80	120				
Lead		2	0.6	0.157	19.69	0	105	80	120				
Selenium		3	3.93	0.394	3.937	0	99.8	80	120				
Silver		2	.12	0.0787	1.969	0	107	80	120				
Sample ID	1607192-006ADUP	SampType: I	DUP			Units: mg/Kg	dry	Prep Dat	te: 7/29/20)16	RunNo: 308	390	
Client ID:	ВАТСН	Batch ID:	14398					Analysis Dat	te: 7/29/2 0)16	SeqNo: 583	3149	
Analyte		Res	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		3	5.23	0.0908						2.766	15.6	20	
Barium		4	9.5	0.454						46.08	7.17	20	
Cadmium			ND	0.182						0		20	
Chromium		4	1.0	0.0908						36.52	11.6	20	
Lead		2	51	0.182						2.689	7.06	20	
Selenium		4	.03	0.454						1.082	5.09	20	

Page 22 of 40 Original

Date: 8/2/2016

Work Order: 1607286

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Total Metals by EPA Method 6020

Sample ID 1607192-006ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 7/29/2 0)16	RunNo: 30 8	390	
Client ID: BATCH	Batch ID: 14398					Analysis Da	te: 7/29/2 0)16	SeqNo: 583	3149	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver	ND	0.0008						Λ		20	

Sample ID 1607192-006AMS	SampType: MS	SampType: MS			/Kg-dry	Prep Dat	e: 7/29/2016	RunNo: 30890	
Client ID: BATCH	Batch ID: 14398					Analysis Da	e: 7/29/2016	SeqNo: 583151	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Re	f Val %RPD RPDLimit	Qual
Arsenic	51.6	0.0908	45.41	2.766	108	75	125		
Barium	117	0.454	45.41	46.08	155	75	125		S
Cadmium	2.25	0.182	2.270	0.07799	95.7	75	125		
Chromium	104	0.0908	45.41	36.52	149	75	125		S
Lead	26.7	0.182	22.70	2.689	106	75	125		
Selenium	6.01	0.454	4.541	1.082	109	75	125		
Silver	2.12	0.0908	2.270	0.04334	91.6	75	125		

NOTES:

S - Outlying spike recovery observed (Ba). A duplicate analysis was performed and recovered within range.

Sample ID 1607192-006AMSD	SampType: MSD			Units: mg/l	(g-dry	Prep Date: 7/29/2016			RunNo: 308	RunNo: 30890		
Client ID: BATCH	Batch ID: 14398					Analysis Dat	e: 7/29/2 0)16	SeqNo: 583	3152		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	52.1	0.0908	45.41	2.766	109	75	125	51.60	0.918	20		
Barium	92.3	0.454	45.41	46.08	102	75	125	116.5	23.2	20	R	
Cadmium	2.36	0.182	2.270	0.07799	101	75	125	2.250	4.80	20		
Chromium	94.6	0.0908	45.41	36.52	128	75	125	104.4	9.82	20	S	
Lead	24.3	0.182	22.70	2.689	95.3	75	125	26.70	9.31	20		
Selenium	5.51	0.454	4.541	1.082	97.6	75	125	6.012	8.67	20		
Silver	2.19	0.0908	2.270	0.04334	94.5	75	125	2.122	3.05	20		

NOTES:

Original Page 23 of 40

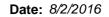
S - Outlying spike recovery observed (Cr). A duplicate analysis was performed with similar results indicating a possible matrix effect.

S - Outlying spike recovery observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed, spike recoveries are within range.

Date: 8/2/2016

Work Order: 1607286

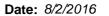

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Total Metals by EPA Method 6020

Sample ID 1607192-006APDS	SampType: PDS	;		Units: mg/Kg-dry Prep Date: 7/29/2016					RunNo: 30890		
Client ID: BATCH	Batch ID: 14398					Analysis Da	te: 7/29/2016		SeqNo: 583	3153	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RP	D Ref Val	%RPD	RPDLimit	Qual
Arsenic	51.6	0.0901	45.0	2.77	108	80	120				
Barium	89.7	0.451	45.0	46.1	96.9	80	120				
Cadmium	2.25	0.180	2.25	0.0780	96.4	80	120				
Chromium	86.8	0.0901	45.0	36.5	112	80	120				
Lead	25.9	0.180	22.5	2.69	103	80	120				
Selenium	5.59	0.451	4.50	1.08	100	80	120				
Silver	2.29	0.0901	2.25	0.0433	99.7	80	120				

Original Page 24 of 40

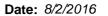


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

	nmental, Inc. ns Marketplace							Merc	cury by EP	A Metho	d 7471
Sample ID MB-14415	SampType: MBLK			Units: mg/Kg		Prep Date:	8/1/201	6	RunNo: 309	919	
Client ID: MBLKS	Batch ID: 14415					Analysis Date:	8/1/201	6	SeqNo: 583	3585	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.223									
Sample ID LCS-14415	SampType: LCS			Units: mg/Kg		Prep Date:	8/1/201	6	RunNo: 309	919	
Client ID: LCSS	Batch ID: 14415					Analysis Date:	8/1/201	6	SeqNo: 583	3586	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.441	0.216	0.4310	0	102	80	120				
Sample ID 1607192-006ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	8/1/201	6	RunNo: 309	919	
Client ID: BATCH	Batch ID: 14415					Analysis Date:	8/1/201	6	SeqNo: 583	3588	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.257						0		20	
Sample ID 1607192-006AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	8/1/201	6	RunNo: 309	919	
Client ID: BATCH	Batch ID: 14415					Analysis Date:	8/1/201	6	SeqNo: 583	3589	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.446	0.244	0.4887	0.008481	89.5	70	130				
Sample ID 1607192-006AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	8/1/201	6	RunNo: 309	919	
Client ID: BATCH	Batch ID: 14415					Analysis Date:	8/1/201	6	SeqNo: 583	3590	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.519	0.272	0.5440	0.008481	93.8	70	130	0.4457	15.2	20	

Page 25 of 40 Original

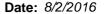

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-14381	SampType: MBLK			Units: µg/L	Prep Date: 7/27/2016			RunNo: 30864			
Client ID: MBLKW	Batch ID: 14381				Analysis Date: 7/28/2016			SeqNo: 583091			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00									
Chloromethane	ND	1.00									
Vinyl chloride	ND	0.200									
Bromomethane	ND	1.00									
Trichlorofluoromethane (CFC-11)	ND	1.00									Q
Chloroethane	ND	1.00									
1,1-Dichloroethene	ND	1.00									
Methylene chloride	ND	1.00									
trans-1,2-Dichloroethene	ND	1.00									
Methyl tert-butyl ether (MTBE)	ND	1.00									
1,1-Dichloroethane	ND	1.00									
2,2-Dichloropropane	ND	2.00									
cis-1,2-Dichloroethene	ND	1.00									
Chloroform	ND	1.00									
1,1,1-Trichloroethane (TCA)	ND	1.00									
1,1-Dichloropropene	ND	1.00									
Carbon tetrachloride	ND	1.00									
1,2-Dichloroethane (EDC)	ND	1.00									
Benzene	ND	1.00									
Trichloroethene (TCE)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
Bromodichloromethane	ND	1.00									
Dibromomethane	ND	1.00									
cis-1,3-Dichloropropene	ND	1.00									
Toluene	ND	1.00									
trans-1,3-Dichloropropylene	ND	1.00									
1,1,2-Trichloroethane	ND	1.00									
1,3-Dichloropropane	ND	1.00									
Tetrachloroethene (PCE)	ND	1.00									
Dibromochloromethane	ND	1.00									
1,2-Dibromoethane (EDB)	ND	0.0600									

Original Page 26 of 40


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-14381	SampType: MBLK			Units: µg/L	Prep Date: 7/27/2016			RunNo: 30864			
Client ID: MBLKW	Batch ID: 14381				Analysis Date: 7/28/2016			SeqNo: 583091			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	ND	1.00									
1,1,1,2-Tetrachloroethane	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Styrene	ND	1.00									
Isopropylbenzene	ND	1.00									
Bromoform	ND	1.00									
1,1,2,2-Tetrachloroethane	ND	1.00									
n-Propylbenzene	ND	1.00									
Bromobenzene	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
2-Chlorotoluene	ND	1.00									
4-Chlorotoluene	ND	1.00									
tert-Butylbenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									
1,2,4-Trichlorobenzene	ND	2.00									
sec-Butylbenzene	ND	1.00									
4-Isopropyltoluene	ND	1.00									
1,3-Dichlorobenzene	ND	1.00									
1,4-Dichlorobenzene	ND	1.00									
n-Butylbenzene	ND	1.00									
1,2-Dichlorobenzene	ND	1.00									
1,2-Dibromo-3-chloropropane	ND	1.00									
1,2,4-Trimethylbenzene	ND	1.00									
Hexachloro-1,3-butadiene	ND	4.00									
Naphthalene	ND	1.00									
1,2,3-Trichlorobenzene	ND	4.00									
Surr: Dibromofluoromethane	24.0		25.00		95.9	45.4	152				
Surr: Toluene-d8	23.4		25.00		93.4	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	24.1		25.00		96.6	64.2	128				

Original Page 27 of 40

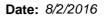
QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-14381 SampType: MBLK Units: μg/L Prep Date: 7/27/2016 RunNo: 30864

Client ID: **MBLKW** Batch ID: **14381** Analysis Date: **7/28/2016** SeqNo: **583091**

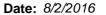

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID LCS-14381	SampType: LCS			Units: µg/L		Prep Da	te: 7/27/20	16	RunNo: 30 8	364	
Client ID: LCSW	Batch ID: 14381					Analysis Da	te: 7/28/20	16	SeqNo: 583	3092	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	21.4	1.00	20.00	0	107	43	136				
Chloromethane	18.0	1.00	20.00	0	90.2	43.9	139				
Vinyl chloride	17.0	0.200	20.00	0	85.0	53.6	139				
Bromomethane	20.6	1.00	20.00	0	103	42.5	152				
Trichlorofluoromethane (CFC-11)	16.2	1.00	20.00	0	81.0	56.4	143				Q
Chloroethane	19.0	1.00	20.00	0	94.8	53	141				
1,1-Dichloroethene	16.4	1.00	20.00	0	81.9	65.6	136				
Methylene chloride	17.2	1.00	20.00	0	86.1	67.1	131				
trans-1,2-Dichloroethene	16.8	1.00	20.00	0	84.2	71.7	129				
Methyl tert-butyl ether (MTBE)	19.5	1.00	20.00	0	97.6	67.7	131				
1,1-Dichloroethane	17.3	1.00	20.00	0	86.3	67.9	134				
2,2-Dichloropropane	20.4	2.00	20.00	0	102	33.7	152				
cis-1,2-Dichloroethene	17.0	1.00	20.00	0	85.2	71.1	130				
Chloroform	18.0	1.00	20.00	0	90.0	66.3	131				
1,1,1-Trichloroethane (TCA)	17.1	1.00	20.00	0	85.5	71	131				
1,1-Dichloropropene	16.9	1.00	20.00	0	84.4	69.9	124				
Carbon tetrachloride	17.7	1.00	20.00	0	88.6	66.2	134				
1,2-Dichloroethane (EDC)	17.2	1.00	20.00	0	85.9	68.8	123				
Benzene	20.0	1.00	20.00	0	99.8	69.3	132				
Trichloroethene (TCE)	17.4	0.500	20.00	0	87.0	65.2	136				
1,2-Dichloropropane	17.1	1.00	20.00	0	85.6	70.5	130				
Bromodichloromethane	17.4	1.00	20.00	0	87.0	67.2	137				
Dibromomethane	17.5	1.00	20.00	0	87.6	75.5	126				
cis-1,3-Dichloropropene	17.4	1.00	20.00	0	86.9	62.6	137				

Original Page 28 of 40


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

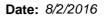
Sample ID LCS-14381	SampType: LCS			Units: µg/L		Prep Da	te: 7/27/2 0)16	RunNo: 308	364	
Client ID: LCSW	Batch ID: 14381					Analysis Da	te: 7/28/20)16	SeqNo: 583	3092	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	20.5	1.00	20.00	0	102	61.3	145				
trans-1,3-Dichloropropylene	16.8	1.00	20.00	0	84.2	58.5	142				
1,1,2-Trichloroethane	17.8	1.00	20.00	0	89.2	71.7	131				
1,3-Dichloropropane	17.5	1.00	20.00	0	87.6	73.5	127				
Tetrachloroethene (PCE)	17.2	1.00	20.00	0	86.2	47.5	147				
Dibromochloromethane	17.4	1.00	20.00	0	87.1	67.2	134				
1,2-Dibromoethane (EDB)	17.5	0.0600	20.00	0	87.5	73.6	125				
Chlorobenzene	18.0	1.00	20.00	0	90.0	73.9	126				
1,1,1,2-Tetrachloroethane	18.0	1.00	20.00	0	89.8	76.8	124				
Ethylbenzene	19.9	1.00	20.00	0	99.7	72	130				
m,p-Xylene	41.9	1.00	40.00	0	105	70.3	134				
o-Xylene	20.9	1.00	20.00	0	104	72.1	131				
Styrene	18.1	1.00	20.00	0	90.5	64.3	140				
Isopropylbenzene	17.5	1.00	20.00	0	87.3	73.9	128				
Bromoform	17.5	1.00	20.00	0	87.4	55.3	141				
1,1,2,2-Tetrachloroethane	17.9	1.00	20.00	0	89.4	62.9	132				
n-Propylbenzene	17.6	1.00	20.00	0	87.9	74.5	127				
Bromobenzene	17.7	1.00	20.00	0	88.6	71	131				
1,3,5-Trimethylbenzene	17.7	1.00	20.00	0	88.4	73.1	128				
2-Chlorotoluene	17.8	1.00	20.00	0	89.0	70.8	130				
4-Chlorotoluene	17.9	1.00	20.00	0	89.4	70.1	131				
tert-Butylbenzene	17.2	1.00	20.00	0	86.2	68.2	131				
1,2,3-Trichloropropane	18.1	1.00	20.00	0	90.7	67.7	131				
1,2,4-Trichlorobenzene	17.5	2.00	20.00	0	87.4	51.8	152				
sec-Butylbenzene	17.2	1.00	20.00	0	85.9	72	129				
4-Isopropyltoluene	17.5	1.00	20.00	0	87.4	69.2	130				
1,3-Dichlorobenzene	18.2	1.00	20.00	0	91.0	71	115				
1,4-Dichlorobenzene	18.1	1.00	20.00	0	90.3	66.8	119				
n-Butylbenzene	18.1	1.00	20.00	0	90.5	73.8	127				
1,2-Dichlorobenzene	18.3	1.00	20.00	0	91.7	69.7	119				
1,2-Dibromo-3-chloropropane	17.1	1.00	20.00	0	85.7	63.1	136				

Original Page 29 of 40

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

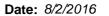

Sample ID LCS-14381	SampType: LCS			Units: µg/L					RunNo: 308	364	
Client ID: LCSW	Batch ID: 14381					Analysis Da	te: 7/28/2 0)16	SeqNo: 583	3092	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene	18.0	1.00	20.00	0	90.3	73.4	127				
Hexachloro-1,3-butadiene	18.4	4.00	20.00	0	91.8	58.6	138				
Naphthalene	19.1	1.00	20.00	0	95.6	41.8	165				
1,2,3-Trichlorobenzene	18.0	4.00	20.00	0	90.3	48.7	156				
Surr: Dibromofluoromethane	24.6		25.00		98.4	45.4	152				
Surr: Toluene-d8	24.9		25.00		99.5	40.1	139				
Surr: 1-Bromo-4-fluorobenzene NOTES:	25.6		25.00		102	64.2	128				

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1607283-002ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 7/27/2 0	016	RunNo: 308	364	
Client ID: BATCH	Batch ID: 14381					Analysis Da	te: 7/29/2	016	SeqNo: 583	3795	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00						0		30	
Chloromethane	ND	1.00						0		30	
Vinyl chloride	ND	0.200						0		30	
Bromomethane	ND	1.00						0		30	
Trichlorofluoromethane (CFC-11)	ND	1.00						0		30	Q
Chloroethane	ND	1.00						0		30	
1,1-Dichloroethene	ND	1.00						0		30	
Methylene chloride	ND	1.00						0		30	
trans-1,2-Dichloroethene	ND	1.00						0		30	
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,1-Dichloroethane	ND	1.00						0		30	
2,2-Dichloropropane	ND	2.00						0		30	
cis-1,2-Dichloroethene	ND	1.00						0		30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	

Original Page 30 of 40


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

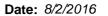
Sample ID 1607283-002ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 7/27/2 0	016	RunNo: 30	364	
Client ID: BATCH	Batch ID: 14381					Analysis Dat	e: 7/29/2 0	016	SeqNo: 58	3795	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropylene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.0600						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	
1,2,4-Trichlorobenzene	ND	2.00						0		30	

Original Page 31 of 40

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C


Sample ID 1607283-002ADUP	SampType:	DUP			Units: µg/L		Prep Da	te: 7/27/2	016	RunNo: 30	864	
Client ID: BATCH	Batch ID:	14381					Analysis Da	te: 7/29/2	016	SeqNo: 58	3795	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
sec-Butylbenzene		ND	1.00						0		30	
4-Isopropyltoluene		ND	1.00						0		30	
1,3-Dichlorobenzene		ND	1.00						0		30	
1,4-Dichlorobenzene		ND	1.00						0		30	
n-Butylbenzene		ND	1.00						0		30	
1,2-Dichlorobenzene		ND	1.00						0		30	
1,2-Dibromo-3-chloropropane		ND	1.00						0		30	
1,2,4-Trimethylbenzene		ND	1.00						0		30	
Hexachloro-1,3-butadiene		ND	4.00						0		30	
Naphthalene		ND	1.00						0		30	
1,2,3-Trichlorobenzene		ND	4.00						0		30	
Surr: Dibromofluoromethane		24.5		25.00		97.8	45.4	152		0		
Surr: Toluene-d8		23.8		25.00		95.2	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene		22.5		25.00		89.8	64.2	128		0		
NOTES:												

NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1607278-006AMS	SampType: MS			Units: µg/L		Prep Da	te: 7/27/2 0	116	RunNo: 308	364	
Client ID: BATCH	Batch ID: 14381					Analysis Da	te: 7/29/2 0	116	SeqNo: 583	3083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	27.3	1.00	20.00	0	136	33.3	122				S
Chloromethane	21.1	1.00	20.00	0	106	48.2	145				
Vinyl chloride	20.8	0.200	20.00	0	104	58.1	158				
Bromomethane	22.8	1.00	20.00	0	114	31.5	135				
Trichlorofluoromethane (CFC-11)	19.9	1.00	20.00	0	99.7	54.7	138				
Chloroethane	22.6	1.00	20.00	0	113	49.9	143				
1,1-Dichloroethene	20.2	1.00	20.00	0	101	63	141				
Methylene chloride	18.8	1.00	20.00	0	93.9	61.6	135				
trans-1,2-Dichloroethene	18.8	1.00	20.00	0	94.1	63.5	138				
Methyl tert-butyl ether (MTBE)	20.0	1.00	20.00	0	100	60.9	132				

Original Page 32 of 40

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607278-006AMS	SampType: MS			Units: µg/L		Prep Da	te: 7/27/20	16	RunNo: 308	364	
Client ID: BATCH	Batch ID: 14381					Analysis Da	te: 7/29/20	16	SeqNo: 583	3083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1-Dichloroethane	18.8	1.00	20.00	0	93.9	67.8	136				
2,2-Dichloropropane	8.44	2.00	20.00	0	42.2	31.5	121				Q
cis-1,2-Dichloroethene	18.3	1.00	20.00	0	91.3	67.1	123				
Chloroform	19.3	1.00	20.00	0	96.5	66.7	136				
1,1,1-Trichloroethane (TCA)	20.1	1.00	20.00	0	100	64.2	146				
1,1-Dichloropropene	19.9	1.00	20.00	0	99.4	73.8	136				
Carbon tetrachloride	20.8	1.00	20.00	0	104	62.7	146				
1,2-Dichloroethane (EDC)	18.6	1.00	20.00	0	93.2	63.4	137				
Benzene	21.4	1.00	20.00	2.600	94.0	65.4	138				
Trichloroethene (TCE)	19.6	0.500	20.00	0	98.2	60.4	134				
1,2-Dichloropropane	18.6	1.00	20.00	0	92.8	62.6	138				
Bromodichloromethane	18.7	1.00	20.00	0	93.4	59.4	139				
Dibromomethane	19.1	1.00	20.00	0	95.7	63.6	139				
cis-1,3-Dichloropropene	16.2	1.00	20.00	0	81.1	63.8	132				
Toluene	19.8	1.00	20.00	0.4100	96.9	64	139				
trans-1,3-Dichloropropylene	15.9	1.00	20.00	0	79.4	57.7	125				
1,1,2-Trichloroethane	19.0	1.00	20.00	0	94.9	59.4	127				
1,3-Dichloropropane	18.7	1.00	20.00	0	93.3	64.3	135				
Tetrachloroethene (PCE)	19.3	1.00	20.00	0	96.6	50.3	133				
Dibromochloromethane	18.6	1.00	20.00	0	93.2	61.6	139				
1,2-Dibromoethane (EDB)	19.0	0.0600	20.00	0	95.1	63.2	134				
Chlorobenzene	19.2	1.00	20.00	0	95.8	65.8	134				
1,1,1,2-Tetrachloroethane	19.3	1.00	20.00	0	96.6	65.4	135				
Ethylbenzene	19.5	1.00	20.00	0.6000	94.6	64.5	136				
m,p-Xylene	40.2	1.00	40.00	0.4300	99.3	63.3	135				
o-Xylene	19.4	1.00	20.00	0.1700	95.9	65.4	134				
Styrene	19.2	1.00	20.00	0	96.0	59.1	134				
Isopropylbenzene	19.7	1.00	20.00	0.2900	97.2	56	147				
Bromoform	18.8	1.00	20.00	0.4000	91.8	57.7	139				
1,1,2,2-Tetrachloroethane	19.3	1.00	20.00	0	96.7	59.8	146				
n-Propylbenzene	19.4	1.00	20.00	0.2000	96.0	57.6	142				

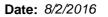
Original Page 33 of 40

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607278-006AMS	SampType: MS			Units: µg/L		Prep Da	te: 7/27/20 1	16	RunNo: 308	864	
Client ID: BATCH	Batch ID: 14381					Analysis Da	te: 7/29/20 1	16	SeqNo: 583	3083	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromobenzene	18.9	1.00	20.00	0	94.7	63.6	130				
1,3,5-Trimethylbenzene	19.3	1.00	20.00	0.1500	95.6	59.9	136				
2-Chlorotoluene	19.4	1.00	20.00	0.08000	96.9	61.7	134				
4-Chlorotoluene	19.2	1.00	20.00	0.08000	95.8	58.4	134				
tert-Butylbenzene	19.5	1.00	20.00	0	97.3	66.8	141				
1,2,3-Trichloropropane	18.6	1.00	20.00	0	93.0	62.4	129				
1,2,4-Trichlorobenzene	18.8	2.00	20.00	0	93.8	50.9	133				
sec-Butylbenzene	19.1	1.00	20.00	0.1500	95.0	56	146				
4-Isopropyltoluene	18.8	1.00	20.00	0.1500	93.1	56.4	136				
1,3-Dichlorobenzene	18.4	1.00	20.00	0	91.8	58.2	128				
1,4-Dichlorobenzene	19.3	1.00	20.00	0	96.6	60.1	123				
n-Butylbenzene	18.4	1.00	20.00	0.06000	91.7	54.6	135				
1,2-Dichlorobenzene	19.3	1.00	20.00	0	96.4	65.4	133				
1,2-Dibromo-3-chloropropane	19.0	1.00	20.00	0	94.8	51.8	142				
1,2,4-Trimethylbenzene	19.5	1.00	20.00	0.2500	96.3	63.7	132				
Hexachloro-1,3-butadiene	19.1	4.00	20.00	0	95.4	58.1	130				
Naphthalene	20.2	1.00	20.00	0.2500	99.7	54.5	132				
1,2,3-Trichlorobenzene	19.6	4.00	20.00	0	97.9	57	131				
Surr: Dibromofluoromethane	24.7		25.00		98.8	45.4	152				
Surr: Toluene-d8	24.8		25.00		99.0	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	26.0		25.00		104	64.2	128				
NOTES:											


NOTES:

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID 1607278-006AMSD	SampType: MSD			Units: µg/L			te: 7/27/20		RunNo: 308		
Client ID: BATCH Analyte	Batch ID: 14381 Result	RL	SPK value	SPK Ref Val	%REC	Analysis Da LowLimit		RPD Ref Val	SeqNo: 58 3 %RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12) Chloromethane	26.0 21.2	1.00 1.00	20.00 20.00	0 0	130 106	33.3 48.2	122 145	27.27 21.11	4.88 0.189	30 30	S

Original Page 34 of 40

S - Outlying QC recoveries were observed. The method is in control as indicated by the LCS.

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Result R	Sample ID 1607278-006AMSD	SampType: MSD	MSD Units: μg/L Prep Date: 7/27/2016						RunNo: 308	864		
Vinyl chloride	Client ID: BATCH	Batch ID: 14381					Analysis Da	te: 7/29/2 0)16	SeqNo: 583	3084	
Bromomethane 12,7 1,00 20,00 0 113 31,5 135 22,85 0,703 30 171/chlorofluoromethane (CFC-11) 19,4 1,00 20,00 0 97,2 54,7 138 19,93 2,54 30 14,50	Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichlorofluoromethane (CFC-11) 19.4 1.00 20.00 0 97.2 54.7 138 19.93 2.54 30 Chloroethane 21.7 1.00 20.00 0 109 49.9 143 22.64 4.19 30 1.1-Dichloroethene 20.2 1.00 20.00 0 0 101 63 141 20.20 0.148 30 Methylene chloride 18.7 1.00 20.00 0 93.5 61.6 135 18.78 0.480 30 Methylene chloride 18.7 1.00 20.00 0 93.5 61.6 135 18.78 0.480 30 Methylene chloride 18.7 1.00 20.00 0 93.7 60.5 132 20.03 0.501 30 1.1-Dichloroethane 18.2 1.00 20.00 0 99.7 60.9 132 20.03 0.501 30 1.1-Dichloroethane 18.2 1.00 20.00 0 99.7 60.9 132 20.03 0.501 30 0.501 3	Vinyl chloride	20.2	0.200	20.00	0	101	58.1	158	20.82	2.78	30	
Chloroethane	Bromomethane	22.7	1.00	20.00	0	113	31.5	135	22.85	0.703	30	
1,1-Dichloroethene 20.2 1.00 20.00 0 101 63 141 20.20 0.148 30 Methylene chloride 18.7 1.00 20.00 0 93.5 61.6 135 18.78 0.480 30 Methylene chloride 18.7 1.00 20.00 0 93.5 61.6 135 18.78 0.480 30 Methylene chloride 18.7 1.00 20.00 0 93.7 60.9 132 20.03 0.501 30 Methyl tert-butyl ether (MTBE) 19.9 1.00 20.00 0 99.7 60.9 132 20.03 0.501 30 1.10	Trichlorofluoromethane (CFC-11)	19.4	1.00	20.00	0	97.2	54.7	138	19.93	2.54	30	
Methylene chloride 18.7 1.00 20.00 0 93.5 61.6 135 18.78 0.480 30 1 1 1.00 18.7 1.00 20.00 0 93.7 63.5 138 18.81 0.373 30 1 1 1.00 1.00 20.00 0 99.7 60.9 132 20.03 0.501 30 1.1	Chloroethane	21.7	1.00	20.00	0	109	49.9	143	22.64	4.19	30	
trans-1,2-Dichloroethene 18.7 1.00 20.00 0 93.7 63.5 138 18.81 0.373 30 Methyl tert-butyl ether (MTBE) 19.9 1.00 20.00 0 99.7 60.9 132 20.03 0.501 30 1,1-Dichloroethane 18.2 1.00 20.00 0 99.7 60.9 132 20.03 0.501 30 2,2-Dichloroethane 17.6 2.00 20.00 0 37.3 31.5 121 8.40 12.3 30 Q cis-1,2-Dichloroethene 17.6 1.00 20.00 0 87.9 67.1 123 18.26 3.85 30 Chloroform 19.8 1.00 20.00 0 98.8 64.2 146 20.06 1.51 30 1,1-1-Dichloropropene 19.3 1.00 20.00 0 96.7 73.8 136 19.8 2.70 30 1,2-Dichloropropene 19.3 1.00 20.00 <td>1,1-Dichloroethene</td> <td>20.2</td> <td>1.00</td> <td>20.00</td> <td>0</td> <td>101</td> <td>63</td> <td>141</td> <td>20.20</td> <td>0.148</td> <td>30</td> <td></td>	1,1-Dichloroethene	20.2	1.00	20.00	0	101	63	141	20.20	0.148	30	
Methyl tert-butyl ether (MTBE)	Methylene chloride	18.7	1.00	20.00	0	93.5	61.6	135	18.78	0.480	30	
1,1-Dichloroethane 18.2 1.00 20.00 0 91.2 67.8 136 18.78 2.86 30 2,2-Dichloropropane 7.46 2.00 20.00 0 37.3 31.5 121 8.440 12.3 30 Q c cis-1,2-Dichloroethane 17.6 1.00 20.00 0 87.9 67.1 123 18.26 3.85 30 C cis-1,2-Dichloroethane 19.1 1.00 20.00 0 95.7 66.7 136 19.30 0.885 30 1,1,1-Trichloroethane 19.1 1.00 20.00 0 98.8 64.2 146 20.06 1.51 30 1.1-Dichloropropane 19.3 1.00 20.00 0 96.7 73.8 136 19.87 2.70 30 1.1-Dichloroethane 18.1 1.00 20.00 0 100 62.7 146 20.78 3.63 30 1.1-Dichloroethane 18.1 1.00 20.00 0 100 62.7 146 20.78 3.63 30 1.1-Dichloroethane 18.1 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 1.1-Dichloroethane 18.1 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 1.1-Dichloroethane 18.5 1.00 20.00 0 97.0 60.4 134 19.65 1.28 30 1.1-Dichloroethane 18.5 1.00 20.00 0 97.0 60.4 134 19.65 1.28 30 1.1-Dichloroethane 18.5 1.00 20.00 0 94.6 65.6 138 18.57 2.51 30 1.1-Dichloroethane 18.5 1.00 20.00 0 94.6 65.6 138 18.57 2.51 30 1.1-Dichloroethane 18.5 1.00 20.00 0 94.6 65.6 138 18.57 2.51 30 1.1-Dichloroethane 18.5 1.00 20.00 0 94.6 65.6 138 18.57 2.51 30 1.1-Dichloroethane 18.5 1.00 20.00 0 94.6 65.6 138 19.13 1.42 30 1.1-Dichloroethane 18.5 1.00 20.00 0 94.6 65.6 64 139 19.13 1.42 30 1.1-Dichloroethane 18.5 1.00 20.00 0 94.6 65.8 134 19.79 0.354 30 1.1-Dichloropropane 15.9 1.00 20.00 0 94.6 65.8 134 19.79 0.354 30 1.1-Dichloropropane 15.9 1.00 20.00 0 94.6 64.3 135 18.66 0.374 30 1.1-Dichloropropane 18.7 1.00 20.00 0 94.6 64.3 135 18.66 0.374 30 1.1-Dichloroethane 18.5 1.00 20.00 0 95.0 65.3 133 19.32 1.72 30 1.1	trans-1,2-Dichloroethene	18.7	1.00	20.00	0	93.7	63.5	138	18.81	0.373	30	
2,2-Dichloropropane 7.46 2.00 20.00 0 37.3 31.5 121 8.440 12.3 30 Q cis-1,2-Dichloroethene 17.6 1.00 20.00 0 87.9 67.1 123 18.26 3.85 30 Chloroform 19.1 1.00 20.00 0 95.7 66.7 136 19.30 0.885 30 1,1,1-Trichloroethane (TCA) 19.8 1.00 20.00 0 96.7 73.8 136 19.37 2.70 30 1,1-Dichloroethane (TCA) 19.3 1.00 20.00 0 96.7 73.8 136 19.87 2.70 30 1,1-Dichloroethane (EDC) 18.1 1.00 20.00 0 90.4 63.4 137 18.64 3.05 30 Eenzene 21.5 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 Trichloroethane (TCE) 19.4 0.500 20.00	Methyl tert-butyl ether (MTBE)	19.9	1.00	20.00	0	99.7	60.9	132	20.03	0.501	30	
cis-1,2-Dichloroethene 17.6 1.00 20.00 0 87.9 67.1 123 18.26 3.85 30 Chloroform 19.1 1.00 20.00 0 95.7 66.7 136 19.30 0.885 30 1,1-Dichloropropene 19.3 1.00 20.00 0 96.7 73.8 136 19.87 2.70 30 Carbon tetrachloride 20.0 1.00 20.00 0 100 62.7 146 20.78 3.63 30 1,2-Dichloroethane (EDC) 18.1 1.00 20.00 0 90.4 63.4 137 18.64 3.05 30 Benzene 21.5 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 1,2-Dichloroptopane 18.1 1.00 20.00 0 97.0 60.4 134 19.68 0.860 30 Bromodichloromethane 18.5 1.00 20.00 0 9	1,1-Dichloroethane	18.2	1.00	20.00	0	91.2	67.8	136	18.78	2.86	30	
Chloroform 19.1 1.00 20.00 0 95.7 66.7 136 19.30 0.885 30 1,1,1-Trichloroethane (TCA) 19.8 1.00 20.00 0 98.8 64.2 146 20.06 1.51 30 1,1-Dichloropropene 19.3 1.00 20.00 0 96.7 73.8 136 19.87 2.70 30 Carbon tetrachloride 20.0 1.00 20.00 0 90.4 63.4 137 18.64 3.05 30 L,2-Dichloropthane (EDC) 18.1 1.00 20.00 0 90.4 63.4 137 18.64 3.05 30 Benzene 21.5 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 Trichloroethene (TCE) 19.4 0.500 20.00 0 97.0 60.4 134 19.65 1.28 30 1,2-Dichloropropane 18.1 1.00 20.00 0	2,2-Dichloropropane	7.46	2.00	20.00	0	37.3	31.5	121	8.440	12.3	30	Q
1,1,1-Trichloroethane (TCA) 19.8 1.00 20.00 0 98.8 64.2 146 20.06 1.51 30 1,1-Dichloropropene 19.3 1.00 20.00 0 96.7 73.8 136 19.87 2.70 30 Carbon tetrachloride 20.0 1.00 20.00 0 100 62.7 146 20.78 3.63 30 1,2-Dichloroptame (EDC) 18.1 1.00 20.00 0 90.4 63.4 137 18.64 3.05 30 Benzene 21.5 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 Trichloroethene (TCE) 19.4 0.500 20.00 0 97.0 60.4 134 19.65 1.28 30 1,2-Dichloropropane 18.1 1.00 20.00 0 99.6 62.6 138 18.57 2.51 30 Bromodichloromethane 18.5 1.00 20.00 0	cis-1,2-Dichloroethene	17.6	1.00	20.00	0	87.9	67.1	123	18.26	3.85	30	
1,1-Dichloropropene 19.3 1.00 20.00 0 96.7 73.8 136 19.87 2.70 30 Carbon tetrachloride 20.0 1.00 20.00 0 100 62.7 146 20.78 3.63 30 1,2-Dichloroethane (EDC) 18.1 1.00 20.00 0 90.4 63.4 137 18.64 3.05 30 Benzene 21.5 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 Trichloroethane (TCE) 19.4 0.500 20.00 0 97.0 60.4 134 19.65 1.28 30 1,2-Dichloropropane 18.1 1.00 20.00 0 97.0 60.4 134 19.65 1.28 30 Dibromoethane 18.5 1.00 20.00 0 92.6 59.4 139 18.68 0.80 30 Cis-1,3-Dichloropropene 16.1 1.00 20.00 0 <	Chloroform	19.1	1.00	20.00	0	95.7	66.7	136	19.30	0.885	30	
Carbon tetrachloride 20.0 1.00 20.00 0 100 62.7 146 20.78 3.63 30 1,2-Dichloroethane (EDC) 18.1 1.00 20.00 0 90.4 63.4 137 18.64 3.05 30 Benzene 21.5 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 Trichloroethene (TCE) 19.4 0.500 20.00 0 97.0 60.4 134 19.65 1.28 30 1,2-Dichloropropane 18.1 1.00 20.00 0 97.0 60.4 134 19.65 1.28 30 1,2-Dichloropropane 18.1 1.00 20.00 0 90.6 62.6 138 18.57 2.51 30 Bromodichloromethane 18.5 1.00 20.00 0 94.3 63.6 139 18.68 0.860 30 Dibromoethane 18.1 1.00 20.00 0 <td< td=""><td>1,1,1-Trichloroethane (TCA)</td><td>19.8</td><td>1.00</td><td>20.00</td><td>0</td><td>98.8</td><td>64.2</td><td>146</td><td>20.06</td><td>1.51</td><td>30</td><td></td></td<>	1,1,1-Trichloroethane (TCA)	19.8	1.00	20.00	0	98.8	64.2	146	20.06	1.51	30	
1,2-Dichloroethane (EDC) 18.1 1.00 20.00 0 90.4 63.4 137 18.64 3.05 30 Benzene 21.5 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 Trichloroethene (TCE) 19.4 0.500 20.00 0 97.0 60.4 134 19.65 1.28 30 1,2-Dichloropropane 18.1 1.00 20.00 0 90.6 62.6 138 18.57 2.51 30 Bromodichloromethane 18.5 1.00 20.00 0 92.6 59.4 139 18.68 0.860 30 Dibromomethane 18.9 1.00 20.00 0 94.3 63.6 139 19.13 1.42 30 cis-1,3-Dichloropropene 16.1 1.00 20.00 0 80.7 63.8 132 16.22 0.494 30 Toluene 19.7 1.00 20.00 0.4100 96.6 64 139 19.79 0.354 30 trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 1,1,2-Trichloroethane 18.7 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 1,3-Dichloropropane 18.7 1.00 20.00 0 93.6 64.3 135 18.66 0.374 30 Tetrachloroethene (PCE) 19.0 1.00 20.00 0 95.0 50.3 133 19.32 1.72 30 Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromochloromethane (EDB) 18.8 0.6600 20.00 0 93.8 63.2 134 19.02 1.32 30 Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	1,1-Dichloropropene	19.3	1.00	20.00	0	96.7	73.8	136	19.87	2.70	30	
Benzene 21.5 1.00 20.00 2.600 94.6 65.4 138 21.40 0.559 30 Trichloroethene (TCE) 19.4 0.500 20.00 0 97.0 60.4 134 19.65 1.28 30 1,2-Dichloropropane 18.1 1.00 20.00 0 90.6 62.6 138 18.57 2.51 30 Bromodichloromethane 18.5 1.00 20.00 0 92.6 59.4 139 18.68 0.860 30 Dibromomethane 18.9 1.00 20.00 0 94.3 63.6 139 19.13 1.42 30 cis-1,3-Dichloropropene 16.1 1.00 20.00 0 80.7 63.8 132 16.22 0.494 30 trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 79.4 57.7 125 15.8 0 30 1,1,2-Trichloropropylene 18.7 1.00 20.00 0	Carbon tetrachloride	20.0	1.00	20.00	0	100	62.7	146	20.78	3.63	30	
Trichloroethene (TCE) 19.4 0.500 20.00 0 97.0 60.4 134 19.65 1.28 30 1,2-Dichloropropane 18.1 1.00 20.00 0 90.6 62.6 138 18.57 2.51 30 Bromodichloromethane 18.5 1.00 20.00 0 92.6 59.4 139 18.68 0.860 30 Dibromomethane 18.9 1.00 20.00 0 94.3 63.6 139 19.13 1.42 30 cis-1,3-Dichloropropene 16.1 1.00 20.00 0 80.7 63.8 132 16.22 0.494 30 Toluene 19.7 1.00 20.00 0 44.00 63.8 132 16.22 0.494 30 trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 79.4 57.7 125 15.88 0 30 1,2-Trichloroethane 18.7 1.00 20.00 0	1,2-Dichloroethane (EDC)	18.1	1.00	20.00	0	90.4	63.4	137	18.64	3.05	30	
1,2-Dichloropropane 18.1 1.00 20.00 0 90.6 62.6 138 18.57 2.51 30 Bromodichloromethane 18.5 1.00 20.00 0 92.6 59.4 139 18.68 0.860 30 Dibromomethane 18.9 1.00 20.00 0 94.3 63.6 139 19.13 1.42 30 cis-1,3-Dichloropropene 16.1 1.00 20.00 0 80.7 63.8 132 16.22 0.494 30 Toluene 19.7 1.00 20.00 0 4100 96.6 64 139 19.79 0.354 30 trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 79.4 57.7 125 15.88 0 30 1,1,2-Trichloroethane 18.7 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 Tetrachloroethene (PCE) 19.0 1.00 20.00	Benzene	21.5	1.00	20.00	2.600	94.6	65.4	138	21.40	0.559	30	
Bromodichloromethane 18.5 1.00 20.00 0 92.6 59.4 139 18.68 0.860 30 Dibromomethane 18.9 1.00 20.00 0 94.3 63.6 139 19.13 1.42 30 cis-1,3-Dichloropropene 16.1 1.00 20.00 0 80.7 63.8 132 16.22 0.494 30 Toluene 19.7 1.00 20.00 0.4100 96.6 64 139 19.79 0.354 30 trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 79.4 57.7 125 15.88 0 30 1,1,2-Trichloroethane 18.7 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 Tetrachloroethene (PCE) 19.0 1.00 20.00 0 93.6 64.3 135 18.66 0.374 30 Dibromochloromethane 18.5 1.00 20.00 0	Trichloroethene (TCE)	19.4	0.500	20.00	0	97.0	60.4	134	19.65	1.28	30	
Dibromomethane 18.9 1.00 20.00 0 94.3 63.6 139 19.13 1.42 30 cis-1,3-Dichloropropene 16.1 1.00 20.00 0 80.7 63.8 132 16.22 0.494 30 Toluene 19.7 1.00 20.00 0.4100 96.6 64 139 19.79 0.354 30 trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 79.4 57.7 125 15.88 0 30 1,1,2-Trichloroethane 18.7 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 1,3-Dichloropropane 18.7 1.00 20.00 0 93.6 64.3 135 18.66 0.374 30 Tetrachloroethene (PCE) 19.0 1.00 20.00 0 95.0 50.3 133 19.32 1.72 30 Dibromochloromethane 18.5 1.00 20.00 0	1,2-Dichloropropane	18.1	1.00	20.00	0	90.6	62.6	138	18.57	2.51	30	
cis-1,3-Dichloropropene 16.1 1.00 20.00 0 80.7 63.8 132 16.22 0.494 30 Toluene 19.7 1.00 20.00 0.4100 96.6 64 139 19.79 0.354 30 trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 79.4 57.7 125 15.88 0 30 1,1,2-Trichloroethane 18.7 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 1,3-Dichloropropane 18.7 1.00 20.00 0 93.6 64.3 135 18.66 0.374 30 Tetrachloroethene (PCE) 19.0 1.00 20.00 0 95.0 50.3 133 19.32 1.72 30 Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromoethane (EDB) 18.8 0.0600 20.00 <t< td=""><td>Bromodichloromethane</td><td>18.5</td><td>1.00</td><td>20.00</td><td>0</td><td>92.6</td><td>59.4</td><td>139</td><td>18.68</td><td>0.860</td><td>30</td><td></td></t<>	Bromodichloromethane	18.5	1.00	20.00	0	92.6	59.4	139	18.68	0.860	30	
Toluene 19.7 1.00 20.00 0.4100 96.6 64 139 19.79 0.354 30 trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 79.4 57.7 125 15.88 0 30 1,1,2-Trichloroethane 18.7 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 1,3-Dichloropropane 18.7 1.00 20.00 0 93.6 64.3 135 18.66 0.374 30 Tetrachloroethene (PCE) 19.0 1.00 20.00 0 95.0 50.3 133 19.32 1.72 30 Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromoethane (EDB) 18.8 0.0600 20.00 0 93.8 63.2 134 19.02 1.32 30 Chlorobenzene 19.5 1.00 20.00 0	Dibromomethane	18.9	1.00	20.00	0	94.3	63.6	139	19.13	1.42	30	
trans-1,3-Dichloropropylene 15.9 1.00 20.00 0 79.4 57.7 125 15.88 0 30 1,1,2-Trichloroethane 18.7 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 1,3-Dichloropropane 18.7 1.00 20.00 0 93.6 64.3 135 18.66 0.374 30 Tetrachloroethene (PCE) 19.0 1.00 20.00 0 95.0 50.3 133 19.32 1.72 30 Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromoethane (EDB) 18.8 0.0600 20.00 0 93.8 63.2 134 19.02 1.32 30 Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	cis-1,3-Dichloropropene	16.1	1.00	20.00	0	80.7	63.8	132	16.22	0.494	30	
1,1,2-Trichloroethane 18.7 1.00 20.00 0 93.6 59.4 127 18.98 1.43 30 1,3-Dichloropropane 18.7 1.00 20.00 0 93.6 64.3 135 18.66 0.374 30 Tetrachloroethene (PCE) 19.0 1.00 20.00 0 95.0 50.3 133 19.32 1.72 30 Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromoethane (EDB) 18.8 0.0600 20.00 0 93.8 63.2 134 19.02 1.32 30 Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	Toluene	19.7	1.00	20.00	0.4100	96.6	64	139	19.79	0.354	30	
1,3-Dichloropropane 18.7 1.00 20.00 0 93.6 64.3 135 18.66 0.374 30 Tetrachloroethene (PCE) 19.0 1.00 20.00 0 95.0 50.3 133 19.32 1.72 30 Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromoethane (EDB) 18.8 0.0600 20.00 0 93.8 63.2 134 19.02 1.32 30 Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	trans-1,3-Dichloropropylene	15.9	1.00	20.00	0	79.4	57.7	125	15.88	0	30	
Tetrachloroethene (PCE) 19.0 1.00 20.00 0 95.0 50.3 133 19.32 1.72 30 Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromoethane (EDB) 18.8 0.0600 20.00 0 93.8 63.2 134 19.02 1.32 30 Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	1,1,2-Trichloroethane	18.7	1.00	20.00	0	93.6	59.4	127	18.98	1.43	30	
Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromoethane (EDB) 18.8 0.0600 20.00 0 93.8 63.2 134 19.02 1.32 30 Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	1,3-Dichloropropane	18.7	1.00	20.00	0	93.6	64.3	135	18.66	0.374	30	
Dibromochloromethane 18.5 1.00 20.00 0 92.3 61.6 139 18.64 0.970 30 1,2-Dibromoethane (EDB) 18.8 0.0600 20.00 0 93.8 63.2 134 19.02 1.32 30 Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	Tetrachloroethene (PCE)	19.0	1.00	20.00	0	95.0	50.3	133	19.32	1.72	30	
Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	Dibromochloromethane	18.5	1.00	20.00	0	92.3		139		0.970		
Chlorobenzene 19.5 1.00 20.00 0 97.6 65.8 134 19.16 1.81 30	1,2-Dibromoethane (EDB)	18.8	0.0600	20.00	0	93.8	63.2	134	19.02	1.32	30	
	. ,				0							
1,1,1,2-Tetrachloroethane 19.0 1.00 20.00 0 95.2 65.4 135 19.32 1.41 30	1,1,1,2-Tetrachloroethane					95.2					30	

