South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix F Data Validation Reports

Table of Contents

This appendix contains the following items:

- Soil Data Validation Reports for the South Park Landfill
 - o 2010 Remedial Investigation Soil Sampling Event
- Surface Soil Data Validation Reports for the South Park Landfill
 - Data Validation Report (EcoChem, Inc.)
 - Data Validation Report Revision1 (EcoChem, Inc.)
- Groundwater Data Validation Reports for the South Park Landfill
 - Monitoring Well Sampling Event (Floyd|Snider)
 - July 2011 Groundwater Sampling Event (Floyd|Snider)
 - April 2013 Groundwater Sampling Event (Floyd | Snider)
 - July 2013 Groundwater Sampling Event (Floyd|Snider)
 - March 2014 Groundwater Sampling Event (Floyd | Snider)
- Reconnaissance Groundwater Data Validation Reports for the South Park Landfill
 - Reconnaissance Probe Groundwater Sampling Event
- Soil Gas Data Validation Reports for the South Park Landfill
 - Data Quality Assurance Review of the South Park RI/FS Air Monitoring Data (Herrera Environmental Consultants, Inc.)

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix F Data Validation Reports

Soil Data Validation Reports

2010 Remedial Investigation Soil Sampling Event South Park Landfill

Data Validation Report

Prepared for

Seattle Public Utilities

Prepared by

Floyd|Snider 601 Union Street Suite 600 Seattle, Washington 98101

April 2011

Table of Contents

1.0	Proje	ect Narrative	
	1.1	OVERVIEW OF DATA VALIDATION	1
2.0	Data	a Validation Report Metals by USEPA 6010B	3
	2.1	DATA PACKAGE COMPLETENESS	3
	2.2	TECHNICAL DATA VALIDATION	3
		2.2.1 Matrix Spike	3
		2.2.2 Lab Sample Duplicates	4
	2.3	OVERALL ASSESSMENT	4
Data	Valida	ation Report Mercury by USEPA 7471A	5
	3.1	DATA PACKAGE COMPLETENESS	5
	3.2	TECHNICAL DATA VALIDATION	5
	3.3	OVERALL ASSESSMENT	5
3.0	Data	a Validation Report TPHs by NWTPH-Dx	6
	4.1	DATA PACKAGE COMPLETENESS	6
	4.2	TECHNICAL DATA VALIDATION	6
		4.2.1 Matrix Spike and Matrix Spike Duplicate	6
	4.3	OVERALL ASSESSMENT	7
5.0	Data	a Validation Report TPHs by NWTPH-Gx	8
	5.1	DATA PACKAGE COMPLETENESS	8
	5.2	TECHNICAL DATA VALIDATION	8
		5.2.1 Matrix Spike and Matrix Spike Duplicate	8
	5.3	OVERALL ASSESSMENT	9

List of Appendices

Appendix A Qualifier Codes and Data Validation Guidelines

Appendix B Qualified Data Summary Table

List of Abbreviations and Acronyms

Abbreviation/	
Acronym	Definition
ARI	Analytical Resources, Inc. Laboratory
DNR	Do not report
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
SDG	Sample delivery group
TPH	Total petroleum hydrocarbons
USEPA	U. S. Environmental Protection Agency

1.0 Project Narrative

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on select analyses of the soil and rinse blank QC sample data for the South Park Landfill 2010 Remedial Investigation Soil Sampling Event. Select analyses that were reviewed in this report include the following:

- Metals—USEPA Method 6010B
- Mercury—USEPA Method 7471A
- TPHs—NWTPH-Dx
- TPHs—NWTPH-Gx

Additional data validation results for analyses not covered in this document, including Semivolatile Organic Compounds, Organophosphate Pesticides, Pentachlorophenol, Organochlorine Pesticides, Herbicides, Polychlorinated Biphenyls, and Dioxan Furan Compounds were performed by EcoChem, Inc. and summarized in their Data Validation Report under separate cover.

A complete list of the samples analyzed for metals, mercury, and TPHs is provided below.

Project Sample Index

SDG (Batch)	Sample ID	Lab ID	6010B	7071A	NWTPH-Dx	NWTPH-Gx
RZ45	SS-03-0-2-120610	RZ45A	Х	Х	X	X
RZ45	SS-03-2-4-120610	RZ45B	Х	Х	X	X
RZ45	SS-03-4-6-120610	RZ45C	Х	Х	Х	Х
RZ45	SS-02-0-2-120610	RZ45D	Х	Х	Х	Х
RZ45	SS-02-2-4-120610	RZ45E	Х	Х	Х	Х
RZ45	SS-02-4-6-120610	RZ45F	Х	Х	Х	Х
RZ45	SS-01-0-2-120610	RZ45G	Х	Х	Х	Х
RZ45	SS-01-2-4-120610	RZ45H	Х	Х	Х	Х
RZ45	SS-01-4-6-120610	RZ45I	Х	Х	Х	Х
RZ45	SS-02-6-8-120610	RZ45J	Х	Х	Х	Х
RZ67	SS-P-120810	RZ67B	Х	Х	Х	Х
RZ67	RB-120810	RZ67C	Х	Х	Х	X

The chemical analyses listed in the table above were performed by ARI in Tukwila, Washington. Soil samples and one rinse blank QC sample were collected between December 6, 2010 and December 8, 2010 and submitted to ARI for chemical analyses.

The data were reviewed using guidance and quality control criteria documented in the analytical methods, *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 and 2004),

National Functional Guidelines for Organic Data Review (USEPA 1999 and 2008) and the Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site (Farallon Consulting, LLC 2010).

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a DNR qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Appendix A. The Qualified Data Summary Table is included in Appendix B. Data validation worksheets (excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report Metals by USEPA 6010B

This report documents the review of analytical data from the analyses of soil samples, one rinse blank QC sample, and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	^{1,2} MS
Extraction and analysis holding times	² Lab sample duplicates
Blank contamination	Reporting limits and reported results
LCS	Target analyte list

Notes

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

2.2.1 Matrix Spike

The MS recoveries for sample SS-03-0-2-120610 from SDG RZ45 were outside control limits high (75-125%) for both Aluminum (173%) and Iron (287%). However, for both analytes the original sample concentration was ≥4x the spike amount. Per USEPA Guidelines, spike recovery limits do not apply when sample concentration exceeds the spike concentration by ≥4x, and the data shall be reported unflagged even if the percent recovery does not meet the acceptance criteria. Therefore, no Aluminum or Iron results will be qualified based on this information.

The MS recoveries for sample SS-P-120810 from SDG RZ67 were outside control limits high (75-125%) for Aluminum (661%), Iron (1,980%), and Zinc (169%). However, for these three analytes the original sample concentration was \geq 4x the spike amount. Per USEPA Guidelines, spike recovery limits do not apply when sample concentration exceeds the spike concentration by \geq 4x, and the data shall be reported unflagged even if the percent recovery does not meet the

acceptance criteria. Therefore, no Aluminum, Iron, or Zinc results will be qualified based on this information.

The MS recovery for sample SS-P-120810 from SDG RZ67 was outside control limits high (75-125%) for Manganese (187%). A post spike was performed and the recovery was within control limits. Per USEPA Guidelines, when the spike recovery is outside the control limits high, all detected results for the analyte from samples of a similar matrix are to be flagged "J" as estimated. SS-P-120810 was the only soil sample in this SDG, therefore only the SS-P-120810 Manganese result will be flagged "J" for estimated.

2.2.2 Lab Sample Duplicates

The duplicate RPDs for SS-P-120810 and its lab duplicate from SDG RZ67 were outside of USEPA Guidelines control limits high (±20%) for Aluminum (37%), Arsenic (25%), Copper (151%), and Lead (39%). Per USEPA Guidelines, if the results from a duplicate analysis are outside the control limits, the results for that analyte in all associated samples of the same matrix are flagged "J" as estimated. SS-P-120810 was the only soil sample in this SDG and the RPD results are not applicable to the rinse blank QC sample. The results for Aluminum, Arsenic, Copper, and Lead for sample SS-P-120810 will be flagged "J" as estimated.

2.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the LCS percent recovery values. Precision was generally acceptable, as demonstrated by the majority of the lab sample/lab sample duplicate RPDs.

All data are acceptable for use as qualified, see Appendix B for details.

Data Validation Report Mercury by USEPA 7471A

This report documents the review of analytical data from the analyses of soil samples, one rinse blank QC sample, and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

3.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	MS
Extraction and analysis holding times	Lab sample duplicates
Blank contamination	Reporting limits and reported results
LCS	Target analyte list

All QC requirements were met without exception, and did not require further evaluation.

3.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the MS and LCS percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

All data, as reported by the lab, are acceptable for use.

3.0 Data Validation Report TPHs by NWTPH-Dx

This report documents the review of analytical data from the analyses of soil samples, one rinse blank QC sample, and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

4.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

4.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation		Initial and continuing calibration	
Extraction and analysis holding times		Reporting limits and reported results	
	Blank contamination	Target analyte list	
1	MS and MSD	LCS and LCSD	
	Surrogate recoveries	Compound identification	

Notes

1 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for diesel range hydrocarbon analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

4.2.1 Matrix Spike and Matrix Spike Duplicate

The MSD percent recovery for sample SS-03-0-2-120610 from SDG RZ45 for Diesel was 215% and outside the advisory control limits high (56-108%). The MS percent recovery was within control limits. Per USEPA Guidelines as applied to this method, professional judgment is to be used if only one recovery is outside of control limits. In addition, the RPD was 58.4% and outside the laboratory control limits of ±20%. Per USEPA Guidelines as applied to this method, if the RPD is outside of control limits the result of the parent sample should be qualified "J" as estimated. Therefore, it is with professional judgment that the Diesel result for SS-03-0-2-12610 be qualified "J" as estimated based on the MSD recovery being outside advisory control limits in conjunction with the RPD also being outside control limits.

4.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the MS and LCS percent recovery values. Precision was acceptable, as demonstrated by the LCS/LSCD RPDs.

All data are acceptable for use as qualified, see Appendix B for details.

5.0 Data Validation Report TPHs by NWTPH-Gx

This report documents the review of analytical data from the analyses of soil samples, one rinse blank QC sample, and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

5.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

5.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation		Initial and continuing calibrations	
Extraction and analysis holding times		Reporting limits and reported results	
	Blank contamination	Target analyte list	
1	MS and MSD	LCS and LCSD	
	Surrogate recoveries	Compound identification	

Notes

Appendix A presents data validation criteria tables for diesel range hydrocarbon analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

5.2.1 Matrix Spike and Matrix Spike Duplicate

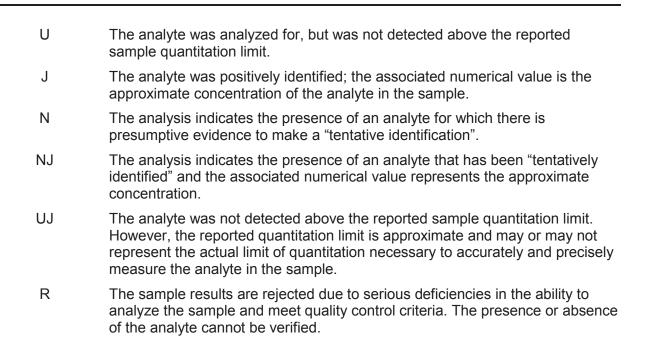
The MS and MSD percent recoveries for Gasoline Range Hydrocarbons in sample SS-03-0-2-120160 from SDG RZ45 were 173% and 172% respectively, and outside advisory control limits high (75-124%). Per UESPA Guidelines as applied to this method, detected results of the parent sample should be qualified "J" as estimated when both the MS and MSD percent recoveries are outside the control limits high. The Gasoline Range Hydrocarbon result for SS-03-0-2-120610 was a non-detect. In addition, the LCS and LCSD percent recoveries were within control limits and provide acceptable proof of accuracy. Therefore, it is with professional judgment that no additional qualifiers be added to the result.

¹ Quality control results are discussed below, but no data were qualified.

5.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the LCS percent recovery values. Precision was acceptable, as demonstrated by the LCS/LSCD RPDs.

All data, as reported by the lab, are acceptable for use.


2010 Remedial Investigation Soil Sampling Event South Park Landfill

Data Validation Report

Appendix A Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

The following is a Floyd|Snider qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

Floyd|Snider Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Floyd Snider Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled Frozen tissues—HT extended to 2 years	J/UJ if holding time exceeded
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. < 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J/UJ if tune criteria not met
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J/UJ if r<0.995 (for multi point cal)
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J/UJ if %R 75–89% J if %R = 111-125% R if %R > 125% R if %R < 75%
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J/UJ if %R = 75–89% J if %R 111-125% R if %R > 125% R if %R < 75%
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+)blanks, U results < action level For (-) blanks, J/UJ results < action level

Validation QC Element	Acceptance Criteria	Action
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R, < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J < 2x RL, UJ if %R 50-69% (30%-49% Co,Mn, Zn) J < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R < 2x RL if %R > 180% (200% Co, Mn, Zn)
Interference Check Samples (ICSA/ICSAB)	Required by SW 6020, but not 200.8 ICSAB %R 80% - 120% for all spiked elements ICSA < IDL (MDL) for all unspiked elements	For samples with AI, Ca, Fe, or Mg > ICS levels R if %R < 50% J if %R >120% J/UJ if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U results < action level
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80%-120%	R if %R < 50% J/UJ if %R = 50-79% J if %R >120%
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J/UJ if < LCL, J if > UCL
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 75-125% for samples where results do not exceed 4x spike level	J if %R>125% J/UJ if %R <75% J/R if %R<30% or J/UJ if Post Spike %R 75%-125% Qualify all samples in batch
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5 x RL (Diff < 2x RL for solids)	J/UJ if RPD > 20% or diff > RL All samples in batch
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J/UJ if %D >10% All samples in batch

Validation QC Element	Acceptance Criteria	Action
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J /UJ all analytes associated with IS outlier
Field Blank	Blank < MDL	Action level is 5x blank conc. U sample values < AL in associated field samples only
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J/UJ in parent samples only
Linear Range	Sample concentrations must fall within range	J values over range

Floyd|Snider Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range and Gasoline Range (Based on USEPA National Functional Guidelines as applied to criteria in NWTPH-Dx and NWTPH-Gx, June 1997, Ecology & Oregon DEQ)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature & Preservation	4°C± 2°C Water: HCl to pH < 2	J/UJ if greater than 6 deg. C
Holding Time	Ext. Waters: 14 days preserved 7 days unpreserved Ext. Solids: 14 Days Analysis: 40 days from extraction	J/UJ if hold times exceeded J/R if exceeded > 3X (Floyd Snider PJ)
Initial Calibration	5 calibration points (All within 15% of true value) Linear Regression: R2 >0.990 If used, RSD of response factors <20%	Narrate if fewer than 5 calibration levels or if %R >15% J/UJ if R2 <0.990 J/UJ if %RSD > 20%
Mid-range Calibration Check Std.	Analyzed before and after each analysis shift & every 20 samples. Recovery range 85% to 115%	Narrate if frequency not met. J/UJ if %R < 85% J if %R > 115%
Method Blank	At least one per batch (<10 samples) Method Blank No results >RL	U (at the RL) if sample result is < RL & < 5X blank result.
		U (at reported sample value) if sample result is > RL and < 5X blank result
Field Blanks (if required by project)	No results > RL	Action is same as method blank for positive results remaining in the field blank after method blank qualifiers are assigned.
MS samples (accuracy) (if required by project)	%R within lab control limits	Qualify parent only, unless other QC indicates systematic problems. J if both %R > upper control limit (UCL) J/UJ(-) if both %R < lower control limit (LCL) No action if parent conc. >5X the amount spiked. Use PJ if only one %R outlier
Precision: MS/MSD or LCS/LCSD or sample/dup	At least one set per batch (<10 samples) RPD < lab control limit	J if RPD > lab control limits

Validation QC Element	Acceptance Criteria	Action
LCS (not required by method)	%R within lab control limits	J/UJ if %R < LCL J if %R > UCL J/R if any %R <10% (Floyd Snider PJ)
Surrogates	2-fluorobiphenyl, p-terphenyl, o-terphenyl, and/or pentacosane added to all samples (inc. QC samples). %R = 50-150%	J/UJ if %R < LCL J if %R > UCL J/R if any %R <10% No action if 2 or more surrogates are used, and only one is outside control limits. (Floyd Snider PJ)
Pattern Identification	Compare sample chromatogram to standard chromatogram to ensure range and pattern are reasonable match. Laboratory may flag results which have poor match.	J
Field Duplicates	Use project control limits, if stated in QAPP Floyd Snider default: water: RPD < 35% solids: RPD < 50%	Narrate (Floyd Snider PJ to qualify)
Two analyses for one sample (dilution)	Report only one result per analyte	"DNR" (or client requested qualifier) all results that should not be reported

Abbreviation:

PJ Professional judgment

2010 Remedial Investigation Soil Sampling Event South Park Landfill

Data Validation Report

Appendix B **Qualified Data Summary Table**

2010 Remedial Investigation Soil Sampling Event **Qualified Data Summary Table**

Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifier
SS-03-0-2-120610	10-30435 RZ45A	NWTPH-Dx	Diesel	780	mg/kg		7
SS-P-120810	RZ67B	6010B	Aluminum	7,400	mg/kg		ſ
SS-P-120810	RZ67B	6010B	Arsenic	2	mg/kg		ſ
SS-P-120810	RZ67B	6010B	Copper	24.5	mg/kg		ſ
SS-P-120810	RZ67B	6010B	Lead	29	mg/kg		ſ
SS-P-120810	RZ67B	6010B	Manganese	148	mg/kg		7

DV Qualifiers:J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

Data Validation Report

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix F Data Validation Reports

Surface Soil Data Validation Reports

DATA VALIDATION REPORT

South Park Landfill Site

Prepared for:

Floyd/Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 710 Second Avenue, Suite 660 Seattle, Washington 98104

EcoChem Project: C15211-1

March 21, 2011

Approved for Release:

Christine Ransom Project Manager EcoChem, Inc.

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of summary validation (EPA Stage 2B) and compliance screening (EPA Stage 2A) performed on soil and quality control (QC) sample data for the South Park Landfill Site Remedial Investigation/Feasibility Study. A complete list of samples is provided in the **Sample Index**.

Frontier Analytical Laboratory (El Dorado Hills, California) performed the dioxin/furan analyses. Analytical Resources Incorporated (Tukwila, Washington) performed the remainder of the analyses. The analytical methods and EcoChem project chemists are listed in the table below.

Analysis	Method	Primary Review	Secondary Review
Semivolatile Organic Compounds	SW8270D	E. Clayton	C. Ransom
Organophosphate Pesticides	SW8270D-SIM	L. Clayton	C. Kalisulli
Pentachlorophenol	SW8041		
Organochlorine Pesticides	SW8081B	M. Swanson	
Herbicides	SW8151A	IVI. SWAIISUII	C. Mott
Polychlorinated Biphenyls	SW8082		
Dioxin Furan Compounds	EPA 1613	D. Kerlin	

The data were reviewed using guidance and quality control criteria documented in the analytical methods; South Park Landfill Site, Remedial Investigation/Feasibility Study Work Plan (Farallon, 11/10); National Functional Guidelines for Inorganic Data Review (USEPA 1994 & 2004); National Functional Guidelines for Organic Data Review (USEPA 1999 & 2008). and USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (USEPA, September 2005).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A**. A Qualified Data Summary Table is included in **APPENDIX B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

SAMPLE INDEX South Park Landfill Site RIFS

SDG	Sample ID	Laboratory ID	SVOC 8270D	OP Pest 8270D-SIM	PCP 8041	OC Pest 8081B	Herb 8151A	PCB 8082	Dioxin 1613B
6501	DU1	6501-001-SA							√
6501	DU2	6501-002-SA							✓
6501	DU3	6501-003-SA							✓
RZ45	SS-03-0-2-120610	10-30435-RZ45A	✓	✓	✓	✓	✓	✓	
RZ45	SS-03-2-4-120610	10-30436-RZ45B	✓	✓	✓	✓	✓	✓	
RZ45	SS-03-4-6-120610	10-30437-RZ45C	✓	✓	✓	✓	✓	✓	
RZ45	SS-02-0-2-120610	10-30438-RZ45D	✓	✓	✓	✓	✓	✓	
RZ45	SS-02-2-4-120610	10-30439-RZ45E	✓	✓	✓	✓	✓	✓	
RZ45	SS-02-4-6-120610	10-30440-RZ45F	✓	✓	✓	✓	✓	✓	
RZ45	SS-01-0-2-120610	10-30441-RZ45G	✓	✓	✓	✓	✓	✓	
RZ45	SS-01-2-4-120610	10-30442-RZ45H	✓	✓	✓	✓	✓	✓	
RZ45	SS-01-4-6-120610	10-30443-RZ45I	✓	✓	✓	✓	✓	✓	
RZ45	SS-02-6-8-120610	10-30444-RZ45J	✓	✓	✓	✓	✓	✓	
RZ67	SS-PD-120810	10-30567-RZ67A		✓					
RZ67	SS-P-120810	10-30568-RZ67B	✓	✓	✓	✓	✓	✓	
RZ67	RB-120810	10-30569-RZ67C	✓	✓	✓	✓	✓	✓	

DATA VALIDATION REPORT South Park Landfill RIFS Semivolatile Organic Compounds by Method 8270D

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Analytical Resources, Inc., Tukwila, Washington, analyzed the samples. Refer to the **Sample Index** for a list of samples that were reviewed.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
R767	1 Soil	EPA Stage 2B
KZ0/	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL)
- 1 Continuing Calibration (CCAL)
- 2 Laboratory Blanks
- 1 Field Blanks
 - Surrogate Compounds
- 2 Laboratory Control Samples (LCS/LCSD)

- 2 Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Internal Standards
- Field Duplicates
 Target Analyte list
 - Danastina Lindia
 - Reporting Limits
 - Compound Identification
- 2 Reported Results

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

Continuing Calibration

All relative response factor (RRF) values were greater than the 0.05 minimum control limit. With the exceptions noted below, the percent difference (%D) values were within the $\pm 25\%$ control limit.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

SDG RZ45 (CCAL 12/16/10, Instrument NT6): The %D values for 3-nitroaniline; 2,3-dinitrophenol; 4-nitrophenol; and 4-nitroaniline were outside of control limits and indicate potential high bias. These analytes were not detected in the associated samples; therefore no qualification of data was necessary.

SDG RZ67 (CCAL 12/17/10, Instrument NT4): The %D value for benzidine was outside of the control limits and indicates a potential low bias. Results for benzidine are rejected based on poor recoveries in the laboratory control sample; therefore, no additional qualifiers were assigned.

Laboratory Blanks

SDG RZ45: Bis(2-ethylhexyl)phthalate was detected in the method blank. In order to evaluate the effect on the field sample data, an action level was established at 10 times the method blank concentration [bis(2-ethylhexyl)phthalate is a common lab contaminant]. Positive results in the associated samples that were less than the action level were qualified as not-detected (U-7).

SDG RZ67: The analyte 1,4-dichlorobenzene was detected in the method blank associated with Sample SS-P-12080. The 1,4-dichlorobenzene result for this sample was qualified as not detected (U-7).

Field Blanks

SDG RZ67: One rinsate blank (RB-120810) was submitted. No target analytes were detected in this blank.

Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates (LCS/LCSD) were analyzed at the proper frequency. For LCS/LCSD recoveries that were less than the lower control limit, positive results and/or non-detects in the parent sample only were estimated (J/UJ-10) to indicate a potential low bias. If the recoveries were also less than 10%, positive results were estimated (J-10) and non-detects were rejected (R-10) due to the extreme low bias. For recoveries greater than the upper control limit, positive results only in the parent sample were estimated (J-10) to indicate a potential high bias. No action was taken if only one of the LCS or LCSD recoveries was outside of the control limit. Outliers resulting in qualification of the data are discussed below.

SDG RZ45: The %R values for benzidine were less than 10%. Benzidine was not detected in any of the associated samples; all benzidine results were rejected (R-10).

SDG RZ67: The %R value for benzidine was less than 10% for the LCS sample. Benzidine was not detected in the associated sample; the benzidine result was rejected (R-10).

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicates (MS/MSD) were analyzed at the proper frequency. For MS/MSD recoveries that were less than the lower control limit, positive results and/or non-detects in the parent sample only were estimated (J/UJ-8) to indicate a potential low bias. If the recoveries were also less than 10%, positive results were estimated (J-8) and non-detects were rejected (R-8) due to the extreme low bias. For recoveries greater than the upper control limit, positive results only in the parent sample were estimated (J-8) to indicate a potential high bias. No action was taken if only one of the MS or MSD recoveries was outside of the control limit or if the native concentration in the parent sample was greater than 4X the spike amount.

For MS/MSD relative percent difference values that were greater than the control limit, positive results only in the parent sample were estimated (J-9). The following outliers resulted in qualification of data:

SDG RZ45: Sample SS-03-0-2-120610 was used for the MS/MSD analyses. The recoveries for benzidine were less than 10%. Benzidine was not detected in the parent sample; the result was rejected (R-8).

The RPD value for chrysene was greater than the control limit of 30%. The chrysene result in the parent sample was estimated (J-9).

SDG RZ67: Sample SS-P-120810 was used for the MS/MSD analyses. The MS/MSD %R values for 4-chloroaniline and benzidine were less than 10%. These analytes were not detected in the parent sample; results were rejected (R-8).

The recoveries for 3,3'-dichlorbenzidine, aniline, and hexachlorocyclopentadiene were less than the lower control limit. These analytes were not detected in the parent sample; results were estimated (UJ-8).

The RPD value for 2,4-dinitrophenol; 4,6-dinitro-2-methylphenol, and phenanthrene were greater than the control limit of 30%. Phenanthrene was the only one of these analytes detected in the parent sample. The phenanthrene result was estimated (J-9).

Field Duplicates

No field duplicates were submitted.

Reported Results

SDG RZ45: The concentration of bis(2-ethylhexyl)phthalate was greater than the calibration range of the instrument in Sample SS-02-0-4-120610. The sample was re-analyzed at dilution; both sets of data were reported. The result for bis(2-ethylhexyl)phthalate ion the original analysis was rejected (R-20). The results for all other analytes in the dilution were rejected (R-11).

Sample SS-02-0-2-120610 was also re-analyzed at dilution, however all analytes were within the calibration range in the original analysis. All results from the dilution were rejected (R-11).

For sample SS-01-4-6-120610, the "U" flag for total benzofluoranthene was missing from the EDD. The hardcopy quantification report confirmed that this analyte was not-detected in this sample. The "U" flag was added to the EDD and no further action was taken.

SDG RZ67: For sample RB-120810, the "U" flag for total benzofluoranthene was missing from the EDD. The "U" flag was added to the EDD and no further action was taken.

III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was generally acceptable, as demonstrated by the surrogate LCS/LCSD, and MS/MSD %R values; precision was also acceptable as demonstrated by the LCS/LCSD and MS/MSD RPD values.

Detection limits were elevated based on method blank contamination. Data were estimated based on LCS/LCSD and MS/MSD %R outliers and MS/MSD RPD outliers.

Several results were rejected due to LCS/LCSD and MS/MSD recoveries that were less than 10%. Data were also rejected to indicate which results should not be used from multiple reported analyses.

Rejected data should not be used for any purpose. All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Pentachlorophenol by EPA Method 8041

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Analytical Resources, Inc., Tukwila, Washington, analyzed the samples. Refer to the **Sample Index** for a list of samples that were reviewed.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
R767	1 Soil	EPA Stage 2B
KZ07	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. **TECHNICAL DATA VALIDATION**

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times 1 Field Duplicates Initial Calibration (ICAL) Continuing Calibration (CCAL) Laboratory Blanks

1 Field Blanks

Surrogate Compounds

Laboratory Control Samples (LCS)

1 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Retention Time Window Target Analyte List Compound Identification **Compound Quantitation**

Reporting Limits

2 Reported Results

¹ Quality control results are discussed below, but no data were qualified.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

Field Blanks

SDG RZ67: One equipment rinsate, RB-120810, was submitted. Pentachlorophenol was not detected in this sample.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Surrogate Compounds

The standard surrogate compounds for Method 8041 were not added to the samples during extraction. The sample extracts were also analyzed for herbicides by Method 8151 and surrogate recoveries were acceptable for that method. Based on the absence of quality control data, all results are estimated (see **Reported Results** section).

Laboratory Control Samples

Pentachlorophenol was not included in the solution used to spike the laboratory control sample (LCS). The LCS extract was also analyzed for herbicides by Method 8151; recoveries for the herbicide compounds indicated acceptable extraction performance. Based on the absence of quality control data, all results are estimated (see **Reported Results** section).

Matrix Spike/Matrix Spike Duplicates

Pentachlorophenol was not included in the spiking solution used for the matrix spike/matrix spike duplicate (MS/MSD) analyses. The MS/MSD extracts were also analyzed for herbicides by Method 8151; recoveries of the herbicide compounds indicated acceptable precision and accuracy. Based on the absence of quality control data, all results are estimated (see **Reported Results** section).

Field Duplicates

No field duplicate sample was submitted with these SDG.

Reported Results

All samples were initially prepared and analyzed by Method 8151; however the laboratory unintentionally omitted pentachlorophenol from the calibration standard and quality control spike solutions. In order to provide results for pentachlorophenol, the laboratory used extracts prepared for Method 8151 and analyzed the samples by Method 8041. Because of the absence of information regarding the precision or accuracy of the analysis for pentachlorophenol, all results were estimated (J/UJ-14).

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory did not follow the specified analytical method. There was no measure of laboratory accuracy or precision for Method 8041; however the results for the analysis of the extracts by Method 8151 indicated acceptable laboratory performance.

All results were estimated based on the absence of surrogate, LCS, or MS/MSD recovery information.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Organochlorine Pesticides by EPA Method 8081

This report documents the review of analytical data from the analyses of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
R767	1 Soil	EPA Stage 2B
KZ07	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL)
- 2 Continuing Calibration (CCAL)
- 2 DDT/Endrin Breakdown Laboratory Blanks
- Field Blanks
 Surrogate Compounds

Laboratory Control Samples (LCS)

- 2 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
- 1 Field Duplicates

Retention Time Window

Target Analyte List

Compound Identification

2 Compound Quantitation

Reporting Limits

Reported Results

¹ Quality control results are discussed below, but no data were qualified.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Continuing Calibration

SDG RZ45: The percent difference (%D) values for heptachlor, 4,4'-DDT, methoxychlor, and toxaphene were outside of the control limits of $\pm 25\%$, indicating a potential low bias. The results for these analytes were estimated (J/UJ-5B) in the associated samples.

The %D value for 4,4'-DDD was outside of the control limits indicating a potential high bias; positive results for this analyte in the associated samples were estimated (J-5B).

SDG RZ67: The %D values for heptachlor, 4,4'-DDT, methoxychlor and toxaphene were outside of the control limits of, indicating a potential low bias. The results for these analytes were estimated (UJ-5B) in Sample SS-P-120810.

The %D value for 4,4'-DDD was outside of the control limits, indicating a potential high bias. This analyte was not detected in Sample SS-P-120810; no qualification was necessary based on the potential high bias.

DDT/Endrin Breakdown

Performance evaluation mixtures (PEM) were analyzed to measure the percent breakdown of 4,4'-DDT and endrin. The percent breakdown values were less than the control limit of 20%, with the exceptions noted below.

When the percent breakdown value was greater than 20%, positive results for 4,4'-DDT and/or endrin were estimated (J-5B). Any positive results for the breakdown products (4,4'-DDD & 4,4'-DDE or endrin ketone & endrin aldehyde) were also estimated (J-5B). If 4,4'-DDT and/or endrin were not detected in a given sample but the associated breakdown products were, then the 4,4'-DDT and/or endrin results were rejected (R-5B) and the positive results for the breakdown products were qualified as tentatively identified (NJ-5B).

SDG RZ45: The percent breakdown for 4,4'-DDT was greater than the 20% control limit for the PEM analyses of 12/22/10 @ 10:49 and 12/22/10 @ 14:45. The results for 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT in the samples bracketed by these PEM analyses were qualified as specified above. Refer to the **Qualified Data Summary Table** (Appendix B) for a complete list of qualified data.

Field Blanks

SDG RZ67: One equipment rinsate, RB-120810, was submitted. No target analytes were detected in this blank.

Matrix Spike/Matrix Spike Duplicates

Matrix spike sample (MS/MSD) recoveries that were less than the lower control limit, positive results and/or non-detects in the parent sample only were estimated (J/UJ-8) to indicate a potential low bias. If the recoveries were also less than 10%, positive results were estimated (J-

8) and non-detects were rejected (R-8) due to the extreme low bias. For recoveries greater than the upper control limit, positive results only in the parent sample were estimated (J-8) to indicate a potential high bias. No action was taken if only one of the MS or MSD recoveries was outside of the control limit or if the native concentration in the parent sample was greater than 4X the spike amount.

For relative percent difference (RPD) values that were greater than the control limit, only positive results in the parent sample were estimated (J-9). The following outliers resulted in qualification of data:

SDG RZ45: Sample SS-03-2-4-120610 was used for the MS/MSD analyses. The %R values for methoxychlor were less than the lower control limit. This analyte was not detected in the parent sample; the result was estimated (UJ-8).

SDG RZ67: Sample SS-P-120810 was used for the MS/MSD analyses. The %R values for 4,4'-DDT and methoxychlor were less than the lower control limit. These analytes not detected in the parent sample; results were estimated (UJ-8).

The RPD values for trans-chlordane and cis-chlordane were greater than the control limit. These analytes were estimated (J-9) in the parent sample.

Field Duplicates

No field duplicate samples were submitted.

Compound Quantitation

The results from the two analytical columns were compared for agreement. An elevated RPD value may indicate the presence of an interference resulting in a high bias. When the RPD value was greater than 40% but less than 60% the reported value was estimated (J-3). If the RPD value was greater than 60%, the result was qualified as a tentative identification (NJ-3). Confirmation outliers resulting in data qualification are discussed below.

```
SDG RZ45: 4,4'-DDT (1 result), cis-chlordane (7 results) – J-3
4,4'-DDT (3 results), cis-chlordane (3 results), trans-chlordane (2 results) - NJ-3
```

SDG RZ67: trans-chlordane (1 result) - NJ-3

Reporting Limits

Most samples were analyzed at dilution due to matrix interferences. Reporting limits were elevated accordingly.

Several chromatograms indicated non-target background interference. The reporting limits (RL) for these analytes were flagged "Y" by the laboratory. These "Y" flagged results were qualified (U-22) to indicate that they were not-detected at an elevated RL. The following results were qualified:

SDG RZ45: aldrin (4 results), beta-BHC (1 result), delta-BHC (2 results), dieldrin (7 results), endosulfan I (3 results), endrin (2 results), gamma-BHC (1 result), heptachlor (5 results), heptachlor epoxide (9 results).

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample and MS/MSD recoveries; precision was also acceptable as demonstrated by the MS/MSD RPD values.

Reporting limits were elevated based on non-target background interferences. Data were estimated based on CCAL %D outliers, MS/MSD recovery and RPD outliers, and second column confirmation RPD outliers. Data were tentatively identified due to column confirmation RPD outliers and DDT breakdown outliers. Data were rejected due to DDT breakdown outliers. Data were flagged as do-not-report (DNR) to indicate which results from multiple reported analyses should not be used.

Data that have been rejected or flagged DNR should not be used for any purpose.

All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Herbicides by EPA Method 8151

This report documents the review of analytical data from the analyses of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
RZ67	1 Soil	EPA Stage 2B
	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. **TECHNICAL DATA VALIDATION**

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times 1 Field Duplicates

Initial Calibration (ICAL) Continuing Calibration (CCAL)

Laboratory Blanks

1 Field Blanks

Surrogate Compounds

Laboratory Control Samples (LCS)

2 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Retention Time Window

Target Analyte List

Compound Identification

Compound Quantitation

Reporting Limits

Reported Results

¹ Quality control results are discussed below, but no data were qualified.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

Field Blanks

SDG RZ67: One equipment rinsate, RB-120810, was submitted. No target analytes were detected in this blank.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Matrix Spike/Matrix Spike Duplicates

SDG RZ45: Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed using Sample SS-03-2-4-120610. The MS %R value for dinoseb was less than the lower control limit and the MSD %R value was greater than the upper control limit. Dinoseb was not detected in the parent sample; the result was estimated (UJ-8) with no bias assigned.

SDG RZ67: No MS/MSD analyses were performed in association with the rinsate blank. Laboratory precision and accuracy were evaluated using the laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results.

Field Duplicates

No field duplicates were submitted.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the surrogate, LCS/LCSD, and MS/MSD recoveries. Precision was also acceptable as demonstrated by the LCS/LCSD and MS/MSD elative percent difference values.

Data were qualified based on MS/MSD recovery outliers.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Orthophosphate Pesticides by Method 8270D-SIM

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Analytical Resources, Inc., Tukwila, Washington, analyzed the samples. Refer to the **Sample Index** for a list of samples that were reviewed.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
RZ67	2 Soil	EPA Stage 2B
	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL)
- Continuing Calibration (CCAL)
 Laboratory Blanks
- 1 Field Blanks
- 1 Surrogate Compounds
- 2 Laboratory Control Samples (LCS/LCSD)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD)
 Internal Standards
- 1 Field DuplicatesTarget Analyte list
- 2 Reporting Limits
 Compound Identification
 - Reported Results

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

Continuing Calibration

All relative response factor (RRF) values were greater than the 0.05 minimum control limit. With the exception noted below, the values for percent difference (%D) were within the $\pm 25\%$ control limits

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

SDG RZ67: The %D value for monocrotophos was outside of the control limits and indicated a potential high bias. This analyte was not detected in the associated samples; therefore no qualification of data was necessary.

Field Blanks

SDG RZ67: One rinsate blank, RB-120810, was submitted. No target analytes were detected in this blank.

Surrogate Recovery

SDG RZ45: Matrix interference prevented the quantitation of the surrogate tributyl phosphate in several samples. Because the recoveries for triphenyl phosphate (second surrogate compound) were acceptable; no action was taken.

Laboratory Control Samples

SDG RZ67: The percent recovery (%R) values for monocrotophos were less than the lower control limit for the laboratory control sample/laboratory control sample duplicate (LCS/LCSD) associated with the rinsate blank. The result for monocrotophos in this sample was estimated (UJ-10) to indicate a potential low bias.

The LCS/LCSD %R values for merphos oxone were greater than the upper control limit. This analyte was not detected in the associated sample; therefore no qualification of data was necessary based on the potential high bias.

Matrix Spike/Matrix Spike Duplicate

SDG RZ45: Sample SS-03-2-4-120610 was used for the matrix spike/matrix spike duplicate (MS/MSD) analyses. The %R values for chlorpyrifos were greater than the upper control limit. This analyte was not detected in the parent sample; therefore no qualification of data was necessary based on the potential high bias.

Field Duplicates

SDG RZ67: One set of field duplicates were submitted; SS-P-120810 and SS-PD-120810. There were no positive results for either sample. Field precision was acceptable.

Reporting Limits

SDG RZ45: The chromatograms indicated non-target background interferences for the analyte EPN in Samples SS-02-0-2-120610 and SS-03-0-2-120610. The reporting limits (RL) for these analytes were flagged "Y" by the laboratory. These "Y" flagged results were qualified (U-22) to indicate that they were not-detected at an elevated RL.

III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values; and precision was acceptable as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate relative percent difference values.

Reporting limits were elevated due to background interferences. One data point was estimated based on LCS/LCSD %R outliers.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Dioxin/Furan Compounds by Method 1613

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory quality control (QC) samples. Samples were analyzed by Frontier Analytical Laboratory, El Dorado Hills, California. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
6501	3 Soil	EPA Stage 2B

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements reviewed are summarized in the following table:

1 Sample Receipt, Preservation, and Holding Times

System Performance and Resolution Checks

Initial Calibration (ICAL)

Calibration Verification (CVER)

Method Blanks

Labeled Compound Recovery

1 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Ongoing Precision and Recovery (OPR)

- 2 Laboratory Duplicates
- Field Duplicates
 Target Analyte List
- 2 Reported Results

Compound Identification

¹ Quality control results are discussed below, but no data were qualified.

Sample Receipt, Preservation, and Holding Times

The samples were transferred from Analytical Resources, Inc (ARI) to Frontier Analytical Laboratory. As stated in validation guidance documents, samples should be maintained within the advisory temperature range of 2°C to 6°C. The temperature recorded by Frontier was 0.0°C, which is less than the lower control limit. The temperature outlier did not impact data quality; therefore no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples were not analyzed. Laboratory accuracy was evaluated from the on-going precision and recovery (OPR) standard and labeled compound recoveries.

Laboratory Duplicates

The laboratory duplicate analysis was performed using Sample DU3. With the exceptions noted below, the relative percent difference (RPD) values were less than the control limit of 25%.

Analyte	RPD
1,2,3,4,7,8-HxCDF	36.4%
1,2,3,4,6,7,8-HpCDF	25.3%
1,2,3,4,7,8,9-HpCDF	29.9%
OCDF	38.8%
Total HxCDF	29.9%
Total HpCDF	33.4%

The results for the above analytes were estimated (J-9) in the parent sample only.

Field Duplicates

No field duplicate samples were submitted.

Reported Results

Positive results for 2,3,7,8-TCDF that were greater than the reporting limit were confirmed on a DB-225 column as specified by the method. The results from the DB-225 column were reported.

The laboratory assigned "D and/or M" flags to several of the reported homologue group totals to indicate that a diphenyl ether (D) or some other interference (M) was present, resulting in a high bias in the reported result. All analytes that were "D" and/or "M" flagged were estimated (J-14).

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the labeled compound and OPR recoveries. With the exceptions noted above, precision was also acceptable as demonstrated by laboratory duplicate RPD values.

Data were estimated based on interference from diphenyl ether and laboratory duplicate RPD outliers.

All data, as qualified, are acceptable for use.

DATA QUALIFIER DEFINITIONS REASON CODES AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

Do not report; a more appropriate result is reported

from another analysis or dilution.

4/16/09 PM
T:VA_EcoChem Controlled Docs\Qualifiers & Reason Codes\EcoChem Qual Defs.doc

DNR

DATA QUALIFIER REASON CODES

1	Holding Time/Sample Preservation
2	Chromatographic pattern in sample does not match pattern of calibration standard.
3	Compound Confirmation
4	Tentatively Identified Compound (TIC) (associated with NJ only)
5A	Calibration (initial)
5B	Calibration (continuing)
6	Field Blank Contamination
7	Lab Blank Contamination (e.g., method blank, instrument, etc.)
8	Matrix Spike(MS & MSD) Recoveries
9	Precision (all replicates)
10	Laboratory Control Sample Recoveries
11	A more appropriate result is reported (associated with "R" and "DNR" only)
12	Reference Material
13	Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)
14	Other (define in validation report)
15	GFAA Post Digestion Spike Recoveries
16	ICP Serial Dilution % Difference
17	ICP Interference Check Standard Recovery
18	Trip Blank Contamination
19	Internal Standard Performance (e.g., area, retention time, recovery)
20	Linear Range Exceeded
21	Potential False Positives
22	Elevated Detection Limit Due to Interference (i.e., laboratory, chemical and/or matrix)

Table No.: NFG-SVOC Revision No.: 7 Last Rev. Date: 8/23/07 Page: 1 of 2

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	$\frac{Water}{J(+)/UJ(-) \text{ if ext.}} > 7 \text{ and } < 21 \text{ days}$ $J(+)/R(-) \text{ if ext.} > 7 \text{ and } < 21 \text{ days}$ $J(+)/R(-) \text{ if ext.} > 14 \text{ and } < 42 \text{ days}$ $J(+)/R(-) \text{ if ext.} > 42 \text{ days} \text{(EcoChem PJ)}$ $J(+)/UJ(-) \text{ if analysis} > 40 \text{ days}$	1
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF < 0.05	5A
	%RSD < 30%	(EcoChem PJ, see TM-06) J(+) if %RSD > 30%	5A
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF < 0.05	5B
	%D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R- If -90% to -26%: J+ (high bias) If 26% to 90%: J+/UJ- (low bias)	5B
	One per matrix per batch	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank	No results > CRQL	U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

Table No.: NFG-SVOC Revision No.: 7 Last Rev. Date: 8/23/07

Page: 2 of 2

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: $J(+) \text{ if both } \%R > UCL$ $J(+)/UJ(-) \text{ if both } \%R < LCL$ $J(+)/R(-) \text{ if both } \%R < 10\%$ PJ if only one $\%R$ outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) in parent sample if RPD > CL	9
LCS CLP low conc. H2O only	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL $J(+)/R(-)$ assoc. cmpd if < LCL $J(+)/R(-)$ all cmpds if half are < LCL	10
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL $J(+)/UJ(-)$ if %R <lcl <math="">J(+)/R(-) if %R < 10% (EcoChem PJ)</lcl>	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) if %R < 10%	13
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	$J(+) \ if > 200\%$ $J(+)/UJ(-) \ if < 50\%$ $J(+)/R(-) \ if < 25\%$ RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R(+) common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

Table No.: NFG-Pest PCB Revision No.: 4 Last Rev. Date: 8/23/07 Page: 1 of 2

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext/analyzed > HT J(+)/R(-) if ext/analyzed > 3X HT (EcoChem PJ)	1
Resolution Check	Beginning of ICAL Sequence Within RTW Resolution >90%	Narrate (Use Professional Judgement to qualify)	14
Instrument Performance (Breakdown)	DDT Breakdown: < 20% Endrin Breakdown: <20% Combined Breakdown: <30% Compounds within RTW	J(+) DDT NJ(+) DDD and/or DDE R(-) DDT - If (+) for either DDE or DDD J(+) Endrin NJ(+) EK and/or EA R(-) Endrin - If (+) for either EK or EA	5A
Retention Times	Surrogates: TCX (+/- 0.05); DCB (+/- 0.10) Target compounds: elute before heptachlor epoxide	NJ(+)/R(-) results for analytes with RT shifts For full DV, use PJ based on examination of raw data	5B
Initial Calibration	Pesticides: Low=CRQL, Mid=4X, High=16X Multiresponse - one point Calibration %RSD<20% %RSD<30% for surr; two comp. may exceed if <30% Resolution in Mix A and Mix B >90%	J(+)/UJ(-)	5A
Continuing Calibration	Alternating PEM standard and INDA/INDB standards every 12 hours (each preceeded by an inst. Blank) %D < 25% Resolution >90% in IND mixes; 100% for PEM	J(+)/UJ(-) J(+)R(-) if %D > 90% PJ for resolution	5B
	One per matrix per batch	U(+) if sample result is < CRQL and < 5X rule (raise sample value to CRQL)	_
Method Blank	No results > CRQL	U(+) if sample result is > or equal to CRQL and < 5X rule (at reported sample value)	7
Instrument Blanks	Analyzed at the beginning of every 12 hour sequence No analyte > 1/2 CRQL	Same as Method Blank	7
Field Blanks	Not addressed by NFG No results > CRQL	Apply 5X rule; U(+) < action level	6

Table No.: NFG-Pest PCB Revision No.: 4 Last Rev. Date: 8/23/07 Page: 2 of 2

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One set per matrix per batch Method Acceptance Criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One set per matrix per batch Method Acceptance Criteria	J(+) in parent sample if RPD > CL	9
LCS	One per SDG Method Acceptance Criteria	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	TCX and DCB added to every sample %R = 30-150%	J(+)/UJ(-) if both %R = 10 - 60% J(+) if both >150% J(+)/R(-) if any %R <10%	13
Quantitation/ Identification	Quantitated using ICAL calibration factor (CF) RPD between columns <40%	J(+) if RPD = 40 - 60% NJ(+) if RPD >60% EcoChem PJ - See TM-08	3
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	11
Sample Clean-up	GPC required for soil samples Florisil required for all samples Sulfur is optional Clean-up standard check %R within CLP limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL	14
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate (Qualifiy if required by project QAPP)	9

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 1 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids < 4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection Note: Under CWA, SDWA, and RCRA the HT for H2O is 7 days* Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext > 30 days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790). Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) x = ht. of TCDD y = baseline to bottom of valley For all isomers eluting near 2378-TCDD/TCDF isomers (TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 2 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound %D outliers. For native compound %D outliers: 8290: J(+)/UJ(-) if %D = 20% - 75% J(+)/R(-) if %D > 75% 1613: J(+)/UJ(-) if %D is outside Table 6 limits J(+)/R(-) if %D is +/- 75% of Table 6 limit	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or R(-)	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS/OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20%	J(+) in parent sample if RPD > CL	9

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 3 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	<i>Method 8290:</i> %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B:</i> %R must meet limits specified in Table 7, Method 1613	J(+)/R(-) if %R < 10%	13
Quantitation/ Identification	lons for analyte, IS, and rec. std. must max w/in 2 sec. S/N >2.5 IA ratios meet limits in Table 9 of 1613B or Table 8 of 8290 RRTs w/in limits in Table 2 of 1613B	If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used	11

APPENDIX B QUALIFIED DATA SUMMARY TABLE

							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
6501	DU1	6501-001-SA	EPA 1613 D/F	Total PeCDF	144	pg/g	D,M	J	14
6501	DU1	6501-001-SA	EPA 1613 D/F	Total TCDF	118	pg/g	D,M	J	14
6501	DU2	6501-002-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	102	pg/g	D,M	J	14
6501	DU2	6501-002-SA	EPA 1613 D/F	Total HxCDF	1400	pg/g	D,M	J	14
6501	DU2	6501-002-SA	EPA 1613 D/F	Total PeCDF	1310	pg/g	D,M	J	14
6501	DU2	6501-002-SA	EPA 1613 D/F	Total TCDF	1290	pg/g	D,M	J	14
6501	DU3	6501-003-DUP	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	22.2	pg/g	D,M	J	14
6501	DU3	6501-003-DUP	EPA 1613 D/F	Total HxCDF	389	pg/g	D,M	J	14
6501	DU3	6501-003-DUP	EPA 1613 D/F	Total PeCDF	271	pg/g	D,M	J	14
6501	DU3	6501-003-DUP	EPA 1613 D/F	Total TCDF	235	pg/g	D,M	J	14
6501	DU3	6501-003-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	26.4	pg/g	D,M	J	14
6501	DU3	6501-003-SA	EPA 1613 D/F	Total HxCDF	526	pg/g	D,M	J	14
6501	DU3	6501-003-SA	EPA 1613 D/F	Total PeCDF	324	pg/g	D,M	J	14
6501	DU3	6501-003-SA	EPA 1613 D/F	Total TCDF	241	pg/g	D,M	J	14
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8041	Pentachlorophenol	38	ug/kg	U	UJ	14
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8041	Pentachlorophenol	16	ug/kg	U	UJ	14
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8041	Pentachlorophenol	13	ug/kg	U	UJ	14
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8041	Pentachlorophenol	31	ug/kg	U	UJ	14
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8041	Pentachlorophenol	33	ug/kg	U	UJ	14
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8041	Pentachlorophenol	31	ug/kg	U	UJ	14
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8041	Pentachlorophenol	50	ug/kg		J	14
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8041	Pentachlorophenol	19	ug/kg	U	UJ	14
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8041	Pentachlorophenol	15	ug/kg	U	UJ	14
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8041	Pentachlorophenol	30	ug/kg	U	UJ	14
RZ67	SS-P-120810	10-30568-RZ67B	SW8041	Pentachlorophenol	11	ug/kg	U	UJ	14
RZ67	RB-120810	10-30569-RZ67C	SW8041	Pentachlorophenol	0.25	ug/L	U	UJ	14
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	4,4'-DDD	40	ug/kg		NJ	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	4,4'-DDE	20	ug/kg		NJ	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	4,4'-DDT	9.3	ug/kg	U	R	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	Aldrin	12	ug/kg	Υ	U	22
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	cis-Chlordane	28	ug/kg	Р	J	3
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	delta-BHC	38	ug/kg	Υ	U	22
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	Heptachlor	9.8	ug/kg	Υ	UJ	5B,22
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	Methoxychlor	46	ug/kg	U	UJ	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	Toxaphene	460	ug/kg	U	UJ	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	trans-Chlordane	47	ug/kg	Р	NJ	3
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	4,4'-DDD	39	ug/kg		NJ	5B
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	4,4'-DDE	17	ug/kg		NJ	5B
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	4,4'-DDT	3.2	ug/kg	U	R	5B
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	cis-Chlordane	14	ug/kg	Р	J	3
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Dieldrin	4.7	ug/kg	Υ	U	22
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Heptachlor	1.6	ug/kg	U	UJ	5B
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Heptachlor Epoxide	4.8	ug/kg	Υ	U	22
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Methoxychlor	16	ug/kg	U	UJ	5B,8

							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Toxaphene	160	ug/kg	U	UJ	5B
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	4,4'-DDD	120	ug/kg		NJ	5B
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	4,4'-DDE	18	ug/kg	J	NJ	5B
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	4,4'-DDT	16	ug/kg	U	R	5B
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Aldrin	30	ug/kg	Υ	U	22
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	cis-Chlordane	210	ug/kg	EP	DNR	20
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	gamma-BHC (Lindane)	16	ug/kg	Υ	U	22
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Heptachlor	24	ug/kg	Υ	UJ	5B,22
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Heptachlor Epoxide	24	ug/kg	Υ	U	22
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Methoxychlor	80	ug/kg	U	UJ	5B
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Toxaphene	800	ug/kg	U	UJ	5B
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	trans-Chlordane	140	ug/kg	Е	DNR	20
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	4,4'-DDD	110	ug/kg		DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	4,4'-DDE	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	4,4'-DDT	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Aldrin	32	ug/kg	Υ	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	alpha-BHC	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	beta-BHC	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	delta-BHC	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Dieldrin	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endosulfan I	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endosulfan II	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endosulfan Sulfate	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endrin	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endrin Aldehyde	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endrin Ketone	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	gamma-BHC (Lindane)	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Heptachlor	23	ug/kg	Υ	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Heptachlor Epoxide	24	ug/kg	Υ	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Methoxychlor	160	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Toxaphene	1600	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	4,4'-DDD	210	ug/kg	Е	DNR	20
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	4,4'-DDE	84	ug/kg		NJ	5B
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	4,4'-DDT	7.6	ug/kg	U	R	5B
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	cis-Chlordane	14	ug/kg	Р	J	3
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Dieldrin	13	ug/kg	Υ	U	22
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Heptachlor	4.5	ug/kg	Υ	UJ	5B,22
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Heptachlor Epoxide	13	ug/kg	Υ	U	22
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Methoxychlor	38	ug/kg	U	UJ	5B
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Toxaphene	380	ug/kg	U	UJ	5B
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	trans-Chlordane	20	ug/kg	Р	NJ	3
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	4,4'-DDE	76	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	4,4'-DDT	76	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Aldrin	38	ug/kg	U	DNR	11

							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	alpha-BHC	38	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	beta-BHC	38	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	cis-Chlordane	38	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	delta-BHC	38	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Dieldrin	76	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endosulfan I	38	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endosulfan II	76	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endosulfan Sulfate	76	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endrin	76	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endrin Aldehyde	76	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endrin Ketone	76	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	gamma-BHC (Lindane)	38	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Heptachlor	38	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Heptachlor Epoxide	38	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Methoxychlor	380	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Toxaphene	3800	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	trans-Chlordane	38	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	4,4'-DDD	3800	ug/kg	ES	DNR	20
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	4,4'-DDE	860	ug/kg	Е	DNR	20
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	4,4'-DDT	230	ug/kg	Е	DNR	20
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	beta-BHC	19	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	cis-Chlordane	300	ug/kg	Р	J	3
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Dieldrin	59	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Endosulfan I	21	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Endrin	19	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Heptachlor	9.6	ug/kg	Υ	UJ	5B,22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Heptachlor Epoxide	140	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Methoxychlor	67	ug/kg	U	UJ	5B
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Toxaphene	670	ug/kg	U	UJ	5B
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	4,4'-DDD	3900	ug/kg	Е	DNR	20
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Aldrin	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	alpha-BHC	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	beta-BHC	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	cis-Chlordane	340	ug/kg	Р	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	delta-BHC	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Dieldrin	130	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endosulfan I	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endosulfan II	130	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endosulfan Sulfate	130	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endrin	130	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endrin Aldehyde	130	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endrin Ketone	130	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	gamma-BHC (Lindane)	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Heptachlor	67	ug/kg	U	DNR	11

							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Heptachlor Epoxide	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Methoxychlor	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Toxaphene	6700	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	trans-Chlordane	360	ug/kg		DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	4,4'-DDE	1300	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	4,4'-DDT	1300	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Aldrin	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	alpha-BHC	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	beta-BHC	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	cis-Chlordane	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	delta-BHC	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Dieldrin	1300	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endosulfan I	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endosulfan II	1300	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endosulfan Sulfate	1300	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endrin	1300	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endrin Aldehyde	1300	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endrin Ketone	1300	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	gamma-BHC (Lindane)	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Heptachlor	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Heptachlor Epoxide	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Methoxychlor	6700	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Toxaphene	67000	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	trans-Chlordane	670	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	4,4'-DDD	4800	ug/kg	ESP	DNR	20
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	4,4'-DDE	740	ug/kg	Е	DNR	20
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	4,4'-DDT	120	ug/kg	Р	NJ	3,5B
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Aldrin	22	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	cis-Chlordane	480	ug/kg	Р	J	3
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Dieldrin	65	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Endosulfan I	28	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Endrin	20	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Heptachlor	6.2	ug/kg	U	UJ	5B
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Heptachlor Epoxide	180	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Methoxychlor	62	ug/kg	U	UJ	5B
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Toxaphene	620	ug/kg	U	UJ	5B
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	4,4'-DDD	4800	ug/kg	Е	DNR	20
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	4,4'-DDT	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Aldrin	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	alpha-BHC	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	beta-BHC	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	cis-Chlordane	510	ug/kg	Р	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	delta-BHC	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Dieldrin	120	ug/kg	U	DNR	11

EcoChem, Inc.

							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endosulfan I	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endosulfan II	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endosulfan Sulfate	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endrin	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endrin Aldehyde	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endrin Ketone	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	gamma-BHC (Lindane)	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Heptachlor	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Heptachlor Epoxide	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Methoxychlor	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Toxaphene	6200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	trans-Chlordane	510	ug/kg		DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	4,4'-DDE	1200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	4,4'-DDT	1200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Aldrin	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	alpha-BHC	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	beta-BHC	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	cis-Chlordane	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	delta-BHC	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Dieldrin	1200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endosulfan I	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endosulfan II	1200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endosulfan Sulfate	1200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endrin	1200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endrin Aldehyde	1200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endrin Ketone	1200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	gamma-BHC (Lindane)	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Heptachlor	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Heptachlor Epoxide	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Methoxychlor	6200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Toxaphene	62000	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	trans-Chlordane	620	ug/kg	U	DNR	11
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	4,4'-DDD	24	ug/kg		NJ	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	4,4'-DDE	85	ug/kg		NJ	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	4,4'-DDT	16	ug/kg	U	R	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Aldrin	12	ug/kg	Υ	U	22
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	delta-BHC	11	ug/kg	Υ	U	22
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Heptachlor	8.1	ug/kg	U	UJ	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Heptachlor Epoxide	80	ug/kg	Υ	U	22
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Methoxychlor	81	ug/kg	U	UJ	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Toxaphene	810	ug/kg	U	UJ	5B
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	4,4'-DDD	1800	ug/kg	ES	DNR	20
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	4,4'-DDE	320	ug/kg	E	DNR	20
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	4,4'-DDT	66	ug/kg	Р	NJ	3,5B

		I		T					
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Laboratory Qualifier	Validation Qualifier	Validation Reason
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	cis-Chlordane	31	ug/kg	Р	NJ	3
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Dieldrin	30	ug/kg	Υ	U	22
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Heptachlor	8	ug/kg	U	UJ	5B
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Heptachlor Epoxide	59	ug/kg	Υ	U	22
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Methoxychlor	80	ug/kg	U	UJ	5B
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Toxaphene	800	ug/kg	U	UJ	5B
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	4,4'-DDT	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Aldrin	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	alpha-BHC	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	beta-BHC	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	cis-Chlordane	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	delta-BHC	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Dieldrin	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endosulfan I	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endosulfan II	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endosulfan Sulfate	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endrin	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endrin Aldehyde	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endrin Ketone	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	gamma-BHC (Lindane)	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Heptachlor	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Heptachlor Epoxide	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Methoxychlor	800	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Toxaphene	8000	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	trans-Chlordane	80	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	4,4'-DDD	500	ug/kg	ES	DNR	20
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	4,4'-DDE	99	ug/kg	E	DNR	20
	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	4,4'-DDT	6.3	ug/kg	Р	J	3,5B
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	cis-Chlordane	8.2	ug/kg	Р	J	3
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	Dieldrin	4.5	ug/kg	Υ	U	22
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	Heptachlor	1.7	ug/kg	U	UJ	5B
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	Heptachlor Epoxide	17	ug/kg	Υ	U	22
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	Methoxychlor	17	ug/kg	U	UJ	5B
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	Toxaphene	170	ug/kg	U	UJ	5B
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	4,4'-DDD	570	ug/kg	E	DNR	20
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	4,4'-DDE	82	ug/kg		J	5B
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	4,4'-DDT	33	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Aldrin	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	alpha-BHC	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	beta-BHC	17	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	cis-Chlordane	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	delta-BHC	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Dieldrin	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endosulfan I	17	ug/kg	U	DNR	11

							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endosulfan II	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endosulfan Sulfate	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endrin	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endrin Aldehyde	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endrin Ketone	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	gamma-BHC (Lindane)	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Heptachlor	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Heptachlor Epoxide	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Methoxychlor	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Toxaphene	1700	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	trans-Chlordane	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	4,4'-DDE	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	4,4'-DDT	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Aldrin	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	alpha-BHC	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	beta-BHC	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	cis-Chlordane	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	delta-BHC	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Dieldrin	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endosulfan I	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endosulfan II	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endosulfan Sulfate	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endrin	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endrin Aldehyde	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endrin Ketone	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	gamma-BHC (Lindane)	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Heptachlor	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Heptachlor Epoxide	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Methoxychlor	830	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Toxaphene	8300	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	trans-Chlordane	83	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	4,4'-DDD	3400	ug/kg	ES	DNR	20
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	4,4'-DDE	760	ug/kg	Е	DNR	20
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	4,4'-DDT	92	ug/kg	Р	NJ	3,5B
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	cis-Chlordane	250	ug/kg	Р	J	3
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Dieldrin	48	ug/kg	Υ	U	22
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Endosulfan I	19	ug/kg	Υ	U	22
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Heptachlor	11	ug/kg	Y	UJ	5B,22
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Heptachlor Epoxide	130	ug/kg	Υ	U	22
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Methoxychlor	60	ug/kg	U	UJ	5B
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Toxaphene	600	ug/kg	U	UJ	5B
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	4,4'-DDD	3700	ug/kg	E	DNR	20
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	4,4'-DDE	580	ug/kg		J	5B
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	4,4'-DDT	120	ug/kg	U	DNR	11

							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Aldrin	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	alpha-BHC	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	beta-BHC	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	cis-Chlordane	330	ug/kg	Р	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	delta-BHC	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Dieldrin	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endosulfan I	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endosulfan II	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endosulfan Sulfate	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endrin	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endrin Aldehyde	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endrin Ketone	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	gamma-BHC (Lindane)	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Heptachlor	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Heptachlor Epoxide	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Methoxychlor	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Toxaphene	6000	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	trans-Chlordane	340	ug/kg		DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	4,4'-DDE	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	4,4'-DDT	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Aldrin	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	alpha-BHC	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	beta-BHC	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	cis-Chlordane	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	delta-BHC	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Dieldrin	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endosulfan I	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endosulfan II	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endosulfan Sulfate	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endrin	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endrin Aldehyde	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endrin Ketone	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	gamma-BHC (Lindane)	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Heptachlor	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Heptachlor Epoxide	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Methoxychlor	3000	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Toxaphene	30000	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	trans-Chlordane	300	ug/kg	U	DNR	11
RZ67	SS-P-120810	10-30568-RZ67B	SW8081B	4,4'-DDT	3.1	ug/kg	U	UJ	5B,8
RZ67	SS-P-120810	10-30568-RZ67B	SW8081B	cis-Chlordane	3.6	ug/kg		J	9
RZ67	SS-P-120810	10-30568-RZ67B	SW8081B	Heptachlor	1.5	ug/kg	U	UJ	5B
RZ67	SS-P-120810	10-30568-RZ67B	SW8081B	Methoxychlor	15	ug/kg	U	UJ	5B,8
RZ67	SS-P-120810	10-30568-RZ67B	SW8081B	Toxaphene	150	ug/kg	U	UJ	5B
RZ67	SS-P-120810	10-30568-RZ67B	SW8081B	trans-Chlordane	7.1	ug/kg	Р	NJ	3,9

SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Laboratory Qualifier	Validation Qualifier	Validation Reason
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8082	Aroclor 1254	330	ug/kg	Υ	U	22
	SS-P-120810	10-30568-RZ67B	SW8082	Aroclor 1248	240	ug/kg	Υ	U	22
	SS-P-120810	10-30568-RZ67B	SW8082	Aroclor 1260	96	ug/kg	Υ	U	22
	SS-03-2-4-120610	10-30436-RZ45B	SW8151A	Dinoseb	32	ug/kg	U	UJ	8
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8270D	Benzidine	1800	ug/kg	U	R	8,10
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8270D	Benzo(a)anthracene	370	ug/kg		J	9
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8270D	Chrysene	570	ug/kg		J	9
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8270D	Benzidine	380	ug/kg	U	R	10
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8270D	bis(2-Ethylhexyl)phthalate	220	ug/kg	В	U	7
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8270D	Benzidine	360	ug/kg	U	R	10
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8270D	bis(2-Ethylhexyl)phthalate	230	ug/kg	В	U	7
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8270D	Benzidine	760	ug/kg	U	R	10
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,2,4-Trichlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,2-Dichlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,2-Diphenylhydrazine	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,3-Dichlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,4-Dichlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1-Methylnaphthalene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,2'-Oxybis(1-Chloropropane)	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,3,4,6-Tetrachlorophenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,3,5,6-Tetrachlorophenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4,5-Trichlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4,6-Trichlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4-Dichlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4-Dimethylphenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4-Dinitrophenol	2300	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4-Dinitrotoluene	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,6-Dinitrotoluene	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Chloronaphthalene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Chlorophenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Methylnaphthalene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Methylphenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Nitrophenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	3,3'-Dichlorobenzidine	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	3-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4,6-Dinitro-2-Methylphenol	2300	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Bromophenyl-phenylether	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Chloro-3-methylphenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Chloroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Chlorophenyl-phenylether	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Methylphenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Nitrophenol	1100	ug/kg	U	DNR	11

SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Laboratory Qualifier	Validation Qualifier	Validation Reason
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Acenaphthene	240	ug/kg		DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Acenaphthylene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Aniline	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Anthracene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Azobenzene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzidine	2300	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzo(a)anthracene	160	ug/kg	J	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzo(a)pyrene	120	ug/kg	J	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzo(g,h,i)perylene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzyl Alcohol	1100	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	bis(2-Chloroethoxy) Methane	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Bis-(2-Chloroethyl) Ether	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	bis(2-Ethylhexyl)phthalate	940	ug/kg	В	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Butylbenzylphthalate	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Carbazole	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Chrysene	260	ug/kg		DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Dibenz(a,h)anthracene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Dibenzofuran	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Diethylphthalate	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Dimethylphthalate	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Di-n-Butylphthalate	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Di-n-Octyl phthalate	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Fluoranthene	590	ug/kg		DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Fluorene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Hexachlorobenzene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Hexachlorobutadiene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Hexachlorocyclopentadiene	1100	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Hexachloroethane	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Indeno(1,2,3-cd)pyrene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Isophorone	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Naphthalene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Nitrobenzene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	N-Nitrosodimethylamine	1100	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	N-Nitroso-Di-N-Propylamine	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	N-Nitrosodiphenylamine	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Pentachlorophenol	1100	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Phenanthrene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Phenol	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Pyrene	460	ug/kg		DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Pyridine	1100	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Total Benzofluoranthenes	230	ug/kg	-	DNR	11
	SS-02-2-4-120610	10-30439-RZ45E	SW8270D	Benzidine	1100	ug/kg	U	R	10
	SS-02-2-4-120610	10-30439-RZ45E	SW8270D	bis(2-Ethylhexyl)phthalate	520	ug/kg	В	U	7
	SS-02-4-6-120610	10-30440-RZ45F	SW8270D	Benzidine	1100	ug/kg	U	R	10

SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Laboratory Qualifier	Validation Qualifier	Validation Reason
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8270D	Benzidine	590	ug/kg	U	R	10
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8270D	bis(2-Ethylhexyl)phthalate	330	ug/kg ug/kg	В	U	7
RZ45	SS-01-2-4-120610	10-30447-RZ45H	SW8270D	Benzidine	740	ug/kg	U	R	10
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8270D	bis(2-Ethylhexyl)phthalate	6300	ug/kg	E	R	20
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,2,4-Trichlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,2-Dichlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,2-Diphenylhydrazine	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,3-Dichlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,4-Dichlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1-Methylnaphthalene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,2'-Oxybis(1-Chloropropane)	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,3,4,6-Tetrachlorophenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,3,5,6-Tetrachlorophenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4,5-Trichlorophenol	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4,6-Trichlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4-Dichlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4-Dimethylphenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4-Dinitrophenol	2200	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4-Dinitrotoluene	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,6-Dinitrotoluene	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Chloronaphthalene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Chlorophenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Methylnaphthalene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Methylphenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Nitrophenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	3,3'-Dichlorobenzidine	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	3-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4,6-Dinitro-2-Methylphenol	2200	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Bromophenyl-phenylether	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Chloro-3-methylphenol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Chloroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Chlorophenyl-phenylether	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Methylphenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Nitrophenol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Acenaphthene	150	ug/kg	J	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Acenaphthylene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Aniline	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Anthracene	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Azobenzene	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzidine	2200	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzo(a)anthracene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzo(a)pyrene	220	ug/kg	U	DNR	11

							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzo(g,h,i)perylene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzyl Alcohol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	bis(2-Chloroethoxy) Methane	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Bis-(2-Chloroethyl) Ether	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	bis(2-Ethylhexyl)phthalate	5700	ug/kg	В	DNR	
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Butylbenzylphthalate	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Carbazole	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Chrysene	210	ug/kg	J	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Dibenz(a,h)anthracene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Dibenzofuran	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Diethylphthalate	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Dimethylphthalate	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Di-n-Butylphthalate	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Di-n-Octyl phthalate	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Fluoranthene	440	ug/kg		DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Fluorene	120	ug/kg	J	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Hexachlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Hexachlorobutadiene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Hexachlorocyclopentadiene	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Hexachloroethane	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Indeno(1,2,3-cd)pyrene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Isophorone	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Naphthalene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Nitrobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	N-Nitrosodimethylamine	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	N-Nitroso-Di-N-Propylamine	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	N-Nitrosodiphenylamine	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Pentachlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Phenanthrene	1400	ug/kg		DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Phenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Pyrene	490	ug/kg		DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Pyridine	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Total Benzofluoranthenes	220	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8270D	Benzidine	340	ug/kg	U	R	10
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8270D	bis(2-Ethylhexyl)phthalate	280	ug/kg	В	U	7
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8270D	Benzidine	1100	ug/kg	U	R	10
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	1,4-Dichlorobenzene	52	ug/kg	В	U	7
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	3,3'-Dichlorobenzidine	110	ug/kg	U	UJ	8
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	4-Chloroaniline	110	ug/kg	U	R	8
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	Aniline	23	ug/kg	U	UJ	8
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	Benzidine	230	ug/kg	U	R	8,10
	SS-P-120810	10-30568-RZ67B	SW8270D	Hexachlorocyclopentadiene	110	ug/kg	U	UJ	8
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	Phenanthrene	43	ug/kg		J	9
RZ67	SS-03-0-2-120610	10-30435-RZ45A	SW8270D SIM	EPN	740	ug/kg	Υ	U	22

SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Laboratory Qualifier	Validation Qualifier	Validation Reason
RZ67	SS-02-0-2-120610	10-30438-RZ45D	SW8270D SIM	EPN	610	ug/kg	Υ	U	22
RZ67	RB-120810	10-30569-RZ67C	SW8270D SIM	Monocrotophos	1	ug/L	U	UJ	10

DATA VALIDATION REPORT

South Park Landfill Site

Prepared for:

Floyd/Snider 601 Union Street, Suite 600 Seattle, WA 98101

Prepared by:

EcoChem, Inc. 710 Second Avenue, Suite 660 Seattle, Washington 98104

EcoChem Project: C15211-1

March 21, 2011

Approved for Release:

Christine Ransom Project Manager EcoChem, Inc.

