

Final Remedial Investigation Report

sound environmental strategies corporation

Site:

North Colfax Petroleum Contamination Site North Main Street and East Tyler Street Colfax, Washington

Prepared for:

The North Colfax Group

January 4, 2010

www.soundenvironmental.com

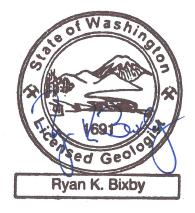
Sound Environmental Strategies Corporation 2400 Airport Way South Seattle, Washington 98134-2020 Report prepared for:

The North Colfax Group

Final Remedial Investigation Report North Colfax Petroleum Contamination Site North Main Street and East Tyler Street Colfax, Washington 99111

SES Project No. 0592-001-01

Prepared by:


Charles C. Cacek, MS, LEG #836

Senior Geologist

Reviewed by:

Ryan K. Bixby, LG #1691 Principal Geologist

January 4, 2010

TABLE OF CONTENTS

EXECUTIVE SUMMARY						
ACRONYMS AND ABBREVIATIONSix						
1.0	INTRODUCTION1					
	1.1	DOCUMENT PURPOSE AND OBJECTIVES1				
	1.2	RI REPORT ORGANIZATION2				
2.0	BACKGROUND2					
	2.1	SITE LOCATION AND DESCRIPTION2				
		2.1.1 Site				
		2.1.2 Adjoining Properties				
		2.1.3 Utilities				
	2.2	SITE AND VICINITY LAND USE HISTORY5				
		2.2.1 Time Oil Property5				
		2.2.2 Colfax Grange/Cenex Properties				
		2.2.3 Adjacent and Nearby Properties				
	2.3	FUTURE PROPERTY LAND USE10				
	2.4	ENVIRONMENTAL SETTING10				
		2.4.1 Land Use				
		2.4.2 Meteorology				
		2.4.3 Groundwater Use				
		2.4.4 Surface Water Features				
		2.4.5 Environmental Quality of Regional Soil and Groundwater				
	2.5	GEOLOGIC AND HYDROGEOLOGIC SETTING12				
		2.5.1 Regional Physiography and Geology				
		2.5.2 Regional Hydrogeology				
		2.5.3 Site Geology				
		2.5.4 Site Hydrology				
	2.6	PREVIOUS INVESTIGATIONS14				
		2.6.1 Time Oil Property				
		2.6.2 Cenex Property				
		2.6.3 Groundwater Monitoring Program				
	2.7	CHEMICALS OF POTENTIAL CONCERN19				
	2.8	POTENTIAL MEDIA OF CONCERN20				
	2.9	DATA GAPS20				
3.0	REMEDIAL INVESTIGATION22					
	3.1	PRE-FIELD ACTIVITIES23				
		3.1.1 Hydrogeologic Evaluation				
		3.1.2 Ground Penetrating Radar Survey				
	3.2	SOIL SAMPLING24				
		3.2.1 Subsurface Soil Samples				

		3.2.2	Deviations from the SCM-RIWP, SRIWP, and RSRIWP	25		
	3.3	MONIT	FORING WELL INSTALLATION AND DEVELOPMENT	25		
		3.3.1	Monitoring Well Installation			
		3.3.2	Monitoring Well Development			
		3.3.3	Deviations from the SCM-RIWP, SRIWP, and RSRIWP			
	3.4		INDWATER SAMPLING			
		3.4.1	Quarterly Groundwater Monitoring			
		3.4.2	Deviations from the RIWP			
	3.5		GEMENT OF INVESTIGATION-DERIVED WASTE			
	3.6	REME	DIAL INVESTIGATION RESULTS			
		3.6.1	Soil			
		3.6.2	Groundwater	31		
4.0	TER	RESTR	IAL ECOLOGICAL EVALUATION	34		
5.0	SITE	CONC	EPTUAL MODEL	34		
	5.1		ICALS OF CONCERN			
	5.2	CONF	IRMED AND SUSPECTED SOURCE AREAS	34		
		5.2.1	Confirmed Sources			
		5.2.2	Potential Sources			
	5.3		A OF CONCERN			
	5.4	DISTR	IBUTION OF CONTAMINANTS IN SOIL			
		5.4.1	Time Oil Property			
		5.4.2	Cenex Property			
		5.4.3	Colfax Grange Property			
		5.4.4	Sterling Property			
		5.4.5	Shell Property			
	5.5		RIBUTION OF CONTAMINANTS IN GROUNDWATER			
		5.5.1	Historical Distribution of Contaminants in Groundwater			
	- 0	5.5.2	Current Distribution of Contaminants in Groundwater			
	5.6		DEFINITION			
	5.7		AMINANT FATE AND TRANSPORT			
		5.7.1	Transport Mechanisms Affecting Distribution of Petroleum Hydroca Subsurface	42		
		5.7.2	Environmental Fate in the Subsurface			
	5.8	PRELI	MINARY EXPOSURE ASSESSMENT	43		
		5.8.1	Direct Contact Pathway	44		
		5.8.2	Soil-to-Groundwater Pathway			
		5.8.3	Vapor Pathway			
		5.8.4	Surface Water	46		
6.0	BIBI	BIBLIOGRAPHY46				
7.0	т імі	ΤΔΤΙΩΝ	NS.	49		

PHOTOGRAPHS

Site Photographs Aerial Photograph

FIGURES

Table 7

Figure 1	Site Location Map
Figure 2	Confirmed and Suspected Source Areas
Figure 3	Site Plan
Figure 4	Exploration Location Plan, Northern Portion of Site
Figure 5	Exploration Location Plan, Southern Portion of Site
Figure 6	Exploration Location Map with Geologic Cross Section Locations
Figure 7	Geologic Cross Section A–A'
Figure 8	Geologic Cross Section B–B'
Figure 9	Geologic Cross Section C–C'
Figure 10	Geologic Cross Section D–D'
Figure 11	Geologic Cross Section E–E'
Figure 12	Soil Analytical Results
Figure 13	Groundwater Contour Map (June 8, 2009)
Figure 14	Groundwater Analytical Results (June 9–11, 2009)
Figure 15	GRPH Concentrations in Soil
Figure 16	Benzene Concentrations in Soil
Figure 17	ORPH Concentrations in Soil
Figure 18	Naphthalene Concentrations in Soil
Figure 19	Maximum Historical Extent of GRPH in Groundwater
Figure 20	Maximum Historical Extent of DRPH in Groundwater
Figure 21	Maximum Historical Extent of ORPH in Groundwater
Figure 22	Maximum Historical Extent of Benzene in Groundwater
Figure 23	Maximum Historical Extent of Naphthalene in Groundwater
Figure 24	Maximum Historical Extent of MTBE in Groundwater
Figure 25	Site Boundary Definition
TABLES	
Table 1	Summary of Soil Analytical Results for TPH and VOCs
Table 2	Summary of Soil Analytical Results for Total Metals
Table 3	Summary of Soil Analytical Results for Polycyclic Aromatic Hydrocarbons
Table 4	Toxicity Equivalents for cPAH Concentrations in Soil
Table 5	Summary of Groundwater Analytical Results – TPH, BTEX, VOCs, and Lead
Table 6	Summary of Groundwater Analytical Results – Polycyclic Aromatic Hydrocarbons

Toxicity Equivalency for cPAH Concentrations in Groundwater

APPENDICES

Appendix A	Whitman County Assessor/City of Colfax Records
Annondiy B	Communication Logo

Appendix B Communication Logs

Appendix C Certified Sanborn® Fire Insurance Maps

Appendix D Boring and Test Pit Logs Appendix E Laboratory Analytical Reports

> April 2008 Subsurface Investigation June 2008 Subsurface Investigation March 2009 Subsurface Investigation May 2009 Subsurface Investigation

Appendix F Ground-Penetrating Radar Survey

Appendix G Investigative-Derived Waste Disposal Records

Appendix H Terrestrial Ecological Evaluation Form

Appendix I Soil EPH-VPH Calculations

Appendix J Vapor Intrusion Risk Calculations

EXECUTIVE SUMMARY

Sound Environmental Strategies Corporation has prepared this Final Remedial Investigation Report for the North Colfax Petroleum Contamination Site (the Site), located at North Main Street and East Tyler Street in Colfax, Washington, on behalf of PetroSun Fuel, Inc. (currently Pacific Convenience & Fuel, LLC); TOC Holdings Co. (formerly Time Oil Co.); Colfax Grange Supply Company, Inc., and CHS, Inc. (collectively, the North Colfax Group). This Final Remedial Investigation Report has been prepared for submittal to the Washington State Department of Ecology and was developed to meet the general requirements of a remedial investigation as defined by the Washington State Model Toxics Control Act Cleanup Regulation in Chapters 173-340-350 and 173-340-360 of the Washington Administrative Code, pursuant to the Washington State Department of Ecology Agreed Order No. DE 4599, dated July 11, 2007.

The Site, as it is currently defined, is comprised of an area that includes several tax parcels that are currently occupied or have historically been occupied by gasoline stations. These properties are located along the east side of North Main Street where it intersects with East Tyler Street and East Harrison Street, and are referred to in this report as the Time Oil, Cenex, and Colfax Grange properties. The Time Oil property, located at the northeast corner of the intersection of North Main Street and East Tyler Street, was developed as a retail gasoline station some time prior to 1939 and was reportedly redeveloped in 1956 with a Phillips 66 retail gasoline station and service station that was equipped with five underground storage tanks (two 3,000-gallon fuel tanks, one 4,000-gallon fuel tank, one 500-gallon heating oil tank, and one 500-gallon waste oil tank). The tanks were later replaced with one 6,000-gallon, one 8,000-gallon, and one 12,000-gallon underground storage tank containing gasoline. In 1999, the Time Oil property was redeveloped into its current configuration, including the installation of an 8,000-gallon diesel underground storage tank. The Cenex property, which is situated between the railroad tracks and East Tyler Street, was first occupied by a gasoline station in 1985 when three 8,000-gallon underground storage tanks (two gasoline tanks and one diesel tank) and two fuel-dispensing pump islands were installed at the property. The 1985-vintage station was upgraded in 2006 and the currently existing station is equipped with two pump islands and three 12,000-gallon underground storage tanks containing gasoline and diesel. The Colfax Grange property, which is situated between East Harrison Street and the railroad tracks, was occupied by a gasoline station in 1939; the station was removed from the Colfax Grange property some time prior to the construction of the existing Colfax Grange Building in 1953. No information regarding the underground storage tanks or other product delivery systems associated with the gasoline station formerly located on the Colfax Grange property was observed in the available public record.

In addition to the facilities described above, gasoline stations and other potential sources of contamination have operated on properties located proximal to the west, northwest, east, and south of the Site. These include the gasoline station, automotive repair facility, and bulk fuel facility that formerly occupied the Sterling Savings Bank property located across North Main Street to the west of the Site (the Sterling property); the Shell-brand gasoline station, oil warehouse, and bulk fuel facility that formerly occupied the property to the east of the Site across North Morton Street (the Shell property); and the several small underground and aboveground storage tanks that have historically been located along the north side of the Colfax Grange Building.

Petroleum-contaminated soil and groundwater were encountered beneath the Time Oil property in 1999 during the course of the gasoline station upgrade activities. The contamination was primarily encountered in the vicinity of a grease pit that had been associated with the automotive repair facility formerly located on the property. More than 900 cubic yards of petroleum-contaminated soil was excavated from the property, but areas of impacted soil were left in place to maintain the structural stability of the canopy that covers the existing fuel-dispensing pump islands. A total of 12 monitoring wells (MW01 through MW12) were installed on and in the vicinity of the Time Oil property between 2001 and 2002 in order to assess the extent of impacts that resulted from the release at the Time Oil property. Analytical testing of soil and groundwater samples collected from the borings and wells confirmed that the impacts extended across much of the Time Oil property; the results also suggested that petroleum-contaminated groundwater was migrating toward the Time Oil property from the upgradient Cenex property.

On behalf of the Colfax Grange, three monitoring wells (CMW01 through CMW03) were installed to the south of the gasoline station on the Cenex property in early October 2004 in order to assess whether the impacts encountered in the monitoring wells installed for Time Oil had resulted from a release at the Cenex property. In November 2004, a surficial release of an unspecified volume of gasoline occurred during the refueling of one of the underground storage tanks at the Cenex property. A small volume of near-surface petroleum-contaminated soil was excavated after the release occurred and two additional monitoring wells (CMW04 and CMW05) were installed to the north of the Cenex station in December 2004. During the gasoline station upgrade activities conducted in 2006, petroleum-contaminated soil was encountered in the vicinity of the underground storage tanks and fuel-dispensing pump islands on the Cenex property. More than 2,600 cubic yards of petroleum-contaminated soil was reportedly excavated and removed from the Cenex property; however, petroleum contamination was encountered in many of the soil samples collected from the final limits of the excavation.

In 2007, the members of the North Colfax Group entered into Agreed Order No. DE 4599, which required them to conduct a remedial investigation and feasibility study for the petroleum releases at the Site. The remedial investigation was conducted in an effort to identify the sources and the full lateral and vertical extents of the releases that have occurred at the Site. In order to accomplish this task, a total of 39 soil borings were advanced at locations throughout the Site, and three test pits were excavated on the Colfax Grange property. Twenty of the soil borings were subsequently completed as monitoring wells (MW13 through MW32) that were incorporated into a quarterly groundwater monitoring program.

The results of the remedial investigation activities confirmed that elevated concentrations of petroleum contamination remain in soil collected from the vicinities of the gasoline stations that have historically operated on the Time Oil, Cenex, and Colfax Grange properties. Chemicals of concern that were encountered at elevated concentrations in soil beneath the Time Oil property included gasoline- and oil-range petroleum hydrocarbons, naphthalenes, and volatile organic compounds including benzene, toluene, ethylbenzene, total xylenes, and methyl tertiary-butyl ether. The impacted soil appeared to be limited to depths of approximately 11 feet or less beneath the southwestern portion of the Time Oil property (borings SP02, SP04, and SP05). Elevated concentrations of oil-range petroleum hydrocarbons like those encountered during the 1999 excavation activities on the Time Oil property were not detected during the remedial investigation activities.

Soil samples collected from several locations on and proximal to the Cenex property contained elevated concentrations of gasoline-range petroleum hydrocarbons and/or benzene (borings SP11, SP12, SP14, and SP15). The contamination was encountered in the uppermost 6 to 8 feet of soil in borings advanced to the north and south of the 2006 excavation area (borings SP11, SP14, and SP15) and in soil collected from depths of 10 to 14 feet in the boring advanced by the eastern diesel pump island (boring SP12).

Elevated petroleum concentrations were encountered in soil collected from two of the three test pits that were excavated in the vicinity of the former gasoline station on the Colfax Grange property, and in soil samples collected from borings advanced proximal to the north (B16) and east (B29) of the former gasoline station. None of the soil samples collected from above the saturated zone exhibited indications of contamination, which suggests either that the source area was not explored during the investigation activities and that the contamination migrated to the exploration locations via groundwater or that the source was removed (i.e. the underground storage tanks were removed, and the excavation was backfilled with uncontaminated soil).

Groundwater monitoring has been conducted on a periodic basis at the Site since 2001 and was performed on a quarterly basis throughout the course of the remedial investigation activities. Prior to the 2006 excavation of petroleum-contaminated soil from the Cenex property, groundwater beneath much of the Site contained elevated concentrations of gasoline- and diesel-range petroleum hydrocarbons and benzene. Elevated concentrations of oil-range petroleum hydrocarbons, naphthalenes, and the volatile organic compounds toluene, ethylbenzene, total xylenes, and methyl tertiary-butyl ether were also detected in one or more of the wells. Following completion of the excavation activities in 2006, the contaminant concentrations in groundwater decreased dramatically throughout the Site. During the three quarterly monitoring events conducted between September 2008 and March 2009, groundwater samples collected from only three monitoring wells have been found to contain concentrations of one or more chemical of concern that exceeded the applicable Washington State Model Toxics Control Act Method A cleanup levels. These included concentrations of gasoline- and diesel-range petroleum hydrocarbons, benzene, total xylenes, and naphthalenes in groundwater collected from monitoring well MW02 during the September 2008 event: an elevated concentration of diesel-range petroleum hydrocarbons in groundwater collected from monitoring well MW01 during the March 2009 event; and a concentration of benzene that exceeded the Washington State Model Toxics Control Act Method A cleanup level in groundwater collected from monitoring well CMW02 during the September 2008 monitoring event. Additional quarterly monitoring will be required in order to demonstrate continued compliance with Washington State Department of Ecology requirements; however, oil-range petroleum hydrocarbons was the only chemical of concern that was detected at concentrations exceeding the Washington State Model Toxics Control Act Method A cleanup level during the June 2009 monitoring event. The elevated concentrations of oil-range petroleum hydrocarbons, which exceeded the Washington State Model Toxics Control Act Method A cleanup level, were detected in groundwater collected from monitoring wells MW29 and MW32, located to the east and southeast of the former gasoline station on the Colfax Grange property, respectively. The June 2009 quarterly monitoring event was the first to incorporate wells MW29 and MW32.

The affected media at the Site include soil, groundwater, and soil vapor. The chemicals of concern include gasoline-, diesel-, and oil-range petroleum hydrocarbons, naphthalenes, and the volatile organic compounds benzene, toluene, ethylbenzene, total xylenes, and methyl tertiary-butyl ether. Additional potential chemicals of concern, such as carcinogenic polycyclic

aromatic hydrocarbons, ethylene dibromide, and ethylene dichloride, were excluded from additional consideration based upon their demonstrated absence in soil and groundwater. Although lead was detected in a soil sample collected from one of the borings (SP11) at a depth of 3 to 4 feet, the elevated lead concentration was attributed to the overlying fill material and does not appear to be associated with a release at the Site.

The lateral and vertical extents of the contamination associated with the releases that have occurred on the Time Oil, Cenex, and Colfax Grange properties have been fully defined. Soil samples collected from each of the three properties that are located within the Site boundaries were found to contain concentrations of chemicals of concern that exceed their respective Washington State Model Toxics Control Act Method A cleanup levels. However, comparing the results of the soil samples collected in the course of this remedial investigation to the property-specific Method B criteria suggested that only the soil beneath the southwestern portion of the Time Oil property is considered a threat to human health via the direct contact pathway.

In addition to the impacts described above, petroleum-contaminated soil and/or groundwater was encountered in borings advanced on or in the vicinity of the Sterling and Shell properties, located to the west and east of the Site, respectively; however, the impacts encountered at these locations are the result of releases that occurred on the Sterling and Shell properties and are not included within the Site boundaries. As such, no additional investigation of the sources or extents of the impacts beneath the Sterling or Shell properties is planned as part of this remedial investigation. Similarly, the petroleum-contaminated soil that was encountered by others in the vicinity of the underground heating oil tank and the aboveground storage tanks formerly located adjacent to the north of the Colfax Grange Building appears limited in extent and does not appear to be currently contributing to groundwater contamination beneath the Site. No additional investigation of the impacts encountered by others along the north side of the Colfax Grange Building is planned as part of this remedial investigation.

This executive summary is presented solely for introductory purposes, and the information contained in this section should be used only in conjunction with the full text of this report. A complete description of the project, Site conditions, investigative methods, and investigation results is contained within this report.

ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

°F degrees Fahrenheit

μg/L micrograms per liter, equivalent to parts per billion

AST aboveground storage tank

bgs below ground surface

BTEX benzene, toluene, ethylbenzene, and total xylenes

Cenex Property those portions of Whitman County tax parcel numbers 1-0135-

00-01-01-0000 and 8-0195-00-00-0323 located to the north

of the railroad tracks

COC chemical of concern

COPC chemical of potential concern

Colfax Grange Supply Company, Inc.

Colfax Grange property those portions of Whitman County tax parcel numbers 1-0135-

00-01-15-0000 and 8-0195-00-00-0323 located to the south

of the railroad tracks

cPAHs carcinogenic PAHs

DRPH diesel-range petroleum hydrocarbons

Eastern Colfax Grange

property

the property bordering the above-described Colfax Grange

property to the east

Ecology Washington State Department of Ecology

EDB ethylene dibromide

EDC ethylene dichloride

EPA United States Environmental Protection Agency

EPH-VPH extractable petroleum hydrocarbon-volatile petroleum

hydrocarbons

GC/FID gas chromatography with a flame ionization detector

GEI GeoEngineers, Inc.

GPR ground-penetrating radar

GRPH gasoline-range petroleum hydrocarbons

ICP-MS inductively coupled plasma mass spectrometer

IDW investigative-derived waste

mg/kg milligrams per kilogram, equivalent to parts per million

MTCA Washington State Model Toxics Control Act

MTBE methyl tertiary-butyl ether

North Colfax Group PetroSun Fuel, Inc.; TOC Holdings Co.; CHS, Inc.; and Colfax

Grange Supply Company, Inc., collectively

NWTPH Northwest Total Petroleum Hydrocarbon

ODEQ State of Oregon Department of Environmental Quality

ORPH oil-range petroleum hydrocarbons

PAH polycyclic aromatic hydrocarbon

PCS petroleum-contaminated soil

PID photoionization detector

ppmv parts per million by volume

PQLs practical quantitation limits

PVC polyvinyl chloride

QAPP Quality Assurance Project Plan

QC quality control

Quantum Engineering, Inc.

RI remedial investigation

ROW right-of-way

RSRIWP Revised Supplemental Remedial Investigation Work Plan

Sanborn Map Sanborn Fire Insurance Map

SAP Sampling and Analysis Plan

SCM Site Conceptual Model

SCM-RIWP Site Conceptual Model and Remedial Investigation Work Plan

SES Sound Environmental Strategies Corporation

Shell property the land located to the east of North Morton Street and north of

the railroad tracks, formerly occupied by a Shell-brand retail

gasoline station

the Site the full lateral and vertical extent of contamination that has

resulted from the former and current operation of retail gasoline service stations on the properties located along the east side of North Main Street, at the northeast corner of its intersection with East Harrison Street and on the northeast and southeast corners of its intersection with East Tyler Street in Colfax, Washington

South Fork the South Fork of the Palouse River

SPH separate-phase hydrocarbons

SRIWP Supplemental Remedial Investigation Work Plan

Sterling property the property occupied by a Sterling Savings Bank and located

to the west of the Time Oil property

TEE Terrestrial Ecological Evaluation

Time Oil property property at 804 North Main Street

TPH total petroleum hydrocarbon

USCS Unified Soil Classification System

UST underground storage tank

VOC volatile organic compound

WAC Washington Administrative Code

WCDEH Whitman County Department of Environmental Health

WSDH Washington State Department of Health

1.0 INTRODUCTION

Sound Environmental Strategies Corporation (SES) has prepared this Final Remedial Investigation (RI) Report for the North Colfax Petroleum Contamination Site located at the intersection of North Main Street and East Tyler Street in Colfax, Washington (Figure 1), on behalf of PetroSun Fuel, Inc. (currently Pacific Convenience & Fuel, LLC); TOC Holdings Co. (formerly Time Oil Co.); CHS, Inc.; and Colfax Grange Supply Company, Inc. (Colfax Grange), collectively, the North Colfax Group. This RI Report was prepared for submittal to the Washington State Department of Ecology (Ecology), and it was developed to meet the general requirements of a remedial investigation as defined by the Washington State Model Toxics Control Act (MTCA) Regulation in Chapter 173-340 of the Washington Administrative Code (WAC 173-340-350 and 173-340-360) pursuant to the Ecology Agreed Order No. DE 4599 that became effective on July 11, 2007. This remedial investigation was completed in general accordance with the Site Conceptual Model and Remedial Investigation Work Plan prepared by SES, dated January 21, 2008 (SCM-RIWP); the Supplemental Remedial Investigation Work Plan prepared by SES, dated December 11, 2008 (SRIWP); and the Revised Supplemental Remedial Investigation Work Plan prepared by SES, dated May 15, 2009 (RSRIWP).

As established in WAC 173-340-200, the "Site" is defined by the full lateral and vertical extent of contamination that has resulted from the former and current operation of retail gasoline service stations on the properties located along the east side of North Main Street, at the northeast corner of its intersection with East Harrison Street and on the northeast and southeast corners of its intersection with East Tyler Street.

1.1 DOCUMENT PURPOSE AND OBJECTIVES

The purpose of this RI Report is to collect data necessary to adequately characterize the Site for the purposes of developing and evaluating cleanup action alternatives. This report presents historical information regarding the former uses of the properties located within and surrounding the Site, summarizes the information obtained during the review of historical information, summarizes the scope and findings of each subsurface investigation that has been conducted on the Site and vicinity, and presents a Site Conceptual Model (SCM).

To accomplish this purpose, SES assembled and reviewed the readily available information for the Site. This report includes:

- A summary of the land use history of the Site and vicinity.
- A summary of the geology and hydrogeology of the Site and vicinity.
- A summary of previous investigations conducted on the Site and vicinity.
- A description of the activities conducted as part of the RI and a summary of the findings.
- A description of the SCM that identifies source areas, defines the nature and extent of contamination, and evaluates mechanisms that preferentially support chemical migration.
- Figures and tables illustrating the contaminant distribution beneath the Site and vicinity.

1.2 RI REPORT ORGANIZATION

This RI Report is organized into the following sections:

- Section 2.0, Background. This section provides a description of the Site features and location; a summary of historical Site use; a discussion of future land uses; a description of the local geology, hydrogeology, hydrology, and land use pertaining to the Site; a summary of subsurface investigations and interim cleanup actions conducted at the Site prior to the remedial investigation; a discussion of potential chemicals and media of concern; and a list of data gaps.
- Section 3.0, Remedial Investigation. This section provides a description of the RI field work program conducted at the Site and vicinity between July 2007 and June 2009, the scope of work for each phase of the RI, and the results of the RI.
- Section 4.0, Terrestrial Ecological Evaluation. This section provides a discussion of the evaluation of potential impacts to ecological receptors from a release of hazardous substances.
- Section 5.0, Site Conceptual Model. This section provides a summary of the SCM derived from the results of the subsurface investigations performed at the Site. Included is a discussion of confirmed and suspected source areas, the chemicals of concern (COCs), affected media, fate and transport characteristics of the release of hazardous substances, and preliminary exposure assessment.
- Section 6.0, Bibliography. This section lists references cited in and supporting this
 document.
- Section 7.0, Limitations. This section discusses document limitations.

2.0 BACKGROUND

The following section provides a summary of current and historical land use on the Site and the vicinity.

2.1 SITE LOCATION AND DESCRIPTION

The following subsections present the current land use practices on the Site and surrounding parcels.

2.1.1 Site

The Site, as originally described in the SCM-RIWP, included the Time Oil property, a retail gasoline station and convenience store (currently operated as a Cougar Mart) that is located on the northeast corner of the intersection of North Main Street and East Tyler Street; the property occupied by a Cenex-brand retail gasoline station located to the north of the railroad tracks on the southeast corner of the intersection of North Main Street and East Tyler Street; and portions of the adjoining residential and commercial properties, all of which are situated in the City of Colfax, Whitman County, Washington (Figures 2 and 3). Based on the findings of the RI, the Site boundaries have been revised to include portions of the Colfax Grange property located to the south of the railroad tracks, where another retail gasoline station formerly operated. The results of the RI have also resulted in the exclusion of areas to the north, east, and west that were included within the original Site boundaries; however, the area to the west of the Time Oil property, inclusive of monitoring wells MW11 and MW13, remains within the Site boundaries.

2.1.1.1 Time Oil Property

The Time Oil property, located at 804 North Main Street, resides on one tax parcel (Whitman County tax parcel number 1-0135-00-01-04-000) that covers a reported 19,000 square feet (0.44 acres) of land (Appendix A). The property is improved with a 1999-vintage convenience store and Conoco-brand retail gasoline station equipped with two fuel-dispensing pump islands and associated canopy (Figure 3). The single-story, brick building covers a reported 2,750 square feet and is operated as the Cougar Mart convenience store. The property also supports a 1999-vintage, self-service fueling facility with two fuel-dispensing pump islands and four underground storage tanks (USTs), including one 6,000-gallon gasoline tank, one 8,000-gallon gasoline tank, one 12,000 gallon gasoline tank, and one 8,000 diesel tank. The exterior areas are mostly paved with asphalt or concrete. The building is serviced by overhead power, underground natural gas, and municipal sanitary sewer and potable water. The parking lot also includes stormwater catch basins that direct runoff into the municipal stormwater system corridor located along the south side of the property.

2.1.1.2 Cenex Property

The property that supports the 2006-vintage Cenex-brand retail gasoline station and Cardtrol facility is owned by the Colfax Grange Supply. The Cenex property occupies all of Whitman County tax parcel number 1-0135-00-01-01-0000 and the northern portion of Whitman County tax No. 8-0195-00-00-00-0323. The Cenex property is bordered to the north by East Tyler Street, to the west by North Main Street, to the south by the railroad tracks, and to the east by an unopened City of Colfax right-of-way (ROW). The Cenex property, as defined above covers approximately 12,000 square feet (0.28 acres) of land. The gasoline station on the Cenex property is equipped with two fuel-dispensing pump islands, three fuel USTs, and concrete drive slabs with peripheral asphaltic pavements (Figure 3). The UST system, which was upgraded in 2006, includes three 12,000-gallon, dual-walled (fiberglass and steel construction) USTs—one gasoline, one diesel, and one double-compartment UST that stores dyed diesel and gasoline.

2.1.1.3 Colfax Grange Property

The Colfax Grange Supply hardware store and warehouse located at 102 East Harrison Street is situated on Whitman County tax parcel number 1-0135-00-01-15-0000 and the southern portion of Whitman County tax No. 8-0195-00-00-00-0323. The Colfax Grange property is bordered to the north by the railroad tracks, to the west by North Main Street, to the south by East Harrison Street, and to the east by Colfax Grange Supply Building No. 2. The Colfax Grange property, as defined above, covers approximately 17,000 square feet (0.39 acres) of land. Though not included in the preliminary Site definition, the western portion of the Colfax Grange property has since been included within the boundaries of the Site (Figure 3). Colfax Grange Supply Company, Inc., a hardware store and warehouse building, has operated on the property since the building was constructed in 1953, with an addition constructed in 1974. The building is a single-story, masonry and metal-sided, slab-on-grade commercial structure that covers a reported 7,680 square feet, with landscaped, paved, and gravel-surfaced non-building areas. The building is serviced by underground natural gas, overhead power, and municipal sanitary sewer and potable water supply utilities.

2.1.2 Adjoining Properties

Development in the vicinity of the Site is primarily commercial and residential (Figure 3). Uses of nearby parcels at the time this report was prepared are summarized below.

- North. The Time Oil property is bordered to the north by a vacant gravel lot and residential properties.
- **South.** The Colfax Grange property is bordered to the south by East Harrison Street, beyond which is a Taco Time restaurant and the asphalt-paved parking lot for the Rosauer's Supermarket that is farther to the south.
- East. Those portions of the Site located to the north of East Tyler Street are bordered to the east by older single-family residences, beyond which is North Morton Street, a single-family residence, an apartment building, and a recreational vehicle lot. The land located to the east of North Morton Street was formerly occupied by a Shell-brand retail gasoline station and is referred to the Shell property. The land located to the south of East Tyler Street and east of the Colfax Grange property is referred to as the Eastern Colfax Grange property.
- West. The Site is bordered to the west by North Main Street (U.S. Highway 195), beyond which are several residential and commercial structures. A Sterling Savings Bank occupies the property (the Sterling property) located to the west of the Time Oil property. The Sterling property was formerly occupied by a retail gasoline station.

2.1.3 Utilities

Private and municipal underground utilities located on or adjacent to the Site include municipal storm sewer, sanitary sewer, drinking water, natural gas, telephone, and electrical utilities (Figure 3). Major utility corridors that could potentially serve as preferred pathways for contaminant migration include:

- Storm Sewer. A storm sewer corridor originates along the south side of East Harrison Street, extends to the north along the east side of the westernmost Colfax Grange Building, continues to an open ditch adjacent to the southeast corner of North Morton Street and East Tyler Street, extends along the north side of East Tyler Street, crosses North Main Street, and extends to an effluent point in a ditch along the east side of Bellinger Street that directs flow to the north into the Palouse River (SES 2009f, Appendix B). This utility follows the general alignment of an older channelized ditch or creek that is depicted on the 1902 Sanborn Fire Insurance Map (Sanborn Map) included in Appendix C. Though the depth of this sewer is unknown, the base of the utility is estimated by City of Colfax representatives to be at least 8 feet deep; as such, the sewer may intersect the seasonal near-surface groundwater table.
- Sanitary Sewer. An 8-inch-diameter municipal sanitary sewer utility runs north-south through the middle of North Main Street and east-west through East Harrison Street, and a 6-inch-diameter sewer line extends beneath the alleyway immediately to the east of the Time Oil property. In addition, each building in the vicinity of the Site is connected to the utility by a side sewer connection. Mr. Andy Rogers, Director of Public Works with the City of Colfax, stated that the sewer line is typically

- 6 to 8 feet deep (SES 2009f, Appendix B); therefore, it is anticipated that portions of the sewer and associated trench intersect the seasonal groundwater table.
- Water Lines. Local potable water supply lines are located along the south side of East Harrison Street, along the north side of East Tyler Street, along the east side of the Colfax Grange Building and extending to the north along the west side of North Morton Street, and through the middle of North Main Street. In addition, most buildings in the vicinity of the Site are served by a side connection to the water system. While the total depth of the water lines is unknown, City of Colfax representatives stated that the main lines may only be located as much as 5 feet below ground surface (bgs). As such, it doesn't appear that the water lines and associated trenches intersect the seasonal water table, except possibly within North Morton Street.
- Natural Gas, Electrical, and Telephone Underground Utilities. The Site and vicinity are served by underground natural gas, private electrical, and telephone underground utilities. Mr. Chris Larson with Avista Utilities stated that natural gas lines are typically buried 30 inches bgs and underground electrical lines are buried either 2 or 3 feet bgs, depending upon voltage (SES 2009g, Appendix B). Mr. Larson stated that neither natural gas nor electric utilities are typically buried with bedding materials. He also stated that to his knowledge, telephone underground utilities in the vicinity are not buried greater than 3 feet bgs. These corridors are, therefore, not anticipated to encounter groundwater.

2.2 SITE AND VICINITY LAND USE HISTORY

The Site and vicinity history summarized below was obtained by reviewing Sanborn Maps (Appendix C), tax assessor's records, reverse directories, available building plans and permitting records, historical maps, an aerial photograph taken in 1969 (Aerial Photograph), personal communications, and recollections from long-time local residents (Appendix B). Additional aerial photographs that provide usable information about the Site and vicinity were not observed in the available public record or provided for our review.

2.2.1 Time Oil Property

- The 1893 Sanborn Map shows the Time Oil property bordered to the west and south by North Main Street and East Tyler Street, respectively. A small creek is shown that originates to the southeast of the Site and crosses the intersection of East Tyler Street and North Morton Street, arcs to the north, crossing through the southern portion of the Time Oil property, then extends across North Main Street in an east-west direction toward the South Fork (Figure 3). A cabin and another small building are located on the Time Oil property. Adjacent properties to the north, east, and west support widely spaced residential development. Colfax Iron Works is located beyond East First Street to the north.
- The 1899 Sanborn Map shows the small building on the southern margin of the Time Oil property has been modified, and two small cabins are depicted along the east side of the Time Oil property.
- The 1902 Sanborn Map shows an east-west-trending boxed flume extends along the northern edge of East Tyler Street, fronting the Time Oil property to the south. The 1908 Sanborn Map shows the Site and vicinity in a similar configuration to the 1902 map.

- The boxed flume that was formerly located along the northern margin of East Tyler Street is not depicted on the 1912 Sanborn Map; however, an open stream is visible to the west of North Main Street in the approximate location of the former flume. Otherwise, the Time Oil property remains relatively unchanged. Adjacent properties remain similar to those depicted on the 1908 map. An 8-inch-diameter water pipe is depicted along the eastern portion of North Main Street.
- Buildings are no longer depicted on the southern portion of the Time Oil property in the 1922 Sanborn Map. A 4-inch-diameter water pipe is now depicted under the western portion of North Main Street.
- The 1939 Sanborn Map shows the Time Oil property with small "Gas & Oils" and "Grease" buildings. No records regarding the type, size, contents, or fate of the storage tanks associated with this former gasoline station and automotive repair facility were found in Ecology's records; however, based on the configuration of the station, it may be reasonable to conclude that USTs were located beneath the southern portion of the Time Oil property. The northern portion of the Time Oil property is occupied by a retail building.
- Development plans for a Phillips 66 station on the Time Oil property, dated June 1, 1956, show a service station building located along the east-central portion of the property, with two fuel-dispensing pump islands to the west and five USTs to the south of the building, including two 3,000-gallon and one 4,000-gallon fuel USTs, one 560-gallon waste oil UST, and one 560-gallon fuel oil UST. (Appendix A). The building includes areas designated for "wash" and "lubrication," though no hydraulic hoists or sumps are depicted. The plans do not depict any structures on the southwest corner of the Time Oil property, where the service station and "grease" building were depicted on the 1939 Sanborn Map.
- A 1969 aerial photograph shows the Time Oil property supports the new service station, with the sales/service building along the east-central side of this property and a pump island canopy to the west of the sales/service building. Adjacent parcels to the north and east of the Time Oil property are residential (Aerial Photograph).
- The Time Oil property was operated as a Phillips 66 service station from about 1956 to 1976 (GEI 2000). Time Oil reportedly purchased the facility building and dispensing equipment in 1976, and purchased the property and two adjacent parcels to the north in 1980. A Jackpot gasoline sales retail facility and convenience store began operating on the property soon thereafter. It does not appear that any maintenance and/or repair activities were conducted after Time Oil's purchase of the property.
- The Time Oil property was redeveloped in 1999 into the current convenience store and UST system configuration. Review of Polk reverse directories revealed that the Time Oil property was occupied by the Phillips 66 station from at least 1958 through the mid 1970s, a Jackpot mini-service and convenience store through 2003 to 2004, and the current Cougar Mart since that time.

2.2.2 Colfax Grange/Cenex Properties

 The 1893 Sanborn Map shows the current street configuration along with the railroad ROW, including a single set of tracks. Three small residential buildings are depicted on the Colfax Grange property to the south of the railroad tracks and

- several residential structures are visible on the Cenex property to the north of the tracks. The 1899 Sanborn Map shows the Site and vicinity configuration similar to that of the 1893 map.
- The 1902 Sanborn Map shows the Colfax Grange property to the south of the railroad tracks improved with a residence and outbuildings, possibly garages. A small train depot borders the tracks on the Cenex property. Residences are located to the south and a "Sash and Door" company is located to the southeast of the Colfax Grange property, southeast of the intersection of East Tyler Street and North Morton Street.
- The 1908 Sanborn Map depicts the Colfax Grange property in a similar configuration as the 1902 map.
- The buildings are not depicted on the Colfax Grange property on the 1912 or 1922 Sanborn Maps. Adjacent properties remain similar to those depicted on the 1908 map.
- The 1939 Sanborn Map shows a small "gasol & oils" building on the Colfax Grange property at the northeast corner of East Harrison Street and North Main Street. The 1939 map also depicts a train depot on the Cenex property.
- The building on the Colfax Grange property was reportedly constructed in the 1953, with an addition in 1974. Tax assessor's records also indicated that the building was remodeled in 1991. A 1969 aerial photograph shows the Cenex property undeveloped, with the existing Colfax Grange hardware and warehouse building present to the south of the tracks. Mr. Zuger (SES 2009d, Appendix B) stated that the Colfax Grange Building was used for tractor and combine sales and service until the 1980s. He indicated that a gasoline UST that was located along the eastern margin of the building was closed-in-place in the 1970s when the eastern portion of the building was constructed over the UST. No information regarding the environmental quality of soil or groundwater in the vicinity of the UST was observed in the available public record or provided for our review. Three 300-gallon aboveground storage tanks (ASTs) containing kerosene, stove oil, and solvent were reportedly installed along the north side of the Colfax Grange Building in 1991 and a heating oil UST was situated to the west of the ASTs along the north side of the Colfax Grange Building. A small (estimated 1,000- to 2,000-gallon capacity) gasoline UST is located near the northeast corner of the building. According to Mr. Zuger, the gasoline UST was used for fueling sales and fleet vehicles. The gasoline UST remains beneath the Colfax Grange property, but the ASTs and the heating oil UST along the north side of the building were removed in 2007 and 2009, respectively. Petroleum-contaminated soil (PCS) was encountered during the March 2009 excavation and removal of the heating oil UST and the excavation of soil from beneath the former ASTs. The excavations were subsequently backfilled and have been covered by a concrete pad in an effort to minimize the amount of surficial infiltration through the impacted soil. Water that pools in the vicinity of the concrete pad reportedly drains into the storm sewer. Impacts from the former ASTs and heating oil UST do not appear to be currently contributing to groundwater contamination beneath the Site.
- A permit was drawn in 1985 to convert the grocery department of one of the buildings owned by Colfax Grange to an automotive service facility. A hand drawn plan in the file depicted two service bays and an oil storage area within the eastern

- portion of the building. According to Mr. Zuger, these improvements are located in Colfax Grange Building No. 2, which borders the current Colfax Grange hardware store and warehouse to the east.
- According to Mr. Zuger, the Cenex property was occupied by, in succession, a railroad depot, a city park, and a storage and sales lot for heavy equipment (Empire South of Spokane) prior to the construction of a fueling facility in 1985. The original gasoline station on the Cenex property included three single-walled, steel, 8,000-gallon fuel USTs (two gasoline, one diesel) and two fuel-dispensing pump islands. The original UST system and the fuel-dispensing pump island at the Cenex property were removed and replaced in 2006 with three 12,000-gallon, double-walled (steel and fiberglass) USTs, which contain gasoline, diesel, and dyed diesel and gasoline. According to Mr. Zuger, the system includes double-walled product lines, electronic inventory, and moisture-sensing leak detection systems.

2.2.3 Adjacent and Nearby Properties

Following is a description of the properties located adjacent and nearby to the Site.

2.2.3.1 Sterling Property

- The 1893 through 1902 Sanborn Maps depicted the Sterling property, which is located across North Main Street to the west of the Time Oil property, as undeveloped, with a single-family residence bordering immediately to the north and an open stream channel to the south.
- The 1908 through 1939 Sanborn Maps showed a single-family residence (803 North Main Street) on the Sterling property.
- A retail gasoline station is visible on the Sterling property in an aerial photograph taken in 1969 (source unknown). The gasoline station consists of a small service building and a pump island and drive-slab fronting North Main Street (Aerial Photograph). Review of reverse Polk directories indicated that a Mobil-brand gasoline and service station operated on the Sterling property from at least 1959 until 1972, and Goodyear Tire and Martin's Auto Service occupied the Sterling property in 1977. Additionally, Mobil Oil Dist. and AA Auto Wrecking are listed for the Sterling property in the 1968 directory.
- The Sterling property was reportedly redeveloped into a Lewis and Clark Savings Bank in 1980. Based upon review of reverse directories, the Sterling property has been operated as Sterling Savings Bank since at least 1984. A review of development plans and anecdotal information provided by Mr. Zuger indicates that the original service station structure was incorporated into the existing bank building. Development plans for the proposed Lewis and Clark Savings Bank, included in Appendix A, depict the original service station and the "building addition" that comprise the current bank building layout. No information regarding the fate of the USTs that were associated with the former gasoline station was observed in the available information reviewed in the course of this investigation.

2.2.3.2 Shell Property

 The Shell property, which is located to the east of North Morton Street and north of the railroad tracks, was only partially depicted on the 1893 and 1899 Sanborn Maps. The 1902 Sanborn Map shows several improvements depicted on the land

- to the east of North Morton Street, including a "R.R. Tank," a well, a "Gasol. Power Pump," and a "Gasol. Tank." These features are associated with the railroad tracks that border the south side of the Shell property. The well appears to be hand dug, and was likely used to supply water to the "R.R. Tank."
- The 1908 and 1912 Sanborn Maps show the well has been boarded over and the gasoline tank has been removed from the Shell property. The R.R. Tank, R.R. Pump, and boarded-over well are no longer depicted on the 1922 Sanborn Map, but a small shed is shown along North Morton Street and a residence and green house are located on northern portion of the Shell property.
- The 1939 Sanborn Fire Insurance Map shows a facility operated by Shell Oil Co. of California on the western portion of the Shell property. The facility consists of an office, an oil warehouse, a filling station, a pump house, and an oil AST situated on a concrete base. An oil warehouse and filling station operated by Union Oil Co. of California are depicted on the property to the southeast of the Shell property.
- The Shell facility remains visible in the 1969 aerial photograph. What appear to be three bulk ASTs are also visible in the vicinity of the oil AST that was depicted on the Shell property in the 1939 Sanborn Map. Bulk ASTs are also visible on the Union Oil property to the southeast. Reverse Polk directories listed the Shell Oil Distribution facility at 802 North Morton Street from at least 1959 through 1968. No information regarding the fate of the ASTs or USTs or the environmental quality of soil and/or groundwater beneath the Shell property was observed in the available public record.

2.2.3.3 Eastern Colfax Grange Property

- The Eastern Colfax Grange property, which is situated adjacent to the east of the Colfax Grange property, is depicted as undeveloped on the 1902 Sanborn Map. A small stream crossed through the Eastern Colfax Grange property in 1902.
- The 1908 Sanborn Map depicts a railroad turntable on the Eastern Colfax Grange property. The railroad turntable is not depicted on the 1912 or 1922 Sanborn Maps.
- Whitman County tax assessor records indicate that the Eastern Colfax Grange property formerly included five buildings, the oldest of which dates to 1934 (Appendix A). In 1939, the area to the east of the location of the current Colfax Grange Building No. 2 supported four ASTs and a "Misc. & Oil Storage W.O." Tax assessor's records indicated four 12,145-gallon and one 4,000-gallon capacity ASTs on the Eastern Colfax Grange property; the AST contents are not indicated. Scott Zuger, the current general manager of the Colfax Grange, advised SES that the ASTs served the fuel distribution center, and were removed in the 1980s (SES 2009d, Appendix B).
- Building No.2, situated on the western portion of the Eastern Colfax Grange property was permitted to be converted into an auto maintenance facility in 1985.
- Four fuel USTs were decommissioned and removed from the Eastern Colfax Grange property in 1992 (S & L Environmental 1992). Based upon the provided consultant's map, these tanks were present in the former location of the previously mentioned ASTs. According to Mr. Zuger, this UST system was a cardlock facility. Ecology records indicate that four 6,000-gallon USTs (two containing leaded gasoline and the others containing unleaded gasoline and diesel fuel) were installed in the immediate vicinity of the bulk fuel tanks on the Eastern Colfax Grange

property between 1964 and 1976 and were removed in 1992. Documentation of site assessment activities performed during the removal efforts (S & L Environmental 1992) indicated that the four USTs were located approximately 300 feet east of the intersection of East Tyler Street and North Main Street. The assessment concluded that no release of any regulated substance had occurred that would threaten or harm the groundwater or environment. A supplemental investigation of the former USTs was conducted in February 2006 by Quantum Engineering, Inc. (Quantum 2006b). That investigation reportedly revealed only a limited area (estimated to be 5 cubic feet) of soil that was above the detection limit of the photoionization detector (PID) used in the field. The report indicated that the area was considered de minimis in both concentration and volume. A composite soil sample and groundwater grab sample were collected from the excavation and analyzed for gasoline-range petroleum hydrocarbons (GRPH) and volatile organic compounds (VOCs), including methyl tertiary-butyl-ether (MTBE) and benzene, toluene, ethylbenzene, and total xylenes (BTEX). The soil sample did not exhibit concentrations of GRPH or VOCs in excess of the laboratory reporting limit. The grab sample of groundwater was found to contain concentrations of GRPH, toluene, ethylbenzene, and total xylenes that did not exceed the MTCA Method A cleanup levels. Benzene was not detected in the soil sample at concentrations exceeding the laboratory reporting limit. The report concluded that no additional action is necessary at the site.

2.3 FUTURE PROPERTY LAND USE

Mr. Scott Zuger, general manager of the Colfax Grange, indicated that the Colfax Grange plans to construct an addition to the west side of the Colfax Grange Building in the near future (SES 2009d, Appendix B). Mr. Andy Rogers of the City of Colfax Public Works Department (SES 2009f, Appendix B) stated that he was not aware of any significant public works projects in the Site vicinity. No other significant planned changes in land use for the Site or vicinity were reported.

2.4 ENVIRONMENTAL SETTING

The following sections provide a summary of land use, meteorology, groundwater use, surface water features, and environmental quality of regional soil and groundwater in the Site vicinity.

2.4.1 Land Use

A zoning map obtained from the City of Colfax shows the Colfax Grange, Cenex, and Time Oil properties zoned for commercial use. The surrounding properties are zoned for residential or commercial use.

2.4.2 Meteorology

The climate for Colfax, Washington, is mild during summer when the average temperatures tend to be in the 60s and very cold during winter when temperatures tend to be in the 30s. The warmest month of the year is August with an average maximum temperature of 83.3 degrees Fahrenheit (°F), while the coldest month of the year is January with an average minimum temperature of 24.3 °F.

Temperature variations between night and day tend to be relatively large during summer months with an average difference of 33 °F, and fairly limited during winter months with an

average difference of 15 °F. The annual average precipitation at Colfax, Washington, is 20.04 inches. Rainfall is fairly evenly distributed throughout the year. The wettest month of the year is December with an average rainfall of 2.93 inches. (IDcide 2009).

2.4.3 Groundwater Use

The Site and vicinity are underlain by two primary aquifer zones: an upper, near-surface water-bearing zone that is perched on the underlying basalt bedrock, and deeper aquifers that are located in interbeds within the basalt bedrock. A hydrogeologic evaluation completed on the Site did not reveal any beneficial uses of the upper, perched water-bearing zone (SES 2008b, c, d; Appendix B).

Principal sources for groundwater to the City of Colfax and other private entities are obtained from groundwater wells that tap the underlying basalt bedrock aguifers. Specifically, the City of Colfax municipal drinking water supply is operated as a Group A system and is provided entirely from groundwater wells. Information obtained from the Washington State Department of Health, (WSDH), Division of Environmental Health, Office of Drinking Water website (WSDH 2008) indicates that the drinking water supply is obtained from five wells, including the Glenwood Springs wells, the Fairview well, the Clay Street well, and well WF/S01,S04 (SES 2008d). The wells that are located in the vicinity of the Site are generally deep (in excess of 600 feet). Records available on the WSDH Website revealed that past water quality testing revealed one Maximum Contaminant Level exceedance for iron. However, past testing results did not indicate detectable concentrations of nitrates or VOCs. As was discussed in the SES hydrogeologic evaluation, the underlying basalt aquifers have very little, if any, connection to the near-surface waterbearing zones and have not been adversely impacted by the widespread agricultural use of herbicides, pesticides, and fertilizers that have impacted the local surface waters and the more shallow subsurface water-bearing zones.

In addition to the City of Colfax municipal wells, several other possible drinking water wells are located in the general vicinity of the Site. The Colfax Meat Packing Company is listed as a Group B water system, which is equipped with one well and one listed hookup. This well is located over 1 mile to the south-southwest of the Site. This well, indicated to be owned by Mr. R.V. Taylor, is reportedly 274 feet deep. A search of Ecology's registered wells revealed five other possible drinking water wells located within an approximate 1-mile radius of the Site. However, four of these wells are located farther than 0.5 miles east to southeast of the Site, and they appear be located at elevations that are over 200 feet higher than the Site. The one remaining private drinking water well is located over 0.25 miles to the north of the Site. According to the log, a well installed for Mr. Jim Kroll was drilled to a depth of 60 feet bgs and was sealed with a bentonite slurry to a depth of 20 feet bgs. The log indicated that standing water was observed at 15 feet bgs. This well is hydrologically separated from the Site by the Palouse River.

2.4.4 Surface Water Features

The northern margin of the Site is located approximately 250 feet south of the Palouse River and approximately 500 feet to the east of South Fork. The confluence of the two channels is located approximately 550 feet to the west-northwest of the Site (Figure 2). Based upon our observations and conversations with Mr. Andy Rogers with the City of Colfax Public Works Department, the reach of the Palouse River to the north of the Site is

channelized with concrete banks and a bedrock bottom, and South Fork to the west has been channelized with concrete banks and bottom. The areas of the river and creek that are channelized with concrete are shown on Figure 2. Acknowledging the steep-sided valley configuration and shallow bedrock in the vicinity of the Site, South Fork and the Palouse River are anticipated to be "gaining" streams throughout much of the year. The groundwater flow direction beneath the Site has been consistently northwest, toward the confluence of the rivers. However, the presence of channelized concrete banks likely reduces the gaining or losing effects on the near-surface water-bearing zone in the vicinity of the Site.

A small, open stormwater pond is present at the southeast corner of the intersection of North Morton Street and East Tyler Street. Based upon conversations with and review of utility maps by City of Colfax personnel (SES 2009f, Appendix B), the pond appears to be a relict expression of a former roughly east-west-trending creek that was channelized in a flume and later directed through a culvert that flows across North Main Street and empties into a ditch along the east side of Bellinger Road. The ditch then conveys runoff into the Palouse River to the north. The results of this investigation did not suggest that the culvert was a preferred migration pathway or that it strongly influenced groundwater migration direction or gradient. No other former or current bodies of surface water are known in the Site vicinity.

2.4.5 Environmental Quality of Regional Soil and Groundwater

The area around Colfax is one of the most prolific dry land wheat farming areas of the world and has been so for over 100 years, with over 95 percent of the arable land exploited for growing wheat and soy beans. According to Mr. John Skyles of the Whitman County Department of Environmental Health (WCDEH), near-surface agricultural soils, surface waters, and shallow groundwater have been substantially impacted by pesticides, herbicides, and fertilizers (SES 2008b, Appendix B); however, these impacts have not adversely affected the quality of groundwater within the deeper aquifers that are used to provide drinking water to the City of Colfax.

2.5 GEOLOGIC AND HYDROGEOLOGIC SETTING

The following sections provide a summary of the physiography, geology, and hydrogeology beneath and in the vicinity of the Site.

2.5.1 Regional Physiography and Geology

The Site is located within the Palouse Hills Subprovince of the Columbia Basin Geomorphic province. The Palouse Hills are characterized by rolling topography of glacially-derived loess deposits of both aeolian and fluvial origin. The Site and vicinity are located within the bottom land of the Palouse River and South Fork. This valley bottom area is generally flat, with a sharp transition along the ascending valley margins.

According to the *Bedrock Geologic Map of the Colfax North 7.5 Minute Quadrangle, Washington* (Bush et al. 2005), the upland areas adjacent to the valley are typically blanketed with loess deposits of the Palouse Formation, which in turn are underlain by the Wanapum Formation and the Grande Ronde Formation of the Columbia River Basalt Group. The loess deposits range in thicknesses of up to 150 feet on local hills to non-existent within stream and river valleys. The basalt bedrock is as much as 5,000 feet thick

in the vicinity, overlying granitoid basement rock, which occasionally emerges through the basalt as steptoes (i.e., Steptoe Butte, located about 10 miles north of the Site). Stream valleys, such as the Site vicinity, are characterized by alluvial and reworked colluvial deposits overlying weathered grading to unweathered basalt bedrock.

2.5.2 Regional Hydrogeology

The general groundwater aguifers identified in the Colfax area include:

- A near-surface, unconfined aquifer located within the surficial loess or alluvium/colluvium; and
- Deeper confined and semi-confined aquifers within the Wanapum and Grande Ronde Basalt Formations.

Past groundwater monitoring completed at the Site by SES and others indicates that groundwater within the near-surface aquifer is present approximately 6 to 12 feet bgs, with a preferred migration direction that has been consistently toward the northwest to northnorthwest. The near-surface groundwater aquifer is primarily contained within the gravel-rich deposits and upper portion of the basalt rubble. Based upon discussions with City of Colfax Public Works Department and WCDEH representatives, drinking water wells that are seated in the near-surface aquifer are typically hand-dug wells or cisterns associated with older rural or farm properties. However, the representatives were unaware of any such existing wells or cisterns within the City limits (SES 2008b,c; Appendix B). Mr. Skyles stated that WCDEH discourages continued use of such wells, which are prone to nitrate impacts associated with fertilizer runoff.

The underlying basalt aquifers are generally characterized by horizontal groundwater flow through permeable interflow zones separated by less porous and permeable, unweathered basalt entablature and colonnade, which makes up 90 to 95 percent of the formation (Whiteman et al. 1994). A review of the boring logs for the City of Colfax municipal water wells and private domestic wells in the general vicinity of the Site revealed that the wells are all seated in the deeper basalt aquifers.

2.5.3 Site Geology

According to the *Bedrock Geologic Map of the Colfax North 7.5 Minute Quadrangle, Washington* (Bush et al. 2005), the Site is mantled by a thin veneer of alluvial and colluvial deposits, which are underlain by several thousand feet of basalt bedrock of the Grande Ronde Formation of the Columbia River Basalt Group. Numerous soil borings completed by GeoEngineers, Inc. (GEI), Quantum, and SES show the Site to be underlain by native, soft to medium stiff silt-rich soils (Unified Soil Classification System [USCS] Classification ML), locally with interbedded sand that extends to depths of about 7 to 15 feet bgs. These soils are interpreted to be low-energy overbank deposits that resulted from ancestral flooding of the Palouse River and South Fork. These upper soils were locally underlain by medium dense to dense sandy gravel to gravelly with variable silt (GM/GP) that extended to depths ranging from about 10 to 16 feet bgs, at which depth basalt rubble and or bedrock was encountered and extended to the maximum depth explored at the Site of up to 20.5 feet bgs.

2.5.4 Site Hydrology

Near-surface groundwater at the Site occurs within the silt and underlying sand, silty sand, and gravels that mantle the basalt bedrock to depths of up to about 16 feet beneath the Site and immediate vicinity. The upper water-bearing zone appears to be unconfined in nature, with the basalt bedrock forming an underlying confining unit. The saturated thickness of this water-bearing zone varies seasonally from about 6 to 10 feet.

Periodic monitoring of near-surface groundwater conditions completed by GEI, Quantum, and SES has indicated groundwater depths generally ranging from about 6 feet to 10 feet bgs. Groundwater depths in individual wells have seasonally varied between about 2 and 3.5 feet. Periodic monitoring completed by SES and others since 2001 has consistently indicated a groundwater migration that is toward the northwest to north-northwest, with a gradient that ranges from about 0.008 feet/foot to 0.019 feet/foot.

As was previously discussed in Section 2.5.3 of this report, the Site is underlain by several thousand feet of basalt bedrock with multiple deep groundwater aquifers that serve as water supply and production irrigation wells. However, previous studies completed by GEI and SES (GEI 2003, SES 2008d) suggest that vertical permeability within the basalt is negligible, and it is highly unlikely that the near-surface water-bearing zone observed in the shallow wells is hydraulic connected to the underlying basalt aquifers.

No reports documenting the physical characteristics and parameters of the upper water-bearing zone of the Site vicinity were observed in the available public record; however, anecdotal information provided by Mr. John Skyles, Director of the WCDEH (SES 2008b, Appendix B), suggests that the near-surface water-bearing zone is prone to nitrate impacts associated with fertilizer runoff.

2.6 PREVIOUS INVESTIGATIONS

The following subsections provide a summary of previous subsurface investigations and interim cleanup actions conducted at the Site which led to the discovery of the releases at the Site.

Several subsurface investigations and remedial actions have been conducted at the Site since 1997. The locations of monitoring wells and other Site features are shown on Figures 2 through 5, and the locations of soil samples collected in the vicinity of the Site are shown on Figures 4 and 5. Only those soil samples collected from the final limits of the excavation are depicted on Figures 4 and 5. Cross-sectional views of borings, monitoring wells, test pits, and PCS are shown on Figures 6 through 11. Soil analytical results are summarized in Tables 1 through 4, and groundwater analytical results are summarized in Tables 5 through 7. Samples that were subsequently overexcavated are shown in shaded cells on Table 1 and are not included on Figures 4 or 5. The remainder of this report includes references to cleanup levels; unless otherwise specified, these refer to the MTCA Method A Cleanup Levels for Unrestricted Land Use for soil and groundwater. For chemicals that do not have a specific MTCA Method A cleanup level, the detected concentrations are compared to the MTCA Method B and/or C levels, State of Washington drinking water, and/or the United States Environmental Protection Agency (EPA) Region 10 Maximum Cleanup Levels.

2.6.1 Time Oil Property

This subsection provides a summary of subsurface assessments and remedial actions completed on and/or associated with the Time Oil property.

2.6.1.1 1997 Limited Remedial Excavation

A letter from Time Oil Co. to Ecology dated March 28, 2002 (Time Oil Co. 2002), references a January 1997 release of two drums containing gasoline and water to near-surface soil in a dirt alley east of the Time Oil property. A limited remedial excavation was conducted by Agra Earth & Environmental to remove impacted soil and confirmation soil samples collected from the final limits of the excavation were reportedly found to be compliant with the applicable cleanup levels. A regulatory listing under the State Hazardous Waste Sites database documents a release of gasoline at the Time Oil property. This release report appears to be associated with the 1997 release described above, although no additional records documenting the excavation, soil sampling efforts, or soil disposal were found in the available records of Ecology or Time Oil.

2.6.1.2 1999 Preliminary Subsurface Investigation and Limited Remediation

In September 1999, an additional 8,000-gallon UST was installed beneath the southwestern portion of the Time Oil property to the west of the three existing USTs (GEI 2000). During the installation of the UST, a petroleum sheen was observed on groundwater that had collected within the tank excavation at a depth of approximately 10 feet bgs. An abandoned grease pit system associated with historical automotive repair activities was also removed from the property at that time. The grease pit was located beneath the northern portion of the former gasoline station building, as shown on Figure 4. What appeared to be PCS was encountered during the grease pit removal activities and the impacted soil was initially excavated to a depth of approximately 11 feet bgs. Soil samples collected in the immediate vicinity of the grease pit (GP-01, GP-02, and GP-03) were found to contain elevated concentrations of oil-range petroleum hydrocarbons (ORPH), and the excavation was expanded westward in an effort to remove the PCS. As indicated on Table 1, the concentrations of ORPH detected in samples GP-01 and GP-03 were 280 milligrams per kilogram (mg/kg) and 1,900 mg/kg, respectively, which exceeded the cleanup limit of 250 mg/kg in effect at that time. However, the cleanup level for ORPH was increased to 2,000 mg/kg in 2001, which is higher than the concentrations detected in soil collected in the vicinity of the grease pit.

PCS was observed extending westward from the former grease pit at depths of approximately 6 to 12 feet bgs. Additional soil excavation to the west was reportedly suspended to prevent risking the structural integrity of canopy footings that had been placed as part of the then on-going facility renovation. During removal of PCS associated with the grease pit at the gasoline station, two buried 50-gallon drums were uncovered. Both drums contained oil and were believed to have been associated with the property's historical use as an automobile servicing facility. According to the GEI report, approximately 5 gallons of oil was inadvertently spilled from one of the drums during the excavation process. The oil was reportedly cleaned up immediately using oil-absorbent pads. During soil excavation activities, a second grease pit was also encountered approximately 15 feet west of the initial grease pit; however, no evidence of PCS was observed in the immediate vicinity of the second grease pit.

The final dimensions of the remedial excavation for the grease pit were approximately 50 feet long by 30 feet wide by 12 feet deep, as shown on Figure 4. Eight soil samples were collected from the limits of the remedial excavation to identify areas of residual soil contamination. As shown on Table 1, most of the confirmation soil samples collected from the final limits of the excavation contained no detectable concentrations of GRPH, diesel-range petroleum hydrocarbons (DRPH), or ORPH. However, two of the soil samples (T-7/9 and T-8/9) collected from the bottom and sidewalls of the western portion of the excavation contained concentrations of ORPH (2,770 mg/kg and 3,260 mg/kg, respectively) that exceeded the current cleanup level (Table 1). Contaminated soil in the vicinity of samples T-7/9 and T-8/9 was not excavated due to the close proximity of the canopy.

2.6.1.3 2001 Supplemental Subsurface Assessment

Following completion of the excavation activities, seven borings were advanced at the Time Oil property in February 2001 and monitoring wells were installed in each of the borings (MW01 through MW07; Figure 4). Soil samples collected from six of the borings were tested for the presence of petroleum hydrocarbons and associated volatile constituents benzene, toluene, ethylbenzene, and total xylenes (BTEX); the soil samples collected from borings MW05 and MW06 were found to contain concentrations of GRPH that exceeded the current cleanup level (Table 1). Soil samples collected from borings MW03, MW05, and MW06 were also found to contain concentrations of ORPH and/or DRPH that were below the current cleanup level. Soil samples containing the highest concentrations of petroleum hydrocarbons were collected from boring MW06 at a depth of approximately 5 feet bgs (Table 1). MW06 is located to the west of the southwestern pump island, in the vicinity of the gasoline station that formerly operated on the Time Oil property.

2.6.1.4 2002 Groundwater Monitoring Well Installation

In an effort to further evaluate the extent of contamination and to identify the source of the contamination detected beneath the upgradient (southern) portions of the Time Oil property, five additional monitoring wells were installed on behalf of Time Oil in October 2002 (MW08 through MW12; Figure 4). One monitoring well (MW08) was installed on the Time Oil property, another well was installed across North Main Street to the north-northwest of the property (MW11), and three monitoring wells were installed within the East Tyler Street ROW to the south of the Time Oil property. Soil samples were collected from borings MW09 and MW10 but no soil samples were collected from the remaining borings due to a mechanical failure. Soil samples collected from borings MW09 and MW10 were reportedly not submitted to the laboratory for analysis.

The results of field screening conducted at each boring location suggest that evidence of contamination was not observed in soil cuttings generated from borings MW08, MW11, or MW12. Headspace analyses of soil samples collected with a PID revealed a low concentration of volatiles (60.0 parts per million by volume [ppmv]) in the vapor from the soil sample collected from boring MW09 and a significantly higher concentration (780 ppmv) in the vapor from the soil sample collected from boring MW10. Both of the soil samples were collected from a depth of approximately 5 feet bgs. The soil sample collected from boring MW10 also exhibited a slight petroleum sheen.

2.6.2 Cenex Property

This subsection summarizes subsurface investigations and remedial action completed on and/or associated with the Cenex property.

2.6.2.1 2004 Monitoring Well Installation and Limited Remedial Excavation

A release of an unspecified volume of unleaded gasoline occurred at the Cenex facility on October 15, 2004, as a result of an accidental overfilling of unleaded gasoline during the refueling of the central UST. The fuel reportedly spilled into the vaults of the unleaded gasoline and diesel tanks. Ecology was notified of the release by Colfax Grange on November 5, 2004, and an initial remedial response to the release was conducted on November 15, 2004. Petroleum odors and discolored backfill materials were reportedly observed beneath the concrete pad during the initial remedial response and an unspecified volume of contaminated soil was removed from around the tank vaults and from above the tanks.

Three monitoring wells (CMW01 through CMW03) were installed at the Colfax Grange property on October 6, 2004, just prior to the overfill release that occurred on October 15, 2004 (Figure 5). Two additional monitoring wells (CMW04 and CMW05) were installed at hydrologically downgradient locations to the north of the USTs on December 3, 2004 (Figure 5). None of the soil samples that were submitted for analysis from the installation of monitoring wells CMW01 through CMW05 contained detectable concentrations of GRPH or BTEX (Table 1). Field notes provided by Quantum indicate that no odors or sheen were noted in soil collected from boring CMW03. Slight petroleum odors were noted in soil collected from the uppermost 5 to 6 feet of soil in borings CMW01, CMW04, and CMW05, and from the uppermost 12 feet of boring CMW02.

2.6.2.2 2006 UST Closure and Remediation

In October 2006, three 1985-vintage USTs were excavated and removed from the Cenex property, along with the gasoline and diesel pump islands and associated product delivery systems. The excavation was conducted by Quantum on behalf of Colfax Grange. According to information provided by Mr. Jim DeSmet of Quantum, shallow soil samples collected from beneath the former dispenser on the northern portion of the Cenex property contained concentrations of GRPH and BTEX that exceeded their respective cleanup levels. In addition, shallow soil samples collected from a depth of approximately 1.5 feet bgs beneath the former Cardtrol pump island contained a concentration of DRPH that exceeded the cleanup level (Figure 5, Table 1). Additional excavation was conducted beneath the pump islands and soil samples collected from a depth of 3 feet below the Cardtrol pump island were found to contain no detectable concentrations of DRPH, with the exception of soil sample "Card East 3," which contained a concentration of DRPH that was well below the cleanup level. According to Mr. DeSmet, a composite sample (Drop Island) comprised of 10 discrete soil samples was collected from a depth of 2 feet bgs beneath the northern pump island following additional excavation. Although GRPH and BTEX were not detected above laboratory reporting limits, concentrations of DRPH and ORPH were present in the composite soil sample (Table 1). Considering the dilution effect that occurs when discrete samples are composited, the actual concentration of petroleum hydrocarbons in soil beneath the northern pump island remained unassessed. According to information provided by Mr. DeSmet, soil beneath the former northern pump island was excavated to a total depth of 13 feet bgs in the course of additional excavation activities.

Near-surface soil samples collected from above the unleaded gasoline and diesel USTs prior to their removal indicated the presence of PCS. The extent of the contamination was not described. PCS was not present in near-surface soil samples collected proximal to the super unleaded pump vault or the inventory probe (Quantum 2006a).

After the USTs were removed, composite soil samples were collected from beneath each of the former gasoline USTs. Both composite samples contained concentrations of GRPH in excess of the cleanup level, with the highest concentration detected in the soil sample collected from beneath the unleaded UST. The soil samples collected from beneath the diesel UST contained concentrations of DRPH and one or more of the BTEX constituents that exceeded their respective cleanup levels. However, these samples were collected from saturated soil well below the water table. As such, it was not apparent whether the elevated concentrations were the result of contaminants that remained sorbed to soil or if the contamination was present within the groundwater in the pore spaces of the soil. Considering the relatively shallow depth of the basaltic bedrock encountered throughout the site, the maximum thickness of saturated PCS beneath the former USTs was not anticipated to exceed 5 feet.

Analytical results for soil samples collected from the southeastern (P2), eastern (OTE-E2, OTE-E3, and OTE-E4), western (OTE-W6), and northern (P9, P11, N1-11 and N2-11) sidewalls and floor of the excavation confirmed that elevated concentrations of GRPH and/or benzene remained at these locations (Figure 5, Table 1). According to Mr. DeSmet, PCS in the vicinity of soil samples P2, N1-11, and N2-11 was subsequently overexcavated; however, confirmation soil samples were not collected following the overexcavation efforts.

The initial excavation beneath the regular unleaded, super unleaded, and diesel tanks reportedly extended to a depth of 10 feet bgs. Groundwater was encountered at approximately 9 feet bgs (Quantum 2006a). Additional excavation was completed following dewatering activities and the final depth of the tank excavation was approximately 13 feet bgs. According to the estimates provided by Quantum, approximately 2,607 cubic yards of soil was excavated from the Cenex property and taken to an off-property location for treatment by landfarming.

Following completion of the excavation activities, three 12,000-gallon USTs and the associated pump islands were installed at the Cenex property in November 2006.

Prior to backfilling the excavation, a trench was excavated to a depth of approximately 13 feet bgs along the northern portion of the Cenex property. The trench was partially filled with washed pea gravel and an air sparge remediation system was installed throughout the length of the trench. The remediation system has not been started.

2.6.3 Groundwater Monitoring Program

Prior to the initiation of the current RI activities, groundwater sampling and testing had been conducted at the Site on a quarterly to semiannual basis. Groundwater samples collected from monitoring wells MW01 through MW12 had been tested for the presence of GRPH, DRPH, ORPH, and BTEX constituents since February 2001. Samples collected from these wells were initially tested for the presence of MTBE in February 2004, and additional oxygenates, including ethylene dibromide (EDB) and ethylene dichloride (EDC), were added to the sampling program in September 2005. Groundwater samples collected from

monitoring wells CMW01 through CMW05 had been tested for the presence of GRPH and BTEX since the wells were installed in October and December 2004. Well CMW01 was decommissioned in 2006 due to the encroachment of the remedial excavation at the Cenex property. Groundwater samples collected from CMW01 through CMW05 since December 2005 have been tested for the presence of MTBE, DRPH, ORPH; oxygenates were added to the sampling program in March 2007. The results of groundwater sampling conducted at the Site prior to commencing with the RI (between 2001 and 2007) are summarized in Tables 5, 6, and 7.

Groundwater samples collected from monitoring wells MW03, MW05, MW06, MW07, MW10, and MW12 between 2001 and 2005 revealed consistently elevated concentrations of GRPH and/or benzene, and to a lesser extent DRPH. Samples collected from wells MW01, MW02, MW04, and MW11 seasonally exhibited concentrations of GRPH and/or benzene and to a lesser extent DRPH in excess of their respective cleanup levels, with elevated concentrations generally occurring during monitoring events performed in the Third Quarter (August to November). Samples collected from monitoring well MW08 did not exhibit elevated concentrations of petroleum hydrocarbons, and samples collected from MW09 seasonally exhibited concentrations of DRPH and ORPH that exceeded their respective cleanup levels. Groundwater samples collected from wells CMW01, CMW02, CMW04, and CMW05, located on the Cenex property, consistently exhibited elevated concentrations of GRPH and/or benzene between 2004 and 2005.

Groundwater concentrations dropped substantially across the Site following the October 2006 UST replacement and remedial excavation and dewatering activities completed on the Cenex property. Groundwater samples collected between Fourth Quarter 2006 and Second Quarter 2007 (prior to the commencement of current RI activities) from monitoring wells MW01, MW03, MW04, MW05, MW07, MW08, and MW11 did not contain concentrations of petroleum hydrocarbons in excess of the applicable cleanup levels. Groundwater samples collected from wells MW02, MW06, MW09, MW10, MW12, and CMW02 through CMW05 during the same time period frequently contained concentrations of petroleum hydrocarbons and associated BTEX constituents in excess of the cleanup levels; however, the concentrations decreased significantly relative to the pre-excavation samples. A more detailed summary of the pre-RI groundwater contaminant concentrations is provided in the SCM-RIWP (SES 2008a).

2.7 CHEMICALS OF POTENTIAL CONCERN

A well-defined list of chemicals of potential concern (COPCs) has been developed for retail gasoline stations. The following chemicals have been evaluated as COPCs for the Site.

- Petroleum hydrocarbons (GRPH, DRPH, and ORPH)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX)
- VOCs
- Polynuclear aromatic hydrocarbons (PAHs)
- Lead
- Oxygenates, including MTBE, EDB, and EDC

The specific analyses employed are described in the Sampling and Analysis Plan (SAP). Supplemental testing also included extractable petroleum hydrocarbon-volatile petroleum hydrocarbon (EPH-VPH) analyses and forensic analyses, which included gas chromatography with a flame ionization detector (GC/FID). In addition, selected samples were analyzed for VOCs using a gas chromatograph fitted with a mass spectrometer; and organometallic compounds using a gas chromatograph fitted with an electron capture detector as well as an inductively coupled plasma mass spectrometer (ICP-MS), and hydrocarbon fingerprinting interpretation.

2.8 POTENTIAL MEDIA OF CONCERN

Prior to completion of the RI, the potential media of concern for the Site included soil, groundwater, soil vapor, indoor air, and surface water.

2.9 DATA GAPS

Numerous data gaps were noted with respect to the origin, fate, and extent of impacts beneath the Site prior to completion of the RI, including the following.

- The environmental quality of soil in the vicinity of the fuel-dispensing pump islands on the Time Oil property. Previous investigations had shown that elevated concentrations of ORPH were present in soil samples collected from the final limits of the 1999 grease pit excavation and that concentrations of GRPH in excess of the cleanup level were present in soil collected from borings MW05 and MW06 in 2001. Although the concentrations of petroleum hydrocarbons in groundwater collected from these locations had decreased to below the applicable cleanup levels, the presence of low concentrations of GRPH, DRPH, benzene, and MTBE in groundwater collected from monitoring wells MW06, MW07, and MW11 suggested that a low-level source of contamination may have remained in subsurface soil in the vicinity of these wells.
- The extent of soil contamination north of the UST excavation on the Cenex property. The available laboratory results of soil sampling conducted at the limits of the 2006 UST excavation indicated that soil collected from depths of 9 to 11 feet bgs along the northern sidewall contained concentrations of GRPH and benzene that exceeded the cleanup level. Additional excavation was limited by the presence of East Tyler Street to the north. The extent to which the PCS may have extended beneath the ROW had not been evaluated.
- The extent of soil contamination east and southeast of the UST excavation on the Cenex property. Soil samples collected from the eastern and southeastern sidewalls of the UST excavation were found to contain concentrations of GRPH and benzene that exceeded the cleanup levels. Although additional excavation was reportedly conducted along the southern side of the excavation, no confirmational soil sampling was conducted following the overexcavation activities. Therefore, the extent of the residual soil contamination in these areas remained unknown/unassessed.
- The source and extent of the DRPH and ORPH contamination beneath the southeastern portion of the Site. Groundwater samples collected from monitoring well MW09 had historically contained concentrations of DRPH and ORPH in excess of the cleanup level and shallow soil samples collected in the vicinity of the Cardtrol pump island at the Cenex property contained elevated concentrations of ORPH and DRPH. However, the nearest downgradient monitoring well relative to the Cardtrol island was situated more than 55 feet to the northwest (MW09). Groundwater samples collected from monitoring well

CMW03 also contained elevated concentrations of ORPH. The source and extent of the DRPH and ORPH contamination in groundwater beneath the southeastern portion of the Site was not well defined.

- The potential impacts to the Site from the adjacent railroad. Considering the elevated concentrations of ORPH detected previously in groundwater samples collected from monitoring wells MW09 and CMW03, additional investigation in the vicinity of the railroad tracks appeared warranted.
- The lateral extent of petroleum-contaminated groundwater. Considering the historical presence of petroleum contamination in groundwater samples collected from downgradient and crossgradient monitoring wells at the Site, the full lateral extent of impacts to groundwater had not been assessed.
- The potential risk for impacts to the Site from the ASTs formerly located on the Colfax Grange property to the south of the railroad tracks. Considering the close proximity and upgradient position of the former ASTs relative to the Site, additional investigation of soil and/or groundwater appeared warranted.
- The potential risk for impacts to the Site from the former storage and distribution of petroleum products on the Shell property located to the east of the Site. Acknowledging the volume of petroleum hydrocarbons formerly stored at Shell property, its upgradient to crossgradient hydrologic position relative to the Site, and the apparent absence of any documentation regarding the subsurface conditions beneath the Shell property, the potential risk for adverse environmental impacts to the Site remained unassessed.
- The potential risk for impacts to the Site from the gasoline station formerly located on the Sterling property to the west of the Site. Considering the proximity of this former fueling station and the lack of available documentation concerning environmental conditions of the facility, the potential risk for adverse environmental impacts to the Site remained unassessed.
- The potential risk for impacts to the Site from the retail gasoline station formerly located on the southwestern portion of the Colfax Grange property. Considering the close proximity and upgradient location of the former retail gasoline station and the apparent absence of any documentation of the subsurface conditions beneath the former gasoline station, the potential risk for adverse environmental impacts to the Site remained unassessed.
- The potential risk for impacts to the Site from the heating oil UST located adjacent to
 the northwest portion of the Colfax Grange Building. Considering the close proximity
 and upgradient location of the heating oil UST relative to the Site, the potential risk for
 adverse environmental impacts to the Site remained unassessed.
- The potential risk for impacts to the Site from the UST located adjacent to the northeast corner of the Colfax Grange Building. Considering the close proximity and upgradient location of the UST and the apparent absence of any documentation of the subsurface conditions in the vicinity of the UST, the potential risk for adverse environmental impacts to the Site remained unassessed.
- The potential risk for impacts to the Site from the closed-in-place gasoline UST located beneath the eastern portion of the Colfax Grange Building. Considering the close proximity and upgradient location of the closed-in-place gasoline UST and the apparent absence of any documentation of the subsurface conditions in the vicinity of the

UST, the potential risk for adverse environmental impacts to the Site remained unassessed.

- The potential for contaminant migration via fracture flow in the underlying basalt bedrock. The extent of fracturing in the basalt that underlies the Site was unknown, as was the thickness of the basalt and the extent to which groundwater migrates laterally and vertically through the material.
- The effect (if any) that the former stream and/or subsurface utilities located beneath and proximal to the Site may have on the migration of contamination beneath the Site. Considering the proximity of the former stream and existing utility corridors to subsurface contamination beneath the Site, it was not apparent whether they were acting as sources of contamination or as preferential pathways for contaminant migration beneath the Site.

3.0 REMEDIAL INVESTIGATION

In an effort to address the data gaps identified above, four phases of subsurface investigations were conducted by SES at the Site since April 2008. A description of the general scope of each phase of field work is as follows:

- April 9 and 10, 2008. Work scope included advancing 17 push-probe borings (SP01 through SP17), collecting and field screening soil samples from each of the borings, and submitting selected soil samples for analytical testing (Appendix D, Appendix E).
- June 2 through 5, 2008. Work scope included_advancing 11 push-probe borings (B13 to B23), collecting and field screening soil samples from each of the borings, and submitting selected soil samples for analytical testing. Ten of the 11 push-probe locations were overdrilled using air-rotary drilling methods and completed as 2-inch-diameter polyvinyl chloride (PVC) groundwater monitoring wells with flush-mounted monuments (designated MW13, and MW15 through MW23). The monitoring wells were developed in preparation for the subsequent groundwater monitoring and sampling event. Push-probe boring B14 was advanced on the Sterling property but could not be completed as a monitoring well during the June 2009 investigation activities (Appendix D, Appendix E).
- March 2 through 4, 2009. Work scope included the excavation of three test pits (TP01 through TP03) in the vicinity of the former "Gas and Oils" building on the southwest portion of the Colfax Grange property, advancing three air-rotary borings (B14A, B24, and B25) on the Sterling and Colfax Grange properties, and completing the borings as 2-inch-diameter PVC groundwater monitoring wells with flush-mounted monuments (MW14, MW24, and MW25, respectively). Soil samples collected from each test pit and boring were field screened and submitted for analytical testing. The new monitoring wells were developed in preparation for the subsequent groundwater monitoring and sampling event (Appendix D, Appendix E).
- May 18 through 20, 2009. Work scope included advancing eight push-probe borings (B26 to B33) at locations within North Main Street, East Harrison Street, and North Morton Street, and on the Colfax Grange property. Soil samples collected from each boring were field screened and submitted for analytical testing. Seven of the eight push-probe locations were then overdrilled using air-rotary drilling methods and completed as 2-inch-diameter PVC groundwater monitoring wells with flush-mounted monuments (MW26 through MW32). No indications of contamination were encountered during the drilling of boring B32 and this boring was not completed as a monitoring well. Each of the seven new wells was

developed in preparation for the subsequent groundwater monitoring and sampling event (Appendix D, Appendix E).

The above RI activities were generally completed as described in the SCM-RIWP (SES 2008a), the SRIWP (SES 2008h), and the RSRIWP (SES 2009c), each of which had previously been approved by Ecology, along with variations described herein. Additionally, SES has performed quarterly groundwater monitoring and sampling events at the Site as part of the RI since September 2007. The locations of soil borings, monitoring wells, test pits, and other Site features are shown on Figures 3, 4, and 5. The soil analytical results and groundwater contours and analytical results are summarized in Figures 12 through 14 and in Tables 1 through 7. For evaluation purposes, those concentrations that exceeded the current cleanup levels for soil and groundwater are presented in bold red font on Figures 12 and 14. The table that is included on Figure 12 includes only those samples collected from locations where one or more soil samples was found to contain a concentration of one or more COPC that exceeded the applicable cleanup level.

3.1 PRE-FIELD ACTIVITIES

Prior to initiating field work, Ecology requested that SES complete a hydrogeologic evaluation of the Site and vicinity, the results of which are discussed in Section 3.1.1 below.

Before sampling activities were conducted, traffic control plans were prepared, street use permits were acquired, and public and private utility locates were conducted. Available utility maps (e.g., utility maps from the City of Colfax Public Works Department) also were reviewed to identify proposed sample locations that might intersect or otherwise interfere with known utility corridors.

Subcontractors that provided services on the project included a private utility locator (Utilities Plus, Inc.), a drilling contractor (Environmental West Explorations, Inc.), an excavation contractor (NRC Environmental Services), traffic control signage provider (National Barricade), and Ecology-accredited analytical laboratories (Friedman & Bruya, Inc.; Analytical Resources, Inc.; and Fremont Analytical Inc.). Prior to conducting the fieldwork, a Health and Safety Plan was prepared for use during drilling, test pit excavation, and groundwater sampling activities.

3.1.1 Hydrogeologic Evaluation

At the request of Ecology and prior to initiating subsurface investigation work under the Agreed Order, SES completed a review of the available literature to evaluate the hydrogeologic conditions beneath the Site (SES 2008d). The purpose of the evaluation was to describe the geology, aquifers, and water-bearing zones of the Site and vicinity, and to assess the risk that contaminants originating from the Site had impacted local potable water supplies. The results of the assessment suggest that contaminants originating from the Site are limited to the upper water-bearing zone that is perched atop basalt bedrock, and no beneficial use for the water-bearing zone was identified. Additionally, studies completed within the Palouse and Columbia River Basin suggest that vertical porosity and permeability within the underlying Columbia river Basalt bedrock is negligible, therefore, it was concluded that the Site presents very little risk of impacting the underlying aquifers within the basalt.

3.1.2 Ground Penetrating Radar Survey

A ground-penetrating radar (GPR) survey was completed by Subsurface 3D Imaging on October 1, 2008, on behalf of the Colfax Grange, and under the direction of Quantum. The survey was completed on the western portion of the Colfax Grange property in order to evaluate whether the USTs and associated product delivery systems of the gasoline station that formerly operated at this location had been removed. The survey was also completed on three areas along the north side of the Colfax Grange Building, where USTs were either known or suspected to exist. The results of the survey indicated a geophysical anomaly beneath the landscaped area to the west of the Colfax Grange Building; however, a test pit was subsequently excavated in the vicinity of the anomaly and no evidence of a UST or other apparent source of the anomaly were encountered. The survey also identified a geophysical signature of the small unused heating fuel UST previously known to exist along the north side of the Colfax Grange Building. A copy of the GPR survey report is included in Appendix F.

3.2 SOIL SAMPLING

A description of the soil sampling activities conducted in the course of the RI is provided below.

3.2.1 Subsurface Soil Samples

Thirty-six push-probe soil borings (SP01 through SP17, B13 to B23, and B26 through B33), three air-rotary borings (B14A, B24, and B25), and three backhoe-excavated test pits (TP01 through TP03) were advanced beneath and proximal to the Site for the purposes of collecting, screening, and submitting soil samples for analytical testing (Figure 3). The borings were advanced using push-probe or air-rotary drill rig methods to depths of approximately 10 to 20 feet bgs. The test pits were excavated with a rubber tire-mounted backhoe to depths of approximately 10 to 12.5 feet bgs. Soil samples were generally collected in specific intervals using the procedures described in the SAP in the SCM-RIWP (SES 2008a).

Relatively undisturbed soil samples were obtained from the borings throughout the maximum depths explored. Selected portions of each recovered soil core sample were placed in a plastic bag so that the presence or absence of VOCs could be quantified using a PID. Intervals of each recovered soil core sample selected for potential laboratory chemical analysis was placed into laboratory-prepared glassware in accordance with EPA Method 5035A. Subsurface lithology was classified using the USCS, and soil boring logs and test pit logs are included in Appendix D. Sampling locations are shown on Figures 4 and 5.

Two to four soil samples collected from each soil boring or test pit were submitted for analytical testing in accordance with the guidelines described in the SAP. Soil samples that did not exhibit obvious signs of impacts were analyzed for GRPH, DRPH, and ORPH by Northwest Total Petroleum Hydrocarbon (NWTPH) Method NWTPH-HCID. Soil samples exhibiting obvious signs of petroleum impacts (such as staining, odors, or significant PID readings) were analyzed for GRPH by Method NWTPH-Gx, DRPH and ORPH by Method NWTPH-Dx, BTEX and VOCs by EPA Methods 8021B and/or 8260B, PAHs by EPA Method 8270, and total and dissolved lead by EPA Method 200.8. Additionally, selected samples from identified source locations were analyzed for EPH-VPH, hydrocarbon

fingerprinting, and GC/FID, GC/MS, and ICP-MS methods described in Section 2.7 of this report.

3.2.2 Deviations from the SCM-RIWP, SRIWP, and RSRIWP

Borings B13, B15 through B23, and B26 through B33 were advanced and sampled using a push-probe rig until encountering refusal, then overdrilled using air-rotary drilling methods and completed as 2-inch-diameter groundwater monitoring wells. The use of a push-probe rig to collect the soil samples was not included in the SCM-RIWP, SRIWP, and RSRIWP, but was approved by Ecology prior to conducting the field activities.

3.3 MONITORING WELL INSTALLATION AND DEVELOPMENT

A description of the groundwater monitoring well installation and development activities conducted in the course of the RI is provided below.

3.3.1 Monitoring Well Installation

Twenty monitoring wells (MW13 through MW32) were installed in the course of the RI using the air-rotary drilling methods outlined in the SCM-RIWP SAP (Appendix C of the SCM-RIWP, SES 2008a). Monitoring well locations are shown on Figures 3, 4, 5 and 14. Each of the flush-mounted wells was constructed using a 2-inch-diameter Schedule 40, PVC well casing with flush-threaded joints. The wells were screened using Schedule 40 slotted PVC with 0.010-inch factory-machined slots. A filter pack consisting of 10-20 silica sand was placed in the annular spacing. Monitoring wells were constructed with 10 feet of well screen. Approximately 2 to 5 feet of screen was located above the top of the water table, and approximately 6 to 10 feet of screen was located below the top of the water table in order to allow for seasonal fluctuations in groundwater elevation.

3.3.2 Monitoring Well Development

Monitoring wells were developed in accordance with the SAP (Appendix C of the SCM-RIWP, SES 2008a). The wells were pumped and surged using a down-hole pump, removing at least 10 well casing volumes from each well. The wells were developed until the turbidity of the groundwater decreased. Equipment was decontaminated after each well was developed. Water removed during development activities was placed in labeled drums for subsequent characterization and disposal.

3.3.3 Deviations from the SCM-RIWP, SRIWP, and RSRIWP

The names of monitoring wells were, in some cases, changed according to the order in which they were installed. New boring and monitoring well names and locations are presented on Figures 3, 4, and 5.

3.4 GROUNDWATER SAMPLING

A description of the groundwater sampling activities conducted in the course of the RI is provided below.

3.4.1 Quarterly Groundwater Monitoring

Following well development activities, each well was allowed to stabilize for at least 1 week before being sampled in order to allow sufficient time for the wells to establish connectivity with the aquifer and to minimize the turbidity of the groundwater samples prior to sampling.

Upon SES' arrival at the Site for each of the quarterly monitoring events, the Site monitoring wells were opened and water levels were permitted to equilibrate with atmospheric pressure for a minimum of 15 minutes before groundwater level measurements were obtained. Groundwater levels were measured to an accuracy of 0.01 feet using an electronic water level meter. Quarterly water level measurements were collected from all of the wells on the same day prior to commencing sampling. The water level measurements, which were recorded on groundwater sampling forms, also are summarized in Table 5.

Following the collection of water level measurements from all of the wells, each well was purged using a low-flow peristaltic pump. Field parameters, including temperature, pH, electrical conductivity, turbidity, oxidation reduction potential, and dissolved oxygen, were measured and recorded periodically during purging activities. Once the field parameters stabilized between measurements (e.g., specific conductivity ±10 percent, pH ±0.1 pH units, temperature ±0.1°Celsius [°C]), samples were collected in laboratory-supplied sample containers at the same low flow rate used for purging. Sample data was recorded on a groundwater sample collection form and included the sample number and time collected, the observed physical characteristics of the sample (e.g., color, turbidity, etc.), and the field parameters discussed above. Copies of the groundwater data sheets for groundwater sampling events completed by SES since the initiation of the Agreed Order have been provided to Ecology under separate cover.

To prevent degassing during sampling for VOCs, the pumping rate was generally maintained below 250 to 500 milliliters per minute. The VOC and GRPH containers were filled completely so that no head space remained. Samples were chilled to 4°C immediately after collecting the samples.

Groundwater samples collected during the RI were submitted for laboratory analysis of GRPH by Method NWTPH-Gx, DRPH and ORPH by Method NWTPH-Dx; PAHs by EPA Method 8270d SIM; total and dissolved lead by EPA Method 200.8; low-level EDB by EPA Method 8011; and BTEX and VOCs by EPA Method 8021B and/or 8260B.

3.4.2 **Deviations from the RIWP**

Prior to the First Quarter 2009 monitoring event, groundwater samples were analyzed for EDB by EPA Method 8260B, which has a lower detection limit that exceeds the cleanup level of 0.01 micrograms per liter (μ g/L). The groundwater samples collected during the First and Second Quarter 2009 monitoring events were therefore analyzed using EPA Method 8011, which has a detection limit of 0.01 μ g/L.

The following deviations were approved by Ecology in June 2009 and implemented during the Second Quarter 2009 monitoring event:

1. Discontinued entirely the sampling of monitoring wells MW04, MW06, MW22, CMW04 and CMW05.

- 2. Discontinued the PAH analysis of quarterly groundwater samples collected from monitoring wells MW15, MW16, MW17, MW18, MW19, and MW23.
- 3. Discontinued analysis of low-level EDB using EPA Method 8011 for wells that had exhibited 2 consecutive quarters of groundwater samples containing concentrations of EDB below the laboratory reporting limit of 0.01 μg/L. Based upon this criteria, groundwater samples collected from wells CMW02 and CMW03 during the Second Quarter 2009 groundwater monitoring event were not analyzed for EDB by EPA Method 8011.
- 4. Discontinued analysis of groundwater samples collected from monitoring wells MW03, MW07, MW08, MW09, MW11, MW12, MW15 to MW19, and MW23 for VOCs by EPA 8260B, and alternatively analyze groundwater samples collected from these wells for BTEX and MTBE by EPA Method 8021B.
- 5. Discontinued analysis of lead (total and dissolved) at all wells where 4 quarters of compliant results had been achieved (MW01, MW02, MW05, MW07, MW08, MW11, MW15 through MW21, MW24, and CMW02 through CMW03).

3.5 MANAGEMENT OF INVESTIGATION-DERIVED WASTE

A substantial quantity of investigative-derived waste (IDW) was generated during this RI. Solid IDW included PCS excavated from test pits and drill cuttings, the remainder of homogenized soil generated during the sampling process, contaminated disposable equipment, and contaminated disposable personal protective equipment. Liquid IDW included wastewater from decontamination procedures and monitoring well development and purging. IDW generated from drilling, equipment decontamination, well development, and groundwater sampling was containerized in appropriately labeled 55-gallon drums. Soil IDW generated from test pit excavations was temporarily stockpiled on and covered by visqueen plastic sheeting on the Colfax Grange property. IDW was removed periodically and treated and/or disposed of at a permitted facility. Soil IDW was treated by thermal desorption at the Cemex facility in Everett, Washington. Drummed water derived from decontamination, well development, and well purging activities was periodically disposed of properly by ORRCO, Emerald Services, and Thermo Fluids (Appendix G).

3.6 REMEDIAL INVESTIGATION RESULTS

The following sections present a summary of the analytical data collected during the RI that was intended to address the data gaps identified in Section 2.9.

3.6.1 Soil

Time Oil Property. Borings SP01 through SP07, SP17, and B22 were advanced on the Time Oil property. Boring B13 was advanced across North Main Street to the northwest of the Time Oil property and boring B26 was advanced within the North Main Street ROW, immediately west of the Time Oil property in order to assess the downgradient extent of impacts originating from the Site (Figures 3 through 5). At the time of drilling, groundwater was encountered at a depth of approximately 6 to 7.5 feet bgs in the borings (Appendix D). Soil samples collected from borings SP02, SP04 and SP05 exhibited concentrations of GRPH that exceeded the applicable cleanup levels. Concentrations of one or more of the BTEX constituents that exceeded the applicable cleanup level were present in soil samples

collected from borings SP02 and SP04. Naphthalene was detected at concentrations exceeding the cleanup level in soil samples collected from borings SP02 and SP05. A soil sample collected from boring SP02 contained a concentration of MTBE that exceeded the cleanup level. DRPH was not detected at concentrations exceeding the cleanup level in any of the soil samples collected from borings advanced on the Time Oil property (Tables 1 through 4).

PCS was encountered in the uppermost 8 to 11 feet in borings SP02, SP04, and SP05; PCS was not present in any of the samples collected from these borings at depths of 12 to 14 feet. Boring SP02 was advanced near the western sidewall of the grease pit excavation conducted in 1999 by GEI, where PCS had previously been encountered. Borings SP04 and SP05 were advanced near the southwestern corner of the Time Oil property, in the vicinity of the former gas & oil station. PCS was not encountered in borings advanced to the north and northwest of the former grease pit excavation (B13, B22, and SP01), in the vicinity of the former gas & oil station (SP03, SP06, and B26), to the southeast of the current USTs (SP17), or within the alley adjacent to the east of the Time Oil property (SP07) (Figure 12).

None of the soil samples submitted for analysis from the borings described above contained concentrations of DRPH, ORPH, VOCs, or metals that exceeded their respective laboratory reporting limits and/or cleanup levels. With the exception of the soil samples collected from borings SP02 and SP05, none of the soil samples submitted for analysis from the borings above contained concentrations of naphthalenes that exceeded their respective cleanup levels (Tables 1 through 4).

Cenex Property. Borings SP08 through SP16, B17 through B19, and B23 were advanced on and in the immediate vicinity of the Cenex property (Figure12). At the time of drilling, groundwater was encountered at a depth of approximately 6 to 9.5 feet bgs in the borings. Soil samples collected from borings SP11, SP12, SP14, and SP15 contained concentrations of benzene that exceeded the cleanup level and soil samples collected from boring SP12 contained concentrations of GRPH that exceeded the cleanup level. PCS soil was encountered in the uppermost 6 to 8 feet in borings SP11, SP14, and SP15, which are situated around the perimeter of the excavation conducted by Quantum in 2006. PCS was encountered at depths between 10 and 14 feet in boring SP12, which is located in the vicinity of the diesel pump island to the east of the 2006 UST excavation. PCS was not present in the samples collected from the lowermost sampling interval in any of these borings. PCS was similarly not present in any of the soil samples collected from borings SP08 through SP10, SP13, SP16, or B17 through B19 (Table 1).

The soil sample collected from boring SP11 at a depth of 3 to 4 feet (SP11-03-04) contained a concentration of lead (330 mg/kg) that exceeded the cleanup level of 250 mg/kg (Table 2). Boring SP11 is situated within the East Tyler Street ROW and sample SP11-03-04 was collected immediately beneath the fill material that was used in the construction of the ROW (Figure 12). The elevated lead concentration detected in the near-surface collected from boring SP11 is suspected to be the result of the overlying fill material and not associated with a release of petroleum hydrocarbons at the Site.

None of the soil samples submitted for analysis from the borings described above contained concentrations of DRPH, ORPH, VOCs, or PAHs that exceeded their respective

laboratory reporting limits and/or cleanup level. With the exception of the shallow soil sample collected from boring SP11, none of the soil samples submitted for analysis from the borings above contained concentrations of lead that exceeded their respective cleanup levels (Figure 12, Tables 1 through 4).

Colfax Grange Property. Borings B16, B24, B25, B28, B29, and B33 and test pits TP01 through TP03 were advanced on and in the immediate vicinity of the gasoline station that formerly operated on the western portion of the Colfax Grange property (Figure 12). At the time of drilling, groundwater was encountered at a depth of approximately 7.5 to 9.5 feet bgs in the borings. Borings B17 through B19 were also advanced on the Colfax Grange property; however, these borings are described in the preceding discussion regarding the Cenex property. Soil samples collected from borings B16 and B29 and test pits TP01 and TP02 at depths between 11 and 12 feet contained concentrations of GRPH that exceeded the cleanup level. PCS was not encountered in soil samples collected above this depth interval in the borings or test pits and was not encountered in the soil samples collected from below this depth interval in the borings (Table 1). Due to saturated soil conditions, soil samples could not be collected from depths below 12 feet in the test pits. Boring B29 and test pits TP01 and TP02 are situated in the immediate vicinity of the gasoline station that formerly occupied the Colfax Grange property. Boring B16 is situated approximately 60 feet to the north of the former gasoline station.

PCS was not present in any of the soil samples collected from borings B24, B25, B28, or B33, or in the soil samples collected from test pit TP03, all of which were situated around the perimeter of the former gasoline station. Low concentrations of GRPH were detected in the soil samples collected from a depth of 11 feet in boring B28 and test pit TP03 (Table 1).

None of the soil samples submitted for analysis from the borings or test pits described above contained concentrations of benzene, DRPH, ORPH, VOCs, naphthalenes, or lead that exceeded their respective laboratory reporting limits and/or cleanup levels (Tables 1 through 4).

Sterling Property. Boring B14, located on the Sterling property, was originally intended to demonstrate that the impacts from the Site did not extend beneath the properties situated on the west side of North Main Street (Figure 12); however, when soil samples collected from a depth of 11 to 14 feet in boring B14 were found to contain GRPH concentrations that exceeded the cleanup level, additional historical research was performed and it was discovered that a Mobil-brand retail gasoline station and automotive repair facilities formerly operated on the Sterling property. Due to access limitations, boring B14 could not be completed as a monitoring well at the time of drilling, so boring B14A was advanced in the vicinity of boring B14 at a later date and completed as a monitoring well. A soil sample collected from boring B14A at a depth of 10 feet was found to contain concentrations of GRPH, ethylbenzene, and naphthalenes that exceeded their respective cleanup levels. Analytical testing of soil samples collected from depths of 7 to 8 feet in borings B14 and B14A did not reveal any chemical concentrations that exceeded their applicable cleanup levels (Tables 1 through 4). At the time of drilling, groundwater was encountered at a depth of approximately 7.5 feet bgs in borings B14 and B14A.

In an effort to evaluate whether the PCS encountered beneath the Sterling property originated from a release at the Site, borings B15, B26, B27, and B32 were advanced at

upgradient to crossgradient locations to the south and east of the Sterling property (Figure 12). No evidence of impacts was observed during the installation of borings B15, B26, B27, or B32, and laboratory analysis of soil samples collected from these borings did not reveal any concentrations of petroleum hydrocarbons that exceeded the laboratory reporting limits. Additional forensic analyses were completed on samples collected from the Sterling property (sample B14A-10) and from the upgradient Colfax Grange property (sample TP01-12) (Appendix E). While the laboratory report indicated that the hydrocarbons in both samples were indicative of gasoline, the sample from the Sterling property exhibited detectable organic lead and isooctane, while the sample from the Colfax Grange property did not. The report concluded that these samples show significant differences in chemical composition, and these differences suggest that the gasoline present beneath the Sterling property did not result from a release at the Site.

Shell Property. Borings B20, B21, B30, and B31 were advanced along and within North Morton Street to the west (downgradient) of the Shell property (Figure 12). At the time of drilling, groundwater was encountered at a depth of approximately 5 to 9.5 feet in the borings. Strong petroleum odors were noted at depths of 7 to 11 feet during the advancement of boring B30, which is located on the east side of North Morton Street, immediately downgradient of the former Shell gasoline station. The soil samples collected from these depths were found to contain concentrations of GRPH, DRPH, ethylbenzene, total xylenes, and lead; however, none of the concentrations exceeded the applicable cleanup level. None of the soil samples collected from borings B20, B21, or B31, or the soil sample collected from a depth of 4 feet in boring B30 contained concentrations of petroleum hydrocarbons that exceeded the laboratory reporting limit (Tables 1 through 4).

Soil samples B30-08 and B30-11 were evaluated by hydrocarbon fingerprinting, and sample B30-08 was also analyzed for VOCs and petroleum hydrocarbon constituents, including organic lead (Appendix E). The results indicated that the petroleum hydrocarbons contained in both of these samples were dominantly degraded diesel-range organics. Sample B30-08 did not exhibit detectable concentrations of organic lead or manganese species. The forensic chemist further stated in a report dated August 26, 2009, that the chromatograms generated for these samples were dissimilar than others collected from other areas on or peripheral to the Site (Appendix E). As such, it is apparent that PCS associated with the release at the Shell property does not extend beneath the boundaries of the Site.

3.6.1.1 Data Quality Review

SES reviewed laboratory quality control data provided with the laboratory reports to evaluate the usability of analytical results to meet the objectives for soil sampling and analytical testing at the Site and to demonstrate conformance with the SAP and Quality Assurance Project Plan (QAPP). SES reviewed accuracy and precision data supplied by the Friedman and Bruya, Inc.; Analytical Resources, Inc.; and Fremont Analytical Inc. SES also reviewed the sample holding times, laboratory method blanks, laboratory practical quantitation limits (PQLs), and flagged results, where applicable. A summary of SES' review of laboratory quality control data is as follows:

Several of the soil samples collected from borings SP02, SP04, SP05, SP12, B14, B14A, and B29, and from test pits TP01 and TP02 were flagged by the laboratory during their internal quality assurance and quality control process. The flags included:

- Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- The sample was diluted. Detection limits may be raised due to dilution.
- The pattern of peaks is not indicative of diesel.

None of these flags is considered to have a significant effect upon the findings or conclusions of this report.

All sample analyses were completed within representative hold times. With the exception of the rinsate blanks collected during the April 2008 and March 2009 subsurface investigation, none of the field quality control (QC) blanks contained concentrations of analytes in excess of the laboratory reporting limit. The rinsate blank collected during the April 2008 subsurface investigation was incorrectly sampled from water that had been used to decontaminate the drilling and sampling equipment and was not submitted for laboratory analysis. The rinsate sample collected during the March 2009 subsurface investigation was collected directly from water in the drilling contractor's decontamination trailer and was found to contain concentrations of GRPH, toluene, ethylbenzene, and total xylenes that exceeded the laboratory reporting limit. However, the rinsate blank collected for the May 2009 event was collected correctly and did not contain detectable concentrations of GRPH or BTEX. The collection and analysis of rinsate blanks was not included within the SAP or QAPP, and the detection of COPCs in these incorrectly sampled field QC samples does not affect the usability of the data gathered during the April 2008 or March 2009 subsurface investigations.

All other laboratory quality control data were within laboratory quality control limits. The analytical results for all soil samples are considered to be usable to meet the objectives of the RI Report.

3.6.2 Groundwater

Periodic groundwater monitoring and sampling has been completed at the Site since 2001. The eight quarterly groundwater monitoring events completed since the Agreed Order was executed include those performed in September and December 2007, March, June, September and December 2008, and March and June 2009 (Tables 5 through 7). During each of these monitoring events, groundwater was measured to flow in a northwesterly to north-northwesterly direction (Figure 13). Monitoring well CMW01 was decommissioned during the UST excavation activities on the Cenex property in 2006 and was therefore not sampled during the RI activities. Monitoring wells CMW02 and CMW03 were sampled during each of the eight quarterly events conducted during the RI, and monitoring wells CMW04, CMW05, MW04, and MW06 were sampled in all but the June 2009 event, when they were removed from the quarterly program due to the demonstrated absence of impacts in groundwater collected from these wells for four or more consecutive quarters. Monitoring wells MW01 through MW03, MW05, MW07, MW08, and MW11 were sampled during each of the eight quarterly events. The City of Colfax paved over wells MW09, MW10, and MW12 in the course of repaying East Tyler Street and these wells were therefore not sampled during the September or December 2008 events. Access was restored and the wells were sampled again during the March and June 2009 events. Monitoring wells MW13 and MW15 through MW23 were sampled during each of the five most recent sampling events conducted since they were installed in June 2008; wells MW14, MW24, and MW25 were sampled during each of the two monitoring events performed after they were installed in March 2009; and wells MW26 through MW32 were sampled in June 2009 following their installation in May 2009. Additional modifications made to the groundwater monitoring and testing scope of work are described in Section 3.4 of this report.

Time Oil Property. Monitoring wells that are situated on and in downgradient hydrologic positions relative to the Time Oil property include wells MW01 through MW08, MW11. MW13, MW22, and MW26 (Figure 14). Concentrations of one or more COPC, including GRPH, DRPH, ORPH, benzene, naphthalene, and/or MTBE, have historically been detected in excess of their respective cleanup levels in groundwater samples collected from each of these wells except MW08, MW13, and MW26. The highest concentrations have been detected in groundwater samples collected from wells located on the southern and central portions of the Time Oil property (MW01 through MW07). During the eight monitoring events conducted as part of the RI, exceedances of the applicable cleanup levels were only detected in groundwater samples collected from monitoring wells MW01 and MW02 (Tables 5 and 6). Monitoring well MW01 is located beneath the canopy on the Time Oil property, in the vicinity of the former grease pit excavation, and monitoring well MW02 is situated immediately to the north of the USTs on the southern portion of the Time Oil property. The groundwater sample collected from monitoring well MW01 during the March 2009 event exhibited a DRPH concentration of 630 µg/L, which exceeded the cleanup level of 500 µg/L (Table 5). Groundwater collected from well MW02 between September 2007 and September 2008 exhibited elevated concentrations of benzene and the samples collected from this well during the March and September 2008 events contained concentrations of GRPH and DRPH that exceeded their respective cleanup levels (Table 5). None of the groundwater samples collected from wells located on or in downgradient hydrologic positions relative to the Time Oil property contained concentrations of any COPC that exceeded the cleanup level during the most recent event conducted in June 2009 (Figure 14, Tables 5 through 7).

Cenex Property. Monitoring wells associated with the impacts encountered beneath the Cenex property include CMW01 through CMW05, MW09, MW10, MW12, MW17 through MW19, and MW23 (Figure 14). Concentrations of one or more COPCs, including GRPH, DRPH, ORPH, BTEX, and/or MTBE, have historically been detected in excess of their respective cleanup levels in groundwater samples collected from each of these wells except MW17 through MW19 and MW23. The highest concentrations have been detected in groundwater samples collected from wells CMW04, CMW05, MW10, and MW12 (Table 5), which are located to the north and northwest of the USTs and pump island on the Cenex property (Figure 14). During the eight monitoring events conducted as part of the RI, exceedances of the applicable cleanup levels were only detected in groundwater samples collected from monitoring wells MW09 and MW10, both of which are located within the East Tyler Street ROW to the north (downgradient) of the Cenex property. The groundwater samples collected from monitoring well MW09 during the December 2007 and March 2008 events exhibited ORPH concentrations of 700 µg/L and 550 µg/L, respectively, which exceeded the cleanup level of 500 µg/L. Groundwater collected from well MW10 during the December 2007 event contained a benzene concentration that exceeded the cleanup level. None of the groundwater samples collected from wells associated with the Cenex property have contained concentrations of any COPC that exceeded the cleanup level since March 2008. None of the groundwater samples collected from monitoring wells MW17 through MW19 have contained concentrations of any COPC that exceeded the applicable cleanup level (Tables 5 through 7).

Colfax Grange Property. Monitoring wells associated with the gasoline station that formerly operated on the southwestern portion of the Colfax Grange property include MW16, MW24, MW25, MW28, MW29, and MW32 (Figure 14). ORPH was detected at concentrations exceeding the cleanup level in groundwater samples collected from monitoring wells MW29 and MW32 during the June 2009 monitoring event. Monitoring wells MW29 and MW32 are situated to the east and southeast of the former gasoline station, respectively. None of the groundwater samples collected from monitoring wells MW16, MW24, MW25, or MW28 have contained concentrations of COPCs that exceeded their applicable cleanup levels (Tables 5 through 7).

Sterling Property. Monitoring wells associated with the gasoline station that formerly operated on the Sterling property include MW14, MW15, and MW27 (Figure 14).. Groundwater samples collected from monitoring well MW14 during the March and June 2009 events contained concentrations of GRPH, DRPH, and benzene that exceeded the applicable cleanup levels. The groundwater sample collected from monitoring well MW14 in March 2009 also contained a concentration of ethylbenzene that exceeded the cleanup level (Table 5). MW14 is located in the immediate vicinity of the former gasoline station on the Sterling property. During the RI, none of the groundwater samples collected from monitoring wells MW11, MW13, MW15, or MW27, which are located to the north, south, and southeast of the Sterling property, has contained concentrations of any COPC that exceeded the applicable cleanup level (Tables 5 through 7).

Shell Property. Monitoring wells associated with the gasoline station that formerly operated on the Shell property include MW20, MW21, MW30, and MW31 (Figure 14). Groundwater samples collected from monitoring well MW20 during the June 2008 and the March and June 2009 event contained concentrations of DRPH that exceeded the cleanup level. The groundwater sample collected during the June 2009 event from monitoring well MW30 contained concentrations of GRPH and DRPH that exceeded their respective cleanup levels. Monitoring wells MW20 and MW30 are situated to the west and northwest of the former Shell property, respectively, in downgradient hydrologic positions. None of the COPCs have been detected at concentrations in excess of the applicable cleanup levels in groundwater samples collected from monitoring wells MW21 or MW31, which are situated to the southwest and north-northwest of the Shell property, respectively (Tables 5 through 7).

3.6.2.1 Data Quality Review

SES reviewed laboratory quality control data provided with the laboratory reports to evaluate the usability of analytical results to meet the objectives for the March, June, September, and December 2008 and March and June 2009 groundwater monitoring and sampling events at the Site. Each report includes a summary of our data quality review. SES reviewed accuracy and precision data supplied by the Friedman and Bruya, Inc. and Analytical Resources, Inc. laboratories and calculated the relative percent difference for the field duplicate samples collected by SES during the RI. SES also reviewed the sample holding times, laboratory method blanks, and laboratory PQLs, where applicable. The laboratory reports and detailed discussions regarding the results of SES' reviews of laboratory quality control data are presented in the quarterly monitoring reports provided

under separate cover (SES 2007e, 2008e, 2008f, 2008g, 2009a, 2009b, 2009e). The analytical results for the groundwater samples and field duplicates collected in the course of the quarterly monitoring activities are considered to be usable to meet the objectives of the RI. Note that Table 2 of the quarterly monitoring report associated with the June 2009 sampling event incorrectly reported that the concentrations of carcinogenic PAHs (cPAHs) exceeded the total toxicity equivalent groundwater cleanup level during the March 2009 monitoring event. The table has since been corrected.

As reported in the previous quarterly groundwater monitoring reports, groundwater samples collected during the RI from wells throughout much of the Site exhibited elevated concentrations of DRPH and/or ORPH that were flagged by the laboratory. The laboratory reports indicated that the chromatogram peaks are not indicative of DRPH or ORPH. However, for the purposes of this report, the reported concentrations are assumed to be representative of these compounds.

4.0 TERRESTRIAL ECOLOGICAL EVALUATION

A Terrestrial Ecological Evaluation (TEE) is required by WAC 173-340-7940 at locations where a release of a hazardous substance to soil has occurred. The regulation requires that one of the following actions be taken:

- Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;
- Conducting a simplified TEE in accordance with WAC 173-340-7492; or
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

There are less than 1.0 acre of contiguous undeveloped land on the Site or within 500 feet of any area of the Site, so the Site qualifies for an exclusion based on WAC 173-340-7491(c)(i). Furthermore, the results of ranking for the simplified TEE under Table 749-1 of WAC yields a score of 12, which qualifies the Site for TEE exclusion under the criteria set forth in WAC 173-340-7492 (Appendix H). No further consideration of ecological impacts is required under MTCA.

5.0 SITE CONCEPTUAL MODEL

This section presents a conceptual understanding of the Site and identifies potential or suspected sources of hazardous substances, types and concentrations of hazardous substances, potentially contaminated media, and actual and potential exposure pathways and receptors.

5.1 CHEMICALS OF CONCERN

Based upon the results of the investigations conducted to date, the COCs for the Site include GRPH, DRPH, ORPH, BTEX, MTBE, and naphthalene. Although lead was detected at a concentration exceeding the cleanup level in a single shallow soil sample collected from beneath the East Tyler Street ROW, the elevated concentration appears to be the result of the overlying road fill material and is not associated with a release at the Site. Therefore, lead is not considered to be a COC for the Site.

5.2 CONFIRMED AND SUSPECTED SOURCE AREAS

The following is a summary of the confirmed and potential sources of the contamination identified beneath and in the vicinity of the Site.

5.2.1 Confirmed Sources

During the course of the RI activities the following contaminant sources were confirmed to have resulted in adverse environmental impacts to the Site:

- The gasoline station formerly located on the southwestern portion of the Colfax Grange property. Petroleum-contaminated soil and groundwater were encountered in the vicinity of the structure labeled "Gasol & Oils" on the 1939 Sanborn Map. The PCS was not present in near-surface soil and appeared limited to the groundwater table fluctuation zone, which suggests that the location of the source (i.e. the USTs and/or pump island) was not explored or that the source had been removed.
- The historical operation of a gasoline station on the Cenex property. The Cenex property has been occupied by a gasoline station since 1985. A release of petroleum that occurred during the filling of the tanks was confirmed in 2004 and additional releases at the station are presumed to have occurred as a result of the USTs and product delivery systems. The 1985-vintage USTs and associated product delivery systems were excavated and removed from the Cenex property in 2006 and were replaced by the three currently existing USTs and associated pump islands. Petroleum contamination was encountered during the 2006 excavation activities. These impacts appear to be the result of a combination of surficial releases and leaking USTs and product delivery systems associated with the 1985-vintage system. There is no evidence to suggest that the current USTs or product delivery systems on the Cenex property have contributed to the contamination present beneath the Site.
- The historical operation of gasoline stations and automotive repair facilities on the Time Oil property. The 1939 Sanborn Map indicates that a gasoline station was situated on the southwestern portion of the Time Oil property and that a repair facility (indicated as "grease" on the map) was located on the central portion of the property at that time. No information was available in the public record regarding the number of pump islands or the number, location, type, size, content, or current status of the USTs that were associated with the station. Another gasoline station that was equipped with a waste oil UST, a heating oil UST, and three USTs containing fuel was constructed on the Time Oil property in 1956. The service station building was located on the east-central portion of the property, the USTs were situated on the southeastern portion of the property, and the pump islands were located to the west of the service station building. The 1956-vintage USTs operated on the property until 1976 when they were replaced with three of the four currently existing USTs, which are also located on the southeastern portion of the Time Oil property. The fourth existing UST was installed beneath the southwestern portion of the property in 1999 during upgrade activities. During the upgrade activities in 1999, a grease pit and two drums were encountered beneath the eastcentral portion of the Time Oil property. The USTs and product delivery systems associated with each of these three vintages of gasoline stations are considered sources for the contamination encountered beneath the Time Oil property. Additional sources include the automotive repair facilities that have occupied the property and the buried drums that were encountered during the 1999 excavation activities.

5.2.2 Potential Sources

The results of the soil and groundwater sampling conducted in the course of the RI activities indicate that the following potential contaminant sources are not contributing to the impacts currently present beneath the Site:

- Colfax Grange Property. Several potential sources that do not appear to have resulted in adverse environmental impacts to the Site have historically been located on the Colfax Grange property. These include:
 - The heating oil UST that was removed from the north side of the Colfax Grange Building in March 2009;
 - The ASTs that were formerly located adjacent to the north side of the Colfax Grange Building;
 - The gasoline UST situated near the northeast corner of the Colfax Grange Building;
 - The gasoline UST that was closed-in-place beneath the Colfax Grange Building; and
 - The hazardous materials and petroleum products that have been transported on the railroad tracks that separate the Colfax Grange property from the Cenex property.

Although these potential sources are located in upgradient hydrologic positions relative to the Site, no evidence of contamination was observed in soil or groundwater samples collected from borings or wells located between the potential sources and the Site. Considering these findings, the potential risk for adverse environmental impacts to the Site appears low and these source areas have not been included within the Site boundaries. In the event that future groundwater monitoring activities suggest that contamination from one or more of these potential source areas is migrating toward or beneath the Site, additional investigation will be warranted.

Sterling Property. The Sterling property, located across North Main Street to the west of the Time Oil property, formerly operated as a Mobile-brand service station, an auto repair facility, and a possible bulk fuel distribution facility. PCS was encountered in two borings advanced very near to each other on the Sterling property and groundwater collected from a monitoring well on the Sterling property contained concentrations of petroleum hydrocarbons and BTEX constituents that exceeded their respective cleanup levels. The extent of impacts associated with the confirmed release at the Sterling property has not been fully assessed; however, the results of soil and groundwater sampling conducted at locations between the Site and the Sterling property have confirmed that the release at the Sterling property does not present a risk of impacts to the Site. The subsurface investigations and forensic analyses performed in the course of the RI also indicate that the impacts associated with the Site do not extend beneath the Sterling property and have not comingled with the impacts associated with that property. As such, the source areas on the Sterling property have not been included within the boundaries of the Site. In the event that future groundwater monitoring activities

- suggest the contamination from the Site has comingled with that of the Sterling property, additional investigation will be warranted.
- Shell Property. The Shell property, located to the east of North Morton Street and north of the railroad tracks, has historically been occupied by several potential contaminant sources, including a Shell-brand gasoline station, an oil warehouse, a gasoline tank and pump, and AST containing oil. Petroleum-contaminated groundwater has been encountered in monitoring wells MW20 and MW30, which are located between the Shell property and the Site; however, acknowledging the substantial separation distance and crossgradient location of the impacts relative to the Site, along with the apparent rapid attenuation of contaminant concentrations with distance from the Shell property, the release(s) at the Shell property do not appear to present a significant risk of impacts to the Site and these source areas have not been included within the Site boundaries.
- Eastern Colfax Grange Property. The Eastern Colfax Grange property, located adjacent to the east of the Colfax Grange property, has historically been occupied by an automotive repair facility that operated within the Colfax Grange Building No. 2, as well as a cardlock fueling facility, oil warehouse, and bulk fuel distribution facility that operated on the eastern portion of the Eastern Colfax Grange property. Although these potential sources are located in upgradient hydrologic positions relative to the Site, no evidence of contamination was observed in soil or groundwater samples collected from borings or wells located between the potential sources and the Site. Considering these findings, the potential risk for adverse environmental impacts to the Site appears low.

5.3 MEDIA OF CONCERN

Based on the findings of the RI, soil, groundwater, and soil vapor are the media of concern at the Site. Considering the substantial separation distance between the Site and the nearest surface water body and the current absence of significant contaminant concentrations in groundwater collected from downgradient wells at the Site, there does not appear to be a risk of impacts to surface water or sediment. In the event that impacts attributable to a release from the Site are encountered in downgradient wells during future groundwater monitoring events, additional investigation of this potential pathway will be required.

Significant volatilization to outdoor air from subsurface impacts does not appear likely to occur. However, the potential for vapor intrusion into indoor air will be considered in the selection of cleanup levels and points of compliance.

5.4 DISTRIBUTION OF CONTAMINANTS IN SOIL

The estimated extent of residual PCS is depicted on Figure 12. The table shown on the figure includes only the analytical results of samples collected from locations where PCS was encountered following completion of the excavation activities on the Time Oil and Cenex properties. Soil samples that were subsequently overexcavated are not depicted on the figure or included in the discussion below.

5.4.1 Time Oil Property

As shown on Figure 12, PCS remains beneath the southwestern portion of the Time Oil property. The PCS appears to extend a short distance beneath the adjacent North Main

Street ROW and beneath the western portion of the pump island on the Time Oil property. The petroleum contamination appears to be limited to the uppermost 11 feet of soil. The lateral extent of PCS originating from the Time Oil property is defined by the absence of impacts in soil samples collected from borings SP01, SP03, SP06, SP07, MW03, MW04, B22, and B26.

- GRPH was detected at concentrations exceeding the cleanup level in soil collected from borings SP02, SP04, and SP05, which are located on the southwestern portion of the Time Oil property (Figure 15); the highest concentrations were detected in soil beneath the western portion of the pump islands.
- BTEX constituents, including benzene, were detected at concentrations exceeding
 the applicable cleanup levels in soil samples collected from depth of 3 to 8 feet in
 boring SP02, located beneath the western portion of the pump island canopy.
 Benzene was not detected in any of the other soil samples collected from the Time
 Oil property (Figure 16).
- ORPH was detected at concentrations that exceeded the cleanup level in soil collected from the western sidewall of the 1999 excavation on the Time Oil property (Figure 17). None of the soil samples collected during subsequent investigations have contained elevated ORPH concentrations.
- Naphthalenes were detected at concentrations exceeding the cleanup level in soil samples collected from borings SP02 and SP05, located beneath the western portion of the pump island and the area to the west of the 8,000-gallon UST (Figure 18).
- MTBE was detected at a concentration exceeding the cleanup level in soil collected from boring SP02 at a depth of approximately 7 feet (Figure 12). MTBE was not detected in any of the other soil samples collected throughout the Site.
- DRPH was not detected at concentrations exceeding the cleanup level in any of the soil samples collected from the Time Oil property.

5.4.2 Cenex Property

The results of soil sampling conducted by Quantum and SES following the completion of the UST excavation in 2006 suggest that PCS remains along the sidewalls and floor of the former UST excavation. The PCS appears to be limited to the immediate vicinity of the excavation and was primarily encountered at depths of 10 to 14 feet, although isolated shallow impacts were encountered in the vicinity of the western, southern, and northern sidewalls of the excavation. PCS was not present in any of the soil samples collected from depths greater than 14 feet. The lateral extent of PCS originating from the Cenex property is defined by the absence of impacts in soil samples collected from borings SP08, SP09, SP10, SP13, SP16, SP17, B17, B18, B19, and B23.

 GRPH was detected at concentrations exceeding the cleanup level in several soil samples collected from the floor and sidewalls that were left in place following completion of the 1985-vintage UST excavation activities. GRPH was also detected at concentrations exceeding the cleanup level in soil samples collected from boring SP12, located in the vicinity of the diesel pump island. The highest GRPH concentrations were detected in samples collected from the floor of the excavation (Figure 15).

- Benzene was detected at concentrations exceeding the cleanup level in several soil samples collected from the floor and sidewalls of the UST excavation at depths between 6 and 11 feet. Elevated concentrations of benzene were also detected in shallow soil collected from borings located to the north (SP11) and south (SP14 and SP15) of the UST excavation, respectively (Figure 16).
- Lead was detected at a concentration exceeding the cleanup level in a single near-surface (3 to 4 foot depth) soil sample collected from boring SP11, which is located within the East Tyler Street ROW. This sample was collected from native soil located immediately below the fill material used in the construction of the roadway (Appendix D). The elevated lead concentration appears to be the result of fill material used to construct the ROW and is not associated with a release at the Site (Figure 12). This conclusion is supported by the fact that elevated lead concentrations were not detected in soil samples collected from other locations where PCS was encountered and that none of the groundwater samples collected from monitoring wells at the Site have contained elevated concentrations of total or dissolved lead.
- ORPH, naphthalenes, and MTBE were not detected at concentrations exceeding the cleanup level in any of the soil samples collected from the Cenex property (Figure 17).
- DRPH was not detected in any of the post-excavation soil samples collected in the course of the RI subsurface activities.

5.4.3 Colfax Grange Property

PCS was encountered in several of the test pits and borings advanced on and in the vicinity of the gasoline station that formerly operated on the southwestern portion of the Colfax Grange property. The PCS was encountered at a depth of approximately 11 to 12.5 feet in test pits TP01 and TP02 and in borings B16 and B29. No evidence of petroleum contamination was observed in unsaturated soil located above the water table. The vertical extent of impacts could not be assessed in the vicinity of test pits TP01 or TP02; however, PCS was not present at a depth of 14 to 15 feet in boring B16, which suggests that the vertical extent is limited. The lateral extent of PCS originating from the former gasoline station on the Colfax Grange property is defined by the absence of impacts in soil samples collected from borings B17, B23, B24, B25, and B33, and the very low concentrations of COCs detected in a single soil sample collected from boring B28.

- GRPH was detected at concentrations exceeding the cleanup level in soil samples
 collected from test pits TP01 and TP02 and from borings B16 and B29. The highest
 GRPH concentrations were detected in soil collected from TP01 at a depth of 11
 feet. Soil collected from a depth of 11 feet in test pit TP03 and boring B28 contained
 GRPH concentrations that were below the cleanup level (Figure 15).
- Benzene, DRPH, ORPH, naphthalenes, and MTBE were not detected at concentrations exceeding the cleanup level in any of the soil samples collected from the Colfax Grange property (Figures 16 through 18).

5.4.4 Sterling Property

PCS was encountered at depths of approximately 10 to 14 feet in the two borings that were advanced on the Sterling property. Borings B14 and B14A were advanced in close

proximity to each other on the western portion of the Sterling property. The full lateral and vertical extents of the PCS was not assessed; however, the impacts that resulted from the gasoline station that formerly operated on the Sterling property do not appear to have migrated beneath the North Main Street ROW or to have comingled with the impacts from the Site, as evidence by the absence of impacts in soil samples collected from borings B15, B26, and B27.