Original Page 35 of 40

Date: 8/2/2016

Work Order: 1607286

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607278-006AMSD	SampType: MSD			Units: µg/L		Prep Da	te: 7/27/2 0	16	RunNo: 308	364	
Client ID: BATCH	Batch ID: 14381					Analysis Da	te: 7/29/2 0	16	SeqNo: 583	3084	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	19.4	1.00	20.00	0.6000	94.3	64.5	136	19.52	0.359	30	
m,p-Xylene	39.7	1.00	40.00	0.4300	98.1	63.3	135	40.16	1.20	30	
o-Xylene	19.3	1.00	20.00	0.1700	95.5	65.4	134	19.35	0.414	30	
Styrene	19.1	1.00	20.00	0	95.3	59.1	134	19.19	0.680	30	
Isopropylbenzene	19.6	1.00	20.00	0.2900	96.7	56	147	19.73	0.559	30	
Bromoform	18.6	1.00	20.00	0.4000	90.9	57.7	139	18.75	0.965	30	
1,1,2,2-Tetrachloroethane	19.4	1.00	20.00	0	97.3	59.8	146	19.33	0.619	30	
n-Propylbenzene	19.1	1.00	20.00	0.2000	94.6	57.6	142	19.39	1.35	30	
Bromobenzene	19.1	1.00	20.00	0	95.5	63.6	130	18.94	0.841	30	
1,3,5-Trimethylbenzene	19.0	1.00	20.00	0.1500	94.3	59.9	136	19.28	1.41	30	
2-Chlorotoluene	19.1	1.00	20.00	0.08000	95.2	61.7	134	19.45	1.66	30	
4-Chlorotoluene	19.0	1.00	20.00	0.08000	94.4	58.4	134	19.23	1.41	30	
tert-Butylbenzene	19.4	1.00	20.00	0	96.8	66.8	141	19.46	0.567	30	
1,2,3-Trichloropropane	18.6	1.00	20.00	0	93.1	62.4	129	18.60	0.107	30	
1,2,4-Trichlorobenzene	19.3	2.00	20.00	0	96.4	50.9	133	18.77	2.68	30	
sec-Butylbenzene	18.9	1.00	20.00	0.1500	94.0	56	146	19.14	1.05	30	
4-Isopropyltoluene	18.8	1.00	20.00	0.1500	93.1	56.4	136	18.76	0.0533	30	
1,3-Dichlorobenzene	18.6	1.00	20.00	0	92.9	58.2	128	18.35	1.25	30	
1,4-Dichlorobenzene	19.4	1.00	20.00	0	97.0	60.1	123	19.31	0.465	30	
n-Butylbenzene	18.6	1.00	20.00	0.06000	92.6	54.6	135	18.40	0.920	30	
1,2-Dichlorobenzene	19.4	1.00	20.00	0	97.1	65.4	133	19.27	0.775	30	
1,2-Dibromo-3-chloropropane	19.4	1.00	20.00	0	97.2	51.8	142	18.97	2.45	30	
1,2,4-Trimethylbenzene	19.3	1.00	20.00	0.2500	95.4	63.7	132	19.51	0.979	30	
Hexachloro-1,3-butadiene	19.0	4.00	20.00	0	94.8	58.1	130	19.07	0.578	30	
Naphthalene	21.6	1.00	20.00	0.2500	106	54.5	132	20.18	6.57	30	
1,2,3-Trichlorobenzene	20.4	4.00	20.00	0	102	57	131	19.57	4.10	30	
Surr: Dibromofluoromethane	24.7		25.00		98.7	45.4	152		0		
Surr: Toluene-d8	24.5		25.00		97.9	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	25.7		25.00		103	64.2	128		0		

Original Page 36 of 40

Date: 8/2/2016

Work Order: 1607286

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1607278-006AMSD	SampType: MSD		Units: µg/L	Prep Date: 7/27/2016	RunNo: 30864
Client ID: BATCH	Batch ID: 14381			Analysis Date: 7/29/2016	SeqNo: 583084
Analyte	Result	RL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual

NOTES:

S - Outlying QC recoveries were observed. The method is in control as indicated by the LCS.

Q - Indicates an analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Sample ID CCV-G-14381	SampType: CCV			Units: µg/L		Prep Da	te: 8/1/20 1	16	RunNo: 308	864	
Client ID: CCV	Batch ID: 14381					Analysis Da	te: 8/1/20 1	16	SeqNo: 584	4036	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	17.8	1.00	20.00	0	88.8	80	120				
Tetrachloroethene (PCE)	17.5	1.00	20.00	0	87.4	80	120				
Ethylbenzene	17.3	1.00	20.00	0	86.5	80	120				
m,p-Xylene	36.4	1.00	40.00	0	91.1	80	120				
o-Xylene	18.0	1.00	20.00	0	89.8	80	120				
Isopropylbenzene	17.9	1.00	20.00	0	89.6	80	120				
n-Propylbenzene	17.5	1.00	20.00	0	87.5	80	120				
1,3,5-Trimethylbenzene	17.8	1.00	20.00	0	89.2	80	120				
1,2,4-Trimethylbenzene	18.0	1.00	20.00	0	90.0	80	120				
Naphthalene	16.2	1.00	20.00	0	80.8	80	120				
Surr: Dibromofluoromethane	24.4		25.00		97.7	72.1	122				
Surr: Toluene-d8	24.8		25.00		99.2	62.1	129				
Surr: 1-Bromo-4-fluorobenzene	25.4		25.00		102	63.3	132				

Original Page 37 of 40

Date: 8/2/2016

Work Order: 1607286

Project:

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Lake Stevens Marketplace

Sample Moisture (Percent Moisture)

Sample ID 1607284-001ADUP SampType: DUP Units: wt% Prep Date: 7/27/2016 RunNo: 30817

Client ID: BATCH Batch ID: R30817 Analysis Date: 7/27/2016 SeqNo: 581728

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 14.6 0.500 15.56 6.40 20

Original Page 38 of 40

Sample Log-In Check List

CI	ient Name:	PES	Work Order Numb	er: 1607286		
Lo	gged by:	Erica Silva	Date Received:	7/26/2010	6 2:09:00 PM	
<u>Ch</u> a	in of Custo	<u>ody</u>				
		ustody complete?	Yes 🗸	No 🗌	Not Present	
2.	How was the	sample delivered?	<u>Client</u>			
Log	In					
_	Coolers are p	oresent?	Yes 🗸	No 🗌	NA 🗆	
Э.	Coolers are p	Account.	100 🖭	140 🗀	TW	
4.	Shipping con	tainer/cooler in good condition?	Yes 🗸	No \square		
5.		ls present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹	
6.	Was an atten	npt made to cool the samples?	Yes 🗸	No 🗌	NA 🗌	
7.	Were all item	s received at a temperature of >0°C to 10.0°C*	Yes 🗸	No 🗌	NA \square	
8.	Sample(s) in	proper container(s)?	Yes 🗸	No 🗌		
9.	Sufficient sar	nple volume for indicated test(s)?	Yes 🗸	No 🗌		
10.	Are samples	properly preserved?	Yes 🗸	No \square		
11.	Was preserva	ative added to bottles?	Yes	No 🗸	NA \square	
12.	Is there head	space in the VOA vials?	Yes	No 🗸	na 🗆	
13.	Did all sample	es containers arrive in good condition(unbroken)?	Yes 🗸	No \square		
14.	Does paperw	ork match bottle labels?	Yes 🗸	No \square		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🗸	No 🗌		
16.	Is it clear wha	at analyses were requested?	Yes 🗹	No 🗌		
17.	Were all hold	ing times able to be met?	Yes 🗸	No 🗌		
Spe	cial Handli	ing (if applicable)				
-		otified of all discrepancies with this order?	Yes	No \square	NA 🗸	
	Person	Notified: Dat	te			
	By Who	m: Via	: _ eMail _ Pho	one 🗌 Fax	☐ In Person	
	Regardi	ng:				
	Client In	estructions:				
19.	Additional rer	marks:				
ltem	Information					
		Item # Temp °C				

8.4

9.4

Original

Cooler

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Anthony considerate with the late in the		0	×					×
TAT → SameDay^ NextDay^ 2 Day 3 Day (STD)		Date/Time	Received			Date/Ilme		Kelinquisned
	126/16 14:09	ry 7/26	× nEh	X	9041 9	1 2 L	He bosh	8.
		// Date/Time	Received	,	The state of	Date/Time	Ď	Relinquished
THAT THE LICENSE SELECTION OF SHELL STORY OF SHELL STORY OF SHELL STORY OF SHELL STORY OF SHELL STORY OF SHELL SHELL STORY OF SHELL	I have verified Client's	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have agreement to each of the terms on the front and backside of this Agreement.	t Analytical on behal	is Agreement	is Agreement backside of the	he front and	of the terms on t	agreement to each of the terms on the front and backside of this Agreement
SACRADA CODE S COLOR SEAD SEAD SEAD SEAD SEAD SEAD SEAD SEAD	on the following business day.	assessed if samples are retained after 30 days.)	assessed if samples are retained after 30 days.)	samples are ret	assessed if	o Client 9	Return to Client	Sample Disposal:
Special Remarks:	received after 4:00pm will begin		e O-Phosphate	te Bromide	ride Sulfate	Nitrite Chloride	Nitrate Nit	***Anions (Circle):
b Sb Se Sr Sn Ti Tl U V Zn	Fe Hg K Mg Mn Mo Na Ni Pb	As B Ba Be Ca Cd Co Cr Cu	Individual: Ag Al	tants TAL	Priority Pollutants	RCRA-8	Circle): MTCA-5	**Metals Analysis (Circle):
the me on My a fall your crosses at a Thangar cetta.							THE PERSON WAS	10
The second secon	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			×	1,500	4	9198 20 - C- MW	C WW e
The second secon			\ \rangle \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \rangle \ \rangle	**	1000		919710	8 (V W - 4 -
Spirate (1886) TO SERVICE STANCE TO SERVICE SERVICES SERV			× •	1 5	1/2	+	010010	0100 C C C C C C C C C C C C C C C C C C
ngunasa grasi Basaranda dagir Mikebaseji kan ke asaraban ka asaran a	(8 대로 19 대로 19 대로 19 대통령 19 19 19 19 19 19 19 19 19 19 19 19 19	1984년 - 교육 (2017년 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982년 - 1982	X	Z	25:11		717540	プリンともし、トーツが
OMBITE ENGLES MENT REDDING VALUE OF STANDERS OF STANDERS		ts od operación de progressor el personal de la		٤	1035		219840	6 MW-3-072616
dictas set he mbjørge (m) to subskrivede se				WW	950	6	Drum-W-077616	5 Drum-4
Sensor of some sense and sense of the sense				7	935		319820	4 MW-7-072616
TO BELLEVISE PLOTED. COMMERCE THE DESIGN OF PROBLEM SEE SHEET AND EXCE	96 Bac Bac Bac Bac Bac Bac Bac Bac Bac Bac		X	٤	9H0		9197EE	919820-9-MW E
COLUMN ASSESSION STRAND THE COLUMN STRAIN ST	Control of the Contro			٤	240	0.00	919CE	2 MW-1-072616
and the second s			_	S	116 650	7/26/18	0rgm-5-072616	1 Drym-5
Comments			College College	Sample Type (Matrix)*	e Sample	Sample Date	eligena of (eligena enis nazieni, oddi in organia bios eni organia biorgania	Sample Name
= Ground Water, SW = Storm Water, WW = Waste Water	GW.	P = Product, S = Soil, SD = Sediment, SL = Solid, W = Water, DW = Drinking Water,	SD = Sediment, SL = Sc	duct, S = Soil,		B≃Bulk, O≃	vir, AQ = Aqueous, B = Bulk, O = Other,	*Matrix Codes: A = Air,
	-	ار	300/521-3685	1	Fax:	0816-155	of 306)	Telephone:
0.000/991.056 30.800/981.50	O'Neal	(PM): Br		,	9187	· WA	South	City, State, Zip:
	us bow	Location:		1360	Suite	the.	200 4	Address:
C. before	1 (297	Project No: 1246. 01		JHC.	hathron	Environme	20 CD	Client:
Page:of:	Page:	l ak			3790	Tel: 206-352-3790 Fax: 206-352-7178		3600 Fremont Ave N. Seattle, WA 98103
Laboratory Project No (internal): 10072868	7 26/16	Date:					Š	
Chain of Custody Record and Laboratory Services Agreemen	Record and La	nain of Custody	כו		- 1			

MEMORANDUM

TO: Project File **DATE:** August 4, 2016

FROM: Jessie Compeau

SUBJECT: Laboratory Data Validation Review

PROJECT: Lake Stevens Marketplace

PROJECT #: 1246.038.03.002

TASK: July 26, 2016 Groundwater Samples and Drum Characterization Samples

LAB: Fremont Analytical Service Request No. 1607286

Seven groundwater samples, water and soil drum samples were collected at the Lake Stevens Marketplace Site in Snohomish County on July 26, 2016. The samples were collected as part of a Limited Phase II Investigation at the Site. The samples were delivered to Fremont Analytical (Fremont) of Seattle, Washington for laboratory analysis as follows:

- Groundwater samples and drum water sample were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C.
- Drum soil sample was analyzed for RCRA 8 metals (arsenic, barium, cadmium, chromium, lead, selenium, silver and mercury) by USEPA Method 6020 and USEPA Method 7471 (mercury), and for percent moisture content.

The results were reported in Fremont Lab Package 1607286. The Limited Phase II Investigation occurred in July of 2016 and associated sample data are reported in FA Project Number 1607286 along with FA Project numbers 1607063, 1607053, and 1607054. The quality assurance review of the laboratory data is summarized below. The quality assurance review of the laboratory data is summarized below.

DATA QUALIFICATIONS

Guidelines established by USEPA for review of analytical data were used to validate the data. The comments presented in this memorandum refer to the laboratory's performance in meeting the quality control criteria outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999) and USEPA Contract Laboratory Program NFG for Inorganic Data Review (USEPA, 2004).

DATA VALIDATION

Sample Receipt, Preservation and Handling

The samples were delivered to the project laboratory in coolers under standard chain-of-custody protocols. Review of Fremont's Sample Log-In Check List Form indicates that all samples were received in good condition above the recommended preservation temperature range of $4.0^{\circ}\text{C} \pm 2.0^{\circ}\text{C}$. Samples were collected and received by the laboratory on the same day and did not have sufficient time to cool. The sample receipt log indicated that the samples in the coolers were received properly stored in a cooler, preserved, and cooled with ice/gel packs and in good condition at the time of laboratory receipt. No data qualifications were assigned due to temperature preservation issues.

Holding Times

USEPA Method 8260C (VOCs):

All samples were analyzed for VOCs within the USEPA recommended holding time of fourteen days for preserved waters from the date of sample collection. All holding time criteria were met.

USEPA Method 200.8:

All samples were analyzed within the USEPA recommended holding time for metals (arsenic, barium, cadmium, chromium, lead, selenium, and silver) of 180 days for soils from the date of sample collection. All holding time criteria were met.

USEPA Method 7470:

All samples were analyzed within the USEPA recommended holding time for mercury of 28 days for soils from the date of sample collection. All holding time criteria were met.

Initial and Continuing Calibration

USEPA Method 8260C (VOCs):

Initial and continuing calibration data for this project are retained by the laboratory and available for review if necessary. Case narrative notes and qualifiers indicate that either initial or continuing calibration criteria were not met for trichlorofluoromethane (CFC-11). Fremont was contacted for more information. Continuing calibration %D was slightly below Fremont's control limit criteria at 79.2%. All associated trichlorofluoromethane (CFC-11) results are non-detect and qualified as estimated (UJ).

USEPA Method 200.8 and USEPA Method 7470:

Initial and continuing calibration data for this project are retained by the laboratory and available for review if necessary. The case narrative did not indicate any issues with calibration; therefore no qualifications were warranted.

Method Blank Results

USEPA Method 8260C (VOCs):

A laboratory method blank was included with the analytical batch per method requirement. The target analytes were not detected in the method blank at or above the method reporting limits (MRLs). No qualifications of the data were made due to the results of the method blank analyses.

USEPA Method 200.8:

A laboratory method blank was included with the analytical batch per method requirement. The target analytes were not detected in the method blank at or above the method reporting limits (MRLs). No qualifications of the data were made due to the results of the method blank analyses.

USEPA Method 7470:

A laboratory method blank was included with the analytical batch per method requirement. The target analyte was not detected in the method blank at or above the method reporting limit (MRL). No qualifications of the data were made due to the results of the method blank analyses.

Trip Blank Results

USEPA Method 8260C (VOCs):

A trip blank is incorrectly included on Fremont's Work Order Sample Summary. This trip blank was not included on the chain of custody nor was it analyzed. No action was taken other than to note this.

Laboratory Duplicate Analyses

USEPA Method 8260C (VOCs):

Laboratory duplicate sample analyses were performed on a non-client sample within the analytical batch. The primary/duplicate relative percent differences (RPDs) for VOCs were within the laboratory control limit of 30%. Duplicate data are acceptable.

USEPA Method 200.8:

A laboratory duplicate sample was performed on a non-client sample within the analytical batch. The primary/duplicate RPD for all metals were within the laboratory control limit of 20%.

USEPA Method 7470:

A laboratory duplicate sample was performed on a non-client sample within the analytical batch. The primary/duplicate RPD for mercury was within the laboratory control limit of 20%.

Sample Moisture (Percent):

A laboratory duplicate sample was performed on a non-client sample within the analytical batch. The primary/duplicate RPD for moisture content was within the laboratory control limit of 20%.

Field Duplicate Analyses

Field duplicate samples were not collected. Refer to laboratory duplicate or matrix spike results for precision data.

Surrogate Recoveries

USEPA Method 8260C (VOCs):

The surrogate recovery results for the samples, laboratory duplicates, laboratory control samples, matrix spike samples, and the method blank were within the laboratory surrogate control limits for all of the analyses.

Matrix Spike/ Matrix Spike Duplicates

USEPA Method 8260C (VOCs):

Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed on a non-client sample within the analytical batch. At a minimum, one MS is required for each analytical batch (maximum of 20 samples in a group); therefore, the MS analysis meets this required frequency. The MS/MSD percent recoveries (%R's) for target analytes were within the laboratory control criteria for water samples with the following exception:

MS/MSD % R's and RPD for dichlorodifluoromethane (CFC-12) were above FA's acceptance criteria. In this case no action was taken since the spike was performed on a non-client sample within the analytical batch. LCS % R was acceptable indicating that the high MS recovery was likely due to matrix effect.

USEPA Method 200.8:

MS/MSD analysis was performed on a non-client sample within the analytical batch. The MS/MSD % R's and RPD were acceptable and within laboratory control limit criteria for soil sample with the following exceptions:

MS/MSD % R's for barium and chromium were above FA acceptance criteria (75-125%). Barium RPD was 23% and above the laboratory control limit of 20%. No action was taken since the spikes were performed on a non-client sample, duplicate, and LCS results were acceptable.

USEPA Method 7470:

MS/MSD analysis was performed on sample on a non-client sample with the analytical batch. The MS/MSD % R's and RPD were acceptable and within laboratory control limit criteria for soil samples.

Laboratory Control Samples

USEPA Method 8260C (VOCs):

A laboratory control sample (LCS) was analyzed by USEPA Method 8260C per method requirement. The LCS %R's for the all target compounds were within the laboratory control criteria for waters.

USEPA Method 200.8:

LCS's were analyzed by USEPA Method 200.8 along with the analytical batch. The LCS %R's for the analytes were within the laboratory control criteria (80-120%) for soil. No data qualifications were warranted.

USEPA Method 7471:

LCS was analyzed by USEPA Method 7471 along with the analytical batch. The LCS %R for the analyte (mercury) was within the laboratory control criteria (80-120%) for soil. No data qualifications were warranted.

Quantitation Limits

Results of all analyses were reported based on standard laboratory MRLs. The reported MRLs are considered appropriate for this project. No data qualifiers were warranted based upon standard detection limits.

Completeness

The samples were collected and analyzed as requested. The results in all cases were reported based upon standard Method Reporting Limits (MRLs). Data completeness is 100%.

Data Assessment

The laboratory data reported for this project were reviewed based on laboratory control limit acceptance criteria and criteria outlined in:

- USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999);
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2004)

Data qualifiers were assigned and laboratory report pages with qualifiers are attached. All data are judged to be acceptable for their intended use.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

PES Environmental, Inc.

Brian O'Neal 1215 Fourth Avenue, Suite 1350 Seattle, WA 98161

RE: Lake Stevens Marketplace Work Order Number: 1610304

October 25, 2016

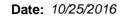
Attention Brian O'Neal:

Fremont Analytical, Inc. received 8 sample(s) on 10/19/2016 for the analyses presented in the following report.

Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody


All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

DoD/ELAP Certification #L2371, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: PES Environmental, Inc. Work Order Sample Summary

Project: Lake Stevens Marketplace

Work Order: 1610304

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1610304-001	MW-6-101816	10/18/2016 9:50 AM	10/19/2016 9:19 AM
1610304-002	MW-7-101816	10/18/2016 10:40 AM	10/19/2016 9:19 AM
1610304-003	MW-2-101816	10/18/2016 11:20 AM	10/19/2016 9:19 AM
1610304-004	MW-5-101816	10/18/2016 12:10 PM	10/19/2016 9:19 AM
1610304-005	MW-3-101816	10/18/2016 12:55 PM	10/19/2016 9:19 AM
1610304-006	MW-4-101816	10/18/2016 1:40 PM	10/19/2016 9:19 AM
1610304-007	MW-1-101816	10/18/2016 2:30 PM	10/19/2016 9:19 AM
1610304-008	Trip Blank		10/19/2016 9:19 AM

Case Narrative

WO#: **1610304**Date: **10/25/2016**

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1610304**

Date Reported: 10/25/2016

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD. <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 9:50:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1610304-001 Matrix: Groundwater

Client Sample ID: MW-6-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	260C		Batc	h ID: 15	210 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Chloromethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Vinyl chloride	ND	0.200		μg/L	1	10/21/2016 4:37:23 PM
Bromomethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Chloroethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,1-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Methylene chloride	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,1-Dichloroethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
2,2-Dichloropropane	ND	2.00		μg/L	1	10/21/2016 4:37:23 PM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Chloroform	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,1-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Carbon tetrachloride	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Benzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Trichloroethene (TCE)	ND	0.500		μg/L	1	10/21/2016 4:37:23 PM
1,2-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Bromodichloromethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Dibromomethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Toluene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,3-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Dibromochloromethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	10/21/2016 4:37:23 PM
Chlorobenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Ethylbenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
m,p-Xylene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
o-Xylene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Styrene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Isopropylbenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Bromoform	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 9:50:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1610304-001 Matrix: Groundwater

Client Sample ID: MW-6-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by I	EPA Method	8260C		Batc	h ID: 15	210 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
n-Propylbenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Bromobenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
2-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
4-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
tert-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	10/21/2016 4:37:23 PM
sec-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
n-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	10/21/2016 4:37:23 PM
Naphthalene	ND	1.00		μg/L	1	10/21/2016 4:37:23 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	10/21/2016 4:37:23 PM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	10/21/2016 4:37:23 PM
Surr: Toluene-d8	90.9	40.1-139		%Rec	1	10/21/2016 4:37:23 PM
Surr: 1-Bromo-4-fluorobenzene	98.9	64.2-128		%Rec	1	10/21/2016 4:37:23 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 10:40:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1610304-002 Matrix: Groundwater

Client Sample ID: MW-7-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	260C		Batc	h ID: 15	210 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Chloromethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Vinyl chloride	ND	0.200		μg/L	1	10/21/2016 5:06:44 PM
Bromomethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Chloroethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,1-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Methylene chloride	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,1-Dichloroethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
2,2-Dichloropropane	ND	2.00		μg/L	1	10/21/2016 5:06:44 PM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Chloroform	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,1-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Carbon tetrachloride	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Benzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Trichloroethene (TCE)	ND	0.500		μg/L	1	10/21/2016 5:06:44 PM
1,2-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Bromodichloromethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Dibromomethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Toluene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,3-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Tetrachloroethene (PCE)	10.6	1.00		μg/L	1	10/21/2016 5:06:44 PM
Dibromochloromethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	10/21/2016 5:06:44 PM
Chlorobenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Ethylbenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
m,p-Xylene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
o-Xylene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Styrene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Isopropylbenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Bromoform	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 10:40:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1610304-002 Matrix: Groundwater

Client Sample ID: MW-7-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID: 15	210 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
n-Propylbenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Bromobenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
2-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
4-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
tert-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	10/21/2016 5:06:44 PM
sec-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
n-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	10/21/2016 5:06:44 PM
Naphthalene	ND	1.00		μg/L	1	10/21/2016 5:06:44 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	10/21/2016 5:06:44 PM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	10/21/2016 5:06:44 PM
Surr: Toluene-d8	101	40.1-139		%Rec	1	10/21/2016 5:06:44 PM
Surr: 1-Bromo-4-fluorobenzene	97.7	64.2-128		%Rec	1	10/21/2016 5:06:44 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 11:20:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1610304-003 Matrix: Groundwater

Client Sample ID: MW-2-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	260C		Batc	h ID: 15	210 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Chloromethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Vinyl chloride	ND	0.200		μg/L	1	10/21/2016 6:05:20 PM
Bromomethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Chloroethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,1-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Methylene chloride	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,1-Dichloroethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
2,2-Dichloropropane	ND	2.00		μg/L	1	10/21/2016 6:05:20 PM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Chloroform	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,1-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Carbon tetrachloride	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Benzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Trichloroethene (TCE)	ND	0.500		μg/L	1	10/21/2016 6:05:20 PM
1,2-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Bromodichloromethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Dibromomethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Toluene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,3-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Tetrachloroethene (PCE)	214	10.0	D	μg/L	10	10/24/2016 7:32:11 PM
Dibromochloromethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	10/21/2016 6:05:20 PM
Chlorobenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Ethylbenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
m,p-Xylene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
o-Xylene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Styrene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Isopropylbenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Bromoform	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 11:20:00 AM

Project: Lake Stevens Marketplace

Lab ID: 1610304-003 Matrix: Groundwater

Client Sample ID: MW-2-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID: 152	210 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
n-Propylbenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Bromobenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
2-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
4-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
tert-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	10/21/2016 6:05:20 PM
sec-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
n-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	10/21/2016 6:05:20 PM
Naphthalene	ND	1.00		μg/L	1	10/21/2016 6:05:20 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	10/21/2016 6:05:20 PM
Surr: Dibromofluoromethane	100	45.4-152		%Rec	1	10/21/2016 6:05:20 PM
Surr: Toluene-d8	98.4	40.1-139		%Rec	1	10/21/2016 6:05:20 PM
Surr: 1-Bromo-4-fluorobenzene	96.2	64.2-128		%Rec	1	10/21/2016 6:05:20 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 12:10:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1610304-004 Matrix: Groundwater

Client Sample ID: MW-5-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	260C		Batc	h ID: 15	210 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Chloromethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Vinyl chloride	ND	0.200		μg/L	1	10/21/2016 6:34:42 PM
Bromomethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Chloroethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,1-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Methylene chloride	1.34	1.00		μg/L	1	10/21/2016 6:34:42 PM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,1-Dichloroethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
2,2-Dichloropropane	ND	2.00		μg/L	1	10/21/2016 6:34:42 PM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Chloroform	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,1-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Carbon tetrachloride	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Benzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Trichloroethene (TCE)	ND	0.500		μg/L	1	10/21/2016 6:34:42 PM
1,2-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Bromodichloromethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Dibromomethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Toluene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,3-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Dibromochloromethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	10/21/2016 6:34:42 PM
Chlorobenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Ethylbenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
m,p-Xylene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
o-Xylene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Styrene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Isopropylbenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Bromoform	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 12:10:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1610304-004 Matrix: Groundwater

Client Sample ID: MW-5-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by EPA Method 8260C					h ID: 15	210 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
n-Propylbenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Bromobenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
2-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
4-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
tert-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	10/21/2016 6:34:42 PM
sec-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
n-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	10/21/2016 6:34:42 PM
Naphthalene	ND	1.00		μg/L	1	10/21/2016 6:34:42 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	10/21/2016 6:34:42 PM
Surr: Dibromofluoromethane	100	45.4-152		%Rec	1	10/21/2016 6:34:42 PM
Surr: Toluene-d8	90.4	40.1-139		%Rec	1	10/21/2016 6:34:42 PM
Surr: 1-Bromo-4-fluorobenzene	96.8	64.2-128		%Rec	1	10/21/2016 6:34:42 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 12:55:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1610304-005 Matrix: Groundwater

Client Sample ID: MW-3-101816

Result RL Qual **Units** DF **Date Analyzed Analyses** Batch ID: 15210 Analyst: NG Volatile Organic Compounds by EPA Method 8260C Dichlorodifluoromethane (CFC-12) 16.6 1.00 10/21/2016 7:03:58 PM μg/L 1 Chloromethane ND 1.00 µg/L 1 10/21/2016 7:03:58 PM Vinyl chloride ND 0.200 μg/L 1 10/21/2016 7:03:58 PM Bromomethane ND 1.00 10/21/2016 7:03:58 PM μg/L Trichlorofluoromethane (CFC-11) ND 10/21/2016 7:03:58 PM 1.00 1 μg/L 10/21/2016 7:03:58 PM Chloroethane ND 1.00 µg/L 1 1,1-Dichloroethene ND 1.00 µg/L 1 10/21/2016 7:03:58 PM Methylene chloride ND 1.00 μg/L 1 10/21/2016 7:03:58 PM trans-1,2-Dichloroethene ND 1.00 µg/L 1 10/21/2016 7:03:58 PM Methyl tert-butyl ether (MTBE) ND 1.00 1 10/21/2016 7:03:58 PM μg/L 1,1-Dichloroethane ND 1.00 µg/L 1 10/21/2016 7:03:58 PM ND 2,2-Dichloropropane 2.00 µg/L 1 10/21/2016 7:03:58 PM cis-1,2-Dichloroethene ND 1.00 10/21/2016 7:03:58 PM µg/L ND Chloroform 1.00 µg/L 1 10/21/2016 7:03:58 PM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 10/21/2016 7:03:58 PM ND 1,1-Dichloropropene 1.00 µg/L 1 10/21/2016 7:03:58 PM Carbon tetrachloride ND 1.00 µg/L 1 10/21/2016 7:03:58 PM ND 1,2-Dichloroethane (EDC) 1.00 µg/L 1 10/21/2016 7:03:58 PM Benzene ND 1.00 1 10/21/2016 7:03:58 PM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 10/21/2016 7:03:58 PM 1,2-Dichloropropane ND 1.00 1 10/21/2016 7:03:58 PM µg/L Bromodichloromethane ND 1.00 µg/L 1 10/21/2016 7:03:58 PM Dibromomethane ND 1.00 1 10/21/2016 7:03:58 PM µg/L ND 10/21/2016 7:03:58 PM cis-1,3-Dichloropropene 1.00 µg/L ND Toluene 1.00 1 10/21/2016 7:03:58 PM µg/L trans-1,3-Dichloropropylene ND 1.00 µg/L 1 10/21/2016 7:03:58 PM 1,1,2-Trichloroethane ND 1.00 µg/L 1 10/21/2016 7:03:58 PM 1,3-Dichloropropane ND 1.00 μg/L 1 10/21/2016 7:03:58 PM Tetrachloroethene (PCE) ND 1.00 µg/L 1 10/21/2016 7:03:58 PM Dibromochloromethane ND 1.00 1 10/21/2016 7:03:58 PM μg/L 1,2-Dibromoethane (EDB) ND 0.0600 µg/L 1 10/21/2016 7:03:58 PM Chlorobenzene ND 1.00 1 10/21/2016 7:03:58 PM μg/L 1,1,1,2-Tetrachloroethane ND 1.00 1 10/21/2016 7:03:58 PM μg/L ND Ethylbenzene 1.00 1 10/21/2016 7:03:58 PM μg/L m,p-Xylene ND 1.00 10/21/2016 7:03:58 PM μg/L 1 ND o-Xylene 1.00 µg/L 1 10/21/2016 7:03:58 PM Styrene ND 1.00 µg/L 1 10/21/2016 7:03:58 PM ND 10/21/2016 7:03:58 PM Isopropylbenzene 1.00 μg/L 1 **Bromoform** ND 1.00 μg/L 1 10/21/2016 7:03:58 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 12:55:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1610304-005 Matrix: Groundwater

Client Sample ID: MW-3-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by EPA Method 8260C					h ID: 15	210 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
n-Propylbenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
Bromobenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
2-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
4-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
tert-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	10/21/2016 7:03:58 PM
sec-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
n-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	10/21/2016 7:03:58 PM
Naphthalene	ND	1.00		μg/L	1	10/21/2016 7:03:58 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	10/21/2016 7:03:58 PM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	10/21/2016 7:03:58 PM
Surr: Toluene-d8	100	40.1-139		%Rec	1	10/21/2016 7:03:58 PM
Surr: 1-Bromo-4-fluorobenzene	97.0	64.2-128		%Rec	1	10/21/2016 7:03:58 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 1:40:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1610304-006 Matrix: Groundwater

Client Sample ID: MW-4-101816

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
/olatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: 15	210 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Chloromethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Vinyl chloride	ND	0.200		μg/L	1	10/21/2016 7:33:24 PM
Bromomethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Chloroethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,1-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Methylene chloride	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,1-Dichloroethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
2,2-Dichloropropane	ND	2.00		μg/L	1	10/21/2016 7:33:24 PM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Chloroform	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,1-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Carbon tetrachloride	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Benzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Trichloroethene (TCE)	ND	0.500		μg/L	1	10/21/2016 7:33:24 PM
1,2-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Bromodichloromethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Dibromomethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Toluene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,3-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Dibromochloromethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	10/21/2016 7:33:24 PM
Chlorobenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Ethylbenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
m,p-Xylene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
o-Xylene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Styrene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Isopropylbenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM
Bromoform	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 1:40:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1610304-006 Matrix: Groundwater

Client Sample ID: MW-4-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Volatile Organic Compounds by EPA Method 8260C					h ID: 15	5210 Analyst: NG	
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
n-Propylbenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
Bromobenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
2-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
4-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
tert-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,2,3-Trichloropropane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	10/21/2016 7:33:24 PM	
sec-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
4-Isopropyltoluene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,3-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,4-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
n-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,2-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	10/21/2016 7:33:24 PM	
Naphthalene	ND	1.00		μg/L	1	10/21/2016 7:33:24 PM	
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	10/21/2016 7:33:24 PM	
Surr: Dibromofluoromethane	100	45.4-152		%Rec	1	10/21/2016 7:33:24 PM	
Surr: Toluene-d8	98.0	40.1-139		%Rec	1	10/21/2016 7:33:24 PM	
Surr: 1-Bromo-4-fluorobenzene	94.9	64.2-128		%Rec	1	10/21/2016 7:33:24 PM	

Work Order: **1610304**Date Reported: **10/25/2016**

Client: PES Environmental, Inc. Collection Date: 10/18/2016 2:30:00 PM

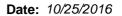
Project: Lake Stevens Marketplace

Lab ID: 1610304-007 Matrix: Groundwater

Client Sample ID: MW-1-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	260C		Batc	h ID: 15	210 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Chloromethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Vinyl chloride	ND	0.200		μg/L	1	10/21/2016 8:02:35 PM
Bromomethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Chloroethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,1-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Methylene chloride	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,1-Dichloroethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
2,2-Dichloropropane	ND	2.00		μg/L	1	10/21/2016 8:02:35 PM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Chloroform	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,1-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Carbon tetrachloride	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Benzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Trichloroethene (TCE)	ND	0.500		μg/L	1	10/21/2016 8:02:35 PM
1,2-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Bromodichloromethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Dibromomethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Toluene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
trans-1,3-Dichloropropylene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,3-Dichloropropane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Dibromochloromethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	10/21/2016 8:02:35 PM
Chlorobenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Ethylbenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
m,p-Xylene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
o-Xylene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Styrene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Isopropylbenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Bromoform	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM

Work Order: **1610304**Date Reported: **10/25/2016**

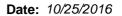

Client: PES Environmental, Inc. Collection Date: 10/18/2016 2:30:00 PM

Project: Lake Stevens Marketplace

Lab ID: 1610304-007 Matrix: Groundwater

Client Sample ID: MW-1-101816

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by EPA Method 8260C					h ID: 15	210 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
n-Propylbenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Bromobenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
2-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
4-Chlorotoluene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
tert-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	10/21/2016 8:02:35 PM
sec-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
4-Isopropyltoluene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
n-Butylbenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	10/21/2016 8:02:35 PM
Naphthalene	ND	1.00		μg/L	1	10/21/2016 8:02:35 PM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	10/21/2016 8:02:35 PM
Surr: Dibromofluoromethane	99.8	45.4-152		%Rec	1	10/21/2016 8:02:35 PM
Surr: Toluene-d8	90.8	40.1-139		%Rec	1	10/21/2016 8:02:35 PM
Surr: 1-Bromo-4-fluorobenzene	95.3	64.2-128		%Rec	1	10/21/2016 8:02:35 PM

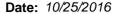

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-15210	SampType: LCS			Units: µg/L		Prep Da	te: 10/21/2	2016	RunNo: 324	486	
Client ID: LCSW	Batch ID: 15210					Analysis Da	te: 10/21/2	2016	SeqNo: 614	4927	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	19.6	1.00	20.00	0	97.9	43	136				
Chloromethane	18.3	1.00	20.00	0	91.6	43.9	139				
Vinyl chloride	20.7	0.200	20.00	0	104	53.6	139				
Bromomethane	29.0	1.00	20.00	0	145	42.5	152				
Trichlorofluoromethane (CFC-11)	19.6	1.00	20.00	0	98.2	56.4	143				
Chloroethane	20.4	1.00	20.00	0	102	53	141				
1,1-Dichloroethene	20.6	1.00	20.00	0	103	65.6	136				
Methylene chloride	20.7	1.00	20.00	0	104	67.1	131				
trans-1,2-Dichloroethene	21.1	1.00	20.00	0	105	71.7	129				
Methyl tert-butyl ether (MTBE)	20.2	1.00	20.00	0	101	67.7	131				
1,1-Dichloroethane	22.6	1.00	20.00	0	113	67.9	134				
2,2-Dichloropropane	31.4	2.00	20.00	0	157	33.7	152				S
cis-1,2-Dichloroethene	21.3	1.00	20.00	0	107	70.2	139				
Chloroform	20.8	1.00	20.00	0	104	66.3	131				
1,1,1-Trichloroethane (TCA)	21.0	1.00	20.00	0	105	71	131				
1,1-Dichloropropene	21.0	1.00	20.00	0	105	69.9	124				
Carbon tetrachloride	21.8	1.00	20.00	0	109	66.2	134				
1,2-Dichloroethane (EDC)	19.5	1.00	20.00	0	97.5	68.8	123				
Benzene	21.3	1.00	20.00	0	107	69.3	132				
Trichloroethene (TCE)	20.9	0.500	20.00	0	104	65.2	136				
1,2-Dichloropropane	21.8	1.00	20.00	0	109	70.5	130				
Bromodichloromethane	20.8	1.00	20.00	0	104	67.2	137				
Dibromomethane	20.3	1.00	20.00	0	101	75.5	126				
cis-1,3-Dichloropropene	22.1	1.00	20.00	0	111	62.6	137				
Toluene	20.3	1.00	20.00	0	101	61.3	145				
trans-1,3-Dichloropropylene	22.2	1.00	20.00	0	111	58.5	142				
1,1,2-Trichloroethane	18.7	1.00	20.00	0	93.6	71.7	131				
1,3-Dichloropropane	18.5	1.00	20.00	0	92.7	73.5	127				
Tetrachloroethene (PCE)	19.9	1.00	20.00	0	99.6	47.5	147				
Dibromochloromethane	19.6	1.00	20.00	0	98.1	67.2	134				
1,2-Dibromoethane (EDB)	18.4	0.0600	20.00	0	91.9	73.6	125				

Original Page 19 of 30


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-15210	SampType: LCS			Units: µg/L		Prep Da	te: 10/21/2	2016	RunNo: 32	486	
Client ID: LCSW	Batch ID: 15210					Analysis Da	te: 10/21/2	2016	SeqNo: 61	4927	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	21.5	1.00	20.00	0	107	73.9	126				
1,1,1,2-Tetrachloroethane	22.3	1.00	20.00	0	112	76.8	124				
Ethylbenzene	21.0	1.00	20.00	0	105	72	130				
m,p-Xylene	42.3	1.00	40.00	0	106	70.3	134				
o-Xylene	20.9	1.00	20.00	0	104	72.1	131				
Styrene	21.0	1.00	20.00	0	105	64.3	140				
Isopropylbenzene	21.1	1.00	20.00	0	105	73.9	128				
Bromoform	21.7	1.00	20.00	0	108	55.3	141				
1,1,2,2-Tetrachloroethane	18.6	1.00	20.00	0	93.0	62.9	132				
n-Propylbenzene	21.4	1.00	20.00	0	107	74.5	127				
Bromobenzene	21.3	1.00	20.00	0	106	71	131				
1,3,5-Trimethylbenzene	21.4	1.00	20.00	0	107	73.1	128				
2-Chlorotoluene	21.3	1.00	20.00	0	106	70.8	130				
4-Chlorotoluene	21.3	1.00	20.00	0	107	70.1	131				
tert-Butylbenzene	21.2	1.00	20.00	0	106	68.2	131				
1,2,3-Trichloropropane	18.8	1.00	20.00	0	93.8	67.7	131				
1,2,4-Trichlorobenzene	21.1	2.00	20.00	0	106	51.8	152				
sec-Butylbenzene	21.1	1.00	20.00	0	106	72	129				
4-Isopropyltoluene	21.3	1.00	20.00	0	106	69.2	130				
1,3-Dichlorobenzene	22.1	1.00	20.00	0	111	71	115				
1,4-Dichlorobenzene	21.3	1.00	20.00	0	106	66.8	119				
n-Butylbenzene	22.8	1.00	20.00	0	114	73.8	127				
1,2-Dichlorobenzene	21.3	1.00	20.00	0	107	69.7	119				
1,2-Dibromo-3-chloropropane	21.3	1.00	20.00	0	107	63.1	136				
1,2,4-Trimethylbenzene	21.5	1.00	20.00	0	107	73.4	127				
Hexachloro-1,3-butadiene	23.6	4.00	20.00	0	118	58.6	138				
Naphthalene	19.1	1.00	20.00	0	95.4	41.8	165				
1,2,3-Trichlorobenzene	19.7	4.00	20.00	0	98.6	48.7	156				
Surr: Dibromofluoromethane	25.2		25.00	· ·	101	45.4	152				
Surr: Toluene-d8	23.6		25.00		94.4	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	26.2		25.00		105	64.2	128				

Original Page 20 of 30

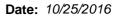
QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

 Sample ID
 LCS-15210
 SampType: LCS
 Units: μg/L
 Prep Date: 10/21/2016
 RunNo: 32486

Client ID: LCSW Batch ID: 15210 Analysis Date: 10/21/2016 SeqNo: 614927


Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Sample ID LCSD-15210	SampType: LCSD			Units: µg/L	_	Prep Da	te: 10/21/2	2016	RunNo: 324	186	_
Client ID: LCSW02	Batch ID: 15210					Analysis Da	te: 10/21/2	2016	SeqNo: 614	1926	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	18.9	1.00	20.00	0	94.4	43	136	19.57	3.58	20	
Chloromethane	18.2	1.00	20.00	0	90.8	43.9	139	18.33	0.955	20	
Vinyl chloride	21.4	0.200	20.00	0	107	53.6	139	20.72	3.06	20	
Bromomethane	28.1	1.00	20.00	0	140	42.5	152	29.04	3.45	20	
Trichlorofluoromethane (CFC-11)	19.9	1.00	20.00	0	99.3	56.4	143	19.64	1.13	20	
Chloroethane	21.0	1.00	20.00	0	105	53	141	20.35	3.21	20	
1,1-Dichloroethene	21.0	1.00	20.00	0	105	65.6	136	20.61	1.80	20	
Methylene chloride	21.5	1.00	20.00	0	108	67.1	131	20.70	3.80	20	
trans-1,2-Dichloroethene	21.0	1.00	20.00	0	105	71.7	129	21.05	0.246	20	
Methyl tert-butyl ether (MTBE)	22.2	1.00	20.00	0	111	67.7	131	20.19	9.57	20	
1,1-Dichloroethane	22.0	1.00	20.00	0	110	67.9	134	22.55	2.70	20	
2,2-Dichloropropane	30.8	2.00	20.00	0	154	33.7	152	31.39	1.88	20	S
cis-1,2-Dichloroethene	21.5	1.00	20.00	0	108	70.2	139	21.33	0.953	20	
Chloroform	20.7	1.00	20.00	0	103	66.3	131	20.78	0.462	20	
1,1,1-Trichloroethane (TCA)	21.4	1.00	20.00	0	107	71	131	20.97	1.83	20	
1,1-Dichloropropene	22.0	1.00	20.00	0	110	69.9	124	20.98	4.59	20	
Carbon tetrachloride	21.8	1.00	20.00	0	109	66.2	134	21.75	0.371	20	
1,2-Dichloroethane (EDC)	20.5	1.00	20.00	0	103	68.8	123	19.49	5.18	20	
Benzene	21.8	1.00	20.00	0	109	69.3	132	21.32	2.19	20	
Trichloroethene (TCE)	21.3	0.500	20.00	0	106	65.2	136	20.87	1.86	20	
1,2-Dichloropropane	22.3	1.00	20.00	0	111	70.5	130	21.76	2.24	20	
Bromodichloromethane	21.3	1.00	20.00	0	107	74.6	127	20.83	2.24	20	
Dibromomethane	21.6	1.00	20.00	0	108	75.5	126	20.28	6.09	20	
cis-1,3-Dichloropropene	22.9	1.00	20.00	0	115	62.6	137	22.12	3.63	20	

Original Page 21 of 30

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCSD-15210	SampType: LCSD			Units: µg/L		Prep Da	te: 10/21/2	2016	RunNo: 324	486	
Client ID: LCSW02	Batch ID: 15210					Analysis Da	te: 10/21/2	2016	SeqNo: 614	4926	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	20.6	1.00	20.00	0	103	61.3	145	20.30	1.37	20	
trans-1,3-Dichloropropylene	22.5	1.00	20.00	0	112	58.5	142	22.16	1.38	20	
1,1,2-Trichloroethane	20.0	1.00	20.00	0	99.9	71.7	131	18.71	6.52	20	
1,3-Dichloropropane	19.7	1.00	20.00	0	98.6	73.5	127	18.55	6.15	20	
Tetrachloroethene (PCE)	19.7	1.00	20.00	0	98.7	47.5	147	19.93	0.969	20	
Dibromochloromethane	20.8	1.00	20.00	0	104	67.2	134	19.61	5.65	20	
1,2-Dibromoethane (EDB)	20.2	0.0600	20.00	0	101	73.6	125	18.38	9.64	20	
Chlorobenzene	21.6	1.00	20.00	0	108	73.9	126	21.49	0.595	20	
1,1,1,2-Tetrachloroethane	22.7	1.00	20.00	0	113	76.8	124	22.33	1.64	20	
Ethylbenzene	21.2	1.00	20.00	0	106	72	130	21.00	0.979	20	
m,p-Xylene	42.8	1.00	40.00	0	107	70.3	134	42.27	1.25	20	
o-Xylene	21.0	1.00	20.00	0	105	72.1	131	20.86	0.848	20	
Styrene	21.3	1.00	20.00	0	107	64.3	140	21.01	1.61	20	
Isopropylbenzene	21.3	1.00	20.00	0	106	73.9	128	21.08	0.968	20	
Bromoform	23.3	1.00	20.00	0	117	55.3	141	21.66	7.46	20	
1,1,2,2-Tetrachloroethane	20.9	1.00	20.00	0	104	62.9	132	18.60	11.6	20	
n-Propylbenzene	21.4	1.00	20.00	0	107	74.5	127	21.37	0.285	20	
Bromobenzene	22.0	1.00	20.00	0	110	71	131	21.27	3.24	20	
1,3,5-Trimethylbenzene	21.3	1.00	20.00	0	107	73.1	128	21.40	0.288	20	
2-Chlorotoluene	21.7	1.00	20.00	0	108	70.8	130	21.28	1.77	20	
4-Chlorotoluene	21.3	1.00	20.00	0	106	70.1	131	21.34	0.264	20	
tert-Butylbenzene	21.3	1.00	20.00	0	107	68.2	131	21.21	0.552	20	
1,2,3-Trichloropropane	21.7	1.00	20.00	0	108	67.7	131	18.75	14.5	20	
1,2,4-Trichlorobenzene	21.8	2.00	20.00	0	109	51.8	152	21.13	3.26	20	
sec-Butylbenzene	21.3	1.00	20.00	0	107	72	129	21.14	0.797	20	
4-Isopropyltoluene	21.5	1.00	20.00	0	107	69.2	130	21.27	0.866	20	
1,3-Dichlorobenzene	22.0	1.00	20.00	0	110	71	115	22.14	0.816	20	
1,4-Dichlorobenzene	21.3	1.00	20.00	0	107	66.8	119	21.26	0.370	20	
n-Butylbenzene	22.6	1.00	20.00	0	113	73.8	127	22.80	0.874	20	
1,2-Dichlorobenzene	21.9	1.00	20.00	0	110	69.7	119	21.32	2.87	20	
1,2-Dibromo-3-chloropropane	25.0	1.00	20.00	0	125	63.1	136	21.32	16.0	20	

Original Page 22 of 30

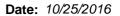
Date: 10/25/2016

Work Order: 1610304

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C


Sample ID LCSD-15210	SampType: LCSD			Units: µg/L		Prep Dat	te: 10/21/ 2	2016	RunNo: 324	486	
Client ID: LCSW02	Batch ID: 15210					Analysis Da	te: 10/21/ 2	2016	SeqNo: 614	4926	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trimethylbenzene	21.6	1.00	20.00	0	108	73.4	127	21.48	0.578	20	
Hexachloro-1,3-butadiene	23.4	4.00	20.00	0	117	58.6	138	23.56	0.492	20	
Naphthalene	21.7	1.00	20.00	0	108	41.8	165	19.08	12.7	20	
1,2,3-Trichlorobenzene	20.9	4.00	20.00	0	105	48.7	156	19.73	6.00	20	
Surr: Dibromofluoromethane	25.7		25.00		103	45.4	152		0		
Surr: Toluene-d8	23.4		25.00		93.6	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	26.6		25.00		106	64.2	128		0		
NOTES:											

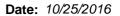
NOTES:

S - Outlying spike recovery observed (high bias). Samples are non-detect for this analyte; no further action required.

Sample ID MB-15210	SampType: MBLK			Units: µg/L		Prep Da	te: 10/21/ 2	2016	RunNo: 324	486	·
Client ID: MBLKW	Batch ID: 15210					Analysis Da	te: 10/21/ 2	2016	SeqNo: 614	4928	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00									
Chloromethane	ND	1.00									
Vinyl chloride	ND	0.200									
Bromomethane	ND	1.00									
Trichlorofluoromethane (CFC-11)	ND	1.00									
Chloroethane	ND	1.00									
1,1-Dichloroethene	ND	1.00									
Methylene chloride	ND	1.00									
trans-1,2-Dichloroethene	ND	1.00									
Methyl tert-butyl ether (MTBE)	ND	1.00									
1,1-Dichloroethane	ND	1.00									
2,2-Dichloropropane	ND	2.00									
cis-1,2-Dichloroethene	ND	1.00									
Chloroform	ND	1.00									
1,1,1-Trichloroethane (TCA)	ND	1.00									
1,1-Dichloropropene	ND	1.00									
Carbon tetrachloride	ND	1.00									

Original Page 23 of 30

Project:


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc. Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

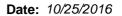
Sample ID MB-15210	SampType: MBLK			Units: µg/L		Prep Da	ite: 10/21/2	2016	RunNo: 32	486	
Client ID: MBLKW	Batch ID: 15210					Analysis Da	ite: 10/21/2	2016	SeqNo: 61	4928	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,2-Dichloroethane (EDC)	ND	1.00									
Benzene	ND	1.00									
Trichloroethene (TCE)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
Bromodichloromethane	ND	1.00									
Dibromomethane	ND	1.00									
cis-1,3-Dichloropropene	ND	1.00									
Toluene	ND	1.00									
trans-1,3-Dichloropropylene	ND	1.00									
1,1,2-Trichloroethane	ND	1.00									
1,3-Dichloropropane	ND	1.00									
Tetrachloroethene (PCE)	ND	1.00									
Dibromochloromethane	ND	1.00									
1,2-Dibromoethane (EDB)	ND	0.0600									
Chlorobenzene	ND	1.00									
1,1,1,2-Tetrachloroethane	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Styrene	ND	1.00									
Isopropylbenzene	ND	1.00									
Bromoform	ND	1.00									
1,1,2,2-Tetrachloroethane	ND	1.00									
n-Propylbenzene	ND	1.00									
Bromobenzene	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
2-Chlorotoluene	ND	1.00									
4-Chlorotoluene	ND	1.00									
tert-Butylbenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									
1,2,4-Trichlorobenzene	ND	2.00									
											04 (

Page 24 of 30 Original

Project:

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.


Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-15210	SampType: MBLK			Units: µg/L		Prep Dat	e: 10/21/2016	RunNo: 32486	
Client ID: MBLKW	Batch ID: 15210					Analysis Da	te: 10/21/2016	SeqNo: 614928	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref	Val %RPD RPDLimit	Qual
sec-Butylbenzene	ND	1.00							
4-Isopropyltoluene	ND	1.00							
1,3-Dichlorobenzene	ND	1.00							
1,4-Dichlorobenzene	ND	1.00							
n-Butylbenzene	ND	1.00							
1,2-Dichlorobenzene	ND	1.00							
1,2-Dibromo-3-chloropropane	ND	1.00							
1,2,4-Trimethylbenzene	ND	1.00							
Hexachloro-1,3-butadiene	ND	4.00							
Naphthalene	ND	1.00							
1,2,3-Trichlorobenzene	ND	4.00							
Surr: Dibromofluoromethane	24.9		25.00		99.5	45.4	152		
Surr: Toluene-d8	23.1		25.00		92.5	40.1	139		
Surr: 1-Bromo-4-fluorobenzene	24.5		25.00		97.9	64.2	128		

Sample ID 1610304-002ADUP	SampType: DUP			Units: µg/L		Prep Date: 10/21	/2016	RunNo: 32486	
Client ID: MW-7-101816	Batch ID: 15210					Analysis Date: 10/21	/2016	SeqNo: 615128	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimi	t RPD Ref Val	%RPD RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00					0	30	
Chloromethane	ND	1.00					0	30)
Vinyl chloride	ND	0.200					0	30)
Bromomethane	ND	1.00					0	30)
Trichlorofluoromethane (CFC-11)	ND	1.00					0	30)
Chloroethane	ND	1.00					0	30)
1,1-Dichloroethene	ND	1.00					0	30)
Methylene chloride	ND	1.00					0	30)
trans-1,2-Dichloroethene	ND	1.00					0	30)
Methyl tert-butyl ether (MTBE)	ND	1.00					0	30)
1,1-Dichloroethane	ND	1.00					0	30	1

Original Page 25 of 30

Project:

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1610304-002ADUP	SampType: DUP			Units: µg/L		Prep Dat	e: 10/21/ 2	2016	RunNo: 32	486	
Client ID: MW-7-101816	Batch ID: 15210					Analysis Da	e: 10/21/	2016	SeqNo: 61	5128	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,2-Dichloropropane	ND	2.00						0		30	
cis-1,2-Dichloroethene	ND	1.00						0		30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropylene	ND	1.00						0		30	
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	9.62	1.00						10.56	9.26	30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.0600						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	

Original Page 26 of 30

Date: 10/25/2016

Work Order: 1610304

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.
Project: Lake Stevens Marketplace

Volatile Organic Compounds by EPA Method 8260C

Troject.	is Marketplace										
Sample ID 1610304-002ADUP	SampType: DUP			Units: µg/L		Prep Date	e: 10/21/	2016	RunNo: 32 4	186	
Client ID: MW-7-101816	Batch ID: 15210					Analysis Dat	e: 10/21/	2016	SeqNo: 615	128	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3,5-Trimethylbenzene	ND	1.00						0		30	
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachloro-1,3-butadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	25.1		25.00		100	45.4	152		0		
Surr: Toluene-d8	23.1		25.00		92.3	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	24.1		25.00		96.3	64.2	128		0		

Original Page 27 of 30

Sample Log-In Check List

CI	lient Name: PES	Work Order Numb	er: 1610304	
Lo	ogged by: Erica Silva	Date Received:	10/19/20	16 9:19:00 AM
<u>Cha</u>	nin of Custody			
1.	Is Chain of Custody complete?	Yes 🗹	No \square	Not Present
2.	How was the sample delivered?	<u>Client</u>		
Log	ı İn			
_	Coolers are present?	Yes 🗸	No 🗌	NA \square
٠.				
4.	Shipping container/cooler in good condition?	Yes 🗹	No 🗌	
5.	Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes	No 🗌	Not Required 🗹
6.	Was an attempt made to cool the samples?	Yes 🗸	No \square	NA \square
7.	Were all items received at a temperature of >0°C to 10.0°C*	Yes 🗹	No 🗌	na 🗆
8.	Sample(s) in proper container(s)?	Yes 🗸	No 🗌	
-	Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗌	
10.	Are samples properly preserved?	Yes 🗹	No 🗌	
11.	Was preservative added to bottles?	Yes	No 🗸	NA \square
12.	Is there headspace in the VOA vials?	Yes	No 🗸	NA 🗌
13.	Did all samples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
14.	Does paperwork match bottle labels?	Yes 🗸	No \square	
15.	Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗌	
16.	Is it clear what analyses were requested?	Yes 🗸	No 🗌	
17.	Were all holding times able to be met?	Yes 🗸	No 🗌	
<u>Spe</u>	ecial Handling (if applicable)			
-	Was client notified of all discrepancies with this order?	Yes	No \square	NA 🗹
	Person Notified: Dat	te		
	By Whom: Via		one Fax	☐ In Person
	Regarding:			
	Client Instructions:			

Item Information

Item #	Temp ºC
Cooler	1.4
Sample	0.9
Temp Blank	0.8

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Chain of Custody Record and Laboratory Services Agreement	boratory Services Agreement
Date: 10/18/16	Laboratory Project No (internal): 100304
1 K 1	Page: of:
Client: QES Entironness and Inc. Project No: 1346, 035,03 Col	C. De Brev
Suite 1350 Location: Lake 54	
Telephone: (206) 524 - 3980 Fax: (206) 524 - 3985 PM Email: 600 cas (2) 00 00 00 00 00 00 00 00 00 00 00 00 00	Agency of the Section
A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Solid, W = Water, DW = Drinking Water, GW = Ground Water	rm Water, WW = Waste Water
Sample Sample	
me Date Time (Matrix)* \\ \(\omega \) \\\ \(\omega \) \\ \(\omega \) \\ \(\omega \) \\\ \(\omega \) \\ \(\omega \) \\\ \(\omega \) \\\ \(\omega \) \\ \(\omega \) \\\\ \(\omega \) \\\ \(\omega \) \\\ \(\omega \) \\\\ \\ \omega \) \\\\ \omega \) \\\\ \(\omega \) \\\\ \\ \	Comments
101	
2010101	The state of the s
5-101816	
-3-101816	
6 MW - 4-101816 1348 X	
7 MW-8-101816 + 1430 1 X	
8 TRIP BLANK , I N	
**Metals Analysis (Circle): MTCA-5 RCRA-8 Priority Pollutants TAL Individual: Ag Al As B Ba Be Ca Cd Co Cr Cu Fe Hg K Mg Mn Mo Na Ni	Pb Sb Se Sr Sn Ti Tl U V Zn
***Anions (Circle): Nitrate Nitrite Chloride Sulfate Bromide O-Phosphate Fluoride Nitrate+Nitrite received after 4-00cm will begin	Special Remarks:
Sample Disposal: Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be on the following business days.)	
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	
* Our bound 10/19/16 918 * Nove 7- 10/19/16 09:19	
Date/Time Received Date/Time	TAT → SameDay [^] NextDay [^] 2 Day 3 Day STB [^] Please coordinate with the lab in advance
	In Please coordinate with the lab in advance

Erom	Ont	Ļ				Ch	ain	of C	ust	ody	y R	eco	rd	and	d La	boratory Services Agreement
Frem		-								Date:		al s	116			Laboratory Project No (internal):
	. 206 252 270											1.0	1"			Page: of:
	: 206-352-379 : 206-352-71									<i>i</i> \		11			4	v
0E5 C		1.1	7				_	ct Name		241	~2	JAC 3	ven	6 1	C-II	ketplace lected by: C. De Boer
Client: $VESE$ Address: $VESE$	4 Ave	Sude	1350			=.0	Proje Locat		4	5 1 -		teve				lected by:
City, State, Zip:		981	. 1			3		rt To (PN	— 1):	49		0'1	- 6	~/		
Telephone: (206) 529~			(206) 5:	29-30	185	_	PM E			A.		@ pe		V. U	m	
*Matrix Codes: A = Air, AQ = Aqueous, B			<u> </u>		<u> </u>	SL = Soli	d, W=\	Vater, D	W = Dr			_				orm Water, WW = Waste Water
						/	//	1	HOD	E OF	/	//	8.1	//	//	
					/2	»//	//	STILE STOPE	of class	85 Ju	n / 20%	20/2	80/	//	//	
			Cample	,	28010	//	Jego S	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 A	270/8	367 E	V 0129	/:/		V/	
	Sample	Sample	Sample Type		\$ 15 / E	+ Solic	The state of	elles (315	Things			//	
Sample Name	Date	Time	(Matrix)*	N.			4 Q	/ 3/	Ť		Ť	Ť	Ť	\mathcal{T}	$\overline{}$	Comments
1MU-6-101816	10/18/16		4W	Θ	+-1				-		-					
2 MW-7 101816		1049		Θ	+	+	+		-	\vdash	-			-	-	
3 MW-9-101819		1130				_				\vdash	_					
4 MW-5-101816		1310		X.					-		_			\perp	\perp	
5 MW-3-101816		1255		X					\perp							
6 MW - 4-101816		1340		XL												Charge Name from MW-8-101 816
7 MW-8-101816	1	1430	1	X											Ao	MW-1-101816
8 TRIP BLANK	,		W										X			Chis De Boes 10/24/16
9																
10																
**Metals Analysis (Circle): MTCA-5	RCRA-8	Priority Pollu	tants T	AL Ind	lividual:	Ag Al A	As B Ba	Be Ca	Cd Co	o Cr Cı	u Fe	Hg K I	Mg Mn	l oM	Na Ni P	Pb Sb Se Sr Sn Ti Tl U V Zn
***Anions (Circle): Nitrate Nitri					O-Phosp		Fluori			Nitrite		urn-arou eceived a			•	Special Remarks
Sample Disposal: Return to		Disposal by assessed if:					ess othe	rwise not	ed. A fe	e may b		n the fol			_	_
I represent that I am authorized to e agreement to each of the terms on the					ytical or	behalf	of the	Client na	med a	bove, t	that I	have ve	rified	Client	s	
Relinquished	Date/Time			7155-	ceived	(100	ate/Tim	e					†
	0/19/16	919	>		No	ne	1			19//	6	09	119	<i>†</i>		TAT) SameDayA NovtDayA 2 Day 2 Day CTG
Relinquished D	Date/Time			х	ceived	/			U	ate/ HM	c					TAT → SameDay^ NextDay^ 2 Day 3 Day STD

Distribution: White - Lab, Yellow - File, Pink - Originator

MEMORANDUM

TO: Project File **DATE:** October 27, 2016

FROM: Jessie Compeau

SUBJECT: Laboratory Data Validation Review

PROJECT: Lake Stevens Marketplace

PROJECT #: 1246.038.03.002

TASK: October 18, 2016 Groundwater Samples

LAB: Fremont Analytical Service Request No. 1610304

Seven groundwater samples and a trip blank were collected at the Lake Stevens Marketplace Site in Snohomish County on October 18, 2016. The samples were collected as part of a Limited Phase II Investigation at the Site. The samples were delivered to Fremont Analytical (Fremont) of Seattle, Washington for laboratory analysis. Samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The results were reported in Fremont Lab Package 1610304.

The quality assurance review of the laboratory data is summarized below.

DATA QUALIFICATIONS

Guidelines established by USEPA for review of analytical data were used to validate the data. The comments presented in this memorandum refer to the laboratory's performance in meeting the quality control criteria outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2016).

DATA VALIDATION

Sample Receipt, Preservation and Handling

The samples were delivered to the project laboratory in coolers under standard chain-of-custody protocols. Review of Fremont's Sample Log-In Check List Form indicates that all samples were received in good condition within the recommended preservation temperature of less than 6.0°C. The sample receipt log indicated that the samples in the coolers were received properly stored in a cooler, preserved, and cooled with ice/gel packs and in good condition at the time of laboratory receipt. No data qualifications were assigned due to temperature preservation issues.

Sample MW-8-101816 identification was corrected by Fremont to read MW-1-101816 per PES's request on October 24, 2016.

Holding Times

All samples were analyzed for VOCs within the USEPA recommended holding time of fourteen days for preserved waters from the date of sample collection. All holding time criteria were met.

Initial and Continuing Calibration

Initial and continuing calibration data for this project are retained by the laboratory and available for review if necessary. The case narrative did not indicate any issues with calibration; therefore no qualifications were warranted.

Method Blank Results

A laboratory method blank was included with the analytical batch per method requirement. The target analytes were not detected in the method blank at or above the method reporting limits (MRLs). No qualifications of the data were made due to the results of the method blank analyses.

Trip Blank Results

A trip blank was collected but not analyzed. No action was taken other than this.

Laboratory Duplicate Analyses

Laboratory duplicate sample analyses were performed on client sample MW-7-101816. The primary/duplicate relative percent differences (RPDs) for VOCs were within the laboratory control limit of 30%. Duplicate data are acceptable.

Field Duplicate Analyses

Field duplicate samples were not collected. Refer to laboratory duplicate data for precision data.

Surrogate Recoveries

The surrogate recovery results for the samples, laboratory duplicates, laboratory control samples (LCS), and the method blank were within the laboratory surrogate control limits for all of the analyses.

Matrix Spike/ Matrix Spike Duplicates

A matrix spike (MS) analysis was not performed. Refer to LCS/LCSD and laboratory duplicate data for accuracy and precision.

Laboratory Control Samples

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) was analyzed by USEPA Method 8260C. The LCS/LCSD %Rs and RPDs for the all target compounds were within the laboratory control criteria for water with the following exceptions:

• VOC compound 2,2-dichloropropane % R's were elevated and above acceptance criteria. No action was taken as these compounds were not detected at or above the MRL in the associated samples.

Quantitation Limits

Results of all analyses were reported based on standard laboratory MRLs. The reported MRLs are considered appropriate for this project. No data qualifiers were warranted based upon standard detection limits.

Completeness

The samples were collected and analyzed as requested. The results in all cases were reported based upon standard Method Reporting Limits (MRLs). Data completeness is 100%.

Data Assessment

The laboratory data reported for this project were reviewed based on laboratory control limit acceptance criteria and criteria outlined in:

 USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2016)

No data qualifiers were assigned. All data are judged to be acceptable for their intended use.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

PES Environmental, Inc.

Brian O'Neal 1215 Fourth Avenue, Suite 1350 Seattle, WA 98161

RE: Lake Stevens Shopping Center Work Order Number: 1701202

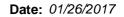
January 26, 2017

Attention Brian O'Neal:

Fremont Analytical, Inc. received 8 sample(s) on 1/19/2017 for the analyses presented in the following report.

Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:


- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Chelsea Ward Project Manager

CLIENT: PES Environmental, Inc. Work Order Sample Summary

Project: Lake Stevens Shopping Center

Work Order: 1701202

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1701202-001	MW-1-011917	01/19/2017 9:20 AM	01/19/2017 2:00 PM
1701202-002	MW-2-011917	01/19/2017 10:05 AM	01/19/2017 2:00 PM
1701202-003	MW-5-011917	01/19/2017 10:40 AM	01/19/2017 2:00 PM
1701202-004	MW-6-011917	01/19/2017 11:20 AM	01/19/2017 2:00 PM
1701202-005	MW-7-011917	01/19/2017 11:55 AM	01/19/2017 2:00 PM
1701202-006	MW-3-011917	01/19/2017 12:40 PM	01/19/2017 2:00 PM
1701202-007	MW-4-011917	01/19/2017 1:15 PM	01/19/2017 2:00 PM
1701202-008	Trip Blank	01/11/2017 12:04 PM	01/19/2017 2:00 PM

Case Narrative

WO#: **1701202**Date: **1/26/2017**

CLIENT: PES Environmental, Inc.

Project: Lake Stevens Shopping Center

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **1701202**

Date Reported: 1/26/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 9:20:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-001 Matrix: Groundwater

Client Sample ID: MW-1-011917

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 16001 Analyst: NG ND 1.00 Dichlorodifluoromethane (CFC-12) µg/L 1 1/24/2017 6:00:53 AM Chloromethane ND 1.00 µg/L 1 1/24/2017 6:00:53 AM Vinyl chloride ND 0.200 µg/L 1 1/24/2017 6:00:53 AM Bromomethane ND 1.00 1 1/24/2017 6:00:53 AM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 1/24/2017 6:00:53 AM Chloroethane ND 1.00 μg/L 1/24/2017 6:00:53 AM 1 1,1-Dichloroethene ND 1.00 µg/L 1 1/24/2017 6:00:53 AM ND Methylene chloride 1.00 µg/L 1 1/24/2017 6:00:53 AM trans-1,2-Dichloroethene ND 1.00 1/24/2017 6:00:53 AM µg/L 1 ND 1.00 Methyl tert-butyl ether (MTBE) 1 1/24/2017 6:00:53 AM μg/L 1/24/2017 6:00:53 AM 1,1-Dichloroethane ND 1.00 µg/L 1 2,2-Dichloropropane ND 2.00 Q 1/24/2017 6:00:53 AM µg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 6:00:53 AM Chloroform ND 1.00 µg/L 1 1/24/2017 6:00:53 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 1/24/2017 6:00:53 AM 1,1-Dichloropropene ND 1.00 µg/L 1 1/24/2017 6:00:53 AM Carbon tetrachloride ND 1.00 1/24/2017 6:00:53 AM µg/L 1 1,2-Dichloroethane (EDC) ND 1/24/2017 6:00:53 AM 1.00 µq/L 1 ND Benzene 1.00 1 1/24/2017 6:00:53 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 6:00:53 AM 1,2-Dichloropropane ND 1.00 µg/L 1 1/24/2017 6:00:53 AM Bromodichloromethane ND 1.00 µg/L 1 1/24/2017 6:00:53 AM ND Dibromomethane 1.00 µg/L 1 1/24/2017 6:00:53 AM cis-1,3-Dichloropropene ND 1.00 1 1/24/2017 6:00:53 AM µg/L Toluene ND 1.00 µg/L 1 1/24/2017 6:00:53 AM trans-1,3-Dichloropropylene ND 1.00 O µg/L 1 1/24/2017 6:00:53 AM 1,1,2-Trichloroethane ND 1/24/2017 6:00:53 AM 1.00 µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 1/24/2017 6:00:53 AM Tetrachloroethene (PCE) ND 1.00 µg/L 1 1/24/2017 6:00:53 AM Dibromochloromethane ND 1.00 μg/L 1 1/24/2017 6:00:53 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 6:00:53 AM Chlorobenzene ND 1.00 µg/L 1 1/24/2017 6:00:53 AM 1.1.1.2-Tetrachloroethane ND 1.00 1 1/24/2017 6:00:53 AM µg/L Ethylbenzene ND 1.00 µg/L 1 1/24/2017 6:00:53 AM ND 1.00 1/24/2017 6:00:53 AM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 1/24/2017 6:00:53 AM ND 1/24/2017 6:00:53 AM Styrene 1.00 µg/L 1 Isopropylbenzene ND 1.00 μg/L 1 1/24/2017 6:00:53 AM Bromoform ND 1.00 µg/L 1 1/24/2017 6:00:53 AM

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 9:20:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-001 Matrix: Groundwater

Client Sample ID: MW-1-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: ′	16001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 6:00:53 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	1/24/2017 6:00:53 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	1/24/2017 6:00:53 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 6:00:53 AM
Surr: Toluene-d8	96.7	40.1-139		%Rec	1	1/24/2017 6:00:53 AM
Surr: 1-Bromo-4-fluorobenzene	95.0	64.2-128		%Rec	1	1/24/2017 6:00:53 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 10:05:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-002 Matrix: Groundwater

Client Sample ID: MW-2-011917

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 16001 Analyst: NG Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Chloromethane ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Vinyl chloride ND 0.200 µg/L 1 1/24/2017 6:58:11 AM Bromomethane ND 1.00 1 1/24/2017 6:58:11 AM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Chloroethane ND 1.00 μg/L 1/24/2017 6:58:11 AM 1 1,1-Dichloroethene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM ND Methylene chloride 1.00 µg/L 1 1/24/2017 6:58:11 AM trans-1,2-Dichloroethene ND 1.00 1/24/2017 6:58:11 AM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 1/24/2017 6:58:11 AM μg/L ND 1/24/2017 6:58:11 AM 1,1-Dichloroethane 1.00 µg/L 1 2,2-Dichloropropane ND 2.00 Q 1/24/2017 6:58:11 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Chloroform ND 1.00 µg/L 1 1/24/2017 6:58:11 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 1/24/2017 6:58:11 AM 1,1-Dichloropropene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Carbon tetrachloride ND 1.00 1/24/2017 6:58:11 AM µg/L 1 1,2-Dichloroethane (EDC) ND 1/24/2017 6:58:11 AM 1.00 µq/L 1 ND Benzene 1.00 1 1/24/2017 6:58:11 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 6:58:11 AM 1,2-Dichloropropane ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Bromodichloromethane ND 1.00 µg/L 1 1/24/2017 6:58:11 AM ND Dibromomethane 1.00 µg/L 1 1/24/2017 6:58:11 AM cis-1,3-Dichloropropene ND 1.00 1 1/24/2017 6:58:11 AM µg/L Toluene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM trans-1,3-Dichloropropylene ND 1.00 0 µg/L 1 1/24/2017 6:58:11 AM 1,1,2-Trichloroethane ND 1/24/2017 6:58:11 AM 1.00 µg/L 1 ND 1,3-Dichloropropane 1.00 1/24/2017 6:58:11 AM μg/L 1 D Tetrachloroethene (PCE) 114 10.0 µg/L 10 1/24/2017 2:23:23 PM Dibromochloromethane ND 1.00 μg/L 1 1/24/2017 6:58:11 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 6:58:11 AM Chlorobenzene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM 1.1.1.2-Tetrachloroethane ND 1.00 1/24/2017 6:58:11 AM µg/L 1 Ethylbenzene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM ND 1.00 1/24/2017 6:58:11 AM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM ND Styrene 1.00 µg/L 1 1/24/2017 6:58:11 AM Isopropylbenzene ND 1.00 μg/L 1 1/24/2017 6:58:11 AM Bromoform ND 1.00 µg/L 1 1/24/2017 6:58:11 AM

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 10:05:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-002 Matrix: Groundwater

Client Sample ID: MW-2-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: 1	6001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 6:58:11 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	1/24/2017 6:58:11 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	1/24/2017 6:58:11 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 6:58:11 AM
Surr: Toluene-d8	97.2	40.1-139		%Rec	1	1/24/2017 6:58:11 AM
Surr: 1-Bromo-4-fluorobenzene	94.0	64.2-128		%Rec	1	1/24/2017 6:58:11 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 10:40:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-003 Matrix: Groundwater

Client Sample ID: MW-5-011917

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 16001 Analyst: NG ND 1.00 Dichlorodifluoromethane (CFC-12) µg/L 1 1/24/2017 7:26:47 AM Chloromethane ND 1.00 µg/L 1 1/24/2017 7:26:47 AM Vinyl chloride ND 0.200 µg/L 1 1/24/2017 7:26:47 AM Bromomethane ND 1.00 1 1/24/2017 7:26:47 AM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 1/24/2017 7:26:47 AM Chloroethane ND 1.00 μg/L 1/24/2017 7:26:47 AM 1 1,1-Dichloroethene ND 1.00 µg/L 1 1/24/2017 7:26:47 AM ND Methylene chloride 1.00 µg/L 1 1/24/2017 7:26:47 AM trans-1,2-Dichloroethene ND 1.00 1/24/2017 7:26:47 AM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 1/24/2017 7:26:47 AM μg/L 1,1-Dichloroethane ND 1.00 µg/L 1 1/24/2017 7:26:47 AM 2,2-Dichloropropane ND 2.00 Q 1/24/2017 7:26:47 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 7:26:47 AM Chloroform ND 1.00 µg/L 1 1/24/2017 7:26:47 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 1/24/2017 7:26:47 AM 1,1-Dichloropropene ND 1.00 µg/L 1 1/24/2017 7:26:47 AM Carbon tetrachloride ND 1.00 µg/L 1 1/24/2017 7:26:47 AM 1,2-Dichloroethane (EDC) ND 1/24/2017 7:26:47 AM 1.00 µq/L 1 ND Benzene 1.00 1 1/24/2017 7:26:47 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 7:26:47 AM 1,2-Dichloropropane ND 1.00 µg/L 1 1/24/2017 7:26:47 AM Bromodichloromethane ND 1.00 µg/L 1 1/24/2017 7:26:47 AM ND Dibromomethane 1.00 µg/L 1 1/24/2017 7:26:47 AM cis-1,3-Dichloropropene ND 1.00 1 1/24/2017 7:26:47 AM µg/L Toluene ND 1.00 µg/L 1 1/24/2017 7:26:47 AM trans-1,3-Dichloropropylene ND 1.00 O µg/L 1 1/24/2017 7:26:47 AM 1,1,2-Trichloroethane ND 1/24/2017 7:26:47 AM 1.00 µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 1/24/2017 7:26:47 AM Tetrachloroethene (PCE) ND 1.00 µg/L 1 1/24/2017 7:26:47 AM Dibromochloromethane ND 1.00 μg/L 1 1/24/2017 7:26:47 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 7:26:47 AM Chlorobenzene ND 1.00 µg/L 1 1/24/2017 7:26:47 AM 1.1.1.2-Tetrachloroethane ND 1.00 1/24/2017 7:26:47 AM µg/L 1 Ethylbenzene ND 1.00 µg/L 1 1/24/2017 7:26:47 AM ND 1.00 m,p-Xylene µg/L 1 1/24/2017 7:26:47 AM o-Xylene ND 1.00 µg/L 1 1/24/2017 7:26:47 AM ND Styrene 1.00 µg/L 1 1/24/2017 7:26:47 AM Isopropylbenzene ND 1.00 μg/L 1 1/24/2017 7:26:47 AM Bromoform ND 1.00 µg/L 1 1/24/2017 7:26:47 AM

