Air Screening Level Calculations

RESIDENTIAL METHOD B CARCINOGENIC RISK SLs FOR PCE VAPOR INTRUSION ASSESSMENT **BOEING AUBURN**

Given:

 $IUR_{PCF}(\mu g/m^3) =$ 0.00000026 Inhalation unit risk (IUR) from EPA IRIS Database last updated 2/10/12

CPF (kq-day/mq) = 0.00091 CPF calculated from IUR. CPF multiplied by standard adult average body weight

and conversion factor of 1000, over standard adult breathing rate

 H_{cc} @ 13° Celsius (C) =

0.393 Henry's Law Constant (H cc.) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-2, for Carcinogens with reduced RISK per WAC 173-340-750 (4)(b)(ii)(B)

RISK = 1.E-06 Acceptable cancer risk level

ABW (kg) = 70 Average body weight over exposure duration

AT (yr) =75 Averaging time

UCF(ua/ma) =1000 Unit conversion factor

CPF = Carcinogenic potency factor per WAC 173-340-708(8) (kg-day/mg)

BR $(m^3/day) =$ 20 Breathing/inhalation rate

ABS (unitless) = 1 Inhalation absorption fraction

ED(yr) =30 Exposure duration EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{SG}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{SG})

Equations: (1)
$$SL_{IA} (\mu g/m^3) = RISK X ABW X AT X UCF$$

 $CPF X BR X ABS X FD X FF$

MTCA Equation 750-2

(2) $SL_{SG} (\mu g/m^3) = SL_{1\Delta} /VAF$

Egn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) $SL_{GW} (\mu g/L) = \frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$

Egn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

 $UCF = 1000 L/m^3$

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$

(b) $SL_{SG} (\mu g/m^3) =$

(c) $SL_{GW} (\mu g/L) =$

320 24

RESIDENTIAL METHOD B NON-CARCINOGENIC RISK SLs FOR PCE VAPOR INTRUSION ASSESSMENT **BOEING AUBURN**

Given:

 $RfC_{PCF}(mg/m^3) =$ 0.04 RfC from EPA IRIS database updated 2/10/2012 based on studies of

occupationally-exposed adults; childhood exposure studies inadequate

0.011428571 RfC PCF multiplied by standard adult BR of 20m³/day over standard adult $RfD_{PCE}(mg/kg-day) =$

average body weight of 70 kg.

 H_{cc} @ 13° Celsius (C) =

0.393 Henry's Law Constant (H cc) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)

ABW (kq) =16 Average body weight over exposure duration

 $UCF(\mu q/mq) =$ 1000 Unit conversion factor HQ (unitless) = 1 Hazard Quotient AT(yr) =6 Averaging time

BR $(m^3/day) =$ 10 Breathing/inhalation rate ABS (unitless) = 1 Inhalation absorption fraction

ED(vr) =6 Exposure duration EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1)
$$SL_{IA} (\mu g/m^3) = \frac{RfD \times ABW \times UCF \times HQ \times AT}{BR \times ABS \times ED \times EF}$$

MTCA Equation 750-1

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Egn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) $SL_{GW} (\mu g/L) = \frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$

Egn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

UCF = 1000 L/m³

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$

(b) $SL_{SG} (\mu g/m^3) =$ 610

(c) SL_{GW} (µg/L) =

INDUSTRIAL METHOD C CARCINOGENIC RISK SLs FOR PCE VAPOR INTRUSION ASSESSMENT BOEING AUBURN

Given: CPF_{PCE} (kg-day/mg) = 0.00091 CPF calculated for Revised Method B SL for PCE

H_{cc} @ 13° Celsius (C) = 0.393 Henry's Law Constant (H_{cc}) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-2, for Carcinogens with reduced RISK per WAC 173-340-750 (4)(b)(ii)(B)

RISK = 1.E-05 Acceptable cancer risk level

ABW (kg) = 70 Average body weight over exposure duration

AT (yr) = 75 Averaging time UCF (μ g/mg) = 1000 Unit conversion factor

CPF = Carcinogenic potency factor per WAC 173-340-708(8) (kg-day/mg)

BR (m³/day) = 20 Breathing/inhalation rate

ABS (unitless) = 1 Inhalation absorption fraction

ED (yr) = 30 Exposure duration
EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1) $SL_{IA} (\mu q/m^3) = RISK X ABW X AT X UCF$ CPF X BR X ABS X ED X EF