PROJECT NARRATIVE

Basis for the Data Validation

This report summarizes the results of summary validation (EPA Stage 2B) and compliance screening (EPA Stage 2A) performed on soil and quality control (QC) sample data for the South Park Landfill Site Remedial Investigation/Feasibility Study. A complete list of samples is provided in the **Sample Index**.

Frontier Analytical Laboratory (El Dorado Hills, California) performed the dioxin/furan analyses. Analytical Resources Incorporated (Tukwila, Washington) performed the remainder of the analyses. The analytical methods and EcoChem project chemists are listed in the table below.

Analysis	Method	Primary Review	Secondary Review		
Semivolatile Organic Compounds	SW8270D	E. Clayton	C. Ransom		
Organophosphate Pesticides	SW8270D-SIM	L. Clayton			
Pentachlorophenol	SW8041				
Organochlorine Pesticides	SW8081B	M. Swanson	C. Mott		
Herbicides	SW8151A	IVI. SWAIISUII			
Polychlorinated Biphenyls	SW8082				
Dioxin Furan Compounds	EPA 1613	D. Kerlin	_		

The data were reviewed using guidance and quality control criteria documented in the analytical methods; South Park Landfill Site, Remedial Investigation/Feasibility Study Work Plan (Farallon, 11/10); National Functional Guidelines for Inorganic Data Review (USEPA 1994 & 2004); National Functional Guidelines for Organic Data Review (USEPA 1999 & 2008). and USEPA National Functional Guidelines for Chlorinated Dioxin/Furan Data Review (USEPA, September 2005).

EcoChem's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reason codes, and validation criteria are included as **APPENDIX A**. A Qualified Data Summary Table is included in **APPENDIX B**. Data Validation Worksheets will be kept on file at EcoChem, Inc. A qualified laboratory electronic data deliverable (EDD) is also submitted with this report.

SAMPLE INDEX South Park Landfill Site RIFS

SDG	Sample ID	Laboratory ID	SVOC 8270D	OP Pest 8270D-SIM	PCP 8041	OC Pest 8081B	Herb 8151A	PCB 8082	Dioxin 1613B
6501	DU1	6501-001-SA							√
6501	DU2	6501-002-SA							✓
6501	DU3	6501-003-SA							✓
RZ45	SS-03-0-2-120610	10-30435-RZ45A	✓	✓	✓	✓	✓	✓	
RZ45	SS-03-2-4-120610	10-30436-RZ45B	✓	✓	✓	✓	✓	✓	
RZ45	SS-03-4-6-120610	10-30437-RZ45C	✓	✓	✓	✓	✓	✓	
RZ45	SS-02-0-2-120610	10-30438-RZ45D	✓	✓	✓	✓	✓	✓	
RZ45	SS-02-2-4-120610	10-30439-RZ45E	✓	✓	✓	✓	✓	✓	
RZ45	SS-02-4-6-120610	10-30440-RZ45F	✓	✓	✓	✓	✓	✓	
RZ45	SS-01-0-2-120610	10-30441-RZ45G	✓	✓	✓	✓	✓	✓	
RZ45	SS-01-2-4-120610	10-30442-RZ45H	✓	✓	✓	✓	✓	✓	
RZ45	SS-01-4-6-120610	10-30443-RZ45I	✓	✓	✓	✓	✓	✓	
RZ45	SS-02-6-8-120610	10-30444-RZ45J	✓	✓	✓	✓	✓	✓	
RZ67	SS-PD-120810	10-30567-RZ67A		✓					
RZ67	SS-P-120810	10-30568-RZ67B	✓	✓	✓	✓	✓	✓	
RZ67	RB-120810	10-30569-RZ67C	✓	✓	✓	✓	✓	✓	

DATA VALIDATION REPORT South Park Landfill RIFS Semivolatile Organic Compounds by Method 8270D

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Analytical Resources, Inc., Tukwila, Washington, analyzed the samples. Refer to the **Sample Index** for a list of samples that were reviewed.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
R767	1 Soil	EPA Stage 2B
KZ0/	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL)
- 1 Continuing Calibration (CCAL)
- 2 Laboratory Blanks
- 1 Field Blanks
 - Surrogate Compounds
- 2 Laboratory Control Samples (LCS/LCSD)

- 2 Matrix Spike/Matrix Spike Duplicate (MS/MSD)
- Internal Standards
- Field Duplicates
 Target Analyte list
 - Danastina Lindia
 - Reporting Limits
 - Compound Identification
- 2 Reported Results

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

Continuing Calibration

All relative response factor (RRF) values were greater than the 0.05 minimum control limit. With the exceptions noted below, the percent difference (%D) values were within the $\pm 25\%$ control limit.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

SDG RZ45 (CCAL 12/16/10, Instrument NT6): The %D values for 3-nitroaniline; 2,3-dinitrophenol; 4-nitrophenol; and 4-nitroaniline were outside of control limits and indicate potential high bias. These analytes were not detected in the associated samples; therefore no qualification of data was necessary.

SDG RZ67 (CCAL 12/17/10, Instrument NT4): The %D value for benzidine was outside of the control limits and indicates a potential low bias. Results for benzidine are rejected based on poor recoveries in the laboratory control sample; therefore, no additional qualifiers were assigned.

Laboratory Blanks

SDG RZ45: Bis(2-ethylhexyl)phthalate was detected in the method blank. In order to evaluate the effect on the field sample data, an action level was established at 10 times the method blank concentration [bis(2-ethylhexyl)phthalate is a common lab contaminant]. Positive results in the associated samples that were less than the action level were qualified as not-detected (U-7).

SDG RZ67: The analyte 1,4-dichlorobenzene was detected in the method blank associated with Sample SS-P-12080. The 1,4-dichlorobenzene result for this sample was qualified as not detected (U-7).

Field Blanks

SDG RZ67: One rinsate blank (RB-120810) was submitted. No target analytes were detected in this blank.

Laboratory Control Samples

Laboratory control sample/laboratory control sample duplicates (LCS/LCSD) were analyzed at the proper frequency. For LCS/LCSD recoveries that were less than the lower control limit, positive results and/or non-detects in the parent sample only were estimated (J/UJ-10) to indicate a potential low bias. If the recoveries were also less than 10%, positive results were estimated (J-10) and non-detects were rejected (R-10) due to the extreme low bias. For recoveries greater than the upper control limit, positive results only in the parent sample were estimated (J-10) to indicate a potential high bias. No action was taken if only one of the LCS or LCSD recoveries was outside of the control limit. Outliers resulting in qualification of the data are discussed below.

SDG RZ45: The %R values for benzidine were less than 10%. Benzidine was not detected in any of the associated samples; all benzidine results were rejected (R-10).

SDG RZ67: The %R value for benzidine was less than 10% for the LCS sample. Benzidine was not detected in the associated sample; the benzidine result was rejected (R-10).

EcoChem, Inc.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicates (MS/MSD) were analyzed at the proper frequency. For MS/MSD recoveries that were less than the lower control limit, positive results and/or non-detects in the parent sample only were estimated (J/UJ-8) to indicate a potential low bias. If the recoveries were also less than 10%, positive results were estimated (J-8) and non-detects were rejected (R-8) due to the extreme low bias. For recoveries greater than the upper control limit, positive results only in the parent sample were estimated (J-8) to indicate a potential high bias. No action was taken if only one of the MS or MSD recoveries was outside of the control limit or if the native concentration in the parent sample was greater than 4X the spike amount.

For MS/MSD relative percent difference values that were greater than the control limit, positive results only in the parent sample were estimated (J-9). The following outliers resulted in qualification of data:

SDG RZ45: Sample SS-03-0-2-120610 was used for the MS/MSD analyses. The recoveries for benzidine were less than 10%. Benzidine was not detected in the parent sample; the result was rejected (R-8).

The RPD value for chrysene was greater than the control limit of 30%. The chrysene result in the parent sample was estimated (J-9).

SDG RZ67: Sample SS-P-120810 was used for the MS/MSD analyses. The MS/MSD %R values for 4-chloroaniline and benzidine were less than 10%. These analytes were not detected in the parent sample; results were rejected (R-8).

The recoveries for 3,3'-dichlorbenzidine, aniline, and hexachlorocyclopentadiene were less than the lower control limit. These analytes were not detected in the parent sample; results were estimated (UJ-8).

The RPD value for 2,4-dinitrophenol; 4,6-dinitro-2-methylphenol, and phenanthrene were greater than the control limit of 30%. Phenanthrene was the only one of these analytes detected in the parent sample. The phenanthrene result was estimated (J-9).

Field Duplicates

No field duplicates were submitted.

Reported Results

SDG RZ45: The concentration of bis(2-ethylhexyl)phthalate was greater than the calibration range of the instrument in Sample SS-02-0-4-120610. The sample was re-analyzed at dilution; both sets of data were reported. The result for bis(2-ethylhexyl)phthalate ion the original analysis was rejected (R-20). The results for all other analytes in the dilution were rejected (R-11).

Sample SS-02-0-2-120610 was also re-analyzed at dilution, however all analytes were within the calibration range in the original analysis. All results from the dilution were rejected (R-11).

For sample SS-01-4-6-120610, the "U" flag for total benzofluoranthene was missing from the EDD. The hardcopy quantification report confirmed that this analyte was not-detected in this sample. The "U" flag was added to the EDD and no further action was taken.

SDG RZ67: For sample RB-120810, the "U" flag for total benzofluoranthene was missing from the EDD. The "U" flag was added to the EDD and no further action was taken.

III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was generally acceptable, as demonstrated by the surrogate LCS/LCSD, and MS/MSD %R values; precision was also acceptable as demonstrated by the LCS/LCSD and MS/MSD RPD values.

Detection limits were elevated based on method blank contamination. Data were estimated based on LCS/LCSD and MS/MSD %R outliers and MS/MSD RPD outliers.

Several results were rejected due to LCS/LCSD and MS/MSD recoveries that were less than 10%. Data were also rejected to indicate which results should not be used from multiple reported analyses.

Rejected data should not be used for any purpose. All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Pentachlorophenol by EPA Method 8041

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Analytical Resources, Inc., Tukwila, Washington, analyzed the samples. Refer to the **Sample Index** for a list of samples that were reviewed.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
R767	1 Soil	EPA Stage 2B
KZ07	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. **TECHNICAL DATA VALIDATION**

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times 1 Field Duplicates Initial Calibration (ICAL) Continuing Calibration (CCAL) Laboratory Blanks

1 Field Blanks

Surrogate Compounds

Laboratory Control Samples (LCS)

1 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Retention Time Window Target Analyte List Compound Identification **Compound Quantitation** Reporting Limits

2 Reported Results

¹ Quality control results are discussed below, but no data were qualified.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

Field Blanks

SDG RZ67: One equipment rinsate, RB-120810, was submitted. Pentachlorophenol was not detected in this sample.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Surrogate Compounds

The standard surrogate compounds for Method 8041 were not added to the samples during extraction. The sample extracts were also analyzed for herbicides by Method 8151 and surrogate recoveries were acceptable for that method. Based on the absence of quality control data, all results are estimated (see **Reported Results** section).

Laboratory Control Samples

Pentachlorophenol was not included in the solution used to spike the laboratory control sample (LCS). The LCS extract was also analyzed for herbicides by Method 8151; recoveries for the herbicide compounds indicated acceptable extraction performance. Based on the absence of quality control data, all results are estimated (see **Reported Results** section).

Matrix Spike/Matrix Spike Duplicates

Pentachlorophenol was not included in the spiking solution used for the matrix spike/matrix spike duplicate (MS/MSD) analyses. The MS/MSD extracts were also analyzed for herbicides by Method 8151; recoveries of the herbicide compounds indicated acceptable precision and accuracy. Based on the absence of quality control data, all results are estimated (see **Reported Results** section).

Field Duplicates

No field duplicate sample was submitted with these SDG.

Reported Results

All samples were initially prepared and analyzed by Method 8151; however the laboratory unintentionally omitted pentachlorophenol from the calibration standard and quality control spike solutions. In order to provide results for pentachlorophenol, the laboratory used extracts prepared for Method 8151 and analyzed the samples by Method 8041. Because of the absence of information regarding the precision or accuracy of the analysis for pentachlorophenol, all results were estimated (J/UJ-14).

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory did not follow the specified analytical method. There was no measure of laboratory accuracy or precision for Method 8041; however the results for the analysis of the extracts by Method 8151 indicated acceptable laboratory performance.

All results were estimated based on the absence of surrogate, LCS, or MS/MSD recovery information.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Organochlorine Pesticides by EPA Method 8081

This report documents the review of analytical data from the analyses of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
R767	1 Soil	EPA Stage 2B
KZ07	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL)
- 2 Continuing Calibration (CCAL)
- 2 DDT/Endrin Breakdown Laboratory Blanks
- 1 Field Blanks
 - Surrogate Compounds
 Laboratory Control Samples (LCS)

- 2 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)
- 1 Field Duplicates

Retention Time Window

Target Analyte List

Compound Identification

2 Compound Quantitation

Reporting Limits

Reported Results

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Continuing Calibration

SDG RZ45: The percent difference (%D) values for heptachlor, 4,4'-DDT, methoxychlor, and toxaphene were outside of the control limits of $\pm 25\%$, indicating a potential low bias. The results for these analytes were estimated (J/UJ-5B) in the associated samples.

The %D value for 4,4'-DDD was outside of the control limits indicating a potential high bias; positive results for this analyte in the associated samples were estimated (J-5B).

SDG RZ67: The %D values for heptachlor, 4,4'-DDT, methoxychlor and toxaphene were outside of the control limits of, indicating a potential low bias. The results for these analytes were estimated (UJ-5B) in Sample SS-P-120810.

The %D value for 4,4'-DDD was outside of the control limits, indicating a potential high bias. This analyte was not detected in Sample SS-P-120810; no qualification was necessary based on the potential high bias.

DDT/Endrin Breakdown

Performance evaluation mixtures (PEM) were analyzed to measure the percent breakdown of 4,4'-DDT and endrin. The percent breakdown values were less than the control limit of 20%, with the exceptions noted below.

When the percent breakdown value was greater than 20%, positive results for 4,4'-DDT and/or endrin were estimated (J-5B). Any positive results for the breakdown products (4,4'-DDD & 4,4'-DDE or endrin ketone & endrin aldehyde) were also estimated (J-5B). If 4,4'-DDT and/or endrin were not detected in a given sample but the associated breakdown products were, then the 4,4'-DDT and/or endrin results were rejected (R-5B) and the positive results for the breakdown products were qualified as tentatively identified (NJ-5B).

SDG RZ45: The percent breakdown for 4,4'-DDT was greater than the 20% control limit for the PEM analyses of 12/22/10 @ 10:49 and 12/22/10 @ 14:45. The results for 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT in the samples bracketed by these PEM analyses were qualified as specified above. Refer to the **Qualified Data Summary Table** (Appendix B) for a complete list of qualified data.

Field Blanks

SDG RZ67: One equipment rinsate, RB-120810, was submitted. No target analytes were detected in this blank.

Matrix Spike/Matrix Spike Duplicates

Matrix spike sample (MS/MSD) recoveries that were less than the lower control limit, positive results and/or non-detects in the parent sample only were estimated (J/UJ-8) to indicate a potential low bias. If the recoveries were also less than 10%, positive results were estimated (J-

8) and non-detects were rejected (R-8) due to the extreme low bias. For recoveries greater than the upper control limit, positive results only in the parent sample were estimated (J-8) to indicate a potential high bias. No action was taken if only one of the MS or MSD recoveries was outside of the control limit or if the native concentration in the parent sample was greater than 4X the spike amount.

For relative percent difference (RPD) values that were greater than the control limit, only positive results in the parent sample were estimated (J-9). The following outliers resulted in qualification of data:

SDG RZ45: Sample SS-03-2-4-120610 was used for the MS/MSD analyses. The %R values for methoxychlor were less than the lower control limit. This analyte was not detected in the parent sample; the result was estimated (UJ-8).

SDG RZ67: Sample SS-P-120810 was used for the MS/MSD analyses. The %R values for 4,4'-DDT and methoxychlor were less than the lower control limit. These analytes not detected in the parent sample; results were estimated (UJ-8).

The RPD values for trans-chlordane and cis-chlordane were greater than the control limit. These analytes were estimated (J-9) in the parent sample.

Field Duplicates

No field duplicate samples were submitted.

Compound Quantitation

The results from the two analytical columns were compared for agreement. An elevated RPD value may indicate the presence of an interference resulting in a high bias. When the RPD value was greater than 40% but less than 60% the reported value was estimated (J-3). If the RPD value was greater than 60%, the result was qualified as a tentative identification (NJ-3). Confirmation outliers resulting in data qualification are discussed below.

```
SDG RZ45: 4,4'-DDT (1 result), cis-chlordane (7 results) – J-3
4,4'-DDT (3 results), cis-chlordane (3 results), trans-chlordane (2 results) - NJ-3
```

SDG RZ67: trans-chlordane (1 result) - NJ-3

Reporting Limits

Most samples were analyzed at dilution due to matrix interferences. Reporting limits were elevated accordingly.

Several chromatograms indicated non-target background interference. The reporting limits (RL) for these analytes were flagged "Y" by the laboratory. These "Y" flagged results were qualified (U-22) to indicate that they were not-detected at an elevated RL. The following results were qualified:

SDG RZ45: aldrin (4 results), beta-BHC (1 result), delta-BHC (2 results), dieldrin (7 results), endosulfan I (3 results), endrin (2 results), gamma-BHC (1 result), heptachlor (5 results), heptachlor epoxide (9 results).

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable, as demonstrated by the surrogate, laboratory control sample and MS/MSD recoveries; precision was also acceptable as demonstrated by the MS/MSD RPD values.

Reporting limits were elevated based on non-target background interferences. Data were estimated based on CCAL %D outliers, MS/MSD recovery and RPD outliers, and second column confirmation RPD outliers. Data were tentatively identified due to column confirmation RPD outliers and DDT breakdown outliers. Data were rejected due to DDT breakdown outliers. Data were flagged as do-not-report (DNR) to indicate which results from multiple reported analyses should not be used.

Data that have been rejected or flagged DNR should not be used for any purpose.

All other data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Herbicides by EPA Method 8151

This report documents the review of analytical data from the analyses of soil samples and the associated laboratory and field quality control (QC) samples. Samples were analyzed by Analytical Resources, Inc., Tukwila, Washington. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
R767	1 Soil	EPA Stage 2B
KZ07	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. **TECHNICAL DATA VALIDATION**

The QC requirements that were reviewed are listed below.

Sample Receipt, Preservation, and Holding Times 1 Field Duplicates

Initial Calibration (ICAL) Continuing Calibration (CCAL)

Laboratory Blanks

1 Field Blanks

Surrogate Compounds

Laboratory Control Samples (LCS)

2 Matrix Spikes/Matrix Spike Duplicates (MS/MSD)

Retention Time Window

Target Analyte List

Compound Identification

Compound Quantitation

Reporting Limits

Reported Results

¹ Quality control results are discussed below, but no data were qualified.

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

Field Blanks

SDG RZ67: One equipment rinsate, RB-120810, was submitted. No target analytes were detected in this blank.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Matrix Spike/Matrix Spike Duplicates

SDG RZ45: Matrix spike/matrix spike duplicate (MS/MSD) analyses were performed using Sample SS-03-2-4-120610. The MS %R value for dinoseb was less than the lower control limit and the MSD %R value was greater than the upper control limit. Dinoseb was not detected in the parent sample; the result was estimated (UJ-8) with no bias assigned.

SDG RZ67: No MS/MSD analyses were performed in association with the rinsate blank. Laboratory precision and accuracy were evaluated using the laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results.

Field Duplicates

No field duplicates were submitted.

IV. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the surrogate, LCS/LCSD, and MS/MSD recoveries. Precision was also acceptable as demonstrated by the LCS/LCSD and MS/MSD elative percent difference values.

Data were qualified based on MS/MSD recovery outliers.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Orthophosphate Pesticides by Method 8270D-SIM

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory and field quality control (QC) samples. Analytical Resources, Inc., Tukwila, Washington, analyzed the samples. Refer to the **Sample Index** for a list of samples that were reviewed.

SDG	Number of Samples	Validation Level
RZ45	10 Soil	EPA Stage 2B
R767	2 Soil	EPA Stage 2B
KZ07	1 Rinsate Blank	EPA Stage 2A

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

- 1 Sample Receipt, Preservation, and Holding Times Initial Calibration (ICAL)
- Continuing Calibration (CCAL)
 Laboratory Blanks
- 1 Field Blanks
- 1 Surrogate Compounds
- 2 Laboratory Control Samples (LCS/LCSD)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD)
 Internal Standards
- 1 Field DuplicatesTarget Analyte list
- 2 Reporting Limits
 Compound Identification
 - Reported Results

Sample Receipt, Preservation, and Holding Times

As stated in validation guidance documents, sample shipping coolers should arrive at the laboratory within the advisory temperature range of 2° to 6°C. Several coolers were received outside of these limits, with temperatures ranging from 1.9°C to 10.1°C. The temperature outliers did not impact data quality; therefore no qualifiers were assigned.

Continuing Calibration

All relative response factor (RRF) values were greater than the 0.05 minimum control limit. With the exception noted below, the values for percent difference (%D) were within the $\pm 25\%$ control limits

¹ Quality control results are discussed below, but no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

SDG RZ67: The %D value for monocrotophos was outside of the control limits and indicated a potential high bias. This analyte was not detected in the associated samples; therefore no qualification of data was necessary.

Field Blanks

SDG RZ67: One rinsate blank, RB-120810, was submitted. No target analytes were detected in this blank.

Surrogate Recovery

SDG RZ45: Matrix interference prevented the quantitation of the surrogate tributyl phosphate in several samples. Because the recoveries for triphenyl phosphate (second surrogate compound) were acceptable; no action was taken.

Laboratory Control Samples

SDG RZ67: The percent recovery (%R) values for monocrotophos were less than the lower control limit for the laboratory control sample/laboratory control sample duplicate (LCS/LCSD) associated with the rinsate blank. The result for monocrotophos in this sample was estimated (UJ-10) to indicate a potential low bias.

The LCS/LCSD %R values for merphos oxone were greater than the upper control limit. This analyte was not detected in the associated sample; therefore no qualification of data was necessary based on the potential high bias.

Matrix Spike/Matrix Spike Duplicate

SDG RZ45: Sample SS-03-2-4-120610 was used for the matrix spike/matrix spike duplicate (MS/MSD) analyses. The %R values for chlorpyrifos were greater than the upper control limit. This analyte was not detected in the parent sample; therefore no qualification of data was necessary based on the potential high bias.

Field Duplicates

SDG RZ67: One set of field duplicates were submitted; SS-P-120810 and SS-PD-120810. There were no positive results for either sample. Field precision was acceptable.

Reporting Limits

SDG RZ45: The chromatograms indicated non-target background interferences for the analyte EPN in Samples SS-02-0-2-120610 and SS-03-0-2-120610. The reporting limits (RL) for these analytes were flagged "Y" by the laboratory. These "Y" flagged results were qualified (U-22) to indicate that they were not-detected at an elevated RL.

III. OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. With the exceptions noted above, accuracy was acceptable as demonstrated by the surrogate, LCS/LCSD, and MS/MSD %R values; and precision was acceptable as demonstrated by the LCS/LCSD, MS/MSD, and field duplicate relative percent difference values.

Reporting limits were elevated due to background interferences. One data point was estimated based on LCS/LCSD %R outliers.

All data, as qualified, are acceptable for use.

DATA VALIDATION REPORT South Park Landfill RIFS Dioxin/Furan Compounds by Method 1613

This report documents the review of analytical data from the analysis of soil samples and the associated laboratory quality control (QC) samples. Samples were analyzed by Frontier Analytical Laboratory, El Dorado Hills, California. Refer to the **Sample Index** for a complete list of samples.

SDG	Number of Samples	Validation Level
6501	3 Soil	EPA Stage 2B

I. DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

II. TECHNICAL DATA VALIDATION

The quality control (QC) requirements reviewed are summarized in the following table:

1 Sample Receipt, Preservation, and Holding Times

System Performance and Resolution Checks

Initial Calibration (ICAL)

Calibration Verification (CVER)

Method Blanks

Labeled Compound Recovery

1 Matrix Spike/Matrix Spike Duplicates (MS/MSD)

Ongoing Precision and Recovery (OPR)

- 2 Laboratory Duplicates
- Field Duplicates
 Target Analyte List
- 2 Reported Results

Compound Identification

¹ Quality control results are discussed below, but no data were qualified.

Sample Receipt, Preservation, and Holding Times

The samples were transferred from Analytical Resources, Inc (ARI) to Frontier Analytical Laboratory. As stated in validation guidance documents, samples should be maintained within the advisory temperature range of 2°C to 6°C. The temperature recorded by Frontier was 0.0°C, which is less than the lower control limit. The temperature outlier did not impact data quality; therefore no data were qualified.

² Quality control outliers that impact the reported data were noted. Data qualifiers were issued as discussed below.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) samples were not analyzed. Laboratory accuracy was evaluated from the on-going precision and recovery (OPR) standard and labeled compound recoveries.

Laboratory Duplicates

The laboratory duplicate analysis was performed using Sample DU3. With the exceptions noted below, the relative percent difference (RPD) values were less than the control limit of 25%.

Analyte	RPD
1,2,3,4,7,8-HxCDF	36.4%
1,2,3,4,6,7,8-HpCDF	25.3%
1,2,3,4,7,8,9-HpCDF	29.9%
OCDF	38.8%
Total HxCDF	29.9%
Total HpCDF	33.4%

The results for the above analytes were estimated (J-9) in the parent sample only.

Field Duplicates

No field duplicate samples were submitted.

Reported Results

Positive results for 2,3,7,8-TCDF that were greater than the reporting limit were confirmed on a DB-225 column as specified by the method. The results from the DB-225 column were reported.

The laboratory assigned "D and/or M" flags to several of the reported homologue group totals to indicate that a diphenyl ether (D) or some other interference (M) was present, resulting in a high bias in the reported result. All analytes that were "D" and/or "M" flagged were estimated (J-14).

III. OVERALL ASSESSMENT

As determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable as demonstrated by the labeled compound and OPR recoveries. With the exceptions noted above, precision was also acceptable as demonstrated by laboratory duplicate RPD values.

Data were estimated based on interference from diphenyl ether and laboratory duplicate RPD outliers.

All data, as qualified, are acceptable for use.

DATA QUALIFIER DEFINITIONS REASON CODES AND CRITERIA TABLES

DATA VALIDATION QUALIFIER CODES Based on National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents the approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
The following is an EcoChem	qualifier that may also be assigned during the data review process:

Do not report; a more appropriate result is reported

from another analysis or dilution.

4/16/09 PM
T:VA_EcoChem Controlled Docs\Qualifiers & Reason Codes\EcoChem Qual Defs.doc

DNR

DATA QUALIFIER REASON CODES

1	Holding Time/Sample Preservation
2	Chromatographic pattern in sample does not match pattern of calibration standard.
3	Compound Confirmation
4	Tentatively Identified Compound (TIC) (associated with NJ only)
5A	Calibration (initial)
5B	Calibration (continuing)
6	Field Blank Contamination
7	Lab Blank Contamination (e.g., method blank, instrument, etc.)
8	Matrix Spike(MS & MSD) Recoveries
9	Precision (all replicates)
10	Laboratory Control Sample Recoveries
11	A more appropriate result is reported (associated with "R" and "DNR" only)
12	Reference Material
13	Surrogate Spike Recoveries (a.k.a., labeled compounds & recovery standards)
14	Other (define in validation report)
15	GFAA Post Digestion Spike Recoveries
16	ICP Serial Dilution % Difference
17	ICP Interference Check Standard Recovery
18	Trip Blank Contamination
19	Internal Standard Performance (e.g., area, retention time, recovery)
20	Linear Range Exceeded
21	Potential False Positives
22	Elevated Detection Limit Due to Interference (i.e., laboratory, chemical and/or matrix)

Table No.: NFG-SVOC Revision No.: 7 Last Rev. Date: 8/23/07 Page: 1 of 2

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	$\frac{Water}{J(+)/UJ(-) \text{ if ext.}} > 7 \text{ and } < 21 \text{ days}$ $J(+)/R(-) \text{ if ext.} > 7 \text{ and } < 21 \text{ days}$ $J(+)/R(-) \text{ if ext.} > 14 \text{ and } < 42 \text{ days}$ $J(+)/R(-) \text{ if ext.} > 42 \text{ days} \text{(EcoChem PJ)}$ $J(+)/UJ(-) \text{ if analysis} > 40 \text{ days}$	1
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R(+/-) all analytes in all samples associated with the tune	5A
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF < 0.05	5A
	%RSD < 30%	(EcoChem PJ, see TM-06) J(+) if %RSD > 30%	5A
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(EcoChem PJ, see TM-06) If MDL= reporting limit: J(+)/R(-) if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF < 0.05	5B
	%D <25%	(EcoChem PJ, see TM-06) If > +/-90%: J+/R- If -90% to -26%: J+ (high bias) If 26% to 90%: J+/UJ- (low bias)	5B
	One per matrix per batch No results > CRQL	U(+) if sample (+) result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)	7
Method Blank		U(+) if sample (+) result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)	7
	No TICs present	R(+) TICs using 10X rule	7
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U(+) < action level	6

Table No.: NFG-SVOC Revision No.: 7 Last Rev. Date: 8/23/07

Page: 2 of 2

EcoChem Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: $J(+) \text{ if both } \%R > UCL$ $J(+)/UJ(-) \text{ if both } \%R < LCL$ $J(+)/R(-) \text{ if both } \%R < 10\%$ PJ if only one $\%R$ outlier	8
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J(+) in parent sample if RPD > CL	9
LCS CLP low conc. H2O only	One per lab batch Within method control limits	J(+) assoc. cmpd if > UCL $J(+)/R(-)$ assoc. cmpd if < LCL $J(+)/R(-)$ all cmpds if half are < LCL	10
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J(+) if %R > UCL $J(+)/UJ(-)$ if %R <lcl <math="">J(+)/R(-) if %R < 10% (EcoChem PJ)</lcl>	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) if %R < 10%	13
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	$J(+) \ if > 200\%$ $J(+)/UJ(-) \ if < 50\%$ $J(+)/R(-) \ if < 25\%$ RT>30 seconds, narrate and Notify PM	19
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R(+) common laboratory contaminants See Technical Director for ID issues	4
Quantitation/ Identification	RRT within 0.06 of standard RRT Ion relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers	14 21 (false +)

Table No.: NFG-Pest PCB Revision No.: 4 Last Rev. Date: 8/23/07 Page: 1 of 2

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler Temperature	4°C ±2°	J(+)/UJ(-) if greater than 6 deg. C (EcoChem PJ)	1
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext/analyzed > HT J(+)/R(-) if ext/analyzed > 3X HT (EcoChem PJ)	1
Resolution Check	Beginning of ICAL Sequence Within RTW Resolution >90%	Narrate (Use Professional Judgement to qualify)	14
Instrument Performance (Breakdown)	DDT Breakdown: < 20% Endrin Breakdown: <20% Combined Breakdown: <30% Compounds within RTW	J(+) DDT NJ(+) DDD and/or DDE R(-) DDT - If (+) for either DDE or DDD J(+) Endrin NJ(+) EK and/or EA R(-) Endrin - If (+) for either EK or EA	5A
Retention Times	Surrogates: TCX (+/- 0.05); DCB (+/- 0.10) Target compounds: elute before heptachlor epoxide	NJ(+)/R(-) results for analytes with RT shifts For full DV, use PJ based on examination of raw data	5B
Initial Calibration	Pesticides: Low=CRQL, Mid=4X, High=16X Multiresponse - one point Calibration %RSD<20% %RSD<30% for surr; two comp. may exceed if <30% Resolution in Mix A and Mix B >90%	J(+)/UJ(-)	5A
Continuing Calibration	Alternating PEM standard and INDA/INDB standards every 12 hours (each preceeded by an inst. Blank) %D < 25% Resolution >90% in IND mixes; 100% for PEM	J(+)/UJ(-) J(+)R(-) if %D > 90% PJ for resolution	5B
	One per matrix per batch	U(+) if sample result is < CRQL and < 5X rule (raise sample value to CRQL)	7
Method Blank	No results > CRQL	U(+) if sample result is > or equal to CRQL and < 5X rule (at reported sample value)	
Instrument Blanks	Analyzed at the beginning of every 12 hour sequence No analyte > 1/2 CRQL	Same as Method Blank	7
Field Blanks	Not addressed by NFG No results > CRQL	Apply 5X rule; U(+) < action level	6

Table No.: NFG-Pest PCB Revision No.: 4 Last Rev. Date: 8/23/07 Page: 2 of 2

EcoChem Validation Guidelines for Pesticides, PCBs, Herbicides, and Phenol by GC/ECD (Based on Organic NFG 1999 & EPA SW-846 Methods 8081/8082/8041/8151)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
MS/MSD (recovery)	One set per matrix per batch Method Acceptance Criteria	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	One set per matrix per batch Method Acceptance Criteria	J(+) in parent sample if RPD > CL	9
LCS	One per SDG Method Acceptance Criteria	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J(+)/UJ(-) assoc. cmpd. in all samples	9
Surrogates	TCX and DCB added to every sample %R = 30-150%	J(+)/UJ(-) if both %R = 10 - 60% J(+) if both >150% J(+)/R(-) if any %R <10%	13
Quantitation/ Identification	Quantitated using ICAL calibration factor (CF) RPD between columns <40%	J(+) if RPD = 40 - 60% NJ(+) if RPD >60% EcoChem PJ - See TM-08	3
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used to avoid reporting two results for one sample	11
Sample Clean-up	GPC required for soil samples Florisil required for all samples Sulfur is optional Clean-up standard check %R within CLP limits	J(+)/UJ(-) if %R < LCL J(+) if %R > UCL	14
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate (Qualifiy if required by project QAPP)	9

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 1 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Cooler/Storage Temperature	Waters/Solids < 4°C Tissues <-10°C	EcoChem PJ, see TM-05	1
Holding Time	Extraction - Water: 30 days from collection Note: Under CWA, SDWA, and RCRA the HT for H2O is 7 days* Extraction - Soil: 30 days from collection Analysis: 40 days from extraction	J(+)/UJ(-) if ext > 30 days J(+)/UJ(-) if analysis > 40 Days EcoChem PJ, see TM-05	1
Mass Resolution	>=10,000 resolving power at m/z 304.9824 Exact mass of m/z 380.9760 w/in 5 ppm of theoretical value (380.97410 to 380.97790). Analyzed prior to ICAL and at the start and end of each 12 hr. shift	R(+/-) if not met	14
Window Defining Mix and Column Performance Mix	Window defining mixture/Isomer specificity std run before ICAL and CCAL Valley < 25% (valley = (x/y)*100%) x = ht. of TCDD y = baseline to bottom of valley For all isomers eluting near 2378-TCDD/TCDF isomers (TCDD only for 8290)	J(+) if valley > 25%	5A (ICAL) 5B (CCAL
	Minimum of five standards %RSD < 20% for native compounds %RSD <30% for labeled compounds (%RSD <35% for labeled compounds under 1613b)	J(+) natives if %RSD > 20%	
	Abs. RT of ¹³ C ₁₂ -1234-TCDD >25 min on DB5 >15 min on DB-225	EcoChem PJ, see TM-05	
Initial Calibration	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	5A
	S/N ratio > 10 for all native and labeled compounds in CS1 std.	If <10, elevate Det. Limit or R(-)	

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 2 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
	Analyzed at the start and end of each 12 hour shift. %D+/-20% for native compounds %D +/-30% for labeled compounds (Must meet limits in Table 6, Method 1613B) (If %Ds in the closing CCAL are w/in 25%/35% the avg RF from the two CCAL may be used to calculate samples per Method 8290, Section 8.3.2.4)	Do not qualify labeled compounds. Narrate in report for labeled compound %D outliers. For native compound %D outliers: 8290: J(+)/UJ(-) if %D = 20% - 75% J(+)/R(-) if %D > 75% 1613: J(+)/UJ(-) if %D is outside Table 6 limits J(+)/R(-) if %D is +/- 75% of Table 6 limit	
Continuing Calibration	Abs. RT of ¹³ C ₁₂ -1234-TCDD and ¹³ C12-123789-HxCDD +/- 15 sec of ICAL.	EcoChem PJ, see ICAL section of TM-05	5B
	RRT of all other compounds must meet Table 2 of 1613B.	EcoChem PJ, see TM-05	
	Ion Abundance ratios within QC limits (Table 8 of method 8290) (Table 9 of method 1613B)	EcoChem PJ, see TM-05	
	S/N ratio > 10	If <10, elevate Det. Limit or R(-)	
Method Blank	One per matrix per batch No positive results	If sample result <5X action level, qualify U at reported value.	7
Field Blanks (Not Required)	No positive results	If sample result <5X action level, qualify U at reported value.	6
LCS/OPR	Concentrations must meet limits in Table 6, Method 1613B or lab limits.	J(+) if %R > UCL J(+)/UJ(-) if %R < LCL J(+)/R(-) using PJ if %R < <lcl (<="" 10%)<="" td=""><td>10</td></lcl>	10
MS/MSD (recovery)	May not analyze MS/MSD %R should meet lab limits.	Qualify parent only unless other QC indicates systematic problems: J(+) if both %R > UCL J(+)/UJ(-) if both %R < LCL J(+)/R(-) if both %R < 10% PJ if only one %R outlier	8
MS/MSD (RPD)	May not analyze MS/MSD RPD < 20%	J(+) in parent sample if RPD > CL	9

Table No.: HRMS-DXN Revision No.: 3 Last Rev. Date: 8/23/07 Page: 3 of 3

EcoChem Validation Guidelines for Dioxin/Furan Analysis by HRMS (Based on EPA Reg. 10 SOP, Rev. 2, 1996 & EPA SW-846, Methods 1613b and 8290)

VALIDATION QC ELEMENT	ACCEPTANCE CRITERIA	ACTION	REASON CODE
Lab Duplicate	RPD <25% if present.	J(+)/UJ(-) if outside limts	9
Labeled Compounds /	<i>Method 8290:</i> %R = 40% - 135% in all samples	J(+)/UJ(-) if %R = 10% to LCL J(+) if %R > UCL	13
Internal Standards	<i>Method 1613B:</i> %R must meet limits specified in Table 7, Method 1613	J(+)/R(-) if %R < 10%	13
Quantitation/ Identification	lons for analyte, IS, and rec. std. must max w/in 2 sec. S/N >2.5 IA ratios meet limits in Table 9 of 1613B or Table 8 of 8290 RRTs w/in limits in Table 2 of 1613B	If RT criteria not met, use PJ (see TM-05) If S/N criteria not met, J(+). if unlabelled ion abundance not met, change to EMPC If labelled ion abundance not met, J(+).	21
EMPC (estimated maximum possible concentration)	If quantitation idenfication criteria are not met, laboratory should report an EMPC value.	If laboratory correctly reported an EMPC value, qualify with U to indicate that the value is a detection limit.	14
Interferences	PCDF interferences from PCDPE	If both detected, change PCDF result to EMPC	14
Second Column Confirmation	All 2378-TCDF hits must be confirmed on a DB-225 (or equiv) column. All QC specs in this table must be met for the confirmation analysis.	Report lower of the two values. If not performed use PJ (see TM-05).	3
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (EcoChem PJ)	9
Two analyses for one sample	Report only one result per analyte	"DNR" results that should not be used	11

APPENDIX B QUALIFIED DATA SUMMARY TABLE

	<u> </u>	1		<u> </u>	1				
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
6501	DU1	6501-001-SA	EPA 1613 D/F	Total PeCDF	144	pg/g	D,M	J	14
6501	DU1	6501-001-SA	EPA 1613 D/F	Total TCDF	118	pg/g	D,M	J	14
6501	DU2	6501-002-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	102	pg/g	D,M	J	14
6501	DU2	6501-002-SA	EPA 1613 D/F	Total HxCDF	1400	pg/g	D,M	J	14
6501	DU2	6501-002-SA	EPA 1613 D/F	Total PeCDF	1310	pg/g	D,M	J	14
6501	DU2	6501-002-SA	EPA 1613 D/F	Total TCDF	1290	pg/g	D,M	J	14
6501	DU3	6501-003-DUP	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	22.2	pg/g	D,M	J	14
6501	DU3	6501-003-DUP	EPA 1613 D/F	Total HxCDF	389	pg/g	D,M	J	14
6501	DU3	6501-003-DUP	EPA 1613 D/F	Total PeCDF	271	pg/g	D,M	J	14
6501	DU3	6501-003-DUP	EPA 1613 D/F	Total TCDF	235	pg/g	D,M	J	14
6501	DU3	6501-003-SA	EPA 1613 D/F	1,2,3,6,7,8-HxCDF	26.4	pg/g	D,M	J	14
6501	DU3	6501-003-SA	EPA 1613 D/F	Total HxCDF	526	pg/g	D,M	J	14
6501	DU3	6501-003-SA	EPA 1613 D/F	Total PeCDF	324	pg/g	D,M	J	14
6501	DU3	6501-003-SA	EPA 1613 D/F	Total TCDF	241	pg/g	D,M	J	14
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8041	Pentachlorophenol	38	ug/kg	U	UJ	14
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8041	Pentachlorophenol	16	ug/kg	U	UJ	14
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8041	Pentachlorophenol	13	ug/kg	U	UJ	14
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8041	Pentachlorophenol	31	ug/kg	U	UJ	14
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8041	Pentachlorophenol	33	ug/kg	U	UJ	14
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8041	Pentachlorophenol	31	ug/kg	U	UJ	14
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8041	Pentachlorophenol	50	ug/kg		J	14
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8041	Pentachlorophenol	19	ug/kg	U	UJ	14
RZ45	SS-01-4-6-120610	10-30443-RZ45I	SW8041	Pentachlorophenol	15	ug/kg	U	UJ	14
RZ45	SS-02-6-8-120610	10-30444-RZ45J	SW8041	Pentachlorophenol	30	ug/kg	U	UJ	14
RZ67	SS-P-120810	10-30568-RZ67B	SW8041	Pentachlorophenol	11	ug/kg	U	UJ	14
RZ67	RB-120810	10-30569-RZ67C	SW8041	Pentachlorophenol	0.25	ug/L	U	UJ	14
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	4,4'-DDD	40	ug/kg		NJ	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	4,4'-DDE	20	ug/kg		NJ	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	4,4'-DDT	9.3	ug/kg	U	R	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	Aldrin	12	ug/kg	Υ	U	22
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	cis-Chlordane	28	ug/kg	Р	J	3
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	delta-BHC	38	ug/kg	Υ	U	22
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	Heptachlor	9.8	ug/kg	Υ	UJ	5B,22
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	Methoxychlor	46	ug/kg	U	UJ	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	Toxaphene	460	ug/kg	U	UJ	5B
RZ45	SS-03-0-2-120610	10-30435-RZ45A	SW8081B	trans-Chlordane	47	ug/kg	Р	NJ	3
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	4,4'-DDD	39	ug/kg		NJ	5B
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	4,4'-DDE	17	ug/kg		NJ	5B
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	4,4'-DDT	3.2	ug/kg	U	R	5B
RZ45	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	cis-Chlordane	14	ug/kg	Р	J	3
	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Dieldrin	4.7	ug/kg	Υ	U	22
	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Heptachlor	1.6	ug/kg	U	UJ	5B
	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Heptachlor Epoxide	4.8	ug/kg	Υ	U	22
	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Methoxychlor	16	ug/kg	U	UJ	5B,8
	SS-03-2-4-120610	10-30436-RZ45B	SW8081B	Toxaphene	160	ug/kg	U	UJ	5B
	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	4,4'-DDD	120	ug/kg		NJ	5B
	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	4,4'-DDE	18	ug/kg	J	NJ	5B
	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	4,4'-DDT	16	ug/kg	U	R	5B
	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Aldrin	30	ug/kg	Y	U	22
	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	cis-Chlordane	210	ug/kg	EP	DNR	20
	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	gamma-BHC (Lindane)	16	ug/kg	Y	U	22
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Heptachlor	24	ug/kg	Y	UJ	5B,22
				1 1					

		T				1	<u> </u>		
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Heptachlor Epoxide	24	ug/kg	Υ	U	22
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Methoxychlor	80	ug/kg	U	UJ	5B
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	Toxaphene	800	ug/kg	U	UJ	5B
RZ45	SS-03-4-6-120610	10-30437-RZ45C	SW8081B	trans-Chlordane	140	ug/kg	Е	DNR	20
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	4,4'-DDD	110	ug/kg		DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	4,4'-DDE	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	4,4'-DDT	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Aldrin	32	ug/kg	Υ	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	alpha-BHC	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	beta-BHC	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	delta-BHC	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Dieldrin	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endosulfan I	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endosulfan II	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endosulfan Sulfate	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endrin	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endrin Aldehyde	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Endrin Ketone	32	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	gamma-BHC (Lindane)	16	ug/kg	U	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Heptachlor	23	ug/kg	Υ	DNR	11
RZ45	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Heptachlor Epoxide	24	ug/kg	Y	DNR	11
	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Methoxychlor	160	ug/kg	Ü	DNR	11
	SS-03-4-6-120610	10-30437-RZ45CDL	SW8081B	Toxaphene	1600	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	4,4'-DDD	210	ug/kg	E	DNR	20
	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	4,4'-DDE	84	ug/kg	_	NJ	5B
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	4,4'-DDT	7.6	ug/kg	U	R	5B
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	cis-Chlordane	14	ug/kg	Р	J	3
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Dieldrin	13	ug/kg	Y	U	22
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Heptachlor	4.5	ug/kg	Y	UJ	5B,22
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Heptachlor Epoxide	13	ug/kg	Y	U	22
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Methoxychlor	38	ug/kg	U	UJ	5B
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	Toxaphene	380	ug/kg	U	UJ	5B
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8081B	trans-Chlordane	20	ug/kg	P	NJ	3
	SS-02-0-2-120010	10-30438-RZ45DDL	SW8081B	4,4'-DDE	76	ug/kg	U	DNR	11
	SS-02-0-2-120010	10-30438-RZ45DDL	SW8081B	4,4'-DDT	76	ug/kg	U	DNR	11
		10-30438-RZ45DDL	SW8081B	Aldrin	38	ug/kg ug/kg	U	DNR	11
		10-30438-RZ45DDL	SW8081B	alpha-BHC	38	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	beta-BHC	38	ug/kg ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	cis-Chlordane	38	ug/kg ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	delta-BHC	38	ug/kg ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Dieldrin	76		U	DNR	11
			SW8081B		38	ug/kg	U	DNR	
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B SW8081B	Endosulfan I Endosulfan II	76	ug/kg			11
	SS-02-0-2-120610	10-30438-RZ45DDL	1		76	ug/kg	U	DNR DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endosulfan Sulfate		ug/kg	U		11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endrin Aldebude	76	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endrin Aldehyde	76	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Endrin Ketone	76	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	gamma-BHC (Lindane)	38	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Heptachlor	38	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Heptachlor Epoxide	38	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Methoxychlor	380	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	Toxaphene	3800	ug/kg	U	DNR	11

		I	T			1	<u> </u>		
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8081B	trans-Chlordane	38	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	4,4'-DDD	3800	ug/kg	ES	DNR	20
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	4,4'-DDE	860	ug/kg	E	DNR	20
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	4,4'-DDT	230	ug/kg	E	DNR	20
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	beta-BHC	19	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	cis-Chlordane	300	ug/kg	Р	J	3
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Dieldrin	59	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Endosulfan I	21	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Endrin	19	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Heptachlor	9.6	ug/kg	Υ	UJ	5B,22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Heptachlor Epoxide	140	ug/kg	Υ	U	22
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Methoxychlor	67	ug/kg	U	UJ	5B
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8081B	Toxaphene	670	ug/kg	U	UJ	5B
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	4,4'-DDD	3900	ug/kg	Е	DNR	20
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Aldrin	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	alpha-BHC	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	beta-BHC	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	cis-Chlordane	340	ug/kg	Р	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	delta-BHC	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Dieldrin	130	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endosulfan I	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endosulfan II	130	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endosulfan Sulfate	130	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endrin	130	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endrin Aldehyde	130	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Endrin Ketone	130	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	gamma-BHC (Lindane)	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Heptachlor	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Heptachlor Epoxide	67	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Methoxychlor	670	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	Toxaphene	6700	ug/kg	U	DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL	SW8081B	trans-Chlordane	360	ug/kg		DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	4,4'-DDE	1300	ug/kg	U	DNR	11
		10-30439-RZ45EDL2	SW8081B	4,4'-DDT	1300	ug/kg	U	DNR	11
RZ45		10-30439-RZ45EDL2	SW8081B	Aldrin	670	ug/kg	U	DNR	11
		10-30439-RZ45EDL2	SW8081B	alpha-BHC	670	ug/kg	U	DNR	11
		10-30439-RZ45EDL2	SW8081B	beta-BHC	670	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	cis-Chlordane	670	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	delta-BHC	670	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Dieldrin Endaculfon I	1300	ug/kg	U	DNR	11
	SS-02-2-4-120610 SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endosulfan I	670	ug/kg	U	DNR DNR	11
	SS-02-2-4-120610 SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endosulfan II	1300	ug/kg	U	DNR	11 11
	SS-02-2-4-120610 SS-02-2-4-120610	10-30439-RZ45EDL2 10-30439-RZ45EDL2	SW8081B SW8081B	Endosulfan Sulfate Endrin	1300 1300	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endrin Aldehyde	1300	ug/kg ug/kg	U	DNR	11
-	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Endrin Ketone	1300	ug/kg ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	gamma-BHC (Lindane)	670	ug/kg ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Heptachlor	670	ug/kg ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Heptachlor Epoxide	670	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Methoxychlor	6700	ug/kg ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	Toxaphene	67000	ug/kg	U	DNR	11
	SS-02-2-4-120610	10-30439-RZ45EDL2	SW8081B	trans-Chlordane	670	ug/kg	U	DNR	11
1147	00 02 Z-T-120010	I O OUTO /-INZ#JEDEZ	OWOOOID	adio onioladio	070	uying	U	ווווע	1.1

	Γ	T		1	1				
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	4,4'-DDD	4800	ug/kg	ESP	DNR	20
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	4,4'-DDE	740	ug/kg	Е	DNR	20
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	4,4'-DDT	120	ug/kg	Р	NJ	3,5B
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Aldrin	22	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	cis-Chlordane	480	ug/kg	Р	J	3
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Dieldrin	65	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Endosulfan I	28	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Endrin	20	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Heptachlor	6.2	ug/kg	U	UJ	5B
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Heptachlor Epoxide	180	ug/kg	Υ	U	22
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Methoxychlor	62	ug/kg	U	UJ	5B
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8081B	Toxaphene	620	ug/kg	U	UJ	5B
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	4,4'-DDD	4800	ug/kg	Е	DNR	20
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	4,4'-DDT	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Aldrin	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	alpha-BHC	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	beta-BHC	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	cis-Chlordane	510	ug/kg	Р	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	delta-BHC	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Dieldrin	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endosulfan I	62	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endosulfan II	120	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endosulfan Sulfate	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endrin	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endrin Aldehyde	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Endrin Ketone	120	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	gamma-BHC (Lindane)	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Heptachlor	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Heptachlor Epoxide	62	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Methoxychlor	620	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	Toxaphene	6200	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL	SW8081B	trans-Chlordane	510	ug/kg		DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	4,4'-DDE	1200	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	4,4'-DDT	1200	ug/kg	U	DNR	11
		10-30440-RZ45FDL2	SW8081B	Aldrin	620	ug/kg	U	DNR	11
		10-30440-RZ45FDL2	SW8081B	alpha-BHC	620	ug/kg	U	DNR	11
		10-30440-RZ45FDL2	SW8081B	beta-BHC	620	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	cis-Chlordane	620	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	delta-BHC	620	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Dieldrin	1200	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endosulfan I	620	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endosulfan II	1200	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endosulfan Sulfate	1200	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endrin	1200	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endrin Aldehyde	1200	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Endrin Ketone	1200	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	gamma-BHC (Lindane)	620	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Heptachlor	620	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Heptachlor Epoxide	620	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Methoxychlor	6200	ug/kg	U	DNR	11
	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	Toxaphene	62000	ug/kg	U	DNR	11
RZ45	SS-02-4-6-120610	10-30440-RZ45FDL2	SW8081B	trans-Chlordane	620	ug/kg	U	DNR	11

		1	1	T Faik Landini Site Kii S					
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	4,4'-DDD	24	ug/kg		NJ	5B
	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	4,4'-DDE	85	ug/kg		NJ	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	4,4'-DDT	16	ug/kg	U	R	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Aldrin	12	ug/kg	Υ	U	22
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	delta-BHC	11	ug/kg	Υ	U	22
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Heptachlor	8.1	ug/kg	U	UJ	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Heptachlor Epoxide	80	ug/kg	Υ	U	22
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Methoxychlor	81	ug/kg	U	UJ	5B
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8081B	Toxaphene	810	ug/kg	U	UJ	5B
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	4,4'-DDD	1800	ug/kg	ES	DNR	20
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	4,4'-DDE	320	ug/kg	E	DNR	20
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	4,4'-DDT	66	ug/kg	Р	NJ	3,5B
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	cis-Chlordane	31	ug/kg	Р	NJ	3
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Dieldrin	30	ug/kg	Υ	U	22
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Heptachlor	8	ug/kg	U	UJ	5B
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Heptachlor Epoxide	59	ug/kg	Υ	U	22
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Methoxychlor	80	ug/kg	U	UJ	5B
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8081B	Toxaphene	800	ug/kg	U	UJ	5B
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	4,4'-DDT	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Aldrin	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	alpha-BHC	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	beta-BHC	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	cis-Chlordane	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	delta-BHC	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Dieldrin	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endosulfan I	80	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endosulfan II	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endosulfan Sulfate	160	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endrin	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endrin Aldehyde	160	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	Endrin Ketone	160	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8081B	gamma-BHC (Lindane)	80	ug/kg	U	DNR	11
		10-30442-RZ45HDL	SW8081B	Heptachlor	80	ug/kg	U	DNR	11
		10-30442-RZ45HDL	SW8081B	Heptachlor Epoxide	80	ug/kg	U	DNR	11
		10-30442-RZ45HDL	SW8081B	Methoxychlor	800	ug/kg	U	DNR	11
		10-30442-RZ45HDL	SW8081B	Toxaphene	8000	ug/kg	U	DNR	11
		10-30442-RZ45HDL	SW8081B	trans-Chlordane	80	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	4,4'-DDD	500	ug/kg	ES	DNR	20
	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	4,4'-DDE	99	ug/kg	E	DNR	20
	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	4,4'-DDT	6.3	ug/kg	Р	J	3,5B
	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	cis-Chlordane	8.2	ug/kg	Р	J	3
		10-30443-RZ45I	SW8081B	Dieldrin	4.5	ug/kg	Υ	U	22
		10-30443-RZ45I	SW8081B	Heptachlor	1.7	ug/kg	U	UJ	5B
		10-30443-RZ45I	SW8081B	Heptachlor Epoxide	17	ug/kg	Y	U	22
	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	Methoxychlor	17	ug/kg	U	UJ	5B
	SS-01-4-6-120610	10-30443-RZ45I	SW8081B	Toxaphene	170	ug/kg	U	UJ	5B
	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	4,4'-DDD	570	ug/kg	E	DNR	20
		10-30443-RZ45IDL	SW8081B	4,4'-DDE	82	ug/kg		J	5B
	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	4,4'-DDT	33	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Aldrin	17	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	alpha-BHC	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	beta-BHC	17	ug/kg	U	DNR	11

	<u> </u>	<u> </u>				I	1		
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	cis-Chlordane	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	delta-BHC	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Dieldrin	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endosulfan I	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endosulfan II	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endosulfan Sulfate	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endrin	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endrin Aldehyde	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Endrin Ketone	33	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	gamma-BHC (Lindane)	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Heptachlor	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Heptachlor Epoxide	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Methoxychlor	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	Toxaphene	1700	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL	SW8081B	trans-Chlordane	17	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	4,4'-DDE	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	4,4'-DDT	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Aldrin	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	alpha-BHC	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	beta-BHC	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	cis-Chlordane	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	delta-BHC	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Dieldrin	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endosulfan I	83	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endosulfan II	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endosulfan Sulfate	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endrin	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endrin Aldehyde	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Endrin Ketone	170	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	gamma-BHC (Lindane)	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Heptachlor	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Heptachlor Epoxide	83	ug/kg	U	DNR	11
RZ45	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Methoxychlor	830	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	Toxaphene	8300	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30443-RZ45IDL2	SW8081B	trans-Chlordane	83	ug/kg	U	DNR	11
		10-30444-RZ45J	SW8081B	4,4'-DDD	3400	ug/kg	ES	DNR	20
		10-30444-RZ45J	SW8081B	4,4'-DDE	760	ug/kg	E	DNR	20
	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	4,4'-DDT	92	ug/kg	P	NJ	3,5B
	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	cis-Chlordane	250	ug/kg	Р	J	3
	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Dieldrin	48	ug/kg	Υ	U	22
	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Endosulfan I	19	ug/kg	Y	U	22
	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Heptachlor	11	ug/kg	Υ	UJ	5B,22
	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Heptachlor Epoxide	130	ug/kg	Y	U	22
	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Methoxychlor	60	ug/kg	U	UJ	5B
	SS-02-6-8-120610	10-30444-RZ45J	SW8081B	Toxaphene	600	ug/kg	U	UJ	5B
	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	4,4'-DDD	3700	ug/kg	E	DNR	20
	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	4,4'-DDE	580	ug/kg	_	J	5B
	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	4,4'-DDT	120	ug/kg	U	DNR	11
	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Aldrin	60	ug/kg	U	DNR	11
	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	alpha-BHC	60	ug/kg	U	DNR	11
	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	beta-BHC	60	ug/kg	U	DNR	11
	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	cis-Chlordane	330	ug/kg	Р	DNR	11
11270	22 22 0 0 120010	. 5 55 1 1 1 1 TO TO DE	31130010	3.5 011101 44110	000	~g/Ng		21111	- ''