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 10:40:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-003 Matrix: Groundwater

Client Sample ID: MW-5-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: 1	6001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 7:26:47 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	1/24/2017 7:26:47 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	1/24/2017 7:26:47 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 7:26:47 AM
Surr: Toluene-d8	97.4	40.1-139		%Rec	1	1/24/2017 7:26:47 AM
Surr: 1-Bromo-4-fluorobenzene	94.7	64.2-128		%Rec	1	1/24/2017 7:26:47 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 11:20:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-004 Matrix: Groundwater

Client Sample ID: MW-6-011917

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 16001 Analyst: NG ND 1.00 Dichlorodifluoromethane (CFC-12) µg/L 1 1/24/2017 7:55:24 AM Chloromethane ND 1.00 µg/L 1 1/24/2017 7:55:24 AM Vinyl chloride ND 0.200 µg/L 1 1/24/2017 7:55:24 AM Bromomethane ND 1.00 1 1/24/2017 7:55:24 AM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 1/24/2017 7:55:24 AM ND 1.00 μg/L 1/24/2017 7:55:24 AM Chloroethane 1 1,1-Dichloroethene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM ND Methylene chloride 1.00 µg/L 1 1/24/2017 7:55:24 AM trans-1,2-Dichloroethene ND 1.00 1/24/2017 7:55:24 AM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 1/24/2017 7:55:24 AM μg/L 1,1-Dichloroethane ND 1.00 µg/L 1 1/24/2017 7:55:24 AM 2,2-Dichloropropane ND 2.00 Q 1/24/2017 7:55:24 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM Chloroform ND 1.00 µg/L 1 1/24/2017 7:55:24 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 1/24/2017 7:55:24 AM 1,1-Dichloropropene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM Carbon tetrachloride ND 1.00 µg/L 1 1/24/2017 7:55:24 AM 1,2-Dichloroethane (EDC) ND 1/24/2017 7:55:24 AM 1.00 µq/L 1 ND Benzene 1.00 1 1/24/2017 7:55:24 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 7:55:24 AM 1,2-Dichloropropane ND 1.00 µg/L 1 1/24/2017 7:55:24 AM Bromodichloromethane ND 1.00 µg/L 1 1/24/2017 7:55:24 AM ND Dibromomethane 1.00 µg/L 1 1/24/2017 7:55:24 AM cis-1,3-Dichloropropene ND 1.00 1 1/24/2017 7:55:24 AM µg/L Toluene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM trans-1,3-Dichloropropylene ND 1.00 O µg/L 1 1/24/2017 7:55:24 AM 1,1,2-Trichloroethane ND 1/24/2017 7:55:24 AM 1.00 µg/L 1 ND 1,3-Dichloropropane 1.00 1 1/24/2017 7:55:24 AM μg/L Tetrachloroethene (PCE) 1.44 1.00 µg/L 1 1/24/2017 7:55:24 AM ND Dibromochloromethane 1.00 μg/L 1 1/24/2017 7:55:24 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 7:55:24 AM Chlorobenzene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM 1.1.1.2-Tetrachloroethane ND 1.00 1/24/2017 7:55:24 AM µg/L 1 Ethylbenzene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM ND 1.00 m,p-Xylene µg/L 1 1/24/2017 7:55:24 AM o-Xylene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM ND Styrene 1.00 µg/L 1 1/24/2017 7:55:24 AM Isopropylbenzene ND 1.00 μg/L 1 1/24/2017 7:55:24 AM Bromoform ND 1.00 µg/L 1 1/24/2017 7:55:24 AM

Work Order: 1701202 Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 11:20:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-004 Matrix: Groundwater

Client Sample ID: MW-6-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: 1	6001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 7:55:24 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	1/24/2017 7:55:24 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	1/24/2017 7:55:24 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 7:55:24 AM
Surr: Toluene-d8	97.4	40.1-139		%Rec	1	1/24/2017 7:55:24 AM
Surr: 1-Bromo-4-fluorobenzene	95.4	64.2-128		%Rec	1	1/24/2017 7:55:24 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 11:55:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-005 Matrix: Groundwater

Client Sample ID: MW-7-011917

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 16001 Analyst: NG ND 1.00 Dichlorodifluoromethane (CFC-12) µg/L 1 1/24/2017 8:24:06 AM Chloromethane ND 1.00 µg/L 1 1/24/2017 8:24:06 AM Vinyl chloride ND 0.200 µg/L 1 1/24/2017 8:24:06 AM Bromomethane ND 1.00 1 1/24/2017 8:24:06 AM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 1/24/2017 8:24:06 AM Chloroethane ND 1.00 μg/L 1/24/2017 8:24:06 AM 1 1,1-Dichloroethene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM ND Methylene chloride 1.00 µg/L 1 1/24/2017 8:24:06 AM trans-1,2-Dichloroethene ND 1.00 1/24/2017 8:24:06 AM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 1/24/2017 8:24:06 AM μg/L ND 1,1-Dichloroethane 1.00 µg/L 1 1/24/2017 8:24:06 AM 2,2-Dichloropropane ND 2.00 Q 1/24/2017 8:24:06 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM Chloroform 1.04 1.00 µg/L 1 1/24/2017 8:24:06 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 1/24/2017 8:24:06 AM 1,1-Dichloropropene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM Carbon tetrachloride ND 1.00 1/24/2017 8:24:06 AM µg/L 1 1,2-Dichloroethane (EDC) ND 1/24/2017 8:24:06 AM 1.00 µq/L 1 ND Benzene 1.00 1 1/24/2017 8:24:06 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 8:24:06 AM 1,2-Dichloropropane ND 1.00 µg/L 1 1/24/2017 8:24:06 AM Bromodichloromethane ND 1.00 µg/L 1 1/24/2017 8:24:06 AM ND Dibromomethane 1.00 µg/L 1 1/24/2017 8:24:06 AM cis-1,3-Dichloropropene ND 1.00 1 1/24/2017 8:24:06 AM µg/L Toluene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM trans-1,3-Dichloropropylene ND 1.00 Q µg/L 1 1/24/2017 8:24:06 AM 1,1,2-Trichloroethane ND 1/24/2017 8:24:06 AM 1.00 µg/L 1 ND 1,3-Dichloropropane 1.00 1/24/2017 8:24:06 AM μg/L 1 D Tetrachloroethene (PCE) 126 10.0 µg/L 10 1/24/2017 2:52:05 PM Dibromochloromethane ND 1.00 μg/L 1 1/24/2017 8:24:06 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 8:24:06 AM Chlorobenzene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM 1.1.1.2-Tetrachloroethane ND 1.00 1/24/2017 8:24:06 AM µg/L 1 Ethylbenzene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM ND 1.00 1/24/2017 8:24:06 AM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM ND Styrene 1.00 µg/L 1 1/24/2017 8:24:06 AM Isopropylbenzene ND 1.00 μg/L 1 1/24/2017 8:24:06 AM Bromoform ND 1.00 µg/L 1 1/24/2017 8:24:06 AM

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 11:55:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-005 Matrix: Groundwater

Client Sample ID: MW-7-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: ′	16001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 8:24:06 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	1/24/2017 8:24:06 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 8:24:06 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	1/24/2017 8:24:06 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 8:24:06 AM
Surr: Toluene-d8	98.5	40.1-139		%Rec	1	1/24/2017 8:24:06 AM
Surr: 1-Bromo-4-fluorobenzene	93.7	64.2-128		%Rec	1	1/24/2017 8:24:06 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 12:40:00 PM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-006 Matrix: Groundwater

Client Sample ID: MW-3-011917

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 16001 Analyst: NG 1.00 Dichlorodifluoromethane (CFC-12) 2.95 µg/L 1 1/24/2017 8:52:47 AM Chloromethane ND 1.00 µg/L 1 1/24/2017 8:52:47 AM ND Vinyl chloride 0.200 µg/L 1 1/24/2017 8:52:47 AM Bromomethane ND 1.00 1 1/24/2017 8:52:47 AM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 1/24/2017 8:52:47 AM Chloroethane ND 1.00 μg/L 1/24/2017 8:52:47 AM 1 1,1-Dichloroethene ND 1.00 µg/L 1 1/24/2017 8:52:47 AM ND Methylene chloride 1.00 µg/L 1 1/24/2017 8:52:47 AM trans-1,2-Dichloroethene ND 1.00 1/24/2017 8:52:47 AM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 1/24/2017 8:52:47 AM μg/L 1/24/2017 8:52:47 AM 1,1-Dichloroethane ND 1.00 µg/L 1 2,2-Dichloropropane ND 2.00 Q 1/24/2017 8:52:47 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 8:52:47 AM Chloroform ND 1.00 µg/L 1 1/24/2017 8:52:47 AM 1,1,1-Trichloroethane (TCA) ND 1.00 μg/L 1 1/24/2017 8:52:47 AM 1,1-Dichloropropene ND 1.00 µg/L 1 1/24/2017 8:52:47 AM Carbon tetrachloride ND 1.00 1/24/2017 8:52:47 AM µg/L 1 1,2-Dichloroethane (EDC) ND 1/24/2017 8:52:47 AM 1.00 µq/L 1 ND Benzene 1.00 1 1/24/2017 8:52:47 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 8:52:47 AM 1,2-Dichloropropane ND 1.00 µg/L 1 1/24/2017 8:52:47 AM Bromodichloromethane ND 1.00 µg/L 1 1/24/2017 8:52:47 AM ND Dibromomethane 1.00 µg/L 1 1/24/2017 8:52:47 AM cis-1,3-Dichloropropene ND 1.00 1 1/24/2017 8:52:47 AM µg/L Toluene ND 1.00 µg/L 1 1/24/2017 8:52:47 AM trans-1,3-Dichloropropylene ND 1.00 0 µg/L 1 1/24/2017 8:52:47 AM 1,1,2-Trichloroethane ND 1/24/2017 8:52:47 AM 1.00 µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 1/24/2017 8:52:47 AM Tetrachloroethene (PCE) ND 1.00 µg/L 1 1/24/2017 8:52:47 AM Dibromochloromethane ND 1.00 μg/L 1 1/24/2017 8:52:47 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 8:52:47 AM Chlorobenzene ND 1.00 µg/L 1 1/24/2017 8:52:47 AM 1.1.1.2-Tetrachloroethane ND 1.00 1/24/2017 8:52:47 AM µg/L 1 Ethylbenzene ND 1.00 µg/L 1 1/24/2017 8:52:47 AM ND 1.00 1/24/2017 8:52:47 AM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 1/24/2017 8:52:47 AM ND Styrene 1.00 µg/L 1 1/24/2017 8:52:47 AM Isopropylbenzene ND 1.00 μg/L 1 1/24/2017 8:52:47 AM Bromoform ND 1.00 µg/L 1 1/24/2017 8:52:47 AM

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 12:40:00 PM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-006 Matrix: Groundwater

Client Sample ID: MW-3-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID: 16	6001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 8:52:47 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	1/24/2017 8:52:47 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	1/24/2017 8:52:47 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 8:52:47 AM
Surr: Toluene-d8	99.1	40.1-139		%Rec	1	1/24/2017 8:52:47 AM
Surr: 1-Bromo-4-fluorobenzene	95.0	64.2-128		%Rec	1	1/24/2017 8:52:47 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 1:15:00 PM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-007 Matrix: Groundwater

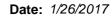
Client Sample ID: MW-4-011917

Qual Units DF **Analyses** Result RL **Date Analyzed Volatile Organic Compounds by EPA Method 8260C** Batch ID: 16001 Analyst: NG ND 1.00 Dichlorodifluoromethane (CFC-12) µg/L 1 1/24/2017 9:21:39 AM Chloromethane ND 1.00 µg/L 1 1/24/2017 9:21:39 AM Vinyl chloride ND 0.200 µg/L 1 1/24/2017 9:21:39 AM Bromomethane ND 1.00 1 1/24/2017 9:21:39 AM µg/L Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 1/24/2017 9:21:39 AM Chloroethane ND 1.00 μg/L 1/24/2017 9:21:39 AM 1 1,1-Dichloroethene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM ND Methylene chloride 1.00 µg/L 1 1/24/2017 9:21:39 AM trans-1,2-Dichloroethene ND 1.00 1/24/2017 9:21:39 AM µg/L ND 1.00 Methyl tert-butyl ether (MTBE) 1 1/24/2017 9:21:39 AM μg/L 1/24/2017 9:21:39 AM 1,1-Dichloroethane ND 1.00 µg/L 1 2,2-Dichloropropane ND 2.00 Q 1/24/2017 9:21:39 AM μg/L 1 cis-1.2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM Chloroform ND 1.00 µg/L 1 1/24/2017 9:21:39 AM 1,1,1-Trichloroethane (TCA) ND 1.00 1/24/2017 9:21:39 AM μg/L 1 1,1-Dichloropropene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM Carbon tetrachloride ND 1.00 1/24/2017 9:21:39 AM µg/L 1 1,2-Dichloroethane (EDC) ND 1/24/2017 9:21:39 AM 1.00 µq/L 1 ND Benzene 1.00 1 1/24/2017 9:21:39 AM μg/L Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 9:21:39 AM 1,2-Dichloropropane ND 1.00 µg/L 1 1/24/2017 9:21:39 AM Bromodichloromethane ND 1.00 µg/L 1 1/24/2017 9:21:39 AM ND Dibromomethane 1.00 µg/L 1 1/24/2017 9:21:39 AM cis-1,3-Dichloropropene ND 1.00 1 1/24/2017 9:21:39 AM µg/L Toluene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM trans-1,3-Dichloropropylene ND 1.00 O µg/L 1 1/24/2017 9:21:39 AM 1,1,2-Trichloroethane ND 1/24/2017 9:21:39 AM 1.00 µg/L 1 ND 1,3-Dichloropropane 1.00 µg/L 1 1/24/2017 9:21:39 AM Tetrachloroethene (PCE) ND 1.00 µg/L 1 1/24/2017 9:21:39 AM Dibromochloromethane ND 1.00 μg/L 1 1/24/2017 9:21:39 AM 1.2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 9:21:39 AM Chlorobenzene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM 1.1.1.2-Tetrachloroethane ND 1.00 1/24/2017 9:21:39 AM µg/L 1 Ethylbenzene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM ND 1.00 1/24/2017 9:21:39 AM m,p-Xylene µg/L 1 o-Xylene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM ND 1/24/2017 9:21:39 AM Styrene 1.00 µg/L 1 Isopropylbenzene ND 1.00 μg/L 1 1/24/2017 9:21:39 AM Bromoform ND 1.00 µg/L 1 1/24/2017 9:21:39 AM

Work Order: **1701202**Date Reported: **1/26/2017**

Client: PES Environmental, Inc. Collection Date: 1/19/2017 1:15:00 PM

Project: Lake Stevens Shopping Center


Lab ID: 1701202-007 Matrix: Groundwater

Client Sample ID: MW-4-011917

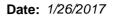
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method 8	3260C		Batc	h ID: ′	16001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 9:21:39 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	1/24/2017 9:21:39 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 9:21:39 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	1/24/2017 9:21:39 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 9:21:39 AM
Surr: Toluene-d8	99.2	40.1-139		%Rec	1	1/24/2017 9:21:39 AM
Surr: 1-Bromo-4-fluorobenzene	94.8	64.2-128		%Rec	1	1/24/2017 9:21:39 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Project:

QC SUMMARY REPORT

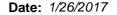

CLIENT: PES Environmental, Inc.

Lake Stevens Shopping Center

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-16001	SampType: LCS			Units: µg/L		Prep Dat	te: 1/23/20	17	RunNo: 340	032	
Client ID: LCSW	Batch ID: 16001					Analysis Da	te: 1/23/2 0	17	SeqNo: 647	7759	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	19.1	1.00	20.00	0	95.7	43	136				
Chloromethane	19.9	1.00	20.00	0	99.3	40.4	150				
Vinyl chloride	20.1	0.200	20.00	0	100	48	145				
Bromomethane	15.2	1.00	20.00	0	76.2	43.2	166				
Trichlorofluoromethane (CFC-11)	20.0	1.00	20.00	0	100	43.5	149				
Chloroethane	20.8	1.00	20.00	0	104	43.8	168				
1,1-Dichloroethene	20.2	1.00	20.00	0	101	65.6	136				
Methylene chloride	20.7	1.00	20.00	0	104	67.1	131				
trans-1,2-Dichloroethene	20.5	1.00	20.00	0	102	71.7	129				
Methyl tert-butyl ether (MTBE)	22.3	1.00	20.00	0	112	67.7	131				
1,1-Dichloroethane	20.5	1.00	20.00	0	103	67.9	134				
2,2-Dichloropropane	19.2	2.00	20.00	0	96.0	33.7	152				
cis-1,2-Dichloroethene	20.5	1.00	20.00	0	103	70.2	139				
Chloroform	20.4	1.00	20.00	0	102	66.3	131				
1,1,1-Trichloroethane (TCA)	20.5	1.00	20.00	0	103	71	131				
1,1-Dichloropropene	20.5	1.00	20.00	0	102	69.9	124				
Carbon tetrachloride	20.8	1.00	20.00	0	104	66.2	134				
1,2-Dichloroethane (EDC)	21.2	1.00	20.00	0	106	67	126				
Benzene	20.4	1.00	20.00	0	102	69.3	132				
Trichloroethene (TCE)	20.0	0.500	20.00	0	100	65.2	136				
1,2-Dichloropropane	20.9	1.00	20.00	0	105	70.5	130				
Bromodichloromethane	19.9	1.00	20.00	0	99.6	67.2	137				
Dibromomethane	20.8	1.00	20.00	0	104	75.5	126				
cis-1,3-Dichloropropene	19.6	1.00	20.00	0	98.0	62.6	137				
Toluene	20.7	1.00	20.00	0	103	61.3	145				
trans-1,3-Dichloropropylene	20.0	1.00	20.00	0	100	56.5	163				
1,1,2-Trichloroethane	21.0	1.00	20.00	0	105	71.7	131				
1,3-Dichloropropane	21.0	1.00	20.00	0	105	73.5	127				
Tetrachloroethene (PCE)	20.9	1.00	20.00	0	104	47.5	147				
Dibromochloromethane	20.5	1.00	20.00	0	102	67.2	134				
1,2-Dibromoethane (EDB)	21.6	0.0600	20.00	0	108	73.6	125				

Original Page 19 of 29


QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-16001	SampType: LCS			Units: µg/L		Prep Da	te: 1/23/20	017	RunNo: 34032			
Client ID: LCSW	Batch ID: 16001					Analysis Date: 1/23/2017			SeqNo: 647759			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Chlorobenzene	20.1	1.00	20.00	0	101	73.9	126					
1,1,1,2-Tetrachloroethane	20.5	1.00	20.00	0	102	76.8	124					
Ethylbenzene	20.1	1.00	20.00	0	101	72	130					
m,p-Xylene	40.5	1.00	40.00	0	101	70.3	134					
o-Xylene	20.0	1.00	20.00	0	100	72.1	131					
Styrene	20.3	1.00	20.00	0	101	64.3	140					
Isopropylbenzene	20.3	1.00	20.00	0	101	73.9	128					
Bromoform	20.4	1.00	20.00	0	102	55.3	141					
1,1,2,2-Tetrachloroethane	21.6	1.00	20.00	0	108	62.9	132					
n-Propylbenzene	20.4	1.00	20.00	0	102	74.5	127					
Bromobenzene	20.7	1.00	20.00	0	104	71	131					
1,3,5-Trimethylbenzene	20.4	1.00	20.00	0	102	73.1	128					
2-Chlorotoluene	20.2	1.00	20.00	0	101	70.8	130					
4-Chlorotoluene	20.4	1.00	20.00	0	102	70.1	131					
tert-Butylbenzene	20.4	1.00	20.00	0	102	68.2	131					
1,2,3-Trichloropropane	22.8	1.00	20.00	0	114	67.7	131					
1,2,4-Trichlorobenzene	21.6	2.00	20.00	0	108	51.8	152					
sec-Butylbenzene	20.4	1.00	20.00	0	102	72	129					
4-Isopropyltoluene	20.2	1.00	20.00	0	101	69.2	130					
1,3-Dichlorobenzene	20.8	1.00	20.00	0	104	71	115					
1,4-Dichlorobenzene	20.7	1.00	20.00	0	103	66.8	119					
n-Butylbenzene	21.0	1.00	20.00	0	105	73.8	127					
1,2-Dichlorobenzene	20.8	1.00	20.00	0	104	69.7	119					
1,2-Dibromo-3-chloropropane	22.0	1.00	20.00	0	110	63.1	136					
1,2,4-Trimethylbenzene	20.5	1.00	20.00	0	103	73.4	127					
Hexachloro-1,3-butadiene	20.8	4.00	20.00	0	104	58.6	138					
Naphthalene	23.2	1.00	20.00	0	116	41.8	165					
1,2,3-Trichlorobenzene	21.9	4.00	20.00	0	110	48.7	156					
Surr: Dibromofluoromethane	26.0		25.00		104	45.4	152					
Surr: Toluene-d8	25.4		25.00		102	40.1	139					
Surr: 1-Bromo-4-fluorobenzene	25.7		25.00		103	64.2	128					

Page 20 of 29 Original

Sample ID LCS-16001

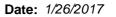
QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Volatile Organic Compounds by EPA Method 8260C

Project: Lake Stevens Shopping Center

SampType: LCS


Units: µg/L Prep Date: 1/23/2017 RunNo: 34032

Client ID: **LCSW** Batch ID: **16001** Analysis Date: **1/23/2017** SeqNo: **647759**

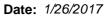
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID LCSD-16001	SampType: LCSD			Units: µg/L	Prep Date: 1/23/2017				RunNo: 34032		
Client ID: LCSW02 Analyte	Batch ID: 16001 Result					Analysis Da	te: 1/23/20	SeqNo: 647758			
		RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	18.6	1.00	20.00	0	93.0	43	136	19.14	2.90	20	
Chloromethane	19.9	1.00	20.00	0	99.4	40.4	150	19.85	0.136	20	
Vinyl chloride	19.8	0.200	20.00	0	99.1	48	145	20.08	1.27	20	
Bromomethane	19.0	1.00	20.00	0	95.1	43.2	166	15.24	22.1	20	R
Trichlorofluoromethane (CFC-11)	19.5	1.00	20.00	0	97.5	43.5	149	20.02	2.67	20	
Chloroethane	20.3	1.00	20.00	0	101	43.8	168	20.77	2.50	20	
1,1-Dichloroethene	19.9	1.00	20.00	0	99.6	65.6	136	20.20	1.40	20	
Methylene chloride	20.3	1.00	20.00	0	102	67.1	131	20.70	1.84	20	
trans-1,2-Dichloroethene	20.5	1.00	20.00	0	102	71.7	129	20.46	0.0473	20	
Methyl tert-butyl ether (MTBE)	22.1	1.00	20.00	0	110	67.7	131	22.33	1.16	20	
1,1-Dichloroethane	20.3	1.00	20.00	0	102	67.9	134	20.54	1.12	20	
2,2-Dichloropropane	18.6	2.00	20.00	0	93.2	33.7	152	19.19	2.95	20	
cis-1,2-Dichloroethene	20.4	1.00	20.00	0	102	70.2	139	20.51	0.738	20	
Chloroform	20.4	1.00	20.00	0	102	66.3	131	20.38	0.0210	20	
1,1,1-Trichloroethane (TCA)	20.2	1.00	20.00	0	101	71	131	20.54	1.44	20	
1,1-Dichloropropene	20.0	1.00	20.00	0	100	69.9	124	20.46	2.30	20	
Carbon tetrachloride	19.9	1.00	20.00	0	99.3	66.2	134	20.85	4.89	20	
1,2-Dichloroethane (EDC)	21.0	1.00	20.00	0	105	68.8	123	21.18	0.850	20	
Benzene	20.2	1.00	20.00	0	101	69.3	132	20.37	1.04	20	
Trichloroethene (TCE)	20.0	0.500	20.00	0	100	65.2	136	20.02	0.0107	20	
1,2-Dichloropropane	20.7	1.00	20.00	0	103	70.5	130	20.94	1.15	20	
Bromodichloromethane	19.8	1.00	20.00	0	99.2	74.6	127	19.93	0.451	20	
Dibromomethane	20.4	1.00	20.00	0	102	75.5	126	20.78	1.72	20	
cis-1,3-Dichloropropene	19.2	1.00	20.00	0	96.1	62.6	137	19.60	2.02	20	
Toluene	20.1	1.00	20.00	0	101	61.3	145	20.66	2.66	20	

Original Page 21 of 29

Project:

QC SUMMARY REPORT


CLIENT: PES Environmental, Inc.

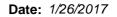
Lake Stevens Shopping Center

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCSD-16001	SampType: LCSD			Units: µg/L		Prep Dat	e: 1/23/2 0	17	RunNo: 340	032	
Client ID: LCSW02	Batch ID: 16001					Analysis Dat	e: 1/23/2 0	17	SeqNo: 647	7758	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropylene	19.5	1.00	20.00	0	97.6	56.5	163	20.05	2.68	20	
1,1,2-Trichloroethane	20.5	1.00	20.00	0	103	71.7	131	21.02	2.34	20	
1,3-Dichloropropane	20.6	1.00	20.00	0	103	73.5	127	20.98	1.74	20	
Tetrachloroethene (PCE)	20.4	1.00	20.00	0	102	47.5	147	20.88	2.16	20	
Dibromochloromethane	19.9	1.00	20.00	0	99.6	67.2	134	20.47	2.77	20	
1,2-Dibromoethane (EDB)	21.0	0.0600	20.00	0	105	73.6	125	21.58	2.92	20	
Chlorobenzene	20.0	1.00	20.00	0	100	73.9	126	20.12	0.397	20	
1,1,1,2-Tetrachloroethane	20.1	1.00	20.00	0	100	76.8	124	20.45	1.84	20	
Ethylbenzene	19.9	1.00	20.00	0	99.6	72	130	20.12	0.995	20	
m,p-Xylene	40.1	1.00	40.00	0	100	70.3	134	40.50	0.896	20	
o-Xylene	19.8	1.00	20.00	0	99.0	72.1	131	20.04	1.23	20	
Styrene	20.0	1.00	20.00	0	100	64.3	140	20.29	1.33	20	
Isopropylbenzene	19.9	1.00	20.00	0	99.3	73.9	128	20.26	1.96	20	
Bromoform	19.7	1.00	20.00	0	98.6	55.3	141	20.38	3.30	20	
1,1,2,2-Tetrachloroethane	21.0	1.00	20.00	0	105	62.9	132	21.63	2.97	20	
n-Propylbenzene	20.0	1.00	20.00	0	99.9	74.5	127	20.43	2.21	20	
Bromobenzene	20.4	1.00	20.00	0	102	71	131	20.73	1.56	20	
1,3,5-Trimethylbenzene	20.1	1.00	20.00	0	100	73.1	128	20.40	1.63	20	
2-Chlorotoluene	20.0	1.00	20.00	0	99.8	70.8	130	20.17	1.03	20	
4-Chlorotoluene	20.2	1.00	20.00	0	101	70.1	131	20.39	1.14	20	
tert-Butylbenzene	19.9	1.00	20.00	0	99.5	68.2	131	20.38	2.45	20	
1,2,3-Trichloropropane	22.1	1.00	20.00	0	111	67.7	131	22.83	3.24	20	
1,2,4-Trichlorobenzene	21.8	2.00	20.00	0	109	51.8	152	21.63	0.600	20	
sec-Butylbenzene	19.9	1.00	20.00	0	99.6	72	129	20.37	2.24	20	
4-Isopropyltoluene	19.9	1.00	20.00	0	99.5	69.2	130	20.17	1.35	20	
1,3-Dichlorobenzene	20.6	1.00	20.00	0	103	71	115	20.78	0.663	20	
1,4-Dichlorobenzene	20.5	1.00	20.00	0	103	66.8	119	20.66	0.664	20	
n-Butylbenzene	20.9	1.00	20.00	0	104	73.8	127	20.97	0.548	20	
1,2-Dichlorobenzene	20.7	1.00	20.00	0	104	69.7	119	20.80	0.227	20	
1,2-Dibromo-3-chloropropane	21.7	1.00	20.00	0	109	63.1	136	21.98	1.25	20	
1,2,4-Trimethylbenzene	20.4	1.00	20.00	0	102	73.4	127	20.55	0.817	20	

Original Page 22 of 29

QC SUMMARY REPORT


CLIENT: PES Environmental, Inc.

Volatile Organic Compounds by EPA Method 8260C

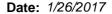
Project: Lake Steve	ens Shopping Center					Volatile	e Organi	c Compoun	ids by EP	A Method	82600
Sample ID LCSD-16001	SampType: LCSD			Units: µg/L		Prep Da	te: 1/23/2 0	017	RunNo: 34	032	
Client ID: LCSW02	Batch ID: 16001					Analysis Da	te: 1/23/20	017	SeqNo: 64	7758	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachloro-1,3-butadiene	20.4	4.00	20.00	0	102	58.6	138	20.83	2.11	20	
Naphthalene	23.8	1.00	20.00	0	119	41.8	165	23.15	2.88	20	
1,2,3-Trichlorobenzene	22.1	4.00	20.00	0	110	48.7	156	21.90	0.750	20	
Surr: Dibromofluoromethane	26.0		25.00		104	45.4	152		0		
Surr: Toluene-d8	25.4		25.00		101	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	25.7		25.00		103	64.2	128		0		

Sample ID MB-16001	SampType: MBLK			Units: µg/L		Prep Date: 1/23	2017	RunNo: 340	032	
Client ID: MBLKW	Batch ID: 16001					Analysis Date: 1/23	2017	SeqNo: 647	7760	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLim	it RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	1.00								
Chloromethane	ND	1.00								
Vinyl chloride	ND	0.200								
Bromomethane	ND	1.00								Q
Trichlorofluoromethane (CFC-11)	ND	1.00								
Chloroethane	ND	1.00								
1,1-Dichloroethene	ND	1.00								
Methylene chloride	ND	1.00								
trans-1,2-Dichloroethene	ND	1.00								
Methyl tert-butyl ether (MTBE)	ND	1.00								
1,1-Dichloroethane	ND	1.00								
2,2-Dichloropropane	ND	2.00								Q
cis-1,2-Dichloroethene	ND	1.00								
Chloroform	ND	1.00								
1,1,1-Trichloroethane (TCA)	ND	1.00								
1,1-Dichloropropene	ND	1.00								
Carbon tetrachloride	ND	1.00								
1,2-Dichloroethane (EDC)	ND	1.00								
Benzene	ND	1.00								

Page 23 of 29 Original

Project:

QC SUMMARY REPORT


CLIENT: PES Environmental, Inc.

Lake Stevens Shopping Center

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-16001	SampType: MBLK			Units: µg/L		Prep Da	ate: 1/23/20	017	RunNo: 340	032	
Client ID: MBLKW	Batch ID: 16001					Analysis Da	ate: 1/23/20	017	SeqNo: 647	7760	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	ND	0.500									
1,2-Dichloropropane	ND	1.00									
Bromodichloromethane	ND	1.00									
Dibromomethane	ND	1.00									
cis-1,3-Dichloropropene	ND	1.00									
Toluene	ND	1.00									
trans-1,3-Dichloropropylene	ND	1.00									Q
1,1,2-Trichloroethane	ND	1.00									
1,3-Dichloropropane	ND	1.00									
Tetrachloroethene (PCE)	ND	1.00									
Dibromochloromethane	ND	1.00									
1,2-Dibromoethane (EDB)	ND	0.0600									
Chlorobenzene	ND	1.00									
1,1,1,2-Tetrachloroethane	ND	1.00									
Ethylbenzene	ND	1.00									
m,p-Xylene	ND	1.00									
o-Xylene	ND	1.00									
Styrene	ND	1.00									
Isopropylbenzene	ND	1.00									
Bromoform	ND	1.00									
1,1,2,2-Tetrachloroethane	ND	1.00									
n-Propylbenzene	ND	1.00									
Bromobenzene	ND	1.00									
1,3,5-Trimethylbenzene	ND	1.00									
2-Chlorotoluene	ND	1.00									
4-Chlorotoluene	ND	1.00									
tert-Butylbenzene	ND	1.00									
1,2,3-Trichloropropane	ND	1.00									
1,2,4-Trichlorobenzene	ND	2.00									
sec-Butylbenzene	ND	1.00									
4-Isopropyltoluene	ND	1.00									

Original Page 24 of 29

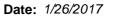
Project:

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Lake Stevens Shopping Center

Volatile Organic Compounds by EPA Method 8260C


Sample ID MB-16001	SampType: MBLK			Units: µg/L		Prep Date	1/23/20	17	RunNo: 340	032	
Client ID: MBLKW	Batch ID: 16001					Analysis Date	1/23/20	17	SeqNo: 647	7760	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3-Dichlorobenzene	ND	1.00									
1,4-Dichlorobenzene	ND	1.00									
n-Butylbenzene	ND	1.00									
1,2-Dichlorobenzene	ND	1.00									
1,2-Dibromo-3-chloropropane	ND	1.00									
1,2,4-Trimethylbenzene	ND	1.00									
Hexachloro-1,3-butadiene	ND	4.00									
Naphthalene	ND	1.00									
1,2,3-Trichlorobenzene	ND	4.00									
Surr: Dibromofluoromethane	25.2		25.00		101	45.4	152				
Surr: Toluene-d8	25.0		25.00		99.9	40.1	139				
Surr: 1-Bromo-4-fluorobenzene	24.3		25.00		97.1	64.2	128				
NOTES:											

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Sample ID 1701155-006ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 1/23/2 0	017	RunNo: 34	032	
Client ID: BATCH	Batch ID: 16001					Analysis Da	te: 1/24/2 0	017	SeqNo: 64	7741	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.61	1.00						1.593	1.31	30	
Chloromethane	ND	1.00						0		30	
Vinyl chloride	ND	0.200						0		30	
Bromomethane	ND	1.00						0		30	Q
Trichlorofluoromethane (CFC-11)	ND	1.00						0		30	
Chloroethane	ND	1.00						0		30	
1,1-Dichloroethene	ND	1.00						0		30	
Methylene chloride	ND	1.00						0		30	
trans-1,2-Dichloroethene	ND	1.00						0		30	
Methyl tert-butyl ether (MTBE)	ND	1.00						0		30	
1,1-Dichloroethane	ND	1.00						0		30	
2,2-Dichloropropane	ND	2.00						0		30	Q

Original Page 25 of 29

Project:

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Lake Stevens Shopping Center

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1701155-006ADUP	SampType: DUP			Units: µg/L		Prep Da	te: 1/23/20)17	RunNo: 340	032	
Client ID: BATCH	Batch ID: 16001					Analysis Da	te: 1/24/2 0)17	SeqNo: 647	7741	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
cis-1,2-Dichloroethene	1.65	1.00						1.674	1.17	30	
Chloroform	ND	1.00						0		30	
1,1,1-Trichloroethane (TCA)	ND	1.00						0		30	
1,1-Dichloropropene	ND	1.00						0		30	
Carbon tetrachloride	ND	1.00						0		30	
1,2-Dichloroethane (EDC)	ND	1.00						0		30	
Benzene	ND	1.00						0		30	
Trichloroethene (TCE)	ND	0.500						0		30	
1,2-Dichloropropane	ND	1.00						0		30	
Bromodichloromethane	ND	1.00						0		30	
Dibromomethane	ND	1.00						0		30	
cis-1,3-Dichloropropene	ND	1.00						0		30	
Toluene	ND	1.00						0		30	
trans-1,3-Dichloropropylene	ND	1.00						0		30	Q
1,1,2-Trichloroethane	ND	1.00						0		30	
1,3-Dichloropropane	ND	1.00						0		30	
Tetrachloroethene (PCE)	ND	1.00						0		30	
Dibromochloromethane	ND	1.00						0		30	
1,2-Dibromoethane (EDB)	ND	0.0600						0		30	
Chlorobenzene	ND	1.00						0		30	
1,1,1,2-Tetrachloroethane	ND	1.00						0		30	
Ethylbenzene	ND	1.00						0		30	
m,p-Xylene	ND	1.00						0		30	
o-Xylene	ND	1.00						0		30	
Styrene	ND	1.00						0		30	
Isopropylbenzene	ND	1.00						0		30	
Bromoform	ND	1.00						0		30	
1,1,2,2-Tetrachloroethane	ND	1.00						0		30	
n-Propylbenzene	ND	1.00						0		30	
Bromobenzene	ND	1.00						0		30	
1,3,5-Trimethylbenzene	ND	1.00						0		30	

Original Page 26 of 29

Date: 1/26/2017

Work Order: 1701202

Project:

QC SUMMARY REPORT

CLIENT: PES Environmental, Inc.

Lake Stevens Shopping Center

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1701155-006ADUP	SampType: DUP			Units: µg/L	·	Prep Da	te: 1/23/2	017	RunNo: 34 0	032	
Client ID: BATCH	Batch ID: 16001					Analysis Da	te: 1/24/2	017	SeqNo: 64	7741	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Chlorotoluene	ND	1.00						0		30	
4-Chlorotoluene	ND	1.00						0		30	
tert-Butylbenzene	ND	1.00						0		30	
1,2,3-Trichloropropane	ND	1.00						0		30	
1,2,4-Trichlorobenzene	ND	2.00						0		30	
sec-Butylbenzene	ND	1.00						0		30	
4-Isopropyltoluene	ND	1.00						0		30	
1,3-Dichlorobenzene	ND	1.00						0		30	
1,4-Dichlorobenzene	ND	1.00						0		30	
n-Butylbenzene	ND	1.00						0		30	
1,2-Dichlorobenzene	ND	1.00						0		30	
1,2-Dibromo-3-chloropropane	ND	1.00						0		30	
1,2,4-Trimethylbenzene	ND	1.00						0		30	
Hexachloro-1,3-butadiene	ND	4.00						0		30	
Naphthalene	ND	1.00						0		30	
1,2,3-Trichlorobenzene	ND	4.00						0		30	
Surr: Dibromofluoromethane	25.3		25.00		101	45.4	152		0		
Surr: Toluene-d8	24.2		25.00		96.7	40.1	139		0		
Surr: 1-Bromo-4-fluorobenzene	24.1		25.00		96.3	64.2	128		0		
NOTES.											

NOTES:

Original Page 27 of 29

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Sample Log-In Check List

С	lient Name: PES	Work Order Numb	oer: 1701202	
L	ogged by: Erica Silva	Date Received:	1/19/2017	7 2:00:00 PM
<u>Cha</u>	ain of Custody			
1.	Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
2.	How was the sample delivered?	<u>Client</u>		
Log	ı İn			
_	Coolers are present?	Yes 🗸	No 🗌	NA 🗌
4.	Shipping container/cooler in good condition?	Yes 🗸	No \square	
5.	Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes	No 🗌	Not Required ✓
6.	Was an attempt made to cool the samples?	Yes 🗸	No 🗌	NA 🗌
7.	Were all items received at a temperature of >0°C to 10.0°C	* Yes ✔	No 🗆	na 🗆
8.	Sample(s) in proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗌	
10.	Are samples properly preserved?	Yes 🗸	No \square	
11.	Was preservative added to bottles?	Yes	No 🗹	NA \square
12.	Is there headspace in the VOA vials?	Yes	No 🗸	NA 🗌
13.	Did all samples containers arrive in good condition(unbroker	ı)? Yes ✓	No 🗌	
14.	Does paperwork match bottle labels?	Yes 🗸	No \square	
15.	Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
	Is it clear what analyses were requested?	Yes 🗸	No 🗌	
17.	Were all holding times able to be met?	Yes 🗹	No \square	
<u>Sp</u> e	ecial Handling (if applicable)			
-	Was client notified of all discrepancies with this order?	Yes	No \square	NA 🗸
		Date		
			one Fax	☐ In Person
	Regarding:			
	Client Instructions:			

Item Information

Item #	Temp ⁰C
Cooler	1.5
Sample	6.2
Temp Blank	2.4

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Original

	Chain of Custody Record and Laboratory Services Agreement
	Date: Laboratory Project No (internal): 17012029
3600 Fremont Ave N. Tel: 206-352-3790	Page: of:
Client: 175 S	ne: Lake Skyens SI
125 YAA	Location: Lake Sevens W
	(PM): Brian O'Neal
*Matrix Codes: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product, S = Soil, SD = Sediment, SL = Solid,	PM Email: W = Water, DW = Drir
, sea	STILLS ON THE ONE OF STATE OF
Sample Name Sample Sample Type Sample Name Sample Name Sample Sample Type (Matrix)*	Comments Comments
2 MW - 9 - 01/917 - 1 1005 X	हिला है जिला है जिला के अपने का जात के का जात के का जात के का जात के का जात के का जात के का जात का जात का जात क
3 MW-5-011917 - TIMIO X	
1 0811 LIBITO-9-MW "	DATAGRAND DATE COME SAFETY OF THE CONTROL OF THE CO
5 MW-7-011917 155 X	Adir She sazarine na stuAlibro proc dig ales sentrope
TIN10-8-NW3	CONNECTE POSESSION PRODUCED CONTROL PRODUCED STREETS OF SECURE STREET WAS A PROBLEM BUT A CONTROL OF THE SECURE OF
7/1W-4-01/917 1315 4 X	The state of the second
8 TRIP BLANK 1 ()	
9	
**Motals Analysis (Circle): NATCA S BCDA O Delegate Dellegate Tall Indicated Analysis	
te Nitrite Chloride Sulfate Bromide O-Phosphate	Fluoride Nitrate+Nitrite
Sample Disposal: Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.)	nless otherwise noted. A fee may be on the following business day.
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	If of the Client named above, that I have verified Client's
Date/Time 1400	gothi
X April 111116	APlease coordinate with the lah in advance
	^Please coordinate with the lab in advance

MEMORANDUM

TO: Project File **DATE:** January 27, 2017

FROM: Jessie Compeau

SUBJECT: Laboratory Data Validation Review

PROJECT: Lake Stevens Marketplace

PROJECT #: 1246.038.004

TASK: January 19, 2017 Groundwater Samples

LAB: Fremont Analytical Service Request No. 1701202

Seven groundwater samples and a trip blank were collected at the Lake Stevens Marketplace Site in Snohomish County on January 19, 2017. The samples were collected as part of a Limited Phase II Investigation at the Site. The samples were delivered to Fremont Analytical (Fremont) of Seattle, Washington for laboratory analysis. Samples were analyzed for volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C. The results were reported in Fremont Lab Package 1701202.