MTCA Equation 750-2

(2) $SL_{SG} (\mu g/m^3) = SL_{1\Delta} /VAF$

Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) $SL_{GW} (\mu g/L) = \frac{SL_{IA}}{VAF \times UCF \times H_{Po}}$

Egn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

UCF = 1000 L/m³

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$ (b) $SL_{SG} (\mu g/m^3) =$ (c) $SL_{GW} (\mu g/L) =$ 240

INDUSTRIAL METHOD C NON-CARCINOGENIC RISK SLs FOR PCE VAPOR INTRUSION ASSESSMENT BOEING AUBURN

Given:

 $RfC_{PCE}(mg/m^3) = 0.04 RfC from EPA IRIS database updated 2/10/2012$

RfD_{PCF}(mg/kg-day) = 0.011428571 RfC for PCE multiplied by standard adult BR of 20m³/day

over standard adult average body weight of 70 kg.

 H_{cc} @ 13° Celsius (C) = 0.393 Henry's Law Constant (H_{cc}) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)

ABW (kg) = 70 Average body weight over exposure duration

UCF (μg/mg) = 1000 Unit conversion factor
HQ (unitless) = 1 Hazard Quotient
AT (yr) = 30 Averaging time

BR (m³/day) = 20 Breathing/inhalation rate

ABS (unitless) = 1 Inhalation absorption fraction

ED (yr) = 30 Exposure duration
EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1) $SL_{IA} (\mu g/m^3) =$

$$(\mu g/m^3) = \frac{RfD X ABW X UCF X HQ X AT}{BR X ABS X FD X FF}$$

MTCA Equation 750-1

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) $SL_{GW} (\mu g/L) = \frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$

Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

 $UCF = 1000 L/m^3$

 H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu q/m^3) =$ (b) $SL_{SG} (\mu g/m^3) =$ (c) $SL_{GW} (\mu g/L) =$ 40
1300
100

COMMERCIAL MODIFIED METHOD B CARCINOGENIC RISK SLs FOR PCE VAPOR INTRUSION ASSESSMENT BOEING AUBURN

Given: CPF (kg-day/mg) = 0.00091 CPF calculated for Res. Method B SL for PCE

https://fortress.wa.gov/ecy/clarc/FocusSheets/TCE%20PCE%20Oct%202004%20Final.pdf

 $H_{cc} = 0.393$ Henry's Law Constant (H_{cc}) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-2, for Carcinogens

RISK = 1.E-06 Acceptable cancer risk level

ABW (kg) = 70 Average body weight over exposure duration

AT (yr) = 75 Averaging time

UCF (ug/mg) = 1000 Unit conversion factor

CPF = Carcinogenic potency factor per WAC 173-340-708(8) (kg-day/mg)

BR (m³/day) = 20 Breathing/inhalation rate

ABS (unitless) = 1 Inhalation absorption fraction

ED (yr) = 30 Exposure duration EF (unitless) = 0.33 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1) $SL_{IA} (\mu g/m^3) = \frac{RISK X ABW X AT X UCF}{CPF X BR X ABS X ED X EF}$

MTCA Equation 750-2

(3) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas SL is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(4) SL_{GW} (μ g/L) = $\frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$

Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

 $UCF = 1000 L/m^3$

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$ (b) $SL_{SC} (\mu g/m^3) =$ (c) $SL_{GW} (\mu g/L) =$ 73

COMMERCIAL MODIFIED METHOD B NON-CARCINOGENIC RISK SLs FOR PCE VAPOR INTRUSION ASSESSMENT **BOEING AUBURN**

Given:

 $RfC_{PCF}(mg/m^3) =$ 0.04 RfC from EPA IRIS database updated 2/10/2012 based on studies of

occupationally-exposed adults; childhood exposure studies inadequate

0.011428571 RfC PCE multiplied by standard adult BR of 20m3/day over standard adult $RfD_{PCE}(mg/kg-day) =$

average body weight of 70 kg.