- GRPH was detected at concentrations exceeding the cleanup level in soil samples collected from borings B14 and B14A (Figure 15).
- Naphthalene was detected at concentrations exceeding the cleanup level in soil samples collected from boring B14A (Figure 18).
- Benzene, DRPH, ORPH, and MTBE were not detected at concentrations exceeding the cleanup level in any of the soil samples collected from the Sterling property (Figures 16 and 17).

5.4.5 Shell Property

None of the soil samples collected from borings advanced in the vicinity of the Shell property (borings B20, B21, B30, and B31) contained concentrations of any COC that exceeded its respective cleanup level (Figures 15 through 18).

5.5 DISTRIBUTION OF CONTAMINANTS IN GROUNDWATER

The following sections describe the historical and current extents of COCs in groundwater beneath the Site. Although contamination has historically been encountered in groundwater collected from monitoring well MW14, located on the west side of North Main Street, and in monitoring wells MW20 and MW30, located along North Morton Street to the west of the Site, these impacts are attributed to releases that occurred on the Sterling and Shell properties, respectively, and are not included in the discussion below.

5.5.1 Historical Distribution of Contaminants in Groundwater

Petroleum-contamination that resulted from releases at the Site has historically been encountered in groundwater samples collected from monitoring wells located throughout much of the Cenex, Colfax Grange, and Time Oil properties and from the wells situated within the East Tyler Street ROW (Figures 19 through 22). Petroleum-contamination has also historically been encountered in groundwater samples collected from monitoring well MW11, located to the northwest of the Time Oil property, north of the Sterling property.

Isoconcentration contours showing the maximum concentrations of GRPH, DRPH, ORPH, benzene, naphthalenes, and MTBE that have historically been detected in groundwater samples collected from the Site are depicted on Figures 19 through 24, respectively. The maximum concentration of the COC is shown in parentheses next to those wells where it has historically been detected in groundwater. Concentrations of COCs that may have been detected in groundwater collected from monitoring wells MW20, MW21, MW30, and MW31 are not included on Figures 19 through 22 as these wells are not included within the Site boundaries. Groundwater containing concentrations of GRPH and benzene exceeding their respective cleanup levels has historically been limited to the Cenex and Time Oil properties, as well as the East Tyler Street and North Main Street ROWs (Figures 19 and 22). The GRPH and benzene contamination extended in a north-northwesterly direction

from the railroad tracks on the south side of the Cenex property to the central portion of the Time Oil property, and also may have extended to monitoring well MW11 on the west side of North Main Street; the highest concentrations of GRPH and benzene were detected in groundwater collected from monitoring wells MW10 and CMW05, located along the northern boundary of the Cenex property.

The maximum historical extent of groundwater containing concentrations of DRPH that exceeded the cleanup level appears similar, but slightly smaller than that of GRPH and benzene (Figure 20). The highest DRPH concentration were detected in groundwater samples collected from monitoring wells located along the northern margin of the Cenex property (MW10 and MW12) and beneath the southern and central portions of the Time Oil property (MW02 and MW01, respectively).

Naphthalenes have been detected at a concentration exceeding the cleanup level in a single groundwater sample collected from monitoring well MW02. The estimated maximum historical extent of the naphthalene contamination in groundwater is presented on Figure 23. The remaining PAHs have not been detected at elevated concentrations in any of the groundwater samples collected from the Site.

MTBE has been detected at concentrations exceeding the cleanup level in groundwater samples collected from monitoring wells located along the northern boundary of the Cenex property and on the southwestern portion of the Time Oil property (Figure 24). The highest concentrations of MTBE were detected in groundwater collected from monitoring well MW12.

ORPH has been detected at concentrations exceeding the cleanup level in groundwater collected from several of the monitoring wells at the Site, including MW01, MW09, MW29, MW32, and CMW03 (Figure 21). Monitoring well MW01 is situated in the vicinity of the former grease pit on the Time Oil property and monitoring wells MW29 and MW32 are situated proximal to the gasoline station that formerly operated on the Colfax Grange property. MW09 is located within the East Tyler Street ROW and CMW03 is located adjacent to the diesel pump island on the Cenex property. Considering the substantial separation distances between these wells and the fact that elevated concentrations have not been consistently detected, the distribution of ORPH-contaminated groundwater appears to have been limited to the immediate vicinities of these wells.

5.5.2 Current Distribution of Contaminants in Groundwater

Following the excavation and removal of the USTs and associated PCS from the Cenex property in 2006, the concentrations of COCs in groundwater beneath the Cenex and Time Oil properties and the East Tyler Street ROW decreased significantly. During the most recent groundwater monitoring event conducted in June 2009, none of the COCs was detected at concentrations exceeding the applicable cleanup level in any of the groundwater samples collected from the Cenex or Time Oil properties or the East Tyler Street ROW. As shown on Figure 14, ORPH was the only COC detected at a concentration exceeding the applicable cleanup level during the most recent monitoring event conducted in June 2009. The elevated ORPH concentrations were detected in groundwater collected from monitoring wells MW29 and MW32, located in the vicinity of the gasoline station that formerly operated on the Colfax Grange property. Over the course of the last four quarterly monitoring events, the only other COC detected at a concentration exceeding the cleanup

level from these locations was DRPH in a groundwater sample collected from monitoring well MW01 in March 2009. It should be noted that monitoring wells MW09 and MW10, which have historically contained elevated concentrations of COCs, could not be sampled during the September and December 2008 monitoring events, but did not exhibit elevated concentrations of any COCs during the subsequent monitoring events conducted in March and June 2009.

Concentrations of COCs have been detected in excess of their respective cleanup levels in groundwater collected from monitoring wells MW14 and MW30; however, the impacts are the result of releases from off-Site sources and are not included within the Site boundaries.

5.6 SITE DEFINITION

Based on the findings from the investigations conducted by SES and others between May 1999 and June 2009 and the historical research presented in this report, the Site has been redefined to include the following:

- The extent of petroleum-contaminated soil and groundwater that originated from releases at the retail gasoline stations and automotive repair facilities that have historically operated on the Time Oil property. The current extent of these impacts appears to be limited to soil beneath the southwestern portion of the Time Oil property and the easternmost portion of the North Main Street ROW.
- The extent of petroleum-contamination soil and groundwater that originated from releases at the retail gasoline station that formerly operated on the Cenex property. The current extent of these impacts appears to be limited to a "rind" of soil that was left in place following the excavation of the 1985-vintage USTs. The PCS associated with the Cenex property appears to extend a short distance beneath the East Tyler Street ROW.
- The extent of petroleum-contamination soil and groundwater that originated from releases at the retail gasoline station that formerly operated on the southwest portion of the Colfax Grange property. The impacts to soil and groundwater from this source extend between monitoring wells MW29 and MW16.
- The Site boundary limits are depicted on Figure 25.

5.7 CONTAMINANT FATE AND TRANSPORT

This section includes a discussion of the transport mechanisms and environmental fate of petroleum hydrocarbons in the subsurface.

5.7.1 Transport Mechanisms Affecting Distribution of Petroleum Hydrocarbons in the Subsurface

The environmental transport mechanisms of petroleum hydrocarbons are related to its separate phases in the subsurface. The four phases of petroleum contamination in the subsurface are vapor (in soil gas), residual contamination (sorbed contamination on soil particles), aqueous phase (contaminants dissolved in groundwater), and separate-phase hydrocarbons (SPH). Each phase is in equilibrium in the subsurface with the other phases, and the relative ratio of total subsurface contamination by petroleum hydrocarbons between the four phases is controlled by dissolution, volatilization, and sorption. SPH were not encountered in the course of this RI.

Petroleum hydrocarbons observed in soil and groundwater beneath the Site have been transported from source areas and distributed throughout the Site primarily by dispersive transport mechanisms within the saturated zone. As with other chemicals, petroleum hydrocarbons tend to spread out as groundwater flows away from the source area. The extent of the hydrocarbon plume depends on the volume of the release, soil density, particle size, and seepage velocity. No evidence was observed to suggest that the utility corridors or former stream channels beneath the Site have acted as preferential pathways for contaminant migration.

5.7.2 Environmental Fate in the Subsurface

The most significant fate process for petroleum hydrocarbons at the Site appears to be biodegradation, i.e., natural attenuation. Biological degradation of contaminants in dissolved, residual, and vapor phases is possible under a variety of environmental conditions. Degradation products of gasoline constituents are generally less toxic than their parent species. Petroleum hydrocarbons that are the most mobile (having the least viscosity and most solubility in water) are also the most easily biodegraded (e.g., aromatics). Because gasoline constituents contain thousands of carbon compounds, there is a vast array of biochemical transformations that occur in situ in the soil and groundwater media. For example, hydroxylation can alter hydrocarbon compounds to ketone or alcohol products that are less toxic or more biologically available; aromatic reduction can convert aromatic groups to naphthenes; ring cleavage can destroy aromatic functional group species; and reduction can alter olefin functionality. The alteration and destruction of gasoline constituents occurs both by microbial enzyme catalytic reactions on the contaminant substrate or by direct digestion of contaminants as an electron donor or acceptor. Any number of reactions can occur within the subsurface by microorganisms that change the chemical distribution and concentrations of the contaminants.

The time frames over which these reactions occur vary depending on any number of limiting factors, primarily the availability of oxygen. For example, BTEX constituents rapidly degrade under aerobic conditions but tend to persist for several years and/or decades under the anoxic conditions typical of most subsurface environments.

Volatilization of the contaminant plume can result in mass removal of hydrocarbons by releasing vapor into the vadose zone, where soil hydrocarbon vapor can be biodegraded to an extent not possible in SPH or dissolved phases, depending on environmental conditions. Sorption of contaminants onto soil particles or interstitial soil spaces can immobilize contaminants. Contaminants sorbed onto soil particles are not free to transport via aqueous transport or SPH advection. Residual contamination, although not necessarily broken down quickly over time, is generally immobile.

5.8 PRELIMINARY EXPOSURE ASSESSMENT

The two general types of receptors at risk from exposure associated with the presence of COCs at the Site (i.e., human beings, terrestrial plants/animals) are segregated by evaluating the terrestrial ecological risk and human health risk. As discussed in Section 4.0, Terrestrial Ecological Evaluation, the Site qualifies for a TEE exclusion in accordance with WAC 173-340-7491 and WAC 173-340-7492 (Appendix H); therefore, mitigating the potential human health risk associated with exposure to the COCs in the affected media at the Site will be the primary objective of any cleanup action implemented. This section presents the evaluation and conclusions pertaining to the

exposure pathways at the Site. The goal of this subsection is to identify potential exposure scenarios that will assist in the evaluation of potential feasible cleanup alternatives that are protective of human health.

5.8.1 Direct Contact Pathway

Direct contact with soil and groundwater exhibiting concentrations of petroleum hydrocarbons in excess of the cleanup levels is limited to human receptors that come into close contact with the media via direct exposure, including dermal contact or ingestion of excavated soil or groundwater. The standard point of compliance for soil contamination beneath a site is approximately 15 feet bgs, which represents a reasonable estimate of the depth that could be accessed during normal site redevelopment activities (WAC 173-340-740[6][d]). Although petroleum-contaminated soil is present within 15 feet of the ground surface, due to the existing pavement contaminated soil beneath the Site is not easily accessed, thereby minimizing the direct contact pathway. However, until such point as the contaminated soil and groundwater are removed from the Site or an institutional control limiting direct contact is implemented, the direct contact pathway is complete.

To further assess the risk to human health via direct contact pathway, soil samples collected from the Site were evaluated using the MTCATPH11.1 Method B Worksheet. Considering the distinct nature of the three releases, the TPH concentrations in soil that are considered protective via direct exposure were calculated for each of the three properties that comprise the Site. The results for the Time Oil, Cenex, and Colfax Grange properties are presented below:

5.8.1.1 Time Oil Property

The Method B analysis of soil collected from the Time Oil property, which was performed using the arithmetic mean of the concentrations in soil samples collected from borings SP01 through SP07, SP17, B22, and B26, along with the EPH-VPH results from soil samples SP02-07-08 and SP05-07-08, indicated that a total petroleum hydrocarbon (TPH) concentration of 2,892 mg/kg is considered protective for human health via the direct contact pathway (Appendix I). Based on these calculations, soil in the vicinity of borings SP02 and SP05 is not considered protective of human health via the direct contact pathway using the MTCA Method B criteria. TPH concentrations in soil collected from the remaining borings are considered protective of human health via the direct contact pathway.

5.8.1.2 Cenex Property

The Method B analysis of soil collected from the Cenex property, which was performed using the arithmetic mean of the concentrations in soil samples collected from borings SP08 through SP16, B17 through B19, and B23, along with the EPH-VPH results from soil samples SP11-05-06, SP12-10-12, SP14-07-08, and SP16-06-07, indicated that a TPH concentration of 2,354 mg/kg is considered protective for human health via the direct contact pathway (Appendix I). Based on these calculations, TPH concentrations in residual soil beneath the Cenex property are considered protective of human health via the direct contact pathway.

5.8.1.3 Colfax Grange Property

The Method B analysis of soil collected from the Colfax Grange property, which was calculated using the arithmetic mean of the concentrations in soil samples collected from

borings B16, B24, B25, B28, B29, and B33, and test pits TP01 through TP03, along with the EPH-VPH results from soil samples B16-11-12 and TP01-12, indicated that a TPH concentration of 2,221 mg/kg is considered protective for human health via the direct contact pathway (Appendix I). Based on these calculations, the TPH concentrations in all of the soil samples collected from the vicinity of the former gasoline station on the Colfax Grange property are considered protective of human health via the direct contact pathway.

5.8.2 Soil-to-Groundwater Pathway

Results from this RI and previous investigations suggest that soil contamination exists in the subsurface at depths greater than the seasonal high groundwater level. The petroleumcontaminated soil can therefore potentially act as an ongoing source to groundwater contamination as the hydrocarbons desorb from the soil particles into water. The groundwater analytical data would therefore suggest that the soil to groundwater pathway is complete beneath portions of the Site. The results of the MTCATPH11.1 Method B Worksheet calculations (Appendix I) suggest that the TPH concentrations in soil that are considered protective of human health via the leaching to groundwater pathway for the Time Oil, Cenex, and Colfax Grange properties are 81 µg/L, 17 µg/L, and 61 mg/L, respectively. Although the detected concentrations beneath each of the three properties that comprise the Site exceed these concentrations, the results of SES' (SES 2008d) and GEI's (GEI 2003) hydrogeologic studies of the Site and vicinity, along with information obtained from City of Colfax and Whitman County personnel confirm that the shallow waterbearing zone in the vicinity of the Site is not currently utilized for beneficial purposes. In addition, the widespread surficial application of herbicides, pesticides, and fertilizers in the Colfax region have degraded near-surface soil, surface water, and shallow groundwater conditions in the vicinity of the Site. Considering this degradation, along with the fact that the City of Colfax is served by the municipal drinking water system, it is unlikely that the shallow water-bearing zone in the vicinity of the Site will be used for beneficial purposes in the future. As such, the shallow water-bearing zone beneath the Site should not be classified as potable under WAC 173-340-720. Furthermore, considering the dramatic and sustained improvement in the environmental quality of groundwater conditions beneath the Site that has been observed since the 2006 excavation from the Cenex property, it is apparent that the soil-to-groundwater pathway is largely incomplete. Additional monitoring of the groundwater conditions beneath the Site will be required to demonstrate continued compliance with Ecology's cleanup criteria.

5.8.3 Vapor Pathway

Volatile COCs, inclusive of benzene, have been identified at the Site. Baseline screening levels have not yet been established for use by Ecology; however, both the EPA and the State of Oregon Department of Environmental Quality (ODEQ) have established appropriate screening levels that may be applied to sites within Washington State. For most petroleum contamination sites, benzene is the primary COC associated with vapor intrusion issues. Acknowledging the absence of elevated benzene concentrations in groundwater collected from monitoring wells at the Site since September 2008, volatilization of benzene from groundwater does not appear to present a risk to human health via vapor intrusion. The Site-specific ODEQ Risk-Based Concentrations spreadsheet (Appendix J), which includes soil-to-indoor air pathways, indicates that a benzene concentration of 0.230 mg/kg in soil beneath the Site would be protective of occupational vapor intrusion scenarios. With the exception of soil samples collected from borings SP02 and SP11, none of the soil

samples collected during the RI contained concentrations that exceeded this threshold value. Considering that these borings are situated beneath an active fuel-dispensing pump island and a public ROW, respectively, along with the fact that none of the soil samples collected in the vicinity of the adjacent residential properties contained elevated benzene concentrations, the apparent risk for vapor intrusion to indoor air at the Site appears very low and this pathway is considered incomplete.

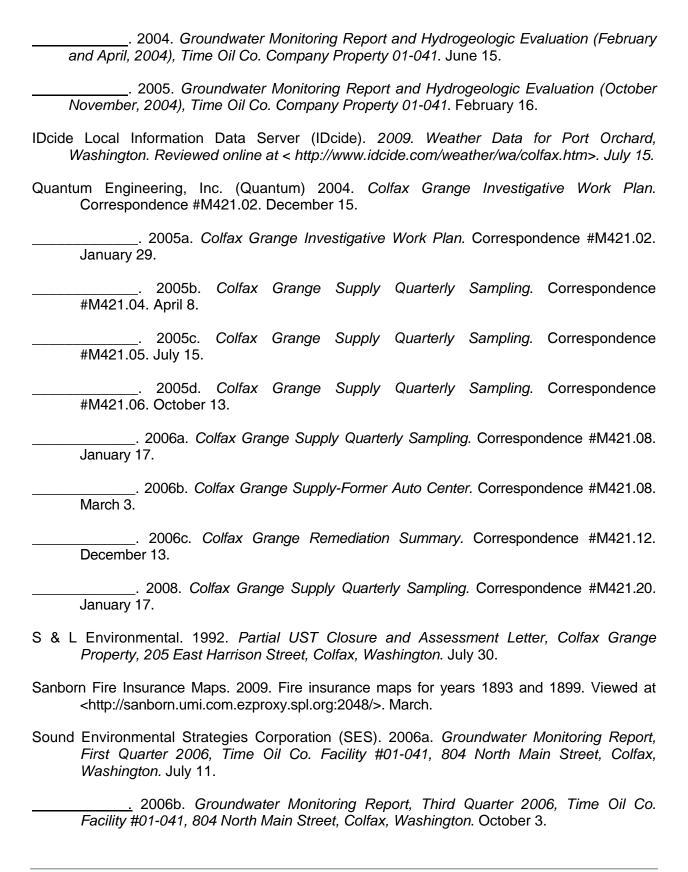
5.8.4 Surface Water

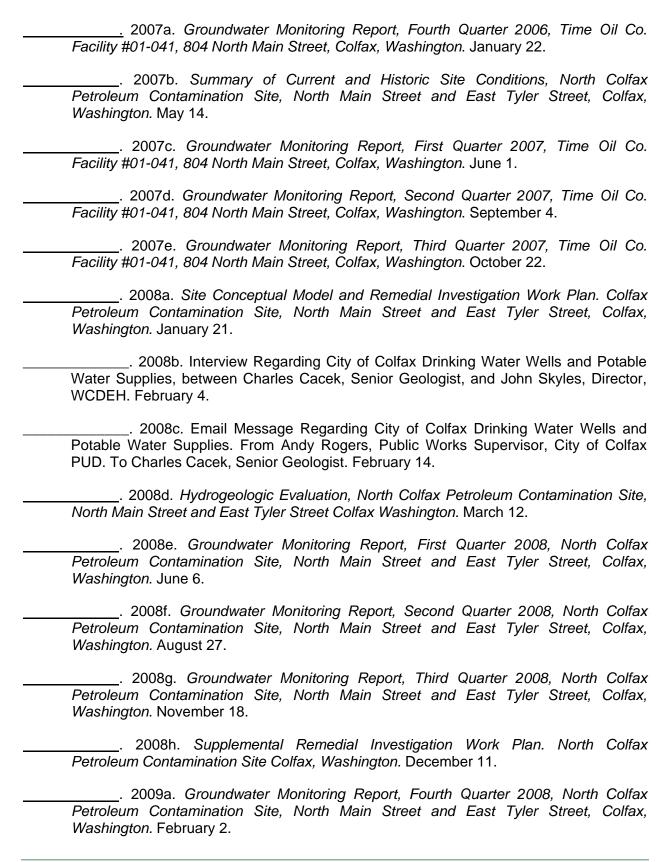
Migration of contaminants via surface water infiltration and leaching to the subsurface is mitigated by the asphalt and concrete that covers most of the Site and adjacent ROWs. While both the Time Oil property and the Colfax Grange support fueling operations, both systems are equipped with electronic inventory and spill catchments and alarms. A small open storm drainage impoundment associated with a stormwater conveyance system is located to the east of the Site. The impoundment directs stormwater runoff through underground piping to an effluent point in a ditch along the east side of Bellinger Street that directs flow to the north into the Palouse River. Groundwater from the Site is not discharged to the impoundment and there are no other surface water bodies currently on or adjacent to the Site. Groundwater samples collected from downgradient monitoring wells situated between the Site and the Palouse River have not contained concentrations of COCs in excess of their respective cleanup levels for several years. Therefore, there is a low risk/potential for human contact with contaminated surface water or for contaminant migration through this medium and the pathway is considered incomplete. In the event that petroleum-contaminated groundwater is encountered in downgradient wells during future monitoring events, additional consideration of this pathway will be required.

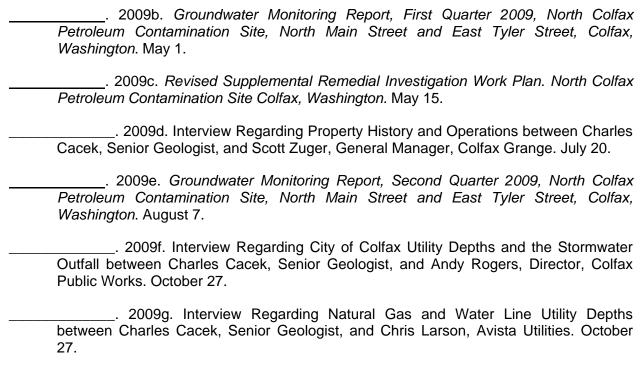
6.0 **BIBLIOGRAPHY**

Bush, John H., Garwood, Dean L., and Oakley III, William L. (Bush et al.). 2005. *Bedrock Geologic Map of the Colfax North 7.5 Minute Quadrangle, Washington.*

Environmental Data Resources, Inc. (EDR). 2007a. Certified Sanborn Map Report, North Colfax Petroleum Contamination Site, North Main Street/East Tyler Street, Colfax, WA 99111. Inquiry Number 2022620.3S. September 7.

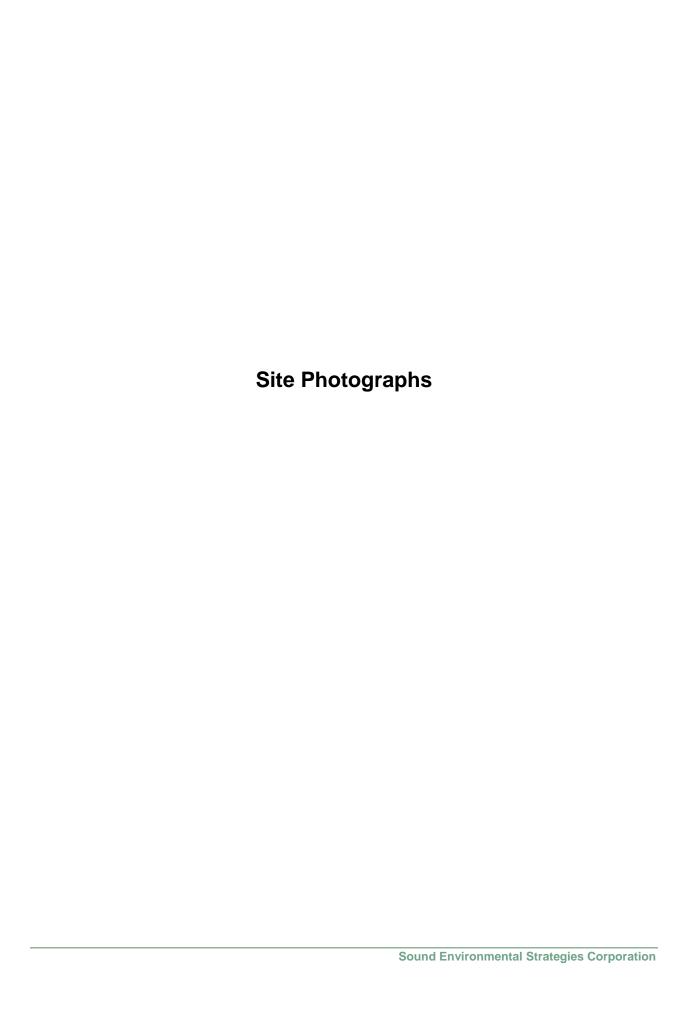

_____. 2007b. EDR Radius Map™ with Geocheck®, North Colfax Petroleum Contaminated Site, North Main Street/East Tyler Street, Colfax, Washington 9911, Inquiry Number 2022620.2s. September 19.


GeoEngineers, Inc. (GEI). 2000. Preliminary Subsurface Investigation and Remediation Report, Time Oil Co. Company Property 01-041. May 22.


______. 2001. Supplemental Subsurface Assessment Report, Time Oil Co. Company Property 01-041. May 17.

______. 2002. Groundwater Well Installation and Groundwater Monitoring Report (August and November 2002), Time Oil Co. Company Property 01-041. December 2.

_____. 2003. Groundwater Monitoring Report and Hydrogeologic Evaluation (February and May, Time Oil Co. Company Property 01-041. July 29.



- Time Oil Co. 2002. Transmittal of: Groundwater Monitoring Report (August and November 2001), Time Oil Co. Property 01-041: 804 North Main Street, Colfax, Washington. March 28.
- Washington State Department of Ecology (Ecology). 2008. Well Logs for the NCPS Vicinity. Reviewed at their Washington State Well Log Viewer website located at http://apps.ecy.wa.gov/welllog/>. February 11.
- Washington State Department of Health, Division of Environmental Health, Office of Drinking Water (WSDH). 2008. Public Water Supply Records for the City of Colfax Group A Water System. Reviewed at their 'Find Water System' website located at http://www4.doh.wa.gov/SentryInternet/FindWaterSystem.aspx>. January.
- Whiteman, K.J., Vaccaro, J.J., Gonthier, J.B., and Bauer, H.H. (Whiteman et al.). 1994. Hydrogeologic Framework and Geochemistry of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho. United States Geological Survey Professional Paper 1413-B.

7.0 LIMITATIONS

The findings and conclusions documented in this report were prepared for the specific application to this project and were developed in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area. A potential always remains for the presence of unknown, unidentified, or unforeseen subsurface contamination on portions of the Property not sampled, such as under buildings. No warranty, expressed or implied, is made.

Photograph 1. View looking west across the southern portion of the Time Oil property toward the Sterling Savings Bank across North Main Street.

Photograph 2. View looking southwest toward boring B26, completed as monitoring well MW26, located in the right-of-way along the east side of North Main Street adjacent to the Time Oil property.

Photograph 3. View looking north toward the Time Oil property along North Main Street. The Cougar Mart convenience store in the background.

Photograph 4. View looking south toward the Time Oil property along North Main Street. The Cenex property is south beyond the Time Oil property.

Photograph 5. View looking north toward the Sterling property, located west of the Time Oil Property across North Main Street.

Photograph 6. View looking southeast toward the Cenex property along East Tyler Street, south of the Time Oil property.

Page 1 of 2

SES Project No.: 0592-001-01 Date: September 15, 2009

Drawn By: CCC Chk By: RKB

File ID: Project Photographs

SITE PHOTOGRAPHS

NCPC Site North Main Street and East Tyler Street Colfax, Washington

Photograph 7. View looking east across the north end of the Colfax Grange Supply Company building.

Photograph 8. View looking south across the west side of the Colfax Grange Supply Company building.

Photograph 9. View looking west across the north end of the Colfax Grange Supply Company building. The Cenex property is located north of the railroad tracks.

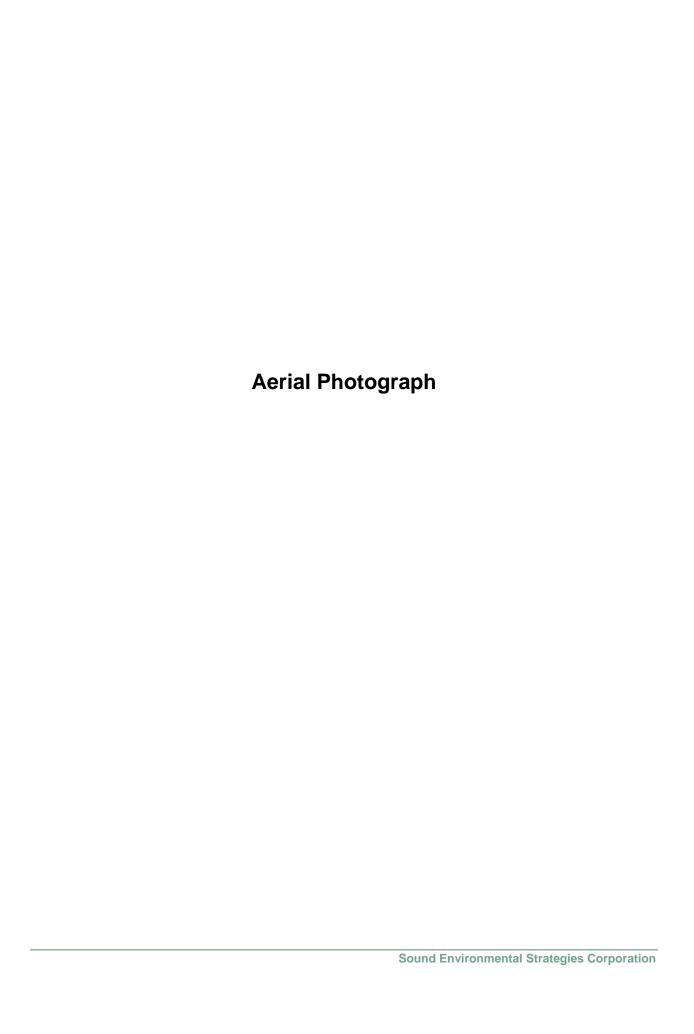
Photograph 10. View of the installation of MW32 looking northeast toward the Colfax Grange Supply Company building along East Harrison Street.

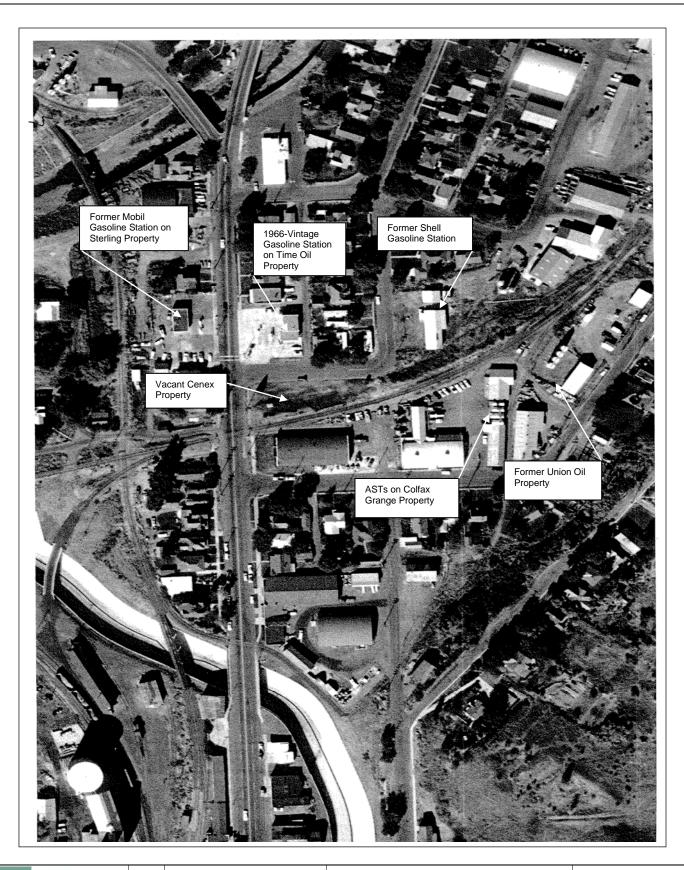
Photograph 11. View of the excavation of TP01 looking south along the west side of the Colfax Grange Supply Company building along North Main Street.

Photograph 12. View of the installation of MW31 (an off-Site well) looking northeast along North Morton Street.

Page 2 of 2

 SES Project No.:
 0592-001-01


 Date:
 September 15, 2009


 Drawn By:
 CCC

Chk By: RKB
File ID: Project Photographs

NCPC Site North Main Street and East Tyler Street Colfax, Washington

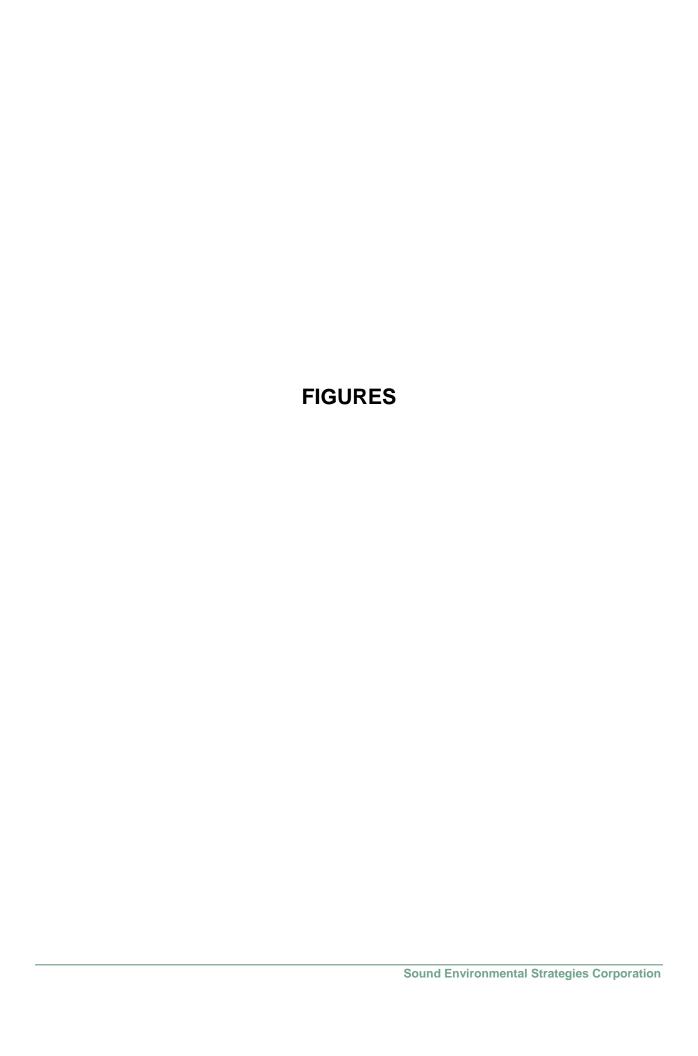
SITE PHOTOGRAPHS

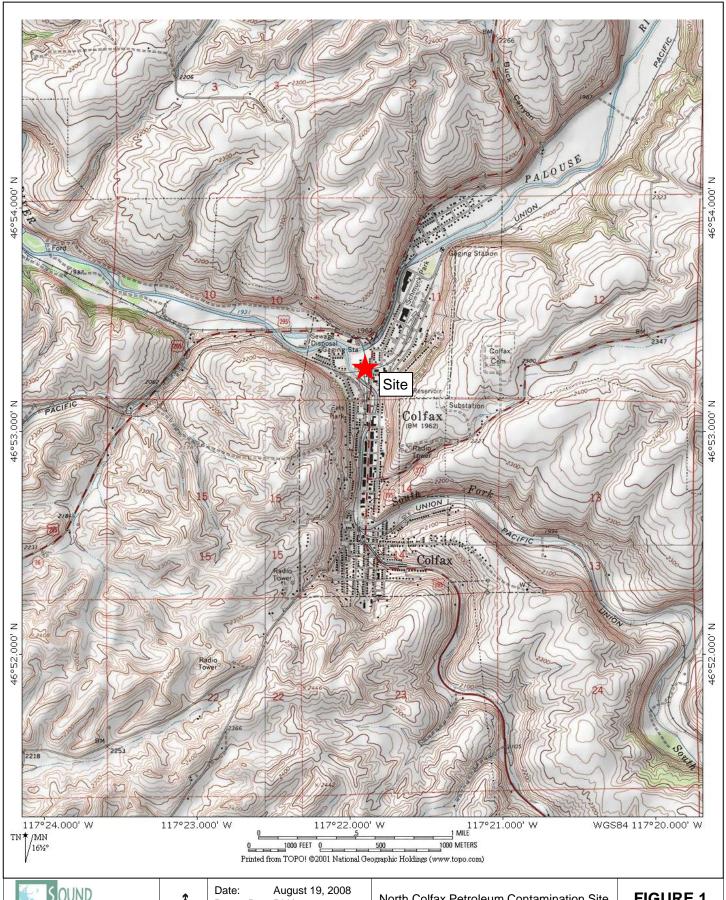
Ñ

Date: August 15, 2009 Drawn By: JQC

Chk By: RKB

SES Project No.: 0592-001-01


File ID: 0592_2008SRI_HAP

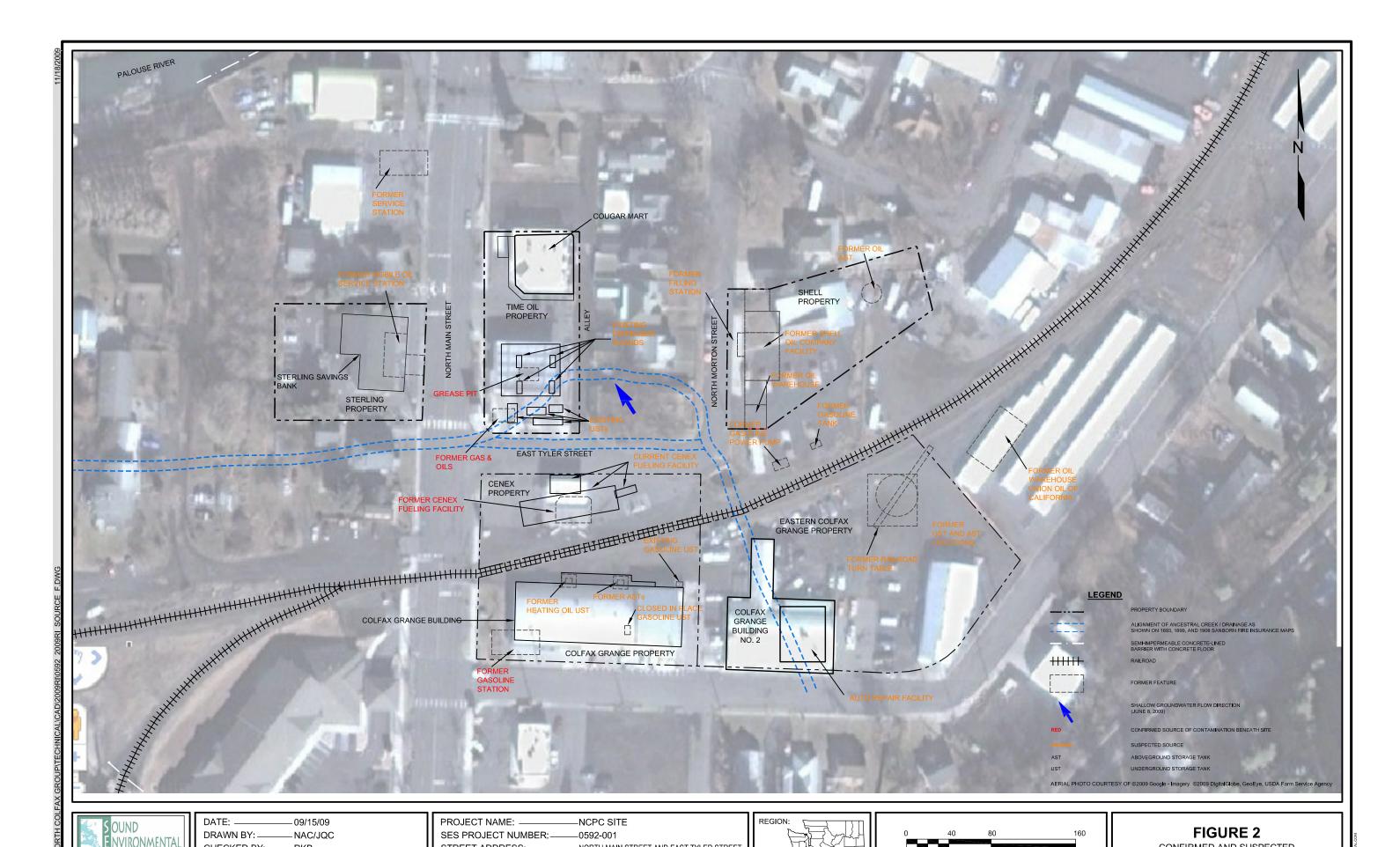

NCPC Site

North Main Street and East Tyler Street

Colfax, Washington

1969 Aerial Photograph

Drawn By: RLH


Chk By: RKB

SES Project No.: 0592-001 File ID: 0592_fig1_to.doc

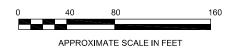
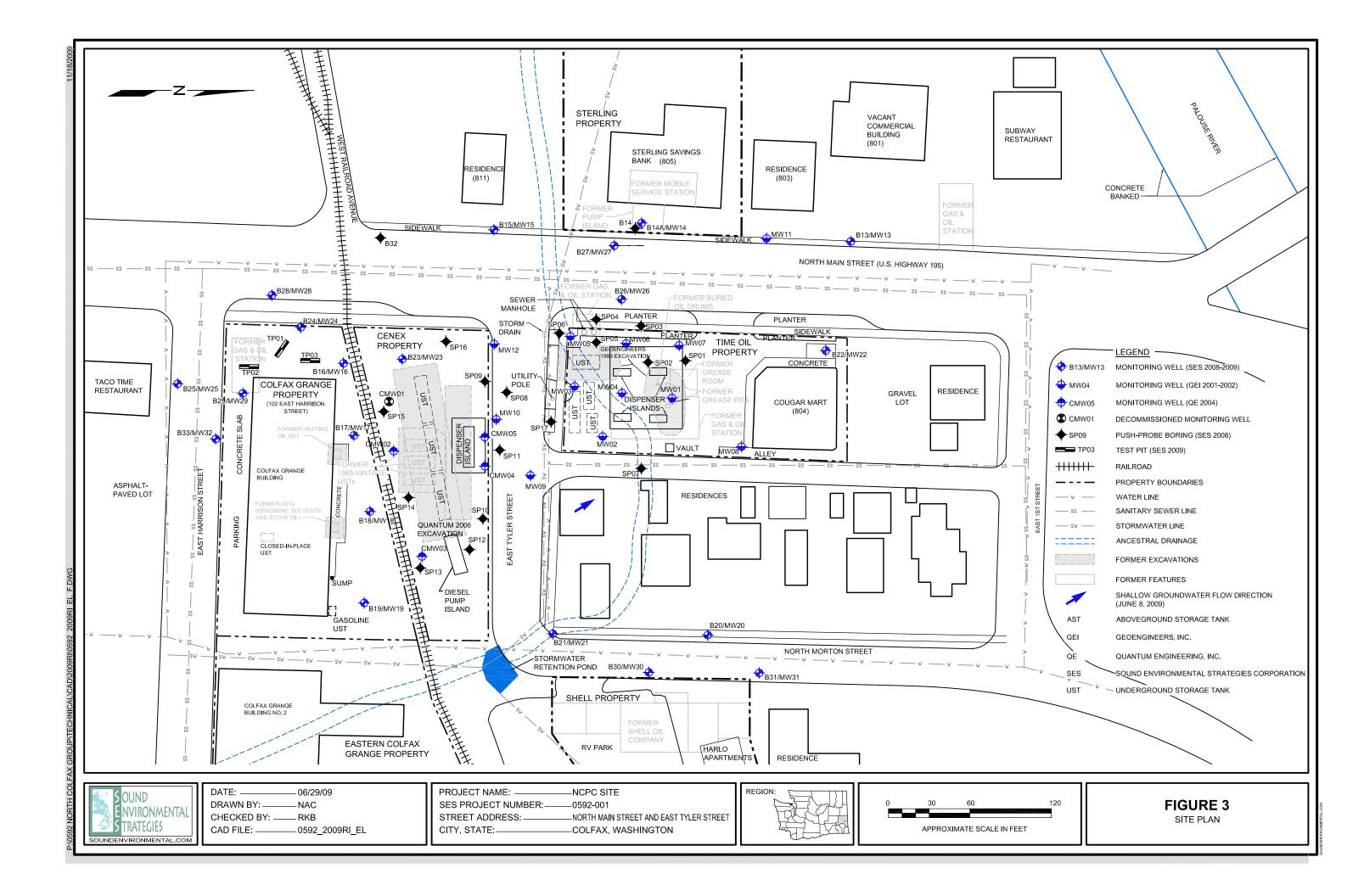
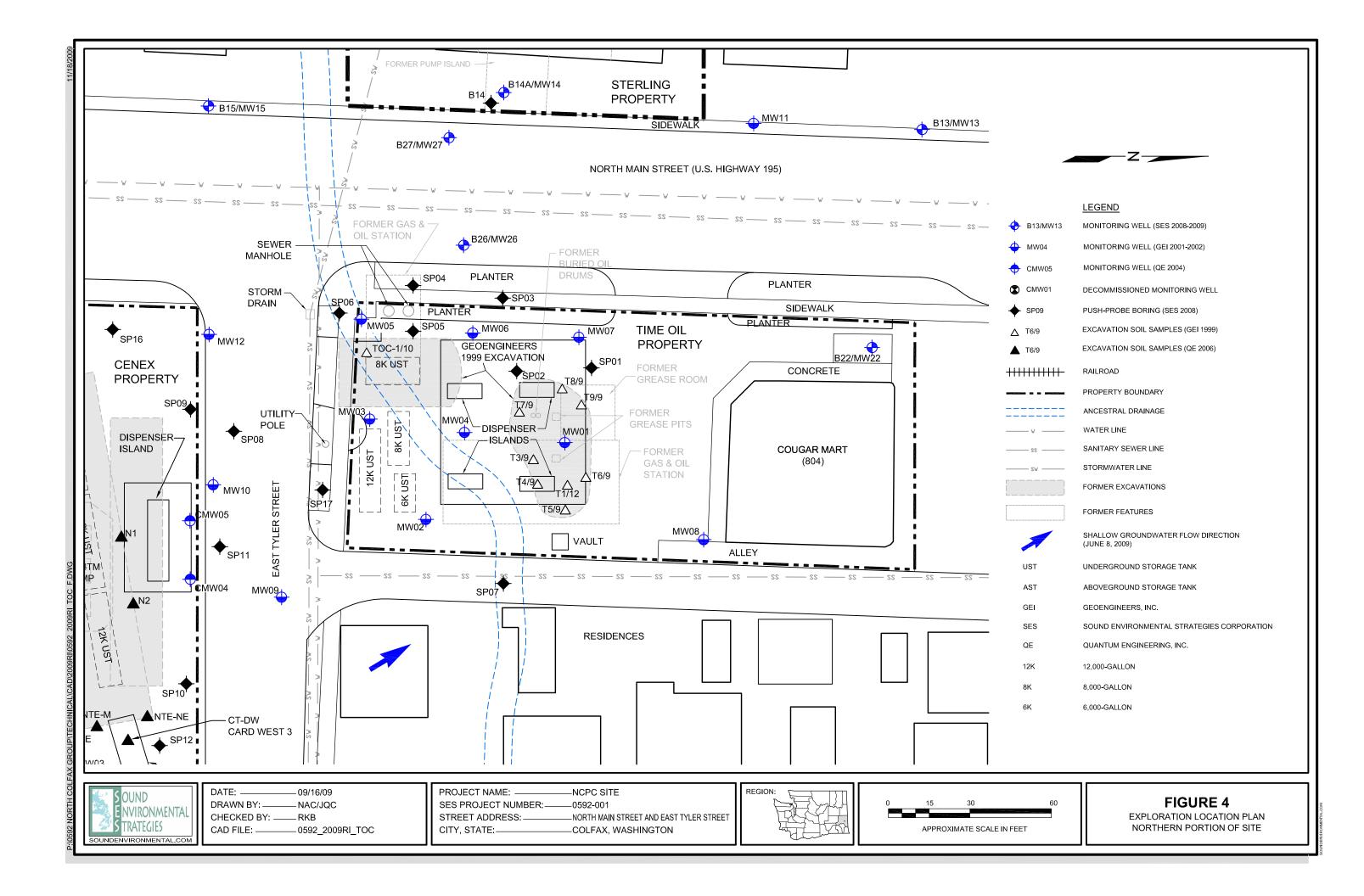
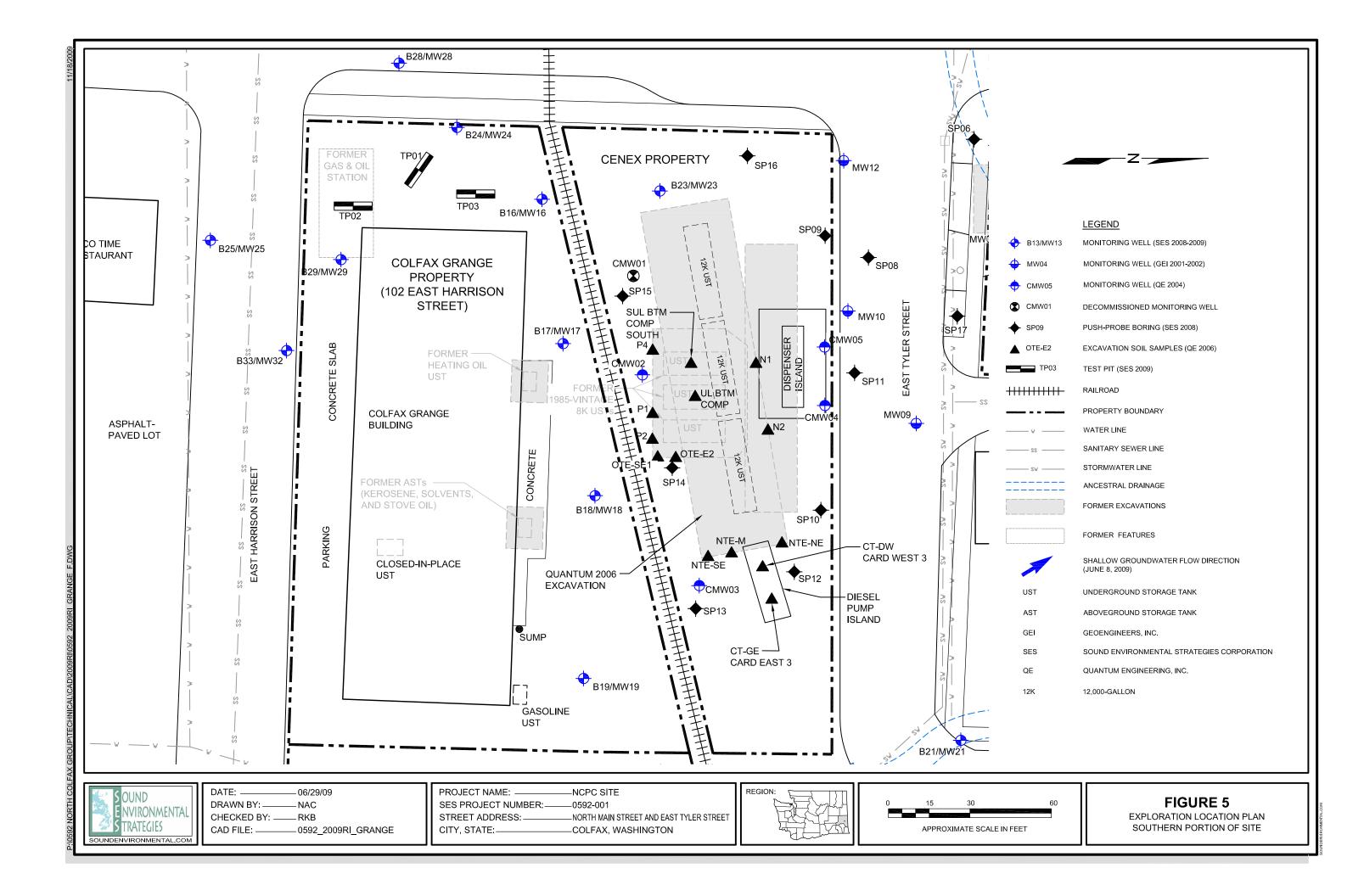
North Colfax Petroleum Contamination Site North Main Street and East Tyler Street Colfax, Washington

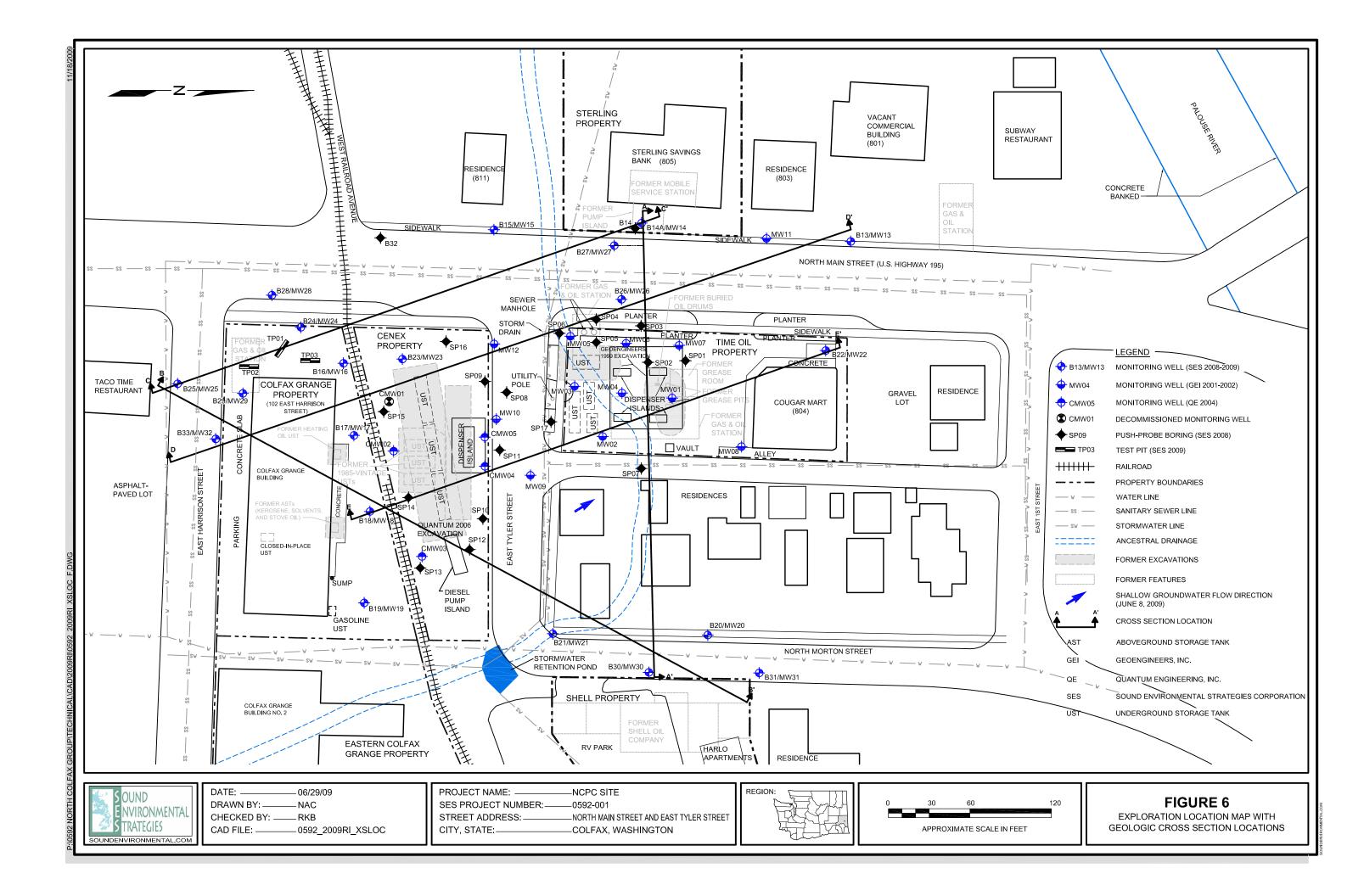
FIGURE 1 Site Location

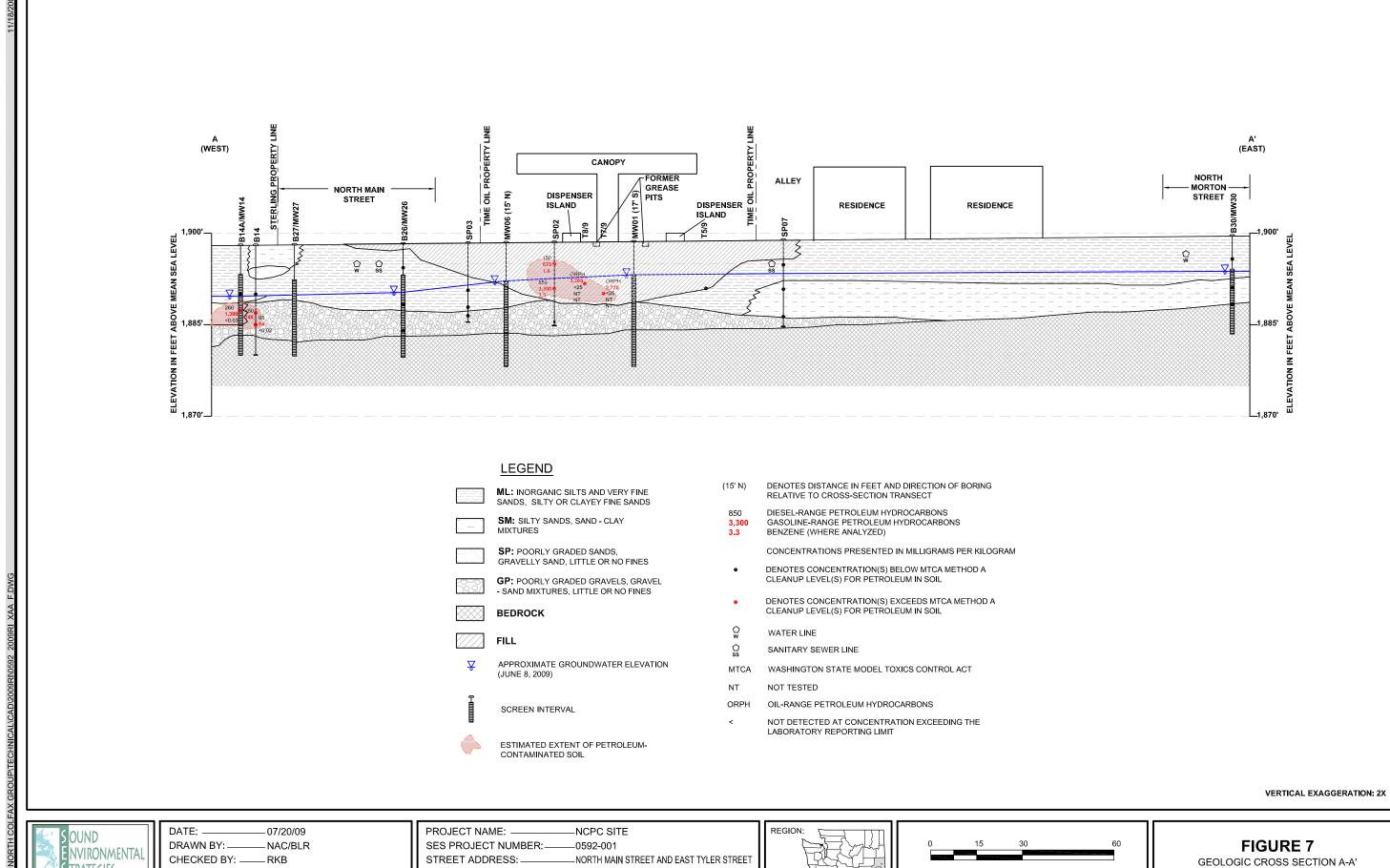
Мар

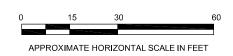
DRAWN BY: __ __NAC/JQC CHECKED BY: ——RKB CAD FILE: -0592_2009RI_SOURCE SES PROJECT NUMBER: -_0592-001

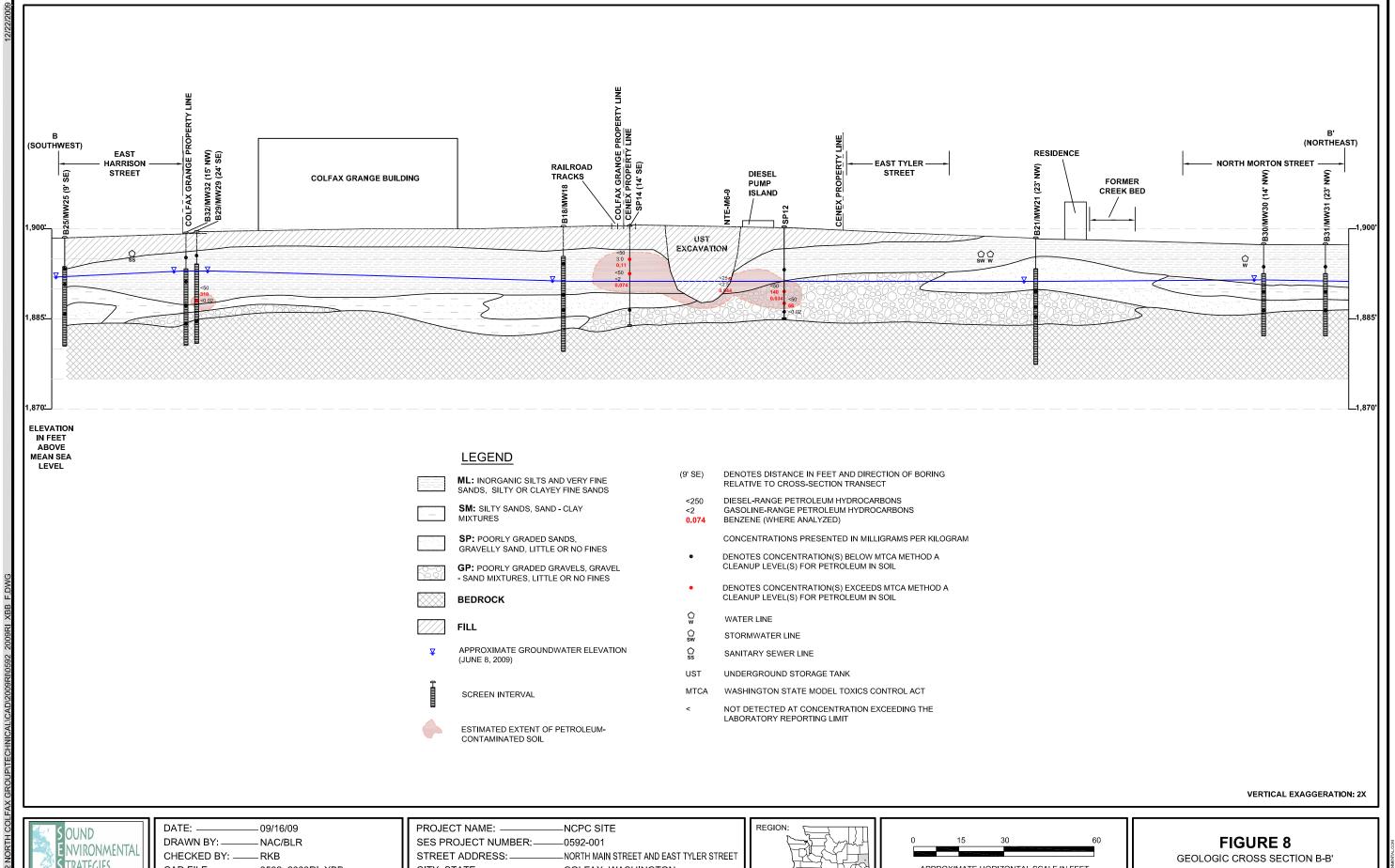
STREET ADDRESS: NORTH MAIN STREET AND EAST TYLER STREET CITY, STATE: --COLFAX, WASHINGTON


FIGURE 2

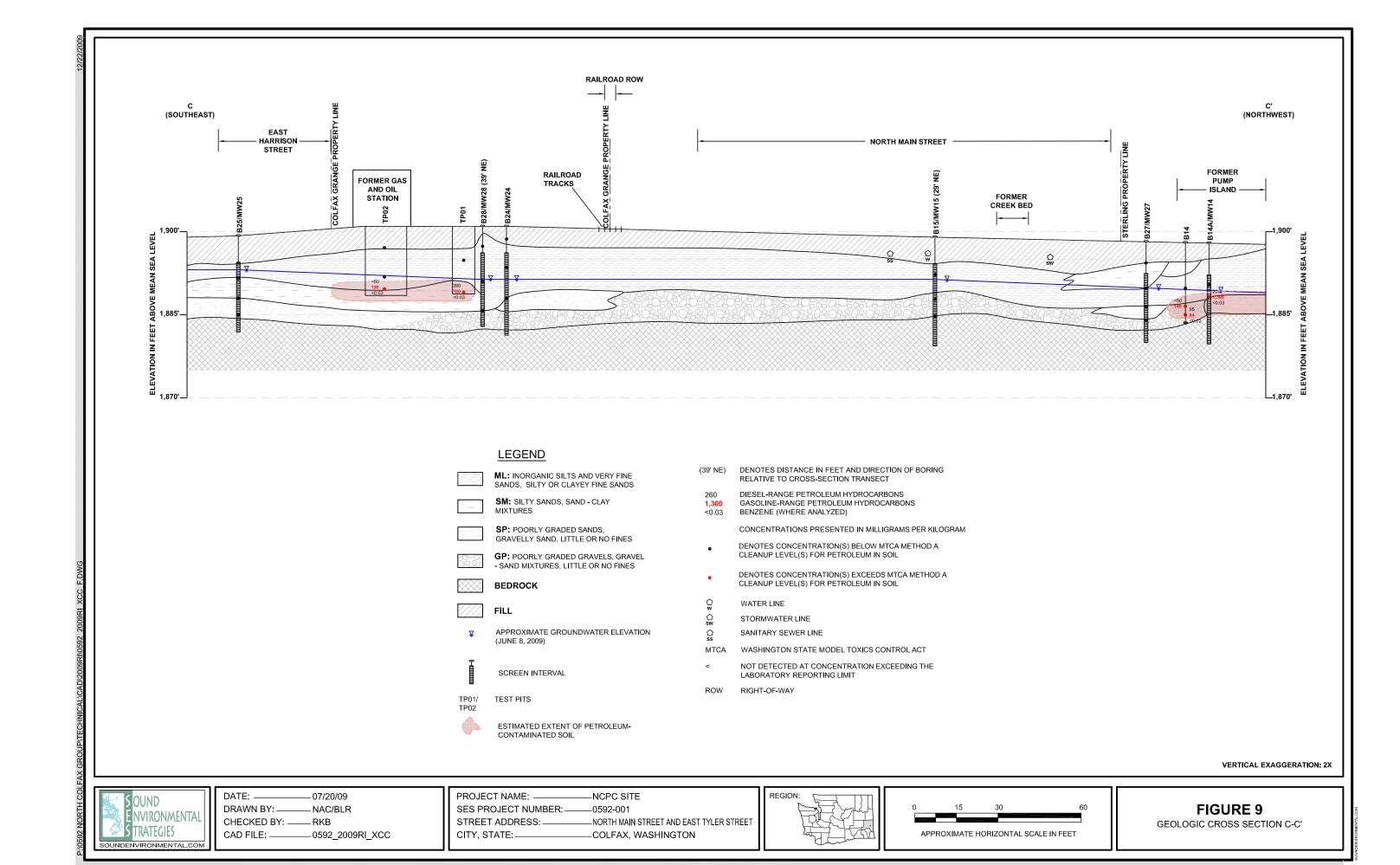

CONFIRMED AND SUSPECTED SOURCE AREAS

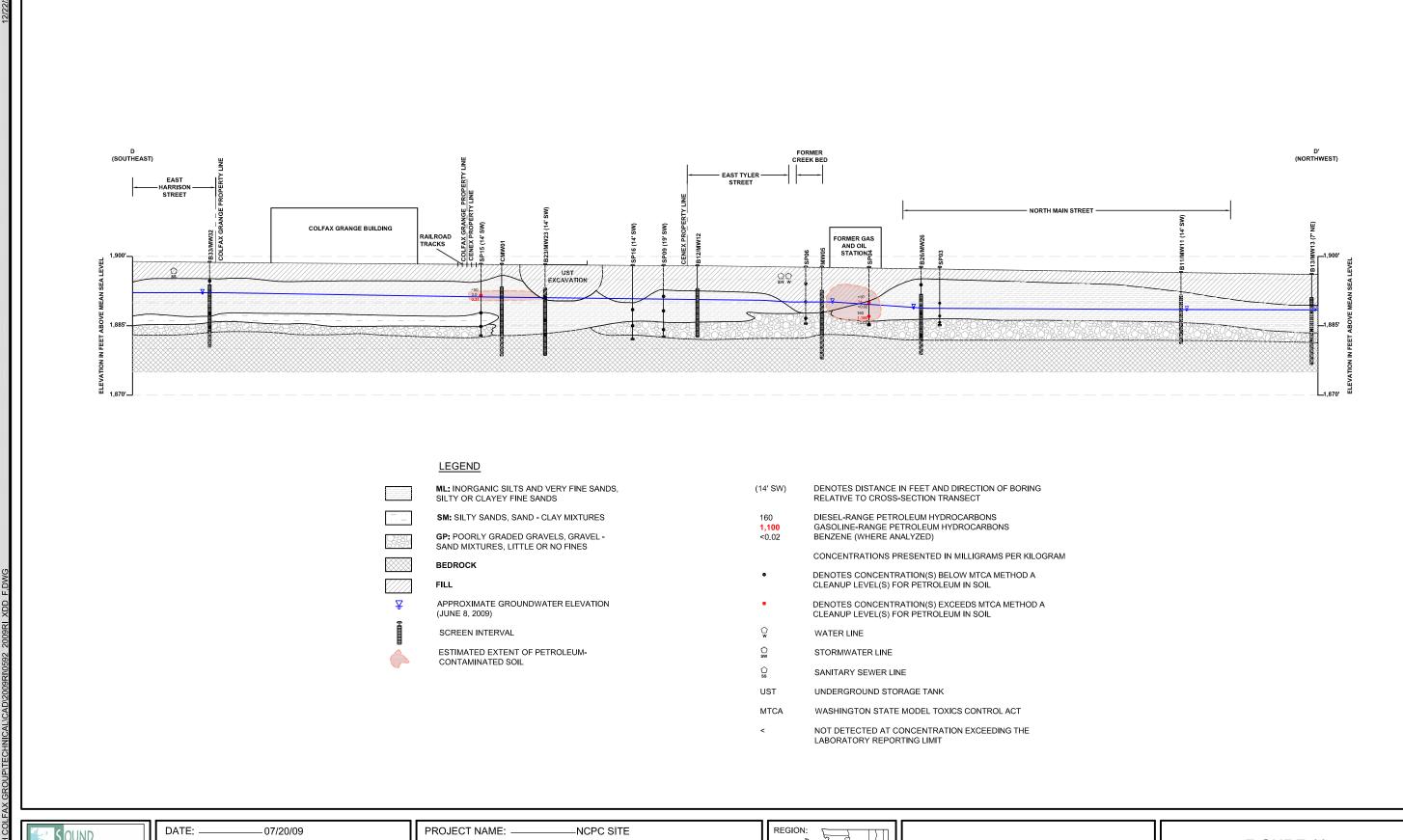




TRATEGIES

CAD FILE: -_0592_2009RI_XAA CITY, STATE: -_COLFAX, WASHINGTON




TRATEGIES

CAD FILE: -_0592_2009RI_XBB CITY, STATE: -_COLFAX, WASHINGTON

DRAWN BY: _______NAC/BLR
CHECKED BY: ______RKB
CAD FILE: ______0592_2009RI_XDD

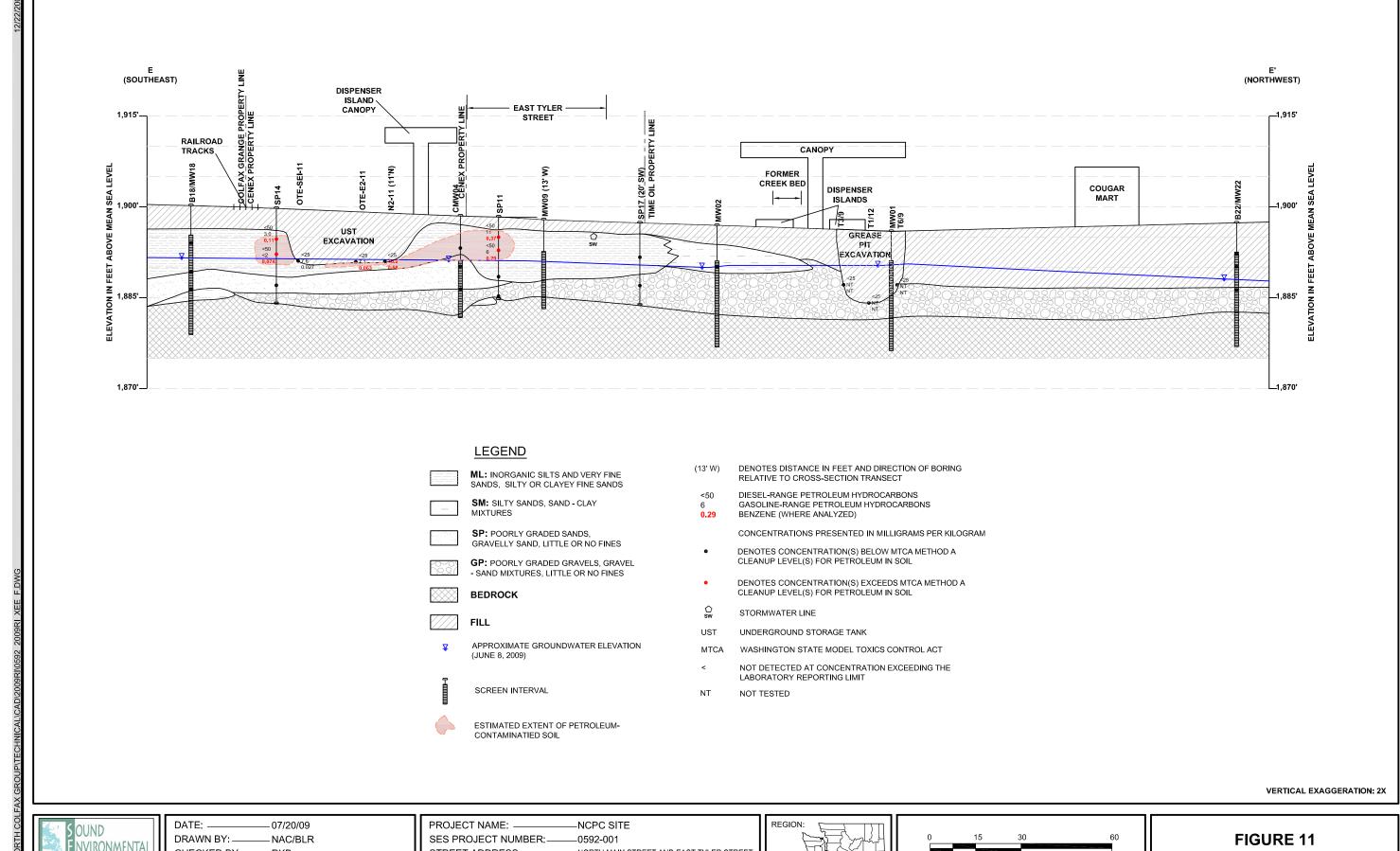
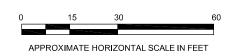
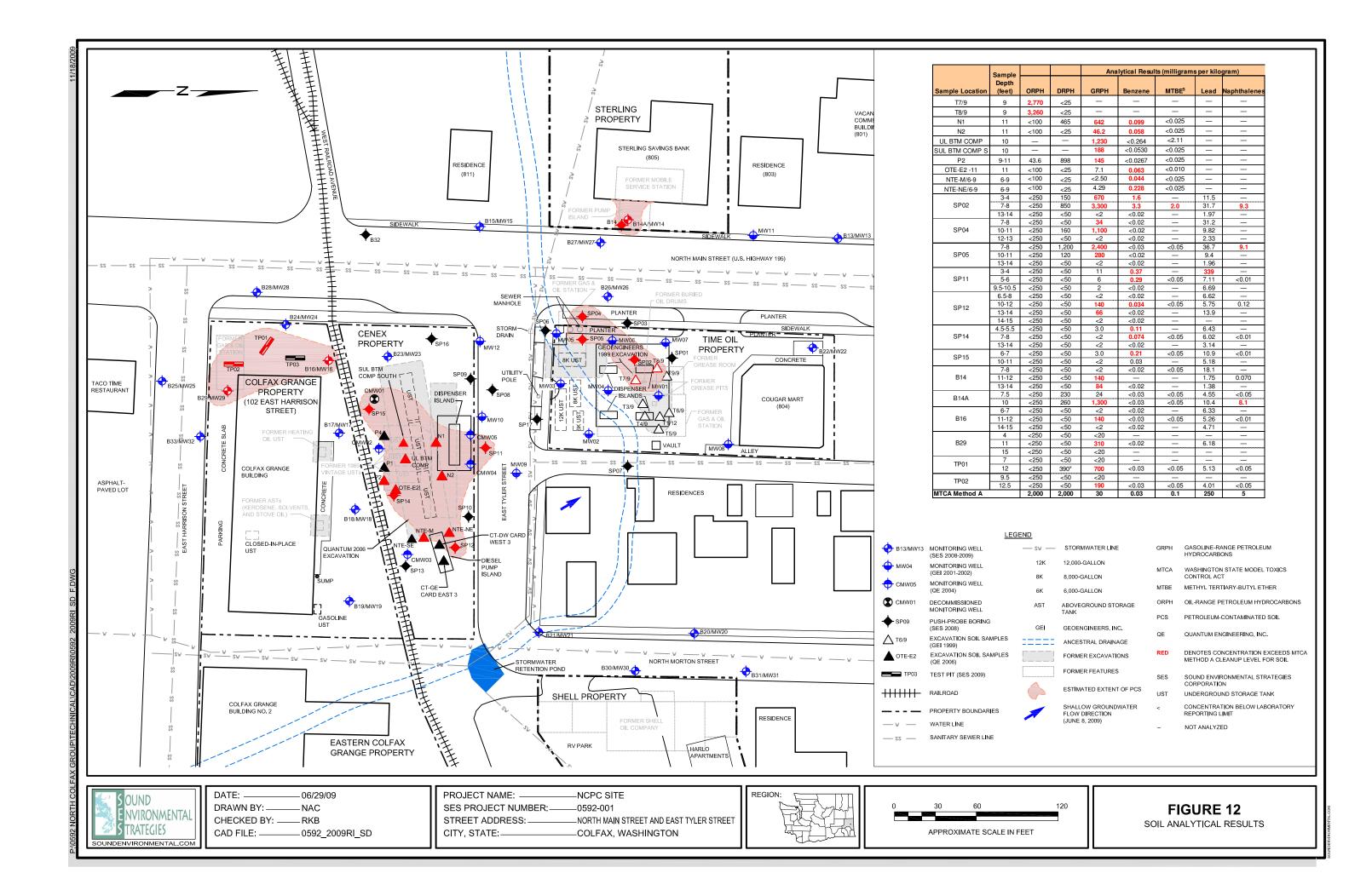
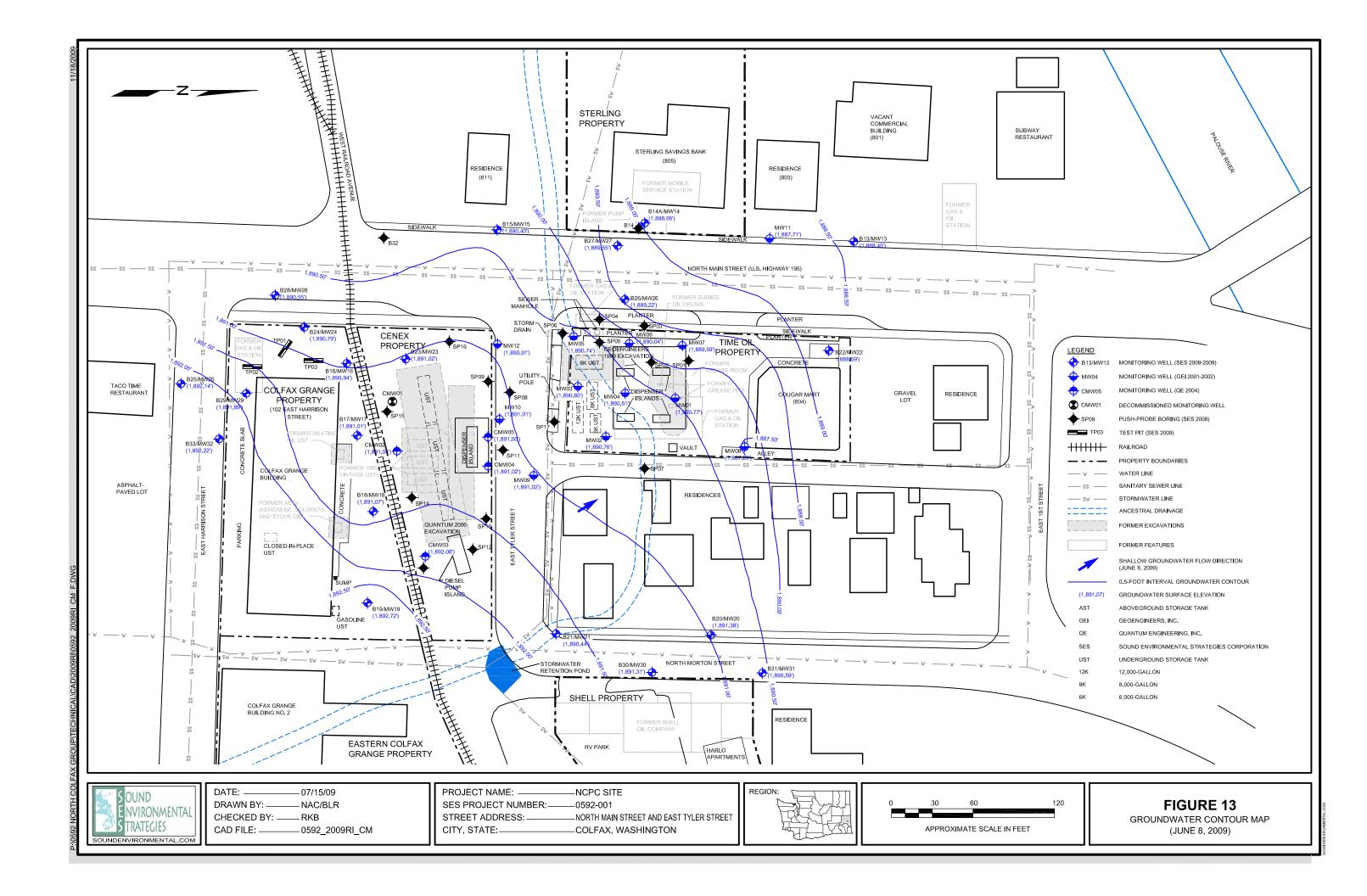
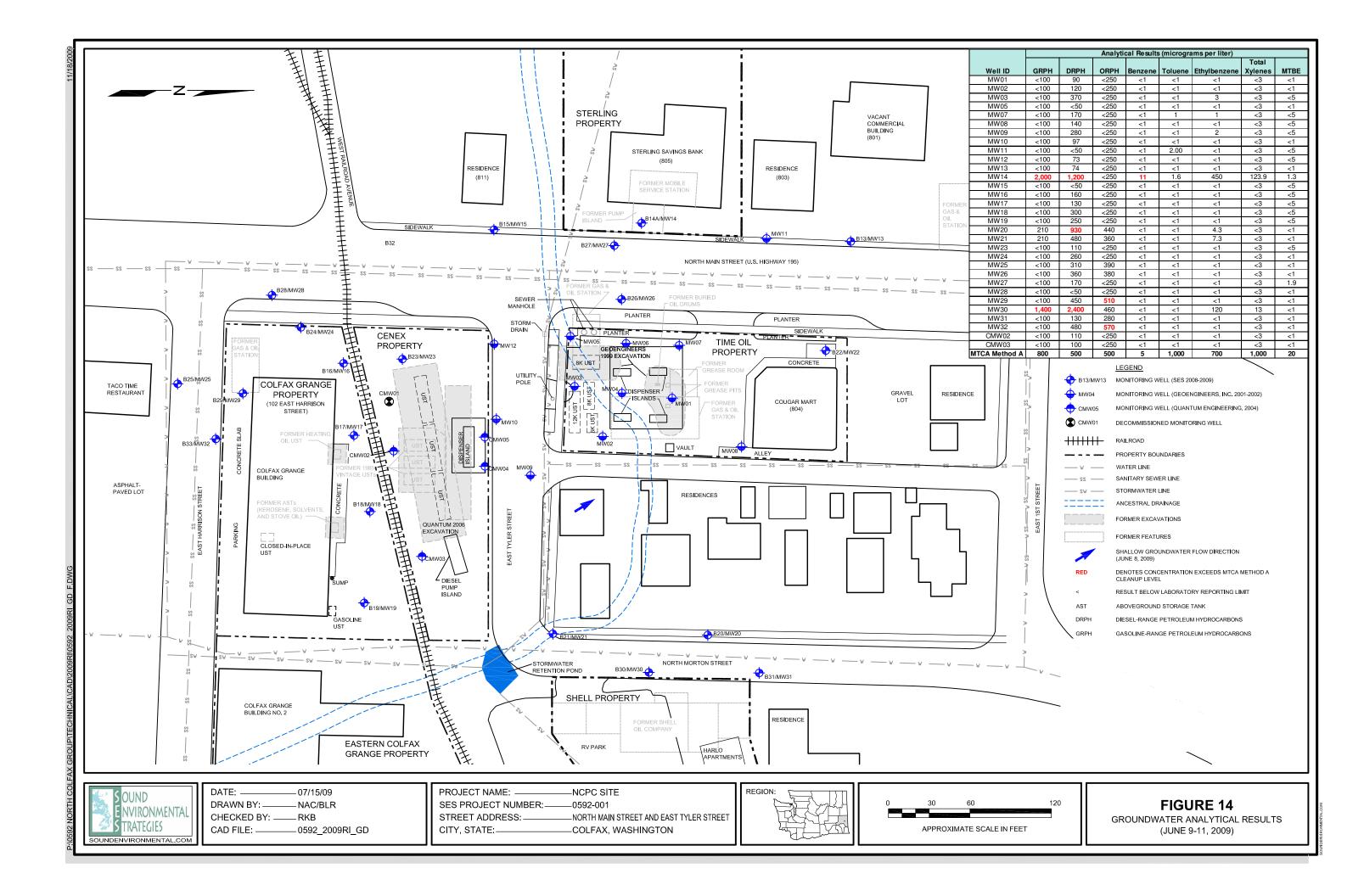

SES PROJECT NUMBER: _______0592-001
STREET ADDRESS: _______NORTH MAIN STREET AND EAST TYLER STREET
CITY, STATE: ______COLFAX, WASHINGTON

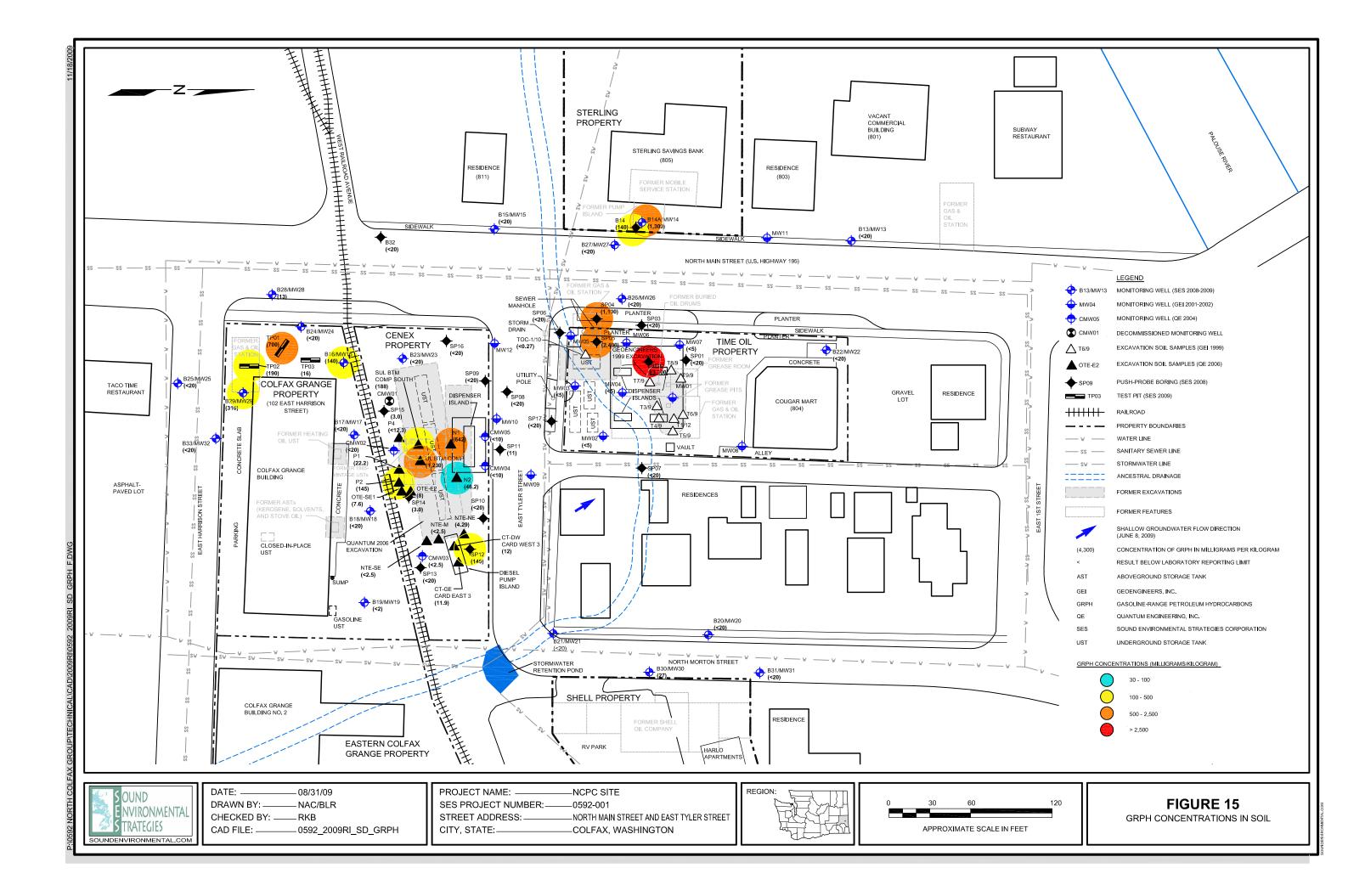
FIGURE 10

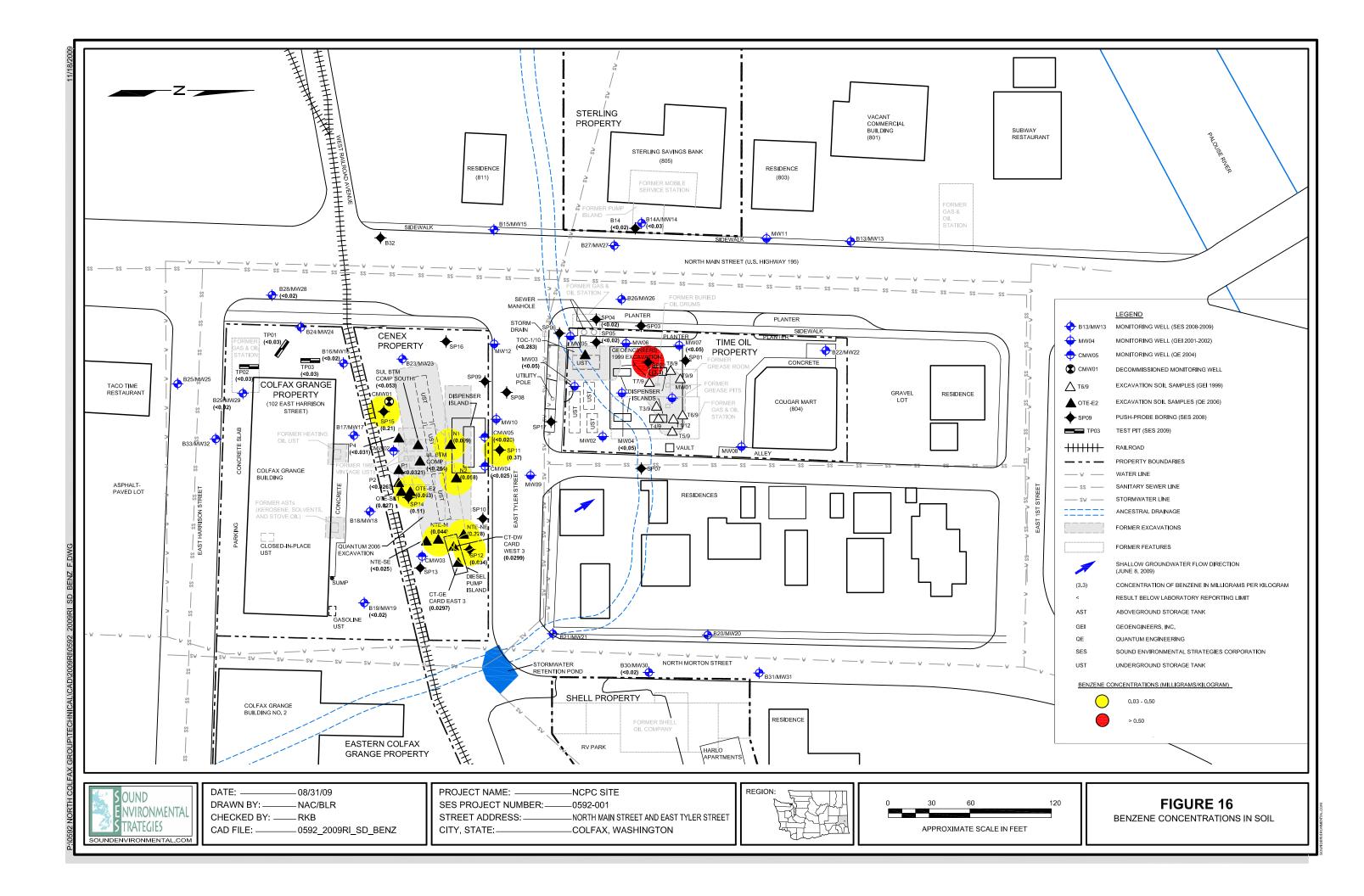

GEOLOGIC CROSS SECTION D-D'

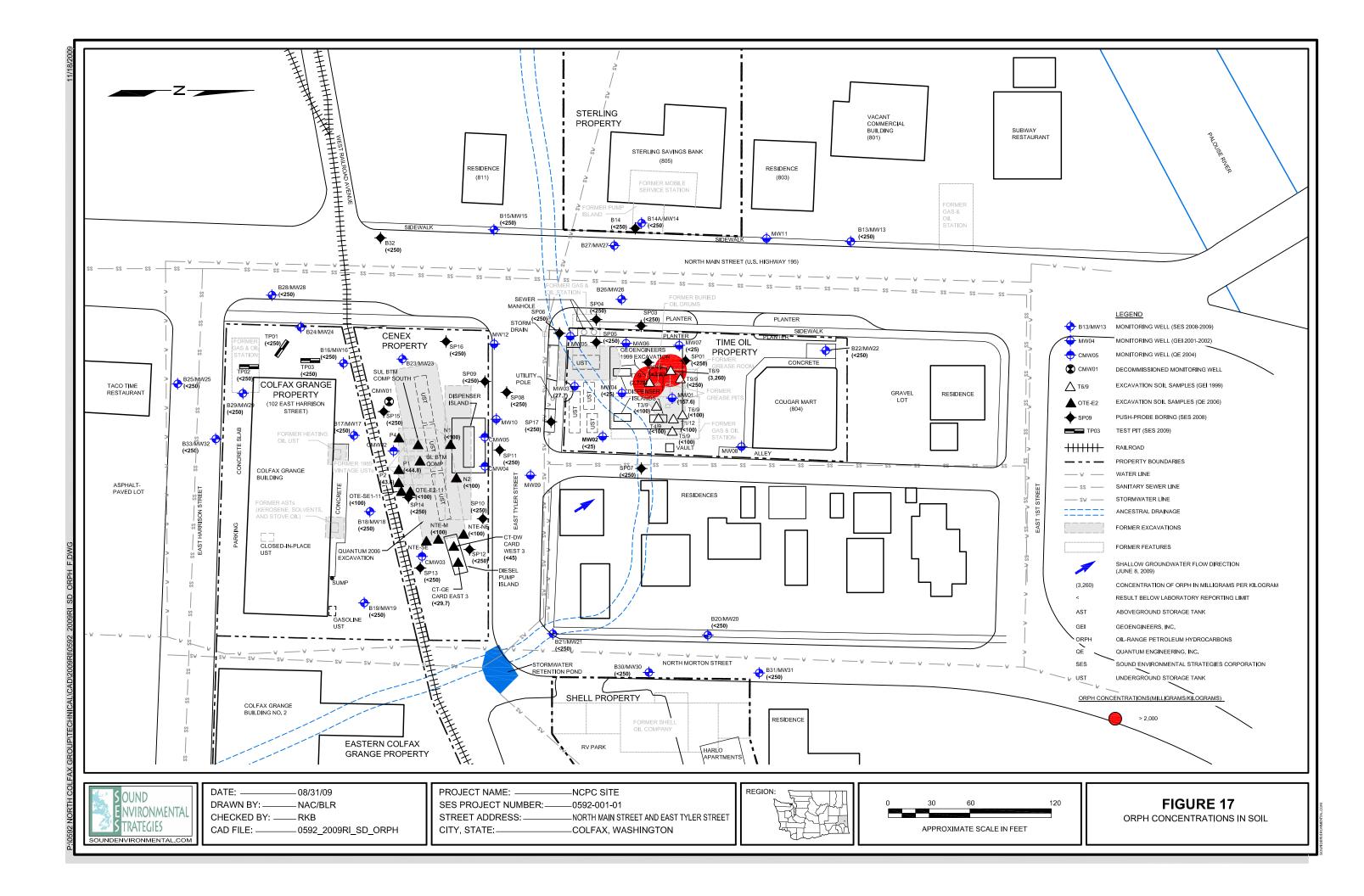

E NVIRONMENTAL TRATEGIES

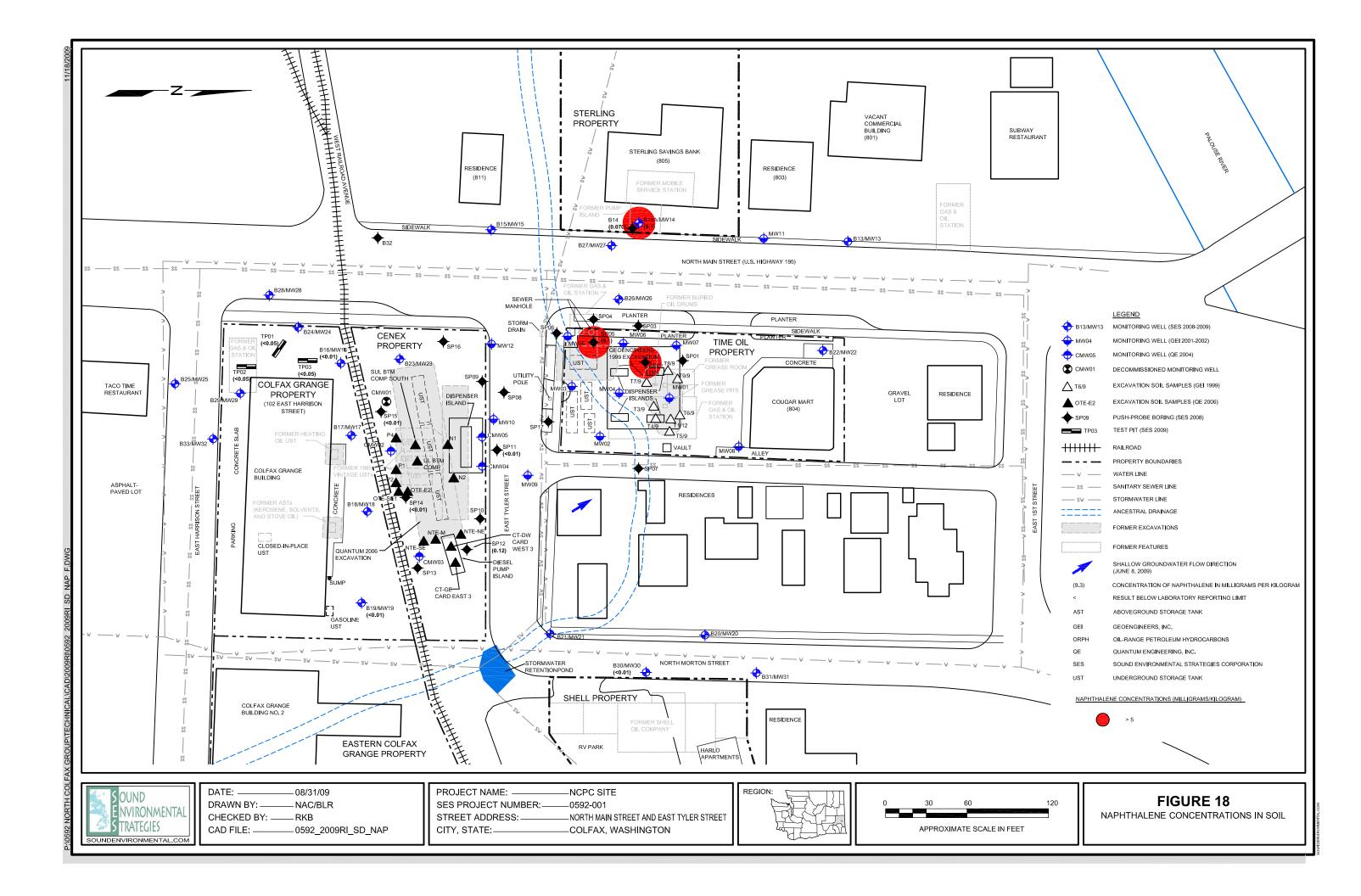

CHECKED BY: —— RKB CAD FILE: -_0592_2009RI_XEE STREET ADDRESS: NORTH MAIN STREET AND EAST TYLER STREET CITY, STATE: -_COLFAX, WASHINGTON

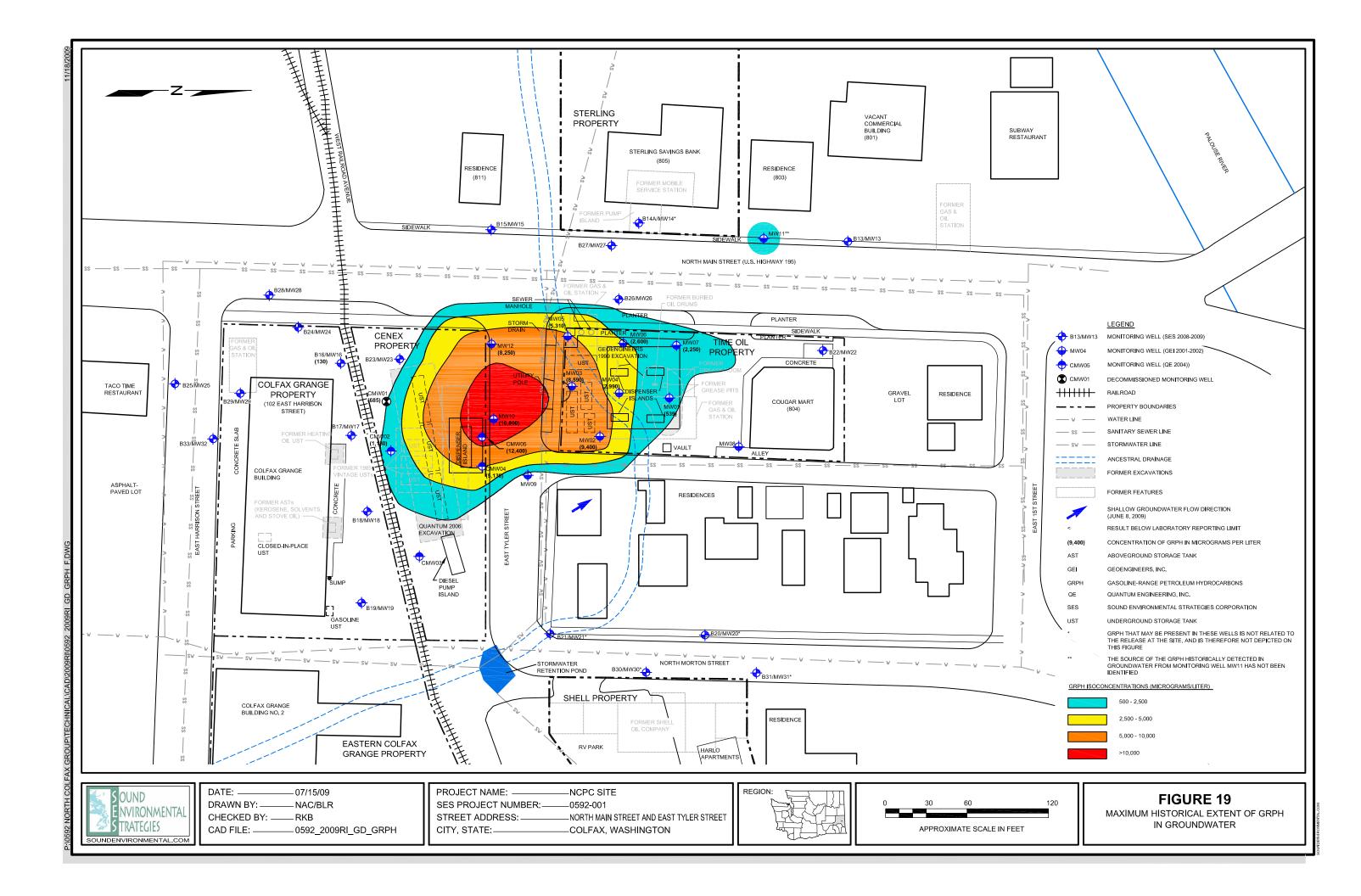


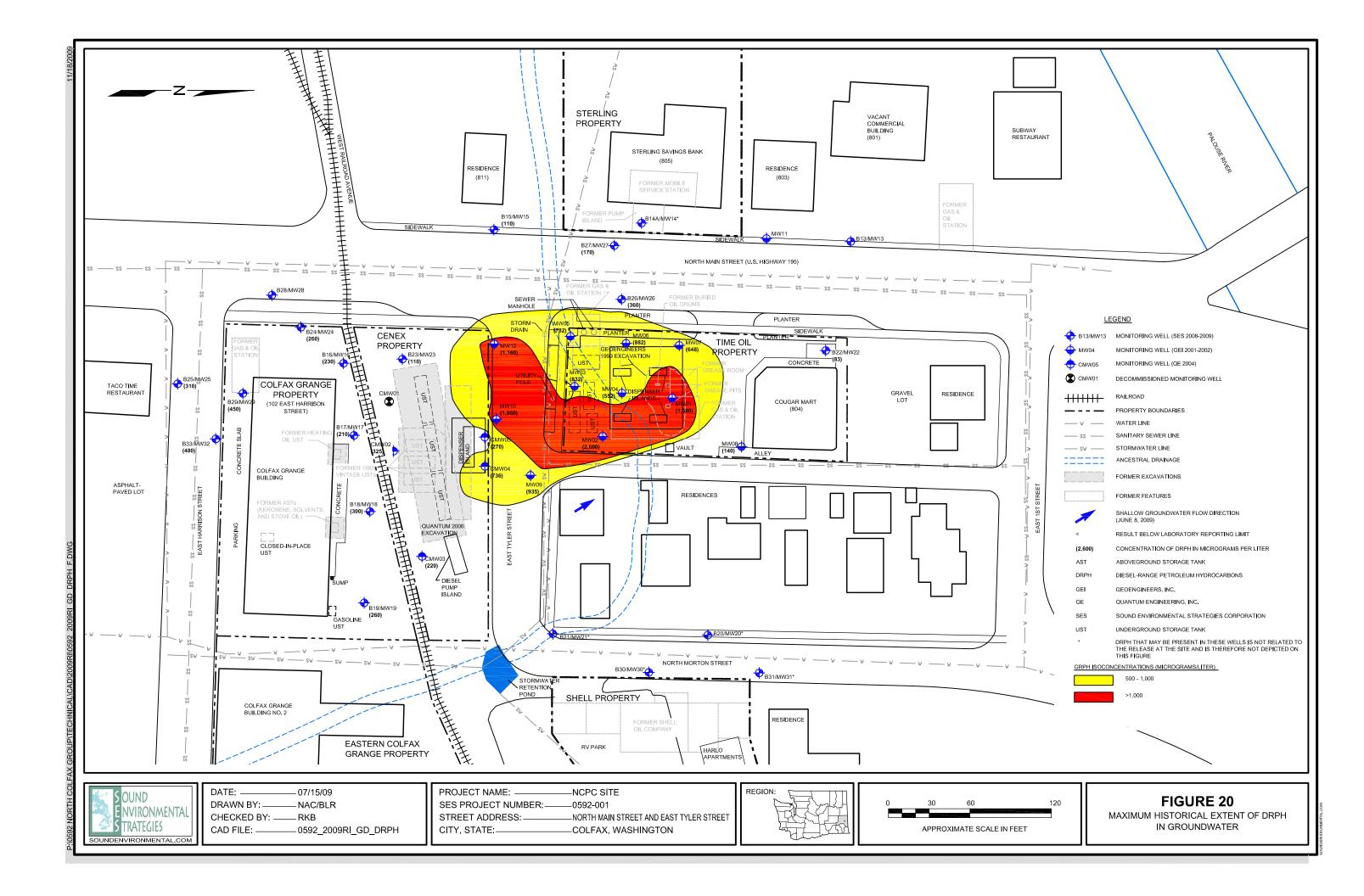


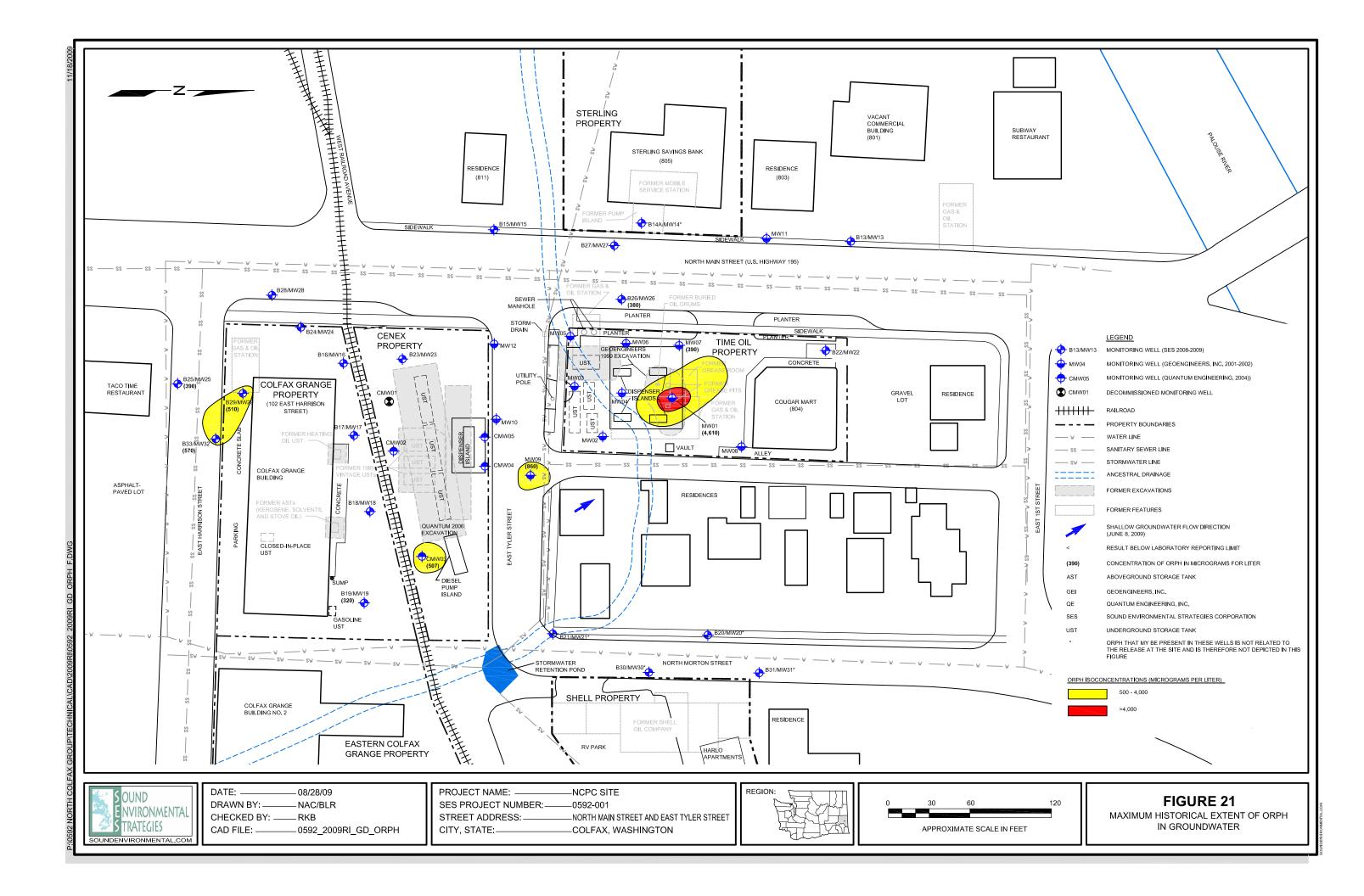

GEOLOGIC CROSS SECTION E-E'

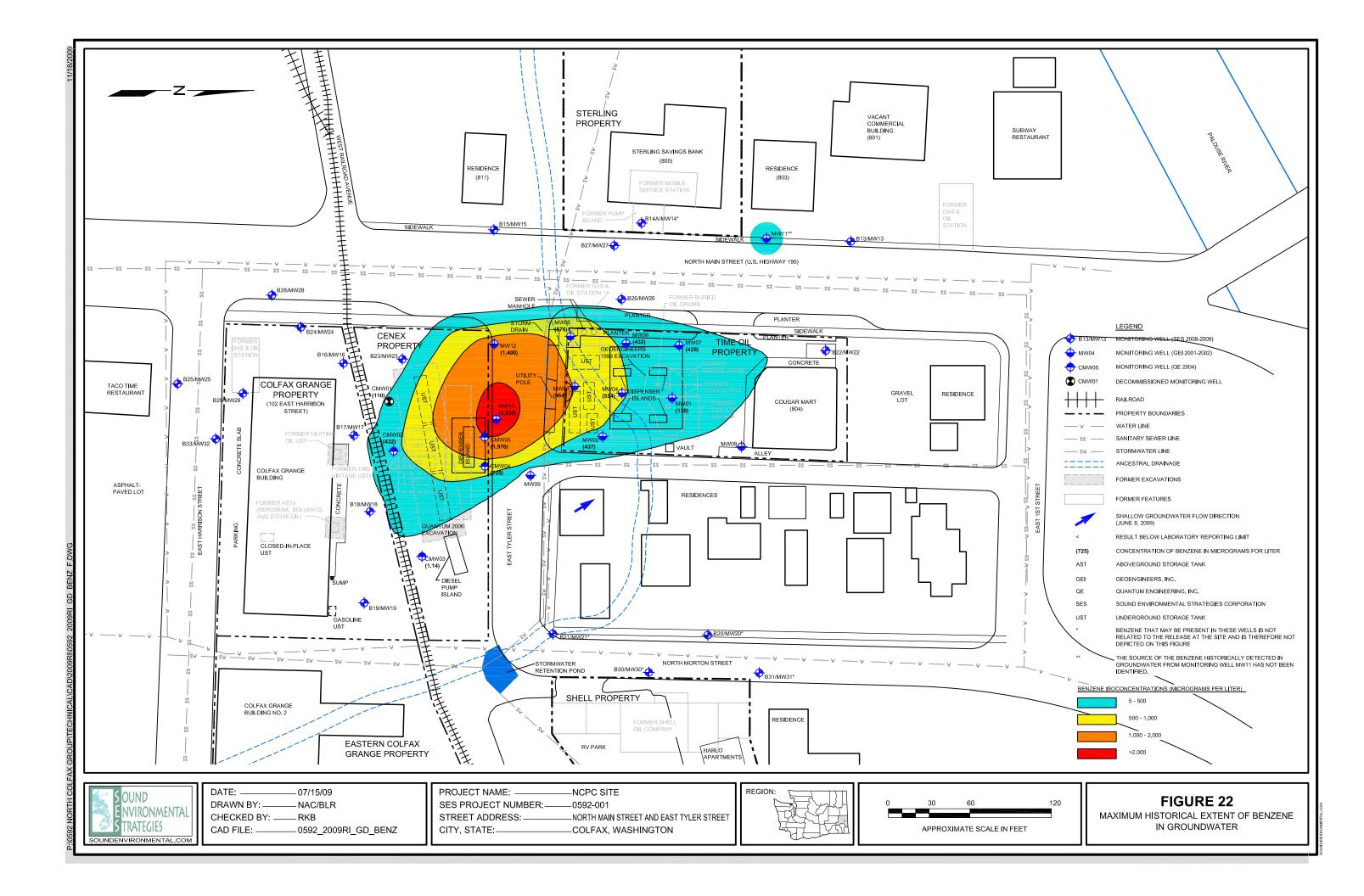


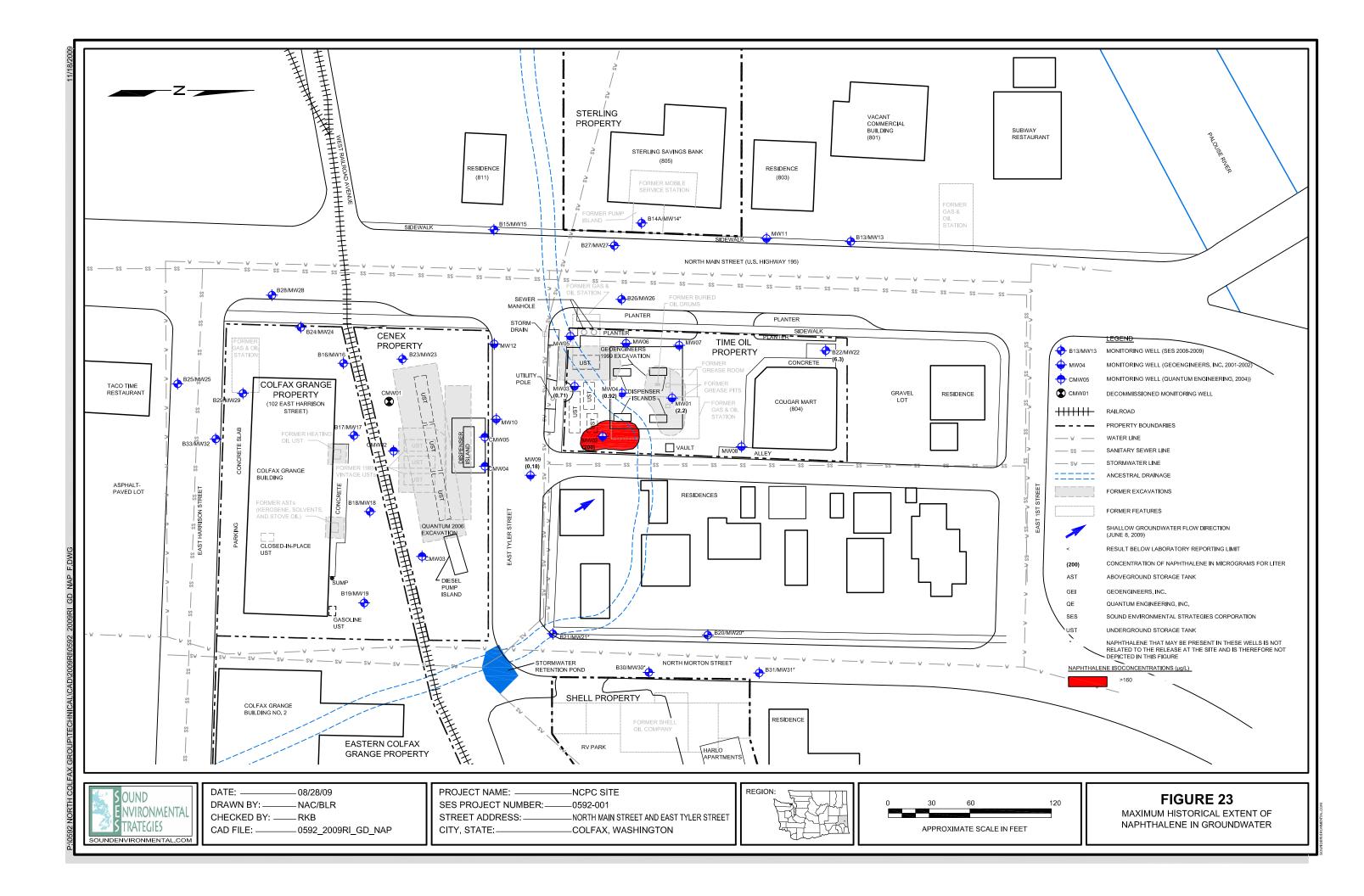


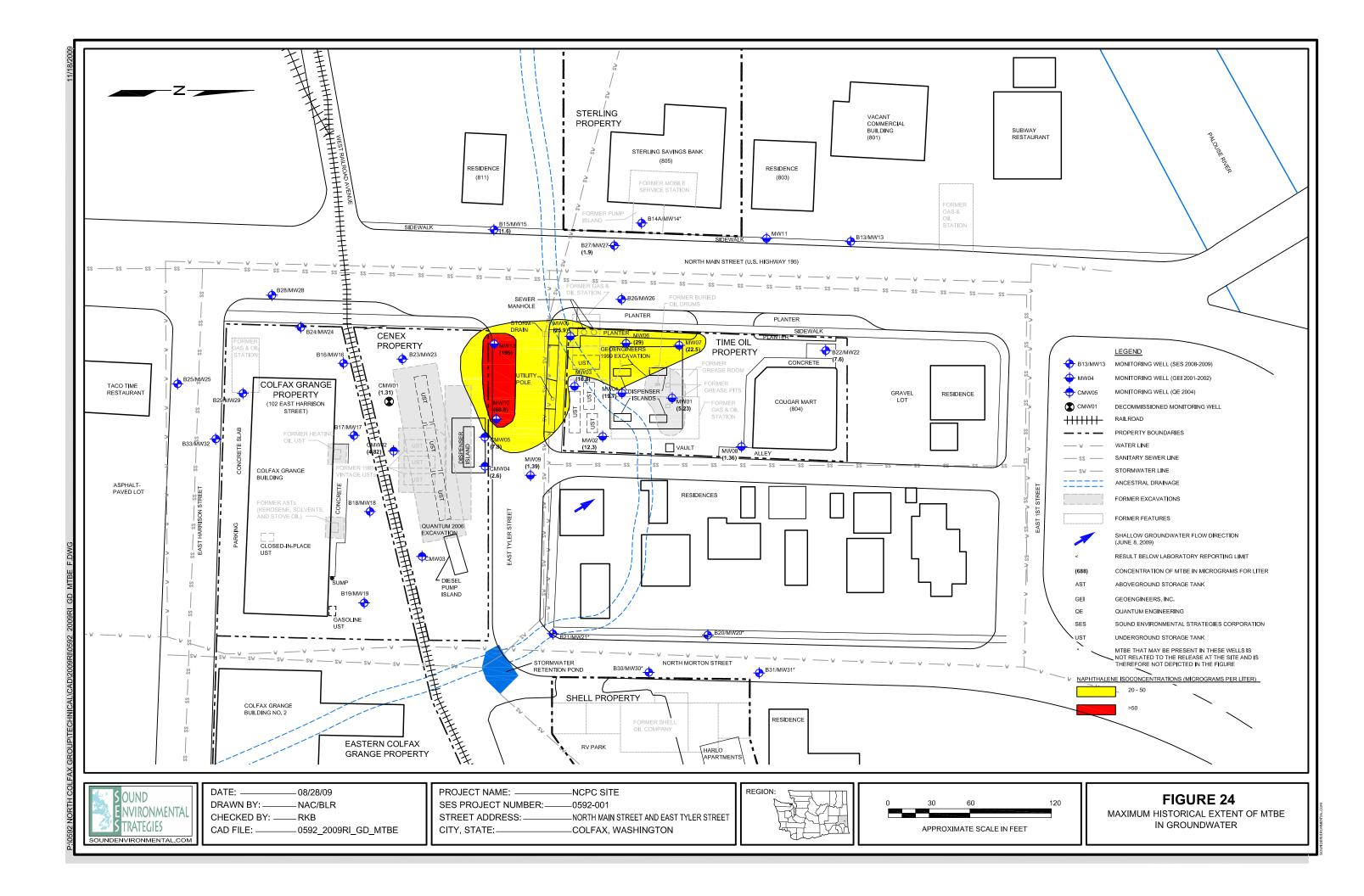


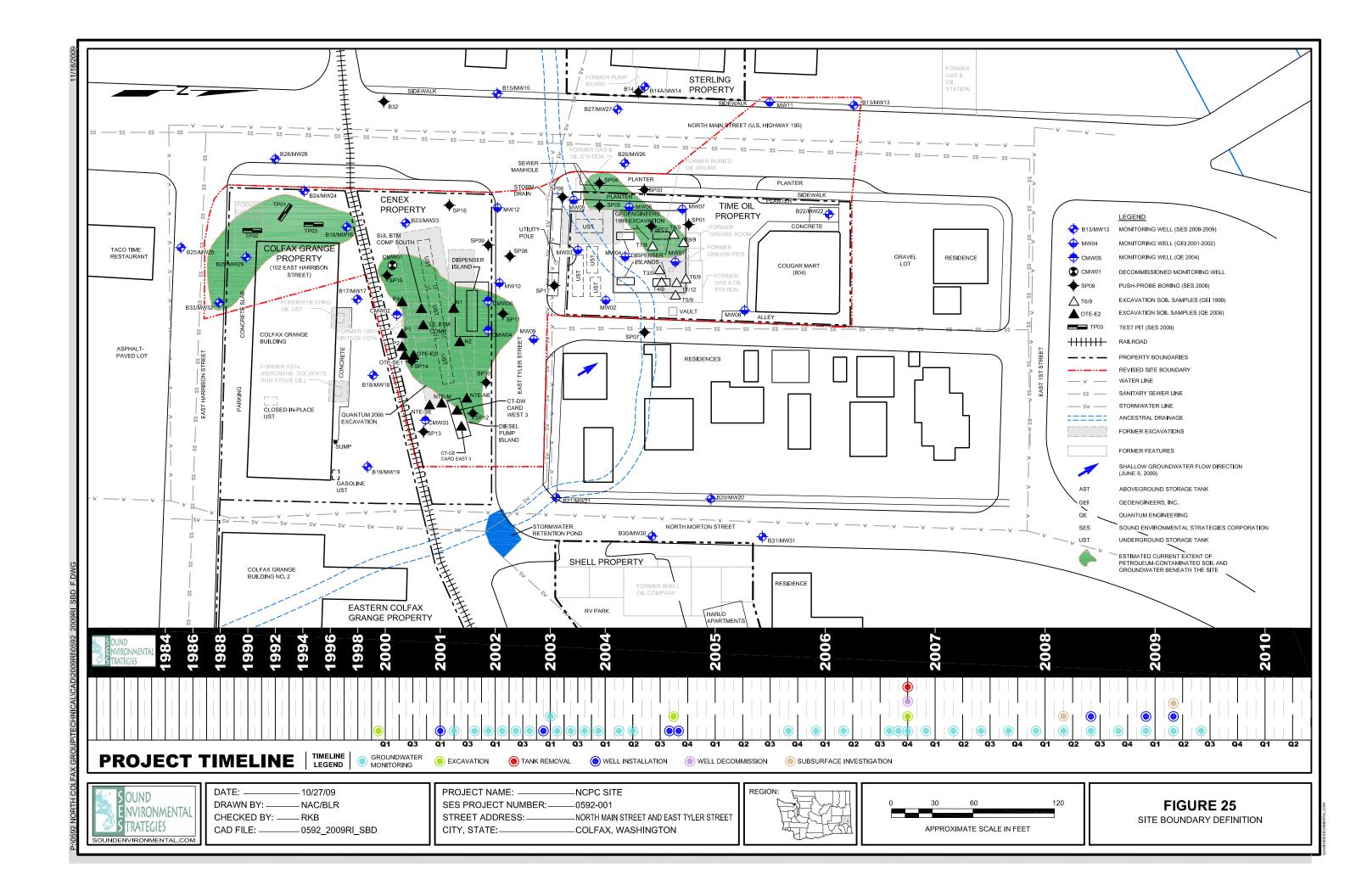












TABLES Sound Environmental Strategies Corporation

			Sample							Anal	vtical Results	(milligrams per kild	ogram)				
		Date	Depth	Sampled	Analyzed	NWTPH-					, aloui Hoound	l l	Total				
Boring Number/Sample Area	Sample Identification	Sampled	(feet) ¹	Ву	By	HCID ²	DRPH ³	ORPH ³	GRPH⁴	Benzene⁵	Toluene ⁵	Ethylbenzene ⁵	Xylenes⁵	MTBE ⁵	EDB ⁵	EDC ⁵	VOCs ⁶
						TIME O	IL 1999 EXC	AVATION									
New UST Excavation	TOC - 1/10	09/03/99	10				<25.0	_	0.27	<0.283	<0.283	<0.283	0.003		_		_
	GP-01		2			_	<25.0	280	_	_	_	_	_	_	_	_	_
	GP-02	09/09/99	10-11			_	<25.0	173	_	_	_	_	_	_	_		_
	GP-03		10-11			_	75.8	1,900	_	<0.005	0.093	<0.005	0.037	_	_	_	<cul< td=""></cul<>
	T-1/12		12			_	<25.0	<100.0	_	_	_	_	_	_	_	_	_
	T-3/9		9			_	<25.0	<100.0	_	_	_	_	<u> </u>	_	_		_
Former Service Bay Installation	T-4/9	09/14/99	9			_	<25.0	<100.0	_	_	_	_	_	_	_	_	_
	T-5/9		9	GEI	Anatek	_	26.4	<100.0	_	_	_	_	_	_	_	_	_
	T-6/9		9			_	<25.0	<100.0	_	_	_	_		_	_	_	_
	T-7/9		9			_	<25.0	2,770	_	_	_	_	_	_	_	_	_
	T-8/9	09/18/99	9			_	<25.0	3,260	_	_	_	_	_	_	_	_	
	T-9/6		6			_	<25.0	157.6	_	_	_	_	_	_	_	_	_
Former Service Bay Installation	TOC-SP-1	09/03/99	1			_	<25.0	_	2,370	0.083	0.0292	14.2	34.4	_		_	_
Stockpile Samples	COMPOSITE (SP-2 through 6)	09/03/99	-			_	<25.0	_	146	0.029	0.013	1.30	2.20			_	_
Glockpile Gamples	SS-01-100199	10/01/99	-			_	<25.0	<100.0	_	_	_	_	_		_	_	_
					GEO	ENGINEERS	AND QUANT	UM SOIL BO	RINGS								
MW02	MW-2-7		7			_	<10.0	<25.0	<5.00	< 0.0500	< 0.0500	< 0.0500	<0.100	_	_	_	_
MW03	MW-3-5	02/06/01	5				34.5	27.7	<5.00	< 0.0500	< 0.0500	<0.0500	<0,100	_	_	_	_
IVIVVOS	MW-3-10		10			_	<10.0	<25.0	<5.00	< 0.0500	< 0.0500	<0.0500	<0.100	_	_	_	_
MW04	MW-4-5	02/09/01	5	GEI	NCA	_	<10.0	<25.0	<5.00	<0.0500	< 0.0500	<0.0500	<0.100	_	_	_	_
MW05	MW-5-5	02/07/01	5			_	15.9	30.9	40.3	< 0.0500	< 0.0500	<0.0500	<0.100	_	_	_	_
MW06	MW-6-5	02/08/01	5			_	464	<575	4,300	<2.09	<2.09	<7.11	<30.1	_	_	_	_
MW07	MW-7-5	02/07/01	5			_	<10.0	<25.0	<5.00	< 0.0500	< 0.0500	<0.0500	<0.100	_	_	_	_
	CMW4 5-6		5-6			_	_	_	<10.0	< 0.0250	<0.200	<0.200	<0.600	_	_	_	_
CMW04	CMW4 7.5-9		7.5-9			_	_	_	<10.0	< 0.0250	<0.200	<0.200	< 0.600	_	_	_	_
	CMW4 12-13.5	12/03/04	12-13.5	QE	TA	_	_	_	<10.0	< 0.0250	<0.200	<0.200	<0.600	_	_	_	_
ON MAYOF	CMW5 5-6		5-6	1		_	_	_	<10.0	<0.0250	<0.200	<0.200	<0.600	_	_	_	_
CMW05	CMW5 10-10.5		10-10.5	1		_	_	_	<10.0	< 0.0250	<0.200	<0.200	< 0.600	_	_	_	_
						QUANT	JM 2004 EXC	CAVATION									
	ULIP 0-6		0.5			_		_	1,820	7.24	59.5	24.5	158	_	_	_	_
	ULIP 15"		1			_	_	_	1,690	2.69	25.8	15.7	145	_	_	_	_
	SULIP 0-6"	44/04/04	0.5			_	_	_	<10.0	<0.0250	<0.200	<0.200	<0.600	_	_	_	_
	SULIP 15	11/01/04	1			_	_	_	<10.0	<0.0250	<0.200	<0.200	<0.600	_	_	_	_
	SUL Pump 0-6"		0.5			_	_	_	<10.0	<0.0250	<0.200	<0.200	<0.600	_	_	_	_
	UL Pump 0-6"		0.5			_	_	_	524	0.397	0.237	0.596	3.19	_	_	_	_
	SUL-IP Vault		_			_	_	_	<10.0	<0.0250	<0.200	<0.200	<0.600	_	_	_	_
Colfax Grange Sump Excavation Area	Diesel IP Vault		_	QE	NCA	_	178	<25.0	990	<0.0250	<0.200	2.73	93.6	_	_	_	_
	SUL Turbine		_	1		_	_	_	24.6	0.0685	<0.200	<0.200	<0.600	_	_		_
	East Diesel IP - After		11/15/04			_	589	<25.0	<40	<0.100	<0.800	<0.800	<2.40	_	_		_
	West Diesel IP-After	11/15/04				_	70.8	<25.0	231	<0.250	<2.00	<2.00	8.89	_	_	_	_
	ULIP Vault					_	_	_	604	<0.250	<2.00	<2.00	22.2	_	_		_
	Diesel Turbine		<u> </u>				7,660	1,450	595	0.395	1.25	0.981	12.9	_			
	UL Turbine		_	1			-	-	5,030	4.28	30.1	16.4	205	_	_		_
MTCA Method A Cleanup Level for So		I		1	1	NE	2,000	2,000	30	0.03	7	6	9	0.1	0.005	11 ^a	NE
mi or metrica A cicariap Level for co	•				ļ	142	2,000	2,000	- 55	0.00	· · · · · · · · · · · · · · · · · · ·	•		U.,	0.000		145