The quality assurance review of the laboratory data is summarized below.

DATA QUALIFICATIONS

Guidelines established by USEPA for review of analytical data were used to validate the data. The comments presented in this memorandum refer to the laboratory's performance in meeting the quality control criteria outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2014).

DATA VALIDATION

Sample Receipt, Preservation and Handling

The samples were delivered to the project laboratory in coolers under standard chain-of-custody protocols. Review of Fremont's Sample Log-In Check List Form indicates that all samples were received in good condition slightly above the recommended preservation temperature of less than 6.0°C. No action is taken since samples were collected and delivered to the laboratory on the same day and did not have sufficient time to cool. The sample receipt log indicated that the samples in the coolers were received properly stored in a cooler, preserved, and cooled with ice/gel packs and in good condition at the time of laboratory receipt. No data qualifications were assigned due to temperature preservation issues.

Trip blank was placed on hold per PES's chain of custody request.

Holding Times

All samples were analyzed for VOCs within the USEPA recommended holding time of fourteen days for preserved waters from the date of sample collection. All holding time criteria were met.

Initial and Continuing Calibration

Initial and continuing calibration data for this project are retained by the laboratory and available for review if necessary. Case narrative notes and/or qualifiers indicate that continuing calibration criteria were not met for 2,2-dichloropropane, trans-1,3-dichloropropylene, and bromomethane (with associated QC). Continuing calibration %D was below Fremont's control limit criteria. No action was taken for bromomethane since this is associated with continuing calibration bracketing other samples and/or QC. All associated 2,2-dichloropropane and trans-1,3-dichloropropylene sample results are non-detect and qualified as estimated (UJ).

Method Blank Results

A laboratory method blank was included with the analytical batch per method requirement. The target analytes were not detected in the method blank at or above the method reporting limits (MRLs). No qualifications of the data were made due to the results of the method blank analyses.

Trip Blank Results

A trip blank was collected but not analyzed. No action was taken other than to note this.

Laboratory Duplicate Analyses

Laboratory duplicate sample analyses were performed on a non-client sample within the analytical batch. The primary/duplicate relative percent differences (RPDs) for VOCs were within the laboratory control limit of 30%. Duplicate data are acceptable.

Field Duplicate Analyses

Field duplicate samples were not collected. Refer to laboratory duplicate data for precision data.

Surrogate Recoveries

The surrogate recovery results for the samples, laboratory duplicates, laboratory control samples (LCS), and the method blank were within the laboratory surrogate control limits for all of the analyses.

Matrix Spike/ Matrix Spike Duplicates

A matrix spike (MS) analysis was not performed. Refer to laboratory control samples and laboratory duplicate data for accuracy and precision.

Laboratory Control Samples

A laboratory control sample/laboratory control sample duplicate (LCS/LCSD) was analyzed by USEPA Method 8260C. The LCS/LCSD percent recoveries (%R's) and RPDs for the all target compounds were within the laboratory control criteria for water with the following exception:

• VOC compound bromomethane RPD was elevated at 22% and slightly above acceptance criteria (20%). No action was taken since both LCS/LCSD %R's were within laboratory acceptance criteria.

Quantitation Limits

Results of all analyses were reported based on standard laboratory MRLs. The reported MRLs are considered appropriate for this project. No data qualifiers were warranted based upon standard detection limits.

Completeness

The samples were collected and analyzed as requested. The results in all cases were reported based upon standard Method Reporting Limits (MRLs). Data completeness is 100%.

Data Assessment

The laboratory data reported for this project were reviewed based on laboratory control limit acceptance criteria and criteria outlined in:

 USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (USEPA, 2014)

Data qualifiers were assigned and laboratory report pages with qualifiers are attached. All data are judged to be acceptable for their intended use.

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 9:20:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-001 Matrix: Groundwater

Client Sample ID: MW-1-011917

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Metho	d 8260C		Batc	h ID: 16	001 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
Chloromethane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Vinyl chloride	ND	0.200		µg/L	1	1/24/2017 6:00:53 AM
Bromomethane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Trichlorofluoromethane (CFC-11)	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Chloroethane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,1-Dichloroethene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AN
Methylene chloride	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
trans-1,2-Dichloroethene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,1-Dichloroethane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
2,2-Dichloropropane	ND	UT 2.00	Q	µg/L	1	1/24/2017 6:00:53 AM
cis-1,2-Dichloroethene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Chloroform	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,1,1-Trichloroethane (TCA)	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,1-Dichloropropene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Carbon tetrachloride	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,2-Dichloroethane (EDC)	ND	1.00		µg/L	1	1/24/2017 6:00:53 AN
Benzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AN
Trichloroethene (TCE)	ND	0.500		µg/L	1	1/24/2017 6:00:53 AM
1,2-Dichloropropane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AN
Bromodichloromethane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AN
Dibromomethane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
cis-1,3-Dichloropropene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Toluene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AN
trans-1,3-Dichloropropylene	ND	UJ 1.00	Q	µg/L	1	1/24/2017 6:00:53 AM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,3-Dichloropropane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
Dibromochloromethane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,2-Dibromoethane (EDB)	ND	0.0600		µg/L	1	1/24/2017 6:00:53 AM
Chlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
1,1,1,2-Tetrachloroethane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Ethylbenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
m,p-Xylene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
o-Xylene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
Styrene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
Isopropylbenzene	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
Bromoform	ND	1.00		μg/L	1	1/24/2017 6:00:53 AN

Original

of 29

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc.

Collection Date: 1/19/2017 9:20:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-001 Matrix: Groundwater

Client Sample ID: MW-1-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID:	16001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 6:00:53 AM
n-Propylbenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Bromobenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,3,5-Trimethylbenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
2-Chlorotoluene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
4-Chlorotoluene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
tert-Butylbenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,2,3-Trichloropropane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,2,4-Trichlorobenzene	ND	2.00		µg/L	1	1/24/2017 6:00:53 AM
sec-Butylbenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
4-Isopropyltoluene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,3-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,4-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
n-Butylbenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,2-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,2-Dibromo-3-chloropropane	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,2,4-Trimethylbenzene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
Hexachloro-1,3-butadiene	ND	4.00		µg/L	1	1/24/2017 6:00:53 AM
Naphthalene	ND	1.00		µg/L	1	1/24/2017 6:00:53 AM
1,2,3-Trichlorobenzene	ND	4.00		µg/L	1	1/24/2017 6:00:53 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 6:00:53 AM
Surr: Toluene-d8	96.7	40.1-139		%Rec	1	1/24/2017 6:00:53 AM
Surr: 1-Bromo-4-fluorobenzene	95.0	64.2-128		%Rec	1	1/24/2017 6:00:53 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 10:05:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-002 Matrix: Groundwater

Client Sample ID: MW-2-011917

RL Qual Units DF **Date Analyzed** Result Analyses Analyst: NG Batch ID: 16001 Volatile Organic Compounds by EPA Method 8260C Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1/24/2017 6:58:11 AM 1/24/2017 6:58:11 AM ND 1.00 1 Chloromethane µg/L 1/24/2017 6:58:11 AM Vinyl chloride ND 0.200 µg/L 1 ND 1.00 1 1/24/2017 6:58:11 AM Bromomethane µg/L 1/24/2017 6:58:11 AM ND 1.00 1 Trichlorofluoromethane (CFC-11) µg/L 1/24/2017 6:58:11 AM ND 1.00 1 Chloroethane µg/L 1/24/2017 6:58:11 AM 1.1-Dichloroethene ND 1.00 µg/L 1 ND 1 1/24/2017 6:58:11 AM Methylene chloride 1.00 µg/L ND 1.00 1/24/2017 6:58:11 AM trans-1,2-Dichloroethene µg/L 1 ND 1 1/24/2017 6:58:11 AM Methyl tert-butyl ether (MTBE) 1.00 µg/L ND 1.00 1 1/24/2017 6:58:11 AM 1,1-Dichloroethane µg/L ND 2.00 Q 1 1/24/2017 6:58:11 AM 2,2-Dichloropropane µg/L 1/24/2017 6:58:11 AM ND 1.00 1 cis-1,2-Dichloroethene µg/L ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Chloroform 1,1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 1/24/2017 6:58:11 AM ND 1.00 1/24/2017 6:58:11 AM 1,1-Dichloropropene µg/L 1 Carbon tetrachloride ND 1.00 µg/L 1 1/24/2017 6:58:11 AM ND 1/24/2017 6:58:11 AM 1,2-Dichloroethane (EDC) 1.00 µg/L 1 ND 1.00 1/24/2017 6:58:11 AM Benzene 1 µg/L ND Trichloroethene (TCE) 0.500 µg/L 1 1/24/2017 6:58:11 AM ND 1/24/2017 6:58:11 AM 1,2-Dichloropropane 1.00 µg/L 1 Bromodichloromethane ND 1.00 1/24/2017 6:58:11 AM 1 µg/L ND 1 Dibromomethane 1.00 µg/L 1/24/2017 6:58:11 AM cis-1,3-Dichloropropene ND 1.00 1/24/2017 6:58:11 AM µg/L Toluene ND 1.00 1 1/24/2017 6:58:11 AM µg/L 1.00 trans-1,3-Dichloropropylene ND Q µg/L 1 1/24/2017 6:58:11 AM 1,1,2-Trichloroethane ND 1.00 µg/L 1 1/24/2017 6:58:11 AM 1,3-Dichloropropane ND 1.00 1 1/24/2017 6:58:11 AM µg/L 10.0 Tetrachloroethene (PCE) 114 D µg/L 10 1/24/2017 2:23:23 PM Dibromochloromethane ND 1.00 µg/L 1 1/24/2017 6:58:11 AM 1,2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 6:58:11 AM Chlorobenzene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Ethylbenzene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM m,p-Xylene ND 1.00 1 1/24/2017 6:58:11 AM µg/L o-Xylene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Styrene ND 1.00 µg/L 1 1/24/2017 6:58:11 AM Isopropylbenzene ND 1.00 1/24/2017 6:58:11 AM µg/L 1 Bromoform ND 1.00 µg/L 1 1/24/2017 6:58:11 AM

Original

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 10:05:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-002 Matrix: Groundwater

Client Sample ID: MW-2-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID:	16001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
2-Chlorotoluene	ND	1.00		µg/L	1	1/24/2017 6:58:11 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2,4-Trichlorobenzene	ND	2.00		µg/L	1	1/24/2017 6:58:11 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
Hexachloro-1,3-butadiene	ND	4.00		µg/L	1	1/24/2017 6:58:11 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 6:58:11 AM
1,2,3-Trichlorobenzene	ND	4.00		μg/L	1	1/24/2017 6:58:11 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 6:58:11 AM
Surr: Toluene-d8	97.2	40.1-139		%Rec	1	1/24/2017 6:58:11 AM
Surr: 1-Bromo-4-fluorobenzene	94.0	64.2-128		%Rec	1	1/24/2017 6:58:11 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 10:40:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-003 Matrix: Groundwater

Client Sample ID: MW-5-011917

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Metho	d 8260C		Batc	h ID: 16	001 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	1.00		µg/L	1	1/24/2017 7:26:47 AN
Chloromethane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AN
Vinyl chloride	ND	0.200		µg/L	1	1/24/2017 7:26:47 AM
Bromomethane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AN
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	1/24/2017 7:26:47 AN
Chloroethane	ND	1.00		μg/L	1	1/24/2017 7:26:47 AN
1,1-Dichloroethene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AN
Methylene chloride	ND	1.00		μg/L	1	1/24/2017 7:26:47 AN
trans-1,2-Dichloroethene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AN
Methyl tert-butyl ether (MTBE)	ND	1.00		µg/L	1	1/24/2017 7:26:47 AN
1,1-Dichloroethane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AN
2,2-Dichloropropane	ND	US 2.00	Q	µg/L	1	1/24/2017 7:26:47 AN
cis-1,2-Dichloroethene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AN
Chloroform	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,1-Dichloropropene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AN
Carbon tetrachloride	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2-Dichloroethane (EDC)	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
Benzene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
Trichloroethene (TCE)	ND	0.500		µg/L	1	1/24/2017 7:26:47 AN
1,2-Dichloropropane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
Bromodichloromethane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
Dibromomethane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
cis-1,3-Dichloropropene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
Toluene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
trans-1,3-Dichloropropylene	ND	UJ 1.00	Q	µg/L	1	1/24/2017 7:26:47 AM
1,1,2-Trichloroethane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
1,3-Dichloropropane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
Tetrachloroethene (PCE)	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
Dibromochloromethane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
1,2-Dibromoethane (EDB)	ND	0.0600		µg/L	1	1/24/2017 7:26:47 AM
Chlorobenzene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
1,1,1,2-Tetrachloroethane	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
Ethylbenzene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
m,p-Xylene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
o-Xylene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
Styrene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
Isopropylbenzene	ND	1.00		µg/L	1	1/24/2017 7:26:47 At
Bromoform	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM

Original

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 10:40:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-003 Matrix: Groundwater

Client Sample ID: MW-5-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batch ID:		16001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
Bromobenzene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
4-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
tert-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 7:26:47 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,3-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,4-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 7:26:47 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2-Dibromo-3-chloropropane	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
Hexachloro-1,3-butadiene	ND	4.00		μg/L	1	1/24/2017 7:26:47 AM
Naphthalene	ND	1.00		μg/L	1	1/24/2017 7:26:47 AM
1,2,3-Trichlorobenzene	ND	4.00		µg/L	1	1/24/2017 7:26:47 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 7:26:47 AM
Surr: Toluene-d8	97.4	40.1-139		%Rec	1	1/24/2017 7:26:47 AM
Surr: 1-Bromo-4-fluorobenzene	94.7	64.2-128		%Rec	1	1/24/2017 7:26:47 AM

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 11:20:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-004 Matrix: Groundwater

Client Sample ID: MW-6-011917

DF **Date Analyzed** Analyses Result RL Qual Units Batch ID: 16001 Analyst: NG Volatile Organic Compounds by EPA Method 8260C Dichlorodifluoromethane (CFC-12) ND 1.00 µg/L 1 1/24/2017 7:55:24 AM ND 1.00 1 1/24/2017 7:55:24 AM Chloromethane µg/L ND 0.200 1 1/24/2017 7:55:24 AM Vinyl chloride µg/L 1/24/2017 7:55:24 AM ND Bromomethane 1.00 µg/L 1 Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1 1/24/2017 7:55:24 AM ND 1.00 1 1/24/2017 7:55:24 AM Chloroethane µg/L 1/24/2017 7:55:24 AM ND 1.00 1 1,1-Dichloroethene µg/L ND 1.00 1 1/24/2017 7:55:24 AM Methylene chloride µg/L ND 1.00 1 1/24/2017 7:55:24 AM trans-1,2-Dichloroethene µg/L ND 1 1/24/2017 7:55:24 AM Methyl tert-butyl ether (MTBE) 1.00 µg/L 1/24/2017 7:55:24 AM 1,1-Dichloroethane ND 1.00 µg/L 2.00 Q 1/24/2017 7:55:24 AM ND 1 2,2-Dichloropropane µg/L 1/24/2017 7:55:24 AM cis-1,2-Dichloroethene ND 1.00 µg/L 1 1.00 1 1/24/2017 7:55:24 AM Chloroform ND µg/L ND 1.00 1 1/24/2017 7:55:24 AM 1,1,1-Trichloroethane (TCA) µg/L 1/24/2017 7:55:24 AM 1,1-Dichloropropene ND 1.00 µg/L 1 ND 1 1/24/2017 7:55:24 AM Carbon tetrachloride 1.00 µg/L ND 1/24/2017 7:55:24 AM 1,2-Dichloroethane (EDC) 1.00 µg/L 1 Benzene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM 1/24/2017 7:55:24 AM Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 7:55:24 AM ND 1.00 1 1,2-Dichloropropane µg/L ND 1/24/2017 7:55:24 AM Bromodichloromethane 1.00 µg/L 1 ND 1.00 1 1/24/2017 7:55:24 AM Dibromomethane µg/L 1/24/2017 7:55:24 AM cis-1,3-Dichloropropene ND 1.00 1 µg/L ND 1.00 1 1/24/2017 7:55:24 AM Toluene µg/L 1.00 Q 1/24/2017 7:55:24 AM trans-1,3-Dichloropropylene ND µg/L 1 ND 1.00 1 1/24/2017 7:55:24 AM 1,1,2-Trichloroethane µg/L 1,3-Dichloropropane ND 1.00 1 1/24/2017 7:55:24 AM µg/L 1.00 1 1/24/2017 7:55:24 AM Tetrachloroethene (PCE) 1.44 µg/L Dibromochloromethane ND 1.00 1 1/24/2017 7:55:24 AM µg/L 1,2-Dibromoethane (EDB) ND 0.0600 1 1/24/2017 7:55:24 AM µg/L ND 1/24/2017 7:55:24 AM Chlorobenzene 1.00 1 µg/L 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 1/24/2017 7:55:24 AM ND 1.00 1/24/2017 7:55:24 AM Ethylbenzene µg/L 1 m,p-Xylene ND 1.00 1/24/2017 7:55:24 AM µg/L 1 o-Xylene ND 1.00 µg/L 1 1/24/2017 7:55:24 AM Styrene ND 1.00 1/24/2017 7:55:24 AM µg/L 1 Isopropylbenzene ND 1/24/2017 7:55:24 AM 1.00 1 µg/L Bromoform ND 1.00 µg/L 1 1/24/2017 7:55:24 AM

Original

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 11:20:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-004 Matrix: Groundwater

Client Sample ID: MW-6-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID:	16001 Analyst: NG	
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
n-Propylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
2-Chlorotoluene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
4-Chlorotoluene	ND	1.00		µg/L	1	1/24/2017 7:55:24 AM	
tert-Butylbenzene	ND	1.00		µg/L	1	1/24/2017 7:55:24 AM	
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
1,2,4-Trichlorobenzene	ND	2.00		µg/L	1	1/24/2017 7:55:24 AM	
sec-Butylbenzene	ND	1.00		µg/L	1	1/24/2017 7:55:24 AM	
4-Isopropyltoluene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
1,3-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 7:55:24 AM	
1,4-Dichlorobenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
1,2-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 7:55:24 AM	
1,2-Dibromo-3-chloropropane	ND	1.00		µg/L	1	1/24/2017 7:55:24 AM	
1,2,4-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
Hexachloro-1,3-butadiene	ND	4.00		µg/L	1	1/24/2017 7:55:24 AM	
Naphthalene	ND	1.00		μg/L	1	1/24/2017 7:55:24 AM	
1,2,3-Trichlorobenzene	ND	4.00		µg/L	1	1/24/2017 7:55:24 AM	
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 7:55:24 AM	
Surr: Toluene-d8	97.4	40.1-139		%Rec	1	1/24/2017 7:55:24 AM	
Surr: 1-Bromo-4-fluorobenzene	95.4	64.2-128		%Rec	1	1/24/2017 7:55:24 AM	

NOTES:

X1/83/12

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: 1701202 Date Reported: 1/26/2017

Collection Date: 1/19/2017 11:55:00 AM PES Environmental, Inc.

Project: Lake Stevens Shopping Center

Matrix: Groundwater Lab ID: 1701202-005

Client Sample ID: MW-7-011917

Units DF Date Analyzed Analyses Result RL Qual Batch ID: 16001 Analyst: NG Volatile Organic Compounds by EPA Method 8260C 1/24/2017 8:24:06 AM 1.00 µg/L Dichlorodifluoromethane (CFC-12) ND 1/24/2017 8:24:06 AM Chloromethane ND 1.00 µg/L 1 Vinyl chloride ND 0.200 µg/L 1/24/2017 8:24:06 AM ND 1.00 µg/L 1 1/24/2017 8:24:06 AM Bromomethane Trichlorofluoromethane (CFC-11) ND 1.00 µg/L 1/24/2017 8:24:06 AM Chloroethane ND 1.00 µg/L 1/24/2017 8:24:06 AM 1,1-Dichloroethene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM 1/24/2017 8:24:06 AM Methylene chloride ND 1.00 µg/L 1 trans-1,2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM ND 1.00 µg/L 1 1/24/2017 8:24:06 AM Methyl tert-butyl ether (MTBE) 1 1/24/2017 8:24:06 AM 1,1-Dichloroethane ND 1.00 µg/L 1/24/2017 8:24:06 AM 2.2-Dichloropropane ND 2.00 µg/L ND 1.00 1 1/24/2017 8:24:06 AM cis-1,2-Dichloroethene µg/L Chloroform 1.04 1.00 µg/L 1 1/24/2017 8:24:06 AM 1,1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 1/24/2017 8:24:06 AM ND 1.00 1/24/2017 8:24:06 AM 1 1,1-Dichloropropene µg/L Carbon tetrachloride ND 1.00 µg/L 1 1/24/2017 8:24:06 AM 1/24/2017 8:24:06 AM 1,2-Dichloroethane (EDC) ND 1.00 µg/L 1 1/24/2017 8:24:06 AM ND 1.00 1 Benzene µg/L 1/24/2017 8:24:06 AM Trichloroethene (TCE) ND 0.500 µg/L 1 1/24/2017 8:24:06 AM 1,2-Dichloropropane ND 1.00 µg/L 1 Bromodichloromethane ND 1.00 1 1/24/2017 8:24:06 AM µg/L Dibromomethane ND 1.00 1 1/24/2017 8:24:06 AM µg/L cis-1,3-Dichloropropene ND 1.00 1 1/24/2017 8:24:06 AM µg/L Toluene ND 1.00 1/24/2017 8:24:06 AM µg/L 1 trans-1,3-Dichloropropylene ND UJ 1.00 Q µg/L 1 1/24/2017 8:24:06 AM ND 1.00 1 1/24/2017 8:24:06 AM 1,1,2-Trichloroethane µg/L ND 1.00 1 1/24/2017 8:24:06 AM 1,3-Dichloropropane µg/L Tetrachloroethene (PCE) 126 10.0 D 10 1/24/2017 2:52:05 PM µg/L Dibromochloromethane ND 1.00 1 1/24/2017 8:24:06 AM µg/L 1,2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 8:24:06 AM Chlorobenzene ND 1.00 1 1/24/2017 8:24:06 AM µg/L 1,1,1,2-Tetrachloroethane ND 1.00 µg/L 1 1/24/2017 8:24:06 AM ND Ethylbenzene 1.00 µg/L 1 1/24/2017 8:24:06 AM m,p-Xylene ND 1.00 1/24/2017 8:24:06 AM µg/L 1 o-Xylene ND 1.00 µg/L 1 1/24/2017 8:24:06 AM Styrene ND 1.00 1/24/2017 8:24:06 AM µg/L 1 Isopropylbenzene ND 1.00 1/24/2017 8:24:06 AM 1 µg/L Bromoform ND 1/24/2017 8:24:06 AM 1.00 µg/L 1

Original

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 11:55:00 AM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-005 Matrix: Groundwater

Client Sample ID: MW-7-011917

Ва) µg/L) µg/L	itch ID:	16001 Analyst: NG
	1	
) ua/l		1/24/2017 8:24:06 AM
, pg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
μg/L	1	1/24/2017 8:24:06 AM
2 %Rec	. 1	1/24/2017 8:24:06 AM
0/ Pag		1/24/2017 8:24:06 AM
70Rec	1	
	pg/L pg/L	pg/L 1 p

NOTES:

14 01 29

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 12:40:00 PM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-006 Matrix: Groundwater

Client Sample ID: MW-3-011917

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
olatile Organic Compounds by	EPA Metho	d 8260C		Batc	h ID: 16	001 Analyst: NG
Dichlorodifluoromethane (CFC-12)	2.95	1.00		μg/L	1	1/24/2017 8:52:47 AM
Chloromethane	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
Vinyl chloride	ND	0.200		μg/L	1	1/24/2017 8:52:47 AM
Bromomethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Trichlorofluoromethane (CFC-11)	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Chloroethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,1-Dichloroethene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Methylene chloride	ND	1.00		μg/L	1	1/24/2017 8:52:47 AN
trans-1,2-Dichloroethene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AN
Methyl tert-butyl ether (MTBE)	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,1-Dichloroethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
2,2-Dichloropropane	ND	UJ 2.00	Q	μg/L	1	1/24/2017 8:52:47 AM
cis-1,2-Dichloroethene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Chloroform	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,1,1-Trichloroethane (TCA)	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,1-Dichloropropene	ND	1.00		μg/L	1	1/24/2017 8:52:47 At
Carbon tetrachloride	ND	1.00		μg/L	1	1/24/2017 8:52:47 AI
1,2-Dichloroethane (EDC)	ND	1.00		μg/L	1	1/24/2017 8:52:47 Af
Benzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 At
Trichloroethene (TCE)	ND	0.500		μg/L	1	1/24/2017 8:52:47 AM
1,2-Dichloropropane	ND	1.00		μg/L	1	1/24/2017 8:52:47 Al
Bromodichloromethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Dibromomethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
cis-1,3-Dichloropropene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Toluene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
trans-1,3-Dichloropropylene	ND	VJ 1.00	Q	μg/L	1	1/24/2017 8:52:47 AM
1,1,2-Trichloroethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,3-Dichloropropane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Tetrachloroethene (PCE)	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Dibromochloromethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2-Dibromoethane (EDB)	ND	0.0600		μg/L	1	1/24/2017 8:52:47 AM
Chlorobenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 At
1,1,1,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 At
Ethylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
m,p-Xylene	ND	1.00		μg/L	1	1/24/2017 8:52:47 Af
o-Xylene	ND	1.00		μg/L	1	1/24/2017 8:52:47 At
Styrene	ND	1.00		μg/L	1	1/24/2017 8:52:47 At
Isopropylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
Bromoform	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM

Original

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc.

Collection Date: 1/19/2017 12:40:00 PM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-006 Matrix: Groundwater

Client Sample ID: MW-3-011917

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260C		Batc	h ID:	16001 Analyst: NG
1,1,2,2-Tetrachloroethane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
n-Propylbenzene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
Bromobenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,3,5-Trimethylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
2-Chlorotoluene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
4-Chlorotoluene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
tert-Butylbenzene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
1,2,3-Trichloropropane	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2,4-Trichlorobenzene	ND	2.00		μg/L	1	1/24/2017 8:52:47 AM
sec-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
4-Isopropyltoluene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
1,3-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
1,4-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
n-Butylbenzene	ND	1.00		μg/L	1	1/24/2017 8:52:47 AM
1,2-Dichlorobenzene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
1,2-Dibromo-3-chloropropane	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
1,2,4-Trimethylbenzene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
Hexachloro-1,3-butadiene	ND	4.00		µg/L	1	1/24/2017 8:52:47 AM
Naphthalene	ND	1.00		µg/L	1	1/24/2017 8:52:47 AM
1,2,3-Trichlorobenzene	ND	4.00		µg/L	1	1/24/2017 8:52:47 AM
Surr: Dibromofluoromethane	101	45.4-152		%Rec	1	1/24/2017 8:52:47 AM
Surr: Toluene-d8	99.1	40.1-139		%Rec	1	1/24/2017 8:52:47 AM
Surr: 1-Bromo-4-fluorobenzene	95.0	64.2-128		%Rec	1	1/24/2017 8:52:47 AM

NOTES

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

JU/3/1/2

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc. Collection Date: 1/19/2017 1:15:00 PM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-007 Matrix: Groundwater

Client Sample ID: MW-4-011917

Analyses Result RL Qual Units DF **Date Analyzed** Batch ID: 16001 Analyst: NG Volatile Organic Compounds by EPA Method 8260C ND 1/24/2017 9:21:39 AM Dichlorodifluoromethane (CFC-12) 1.00 µg/L 1 ND 1.00 1 1/24/2017 9:21:39 AM Chloromethane µg/L 0.200 1/24/2017 9:21:39 AM Vinyl chloride ND µg/L 1 1/24/2017 9:21:39 AM Bromomethane ND 1.00 µg/L 1 ND 1/24/2017 9:21:39 AM Trichlorofluoromethane (CFC-11) 1.00 µg/L ND 1/24/2017 9:21:39 AM Chloroethane 1.00 µg/L 1 1/24/2017 9:21:39 AM ND 1,1-Dichloroethene 1.00 µg/L 1 Methylene chloride ND 1.00 µg/L 1 1/24/2017 9:21:39 AM trans-1,2-Dichloroethene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM ND 1.00 1 1/24/2017 9:21:39 AM Methyl tert-butyl ether (MTBE) µg/L 1/24/2017 9:21:39 AM 1,1-Dichloroethane ND 1.00 µg/L 1 UJ 2.2-Dichloropropane ND 2.00 Q 1 1/24/2017 9:21:39 AM µg/L ND 1.00 1 1/24/2017 9:21:39 AM cis-1,2-Dichloroethene µg/L Chloroform ND 1.00 µg/L 1 1/24/2017 9:21:39 AM 1/24/2017 9:21:39 AM 1,1,1-Trichloroethane (TCA) ND 1.00 µg/L 1 ND 1.00 1/24/2017 9:21:39 AM 1,1-Dichloropropene 1 µg/L Carbon tetrachloride ND 1.00 µg/L 1 1/24/2017 9:21:39 AM 1,2-Dichloroethane (EDC) ND 1/24/2017 9:21:39 AM 1.00 µg/L Benzene ND 1/24/2017 9:21:39 AM 1.00 1 µg/L ND Trichloroethene (TCE) 0.500 µg/L 1 1/24/2017 9:21:39 AM 1,2-Dichloropropane ND 1/24/2017 9:21:39 AM 1.00 µg/L 1 Bromodichloromethane ND 1.00 1 1/24/2017 9:21:39 AM µg/L Dibromomethane ND 1.00 µg/L 1 1/24/2017 9:21:39 AM cis-1,3-Dichloropropene ND 1.00 1/24/2017 9:21:39 AM µg/L Toluene ND 1.00 1/24/2017 9:21:39 AM 1 µg/L trans-1,3-Dichloropropylene ND 1.00 0 µg/L 1 1/24/2017 9:21:39 AM 1,1,2-Trichloroethane ND 1.00 1 1/24/2017 9:21:39 AM µg/L 1,3-Dichloropropane ND 1.00 1 1/24/2017 9:21:39 AM µg/L ND Tetrachloroethene (PCE) 1.00 1 1/24/2017 9:21:39 AM µg/L Dibromochloromethane ND 1.00 1 1/24/2017 9:21:39 AM µg/L 1,2-Dibromoethane (EDB) ND 0.0600 µg/L 1 1/24/2017 9:21:39 AM Chlorobenzene ND 1.00 1/24/2017 9:21:39 AM µg/L 1 1,1,1,2-Tetrachloroethane ND 1.00 1 1/24/2017 9:21:39 AM µg/L Ethylbenzene ND 1.00 1 1/24/2017 9:21:39 AM µg/L m,p-Xylene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM o-Xylene ND 1.00 µg/L 1 1/24/2017 9:21:39 AM Styrene ND 1.00 1 1/24/2017 9:21:39 AM µg/L Isopropylbenzene ND 1.00 1 1/24/2017 9:21:39 AM µg/L Bromoform ND 1.00 µg/L 1/24/2017 9:21:39 AM

Original

Work Order: 1701202
Date Reported: 1/26/2017

Client: PES Environmental, Inc.

Collection Date: 1/19/2017 1:15:00 PM

Project: Lake Stevens Shopping Center

Lab ID: 1701202-007 Matrix: Groundwater

Client Sample ID: MW-4-011917

Qual Units DF Date Analyzed Result RL Analyses Batch ID: 16001 Analyst: NG Volatile Organic Compounds by EPA Method 8260C 1/24/2017 9:21:39 AM ND 1.00 µg/L 1,1,2,2-Tetrachloroethane 1/24/2017 9:21:39 AM ND 1.00 µg/L n-Propylbenzene 1/24/2017 9:21:39 AM ND 1.00 1 µg/L Bromobenzene 1/24/2017 9:21:39 AM ND 1.00 1 1,3,5-Trimethylbenzene µg/L 1.00 1/24/2017 9:21:39 AM ND µg/L 2-Chlorotoluene 1/24/2017 9:21:39 AM ND 1.00 µg/L 4-Chlorotoluene 1/24/2017 9:21:39 AM 1 ND 1.00 µg/L tert-Butylbenzene ND 1.00 µg/L 1/24/2017 9:21:39 AM 1.2.3-Trichloropropane 1/24/2017 9:21:39 AM ND 2.00 µg/L 1 1,2,4-Trichlorobenzene 1/24/2017 9:21:39 AM ND 1.00 µg/L 1 sec-Butylbenzene 1/24/2017 9:21:39 AM ND 1.00 µg/L 1 4-Isopropyltoluene 1/24/2017 9:21:39 AM ND 1.00 1,3-Dichlorobenzene µg/L 1/24/2017 9:21:39 AM 1 ND 1.00 µg/L 1,4-Dichlorobenzene 1/24/2017 9:21:39 AM ND 1.00 µg/L 1 n-Butylbenzene 1/24/2017 9:21:39 AM 1,2-Dichlorobenzene ND 1.00 µg/L ND 1.00 1 1/24/2017 9:21:39 AM 1,2-Dibromo-3-chloropropane µg/L 1/24/2017 9:21:39 AM 1,2,4-Trimethylbenzene ND 1.00 µg/L 1 ND 4.00 1/24/2017 9:21:39 AM Hexachloro-1,3-butadiene µg/L 1/24/2017 9:21:39 AM Naphthalene ND 1.00 µg/L 1/24/2017 9:21:39 AM ND 4.00 µg/L 1 1,2,3-Trichlorobenzene 1/24/2017 9:21:39 AM Surr: Dibromofluoromethane 101 45.4-152 %Rec 1 Surr: Toluene-d8 99.2 40.1-139 %Rec 1 1/24/2017 9:21:39 AM 1/24/2017 9:21:39 AM 64.2-128 %Rec 1 Surr: 1-Bromo-4-fluorobenzene 94.8

NOTES:

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF) - low bias.

8 of 29

APPENDIX D

Groundwater Field Sampling Data Sheets

Facility:	late 4	Herrens	Marketo	nex	We	II I.D.: 🤫	W-3		
Project		6.038.03			Dat	e: 7	8/16		V-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Site Des	cription =	I Monitoring We	Ⅱ □ Extraction V	Vell □ Boreho	ole 🗆 Sprii	ng/Creek 🗆	Pond/Lago	on 🗆 Outfall	A Other: Terry
Air Temp:		C Ø °F	Weather:						
Well Lock	ed? □ yes	"Д□ no		lepairs Need	ed: w	re	· · · · · · · · · · · · · · · · · · ·		
IN TOC E	MP Descrip	tion of MP (e.	g., well monumen						
TOC/MP S	Stickup: 💍	[☐ft ☐ m abo	ove/below ground	Well In	side Diam	eter (ID): 🎜	2-inch [3 4-inch Othe	er: 3/4"
	evel Data	Measureme	nt Units: 风			(
E-Tape, #	124 144 Other	Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purgii End		After ampling	Remarks
Time (hh:r	nm; 24-hr clock)	6:00							
Depth to Wa	ater	6.85							
Depth to Bo	ttom							0.22	
Water Leve	(WL)							204300000	DATE TO STATE THE STATE OF THE
Product This							10.000		
Product Red		10		80 - Us XII)					
		² Water level	prior to purging						
	ter Quality		, , ,		K 0	50	:		0 .
Tield Wa	ter duality	Data r	ourge Depth: D T	op LI Mila Z	Bottom	☐ Grab	☐ Bailer	Pump D	escription:401
Casing Volum Conversion Fa	e: [(TD) actor = 0.0408 fo	(WL)]•[r feet and gallon	_(Well ID)] ² •[s; 0.1544 for feet	(Conversion and liters; 0.50	Factor)] = 166 for meter	□ gal □ s and liters; W] liters 'ell ID in inc	_{hes} Dry W	/hile Purging 🔼
Cumulative Vol. Purged (Liters)	Depth to Water	Time (hh:mm)	pH (Temp. Corrected? □)	Conductivity	Tem). O ig/L)	ORP (mV)	Turbidity
-0.02				(μS/cm)					
	C // 1	1 0	:10	1 4 4	0 1		· 11		
	Collect	cd 5	40 ml	VOA3 00	t was	er. 4	sell p	umped	007
		whent	ying to	o mear	ouve i	inater	qual	Ty day	7a .
			1 0	3				,	
								12 AP-380 A	
		+							
					+				
				2000 V G					
Pump Rate ml/min)	50-80	C	Color/Tint/Odor	yd-	,				
Meter Used	WA							11345	
Sample D	ata San	nple Depth:	\	rab 🗆 Bailer	N Pump	Description	Peris	Litte	
Field Sa (unique ID		Result Da		# of Bottles (total to lab)	Metals Filtered	Bottles (type)	Preservative	1	lotes
TW-3-0		P0 7/8	1/	. 3	Y (Ñ)	VOA	(Y) N	ACI	
			1		YN		YN	111/1	
			AND AND AND AND AND AND AND AND AND AND		YN		YN		
ampler's Nam	e (print)	NIS DEP	men	Signa	eture 🗥	الم مت	box		

Facility:	Lake DY	evens	Market ph	er		on I.D.:	1 000	3	
Project N	10: 1246	038, 1	3		Date:	7-8-16	- 1911 W		Tall of
Location	Descript	ion 🗆 Mor	nitoring Well Extr	action Well Bo	rehole 🗆 Sprin	ıg/Creek □ Pon	d/Lagoon E	Outfall	Other: Teu
Air Temp:	4 -	C ذF	Weather:		Market Control	151 010=1			
Well Locke		De la Carte de la	7	epairs Needed:	137				- 300
	C - 2000 - 1000	*	(e.g., well monumen	The state of the s					17.7
TOC/MP S			above/below ground			(ID): 🗆 2-inc	h 🗆 4-inc	h Other:	3/4"
Water Le		Measurem		of the Augustines		V		d,	
E-Tape, #	927244	Pre-Purge		Purging Start	During Purging	Purging End	After Samplin	.]	Remarks
DESCRIPTION OF STREET	m; 24-hr clock)	6:2e		Start	ruging	Enu	Sampiin	9	
Depth to Wa		9.81	-						
Depth to Bot	tom	No. Weeks.		jera 170	Same	, 1 ⁴⁵ 20 (610, 214)	Japan La		No Park
Water Level	(WL)								
Product Thic	kness		ar agraciones	tes de la companya de				- 100	
Product Rec			11.19						
gallons D		Water lev	el prior to purging						
			er prior to purging						٨
Field Wa	ter Quality	Data	Purge Depth: T	op 🗆 Mid 🛱 🛭	Bottom [☐ Grab ☐ Ba	ailer 岚 P	ump Desc	ription:
Conversion Fa	e: [(TD) ctor = 0.0408 fo	(WL)]•[r feet and gal	(Well ID)] ² •[lons; 0.1544 for feet	and liters; 0.5066	ctor)] = for meters and	☐ gal ☐ liters I liters; Well ID i	in inches	Dry Whil	e Purging
Casing Volume Conversion Fa Cumulative Vol. Purged (Liters)	e: [(TD) ctor = 0.0408 fo Depth to Water	(WL)]•[r feet and gal Time (hh:mm)	(Well ID)] ² •[lons; 0.1544 for feet pH (Temp. Corrected? □)	(Conversion Factorial Conductivity ☐ SC ☐ EC (μS/cm)	ctor)] =for meters and Temp □°C □°F	l liters; Well ID i	in inches	ORP (mV)	Turbidity
Conversion Fa Cumulative Vol. Purged	ctor = 0.0408 fo	r feet and gal Time	lons; 0.1544 for feet	Conductivity SC DEC	for meters and	l liters; Well ID i	in inches	ORP	
Conversion Fa Cumulative Vol. Purged	ctor = 0.0408 fo	r feet and gal Time	pH (Temp. Corrected? □)	Conductivity SC DEC	for meters and	l liters; Well ID i	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged	ctor = 0.0408 fo	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity □ SC □ EC (µS/cm)	for meters and	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged	ctor = 0.0408 fo	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity SC EC (μS/cm)	for meters and	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged	ctor = 0.0408 fo	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity SC □ EC (μS/cm)	for meters and	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged	ctor = 0.0408 fo	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity SC EC (μS/cm)	for meters and	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged	ctor = 0.0408 fo	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity SC EC (μS/cm)	for meters and	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged	ctor = 0.0408 fo	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity SC EC (μS/cm)	for meters and	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged (Liters)	Depth to Water	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity SC EC (μS/cm)	for meters and	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate (ml/min)	ctor = 0.0408 fo Depth to Water	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity SC EC (μS/cm)	Temp "C "F Aefor Melovs	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate ml/min)	Depth to Water	Time (hh:mm)	pH (Temp. Corrected? □)	and liters; 0.5066 Conductivity SC DEC (µS/cm) M VOAs	Temp "C "F Aefor Melovs	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate ml/min) Weter Used	So - 80 YSI	Time (hh:mm)	Color/Tint/Odon	and liters; 0.5066 Conductivity SC DEC (µS/cm) M VOAs Tameters	Temp "C "F Aefor Metars and	D. O (mg/L)	in inches	ORP	Turbidity
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate (ml/min) Meter Used Field Sa Field Sa	So - 80 YSI	r feet and gal Time (hh:mm)	Color/Tint/Odon	and liters; 0.5066 Conductivity SC DEC (µS/cm) Annetes	Temp C C PF Aefor Aefor Metals B	D. O (mg/L)	ding ding was	ORP	Turbidity INTU
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate (ml/min) Weter Used Field Sa (unique ID	So 80 YSI Data Sample ID on bottles)	r feet and gal Time (hh:mm)	Color/Tint/Odor	and liters; 0.5066 Conductivity SC DEC (µS/cm) And VOA Transetes a	Temp C C PF Aefor Aefor Metals B	D. O (mg/L) Pescription: Presertype)	in inches	ORP (mV)	Turbidity INTU
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate (ml/min) Meter Used Field Sa Field Sa	So 80 YSI Data Sample ID on bottles)	Time (hh:mm) Collect Quantum Result Code	Color/Tint/Odor Color/Tint/Color Color/Tint/Odor Color/Tint/Color Color/Tint/Color Color/Tint/Color Co	and liters; 0.5066 Conductivity SC DEC (µS/cm) And VOA Transetes a	Temp "C "F Actor Well Pump Metals Biltered (1)	D. O (mg/L) Pescription: Preser type)	in inches	ORP (mV)	Turbidity INTU
Cumulative Vol. Purged (Liters) Pump Rate ml/min) Weter Used Sample D Field Sa (unique ID	So 80 YSI Data Sample ID on bottles)	Time (hh:mm) Collect Quantum Result Code	Color/Tint/Odor Color/Tint/Color Color/Tint/Odor Color/Tint/Color Color/Tint/Color Color/Tint/Color Co	and liters; 0.5066 Conductivity SC EC (µS/cm) Annetes	Temp C C C P Aefor Aefor Metals B Filtered (I) Y (N) V	D. O (mg/L) Pescription: Preser type)	in inches	ORP (mV)	Turbidity INTU