 H_{cc} @ 13° Celsius (C) =

0.393 Henry's Law Constant (H c) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)

ABW (kq) =70 Average body weight over exposure duration

 $UCF(\mu q/mq) =$ 1000 Unit conversion factor HQ (unitless) = 1 Hazard Quotient AT(yr) =30 Averaging time

BR $(m^3/day) =$ 20 Breathing/inhalation rate ABS (unitless) = 1 Inhalation absorption fraction

ED(vr) =30 Exposure duration EF (unitless) = 0.33 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1)
$$SL_{IA} (\mu g/m^3) = \frac{RfD X ABW X UCF X HQ X AT}{BR X ABS X ED X EF}$$

MTCA Equation 750-1

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) $SL_{GW} (\mu g/L) =$ VAF x UCF x H_{cc} Egn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

UCF = 1000 L/m3

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$

(b) $SL_{SG} (\mu g/m^3) =$

(c) SL_{GW} (µg/L) =

4000 305

120

TABLE L-7 RESIDENTIAL METHOD B CARCINOGENIC RISK SLs FOR TCE VAPOR INTRUSION ASSESSMENT BOEING AUBURN

Kidney Cancer Early-Life Exp. Age Adj. Assumptions: (age dependent adjustment factor) ADAFs		<u>2yrs</u> <u>2 to</u>	= 0 <6yrs 3		Converted converted to 16 to 30yrs	ancer potency factor for inhalation (CPF _i) from current EPA IUR. Factors for Kidney Cancer per EPA IRIS database summary.
(exposure duration) ED		2	4	10	14	Factors for Kidney Cancer per EPA IRIS database summary.
(breathing rate) BR		10	10	20	20	Factors for Kidney Cancer per EPA IRIS database summary.
(body weight) BW		16	16	70	70	Factors for Kidney Cancer per EPA IRIS database summary.
Non-Hodgkin's Lymphoma (NHL)	CPF _{TCE,i} (kg-day/mg)		=	0.007	Converted Cl	PF _i from current EPA IUR.
Liver Cancer	CPF _{TCE,i} (kg-day/mg)		=	0.0035	Converted Cl	PF _i from current EPA IUR.
	H _{cc} @ 13° Celsius		=			Constant (H _{sc.}) from EPA On-line Tools for Site Assessment
	Constants from MTCA Equation 7		_			
		ISK	=			ancer risk level
	ABW (=		Average bod Averaging tin	y weight over exposure duration
	UCF (μg/		=		Unit conversi	
	0	:9 <i>)</i> :PF	=			potency factor per WAC 173-340-708(8) (kg-day/mg)
	BR (m³/o		=		Breathing/inh	. ,
	ABS (unitle	• •	=			sorption fraction
	ED	(yr)	=		Exposure du	
	EF (unitle	ss)	=	1	Exposure fre	quency
(a) ELE for Kidney Cancer, (b) Kidney SLi,	(c) Lymphoma SLi, (d) Liver SLi, (e)	Indoor Air S	creening Le	evel SL _{IA} , (f) Soi	l Gas Screen	ing Level (SL $_{\rm SG}$), and (g) Shallow GW Screening Level (SL $_{\rm GW}$)
 Early Life Exposure (ELE) Adjustment Factor (μg-yr/kg-day) = 	<2yrs		<16yrs *ED*BR) +	16 to 30 yrs (ADAF*ED*BR)	
(1.5)	BW BW		BW	BW	_	
(2) Final Kidney Cancer CPF _i = (kg-day/mg)	[CPF _i x (2yrs/30yrs) x ADAF ₁]+ [CF	PF _i x (14yrs/	30yrs) x AD	DAF ₂] + [CPF _i x ((14yrs/30yrs)	x ADAF ₃]
(3) Kidney Cancer SL _i = (μg/m3)	RISK X AT X UCF CPFi X ELE X ABS X EF					
(4) SL _{IA} (µg/m ³) for Lymphoma Cancer and Liver Cancer=	RISK X ABW X AT X UCF CPF X BR X ABS X ED X EF	MTCA	Equation	750-2		
(5) $SL_{SG} (\mu g/m^3) =$	SL _{IA} /VAF	The upd Fac	sub-slab s lated datab ctors for Chl	soil gas screenin ase (EPA's Vap	ig level is bas or Intrusion D e Organic Cor	y's Draft Vapor Intrusion Guidance Document ed on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's latabase: Evaluation and Characterization of Attenuation impounds and Residential Buildings; EPA 530-R-10-002. Ecology.
(6) SL_{GW} ($\mu g/L$) =	SL _{IA} VAF x UCF x H _{cc}	VAI UCI H _{oc}	F = 0.001 (t F = 1000 L/ = Chemica	unitless; default) /m ³ il- and temperati	ure-dependen	nt value. H _{cc} values are based on an average Washington shallow and with Ecology's draft vapor intrusion guidance document.
 (a) ELE for Kidney Cancer = (μg-yr/kg-day) (b) Kidney SL₁ (μg/m3) = (c) Lymphoma SL₁ (μg/m3) = (d) Liver SL₁ (μg/m3) = (e) SL_{1Δ} (μα/m³) = (f) SL_{SC} (μα/m³) = (g) SL_{GW} (μg/L) = 	32.6 0.658 1.25 2.50 0.37 12 1.6	ECY g	ets 1.6			