			Sample							Anal	vtical Results	(milligrams per kild	ogram)				
		Date	Depth	Sampled	Analyzed	NWTPH-)	(g.g.ue pere	Total				
Boring Number/Sample Area	Sample Identification	Sampled	(feet) ¹	Ву	Ву	HCID ²	DRPH ³	ORPH ³	GRPH⁴	Benzene ⁵	Toluene ⁵	Ethylbenzene ⁵	Xylenes ⁵	MTBE ⁵	EDB ⁵	EDC ⁵	VOCs ⁶
						CENE	(2006 EXCA	VATION									
	SUL BTM Comp South		10					_	188	<0.0530	<0.424	<0.424	<1.27	<0.106	_	_	_
	UL Turbine		1.5			_	_	_	<11.3	<0.0282	0.226	0.226	0.677	<.113	_	_	_
	UL BTM Comp		10					_	1,230	<0.264	5.36	10.2	69.3	<2.11	_	_	_
	D Pump		1.5				1,640	394	_	0.269	23.1	20.1	129	_	_	_	_
	Diesel Tank BTM N	_	10				780	27.9	_	<0.329	<4.39	7.35	18.6	_			_
	Diesel Tank BTM S	-	10			_	3,860	165		3.86	44.0	27.5	128		_	_	_
	West Disp		1.5	-				_	1,730	3.92	40.7	22.9	151	<0.252	_	_	_
	Center Disp	10/25/06	1.5	-					235	<0.0263	<0.210	<0.210	2.5	<0.105		_	_
	East Disp	-	1.5						600	<0.267	10.7	10.6	73.2	<0.107	_	_	_
	West Card Diesel	-	1.5			_	3,850	601	- 20.7	<0.0182	<0.243	<0.243	<0.729	-0.405	_	_	_
	East Card Diesel UL Fill	-	1.5	_		_		_	20.7	<0.0311 <0.0261	<0.249 <0.209	<0.249 <0.209	<0.747 <0.626	<0.125		_	_
	UL IP	-	1.5	_	TA	_			<10.4 <10.6	<0.0261	<0.209	<0.209	<0.626	<0.104 <0.106	_	_	_
	UL Turbine 2	-	1.5	-	I A				3,260	13	189	68.7	<0.636 397	<0.106	_		
	D Fill	-	2	-			735	286	3,200	<0.0165	<0.220	<0.220	<0.661	~2.10 —	_		
	D IP	+	1.5 1.5	1		_	43.5	<26.1	_	<0.0165	<0.220	<0.220	<0.627	_	_		
	Drop Island		2	+			23.2	214	<11.5	<0.0137	<0.209	<0.209	<0.627	<0.115	_		
	P1	1	_	-			24.2	<44.8	22.2	<0.0200	<0.256	<0.256	<0.769	<0.113	_		_
	P2	-	5-10 9-11 5-10	1			898	43.6	145	<0.0321	<0.230	<0.213	<0.640	<0.120	_	_	_
	P4			-				-	<12.3	<0.0308	<0.247	<0.247	<0.740	<0.107	_		_
	P5/P6	10/27/06				_	_	_	<13.1	<0.0327	<0.262	<0.262	<0.785	<0.123	_	_	_
Cenex UST Excavation Area	P9	10/2//00			ŀ				41.5	<0.0310	<0.248	<0.248	<0.743	<0.124	_		_
Ceriex GOT Excavation Area	P10	1	10-11	٩					<12.9	<0.0321	<0.257	<0.257	<0.771	<0.129	_		_
	P11	1	5-10		ŀ		141	<42.8	1,050	0.0561	0.352	2.45	17.2	<1.30	_		_
	P12	1	10-11		ŀ	_	<15.2	<37.9	<12.8	<0.0320	<0.256	<0.256	<0.767	<0.128	_		_
	OTE-SE1-6		6			_	<25	<100	139	0.013	0.021	0.108	1.802	<0.010	_	_	_
	OTE-E2-11		11			_	<25	<100	7.1	0.063	0.01	0.02	0.062	<0.010	_	_	
	OTE-E3-6		6			_	<25	<100	18.2	0.131	0.059	0.056	0.352	<0.010	_	_	_
	OTE-E4-6		6			_	<25	102	39.6	0.544	0.322	0.336	1.329	<0.010	_	_	_
	OTE-W6-6		6			_	<25	<100	11.0	0.052	0.032	0.014	0.03	<0.010	_	_	_
	OTE-SE1-11	11/10/06	11			_	<25	<100	7.6	0.027	0.012	<0.005	0.067	<0.010	_	_	_
	OTE-E2-6		6			_	<25	173	8.0	0.023	0.014	0.009	0.084	<0.010	_	_	_
	OTE-W5-5	1	5			_	<25	<100	9.7	0.029	0.015	0.011	0.093	<0.010	_	_	_
	OTE-W5-10	1	10			_	<25	<100	9.5	0.026	0.025	0.015	0.097	<0.010	_	_	_
	OTE-W6-11	1	10 11 11	Anatek	_	<25	<100	6.4	0.016	0.006	<0.005	0.017	<0.010	_	_	_	
	N1-11				_	465	<100	642	0.099	0.249	1.14	7.16	<0.025	_	_	_	
	N2-11	11/13/06 11 3		_	<25	<100	46.2	0.058	0.074	0.15	0.636	<0.025	_	_	_		
	CT-DW-3.0			_	<25	<100	<2.50	<0.025	<0.025	<0.025	< 0.075	<0.025	_	_	_		
	CT-GE-3.0	1	3 3-6 6-9			_	_	_	<2.50	<0.025	<0.025	<0.025	<0.075	<0.025	_	_	_
	NTE-NE 3-6					_	<25	<100	<2.50	0.083	0.058	<0.025	<0.075	<0.025	_	_	_
	NTE-NE 6-9	11/11/06				_	<25	<100	4.29	0.228	0.483	0.03	0.175	<0.025	_	_	_
	NTE-M 3-6	11/14/06	3-6			_	<25	<100	10.5	0.49	1.3	0.073	0.806	<0.025	_	_	_
	NTE-M 6-9		6-9			_	<25	<100	<2.50	0.044	0.101	<0.025	<0.075	<0.025	_	_	_
MTCA Method A Cleanup Level for So	il ⁷					NE	2,000	2,000	30	0.03	7	6	9	0.1	0.005	11 ^a	NE

			Sample							Anal	vtical Results	(milligrams per kild	ogram)				
Boring Number/Sample Area	Sample Identification	Date Sampled	Depth (feet) ¹	Sampled By	Analyzed By	NWTPH- HCID ²	DRPH ³	ORPH ³	GRPH⁴	Benzene ⁵	Toluene ⁵	Ethylbenzene ⁵	Total Xylenes⁵	MTBE ⁵	EDB ⁵	EDC ⁵	VOCs ⁶
		- Cumpica	(,		_,		X 2006 EXCA						,				
	NTE-SE 3-6	14/14/00	3-6			_	<25	<100	3.27	<0.025	<0.025	<0.025	<0.075	<0.025	_	_	_
0 1107.5	NTE-SE 6-9	11/14/06	6-9			_	<25	<100	<2.50	<0.025	0.031	<0.025	<0.075	<0.025	_	_	_
Cenex UST Excavation Area	Card West 3	44/00/00	3	1		_	77.6	<45.0	<12.0	<0.0299	<0.239	<0.239	<0.718	_	_	_	_
	Card East 3	11/20/06	3			_	13.1	<29.7	<11.9	<0.0297	<0.237	<0.237	<0.712	_	_	_	_
Cenex Facility Imported Backfill	Backfill Comp.	11/20/06	NA			_	<10.4	<26.0	<10.4	<0.0260	<0.208	<0.208	<0.623	_	_		_
						SE	S SOIL BOR	INGS									
	SP01-06.5-07.5		6.5-7.5			ND	<50	<250	<20	_	_	_	_	_	_	_	_
SP01	SP01-11-12	04/09/08	11-12	SES	F&B	ND	<50	<250	<20		_	_	_	_	_	_	_
	SP01-13-14		13-14			ND	<50	<250	<20						_		
	SP02-03-04		3-4			_	150 ^x	<250	670	1.6	11	10	64	_	_	_	_
SP02	SP02-07-08	04/09/08	7-8	SES	F&B	_	850 ^x	<250	3,300	3.3	62	78	480	2.0	< 0.05	< 0.05	<cul< td=""></cul<>
	SP02-13-14		13-14			_	<50	<250	<2	<0.02	<0.02	<0.02	<0.06		_		
	SP03-07-08		7-8			ND	<50	<250	<20		_	_	_	_	_	_	_
SP03	SP03-10-11	04/09/08	10-11	SES	F&B	ND	<50	<250	<20					_	_		_
	SP03-12-13		12-13			ND	<50	<250	<20	_					_		
	SP04-07-08		7-8			_	<50	<250	34	<0.02	0.03	0.12	0.35	_	_		_
SP04	SP04-10-11	04/09/08	10-11	SES	F&B	_	160 ^x	<250	1,100	<0.02	1.2	24	24		_		
	SP04-12-13		12-13				<50	<250	<2	<0.02	< 0.02	<0.02	<0.06	_	_	_	_
	SP05-07-08		7-8			_	1,200 ^x	<250	2,400	< 0.03	< 0.05	0.48	<0.15	< 0.05	< 0.05	< 0.05	<cul< td=""></cul<>
SP05	SP05-10-11	04/09/08	10-11	SES	F&B		120 ^x	<250	280	< 0.02	0.12	3.5	2	_	_	_	_
	SP05-13-14		13-14			_	<50	<250	<2	<0.02	<0.02	<0.02	<0.06		_		
	SP06-03-04		3-4			ND	<50	<250	<20					_	_		_
SP06	SP06-07-08	04/09/08	7-8	SES	F&B	ND	<50	<250	<20	_					_		
	SP06-11-12		11-12			ND	<50	<250	<20		_	_	_	_	_	_	_
	SP07-03-04		3-4			ND	<50	<250	<20	_					_		
SP07	SP07-07-08	04/09/08	7-8	SES	F&B	ND	<50	<250	<20	_	_	_		_	_		_
	SP07-12.5-13.5		12.5-13.5			ND	<50	<250	<20		_	_		_	_	_	_
	SP08-05-06		5-6			ND	<50	<250	<20					_	_		_
SP08	SP08-10-11	04/10/08	10-11	SES	F&B	ND	<50	<250	<20		_	_		_	_	_	_
	SP08-13-14		13-14			ND	<50	<250	<20		_	_	_	_	_	_	_
	SP09-06-07		6-7			ND	<50	<250	<20	_	_	_	_	_	_	_	_
SP09	SP09-09-10	04/10/08	9-10	SES	F&B	ND	<50	<250	<20	_	_	_		_	_		_
	SP09-13-14		13-14			ND	<50	<250	<20	_	_	_	_	_	_	_	_
	SP10-05-06		5-6			ND	<50	<250	<20	_	_	_		_	_		_
SP10	SP10-09-10	04/10/08	9-10	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	-	_
	SP10-14-15		14-15			ND	<50	<250	<20	_	_	_	_	_	_	_	_
	SP11-03-04		3-4]		_	<50	<250	11	0.37	0.02	0.05	0.59	_	_	-	_
SP11	SP11-05-06	04/09/08	5-6	SES	F&B	_	<50	<250	6	0.29	<0.05	<0.05	0.15	<0.05	<0.05	<0.05	<cul< td=""></cul<>
5, 11	SP11-09.5-10.5	0-103100	9.5-10.5	J JLJ	ו עט	_	<50	<250	2	<0.02	<0.02	<0.02	<0.06	_	_	_	_
	SP11-13-14		13-14			_	<50	<250	<2	<0.02	<0.02	<0.02	<0.06	_	_	_	_
MTCA Method A Cleanup Level for Soil	7					NE	2,000	2,000	30	0.03	7	6	9	0.1	0.005	11 ^a	NE

			Sample							Anal	vtical Results	(milligrams per kild	ogram)				
Boring Number/Sample Area	Sample Identification	Date Sampled	Depth (feet) ¹	Sampled By	Analyzed By	NWTPH- HCID ²	DRPH ³	ORPH ³	GRPH⁴	Benzene ⁵	Toluene⁵	Ethylbenzene ⁵	Total Xylenes ⁵	MTBE ⁵	EDB ⁵	EDC ⁵	VOCs ⁶
						SE	S SOIL BOR	1	1						T		
	SP12-06.5-08		6.5-8			_	<50	<250	<2	<0.02	<0.02	<0.02	<0.06	_	_	_	_
SP12	SP12-10-12	04/10/08	10-12	SES	F&B	_	<50	<250	140	0.034	<0.05	0.75	2.97	<0.05	<0.05	<0.05	<cul< td=""></cul<>
]	SP12-13-14	_	13-14			_	<50	<250	66	<0.02	0.26	0.6	2.9	_	_	_	_
	SP12-14-15		14-15				<50	<250	<2	<0.02	<0.02	<0.02	<0.06	_	_	_	_
	SP13-05.5-06.5		5.5-6.5			ND	<50	<250	<20	_	_	_	_	_	_	_	_
SP13	SP13-09-10	04/10/08	9-10	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	SP13-12.5-13.5		12.5-13.5			ND	<50	<250	<20	_	_	_	_	_	_	_	_
	SP14-04.5-05.5		4.5-5.5			_	<50	<250	3.0	0.11	0.02	0.02	<0.06	_	_	_	_
SP14	SP14-07-08	04/10/08	7-8	SES	F&B	_	<50	<250	<2	0.074	<0.05	<0.05	<0.15	<0.05	<0.05	<0.15	<cul< td=""></cul<>
	SP14-13-14		13-14			_	<50	<250	<2	<0.02	<0.02	<0.02	<0.06	_	_	_	_
	SP15-06-07		6-7				<50	<250	3.0	0.21	<0.05	<0.05	0.29	<0.05	<0.05	<0.15	<cul< td=""></cul<>
SP15	SP15-10-11	04/10/08	10-11	SES	F&B		<50	<250	<2	0.03	<0.02	<0.02	0.06	_	_	_	_
	SP15-13-14		13-14			_	<50	<250	<2	<0.02	< 0.02	<0.02	<0.06	_	_	_	_
SP16	SP16-09.5-10	04/10/08	9.5-10	SES	F&B	ND	<50	<250	<20	_	_	_		_	_	_	_
51 10	SP16-13-14	04/10/00	13-14	OLO	TOD	ND	<50	<250	<20	_	_	_		_	_	_	
SP17	SP17-05-07	04/09/08	5-7	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
SF17	SP17-10-11	04/09/06	10-11	SES	ΓαΒ	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B13-7-8		7-8			ND	<50	<250	<20	_	_	_	_	_	_	_	_
B13/MW13	B13-11-12	06/02/08	11-12	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_		
	B13-13-14		13-14			ND	<50	<250	<20	_	_	_	_	_	_		
	B14-7-8		7-8			_	<50	<250	<2	<0.02	<0.02	<0.02	<0.06	_	_	_	_
B14	B14-11-12	06/02/08	11-12	SES	F&B	_	<50	<250	140	< 0.03	< 0.05	0.26	<0.15	< 0.05	< 0.05	< 0.05	<cul< td=""></cul<>
	B14-13-14	1	13-14	1		_	95 ^x	<250	84	<0.02	2	0.22	0.42	_	_	_	_
5	B14A-07.5	22/22/22	7.5	252	505	_	230 ^x	<250	24	< 0.03	< 0.05	< 0.05	<0.15	< 0.05	< 0.05	< 0.05	<cul< td=""></cul<>
B14A/MW14	B14A-10	03/03/09	10	SES	F&B	_	260 ^x	<250	1,300	<0.03	0.057	45	2.1	<0.05	< 0.05	<0.05	<cul< td=""></cul<>
	B15-7-8		7-8			ND	<50	<250	<20	_	_	_	_	_	_	_	_
B15/MW15	B15-11-12	06/02/08	11-12	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B15-13-14	1	13-14	1		ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B16-6-7	1	6-7			_	<50	<250	<2	<0.02	<0.02	<0.02	<0.06	_	_	_	_
B16/MW16	B16-11-12	06/02/08	11-12	SES	F&B	_	<50	<250	140	<0.03	<0.05	0.26	<0.15	<0.05	<0.05	<0.05	<cul< td=""></cul<>
	B16-14-15	1	14-15	1		_	<50	<250	<2	<0.02	<0.02	<0.02	<0.06	_	_	_	_
	B17-6-7		6-7			ND	<50	<250	<20	-	_	_	_	_	_	_	_
B17/MW17	B17-9.5-10.5	06/02/08	9.5-10.5	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B17-13-14	1 22, 32, 33	13-14	1		ND	<50	<250	<20	_	_	_		_	_	_	_
	B18-6-7	1	6-7			ND ND	<50	<250	<20	_	_	_			_		
B18/MW18	B18-11-12	06/02/08	11-12	SES	F&B	ND	<50	<250	<20	_	_						
2.5,3,77	B18-13-14	1 33,32,33	13-14	1 5-5	. 25	ND	<50	<250	<20		_	<u> </u>	_	_	_	_	
	B19-6-7	†	6-7	<u> </u>			<50	<250	<2	<0.02	<0.02	<0.02	<0.06		_		
B19/MW19	B19-7-8	06/02/08	7-8	SES	F&B		<50	<250	<2	<0.02	<0.02	<0.02	<0.06				<cul< td=""></cul<>
D 10,10100 10	B19-11.5-12.5	33,32,00	11.5-12.5	1 020			<50 <50	<250	2	<0.02	<0.02	<0.05	<0.00	<0.05	<0.05	<0.05	<cul< td=""></cul<>
MTCA Method A Cleanup Level for Soi	7	1	11.0-12.0	<u> </u>	l .	NE	2,000	2,000	30	0.03	7	6	9	0.03	0.005	11 ^a	NE
milon method A cleanup Level for Son	ı					IAL	2,000	2,000	30	0.03		U	3	U. 1	0.003		IAL

			Sample							Anal	ytical Results	(milligrams per kild	ogram)				
		Date	Depth	Sampled	Analyzed	NWTPH-							Total				
Boring Number/Sample Area	Sample Identification	Sampled	(feet) ¹	By	By	HCID ²	DRPH ³	ORPH ³	GRPH ⁴	Benzene ⁵	Toluene ⁵	Ethylbenzene ⁵	Xylenes ⁵	MTBE ⁵	EDB⁵	EDC ⁵	VOCs ⁶
						SES	S SOIL BOR	INGS									
B20/MW20	B20-06	06/04/08	6	SES	F&B	ND	<50	<250	<20	_			_	_	_	_	_
B20/WW20	B20-07.5	00/01/00	7.5	020	1 42	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B21-9-10		9-10			ND	<50	<250	<20	_	_	_	_	_	_	_	_
B21/MW21	B21-11-12	06/02/08	11-12	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_		
	B21-12-13		12-13			ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B22-5-6		5-6			ND	<50	<250	<20	_	_	_	_	_	_	_	_
B22/MW22	B22-7-8	06/02/08	7-8	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B22-11-12		11-12			ND	<50	<250	<20	_	_	_	_	_	_	_	_
B23/MW23	B23-6-7	06/02/08	6-7	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
B26/M1126	B23-14-15	00/02/00	14-15	020	1 42	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B24-02.5		2.5			ND	<50	<250	<20	_	_	_	_	_	_	_	
B24/MW24	B24-07.5	03/02/09	7.5	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B24-12.5		12.5			ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B25-05		5			ND	<50	<250	<20	_		_	_	_	_		_
B25/MW25	B25-07.5	03/03/09	7.5	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_		_
	B25-12.5		12.5			ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B26-4		4			ND	<50	<250	<20	_	_	_	_	_	_		_
B26/MW26	B26-10	05/18/09	10	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_		_
	B26-14		14			ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B27-04		4			ND	<50	<250	<20	_	_	_	_	_	_	_	
B27/MW27	B27-08	05/18/09	8	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_		_
DZI/WWVZI	B27-12	03/10/03	12	OLO	TOD	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B27-14.5		14.5			ND	<50	<250	<20	_	_	_	_	_	_	_	
	B28-04		4			ND	<50	<250	<20	_	_	_	_	_	_		_
B28/MW28	B28-10.5	05/18/09	10.5	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B28-15		15			_	<50	<250	13	<0.02	0.03	<0.02	0.07	_	_	_	
	B29-04		4			ND	<50	<250	<20	_	_	_	_	_	1	_	_
B29/MW29	B29-11	05/18/09	11	SES	F&B	_	<50	<250	310	<0.02	0.91	3.9	2.7	_	_	_	_
	B29-15		15			ND	<50	<250	<20	_	_	_	_	_	1	_	_
	B30-04		4			ND	<50	<250	<20	_	_	_	_	_	_	_	
B30/MW30	B30-08	05/18/09	8	SES	F&B	_	1,200	<250	27	<0.02	<0.02	0.14	0.12	_	_	_	
	B30-11		11			_	770	<250	25	_	_	_	_	<0.05	< 0.05	< 0.05	
	B31-04		4			ND	<50	<250	<20	_	_	_	_	_	_	_	
B31/MW31	B31-08	05/18/09	8	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	
	B31-10		10			ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B32-04		4			ND	<50	<250	<20	_	_	_	_	_	_	_	_
B32	B32-08	05/18/09	8	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
DJZ	B32-12	03/10/09	12	SES	FαD	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B32-15		15	1		ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B33-04		4			ND	<50	<250	<20	_	_	_	_	_	_	_	_
B33/MW32	B33-11	05/18/09	11	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	B33-14		14			ND	<50	<250	<20	_	_	_	_	_	_	_	_
ITCA Method A Cleanup Level for Soil	l ⁷	•	•	•	•	NE	2,000	2,000	30	0.03	7	6	9	0.1	0.005	11 ^a	NE

			Sample							Anal	ytical Results	(milligrams per kild	ogram)				
		Date	Depth	Sampled	Analyzed	NWTPH-							Total				
Boring Number/Sample Area	Sample Identification	Sampled	(feet) ¹	Ву	Ву	HCID ²	DRPH ³	ORPH ³	GRPH⁴	Benzene ⁵	Toluene ⁵	Ethylbenzene ⁵	Xylenes⁵	MTBE ⁵	EDB ⁵	EDC ⁵	VOCs ⁶
						;	SES TEST PI	TS									
TP01	TP01-07	03/02/09	7	SES	F&B	_	<50	<250	<20	_	_	_	_	_	_	_	_
1701	TP01-12	03/02/09	12	SES	ΓαΒ	_	390 ^x	<250	700	< 0.03	< 0.05	<0.05	<0.15	< 0.05	<0.05	< 0.05	<cul< td=""></cul<>
	TP02-04		4			ND	<50	<250	<20	_	_	_	_	_	_	_	_
TP02	TP02-09.5	03/02/09	9.5	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
	TP02-12.5		12			_	<50	<250	190	< 0.03	< 0.05	<0.05	<0.15	< 0.05	<0.05	< 0.05	<cul< td=""></cul<>
TP03	TP03-07.5	03/02/09	7.5	SES	F&B	ND	<50	<250	<20	_	_	_	_	_	_	_	_
1703	TP03-11	03/02/09	11	SES	FQD	_	<50	<250	16	< 0.03	< 0.05	<0.05	<0.15	< 0.05	<0.05	< 0.05	<cul< td=""></cul<>
Test Pit Stockpile	SP Comp	03/02/09	_	SES	F&B	_	<50	<250	38	< 0.03	< 0.05	<0.05	<0.15	< 0.05	<0.05	< 0.05	_
MTCA Method A Cleanup Level for So	il ⁷	•	•	•	•	NE	2,000	2,000	30	0.03	7	6	9	0.1	0.005	11 ^a	NE

NOTES:

Red denotes concentration exceeds MTCA Method A Cleanup Levels for soil.

¹Depth in feet below ground surface.

²Analyzed by NWTPH Method for Hydrocarbon Identification (HCID). Detection Limits are 20 mg/kg for GRPH,

50 mg/kg for DRPH and 250 mg/kg for ORPH.

³Analyzed by Method NWTPH-Dx or HCID.

⁴Analyzed by Method NWTPH-Gx or HCID.

⁵Analyzed by EPA Method 8021B or 8260B.

⁶Analzyed by EPA Method 8260B.

'MTCA Method A Soil Cleanup Levels, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised November 2007 ^aCleanup Levels and Risk Calculations Database, Method B, Standard Formula Value

Laboratory Notes:

*Pattern of peaks present is not indicative of diesel.

= sample location overexcavated

< = not detected at concentration above the laboratory reporting limit

--- = unknown/not analyzed

Anatek = Anatek Laboratories, Inc. of Moscow, Idaho

CUL = cleanup level

DRPH = diesel-range petroleum hydrocarbons

EDB = 1,2-dibromoethane

EDC = 1,2-dichloroethane

EPA = United States Environmental Protection Agency
F&B = Friedman and Bruya, Inc. of Seattle, Washington.

GEI = GeoEngineers, Inc.

GEOENGINEERS = GeoEngineers, Inc.

GRPH = gasoline-range petroleum hydrocarbons

mg/kg = milligrams per kilogram MTBE = methyl tertiary-butyl ether MTCA = Washington State Model Toxics Control Act

NWTPH = Northwest Total Petroleum Hydrocarbon

NCA = North Creek Analytical of Spokane, Washington

ND = not detected at concentration above the laboratory reporting limit

NE = not established

ORPH = oil-range petroleum hydrocarbons

QE = Quantum Engineering and Geologic Consulting

QUANTUM = Quantum Engineering and Geologic Consulting

SES = Sound Environmental Strategies Corporation
TA = TestAmerica Laboratories of Spokane, Washington

TIME OIL = Time Oil Co.

TPH = total petroleum hydrocarbon UST = underground storage tank

VOCs = volatile organic compounds

			Sample Depth			Analytic	cal Results (m	<u>illigram</u> s per l	kilogram)		
Sample Area	Sample Identification	Date Sampled	(feet) ¹	Arsenic ²	Barium ²	Cadmium ²	Chromium ²	Mercury ^{2,3}	Selenium ²	Silver ²	Lead ⁴
				999 EXCAVAT	TION			, ,	1		
	TOC-SP-1	00/00/00	_	<2.67	250	<2.67	14.6	<0.27	<2.67	<2.67	117
Jackpot UST Installation Stockpile	COMPOSITE (SP-2 through 6)	09/03/99	_	<2.38	116	<2.38	11.5	<0.24	<2.38	<2.38	11.5
	(0		QUANTUM	2004 EXCAVA							
	ULIP 0-6			_	_	_	I –	_	_	_	13.6
	ULIP 15"		_	_	_	_	_	_	_	_	15.3
" O O F " A	SULIP 0-6"	44/04/04	_	_	_	_	_	_	_	_	9.79
olfax Grange Sump Excavation Area	SULIP 15	11/01/04	_	_	_	_	_	_	_	_	5.45
	SUL Pump 0-6"		_	_	_	_	_	_	_	_	64.5
	UL Pump 0-6"		_	_		_	_	_	_	_	17.8
			SES S	OIL BORINGS							
	SP02-03-04		3-4	_	_	_	_	_	_	_	11.5
SP02	SP02-07-08	04/09/08	7-8	_		_	_	_	_	_	31.7
	SP02-13-14		13-14	_	_	_	_	_	_	_	1.97
	SP04-07-08		7-8	_		_	_	_	_	_	31.2
SP04	SP04-10-11	04/09/08	10-11	_		_	_	_	_	_	9.82
	SP04-12-13		12-13	_	_	_	_	_	_	_	2.23
	SP05-07-08		7-8	_	_	_	_	_	_	_	36.7
SP05	SP05-10-11	04/09/08	10-11	_	_	_	_	_	_	_	9.4
5. 55	SP05-13-14	1	13-14	_	_	_	_	_	_	_	1.96
	SP11-03-04		3-4	_		_	_	_	_	_	339
	SP11-05-06		5-6	_	_	_	_	_	_	_	7.11
SP11	SP11-09.5-10.5	04/09/08	9.5-10.5	_	_	_	_	_	_	_	6.69
	SP11-13-14		13-14	_		_	_	_	_	_	2.89
	SP12-06.5-08		6.5-8	_	_	<u> </u>	<u> </u>	_	_	_	6.62
	SP12-10-12		10-12	_		_	_	_	_	_	5.75
SP12	SP12-13-14	04/10/08	13-14	_	_	_	_	_	_	_	13.9
	SP12-14-15		14-15	_		_	_	_	_	_	2.41
	SP14-04.5-05.5		4.5-5.5			+ =	_	_			6.43
SP14	SP14-07-08	04/10/08	7-8	_			_	_	_		6.02
SF 14	SP14-13-14	04/10/00	13-14			 					3.14
	SP15-06-07		6-7	_		 			_		10.9
SP15	SP15-06-07 SP15-10-11	04/10/08	10-11						+		5.18
SP 15		04/10/06		_		_	_		_		
	SP15-13-14		13-14		_	_	_			_	3.0
B14	B14-7-8	06/02/09	7-8	_	_	_	_	_	_	_	18.1
D14	B14-11-12	06/02/08	11-12	_	_	_	_	_	_	_	1.75
	B14-13-14		13-14	_	_		_		_		1.38
B14A/MW14	B14A-07.5 B14A-10	03/03/09	7.5 10	_	_		_	_	_	_	4.55
			_	_	_	_	_	_	_	_	10.4
D4.0/8.0\4.0	B16-6-7	00/00/00	6-7	_	_	_	_	_	_	_	6.33
B16/MW16	B16-11-12	06/02/08	11-12	_	_	_	_	_	_		5.26
	B16-14-15		14-15	_			_				4.71
D40/M****	B19-6-7	00/00/00	6-7	_	_	_	_	_	_	_	88.3
B19/MW19	B19-7-8	06/02/08	7-8	_	_	_	_	_	_	_	4.93
	B19-11.5-12.5		11.5-12.5	_			_				9.20
B28/MW28	B28-15	05/18/09	15	_	_		_	_	_	_	12
B29/MW29	B29-11	05/18/09	11	_	_	_	_		_	_	6.18
B30/MW30	B30-08	05/18/09	8	_	_	<u> </u>	_	_	_	-	4.87
	B30-11	1	11	<u> </u>	_	<u> </u>				-	4.78
				TEST PITS				_	T		
TP01	TP01-12	03/02/09	12	_		_	_	_	_	_	5.13
TP02	TP02-12.5	03/02/09	12	_	_	_	_	_	_	_	4.01
TP03	TP03-11	03/02/09	11	_	_	_	_	_	_	_	5.96
Test Pit Stockpile	SP Comp	03/02/09	_	1.43	116	<1	7.8	<0.2	<1	<1	11.9
CA Method A Cleanup Level for So	••5			20	16,000 ^a	2	2,000	2	400 ^a	400 ^a	250

NOTES:

Red denotes concentration exceeds MTCA Method A Cleanup Levels for soil.

¹Depth in feet below ground surface.

²Analyzed by EPA Method 200.8/245.1.

³Analyzed by EPA Method 1631E.

⁴Analyzed by EPA Methods 200.8/245.1 or 6000/7000 Series.

 $^5 \rm MTCA$ Method A Soil Cleanup Levels, Table 740-1 of Section 900 of Chapter 173-340 of the Washington

Administrative Code, as revised November 2007.

^aCleanup Levels and Risk Calculations (CLARC), Soil, MTCA Method B, Non-carcinogenic, Standard Formula Value, Unrestricted Land Use, CLARC website - https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

-- = not analyzed/not applicable

< = not detected at concentration above the laboratory reporting limit

EPA = United States Environmental Protection Agency

MTCA = Washington State Model Toxics Control Act

UST = underground storage tank

Table 3 Summary of Soil Analytical Results for Polycyclic Aromatic Hydrocarbons North Colfax Petroleum Contamination Site Colfax, Washington

								Ana	alytical Resu	lts (milligran	ns per kilogi	ram)			
									•		cPAHs ³				
Sample Area	Sample Identification	Sample Location	Date Sampled	Sample Depth (feet) ¹	Naphthalene ²	1-Methylnaphthalene³	2- Methylnaphthalene ³	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenzo(a,h) anthracene	Indeno(1,2,3-cd) pyrene	Total TEQ Soil Concentration
				TIME	OIL 1999 E	XCAVATION	l					_	_		_
Former Service Bay Installation	GP-03	Beneath grease pit	09/09/99	10-11	0.040	_	0.29	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
					SES SOIL B	ORINGS		T				•	•	T	_
SP02	SP02-07-08	Boring SP02	04/09/08	7-8	15	5.7	12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
SP05	SP05-07-08	Boring SP05	04/09/08	7-8	9.1	2.4	5.1	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
SP11	SP11-05-06	Boring SP11	04/09/08	5-6	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
SP12	SP12-10-12	Boring SP12	04/10/08	10-12	0.12	0.17	0.36	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
SP14	SP14-07-08	Boring SP14	04/10/08	7-8	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
SP15	SP15-06-07	Boring SP15	04/10/08	6-7	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
B14	B14-11-12	Boring B14	06/02/08	11-12	0.070	0.18	0.42	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
B16/MW16	B16-11-12	Borng B16/MW16	06/02/08	11-12	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
B19/MW19	B19-11.5-12.5	Boring B19/MW19	06/02/08	11.5-12.5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
B14A/MW14	B14A-07.5	Boring B14A/MW14	03/03/09	7.5	<0.05	_	_	_	_	_	_	_	_	_	_
B14AVIVIVV14	B14A-10	Boiling B 14A/MW 14	03/03/09	10	9.1	3.2	6.5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
B30/MW30	B30-11	Boring B30/MW30	05/18/09	11	<0.01	_	_	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
					SES TEST	PITS									
TP01	TP01-12	Test Pit TP01	03/02/09	12	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.00755
TP02	TP02-12.5	Test Pit TP02	03/02/09	12	<0.05	_	_	_	_	_	_	_	_	_	_
TP03	TP03-11	Test Pit TP03	03/02/09	11	<0.05		_	_	_	_	_	_	_	_	_
Test Pit Stockpile	SP Comp	Composite of SP1,SP2, and SP3	03/02/09	_	<0.05			_	_	_	_	_	_	_	_
MTCA Method A Cleanup Levels fo	or Soil⁴					5 ^a		NE	0.1	NE	NE	NE	NE	NE	0.1 ^b

NOTES:

Red denotes concentration exceeds MTCA Method A Cleanup Levels for soil.

— = not analyzed/not applicable

< = not detected at concentration above the laboratory reporting limit

cPAH = carcinogenic polyaromatic hydrocarbon

EPA = United States Environmental Protection Agency

LRL = laboratory reporting limit

MTCA = Washington State Model Toxics Control Act

NE - cleanup level not established

TEF = toxicity equivalency factor

TEQ = toxicity equivalent quotient

P:\0592 North Colfax Group\Technica\1Tables\2009R1\0592_2009RI_SD_F\Tbi 3 Soil-PAHs

¹Depth in feet below ground surface.

²Analyzed by EPA Method 8260B or 8270C SIM.

³Analyzed by EPA Method 8270C SIM.

⁴MTCA Method A Soil Cleanup Levels, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised November 2007.

^aTotal cleanup value for naphthalene, 1-methyl naphthalene, and 2-methyl napthalene.

^bAnalytical result for each individual cPAH is multiplied by TEF and all seven cPAH values are added. When analytical result is reported as less than the LRL, half the LRL is used for the calculation. See Table 4 for calculations.

Table 4 Toxicity Equivalents for cPAH Concentrations in Soil North Colfax Petroleum Contamination Site Colfax, Washington

						A 1	Contract	le - 7 - 111				
						Anai	ticai Resu	its (milligra	ms per kilog			
Sample Area	Sample Identification	Sample Location	Date Sampled	Sample Depth (feet) ¹	Benzo(a) anthracene TEF (0.1)	Benzo (a) pyrene TEF (1)	Benzo (b) fluoranthene TEF (0.1)	Benzo (k) fluoranthene TEF (0.1)	Chrysene TEF (0.01)	Dibenzo (a,h) anthracene TEF (0.1)	Indeno (1,2,3- cd) pyrene TEF (0.1)	Total TEQ Concentration ³
		P P P P P P P P P P P P P P P P P P P	TIME OIL 1	999 EXCAV	, .							
Former Service Bay Installation	GP-03	Beneath grease pit	09/09/99	10-11	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
			SES S	OIL BORING	S							
SP02	SP02-07-08	Boring SP02	04/09/08	7-8	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
SP05	SP05-07-08	Boring SP05	04/09/08	7-8	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
SP11	SP11-05-06	Boring SP11	04/09/08	5-6	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
SP12	SP12-10-12	Boring SP12	04/10/08	10-12	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
SP14	SP14-07-08	Boring SP14	04/10/08	7-8	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
SP15	SP15-06-07	Boring SP15	04/10/08	6-7	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
B14	B14-11-12	Boring B14	06/02/08	11-12	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
B16/MW16	B16-11-12	Boring B16/MW16	06/02/08	11-12	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
B19/MW19	B19-11.5-12.5	Boring B19/MW19	06/02/08	11.5-12.5	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
B14A/MW14	B14A-10	Boring B14A/MW14	03/03/09	10	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
B30/MW30	B30-11	Boring B30/MW30	05/18/09	11	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
			SES	TEST PITS								
TP01	TP01-12	Test Pit TP01	03/02/09	12	0.0005	0.005	0.0005	0.0005	0.00005	0.0005	0.0005	0.00755
MTCA Method A Cleanup Levels for	or Soil ⁴				NE	0.1	NE	NE	NE	NE	NE	0.1

NOTES:

cPAH = carcinogenic polycyclic aromatic hydrocarbons

LRL = laboratory reporting limit

MTCA = Washington State Model Toxics Control Act

NE = cleanup level not established

TEF = toxicity equivalency factor

TEQ = toxicity equivalent quotient

¹Depth in feet below ground surface.

²Analyzed by United States Environmental Protection Agency Method 8270C SIM.

³Analytical result for each individual cPAHs is multiplied by TEF and all seven cPAH values are added. When analytical results is reported as less than the LRL, half the LRL is used for the calculation.

⁴MTCA Method A Soil Cleanup Levels, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised November 2007.

		Depth to	0					Aı	nalytical Results (μ	.q/L)					
W. II ID	O and Date	Groundwater ¹	Groundwater Elevation	000U ²	DDD113	0.000113	4				****DE4	500 5	-D04	Dissolved	Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	DRPH ³	ORPH ³	Benzene ⁴	Toluene⁴	Ethylbenzene ⁴	Total Xylenes⁴	MTBE⁴	EDB⁵	EDC ⁴	Lead ⁶	Lead⁵
MW01	02/20/01 08/08/01	5.95 6.78	1,890.62 1,889.79	103.0 56.2	<250 506	<750 1,060	<0.500	<0.500	<0.500 <0.500	1.60 <1.00					
TOC: 1,896.57 feet	11/12/01	7.10	1,889.47	221	576	1,500	3.84 66.9	<0.500 0.920	8.95	1.30					
-	02/28/02	5.65	1,890.92	<50.0	<250	<500	< 0.500	<0.500	<0.500	<1.00					
-	05/07/02	6.23	1,890.34	<50.0 <50.0	439	<500		<0.500	<0.500	<1.00					
-	08/13/02	6.96	1,889.61	539	402	<500	<0.500 130	0.730	6.61	2.29					
-	11/07/02	7.84	1,888.73	129	262	<500	22.8	<0.500	0.755	<1.00					
-	02/18/03	5.60	1,890.97	<50.0	<250	<500	< 0.500	<0.500	<0.500	<1.00					
-	05/22/03	6.57	1,890.00	<50.0	1,140	4,380	<0.500	<0.500	<0.500	<1.00					
	08/12/03	7.67	1,888.90	181	512	1,720	42.5	<0.500	2.38	<1.00					
	11/21/03	7.75	1,888.82	<50.0	1,580	4,610	<0.500	<0.500	<0.500	<1.00					
-	02/25/04	5.55	1,891.02	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00	<1.00				
	04/30/04	6.43	1,890.14	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
-	10/21/04	7.40	1,889.17	<50.0			<0.500	<0.500	<0.500	<1.00					
	11/18/04	7.38	1,889.19	<50.0			<0.500	<0.500	<0.500	<1.00					
	09/08/05	7.73	1,888.84	67.1			20.5	<1.00	<1.00	<3.00	<5.00	<1.00	<1.00		
	03/16/06	5.71	1,890.86	<50.0			< 0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
	08/10/06	7.37	1,889.20	<100			10.4	<0.500	<0.500	<3.00	5.23	<0.500	<0.500		
	09/26/06	7.62	1,888.95	<50.0 ^{HT-1}	<236	<472	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
-	12/15/06	6.40	1,890.17	<50	58	<250	<1	<1	<1	<3	<1	<1	<1		
-	03/14/07	5.78	1,890.79	<100	<50	<250	<1	<1	<1	<3	1.1	<1	<1		
	06/27/07	7.16	1,889.41	<100	94	<250	<1	<1	<1	<3	1.8	<1	<1		
	09/25/07	7.94	1,888.63	<100	<50	<250	<1	<1	<1	<3	3.7	<1	<1		
	12/19/07	6.51	1,890.06	<100	69 ^x	<250	<1	<1	<1	<3	2.0	<1	<1		
	03/04/08	5.45	1,891.12	<100	69 ^x	<250	<1	<1	<1	<3	2.5	<1	<1		<1
	06/10/08	6.49	1,890.08	<100	<50	<250	<1	<1	<1	<3	1.3 ^{jl}	<1	<1		
-	09/10/08	7.37	1,889.20	<100	<50 <50	<250	<1	<1	<1	<3	4.5	<1	<1	<1	<1
-	12/10/08	7.00	1,889.57	<100	53	<250	<1	<1	<1	<3	3.0	<1	<1	<1	<1
-	03/04/09	5.53	1,891.04	<100	630	300	<1	<1	<1	<3	1.2	<0.01	<1	<1	3.79
-	06/11/09	5.80	1,890.77	<100	90 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1		
MW02	02/20/01	5.62	1,891.54	134	364	<750	<0.500	<0.500	0.915	8.53					
TOC: 1,897.16 feet	08/08/01	7.10	1,890.06	1,270	386	<500	193	9.04	142	42.9					
100: 1,037:10 1001	11/12/01	7.18	1,889.98	684	288	<500	81.8	3.61	34.4	28.9					
-	02/28/02	5.85	1,891.31	87.8	279	<500	0.765	<0.500	<0.500	<1.00					
-	05/07/02	6.28	1,890.88	85.0	422	<500	0.873	<0500	<0.500	<1.00					
	08/13/02	6.96	1,890.20	3,650	686	<500	338	45.8	137	88.6					
-	11/07/02	8.09	1,889.07	295	580	<500	27.0	<0.500	4.99	1.88					
	02/18/03	5.93	1,891.23	79.7	297	<500	1.27	<0.500	1.03	1.16					
	05/22/03	6.73	1,890.43	141	604	<500	1.77	<0.500	4.28	3.21					
	08/12/03	7.85	1,889.31	1,210	<250	<500	437	3.520	67.0	28.0					
	11/21/03	7.97	1,889.19	122	<250	<500	0.896	<0.500	2.34	<1.00					
	02/25/04	5.90	1,891.26	68.5	<250	<500	<0.500	<0.500	0.678	2.03	1.48				
	04/30/04	6.43	1,890.73	87.7	<250	<500	0.542	<0.500	0.623	<1.00					
	10/21/04	7.37	1,889.79	64.9			< 0.500	<0.500	<0.500	<1.00					
	11/18/04	7.51	1,889.65	69.0			0.66	<0.500	<0.500	<1.00					
-	09/08/05	7.78	1,889.38	65.4			384	2.56	156	12.4	10.6	<1.00	<1.00		
-	03/16/06	5.97	1,891.19	76.0			0.670	<0.500	0.590	<3.00	<5.00	<0.500	<0.500		
-	08/10/06	7.28	1,889.88	1,940			68.0	6.01	324	187	12.3	<0.500	<0.500		
-	09/27/06	7.81	1,889.35	239 ^{A-01}	669 ^{D-06}	<472	211	<0.500	9.43	<3.00	9.34	<0.500	<0.500		
F	12/16/06	6.27	1,890.89	71	100	<250	<1	<1	9.43	<3	9.34 <1	<1	<1		
-	03/14/07	6.04	1,891.12	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1		
}	06/27/07	7.20	1,889.96	1,600	730 ^x	<250	11	1.4	150	105	2.6	<1	<1		
-	09/25/07	8.06	1,889.10	580	400 ^x	<250	15	<1	81	8.6	5.7	<1	<1		
}	12/19/07	6.70	1,889.10	<100	<250 ^{dv}	<1,200 ^{dv}	24	<1	<1	<2	<1	<1	<1		
MTCA Made and A Cu	eanup Level for Grou		1,030.40	1,000/800 ^b	500	500	5	1,000	700	1,000	20	0.01	5	15	

		Depth to	Groundwater					Ar	nalytical Results (μ	g/L)					
Well ID	Commis Data	Groundwater ¹	Elevation	ODDU ²	DRPH ³	ODDU ³	D4		Ethylbenzene⁴	Ĭ	MTDF4	EDB ⁵	EDC ⁴	Dissolved	Total
Well ID MW02	Sample Date 03/04/08	(feet) 5.90	(feet)	GRPH ²	520 ^x	ORPH ³	Benzene ⁴	Toluene⁴	18	Total Xylenes⁴ 8.4	MTBE⁴ 3.8		<1	Lead ⁶	Lead ⁶
Continued	03/04/08 (Duplicate)	3.90	1,891.26	1,000 980	520 ^x	<250 <250	110 110	<1 <1	18	8.1	3.4	<1 <1	<1		<1 <1
TOC: 1,897.16 feet	06/10/08	6.62	1,890.54	<100	240 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
100. 1,097.16 leet	09/10/08	8.38	1,888.78	9,400 ^d	2,600 ^x	<250	92	9.2	620	1,110	1.2	<1	<1	<1	<1
	12/10/08	6.94	1,890.22	330	350	<250	<1	<1	5.8	2.9	<1	<1	<1	<1	<1
	03/04/09	5.65	1,890.22	<100	220 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	03/04/09 (Duplicate)	3.03	1,091.51	<100	200 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/11/09	6.40	1,890.76	<100	120 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/11/09 (Duplicate)		1,090.70	<100	130 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1		
MW03	02/07/01	5.69	1,891.65	3,170	638	<750	106	13.1	65.0	146					
TOC: 1,897.34 feet	08/08/01	7.26	1,890.08	8,590	739	<500	724	60.6	631	865					
100. 1,097.04 1661	11/12/01	7.41	1,889.93	6,990	343	<500	884	40.2	633	488					
	02/28/02	6.15	1,891.19	3,560	358	<500	356	26.0	303	242					
	05/07/02	6.58	1,890.76	4,670	607	<500	492	30.9	289	199					
	08/13/02	7.24	1,890.10	5,520	832	<500	502	75.9	274	331					
	11/07/02	8.31	1,889.03	2,410	385	<500	308	3.99	105	9.20					
	02/18/03	6.22	1,891.12	568	414	<500	53.3	7.26	16.5	15.5					
	05/22/03	6.99	1,890.35	778	497	<500	156	<2.50	32.7	13.7					
	08/12/03	8.04	1,889.30	3,900	265	<500	964	18.9	244	61.4					
	11/21/03	8.20	1,889.14	436	<250	<500	57.2	<0.500	6.72	3.89					
	02/25/04	6.18	1,891.16	429	<250	<500	26.2	<0.500	7.59	6.23	9.73				
	04/30/04	6.66	1,890.68	1,380	<250	<500	123	2.37	34.5	25.10	9.73				
	10/21/04	7.56	1,889.78	810			173	<2.50	1.08	<1.00					
	11/18/04	7.73	1,889.61	164			7.95	<0.500	<0.500	<1.00					
	09/09/05	8.00	1,889.34	3,650			832	21.8	51.1	75.50	16.8	<1.00	<1.00		
	03/16/06	6.21	1,891.13	99.9			< 0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
	08/10/06	7.46	1,889.88	1,810			381	5.17	74.0	15.5	9.54	<0.500	<0.500		
	09/27/06	7.64	1,889.70	1,950 ^{HT-1}	641 ^{D-06}	<472	32.8	3.3	226	43.4	9.74	<0.500	<0.500		
	12/16/06	6.48	1,890.86	68	120	<250	<1	<1	<1	<3	1.2	<1	<1		
	03/14/07	6.30	1,891.04	<100	230	<250	<1	<1	<1	<3	<1	<1	<1		
	06/27/07	7.38	1,889.96	<100	190	<250	<1	<1	<1	<3	2.0	<1	<1		
	09/25/07	8.21	1,889.13	<100	<50	<250	<1	<1	<1	<3	2.2	<1	<1		
	12/19/07	6.92	1,890.42	<100	300	<250	<1	<1	<1	<3	<1	<1	<1		
	03/04/08	6.15	1,891.19	<100	230	<250	<1	<1	<1	<3	<1	<1	<1		
	06/10/08	6.86	1,890.48	<100	150 ^x	<250	<1	<1	<1	<3	1.6 ^{jl}	<1	<1		
	09/10/08	7.58	1,889.76	<100	180	<250	1.6	<1	1.5	<3	2.9	<1	<1	<1	<1
	12/10/08	7.16	1,890.18	<100	140	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/04/09	5.93	1,891.41	<100	170 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/11/09	6.54	1,890.80	<100	370 ^x	<250	<1	<1	3	<3	<5	<0.01		<1	<1
MW04	02/20/01	5.81	1,890.85	179	254	<750	31.0	2.63	6.17	26.8					
TOC: 1,896.66 feet	08/08/01	6.70	1,889.96	1,460	361	<500	256	8.91	103	58.3					
100. 1,000.00 1001	11/12/01	6.90	1,889.76	1,680	<250	<500	361	9.26	194	40.5					
	02/28/02	5.55	1,891.11	146	294	<500	14.7	<0.500	8.80	1.15					
	05/07/02	5.99	1,890.67	184	470	<500	24.4	0.564	10.8	1.18					
}	08/13/02	6.86	1,889.80	2,990	552	<500 <500	437	37.6	170	76.7					
}	11/07/02	7.03	1,889.63	343	460	<500	29.0	<0.500	3.53	<1.00					
	02/18/03	5.63	1,891.03	61.4	<250	<500	0.545	<0.500	<0.500	<1.00					
}	05/22/03	6.34	1,890.32	66.9	502	<500	4.97	<0.500	<0.500	<1.00					
}	08/12/03	7.43	1,889.23	1,190	<250	<500	554	5.40	72.2	3.85					
}	11/21/03	7.58	1,889.08	71.80	<250	<500	0.516	<0.500	<0.500	<1.00					
}	02/25/04	5.60	1,891.06	<50.0	<250	<500	< 0.500	<0.500	<0.500	<1.00	9.53				
 	04/30/04	6.07	1,891.06	<50.0 55.2	<250 <250	<500 <500	<0.500	<0.500	<0.500	<1.00	9.53				
	10/21/04	6.07	1,889.69	183	<250		4.33	<0.500	<0.500	<1.00					
}	11/18/04	7.11	1,889.55	113			0.658	<0.500	<0.500	<1.00					
1	11/10/04	7.11	1,008.00	110			0.000	\U.JUU	\0.500	\1.00					5

		Depth to	Groundwater					Aı	nalytical Results (µ	ıg/L)					
		Groundwater ¹	Elevation		3		_ 4			Ĭ.		5	1	Dissolved	Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	DRPH ³	ORPH ³	Benzene ⁴	Toluene⁴	Ethylbenzene ⁴	Total Xylenes⁴	MTBE⁴	EDB ⁵	EDC⁴	Lead ⁶	Lead ⁶
MW04	09/08/05	7.35	1,889.31	965			271	4.7	6.98	<4.37	19.7	<1.00	<1.00		
Continued	03/16/06	5.61	1,891.05	<50.0			<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
ГОС: 1,896.66 feet	08/10/06	6.87	1,889.79	624	 D 06	-	166	1.52	22.5	<3.00	11.4	<0.500	<0.500		
	09/26/06	8.19	1,888.47	327 ^{HT-1}	463 ^{D-06}	<472	12.6	<0.500	<0.500	<3.00	12.3	<0.500	<0.500		
	12/15/06	7.31	1,889.35	<50	59	<250	<1	<1	<1	<3	<1	<1	<1		
	03/14/07	5.69	1,890.97	<100	120	<250	<1	<1	<1	<3	3.1	<1	<1		
	06/27/07	6.78	1,889.88	<100	260	<250	<1	<1	<1	<3	5.2	<1	<1		
	09/25/07	7.63	1,889.03	<100	140 ^x	<250	<1	<1	<1	<3	4.7	<1	<1		
	12/19/07	6.30	1,890.36	<100	210	<250	<1	<1	<1	<3	3.8	<1	<1		
	03/04/08	5.53	1,891.13	<100	180	<250	1.3	<1	<1	<3	3.6	<1	<1		<1
	06/10/08	6.24	1,890.42	<100	200 ^x	<250	<1	<1	<1	<3	4.9 ^{Jl}	<1	<1		
	09/10/08	6.98	1,889.68	<100	280	<250	1.8	<1	8.7	<9.5	7.2	<1	<1	<1	<1
	12/10/08	6.49	1,890.17	<100	160	<250	<1	<1	<1	<3	4.3	<1	<1	<1	<1
	03/04/09	5.33	1,891.33	<100	170	<250	<1	<1	<1	<3	3.4	<0.01	<1	<1	<1
	06/08/09	6.15	1,890.51												-
MW05	02/07/01	5.81	1,892.03	327	282	<750	5.90	3.27	2.64	12.0					1
ΓOC: 1,897.84 feet	08/08/01	7.83	1,890.01	3,210	560	<500	479	32.5	403	148					
	11/12/01	8.00	1,889.84	3,930	306	<500	544	20.4	287	195					-
	02/28/02	6.76	1,891.08	5,270	407	<500	556	48.2	443	356					
	05/07/02	7.22	1,890.62	5,310	732	<500	654	36.8	360	241					
	08/13/02	7.82	1,890.02	4,270	691	<500	474	62.2	264	216					-
	11/07/02	8.89	1,888.95	2,180	474	<500	431	13.6	174	15.6					
	02/18/03	6.83	1,891.01	858	400	<500	251	0.830	15.3	1.59					-
	05/22/03	7.56	1,890.28	2,190	487	<500	751	<5.00	128	<10.0					
	08/12/03	8.58	1,889.26	2,360	257	<500	876	7.16	117	12.7					
	11/21/03	8.76	1,889.08	759	<250	<500	176	<0.500	0.572	<1.00					
	02/25/04	6.80	1,891.04	1,010	<250	<500	230	0.748	44.30	5.10	25.90				-
	04/30/04	7.24	1,890.60	1,620	<250	<500	447	5.17	44.20	42.8					
	10/21/04	8.11	1,889.73	654			99.3	<0.500	<0.500	<1.00					
	11/18/04	8.25	1,889.59	524			59.1	<0.500	<0.500	1.08					
	09/09/05	8.54	1,889.30	347			7.28	<1.00	<1.00	<3.00	13.9	<1.00	<1.00		-
	03/16/06	6.83	1,891.01	140			<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		-
	08/10/06	8.00	1,889.84	461			46.3	<0.500	17.2	<3.00	7.69	<0.500	<0.500		-
	09/27/06	8.34	1,889.50	105 ^{Q-40}	<236	<472	< 0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
-			· '		<50	<250	 			<3					
	12/15/06 03/14/07	8.48 6.93	1,889.36 1,890.91	<50 <100	210	<250	<1	<1	<1 <1	<3	<1 1.6	<1 <1	<1		
-		7.92	· ·			 	<1	<1				-	<1		
	06/27/07		1,889.92	<100	200 61 ^x	<250	<1	<1	<1	<3	1.6	<1	<1		
_	09/25/07	8.76	1,889.08	<100		<250	<1	<1	<1	<3	<1	<1	<1		
	12/19/07	7.49	1,890.35	<100	140	<250	<1	<1	<1	<3	1.5	<1	<1		
	03/04/08	6.75	1,891.09	<100	240	<250	<1	<1	<1	<3	2.0	<1	<1		<1
-	06/10/08	7.41	1,890.43	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1		
-	09/10/08	8.11	1,889.73	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
-	12/10/08	7.71	1,890.13	<100	86	<250	<1	<1	<1	<3	4.1	<1	<1	<1	<1
-	03/04/09	6.52	1,891.32	<100	140 ^x	<250	<1	<1	<1	<3	1.1	<0.01	<1	<1	<1
	06/10/09	7.10	1,890.74	<100	<50	<250	<1	<1	<1	<3	<1	<0.01	<1		
MW06	02/20/01	5.95	1,890.87	923	411	<750	21.4	0.686	14.1	<5.36					
ГОС: 1,896.82 feet	08/08/01	6.85	1,889.97	1,720	456	<500	302	6.21	92.1	27.9	-				
	11/12/01	7.16	1,889.66	1,800	257	<500	330	7.26	108	19.9					
	02/28/02	5.91	1,890.91	886	354	<500	73.1	1.56	26.2	4.51					
	05/07/02	6.35	1,890.47	1,560	882	<500	77.8	1.34	30.2	5.25					
	08/13/02	6.94	1,889.88	2,600	667	<500	432	41.7	163	81.3					
	11/07/02	7.96	1,888.86	1,660	568	<500	230	5.18	75.6	<10.0					-
	02/18/03	5.99	1,890.83	900	622	<500	18.2	0.552	13.2	3.09					1
	05/22/03	6.65	1,890.17	217	526	<500	5.27	<0.500	0.63	<1.00					-
	08/12/03	7.69	1,889.13	1,290	<250	<500	405	5.11	55.2	<10.0					
	11/21/03	7.83	1,888.99	373	<250	<500	1.38	<0.500	<0.500	1.72					
ATCA Method A Cla	eanup Level for Grou			1,000/800 ^b	500	500	5	1,000	700	1,000	20	0.01	5	15	

Well ID	Sample Date	Depth to Groundwater ¹ (feet)	Groundwater Elevation (feet)	Analytical Results (µg/L)											
					2	ORPH ³	Benzene ⁴	Toluene⁴	Ethylbenzene ⁴	Total Xylenes⁴	MTBE⁴	EDB ⁵	EDC ⁴	Dissolved Lead ⁶	Total Lead ⁶
				GRPH ²	DRPH ³										
MW06	02/25/04	5.91	1,890.91	871	<250	<500	12.8	0.506	9.10	6.54	29.00				
Continued TOC: 1,896.82 feet	04/30/04	6.38	1,890.44	732	<250	<500	3.56	<0.500	2.44	4.06					
	10/21/04	7.20	1,889.62	190		-	0.659	<0.500	<0.500	<1.00					
	11/18/04	7.37	1,889.45	163			0.777	<0.500	<0.500	<1.00					
	09/08/05	7.61	1,889.21	932			262	5.82	6.54	<3.00	18.0	<1.00	<1.00		-
	03/16/06	5.97	1,890.85	156			0.730	<0.500	<0.500	<3.00	5.05	<0.500	<0.500		
	08/10/06	7.13	1,889.69	210	 D.06		28.9	<0.500	3.85	<3.00	6.95	<0.500	<0.500		
	09/27/06	7.43	1,889.39	214 ^{Q-40}	481 ^{D-06}	<472	0.61	<0.500	<0.500	<3.00	9.01	<0.500	<0.500		
	12/15/06	6.62	1,890.20	100	<50	<250	5.3	19	1.9	10.6	<1	<1	<1		
	03/14/07	6.07	1,890.75	180	180	<250	<1	<1	<1	<3	3.6	<1	<1		
	06/27/07	7.06	1,889.76	130	260	<250	<1	<1	<1	<3	3.4	<1	<1		
	09/25/07	7.83	1,888.99	170	210 ^x	<250	<1	<1	1.2	<3	3.2	<1	<1		
	12/19/07	6.60	1,890.22	240	170	<250	<1	<1	<1	<3	4.1	<1	<1		
	03/04/08	5.91	1,890.91	180	220	<250	<1	<1	<1	<3	3.3	<1	<1		
	06/10/08	6.63	1,890.19	<100	170 ^x	<250	<1	<1	<1	<3	2.7 ^{jl}	<1	<1		-
	09/10/08	7.26	1,889.56	250	330	<250	1.3	<1	1.1	<3	6.4	<1	<1	<1	<1
	12/10/08	6.88	1,889.94	<100	110	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/04/09	5.71	1,891.11	350	210 ^x	<250	2.5	<1	1.5	<3	5.3	<0.01	<1	<1	<1
	06/08/09	6.78	1,890.04												
MW07 TOC: 1,896.67 feet	02/20/01	6.24	1,890.43	447	329	<750	24.9	<0.500	8.06	<1.52					-
	08/08/01	7.42	1,889.25	732	430	<500	183	1.78	20.7	2.07					
	11/12/01	8.00	1,888.67	1,650	<250	<500	288	5.59	104	12.1					-
	02/28/02	6.82	1,889.85	911	267	<500	110	1.72	33.0	4.34					-
	05/07/02	7.32	1,889.35	795	446	<500	32.4	<0.500	2.79	2.49					
	08/13/02	7.91	1,888.76	2,250	648	<500	428	33.9	109	45.8					
	11/07/02	8.74	1,887.93	1,880	442	<500	227	7.35	51.8	<10.0					
	02/18/03	7.02	1,889.65	420	512	<500	11.5	<0.500	0.620	1.03					
	05/22/03	7.67	1,889.00	350	463	<500	19.4	<0.500	<0.500	1.02					
	08/12/03	8.59	1,888.08	1,160	<250	<500	371	5.89	6.53	10.1					
	11/21/03	8.45	1,888.22	429	<250	<500	8.30	<0.500	<0.500	1.30					
-	02/25/04	6.80	1,889.87	327	<250	<500	3.92	<0.500	<0.500	1.89	13.90				-
	04/30/04	7.57	1,889.10	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00	13.30				
	10/21/04	8.22	1,888.45	350			19.6	<0.500	<0.500	1.23					
	11/18/04	8.30	1,888.37	367			13.6	<0.500	<0.500	1.81					
										t		+			
	09/09/05	8.76	1,887.91	421			51.6	<1.00	<1.00	<3.00	13.9	<1.00	<1.00		
	03/16/06	7.13	1,889.54	129			<0.500	<0.500	<0.500	<3.00	8.77	<0.500	<0.500		-
	08/10/06	8.58	1,888.09	104 168 ^{HT-1}	394 ^{D-06}	470	1.46	<0.500	<0.500	<3.00	22.5	<0.500	<0.500		
	09/27/06	8.57	1,888.10			<472	<0.500	<0.500	<0.500	<3.00	8.75	<0.500	<0.500		
	12/15/06	No Access													
	03/14/07	7.15	1,889.52	170	260	<250	<1	<1	<1	<3	7.3	<1	<1		
	06/27/07	8.31	1,888.36	<100	250	<250	<1	<1	<1	<3	13	<1	<1		
	09/25/07	8.88	1,887.79	150	140 ^x	<250	<1	<1	<1	<3	7.1	<1	<1		
	12/19/07	7.67	1,889.00	150	200	<250	<1	<1	<1	<3	8.4	<1	<1		
	03/04/08	7.05	1,889.62	160	290	250	<1	<1	<1	<3	7.0	<1	<1		<1
	06/10/08	7.54	1,889.13	<100	220 ^x	390	<1	<1	<1	<3	2.2 ^{jl}	<1	<1		
	09/10/08	8.44	1,888.23	<100	200 ^{dv}	<360 ^{dv}	<1	<1	<1	<3	1.8	<1	<1	<1	<1
	12/10/08	8.00	1,888.67	<100	98	<250	<1	<1	<1	<3	3.8	<1	<1	<1	<1
	03/04/09	6.66	1,890.01	<100	120 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/10/09	7.08	1,889.59	<100	170 ^x	<250	<1	1	1	<3	<5	<0.01			-
MW08	11/07/02	9.51	1,887.98	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
TOC: 1,897.49 feet	02/18/03	7.94	1,889.55	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					-
	05/22/03	8.43	1,889.06	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
	08/12/03	9.50	1,887.99	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
	11/21/03	9.52	1,887.97	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
MTCA Method A Cla	eanup Level for Grou			1,000/800 ^b	500	500	5	1,000	700	1,000	20	0.01	5	15	

		Depth to Groundwater ¹	Groundwater Elevation	Analytical Results (μg/L)											
				2	3	3	_ 4			Ĭ.		5	4	Dissolved	Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	DRPH ³	ORPH ³	Benzene ⁴	Toluene⁴	Ethylbenzene ⁴	Total Xylenes⁴	MTBE⁴	EDB ⁵	EDC⁴	Lead ⁶	Lead ⁶
MW08	02/25/04	7.85	1,889.64	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00	1.36				
Continued TOC: 1,897.49 feet	04/30/04	8.50	1,888.99	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
	10/21/04	9.20	1,888.29	<50.0			<0.500	<0.500	<0.500	<1.00	-				
	11/18/04	9.21	1,888.28	<50.0			<0.500	<0.500	<0.500	<1.00					
	09/08/05	8.53	1,888.96	<50.0			<1.00	<1.00	<1.00	<3.00	<5.00	<1.00	<1.00		
	03/16/06	8.15	1,889.34	<50.0			<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
	08/10/06	9.37	1,888.12	<100			<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
	09/26/06	9.31	1,888.18	<50.0 ^{Q-41}	<236	<472	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
	12/15/06	8.28	1,889.21	<50	<50	<250	<1	<1	<1	<3	<1	<1	<1		
	03/14/07	8.02	1,889.47	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1		
	06/27/07	9.12	1,888.37	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1		
	09/25/07	9.73	1,887.76	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1		
	12/19/07	8.57	1,888.92	<100	<250 ^{dv}	<1,200 ^{dv}	<1	<1	<1	<3	<1	<1	<1		
	03/04/08	8.02	1,889.47	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1		<1
	06/10/08	8.30	1,889.19	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1		
	09/10/08	9.40	1,888.09	<100	<71 ^{dv}	<360 ^{dv}	<1	<1	<1	<3	<1	<1	<1	<1	<1
	12/09/08	8.96	1,888.53	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/04/09	7.70	1,889.79	<100	<50	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/10/09	10.20	1,887.29	<100	140 ^x	<250	<1	<1	<1	<3	<5	<0.01			
MW09	11/07/02	9.21	1,889.06	<50.0	375	<500	<0.500	< 0.500	< 0.500	<1.00	-				-
TOC: 1,898.27 feet	02/18/03	7.04	1,891.23	<50.0	411	<500	<0.500	<0.500	< 0.500	<1.00					
	05/22/03	7.79	1,890.48	<50.0	531	<500	<0.500	<0.500	<0.500	<1.00	-				-
	05/22/03	8.89	1,889.38	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
	11/21/03	9.06	1,889.21	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00	-				
	02/25/04	6.96	1,891.31	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00	1.39				
	04/30/04	7.48	1,890.79	<50.0	<250	<500	<0.500	< 0.500	<0.500	<1.00	1				-
	10/21/04	8.43	1,889.84	<50.0			<0.500	< 0.500	<0.500	<1.00	1				-
	11/18/04	8.51	1,889.76	<50.0			<0.500	<0.500	<0.500	<1.00					
	09/08/05	8.84	1,889.43	<50.0			<1.00	<1.00	<1.00	<3.00	<5.00	<1.00	<1.00		
	03/16/06	7.03	1,891.24	<50.0			<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
	08/10/06	8.32	1,889.95	<100			<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		-
	09/26/06	8.67	1,889.60	<50.0 ^{Q-41}	935 ^{D-06}	667 ^{D-06}	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		-
	12/16/06	7.31	1,890.96	<50	400	860	<1	<1	<1	<3	<1	<1	<1		
	03/14/07	7.12	1,891.15	<100	150	320	<1	<1	<1	<3	<1	<1	<1		
	06/27/07	8.24	1,890.03	<100	150	<250	<1	<1	<1	<3	<1	<1	<1		
	09/25/07	9.12	1,889.15	<100	60 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
	12/19/07	7.77	1,890.50	<100	260 ^x	700	<1	<1	<1	<3	<1	<1	<1		
	03/04/08	6.95	1,891.32	<100	270 ^x	550	<1	<1	<1	<3	<1	<1	<1		1.41
	06/10/08	7.68	1,890.59	<100	150 ^x	370	<1	<1	<1	<3	<1	<1	<1		1.41
	06/10/08 (Duplicate)	7.00	1,090.59	<100	160 ^x	290	<1	<1	<1	<3	<1	<1	<1		
	09/10/08	No Access													-
	12/08/08	No Access													
	03/04/09	6.75	1,891.52	<100	110 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/10/09	7.25	1,891.02	<100	280 ^x	<250	<1	<1	2	<3	<5	<0.01		<1	<1
	06/10/09 (Duplicate)			<100	280 ^x	<250	<1	<1	2	<3	<5	<0.01		<1	<1
MW10	11/07/02	8.91	1,889.06	4,920	571	<500	1,250	16.1	255	79.7					
TOC: 1,897.97 feet	02/18/03	6.70	1,891.27	16,800	407	<500	2,830	1,400	663	1,350					
	05/22/03	7.49	1,890.48	11,700	538	<500	2,490	139	634	1,270					
	08/12/03	8.58	1,889.39	7,220	989	<500	1,800	76.3	573	260					
	11/21/03	8.77	1,889.20	3,790	<250	<500	1,330	3.66	291	87.6					
	02/25/04	6.63	1,891.34	14,700	<250	<500	1,780	87.6	956	2,410	68.8				
	04/30/04	7.18	1,890.79	9,310	<250	<500	1,500	18.5	930	1,450	-				
	10/21/04	8.11	1,889.86	8,330			2,400	25.2	589	115					
	11/18/04	8.27	1,889.70	5,130	-		1,190	10.2	454	276	-				
	09/08/05	8.53	1,889.44	8,160			1,420	48.1	346	453	25.3	<1	<1		
	09/08/05 (Duplicate)			7,170			1,530	44.3	309	314	ŀ				1
MTCA Method A CI	eanup Level for Groun	dwater ⁷	_	1,000/800 ^b	500	500	5	1,000	700	1,000	20	0.01	5	15	

		Depth to	0					Ar	nalytical Results (µ	a/L)					
		Groundwater ¹	Groundwater Elevation						iary trout resource (p	9/2/				Dissolved	Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	DRPH ³	ORPH ³	Benzene⁴	Toluene⁴	Ethylbenzene ⁴	Total Xylenes⁴	MTBE⁴	EDB ⁵	EDC⁴	Lead ⁶	Lead ⁶
MW10	03/16/06	7.02	1,890.95	5,720			611	17.5	616	1,030	7.55	<0.500	<0.500		
Continued	03/16/06 (Duplicate)			5,630			498	<20.0	431	593	<20.0				
TOC: 1,897.97 feet	08/10/06	8.02	1,889.95	3,820			670	14.8	216	83.3	11.0	<0.500	<0.500		
	09/26/06	8.36	1,889.61	3,290 ^{HT-3}	1,060 ^{D-06}	<472	681	<10.0	207	105	<100	<10.0	<10.0		
	12/16/06	7.02	1,890.95	250	130	<250	38	<1	<1	<3	1.7	<1	<1		
	03/14/07	6.82	1,891.15	190	200	<250	44	<1	<1	<3	2.1	<1	<1		
	03/14/07 (Duplicate)			187	<250	<500	33.0	<2.00	<1.00	<1.50	<2.00	<0.01	<2.00		
	06/27/07	7.93	1,890.04	270	180 ^x	<250	52	<1	<1	<3	4.2	<1	<1		
	06/27/07 (Duplicate)			195	<250	<500	57.7	<2.00	<1.00	<1.50	4.32	<0.0100	<1		
	09/25/07	8.80	1,889.17	<100	88 ^x	<250	<1	<1	<1	<3	2.3	<1	<1		
	09/25/07 (Duplicate)			<100	<250	<500	<0.500	<2.00	<1.00	<1.50	1.64	<0.0100	<1		
	12/19/07	7.47	1,890.50	<100	83	<250	21	<1	<1	<3	3.7	<1	<1		
	12/19/07 (Duplicate)			<100	<250	<500	18.8	<2.00	<1.00	<1.50	3.82	< 0.0100	<1		
	03/04/08	6.66	1,891.31	<100	120	<250	3.5	<1	<1	<3	3.1	<1	<1		<1
	06/10/08	7.45	1,890.52	<100	120 ^x	<250	<1	<1	<1	<3	4.7 ^{jl}	<1	<1		
	09/10/08	No Access													
	12/08/08	No Access													
	03/04/09	6.45	1,891.52	<100	150 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/11/09	6.96	1,891.01	<100	97 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
MW11	11/07/02	8.82	1,887.69	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
TOC: 1,896.51 feet	02/18/03	7.35	1,889.16	63.6	<250	<500	8.05	<0.500	<0.500	<1.00			-		
100. 1,030.31 leet	05/22/03	4.59	1,891.92	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
	08/12/03	9.01	1,887.50	281	<250	<500	25.5	<0.500	<0.500	<1.00			-		
	11/21/03	8.81	1,887.70	1,450	<250	<500	1.78	0.671	1.61	3.07					
	02/25/04	7.45	1,889.06	873	<250	<500	9.20	1.76	2.50	2.76	1.70				
	04/30/04	7.45	1,888.53	810	<250	<500			1.84	2.76	1.70				
	10/21/04	7.98 8.61	1,887.90	698	<250	<500	1.15 1.10	1.72 <0.500	0.579	1.66					
	11/18/04	8.66	1,887.85	724			0.84	0.548	0.668	2.49					
			,								<5.00				
	09/09/05	9.10	1,887.41	1,130			1.8	<1.00	<1.00	<3.00		<1.00	<1.00		
	03/16/06	7.62	1,888.89	676			<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
	08/10/06	8.91	1,887.60	168 879 ^{Q-40}	351 ^{D-06}	470	<0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
	09/27/06	8.75	1,887.76		351	<472	<0.500	<0.500	<0.500	<3.00	8.16	<0.500	<0.500		
	12/15/06	No Access			140 ^{D-06}										
	03/14/07	7.58	1,888.93	300		<250	<1	<1	<1	<3	<1	<1	<1		
	06/27/07	8.61	1,887.90	320	150 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
	09/25/07	9.17	1,887.34	790	330 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
	12/19/07	8.05	1,888.46	290	<50	<250	<1	<1	<1	<3	<1	<1	<1		
	03/04/08	7.54	1,888.97	240	130 ^x	<250	1.1	<1	<1	<3	<1	<1	<1		<1
	06/11/08	8.13	1,888.38	180	88 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
	09/11/08	8.85	1,887.66	290	180 ^{x, dv}	<360 ^{dv}	<1	<1	<1	<3	<1	<1	<1	1.20	1.48
	12/10/08	8.42	1,888.09	160	67	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/06/09	7.20	1,889.31	<100	<50	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/10/09	8.80	1,887.71	<100	<50	<250	<1	2	<1	<3	<5	<0.01			
MW12	11/07/02	9.26	1,889.05	2,140	471	<500	278	9.21	57.4	71.2					
TOC: 1,898.31 feet	02/18/03	7.02	1,891.29	5,120	754	<500	650	71.0	184	271					
	05/22/03	7.84	1,890.47	6,260	1,160	<500	879	212	159	339					
	08/12/03	8.60	1,889.71	508	<250	<500	114	1.77	15.2	2.17					
	11/21/03	9.10	1,889.21	1,740	<250	<500	397	7.68	72.8	11.9					
	02/25/04	7.00	1,891.31	8,250	<250	<500	1,400	389	203	561	195				
	04/30/04	7.52	1,890.79	3,100	<250	<500	477	98.7	62.4	153					
	10/21/04	8.44	1,889.87	148			30.2	<0.500	0.603	<1.00			-		
	11/18/04	8.60	1,889.71	182			35.5	<0.500	1.82	<1.00			-		
	09/09/05	8.73	1,889.58	90.2			4.15	<1.00	<1.00	<3.00	<5.00	<1.00	<1.00		
MTCA Method A CI	eanup Level for Groun	dwater ⁷		1,000/800 ^b	500	500	5	1,000	700	1,000	20	0.01	5	15	<u>; </u>

P:\0592 North Colfax Group\Technical\Tables\2009R1\0592_2009R1_GW_F

		Depth to	Groundwater					Aı	nalytical Results (µ	ıa/L)					
		Groundwater ¹	Elevation							,				Dissolved	Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	DRPH ³	ORPH ³	Benzene ⁴	Toluene⁴	Ethylbenzene ⁴	Total Xylenes⁴	MTBE ⁴	EDB ⁵	EDC⁴	Lead ⁶	Lead ⁶
MW12	03/16/06	6.97	1,891.34	4,880			846	38.3	304	473	13.4	<0.500	<0.500		-
Continued	08/10/06	8.25	1,890.06	<100			< 0.500	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		-
TOC: 1,898.31 feet	09/26/06	8.61	1,889.70	<50.0 ^{Q-41}	<236	<472	0.610	<0.500	<0.500	<3.00	<5.00	<0.500	<0.500		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12/16/06	7.26	1,891.05	270	130	<250	25	<1	<1	<3	4.1	<1	<1		
	03/14/07	7.07	1,891.24	<100	130	<250	1.7	<1	<1	<3	1.7	<1	<1		
	06/27/07	8.18	1,890.13	<100	54	<250	<1	<1	<1	<3	<1	<1	<1		
	09/25/07	9.04	1,889.27	<100	<50	<250	<1	<1	<1	<3	1.1	<1	<1		
	12/19/07	7.71	1,890.60	<100	<50	<250	<1	<1	<1	<3	1.0	<1	<1		
	03/04/08	6.89	1,891.42	<100	68 ^x	<250	<1	<1	<1	<3	<1	<1	<1		<1
_	06/10/08	7.61	1,890.70	<100	68 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
	09/10/08	No Access	1,090.70												
_	12/08/08	No Access													
_	03/04/09	6.71	1,891.60	<100	<50 73 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
B838/40	06/11/09	7.40	1,890.91	<100		<250	<1	<1	<1	<3	<5	<0.01		<1	<1
MW13	06/11/08	7.83	1,888.27	100	76	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
TOC: 1,896.10 feet	09/11/08	8.60	1,887.50	<100	<71 ^{dv}	<360 ^{dv}	<1	<1	<1	<3	<1	<1	<1	<1	<1
	12/10/08	8.24	1,887.86	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/06/09	7.06	1,889.04	<100	<50	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/10/09	7.65	1,888.45	<100	74 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
MW14	03/04/09	7.80	1,889.77	3,600	1,000 ^x	<250	18	1.9	750	109	<1	<0.01	<1	2.46	2.86
TOC: 1,897.57 feet	06/09/09	8.62	1,888.95	2,000	1,200 ^x	<250	10	1.6	450	124	1.3	<0.01	<1	8.02	7.79
MW15	06/11/08	8.35	1,890.25	<100	82 ^x	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
TOC: 1,898.60 feet	09/11/08	9.02	1,889.58	<100	110 ^{dv}	<360 ^{dv}	<1	<1	<1	<3	1.6	<1	<1	<1	<1
	12/10/08	8.62	1,889.98	<100	93	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/06/09	7.90	1,890.70	<100	<50	<250	<1	<1	<1	<3	1.0	<0.01	<1	<1	<1
	06/11/09	8.20	1,890.40	<100	<50	<250	<1	<1	<1	<3	<5	<0.01			
MW16	06/11/08	9.55	1,890.54	110	230 ^x	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
TOC: 1,900.09 feet	09/10/08	10.35	1,889.74	130	130 ^{dv}	<360 ^{dv}	<1	<1	<1	<3	<1	<1	<1	<1	<1
	12/09/08	9.88	1,890.21	<100	94	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/06/09	8.72	1,891.37	<100	94	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/11/09	9.15	1,890.94	<100	160 ^x	<250	<1	<1	<1	<3	<5	<0.01			-
MW17	06/11/08	9.39	1,890.54	<100	190 ^x	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
TOC: 1,899.93 feet	09/10/08	10.14	1,889.79	<100	210	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	12/09/08	9.65	1,890.28	<100	84	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/06/09	8.44	1,891.49	<100	73	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/11/09	8.91	1,891.02	<100	130 ^x	<250	<1	<1	<1	<3	<5	<0.01			
MW18	06/11/08	9.08	1,890.54	<100	170 ^x	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
TOC: 1.899.62 feet	09/10/08	9.85	1,889.77	<100	200	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
. 5 61 1,55 61 62 1661	12/09/08	9.34	1,890.28	<100	150	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/06/09	8.10	1,891.52	<100	130	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
_	06/11/09	8.55	1,891.07	<100	300 ^x	<250	<1	<1	<1	<3	<5	<0.01			
MW19	06/11/08	7.24	1,891.63	<100	230 ^x	310	<1	<1	<1	<3	<1	<1	<1	<1	<1
TOC: 1,898.87 feet	09/10/08	7.42	1,891.45	<100	260	320	<1	<1	<1	<3	<1	<1	<1	<1	<1
100. 1,030.07 1661		6.69	1,892.18	<100	170	<250	<1		<1		<1				
	12/09/08		· ·		210	<250		<1		<3		<1	<1	<1	<1
	03/06/09	5.48	1,893.39 1,892.72	<100		<250 <250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
MANAGO	06/10/09	6.15		<100	250 ^x	1	<1	<1	<1	<3	<5	<0.01			
MW20	06/11/08	6.80	1,890.41	200	880	330 ^y	<1	<1	<1	<3	<1	<1	<1	<1	<1
TOC: 1,897.21 feet	09/10/08	7.83	1,889.38	<100	300 ^{dv}	<360 ^{dv}	<1	<1	<1	<3	<1	<1	<1	<1	<1
	12/09/08	7.24	1,889.97	<100	350	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/04/09	5.60	1,891.61	210	1,500 ^x	270	<1	<1	3.7	<3	<1	<0.01	<1	<1	<1
	06/10/09	5.83	1,891.38	210	930 ^x	440 ^y 500	<1 5	<1 1,000	4.3 700	<3 1,000	<1	<0.01	<1	15	

7 of 10 Pi0592 North Colfax Group\Technical\Tables\2009R\0592_2009R_GW_F

Wall D Sample Date Croundward Elevation Croundward Croundward			Domth to						Δι	nalytical Results (μ	a/L)					
West Description Sample Date Sample D			Depth to	Groundwater					AI	lalytical Results (μ	g/L)				Dissolved	Total
MAY21 1,580,100 1,580,100 1,580,100 1,580,100 1,50	Well ID	Sample Date			GRPH ²	DRPH ³	ORPH ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xvienes	MTBE ⁴	EDB ⁵	EDC⁴		Lead ⁶
1209066	MW21		` '	` '	_					•	•		<1	<1		<1
Common C		09/10/08	7.46	1,890.12	<100	130	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
Marco		12/09/08	7.17	1,890.41	<100	62	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
MAY22 OFF 11/98 9.29 1,888.68 4.00		03/04/09	5.65	1,891.93	<100	67 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
TOC-1897-06 Feet 1997-06 1993 1,888.58 <100 89" <10 <1 <1 <1 <1 <1 <1 <		06/10/09	7.14	1,890.44	210	480 ^x	360 ^y	<1	<1	7.3	<3	<1	<0.01	<1		1
121008	MW22	06/11/08	9.29	1,888.40	<100	<50	<250	<1	<1	<1	<3	2.6	<1	<1	<1	<1
Commonweal Com	TOC: 1897.69 feet	09/10/08	9.03	1,888.66	<100	83 ^{dv}	<360 ^{dv}	<1	<1	<1	<3	4.1	<1	<1	<1	<1
M000000000000000000000000000000000000		12/10/08	9.61	1,888.08	<100	<50	<250	<1	<1	<1	<3	3.4	<1	<1	<1	<1
MV23		03/04/09	8.48	1,889.21	<100	83 ^x	<250	<1	<1	<1	<3	7.6	<0.01	<1	<1	<1
TOC. 1,901.09 feet		06/08/09	9.10	1,888.59												
10.20008	MW23	06/11/08	10.56	1,890.53	<100		<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
0000009	TOC: 1,901.09 feet	09/10/08	11.30	1,889.79	<100	<71 ^{dv}	<360 ^{dv}	<1	<1	<1	<3	<1	<1	<1	<1	<1
Mary		12/09/08	10.81	1,890.28	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
MV24		03/06/09	9.60	1,891.49	<100	52	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
TOC: 100:065 feet		06/10/09	10.07	1,891.02	<100	110 ^x	<250	<1	<1	<1	<3	<5	<0.01			
MW26 G306090 5.79	MW24	03/06/09	9.54	1,891.11	<100	180	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
TOC: 1.989.46 feet 06/11/09 6.32 1.892.14 <100 310" 390" <1 <1 <1 <3 <1 <0.01 <1 <1 <1 <1 <3 <1 <0.01 <1 <1 <1 <1 <1 <1 <1	TOC: 1,900.65 feet	06/11/09	9.86	1,890.79	<100	260 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
MW26 TOC 1,897.67 feet 0,809.09 8.45 1,889.52 <100 360° 380° <1 <1 <1 <1 <3 <1 <0.01 <1 <1 <1 <1 <1 <1 <1	MW25	03/06/09	5.79	1,892.67	<100			<1	<1	<1	<3	<1	<0.01	<1	<1	<1
TOC: 1,898,68 feet 0,009,09 8.45 1,889,22 <100 360° 380° <1 <1 <1 <3 <1 <0.01 <1 <1 <1 <1 <1 <1 <1	TOC: 1,898.46 feet	06/11/09	6.32	1,892.14	<100	310 ^x	390 ^y	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
MW29 TOC: 1,893.56 text O6/09/09 T.75 1,889.55 <100 170° <250 <1 <1 <3 1.9 <0.01 <1 <1 MW28 TOC: 1,090.75 fext O6/09/09	MW26															
TOC: 1,893.95 feet	TOC: 1,897.67 feet	06/09/09	8.45	1,889.22	<100	360 ^x	380 ^y	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
MW28 TOC: 1,899.75 feet 06/09/09 10.20 1,890.55 <100 <50 <250 <1 <1 <1 <3 <1 <0.01 <1 <1 <1 <1 <1 <1 <1	MW27															
TOC: 1,989.75 feet	TOC: 1,897.30 feet	06/09/09	7.75	1,889.55	<100	170 ^x	<250	<1	<1	<1	<3	1.9	<0.01	<1	<1	<1
MW29	MW28															
TOC: 1,887,73 feet 06/11/09 6.86 1,891.89 <100 450° 510° <1 <1 <1 <3 <1 <0.01 <1 <1 <1 <1 <1 <1 <1	TOC: 1,900.75 feet	06/09/09	10.20	1,890.55	<100	<50	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
NW30 TOC: 1,897.13 feet 06/09/09 5.82 1,891.31 1,400 2,400 460° <1 <1 110 13 <1 <0.01 <1 <1 <1 <1 <1 <1 <1	MW29															
TOC: 1,897.13 feet	TOC: 1,898.75 feet	06/11/09	6.86	1,891.89	<100	450 ^x	510 ^y	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
MW31 TOC: 1,896.44 feet O6/10/09 S.85 1,890.59 <100 130° 280° <1 <1 <1 <1 <3 <1 <0.01 <1 <1 <1 <1 <1 <1 <1	MW30															
TOC: 1,896.44 feet		06/09/09	5.82	1,891.31	1,400	2,400	460 ^y	<1	<1	110	13	<1	<0.01	<1	<1	<1
NW32 TOC: 1,899.50 feet	-															
TOC: 1,898.50 feet	· · · · · · · · · · · · · · · · · · ·	06/10/09	5.85	1,890.59	<100	130 ^x	280 ^y	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
CMW01*																
TOC: 1,899.58 feet				· · · · · · · · · · · · · · · · · · ·			570 ^y					<1	<0.01	<1	<1	<1
12/13/04	_			· · · · · · · · · · · · · · · · · · ·				+					+			•
03/16/05	TOC: 1,899.58 feet															
06/23/05				· · · · · · · · · · · · · · · · · · ·									+			
09/08/05													+			
12/14/05								+					+			
03/16/06 8.33 1,891.25 250 16.0 <2.00 <1.00 1.91 <2.00				· · · · · · · · · · · · · · · · · · ·						l			+			
07/25/06																
Decommissioned Decommissioned																
Decommissioned CMW02a													+			
CMW02a			9.99	1,889.59	ND					1	ND	ND				
TOC: 1,899.97 feet	0.00000		10.11	1			1						1	1		
12/13/04 9.45 1,888.52 145 22.3 ND ND 4.03 </td <td>l –</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td>	l –							+					+			
03/16/05 10.10 1,887.87 ND 12.3 ND ND ND <td>TOC: 1,899.97 feet</td> <td></td> <td>+</td> <td></td> <td></td> <td></td>	TOC: 1,899.97 feet												+			
06/23/05 9.91 1,888.06 ND 17.3 ND ND ND																
09/08/05 10.45 1,887.52 ND 12.6 ND ND ND <td> </td> <td></td> <td>+</td> <td></td> <td></td> <td></td>													+			
12/14/05 9.94 1,890.03 382 115 36.50 4.41 10.86 <1.00																
03/16/06 8.73 1,891.24 1,130 432 5.33 14.1 21.9 4.82 07/25/06 9.82 1,890.15 159 22 2.07 2.13 8.67 ND 09/26/06 10.33 1,889.64 122 21.7 ND 5.25 13.50 ND																
07/25/06 9.82 1,890.15 159 22 2.07 2.13 8.67 ND													+			
09/26/06 10.33 1,889.64 122 21.7 ND 5.25 13.50 ND																
													+			
MTCA Method A Cleanup Level for Groundwater 1,000/800 500 5 1,000 700 1,000 20 0.01 5 15	MTOA Made at A Ci			1,889.64												

P:\0592 North Colfax Group\Technical\Tables\2009R\0592_2009R_CW_F

		Depth to	0					Ar	nalytical Results (µ	g/L)					
		Groundwater ¹	Groundwater Elevation					7.1	la y li cali i to cali c (pa	9, = 7				Dissolved	Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	DRPH ³	ORPH ³	Benzene ⁴	Toluene ⁴	Ethylbenzene ⁴	Total Xylenes4	MTBE ⁴	EDB ⁵	EDC⁴	Lead ⁶	Lead ⁶
CMW02 ^a	01/24/07	8.45	1,891.52	465			151	2.41	11.70	11.90	ND		1		
Continued	03/14/07	8.79	1,891.18	471	325	<500	87.6	<2	27.8	5.54	<10.0	< 0.0100	<10		
TOC: 1,899.97 feet	06/27/07	9.88	1,890.09	<100	<250	<500	3.20	<2	<1	<1.50	<1	<0.0100	<1		
	06/27/07 (Duplicate)			<100	220	<250	3.4	<1	<1	<3	<1	<1	<1		
	09/25/07	9.45	1,890.52	111	<250	<500	7.21	<2	<1	<1.50	<1	<0.0100	<1		
	12/19/07	9.45	1,890.52	<100	<250	<500	3.56	<2.00	<1	<1.50	<1	<0.0100	<1		
	03/04/08	8.61	1,891.36	<100	180	<250	3.5	<1	<1	<3	<1	<1	<1		<1
	06/10/08	9.45	1,890.52	<100	130 ^x	<250	7.7	<1	<1	<3	1.0 ^{jl}	<1	<1		
	09/10/08	10.16	1,889.81	<100	140	<250	10	<1	<1	<3	<1	<1	<1	<1	<1
	12/09/08	9.67	1,890.30	<100	90	<250	1.4	<1	<1	<3	<1	<1	<1	<1	<1
	03/04/09	8.45	1,891.52	<100	77 [×]	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/10/09	8.93	1,891.04	<100	110 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
CMW03 ^a	10/21/04	8.62	1,891.56	ND			ND	ND	ND	ND					
TOC: 1,900.18 feet	11/23/04	8.55	1,891.63	ND			ND	ND	ND	ND					
	12/13/04	7.83	1,892.35	ND			ND	ND	ND	ND			-		
	03/16/05	8.79	1,891.39	ND			ND	ND	ND	ND					
	06/23/05	9.85	1,890.33	ND			ND	ND	ND	ND			-		
	09/08/05	9.13	1,891.05	ND			ND	ND	ND	ND					
	12/14/05	8.42	1,891.76	<100			1.14	<0.500	<1.00	<3.00	<1.00		-		
	03/16/06	7.90	1,892.28	<100			< 0.500	<2.00	<1.00	<1.50	<1.00		-		
	07/25/06	8.85	1,891.33	ND			ND	ND	ND	ND	ND				
	09/26/06	9.42	1,890.76	ND			ND	ND	2.12	7.60	ND				
	01/24/07	7.88	1,892.30	ND			ND	ND	ND	ND	ND				
	03/14/07	8.09	1,892.09	<100	<250	507	<0.500	<2.00	<1.00	<1.50	<1.00	<0.0100	<1.00		
	06/27/07	8.95	1,891.23	<100	<250	<500	<0.500	<2.00	<1.00	<1.50	<1.00	<0.0100	<1.00		
	09/25/07	9.83	1,890.35	<100	<250	<500	<0.500	<2.00	<1.00	<1.50	<1.00	<0.0100	<1.00		
	12/19/07	8.42	1,891.76	<100	<250	<500	<0.500	<2.00	<1.00	<1.50	<1.00	<0.0100	<1.00		
	03/04/08	8.02	1,892.16	<100	160 ^x	<250	<1	<1	<1	<3	<1	<1	<1		<1
	06/10/08	8.29	1,891.89	<100	92 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
	09/10/08	9.21	1,890.97	<100	220	320	<1	<1	<1	<3	<1	<1	<1	<1	<1
	12/09/08	8.60	1,891.58	<100	140	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	03/04/09	7.50	1,892.68	<100	110 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/10/09	8.10	1,892.08	<100	100 ^x	<250	<1	<1	<1	<3	<1	<1	<1		
CMW04 ^a	12/13/04	7.01	1,891.21	1,990			218	118	79.8	164					
TOC: 1,898.22 feet	03/16/05	8.31	1,889.91	464			111	22.8	24.4	30					
,	06/23/05	6.18	1,892.04	1,680			196	15.4	128	131					
	09/08/05	8.74	1,889.48	4,720			564	34.7	292	311					
	12/14/05	8.22	1,890.00	783			236	122	31.2	71.6	<10.0				
	03/16/06	6.99	1,891.23	1,630			159	129	43.9	116	2.60		-		
	03/16/06 (Duplicate)			2,150			226	199	58.8	170	<5.00	<0.500	<0.500		
	07/25/06	8.13	1.890.09	5,130			725	80.50	367	574	ND				
	09/26/06	8.46	1,889.76	1,510			265	20.70	110	124	ND				
	09/26/06 (Duplicate)			1,400	736 ^{D-06}	<472	225	16.3	95.6	104	<5.00	<0.500	<0.500		
 	01/24/07	6.74	1,891.48	160			25.0	2.80	4.67	11	ND				
 	03/14/07	7.05	1,891.17	168	298	<500	29.2	<2.00	3.72	4.05	2.10	<0.0100	<2.00		
	06/27/07	8.17	1,890.05	116	<250	<500	16.4	<2.00	2.85	7.86	<1.00	<0.0100	<1.00		
 	09/25/07	9.02	1,889.20	<100	<250	<500	1.02	<2.00	<1.20	<1.89	<1.22	<0.0100			
 	12/19/07	7.70	1,890.52	<100	<250	<500	5.80	<2.00	1.20	1.89	1.22	<0.0100	<1.00		
MTCA Mothod A CI	eanup Level for Groun		1,000.02	1,000/800 ^b	500	500	5	1,000	700	1,000	20	0.01	5	15	

P:\0592 North Colfax Group\Technical\Tables\2009R1\0592_2009R1_GW_F

		Depth to	Groundwater					Aı	nalytical Results (µ	ıg/L)					
		Groundwater ¹	Elevation	2	3	3	_ 4			Ĭ ,		5	4	Dissolved	Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	DRPH ³	ORPH ³	Benzene⁴	Toluene⁴	Ethylbenzene ⁴	Total Xylenes⁴	MTBE⁴	EDB⁵	EDC ⁴	Lead ⁶	Lead ⁶
MW01 TOC: 1,896.57 feet	02/20/01 08/08/01	5.95 6.78	1,890.62 1,889.79	103.0 56.2	<250 506	<750 1,060	<0.500 3.84	<0.500 <0.500	<0.500 <0.500	1.60 <1.00					
10C. 1,696.57 leet	11/12/01	7.10	1,889.47	221	576	1,500	66.9	0.920	8.95	1.30					
	02/28/02	5.65	1,890.92	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
	05/07/02	6.23	1,890.34	<50.0	439	<500	<0.500	<0.500	<0.500	<1.00					
	08/13/02	6.96	1,889.61	539	402	<500	130	0.730	6.61	2.29					
	11/07/02	7.84	1,888.73	129	262	<500	22.8	<0.500	0.755	<1.00					
	02/18/03	5.60	1,890.97	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
	05/22/03	6.57	1,890.00	<50.0	1,140	4,380	<0.500	<0.500	<0.500	<1.00					
	08/12/03	7.67	1,888.90	181	512	1,720	42.5	<0.500	2.38	<1.00					
	11/21/03	7.75	1,888.82	<50.0	1,580	4,610	<0.500	<0.500	<0.500	<1.00					
	02/25/04	5.55	1,891.02	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00	<1.00				
	04/30/04	6.43	1,890.14	<50.0	<250	<500	<0.500	<0.500	<0.500	<1.00					
_	10/21/04	7.40	1,889.17	<50.0			<0.500	<0.500	<0.500	<1.00					
	11/18/04	7.38	1,889.19	<50.0			<0.500	<0.500	<0.500	<1.00					
	09/08/05	7.73	1,888.84	67.1			20.5	<1.00	<1.00	<3.00	<5.00	<1.00	<1.00		
-	03/16/06	5.71 7.37	1,890.86	<50.0			<0.500 10.4	<0.500	<0.500	<3.00	<5.00 5.23	<0.500	<0.500		
-	08/10/06 09/26/06	7.62	1,889.20 1,888.95	<100 <50.0 ^{HT-1}	<236	<472	<0.500	<0.500 <0.500	<0.500 <0.500	<3.00 <3.00	<5.00	<0.500 <0.500	<0.500 <0.500		
	12/15/06	6.40	1,890.17	<50	58	<250	<0.500	<0.500	<0.500	<3.00	<1	<1	<1		
	03/14/07	5.78	1,890.79	<100	<50	<250	<1	<1	<1	<3	1.1	<1	<1		
	06/27/07	7.16	1,889.41	<100	94	<250	<1	<1	<1	<3	1.8	<1	<1		
	09/25/07	7.94	1,888.63	<100	<50	<250	<1	<1	<1	<3	3.7	<1	<1		
	12/19/07	6.51	1,890.06	<100	69 ^x	<250	<1	<1	<1	<3	2.0	<1	<1		
	03/04/08	5.45	1,891.12	<100	69 ^x	<250	<1	<1	<1	<3	2.5	<1	<1		<1
	06/10/08	6.49	1,890.08	<100	<50	<250	<1	<1	<1	<3	1.3 ^{jl}	<1	<1		
	09/10/08	7.37	1,889.20	<100	<50	<250	<1	<1	<1	<3	4.5	<1	<1	<1	<1
	12/10/08	7.00	1,889.57	<100	53	<250	<1	<1	<1	<3	3.0	<1	<1	<1	<1
	03/04/09	5.53	1,891.04	<100	630	300	<1	<1	<1	<3	1.2	<0.01	<1	<1	3.79
	06/11/09	5.80	1,890.77	<100	90 ^x	<250	<1	<1	<1	<3	<1	<0.01	<1		
MW02	02/20/01	5.62	1,891.54	134	364	<750	<0.500	<0.500	0.915	8.53					
TOC: 1,897.16 feet	08/08/01	7.10	1,890.06	1,270	386	<500	193	9.04	142	42.9					
_	11/12/01	7.18	1,889.98	684	288	<500	81.8	3.61	34.4	28.9					
	02/28/02	5.85	1,891.31	87.8	279	<500	0.765	<0.500	<0.500	<1.00					
_	05/07/02	6.28	1,890.88	85.0	422	<500	0.873	<0500	<0.500	<1.00					
-	08/13/02	6.96	1,890.20	3,650 295	686 580	<500 <500	338 27.0	45.8	137	88.6					
	11/07/02 02/18/03	8.09 5.93	1,889.07 1,891.23	79.7	297	<500	1.27	<0.500 <0.500	4.99 1.03	1.88 1.16					
_	05/22/03	6.73	1,890.43	141	604	<500	1.77	<0.500	4.28	3.21					
	08/12/03	7.85	1,889.31	1,210	<250	<500	437	3.520	67.0	28.0					
	11/21/03	7.97	1,889.19	122	<250	<500	0.896	<0.500	2.34	<1.00					
	02/25/04	5.90	1,891.26	68.5	<250	<500	<0.500	<0.500	0.678	2.03	1.48				
	04/30/04	6.43	1,890.73	87.7	<250	<500	0.542	<0.500	0.623	<1.00					
	10/21/04	7.37	1,889.79	64.9	-		<0.500	<0.500	<0.500	<1.00					
	11/18/04	7.51	1,889.65	69.0			0.66	<0.500	<0.500	<1.00					
	09/08/05	7.78	1,889.38	65.4	-		384	2.56	156	12.4	10.6	<1.00	<1.00		
	03/16/06	5.97	1,891.19	76.0			0.670	<0.500	0.590	<3.00	<5.00	<0.500	<0.500		
	08/10/06	7.28	1,889.88	1,940	 D 06		68.0	6.01	324	187	12.3	<0.500	<0.500		
	09/27/06	7.81	1,889.35	239 ^{A-01}	669 ^{D-06}	<472	211	<0.500	9.43	<3.00	9.34	<0.500	<0.500		
	12/16/06	6.27	1,890.89	71	100	<250	<1	<1	<1	<3	<1	<1	<1		
	03/14/07	6.04	1,891.12	<100	<50	<250	<1	<1	<1	<3	<1	<1	<1		
	06/27/07	7.20	1,889.96	1,600	730 ^x	<250	11	1.4	150	105	2.6	<1	<1		
	09/25/07	8.06	1,889.10	580	400 ^x	<250	15	<1	81	8.6	5.7	<1	<1		
	12/19/07 eanup Level for Grou	6.70	1,890.46	<100 1,000/800 ^b	<250 ^{dv}	<1,200 ^{dv}	24 5	<1 1,000	<1 700	<2 1,000	<1 20	<1 0.01	<1 5	 15	

P:\0592 North Colfax Group\Technical\Tables\2009R1\0592_2009RI_GW_F

		Depth to	Groundwater			1	1	Ar	nalytical Results (µ	g/L)		1			
		Groundwater ¹	Elevation		_							_		Dissolved	Total
Well ID	Sample Date	(feet)	(feet)	GRPH ²	DRPH ³	ORPH ³	Benzene⁴	Toluene⁴	Ethylbenzene ⁴	Total Xylenes⁴	MTBE⁴	EDB ⁵	EDC⁴	Lead ⁶	Lead ⁶
	03/04/08	6.89	1,891.33	<100	150 ^x	<250	3.8	<1	<1	<3	<1	<1	<1		<1
	06/10/08	7.61	1,890.61	<100	130 ^x	<250	1.4	<1	<1	<3	1.1 ^{ji}	<1	<1		-
	09/10/08	8.45	1,889.77	<100	130	<250	<1	<1	<1	<3	<1	<1	<1	<1	<1
	12/09/08	7.96	1,890.26	<100	160	<250	2.4	<1	1.1	<3	1.1	<1	<1	<1	<1
	03/06/09	6.70	1,891.52	<100	140	<250	1.6	<1	<1	<3	1.3	<0.01	<1	<1	<1
	06/08/09	7.20	1,891.02												
CMW05 ^a	12/13/04	7.74	1,890.51	8,330			498	184	324	583					
TOC: 1,898.25 feet	03/16/05	8.33	1,889.92	3,750			415	6.74	486	304					
	06/23/05	8.21	1,890.04	12,400			1,970	357	767	1,560					-
	09/08/05	8.77	1,889.48	6,910			1,380	27.4	315	243			-		-
	12/14/05	8.24	1,890.01	6,310			1,190	82.9	481	826	<100				
	03/16/06	7.04	1,891.21	6,970			585	2.6	512	701	<20.0		-		-
	07/25/06	8.16	1,890.09	9,220			1,550	ND	502	328	ND				
	09/26/06	8.65	1,889.60	5,210			1,070	ND	400	225	ND				
	01/24/07	6.76	1,891.49	295			53.0	ND	3.88	11.7	ND				
	03/14/07	7.07	1,891.18	220	270	<500	34.7	<2.00	1.31	<1.50	<2.00	<0.0100	<2.00		
	03/14/07 (Duplicate)			240	190 ^{D-06}	<250	34	<1.00	<1.00	<3.00	2.8	<1.00	<1.00		
	06/27/07	8.20	1,890.05	143	<250	<500	28.8	<2.00	<1.00	<1.50	3.96	<0.0100	<1.00		
	09/25/07	9.06	1,889.19	116	<250	<500	8.34	<2.00	<1.00	1.51	1.42	<0.0100	<1.00		
	09/25/07 (Duplicate)			<100	<50	<250	2.6	<1	<1	<3	1.9	<1	<1		
	12/19/07	7.73	1,890.52	<100	89	<250	1.9	<1	<1	<3	4.8	<1	<1		1
	12/19/07 (Duplicate)			<100	<250	<500	2.14	<2	<1	<1.50	5.04	<0.0100	<1.00		1
	03/04/08	6.91	1,891.34	<100	93 ^x	<250	3.5	<1	<1	<3	7.1	<1	<1		<1
	03/04/08			<100	120 ^x	<250	3.8	<1	<1	<3	7.9	<1	<1		<1
	06/10/08	7.67	1,890.58	<100	74 [×]	<250	<1	<1	<1	<3	5.5 ^{jl}	<1	<1		1
	06/10/08 (Duplicate)			<100	<50	<250	<1	<1	<1	<3	4.5	<1	<1		1
	09/10/08	8.45	1,889.80	<100	64	<250	<1	<1	<1	<3	5.5	<1	<1	<1	<1
	12/09/08	7.97	1,890.28	<100	90	<250	<1	<1	<1	<3	4.9	<1	<1	<1	<1
	03/06/09	6.75	1,891.50	<100	85	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	03/06/09 (Duplicate)			<100	140	<250	<1	<1	<1	<3	<1	<0.01	<1	<1	<1
	06/08/09	7.25	1,891.00												
MTCA Method A CI	eanup Level for Groun	dwater ⁷	•	1,000/800 ^b	500	500	5	1,000	700	1,000	20	0.01	5	15	5

NOTES:

Red denotes concentration exceeds MTCA Method A cleanup level for groundwater.

Data collected from wells MW01 through MW12 prior to September 2005 as reported in GeoEngineers, Inc.'s February 2005 Groundwater Monitoring Report.

Sample analyses conducted by Friedman & Bruya, Inc. of Seattle, Washington.

Measured below a fixed spot on the well casing rim.

²Analyzed by Method NWTPH-Gx.

³Analyzed by Method NWTPH-Gx. Analyzed by Method NWTPH-Dx.

⁴Analyzed by EPA Method 8021B, 8260B, or 8260C.

⁵Analyzed by EPA Method 8260B, 8260C, or 8011 Modified.

⁶Analyzed by EPA Method 200.8.

⁷MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised November 2007.

^aWells are located on the Cenex property. Results prior to 2008 as reported by

 $^b1,\!000~\mu\text{g/L}$ when benzene is not detected and 800 $\mu\text{g/L}$ when benzene is detected.

Laboratory Notes:

A-01 Sample had headspace due to multiple shots.

D-06 The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

^dDetection limits are raised due to sample dilution.

^{dv}Laboratory reporting limits are raised due to insufficient sample. htt-1Sample analysis performed past method-specific holding time.

HT-3Initial analysis within holding time. Reanalysis for the required dilution was past holding time.

 $^{\mbox{\scriptsize Q-40}}\mbox{This}$ analyte had a low bias on the associated calibration verification standard.

Q-41 This analyte had a high bias on the associated calibration verification standard.

^{jl}The analyte result in the laboratory control sample is out of control

limits. Results should be considered an estimate.

*The pattern of peaks present is not indicative of diesel.

^yThe pattern of peaks present is not indicative of motor oil.

-- = not analyzed, measured, or calculated

< = not detected at concentration exceeding the laboratory reporting limit

μg/L = micrograms per liter

BTEX = benzene, toluene, ethylbenzene, and total xylenes

DRPH = diesel-range petroleum hydrocarbons EDB = ethylene dibromide (1,2-dibromoethane)

EDC = ethylene dichloride (1,2-dichloroethane)

EPA = United States Environmental Protection Agency

GRPH = gasoline-range petroleum hydrocarbons

MTBE = methyl tertiary-butyl ether

MTCA = Washington State Model Toxics Control Act

ND = not detected above the laboratory reporting limit as

reported by Quantum Engineering

NWTPH = Northwest Total Petroleum Hydrocarbon

ORPH = oil-range petroleum hydrocarbons
TOC = top of casing elevation

TPH = total petroleum hydrocarbons

VOC = volatile organic compound

P\0592 North Colfax Group\Technical\Tables\2009R\0592 2009R\ GW F

Table 6 Summary of Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons North Colfax Petroleum Contamination Site Colfax, Washington

										Analytica	ıl Rosults	: (ua/l)								
			25	25						Analytica	ii ixesuits	 				cPAHs				ater
Well ID	Date Sampled	Naphthalene ¹	1-Methylnaphthalene ²	2-Methylnaphthalene ²	Acenapthylene ²	Acenaphthene ²	Fluorene ²	Phenanthrene ²	Anthracene ²	Fluoranthene ²	Pyrene ²	Benzo(g,h,i) perylene ²	Benz(a) anthracene²	Chrysene ²	Benzo(a) pyrene ²	Benzo(b)	Benzo(k) fluoranthene²	Indeno(1,2,3-cd) pyrene ²	Dibenz(a,h) anthracene ²	Total TEQ Groundwater Concentration
MW01	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/10/08	0.29	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/04/09	2.2			<0.1	0.12	0.14	0.12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/11/09	<0.01			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW02	09/10/08	200			<0.1	0.3	0.23	0.11	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{ca}	<0.1	0.0755
	12/10/08	3.3	2.3	3.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/04/09	0.28			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	03/04/09 (Duplicate)	0.22			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/11/09	<0.01			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/11/09 (Duplicate)	<0.01			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW03	09/10/08	0.12			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/10/08	0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{JI}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{JI}	0.0755
	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0775
	06/11/09	0.71			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW04	09/10/08	0.92			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/10/08	0.22	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{JI}	<0.1 ^{JI}	<0.1 ^{JI}	<0.1 ^{ji}	0.0755
1414/OF	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW05	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/10/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{ji}	0.0755
	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW06	06/10/09	<0.01			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
INIVVOO	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1 ^{ji}	<0.1	<0.1	<0.1 <0.1 ^{ji}	<0.1	<0.1	<0.1 <0.1 ^{jl}	<0.1 <0.1 ^{jl}	0.0755
	12/10/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1		<0.1 ^{JI}	<0.1 ^{jl}			0.0755
MW07	03/04/09 09/10/08	_			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	0.0755
101007	12/10/08	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1 ^{ji}	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1 ^{ji}	<0.1 <0.1 ^{jl}	<0.1 <0.1 ^{jl}	<0.1 <0.1 ^{jl}	<0.1 <0.1 ^{jl}	0.0755 0.0755
	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	<0.11			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW08	09/10/08	<0.01			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	<0.01			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW09	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	0.18			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09 (Duplicate)	0.16			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW10	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/11/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW11	09/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/10/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW12	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MTCA Clean	up Level		160		NE	4,800 ^a	3,200 ^a	NE	24,000 ^a	3,200 ^a	2,400 ^a	NE	NE	NE	0.1 ^b	NE	NE	NE	NE	0.1 ^c

P:\0592 North Colfax Group\Technical\Tables\2009R10592_2009RI_GW_F

Table 6 Summary of Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons North Colfax Petroleum Contamination Site Colfax, Washington

										A malustica	l Desults	. 6. m/l \								
			8	8						Analytica	Results	,				cPAHs				ter
Well ID	Date Sampled	Naphthalene ¹	1-Methylnaphthalene ²	2-Methylnaphthalene ²	Acenapthylene ²	Acenaphthene ²	Fluorene ²	Phenanthrene ²	Anthracene ²	Fluoranthene ²	Pyrene ²	Benzo(g,h,i) perylene ²	Benz(a) anthracene ²	Chrysene ²	Benzo(a) pyrene ²	Benzo(b)	Benzo(k) fluoranthene²	Indeno(1,2,3-cd)	Dibenz(a,h) anthracene ²	Total TEQ Groundwater Concentration
MW13	06/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/10/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	<0.01			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW14	03/04/09	140			<0.1	0.19	0.14	0.13	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.11	<0.1	0.0815
	06/09/09	100			<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW15	06/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/10/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW16	06/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW17	06/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{ca}	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW18	06/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 jl	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW19	06/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{ca}	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW20	06/11/08	<0.1			<0.1	0.21	0.19	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/11/08	<0.1			<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{ca}	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/04/09	0.88			<0.1	0.27	0.16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	4.2			<0.1	0.57	0.16	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW21	06/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/10/08	<0.1			<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{ca}	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	0.0755
	03/04/09	<0.1			<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	6.3			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW22	06/11/08	6.3			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/10/08	<0.1			<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/10/08	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW23	06/11/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 i	<0.1 i	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MTCA Clean		\0.1	l		NE	4,800 ^a	-	NE	_		2,400 ^a	NE	NE	NE	0.1 ^b	NE			NE	0.0755
WITCA Clean	up ∟evei		160		NE	4,800	3,200 ^a	NE	24,000 ^a	3,200 ^a	2,400	NE	NE	NE	U.1	NE	NE	NE	NE	U.1

P:\0592 North Colfax Group\Technical\Tables\2009R\10592_2009R\1_GW_F

2 of 3

Table 6 Summary of Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons North Colfax Petroleum Contamination Site Colfax, Washington

			1	1						Analytica	I Results		1							<u>.</u>
			ne²	ne²								ne²		ı	ı	cPAHs				vati
Well ID	Date Sampled	Naphthalene ¹	1-Methylnaphthalene ²	2-Methylnaphthalene ²	Acenapthylene ²	Acenaphthene ²	Fluorene ²	Phenanthrene ²	Anthracene ²	Fluoranthene ²	Pyrene ²	Benzo(g,h,i) perylene²	Benz(a) anthracene²	Chrysene ²	Benzo(a) pyrene²	Benzo(b) fluoranthene2 ¹	Benzo(k) fluoranthene²	Indeno(1,2,3-cd) pyrene ²	Dibenz(a,h) anthracene ²	Total TEQ Groundwater Concentration
MW24	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/11/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW25	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/11/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW26	06/09/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW27	06/09/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW28	06/09/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW29	06/09/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW30	06/09/09	160			<0.1	1.1	1.8	0.23	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW31	06/10/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MW32	06/11/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
CMW02	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	<0.1 ^{jl}	0.0755
	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
CMW03	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jr}	<0.1 ^{jl}	0.0755
	03/04/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	06/10/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
CMW04	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jr}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
CMW05	09/10/08	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	12/09/08	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jl}	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{jr}	<0.1 ^{jl}	0.0755
	03/06/09	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
	03/06/09 (duplicate)	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.0755
MTCA Clean	up Level		160		NE	4,800 ^a	3,200 ^a	NE	24,000 ^a	3,200 ^a	2,400 ^a	NE	NE	NE	0.1 ^b	NE	NE	NE	NE	0.1 ^c

NOTES:

Red denotes concentration exceeds MTCA cleanup level.

Laboratory analysis performed by Friedman & Bruya, Inc. of Seattle, Washington.

¹Analyzed by EPA Method 8270C SIM, 8270D SIM, or 8260C.

²Analyzed by EPA Method 8270C SIM or 8270D SIM.

^aMTCA Cleanup Regulation, CLARC, Method B, Non-Carcinogen, Standard Formula Value, Direct contact (ingestion only), Unrestricted Land Use, CLARC website https://fortress.wa.gov/ecy/clarc/CLARCHome.aspx.

^bMTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised November 2007.

^cAnalytical result for each individual cPAH is multiplied by TEF and all seven cPAH values are added. When analytical result is reported as less than the LRL, half the LRL is used for the calculation. See Table 3 for calculations.

Laboratory Notes:

^{ca}The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.

^{ji}The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.

^{jr}The RPD result in the laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

-- = not analyzed

< = not detected at a concentration exceeding the LRL

 μ g/L = micrograms per liter

CLARC = Cleanup Levels and Risk Calculations
cPAH = carcinogenic polycyclic aromatic hydrocarbon

EPA = United States Environmental Protection Agency

LRL = laboratory reporting limit

MTCA = Washington State Model Toxics Control Act

NE = cleanup level not established RPD = relative percent difference

TEF = toxicity equivalency factor

TEQ = toxicity equivalent

P:0592 North Colfax Group\Technicaf\Tables\2009R\10592_2009R_GW_F

				Analytical F	Results ¹ (microgra	ams per liter)			
Well ID	Date Sampled	Benz(a) anthracene TEF (0.1)	Chrysene TEF (0.01)	Benzo(a)pyrene TEF (1)	Benzo(b) fluoranthene TEF (0.1)	Benzo(k) fluoranthene TEF (0.1)	Indeno(1,2,3-cd) pyrene TEF (0.1)	Dibenz(a,h) anthracene TEF (0.1)	Total TEQ Groundwater Concentration ²
MW01	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/11/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW02	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09 (duplicate)	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/11/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/11/09 (Duplicate)	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW03	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/11/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW04	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW05	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW06	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW07	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MTCA Method A CI	eanup Level ³	NE	NE	0.1	NE	NE	NE	NE	0.1

P:\0592 North Colfax Group\Technical\Tables\2009R\0592_2009R_GW_F

				Analytical F	Results ¹ (microgr	ams per liter)			
Well ID	Date Sampled	Benz(a) anthracene TEF (0.1)	Chrysene TEF (0.01)	Benzo(a)pyrene TEF (1)	Benzo(b) fluoranthene TEF (0.1)	Benzo(k) fluoranthene TEF (0.1)	Indeno(1,2,3-cd) pyrene TEF (0.1)	Dibenz(a,h) anthracene TEF (0.1)	Total TEQ Groundwater Concentration ²
MW08	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW09	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09 (Duplicate)	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW10	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/11/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW11	09/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW12	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW13	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW14	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.011	0.005	0.0815
	06/09/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW15	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW16	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MTCA Method A (Cleanup Level ³	NE	NE	0.1	NE	NE	NE	NE	0.1

P:\0592 North Colfax Group\Technical\Tables\2009R\1.0592_2009R\1.05W_F

				Analytical F	Results ¹ (microgra	ams per liter)			
Well ID	Date Sampled	Benz(a) anthracene TEF (0.1)	Chrysene TEF (0.01)	Benzo(a)pyrene TEF (1)	Benzo(b) fluoranthene TEF (0.1)	Benzo(k) fluoranthene TEF (0.1)	Indeno(1,2,3-cd) pyrene TEF (0.1)	Dibenz(a,h) anthracene TEF (0.1)	Total TEQ Groundwater Concentration ²
MW17	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW18	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW19	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW20	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW21	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW22	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW23	06/11/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MTCA Method A C	leanup Level ³	NE	NE	0.1	NE	NE	NE	NE	0.1

P:\0592 North Colfax Group\Technical\Tables\2009R\1.0592_2009R\1.05W_F

				Analytical F	Results ¹ (microgra	ams per liter)			
Well ID	Date Sampled	Benz(a) anthracene TEF (0.1)	Chrysene TEF (0.01)	Benzo(a)pyrene TEF (1)	Benzo(b) fluoranthene TEF (0.1)	Benzo(k) fluoranthene TEF (0.1)	Indeno(1,2,3-cd) pyrene TEF (0.1)	Dibenz(a,h) anthracene TEF (0.1)	Total TEQ Groundwater Concentration ²
MW24	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/11/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW25	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/11/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW26	06/09/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW27	06/09/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW28	06/09/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW29	06/09/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW30	06/09/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW31	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MW32	06/11/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
CMW02	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
CMW03	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/04/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	06/10/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
CMW04	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
CMW05	09/10/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	12/09/08	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
	03/06/09 (duplicate)	0.005	0.0005	0.05	0.005	0.005	0.005	0.005	0.0755
MTCA Method A C	Cleanup Level ³	NE	NE	0.1	NE	NE	NE	NE	0.1

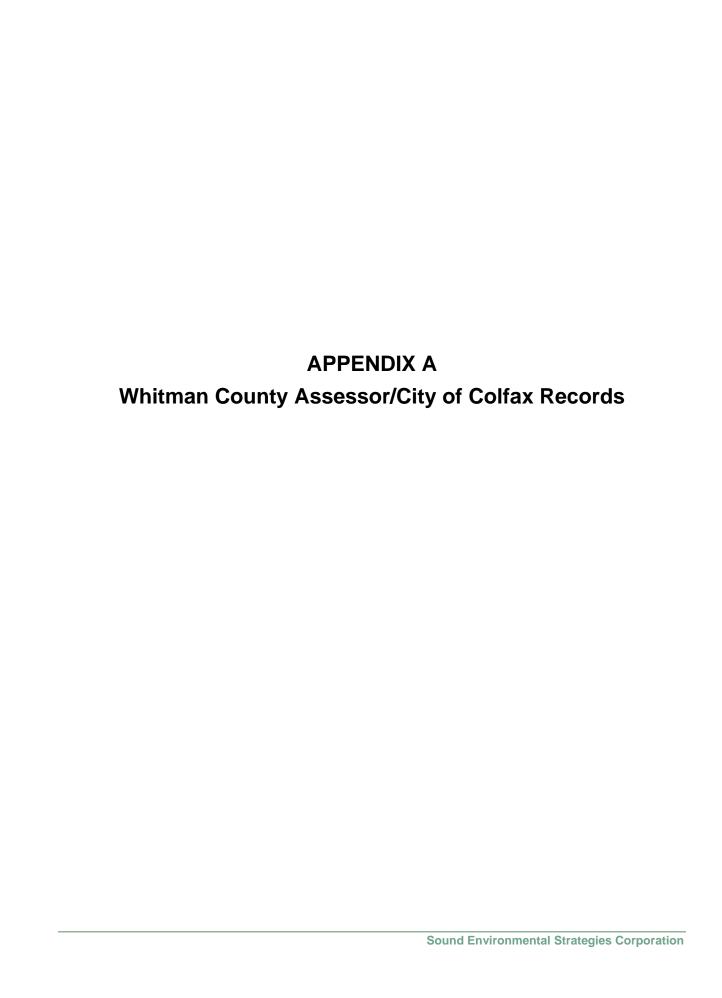
Laboratory analysis performed by Friedman & Bruya, Inc. of Seattle, Washington.