Facility:	Latte 2	Tevens	Markets	ace	Locatio	on I.D. : 7	- 6	
Project N	No .: (246,	038.04			Date:	7/8/16		
Location	Descripti	on 🗆 Monit	oring Well Extra	action Well 🗆 B	orehole 🗆 Spri	ng/Creek □ Pon	d/Lagoon □ Ou	itfall D Other: Teu
Air Temp:		C MoF	Weather: 4				vii iv	
Well Locke		100		pairs Needec	hone			
□ TOC □	- M.A.		.g., well monument			Surface	1.17	9e
TOC/MP S			ove/below ground	Control of the Contro		(ID): 🗖 2-incl	h 🗆 4-inch C	Other:
		Measureme			- J. W.			
E-Tape, # □ Steel Tape	Du Juy	Pre-Purge ¹ Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling	Remarks
Time (hh:m	nm; 24-hr clock)	640						
Depth to Wa	ater	7.82						
Depth to Bot	ttom				\$ the in	92/12/1905	Services of	
Water Level	(WL)		4 1963				EX POLICE	
Product Thic	kness	40.0	1 1 na - 199		gill in the		1016	
Product Rec			180 m					
gallons D	of water levels:	2Mater lovel	prior to purging					
riist touriu	oi water levels,	water level	prior to purging					0
Field Wa	ter Quality	Data	Purge Depth: ☐ To	p □ Mid 💆	Bottom	□ Grab □ Ba	ailer 🍎 Pump	Description:
Casing Volume Conversion Fa	e: [(TD) actor = 0.0408 for	(WL)]•[(Well ID)]*•[ns; 0.1544 for feet a	(Conversion Fa and liters; 0.5066	of for meters and	d liters; Well ID i	n inches Di	ry While Purging
Conversion Fa Cumulative Vol. Purged	e: [(TD) actor = 0.0408 for Depth to Water	(WL)]•[(Well ID)] • [ns; 0.1544 for feet a pH (Temp. Corrected? □)	Conductivity SC EC	Temp	d liters; Well ID i	ORF	
Conversion Fa Cumulative	Depth to	feet and gallo	ns; 0.1544 for feet a	and liters; 0.5066 Conductivity	6 for meters and Temp	d liters; Well ID i	ORF	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	Time (hh:mm)	ns; 0.1544 for feet a pH (Temp. Corrected? □)	Conductivity ☐ SC ☐ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	feet and gallo	ns; 0.1544 for feet a	Conductivity SC EC	Temp □°C □°F	d liters; Well ID i	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	Time (hh:mm)	ns; 0.1544 for feet a pH (Temp. Corrected? □)	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	Time (hh:mm)	pH (Temp. Corrected? □)	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	Time (hh:mm)	pH (Temp. Corrected? □)	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	Time (hh:mm)	pH (Temp. Corrected? □)	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	Time (hh:mm)	pH (Temp. Corrected? □)	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	Time (hh:mm)	pH (Temp. Corrected? □)	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to	Time (hh:mm)	pH (Temp. Corrected? □)	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged	Depth to Water	Time (hh:mm)	pH (Temp. Corrected? □)	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate ml/min)	Depth to Water	Time (hh:mm) :	pH (Temp. Corrected? []) 3 40n1 Givenuent	Conductivity □ SC □ EC (µS/cm)	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate ml/min)	Depth to Water	Time (hh:mm)	pH (Temp. Corrected? []) 3 40n1 Givenuent	Conductivity □ SC □ EC (µS/cm) VOA5	Temp	D. O (mg/L)	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate ml/min) Meter Used	Depth to Water	Time (hh:mm) :	pH (Temp. Corrected? []) 3 40n1 Givenuent	Conductivity SC SC EC (µS/cm)	Temp C C PF	d liters; Well ID in D. O (mg/L) O. Water dry be	ORF (mV)	P Turbidity
Conversion Fa Cumulative Vol. Purged (Liters) Pump Rate ml/min) Meter Used	Depth to Water Data Sarample ID	Time (hh:mm) :	DH (Temp. Corrected? []) 3 40n1 4 venent Le Collect Color/Tint/Odor	Conductivity SC SC EC (µS/cm)	Temp C C Pr	D. O (mg/L)	ORF (mV)	P Turbidity
Cumulative Vol. Purged (Liters) Pump Rate ml/min) Meter Used Field Sa (unique ID	Depth to Water Data Sarample ID on bottles)	Time (hh:mm) : Collector Maa. Con Maa. Result Code (m	Date Time	Conductivity SC SC EC (µS/cm) VOA5 S, Well Tab Bailer # of Bottles	Temp C C Print Pump C Metals Filtered (Description: Presentity Presentit	ORF (mV)	Turbidity NTU
Cumulative Vol. Purged (Liters) Pump Rate ml/min) Meter Used Field Sample D	Depth to Water Data Sarample ID on bottles)	Time (hh:mm) : Collector Maa. Con Maa. Result Code (m	Color/Tint/Odor Color/Tint/Odor Color/Time (hh:mm)	Conductivity SC SC EC (µS/cm) VOA5 S, Well Tab Bailer # of Bottles	Temp C C Print Pump C Metals Filtered (Description: Present	ORF (mV)	Turbidity NTU
Cumulative Vol. Purged (Liters) Pump Rate ml/min) Meter Used Field Sa (unique ID	Depth to Water Data Sarample ID on bottles)	Time (hh:mm) : Collector Maa. Con Maa. Result Code (m	Color/Tint/Odor Color/Tint/Odor	Conductivity SC SC EC (µS/cm) VOA5 S, Well Tab Bailer # of Bottles	Temp C C F Prior t Prior t Metals Filtered Y N V	Description: Present	ORF (mV)	Turbidity NTU

Facility:	عاما	Stevens	Marketal	i (e	Well I.I	D.: MW - 1	E	SID 972
	lo.: 1246.	<i>23</i> 8.03	7		Date:	7 26/16		
			ell 🗆 Extraction W	/ell □ Borehole	☐ Spring/Cr	eek ☐ Pond/Laç	joon □ Outfall □	Other:
Air Temp:		C Ø °F		clear, in	shode			()
Well Locke	d? □ yes	¤∑no				no well lo	ck	
			e.g., well monumen	t at grade surface)				
TOC/MP St	tickup: 6,3	⊈ft □ m al	bove/below ground	> Well Insid	de Diameter	(ID): 022-inch	☐ 4-inch Other:	****
Water Le		Measurem		ft 🗆 m				
☑ E-Tape, # ☐ ☐ Steel Tape		Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling	Remarks
	m; 24-hr clock)	7:04		704		748		
Depth to Wa	ter	9.35	140			9.70		
Depth to Bott	tom							
Water Level	(WL)							
Product Thic			The state of the s					
Product Reco	iters							
		; ² Water leve	el prior to purging					SOCK III
Field Wat	er Quality	Data Data	Purge Depth: 🗆 1	Top 💆 Mid 🗆 E	Bottom	□ Grab □ Baile	er \land Pump Desc	iption: Peri
Casing Volume	a: (TD) -	7.677 1/67/		(Conversion Fa				
Conversion Fa	ctor = 0.0408 fo	r feet and gallo	ons; 0.1544 for feet	and liters; 0.5066	for meters an	d liters; Well ID in	inches Dry While	e Purging
Cumulative	Depth to	Time	рН	Conductivity	Temp	D. O	ORP	Turbidity
Vol. Purged (Liters)	Water	(hh:mm)	(Temp. Corrected? □)	ØSC □EC (μS/cm)	□°C MAC°F		(mV)	Ø NTU
2,25	9.44	7:08	5.62	739	17.7	11.15	144.0	M
~.5	9,49	7:13	5.88	582	17,7	3.88	(35.2]
~.75	9,53	7:18	5.97	538.6	17.8	3.00	1390	
-1.00	9.56	7:23	6.01	520.0	17.8	2.66	143.4	
~1.25	9.39	7:28	6.06	510,4	17.9	2.39	143.4	
~175	9.63	7:33	6.10	505.8	17.4	2.36	143.5	
4,352	9,68	7:38	6.13	507.2	17.8	2.41	144.6	
1	_	7:41		508.3		2.33		
~ 14 518	9.70	7.71	6.14	30 8.5	17.9	4.55	144.5	S. 15 15 15 25
Pump Rate 4	16 slow as 4	he pump	Color/Tint/Odgr					
(ml/min) rung	~50-81	<u> </u>	C	ear, colorle	255			-4
Meter Used	YSI R	ro Plus			X.11.00	- W - 10 - 12 1	540	
Sample D	7.53	mple Depth:	12 ft. 0	Grab □ Bailer	Ņ Pump ∣	Description:	istaltic	
Field Sa	mple ID	Result	Date Time	# of Bottles	Metals	Bottles Preserval	2	
(unique ID			m/d/y) (hh:mm)		Filtered	(type)	No	tes
MW-1-07	t 26 16	P0 7	126/16 745	3	- 1	OA M		
					YN	YN		
					YN	YN	1	
		1	1			1	1	
Sampler's Nam	(neint) /	aris A	Boer	Signa	<u> </u>	Delare		

Facility:	Lake 5	terensy	larketplace	e:		D.: MW-8	-072616	BID 973
		6.038.0			Date:			
Site Des	scription	Monitoring W	ell Extraction	Well 🗆 Borehold	e 🗆 Spring/Cre	ek 🗆 Pond/L	agoon 🗆 Outfall	☐ Other:
Air Temp:	₹0 □	°C 10 °F	Weather:	shale		K		
Well Lock		s 🔼 no		Repairs Neede				
			e.g., well monume		e):			
TOC/MP	Stickup: .3	A¶ft □ m a	bove/pelow ground	▶ Well Ins	ide Diameter	(ID): 💆 2-incl	n 🗆 4-inch Othe	er:
	evel Data	Measurem		ft □ m				
⊠ E-Tape, # □ Steel Tape	334344 Dother	Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling	Remarks
Time (hh:r	nm, 24-hr clock	11:48	(B)	1145			1233	
Depth to W	ater	8.45					8.68	
Depth to Bo	ttom			Section (
Nater Leve	l (WL)							
Product Thi	ckness						A PROPERTY OF STREET	
Product Red ☐ gallons ☐								
		s: ² Water leve	prior to purging					
				5.				٨
-ieid wa	ter Qualit	y Data	Purge Depth:	Top 🗆 Mid 🙀	Bottom []Grab □ Ba	iler 🍂 Pump De	escription: 龊
asing volum onversion Fa Cumulative	actor = 0.0408 f	or feet and gallo	(Well ID)] ² •[ons; 0.1544 for feet	(Conversion F t and liters; 0.506 Conductivity	actor)] = 66 for meters and	☐ gal ☐ liters liters; Well ID in	n inches Dry W	/hile Purging
/ol. Purged (Liters)	Depth to Water	Time (hh:mm)	pH (Temp. Corrected? □)	MSC □ EC (µS/cm)	Temp □°C □°F	D. O (mg/L)	ORP (mV)	Turbidity NTU
1.25	8.54	11:47	6.67	362.8	193	261	151.2	NM
2.5	8.59	1152	6.60	363.9	19.7	2.17	151.2	
7.75	8,63	1157	6.58	367.4	19.5	1.95	152.0	
-1	8.66	1200	6.53	370.3	19.5	1.58	153.7	
11.25	8 767	1217	6.48	377 U	19.6	1.83		to track
~1.5	8.68	1333	6.46	200	W 42 12-20	N 188 1976/118	154.1	92 1002
15 (2000) 1000			And the section of the section of	1 +6.6	19.5	1.79	155.3	
~1,75	8.69	1227	6.45	378.2	19.6	1.74	156.7	1
ump Rate			Color/Tint/Odor					
nl/min)	57-80.		Color Hill Color	colorless				
eter Used	Y	I Pro	Plus					
ample D	. 9. O.	ample Depth:	V A VASS	Grab □ Bailer	A Pump De	escription:	staltic	
Field Sa (unique ID			Date Time	# of Bottles (total to lab)		ottles Preserva	the	lotes
	+2616		1230	3	Y N VO.			10100
		1 10	Alto ASO		YN	YI		
297				 	YN	YN		
	1000			T			-	100 100 100 100 100 100 100 100 100 100
mpler's Nam	e (print) [1	aris De B		Signal	···· / l -	Gelles		
p.o. o radii	- (Pillin)	113 VE 17	new	Joigna	LUIS ALANO	LIE TURY		

Air Temp: 40	nch	
Site Description Monitoring Well Extraction Well Borehole Spring/Creek Portary Air Temp: 10 °C M°F Weather: Over245 Well Locked? yes Mono Damaged/Repairs Needed: What I needed: Monitoring Well Description of MP (e.g., well monument at grade surface): TOC/MP Stickup: 1, 9 Mit m above/tug/w/ground Well Inside Diameter (ID): 2. Water Level Data Measurement Units: Mft m m	nch	
Air Temp:	nch	
Well Locked?	After Sampling	Other:
Mater Level Data Measurement Units: Metal Image: Measurement Units: Measurement Measurement Units: Measurement Measurement Measurement Measurement Measurement Measurement Measurement Measurement Measurement	After Sampling	Other:
Water Level Data Measurement Units:	After Sampling	Other:
Steel Tape Other Pre-Purge Pre-Purge Pre-Purge Purging	Sampling	
Steel Tape Other Initial Confirmation Start Purging End	Sampling	
Depth to Bottom Water Level (WL) Product Thickness Product Recovery gallons liters First round of water levels; Water level prior to purging Field Water Quality Data Purge Depth: Top Mid (Bottom Grab	The Land of the Land	Remarks
Depth to Bottom Water Level (WL) Product Thickness Product Recovery gallons liters First round of water levels; *Water level prior to purging Field Water Quality Data Purge Depth: Top Mid Bottom Grab	1040	The contraction of the contracti
Water Level (WL)	5.04	
Product Thickness Product Recovery gallons liters First round of water levels; Water level prior to purging Field Water Quality Data Purge Depth: Top Mid Bottom Grab Casing Volume: (TD) - (WL)]* (Well ID)]* (Conversion Factor)] = gal liter Conversion Factor = 0.0408 for feet and gallons; 0.1544 for feet and liters; 0.5066 for meters and liters; Well I Cumulative Vol. Purged (Liters) Depth to Water Water (Inh:mm) PH Conductivity SC EC C C C C C C C C		
Product Recovery		
Gallons liters		
First round of water levels; *Water level prior to purging Field Water Quality Data		
Casing Volume: [
(Liters) Water (hh:mm) (Temp. Corrected? []) (µS/cm) []°C []°F (mg/L) [] (1,35 1,87 1,97 1,25 1,25 1,05 1,49 1,05 1,15 1,19 1,05 1,49 1,05 1,49	D in inches	Dry While Purging [
~.5 4.92 10:03 7.15 212.5 20.4 3.66 ^.75 4.94 10:07 7.07 211.4 20.3 3.56 ^1.0 4.99 10:12 6.99 211.9 20.4 3.31 ~1.25 5.01 10:17 6.95 212.8 20.7 3.46 ~1.5 5.03 10:22 6.92 211.0 21.0 3.35 ~1.75 5.05 10:27 6.90 211.5 21.0 3.35	(m	nV) 🗆 NTÚ
1.35 4.94 10:07 7.07 211.4 20.3 3.50 1.0 4.99 10:12 6.99 211.9 20.4 3.31 1.25 5.01 10:17 6.95 212.8 20.7 3.40 1.5 5.03 10:22 6.92 211.0 21.0 3.30 1.75 5.05 10:27 6.90 211.5 21.0 3.30 Cump Rate as slow as the pump Color/Tint/Odor Color/E65	313	2. 6
1.75 4.94 10:07 7.07 211.4 20.3 3.50 1.0 4.99 10:12 6.99 211.9 20.4 3.31 1.25 5.01 10:17 6.95 212.8 20.7 3.43 1.5 5.03 10:22 6.92 211.0 21.0 3.35 1.75 5.05 10:27 6.90 211.5 21.0 3.35 1.75 5.05 10:27 6.90 211.5 21.0 3.35 1.75 5.05 10:27 6.90 211.5 21.0 3.35 1.75 5.05 10:27 6.90 211.5 21.0 3.35	125	1 6
~1.35 5.01 10:17 6.95 212.8 20.7 3.43 ~1.5 5.03 10:12 6.92 211.0 21.0 3.3 ~1.75 5.05 10:27 6.90 211.5 21.0 3.2 Pump Rate so slow as the pump Color/Tint/Odor Clear color/ess	125	.9
~1.35 5.01 10:17 6.95 212.8 20.7 3.43 ~1.5 5.03 10:12 6.92 211.0 21.0 3.3 ~1.75 5.05 10:27 6.90 211.5 21.0 3.2 Pump Rate so slow as the pump Color/Tint/Odor Clear color/ess		
21.5 5.03 10:13 6.92 211.0 21.0 3.3 21.7 5.05 10:27 6.90 211.5 21.0 3.3 21.0 3.3 21.0 21.0 3.3 21.0 21.0 3.3 21.0 21.0 21.0 21.0 3.3 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0		
Color/Tint/Odor Color/Ess		
Pump Rate as slow as the pump Color/Tint/Odor Color/Ess		
ml/min) runs 50-86 Clear color less	0 129.	6
ml/min) runs 50-86 Clear Color 11110 Clear Color ess		
Meter Used YSI Pro Plus		
		NAME OF TAXABLE PARTY.
Daniel Data	eristaltr	
Field Sample ID Result Date Time # of Bottles Metals Bottles	ervative	Notes
0 -2004	ON HO	
	N	The second secon
		## 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To 15 To
	N	
ampler's Name (print) Chris DeBoer Signature Chis let	N	

Facility	1: [.kc	-54.	10 10 1 1		I Well L			60	
Project No.: (246.038, 03			Marketp	are	Well I.D.: Mw-4 BIP				
	The state of the s				Date:	1/26/16			
Air Town	scription	Monitoring V		Well □ Borehol	e ☐ Spring/Cr	eek 🛘 Pond	/Lagoon 🗆 Outfall	□ Other:	
Air Temp Well Loc		l°C ذF	Weather:	overcast					
		s A no	Damaged/	Repairs Neede	ed: none				
TOC/MP	Stickum A	ption of MP	e.g., well monume	ent at grade surfac					
		t Lima	bove/below groun	Well Ins	ide Diameter	(ID): X 2-inc	ch 4-inch Other		
	evel Data	Measurem	ent Units: 🏻 🏖	¶ft □m					
E E-Tape, i ☐ Steel Tap	# *14444	Pre-Purge Initial	Pre-Purge ² Confirmation	Purging	During	Purging	After	Domest	
THE RESERVE OF THE PARTY OF THE	mm, 24-hr clock		Commadon		Purging	End	Sampling	Remarks	
Depth to W		4.54	TO MINISTER INCIDENTIAL	1011		4.47246	4.80	150	
Depth to B	STATUTE OF THE PARTY.			i sacinedhiloseusa k	DARLINGHAMERICANI U	ele wexnoren a	N37		
Water Leve		20 man pr 4 2001.25				1003 AT 2015 Fe			
Product Th	mark and a second of				AASSI MAAGAA M	52500 4000 5	Washington and the Control	WEST CONTRACTOR	
Product Re	covery	120000000000000000000000000000000000000	And the State Associated States						
□ gallons □		e: 2Matar laur	 prior to purging						
	ater Qualit		i hiioi to britâluí	9					
Cumulative Ol. Purged	Depth to	Time	pH	(Conversion Fat and liters; 0.506) Conductivity				le Purging	
(Liters)	Water	(hh:mm)	(Temp. Corrected? □)	LEC □ EC (μS/cm)	Temp tege □°F	D. O (mg/L)	ORP (mV)	Turbidity □ NTU	
1,26	4.62	10:51	6.99	206.0	19.6	45.6	139.6	Non	
2.5	4.67	10:53	6.88	207.6	19.8	3.17	139,0	T T	
1.75	4.72	11:00	6.76	198.8	19.4	3.29	1468		
4.0	4.44	11:05	6.69	1996	19.7	3.15	144.0		
1.25	4.76	11:10	6.65	201.3	19.6	3.15		848	
1.50	4.77	11:15	6.62	203.0	19,6		148.3		
1,75	4.78	11:30	6.59	The state of the s	10.	3.10	153.6	E-mary	
2.08	4.80		6.57		17.6	3.08	157.3		
	-11-00	11:35	U.J T	203.4	19.7	305	(28°V		
ımp Rate		ACCUMUNATE OF	Color/Tint/Oder						
ıl/min)	50-80			ar color	1000			85	
eter Used	YSI	Pro Plu	4	,					
ample D	ata Sar	nple Depth:		ìrab □ Bailer	Pump Des	cription: Per	static		
Field Sa (unique ID	mple ID on bottles)		ate Time	# of Bottles	Metals Bott	les	then		
N-4-07		PO 7/2	The second livering the second		Y D Vo	The state of the s	Note	2 S	
			7 110		Y N	YN			
					YN	YN			
						1 1			
npler's Name	(print)	ris DeB	A. A. A.	Tail		0			
		12 RED	DAL	Signatu	re Chie le	boen		11 - 2 - 11 - 11	

Facility	: Lake 54	evens Ma	rotale	P	Well I.	D.: MW	-5 B	51 102
Project	No.: 121	16. 038.0			Date:	7/26/16		•
Site De	scription	Monitoring W	ell Extraction	Well □ Borehole	∋ □ Spring/Cre		/Lagoon 🗀 Outfall	☐ Other:
Air Temp		°C 🗖 °F	Weather:					
Well Loc		s 🔼 no	Damaged/l	Repairs Neede	d: None			
				nt at grade surfac	e):		19/42	
TOC/MP	Stickup: 03	¶ ft □ m ab	ove/below ground	Well Ins	ide Diameter	(ID): 🙇 2-ind	ch 🗆 4-inch Other	
Water L	evel Data	Measureme	ent Units: 🎾	ft □m				
E-Tape,	# ATPC JULI	Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During	Purging	After	Remarks
Vertice on the little	mm, 24-hr clock	0		(253	Purging	End	Sampling	c Side Contract
Depth to W		20.68		(0)			1332	The feature of
Depth to B	ASSESSMENT TO BE A SECOND						1234	This walker
Water Leve	el (WL)					and the fall	The state of the s	
Product Th								
Product Re □ gallons □								
		s; ² Water level	prior to purging					
Cumulative Vol. Purged	Depth to	Time	pН	Conductivity	Temp	D. O	ORP	nile Purging Turbidity
(Liters)	Water	(hh:mm)	(Temp. Corrected? 🔲)	(µS/cm)	□°C □°F	(mg/L)	(mV)	□ NTU
nd5	20.85	12.55	8.19	445.3	18.8	5.12	127.4	NM
1.5	200	1300	9,27	486.7	19.0	3.10	1.43.7	
1.75	21.02	1305	9.46	483.7	19.1	271	1489	
21.0	21.16	1315	9.53	483.9.	19,1	2.06	153.7	
1.89	21.90	1320	9.64	484,3	19.1	1.53	158.7	
2/3	21.29	1325	9.68	485.1	19,1	1.05	162.7	
Mercy								
		13250						
ump Rate			Color/Tint/Odor	A . 11				
nl/min) leter Used	50-80		Clear	, fainth	cloudy			
leter Osed	YSI	Pro Phy					=	
Sample [Data Sa	mple Depth:	350 - 0	arab 🗆 Bailer	Pump De	scription: 🛵	distalfic	
	ample ID on bottles)		ate Time d/y) (hh:mm)	# of Bottles (total to lab)		ities Preserv	unth re	otes
w-5-0	The second secon	PO 3/2		3	Y D VA		N AC	100
			70 15 50		YN	-	N N	
					YN		N	
Pares -								
ampler's Nan	ne (print)	wis De S	Boer	Signati	ure Chi	Dear		

Project No.: \(\frac{144}{0.028,03} \) Date: \(\frac{7}{16} \)	Facility:	Lake 4	Sterous	Yarket of		Well I.	D.: MW - 6	R.T.	Y 108
Site Description & Monitoring Well Extraction Well Shorehole Spring/Creek Pond/Lagoon Quital Other: Air Temp: 65 "C B" Weather: weer_cast Well Locked? yes Ain Description of MP (e.g., well monument at grado surface): Woll Locked? yes Ain Description of MP (e.g., well monument at grado surface): Woll Locked? yes Ain Description of MP (e.g., well monument at grado surface): Woll Locked? yes Ain Description of MP (e.g., well monument at grado surface): Woll Inside Diameter (ID): 012-inch 4-inch Other: Water Level Data Measurement Units: Mit Description Purging Purging After Sampling Remarks Water Level Ain Pre-Purge Pre-Purger Purger Purging Purging Purging Sampling Remarks Inme (Inh.mm, 24 hr clock) 7:5 1 75 1			128 A	3	4			PU	
Air Temp:					Vell 🗆 Borehole			agoon 🗆 Outfall	☐ Other:
Well Locked? yes no Damaged/Repairs Needed:	Air Temp:	The state of the s					****		
Marc Depth Description of MP (e.g., well monument at grade surface):		ed? □ yes	🎢 no			d: thorse			
Water Level Data	NOTOC E	MP Descript	tion of MP (e	g., well monumer	nt at grade surface			11 2	
	TOC/MP S	Stickup: 1.3	Ø ft □ m al	oove/below ground	Well Ins	ide Diamete	r (ID): 🕱 2-incl	n 🛘 4-inch Othe	er:
Time (hh.mm, 24-hr clock) 1:51 151 344 24.00	Water L	evel Data	Measureme	ent Units: 🙇	ft 🗆 m				
Depth to Water	KN E-Tape, # □ Steel Tape	11414							Remarks
Depth to Water	Time (hh:r	nm, 24-hr clock)	7:51		751	er system get		2844	
Depth to Bottom Mater Level (ML) Product Thickness Product Recovery galons liters Pump Description Pump Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Description Pump Desc	Depth to Wa	ater	· · · · · · · · · · · · · · · · · · ·				4	9.27	
Product Product Product Product Recovery	Depth to Bo	ttom							
Product Recovery Galons Iters Pump Description Prist round of water levels; "Water level prior to purging Grab Bailer Pump Description Pump Pump Description Pump Pump Description Pump Pump Description Pump Pump Description Pump	Water Leve	I (WL)					8		
Qallons liters									
First round of water levels; "Water level prior to purging Field Water Quality Data Purge Depth: Top Mild Bottom Grab Bailer Pump Description: Pump Pump Description: Pump Description: Pump Description: Pump Pump Description: Pump Description: Pump Description: Pump Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Description: Pump Descripti									
Casing Volume: [(TD) - (WL)]*[(Well ID)]*[(Conversion Factor)] =			² Water leve	I prior to purging				i.	
Casing Volume: [(TD) - (WL)]*[(Well ID)]*[(Conversion Factor)] =	Field Wa	ter Quality	Data	Duma Danthi 🗆 3	roo Notaasa m	Datta		N . n	
1.35	Cumulative Vol. Purged	Depth to	Time	Hq	Conductivity SC □ EC	Temp	D. O	ORP	
1.5 9.43 8:03 6.63 667 17.9 7.88 143.3 1.75 9.46 8:08 6.70 667 18.0 93.7 1 143.6 1.0 19.49 8:13 6.75 669 19.1 5.56 149.9 1.15 9.55 8:18 6.71 6.31 18.1 5.54 143.8 1.15 9.55 8:39 6.84 681 17.9 6.16 143.0 1.10 9.59 8:34 6.88 676 17.4 6.16 143.1 1.11 1.12 1.12 1.12 1.12 1.12 1.12 1	1.25	Q.41 _	7:58	6.55	SALE SHEET STORY	18.0	6.4.9	145.3	
1.75 9.46 8:08 6.76 667 13.0 5.76 143.7 1.0 1.49 8:13 6.75 669 13.1 5.56 143.7 1.15 1.5 8:18 6.78 6.71 6.71 19.1 5.54 143.8 1.1.5 1.5 8:24 6.82 6.73 18.1 5.43 142.6 1.1.75 1.55 8:30 6.84 682 17.9 6.20 143.0 1.1.0 9.59 8:34 6.88 6.76 17.4 6.16 143.1 1.1.0 1.10 1.10 1.10 1.10 1.10 1.10	1.5.	9,43	8:03	6.63	7.	17.9	5.88	143.3	
1.0	1.75	9.46	8:08	6.70	667	18.0	Ø\$.7(143.6	
1.15 4.51 8:18 6.78 6.71 8.1 5.54 143.8	21.0							1429	
1.5 9.53 8:34 6.82 673 8.1 5.43 42.6 1.75 9.55 8:39 6.84 682 17.9 6.20 43.0 1.50 9.59 8:34 6.88 676 17.4 6.16 143.1 1.50 9.59 8:34 6.88 676 17.4 6.16 143.1 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 8:39 6.84 6.82 17.9 6.20 143.0 1.50 9.55 9.50 143.0 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50 9.50 9.50 9.50 1.50	4.25	Control of the Contro					5.54	1428	
1.75									·
ump Rate 23 \$10m A3 the Pump Color/Tint/Odor Cear Color/Est eter Used VSI Pro Plus Sample Data Sample Depth: ~\2 ftless Grab Bailer Pump Description: Peristalfic Field Sample ID (unique ID on bottles) Po Plus Pump Preservative Notes W-6-073616 Po Plus Pump Preservative Notes W - 6-073616 Po Plus Pump Preservative Notes W - N Y N Y	ASSOCIATION OF THE LOCAL	The state of the s		11.5 10 50 00 10 10 10 10 10 10 10 10 10 10 10 10			Control of the Control		
ump Rate & Sow as the pump Color/Tint/Odor Cour Color/Ess leter Used VSI Pro Plus Sample Data Sample Depth: ~ 12 Char Grab Bailer Pump Description: Puistoff Field Sample ID Result Code (m/d/y) (inh:mm) (total to lab) Filtered (type) Preservative Notes W-6-072616 P0 7/21/6 840 3 Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Y N Sample Data Sample Depth: ~ 12 Char Grab Bailer Pump Description: Puistoff Pump Pump Description: Puistoff Pump	772				(A)				200000000000000000000000000000000000000
Sample Data Sample Depth: \(\frac{1}{2} \) Grab Bailer Pump Description: \(\frac{1}{2} \)	~₫.∪	1131	ויפיט	6,00	976	17.7	0.10	173.1	
Field Sample ID (unique ID on bottles) PO 7216 840 3 Y N Y N Y N Field Sample ID (unique ID on bottles) PO 7216 840 3 Y N Y N Y N Y N Y N Y N Y N Y N	oump Rate	35 5 Sow as H	ne pump			1	1		
Field Sample ID (unique ID on bottles) Po 7216 840 3 YN YN YN Poscription: Purist It. Result Code (m/d/y) (hh:mm) (total to lab) Filtered (type) Preservative Notes YN YN YN YN YN YN YN YN YN YN Y	/leter Used				-JVIII N				o de desconstruiros
Field Sample ID (unique ID on bottles) Result Code (m/d/y) (hh:mm) (total to lab) Filtered (type) Preservative Notes Notes Y N Y N Y N Y N	Sample D		8.5		Grab □ Bailer	Mor Pump I	Description: D. s	V.L.W.	
(unique ID on bottles)	Field Sa	ample ID	Result [Date Time	# of Bottles	Metals I	Bottles Broom	notine .	
YN YN YN YN YN YN YN							(type)	ľ	Votes
Y N Y N	MW-6-0	772616	P0 7	24/16 840	3				·
					-	YN	Y	N	
				2		PΛ	0 0		

Facility	: Lake 5+	evens N	larketplace		Well	I.D.: MW-	7	BJY 109
Project	No.: 1149	5.038.0	3	Date:	7/26//6			
Site De	scription p	Monitoring	Well □ Extracti	on Well Boreho	le 🗆 Spring		agoon 🗆 Outfall	□ Other:
Air Temp	65 🗆	°C Ø °F		" overast			3	
Well Loc		🕅 no	Damage	d/Repairs Need	ed:			
TAT TOC I	JMP Descrip	tion of MP	(e.g., well monu	ment at grade surfa	ce):			
TOC/MP	Stickup: 4.3	154 ft □ m	above/below gro	well In	side Diamet	er (ID): 🙇 2-incl	n □ 4-inch Othe	r:
Water L	evel Data	Measurer	nent Units:	X 0ft □ m				
☐ Steel Tap	The state of the s	Pre-Purge Initial	Confirmation	Purging Start	During Purging	Purging End	After Sampling	Remarks
Time (hh:	mm, 24-hr clock)	8:4	6	847			937	
Depth to W	ater	7,58	}				7,83	
Depth to Be						giera i i i i i i		THE WAY
Water Leve	A below to the second s							
Product The				Mark Comp				T. JAZ.
Product Re ☐ gallons ☐	liters				and the same of th			
First round	of water levels	Water lev	el prior to purg	ing				
Conversion Formulative Vol. Purged	Depth to	feet and gal	lons; 0.1544 for i	(Conversion Fiet and liters; 0.50) Conductivity SC □ EC		nd liters; Well ID in	inches Dry Wh	nile Purging Turbidity
(Liters)	Water	(hh:mm)	(Temp. Corrected?	(μS/cm)	□.c p (.	F (mg/L)	(mV)	□ NTU
1,25	7.69	8:53		362.1	18.3	6.9.2	134.1	ann
1.5	7.71	8:58	7.36	361.7	18.2	5.69	135.4	1
1.45	7.75	9:03	7.34	362.5	18.6	5.70	135.6	
4.0	7.76	9:08	7.34	364,2	18,9		(35.2	
11.25	7.77	9:13	7.35	365.7	18.8		134.5	
11.5	7.81	9:18	7.35	370.4	18,7		134.8	
21.75	7.84	9:23	7.36	373.9	18.2		134.9	
2	7.87	9:,28	7.36	373.8	18.1	5.69	135.2	
								digets = 13
ump Rate ni/min)	s slow as -	to pump	Color/Tint/Od				L	
eter Used		ro Plus	Chea	r, colorle	75		·	
ample D	100		010.01 =	10-b = 5 ::			2 2	
Field Sa	mple ID	Result [Oate Time		Pump [Description: Peri	1	
(unique ID		Code (n	n/d/y) (hh:mn	n) (total to lab)	Filtered	(type) Preservati	No	tes
W-7-0	44616	PO 7	26/16 93	5 3		OA ON		
				+	YN	YN		
-					YN	Y N		
mpler's Nami	e (print)	< D.R.	240	0:	··· (0 -	Debra		
	(Princy) AND	3 W 10		Signat	ure This	Helma		

PES Environmental, Inc. Engineering & Environmental Services

PAGE	l	OF	ł

DATE: 10 18 16

WATER LEVEL DATA FORM

PROJECT: Lake Stevens JOB No: 1246.038.03

RECORDED BY: C. De Boer

MEASURING		ENT:					RECORDE	DBY: C. DeBos	er
EEL T			□ отн	HER-TYPE		,	DATUM:	☐ MEAN SEA L	.EVEL
ELECTR	ONIC SOU	NDER	SERIAL	No. #379	861	12		OTHER - DES	CRIBE
WELL I.D.	Time Well Opened	Depth to Water (FT)	Time	Depth to Water (FT)	Time	Depth to Water (FT)		ENTS (well conditions	
MW-1	710	9.16	740	9,15	816	X			
MW-2	723	7.45	751	7,44	826				
MW-3	718	3.14	744	3.09	820				
MWI-H	730	3.00	742	2.66	818	-			
MW-5	725	20,90	746	80.78	812	9			V
MW-6	713	8.65	747	8.63	824		N.		
MW-7	718	6.80	749	6.81	828	**			
		ber	M	亚	D				
MW-4cm	k	2.50	855	2.34	931				
MW - Cov	4	3.08	856	76. (7					
MN-5 con	ţ	20.71	859	926 C	20.672). I			1
MW-6 com	b	8.63	900	_		- Harris	-		
		T T	正	171	क्रा	Art County	_# N		72
MW-4 as		2.30	1013	230	1305	*	56 N		
MW-500	t.	20,52	1130				4		
							-		
41c							•		48
0. 1								. 1. 0	
-Note	- par	ره مد	time		reme	A are	inde	cated by	
		roman	ny	meral					
			-						
		162,							
			3				34		
							15		
									1.50

Facility:	Lake 5	tevens 1	Marketplac	P		n I.D.: MV	U-6	
Project N	10.: 1241	.038.03.			Date: /	0-18-16		
Location	Descrip	tion 🗆 Moni	toring Well Ext	raction Well 🗆 Bo	rehole 🗆 Sprin	g/Creek □ Pond/L	agoon 🗆 Outfa	all
Air Temp:	55-60□	-63	Weather: 6					
Well Locke	d? □ yes	I Ø no	Damaged/F	Repairs Needed:	hone			
7.5	53 37 37			nt at grade surface)	t V			
TOC/MP S	tickup: 1.3	K∏ ft ☐ m al	oove/below ground	> Well Insid	e Diameter	(ID): 🐧 2-inch	☐ 4-inch Of	ther:
Water Le		Measurem		ft □m				
E-Tape, #	37 86	Pre-Purge ¹ Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End :	After Sampling	Remarks
Time (hh:m	m; 24-hr clock)	9:00	=:	910			956	1108
Depth to Wa	ter	8.63					8.87	8.80
Depth to Bott	tom							
Water Level	(WL)							71
Product Thick					2			
Product Reco								
		s; ² Water leve	prior to purging					
Field Wat				rop /A .Mid □ B				
						☐ Grab ☐ Baile	r W Pump	Description: Peri
Casing Volume Conversion Fac	e: [(TD) - ctor = 0.0408 fo	(WL)]•[_ or feet and gallo	(Well ID)] [*] •[ons; 0.1544 for feet	(Conversion Fac t and liters; 0.5066	ctor)] = for meters and	☐ gal ☐ liters liters; Well ID in ir	nches Dry	While Purging [
Cumulative Vol. Purged	Depth to	Time	рН	Conductivity SC	Temp	D. O	ORP	Turbidity
(Liters)	Water	(hh:mm)	(Temp, Corrected? □)	(μS/cm)	K °C □°F	(mg/L)	(mV)	□ NTÚ
1,25	8.73	9:17	6.61	751	14.5	2.8.1	60.=	7 NM
4,5	8.75	9:22	6.29	731	14.3	2.61	65,1	
~.75	8.77	9:27	6.11	712	14.0	2,76	67.8	3
~1.0	Nm	9:32	6.12	694	13.9	2.70	70.0	
21.25	8.82	9:37	6.11	681	13,8	2.72	-10.6	
~1.5	8.85	9:42	6.14	667	13.9	2,53	70,3	
	8.87							
~1.75	7,04	9:47	6.11	649	14.0	2.56	71.7	
Pump Rate			Color/Tint/Odor					
ml/min)	50-80		de	ar, colorle	255			
/leter Used	YSI	Pro Plus						
Sample D	_	ımple Depth:	10' 0	Grab □ Bailer	Pump D	escription: Peri	staltic	Х
Field Sar (unique ID c			Date Time		Metals B	ottles type)		Notes
w-6-1018			18/16 950	3		A ON	HCI	
O IV		114			YN	YN		
					YN	YN		
Sampler's Nam	e (print)	Chris D	Boer	Signatu	ure M	De Boe		