		Ι		1	T	1	<u> </u>		
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	delta-BHC	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Dieldrin	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endosulfan I	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endosulfan II	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endosulfan Sulfate	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endrin	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endrin Aldehyde	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Endrin Ketone	120	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	gamma-BHC (Lindane)	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Heptachlor	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Heptachlor Epoxide	60	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Methoxychlor	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	Toxaphene	6000	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL	SW8081B	trans-Chlordane	340	ug/kg		DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	4,4'-DDE	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	4,4'-DDT	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Aldrin	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	alpha-BHC	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	beta-BHC	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	cis-Chlordane	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	delta-BHC	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Dieldrin	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endosulfan I	300	ug/kg	U	DNR	11
	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endosulfan II	600	ug/kg	U	DNR	11
	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endosulfan Sulfate	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endrin	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endrin Aldehyde	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Endrin Ketone	600	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	gamma-BHC (Lindane)	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Heptachlor	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Heptachlor Epoxide	300	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Methoxychlor	3000	ug/kg	U	DNR	11
RZ45	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	Toxaphene	30000	ug/kg	Ü	DNR	11
	SS-02-6-8-120610	10-30444-RZ45JDL2	SW8081B	trans-Chlordane	300	ug/kg	U	DNR	11
RZ67	SS-P-120810	10-30568-RZ67B	SW8081B	4,4'-DDT	3.1	ug/kg	U	UJ	5B,8
	SS-P-120810	10-30568-RZ67B	SW8081B	cis-Chlordane	3.6	ug/kg	U		9
	SS-P-120810	10-30568-RZ67B	SW8081B	Heptachlor	1.5	ug/kg	U	UJ	5B
	SS-P-120810	10-30568-RZ67B	SW8081B	Methoxychlor	1.5	ug/kg	U	UJ	5B,8
	SS-P-120810	10-30568-RZ67B	SW8081B	Toxaphene	150	ug/kg	U	UJ	5B
	SS-P-120810	10-30568-RZ67B	SW8081B	trans-Chlordane	7.1	ug/kg	P	NJ	3,9
	SS-01-4-6-120610	10-30443-RZ45I	SW8082	Aroclor 1254	330	ug/kg	Y	U	22
	SS-P-120810	10-30568-RZ67B	SW8082	Aroclor 1248	240	ug/kg	Y	U	22
	SS-P-120810		SW8082	Aroclor 1240 Aroclor 1260	96		Y	U	22
	SS-03-2-4-120610	10-30568-RZ67B 10-30436-RZ45B	SW8151A	Dinoseb	32	ug/kg	U	UJ	8
			SW8151A SW8270D	Benzidine		ug/kg	U		
	SS-03-0-2-120610	10-30435-RZ45A			1800	ug/kg	U	R	8,10
	SS-03-0-2-120610	10-30435-RZ45A	SW8270D	Benzo(a)anthracene	370	ug/kg		J	9
	SS-03-0-2-120610	10-30435-RZ45A	SW8270D	Chrysene	570	ug/kg	11	J	9
	SS-03-2-4-120610	10-30436-RZ45B	SW8270D	Benzidine	380	ug/kg	U	R	10
	SS-03-2-4-120610	10-30436-RZ45B	SW8270D	bis(2-Ethylhexyl)phthalate	220	ug/kg	В	U	7
	SS-03-4-6-120610	10-30437-RZ45C	SW8270D	Benzidine	360	ug/kg	U	R	10
	SS-03-4-6-120610	10-30437-RZ45C	SW8270D	bis(2-Ethylhexyl)phthalate	230	ug/kg	В	U	7
RZ45	SS-02-0-2-120610	10-30438-RZ45D	SW8270D	Benzidine	760	ug/kg	U	R	10

		I		1	<u> </u>				
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,2,4-Trichlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,2-Dichlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,2-Diphenylhydrazine	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,3-Dichlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1,4-Dichlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	1-Methylnaphthalene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,2'-Oxybis(1-Chloropropane)	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,3,4,6-Tetrachlorophenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,3,5,6-Tetrachlorophenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4,5-Trichlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4,6-Trichlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4-Dichlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4-Dimethylphenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4-Dinitrophenol	2300	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,4-Dinitrotoluene	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2,6-Dinitrotoluene	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Chloronaphthalene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Chlorophenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Methylnaphthalene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Methylphenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	2-Nitrophenol	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	3,3'-Dichlorobenzidine	1100	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	3-Nitroaniline	1100	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4,6-Dinitro-2-Methylphenol	2300	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Bromophenyl-phenylether	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Chloro-3-methylphenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Chloroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Chlorophenyl-phenylether	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Methylphenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	4-Nitrophenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Acenaphthene	240	ug/kg		DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Acenaphthylene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Aniline	230	ug/kg	U	DNR	11
		10-30438-RZ45DDL	SW8270D	Anthracene	230	ug/kg	U	DNR	11
		10-30438-RZ45DDL	SW8270D	Azobenzene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzidine	2300	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzo(a)anthracene	160	ug/kg	J	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzo(a)pyrene	120	ug/kg	J	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzo(g,h,i)perylene	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Benzyl Alcohol	1100	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	bis(2-Chloroethoxy) Methane	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Bis-(2-Chloroethyl) Ether	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	bis(2-Ethylhexyl)phthalate	940	ug/kg	В	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Butylbenzylphthalate	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Carbazole	230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Chrysene Dibonz(a b)anthrocono	260	ug/kg	11	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D SW8270D	Dibenz(a,h)anthracene	230	ug/kg	U	DNR DNR	11 11
	SS-02-0-2-120610 SS-02-0-2-120610	10-30438-RZ45DDL 10-30438-RZ45DDL	SW8270D SW8270D	Dibenzofuran Diethylphthalate	230 230	ug/kg	U	DNR	11
	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D SW8270D	Dimethylphthalate	230	ug/kg	U	DNR	11
KZ40	33-02-0-2-120010	10-30430-KZ43DDL	3W0Z/UD	וויסן	230	ug/kg	U	אווט	11

Qualified Data Summary Table South Park Landfill Site RIFS

	T	T		T F at K Latiutili Site Kii S					
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Di-n-Butylphthalate	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Di-n-Octyl phthalate	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Fluoranthene	590	ug/kg		DNR	11
		10-30438-RZ45DDL	SW8270D	Fluorene	230	ug/kg	U	DNR	11
		10-30438-RZ45DDL	SW8270D	Hexachlorobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Hexachlorobutadiene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Hexachlorocyclopentadiene	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Hexachloroethane	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Indeno(1,2,3-cd)pyrene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Isophorone	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Naphthalene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Nitrobenzene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	N-Nitrosodimethylamine	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	N-Nitroso-Di-N-Propylamine	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	N-Nitrosodiphenylamine	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Pentachlorophenol	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Phenanthrene	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Phenol	230	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Pyrene	460	ug/kg		DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Pyridine	1100	ug/kg	U	DNR	11
RZ45	SS-02-0-2-120610	10-30438-RZ45DDL	SW8270D	Total Benzofluoranthenes	230	ug/kg		DNR	11
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8270D	Benzidine	1100	ug/kg	U	R	10
RZ45	SS-02-2-4-120610	10-30439-RZ45E	SW8270D	bis(2-Ethylhexyl)phthalate	520	ug/kg	В	U	7
RZ45	SS-02-4-6-120610	10-30440-RZ45F	SW8270D	Benzidine	1100	ug/kg	U	R	10
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8270D	Benzidine	590	ug/kg	U	R	10
RZ45	SS-01-0-2-120610	10-30441-RZ45G	SW8270D	bis(2-Ethylhexyl)phthalate	330	ug/kg	В	U	7
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8270D	Benzidine	740	ug/kg	U	R	10
RZ45	SS-01-2-4-120610	10-30442-RZ45H	SW8270D	bis(2-Ethylhexyl)phthalate	6300	ug/kg	E	R	20
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,2,4-Trichlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,2-Dichlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,2-Diphenylhydrazine	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,3-Dichlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1,4-Dichlorobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	1-Methylnaphthalene	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,2'-Oxybis(1-Chloropropane)	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,3,4,6-Tetrachlorophenol	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,3,5,6-Tetrachlorophenol	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4,5-Trichlorophenol	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4,6-Trichlorophenol	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4-Dichlorophenol	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4-Dimethylphenol	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4-Dinitrophenol	2200	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,4-Dinitrotoluene	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2,6-Dinitrotoluene	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Chloronaphthalene	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Chlorophenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Methylnaphthalene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Methylphenol	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	2-Nitrophenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	3,3'-Dichlorobenzidine	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	3-Nitroaniline	1100	ug/kg	U	DNR	11

Qualified Data Summary Table South Park Landfill Site RIFS

	I	I	T	T	1	1	I	<u> </u>	<u> </u>
							Laboratory	Validation	Validation
SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Qualifier	Qualifier	Reason
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4,6-Dinitro-2-Methylphenol	2200	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Bromophenyl-phenylether	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Chloro-3-methylphenol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Chloroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Chlorophenyl-phenylether	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Methylphenol	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Nitroaniline	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	4-Nitrophenol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Acenaphthene	150	ug/kg	J	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Acenaphthylene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Aniline	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Anthracene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Azobenzene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzidine	2200	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzo(a)anthracene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzo(a)pyrene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzo(g,h,i)perylene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Benzyl Alcohol	1100	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	bis(2-Chloroethoxy) Methane	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Bis-(2-Chloroethyl) Ether	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Butylbenzylphthalate	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Carbazole	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Chrysene	210	ug/kg	J	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Dibenz(a,h)anthracene	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Dibenzofuran	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Diethylphthalate	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Dimethylphthalate	220	ug/kg	Ü	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Di-n-Butylphthalate	220	ug/kg	U	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Di-n-Octyl phthalate	220	ug/kg	Ü	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Fluoranthene	440	ug/kg		DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Fluorene	120	ug/kg	J	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Hexachlorobenzene	220	ug/kg	Ü	DNR	11
RZ45	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Hexachlorobutadiene	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Hexachlorocyclopentadiene	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Hexachloroethane	220	ug/kg	U	DNR	11
		10-30442-RZ45HDL	SW8270D	Indeno(1,2,3-cd)pyrene	220	ug/kg	U	DNR	11
		10-30442-RZ45HDL	SW8270D	Isophorone	220	ug/kg	Ü	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Naphthalene	220	ug/kg	Ü	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Nitrobenzene	220	ug/kg	Ü	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	N-Nitrosodimethylamine	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	N-Nitroso-Di-N-Propylamine	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	N-Nitrosodiphenylamine	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Pentachlorophenol	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Phenanthrene	1400	ug/kg	J	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Phenol	220	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Pyrene	490	ug/kg	J	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Pyridine	1100	ug/kg	U	DNR	11
	SS-01-2-4-120610	10-30442-RZ45HDL	SW8270D	Total Benzofluoranthenes	220	ug/kg	U	DNR	11
	SS-01-4-6-120610	10-30442-RZ45I	SW8270D	Benzidine	340	ug/kg	U	R	10
	SS-01-4-6-120610	10-30443-RZ45I	SW8270D	bis(2-Ethylhexyl)phthalate	280	ug/kg	В	U	7
	SS-02-6-8-120610	10-30444-RZ45J	SW8270D	Benzidine	1100	ug/kg	U	R	10
	SS-P-120810	10-30568-RZ67B	SW8270D	1,4-Dichlorobenzene	52	ug/kg	В	U	7
11/207	JJ-1 - 1200 10	10-30300-1\Z01D	34402700	1,7 DIGNIOLONGITZCHC	JZ	uy/ky	L 0	U	/

Qualified Data Summary Table South Park Landfill Site RIFS

SDG	Sample Id	Laboratory ID	Method	Analyte	Result	Units	Laboratory Qualifier	Validation Qualifier	Validation Reason
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	3,3'-Dichlorobenzidine	110	ug/kg	U	UJ	8
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	4-Chloroaniline	110	ug/kg	U	R	8
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	Aniline	23	ug/kg	U	UJ	8
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	Benzidine	230	ug/kg	U	R	8,10
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	Hexachlorocyclopentadiene	110	ug/kg	U	UJ	8
RZ67	SS-P-120810	10-30568-RZ67B	SW8270D	Phenanthrene	43	ug/kg		J	9
RZ67	SS-03-0-2-120610	10-30435-RZ45A	SW8270D SIM	EPN	740	ug/kg	Υ	U	22
RZ67	SS-02-0-2-120610	10-30438-RZ45D	SW8270D SIM	EPN	610	ug/kg	Υ	U	22
RZ67	RB-120810	10-30569-RZ67C	SW8270D SIM	Monocrotophos	1	ug/L	U	UJ	10

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix F Data Validation Reports

Groundwater Data Validation Reports

Monitoring Well Sampling Event South Park Landfill

Data Validation Report

Prepared for

Seattle Public Utilities

Prepared by

Floyd|Snider 601 Union Street Suite 600 Seattle, Washington 98101

March 2011

Table of Contents

1.0	Proj	ect Narr	ativeative	1
	1.1	OVER\	VIEW OF DATA VALIDATION	1
2.0	Data	Validat	ion Report VOCs by USEPA Method 8260C	3
	2.1	DATA	PACKAGE COMPLETENESS	3
	2.2	TECHN	NICAL DATA VALIDATION	3
		2.2.1	Cooler Temperature and Preservation	3
		2.2.2	Internal Standards and Continuing Calibration	4
	2.3	OVERA	ALL ASSESSMENT	4
3.0	Data	Validat	ion Report Vinyl Chloride by USEPA Method 8260C-SIM	5
	3.1	DATA	PACKAGE COMPLETENESS	5
	3.2	TECHN	NICAL DATA VALIDATION	5
		3.2.1	Cooler Temperature and Preservation	5
	3.3	OVERA	ALL ASSESSMENT	6
4.0	Data	Validati	ion Report SVOCs by USEPA Method 8270D	7
	4.1		PACKAGE COMPLETENESS	
	4.2	TECHN	NICAL DATA VALIDATION	7
		4.2.1	Cooler Temperature and Preservation	7
		4.2.2	Matrix Spike and Matrix Spike Duplicate	7
	4.3	OVERA	ALL ASSESSMENT	8
5.0	Data	Validat	ion Report PAHs by USEPA Method 8270D-SIM	9
	5.1		PACKAGE COMPLETENESS	
	5.2	TECHN	NICAL DATA VALIDATION	9
		5.2.1	Cooler Temperature and Preservation	9
		5.2.2	Blank Contamination	10
	5.3	OVERA	ALL ASSESSMENT	10
6.0	Data	Validat	ion Report Pesticides by USEPA Method 8081	11
	6.1	DATA	PACKAGE COMPLETENESS	11
	6.2	TECHN	NICAL DATA VALIDATION	11
		6.2.1	Cooler Temperature and Preservation	11
		6.2.2	Surrogate Recoveries	11
	6.3	OVERA	ALL ASSESSMENT	12

7.0	Data	Validation Report Pentachlorophenol by USEPA Method 8041	13
	7.1	DATA PACKAGE COMPLETENESS	13
	7.2	TECHNICAL DATA VALIDATION	13
		7.2.1 Cooler Temperature and Preservation	13
		7.2.2 Compound Identification	14
	7.3	OVERALL ASSESSMENT	14
8.0	Data	Validation Report TPHs by NWTPH-Dx	15
	8.1	DATA PACKAGE COMPLETENESS	15
	8.2	TECHNICAL DATA VALIDATION	15
		8.2.1 Cooler Temperature and Preservation	15
		8.2.2 Surrogate Recoveries	16
		8.2.3 Compound Identification	16
	8.3	OVERALL ASSESSMENT	16
9.0	Data	Validation Report TPHs by NWTPH-Gx	17
	9.1	DATA PACKAGE COMPLETENESS	17
	9.2	TECHNICAL DATA VALIDATION	17
		9.2.1 Cooler Temperature and Preservation	17
		9.2.2 Compound Identification	18
	9.3	OVERALL ASSESSMENT	18
10.0	Data	Validation Report Select Metals by USEPA Method 200.8	19
	10.1	DATA PACKAGE COMPLETENESS	19
	10.2	TECHNICAL DATA VALIDATION	19
		10.2.1 Cooler Temperature and Preservation	19
		10.2.2 Matrix Spike	19
	10.3	OVERALL ASSESSMENT	20
11.0	Data	Validation Report Mercury by USEPA Method 7470M	21
	11.1	DATA PACKAGE COMPLETENESS	21
	11.2	TECHNICAL DATA VALIDATION	21
		11.2.1 Cooler Temperature and Preservation	21
	11.3	OVERALL ASSESSMENT	21
12.0	Data	Validation Report Dissolved Gases by RSK 175	23
	12.1	DATA PACKAGE COMPLETENESS	23
	12.2	TECHNICAL DATA VALIDATION	23

		12.2.1 Cooler Temperature and Preservation	23
		12.2.2 Matrix Spike and Matrix Spike Duplicate	24
	12.3	OVERALL ASSESSMENT	24
13.0	Data	Validation Report Alkalinity by Standard Method 2320	25
	13.1	DATA PACKAGE COMPLETENESS	25
	13.2	TECHNICAL DATA VALIDATION	25
		13.3.1 Blank Contamination	25
	13.3	OVERALL ASSESSMENT	25
14.0	Data	Validation Report Sulfate by USEPA Method 375.2	27
	14.1	DATA PACKAGE COMPLETENESS	27
	14.2	TECHNICAL DATA VALIDATION	27
		14.2.1 Lab Sample Duplicates	27
	14.3	OVERALL ASSESSMENT	28
15.0	Data	Validation Report Sulfide by USEPA Method 376.2	29
	15.1	DATA PACKAGE COMPLETENESS	29
	15.2	TECHNICAL DATA VALIDATION	29
		15.2.1 Matrix Spike	29
	15.3	OVERALL ASSESSMENT	29
16.0	Data	Validation Report Nitrate+Nitrite by USEPA Method 353.2	30
	16.1	DATA PACKAGE COMPLETENESS	30
	16.2	TECHNICAL DATA VALIDATION	30
		16.2.1 Matrix Spike	30
	16.3	OVERALL ASSESSMENT	30
17.0		Validation Report Dissolved Organic Carbon by USEPA Method	32
	17.1	DATA PACKAGE COMPLETENESS	32
	17.2	TECHNICAL DATA VALIDATION	32
	17.3	OVERALL ASSESSMENT	32

List of Tables

Table 1.1 Sample Index

List of Appendices

Appendix A Qualifier Codes and Data Validation Guidelines

Appendix B Qualified Data Summary Table

List of Abbreviations and Acronyms

Abbreviation/	
Acronym	Definition
ARI	Analytical Resources, Inc. Laboratory
DNR	Do not report
DRO	Diesel range organics
GRO	Gasoline range organics
HCL	Hydrochloric acid
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
MEE	Methane, Ethane, Ethene
MS	Matrix spike
MSD	Matrix spike duplicate
PAH	Polycyclic aromatic hydrocarbon
RL	Reporting limit
RPD	Relative percent difference
QA	Quality assurance
QC	Quality control
SAP	Sampling and Analysis Plan
SVOC	Semivolatile organic compound
TCMX	2,4,5,6-Tetrachlorometaxylene
TPH	Total petroleum hydrocarbons
USEPA	U. S. Environmental Protection Agency
VOA	Volatile organic analysis
VOC	Volatile organic compound

1.0 Project Narrative

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on the groundwater and quality control sample data for the South Park Landfill Monitoring Well Sampling Event. A complete list of samples is provided in Table 1.1.

The chemical analyses were performed by ARI in Tukwila, WA. Groundwater samples were collected between January 26, 2011 and January 28, 2011 and submitted to ARI for chemical analyses. The analytical methods include the following:

- VOCs—USEPA Method 8260C
- Vinyl Chloride—USEPA Method 8260C-SIM
- SVOCs—USEPA Method 8270D
- PAHs—USEPA Method 8270D-SIM
- Pesticides—USEPA Method 8081
- Pentachlorophenol—USEPA Method 8041
- TPHs—NWTPH-Dx
- TPHs—NWTPH-Gx
- Metals—USEPA Method 200.8
- Mercury—USEPA Method 7470M
- Dissolved Gases—RSK 175
- Alkalinity—Standard Method 2320
- Sulfate—USEPA Method 375.2
- Sulfide—USEPA Method 376.2
- Nitrate+Nitrite—USEPA Method 353.2
- Dissolved Organic Carbon—USEPA Method 415.1

The data were reviewed using guidance and quality control criteria documented in the analytical methods, *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 and 2004), *National Functional Guidelines for Organic Data Review* (USEPA 1999 and 2008) and the *Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site* (Farallon Consulting, LLC 2010).

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a DNR qualification to indicate a more appropriate result is reported from another dilution. If values have no data qualifier

assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Appendix A. The Qualified Data Summary Table is included in Appendix B. Data validation worksheets (excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report VOCs by USEPA Method 8260C

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	² Internal standards and continuing calibration
Extraction and analysis holding times	Blank contamination
Surrogate recoveries	LCS and LCSD
MS and MSD	Field duplicates
Reporting limits and reported results	Target analyte list

Notes

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

2.2.1 Cooler Temperature and Preservation

Sample KMW-05-012711 did not pass the preservation check, having a pH of approximately13. However, the sample was analyzed within the seven day technical holding time for unpreserved samples. Per USEPA Guidelines, if there is no evidence that the sample was properly preserved, and the sample was analyzed within the technical holding time of seven days from sample collection, no qualification of the data is necessary. Therefore, since the sample was collected 1/27/2011 and analyzed on 1/30/2011, falling well within the seven day limit, it is with professional judgment that no data for this sample be qualified based on the failure to pass the preservation check.

2.2.2 Internal Standards and Continuing Calibration

The 1/28/2011 continuing calibration for Acrolein was 37.5%, and fell outside both the laboratory's 20% control limit, and the USEPA Guideline of 25%. Per the lab, internal standard areas were within control limits. Therefore, per USEPA Guidelines, all Acrolein results analyzed on 1/28/2011 will be qualified "J" as estimated. Please see Appendix B for the full list of samples that were qualified for this analyte.

2.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

All data are acceptable for use as qualified, see Appendix B for details.

3.0 Data Validation Report Vinyl Chloride by USEPA Method 8260C-SIM

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

3.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Internal standards and continuing calibration
Extraction and analysis holding times	Blank contamination
Surrogate recoveries	LCS and LCSD
MS and MSD	Field duplicates
Reporting limits and reported results	Target analyte list

Notes

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

3.2.1 Cooler Temperature and Preservation

Sample KMW-05-012711 did not pass the preservation check, having a pH of approximately 13. However, the sample was analyzed within the seven day technical holding time for unpreserved samples. Per USEPA Guidelines, if there is no evidence that the sample was properly preserved, and the sample was analyzed within the technical holding time of seven days from sample collection, no qualification of the data is necessary. Therefore, since the sample was collected 1/27/2011 and analyzed on 2/1/2011, falling within the seven day limit, it is with professional judgment that no data for this sample be qualified based on the failure to pass the preservation check.

¹ Quality control results are discussed below, but no data were qualified.

3.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

4.0 Data Validation Report SVOCs by USEPA Method 8270D

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

4.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

¹ Cooler temperature and preservation	Internal standards and continuing calibration
Extraction and analysis holding times	Blank contamination
Surrogate recoveries	LCS and LCSD
¹ MS and MSD	Field duplicates
Reporting limits and reported results	Target analyte list

Notes

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

4.2.1 Cooler Temperature and Preservation

Sample containers for KMW-04-012811 used for this analysis arrived in a cooler with a temperature of 8.1°C, which falls outside the recommended temperature range of 2.0-6.0°C. KMW-04-012811 was sampled on 1/28/2011 at 12:00, placed on ice, and was delivered on 1/28/2011 at 14:15, having less than 2.5 hours to cool. Therefore, it is with professional judgment that no data for this sample be qualified based on cooler temperature due to minimal cooling time between sampling and delivery.

4.2.2 Matrix Spike and Matrix Spike Duplicate

The percent recovery for 3,3'-Dichlorobenzidine (47.2%) was outside the advisory control limits (50-128%) for the matrix spike of MW-27-012711. The matrix spike duplicate percent recovery

¹ Quality control results are discussed below, but no data were qualified.

was within control limits. Per USEPA Guidelines, no action is taken on MS/MSD data alone. As the MSD recovery was within control limits and all other QA/QC requirements for this analyte were met, it is with professional judgment that no data be gualified based on this information.

4.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

5.0 Data Validation Report PAHs by USEPA Method 8270D-SIM

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

5.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

5.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Internal standards and continuing calibration
Extraction and analysis holding times	² Blank contamination
Surrogate recoveries	LCS and LCSD
MS and MSD	Field duplicates
Reporting limits and reported results	Target analyte list

Notes

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

5.2.1 Cooler Temperature and Preservation

Sample containers for KMW-04-012811 used for this analysis arrived in a cooler with a temperature of 8.1°C, which falls outside the recommended temperature range of 2.0-6.0°C. KMW-04-012811 was sampled on 1/28/2011 at 12:00, placed on ice, and was delivered on 1/28/2011 at 14:15, having less than 2.5 hours to cool. Therefore, it is with professional judgment that no data for this sample be qualified based on cooler temperature due to minimal cooling time between sampling and delivery.

5.2.2 Blank Contamination

The method blank associated with sample delivery groups SG40 and SG57 had no analytes detected above the reporting limits, however Naphthalene was detected at 0.0058 μ g/L (below the 0.010 μ g/L RL) and flagged "J" by the lab. Per USEPA Guidelines, if the analyte is detected in the sample and also in the associated blank, it is qualified if the sample concentration is less than five times the blank concentration, or below 0.029 μ g/L in this instance. Only one sample, MW-29-012611, had a detected concentration below this threshold. All other results were either non-detects, or above five times the blank concentration. Therefore, it is with professional judgment that the result from MW-29-012611 be flagged as "UB" to indicate it should be considered undetected at a reporting limit that has been elevated to the concentration found in the sample due to blank contamination.

The method blank associated with sample delivery groups SG70 and SG71 was had no analytes detected above reporting limits, however Naphthalene was detected at 0.0068 μ g/L (below the 0.010 μ g/L RL) and flagged "J" by the lab. Per USEPA Guidelines, if the analyte is detected in the sample and also in the associated blank, it is qualified if the sample concentration is less than five times the blank concentration, or below 0.034 μ g/L in this instance. Therefore, it is with professional judgment that the results from RB-012811, KMW-01A-012811, KMW-04-012811, and KMW-08-012811 all be flagged as "UB" to indicate they should be considered undetected at a reporting limit that has been elevated to the concentration found in the sample due to blank contamination.

Please see Appendix B for full details on the qualified samples for this analysis.

5.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

Dilutions were analyzed for some samples. All data are acceptable for use as qualified; please see Appendix B for details.

6.0 Data Validation Report Pesticides by USEPA Method 8081

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

6.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

6.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Internal standards and continuing calibration
Extraction and analysis holding times	Blank contamination
¹ Surrogate recoveries	LCS and LCSD
MS and MSD	Field duplicates
Reporting limits and reported results	Target analyte list

Notes

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

6.2.1 Cooler Temperature and Preservation

Sample containers for KMW-04-012811 used for this analysis arrived in a cooler with a temperature of 8.1°C, which falls outside the recommended temperature range of 2.0-6.0°C. KMW-04-012811 was sampled on 1/28/2011 at 12:00, placed on ice, and was delivered on 1/28/2011 at 14:15, having less than 2.5 hours to cool. Therefore, it is with professional judgment that no data for this sample be qualified based on cooler temperature due to minimal cooling time between sampling and delivery.

6.2.2 Surrogate Recoveries

The recovery of TCMX for sample KMW-05-012711 was flagged as "NR" for not reported due to interference. The sample was reanalyzed at dilution with similar results. Per USEPA

¹ Quality control results are discussed below, but no data were qualified.

Guidelines, if low or no surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. All results were non detects in this sample and flagged "Y" by the lab to indicate raised reporting limits due to matrix interference. It is with professional judgment that no additional qualifiers based on the surrogate recovery issue be added to those already given by the laboratory.

6.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

7.0 Data Validation Report Pentachlorophenol by USEPA Method 8041

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

7.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

7.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

¹ Cooler temperature and preservat	ion Internal standards and continuing calibration
Extraction and analysis holding tin	nes Blank contamination
Surrogate recoveries	LCS and LCSD
MS and MSD	Field duplicates
Reporting limits and reported resu	Its Target analyte list
² Compound identification	

Notes

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

7.2.1 Cooler Temperature and Preservation

Sample containers for KMW-04-012811 used for this analysis arrived in a cooler with a temperature of 8.1°C, which falls outside the recommended temperature range of 2.0-6.0°C. KMW-04-012811 was sampled on 1/28/2011 at 12:00, placed on ice, and was delivered on 1/28/2011 at 14:15, having less than 2.5 hours to cool. Therefore, it is with professional judgment that no data for this sample be qualified based on cooler temperature due to minimal cooling time between sampling and delivery.

7.2.2 Compound Identification

The Pentachlorophenol result for sample KMW-05-012711 was flagged "P" by the lab to indicate that it was detected on both chromatographic columns, but with a high RPD between the columns. It is with professional judgment that the Pentachlorophenol result for sample KMW-05-012711 be qualified "J" to indicate an estimated value to reflect the high RPD between the columns.

7.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

All data are acceptable for use as qualified; please see Appendix B for details.

8.0 Data Validation Report TPHs by NWTPH-Dx

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

8.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

8.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

1	Cooler temperature and preservation		Field duplicates
	Extraction and analysis holding times		Reporting limits and reported results
	Blank contamination		Target analyte list
	MS and MSD		LCS and LCSD
2	Surrogate recoveries	2	Compound identification
	Internal standards and continuing calibration		

Notes

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for diesel range hydrocarbon analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

8.2.1 Cooler Temperature and Preservation

Sample containers for KMW-04-012811 used for this analysis arrived in a cooler with a temperature of 8.1°C, which falls outside the recommended temperature range of 2.0-6.0°C. KMW-04-012811 was sampled on 1/28/2011 at 12:00, placed on ice, and was delivered on 1/28/2011 at 14:15, having less than 2.5 hours to cool. Therefore, it is with professional judgment that no data for this sample be qualified based on cooler temperature due to minimal cooling time between sampling and delivery.

8.2.2 Surrogate Recoveries

Per the laboratory, sample KMW-05-012711 required multiple treatments of acid and silica cleanups as it created an emulsion during extraction. The surrogate recovery of o-terphenyl was 38.8% and outside the control limits low (49-118%). Based on USEPA Guidelines as applied to this method, all results for sample KMW-05-012711 should be flagged "J" as estimated.

8.2.3 Compound Identification

The response for sample KMW-05-012711 was noted by the lab as "DRO/Motor Oil", indicating that there was an unknown response in the diesel range and a match for the Motor Oil pattern in the residual range. Therefore based on USEPA Guidelines as applied to this method, the results for Diesel for sample KMW-05-012711 should be flagged "J" as estimated.

8.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

All data are acceptable for use as qualified; please see Appendix B for details.

9.0 Data Validation Report TPHs by NWTPH-Gx

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

9.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

9.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

1	Cooler temperature and preservation		Field duplicates
	Extraction and analysis holding times		Reporting limits and reported results
	Blank contamination		Target analyte list
	MS and MSD		LCS and LCSD
	Surrogate recoveries	2	Compound identification
	Internal standards and continuing calibration		

Notes

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for gasoline range hydrocarbon analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

9.2.1 Cooler Temperature and Preservation

Sample containers for KMW-04-012811 used for this analysis arrived in a cooler with a temperature of 8.1°C, which falls outside the recommended temperature range of 2.0-6.0°C. KMW-04-012811 was sampled on 1/28/2011 at 12:00, placed on ice, and was delivered on 1/28/2011 at 14:15, having less than 2.5 hours to cool. Therefore, it is with professional judgment that no data for this sample be qualified based on cooler temperature due to minimal cooling time between sampling and delivery.

Sample KMW-05-012711 did not pass the preservation check, having a pH of approximately13. However, the sample was analyzed within the seven day technical holding time for unpreserved

samples. Per USEPA Guidelines, if there is no evidence that the sample was properly preserved, and the sample was analyzed within the technical holding time of seven days from sample collection, no qualification of the data is necessary. Therefore, since the sample was collected 1/27/2011 and analyzed on 2/1/2011, falling within the seven day limit, it is with professional judgment that no data for this sample be qualified based on the failure to pass the preservation check.

9.2.2 Compound Identification

The response for sample KMW-05-012711 was noted by the laboratory as "GRO" indicating that there was a response in the gasoline range not matching a fuel pattern. Therefore based on USEPA Guidelines as applied to this method, the result for Gasoline in sample KMW-05-012711 should be flagged "J" as estimated.

9.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

All data are acceptable for use as qualified; please see Appendix B for details.

10.0 Data Validation Report Select Metals by USEPA Method 200.8

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

10.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

10.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Lab sample duplicates
Extraction and analysis holding times	Field duplicates
Blank contamination	Reporting limits and reported results
LCS	Target analyte list
¹ MS	Internal standards and continuing calibration

Notes

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

10.2.1 Cooler Temperature and Preservation

Sample containers for KMW-04-012811 used for this analysis arrived in a cooler with a temperature of 8.1°C, which falls outside the recommended temperature range of 2.0-6.0°C. KMW-04-012811 was sampled on 1/28/2011 at 12:00, placed on ice, and was delivered on 1/28/2011 at 14:15, having less than 2.5 hours to cool. Therefore, it is with professional judgment that no data for this sample be qualified based on cooler temperature due to minimal cooling time between sampling and delivery.

10.2.2 Matrix Spike

All Matrix Spike recoveries for Total and Dissolved Manganese were not applicable as the original concentrations were greater than four times (x4) the spike concentration in all instances.

¹ Quality control results are discussed below, but no data were qualified.

Per USEPA Guidelines where than sample concentration is ≥4x the spike added, the data shall be reported unflagged even if the percent recovery does not meet the acceptance criteria. Therefore, no Total or Dissolved Manganese results will be qualified based on this matrix spike recovery information.

10.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

11.0 Data Validation Report Mercury by USEPA Method 7470M

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

11.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

11.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Lab sample duplicates
Extraction and analysis holding times	Field duplicates
Blank contamination	Reporting limits and reported results
LCS	Target analyte list
MS	Internal standards and continuing calibration

Notes

Appendix A presents data validation criteria tables for inorganic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

11.2.1 Cooler Temperature and Preservation

Sample containers for KMW-04-012811 used for this analysis arrived in a cooler with a temperature of 8.1°C, which falls outside the recommended temperature range of 2.0-6.0°C. KMW-04-012811 was sampled on 1/28/2011 at 12:00, placed on ice, and was delivered on 1/28/2011 at 14:15, having less than 2.5 hours to cool. Therefore, it is with professional judgment that no data for this sample be qualified based on cooler temperature due to minimal cooling time between sampling and delivery.

11.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample

¹ Quality control results are discussed below, but no data were qualified.

percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

12.0 Data Validation Report Dissolved Gases by RSK 175

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

12.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

12.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

¹ Cooler temperature and preservation	Internal standards and continuing calibration
Extraction and analysis holding times	Blank contamination
Surrogate recoveries	LCS and LCSD
¹ MS and MSD	Field duplicates
Reporting limits and reported results	Target analyte list

Notes

QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

12.2.1 Cooler Temperature and Preservation

Per the laboratory, the MEE vials for MW-26-012711 were received empty. Unused preserved volume from VOC vials were used to complete the MEE analysis. Per Table D-2 of the SAP the MEE vials were 40ml VOA vials with HCL preservation. The VOC vials used for this analysis were also preserved with HCL. Therefore, it is with professional judgment that no results for this sample be qualified based on the sample volume coming from vials designated for VOC analysis and not MEE analysis, as the sample container and preservation methods are compatible.

¹ Quality control results are discussed below, but no data were qualified.

12.2.2 Matrix Spike and Matrix Spike Duplicate

The MS/MSD recoveries for Methane were 124.7% and 127.8% and outside laboratory control limits high (80-120%). The RPD was within control limits and the recoveries for the LCS/LCSD were within control limits. Per USEPA Guidelines, no action is taken on MS/MSD data alone. Therefore, it is with professional judgment that no Methane data be qualified based on the MS/MSD data as the MS/MSD RPD and LCS/LCSD recoveries were within control limits.

12.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the laboratory control sample and laboratory control sample duplicate percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LCSD RPDs.

13.0 Data Validation Report Alkalinity by Standard Method 2320

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

13.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

13.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

	Cooler temperature and preservation	Lab sample duplicates
	Extraction and analysis holding times	Field duplicates
1	Blank contamination	Reporting limits and reported results
	Standard reference material	Target analyte list

Notes

1 Quality control results are discussed below, but no data were qualified.

QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

13.3.1 Blank Contamination

No lab blank was analyzed for alkalinity. The reference material recovery was within control limits, and the field rinse blank sample was a non-detect. Per USEPA Guidelines as applied to this method, if the appropriate number of blanks were not analyzed, professional judgment should be used to determine if the associated sampled data should be qualified. It is with professional judgment that not data be qualified based on the lack of a lab blank for alkalinity as the reference material recovery was within control limits and the field rinse blank was a non-detect.

13.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and standard reference material percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

14.0 Data Validation Report Sulfate by USEPA Method 375.2

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

14.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

14.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	¹ Lab sample duplicates
Extraction and analysis holding times	Field duplicates
Blank contamination	Reporting limits and reported results
MS	Target analyte list
Standard reference material	

Notes

1 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

14.2.1 Lab Sample Duplicates

The lab sample/lab sample duplicate RPD for sulfate was 142.1% for sample MW-30-012711, and was outside the control limits of ±30% by over 90%. This sample also happened to be the field duplicate to MW-25-012711. The original sulfate result for MW-30-012711 was 27.4 mg/L, and the result for MW-25-012711 was 26.7 mg/L with an RPD of 2.6%, indicating that the original result is likely to be a legitimate value. Per USEPA Guidelines, professional judgment is to be used to qualify those results that are determined to be affected by the RPD as "J" for estimated. Due to the RPD exceeding the control limits by such a significant amount, the Sulfate result for MW-30-012711 will be qualified "J" as estimated. It is with professional judgment that the remaining sulfate results shall also be qualified "J" as estimated due to the similarity in matrix between the samples. Please see Appendix B for a full list of qualified sulfate results.

14.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and standard reference material percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

All data are acceptable for use as qualified; please see Appendix B for details.

15.0 Data Validation Report Sulfide by USEPA Method 376.2

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory quality control (QC) samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

15.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

15.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

	Cooler temperature and preservation	Lab sample duplicates
	Extraction and analysis holding times	Field duplicates
	Blank contamination	Reporting limits and reported results
1	MS	Target analyte list
	LCS	

Notes

QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

15.2.1 Matrix Spike

The matrix spike percent recovery of Sulfide was 139.6% and outside laboratory control limits high (75-125%). Per USEPA Guidelines as applied to this method, no action is taken on MS/MSD data alone. Therefore, it is with professional judgment that no Sulfide data be qualified based on this information, as all other QA/QC objectives were met for this analysis.

15.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the lab control sample percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

All data, as reported by the lab, are acceptable for use.

¹ Quality control results are discussed below, but no data were qualified.

16.0 Data Validation Report Nitrate+Nitrite by USEPA Method 353.2

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

16.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

16.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

	Cooler temperature and preservation	Lab sample duplicates
	Extraction and analysis holding times	Field duplicates
	Blank contamination	Reporting limits and reported results
1	MS	Target analyte list
	Standard reference material	

Notes

QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

16.2.1 Matrix Spike

The matrix spike percent recovery of Nitrate + Nitrite was 65.4% and outside laboratory control limits low. (75-125%) Per USEPA Guidelines as applied to this method, no action is taken on MS/MSD data alone. Therefore, it is with professional judgment that no Nitrate + Nitrite data be qualified based on this information alone, as all other QA/QC objectives were met for this analysis.

16.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the standard reference material percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

¹ Quality control results are discussed below, but no data were qualified.

All data, as reported by the lab, are acceptable for use.

17.0 Data Validation Report Dissolved Organic Carbon by USEPA Method 415.1

This report documents the review of analytical data from the analyses of groundwater samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

17.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

17.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Lab sample duplicates
Extraction and analysis holding times	Field duplicates
Blank contamination	Reporting limits and reported results
MS	Target analyte list
Standard reference material	

All QC requirements were met without exception, and did not require further evaluation.

17.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and standard reference material percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

All data, as reported by the lab, are acceptable for use.

Monitoring Well Sampling Event South Park Landfill

Data Validation Report

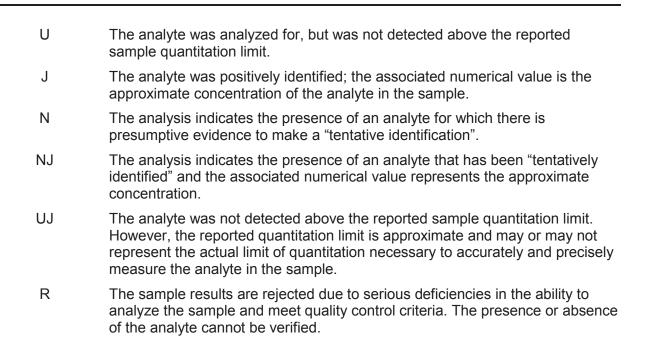
Tables

Table 1.1 Sample Index

_	1	Vinyl	SVOCs	1		1000000		Motolo his	N. C.	Conventionals by
	VOCS BY 8260C	Chloride by 8260C-SIM	8270D	PAHS by 8270D-SIM	Pesticides by 8081	Pentachiorophenol by SW8041	I PHS By NWTPH-Dx/Gx	Metals by 200.8	Mercury by 7470M	KSK 175, SM 2320, 375.2, 376.2, 353.2, & 415.1
	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG51	
	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG51	
	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG51	
	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG51	
	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG40	SG51	
SG57A, SG58A, SG48G	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG58	
SG57B, SG58B, SG58H	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG58	
SG57C, SG58C, SG58I	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG58	
SG57D, SG58E, SG58J	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG58	
SG57E, SG58E, SG58K	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG58	
SG57F, SG58F, SG58L	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG57	SG58	
	SG57	SG57	SG57	SG57	SG57	SG57	SG57			
SG70A, SG76A, SG76I	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG76	SG70
SG70B, SG76B, SG76J	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG76	SG70
SG70C, SG76C, SG76K	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG76	SG70
SG70D, SG76D, SG76L	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG76	SG70
SG70F, SG76F, SG76N	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG76	SG70
SG70F, SG76F, SG76N	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG76	SG70

FLOYDISNIDER

Sample ID	Lab ID	VOCs by 8260C	Vinyl Chloride by 8260C-SIM	SVOCs by 8270D	PAHs by 8270D-SIM	Pesticides by 8081	Pentachlorophenol by SW8041	TPHs by NWTPH-Dx/Gx	Metals by 200.8	Metals by Mercury by 7470M	Conventionals by RSK 175, SM 2320, 375.2, 376.2, 353.2, & 415.1
MW-30-012711	SG70G, SG76G, SG70O	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG76	SG70
RB-012811	SG70H, SG76H, SG76P	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG70	SG76	SG70
TB-012711	SG70I	SG70	SG70								
KMW-01A-012811	SG71A, SG72A, SG72D	SG71	SG71	SG71	SG71	SG71	SG71	SG71	SG71	SG72	
KMW-04-012811	SG71B, SG72B, SG72E	SG71	SG71	SG71	SG71	SG71	SG71	SG71	SG71	SG72	
KMW-08-012811	SG71C, SG72C, SG72F	SG71	SG71	SG71	SG71	SG71	SG71	SG71	SG71	SG72	


Monitoring Well Sampling Event South Park Landfill

Data Validation Report

Appendix A Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

The following is a Floyd|Snider qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

Floyd|Snider Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Floyd Snider Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled Frozen tissues—HT extended to 2 years	J/UJ if holding time exceeded
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. < 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J/UJ if tune criteria not met
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J/UJ if r<0.995 (for multi point cal)
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J/UJ if %R 75–89% J if %R = 111-125% R if %R > 125% R if %R < 75%
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J/UJ if %R = 75–89% J if %R 111-125% R if %R > 125% R if %R < 75%
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+)blanks, U results < action level For (-) blanks, J/UJ results < action level

Validation QC Element	Acceptance Criteria	Action
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R, < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J < 2x RL, UJ if %R 50-69% (30%-49% Co,Mn, Zn) J < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R < 2x RL if %R > 180% (200% Co, Mn, Zn)
Interference Check Samples (ICSA/ICSAB)	Required by SW 6020, but not 200.8 ICSAB %R 80% - 120% for all spiked elements ICSA < IDL (MDL) for all unspiked elements	For samples with AI, Ca, Fe, or Mg > ICS levels R if %R < 50% J if %R >120% J/UJ if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U results < action level
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80%-120%	R if %R < 50% J/UJ if %R = 50-79% J if %R >120%
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J/UJ if < LCL, J if > UCL
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 75-125% for samples where results do not exceed 4x spike level	J if %R>125% J/UJ if %R <75% J/R if %R<30% or J/UJ if Post Spike %R 75%-125% Qualify all samples in batch
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5 x RL (Diff < 2x RL for solids)	J/UJ if RPD > 20% or diff > RL All samples in batch
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J/UJ if %D >10% All samples in batch

Validation QC Element	Acceptance Criteria	Action
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J /UJ all analytes associated with IS outlier
Field Blank	Blank < MDL	Action level is 5x blank conc. U sample values < AL in associated field samples only
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J/UJ in parent samples only
Linear Range	Sample concentrations must fall within range	J values over range

Floyd|Snider Validation Guidelines for Semivolatile Analysis by GC/MS (Based on Organic NFG 1999)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	4°C ± 2°	J/UJ if greater than 6 deg. C (Floyd Snider PJ)
Holding Time	Water: 7 days from collection Soil: 14 days from collection Analysis: 40 days from extraction	Water: J/UJ if ext. > 7 and < 21 days J/R if ext > 21 days (Floyd Snider PJ) Solids/Wastes: J/UJ if ext. > 14 and < 42 days J/R if ext. > 42 days (Floyd Snider PJ) J/UJ if analysis > 40 days
Tuning	DFTPP Beginning of each 12 hour period Method acceptance criteria	R all analytes in all samples associated with the tune
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF < 0.05
	%RSD < 30%	(Floyd Snider PJ) J if %RSD > 30%
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05 If reporting limit > MDL: note in worksheet if RRF < 0.05
	%D <25%	(Floyd Snider PJ) If > +/-90%: J/RIf -90% to -26%: J (high bias) If 26% to 90%: J/UJ (low bias)
Method Blank	One per matrix per batch No results > CRQL	U if sample result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)
		U if sample result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)

Validation QC Element	Acceptance Criteria	Action
Method Blank (continued)	No TICs present	RTICs using 10X rule
Field Blanks (Not Required)	No results > CRQL	Apply 5X/10X rule; U < action level
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J if both %R > UCL J/UJ if both %R < LCL J/R if both %R < 10% Floyd Snider PJ if only one %R outlier
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J in parent sample if RPD > CL
LCS CLP low conc. H2O only	One per lab batch Within method control limits	J assoc. cmpd if > UCL J/R assoc. cmpd if < LCL J/R all cmpds if half are < LCL
LCS regular SVOA (H2O & solid)	One per lab batch Lab or method control limits	J if %R > UCL J/UJ if %R <lcl J /R if %R < 10% (Floyd Snider PJ)</lcl
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J/UJ associated compounds in all samples
Surrogates	Minimum of 3 acid and 3 base/neutral compounds Use method acceptance criteria	Do not qualify if only 1 acid and/or 1 B/N surrogate is out unless <10% J if %R > UCL J/UJ if %R < LCL J/R if %R < 10%
Internal Standards	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J if > 200% J/UJ if < 50% J/R if < 25% RT>30 seconds, narrate and Notify PM
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL) Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	Narrate and qualify if required by project (Floyd Snider PJ)

Validation QC Element	Acceptance Criteria	Action
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R common laboratory contaminants See Technical Director for ID issues
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers

Abbreviation:

PJ Professional judgment

Floyd|Snider Validation Guidelines for Total Petroleum Hydrocarbons-Diesel & Residual Range and Gasoline Range (Based on USEPA National Functional Guidelines as applied to criteria in NWTPH-Dx and NWTPH-Gx, June 1997, Ecology & Oregon DEQ)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature & Preservation	4°C± 2°C Water: HCl to pH < 2	J/UJ if greater than 6 deg. C
Holding Time	Ext. Waters: 14 days preserved 7 days unpreserved Ext. Solids: 14 Days Analysis: 40 days from extraction	J/UJ if hold times exceeded J/R if exceeded > 3X (Floyd Snider PJ)
Initial Calibration	5 calibration points (All within 15% of true value) Linear Regression: R2 >0.990 If used, RSD of response factors <20%	Narrate if fewer than 5 calibration levels or if %R >15% J/UJ if R2 <0.990 J/UJ if %RSD > 20%
Mid-range Calibration Check Std.	Analyzed before and after each analysis shift & every 20 samples. Recovery range 85% to 115%	Narrate if frequency not met. J/UJ if %R < 85% J if %R > 115%
Method Blank	At least one per batch (<10 samples)	U (at the RL) if sample result is < RL & < 5X blank result.
	Method Blank No results >RL	U (at reported sample value) if sample result is > RL and < 5X blank result
Field Blanks (if required by project)	No results > RL	Action is same as method blank for positive results remaining in the field blank after method blank qualifiers are assigned.
MS samples (accuracy) (if required by project)	%R within lab control limits	Qualify parent only, unless other QC indicates systematic problems. J if both %R > upper control limit (UCL) J/UJ(-) if both %R < lower control limit (LCL) No action if parent conc. >5X the amount spiked. Use PJ if only one %R outlier
Precision: MS/MSD or LCS/LCSD or sample/dup	At least one set per batch (<10 samples) RPD < lab control limit	J if RPD > lab control limits

Validation QC Element	Acceptance Criteria	Action
LCS (not required by method)	%R within lab control limits	J/UJ if %R < LCL J if %R > UCL J/R if any %R <10% (Floyd Snider PJ)
Surrogates	2-fluorobiphenyl, p-terphenyl, o-terphenyl, and/or pentacosane added to all samples (inc. QC samples). %R = 50-150%	J/UJ if %R < LCL J if %R > UCL J/R if any %R <10% No action if 2 or more surrogates are used, and only one is outside control limits. (Floyd Snider PJ)
Pattern Identification	Compare sample chromatogram to standard chromatogram to ensure range and pattern are reasonable match. Laboratory may flag results which have poor match.	J
Field Duplicates	Use project control limits, if stated in QAPP Floyd Snider default: water: RPD < 35% solids: RPD < 50%	Narrate (Floyd Snider PJ to qualify)
Two analyses for one sample (dilution)	Report only one result per analyte	"DNR" (or client requested qualifier) all results that should not be reported

Abbreviation:

PJ Professional judgment

Floyd|Snider Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	4°C±2°C Water: HCl to pH < 2	J/UJ if greater than 6 deg. C (Floyd Snider PJ)
Hold Time	Waters: 14 days preserved 7 Days: unpreserved (for aromatics) Solids: 14 Days	J/UJ if hold times exceeded If exceeded by > 3X HT: J/R (Floyd Snider PJ)
Tuning	BFB Beginning of each 12 hour period Method acceptance criteria	R all analytes in all samples associated with the tune
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05
		If reporting limit > MDL: note in worksheet if RRF <0.05
	%RSD < 30%	(Floyd Snider PJ) J if %RSD > 30%
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05
		If reporting limit > MDL: note in worksheet if RRF < 0.05
	%D <25%	(Floyd Snider PJ) If > +/-90%: J/RIf -90% to -26%: J (high bias) If 26% to 90%: J/UJ (low bias)
Method Blank	One per matrix per batch No results > CRQL	U if sample result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)
		U if sample result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)
	No TICs present	R TICs using 10X rule
Storage Blank	One per SDG <crql< td=""><td>U the specific analyte(s) results in all assoc. samples using the 5x or 10x rule</td></crql<>	U the specific analyte(s) results in all assoc. samples using the 5x or 10x rule

Validation QC Element	Acceptance Criteria	Action
Trip Blank	Frequency as per project QAPP	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
Field Blanks (if required in QAPP)	No results > CRQL	Apply 5X/10X rule; U < action level
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J if both %R > UCL J/UJ if both %R < LCL J/R if both %R < 10% PJ if only one %R outlier
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J in parent sample if RPD > CL
LCS low conc. H2O VOA	One per lab batch Within method control limits	J assoc. cmpd if > UCL J/R assoc. cmpd if < LCL J/R all cmpds if half are < LCL
LCS regular VOA (H2O & solid)	One per lab batch Lab or method control limits	J if %R > UCL J/UJ if %R <lcl J/R if %R < 10% (Floyd Snider PJ)</lcl
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J/UJ assoc. cmpd. in all samples
Surrogates	Added to all samples Within method control limits	J if %R >UCL J/UJ if %R <lcl but="">10% J/R if <10%</lcl>
Internal Standard (IS)	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J if > 200% J/UJ if < 50% J/R if < 25% RT>30 seconds, narrate and Notify PM
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL)	Narrate and qualify if required by project (Floyd Snider PJ)
	Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R common laboratory contaminants See Technical Director for ID issues

Validation QC Element	Acceptance Criteria	Action
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers

Notes:

 $PJ^{\scriptscriptstyle 1}$

No action if there are 4+ surrogates and only 1 outlier

Monitoring Well Sampling Event South Park Landfill

Data Validation Report

Appendix B **Qualified Data Summary Table**

Qualified Data Summary Table South Park Landfill Monitoring Well Sampling

MWV-29-012611 SG40A SW8260C Acrolein 5 MWV-04-012611 SG40B SW8260C Acrolein 5 MWV-18-012611 SG40C SW8260C Acrolein 5 MWV-12-012611 SG40E SW8260C Acrolein 5 MWV-01-012711 SG57B SW8260C Acrolein 5 MWV-03-012711 SG57B SW8260C Acrolein 5 KMW-07-012711 SG57B SW8260C Acrolein 5 KMW-07-012711 SG57B SW8260C Acrolein 5 KMW-06-012711 SG57F SW8260C Acrolein 5 KMW-06-012711 SG57F SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.013 KMW-01-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.016	SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifiers
MWV-04-012611 SG40B SW8260C Acrolein 5 MWV-18-012611 SG40C SW8260C Acrolein 5 MWV-14-012611 SG40D SW8260C Acrolein 5 MWV-12-012611 SG57A SW8260C Acrolein 5 MWV-01-012711 SG57B SW8260C Acrolein 5 KMW-07-012711 SG57B SW8260C Acrolein 5 KMW-06-012711 SG57F SW8260C Acrolein 5 KMW-06-012711 SG57F SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57B SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.011 KMW-05-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene<	SG40	MW-29-012611	SG40A	SW8260C	Acrolein	9	hg/L	N	ſ
MW-18-012611 SG40C SW8260C Acrolein 5 MW-14-012611 SG40D SW8260C Acrolein 5 MW-12-012611 SG40E SW8260C Acrolein 5 MW-01-012711 SG57B SW8260C Acrolein 5 KMW-07-012711 SG57C SW8260C Acrolein 5 KMW-07-012711 SG57C SW8260C Acrolein 5 KMW-08-012711 SG57D SW8260C Acrolein 5 KMW-08-012711 SG57M SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.011 KMW-05-012711 SG71A SW8270D-SIM Naphthalene 0.015 KMW-04-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.016 KMW-06-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel	SG40	MW-04-012611	SG40B	SW8260C	Acrolein	9	hg/L	N	ſ
MWV-14-012611 SG40D SW8260C Acrolein 5 MWV-12-012611 SG40E SW8260C Acrolein 5 MWV-01-012711 SG57B SW8260C Acrolein 5 MWV-03-012711 SG57C SW8260C Acrolein 5 KMWV-06-012711 SG57C SW8260C Acrolein 5 KMWV-03A-012711 SG57F SW8260C Acrolein 5 KMWV-03A-012711 SG57F SW8270D-SIM Naphthalene 0.010 KMWV-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.013 KMWV-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.013 KMWV-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMWV-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMWV-05-012711 SG57E SW8270D-SIM Naphthalene 0.016 KMWV-05-012711 SG57E SW8270D-SIM Naphthalene 0.016 KMWV-05-012711 SG57E SW8270D-SIM	SG40	MW-18-012611	SG40C	SW8260C	Acrolein	2	hg/L	n	ſ
MW-12-012611 SG40E SW8260C Acrolein 5 MW-01-012711 SG57A SW8260C Acrolein 5 MW-03-012711 SG57B SW8260C Acrolein 5 KMW-07-012711 SG57C SW8260C Acrolein 5 KMW-03-012711 SG57F SW8260C Acrolein 5 KMW-03A-012711 SG57F SW8260C Acrolein 5 MW-29-012611 SG57F SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.013 KMW-01A-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG57E SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.015 KMW-05-012711 SG57E SW8270D-SIM Nap	SG40	MW-14-012611	SG40D	SW8260C	Acrolein	9	hg/L	N	ſ
MWV-01-012711 SG57A SW8260C Acrolein 5 MWV-03-012711 SG57B SW8260C Acrolein 5 KMW-06-012711 SG57C SW8260C Acrolein 5 KMW-06-012711 SG57D SW8260C Acrolein 5 KMW-03A-012711 SG57M SW8260C Acrolein 5 MW-29-012611 SG57M SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.013 KMW-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.015	SG40	MW-12-012611	SG40E	SW8260C	Acrolein	2	hg/L	Π	ſ
MWV-03-012711 SG57B SW8260C Acrolein 5 KMWV-07-012711 SG57D SW8260C Acrolein 5 KMWV-06-012711 SG57F SW8260C Acrolein 5 KMWV-03A-012711 SG57F SW8260C Acrolein 5 TB-012611 SG57M SW8270D-SIM Naphthalene 0.010 KMW-29-012611 SG57E-DL SW8270D-SIM Naphthalene 2 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.013 KMW-01A-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG57E SW8270D-SIM Naphthalene 0.016 KMW-06-012711 11-1784 SG57E NWTPH-Dx Diesel 0.048	SG57	MW-01-012711	SG57A	SW8260C	Acrolein	2	hg/L	n	ſ
KMW-07-012711 SG57C SW8260C Acrolein 5 KMW-06-012711 SG57D SW8260C Acrolein 5 KMW-03A-012711 SG57F SW8260C Acrolein 5 TB-012611 SG57F SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 110 KMW-05-012711 SG70H SW8270D-SIM Naphthalene 0.013 KMW-01A-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.016 KMW-05-012711 11-1784 SG57E SW8041 Pentachlorophenol 5.9	SG57	MW-03-012711	SG57B	SW8260C	Acrolein	2	hg/L	n	ſ
KMW-06-012711 SG57D SW8260C Acrolein 5 KMW-03A-012711 SG57F SW8260C Acrolein 5 TB-012611 SG57M SW8260C Acrolein 5 MW-29-012611 SG57E SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 2 KMW-012811 SG71A SW8270D-SIM Naphthalene 0.013 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.015 KMW-05-012711 SG57E SW8270D-SIM Pentachlorophenol 5.9	SG57	KMW-07-012711	SG57C	SW8260C	Acrolein	2	hg/L	n	ſ
KMW-03A-012711 SG57F SW8260C Acrolein 5 TB-012611 SG57M SW8260C Acrolein 5 MW-29-012611 SG40A SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Benzo(a)pyrene 2 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.021 KMW-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.016 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG57	KMW-06-012711	SG57D	SW8260C	Acrolein	2	hg/L	Π	ſ
TB-012611 SGG57M SW8260C Acrolein 5 MW-29-012611 SG40A SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Benzo(a)pyrene 2 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.021 KMW-01A-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71C SW8270D-SIM Naphthalene 0.016 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.015 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG57	KMW-03A-012711	SG57F	SW8260C	Acrolein	2	hg/L	n	ſ
MW-29-012611 SG40A SW8270D-SIM Naphthalene 0.010 KMW-05-012711 SG57E-DL SW8270D-SIM Benzo(a)pyrene 2 KMW-05-012711 SG57E-DL SW8270D-SIM Naphthalene 0.021 KMW-01A-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71C SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG57E SW8270D-SIM Naphthalene 0.016 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.048	SG57	TB-012611	SG57M	SW8260C	Acrolein	9	hg/L	n	ſ
KMW-05-012711 SG57E SW8270D-SIM Naphthalene 110 KMW-05-012711 SG57E-DL SW8270D-SIM Benzo(a)pyrene 2 RB-012811 SG70H SW8270D-SIM Naphthalene 0.013 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71C SW8270D-SIM Naphthalene 0.015 KMW-05-012711 SG57E SW8270D-SIM Naphthalene 0.015 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.048	SG40	MW-29-012611	SG40A	SW8270D-SIM	Naphthalene	0.010	hg/L	В	NB
KMW-05-012711 SG57E-DL SW8270D-SIM Benzo(a)pyrene 2 RB-012811 SG70H SW8270D-SIM Naphthalene 0.021 KMW-01A-012811 SG71A SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71C SW8270D-SIM Naphthalene 0.015 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG57	KMW-05-012711	SG57E	SW8270D-SIM	Naphthalene	110	hg/L	EB	DNR
RB-012811 SG70H SW8270D-SIM Naphthalene 0.021 KMW-01A-012811 SG71A SW8270D-SIM Naphthalene 0.013 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71C SW8270D-SIM Naphthalene 0.015 KMW-05-012711 SG57E SW8041 Pentachlorophenol 5.9 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG57	KMW-05-012711	SG57E-DL	SW8270D-SIM	Benzo(a)pyrene	2	hg/L	Π	DNR
KMW-01A-012811 SG71A SW8270D-SIM Naphthalene 0.013 KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71C SW8270D-SIM Naphthalene 0.015 KMW-05-012711 SG57E SW8041 Pentachlorophenol 5.9 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG70	RB-012811	SG70H	SW8270D-SIM	Naphthalene	0.021	hg/L	В	NB
KMW-04-012811 SG71B SW8270D-SIM Naphthalene 0.016 KMW-08-012811 SG71C SW8270D-SIM Naphthalene 0.015 KMW-05-012711 SG57E SW8041 Pentachlorophenol 5.9 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG71	KMW-01A-012811	SG71A	SW8270D-SIM	Naphthalene	0.013	µg/L	В	NB
KMW-08-012811 SG71C SW8270D-SIM Naphthalene 0.015 KMW-05-012711 SG57E SW8041 Pentachlorophenol 5.9 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG71	KMW-04-012811	SG71B	SW8270D-SIM	Naphthalene	0.016	µg/L	В	NB
KMW-05-012711 SG57E SW8041 Pentachlorophenol 5.9 KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG71	KMW-08-012811		SW8270D-SIM	Naphthalene	0.015	µg/L	В	NB
KMW-05-012711 11-1784 SG57E NWTPH-Dx Diesel 0.48	SG57	KMW-05-012711	SG57E	SW8041	Pentachlorophenol	6.3	µg/L	Р	ſ
	SG57	KMW-05-012711	11-1784 SG57E	NWTPH-Dx	Diesel	0.48	mg/L		ſ

Data Validation Report

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Qualifier	DV Qualifiers
SG57	KMW-05-012711	11-1784 SG57E	NWTPH-Dx	Motor Oil	2.5	T/6w		ſ
SG57	KMW-05-012711	11-1784 SG57E	NWTPH-Gx	Gasoline	1.5	T/6w		J
SG70	MW-24-012711	11-1866 SG70A	375.2	Sulfate	8.3	T/6w		ſ
SG70	MW-25-012711	11-1867 SG70B	375.2	Sulfate	26.7	T/6w		ſ
SG70	MW-26-012711	11-1868 SG70C	375.2	Sulfate	5.8	mg/L		7
SG70	MW-08-012711	11-1869 SG70D	375.2	Sulfate	9.5	mg/L		7
SG70	MW-10-012811	11-1870 SG70E	375.2	Sulfate	176	T/6w		r
SG70	MW-27-012711	11-1871 SG70F	375.2	Sulfate	19.1	T/6w		٦
SG70	MW-30-012711	11-1872 SG70G	375.2	Sulfate	27.4	T/6w		٦
SG70	RB-012811	11-1873 SG70H	375.2	Sulfate	2	mg/L	D	J

Lab Qualifiers:

- Analyte detected in an associated Method Blank at a concentration greater than one-half the reporting limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample. Ш
 - Estimated concentration calculated for an analyte response above the valid instrument calibration range. Analyte detected in an associated Method Blank EB
 - at a concentration greater than one-half the reporting limit or 5% of the regulatory limit or 5% of the analyte concentration in the sample.

 The analyte was detected on both chromatographic columns by the quantified values differ by ≥40% RPD with no obvious chromatographic interference. Indicates that the target analyte was not detected at the reported concentration.

DV Qualifiers:DNR Do Not F

Do Not Report, another dilution or analysis has a more appropriate result.