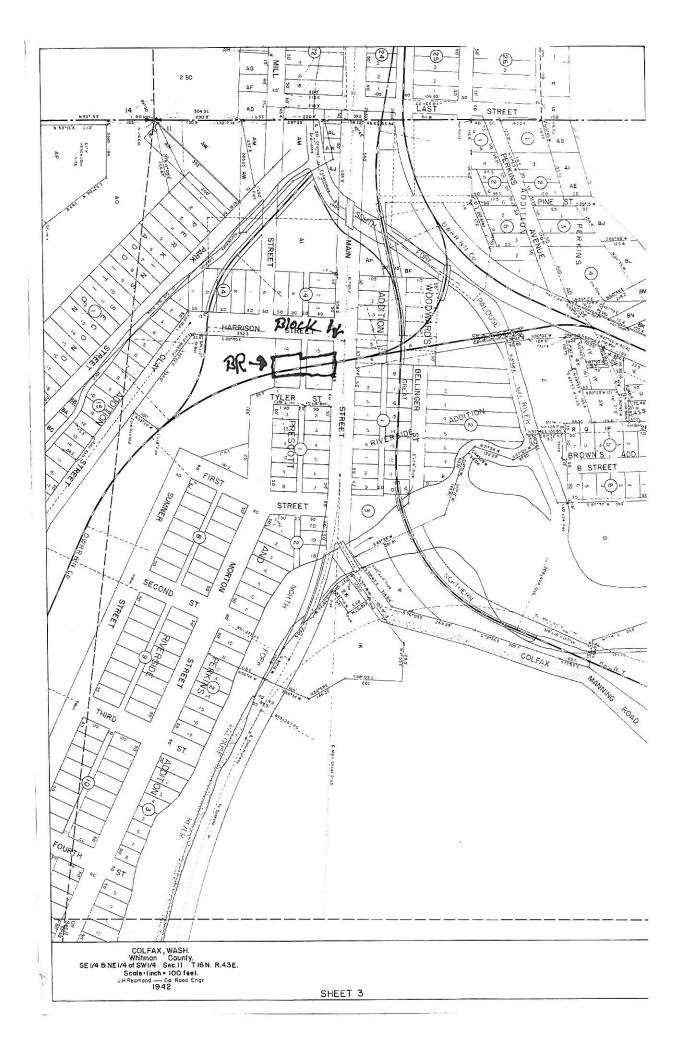
cPAHs = carcinogenic polycyclic aromatic hydrocarbons

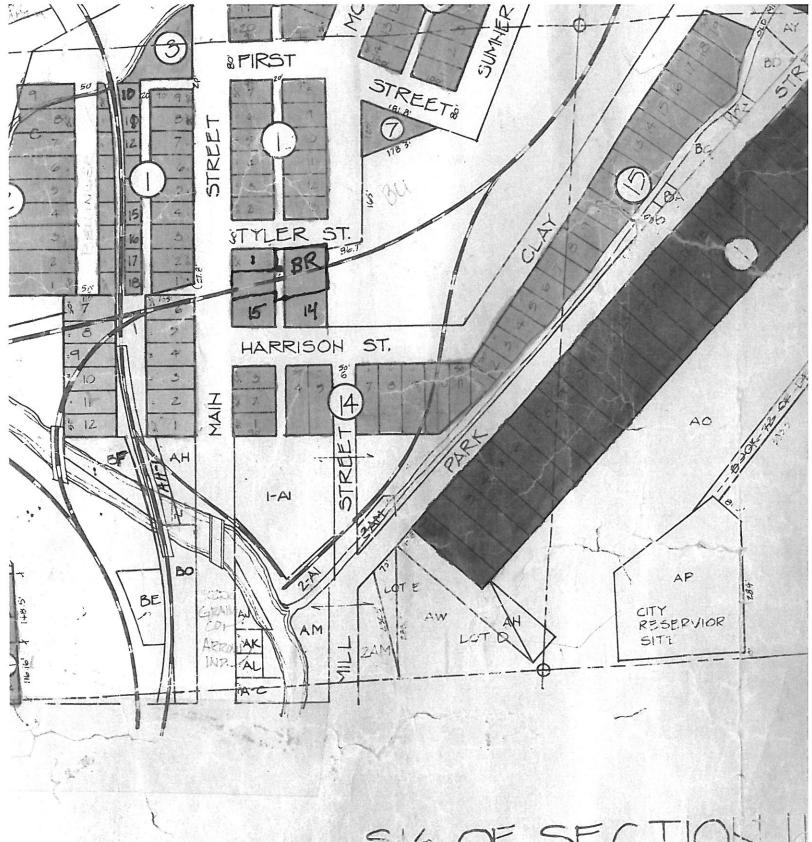
LRL = laboratory reporting limit

MTCA = Washington State Model Toxics Control Act

NE = cleanup level not established TEF = toxicity equivalency factor

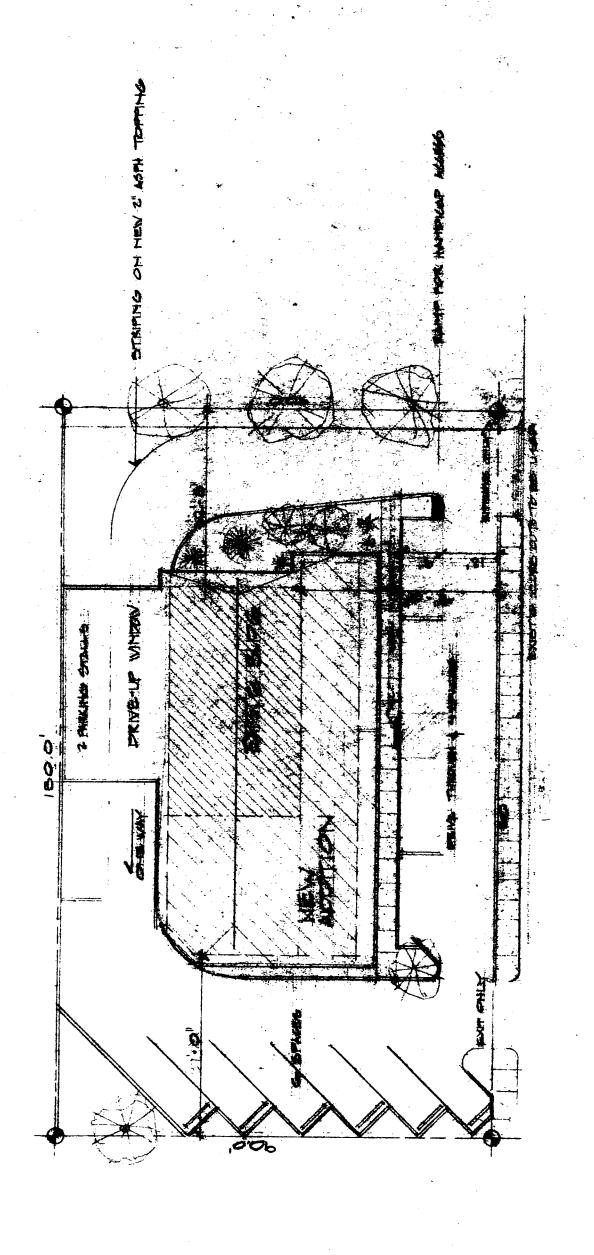

TEQ = toxicity equivalent


4 of 4 P:\0592 North Colfax Group\Technical\Tables\2009RI\0592_2009RI_GW_F


¹Analyzed by United States Environmental Protection Agency Method 8260C SIM or 8270D SIM.

²Analytical result for each individual cPAHs is multiplied by TEF and all seven cPAH values are added. When analytical results is reported as less than the LRL, half the LRL is used for the calculation.

³MTCA Method A Cleanup Levels, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, revised November 2007.



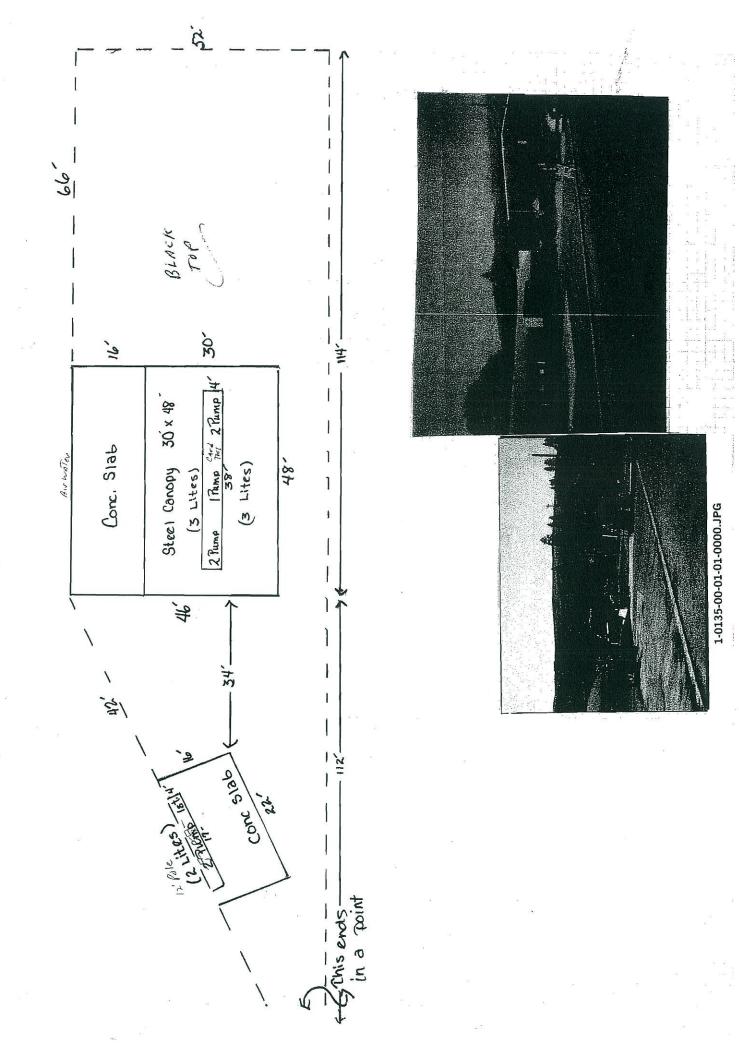
SIZ OF SECTIO

102377100000000
241440
COLFAX GRANGE SUPPLY
105 E HARRISON
COLFAX, WA 99111-2100 10167B00000000 241440 COLFAX GRANGE SUPPLY 105 E HARRISON COLFAX, NA 99111-2100 10169400000000 241440 CDLFAX GRAHGE SUPPLY 105 E HARRISON COLFAX, WA 99111-2100 8-0195-00-00-00-0323 0195 2 COLFAX GRANGE SUPPLY, INCER 1-0135-00-01-01-0000 0135 COLFAX GRANGE SUPPLY, INC () 103 E HARRISON (SITE) 1-0135-00-01-15-0000 COLFAX GRANGE SUPPLY 205 E MARRISON (SITE) 1 NC (4- 15) \$1/2 11-16-43 CX PERK PRES RIV ADD R/H 5936.59 2968.30 2968.29 153 852 152 18600 0 246.04 18600 0 123.02

Moal x.64

ROBERT F BROYLES, AIA.
324 MAIN
LEWISTON, ID 8350! CLARK SAVINGS & LOAN 99 LEWIS 4

COLFAX, WASHINGTON


DRAWN CHECKED

SCALE SHOW! JOB NO SHEET

SHEETS

6-21-79

ATO 20/01 A/T ASSESSMENT MASTER FILE MAINTENANCE	
PARCEL# SUBDCODESTATUSESCREV-	
[101350001010000] [0135] [2] [] [153] [] [AA]	
PROP. NAME: [COLFAX GRANGE SUPPLY, INC]	
ADDR1: [103 E HARRISON (SITE)]	
ADDR2: []	
ADDR3: [101678000000000]	
. ID#: [241440] UPDATE CODE (A/C/D):[] TAXPAYER NAME & ADDR RECD	
NAME: [COLFAX GRANGE SUPPLY] NAME: [COLFAX GRANGE SUPPLY]	
ADDR1: [105 E HARRISON] ADDR1: [105 E HARRISON]	
ADDR2: [COLFAX, WA 99111-2100] ADDR2: [COLFAX, WA 99111-2100]	
ADDR3: [] ADDR3: []	
ADDR4: [] ADDR4: []	
LEGAL DESCRIPTION VALUESVALUES	
S/T/R:[1] [] [1] MKT: [12400] [135800] [148200]	
ACRES:[.00] [.00] 0/S: [0] [0]	
VALUE - MARKET: [0] [0] S/C: [0] [0]	
O/S: [0] [0] TAX LEVIED [2164.54] TAX PAID [[CX PERK PRES RIV ADD R/W] LAST MNT. [10222003] BATCH [SM10]	.00]
[CX PERK PRES RIV ADD R/W] LAST MNT. [10222003] BATCH [SM10]	
[MESSAGES:	
[CONTINUE SAME SEARCH <y n="">?] [</y>	Y]
e e	

COMMERCIAL APPRAISAL

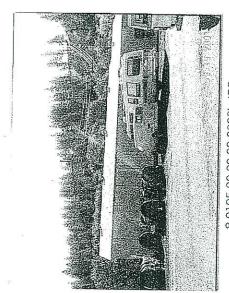
			•	
Roll	No	Page	No	
Мар	No	Photo	No	
Remo	odeled 19 Co	ost \$		
old	19 Amount	\$		
old	19 Amount	\$	***************************************	
ppr	Date	Appr	Val. \$	

Owner Co	HAX G	range	Supply		
Building No	ame		/		
		HArriso			
Addition.	erKins 1	rercott	Riversi	de	
11	BI	56-1	80		

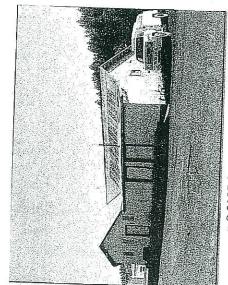
BUILDING		CONSTRUCTION		PARTITIONS		Class		Туре	Conc	dition	
Apartmen		Single		Plaster	_/	No. Units	/ Bc	cked	Detach	ed	
Apartmen	Hotel	Double		Drywall	/	Sq. Feet		Stories		Wall Heig	ht
Auto Sale		Block .		Composition			1985		uction Cost		
Bank		Wood Frame		Concrete Blo	ck		. , , ,			,	
Court		X Steel Frame	177	Briek							
Dental		Insulation		Steel Steel						100	
Departmen			17				Squore Foot	,	% Adj.	Base 1	Rate Adj.
Garage		ROOF	-/-	CEILING			Items	-	- +		+
Gas Static	n	Arch		Acoustic							
Greenhous		X Flat	_	Composition							
Hotel		Gable		Drywall				W.			
Industrial		Hip	1	Plaster					1		
Market		Shed		Süspended			-				
Medical			X	STeel					+		-
Metal Bld	. ,	Steel Beam	1/2	INTERIOR		-	-		++-		
Motel		Steel Truss		Department :	Store /			-			
Office		Wood Truss	-	Market							
Restaurant		x 6 hights	+	Auto Show	/		Total .	Δdi			
Store	/	Aluminum	-	Restaurents			10101	Jul.			
Theatre		Built-up		Office			. —				
Warehouse		Composition		Theatres		Adj. Base	Cost				
1101011000		Concrete	17	Zincures .		ADDED FE					-
)	C Galv. Iron		ELECTRICAL			Terning				+
		Rock	-	Minimum			Litery 12'				14
FOUNDATI)N	Shake	1	Average			CATOUR Ain	1018			2
Concrete		Shingle	- X	Good		Electrical	- M/CDT -7/1X				3 6
Concrete E	ock	Steel		0000			3-800094	17: 40	500		16,6
Stone	-	Tar and Gravel	_	FLOOR							21,9
Brick		TO CHO CIOVE	-	Single		Balcony C.	7 Punps +	ibeing o	7738		120
Wood Fran		HEATING		Double		Sprinklers					
77000 7701		Floor-Wall	1	Fir			434TF 14408	- //			90
-		Forced Air	4	Hardwood			6404 63.0				158
EXT. WALL		Gravity	x	Concrete		1000	and, 2208				123
Aluminum		Hot Air	1	Grade					,		
Brick	_/	No. Units	_	Elevated		Mapa 6	312° @	2, 20			1262
Brick Vene	r ·/	Space Heat	×		7		TOTAL				
Concrete B		- Space Treat	1	ASPHAW!	/.		TOTAL				104,16
Concrete R		Hot Water		Finished	1,,	ADI TOT	· · ·				-
Curtain	7	Steam	+	Utility	3/4	ADJ. TOTA		0.0			-
Galv. Iron		Siedili	+	50II	1/2		X	P.S	.F		
Shakes/		FLECTRIC		POIL	1/4	Added Fed					<u> </u>
-		1/	+	DULLABING	4	Total Base	No.	21			
Shing/e Sidjing		/ Baseboard	+	PLUMBING	1		Cost Index		base Cost		
1		/ Heat Pump		Toilet	Hwt.		Quality Adju	stment			-
Steel Pane		AIR COUR	+	Urinal	Lav.	Replaceme					
Stucco		AIR COND.		Fountain	Sink		on%	PhyFunc	Econ.		
Tile		Evaporative	-	Shower	Tub	DeprRepl			*		ļ
Tilt-up		Refrigeration	X	Water		Other Imp	rovements				
	100	Custom	X	Aci		25 25 3000	Repl. Cost				10416

S. F. No. 9115—OS—(Rev. 3-61)—4M.

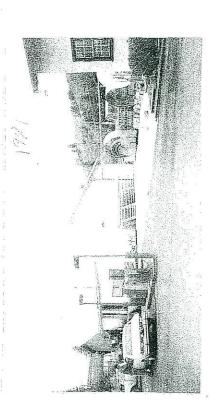
(4


(

Remarks: 14-28-81 N.C. 1199-JW. 8-01 RA


```
AT0020/01----- A/T ASSESSMENT MASTER FILE MAINTENANCE ------------
----PARCEL#---- -SUBD- -CODE- -STAT- -USE- -SC- -REV-
[801950000000326] [0195] [ 2 ] [ 852] [ ] [R1]
PROP. NAME: [COLFAX GRANGE SUPPLY ADDR1: [715 N CLAY (SITE)
     ADDR2: [
ADDR3: [102377200000000
  L. ID#: [241440] UPDATE CODE (A/C/D):[] TAXPAYER NAME & ADDR RECD NAME: [COLFAX GRANGE SUPPLY] NAME: [COLFAX GRANGE SUPPLY]
                                     ] ADDR1: [105 E HARRISON
] ADDR2: [COLFAX, WA 99111-2100
     ADDR1: [105 E HARRISON
     ADDR2: [COLFAX, WA 99111-2100
     ADDR3: [
                                     ] ADDR3: [
     ADDR4: [
                                     ] ADDR4: [
ACRES: [ .00] [
VALUE - MARKET: [
      0/S: [
[CX S1/2 11-16-43
                         ]
                                   LAST MNT. [10232003] BATCH [HB10]
                            MESSAGES:
[
                         1
                             [CONTINUE SAME SEARCH <Y/N>?
                         ]
                                                                     ] [Y]
```

SQUARE FOOT COSTS


	Subscriber making survey					survey		
2.	Name of building Colfax 6	RANGE S	Supply Co.	Owne	er			*
	Located at	58	Ma		₩ 	£,	ORE	
87	2 8	SECTION I	SECTIO		SECTION	SELECTION OF THE PROPERTY OF T	SECTIO	N IA
4.	Occupancy	Senc. & Adws	Whickory	ET 5-3	Wareho	us 0 # 4	BUTLER	Bldg.
	72 23	CIS C OVOI LAWCO	ClsOvol_		ClsQual_		ClsOuo!	
		Con, Block	on bac	k	META	+6-	META	<u></u>
100000	No. of stories & height per story	No/_H1ane	NoHI.		NoH;		NoH	•
	Average floor area	6072		0	228	8	38.	40
	Average perimeter							
10.	Age and condition	1948 Age 28 Cond.	AgeCand.	1937	AgeCond.	1934	AgeCond	1954
, -,			*					
		**			SECTION	SECTION	SECTION	SECTION
	•				1	11	111	IV
11.	Base Square Foot Cost				. 12,20	5,60	4,22	4.40
	W6	T REFINEMENTS						
12.	Heating, cooling, ventilation							
13.	Elevator deduction							
14.	Miscellaneous							
15.			Total lines 11	through 1	4			
7	HEIGHT AND S	IZE REFINEMEN	TC	-				
16.	Number of stories-multiplier							
	Height per story-multiplier (see Line 2				1			
	Floor area-perimeter multiplier (see L							
	Combined hei							
			est stell es se tested/b/celember sepue i					
	FINAL CALCULATIONS		SECTION I	SECTIO	וו אכ	SECTION III	SEC	TION IV
20.	Refined square foot cost (Line 15 x L	ine 19)	12.20					
	Current cost multiplier (Sect. 99 p. 3)							-
	Local multiplier (Sect. 99 p. 5 and 6)	1						
	Final sq. ft. cost (Line 20 x Line 21 >							
	Area (Back of this form)		6072#	ON	K.		38	940
	Line 23 × Line 24	1	74,078	BAL		5800		896
	Lump sums (Line 32)			10		7140		
	Replacement Cost (Line 25 + Line 2				1.	2,940		
	Depreciation % (Sect. 97)	****	2870			/		0%
	Depreciation amount (Line 27 x Line 2							
	Depreciated Cost (Line 27 - Line 29		53,340	10,2	40	12,94	0 13	520
			F ALL SECTION	1	5			18
	D 1				۸			
31.	Replacement cost			6 0				
	See back of this form	n tor drawings and	d area and insur	able valu	e calculation	IS.		
	NC. 10-9-798	87			6. 7			

8-0195-00-00-00-0323b.JPG

8-0195-00-00-0326.JPG

Blo	Col	3	
. Ĉ)	******	
M. O.K., U. P. Railtood Lease # 26.		Lolfax grange Supply	
Locatir	Addres	Owner.	
	. Eginn	nicker.	-

Lot # 2652 Duplex nmercial X ...k.... arehouse

Apartmen

Units

Condition Arerage...... Dock Type... Class of Building ML/

4

STORIES

CONSTRUCTION

FOUNDATION

Double

Conc. Blocks

Stone Brick

Frame

Box

Brick

Concrete

No. Rooms

Jining Kitchen.

2/98 1400 Base Rate sq. ft/,577 Base Rate on Rooms 2nd Story Rooms Basement Cubic ft. Height

Recreation

Nook

Bath Bed

Rein. Conc.

Concrete

BASEMENT

None

Part

Full

Solid

Utility

Steel Frame

Storeroom

Fruit

HEATING

EXTERIOR FINISH Brds. and Bats

Grade

Cold Team 162" @ 10 1620 190 2698 Open dock 380 @ 504 Covered dock 888 0 1.00

Extra Features

Present Reproduction Cost

Sheet Rock

Paper

Pipeless furnace Floor Furnace Pipe Furnace

Plaster

Celotex TRIM

Coal Stoker

Hot Water Oil Burner

Wall Brd.

CEILED

Depreciated Value (Rate)

\$ 21

No. of Years Life Left

Hwd. (kind)

Electric Heat.

Nane. PLUMBING

Terra Cotta Galv. Iron

Stone

Old Style

Modern

Aluminun

Central Sta.

Gas Burner

Steam

Brick Veneer

Concrete

Conc. Block

Shingles

Rustic

Shakes Siding

Stucco

Brick (Kind)

FLOORS

	\$	85	**	69
	\$	€>	€9	\$
1989	\$ 4896	\$	\$ 4896	\$
YEARS APPRAISED	Full (100%) Value (present)	Full (100%) Value Add. Buildings.	Total (100%) Values	Total Assessed Value

Remarks:

Asph. Tile

EXTRA FEATURES

Tar and Gravel

Split Roll

Roll

Shingle Pat. Shingle

ROOF

Garbage Disp.

Dishwasher

Galv. Iron

Tile

Aluminum

Print

nl. Lino.

Lile

Concrete

Hard

Soft

Year Remodeled: Appraised by: Year Built.. Listed by: Cost \$... Year Built 1936-37 19...., 19..... Year Remodeled: Appraised by: Listed by: Cost \$...

Porch—Gl., Sc., Cl., Op

Fireplaces

Fireplace

Incinerator

Gable

Hip

Flat

Air Cond.

Refrig. built in)

Elevator Thermo

Insulation

TOTAL

19....

19....

19.

al Value					
Total Assessed Value					
Assessed Value Imps.					
Assessed Value Land					
Year			000		5
	Ш			L	الــــا

20' Dock Dock 32'

1480

ot Duplex Apartn. ' Units Class of Building. Condition			9200 11.1.	0445 JUMPS @ 720 - 860		1000K (IMADSCA) 46 (2), 166 - 160	_	LOCK, LONGIED - OPENIA 16	145 000				1596				
Block Commercial E (Marchouse ## 3			Hejeht	THE STATE OF THE S	Cubic ft	כמסוכ זו:	Base Rate so ft	1	Basement		Base Rate on Rooms	6	2nd Story Rooms	LV+	Latia I calules		
vad 400se # 26 (D)	STORIES A S B 1 2 3 4	No. Rooms	Living	Dining	Kitchen	Bed	Bath	Nook	Recreation	Utility	Storeroom	Fruit		CEILED	Wall Brd. 130 x 82	Paper	Sheet Rock
scatic (1924 - U. P. Tailraad Licose. Idrex. **nerfax Grange Supply	CONSTRUCTION	Single	Double	Box	Frame	Brick	Rein. Conc.	Concrete	Solid	Steel Frame	Mill		HEATING	Stoves	Pipe Furnace	Pipeless furnace	Floor Furnace
idres / fa.k.	UNDATION	Piers	Conc. Blocks	Stone	Brick	Concrete		SEMENT	None	Part	Full	Grade	TERIOR FINISH	Brds, and Bats	Rustic	Siding	Shingles

Present Reproduction Cost	\$ 2788
Depreciated Value (Rate)	%
No. of Years Life Left	

Full (100%) Value (present) \$ 27789 \$ Full (100%) Value Add. Buildings. \$ 1596 \$ Total (100%) Values \$ 47384 \$ Total Assessed Value \$ 770 \$	YEARS APPRAISED	1964		
8 8 8	Full (100%) Value (present)	\$ 2.788	\$	69
66 66	Full (100%) Value Add. Buildings.	96518	\$	· 65
69	Total (100%) Values	488.78	8	€5
	Total Assessed Value	8 800	€9	8

Soft / Plack

FLOORS

PLUMBING

Terra Cotta

Galv. Iron

Stone

Aluminum

Old Style

No. Fix. Modern

Hwd. (kind)

Electric Heat.

Steam

Concrete Brick Veneer Brick (Kind)

Conc. Block

Shakes Stucco

Celotex Plaster

> Coal Stoker Gas Burner Central Sta.

Hot Water Oil Burner

FRIM

Remarks:

Asph. Tile

Print ile

nl. Lino.

Concrete

Hard

Year Built 1934

EXTRA FEATURES

Tar and Gravel

Split Roll

Roll

Aluminum Galv. Iron

Tile

Pat. Shingle

Shingle

Garbage Disp. Dishwasher

		Assessed Value	Assessed Value	Total
Year Built.	Year	Land	Imps.	Assessed Value
Cost \$				
Listed by:				
19				
Appraised by:				
19				

.... 19.....

Appraised by:

Listed by: Cost \$.....

Porch-Gl., Sc., Cl., Op

Fireplaces

Fireplace

Incinerator

Air Cond.

Refrig. built in)

Elevator

Insulation

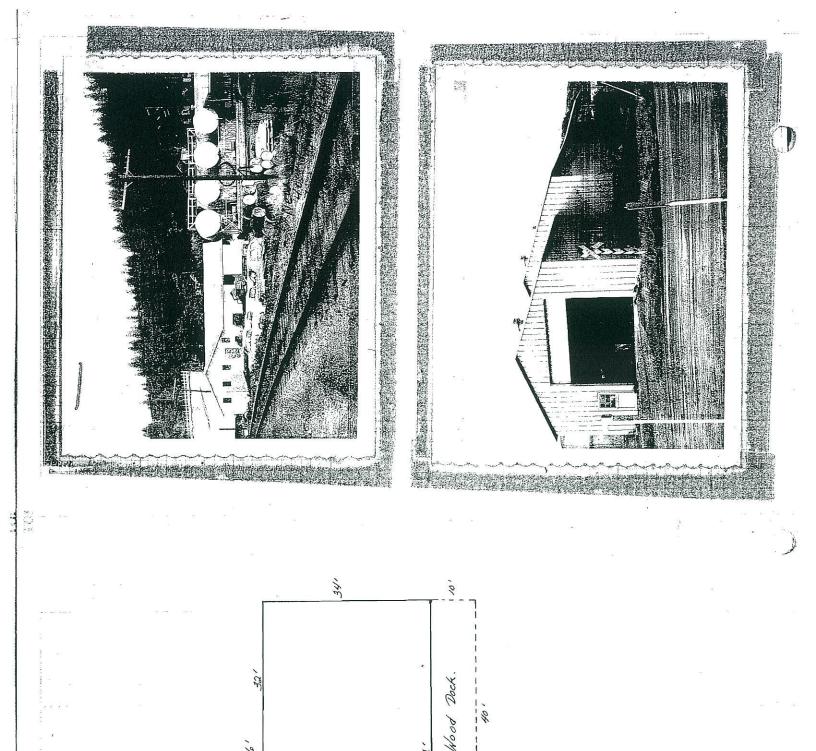
Flat

Thermo

.....9

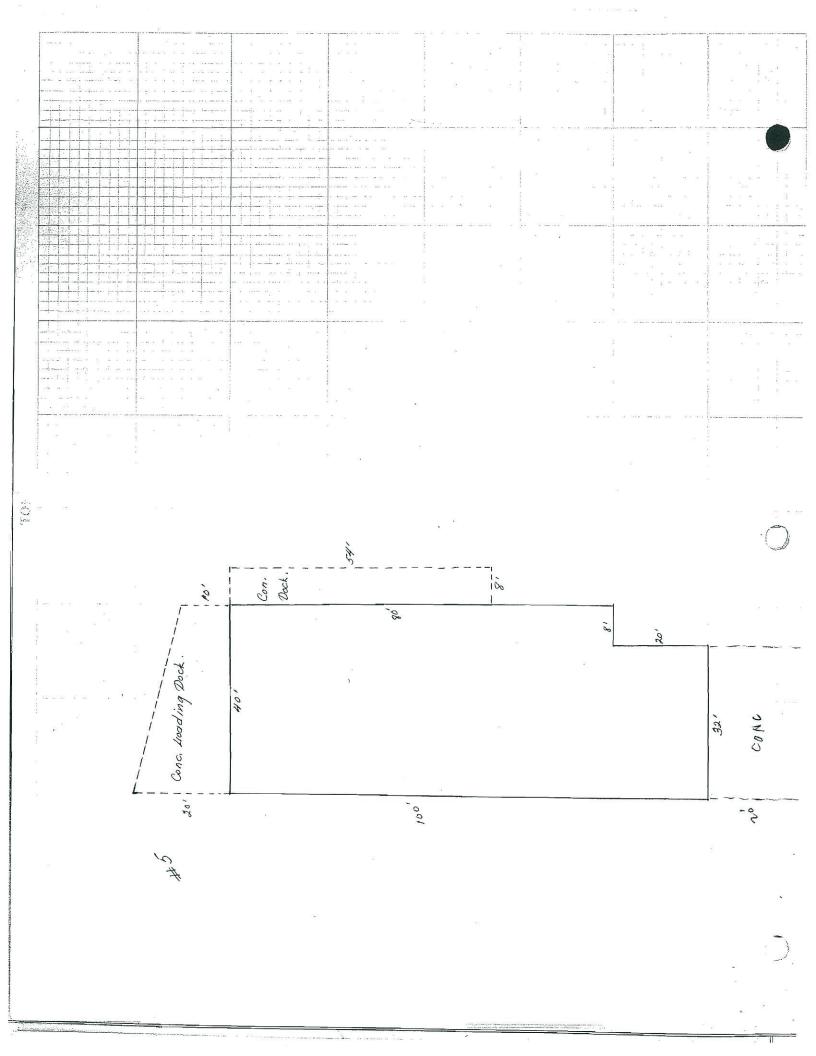
.....19

.....19


TOTAL

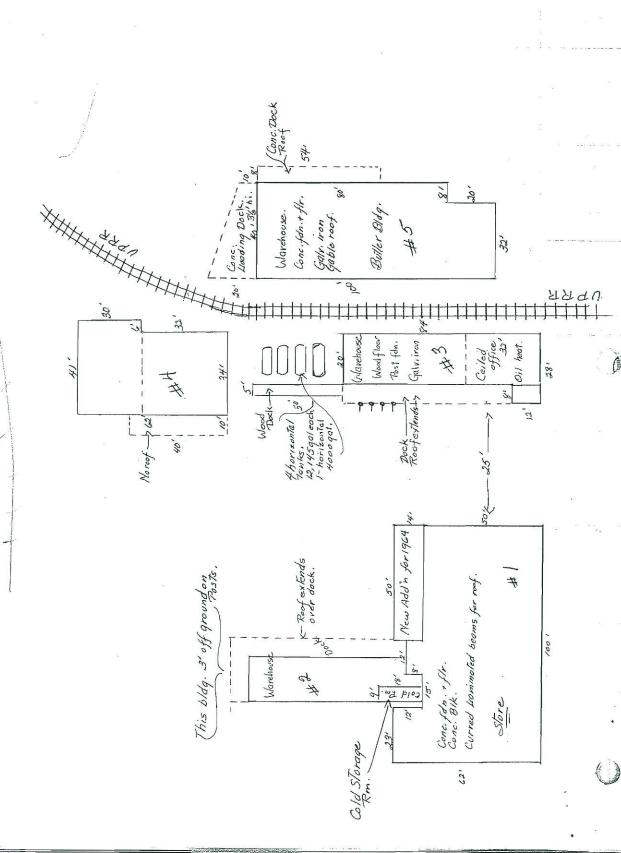
Year Remodeled:

Year Remodeled:


, 096 12, 20,

26521	Units				2/40	8	8584=010	400			5583										*			e e					Total	Assessed value								
0	Apartment 🗀	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(s) Just and	Who a state of the	war upen dock and our of the		4.5tg. tanks 42,145,gol. tanks. @110 = 4.858	4000								- T				4	÷ 5-5	65	€9						/alue	Tinps.							w	
	Duplex □ Class of Building	Condition. Geod.	9500	The Coll	wad now	7	T	" " /		T		2		4/10	7010	%			6561	5/2/8		\$ 5106 \$							Assessed Value	Land								r
Lot	Commercial 🛛 . I Worehouse . Clas	4 Con				+	2288 3432		~			5583	8106	Cost	COST	ale)			ED	oresent)	dd. Buildings.								7,000	I cal			61			19)	9
Block	Comme	#		Height	Cubic ft	1.50	Base Rate sq. ft.	Basement	Base Rate on Rooms	4	znd Story Kooms	Extra Features		Present Reproduction Cost	Depreciated Value /D	Depreciated value (Rate)	INO. OI TEARS LITE LETT		YEARS APPRAISED	Full (100%) Value (present)	Full (100%) Value Add. Buildings.	Total (100%) Values	Total Assessed Value		Remarks:				:	Year Built	Cost \$	Listed by:		Americad by:			Year Kemodeled:	[6]
# 262 10		,	S B 1 2 3 4																											Year Built.		by:	19	ed bv:	14/2	•	Year Kemodeled:	7.56 ·
and Lease	M		STORIES A	Living	Kitchen	Bed	Bath	Recreation	Utility	Fruit		CEILED	Paper	Sheet Rock	Plaster	Celotex	TRIMOOD	Fir	Hwd. (kind)		FLOORS	Soft Plank	Hard	Concrete	Inl. Lino.	Asph. Tile				Year B	Cost \$	Listed by:		Apprai	N. O.	;	Year K	\$
@ ax - U.P. Pailraad Lease	grange Supp	I COTTOLI GEOMETICA	Single	Double	Frame	Brick	Concrete	Solid	Steel Frame .		HEATING	Stoves Pine Furnace	Pipeless furnace	Floor Furnace	Hot Water	Coal Stoker	Gas Burner	Steam	Central Sta.	Electric Heat,	PLUMBING	Old Style	Modern	INO. F1%.				EVTD A ELATIDES	Garbage Dien	Dichwacher	Fireplace		Porch—Gl., Sc., Cl., Op	Air Cond.	Refrig. built in)	Elevator	Thermo	TOTAL
40	Juner Lolfax Grange C	NOTE A CIVITOR	Piers 22 x 3 4	Blocks	Brick	Concrete	SASEMENT	None	Full		FINISH	Brds, and Bats	Siding	Shingles	Shakes	Stucco	Concrete	Brick Veneer	Brick (Kind)	i i	a Cotta	Stone	Galv. Iron	Timilimin 1	Shingle	Pat. Shingle	Roll	Split Roll	Aluminum	Galv Iron	Tile		Hip	Flat		Insulation		

HO


Locat (C) Fox, C.	U. F. Toukoad	nad Hease Li (B)	Block	Lot	spare & 20	J. 26521
V	Joshax Grange Supply	7	Commercial K	Duplex 🗆	Apartmen	Units
				Class of Building	14 2.1	
			#	Condition (922d		
FOUNDATION	CONSTRUCTION	STORIES A S B 1 2 3 4				
Piers	Single	smoo	ų	Sheet #2		7881
Conc. Blocks	Double	Living	Height	#		MACH
Brick	Frame	Dining				100
Concrete	Brick	Bed		THE 11		9015
	Rein. Conc.	Bath 74	Base Rate sq. ft. 7. 6 2 2 2 3	2,620 H	7	6677
SASEMENT	Concrete 3//k.		-	1 1000)	661
Part	Steel Frame	Recreation	Basement			
Full	Mill	Storeroom	Base Rate on Rooms		46	466 HE
Grade		Fruit		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,, ,, ,, ,, ,
EXTERIOR FINISH	HEATING	2 office.	2nd Story Rooms			*
Brds, and Bats	Stoves	CEILED	Extra Features			
Kustic	Pipe Furnace	Wall Brd.		7		
Siding	Pipeless furnace	Paper		55.620		
Shakes	Hot Water	Sheet Kock	Present Reproduction Cost	8 +44 +0 E		
Stucco	Coal Stoker	Celotov	Depreciated Value (Rate)	×		
Conc. Block	Oil Burner		No. of Years Life Left	2 2/4/		
Concrete	Gas Burner	TRIM			- H	
Brick Veneer	Steam	7				
Brick (Kind)	Central Sta.	Hwd. (kind)	YEARS APPRAISED	61 4761	1965	
	Electric Heat.		Full (100%) Value (present)	-	6//1000	11
Terra Cotta	DY LIMBING	o according	Full (100%) Value Add Buildings	1		
Stone	Old Style	FLUORS	Total (100%) Values	9 6 L ~	١,	
Galv. Iron	Modern	Hard	Total (100%) Values	642813	-	
Aluminum	No. Fix. 5	Concrete	Total Assessed Value	\$13 860 \$12	4570 \$	
		Tile	,	1-2/25/	8,210	,
300F		Inl. Lino.	Remarks: 14w nodelay.	1964 - Tuated sho	in digual a	yaterd
Shingle		Print	,			
Pat. Shingle		Asph. Tile				
Split Roll						
Tar and Gravel	EXTRA FEATURES			Assessed Value	Assessed Value	Total
Aluminum	Garbage Disp.	Year Built 1948	Year Built			Assessed Value
Galv. Iron	Dishwasher					
Tile	Fireplace	Cost \$	Cost \$			1
		Listed by:	Listed by:			
Hip	Porch—Gl., Sc., Cl., Op					7
Gable Round.	ı.	" Land	,			1
Flat	d.	Examp Coole of Appraised by:	Appraised by:			4
Tremotion	Ketrig, built in)	Selany 6/12, 195.9.				
Institution	Thermo	Vor. Demodeled. 30/64	lad.			
	THEIMIO	teat Nethodeled.				
	TOTAL	19	19	ř		
		Ţ.	B			

Units Assessed Value Assessed Value 44 69 Apartme. Imps. 8 Assessed Value Condition.... Class of Building. Land Duplex Block.....Lot. Year Full (100%) Value, Add. Buildings. Total (100%) Values. Commercial Full (100%) Value (present) Present Reproduction Cost9161 Depreciated Value (Rate)19.... YEARS APPRAISED No. of Years Life Left Base Rate on Rooms Total Assessed Value Year Leniodeled: 2nd Story Rooms Base Rate sq. ft. Year Built..... Extra Features Appraised by: Listed by: Basement Remarks: Cubic ft. Cost \$... Height ON 19.... 19.... ., 19 A S B 1 2 3 Year Remodeled: Appraised by: Year Built. Listed by: Cost \$ Building locations St. STORIES Paper Sheet Rock Hwd. (kind) No. Rooms Asph. Tile Recreation Storeroom Wall Brd. Inl. Lino. FLOORS CEILED Concrete Kitchen Celotex Utility Plaster TRIM Nook Fruit Hard Bath Bed Print Lile Soft Porch-Gl., Sc., Cl., Op EXTRA FEATURES CONSTRUCTION Refrig. built in) Pipeless furnace Pipe Furnace Floor Furnace Garbage Disp. Electric Heat. Steel Frame TOTAL Rein. Conc. Hot Water Coal Stoker Gas Burner Central Sta. Dishwasher Oil Burner Incinerator PLUMBING Fireplaces Old Style Fireplace Air Cond. Concrete HEATING Modern Elevator No. Fix. Double Thermo Frane Steam Brick Solid Box Mil EXTERIOR FINISH Brds. and Bats Tar and Gravel FOUNDATION Conc. Blocks Brick Veneer Brick (Kind) Pat. Shingle Conc. Block Terra Cotta Galv. Iron Aluminum BASEMENT Aluminum Galv. Iron Split Roll Insulation Concrete Concrete Locat Shingles Addres. Shakes Shingle Rustic Stucco Siding None Grade Stone Stone Brick Hip Gable Owner Part Full ROOF Roll Flat Tile

Harwood

Colfox Granga Supply

WHITMAN COUNTY PROPERTY HISTORY

					C	City									
					Add	dress									
Water				Sanitary Sewer_			Stor	m Sewer	-						
R	oad			Alley	·	***************************************	R.R	. Siding							
c	urb			Sidewalk	-		Stree	et Light	s .						
Electric	city			Telephone		· · · · · · · · · · · · · · · · · · ·									
Buildin	g Permit:		Date	Amount			P	urpose							
							G-Q-1-Z-Zilyan								
															
Sales -	Lease -	Mortgo	ge			343									
trument Date			Amount	E. Tex No.	A. F	ile No.		Notes							
									and the second s						
									anna su de la compa nta de la compansión de						
		٢					•	70.0000,0000000000000000000000000000000	SCHOOL THE SECRETARY STREET, SEC. 20.20-30.						
Zoning	•	-	Date	Class				Use .							
		ŀ			_										
Land V	aluation:	-	De	pth Table		ft.	Corn	Corner Influence							
ntage Ft.	Depth		Acres	· Unit Value	F	actor	A.U.V.	Cor. Influence	Value						
			40,815	, %0					11,250						
					,										
									the state of the s						
Land A	ssessment	:		2000		<u> </u>		TOTAL							
	19			19			19		1,						

A:J020/01 A/T ASSESSMENT MASTER FILE MAINTENANCE
PARCEL#SUBDCODESTATUSESCREV-
[101350001150000] [0135] [2] [] [152] [] [R3]
PROP. NAME: [COLFAX GRANGE SUPPLY, INC]
ADDR1: [205 E HARRISON (SITE)]
ADDR2: [
ADDR3: [101694000000000]
1 L. ID#: [241440] UPDATE CODE (A/C/D):[] TAXPAYER NAME & ADDR RECD
NAME: [COLFAX GRANGE SUPPLY] NAME: [COLFAX GRANGE SUPPLY]
ADDR1: [105 E HARRISON] ADDR1: [105 E HARRISON]
ADDR2: [COLFAX, WA 99111-2100] ADDR2: [COLFAX, WA 99111-2100]
ADDR4: [] ADDR4: []
LEGAL DESCRIPTION VALUES
S/T/R:[14-] [15] [1] MKT: [12400] [192000] [204400]
ACRES:[.00] [.00] [.00] 0/S: [0] [0]
VALUE - MARKET: [0] [0] S/C: [0] [0]
O/S: [0] [0] TAX LEVIED [2985.36] TAX PAID [.00]
[CX PERK PRES RIV ADD R/W] LAST MNT. [10222003] BATCH [SM10]
[MESSAGES:
[CONTINUE SAME SEARCH < Y/N>?] [Y]

*

1644. -0 RESIDENTIAL APPRAISAL
Owner Colfax Grange Supply Roll No...... Page No..... Address E 205 Harrison Map No......Photo No.... Addition Colfax Wa. 99111 Monthly Rent..... Remodeled 19..... Cost \$..... Sold 19..... Amount \$.... Colfax Perkins-Pres-Rio-Add Sold 19..... Amount \$..... BUILDING CONSTRUCTION STORIES LOT- 14-15 B1K-1 Dwelling Single No. Rooms Duplex Double No. Boths STORE - STORAGE FOUNDATION Block No. Bedrooms Conc. 6 8 10 ✓ Insulation Parimeter .---Condition Good Concrete Block PARTITIONS Square ft. 7680 Brick Plaster Year Built 1953 / 1974 Const. Cost \$ ___ HEATING Stone Drywall Remoleled 1991 Piers Forced Compo. EXT. WALLS Gravity Paper Rate Adi. Floor or Wall Bevel Wood Panel Base Rate Rustic Plywood B. and B. Hot Water CEILING Vertical Baseboard Plaster Wood Shingles C. I. Rad. Drywall Comp. Shingles Floor Rad. Compo. Aluminum Plywood Comp. Shakes Electric Tile Wood Shakes Wall Units Paper Baseboard Wood Panel Low Cost TOTAL RATES Average Glass Panel Ceiling Rad. **FLOORS** Good ADJ. BASE RATE Concrete Block Floor Rad. Single ADDED FEATURES Stucco Gas Double Basement Heat Pump Brick Softwood Basement Rooms Comman Hardwood Heating FIREPLACE Roman Plywood Plumbing 1 Sty. Single Stone Carpet Fireplace Gal. Iron 1 Sty. Bkd. Tile Attached Garage 2 Sty. Single Upper Stories Concrete 2 Sty. Bkd. ROOF Linoleum Extras Canc. 54482 @ 1.25 2/Sty. Stkd. Flat Stove BASEMENT Hip Gable EXTRAS None B. I. Oven Full B. I. Ronge Pitch Part Hood and Fan Low No. Rooms Water Soft. Medium Class Rooms Steep Air Cond Daylight Shingles BUILT-INS PLUMBING Wood TOTALS Fir 1 st G. Composition 2 nd G. Aluminum Hardwood Toilet Shower Stall 139,320 Adjusted Total Gal. Iron Metal Tub **Tub Shower** Area 7860 P.S.F. Shokes Lav. 2 Sink Added Features

Total Base Cost

Total Value

Assessed Value

19 ____ Cost Index _

Depreciation

Additional Buildings

% x Base C.

% Phy.-Func.-Econ.

Remarks: WC, 1/99-J.W.

LIGHTNING

Good

Poor

Average

Laundry Fac.

Garbage Disp.

Hot Water Heater

Dishwasher

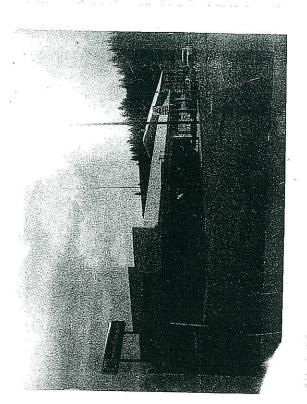
No. Fixtures

Light meta.

Medium

Heavy

Roll


Tile

Built-up

10/97 160000

134610

1-0135-00-01-15-0000.JPG

Foundation				Chimney				i
Class. M Zone.		Depo	ortment of BUILDING INS			S	Nº	5186 3886
Owner	Hax Grang.	2 Suply	/	Address	E 2	25 h	lanison	
Builder	10 be so	estel		Address				
Architect	N	2/2		Colfax, Was	h	Dec	30	19.85
STORIES	BUILT OF			TO BE USED F	DR		ESTIMAT	TED COST
	Masonry	K	D Corena	del	Remode		10	00000
NUMBE	R	STREET		Li	דכ	BLOCK	ADD. O	R TRACT
# 2	205 H	arison	14					
Remarks	Remodel 91	ocery d	lept to	aston	ofive of	equi ce		8
Chimney		Fireplace			ide (see a se	# 8 V	***	
violation of an This perm	MIT is granted upon the City of Colfax, regulating of the provisions of sait will be good only for after which time this pe	ig the construction of the commence of the construction of	on, use and occup failure of plans, as of work within 60	ancy of buildir approved, to	igs in the city is comply with sa	limits, and n id ordinance	nay be revoked a s.	ects to all the ording t any time upon the

Building Inspector

NOTE-Before Lathing or covering up Steel Reinforcement Notify this office.

FEE PAID

DEPARTMENT OF BUILDINGS ASSAPPLICATION FOR BUILDING PERMIT Permit No 5186 Type of Bide Date of Application Ward. Fuc Received by 12/30/85 Zone Harrison Block Addition 205 Harrison Sunly Address Contractor Address Engineer or Address DESCRIPTION OF WORK °10,000 Estimated Cost Lemodel torna Alteration Sin Repair Demolish Addition Use of Existing Bldg. Gracery Orman No of No. of Suries Rooms Families Attached Rool Heating Covering Genere Interior Basement Potadetion -Wall Finish Gurare Chimney Fod Fireplace Stoker Oil Burner ULi FEE SCHEDULE (Minimum For-\$2.50) Aera Alterations or Repairs Marquees-Fences Signs, Retaining Walls, Awnings, etc. Demolitica Gas Tanks and Pumps Area of New Buildings or Additions Stal Washington State TOTAL FEE icen. Contractors License

ob Card

Plans

Filed

Lot

Owner

Architect

New

Use of

Sim of

Building

Busment

Exterior W. W.

Exterior Finish

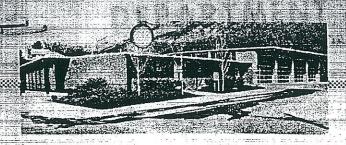
No. of

Suries

TOTAL

unts:

Number_


New Bldg.

Brilding

Address

I hereby acknowledge that I have read this application and state that the above is correct and agree to comply with all city ordinances regulating building construction.

Jelephoor No_____

City of Colfax

Colfax, Washington 99111

January 7, 1986

Mr. Dale Morasch, Manager Colfax Grange Supply E. 205 Harrison Street Colfax, WA 99111

RE: Building Permit Application #5186

Dear Dale:

Enclosed with this letter is the approved copy of the above Building Permit Application, for remodelling the former grocery area of the Grange building into an automotive service facility.

The City Council approved this permit, subject to the following conditions:

1. That the Fire Department review and approve the detailed plan for compliance with current fire codes relating to automotive service facilities.

2. That the Police Department be advised and review any changes that may be necessary

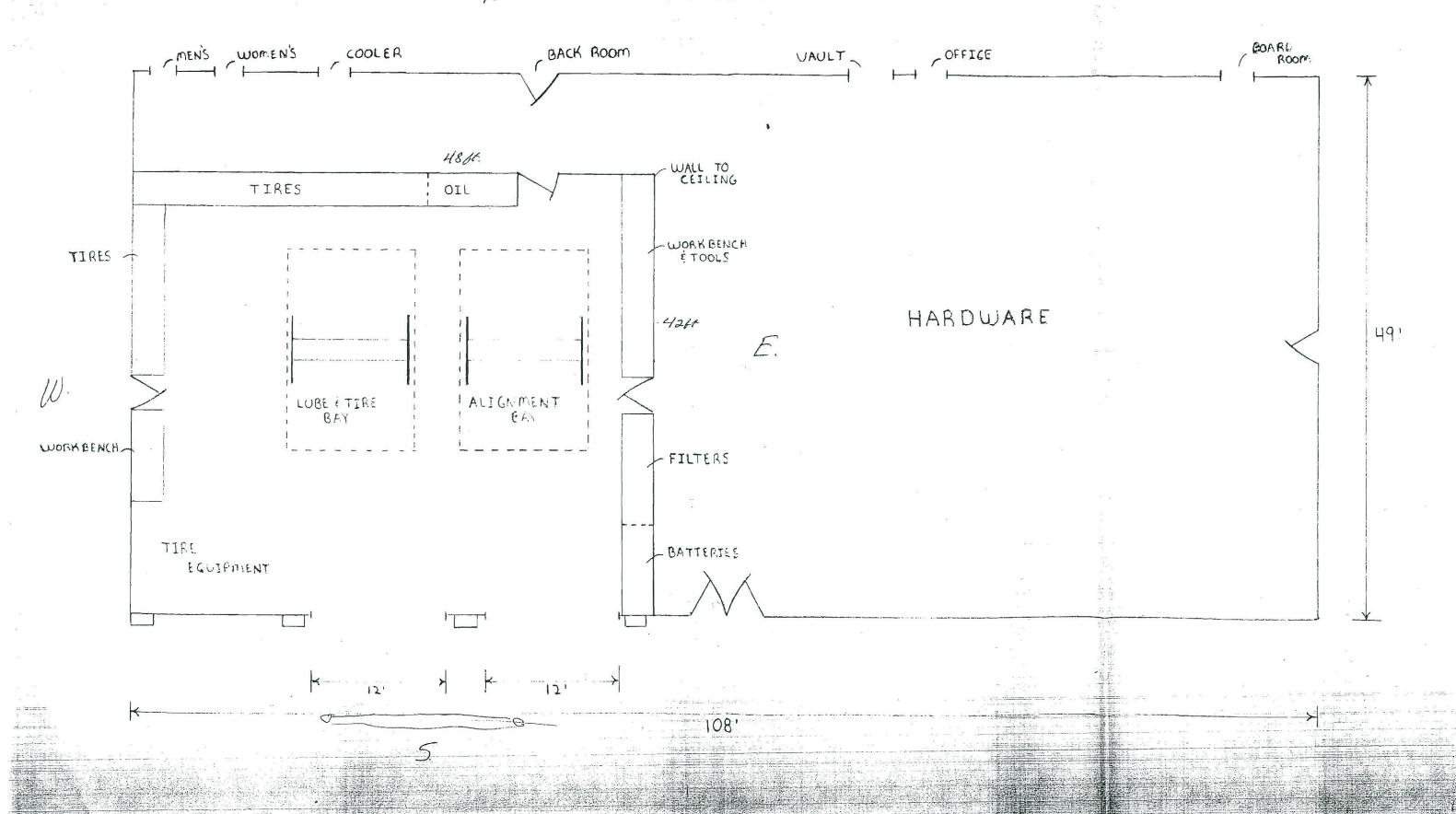
in on-street parking in the area.

3. That the proposed driveway cuts be formed within the sidewalk area, and that no fill or obstruction be placed in the present gutter flow line.

The Council is aware that you have already discussed items 2 and 3 with Police Chief Buckley and with me.

If there are any questions regarding this permit approval, please feel free to contact us at City Hall:

Building Permit and curb cut: Robert Moorhead, 397-3861 Traffic control and no-parking areas: Chief Barney Buckley, 397-4616 Fire Codes: Chief Jim Krouse, or fire captain on duty: 397-3416.


Sincerely,

Robert W. Moorhead, P.E. Building Inspector &

Public Works Director

Enclosure

cc: Fire Dept. Police Dept. N

Fax from :

1-0135-00-01-04-000

964 N. MAREN

CX Red Property App.

The Lots 2-b BIK1

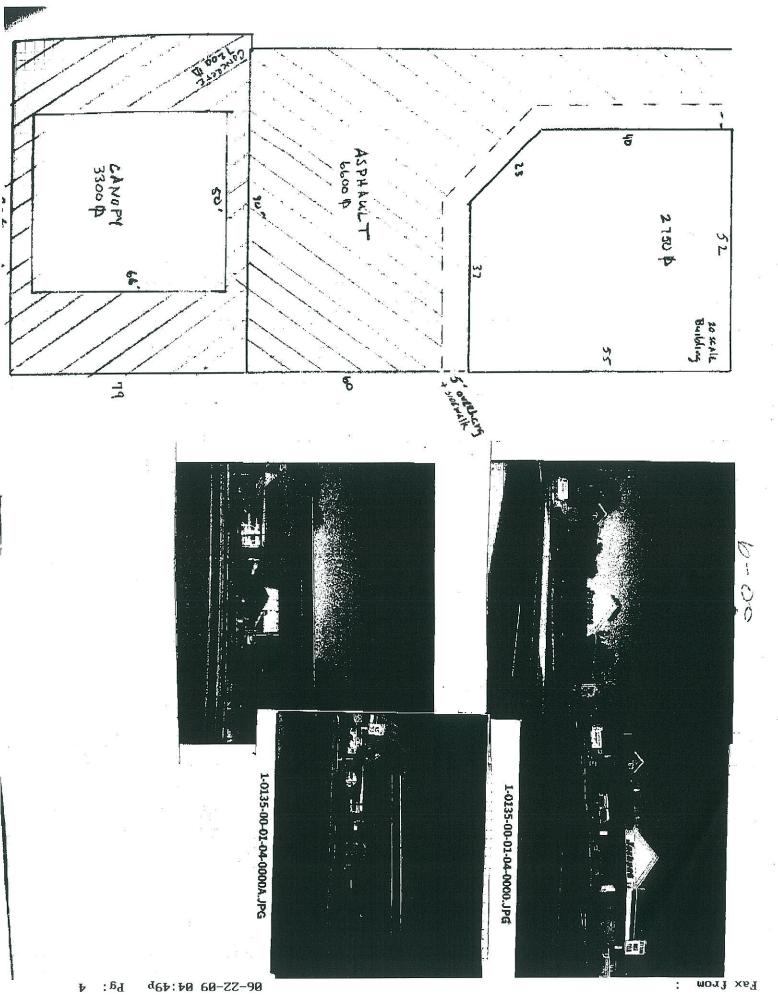
SEE Attached sheets

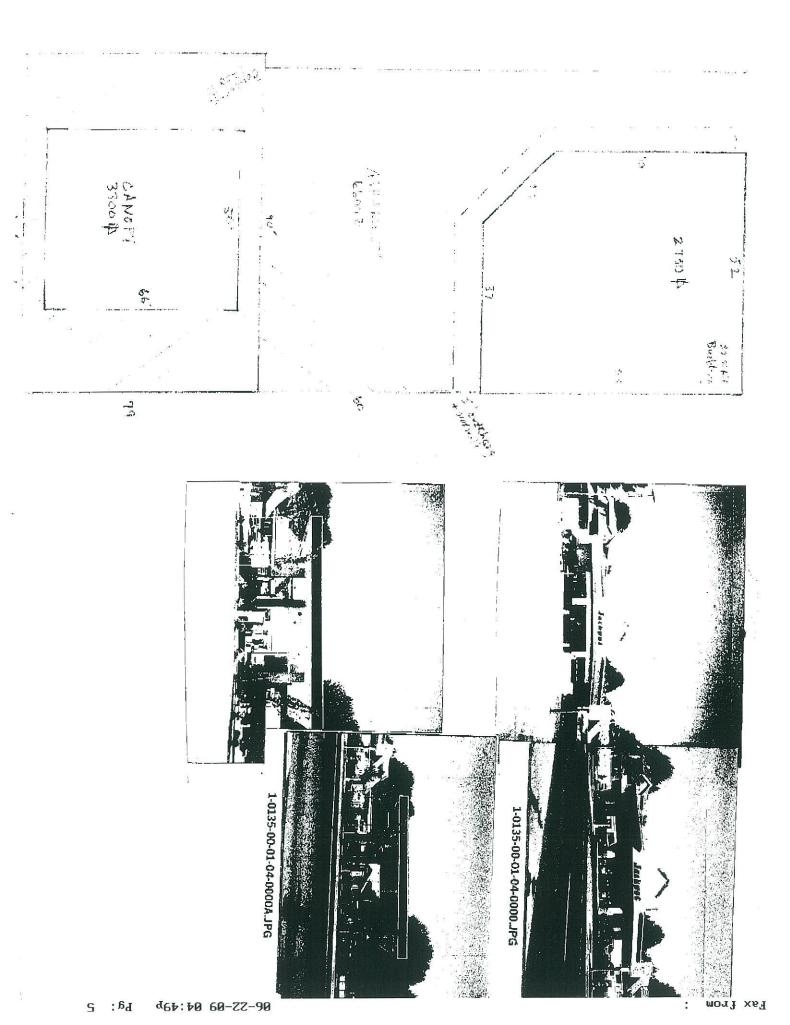
1 854 May

Whitman County Assessor	County	Assessor		Site Appraisal			Colfax, Washington	shington
COMMUNITY TREND		IMPROVING	STATIE	DECLINING	GZ	ZONE NO.		
DRIVEWAY		RIBBON		SLAB	GRAVEL		STONE	
RDAD		PAVED		GRAVEL	OIRT	,	SIDEWALK	
UTILITIES	GAS		WATER	ELECTRIC	SEWER		SEPTIC TANK	
TOPOGRAPHY	MOJ	HOH	ROUGH	вкизн	LANDSCAPING	PODR	AVE.	6000

	FRONT FEET	DEPTH	SQ. FEET	VALUE BY SQ. FT.	VALUE BY FRONT FOOT	ADJUSTMENTS	APPRAISED VALUE
Tot324	150	95	14,250 £				
ru th	50	95	47500				
		5	المحتمم فا	altotel Lats			
ш	EASEMENT NUMBER	UMBER			8	DEED NUMBER	

COMMERCIAL APPRAISAL


	80		
Roll	No	Page	No
Map	No	Phạta	No
Rømo	odeled 19 Co	ost \$	
2019	19 Amount	\$	
5old	19 Amount	\$	
Appr	Dare	Аррг.	Val. \$
Anne	Data	۸	Val. t


Owner	TIME OIL/ JACKPOT
Building	Name
A.ddress.	1-0135-00-01-04-0000

	BUILDING		CONSTRUCTION		PARTITION	5	Class AVE	Туре	100	Condit	- A	VE.
	Apartment		Single		Plaster		No. Units	Bocked		Detached	-	• —
	Apartment Hotel	×	Double		Drywall		Sq. Feet 2752		7		Wall Hei	
	Auro Soles		Block		Composition	n		-A	-	ion Cast \$	Walt Met	gnr
	Bank		Wood Frame	T	Concrete B	lock			-	1011 6001 9		
	Court		Steel Frame	T	Brick					-		
	Dental		Insulation		Steel							
	Department						Square Fo	or	% /	Adi.	Acres	Rote Adj.
	Garage		ROOF		CEILING		ltems			+		ACIE ACI.
X	Gas Station Fout	Γ^-	Arch		Acoustic		CONC/ASPH	110060	0.71	T		1 ×
	Greenhouse		Flat		Composition	7	77.01.11	בינים ון וטים	Tr	-		36,00
	Hotel		Gable		Drywall							
	Industrial		Hip		Plaster	¥			-			
	Market		Shed	1	Suspended					•		
	Medical							- 1000		_		
	Metal Bldg.		Steel Beam	T	INTERIOR					+		
	Motel		Steel Truss		Department	Store				+		-
	Office		Wood Truss		Market							-
	Restaurant			\top	Auto Show		Te	otal Adj.	-	-		ļ
	Store		Aluminum		Restaurants			rial rial.				
	Theatre		Built-up	1	Office							
	Warehouse		Composition	\top	Thoarres		Adj. Base Cost		-	-		
			Concrete	1			ADDED FEATURES		— L			
			Galv. Iron	\top	ELECTRICAL		Basement					 _ +
			Rock		Minimum		Heating					
	FOUNDATION		Shake	\top	Average		Plumbing	***************************************	-			
K	Concrete		Shingle	1×	Good		Electrical		_			
	Concrete Block		Steel	1		·	Elevators					
	Stone		Tar and Gravel	\top	FLOOR		Stairway					ļ. <u> </u>
	Brick			1	Single	•	Balcony				***	
	Wood Frame		HEATING	7	Double		Sprinklers					
T	,		Floor-Wall	1-	Fir		Conopy 3300 N					
T		X	Forced Air	+	Hardwood	*	COHODY 3300 1	4				50,000
	EXT. WALLS		Gravity	1	Cancrete		·					
J	Aluminum		Hot Air		Grade		+					
1	Brick		No. Units	1	Elevated							
<	Brick Veneer	-	Space Heat	1	zio roi eu	-	TO	TAL	1010			
7	Concrete Block	_†		+	BASEMENT		1- 10	IAL				
\neg	Concrete Reinf.		Hot Water	1	Finished	3/	ADI TOTAL					- Language
_	Curtain	_				ADJ. TOTAL Area 2750 174. 55 P.S.F.					493,750	
-	Galv. Iron			+	Utility 1/2 Full 1/2		Area - , yx	CAMINGS	5.F. てって	F92. 4- E44	Vie I	200 3 12 20
_	Shakes	+	ELECTRIC	-	POIL	1/4		-3//		S I PAR	ed ()	
7	Shingle		Baseboard	+-	PLUMBING		Total Base Cost					
1	Siding	-	Heat Pump	1	Tailat	Lat.	19 Cost Index	2000	Bas	e Cost		
1	Steel Panel	+			-	Hwt.	% Quality A	ajustment	-			
1	Stucco	/	AIR COND.	1-	Urinol	Lov.	Replacement Cost					
_	Tile	· .	vaporative	1-	Fountain	Sink	Depreciation	% PhyFuni	c. Eco	n.		
1	Tilt-up		Refrigeration	1-	Shower	Tub	DeprRepl. Cost	· · · · · · · · · · · · · · · · · · ·				
1			Eustom	╆┤	"		Other Improvements					
_1			COMPIN				Total DeptRepl. Cos	t				

Remarks: 9-01 BA

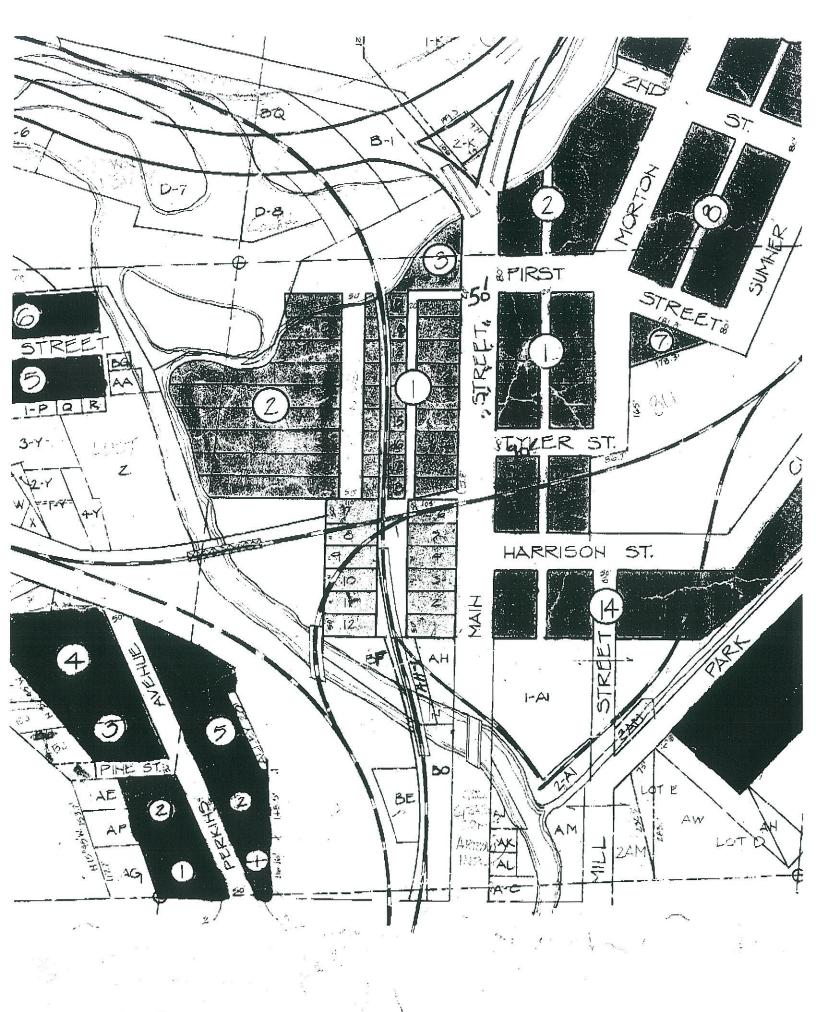
1 7-17-D, mort xel

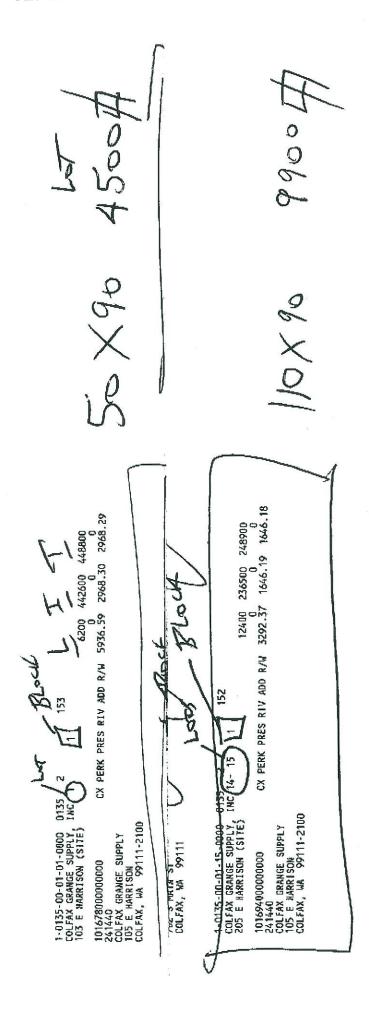
REAL ESTATE EXCISE TAX AFFIDAVIT

This form is your receipt

CHAPTER 82.45 RCW - CHAPTER 458-61A WAC when stamped by castrier, of BE ACCEPTED UNLESS ALL AREAS ON ALL PAGES ARE FULLY COMPLETED (Good back of last page for instructions)

[If multiple pages, bit percentage of ownerthin next to manner.] Chock box if partial sale Name PatroSun West Name PCF Acquieltence, LLC. Mailing Address 22026 68th Ave. South Mailing Address 22028 68th Avs. South City/State/Zip Kent, WA 98032 City/State/Zip Kont. WA 98032 Phone No. (including area code) (213) 426-2528 Phone No. (including area code) (213) 426-2628 List assessed value(s) 1,690,000.00 1-0135-00-01-04-0000 Mulling Address 1-0136-00-01-05-0000 City/Suste/Zip 1-0135-00-01-06-0000 Phone No. (including area code) D Street address of property; 804 N. Main Street, Collax, WA This properly is located in Whitman County Check box if any of the listed parcels are being segregated from a larger parcel Legal description of property (if more space is needed, you may attach a separate sheet to cook page of the affidavit) SEE ATTACHED LEGAL


55 - Plutell Bade - permis marchandies		_	List all personal property (tangible and intengible) included in seiling price.
onter any additional codes;			prioc.
(See back of last page for instructions)		5	
this property exempt from property tax per chapter 4.36 RCW (nonprofit organization)?	☐ YE\$	NO ☑	
	YES	NO	Water to the same of the same
this property designated as forest land per chapter \$4.33 RCW7		Ø	If claiming an exemption, list WAC number and reason for exemption:
this property classified as current use (open space, farm and prochamal, or dimber) hand per chapter 84.34?		Image: Control of the	WAC No. (Seetiun/Subsection)
this property receiving special valuation as historical property a chapter 34.26 RCNVy		7	Remarks for exemption (3)
any maswers are yes, complete as instructed below.			
axidication as current use (open space, firm and spriculture, a ad, you must sign un (3) below. The county assessor must the the land transferred continues to qualify and will indicate by a	a doter	mine	Gross Selling Price \$ 1,890,000.00
ud, you must sign on (3) below. The comply assessor must the land transferred continues to qualify and will indicate by the thickness of the longer qualifies or you do not wish to continue to the classification, it will be removed and the compensating or and it be due and payable by the seller or transferrer at the time of (3). 33.140 or KCW 84.34.108). Prior to signing (3) below, you are local county assessor for more information.	a doter gning t design itional	mine selow. stion 1910s	Gross Selling Price S 1,890,000.0: Personal Property (deduct) S
ud, you master sign on (3) below. The county assensor must the land transferred continues to qualify and will indicate by the land transferred continues to qualify and wild indicate by the classification, it will be removed and the compensating or add it be due and payable by the selfer or transferre at the time of 1,33,140 or RCW 84,34,108). Plot to signing (3) below, your	a doter gning t design itional	mine selow. stion 1910s	Gross Selling Price S 1,890,000.0
ud, you must sign on (3) below. The county assessor must the land transferred continues to qualify and will indecate by the tho hand no longer qualifies or you do not wish to continue to the classification, it will be removed and the compensating or and it be due and payable by the seller or transferr at the time of 1,33,140 or KCW 84.34,108). Prior to signing (3) below, you are local county assessor for more information.	n doter gning t design itional sale. (R.	mine selow. stion 1910s	Gross Selling Price S
and, you must sign on (3) below. The county assessor must be a be the land transferred continues to qualify and will indicate by the tho hand no longer qualifies or you do not wish to continue to the classification, it will be removed and the compensating or and it be due and psyable by the seller or transferre at the time of it. 33.140 or RCW 84.34.108). Prior to signing (3) below, you are local county assessor for more information. The purity assessor and qualify for continuance. The purity assessor.	en doter gming & design itional sale. (R lay con	mine selow. stion taxes CW stact	Gross Selling Price S
and, you must sign on (3) below. The county assessor must be a be the land transferred continues to qualify and will indicate by the tho hand no longer qualifies or you do not wish to continue to the classification, it will be removed and the compensating or and it be due and psyable by the seller or transferre at the time of it. 33.140 or RCW 84.34.108). Prior to signing (3) below, you are local county assessor for more information. The purity assessor and qualify for continuance. The purity assessor.	en doter gming & design itional sale. (R lay con	mine selow. stion taxes CW stact	Gross Selling Price S
und, you masses sign on (3) below. The county assessor must the land transferred continues to qualify and will indicate by the land transferred continues to qualify and will indicate by the classification, it will be removed and the compensating or and it be due and payable by the seller or transferre at the time of 1,33,140 or KCW 84.34,108). Prior to signing (3) below, you a unlocal county assessor for more information. DEFUTY ASSESSOR (2) NOTICE OF COMPLIANCE (BISTORIC PROPE, EW OWNER(S): To continue special valuation as historic in (3) below. If the new content of the continue	n deter gring t design titional sale (R hy con DATE KTY) proper	mine selow. stion 1930s CW start	Gross Selling Price S
und, you must sign on (3) below. The county assessor must the leant transferred continues to qualify and will indicate by a the leant transferred continues to qualify and will indicate by a the leant on longer qualifies or you do not wish to continue the classification, it will be removed and the compensating or said be due and payable by the seller or transferor at the time of it. 33.140 or RCW 84.34.108). Prior to signing (3) below, you if or local county assessor for more information as least the least does not qualify for continuance. DEPUTY ASSESSOR (2) NOTICE OF COMPLIANCE (HISTORIC PROPERTY CONTINUES). To continue appecial valuation as historic.	n deter gring t design titional sale (R hy con DATE KTY) proper	mine selow. stion 1930s CW start	Gross Selling Price S
and, you makest sign on (3) below. The county assessor must be a the land transferred continues to qualify and will indicate by the land transferred continues to qualify and will indicate by the classification, it will be removed and the compensating or and it be due and payable by the seller or transferre at the time of i.33.140 or KCW 84.34.108). Prior to signing (3) below, you are local county assessor for more information. In the continuance of the continuance	n deter gring t design titional sale (R hy con DATE KTY) proper	mine selow. stion 1930s CW strot	Gross Selling Price S


For Jury: Perjury is a class C teleny which is punishable by imprisonment in the state correctional institution for a maximum form of politicing than five years, or by a fine in an amount fixed by the court of not more than five diousand dollars (\$5,000.00), or by both imprisonment and fine (RCW 9A 20.020 (IC)).

REV 84 0001s (11/19/08)

Name (print) Date & city of signing:

THIS SPACE - TREASURER'S USE ONLY

Fax from .8171.

1-0135-00-81-01-6000 2 COLFAX GRANGE SUPPLY, INC HARRISON & CLAY COLFAX, WA 99111

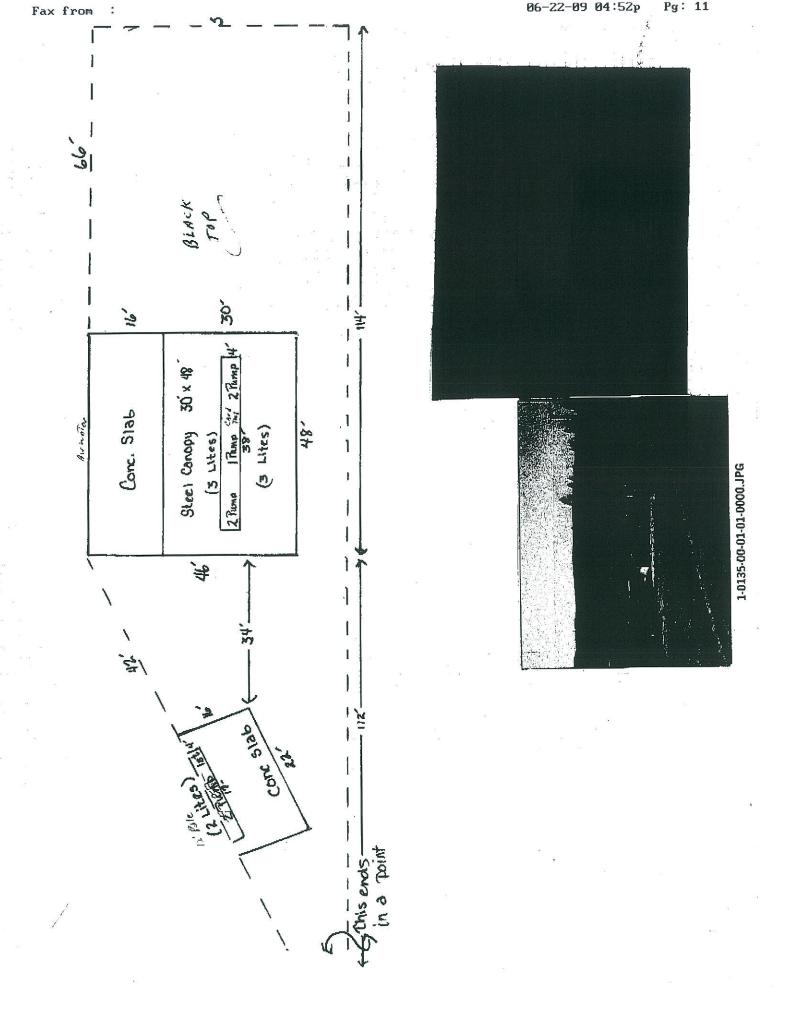
Park. Pres. Riv add R/W

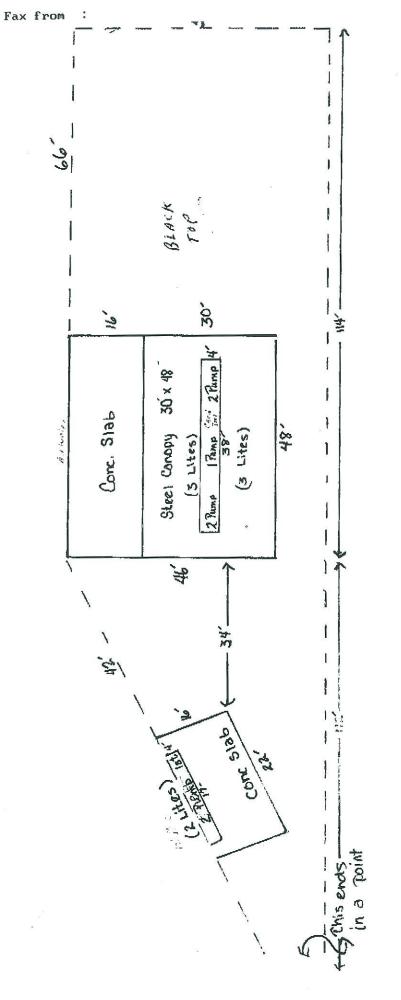
Colfax, Washington 2000 SEPTIC TANK STONE SIDEWALK AVE. POOR ZONE NO. SEWER GRAVEL LANDSCAPING DIRT Site Appraisal ELECTRIC DECLINING ввивн GRAVEL SLAB BTATIC ROUGH WATER Whitman County Assessor RIBBON IMPROVING HIGH PAVED GAS L0¥ COMMUNITY TREND TOPOGRAPHY DRIVEWAY UTILITIES ROAD

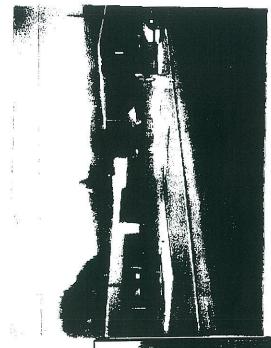
FRONT FEET	H1d30	SQ, FEET	VALUE BY 500, FT.	VALUE BY FRONT FOOT	ADJUSTMENTS	APPRAISED VALUE
	8					
0 PO	0 4024				C D D D D D D D D D D D D D D D D D D D	

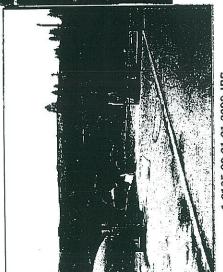
COMMERCIAL APPRAISAL

Roll	No	Page	No
Мар	No	Photo	No
Remo	odeled 19 C	os! \$	
Sold	19, Amount	\$	
Sold	19 Amount	\$	
Appr	Date	Аррг	. Val. \$
			1774 No. 1889

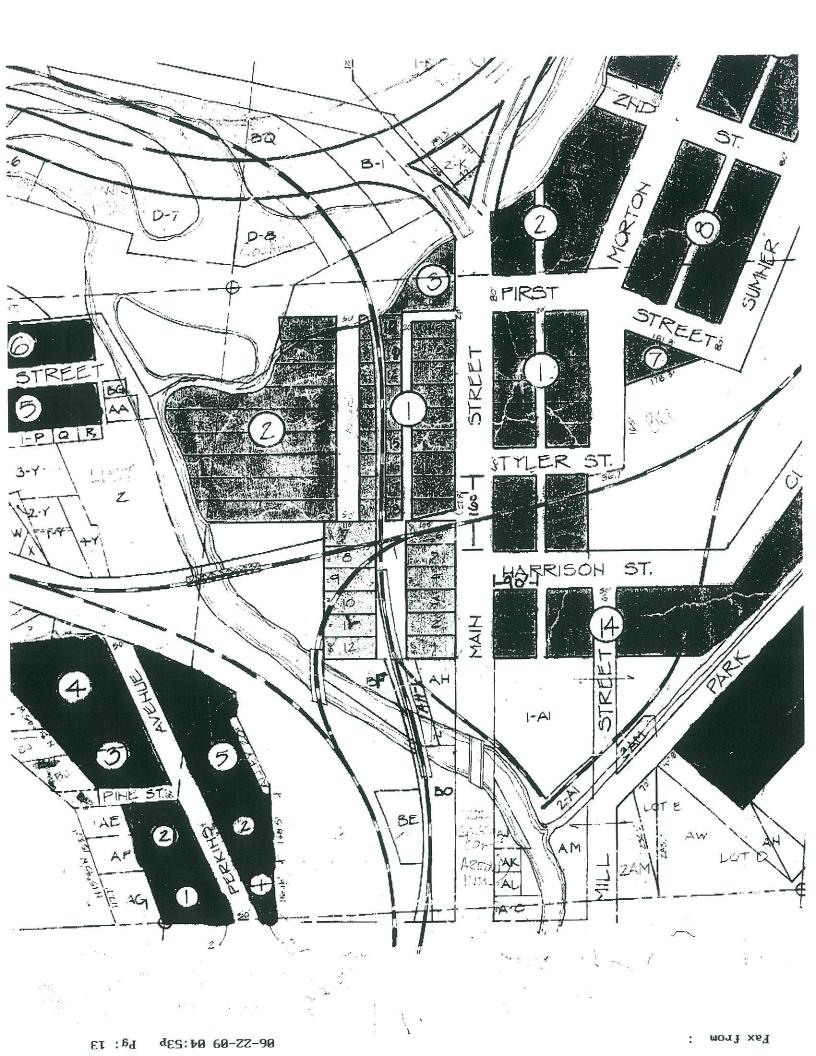

Owner Coffee G	range 5	u Pplu	
Building Nama		/	
Address = 205	Harrism		
Addition Perkins	2 17 6	Pivercido	darit my cone
	F. S. J. S. S. J		
L1 B1	8	1	₹


1-0135-00-01-01-0000


	<u> </u>		pr. Val. \$	1	D. D. D. T. T. C.	15		Class	Туре		Co	ndirlon	
	BUILDING	4	CONSTRUCTION	1	PARTITION	15	/4		Backed		Detai	X 3	
	Apartment		Single	1	Plaster		_	No. Units			Derai	Wall H	
	Apartment Hatel	\perp	Double	-	Drywall	\angle		Sq. Feet	Stories		- Car	. e /2 7	5-5-775-
	Auto Sales	_	Block	\perp	Composiție			Year Built 19	Con	strucn	on Cos	1 3 / 4 4	,,,-
	Bank		Wood Frame	\bot	Concrete 1	Block						· · · · · · · · · · · · · · · · · · ·	***************************************
	Court	X	Steel Frame		Brijek								B. M. A. A. M.
1	Dental		Insulation		Steel					T a/ a		0	Bear Adi
	Department			1/				Şquare .	Poot	% &		201120-200	e Rate Adj.
	Garage		ROOF		CEILING			ltem=		-	+		+
X	Gas Station		Arch		Acoustic			•					
	Greenhouse	X	Flat		Composition	on					_		
	Hotel		Gable		Drywall				N.				
	Industrial		Hlp		Plaster				,				
	Market		Shed		Süspendec	4							
	Medical			X	STeel	,							
	Metal Bldg.	x	Steel Beam		INTERIOR				40				
	Motel		Steel Truss		Departme	nt St	010						
	Office	\top	Wood Truss		Market								
	Restaurant	X	6 Lights		Auto Sho	w/			Total Adj.				
\dashv	Store	-1/-	Aluminum		Restauren	ts.							
	Theatre	+	Built-up		Office								
	Warehouse		Composition		Theatres		,	Adj. Base Cost					
	Warenoose	+	Concrete		, <u>.</u>	10.000		ADDED FEATURES				_	+ .
		×	Galv, Iron		ELECTRICA	11		Besomest 7274					1500
		-	Rock	+	Minimum	-		Hearing 2 Liter					1400
	5040047101		Shake	1	Average			Plumbing & Ja		***			27)
14	FOUNDATION		1700 TAN	-X	Good			Electrical					360
_	Concrete	+	Shingle	+	Q000			Eleveron 3-80	172-17-	- 10 5	550		1665
	Concrete Block	+	Steel	 	CLOOK	-		Stairway 7 Pun					21.94
	Stone		"far and Gravel		FLOOR		-	Balcony Cape & T	To the town	-	2.2		12000
	Brick				Single		-	Sprinklers Pulsas		10	_		900
	Wood Frame	_	HEATING		Doubla	,		Canopy *64 pale			_		710 -000
		_	Plaor-Wall	4-	Fir				The same of the sa	//.			15840
			Forced Air		Hardwood	.		Cone 2640					8050
	EXT. WALLS		Gravity /	X	Concrete			Cone Island.					1230
	Aluminum	1	Hot Air		Grade			Aug 63125	C 2, 60	<u></u>			12620
	Brick /	4	No. Units	4_	Elevated								
	Brick Venser		Space Heat	X	Asphart T. BASEMENT		TOTAL			104,160			
	Concrete Block								-			-	
	Concrete Reight.		Hot Water		Finished		13/4	ADJ. TOTAL					
	Curtoln		Steam		Utility		1/2	Area	.x	.P.S.F.			
	Galv. Irgn				FOI		1/4	Added Features					
****	Shakes/		ELECTRIC			02 333333		Total Base Cost					
	Shinale	1	Baseboard	1	PLUMBIN	G		19 Cost Ir	ndex%	хВ	ase Co	st	3
	Siding	17	Heat Pump		Toller		Hwt.	% Quali	ty Adjustment				
	Steel Panel	-1/-			Urinal		Lav.	Replacement Cos	r .				
-	Stucco	+	AIR COND.	1	Fountain		Sink	Depreciation		uncE	соп.		
-		1	Evaporative		Shower	-	Tub	DeprRepl. Cost	6				
/	Tile		Refrigeration	1	Water	+	1	Other Improveme	ents				
	Tilt-up		Custom	×				Tatal DeprRepl.			125		104160
	L		Nustam .	1/4	MAK			Assessed Value					7, 00 0


No. 9115-08-1Rev. 3-61)-

Remarks: # 4-25-86 01 : 6d dZS: 60 60-ZZ-90



1-0135-00-01-01-0000.JPG

1-0135-00-01-15-0000

Fax from

McSweeney Tractor Co.
Box 466
Colfax, Wash, 99111

P 300 2

\$

Whitman County Assessor	County	Assessor		Site Appraisal			Colfax, Washington	'ashington	
COMMUNITY TREND		IMPROVING	STATIE	DECLINING	DZ	ZONE NO.			
DRIVEWAY		RIBBON		SLAB	GRAVEL		STONE		
RDAD		PAVED		GRAVEL	DIRT		SIDEWALK		
UTILITIES	GAS		WATER	ELECTRIC	SEWER		SEPTIC TANK	\ \ \ \	
TOPOGRAPHY	TOW	HIGH	ROUGH	вкизн	LANDSCAPING	POOR	AVE.	0000	

APPRAISED VALUE			
ADJUSTMENTS			DEED NUMBER
VALUE BY FRONT FOOT			
VALUE BY SQ. FT.			
SQ, FEET			
DEPTH			UMBER
FRONT FEET			EASEMENT NUMBER

RESIDENTIAL APPRAISAL
Owner Colfax Grange Supply
Address E 205 Harrison Rell No...... Page No..... Map No..... Photo No.... Addition Colfax 12a. 99111 Monthly Rent..... Ramodeled 19...... Cost \$..... Colfax Perkins-Pres- Ris- Add Sold 19..... Amount \$..... Sold 19..... Amount \$..... 1/2 2 STORIES CONSTRUCTION BIX-I BUILDING No. Rooms Single Dwelling No. Baths Double Duplex STORE - STORAGE No. Bedrooms Block FOUNDATION Perimeter.-Closs Insulation Conc. 6 8 10 7680 Condition Good Square ft. PARTITIONS Concrete Black Const. Cost \$ ----Year Built 1953/1974 Plaster Brick Remoleled 1991 HEATING Drywall Stone Compo. Forced Piers Gravity Paper EXT. WALLS Rate Adj. Floor or Wall Wood Panel Bevel Base Rate Plywood Rustic CEILING Hot Water B. and B. Vertical Boseboard Plaster Wood Shingles C. I. Rad. Drywall Floor Rad, Comp. Shingles Compo. Aluminum Plywood Comp. Shakes Electric Tile Wood Shakes Wall Units Paper Low Cost Baseboard Wood Panel TOTAL RATES Average Glass Panel Good Cailing Rad. FLOORS ADJ. BASE RATE Concrete Block Floor Rad. Single ADDED FEATURES Stucco Gas Doubla Basement Brick Heat Pump Softwood Basement Rooms Common Hardwood Heating Roman FIREPLACE Plywood Plumbing Stone 1 Sty. Single Carper Fireplace Gal. Iron 1 Sty. Bkd. Tilo Attached Garage 2 Sty. Sixole Concrete Upper Storios ROOF 2 Styr Bkd. Linoleum Extras Flat 2 Sty. Stkd. Conc - 54481 6 HIP Stove: BASEMENT Gable EXTRAS None B. I. Oven Full Pitch B. I. Ronge Part Low Hoop and Fan No. Rooms Medlum Water Soft. Class Rooms Stoap Air Cond Daylight Shingles Wood BUILT-INS PLUMBING Composition Fir TOTALS 1 st G. 2 nd G. Aluminum Hardwood Toilet Shower Stall Gal. Iron Adjusted Total Metal Tub Tub Shower Area 7860 Shakes P.S.F Lav. Sink Added Features Thight metal LIGHTNING Laundry Fac. Total Base Cost Medium Good Garbage Disp. Heavy Average Dishwasher Depreciation ---- % Phy-Func-Econ. Built-up Poor Hot Water Heater Additional Buildings Roll Total Value Tile No. Fixtures Assessed Value 134610 160000

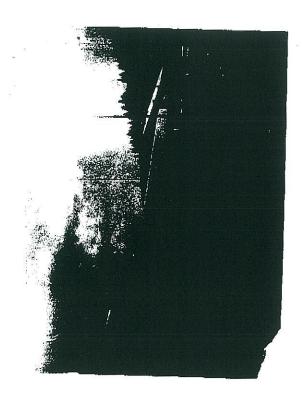
SI : 8d dbS: 40 60-ZZ-90

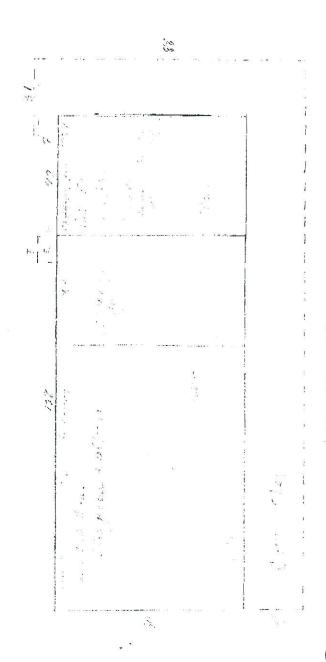
3

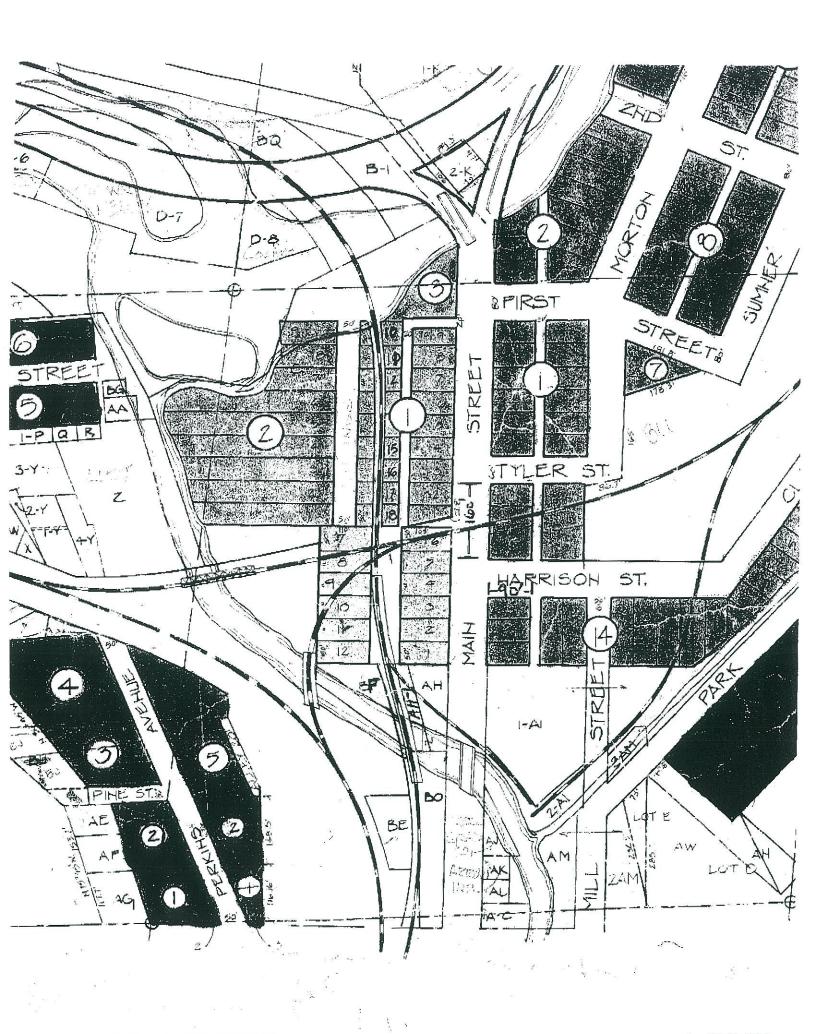
Fax from :

Fax from : 06-22-09 04:54p Pg: 16

1-0135-00-01-15-0000.JPG Menses 42 Care Sir. PATEMETER HOWA STORNES CoNC Slab Carre 614. 814, 1150 55119 3


MARRISON ST


06-22-09 04:54p Pg: 17


Fax from

APPENDIX B Communication Logs

2400 Airport Way South, Suite 200 Seattle, Washington 98134-2020

Phone: (206) 306-1900 Fax: (206) 306-1907

TELEPHONE CONVERSATION RECORD

SES REP.: Chuck Cacek DATE: February 4, 2008 TIME: 1030

CONTACT: Mr. John Skyles, Director

FIRM/AGENCY: Whitman County Department of Environmental Health

PROJECT: North Colfax Remedial Investigation

SUBJECT: Groundwater Quality in the project vicinity

DISCUSSION:

We asked Mr. Skyles if he is aware of any shallow drinking water wells in the area of the project site that tap the near-surface aquifer, as such hand-dug wells or cisterns are sometimes associated with older rural or farm properties. Mr. Skyles stated that he is not aware of any such wells located within the Colfax city limits. Mr. Skyles stated that WCDEH discourages continued use of such wells, which are prone to nitrate impacts associated with fertilizer runoff. Mr. Skyles of WCDEH suggested that the presence of ammonium nitrate would be a good indicator of the relative connectivity of the near-surface groundwater aquifer and the underlying drinking water aquifers. Ammonium nitrate is used pervasively in fertilizer application throughout the Palouse wheat growing region. Mr. Skyles indicated that surface and near-surface water in the Palouse are typically impacted to some degree with nitrates. Because ammonium nitrate has not been detected in the City of Colfax's underlying basalt aquifer wells, Mr. Skyles concluded that the near-surface aquifer is not a significant contributor to recharge of the underlying drinking water aquifer.

Charles Cacek

From: Sent: Andy Rogers [arogers@ci.colfax.wa.us] Thursday, February 14, 2008 9:37 AM

To:

Charles Cacek

Subject:

RE: Water Well Questions

Chuck,

To the best of my knowledge there are no hand dug wells in that area and if there is they are a well kept secret.

From: Charles Cacek [mailto:CCacek@soundenvironmental.com]

Sent: Tuesday, February 12, 2008 3:55 PM

To: Andy Rogers

Subject: RE: Water Well Questions

Andy,

Thanks for your well thought out responses. I really appreciate your help on this. One last question. You stated that there are some old hand dug wells within the Town of Colfax. Do you recall if there are any shallow, hand dug wells (say, less than 30 feet deep) located near the Cenex and Exxon (former Jack Pot) fueling facilities. These would be the wells most vulnerable to near surface groundwater impacts.

Thanks again,

Chuck Cacek

From: Andy Rogers [mailto:arogers@ci.colfax.wa.us]

Sent: Monday, February 11, 2008 11:22 AM

To: Charles Cacek

Subject: RE: Water Well Questions

Dear Chuck.

I will answer your questions in the order that you have asked them.

- Yes there are a few shallow wells in and around the City of Colfax. The City of Colfax maintains a strict Backflow Prevention Program and does not allow any new wells to be dug within the city limits proper and the existing wells cannot be tied in, in any way to the City of Colfax water systems.
- Yes there is an old well located near SR26, but it is not a city well. This well may have been dug before the
 ordinance was implemented or before that piece of land was annexed into the city. Either way it is not tied into
 the City of Colfax. Regardless of how deep it is, it will be and is treated as any other aquifer, deep or shallow.
- Yes the City of Colfax does have a Well Head Protection Program, as most all public drinking water systems must have. This is required by the Washington Department of Health. The program is designed to be a model to project the time it would take for a contaminant to reach the well head "point of discharge" and the source point "aquifer" from the surface or another source. The Department recently added a "6" month area to the model. Imagine a "dot" in the middle of a piece of paper; drawing a close circle around the dot would indicate the 6 month zone, according to the infrastructure of the terrain out from each well head would indicate how long it would take a contaminate to reach the source in 1 year etc. up to 10 years. All possible contaminant sources in the city are included in the protection plan.
- Iron in the water; Iron is a natural mineral the shows up in our drinking water at times. At this time there are no water quality issues concerning iron in the city. The Department of Health gives us a list of tests to take yearly in the Water Quality Monitoring Report yearly. When we are asked to test for i.e. iron we do and the samples are sent to our local lab. They are analyzed with the results sent to us and the Department. If the results on any of the tests are above the limits set forth by the Department then action, if possible, is taken. The City of Colfax has not yet had to take any action on any of these matters.

The bottom line is the city will not allow "any" possible contamination of the soil in and or around our city limits. It does not matter if there is a shallow aquifer that is 10 feet down or 1000 feet down. Any "near surface" ground water effects affects us all in one way or another. Pollution is pollution and as we are so close to the South Fork and the North Fork of the Palouse River, any possible point of contamination would not be allowed.

I hope this answers your questions and lets you know how the City of Colfax stands on this subject.

Respectfully, Elmer A. Rogers Director of Public Works City of Colfax

From: Charles Cacek [mailto:CCacek@soundenvironmental.com]

Sent: Tuesday, February 05, 2008 2:14 PM

To: Andy Rogers

Subject: Water Well Questions

Andy,

Thanks for getting back to me. As I said in my voice mail message, we are doing a near surface groundwater assessment of a property under the observance of the Department of Ecology, and we need to address the risk that the near surface groundwater impacts may have affected the local drinking water wells. From the information I've gathered, I think this is highly unlikely. Regardless, it needs to be addressed. I've recently discussed these issues with Mr. John Skyles of the Whitman County Health Depart. My questions are as follows:

- It appears that all of the local municipal and private wells are rather deep, and tap water within the underlying bedrock (basalt) aquifer(s). However, John stated that some old rural or farm properties have shallow old hand dug wells or cisterns. Are you aware of any such shallow in the city? Wells such as these would be vulnerable to possible near surface pollutants.
- According the City website and discussions with John, Colfax's primary water source is the Glenwood Springs
 wells, and the Fairview and Clay street wells are used during periods of peak demand. However, I found a well
 log that was labeled as a "City of Colfax" well, located near SR26 just east of town. Is this also a City well? The
 well log shows it dates from the 1950s.
- John said that there was a "well head protection" program instituted several years ago. What did this involve?
- Information I obtained from the State Department of Health Drinking Water Division website indicated that the City wells have had occasionally exhibited elevated concentrations of iron. Are you aware of any other current or past water quality issues associated with the City water supply or individual wells?

That's all I can think of for now. I hope your lovely winter weather breaks over there soon, as I will be over there around the end of the month. However, the snow and subsequent melt sound like job security for you!

Regards,

Chuck Cacek

Charles C. Cacek, LEG, M. Sc.

Senior Geologist

ccacek@soundenvironmental.com

Phone: (206) 306-1900 Fax: (206) 306-1907 Cell: (206) 300-6237

This electronic message transmission contains information which may be confidential or privileged. It is intended only for the use of the individual or entity to whom it is addressed. If you are the intended recipient or the employee or agent responsible for delivering it to the intended recipient, you are hereby advised that any use, dissemination, distribution, or copying of this communication, other than to the individual or entity named above, is strictly prohibited. If you have received this electronic transmission in error, please notify us by telephone at (206) 306-1900 or by electronic mail at info@soundenvironmental.com and return the original message to the sender.

2400 Airport Way South, Suite 200 Seattle, Washington 98134-2020

Phone: (206) 306-1900 Fax: (206) 306-1907

TELEPHONE CONVERSATION RECORD

SES REP.: Chuck Cacek DATE: July 20, 2009 TIME: 0830

CONTACT: Mr. Scott Zuger, General Manager (509-397-4324)

FIRM/AGENCY: Colfax Grange Supply

PROJECT: North Colfax Remedial Investigation

SUBJECT: Site Historical Information

DISCUSSION:

Mr. Zuger stated that the Colfax Grange Supply property located north of the railroad tracks has historically supported, a train depot, a city park, a storage lot for an equipment sales company (Empire South of Spokane), prior to construction of the cardtrol fueling facility in 1985. According to Mr. Zuger, the existing UST system which replaced the 1985-vintage system in 2006 includes double-walled product lines, electronic inventory, and moisture-sensing leak detection systems.

Mr. Zuger stated that the Colfax Grange hardware store and warehouse building was built in the 1950s and was operated by McSweeney Tractor as a sales and service facility until the 1980s. He stated that the Colfax Grange Supply, which also owns the buildings to the east, purchased this property in the 1980s, but did not occupy the building until 1991. Mr. Zuger stated that three 300-gallon ASTs containing kerosene, stove oil, and solvent were installed along the north side of the Colfax Grange building in 1991 and removed in 2007. He stated that these ASTs were used for commercial farm sales. He stated that he was not aware what kind of solvent was contained within the former solvent AST.

Mr. Zuger stated that a gasoline UST that was located along the eastern margin of the building was closed-in-place in the 1970s, after which time the eastern portion of the existing building was constructed over the UST. Additionally, he stated that a heating oil UST was formerly situated to the west of the ASTs along the north side of the Colfax Grange building. Mr. Zuger stated that a 1,000- to 2,000-gallon capacity gasoline UST currently located near the northeast corner of the building was used for fueling fleet vehicles.

Mr. Zuger stated that five ASTs formerly located on the Colfax Gragnge Supply-owned property to the east of the Site served the fuel distribution center and were removed in the 1980s. He also indicated that a cardtrol fueling facility with four USTs operated on this property until they were removed in 1992.

A permit was drawn in 1985 to convert the grocery department of one of the Colfax Grange buildings to automotive service. A hand drawn plan in the file depicted two service bays and an oil storage area within the eastern portion of the building. According to Mr. Zuger, these improvements are located in building #2, which borders the current Colfax Grange hardware

store and warehouse to the east. Mr. Zuger stated that the Colfax Grange plans to construct an
addition to the west side of the Colfax Grange building in the near future.

2400 Airport Way South, Suite 200 Seattle, Washington 98134-2020

Phone: (206) 306-1900 Fax: (206) 306-1907

TELEPHONE CONVERSATION RECORD

SES REP.: Chuck Cacek DATE: October 27, 2009 TIME: 1100

CONTACT: Mr. Andy Rogers, Director (1-509-397-4606)

FIRM/AGENCY: Public Works, City of Colfax

PROJECT: North Colfax Remedial Investigation

SUBJECT: Underground Utility Information

DISCUSSION:

Mr. Rogers stated that the storm and sanitary sewer lines are about 6 to 8 feet deep, and water lines are 4 to 5 feet deep in the Site vicinity. Mr. Rogers stated that he would e-mail a map of the sewer utility. He indicated that he was not aware of the depth of other underground utilities, such as natiural gas or electric, and suggested that we contact Avista Utilities.

Mr. Rogers stated that the stormwater corridor along East Tyler Street directs runoff to the west across North Main Street to an outfall at Bellington Road, which, in turn, directs surface water into a ditch that outfalls at the Palouse River to the north.

Mr. Rogers stated that he was not aware of any significant public works projects in the Site vicinity in the near future.

2400 Airport Way South, Suite 200 Seattle, Washington 98134-2020

Phone: (206) 306-1900 Fax: (206) 306-1907

TELEPHONE CONVERSATION RECORD

SES REP.: Chuck Cacek DATE: October 30, 2009 TIME: 1400

CONTACT: Mr. Chris Larson

FIRM/AGENCY: Avista Utilities (509-397-3927)

PROJECT: North Colfax Remedial Investigation

SUBJECT: Depth of underground natural gas and electrical utility lines in the

project area.

DISCUSSION:

We asked Mr. Larson what is the depth of burial of the underground natural gas and electric lines in the project vicinity. Mr. Larson stated that the natural gas lines are typically buried 30 inches bgs, and underground electrical lines are buried either 2 or 3 feet below ground surface (bgs), depending upon voltage. He stated that neither utility is typically buried with bedding materials. He also stated that to his knowledge, telephone underground utilities in the vicinity are not buried greater than 4 feet bgs.

APPENDIX C Certified Sanborn® Fire Insurance Maps Sound Environmental Strategies Corporation

Certified Sanborn® Map Report

Sanborn® Library search results Certification # F3DE-418C-9C57

North Colfax Petroleum Contaminated Site North Main Street/East Tyler Street Colfax, WA 99111

Inquiry Number 2022620.3S

September 07, 2007

The Standard in Environmental Risk Information

440 Wheelers Farms Rd Milford, Connecticut 06461

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

Certified Sanborn® Map Report

9/07/07

Site Name:

Client Name:

North Colfax Petroleum North Main Street/East Tyler Colfax, WA 99111 Sound Environmental 2400 Airport Way South Seattle, WA 98134-2020

EDR Inquiry # 2022620.3S

Contact: Brett T. Carp

The complete Sanborn Library collection has been searched by EDR, and fire insurance maps covering the target property location provided by Sound Environmental Strategies were identified for the years listed below. The certified Sanborn Library search results in this report can be authenticated by visiting www.edrnet.com/sanborn and entering the certification number. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by Sanborn Library LLC, the copyright holder for the collection.

Certified Sanborn Results:

Site Name: North Colfax Petroleum Contaminated Site

Address: North Main Street/East Tyler Street

City, State, Zip: Colfax, WA 99111

Cross Street:

P.O. # NA

Maps Identified - Number of maps indicated within "()"

1939 (1) 1893 (1)

1922 (1)

1912 (1)

1908 (1)

1902 (1)

1899 (1)

Total Maps: 7

Sanborn® Library search results Certification # F3DE-418C-9C57

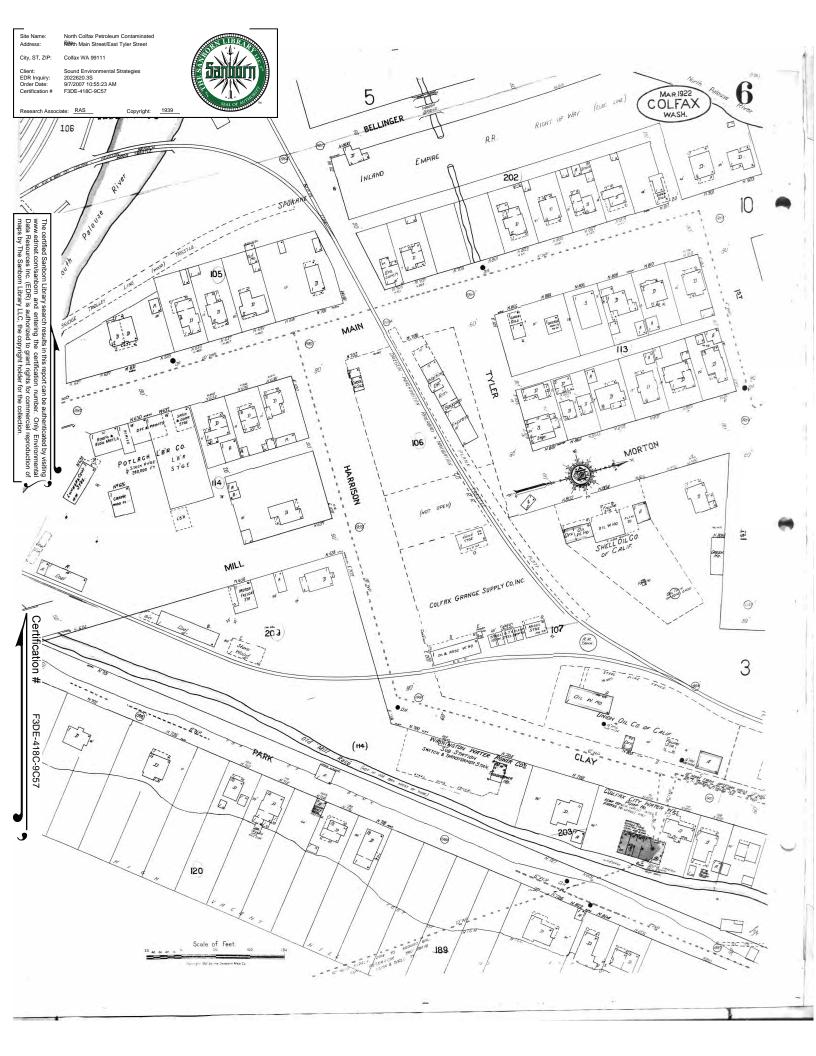
The Sanborn Library includes more than 1.2 million Sanborn fire insurance maps, which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

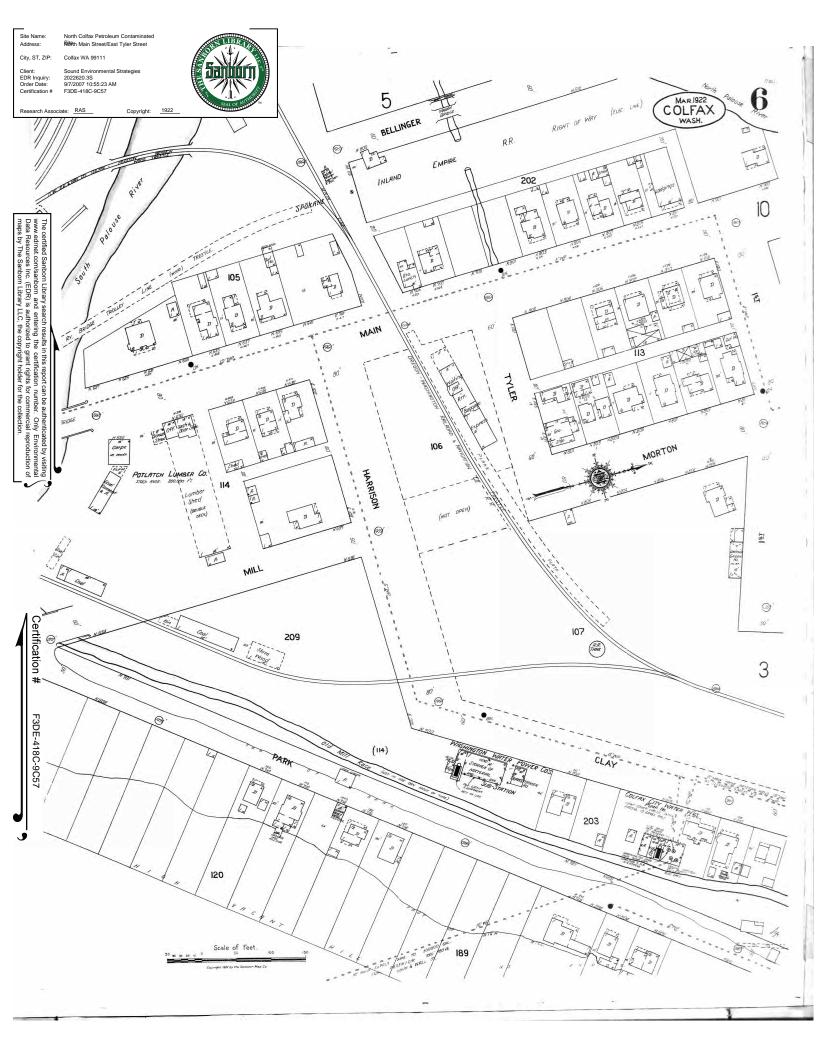
✓ Library of Congress

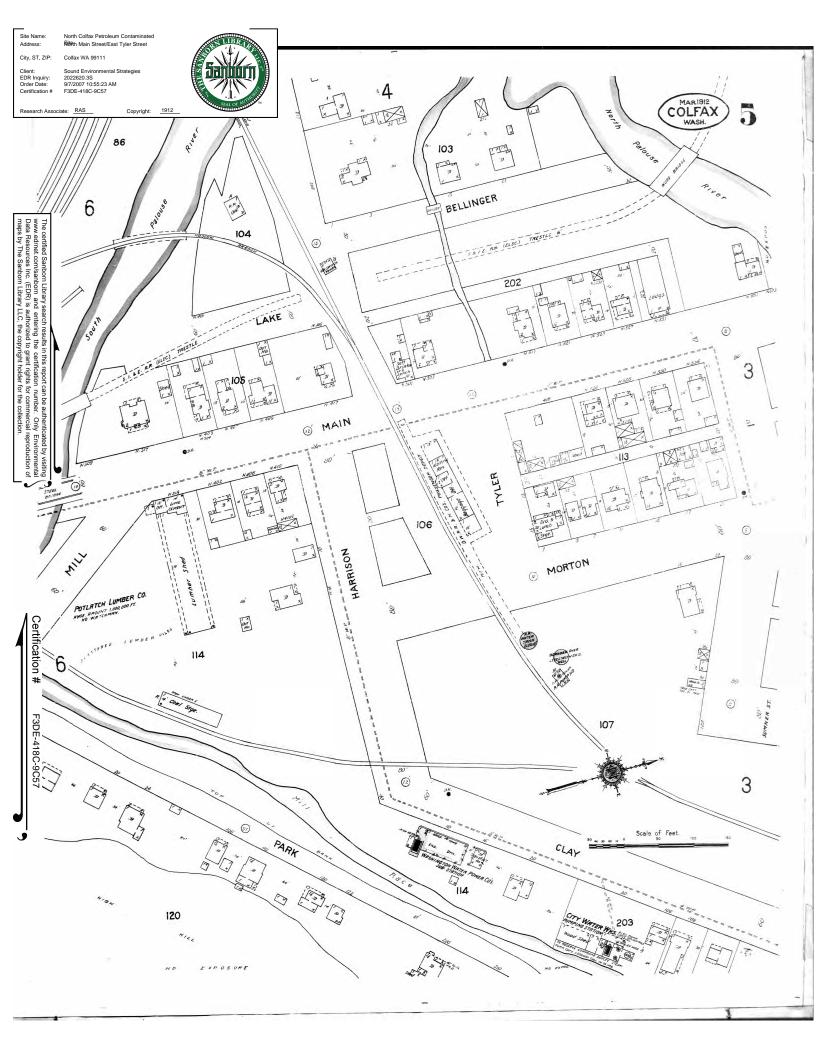
✓ University Publications of America

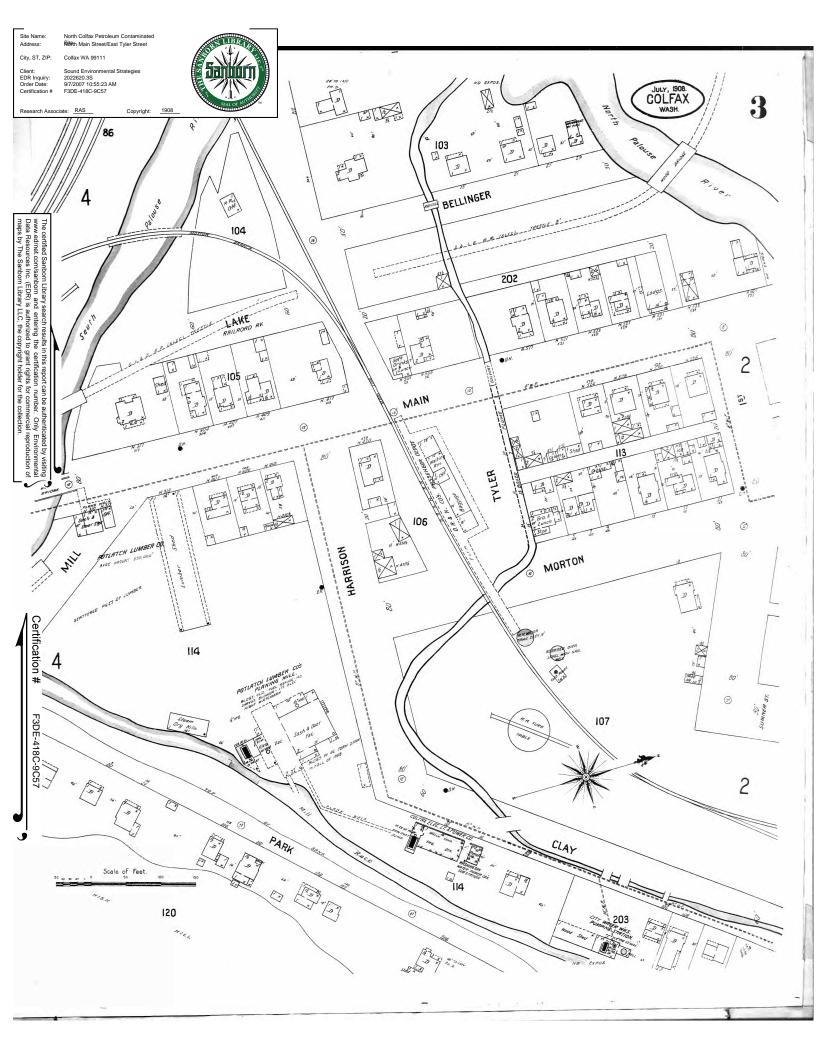
✓ EDR Private Collection

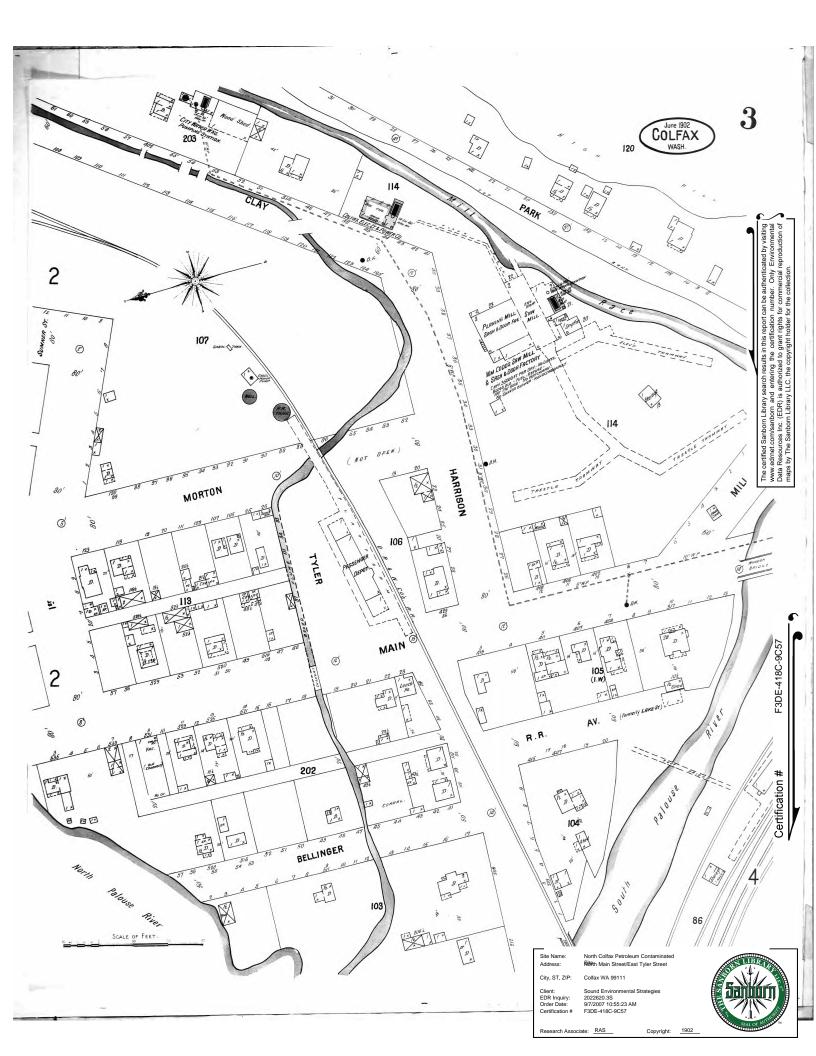
Limited Permission To Make Copies

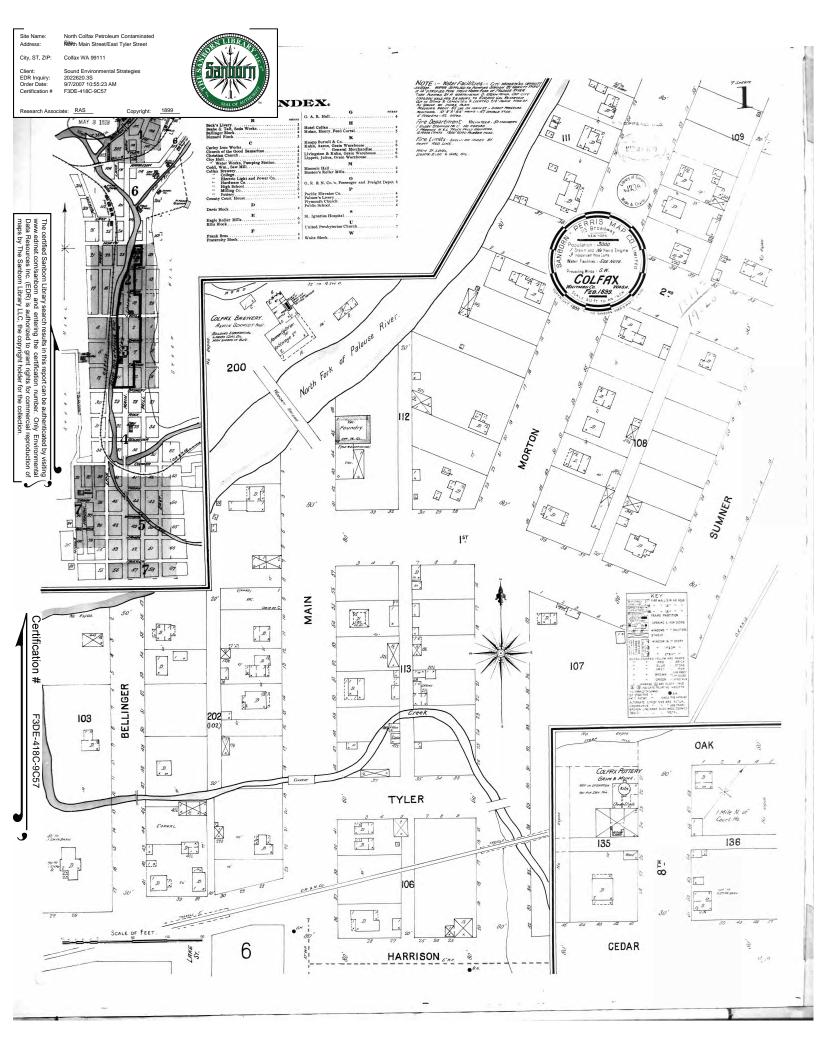

Sound Environmental Strategies (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

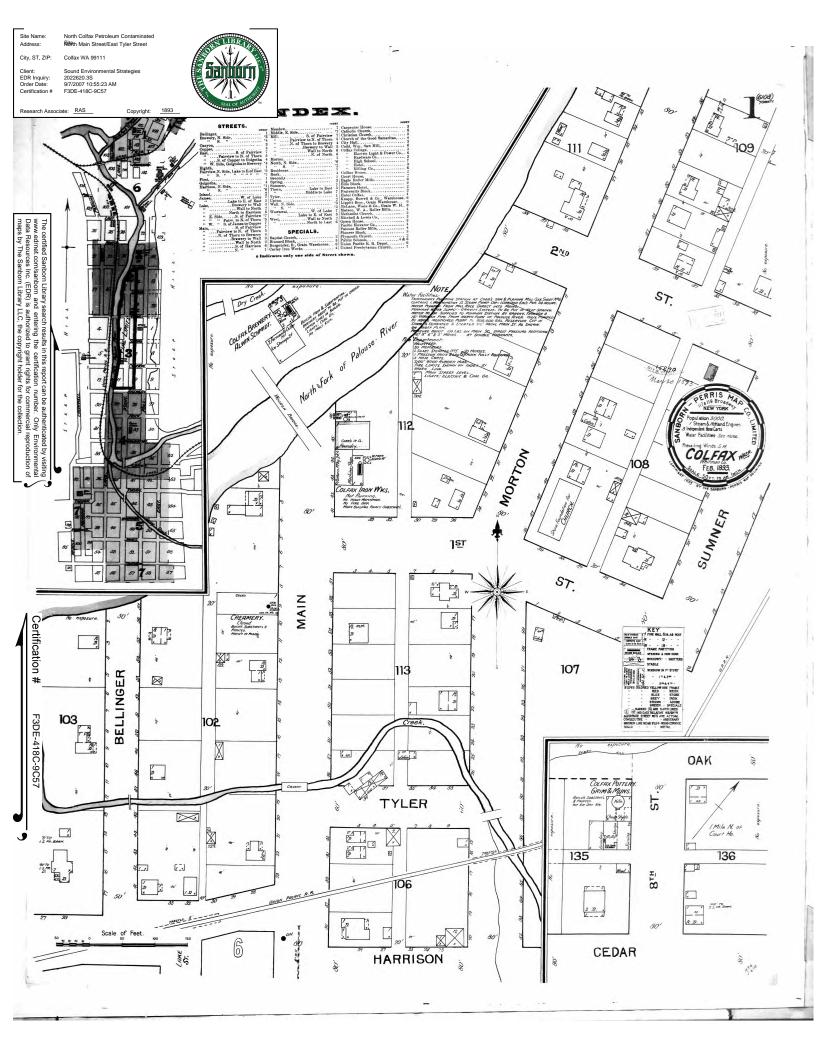

Disclaimer - Copyright and Trademark notice


This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.


Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.


EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.





APPENDIX D Boring and Test Pit Logs

Log of Exploratory Boring:		Drilling Co.	/Driller:	Env. West / Marcus & Bil
Notes		Drilling Me	thod:	Push Probe
		Location:		28 feet west of ty pole at 804 North
Moisture Content:	Water Levels		Wall Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion∇ During Drilling	Total Deptl	h:	14
WO = weak odor, MO = moderate odor, SO = strong odor	± During Drilling	First GW D	epth:	7.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.2	60				FILL	2 inches of asphalt over gravel base. Damp, SILT, medium brown, no hydrocarbon odor.	damp	
5 — 6 — 7 — 8 —		0.1	75		SP-01-6.5-7.5		ML	Grades from damp to wet, SILT, trace fine-grained sand, gray to black, trace organic odor, no hydrocarbon odor.	∑ wet	
9 — 10 — 11 — 12 —		0.6	50		SP-01-11-12]	Wet to saturated, GRAVEL, some silt and sand, dark gray, trace hydrocarbon odor.	sat	
13 —		0.3	80		SP-01-13-14				wet/sa	t
15 — 16 —								Boring refusal in gravel at 14 feet below ground surface. Boring backfilled with bentonite chips.		
17 — 18 — 19 —										
20 —								Data Started: 4/0/2008		

Date Started: 4/9/2008 Date Started: 4/9/2006
Date Finished: 4/9/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: PLOSED ON - 1/17ECHNI-1/IGINTLO-1/0592_20000

BORING LOG SP01

Log of Exploratory Boring:		Drilling Co.	/Driller:	Env. West / Marcus & Bil
Notes	Drilling Met	:hod:	Push Probe	
				26 feet west of ty pole at 804 North
Moisture Content:	Water Levels		Wall Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ndition:	CONCRETE
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ During Drilling	Total Depth	n:	14
WO = weak odor, MO = moderate odor, SO = strong odor	± During Drilling	First GW D	epth:	7.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 — 4 —		481	70		SP02-03-04		CONC	4 inches of concrete and gravel base. Moist to damp, SILT, trace to some fine-grained sand, dark gray to gray, hydrocarbon odor below 2 feet below ground surface (bgs), hydrocarbon odor becomes strong at 5 feet bgs.	damp	
5 — 6 — 7 — 8 —		1,750	80		SP02-07-08		ML		lamp/w ∑	et
9 — 10 — 11 — 12 — 13 —		17.3	70				GP	Saturated, GRAVEL, some silt and sand, dark gray to black, trace to moderate hydrocarbon odor.	sat	
14 ————————————————————————————————————						000		Boring refusal in ground at 14 feet below ground surface. Boring backfilled with bentonite chips.		
18 — 19 — 20 —								Data Started: 4/0/2008		

Date Started: 4/9/2008 Date Started: 4/9/2006
Date Finished: 4/9/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: PLOSED ON - 1/17ECHNI-1/IGINTLO-1/0592_20000

BORING LOG SP02

Log of Exploratory Boring:		Drilling Co.	./Driller:	Env. West / Marcus & Bi
Notes Notes	Drilling Me	thod:	Push Probe	
				/53 feet west of ty pole at 804 North
Moisture Content:	Water Levels		Main Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	GRASS
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion∇ During Drilling	Total Depti	h:	13
WO = weak odor, MO = moderate odor, SO = strong odor		First GW D	epth:	7.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 — 4		1.4	50				FILL	Wet, silty, fine-grained SAND (Fill). SILT to sandy SILT, fine-grained sand, wood and charcoal fragments, no hydrocarbon odor (Fill).	damp	
5 — 6 — 7 — 8 —		1.6	80		SP03-07-08			Damp to wet, SILT, some fine-grained sand.	- wet <u>▽</u>	
9 — 10 — 11 —		1.4	90		SP03-10-11		ML	Minor organic odor detected, no hydrocarbon odor. Organics with fine wood fragments, brown. ———————————————————————————————————	sat	
12 —		0.3	100		SP03-12-13		GP	hydrocarbon odor.	sat	
14 — 15 — 16 — 17 — 18 —								Boring refusal at 13 feet below ground surface. Boring backfilled with bentonite chips.		
19 — 20 —								Data Objets de 4/0/0000		

Date Started: 4/9/2008 Date Started. 4/9/2008

Date Finished: 4/9/2008

Logged By: CCC

Chk By: JAC

SES Project No.: 0592-001

File ID.: P-00502NO-11TECHNI-1IGINTLO-110592_200

BORING LOG SP03

Log of Exploratory Boring:		Drilling Co.	/Driller:	Env. West / Marcus & Bil
Notes		Drilling Met	hod:	Push Probe
		Location:		57 feet west of y pole at 804 North
Moisture Content:	Water Levels		Wall Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ndition:	GRASS
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion∇ During Drilling	Total Depth	1:	13
WO = weak odor, MO = moderate odor, SO = strong odor	± During Drilling	First GW D	epth:	7

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.8	45				FILL	Lawn over moist, fine-grained SAND, brown, no odor (Fill). Moist, sandy GRAVEL, fine- to coarse-grained sand, charcoal and wood present, brown to black (Fill).	mst	
5 — 6 — 7 — 8 —		89.2	80		SP04-07-08		ML	Damp to wet, SILT, some fine-grained sand, brick fragments present at 6.5 feet below ground surface. Wet to saturated, SILT, some fine-grained sand and organic fragments, brown, moderate hydrocarbon odor, hydrocarbon odor becomes strong at approximately 9 feet below ground surface.	_ dmp/we ∑	≑t
9 — 10 — 11 — —		218	80		SP04-10-11				wet/sa	t
12 —		3.0	100		SP04-12-13		GP	Saturated, GRAVEL, some silt and sand, dark gray to black, trace hydrocarbon odor.	sat	
14 — 15 — 16 — 17 —								Boring refusal at 13 feet below ground surface. Boring backfilled with bentonite chips.		
18 — 19 — 20 —								Data Started: 4/0/2008		

Date Started: 4/9/2008 Date Started: 4/9/2006
Date Finished: 4/9/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: PLOSED ON - 1/17ECHNI-1/IGINTLO-1/0592_20000

BORING LOG SP04

Log of Exploratory Boring:		Drilling Co.	./Driller:	Env. West / Marcus & Bil
Notes	Drilling Me	thod:	Push Probe	
		Location:		41 feet west of ty pole at 804 North
Moisture Content:	Water Levels		Main Otrect	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	GRAVEL
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion ☑ During Drilling	Total Depti	h:	15
WO = weak odor, MO = moderate odor, SO = strong odor	<u>*</u> During Drilling	First GW D	epth:	7.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 — 4 —		0.3	40				FILL	4 inches of landscaping gravel aggregate. Moist, sandy SILT, some gravel, silt rich inclusions, brown to black, no hyrdrocarbon odor (Fill).	moist	
5 — 6 — 7 — 8 —		557	70		SP05-07-08		SM- ML	Wet to saturated, sandy SILT, fine-grained sand, brown, trace hydrocarbon odor. Sandy SILT, fine-grained sand, strong hyrdrocarbon odor below 7.5 feet below ground surface.	wet/sa <u>✓</u>	t
9 — 10 — 11 —		504	85		SP05-10-11				sat	
12 — 13 — 14 —		1.9	100		SP05-13-14		GP	Saturated, GRAVEL, some silt, gray to black, brown oxidation at 14.5 feet below ground surface, trace hydrocarbon odor.	sat	
15 — 16 — 17 — 18 —								Boring refusal at 15 feet below ground surface. Boring backfilled with bentonite chips.		
19 — 20 —								Data Otanta II. 4/0/0000		

Date Started: 4/9/2008 Date Started. 4/9/2006
Date Finished: 4/9/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: PlaggeNO-ITECHNI-TIGNTLO-110592_200

BORING LOG SP05

Log of Exploratory Boring:	Drilling Co./	Driller:	Env. West / Marcus & Bil	
Notes	Drilling Met	hod:	Push Probe	
		Location:		7 feet west of southern 804 North Main Street
Moisture Content:	Water Levels			
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ndition:	GRASS
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion∇ During Drilling	Total Depth	1:	12
WO = weak odor, MO = moderate odor, SO = strong odor	± During Drilling	First GW D	epth:	7

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.3	25		SP06-03-04			Surface grass over wet to damp, loose gravelly SAND with silt, brick fragments present, brownish gray, no hydrocarbon odor (Fill).	damp	
4 — 5 — 6 — 7 —		0.4	25		SP06-07-08		FILL	Moist to wet, sandy SILT, fine-grained sand, brown to black, no hydrocarbon odor (Fill). Saturated, silty, gravelly SAND, brownish gray, no hydrocarbon odor,	mst/we	t
8 — 9 — 10 —			60					yellow plastic (Fill). Saturated, sandy GRAVEL with silt, fine- to coarse-grained sand, brown, no hydrocarbon odor.	_ sat	
11 — ——————————————————————————————————		0.4			SP06-11-12		-	Boring refusal at 12 feet below ground surface. Boring backfilled with bentonite chips.		
15 — 16 — 17 —										
18 — 19 — 20 —								Data Otanta II. 4/0/0000		

Date Started: 4/9/2008 Date Started. 4/9/2008
Date Finished: 4/9/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: Pi0502NO-11TECHNI-11GINTLO-10592_2009

BORING LOG SP06

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Marcus & Bi
Notes		Drilling Me	thod:	Push Probe
		Location:	63 feet north/4 southern utility Main Street	8 feet east of pole at 804 North
Moisture Content:	Water Levels		Wall Officer	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	GRAVEL
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion	Total Dept	h:	13.8
WO = weak odor, MO = moderate odor, SO = strong odor	□ During Drilling	First GW D	Depth:	6

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.8	75		SP07-03-04		FILL	Soil and gravel surfacing over moist, silty, gravelly SAND, fine- to coarse-grained sand, brick fragments present, brown to black and orange, no odor (Fill).	moist	
4 — 5 — 6 —		0.0	85		01 01-03-04		ML	Moist, SILT, trace to some fine-grained sand, some fine organics, brown, no hydrocarbon odor. Becomes wet to saturated at approximately 6 feet below ground surface.	moist <u>∑</u>	
7 — 8 — 9 —		0.6			SP07-07-08			Saturated, silty SAND, fine-grained sand, brown, no hydrocarbon odor.	_	
10 —		0.4	75		SP07-12.5-13.5		SM	Saturated, silty SAND, some gravel, fine-grained sand, angular gravel, dark gray, no hydrocarbon odor.	sat	
13 — — 14 —	-	0.3	100		DF 07-12.0-13.0		GP	Saturated, GRAVEL, some silt and sand, no hydrocarbon odor.	_ sat	
15 — 16 —								Boring refusal at 13.8 feet below ground surface. Boring backfilled with bentonite chips.		
17 — 18 —										
19 — 20 —										

Date Started: 4/9/2008 Date Started. 4/9/2008
Date Finished: 4/9/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P.056200-11TECHNI-1IGINTLO-10592_2008

BORING LOG SP07

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Marcus & Bi
Notes Notes		Drilling Me	thod:	Push Probe
		Location:		oth/4 feet west of tility pole at 804 North
Moisture Content:	Water Levels		main ou oo	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Dept	h:	15
WO = weak odor, MO = moderate odor, SO = strong odor		First GW E	Depth:	6.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		1.8	70				FILL	2 inches of asphalt over gravel base. Mixed silt, sand, and gravel to approximately 3.8 feet below ground surface, no hydrocarbon odor (Fill).	moist	
4 — 5 — 6 — 7 —		3.2	75		SP03-05-06		ML	Moist to wet, SILT, trace fine-grained sand, dark gray to black, diesel fuel odor.	sat ∑	
8 — 9 — 10 — 11 —		0.8	60		SP03-10-11			Wet, SILT, olive gray, no hydrocarbon odor. Saturated, GRAVEL, some sand and silt, black with some brownish	sat	
12 — 13 — 14 — 15		0.5	100		SP03-13-14		GP	gray, no odor.	sat	
16 — 17 — 18 — 19 —								Boring refusal at 15 feet below ground surface. Boring backfilled with bentonite chips.		
20 —								Data Startad: 4/10/2008		

Date Started: 4/10/2008
Date Finished: 4/10/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P10502NO-11TECHNI-11GINTLO-110592_20000

BORING LOG SP08

Log of Exploratory Boring:		Drilling Co.	/Driller:	Env. West / Marcus & Bi
Notes Notes		Drilling Me	thod:	Push Probe
		Location:		/12 feet west of by pole at 804 North
Moisture Content:	Water Levels		Main Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	CONCRETE
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion	Total Depti	h:	15
WO = weak odor, MO = moderate odor, SO = strong odor	abla During Drilling	First GW D	epth:	7

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 — 4 —		0.2	40				FILL	4 inches of concrete over ground base, gravel with black silt, no hydrocarbon odor (Fill).	damp	
5 — 6 — 7 —		0.4	75		SP09-06-07			Moist to damp, SILT, dark gray, mild diesel fuel odor. Saturated at 7 feet below ground surface.	damp <u></u> ✓	
8		0.3	100		SP09-09-10		ML	Grades to olive gray color.	sat	
12 — 13 — 14 —		0.2	70		SP09-12-14		GP- GM	Saturated SILT, dark brown, no hydrocarbon odor. Saturated, GRAVEL with silt and sand, no hydrocarbon odor.	sat	
16 — 16 — 17 — 18 — 19 —								Boring terminated at 15 feet below ground surface. Boring backfilled with bentonite chips.		
20 —										

Date Started: 4/10/2008
Date Finished: 4/10/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P30502NO-11TECHN-11GINTLO-10592_2009

BORING LOG SP09

Log of Exploratory Boring:		Drilling Co.	/Driller:	Env. West / Marcus & Bi
Notes Notes	Drilling Met	:hod:	Push Probe	
		Location:		/87 feet east of cy pole at 804 North
Moisture Content:	Water Levels		Wall Officer	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ndition:	CONCRETE
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion	Total Depth	n:	15
WO = weak odor. MO = moderate odor. SO = strong odor	abla During Drilling	First GW D	epth:	6.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —			60				FILL	4 inches of concrete over gravel base with black silt and sand (Fill).	damp	
4 — 5 —								Damp, SILT, trace fine-grained sand, dark gray, trace diesel-fuel odor.		
6 — 7 — 8 —		0.7 0.1	80		SP-10-05-06		ML	Wet, SILT, olive gray, trace diesel-fuel odor.	damp/w <u>↓</u>	et
9 — 10 — 11 —		0.8	70		SP-10-09-10		SP	Saturated, fine- to coarse-grained SAND, tannish gray, no hydrocarbon odor.	wet/sa	t
12 — 13 — 14 —		0.0	30		SP-10-14-15		GP GP	Saturated, GRAVEL, some sand and silt, dark gray grading to brown, no hydrocarbon odor.	sat	
15 — 16 — 17 —								Boring refusal at 15 feet below ground surface. Boring backfilled with bentonite chips.		
18 — 19 — 20 —										

Date Started: 4/10/2008
Date Finished: 4/10/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P10502000-11TECHN-11GINTLO-110592_201

BORING LOG SP10

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Marcus & Bil
Notes	Drilling Me	thod:	Push Probe	
		Location:		th/37 feet east of illity pole at 804 North
Moisture Content:	Water Levels		Wall Cace	`
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion	Total Dept	h:	14
WO = weak odor, MO = moderate odor, SO = strong odor	□ During Drilling	First GW [Depth:	7

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 —			70				FILL	2 inches of asphalt over gravel. Moist, gravelly SAND with silt, graded to sandy GRAVEL with silt, brown to black (Fill).	moist	
3 —		2.4			SP-11-03-04			Moist, SILT with sand and gravel, fine-grained sand, some organic fragments, trace diesel-fuel odor.		
5 —		7.6			SP-11-05-06			Damp to wet, SILT, trace fine-grained sand, trace organics, brown, trace diesel fuel odor.		
6 — 7 —		5.2	100				ML		wet <u>∑</u>	
8 —										
10 —		0.3 0.2	90	•	\$P-11-09.5-10.	5	SM- ML		- sat	
11 —						000	SP	Saturated, gravelly SAND, fine- to coarse-grained sand, brown, no hydrocarbon odor. Saturated, GRAVEL, some silt and sand, dark gray, no hydrocarbon	_	
13 — —		0.2	100		SP-11-13-14		SM	odor. Saturated, silty SAND with gravel, dark gray, no hydrocarbon odor.	sat	
15 —								Boring refusal at 14 feet below ground surface. Boring backfilled with bentonite chips.		
16 — 17 —										
18 — — 19 —										
20 —										

Date Started: 4/9/2008 Date Started. 4/9/2008
Date Finished: 4/9/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P.056200-11TECHNI-1IGINTLO-10592_2008

BORING LOG SP11

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Marcus & Bi	
Notes Notes	Drilling Me	thod:	Push Probe		
		Location:		h/107 feet east of lity pole at 804 North	
Moisture Content:	Water Levels		Wall Cacca		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	CONCRETE	
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion	Total Dept	h:	15	
WO = weak odor, MO = moderate odor, SO = strong odor	□ During Drilling	First GW E	Depth:	6.75	

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.4	60				FILL	6 inches of concrete, gravel base with coarse asphalt (Fill). SILT with gravel, bricks present, black, no hydrocarbon odor (Fill).	damp	
4 — 5 — 6 — 7 —		1.1 0.5	65		SP-12-0.65-08		ML	Moist, SILT, trace fine-grained sand, no hydrocarbon odor. Wet to saturated, SILT, trace sand, tannish gray, trace hydrocarbon odor.	<u>∑</u> wet	
8		19.2	70		SP-12-10-12		GW ML	Saturated, broken GRAVEL with medium- to coarse-grained sand. Saturated SILT, some sand and gravel, gray.	- sat	
12 — 13 — 14 — 15		24.3	80		SP-12-13-14 SP-12-14-15		GP GP	Saturated, GRAVEL, some sand and silt, gray grading to brown, gasoline odor, no hydrocarbon odor below 13.8 feet below ground surface.	sat	
16 — 17 — 18 — 19 —								Boring refusal at 15 feet below ground surface. Boring backfilled with bentonite chips.		
20 —								Data Startad: 4/10/2008		

Date Started: 4/10/2008
Date Finished: 4/10/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P10502NO-11TECHNI-11GINTLO-110592_20000

BORING LOG SP12

Log of Exploratory Boring:	Drilling Co.	/Driller:	Env. West / Marcus & Bil	
Notes	Drilling Me	thod:	Push Probe	
		Location:		122 feet east of y pole at 804 North
Moisture Content:	Water Levels		Wall Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion∇ During Drilling	Total Depti	า:	15.8
WO = weak odor, MO = moderate odor, SO = strong odor	± During Drilling	First GW D	epth:	8

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 — 4 —		0.3	5				FILL	2 inches of asphalt over coarse gravel base, over broken gravel with silt-rich inclusions, no hydrocarbon odor (Fill).	damp	
5 — 6 — 7 —		10.0	75		\$P-13-05.5-08.	5	ML	Damp to wet, SILT, trace fine-grained sand, dark brown grading to dark gray to black, no hydrocarbon odor.	damp	
9 —		0.0	90		SP-13-09-10		SM- ML	Saturated, sandy SILT, to silt with trace sand, fine-grained sand, no hydrocarbon odor.	sat	
11 —		0.1			SP-13-12.5-13.	 5	SP _ML_ SP	Saturated, fine- to medium-grained SAND, oxidized brown, no hydrocarbon odor. \[\frac{3-inches of oxidized SILT.}{SAND, fine-grained, oxidized brown, no hydrocarbon odor.} \]		
13 — 14 — 15 —			100				ML GP-	Wet to saturated, SILT, tannish brown, no hydrocarbon odor.	sat	
16 — 17 — 18 —						· Vla	GM.	Saturated, GRAVEL with silt and fine-grained sand, no hydrocarbon odor. Boring refusal at approximately 15.8 feet below ground surface. Boring backfilled with bentonite chips.		
19 —								Data Started: 4/40/2008		

Date Started: 4/10/2008
Date Finished: 4/10/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P10502NO-11TECHNI-11GINTLO-110592_20000

BORING LOG SP13

Log of Exploratory Boring:	Drilling Co.	/Driller:	Env. West / Marcus & Bi	
Notes Notes		Drilling Met	thod:	Push Probe
		Location:		n/72 feet east of y pole at 804 North
Moisture Content:	Water Levels		Wall Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ndition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion	Total Depth	n:	16
WO = weak odor. MO = moderate odor. SO = strong odor	$ \mathcal{Y} $ During Drilling	First GW D	epth:	9

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.3	75				FILL	2 inches of asphalt over coarse gravel base, over moist SILT with sand and gravel, no hydrocarbon odor (Fill).	damp	
5 — 6 —		1.0	100		SP14-4.5-5.5			Moist, SILT, trace fine-grained sand, dark gray, mild diesel-fuel odor.	moist	
7 — 8 —		1.5			SP14-07-08		ML			
9 — 10 — 11 —		0.3	85					Becoming moist to wet at 9 feet below ground surface, SILT, dark gray, trace diesel-fuel odor.	 noist/w	et
12 —		0.1			SP14-13-14		SP	Wet to saturated, fine-grained SAND, trace to some silt, gray grading to brown, no hydrocarbon odor.	wet/sa	t
14 — 15 —		0.1	100				GP	Saturated, GRAVEL some silt and sand, no hydrocarbon odor.		
17 — 18 —								Boring refusal at 16 feet below ground surface. Boring backfilled with bentonite chips.		
19 — 20 —										

Date Started: 4/10/2008
Date Finished: 4/10/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P10502000-11TECHN-11GINTLO-110592_201

BORING LOG SP14

Log of Exploratory Boring:	Drilling Co./E	Oriller:	Env. West / Marcus & Bi		
Notes Notes	Drilling Meth	od:	Push Probe		
				th/11 feet east of ty pole at 804 North	
Moisture Content:	Water Levels		waiii Street		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Con	dition:	ASPHALT	
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion	Total Depth:		16	
WO = weak odor MO = moderate odor SO = strong odor	abla During Drilling	First GW De	nth.	9	

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.0	60				FILL	Asphalt over coarse gravel base, over gravel mixed with brown SILT (Fill).	damp	
4 — 5 — 6 — 7 — 8 —		2.5	60		SP15-06-07		ML	Moist to damp, SILT, trace fine-grained sand and organics, dark gray, mild diesel-fuel odor at approximately 6.4 feet below ground surface.	damp	
9 — 10 — 11 —	-	6.4 0.3	75		SP15-10-11		SM- ML	Wet, SILT, some fine-grained sand, gray, no hydrocarbon odor Saturated, SILT to fine-grained sandy silt, gray, no hydrocarbon odor.	∑ - wet	
12 — 13 —	-	0.1			SP15-13-14		SM	Saturated, silty SAND, fine-grained sand grading to medium- to coarse-grained at 13 feet below ground surface, gray, no hydrocarbon odor.		
14 — 15 —	-	0.1	75				GP	Saturated, GRAVEL, some silt and sand, no hydrocarbon odor.	sat	
17 — 18 —	-							Boring refusal at 16 feet below ground surface. Boring backfilled with bentonite chips.		
19 — 20 —	-									

Date Started: 4/10/2008 Date Statted. 4/10/2008
Date Finished: 4/10/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P10602NO-11TECHNI-11GINTLO-10592_20

BORING LOG SP15

Log of Exploratory Boring:	Drilling Co./[Oriller:	Env. West / Marcus & Bi	
Notes Notes	Drilling Meth	iod:	Push Probe	
		Location: 78 feet south/40 southern utility p Main Street		/40 feet west of ty pole at 804 North
Moisture Content:	Water Levels		Main Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Con	dition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion	Total Depth:		16
WO = weak odor MO = moderate odor SO = strong odor	abla During Drilling	First GW De	nth.	9.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 — 4 —		0.0	60				FILL	2 inches of asphalt over coarse gravel base, over gravel mixed with silt and sand (Fill).	damp	
5 — 6 — 7 — 8 —		0.2	20					Moist, SILT with broken and angular gravel, asphalt present, no hydrocarbon odor (Fill).	damp	
9 — 10 — 11 — 12 —		0.2	70		SP16-09.5-10.5	;	ML	Wet to saturated, SILT with fine-grained sand, gray, no hydrocarbon odor.	∑ wet	
13 — 14 — 15 —	-	0.0	100		SP16-13-14		GP	Saturated, GRAVEL, some silt and fine-grained sand, dark gray grading to brown at 15 feet below ground surface, no hydrocarbon odor.	sat	
16 — 17 — 18 — 19 — —								Boring refusal 16 feet below ground surface. Boring backfilled with bentonite chips.		

Date Started: 4/10/2008
Date Finished: 4/10/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P10502000-11TECHN-11GINTLO-110592_201

BORING LOG SP16

Log of Exploratory Boring:	Drilling Co./Driller:	Env. West / Marcus & Bil	
Notes	Drilling Method:	Push Probe	
			outh/16 feet east of southern ole at 804 North Main Street
Moisture Content:	Water Levels		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Condition:	CONCRETE
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion	Total Depth:	13
WO = weak odor, MO = moderate odor, SO = strong odor	□ During Drilling	First GW Depth:	6.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 —							FILL	4 inches of concrete over gravel base (Fill).		
2 — 3 —		0.2	30					Moist, SILT, trace fine-grained sand, brown, no hydrocarbon odor.	moist	
5 — 6 — 7 — 8 —		0.3	65		SP17-06-07		ML	Wet to saturated, SILT, trace fine-grained sand, brown, no hydrocarbon odor.	wet ⊈ wet/sa	t
9 — 10 — 11 —		0.2	75		SP17-10-11		SP- SM	Saturated, silty SAND with gravel, fine-grained sand, 3 inches of broken gravel with sand, no hydrocarbon odor.	sat	
12 —							GP	Saturated, GRAVEL with silt and sand, no hydrocarbon odor.		
13 — 14 — 15 —								Boring refusal at 13 feet below ground surface. Boring backfilled with bentonite chips.		
16 — 17 — 18 —										
19 — 20 —								D. d. Otrada d. 4/0/0000		

Date Started: 4/9/2008 Date Started. 4/9/2008
Date Finished: 4/9/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: Pi0502NO-11TECHNI-11GINTLO-10592_2009

BORING LOG SP17

Drilling Co./Driller: NRC Log of Exploratory Boring: Drilling Method: Backhoe **Notes** Location: 193 feet south/35 feet west of southern utility pole at 804 North Main Street **Moisture Content: Water Levels** Surface Condition: Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Grass Lawn ▼ After Completion 12 Total Depth: <u>Hydrocarbon Odor</u>: NO = no odor, VFO = very faint odor WO = weak odor, MO = moderate odor, SO = strong odor First GW Depth: 9

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —							FILL	Surface grass over loose, moist, SILT, some Basalt rubble, brown to grayish brown, no hydrocarbon odor (Fill).	Mst	
4 — 5 —		1.4	;		TP01-04			Moist, SILT, trace to some clay, dark brownish gray, no hydrocarbon odor.		
6 — 7 — 8 —		0.8			TP01-07		ML		Mst	
9 —	-								$\overline{\Delta}$	
10 —		219 4,732			TP01-10		SP- SM	Wet, fine- to medium-grained SAND interbedded with fine-grained sandy SILT, stained gray, moderate to strong hydrocarbon odor.	Wet	
13 —								Test pit terminated at 12 feet below ground surface, impacted soil from test pit stockpiled on plastic sheeting. Test pit backfilled with clean overburden soil and imported pea gravel.		
15 —						<u> </u>		Data Otasta da 0/0/0000		

NCPC Site North Main Street and East Tyler Street Colfax, Washington Date Started: 3/2/2009 Date Finished: 3/2/2009 Logged By: CCC/JAB Chk By: JAC

SES Project No.: 0592-001
File ID.: P-0592NO-1/TECHNI-1/IGINTLO-1/0592_TEST

BORING LOG TP01

Log of Exploratory Boring:	Drilling Co.	/Driller:	NRC		
Notes		Drilling Me	:hod:	Backhoe	
	Location:		n/22 feet west of y pole at 804 North		
Moisture Content:	Water Levels				
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ndition:	Grass Lawn	
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion	Total Depth	n:	12.5	
WO = weak odor, MO = moderate odor, SO = strong odor	$ oxedsymbol{oxedsymbol{oxedsymbol{oxed}}} $ During Drilling	First GW Depth:		9	

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		1.4			TP02-04		FILL	Surface grass over moist, fine-grained sandy SILT, some Basalt rubble to 1-inch diameter, no hydrocarbon odor (Fill).	Mst	
5 — 6 — 7 —		1.3			TP02-04			Moist, SILT, trace to some clay, trace fine-grained sand, tannish brown, no hydrocarbon odor. Wet at 9-feet below ground surface.)mp-M	st
8 — 9 — 10 —		0.9					ML		abla	
11 — — 12 —		3,903 4,701			TP02-9.5 TP02-10.5 TP02-12.5		SM- ML	Grades to stained gray, strong hydrocarbon odor ——————————————————————————————————	Wet	
13 — 14 — 15 —								Test pit terminated at 12.5 feet below ground surface. Test pit backfilled with clean overburden and imported pea gravel.		

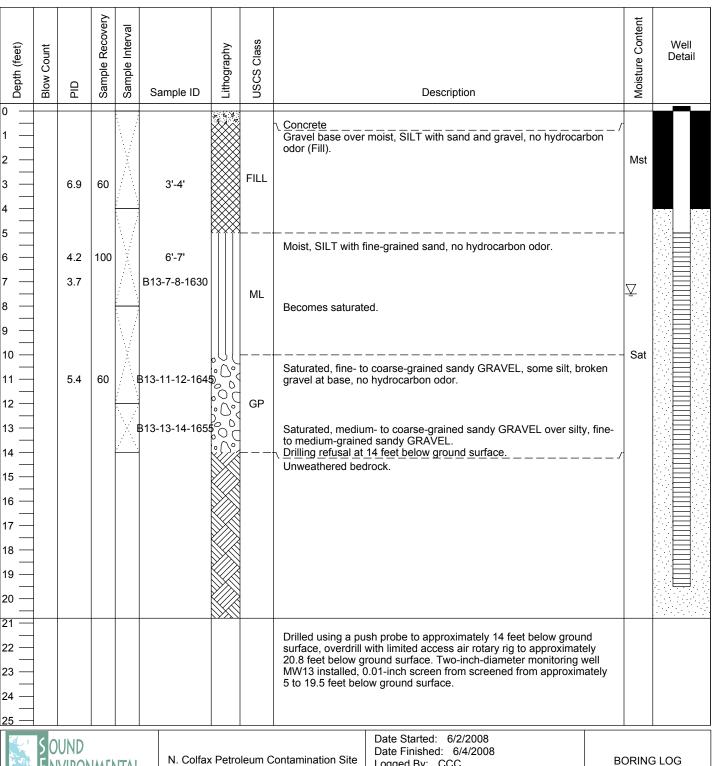
NCPC Site North Main Street and East Tyler Street Colfax, Washington

Date Started: 3/2/2009 Date Started. 3/2/2009
Date Finished: 3/2/2009
Logged By: CCC/JAB
Chk By: JAC
SES Project No.: 0592-001
File ID.: PIOSONO-INTECHNI-NIGINTLO-10692_TEST

BORING LOG TP02

Log of Exploratory Boring:	Drilling Co.	/Driller:	NRC		
Notes		Drilling Me	thod:	Backhoe	
		Location:		n/25 feet west of y pole at 804 North	
Moisture Content:	Water Levels		Main Olicci		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	Grass Lawn	
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion∇ During Drilling	Total Depth	h:	12.5	
WO = weak odor, MO = moderate odor, SO = strong odor	First GW D	epth:	9.5		

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 2							FILL	Surface grass over SILT, some clay and Basalt rubble, minor oxidation, tannish brown, no hydrocarbon odor (Fill).	Mst	
3 — 4 — 5 — 6 —		0.7			TP03-04'			Moist, SILT, some clay, trace fine-grained sand, tannish brown, no hydrocarbon odor.		
7 — 8 — 9 —	-	1.1			TP03-7.5'		ML	Damp to moist, brown, no hydrocarbon odor.	Dmp-M:	st
10 —		1.1			TP03-10.0'			Grades to wet, tanish-brown, no hydrocarbon odor.	∑ Wet	
11 —		120			TP03-11		CL-ML ML	Sharp contact at 11 feet below ground surface, wet, clayey SILT, stained gray, moderate hydrocarbon odor. Wet, SILT, some sand and sand-rich interbeds, water seepage with minor sheen at the base of the pit, strong hydrocarbon odor.		
13 — 14 — 15 —								Test pit terminated at 12.5 feet below ground surface. Test pit backfilled with clean overburden and imported pea gravel.		
=								Data Started: 3/2/2000		



NCPC Site North Main Street and East Tyler Street Colfax, Washington

Date Started: 3/2/2009 Date Started. 3/2/2009
Date Finished: 3/2/2009
Logged By: CCC/JAB
Chk By: JAC
SES Project No.: 0592-001
File ID.: PIOSONO-INTECHNI-NIGINTLO-10692_TEST

BORING LOG TP03

Drilling Co./Driller: Env. West / Tim & Ron Log of Exploratory Boring: Push Probe/Air Rotary Drilling Method: **Notes** 213 feet North/105 feet West of the Location: southern utility pole at 804 North Main Street **Water Levels Moisture Content:** Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Surface Condition: Concrete After Completion Hydrocarbon Odor: NO = no odor, VFO = very faint odor Total Depth: 20.8 □ During Drilling WO = weak odor, MO = moderate odor, SO = strong odor 7.5 First GW Depth:

N. Colfax Petroleum Contamination Site North Main Street and East Tyler Street Colfax, Washington

Logged By: CCC Chk By: JAC

SES Project No.: 0592-001

B13/MW13

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Tim & Ron
Notes		Drilling Me	thod:	Push Probe
		Location:		1/122 feet West of the ty pole at 804 North
Moisture Content:	Water Levels		Wall Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	Asphalt
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	•	Total Depth:		14.5
WO = weak odor, MO = moderate odor, SO = strong odor	☑ During Drilling	First GW D	epth:	7.5

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		5.2	60		3'-4'		SM- ML	Asphalt Minor gravel base over damp to wet, fine-grained sandy SILT with gravel, brown and black, no hydrocarbon odor.	Mst	
4 — 5 —							SP	Gravelly, medium- to coarse-grained SAND.		
6 — 7 — 8 —		6.4	30		B14-7-8-1745		ML	Damp-wet, SILT with fine-grained sand and gravel, dark gray with some brown, no hydrocarbon odor.	Ψ	
9 — 10 — 11 —		702	30		B14-11-12-1755			Saturated, fine- to coarse-grained sandy GRAVEL, trace silt, stained gray, strong hydrocarbon odor, at 13 to 14 feet below ground surface	Sat	
12 — 13 — 14 —		10.1	80		B14-13-14-1805		GW	(bgś), weak hydrocarbon odor.		
15 — 16 —								Boring refusal at 14.5 feet bgs. Boring backfilled with bentonite.		
17 — 18 —										
19 — 20 —										
21 —										
22 —										
23 — 24 —										
25 —										

Date Started: 6/2/2008 Date Finished: 6/2/2008 Logged By: CCC Chk By: JAC SES Project No.: 0592-001

BORING LOG B14

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Tim & Ron
Notes		Drilling Me	thod:	LAR Air Rotary
		Location:		h/127 feet West of the ity pole at 804 North
Moisture Content:	Water Levels		Main Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	Asphalt/concrete
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Dept	h:	18
WO = weak odor, MO = moderate odor, SO = strong odor	שלייווות ביי ווווחק <u></u>	First GW E	Depth:	7.5

VVO -	weak	Juui,	IVIO	- moderate c	Juoi, c	50 - 5	rist GW Deptil. 7.5		
Depth (feet) Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
						CONC	A 1 11 (0 : 1)		
						ML	Asphalt (2 inches) over concrete (6 inches) Moist, SILT, some clay, brown, no hydrocarbon odor (soil cuttings). Hand dug to 3 feet below ground surface.		
	4,429	90		B14A-07.5		ML	Wet, soft, SILT, some clay, trace fine-grained sand, stained gray, strong hydrocarbon odor.	Mst Wet	
4 22 50/5		70		B14A-10.0		SM_	Saturated, very loose, silty, fine-grained SAND, stained gray, strong hydrocarbon odor. Saturated, medium dense, gravelly, fine- to coarse-grained SAND, some silt, stained gray, strong hydrocarbon odor with obvious sheen.	Mst	
38 50/8		10					No recovery. Unweathered bedrock.	-	
							Drilled using a push probe to approximately 13.5 feet below ground surface, overdrill with limited access air rotary rig to approximately 18 feet below ground surface. Two-inch-diameter monitoring well MW14 installed, 0.01-inch screen from screened from approximately 5 to 18 feet below ground surface.		
5 E	OUND NVIRON	IMEI	VTAL					ORING 314A/N	G LOG //W14

North Main Street and East Tyler Street Colfax, Washington

Chk By: JAC SES Project No.: 0592-001

Drilling Co./Driller: Env. West / Tim & Ron Log of Exploratory Boring: Drilling Method: Push Probe/Air Rotary Notes 40 feet South/20 feet West of the southern utility pole at 804 North Main Street Location: **Moisture Content: Water Levels** Surface Condition: Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Concrete ▼ After Completion Total Depth: <u>Hydrocarbon Odor</u>: NO = no odor, VFO = very faint odor 21 \overline{Y} During Drilling WO = weak odor, MO = moderate odor, SO = strong odor First GW Depth: 10

VV	<u> </u>	vear (Juui,	IVIO	- moderate o	uui, c	0 - 3	itorig odor Trist GW Deptil. 10		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 — 4 —		5.1	70		3'-4'		FILL	Concrete Moist, fine-grained sandy SILT to silty, fine-grained SAND, charcoal-like layerat 3.3 to 3.5 feet below ground surface (Fill).	Mst	
5 — 6 — 7 — 8 — 9 — —		5.0	30		B15-7-8-1715		SM- ML	Moist, fine-grained sandy SILT, some gravel, brown, no hydrocarbon odor.		
10 — 11 — 12 — 13 —		6.8 7.0	40 100		B15-11-12-1729		GP	Saturated, fine- to coarse-grained sandy GRAVEL, some silt, tannish-brown, no hydrocarbon odor. Saturated, fine-grained sandy GRAVEL, trace silt, broken gravel, gray, no hydrocarbon odor. Refusal at 14 feet below ground surface.	Sat	
14 — 15 — 16 — 17 — 18 — 19 —								Bedrock.		
21 22 23 24								Drilled using a push probe to approximately 14 feet below ground surface, overdrill with limited access air rotary rig to approximately 21 feet below ground surface. Two-inch-diameter monitoring well MW15 installed, 0.01-inch screen from screened from approximately 5 to 19.5 feet below ground surface.		
25 —	50	UND						Date Started: 6/2/2008 Date Finished: 6/4/2008	<u></u>	

N. Colfax Petroleum Contamination Site North Main Street and East Tyler Street Colfax, Washington Date Started: 6/2/2008 Date Finished: 6/4/2008 Logged By: CCC Chk By: JAC

SES Project No.: 0592-001

BORING LOG B15/MW15

Log of Exploratory Boring:		Drilling Co.	./Driller:	Env. West / Tim & Ron
Notes		Drilling Me	thod:	Push Probe/Air Rotary
		Location:		th/30 feet West of the ity pole at 804 North
Moisture Content:	Water Levels		Main Olicci	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	Grass
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Deptl	h:	20.7
WO = weak odor, MO = moderate odor, SO = strong odor	½ Duning Dhilling	First GW D	epth:	8.5

	···oun c	,		1110001010			Thought Sopale 5.5		
Depth (feet) Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
2	3.0	80		3'-4'		FILL	Lawn. Crushed rock over moist, silty, gravelly SAND, some broken asphalt (Fill). Damp to moist, SILT, some fine-grained sand, brown, charcoal-type material from approximtely 3.8 to 4 feet below ground surface (fill).	Mst	
5 —	0.0	60		316-6-7-1050			Moist, SILT, trace fine-grained sand, tannish-brown, no hydrocarbon odor.		
0	25.8	80	В	16-11-12-1105	5	ML	Wet to saturated, SILT, some fine-grained sand, brown, no hydrocarbon odor. Stained gray, weak hydrocarbon odor.	∑ Sat	
3		95	B	16-14-15-1110		SM-, MLJ GP	No hydrocarbon odor from 12 to approximately 13.4 feet below ground surface. Saturated, fine-grained sandy SILT to silty, fine-grained SAND, gray, no hydrocarbon odor. Saturated, silty, medium- to coarse grained SAND, some gravel. GRAVEL dominant from 15 feet below ground surface.		
7 — 8 — 9 —							Unweathered bedrock.		
22 —							Drilled using a push probe to approximately 16.5 feet below ground surface, overdrill with limited access air rotary rig to approximately 20.7 feet below ground surface. Two-inch-diameter monitoring well MW16 installed, 0.01-inch screen from screened from approximately 5 to 19.5 feet below ground surface.		
50	OUND			N Colfax	Petro	oleum C	Date Started: 6/2/2008 Date Finished: 6/3/2008	RORING	31.06

Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001

BORING LOG B16/MW16

Log of Exploratory Boring: Drilling Co./Driller: Env. West / Tim & Ron Drilling Method: Push Probe/Air Rotary Notes 138 feet South/28 feet East of the southern utility pole at 804 North Main Street Location: Water Levels **Moisture Content:** Surface Condition: Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Gravel ▼ After Completion 20.8 <u>Hydrocarbon Odor</u>: NO = no odor, VFO = very faint odor Total Depth: \overline{Y} During Drilling WO = weak odor. MO = moderate odor. SO = strong odor First GW Depth: 9.5

W	O = v	weak (odor,	МО	= moderate d	dor,	SO = s	trong odor First GW Depth: 9.5		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.0	90		3'-4'		FILL	\ <u>Gravel surfacing.</u> Moist, gravelly, fine-grained SAND, some concrete and asphalt (Fill).	Dp	
4 — 5 — 6 — 7 — 8 —		0.0	75		B17-6-7-1140 7'-8'		ML	Moist, SILT, some fine-grained sand, dark gray, no hydrocarbon odor. Trace hydrocarbon odor at 7 feet below ground surface.		
9 — 10 — 11 —		0.0	90	В	17-9.5-10.5-114	15	SM	Moist becoming wet at 9 to 9.5 feet below ground surface, SILT, some fine-grained sand, dark gray, no hydrocarbon odor. Wet, silty, fine-grained SAND, brown, no hydrocarbon odor.		
12 — 13 — 14 — 15 —		0.0	90		B17-13-14-115		١	Wet to saturated, gravelly fine- to coarse-grained SAND, no hydrocarbon odor. Saturated, fine- to coarse-grained sandy GRAVEL to gravelly SAND, brown, no hydrocarbon odor.	Sat	
16 — 17 — 18 — 19 — 20 —								Fractured bedrock. Basalt bedrock.		
21 — 22 — 23 — 24 —						<i>((//)</i>	2	Drilled using a push probe to approximately 16 feet below ground surface, overdrill with limited access air rotary rig to approximately 20.8 feet below ground surface. Two-inch-diameter monitoring well MW17 installed, 0.01-inch screen from screened from approximately 5 to 19.5 feet below ground surface.		
25 —	\$ 0	UND	JAAEA	UTA I	N. Colfax	Petr	oleum C	Date Started: 6/2/2008 Date Finished: 6/3/2008 Logged By: CCC	BORING	LOG

North Main Street and East Tyler Street Colfax, Washington

Logged By: CCC Chk By: JAC

SES Project No.: 0592-001

B17/MW17

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Tim & Ron
Notes		Drilling Me	thod:	Push Probe/Air Rotary
		Location:		uth/70 feet East of the lity pole at 804 North
Moisture Content:	Water Levels			
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	Gravel
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	$ \mathbf{Y} $ After Completion $ \mathbf{Y} $ During Drilling	Total Dept	h:	20.8
WO = weak odor, MO = moderate odor, SO = strong odor	<u>*</u> During Drilling	First GW D	Depth:	10.5

		····			moderate e			a oring oddi		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		0.0	75		3'-4'		FILL	∖ Gravel. Moist, sandy GRAVEL with coal-like fragments (Fill).	Mst	
4		0.0	80		B18-6-7-1220 6'-7'		ML	Moist, SILT, some fine-grained sand, dark brown, no hydrocarbon odor.		
11 — 12 — 13 — 14 —		0.0	90		318-11-12-1230 318-13-14-1235		SP- SM	Saturated, fine- to medium-grained SAND, some silt to silty SAND, brown, no hydrocarbon odor. Saturated, silty SAND with gravel, gray. No hydrocarbon odor. Boring	∑ Sat	
15 — 16 — 17 — 18 — 19 — 20 —							SM	refusal at 15.5 feet below ground surface. Basalt bedrock.		
21 — 22 — 23 — 24 — 25 — 26 —								Drilled using a push probe to approximately 15.5 feet below ground surface, overdrill with limited access air rotary rig to approximately 20.8 feet below ground surface. Two-inch-diameter monitoring well MW18 installed, 0.01-inch screen from screened from approximately 5 to 19.5 feet below ground surface.		
Tel . 1	Date Started: 6/2/2008							Date Started: 6/2/2008		

Date Started: 6/2/2008 Date Finished: 6/3/2008 Logged By: CCC Chk By: JAC SES Project No.: 0592-001

BORING LOG B18/MW18

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Tim & Ron
Notes		Drilling Me	thod:	Push Probe/Air Rotary
		Location:		uth/132 feet East of the lity pole at 804 North
Moisture Content:	Water Levels			
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	Gravel
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Dept	h:	20.8
WO = weak odor, MO = moderate odor, SO = strong odor		First GW D	epth:	8

								ů i		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0		0.0 0.0 0.0	30 100	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3'-4' B19-6-7-1305 B19-7-8-1320		FILL GW GP	Moist, gravelly SAND (Fill). Wet, SILT with gravel, grayish-brown, hydrocarbon odor at 5 feet below ground surface (Fill). Moist to wet, SILT, some fine-grained sand and gravel, no hydrocarbon odor (Fill). Minor hydrocarbon odor at 10 feet below ground surface. Saturated, GRAVEL, some with silt and sand, no hydrocarbon odor. Saturated, gravelly, fine- to coarse-grained SAND to sandy GRAVEL, brown, no hydrocarbon odor. Weathered bedrock. Boring refusal at 14 feet below ground surface. Basalt bedrock. Drilled using a push probe to approximately 14 feet below ground surface, overdrill with limited access air rotary rig to approximately 20.8 feet below ground surface. Two-inch-diameter monitoring well MW19 installed, 0.01-inch screen from screened from approximately 5 to 19.5 feet below ground surface.	\	
E)	50	UND			N. Colfax	, Potro	Journ C	Date Started: 6/2/2008 Date Finished: 6/3/2008		

Date Finished: 6/3/2008 Logged By: CCC Chk By: JAC SES Project No.: 0592-001

BORING LOG B19/MW19

Log of Exploratory Boring:		Drilling Co	./Driller:	Env. West / Tim & Ron
Notes		Drilling Me	thod:	LAR Air Rotary
		Location:		rth/166 feet East of the lity pole at 804 North
Moisture Content:	Water Levels		Wall Olloot	
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	Grass
Hydrocarbon Odor: NO = no odor, VFO = very faint odor		Total Dept	h:	21
WO = weak odor, MO = moderate odor, SO = strong odor	¥ Duning Diniing	First GW D	Depth:	7

Sample Description Descr			·····	, , , , , , , , , , , , , , , , , , ,		moderate c			That are popular		
Lawn. Lawn. Backson 100 100 100 100 100 100 100 100 100 10	Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	
Date Finished: 6/4/2008	1	50/5		75				SM- ML GW	Moist to wet, silty fine-grained SAND grading to fine sandy SILT. Saturated, medium dense, GRAVEL, some fine- to coarse-grained sand, trace silt, no hydrocarbon odor. Weathered bedrock. Basalt bedrock. Drilled using a limited access air rotary rig to approximately 21 feet below ground surface. Two-inch-diameter monitoring well MW20 installed, 0.01-inch screen from screened from approximately 5 to 19.5 feet below ground surface.	Wet	

Date Started: 0/4/2008
Date Finished: 6/4/2008
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001

BORING LOG B20/MW20

Drilling Co./Driller: Env. West / Tim & Ron Log of Exploratory Boring: Drilling Method: Push Probe/Air Rotary Notes 2 feet South/167 feet East of the southern utility pole at 804 North Main Street Location: **Moisture Content: Water Levels** Surface Condition: Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Grass ▼ After Completion Total Depth: <u>Hydrocarbon Odor</u>: NO = no odor, VFO = very faint odor 21 □ During Drilling WO = weak odor, MO = moderate odor, SO = strong odor First GW Depth: 10

VV	0 - v	vear (Juui,	IVIO	- moderate c	Juoi, c	JO - 3	itorig odor Trist GW Deptil. 10		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —		3.6	60		3'-4'		SM- ML	Lawn	Mst	
4 — 5 — 6 — 7 —		5.1	15		7'-8'		SP	Moist, silty, fine-grained SAND with gravel, no hydrocarbon odor.		
8 — 9 — 10 —		5.1	90		B21-9-10		ML	Wet to saturated, SILT, brown, no hydrocarbon odor. Wet to saturated, GRAVEL, some silt, trace fine- to coarse-grained sand, gray, no hydrocarbon odor.	Ţ	
11 — 12 — 13 — 14 —		5.2	100		B21-11-12 B21-12-13		GP		_	
15 — 16 — 17 — 18 —								Unweathered bedrock.	_	
19 — 20 — 21 —										
22 — 23 — 24 — 25 —								Drilled using a push probe to approximately 14 feet below ground surface, overdrill with limited access air rotary rig to approximately 21 feet below ground surface. Two-inch-diameter monitoring well MW21 installed, 0.01-inch screen from screened from approximately 5 to 19.5 feet below ground surface.		
	50	UND	1	1				Date Started: 6/2/2008 Date Finished: 6/4/2008	1	ı

N. Colfax Petroleum Contamination Site North Main Street and East Tyler Street Colfax, Washington Date Started: 6/2/2008 Date Finished: 6/4/2008 Logged By: CCC Chk By: JAC

SES Project No.: 0592-001

BORING LOG B21/MW21

Drilling Co./Driller: Env. West / Tim & Ron Log of Exploratory Boring: Drilling Method: Push Probe/Air Rotary Notes Location: 194 feet North/37 feet West of the southern utility pole at 804 North Main Street Water Levels **Moisture Content:** Surface Condition: Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Concrete ▼ After Completion Total Depth: 20.8 Hydrocarbon Odor: NO = no odor, VFO = very faint odor \overline{Y} During Drilling WO = weak odor, MO = moderate odor, SO = strong odor First GW Depth: 7.5

	wount				, , ,		along oddi			
Depth (feet)	Blow Count PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail	
0 ————————————————————————————————————	4.4	75		3'-4'			Concrete Gravel over moist, SILT, some fine-grained sand, tannish brown, no hydrocarbon odor (Fill).	Mst		
5 — 6 — 7 — 8 — 9 — 9	5.4	75		B22-5-6 B22-7-8		FILL	Becomes wet at 7.5 feet below ground surface.	∇		
10 —	4.8			B22-11-12		GP	Moist-damp, silty, sandy, GRAVEL, fine-grained sand, dark gray, no hydrocarbon odor (Fill). Saturated, fine- to coarse-grained sandy GRAVEL, no hydrocarbon odor.	Wet-Sa		
14 — 15 — 16 — 17 —	5.3	70		14'-15'			Saturated, medium- to coarse-grained sandy GRAVEL, no hydrocarbon odor. Fractured basalt.			
18 — 19 — 20 —							Basalt bedrock.			
22 — 23 — 24 —							Drilled using a push probe to approximately 15 feet below ground surface, overdrilled with limited access air rotary rig to approximately 20.8 feet below ground surface. Two-inch-diameter monitoring well MW22 installed, 0.01-inch screen from screened from approximately 5 to 19.5 feet below ground surface.			
Date Started: 6/2/2008 Date Finished: 6/4/2008 Date Finished: 6/4/2008 Date Finished: 6/4/2008										

N. Colfax Petroleum Contamination Site North Main Street and East Tyler Street Colfax, Washington Date Started: 6/2/2008 Date Finished: 6/4/2008 Logged By: CCC Chk By: JAC

SES Project No.: 0592-001

BORING LOG B22/MW22

Log of Exploratory Boring:	Drilling Co.	/Driller:	Env. West / Tim & Ron		
Notes	Drilling Me	thod:	Push Probe/Air Rotary		
		Location:		th/26 feet West of the ity pole at 804 North	
Moisture Content:	Water Levels		Main Olicci		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Co	ondition:	Asphalt	
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Depth:		20.8	
WO = weak odor, MO = moderate odor, SO = strong odor	- <u>x</u> Duning Diniing	First GW D	epth:	10.5	

							9	'		
Depth (feet)	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Descripti	ion	,	Well Detail
0	0.0	60		B23-6-7-1445		FILL	Asphalt Gravel over gravelly, silty SAND (Fill). Moist, SILT with sand and gravel, no harmonic to damp, SILT, trace fine-graine	nydrocarbon odor (Fill).		st -Dp
0 —	0.0	70		B23-11-12		ML	hydrocarbon odor.			
3 — 4 — 5 —	0.0	25		B23-14-15		SM- ML SM	Wet to saturated, fine-grained sandy Shydrocarbon odor. ———————————————————————————————————			-Sat
6 — 7 — 8 — 9 — 20 — 20 — 20 — 20 — 20 — 20 — 20							Fractured bedrock. Basalt Bedrock			
22232425							Drilled using a push probe to approxin surface, overdrill with limited access a 20.8 feet below ground surface. Two-i MW23 installed, 0.01-inch screen fron 5 to 19.5 feet below ground surface.	ir rotary rig to approximat nch-diameter monitoring	ely well	
5	OUND			N. Colfor	, Dotro	Journ C	Date Started: 6/2 Date Finished: 6/		DOD.	INCLOC

Date Finished: 6/4/2008 Logged By: CCC Chk By: JAC SES Project No.: 0592-001

BORING LOG B23/MW23

Drilling Co./Driller: Env. West / Tim & Ron Log of Exploratory Boring: Drilling Method: LAR Air Rotary Notes 178 feet South/42 feet West of the southern utility pole at 804 North Location: Main Street **Moisture Content: Water Levels** Surface Condition: Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Grass ▼ After Completion Total Depth: <u>Hydrocarbon Odor</u>: NO = no odor, VFO = very faint odor 20.5 \overline{Y} During Drilling WO = weak odor, MO = moderate odor, SO = strong odor First GW Depth: 10

			,		- moderate c	,		T ilst GW Deptil. 10		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 —						17 - 18 17.		Lawn. Hand dig to 2.5 feet below ground surface.	1	
2 — 3 — 4 —	2 3 3	0.4	80		B24-02.5'		FILL	Moist, soft, clayey SILT, some root fragments, dark brown, no hydrocarbon odor (Fill).	Mst	
5 <u> </u>	3 4 5	0.5	70		B24-05.0'		ML	Moist, medium stiff, SILT, some clay, dark brown, no hydrocarbon odor.	Mst	
7 — 8 — 9 —	3 7 9	0.7	100		B24-07.5'		CL-ML	Damp to moist, stiff, SILT, some clay, to clayey SILT, medium tan to brown, no hydrocarbon odor.	Mst-Dm)p
10 — 11 —	6 7 12	0.3	80		B24-10.0'		SM- ML	Wet, stiff, SILT, some clay grading to fine sandy SILT, no hydrocarbon odor.	<u></u>	
12 — 13 — 14 —	70 50/1"	0.2	70		B24-12.5'		SP	Saturated, medium dense, fine- to medium-grained SAND, some silt, tannish brown, no hydrocarbon odor.	Sat	
15 — 16 —	68 50/3"							Unweathered bedrock.		
17 — 18 —	21 50/1"							Unweathered bedrock.		
19 — 20 —								Unweathered bedrock.		
21 — 22 — 23 —								Drilled using a limited access air rotary rig to approximately 20.5 feet below ground surface. Two-inch-diameter monitoring well MW24 installed, 0.01-inch screen from screened from approximately 5 to 20 feet below ground surface.		
24 — 25 —		IIND						Date Started: 3/2/2009		

N. Colfax Petroleum Contamination Site North Main Street and East Tyler Street Colfax, Washington Date Started: 3/2/2009 Date Finished: 3/2/2009 Logged By: CCC/JAB Chk By: JAC

Chk By: JAC SES Project No.: 0592-001 BORING LOG B24/MW24

Log of Exploratory Boring: Drilling Co./Driller: Env. West / Tim & Ron Drilling Method: LAR Air Rotary Notes 268 feet South/8 feet West of the southern utility pole at 804 North Main Street Location: **Moisture Content: Water Levels** Surface Condition: Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet Asphalt ▼ After Completion 18 <u>Hydrocarbon Odor</u>: NO = no odor, VFO = very faint odor Total Depth: \overline{Y} During Drilling WO = weak odor, MO = moderate odor, SO = strong odor First GW Depth: 8

	vour (T		- moderate t	T		riisi Gw Depiii.		
Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Deta
						FILL	Asphalt Moist, SILT, some clay, tannish brown, no hydrocarbon odor (Fill). Hand dig to 5 feet below ground surface (soil cuttings).	Mst	
2 4 4	0	80		B25-05.0'		ML	Moist-damp, medium stiff, SILT, some clay, dark gray, no hydrocarbon odor.	Mst	
4 7 8	0	90		B25-07.5'		SM- ML	Grades to wet, loose/stiff, silty, fine-grained SAND to fine-grained sandy SILT, no hydrocarbon odor.	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	
							No recovery.		
50/0" 50/1"	0	25	[[#]]	B25-12.5'		SP_	Wet to saturated, dense, gravelly, fine-grained SAND, brown, no hydrocarbon odor.	, Wet	
							Unweathered bedrock.		
							Drilled using a limited access air rotary rig to approximately 18 feet below ground surface. Two-inch-diameter monitoring well MW25 installed, 0.01-inch screen from screened from approximately 5 to 17.5 feet below ground surface.		
, 50 ENI	UND	JMFN	JTAI				Date Started: 3/3/2009 Date Finished: 3/3/2009 Logged By: CCC/JAB	BORING	

North Main Street and East Tyler Street Colfax, Washington

Chk By: JAC

SES Project No.: 0592-001

B25/MW25

Log of Exploratory Boring:		Drilling Co./Driller:	Env. West / Dean & Tin
Notes .	Drilling Method:	Push Probe/Air Rotary	
		Location:	
	T	_	
Moisture Content:	Water Levels		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Condition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Depth:	18.5
WO = weak odor, MO = moderate odor, SO = strong odor	שייווות ביי ווווחם <u></u>	First GW Depth:	7

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 —							FILL	↑ <u>Asphalt.</u>		
2 —			50					Moist to damp, SILT, dark brown, no hydrocarbon odor.	Mst to Dp	
4 — 5 — 6 —		0.0	60		B26-04		ML	Same as above, some fine organics, no hydrocarbon odor.		
7 — 8 —									<u>▼</u>	
10 —		0.0	50		B26-10			Same as above, wet, no organics, gray.	Wet	
11 — 12 — 13 —							GP	Saturated, fine-grained sandy GRAVEL, gray, no hydrocarbon odor.	Sat	
14 —		0.0	90		B26-14		GP- GM	Silty, sandy, angular GRAVEL, gray with brown oxidation, no hydrocarbon odor.		
15 — 16 — 17 — 18 —								Unweathered bedrock.		
19 — 20 — 21 —						¥///>		Drilled using a push probe to approximately 15 feet below ground surface (bgs), overdrilled with a limited access air rotary rig to approximately 18.5 feet bgs. Two-inch diameter monitoring well MW26 installed using 0.01-inch slot screen from approximately 5.5 to 18.5 feet bgs.		1
22 — 23 — 24 —										
25 —										
- 1					1			Date Started: 5/18/2009		

Date Started: 5/18/2009
Date Finished: 5/19/2009
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P.10592NO-11TECHIN-11GINTLO-110592_B28-B3

BORING LOG B26/MW26

Log of Exploratory Boring:		Drilling Co./Driller:	Env. West / Dean & Tin
Notes		Drilling Method:	Push Probe/Air Rotary
		Location:	
Moisture Content:	Water Levels		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Condition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Depth:	18
WO = weak odor, MO = moderate odor, SO = strong odor		First GW Depth:	7

								·		
Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0 — 1 — 2 — 3 —	-	0.0	40		DOT 0.4		FILL	Asphalt. Moist, SILT, some fine-grained sand and angular gravel, dark brown, no hydrocarbon odor (Fill).	Mst	
5 — 6 — 7 —		0.0	50		B27-04		SM- ML	Damp to wet, SILT grading to SILT with angular gravel, dark brown, no hydrocarbon odor.	Dp to Wet	
8 — 9 — 10 — 11 —	-	0.0	70		B27-08		ML	Wet, SILT, some wood fragments, dark gray, no hydrocarbon odor.	Wet	
12 — 13 — 14 —	-	0.0	60		B27-12		SP- SM GP	Saturated, silty, gravelly, fine- to coarse-grained SAND, angular gravel, dark gray to black, no hydrocarbon odor. Saturated, medium- to coarse-grained sandy GRAVEL, no	Sat	
15 — 16 — 17 —	-	0.0			B27-14.5			hydrocarbon odor. <u>Drilling refusal at 14.5 feet below ground surface.</u> Unweathered bedrock.	f	
18 — 19 — 20 — 21 —								Drilled using a push probe to approximately 14.5 feet below ground surface (bgs), overdrilled with a limited access air rotary rig to approximately 18 feet bgs. Two-inch-diameter monitoring well MW27 installed using 0.01-inch slot screen from approximately 5 to 18 feet bgs.		
22 — 23 — 24 — 25 —	-									
25								Date Started: 5/18/2009		

Date Started: 5/18/2009
Date Finished: 5/19/2009
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: Plosgeno-uttechin-tigintlo-10592_B28-B3

BORING LOG B27/MW27

Log of Exploratory Boring:		Drilling Co./Driller:	Env. West / Dean & Tin
Notes		Drilling Method:	Push Probe/Air Rotary
		Location:	
Moisture Content:	Water Levels		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Condition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	▼ After Completion ☑ During Drilling	Total Depth:	18
WO = weak odor, MO = moderate odor, SO = strong odor		First GW Depth:	9.5

\[\lambda_{\text{li}} \]		ŧ	
Depth (feet) Blow Count PID Sample Recovery Sample Interval Off CIthography	S C C C C C C C C C C C C C C C C C C C	Moisture Content	Well Detail
0			
3 - 30	Moist, SILT, some fine-grained sand, brown, no hydrocarbon odor.	Mst	
6 — 0.0 80 B28-04	Same as above, trace fine-grained sand and organics.		
7 -			
9 — 10 — 0.0 85 B28-105	Same as above, moist to wet, tannish-gray.	▼ ✓ Mst to Wet	
12 —	Same as above, wet, some angular gravel, brown.	Wet	
16 — 17 — 17 — 18 — 18 — 18 — 18 — 18 — 18	Six-inch gray zone, very faint hydrocarbon odor. Saturated, medium- to coarse-grained sandy GRAVEL, brown, no hydrocarbon odor. Unweathered bedrock.	Sat	
18	Drilled using a push probe to approximately 16 feet below ground surface (bgs), overdrill with limited access air rotary rig to approximately 18 feet bgs. Two-inch diameter monitoring well MW28 installed using 0.01-inch slot screen from approximately 5 to 18 feet bgs.		
22			
24 —			

Date Started: 5/18/2009 Date Started: 5/16/2009
Date Finished: 5/19/2009
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID:: PLOSEQNO-1\TECHNI-\TIGINTLO-\TIGSEQ_B2B-BE

BORING LOG B28/MW28

Log of Exploratory Boring:		Drilling Co./Driller:	Env. West / Dean & Tin
Notes		Drilling Method:	Push Probe/Air Rotary
		Location:	
Moisture Content:	Water Levels		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet		Surface Condition:	CONCRETE
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Depth:	18.5
WO = weak odor, MO = moderate odor, SO = strong odor		First GW Depth:	9

Depth (feet) Blow Count PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
0	80		B29-04		ML	Concrete	Mst	
9 — 10 — 218 11 — 218 12 — 13 — 14 —	95		B29-11		SM- ML	Same as above, damp to wet, brown, no hydrocarbon odor. Wet, SILT, some fine sand, 2.5-inch-gravelly sand layer at approximately 11.75 feet below ground surface (bgs), tannish-gray, moderate hydrocarbon odor. Saturated, SILT with angular gravel, no hydrocarbon odor.	□ Dp to Wet ☑	
14 — 0.0 15 — 0.0 16 — 17 — 18 —			B29-15		GM	Saturated, silty, fine-grained sandy, angular GRAVEL, no hydrocarbon odor. <u>Drilling refusal at 15.5 feet bgs, weathered bedrock.</u> Unweathered bedrock.	Sat	
19 — 20 — 21 — 22 — 23 — 24 — 25 — 25 —						Drilled using a push probe to approximately 15.5 feet bgs, overdrill with limited access air rotary rig to approximately 18.5 feet bgs. Two-inch diameter monitoring well MW29 installed using 0.01-inch slot screen from approximately 5.5 to 18.5 feet bgs.		

Date Started: 5/18/2009 Date Started: 5/10/2009
Date Finished: 5/20/2009
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: PLOSSONO-INTECHNI-1/GINTLO-1/0592_B26-B

BORING LOG B29/MW29

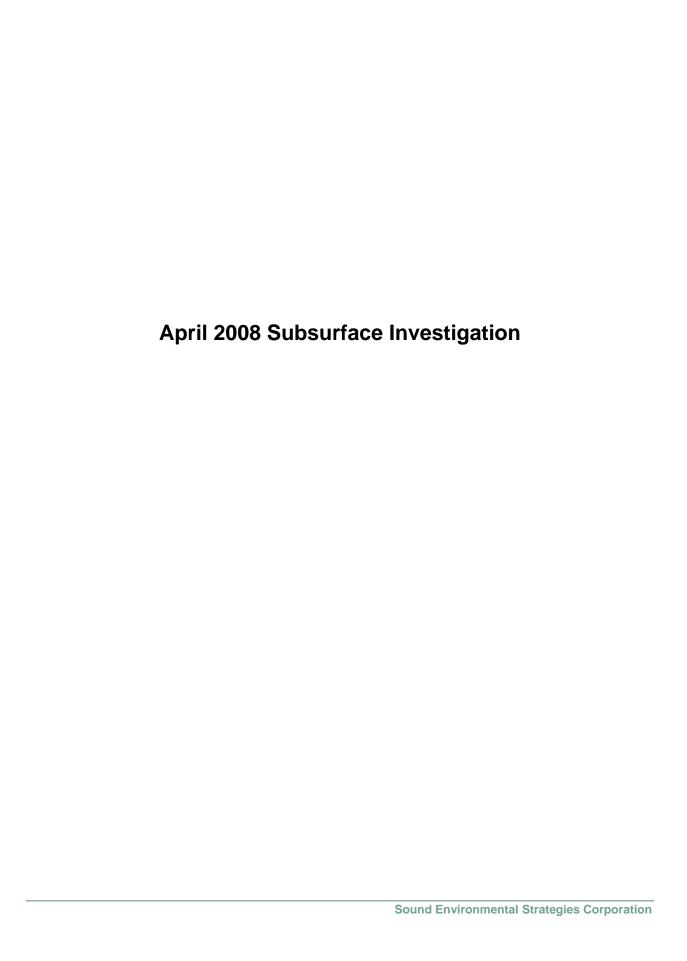
Log of Exploratory Boring:	Drilling Co./Driller:	Env. West / Dean & Tin		
Notes		Drilling Method:	Push Probe/Air Rotary	
NE = not encountered	Location:			
Moisture Content:	Water Levels			
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Condition:	ASPHALT	
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ During Drilling	Total Depth:	15.5	
WO = weak odor, MO = moderate odor, SO = strong odor		First GW Depth:	6.5	

Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
1 — 2 —			75					Asphalt. Damp to moist, SILT, trace fine-grained sand, brown, no hydrocarbon odor.	Mst to Dp	
3 — 4 — 5 —		0.0	85		B30-04		ML	Same as above, moist to wet.	Dp to Wet	
7 — 8 — 9 —		258			B30-08			Wet, silty, fine-grained SAND, gray staining, strong hydrocarbon odor.	₩et	
10 — 11 —		258 381	90		B30-11	~ ~ ~ ~ ~ ~	SP	Wet, gravelly, fine- to medium-grained SAND, angular gravel, gray staining, strong hydrocarbon odor. Drilling reusal at 11 feet below ground surface (bgs), weathered bedrock.		
12 — 13 — 14 — 15 —		301			500 11			Weathered bedrock. Unweathered fractured bedrock.	_	
16 — 17 — 18 — 19 —								Drilled using a push probe to approximately 11 feet bgs, overdrill with limited access air rotary rig to approximately 15.5 feet bgs. Two-inch diameter monitoring well MW30 installed using 0.01-inch slot screen from approximately 5.5 to 15.5 feet bgs.		
20 —								Date Started: 5/18/2009		

Date Started: 5/18/2009
Date Finished: 5/20/2009
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: P.0692NO-INTECHNI-1IGINTLO-10692_B26-B

BORING LOG B30/MW30

Log of Exploratory Boring:	Drilling Co./Driller:	Env. West / Dean & Tin	
Notes .		Drilling Method:	Push Probe/Air Rotary
		Location:	
Moisture Content:	Water Levels		
Dry = Dry, Dp = Damp, Mst = Moist, Wet = Wet	▼ After Completion	Surface Condition:	ASPHALT
Hydrocarbon Odor: NO = no odor, VFO = very faint odor	✓ After Completion ✓ During Drilling	Total Depth:	15.2
WO = weak odor, MO = moderate odor, SO = strong odor		First GW Depth:	5.5


Depth (feet)	Blow Count	PID	Sample Recovery	Sample Interval	Sample ID	Lithography	USCS Class	Description	Moisture Content	Well Detail
1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9 — 10 — 11 — 12 — 13 — 14 — 15 — 16 — 17 — 17 — 17 — 17 — 17 — 17 — 17		0.0	90		B31-04 B31-08		ML SM GP	Asphalt. Damp to moist, SILT, trace fine sand, brown, no hydrocarbon odor. Same as above, wet. Wet, silty, fine-grained SAND, brown, no hydrocarbon odor. Saturated, medium- to coarse-grained sandy GRAVEL, some silt, brown, no hydrocarbon odor. Drilling refusal at 10 feet below ground surface. Unweathered bedrock. Drilled using a push probe to approximately 10 feet below ground surface (bgs), overdrill with limited access air rotary rig to approximately 15.2 feet bgs. Two-inch diameter monitoring well MW31 installed using 0.01-inch slot screen from approximately 5.2 to 15.2 feet bgs.	Mst to Dp ▼	
18 —								Date Started: 5/18/2009		

Date Started: 5/18/2009 Date Started: 5/10/2009
Date Finished: 5/20/2009
Logged By: CCC
Chk By: JAC
SES Project No.: 0592-001
File ID.: PLOSSONO-INTECHNI-1/GINTLO-1/0592_B26-B

BORING LOG B31/MW31

APPENDIX E Laboratory Analytical Reports

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

May 1, 2008

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the testing of material submitted on April 11, 2008 from the North Colfax Petroleum Contamination (NCPC), F&BI 804141 project. There are 69 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures c: Erin Rothman SOU0501R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on April 11, 2008 by Friedman & Bruya, Inc. from the Sound Environmental Strategies North Colfax Petroleum Contamination (NCPC), F&BI 804141 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Sound Environmental Strategies
804141-01	SP01-06.5-07.5
804141-01	SP01-00.3-07.3 SP01-11-12
804141-02	SP01-11-12 SP01-13-14
804141-03	SP02-03-04
804141-04	SP02-03-04 SP02-07-08
804141-06	SP02-07-08 SP02-13-14
804141-00	SP02-13-14 SP03-07-08
804141-07	SP03-07-08 SP03-10-11
804141-09	SP03-10-11 SP03-12-13
804141-10	SP03-12-13 SP04-07-08
804141-11	SP04-10-11
804141-12	SP04-12-13
804141-13	SP05-07-08
804141-14	SP05-10-11
804141-15	SP05-13-14
804141-16	SP06-03-04
804141-17	SP06-07-08
804141-18	SP06-11-12
804141-19	SP07-03-04
804141-20	SP07-07-08
804141-21	SP07-12.5-13.5
804141-22	SP07-05-06
804141-23	SP08-10-11
804141-24	SP08-13-14
804141-25	SP09-06-07
804141-26	SP09-09-10
804141-27	SP09-13-14
804141-28	SP10-05-06
804141-29	SP10-09-10
804141-30	SP10-14-15
804141-31	SP11-03-04
804141-32	SP11-05-06
804141-33	SP11-09.5-10.5
804141-34	SP11-13-14
804141-35	SP12-06.5-08
804141-36	SP12-10-12
804141-37	SP12-13-14
804141-38	SP12-14-15

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE (continued)

Sound Environmental Strategies
SP13-05.5-06.5
SP13-09-10
SP13-12.5-13.5
SP14-04.5-05.5
SP14-07-08
SP14-13-14
SP15-06-07
SP15-10-11
SP15-13-14
SP16-09.5-10.5
SP16-13-14
SP17-06-07
SP17-10-11
Decon Water 041008
Trip Blank

The samples SP02-07-08, SP05-07-08, SP11-05-06, SP12-10-12, SP14-07-08, and SP15-060-07 were sent to Analytical Resources, Inc. for EPH/VPH analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/17/08 and 04/18/08 Date Analyzed: 04/17/08 and 04/19/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
SP01-06.5-07.5 804141-01	ND	ND	ND	112
SP01-11-12 804141-02	ND	ND	ND	113
SP01-13-14 804141-03	ND	ND	ND	115
SP03-07-08 804141-07	ND	ND	ND	111
SP03-10-11 804141-08	ND	ND	ND	112
SP03-12-13 804141-09	ND	ND	ND	110
SP06-03-04 804141-16	ND	ND	ND	112
SP06-07-08 804141-17	ND	ND	ND	114
SP06-11-12 804141-18	ND	ND	ND	114
SP07-03-04 804141-19	ND	ND	ND	111

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/17/08 and 04/18/08 Date Analyzed: 04/17/08 and 04/19/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
SP07-07-08 804141-20	ND	ND	ND	112
SP07-12.5-13.5 804141-21	ND	ND	ND	114
SP07-05-06 804141-22	ND	ND	ND	112
SP08-10-11 804141-23	ND	ND	ND	112
SP08-13-14 804141-24	ND	ND	ND	106
SP09-06-07 804141-25	ND	ND	ND	107
SP09-09-10 804141-26	ND	ND	ND	107
SP09-13-14 804141-27	ND	ND	ND	108
SP10-05-06 804141-28	ND	ND	ND	107
SP10-09-10 804141-29	ND	ND	ND	106

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/17/08 and 04/18/08 Date Analyzed: 04/17/08 and 04/19/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
SP10-14-15 804141-30	ND	ND	ND	108
SP13-05.5-06.5 804141-39	ND	ND	ND	107
SP13-09-10 804141-40	ND	ND	ND	108
SP13-12.5-13.5 804141-41	ND	ND	ND	109
SP16-09.5-10.5 804141-48	ND	ND	ND	108
SP16-13-14 804141-49	ND	ND	ND	109
SP17-06-07 804141-50	ND	ND	ND	109
SP17-10-11 804141-51	ND	ND	ND	108

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/17/08 and 04/18/08 Date Analyzed: 04/17/08 and 04/19/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
Method Blank	ND	ND	ND	114
Method Blank	ND	ND	ND	108

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/16/08

Date Analyzed: 04/16/08 and 04/17/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Sample ID Laboratory ID	Gasoline Range	Surrogate (<u>% Recovery</u>) (Limit 50-150)
SP02-07-08 d 804141-05 1/50	3,300	ip
SP05-07-08 d 804141-13 1/10	2,400	ip
SP11-05-06 804141-32	6	128
SP12-10-12 804141-36	140	ip
SP14-07-08 804141-43	<2	115
SP15-06-07 804141-45	3	118
Method Blank	<2	86
Method Blank	<2	86

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/16/08

Date Analyzed: 04/16/08 and 04/17/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
SP02-03-04 d 804141-04 1/10	1.6	11	10	64	670	ip
SP02-13-14 804141-06	< 0.02	< 0.02	< 0.02	< 0.06	<2	95
SP04-07-08 804141-10	< 0.02	0.03	0.12	0.35	34	128
SP04-10-11 d 804141-11 1/10	< 0.02	1.2	24	24	1,100	ip
SP04-12-13 804141-12	< 0.02	<0.02	<0.02	< 0.06	<2	98
SP05-10-11 804141-14	< 0.02	0.12	3.5	2.0	280	ip
SP05-13-14 804141-15	< 0.02	<0.02	< 0.02	< 0.06	<2	104
SP11-03-04 804141-31	0.37	0.02	0.05	0.59	11	102
SP11-09.5-10.5 804141-33	< 0.02	<0.02	< 0.02	< 0.06	2	102
SP11-13-14 804141-34	<0.02	<0.02	< 0.02	<0.06	<2	96

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/16/08

Date Analyzed: 04/16/08 and 04/17/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
SP12-06.5-08 804141-35	< 0.02	<0.02	< 0.02	< 0.06	<2	107
SP12-13-14 804141-37	< 0.02	0.26	0.60	2.9	66	116
SP12-14-15 804141-38	< 0.02	<0.02	< 0.02	< 0.06	<2	101
SP14-04.5-05.5 804141-42	0.11	0.02	0.02	< 0.06	3	105
SP14-13-14 804141-44	< 0.02	< 0.02	< 0.02	< 0.06	<2	99
SP15-10-11 804141-46	0.03	< 0.02	<0.02	0.06	<2	104
SP15-13-14 804141-47	<0.02	<0.02	<0.02	<0.06	<2	95
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<2	81
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<2	82

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/16/08 Date Analyzed: 04/16/08

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	Benzene	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
Trip Blank 804141-53	<1	<1	<1	<3	<100	79
Method Blank	<1	<1	<1	<3	<100	95

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/17/08 Date Analyzed: 04/17/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
SP02-03-04 804141-04	150 x	<250	90
SP02-07-08 804141-05	850 x	<250	91
SP02-13-14 804141-06	< 50	<250	91
SP04-07-08 804141-10	< 50	<250	92
SP04-10-11 804141-11	160 x	<250	92
SP04-12-13 804141-12	< 50	<250	97
SP05-07-08 804141-13	1,200 x	<250	94
SP05-10-11 804141-14	120 x	<250	91
SP05-13-14 804141-15	< 50	<250	99
SP11-03-04 804141-31	< 50	<250	93
SP11-05-06 804141-32	< 50	<250	91
SP11-09.5-10.5 804141-33	< 50	<250	93

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/17/08 Date Analyzed: 04/17/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
SP11-13-14 804141-34	<50	<250	93
SP12-06.5-08 804141-35	< 50	<250	92
SP12-10-12 804141-36	< 50	<250	91
SP12-13-14 804141-37	< 50	<250	93
SP12-14-15 804141-38	< 50	<250	88
SP14-04.5-05.5 804141-42	< 50	<250	92
SP14-07-08 804141-43	< 50	<250	93
SP14-13-14 804141-44	< 50	<250	93
SP15-06-07 804141-45	< 50	<250	92
SP15-10-11 804141-46	< 50	<250	88
SP15-13-14 804141-47	< 50	<250	89
Method Blank	< 50	<250	96
Method Blank	< 50	<250	88

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

Date Extracted: 04/18/08 Date Analyzed: 04/18/08

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

			Surrogate
Sample ID	Diesel Range	Motor Oil Range	(% Recovery)
Laboratory ID	$(C_{10}-C_{25})$	$(C_{25}-C_{36})$	(Limit 50-150)
Trip Blank dv 804141-53	<120	<620	124
Method Blank	< 50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP02-03-04 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-04

 Date Analyzed:
 04/17/08
 Data File:
 804141-04.010

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 103 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 11.5

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP02-07-08 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-05

 Date Analyzed:
 04/17/08
 Data File:
 804141-05.011

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 107 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 31.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP02-13-14 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Date Extracted: 04/17/08 Lab ID: 804141-06
Date Analyzed: 04/17/08 Data File: 804141-06.012
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 104 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 1.97

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP04-07-08 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Date Extracted: 04/17/08 Lab ID: 804141-10
Date Analyzed: 04/17/08 Data File: 804141-10.013
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 104 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 31.2

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP04-10-11 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Date Extracted: 04/17/08 Lab ID: 804141-11
Date Analyzed: 04/17/08 Data File: 804141-11.014
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 103 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 9.82

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP04-12-13 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-12

 Date Analyzed:
 04/17/08
 Data File:
 804141-12.015

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 103 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 2.33

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP05-07-08 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-13

 Date Analyzed:
 04/17/08
 Data File:
 804141-13.016

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 102 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 36.7

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP05-10-11 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Date Extracted:04/17/08Lab ID:804141-14Date Analyzed:04/17/08Data File:804141-14.017Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 104 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 9.40

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP05-13-14 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-15

 Date Analyzed:
 04/17/08
 Data File:
 804141-15.019

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 103 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 1.96

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP11-03-04 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-31

 Date Analyzed:
 04/17/08
 Data File:
 804141-31.020

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 99 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 339

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP11-05-06 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Date Extracted: 04/17/08 Lab ID: 804141-32
Date Analyzed: 04/17/08 Data File: 804141-32.023
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 99 60 125

7.11

Concentration

Analyte: mg/kg (ppm)

Lead

24

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP11-09.5-10.5 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-33

 Date Analyzed:
 04/17/08
 Data File:
 804141-33.024

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 100 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 6.69

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP11-13-14 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-34

 Date Analyzed:
 04/17/08
 Data File:
 804141-34.025

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Internal Standard: % Recovery: Limit: Limit: Holmium 102 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 2.89

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP12-06.5-08 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-35

 Date Analyzed:
 04/17/08
 Data File:
 804141-35.026

 Matrix:
 Soil
 Instrument:
 ICPMS1

Matrix: Soil Instrument: ICP Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 105 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 6.62

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP12-10-12 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-36

 Date Analyzed:
 04/17/08
 Data File:
 804141-36.027

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 103 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 5.75

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP12-13-14 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-37

 Date Analyzed:
 04/17/08
 Data File:
 804141-37.028

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 105 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 13.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP12-14-15 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-38

 Date Analyzed:
 04/17/08
 Data File:
 804141-38.030

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 109 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 2.41

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP14-04.5-05.5 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-42

 Date Analyzed:
 04/17/08
 Data File:
 804141-42.031

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 105 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 6.43

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP14-07-08 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Date Extracted: 04/17/08 Lab ID: 804141-43
Date Analyzed: 04/17/08 Data File: 804141-43.032
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 109 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 6.02

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP14-13-14 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Date Extracted: 04/17/08 Lab ID: 804141-44
Date Analyzed: 04/17/08 Data File: 804141-44.033
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 102 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 3.14

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP15-06-07 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-45

 Date Analyzed:
 04/17/08
 Data File:
 804141-45.036

 Matrix:
 Soil
 Instrument:
 ICPMS1

Matrix: Soil Instrument: ICPM Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 104 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 10.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP15-10-11 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-46

 Date Analyzed:
 04/17/08
 Data File:
 804141-46.037

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 104 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 5.18

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP15-13-14 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

 Date Extracted:
 04/17/08
 Lab ID:
 804141-47

 Date Analyzed:
 04/17/08
 Data File:
 804141-47.038

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Internal Standard: % Recovery: Limit: Limit: Holmium 104 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 3.00

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Sound Environmental Strategies

Date Received: NA Project: NCPC, F&BI 804141

Date Extracted: 04/17/08 Lab ID: I8-145 mb

Date Analyzed: 04/17/08 Data File: I8-145 mb.008

Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 98 60 125

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Sound Environmental Strategies

Date Received: NA Project: NCPC, F&BI 804141

Date Extracted: 04/17/08 Lab ID: I8-146 mb
Date Analyzed: 04/17/08 Data File: I8-146 mb.034
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Internal Standard: % Recovery: Limit: Limit: Holmium 95 60 125

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	SP02-07-08	Client:	Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Lab ID: Date Extracted: 04/18/08 804141-05 Date Analyzed: 04/22/08 Data File: 042131.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	98	42	142
1,2-Dichloroethane-d4	102	42	152
Toluene-d8	105	36	149
4-Bromofluorobenzene	146	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	46 ve
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	120 ve
Methylene chloride	< 0.5	o-Xylene	70 ve
Methyl t-butyl ether (MTBE)	2.0	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	8.2
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	27 ve
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	43 ve
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon Tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	3.3	1,2,4-Trimethylbenzene	68 ve
Trichloroethene	< 0.03	sec-Butylbenzene	4.2
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	2.1
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	40 ve	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	11 ve
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	SP02-07-08	Client:	Sound Environmental Strategies
-------------------	------------	---------	--------------------------------

Date Received: 04/11/08 Project: NCPC, F&BI 804141 Lab ID: Date Extracted: 04/18/08 804141-05 1/200 Date Analyzed: 04/22/08 Data File: 042138.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	105	42	142
1,2-Dichloroethane-d4	108	42	152
Toluene-d8	107	36	149
4-Bromofluorobenzene	116	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	<100	1,3-Dichloropropane	<10
Chloromethane	<10	Tetrachloroethene	<5
Vinyl chloride	<10	Dibromochloromethane	<10
Bromomethane	<100	1,2-Dibromoethane (EDB)	<10
Chloroethane	<100	Chlorobenzene	<10
Trichlorofluoromethane	<100	Ethylbenzene	78
Acetone	<100	1,1,1,2-Tetrachloroethane	<10
1,1-Dichloroethene	<10	m,p-Xylene	350
Methylene chloride	<100	o-Xylene	130
Methyl t-butyl ether (MTBE)	<10	Styrene	<10
trans-1,2-Dichloroethene	<10	Isopropylbenzene	<10
1,1-Dichloroethane	<10	Bromoform	<10
2,2-Dichloropropane	<10	n-Propylbenzene	35
cis-1,2-Dichloroethene	<10	Bromobenzene	<10
Chloroform	<10	1,3,5-Trimethylbenzene	72
2-Butanone (MEK)	<100	1,1,2,2-Tetrachloroethane	<10
1,2-Dichloroethane (EDC)	<10	1,2,3-Trichloropropane	<10
1,1,1-Trichloroethane	<10	2-Chlorotoluene	<10
1,1-Dichloropropene	<10	4-Chlorotoluene	<10
Carbon Tetrachloride	<10	tert-Butylbenzene	<10
Benzene	<6	1,2,4-Trimethylbenzene	220
Trichloroethene	<6	sec-Butylbenzene	<10
1,2-Dichloropropane	<10	p-Isopropyltoluene	<10
Bromodichloromethane	<10	1,3-Dichlorobenzene	<10
Dibromomethane	<10	1,4-Dichlorobenzene	<10
4-Methyl-2-pentanone	<100	1,2-Dichlorobenzene	<10
cis-1,3-Dichloropropene	<10	1,2-Dibromo-3-chloropropane	<10
Toluene	62	1,2,4-Trichlorobenzene	<20
trans-1,3-Dichloropropene	<10	Hexachlorobutadiene	<20
1,1,2-Trichloroethane	<10	Naphthalene	15
2-Hexanone	<100	1,2,3-Trichlorobenzene	<20

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID: SP05-07-08 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Lab ID: Date Extracted: 04/18/08 804141-13 Date Analyzed: 04/22/08 Data File: 042139.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	107	42	142
1,2-Dichloroethane-d4	108	42	152
Toluene-d8	109	36	149
4-Bromofluorobenzene	121	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.48
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	0.37
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	0.58
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon Tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	0.28
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	0.28
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	1.1
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID: SP11-05-06 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Lab ID: Date Extracted: 04/18/08 804141-32 Date Analyzed: 04/22/08 Data File: 042137.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	106	42	142
1,2-Dichloroethane-d4	111	42	152
Toluene-d8	111	36	149
4-Bromofluorobenzene	122	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	0.15
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	0.061
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon Tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	0.29	1,2,4-Trimethylbenzene	0.063
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	SP12-10-12	Client:	Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Lab ID: 04/18/08 804141-36 Date Extracted: Date Analyzed: 04/22/08 Data File: 042133.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	102	42	142
1,2-Dichloroethane-d4	105	42	152
Toluene-d8	108	36	149
4-Bromofluorobenzene	114	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	0.75
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	2.9
Methylene chloride	< 0.5	o-Xylene	0.068
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	0.080
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	0.31
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	0.51
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon Tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	0.034	1,2,4-Trimethylbenzene	1.7
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	0.20
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID: SP14-07-08 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Lab ID: Date Extracted: 804141-43 04/18/08 Date Analyzed: 04/22/08 Data File: 042134.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	109	42	142
1,2-Dichloroethane-d4	116	42	152
Toluene-d8	115	36	149
4-Bromofluorobenzene	120	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon Tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	0.074	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID: SP15-06-07 Client: Sound Environmental Strategies

Date Received: 04/11/08 Project: NCPC, F&BI 804141

Lab ID: Date Extracted: 804141-45 04/18/08 Date Analyzed: 04/22/08 Data File: 042135.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	102	42	142
1,2-Dichloroethane-d4	109	42	152
Toluene-d8	108	36	149
4-Bromofluorobenzene	115	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	0.29
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon Tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	0.21	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Date Received: NA Project: NCPC, F&BI 804141

Lab ID: Date Extracted: 04/18/08 080582 mb Date Analyzed: 04/21/08 Data File: 042107.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	107	42	142
1,2-Dichloroethane-d4	110	42	152
Toluene-d8	109	36	149
4-Bromofluorobenzene	121	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon Tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: SP02-07-08 Client: Sound Environmental Strategies Date Received: 04/11/08 Project: NCPC, F&BI 804141 Date Extracted: Lab ID: 04/17/08 804141-05 1/5 04/17/08 Data File: 041714.D Date Analyzed: Matrix: Instrument: GCMS6 Soil Units: mg/kg (ppm) Operator: YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 87 50 150 Benzo(a)anthracene-d12 96 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene 6.9 ve. J 2-Methylnaphthalene 11 ve, J 1-Methylnaphthalene 5.6 ve, J Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID:	SP02-07-08	Client:	Sound Environmental Strategies
Date Received:	04/11/08	Project:	NCPC, F&BI 804141
Date Extracted:	04/17/08	Lab ID:	804141-05 1/50
Date Analyzed:	04/17/08	Data File:	041712.D
Matrix:	Soil	Instrument:	GCMS6
Units:	mg/kg (ppm)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	218 ds	50	150
Benzo(a)anthracene-d12	91	35	159

Compounds:	Concentration mg/kg (ppm)
Naphthalene	9.3
2-Methylnaphthalene	12
1-Methylnaphthalene	5.7
Benz(a)anthracene	< 0.1
Chrysene	< 0.1
Benzo(a)pyrene	< 0.1
Benzo(b)fluoranthene	< 0.1
Benzo(k)fluoranthene	< 0.1
Indeno(1,2,3-cd)pyrene	< 0.1
Dibenz(a,h)anthracene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: SP05-07-08 Client: Sound Environmental Strategies Date Received: 04/11/08 Project: NCPC, F&BI 804141 Date Extracted: Lab ID: 04/23/08 804141-13 1/5 04/24/08 Data File: 042414.D Date Analyzed: Matrix: Instrument: GCMS6 Soil Units: mg/kg (ppm) Operator: YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 87 50 150 Benzo(a)anthracene-d12 90 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene 6.4 ve 2-Methylnaphthalene 4.9 ve 1-Methylnaphthalene 2.4 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID:	SP05-07-08	Client:	Sound Environmental Strategies
Date Received:	04/11/08	Project:	NCPC, F&BI 804141
Date Extracted:	04/23/08	Lab ID:	804141-13 1/50
Date Analyzed:	04/23/08	Data File:	042307.D
Matrix:	Soil	Instrument:	GCMS6
Units:	mg/kg (ppm)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	190 ds	50	150
Benzo(a)anthracene-d12	96	35	159

Compounds:	Concentration mg/kg (ppm)
Naphthalene	9.1
2-Methylnaphthalene	5.1
1-Methylnaphthalene	2.4
Benz(a)anthracene	< 0.1
Chrysene	< 0.1
Benzo(a)pyrene	< 0.1
Benzo(b)fluoranthene	< 0.1
Benzo(k)fluoranthene	< 0.1
Indeno(1,2,3-cd)pyrene	< 0.1
Dibenz(a,h)anthracene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: SP11-05-06 Client: Sound Environmental Strategies Date Received: 04/11/08 Project: NCPC, F&BI 804141 Lab ID: Date Extracted: 04/17/08 804141-32 1/5 Date Analyzed: 04/17/08 Data File: 041706.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Operator: YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	83	50	150
Benzo(a)anthracene-d12	80	35	159

Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.01
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID:	SP12-10-12	Client:	Sound Environmental Strategies
Date Received:	04/11/08	Project:	NCPC, F&BI 804141
Date Extracted:	04/17/08	Lab ID:	804141-36 1/5
Date Analyzed:	04/17/08	Data File:	041709.D
Matrix:	Soil	Instrument:	GCMS6
Units:	mg/kg (ppm)	Operator:	YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	84	50	150
Benzo(a)anthracene-d12	86	35	159

Concentration mg/kg (ppm)
0.12
0.36
0.17
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01
< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: SP14-07-08 Client: Sound Environmental Strategies Date Received: 04/11/08 Project: NCPC, F&BI 804141 Date Extracted: Lab ID: 04/17/08 804141-43 1/5 04/17/08 Data File: Date Analyzed: 041710.D Matrix: Instrument: GCMS6 Soil Units: mg/kg (ppm) Operator: YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 83 50 150 Benzo(a)anthracene-d12 83 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: SP15-06-07 Client: Sound Environmental Strategies Date Received: 04/11/08 Project: NCPC, F&BI 804141 Lab ID: Date Extracted: 04/17/08 804141-45 1/5 Date Analyzed: 04/17/08 Data File: 041711.D Matrix: Soil Instrument: GCMS6

Units: mg/kg (ppm) Operator: YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	82	50	150
Benzo(a)anthracene-d12	85	35	159

Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.01
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: Method Blank Client: Sound Environmental Strategies

Date Received: NA Project: NCPC, F&BI 804141 Date Extracted: Lab ID: 04/23/08 080627mb 1/5 04/23/08 Data File: 042306.D Date Analyzed: Matrix: Instrument: GCMS6 Soil Units: mg/kg (ppm) Operator: YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 86 50 150 Benzo(a)anthracene-d12 90 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: Method Blank Client: Sound Environmental Strategies

Date Received: NA Project: NCPC, F&BI 804141 Date Extracted: Lab ID: 04/17/08 080598mb 1/5 04/17/08 Data File: 041705.D Date Analyzed: Matrix: Instrument: GCMS6 Soil Units: mg/kg (ppm) Operator: YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 82 50 150 Benzo(a)anthracene-d12 83 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 2-Methylnaphthalene < 0.01 1-Methylnaphthalene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 804141-44 (Duplicate)

				Relative Percent
	Reporting Units	Sample	Duplicate	Difference
Analyte		Result	Result	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

			Percent	
	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	92	70-130
Toluene	mg/kg (ppm)	0.5	88	70-130
Ethylbenzene	mg/kg (ppm)	0.5	88	70-130
Xylenes	mg/kg (ppm)	1.5	88	70-130
Gasoline	mg/kg (ppm)	20	95	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 804141-47 (Duplicate)

				Relative Percent
	Reporting Units	Sample	Duplicate	Difference
Analyte		Result	Result	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

			Percent	
	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	94	70-130
Toluene	mg/kg (ppm)	0.5	88	70-130
Ethylbenzene	mg/kg (ppm)	0.5	88	70-130
Xylenes	mg/kg (ppm)	1.5	88	70-130
Gasoline	mg/kg (ppm)	20	91	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 804172-02 (Duplicate)

			Relative Percent
Reporting	Sample	Duplicate	Difference
Units	Result	Result	(Limit 20)
ug/L (ppb)	<1	<1	nm
ug/L (ppb)	<1	<1	nm
ug/L (ppb)	<1	<1	nm
ug/L (ppb)	<3	<3	nm
ug/L (ppb)	<100	<100	nm
	Units ug/L (ppb) ug/L (ppb) ug/L (ppb) ug/L (ppb)	Units Result ug/L (ppb) <1 ug/L (ppb) <1 ug/L (ppb) <1 ug/L (ppb) <3	Units Result Result ug/L (ppb) <1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	85	65-118
Toluene	ug/L (ppb)	50	90	72-122
Ethylbenzene	ug/L (ppb)	50	88	73-126
Xylenes	ug/L (ppb)	150	90	74-118
Gasoline	ug/L (ppb)	1,000	100	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 804141-31 (Matrix Spike)

-		_	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery MSD	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS		Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	108	109	50-150	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	107	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 804141-46 (Matrix Spike)

•		-	Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery MSD	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS		Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	107	108	69-125	1

			Percent	
	Reporting Units	Spike	Recovery	Acceptance
Analyte		Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	108	70-127

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

·	•	-	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	123	106	70-130	15

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 804141-31 (Duplicate)

				Relative	
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Lead	mg/kg (ppm)	339	277	20	0-20

Laboratory Code: 804141-31 (Matrix Spike)

		Percent					
		Spike	Sample	Recovery	Acceptance		
Analyte	Reporting Units	Level	Result	MS	Criteria		
Lead	mg/kg (ppm)	20	339	0 b	50-150	_	

J	v	•	Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	20	115	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 803285-02 (Duplicate)

				Relative	
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Lead	mg/kg (ppm)	23.3	23.5	1	0-20

Laboratory Code: 803285-02 (Matrix Spike)

		Percent				
		Spike	Sample	Recovery	Acceptance	
Analyte	Reporting Units	Level	Result	MS	Criteria	
Lead	mg/kg (ppm)	20	23.3	114 b	50-150	_

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	20	117	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code: 804184-22 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Chloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Vinyl chloride	mg/kg (ppm)	< 0.05	< 0.05	nm
Bromomethane	mg/kg (ppm)	< 0.5	< 0.5	nm
Chloroethane	mg/kg (ppm)	< 0.5	< 0.5	nm
Trichlorofluoromethane	mg/kg (ppm)	< 0.5	< 0.5	nm
Acetone	mg/kg (ppm)	< 0.5	< 0.5	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm
Methylene chloride	mg/kg (ppm)	< 0.5	< 0.5	nm
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.05	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
2,2-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	<0.05	nm
Chloroform 2-Butanone (MEK)	mg/kg (ppm)	<0.05 <0.5	<0.05 <0.5	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	<0.5 <0.05	<0.05 <0.05	nm
1,1,1-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	< 0.05	<0.05	nm
1,1-Dichloropropene	mg/kg (ppm)	< 0.05	<0.05	nm nm
Carbon Tetrachloride	mg/kg (ppm)	< 0.05	<0.05	nm
Benzene	mg/kg (ppm)	< 0.03	<0.03	nm
Trichloroethene	mg/kg (ppm)	< 0.03	<0.03	nm
1,2-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
Bromodichloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Dibromomethane	mg/kg (ppm)	< 0.05	< 0.05	nm
4-Methyl-2-pentanone	mg/kg (ppm)	< 0.5	<0.5	nm
cis-1,3-Dichloropropene	mg/kg (ppm)	< 0.05	< 0.05	nm
Toluene	mg/kg (ppm)	< 0.05	< 0.05	nm
trans-1,3-Dichloropropene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1,2-Trichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
2-Hexanone	mg/kg (ppm)	< 0.5	< 0.5	nm
1,3-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
Tetrachloroethene	mg/kg (ppm)	< 0.025	< 0.025	nm
Dibromochloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.05	< 0.05	nm
Chlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
Ethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	< 0.05	<0.05	nm
m,p-Xylene	mg/kg (ppm)	<0.1	<0.1	nm
o-Xylene	mg/kg (ppm)	< 0.05	<0.05	nm
Styrene	mg/kg (ppm)	< 0.05	<0.05	nm
Isopropylbenzene Bromoform	mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm
n-Propylbenzene	mg/kg (ppm)	< 0.05	<0.05	nm nm
Bromobenzene	mg/kg (ppm) mg/kg (ppm)	< 0.05	<0.05	nm
1,3,5-Trimethylbenzene	mg/kg (ppm)	< 0.05	<0.05	nm
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	< 0.05	<0.05	nm
1,2,3-Trichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
2-Chlorotoluene	mg/kg (ppm)	< 0.05	< 0.05	nm
4-Chlorotoluene	mg/kg (ppm)	< 0.05	< 0.05	nm
tert-Butylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2,4-Trimethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
sec-Butylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
p-Isopropyltoluene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,3-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,4-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2,4-Trichlorobenzene	mg/kg (ppm)	< 0.1	< 0.1	nm
Hexachlorobutadiene	mg/kg (ppm)	< 0.1	< 0.1	nm
Naphthalene	mg/kg (ppm)	< 0.05	<0.05	nm
1,2,3-Trichlorobenzene	mg/kg (ppm)	< 0.1	<0.1	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

· ·	or Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	58	53	25-133	9
Chloromethane	mg/kg (ppm)	2.5	87	81	48-121	7
Vinyl chloride	mg/kg (ppm)	2.5	88	80	57-125	10
Bromomethane	mg/kg (ppm)	2.5	85	81	55-141	5
Chloroethane	mg/kg (ppm)	2.5	81	76	43-152	6
Trichlorofluoromethane	mg/kg (ppm)	2.5	63	56	37-158	12
Acetone	mg/kg (ppm)	2.5	146 vo	153 vo	69-129	5
1,1-Dichloroethene	mg/kg (ppm)	2.5	79	73	60-123	8
Methylene chloride	mg/kg (ppm)	2.5	87	91	57-130	4
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	96 92	96 89	82-112	0
trans-1,2-Dichloroethene 1.1-Dichloroethane	mg/kg (ppm)	2.5 2.5	92 94	89 91	78-118 81-116	3 3
2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	94 98	94	81-116 74-122	3 4
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	98 97	94 95	82-118	2
Chloroform	mg/kg (ppm)	2.5	97	93	80-117	4
2-Butanone (MEK)	mg/kg (ppm)	2.5	106	107	63-146	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	94	92	82-120	2
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	91	87	79-120	4
1,1-Dichloropropene	mg/kg (ppm)	2.5	85	81	76-122	5
Carbon Tetrachloride	mg/kg (ppm)	2.5	74	70	70-125	6
Benzene	mg/kg (ppm)	2.5	93	89	80-112	4
Trichloroethene	mg/kg (ppm)	2.5	91	90	79-115	1
1,2-Dichloropropane	mg/kg (ppm)	2.5	98	95	84-119	3
Bromodichloromethane	mg/kg (ppm)	2.5	107	104	87-122	3
Dibromomethane	mg/kg (ppm)	2.5	100	101	87-118	1
4-Methyl-2-pentanone	mg/kg (ppm)	2.5	101	101	88-124	0
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	107	105	84-125	2
Toluene	mg/kg (ppm)	2.5	89	87	80-116	2
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	107	105	84-129	2
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	99 102	98 103	85-117	1
2-Hexanone 1,3-Dichloropropane	mg/kg (ppm)	2.5 2.5	96	96	88-129 84-119	1 0
Tetrachloroethene	mg/kg (ppm) mg/kg (ppm)	2.5	82	80	79-119	2
Dibromochloromethane	mg/kg (ppm)	2.5	90	87	76-123	3
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	100	100	86-120	0
Chlorobenzene	mg/kg (ppm)	2.5	91	90	81-111	í
Ethylbenzene	mg/kg (ppm)	2.5	89	87	81-115	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	106	104	82-121	2
m,p-Xylene	mg/kg (ppm)	5	91	88	80-118	3
o-Xylene	mg/kg (ppm)	2.5	95	91	78-122	4
Styrene	mg/kg (ppm)	2.5	97	94	84-121	3
Isopropylbenzene	mg/kg (ppm)	2.5	90	86	79-124	5
Bromoform	mg/kg (ppm)	2.5	90	88	73-111	2
n-Propylbenzene	mg/kg (ppm)	2.5	91	87	80-123	4
Bromobenzene	mg/kg (ppm)	2.5	96	94	83-117	2
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5 2.5	93 100	90	81-122	3
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	mg/kg (ppm)	2.5 2.5	97	96 96	82-119 82-116	4 1
2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	2.5	92	89	78-120	3
4-Chlorotoluene	mg/kg (ppm)	2.5	92	89	81-119	3
tert-Butvlbenzene	mg/kg (ppm)	2.5	90	87	79-124	3
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	95	91	81-123	4
sec-Butylbenzene	mg/kg (ppm)	2.5	88	84	79-124	5
p-Isopropyltoluene	mg/kg (ppm)	2.5	92	88	82-125	4
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	94	90	80-116	4
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	92	89	59-133	3
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	94	92	82-116	2
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	91	95	74-126	4
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	96	99	73-124	3
Hexachlorobutadiene	mg/kg (ppm)	2.5	91	90	74-128	1
Naphthalene	mg/kg (ppm)	2.5	97	101	70-122	4
1,2,3-Trichlorobenzene	mg/kg (ppm)	2.5	96	99	76-125	3

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270C SIM

Laboratory Code: 804211-22 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Naphthalene	mg/kg (ppm)	28	28	0
2-Methylnaphthalene	mg/kg (ppm)	72	73	1
1-Methylnaphthalene	mg/kg (ppm)	36	37	3
Benz(a)anthracene	mg/kg (ppm)	< 0.1	< 0.1	nm
Chrysene	mg/kg (ppm)	0.22	0.22	0
Benzo(b)fluoranthene	mg/kg (ppm)	< 0.1	< 0.1	nm
Benzo(k)fluoranthene	mg/kg (ppm)	< 0.1	< 0.1	nm
Benzo(a)pyrene	mg/kg (ppm)	< 0.1	< 0.1	nm
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	< 0.1	< 0.1	nm
Dibenz(a,h)anthracene	mg/kg (ppm)	< 0.1	< 0.1	nm

Laboratory Code: 804240-02 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	87	50-150
2-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	86	50-150
1-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	83	50-150
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	80	17-134
Chrysene	mg/kg (ppm)	0.17	< 0.01	85	10-157
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	86	28-134
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	81	55-115
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	81	37-123
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	88	61-104
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	90	69-100

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	92	88	72-112	4
2-Methylnaphthalene	mg/kg (ppm)	0.17	90	88	60-114	2
1-Methylnaphthalene	mg/kg (ppm)	0.17	86	84	74-118	2
Benz(a)anthracene	mg/kg (ppm)	0.17	87	82	58-108	6
Chrysene	mg/kg (ppm)	0.17	93	88	64-115	6
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	99	92	54-119	7
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	95	88	61-123	8
Benzo(a)pyrene	mg/kg (ppm)	0.17	87	81	54-111	7
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	95	91	46-126	4
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	90	88	57-119	2

ENVIRONMENTAL CHEMISTS

Date of Report: 05/01/08 Date Received: 04/11/08

Project: North Colfax Petroleum Contamination (NCPC), F&BI 804141

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270C SIM

Laboratory Code: 804141-32 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Naphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
2-Methylnaphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
1-Methylnaphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benz(a)anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm
Chrysene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(b)fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(k)fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(a)pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Dibenz(a,h)anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm

Laboratory Code: 804141-32 (Matrix Spike)

				Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	87	50-150
2-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	84	50-150
1-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	80	50-150
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	83	17-134
Chrysene	mg/kg (ppm)	0.17	< 0.01	91	10-157
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	91	28-134
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	90	55-115
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	83	37-123
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	91	61-104
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	92	69-100

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	88	86	72-112	2
2-Methylnaphthalene	mg/kg (ppm)	0.17	84	83	60-114	1
1-Methylnaphthalene	mg/kg (ppm)	0.17	83	81	74-118	2
Benz(a)anthracene	mg/kg (ppm)	0.17	81	81	58-108	0
Chrysene	mg/kg (ppm)	0.17	89	88	64-115	1
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	90	88	54-119	2
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	86	88	61-123	2
Benzo(a)pyrene	mg/kg (ppm)	0.17	78	78	54-111	0
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	90	89	46-126	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	91	91	57-119	0

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probablility.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

804 141 SA	MPLE CHAIN OF CUSTODY	ME 04-11	-08 WBIZ 1814
Send Report To Reca Bixby	SAMPLERS (signature)		Page #of
Company Sound Environmental Strategies Address 2400 Airport Way South	PROJECT NAME/NO. North Colfax Retroles m Contamination Site 0572-001-01	PO #	☐ Standard (2 Weeks) ☐ RUSH
City, State, ZIP Seath WA 98134 Phone # 206 306 1900 Fax # 206 306 1907	REMARKS	GEMS N	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

					·						ANAI	YSE	SREC	QUES	TED	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Tim e Sam pled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Total Lend RCRA-8 Motads	4124-H417	EPH/NPH	Notes
5801-06.5-07.5	5P01	6.5.7.5	0160	419108	1120	5011	7							×		(x)-xcc 4/2/00
5801-11-12		11-12	12 A.C		1135		7							×		në
SPO1-13-14		13-14	03 A.E		1150		7							X		
5802-03-04	5802	3-4	OHK.C		1205		于	×	X	×			×			
5802-07-08		7-8			1215		8	×	×		×	×	×_	<u> </u>	×	
Spo2-13-14	•	13-14	06 p	}	1230		7	×	X	X			X			
5803-07-08	5903	7-8			1250		7							Y		
57.3-10-11		10-11			1300		7							×		
5703-12-13	,	12-13	19 A-	f	1310		7							X		
5704-07-08	5404	7-8	1		1330		7	×	X	×			×			
5204-10-11		10-11			1345		7	X	×	×			×		[[+ Madded one
5P04-12-13		12-13	12 A	3	1400		7	×	×	X			X			the oded one container for lab ?!
5805-0208		7-8			1510		8	×	×		8	\otimes	X		\bigcirc	

Friedman & Bruya, Inc.	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
3012 16th Avenue West	Relinquished by:	Charles Cacel	SES	411/108	1405
Seattle, WA 98119-	Received by/	the Vance	71B	4/1/108	1405
Ph. (206) 285-8282	Relinquished by:				7
Fax (206) 283-5044	Received by:				

FORMS\COC\SESGEMSR1.DOC (Revision 1)

804	141

SAMPLERS (signature)

Page * 2 of 46

TURNAROUND TIME

Send Report To Byan Bixby

Company 500 L Environmental Strategics

Address 2400 Airport Way 500th

City, State, ZIP 52cHh WA 98134

Phone # 206 306 1900 Fax # 206 306 1907

.	Clica	
-	PROJECT NAME/NO. Petrologen Note Coldax Petrologen Site Contabination Site	PO #
.	0225 - 001-01	
	REMARKS	6
.		CEMOV

TURNAROUND TIME

Standard (2 Weeks)

RUSH
Rush charges authorized by:

SAMPLE DISPOSAL
Dispose after 30 days

GEMS(Y) N

☐ Return samples
☐ Will call with instructions

					·						ANAL	YSES	REC	UES'	TED	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Tim e Sam pled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Total Lend RCRA-8 Metals	WWTOH- HCID	EPHAPI	Notes
5805-10-11	SPOS	16-11	144.6	4/9/08	1525	රිටේ	8	×	X				×			-Minus one
5P05-13-14		13-14	15 A.E		1540		7	×	X	(X)			X			Castairer In lab IV
5PO6-83-64		63:5	16 4-6		1410		7							×		
5806-07-08		7-8	17 A.B		1420		7							×		* Spos samples
5806-11-12		11-12	18 4.6		1450		7							×		
5Po7-6304		3-4	19 4.8		1600		7							×		
5007-07-08		7-'8'	20 A.E		1610		7							×		
5807-125-135		12.3-13.5	1		1625		7			· -				×		
5007-65-06	5808			4/10/03			7			·				×		
5P08-6-11		10-11			1315		7							×		
SP08-13-14		13-14	2446		1335		7							×		
5P09-06-03	SP09	6-7		'S .	1205		7							×		
5809-09-6		9-10			1225		8							X	·	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2000 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquistled by:	Charles Cacel	SES	4/11/08	1405
Received by:	Fre Count	FAS	4/11/04	1908
Relinquished by:				
Received by:				

804 <u>141</u> SA	MPLE CHAIN OF CUSTODY	UE 04-11	-08 VI/BI3/1
Send Report To Ream Bixby	SAMPLERS (signature)		Page # _ 5 of _ 77 _ TURNAROUND TIME
Company Sound Environmental Strategics	PROJECT NAME/NO. North City Petroleons Contanination Site	PO #	☐ Standard (2 Weeks) ☐ RUSH
Address 2400 Aj-yort Way South	0542-001-01 REMARKS	`.	Rush charges authorized by: SAMPLE DISPOSAL
City, State, ZIP Sec. He WA 98134	REMINICO	GEMS®	☐ Dispose after 30 days ☐ Return samples
Phone # 206 306 1905 Fax # 206 306 1967	·	N	☐ Will call with instructions

					·						ANAI	YSE	S REC	UES'	TED	
Sam ple ID	Sample Location	Sample Depth	ID	Date Sampled	Tim e Sam pled	Matrix	# of jars	xQ-HALMN	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Total Lead RCRA-8 Metals	NUTOH- HCID	fldNH63	Notes
5809-13-14	5099	13-14	at A.C	4110/08	1240	50:1	7							*		
5910-05-06		5-6			1355		7							×		
5910-09-10		9-10			1405		7							>		
5P10-14-15		14-15	30 A		1420		7							X		
5R11-03-04		3-4	31 A-	14 9/08	1735		7	×	×	×			×			
5011-05-06		5-6	32 A		1750		7	×	×		×	×	×		*	
5911-69.5-10	s ⁻	9.5-10.5	P 2		1805		7	×	×	×			×			
5P11-13-14		13-14			1815		+	X	X	X			×			
SP12.06.50	5912	C15-8.	55 A-1	4/10/03	1500		7	×	X	X			×			
SP12-10-12		10-12	-	4 '	1515		8	X	×		×	X	×		×	
5P12-13-14		13-14		1	1530		7	×	×	×			×			
5812-14-15		14-15	70-1-		1555		7	X	×	×			×			
SP13755-1	655813	5.5-6.5			082 <i>0</i>		7							×		

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2020 Ph. (206) 285-8282

•			
SIGNATURE	PRINT NAME	COMPANY	DATE TIME
Relinquished by:	Should Cacel	SES	4(1102 1405
Received by:	Forc House	FAB	4/1/00 1405
Relinquished by:	- 900		
Received by:			

804	141

SAMPLE CHAIN OF CUSTODY ME 04-11-08 VI/1323/BI4

Send Report To Ryan Bixby	SAMPLERS (signature)		Page#
	PROJECT NAME/NO. North Colfa, Petroleom Contamination Site 0592-001-01	PO#	☐ Standard (2 Weeks) ☐ RUSH Rush charges authorized by:
City, State, ZIP Seath WA 98134 Phone # 206306 1900 Fax # 206-306-1907	REMARKS	GEMS(Ŷ) N	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

					ANALYSES REQUESTED												
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Total Lad BCRA-8 Metals	- He man	EPHNPIF	N	otes
SP13-09-10	5913	9-10	NO A.	411208	0910	Soil	4							×		Ho	14
5P13-125-BS		12.5.135	W A.G		0920		7							×			
5914-04 5-055	5914	4.5:5.5	42 R		0935		7	×	×	×			×				
5914-07.02		7-8	43 R.		0950		7	×	х		×	>	×		X		
5914-13-14		13-14	WAA. 6		1005		7	*	7	×			×		·		
5715-06-07	SP15	67	45 R.C		1020		王	×	*		×	×	×		×		
5815-10-11		10-11	46 A-C		1035	٠	7	×	×	×			×				
5815-13-14		13-14	wfA.	8	1050		7	×	Х	X	•		×				
5916-69-51	.5 Sl16	9,5,10,5	LRAH		1125		8					• •		×			
Elb-13-14		13-14	ua A.		1140	•	7							×			
5P17-4C-07	5017	6-7	KAA.	419/08	1655		7					•		*			
5917-10-11	J		Si K		1704		7							Х.			

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

		.		•
SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
. Relinquished by:	Charles Cace	5€ <i>S</i>	4/1/03	1405
Received by:	ERIC YOUNG	FUB	4/1/08	1405
Relinquished by:	/ / / / / / / / / / / / / / / / / / / /			
Received by:				

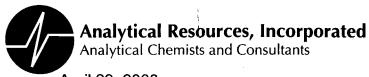
804141	SAMPLE CHAIN OF CUSTODY	ME 04-1	1-08 VI/BI3/BI
Send Report To Ryan Bixby	SAMPLERS (signature)		Page # of TURNAROUND TIME
Address 2400 Airport Way South	PROJECT NAME/NO. North Colfax Potroleum Contemination Silv	PO #	☐ Standard (2 Weeks) ☐ RUSH Rush charges authorized by:
City, State, ZIP Sea Hw WA 98134 Phone # 296 366 1900 Fax # 206 306 19	REMARKS	GEMS Y /	SAMPLE DISPOSAL Dispose after 30 days Réturn samples Will call with instructions
		ANALYSES F	
		8 8 E	\$ A +

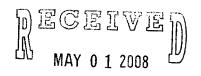
			<u> </u>		·						ANAL	YSES	REC	UES'	TED	
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Rena S Metals	W-HOH-HCD	EPH/VPI}	Notes
Decomeate 041008-		·	52 N.G	या।	1645	water:	4									H42
													,			
		ļ		 				· ·								
	•	ļ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,														
			ļ. 													
			ļ				ļ									
																:
·																
						<u> </u>										
									-							
·						.[<u> </u>								· .	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by	Charles Carell	SES	4/11/08	1425
Received by:	EXIC MOUNT	FEB	4/11/09	1405
Relinquished by:	/			
Received by:				


8041	41				SAMPLE (CHAIN O	r cus	TOD	y /	YE	04	4-11	1-0	8 V	1/BI3/BI
Send Report 1 Company 50 Address 240	and En	J'ersan	<u> </u>	, ,	PROJECT No.44	CT NAME/N	10. Pet	5:10			PO	#	11	□ Standar □ RUSH	of A K NAROUND TIME d (2 Weeks) ges authorized by:
City, State, Zi	Pto- Hh	- WA	521	34	REMAR					G	EMS N	3 Y /		□ Dispose □ Return	IPLE DISPOSAL after 30 days samples with instructions
	T	T		<u> </u>	•			T	<u>.</u>		ANA	LYSE	REC	UESTEI)
Sample ID	Sample	Sample		Date	Time	Matrix	# of	PH-Dx	PH-Gx	у 8021В	by 8260	by 8270	8 Metals		Notes


			<u> </u>								VIVI	, 1 0 10 0	, 1/1	OES	ILD	
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Tim e Sam pled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals			Notes
Trip Blanks			53 AF			Weter	6	×	×	×						
11-19-10/02/15	···					000-				/ `						
						<u> </u>										
		 	 													
						 										
	•		 		·											
<u> </u>				<u> </u>												
•										j						
•																
												-				
		†	 		 										· · · · ·	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2000 Ph. (206) 285-8282

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Charles Cacez	SE S	4 x 08	1435
Received by:	Fre Yours	FFB	1/.1/08	1405
Relinquested by:				
Received by:				

April 29, 2008

Mike Erdahl Friedman & Bruya 3012 – 16th Avenue West Seattle, WA 9819-2029

Project: 804141 PO# H-1388

ARI Job: MS71

Dear Mr. Erdahl:

Please find enclosed the original Chain of Custody record, sample receipt documentation, and analytical results for the project referenced above. Analytical Resources, Inc. accepted five soil samples in good condition on April 17, 2008. Please refer to the enclosed Cooler Receipt Form for further details regarding sample receipt.

The samples were analyzed for EPH (Extractable Petroleum Hydrocarbon) and VPH (Volatile Petroleum Hydrocarbon), on an expedited turnaround, as requested on the Chain of Custody. The analyses were completed successfully, with points of interest detailed below.

VPH

Reporting Limits vary according to detection of target compounds.

EPH

The o-Terphenyl surrogate recovery for the Aromatic portion of the Method Blank run on 04/23/08 was slightly below the Control Limit. The sample had low volume to begin with, which affected this aspect of the analysis. This falls within ARI's Marginal Exceedance policy, and no corrective action was deemed necessary by the QC supervisor.

Quality control analysis results are included for your review. Copies of the reports and all associated raw data will be kept on file electronically at ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

Eric Branson

Client Services - Project Support ANALYTICAL RESOURCES, INC.

(206) 695-6213 eric@arilabs.com www.arilabs.com

• Enclosures •

Cooler Receipt Form

ARI Client: F&B COC No: Assigned ARI Job No: M 5 7 1	Project Name: 80 Delivered by: 4A Tracking No:	4141 ND
Preliminary Examination Phase:		
Were intact, properly signed and dated cust Were custody papers included with the cook Were custody papers properly filled out (interpretature (recommended Cooler Accepted by: Complete custody	bler?k, signed, etc.)	$\frac{\sqrt{12/08}}{\sqrt{12/08}} = \frac{\sqrt{12/08}}{\sqrt{100}} = \frac{\sqrt{12/08}}{\sqrt{100}} = \frac{\sqrt{100}}{\sqrt{100}} = \frac{\sqrt{100}}{\sqrt{100}$
Log-In Phase:		
	bags? oken)? stody papers? sted analyses? eservation? (attach preservation)	YES AND YES AND YES NO YES NO YES NO On checklist) YES NO YES NO YES NO YES NO YES NO YES NO
Explain discrepancies or negative response	es:	
	Ву:	Date:

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: SP02-07-08 SAMPLE

Lab Sample ID: MS71A LIMS ID: 08-7995

Matrix: Soil

Data Release Authorized: Reported: 04/23/08

Project: H-1388 Date Sampled: 04/09/08 Date Received: 04/17/08

Date Analyzed: 04/22/08 13:31

Instrument/Analyst: PID1/PKC

Purge Volume: 5.0 mL

804141

QC Report No: MS71-Friedman & Bruya, Inc.