Γ	Facility:	Lake	Stevens	Marketph		Location	on I.D. : ӎ	1/67				
Ī	Project I		4.038.09			Date:	10-18-					
	Location			oring Well □ Ext	raction Well 🗆 I	Borehole □ Sprin			utfall 🗆	Other:		
1	Air Temp:	55-60□	°C 🖪 °F	Weather:						outor.		
	Well Locke		s 🕅 no		Repairs Neede	d: none						
Ī	X TOC □			.g., well monumer								
				ove/below ground			(ID): 🛕 2-inch	☐ 4-inch	Other:			
	Water Le	evel Data	Measureme	ent Units: 🛕			- N - N - N - N - N - N - N - N - N - N					
	E-Tape, #	386 I □ Other	Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling		Remarks		
		ım; 24-hr clock	9:59		1000			1045	110	2		
	Depth to Wa	ıter	6,89					7.10		05		
	Depth to Bot	ttom										
ŀ	Water Level											
-	Product Thic Product Rec			1								
	□ gallons □	liters										
	First round	of water level	s; ² Water leve	prior to purging								
	Field Wa	ter Qualit	y Data	Purge Depth: □	Γορ (χ Mid □	Bottom [□ Grab □ Bail	er 🖊 Pump	Descri	iption:		
L	Casing Volum	e· (TD)	·(WL)]•[_	(WAILID))²•[(Conversion F	Sactor)] -						
	Conversion Fa	ctor = 0.0408 f	or feet and gallo	ns; 0.1544 for fee	t and liters; 0.506	66 for meters and	l liters; Well ID in	inches D	ry While	Purging 🗆		
	Cumulative	Depth to	Time	рН	Conductivity	Temp	D. O	ORI	Ь	Tuebidity		
)	Vol. Purged (Liters)	Water	(hh:mm)	(Temp, Corrected? □)	ÄSC □EC (μS/cm)	X °C □°F		(mV		Turbidity ☐ NTU		
	1.25	6.94	L0:06	6.48	266.3	13.4	2.8.0	73.	. 8	NA		
	1.5	6.96	10 (1	6.26	256.4	13,3	2.14	78.	5			
	1.75	7.00	1016	6.14	256.5	13.6	1,92	81.				
	~1.0	7.04	1021	6.09	253.4	13.6	1.86	82.5				
	41.25	7.07	1026	6.05	251.3	13.9	1.89	83.3				
Γ	~1.5	7.10	1031	6.02	250.8	14,1	1,84	84.0				
	21.75	7.12	1036	6.00	250,9	13.8	1.96	85.:				
Γ			.000	4100	30317	(),0	11.10	Do.				
r												
	ump Rate			Color/Tint/Odor								
	ml/min)	50-80	^ 0	Che	ar , color	セラク						
L	leter Used	YSI	Pro P	15								
5	Sample D		ample Depth:	10' -	Grab □ Bailer	N Pump D	escription: Peri	stattic				
	Field Sa (unique ID	mple ID		Date Time	# of Bottles (total to lab)	Metals B	ottles type)		Note	es		
N	Notes											
	ųi					YN	YN	111				
						YN	Y N	ı				
L												
s	ampler's Nam	ne (print)	hris De	Boer	Sign	ature ()	o DeBoer					
			0	-4-2-								

Facility:	Lak	le Stever	is Marke	tolace	Locat	ion I.D. :	nw-a		
Project f	No.:				Date:				
Location	Descrip	ntion ≰Mon	itoring Well Ext	raction Well Bo	rehole 🗆 Sp	ring/Creek □ Por	nd/Lagoon 🗆	Outfail [□ Other:
		°C MQ°F							
Well Locke		s 🔯 no		Repairs Needed:					
		2 7.1		nt at grade surface)					
TOC/MP S	Stickup: 🔨	5 DA∫ft⊡ma	bove/below ground	Well Insid	le Diamete	er (ID): 💢 2-ind	ch 4-inch	Other:	
Water Le	evel Data	Measurem	ent Units: 🛱	ft □m	9				
(A) E-Tape, #	338 € (Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling		Remarks
	nm; 24-hr cłock			1048		End	1127		
Depth to Wa	ater	7,4		V 0 . L -		Q		24	
Depth to Bot	ttom						3(00 7)	7	
Water Level	(WL)								
Product Thic									
Product Rec □ gallons □									
		ls; ² Water leve	el prior to purging						
Field Wa	ter Qualit	v Data	Purge Death: 🗇	Top Ø IMid □B	ottom	Crob C	oiles 57 Du	D	
						☐ Grab ☐ B		np Desc	ription: (Rev)
Casing Volum Conversion Fa	e: [(TD) actor = 0.0408	(WL)]•[_ for feet and gall	(Well ID)] ² •[ons; 0.1544 for fee	(Conversion Fact and liters; 0.5066	ctor)] = for meters a	□ gal □ liters nd liters; Well ID	in inches	Dry Whil	e Purging C
Cumulative Vol. Purged	Depth to	Time	pН	Conductivity SC DEC	Temp	D. O	0	RP	Turbidity
(Liters)	Water	(hh:mm)	(Temp Corrected? □)	(µS/cm)	M °C □°	F (mg/L)	(n	nV)	□ NTÚ
7.35	7.55	10:57	5.94	375.6	13.7	3.425.94	10	7.9	NA
1,5	761	1102	5.95	378.0	14.1	3.33	100	6-6	
1.75	7.64	1107	5.95	379.2	14,4	3.07		6.2	
2/10	7.70	1113	5-94	378.7	14.8	3.03	loc		
~1.25	7.76	11 17	5.96	379.8	14.7	2,96		6.2	
-11-0			5. 10	01.0	1.0.1	4(110	101	· A	
					7				
							+		
Pump Rate (ml/min)	50 - 8		Color/Tint/Odor	a date					
Meter Used		•	Clean	r, colorles	5				
	Y5 ‡	Pro Phis							
Sample D	ata s	ample Depth:	10' -	Grab □ Bailer (X Pump	Description: Pe	wistally	2	
Field Sa (unique ID			Date Time m/d/y) (hh:mm)		Metals Filtered	Bottles	rvative	No	tes
11-6-MN			R1/6 1120	3		10A B	N HC		
			, ,,		YN		N		
					YN	Υ	N		
Sampler's Nam	ne (print)	nis DeBe	en	Signatu	ire Chi	Deller			

Facility:	lake i	Stevens M	arketplace		Locatio	n I.D. : ພ	w-5		
Project	No .: 1246	.038.03			Date:	10-18-16			
Location	Descrip	tion CMonit	oring Well DExt	raction Well 🗆 Bo	rehole 🗆 Sprin	g/Creek □ Pond/	/Lagoon □	Outfall [□ Other:
	55-60 0	°C ذF	Weather:						
Well Lock		s 🌠 no		epairs Needed:					
				t at grade surface):					
TOC/MP S	Stickup:	5 M2 ft □ m ab	ove/selow ground	> Well Insid	e Diameter	(ID): 💆 2-inch	☐ 4-inch	Other:	
Water Lo	evel Data	Measureme	ent Units: 🗖	ft □ m					
10 E-Tape, # □ Steel Tape	3786 t □ Other	Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling		Remarks
Time (hh:r	nm; 24-hr clock	11:30		1131			1213		
Depth to Wa	ater	20,52				1	20,38		
Depth to Bo	ttom						.,,		
Water Leve	(WL)								
Product Thi									
Product Red									
		ls; ² Water level	prior to purging						
Field Wa	ter Qualit	v Data	Purge Denth: FI 1	Top T AXMid □ B	ottom -] Grab □ Bail	or Mar D	ımp Docc	ription: Peri
		8 0				- GIAD LI DAII	er part	iiip Desc	inplion: Ken
Casing Volum Conversion Fa	e: [(TD) actor = 0.0408	(WL)]•[_ for feet and gallo	(Well ID)] •[ns; 0.1544 for feet	(Conversion Fac and liters; 0.5066	tor)] = for meters and	☐ gal ☐ liters liters; Well ID in	inches	Dry Whil	le Purging
Cumulative Vol. Purged	Depth to	Time	pН	Conductivity SC □ EC	Temp	D. O	C	ORP	Turbidity
(Liters)	Water	(hh:mm)	(Temp. Corrected? □)	(μS/cm)	M°C □°F	(mg/L)		mV) 	□ NTU
1.25	20.80	11:39	6.36	111.3	12.7	2.8.3	161	<u>D</u>	_N^_
1.5	20.15	11 45	6.53	204.0	13.8	1.71	101	.6	
1.75	21.08	1150	6.64	203.2	13.8	1.38	100	٠٦	
21.0.	21.14	11 55	6.73	203.2	13.8	1.04	99	.2	
21.25	21.23	1200	6.79	203,4	13.8	1,04	97	. 4	
215	21,30	1205	6.82	2033	14.2	10.7	96		
		1*							
Pump Rate (ml/min)	50-8	^	Color/Tint/Odor	colorless					
Meter Used	A	2	Crew.	COLONICSS					
	Y51	Pro Plus	<u> </u>						
Sample [Data s	ample Depth:	00) 18 135 10 1	Grab 🗆 Bailer 🌹	Pump De	escription: Per	istablic	•	
	ample ID on bottles)		Date Time		Metals Bo	ottles ype)		No	tes
nw-5-1			18/16 1240		Y & VO		1 He		
			/ t		YN	YN			
					YN	ΥN	1		
1011									
Sampler's Nar	ne (print) (Thris I	bber	Signatu	ire Chú	Delve			

Facility:	Lake	Steve	s Mar	Katole.	••	Loc	ation I	.D.: M			
	No.: 1246	0380	3	1		Date		-18-16	w-5		
				/ell □ Extra	action Well 🗆 B				agoon 🗆 🔾	utfall C	Other:
	55-60□				rvercast				goon E O	atian _	Culer.
Well Locke	ed? □ yes	Ø no			epairs Needed	: nen	well	(4)			
N TOC D	MP Descrip	tion of M	IP (e.g., well	l monument	at grade surface			-04			
TOC/MP S	Stickup:	1⊠ ft □ r	m above/bel	ow ground	Well Insi	de Diame	eter (ID)	2-inch [3 4-inch	Other:	
	evel Data										
▼ E-Tape, # 5	Other	Pre-Pu Initia	al Con	e-Purge ² Ifirmation	Purging Start	During Purging		irging End S	After ampling		Remarks
Time (hh:m	nm; 24-hr clock)				1224				257		
Depth to Wa	ater	3.6	94					7	29		
Depth to Bot	ttom						ļ.				
Water Level	(WL)										
Product Thic											
Product Rec □ gallons □											
First round	of water levels	s; ² Water	level prior t	o purging							
Field Wa	ter Qualit	y Data	Purge I	Depth: D To	op Ø Mid □	Bottom	☐ Gra	ıb □ Bailer	A Pum	p Descr	iption:D _a 1
Casing Volum Conversion Fa	e: [(TD) - actor = 0.0408 fe	(WL or feet and)]•[(We gallons; 0.15	ID)] ² •[544 for feet :	(Conversion Fa and liters; 0.5066	actor)] = 6 for meters	Па	al 🗀 liters			e Purging 🗆
Cumulative	Depth to	Time		nl l	Conductivity						
Vol. Purged (Liters)	Water	Time (hh:mm		pH oπected? □)	SC DEC	Tem _j		D. O (mg/L)	OR (m\		Turbidity ☐ NTU
1.25	3.13*	12:2	1 6	7 4	(μS/cm)	15.	0	4.73	101		NA
1,5	3.01	123	9 6	53	190.2	14.1		3.84	106.	6	
1,75	3.24	1237		.42	191.3	14.	-	3.80	107.		
21.0	3.25	1242		.37	191.2	14.3		3.83	108		
~4.25	3.28	1243		,33	191.0	14.		3.96	109.		
1.5	3,30	1252		30	190.6	14,		3.81	110.		
(10)	3130	1 42 0		130	1 1016	100		J. B.	1101		
Duma Dat				TI 1/6 :							
Pump Rate (ml/min)	50-8	6	Color/	Tint/Odor	eur, colorle	64					
Meter Used	YSI	900 9	≀W3		en Cenor I	77.5					
Sample D		imple Dept	hį	□ G	irab 🗆 Bailer	N Pump	Descri	ption: Peris	tallic		
Field Sa (unique ID	mple ID on bottles)	Result Code	Date (m/d/y)	Time (hh:mm)	# of Bottles (total to lab)	Metals Filtered	Bottles (type)			Note	es
MW-3-11		P0	10/18/16	1255	3	Y 🕥	VaA	Ø N	#0		
			11.110			YN		YN	"-		
1						ΥN		YN			
(
Sampler's Nam	ne (print)	hris	DeB	oer	Signa	ture					
	×	pung	spedu	pj pur	up rate a	dgust	d lor	ver.	7		

Facility/	Project No.: 1246.038.03 Location I.D.: MW-4 Date: 10-18-16													
Location			toring Well Extr	action Well 🗆 Bo	rehole □ Sp	ring/Creek ☐ Pond/		all 🛘 Other:						
Air Temp:		°C 4 Z 1°F	Weather: &											
Well Lock	ed? □ ye	s 🗘 no		epairs Needed	none									
DE TOC	MP Descri	ption of MP (e	e.g., well monumen	t at grade surface)	:									
TOC/MP S	Stickup: < ?	d ft□mat	oove/below ground	Well Insid	le Diamete	er (ID): 🗖 2-inch	☐ 4-inch Ot	her:						
	evel Data	Measureme		ft 🗆 m										
E-Tape, # Steel Tape		Pre-Purge ¹ Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling	Remarks						
Time (hh:r	nm; 24-hr clock	13:05		1305										
Depth to W	ater	2.30												
Depth to Bo	ttom													
Water Leve	(WL)													
Product Thickness Product Recovery														
Product Red		-												
		ls; ² Water leve	I prior to purging											
Field Wa	ter Quali	ty Data	Purge Depth: □ T	op ŽIM id □ B	ottom	☐ Grab ☐ Baile	er 🔼 Pump	Description:						
01	/ /TD\	04/133.5						***************************************						
Casing Volum Conversion Fa	e: [(1D) actor = 0.0408	(WL)]•[_ for feet and gallo	(Well ID)] •[ins; 0.1544 for feet	(Conversion Fac and liters; 0.5066	ctor)] = for meters a	D gal D liters nd liters; Well ID in	inches Dry	While Purging						
Cumulative Vol. Purged Depth to Time pH Conductivity Temp D. O ORP Turbidity														
(Liters)	Water	(hh:mm)	(Temp. Corrected? □)	(μS/cm)	154°C □°	'F (mg/L)	(mV)	□ NTÚ						
7.25	2.36	13:15	6.87	1603	14.0	2.0.9	83.	6 pr.						
2.5	2.40	1320	6.46	150.6	145	1,24	100.1							
175	2.43	1325	6.33	142.4	14.7	611	108.4	4						
~1.0	9.46	1330	6.29	140.3	14,7	1.06	110.8							
~1.25	249	1335	6.27	136.4	14.8	1.03	113.2							
1.00	Ø.	(53)		100.		1.03	113.8							
D D			0.1. (7) (0.1											
Pump Rate (ml/min)	50-80		Color/Tint/Odor	storkes										
Meter Used	YSI	Pro Thy												
Sample D		ample Depth:	10' 0G	Grab □ Bailer (B Pump	Description:	L Aic							
	mple ID on bottles)		Date Time	# of Bottles (total to lab)	Metals Filtered	Bottles (type)		Notes						
MW-4-1			18/16 1340	3	Y (N) [ray ON	1 1401							
			7-1-0		YN	YN								
					YN	YN								
Sampler's Nan	ne (print)	livis De	Boer	Signate	ire Oli	in le Boer	=11.77=17.0							

Facility/	Site:	Ke Steam	Pine N	lacta 1	Noce	Loc	ation	I.D. : /h.	h1-8	120			
Project No.: 1241. 038.03 Date: 10-18-16													
Location	-	177		ell □ Extr	raction Well	☐ Borehole ☐				L Outfall C	Other:		
Air Temp:		°C 🗖 °F			over as		- oping/c	JICCK LI T ONG	Lagoon	Odian L	J Other.		
Well Locke		s 🗖 no			epairs Nee		0						
IN TOC I	MP Descrip												
	Stickup: 4_3						eter (ID)): 🔯 2-inch	4-inc	h Other:			
:	evel Data						,				1		
☑ E-Tape, #	3786/ □ Other	Pre-Purge Initial		-Purge ² firmation	Purging Start	During Purging		Purging End	After Sampling	$\overline{}$	Remarks		
	nm; 24-hr clock	- 11			1349				- Campini,				
Depth to Wa	ater	9.15			09115								
Depth to Bo	ttom												
Water Level	(WL)												
Product Thic									8				
Product Red													
	of water level	s; ² Water lev	el prior t	o purging		-							
Field Wa	ter Qualit	v Data	Purae [Depth: 🗆 T	op Al Mid	□ Bottom	□ G	irab □ Bail	ler 🕅 Pi	umo Desc	ription: 2 a.		
										J. 1000	pton [e/v]		
Casing Volum Conversion Fa	e: [(TD) - actor = 0.0408 f	(WL)]• or feet and ga	[(Wel lions; 0.15	I ID)] •[44 for feet	(Conversion and liters; 0.5	n Factor)] = _ 5066 for mete	rs and lite	gal □ liters ers; Well ID in	inches	Dry Whil	e Purging		
Cumulative	Depth to	Time		оН	Conductivit		no	D. O		ORP	Turbidity		
Vol. Purged (Liters)	Water	(hh:mm)	(Temp. Co	orrected? 🔲)	SC □ B (μS/cm)			(mg/L)		(mV)	□ NTU		
1.25	9.20	13:58	6	.37	317	14	.8	2.0.4	ч	9.1	nn		
2.5	9.23	1403	6	.23	248	14	8	1.96	5:	5.4			
1.75	926	1408		15	237		.8	1.30		7.9			
11.0 G	9 29	1413	-	.07	219	14		1.17		2.8			
~1,25	922	1418		04	215		(8	1.13	6	23			
~1.5	9.35	1423			213		.4						
701.0	4,55	17 25	6.	03	dis	19	. +	1,09	6	4.3			
									-				
			-										
Pump Rate	4		Color/	Fint/Qdor									
(ml/min)	50-80			clea	r, colo	ress							
Meter Used	Y5	IPN	Plus										
Sample D		ımple Depth:	lo'	□ G	Grab 🗆 Balle	er O⊼ Pump	Desc	cription:	ristal	Aic			
Field Sa (unique ID	Field Sample ID Result Date Time # of Bottles Metals Bottles (unique ID on bottles) Code (m/d/y) (hh:mm) (total to lab) Filtered (type) Preservative Notes												
uw-8-11	1W-8-102816 PO 10/18/16 1430 3 Y NO VOA ON HC1												
1													
0						YN		YN	1				
Sampler's Nam	e (print)	hris De	Boer		Sig	gnature (Die	DeBre					

							-	6															
×	Relinquished	Relinguished ×	I represent that I am authorized to enter into this Agreement with Fremont agreement to each of the terms on the front and backside of this Agreement.	Sample Disposal:	***Anions (Circle):	**Metals Analysis (Circle):	10	9	00 1 1 T 8	7 MW-8	6 /41/ - 6	5 MW - 7	4 MW.	3 My Wy - 6	2 MW - 7	1/11/11-6-	Sample Name	Telephone:	City, State, Zip:	Address:	Client, WY JOACO	3600 Fremont Ave N.	
		Jebres	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	Return to Client	Nitrate	(Circle): MTCA-5	-		STHIT?	10,36	T FULL LE	10101		1-10/7/18	10174	101816	AII, AQ = Aqueous,	A STATE OF	Leat	SIEI	7	×	-remo
	Date/Time	Date/Time	enter into this A he front and bacl	0	Nitrite Chloride	RCRA-8 P			à	si —			6.			15 16 16	Sample S		W DA	A V		Tel: 206-352-3790	TOM
		38	greement wi	Disposal by Lab assessed if sam	Sulfate	Priority Pollutants			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16130	1348	355	1310	130	1801	0.80	ample Time		13181		-	6 0	
			Agreement.	Samples will be ples are retained	Bromide	ts TAL				×	7		1	·	X	100	ample atrix)*	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		59			
×	Received	Received ×	nalytical on b	Disposal by Lab (Samples will be held for 30 days. assessed if samples are retained after 30 days.	O-Phosphate	Individual: Ag											SO = Sediment, St.						
	1	()-	ehalf of the Cl	Disposal by Lab (Samples will be held for 30 days unless otherwise noted. A fee may be assessed if samples are retained after 30 days.)	e Fluoride	Al As B Ba Be											The state of the s	7.052	Report	Location:	Project Name:		Chain c
	Dat	Dat	ient named ab	ise noted. A fee	Nitrate+Nitrite	Ca Cd Co							7	S E			The state of the s		Report To (PM):		Name:		of Cust
	Date/Time	Date/Time	ove, that I hav			Cr Cu Fe Hg											A CONTROL OF THE WATER		JI AL		Coxx .		ody Re
		909	ve verified Cli	on the following business day.	Turn-around times for samples received after 4:00pm will begin	Fe Hg K Mg Mn Mo Na Ni Pb			×						, ,	1	Ning water, 'bw = Ground water, Solve of the Good Code, Solve of the	JAC 58 NV 180) Down	Sant F	10 16 W 20 3		cord a
>	Г		ent's	ness day.													er, sw = storm water,		7	Collect	3.	סי	nd Lab
Please coordinate	AT → SameDa				Special Remarks:	Sb Se Sr Sn Ti														collected by:	Kettika	Page:	poratory Servi
^Please coordinate with the lab in advance	TAT → SameDay^ NextDay^ 2 Day 3 Day_STD					1 TI U V Zn											Comr			\$ 5		of:	Servic
ance	2 Day 3 Day S																Comments				Altria	1	es Agre
	OT.																		2				Chain of Custody Record and Laboratory Services Agreement

WATER LEVEL DATA FORM

PAGE 1 OF 1

DATE: 1/19/17

PROJECT: Lake Stevens Shp Ctr

JOB No: 1246.038.03.001

FIELD PERSONNEL: C. DeBoer

MEASURING	INSTRUM	ENT:					RECORDE	ED BY:C. DeBoer
☐ STEEL T	APE		□ от	HER-TYPE			DATUM:	☐ MEAN SEA LEVEL
ELECTR	ONIC SOU	NDER	SERIAL	No. 73471	14			☐ OTHER - DESCRIBE
WELL I.D.	Time Well Opened	Depth to Water (FT)	Time	Depth to Water (FT)	Time	Depth to Water (FT)		ENTS (well condition, odor, esence of product, etc.)
MW-1	735	NM.	750	7.94	8:26	7.94		
MW-2	736	<u> </u>	757	6.89	835	6.88		
MW-3	739		753	1.93	8:28	1,78		
MW-4	741	\/	752	1,35	8 29	1,21		
MW-5	73.6		759	18.92	831	18.93		
MW-6	737		755	8.61	834	8.58		
MW-7	738		807	6.73	833	6.74		
		4			7.60	2.		
MW-30	nt	1	210	1.75				
11-4 c	nt		911	1,18				
4W-6 a	mt		908	8.5%				
		Э.						
		on	b.		-			
X	could	feel te	menat	In ch	may	as is	in	
	Came	and	we	tu	8			
	T-T-			1		Υ.		
						2 5 10		
)) (1)		
3								¥
		7%						,
								·
						-		

Facility:	Lake Ste	ens Sho	nning	Center		Wel	IID ·	4.11 -1							
Facility: Lake Stevens Shopping Center Project No.: 1246.038.03.001 Date: 1/19/17 Location Description (Monitoring Well Extraction Well Borehole Spring/Creek Pond/Lagoon Outfall Other:															
Location Description & Monitoring Well Extraction Well Borehole Spring/Creek Pond/Lagoon Outfall Other: Air Temp: 405 °C °F Weather: 0000 Caps															
	4013 D	°C M°F					-pringroto.	in E i ondire	agoon 🗆 O	atian D	Other.				
Well Locke		D no				FA share 2									
					at grade surface)										
TOC/MP S			01-11-11-1	low ground			eter (ID)	2-inch [☐ 4-inch	Other:					
	evel Data	Measure	-				()	2 1101	- Finon	Other.					
☐ E-Tape, #☐ Steel Tape	3)43,44 □ Other	Pre-Purg Initial	Cor	e-Purge ² infirmation	Purging Start	During Purging		ging nd S	After Sampling	F	Remarks				
Tîme (hh:n	nm; 24-hr clock)	8:4	4		844										
Depth to Wa	ater	7.94													
Depth to Bo	ttom	. 1													
Water Level	(WL)														
Product This															
Product Red ☐ gallons ☐	covery			B/											
	of water level:	Water le	vel prior	to purging						1					
Field Wa	ter Qualit	v Data	Purae	Denth: □ T	op ⊠ Mid □ E	lottom	☐ Grab	Daile	do p		70 77 2				
					DP WING LIE	ottom	LI Gial		pu Pum	Descri	ption:				
Casing Volum Conversion Fa	e: [(TD) - actor = 0.0408 fo	(WL)]• or feet and ga	[(We illons; 0.1	II ID)] [*] •[_(Conversion Fa and liters; 0.5066	ctor)] = for meter	□ gal s and liters;	☐ liters Well ID in in	ches C	ry While	Purging				
Cumulative	conversion Factor = 0.0408 for feet and gallons; 0.1544 for feet and liters; 0.5066 for meters and liters; Well ID in inches														
(Liters)	Water	(hh:mm)	(Temp. C	corrected?	M SC LI EC (μS/cm)	₩c		(mg/L)	(m\	The state of the s					
1,35	8.04	851		-34	945	to	5 10	,5.8	3	7	MM				
2,5	8.08	85.7	7	.86	913	10.,	5 3	1.70	12,3	3					
1.75	8 W	901	7	1.68	879	(0.	7 3	10	19.						
1(00	8.14	9076	7	.66	867	10	1 2	.00	16 6	1					
~1.25	8.17	93	1 7	,66	856	10:		.88.	15.						
21.5	8.21	9186	7	-65	850	10.0	3.0	187	22,						
Pump Rate (ml/min)	50 - 5	 30	Color/	Tint/Odor	clear co	1,000	4								
Meter Used	Y55		05		Comment (e										
Sample D		mple Depth:	10 ·t	↓ □ G	rab □ Bailer ↓	9 Pump	Descript	ion: Pank	taltic						
	mple ID on bottles)	Result Code	Date (m/d/y)	Time (hh:mm)	# of Bottles (total to lab)	Metals Filtered	Bottles (type)	Preservative		Note	es T				
MW- 1-01		P0	Milla	9720	3	Y (N)	LOA	Ø N	HCI	. 1010					
			4.11.	113		YN	Version	YN	1101						
						YN		YN							
,							\								
	ne (print)Chris	DeBoer			Signati	ıre 🛚	lis lel	up,	-						
4	come of her	001													

STATE TO MICH SAMOU INC ECOM DEVI A 2/2014120-

Facility:	Facility: Lake Stevens Shopping Center Well I.D.: MW-3							
Project N	lo.: 1246.	038.03.001			Date: 1	/19/17		
Location	Descript	ion 🖾 Monito	ring Well Extr	action Well	rehole Sprir	ng/Creek □ Pond/Lag	oon Outfall	☐ Other:
Air Temp:		C √D°F	Weather:					
Well Locke	d? □ yes	□ no	Damaged/R	epairs Needed:	home			
				t at grade surface)				
TOC/MP S	tickup: 1.3	☐ ft ☐ m abo	ve/below ground	Well Insid	e Diameter	(ID): □ 2-inch □	4-inch Other:	
Water Le		Measuremer		ft 🗆 m				
☐ E-Tape, # ☐ Other Pre-Purge Initial			Pre-Purge ² Confirmation	Purging Start	During Purging	0 0	After Impling	Remarks
Time (hh:m	m; 24-hr cłock)	9:30		932				
Depth to Wa	ter	6.87						
Depth to Bot	tom							
Water Level	(WL)			×				
Product Thic								
Product Rec □ gallons □								
		; ² Water level	prior to purging					
Field Wa	ter Quality	/ Data	Purge Depth: 🛘 T	op 🐧 Mid 🗆 E	Bottom	□ Grab □ Bailer	to Pump Desc	cription: Rec
Casing Volume Conversion Fa	e: [(TD) - .ctor = 0.0408 fo	(WL)]•[or feet and gallor	(Well ID)] ² •[ns; 0.1544 for feet	(Conversion Fa and liters; 0.5066	ctor)] = for meters and	_ □ gal □ liters d liters; Well ID in inc	hes Dry Wh	ile Purging 🏻
Cumulative Vol. Purged (Liters)	Depth to Water	Time (hh:mm)	pH (Temp Corrected? □)	Conductivity ☐ SC ☐ EC (µS/cm)	Temp lÓ°C □°F	D. O 🛨 (mg/L)	ORP (mV)	Turbidity
1.3	6.97	9:37	703	439.8	9.4	0.41	7.9	N.M.
2.55	7.02	942	7.14	436,5	9,6		17.7	
2.8	7.06	9 47	2.23	440.1	9.5	-	14.4	
1.05	7.10	452	7 26	424.6	9.3	_	31.8	
11.3	7.15	957	7.38	422.4	9,4	×	17.8	
~1 55	7.19	1002	7.27	4213	9,4	/	18.6	
			/					
Pump Rate			Color/Tint/Odor	· A			-	
(ml/min)	50-80			lear colo	Neces			
Meter Used	Y51	Pro Plus	2					
Sample E)ata sa	ample Depth: 🔨	104 0	Grab □ Bailer	⊠ Pump I	Description:	staltic	
	ample ID on bottles)		late Time	# of Bottles (total to lab)		Bottles (type)	• 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	otes
			19/17 1005	-		OA ON	HCI	
	<u> </u>				YN	YN		
			1		YN	YN		
/								
Sampler's Name (print)Chris DeBoer Signature								
& D.J. mete read blank								

CONTROL D IND CAMPI IND CODE DEV 4 200111201

Facility:	Facility: Lake Stevens Shopping Center					Well I.D.: MW-50			
Project N	Project No.: 1246.038.03.001					Date : 1/19/17			
Location	Descrip	tion 🛱 Mon	itoring Well Ex	traction Well 🛚 🗷 Be	orehole 🗆 Spring	g/Creek □ Pond/L	agoon □ Outfall	□ Other:	
Air Temp:		°C 🖄 °F		overcust-					
Well Locke		s 🗓 no		Repairs Needed					
				nt at grade surface)		(ID): Electric	П . : . О . О О		
Water Le		Measurem	ent Units:		de Diameter (ID). M 2-inch	□ 4-inch Other	U	
E-Tape, #[*]Steel Tape		Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling	Remarks	
	m; 24-hr clock			1005	3 3				
Depth to Wa		17.93							
Depth to Bot	tom						7/.		
Water Level	(WL)								
Product Thic	kness								
Product Rec □ gallons □						4 1/			
		s; ² Water lev	el prior to purgin	9					
Field Wa	ter Qualit	y Data	Purge Depth: □	Top 🖔 Mid □	Bottom [∃ Grab □ Baile	r № Pump De	scription	
Casing Volum Conversion Fa	e: [(TD) actor = 0.0408	(WL)]•[for feet and gal	(Well ID)] ² •[_ lons; 0.1544 for fee	(Conversion Fa et and liters; 0.5060	actor)] = 6 for meters and	□ gal □ liters liters; Well ID in i	nches Dry WI	nile Purging 🗆	
Cumulative Vol. Purged (Liters)	Depth to Water	Time (hh:mm)	pH (Temp Corrected? □)	Conductivity SC □ EC (µS/cm)	Temp ⊊°C ⊡°F	D. O (mg/L)	ORP (mV)	Turbidity □ NTU	
1.35	18.96	(0 (p	7.05	236.3	110		73.8	NA	
	9 9.03	10 15	7.16	223,4	MO		14.7		
2.形	19,09	(0 20	7 23	2139	14.7	parties.	2.1		
~(0	19.05	1025	7.68	214.3	6,9		-2.3		
21.25	19.15	1030	7.69	200.0	60.4	-	-3.2		
~1.5	19.75	1035	7.70	216.2	10.4	· ·	Ui		
						F.			
Pump Rate (ml/min)	50-9	3)	Color/Tint/Odo	dear Co	lovless				
Meter Used			e Rivs	MEN TE	(01)07)				
Sample [Data s	Sample Depth:	-35 F4. 0	Grab □ Bailer	CA Pump D	escription: Ven	6 to Wite		
Field Sa (unique ID	ample ID on bottles)	Result Code	Date Time (m/d/y) (hh:mn			ottles type)	ive	lotes	
— 		19/17 1840			64 (Y) N	Hel			
					YN	YN			
-					YN	ΥN			
/									
Sampler's Nar	ne (print)Chris	s DeBoer		Signa	ature	s le bos			
	Do. meter rod blank								

CONTRACT D MIC CARADI INIC ECOM DEV A 2/20144201

Facility: Lake Stevens Shopping Center					Well I.D.: Mw 6				
Project No.: 1246.038.03.001					Date: 1	Date : 1/19/17			
Location	Descrip	tion 🖄 Monit	oring Well Extra	action Well Bor	ehole 🗆 Sprin	ig/Creek □ Pond/La	igoon □ Outfall I	□ Other:	
Air Temp:		°C 🖻 °F	Weather:	overcast					
Well Locke	ed? □ yes	s 🗖 no	Damaged/Re	epairs Needed:	hom				
			.g., well monument	at grade surface):					
TOC/MP S	tickup: <u>^.3</u>	Ďlft ☐ m ab	ove/below ground	Well Inside	e Diameter	(ID): 🖾 2-inch 【	4-inch Other:		
Water Le		Measureme		t 🗆 m					
াছা E-Tape # ☐ Steel Tape	☐ Other	Pre-Purge ¹ Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End S	After Sampling	Remarks	
Time (hh:m	nm; 24-hr clock	10:44		1044					
Depth to Wa	ater	\$160							
Depth to Bo	ttom								
Water Level	(WL)								
Product Thic									
Product Red □ gallons □									
		s; ² Water level	prior to purging						
Field Wa	ter Qualit	y Data	Purge Depth: 🗀 To	op Ø∏ Mid □ B	ottom [□ Grab □ Bailer	Pump Des	cription:	
Casina Valum	(TD)	()4//)]=[(14/a) ID) ² a	(Conversion For					
Casing Volum Conversion Fa	e:(1D) - actor = 0.0408 f	for feet and gallo	(Well ID)] ² •[ns; 0.1544 for feet	(Conversion Fac and liters; 0.5066	for meters and	_ Li gar Li liters d liters; Well ID in in	_{ches} Dry Wh	ile Purging 🗆	
Cumulative Vol. Purged (Liters)	Depth to Water	Time (hh:mm)	pH (Temp Corrected? □)	Conductivity ☐ SC ☐ EC (µS/cm)	Temp ∀°C □°F	D. O (mg/L)	ORP (mV)	Turbidity □ NTU	
1,3	8.68	10:49	t.53	567,4	73_		334	nn	
1.6	871	1054	8.52	8.88-3	7.5	_	35.1		
~ 75	8.74	1059	8.60	588.4	7.2		34.0		
21.2	8.76	1104	8.62	5846	7.3	_	33, 2		
165	8,78	1109	8.64	575.3	7.5		32.5		
~1.75	8:80	1114	8.66	583.5	7.5		318		
		*							
Pump Rate (ml/min)	50-60		Color/Tint/Odor	or color	PG)				
Meter Used		I Pro Pl	16		12				
Sample [Sample Depth		Grab □ Bailer Ů	Pump D	Description:	staltic		
	ample ID		Date Time			Bottles			
(unique ID	on bottles)	Code (r	n/d/y) (hh:mm)	(total to lab)	Filtered ((type)	NO.	otes	
MW-6-	स्ति।	P0 1	19/2 100	3	Y 🕦 1/	OA ON	Hel		
			8		YN	YN			
					YN	YN			
						100			
Sampler's Nar	ne (print)Chris	s DeBoer		Signati	ure (islebe			

Facility: Lake Stevens Shopping Center Well I.D.: Aug. 7								
Project No.: 1246.038.03.001								
Location	Descrip	tion 🛭 Monit	oring Well Extra	action Well Bor	ehole □ Spring/	'Creek □ Pond/L	agoon □ Outfall	☐ Other:
Air Temp:		°C 🗅 °F	Weather:					
Well Locke	ed? □ ye	s 🛛 no	Damaged/Re	epairs Needed:	none			
© TOC □	MP Descri	ption of MP (e	.g., well monument	at grade surface):	2012			
TOC/MP S	Stickup: 🔨 🐧	© ft ☐ m ab	ove/below ground	Well Inside	Diameter (I	D): 😡 2-inch	☐ 4-inch Other:	
	evel Data	Measureme						
	Other	Pre-Purge Initial	Pre-Purge ² Confirmation	Purging Start	During Purging	Purging End	After Sampling	Remarks
Time (hh:n	nm; 24-hr clock			(()0-				
Depth to Wa	ater	6.75						
Depth to Bo								
Water Leve	(WL)							
Product This								
Product Red ☐ gallons ☐	liters							
First round	of water leve	ls; ² Water level	prior to purging					
Field Wa	ter Quali	ty Data	Purge Depth: To	op D∏ Mid □ Bo	ottom 🗆	Grab □ Baile	r 🗓 Pump Des	cription
Casing Volum	e: [(TD)	(WL)]•[_	(Well ID)] ² •[_(Conversion Fac	tor)] =] gal □ liters	Dry Wh	ile Purging □
Conversion Fa	actor = 0.0408	for feet and gallo	ns; 0.1544 for feet		or meters and li	ters; Well ID in in	nches	no raiging L
Cumulative Vol. Purged	Depth to	Time	pН	Conductivity SC EC	Temp	D. O	ORP	Turbidity
(Liters)	Water	(hh:mm)	(Temp_Corrected? □)	(μS/cm)	∰°C □°F	(mg/L)	(mV)	□ NTU
	6.83	11:28	9.44	3500	7.7		20.1	NM
2.5	6.84	11 33	9.04	352.4	8.0		28.7	
1.75	6.92	11 38	9-01	340.5	85		28.5	
21.0	6,95	11 43	9.06	343, 2	8.5		2501	
-1.3	6.98	11 48	8.14	3440	8.6		27.9	
21,6	7.00	11 53	8,96	394.2	8.6	-	270	
Pump Rate	5%-	(D	Color/Tint/Odor	3100	1 1			
(ml/min) Meter Used	73.	T R. DI		hear c	Morrey)			
		+ Moth	.5			TV.	7. 17	
Sample [Sample Depth:	~() 🗆 G	irab □ Bailer 🏚	Pump Des	scription: len	staltic	
	ample ID on bottles)		Date Time (hh:mm)			rtles pe) Preservati	ve No	otes
MW-7-1	511913	P0 \	9/14 1155	3	Y (N) VOA	∑ N	HU	
			1		YN	YN		
,					Y N	YN		
						A		
Sampler's Nar	ne (print)Chris	s DeBoer		Signatu	re U	is before	4	

Facility: Lake Stevens Shopping Center Well I.D.: Mu-3										
Project N	Project No.: 1246.038.03.001						Date: 1/19/17			
Location	Descript	ion 🖫 M	onitoring We	ell 🗆 Extra	ction Well 🛘 Bo	orehole 🗆 S	pring/Creek	☐ Pond/Lago	oon Outfall	☐ Other:
Air Temp:		C d°F			overrast					
Well Locke	d? □ yes	Ď no	Dam		pairs Needed	non		-		
□тос □	MP Descrip	tion of MP	e.g., well r	monument a	at grade surface)					
TOC/MP S	tickup: 🔼 3	Åft□m	above/belo	w ground	Well Insid	de Diame	ter (ID): 🏻 🗓	2-inch 🗆	4-inch Othe	er:
Water Le			ment Unit		□ m					
☐ E-Tape, # _ ☐ Steel Tape		Pre-Purg Initial	Confi	Purge ² rmation	Purging Start	During Purging	Purgi Enc		after mpling	Remarks
Time (hh:m	m; 24-hr clock)				1201					
Depth to Wa	ter	1.7	9							
Depth to Bot	tom									
Water Level	(WL)									
Product Thic										
Product Rec										
	of water levels	; ² Water le	evel prior to	purging						
Field Wat	ter Quality	/ Data	Purge D	epth: 🗆 To	p @TMid □ I	Bottom	☐ Grab	□ Bailer	☑ Pump D	escription:
										101
Casing Volume Conversion Fa	e: [(TD) - ctor = 0.0408 fc	(WL)] or feet and g	•[(Well allons; 0.154	1D)] •[44 for feet a	_(Conversion Fa and liters; 0,5066	ctor)] = 6 for meters	and liters; V	☐ liters Vell ID in inch	es Dry V	Vhile Purging □
Cumulative Vol. Purged (Liters)	Depth to Water	Time (hh:mm)		oH rrected? □)	Conductivity ☐ SC ☐ EC (μS/cm)	Temp □°C [D. O mg/L)	ORP (mV)	Turbidity □ NTU
₹35	13020	12:10	7	.37	2197	83	3.	3 (344	Nn
1.5	2.10	12 15	-	13	327.9	8.0		20	40,4	
√.75	2.18	12 20		.09	227.1	8.2	S	154	420	y de
11.0	2.300	12 20	5 6	,83	224.4	8.5		1,43	51.1	
21,25	3.28	13 30	1	78	324.6	8.3	5	, 31	47.1	
15	226	13 35	700 N Z	84	223.0	8.1		49	47.0	
	2.00	10 20	GD';	0	007.0	061	Α,	- ((7.0	3
V										
Pump Rate			Color/1	Fint/Odor _/	1					
(ml/min)	50-80				ear colo	ress				
Meter Used	Y5	I Pro	Plus							
Sample D)ata sa	ample Depth	n ~8.	of □G	rab □ Bailer	Pump	Descripti	on: feris	talte	
	ample ID on bottles)	Result Code	Date (m/d/y)	Time (hh:mm)	# of Bottles (total to lab)	Metals Filtered	Bottles (type)	Preservative		Notes
	011917	P0	1/41.3	1240	3	Y N	NoA	(Ŷ) N	WOA	
The state of the s			YN		YN	Was 1	1			
						YN		YN		
						A.	***			
Sampler's Nan	ne (print)Chris	DeBoer			Signa	ture (has		+0.4.
		num	nate!		1 5.9/10	UN	W W	11/4/2		

CONTRACTOR OF THE PROPERTY ASSOCIATION

Facility: Lake Stevens Shopping Center Well I.D.: Avw-4										
Project I	Project No.: 1246.038.03.001						Date: 1/19/17			
Location	Descrip	tion 🗖 Moi	nitoring Well	traction Well	Borehole □ S	pring/Creek	Pond/Lago	on □ Outfall	□ Other:	
	45.500		Weather:							
Well Locke	ed? □ yes	s 🖄 no	Damaged/F	Repairs Need	led: (W)2	2				
□ TOC □	MP Descrip	otion of MP	(e.g., well monume	nt at grade surfa	ice):					
TOC/MP S	tickup: ¬ .3	.∭ ft □ m	above/below ground	P Well In	nside Diame	ter (ID): 🖾 2	?-inch □ 4	I-inch Other:		
Water Le			nent Units: 🏻 🖾	ft □m						
Œ-Tape, # Steel Tape	☐ Other	Pre-Purge Initial	Confirmation	Purging Start	During Purging	Purging End		fter opling	Remarks	
Time (hh:m	nm; 24-hr clock	12:40	1	MAGA						
Depth to Wa	iter	1.15								
Depth to Bo	ttom									
Water Level	(WL)									
Product Thic										
Product Red □ gallons □										
		s; ² Water lev	el prior to purgino	3	•					
Field Wa	ter Qualit	y Data	Purge Depth:	Top ⊠ Mid	□ Bottom	☐ Grab [⊒ Bailer I	⊠ Pump Des	cription:	
									1001	
Casing Volum Conversion Fa	e: [(TD) - actor = 0.0408 f	or feet and ga	[(Well ID)] ² •[llons; 0.1544 for fee	(Conversion t and liters; 0.5	066 for meters	□ gal □ l and liters; We	iters I ID in inche	Dry Wh	ile Purging 🗆	
Cumulative Vol. Purged	Depth to	Time	рН	Conductivity ☑ SC □ E		D.	0	ORP	Turbidity	
(Liters)	Water	(hh:mm)	(Temp Corrected? □)	(μS/cm)	C B.C I	⊐°F (mg	(1-)	(mV)	□ NTÚ	
1,75	118	1249	5.36	399		4 -		1110	1100	
1,5	124	1254	8.04	386.2	8,1	1 -		839		
275	1.38	1259	7.96	393-	1 8.3	3 _	17	61,1		
21.0	1.31	1304	7.84	368,0	8,3			53.3		
~1.23	1.36	1309	7.80	3663	8.2	_		427		
21.5	1,40	1314	7.78	363,0	7.17			36:3		
				e ₁						
				Ng 1 a						
				1						
Pump Rate (ml/min)	50-8	 Û	Color/Tint/Odo	r 2005 Co	larler					
Meter Used	451	1	RWS	CO.	VDN VC/7					
			- 10 E	-			Λ.	1 11		
Sample D		ample Depth:	. 0.	Grab ☐ Baile		Description:	Peris	talte	V	
	ample ID on bottles)	Result Code	Date Time (m/d/y) (hh:mm) (total to lab)		Bottles (type)	Preservative		otes	
MW-4-01	(11)	P0 \	19/17 1315	3	YN	VOA	⊗ N	Hel		
				2	YN		YN		1	
j					YN		YN			
r.					A .	Λ.				
Sampler's Nan	ne (print)Chris	DeBoer		Sig	gnature	his l	2/23			

APPENDIX E

Terrestrial Ecological Evaluation

Terrestrial Ecological Evaluation Process - Primary Exclusions

1/3

Documentation Form

Exclusion #	Exclusion Detail	Yes or No?	Are Institutional Controls Required If The Exclusion Applies?
	Will soil contamination be located at least 6 feet beneath the ground surface and less than 15 feet?	Yes No	Yes
1	Will soil contamination located at least 15 feet beneath the ground surface?	Yes No	No
	Will soil contamination located below the conditional point of compliance?	Yes /	Yes
2	Will soil contamination be covered by buildings, paved roads, pavement, or other physical barriers that will prevent plants or wildlife from being exposed?	Yes No	Yes
	Is there less than 1.5 acres of contiguous undeveloped land on the site, or within 500 feet of any area of the site affected by hazardous substances other than those listed in the table of Hazardous Substances of Concern?	Yes /No	
3	And		Other factors determine
	Is there less than 0.25 acres of contiguous undeveloped land on or within 500 feet of any area of the site affected by hazardous substances listed in the table of Hazardous Substances of Concern?	Yes/No	
4	Are concentrations of hazardous substances in the soil less than or equal to natural background concentrations of those substances at the point of compliance	Yes No	No

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

Lake Stevens

1/8/17

1/3

Terrestrial Ecological Evaluation Process-Simplified or Site-Specific Evaluation?