- The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 - Undetected with an elevated reporting limit due to blank contamination. В

Data Validation Report

July 2011 Groundwater Sampling Event South Park Landfill

Data Validation Report

Prepared for

Seattle Public Utilities

Prepared by

Floyd|Snider 601 Union Street Suite 600 Seattle, Washington 98101

August 2011

Table of Contents

1.0	Proj	ject Narrative	
		OVERVIEW OF DATA VALIDATION	
2.0	Data	a Validation Report Select VOCs by USEPA Method 8260C	; 2
	2.1	DATA PACKAGE COMPLETENESS	2
	2.2	TECHNICAL DATA VALIDATION	2
		2.2.1 Cooler Temperature and Preservation	2
	2.3	OVERALL ASSESSMENT	2

List of Appendices

Appendix A Qualifier Codes and Data Validation Guidelines

List of Abbreviations and Acronyms

Abbreviation/	
Acronym	Definition
ARI	Analytical Resources, Inc. Laboratory
DNR	Do not report
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
SDG	Sample delivery group
USEPA	U. S. Environmental Protection Agency
VOC	Volatile organic compound

1.0 Project Narrative

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on the groundwater and field QC sample data for the South Park Landfill July 2011 Groundwater Monitoring Event. A complete list of samples is provided below.

Project Sample Index

SDG (Batch)	Sample ID	Lab ID	8260C
TD58	MW-30-070811	11-14828 TD58A	Х
TD58	MW-31-070811	11-14829 TD58B	Х
TD58	MW-32-070811	11-14830 TD58C	Х
TD58	MW-33-070811	11-14831 TD58D	Х
TD58	MW-34-070811	11-14832 TD58E	Х
TD58	TB-070711	11-14833 TD58F	Х

The chemical analyses were performed by Analytical Resources, Inc. (ARI) Tukwila, WA. Groundwater samples were collected on July 8, 2011 and submitted to ARI for chemical analyses. The analytical methods include the following:

Select VOCs—USEPA Method 8260C

The data were reviewed using guidance and quality control criteria documented in the analytical methods, *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 and 2004), and the *Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site* (Farallon Consulting, LLC 2010).

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Attachment A. As no data was qualified for this data set, the standard Qualified Data Summary Table was not populated, and has not been included as an attachment. Data validation worksheets (excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report Select VOCs by USEPA Method 8260C

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

¹ Cooler temperature and preservation	Matrix spike (MS) and MS Duplicate (MSD)	
Extraction and analysis holding times	Surrogate recoveries	
Blank contamination	Target analyte list	
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Reporting limits and reported results	

Notes

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

2.2.1 Cooler Temperature and Preservation

The lab noted that the sample cooler temperature (7.3°C) was outside of the laboratory standard of 4±2°C. Samples were delivered to the lab the same day they were collected from the field. Only 30 minutes elapsed between when the final sample was collected and the cooler was delivered to the lab, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

2.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LSCD RPDs.

¹ Quality control results are discussed below, but no data were qualified.

All data, as reported by the lab, are acceptable for use.

July 2011 Groundwater Sampling Event South Park Landfill

Data Validation Report

Appendix A Data Qualifier Definitions and Criteria Tables

Floyd|Snider Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	4°C±2°C Water: HCl to pH < 2	J/UJ if greater than 6 deg. C (Floyd Snider PJ)
Hold Time	Waters: 14 days preserved 7 Days: unpreserved (for aromatics) Solids: 14 Days	J/UJ if hold times exceeded If exceeded by > 3X HT: J/R (Floyd Snider PJ)
Tuning	BFB Beginning of each 12 hour period Method acceptance criteria	R all analytes in all samples associated with the tune
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05
		If reporting limit > MDL: note in worksheet if RRF <0.05
	%RSD < 30%	(Floyd Snider PJ) J if %RSD > 30%
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05
		If reporting limit > MDL: note in worksheet if RRF < 0.05
	%D <25%	(Floyd Snider PJ) If > +/-90%: J/RIf -90% to -26%: J (high bias) If 26% to 90%: J/UJ (low bias)
Method Blank	One per matrix per batch No results > CRQL	U if sample result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)
		U if sample result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)
	No TICs present	R TICs using 10X rule
Storage Blank	One per SDG <crql< td=""><td>U the specific analyte(s) results in all assoc. samples using the 5x or 10x rule</td></crql<>	U the specific analyte(s) results in all assoc. samples using the 5x or 10x rule

Validation QC Element	Acceptance Criteria	Action
Trip Blank	Frequency as per project QAPP	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
Field Blanks (if required in QAPP)	No results > CRQL	Apply 5X/10X rule; U < action level
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J if both %R > UCL J/UJ if both %R < LCL J/R if both %R < 10% PJ if only one %R outlier
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J in parent sample if RPD > CL
LCS low conc. H2O VOA	One per lab batch Within method control limits	J assoc. cmpd if > UCL J/R assoc. cmpd if < LCL J/R all cmpds if half are < LCL
LCS regular VOA (H2O & solid)	One per lab batch Lab or method control limits	J if %R > UCL J/UJ if %R <lcl J/R if %R < 10% (Floyd Snider PJ)</lcl
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J/UJ assoc. cmpd. in all samples
Surrogates	Added to all samples Within method control limits	J if %R >UCL J/UJ if %R <lcl but="">10% J/R if <10%</lcl>
Internal Standard (IS)	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J if > 200% J/UJ if < 50% J/R if < 25% RT>30 seconds, narrate and Notify PM
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL)	Narrate and qualify if required by project (Floyd Snider PJ)
	Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R common laboratory contaminants See Technical Director for ID issues

Validation QC Element	Acceptance Criteria	Action
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers

Notes:

 $PJ^{\scriptscriptstyle 1}$

No action if there are 4+ surrogates and only 1 outlier

April 2013 Groundwater Sampling Event South Park Landfill

Data Validation Report

Prepared for

Seattle Public Utilities

Prepared by

Floyd|Snider 601 Union Street Suite 600 Seattle, Washington 98101

July 2013

Table of Contents

1.0	Project Narrative			1	
	1.1	OVER\	VIEW OF DATA VALIDATION	1	
2.0	Data Validation Report Select VOCs by USEPA Method 8260C				
	2.1	DATA I	PACKAGE COMPLETENESS	3	
	2.2	TECHN	NICAL DATA VALIDATION	3	
		2.2.1	Cooler Temperature and Preservation	3	
	2.3	OVERA	ALL ASSESSMENT	3	
3.0	Data Validation Report Vinyl Chloride by USEPA Method 8260C-SIM				
	3.1	DATA I	PACKAGE COMPLETENESS	4	
	3.2	TECHNICAL DATA VALIDATION			
		3.2.1	Cooler Temperature and Preservation	4	
	3.3	OVERA	ALL ASSESSMENT	4	
4.0	Data Validation Report Select Metals by USEPA Method 6010B				
	4.1	DATA I	PACKAGE COMPLETENESS	5	
	4.2	TECHNICAL DATA VALIDATION5			
		4.2.1	Cooler Temperature and Preservation	5	
		4.2.2	Matrix Spike	5	
		4.2.3	Lab Sample and Lab Sample Duplicate	6	
	4.3	OVERA	ALL ASSESSMENT	6	
5.0	Refe	References			

List of Appendices

Appendix A Data Qualifier Definitions and Criteria Tables

List of Abbreviations and Acronyms

Abbreviation/	
Acronym	Definition
ARI	Analytical Resources, Inc. Laboratory
CLP	Contract Laboratory Program
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
MS	Matrix spike

Abbreviation/

Acronym Definition

RPD Relative percent difference

QC Quality control

SDG Sample Delivery Group

USEPA U. S. Environmental Protection Agency

VOC Volatile organic compound

1.0 Project Narrative

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on the groundwater and field quality control (QC) sample data for the South Park Landfill April 2013 Groundwater Monitoring Event. A complete list of samples is provided below.

Project Sample Index

SDG (Batch)	Sample ID	Lab ID	8260C	8260C-SIM	6010B
WJ94	SPL-GW-MW32-040113	WJ94A/WJ94G	Х	Х	Х
WJ94	SPL-GW-MW33-040113	WJ94B/WG94H	Х	Х	Х
WJ94	SPL-GW-MW25-040113	WJ94C/WJ94I	Х	Х	Х
WJ94	SPL-GW-MW60-040113	WJ94D/WJ94J	Х	Х	Х
WJ94	TripBlank #1	WJ94E	Х	Х	
WJ94	TripBlank #2	WJ94F	Х	Х	
WK09	SPL-GW-MW30-040213	WK09A/WK09/K	Х	Х	Х
WK09	SPL-GW-MW31-040213	WK09B/WK09L	Х	Х	Х
WK09	SPL_GW-MW24-040213	WK09C/WK09M	Х	Х	Х
WK09	SPL-GW-MW26-040213	WK09D/WK09N	Х	Х	Х
WK09	SPL-GW-MW08-040213	WK09E/WK09O	Х	Х	Х
WK09	SPL-GW-MW27-040213	WK09F/WK09P	Х	Х	Х
WK09	WK09 SPL-GW-MW10-040213 WK0		Х	Х	Х
WK09	SPL-GW-MW80-040213	WK09H	Х	Х	Х
WK09	TripBlank #1	WK09I	Х	Х	
WK09	TripBlank #2	WK09J	Х	Х	
WK27	SPL-GW-MW18-040313	WK27A/WK27I	Х	Х	Х
WK27	SPL-GW-MW29-040313	WK27B/WK27J	Х	Х	Х
WK27	SPL-GW-MW14-040313	WK27C/WK27K	Х	Х	Х
WK27	SPL-GW-MW12-040313	WK27D/WK27L	Х	Х	Х
WK27	SPL-GW-KMW03A-040313	WK27E/WK27M	Х	Х	Х
WK27	SPL-GW-KMW05-040313	WK27F/WK27N	Х	Х	Х
WK27	TripBlank #1	WK27G	Х	Х	
WK27	TripBlank #2	WK27H	Х	Х	
WK40	SPL-GW-KMW08-040413	WK40A/WK40C	Х	Х	Х
WK40	SPL-GW-MW61-040413	WK40B/WK40C	Х	Х	Х
WK40	TripBlank #1	WK40E	Х	Х	

The chemical analyses were performed by Analytical Resources, Inc. (ARI) located in Tukwila, Washington. Groundwater samples were collected between April 1 and April 4, 2013 and submitted to ARI for chemical analyses. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (USEPA) Method 8260C
- Vinyl chloride—USEPA Method 8260C-SIM
- Select metals—USEPA Method 6010B

The data were reviewed using guidance and QC criteria documented in the analytical methods, National Functional Guidelines for Inorganic Data Review (USEPA 1994 and 2004), National Functional Guidelines for Organic Data Review (USEPA 1999 and 2008), and the Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site (Farallon Consulting, LLC 2010).

Conventional parameters such as alkalinity, nitrate, nitrite, chloride, sulfate, and sulfide were also analyzed; however, they do not have data quality compliance requirements, and, therefore, the results were not included in this data validation report.

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Appendix A. As no data were qualified for this data set, the standard Qualified Data Summary Table was not populated, and has not been included as an attachment. Data validation worksheets (excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report Select VOCs by USEPA Method 8260C

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	

Notes:

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

2.2.1 Cooler Temperature and Preservation

For Sample Delivery Group (SDG) WJ94 the laboratory noted that the sample cooler temperatures (11.3°C and 6.3°C) were outside of the laboratory standard of 4±2°C. Samples were delivered to the laboratory the same day they were collected from the field. Only 60 minutes elapsed between when the final sample was collected and the cooler was delivered to the laboratory, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

2.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD relative percent difference (RPD).

All data, as reported by the laboratory, are acceptable for use.

¹ Quality control results are discussed below, but no data were qualified.

3.0 Data Validation Report Vinyl Chloride by USEPA Method 8260C-SIM

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

3.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
LCS and LCSD	

Notes:

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

3.2.1 Cooler Temperature and Preservation

For SDG WJ94 the laboratory noted that the sample cooler temperatures (11.3°C and 6.3°C) were outside of the laboratory standard of 4 ± 2 °C. Samples were delivered to the laboratory the same day they were collected from the field. Only 60 minutes elapsed between when the final sample was collected and the cooler was delivered to the laboratory, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

3.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

¹ Quality control results are discussed below, but no data were qualified.

4.0 Data Validation Report Select Metals by USEPA Method 6010B

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

4.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Lab Sample and Lab Sample Duplicate
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
¹ Matrix Spike (MS)	

Notes:

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

4.2.1 Cooler Temperature and Preservation

For SDG WJ94 the laboratory noted that the sample cooler temperatures (11.3°C and 6.3°C) were outside of the laboratory standard of 4 ± 2 °C. Samples were delivered to the laboratory the same day they were collected from the field. Only 60 minutes elapsed between when the final sample was collected and the cooler was delivered to the laboratory, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

4.2.2 Matrix Spike

For the analysis of total metals in SDG WJ94, the laboratory noted that the MS for iron and manganese may not be applicable, as the original concentrations in the sample exceeded the spike concentration by a factor of four (4x) or greater. Recoveries were still within control limits. Consistent with USEPA Contract Laboratory Program (CLP) guidance, it is with professional judgment that no total metal results be qualified based on this MS recovery information.

¹ Quality control results are discussed below, but no data were qualified.

For the analysis of dissolved metals in SDG WJ94, the laboratory noted that the MS for calcium, iron, magnesium, manganese, and sodium may not be applicable, as the original concentrations in the sample exceeded the spike concentration by a factor of four (4x) or greater. Magnesium, manganese, and sodium had recoveries that were still within control limits. Calcium was spiked at 10 milligrams per liter (mg/L) with an original concentration of 68.3 mg/L, and iron was spiked at 2 mg/L with an original concentration of 23.8 mg/L. Per USEPA guidelines spike recovery limits do not apply when a sample concentration exceeds the spike concentration by a factor of four (4x) or greater. In such an event, the results shall be reported unqualified even if the percent recovery does not meet the acceptance criteria. Consistent with USEPA CLP guidance, it is with professional judgment that no dissolved metal results be qualified based on this MS recovery information.

For the analysis of dissolved metals in SDG WK04, the laboratory noted that the MS recovery for calcium may not be applicable, as the original concentration in the sample exceeded the spike concentration by a factor of four (4x) or greater. The recovery was still within control limits. Consistent with USEPA CLP guidance, it is with professional judgment that no dissolved calcium results be qualified based on this MS recovery information.

For the analysis of total metals in SDG WK27A, the laboratory noted that the MS recovery for iron may not be applicable, as the original concentration in the sample exceeded the spike concentration by a factor of four (4x) or greater. The recovery was still within control limits. Consistent with USEPA CLP guidance, it is with professional judgment that no total iron results be qualified based on this MS recovery information.

For the analysis of dissolved metals in SDG WK27A, the laboratory noted that the MS recoveries for calcium, iron, and magnesium may not be applicable, as the original concentrations in the sample exceeded the spike concentration by a factor of four (4x) or greater. The magnesium recovery was still within control limits. Calcium was spiked at 10 mg/L with an original concentration of 70.8 mg/L, and iron was spiked at 2 mg/L with an original concentration of 59.5 mg/L. Per USEPA guidelines, spike recovery limits do not apply when a sample concentration exceeds the spike concentration by a factor of four (4x) or greater. In such an event, the results shall be reported unqualified even if the percent recovery does not meet the acceptance criteria. Consistent with USEPA CLP guidance, it is with professional judgment that no dissolved metal results be qualified based on this MS recovery information.

4.2.3 Lab Sample and Lab Sample Duplicate

For the analysis of total and dissolved metals in SDG WK40, no sample/sample duplicate was run, as there were only two samples in the sample delivery group. It is with professional judgment that no results be qualified based on missing duplicate analysis, as all other sample delivery groups for this event demonstrated adequate precision for this laboratory for this method.

4.3 OVERALL ASSESSMENT

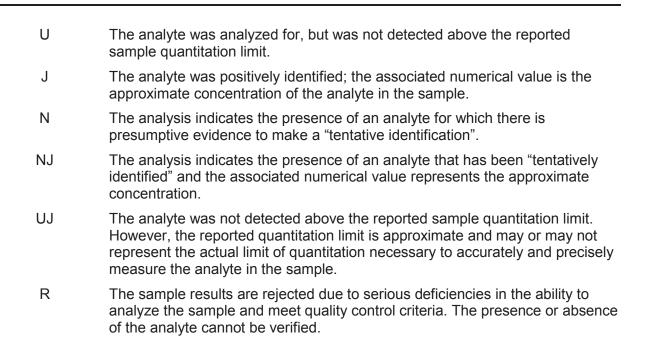
As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the sample/sample duplicate RPDs as discussed above.

All data, as reported by the laboratory, are acceptable for use.

5.0 References

- Farallon Consulting, LLC. 2010. Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site.
- U.S. Environmental Protection Agency (USEPA). 2004, 1994. *National Functional Guidelines for Inorganic Data Review*.

——. 2008, 1999. National Functional Guidelines for Organic Data Review.


April 2013 Groundwater Sampling Event South Park Landfill

Data Validation Report

Appendix A Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

The following is a Floyd|Snider qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

Floyd|Snider Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Floyd Snider Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled Frozen tissues—HT extended to 2 years	J/UJ if holding time exceeded
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. < 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J/UJ if tune criteria not met
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J/UJ if r<0.995 (for multi point cal)
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J/UJ if %R 75–89% J if %R = 111-125% R if %R > 125% R if %R < 75%
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J/UJ if %R = 75–89% J if %R 111-125% R if %R > 125% R if %R < 75%
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+)blanks, U results < action level For (-) blanks, J/UJ results < action level

Validation QC Element	Acceptance Criteria	Action
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R, < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J < 2x RL, UJ if %R 50-69% (30%-49% Co,Mn, Zn) J < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R < 2x RL if %R > 180% (200% Co, Mn, Zn)
Interference Check Samples (ICSA/ICSAB)	Required by SW 6020, but not 200.8 ICSAB %R 80% - 120% for all spiked elements ICSA < IDL (MDL) for all unspiked elements	For samples with AI, Ca, Fe, or Mg > ICS levels R if %R < 50% J if %R >120% J/UJ if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U results < action level
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80%-120%	R if %R < 50% J/UJ if %R = 50-79% J if %R >120%
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J/UJ if < LCL, J if > UCL
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 75-125% for samples where results do not exceed 4x spike level	J if %R>125% J/UJ if %R <75% J/R if %R<30% or J/UJ if Post Spike %R 75%-125% Qualify all samples in batch
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5 x RL (Diff < 2x RL for solids)	J/UJ if RPD > 20% or diff > RL All samples in batch
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J/UJ if %D >10% All samples in batch

Validation QC Element	Acceptance Criteria	Action
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J /UJ all analytes associated with IS outlier
Field Blank	Blank < MDL	Action level is 5x blank conc. U sample values < AL in associated field samples only
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J/UJ in parent samples only
Linear Range	Sample concentrations must fall within range	J values over range

Floyd|Snider Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Floyd Snider Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled Frozen tissues—HT extended to 2 years	J/UJ if holding time exceeded
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. < 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J/UJ if tune criteria not met
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J/UJ if r<0.995 (for multi point cal)
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J/UJ if %R 75–89% J if %R = 111-125% R if %R > 125% R if %R < 75%
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J/UJ if %R = 75–89% J if %R 111-125% R if %R > 125% R if %R < 75%
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+)blanks, U results < action level For (-) blanks, J/UJ results < action level

Validation QC Element	Acceptance Criteria	Action
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R, < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J < 2x RL, UJ if %R 50-69% (30%-49% Co,Mn, Zn) J < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R < 2x RL if %R > 180% (200% Co, Mn, Zn)
Interference Check Samples (ICSA/ICSAB)	Required by SW 6020, but not 200.8 ICSAB %R 80% - 120% for all spiked elements ICSA < IDL (MDL) for all unspiked elements	For samples with AI, Ca, Fe, or Mg > ICS levels R if %R < 50% J if %R >120% J/UJ if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U results < action level
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80%-120%	R if %R < 50% J/UJ if %R = 50-79% J if %R >120%
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J/UJ if < LCL, J if > UCL
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 75-125% for samples where results do not exceed 4x spike level	J if %R>125% J/UJ if %R <75% J/R if %R<30% or J/UJ if Post Spike %R 75%-125% Qualify all samples in batch
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5 x RL (Diff < 2x RL for solids)	J/UJ if RPD > 20% or diff > RL All samples in batch
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J/UJ if %D >10% All samples in batch

Validation QC Element	Acceptance Criteria	Action
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J /UJ all analytes associated with IS outlier
Field Blank	Blank < MDL	Action level is 5x blank conc. U sample values < AL in associated field samples only
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J/UJ in parent samples only
Linear Range	Sample concentrations must fall within range	J values over range

July 2013 Groundwater Sampling Event South Park Landfill

Data Validation Report

Prepared for

Seattle Public Utilities

Prepared by

Floyd|Snider 601 Union Street Suite 600 Seattle, Washington 98101

September 2013

Table of Contents

1.0	Proje	ect Narr	ative	1
	1.1	OVER\	VIEW OF DATA VALIDATION	1
2.0	Data	Validat	ion Report Select VOCs by USEPA Method 8260C	3
	2.1	DATA	PACKAGE COMPLETENESS	3
	2.2	TECHN	NICAL DATA VALIDATION	3
		2.2.1	Cooler Temperature and Preservation	3
		2.2.2	Extraction and Analysis Holding Times	3
		2.2.3	Analyte Response	4
	2.3	OVERA	ALL ASSESSMENT	4
3.0	Data	Validat	ion Report Vinyl Chloride by USEPA Method 8260C-SIM	5
	3.1	DATA	PACKAGE COMPLETENESS	5
	3.2	TECHN	NICAL DATA VALIDATION	5
		3.2.1	Cooler Temperature and Preservation	5
	3.3	OVERA	ALL ASSESSMENT	5
4.0	Data	Validat	ion Report Select Metals by USEPA Method 6010B	6
	4.1	DATA	PACKAGE COMPLETENESS	6
	4.2	TECHN	NICAL DATA VALIDATION	6
		4.2.1	Cooler Temperature and Preservation	6
		4.2.2	Matrix Spike	6
	4.3	OVERA	ALL ASSESSMENT	7
5.0	Refe	rences.		8
			List of Appendices	
Appe	ndix A	Data Q	ualifier Definitions and Criteria Tables	

Qualified Data Summary Table

Appendix B

List of Abbreviations and Acronyms

Abbreviation/	
Acronym	Definition
ARI	Analytical Resources, Inc. Laboratory
CLP	Contract Laboratory Program
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
mg/L	Milligrams per liter
MS	Matrix spike
RPD	Relative percent difference
QC	Quality control
SDG	Sample Delivery Group
USEPA	U. S. Environmental Protection Agency
VOC	Volatile organic compound

1.0 Project Narrative

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on the groundwater and field quality control (QC) sample data for the South Park Landfill July 2013 Groundwater Monitoring Event. A complete list of samples is provided below.

Project Sample Index

SDG (Batch)	Sample ID	Lab ID	8260C	8260C-SIM	6010B
WX53	SPL-GW-MW32-071513	WX53A/WX53F	Х	Х	Х
WX53	SPL-GW-MW33-071513	WX53B/WX53G	Х	Х	Х
WX53	SPL-GW-MW25-071513	WX53C/WX53H	Х	Х	Х
WX53	SPL-GW-MW60-071513	WX53D/WX53I	Х	Х	Х
WX53	SPL-GW-MW10-071513	WX53E/WX53J	Х	Х	Х
WX53	TripBlank #1	WX53K	Х	Х	
WX53	TripBlank #2	WX53L	Х	Х	
WX67	SPL-GW-MW30-071613	WX67A/WX67I	Х	Х	Х
WX67	SPL-GW-MW31-071613	WX67B/WX67J	Х	Х	Х
WX67	SPL-GW-MW26-071613	WX67C/WX67K	Х	Х	Х
WX67	SPL_GW-MW24-071613	WX67D/WX67L	Х	Х	Х
WX67	SPL-GW-MW08-071613	WX67E/WX67M	Х	Х	Х
WX67	SPL-GW-MW27-071613	WX67F/WX67N	Х	Х	Х
WX67	TripBlank #1	WX67G	Х	Х	
WX67	TripBlank #2	WX67H	Х	Х	
WX79	SPL-GW-MW12-071713	WX79A/WX79G	Х	Х	Х
WX79	SPL-GW-MW18-071713	WX79B/WX79H	Х	Х	Х
WX79	SPL-GW-MW29-071713	WX79C/WX79I	Х	Х	Х
WX79	SPL-GW-MW14-071713	WX79D/WX79J	Х	Х	Х
WX79	SPL-GW-MW80-071713	WX79E	Х	Х	
WX79	TripBlank	WX79F	Х	Х	
WX91	SPL-GW-KMW05-071813	WX91A/WX91F	Х	Х	Х
WX91	SPL-GW-KMW03A-071813	WX91B/WX91G	Х	Х	Х
WX91	SPL-GW-KMW08-071813	WX91C/WX91H	Х	Х	Х
WX91	SPL-GW-MW61-071813	WX91D/WX91I	Х	Х	Х
WX91	TripBlank	WX91E	Х	Х	

The chemical analyses were performed by Analytical Resources, Inc. (ARI), located in Tukwila, Washington. Groundwater samples were collected between July 15 and July 18, 2013, and were submitted to ARI for chemical analyses. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (USEPA) Method 8260C
- Vinyl chloride—USEPA Method 8260C-SIM
- Select metals—USEPA Method 6010B

The data were reviewed using guidance and QC criteria documented in the analytical methods, National Functional Guidelines for Inorganic Data Review (USEPA 1994 and 2004), National Functional Guidelines for Organic Data Review (USEPA 1999 and 2008), and the Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site (Farallon Consulting, LLC 2010).

Conventional parameters such as alkalinity, nitrate, nitrite, chloride, sulfate, and sulfide were also analyzed; however, they do not have data quality compliance requirements, and, therefore, the results were not included in this data validation report.

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Appendix A. As no data were qualified for this data set, the standard Qualified Data Summary Table was not populated, and has not been included as an attachment. Data validation worksheets (Excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report Select VOCs by USEPA Method 8260C

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Surrogate recoveries
² Extraction and analysis holding times	² Analyte response
Blank contamination	Target analyte list
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Reporting limits and reported results

Notes:

- 1 Quality control results are discussed below, but no data were qualified.
- 2 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

2.2.1 Cooler Temperature and Preservation

For Sample Delivery Group (SDG) WX53 the laboratory noted that the sample cooler temperatures (9.3°C and 10.3°C) were outside of the laboratory standard of 4±2°C. Samples were delivered to the laboratory the same day they were collected from the field. Less than 60 minutes elapsed between when the final sample was collected and the cooler was delivered to the laboratory, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

2.2.2 Extraction and Analysis Holding Times

For SDG WX79 the laboratory noted that due to trichloroethene carry over with the USEPA Method 8260 analysis, cis-1,2-dichlorethene and trichloroethene were reported from the Select Ion Monitoring (SIM) Method 8260 (USEPA Method 8260C-SIM) analysis for more accurate quantification. For sample SPL-GW-MW12-071713, the cis-1,2-dichloroethene results exceeded

the USEPA Method 8260C-SIM detector range and has been qualified "DNR." Due to the previous 8260 carry over, all preserved vials had been used, and a dilution was run outside the method-recommended 7 day holding time on an unpreserved vial for analysis with USEPA Method 8260. It is with professional judgment that the cis-1,2-dichloroethene result for SPL-GW-MW12-071713 be given the data validation qualifier of "J-H" to indicated it is estimated due to analysis outside of holding time, with a final qualifier of "J."

2.2.3 Analyte Response

For SDG WX67, the laboratory assigned the trichloroethene result for SPL-GW-MW26-071613 with an "M" flag to indicate that the reported concentration is an estimated value that was confirmed by an analyst, but with low spectral match parameters. Therefore, the final qualifier for this result is a "JM" to comply with database qualifier standardization.

2.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD relative percent difference (RPD).

All data are acceptable for use as qualified. Refer to Appendix B for details.

3.0 Data Validation Report Vinyl Chloride by USEPA Method 8260C-SIM

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

3.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
LCS and LCSD	

Note:

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

3.2.1 Cooler Temperature and Preservation

For SDG WX53, the laboratory noted that the sample cooler temperatures (9.3°C) and $10.3^{\circ}\text{C})$ were outside of the laboratory standard of $4\pm2^{\circ}\text{C}$. Samples were delivered to the laboratory the same day they were collected from the field. Less than 60 minutes elapsed between when the final sample was collected and the cooler was delivered to the laboratory, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

3.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data, as reported by the laboratory, are acceptable for use.

¹ Quality control results are discussed below, but no data were qualified.

4.0 Data Validation Report Select Metals by USEPA Method 6010B

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

4.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Lab Sample and Lab Sample Duplicate
Extraction and analysis holding times	Target analyte list
Blank contamination	Reporting limits and reported results
¹ Matrix Spike (MS)	

Note:

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

4.2.1 Cooler Temperature and Preservation

For SDG WX53, the laboratory noted that the sample cooler temperatures (9.3°C) and $10.3^{\circ}\text{C})$ were outside of the laboratory standard of $4\pm2^{\circ}\text{C}$. Samples were delivered to the laboratory the same day they were collected from the field. Less than 60 minutes elapsed between when the final sample was collected and the cooler was delivered to the laboratory, leaving insufficient time for the cooler temperature to drop within the standard range. It is with professional judgment that no sample results be qualified based on cooler temperature, as the samples were delivered with minimal holding time.

4.2.2 Matrix Spike

For the analysis of total metals in SDG WX53, the laboratory noted that the MS for iron and manganese may not be applicable, as the original concentrations in the sample exceeded the spike concentration by a factor of four (4x) or greater. Iron was spiked at 2 milligrams per liter (mg/L) with an original concentration of 26.7 mg/L, and manganese was spiked at 0.5 mg/L with an original concentration of 2.48 mg/L. Per USEPA guidelines, spike recovery limits do not apply when a sample concentration exceeds the spike concentration by a factor of four (4x) or greater. In such an event, the results shall be reported unqualified even if the percent recovery

¹ Quality control results are discussed below, but no data were qualified.

does not meet the acceptance criteria. Consistent with USEPA Contract Laboratory Program (CLP) guidance, it is with professional judgment that no total metal results be qualified based on this MS recovery information.

For the analysis of dissolved metals in SDG WX53, the laboratory noted that the MS for calcium, iron, magnesium, manganese, and sodium may not be applicable, as the original concentrations in the sample exceeded the spike concentration by a factor of four (4x) or greater. Calcium, magnesium, manganese, and sodium had recoveries that were still within control limits. Iron was spiked at 2 mg/L with an original concentration of 26.4 mg/L. Per USEPA guidelines, spike recovery limits do not apply when a sample concentration exceeds the spike concentration by a factor of four (4x) or greater. In such an event, the results shall be reported unqualified even if the percent recovery does not meet the acceptance criteria. Consistent with USEPA CLP guidance, it is with professional judgment that no dissolved metal results be qualified based on this MS recovery information.

4.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS percent recovery values. Precision was acceptable, as demonstrated by the sample/sample duplicate RPDs as discussed above.

All data, as reported by the laboratory, are acceptable for use.

5.0 References

- Farallon Consulting, LLC. 2010. Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site.
- U.S. Environmental Protection Agency (USEPA). 2004, 1994. *National Functional Guidelines for Inorganic Data Review*.

——. 2008, 1999. National Functional Guidelines for Organic Data Review.

July 2013 Groundwater Sampling Event South Park Landfill

Data Validation Report

Appendix A
Data Qualifier Definitions
and Criteria Tables

Floyd|Snider Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	4°C±2°C Water: HCl to pH < 2	J/UJ if greater than 6 deg. C (Floyd Snider PJ)
Hold Time	Waters: 14 days preserved 7 Days: unpreserved (for aromatics) Solids: 14 Days	J/UJ if hold times exceeded If exceeded by > 3X HT: J/R (Floyd Snider PJ)
Tuning	BFB Beginning of each 12 hour period Method acceptance criteria	R all analytes in all samples associated with the tune
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05
		If reporting limit > MDL: note in worksheet if RRF <0.05
	%RSD < 30%	(Floyd Snider PJ) J if %RSD > 30%
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05
		If reporting limit > MDL: note in worksheet if RRF < 0.05
	%D <25%	(Floyd Snider PJ) If > +/-90%: J/RIf -90% to -26%: J (high bias) If 26% to 90%: J/UJ (low bias)
Method Blank	One per matrix per batch No results > CRQL	U if sample result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)
		U if sample result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)
	No TICs present	R TICs using 10X rule
Storage Blank	One per SDG <crql< td=""><td>U the specific analyte(s) results in all assoc. samples using the 5x or 10x rule</td></crql<>	U the specific analyte(s) results in all assoc. samples using the 5x or 10x rule

Validation QC Element	Acceptance Criteria	Action
Trip Blank	Frequency as per project QAPP	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
Field Blanks (if required in QAPP)	No results > CRQL	Apply 5X/10X rule; U < action level
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J if both %R > UCL J/UJ if both %R < LCL J/R if both %R < 10% PJ if only one %R outlier
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J in parent sample if RPD > CL
LCS low conc. H2O VOA	One per lab batch Within method control limits	J assoc. cmpd if > UCL J/R assoc. cmpd if < LCL J/R all cmpds if half are < LCL
LCS regular VOA (H2O & solid)	One per lab batch Lab or method control limits	J if %R > UCL J/UJ if %R <lcl J/R if %R < 10% (Floyd Snider PJ)</lcl
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J/UJ assoc. cmpd. in all samples
Surrogates	Added to all samples Within method control limits	J if %R >UCL J/UJ if %R <lcl but="">10% J/R if <10%</lcl>
Internal Standard (IS)	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J if > 200% J/UJ if < 50% J/R if < 25% RT>30 seconds, narrate and Notify PM
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL)	Narrate and qualify if required by project (Floyd Snider PJ)
	Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R common laboratory contaminants See Technical Director for ID issues

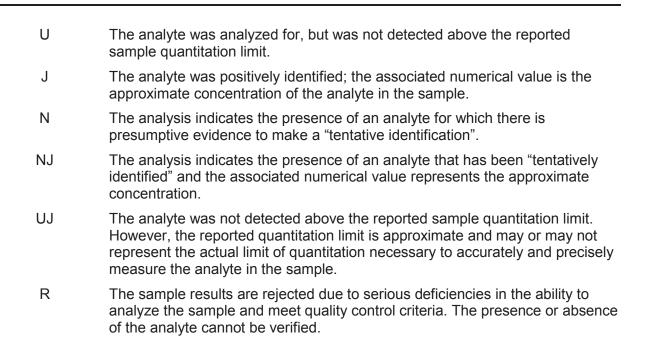
Validation QC Element	Acceptance Criteria	Action
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers

Notes:

 $PJ^{\scriptscriptstyle 1}$

No action if there are 4+ surrogates and only 1 outlier

Floyd|Snider Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)


Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Floyd Snider Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled Frozen tissues—HT extended to 2 years	J/UJ if holding time exceeded
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. < 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J/UJ if tune criteria not met
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J/UJ if r<0.995 (for multi point cal)
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J/UJ if %R 75–89% J if %R = 111-125% R if %R > 125% R if %R < 75%
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J/UJ if %R = 75–89% J if %R 111-125% R if %R > 125% R if %R < 75%
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+)blanks, U results < action level For (-) blanks, J/UJ results < action level

Validation QC Element	Acceptance Criteria	Action
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R, < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J < 2x RL, UJ if %R 50-69% (30%-49% Co,Mn, Zn) J < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R < 2x RL if %R > 180% (200% Co, Mn, Zn)
Interference Check Samples (ICSA/ICSAB)	Required by SW 6020, but not 200.8 ICSAB %R 80% - 120% for all spiked elements ICSA < IDL (MDL) for all unspiked elements	For samples with AI, Ca, Fe, or Mg > ICS levels R if %R < 50% J if %R > 120% J/UJ if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U results < action level
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80%-120%	R if %R < 50% J/UJ if %R = 50-79% J if %R >120%
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J/UJ if < LCL, J if > UCL
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 75-125% for samples where results do not exceed 4x spike level	J if %R>125% J/UJ if %R <75% J/R if %R<30% or J/UJ if Post Spike %R 75%-125% Qualify all samples in batch
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5 x RL (Diff < 2x RL for solids)	J/UJ if RPD > 20% or diff > RL All samples in batch
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J/UJ if %D >10% All samples in batch

Validation QC Element	Acceptance Criteria	Action
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J /UJ all analytes associated with IS outlier
Field Blank	Blank < MDL	Action level is 5x blank conc. U sample values < AL in associated field samples only
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J/UJ in parent samples only
Linear Range	Sample concentrations must fall within range	J values over range

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

The following is a Floyd|Snider qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

July 2013 Groundwater Sampling Event South Park Landfill

Data Validation Report

Appendix B **Qualified Data Summary Table**

July 2013 Groundwater Sampling Event **Qualified Data Summary Table** Table B.1

SDG	Sample ID	Lab ID	Method	Analyte	Result	Units	Lab Result Units Qualifier	DV Qualifier	Final Qualifier
WX67	WX67 SPL-GW-MW26- WX67C 13- 071613 14991	WX67C 13- 14991	EPA 8260C	Trichloroethene	78.0	hg/L	Σ	ſ	MC
WX79	WX79 SPL-GW-MW12- WX79A 13- 071713 15130	WX79A 13- 15130	EPA 8260C-SIM	cis-1,2-Dichloroethene	2.3	hg/L	ш	DNR	DNR
WX79	WX79 SPL-GW-MW12- WX79A 13- 071713 15130	WX79A 13- 15130	EPA 8260C	cis-1,2-Dichloroethene 5.4	5.4	µg/L		H-ſ	ſ

Qualifiers:

DNR

Do not report. A more appropriate result from another analysis or dilution is available. Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

The analyte was detected; the result should be considered an estimate.

The analyte was positively identified; the associated numerical value should be considered an estimate due to analysis outside of method holding time. The analyte was detected; the result should be considered an estimated due to poor spectral match. Estimated value for an analyte detected and confirmed by an analyst but with low spectral match parameters.

Data Validation Report

March 2014 Groundwater Sampling Event South Park Landfill

Data Validation Report

Prepared for

Seattle Public Utilities

Prepared by

Floyd|Snider 601 Union Street Suite 600 Seattle, Washington 98101

April 2014

Table of Contents

1.0	Project Narrative			
	1.1	OVERVIEW OF DATA VALIDATION	1	
2.0	Data	Validation Report Select VOCs by USEPA Method 8260C	3	
	2.1	DATA PACKAGE COMPLETENESS	3	
	2.2	TECHNICAL DATA VALIDATION	3	
	2.3	OVERALL ASSESSMENT	3	
3.0	Data	Validation Report Vinyl Chloride by USEPA Method 8260C-SIM	4	
	3.1	DATA PACKAGE COMPLETENESS	4	
	3.2	TECHNICAL DATA VALIDATION	4	
		3.2.1 Analyte Response	4	
	3.3	OVERALL ASSESSMENT	4	
4.0	Data	Validation Report Select Metals by USEPA Method 6010B	5	
	4.1	DATA PACKAGE COMPLETENESS	5	
	4.2	TECHNICAL DATA VALIDATION	5	
	4.3	OVERALL ASSESSMENT	5	
5.0	Refe	rences	6	

List of Attachments

Attachment 1 Data Qualifier Definitions and Criteria Tables

Attachment 2 Qualified Data Summary Table

List of Abbreviations and Acronyms

Abbreviation/ Acronym	Definition
ARI	Analytical Resources, Inc. Laboratory
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
MS	Matrix spike
RPD	Relative percent difference
QC	Quality control
SDG	Sample Delivery Group
USEPA	U. S. Environmental Protection Agency
VOC	Volatile organic compound

1.0 Project Narrative

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on the groundwater and field quality control (QC) sample data for the South Park Landfill March 2014 Groundwater Monitoring Event. A complete list of samples is provided below.

Project Sample Index

SDG (Batch)	Sample ID	Lab ID	8260C	8260C-SIM	6010B
YD18	SPL-GW-KMW08-031714	YD18A 14-4581/YD18H 14-4588	Х	Х	Х
YD18	SPL-GW-MW61-031714	YD18B 14-4582/YD18I 14-4589	Х	Х	Х
YD18	SPL-GW-KMW03A-031714	YD18C 14-4583/YD18J 14-4590	Х	Х	Х
YD18	SPL-GW-KMW05-031714	YD18D 14-4584/YD18K 14-4590	Х	Х	Х
YD18	SPL-GW-MW25-031714	YD18E 14-4585/YD18L 14-4592	Х	Х	Х
YD18	SPL-GW-MW60-031714	YD18F 14-4586/YD18M 14-4593	Х	Х	Х
YD18	SPL-GW-MW10-031714	YD18G 14-4587/YD18N 14-4594	Х	Х	Х
YD18	Trip Blanks	YD18O 14-4595	Х	Х	
YD33	SPL-GW-MW32-031814	YD33A 14-4787/YD33G 14-4793	Х	Х	Х
YD33	SPL-GW-MW-33-031814	YD33B 14-4788/YD33H 14-4794	Х	Х	Х
YD33	SPL-GW-MW18-031814	YD33C 14-4789/YD33I 14-4795	Х	Х	Х
YD33	SPL-GW-MW14-031814	YD33D 14-4790/YD33J 14-4796	Х	Х	Х
YD33	SPL-GW-MW29-031814	YD33E 14-4791/YD33K 14-4797	Х	Х	Х
YD33	SPL-GW-MW12-031814	YD33F 14-4792/YD33L 14-4798	Х	Х	Х
YD33	Trip Blanks	YD33M 14-4799	Х	Х	
YD53	SPL-GW-MW31-031914	YD53A 14-4863/YD53I 14-4871	Х	Х	Х
YD53	SPL-GW-MW320-031914	YD53B 14-4864/YD53J 14-4872	Х	Х	Х
YD53	SPL-GW-MW26-031914	YD53C 14-4865/YD53K 14-4873	Х	Х	Х
YD53	SPL-GW-MW24-031914	YD53D 14-4866/YD53L 14-4874	Х	Х	Х
YD53	SPL-GW-MW08-031914	YD53E 14-4867/YD53M 14-4875	Х	Х	Х
YD53	SPL-GW-MW27-031914	YD53F 14-4868/YD53N 14-4876	Х	Х	Х
YD53	SPL-GW-MW80-031914	YD53G 14-4869	Х	Х	
YD53	Trip Blanks	YD53H 14-4870	Х	Х	

The chemical analyses were performed by Analytical Resources, Inc. (ARI), located in Tukwila, Washington. Groundwater samples were collected between March 17 and 19, 2014, and were submitted to ARI for chemical analyses. The analytical methods include the following:

- Select volatile organic compounds (VOCs)—U.S. Environmental Protection Agency (USEPA) Method 8260C
- Vinyl chloride—USEPA Method 8260C-SIM
- Select metals—USEPA Method 6010B

The data were reviewed using guidance and QC criteria documented in the analytical methods, *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 and 2004), *National Functional Guidelines for Organic Data Review* (USEPA 1999 and 2008), and the *Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site* (Farallon Consulting, LLC 2010).

Conventional parameters such as alkalinity, nitrate, nitrite, chloride, sulfate, and sulfide were also analyzed; however, they do not have data quality compliance requirements, and, therefore, the results were not included in this data validation report.

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a Do Not Report (DNR) qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Attachment 1. The Qualified Data Summary Table is included in Attachment 2. Data validation worksheets (excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report Select VOCs by USEPA Method 8260C

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	Analyte response
Blank contamination	Reporting limits and reported results
Laboratory control sample (LCS) and LCS duplicate (LCSD)	Target analyte list

All QC requirements were met without exception, and did not require further evaluation.

2.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD relative percent difference (RPD).

All data, as reported by the laboratory, are acceptable for use.

3.0 Data Validation Report Vinyl Chloride by USEPA Method 8260C-SIM

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

3.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Surrogate recoveries
Extraction and analysis holding times	¹ Analyte response
Blank contamination	Reporting limits and reported results
LCS and LCSD	Target analyte list

Note:

1 Quality control outliers that impact the reported data were noted. Data qualifiers were issued, as discussed below.

Attachment 1 presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

3.2.1 Analyte Response

For SDG YD53, the vinyl chloride result for SPL-GW-MW31-031914 was flagged by the laboratory as exceeding the valid instrument calibration range. It has been flagged "DNR" as a more appropriate result is available from the SW8260C analysis.

3.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the sample surrogate, LCS, and LCSD percent recovery values. Precision was acceptable, as demonstrated by the LCS/LCSD RPD.

All data are acceptable for use as qualified; refer to Attachment 2 for details.

4.0 Data Validation Report Select Metals by USEPA Method 6010B

This report documents the review of analytical data from the analyses of groundwater and field QC samples and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Jessi Massingale.

4.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and any anomalies were discussed in the case narrative.

4.2 Technical Data Validation

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	LCS
Extraction and analysis holding times	Sample and sample duplicate RPD
Blank contamination	Reporting limits and reported results
Matrix spike (MS)	Target analyte list

All QC requirements were met without exception, and did not require further evaluation.

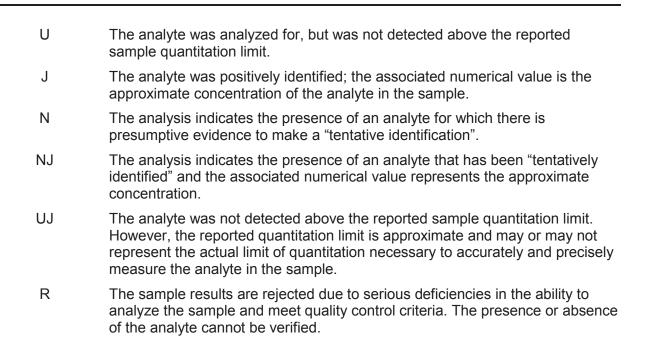
4.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS and LCS percent recovery values. Precision was acceptable, as demonstrated by the sample/sample duplicate RPD.

All data, as reported by the laboratory, are acceptable for use.

5.0 References

- Farallon Consulting, LLC. 2010. Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site.
- U.S. Environmental Protection Agency (USEPA). 1994. National Functional Guidelines for Inorganic Data Review.
- ——. 1999. National Functional Guidelines for Organic Data Review.
- ——. 2004. National Functional Guidelines for Inorganic Data Review.
- ———. 2008. National Functional Guidelines for Organic Data Review.


March 2014 Groundwater Sampling Event South Park Landfill

Data Validation Report

Attachment 1 Data Qualifier Definitions and Criteria Tables

DATA VALIDATION QUALIFIER CODES National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

The following is a Floyd|Snider qualifier that may also be assigned during the data review process:

DNR Do not report; a more appropriate result is reported from another analysis or dilution.

Floyd|Snider Validation Guidelines for Volatile Analysis by GC/MS (Based on Organic NFG 1999)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature	4°C±2°C Water: HCl to pH < 2	J/UJ if greater than 6 deg. C (Floyd Snider PJ)
Hold Time	Waters: 14 days preserved 7 Days: unpreserved (for aromatics) Solids: 14 Days	J/UJ if hold times exceeded If exceeded by > 3X HT: J/R (Floyd Snider PJ)
Tuning	BFB Beginning of each 12 hour period Method acceptance criteria	R all analytes in all samples associated with the tune
Initial Calibration (Minimum 5 stds.)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05
		If reporting limit > MDL: note in worksheet if RRF <0.05
	%RSD < 30%	(Floyd Snider PJ) J if %RSD > 30%
Continuing Calibration (Prior to each 12 hr. shift)	RRF > 0.05	(Floyd Snider PJ) If MDL= reporting limit: J/R if RRF < 0.05
		If reporting limit > MDL: note in worksheet if RRF < 0.05
	%D <25%	(Floyd Snider PJ) If > +/-90%: J/RIf -90% to -26%: J (high bias) If 26% to 90%: J/UJ (low bias)
Method Blank	One per matrix per batch No results > CRQL	U if sample result is less than CRQL and less than appropriate 5X or 10X rule (raise sample value to CRQL)
		U if sample result is greater than or equal to CRQL and less than appropriate 5X and 10X rule (at reported sample value)
	No TICs present	R TICs using 10X rule
Storage Blank	One per SDG <crql< td=""><td>U the specific analyte(s) results in all assoc. samples using the 5x or 10x rule</td></crql<>	U the specific analyte(s) results in all assoc. samples using the 5x or 10x rule

Validation QC Element	Acceptance Criteria	Action
Trip Blank	Frequency as per project QAPP	Same as method blank for positive results remaining in trip blank after method blank qualifiers are assigned
Field Blanks (if required in QAPP)	No results > CRQL	Apply 5X/10X rule; U < action level
MS/MSD (recovery)	One per matrix per batch Use method acceptance criteria	Qualify parent only unless other QC indicates systematic problems: J if both %R > UCL J/UJ if both %R < LCL J/R if both %R < 10% PJ if only one %R outlier
MS/MSD (RPD)	One per matrix per batch Use method acceptance criteria	J in parent sample if RPD > CL
LCS low conc. H2O VOA	One per lab batch Within method control limits	J assoc. cmpd if > UCL J/R assoc. cmpd if < LCL J/R all cmpds if half are < LCL
LCS regular VOA (H2O & solid)	One per lab batch Lab or method control limits	J if %R > UCL J/UJ if %R <lcl J/R if %R < 10% (Floyd Snider PJ)</lcl
LCS/LCSD (if required)	One set per matrix and batch of 20 samples RPD < 35%	J/UJ assoc. cmpd. in all samples
Surrogates	Added to all samples Within method control limits	J if %R >UCL J/UJ if %R <lcl but="">10% J/R if <10%</lcl>
Internal Standard (IS)	Added to all samples Acceptable Range: IS area 50% to 200% of CCAL area RT within 30 seconds of CC RT	J if > 200% J/UJ if < 50% J/R if < 25% RT>30 seconds, narrate and Notify PM
Field Duplicates	Use QAPP limits. If no QAPP: Solids: RPD <50% OR absolute diff. < 2X RL (for results < 5X RL)	Narrate and qualify if required by project (Floyd Snider PJ)
	Aqueous: RPD <35% OR absolute diff. < 1X RL (for results < 5X RL)	
TICs	Major ions (>10%) in reference must be present in sample; intensities agree within 20%; check identification	NJ the TIC unless: R common laboratory contaminants See Technical Director for ID issues

Validation QC Element	Acceptance Criteria	Action
Quantitation/ Identification	RRT within 0.06 of standard RRT lon relative intensity within 20% of standard All ions in std. at > 10% intensity must be present in sample	See Technical Director if outliers

Notes:

 $PJ^{\scriptscriptstyle 1}$

No action if there are 4+ surrogates and only 1 outlier

Floyd|Snider Validation Guidelines for Metals Analysis by ICP-MS (Based on Inorganic NFG 1994 & 2004)

Validation QC Element	Acceptance Criteria	Action
Cooler Temperature and Preservation	Cooler temperature: 4°C ±2° Waters: Nitric Acid to pH < 2 For Dissolved Metals: 0.45um filter & preserve after filtration	Floyd Snider Professional Judgment—no qualification based on cooler temperature outliers J/UJ if pH preservation requirements are not met
Holding Time	180 days from date sampled Frozen tissues—HT extended to 2 years	J/UJ if holding time exceeded
Tune	Prior to ICAL monitoring compounds analyzed 5 times wih Std Dev. < 5% mass calibration <0.1 amu from True Value Resolution < 0.9 AMU @ 10% peak height or <0.75 amu @ 5% peak height	Use Professional Judgment to evaluate tune J/UJ if tune criteria not met
Initial Calibration	Blank + minimum 1 standard If more than 1 standard, r>0.995	J/UJ if r<0.995 (for multi point cal)
Initial Calibration Verification (ICV)	Independent source analyzed immediately after calibration %R within ±10% of true value	J/UJ if %R 75–89% J if %R = 111-125% R if %R > 125% R if %R < 75%
Continuing Calibration Verification (CCV)	Every ten samples, immediately following ICV/ICB and at end of run ±10% of true value	J/UJ if %R = 75–89% J if %R 111-125% R if %R > 125% R if %R < 75%
Initial and Continuing Calibration Blanks (ICB/CCB)	After each ICV and CCV every ten samples and end of run blank < IDL (MDL)	Action level is 5x absolute value of blank conc. For (+)blanks, U results < action level For (-) blanks, J/UJ results < action level

Validation QC Element	Acceptance Criteria	Action
Reporting Limit Standard (CRI)	2x RL analyzed beginning of run Not required for Al, Ba, Ca, Fe, Mg, Na, K %R = 70%-130% (50%-150% Co,Mn, Zn)	R, < 2x RL if %R < 50% (< 30% Co,Mn, Zn) J < 2x RL, UJ if %R 50-69% (30%-49% Co,Mn, Zn) J < 2x RL if %R 130%-180% (150%-200% Co,Mn, Zn) R < 2x RL if %R > 180% (200% Co, Mn, Zn)
Interference Check Samples (ICSA/ICSAB)	Required by SW 6020, but not 200.8 ICSAB %R 80% - 120% for all spiked elements ICSA < IDL (MDL) for all unspiked elements	For samples with AI, Ca, Fe, or Mg > ICS levels R if %R < 50% J if %R >120% J/UJ if %R = 50% to 79% Use Professional Judgment for ICSA to determine if bias is present
Method Blank	One per matrix per batch (batch not to exceed 20 samples) blank < MDL	Action level is 5x blank concentration U results < action level
Laboratory Control Sample (LCS)	One per matrix per batch Blank Spike: %R within 80%-120%	R if %R < 50% J/UJ if %R = 50-79% J if %R >120%
	CRM: Result within manufacturer's certified acceptance range or project guidelines	J/UJ if < LCL, J if > UCL
Matrix Spike/ Matrix Spike Duplicate (MS/MSD)	One per matrix per batch 75-125% for samples where results do not exceed 4x spike level	J if %R>125% J/UJ if %R <75% J/R if %R<30% or J/UJ if Post Spike %R 75%-125% Qualify all samples in batch
Post-digestion Spike	If Matrix Spike is outside 75-125%, Spike parent sample at 2x the sample conc.	No qualifiers assigned based on this element
Laboratory Duplicate (or MS/MSD)	One per matrix per batch RPD < 20% for samples > 5x RL Diff < RL for samples > RL and < 5 x RL (Diff < 2x RL for solids)	J/UJ if RPD > 20% or diff > RL All samples in batch
Serial Dilution	5x dilution one per matrix %D < 10% for original sample values > 50x MDL	J/UJ if %D >10% All samples in batch

Validation QC Element	Acceptance Criteria	Action
Internal Standards	Every sample SW6020: 60%-125% of cal blank IS 200.8: 30%-120% of cal blank IS	J /UJ all analytes associated with IS outlier
Field Blank	Blank < MDL	Action level is 5x blank conc. U sample values < AL in associated field samples only
Field Duplicate	For results > 5x RL: Water: RPD < 35% Solid: RPD < 50% For results < 5 x RL: Water: Diff < RL Solid: Diff < 2x RL	J/UJ in parent samples only
Linear Range	Sample concentrations must fall within range	J values over range

March 2014 Groundwater Sampling Event South Park Landfill

Data Validation Report

Attachment 2 **Qualified Data Summary Table**

March 2014 Groundwater Sampling Event Table 2.1 Qualified Data Summary Table

	Sample ID	Lab ID	Method	Analyte	Result Units	Units	Lab Qualifier	DV Qualifiers
S	SPL-GW-MW31- 031914	YD53A 14-4863	SW8260C-SIM	Vinyl Chloride	2.2	hg/L	Ш	DNR

Qualifiers:
DNR Do not report. A more appropriate result from another analysis or dilution is available.
E Estimated concentration calculated for an analyte response above the valid instrument calibration range. A dilution is required to obtain an accurate quantification of the analyte.

Data Validation Report

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix F Data Validation Reports

Reconnaissance Groundwater Data Validation Reports

Table of Contents

1.0	Proj	ect Narr	ative	1
	1.1	OVER'	VIEW OF DATA VALIDATION	1
2.0	Data	Validat	ion Report Total Arsenic by USEPA 200.8	3
	2.1		PACKAGE COMPLETENESS	
	2.2	TECHI	NICAL DATA VALIDATION	3
		2.2.1	Other	3
	2.3	OVER	ALL ASSESSMENT	4
3.0	Data	Validat	ion Report Dissolved Arsenic by USEPA 200.8	5
	3.1	DATA	PACKAGE COMPLETENESS	5
	3.2	TECHI	NICAL DATA VALIDATION	5
	3.3	OVER	ALL ASSESSMENT	5
4.0	Data	Validat	ion Report Select VOCs by USEPA 8260C	6
	4.1	DATA	PACKAGE COMPLETENESS	6
	4.2	TECHI	NICAL DATA VALIDATION	6
		4.2.1	Matrix Spike and Matrix Spike Duplicates	6
	4.3	OVER	ALL ASSESSMENT	6
5.0	Data	. Validat	ion Report Vinyl Chloride by USEPA 8260C-SIM	7
	5.1	DATA	PACKAGE COMPLETENESS	7
	5.2	TECHI	NICAL DATA VALIDATION	7
		5.2.1	Matrix Spike and Matrix Spike Duplicates	7
		5.2.2	Dilutions	7
	5.3	OVER	ALL ASSESSMENT	8

List of Appendices

Appendix A Qualifier Codes and Data Validation Guidelines

Appendix B Qualified Data Summary Table

List of Abbreviations and Acronyms

Abbreviation/ Acronym	Definition
Actonym	Definition
ARI	Analytical Resources, Inc. Laboratory
DNR	Do not report
LCS	Laboratory control sample
LCSD	Laboratory control sample duplicate
MS	Matrix spike
MSD	Matrix spike duplicate
RPD	Relative percent difference
QC	Quality control
SDG	Sample delivery group
USEPA	U. S. Environmental Protection Agency
VOC	Volatile organic compound

1.0 Project Narrative

1.1 OVERVIEW OF DATA VALIDATION

This report summarizes the results of the Compliance Screening (Level I) performed on the groundwater sample data for the Reconnaissance Probe Groundwater Sampling Event. A complete list of samples is provided below.

Project Sample Index

SDG (Batch)	Sample ID	Lab ID	8260C	8260C-SIM	200.8 Total	200.8 Dissolved
SM08	FB07-10-030711	SM08A/SM08K	SM08A	SM08A	SM08A	SM08K
SM08	FB08-13-030711	SM08B/SM08L	SM08B	SM08B	SM08B	SM08L
SM08	FB09-13-030711	SM08C/SM08M	SM08C	SM08C	SM08C	SM08M
SM08	FB10-13-030711	SM08D/SM08N	SM08D	SM08D	SM08D	SM08N
SM08	FB11-13-030711	SM08E/SM08O	SM08E	SM08E	SM08E	SM08O
SM08	FB15-13-030711	SM08F/SM08P	SM08F	SM08F	SM08F	SM08P
SM08	RB-030811	SM08G/SM08Q	SM08G	SM08G	SM08G	SM08Q
SM08	FB12-14-030811	SM08H/SM08R	SM08H	SM08H	SM08H	SM08R
SM08	FB13-19-030811	SM08I/SM08S	SM08I	SM08I	SM08I	SM08S
SM08	Trip Blank	SM08J	SM08J	SM08J		
SM91	FB14-12-031111	SM91A/SM91D	SM91A	SM91A	SM91A	SM91D
SM91	FB14-22-031111	SM91B/SM91E	SM91B	SM91B	SM91B	SM91E
SM91	FB14-38-031111	SM91C/SM91F	SM91C	SM91C	SM91C	SM91F

The chemical analyses were performed by ARI in Tukwila, Washington. Groundwater and field QC samples were collected between March 7, 2011 and March 11, 2011 and submitted to ARI for chemical analyses. The analytical methods include the following:

- Total Arsenic—USEPA Method 200.8
- Dissolved Arsenic—USEPA Method 200.8
- Select VOCs—USEPA Method 8260C
- Vinyl Chloride—USEPA Method 8260C-SIM

The data were reviewed using guidance and quality control criteria documented in the analytical methods, *National Functional Guidelines for Inorganic Data Review* (USEPA 1994 and 2004), *National Functional Guidelines for Organic Data Review* (USEPA 1999 and 2008) and the *Sampling and Analysis Plan, Appendix D of the Remedial Investigation/Feasibility Study Work Plan for South Park Landfill Site* (Farallon Consulting, LLC 2010).

Floyd|Snider's goal in assigning data assessment qualifiers is to assist in proper data interpretation. If values are estimated (J or UJ), data may be used for site evaluation and risk assessment purposes, but reasons for data qualification should be taken into consideration when interpreting sample concentrations. If values are assigned an R, the data are to be

rejected and should not be used for any site evaluation purposes. When compounds are analyzed at multiple dilutions, select results will be assigned a DNR qualification as a more appropriate result is reported from another dilution. If values have no data qualifier assigned, then the data meet the data quality objectives as stated in the documents and methods referenced above.

Data qualifier definitions, reasons, and validation criteria are included as Appendix A. The Qualified Data Summary Table is included in Appendix B. Data validation worksheets (excel worksheets) will be kept on file at Floyd|Snider.

2.0 Data Validation Report Total Arsenic by USEPA 200.8

This report documents the review of analytical data from the analyses of groundwater, field QC samples, and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

2.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

2.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	Lab sample duplicates
Extraction and analysis holding times	Reporting limits and reported results
Blank contamination	Target analyte list
Laboratory Control Sample (LCS)	¹ Other
Matrix Spike (MS)	

Notes

Appendix A presents data validation criteria tables for inorganic compound analysis. All QC requirements were met without exception, and did not require further evaluation. Additional notes included in ARI's case narrative are discussed below.

2.2.1 Other

The laboratory data reviewer noted that total arsenic values were at times less than the dissolved arsenic values for samples that had been centrifuged in SDG SM08, indicating possible precipitation of the arsenic before the centrifugation process.

The laboratory data reviewer noted that total arsenic values were equal to the dissolved arsenic values for sample FB14-38-031111 from SDG SM91, which had been centrifuged, indicating possible precipitation of the arsenic before the centrifugation process.

These laboratory observations are noted here for completeness. No data was qualified based on these observations.

¹ Additional laboratory sample notes are discussed below, but no data were qualified.

2.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPD.

All data, as reported by the lab, are acceptable for use.

3.0 Data Validation Report Dissolved Arsenic by USEPA 200.8

This report documents the review of analytical data from the analyses of groundwater, field QC samples, and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

3.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

3.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	MS
Extraction and analysis holding times	Lab sample duplicates
Blank contamination	Reporting limits and reported results
LCS	Target analyte list

All QC requirements were met without exception, and did not require further evaluation.

3.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by the matrix spike and laboratory control sample percent recovery values. Precision was acceptable, as demonstrated by the lab sample/lab sample duplicate RPDs.

All data, as reported by the lab, are acceptable for use.

4.0 Data Validation Report Select VOCs by USEPA 8260C

This report documents the review of analytical data from the analyses of groundwater, field QC samples, and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

4.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

4.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	¹ MS and MSD
Extraction and analysis holding times	Reporting limits and reported results
Blank contamination	Target analyte list
Surrogate recoveries	Internal standards and calibrations
LCS and LCSD	

Notes

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

4.2.1 Matrix Spike and Matrix Spike Duplicates

No MS/MSDs were performed due to insufficient sample volume for SDG SM91. Per USEPA Guidelines, no qualifications should be based on MS/MSD data alone. Therefore, it is with professional judgment that no data be qualified based on the lack of MS/MSD data as all other QA/QC objectives for this analysis were met. The LCS/LCSD recoveries and RPD are sufficient proof of accuracy and precision.

4.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS and LCS percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LSCD RPDs.

All data, as reported by the lab, are acceptable for use.

¹ Quality control results are discussed below, but no data were qualified.

5.0 Data Validation Report Vinyl Chloride by USEPA 8260C-SIM

This report documents the review of analytical data from the analyses of groundwater, field QC samples, and the associated laboratory QC samples. Samples were analyzed by ARI. Compliance Screening (Level I) was performed on all analytical results by Chell Black as the primary data reviewer, and secondary review was performed by Erin Breckel.

5.1 DATA PACKAGE COMPLETENESS

The laboratory submitted all required deliverables. The laboratory followed adequate corrective action processes and all anomalies were discussed in the case narrative.

5.2 TECHNICAL DATA VALIDATION

The QC requirements that were reviewed are listed below.

QC Requirements

Cooler temperature and preservation	¹ MS and MSD
Extraction and analysis holding times	¹ Dilutions
Blank contamination	Reporting limits and reported results
Surrogate recoveries	Target analyte list
LCS and LCSD	Internal standards and calibrations

Notes

Appendix A presents data validation criteria tables for organic compound analysis. QC requirements that were met without exception are not discussed below. QC requirements that required further evaluation and had exceptions to the validation criteria are discussed below.

5.2.1 Matrix Spike and Matrix Spike Duplicates

No MS/MSDs were performed due to insufficient sample volume for SDG SM91. Per USEPA Guidelines, no qualifications should be based on MS/MSD data alone. Therefore, it is with professional judgment that no data be qualified based on the lack of MS/MSD data as all other QA/QC objectives for this analysis were met. The LCS/LCSD recoveries and RPD are sufficient proof of accuracy and precision.

5.2.2 Dilutions

The Vinyl Chloride result for sample FB14-23-031111 from SDG SM91 exceeded the calibration range of the detector. The result will be marked DNR, and the Vinyl Chloride result for this sample from the 8260C analysis will be considered the valid reportable result.

¹ Quality control results are discussed below, but no data were qualified.

5.3 OVERALL ASSESSMENT

As was determined by this evaluation, the laboratory followed the specified analytical method. Accuracy was acceptable, as demonstrated by MS and LCS percent recovery values. Precision was acceptable, as demonstrated by the MS/MSD RPDs and LCS/LSCD RPDs.