Sample Amount: 2.00 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	12000	< 12,000 U
108-88-3	Toluene	12000	36,000
100-41-4	Ethylbenzene	12000	51,000
	m,p-Xylene	25000	210,000
95-47-6	o-Xylene	12000	78,000
1634-04-4	Methyl tert-Butyl Ether	12000	< 12,000 U
109-66-0	n-Pentane	12000	< 12,000 U
110-54-3	n-Hexane	12000	< 12,000 U
111-65-9	n-Octane	12000	41,000
124-18-5	n-Decane	12000	13,000
112-40-3	n-Dodecane	12000	35,000

Range	RL	Result
C8-C10 Aromatics (PID)	120,000	930,000
C10-C12 Aromatics (PID)	120,000	250,000
C12-C13 Aromatics (PID)	120,000	< 120,000 U
C5-C6 Aliphatics	120,000	< 120,000 U
C6-C8 Aliphatics	120,000	260,000
C8-C10 Aliphatics	120,000	< 120,000 U
C10-C12 Aliphatics	120,000	780,000

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	109%
FID:	2,5-Dibromotoluene	108%

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: SP11-05-06 SAMPLE

Lab Sample ID: MS71B LIMS ID: 08-7996

Matrix: Soil

Data Release Authorized: Reported: 04/23/08

Date Analyzed: 04/22/08 14:00

Instrument/Analyst: PID1/PKC

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388 804141

Date Sampled: 04/09/08 Date Received: 04/17/08

Purge Volume: 5.0 mL

Sample Amount: 27.0 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	930	< 930 U
108-88-3	Toluene	930	< 930 U
100-41-4	Ethylbenzene	930	< 930 U
	m,p-Xylene	1900	< 1,900 U
95-47-6	o-Xylene	930	< 930 U
1634-04-4	Methyl tert-Butyl Ether	930	< 930 U
109-66-0	n-Pentane	930	< 930 U
110-54-3	n-Hexane	930	< 930 U
111-65-9	n-Octane	930	< 930 U
124-18-5	n-Decane	930	< 930 U
112-40-3	n-Dodecane	930	< 930 U

RL	Result
9,300	< 9,300 U
	9,300 9,300 9,300 9,300 9,300 9,300

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	117%
FID:	2,5-Dibromotoluene	102%

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: SP12-10-12

SAMPLE

Lab Sample ID: MS71C LIMS ID: 08-7997

Matrix: Soil

Data Release Authorized:

Reported: 04/23/08

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388 804141

Date Sampled: 04/10/08 Date Received: 04/17/08

Purge Volume: 5.0 mL Date Analyzed: 04/22/08 14:28

Sample Amount: 27.0 mg-dry-wt Instrument/Analyst: PID1/PKC

CAS Number	Analyte	RL	Result
71-43-2	Benzene	930	< 930 U
108-88-3	Toluene	930	< 930 U
100-41-4	Ethylbenzene	930	< 930 U
	m,p-Xylene	1900	2,400
95-47-6	o-Xylene	930	< 930 U
1634-04-4	Methyl tert-Butyl Ether	930	< 930 U
109-66-0	n-Pentane	930	< 930 U
110-54-3	n-Hexane	930	< 930 U
111-65-9	n-Octane	930	< 930 U
124-18-5	n-Decane	930	< 930 U
112-40-3	n-Dodecane	930	< 930 U

Range	RL	Result
C8-C10 Aromatics (PID)	9,300	< 9,300 U
C10-C12 Aromatics (PID)	9,300	< 9,300 U
C12-C13 Aromatics (PID)	9,300	< 9,300 U
C5-C6 Aliphatics	9,300	< 9,300 U
C6-C8 Aliphatics	9,300	< 9,300 U
C8-C10 Aliphatics	9,300	< 9,300 U
C10-C12 Aliphatics	9,300	< 9,300 U

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	112%
FID:	2,5-Dibromotoluene	98.6%

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: SP14-07-08 SAMPLE

Lab Sample ID: MS71D LIMS ID: 08-7998

Matrix: Soil

Data Release Authorized:

Date Analyzed: 04/22/08 14:57

Instrument/Analyst: PID1/PKC

Reported: 04/23/08

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388 804141

Date Sampled: 04/10/08 Date Received: 04/17/08

Purge Volume: 5.0 mL

Sample Amount: 24.0 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1000	< 1,000 U
108-88-3	Toluene	1000	< 1,000 U
100-41-4	Ethylbenzene	1000	< 1,000 U
	m,p-Xylene	2100	< 2,100 U
95-47-6	o-Xylene	1000	< 1,000 U
1634-04-4	Methyl tert-Butyl Ether	1000	< 1,000 U
109-66-0	n-Pentane	1000	< 1,000 U
110-54-3	n-Hexane	1000	< 1,000 U
111-65-9	n-Octane	1000	< 1,000 U
124-18-5	n-Decane	1000	< 1,000 U
112-40-3	n-Dodecane	1000	< 1,000 U

Range	RL	Result
C8-C10 Aromatics (PID)	10,000	< 10,000 U
C10-C12 Aromatics (PID)	10,000	< 10,000 U
C12-C13 Aromatics (PID)	10,000	< 10,000 U
C5-C6 Aliphatics	10,000	< 10,000 U
C6-C8 Aliphatics	10,000	< 10,000 U
C8-C10 Aliphatics	10,000	< 10,000 U
C10-C12 Aliphatics	10,000	< 10,000 U

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	114%
FID:	2,5-Dibromotoluene	104%

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: SP15-06-07 SAMPLE

Lab Sample ID: MS71E LIMS ID: 08-7999

Date Analyzed: 04/22/08 15:26

Instrument/Analyst: PID1/PKC

Matrix: Soil

Data Release Authorized:

Reported: 04/23/08

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388 804141

Date Sampled: 04/10/08 Date Received: 04/17/08

Purge Volume: 5.0 mL

Sample Amount: 25.0 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1000	< 1,000 U
108-88-3	Toluene	1000	< 1,000 U
100-41-4	Ethylbenzene	1000	< 1,000 U
	m,p-Xylene	2000	< 2,000 U
95-47-6	o-Xylene	1000	< 1,000 U
1634-04-4	Methyl tert-Butyl Ether	1000	< 1,000 U
109-66-0	n-Pentane	1000	< 1,000 U
110-54-3	n-Hexane	1000	< 1,000 U
111-65-9	n-Octane	1000	< 1,000 U
124-18-5	n-Decane	1000	< 1,000 U
112-40-3	n-Dodecane	1000	< 1,000 U

Range	RL	Result	
C8-C10 Aromatics (PID)	10,000	< 10,000	U
C10-C12 Aromatics (PID)	10,000	< 10,000	U
C12-C13 Aromatics (PID)	10,000	< 10,000	U
C5-C6 Aliphatics	10,000	< 10,000	U
C6-C8 Aliphatics	10,000	< 10,000	U
C8-C10 Aliphatics	10,000	< 10,000	U
C10-C12 Aliphatics	10,000	< 10,000	U

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	110%
FID:	2,5-Dibromotoluene	97.8%

VPH SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388 804141

Client ID	PDBT	FDBT	TOT OUT
MB-042208	105%	93.6%	0
LCS-042208	104%	105%	0
LCSD-042208	102%	104%	0
SP02-07-08	109%	108%	0
SP11-05-06	117%	102%	0
SP12-10-12	112%	98.6%	0
SP14-07-08	114%	104%	0
SP15-06-07	110%	97.8%	0

	LCS/MB LIMITS	QC LIMITS
 2,5-Dibromotoluene	(60-140)	(60-140)
2,5-Dibromotoluene	(60-140)	(60-140)

Prep Method: METHOD

Log Number Range: 08-7995 to 08-7999

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: LCS-042208 LCS/LCSD

Lab Sample ID: LCS-042208

LIMS ID: 08-7995 Matrix: Soil

Data Release Authorized:

Reported: 04/23/08

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388

804141

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount: 55.6 mg-dry-wt

Date Analyzed LCS: 04/22/08 11:03
Date Analyzed LCSD: 04/22/08 11:31

Instrument/Analyst: PID1/PKC

Analyte/Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	4460	4500	99.1%	4390	4500	97.6%	1.6%
Toluene	4480	4500	99.6%	4460	4500	99.1%	0.4%
Ethylbenzene	4550	4500	101%	4460	4500	99.1%	2.0%
m,p-Xylene	9000	8990	100%	8730	8990	97.1%	3.0%
o-Xylene	4470	4500	99.3%	4360	4500	96.9%	2.5%
Methyl tert-Butyl Ether	4370	4500	97.1%	4310	4500	95.8%	1.4%
Naphthalene	4360	4500	96.9%	4430	4500	98.4%	1.6%
1,2,3-Trimethylbenzene	4420	4500	98.2%	4320	4500	96.0%	2.3%
1-Methylnaphthalene	4660	4500	104%	4680	4500	104%	0.4%
n-Pentane	5620	4500	125%	5550	4500	123%	1.3%
n-Hexane	4910	4500	109%	4770	4500	106%	2.9%
n-Octane	4560	4500	101%	4520	4500	100%	0.9%
n-Decane	5050	4500	112%	4810	4500	107%	4.9%
n-Dodecane	5210	4500	116%	5180	4500	115%	0.6%

Values reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

		LCS	LCSD
PID:	2,5-Dibromotoluene	104%	102%
FID:	2,5-Dibromotoluene	105%	104%

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: MB-042208 METHOD BLANK

Lab Sample ID: MB-042208

LIMS ID: 08-7995 Matrix: Soil

Data Release Authorized: Reported: 04/23/08

Date Analyzed: 04/22/08 12:27

Instrument/Analyst: PID1/PKC

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388

804141

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount: 55.6 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	450	< 450 U
108-88-3	Toluene	450	< 450 U
100-41-4	Ethylbenzene	450	< 450 U
	m,p-Xylene	900	< 900 U
95-47-6	o-Xylene	450	< 450 U
1634-04-4	Methyl tert-Butyl Ether	450	< 450 U
109-66-0	n-Pentane	450	< 450 U
110-54-3	n-Hexane	450	< 450 U
111-65-9	n-Octane	450	< 450 U
124-18-5	n-Decane	450	< 450 U
112-40-3	n-Dodecane	450	< 450 U

Range	RL	Result
C8-C10 Aromatics (PID)	4,500	< 4,500 U
C10-C12 Aromatics (PID)	4,500	< 4,500 U
C12-C13 Aromatics (PID)	4,500	< 4,500 U
C5-C6 Aliphatics	4,500	< 4,500 U
C6-C8 Aliphatics	4,500	< 4,500 U
C8-C10 Aliphatics	4,500	< 4,500 U
C10-C12 Aliphatics	4,500	< 4,500 U

Values reported in $\mu g/kg$ (ppb)

PID:	2,5-Dibromotoluene	105%
	2.5-Dibromotoluene	93.6%

Page 1 of 1

Sample ID: SP02-07-08 SAMPLE

QC Report No: MS71-Friedman & Bruya, Inc. Lab Sample ID: MS71A

LIMS ID: 08-7995 Project: H-1388 Matrix: Soil

804141

Data Release Authorized: V Date Sampled: 04/09/08 Reported: 04/25/08 Date Received: 04/17/08

Date Extracted: 04/21/08 Sample Amount: 7.33 g-dry-wt

Final Extract Volume: 1.0 mL Percent Moisture: 27.0%

Aliphatic

Date Analyzed: 04/22/08 23:24 Dilution Factor: 1.00 Instrument/Analyst: FID4B/MS

Aromatic

Date Analyzed: 04/22/08 23:24 Dilution Factor: 1.00 Instrument/Analyst: FID4A/MS

Range	RL	Result
C8-C10 Aliphatics	2,700	120,000
C10-C12 Aliphatics	2,700	43,000
C12-C16 Aliphatics	2,700	11,000
C16-C21 Aliphatics	2,700	< 2,700 U
C21-C34 Aliphatics	2,700	< 2,700 U
C8-C10 Aromatics	2,700	190,000
C10-C12 Aromatics	2,700	120,000
C12-C16 Aromatics	2,700	43,000
C16-C21 Aromatics	2,700	6,300
C21-C34 Aromatics	2,700	< 2,700 U

Reported in $\mu g/kg$ (ppb)

Aliphatic	1-Chlorooctadecane	62.9%
Aromatic	Ortho-terphenyl	88.0%

Page 1 of 1

Sample ID: SP11-05-06 SAMPLE

QC Report No: MS71-Friedman & Bruya, Inc. Lab Sample ID: MS71B

Project: H-1388 LIMS ID: 08-7996 Matrix: Soil

804141

Data Release Authorized: VIS Date Sampled: 04/09/08 Reported: 04/25/08 Date Received: 04/17/08

Sample Amount: 7.67 g-dry-wt Date Extracted: 04/21/08

Final Extract Volume: 1.0 mL Percent Moisture: 23.5%

Aliphatic

Date Analyzed: 04/22/08 23:46 Dilution Factor: 1.00 Instrument/Analyst: FID4B/MS

Aromatic

Date Analyzed: 04/22/08 23:46 Dilution Factor: 1.00 Instrument/Analyst: FID4A/MS

Range	RL	Result
C8-C10 Aliphatics	2,600	< 2,600 U
C10-C12 Aliphatics	2,600	< 2,600 U
C12-C16 Aliphatics	2,600	< 2,600 U
C16-C21 Aliphatics	2,600	< 2,600 U
C21-C34 Aliphatics	2,600	< 2,600 U
C8-C10 Aromatics	2,600	< 2,600 U
C10-C12 Aromatics	2,600	< 2,600 U
C12-C16 Aromatics	2,600	< 2,600 U
C16-C21 Aromatics	2,600	< 2,600 U
C21-C34 Aromatics	2,600	< 2,600 U

Reported in $\mu g/kg$ (ppb)

Aliphatic	1-Chlorooctadecane	72.2%
Aromatic	Ortho-terphenyl	72.7%

Page 1 of 1

Matrix: Soil

Lab Sample ID: MS71C

Data Release Authorized: Reported: 04/28/08

LIMS ID: 08-7997

Sample ID: SP12-10-12 SAMPLE

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388

804141

Date Sampled: 04/10/08

Date Received: 04/17/08

Date Extracted: 04/23/08 Sample Amount: 7.42 g-dry-wt

Percent Moisture: 26.1% Final Extract Volume: 1.0 mL

Aliphatic

Date Analyzed: 04/24/08 19:34 Dilution Factor: 1.00 Instrument/Analyst: FID4B/MS

Aromatic

Date Analyzed: 04/24/08 19:34 Dilution Factor: 1.00 Instrument/Analyst: FID4A/MS

Range	RL	Result
C8-C10 Aliphatics	2,700	6,300
C10-C12 Aliphatics	2,700	< 2,700 U
C12-C16 Aliphatics	2,700	< 2,700 U
C16-C21 Aliphatics	2,700	< 2,700 U
C21-C34 Aliphatics	2,700	< 2,700 U
C8-C10 Aromatics	2,700	6,100
C10-C12 Aromatics	2,700	6,300
C12-C16 Aromatics	2,700	< 2,700 U
C16-C21 Aromatics	2,700	< 2,700 U
C21-C34 Aromatics	2,700	< 2,700 U

Reported in $\mu g/kg$ (ppb)

Aliphatic	1-Chlorooctadecane	74.1%
Aromatic	Ortho-terphenyl	95.8%

Page 1 of 1

Matrix: Soil

Lab Sample ID: MS71D

Data Release Authorized:

LIMS ID: 08-7998

Reported: 04/28/08

Sample ID: SP14-07-08
SAMPLE

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388

804141

Date Sampled: 04/10/08 Date Received: 04/17/08

Date Extracted: 04/23/08 Sample Amount: 7.66 g-dry-wt

Percent Moisture: 23.4% Final Extract Volume: 1.0 mL

Aliphatic

Date Analyzed: 04/24/08 19:56
Instrument/Analyst: FID4B/MS
Dilution Factor: 1.00

Aromatic

Date Analyzed: 04/24/08 19:55
Instrument/Analyst: FID4A/MS Dilution Factor: 1.00

Range	RL	Result
C8-C10 Aliphatics	2,600	< 2,600 U
C10-C12 Aliphatics	2,600	< 2,600 U
C12-C16 Aliphatics	2,600	< 2,600 U
C16-C21 Aliphatics	2,600	< 2,600 U
C21-C34 Aliphatics	2,600	< 2,600 U
C8-C10 Aromatics	2,600	< 2,600 U
C10-C12 Aromatics	2,600	< 2,600 U
C12-C16 Aromatics	2,600	< 2,600 U
C16-C21 Aromatics	2,600	< 2,600 U
C21-C34 Aromatics	2,600	< 2,600 U

Reported in $\mu g/kg$ (ppb)

Aliphatic	1-Chlorooctadecane	64.6%
Aromatic	Ortho-terphenyl	90.2%

Page 1 of 1

Sample ID: SP15-06-07 SAMPLE

QC Report No: MS71-Friedman & Bruya, Inc. Lab Sample ID: MS71E

Project: H-1388 LIMS ID: 08-7999

804141

Matrix: Soil Data Release Authorized: Date Sampled: 04/10/08 Reported: 04/25/08 Date Received: 04/17/08

Date Extracted: 04/21/08 Sample Amount: 7.79 g-dry-wt

Final Extract Volume: 1.0 mL Percent Moisture: 22.3%

Aliphatic

Date Analyzed: 04/22/08 00:07 Dilution Factor: 1.00 Instrument/Analyst: FID4B/MS

Aromatic

Date Analyzed: 04/22/08 00:07 Dilution Factor: 1.00 Instrument/Analyst: FID4A/MS

Range	RL	Result
C8-C10 Aliphatics	2,600	< 2,600 U
C10-C12 Aliphatics	2,600	< 2,600 U
C12-C16 Aliphatics	2,600	< 2,600 U
C16-C21 Aliphatics	2,600	< 2,600 U
C21-C34 Aliphatics	2,600	< 2,600 U
C8-C10 Aromatics	2,600	< 2,600 U
C10-C12 Aromatics	2,600	< 2,600 U
C12-C16 Aromatics	2,600	< 2,600 U
C16-C21 Aromatics	2,600	< 2,600 U
C21-C34 Aromatics	2,600	< 2,600 U

Reported in $\mu g/kg$ (ppb)

Aliphatic	1-Chlorooctadecane	69.2%
Aromatic	Ortho-terphenyl	83.9%

ALEPH SURROGATE RECOVERY SUMMARY

QC Report No: MS71-Friedman & Bruya, Inc. Project: H-1388 Matrix: Soil

804141

Client ID	COD	TOT	OUT
MB-042108	41.9%	0	
LCS-042108	59.1%	0	
LCSD-042108	69.5%	0	
SP02-07-08	62.9%	0	
SP11-05-06	72.2%	0	
MB-042308	29.3%	0	
LCS-042308	75.1%	0	
SP12-10-12	74.1%	0	
SP14-07-08	64.6%	0	
SP15-06-07	69.2%	0	

LCS/MB LIMITS QC LIMITS

(25-117) (21-112) (COD) = 1-Chlorooctadecane

Prep Method: SW3550B

Log Number Range: 08-7995 to 08-7999

AREPH SURROGATE RECOVERY SUMMARY

QC Report No: MS71-Friedman & Bruya, Inc. Project: H-1388 Matrix: Soil

804141

Client ID	OTER	TOT OUT
MB-042108	49.0%	0
LCS-042108	81.9%	0
LCSD-042108	86.9%	0
SP02-07-08	88.0%	0
SP11-05-06	72.7%	0
MB-042308	34.78*	1
LCS-042308	91.5%	0
SP12-10-12	95.8%	0
SP14-07-08	90.2%	0
SP15-06-07	83.9%	0

LCS/MB LIMITS QC LIMITS

(OTER) = Ortho-terphenyl

(41-116) (28-121)

Prep Method: SW3550B

Log Number Range: 08-7995 to 08-7999

Page 1 of 1

Sample ID: LCS-042108

LCS/LCSD

Lab Sample ID: LCS-042108

LIMS ID: 08-7995

Matrix: Soil Data Release Authorized:

Reported: 04/25/08

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388

804141

Date Sampled: NA Date Received: NA

Date Extracted LCS/LCSD: 04/21/08

Sample Amount LCS: 10.0 mL

LCSD: 10.0 mL

Final Extract Volume LCS: 1.0 mL

Dilution Factor LCS: 1.00

LCSD: 1.0 mL

LCSD: 1.00

Aliphatic

Date Analyzed LCS: 04/22/08 21:13

LCSD: 04/22/08 21:35

Instrument/Analyst LCS: FID4B/MS

LCSD: FID4B/MS

Aromatic

Dilution Factor LCS: 1.00 Date Analyzed LCS: 04/22/08 21:13

LCSD: 1.00 LCSD: 04/22/08 21:35

Instrument/Analyst LCS: FID4A/MS LCSD: FID4A/MS

LCS Spike LCSD Spike LCSD Added-LCSD Recovery RPD LCS Added-LCS Recovery Range 17.5% 48.7% 8700 15000 58.0% 7300 15000 C8-C10 Aliphatics 9900 15000 66.0% 18.8% C10-C12 Aliphatics 8200 15000 54.7% 15000 83.3% 22.28 66.7% C12-C16 Aliphatics 10000 15000 12500 73.3% 12700 15000 84.7% 14.3% 15000 11000 C16-C21 Aliphatics 64.7% 68.7% 6.0% 10300 15000 C10-C12 Aromatics 15000 9700 82.7% 7.5% 11500 15000 76.7% 12400 15000 C12-C16 Aromatics 87.3% 7.9% 30000 80.7% 26200 30000 C16-C21 Aromatics 24200 85.0% 27500 30000 91.7% 7.5% C21-C34 Aromatics 25500 30000

EPH Surrogate Recovery

LCS LCSD 59.1% 69.5% 1-Chlorooctadecane Aliphatic Ortho-terphenyl 81.9% 86.9% Aromatic

Results reported in $\mu g/kg$ RPD calculated using sample concentrations per SW846.

Lab Sample ID: LCS-042308

Data Release Authorized:

Page 1 of 1

Matrix: Soil

LIMS ID: 08-7997

Reported: 04/28/08

Sample ID: LCS-042308 LAB CONTROL

QC Report No: MS71-Friedman & Bruya, Inc.

Project: H-1388

804141 Date Sampled: NA

Date Received: NA

Sample Amount: 10.0 g-as-rec Date Extracted: 04/23/08

Final Extract Volume: 1.0 mL

Aliphatic

Date Analyzed: 04/24/08 15:36 Instrument/Analyst: FID4B/MS

Dilution Factor: 1.00

Aromatic

Date Analyzed: 04/24/08 15:36 Instrument/Analyst: FID4A/MS

Dilution Factor: 1.00

	Lab	Spike	_
Range	Control	Added	Recovery
C8-C10 Aliphatics	9500	15000	63.3%
C10-C12 Aliphatics	11000	15000	73.3%
C12-C16 Aliphatics	14000	15000	93.3%
C16-C21 Aliphatics	14000	15000	93.3%
C10-C12 Aromatics	11800	15000	78.7%
C12-C16 Aromatics	13400	15000	89.3%
C16-C21 Aromatics	28300	30000	94.3%
C21-C34 Aromatics	28200	30000	94.0%

Results reported in $\mu g/kg$

EPH Surrogate Recovery

Aliphatic 1-Chlorooctadecane 75.1% Ortho-terphenyl 91.5% Aromatic

Page 1 of 1

Sample ID: MB-042108 METHOD BLANK

Lab Sample ID: MB-042108 QC Report No: MS71-Friedman & Bruya, Inc.

LIMS ID: 08-7995 Project: H-1388 Matrix: Soil

804141

Data Release Authorized: V Date Sampled: NA Reported: 04/25/08 Date Received: NA

Sample Amount: 10.0 g-as-rec Final Extract Volume: 1.0 mL Date Extracted: 04/21/08

Percent Moisture: NA

Aliphatic

Date Analyzed: 04/22/08 20:51 Dilution Factor: 1.00 Instrument/Analyst: FID4B/MS

Aromatic

Date Analyzed: 04/22/08 20:51 Dilution Factor: 1.00 Instrument/Analyst: FID4A/MS

Range	RL	Result
C8-C10 Aliphatics	2,000	< 2,000 U
C10-C12 Aliphatics	2,000	< 2,000 U
C12-C16 Aliphatics	2,000	< 2,000 U
C16-C21 Aliphatics	2,000	< 2,000 U
C21-C34 Aliphatics	2,000	< 2,000 U
C8-C10 Aromatics	2,000	< 2,000 U
C10-C12 Aromatics	2,000	< 2,000 U
C12-C16 Aromatics	2,000	< 2,000 U
C16-C21 Aromatics	2,000	< 2,000 U
C21-C34 Aromatics	2,000	< 2,000 U

Reported in $\mu g/kg$ (ppb)

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	41.9%
Aromatic	Ortho-terphenyl	49.0%

Page 1 of 1

Sample ID: MB-042308 METHOD BLANK

QC Report No: MS71-Friedman & Bruya, Inc.

Lab Sample ID: MB-042308

LIMS ID: 08-7997

Matrix: Soil

Data Release Authorized:

Reported: 04/28/08

804141 Date Sampled: NA Date Received: NA

Date Extracted: 04/23/08

Sample Amount: 10.0 g-as-rec Final Extract Volume: 1.0 mL Percent Moisture: NA

Aliphatic

Date Analyzed: 04/24/08 15:14 Instrument/Analyst: FID4B/MS

Dilution Factor: 1.00

Project: H-1388

Aromatic

Date Analyzed: 04/24/08 15:14 Instrument/Analyst: FID4A/MS

Dilution Factor: 1.00

Range	RL	Result
C8-C10 Aliphatics	2,000	< 2,000 U
C10-C12 Aliphatics	2,000	< 2,000 U
C12-C16 Aliphatics	2,000	< 2,000 U
C16-C21 Aliphatics	2,000	< 2,000 Ŭ
C21-C34 Aliphatics	2,000	< 2,000 U
C8-C10 Aromatics	2,000	< 2,000 U
C10-C12 Aromatics	2,000	< 2,000 U
C12-C16 Aromatics	2,000	< 2,000 U
C16-C21 Aromatics	2,000	< 2,000 U
C21-C34 Aromatics	2,000	< 2,000 U

Reported in $\mu g/kg$ (ppb)

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	29.3%
Aromatic	Ortho-terphenyl	34.7%

April 30, 2008

Mike Erdahl Friedman & Bruya 3012 – 16th Avenue West Seattle, WA 9819-2029

Project: 804141 PO# H

PO# H-1388

ARI Job: MT14

Dear Mr. Erdahl:

Please find enclosed the original Chain of Custody record, sample receipt documentation, and analytical results for the project referenced above. Analytical Resources, Inc. accepted one soil sample in good condition on April 21, 2008. Please refer to the enclosed Cooler Receipt Form for further details regarding sample receipt.

The sample was analyzed for EPH (Extractable Petroleum Hydrocarbon) and VPH (Volatile Petroleum Hydrocarbon), as requested on the Chain of Custody.

The analyses were completed routinely.

Quality control analysis results are included for your review. Copies of the reports and all associated raw data will be kept on file electronically at ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,

Eric Branson

Client Services - Project Support ANALYTICAL RESOURCES, INC.

(206) 695-6213

eric@arilabs.com

www.arilabs.com

4/16

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Send Report To M	<u> [ichael</u>	Michael Erdahl		SUBC	SUBCONTRACTER	ACTEI	بہ					P ₂	Page # of I	of /
	riedma	Friedman and Bruva. Inc.	Inc.	PROJ	PROJECT NAME/NO	AMEA	Q				PO#	X Standa	X Standard (2 Weeks) □ RISH	
)12 16	3012 16th Ave W			œ	141408	=			<u></u>	H-1388	Rush cl	Rush charges authorized by:	zed by:
City, State, ZIP Seattle, WA 98119	attle.	WA 98119		REM	REMARKS	:						S Disno	SAMPLE DISPOSAL	OSAL
Phone #(206) 285-8282	-8282	Fax #(<u>2</u> C	Fax # (206) 283-5044		merda	Please hl@fri	Email edman	Please Email Results merdahl@friedmanandbruya.com	s <u>tya.com</u>	-		Betu Will	☐ Return samples ☐ Will call with instructions	uctions
								A]	NALY	SES R	ANALYSES REQUESTED	3D		
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	esserD bns liO	ЕЬН	НФУ	Nitrate	Sulfate	Alkalinity		5	Notes
Spor-67-08		4/9/08	15:10	5	2		X	X					7,99	
													Meoth	Meott Kit has no
													Surveyalt	. 4×
													Tour W	Tour W. includes 1
													S land S	and 5 ml of Med
													MS	
								,					\	
	,								_	-				
								<u></u>						
D J] -		CICNAMIDE						$\left\ \cdot \right\ $	┨┞		AN WENCO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TI ATT
Friedman & Bruya, Inc.	. mc.	1	SIGNATURE			בן י	T NIN	FRINI NAME		ť	COIM	FANI	DATE	TIME
3012 16th Avenue West	Vest 1	Retingent hed by:) 1:2 1:3	•	Micha	Michael Erdahl	ahl			_	Friedman & Bruya	z Bruya	4/21/11	72.2

2:25

4/12/16

Relinquished by:

Received by:

Fax (206) 283-5044 Ph. (206) 285-8282

Received by:

Seattle, WA 98119-2029

Cooler Receipt Form

ARI Client: Fand B	Project Name:	7
COC No.	Project Name: Delivered by:	
COC No:Assigned ARI Job No:	Tracking No:	
Assigned Arti see No.		
Preliminary Examination Phase:		
Were intact, properly signed and dated cus	stody seals attached to the outside of to cooler?	YES (NO)
Were custody papers included with the coo	oler?	YES NO
Were custody papers properly filled out (in	k, signed, etc.)	
Record cooler temperature (recommended	12.0-6.0 °C for chemistry	72. ¢ ·c
Cooler Accepted by:	we 4/2/08_ T	ime: <u>1540</u>
Complete custody	forms and attach all shipping documents	
Log-In Phase:		 -
Was a temperature blank included in the co	ooler?	YES (NO)
		BW
		YES NO
, ,, ,	bags?	YES (NO)
•	oken)?	YES NO
	?	YES NO
	stody papers?	YES NO
	sted analyses?	YES NO
	eservation? (attach preservation checklist)	YES NO
Were all VOC vials free of air bubbles?		YEŞ NO
	ach bottle?	(YEŞ) NO
		\mathcal{O}
Samples Logged by:	Date: <u>4/21/08</u> Time: <u>/</u>	6/4
** Notify Project	Manager of discrepancies or concerns **	, ,
Explain discrepancies or negative response	es:	
		l.
-		
·	By: Date:	

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: SP05-07-08

SAMPLE

Lab Sample ID: MT14A LIMS ID: 08-8228

Matrix: Soil

Data Release Authorized: Reported: 04/24/08

QC Report No: MT14-Friedman & Bruya, Inc.

Project: H-1388 804141

Date Sampled: 04/09/08 Date Received: 04/21/08

Date Analyzed: 04/22/08 15:54 Purge Volume: 5.0 mL

Sample Amount: 14.0 mg-dry-wt Instrument/Analyst: PID1/PKC

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1800	< 1,800 U
108-88-3	Toluene	1800	< 1,800 U
100-41-4	Ethylbenzene	1800	22,000
	m,p-Xylene	3600	< 3,600 U
95-47-6	o-Xylene	1800	5,500
1634-04-4	Methyl tert-Butyl Ether	1800	< 1,800 U
109-66-0	n-Pentane	1800	< 1,800 U
110-54-3	n-Hexane	1800	< 1,800 U
111-65-9	n-Octane	1800	1,900
124-18-5	n-Decane	1800	28,000
112-40-3	n-Dodecane	1800	29,000

Range	RL	Result	
C8-C10 Aromatics (PID)	18,000	660,000	
C10-C12 Aromatics (PID)	18,000	660,000	
C12-C13 Aromatics (PID)	18,000	72,000	
C5-C6 Aliphatics	18,000	< 18,000	U
C6-C8 Aliphatics	18,000	71,000	
C8-C10 Aliphatics	18,000	430,000	
C10-C12 Aliphatics	18,000	540,000	

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	134%
FID:	2,5-Dibromotoluene	115%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

VPH SURROGATE RECOVERY SUMMARY

QC Report No: MT14-Friedman & Bruya, Inc. Project: H-1388 Matrix: Soil

804141

Client ID	PDBT	FDBT	TOT OUT
MB-042208	105%	93.6%	0
LCS-042208	104%	105%	0
LCSD-042208	102%	104%	0
SP05-07-08	134%	115%	0

	LCS/MB LIMITS	QC LIMITS
 2,5-Dibromotoluene	(60-140)	(60-140)
2,5-Dibromotoluene	(60-140)	(60-140)

Prep Method: METHOD

Log Number Range: 08-8228 to 08-8228

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: LCS-042208

LCS/LCSD

Lab Sample ID: LCS-042208

LIMS ID: 08-8228 Matrix: Soil

Data Release Authorized:

Reported: 04/24/08

QC Report No: MT14-Friedman & Bruya, Inc.

Project: H-1388

804141

Date Sampled: NA Date Received: NA

Purge Volume: 5.0 mL

Sample Amount: 55.6 mg-dry-wt

Date Analyzed LCS: 04/22/08 11:03 Date Analyzed LCSD: 04/22/08 11:31

Instrument/Analyst: PID1/PKC

Analyte/Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD Recovery	RPD
Benzene	4460	4500	99.1%	4390	4500	97.6%	1.6%
Toluene	4480	4500	99.6%	4460	4500	99.1%	0.4%
Ethylbenzene	4550	4500	101%	4460	4500	99.1%	2.0%
m,p-Xylene	9000	8990	100%	8730	8990	97.1%	3.0%
o-Xylene	4470	4500	99.3%	4360	4500	96.9%	2.5%
Methyl tert-Butyl Ether	4370	4500	97.1%	4310	4500	95.8%	1.4%
Naphthalene	4360	4500	96.9%	4430	4500	98.4%	1.6%
1,2,3-Trimethylbenzene	4420	4500	98.2%	4320	4500	96.0%	2.3%
1-Methylnaphthalene	4660	4500	104%	4680	4500	104%	0.4%
n-Pentane	5620	4500	125%	5550	4500	123%	1.3%
n-Hexane	4910	4500	109%	4770	4500	106%	2.9%
n-Octane	4560	4500	101%	4520	4500	100%	0.9%
n-Decane	5050	4500	112%	4810	4500	107%	4.9%
n-Dodecane	5210	4500	116%	5180	4500	115%	0.6%

Values reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

VPH Surrogate Recovery

		LCS	LCSD
PID:	2,5-Dibromotoluene	104%	102%
FID:	2,5-Dibromotoluene	105%	104%

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: MB-042208 METHOD BLANK

Lab Sample ID: MB-042208

LIMS ID: 08-8228 Matrix: Soil

Data Release Authorized:

Reported: 04/24/08

QC Report No: MT14-Friedman & Bruya, Inc.

Project: H-1388

804141

Date Sampled: NA Date Received: NA

Date Analyzed: 04/22/08 12:27 Purge Volume: 5.0 mL

Sample Amount: 55.6 mg-dry-wt Instrument/Analyst: PID1/PKC

CAS Number	Analyte	RL	Result
71-43-2	Benzene	450	< 450 U
108-88-3	Toluene	450	< 450 U
100-41-4	Ethylbenzene	450	< 450 U
	m,p-Xylene	900	< 900 U
95-47-6	o-Xylene	450	< 450 U
1634-04-4	Methyl tert-Butyl Ether	450	< 450 U
109-66-0	n-Pentane	450	< 450 U
110-54-3	n-Hexane	450	< 450 U
111-65-9	n-Octane	450	< 450 U
124-18-5	n-Decane	450	< 450 U
112-40-3	n-Dodecane	450	< 450 U

Range	RL	Result	
C8-C10 Aromatics (PID)	4,500	< 4,500	υ
C10-C12 Aromatics (PID)	4,500	< 4,500	U
C12-C13 Aromatics (PID)	4,500	< 4,500	U
C5-C6 Aliphatics	4,500	< 4,500	Ü
C6-C8 Aliphatics	4,500	< 4,500	U
C8-C10 Aliphatics	4,500	< 4,500	U
C10-C12 Aliphatics	4,500	< 4,500	U

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	105%
FTD:	2.5-Dibromotoluene	93.6%

Page 1 of 1

Sample ID: SP05-07-08 SAMPLE

Lab Sample ID: MT14A QC Report No: MT14-Friedman & Bruya, Inc.

LIMS ID: 08-8228 Project: H-1388 Matrix: Soil

804141

Data Release Authorized: $\sqrt{15}$ Date Sampled: 04/09/08 Reported: 04/25/08 Date Received: 04/21/08

Date Extracted: 04/22/08 Sample Amount: 6.63 g-dry-wt

Percent Moisture: 34.0% Final Extract Volume: 1.0 mL

Aliphatic

Date Analyzed: 04/23/08 17:49 Instrument/Analyst: FID4B/MS Dilution Factor: 1.00

Aromatic

Date Analyzed: 04/23/08 17:49 Dilution Factor: 1.00 Instrument/Analyst: FID4A/MS

Range	RL	Result
C8-C10 Aliphatics	3,000	550,000
C10-C12 Aliphatics	3,000	560,000
C12-C16 Aliphatics	3,000	62,000
C16-C21 Aliphatics	3,000	< 3,000 U
C21-C34 Aliphatics	3,000	4,700
C8-C10 Aromatics	3,000	32,000
C10-C12 Aromatics	3,000	150,000
C12-C16 Aromatics	3,000	49,000
C16-C21 Aromatics	3,000	< 3,000 U
C21-C34 Aromatics	3,000	< 3,000 U

Reported in μ g/kg (ppb)

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	67.3%
Aromatic	Ortho-terphenyl	85.3%

ALEPH SURROGATE RECOVERY SUMMARY

QC Report No: MT14-Friedman & Bruya, Inc. Project: H-1388 Matrix: Soil

804141

COD	TOT	OUT
72.5%	0	
63.9%	0	
67.3%	0	
	72.5% 63.9%	72.5% 0 63.9% 0 67.3% 0

LCS/MB LIMITS QC LIMITS

(COD) = 1-Chlorooctadecane (25-117) (21-112)

Prep Method: SW3550B

Log Number Range: 08-8228 to 08-8228

AREPH SURROGATE RECOVERY SUMMARY

QC Report No: MT14-Friedman & Bruya, Inc. Project: H-1388 Matrix: Soil

804141

Client ID	OTER	TOT OUT
MB-042208	94.1%	0
LCS-042208	99.0%	0
SP05-07-08	85.3%	0

LCS/MB LIMITS QC LIMITS

(OTER) = Ortho-terphenyl

(41-116) (28-121)

Prep Method: SW3550B

Log Number Range: 08-8228 to 08-8228

Page 1 of 1

Sample ID: LCS-042208 LAB CONTROL

Lab Sample ID: LCS-042208 QC Report No: MT14-Friedman & Bruya, Inc.

LIMS ID: 08-8228

Matrix: Soil

Data Release Authorized:

Reported: 04/25/08

Date Sampled: NA Date Received: NA

Date Extracted: 04/22/08 Sample Amount: 10.0 g-as-rec

Final Extract Volume: 1.0 mL

Project: H-1388

804141

Aliphatic

Date Analyzed: 04/23/08 17:28 Instrument/Analyst: FID4B/MS

Dilution Factor: 1.00

Aromatic

Date Analyzed: 04/23/08 17:28 Instrument/Analyst: FID4A/MS

Dilution Factor: 1.00

Range	Lab Control	Spike Added	Recovery
CO CIO Alimbatica	10000	15000	66.7%
C8-C10 Aliphatics C10-C12 Aliphatics	11000	15000	73.3%
C12-C16 Aliphatics	12000	15000	80.0%
C16-C21 Aliphatics	12000	15000	80.0%
C10-C12 Aromatics	12500	15000	83.3%
C12-C16 Aromatics	14200	15000	94.7%
C16-C21 Aromatics	29300	30000	97.7%
C21-C34 Aromatics	30200	30000	101%

Results reported in $\mu g/kg$

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	63.9%
Aromatic	Ortho-terphenyl	99.0%

Page 1 of 1

Sample ID: MB-042208 METHOD BLANK

Lab Sample ID: MB-042208 QC Report No: MT14-Friedman & Bruya, Inc.

LIMS ID: 08-8228 Project: H-1388 Matrix: Soil

804141

Data Release Authorized: \\ Date Sampled: NA Reported: 04/25/08 Date Received: NA

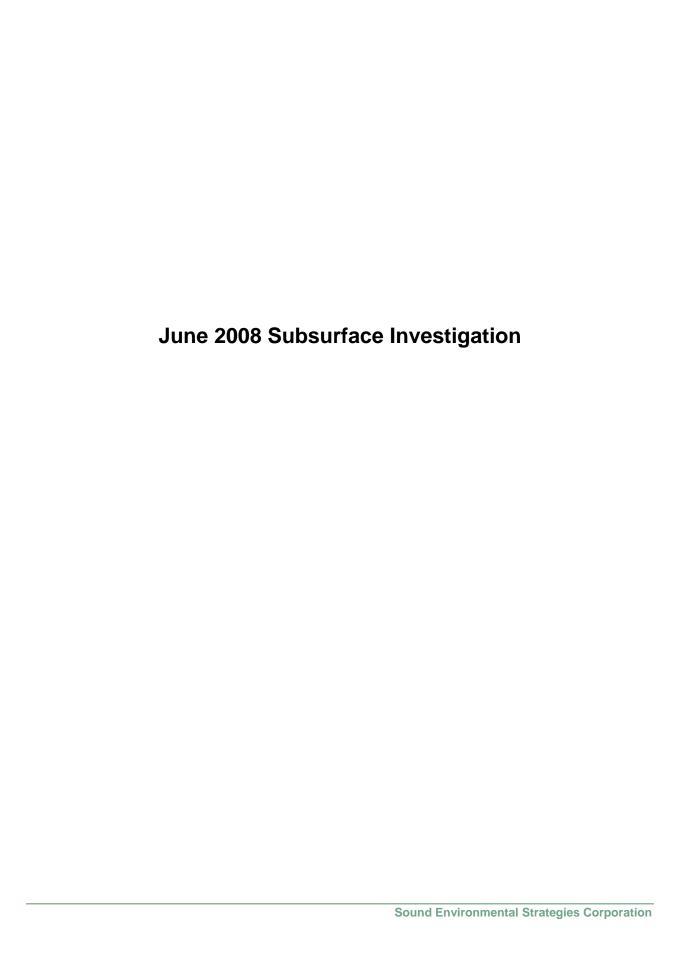
Date Extracted: 04/22/08 Sample Amount: 10.0 g-as-rec

Final Extract Volume: 1.0 mL Percent Moisture: NA

Aliphatic

Date Analyzed: 04/23/08 17:06 Dilution Factor: 1.00 Instrument/Analyst: FID4B/MS

Aromatic


Date Analyzed: 04/23/08 17:06 Instrument/Analyst: FID4A/MS Dilution Factor: 1.00

Range	RL	Result
C8-C10 Aliphatics	2,000	< 2,000 U
C10-C12 Aliphatics	2,000	< 2,000 U
C12-C16 Aliphatics	2,000	< 2,000 U
C16-C21 Aliphatics	2,000	< 2,000 U
C21-C34 Aliphatics	2,000	< 2,000 U
C8-C10 Aromatics	2,000	< 2,000 U
C10-C12 Aromatics	2,000	< 2,000 U
C12-C16 Aromatics	2,000	< 2,000 U
C16-C21 Aromatics	2,000	< 2,000 U
C21-C34 Aromatics	2,000	< 2,000 U

Reported in $\mu g/kg$ (ppb)

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	72.5%
Aromatic	Ortho-terphenyl	94.1%

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

June 23, 2008

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the testing of material submitted on June 4, 2008 from the NCPCS SOU 0592-001-01 20080604, F&BI 806044 project. There are 49 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl **Project Manager**

Enclosures

c: Mark Chandler, Erin Rothman

SOU0623R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 4, 2008 by Friedman & Bruya, Inc. from the Sound Environmental Strategies NCPCS SOU_0592-001-01_20080604, F&BI 806044 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID	Sound Environmental Strategies
806044-01	B13-7-8
806044-02	B13-11-12
806044-03	B13-13-14
806044-04	B14-7-8
806044-05	B14-11-12
806044-06	B14-13-14
806044-07	B15-7-8
806044-08	B15-11-12
806044-09	B15-13-14
806044-10	B16-6-7
806044-11	B16-11-2
806044-12	B16-14-15
806044-13	B17-6-7
806044-14	B17-9.5-10.5
806044-15	B17-13-14
806044-16	B18-6-7
806044-17	B18-11-12
806044-18	B18-13-14
806044-19	B19-6-7
806044-20	B19-7-8
806044-21	B19-11.5-12.5
806044-22	B21-9-10
806044-23	B21-11-12
806044-24	B21-12-13
806044-25	B22-5-6
806044-26	B22-7-8
806044-27	B22-11-12
806044-28	B23-6-7
806044-29	B23-14-15
806044-30	Trip Blank
806044-31	Rinsate

Samples B14-11-12 and B16-11-12 were sent to Analytical Resources, Inc. for EPH/VPH analyses. The report generated by ARI will be forwarded to your office upon receipt.

The rinsate lead sample was received in a 40ml VOA vial with HCl preservative. The data was flagged accordingly. All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

Date Extracted: 06/10/08

Date Analyzed: 06/10/08 and 06/11/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
B13-7-8 806044-01	ND	ND	ND	100
B13-11-12 806044-02	ND	ND	ND	107
B13-13-14 806044-03	ND	ND	ND	103
B15-7-8 806044-07	ND	ND	ND	103
B15-11-12 806044-08	ND	ND	ND	103
B15-13-14 806044-09	ND	ND	ND	100
B17-6-7 806044-13	ND	ND	ND	104
B17-9.5-10.5 806044-14	ND	ND	ND	103
B17-13-14 806044-15	ND	ND	ND	101
B18-6-7 806044-16	ND	ND	ND	101

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

Date Extracted: 06/10/08

Date Analyzed: 06/10/08 and 06/11/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
B18-11-12 806044-17	ND	ND	ND	111
B18-13-14 806044-18	ND	ND	ND	103
B21-9-10 806044-22	ND	ND	ND	102
B21-11-12 806044-23	ND	ND	ND	104
B21-12-13 806044-24	ND	ND	ND	103
B22-5-6 806044-25	ND	ND	ND	103
B22-7-8 806044-26	ND	ND	ND	104
B22-11-12 806044-27	ND	ND	ND	103
B23-6-7 806044-28	ND	ND	ND	104

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU 0592-001-01 20080604, F&BI 806044

Date Extracted: 06/10/08

Date Analyzed: 06/10/08 and 06/11/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
B23-14-15 806044-29	ND	ND	ND	96
Method Blank	ND	ND	ND	105

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

Date Extracted: 06/10/08

Date Analyzed: 06/10/08 and 06/12/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
B14-11-12 d 806044-05 1/10	140	110
B16-11-2 806044-11	140	111
B19-11.5-12.5 806044-21	2	66
Method Blank	<2	110

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

Date Extracted: 06/10/08

Date Analyzed: 06/10/08 and 06/12/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-132)
B14-7-8 806044-04	< 0.02	< 0.02	< 0.02	<0.06	<2	78
B14-13-14 806044-06	< 0.02	2.0	0.22	0.42	84	85
B16-6-7 806044-10	<0.02	< 0.02	< 0.02	< 0.06	<2	77
B16-14-15 806044-12	< 0.02	< 0.02	< 0.02	< 0.06	<2	136 vo
B19-6-7 806044-19	<0.02	< 0.02	<0.02	< 0.06	<2	94
B19-7-8 806044-20	<0.02	< 0.02	<0.02	<0.06	<2	79
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<2	82

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

Date Extracted: 06/12/08 Date Analyzed: 06/12/08

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
Trip Blank 806044-30	<1	<1	<1	<3	<100	100
Rinsate 806044-31	<1	<1	<1	<3	<100	103
Method Blank	<1	<1	<1	<3	<100	89

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

Date Extracted: 06/10/08

Date Analyzed: 06/10/08 and 06/11/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
B14-7-8 806044-04	<50	<250	95
B14-11-12 806044-05	<50	<250	99
B14-13-14 806044-06	95 x	<250	107
B16-6-7 806044-10	< 50	<250	106
B16-11-2 806044-11	< 50	<250	97
B16-14-15 806044-12	< 50	<250	106
B19-6-7 806044-19	< 50	<250	98
B19-7-8 806044-20	<50	<250	104
B19-11.5-12.5 806044-21	< 50	<250	111
Method Blank	< 50	<250	100

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

Date Extracted: 06/11/08 Date Analyzed: 06/11/08

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 51-132)
Rinsate 806044-31	< 50	<250	95
Method Blank	< 50	<250	98

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B14-7-8 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

 Date Extracted:
 06/10/08
 Lab ID:
 806044-04

 Date Analyzed:
 06/10/08
 Data File:
 806044-04.049

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead 18.1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	B14-11-12	Client:	Sound Environmental Strategies
Date Received:	06/04/08	Project:	NCPCS SOU_0592-001-01_20080604
Data Extracted	06/10/09	Lob ID:	906044 05

 Date Extracted:
 06/10/08
 Lab ID:
 806044-05

 Date Analyzed:
 06/10/08
 Data File:
 806044-05.050

 Matrix:
 Soil
 Instrument:
 ICPMS1

 $Units: \hspace{1.5cm} mg/kg \; (ppm) \hspace{1.5cm} Operator: \hspace{1.5cm} hr$

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	90	60	125
Indium	90	60	125
Holmium	90	60	125

Concentration
Analyte: mg/kg (ppm)

Chromium3.82Arsenic<1</td>Selenium<1</td>Silver<1</td>Cadmium<1</td>Barium34.3Lead1.75

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B14-13-14 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

 Date Extracted:
 06/10/08
 Lab ID:
 806044-06

 Date Analyzed:
 06/10/08
 Data File:
 806044-06.052

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead 1.38

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B16-6-7 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

 Date Extracted:
 06/16/08
 Lab ID:
 806044-10

 Date Analyzed:
 06/16/08
 Data File:
 806044-10.048

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead 6.33

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B16-11-2 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

 Date Extracted:
 06/10/08
 Lab ID:
 806044-11

 Date Analyzed:
 06/10/08
 Data File:
 806044-11.053

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead 5.26

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B16-14-15 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

 Date Extracted:
 06/16/08
 Lab ID:
 806044-12

 Date Analyzed:
 06/16/08
 Data File:
 806044-12.049

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead 4.71

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B19-6-7 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

 Date Extracted:
 06/10/08
 Lab ID:
 806044-19

 Date Analyzed:
 06/10/08
 Data File:
 806044-19.054

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead 88.3

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B19-7-8 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

 Date Extracted:
 06/10/08
 Lab ID:
 806044-20

 Date Analyzed:
 06/10/08
 Data File:
 806044-20.055

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead 4.93

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B19-11.5-12.5 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

 Date Extracted:
 06/10/08
 Lab ID:
 806044-21

 Date Analyzed:
 06/10/08
 Data File:
 806044-21.056

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead 9.20

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID:	Method Blank	Client:	Sound Environmental Strategies
Date Received:	NA	Project:	NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/10/08 Lab ID: I8-218 mb Date Analyzed: 06/10/08 Data File: I8-218 mb.041 Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: hr

Upper Lower Limit: **Internal Standard:** % Recovery: Limit: Germanium 94 60 125 Indium 99 60 125 Holmium 97 60 125

Concentration Analyte: mg/kg (ppm)

Chromium <2
Arsenic <1
Selenium <1
Silver <1
Cadmium <1
Barium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Sound Environmental Strategies
Date Received: NA Project: NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/16/08 Lab ID: I8-224 mb
Date Analyzed: 06/16/08 Data File: I8-224 mb.032
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: hr

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Rinsate Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

Upper

Lab ID: Date Extracted: 06/10/08 806044-31 Date Analyzed: 06/10/08 Data File: 806044-31.025 Matrix: Instrument: Water ICPMS1 Units: ug/L (ppb) Operator: hr

Lower

Internal Standard: % Recovery: Limit: Limit: Holmium 91 60 125

Concentration

Analyte: ug/L (ppb)

Lead 27.3 pc, pr

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Sound Environmental Strategies Date Received: Project: NCPCS SOU_0592-001-01_20080604 NA

Lab ID: Date Extracted: 06/10/08 I8-216 mb Date Analyzed: 06/10/08 Data File: I8-216 mb.016 Matrix: Water Instrument: ICPMS1 Units: ug/L (ppb) Operator: hr

Lower

Upper **Internal Standard:** Limit: % Recovery: Limit: Holmium 103 60 125

Concentration

Analyte: ug/L (ppb)

Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

Date Extracted: 06/10/08 Date Analyzed: 06/16/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID	Total Mercury
Laboratory ID	· ·
B14-16-12 806044-05	<0.2
Method Blank	< 0.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	B14-11-12	Client:	Sound Environmental Strategies
Date Received:	06/04/08	Project:	NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/09/08 Lab ID: 806044-05 Date Analyzed: 06/09/08 Data File: 060911.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Units: Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	74	43	128
1,2-Dichloroethane-d4	78	44	125
Toluene-d8	82	42	130
4-Bromofluorobenzene	93	27	154

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Ethanol	< 50	1,1,2-Trichloroethane	< 0.05
Dichlorodifluoromethane	< 0.5	2-Hexanone	< 0.5
Chloromethane	< 0.05	1,3-Dichloropropane	< 0.05
Vinyl chloride	< 0.05	Tetrachloroethene	< 0.025
Bromomethane	< 0.5	Dibromochloromethane	< 0.05
Chloroethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Trichlorofluoromethane	< 0.5	Chlorobenzene	< 0.05
Acetone	< 0.5	Ethylbenzene	0.26
1,1-Dichloroethene	< 0.05	1,1,1,2-Tetrachloroethane	< 0.05
Methylene chloride	< 0.5	m,p-Xylene	< 0.1
t-Butyl alcohol (TBA)	<3	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	0.42
Diisopropyl ether (DIPE)	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	2.6
Ethyl t-butyl ether (ETBE)	< 0.05	Bromobenzene	< 0.05
2,2-Dichloropropane	< 0.05	1,3,5-Trimethylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
Chloroform	< 0.05	1,2,3-Trichloropropane	< 0.05
2-Butanone (MEK)	< 0.5	2-Chlorotoluene	< 0.05
t-Amyl methyl ether (TAME)	< 0.05	4-Chlorotoluene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	tert-Butylbenzene	< 0.05
1,1,1-Trichloroethane	< 0.05	1,2,4-Trimethylbenzene	< 0.05
1,1-Dichloropropene	< 0.05	sec-Butylbenzene	0.71
Carbon Tetrachloride	< 0.05	p-Isopropyltoluene	< 0.05
Benzene	< 0.03	1,3-Dichlorobenzene	< 0.05
Trichloroethene	< 0.03	1,4-Dichlorobenzene	< 0.05
1,2-Dichloropropane	< 0.05	1,2-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Dibromomethane	< 0.05	1,2,4-Trichlorobenzene	< 0.1
4-Methyl-2-pentanone	< 0.5	Hexachlorobutadiene	< 0.1
cis-1,3-Dichloropropene	< 0.05	Naphthalene	0.23
Toluene	< 0.05	1,2,3-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID: B16-11-2 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/09/08 Lab ID: 806044-11 Date Analyzed: 06/09/08 Data File: 060912.D Matrix: Soil Instrument: GCMS4 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	114	43	128
1,2-Dichloroethane-d4	117	44	125
Toluene-d8	118	42	130
4-Bromofluorobenzene	132	27	154

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Ethanol	< 50	1,1,2-Trichloroethane	< 0.05
Dichlorodifluoromethane	< 0.5	2-Hexanone	< 0.5
Chloromethane	< 0.05	1,3-Dichloropropane	< 0.05
Vinyl chloride	< 0.05	Tetrachloroethene	< 0.025
Bromomethane	< 0.5	Dibromochloromethane	< 0.05
Chloroethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Trichlorofluoromethane	< 0.5	Chlorobenzene	< 0.05
Acetone	< 0.5	Ethylbenzene	< 0.05
1,1-Dichloroethene	< 0.05	1,1,1,2-Tetrachloroethane	< 0.05
Methylene chloride	< 0.5	m,p-Xylene	< 0.1
t-Butyl alcohol (TBA)	<3	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
Diisopropyl ether (DIPE)	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
Ethyl t-butyl ether (ETBE)	< 0.05	Bromobenzene	< 0.05
2,2-Dichloropropane	< 0.05	1,3,5-Trimethylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
Chloroform	< 0.05	1,2,3-Trichloropropane	< 0.05
2-Butanone (MEK)	< 0.5	2-Chlorotoluene	< 0.05
t-Amyl methyl ether (TAME)	< 0.05	4-Chlorotoluene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	tert-Butylbenzene	< 0.05
1,1,1-Trichloroethane	< 0.05	1,2,4-Trimethylbenzene	< 0.05
1,1-Dichloropropene	< 0.05	sec-Butylbenzene	< 0.05
Carbon Tetrachloride	< 0.05	p-Isopropyltoluene	< 0.05
Benzene	< 0.03	1,3-Dichlorobenzene	< 0.05
Trichloroethene	< 0.03	1,4-Dichlorobenzene	< 0.05
1,2-Dichloropropane	< 0.05	1,2-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Dibromomethane	< 0.05	1,2,4-Trichlorobenzene	< 0.1
4-Methyl-2-pentanone	< 0.5	Hexachlorobutadiene	< 0.1
cis-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
Toluene	< 0.05	1,2,3-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	B19-11.5-12.5	Client:	Sound Environmental Strategies
Date Received:	06/04/08	Project:	NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/16/08 Lab ID: 806044-21 Date Analyzed: 06/16/08 Data File: 061620.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Units: Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	88	43	128
1,2-Dichloroethane-d4	92	44	125
Toluene-d8	87	42	130
4-Bromofluorobenzene	90	27	154

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Ethanol	< 50	1,1,2-Trichloroethane	< 0.05
Dichlorodifluoromethane	< 0.5	2-Hexanone	< 0.5
Chloromethane	< 0.05	1,3-Dichloropropane	< 0.05
Vinyl chloride	< 0.05	Tetrachloroethene	< 0.025
Bromomethane	< 0.5	Dibromochloromethane	< 0.05
Chloroethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Trichlorofluoromethane	< 0.5	Chlorobenzene	< 0.05
Acetone	< 0.5	Ethylbenzene	< 0.05
1,1-Dichloroethene	< 0.05	1,1,1,2-Tetrachloroethane	< 0.05
Methylene chloride	< 0.5	m,p-Xylene	< 0.1
t-Butyl alcohol (TBA)	<3	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
Diisopropyl ether (DIPE)	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
Ethyl t-butyl ether (ETBE)	< 0.05	Bromobenzene	< 0.05
2,2-Dichloropropane	< 0.05	1,3,5-Trimethylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
Chloroform	< 0.05	1,2,3-Trichloropropane	< 0.05
2-Butanone (MEK)	< 0.5	2-Chlorotoluene	< 0.05
t-Amyl methyl ether (TAME)	< 0.05	4-Chlorotoluene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	tert-Butylbenzene	< 0.05
1,1,1-Trichloroethane	< 0.05	1,2,4-Trimethylbenzene	< 0.05
1,1-Dichloropropene	< 0.05	sec-Butylbenzene	< 0.05
Carbon Tetrachloride	< 0.05	p-Isopropyltoluene	< 0.05
Benzene	< 0.03	1,3-Dichlorobenzene	< 0.05
Trichloroethene	< 0.03	1,4-Dichlorobenzene	< 0.05
1,2-Dichloropropane	< 0.05	1,2-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Dibromomethane	< 0.05	1,2,4-Trichlorobenzene	< 0.1
4-Methyl-2-pentanone	< 0.5	Hexachlorobutadiene	< 0.1
cis-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
Toluene	< 0.05	1,2,3-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	Method Blank	Client:	Sound Environmental Strategies
Date Received:	NA	Project:	NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/09/08 Lab ID: 080875 mb Date Analyzed: 06/09/08 Data File: 060906.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Units: Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	66	43	128
1,2-Dichloroethane-d4	66	44	125
Toluene-d8	68	42	130
4-Bromofluorobenzene	76	27	154

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Ethanol	< 50	1,1,2-Trichloroethane	< 0.05
Dichlorodifluoromethane	< 0.5	2-Hexanone	< 0.5
Chloromethane	< 0.05	1,3-Dichloropropane	< 0.05
Vinyl chloride	< 0.05	Tetrachloroethene	< 0.025
Bromomethane	< 0.5	Dibromochloromethane	< 0.05
Chloroethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Trichlorofluoromethane	< 0.5	Chlorobenzene	< 0.05
Acetone	< 0.5	Ethylbenzene	< 0.05
1,1-Dichloroethene	< 0.05	1,1,1,2-Tetrachloroethane	< 0.05
Methylene chloride	< 0.5	m,p-Xylene	< 0.1
t-Butyl alcohol (TBA)	<3	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
Diisopropyl ether (DIPE)	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
Ethyl t-butyl ether (ETBE)	< 0.05	Bromobenzene	< 0.05
2,2-Dichloropropane	< 0.05	1,3,5-Trimethylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
Chloroform	< 0.05	1,2,3-Trichloropropane	< 0.05
2-Butanone (MEK)	< 0.5	2-Chlorotoluene	< 0.05
t-Amyl methyl ether (TAME)	< 0.05	4-Chlorotoluene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	tert-Butylbenzene	< 0.05
1,1,1-Trichloroethane	< 0.05	1,2,4-Trimethylbenzene	< 0.05
1,1-Dichloropropene	< 0.05	sec-Butylbenzene	< 0.05
Carbon Tetrachloride	< 0.05	p-Isopropyltoluene	< 0.05
Benzene	< 0.03	1,3-Dichlorobenzene	< 0.05
Trichloroethen e	< 0.03	1,4-Dichlorobenzene	< 0.05
1,2-Dichloropropane	< 0.05	1,2-Dichlorobenzene	< 0.05
Bromodichloromethane	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Dibromomethane	< 0.05	1,2,4-Trichlorobenzene	< 0.1
4-Methyl-2-pentanone	< 0.5	Hexachlorobutadiene	< 0.1
cis-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
Toluene	< 0.05	1,2,3-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05		

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260B

Client Sample ID:	Method Blank	Client:	Sound Environmental Strategies
Date Received:	NA	Project:	NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/13/08 Lab ID: 080932 mb Date Analyzed: 06/13/08 Data File: 061306.D Matrix: Soil Instrument: GCMS4 mg/kg (ppm) Units: Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Dibromofluoromethane	79	43	128
1,2-Dichloroethane-d4	77	44	125
Toluene-d8	74	42	130
4-Bromofluorobenzene	82	27	154

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Ethanol	< 50	1,1,2-Trichloroethane	< 0.05
Dichlorodifluoromethane	< 0.5	2-Hexanone	< 0.5
Chloromethane	< 0.05	1,3-Dichloropropane	< 0.05
Vinyl chloride	< 0.05	Tetrachloroethene	< 0.025
Bromomethane	< 0.5	Dibromochloromethane	< 0.05
Chloroethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Trichlorofluoromethane	< 0.5	Chlorobenzene	< 0.05
Acetone	< 0.5	Ethylbenzene	< 0.05
1,1-Dichloroethene	< 0.05	1,1,1,2-Tetrachloroethane	< 0.05
Methylene chloride	< 0.5	m,p-Xylene	< 0.1
t-Butyl alcohol (TBA)	<3	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
Diisopropyl ether (DIPE)	< 0.05	Bromoform	< 0.05
1,1-Dichloroethane	< 0.05	n-Propylbenzene	< 0.05
Ethyl t-butyl ether (ETBE)	< 0.05	Bromobenzene	< 0.05
2,2-Dichloropropane	< 0.05	1,3,5-Trimethylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
Chloroform	< 0.05	1,2,3-Trichloropropane	< 0.05
2-Butanone (MEK)	< 0.5	2-Chlorotoluene	< 0.05
t-Amyl methyl ether (TAME)	< 0.05	4-Chlorotoluene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	tert-Butylbenzene	< 0.05
1,1,1-Trichloroethane	< 0.05	1,2,4-Trimethylbenzene	< 0.05
1,1-Dichloropropene	< 0.05	sec-Butylbenzene	< 0.05
Carbon Tetrachloride	< 0.05	p-Isopropyltoluene	< 0.05
Benzene	< 0.03	1,3-Dichlorobenzene	< 0.05
Trichloroethene	< 0.03	1,4-Dichlorobenzene	< 0.05
1,2-Dichloropropane	< 0.05	1,2-Dichlorobenzene	< 0.05
Brom odichloromethane	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Dibromomethane	< 0.05	1,2,4-Trichlorobenzene	< 0.1
4-Methyl-2-pentanone	< 0.5	Hexachlorobutadiene	< 0.1
cis-1,3-Dichloropropene	< 0.05	Naphthalene	< 0.05
Toluene	< 0.05	1,2,3-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05		

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: B14-16-12 Client: Sound Environmental Strategies

Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/10/08 Lab ID: 806044-05 1/5

Lab ID: Date Extracted: 06/10/08 806044-05 1/5 Date Analyzed: 06/11/08 Data File: 061104.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Operator: YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 116 50 150 Benzo(a)anthracene-d12 99 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene 0.070 2-Methylnaphthalene 0.421-Methylnaphthalene 0.18 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: B16-11-2 Client: Sound Environmental Strategies

Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604

Date Entracted: 06/10/08 Leb ID: 2006044 11 1/5

Lab ID: Date Extracted: 806044-11 1/5 06/10/08 Date Analyzed: 06/10/08 Data File: 061017.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Operator: YA

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	112	50	150
Benzo(a)anthracene-d12	99	35	159

Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.01
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: B19-11.5-12.5 Client: Sound Environmental Strategies
Date Received: 06/04/08 Project: NCPCS SOU_0592-001-01_20080604
Date Entropy and 1/5

Lab ID: Date Extracted: 06/12/08 806044-21 1/5 Date Analyzed: 06/12/08 Data File: 061211.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Operator: YA

	Lower	∪pper
% Recovery:	Limit:	Limit:
117	50	150
100	35	159
	117	% Recovery: Limit: 117 50

Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.01
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: Method Blank Client: Sound Environmental Strategies Date Received: Project: NCPCS SOU_0592-001-01_20080604 NA

Date Extracted: 06/12/08 Lab ID: 080922mb 1/5 Date Analyzed: 06/12/08 Data File: 061208.D Matrix: Soil Instrument: GCMS6

Units: mg/kg (ppm) Operator: YA

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	121	50	150
Benzo(a)anthracene-d12	100	35	159

Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.01
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270C SIM

Client Sample ID: Method Blank Client: Sound Environmental Strategies
Date Received: NA Project: NCPCS SOU_0592-001-01_20080604

Date Extracted: 06/10/08 Lab ID: 080904mb 1/5 Date Analyzed: 06/10/08 Data File: 061006.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Operator: YA

		Lower	Opper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	102	50	150
Benzo(a)anthracene-d12	89	35	159

Compounds:	Concentration mg/kg (ppm)
Naphthalene	< 0.01
2-Methylnaphthalene	< 0.01
1-Methylnaphthalene	< 0.01
Benz(a)anthracene	< 0.01
Chrysene	< 0.01
Benzo(a)pyrene	< 0.01
Benzo(b)fluoranthene	< 0.01
Benzo(k)fluoranthene	< 0.01
Indeno(1,2,3-cd)pyrene	< 0.01
Dibenz(a,h)anthracene	< 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 806044-21 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	2	8	120 a

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	mg/kg (ppm)	0.5	96	66-121
Toluene	mg/kg (ppm)	0.5	94	72-128
Ethylbenzene	mg/kg (ppm)	0.5	90	69-132
Xylenes	mg/kg (ppm)	1.5	92	69-131
Gasoline	mg/kg (ppm)	20	106	61-153

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 806105-37 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	97	65-118
Toluene	ug/L (ppb)	50	98	72-122
Ethylbenzene	ug/L (ppb)	50	99	73-126
Xylenes	ug/L (ppb)	150	98	74-118
Gasoline	ug/L (ppb)	1,000	82	69-134

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 806088-04 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	115	107	50-150	7

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	112	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	101	92	67-141	9

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 805103-03 (Duplicate)

Laboratory Code. 600100 00 (Eup		Sample	Duplicate	Relative Percent	Acceptance	
Analyte	Reporting Units	Result	Result	Difference	Criteria	
Chromium	mg/kg (ppm)	15.3	15.1	1	0-20	
Arsenic	mg/kg (ppm)	2.56	2.68	5	0-20	
Selenium	mg/kg (ppm)	<1	<1	nm	0-20	
Silver	mg/kg (ppm)	<1	<1	nm	0-20	
Cadmium	mg/kg (ppm)	<1	<1	nm	0-20	
Barium	mg/kg (ppm)	76.2	80.5	5	0-20	
Lead	mg/kg (ppm)	370	379	2	0-20	

Laboratory Code: 805103-03 (Matrix Spike)

				Percent	
		Spike	Sample	Recovery	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Chromium	mg/kg (ppm)	50	15.3	103 b	50-150
Arsenic	mg/kg (ppm)	10	2.56	102 b	50-150
Selenium	mg/kg (ppm)	5	<1	95	50-150
Silver	mg/kg (ppm)	10	<1	80	50-150
Cadmium	mg/kg (ppm)	10	<1	102	50-150
Barium	mg/kg (ppm)	50	76.2	127 b	50-150
Lead	mg/kg (ppm)	50	370	0 b	50-150

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	111	70-130
Arsenic	mg/kg (ppm)	10	99	70-130
Selenium	mg/kg (ppm)	5	100	70-130
Silver	mg/kg (ppm)	10	82	70-130
Cadmium	mg/kg (ppm)	10	103	70-130
Barium	mg/kg (ppm)	50	99	70-130
Lead	mg/kg (ppm)	50	102	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 806159-01 (Duplicate)

				Relative	
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Lead	mg/kg (ppm)	18.8	17.6	7	0-20

Laboratory Code: 806159-01 (Matrix Spike)

				Percent	
		Spike	Spike Sample Recovery Acceptan		
Analyte	Reporting Units	Level	Result	MS	Criteria
Lead	mg/kg (ppm)	50	18.8	100 b	50-150

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	99	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 806039-02 (Duplicate)

			Relative				
		Sample	Duplicate	Percent	Acceptance		
Analyte	Reporting Units	Result	Result	Difference	Criteria		
Lead	ug/L (ppb)	<1	<1	nm	0-20		

Laboratory Code: 806039-02 (Matrix Spike)

				Percent	
		Spike	Sample	Recovery	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Lead	ug/L (ppb)	10	<1	95	50-150

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	ug/L (ppb)	10	96	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 805103-03 (Matrix Spike)

				Percent	Percent			
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD	
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)	
Mercury	mg/kg (nnm)	0.125	< 0.2	107	101	50-150	6	

		Percent			
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Mercury	mg/kg (ppm)	0.125	104	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

 $Project:\ NCPCS\ SOU_0592\text{-}001\text{-}01_20080604,\ F\&BI\ 806044$

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code: 806060-18 (Duplicate)

Laboratory Code: 806060-18 (Duplicate)								
Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)				
Ethanol	mg/kg (ppm)	<50	<50	nm				
Dichlorodifluoromethane	mg/kg (ppm)	< 0.05	<0.05	nm				
Chloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm				
Vinyl chloride	mg/kg (ppm)	< 0.05	< 0.05	nm				
Bromomethane	mg/kg (ppm)	< 0.05	< 0.05	nm				
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm				
Trichlorofluoromethane	mg/kg (ppm)	< 0.05	< 0.05	nm				
Acetone 1,1-Dichloroethene	mg/kg (ppm)	<0.5 <0.05	<0.5 <0.05	nm				
Methylene chloride	mg/kg (ppm) mg/kg (ppm)	<0.5	<0.5	nm nm				
t-Butyl alcohol (TBA)	mg/kg (ppm)	<0.5 <3	<0.5 <3	nm				
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.05	<0.05	nm				
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm				
Diisopropyl ether (DIPE)	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,1-Dichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm				
Ethyl t-butyl ether (ETBE)	mg/kg (ppm)	< 0.05	< 0.05	nm				
2,2-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm				
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm				
Chloroform	mg/kg (ppm)	< 0.05	< 0.05	nm				
2-Butanone (MEK) t-Amyl methyl ether (TAME)	mg/kg (ppm)	<0.5 <0.05	<0.5 <0.05	nm nm				
1.2-Dichloroethane (EDC)	mg/kg (ppm) mg/kg (ppm)	< 0.05	<0.05	nm				
1.1.1-Trichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,1-Dichloropropene	mg/kg (ppm)	< 0.05	<0.05	nm				
Carbon Tetrachloride	mg/kg (ppm)	< 0.05	<0.05	nm				
Benzene	mg/kg (ppm)	< 0.03	< 0.03	nm				
Trichloroethene	mg/kg (ppm)	< 0.03	< 0.03	nm				
1,2-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm				
Bromodichloromethane	mg/kg (ppm)	< 0.05	<0.05	nm				
Dibromomethane	mg/kg (ppm)	< 0.05	<0.05	nm				
4-Methyl-2-pentanone	mg/kg (ppm)	<0.5	<0.5	nm				
cis-1,3-Dichloropropene Toluene	mg/kg (ppm) mg/kg (ppm)	<0.05 0.11	<0.05 0.11	nm 0				
trans-1,3-Dichloropropene	mg/kg (ppm)	< 0.05	<0.05	nm				
1.1.2-Trichloroethane	mg/kg (ppm)	<0.05	< 0.05	nm				
2-Hexanone	mg/kg (ppm)	< 0.5	<0.5	nm				
1,3-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm				
Tetrachloroethene	mg/kg (ppm)	< 0.025	< 0.025	nm				
Dibromochloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.05	<0.05	nm				
Chlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	< 0.05	<0.05	nm				
n,p-Xylene	mg/kg (ppm) mg/kg (ppm)	<0.05 <0.1	<0.05 <0.1	nm nm				
o-Xylene	mg/kg (ppm)	< 0.05	< 0.05	nm				
Styrene	mg/kg (ppm)	< 0.05	< 0.05	nm				
Isopropylbenzene	mg/kg (ppm)	< 0.05	<0.05	nm				
Bromoform	mg/kg (ppm)	< 0.05	< 0.05	nm				
n-Propylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
Bromobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,3,5-Trimethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm				
1,2,3-Trichloropropane 2-Chlorotoluene	mg/kg (ppm) mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm				
4-Chlorotoluene	mg/kg (ppm)	< 0.05	<0.05	nm				
tert-Butylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,2,4-Trimethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
sec-Butylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
p-Isopropyltoluene	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,3-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,4-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,2-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	< 0.05	<0.05	nm				
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm				
Naphthalene	mg/kg (ppm)	< 0.05	<0.05	nm				
1,2,3-Trichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm				
-,-,		-0.00	10.00	*****				

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code: Laboratory Control Sample

State Stat		Domontina	C-:1	Percent	Percent	A	RPD
Dichloradifluromenbane mg/kg (ppm) 2.5 9.5 9.5 10.149 0							(Limit 20)
Chloromethane mgkt (ppm) promote thane mgkt (
Viny choriede mg/kg (ppm)							
Broinnethane							
Chlorechane mykt (ppm)							
Trichbordunomethane							
Acetone mg/kg (ppm) 2.5 101 108 52-161 7 1.1-Dichloroschene mg/kg (ppm) 2.5 88 99 46-132 2 Methylene chloride mg/kg (ppm) 2.5 107 103 46-131 4 Methylene chloride mg/kg (ppm) 2.5 107 103 46-131 4 Methylene chloride mg/kg (ppm) 2.5 104 108 46-131 4 Methylene chloride mg/kg (ppm) 2.5 109 104 67-120 5 Disporpoyle them (DIPE) mg/kg (ppm) 2.5 109 106 87-120 3 1.1-Dichloroschane mg/kg (ppm) 2.5 109 106 87-122 2 2.Dichloroschane mg/kg (ppm) 2.5 104 102 75-122 2 2.Dichloroschane mg/kg (ppm) 2.5 108 105 73-118 3 2.Batanone (MEK) mg/kg (ppm) 2.5 108 105 73-118 3 2.Batanone (MEK) mg/kg (ppm) 2.5 108 105 73-118 3 2.Batanone (MEK) mg/kg (ppm) 2.5 108 105 74-125 3 1.1-Dichloroschane mg/kg (ppm) 2.5 108 105 74-125 3 1.1-Dichloroschane mg/kg (ppm) 2.5 108 105 74-125 3 1.1-Dichloroschane mg/kg (ppm) 2.5 101 100 72-125 4 1.1-Tichloroschane mg/kg (ppm) 2.5 101 100 77-131 2 2.Dichloroschane mg/kg (ppm) 2.5 101 100 77-131 2 2.Dichloroschane mg/kg (ppm) 2.5 101 100 77-131 2 2.Dichloroschane mg/kg (ppm) 2.5 107 106 77-131 2 2.Dichloroschane mg/kg (ppm) 2.5 107 106 77-131 2 2.Dichloroschane mg/kg (ppm) 2.5 109 108 80-125 1 2.Dichloroschane mg/kg (ppm) 2.5 109 109 108 80-125 1 2.Dichloroschane mg/kg (ppm) 2.5							
Methylene chloride mg/kg (ppm) 2.5 107 103 48-131 4	Acetone		2.5	101	108	52-161	7
LButy alcohol (TEA)							
Methyl-buryl-ther (MTRE)							
trans—12-Dichlorecthene							
Dispropyl ether (DIPE)							
1.1-Dichforoethane							
Ethyl-tehrylether (ETHE)							
2.2 Dichloropropane							
cis-12-Dichloroethene mg/kg (ppm) 2.5 104 102 75-122 2 Chloroform mg/kg (ppm) 2.5 108 105 75-118 3 2-Butanone (MEK) mg/kg (ppm) 2.5 109 108 79-129 1 1-Lay Dichloroethane (EDC) mg/kg (ppm) 2.5 111 110 74-122 1 1-Lay Dichloroethane (EDC) mg/kg (ppm) 2.5 111 110 74-122 1 1-Lay Dichloroethane mg/kg (ppm) 2.5 110 100 72-125 4 Carbon Tetrachlorde mg/kg (ppm) 2.5 110 106 72-125 4 Benzene mg/kg (ppm) 2.5 101 196 72-125 4 Carbon Tetrachlorde mg/kg (ppm) 2.5 107 105 77-131 2 2-Dichloropropane mg/kg (ppm) 2.5 107 105 77-131 2 2-Dichloropropane mg/kg (ppm) 2.5 109 108							
Chloroform mg/kg (ppm) 2.5 108 105 73-118 3 2.8-Butannen (MEK) mg/kg (ppm) 2.5 102 105 60-134 3 1. Amyl methyl ether (TAME) mg/kg (ppm) 2.5 109 108 79-129 1 1.1.1-Trichlorocthane (EDC) mg/kg (ppm) 2.5 108 105 74-125 3 1.1.1-Trichlorocthane mg/kg (ppm) 2.5 101 106 73-129 2 1.2. Dichlorocthane mg/kg (ppm) 2.5 101 106 73-129 2 1.2. Dichlorocthane mg/kg (ppm) 2.5 107 105 77-131 2 1.2. Dichlorocthane mg/kg (ppm) 2.5 107 105 77-131 2 1.2. Dichlorocthane mg/kg (ppm) 2.5 106 108 80-125 1 1.3. Dichloropropane mg/kg (ppm) 2.5 105 111 61-148 6 1.4. Methyl-2-pentanne mg/kg (ppm) 2.5 105 111 61-148 6 1.5. 1.3. Dichloropropane mg/kg (ppm) 2.5 113 111 73-136 2 1.4. Trichlorocthane mg/kg (ppm) 2.5 113 111 73-136 2 1.4. Trichlorocthane mg/kg (ppm) 2.5 111 110 72-132 1 1.4. Trichlorocthane mg/kg (ppm) 2.5 111 110 72-132 1 1.4. Trichlorocthane mg/kg (ppm) 2.5 106 108 80-125 1 1.4. Trichlorocthane mg/kg (ppm) 2.5 107 107 70-130 0 2.4. Hexanne mg/kg (ppm) 2.5 107 107 70-130 0 2.4. Hexanne mg/kg (ppm) 2.5 107 107 70-130 0 2.4. Hexanne mg/kg (ppm) 2.5 107 107 70-130 0 2.4. Hexanne mg/kg (ppm) 2.5 107 107 70-130 0 2.4. Hexanne mg/kg (ppm) 2.5 100 100 74-132 0 2.5. Hexanne mg/kg (ppm) 2.5 100 100 74-132 0 2.5. Hexanne mg/kg (ppm) 2.5 100 100 74-132 0 2.5. Hexanne mg/kg (ppm) 2.5 100 100 74-132 0 2.5. Hexanne mg/kg (ppm) 2.5 100 100 74-132 0 2.5. Hexanne mg/kg (ppm) 2.5 100 100 74-132 0 3.5. Hexanne mg/kg (ppm) 2.5 100 100 74-132 0 3.5. Hexanne mg/kg (ppm) 2.5 100 100 74-							
L-Amy methyl ether (TAME) mg/kg (ppm) 2.5 109 108 79-129 1 1.1-17-irkloroethane (EDC) mg/kg (ppm) 2.5 108 105 74-125 3 1.1-17-irkloroethane mg/kg (ppm) 2.5 108 105 74-125 3 1.1-17-irkloroethane mg/kg (ppm) 2.5 101 100 73-120 1 1 1 1 1 1 1 1 1	Chloroform		2.5	108	105	73-118	3
1.2-Dichloroethane (EDC)							
1,1-1 Frichloroptopene mg/kg (ppm) 2.5 108 105 74-125 3							
1.1-Dichloropropene							
Carbon Tetrachloride							
Benzene							
Trichloroethene							
1.2 Dichloropropane mg/kg (ppm) 2.5 107 105 77.131 2 2 2 2 2 2 2 3 3 3							
Bromodichloromethane mg/kg (ppm) 2.5 113 110 75.125 3 110 15.125 3 110 15.125 3 110 15.125 3 110 15.125 13 111 15.136 2 14.44thyl.²-pentanone mg/kg (ppm) 2.5 113 111 11.135 3 2 12.135 111 11.135 3 2 12.135 111 11.135 3 2 12.135 12.135 111 111 17.5136 2 2 12.135 12				107	105		
A-Methyl-2 pentanone							
cis-13-Dichloropropene mg/kg (ppm) 2.5 113 111 75-136 2 Toluene mg/kg (ppm) 2.5 93 92 66-126 1 trans-13-Dichloropropene mg/kg (ppm) 2.5 98 98 65-136 0 2-Hexanone mg/kg (ppm) 2.5 99 105 62-152 6 1,3-Dichloropropane mg/kg (ppm) 2.5 99 105 62-152 6 1,3-Dichloropropane mg/kg (ppm) 2.5 100 100 72-130 0 Tetrachloroethane mg/kg (ppm) 2.5 107 107 76-130 0 1,2-Dibromochloromethane (EDB) mg/kg (ppm) 2.5 100 100 74-132 0 Chlorobenzene mg/kg (ppm) 2.5 97 95 79-115 2 Ethylbenzene mg/kg (ppm) 2.5 98 96 64-123 2 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 100 99 79-112		mg/kg (ppm)			108		
Toluene mg/kg (ppm) 2.5 93 92 66.126 1 trans-1.3-Dichloropropene mg/kg (ppm) 2.5 111 110 72:132 1 1.1.2-Trichloroethane mg/kg (ppm) 2.5 98 98 65:136 0 2.Hexanone mg/kg (ppm) 2.5 99 105 62:152 6 1.3-Dichloropropane mg/kg (ppm) 2.5 99 105 62:152 6 1.3-Dichloropropane mg/kg (ppm) 2.5 99 105 62:152 6 1.3-Dichloropropane mg/kg (ppm) 2.5 99 105 72:130 0 1.2-Dibromochloromethane mg/kg (ppm) 2.5 95 94 77:127 1 Dibromochloromethane mg/kg (ppm) 2.5 107 107 76:130 0 1.2-Dibromochlane (EDB) mg/kg (ppm) 2.5 107 107 76:130 0 1.2-Dibromochlane (EDB) mg/kg (ppm) 2.5 97 95 77:115 2 Ethylbenzene mg/kg (ppm) 2.5 98 96 64:123 2 Ethylbenzene mg/kg (ppm) 2.5 102 100 69:135 2 Ethylbenzene mg/kg (ppm) 2.5 102 100 69:135 2 Ethylbenzene mg/kg (ppm) 2.5 100 99 66:120 1 1-0-Xylene mg/kg (ppm) 2.5 98 96 66:118 2 Etyrene mg/kg (ppm) 2.5 101 99 81:112 2 Etyrene mg/kg (ppm) 2.5 101 99 81:112 2 Etyrene mg/kg (ppm) 2.5 101 99 77:112 2 Eromoform mg/kg (ppm) 2.5 98 98 96 66:18 51:17 0 Eromobenzene mg/kg (ppm) 2.5 98 98 98 74:111 0 Eromobenzene mg/kg (ppm) 2.5 98 98 98 74:111 0 Eromobenzene mg/kg (ppm) 2.5 98 98 98 14:111 1 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 98 98 14:111 1 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 98 98 14:111 1 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 98 98 66:137 6 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 98 97 82:13 1 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 98 97 82:13 1 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 98 97 82:13 1 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 98 97 99:10 0 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 98 98 99:10 0 Erot-Eutylbenzene mg/kg (ppm) 2.5 99 98 98:111 1 Erot-Eutylbenzene mg/kg (ppm) 2.5 98 99 99 99:10 0 Erot-Eutyl							
Tanas 3-Dichloropropene							
1.1.2-Trichloroethane							
2-Hexanone							
1.3-Dichloropropane							
Tetrachloroethene							
Dibromochloromethane							
Chlorobenzene mg/kg (ppm) 2.5 97 95 79-115 2 Ethylbenzene mg/kg (ppm) 2.5 98 96 64-123 2 1.1,1.2-Tetrachloroethane mg/kg (ppm) 2.5 102 100 69-135 2 mp. Xylene mg/kg (ppm) 2.5 100 99 66-120 1 o-Yylene mg/kg (ppm) 2.5 101 99 81-112 2 Styrene mg/kg (ppm) 2.5 101 99 81-112 2 Isopropylbenzene mg/kg (ppm) 2.5 101 99 81-112 2 Isopropylbenzene mg/kg (ppm) 2.5 101 99 79-112 2 Isopropylbenzene mg/kg (ppm) 2.5 100 100 81-117 0 Promoform mg/kg (ppm) 2.5 100 100 81-117 0 Principal Marchia mg/kg (ppm) 2.5 98 98 74-111 0	Dibromochloromethane		2.5	107	107	76-130	0
Ethylenzene mg/kg (ppm) 2.5 98 96 64-123 2 1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 102 100 69-135 2 mp-Xylene mg/kg (ppm) 5 100 99 66-120 1 o-Xylene mg/kg (ppm) 2.5 98 96 66-118 2 Styrene mg/kg (ppm) 2.5 101 99 81-112 2 Isopropylbenzene mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 100 100 81-117 0 Bromoform mg/kg (ppm) 2.5 100 100 81-117 0 Bromoform mg/kg (ppm) 2.5 94 93 72-122 1 1.2.3-Trichloropropane mg/kg (ppm) 2.5 98 98 74-111 0 1.2.2-Trich	1,2-Dibromoethane (EDB)	mg/kg (ppm)				74-132	
1,1,1,2-Tetrachloroethane mg/kg (ppm) 2.5 102 100 69-135 2 mp-Xylene mg/kg (ppm) 2.5 98 96 66-120 1 o-Xylene mg/kg (ppm) 2.5 98 96 66-118 2 Styrene mg/kg (ppm) 2.5 101 99 81-112 2 Isopropylbenzene mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 101 99 79-112 2 n-Propylbenzene mg/kg (ppm) 2.5 100 100 81-117 0 Bromobenzene mg/kg (ppm) 2.5 94 93 72-122 1 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 98 98 74-111 0 1.1.2.2-Tetrachloroethane mg/kg (ppm) 2.5 98 98 74-111 0 1.2.3-Trichloropropane mg/kg (ppm) 2.5 92 98 61-137 6 2-Chlorotoluene mg/kg (ppm) 2.5 96 94 83-114 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
mp-Xylene mg/kg (ppm) 5 100 99 66-120 1 o-Xylene mg/kg (ppm) 2.5 98 96 66-118 2 Styrene mg/kg (ppm) 2.5 101 99 81-112 2 Isopropylbenzene mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 100 100 81-117 0 Bromobenzene mg/kg (ppm) 2.5 94 93 72-122 1 Bromobenzene mg/kg (ppm) 2.5 98 98 74-111 0 1,2,3-Trichloroptenzene mg/kg (ppm) 2.5 92 98 61-137 6 1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 92 98 61-137 6 2-Chlorotol							
o-Xylene mg/kg (ppm) 2.5 98 96 66-118 2 Styrene mg/kg (ppm) 2.5 101 99 81-112 2 Isopropylbenzene mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 100 100 81-117 0 Bromobenzene mg/kg (ppm) 2.5 100 100 81-117 0 Bromobenzene mg/kg (ppm) 2.5 94 93 72-122 1 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 98 98 74-111 0 1,2,2-Trichloroptane mg/kg (ppm) 2.5 93 98 56-143 5 2-Chlorotoluene mg/kg (ppm) 2.5 92 98 61-137 6 2-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 t							
Styrene mg/kg (ppm) 2.5 101 99 81-112 2 Isopropylbenzene mg/kg (ppm) 2.5 101 99 79-112 2 Bromoform mg/kg (ppm) 2.5 84 85 76-129 1 n-Propylbenzene mg/kg (ppm) 2.5 100 100 81-117 0 Bromobenzene mg/kg (ppm) 2.5 94 93 72-122 1 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 98 98 74-111 0 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 93 98 66-143 5 1,2,3-Trichloropropane mg/kg (ppm) 2.5 92 98 61-137 6 2-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 4-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 4-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Sopropylbenzene mg/kg (ppm) 2.5 101 99 79-112 2 2 2 3 3 3 3 3 3							
Bromoform mg/kg (ppm) 2.5 84 85 76-129 1 n-Propylbenzene mg/kg (ppm) 2.5 100 100 81-117 0 Bromobenzene mg/kg (ppm) 2.5 94 93 72-122 1 1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 98 98 74-111 0 1,1,2,3-Trichloroptopane mg/kg (ppm) 2.5 93 98 56-143 5 1,2,3-Trichloroptopane mg/kg (ppm) 2.5 92 98 61-137 6 2-Chlorotoluene mg/kg (ppm) 2.5 96 94 83-114 2 4-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 tert-Butylbenzene mg/kg (ppm) 2.5 98 97 82-113 1 tert-Butylbenzene mg/kg (ppm) 2.5 106 105 78-119 1 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 106 105 78-119							
Brombenzene mg/kg (ppm) 2.5 94 93 72-122 1 1.3.5-Trimethylbenzene mg/kg (ppm) 2.5 98 98 74-111 0 1.1.2.2-Tetrachloroethane mg/kg (ppm) 2.5 93 98 56-143 5 1.2.3-Trichloropropane mg/kg (ppm) 2.5 92 98 61-137 6 2-Chlorotoluene mg/kg (ppm) 2.5 96 94 83-114 2 4-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 tert-Butylbenzene mg/kg (ppm) 2.5 101 100 78-111 1 1.2.4-Trimethylbenzene mg/kg (ppm) 2.5 94 94 75-110 0 sec-Butylbenzene mg/kg (ppm) 2.5 106 105 78-119 1 p-Isopropyltoluene mg/kg (ppm) 2.5 105 104 74-114 1 1,3-Dichlorobenzene mg/kg (ppm) 2.5 97 96 82-114<	Bromoform		2.5	84	85	76-129	1
1,3,5-Trimethylbenzene mg/kg (ppm) 2.5 98 98 74-111 0 1,1,2,2-Tetrachloroethane mg/kg (ppm) 2.5 93 98 56-143 5 1,2,3-Trichloropropane mg/kg (ppm) 2.5 92 98 61-137 6 2-Chlorotoluene mg/kg (ppm) 2.5 96 94 83-114 2 4-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 tert-Butylbenzene mg/kg (ppm) 2.5 101 100 78-111 1 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 94 94 75-110 0 sec-Butylbenzene mg/kg (ppm) 2.5 106 105 78-119 1 p-Isopropyltoluene mg/kg (ppm) 2.5 106 105 78-119 1 1,3-Dichlorobenzene mg/kg (ppm) 2.5 97 96 82-114 1 1,2-Dichlorobenzene mg/kg (ppm) 2.5 95 95 79-109 0 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94							
1,1,2,2-Tetrachloroethane							
1,2,3-Trichloropropane mg/kg (ppm) 2.5 92 98 61-137 6 2-Chlorotoluene mg/kg (ppm) 2.5 96 94 83-114 2 4-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 4-Chlorotoluene mg/kg (ppm) 2.5 101 100 78-111 1 1,2-4-Trimethylbenzene mg/kg (ppm) 2.5 94 94 75-110 0 sec-Butylbenzene mg/kg (ppm) 2.5 106 105 78-119 1 p-Isopropyltoluene mg/kg (ppm) 2.5 105 104 74-114 1 1,3-Dichlorobenzene mg/kg (ppm) 2.5 97 96 82-114 1 1,4-Dichlorobenzene mg/kg (ppm) 2.5 95 95 79-109 0 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 96 92 42-166 7 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 93							
2-Chlorotoluene mg/kg (ppm) 2.5 96 94 83-114 2 4-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 tert-Butylbenzene mg/kg (ppm) 2.5 101 100 78-111 1 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 94 94 75-110 0 sec-Butylbenzene mg/kg (ppm) 2.5 106 105 78-119 1 p-Isopropyltoluene mg/kg (ppm) 2.5 105 104 74-114 1 1,3-Dichlorobenzene mg/kg (ppm) 2.5 97 96 82-114 1 1,4-Dichlorobenzene mg/kg (ppm) 2.5 95 95 79-109 0 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 86 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
4-Chlorotoluene mg/kg (ppm) 2.5 98 97 82-113 1 tert-Butylbenzene mg/kg (ppm) 2.5 101 100 78-111 1 1,2,4-Trimethylbenzene mg/kg (ppm) 2.5 94 94 75-110 0 sec-Butylbenzene mg/kg (ppm) 2.5 106 105 78-119 1 p-Isopropyltoluene mg/kg (ppm) 2.5 105 104 74-114 1 1,3-Dichlorobenzene mg/kg (ppm) 2.5 97 96 82-114 1 1,4-Dichlorobenzene mg/kg (ppm) 2.5 95 95 79-109 0 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 86 92 42-166 7 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 93 95 70-129 2 Hexachlorobutadiene mg/kg (ppm) 2.5 69 76							
tert-Butylbenzene m_g/k_g (ppm) 2.5 101 100 78-111 1 1.2.4-Trimethylbenzene m_g/k_g (ppm) 2.5 94 94 75-110 0 sec-Butylbenzene m_g/k_g (ppm) 2.5 106 105 78-119 1 p-Isopropyltoluene m_g/k_g (ppm) 2.5 105 104 74-114 1 1.3-Dichlorobenzene m_g/k_g (ppm) 2.5 97 96 82-114 1 1.4-Dichlorobenzene m_g/k_g (ppm) 2.5 95 95 79-109 0 1.2-Dichlorobenzene m_g/k_g (ppm) 2.5 94 93 81-117 1 1.2-Dibromo-3-chloropropane m_g/k_g (ppm) 2.5 86 92 42-166 7 1.2.4-Trichlorobenzene m_g/k_g (ppm) 2.5 93 95 70-129 2 Hexachlorobenzene m_g/k_g (ppm) 2.5 105 105 50-153 0 Naphthalene m_g/k_g (ppm) 2.5 69 76 65-138 10							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-
sec-Butylbenzene mg/kg (ppm) 2.5 106 105 78-119 1 p-Isopropyltoluene mg/kg (ppm) 2.5 105 104 74-114 1 1,3-Dichlorobenzene mg/kg (ppm) 2.5 97 96 82-114 1 1,4-Dichlorobenzene mg/kg (ppm) 2.5 95 95 79-109 0 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 86 92 42-166 7 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 93 95 70-129 2 Hexachlorobutadiene mg/kg (ppm) 2.5 105 105 50-153 0 Naphthalene mg/kg (ppm) 2.5 69 76 65-138 10							
1,3-Dichlorobenzene mg/kg (ppm) 2.5 97 96 82-114 1 1,4-Dichlorobenzene mg/kg (ppm) 2.5 95 95 79-109 0 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 86 92 42-166 7 1,2-4-Trichlorobenzene mg/kg (ppm) 2.5 93 95 70-129 2 Hexachlorobutadiene mg/kg (ppm) 2.5 105 105 50-153 0 Naphthalene mg/kg (ppm) 2.5 69 76 65-138 10			2.5	106	105	78-119	1
1,4-Dichlorobenzene mg/kg (ppm) 2.5 95 95 79-109 0 1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 86 92 42-166 7 1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 93 95 70-129 2 Hexachlorobutadiene mg/kg (ppm) 2.5 105 105 50-153 0 Naphthalene mg/kg (ppm) 2.5 69 76 65-138 10							
1,2-Dichlorobenzene mg/kg (ppm) 2.5 94 93 81-117 1 1,2-Dibrono-3-chloropropane mg/kg (ppm) 2.5 86 92 42-166 7 1,2-4-Trichlorobenzene mg/kg (ppm) 2.5 93 95 70-129 2 Hexachlorobutadiene mg/kg (ppm) 2.5 105 105 50-153 0 Naphthalene mg/kg (ppm) 2.5 69 76 65-138 10							
1,2-Dibromo-3-chloropropane mg/kg (ppm) 2.5 86 92 42-166 7 1,2-4-Trichlorobenzene mg/kg (ppm) 2.5 93 95 70-129 2 Hexachlorobutadiene mg/kg (ppm) 2.5 105 105 50-153 0 Naphthalene mg/kg (ppm) 2.5 69 76 65-138 10							
1,2,4-Trichlorobenzene mg/kg (ppm) 2.5 93 95 70-129 2 Hexachlorobutadiene mg/kg (ppm) 2.5 105 105 50-153 0 Naphthalene mg/kg (ppm) 2.5 69 76 65-138 10							
Hexachlorobutadiene mg/kg (ppm) 2.5 105 105 50-153 0 Naphthalene mg/kg (ppm) 2.5 69 76 65-138 10							
Naphthalene mg/kg (ppm) 2.5 69 76 65-138 10							
1 0 0 41 7							
	•						

Note: The calibration verification result for bromoform, naphthalene and 1,2,3-trichlorobenzene exceeded 15% deviation. The average deviation for all compounds was not greater than 15%; therefore, the calibration is considered valid.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

 $Project:\ NCPCS\ SOU_0592\text{-}001\text{-}01_20080604,\ F\&BI\ 806044$

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

Laboratory Code: 806112-17 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Ethanol	mg/kg (ppm)	<50	<50	nm
Dichlorodifluoromethane	mg/kg (ppm)	<0.05	<0.05	nm
Chloromethane	mg/kg (ppm)	<0.05	<0.05	nm
Vinyl chloride	mg/kg (ppm)	< 0.05	<0.05	nm
Bromomethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Chloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Trichlorofluoromethane	mg/kg (ppm)	< 0.05	<0.05	nm
Acetone	mg/kg (ppm)	< 0.5	<0.5	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm
Methylene chloride	mg/kg (ppm)	< 0.5	<0.5	nm
t-Butyl alcohol (TBA)	mg/kg (ppm)	<3	<3	nm
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.05	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm
Diisopropyl ether (DIPE)	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Ethyl t-butyl ether (ETBE)	mg/kg (ppm)	< 0.05	< 0.05	nm
2,2-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm
Chloroform	mg/kg (ppm)	< 0.05	< 0.05	nm
2-Butanone (MEK)	mg/kg (ppm)	< 0.5	<0.5	nm
t-Amyl methyl ether (TAME)	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloropropene	mg/kg (ppm)	< 0.05	< 0.05	nm
Carbon Tetrachloride	mg/kg (ppm)	< 0.05	< 0.05	nm
Benzene	mg/kg (ppm)	< 0.03	< 0.03	nm
Trichloroethene	mg/kg (ppm)	< 0.03	<0.03	nm
1,2-Dichloropropane	mg/kg (ppm)	< 0.05	<0.05	nm
Bromodichloromethane	mg/kg (ppm)	< 0.05	<0.05	nm
Dibromomethane	mg/kg (ppm)	< 0.05	< 0.05	nm
4-Methyl-2-pentanone	mg/kg (ppm)	<0.5 <0.05	<0.5 <0.05	nm
cis-1,3-Dichloropropene	mg/kg (ppm)			nm
Toluene trans-1,3-Dichloropropene	mg/kg (ppm)	< 0.05	<0.05	nm
1,1,2-Trichloroethane	mg/kg (ppm) mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm
2-Hexanone		<0.05	<0.5	nm
1,3-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	<0.05 <0.05	<0.05	nm
Tetrachloroethene	mg/kg (ppm)	<0.03	<0.03	nm
Dibromochloromethane	mg/kg (ppm)	< 0.05	<0.05	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.05	<0.05	nm
Chlorobenzene	mg/kg (ppm)	< 0.05	<0.05	nm
Ethylbenzene	mg/kg (ppm)	< 0.05	<0.05	nm
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
m,p-Xylene	mg/kg (ppm)	< 0.1	<0.1	nm
o-Xylene	mg/kg (ppm)	< 0.05	< 0.05	nm
Styrene	mg/kg (ppm)	< 0.05	< 0.05	nm
Isopropylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
Bromoform	mg/kg (ppm)	< 0.05	< 0.05	nm
n-Propylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
Bromobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,3,5-Trimethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2,3-Trichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
2-Chlorotoluene	mg/kg (ppm)	< 0.05	< 0.05	nm
4-Chlorotoluene	mg/kg (ppm)	< 0.05	<0.05	nm
tert-Butylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2,4-Trimethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
sec-Butylbenzene	mg/kg (ppm)	< 0.05	<0.05	nm
p-Isopropyltoluene	mg/kg (ppm)	< 0.05	<0.05	nm
1,3-Dichlorobenzene	mg/kg (ppm)	< 0.05	<0.05	nm
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm
	mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm
Hexachlorobutadiene	mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm
Naphthalene	mg/kg (ppm)	< 0.05	<0.05	nm
1,2,3-Trichlorobenzene	mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm
1,2,5-11 ICHIOI ODEHZEHE	mg/kg (ppm)	<0.03	CU.U3	11111

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260B

	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Ethanol	mg/kg (ppm)	125	117	118	43-146	1
Dichlorodifluoromethane Chloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	96 102	90 101	10-146 6-137	6 1
Vinyl chloride	mg/kg (ppm)	2.5	114	101	22-139	5
Bromomethane	mg/kg (ppm)	2.5	152 vo	151 vo	41-119	1
Chloroethane	mg/kg (ppm)	2.5	265 vo	254 vo	38-142	4
Trichlorofluoromethane	mg/kg (ppm)	2.5	118	110	28-177	7
Acetone	mg/kg (ppm)	2.5 2.5	88	87	52-161	1 4
1,1-Dichloroethene Methylene chloride	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	127 108	122 106	46-132 46-131	2
t-Butyl alcohol (TBA)	mg/kg (ppm)	12.5	74	77	66-130	4
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	80	75	69-124	6
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	108	106	67-120	2
Diisopropyl ether (DIPE)	mg/kg (ppm)	2.5	102	93	80-129	9
1,1-Dichloroethane	mg/kg (ppm)	2.5	111	108	77-117	3
Ethyl t-butyl ether (ETBE) 2,2-Dichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	87 133	85 127	79-128 53-139	2 5
cis-1.2-Dichloroethene	mg/kg (ppm)	2.5	109	107	75-122	2
Chloroform	mg/kg (ppm)	2.5	115	113	73-118	2
2-Butanone (MEK)	mg/kg (ppm)	2.5	102	104	60-134	2
t-Amyl methyl ether (TAME)	mg/kg (ppm)	2.5	86	85	79-129	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	119	117	74-122	2
1,1,1-Trichloroethane 1,1-Dichloropropene	mg/kg (ppm)	2.5 2.5	129 vo 110	124 107	74-125 73-120	4 3
Carbon Tetrachloride	mg/kg (ppm) mg/kg (ppm)	2.5	133 vo	129 vo	72-125	3
Benzene	mg/kg (ppm)	2.5	104	102	70-122	2
Trichloroethene	mg/kg (ppm)	2.5	108	106	76-119	2
1,2-Dichloropropane	mg/kg (ppm)	2.5	101	100	77-131	1
Bromodichloromethane	mg/kg (ppm)	2.5	118	114	75-125	3
Dibromomethane	mg/kg (ppm)	2.5	110	111	80-125	1 2
4-Methyl-2-pentanone cis-1,3-Dichloropropene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	97 112	99 111	61-148 75-136	2 1
Toluene	mg/kg (ppm)	2.5	102	99	66-126	3
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	118	117	72-132	1
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	100	100	65-136	0
2-Hexanone	mg/kg (ppm)	2.5	95	97	62-152	2
1,3-Dichloropropane	mg/kg (ppm)	2.5	102	102	72-130	0
Tetrachloroethene Dibromochloromethane	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	123 121	120 120	79-127 76-130	2 1
1,2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	109	108	74-132	1
Chlorobenzene	mg/kg (ppm)	2.5	108	108	79-115	0
Ethylbenzene	mg/kg (ppm)	2.5	109	107	64-123	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	123	121	69-135	2
m,p-Xylene o-Xylene	mg/kg (ppm)	5 2.5	109 110	107 108	66-120 66-118	2 2
Styrene	mg/kg (ppm) mg/kg (ppm)	2.5	112	112	81-112	0
Isopropylbenzene	mg/kg (ppm)	2.5	120 vo	118 vo	79-112	2
Bromoform	mg/kg (ppm)	2.5	96	97	76-129	1
n-Propylbenzene	mg/kg (ppm)	2.5	103	101	81-117	2
Bromobenzene	mg/kg (ppm)	2.5	104	104	72-122	0
1,3,5-Trimethylbenzene 1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5 2.5	110 89	107 91	74-111 56-143	3 2
1,2,3-Trichloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	88	90	61-137	2
2-Chlorotoluene	mg/kg (ppm)	2.5	100	99	83-114	ĩ
4-Chlorotoluene	mg/kg (ppm)	2.5	101	100	82-113	1
tert-Butylbenzene	mg/kg (ppm)	2.5	117 vo	115 vo	78-111	2
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	104	102	75-110	2
sec-Butylbenzene p-Isopropyltoluene	mg/kg (ppm)	2.5 2.5	120 vo 125 vo	118 123 vo	78-119 74-114	2 2
1,3-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	125 V0	123 V0 109	74-114 82-114	1
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	109	107	79-109	2
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	109	109	81-117	õ
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	95	96	42-166	1
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	130 vo	126	70-129	3
Hexachlorobutadiene	mg/kg (ppm)	2.5	174 vo	167 vo	50-153	4
Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5 2.5	85 102	86 102	65-138 74-125	1 0
1,6,5-11 ICHIOI ODEHZEHE	mg/vg (hhm)	۵.0	102	102	14-160	U

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270C SIM

Laboratory Code: 806044-21 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Naphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
2-Methylnaphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
1-Methylnaphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benz(a)anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm
Chrysene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(b)fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(k)fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(a)pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Dibenz(a,h)anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm

Laboratory Code: Laboratory Control Sample

		Percent	Percent		
Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Units	Level	LCS	LCSD	Criteria	(Limit 20)
mg/kg (ppm)	0.17	85	80	72-112	6
mg/kg (ppm)	0.17	84	76	60-114	10
mg/kg (ppm)	0.17	88	83	74-118	6
mg/kg (ppm)	0.17	77	72	58-108	7
mg/kg (ppm)	0.17	85	80	64-115	6
mg/kg (ppm)	0.17	83	77	54-119	7
mg/kg (ppm)	0.17	82	77	61-123	6
mg/kg (ppm)	0.17	74	71	54-111	4
mg/kg (ppm)	0.17	73	67	46-126	9
mg/kg (ppm)	0.17	80	75	57-119	6
	mg/kg (ppm)	Units Level mg/kg (ppm) 0.17 mg/kg (ppm) 0.17	Reporting Units Spike Level Recovery LCS mg/kg (ppm) 0.17 85 mg/kg (ppm) 0.17 84 mg/kg (ppm) 0.17 77 mg/kg (ppm) 0.17 77 mg/kg (ppm) 0.17 85 mg/kg (ppm) 0.17 83 mg/kg (ppm) 0.17 82 mg/kg (ppm) 0.17 74 mg/kg (ppm) 0.17 73	Reporting Units Spike Level Recovery LCS Recovery LCSD mg/kg (ppm) 0.17 85 80 mg/kg (ppm) 0.17 84 76 mg/kg (ppm) 0.17 88 83 mg/kg (ppm) 0.17 77 72 mg/kg (ppm) 0.17 85 80 mg/kg (ppm) 0.17 83 77 mg/kg (ppm) 0.17 82 77 mg/kg (ppm) 0.17 74 71 mg/kg (ppm) 0.17 73 67	Reporting Units Spike Level Recovery LCS Recovery LCSD Acceptance Criteria mg/kg (ppm) 0.17 85 80 72-112 mg/kg (ppm) 0.17 84 76 60-114 mg/kg (ppm) 0.17 88 83 74-118 mg/kg (ppm) 0.17 77 72 58-108 mg/kg (ppm) 0.17 85 80 64-115 mg/kg (ppm) 0.17 83 77 54-119 mg/kg (ppm) 0.17 82 77 61-123 mg/kg (ppm) 0.17 74 71 54-111 mg/kg (ppm) 0.17 73 67 46-126

Note: The calibration verification result for anthracene-d10 exceeded 15% deviation. The average deviation for all compounds was not greater than 15%; therefore, the initial calibration is considered valid.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270C SIM

Laboratory Code: 806080-06 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Naphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
2-Methylnaphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
1-Methylnaphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benz(a)anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm
Chrysene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(b)fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(k)fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(a)pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Dibenz(a,h)anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm

Laboratory Code: 806080-06 (Matrix Spike)

,	Donorting	Cniko	Sampla	Percent	Accentance
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	85	50-150
2-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	86	50-150
1-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	87	50-150
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	81	17-134
Chrysene	mg/kg (ppm)	0.17	< 0.01	84	10-157
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	82	28-134
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	84	55-115
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	78	37-123
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	83	61-104
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	82	69-100

ENVIRONMENTAL CHEMISTS

Date of Report: 06/23/08 Date Received: 06/04/08

Project: NCPCS SOU_0592-001-01_20080604, F&BI 806044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270C SIM

Laboratory Code: Laboratory Control Sample

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	84	91	72-112	8
2-Methylnaphthalene	mg/kg (ppm)	0.17	83	88	60-114	6
1-Methylnaphthalene	mg/kg (ppm)	0.17	86	91	74-118	6
Benz(a)anthracene	mg/kg (ppm)	0.17	78	81	58-108	4
Chrysene	mg/kg (ppm)	0.17	84	91	64-115	8
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	80	84	54-119	5
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	83	91	61-123	9
Benzo(a)pyrene	mg/kg (ppm)	0.17	74	78	54-111	5
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	83	87	46-126	5
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	83	89	57-119	7

Note: The calibration verification result for anthracene-d10 exceeded 15% deviation. The average deviation for all compounds was not greater than 15%; therefore, the initial calibration is considered valid.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probablility.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

80	6	0	4	4
	C-120	19.5		A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SAMPLE CHAIN OF CUSTODY

ME 06-04-08

CI3/co5/ 2/V2

	. •	The state of the s	
Send Report To Ryan Bixby CC Churk Cace K	SAMPLERS (signature)	<u>.</u>	Page # of/ TURNAROUND TIME
Company SES	PROJECT NAME/NO. NCFOS 0592-001-01	PO#	☐ Standard (2 Weeks) ☐ RUSH Rush charges authorized by:
City, State, ZIP Seattle, WA, 98134	REMARKS Hold all samples until Ribixby or creacly instruct	GEMS Y /	SAMPLE DISPOSAL Dispose after 30 days Return samples
Phone # 206306 1900 Fax # 206306 1907	of cicacon in Direct	N	□ Will call with instructions

												ANA	LYSE	S RE	QUES	TED		
	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Total Lead	MUTPH -	40H-VPH	Notes	Q CO A O
_	313-7-8	B13			20826602	1630	5	7				·			X		X-prec1/6/00	,
_	B13-11-12		11-12	02 G		1645		1						<u> </u>	×		MG]
L	B13-13-14	<u> </u>	13-14			1655									×		1-perce 6/11/0	24
	314-7-8	B14 .		OHG		1745			×	X	×			×			" M'S	
	314-11-12		11-12			1755			×	×		×	<u> </u>	×		X	So-precedent	$\mathbb{J}\mathscr{C}$
Ш	314-13-14	+	13-14	06 G		1805			X	-	\checkmark			\searrow			6/12/04	
	315-7-8	B15		076		1715									×		> Mr	7
	315-11-12) -	11-12	08 G	· /	1725						·			×			7
-	315-13-14	1		096		1730					·	٠.			X			1
	316-6-7	Bilo.	6-7	105		050	- Andrewski		$^{\!$	×	×							7
	316-11-12		11-12			1105	a constitution of		×	×		×	X	X	,	×		7
C	316-14-15		14-15	125		1110			X	×	×							7
E	317-6-7	B17	6-7	134	¥	1140	Y	J				١.			У	٠.]

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-

Ph. (206) 285-8282 Fax (206) 283-5044

SIGŅATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	ARCHANA DAYALU	525	6/3/08	12:00
Received by: m an am	Nhan Phan	FEBL	614/08	09:00
Relinquished by:				
Received by:		Samples re	ce ved at	∠_°C

FORMS\COC\SESGEMSR1.DOC (Revision 1)

806	0	4	4

SAMPLE CHAIN OF CUSTODY

ME 06-04-08 CI3/cos/v.

Send Report To Ryan Bixby cc Chuck Cace K	SAMPLERS (signature)		Page # of TURNAROUND TIME		
Company SES	PROJECT NAME/NO.	PO #	☐ Standard (2 Weeks)		
Address	NCPCS 0592.061.01		Rush charges authorized by:		
City, State, ZIP	REMARKS Hold all samples until R. Bixby	GEMS Y /	SAMPLE DISPOSAL Dispose after 30 days		
Phone #Fax #	or c.carek instruct.	N N	☐ Return samples ☐ Will call with instructions		

		·								ANALYSES REQUESTED								
4.	Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Tim e Sam pled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Total Land RCKA-8 Metals	NO-104-4010	tion - H 03	Notes	
	B17-9.5-10.5	BIT	9.5-10.5	14 G	2086602	1145	5	7							~			1
	B17-13-14	1		巧子		1155		1							×]
	B18-6-7	BIS		16 AG	·	1220									×		,	
	B18-11-12	. .	11-12.	许安		1230									X			
	B18-13-14	4		19 AG		1235	·								×			
	1319-6-7	· B19	6-7			1305			×	×	×			×				
, [B19-7-8		7-8	206-		1320			×	×	×			*				Ť
	B19-11.5-12.5	*	1.5-12.5	91 6		1345			×	×	×	8	8	×			B19-12.51-13.5 Sumple 1928	7
	821-9-10	B21		22 G		1850						٠.			×			1
ſ	BZ1-11-12		11-12			1855									×			1
	1321-12-13			246		1920								·	×			1
	B22-5-6	B22		954		1530						·			x .			1
	B22-7-8	V	7-8	26 G	*	1535	1	A				`,			×			1

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-

0000 Ph. (206) 285-8282 Fax (206) 283-5044

	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
t	Relinquished by: A Day w	ARCHANA DAYALU	SES	6/3/08	12:00
:	Received by: my au	Nhan Phan	FRBI	6/4/08	09:00
	Relinquished by:				
	Received by:		Samples recei	ved at <u>ك</u>	°C

FORMS\COC\SESGEMSR1.DOC (Revision 1)

806044	SAMPLE CHAIN OF CUSTODY	ME 06-02	4-08 CI3 / CO5/
Send Report To	SAMPLERS (signature)		Page #of
Company	PROJECT NAME/NO. N C PC S 0 5 9 2 - 00 (- ε)	PO #	☐ Standard (2 Weeks) ☐ RUSH Rush charges authorized by:
City, State, ZIPFax #	REMARKS HOLD UNTIL R.Bixby Or C. Cacek instruct.	GEMS Y /	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

					,				ANALYSES REQUESTED							
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Tim e Sam pled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals	Lack	MUTPH-HC 1D	Notes
B22-11-12	B22	11-12	9.7 G	20080602	. 1950	5	7								X	
B23-6-7	B23	10-7	282		1445										X	
B23 -14-15		4-15	29G 30 H	7	1500	L	-								X	
Trip Blank		_	BO H			water	8		×	×						,
Rinsate	·	-		20080602	19:15	V	4	×	×	×				×		
		, i														
				···												
										•	٠.					
				` `	· · · · · · · · · · · · · · · · · · ·				·							
		· ·			· · · · · · · · · · · · · · · · · · ·								-			
4 .					· · · · · · · · · · · · · · · · · · ·						1	•.			•	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME	
Relinquished by:	ARCHANA DAYALA	SES	6/3/08	12:00	
Received by:	Nhan Phan	FeBI	6/4/08	09:00	
Relinquished by:			1		
Received by:		Samples received	l at_2/	°C	

FORMS\COC\SESGEMSR1.DOC (Revision 1)

June 26, 2008

Mike Erdahl Friedman & Bruya 3012 – 16th Avenue West Seattle, WA 9819-2029

Project: 806044 PO# H-1461

ARI Job: NA50

Dear Mr. Erdahl:

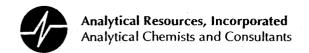
Please find enclosed the original Chain of Custody record, sample receipt documentation, and analytical results for the project referenced above. Analytical Resources, Inc. accepted two soil samples with limited holding time remaining in good condition on June 12, 2008. Please refer to the enclosed Cooler Receipt Form for further details regarding sample receipt.

The samples were analyzed for EPH (Extractable Petroleum Hydrocarbon) and VPH (Volatile Petroleum Hydrocarbon), as requested on the Chain of Custody.

The analyses were completed routinely.

Quality control analysis results are included for your review. Copies of the reports and all associated raw data will be kept on file electronically at ARI. If you have any questions or require additional information, please contact me at your convenience.

Respectfully,


ANALYTICAL RESOURCES, INC.

Eric Branson

Client Services - Project Support

(206) 695-6213 eric@arilabs.com

www.arilabs.com

Cooler Receipt Form

ARI Client: FBT	Project Name: 80609	14	٦.	٠.
COC No:	Project Name: 30609 Delivered by:			
Assigned ARI Job No:	Tracking No:			
Preliminary Examination Phase:				
Were intact, properly signed and dated custody	seals attached to the outsi	ide of to cooler?	YES (NO))
Were custody papers included with the cooler?			(ES) NO	-
Were custody papers properly filled out (ink, sig				
Record cooler temperature (recommended 2.0-	6.0 °C for chemistry		4.6.°C	
	• · · · · · · · · · · · · · · · · · · ·	(11/2)	AC- / 62	~
Cooler Accepted by:	Date:	5/11/08_Tin	ne: <u>0790</u>	<u>ر</u>
Complete custody form	ns and attach all shipping	g documents		
Log-In Phase:				
Was a temperature blank included in the cooler	?		YES NO)
What kind of packing material was used?			BW	
Was sufficient ice used (if appropriate)?		······ (YES) NO	
Were all bottles sealed in individual plastic bags	s?		YES (NO))
Did all bottle arrive in good condition (unbroken))?	(YES) NO	
Were all bottle labels complete and legible?		•	YES NO	
Did all bottle labels and tags agree with custody			YES NO	
Were all bottles used correct for the requested a	analyses?	(YES) NO	
Do any of the analyses (bottles) require preserve	ation? (attach preservation	checklist)	YES NO	
Were all VOC vials free of air bubbles?		(NA)	YES NO	
Was sufficient amount of sample sent in each bo	ottle?	<i>(</i>	FES) NO	
Samples Logged by:	Date:	Time:		
	ager of discrepancies or			
				
Explain discrepancies or negative responses:				
• -				
	Ву:	Date:		

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: B14-11-12 SAMPLE

Lab Sample ID: NA50A LIMS ID: 08-12378

Matrix: Soil

Data Release Authorized: Reported: 06/20/08

QC Report No: NA50-Friedman & Bruya, Inc.

Project: PO# H-1461 806044

Date Sampled: 06/02/08 Date Received: 06/12/08

Date Analyzed: 06/13/08 13:53 Purge Volume: 10. mL

Instrument/Analyst: PID1/PKC Sample Amount: 45.0 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	1100	< 1,100 U
108-88-3	Toluene	1100	< 1,100 U
100-41-4	Ethylbenzene	1100	1,400
	m,p-Xylene	2200	< 2,200 U
95-47-6	o-Xylene	1100	< 1,100 U
1634-04-4	Methyl tert-Butyl Ether	1100	< 1,100 U
109-66-0	n-Pentane	1100	< 1,100 U
110-54-3	n-Hexane	1100	4,900
111-65-9	n-Octane	1100	10,000
124-18-5	n-Decane	1100	2,800
112-40-3	n-Dodecane	1100	1,300

Range	RL	Result
C8-C10 Aromatics (PID)	11,000	56,000
C10-C12 Aromatics (PID)	11,000	66,000
C12-C13 Aromatics (PID)	11,000	15,000
C5-C6 Aliphatics	11,000	17,000
C6-C8 Aliphatics	11,000	340,000
C8-C10 Aliphatics	11,000	80,000
C10-C12 Aliphatics	11,000	53,000

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	104%
FID:	2,5-Dibromotoluene	103%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: B16-11-12 SAMPLE

Lab Sample ID: NA50B QC Report No: NA50-Friedman & Bruya, Inc. LIMS ID: 08-12379 Project: PO# H-1461

Project: PO# H-1461 806044

Matrix: Soil

Data Release Authorized:

Reported: 06/20/08

Date Received: 06/12/08

Date Analyzed: 06/13/08 14:21 Purge Volume: 10. mL

Instrument/Analyst: PID1/PKC Sample Amount: 54.0 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	930	< 930 U
108-88-3	Toluene	930	< 930 U
100-41-4	Ethylbenzene	930	< 930 U
	m,p-Xylene	1900	< 1,900 U
95-47-6	o-Xylene	930	< 930 U
1634-04-4	Methyl tert-Butyl Ether	930	< 930 U
109-66-0	n-Pentane	930	< 930 U
110-54-3	n-Hexane	930	< 930 U
111-65-9	n-Octane	930	< 930 U
124-18-5	n-Decane	930	< 930 U
112-40-3	n-Dodecane	930	< 930 U

Range	RL	Result	
C8-C10 Aromatics (PID)	9,300	17,000	
C10-C12 Aromatics (PID)	9,300	17,000	
C12-C13 Aromatics (PID)	9,300	< 9,300	Ŭ
C5-C6 Aliphatics	9,300	< 9,300	U
C6-C8 Aliphatics	9,300	< 9,300	U
C8-C10 Aliphatics	9,300	13,000	
C10-C12 Aliphatics	9,300	18,000	

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	99.2%
FID:	2,5-Dibromotoluene	90.8%

Results corrected for soil moisture content per Section 11.10.5 of EPA Method 8000C.

VPH SURROGATE RECOVERY SUMMARY

Matrix: Soil QC Report No: NA50-Friedman & Bruya, Inc.

Project: PO# H-1461 806044

Client ID	PDBT	FDBT	TOT OUT
MB-061308	99.4%	90.4%	0
LCS-061308	91.4%	95.4%	0
LCSD-061308	91.6%	91.2%	0
B14-11-12	104%	103%	0
B16-11-12	99.2%	90.8%	0

	LCS/MB LIMITS	QC LIMITS
<pre>(PDBT) = 2,5-Dibromotoluene (FDBT) = 2,5-Dibromotoluene</pre>	(60-140) (60-140)	(60-140) (60-140)

Prep Method: METHOD

Log Number Range: 08-12378 to 08-12379

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: LCS-061308 LCS/LCSD

Lab Sample ID: LCS-061308

LIMS ID: 08-12378

Matrix: Soil
Data Release Authorized:

Reported: 06/20/08

QC Report No: NA50-Friedman & Bruya, Inc.

Project: PO# H-1461

806044

Date Sampled: NA Date Received: NA

Purge Volume: 10. mL

Sample Amount: 111 mg-dry-wt

Date Analyzed LCSD: 06/13/08 11:09 Instrument/Analyst: PID1/PKC

Date Analyzed LCS: 06/13/08 10:41

Analyte/Range	LCS	Spike Added-LCS	LCS Recovery	LCSD	Spike Added-LCSD	LCSD	RPD
	100	Added-DCD	xecovery		Added Hebb	Recovery	
Benzene	4150	4500	92.2%	4000	4500	88.9%	3.7%
Toluene	4210	4500	93.6%	4100	4500	91.1%	2.6%
Ethylbenzene	4220	4500	93.8%	4140	4500	92.0%	1.9%
m,p-Xylene	8390	9010	93.1%	8160	9010	90.6%	2.8%
o-Xylene	4140	4500	92.0%	4040	4500	89.8%	2.4%
Methyl tert-Butyl Ether	3900	4500	86.7%	3770	4500	83.8%	3.4%
Naphthalene	4150	4500	92.2%	4160	4500	92.4%	0.2%
1,2,3-Trimethylbenzene	4240	4500	94.2%	4230	4500	94.0%	0.2%
1-Methylnaphthalene	4060	4500	90.2%	4240	4500	94.2%	4.3%
n-Pentane	4890	4500	109%	4760	4500	106%	2.7%
n-Hexane	4530	4500	101%	4370	4500	97.1%	3.6%
n-Octane	4500	4500	100%	4180	4500	92.9%	7.4%
n-Decane	4780	4500	106%	4130	4500	91.8%	14.6%
n-Dodecane	4500	4500	100%	4480	4500	99.6%	0.4%

Values reported in $\mu g/kg$ (ppb) RPD calculated using sample concentrations per SW846.

VPH Surrogate Recovery

		LCS	LCSD
PID:	2,5-Dibromotoluene	91.4%	91.6%
FID:	2,5-Dibromotoluene	95.4%	91.2%

ORGANICS ANALYSIS DATA SHEET VPH by Method WA VPH

Page 1 of 1

Sample ID: MB-061308 METHOD BLANK

Lab Sample ID: MB-061308

LIMS ID: 08-12378 Matrix: Soil

Data Release Authorized: Reported: 06/20/08

Date Analyzed: 06/13/08 11:38

Instrument/Analyst: PID1/PKC

QC Report No: NA50-Friedman & Bruya, Inc.

Project: PO# H-1461

806044

Date Sampled: NA Date Received: NA

Purge Volume: 10. mL

Sample Amount: 111 mg-dry-wt

CAS Number	Analyte	RL	Result
71-43-2	Benzene	450	< 450 U
108-88-3	Toluene	450	< 450 U
100-41-4	Ethylbenzene	450	< 450 U
	m,p-Xylene	900	< 900 U
95-47-6	o-Xylene	450	< 450 U
1634-04-4	Methyl tert-Butyl Ether	450	< 450 U
109-66-0	n-Pentane	450	< 450 U
110-54-3	n-Hexane	450	< 450 U
111-65-9	n-Octane	450	< 450 U
124-18-5	n-Decane	450	< 450 U
112-40-3	n-Dodecane	450	< 450 U

Range	RL	Result
C8-C10 Aromatics (PID)	4,500	< 4,500 U
C10-C12 Aromatics (PID)	4,500	< 4,500 U
C12-C13 Aromatics (PID)	4,500	< 4,500 U
C5-C6 Aliphatics	4,500	< 4,500 U
C6-C8 Aliphatics	4,500	< 4,500 U
C8-C10 Aliphatics	4,500	< 4,500 U
C10-C12 Aliphatics	4,500	< 4,500 U

Values reported in $\mu g/kg$ (ppb)

VPH Surrogate Recovery

PID:	2,5-Dibromotoluene	99.4%
FID:	2,5-Dibromotoluene	90.4%

ORGANICS ANALYSIS DATA SHEET Aliphatic/Aromatic GC-EPH

Page 1 of 1

Sample ID: B14-11-12 SAMPLE

QC Report No: NA50-Friedman & Bruya, Inc. Lab Sample ID: NA50A LIMS ID: 08-12378

Project: PO# H-1461

806044

Matrix: Soil Data Release Authorized: Date Sampled: 06/02/08 Date Received: 06/12/08 Reported: 06/25/08

Date Extracted: 06/12/08 Sample Amount: 8.80 g-dry-wt

Final Extract Volume: 1.0 mL Percent Moisture: 12.5%

Aliphatic

Date Analyzed: 06/17/08 18:54 Instrument/Analyst: FID4B/MS Dilution Factor: 1.00

Aromatic

Date Analyzed: 06/17/08 18:54 Dilution Factor: 1.00 Instrument/Analyst: FID4A/MS

Range	RL	Result
C8-C10 Aliphatics	2,300	38,000
C10-C12 Aliphatics	2,300	25,000
C12-C16 Aliphatics	2,300	11,000
C16-C21 Aliphatics	2,300	< 2,300 U
C21-C34 Aliphatics	2,300	< 2,300 U
C8-C10 Aromatics	2,300	2,300
C10-C12 Aromatics	2,300	30,000
C12-C16 Aromatics	2,300	24,000
C16-C21 Aromatics	2,300	4,900
C21-C34 Aromatics	2,300	< 2,300 U

Reported in $\mu g/kg$ (ppb)

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	88.3%
Aromatic	Ortho-terphenyl	67.4%

ORGANICS ANALYSIS DATA SHEET Aliphatic/Aromatic GC-EPH

Page 1 of 1

Sample ID: B16-11-12

SAMPLE

Lab Sample ID: NA50B QC Report No: NA50-Friedman & Bruya, Inc.

LIMS ID: 08-12379 Project: PO# H-1461
Matrix: Soil 806044

Data Release Authorized: \(\sum \) \(\sum \) Date Sampled: 06/02/08 \(\text{Reported: 06/25/08} \) Date Received: 06/12/08

Date Extracted: 06/12/08 Sample Amount: 7.64 g-dry-wt

Percent Moisture: 24.1% Final Extract Volume: 1.0 mL

Aliphatic

Date Analyzed: 06/17/08 19:16
Instrument/Analyst: FID4B/MS Dilution Factor: 1.00

Aromatic

Date Analyzed: 06/17/08 19:16
Instrument/Analyst: FID4A/MS Dilution Factor: 1.00

Range	RL	Result
C8-C10 Aliphatics	2,600	< 2,600 U
C10-C12 Aliphatics	2,600	< 2,600 U
C12-C16 Aliphatics	2,600	< 2,600 U
C16-C21 Aliphatics	2,600	< 2,600 U
C21-C34 Aliphatics	2,600	< 2,600 U
C8-C10 Aromatics	2,600	< 2,600 U
C10-C12 Aromatics	2,600	< 2,600 U
C12-C16 Aromatics	2,600	< 2,600 U
C16-C21 Aromatics	2,600	< 2,600 U
C21-C34 Aromatics	2,600	< 2,600 U

Reported in $\mu g/kg$ (ppb)

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	51.9%
Aromatic	Ortho-terphenyl	40.1%

ALEPH SURROGATE RECOVERY SUMMARY

QC Report No: NA50-Friedman & Bruya, Inc. Project: PO# H-1461 Matrix: Soil

806044

Client ID	COD	TOT	OUT
MB-061208	57.3%	0	
LCS-061208	66.1%	0	
B14-11-12	88.3%	0	
B16-11-12	51.9%	0	

LCS/MB LIMITS QC LIMITS

Prep Method: SW3550B Log Number Range: 08-12378 to 08-12379

(25-117)

(21-112)

(COD) = 1-Chlorooctadecane

AREPH SURROGATE RECOVERY SUMMARY

Matrix: Soil

QC Report No: NA50-Friedman & Bruya, Inc.