RESIDENTIAL METHOD B NON-CARCINOGENIC RISK SLs FOR TCE VAPOR INTRUSION ASSESSMENT ROFING AUBURN

			BOEING AUBURN
Given:		$RfC_{TCE}(mg/m^3) =$ $RfD_{TCE}(mg/kg-day) =$	 0.002 Principal candidate reference concentration for chronic inhalation exposure, continuous exposure scenario; from EPA IRIS database, updated 9/28/11. 0.000571 RfCTCE multiplied by standard adult BR of 20m³/day over standard adult
			average body weight of 70 kg.
		H _{cc} @ 13° Celsius (C) =	0.238 Henry's Law Constant (H cc) from EPA On-line Tools for Site Assessment
		Constants from MTCA Equation	750-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)
		ABW (kg) =	16 Average body weight over exposure duration
		UCF (μg/mg) =	1000 Unit conversion factor
		HQ (unitless) =	1 Hazard Quotient
		AT(yr) =	6 Averaging time
		BR (m³/day) =	10 Breathing/inhalation rate
		ABS (unitless) =	1 Inhalation absorption fraction
		ED (yr) =	6 Exposure duration
		EF (unitless) =	1 Exposure frequency
Find:	(a) Indoor Air Screen	ing Level (SL _{IA}), (b) Soil Gas Screenir	g Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})
Equations:	(1) $SL_{IA} (\mu g/m^3) =$	RfD X ABW X UCF X HQ X AT BR X ABS X ED X EF	MTCA Equation 750-1
	(2) $SL_{SG} (\mu g/m^3) =$	SL _{IA} /VAF	Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.
	(3) SL_{GW} ($\mu g/L$) =	SL _{IA} VAF x UCF x H _{cc}	Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document VAF = 0.001 (unitless; default) UCF = 1000 L/m^3 H _{cc} = Chemical- and temperature-dependent value. H _{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.
Solve:	(a) $SL_{IA} (\mu g/m^3) =$ (b) $SL_{SG} (\mu g/m^3) =$ (c) $SL_{GW} (\mu g/L) =$	0.91 30 3.8	

TABLE L-9 INDUSTRIAL METHOD C CARCINOGENIC RISK SLs FOR TCE VAPOR INTRUSION ASSESSMENT BOEING AUBURN

Given:

IUR_{TCF}(m³/µg) = 0.000004 Approximate inhalation unit risk from EPA IRIS database for kidney cancer,

Non-Hodgkin's Lymphoma (NHL), and liver cancer for adult scenario; IRIS has 4.1E-6.

CPF (kg-day/mg) = 0.014 CPF calculated from IUR. CPF multiplied by standard adult average body weight

and conversion factor of 1000, over standard adult breathing rate

H_{cc} @ 13° Celsius (C) = 0.238 Henry's Law Constant (H_{cc}) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-2, for Carcinogens with reduced RISK per WAC 173-340-750 (4)(b)(ii)(B)

RISK = 1.E-05 Acceptable cancer risk level

ABW (kg) = 70 Average body weight over exposure duration

AT (yr) = 75 Averaging time
UCF (μg/mg) = 1000 Unit conversion factor

CPF = Carcinogenic potency factor per WAC 173-340-708(8) (kg-day/mg)

BR (m³/day) = 20 Breathing/inhalation rate

ABS (unitless) = 1 Inhalation absorption fraction

ED (yr) = 30 Exposure duration

EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1) $SL_{IA} (\mu g/m^3) =$

RISK X ABW X AT X UCF
CPF X BR X ABS X ED X EF

MTCA Equation 750-2

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) $SL_{GW} (\mu g/L) = \frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$

Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

 $UCF = 1000 L/m^3$

 H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$

(b) $SL_{SG} (\mu g/m^3) =$ (c) $SL_{GW} (\mu g/L) =$ 6.3 210 26

INDUSTRIAL METHOD C NON-CARCINOGENIC RISK SLs FOR TCE VAPOR INTRUSION ASSESSMENT BOEING AUBURN

Given:		$RfC_{TCE}(mg/m^3)$ $RfD_{TCF}(mg/kg-day)$		 0.002 Principal candidate reference concentration for chronic inhalation exposure, continuous exposure scenario; from EPA IRIS database, updated 9/28/11. 0.000571429 RfC_{TCE} multiplied by standard adult BR of 20m³/day over standard adult
		Kib _{TCE} (iiig/kg-day)	_	average body weight of 70 kg.
		H _{cc} @ 13° Celsius (C)	=	0.238 Henry's Law Constant (H cc) from EPA On-line Tools for Site Assessment
		Constants from MTCA Equation	750	9-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)
		ABW (kg)	=	70 Average body weight over exposure duration
		UCF (μg/mg)	=	1000 Unit conversion factor
		HQ (unitless)	=	1 Hazard Quotient
		AT (yr)	=	30 Averaging time
		BR (m³/day)	=	20 Breathing/inhalation rate
		ABS (unitless)	=	1 Inhalation absorption fraction
		ED (yr)	=	30 Exposure duration
		EF (unitless)	=	1 Exposure frequency
Find: Equations:	(a) Indoor Air Screeni(1) SL_{IA} (μg/m³) =	ing Level Level (SL _{IA}), (b) Soil Gas RfD X ABW X UCF X HQ X AT BR X ABS X ED X EF		eening Level (SL _{SG}), and (c) Shallow GW Screening Level (SL _{GW}) MTCA Equation 750-1
	(2) $SL_{SG} (\mu g/m^3) =$	SL _{IA} /VAF	1	Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.
	(3) SL _{GW} (μg/L) =	SL _{IA} VAF x UCF x H _{cc}	1	Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document VAF = 0.001 (unitless; default) UCF = 1000 L/m³ H _{cc} = Chemical- and temperature-dependent value. H _{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.
Solve:	(a) $SL_{IA} (\mu g/m^3) =$ (b) $SL_{SG} (\mu g/m^3) =$ (c) $SL_{GW} (\mu g/L) =$	2.0 67 8.4		

COMMERCIAL MODIFIED METHOD B CARCINOGENIC RISK SLs FOR TCE VAPOR INTRUSION ASSESSMENT

BOEING AUBURN

Given:	Kidney Cancer	CPF _{TCE,i} (kg-day/mg)	=	0.0035 Converted CPF _i from current EPA IUR.
	Non-Hodgkin's Lymp	homa (NHI CPF _{TCE,i} (kg-day/mg)	=	0.007 Converted CPF _i from current EPA IUR.
	Liver Cancer	CPF _{TCE,i} (kg-day/mg)	=	0.0035 Converted CPF _i from current EPA IUR.

 H_{cc} @ 13° Celsius (C) = 0.238 Henry's Law Constant (H cc) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-2, for Carcinogens with reduced RISK per WAC 173-340-750 (4)(b)(ii)(B)

RISK = 1.E-06 Acceptable cancer risk level

70 Average body weight over exposure duration ABW (kg) =

AT(yr) =75 Averaging time $UCF (\mu g/mg) =$ 1000 Unit conversion factor

> CPF = Carcinogenic potency factor per WAC 173-340-708(8) (kg-day/mg)

BR $(m^3/day) =$ 20 Breathing/inhalation rate ABS (unitless) = 1 Inhalation absorption fraction

ED(yr) =30 Exposure duration EF (unitless) = 0.33 Exposure frequency

Find: (a) Total CPFi, (b) Indoor Air Screening Level (SL_{IA}), (c) Soil Gas Screening Level (SL_{SG}), and (d) Shallow GW Screening Level (SL_{GW})

Equations: (1) Total CPF_i (for 3 cancers) = Final Kidney Cancer CPF_i + NHL CPF_i + Liver Cancer CPF_i

(kg-day/mg)

(2) $SL_{IA} (\mu g/m^3) =$ RISK x ABW x AT x UCF MTCA Equation 750-2 CPF x BR x ABS x ED x EF

(3) $SL_{SG} (\mu g/m^3) =$ SLIA /VAF Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002.