All data are acceptable for use as qualified, see Appendix B for details.

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix F Data Validation Reports

Soil Gas Data Validation Reports

Herrera Environmental Consultants, Inc.

Memorandum

To Project File 10-04820-000

From Gina Catarra, Herrera Environmental Consultants

Date September 23, 2011

Subject Data Quality Assurance Review of South Park RI/FS Air Monitoring Data

This memorandum presents a review of data quality for 6 air samples collected for the South Park RI/FS on May 11th, 2011. Air Toxics, Ltd., of Folsom, California analyzed the samples for:

Volatile organic compounds (VOCs) by modified method TO-15

Results for the following samples were validated.

Sample ID	Date Collected	Matrix	Analyses
GP-27	5/11/11	Air	VOCs
GP-25	5/11/11	Air	VOCs
S. Piezo Transfer Sta.	5/11/11	Air	VOCs
KMW-05	5/11/11	Air	VOCs
N. Piezo Transfer Sta.	5/11/11	Air	VOCs
KMW-04	5/11/11	Air	VOCs

The laboratory's performance was reviewed in accordance with quality control (QC) criteria established by the laboratory and in the specified method.

Quality control data summaries submitted by the laboratories were reviewed; raw data were not submitted by the laboratories. Data qualifiers (flags) were added to the sample results in the laboratory reports. Data validation results are summarized below, followed by definitions of data qualifiers.

Custody, Preservation, Holding Times, and Completeness—Acceptable

The samples were properly preserved and sample custody was maintained from sample collection to receipt at the laboratory. All samples were analyzed within the required method holding time. The laboratory report was complete and contained results for all samples and tests requested on the chain-of-custody (COC) form.

Laboratory Reporting Limits—Acceptable with Qualification

The laboratory reporting limits were reasonable for the methods. Reporting limits for samples GP-25, KMW-05, and KMW-04 were elevated because dilutions of these samples were performed due to high level of target compounds (samples GP-25 and KMW-05) or non-target compounds (KMW-04).

Sample GP-25 had reported results for hexane and cyclohexane, and sample KMW-05 had a result for 2,2,4-trimethylpentane that exceeded the calibration range of the instrument. Hexane and cyclohexane results for sample GP-27, and the 2,2,4-trimethylpentane result for sample KMW-05 were qualified as estimated (J), as shown in the following table.

The laboratory reported a carbon disulfide result for sample KMW-05 that was below the reporting limit. The reported result for carbon disulfide was qualified as estimated (J) by the laboratory, as shown in the following table.

Sample ID	Sample Date	Parameter	Reason for Qualification	Qualifier
GP-25	5/11/11	Hexane	Exceeded instrument calibration range	J
GP-25	5/11/11	Cyclohexane	Exceeded instrument calibration range	J
KMW-05	5/11/11	Carbon disulfide	Detected result less than reporting limit	J
KMW-05	5/11/11	2,2,4-Trimethylpentane	Exceeded instrument calibration range	J

Instrument Calibration Verification—Acceptable with Qualification

Continuing calibration verification (CCV) samples were analyzed with the samples, as required by the method. Chloromethane recovery (69 percent) in the CCV analyzed on 5/26/2011 at 7:13 am was below the 70 percent recovery limit established by the method. Chloromethane results for the associated samples were qualified by the laboratory as estimated non-detected (UJ), as shown in the following table.

Sample ID	Sample Date	Parameter	Reason for Qualification	Qualifier
KMW-05	5/11/11	Chloromethane	Low CCV recovery	J
N. Piezo Transfer Sta.	5/11/11	Chloromethane	Low CCV recovery	J
KMW-04	5/11/11	Chloromethane	Low CCV recovery	J

Method Blank Analysis—Acceptable

Method blanks were analyzed at the required frequency. Method blanks did not contain levels of target analytes above the laboratory reporting limits.

Laboratory Control Sample Analysis—Acceptable

Laboratory control sample and laboratory control sample duplicates (LSC/LCSD) were analyzed with samples at the required frequency. The percent recovery values for all compounds met the criteria established by the method (70 to 130 percent).

Surrogate Analysis—Acceptable

Three surrogate compounds (toluene-d8, 1,2-dichloroethane-d4, and 4-bromofluorobenzene) were added to all samples. The percent recovery values (ranging from 94 to 124 percent) for all surrogate compounds met the 70 to 130 percent criteria established by the method.

Matrix Spike Analysis—Not Analyzed

Matrix spike samples were not analyzed.

Laboratory Duplicate Analysis—Not Analyzed

Laboratory duplicates were not analyzed.

Definition of Data Qualifiers

The following data qualifier definitions are taken from the laboratory report narrative.

- U Compound analyzed for but not detected above the reporting limit.
- **J** The associated value is an estimated quantity.
- **UJ** Non-detected compound associated with low bias in the CCV.

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix G Former West Ditch Soil Sample Photographs and Grain Size Analyses

Table of Contents

This appendix contains the following items:

- Soil Sample Photographs
- Grain Size Analyses

South Park Landfill RI

Fromer West Ditch Soil Sampling – Culvert Sample Location (SS-P)

SS-P sample location looking toward Former West Ditch

The culvert is buried approximately 4.5 feet below ground surface with the pipe estimated at 6 to 8 inches in diameter. Clear water was observed discharging at the surface estimated at about 30 gpm. A stainless steel bucket type sampler was used to catch the flow of material exiting the culvert.

Soil collected from culvert

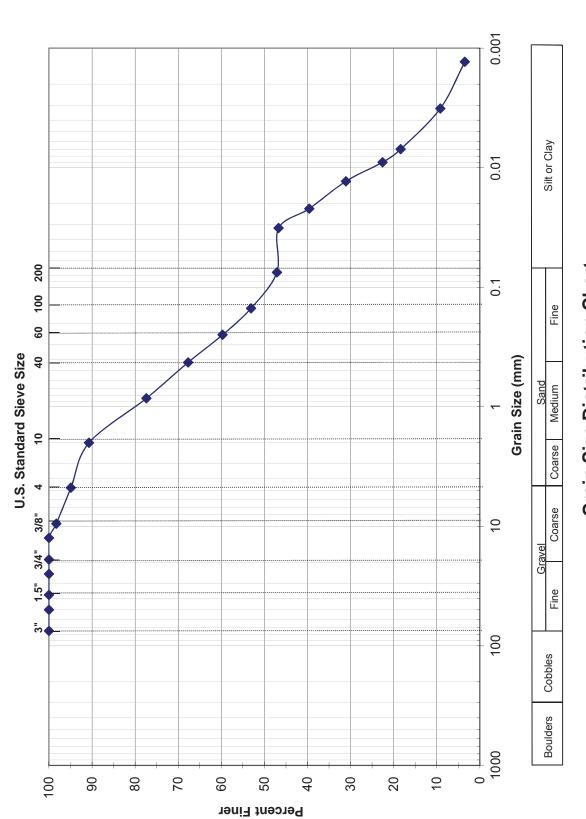
Soil consisted of medium to coarse sand with organics, brick, plastic and glass debris

Former West Ditch Soil Sampling – Sample Locations (SS-1, SS-2, SS-3)

Piston Corer – 8 feet in length pushed into West Ditch soils at SS-2. Two feet of standing water in ditch. About 6 feet of soil recovered in core.

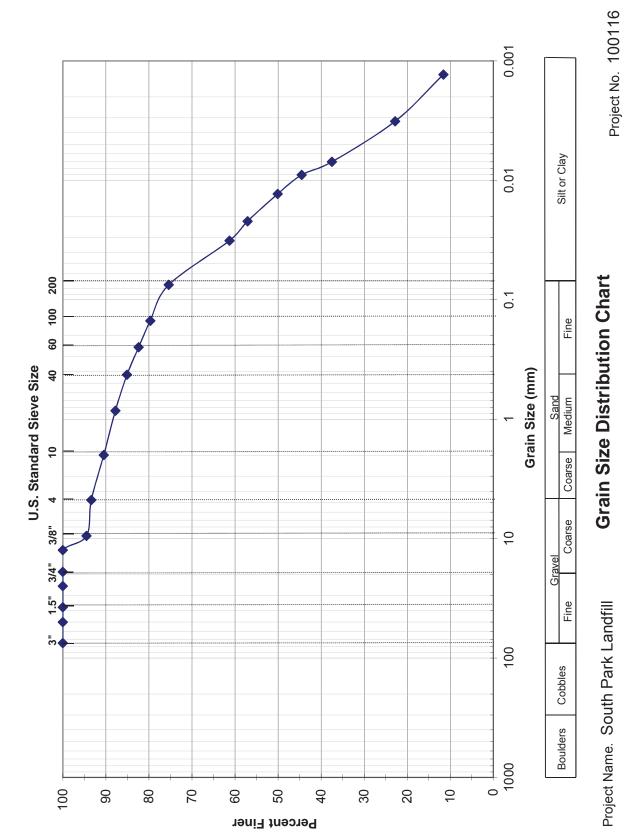
Former West Ditch Core Sample SS-03

Former West Ditch Core SS-2 with approx. 6 feet of recovered soil

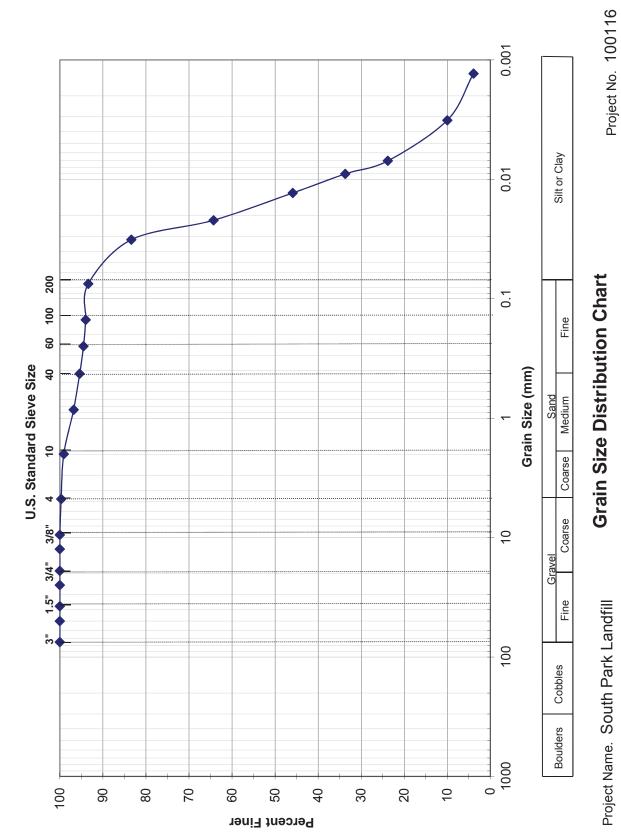

Former West Ditch Soil – SS-2 0 to 4 feet depth

Former West Ditch Soil – SS-2 4 to 6 feet depth

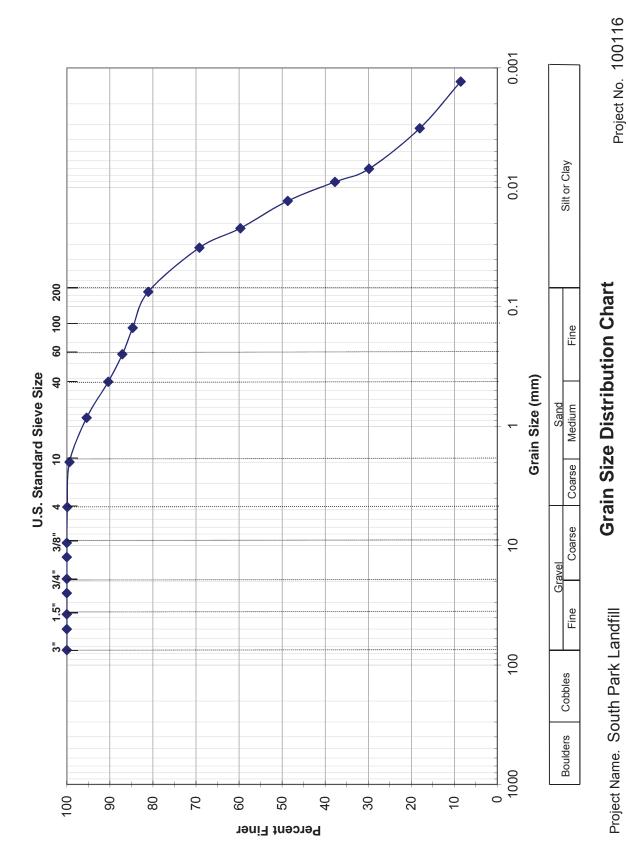
SS-3 4 to 6 foot depth



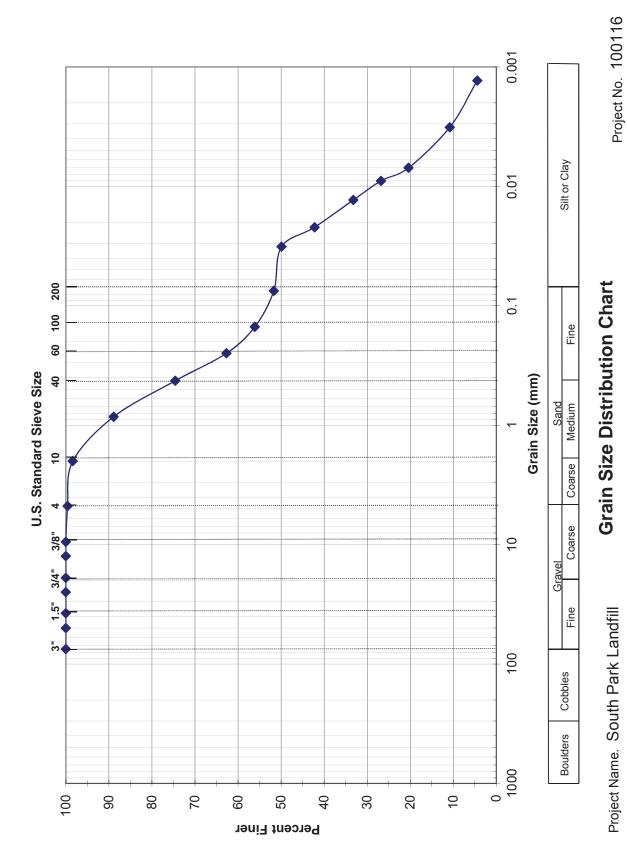
Grain Size Distribution Chart


Project No. 100116

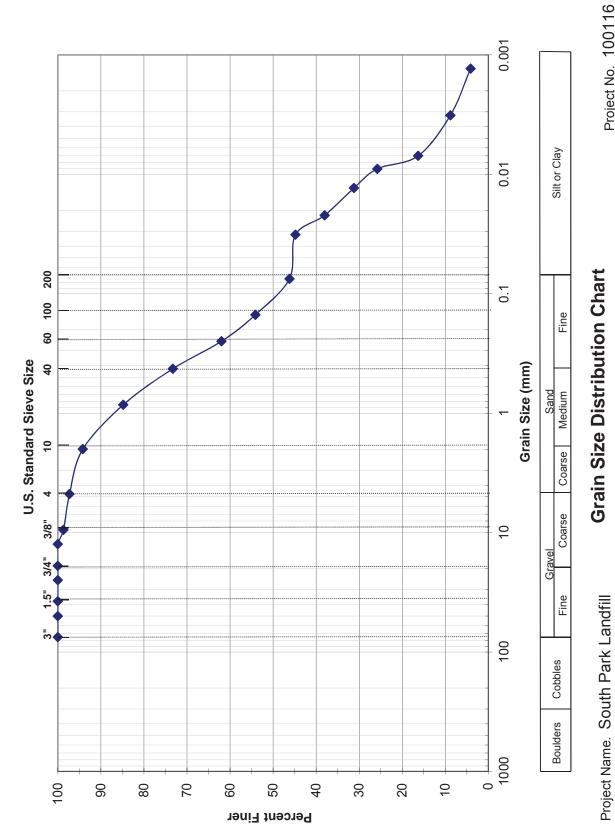
Project Name. South Park Landfill


Boring: SS-01 Sample ID (depth): SS-01-0-2-120610 (0 to 2 ft)

Boring: SS-01 Sample ID (depth): SS-01-2-4-120610 (2 to 4 ft)

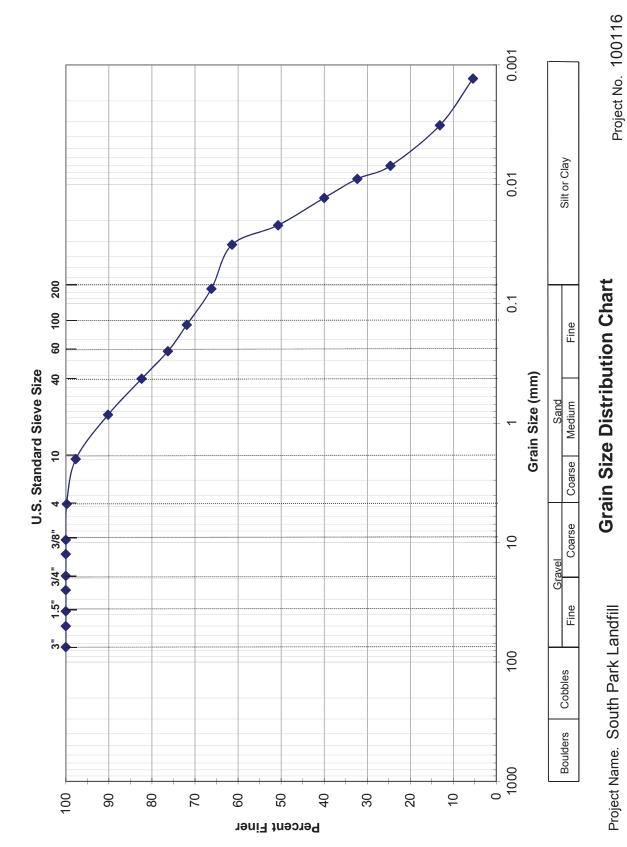


Boring: SS-01 Sample ID (depth): SS-01-4-6-120610 (4 to 6 ft)

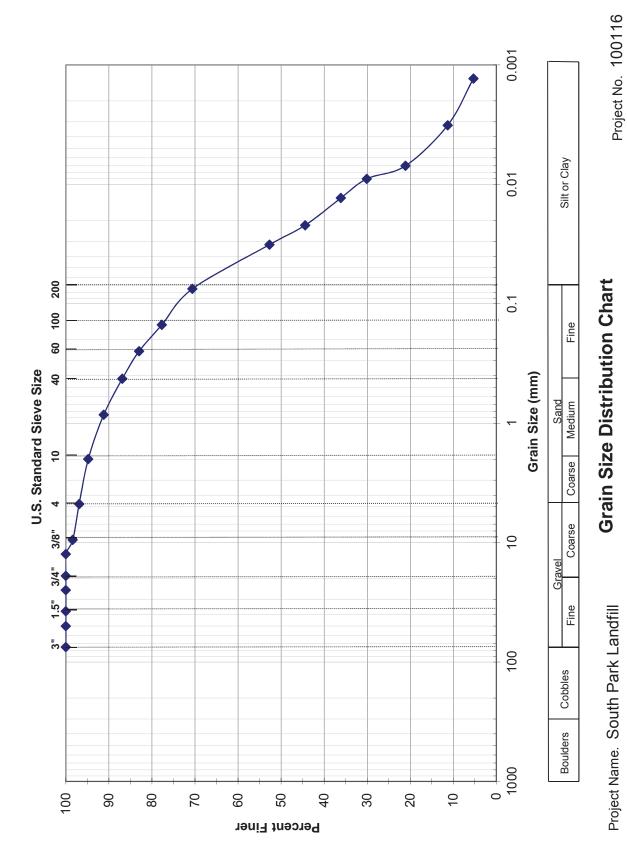


.

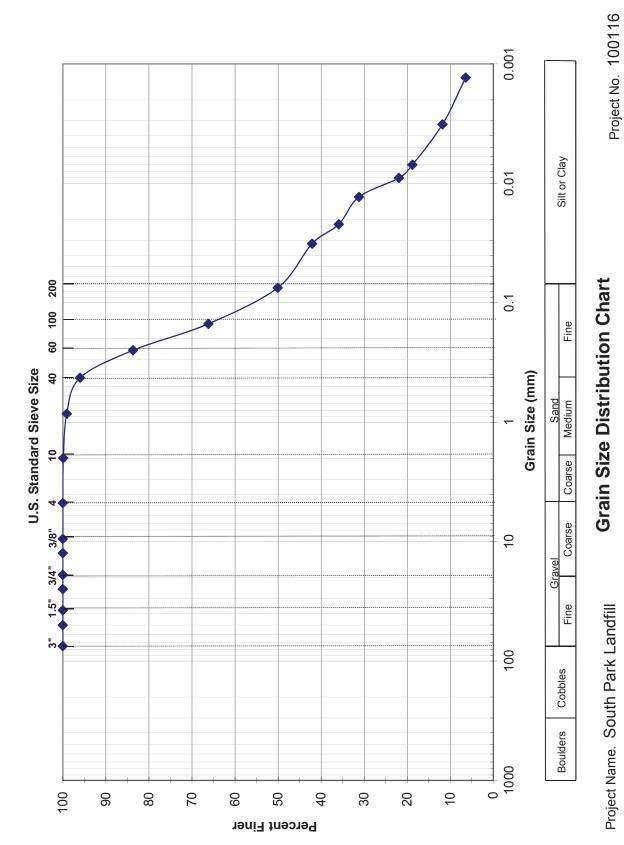
Boring: SS-02 Sample ID (depth): SS-02-0-2-120610 (0 to 2 ft)

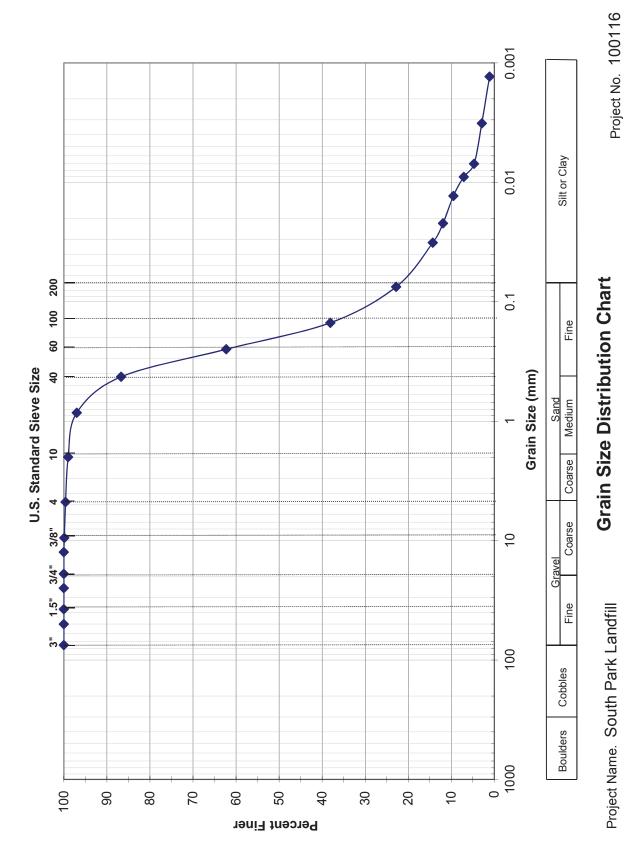


Boring: SS-02 Sample ID (depth): SS-02-2-4-120610 (2 to 4 ft)



Project No. 100116


Boring: SS-02 Sample ID (depth): SS-02-4-6-120610 (4 to 6 ft)


Boring: SS-02 Sample ID (depth): SS-02-6-8-120610 (6 to 8 ft)

Boring: SS-03 Sample ID (depth): SS-03-0-2-120610 (0 to 2 ft)

Boring: SS-03 Sample ID (depth): SS-03-2-4-120610 (2 to 4 ft)

Boring: SS-03 Sample ID (depth): SS-03-4-6-120610 (4 to 6 ft)

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix H Dioxin/Furan Sample Photographs and Lab Multi-Increment Sampling Composite Process

Field samples were presented to the lab in 4 oz jars. Duplicate samples were archived and frozen.

Samples from all three decision units were composited, dried, sieved to 2 mm, and split.

Drying was performed in trays in a dedicated room. Trays were protected by aluminum foil tent. Soil was turned 2-3 times per day for approximately three days.

A stainless steel 2mm sieve was used by hand to remove large particles. A shaker table was not used. For DU1, a large quantity of leaves, twigs, and roots were removed; these organics appeared to represent a small mass fraction of the samples. For DU3, the sieved quantity removed was approximately half of the sample mass.

Figure 1: 2mm Sieve

Figure 2: DU 1 Sample fraction not passing 2mm sieve.

Figure 3: DU 2 Sample fraction not passing 2mm sieve.

Figure 4: DU 3 Sample fraction not passing 2mm sieve.

Splits were first attempted using a Jones-type or chute riffle splitter. However, significant fines were present in the DU1 sample and easily became airborne while being placed in and falling from the splitter. These fines were taken up by the hood ventilation. This loss of fines would have continued with each of multiple passes. As dioxin has been known to be preferentially present on very fine particles, this loss of fines was judged to be unacceptable.

Figure 5: Jones-type or chute riffle splitter

The splits followed an Army Corps of Engineers Multi-Increment protocol: The laboratory lots were placed in trays at approximately $\frac{1}{2}$ " deep. The trays were overlaid by a 30 section grid. Samples were procured by taking approximately a 0.3 ± 0.1 gram subsample from each section to yield a final 10 gr sample for analysis. A stainless steel V-spatula was used to remove soil from a random location in each section for each sample. The technician selected the random locations. After a sample was generated, the soil was smoothed before taking another round of 0.3 gr subsamples. For each decision unit, five 10 gr samples were prepared for dioxin analysis and three 5 gr samples were taken for TOC analysis.

Figure 6: Splitting tray with 30 section grid

Figure 7: Detail photo of grid sub-section sample

Figure 8: Grid sub-section sampling

Figure 9: Checking the mass of each grid sub-section sample

DECISION UNIT 1 SAMPLE TABLE

Location number	Time	Soil Descriptions
DU1-1C-0.5-113010	930	930 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-2R-0.5-113010	935	935 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-3L-0.5-113010	942	942 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-4C-0.5-113010	946	946 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-5R-0.5-113010	950	950 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-6L-0.5-113010	926	956 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-7C-0.5-113010	1000	1000 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-8R-0.5-113010	1007	1007 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-9L-0.5-113010	1015	1015 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-10C-0.5-113010	1020	1020 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-11R-0.5-113010	1030	1030 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-12L-0.5-113010	1036	1036 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-13C-0.5-113010	1045	1045 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-14R-0.5-113010	1050	1050 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-15L-0.5-113010	1054	1054 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-16C-0.5-113010	1127	1127 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-17R-0.5-113010	1137	1137 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-18L-0.5-113010	1142	1142 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-19C-0.5-113010	1153	Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-20R-0.5-113010	1159	1159 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-21L-0.5-113010	1206	1206 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-22C-0.5-113010	1211	1211 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-23R-0.5-113010	1217	1217 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-24L-0.5-113010	1222	1222 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-25C-0.5-113010	1226	1226 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-26R-0.5-113010	1235	1235 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-27L-0.5-113010	1247	1247 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-28C-0.5-113010	1257	1257 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-29R-0.5-113010	1300	1300 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots
DU1-30L-0.5-113010	1305	1305 Very soft, wet, dark brown to black, organic muck abundant organic including leaves, twigs and roots

Date: 12/2/10 Field Personnel: AET, MAR, ES

South Park Landfill Project: 100116

DECISION UNIT 2 SAMPLE TABLE

Location number	Time	Soil description	Comments:
DU2-1-0.5-120210	845	Loose, moist, dark brown sandy silt, top soil. Trace brick, foil, plastic and fabric	pos
DU2-2-0.5-120210	851	851 Loose, moist, dark brown sandy silt, top soil	pos
DU2-3-0.5-120210	857	Loose, moist, dark brown sandy silt, top soil	pos
DU2-4-0.5-120210	925	925 Loose, moist, dark brown sandy silt, top soil	pos
DU2-5-0.5-120210	930	930 Loose, moist, dark brown sandy silt, top soil	pos
DU2-6-0.5-120210	943	Loose, moist, dark brown sandy silt, top soil over brown m-f sand. Trace plastic	pos
DU2-7-0.5-120210	948	948 Loose, moist, dark brown slightly silty sand	pos
DU2-8-0.5-120210	955	955 Loose, moist, dark brown sandy silt, top soil. Trace brick and glass	pos
DU2-9-0.5-120210	1000	1000 Loose, moist, dark brown sandy silt, top soil. Abundant leaves and acorns.	pos
DU2-10-0.5-120210	1007	1007 Loose, moist, dark brown sandy silt, top soil. Abundant leaves and acorns.	pos
DU2-11-0.5-120210	1034	1034 Loose, moist, dark brown sandy silt, top soil	pos
DU2-12-0.5-120210	1013	1013 Loose, moist, dark brown sandy silt, top soil	pos
DU2-13-0.5-120210	1015	1015 Loose, moist, dark brown sandy silt, top soil	pos
DU2-14-0.5-120210	1110	Loose, moist, dark brown sandy silt, top soil	pos
DU2-15-0.5-120210	1119	1119 Loose, moist, dark brown slightly gravelly sandy silt, top soil	pos
DU2-16-0.5-120210	1050	1050 Loose, moist, dark brown sandy silt, top soil over brown m-f sand.	pos
DU2-17-0.5-120210	1116	1116 Loose, moist, dark brown slightly silty sand	pos
DU2-18-0.5-120210	1122	1122 Loose, moist, dark brown sandy silt, top soil	pos
DU2-19-0.5-120210	1125	1125 Loose, moist, dark brown sandy silt, top soil	pos
DU2-20-0.5-120210	1250	1250 Loose, moist, dark brown sandy silt, top soil	sod, N of fence.
DU2-21-0.5-120210	1253	1253 Loose, moist, brown gravel trace silt and sand	sod N of fence
DU2-22-0.5-120210	1130	1130 Loose, moist, dark brown sandy silt, top soil	pos
DU2-23-0.5-120210	1255	1255 Loose, moist, brown slightly sandy gravel	bare soil, N of fence
DU2-24-0.5-120210	1131	1131 Loose, moist, dark brown sandy silt, top soil over brown m-f sand.	pos
DU2-25-0.5-120210	1136	1136 Loose, moist, dark brown sandy silt, top soil over brown sandy gravel	pos
DU2-26-0.5-120210	1138	1138 Loose, moist, dark brown sandy silt, top soil over brown sandy gravel	pos
DU2-27-0.5-120210	1142	1142 Loose, moist, dark brown sandy silt, top soil over brown sandy gravel	pos
DU2-28-0.5-120210	1200	Loose, moist, dark brown sandy silt, top soil over brown sandy gravel	pos
DU2-29-0.5-120210	1105	1105 Loose, moist, dark brown sandy silt, top soil. Abundant leaves	pos
DU2-30-0.5-120210	1105	1105 Loose, moist, dark brown slightly gravelly, sandy silt, top soil. Trace paper	pos

DECISION UNIT 3 SAMPLE TABLE

DU3-1-0.5-120310 DU3-2-0.5-120310 DU3-3-0.5-120110 DU3-4-0.5-120110 DU3-5-0.5-120310 DU3-6-0.5-120310	1100 Medium dense, moist, brown, silty gravel, abundant roots
DU3-2-0.5-120310 DU3-3-0.5-120110 DU3-4-0.5-120110 DU3-5-0.5-120310 DU3-7-0.5-120310	
DU3-3-0.5-120110 DU3-4-0.5-120110 DU3-5-0.5-120110 DU3-6-0.5-120310 DU3-7-0.5-120310	1040 Medium dense, moist, brown, silty gravel, abundant roots
DU3-4-0.5-120110 DU3-5-0.5-120110 DU3-6-0.5-120310 DU3-7-0.5-120310	1515 Dense, moist, brownish-gray, silty sand with gravel, abundant roots
DU3-5-0.5-120110 DU3-6-0.5-120310 DU3-7-0.5-120310	1450 Dense, moist, brownish-gray, silty sand with gravel, abundant roots
DU3-6-0.5-120310 DU3-7-0.5-120310	1430 Dense, moist, brownish-gray, silty sand with gravel, abundant roots
DU3-7-0.5-120310	1225 Medium dense, moist, brown, silty gravel, abundant roots
	1142 Medium dense, moist, brown, silty gravel, abundant roots
DU3-8-0.5-120310	1102 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-9-0.5-120310	1042 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-10-0.5-120110	1510 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-11-0.5-120110	1445 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-12-0.5-120110	1425 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-13-0.5-120310	1215 Medium dense, moist, brown, silty gravel, abundant roots
DU3-14-0.5-120310	1208 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-15-0.5-120310	1156 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-16-0.5-120310	1105 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-17-0.5-120310	1050 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-18-0.5-120110	1500 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-19-0.5-120110	1440 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-20-0.5-120110	1415 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-21-0.5-120210	1422 Medium dense, moist, brown, silty gravel, abundant roots
DU3-22-0.5-120210	1427 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-23-0.5-120310	1210 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-24-0.5-120310	1145 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-25-0.5-120310	1109 Medium dense, moist brownish-gray, sand with silt and gravel, trace roots
DU3-26-0.5-120210	1510 Medium dense, moist, brown, silty sand with gravel abundant organics, roots
DU3-27-0.5-120310	836 Dense, moist, brown, silty sand with gravel
DU3-28-0.5-120310	912 Dense, moist, brown, silty sand with gravel
DU3-29-0.5-120310	914 Dense, moist, brown, silty sand with gravel
DU3-30-0.5-120210	1406 Dense, moist, brown, silty sand with gravel with organic, roots
DU3-31-0.5-120310	1020 Dense, moist, brown, silty sand with gravel with organic, roots
DU3-32-0.5-120210	1435 Dense, moist, brown, silty sand with gravel

DECISION UNIT 3 SAMPLE TABLE (continued)

Location number	Time	Soil Decriptions
DU3-33-0.5-120210	1449	1449 Dense, moist, brown, silty sand with gravel
DU3-34-0.5-120210	1458	1458 Dense, moist, brown, silty sand with gravel
DU3-35-0.5-120210	1513	1513 Dense, slightly moist, gray, silty sand with gravel, recycled concrete
DU3-36-0.5-120310	830	830 Dense, slightly moist, gray, silty sand with gravel, recycled concrete
DU3-37-0.5-120310	910	910 Dense, moist, brown, silty sand with gravel
DU3-38-0.5-120310	918	Dense, moist, brown, silty sand with gravel
DU3-39-0.5-120210	1411	1411 Dense, moist, brown, silty sand with gravel
DU3-40-0.5-120210	1357	Dense, moist, brown, silty sand with gravel
DU3-41-0.5-120210	1440	1440 Dense, slightly moist, gray, silty sand with gravel, recycled concrete
DU3-42-0.5-120210	1445	Dense, slightly moist, gray, silty sand with gravel, recycled concrete
DU3-43-0.5-120210	1452	1452 Dense, slightly moist, gray, silty sand with gravel, recycled concrete
DU3-44-0.5-120210	1511	Dense, slightly moist, gray, silty sand with gravel, recycled concrete
DU3-45-0.5-120310	840	840 Dense, slightly moist, gray, silty sand with gravel, recycled concrete
DU3-46-0.5-120310	910	Dense, moist, brown, silty sand with gravel
DU3-47-0.5-120310	855	855 Dense, moist, brown, silty sand with gravel
DU3-48-0.5-120210	1350	1350 Dense, moist, brown, silty sand with gravel with organic, roots
DU3-49-0.5-120210	1352	1352 Dense, moist, brown, silty sand with gravel
DU3-50-0.5-120210	1355	1355 Dense, moist, brown, silty sand with gravel with organic, roots
DU3-51-0.5-120210	1348	1348 Dense, moist, brown, silty sand with gravel
DU3-52-0.5-120210	1340	1340 Dense, moist, brown, silty sand with gravel
DU3-53-0.5-120210	1344	1344 Dense, moist, brown, silty sand with gravel
DU3-54-0.5-120210	1331	1331 Dense, moist, brown, silty sand with gravel
DU3-55-0.5-120210	1331	1331 Dense, moist, brown, silty sand with gravel
DU3-56-0.5-120210	1315	1315 Dense, moist, brown, silty sand with gravel
DU3-57-0.5-120210	1328	1328 Dense, moist, brown, silty sand with gravel with organic, roots
DU3-58-0.5-120210	1322	1322 Dense, moist, brown, silty sand with gravel with organic, roots
DU3-59-0.5-120210	1317	1317 Dense, moist, brown, silty sand with gravel with organic, roots
DU3-60-0.5-120210	1533	1533 Soft, very moist to wet organic silt, abundant roots, leaves

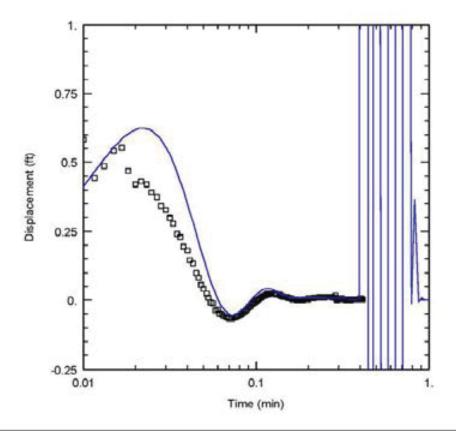
South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix I Hydrogeological Data and Groundwater Elevation Contours

Table of Contents

This appendix contains the following items:


- Slug Test Data
- Groundwater Elevation Contour Maps

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix I Hydrogeological Data and Groundwater Elevation Contours

Slug Test Data

WELL TEST ANALYSIS

Data Set: P:\SparkIf VB9741B\RI FS\Slug Testing\Aqtesolv files\MW25-#1fBZ.aqt

Date: 09/27/11 Time: 14:14:37

PROJECT INFORMATION

Company: Aspect Client: SouthPark Test Well: MW-25 Test Date: 1/20/11

AQUIFER DATA

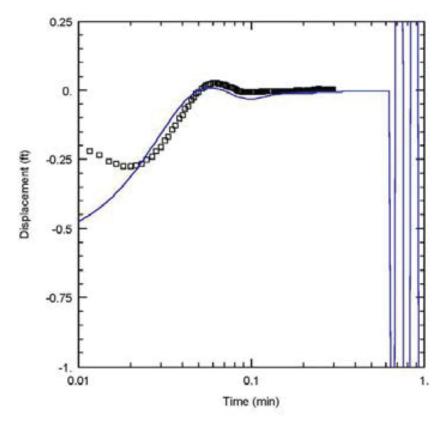
Saturated Thickness: 25.5 ft Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA (MW25#1)

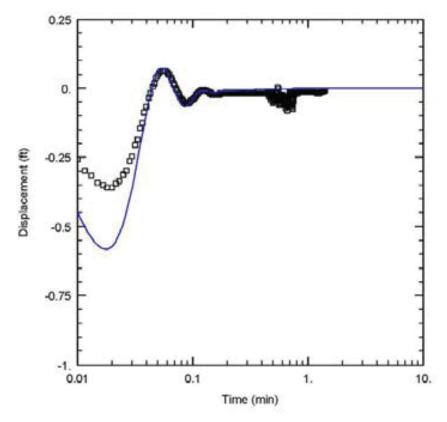
Initial Displacement: 1.1 ft

Total Well Penetration Depth: 7. ft

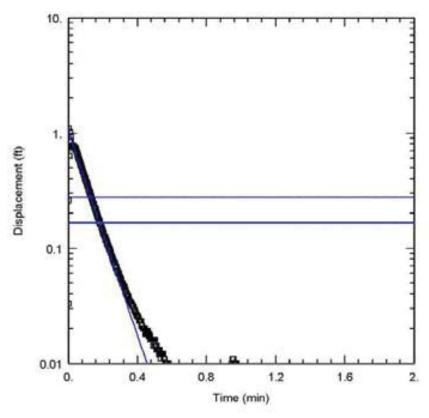
Casing Radius: 0.0833 ft

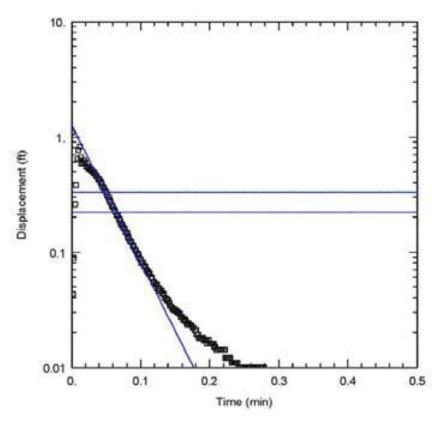

Static Water Column Height: 17.64 ft

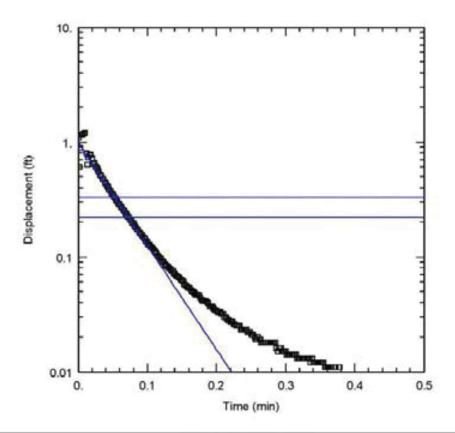
Screen Length: 5, ft Well Radius: 0.4375 ft


SOLUTION

Aquifer Model: Confined Solution Method: Butler-Zhan

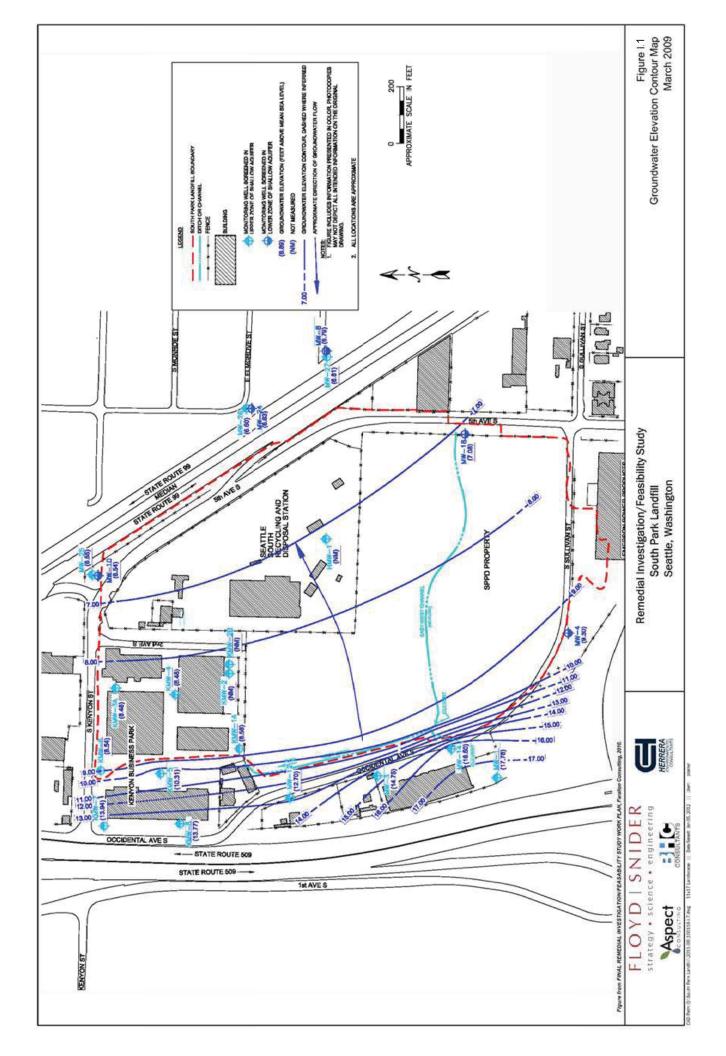

Kr = 0.1018 ft/min Ss = 0.0001 ft^{-1} Kz/Kr = 0.1 Le = 30. ft

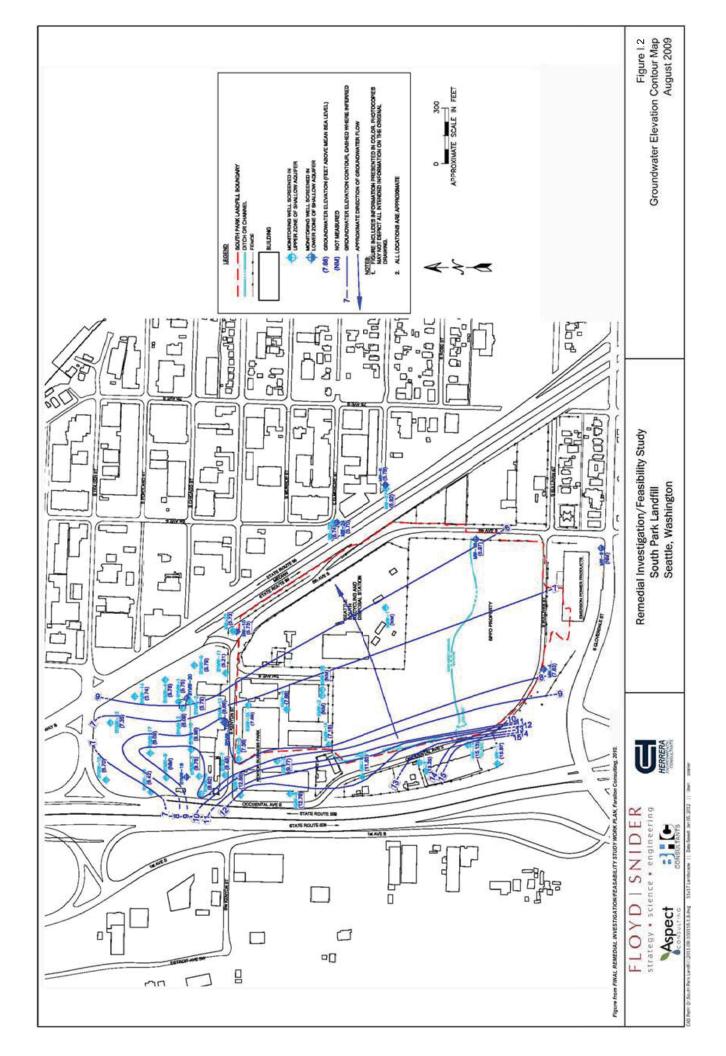

	LL TEST ANALYSIS
Data Set: P:\Sparklf VB9741B\RI FS\Slug Te Date: 09/27/11	Time: 14:13:58
PRO	JECT INFORMATION
Company: Aspect Client: SouthPark Test Well: MW-10 Test Date: 1/20/11	
	AQUIFER DATA
Saturated Thickness: 33.5 ft	Anisotropy Ratio (Kz/Kr): 0.1
WEL	L DATA (MW10-#4R)
Initial Displacement: -0.55 ft Total Well Penetration Depth; 33. ft Casing Radius: 0.0833 ft	Static Water Column Height: 34.5 ft Screen Length: 10. ft Well Radius: 0.4375 ft
	SOLUTION
Aquifer Model: Confined	Solution Method: Butler-Zhan
Kr = 0.04464 ft/min	Ss = 3.0E-5 ft ⁻¹
Kz/Kr = 0.1	Le = 35.48 ft

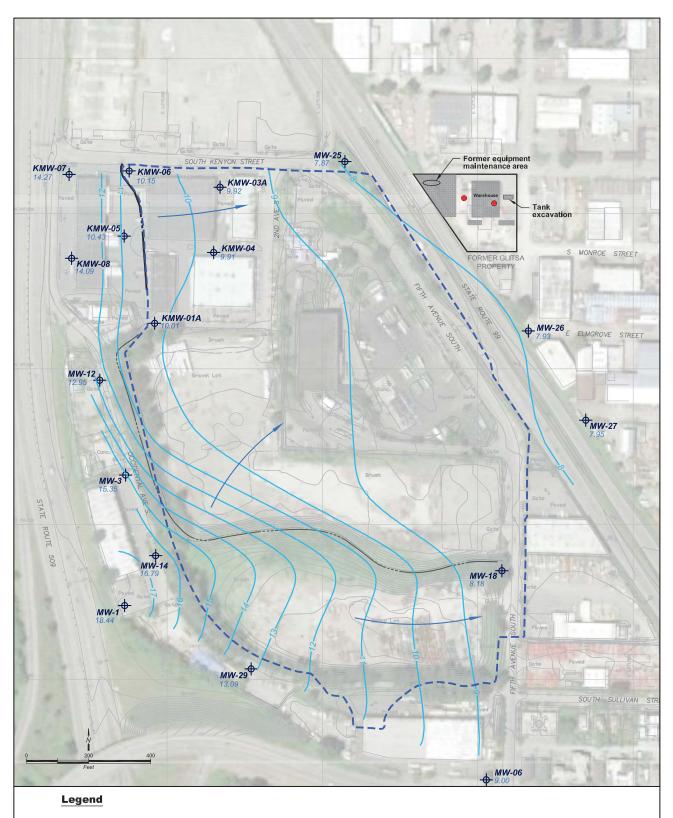

Data Set: P:\Sparkif VB9741B\RI FS\Slug Te:	The state of the s
Date: 09/27/11	Time: 14:14:45
PROJ	ECT INFORMATION
Company: Aspect Client: SouthPark Test Well: MW-26 Test Date: 1/20/11	
<u> </u>	AQUIFER DATA
Saturated Thickness: 37.5 ft	Anisotropy Ratio (Kz/Kr): 0.1
WEL	L DATA (MW26#1)
Initial Displacement: -1.1 ft	Static Water Column Height: 19.48 ft
Total Well Penetration Depth: 13.5 ft	Screen Length: 10. ft
Casing Radius: 0.0833 ft	Well Radius: 0.4375 ft
	SOLUTION
Aquifer Model: Confined	Solution Method: Butler-Zhan
Kr = 0.07218 ft/min	Ss = 0.0001 ft ⁻¹
Kz/Kr = 0.1	Le = 16.87 ft

WEL	L TEST ANALYSIS
Data Set: P:\Sparkif VB9741B\RI FS\Slug Tes	
Date: 09/27/11	Time: <u>14:14:13</u>
PROJE	ECT INFORMATION
Company: Aspect Client: SouthPark Test Well: MW-24 Test Date: 1/20/11	
Δ	QUIFER DATA
Saturated Thickness: 38. ft	Anisotropy Ratio (Kz/Kr): 0.1
WELI	DATA (MW24-#3)
Initial Displacement: 1.1 ft Total Well Penetration Depth: 39.45 ft Casing Radius: 0.0833 ft	Static Water Column Height: 39.45 ft Screen Length: 10. ft Well Radius: 0.4375 ft
	SOLUTION
Aquifer Model: Confined	Solution Method: Hvorslev
K = 0.01767 ft/min	y0 = 1.053 ft

	L TEST ANALYSIS
Data Set: P:\Sparkif VB9741B\RI FS\Slug Tes Date: 09/27/11	Time: 14:14:54
PROJE	ECT INFORMATION
Company: Aspect Client: SouthPark Test Well: MW-27 Test Date: 1/20/11	
Δ	QUIFER DATA
Saturated Thickness: 49. ft	Anisotropy Ratio (Kz/Kr): 0.1
WELL	DATA (MW27-#1)
Initial Displacement: 1.1 ft Total Well Penetration Depth: 15.44 ft Casing Radius: 0.0833 ft	Static Water Column Height: 15.44 ft Screen Length: 10. ft Well Radius: 0.4375 ft
	SOLUTION
Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 0.02883 ft/min	y0 = 1.27 ft

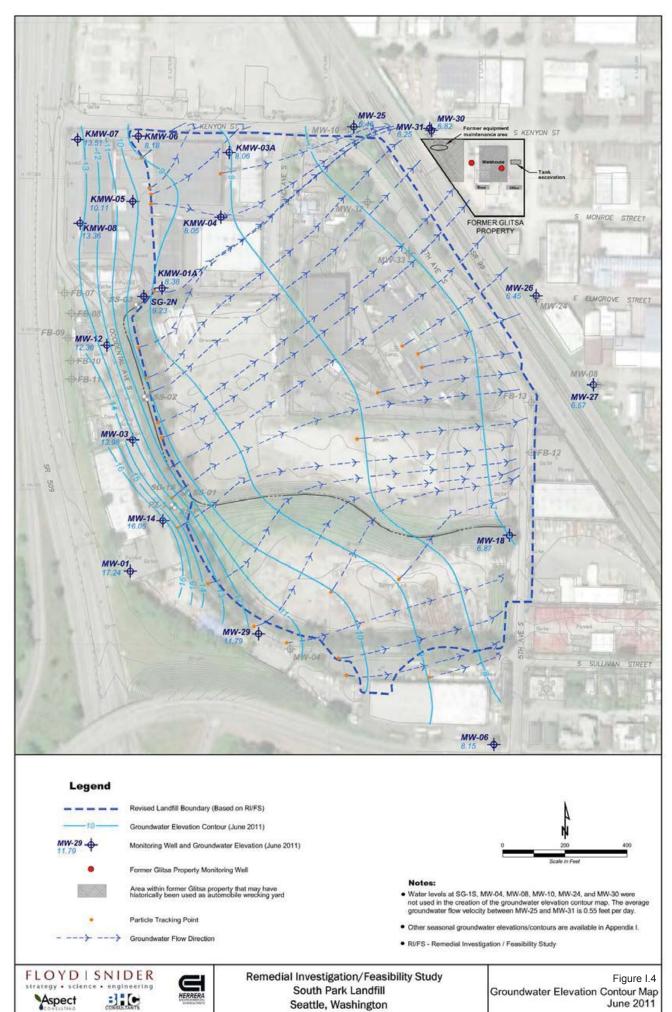

WELI	L TEST ANALYSIS
Data Set: P:\Sparkif VB9741B\RI FS\Slug Tes	sting\Aqtesolv files\MVV8-7fBR.aqt
Date: 09/27/11	Time: 14:16:05
PROJE	ECT INFORMATION
Company: Aspect	
Project: SouthPark	
Test Well: MW8	
Test Date: 1/20/11	
A	QUIFER DATA
Saturated Thickness: 44.36 ft	Anisotropy Ratio (Kz/Kr): 0.1
WEL	L DATA (MW8-7)
Initial Displacement: 1.1 ft	Static Water Column Height: 30.86 ft
Total Well Penetration Depth: 30.86 ft	Screen Length: 10. ft
Casing Radius: 0.0833 ft	Well Radius: 0.4375 ft
	SOLUTION
Aquifer Model: Unconfined	Solution Method: Bouwer-Rice
K = 0.02466 ft/min	y0 = 1. ft

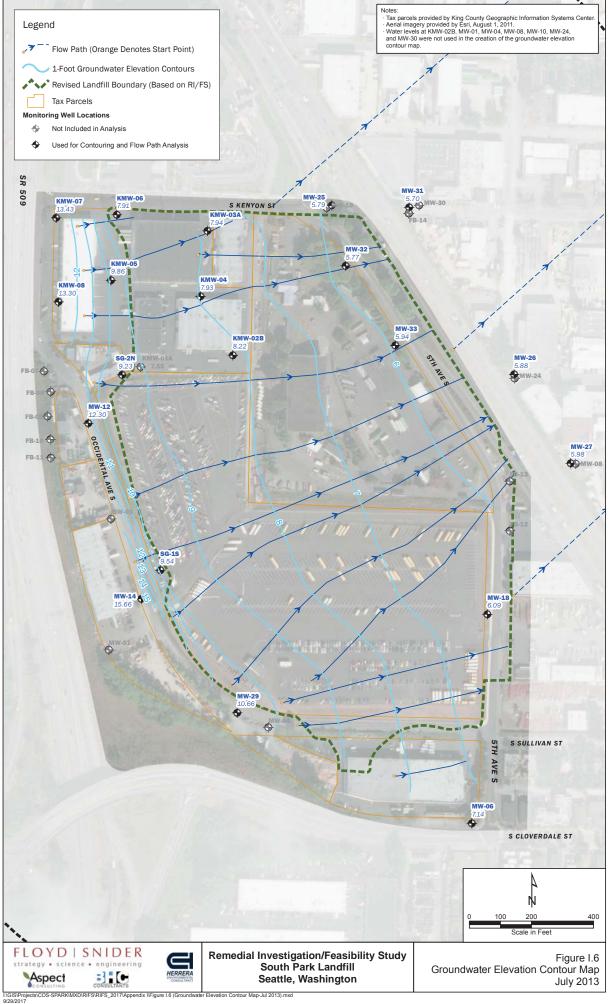

South Park Landfill

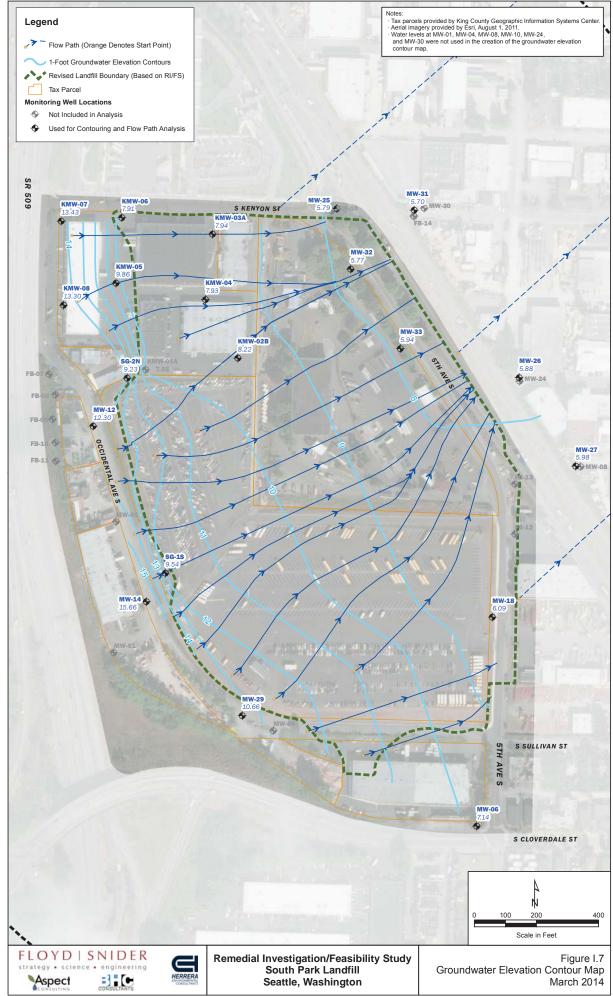

Remedial Investigation/ Feasibility Study

Appendix I Hydrogeological Data and Groundwater Elevation Contours

Groundwater Elevation Contour Maps




Note: Water levels at SG-1S, PZ-1, PZ-2, PZ-3, HMW-1, MW-04, MW-08, MW-10, and MW-24 were not used in the creation of the groundwater elevation contour map.