Project: PO# H-1461

806044

Client ID	OTER	TOT OUT
MB-061208	43.4%	0
LCS-061208	51.0%	0
B14-11-12	67.4%	0
B16-11-12	40.1%	0

LCS/MB LIMITS QC LIMITS

(OTER) = Ortho-terphenyl

(41-116)

(28-121)

Prep Method: SW3550B Log Number Range: 08-12378 to 08-12379

ORGANICS ANALYSIS DATA SHEET Aliphatic/Aromatic GC-EPH

Page 1 of 1

Sample ID: LCS-061208
LAB CONTROL

Lab Sample ID: LCS-061208

LIMS ID: 08-12378

Matrix: Soil

Data Release Authorized:

Reported: 06/25/08

Date Extracted: 06/12/08

QC Report No: NA50-Friedman & Bruya, Inc.

Project: PO# H-1461

806044

Date Sampled: NA

Date Received: NA

Sample Amount: 10.0 g-as-rec

Final Extract Volume: 1.0 mL

Aliphatic

Date Analyzed: 06/17/08 18:32 Instrument/Analyst: FID4B/MS

Dilution Factor: 1.00

Aromatic

Date Analyzed: 06/17/08 18:32 Instrument/Analyst: FID4A/MS

Dilution Factor: 1.00

	Lab	Spike	
Range	Control	Added	Recovery
C8-C10 Aliphatics	7300	15000	48.7%
C10-C12 Aliphatics	8300	15000	55.3%
C12-C16 Aliphatics	10000	15000	66.7%
C16-C21 Aliphatics	12000	15000	80.0%
C10-C12 Aromatics	6100	15000	40.7%
C12-C16 Aromatics	8200	15000	54.7%
C16-C21 Aromatics	19500	30000	65.0%
C21-C34 Aromatics	21900	30000	73.0%

Results reported in $\mu g/kg$

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	66.1%
Aromatic	Ortho-terphenyl	51.0%

ORGANICS ANALYSIS DATA SHEET Aliphatic/Aromatic GC-EPH

Page 1 of 1

Sample ID: MB-061208 METHOD BLANK

QC Report No: NA50-Friedman & Bruya, Inc.

Lab Sample ID: MB-061208

LIMS ID: 08-12378

Matrix: Soil Data Release Authorized:

Reported: 06/25/08

Date Extracted: 06/12/08

Percent Moisture: NA

Sample Amount: 10.0 g-as-rec

Project: PO# H-1461 806044

Final Extract Volume: 1.0 mL

Date Sampled: NA Date Received: NA

Aliphatic

Date Analyzed: 06/17/08 18:09 Instrument/Analyst: FID4B/MS

Dilution Factor: 1.00

Aromatic

Date Analyzed: 06/17/08 18:09 Instrument/Analyst: FID4A/MS

Dilution Factor: 1.00

Range	RL	Result
C8-C10 Aliphatics	2,000	< 2,000 U
C10-C12 Aliphatics	2,000	< 2,000 U
C12-C16 Aliphatics	2,000	< 2,000 U
C16-C21 Aliphatics	2,000	< 2,000 U
C21-C34 Aliphatics	2,000	< 2,000 U
C8-C10 Aromatics	2,000	< 2,000 U
C10-C12 Aromatics	2,000	< 2,000 U
C12-C16 Aromatics	2,000	< 2,000 U
C16-C21 Aromatics	2,000	< 2,000 U
C21-C34 Aromatics	2,000	< 2,000 U

Reported in $\mu g/kg$ (ppb)

EPH Surrogate Recovery

Aliphatic	1-Chlorooctadecane	57.3%
Aromatic	Ortho-terphenyl	43.4%

<i>†</i>	
NASE	ነ
ハロン	,

4.62

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

	SUBCONTRACTER		Page #l of
Send Report To Michael Erdahl	ARI		TURNAROUND TIME
Company Friedman and Bruya, Inc.	PROJECT NAME/NO.	PO#	✓ Standard (2 Weeks) □ RUSH
Address 3012 16th Ave W	806044	11-146	Rush charges authorized by:
City, State, ZIP_Seattle, WA 98119	REMARKS		SAMPLE DISPOSAL □ Dispose after 30 days
Phone #(206) 285-8282Fax #(206) 283-5044	Please Email Results merdahl@friedmanandbruya.com		□ Return samples□ Will call with instructions
	ANALYS	ES REQUESTED	
		1 1 1	

									ANAI	LYSE	SREG	UES	TED	 	
Sample ID	Lab ID	Date Sampled	Time Sampled	M atrix	# of jars	Oil and Grease	ЕРН	VРН	Nitrate	Sulfate	Alkalinity				Notes
B14-11-12_		6/2/08		S	2 1		×	×							
146-11-12		L		Ų	2+		٧	≻							
									<u> </u>						
		1													

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relimquished by:	Michael Erdahl	Friedman & Bruya	6/10/08	12:40
Received by:	ROIAN/KELER	PR1	6/1/9>	0940
Relinquished by:			7 (
Received by:				

12378/79

CT3/CO5/NZ

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

June 10, 2008

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the testing of material submitted on June 6, 2008 from the NCPCS SOU_0592-001-01_20080606, F&BI 806084 project. There are 3 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Erin Rothman, Chuck Cacek

SOU0610R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on June 6, 2008 by Friedman & Bruya, Inc. from the Sound Environmental Strategies NCPCS SOU_0592-001-01_20080606, F&BI 806084 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u> <u>Sound Environmental Strategies</u>

806084-01 B20-06 806084-02 B20-07.5

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 06/10/08 Date Received: 06/06/08

Project: NCPCS SOU_0592-001-01_20080606, F&BI 806084

Date Extracted: 06/09/08 Date Analyzed: 06/09/08

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
B20-06 806084-01	ND	ND	ND	114
B20-07.5 806084-02	ND	ND	ND	116
Method Blank	ND	ND	ND	103

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

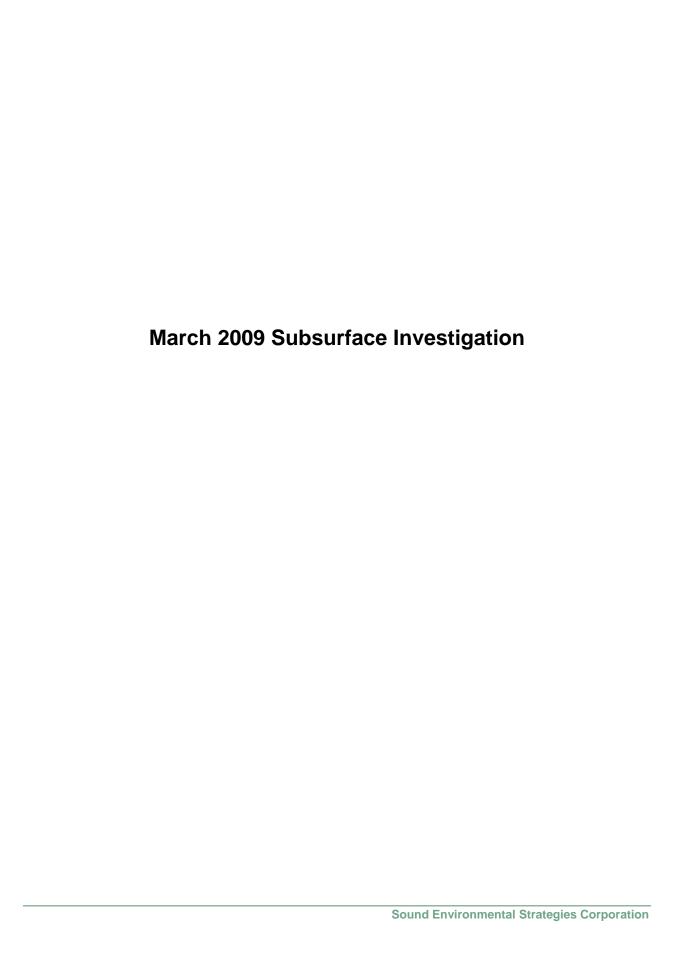
Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probablility.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

0000	MPLE CHAIN OF CUSTODY	ME 06-	06-08 VS 1/A7
Send Report To Ryan Bixby <=: Cace&	SAMPLERS (signature)		Page #
Company SES Address 2400 Airport Way South	PROJECT NAME/NO. NCPC 5 0572	PO#	☐ Standard (2 Weeks) ☐ RUSH
City, State, ZIP Seattle WA 98134 Phone # 206306 1900 Fax # 206306 1907	REMARKS	GEMS Y / N	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

										ANAI	YSES	REG	UES	TED	
Sample Location	Depth	ID k	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals	HotoN Helo		Notes
	6	MAD	6.4-08	1750	50.1	7							X		
	7.5	1.A.en	7	1805	7	4							X		
				·											
													•		
· · · · · · · · · · · · · · · · · · ·													-		
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 									
															
		Location Depth	Location Depth ID	Location Depth ID Sampled	Location Depth ID Sampled Sampled	Location Depth ID Sampled Sampled Matrix	Location Depth ID Sampled Sampled Matrix jars	6 NIR 6-4-08 1750 50:1 7	6 01 Rd 6-4-08 1750 50:1 7	Sample Lab Date Time Sampled Sampled Sampled Matrix # of jars HALL WA XELE Sampled Sam	Sample Location Depth ID Date Sampled Sampled Matrix # of jars JOA Sampled Sam	Sample Location Depth ID Date Sampled Sampled Matrix # of jars WMLH-QX JOAN Sampled Sa	Sample Location Depth ID Sampled Sampled Sampled Watrix # of jars WALLH-GX NACC's ph 8270 So.1 7	Sample Location Depth ID Sampled Sampled Sampled Matrix # of jars WALEX PARTY SANCES PARTY PARTY SANCES PARTY PARTY SANCES PARTY PARTY PARTY SANCES PARTY P	6 NIKIGO4-08 1750 50-11 7

Friedman & Bruya, Inc. 3012 16th Avenue West


Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquisited by:	Charles Creek	SES	6/6/08	1823
Received by:	Dd vo	FBI	11	11
Relinquished by:				
Received by:		Samples receive	at at 5	$^{\circ}\mathrm{C}$

FORMS\COC\SESGEMSR1.DOC (Revision 1)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 20, 2009

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the testing of material submitted on March 4, 2009 from the NCPCS_0592-001-01_20090304, F&BI 903042 project. There are 30 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Erin Rothman, Chuck Cacek

SOU0320R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 4, 2009 by Friedman & Bruya, Inc. from the Sound Environmental Strategies NCPCS_0592-001-01_20090304 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Sound Environmental Strategies
903042-01	TP01-04
903042-02	TP01-07
903042-03	TP01-10
903042-04	TP01-12
903042-05	TP02-04
903042-06	TP02-07
903042-07	TP02-09.5
903042-08	TP02-10.5
903042-09	TP02-12.5
903042-10	TP03-04
903042-11	TP03-07.5
903042-12	TP03-10
903042-13	TP03-11
903042-14	TP03-12.5
903042-15	B24-02.5
903042-16	B24-05
903042-17	B24-07.5
903042-18	B24-10
903042-19	B24-12.5
903042-20	B14A-07.5
903042-21	B14A-10
903042-22	B25-05
903042-23	B25-07.5
903042-24	B25-12.5

Samples TP01-12 and TP14A-10 were sent to Fremont Analytical for EPH/VPH analysis. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

Date Extracted: 03/06/09

Date Analyzed: 03/06/09 and 03/07/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Cummagata

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	Heavy Oil	Surrogate (% Recovery) (Limit 50-150)
TP01-07 903042-02	ND	ND	ND	96
TP02-04 903042-05	ND	ND	ND	100
TP02-09.5 903042-07	ND	ND	ND	98
TP03-07.5	ND	ND	ND	100
B24-02.5 903042-15	ND	ND	ND	100
B24-07.5 903042-17	ND	ND	ND	96
B24-12.5 903042-19	ND	ND	ND	97
B25-05 903042-22	ND	ND	ND	104
B25-07.5 903042-23	ND	ND	ND	99

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

Date Extracted: 03/06/09

Date Analyzed: 03/06/09 and 03/07/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
B25-12.5 903042-24	ND	ND	ND	98
Method Blank	ND	ND	ND	97

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

Date Extracted: 03/06/09

Date Analyzed: 03/06/09 and 03/09/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
TP01-12 d 903042-04 1/10	700	ip
TP02-12.5 d 903042-09 1/10	190	ip
TP03-11 903042-13	16	108
B14A-07.5 903042-20	24	86
B14A-10 d 903042-21 1/20	1,300	ip
Method Blank	<2	99

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

Date Extracted: 03/06/09 Date Analyzed: 03/06/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Diesel Range</u> (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 67-127)
TP01-12 903042-04	390 x	<250	84
TP02-12.5	<50	<250	83
TP03-11 903042-13	< 50	<250	87
B14A-07.5 903042-20	230 x	<250	84
B14A-10 903042-21	260 x	<250	84
Method Blank	<50	<250	87

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: TP01-12 Client: Sound Environmental Strategies
Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304

 Date Extracted:
 03/06/09
 Lab ID:
 903042-04

 Date Analyzed:
 03/06/09
 Data File:
 903042-04.013

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 103 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 5.13

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: TP02-12.5 Client: Sound Environmental Strategies
Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304

 Date Extracted:
 03/06/09
 Lab ID:
 903042-09

 Date Analyzed:
 03/06/09
 Data File:
 903042-09.017

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 95 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 4.01

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: TP03-11 Client: Sound Environmental Strategies
Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304

 Date Extracted:
 03/06/09
 Lab ID:
 903042-13

 Date Analyzed:
 03/06/09
 Data File:
 903042-13.014

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Lower Upper Internal Standard: % Recovery: Limit: Limit: Holmium 103 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 5.96

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B14A-07.5 Client: Sound Environmental Strategies Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304

 Date Extracted:
 03/06/09
 Lab ID:
 903042-20

 Date Analyzed:
 03/06/09
 Data File:
 903042-20.015

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 104 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 4.55

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: B14A-10 Client: Sound Environmental Strategies Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304

 Date Extracted:
 03/06/09
 Lab ID:
 903042-21

 Date Analyzed:
 03/06/09
 Data File:
 903042-21.016

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: hr

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 100 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 10.4

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Sound Environmental Strategies
Date Received: NA Project: NCPCS_0592-001-01_20090304

Date Extracted:03/06/09Lab ID:19-096 mbDate Analyzed:03/06/09Data File:19-096 mb.008Matrix:SoilInstrument:ICPMS1

Units: mg/kg (ppm) Operator: hr

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 100 60 125

Concentration

Analyte: mg/kg (ppm)

Lead <1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	TP01-12	Client:	Sound Environmental Strategies
Date Received:	03/04/09	Project:	NCPCS_0592-001-01_20090304

Date Extracted:03/12/09Lab ID:903042-04Date Analyzed:03/12/09Data File:031217.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	95	42	152
Toluene-d8	94	36	149
4-Bromofluorobenzene	102	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: TP02-12.5 Client: Sound Environmental Strategies Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304

Date Extracted:03/12/09Lab ID:903042-09Date Analyzed:03/12/09Data File:031219.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	89	42	152
Toluene-d8	91	36	149
4-Bromofluorobenzene	101	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	TP03-11	Client:	Sound Environmental Strategies
Date Received:	03/04/09	Project:	NCPCS_0592-001-01_20090304

Date Extracted:03/12/09Lab ID:903042-13Date Analyzed:03/12/09Data File:031222.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	92	42	152
Toluene-d8	94	36	149
4-Bromofluorobenzene	102	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B14A-07.5	Client:	Sound Environmental Strategies
Date Received:	03/04/09	Project:	NCPCS_0592-001-01_20090304

Date Extracted:03/12/09Lab ID:903042-20Date Analyzed:03/13/09Data File:031223.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	90	42	152
Toluene-d8	91	36	149
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B14A-10	Client:	Sound Environmental Strategies
Date Received:	03/04/09	Project:	NCPCS_0592-001-01_20090304

Date Extracted:03/12/09Lab ID:903042-21Date Analyzed:03/13/09Data File:031225.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

Surrogates:	% Recovery:	Lower Limit:	Upper Limit:
1,2-Dichloroethane-d4	86	42	152
Toluene-d8	88	36	149
4-Bromofluorobenzene	98	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	29 ve
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	2.0
Methylene chloride	< 0.5	o-Xylene	0.098
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	3.2
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	9.0
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	0.78
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	0.32
Trichloroethene	< 0.03	sec-Butylbenzene	0.84
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	0.30
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	0.057	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	8.1
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	B14A-10	Client:	Sound Environmental Strategies
Date Received:	03/04/09	Project:	NCPCS_0592-001-01_20090304
Date Extracted:	03/12/09	Lab ID:	903042-21 1/20
Date Analyzed:	03/13/09	Data File:	031224.D
Matrix:	Soil	Instrument:	GCMS5

Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	42	152
Toluene-d8	91	36	149
4-Bromofluorobenzene	99	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	< 0.5
Vinyl chloride	<1	Dibromochloromethane	<1
Bromomethane	<10	1,2-Dibromoethane (EDB)	<1
Chloroethane	<10	Chlorobenzene	<1
Trichlorofluoromethane	<10	Ethylbenzene	45
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	2.1
Methylene chloride	19	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	3.8
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	13
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.6	1,2,4-Trimethylbenzene	<1
Trichloroethene	< 0.6	sec-Butylbenzene	1.4
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<2
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<2
1,1,2-Trichloroethane	<1	Naphthalene	9.1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Sound Environmental Strategies
Date Received:	NA	Project:	NCPCS_0592-001-01_20090304

Date Extracted:03/12/09Lab ID:090343 mbDate Analyzed:03/12/09Data File:031216.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	42	152
Toluene-d8	91	36	149
4-Bromofluorobenzene	101	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	TP01-12	Client:	Sound Environmental Strategies
Date Received:	03/04/09	Project:	NCPCS_0592-001-01_20090304
D . D 1	00/10/00	T L TD	000040 04 1/5

 Date Extracted:
 03/10/09
 Lab ID:
 903042-04 1/5

 Date Analyzed:
 03/13/09
 Data File:
 031308.D

 Matrix:
 Soil
 Instrument:
 GCMS6

 Units:
 mg/kg (ppm)
 Operator:
 YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	87	50	150
Benzo(a)anthracene-d12	127	35	159

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 1-Methylnaphthalene < 0.01 2-Methylnaphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: B14A-10 Client: Sound Environmental Strategies Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304

 Date Extracted:
 03/10/09
 Lab ID:
 903042-21 1/5

 Date Analyzed:
 03/13/09
 Data File:
 031310.D

 Matrix:
 Soil
 Instrument:
 GCMS6

 Units:
 mg/kg (ppm)
 Operator:
 YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 87 50 150 Benzo(a)anthracene-d12 123 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene 3.1 ve 1-Methylnaphthalene 2.5 ve 2-Methylnaphthalene 4.9 ve Acenaphthylene 0.019 Acenaphthene 0.037 Fluorene 0.041 Phenanthrene 0.077 Anthracene 0.021 Fluoranthene 0.019 Pyrene 0.032 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: B14A-10 Client: Sound Environmental Strategies
Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304
Date Extracted: 03/10/09 Lab ID: 903042-21 1/50

 Date Extracted:
 03/10/09
 Lab ID:
 903042-21 1/50

 Date Analyzed:
 03/13/09
 Data File:
 031309.D

 Matrix:
 Soil
 Instrument:
 GCMS6

 Units:
 mg/kg (ppm)
 Operator:
 YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 32 ds 50 150 Benzo(a)anthracene-d12 99 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene 4.0 1-Methylnaphthalene 3.2 2-Methylnaphthalene 6.5 Acenaphthylene < 0.1 Acenaphthene < 0.1 Fluorene < 0.1 Phenanthrene < 0.1 Anthracene < 0.1 Fluoranthene < 0.1 Pyrene < 0.1 Benz(a)anthracene < 0.1 Chrysene < 0.1 Benzo(a)pyrene < 0.1 Benzo(b)fluoranthene < 0.1 Benzo(k)fluoranthene < 0.1 Indeno(1,2,3-cd)pyrene < 0.1 Dibenz(a,h)anthracene < 0.1 Benzo(g,h,i)perylene < 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID:	Method Blank	Client:	Sound Environmental Strategies
Date Received:	NA	Project:	NCPCS_0592-001-01_20090304

Date Extracted: 03/10/09 Lab ID: 09-334mb 1/5 Date Analyzed: 03/13/09 Data File: 031306.D Matrix: Soil Instrument: GCMS6 Units: mg/kg (ppm) Operator: YA

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
Anthracene-d10	73	50	150
Benzo(a)anthracene-d12	99	35	159

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 1-Methylnaphthalene < 0.01 2-Methylnaphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 903051-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	mg/kg (ppm)	18	17	6

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Gasoline	mg/kg (ppm)	20	112	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 903043-01 (Matrix Spike)

			Sample	Percent	Percent		
	Reporting	Spike	Result	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	(Wet wt)	MS	MSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	< 50	94	95	78-126	1

			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Diesel Extended	mg/kg (ppm)	5,000	94	70-127

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 903044-01 (Duplicate)

				Relative	
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Lead	mg/kg (ppm)	11.9	12.0	1	0-20

Laboratory Code: 903044-01 (Matrix Spike)

				Percent	
		Spike	Sample	Recovery	Acceptance
Analyte	Reporting Units	Level	Result	MS	Criteria
Lead	mg/kg (ppm)	50	11.9	170 b	50-150

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	50	101	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 903042-04 (Duplicate)

Dichlorodifluoromethane	Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)
Chloromethane	Dichlorodifluoromethane	mg/kg (ppm)	< 0.5	< 0.5	nm
Brommethane	Chloromethane		< 0.05	< 0.05	nm
Chlorochane	Vinyl chloride	mg/kg (ppm)	< 0.05	< 0.05	nm
Trichlororluoromethane	Bromomethane	mg/kg (ppm)	< 0.5	< 0.5	nm
Acetone	Chloroethane	mg/kg (ppm)	< 0.5	< 0.5	nm
1.1-Dichlorochene	Trichlorofluoromethane	mg/kg (ppm)	< 0.5	< 0.5	nm
Methylehe chloride	Acetone	mg/kg (ppm)	< 0.5	< 0.5	nm
Methyl t-butyl ether (MTBE) mg/kg (ppm) 0.05 0.05 nm 1,1-Dichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,1-Dichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,2-Dichlorecthane mg/kg (ppm) 0.05 0.05 nm 0,1-Dichlorecthane mg/kg (ppm) 0.05 0.05 nm 0,1-Dichlorecthane mg/kg (ppm) 0.05 0.05 nm 0,1-Dichlorecthane (EDC) mg/kg (ppm) 0.05 0.05 nm 1,1-Dichlorecthane (EDC) mg/kg (ppm) 0.05 0.05 nm 1,1-Tichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,1-Tichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,1-Tichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,1-Dichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,1-Dichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,1-Dichlorecthane mg/kg (ppm) 0.03 0.03 nm 1,1-Dichlorecthane mg/kg (ppm) 0.03 0.03 nm 1,1-Dichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,1-Tichlorecthane mg/kg (ppm) 0.05 0.05 nm 1,1-Tic		mg/kg (ppm)			nm
trans-1,2-Dichloroethane					nm
1.1-Dichlororethane					
2.2 Dichloropropane					nm
cis-1,2-Dichlorocthene mg/kg (ppm) <0.05 <0.05 nm Chloroform mg/kg (ppm) <0.05 <0.05 nm 2-Butanone (MEK) mg/kg (ppm) <0.05 <0.05 nm 1,1-1 Trichlorocthane mg/kg (ppm) <0.05 <0.05 nm 1,1-1 Trichlorocthane mg/kg (ppm) <0.05 <0.05 nm Carbon tetrachloride mg/kg (ppm) <0.05 <0.05 nm Garbon tetrachloride mg/kg (ppm) <0.03 <0.03 nm Garbon tetrachloride mg/kg (ppm) <0.03 <0.03 nm Gerzene mg/kg (ppm) <0.03 <0.03 nm Berzene mg/kg (ppm) <0.05 <0.05 nm Bromodichloromethane mg/kg (ppm) <0.05 <0.05 nm Dibromomethane mg/kg (ppm) <0.05 <0.05 nm 4-Methyl-2-pentanne mg/kg (ppm) <0.05 <0.05 nm 5-1-3-3-Dichloropropane mg/kg (ppm) <0.05 <					
Chloroform					nm
2-Butanene (MEK) 1.2-Dichlorostane (EDC) 1.2-Dichlorostane (EDC) 1.1-Trichlorostane 1.1-Trichlorostane 1.1-Dichlorostane 1.2-Dichlorostane 1.2-Dichlorostane					nm
1,2 Dichloroethane (EDC) mg/kg (ppm)		mg/kg (ppm)			nm
1.11-Trichloropropene					
1,1-Dichloropropene					
Carbon tetrachloride					
Benzene					
Trichloroethene mg/kg (ppm) <0.03 <0.03 nm 12-Dichloropropane mg/kg (ppm) <0.05					
1.2-Dichloropropane mg/kg (ppm) <0.05 <0.05 nm <0.05 nm					
Promodichloromethane					
Dibromomethane					
4-Methyl-2-pentanone mg/kg (ppm) < 0.5 < 0.5 nm cis-1,3-Dichloropropene mg/kg (ppm) < 0.05					
cis-1,3-Dichloropropene mg/kg (ppm) <0.05 <0.05 nm Toluene mg/kg (ppm) <0.05					
Toluene mg/kg (ppm) <0.05 <0.05 nm trans-1,3-Dichloropropene mg/kg (ppm) <0.05					
trans-1,3-Dichloropropene mg/kg (ppm) < 0.05 < 0.05 nm 1,1,2-Trichloroethane mg/kg (ppm) < 0.05					
1,1,2-Trichloroethane					
2-Hexanone mg/kg (ppm) <0.5 <0.5 nm 1.3-Dichloropropane mg/kg (ppm) <0.05					
1,3-Dichloropropane					
Tetrachloroethene mg/kg (ppm) <0.025 <0.025 nm Dibromochloromethane mg/kg (ppm) <0.05					
Dibromochloromethane mg/kg (ppm) <0.05 <0.05 nm 1,2-Dibromochlane (EDB) mg/kg (ppm) <0.05					
1,2-Dibromoethane (EDB)					
Chlorobenzene mg/kg (ppm) <0.05 <0.05 nm Ethylbenzene mg/kg (ppm) <0.05					
Ethylbenzene mg/kg (ppm) <0.05 <0.05 nm 1,1,1,2-Tetrachloroethane mg/kg (ppm) <0.05					
1,1,1,2-Tetrachloroethane mg/kg (ppm) <0.05					
m.p-Xylene mg/kg (ppm) < 0.1 < 0.1 nm o-Xylene mg/kg (ppm) < 0.05					
o-Xylene mg/kg (ppm) <0.05 <0.05 nm Styrene mg/kg (ppm) <0.05					
Styrene mg/kg (ppm) <0.05 <0.05 nm Isopropylbenzene mg/kg (ppm) <0.05					
Isopropylbenzene					
Bromoform mg/kg (ppm) <0.05 <0.05 nm n-Propylbenzene mg/kg (ppm) <0.05					
n-Propylbenzene mg/kg (ppm) <0.05 <0.05 nm Bromobenzene mg/kg (ppm) <0.05					
Bromobenzene mg/kg (ppm) <0.05 <0.05 nm 1,3,5-Trimethylbenzene mg/kg (ppm) <0.05 <0.05 nm 1,1,2,2-Tetrachloroethane mg/kg (ppm) <0.05 <0.05 nm 1,2,3-Trichloropropane mg/kg (ppm) <0.05 <0.05 nm 2,3-Trichloropropane mg/kg (ppm) <0.05 <0.05 nm 4-Chlorotoluene mg/kg (ppm) <0.05 <0.05 nm 4-Chlorotoluene mg/kg (ppm) <0.05 <0.05 nm 4-Thirothylbenzene mg/kg (ppm) <0.05 <0.05 nm 1,2,4-Trimethylbenzene mg/kg (ppm) <0.05 <0.05 nm 1,2,4-Trimethylbenzene mg/kg (ppm) <0.05 <0.05 nm 1,3-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,3-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,4-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,4-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,2-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,2-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,2-Diromo-3-chloropropane mg/kg (ppm) <0.05 <0.05 nm 1,2-Trichlorobenzene mg/kg (ppm) <0.05 <0.05 mm 1,2-Trichlorobenzene mg/kg (ppm) <0.05 <0.05 mm 1,2-Trichlo					
1,3,5-Trimethylbenzene mg/kg (ppm) <0.05					
1,1,2,2-Tetrachloroethane mg/kg (ppm) <0.05					
1,2,3-Trichloropropane mg/kg (ppm) <0.05					
2-Chlorotoluene mg/kg (ppm) <0.05 <0.05 nm 4-Chlorotoluene mg/kg (ppm) <0.05					
4-Chlorotoluene mg/kg (ppm) <0.05 <0.05 nm tert-Butylbenzene mg/kg (ppm) <0.05					
tert-Butylbenzene mg/kg (ppm) <0.05 <0.05 nm 1,2,4-Trimethylbenzene mg/kg (ppm) <0.05 <0.05 nm sec-Butylbenzene mg/kg (ppm) <0.05 <0.05 nm p-Isopropyltoluene mg/kg (ppm) <0.05 <0.05 nm 1,3-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,4-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,4-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,2-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,2-Dichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,2-Dirbomo-3-chloropropane mg/kg (ppm) <0.05 <0.05 nm 1,2-Trichlorobenzene mg/kg (ppm) <0.05 <0.05 nm 1,2-Trichlorobenzene mg/kg (ppm) <0.01 <0.05 nm 1,2-Dichlorobenzene mg/kg (ppm) <0.1 <0.1 nm Hexachlorobutadiene mg/kg (ppm) <0.1 <0.1 nm					
1,2,4-Trimethylbenzene mg/kg (ppm) <0.05					
sec-Butylbenzene mg/kg (ppm) <0.05 <0.05 nm p-Isopropyltoluene mg/kg (ppm) <0.05					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
1,3-Dichlorobenzene mg/kg (ppm) <0.05			< 0.05		
1,4-Dichlorobenzene mg/kg (ppm) <0.05					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
1,2-Dibromo-3-chloropropane mg/kg (ppm) <0.05 <0.05 nm $1,2,4-Trichlorobenzene mg/kg (ppm) <0.1 <0.1 nm nm Hexachlorobutadiene mg/kg (ppm) <0.1 <0.1 nm$					
$ \begin{array}{llllllllllllllllllllllllllllllllllll$					
Hexachlorobutadiene $mg'kg'(ppm)$ < 0.1 < 0.1 nm	1,2,4-Trichlorobenzene		< 0.1	< 0.1	nm
			< 0.1	< 0.1	nm
	Naphthalene		< 0.05	< 0.05	nm
1,2,3-Trichlorobenzene mg/kg (ppm) <0.1 <0.1 nm	1,2,3-Trichlorobenzene	mg/kg (ppm)	< 0.1	< 0.1	nm

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

zaboratory couct zaboratory co.	iii oi ouiiipi		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	105	101	25-133	4
Chloromethane	mg/kg (ppm)	2.5	98	93	48-121	5
Vinyl chloride	mg/kg (ppm)	2.5	107	101	57-125	6
Bromomethane	mg/kg (ppm)	2.5	94	90	55-141	4
Chloroethane	mg/kg (ppm)	2.5	98	92	43-152	6
Trichlorofluoromethane	mg/kg (ppm)	2.5	107	99	37-158	8
Acetone	mg/kg (ppm)	2.5	85	83	69-129	2
1,1-Dichloroethene	mg/kg (ppm)	2.5	106	104	60-123	2
Methylene chloride	mg/kg (ppm)	2.5	89	83	57-130	7
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	100	98	82-112	2
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	109	104	78-118	5
1,1-Dichloroethane	mg/kg (ppm)	2.5	106	100	81-116	6
2,2-Dichloropropane	mg/kg (ppm)	2.5	106	100	74-122	6
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	108	103	82-118	5
Chloroform	mg/kg (ppm)	2.5	106	102	80-117	4
2-Butanone (MEK)	mg/kg (ppm)	2.5	92	92	63-146	0
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	101	98	82-120	3
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	111	105	79-120	6
1,1-Dichloropropene	mg/kg (ppm)	2.5	104	99	76-122	5
Carbon tetrachloride	mg/kg (ppm)	2.5	99	93	70-125	6
Benzene	mg/kg (ppm)	2.5	102	97	80-112	5
Trichloroethene	mg/kg (ppm)	2.5	105	100	79-115	5
1,2-Dichloropropane	mg/kg (ppm)	2.5	105	101	84-119	4
Bromodichloromethane	mg/kg (ppm)	2.5	115	110	87-122	4
Dibromomethane	mg/kg (ppm)	2.5	107	105	87-118	2
4-Methyl-2-pentanone	mg/kg (ppm)	2.5	100	99	88-124	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	110	106	84-125	4
Toluene	mg/kg (ppm)	2.5	109	106	80-116	3
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	119	116	84-129	3
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	112	111	85-117	1
2-Hexanone	mg/kg (ppm)	2.5	111	109	88-129	2
1,3-Dichloropropane	mg/kg (ppm)	2.5	110	107	84-119	3
Tetrachloroethene	mg/kg (ppm)	2.5	114	109	79-119	4
Dibromochloromethane	mg/kg (ppm)	2.5	106	104	76-123	2
1.2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	115	113	86-120	2
Chlorobenzene	mg/kg (ppm)	2.5	110	105	81-111	5
Ethylbenzene	mg/kg (ppm)	2.5	109	105	81-115	4
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	127 vo	123 vo	82-121	3
m,p-Xylene	mg/kg (ppm)	5	109	105	80-118	4
o-Xylene	mg/kg (ppm)	2.5	111	108	78-122	3
Styrene	mg/kg (ppm)	2.5	113	109	84-121	4
Isopropylbenzene	mg/kg (ppm)	2.5	111	106	79-124	5
Bromoform	mg/kg (ppm)	2.5	106	105	73-111	1
n-Propylbenzene	mg/kg (ppm)	2.5	110	107	80-123	3
Bromobenzene	mg/kg (ppm)	2.5	122 vo	119 vo	83-117	2
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	112	109	81-122	3
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	113	112	82-119	ĺ
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	110	109	82-116	1
2-Chlorotoluene	mg/kg (ppm)	2.5	111	107	78-120	4
4-Chlorotoluene	mg/kg (ppm)	2.5	109	106	81-119	3
tert-Butylbenzene	mg/kg (ppm)	2.5	113	109	79-124	4
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	113	109	81-123	4
sec-Butylbenzene	mg/kg (ppm)	2.5	112	108	79-124	4
p-Isopropyltoluene	mg/kg (ppm)	2.5	113	109	82-125	4
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	111	108	80-116	3
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	110	107	59-133	3
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	112	110	82-116	2
1,2-Ditriorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	99	99	74-126	0
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5	114	110	73-124	4
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5	114	109	74-128	4
Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5	114	113	74-128	1
1.2.3-Trichlorobenzene	mg/kg (ppm)	2.5	117	114	76-122	3
1,2,0 Memorobenzene	mg/ng (ppm)	2.5	111	117	10 120	3

ENVIRONMENTAL CHEMISTS

Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 903086-19 (Duplicate)

	ъ	G 1	D 11 .	Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Naphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
2-Methylnaphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
1-Methylnaphthalene	mg/kg (ppm)	< 0.01	< 0.01	nm
Acenaphthylene	mg/kg (ppm)	< 0.01	< 0.01	nm
Acenaphthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Fluorene	mg/kg (ppm)	< 0.01	< 0.01	nm
Phenanthrene	mg/kg (ppm)	< 0.011	< 0.01	nm
Anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm
Fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benz(a)anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm
Chrysene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(b)fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(k)fluoranthene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(a)pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	< 0.01	< 0.01	nm
Dibenz(a,h)anthracene	mg/kg (ppm)	< 0.01	< 0.01	nm
Benzo(g,h,i)perylene	mg/kg (ppm)	< 0.01	< 0.01	nm

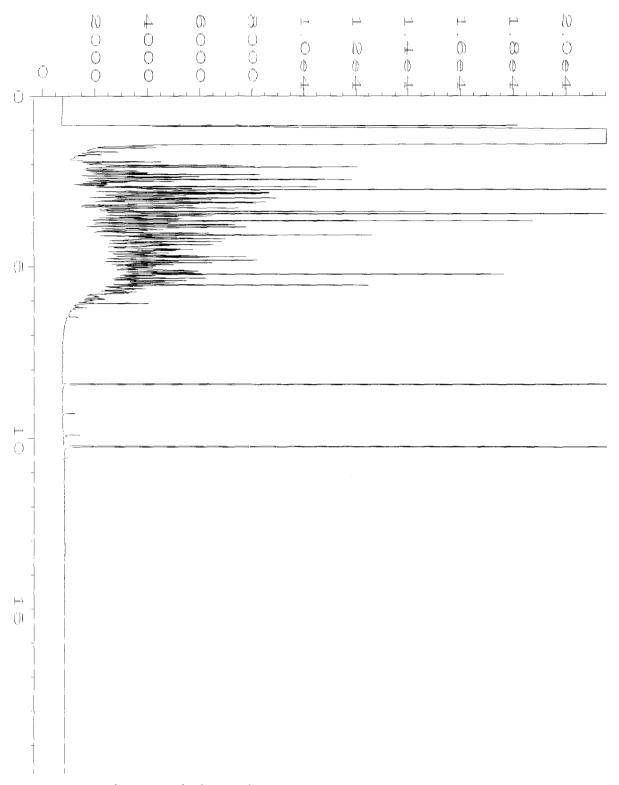
Laboratory Code: 903086-19 (Matrix Spike)

Laboratory Coue. Coocco	10 (Matrix Spr	110)		Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	96	26-148
2-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	93	50-150
1-Methylnaphthalene	mg/kg (ppm)	0.17	< 0.01	97	15-162
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	101	40-131
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	91	58-108
Fluorene	mg/kg (ppm)	0.17	< 0.01	93	57-113
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	90	30-138
Anthracene	mg/kg (ppm)	0.17	< 0.01	84	42-132
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	104	45-145
Pyrene	mg/kg (ppm)	0.17	< 0.01	104	44-139
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	104	47-113
Chrysene	mg/kg (ppm)	0.17	< 0.01	93	45-122
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	112	24-145
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	99	51-118
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	114	30-134
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	111	40-138
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	92	51-122
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	87	54-115

ENVIRONMENTAL CHEMISTS

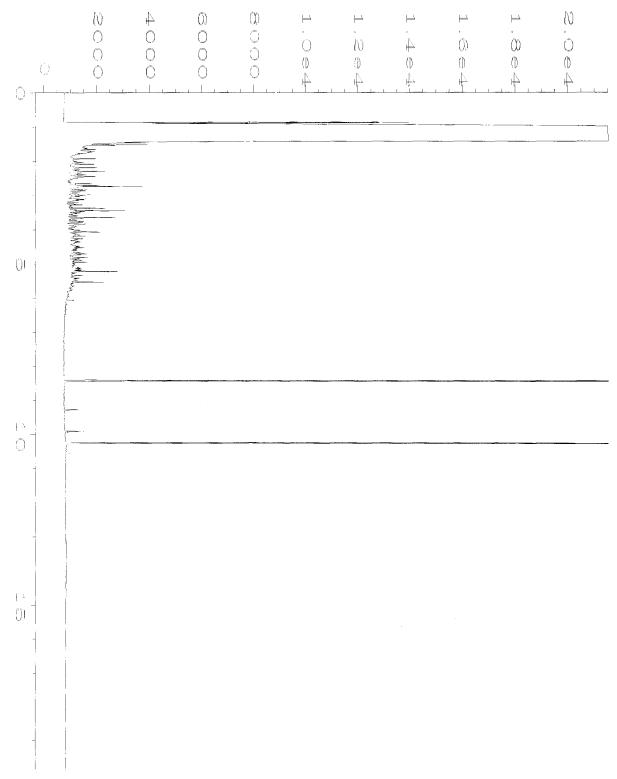
Date of Report: 03/20/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304

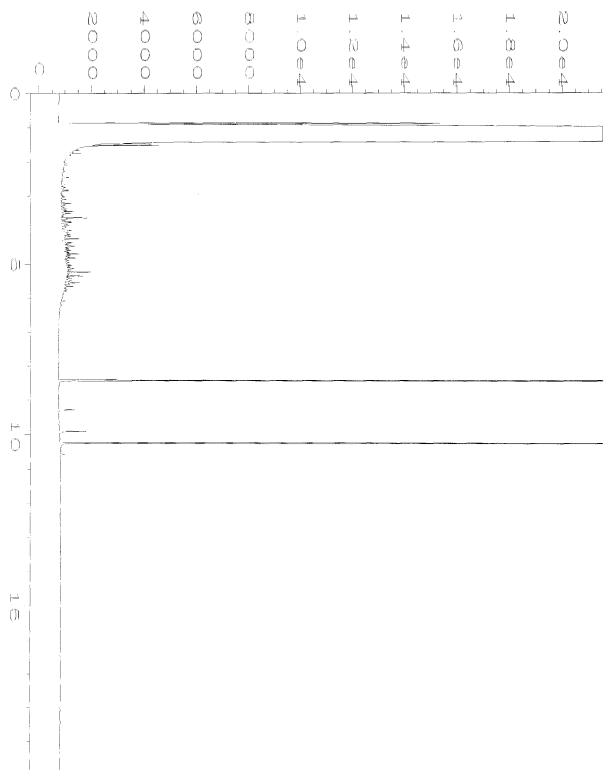

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	99	91	72-112	8
2-Methylnaphthalene	mg/kg (ppm)	0.17	100	91	60-114	9
1-Methylnaphthalene	mg/kg (ppm)	0.17	105	95	59-113	10
Acenaphthylene	mg/kg (ppm)	0.17	99	89	68-112	11
Acenaphthene	mg/kg (ppm)	0.17	93	86	70-111	8
Fluorene	mg/kg (ppm)	0.17	90	83	69-110	8
Phenanthrene	mg/kg (ppm)	0.17	93	86	68-111	8
Anthracene	mg/kg (ppm)	0.17	86	78	67-110	10
Fluoranthene	mg/kg (ppm)	0.17	99	91	68-114	8
Pyrene	mg/kg (ppm)	0.17	100	91	68-114	9
Benz(a)anthracene	mg/kg (ppm)	0.17	99	91	58-108	8
Chrysene	mg/kg (ppm)	0.17	93	86	64-115	8
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	106	100	54-119	6
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	102	95	61-123	7
Benzo(a)pyrene	mg/kg (ppm)	0.17	98	95	54-111	3
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	104	103	52-118	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	93	89	57-119	4
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	86	83	60-116	4

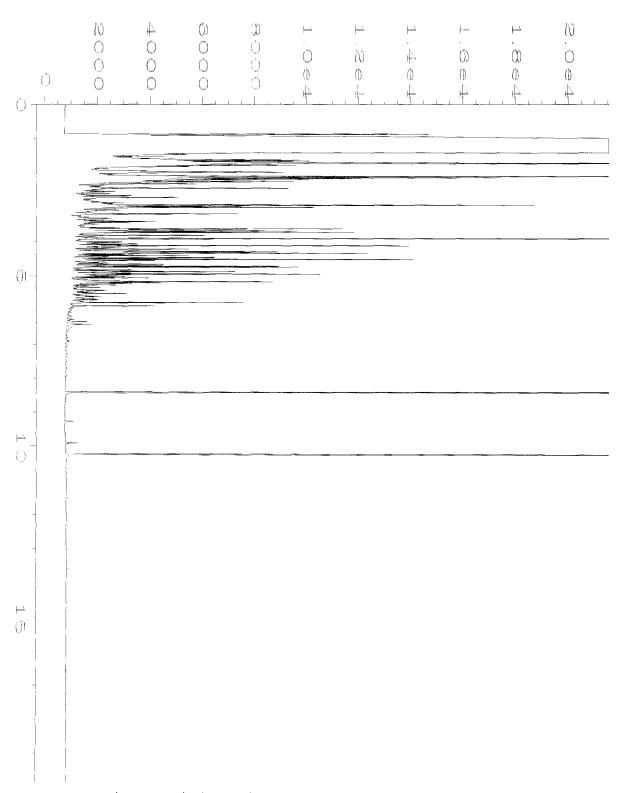
ENVIRONMENTAL CHEMISTS


Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- ${
 m jr}$ The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.




```
Data File Name
                : C:\HPCHEM\4\DATA\03-06-09\017F0801.D
Operator
                : ay
                                              Page Number
                                              Vial Number
Instrument
                : GC#4
                                                             : 17
Sample Name
                : 903042-04
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line : 8
Acquired on : 06 Mar 09 08:33 PM
                                              Instrument Method: TPHD.MTH
```


Acquired on : 06 Mar 09 08:33 PM Instrument Method: TPHD.MTH Report Created on: 09 Mar 09 09:58 AM Analysis Method : BAKEOUT.MTH


```
Data File Name
                : C:\HPCHEM\4\DATA\03-06-09\018F0801.D
Operator
                : ay
                                              Page Number
Instrument
                : GC#4
                                              Vial Number
                                                               : 18
Sample Name
                : 903042-09
                                              Injection Number: 1
Run Time Bar Code:
                                              Sequence Line
                                                            : 8
Acquired on : 06 Mar 09 08:59 PM
                                              Instrument Method: TPHD.MTH
Report Created on: 09 Mar 09 09:58 AM
                                              Analysis Method : BAKEOUT.MTH
```

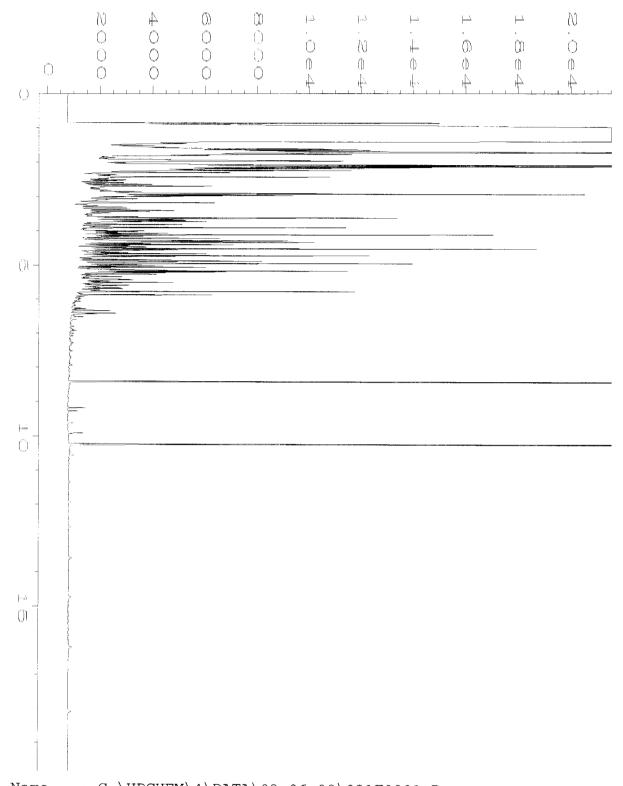


```
: C:\HPCHEM\4\DATA\03-06-09\019F0801.D
Data File Name
Operator
                 : ay
                                               Page Number
                                                                : 1
Instrument
                 : GC#4
                                               Vial Number
                                                                : 19
Sample Name
                                               Injection Number: 1
                : 903042-13
Run Time Bar Code:
                                               Sequence Line
                                                               : 8
Acquired on : 06 Mar 09 09:26 PM
                                               Instrument Method: TPHD.MTH
Report Created on: 09 Mar 09 09:58 AM
                                               Analysis Method : BAKEOUT.MTH
```



```
Data File Name : C:\HPCHEM\4\DATA\03-06-09\020F0801.D

Operator : ay Page Number : 1


Instrument : GC#4 Vial Number : 20

Sample Name : 903042-20 Injection Number : 1

Run Time Bar Code: Sequence Line : 8

Acquired on : 06 Mar 09 09:52 PM Instrument Method: TPH
```

Acquired on : 06 Mar 09 09:52 PM Instrument Method: TPHD.MTH Report Created on: 09 Mar 09 09:58 AM Analysis Method : BAKEOUT.MTH


```
Data File Name : C:\HPCHEM\4\DATA\03-06-09\021F0801.D

Operator : ay Page Number : 1

Instrument : GC#4 Vial Number : 21

Sample Name : 903042-21 Injection Number : 1

Run Time Bar Code: Sequence Line : 8

Acquired on : 06 Mar 09 10:19 PM Instrument Method: TPH
```

Acquired on : 06 Mar 09 10:19 PM Instrument Method: TPHD.MTH Report Created on: 09 Mar 09 09:58 AM Analysis Method : BAKEOUT.MTH

2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman and Bruya Attn: Michael Erdahl 3012 16th Ave W. Seattle, WA 98119

RE: 903042

Fremont Project No: CHM090309-1
Friedman and Bruya Project No: H-1794

March 19th, 2009

Michael:

Enclosed are the analytical results for the **903042** soil samples (*Sample IDs: TP01-12 & B14A-10*) picked up by Fremont Analytical on March 9th, 2009.

The samples were received in good condition - in the proper container (4oz. soil jars, 40mL VOAs preserved with MeOH) properly sealed, labeled and within holding time. The sample was received from refrigeration at Friedman and Bruya, placed in a cooler with gel ice and delivered to the laboratory. The cooler temperature upon sample check-in was 4.2° C, which is within the laboratory cooler temperature range (<4°C - 10°C). The samples were analyzed and stored in a refrigeration unit at the USEPA-recommended temperature of 4°C ± 2°C. There were no sample receipt issues to report.

Examination of these samples was conducted for the presence of the following:

- Volatile Petroleum Hydrocarbons (VPH) in Soil by NWVPH
- Extractable Petroleum Hydrocarbons (EPH) in Soil by NWEPH

All appropriate Quality Assurance / Quality Control method parameters have been applied.

Laboratory Notations:

NWVPH: Sample ID = TP01-12: The Relative Percent Difference (RPD%) for *C8-C10 (FID) Aliphatics* exceeded the laboratory control limit. All other laboratory control limits were within range.

NWVPH: Sample ID = B14A-10: Coelution prevented the determination/recovery of the surrogate *Bromofluorobenzene*.

Please contact the laboratory if you should have any questions about the report.

Thank you for using Fremont Analytical.

(6Ph

Sincerely,

Michael Dee

Sr. Chemist / Principal

mikedee@fremontanalytical.com

T: 206.352.3790 F: 206.352.7178

email: info@fremontanalytical.com

Analysis of Volatile Petroleum Hydrocarbons in Soil by NWVPH

Project: 903042

Client: Friedman and Bruya, Inc.

Client Project #: H-1794 Lab Project #: CHM090309-1

					Duplicate			MS
NWVPH	MRL	Method	LCS	TP01-12	TP01-12	RPD	B14A-10	Batch
(mg/kg)		Blank						090304-4-7
Date Preserved				3/2/09	3/2/09	%	3/3/09	3/7/09
Date Analyzed		3/14/09	3/14/09	3/14/09	3/14/09		3/14/09	3/14/09
Matrix				Soil	Soil		Soil	Soil
Targeted Analytes								
methyl tert -butyl ether (MTBE)	0.05	nd		nd	nd		nd	
Benzene	0.05	nd		nd	nd		0.19	
Toluene	0.05	nd	96%	nd	nd		0.48	97%
Ethylbenzene	0.05	nd		0.16	0.15	6%	15	
m,p-Xylenes	0.05	nd		nd	nd		1.1	
o-Xylenes	0.05	nd		nd	nd		1.2	
Naphthalene	0.05	nd	93%	0.65	0.55	17%	9.3	94%
Hydrocarbon Parameters								
C5-C6 (FID) Aliphatics*	0.05	nd		0.70	0.50	33%	10	
C6-C8 (FID) Aliphatics*	0.05	nd	63%	1.4	0.95	38%	90	66%
C8-C10 (FID) Aliphatics*	0.05	nd		1.7	3.1	58%	19	
C10-C12 (FID) Aliphatics*	0.05	nd	105%	3.3	4.4	29%	40	106%
C8-C10 (PID) Aromatics	0.05	nd		5.1	5.9	15%	50	
C10-C12 (PID) Aromatics	0.05	nd	93%	14	14	0%	140	94%
C12-C13 (PID) Aromatics	0.05	nd		2.0	2.1	5%	0.17	
Surregate Bassyon			·				<u>-</u>	·
Surrogate Recovery Bromofluorobenzene		91%	92%	89%	90%		С	89%

[&]quot;nd" Indicates not detected at listed reporting limits

Acceptable RPD is determined to be less than 50%

Acceptable Recovery Limits:

Surrogate = 60% to 140%

MS, MSD, LCS, LCSD = 50% to 150%

Surrogates and Spike Concentration = 20 ug/L

[&]quot;int" Indicates that interference prevents determination

[&]quot;*" Excludes MTBE and BTEX Compounds

[&]quot;C" Indicates coelution prevents determination

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;RPD" Indicates Relative Percent Difference

T: 206.352.3790 F: 206.352.7178

email: info@fremontanalytical.com

Analysis of Extractable Petroleum Hydrocarbons in Soil by NWEPH

Project: 903042

Client: Friedman and Bruya, Inc.

Client Project #: H-1794 Lab Project #: CHM090309-1

					Duplicate			MS	MSD	
NWEPH	MRL		LCS	TP01-12	TP01-12	RPD	B14A-10	TP01-12	TP01-12	RPD
(mg/kg)		Blank								
Date Extracted				3/15/09	3/15/09	%	3/15/09	3/15/09	3/15/09	%
Date Analyzed		3/17/09	3/17/09	3/17/09	3/17/09		3/17/09	3/17/09	3/17/09	
Matrix				Soil	Soil		Soil	Soil	Soil	
Aromatic Hyrdrocarbon (Dangoe									
C8-C10	2.0	<i>t</i> nd	64%	6.4	5.8	10%	60	116%	99%	16%
C10-C12	2.0	nd	0470	nd	nd	1070	32	11070	3370	1070
C12-C16	2.0	nd		nd	nd		25			
C16-C21	2.0	nd		nd	nd		nd			
C21-C34	2.0	nd	61%	nd	nd		nd	60%	64%	6%
Aliphatic Hydrocarbon (R	anael									
C8-C10	2.0	nd	129%	8.3	8.0	4%	81	144%	144%	0%
C10-C12	2.0	nd	12370	4.8	4.9	2%	90	1-1-1-70	177 /0	0 70
C12-C16	2.0	nd		8.3	8.0	4%	44			
C16-C21	2.0	nd	130%	nd	nd	770	nd	132%	132%	0%
C21-C34	2.0	nd	13070	nd	nd		nd	132 /0	132 /0	0 70
Surrogate Recovery										
o-terphenyl		99%	98%	70%	71%		64%	92%	77%	
1-chlorooctadecane		115%	109%	108%	102%		97%	86%	113%	

[&]quot;nd" Indicates not detected at listed reporting limits

Acceptable RPD is determined to be less than 50% Acceptable Recovery Limits:

Surrogate = 60% to 140%

MS, MSD, LCS, LCSD = 50% to 150%

Surrogates and Spike Concentration = 10 mg/L

[&]quot;int" Indicates that interference prevents determination

^{*} Instrument Detection Limit

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate

[&]quot;RPD" Indicates Relative Percent Difference

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

o in	. wii	1875 35 36 . S		SUB	CONTR	ACTE		25. V 4	41	Kei i	***************************************							-00.y. 2008/sw4
Send Report <u>To</u>		4	. Inc.	PRO	IECT N	AME/		<i>2</i> 124	<u> </u>		p	O#		X Sta		(2 Weeks		
Address					(1030	242_			***************************************	4-17	94	***************************************			es authori	zed by:	W. A.
City, State, ZIP_S Phone #_ (206) 285			06) 283-5044	REM				il Rest nandh	ilts iruva (om.	2000			□ Ret	pose a turn sa	PLE DISI after 30 da amples with instr	ys.	*******
		***************************************							ANAI	YSE	SREG	UES	TED	97.50	vorces in this management of the			********
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	Oil and Grease	Ž.	VPH	Nitrate	Sulfate	Alkalinity					X	Notes	***************************************
TP01-12		3/2/01	04 35				×	×										
814A - 10		3/14/09	0740				×											iii.uque
	<u> </u>																	******
								and the same of th							****		***************************************	····

		***************************************										ere o piece e constituir	***************************************				na (1400) dia manyaisa di dia manana andri 1411 dia manana andri	
		**************************************				***************************************									W Value			Process
															2440,000m2111114000000		999***********************************	innuese
																		brown
																		MANAGET.
	<u></u>						<u></u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>			00 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	0000000
Friedman & Bruya 3012 16th Avenue		Balance State of the State of t	SIGNATURE		Micha	J ael Er		NAM	Ŀ	***************************************	Frie	**************	MPA) ı & Br	*************************	caractage::::::::::::::::::::::::::::::::::::	DATE 10/189	TIME:	energy philosophy
Seattle, WA 98119-	2029	Received by			+-,,	. 1.4				;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			4	nee NAMANGO (neennee 2000 1000 1550 155	(100 0000000000000000000000000000000000	F management		c#0100
Ph. (206) 285-8282		Relinquished l				MREL	L.K	K-EV	11°		Hes	HONT	A YALY	DLK_		X9/01_	13:30	y20 00 00 0
Fax (206) 283-5044	,	Received by			+					***************************************			Accessors in the actions of the	norman was realizable and a second				59*00404

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S.

3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 26, 2009

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the amended results from the testing of material submitted on March 4, 2009 from the NCPCS_0592-001-01_20090304, F&BI 903042 project. The methylene chloride detection in sample B14A-10 was flagged as due to laboratory contamination.

We apologize for the inconvenience and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Michael Erdahl Project Manager

Enclosures

c: Erin Rothman, Chuck Cacek

SOU0320R.DOC

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

B14A-10	Client:	Sound Environmental Strategies
03/04/09	Project:	NCPCS_0592-001-01_20090304
03/12/09	Lab ID:	903042-21 1/20
03/13/09	Data File:	031224.D
Soil	Instrument:	GCMS5
mg/kg (ppm)	Operator:	MB
	03/04/09 03/12/09 03/13/09 Soil	03/04/09 Project: 03/12/09 Lab ID: 03/13/09 Data File: Soil Instrument:

		Lower	∪pper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	93	42	152
Toluene-d8	91	36	149
4-Bromofluorobenzene	99	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	<10	1,3-Dichloropropane	<1
Chloromethane	<1	Tetrachloroethene	< 0.5
Vinyl chloride	<1	Dibromochloromethane	<1
Bromomethane	<10	1,2-Dibromoethane (EDB)	<1
Chloroethane	<10	Chlorobenzene	<1
Trichlorofluoromethane	<10	Ethylbenzene	45
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	2.1
Methylene chloride	19 lc	o-Xylene	<1
Methyl t-butyl ether (MTBE)	<1	Styrene	<1
trans-1,2-Dichloroethene	<1	Isopropylbenzene	3.8
1,1-Dichloroethane	<1	Bromoform	<1
2,2-Dichloropropane	<1	n-Propylbenzene	13
cis-1,2-Dichloroethene	<1	Bromobenzene	<1
Chloroform	<1	1,3,5-Trimethylbenzene	<1
2-Butanone (MEK)	<10	1,1,2,2-Tetrachloroethane	<1
1,2-Dichloroethane (EDC)	<1	1,2,3-Trichloropropane	<1
1,1,1-Trichloroethane	<1	2-Chlorotoluene	<1
1,1-Dichloropropene	<1	4-Chlorotoluene	<1
Carbon tetrachloride	<1	tert-Butylbenzene	<1
Benzene	< 0.6	1,2,4-Trimethylbenzene	<1
Trichloroethene	< 0.6	sec-Butylbenzene	1.4
1,2-Dichloropropane	<1	p-Isopropyltoluene	<1
Bromodichloromethane	<1	1,3-Dichlorobenzene	<1
Dibromomethane	<1	1,4-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dichlorobenzene	<1
cis-1,3-Dichloropropene	<1	1,2-Dibromo-3-chloropropane	<1
Toluene	<1	1,2,4-Trichlorobenzene	<2
trans-1,3-Dichloropropene	<1	Hexachlorobutadiene	<2
1,1,2-Trichloroethane	<1	Naphthalene	9.1
2-Hexanone	<10	1,2,3-Trichlorobenzene	<2

903042	9	Ö	3	0	4	2
--------	---	---	---	---	---	---

SAMPLE CHAIN OF CUSTODY ME 03/04/09

Al	5/45	
	4.52	

(SOLN)
Send Report To Ryan Birby cc. Cases
Company Sound Environmental Strategies
Address 2400 Airport Way South
City, State, ZIP Seatle WA 98134
Phone # 206-306- 1902 Fax # 206-306-1966

	SAMPLERS (signature)	Brown
٤.	PROJECT NAMENO. Petrolesm	PO#
-	Poutamination Site	
	REMARKS \$ 0592-01-01	GEMS Y N
_		*

Page#of	
 TURNAROUND TIME	
☐ Standard (2 Weeks) ☐ RUSH	
Rush charges authorized by:	
SAMPLE DISPOSAL	
☐ Dispose after 30 days	
□ Return samples	
☐ Will call with instructions	

		<u> </u>	·							$oldsymbol{\perp}$				ANA	LYSE	SRE	QUES	TED		
Sample ID	Sample Location	Sample Depth	ID	Dati Sampi	led	Time Sampled	Ма	trix	# o: jar		NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	EPH - VPH RORA-8 Metals	NUTOH- HCID	- Y		Notes (Y jackt na)
TP01-04		4'	OI A-G	3/2/0	9	0855	55	.1	7	I									+	3 A 3/5/09
TP01-07		7'	A-G	1		0910			1								×			. M(
TP01-10		10'	03.G 64.G 8-G 8-G			0925	<u> </u>													
TP01-12		12'	64 A-G			0935	<u> </u>				X	×		×	×	×		X		
TP07-04		4'	os A-G			1080											×			
TP02-07		7'	06 A-G			1005				1										
TP02-09.5		9.5	07 A-G			1020				\perp							×			
TP02-10.5		12.5	OS A-G			1025														
TP02-12.5		12.5				1040					×	X		×				×		
TP03-04		4'	10 A.G			1155														
TP03-07.5	·	7.5	11 A.G			1205											×			
TP03-10		12,	12- A.G			1215]			
TP03-11		11'	温江	a		1220	,	b	4		×	×		X				×		V

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Charles Caces	<i>5</i> e5	3/4/29	17:00
Received by M	Man Gens-	FdAZ	3/4/Ka	1.70
Relinquished by:				
Received by:		Samples received at	5_°C	

903042	042
--------	-----

Send Report To Ryan Bixby Cacaz	SA
Company Sound Ensironments Strategies	PIN
Address 2400 Air port Way South	5
City, State, ZIP Seath WA 98134	I.C.
Phone # 206-306-1900 Fax # 206-306-1906	

SA	MPLE CHAIN OF CUSTODY	ME 03/0	4/09 AES/
<u>ر</u> س	SAMPLERS (signature) Jessic	a Brown	Page #o
٤٠،	PROJECT NAME/NO. North Colfex petroleom Contamination Site	PO#	☐ Standard (2 Weeks) ☐ RUSH Rush charges authorize
	REMARKS 0592-01-01	GEMS Y) N	SAMPLE DISPO Dispose after 30 days Return samples

Page #of
TURNAROUND TIME
□ Standard (2 Weeks) □ RUSH
Rush charges authorized by:
SAMPLE DISPOSAL

: 5	Dishose wiret on make
	Return samples
0	Will call with instructions

					ANALYSES REQUESTED												
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	CH /VPH RCRA-8 Metals	4C.19H	Tata Lead		Notes
T703-12,5		12.5		3/2/09	1225	8211	7									Ho	احا
B24-02.5	:	2:5	13-G		1403	1			·					×			
B24-05		5	16 A-G		1410							<u> </u>					
B24-07.5		7.5	17-G		1425									×			
B24-10		10	18 G		1432												
B24-12,5		12.5	19 G		1448									X			
B14A-07,5		7.5	A.G	3/3/09	0730			×)		×				×	·	
B14A-10		10	から	1	0740			×	×		X	×	×		×		
B25-05		5	22 AG		1110									×			
B75-07.5		7.5	23 AG		1150					ľ				×			
B25-12.5	•	12,5	24 G	1	1140	-	1							X			,
															•		
								·									4.

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
Relinquished by:	Charles Caces	5E5	3/4/57	17100
Received by:	Bad Bena	S.J. B.	3/4/69	17:00
Relinquished by:				
Received by:		amples received at	5°C	

FORMS\COC\SESGEMSR1.DOC (Revision 1)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 10, 2009

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the testing of material submitted on March 4, 2009 from the NCPCS_0592-001-01_20090304, F&BI 903044 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Erin Rothman, Chuck Cacek

SOU0310R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 4, 2009 by Friedman & Bruya, Inc. from the Sound Environmental Strategies NCPCS, F&BI 903044 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	Sound Environmental Strategies
903044-01	SP01
903044-02	SP02
903044-03	SP03
903044-04	SP Comp

Per your request, the samples were composited prior to analysis and labeled as SP Comp. All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS, F&BI 903044

Date Extracted: 03/05/09 Date Analyzed: 03/05/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Gasoline Range	Surrogate (% Recovery) (Limit 50-150)
SP Comp 903044-04	38	144
Method Blank	<2	106

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS, F&BI 903044

Date Extracted: 03/05/09 Date Analyzed: 03/05/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
SP Comp 903044-04	<50	<250	78
Method Blank	< 50	<250	84

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: SP Comp Client: Sound Environmental Strategies

Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304, F&BI 903044

Date Extracted: 03/06/09 Lab ID: 903044-04

Date Analyzed: 03/06/09 Data File: 903044-01 comp.010

Matrix: Soil Instrument: ICPMS1 Units: mg/kg (ppm) Operator: hr

		Lower	Upper
Internal Standard:	% Recovery:	Limit:	Limit:
Germanium	84	60	125
Indium	87	60	125
Holmium	101	60	125

Analyte:	Concentration mg/kg (ppm)
Chromium	7.80
Arsenic	1.43
Selenium	<1
Cul	4

Silver <1
Cadmium <1
Barium 116
Lead 11.9

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 200.8

Client ID: Method Blank Client: Sound Environmental Strategies

Date Received: NA Project: NCPCS_0592-001-01_20090304, F&BI 903044

 Date Extracted:
 03/06/09
 Lab ID:
 19-096 mb

 Date Analyzed:
 03/06/09
 Data File:
 19-096 mb.008

 Matrix:
 Soil
 Instrument:
 ICPMS1

 Units:
 mg/kg (ppm)
 Operator:
 hr

Lower Upper **Internal Standard:** % Recovery: Limit: Limit: 60 Germanium 80 125 Indium 87 60 125 Holmium 100 60 125

Analyte: Concentration mg/kg (ppm)

Chromium <2
Arsenic <1
Selenium <1
Silver <1
Cadmium <1
Barium <1
Lead <1

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS, F&BI 903044

Date Extracted: 03/06/09 Date Analyzed: 03/06/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID	<u>Total Mercury</u>
Laboratory ID	-
SP Comp 903044-04	<0.2
Method Blank	<0.2

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: SP Comp Client: Sound Environmental Strategies

Date Received: 03/04/09 Project: NCPCS_0592-001-01_20090304, F&BI 903044

Date Extracted:03/05/09Lab ID:903044-04Date Analyzed:03/05/09Data File:030507.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	91	42	152
Toluene-d8	95	36	149
4-Bromofluorobenzene	91	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	0.050
Trichloroethene	< 0.03	sec-Butylbenzene	0.057
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	0.056
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Sound Environmental Strategies

Date Received: NA Project: NCPCS_0592-001-01_20090304, F&BI 903044

Date Extracted:03/05/09Lab ID:090312 mbDate Analyzed:03/05/09Data File:030506.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	42	152
Toluene-d8	101	36	149
4-Bromofluorobenzene	97	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.1
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.1
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.1

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS, F&BI 903044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 903051-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	mg/kg (ppm)	18	17	6

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	112	70-130	

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS, F&BI 903044

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 903028-02 (Duplicate)

		Sample	Duplicate	Relative	
	Reporting	Result	Result	Percent	Acceptance
Analyte	Units	(Dry wt)	(Dry wt)	Difference	Criteria
Diesel Extended	mg/kg (ppm)	340	340	0	0-20

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	115	105	79-144	9

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS, F&BI 903044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 903044-04 (Duplicate)

\mathbf{j}	T	,		Relative	
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Chromium	mg/kg (ppm)	7.80	7.14	9	0-20
Arsenic	mg/kg (ppm)	1.43	1.25	13	0-20
Selenium	mg/kg (ppm)	<1	<1	nm	0-20
Silver	mg/kg (ppm)	<1	<1	nm	0-20
Cadmium	mg/kg (ppm)	<1	<1	nm	0-20
Barium	mg/kg (ppm)	116	113	3	0-20
Lead	mg/kg (ppm)	11.9	12.0	1	0-20

Laboratory Code: 903044-04 (Matrix Spike)

			Percent	
	Spike	Sample	Recovery	Acceptance
Reporting Units	Level	Result	MS	Criteria
mg/kg (ppm)	50	7.80	95	50-150
mg/kg (ppm)	10	1.43	87	50-150
mg/kg (ppm)	5	<1	82	50-150
mg/kg (ppm)	10	<1	95	50-150
mg/kg (ppm)	5	<1	98	50-150
mg/kg (ppm)	50	116	106 b	50-150
mg/kg (ppm)	50	11.9	170 b	50-150
	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	Reporting Units Level mg/kg (ppm) 50 mg/kg (ppm) 10 mg/kg (ppm) 5 mg/kg (ppm) 10 mg/kg (ppm) 5 mg/kg (ppm) 5 mg/kg (ppm) 50	Reporting Units Level Result mg/kg (ppm) 50 7.80 mg/kg (ppm) 10 1.43 mg/kg (ppm) 5 <1	Reporting Units Spike Level Sample Result Recovery MS mg/kg (ppm) 50 7.80 95 mg/kg (ppm) 10 1.43 87 mg/kg (ppm) 5 <1

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Chromium	mg/kg (ppm)	50	104	70-130
Arsenic	mg/kg (ppm)	10	89	70-130
Selenium	mg/kg (ppm)	5	92	70-130
Silver	mg/kg (ppm)	10	96	70-130
Cadmium	mg/kg (ppm)	5	101	70-130
Barium	mg/kg (ppm)	50	101	70-130
Lead	mg/kg (ppm)	50	101	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS, F&BI 903044

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL MERCURY USING EPA METHOD 1631E

Laboratory Code: 903044-04 (Matrix Spike)

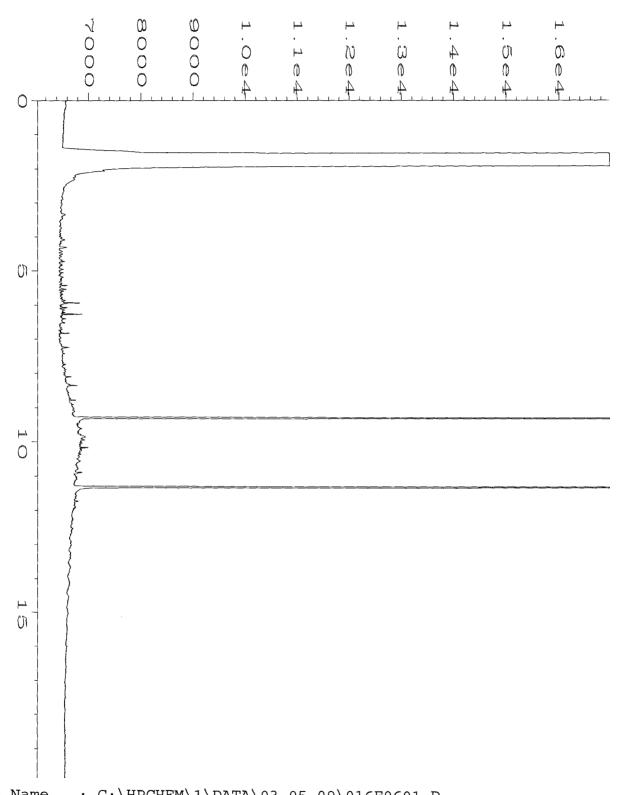
Analyte	Reporting Units	Spike Level	Sample Result	Percent Recover y MS	Percent Recovery MSD	Acceptance Criteria	RPD (Limit 20)	
Mercury	mg/kg (ppm)	0.125	< 0.2	92	87	50-150	6	-

			Percent	
	Reporting	Spike	Recover	Acceptance
Analyte	Units	Level	y LCS	Criteria
Mercury	mg/kg (ppm)	0.125	105	70-130

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS, F&BI 903044


QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

zaboratory couct zaboratory co.	iii oi ouiiipi		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	83	80	25-133	4
Chloromethane	mg/kg (ppm)	2.5	68	66	48-121	3
Vinyl chloride	mg/kg (ppm)	2.5	81	78	57-125	4
Bromomethane	mg/kg (ppm)	2.5	80	82	55-141	2
Chloroethane	mg/kg (ppm)	2.5	84	95	43-152	12
Trichlorofluoromethane	mg/kg (ppm)	2.5	86	87	37-158	1
Acetone	mg/kg (ppm)	2.5	124	104	69-129	18
1,1-Dichloroethene	mg/kg (ppm)	2.5	112	95	60-123	16
Methylene chloride	mg/kg (ppm)	2.5	96	84	57-130	13
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	106	104	82-112	2
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	111	106	78-118	5
1,1-Dichloroethane	mg/kg (ppm)	2.5	111	109	81-116	2
2,2-Dichloropropane	mg/kg (ppm)	2.5	120	118	74-122	2
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	113	109	82-118	4
Chloroform	mg/kg (ppm)	2.5	111	110	80-117	1
2-Butanone (MEK)	mg/kg (ppm)	2.5	134	127	63-146	5
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	108	106	82-120	2
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	118	116	79-120	2
1,1-Dichloropropene	mg/kg (ppm)	2.5	112	110	76-122	2
Carbon tetrachloride	mg/kg (ppm)	2.5	108	104	70-125	4
Benzene	mg/kg (ppm)	2.5	107	106	80-112	1
Trichloroethene	mg/kg (ppm)	2.5	111	110	79-115	1
1,2-Dichloropropane	mg/kg (ppm)	2.5	111	110	84-119	i
Bromodichloromethane	mg/kg (ppm)	2.5	122	119	87-122	2
Dibromomethane	mg/kg (ppm)	2.5	113	112	87-118	1
4-Methyl-2-pentanone	mg/kg (ppm)	2.5	116	117	88-124	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	120	118	84-125	2
Toluene	mg/kg (ppm)	2.5	98	96	80-116	2
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	115	113	84-129	2
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	105	104	85-117	1
2-Hexanone	mg/kg (ppm)	2.5	109	110	88-129	1
1,3-Dichloropropane	mg/kg (ppm)	2.5	103	102	84-119	1
Tetrachloroethene	mg/kg (ppm)	2.5	110	107	79-119	3
Dibromochloromethane	mg/kg (ppm)	2.5	102	101	76-123	1
1.2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	106	105	86-120	1
Chlorobenzene	mg/kg (ppm)	2.5	100	99	81-111	1
Ethylbenzene	mg/kg (ppm)	2.5	102	100	81-115	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	117	115	82-121	2
m,p-Xylene	mg/kg (ppm)	5	99	98	80-118	1
o-Xylene	mg/kg (ppm)	2.5	100	99	78-122	1
Styrene	mg/kg (ppm)	2.5	102	100	84-121	2
Isopropylbenzene	mg/kg (ppm)	2.5	102	101	79-124	1
Bromoform	mg/kg (ppm)	2.5	106	104	73-111	2
n-Propylbenzene	mg/kg (ppm)	2.5	103	102	80-123	1
Bromobenzene	mg/kg (ppm)	2.5	102	101	83-117	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	102	101	81-122	1
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	97	97	82-119	0
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	100	99	82-116	1
2-Chlorotoluene	mg/kg (ppm)	2.5	101	99	78-120	2
4-Chlorotoluene	mg/kg (ppm)	2.5	101	100	81-119	1
tert-Butylbenzene	mg/kg (ppm)	2.5	102	102	79-124	0
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	101	101	81-123	0
sec-Butylbenzene	mg/kg (ppm)	2.5	103	101	79-124	2
p-Isopropyltoluene	mg/kg (ppm)	2.5	104	103	82-125	1
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	100	99	80-116	1
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	97	97	59-133	0
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	96	97	82-116	1
1,2-Dichiorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	112	97 111	74-126	1
		2.5	99	98	73-124	1
1,2,4-Trichlorobenzene Hexachlorobutadiene	mg/kg (ppm)	2.5 2.5	99 104	98 101	73-124 74-128	3
Naphthalene	mg/kg (ppm)	2.5 2.5	104 97	96	74-128 70-122	3 1
1.2.3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	103	101	76-122 76-125	2
1, 5, 5 III CHIOLODCIIZCHE	mg/ng (ppm)	۵.5	103	101	10-123	۵.

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- ${
 m jr}$ The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.


```
Data File Name : C:\HPCHEM\1\DATA\03-05-09\016F0601.D
Operator
                : ay
                                              Page Number
                                                             : 1
Instrument
                : GC1
                                             Vial Number
                                                              : 16
Sample Name
               : 903044-01-03comp
                                              Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 6
Acquired on : 05 Mar 09 02:40 PM
                                             Instrument Method: TPHD.MTH
Report Created on: 10 Mar 09 01:46 PM
                                             Analysis Method : BAKEOUT.MTH
```

903044	SAMPLE CHAIN OF CUSTODY	ME 03/04/	109 CI2
Send Report To Foyan Bixby CC: Cace Company Sound Ensironmental Stran Address 2400 Airport Way South	S Kasia	PO#	Page #of TURNAROUND TIME Standard (2 Weeks) RUSH 24 Rush charges authorized by:
City, State, ZIP Sew Hle WA 98/34 Phone # 206-306-1900 Fax # 206-306-1		GEMS YV N	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions
		ANALYSES I	REQUESTED

			<u>}</u>		<u> </u>		<u> </u>				ANA	LYSE	S RE	QUES	TED	•
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals			Notes
र्ठ्यका			OF A-F	3/2/09	1300	50;1	6/5	\bigvee			\mathbf{N}		V		·	Compasite into
5902			OD F		1305	ŀ		X.	Δ		X		Λ		·	one same
5803			og _F	V	1310	1		\	/ \	·	\triangle					
						<u> </u>						". ·				perce email
•																2/5/09
		•			•											4/ 5/01 M{
	•								1							
				·												
				, ' .												
																
							·				Saı	nples	tece	ved	at <u>.5</u>	
								•				, i				

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029

Ph. (206) 285-8282

Fax (206) 283-5044

	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
	Relimquished by:	Charles Carel	SES	314/09	17:0c
١	Received by:	Brad Benger	FUBI	3/4/cm	17.00
1	Relinquished by:				
•	Received by:				

FORMS\COC\SESGEMSR1.DOC (Revision 1)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

March 10, 2009

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the testing of material submitted on March 4, 2009 from the NCPCS_0592-001-01_20090304, F&BI 903045 project. There are 4 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Erin Rothman, Chuck Cacek

SOU0310R.DOC

FRIEDMAN & BRUYA, INC. ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on March 4, 2009 by Friedman & Bruya, Inc. from the Sound Environmental Strategies NCPCS_0592-001-01_20090304, F&BI 903045 project. Samples were logged in under the laboratory ID's listed below.

Laboratory ID Sound Environmental Strategi
--

903045-01 Rinsate Blank 903045-02 Trip Blank

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304, F&BI 903045

Date Extracted: 03/06/09 Date Analyzed: 03/06/09

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 52-124)
Rinsate Blank	<1	5	11	6	220	88
Trip Blank 903045-02	<1	<1	<1	<3	<100	71
Method Blank	<1	<1	<1	<3	<100	73

ENVIRONMENTAL CHEMISTS

Date of Report: 03/10/09 Date Received: 03/04/09

Project: NCPCS_0592-001-01_20090304, F&BI 903045

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 903041-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

		Percent					
	Reporting	Spike	Recovery	Acceptance			
Analyte	Units	Level	LCS	Criteria			
Benzene	ug/L (ppb)	50	100	65-118			
Toluene	ug/L (ppb)	50	105	72-122			
Ethylbenzene	ug/L (ppb)	50	98	73-126			
Xylenes	ug/L (ppb)	150	98	74-118			
Gasoline	ug/L (ppb)	1,000	97	69-134			

ENVIRONMENTAL CHEMISTS

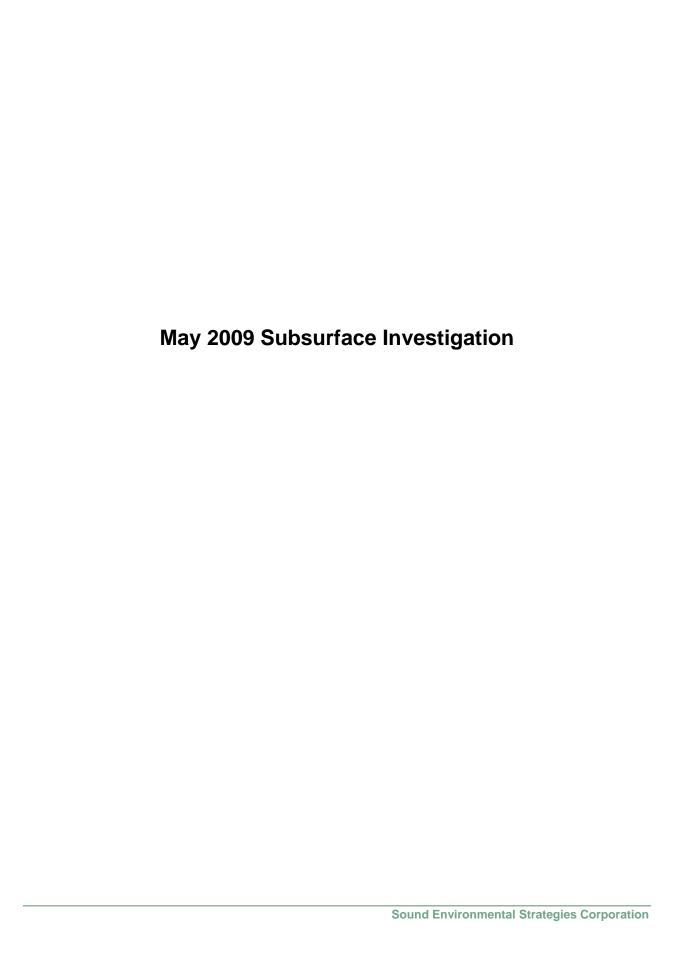
Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- dv Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- \boldsymbol{J} The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.

Send Report To Prome Bixty Co. Content of Co	903	04	5		•		SAMPLE (CHAIN O	F CU	STO	DY	٠ ـ	ME	, (131	04	100	
City, State, ZIP Seath LAA 93134 Phone #206-304-1920 Fax # 206-304-1906 REMARKS Phone #206-304-1920 Fax # 206-304-1906 Sample ID Sample Lab Date Time Sampled Matrix # of Harris # of	Send Rep	oort To	o fryen	mnacio	<u> </u>	Strete	100 No.7	NameN TO	10. Pet	r/ 01•	دعسم	3 :<	₽O)))#	3-	□ Sta	TURN ndard SH charge	AROUND TIME (2 Weeks) as authorized by:
Sample ID Sample Lab Date Sampled Matrix # of jars Fig. 8 4 5 500 500 500 500 500 500 500 500 500	City, Sta	te, ZII	Seat.	He wa	4 9	3134	— REMAR	RKS				Q			4	□ Ret □ Wil	pose at urn sa l call w	fter 30 days mples
Rins te B.S. 23309 1200 West 2 x x 1 Hold trainly 2 x x x 1 General 3/5/9		· ·		 	j.		T	T: -		 					1		STED.	<u> </u>
Trig Black 22 X X X 4 4 a commit 3/5/9	Sample	·ID	_		ID		•	Matrix		NWTPH-Dx	NWTPH-Gx	BTEX by 80211	VOC's by 8260	SVOC's by 8270	RCRA-8 Metal		•	Notes
	Rinste	BLS				3/3/09	1200	للادياح	2		×					·		Hold Yank
	TripB	hit.			OZ A·B			<u> </u>	2		×	×			<u>. </u>	<u> </u>	<u> </u>	
				<u> </u>				ļ <u>.</u>	<u> </u>				<u> </u>			ļ	ļ	3/5/9
	<u> </u>			ļ			ļ	 						". ·	<u> </u>			MC
						<u> </u>	<u>.</u>		<u> </u>								-	
	_				<u> </u>	,		 							 			
						-		 		<u> </u>		-				ļ.—-	ļ.,	
							· ·	 					·	•				
	· · · · · · · · · · · · · · · · · · ·						• .	 		· ·	<u></u>				<u> </u>	 	-	
								<u> </u>										
					<u> </u>			ļ										
								1			<u>.</u>					<u> </u>		

Friedman & Bruya, Inc. 3012 16th Avenue West Seattle, WA 98119-2029 Ph. (206) 285-8282

Fax (206) 283-5044


Retinquished by:

Received by:

Received by:

PRINT NAME	COMPANY	DATE	TIME	
Charles Cacch	SES	3 4 9	17:0C	
Mad Bens	FART	3/4/19	1.7'cc	
		5		

FORMS\COC\SESGEMSR1.DOC (Revision 1)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

June 4, 2009

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the testing of material submitted on May 20, 2009 from the SOU_NCPCS 0592-001-01_20090520, F&BI 905190 project. There are 27 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures

c: Chuck Cacek, Erin Rothman

SOU0604R.DOC

CASE NARRATIVE

This case narrative encompasses samples received on May 20, 2009 by Friedman & Bruya, Inc. from the Sound Environmental Strategies SOU_NCPCS 0592-001-01_20090520, F&BI 905190 project. Samples were logged in under the laboratory ID's listed below.

T. 1 TD	G 15 1 16 1
<u>Laboratory ID</u>	Sound Environmental Strategies
905190-01	B27-04
905190-02	B27-08
905190-03	B27-12
905190-04	B27-14.5
905190-05	B32-04
905190-06	B32-08
905190-07	B32-12
905190-08	B32-15
905190-09	B28-04
905190-10	B28-10.5
905190-11	B28-15
905190-12	B26-04
905190-13	B26-10
905190-14	B26-14
905190-15	B29-04
905190-16	B29-11
905190-17	B29-15
905190-18	B33-04
905190-19	B33-11
905190-20	B33-14
905190-21	B30-04
905190-22	B30-08
905190-23	B30-11
905190-24	B31-04
905190-25	B31-08
905190-26	B31-10
905190-27	Rinsate Blank
905190-28	Trip Blank
	•

Sample B30-11 was sent to Fremont Analytical for EPH/VPH analysis. The report is enclosed.

All quality control requirements were acceptable.

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

Date Extracted: 05/26/09

Date Analyzed: 05/26/09 and 05/27/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
B27-04 905190-01	ND	ND	ND	88
B27-08 905190-02	ND	ND	ND	90
B27-12 905190-03	ND	ND	ND	89
B27-14.5 905190-04	ND	ND	ND	91
B32-04 905190-05	ND	ND	ND	96
B32-08 905190-06	ND	ND	ND	91
B32-12 905190-07	ND	ND	ND	92
B32-15 905190-08	ND	ND	ND	94
B28-04 905190-09	ND	ND	ND	91
B28-10.5 905190-10	ND	ND	ND	91

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

Date Extracted: 05/26/09

Date Analyzed: 05/26/09 and 05/27/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	<u>Gasoline</u>	<u>Diesel</u>	<u>Heavy Oil</u>	Surrogate (% Recovery) (Limit 50-150)
B26-04 905190-12	ND	ND	ND	93
B26-10 905190-13	ND	ND	ND	96
B26-14 905190-14	ND	ND	ND	92
B29-04 905190-15	ND	ND	ND	90
B29-15 905190-17	ND	ND	ND	91
B33-04 905190-18	ND	ND	ND	91
B33-11 905190-19	ND	ND	ND	93
B33-14 905190-20	ND	ND	ND	93
B30-04 905190-21	ND	ND	ND	94
B31-04 905190-24	ND	ND	ND	94

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

Date Extracted: 05/26/09

Date Analyzed: 05/26/09 and 05/27/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR GASOLINE, DIESEL AND HEAVY OIL BY NWTPH-HCID Results Reported as Not Detected (ND) or Detected (D)

THE DATA PROVIDED BELOW WAS PERFORMED PER THE GUIDELINES ESTABLISHED BY THE WASHINGTON DEPARTMENT OF ECOLOGY AND WERE NOT DESIGNED TO PROVIDE INFORMATION WITH REGARDS TO THE ACTUAL IDENTIFICATION OF ANY MATERIAL PRESENT

Sample ID Laboratory ID	Gasoline	<u>Diesel</u>	<u>Heavy Oil</u>	(% Recovery) (Limit 50-150)
B31-08 905190-25	ND	ND	ND	91
B31-10 905190-26	ND	ND	ND	90
Method Blank	ND	ND	ND	91
Method Blank	ND	ND	ND	93

ND - Material not detected at or above 20 mg/kg gas, 50 mg/kg diesel and 250 mg/kg heavy oil.

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

Date Extracted: 05/26/09 Date Analyzed: 05/26/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Gasoline Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
B30-11 905190-23	25	146
Method Blank	<2	103

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

Date Extracted: 05/27/09 Date Analyzed: 05/28/09

RESULTS FROM THE ANALYSIS OF THE WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported as ug/L (ppb)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 52-124)
Rinsate Blank 905190-27	<1	<1	<1	<3	<100	95
Trip Blank 905190-28	<1	<1	<1	<3	<100	94
Method Blank	<1	<1	<1	<3	<100	81

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

Date Extracted: 05/26/09

Date Analyzed: 05/26/09 and 05/27/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (% Recovery) (Limit 50-150)
B28-15 905190-11	< 0.02	0.03	< 0.02	0.07	13	98
B29-11 d 905190-16 1/10	< 0.02	0.91	3.9	2.7	310	ip
B30-08 905190-22	<0.02	<0.02	0.14	0.12	27	119
Method Blank	< 0.02	< 0.02	< 0.02	< 0.06	<2	92

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

Date Extracted: 05/26/09 Date Analyzed: 05/27/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported on a Dry Weight Basis Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	Diesel Range (C ₁₀ -C ₂₅)	Motor Oil Range (C ₂₅ -C ₃₆)	Surrogate (% Recovery) (Limit 50-150)
B28-15 905190-11	< 50	<250	106
B29-11 905190-16	<50	<250	106
B30-08 905190-22	1,200	<250	97
B30-11 905190-23	770	<250	110
Method Blank	< 50	<250	98

Client ID: B28-15 Client: Sound Environmental Strategies Project: SOU_NCPCS 0592-001-01_20090520 Date Received: 05/20/09

Lab ID: Date Extracted: 05/27/09 905190-11 Date Analyzed: 05/27/09 Data File: 905190-11.062 Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Lower Upper Limit: **Internal Standard:** % Recovery: Limit: 60 Holmium 89 125

Concentration

Analyte: mg/kg (ppm)

Lead 12.0

Client ID: B29-11 Client: Sound Environmental Strategies
Date Received: 05/20/09 Project: SOU_NCPCS 0592-001-01_20090520

 Date Extracted:
 05/27/09
 Lab ID:
 905190-16

 Date Analyzed:
 05/27/09
 Data File:
 905190-16.063

 Matrix:
 Soil
 Instrument:
 ICPMS1

 Units:
 mg/kg (ppm)
 Operator:
 btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 97 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 6.18

Client ID: B30-08 Client: Sound Environmental Strategies
Date Received: 05/20/09 Project: SOU_NCPCS 0592-001-01_20090520

 Date Extracted:
 05/27/09
 Lab ID:
 905190-22

 Date Analyzed:
 05/27/09
 Data File:
 905190-22.064

 Matrix:
 Soil
 Instrument:
 ICPMS1

 Units:
 mg/kg (ppm)
 Operator:
 btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 95 60 125

Analyte: Concentration mg/kg (ppm)

Lead 4.87

Client ID: B30-11 Client: Sound Environmental Strategies
Date Received: 05/20/09 Project: SOU_NCPCS 0592-001-01_20090520

 Date Extracted:
 05/27/09
 Lab ID:
 905190-23

 Date Analyzed:
 05/27/09
 Data File:
 905190-23.065

 Matrix:
 Soil
 Instrument:
 ICPMS1

 Units:
 mg/kg (ppm)
 Operator:
 btb

Lower Upper Internal Standard: % Recovery: Limit: Limit:

Holmium 97 60 125

Concentration

Analyte: mg/kg (ppm)

Lead 4.78

Client ID: Method Blank Client: Sound Environmental Strategies
Date Received: NA Project: SOU_NCPCS 0592-001-01_20090520

Date Extracted:05/27/09Lab ID:I9-217 mbDate Analyzed:05/27/09Data File:I9-217 mb.059Matrix:SoilInstrument:ICPMS1Units:mg/kg (ppm)Operator:btb

Holmium 97 60 125

Analyte: Concentration mg/kg (ppm)

Lead <1

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B30-11 Client: Sound Environmental Strategies
Date Received: 05/20/09 Project: SOU_NCPCS 0592-001-01_20090520

Date Extracted:05/29/09Lab ID:905190-23Date Analyzed:05/29/09Data File:052904.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	63	42	152
Toluene-d8	66	36	149
4-Bromofluorobenzene	68	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	<0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: Method Blank Client: Sound Environmental Strategies
Date Received: NA Project: SOU_NCPCS 0592-001-01_20090520

Date Extracted:05/29/09Lab ID:090709 mb2Date Analyzed:05/29/09Data File:052903.DMatrix:SoilInstrument:GCMS5Units:mg/kg (ppm)Operator:MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	100	42	152
Toluene-d8	102	36	149
4-Bromofluorobenzene	107	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Styrene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Isopropylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromoform	< 0.05
2,2-Dichloropropane	< 0.05	n-Propylbenzene	< 0.05
cis-1,2-Dichloroethene	< 0.05	Bromobenzene	< 0.05
Chloroform	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2-Butanone (MEK)	< 0.5	1,1,2,2-Tetrachloroethane	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,3-Trichloropropane	< 0.05
1,1,1-Trichloroethane	< 0.05	2-Chlorotoluene	< 0.05
1,1-Dichloropropene	< 0.05	4-Chlorotoluene	< 0.05
Carbon tetrachloride	< 0.05	tert-Butylbenzene	< 0.05
Benzene	< 0.03	1,2,4-Trimethylbenzene	< 0.05
Trichloroethene	< 0.03	sec-Butylbenzene	< 0.05
1,2-Dichloropropane	< 0.05	p-Isopropyltoluene	< 0.05
Bromodichloromethane	< 0.05	1,3-Dichlorobenzene	< 0.05
Dibromomethane	< 0.05	1,4-Dichlorobenzene	< 0.05
4-Methyl-2-pentanone	< 0.5	1,2-Dichlorobenzene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Toluene	< 0.05	1,2,4-Trichlorobenzene	< 0.25
trans-1,3-Dichloropropene	< 0.05	Hexachlorobutadiene	< 0.25
1,1,2-Trichloroethane	< 0.05	Naphthalene	< 0.05
2-Hexanone	< 0.5	1,2,3-Trichlorobenzene	< 0.25

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: B30-11 Client: Sound Environmental Strategies
Date Received: 05/20/09 Project: SOU_NCPCS 0592-001-01_20090520

 Date Extracted:
 05/27/09
 Lab ID:
 905190-23 1/5

 Date Analyzed:
 06/01/09
 Data File:
 060107.D

 Matrix:
 Soil
 Instrument:
 GCMS6

 Units:
 mg/kg (ppm)
 Operator:
 YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 82 50 150 Benzo(a)anthracene-d12 83 35 159

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene 0.043 Fluorene 0.10 Phenanthrene 0.086 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

Analysis For Semivolatile Compounds By EPA Method 8270D SIM

Client Sample ID: Method Blank Client: Sound Environmental Strategies
Date Received: NA Project: SOU_NCPCS 0592-001-01_20090520

Date Extracted: 05/27/09 Lab ID: 09721mb2 1/5
Date Analyzed: 05/27/09 Data File: 052711.D
Matrix: Soil Instrument: GCMS6
Units: mg/kg (ppm) Operator: YA

Lower Upper Surrogates: % Recovery: Limit: Limit: Anthracene-d10 81 50 150 Benzo(a)anthracene-d12 80 50 129

Concentration Compounds: mg/kg (ppm) Naphthalene < 0.01 Acenaphthylene < 0.01 Acenaphthene < 0.01 Fluorene < 0.01 Phenanthrene < 0.01 Anthracene < 0.01 Fluoranthene < 0.01 Pyrene < 0.01 Benz(a)anthracene < 0.01 Chrysene < 0.01 Benzo(a)pyrene < 0.01 Benzo(b)fluoranthene < 0.01 Benzo(k)fluoranthene < 0.01 Indeno(1,2,3-cd)pyrene < 0.01 Dibenz(a,h)anthracene < 0.01 Benzo(g,h,i)perylene < 0.01

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS GASOLINE USING METHOD NWTPH-Gx

Laboratory Code: 905232-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Gasoline	mg/kg (ppm)	<2	<2	nm

			Percent		
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Gasoline	mg/kg (ppm)	20	99	70-130	•

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 905220-25 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	ug/L (ppb)	<1	<1	nm
Toluene	ug/L (ppb)	<1	<1	nm
Ethylbenzene	ug/L (ppb)	<1	<1	nm
Xylenes	ug/L (ppb)	<3	<3	nm
Gasoline	ug/L (ppb)	<100	<100	nm

J	v	•	Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Benzene	ug/L (ppb)	50	99	65-118
Toluene	ug/L (ppb)	50	99	72-122
Ethylbenzene	ug/L (ppb)	50	100	73-126
Xylenes	ug/L (ppb)	150	98	74-118
Gasoline	ug/L (ppb)	1,000	94	69-134

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 905232-01 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Benzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Toluene	mg/kg (ppm)	< 0.02	< 0.02	nm
Ethylbenzene	mg/kg (ppm)	< 0.02	< 0.02	nm
Xylenes	mg/kg (ppm)	< 0.06	< 0.06	nm
Gasoline	mg/kg (ppm)	<2	<2	nm

	Percent				
	Reporting	Spike	Recovery	Acceptance	
Analyte	Units	Level	LCS	Criteria	
Benzene	mg/kg (ppm)	0.5	98	70-130	
Toluene	mg/kg (ppm)	0.5	96	70-130	
Ethylbenzene	mg/kg (ppm)	0.5	90	70-130	
Xylenes	mg/kg (ppm)	1.5	93	70-130	
Gasoline	mg/kg (ppm)	20	99	70-130	

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

Laboratory Code: 905209-08 (Duplicate)

		(Dry wt)	(Dry wt)	Relative	
	Reporting	Sample	Duplicate	Percent	Acceptance
Analyte	Units	Result	Result	Difference	Criteria
Diesel Extended	mg/kg (ppm)	530	650	20	0-20

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	mg/kg (ppm)	5,000	114	111	79-144	3

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR TOTAL METALS USING EPA METHOD 200.8

Laboratory Code: 905199-11 (Duplicate)

				Relative	
		Sample	Duplicate	Percent	Acceptance
Analyte	Reporting Units	Result	Result	Difference	Criteria
Lead	mg/kg (ppm)	4.07	5.45	29 a	0-20

Laboratory Code: 905199-11 (Matrix Spike)

				Percent		
		Spike	Sample	Recovery	Acceptance	
Analyte	Reporting Units	Level	Result	MS	Criteria	_
Lead	mg/kg (ppm)	20	4.07	89 b	50-150	_

			Percent	
		Spike	Recovery	Acceptance
Analyte	Reporting Units	Level	LCS	Criteria
Lead	mg/kg (ppm)	20	98	70-130

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Laboratory Code: 905267-01 (Duplicate)

Analyte	Reporting Units	Sample Result	Duplicate Result	Relative Percent Difference (Limit 20)	
Dichlorodifluoromethane	mg/kg (ppm)	< 0.5	< 0.5	nm	
Chloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm	
Vinyl chloride	mg/kg (ppm)	< 0.05	< 0.05	nm	
Bromomethane	mg/kg (ppm)	< 0.5	< 0.5	nm	
Chloroethane		< 0.5	< 0.5		
	mg/kg (ppm)			nm	
Trichlorofluoromethane	mg/kg (ppm)	< 0.5	< 0.5	nm	
Acetone	mg/kg (ppm)	< 0.5	< 0.5	nm	
1,1-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm	
Methylene chloride	mg/kg (ppm)	< 0.5	< 0.5	nm	
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.05	< 0.05	nm	
rans-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,1-Dichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm	
2,2-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm	
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm	
Chloroform	mg/kg (ppm)	< 0.05	< 0.05	nm	
2-Butanone (MEK)	mg/kg (ppm)	< 0.5	< 0.5	nm	
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,1-Dichloropropene		< 0.05	<0.05		
	mg/kg (ppm)			nm	
Carbon tetrachloride	mg/kg (ppm)	< 0.05	< 0.05	nm	
Benzene	mg/kg (ppm)	< 0.03	< 0.03	nm	
Γrichloroethene	mg/kg (ppm)	< 0.03	< 0.03	nm	
1,2-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm	
Bromodichloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm	
Dibromomethane	mg/kg (ppm)	< 0.05	< 0.05	nm	
1-Methyl-2-pentanone	mg/kg (ppm)	< 0.5	< 0.5	nm	
cis-1,3-Dichloropropene	mg/kg (ppm)	< 0.05	< 0.05	nm	
Toluene	mg/kg (ppm)	< 0.05	< 0.05	nm	
rans-1,3-Dichloropropene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,1,2-Trichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm	
2-Hexanone	mg/kg (ppm)	< 0.5	< 0.5	nm	
1,3-Dichloropropane	mg/kg (ppm)	< 0.05	<0.05	nm	
r,s-Dichioropropane Fetrachloroethene		0.48	0.5	4	
	mg/kg (ppm)				
Dibromochloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.05	< 0.05	nm	
Chlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
Ethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm	
n,p-Xylene	mg/kg (ppm)	< 0.1	< 0.1	nm	
o-Xylene	mg/kg (ppm)	< 0.05	< 0.05	nm	
Styrene	mg/kg (ppm)	< 0.05	< 0.05	nm	
sopropylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
Bromoform	mg/kg (ppm)	< 0.05	< 0.05	nm	
n-Propylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
Bromobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,3,5-Trimethylbenzene	mg/kg (ppm)	1.6	1.6	0	
		< 0.05	< 0.05		
1,1,2,2-Tetrachloroethane	mg/kg (ppm)			nm	
1,2,3-Trichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm	
2-Chlorotoluene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1-Chlorotoluene	mg/kg (ppm)	< 0.05	< 0.05	nm	
ert-Butylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,2,4-Trimethylbenzene	mg/kg (ppm)	1.6	1.7	6	
sec-Butylbenzene	mg/kg (ppm)	0.14	0.15	7	
o-Isopropyltoluene	mg/kg (ppm)	0.38	0.40	5	
1,3-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,4-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,2-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,2-Dibromo-3-chloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm	
1,2,4-Trichlorobenzene		<0.05	<0.05		
	mg/kg (ppm)	<0.1 <0.1	<0.1 <0.1	nm nm	
Hexachlorobutadiene	mg/kg (ppm)				
Hexacniorobutagiene Naphthalene 1,2,3-Trichlorobenzene	mg/kg (ppm) mg/kg (ppm) mg/kg (ppm)	0.056 <0.1	0.055 <0.1	2 nm	

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

zaboratory code. Zaboratory co.	reror Sumpre		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	2.5	98	89	25-133	10
Chloromethane	mg/kg (ppm)	2.5	98	90	48-121	9
Vinyl chloride	mg/kg (ppm)	2.5	107	102	57-125	5
Bromomethane	mg/kg (ppm)	2.5	98	90	55-141	9
Chloroethane	mg/kg (ppm)	2.5	105	104	43-152	1
Trichlorofluoromethane	mg/kg (ppm)	2.5	119	107	37-158	11
Acetone	mg/kg (ppm)	2.5	132 vo	129	69-129	2
1,1-Dichloroethene	mg/kg (ppm)	2.5	88	101	60-123	14
Methylene chloride	mg/kg (ppm)	2.5	111	96	57-130	14
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	94	93	82-112	1
trans-1,2-Dichloroethene	mg/kg (ppm)	2.5	109	104	78-118	5
1,1-Dichloroethane	mg/kg (ppm)	2.5	107	105	81-116	2
2,2-Dichloropropane	mg/kg (ppm)	2.5	115	115	74-122	0
cis-1,2-Dichloroethene	mg/kg (ppm)	2.5	109	106	82-118	3
Chloroform	mg/kg (ppm)	2.5	110	107	80-117	3
2-Butanone (MEK)	mg/kg (ppm)	2.5	121	122	63-146	1
1,2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	109	108	82-120	1
1,1,1-Trichloroethane	mg/kg (ppm)	2.5	116	114	79-120	2
1,1-Dichloropropene	mg/kg (ppm)	2.5	107	104	76-122	3
Carbon tetrachloride	mg/kg (ppm)	2.5	102	101	70-125	1
Benzene	mg/kg (ppm)	2.5	103	101	80-112	2
Trichloroethene	mg/kg (ppm)	2.5	104	104	79-115	0
1,2-Dichloropropane	mg/kg (ppm)	2.5	106	106	84-119	Õ
Bromodichloromethane	mg/kg (ppm)	2.5	121	119	87-122	2
Dibromomethane	mg/kg (ppm)	2.5	111	112	87-118	ĩ
4-Methyl-2-pentanone	mg/kg (ppm)	2.5	134 vo	135 vo	88-124	1
cis-1,3-Dichloropropene	mg/kg (ppm)	2.5	115	112	84-125	3
Toluene	mg/kg (ppm)	2.5	102	100	80-116	2
trans-1,3-Dichloropropene	mg/kg (ppm)	2.5	117	118	84-129	1
1,1,2-Trichloroethane	mg/kg (ppm)	2.5	108	107	85-117	1
2-Hexanone	mg/kg (ppm)	2.5	139 vo	138 vo	88-129	1
1,3-Dichloropropane	mg/kg (ppm)	2.5	106	105	84-119	1
Tetrachloroethene	mg/kg (ppm)	2.5	103	101	79-119	2
Dibromochloromethane	mg/kg (ppm)	2.5	105	102	76-123	3
1.2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	110	102	86-120	1
Chlorobenzene	mg/kg (ppm)	2.5	102	100	81-111	2
Ethylbenzene	mg/kg (ppm)	2.5	102	100	81-115	2
1,1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	119	116	82-121	3
m,p-Xylene	mg/kg (ppm)	5	99	97	80-118	2
o-Xylene	mg/kg (ppm)	2.5	103	101	78-122	2
Styrene	mg/kg (ppm)	2.5	104	101	84-121	3
Isopropylbenzene	mg/kg (ppm)	2.5	103	101	79-124	2
Bromoform	mg/kg (ppm)	2.5	106	105	73-111	ĩ
n-Propylbenzene	mg/kg (ppm)	2.5	104	102	80-123	2
Bromobenzene	mg/kg (ppm)	2.5	104	103	83-117	1
1,3,5-Trimethylbenzene	mg/kg (ppm)	2.5	103	101	81-122	2
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	108	107	82-119	1
1,2,3-Trichloropropane	mg/kg (ppm)	2.5	106	106	82-116	0
2-Chlorotoluene	mg/kg (ppm)	2.5	103	101	78-120	2
4-Chlorotoluene	mg/kg (ppm)	2.5	104	101	81-119	3
tert-Butylbenzene	mg/kg (ppm)	2.5	103	101	79-124	2
1,2,4-Trimethylbenzene	mg/kg (ppm)	2.5	104	101	81-123	3
sec-Butylbenzene	mg/kg (ppm)	2.5	103	100	79-124	3
p-Isopropyltoluene	mg/kg (ppm)	2.5	103	101	82-125	2
1,3-Dichlorobenzene	mg/kg (ppm)	2.5	103	100	80-116	2
1,4-Dichlorobenzene	mg/kg (ppm)	2.5	100	98	59-133	2
1,2-Dichlorobenzene	mg/kg (ppm)	2.5	101	100	82-116	1
1,2-Dichiorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm) mg/kg (ppm)	2.5	101	105	74-126	2
1,2,4-Trichlorobenzene	mg/kg (ppm)	2.5 2.5	107	98	73-124	2
Hexachlorobutadiene	mg/kg (ppm) mg/kg (ppm)	2.5	102	98	74-128	4
Naphthalene	mg/kg (ppm) mg/kg (ppm)	2.5	102	98	74-128	2
1.2.3-Trichlorobenzene	mg/kg (ppm)	2.5	101	98	76-125	3
1,2,0 1.Icinorobenzene	mg/ng (ppm)	2.0	101	0.0	10 120	3

Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

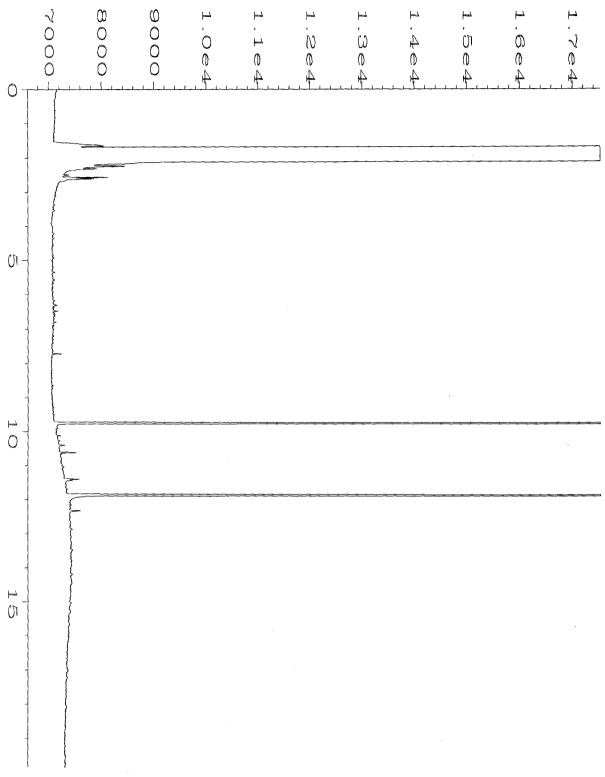
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM

Laboratory Code: 905199-11 (Duplicate)

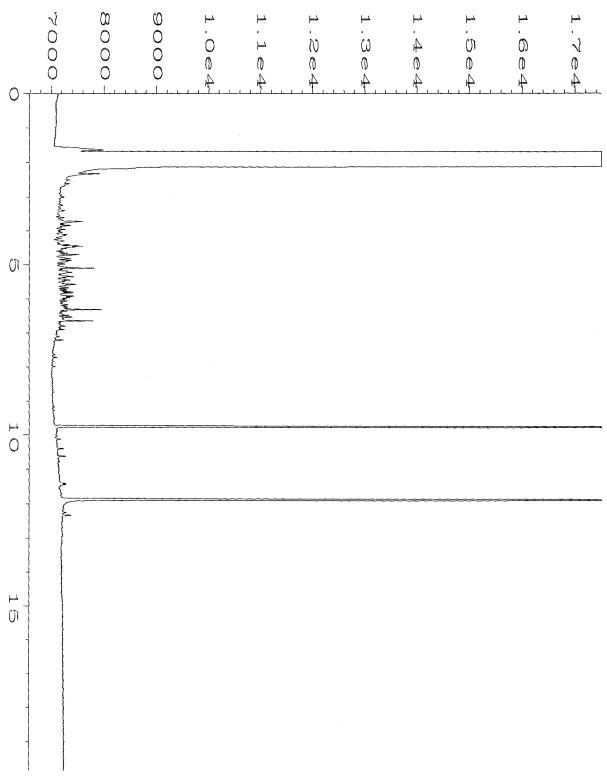
Laboratory Code. 303133-11 (Duplicate)										
Descritions	C 1 -	Development	Relative Percent							
Reporting	Sample	•	Difference							
Units	Result	Result	(Limit 20)							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
mg/kg (ppm)	< 0.01	< 0.01	nm							
	Reporting Units mg/kg (ppm)	Reporting Units Sample Result mg/kg (ppm) <0.01	Reporting Units Sample Result Duplicate Result mg/kg (ppm) <0.01							

Laboratory Code: 905199-11 (Matrix Spike)

	(,		Percent	
	Reporting	Spike	Sample	Recovery	Acceptance
Analyte	Units	Level	Result	MS	Criteria
Naphthalene	mg/kg (ppm)	0.17	< 0.01	86	26-148
Acenaphthylene	mg/kg (ppm)	0.17	< 0.01	76	40-131
Acenaphthene	mg/kg (ppm)	0.17	< 0.01	81	58-108
Fluorene	mg/kg (ppm)	0.17	< 0.01	82	57-113
Phenanthrene	mg/kg (ppm)	0.17	< 0.01	81	30-138
Anthracene	mg/kg (ppm)	0.17	< 0.01	84	42-132
Fluoranthene	mg/kg (ppm)	0.17	< 0.01	81	45-145
Pyrene	mg/kg (ppm)	0.17	< 0.01	81	44-139
Benz(a)anthracene	mg/kg (ppm)	0.17	< 0.01	72	47-113
Chrysene	mg/kg (ppm)	0.17	< 0.01	84	45-122
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	< 0.01	76	24-145
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	< 0.01	82	51-118
Benzo(a)pyrene	mg/kg (ppm)	0.17	< 0.01	78	30-134
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	< 0.01	104	40-138
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	< 0.01	79	51-122
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	< 0.01	79	54-115


Project: SOU_NCPCS 0592-001-01_20090520, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR PNA'S BY EPA METHOD 8270D SIM


			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Naphthalene	mg/kg (ppm)	0.17	74	89	72-112	18
Acenaphthylene	mg/kg (ppm)	0.17	77	79	68-112	3
Acenaphthene	mg/kg (ppm)	0.17	85	85	70-111	0
Fluorene	mg/kg (ppm)	0.17	84	86	69-110	2
Phenanthrene	mg/kg (ppm)	0.17	86	86	68-111	0
Anthracene	mg/kg (ppm)	0.17	92	88	67-110	4
Fluoranthene	mg/kg (ppm)	0.17	86	86	68-114	0
Pyrene	mg/kg (ppm)	0.17	86	86	68-114	0
Benz(a)anthracene	mg/kg (ppm)	0.17	74	77	58-108	4
Chrysene	mg/kg (ppm)	0.17	87	87	64-115	0
Benzo(b)fluoranthene	mg/kg (ppm)	0.17	76	79	54-119	4
Benzo(k)fluoranthene	mg/kg (ppm)	0.17	97	94	61-123	3
Benzo(a)pyrene	mg/kg (ppm)	0.17	84	79	54-111	6
Indeno(1,2,3-cd)pyrene	mg/kg (ppm)	0.17	76	77	52-118	1
Dibenz(a,h)anthracene	mg/kg (ppm)	0.17	83	81	57-119	2
Benzo(g,h,i)perylene	mg/kg (ppm)	0.17	82	79	60-116	4

Data Qualifiers & Definitions

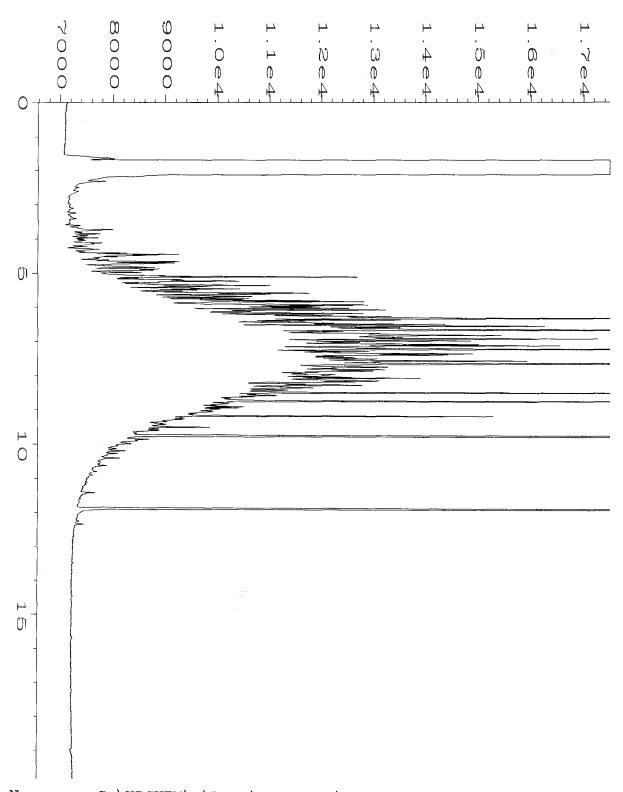
- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.


```
Data File Name
               : C:\HPCHEM\1\DATA\05-26-09\023F0701.D
Operator
                : ay
                                               Page Number
                                              Vial Number
Instrument
                : GC1
                                                               : 23
Sample Name
                : 905190-11
                                               Injection Number: 1
Run Time Bar Code:
                                               Sequence Line : 7
Acquired on
                : 27 May 09 01:25 AM
                                               Instrument Method: TPHD.MTH
Report Created on: 27 May 09 09:17 AM
                                              Analysis Method : TPHD.MTH
```

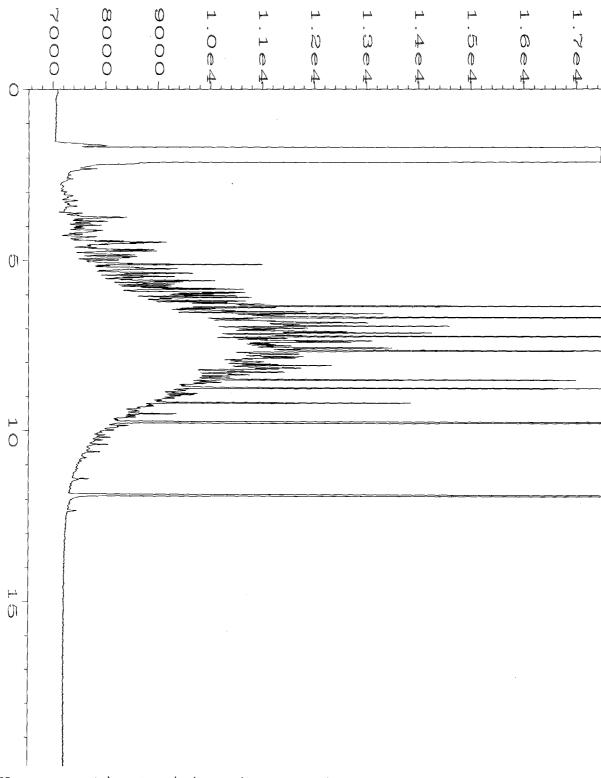


```
Data File Name : C:\HPCHEM\1\DATA\05-26-09\024F0701.D

Operator : ay Page Number : 1


Instrument : GC1 Vial Number : 24

Sample Name : 905190-16 Injection Number : 1


Run Time Bar Code: Sequence Line : 7

Acquired on : 27 May 09 01-52 AM
```

Acquired on : 27 May 09 01:52 AM Instrument Method: TPHD.MTH Report Created on: 27 May 09 09:17 AM Analysis Method : TPHD.MTH


```
: C:\HPCHEM\1\DATA\05-26-09\025F0701.D
Data File Name
Operator
                : ay
                                             Page Number
Instrument
                : GC1
                                             Vial Number
                                                              : 25
Sample Name
                : 905190-22
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 7
Acquired on : 27 May 09 02:19 AM
                                             Instrument Method: TPHD.MTH
Report Created on: 27 May 09 09:17 AM
                                             Analysis Method : TPHD.MTH
```



```
Data File Name : C:\HPCHEM\1\DATA\05-26-09\026F0901.D
Operator
                : ay
                                             Page Number
Instrument
                : GC1
                                             Vial Number
                                                            : 26
Sample Name
               : 905190-23
                                             Injection Number: 1
Run Time Bar Code:
                                             Sequence Line : 9
Acquired on : 27 May 09 03:39 AM
                                             Instrument Method: TPHD.MTH
Report Created on: 27 May 09 09:17 AM
                                             Analysis Method : TPHD.MTH
```


2930 Westlake Ave N Suite 100 Seattle, WA 98109 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman and Bruya Attn: Michael Erdahl 3012 16th Ave W. Seattle, WA 98119

RE: 905190

Fremont Project No: CHM090526-5

June 3rd, 2009

Michael:

Enclosed are the analytical results for the *905190* soil sample picked up by Fremont Analytical on May 26th, 2009.

The sample was received in good condition – in the proper containers, properly sealed, labeled and within holding time. The sample was contained in 2–40mL VOAs and 1 – 4oz soil jar. The sample was received in a cooler with gel ice with a cooler temperature of 6.6° C, which is within the laboratory recommended cooler temperature range (<4°C - 10°C). The sample was analyzed and stored in a refrigeration unit at the USEPA-recommended temperature of 4° C \pm 2°C.

Examination of this sample was conducted for the presence of the following:

- Volatile Petroleum Hydrocarbons in Soil by NWVPH
- Extractable Petroleum Hydrocarbons in Soil by NWEPH

All appropriate Quality Assurance / Quality Control method parameters have been applied.

Please contact the laboratory if you should have any questions about the report.

Thank you for using Fremont Analytical.

6Ph

Sincerely,

Michael Dee

Sr. Chemist / Principal

mikedee@fremontanalytical.com

2930 Westlake Ave. N., Suite 100 Seattle, WA 98109

> T: 206.352.3790 F: 206.352.7178

email: info@fremontanalytical.com

Analysis of Volatile Petroleum Hydrocarbons in Soil by NWVPH

Project: 905190

Client: Friedman and Bruya, Inc.

Client Project #: H-1877 Lab Project #: CHM090529-7

-					Duplicate		MS
NWVPH	MRL	Method	LCS	B-30-11	B-30-11	RPD	Batch
(mg/kg)		Blank					090529-7-2
Date Preserved				5/18/09	5/18/09	%	5/28/09
Date Analyzed		6/1/09	6/1/09	6/1/09	6/1/09		6/1/09
Matrix				Soil	Soil		Soil
-							
Targeted Analytes	0.05		050/				70%
methyl tert -butyl ether (MTBE)	0.05	nd	85%	nd 	nd		
Benzene	0.05	nd 	70%	nd 	nd		68%
Toluene	0.05	nd	71%	nd	nd	400/	94%
Ethylbenzene	0.05	nd	71%	0.29	0.33	13%	106%
Total Xylenes	0.05	nd	73%	0.50	0.55	10%	108%
Naphthalene	0.05	nd	85%	3.3	2.9	13%	110%
Hydrocarbon Parameters							
C5-C6 (FID) Aliphatics*	0.05	nd		nd	nd		
C6-C8 (FID) Aliphatics*	0.05	nd		19	20	5%	
C8-C10 (FID) Aliphatics*	0.05	nd		43	45	5%	
C10-C12 (FID) Aliphatics*	0.05	nd		130	130	0%	
C8-C10 (PID) Aromatics	0.05	nd		39	41	5%	
C10-C12 (PID) Aromatics	0.05	nd		50	52	4%	
C12-C13 (PID) Aromatics	0.05	nd		47	47	0%	
Surrogate Recovery							
Triflourotoluene		107%	112%	105%	110%		113%
Bromoflourobenzene		83%	89%	С	С		С

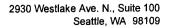
[&]quot;nd" Indicates not detected at listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

Surrogate = 65% to 135% LCS, LCSD = 65% to 135% Surrogates Concentration = 0.5 mg/kg Spike Concentration = 5.0 mg/kg

[&]quot;int" Indicates that interference prevents determination

^{***} Excludes MTBE and BTEX Compounds


[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;RPD" Indicates Relative Percent Difference

T: 206.352.3790 F: 206.352.7178

email: info@fremontanalytical.com

Analysis of Extractable Petroleum Hydrocarbons in Soil by NWEPH

Project: 905274

Client: Friedman and Bruya, Inc.

Client Project #: H-1877 Lab Project #: CHM090529-7

-					QA	QA Duplicate		MS
NWEPH	MRL	Method	LCS	B-30-11	Batch	Batch	RPD	B-30-11
(mg/kg)		Blank			090529-7-1	090529-7-1		
Date Extracted		6/1/09	6/1/09	6/1/09	6/1/09	6/1/09	%	6/1/09
Date Analyzed		6/1/09	6/1/09	6/1/09	6/1/09	6/1/09		6/1/09
Matrix				Soil	Soil	Soil		Soil
Aromatic Hyrdrocarbo	. /Pangos	1						
C8-C10	2.0	nd nd	110%	nd	11	11.2	2%	109%
C10-C12	2.0	nd	94%	4.9	11	9.2	18%	
C12-C16	2.0	nd	97%	6.4	48	36	29%	
C16-C21	2.0	nd	90%	4.6	56	44	24%	
C21-C34	2.0	nd	78%	nd	1.7	2.0	16%	70%
Aliphatic Hydrocarbon	(Ranges)							
C8-C10	2.0	nd	112%	9.9	47	46	2%	111%
C10-C12	2.0	nd	83%	45	160	170	6%	87%
C12-C16	2.0	nd	93%	110	430	440	2%	
C16-C21	2.0	nd	130%	160	800	860	7%	
C21-C34	2.0	nd	88%	3.0	77	70	10%	
Surrogate Recovery								
o-Terphenyl		112%	121%	70%	77%	74%		76%
1-Chlorooctadecane		84%	84%	110%	С	С		112%

[&]quot;nd" Indicates not detected at listed reporting limits

Acceptable RPD is determined to be less than 30% Acceptable Recovery Limits:

Surrogate = 60% to 140%

LCS, LCSD = 65% to 135%

Surrogates and Spike Concentration = 10 mg/kg

[&]quot;int" Indicates that interference prevents determination

^{*} Instrument Detection Limit

[&]quot;J" Indicates estimated value

[&]quot;MRL" Indicates Method Reporting Limit

[&]quot;LCS" Indicates Laboratory Control Sample

[&]quot;MS" Indicates Matrix Spike

[&]quot;MSD" Indicates Matrix Spike Duplicate "RPD" Indicates Relative Percent Difference

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Fax (206) 283-5044	Seattle, WA 98119-2029 Ph. (206) 285-8282	3012 16th Avenue West	Priedman & Bruya, Inc.									781	Sample ID Lab	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE	Phone # (206) 285-8282	To MP		Company Friedin	Send Report To Micha
Received by	Rollinguished by	***************************************			COMMISSION OF THE PROPERTY OF		***************************************		A CANADA AND A CAN			\$\frac{1}{2}\frac{1}{2	b Date Sampled		Fax #	Seattle, WA 98119	3012 Joth Ave W	Friedman and Bruva, Inc.	Michael Erdahl
	The state of the s		BIONATURE									(C)	Time Sampled	and a color of the	(206) 283-5044	Automorphische (Steine Steine Ste	endediction characteristic and management of the consequence of the co	X	manyahandhalidadhandhalaman (Carrer 11)) menor veri veri veri veri veri veri
		ean (note of the property of the second seco	A TOTAL CONTROL OF THE PROPERTY OF THE PROPERT	ON OWN COUNTRIES STATE OF THE S	California							5	Side of the state		Acceptable reading reading and the second se	Z	· ·	Z	
	2	Ĭ										W				REMARKS	008/00	PROJECT NAME/NO.	SUBCONTRACTER/
	を変える												Oil and Grease		Please Email Results merdahl@friedmanandbruya.com		0	AME/	
	1.		PRINT NAME									δ	БРН		Please Email Results			Š	
	Ta)Krawich		NAME.									<u>~</u>]	VEH	2					
	B							-			_		Nitrate	ALIANA	₩. 2. 0.	-			71.1.11.22.24.44.44.44.44.44.44.44.44.44.44.44.
													Sulfate	SES	[3		og okusus, oʻjillassa	anning property and the second	
	Ę,	Friedi							-		_		Alkalinity	REQU				5 0#	
	TRANSPORT ANTENIERA	Friedman & Bruya	NVGWOO					-			+			REQUESTED	**************************************			46	India Color Abel Show (10 South
	Š	Bruya	Š								+		kangangangan di 1880 canggan di Nagangan terungga kanta arang terunggan di Arang di Arang di Arang di Arang di			G	7	o u	
	<u>È</u>	- Andrews of the second												4	Ville	SA)	Sh	RUSH	
			DATE		SS Front Control Contr	***************************************	***************************************						2		© Return samples © Will call with instructions	SAMPLE DISPOSAL Dispose after 30 days	Rush charges authorized by	Standard (2 Wooks)	
	52	1 X	2186		Smalladdissidae o'isto en cibo o caborrandoeo o	den en home de la companya de la com	\$#####################################			Transport	Annual Menographic representation and a second second	***************************************	Notes	American establishment (1986 American) (1986 A	1C110118	OSAL.	and by		JUNE

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

July 24, 2009

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the additional testing of material submitted on May 20, 2009 from the SOU_NCPCS 0592-001-01_20090520, F&BI 905190 project.