March 16, 2012) and communications with Ecology.

Egn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document (4) SL_{GW} ($\mu g/L$) = VAF x UCF x H_{cc}

VAF = 0.001 (unitless: default)

 $UCF = 1000 L/m^3$

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) Total CPF_i (kg-day/mg) =

(b) SL_{IA} (µg/m3) =

(c) $SL_{SG} (\mu g/m3) =$ (d) $SL_{GW} (\mu g/L) =$

0.014 1.9

63

7.9

COMMERCIAL MODIFIED METHOD B NON-CARCINOGENIC RISK SLs FOR TCE VAPOR INTRUSION ASSESSMENT BOFING AUBURN

			BOEING AUBURN
Given:		RfC _{TCE} (mg/m³) =	continuous exposure scenario; from EPA IRIS database, updated 9/28/11.
		H _{cc} @ 13° Celsius (C) =	0.238 Henry's Law Constant (H _{cc}) from EPA On-line Tools for Site Assessment
		Constants from MTCA Equation 750	0-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)
		ABW (kg) =	70 Average body weight over exposure duration
		UCF (μg/mg) =	1000 Unit conversion factor
		HQ (unitless) =	1 Hazard Quotient
		AT (yr) =	
		BR (m³/day) =	<u> </u>
		ABS (unitless) =	•
		ED (yr) =	·
		EF (unitless) =	0.33 Exposure frequency
Equations:	(1) $SL_{IA} (\mu g/m^3) =$	RfD X ABW X UCF X HQ X AT BR X ABS X ED X EF	MTCA Equation 750-1
	(2) $SL_{SG} (\mu g/m^3) =$	SL _{IA} /VAF	Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.
	(3) $SL_{GW} (\mu g/L) =$	SL _{IA} VAF x UCF x H _{cc}	Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document VAF = 0.001 (unitless; default) UCF = 1000 L/m^3
			H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.
Solve:	(a) $SL_{IA} (\mu g/m^3) =$ (b) $SL_{SG} (\mu g/m^3) =$	6 200 25	
	(c) SL_{GW} (µg/L) =	29	

RESIDENTIAL METHOD B CARCINOGENIC RISK SLs FOR VC VAPOR INTRUSION ASSESSMENT BOEING AUBURN

Given:

IUR_{VC}(µg/m³) = 0.0000088 Inhalation unit risk for early childhood exposure from EPA IRIS database

CPF (kg-day/mg) = 0.0308 CPF calculated from IUR. CPF multiplied by standard adult average body weight

and conversion factor of 1000, over standard adult breathing rate

H_{cc} @ 13° Celsius (C) = 0.816 Henry's Law Constant (H_{cc}) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-2, for Carcinogens with reduced RISK per WAC 173-340-750 (4)(b)(ii)(B)

RISK = 1.E-06 Acceptable cancer risk level

ABW (kg) = 70 Average body weight over exposure duration

AT (yr) = 75 Averaging time
UCF (μg/mg) = 1000 Unit conversion factor

CPF = Carcinogenic potency factor per WAC 173-340-708(8) (kg-day/mg)

BR (m³/day) = 20 Breathing/inhalation rate

ABS (unitless) = 1 Inhalation absorption fraction

ED (yr) = 30 Exposure duration EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1) $SL_{IA} (\mu g/m^3)=$

RISK X ABW X AT X UCF
CPF X BR X ABS X ED X EF

MTCA Equation 750-2

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) SL_{GW} (µg/L) = $\frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$

Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

UCF = 1000 L/m³

 H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$ (b) $SL_{SG} (\mu g/m^3) =$ (c) $SL_{GW} (\mu g/L) =$ 0.28 9.5 0.35

RESIDENTIAL METHOD B NON-CARCINOGENIC RISK SLs FOR VC VAPOR INTRUSION ASSESSMENT **BOEING AUBURN**

Given:

 $RfC_{VC}(mg/m^3) =$ 0.1 RfC from EPA IRIS database updated 8/7/2000

0.029 RfC_{vc} multiplied by standard adult BR of 20m³/day over standard adult $RfD_{VC}(mg/kg-day) =$

average body weight of 70 kg.