South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix J Groundwater Quality Trend Plots, Maps, and Data

Table of Contents

This appendix contains the following items:

Groundwater Quality Trend Plots

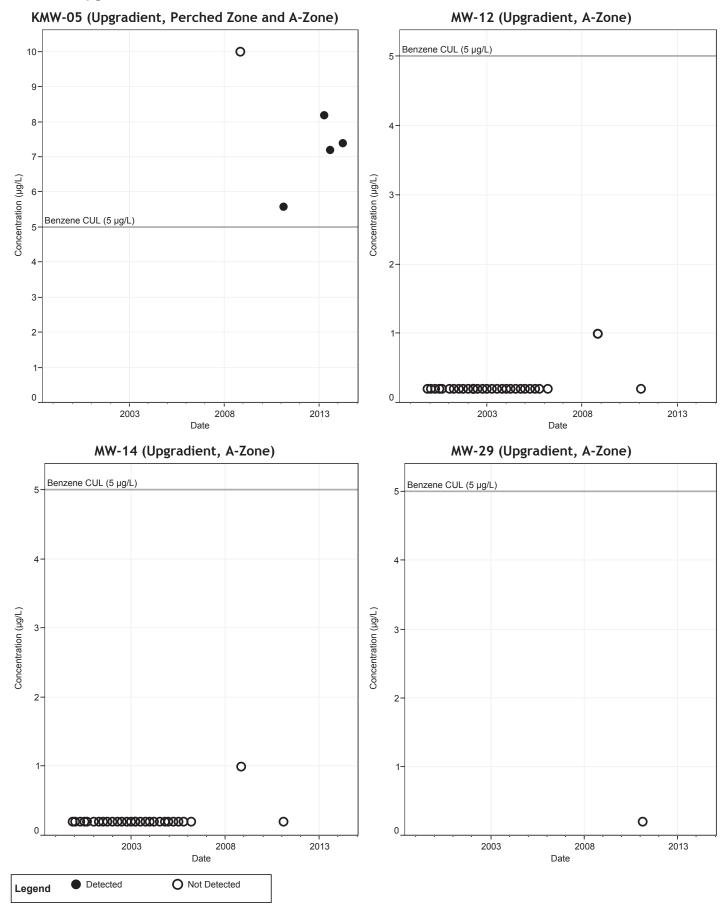
- Benzene
- cis-1,2-DCE
- TCE
- Vinyl Chloride
- Arsenic
- Iron
- Manganese
- Mercury

Figures

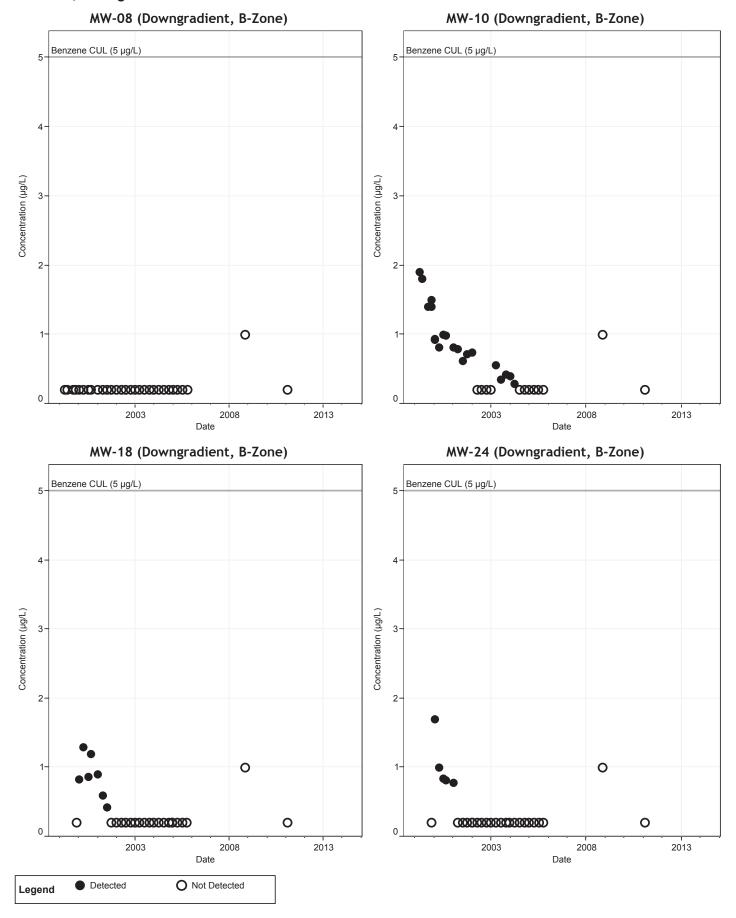
- 2011 TPH and Benzene in Groundwater (Figure J.1)
- Chlorinated Ethenes in Groundwater Wet Season—January 2011 (Figure J.2)
- Chlorinated Ethenes in Groundwater Dry Season—July 2011 (Figure J.3)
- Chlorinated Ethenes in Groundwater Wet Season—April 2013 (Figure J.4)
- Chlorinated Ethenes in Groundwater Dry Season—July 2013 (Figure J.5)
- Chlorinated Ethenes in Groundwater Wet Season—March 2014 (Figure J.6)
- Total and Dissolved Arsenic in Groundwater—January–March 2011 (Figure J.7)
- Iron and Manganese in Groundwater Wet Season—January 2011 (Figure J.8)
- Iron and Manganese in Groundwater Wet Season—April 2013 (Figure J.9)
- Iron and Manganese in Groundwater Dry Season—July 2013 (Figure J.10)
- Iron and Manganese in Groundwater Wet Season—March 2014 (Figure J.11)
- Natural Attenuation Parameters in Groundwater—March 2014 (Figure J.12)

Tables

- Results of January and July 2011 Groundwater Sampling Events (Table J.1)
- April 2013 Groundwater Sample Analytical Results (Table J.2)
- July 2013 Groundwater Sample Analytical Results (Table J.3)
- March 2014 Groundwater Sample Analytical Results (Table J.4)

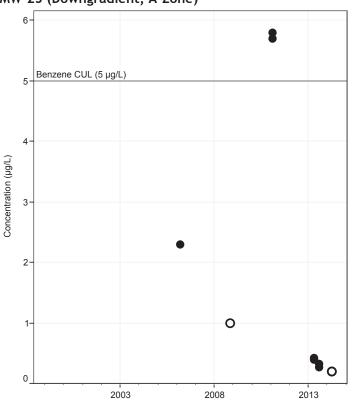

South Park Landfill

Remedial Investigation/ Feasibility Study

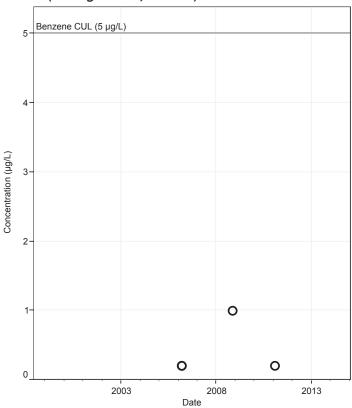

Appendix J Groundwater Quality Trend Plots, Maps, and Data

Groundwater Quality Trend Plots

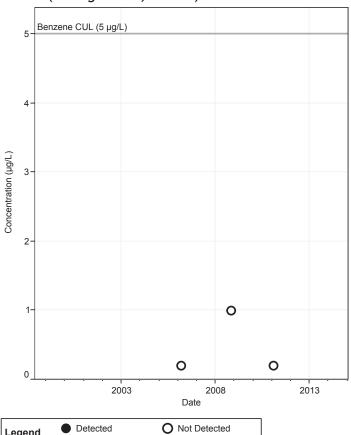
Benzene, Upgradient



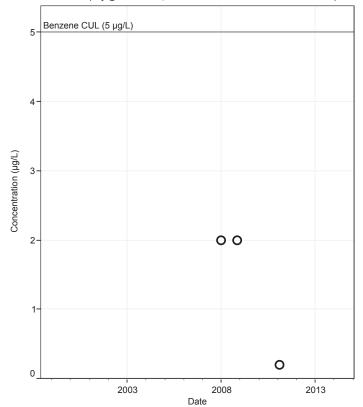
Benzene, Downgradient


Benzene, Downgradient

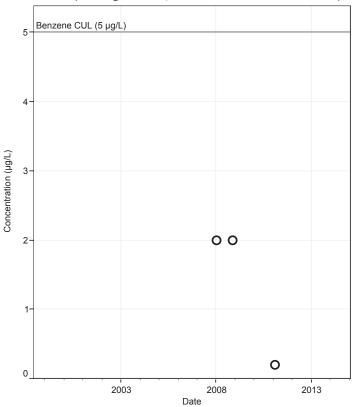
MW-25 (Downgradient, A-Zone)


Date

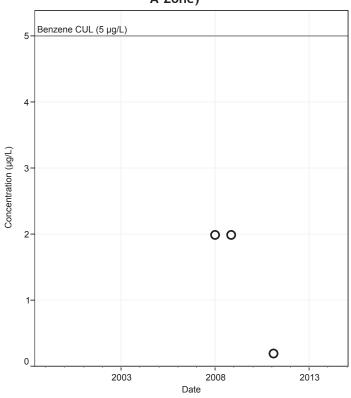
MW-26 (Downgradient, A-Zone)

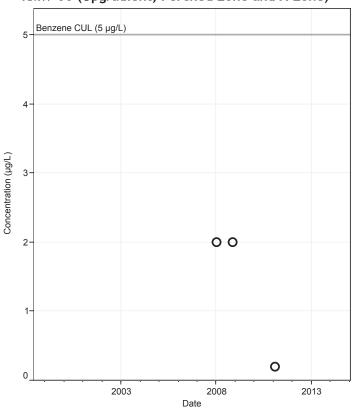

MW-27 (Downgradient, A-Zone)

Legend

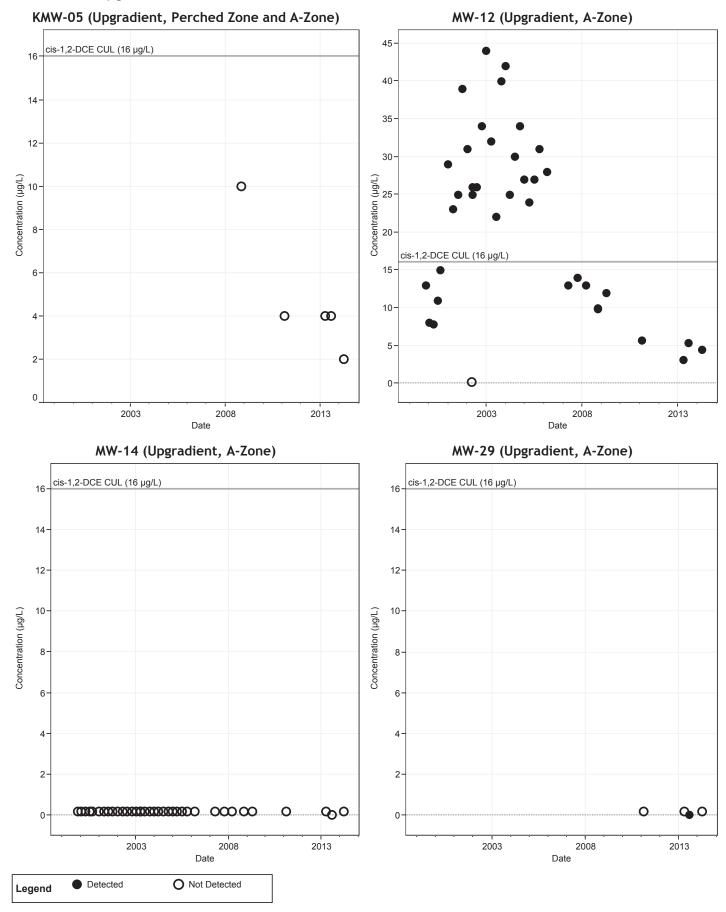


Benzene, In-waste

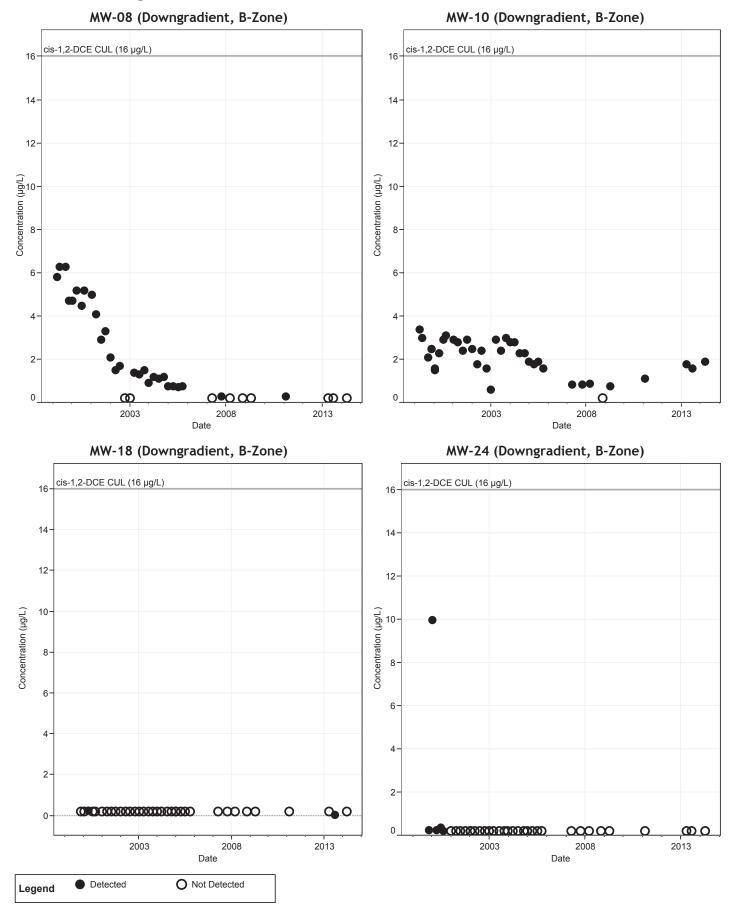

KMW-01A (Upgradient, Perched Zone and A-Zone)


KMW-03A (Downgradient, Perched Zone and A-Zone)

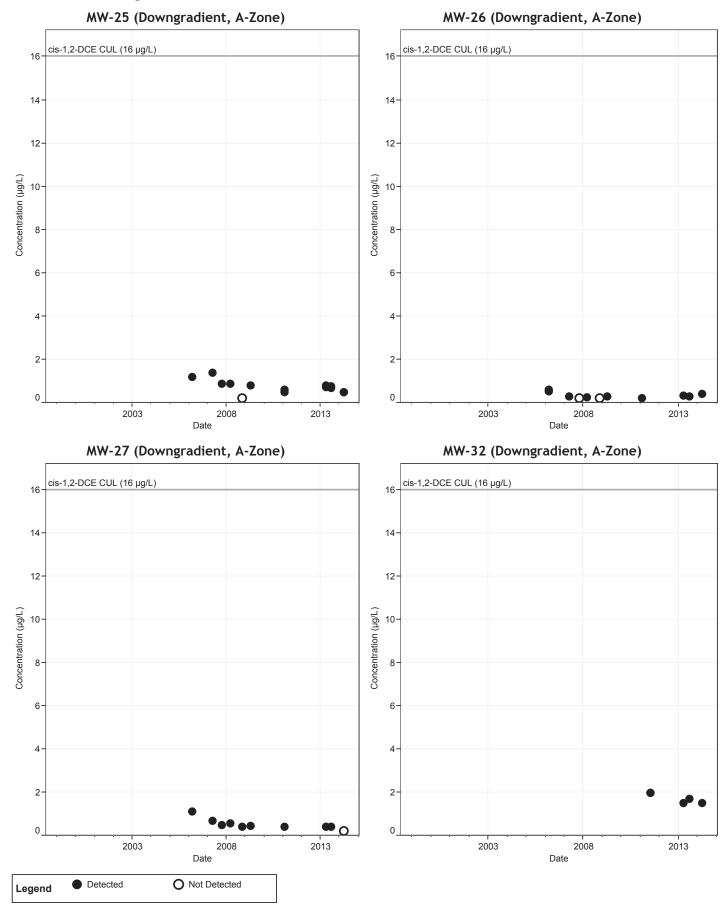
KMW-04 (Interior well (In-waste), Perched Zone and A-Zone)



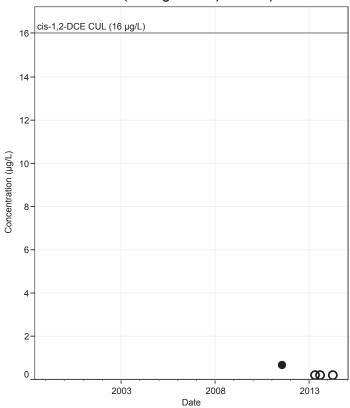
KMW-06 (Upgradient, Perched Zone and A-Zone)



Legend O Not Detected


cis-1,2-DCE, Upgradient

cis-1,2-DCE, Downgradient



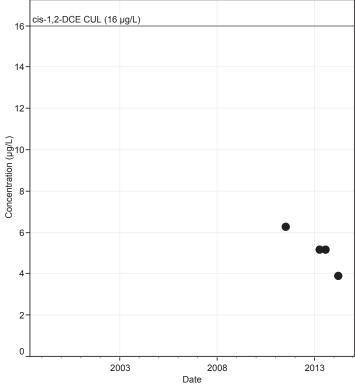
cis-1,2-DCE, Downgradient

cis-1,2-DCE, Downgradient

MW-33 (Downgradient, A-Zone)

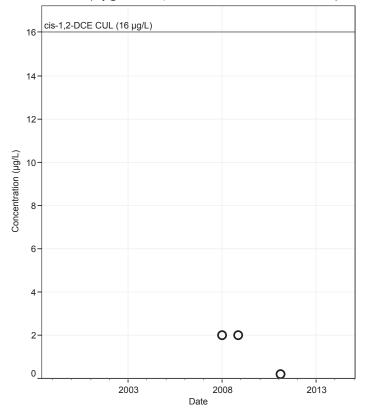
cis-1,2-DCE, Glitsa Property

MW-30 (Represents conditions near former Glitsa property, Perched Zone)

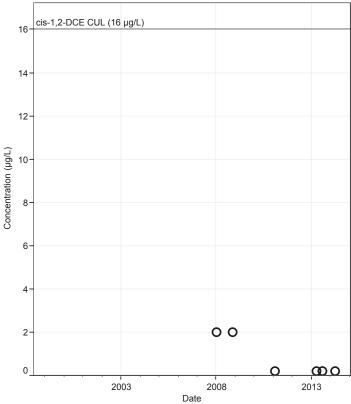

2008

Date

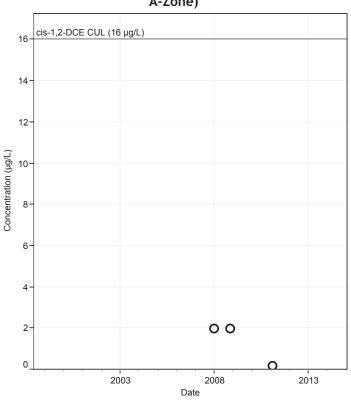
2013

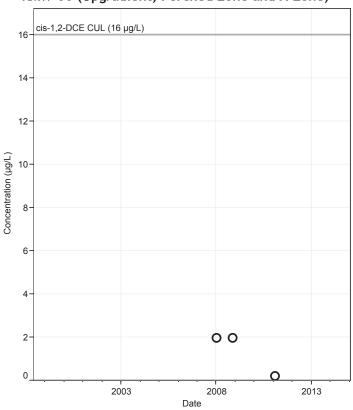

2003

MW-31 (Represents conditions near former Glitsa property, A-Zone)

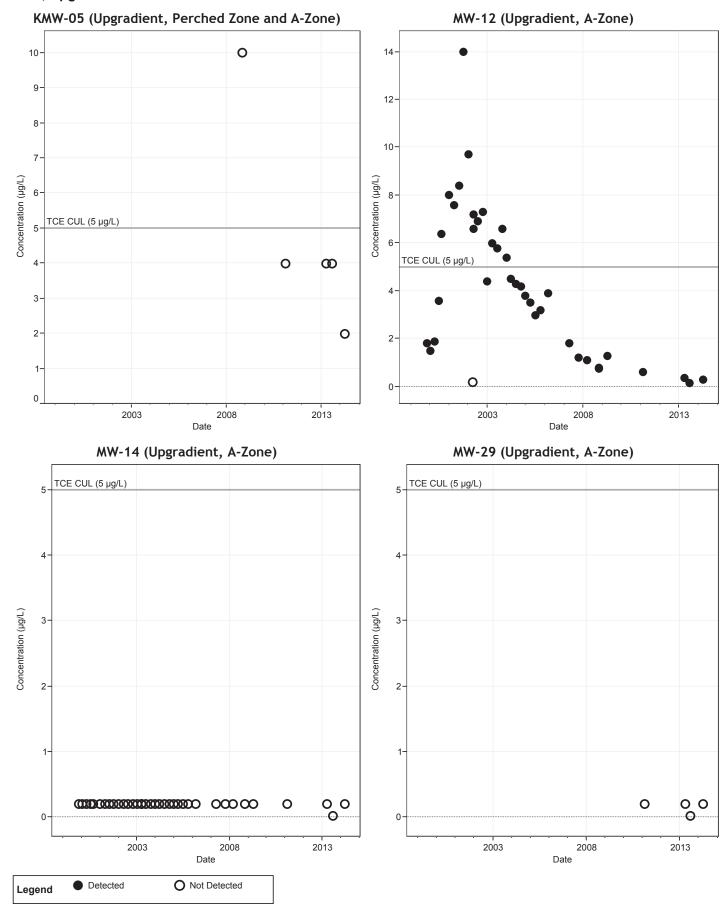


cis-1,2-DCE, In-waste

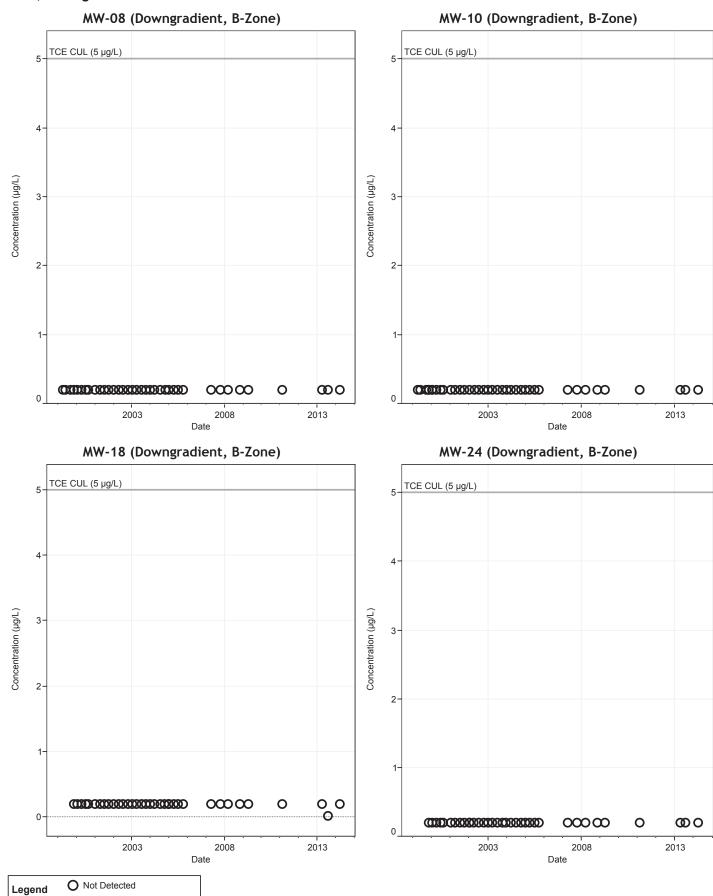



KMW-03A (Downgradient, Perched Zone and A-Zone)

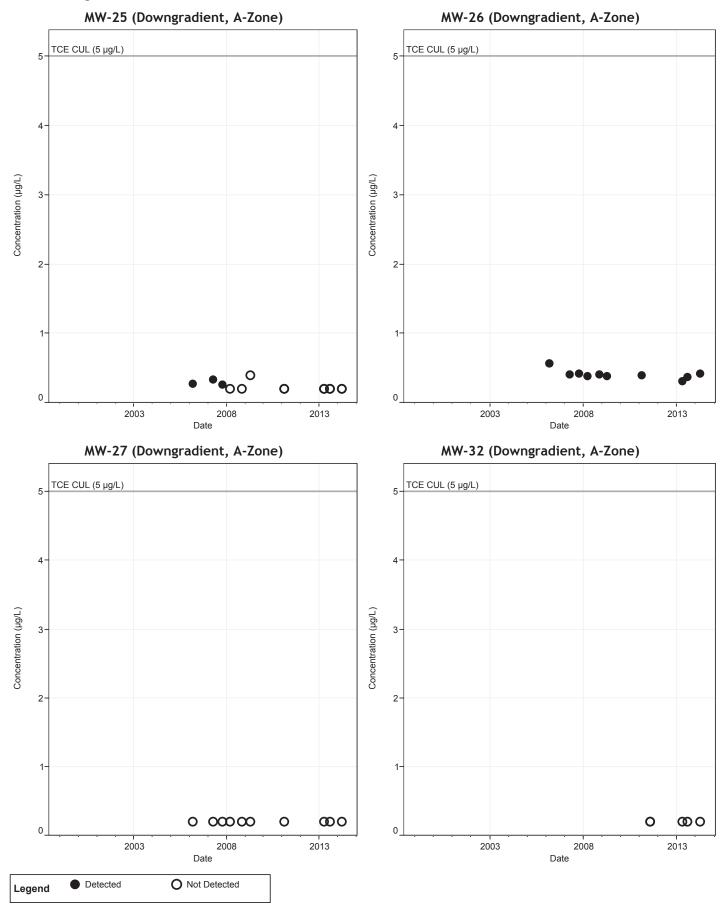
KMW-04 (Interior well (In-waste), Perched Zone and A-Zone)



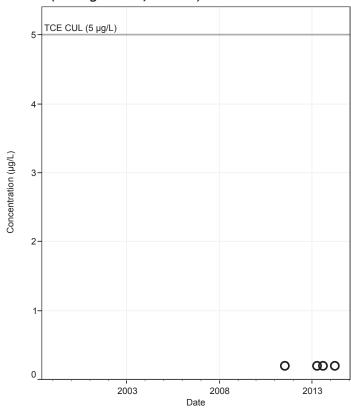
KMW-06 (Upgradient, Perched Zone and A-Zone)



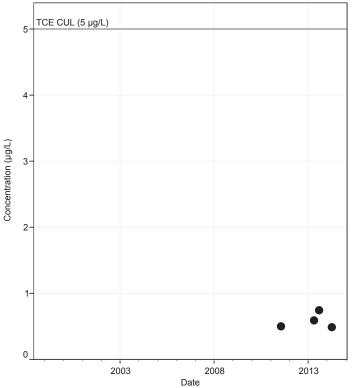
Legend O Not Detected


TCE, Upgradient

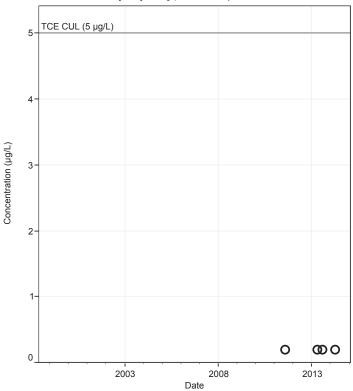
TCE, Downgradient



TCE, Downgradient

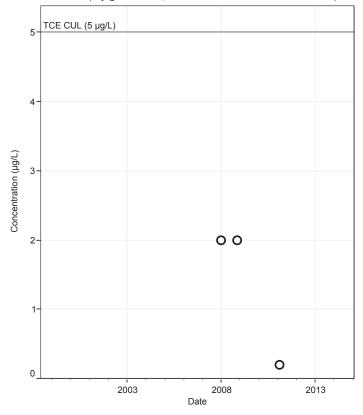

TCE, Downgradient

MW-33 (Downgradient, A-Zone)

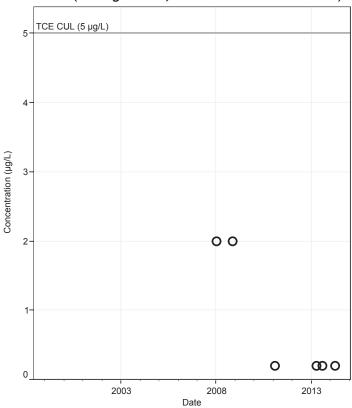


TCE, Glitsa Property

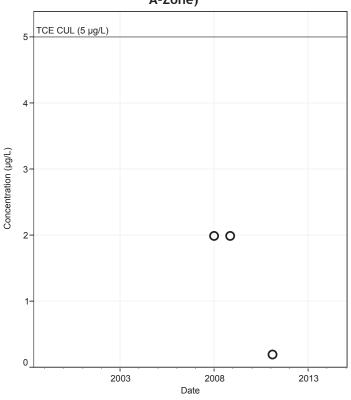
MW-30 (Represents conditions near former Glitsa property, Perched Zone)

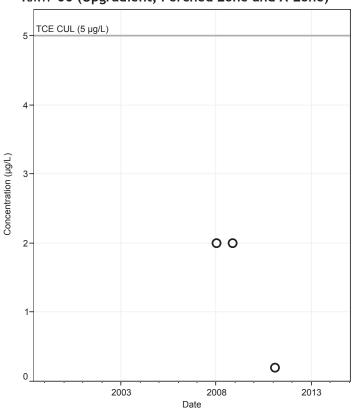


MW-31 (Represents conditions near former Glitsa property, A-Zone)

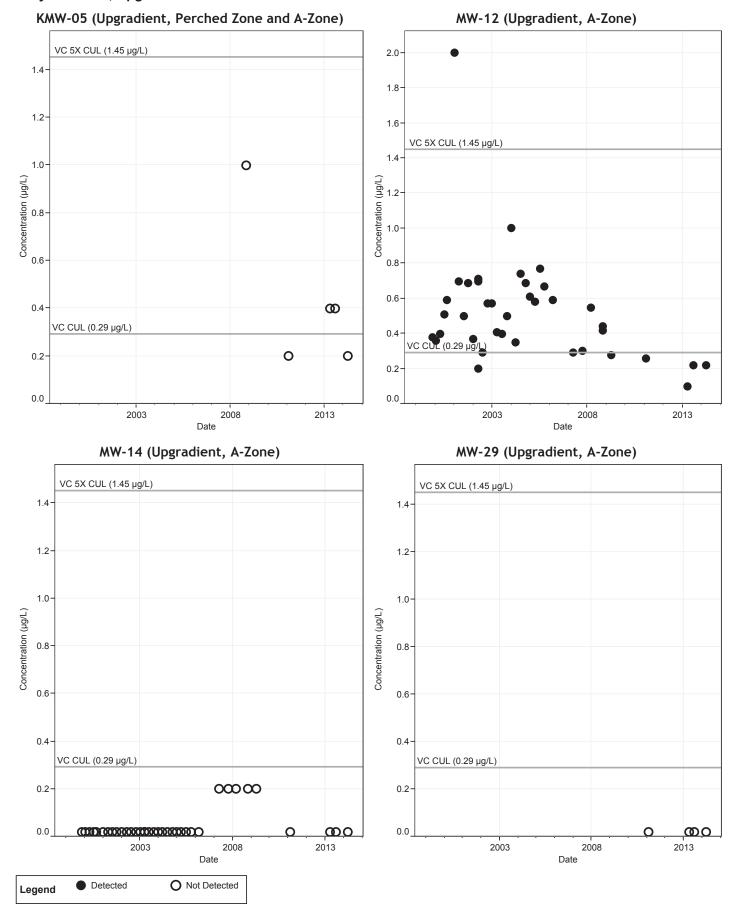


TCE, In-waste

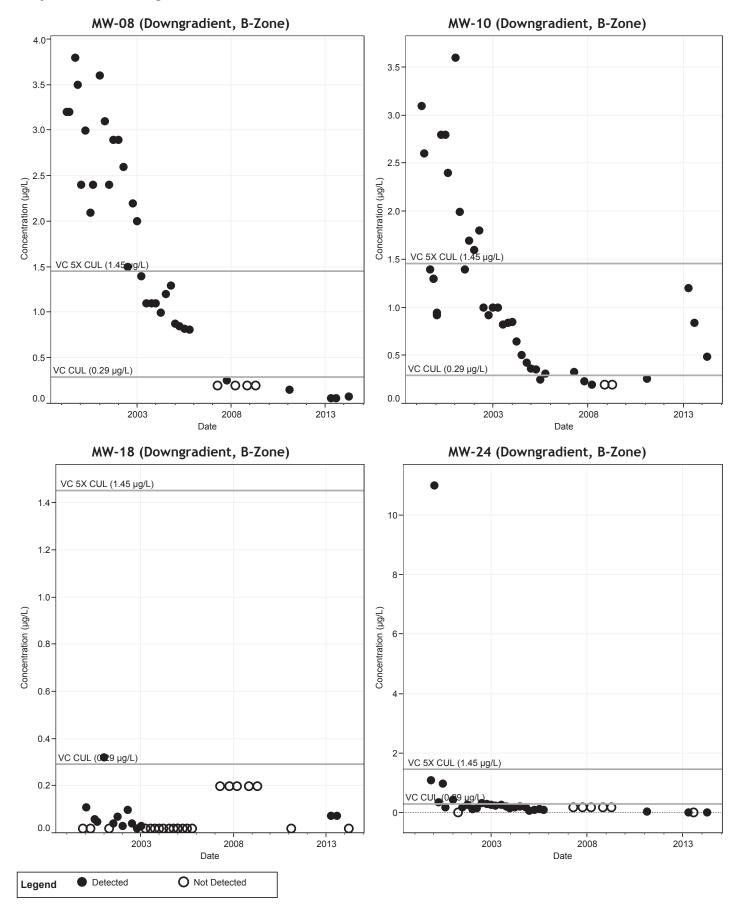



KMW-03A (Downgradient, Perched Zone and A-Zone)

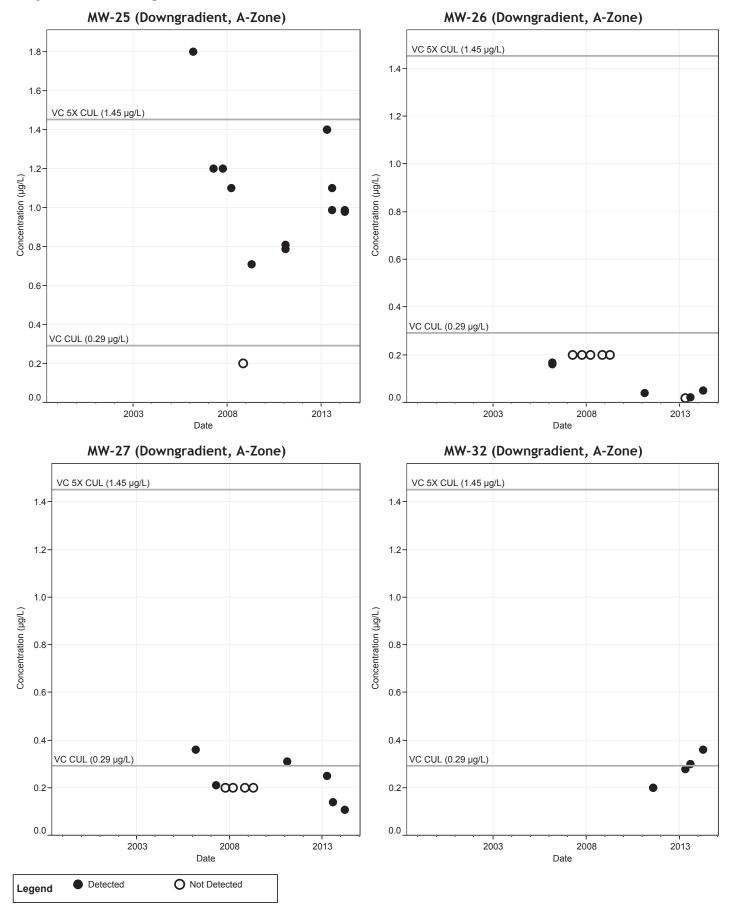
KMW-04 (Interior well (In-waste), Perched Zone and A-Zone)



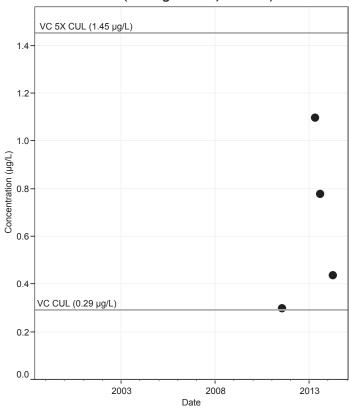
KMW-06 (Upgradient, Perched Zone and A-Zone)



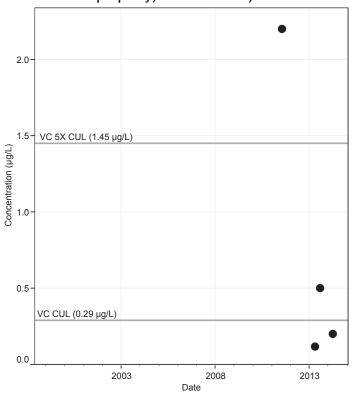
Legend O Not Detected


Vinyl Chloride, Upgradient

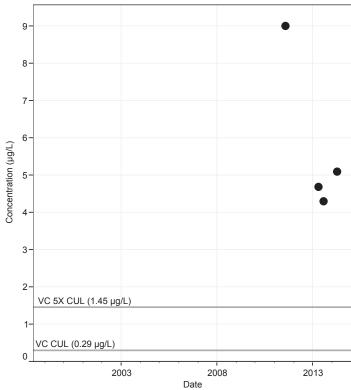
Vinyl Chloride, Downgradient



Vinyl Chloride, Downgradient

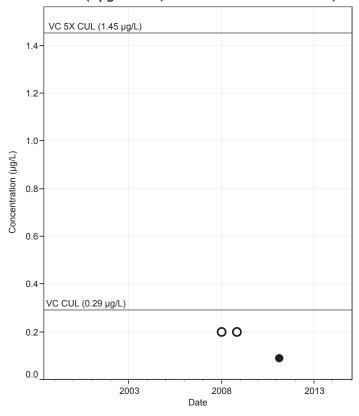

Vinyl Chloride, Downgradient

MW-33 (Downgradient, A-Zone)

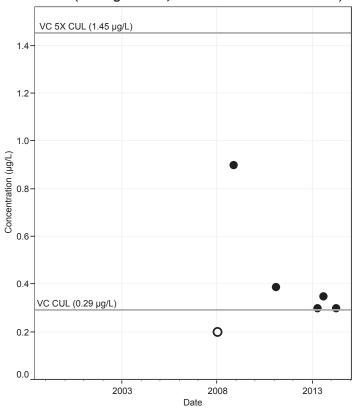


Vinyl Chloride, Glitsa Property

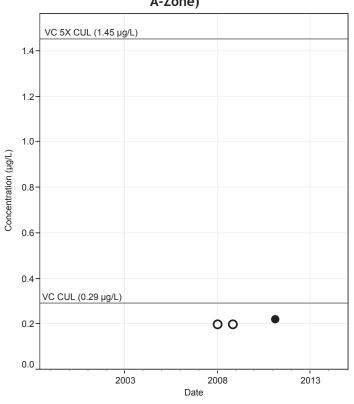
MW-30 (Represents conditions near former Glitsa property, Perched Zone)



MW-31 (Represents conditions near former Glitsa property, A-Zone)

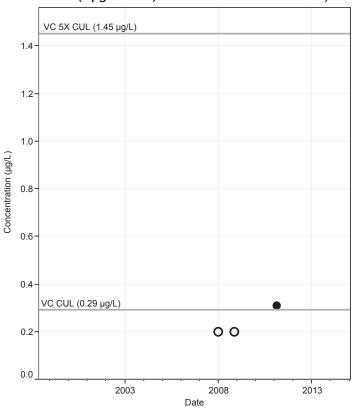


Vinyl Chloride, In-waste

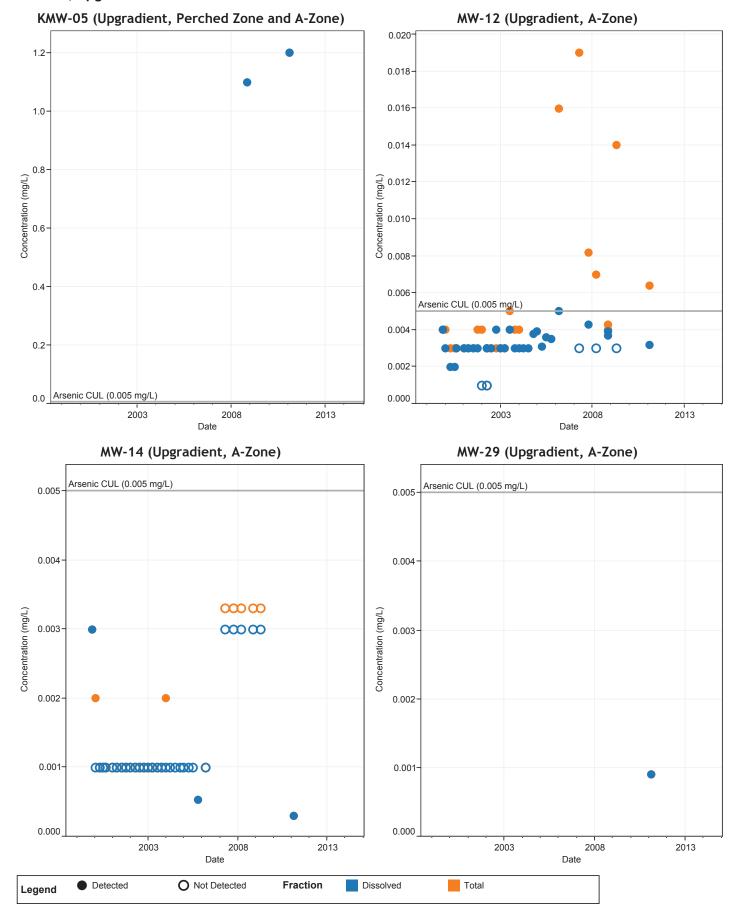

KMW-01A (Upgradient, Perched Zone and A-Zone)

KMW-03A (Downgradient, Perched Zone and A-Zone)

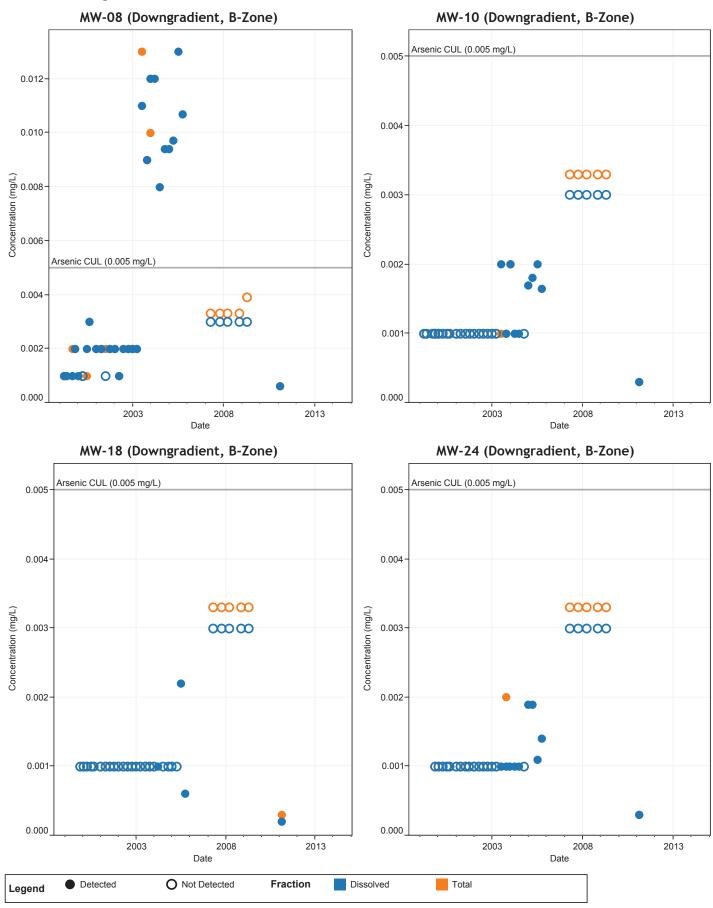
KMW-04 (Interior well (In-waste), Perched Zone and A-Zone)



O Not Detected


Detected

Legend


KMW-06 (Upgradient, Perched Zone and A-Zone)

Arsenic, Upgradient

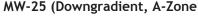
Arsenic, Downgradient

Arsenic, Downgradient

0.005

0.004

0.003


0.002

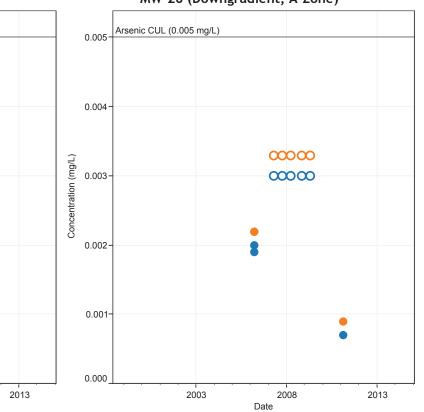
0.001-

0.000

Concentration (mg/L)

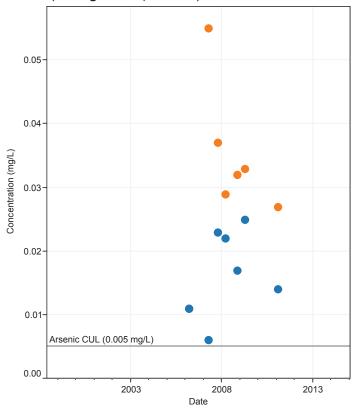
Arsenic CUL (0.005 mg/L)

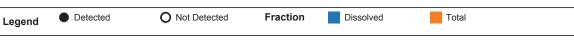
MW-25 (Downgradient, A-Zone)

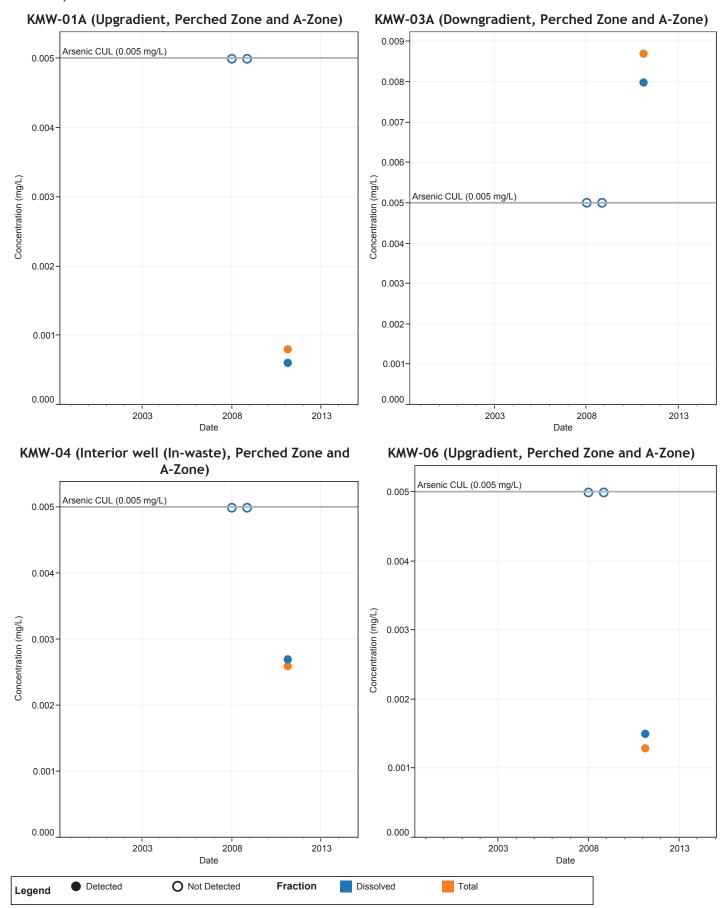

 $\infty \infty$

 $\infty \infty$

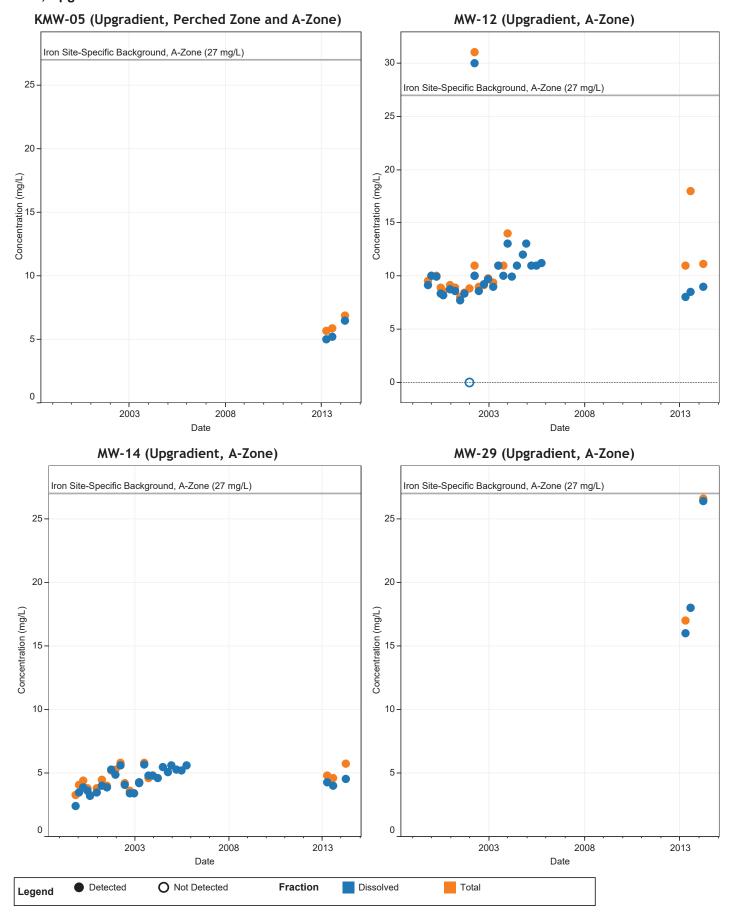
2008

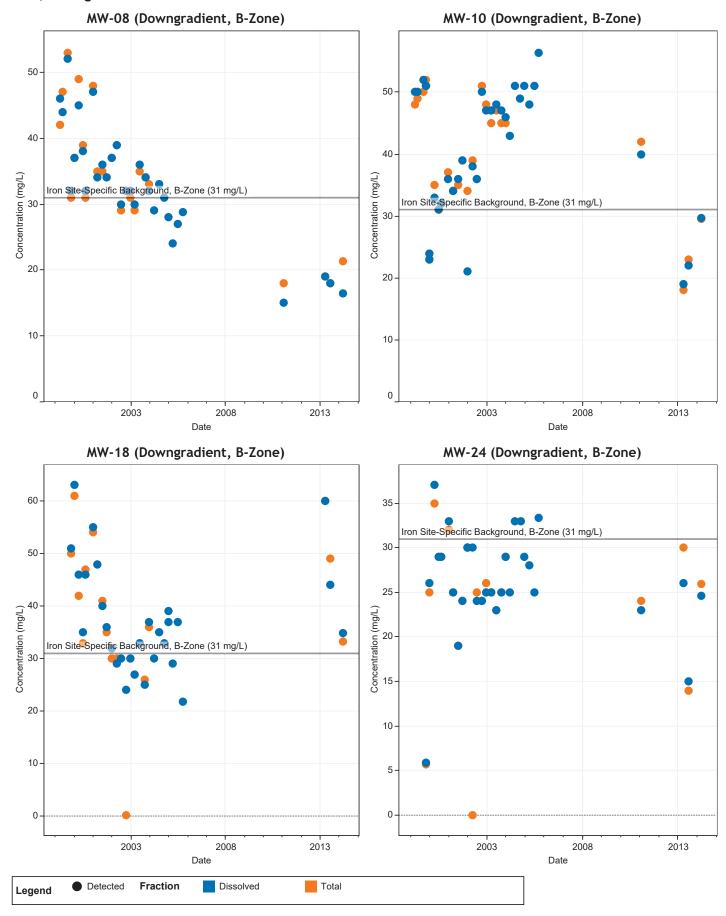

Date

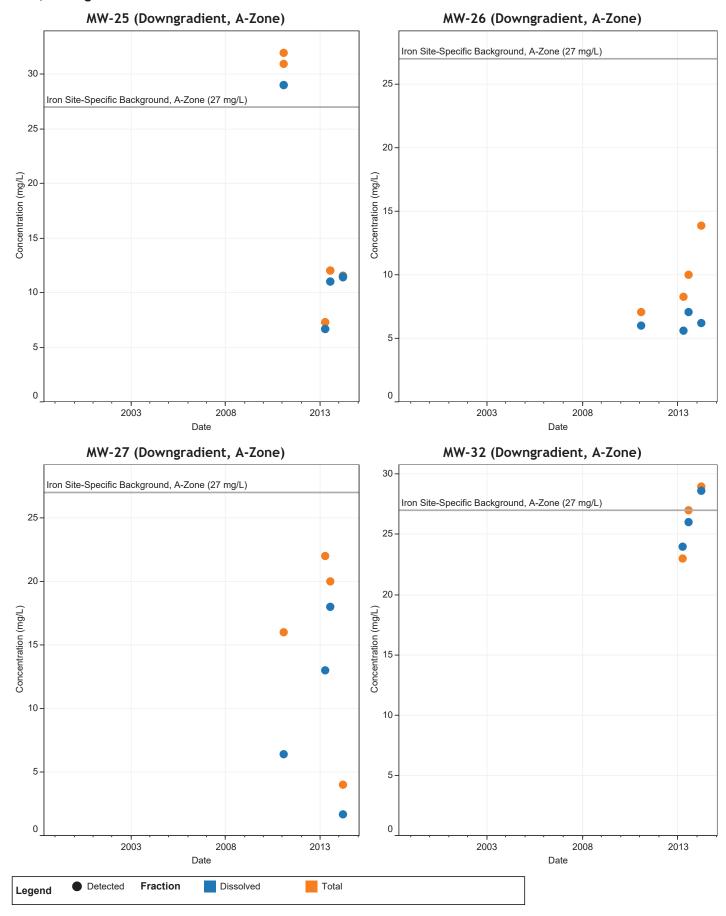

MW-26 (Downgradient, A-Zone)


MW-27 (Downgradient, A-Zone)

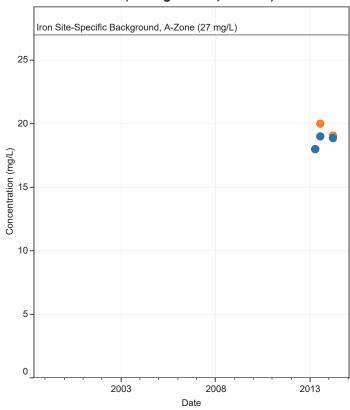
2003



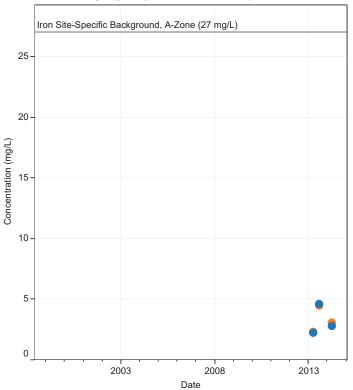

Arsenic, In-waste


Iron, Upgradient

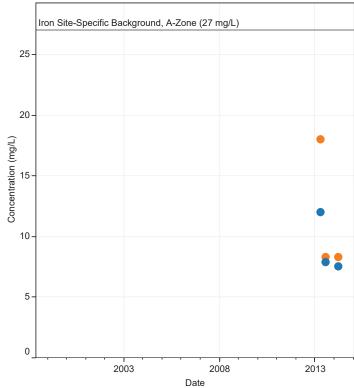
Iron, Downgradient



Iron, Downgradient

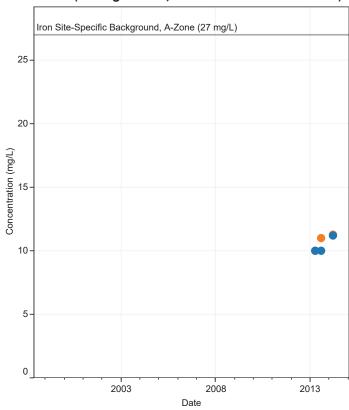

Iron, Downgradient

MW-33 (Downgradient, A-Zone)

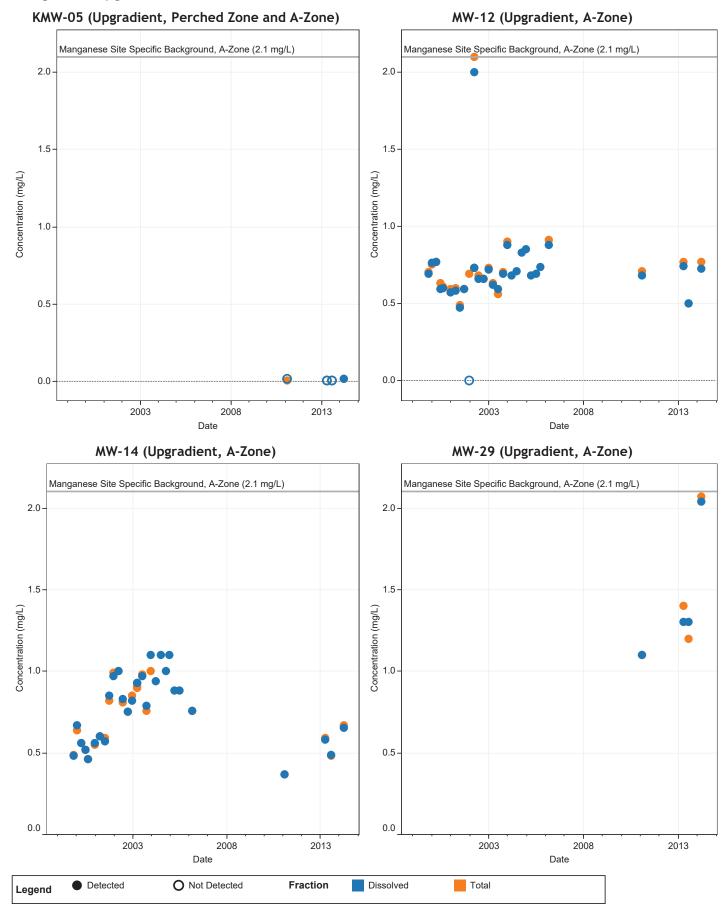


Iron, Glitsa Property

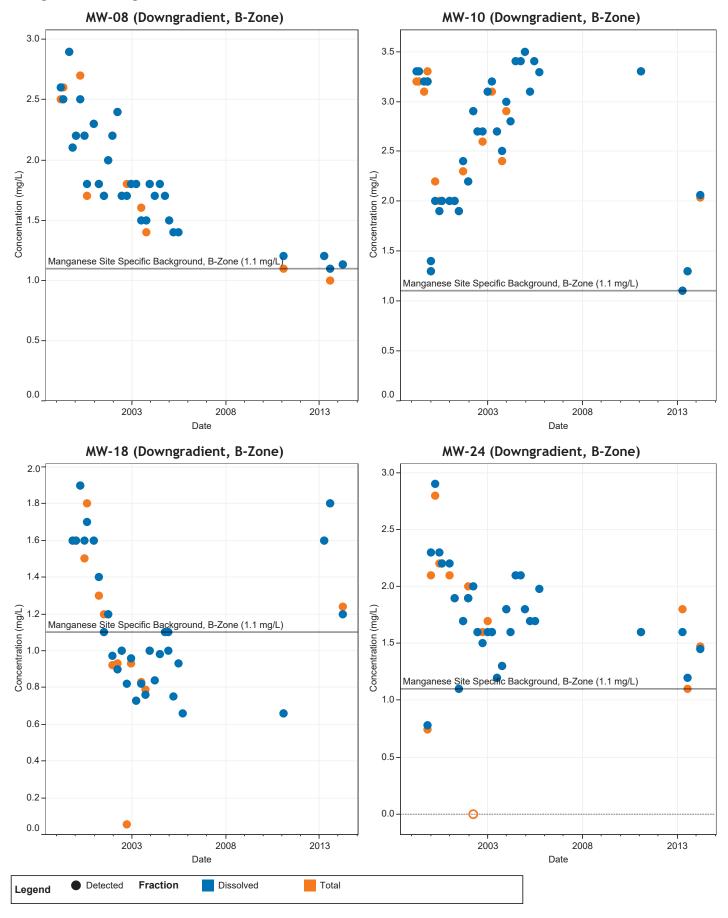
MW-30 (Represents conditions near former Glitsa property, Perched Zone)

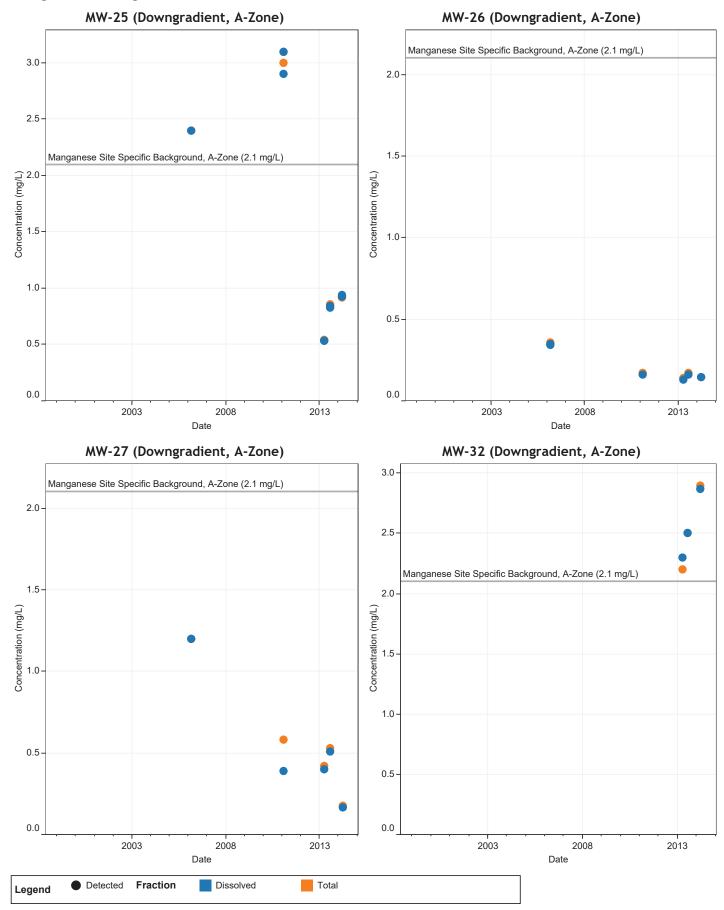


MW-31 (Represents conditions near former Glitsa property, A-Zone)

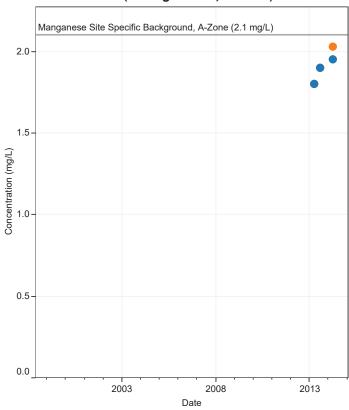


Iron, In-waste

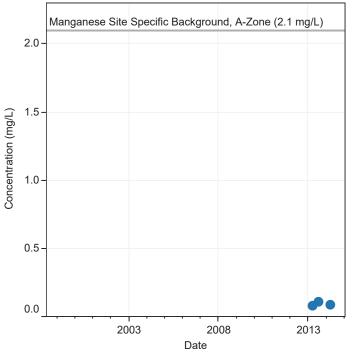

KMW-03A (Downgradient, Perched Zone and A-Zone)


Manganese, Upgradient

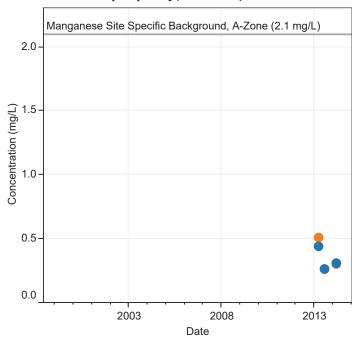
Manganese, Downgradient



Manganese, Downgradient

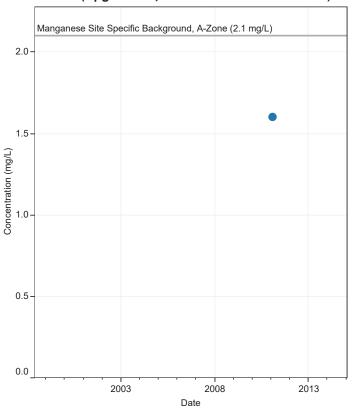

Manganese, Downgradient

MW-33 (Downgradient, A-Zone)

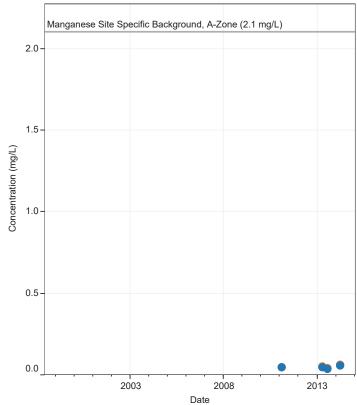


Manganese, Glitsa Property

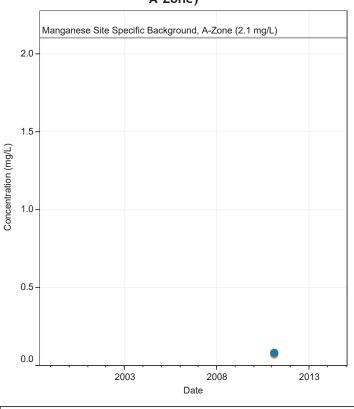
MW-30 (Represents conditions near former Glitsa property, Perched Zone)



MW-31 (Represents conditions near former Glitsa property, A-Zone)



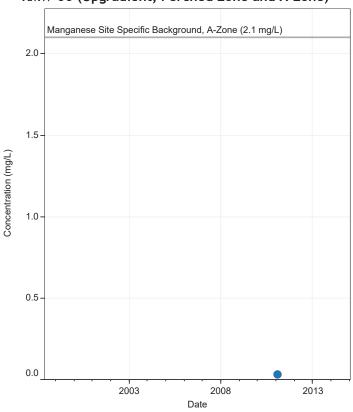
Manganese, In-waste



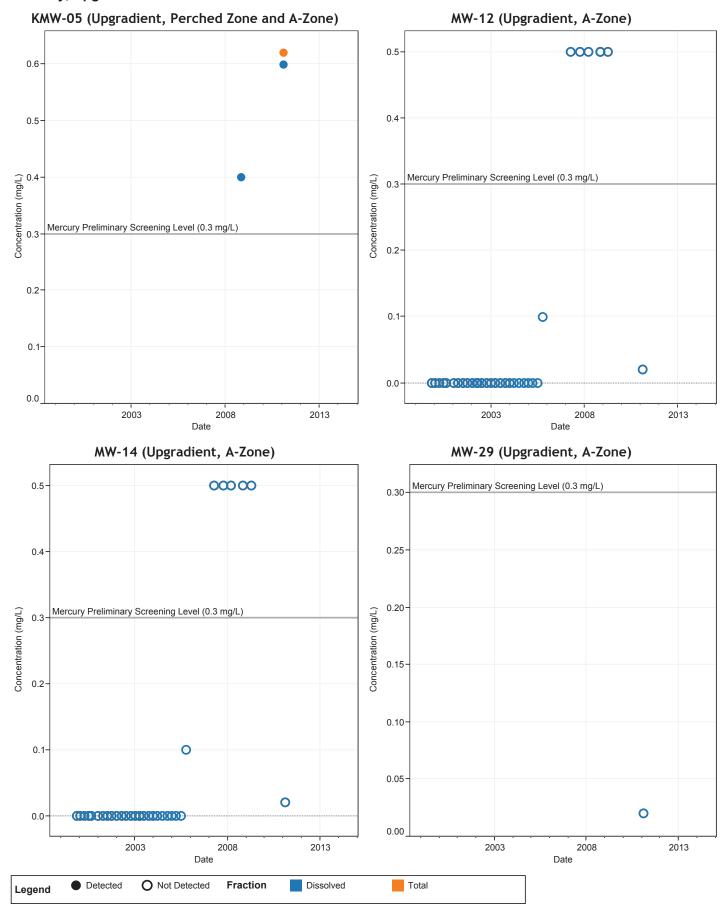
KMW-03A (Downgradient, Perched Zone and A-Zone)

KMW-04 (Interior well (In-waste), Perched Zone and A-Zone)

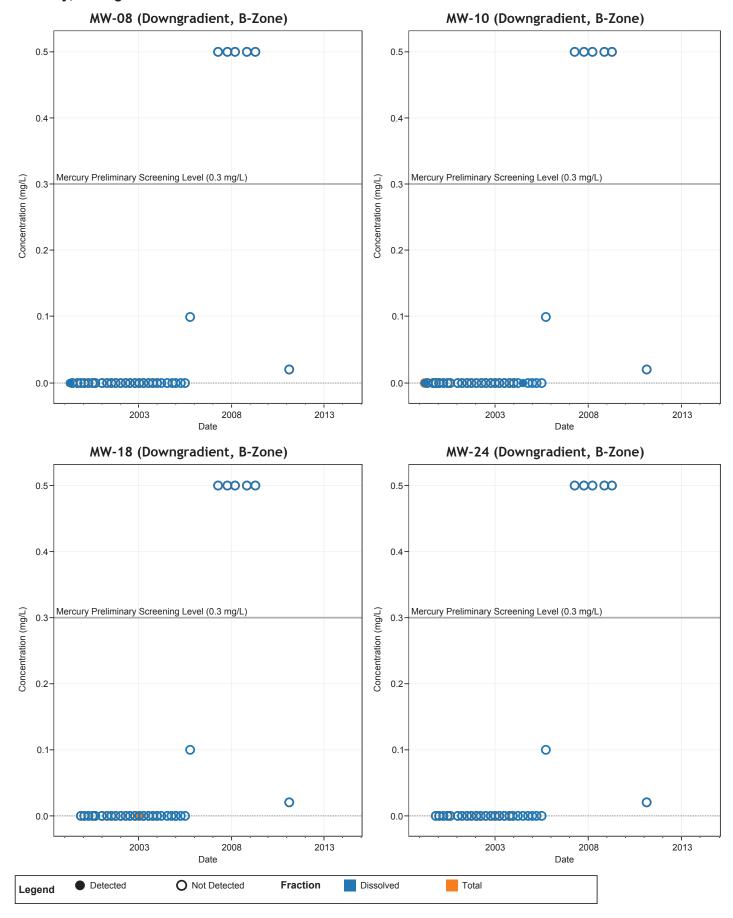
Detected

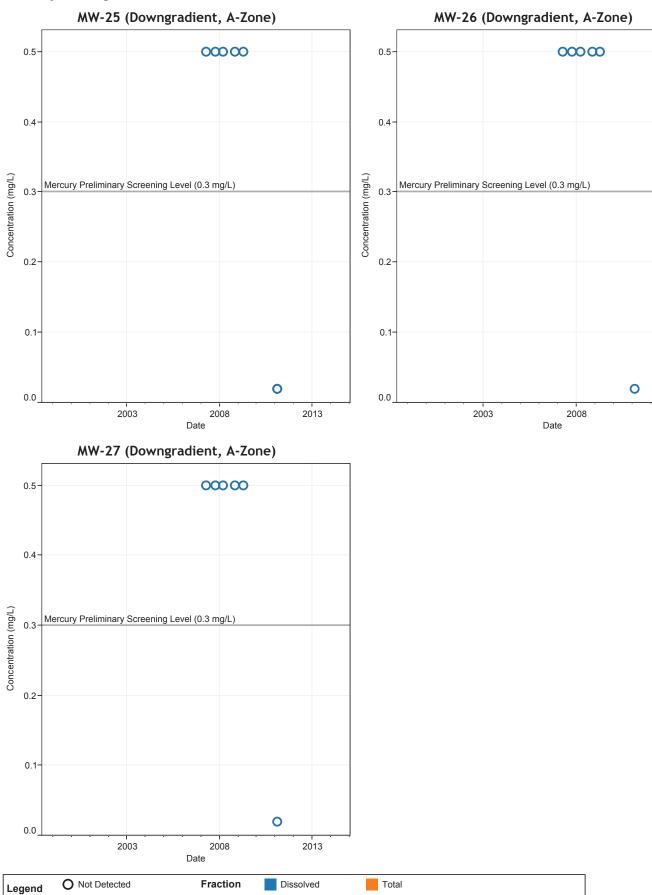

Legend

Fraction


Dissolved

Total


KMW-06 (Upgradient, Perched Zone and A-Zone)