The samples B30-08 and B30-11 were extracted and analyzed using a gas chromatograph with a flame ionization detector (GC/FID). The data generated yielded information on the boiling range and general chemical composition of the material present. The GC/FID traces are enclosed. A GC/FID trace of a standard consisting of normal alkanes is also provided for reference purposes.

Please contact us if additional consultation is needed by our firm in the interpretation of the analytical results provided. We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA. INC.

Kurt Johnson Chemist

Enclosures c: Chuck Cacek mcp/KJ SOU0724R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/09 Date Received: 05/20/09

Project: SOU NCPCS 0592-001-01 20090520, F&BI 905190

Date Extracted: 06/25/09 Date Analyzed: 06/25/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLE FOR FORENSIC EVALUATION BY CAPILLARY GAS CHROMATOGRAPHY USING A FLAME IONIZATION DETECTOR (FID)

Sample ID GC Characterization

B30-08 The GC trace using the flame ionization detector (FID) showed the presence of medium boiling compounds. The

patterns displayed by these peaks are indicative of a middle

distillate such as diesel fuel, fuel oil, or similar materials.

The medium boiling compounds appear as an irregular pattern of peaks on top of a broad hump or unresolved complex mixture (UCM). This material elutes from $n\text{-}C_8$ to $n\text{-}C_{24}$ showing a maximum near $n\text{-}C_{12}$. This correlates with a temperature range of approximately 130°C to 390°C with a maximum near 220°C. Within this range, the dominant peaks present are indicative of isoprenoids including norpristane, pristane, and phytane. A discernible pattern of peaks characteristic of the normal alkanes was not present. The abundance of isoprenoids in conjunction with the apparent absence of normal alkanes indicates that the fuel present has undergone substantial biological degradation.

The large peak seen near 25 minutes on the GC/FID trace is pentacosane, added as a quality assurance check for this GC analysis.

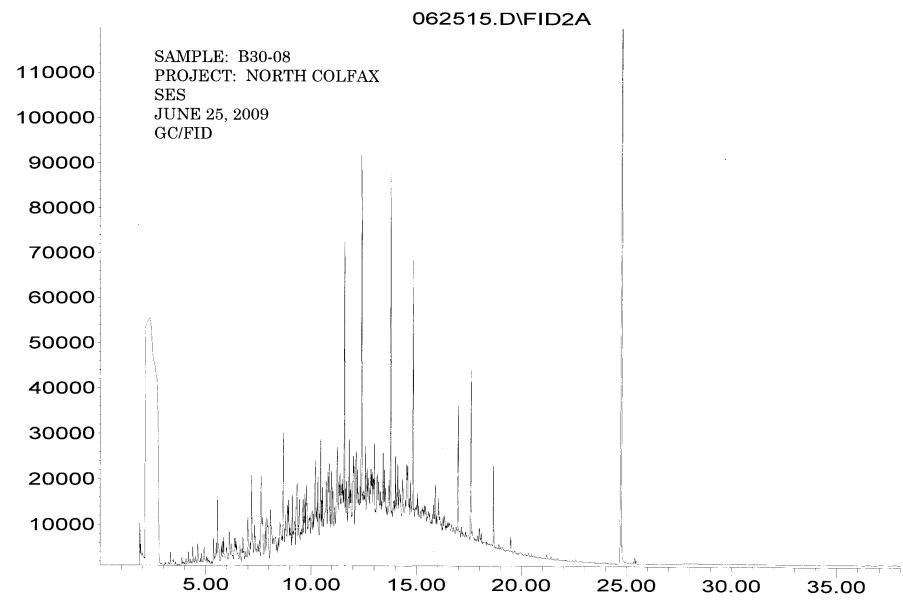
ENVIRONMENTAL CHEMISTS

Date of Report: 07/24/09 Date Received: 05/20/09

Project: SOU NCPCS 0592-001-01 20090520, F&BI 905190

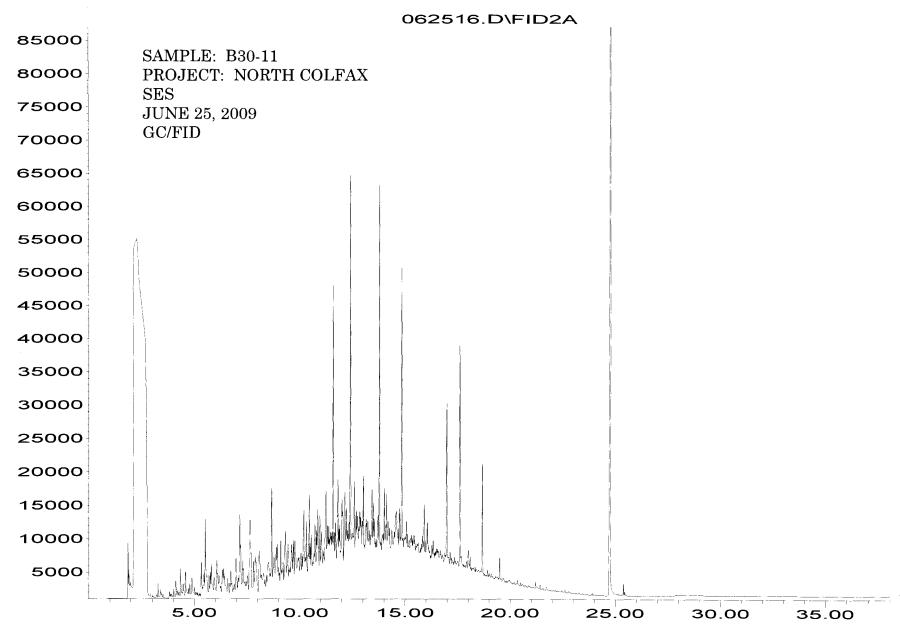
Date Extracted: 06/25/09 Date Analyzed: 06/25/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLE FOR FORENSIC EVALUATION BY CAPILLARY GAS CHROMATOGRAPHY USING A FLAME IONIZATION DETECTOR (FID)

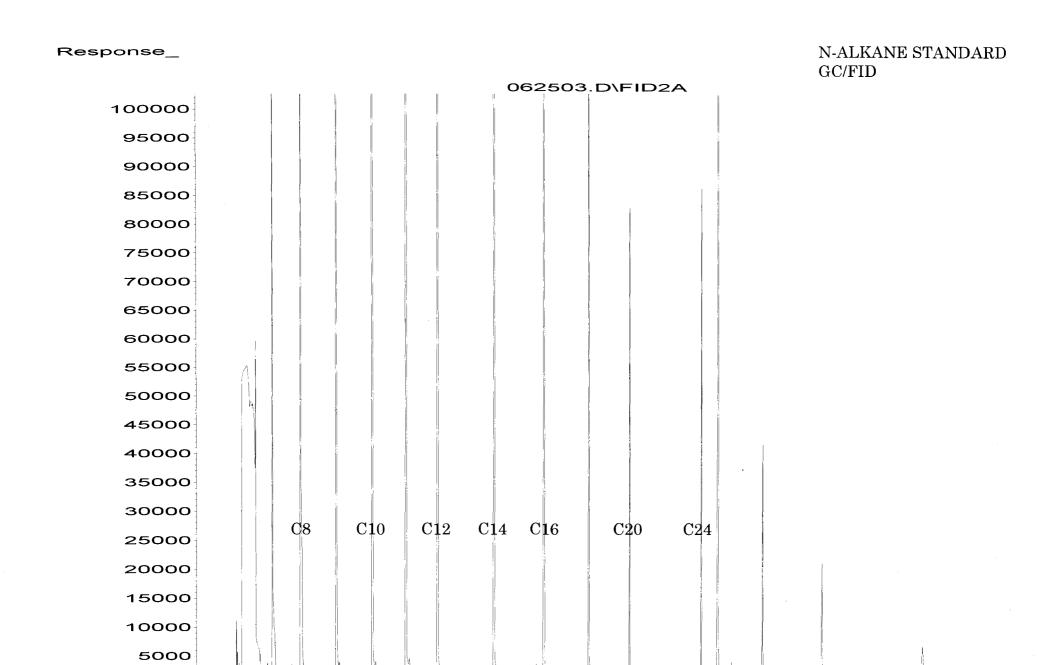

Sample ID GC Characterization

B30-11 The GC trace using the flame ionization detector (FID) showed the presence of medium boiling compounds. The patterns displayed by these peaks are indicative of a middle distillate such as diesel fuel, fuel oil, or similar materials.

The medium boiling compounds appear as an irregular pattern of peaks on top of a broad hump or unresolved complex mixture (UCM). This material elutes from *n*-C₈ to *n*-C₂₄ showing a maximum near *n*-C₁₃. This correlates with a temperature range of approximately 130°C to 390°C with a maximum near 240°C. Within this range, the dominant peaks present are indicative of isoprenoids including norpristane, pristane, and phytane. A discernible pattern of peaks characteristic of the normal alkanes was not present. The abundance of isoprenoids in conjunction with the apparent absence of normal alkanes indicates that the fuel present has undergone substantial biological degradation.


The large peak seen near 25 minutes on the GC/FID trace is pentacosane, added as a quality assurance check for this GC analysis.

Response_



Time

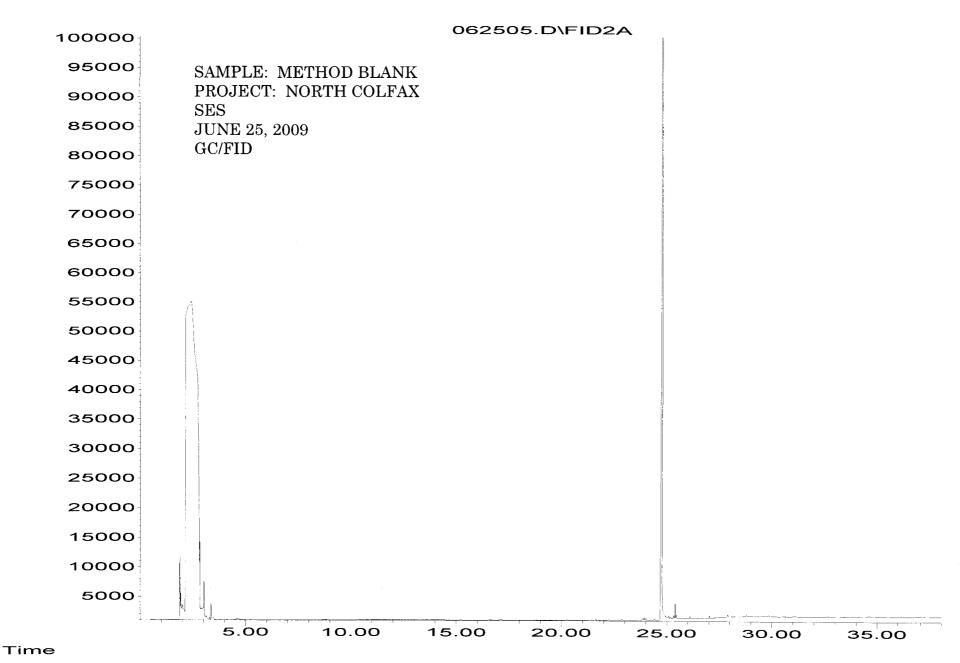
Response_

Time

15.00

20.00

25.00


30.00

35.00

5.00

10.00

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Charlene Morrow, M.S. Yelena Aravkina, M.S. Bradley T. Benson, B.S. Kurt Johnson, B.S. 3012 16th Avenue West Seattle, WA 98119-2029 TEL: (206) 285-8282 FAX: (206) 283-5044 e-mail: fbi@isomedia.com

August 26, 2009

Ryan Bixby, Project Manager Sound Environmental Strategies Corporation 2400 Airport Way S., Suite 200 Seattle, WA 98134-2020

Dear Mr. Bixby:

Included are the results from the additional testing of material submitted on May 20, 2009 from the North Colfax Petroleum Contamination Site 0592-001-01, F&BI 905190 project.

The sample B30-08 was extracted and analyzed using a gas chromatograph with a flame ionization detector (GC/FID). The data generated yielded information on the boiling range and general chemical composition of the material present. The GC/FID traces are enclosed. A GC/FID trace of a standard consisting of normal alkanes is also provided for reference purposes. In addition, the sample B30-08 was analyzed for volatile organic compounds using a GC fitted with a mass spectrometer (MS); and organometallic compounds using a GC fitted with an electron capture detector (ECD) as well as an inductively coupled plasma mass spectrometer (ICP-MS). The results of this testing, including the associated quality assurance, are also enclosed.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Kurt Johnson Chemist

Enclosures c: Chuck Cacek mcp/KJ sou0826R.DOC

ENVIRONMENTAL CHEMISTS

Date of Report: 08/26/09 Date Received: 05/20/09

Project: North Colfax Petroleum Contamination Site 0592-001-01, F&BI 905190

Date Extracted: 08/21/09 Date Analyzed: 08/21/09

RESULTS FROM THE ANALYSIS OF THE SOIL SAMPLE FOR FORENSIC EVALUATION BY CAPILLARY GAS CHROMATOGRAPHY USING A FLAME IONIZATION DETECTOR (FID)

Sample ID GC Characterization

B30-08 The GC trace using the flame ionization detector (FID)

showed the presence of medium boiling compounds. The patterns displayed by these peaks are indicative of a middle

distillate such as diesel fuel or similar materials.

The medium boiling compounds appear as an irregular pattern of peaks on top of a broad hump or unresolved complex mixture (UCM). This material elutes from n-C9 to n-C24 showing a maximum near n-C13. This correlates with a temperature range of approximately 150°C to 390°C with a maximum near 240°C. Within this range, the dominant peaks present are indicative of isoprenoids including norpristane, pristane, and phytane. A discernible pattern of peaks characteristic of the normal alkanes was not present. The abundance of isoprenoids in conjunction with the apparent absence of normal alkanes indicates that the fuel present has undergone substantial biological degradation.

The large peak seen near 25 minutes on the GC/FID trace is pentacosane, added as a quality assurance check for this GC analysis.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID: B30-08 Client: Sound Environmental Date Received: North Colfax Petroleum 05/20/09 Project: Date Extracted: Lab ID: 08/06/09 905190-22 Date Analyzed: 08/06/09 Data File: 080611.D Matrix: Soil Instrument: GCMS5 Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	106	42	152
Toluene-d8	107	36	149
4-Bromofluorobenzene	109	50	150

	Concentration		Concentration
Compounds:	mg/kg (ppm)	Compounds:	mg/kg (ppm)
Dichlorodifluoromethane	< 0.5	1,3-Dichloropropane	< 0.05
Chloromethane	< 0.05	Tetrachloroethene	< 0.025
Vinyl chloride	< 0.05	Dibromochloromethane	< 0.05
Bromomethane	< 0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	< 0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	< 0.5	Ethylbenzene	< 0.05
Acetone	< 0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	< 0.1
Methylene chloride	< 0.5	o-Xylene	< 0.05
t-Butyl alcohol (TBA)	< 2.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
Diisopropyl ether (DIPE)	< 0.05	n-Propylbenzene	0.058
1,1-Dichloroethane	< 0.05	Bromobenzene	< 0.05
Ethyl t-butyl ether (ETBE)	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,2,3-Trichloropropane	< 0.05
Chloroform	< 0.05	2-Chlorotoluene	< 0.05
2-Butanone (MEK)	< 0.5	4-Chlorotoluene	< 0.05
t-Amyl methyl ether (TAME)	< 0.05	tert-Butylbenzene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,4-Trimethylbenzene	< 0.05
1,1,1-Trichloroethane	< 0.05	sec-Butylbenzene	0.080
1,1-Dichloropropene	< 0.05	p-Isopropyltoluene	0.063
Carbon tetrachloride	< 0.05	1,3-Dichlorobenzene	< 0.05
Benzene	< 0.03	1,4-Dichlorobenzene	< 0.05
Trichloroethene	< 0.03	1,2-Dichlorobenzene	< 0.05
1,2-Dichloropropane	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Bromodichloromethane	< 0.05	1,2,4-Trichlorobenzene	< 0.1
Dibromomethane	< 0.05	Hexachlorobutadiene	< 0.1
4-Methyl-2-pentanone	<0.5 jl	Naphthalene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2,3-Trichlorobenzene	< 0.1
Toluene	< 0.05	Butane	<0.5 L
trans-1,3-Dichloropropene	< 0.05	Pentane	<0.5 L
1,1,2-Trichloroethane	< 0.05	Isooctane	<0.5 L
2-Hexanone	<0.5 jl		

ht - The sample was extracted outside of holding time. Results should be considered estimates.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	Method Blank	Client:	Sound Environmental
Date Received:	Not Applicable	Project:	North Colfax Petroleum
Date Extracted:	08/06/09	Lab ID:	091113-mb
Date Analyzed:	08/06/09	Data File:	080606.D
Matrix:	Soil	Instrument:	GCMS5

Matrix: Soil Instrument: GCM Units: mg/kg (ppm) Operator: MB

		Lower	Upper
Surrogates:	% Recovery:	Limit:	Limit:
1,2-Dichloroethane-d4	112	42	152
Toluene-d8	108	36	149
4-Bromofluorobenzene	105	50	150

Compounds:	Concentration mg/kg (ppm)	Compounds:	Concentration mg/kg (ppm)
Dichlorodifluoromethane	<0.5	1,3-Dichloropropane	< 0.05
Chloromethane	<0.05	Tetrachloroethene	<0.03
Vinyl chloride	<0.05	Dibromochloromethane	< 0.023
Bromomethane	<0.5	1,2-Dibromoethane (EDB)	< 0.05
Chloroethane	<0.5	Chlorobenzene	< 0.05
Trichlorofluoromethane	<0.5	Ethylbenzene	< 0.05
Acetone	<0.5	1,1,1,2-Tetrachloroethane	< 0.05
1,1-Dichloroethene	< 0.05	m,p-Xylene	<0.03
Methylene chloride	< 0.5	o-Xylene	< 0.05
t-Butyl alcohol (TBA)	<2.5	Styrene	< 0.05
Methyl t-butyl ether (MTBE)	< 0.05	Isopropylbenzene	< 0.05
trans-1,2-Dichloroethene	< 0.05	Bromoform	< 0.05
Diisopropyl ether (DIPE)	< 0.05	n-Propylbenzene	< 0.05
1,1-Dichloroethane	< 0.05	Bromobenzene	< 0.05
Ethyl t-butyl ether (ETBE)	< 0.05	1,3,5-Trimethylbenzene	< 0.05
2,2-Dichloropropane	< 0.05	1,1,2,2-Tetrachloroethane	< 0.05
cis-1,2-Dichloroethene	< 0.05	1,2,3-Trichloropropane	< 0.05
Chloroform	< 0.05	2-Chlorotoluene	< 0.05
2-Butanone (MEK)	< 0.5	4-Chlorotoluene	< 0.05
t-Amyl methyl ether (TAME)	< 0.05	tert-Butylbenzene	< 0.05
1,2-Dichloroethane (EDC)	< 0.05	1,2,4-Trimethylbenzene	< 0.05
1,1,1-Trichloroethane	< 0.05	sec-Butylbenzene	< 0.05
1,1-Dichloropropene	< 0.05	p-Isopropyltoluene	< 0.05
Carbon tetrachloride	< 0.05	1,3-Dichlorobenzene	< 0.05
Benzene	< 0.03	1,4-Dichlorobenzene	< 0.05
Trichloroethene	< 0.03	1,2-Dichlorobenzene	< 0.05
1,2-Dichloropropane	< 0.05	1,2-Dibromo-3-chloropropane	< 0.05
Bromodichloromethane	< 0.05	1,2,4-Trichlorobenzene	< 0.1
Dibromomethane	< 0.05	Hexachlorobutadiene	< 0.1
4-Methyl-2-pentanone	<0.5 jl	Naphthalene	< 0.05
cis-1,3-Dichloropropene	< 0.05	1,2,3-Trichlorobenzene	< 0.1
Toluene	< 0.05	Butane	< 0.05
trans-1,3-Dichloropropene	< 0.05	Pentane	< 0.05
1,1,2-Trichloroethane	< 0.05	Isooctane	< 0.05
2-Hexanone	<0.5 jl		

ENVIRONMENTAL CHEMISTS

Date of Report: 08/26/09 Date Received: 05/20/09

Project: North Colfax Petroleum Contamination Site 0592-001-01, F&BI 905190

Date Extracted: 08/11/09 Date Analyzed: 08/12/09

RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR ORGANIC LEAD AND MANGANESE SPECIATION BY METHOD 8082 MODIFIED

Results Reported as mg/kg (ppm)

Sample ID Laboratory ID	<u>TML</u>	<u>TMEL</u>	<u>DMDEL</u>	<u>MTEL</u>	<u>TEL</u>	<u>MMT</u>	Surrogate (% Rec.) (Limit 50-150)
B30-08 905190-22	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	122
Method Blank	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	116

TML Tetramethyl Lead
TMEL Trimethylethyl Lead
DMDEL Dimethyldiethyl Lead
MTEL Methyltriethyl Lead
TEL Tetraethyl Lead

MMT Methylcyclopentadienyl Manganese Tricarbonyl

ENVIRONMENTAL CHEMISTS

Analysis For Total Organic Lead and Manganese By EPA Method 200.8

Client ID: B30-08 Client: Sound Environmental Date Received: 05/20/09 Project: North Colfax Petroleum

 Date Extracted:
 08/11/09
 Lab ID:
 905190-22

 Date Analyzed:
 08/11/09
 Data File:
 905190-22.040

 Matrix:
 Soil
 Instrument:
 ICPMS1

Units: mg/kg (ppm) Operator: btb

Concentration

Analyte: mg/kg (ppm)

Organic Lead <0.05 Organic Manganese <0.05

ENVIRONMENTAL CHEMISTS

Analysis For Total Organic Lead and Manganese By EPA Method 200.8

Client ID: Method Blank Client: Sound Environmental Date Received: NA Project: North Colfax Petroleum

Date Extracted: 08/11/09 Lab ID: I9-334 mb
Date Analyzed: 08/11/09 Data File: I9-334 mb.036
Matrix: Soil Instrument: ICPMS1

Units: mg/kg (ppm) Operator: btb

Concentration

Analyte: mg/kg (ppm)

Organic Lead <0.05 Organic Manganese <0.05

ENVIRONMENTAL CHEMISTS

Date of Report: 08/26/09 Date Received: 05/20/09

Project: North Colfax Petroleum Contamination Site 0592-001-01, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

Relative Percent

Laboratory Code: 905190-22 (Duplicate)

	ъ	g 1 p 1:	B 11 . B 1.	Relative Percent
A l . + -	Reporting	Sample Result	Duplicate Result	Difference
Analyte	Units			(Limit 20)
Dichlorodifluoromethane	mg/kg (ppm)	< 0.5	< 0.5	nm
Chloromethane Vinyl chloride	mg/kg (ppm)	<0.05 <0.05	< 0.05	nm
Bromomethane	mg/kg (ppm)	<0.05 <0.5	<0.05 <0.5	nm nm
Chloroethane	mg/kg (ppm) mg/kg (ppm)	< 0.5	< 0.5	nm
Trichlorofluoromethane	mg/kg (ppm)	< 0.5	< 0.5	nm
Acetone	mg/kg (ppm)	< 0.5	< 0.5	nm
1,1-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm
Methylene chloride	mg/kg (ppm)	< 0.5	< 0.5	nm
t-Butyl alcohol (TBA)	mg/kg (ppm)	<3	<3	nm
Methyl t-butyl ether (MTBE)	mg/kg (ppm)	< 0.05	< 0.05	nm
trans-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm
Diisopropyl ether (DIPE)	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Ethyl t-butyl ether (ETBE)	mg/kg (ppm)	< 0.05	< 0.05	nm
2,2-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
cis-1,2-Dichloroethene	mg/kg (ppm)	< 0.05	< 0.05	nm
Chloroform	mg/kg (ppm)	< 0.05	< 0.05	nm
2-Butanone (MEK)	mg/kg (ppm)	< 0.5	< 0.5	nm
t-Amyl methyl ether (TAME)	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2-Dichloroethane (EDC)	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1,1-Trichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1-Dichloropropene	mg/kg (ppm)	< 0.05	< 0.05	nm
Carbon tetrachloride Benzene	mg/kg (ppm) mg/kg (ppm)	<0.05 <0.03	<0.05 <0.03	nm nm
Trichloroethene	mg/kg (ppm)	< 0.03	< 0.03	nm
1,2-Dichloropropane	mg/kg (ppm)	< 0.05	<0.05	nm
Bromodichloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm
Dibromomethane	mg/kg (ppm)	< 0.05	< 0.05	nm
4-Methyl-2-pentanone	mg/kg (ppm)	< 0.5	< 0.5	nm
cis-1,3-Dichloropropene	mg/kg (ppm)	< 0.05	< 0.05	nm
Toluene	mg/kg (ppm)	< 0.05	< 0.05	nm
trans-1,3-Dichloropropene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1,2-Trichloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
2-Hexanone	mg/kg (ppm)	< 0.5	< 0.5	nm
1,3-Dichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
Tetrachloroethene	mg/kg (ppm)	< 0.025	< 0.025	nm
Dibromochloromethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2-Dibromoethane (EDB)	mg/kg (ppm)	< 0.05	< 0.05	nm
Chlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
Ethylbenzene 1,1,1,2-Tetrachloroethane	mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm
m,p-Xylene	mg/kg (ppm) mg/kg (ppm)	<0.03	<0.1	nm
o-Xylene	mg/kg (ppm)	< 0.05	< 0.05	nm
Styrene	mg/kg (ppm)	< 0.05	<0.05	nm
Isopropylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
Bromoform	mg/kg (ppm)	< 0.05	< 0.05	nm
n-Propylbenzene	mg/kg (ppm)	0.058	0.058	0
Bromobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,3,5-Trimethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,1,2,2-Tetrachloroethane	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2,3-Trichloropropane	mg/kg (ppm)	< 0.05	< 0.05	nm
2-Chlorotoluene	mg/kg (ppm)	< 0.05	< 0.05	nm
4-Chlorotoluene	mg/kg (ppm)	< 0.05	< 0.05	nm
tert-Butylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2,4-Trimethylbenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
sec-Butylbenzene	mg/kg (ppm)	0.08	0.071	12
p-Isopropyltoluene	mg/kg (ppm)	0.063	0.064	2
1,3-Dichlorobenzene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,4-Dichlorobenzene 1,2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm
1,2-Dichiorobenzene 1,2-Dibromo-3-chloropropane	mg/kg (ppm)	<0.05 <0.05	<0.05 <0.05	nm nm
1,2,4-Trichlorobenzene	mg/kg (ppm)	< 0.1	<0.05	nm
Hexachlorobutadiene	mg/kg (ppm)	<0.1	<0.1	nm
Naphthalene	mg/kg (ppm)	< 0.05	< 0.05	nm
1,2,3-Trichlorobenzene	mg/kg (ppm)	< 0.1	< 0.1	nm
	0 0 41 /			

ENVIRONMENTAL CHEMISTS

Date of Report: 08/26/09 Date Received: 05/20/09

Project: North Colfax Petroleum Contamination Site 0592-001-01, F&BI 905190

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR VOLATILES BY EPA METHOD 8260C

	Reporting	Spike	Percent Recovery	Percent Recovery	Acceptance	RPD
nalyte	Units	Level	LCS	LCSD	Criteria	(Limit 20
ichlorodifluoromethane	mg/kg (ppm)	2.5	55	61	25-133	10
nloromethane	mg/kg (ppm)	2.5	64	70	48-121	9
inyl chloride	mg/kg (ppm)	2.5	76	78	57-125	3
romomethane	mg/kg (ppm)	2.5	84	86	55-141	2
hloroethane	mg/kg (ppm)	2.5	96	104	43-152	8
richlorofluoromethane	mg/kg (ppm)	2.5	105	114	37-158	8
cetone	mg/kg (ppm)	2.5	84	83	69-129	1
1-Dichloroethene	mg/kg (ppm)	2.5	105	105	60-123	0
lethylene chloride	mg/kg (ppm)	2.5	100	93	57-130	7
Butyl alcohol (TBA)	mg/kg (ppm)	12.5	82	82	70-121	0
lethyl t-butyl ether (MTBE)	mg/kg (ppm)	2.5	89	93	82-112	4
ans-1,2-Dichloroethene	mg/kg (ppm)	2.5	91	91	78-118	0
iisopropyl ether (DIPE)	mg/kg (ppm)	2.5	89	90	85-117	1
1-Dichloroethane	mg/kg (ppm)	2.5	88	91	81-116	3
thyl t-butyl ether (ETBE)	mg/kg (ppm)	2.5	90	91	84-117	1
2-Dichloropropane	mg/kg (ppm)	2.5	83	85	74-122	2
s-1,2-Dichloroethene	mg/kg (ppm)	2.5	92	94	82-118	2
hloroform	mg/kg (ppm)	2.5	94	97	80-117	3
Butanone (MEK)	mg/kg (ppm)	2.5	72	81	63-146	12
Amyl methyl ether (TAME)	mg/kg (ppm)	2.5	89	93	84-118	4
2-Dichloroethane (EDC)	mg/kg (ppm)	2.5	92	95	82-120	3
1,1-Trichloroethane	mg/kg (ppm)	2.5	93	96	79-120	3
1-Dichloropropene	mg/kg (ppm)	2.5	91	94	76-122	3
arbon tetrachloride	mg/kg (ppm)	2.5	91	96	70-125	5
enzene	mg/kg (ppm)	2.5	89	92	80-112	3
richloroethene	mg/kg (ppm)	2.5	92	95	79-115	3
2-Dichloropropane	mg/kg (ppm)	2.5	92	94	84-119	2
romodichloromethane	mg/kg (ppm)	2.5	100	104	87-122	4
bromomethane	mg/kg (ppm)	2.5	94	97	87-118	3
Methyl-2-pentanone	mg/kg (ppm)	2.5	77 vo	78 vo	88-124	1
-1,3-Dichloropropene	mg/kg (ppm)	2.5	94	97	84-125	3
bluene	mg/kg (ppm)	2.5	89	92	80-116	3
ans-1,3-Dichloropropene	mg/kg (ppm)	2.5	96	99	84-129	3
1,2-Trichloroethane	mg/kg (ppm)	2.5	94	96	85-117	2 2
Hexanone	mg/kg (ppm)	2.5 2.5	79 vo 93	81 vo 95	88-129	2
3-Dichloropropane etrachloroethene	mg/kg (ppm)	2.5	93 91	95 94	84-119 79-119	3
ibromochloromethane	mg/kg (ppm)	2.5	105	108	76-123	3
	mg/kg (ppm)	2.5	97	97		0
2-Dibromoethane (EDB)	mg/kg (ppm)	2.5	93	94	86-120	1
hlorobenzene thylbenzene	mg/kg (ppm)	2.5	93 94	94 95	81-111 81-115	1
1,1,2-Tetrachloroethane	mg/kg (ppm)	2.5	100	103	82-121	3
p-Xylene	mg/kg (ppm) mg/kg (ppm)	5	90	91	80-118	1
		2.5	90	92	78-122	2
Xylene yrene	mg/kg (ppm) mg/kg (ppm)	2.5	90 94	92 96	78-122 84-121	2
opropylbenzene	mg/kg (ppm)	2.5	92	94	79-124	2
comoform	mg/kg (ppm)	2.5	93	98	73-111	5
Propylbenzene	mg/kg (ppm)	2.5	94	96	80-123	2
romobenzene	mg/kg (ppm)	2.5	93	95	83-117	2
3,5-Trimethylbenzene	mg/kg (ppm)	2.5	91	94	81-122	3
1,2,2-Tetrachloroethane	mg/kg (ppm)	2.5	95	97	82-119	2
2,3-Trichloropropane	mg/kg (ppm)	2.5	91	93	82-119	2
Chlorotoluene	mg/kg (ppm)	2.5	91	94	78-120	3
Chlorotoluene	mg/kg (ppm)	2.5	93	95	81-119	2
t-Butylbenzene	mg/kg (ppm)	2.5	91	93	79-124	2
2.4-Trimethylbenzene	mg/kg (ppm)	2.5	91	94	81-123	3
c-Butylbenzene	mg/kg (ppm)	2.5	92	96	79-124	4
Isopropyltoluene	mg/kg (ppm)	2.5	92	96	82-125	4
3-Dichlorobenzene	mg/kg (ppm)	2.5	92	94	80-116	2
4-Dichlorobenzene	mg/kg (ppm)	2.5	93	95	59-133	2
4-Dichlorobenzene 2-Dichlorobenzene	mg/kg (ppm) mg/kg (ppm)	2.5	93 92	95 94	82-116	2
2-Dictrioroberizene 2-Dibromo-3-chloropropane	mg/kg (ppm)	2.5	98	101	74-126	3
z-Dibromo-3-chioropropane 2,4-Trichlorobenzene	mg/kg (ppm)	2.5	91	95	73-124	4
z,4-1 richiorobenzene exachlorobutadiene	0 0 11	2.5	93	98	73-124 74-128	5
	mg/kg (ppm)					
aphthalene	mg/kg (ppm)	2.5	93	95	70-122	2

ENVIRONMENTAL CHEMISTS

Date of Report: 08/26/09 Date Received: 05/20/09

Project: North Colfax Petroleum Contamination Site 0592-001-01, F&BI 905190

QUALITY ASSURANCE RESULTS FROM THE ANALYSIS OF SOIL SAMPLES FOR ORGANIC LEAD AND MANGANESE BY EPA METHOD 8082 MODIFIED

Laboratory Code: 905190-22 (Duplicate)

				Relative Percent
	Reporting	Sample	Duplicate	Difference
Analyte	Units	Result	Result	(Limit 20)
Tetramethyl lead	mg/kg (ppm)	< 0.1	< 0.1	nm
Tetraethyl lead	mg/kg (ppm)	< 0.1	< 0.1	nm
MMT	mg/kg (ppm)	< 0.1	< 0.1	nm

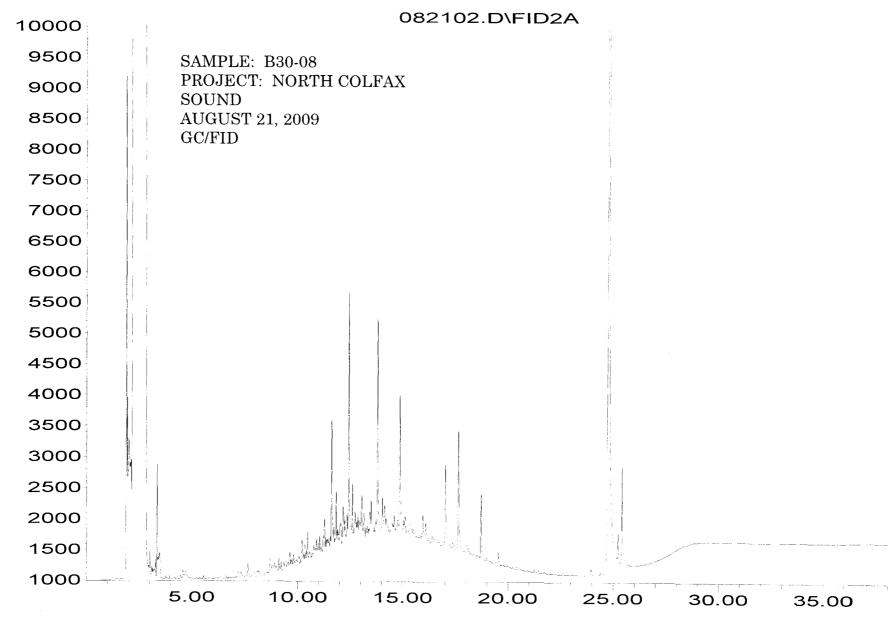
			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Tetramethyl lead	mg/kg (ppm)	5	108	110	70-130	2
Tetraethyl lead	mg/kg (ppm)	5	92	94	70-130	2
MMT	mg/kg (ppm)	5	83	84	70-130	1

ENVIRONMENTAL CHEMISTS

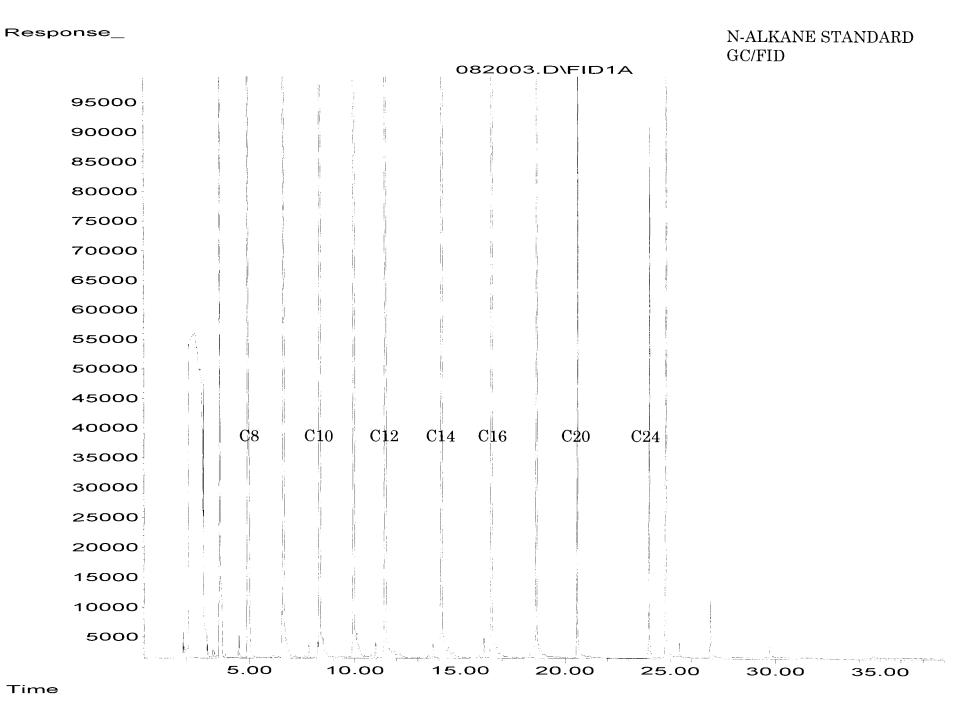
Date of Report: 08/26/09 Date Received: 05/20/09

Project: North Colfax Petroleum Contamination Site 0592-001-01, F&BI 905190

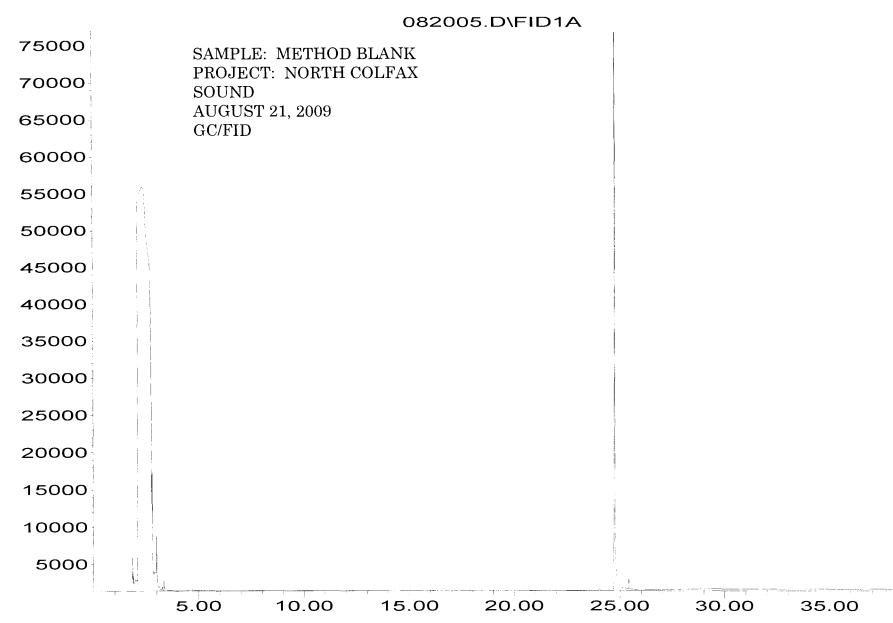
QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF SOIL SAMPLES FOR ORGANIC LEAD AND MANGANESE USING EPA METHOD 200.8


-	-	_	Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Organic Lead	mg/kg (ppm)	2.83	98	99	70-130	1
Organic Manganese	mg/kg (ppm)	0.5	109	109	70-130	0

ENVIRONMENTAL CHEMISTS


Data Qualifiers & Definitions

- a The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.
- A1 More than one compound of similar molecule structure was identified with equal probability.
- b The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.
- ca The calibration results for this range fell outside of acceptance criteria. The value reported is an estimate.
- c The presence of the analyte indicated may be due to carryover from previous sample injections.
- d The sample was diluted. Detection limits may be raised due to dilution.
- ds The sample was diluted. Detection limits are raised due to dilution and surrogate recoveries may not be meaningful.
- $\mbox{d} v$ Insufficient sample was available to achieve normal reporting limits and limits are raised accordingly.
- fb The analyte indicated was found in the method blank. The result should be considered an estimate.
- fc The compound is a common laboratory and field contaminant.
- hr The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. The variability is attributed to sample inhomogeneity.
- ht The sample was extracted outside of holding time. Results should be considered estimates.
- ip Recovery fell outside of normal control limits. Compounds in the sample matrix interfered with the quantitation of the analyte.
- j The result is below normal reporting limits. The value reported is an estimate.
- J The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.
- jl The analyte result in the laboratory control sample is out of control limits. The reported concentration should be considered an estimate.
- jr The rpd result in laboratory control sample associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- js The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.
- lc The presence of the compound indicated is likely due to laboratory contamination.
- L The reported concentration was generated from a library search.
- nm The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.
- pc The sample was received in a container not approved by the method. The value reported should be considered an estimate.
- pr The sample was received with incorrect preservation. The value reported should be considered an estimate.
- ve The value reported exceeded the calibration range established for the analyte. The reported concentration should be considered an estimate.
- vo The value reported fell outside the control limits established for this analyte.
- x The pattern of peaks present is not indicative of diesel.
- y The pattern of peaks present is not indicative of motor oil.


Response_

Time

Response_

Time

9051	90				HAIN	OF	cus	TOD	Y /	ИE	5	/20	/0	9	B	I Q			
S. Company (1)	1			de es Car	0.00		S leig			<u>ب</u>	•					-		AROUNI	or 24
Send Report T	o n dane	Tribit	ce: c	MICS CO	IFRO	ECI	NAME	Z/N	0.			7	PO	#				AROUNI (2 Week	
Company	<u> </u>				- Nov	the	colfa	rk .	pets:	وإجاد	^					D RUS	H	·	orized by:
Address 240	e Alco	vt Was	بكعم	<u> </u>		05	72-4		د م <u>ا-دا</u>						_				
City, State, ZI	•	_	_		REMA	ARK	S					l c	EMS	SY /	,	□ Diag)08C 8	LE DISE	
Phone # 206	306 190	o_Fax#	206	306 190	6		·			·			N		1 1			imples with instr	ructions
													ANAI	YSE		QUES	TED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled		Matri	x	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Total Lead	WIPH- KID			Notes
B27-04		4	OIAF	5-13-07	1146		50:1		6							X		11-	14
B27-08		8	0.2A-F		1155											X			
B27 - 12		12	0314		1205											\boxtimes			
B27-14.5		14.5	MAT	1 1	1215											\cong			
B32-04		4	05 47		1240										<u> </u>	\boxtimes			
B32-08		8	06		1250	2			+						<u> </u>	\geq			:
B32-12	 	12	07 A-G		1300	يا			7						<u> </u>	\geq			
B32-15		18	08 F		1310				6							\geq			
828-04		1 44	las Af	7 (1420	>			6							\boxtimes			
B28-6,3		10.5	10 A-C		143	0			4							X			
B.28-15		15	1, A.F		1446	3			6	X	X	\times			\times				
B25-04		4	12AF		152	0			6							\bowtie			
B26 108		10	13 A-G	V	153	3	V		7							X		1	/
70 Friedman & B				NATURE		[PR	INT NA	AME				COM	(PAN	Y		DATE	TIME
3012 16th Ave		Relingeral		00			Che									-		19-09	
Seattle, WA 98	119-	Received b	Y	2/00		,,,	つれて			fuy		9			<u> </u>				
(206) 285-	j.	Relinquish		AJU.		11-0	7104		100	rug	700	\dashv	1	B	<u></u>	 -	7	120/09	9:30
206) 283-	5044	Received b	y:				 					+					+		
COC\SES	J GEMSR1.DO	C (Revision	1)		L								Sa	mole	s recei	ived a	at 3	_°C	

Samples received at __3_°C

90510 905190 BA	MPLE CHAIN OF CUSTODY	ME SI	120/09 BIZ
Send Report To By an Bixby ce: Chois Caces Company SES Address 2400 Airport Way System	PROJECT NAME/NO. North Gifes Petrolosm contamination 3:10 0572-001-01	PO #	TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by:
City, State, ZIP Seath WA 7813 J Phone # 206 306 1200 Fax # 206 306 1906	REMARKS Please Complete with Hall analyses on that any position results and year of the year of the goodified within	GEMSY/ N	SAMPLE DISPOSAL Dispose after 30 days Return samples Will call with instructions

					Hold	time					ANAL	YSE	REC	QUES	TED		
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	Total Lich	WTPH- HGID	EPH-VPH		Notes
B26-14		14	14 AF	5-18-09	1540	5-:1	6							$\geq <$		Ho	ld
B29-64		4	15#F	1	1635	1	6							\times		1	
B29-11		11	16 4		1645		구	\boxtimes	\times	\boxtimes			\times				
B29-15		15	17 A-F		1655		6							\geq			
B33-04		4	18/17		1800		6							\times			
1333-11		11	19 A-4	F	1805		7							X			
B33-14		14	20 AF		1810		6							X			
B30-04		4	12AF		1845		6							X			1-
B32-08		9	224-6		1850		7	Х	X	X			\times			1300-	7
B30-11		1 11	23		1900		7	X	X		$> \overline{1}$	\bowtie	X		\boxtimes		
B31-04		4	2477		1725		6							\bowtie			
R31-08		8	25 AC		1935		7						,	X			
B31-10		10	26 AF	b	1940	4	6							X			<i>y</i>

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2022 Ph. (206) 285-8282

Ph. (206) 285-8282 Fax (206) 283-5044

SIGNATURE	PRINT NAME	COMPANY	DATE TIME
Relinquished by	Charles Poses	SES	5/19/07
Received by: HOR MES	HONG NEW ON	Fers	5/20/09 9:30
Relinquished by:	/		
Received by:			

905	190					e Chain Oi					ME	<u>-</u>	5	12	0/0	19	BIZ
Send Report T Company SE Address 24	o Kyan			·	SAMF PROJ Pet	ECT NAME/N	10. Na	C) 1016 101	ja	РО	#	11	□ Star	ndard 3H	AROUNI (2 Week es autho	
City, State, Zi	P_Sect	th WA	981	34	- REM	ARKS				C	EMS	· ·		O Dier O Reta O Will	call v	LE DISF after 30 d amples with instr	lays
ļ	<u> </u>	\\ -	 				}				ANAI	YSE	KE	QUES	IED	т	· · · · · · · · · · · · · · · · · · ·
Sam ple ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals			1	Notes
Ring of Black			23	5-18-09		water	3		\times	\times						Hold	
									•								
																	· · · · · · · · · · · · · · · · · · ·
	 	· ·													,		
		1															
		 	 		· · · · · · · · · · · · · · · · · · ·												
		 													<u> </u>		
Friedman & B 3012 16th Ave		Relingerich		NATURE			M TMIS	_					PANY			DATE	TIME
	S.	(<u>ٽ بٽ</u>		Cha	sled (SC	22			<i>5€</i> 3	٤		5	12/07	
Seattle, WA 98 Ph. (206) 285-		Received by	en by:	effect		HONG	رر	4m	1-91	4	·	Ele	<u> </u>		5/4	20/09	9:30
Fax (206) 283	5044	Received by	y;								 ,				+-		
FORMS\COC\SES	Ĺ	C (Revision	1)									Sa	mples	recei	ved a	ıt 3	_ <u>.°C</u>

9051	190				SAMP:	LE C	CHAIN OF	CUB	TOD	Y	M	Ē	ی	/20	10	9	Bi	2
Senu Report T		Birla.	ce.•	Chars Ca	SAI	MPLE	RS (signati	ure)			-	سنبيد حصر		+-	P	250 Å	ZĮ AROUND	of H
Company Se	35				PR	OJEC Sile	TNAME/N	0.No.	- 01	-Ifax	•	PO	#	- ()	□ Star	ndard SH	(2 Week	
City, State, Zil	P Sect	th WA	78/	34	-	MARI	ks				G	EMS N	•	- 1 1	□ Disp □ Reta	oose a im sa	LE DISP fter 30 d mples rith instr	аув
							······································					ANAI	YSE	SREC	QUES	TED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sam pled	Tim Sam p	_	Matrix	# of jars	XQ-HALMN	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by \$270	RCRA-8 Metals			r	Votes
+5.03) ale	+5.03) 10 28AF						weter	42		X	X						Hole	1+2
		<u> </u>			ļ							<u> </u>						
		_	 															
		 	 															
		-	 															
																		
		ļ	 			·····												
		-	<u> </u>				 											
		 	├─	-												<u></u>		
								لــــــا					لب					
Friedman & Br 3012 16th Ave	-	Relinguish		NATURE		+-		INT NA	-		_			PANY			DATE	TIME
Seattle, WA 98		Received to	<u> </u>		· 	+-	Chas	les (<u> </u>	2			<u>5€</u>	٥		7	19/07	4 - 3
anan		Relinquish	170 ed by:	HUS	, 		HONG	NGI	4-	200			02			<u> \$7</u>	20/09	9:30
	(206) 285-8282 Relinquished by: (206) 283-5044 Received by:					· 			············				· · ·		 			

Samples received at _3_°C

FORMS\COC\SESGEMSR1.DOC (Revision 1)

9051	90				SAMPLE C			TOD	Y /	1E	5	/20	/0	9	BI	2/1/11/26
Send Report T Company Se	€5	-			PROJEC North	T NAME/N	10. petro	oleow			PO	#		□ Stand □ RUSI	lard (l	ROUND TIME 2 Weeks) s authorized by:
City, State, ZI	P Seattle	- WA 9	, <u>८/3५</u>	REMARI Vaddla	s perion	nekis	segu	est	G	EMS N	SY/		□ Dispo □ Retur	se af n sar	LE DISPOSAL ter 30 days, nples th instructions	
<u> </u>											ANAL	YSES	REC	UEST	ED	
Sample ID	Sample Location	Tim e Sam pled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	TEX by 8021B	/OC's by 8260	VOC's by 8270	CRA-8 Metals			Notes			

Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-D	NWTPH-G	BTEX by 802	VOC's by 820	SVOC's by 82	RCRA-8 Metz			Notes	
1327-04		4	OFF	5-13-09	1146	50:1	6								Ho	.14	
B27-08		8	OaA-F		1155												
B27-12		12	03AF		1205												
B27-14.5		14.5	OU AF		1215											·	
B32-04		4	locat	t l	1240												
1332-08		ප	06 A-F		1250		1										
B32-12		12	07 A-G		1300		17										
B32-15		15	ASA-F	1 1	1310		6									·	
B28-04		4	09 A-F		1420		6										
B28-10,5		10,5	107-6		1430		7										
B28-15		16	111 " "		1445		6										
B25-04		4	12AF		1520		6										
B26 108		10	13 A-G	V	1535	V	7								•	V	

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2002 Ph. (206) 285-8282

Fax (206) 283-5044

SIGNATURE PRINT NAME COMPANY DATE TIME

Relinquished by:

Received by:

Received by:

Received by:

Received by:

FORMS\COC\SESGEMSR1.DOC (Revision 1)

Samples received at __3_ °C

9051	0 90	5/90			CHAI	N OF	cus	TOD	Y	/	ME	(5/å	00/	09		BI 2/V	
Send Report T	o Byan	Bixby	اد: <u>۲</u>	ام دی وه	SAMPL		7	ے یں) <u>, </u>									D TIME
Company <u>ろく</u> Address <u>マイ</u>	_	س جس	S	ہے اور	PROJECT Sile	CT NAM Sesw OS	ME/N Cov 572	0. No. tani	201 2012 2014	olta on	*	РО	#	1 1	□ RUS	SH	2 Weel s auth	orized by:
City, State, ZI	P Seattle	- WA ·	7813	31	REMAR				1			EMS N	,	11	□ Disp □ Reta	oose af irn sai	ter 30 mples	POSAL days ructions
<u></u>		<u></u>	T	T										REC	QUES	TED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled		Mat	trix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals	1/RS			Notes
B26-14		14	14 4-7	5-18-0	9 1540	5-	:(6									Ho	14
1379-64		4	15 4 F		1635		<u></u>	6										
B29-11		11	16 A 4		1645			チ										
B29-15		15	17 A-F		1655			6										
B33-04		4	18A7		1800			6										
1333-11		11	19 A-		1805			7										:
B33-14		14	20 AT		1310			6										
B30-04		4	21AF		1845			6							<u></u>			/-

1850

1900

1725

935

1940

24 M7

25 AG

8

0

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2020 Ph. (206) 285-8282

Fax (206) 283-5044

B32-08

B30-11

B31-04

B31-03

	SIGNATURE	PRINT NAME	COMPANY	DATE	TIME
t	Relinquishell by:	Charles Pacel	SES	5/19/07	
	Received by: How here	HONG NAW ON	Kess	5/20/09	9:30
	Relinquished by:	/			
	Received by:				

7

6

7

130-7

905	190				SAMPLE	CHAIN OF	CUS	TOD	Y	1	YÉ	_ ン	5	120	0/0	99 E	3I2/V
Send Report To Company SE Address 246 City, State, Zil	o Ryan	ent Way	ე <u>ქ</u>	1th	ek.	ERS /signate	<i>y</i>	the C	d orfax		РО	#		T ☐ Stan ☐ RUS Rush o	Ge#_ 'URNA dard H_ charge	AROUND (2 Weeks es author	of
Phone # 206					۵۴ کد					G	EMS N	•	[∃ Retu	rn sa	iter 30 da mples ith instru	
	<u> </u>	T.								I	ANAL	YSES	REC	UES	ΓED		
Sam ple ID	Sam ple Location	Sam ple Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals			N	Totes
Rins In Blad			27 ^{A-C}	5-18-09		water	3									Hold	
			<u> </u>			<u> </u>										<u> </u>	
					· · · · · · · · · · · · · · · · · · ·								-				
		<u> </u>				ļ		ļļ		_							
		ļ	<u> </u>														
		ļ															
		<u> </u>									}						
																!	
Friedman & Br	uua, Inc.		SIC	NATURE	· · · · · · · · · · · · · · · · · · ·	PF	INT NA	AME				COM	PANY	,	I	OATE	TIME
3012 16th Ave	· · ·	Relinquish				Cha			25	\top		SES				19/09	
Seattle, WA 98	119-	Received by	4104	Aue o		HONG			1-JU	_		TA)	ī		7	7,	9:30
Ph. (206) 285-8	3282	Relinquish		00		1,0.00		-1-5-7		$\neg \uparrow$		المواحدة					1
Fax (206) 283-	5044	Received by	y:	<u> </u>			······································								1		
FORMS\COC\SES	GEMSR1.DO	C (Revision	L)									Sa	mples	rece	ved a	t 3	_°C

9051	190			SAI	MPLE C	CHAIN OF	r cus	TOD	Y	M	ヒ	ر ک	120		7		$\sim \gamma \nu$	/	
		2.4	e	Charle Car		SAMPLE	RS (signati	ıre)			_				D _r	00 A	4	of #	- -
Send Report T Company St Address 246	2 5					PROJECT POT SILE	T NAME/N	10. No.	- 0 J	lfax		PO	#		□ Stan	dard H	AROUND (2 Weeks)	-
City, State, Zil	P Seat	th WA	781	34	<u>-</u>	REMARI	KS .		:		G	EMS N	•		□ Disp □ Retu	ose a ırn sa	LE DISPO fter 30 da mples ith instru	ıys	
					· · · · · · · · · · · · · · · · · · ·							ANAL	YSES	REC	UES	ΓED			_
Sam ple ID	Sample Location	Sam ple Depth	Lab ID	Date Sampled		fime mpled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals			N	otes	
+5:03)ak				-	wester	4+2									Holo	1+2			
					· · · · · · · · · · · · · · · · · · ·	·													
· · · · · · · · · · · · · · · · · · ·		<u> </u>																	
														اا					_
		ļ	<u> </u>		·														_
		<u> </u>				····													_
														·					_
					· · · · · · ·														_
			<u> </u>																_
						 													_
		1																	_
		 	<u> </u>																_
	<u> </u>	<u>.L</u> .	L				<u></u>	<u> </u>											
Friedman & B	ruya, Inc.			NATURE			PR	AN TAIL	ME				COM	PANY		I	DATE	TIME	
3012 16th Ave	enue West	Relinquish	d by:	CC			Chas	les () are	5			SE.	5		5	19/09	· 	
Seattle, WA 98	3119-	Received b	V yla	7 AL NO	,		110NG	1751	U.	-1V			01			-	20/09	9:30	7
Ph. (206) 285-	8282	Relinquish	ed by:	US	····		10104	104	7	<u> </u>	$\neg \uparrow$		111		,	-12/	= / - /	1.70	ᅱ
Fav (206) 283	5044	Received b	v:							·						+			\dashv

Samples received at ______3_ °C

FORMS\COC\SESGEMSR1.DOC (Revision 1)

·905190	mple chain of custody ${\cal M}$	E 5/20/0	9 BI 2/VI
Some Report To Kyan Bixby sc: Chucz Cases Company SES Address 2400 Airport Way South	PROJECT NAME/NO. North colfax petroleom Contamination Situ	PO#	TURNAROUND TIME Standard (2 Weeks) RUSH Rush charges authorized by:
City, State, ZIP Seattle WA 98134	REMARKS Vadded personnels request 12/17/0928	GEMS Y /	SAMPLE DISPOSAL Dispose after 30 days Return samples Swill call with instructions
	· · · · · · · · · · · · · · · · · · ·	ANALYSES RE	QUESTED
Cámula Camala Iah Data	Time # of H of	8260 8270 8270	

						······································		<u> </u>			ANAL	YSES	REC	QUES	TED		
Sample ID	Sample Location	Sample Depth	Lab ID	Date Sampled	Tim e Sam pled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals				Notes
B27-04		4	OAF	5-18-09	1146	50:1	6									140	14
B27-08		8	O2A-F		1155												
B27 -12		1 12.	137+	{	1205	4											
B27-14.5		14.5	DUAT		1215	**											
B32-04		4	lacat	† 1 1	1240												
1332-08		8	06 A-F		1250		1										:
B32-12		12	07 A-G		1300		17										
B32-15		15	NOA-F	1 1 1	1310		6										
B28-04		4	CG A-F		1420		6										
B28-10,5		10.5	104-6		1430		子										
B 28-15		16	1, AF		1446		6										
1325-04		4	12 A F		1520		6										
B26 +08		10	13 A-G	•	1535	V	7							-		١	,

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-2022 Ph. (206) 285-8282

Ph. (206) 285-8282
Fax (206) 283-5044

SIGNATURE
Relingerished by: C.
Received by: 1/02/16
Relinquished by:
Received by:

PRI	INT NAME	COMPANY	DATE	TIME
 Charl	es laces	SES	5-19-09	
HONG	NAWEN	FBI	5/20/09	9:30
To the		·		

90570	90.	5190			Sample o	CHAIN O	r cus	TOD	Y	1	1E	(5/a	20/	109	7	BI 2/VI
Send Report T Company 56 Address 24	₹5		·		ر کا	T NAME/N	C, C	vin (Tolfax		PO #			□ Star	ndard SH	AROUN (2 Weel	1
City, State, Zi	P Seattle	- AW	7813	3 પ	REMARI	KS				<u> </u>	EMS N	·		□ Dis _l □ Reta □ Will	oose a irn sa call w	LE DIS fter 30 mples ith inst	
Sample ID	Sam ple Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260		RCRA-8 Metals	HRS			Notes
B26-14		14	14 A-F	5-18-09	1540	5-:(6									Ho	اط
B29-64		4	15 A F		1635		6										
329-11		11	16 ^A 4		1645		구_										
B29-15		15	17 A-F		1655		6										
B33-04		4.	1847		1800		6										

805

810

845

1850

1900

725

1935

1940

19 A-4

20 AT

2417

25 AG

26 AF

14

8

8

0

Friedman & Bruya, Inc. 3012 16th Avenue West

Seattle, WA 98119-Ph. (206) 285-8282

B33-11

B33-14

B30-04

B32-08

B30-11

B31-04

B31-03

B31-10

Fax (206) 283-5044

	IGNATURE	PRINT	NAME	COMPANY	DATE	TIME
Relinquished by	<u> </u>	Charles	Pacel	SES	5/19/07	
Received by:	or heal	HONG NZ	Tuy on	Kess	5/20/09	9:30
Relinquished by	: 0		/			
Received by:						

7

6

6

7

7

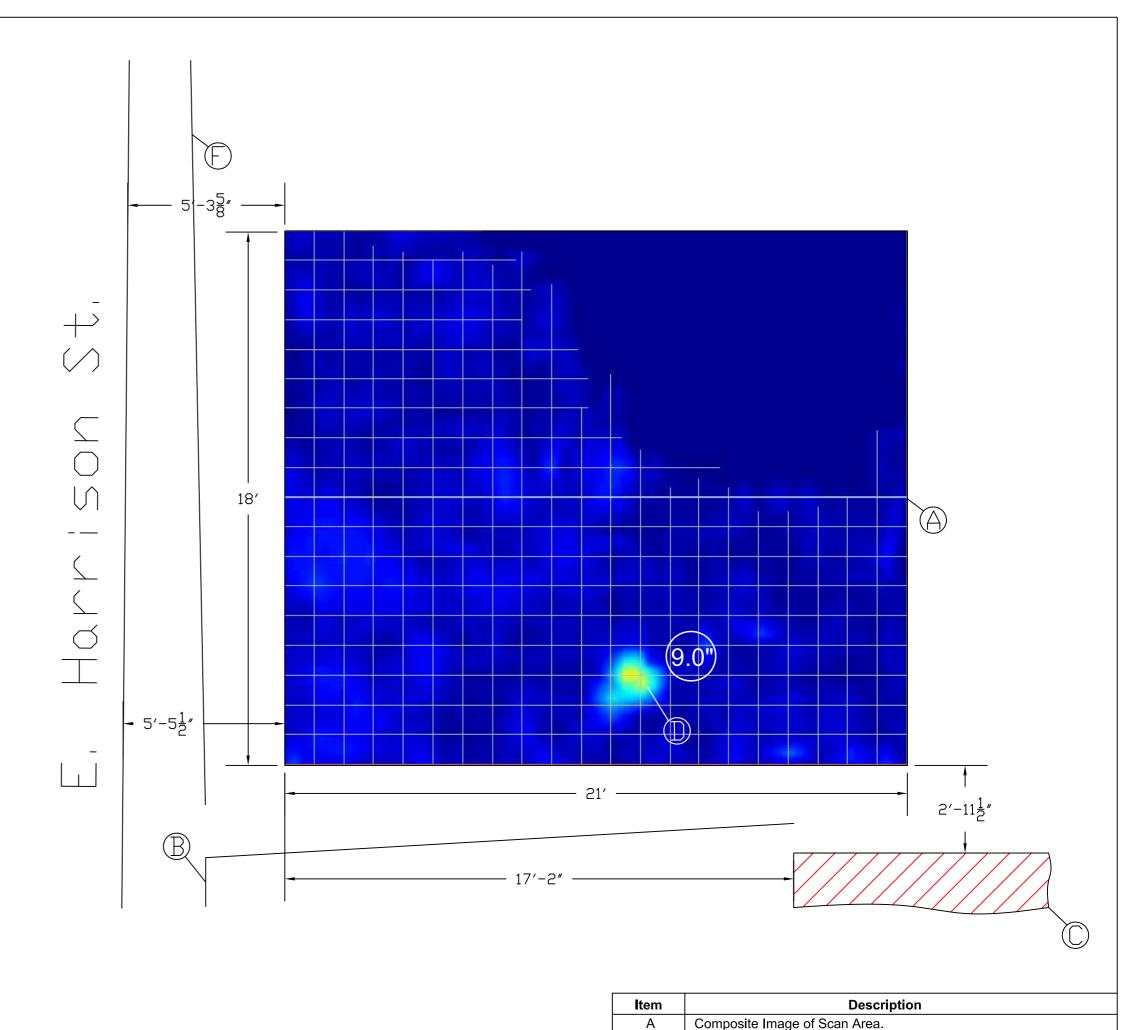
6

7

ocancel personal

905	190				SAMPLE (사람들 하는 것이 없는 것이 없다.		TODY	7	/	46	ン	_5	1/2	0/0	17	012/
Send Report T		Bixly	<u>دد: (</u>	Moch Cac	SAMPLE	ERS (signati	ure)	0	l ,					7	age #_	3 AROUN	_ of
Company SE	5				PROJEC	T NAME/N	10. No.	office Co	The		РО	#		□ RU	SH	(2 Week	orized by:
Address 24	oo Ains	ent Way	ک ک	1346			2-0	0-10	J	ļ			_				
City, State, Zi					REMAR	KS				GI	EMS N	SY/		□ Ret	pose a urn sa	PLE DISI fter 30 o imples vith inst	
	1	T	<u> </u>	Ţ		<u> </u>		<u> </u>		A	NAI	YSES	REC	QUES	TED		
Sample ID	Sample Location	Sample Depth	ID	Date Sampled	Tim e Sam pled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals				Notes
Rins de Blad			27 ^{A-C}	5-18-09		with	3									Hole	J
	,												· · · · · · · · · · · · · · · · · · ·				·
																	:
					<u> </u>												
										_							· · · · · · · · · · · · · · · · · · ·
<u> </u>		<u> </u>	<u> </u>			<u>}</u>		<u> </u>									
Friedman & B		Relingation		NATURE			INT NA					COM	PANY		L	ATE	TIME
3012 16th Ave Seattle, WA 98		Received b	<u>کے (</u>			Cha	oles (<u>SES</u>	<u> </u>		1	19/09	_ ?
Ph. (206) 285-		Relinquish	1104	the s		HONG	\ <u>\</u>	ZW.	M	-		FB.	2		<u>\</u> \ <u>\</u>	<u>%/09</u>	9:30
Fax (206) 283-	5044	Received b	y:			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		***************************************	\dashv							
FORMS\COC\SES	GEMSR1.DO	C (Revision	1)				:					Sar	mples	rece	ived a	t 3	_°C

. 905	190				SAMPLE	CHAIN O	r cus	TOL	Y	M	E	ی	/20	/0	9	·B	I 2/1/
Sena Report T	o Kyan	Birby	دد :	Chock G	SAMP	LERS (signat				_				D,	200	4/ AROUNI	of
Company St	ES				PROJ	ECT NAME/N Jesu con R 0592	10.Na nimiti 100-	- 0 J	star	(PO	#		□ RUS	3H	(2 Week	rs) prized by:
City, State, Zi	P Seat	th WA	78/	34	REMA	ARKS				C	EMS N	-	- { }	□ Disp □ Retu	ose a ırn sa		
											ANA	YSE	SRE	QUES	TED		
Sample ID	Sam ple Location	Sample Depth	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	NWTPH-Dx	NWTPH-Gx	BTEX by 8021B	VOC's by 8260	SVOC's by 8270	RCRA-8 Metals				Notes
+5:03)ak			28 ^A F			wester	4+2									Hol	0+2
										سميني سسمي							
			ļ				<u> </u>	<u></u>					ļ				
		•	ļ				<u> </u>						ļ				
***************************************			ļ					L					ļ. <u></u> .				: :
		<u> </u>															····
		<u> </u>	ļ														
			ļ		<u> </u>								ļ				
			ļ				ļ										
			<u> </u>													<u></u>	
		 													· · ·		
<u></u>	<u> </u>	<u> </u>	L	<u> </u>			<u></u>	L		<u></u>	LJ					<u></u>	· · · · · · · · · · · · · · · · · · ·
Friedman & B	•			NATURE		PF	N TAIS	AME		\Box		COM	PANY		E	ATE	TIME
3012 16th Ave	enue West	Relinguish	<u> </u>	<u> </u>		Chas	105 () ace	5		المستحديق بالمستحدية	<u>5E</u>	5		51	19/09	
Seattle, WA 98	3119-	Received to	Ho	RAIN		HONG	Na	M, a	=W	•		B 2			5/	20/09	9:30
Ph. (206) 285-	8282	Relinquish	ed by:	00			<u></u>		-				***************************************				
Fax (206) 283	-5044	Received b	y:						····								


Fax (206) 283-5044

FORMS\COC\SESGEMSR1.DOC (Revision 1)

APPENDIX F Ground-Penetrating Radar Survey

Perspective: Overhead

Please Note: This document represents interpretation of data collected according to the provisions and limitations of **Services Agreement No: 2008-1038**. Please review the Services Agreement regarding use of this document.

 Subsurface 3D Imaging

 P.O. Box 190, Usk, Wa. 99180

 Phone: (877) 977-3347
 Fax: (509) 445-0965

 Web: www.SS3DI.com
 Email: info@SS3DI.com

Title: South End of Front Lawn

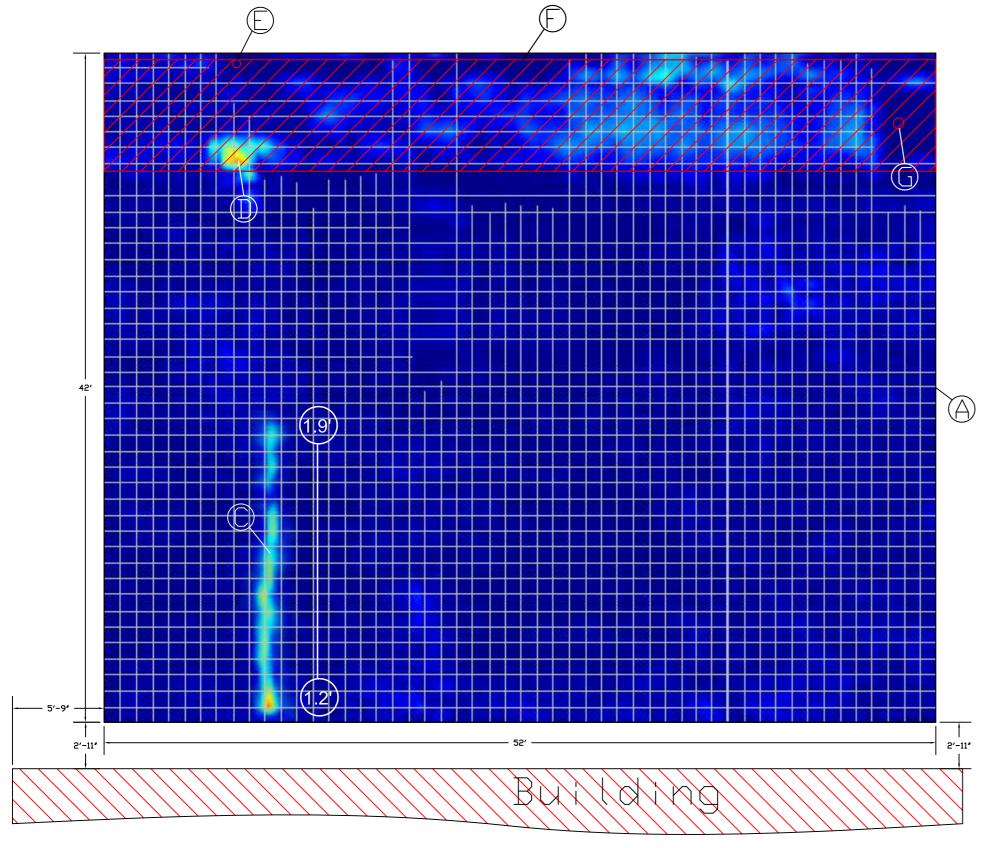
Customer: Colfax Grange Supply Co. Inc. 105 E. Harrison St. Colfax, Wa. 99111 Location: 105 E. Harrison St. Colfax, Wa. 99111

(208) 765-2308

Data Collection Date: 10/01/2008 Notes: Grid Spacing is on 1' interval. **Documentation Date: 10/02/2008** Prepared By: S.F.H.

С Unknown object at 9.0 Inches deep. Possibly metal. Photo of Scan area with corners marked by painted stakes. Black decorative fence.

Chain Link enclosure Fence.


All elevations relative to surface.

Surface was thick grass with rough subsurface.

В

Scale: .026 = 1 **Drawing Number:** D-2008-1038-01 **Perspective: Overhead**

Hwy 195 / N. Main St.

Please Note: This document represents interpretation of data collected according to the provisions and limitations of <u>Services Agreement No: 2008-1038</u>. Please review the Services Agreement regarding use of this document.

Title: North Side of Front Lawn

Customer: Colfax Grange Supply Co. Inc. 105 E. Harrison St. Colfax, Wa. 99111

Location: 105 E. Harrison St. Colfax, Wa. 99111 (208) 765-2308

Data Collection Date: 10/01/2008 Notes: Grid Spacing is on 1' interval. **Documentation Date: 10/02/2008** Prepared By: S.F.H.

All elevations relative to surface.

Item

D Ε

Surface was thick grass with rough subsurface.

Subsurface 3D Imaging
P.O. Box 190, Usk, Wa. 99180
Phone: (877) 977-3347 Fax: (509) 445-0965
Web: www.SS3DI.com Email: info@SS3DI.com

Scale: .014 = 1

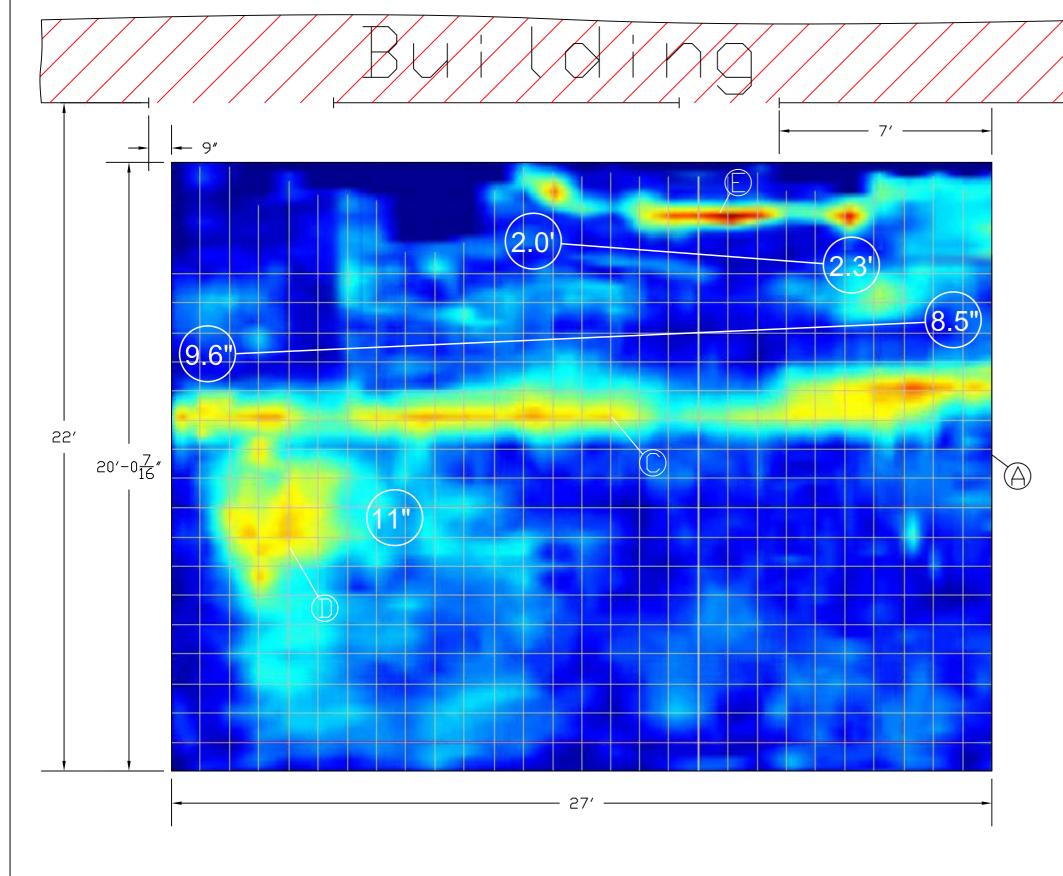
Drawing Number: D-2008-1038-02

Description

Photo of Scan area with corners marked by painted stakes.

Unknown linear object at 1.2 ft. depth to 1.9 ft. depth.

Composite Image of Scan Area.


Metal cover imbedded in sidewalk.

Hatched area is Sidewalk

Rail Road Crossing Sign.

Light Post.

Perspective: Overhead

Please Note: This document represents interpretation of data collected according to the provisions and limitations of Services Agreement No: 2008-1038.

Please review the Services Agreement regarding use of this document.

Title: North Side - West

Customer: Colfax Grange Supply Co. Inc. 105 E. Harrison St. Colfax, Wa. 99111 Location: 105 E. Harrison St. Colfax, Wa. 99111 (208) 765-2308

Documentation Date: 10/03/2008 Prepared By: S.F.H.

В	Photo of Scan area with corners marked by paint on surface
С	Unknown linear object at 9.6 inch depth to 8.5 inch depth.
D	Unknown Possible object at 11" depth.
E	Unknown linear object at 2.0 ft. depth to 2.3 ft. depth.

Composite Image of Scan Area.

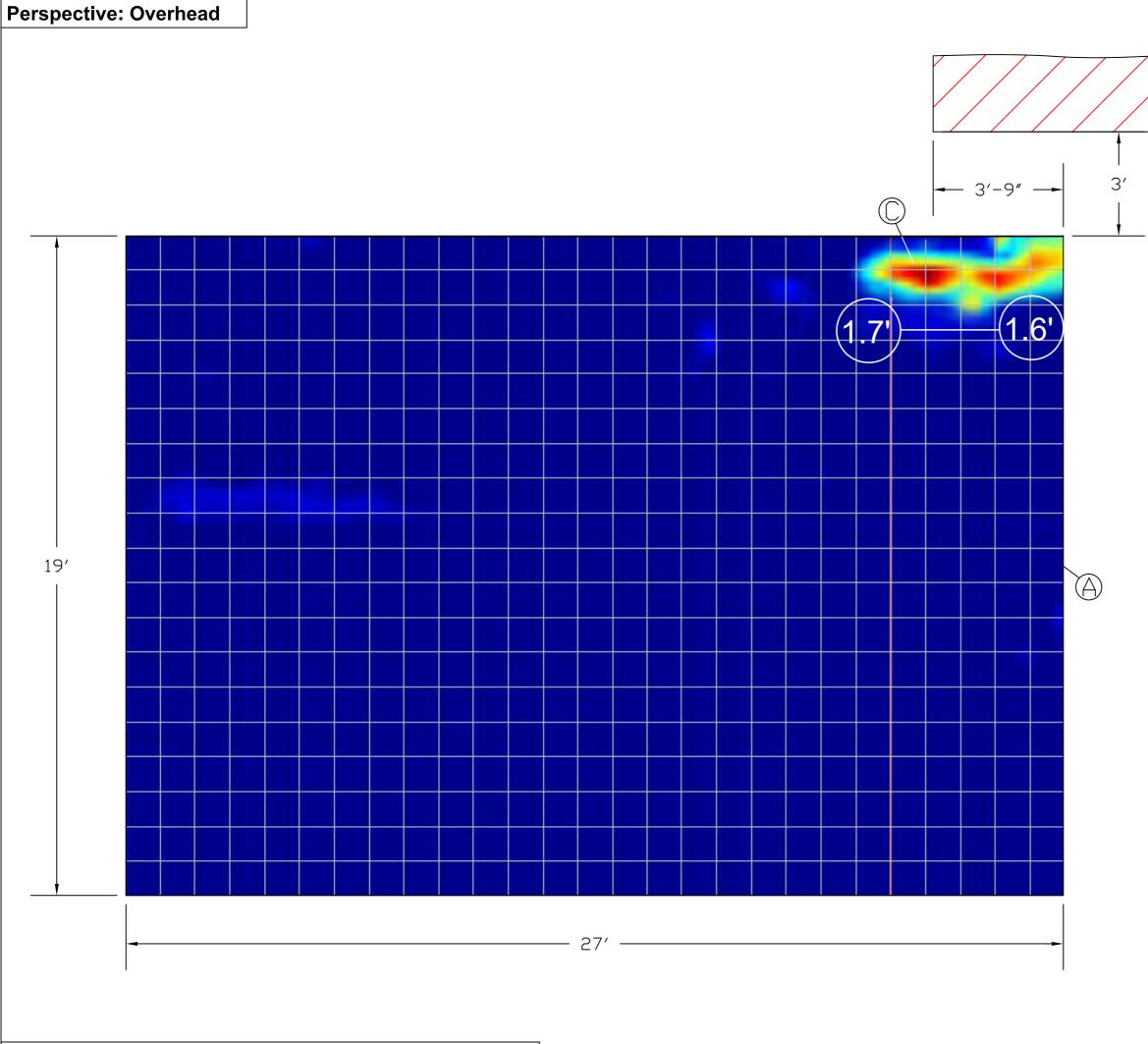
Data Collection Date: 10/01/2008 Notes: Grid Spacing is on 1' interval. All elevations relative to surface. Surface was dry gravel and concrete.

Item

Items C & D: Non circular profile, possibly rectangular in shape.

 Subsurface 3D Imaging

 P.O. Box 190, Usk, Wa. 99180


 Phone: (877) 977-3347
 Fax: (509) 445-0965

 Web: www.SS3DI.com
 Email: info@SS3DI.com

Scale: .026 = 1

Drawing Number: D-2008-1038-03

Description

Item	Description
Α	Composite Image of Scan Area.
В	Photos of Scan area with corners marked by paint on surface
С	Unknown linear object at 1.7 ft. depth to 1.6 ft. depth.
D	Building.

Please Note: This document represents interpretation of data collected according to the provisions and limitations of Services Agreement No: 2008-1038.

Please review the Services Agreement regarding use of this document.

 Subsurface 3D Imaging

 P.O. Box 190, Usk, Wa. 99180

 Phone: (877) 977-3347
 Fax: (509) 445-0965

 Web: www.SS3DI.com
 Email: info@SS3DI.com

Customer: Colfax Grange Supply Co. Inc. 105 E. Harrison St. Colfax, Wa. 99111

Location: 105 E. Harrison St. Colfax, Wa. 99111 (208) 765-2308

Title: North Side - East Corner Data Collection Date: 10/01/2008 Notes: Grid Spacing is on 1' interval. **Documentation Date: 10/03/2008** Prepared By: S.F.H.

All elevations relative to surface. Surface was dry gravel and concrete.

Scale: .031 = 1

Drawing Number: D-2008-1038-04

APPENDIX G Investigative-Derived Waste Disposal Records

Eugene, OR: EPA# ORQ000024941 Hoquiam, WA: EPA# WAD988519419 Klamath Falls, OR: EPA# ORD980980775 Kennewick, WA: EPA# WAH000011577 Medford, OR: EPA# ORD987197092 197939 LANDING 4150 N. Suttle Road Portland, Oregon 97217 ustomer ID Number Phone 503-286-8352 North Bend, OR: EPA# ORD980978266 Salt Lake City, UT: EPA# UTD982589459 Spokane, WA: EPA# WAH000011585 Oil Re-Refining Toll Free 800-367-8894 Company Dispatch #: EPA# ORD980975692 Artis Address Consigned To: Transportation Da Check# Destination: Profile Date: Via Carrier: 0 Driver: I'm Truck # Miles Run: Load Ticket # 14 CDT/ HCDT Flash Point Rate per | Rate per Gal./Brl. | Hour Sniffer P / F Gal./Brl. Description pН Charge 08 200.00 Above material being transported for Recycling EPA# NONC Total: Customer warrants that the waste petroleum products being transferred by the above collector do not contain any contaminants including, without limitation, pesticides, chlorinated solvents at concentrations greater than 1000 PPM, PCBs at concentrations greater than 2 PPM (or 50 PPM with Analytical), or any other material classified as hazardous waste by 40 CFR part 261, Subparts C and D (implementing the federal Resource Conservation and Recovery Act), or by any equivalent state hazardous substance classification program. Should Laboratory tests find this waste not in compliance with 40 CFR Part 261, customer (generatory agrees to pay for all disposal costs incurred.

Headquarters

SIGNED X

BILL OF

DATE:

NON-HAZARDOUS WASTE

*** IN CASE OF EMERGENCY CALL 1-800-424-9300 *** NON-HAZARDOUS WASTE MANIFEST RECEIVED AUG 0 5 2008

100	se print or type (Form designed for use on elite (12	z pitch) typewriter)				
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID No. EXEMPT		Manifest Document No.	0 4 2 7 4	2. Page 1 of 1
	3. Generator's Name and Mailing Address NORTH COLFAX PROPERT					<u> </u>
	2400 AIRPORT WAY S,					
	SEATTLE, WA 98134				•	
	4. Generator's Phone (205-306-190 5. Transporter 1 Company Name	6. US EPA TO Number				
	ENVIROTECH SYSTEMS	W A H O O O O 1	2 4 5 0	A. State Transpo		742 222
	7. Transporter 2 Company Name	8. US EPA ID Number		B. Transporter 1 C. State Transpo		363-9000
				D. Transporter 2		
	9. Designated Facility Name and Site Address	10. US EPA ID Number	-	E. State Facility's	: ID	
	EMERALD RECYCLING					
	1500 AIRPORT WAY S.	1	7 4 5 5	F. Facility's Phon	e (206) 8	32-3090
	SEATTLE, WA 98134	WAD05836				
	TI. WASTE DESCRIPTION		12. Co No.	Type	13. Total Quantity	14. Unit Wt./Vol.
	a		140.	Туре	Quantity	VVI./ VOI.
	Non Regulated Waste Liqu	uid				
•			009	DM	495	G
G	b.				<u> </u>	
GEZER		_				
E	C.					
Ā	<u>.</u>					
T 0						
R	d.				-	+
•						
	G. Additional Descriptions for Materials Listed Above			H. Handling Code	es for Wastes Listed Above	
•	a) G00501 OILY WATER/WAS	STEWATER WITH <10% SLUDGE, <10%	NON-RE	i a)	NA	
	15. Special Handling Instructions and Additional Inform	nation .				
•						
	16. GENERATOR'S CERTIFICATION: I hereby certifing proper condition for transport. The materials des	y that the contents of this shipment are fully and accurately desci scribed on this manifest are not subject to federal hazardous was	ribed and are in	all respects		
		,	g		F	
	Printed(Typed Name	Signature				Date
	Cassanda Die	helbernen signatur	. 1)ii	ch	Month	Day Year
Ţ	17. Transporter 1 Acknowledgement of Receipt of Mat	terials	7		07	22 08 Date
Ä	Printed/Inped Name	Signature			Month	Day Year
န္	Keith Mitch	//h. /#\	>		7	122/08/
TRANSPORTER	18. Transporter 2 Acknowledgement of Receipt of Mar	terials				Date
Ĕ	Printed/Typed Name	Signatufe			Month	Day Year
	19. Discrepancy Indication Space	<u>_</u>				
F	opano, maioznon opana					1
A						<u> </u>
1	20. Facility Owner or Operator; Certification of receipt	of the waste materials covered by this manifest, except as noted	in item 19.			-
님						Date
Τ	Printed/Typed Name	Signature	-11	1	M <u>ont</u> h	Day Year
Y	FINTONIO PCONO 20		112	7_		30 08
С	F14 © 2002 LABEL MASTER ® (800) 621-5808 ww	w labelmaster.com		-	PRINTED ON RECYC	EN PAPER CATTERNATION

NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA ID					Manifest Document No.	0 4	2 7 6	. Page 1
3. Generator's North Col Fax Proper 2400 AIRPORT WAY S, SEATTLE, WA 98134 4. Generator's Phone (206-306-19	STE. 200		118274					•	
5. Transporter 1 Company Name ENVIROTECH SYSTEMS	6.	147 A	US EPA ID Number	4 7	4 5 0	A. State Trans	porter's ID		
7. Transporter 2 Company Name	<u> </u>	WA	US EPA ID Number	1 2	4 5 C	B. Transporter		(206)	363-9
7. Transporter 2 company Name	6. 		OS EFA ID Number			C. State Trans D. Transporter	<u> </u>		
9. Designated Facility Name and Site Address RINKER MATERIALS	10).	US EPA ID Number			E. State Facilit			
						F. Facility's Ph	ione	(425) 3	56-661
6300 GLENWOOD AVE EVERETT, WA 98203	1							(423) 3.	,, ,,,

	00	10	DM	6400	P
b.			'		
	-				
C.					
:			,	:	
d.			· · · · · · · · · · · · · · · · · · ·		
G. Additional Descriptions for Materials Listed Above			H. Handling Co	odes for Wastes Listed Above	<u></u>
a) IDWSOILTOC IDW SOIL					
			•		
45 0					

٦				
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this manifest are not subject to federal hazardous waste regulations.			
			Date	
	Printed/Typed Name Signature	Month	Day	Year
_	Cassarda Dijstelbergen Signature (Dijst	07	22	80
Į.	17. Transporter 1 Acknowledgement of Receipt of Materials		Date	
Ä	Printed/Tiped Name Signature	Month	Day	Year
ANSP	Keith Mitchell	07	122	88
	18. Transporter 2 Acknowledgement of Receipt of Materials		Date	
ORTER	Printed/Typed Name Signature	Month	Day	Year
Ā			1	
F	19. Discrepancy Indication Space			
Ā	•			
c				
! [20. Facility Owner or Operator; Certification of receipt of the waste materials covered by this manifest, except as noted in item 19.			
눼			Date	
τĺ	Printed Typed Name Signature Signature	Month	Day	Year
Υ	MININE NE ONLE		<i>,</i>	1
Ý	Mala leale Mua leker	i i i i i i i i i i i i i i i i i i i	Day	

NON-HAZARDOUS WASTE

*** IN CASE OF EMERGENCY CALL 1-800-424-9300 *** NON-HAZARDOUS WASTE MANIFEST

NON HAZADDOHO		ID No.		T		
NON-HAZARDOUS	Generator's US EPA			Manifest Document No	ı.	2. Page 1
WASTE MANIFEST	EXEMI	P T			17715	of 1
3. Generator's Name and Mailing Address COLFAX SITE						
	are 200					
2400 AIRPORT WAY S,	51E. 200					· · ·
SEATTLE, WA 98134 4. Generator's Phone (206-306-190	Λ.					
5. Transporter 1 Company Name		6. US EFAID Number		A. State Trans	snorter's ID	
					- 4 Di	·
7. Transporter 2 Company Name		W A D O 5 8 3 6 4 8. US EPA ID Number	04/	B. Transporte		832-3000
Transporter 2 Company Name		8. US EPA ID Number		C. State Trans	`	
		<u> </u>		D. Transporte	r 2 Phone	
Designated Facility Name and Site Address	•	10. US EPA ID Number		E. State Facili	ity's ID	
EMERALD RECYCLING						
1500 AIRPORT WAY S.				F. Facility's Pf	hone	
SEATTLE, WA 98134		WADO 5 8 3 6 7	7 1 5 2		(206) 8	332-3090
11. WASTE DESCRIPTION		1 1 2 5 5 5 7		ntainers	13.	14.
			No.	•	Total Quantity	Unit
a.			140.	Туре	Quantity	Wt./Vol.
Non Regulated Waste Liq	uid			ŀ		
			2		6//	
				DM	//	G
G b. E N					•	1
<u> </u>					,"	1
N		-				ļ
E						-
Ä						
A T]		
R d.					ļ	
R d.						
G. Additional Descriptions for Materials Listed Above				H. Handling C	odes for Wastes Listed Above	
	*			_		
a) G00501 OILY WATER/WA	STEWATER WITH	H <10% SLUDGE, <10%	NON-REG	а	.) NA	
		•			•	
		.,÷				
-				*.		
15. Special Handling Instructions and Additional Info	rmation					
3						
ά						
■						
			<i>y </i>			
16. GENERATOR'S CERTIFICATION: I hereby certification proper condition for transport. The materials de	ify that the contents of this escribed on this manifest a	s shipment are fully and accurately describ are not subject to federal hazardous waste	ped and are in	all respects		
, ,		nasa saa, saa saa saa saa saa saa saa saa	o rogulations.			
						Date
Printed/Typed Name		Signature	<u> </u>		Month	
Cassanda Diistel	bersen				# # # # # # # # # # # # # # # # # # #	
			- 4	<u> </u>		67 08
? ————————————————————————————————————	aterials		7	/ //		Date
Printed/Typed Name		Signature			Month	Day Year
Kon LaChance		- Lan	-M			17 108
18. Transporter 2 Acknowledgement of Receipt of Ma	aterials					Date
Printed/Typed Name	<u> </u>	Signature			Month	Day Year
						1 1
19. Discrepancy Indication Space						<u> </u>
-					•	
<u> </u>						
<u> </u>						
20. Facility Owner or Operator; Certification of receip	t of the waste materials co	overed by this manifest, except as noted in	n item 19.			
ī <u></u>						Date
Primed/Typed Name		Signature Alaa			Month	
HNtonio HPNS	22h			7//	11	バンバタ
THE THE PARTY OF T	~			colo-		11/100
CF14 © 2002 LABELMASTER® (800) 621-5808 W					PRINTED ON REC	

Soil Remediation EX EVERETT, WA 98213

1876044371

1876 Location: 04/01/2009 Qty: 14.06 SOUND ENVIRONMENTAL STRAT 3089172 Customer: WA 98213 TON **MTon EVERETT** LB Order: 27.63 25.07 COLFAX GRANGE PROPERTY 55,260 13.57 12.31 27,140 TO EVERETT SOILS 14.06 12.76 28,120 Job#: ~ Manual Weight, * P.T. COLFAX GRANGE PROPERTY P.O. : 1192508 1.00 Product: **Today Loads:** CLASS 3 SOIL DUMPED BY TON 14.06 Today Qty: NRC 2145 **FUEL SURCHARGE APPLIES** Carrier: 1876-6, EVERETT SOIL GENERIC 2092891 Vehicle: IN 1:57 pm OUT Received: SEE REVERSE SIDE FOR PRODUCT LABEL INFORMATION **Original** 1876044370 Soil Remediation ENEX EVERETT, WA 98213 1876 Location: Qty: 4.00 SOUND ENVIRONMENTAL STRAT 3089172 Customer: WA 98213 MTon **EVERETT** LB Order: 25.07 COLFAX GRANGE PROPERTY 55,260 12.31 27,140 TO EVERETT SOILS

04/01/2009

TON 27.63 13.57 14.06 12.76 28,120 * Manual Weight

1.00 **Today Loads:** 4.00 Today Qty:

NRC 2145

Product:

Job#:

P.O. :

Carrier: Vehicle:

Received:

1192517

CLASS 3 SOIL DUMPED BY DRUM

1876-6, EVERETT SOIL GENERIC 2092891

COLFAX GRANGE PROPERTY

FUEL SURCHARGE APPLIES

IN OUT

1:56 pm

HANCICE/BIII OF LAGING	- U	
سسرو و وسرا و و 🕳		
PO# 341245		
PO #		
1 0 11		

(800) 350-7565						Truck Gross \	Vt
		Next Pic	ckup	I	Davs		
FED ID 59-3210374 US DOT	# 641752		Р				
						Truck #	
CUST LOC # //664			Transno	rter Name		Receiving Facilit	
Calle & Calanasa			Inalispo		•	14	
Address Address			Address	140		Address	5
Address & Havriso	on st					17	
Cust/Gen Name Colfax Grange Address St Harriso City, St ZipColfax WHA Phone	agui		City, St	Zip		City, St Zip	
Phone	-/9/11		Phone	 		Phone	
Phone 536 - 5960			1				
EPA # (if required)			EPA # (i	required)		EPA # (if require	d)
Billing Address (if Different)	66424	14	N	ec e	ENULVO	uncutal	
Diffing Address (if Different)							T
Managala	Inventory/	—	QT	DEL	UofN	/ Rate	Total
Materials Used Oil	Tank Size	P/	<u> </u>	DEL	UOIN	nate nate	iotai
Halogen results		1			1		
Field Screen Halogen Test (Type)		1		·			
<u> </u>							
Gas/Diesel/Unused Fuel (Circle)							
Non RCRA Waste Antifreeze		1					
(>RQ use shipping name #2 on reverse)							
AF Premix/Conc/Extended Life (Circle)		1					
(>RQ use shipping name #2 on reverse)							
Filters							
O		ļ					
Specialty Filters (Approval for sulfides)		1				100	,
Sludge/Absorbent/Dirt (Circle)		<u> </u>					
Approval #					1		
Oil/Water Mixture			一十				
Approval #		193	5		G-14-		AND SECURE OF SECURE
Oil Water Separator/Sump (Circle)						i.	
Approval #							
Catch Basin			1				
Approval #							
Service Fee	,						
Other	<u> </u>	┼				· · · · · · · · · · · · · · · · · · ·	
Truck Time			1	1			
Other						10101	
						Flora	
Other						TAX 1	
CIVIDAD IO MAR CE DOD OTTUDO			l			TOTAL	
SHIPPING NAME FOR OTHER: _			· · · · · · · · · · · · · · · · · · ·		*	TOTAL	
GENERATOR SIGNED BELOW, Subject to			specified	on reverse sid	le of form.	Receiver	
Generator Z		sporter ature				Signature Signature	4>-
Name	Nam					Name	0.
Tan Like						Sign	16
Date 6/15/09	Date	:				Date 4 - 15	09
				· · · · · · · · · · · · · · · · · · ·			
	•						
EMITTO: THERMO FLUIDS INC.		THOD OF		NT:			
9354 TREASURY CENTER		SH/CRE	/ווענ				
CHICAGO, IL 60694-9300	CH!	ECK #		·			

Elh Stew Claims

1876045833

Location:

1876

Customer:

3089172

SOUND ENVIRONMENTAL STRAT SEATTLE

Qty: 8.00 WA 988213

07/15/2009

105 HARRISON ST COLFAX

TO EVERETT SOILS

Job#:

Order:

NRC

P.O. :

00001

1192517 Product:

CLASS 3 SOIL DUMPED BY DRUM

NRC 1126

	LB	MTon	TON
G	16,400	7.44	8.20
T	16,400	7.44	8.20
N	0	0.00	0.00
	. 7		

Today Loads: Today Qty:

1.00 8.00

Carrier:

Vehicle:

2034263 1876-1,EVERETT SOIL GENERIC

FUEL SURCHARGE APPLIES

Received:

IN.

12:05 pm

OUT 12:05 pm

Original

SEE REVERSE SIDE FOR PRODUCT LABEL INFORMATION

APPENDIX H Terrestrial Ecological Evaluation Form

Table 749-1 Simplified Terrestrial Ecological Evaluation-Exposure Analysis Procedure

Estimate the area of contiguous (connected) <u>undeveloped land</u> on the site or within 500 area of the site to the nearest 1/2 acre (1/4 acre if the area is less than 0.5 acre).	feet of any			
1) From the table below, find the number of points corresponding to the area and enter this number in the field to the right.				
Area (acres) Points 0.25 or less 4 0.5 5 1.0 6 1.5 7 2.0 8 2.5 9 3.0 10 3.5 11 4.0 or more 12	6			
2) Is this an <u>industrial</u> or <u>commercial</u> property? If yes, enter a score of 3. If no, enter a score of 1	3			
3) ^a Enter a score in the box to the right for the habitat quality of the site, using the following rating system ^b . High=1, Intermediate=2, Low=3	3			
4) Is the undeveloped land likely to attract wildlife? If yes, enter a score of 1 in the box to the right. If no, enter a score of 2. ^c				
5) Are there any of the following soil contaminants present: Chlorinated dioxins/furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, pentachlorobenzene? If yes, enter a score of 1 in the box to the right. If no, enter a score of 4.				
6) Add the numbers in the boxes on lines 2-5 and enter this number in the box to the right. If this number is larger than the number in the box on line 1, the simplified evaluation may be ended.	12			

Notes for Table 749-1

Low: Early <u>successional</u> vegetative stands; vegetation predominantly noxious, nonnative, exotic plant species or weeds. Areas severely disturbed by human activity, including intensively cultivated croplands. Areas isolated from other habitat used by wildlife.

^a It is expected that this habitat evaluation will be undertaken by an experienced field biologist. If this is not the case, enter a conservative score of (1) for questions 3 and 4.

^b **Habitat rating system.** Rate the quality of the habitat as high, intermediate or low based on your professional judgment as a field biologist. The following are suggested factors to consider in making this evaluation:

High: Area is ecologically significant for one or more of the following reasons: Late-<u>successional</u> native plant communities present; relatively high species diversity; used by an uncommon or rare species; <u>priority habitat</u> (as defined by the Washington Department of fish and Wildlife); part of a larger area of habitat where size or fragmentation may be important for the retention of some species.

Intermediate: Area does not rate as either high or low.

^c Indicate "yes" if the area attracts wildlife or is likely to do so. Examples: Birds frequently visit the area to feed; evidence of high use b mammals (tracks, scat, etc.); habitat "island" in an industrial area; unusual features of an area that make it important for feeding animals; heavy use during seasonal migrations.

[Area Calculation Aid] [Aerial Photo with Area Designations] [TEE Table 749-1] [Index of Tables]

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493]

[TEE Home]

Terrestrial Ecological Evaluation Process-Simplified or Site-Specific Evaluation?

Documentation Form

	Terrestrial Concern	Response (Circle One)
*1	Is the site is located on or directly adjacent to an area where management or land use plans will maintain or restore native or semi-native vegetation?	Yes /No
*2a	Is the site used by a <u>threatened or endangered</u> <u>species?</u>	Yes /No
*2b	Is the site used by a <u>wildlife species classified by the</u> <u>state department of fish and wildlife as a "priority</u> <u>species" or "species of concern"</u> under Title 77 RCW?	Yes No
*2c	Is the site used by <u>a plant species classified by the Washington state department of Natural Resources natural heritage program as "endangered," "threatened," or "sensitive" under Title 79 RCW.</u>	Yes No
*3	Is the site (area where the contamination is located) located on a property that contains at least ten acres of native vegetation within 500 feet of the area where the contamination is located?	Yes No
4	Has the department determined that the site may present a risk to significant wildlife populations?	Yes / No

^{*1} This includes for example, green-belts, protected wetlands, forestlands, locally designated environmentally sensitive areas, open space areas managed for wildlife, and some parks or outdoor recreation areas. This does not include park areas used for intensive sport activities such as baseball or football.

^{*2}a What are the threatened or endangered species in Washington state?

^{*2}b Which plant species are classified as threatened, endangered, or sensitive? Where can I find out more information about this topic?

^{*2}c For plants, "used" means that a plant species grows at the site or has been found growing at the site. For animals, "used" means that individuals of a species have been observed to live, feed or breed at the site.

^{*3} For this analysis, do not include native vegetation beyond the property boundary.

The following sources shall be used in making this determination: Natural Vegetation of Oregon and Washington, J.F. Franklin and C.T. Dyrness, Oregon State University Press, 1988, and L.C. Hitchcock, C.L. Hitchcock, J.W. Thompson and A. Cronquist, 1955-1969, <u>Vascular Plants of the Pacific Northwest(5</u> volumes). Areas planted with native species for ornamental or landscaping purposes shall not be considered to be native vegetation. [WAC 173-340-7491(2)(c)(i)]

(Here's a link to the <u>Seattle Public Library</u> and the <u>Washington State</u> <u>Library</u> to borrow a copy of Natural Vegetation of Oregon and Washington, J.F. Franklin and C.T. Dyrness, Oregon State University Press, 1988, or you may purchase it through your favorite bookseller. Here's an additional link to a useful online <u>Field Guide to Selected Rare Plants of Washington</u> developed by the Washington State Department of Natural Resources' Natural Heritage Program (WNHP) and the Spokane District of the U.S.D.I. Bureau of Land Management (BLM) which contains fact sheets for 139 vascular plant species and one lichen species.

Here is an aid to calculating area and an aerial photo depicting a site, its 500 foot boundary and several labeled circles identifying various areas for reference in judging the area of native vegetation within the 500 foot radius.

[Exclusions Main] [TEE Definitions] [Simplified or Site-Specific?] [Simplified Ecological Evaluation] [Site-Specific Ecological Evaluation] [WAC 173-340-7493] [Index of Tables]

[TEE Home]

APPENDIX I Soil EPH-VPH Calculations

Table I-1A Raw Data Summary for Benzene, Toluene, Ethylbenzene, Total Xylenes North Colfax Petroleum Contamination Site Time Oil Property Samples

W 11.15			F.1. II	-
Well ID	Benzene	Toluene	Ethylbenzene	Total Xylenes
SP01	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
SP02	1.6	11	10	64
	3.3	62	78	480
	0.02	0.02	0.02	0.06
	12	36	51	288
SP03	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
SP04	0.02	0.03	0.12	0.35
	0.02	1.2	24	24
	0.02	0.02	0.02	0.06
SP05	0.03	0.05 0.48		0.15
	0.02	0.12	3.5	2
	0.02	0.02	0.02	0.06
SP06	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
SP07	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
SP17	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
B22	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
B26	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
	0.03	0.02	0.02	0.06
A_mean	0.59	3.70	5.59	28.66

NOTES:

All units are in milligrams per kilogram.

A_mean = arithmetic mean

Table I-2A Raw Data Summary for Volatile and Extractable Hydrocarbons - Aliphatics North Colfax Petroleum Contamination Site Time Oil Property Samples

Well ID	AL_EC >5-6	AL_EC >6-8	AL_EC >8-10	AL_EC >10-12	AL_EC >12-16	AL_EC >16-21	AL_EC >21-34
SP01	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP02	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP03	ND	ND	ND	ND	ND	ND	ND
	120	260	120	780	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP04	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP05	ND	71	550	560	62	ND	4.7
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP06	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP07	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP17	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
B22	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
B26	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
A_mean	120	165.5	335	670	62	ND	4.7

NOTES:

All units are in milligrams per kilogram.

A_mean = arithmetic mean

ND = no data or not detected

Table I-3A Raw Data Summary for Volatile and Extractable Hydrocarbons - Aromatics North Colfax Petroleum Contamination Site Time Oil Property Samples

Well ID	AR_EC >8-10	AR_EC >10-12	AR_EC >12-16	AR_EC >16-21	AR_EC >21-34
SP01	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP02	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP03	ND	ND	ND	ND	ND
	930	250	120	ND	ND
	ND	ND	ND	ND	ND
SP04	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP05	660	660	72	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP06	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP07	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP17	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
B22	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
B26	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
A_mean	795	455	96	ND	ND

NOTES:

All units are in milligrams per kilogram.

A_mean = arithmetic mean ND = no data or not detected

Table I-1B Raw Data Summary for Benzene, Toluene, Ethylbenzene, and Total Xylenes North Colfax Petroleum Contamination Site Cenex Property Soil Samples

Sample ID	Benzene	Toluene	Ethylbenzene	Total Xylenes
SP08	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
SP09	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
SP10	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
SP11	0.37	0.02	0.05	0.59
	0.29	0.05	0.05	0.15
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
SP12	0.02	0.02	0.02	0.06
	0.034	0.05	0.75	2.97
	0.02	0.26	0.6	2.9
	0.02	0.02	0.02	0.06
SP13	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
SP14	0.11	0.02	0.02	0.06
	0.074	0.05	0.05	0.15
	0.02	0.02	0.02	0.06
SP15	0.21	0.05	0.05	0.29
	0.03	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
SP16	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
B17	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
B18	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
B19	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.03	0.05	0.05	0.15
B23	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
A_mean or value used for Method B Calc	0.05	0.03	0.06	0.23

NOTES:

All units are in milligrams per kilogram.

A_mean = arithmetic mean

Table I-2B Raw Data Summary for Volatile and Extractable Petroleum Hydrocarbons - Aliphatics North Colfax Petroleum Contamination Site Cenex Property Soil Samples

Sample ID	AL EC >5-6	AL EC >6-8	AL EC >8-10	AL FC >10-12	AL EC >12-16	AL EC >16-21	AL FC >21-34
SP08	ND	ND	ND	ND	ND	ND	ND
01 00	ND	ND ND	ND	ND	ND ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP09	ND	ND	ND	ND	ND	ND	ND
0 . 00	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP10	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP11	< 9.3	< 9.3	< 9.3	< 9.3	<2.6	<2.6	<2.6
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP12	< 9.3	< 9.3	6.3	< 9.3	<2.7	<2.7	<2.7
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP13	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP14	<10	<10	<10	<10	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
SP15	<10	<10	<10	<10	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND
0040	ND	ND ND	ND	ND	ND ND	ND	ND
SP16	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
B17	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
D17	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B18	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
БІО	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
B19	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
019	ND	ND	ND	ND	ND	ND	ND
	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
B23	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
<i>D</i> 20	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
A_mean or va	lue used for Meth	od B Calc	6.3	ND	ND	ND	ND

NOTES:

All units are in milligrams per kilogram.

<10 denotes value not detected at detection limit.

A_mean = arithmetic mean

ND = no data or not detected

Table I-3B Raw Data Summary for Volatile and Extractable Petroleum Hydrocarbons - Aromatics North Colfax Petroleum Contamination Site Cenex Property Soil Samples

Sample ID	AR_EC >8-10	AR_EC >10-12	AR_EC >12-16	AR_EC >16-21	AR_EC >21-34
SP08	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP09	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP10	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP11	<9.3	<9.3	<9.3	<2.6	<2.6
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP12	6.1	6.3	<9.3	<2.7	<2.7
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP13	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP14	<10	<10	<10	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP15	<10	<10	<10	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
SP16	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
B17	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
B18	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
B19	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
B23	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND
A_mean or value used for Method B Calc	6.1	6.3	ND	ND	ND

NOTES:

All units are in milligrams per kilogram.

<10 denotes value not detected at detection limit.

A_mean = arithmetic mean

ND = no data or not detected

Table I-1C Raw Data Summary for Benzene, Toluene, Ethylbenzene, Total Xylenes North Colfax Petroleum Contamination Site Colfax Grange Property Soil Samples

Well ID	Benzene	Toluene	Ethylbenzene	Total Xylenes
B16	0.02	0.02	0.02	0.06
	0.03	0.05	0.26	0.15
	0.02	0.02	0.02	0.06
B24	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
B25	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
B28	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.03	0.02	0.07
B29	0.02	0.02	0.02	0.06
	0.02	0.91	3.9	2.7
	0.02	0.02	0.02	0.06
B33	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
TP01	0.02	0.02	0.02	0.06
	0.03	0.05	0.05	0.15
TP02	0.02	0.02	0.02	0.06
	0.02	0.02	0.02	0.06
	0.03	0.05	0.05	0.15
TP03	0.02	0.02	0.02	0.06
	0.03	0.05	0.05	0.15
A_mean or value used for	0.02	0.06	0.19	0.18
Method B Calc	0.02	0.06	0.19	0.18

NOTES:

All units are in milligrams per kilogram.

A_mean = arithmetic mean

Table I-2C Raw Data Summary for Volatile and Extractable Petroleum Hydrocarbons - Aliphatics North Colfax Petroleum Contamination Site

Colfax Grange Property Soil Samples

Well ID	AL_EC >5-6	AL_EC >6-8	AL_EC >8-10	AL_EC >10-12	AL_EC >12-16	D_AL_EC>12-16	AL_EC >16-21	D_AL_EC>16-21	AL_EC >21-34
B16	ND	ND	13	18	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
B24	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
B25	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
B28	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
B29	ND	ND	ND	ND	ND	ND	ND	ND	ND
520	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
B33	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
TP01	0.6	1.175	8.3	4.9	8.15	1	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
TP02	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
TP03	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND
A mean or value used for									
Method B Calc	0.60	1.18	10.65	11.45	8.15	1.00	ND	ND	ND

NOTES:

All units are in milligrams per kilogram.

A_mean = arithmetic mean

ND = no data or not detected

Table I-3C Raw Data Summary for Volatile and Extractable Petroleum Hydrocarbons - Aromatics North Colfax Petroleum Contamination Site Colfax Grange Property Soil Samples

Well ID	AR_EC >8-10	AR_EC >10-12	AR_EC >12-16	AR_EC >16-21
B16	17	17	ND	ND
	ND	ND	ND	ND
	ND	ND	ND	ND
B24	ND	ND	ND	ND
	ND	ND	ND	ND
	ND	ND	ND	ND
B25	ND	ND	ND	ND
	ND	ND	ND	ND
	ND	ND	ND	ND
B28	ND	ND	ND	ND
	ND	ND	ND	ND
	ND	ND	ND	ND
B29	ND	ND	ND	ND
	ND	ND	ND	ND
	ND	ND	ND	ND
B33	ND	ND	ND	ND
	ND	ND	ND	ND
	ND	ND	ND	ND
TP01	6.4	14	2.05	ND
	ND	ND	ND	ND
TP02	ND	ND	ND	ND
	ND	ND	ND	ND
	ND	ND	ND	ND
TP03	ND	ND	ND	ND
	ND	ND	ND	ND
A_mean or value used for				
Method B Calc	11.70	15.50	2.05	ND

NOTES:

All units are in milligrams per kilogram.

A_mean = arithmetic mean ND = no data or not detected

APPENDIX J Vapor Intrusion Risk Calculations

SL-ADV 'ersion 3.1; 02/04	CALCULATE RISK	-BASED SOIL CO	NCENTRATION (ente	er "X" in "YES" box)											
0.		YES	X												
Reset to			OR	•											
Defaults	CALCULATE INCR	EMENTAL RISKS	FROM ACTUAL SOI	L CONCENTRATION (enter "X" in "YES"	box and initial soil co	nc. below)								
		YES		Ī											
	ENTER	ENTER													
	Chemical	Initial soil													
	CAS No.	conc.,													
	(numbers only,	C_R													
	no dashes)	(μg/kg)	•		Chemical										
	71432]		Benzene										
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER		ENTER	1				
MORE	LIVER	Depth	LIVILIA	Depth below		st add up to value of		Soil		LIVILIX					
•		below grade		grade to bottom		Thickness	Thickness	stratum A		User-defined					
	Average	to bottom	Depth below	of contamination,	Thickness	of soil_	of soil	SCS		stratum A					
	soil temperature,	of enclosed space floor,	grade to top of contamination,	(enter value of 0 if value is unknown)	of soil stratum A,	stratum B, (Enter value or 0)	stratum C, (Enter value or 0)	soil type	OR	soil vapor permeability,					
	T _S	L _F	L _t	L _b	h _A	(Enter value or o)	(Enter value or 0)	(used to estimate soil vapor	OK	k _v					
	(°C)	(cm)	(cm)	(cm)	(cm)	(cm)	(cm)	permeability)	_	(cm ²)					
	44.07		150	040	450	ı		01	- 1						
	11.67	20	150	240	150	<u>l</u>		SI	l.						
	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
MORE														Stratum C	Stratum C
	Stratum A	Stratum A	Stratum A	Stratum A	Stratum A	Stratum B	Stratum B	Stratum B	Stratum B	Stratum B	Stratum C	Stratum C	Stratum C		
₩ORE Ψ	Stratum A SCS	Stratum A soil dry	Stratum A soil total	soil water-filled	Stratum A soil organic	Stratum B SCS	Stratum B soil dry	Stratum B soil total	Stratum B soil water-filled	Stratum B soil organic	Stratum C SCS	Stratum C soil dry	Stratum C soil total	soil water-filled	soil organic
	SCS soil type		soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity, c	soil organic arbon fraction,
	SCS soil type Lookup Soil	soil dry bulk density, ρ _b ^A	soil total porosity, n ^A	soil water-filled porosity, θ_w^A	soil organic carbon fraction, ${\sf f}_{\sf oc}^{\;\;A}$	SCS soil type Lookup Soil	soil dry bulk density, ρ _b ^B	soil total porosity, n ^B	soil water-filled porosity, $\theta_w^{\ B}$	soil organic carbon fraction, $f_{oc}^{\ \ B}$	SCS soil type Lookup Soil	soil dry bulk density, pb ^C	soil total porosity, n ^C	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{oc}
	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	soil organic carbon fraction,	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity, c	soil organic arbon fraction,
	SCS soil type Lookup Soil	soil dry bulk density, ρ _b ^A	soil total porosity, n ^A	soil water-filled porosity, θ_w^A	soil organic carbon fraction, ${\sf f}_{\sf oc}^{\;\;A}$	SCS soil type Lookup Soil	soil dry bulk density, ρ _b ^B	soil total porosity, n ^B	soil water-filled porosity, $\theta_w^{\ B}$	soil organic carbon fraction, $f_{oc}^{\ \ B}$	SCS soil type Lookup Soil	soil dry bulk density, pb ^C	soil total porosity, n ^C	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{oc}
	SCS soil type Lookup Soil Parameters	soil dry bulk density, p _b ^h (g/cm ³)	soil total porosity, n ^A (unitless)	soil water-filled porosity, θ_w^A (cm^3/cm^3)	soil organic carbon fraction, foch (unitless)	SCS soil type Lookup Soil Parameters	soil dry bulk density, pb (g/cm³)	soil total porosity, n ^B (unitless)	soil water-filled porosity, θ_w^B (cm^3/cm^3)	soil organic carbon fraction, $f_{oc}^{\ \ B}$ (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
<u> </u>	SCS soil type Lookup Soil Parameters SI ENTER	soil dry bulk density, Pb ^A (g/cm³)	soil total porosity, n ^A (unitless) 0.489 ENTER	soil water-filled porosity, 0, 0 (cm³/cm³) 0.167	soil organic carbon fraction, ${\sf f_{oc}}^{A}$ (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^B (g/cm ³)	soil total porosity, n ^B (unitless)	soil water-filled porosity, θ_w^B (cm³/cm³)	soil organic carbon fraction, $f_{oc}^{\ \ B}$ (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
	SCS soil type Lookup Soil Parameters	soil dry bulk density, p _b ^h (g/cm ³)	soil total porosity, n ^A (unitless)	soil water-filled porosity, θ_w^A (cm^3/cm^3)	soil organic carbon fraction, foch (unitless)	SCS soil type Lookup Soil Parameters	soil dry bulk density, pb (g/cm³)	soil total porosity, n ^B (unitless)	soil water-filled porosity, θ_w^B (cm^3/cm^3)	soil organic carbon fraction, foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor	soil dry bulk density, Pb (g/cm³) 1.35 ENTER Soil-bldg. pressure	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor	soil water-filled porosity, \$\theta_w^{\textsup}\$ (cm^2/cm^2) 0.167 ENTER Enclosed space floor	soil organic carbon fraction, for for (unitless) 0.002 ENTER Enclosed space	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack	soil dry bulk density, pb (g/cm³) 1.5 ENTER Indoor air exchange	soil total porosity, n ^B (unitless)	soil water-filled porosity, θ_w^B (cm^3/cm^3) ENTER Average vapor row rate into bldg OR	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness,	soil dry bulk density, pb^ (g/cm³) 1.35 ENTER Soil-bldg. pressure differential,	soil total porosity, n^ (unitless) O.489 ENTER Enclosed space floor length,	soil water-filled porosity,	soil organic carbon fraction, foch (unitless) 0.002 ENTER Enclosed space height,	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width,	soil dry bulk density, Pb (g/cm³) 1.5 ENTER Indoor air exchange rate,	soil total porosity, n ^B (unitless)	soil water-filled porosity, θ_w^B (cm³/cm³) ENTER Average vapor low rate into bldg OR ave blank to calcu	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, L_crack	soil dry bulk density, pb (g/cm³) 1.35 ENTER Soil-bldg. pressure differential, ΔP	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor length, L _B	soil water-filled porosity, \$\theta_s^A\$ (cm\(^3\chi^2\cm^2\)) 0.167 ENTER Enclosed space floor width, \$\text{W}_B\$	soil organic carbon fraction, foc. (unitless) 0.002 ENTER Enclosed space height, H _b	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, W	soil dry bulk density, Pb ^B (g/cm³) 1.5 ENTER Indoor air exchange rate, ER	soil total porosity, n ^B (unitless)	soil water-filled porosity, θ_w^B (cm³/cm³) ENTER Average vapor low rate into bldg OR QR over blank to calcu Q_{soil}	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness,	soil dry bulk density, pb^ (g/cm³) 1.35 ENTER Soil-bldg. pressure differential,	soil total porosity, n^ (unitless) O.489 ENTER Enclosed space floor length,	soil water-filled porosity,	soil organic carbon fraction, foch (unitless) 0.002 ENTER Enclosed space height,	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width,	soil dry bulk density, Pb (g/cm³) 1.5 ENTER Indoor air exchange rate,	soil total porosity, n ^B (unitless)	soil water-filled porosity, θ_w^B (cm³/cm³) ENTER Average vapor low rate into bldg OR ave blank to calcu	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, L_crack	soil dry bulk density, pb (g/cm³) 1.35 ENTER Soil-bldg. pressure differential, ΔP	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor length, L _B	soil water-filled porosity, \$\theta_s^A\$ (cm\(^3\chi^2\cm^2\)) 0.167 ENTER Enclosed space floor width, \$\text{W}_B\$	soil organic carbon fraction, foc. (unitless) 0.002 ENTER Enclosed space height, H _b	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, W	soil dry bulk density, Pb ^B (g/cm³) 1.5 ENTER Indoor air exchange rate, ER	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, Lenck (cm)	soil dry bulk density, Ps^A (g/cm³) 1.35 ENTER Soil-bidg, pressure differential, AP (g/cm-s²)	soil total porosity, n^ (unitless) O.489 ENTER Enclosed space floor length, L _B (cm)	soil water-filled porosity,	soil organic carbon fraction, f _c ^A (unitless) 0.002 ENTER Enclosed space height, H ₆ (cm)	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, W (cm)	soil dry bulk density, ps (g/cm³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, L-crack (cm) 10 ENTER Averaging	soil dry bulk density, Ps (g/cm²) 1.35 ENTER Soil-bldg, pressure differential, AP (g/cm-s²) 40 ENTER Averaging	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER	soil water-filled porosity,	soil organic carbon fraction, facton fraction, facton fraction, facton fraction, facton fraction fraction factor f	SCS Soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard	soil dry bulk density, ps (g/cm³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, Lenck (cm) 10 ENTER Averaging time for	soil dry bulk density, Ph (g/cm²) 1.35 ENTER Soil-bidg, pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor length, Ls (cm) 1000 ENTER Exposure	soil water-filled porosity, \$\theta_{\text{\chi}}^{\text{\chi}}\$ (cm^2/cm^3) 0.167 ENTER Enclosed space floor width, \$\text{\W}_8\$ (cm) 1000 ENTER Exposure	soil organic carbon fraction, f _{s,c} , (unitless) 0.002 ENTER Enclosed space height, H ₆ (cm) 366 ENTER Target risk for	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for	soil dry bulk density, ps (g/cm³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, Lorack (cm) 10 ENTER Averaging time for carcinogens,	soil dry bulk density, pb (g/cm²) 1.35 ENTER Soil-bldg. pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens,	soil total porosity, n' (unitless) 0.489 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure duration,	soil water-filled porosity,	soil organic carbo riraction, foc (unitless) 0.002 ENTER Enclosed space height, Ha (cm) 366 ENTER Target risk for carcinogens,	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens,	soil dry bulk density, ps (g/cm³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, Lenck (cm) 10 ENTER Averaging time for	soil dry bulk density, Ph (g/cm²) 1.35 ENTER Soil-bidg, pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor length, Ls (cm) 1000 ENTER Exposure	soil water-filled porosity, \$\theta_{\text{\chi}}^{\text{\chi}}\$ (cm^2/cm^3) 0.167 ENTER Enclosed space floor width, \$\text{\W}_8\$ (cm) 1000 ENTER Exposure	soil organic carbon fraction, f _{s,c} , (unitless) 0.002 ENTER Enclosed space height, H ₆ (cm) 366 ENTER Target risk for	SCS soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for	soil dry bulk density, ps (g/cm³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, Lerack (cm) 10 ENTER Averaging time for carcinogens, ATc (yrs)	soil dry bulk density, Pb (g/cm²) 1.35 ENTER Soil-bldg, pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor length, La (cm) 1000 ENTER Exposure duration, ED (yrs)	soil water-filled porosity, 0, 0, (cm²/cm²) 0.167 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER Exposure frequency, EF (days/yr)	soil organic carbon fraction, flec (unitless) 0.002 ENTER Enclosed space height, He (cm) 366 ENTER Target risk for carcinogens, TR (unitless)	SCS Soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for nonacricnogens, THQ (unitless)	soil dry bulk density, ps (g/cm³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS Soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, Leneck (crm) 10 ENTER Averaging time for carcinogens, ATc	soil dry bulk density, Ps (g/cm²) 1.35 ENTER Soil-bldg, pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC}	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor length, L _B (cm) 1000 ENTER Exposure duration, ED	soil water-filled porosity,	soil organic carbon fraction, f _{cc} (unitless) 0.002 ENTER Enclosed space height, H _b (cm) 366 ENTER Target risk for carcinogens, TR	SCS Soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for noncarcinogens, THQ	soil dry bulk density, ps (g/cm³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)
₩ORE	SCS soil type Lookup Soil Parameters SI ENTER Enclosed space floor thickness, Lerack (cm) 10 ENTER Averaging time for carcinogens, ATc (yrs)	soil dry bulk density, Pb (g/cm²) 1.35 ENTER Soil-bldg, pressure differential, AP (g/cm-s²) 40 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	soil total porosity, n^ (unitless) 0.489 ENTER Enclosed space floor length, La (cm) 1000 ENTER Exposure duration, ED (yrs)	soil water-filled porosity, 0, 0, (cm²/cm²) 0.167 ENTER Enclosed space floor width, Ws (cm) 1000 ENTER Exposure frequency, EF (days/yr)	soil organic carbon fraction, f _{cc} (unitless) 0.002 ENTER Enclosed space height, H _b (cm) 366 ENTER Target risk for carcinogens, TR (unitless) 1.0E-06 Used to calcu	SCS Soil type Lookup Soil Parameters ENTER Floor-wall seam crack width, w (cm) 0.1 ENTER Target hazard quotient for nonacricnogens, THQ (unitless)	soil dry bulk density, ps (g/cm³) 1.5 ENTER Indoor air exchange rate, ER (1/h)	soil total porosity, n ^B (unitless)	soil water-filled porosity,	soil organic carbon fraction, for foc (unitless)	SCS soil type Lookup Soil	soil dry bulk density, Pb ^C (g/cm³)	soil total porosity, n ^C (unitless)	soil water-filled porosity, α θ _w ^C	soil organic arbon fraction, f _{cc} ^C (unitless)

RESULTS SHEET

RISK-BASED SOIL CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure soil conc., carcinogen (µg/kg)	Indoor exposure soil conc., noncarcinogen (µg/kg)	Risk-based indoor exposure soil conc., (µg/kg)	Soil saturation conc., C _{sat} (µg/kg)	Final indoor exposure soil conc., (µg/kg)		Incremental risk from vapor intrusion to indoor air, carcinogen (unitless)	Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless)
_					, ,		
2.30E+02	2.31E+04	2.30E+02	4.86E+05	2.30E+02		NA	NA

MESSAGE AND ERROR SUMMARY BELOW: (DO NOT USE RESULTS IF ERRORS ARE PRESENT)
MESSAGE: The values of Csource and Cbuilding on the INTERCALCS worksheet are based on unity and do not represent actual values.

SCROLL DOWN TO "END"

END

0592-001 SL-ADV-Feb04 1 of 1