 H_{cc} @ 13° Celsius (C) =

0.816 Henry's Law Constant (H cc) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)

16 Average body weight over exposure duration ABW (kg) =

 $UCF(\mu q/mq) =$ 1000 Unit conversion factor HQ (unitless) = 1 Hazard Quotient AT(yr) =6 Averaging time

BR $(m^3/day) =$ 10 Breathing/inhalation rate ABS (unitless) = 1 Inhalation absorption fraction

ED(yr) =6 Exposure duration EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1)
$$SL_{IA} (\mu g/m^3) = RfD X ABW X UCF X HQ X AT BR X ABS X ED X EF$$

MTCA Equation 750-1

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) SL_{GW} (µg/L) = $\frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$

Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless: default)

 $UCF = 1000 L/m^3$

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a)
$$SL_{IA}$$
 ($\mu g/m^3$) = (b) SL_{SG} ($\mu g/m^3$) = (c) SL_{GW} ($\mu g/L$) = $\frac{46}{1500}$

INDUSTRIAL METHOD C CARCINOGENIC RISK SLs FOR VC **VAPOR INTRUSION ASSESSMENT BOEING AUBURN**

Given:

 $IUR_{VC}(\mu g/m^3) =$ 0.0000088 Inhalation unit risk from EPA IRIS database

CPF (kq-day/mq) = 0.0308 CPF calculated from IUR. CPF multiplied by standard adult average body weight

and conversion factor of 1000, over standard adult breathing rate

 H_{cc} @ 13° Celsius (C) =

0.816 Henry's Law Constant (H cc) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-2, for Carcinogens with reduced RISK per WAC 173-340-750 (4)(b)(ii)(B)

1.E-05 Acceptable cancer risk level RISK =

ABW (kg) = 70 Average body weight over exposure duration

AT (yr) =75 Averaging time $UCF(\mu q/mq) =$ 1000 Unit conversion factor

> CPF = Carcinogenic potency factor per WAC 173-340-708(8) (kg-day/mg)

BR $(m^3/day) =$ 20 Breathing/inhalation rate ABS (unitless) = 1 Inhalation absorption fraction

ED(yr) =30 Exposure duration EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1)
$$SL_{IA} (\mu g/m^3) = \frac{RISK X ABW X AT X UCF}{CPF X BR X ABS X ED X EF}$$

MTCA Equation 750-2

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Egn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) $SL_{GW} (\mu g/L) = \frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$

Egn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

UCF = 1000 L/m³

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$ **(b)** $SL_{SG} (\mu g/m^3) =$ (c) SL_{GW} (µg/L) =

INDUSTRIAL METHOD C NON-CARCINOGENIC RISK SLs FOR VC VAPOR INTRUSION ASSESSMENT **BOEING AUBURN**

Given:

 $RfC_{VC}(mg/m^3) =$ 0.1 RfC from EPA IRIS database updated 8/7/2000

0.029 RfC_{vc} multiplied by standard adult BR of 20m³/day over standard adult $RfD_{VC}(mg/kg-day) =$

average body weight of 70 kg.

 H_{cc} @ 13° Celsius (C) =

0.816 Henry's Law Constant (H cc) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)

ABW (kg) = 70 Average body weight over exposure duration

UCF (μ g/mg) = 1000 Unit conversion factor HQ (unitless) = 1 Hazard Quotient AT (yr) =30 Averaging time

BR $(m^3/day) =$ 20 Breathing/inhalation rate ABS (unitless) = 1 Inhalation absorption fraction

ED(yr) =30 Exposure duration EF (unitless) = 1 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1)
$$SL_{IA}$$
 ($\mu g/m^3$) = $\frac{RfD \times ABW \times UCF \times HQ \times AT}{BR \times ABS \times ED \times EF}$

MTCA Equation 750-1

(2)
$$SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$$

Eqn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3)
$$SL_{GW} (\mu g/L) = \frac{SL_{IA}}{VAF \times UCF \times H_{CC}}$$

Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

 $UCF = 1000 L/m^3$

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{1A} (\mu g/m^3) =$ **(b)** $SL_{SG} (\mu g/m^3) =$ 3300 (c) $SL_{GW} (\mu g/L) =$ 120

COMMERCIAL MODIFIED METHOD B CARCINOGENIC RISK SLs FOR VC VAPOR INTRUSION ASSESSMENT **BOEING AUBURN**

Given:

 $IUR_{VC}(\mu g/m^3) =$ 0.0000088 Inhalation unit risk for child exposure from EPA IRIS database;

adult exposure not applicable since could be pregnant employees

CPF (kq-day/mq) = 0.0308 CPF calculated from IUR. CPF multiplied by standard adult average body weight

and conversion factor of 1000, over standard adult breathing rate

 H_{cc} @ 13° Celsius (C) =

0.816 Henry's Law Constant (H c) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-2, for Carcinogens with reduced RISK per WAC 173-340-750 (4)(b)(ii)(B)

RISK = 1.E-06 Acceptable cancer risk level

ABW (kg) = 70 Average body weight over exposure duration

AT (yr) =75 Averaging time

 $UCF(\mu g/mg) =$ 1000 Unit conversion factor

> CPF = Carcinogenic potency factor per WAC 173-340-708(8) (kg-day/mg)

BR $(m^3/day) =$ 20 Breathing/inhalation rate

ABS (unitless) = 1 Inhalation absorption fraction

ED(yr) =30 Exposure duration EF (unitless) = 0.33 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1)
$$SL_{IA} (\mu g/m^3) = \frac{RISK X ABW X AT X UCF}{CPF X BR X ABS X ED X EF}$$

MTCA Equation 750-2

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Egn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3) SL_{GW} ($\mu g/L$) =

Egn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

 $UCF = 1000 L/m^3$

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (b) $SL_{IA} (\mu g/m^3) =$ (c) $SL_{SG} (\mu g/m^3) =$ (d) $SL_{GW} (\mu g/L) =$

0.85 28.4 1.0

COMMERCIAL MODIFIED METHOD B NON-CARCINOGENIC RISK SLs FOR VC VAPOR INTRUSION ASSESSMENT BOEING AUBURN

 $RfC_{VC}(mg/m^3) = 0.1 RfC from EPA IRIS database updated 8/7/2000$ Given: $RfD_{VC}(mg/kg-dav) = 0.029 RfC_{VC} multiplied by standard adult BR of 20m^3$

 $RfD_{VC}(mg/kg-day) = 0.029 \ RfC_{VC} \ multiplied by standard adult BR of 20m³/day over standard adult$

average body weight of 70 kg.

H_{cc} @ 13° Celsius (C) = 0.816 Henry's Law Constant (H_{cc}) from EPA On-line Tools for Site Assessment

Constants from MTCA Equation 750-1, for Non-carcinogens per WAC 173-340-750 (4)(b)(ii)(A)

ABW (kg) = 70 Average body weight over exposure duration

UCF (μg/mg) = 1000 Unit conversion factor
HQ (unitless) = 1 Hazard Quotient
AT (yr) = 30 Averaging time

BR (m³/day) = 20 Breathing/inhalation rate

ABS (unitless) = 1 Inhalation absorption fraction

ED (yr) = 30 Exposure duration EF (unitless) = 0.33 Exposure frequency

Find: (a) Indoor Air Screening Level (SL_{IA}), (b) Soil Gas Screening Level (SL_{SG}), and (c) Shallow GW Screening Level (SL_{GW})

Equations: (1) $SL_{IA} (\mu g/m^3) = \frac{RfD X ABW X UCF X HQ X AT}{BR X ABS X ED X EF}$

MTCA Equation 750-1

(2) $SL_{SG} (\mu g/m^3) = SL_{IA} /VAF$

Egn 2. Generic soil gas VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

The sub-slab soil gas screening level is based on a Vapor Attenuation Factor (VAF) of 0.03, per EPA's updated database (EPA's Vapor Intrusion Database: Evaluation and Characterization of Attenuation Factors for Chlorinated Volatile Organic Compounds and Residential Buildings; EPA 530-R-10-002. March 16, 2012) and communications with Ecology.

(3)
$$SL_{GW} (\mu g/L) = \frac{SL_{IA}}{VAF \times UCF \times H_{cc}}$$

Eqn 1. Generic groundwater VI SLs from Ecology's Draft Vapor Intrusion Guidance Document

VAF = 0.001 (unitless; default)

 $UCF = 1000 L/m^3$

H_{cc} = Chemical- and temperature-dependent value. H_{cc} values are based on an average Washington shallow groundwater temperature of 13 °C, consistent with Ecology's draft vapor intrusion guidance document.

Solve: (a) $SL_{IA} (\mu g/m^3) =$ (b) $SL_{SG} (\mu g/m^3) =$ (c) $SL_{GW} (\mu g/L) =$ 300
10000
370