Mercury, Upgradient

Mercury, Downgradient

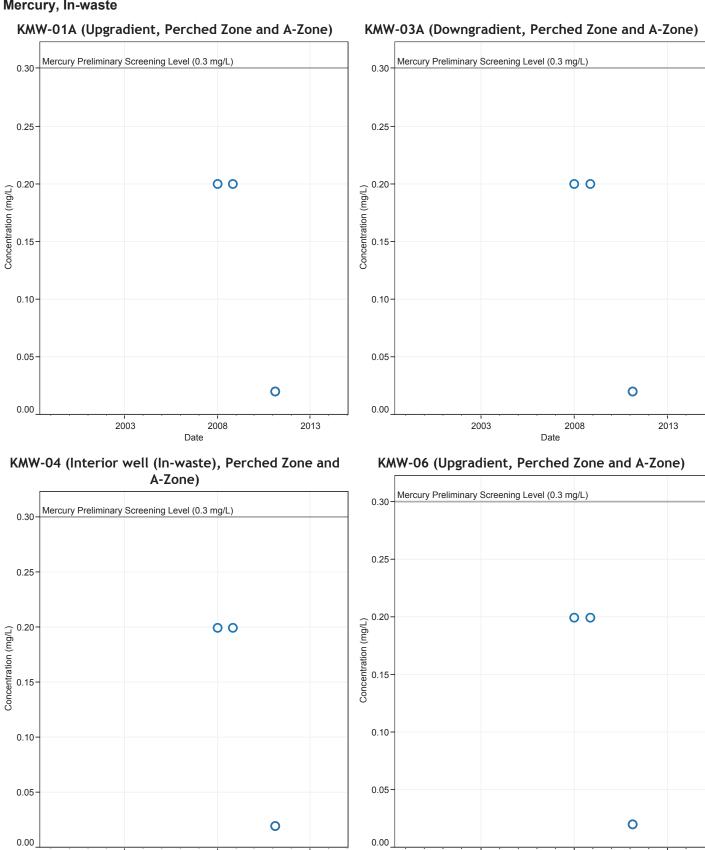
Mercury, Downgradient

2013

Mercury, In-waste

2003

O Not Detected


Legend

2008

Dissolved

Date

Fraction

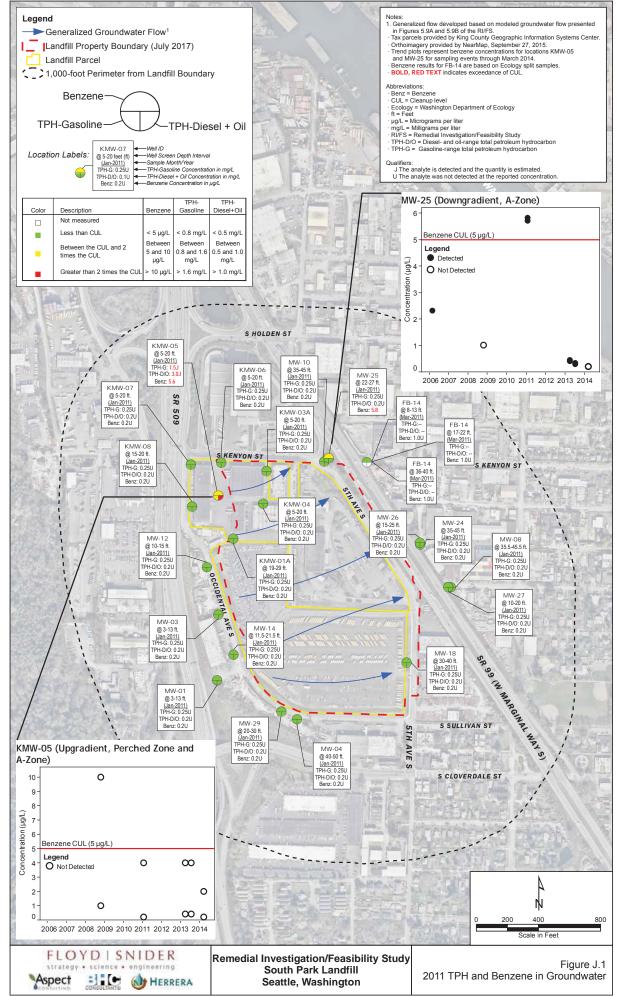
2013

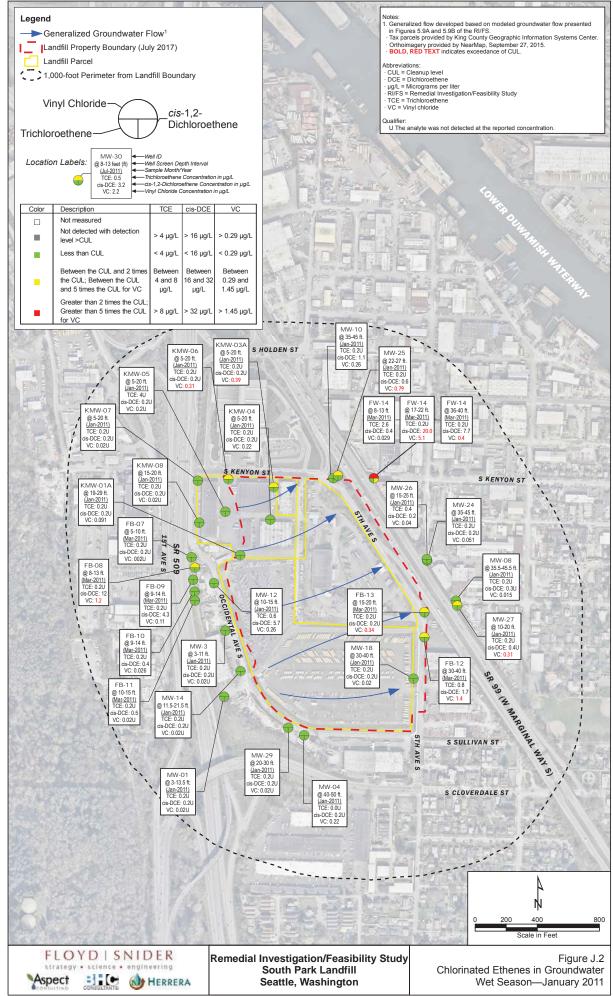
Total

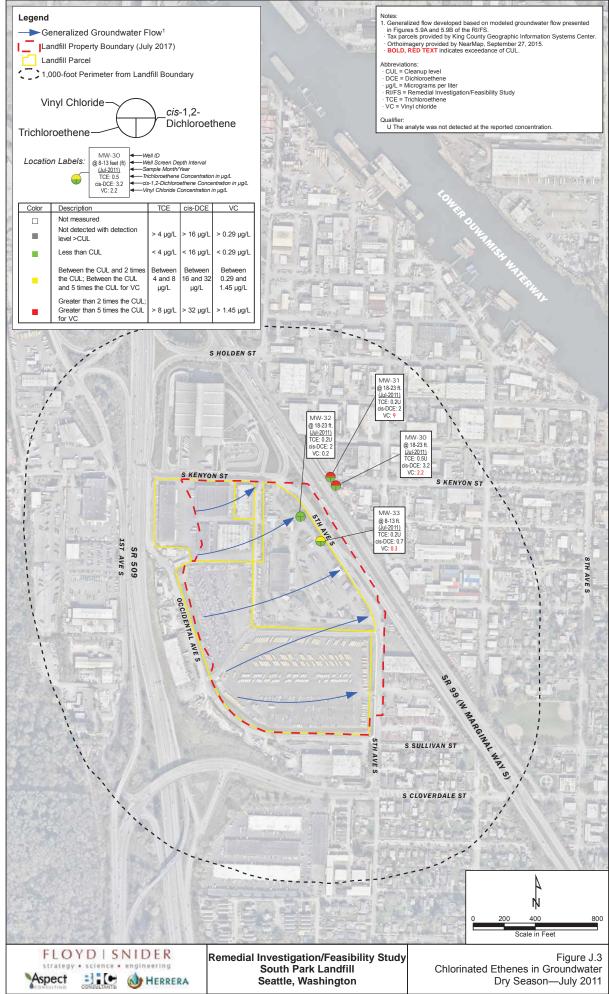
2003

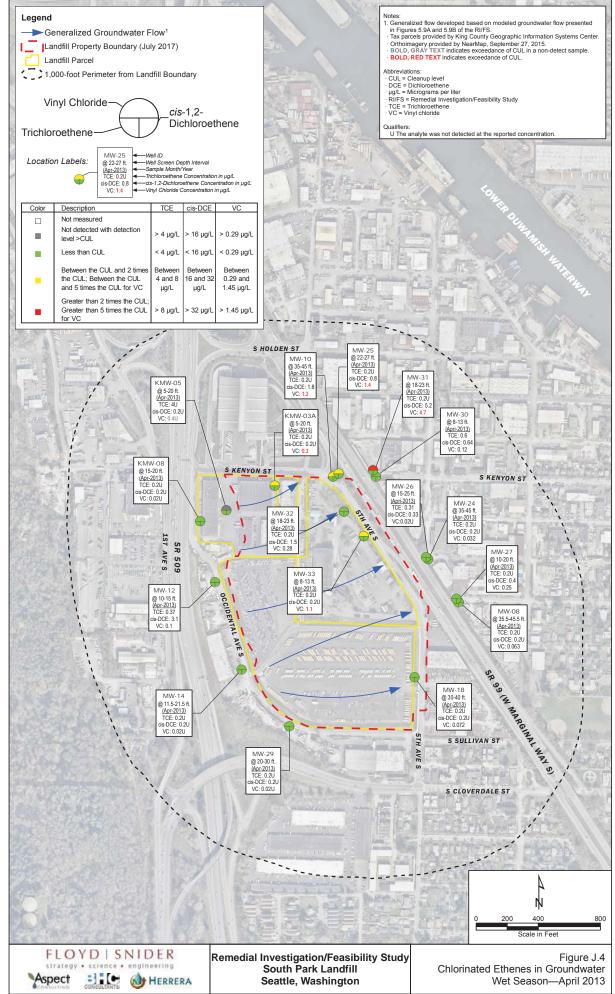
2008

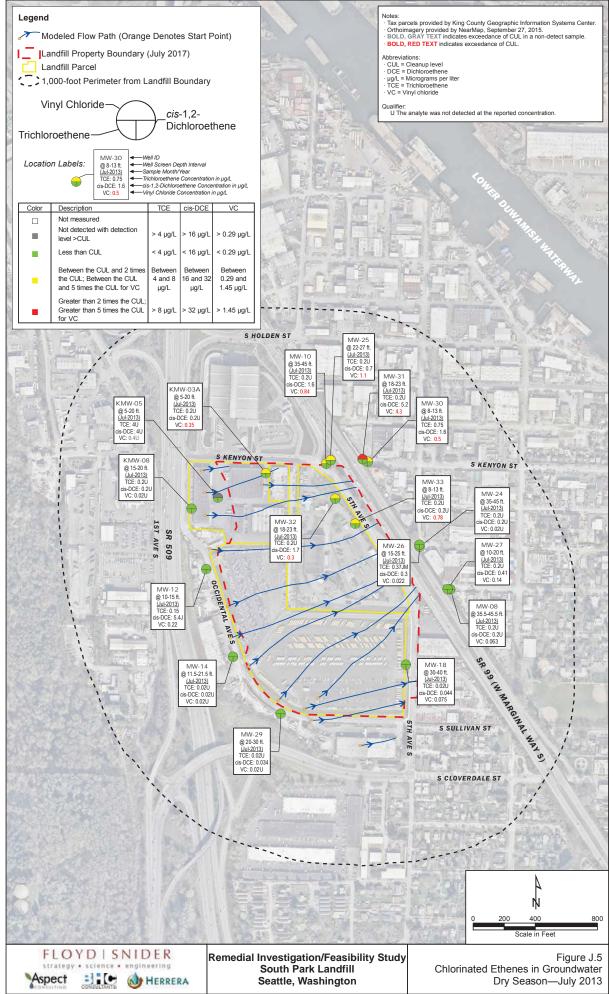
Date

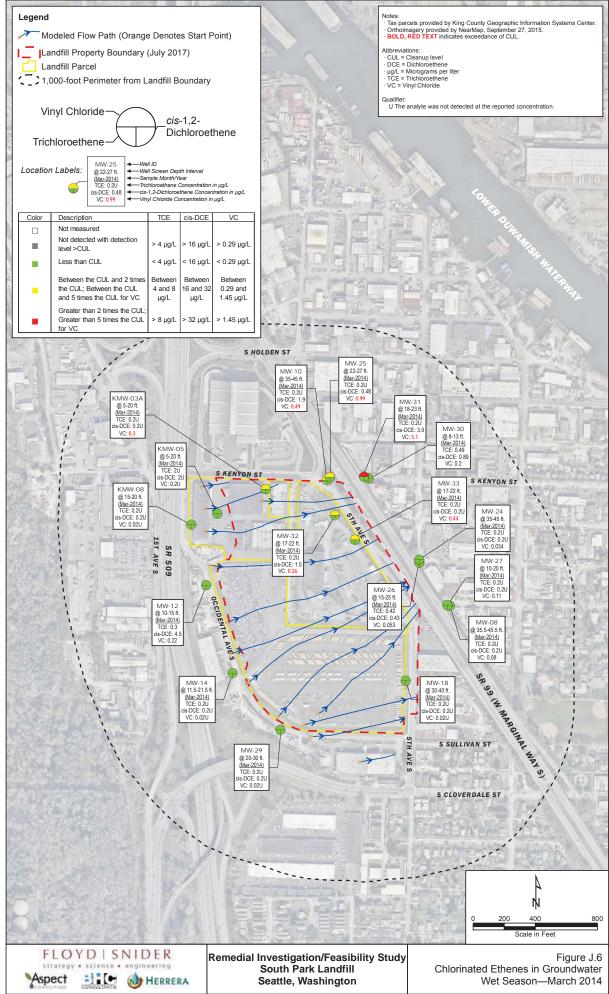

2013

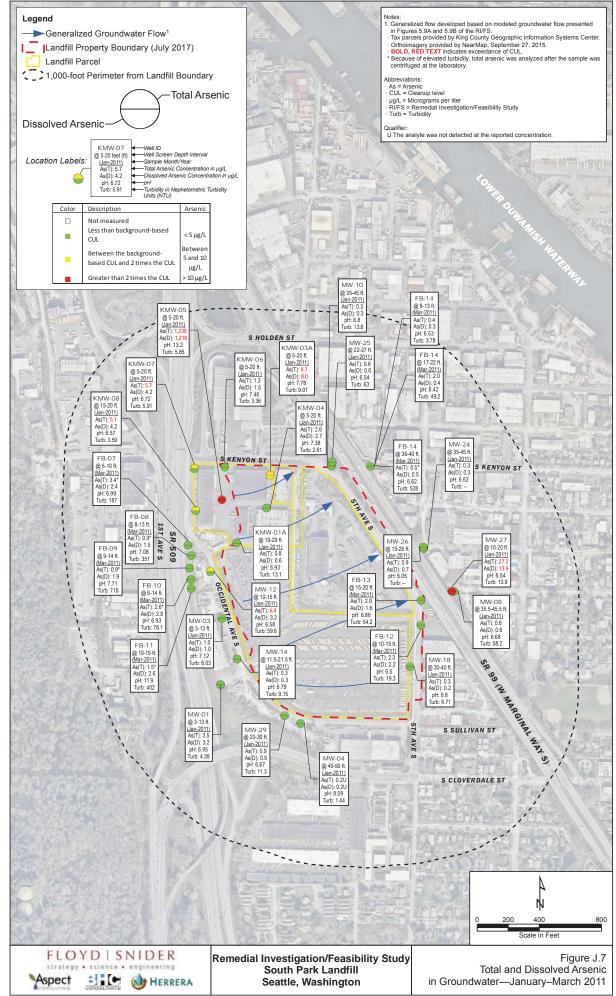

South Park Landfill

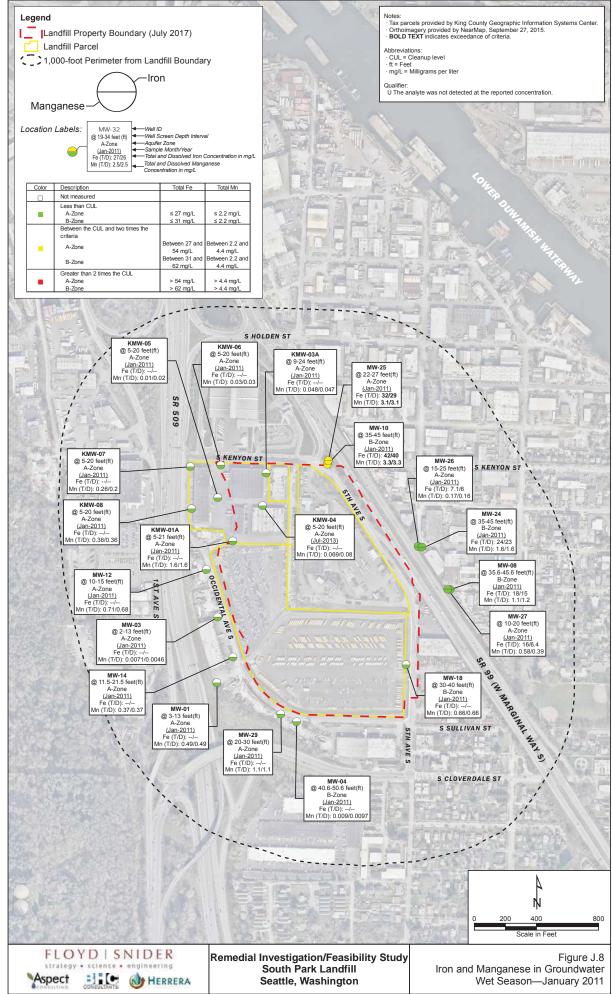

Remedial Investigation/ Feasibility Study

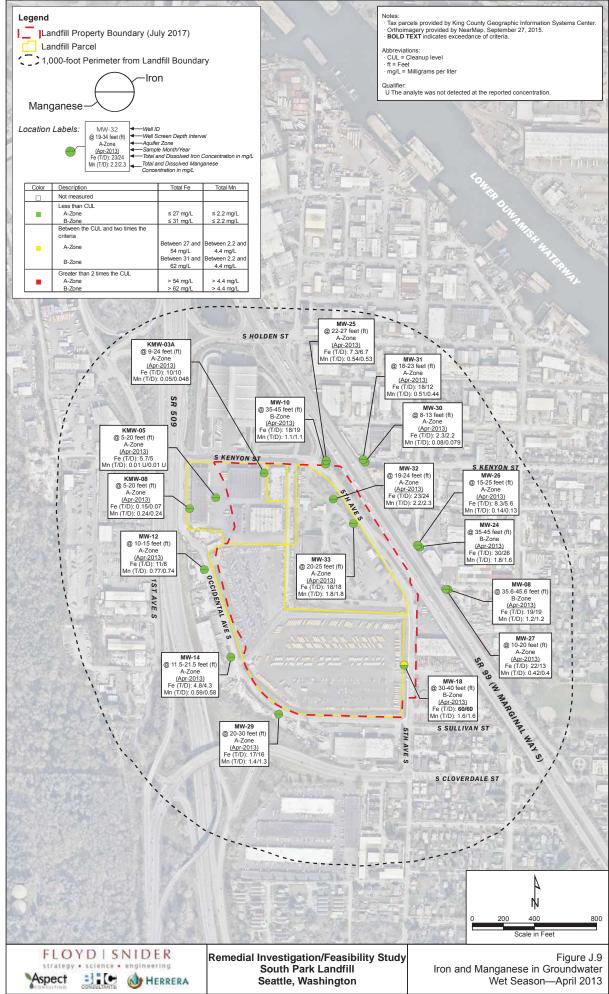

Appendix J Groundwater Quality Trend Plots, Maps, and Data

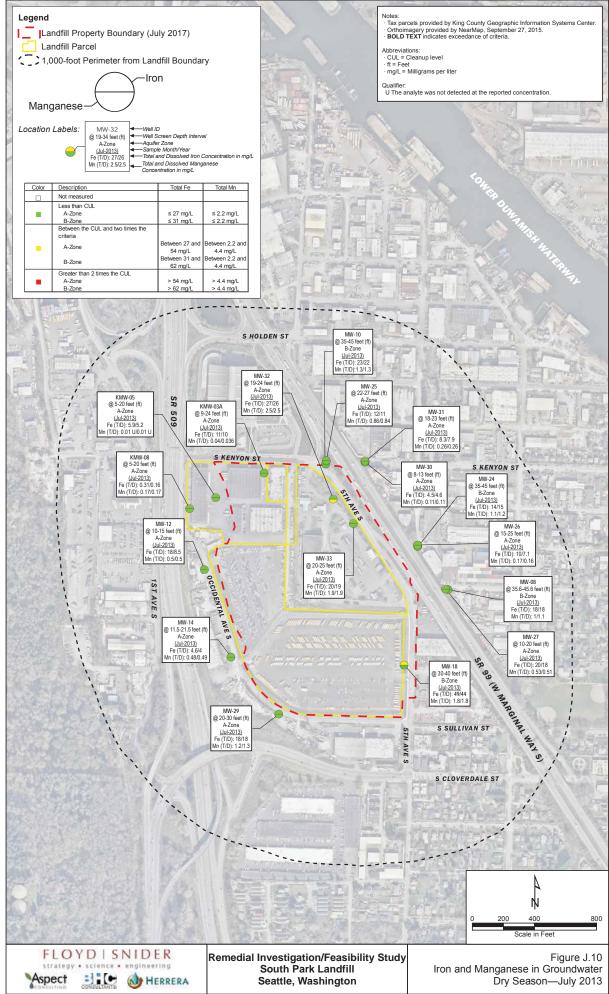

Figures

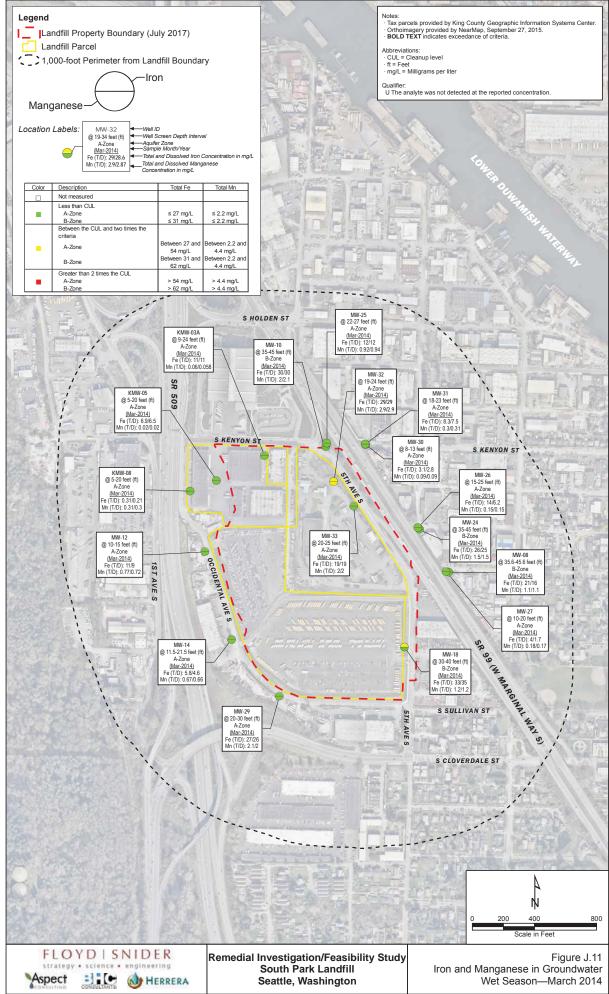


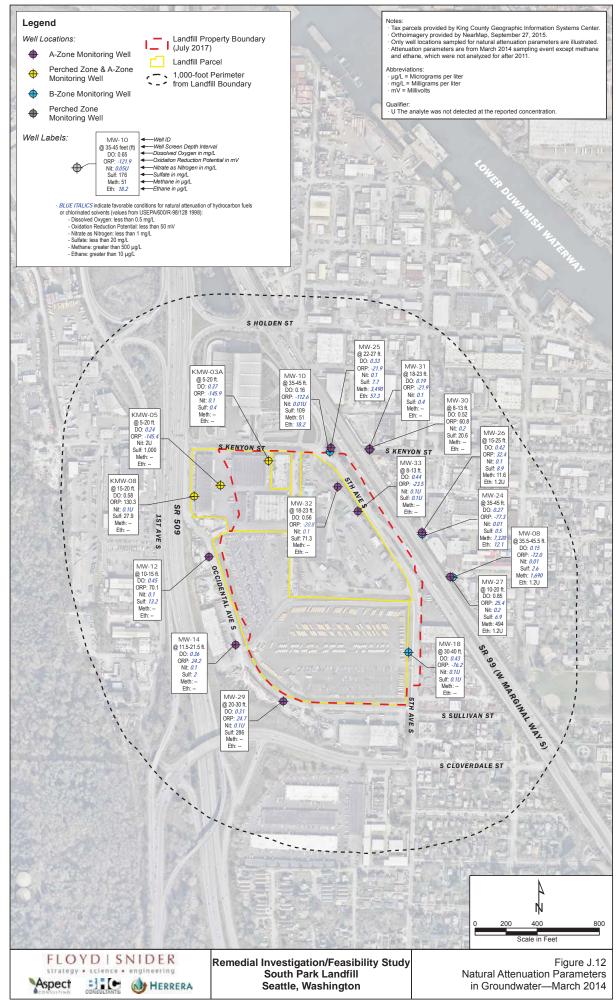












South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix J Groundwater Quality Trend Plots, Maps, and Data

Tables

FLOYDISNIDER

Table J.1

Results of January and July 2011 Groundwater Sampling Events

Standard Controller (Standard Controller) Standard Controll		_			•								-	
		Location	KMW-01A	KMW-03A	KMW-04	KMW-05	KMW-06	KMW-07	KMW-08	MW-01	MW-03	MW-04	MW-08	MW-10
Marie Mari		Sample ID	KMW-01A-012811	KMW-03A-012711	KMW-04-012811	KMW-05-012711	KMW-06-012711	KMW-07-012711	KMW-08-012811	MW-01-012711	MW-03-012711	MW-04-012611	MW-08-012711	MW-10-012811
Part	-1	Sample Date	1/28/2011	1/27/2011	1/28/2011	1/27/2011	1/27/2011	1/27/2011	1/28/2011	1/27/2011	1/27/2011	1/26/2011	1/27/2011	1/28/2011
Marie Mari	7	epth Range	19-29 ft	5-20 ft	5-20 ft	5-20 ft	5-20 ft	5-20 ft	15-20 ft	3-13 ft	3-13 ft	40–50 ft	35.5-45.5 ft	35-45 ft
Miles Mile	Detected Chemicals	Unit												
	Volatile Organic Compounds (USEPA	8260C/8260-	SIM)											
	Benzene	hg/L	0.2 U	0.2 U	0.2 U	5.6	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
High	cis-1,2-Dichloroethene	hg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3 U	1.1
Part	trans-1,2-Dichloroethene	hg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Ministration Mini	Trichloroethene	hg/L	0.2 U	0.2 U	0.2 U	4 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Part	Vinyl chloride	hg/L	0.091	0.39	0.22	0.2 U	0.31	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.15	0.26
High Colis Us	Semivolatile Organic Compounds (US	EPA 8270D/8	(270-SIM/8041)											
	Benzo(a) pyre ne	hg/L	0.01 U	0.01 U	0.01 U	0.31	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Marche M	Naphthalene	hg/L	0.013 UB	0.3	0.016 UB	140	0.12	0.079 JB	0.015 UB	0.035 UB	0.058 UB	0.01 U	0.01 U	0.01 U
Mark Mark 25 to 25 to	Pentachlorophenol	hg/L	0.25 U	0.25 U	0.25 U	5.9 J	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Market M	Pentachlorophenol	hg/L	2.5 U	2.5 U	2.5 U	4.0	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
May May	Petroleum Hydrocarbons (NWTPH)													
May 1 May 1 May 2 May	Diesel-range Hydrocarbons	mg/L	0.1 U	0.1 U	0.1 U	0.48	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
mg/L 0.000 0.0008 0.0005 0.00	Gasoline-range Hydrocarbons	mg/L	0.25 U	0.25 U	0.25 U	1.5 J	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
mg/L 0.0005 0.0005 1.21 0.0013 0.00042 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 <td>Motor Oil-range Hydrocarbons</td> <td>mg/L</td> <td>0.2 U</td> <td>0.2 U</td> <td>0.2 U</td> <td>2.5 J</td> <td>0.2 U</td>	Motor Oil-range Hydrocarbons	mg/L	0.2 U	0.2 U	0.2 U	2.5 J	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
mg/L 6,0006 0,0006 0,0008 <th>Metals (USEPA 200.8)</th> <th></th>	Metals (USEPA 200.8)													
mg/L 0.0008 0.0008 0.0008 0.0008 0.0001 0.0008 0.0001 0.0005 0.0001 0.0005 0.0001 0.0005 0.0001 0.0005 0.0001 0.0005 0.0001 0.0005 0.0001 0.0005 0.0001 0.0005 0.0001 <th>Arsenic (Dissolved)</th> <th>mg/L</th> <th>0.0006</th> <th>0.008</th> <th>0.0027</th> <th>1.21</th> <th>0.0015</th> <th>0.0042</th> <th>0.0042</th> <th>0.0032</th> <th>0.001</th> <th>0.0002 U</th> <th>0.0006</th> <th>0.0003</th>	Arsenic (Dissolved)	mg/L	0.0006	0.008	0.0027	1.21	0.0015	0.0042	0.0042	0.0032	0.001	0.0002 U	0.0006	0.0003
mg/L 0.0005 U 0.0001 U 0.001 U	Arsenic (Total)	mg/L	0.0008	0.0087	0.0026	1.23	0.0013	0.0057	0.0051	0.0035	0.001	0.0002 U	0.0006	0.0003
mg/L 0.0005 U 0.0001 U 0.001 U	Chromium (Dissolved)	mg/L	0.0005 U	0.0005 U	0.001 U	0.15	0.0005 U	0.0005 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.001 U	0.001 U
mg/l	Chromium (Total)	mg/L	0.0007	0.0005 U	0.0005 U	0.15	0.0005 U	0.0005 U	0.001 U	0.0005 U	0.0005 U	0.0005 U	0.002 U	0.002 U
mg/L 18 mg/L 0.001 <	Iron (Dissolved)	mg/L	-	-	-		:	-	-	-	-	-	15.3	39.7
mg/L 0.001 U 0	Iron (Total)	mg/L	:	1	1		:	1	:	1	:	1	18	41.9
mg/L 0.023 0.001 U 0.0	Lead (Dissolved)	mg/L	0.001 U	0.001 U	0.001 U	0.132	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
mg/L 1.55 0.047 0.089 0.020 0.030 0.20 0.25 0.25 0.36 0.049 0.005 1.2 mg/L 0.0002 U 0.0048 0.001 0.001 0.0020 0.0002 0.00002 U 0.00002	Lead (Total)	mg/L	0.023	0.005	0.001 U	0.166	0.003	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U
mg/L 1.55 0.048 0.056 0.039 0.035 0.346 0.049 0.049 1.1 mg/L 0.00002 U 0	Manganese (Dissolved)	mg/L	1.55	0.047	0.080	0.02 U	0.030	0.20	0.36	0.49	0.005	0.010	1.2	3.3
mg/L 0.00002 U 0.0	Manganese (Total)	mg/L	1.55	0.048	0.069	0.01	0:030	0.25	98'0	0.49	0.007	0.009	1.1	3.3
mg/l 0.00002 U 0.00002 U	Mercury (Dissolved)	mg/L	0.00002 U	0.00002 U	0.00002 U	0900000	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U
mg/L	Mercury (Total)	mg/L	0.00002 U	0.00002 U	0.00002 U	0.00062	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U
mg/l 378 378	Conventionals (Various) ¹													
ng/L 9.62 9.62 ng/L </td <td>Alkalinity (as CaCO₃)</td> <td>mg/L</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>378</td> <td>929</td>	Alkalinity (as CaCO ₃)	mg/L	1	1	1		-		-			-	378	929
mg/l/L 0.05 U 00 mg/l/L 9.5 J <th< td=""><td>Dissolved Organic Carbon</td><td>mg/L</td><td>:</td><td>1</td><td>1</td><td>1</td><td>:</td><td>1</td><td>:</td><td>:</td><td>:</td><td></td><td>9.62</td><td>11.4</td></th<>	Dissolved Organic Carbon	mg/L	:	1	1	1	:	1	:	:	:		9.62	11.4
mg/l 9.51 9.51 .	N-Nitrite	mg-N/L		-						-		-	0.05 U	0.073
µg/l 1.2 U µg/l 1.2 U	Sulfate	mg/L		-			:				:	-	9.5 J	176 J
Hg/L 1.20	Dissolved Gases (RSK 175)													
Hg/L - - - - 1,690	Ethane	hg/L		-	-	-		-	-	-		-	1.2 U	18
	Methane	hg/L	:	-	-	:			-				1,690	51

Qualifiiers:

J Estimated value

B Estimated due to presence of blank contamination

U Not detected

U Not detected at elevated reporting limit due to blank

Abbreviations:

CaCO, Calcium carbonate
DOC Dissolved organic carbon
the Duplicate
of Duplicate
of Coundwater
of Feet
OW Groundwater
mg/L Milligams per liter
mg/NL Miligams per liter
mg/NL Miligams of introgen per liter
mg/NL Miligams of introgen per liter
mg/NL Miligams of introgen per liter
MS/NL Miligams of introden per literation
MS/NL Miligams of introden per literat

Remedial Investigation/

BOLD Opercited.

- Not analysis and for conventionals analysis: alsalinity by SM 2220, DOC by USEPA 415.1, N. Witrite by USEPA 3532, and sulfate by USEPA 375.2.

1 Analysis and sulfate by USEPA 375.2.

FLOYDISNIDER

Table J.1 Results of January and July 2011 Groundwater Sampling Events

						5									
	Location	MW-12	MW-14	MW-18	MW-24	MW-25	MW-25 (dup)	MW-26	MW-27	MW-29	MW-30	MW-31	MW-32	MW-32 (dup)	MW-33
	Sample ID	MW-12-012611	MW-14-012611	MW-18-012611	MW-24-012711	MW-25-012711	MW-30-012711	MW-26-012711	MW-27-012711	MW-29-012611	MW-30-070811	MW-31-070811	MW-32-070811	MW-34-070811	MW-33-070811
s	Sample Date	1/26/2011	1/26/2011	1/26/2011	1/27/2011	1/27/2011	1/27/2011	1/27/2011	1/27/2011	1/26/2011	7/8/2011	7/8/2011	7/8/2011	7/8/2011	7/8/2011
	Depth Range	10-15 ft	11.5-21.5 ft	30-40 ft	35-45 ft	22–27 ft	22–27 ft	15-25 ft	10-20 ft	20-30 ft	8-13 ft	18-23 ft	19-24 ft	19-24 ft	20-25 ft
Detected Chemicals	Onit														
Volatile Organic Compounds (USEPA 8260C/8260-SIM)	A 8260C/826	.0-SIM)													
Benzene	µg/L	0.2 U	0.2 U	0.2 U	0.2 U	5.7	5.8	0.2 U	0.2 U	0.2 U					
cis-1,2-Dichloroethene	η/βη	5.7	0.2 U	0.2 U	0.2 U	9.0	0.5	0.2	0.4 U	0.2 U	3.2	6.3	2	2	0.7
trans-1,2-Dichloroethene	η/βη	0.2 U	0.2 U	0.2 U	0.2 U	0.3	0.3	0.2 U	0.2 U	0.2 U	0.2 U	1.2	0.3	0.3	0.2 U
Trichloroethene	η/g/L	9.0	0.2 U	0.4	0.2 U	0.2 U	0.5	0.2 U	0.2 U	0.2 U	0.2 U				
Vinyl chloride	hg/L	0.26	0.02 U	0.02 U	0.051	0.79	0.81	0.04	0.31	0.02 U	2.2	9.0	0.2	0.2	0.3
Semi-volatile Organic Compounds (USEPA 8270D/8270-SIM/8041)	USEPA 8270L	3/8270-SIM/8041)													
Benzo(a)pyrene	η/βη	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U					:
Naphthalene	hg/L	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 UB		1	:	1	:
Pentachlorophenol	Hg/L	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U		1	:	1	:
Pentachlorophenol	ng/L	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U					:
Petroleum Hydrocarbons (NWTPH)	_														
Die sel-range Hydrocarbons	mg/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U					
Gasoline-range Hydrocarbons	mg/L	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U			:	-	:
Motor Oil-range Hydrocarbons	mg/L	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U		-	:		
Metals (USEPA 200.8)															
Arsenic (Dissolved)	mg/L	0.0032	0.0003	0.0002	0.0003	0.0006	0.0006	0.0007	0.0139	600000		1	;	:	:
Arsenic (Total)	mg/L	0.0064	0.0003	0,0003	0,0003	9000'0	90000	0.000	0.0272	6000'0			:		:
Chromium (Dissolved)	mg/L	0.0007	0.0005 U	0.001 U	0.002 U	0.001 U	0.001 U	0.001 U	0.0020	0:0030					:
Chromium (Total)	mg/L	0.001 U	0.001 U	0.001 U	0.001 U	0.002 U	0.002 U	0.002 U	0.0040	0.0031		1	1	1	:
Iron (Dissolved)	mg/L		:		23.4	28.8	29.2	5.98	6:39			1	:	1	:
Iron (Total)	mg/L				23.5	31.6	31.2	7.05	16.3						:
Lead (Dissolved)	mg/L	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U			-	-	:
Lead (Total)	mg/L	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U	0.001 U					:
Manganese (Dissolved)	mg/L	89.0	0.37	99'0	1.6	2.9	3.1	0.16	0.39	1.07		1		1	:
Manganese (Total)	mg/L	0.71	0.37	99.0	1.6	3.1	3.0	0.17	0.58	1.06					:
Mercury (Dissolved)	mg/L	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	-	-		-	:
Mercury (Total)	mg/L	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00002 U	-	-	-	-	:
Conventionals (Various) ¹															
Alkalinity (as CaCO ₃)	mg/L	1	1		487	633	637	37.4	140	1	1			1	
Dissolved Organic Carbon	mg/L	1	:	:	12.7	19.3	19.4	3.24	7.81	:		1	:	1	:
N-Nitrite	mg-N/L		:	-	0.05 U	0.1 U	0.1 U	0.05 U	0.01 U	:					
Sulfate	mg/L				5.8 J	26.7 J	27.4 J	5.8 J	19.1 J						
Dissolved Gases (RSK 175)															
Ethane	ηg/L	,	:		12	57	54	1.2 U	1.2 U	:		1	1	1	:
Methane	η/g/L				7,320	3,490	3,330	12	494						
Notes:															

13. J Estimated value
18 Estimated due to presence of blank contamination
U Not detected
UB Not detected at elevated reportling limit due to blank Qualifiiers:

Abbreviations:

CacO₂, claim carbonate

DCO Dissolved organic carbon

dup Duplicate

If Feet

GW Groundwarer

gg/L Minggarns per Iter

mg/L Milligarns per Iter

mg/L Milligarns per Iter

mg/L Milligarns per Iter

RVTPH Rechristst total percebin hydrocarbons

RSC Dissolvedgas analysis in water

BOLD Detected.

-- Not analyzed.

1 Analytical methods for conventionals analysis: alkalinity by SM 2320, DOC by USFPA 415.1, N-Nitrite by USFPA 353.2, and sulfate by USFPA 375.2.

FLOYDISNIDER

Table J.2

April 2013 Groundwater Sample Analytical Results

	Location	KMW-03A	KMW-05	KMW-08	-08	WW-08	MW-10	MW-12	MW-14	MW-18	MW-24
	X-coord ¹	1270170.48	1269861.86	1269692.89	1269692.89	1271368.12	1270569.12	1269783.23	1269963.2	1271077.67	1271162.48
	Y-coord ¹	197585.09	197427.44	197356.14	197356.14	196837.87	197647.09	196963.92	196398.73	196350.26	197102.37
		SPL-GW-KMW03A-	SPL-GW-KMW05-	SPL-GW-KMW08-	SPL-GW-MW61-	SPL-GW-MW08-	SPL-GW-MW10-	SPL-GW-MW12-	SPL-GW-MW14-	SPL-GW-MW18-	SPL-GW-MW24-
	Sample ID	040313	040313	040413	040413	040213	040213	040313	040313	040313	040213
	Sample Date	04/03/2013	04/03/2013	04/04/2013	04/04/2013	04/02/2013	04/02/2013	04/03/2013	04/03/2013	04/03/2013	04/02/2013
Analyte	Units										
Conventionals by USEPA 300.0, 350.1M, 376.2, and SM 2320	0, 350.1M, 376.2	, and SM 2320									
Chloride	mg/L	12.9	158	9.5	9.4	189	15.8	17.4	13.1	16.3	33.2
Sulfate	mg/L	0.4	1,150	27.9	27.6	3.8	56.3	17.8	2.3	76.5	0.3
Sulfide	mg/L	0.05 U	30.6	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
N-ammonia	mg-N/L	3.04	74.3	0.22	0.235	2.96	3.74	0.692	0.236	2.27	3.52
N-nitrate	T/N-BW	U 1.0	N S	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
N-nitrite	T/N-BW	0.1 U	N S	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Alkalinity	mg/L CaCO ₃	368	7,510	154	158	375	276	153	261	430	420
Bicarbonate	mg/L caco ₃	898	1 U	154	158	375	276	153	261	430	420
Carbonate	mg/L caco ₃	U I	2,640	1 U	1 U	1 U	1.0	1.0	1 U	1 U	1.0
Hydroxide	mg/L CaCO ₃	U I	4,860	1 U	1.0	1 U	1.0	1.0	1 U	1 U	10
Metals by SW6010C											
Calcium, dissolved	mg/L	84.3	9.8	40.3	40.3	46	44.3	30.8	50.6	70.8	73.4
Iron, dissolved	mg/L	10.4	5	0.07	0.07	19.1	19.2	7.97	4.29	59.5	26
Iron, total	mg/L	10.2	5.7	0.15	0.15	19	18.4	11.3	4.8	59.6	29.5
Magnesium, dissolved	T/Bm	27.1	U 5.0	8.89	8.89	47.8	28.2	16.4	30.5	62.2	33
Manganese, dissolved	T/Bm	0.048	0.01 U	0.24	0.242	1.19	1.1	0.742	0.576	1.57	1.64
Manganese, total	mg/L	0.05	0.01 U	0.241	0.241	1.17	1.05	0.769	0.587	1.57	1.79
Potassium, dissolved	T/Bm	15.5	4,160	22.9	22.8	16.9	9.2	4	4.9	16.6	12.3
Sodium, dissolved	mg/L	24.5	1,520	22.7	22.3	157	59.4	20.8	16.3	33.8	58.7
VOCs by SW8260C											
Benzene	1/8rl		8.2	0.2 U	0.2 U		-	-	-	-	
cis-1,2-Dichloroethene	µg/L	0.2 U	4 U	0.2 U	0.2 U	0.2 U	1.8	3.1	0.2 U	0.2 U	0.2 U
Trichloroethene	hg/L	0.2 U	4 U	0.2 U	0.2 U	0.2 U	0.2 U	0.37	0.2 U	0.2 U	0.2 U
VOCs by SW8260C-SIM											
Vinyl chloride	hg/L	0.3	0.4 U	0.02 U	0.02 U	0.063	1.2	0.1	0.02 U	0.072	0.032
Field Parameters											
Dissolved oxygen	mg/L	0.72	09:0	0.95		2.23	1.70	2.05	2.39	2.95	2.70
ORP	mV	-227.6	-560.4	110.4		-98.5	-109.3	-14.0	-50.2	-103.5	-86.6
hd	Hd	7.68	13.11	99:9		6.82	6.80	99.9	6.70	6.60	6.68
Specific conductance	µS/cm	823.0	31,561.0	398.0		1,331.0	715.0	435.6	597.7	1,172.0	913.0

		Propos	Proposed CUL (Potential Scenarios)	enarios)
			Protection of	Upgradient or
Monitored Analytes	Units	Drinking Water	Surface Water	Background
Benzene	1/8rl	2	51	-
cis-1,2-Dichloroethene	1/8H	16	006	
Trichloroethene	1/8rl	4.9	30	
Vinyl chloride	1/8H	0.29	2.40	-
Iron	mg/L			18
Manganese	mg/L	:	:	2.0

-- Not analyzed for. 1 Coordinates are in Washington State Plane North NAD 83 feet. Notes:

Abbreviations.

GGO, Saldum carbonate
CU Caenup level
UL Caenup level
India, Microsimers per tiler
IsS/cm Microsimers per entimeter
mgD, Milligeram per item
mgD, Milligeram per item
mgD, Milligeram per item
mgD Milligeram per item
Mg Milligeram per item
WO Milligeram per item
WO Colorian per item
1983
OPP Oxidation reduction potential
VOC Volatile organic compound

Qualifier:

U Analyte was not detected at given reporting limit.

Remedial Investigation/

FLOYDISNIDER

Table J.2 April 2013 Groundwater Sample Analytical Results

Salahara	X-coord ¹	C7-MM	67	1VI VV - 20	/7-MIM	IVIVV -2.5	00-WIM	IVIVV -S.L	IVI VV=3.2	NIVI-33
Sa	Y-coord	ı	ı							
Sa	2002-4	1270572.18	1270572.18	1271163.2	1271347.6	1270272.103	1270826.64	1270825.71	1270622.16	1270751.02
Sa	Y-coord ¹	197667.54	197667.54	197122.51	196835.03	196033.286	197655.77	197660.37	197416.52	197257.91
Sa			SPL-GW-MW60-	SPL-GW-MW26-	SPL-GW-MW27-	SPL-GW-MW29-	SPL-GW-MW30-	SPL-GW-MW31-	SPL-GW-MW32-	SPL-GW-MW33-
	Sample ID	Sample ID SPL-GW-MW25-040113	040113	040213	040213	040313	040213	040213	040113	040113
	Sample Date	04/01/2013	04/01/2013	04/02/2013	04/02/2013	04/03/2013	04/02/2013	04/02/2013	04/01/2013	04/01/2013
	Units									
Conventionals by USEPA 300.0, 350.1M, 376.2,	1M, 376.2,	and SM 2320								
Chloride	mg/L	6.1	6.2	11.1	11.8	17.8	37.3	12.5	33.8	988.6
Sulfate	mg/L	4	4.5	12.1	6.2	282	19.4	0.1	12.8	1.4
Sulfide	mg/L	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
onia	mg-N/L	2.11	2.1	0.18	1.59	0.754	0.299	2.19	9.35	14.7
N-nitrate m.	mg-N/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
N-nitrite m	mg-N/L	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Alkalinity mg/l	mg/L CaCO ₃	134	136	33.7	104	259	171	171	672	661
Bicarbonate mg/l	mg/L CaCO ₃	134	136	33.7	104	259	171	171	672	661
Carbonate mg/l	mg/L CaCO ₃	1 0	1.0	1.0	1 U	1 U	1 U	1.0	1.0	1.0
Hydroxide mg/l	mg/L CaCO ₃	10	1.0	1.0	10	1 U	1 U	1.0	10	10
Metals by SW6010C										
Calcium, dissolved	mg/L	19.5	19.7	8.92	16.2	147	65.1	24.5	68.3	37.1
Iron, dissolved	mg/L	6.7	89.9	5.58	12.5	15.8	2.21	11.9	23.8	18.4
Iron, total n	mg/L	7.25	7.28	8.26	21.6	16.6	2.3	18.3	22.9	18.4
Magnesium, dissolved	mg/L	5.2	5.23	3.27	4.36	35.5	12.3	2.06	44.1	22.1
Manganese, dissolved	mg/L	0.525	0.528	0.129	0.395	1.31	0.079	0.442	2.31	1.84
Manganese, total	mg/L	0.536	0.53	0.136	0.417	1.36	0.08	0.505	2.2	1.83
Potassium, dissolved	mg/L	2.8	2.8	2.9	3.3	10.8	3.9	4.2	14.9	9.6
р	mg/L	33.8	33.7	9.5	30.3	21.4	14.3	40.3	162	265
VOCs by SW8260C										
Benzene	mg/L	0.43	0.4	-	-	-		-	:	-
cis-1,2-Dichloroethene	hg/L	0.72	0.8	0.33	0.4	0.2 U	0.64	5.2	1.5	0.2 U
Trichloroethene	ng/L	0.2 U	0.2 U	0.31	0.2 U	0.2 U	9.0	0.2 U	0.2 U	0.2 U
VOCs by SW8260C-SIM										
Vinyl chloride	mg/L	1.4	1.4	0.02 U	0.25	0.02 U	0.12	4.7	0.28	1.1
Field Parameters										
lved oxygen	mg/L	1.20		1.72	1.98	2.33	1.28	2.06	1.11	2.53
ORP	mV	-58.2	-	-13.3	-86.9	-28.7	0.9	-50.2	-97.7	-101.4
Hd	Н	6.78		6.32	6.75	6.53	6.53	9:29	9.76	6.75
Specific conductance	ms/cm	288.8	-	148.7	280.7	1156.0	488.5	386.7	1339.0	1526.0

		Propos	Proposed CUL (Potential Scenarios)	rios)
			Protection of Surface	Upgradientor
Monitored Analytes	Units	Drinking Water	Water	Background
Benzene	1/8rt	2	51	-
cis-1,2-Dichloroethene	1/8ri	16	006	
Trichloroethene	hg/L	4.9	30	
Vinyl chloride	hg/L	0.29	2.40	-
Iron	mg/L		-	18
Manganese	mg/L		-	2.0
Notes:				

-- Not analyzed for. 1 Coordinates are in Washington State Plane North NAD 83 feet.

Abbreviations.
Cac, Calcium carbonate
Cu. Ceanup leed
Labor Mincoslemes per liter
1g/cm Mincoslemes per rentimeter
mg/L/Milligams per liter
mg/L/Milligams per liter
mg/L/Milligams per liter
mg/L/Milligams per liter
mg/J/Milligams per liter
mg/J/Milligams
Mol Milligams
VOC Volatile organic compound

Qualifier:

U Analyte was not detected at given reporting limit.

Fyarojects) (OS-59ARK/ADD) - 8I-59/11 SPARK Final RFS) (M-Appendices) Appendix I - Groundwater Quality Trend Plots) (M-Tables) SPARK Tables, 22-April 2013 GW Chem w Field Parametes (09)913
July 2017

FLOYDISNIDER

Table J.3

July 2013 Groundwater Sample Analytical Results

	Location	KMW-03A	KMW-05	KMW-08	-08	MW-08	MW-10	MW-12	MW-14	MW-18	MW-24
	X-coord ¹	1270170.48	1269861.86	1269692.89	1269692.89	1271368.12	1270569.12	1269783.23	1269963.2	1271077.67	1271162.48
	Y-coord ¹		197427.44	197356.14	197356.14	196837.87	197647.09	196963.92	196398.73	196350.26	197102.37
		SPL-GW-KMW03A-	SPL-GW-KMW05-	SPL-GW-KMW08-	SPL-GW-MW61-	SPL-GW-MW08-	SPL-GW-MW10-	SPL-GW-MW12-	SPL-GW-MW14-	SPL-GW-MW18-	SPL-GW-MW24-
	Sample ID	071813	071813	071813	071813	071613	071513	071713	071713	071713	071613
	Sample Date	7/18/2013	7/18/2013	7/18/2013	7/18/2013	7/16/2013	7/15/2013	7/17/2013	7/17/2013	7/17/2013	7/16/2013
Analyte	Units										
Conventionals by USEPA 300.0, 350.1M, 376.2, and SM 2320	0, 350.1M, 376.2,	and SM 2320									
Chloride	7/8w	12.8	163	8.4	8.4	145	17.1	14.4	26.3	21.5	38.1
Sulfate	mg/L	0.1 U	1,140	23.7	23.6	2.3	69.2	5.4	3.4	10.8	4.9
Sulfide	mg/L	0.05 U	23.6	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.118	0.05 U	0.077
N-ammonia	1/N-8m	3.06	64.4	0.596	0.339	3.1	3.69	0.744	0.228	2.58	2.53
N-nitrate	1/N-8w	0.1 U	10 U	0.1 U	0.1 U	U 1.0	0.1 0	0.1 U	0.1 U	0.1 U	0.1 U
N-nitrite	1/N-8m	0.1 U	10 U	0.1 U	0.1 U	U 1.0	0.1 U				
Alkalinity	mg/L CaCO ₃	354	7,930	156	150	356	309	171	206	574	340
Bicarbonate	mg/L CaCO ₃	354	1 U	156	150	326	309	171	206	574	340
Carbonate	mg/L CaCO ₃	1 U	2,570	1 U	1 U	1 N	1 U	1 U	10	1 U	1 U
Hydroxide	mg/L CaCO ₃	1 U	5,370	1 U	1 U	1 N	1 U	1 U	10	1 U	1 U
Metals by SW6010C											
Calcium, dissolved	mg/L	76.1	10.7	30.2	30.2	41.6	49.5	30.6	42.8	9.69	59.4
Iron, dissolved	mg/L	10.4	5.2	0.16	0.16	17.7	21.9	8.49	4.04	44.4	14.6
Iron, total	mg/L	10.8	5.9	0.31	0.29	17.6	22.7	17.7	4.64	48.9	14.1
Magnesium, dissolved	mg/L	26	0.5 U	6.51	6.49	38.3	31.4	14.7	23.8	62:3	26.8
Manganese, dissolved	mg/L	0.036	0.01 U	0.165	0.165	1.05	1.29	0.495	0.494	1.84	1.15
Manganese, total	mg/L	0.04	0.01 U	0.172	0.17	1.03	1.32	0.504	0.48	1.83	1.13
Potassium, dissolved	mg/L	14.7	4,280	28	27.5	15.1	9.2	3.7	4.6	16.9	11.2
Sodium, dissolved	mg/L	22.7	1,570	24.2	24.1	133	57.4	21.5	15.7	46	58.4
/OCs by SW8260C											
Benzene	µg/L		7.2	0.2 U	0.2 U						
cis-1,2-Dichloroethene	hg/L	0.2 U	4 U	0.2 U	0.2 U	0.2 U	1.6	5.4 J	0.02 U	0.044	0.2 U
Trichloroethene	µg/L	0.2 U	4 U	0.2 U	0.2 U	0.2 U	0.2 U	0.15^{2}	0.02 U	0.02 U	0.2 U
VOCs by SW8260C-SIM											
Vinyl chloride	7/8rl	0.35	0.4 U	0.02 U	0.02 U	690'0	0.84	0.22	0.02 U	0.075	0.02 U
Field Parameters											
Dissolved oxygen	mg/L	1.46	1.05	1.42		2.33	1.90	2.29	1.70	2.51	2.52
ORP	Λm	-216.60	-536.50	65.50		-87.10	-91.90	-17.70	-67.40	-762.00	-43.20
hd	Hd	7.62	12.91	6.69		6.77	6.73	6.71	6.77	6.61	6.70
Specific conductance	m5/Sii	717 00	31 928 00	404 00		1 1 40 00	70.4 00	09 1/95	406.00	1 000 00	10000

		Propos	Proposed CUL (Potential Scenarios)	enarios)
			Protection of	Upgradient or
Monitored Analytes	Units	Drinking Water	Surface Water	Background
Benzene	ng/L	2	51	:
cis-1,2-Dichloroethene	1/8rl	16	006	:
Trichloroethene	hg/L	4.9	30	
Vinyl chloride	hg/L	0.29	2.40	:
Iron	mg/L			18
Manganese	mg/L		:	2.0

U Analyte was not detected at given reporting limit. J Analyte was detected; the result should be considered an estimate. JM Analyte was detected; the result should be considered an estimate due to poor spectral match.

Remedial Investigation/

Not analyzed for.

1 Coordinate an in Washington State Plane Morth NAD 83 feet.

1 Coordinates are in Washington State Plane North NAD 83 feet.

1 Coordinates swell is from swell or the swell is from swell in the SW8260C analysis.

1 Coordinates are swell in the SW8260C analysis. Qualifiers:

² Result is from SW8260C-SIM analysa Abbrevlations:
CaCo₂ Calcium carbonate
CuC Cennup level
IgU Micrograms per liter
IgU Micrograms per liter
mg/L Milligrams per liter
gov Of Milligrams per liter
gov Milligrams per liter
mg/L Milligrams per liter
mg/L Milligrams per liter
gov Of Milligrams per liter
mg/L Willigrams per liter

FLOYDISNIDER

Table J.3

July 2013 Groundwater Sample Analytical Results

	Location		NAVA-25	MW-26	MW-27	MW-29	MW-30	MW-21	MW-32	MW-33
	X-coord ¹	1270572.18	1270572.18	1271163.2	1271347.6	1270272.103	1270826.64	1270825.71	1270622.16	1270751.02
	Y-coord ¹	_	197667.54	197122.51	196835.03	196033.286	197655.77	197660.37	197416.52	197257.91
		SPL-GW-MW25-	SPL-GW-MW60-	SPL-GW-MW26-	SPL-GW-MW27-	SPL-GW-MW29-	SPL-GW-MW30-	SPL-GW-MW31-	SPL-GW-MW32-	SPL-GW-MW33-
	Sample ID		071513	071613	071613	071713	071613	071613	071513	071513
	Sample Date	7/15/2013	7/15/2013	7/16/2013	7/16/2013	2/11/2013	7/16/2013	7/16/2013	7/15/2013	7/15/2013
Analyte	Units									
Conventionals by USEPA 300.0, 350.1M, 376.2, and SM 2320	.0, 350.1M, 376.2	3, and SM 2320								
Chloride	mg/L	7.5	7.6	15.1	24.7	18.4	29.9	16.3	30.3	87.5
Sulfate	mg/L	0.4	0.4	11.6	0.4	295	11.3	0.1	19.2	0.1
Sulfide	mg/L	0.05 U	0.05 U	0.05 U	0.05 U	U 20.0	0.05 U	0.05 U	0.05 U	0.05 U
N-ammonia	mg-N/L	2.82	2.89	0.1	2.02	0.855	0.515	1.68	10	15.6
N-nitrate	mg-N/L	0.1 U	0.1 U	0.1 U	0.1 U	U 1.0	0.1 U	0.1 U	0.1 U	0.1 U
N-nitrite	mg-N/L	0.1 U	0.1 U	0.1 U	0.1 U	U 1.0	0.1 U	0.1 U	0.1 U	0.1 U
Alkalinity	mg/L CaCO ₃	191	194	48.4	100	279	217	110	029	929
Bicarbonate	mg/L CaCO ₃	191	194	48.4	100	622	217	110	029	929
Carbonate	mg/L CaCO ₃	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U
Hydroxide	mg/L CaCO ₃	1 U	1 U	1.0	1 U	U 1	1.0	10	1 0	1 U
Metals by SW6010C										
Calcium, dissolved	mg/L	32.3	33.1	11.1	14.4	158	68.5	13.6	77.2	37.7
Iron, dissolved	mg/L	11.1	11.2	7.11	17.8	18.2	4.58	7.89	26.4	19.3
Iron, total	mg/L	11.7	11.8	10.3	19.5	18.3	4.53	8.29	26.7	19.5
Magnesium, dissolved	mg/L	8.75	8.84	4.07	4.37	36.8	13	4	48.8	22.2
Manganese, dissolved	mg/L	0.84	0.831	0.16	0.507	1.25	0.111	0.258	2.46	1.87
Manganese, total	mg/L	0.856	0.839	0.165	0.528	1.24	0.111	0.264	2.48	1.88
Potassium, dissolved	mg/L	3.4	3.5	3.1	3.4	11.3	2	3.1	16.1	9.6
Sodium, dissolved	mg/L	35.4	35.7	11	31	22.7	16.8	35.1	138	273
VOCs by SW8260C										
Benzene	hg/L	0.28	0.33							
cis-1,2-Dichloroethene	1/8rl	0.75	0.7	0.3	0.41	0.034	1.6	5.2	1.7	0.2 U
Trichloroethene	η/βπ	0.2 U	0.2 U	Mt 75.0	0.2 U	U 20:0	0.75	0.2 U	0.2 U	0.2 U
VOCs by SW8260C-SIM										
Vinyl chloride	hg/L	1.1	66'0	0.022	0.14	0.02 U	0.5	4.3	0.3	0.78
Field Parameters										
Dissolved oxygen	mg/L	2.27	1	2.08	1.97	2.18	3.16	2.31	3.26	3.01
ORP	μV	-54.00	1	10.40	-93.50	-40.30	2.60	-46.60	-89.10	-95.10
рН	рН	6.63	1	6.21	6.80	6.44	6.47	6.57	6.71	6.70
Specific conductance	mS/cm	400.40		185.10	323.20	1,095.00	519.80	293.00	1,333.00	1.576.00

		Propose	Proposed CUL (Potential Scenarios)	enarios)
			Protection of	Upgradientor
Monitored Analytes	Units	Drinking Water	Surface Water	Background
Benzene	7/8rl	2	51	
cis-1,2-Dichloroethene	7/8rl	16	006	
Trichloroethene	7/8rl	4.9	30	-
Vinyl chloride	7/8H	0.29	2.40	-
Iron	T/Bm	1		18
Adamagaa	1/ 20 000			0 0

Remedial Investigation/

⁻ Not analyzed for.