Documentation Form

	Terrestrial Concern	Response (Circle One)
*1	Is the site is located on or directly adjacent to an area where management or land use plans will maintain or restore native_vegetation ?	Yes /No
*2a	Is the site used by a <u>threatened or endangered</u> <u>species?</u>	Yes /No
*2b	Is the site used by a <u>wildlife species classified by the state department of fish and wildlife as a "priority species" or "species of concern" under Title 77 RCW?</u>	Yes No
*2c	Is the site used by a plant species classified by the Washington state department of Natural Resources natural heritage program as "endangered," "threatened," or "sensitive" under Title 79 RCW.	Yes No
*3	Is the site (area where the contamination is located) located on a property that contains at least ten acres of native vegetation within 500 feet of the area where the contamination is located?	Yes / No
4	Has the department determined that the site may present a risk to significant wildlife populations?	Yes No

^{*1} This includes for example, green-belts, protected wetlands, forestlands, locally designated environmentally sensitive areas, open space areas managed for wildlife, and some parks or outdoor recreation areas. This does not include park areas used for intensive sport activities such as baseball or football.

^{*2}a What are the threatened or endangered species in Washington state?

^{*2}b Which plant species are classified as threatened, endangered, or sensitive? Where can I find out more information about this topic?

^{*2}c For plants, "used" means that a plant species grows at the site or has been found growing at the site. For animals, "used" means that individuals of a species have been observed to live, feed or breed at the site.

^{*3} For this analysis, do not include native vegetation beyond the property boundary.

3/3

Terrestrial Ecological Evaluation Process- Simplified Evaluation

Documentation Form

Criteria # (Concern)	Criteria	Response (Circle One)
1 (exposure)	Is the total area of soil contamination at the site less than or equal to 350 square feet	Yes (End TEE) / No
2 (exposure)	Does land use at the site and surrounding area make substantial wildlife exposure unlikely based on completion of Table 749-1?	Yes (End TEE) / No
3 (pathway)	Is there a potential exposure pathway from soil contamination to soil biota, plants, or wildlife?	Yes / No (End TEE)
4 (contaminant)	Are the hazardous substances at your site listed in <u>Table 749-2</u> and is (or will) their location in the soil at your site be at a depth not exceeding the point of compliance, and at concentrations that do not exceed the values provided in <u>Table 749-2</u> .	Yes (End TEE) / No Note: You must perform bioassays for contaminants at your site if no table value is provided.
5 (contaminant)	Will hazardous substances listed in <u>Table 749-2</u> be present in the soil at your site within 6 feet of the ground surface at concentrations likely to be toxic, or with the potential to bioaccumulate, based on bioassays using methods approved by the department.	Yes / No (End TEE)

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

[TEE Home]

APPENDIX F

Sampling and Analysis Plan

Lake Stevens GRF2, LLC c/o: Gerrity Group, LLC 973 Lomas Santa Fe Drive Solana Beach, California

SAMPLING AND ANALYSIS PLAN

FORMER LAKE STEVENS CLEANERS LAKE STEVENS MARKETPLACE SHOPPING CENTER LAKE STEVENS, WASHINGTON

FEBRUARY 17, 2017

By:

Brian O'Neal, P.E. Associate Engineer

Kelly Rankich Project Engineer

1246.038.03

TABLE OF CONTENTS

LIST	OF TA	ABLES	iii
LIST	OF IL	LUSTRATIONS	iii
1.0	INT	RODUCTION	4
1.0	1.1	Property Description	
	1.2	Project History	
	1.3	Remedial Action Purpose and Approach	
	1.4	Document Organization	
2.0	SAM	IPLING AND ANALYSIS PLAN	6
	2.1	Sampling Needs and Objectives	
	2.2	Health and Safety Plan Preparation	
	2.3	Groundwater Performance and Compliance Monitoring	
		2.3.1 Performance Monitoring	
		2.3.2 Compliance Monitoring	
		2.3.3 Groundwater Monitoring Methods	
	2.4	Laboratory Analytical Procedures	
	2.5	Sample Labeling, Shipping, and Chain-of-Custody	
		2.5.1 Sample Labeling and Nomenclature	9
		2.5.2 Sample Shipping	9
		2.5.3 Chain-of-Custody	10
	2.6	Decontamination	10
	2.7	Sampling Residuals	10
3.0	QUA	ALITY ASSURANCE PROJECT PLAN	12
	3.1	Quality Assurance Project Plan Objectives	12
	3.2	Chemical Analyses	12
	3.3	Laboratory Quality Control	12
	3.4	Field Quality Assurance	
		3.4.1 Trip Blanks	13
		3.4.2 Field Duplicates	
	3.5	Data Reporting and Data Validation Review	13
4.0	DAT	A EVALUATION	15
	4.1	Field Documentation	15
	4.2	Nature and Extent of Contamination	15
	4.3	Other Regulatory Requirements	15
5.0	REF	ERENCES	16

TABLES

FIGURES

APPENDIX A - FIELD FORMS

LIST OF TABLES

Table 1	Analytical Methods and Sample Handling Details
Table 2	Field and Laboratory Quality Control Sample Summary
Table 3	Laboratory Deliverables
	LIST OF ILLUSTRATIONS
Plate 1	Site Location
Plate 2	Site Vicinity Map
Plate 3	Site Plan

1.0 INTRODUCTION

This Sampling and Analysis Plan (SAP) has been prepared on behalf of Lake Stevens GRF2, LLC (Gerrity) as a reference appendix to the Cleanup Action Plan (CAP) for the Lake Stevens Shopping Center property located at 303 91st Avenue Northeast, in Lake Stevens, Washington (Property, Plate 1; PES, 2017). The term "Site", as used in this SAP, refers to the locations where contaminants originating from the Property have come to be located. The Site is the location of releases from former dry-cleaning operations from the former Lake Stevens Cleaners (Suite #302). The Site is the subject of on-going remedial investigations since 2013.

This SAP applies to the collection and analysis of groundwater samples as a component of the CAP, including the performance and confirmation sampling programs. This SAP includes a Quality Assurance Project Plan (QAPP), which is presented in Section 3.0.

1.1 Property Description

The Property is located within a mixed use commercial/retail/residential neighborhood, located in the West Lake Stevens area of the City of Lake Stevens, Snohomish County, Washington. The Property encompasses approximately 9.46 acres in the southwest quarter (SW½) of the northeast quarter (NE½) of Section 13 (S13), Township 29 North (T29N), Range 5 East (R5E). The City of Lake Stevens identifies zoning at the Property as "539 Other Retail Trade NEC". The surrounding area is primarily a mix of residential and commercial/retail use. The Property is comprised of Parcels 1 (0.75 acres), Parcel 3 (8.37 acres), and Parcel 5 (0.34 acres).

As shown on Plate 2, the Property includes two areas within the Lake Stevens Marketplace Shopping Center, consisting of retail stores, restaurants, professional businesses surrounded by associated paved parking areas and landscaping. Three commercial structures are present on the Property.

The term "Site", whenever used in this SAP, refers to the locations where contaminants originating from the former dry-cleaning operations have come to be located. Pertinent site features are shown on Plate 2.

1.2 Project History

The Property was mostly undeveloped with few rural residential properties from the 1940s to the early 1970s. The Property was bisected by 4th Street Northeast until 1993 when the shopping center was constructed. During the 1970s a septic tank service business (Tandem Service Corporation [Tandem]) operated in the northeast corner of the Property in the general vicinity of the northern portion of the north multi-tenant building. Since the construction of the shopping center in 1993, no significant changes have occurred at the Property.

Since the shopping center was constructed, uses of the Site include a variety of commercial businesses, including a hardware store, restaurants, an animal hospital, a paint store, financial services, and retail. Gerrity does not plan any substantive changes in the uses of the property. Lake Stevens Cleaners reportedly began operations in Suite #302 when the shopping center

\$124603803R_2285_AppF **4**

opened in 1993 and used chlorinated solvent-based cleaning solutions throughout their operations, ending in 2015.

The first environmental investigation of the Property was conducted in 2013 by the previous owner of the property, and a report of release was reported to Ecology on November 9, 2015 by Galloway Environmental, Inc. (Galloway, 2015a). PES's 2017 CAP provides additional details regarding previous investigations conducted at the Site.

1.3 Remedial Action Purpose and Approach

Shallow groundwater downgradient of the former dry cleaners (MW-2 and MW-7) contains PCE above the CUL. In order to confirm that the downward trend in PCE concentrations in groundwater at MW-2 continues, and also document the effects of the source treatment further downgradient at MW-7, continued quarterly groundwater monitoring will be conducted.

1.4 Document Organization

This SAP is organized into five sections. A brief description of each section is presented below.

- **Section 1 Introduction.** Section 1 provides a description of the Site, briefly summarizes the project history, and describes the cleanup action purpose and approach for remediating the subsurface groundwater media, and documenting performance and compliance.
- Section 2 Sampling and Analysis Plan. Section 2 details the performance and compliance monitoring procedures, laboratory methods, decontamination procedures, and the management of monitoring residuals.
- Section 3 Quality Assurance Project Plan. Section 3 identifies quality assurance/quality control (QA/QC) procedures for monitoring and laboratory analysis.
- Section 4 Data Evaluation. Section 4 provides the procedures for data evaluation, and interpretation.
- Section 5 References. Section 5 provides the references cited in the work plan.
- Appendix A Field Forms. Appendix A provides examples of field forms that will be used on this project.

\$124603803R_2285_AppF 5

2.0 SAMPLING AND ANALYSIS PLAN

This SAP has been developed as a project reference manual for the collection of high quality environmental data. This SAP includes collection of performance and compliance groundwater samples.

2.1 Sampling Needs and Objectives

The sampling and analysis plan for the project has been developed to collect high quality environmental data. The overall goal of the field work is to generate data that are acceptable for use in evaluating performance of the remedial action, and documenting compliance with the remedial action objectives (RAOs).

As demonstrated in the CAP, tetrachloroethene (PCE) is the primary contaminant of concern for shallow groundwater at the Site.

2.2 Health and Safety Plan Preparation

Prior to mobilization for field work, the site-specific health and safety plan (HASP) will be updated as needed for the scope of work. The original HASP was prepared consistent with the requirements of the Washington State Division of Occupational Safety and Health's Hazardous Waste Operations Regulation (WAC 296-843). The HASP includes a description of the project team, the scope of work, site control, a site hazard information, site hazard control, air monitoring, and emergency response. Information about the nearest hospital, including a map, is also provided.

2.3 Groundwater Performance and Compliance Monitoring

Groundwater monitoring will be conducted to assess the performance of the groundwater extraction systems at controlling off-Property contaminant migration and to assess water quality over time to demonstrate that cleanup levels are being achieved at the point of compliance. Monitoring will consist of collecting depth to water measurements and collecting groundwater samples for laboratory analysis. Groundwater samples will be collected using similar procedures as for the site characterization investigations. Monitoring well locations are shown on Figure 3.

2.3.1 Performance Monitoring

Performance monitoring will be conducted quarterly and includes the following tasks:

- Quarterly water level monitoring in all 6 shallow groundwater monitoring wells (MW-1 through MW-4, MW-6, and MW-7) and the 1 deep monitoring well (MW-5; Plate 3); and
- Quarterly groundwater sampling wells with previous detections of PCE (MW-2, MW-6, and MW-7) as well as deep well MW-5. Sampling of MW-5 will be discontinued after four consecutive quarters of results below CULs are obtained).

2.3.2 Compliance Monitoring

Once the last round of groundwater performance monitoring has been completed, compliance groundwater monitoring will be conducted to demonstrate that groundwater within the Site meets the cleanup level at the point of compliance. Compliance monitoring will include an additional four quarters of monitoring to confirm compliance with groundwater cleanup levels at the Site. Compliance monitoring will include the following tasks:

- Quarterly water level monitoring in all 6 shallow groundwater monitoring wells (MW-1 through MW-4, MW-6, and MW-7) and the 1 deep monitoring well (MW-5; Plate 3).
- Collection of groundwater samples from 6 shallow monitoring wells and the 1 deep well on a quarterly basis to confirm compliance with groundwater cleanup levels (MW-1 through MW-7).

2.3.3 Groundwater Monitoring Methods

2.3.3.1 Groundwater Level Measurements

Groundwater elevations will be measured using the following procedures:

- 1. Open the well monument, remove any standing water and debris (i.e., sediment, vegetation, or refuse) prior to removing the well cap;
- 2. Open the well by carefully removing the cap. Allow the riser to vent if under pressure or vacuum. Record the time at which the well is initially vented to the atmosphere (i.e., time of well cap removal). Document initial conditions (i.e., well over-pressurized or under-pressurized relative to the atmosphere) on the Water Level Form (Appendix A);
- 3. After opening and venting the well, measure the initial water level to the nearest 0.01 foot, using an electronic water level probe;
- 4. Measure the water level at the surveyed measuring point (MP) on the north side of the top of the PVC casing;
- 5. Duplicate the water level measurement in each well in the field to ensure that the reading is accurate. Record all results (times, measured values, etc.) on the Water Level Form;
- 6. Rinse the probe tip with distilled water between each well to avoid cross contamination;
- 7. Replace the well cap upon completing the water level measurement;
- 8. Periodically, check the time needed for water level equilibration after cap removal by measuring the water level in a well, allowing the well to vent for a more extended period of time (at least 1 hour), and measuring the water level a second time. Record all results on the Water Level Form; and
- 9. Upon completion of the water level measurements, replace and tightly seal each of the surface monuments.

2.3.3.2 Groundwater Sampling

This section includes a description of groundwater sampling methods. Sample field forms are provided in Appendix A.

Preparation. Prior to the initiation of any sampling activities, all of the necessary field equipment and documentation materials (e.g. field notebook and sampling forms) will be prepared. Prior to the commencement of purging and sampling, each of the field instruments will be calibrated with standard solutions at a minimum of once per day. Laboratory supplied sample bottles will be inspected for proper preservative (Table 1). The depth to water will be measured prior to sampling using the procedures outlined above.

Low-Flow Purging. A peristaltic pump will be used to sample the shallow and deep wells. The pump tubing will be slowly lowered into the well until the intake is approximately two to three feet below the groundwater surface and within the screened interval, whichever is lower, and purged prior to sampling. The pump will be started and the start time will be recorded on a Groundwater Sampling Form. Pumping rates will be measured with a stopwatch and graduated cylinder, graduated cup, or volatile organic analysis (VOA) vial, depending on flow rate. Low flow purging will be conducted at a pumping rate between 80 and 500 mL/min.

During purging, the water level will be measured approximately every 3 to 5 minutes, until a steady water level is determined. If possible, a drawdown of 0.3 feet or less will be maintained in the well, with the pumping rate lowered to a minimum rate of 80 mL/min if necessary to maintain a drawdown of 0.3 feet or less. The water level in the well will be maintained above the tubing intake at all times. If the well yield is sufficiently poor that the water level drops to the level of the tubing intake, the pump will be stopped until the water level recovers to near the pre-pumping level. The process will then be repeated until the field parameters have stabilized. The final purge volume will be at least as great as the volume of water in the well casing above the tubing intake and tubing volume. All measured water levels and pumping rate changes will be recorded on a Groundwater Sampling Form.

Field Parameter Measurements. Field indicator parameters will be measured approximately every 3 to 5 minutes during purging. Field parameters will include pH, specific conductance, temperature, dissolved oxygen (DO), and ORP. Measurements will be recorded to the following standards:

- pH to ± 0.01 units;
- Specific conductance to ± 1 micromho;
- Temperature to $\pm 0.1^{\circ}$ C;
- DO to ± 0.1 milligrams per liter (mg/L); and
- ORP to ± 1 mV.

Samples will not be collected until these parameters have stabilized for three consecutive readings to the following criteria:

- pH to ± 0.1 pH unit;
- Conductivity to ±3 percent;
- Temperature to ± 3 percent; and

• DO to ± 10 percent.

ORP measurements will not be used to determine stability. If field parameters do not stabilize after 1 hour of pumping, a sample will be collected. Well purging data will be recorded on a Groundwater Sampling Form. Field instruments will be calibrated using known, standard solutions, a minimum of once per day.

Sample Collection. Upon completion of purging, samples will be collected from the discharge end of the pump tubing. The same pump rate used at the end of well purging will be used during sample collection. VOC samples will be collected by allowing the sample water to pour down the inside of the VOA vials without splashing onto the base. All sample containers will be prepared and provided by the analytical laboratory (Table 1).

After collection of the sample from each well, the tubing will be removed from the well, the well cap will be replaced, and the well cap or monument locked. Decontamination and purge water will be handled in accordance with Section 2.8 of this SAP.

2.4 <u>Laboratory Analytical Procedures</u>

All samples will be submitted to a Washington State-accredited laboratory. The laboratory methods shown in Table 1 will be used. Groundwater samples will be analyzed for the following HVOCs by EPA Method 8260C: PCE, trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride.

2.5 Sample Labeling, Shipping, and Chain-of-Custody

Sample labeling, shipping, and chain-of-custody will be performed consistent with the procedures described below.

2.5.1 Sample Labeling and Nomenclature

Sample container labels will be completed immediately before or immediately following sample collection. Container labels will include the following information:

- Project name;
- Groundwater Sample Name: well identification number. For example, the sample name for a groundwater sample collected at MW-1 would be "MW-1";
- Initials of collector;
- Date and time of collection; and
- Analysis requested.

2.5.2 Sample Shipping

Samples will be shipped to the analytical laboratory using the following procedures:

\$124603803R_2285_AppF

- Sample containers will be place in a sealed, iced cooler or other suitable shipping container after sample collection. This container will be used for transporting the samples to the analytical laboratory;
- In each shipping container, glass bottles will be separated by a shock absorbing material to prevent breakage and leakage;
- Ice sealed in separate plastic bags or "gel ice" packs, will be placed into each shipping container with the samples;
- All sample shipments will be accompanied by a chain-of-custody form (COC). The completed form will be sealed in a plastic bag, which will be taped to the inside lid of the shipping container;
- Signed and dated COC seals will be placed on all shipping containers; and
- The name and address of the analytical laboratory, along with sampler's name and office (return) address, will be placed on each shipping container prior to shipping.

2.5.3 Chain-of-Custody

Once a sample is collected, it will remain in the custody of the sampler or other PES personnel until shipment to the laboratory. Upon transfer of sample possession to subsequent custodians, a COC will be signed by the persons transferring custody of the sample container. A signed and dated COC seal will be placed on each shipping container prior to shipping. COC records will be included in the analytical report prepared by the laboratory.

2.6 Decontamination

Decontamination procedures will be performed consistent with the procedures described in this section. All non-disposable sampling equipment will be decontaminated prior to initial use, between sampling locations, and at the completion of the site-specific sampling.

The following decontamination procedure will be used for non-dedicated and non-disposable sampling equipment:

- Tap water rinse;
- Non-phosphatic detergent (e.g., Liquinox) and tap water wash;
- Tap water rinse; and
- Distilled water rinse.

Water level probes will be decontaminated by rinsing with distilled or de-ionized water. Decontamination of personnel involved in sampling activities will be accomplished as described in a site-specific health and safety plan.

2.7 Sampling Residuals

The following procedures will be used for the sampling residuals, including groundwater sampling purge water and decontamination water:

\$124603803R_2285_AppF **10**

- Purge water and decontamination water generated during the investigation activities will be placed in 55-gallon drums and securely stored on site. A representative sample collected and analyzed for disposal characterization. Based on the results, the water will be profiled and disposed of at an appropriate facility; and
- Disposable clothing and equipment will be placed in plastic bags and disposed of as solid waste.

S124603803R_2285_AppF **11**

3.0 QUALITY ASSURANCE PROJECT PLAN

This quality assurance project plan (QAPP) describes the measures undertaken so that the data collected during the project are acceptable for their intended use(s) and includes the elements from Ecology's QAPP guidance document (Ecology, 2004).

3.1 Quality Assurance Project Plan Objectives

The overall QAPP objective for measurement data is to provide data of known and acceptable quality. All measurements will be made to yield accurate and precise results representative of the media and conditions measured. Chemical analyses will be performed in accordance with the requirements of the analytical methods. All sample results will be calculated and reported in consistent units to allow comparison of the sample data with regulatory criteria and federal, state, and local databases. QAPP objectives for precision, accuracy, and completeness have been established for each measurement variable, where possible, and are discussed below.

3.2 Chemical Analyses

Analysis of environmental samples will be performed in accordance with the laboratory analytical methods summarized in Table 1. The laboratory will report the results to levels less than or equal to the cleanup levels, using method reporting limits (MRLs) or MDLs as necessary to meet the cleanup levels. Any special analytical methods or modifications to methods will be determined with laboratory concurrence prior to beginning sample analysis.

3.3 <u>Laboratory Quality Control</u>

This section presents quality control (QC) requirements for the analytical laboratory. The purpose of this QC program is to produce data of known quality meeting project objectives and the requirements of the standard methods of analysis. Laboratory QC samples will include laboratory control samples (LCSs), matrix spike/matrix spike duplicate (MS/MSD) samples, laboratory duplicates, and method blanks. Laboratory QC samples (e.g., blanks and LCSs) will be included in the preparation batch with the field samples. An analytical batch is a number of samples (not to exceed 20, including the associated laboratory QC samples, MSs and MSDs) that are from a similar matrix and extracted or digested at the same time, analyzed sequentially, and with the same lot of reagents.

The identity of each analytical batch will be reported with the analyses so that a reviewer can identify the QC samples and the associated environmental samples. Samples that do not need separate extraction or digestion (e.g., volatile analyses by purge and trap) are included in each analytical batch.

All sample preparation and analysis will be completed within the method-required holding times. The holding time begins at the time of sample collection. If holding times are exceeded and the analyses are performed, the data will be qualified during the data review, in accordance with USEPA Functional Guidelines (USEPA, 1999 and 2002).

\$124603803R_2285_AppF **12**

3.4 Field Quality Assurance

Field QC samples will be collected during groundwater sampling and will include trip blanks and field duplicates. Field QC samples will be collected at the frequency specified in Table 2 and described below.

3.4.1 Trip Blanks

A trip blank consists of a set of VOA vials filled in the laboratory with reagent-grade water, transported to the sampling site, handled under the same conditions as an environmental sample, and returned to the laboratory for analysis. Trip blanks are not opened in the field. Trip blanks are prepared only when volatile samples are collected and are analyzed only for volatile analytes. Trip blanks are used to assess the potential introduction of contaminants from sample containers or during the transportation and storage procedures. One trip blank per sampling day or per cooler will be included with the shipment of soil and water samples to the laboratory if VOC analyses are requested and will be analyzed for VOCs. If an analyte is detected in a trip blank, the data will be qualified during the data review per USEPA Functional Guidelines for Organics (USEPA, 1999).

3.4.2 Field Duplicates

A field duplicate sample is a second sample collected at the same location as the original sample. Duplicate samples are collected simultaneously or in immediate succession, using identical sampling techniques, and treated in an identical manner during storage, transportation, and analysis. The sample containers are assigned an identification number in the field so that they cannot be identified (blind duplicate) as duplicate samples by laboratory personnel performing the analysis. Duplicate sample results are used to assess precision of the sample collection process. One duplicate sample will be collected for approximately every 20 project samples.

3.5 Data Reporting and Data Validation Review

The laboratory performing sample analyses will be required to submit summary data and QA information to permit independent determination of data quality. The determination of data quality will be performed using the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (USEPA, 1999) and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (USEPA, 2002) as guidelines for data review.

Laboratory deliverable requirements are outlined below and included in Table 3:

- Narrative cover letters for each sample batch will include a summary of any QC, sample, shipment, or analytical problems, and will document all internal decisions. Problems will be outlined, and final solutions documented;
- A copy of the signed chain-of-custody form for each batch of samples will be included in the results packet;

S124603803R_2285_AppF 13

- Sample concentrations will be reported on standard data sheets in proper units and to the appropriate number of significant figures. For undetected values, the lower limit of detection for each compound will be reported separately for each sample. Dates of sample extraction or preparation and analysis must be included;
- A method blank summary will be included;
- Surrogate percent recovery will be calculated and reported;
- LCS results will be included;
- MS/MSD percent recoveries, spike level, and relative percent difference will be included; and
- Laboratory duplicate results will be included.

All chemistry data will be validated per USEPA data review guidelines (USEPA, 1999 and 2002). Data validation will include a review of holding times, method blank results, surrogate recovery results, LCSs, MS/MSDs, field and laboratory duplicates, completeness, detection limits, and chain-of-custody forms. Data validation memos will be prepared summarizing the reviews and any assigned data qualifiers.

S124603803R_2285_AppF 14

4.0 DATA EVALUATION

Data generated during the remedial action, including the performance and confirmation monitoring programs, will be reviewed, summarized, and evaluated.

4.1 Field Documentation

Field sampling documentation and procedures, and issues (if any) will be reviewed and summarized, and maps will be prepared showing updated sampling locations.

4.2 Nature and Extent of Contamination

Chemistry data collected in connection with performance and confirmation sampling programs will be validated, tabulated, and summarized on maps of the Property. Maps will be updated with groundwater elevation data and contours and validated groundwater analytical data. After site-specific remedial action objectives have been achieved, data will be compared to the remedial action objectives and points of compliance.

4.3 Other Regulatory Requirements

Consistent with WAC 173-340-700(3), applicable state and federal laws, cross-media contamination, risk assessment procedures, and natural background and analytical procedures will be taken into consideration. If applicable, the process described above may be modified to account for these other requirements.

S124603803R_2285_AppF 15

5.0 REFERENCES

- PES Environmental, Inc. (PES). 2017. Cleanup Action Plan, Lake Stevens Shopping Center, Lake Stevens, Washington. February 17.
- U.S. Environmental Protection Agency (USEPA). 1999. *USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review*. EPA 540/R-99/008. USEPA Office of Emergency and Remedial Response. October.
- U.S. Environmental Protection Agency. 2002. *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*. EPA 540/R-01/008. USEPA Office of Emergency and Remedial Response. July.
- U.S. Environmental Protection Agency. 2007. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*. SW-846, Third Edition, Final Update 4B. February.
- Washington State Department of Ecology. 2004. *Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies*. Publication No. 04-03-030. July.

S124603803R_2285_AppF **16**

Table 1

Analytical Methods and Sample Handling Details Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington

Analyses	Analytical Method	Sample Container	Preservation	Maximum Holding Time
Groundwater Sample Laboratory Analyses	•	•		
Selected chlorinated volatile organic compounds	EPA 8260	3 x 40 mL VOA vial	Cool, 4°C, HCL (pH < 2), no headspace	14 days
Groundwater Field Parameters				
pН	Probe/EPA 150.1	_	_	_
Specific conductance	Probe/EPA 120.1	_	_	_
Temperature	Probe/EPA 170.1	_	-	_
Dissolved oxygen (DO)	Probe/SM 4500	_	_	-
Oxidation/reduction potential (ORP)	Probe	_	-	-

NOTES:

EPA = US Environmental Protection Agency

SM = Standard Methods for the Examination of Water and Wastewater

HCL = hydrochloric acid

Table 2

Field and Laboratory Quality Control Sample Summary Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington

Matrix	QA/QC Analyses	Frequency
Field	•	
Water	Trip blank	l per sampling day or cooler when samples are analyzed for CVOCs
Water	Field duplicate	1 per 20 project samples (approximately)
Laboratory		
Water	Laboratory control sample (LCS)	Every analytical batch
Water	MS/MSD	1 per 20 project samples
Water	Method blank	Every analytical batch

S124603803R_SAP_T1-3 2 of 3

Table 3

Laboratory Deliverables Lake Stevens Marketplace Shopping Center, Lake Stevens, Washington

The following deliverables will be required from the laboratory:

- A transmittal letter and case narrative which includes information about receipt of the samples, the analytical results, and any significant problems in any aspect of sample analysis (e.g., deviation from methodologies or quality control).
- Sample analytical results:
 - Water results in mg/L or μ g/L
 - Method detection limit (MDL) or Method Reporting limit (MRL) for undetected values reported for each analyte on a sample-by-sample basis
 - Date of sample receipt
 - Date of sample preparation/extraction
 - Date of sample analysis
 - Method blank results, including the samples associated with each blank
 - As applicable:
 - Surrogate recovery results, reported as percent recoveries, including actual spike levels
 - Duplicate results
 - Matrix Spike (MS)/ Matrix Spike Duplicate (MSD) results reported as percent recoveries, including actual spike levels
 - Laboratory control sample (LCS) results
- · Copies of signed chain-of-custody forms

S124603803R_SAP_T1-3 3 of 3

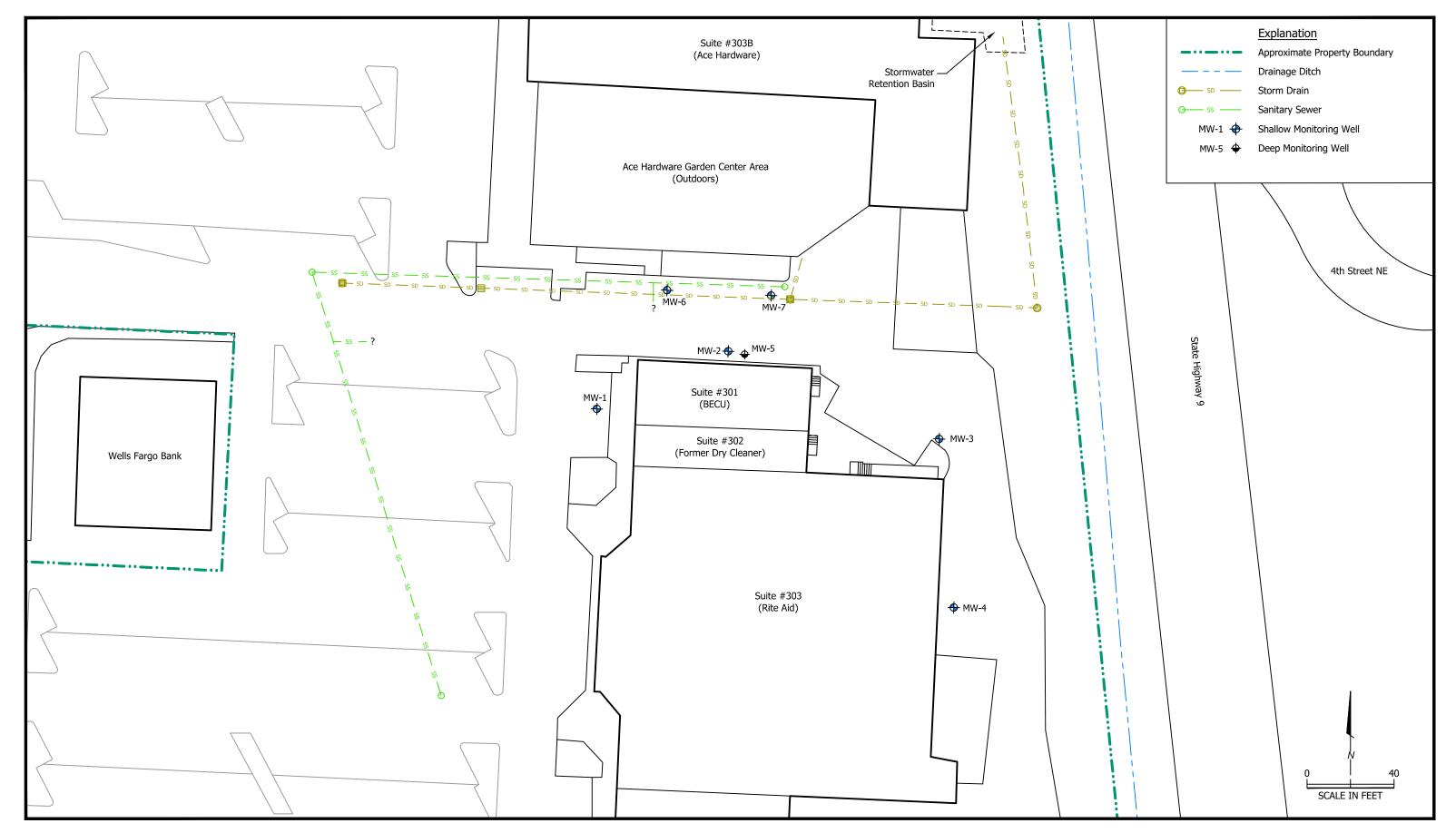


Site Location

Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

PLATE

KLR 1246.038.03.002 124603803002_ESA_1 2/17 REVIEWED BY



Site Vicinity MapLake Stevens Marketplace Shopping Center

Lake Stevens, Washington

PLATE

Site Plan Lake Stevens Marketplace Shopping Center Lake Stevens, Washington

1246.038.03.002 124603803002_ESA_3 JOB NUMBER

DRAWING NUMBER

KLR REVIEWED BY

2/17

APPENDIX A FIELD FORMS

_	_	 •	-	 _		_		_	_	_	$\overline{}$	
\Box		- 1	,	E		\Box	\Box			\frown	\Box	
	4	Y	·				K			L D	K	
L		- 1			_					v		

	PAGE	OF					
	DATE:						
PROJECT:							
JOB No:							
PROJECT MANAGER:							
RECORDED	D BY:						

	RECORDED B1.
TIME	DESCRIPTION, COMMENTS, NOTES, ETC.
ATTACHMENTS: 🗆 N	D
DESCRIPTION:	SIGNATURE

WATER	I FVFI	DATA FO	RM	

PROJECT	:		
JOB No:			
FIFI D PFI	SONNEI .		

WATER	WATER LEVEL DATA FORM							JOB No:	
								FIELD PERSONNEL:	
MEASURING IN	ISTRUMENT:		☐ ELECTRO	NIC SOUNDER		☐ OTHER-TYP	PE INSTRUMENT	RECORDED BY:	
TIME ON-SITE:				TIME OFF-SITE	:			MEASURING POINT: TOP of PVC	
WEATHER:		Temperature:			Precipitation:				
	T							T	
Well I.D.	Total Well Depth (feet)	Time	Depth to Water (feet)	Time	Depth to Water (feet)	Time	Depth to Water (feet)	Comments	

Page: of					
Date/Time:					
Project Name:					
Job No:					
Recorded	I Ву:				
Sampled By:					
	Well No:				

GROUNDWATER SAMPLING FORM

GRUL		IER OF	AIVIP LIING	FURIN					. – , .	
								Sampled	Ву:	
Well Ty	уре:	□ !	Monitoring	□ Ex	ktraction		Other		Well No:	
Well M	aterial:		PVC	☐ St	ainless St	teel [Other			
				1	WELL PUI	RGING				
PURGE '	<u>VOLUME</u>				<u>PURGIN</u>	IG METH	<u>OD</u>			
-	Diameter (D	,								
☐ 2-inch	າ □ 4-incl	h □ 6-in	nch 🗆 Othe	r	_ 🗆 Subm	nersible	□ Centri	fugal \square	Bladder	
			below top of ca							
Water-Lev	vel Depth (W	L in feet be	elow top of casi	ing):				1iddle:		
Pump rat	te: approxin	nately	mL/min	ute	Depth in	feet (BTC	DC):			
					Screen ii	nterval fe	et (BTOC)	from	to	
				FIELD PAR	AMETER I	MEASURE	MENTS			
START T	IME:	STOP	TIME:		1	1	IOVED:			
Time	Gallons Removed	рН	Conductivity (µmhos/cm)	Temperature (°C)	DTW (feet bgs)	ORP (mV)	DO (mg/L)	Observ	ations (color, well co cloudiness, etc.	
	<u> </u>									
	\longmapsto									
	<u> </u>									
	 									
	\vdash									
	\vdash									
	\vdash									
	 									
	 									
	<u>l</u>									
Notes:				V	VELL SAN	IDI ING				
☐ Bailer	☐ Peristalic			<u>*</u>	VELL OAN	Liito				
					An	alyses		Bottle Type	Preservative	
				QUALIT	Y CONTR	OL SAMP	LES			I
Dup	olicate Sample	No.	Time	Volume		An	alyses		Bottle Type	Preservative
Field	d Blank Sampl	e No.	Time	Volume		An	alyses		Bottle Type	Preservative

Field Drum Inventory Form

PES PROJECT NUMBER:	
JOB NAME:	
ADDRESS:	
PES FIELD REPRESENTATIVE:	

Drum ID#	Generation Date	Waste Material (decon wtr, dv wtr, etc.)	Well ID(s)	Volume	Waste Description (decon water, development water, etc.)
Diulii 10#	Date	(decon wir, dv wir, etc.)	well ib(s)	(gal)	(decon water, development water, etc.)