1 Coordinates are in Washington State Plane North NAD 83 feet.

1 Coordinates are in Washington State Plane North NAD 83 feet.

1 Coordinates are in Washington State Plane North NAD 83 feet.

U Analyte was not detected at given reporting limit. J Analyte was detected; the result should be considered an estimate. JM Analyte was detected; the result should be considered an estimate due to poor spectral match. Qualifiers:

² Result is from SW8250C-5IM analys
Abbreviations:
GGC ₃ Calcium carbonate
CU Cleanup level
µgL i Micrograms per liter
µgL/ i Micrograms per liter
µgL/ i Micrograms per liter
µgL/ i Micrograms per liter
mg-VL i Milgrams per liter as nitrogen
mm-V Milgrams per liter as nitrogen
mW-VI Milgrams per liter as nitrogen
MA 83 North American Datum of 1983
NAD 83 North American Datum of 1983
NAD 83 North American Datum of 1983
VDC No Jobation reduction potential
USEPA U.S. Environmental Protection Agency
VOC Votatie erganic compound

FLOYDISNIDER

Table J.4

March 2014 Groundwater Sample Analytical Results

	Location	KMW-03A	KMW-05	KMW-08	80-7	MW-08	MW-10	MW-12	MW-14	MW-18	MW-24	MW-25	25
	X-coord ¹	1270170.48	1269861.86	1269692.89	1269692.89	1271368.12	1270569.12	1269783.23	1269963.2	1271077.67	1271162.48	1270572.18	1270572.18
	Y-coord ¹	197585.09	197427.44	197356.14	197356.14	196837.87	197647.09	196963.92	196398.73	196350.26	197102.37	197667.54	197667.54
		-SPL-	SPL-GW-KMW05-	SPL-GW-KMW08-	SPL-GW-MW61-	SPL-GW-MW08-	SPL-GW-MW10-	SPL-GW-MW12-	SPL-GW-MW14-	SPL-GW-MW18-	SPL-GW-MW24-	SPL-GW-MW25-	SPL-GW-MW60-
	Sample ID		031714	031714	031714	031914	031714	031814	031814	031814	031914	031714	031714
	Sample Date	03/17/2014	03/17/2014	03/17/2014	03/17/2014	03/19/2014	03/17/2014	03/18/2014	03/18/2014	03/18/2014	03/19/2014	03/17/2014	03/17/2014
Analyte	Units												
Conventionals by EPA 300.0, 350.1M, 376.2, and SM 2320	0, 350.1M, 376.2,	and SM 2320											
Chloride	mg/L	15.4	154	14.7	14.7	194	25	20.1	19.6	13.3	42.3	9.8	8.7
Sulfate	mg/L	0.4	1000	27.9	27.7	2.6	109	13.2	2	0.1 U	0.5	7.7	7.7
Sulfide	mg/L	0.05 U	28.1	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U	0.05 U
N-Ammonia	mg-N/L	3.17	64.2	0.342	0.36	2.9	4.87	0.734	0.204	1.98	3.8	2.87	2.89
N-Nitrate	mg-N/L	0.1	2 U	0.1 U	0.1 U	0.1	0.1 U	0.1	1.0	0.1 U	0.1	0.1	0.1
N-Nitrite	mg-N/L	0.1 U	2 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Alkalinity	mg/L CaCO3	378	8290	186	186	378	372	186	246	361	405	169	169
Bicarbonate	mg/L CaCO3	378	10	186	186	378	372	186	246	361	405	169	169
Carbonate	mg/L CaCO3	10	2820	1 U	1 U	1.0	1 0	1.0	1.0	1.0	1.0	10	1 0
Hydroxide	mg/L CaCO3	1.0	5460	1 U	1 U	1.0	1 U	1 0	1 U	1.0	1 U	1 U	1 U
Metals by SW6010C													
Calcium, dissolved	mg/L	82.8	12.3	42.4	42.7	42.6	77.5	32.6	48.9	45.2	70.1	29.8	30
Iron, dissolved	mg/L	11.2	6.5	0.21	0.17	16.4	29.7	9.01	4.56	34.8	24.6	11.4	11.5
Iron, total	mg/L	11.3	6.9	0.3	0.31	21.3	29.6	11.1	5.76	33.3	25.9	11.6	11.5
Magnesium, dissolved	mg/L	25.7	0.5 U	10	98'6	47.2	43.3	16.9	28	41.7	29.4	8.85	8.92
Manganese, dissolved	mg/L	0.058	0.02	0.298	0.298	1.13	2.06	0.722	0.656	1.2	1.45	0.924	0.943
Manganese, total	mg/L	90:0	0.02	0.305	0.302	1.13	2.04	0.768	699.0	1.24	1.47	0.923	0.916
Potassium, dissolved	mg/L	14.1	4370	29.3	28.5	16.7	10.6	4	4.9	13.8	12.6	4.7	3.8
Sodium, dissolved	T/Bm	24.5	1620	29.8	29.7	154	55.4	22.6	17	34.6	8.09	31.9	31.6
VOCs by SW8260C													
Benzene	ug/L		7.4	0.2 U	0.2 U							0.2 U	0.2 U
cis-1,2-Dichloroethene	ng/L	0.2 U	2 U	0.2 U	0.2 U	0.2 U	1.9	4.5	0.2 U	0.2 U	0.2 U	0.48	0.5
Trichloroethene	ng/L	0.2 U	2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3	0.2 U				
VOCs by SW8260C-SIM													
Vinyl Chloride	ng/L	0.3	0.2 U	0.02 U	0.02 U	0.08	0.49	0.22	0.02 U	0.02 U	0.034	66'0	0.98
Field Parameters													
Dissolved Oxygen	mg/L	0.37	0.24	0.58	-	0.15	0.16	0.45	0.36	0.43	0.27	0.33	-
ORP	mV	-145.9	-145.4	130.3	1	-72.0	-112.6	70.1	24.2	-76.2	-77.3	-21.9	1
Н	hd	7.50	13.20	6.33	-	98.9	6.94	6.37	6.50	6.46	6.71	6.32	
Specific Conductance	m2/cm	736.0	30,339.0	454.9		1,336.0	1,020.0	406.3	513.2	745.0	0.668	384.7	

		Propo	Proposed COL (Potential Scenarios)	arios)
Monitored Analytes	Units	Drinking Water	Protection of Surface	Upgradient or
Benzene	hg/L	2	51	
cis-1,2-Dichloroethene	η/βπ	16	006	:
Trichloroethene	1/8∕t	4.9	30	:
Vinyl chloride	hg/L	0.29	2.40	
Iron	mg/L		-	18
Manganese	mg/L	:		2.0

Notes:

Not analyzed for.
 Coordinates are in Washington State Plane North NAD 83 feet.
 Result is from SWRZAGC analysis because the SWR22GOC-SIM result exceeded the instrument calibration range.

Qualifier: U Analyte was not detected at given reporting limit.

Abbreviations:
CacO, Calcium carbonate
CLU, Cleanup level
1921. Micrograms per liter
195/cm Microsiemens per centimeter
mg/L Milligrams per liter
mg/M. Milligrams per liter
mg-M. Milligrams per liter
MR Milligrams per liter
mg-M. Milligrams per liter
MR Milligrams per liter
mg-M. Milligrams per liter
MR Milligrams per liter
mg-M. Ovolt Milligrams per literation
mg-M. Ovolt Milligrams per literation
mg-Milligrams per literation
mg-M. Ovolt Milligrams per literation
mg-M. Milligrams per literation
mg-M.

Remedial Investigation/

FLOYDISNIDER

March 2014 Groundwater Sample Analytical Results Table J.4

MW-33	1270751.02	197257.91	SPL-GW-MW33-	031814	03/18/2014			81.7	0.1 U	0.05 U	14.7	0.1 U	0.1 U	268	268	1 U	1 U		37	18.9	19.1	21.7	1.95	2.03	9.6	264			0.2 U	0.2 U		0.44		0.44	-23.5	6.51	1,522.0
MW-32	1270622.16	197416.52	/32-	031814	03/18/2014			26	71.3	0.05 U	9.26	0.1	0.1 U	209	209	1.0	10		8.98	28.6	59	55.8	2.87	2.9	15.7	110			1.5	0.2 U		0.36		0.56	-20.8	6.55	1,315.0
MW-31	1270825.71	197660.37	SPL-GW-MW31-	031914	03/19/2014			20.1	0.4	0.05 U	1.58	0.1	0.1 U	95.2	95.2	1.0	10		13.6	7.54	8.29	4.8	0.306	0.303	3	29.2			3.9	0.2 U		5.12		0.19	-21.9	6.62	268.8
MW-30	1270826.64	197655.77	SPL-GW-MW30-	031914	03/19/2014			24.8	20.6	0.05 U	0.396	0.2	0.1 U	190	190	10	10		09	2.8	3.08	11.9	60'0	60'0	4.7	17.4			0.89	0.49		0.2		0.52	8.09	6.45	503.8
MW-29	1270272.103	196033.286	SPL-GW-MW29-	031814	03/18/2014			37.2	286	0.053	0.976	0.1 U	0.1 U	391	391	1 0	10		190	26.4	26.6	49.4	2.04	2.07	13.5	30.3			0.2 U	0.2 U		0.02 U		0.31	24.7	6:39	1,314.0
MW-27	1271347.6	196835.03	SPL-GW-MW27-	031914	03/19/2014			15.9	6.9	0.05 U	0.471	0.2	0.1 U	99.2	99.2	1 0	10		24.7	1.69	4.01	5.84	0.167	0.177	3.2	18.2			0.2 U	0.2 U		0.11		0.85	25.4	6:29	251.4
MW-26	1271163.2	197122.51	SPL-GW-MW26-	031914	03/19/2014		id SM 2320	9.2	8.9	0.05 U	0.084	0.1	0.1 U	52.3	52.3	1 U	10		12.7	6.18	13.9	4.29	0.145	0.147	3.2	8.6			0.43	0.42		0.053		0.42	32.4	6.22	173.4
Location	X-coord ¹	Y-coord ¹		Sample ID	Sample Date	Units	1, 350.1M, 376.2, an	mg/L	mg/L	mg/L	mg-N/L	mg-N/L	mg-N/L	mg/L CaCO3	mg/L CaCO3	mg/L CaCO3	mg/L CaCO3		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		ng/L	ng/L	ng/L		1/Bn		mg/L	Λm	Hd	mS/cm
						Analyte	Conventionals by EPA 300.0, 350.1M, 376.2, and SM 2320	Chloride	Sulfate	Sulfide	N-Ammonia	N-Nitrate	N-Nitrite	Alkalinity	Bicarbonate	Carbonate	Hydroxide	Metals by SW6010C	Calcium, dissolved	Iron, dissolved	Iron, total	Magnesium, dissolved	Manganese, dissolved	Manganese, total	Potassium, dissolved	Sodium, dissolved	VOCs by SW8260C	Benzene	cis-1,2-Dichloroethene	Trichloroethene	VOCs by SW8260C-SIM	Vinyl Chloride	Field Parameters	Dissolved Oxygen	ORP	Hd	Specific Conductance

		doll	rioposea con (rotelluai scellalios)	ai i Os)
Monitored Analytes	Units	Drinking Water	Protection of Surface	Upgradient or
Benzene	1/8rl	2	51	
cis-1,2-Dichloroethene	1/8rl	16	006	:
Trichloroethene	1/8rl	4.9	30	
Vinyl chloride	hg/L	0.29	2.40	-
Iron	mg/L	-	-	18
Manganese	mg/L		-	2.0

- Not analyzed for.

1 Coordinates are in Washington State Plane North NAD 83 feet.

2 Result is from SWR260C analysis because the SWR260C-SIM result exceeded the instrument calibration range.

Qualifier: U Analyte was not detected at given reporting limit.

Abbreviations: Canon an avecabl analysis b CaCO, Calcium carbonate COL (Canon level Lough Micrograms per liter mg-VL Milligrams per liter mg-VL Milligrams per liter mg-VL Milligrams per liter mg-VL Milligrams per liter and mg-VL Milligrams per lite

Remedial Investigation/

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix K Bioscreen Modeling Results for Groundwater Memorandum

Memorandum

To: Teri A. Floyd, Ph.D., Project Manager

Copies:

From: Emily Jones, PE

Date: June 24, 2016

Project No: COS-SPARK

Re: Numerical Modeling of Vinyl Chloride Concentrations in Groundwater

Downgradient of Source Area

1.0 INTRODUCTION AND DESCRIPTION OF MODEL

This technical memorandum presents the results of the numerical modeling process used to estimate vinyl chloride concentrations in downgradient groundwater wells based on known and potential sources of vinyl chloride within the boundaries of the South Park Landfill (Landfill). Modeling was completed with the U.S. Environmental Protection Agency (USEPA) developed BIOSCREEN-AT. BIOSCREEN is one of the modeling tools recommended by Ecology for estimating downgradient groundwater concentrations (Ecology 2005).

The USEPA developed the BIOSCREEN model to help evaluate attenuation and degradation processes of contamination in groundwater between a designated source area and a downgradient point or points (USEPA 1996). The USEPA BIOSCREEN model Version 1.4 utilizes the Domenico solution for solute transport which incorporates approximations for solute transport to simulate advection, dispersion, and adsorption. The BIOSCREEN model can be used to represent solute transport with or without biodegradation. An update to the BIOSCREEN Version 1.4, BIOSCREEN-AT Version 1.43, was released by S.S. Papadopulos & Associates, which performs a more rigorous analytical solution to the transport equations utilized in the original model, thereby eliminating the approximations in evaluation introduced by the Domenico solution (Karanovic et al. 2007).

The model is designed to estimate downgradient groundwater concentrations from a known source area over time, after transport and natural attenuation processes are considered. This memorandum describes modeling completed for this purpose, which was conducted as part of the South Park Landfill Remedial Investigation and Feasibility Study (RI/FS). The RI/FS provides more information on site-specific input parameters than presented in this memorandum.

2.0 DESCRIPTION OF MODELING APPROACH

Throughout the modeling effort, vinyl chloride concentrations within the Landfill were represented as a constant source. Outside of the source area, biodegradation of vinyl chloride was represented by a first order decay process.

Initial model runs were performed to calibrate the first order decay rate and fraction of organic carbon to represent conditions at the Landfill. Site-specific and calibrated input parameters and their source, including a description of the technical rationale behind their selection, are presented in Table 1 (attached). Calibrated input parameters are discussed in further detail in Section 3.0.

During initial model runs, the source area was represented by direct-push probe FB-12, 300 feet upgradient of monitoring well MW-27 in the southern region of the Landfill. Model runs were completed at multiple simulation times ranging between 1 and 5 years. Simulation times of 2, 2.25, and 3 years correspond to the amount of time elapsed between initial data collection efforts in 2011 and subsequent groundwater well monitoring events conducted at MW-27 between 2013 and 2014. The average concentration detected in MW-27 in these data collection efforts was 0.17 microgram per liter (μ g/L); thus, the goal of model calibration was to achieve a downgradient groundwater concentration of approximately 0.17 μ g/L after a time period of 3 years had elapsed. Additional model runs were completed at simulation times of 4 and 5 years to verify that modeled concentrations at a simulation time of 3 years were approaching steady state conditions.

After calibration, model runs representing the northern region of the Landfill were completed using these calibrated parameters and the site-specific parameters presented and described in Table 2 (attached). Modeling was completed to estimate the maximum expected concentrations in MW-31 attributable to various potential source areas within the Landfill. Monitoring well MW-25 was assumed to be the upgradient source area for this evaluation. MW-32 and MW-33 were also considered, but had lower source area concentrations and/or were farther away; thus, concentrations in MW-31 that could be attributable to these wells are lower than if the source is represented by MW-25. Initial source area concentration data were based on the measured average concentrations of vinyl chloride measured in these wells; these concentrations are assumed to be representative of concentrations throughout the modeled source area. Modeling was completed at various simulation times until steady state was reached in the downgradient wells.

Modeling assumes that the vinyl chloride plume's centerline and direction of travel is the straight-line distance between the assumed source area and the downgradient well. The model assumes biodegradation occurs only downgradient of the source zone. In the calibration runs, the concentration in the source zone is assumed to be constant and equivalent to the measured concentrations from direct push probe sample FB-12. Downgradient concentrations in MW-27 are known, allowing for calibration of the degradation rate and soil fraction of organic carbon (f_{oc}).

3.0 RESULTS OF MODEL CALIBRATION

The Model Toxics Control Act (MTCA) default soil fraction of organic carbon content is 0.001 g/g or 0.1 percent (WAC Chapter 173-340-747). Measured results from other sites in the Lower Duwamish Valley indicate that much higher values, of up to 2 percent, may be appropriate. The fraction of organic carbon selected for use in the BIOSCREEN-AT model is related to the retardation factor, R, calculated by the model. The greater the fraction of organic carbon, the greater the retardation factor, the slower the chemical being modeled (in this case, vinyl chloride) will move in groundwater, and the more the chemical will disperse from the source zone. The fraction of organic carbon was assumed to be constant throughout the Landfill and was set to a value of 0.0084 g/g, or 0.84 percent after model calibration to site data. This value is near the middle of the expected range of values based on the MTCA default and data from adjacent sites. The resulting retardation factor calculated by the model is 2.0. Uncertainties associated with this parameter or other modeled solute transport parameters, like dispersion, are accounted for in calibration of the first order decay coefficient (λ ; Newell et al. 1996).

Literature values for vinyl chloride's first order decay coefficient vary from 0.09 yr^{-1} to 4.5 yr^{-1} in groundwater (Newell et al. 1996). Initial model runs were completed using a first order decay coefficient at the low end of this range. The value of the coefficient was increased until the downgradient groundwater results predicted by the model simulated site data observed in MW-27 and the model indicated that steady state downgradient groundwater conditions would be achieved within an appropriate timeframe based on available data for the Landfill. The best fit to the data was achieved using a first order decay coefficient of 0.8 yr^{-1} . Table 3 presents the results obtained in the calibration runs with $f_{oc} = 0.0084$ and the decay coefficient of 0.8 yr^{-1} .

Table 3
Modeled Vinyl Chloride Concentrations in MW-27: Source Area Represented by FB-12^{1,2}

Measured C	oncentration in MW-27 during Remedial II	nvestigation Events
Modeled Simulation Time (yr)	Modeled Downgradient Vinyl Chloride Groundwater Concentrations at MW-27 (μg/L)	Measured Concentration in MW-27 during Remedial Investigation Events (μg/L)
1	0	
2	0.05	0.25
2.25	0.09	0.14
3	0.17	0.11
4	0.19	
5	0.19	
	Average Measured Concentration	0.17

Notes:

- 1 MW-27 is located in the southern region of the South Park Landfill; Table 1 summarizes BIOSCREEN-AT input values entered to generate these results.
- 2 FB-12 is located 300 feet west (upgradient) of MW-27. Thus, downgradient groundwater concentrations presented in this table are the model-generated outputs at a distance of 300 feet.

Abbreviation:

yr Year

4.0 RESULTS OF MODELING TO ESTIMATE CONCENTRATIONS IN MW-31

Results of modeling to estimate concentrations in MW-31 attributable to various potential source areas within the Landfill are shown in Table 4 (below). Representing the source area by the average detected groundwater concentration in MW-25 (i.e., $1.1\,\mu\text{g/L}$) results in predicted steady state groundwater concentrations in MW-31 of 0.25 $\mu\text{g/L}$, below the vinyl chloride groundwater cleanup level of 0.29 $\mu\text{g/L}$. These results show that the Landfill is unlikely to be a significant contributor to vinyl chloride groundwater concentrations greater than the cleanup level measured in MW-31.

Figure 5.12 in the RI/FS includes trend plots for the three upgradient source area wells (MW-25, MW-32, and MW-33) showing 10 years of data for MW-25 and four years for the newer MW-32 and MW-33. The relative stability of the trend plots, the short travel times between the wells, and BIOSCREEN modeling estimates, also indicate that the Landfill is unlikely to have been a significant contributor to vinyl chloride groundwater concentrations at MW-31 over the last decade.

Table 4
Modeled Steady State Groundwater Vinyl Chloride Concentrations at MW-31

Run 1: From MW-25 (250 feet to MW-	31)					
Maximum Source Concentration = 1.8 μg/L	Average Source Concentration is 1.1 μg/L					
0.41 μg/L	0.25 μg/L					
Run 2: From MW-33 (410 feet to MW-	31)					
Maximum Source Concentration = 1.1 μg/L	Average Source Concentration is 0.66 μg/L					
0.10 μg/L	0.06 μg/L					
Run 3: From MW-32 (320 feet to MW-31)						
Maximum Source Concentration = 0.36 μg/L	Average Source Concentration is 0.29 μg/L					
0.05 μg/L	0.04 μg/L					

5.0 REFERENCES

Associated Earth Sciences, Inc. (AESI). 2000. South Park Custodial Landfill Monitoring Well and Gas Probe Installation Technical Memorandum. Bainbridge Island, Washington.

Fetter, Charles W. 1994. *Applied Hydrogeology (Fourth Edition)*. Upper Saddle River, New Jersey: Prentice Hall, Inc.

- Karanovic, M., C.J. Neville, and C.B. Andrews. 2007. "BIOSCREEN-AT: BIOSCREEN with an Exact Analytical Solution." *Ground Water* 45(2): 242–245.
- Newell, Charles J., R. Kevin McLeod, and James R. Gonzales. 1996. "How Far? How Long? The BIOSCREEN Natural Attenuation Decision Support System." Proc. 1996 Petroleum Hydrocarbon Organic Chemical Ground Water Conference, Houston, Texas. National Ground Water Association, Dublin, Ohio. 807–821.
- U.S. Environmental Protection Agency (USEPA). 1996. *BIOSCREEN Natural Attenuation Decision Support System User's Manual, Version 1.3*. EPA/600/R-96/087. Office of Research and Development. Washington, D.C. August.
- Washington State Department of Ecology (Ecology). 2005. *User's Manual: Natural Attenuation Analysis Tool Package for Petroleum-Contaminated Ground Water*. Version 1.0 Prepared by the Toxics Cleanup Program. Publication No. 05-09-091A. July.

LIST OF ATTACHMENTS

- Table 1 BIOSCREEN-AT Model Inputs: Southern Region of the South Park Landfill
- Table 2 BIOSCREEN-AT Model Inputs: Northern Region of the South Park Landfill

BIOSCREEN-AT Model Inputs: Southern Region of the South Park Landfill

Parameter	Value	Unit	Source/Description and Selection Rationale
Hydrogeology			
Hydraulic Conductivity	0.0201	s/wɔ	Horizontal hydraulic conductivity values based on the January 19, 2011 slug test in MW-27 and historical pumping test data from MW-8 (AESI 2000).
Horizontal Hydraulic Gradient	0.0026	foot/foot	Hydraulic gradient calculated based on the June 2011 groundwater elevation contour map.
Porosity	0.23	1	Average of effective porosity values for fine to medium sand (21 to 26 percent, respectively; Fetter 1994) expressed to two significant figures based on well log soil descriptions.
Dispersion			
Estimated Plume Length	100	feet	One-third of the distance between the leading edge of the modeled source zone and downgradient groundwater well. Estimated plume length is appropriate in scale when vinyl chloride data collected in 2011 from nearby probes and wells is considered.
Adsorption			
Soil Bulk Density	1.5	kg/L	MTCA default value (Eq. 747-1).
Organic Carbon Partition Coefficient (K_{∞})	18.6	L/kg	MTCA default value for vinyl chloride.
Fraction Organic Carbon ($f_{\circ c}$)	0.0084	,	Determined during model calibration. Starting values included 0.001 (MTCA default value in Eq. 747-1) and 0.01 to 0.02 typical values for the silty sand at the top of the Alluvial Aquifer. At the default value of 0.001 the travel time for vinyl chloride is much faster, less dispersion occurs, and calibration using empirical data forces the decay constant higher. The selected value represents conditions present at the South Park Landfill assuming a constant source, i.e., that the source zone does not decay over time.
Biodegradation			
First Order Decay Coefficient (λ)	0.8	yr ⁻¹	Determined during model calibration with site-specific data; literature values range from a low of 0.09 yr ⁻¹ to 4.5 yr ⁻¹ for vinyl chloride in groundwater (Karanovic et al. 2007). The final value selected for this parameter was 0.8 yr ⁻¹ based on calibration to the average detected concentration in MW-27 and a simulation time of 3 years. The simulation time of 3 years was selected to allow sufficient time for migration of the plume.
General			
Modeled Area Length	009	feet	Based on area of affected groundwater plume and selected to provide information about its transport properties; allows the modeler to easily determine the distance at which groundwater is not influenced by downgradient dispersion of vinyl chloride for the model input parameters selected.
Modeled Area Width	200	feet	Chosen to allow sufficient horizontal dispersivity in consideration of the source zone and modeled area length.
Simulation Time	1–5	years	Simulation times of 2, 2.25, and 3 years were selected to correspond to dates when actual downgradient groundwater samples were collected for comparison to modeled results. Additional simulation times of 4 and 5 years were modeled to ensure that downgradient concentrations had reached steady state conditions.
Source Data			
Vinyl Chloride Source Groundwater Concentration	1.4	hg/L	The greatest upgradient concentration measured during initial data collection efforts in 2011 (1.4 µg/L in FB-12) was selected to assess vinyl chloride attenuation in groundwater based on actual site data.
Source Thickness in Saturated Zone	11	feet	Estimated site-specific value based on seasonal variation in the elevation of the shallow groundwater table at the South Park Landfill.
Source Zone Length	100	feet	Source length chosen to provide sufficient source mass for BIOSCREEN-AT mobility modeling.
Source Zone Width	75	feet	Source length chosen to provide sufficient source mass for BIOSCREEN-AT mobility modeling.
Abbreviations:			

Abbreviations:
cm/s Centimeters per second
Eq. Equation
kg Kilograms
L Liter
µg Microgram
MTCA Model Toxics Control Act
yr Year

BIOSCREEN-AT Model Inputs: Northern Region of the South Park Landfill

Parameter	Value	Unit	Source/Description and Selection Rationale
Hydrogeology			
Hydraulic Conductivity	0.0201	s/wɔ	Horizontal hydraulic conductivity values based on the January 19, 2011 slug test in MW-25 and historical pumping test data from MW-10 (AESI 2000).
Horizontal Hydraulic Gradient	0.0029	foot/foot	foot/foot Hydraulic gradient calculated based on the June 2011 groundwater elevation contour map.
Porosity	0.23	1	Average of effective porosity values for fine to medium sand (21 to 26 percent, respectively; Fetter 1994) expressed to two significant figures based on well log soil descriptions.
Dispersion			
Estimated Plume Length	100	feet	One-third of the distance between the leading edge of the modeled source zone and downgradient groundwater well. Estimated plume length is appropriate in scale when vinyl chloride data collected in 2011 from nearby probes and wells is considered.
Adsorption			
Soil Bulk Density	1.5	kg/L	MTCA default value (Eq. 747-1).
Organic Carbon Partition Coefficient (K_{oc})	18.6	L/kg	MTCA default value for vinyl chloride.
Fraction Organic Carbon (f _{oc})	0.0084	-	Value derived from model calibration as discussed in Section 3.
Biodegradation			
First Order Decay Coefficient (λ)	0.8	yr ⁻¹	Literature values range from a low of 0.09 yr ⁻¹ to 4.5 yr ⁻¹ for vinyl chloride in groundwater (Karanovic et al. 2007). The final value selected for this parameter was 0.8 yr ⁻¹ based on calibration to site data, as described in the memorandum text and in Table 1.
General			
Modeled Area Length	varies	feet	Varied based on distance between source area and downgradient well. Selected to allow the modeler to easily determine the distance at which groundwater is not influenced by downgradient dispersion of vinyl chloride for the model input parameters selected.
Modeled Area Width	200	feet	Chosen to allow sufficient horizontal dispersivity in consideration of the source zone and modeled area length.
Simulation Time	1–5	years	Simulation times between 1 and 5 years were selected to ensure that downgradient concentrations had reached steady state conditions.
Source Data			
Vinyl Chloride Source Groundwater	varies	1/611	The maximum and average vinyl chloride concentration detected in the upgradient well selected to represent the source area to MW-31. Specific maximum
Concentrations		₽6/ ±	and average input values are indicated for each modeled source area in Table 4.
Source Thickness in Saturated Zone	11	feet	Estimated site-specific value based on seasonal variation in the elevation of the shallow groundwater table at the South Park Landfill.
Source Zone Length	100	feet	Source length chosen to provide sufficient source mass for BIOSCREEN-AT mobility modeling.
Source Zone Width	75	feet	Source length chosen to provide sufficient source mass for BIOSCREEN-AT mobility modeling.
Abhreviations:			

Abbreviations:
cm/s Centimeters per second
Eq. Equation
kg Kilograms
L Liter
µg Micrograms
MTCA Model Toxics Control Act
yr Year

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix L Supplemental Investigations

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix L Supplemental Investigations

Attachment L.1 Supplemental Landfill Gas Investigation at KIP Memorandum

TECHNICAL MEMORANDUM Revised

Date: August 19, 2016

To: Teri Floyd, FloydlSnider

From: Bruce Carpenter and Michael Spillane, Herrera Environmental Consultants

Subject: September/October 2015 LFG Sampling Results at Kenyon Industrial Park

Introduction

The South Park PLP Group requested FloydlSnider and Herrera Environmental Consultants (Herrera) to conduct landfill gas (LFG) characterization at Kenyon Industrial Park (KIP). The purpose of the investigation was to determine LFG concentrations extending across a swale situated adjacent to the northern portion of the west South Park Landfill (Landfill) boundary (Figure 1). Push probes were installed across the swale along five transects. The borings were logged and LFG measurements made at each location. LFG monitoring was also conducted at two gas probes and seven monitoring wells previously installed on the KIP property.

Site Background

LFG probes GP-24 and GP-25 were installed in the swale area at KIP in January 2011 as part of the South Park Landfill Remedial Investigation (RI) conducted under Agreed Order No. 6706 with the Department of Ecology. Both probes were installed beyond the Landfill limits with the intent to act as LFG perimeter probes. Methane concentrations in GP-24 ranged from 5 to 48 percent by volume during nine monitoring events performed from February to December 2011; concentrations in GP-25 ranged from 26 to 85 percent over the same period. A one-time gas monitoring conducted at KMW-05 (a groundwater monitoring well screening across the water table), between GP-24 and GP-25, in May 2011 also indicated a methane concentration of 50 percent by volume.

Historical aerial photographs were reviewed to evaluate extent of the swale separating the Landfill from offsite operations farther to the west (Figure 1). The photographs were also evaluated to identify cement kiln dust (CKD), known to have been deposited in this area. CKD is a fine-grained material that can inhibit the movement of methane in the subsurface.

Monitoring wells KMW-07 and KMW-08, located west of both the swale and the northwestern building on KIP, were monitored for methane in November 2011. No methane was detected in KMW-07, and a concentration of 0.2 percent by volume was detected in KMW-08.

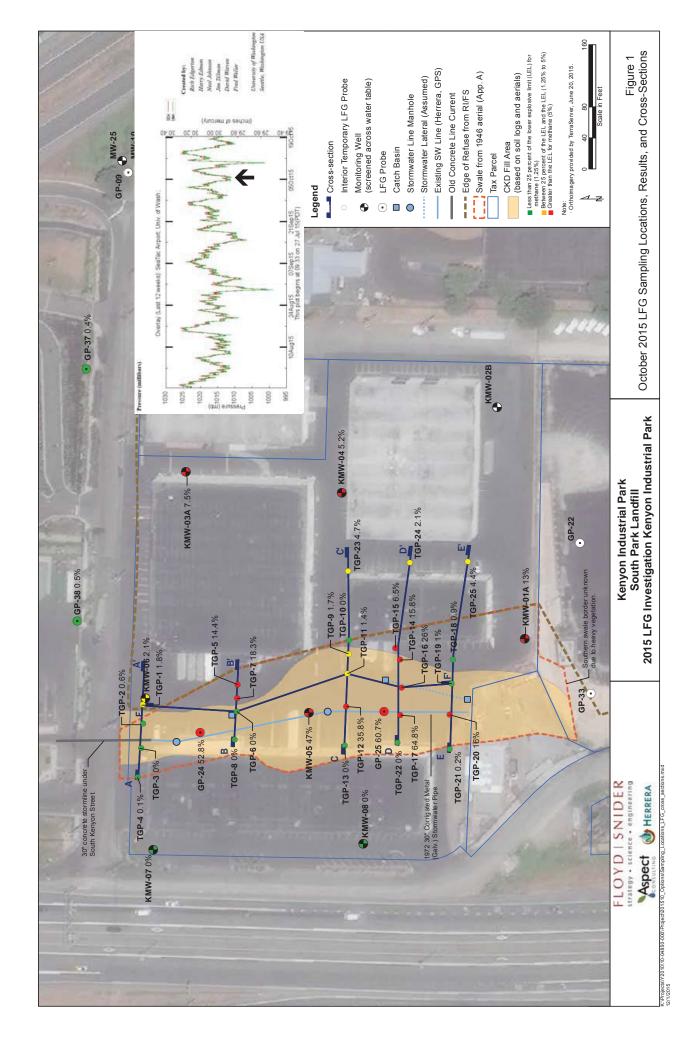
Field Investigation

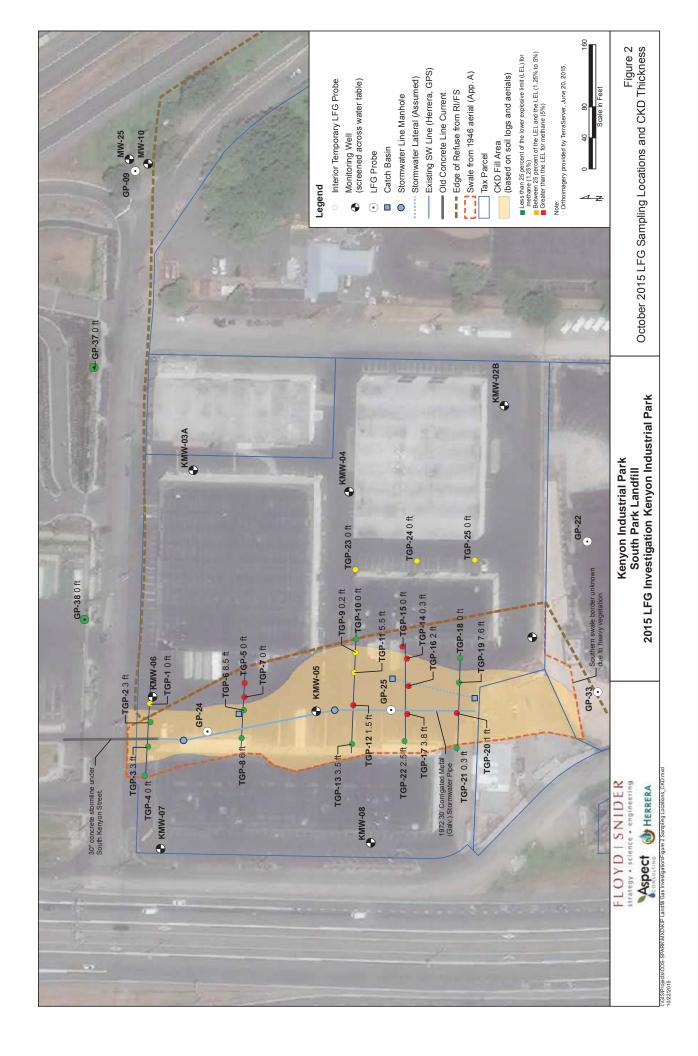
The field investigation was conducted September 29 through October 15, 2015. Herrera provided oversight for installation of 25 temporary vibratory probes and monitored two permanent gas probes and seven monitoring wells (screening across the water table) for LFG.

Underground Utility Location Service contacted participating agencies or companies with underground utilities in the area, and utility lines and equipment were marked along the property boundaries. APS of North Bend located underground utilities at each proposed boring location on the property. Utility drawings available through Seattle Public Utilities also were reviewed.

Subsurface conditions were evaluated by first installing a vibratory probe for the purpose of logging the soil sequence down to either silt overbank deposits or to groundwater (approximately 10 feet for most locations). A second, adjacent, probe was then installed to the specific depth of interest for characterizing LFG concentrations within the vertical profile. The exploratory borings were advanced using a probe-drive sampler attached to a driven probe rod. During drilling, discrete soil samples for soil classification and field screening were collected continuously at 5-foot intervals using 5-foot-long by 2-inch-outside-diameter probe-drive samplers with dedicated clear Lexan® liners. The samplers were sealed with piston stop pins while being pushed or driven to the desired sampling depth. The piston stop pins were retracted into the samplers while being pushed or driven to obtain a soil sample. Following retrieval, the soil-filled Lexan® liners were removed from the samplers and cut open to expose the soil cores. Soil encountered during drilling was visually inspected and classified according to the Unified Soil Classification System (USCS; American Society for Testing and Materials [ASTM] D2488-09). Depth to groundwater, if encountered, was recorded on the borehole log.

The initial boreholes were monitored following probe removal for the presence of LFG (including methane, carbon dioxide, oxygen, and hydrogen sulfide), with a Landtec GEM 2000 Plus. A photoionization detector (PID) also was used to monitor each borehole and each soil sample for volatile organic compounds (VOCs). Following completion, the boreholes were plugged with bentonite pellets.


To target specific strata adjacent to each initial borehole location, a Post-Run Tubing System, with a 1.5-inch-diameter probe rod was driven to the selected monitoring depth, followed by insertion of 1/4-inch-diameter polyethylene tubing. The GEM was connected directly to the tubing and LFG was monitored after removal of three casing volumes.


Soil cuttings generated during drilling activities were placed in one 55-gallon drum and stored at the northwest corner of the former transfer station.

Field Investigation Results

Herrera provided oversight for installation and conducted LFG monitoring of 25 temporary probes (TGP-1 through TGP-25), and monitored two permanent gas probes (GP-24 and -25) and seven monitoring wells (KMW-01A, -03A, -04, -05, -06, -07, -08) (Figure 1). Probe boring records are provided in Appendix A.

Twenty-four of the probes were completed through asphalt, with thicknesses ranging from 1 to 3.5 inches; aggregate thickness beneath asphalt ranged from 2 to 9 inches and varied from crushed rock to sandy gravel. Fill (soil fill and/or CKD) material was encountered beneath the aggregate. It ranged in thickness from 6 to 14.5 feet and was underlain by a silt overbank deposit. CKD was encountered within the fill material, generally as a single layer, at depths ranging from 0.5 to 9 feet below ground surface (bgs), with thicknesses ranging from 2.5 inches to 8.5 feet (Figure 2). Figures 3 through 7 provide hydrogeologic cross-sections completed along the five transects, and Figure 8 depicts a cross-section in a north-south direction through the swale. In addition to CKD, fill material typically contained sand and gravel, with occasional brick fragments, broken glass, and charred wood.

Groundwater was measured in the temporary probes at depths ranging from 3 to 12 feet bgs across the site. Stained soil with a sheen and petroleum hydrocarbon odor was observed in temporary borings TGP-6, -8, -11, -14, -16, and -23 at depths ranging from 5.5 to 14.5 feet bgs.

Methane measured in open boreholes during initial temporary probe installations reflected concentrations associated with all strata combined at each of the 25 locations (Table 1). Methane concentrations within targeted strata ranged from 0 to 64.8 percent by volume (Table 1). Targeted strata depths ranged from 2 to 9.5 feet bgs, such that they were above groundwater and in permeable fill material (CKD was avoided, if possible).

Table 2 provides a summary of LFG monitoring conducted in monitoring wells KMW-01A, -03A, -04, -05, -06, -07, and -08, and gas probes GP-24 and -25. Methane concentrations ranged from 0 to 60.7 percent by volume, comparable to historical measurements.

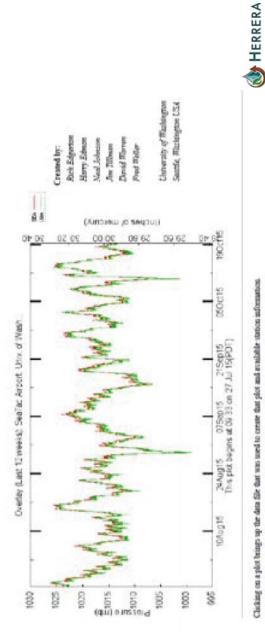
Discussion

Methane measurements shown on Figure 1 indicate consistently low concentrations along the entire western side of the swale, consistently high concentrations along the north-south centerline of the swale, and mixed results along the eastern side of the swale.

Typically, CKD is a dense, low permeability material that limits migration of methane. Eight targeted strata tests were completed with the probe set within CKD, due to the presence of groundwater and absence of soil fill material. Methane concentrations were extremely low, ranging from 0.0 to 1.4 percent at six test locations. At locations TGP-16 and -20, CKD was less than 2 feet thick, overlain and underlain by more permeable soil fill material. Methane concentrations in the CKD were 26 and 16 percent at TGP-16 and -20, respectively.

	Time	Total Depth (ft bgs)	Water Level (ATD) (ft bgs)	Methane (% volume) in borehole	Bar Hole Probe Setting (ft bgs)	Methane (% volume) Bar Hole Test	CKD Thickness (ft)	Barometer (inches Hg)
	12:02	10	None	0.2	9.5	1.8	None	29.90
	12:50	10	None	0.3	7.0	0.6	3.0	29.86
	13:30	10	None	0.0	7.0	0.0	3.0	29.88
	14:18	10	None	0.1	7.0	0.1	None	29.91
	15:25	10	None	23.4	6.0	14.4	None	29.81
	16:25	10	6.99	9.6	5.0	0.0	8.5	29.77
	5 9:35	10	None	0.9	6.0	18.3	None	30.23
	5 10:45	12	6.50	0.1	5.0	0.0	6.0	30.24
	5 11:31	8	00.9	0.2	5.0	1.7	0.2	30.25
	5 12:28	10	8.10	0.0	5.0	0.0	None	30.23
	5 13:50	12	7.00	0.4	3.5	1.4	5.5	30.22
	5 15:15	10	None	2.1	8.0	35.8	1.5	30.21
1GP-13 10/13/2015	16:40	8	3.50	0.0	3.0	0.0	3.5	30.22
TGP-14 10/14/2015	5 13:20	10	7.50	4.9	3.0	15.8	0.3	30.21
TGP-15 10/14/2015	5 14:01	10	8.00	5.7	5.0	6.5	None	30.18
TGP-16 10/14/2015	5 14:36	10	9.60	0.0	4.0	26.0	2.0	30.14
TGP-17 10/14/2015	5 15:15	10	6.80	1.4	5.0	64.8	3.8	30.11
TGP-18 10/14/2015	5 10:35	10	None	2.9	8.0	0.9	None	30.25
TGP-19 10/14/2015	11:08	10	None	4.2	6.0	1.0	7.6	30.24
TGP-20 10/14/2015	5 11:35	10	5.40	0.9	3.0	16.0	1.0	30.23
TGP-21 10/14/2015	5 12:33	10	4.95	0.5	3.0	0.2	0.3	30.22
TGP-22 10/14/2015	5 15:54	5	3.00	0.0	2.0	0.0	2.5	30.12
TGP-23 10/14/2015	5 16:56	15	12.00	4.8	5.0	4.7	None	30.12
TGP-24 10/14/2015	5 17:28	10	None	4.2	5.0	2.1	None	30.11
TGP-25 10/14/2015	5 18:00	10	None	4.6	9.5	4.4	None	30.10

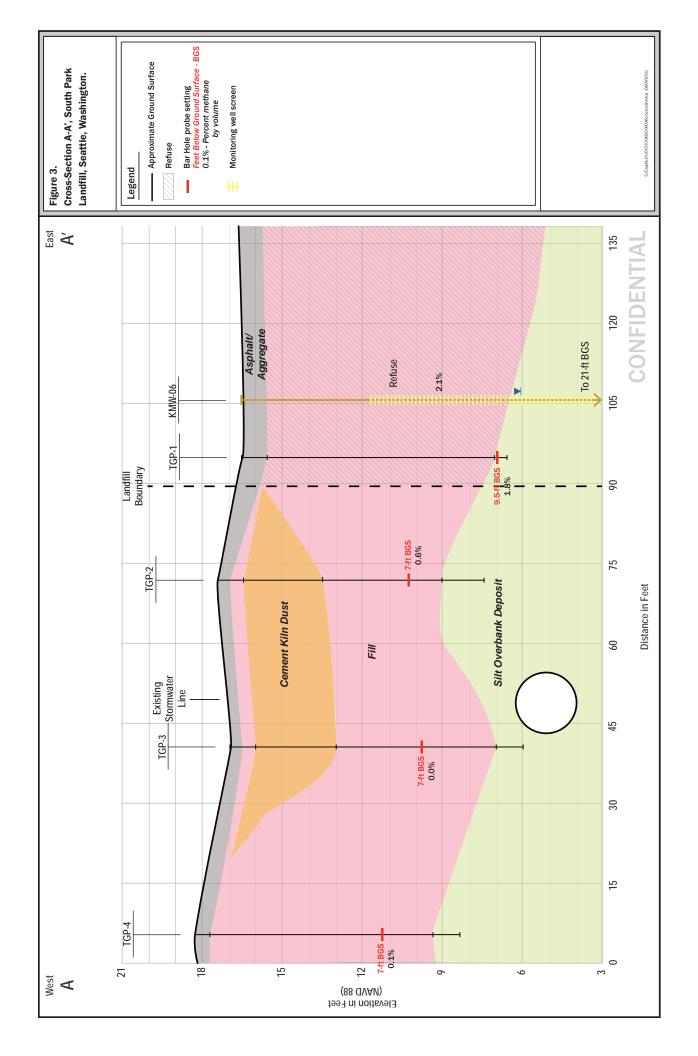
ft = feet; bgs = below ground surface; CKD = cement kiln dust; ATD = at time of drilling; Hg = mercury

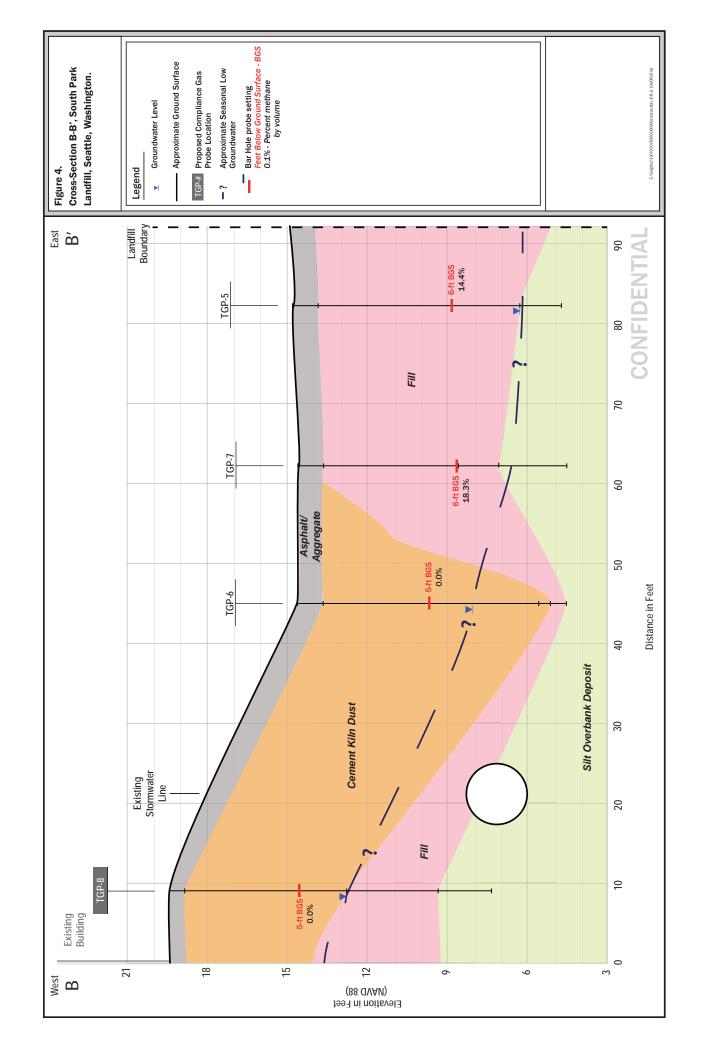


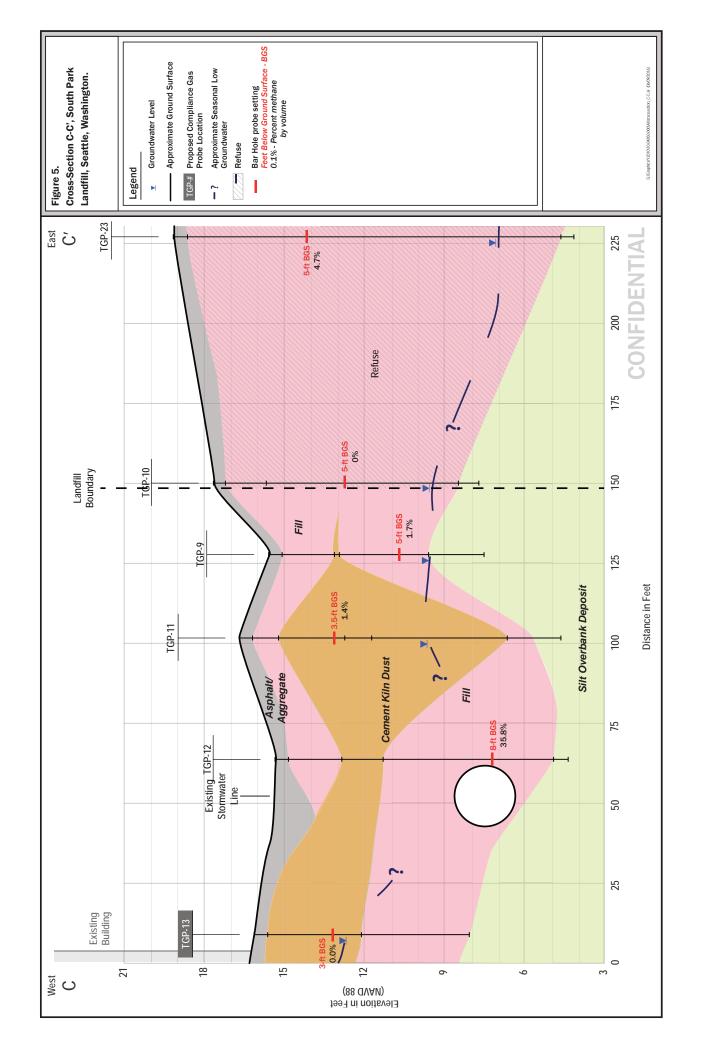
Gas Probe Measurements at Kenyon Industrial Park and South Transfer Station, King County, Washington - October 15, 2015. Table 2.

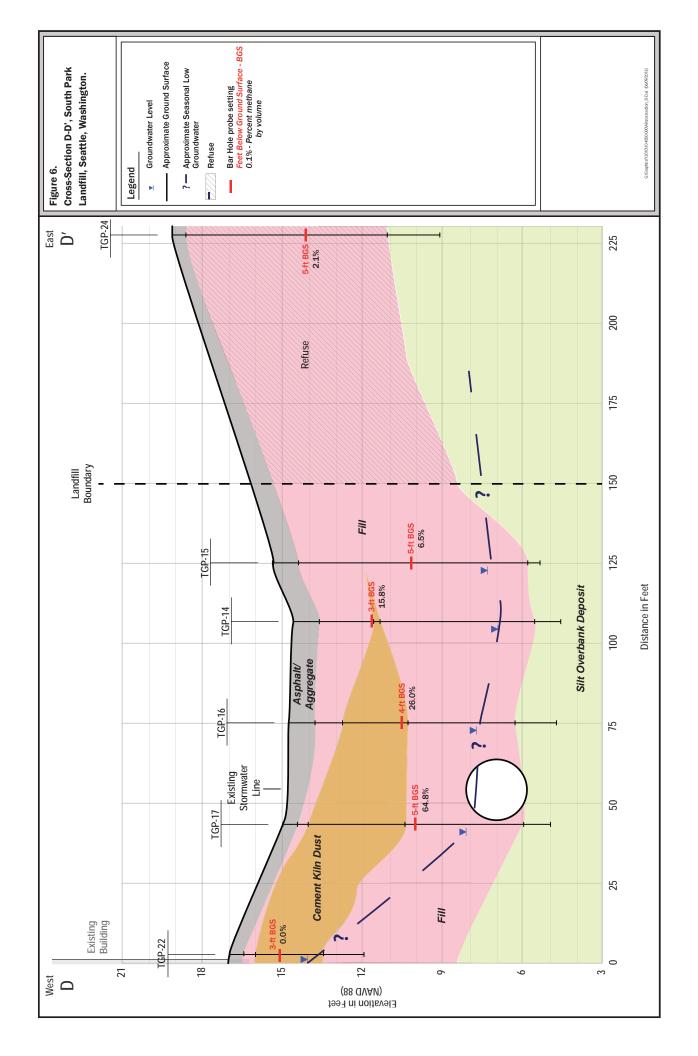
	Res	ults from	2015 Supplement	Results from 2015 Supplemental Investigation at Kenyon Industrial Park	Kenyon Indust	rial Park		Historical Results Feb thru Nov 2011	esults v 2011
Location	Date	Time	Barometer (inches Hg)	Carbon Dioxide (% volume)	Oxygen (% volume)	Hydrogen Sulfide (ppmv)	Methane (% volume)	Methane (% volume)	No. of Events
KMW-01A	10/15/2015	13:25	30.0	7.2	0.1	2	13	not measured	
KMW-03A	10/15/2015	12:40	30.0	8.0	0.1	0	7.5	not measured	
KMW-04	10/15/2015	13:00	30.0	1.6	0	0	5.2	0	2
KMW-05	10/15/2015	11:38	30.0	0	5.0	0	47	50	1
KMW-06	10/15/2015	10:13	30.0	4.7	0.2	0	2.1	12	1
KMW-07	10/15/2015	9:31	30.1	0.1	21	0	0	0	7
KMW-08	10/15/2015	8:45	30.1	0	8.4	0	0	0.2	_
GP-24	10/15/2015	11:11	30.0	0	0.1	0	53	4.6 - 48	6
GP-25	10/15/2015	12:05	30.0	0.1	3.8	0	61	26 - 85	10
GP-37	10/15/2015	14:15	30.0	14	1.2	0	0.4	New probes; no historical	historical
GP-38	10/15/2015	13:45	30.0	16	1.5	0	0.5	data available	able

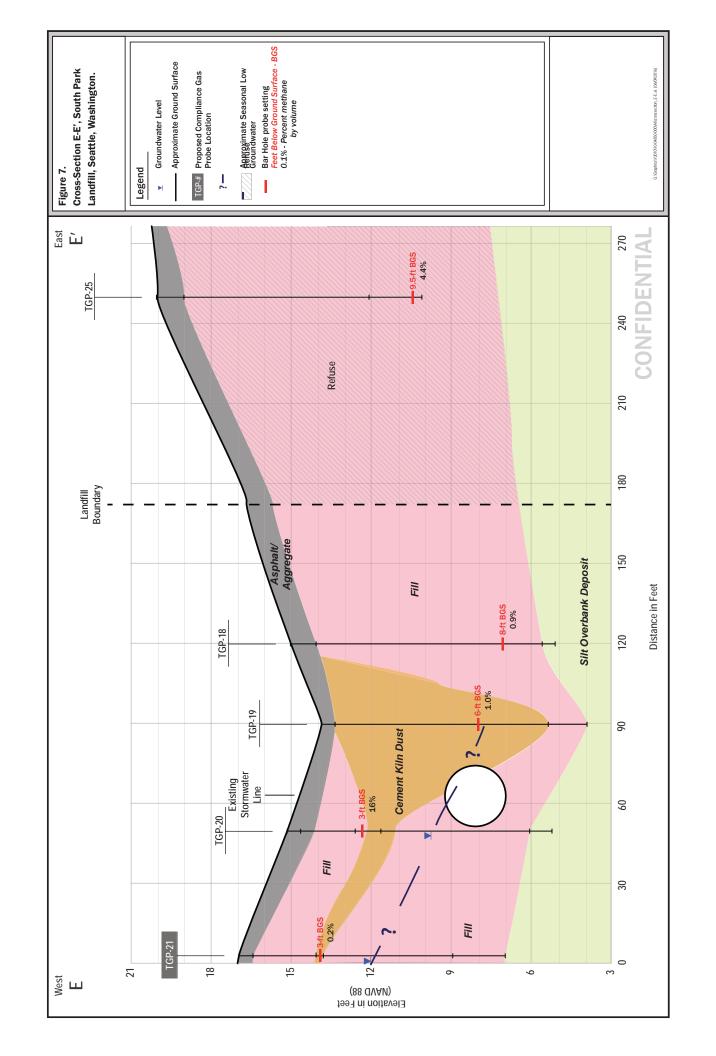
Hg = mercury ppmv = parts per million volume (ppmv)

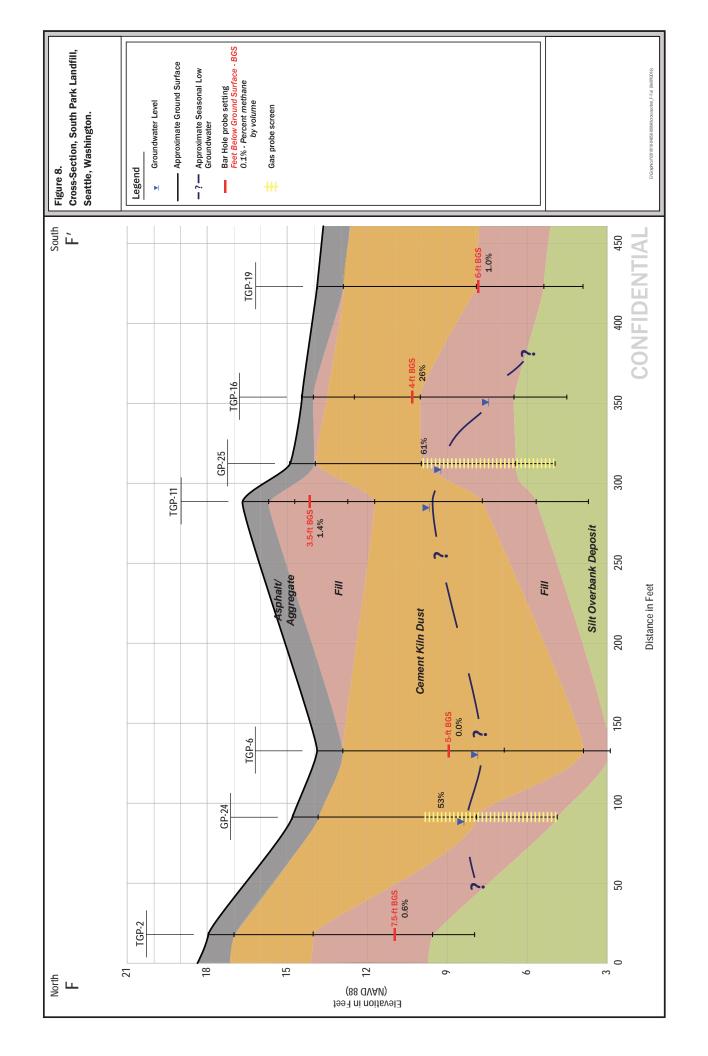

Pressure (millibars)




Conclusions


- Methane concentrations within the Landfill ranged from not detected to 7.5 percent.
- Methane concentrations within the swale area were the highest in the study area, but they were variable by location, ranging from not detected to 64.8 percent.
- Methane concentrations adjacent to the western building were near zero.
- CKD appears to strongly influence where methane is detected, with the highest concentrations at the base of the swale beneath the CKD (where decaying vegetation was detected) and much lower within the relatively non-porous CKD.





APPENDIX A

Probe Boring Records

 Boring ID
 TGP-1

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor _ ESN	Drilling method _ Push-probe rig
Project number <u>10-04850-000</u>	Location Northern transect	Sampling method 5 ft core with plastic liner
Client City of Seattle	easternmost location, west of KMW-06	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date September 29, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
(ββ)	interval	rocevery	(loot)	1	SW/ Fill	Asphalt – 3", aggregate – 4", crushed rock Brown to black, gravelly SAND, brick, glass fragments, fill, dry
0	5-foot core with	40		3		
	liner			5		Charred wood fragments
				6		Gray to black gravelly SAND, glass fragments, fill, damp
0	5-foot core with	30		8	GW/ SW/	2-inch zone of buff colored sandy GRAVEL, damp
	liner			9	Fill CH	Dark gray silty CLAY, damp
				10	СП	Groundwater not encountered during drilling. Set bar hole probe at 9.5 ft bgs. Backfilled borehole with bentonite chips.
						CH4: 0.2% CO2: 0.1% O2: 20.7%
						H2S: 0.0 ppmv

Boring ID	TGP-2
Total depth	10 feet
Sheet 1	of 1

Project name South Park LF	Drilling Contractor ESN	Drilling method
Project number <u>10-04850-000</u>	Location Northern transect	Sampling method 5 ft core with plastic liner
Client City of Seattle	second probe from easternmost location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date September 29, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
(ррііі)	intorvar	recovery	(icci)	<i>B00)</i>	group	Asphalt – 2", aggregate – 3.5", crushed rock
				1	SM/Fill	Gray to brown silty SAND, fill, dry
					Fill	Buff colored, cement kiln dust, fill, dry
	5-foot			2		
0	core	60		2		
	with liner			3		
	IIIICI			4		
					SM/	Dark brown gravelly silty SAND, fill, damp
				5	Fill	
						Black silty SAND, charred wood, glass, plastic, fill, damp
				6		
	5-foot			7		Dark brown silty SAND, brick and asphalt fragments, fill, damp
0	core	80		/		Dark brown siny SAND, brick and aspnant fragments, fiff, damp
	with			8		
	liner					
				9	СН	Gray silty CLAY, damp
				10		Groundwater not encountered during drilling.
						Set bar hole probe at 7.0 ft bgs.
						Backfilled borehole with bentonite chips.
						1
						CH4: 0.3%
						CO2: 6.6% O2: 0.6%
						H2S: 0.0 ppmv
						1123. 0.0 ppiniv
		1				

Boring ID	TGP-3
Total depth	10 feet
Sheet 1	of 1

Project name South Park LF	Drilling Contractor ESN	Drilling method Push-probe rig
Project number <u>10-04850-000</u>	Location Northern transect	Sampling method 5 ft core with plastic liner
Client City of Seattle	third probe from easternmost location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date September 29, 2015	Instrument(s) PID, GEM Plus

PID	Sample type,	%	Water level	Depth (feet,	Soil	Soil description
(ppm)	interval	recovery	(feet)	BGS)	group	
				-	C) 4/E:11	Asphalt – 1.5", aggregate – 5.5", crushed rock
				1	SM/Fill	Brown silty SAND, fill, dry
	5-foot			2	Fill	Buff colored, cement kiln dust, fill, dry
0	core	70				
U	with	70		3		
	liner					
				4		
					SM/Fill	Brown sandy SILT, fill, damp
				5	SW/Fill	Gray to brown gravelly SAND, fill, damp
						Dark brown gravelly SAND, glass, brick fragments, trace of gravel,
				6		fill, damp
	_					
	5-foot	1.7		7		
0	core	15		0		
	with liner			8		
	linei			9		
					СН	Gray silty CLAY, damp
				10	CII	Gray Sitey CE111, damp
						Groundwater not encountered during drilling.
						Set bar hole probe at 7.0 ft bgs.
						Backfilled borehole with bentonite chips.
						GTT4 0.00/
						CH4: 0.0% CO2: 0.0%
						O2: 21.7%
						H2S: 0.0 ppmv
						1125. 0.0 ppiniv

 Boring ID
 TGP-4

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method
Project number <u>10-04850-000</u>	Location Northern Transect	Sampling method 5 ft core with plastic liner
Client City of Seattle	Westernmost location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date September 29, 2015	Instrument(s) PID, GEM Plus

			1			
PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
					-	Asphalt – 3.5", aggregate – 2.0", crushed rock
				1	SW/Fill	Brown to gray gravelly SAND, fill, damp
	5-foot			2		
0	core	60				
	with	00		3	SP/Fill	Brown medium SAND, fill, damp
	liner				51/1111	Brown mediani 67 i v.b., iiii, damp
	111101			4		
				5		
					SW/Fill	Dark brown gravelly SAND, fill, damp
				6	SW/I'III	Dark brown graverry SAND, till, damp
				0		
	F foot			7		
0	5-foot	30		7		Gray gravelly SAND, fill, damp
0	core with	30		8		Gray graverry SAND, fill, damp
				0		
	liner			0		
				9	CH	C '1 OT AV '4 111 6'11 1
				1.0	СН	Gray silty CLAY, with cobbles, fill, damp
				10		
						Groundwater not encountered during drilling.
						Set bar hole probe at 7.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CII4. 0 10/
						CH4: 0.1%
						CO2: 1.6%
						O2: 19.4%
						H2S: 0.0 ppmv

 Boring ID
 TGP-5

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor	ESN	Drilling method Pr	ush-probe rig
Project number <u>10-04850-000</u>	Location Second	I transect from north	Sampling method	5 ft core with plastic liner
Client City of Seattle	easternmost probe I	ocation	Air monitoring (Y/N)	Yes
HEC rep. Bruce Carpenter	Date September	29, 2015	Instrument(s)	PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description												
W I				1	SW/Fill	Asphalt – 2.5", aggregate – 8.5", crushed rock Brown gravelly SAND, brick, glass fragments, fill, damp												
0	5-foot core	70		2	SW/FIII													
	with liner			3		Black gravelly SAND, pieces of rubber tire, glass, fill, damp												
				5	G1 6/7:11													
				6	SM/Fill	Dark brown to black silty SAND, wood fragments, trace of gravel fill, damp												
0	5-foot core with	70		7 8														
	liner	$\overline{\nabla}$	$\overline{\triangle}$	$\overline{\triangle}$	$\overline{\nabla}$	$\overline{\nabla}$	$\overline{\triangle}$	$\overline{\nabla}$	$\overline{\nabla}$	$\overline{\nabla}$	$\overline{\nabla}$	$\overline{\triangle}$	$\overline{\triangle}$	$\overline{\triangle}$	∇	9	СН	Groundwater encountered during drilling at 8.5 feet Dark gray silty CLAY, wet
				10		Set bar hole probe at 6.0 ft bgs.												
						Backfilled borehole with bentonite chips. CH4: 23.4%												
						CO2: 19.5% O2: 0.0%												
						H2S: 1.0 ppmv												

Boring ID	TGP-6
Total depth	10 feet
Sheet 1	of 1

Project name South Park LF	Drilling Contractor ESN	Drilling methodPush-probe rig
Project number <u>10-04850-000</u>	Location Second transect from north	Sampling method 5 ft core with plastic liner
Client City of Seattle	third location to west	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date September 29, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description Asphalt – 3.0", aggregate – 4", crushed rock
0	5-foot core with liner	100		1 2 3 4	Fill	Buff colored cement kiln dust, fill, damp
0	5-foot core with liner	100	<u>▼</u> 6.99	6 7 8 9	CL	Ground water encountered during drilling at 6.5 feet Static water level measured at 6.99 feet Black gravelly CLAY, petroleum odor, wet
				10	СН	Gray to black, silty CLAY, wet Set bar hole probe at 5.0 ft bgs. Backfilled borehole with bentonite chips. CH4: 9.6% CO2: 0.0% O2: 17.9% H2S: 2.0 ppmv

 Boring ID
 TGP-7

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method
Project number <u>10-04850-000</u>	Location Second transect from north	Sampling method 4 ft core with plastic liner
Client City of Seattle	between TGP-6 and TGP-5	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 13, 2015	Instrument(s) PID, GEM Plus

				<u> </u>	<u> </u>	
PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
						Asphalt – 2.0", aggregate – 8", crushed rock
				1		
	4-foot				SWFill	Brown gravelly SAND, fill, dry
0	core	75		2	SM/Fill	Dark brown silty gravelly SAND, fill, dry
	with			3	ML/Fill	Gray to brown sandy SILT, trace of gravel, brick fragments, fill, dry
	liner			3	MIL/FIII	Gray to brown sandy StL1, trace of graver, brick fragments, fill, dry
				4		
				·	SW/Fill	Brown gravelly SAND, trace of silt, fill, damp
				5		y and y and y and y
	4-foot				ML	Gray clayey SILT, damp
0	core	70		6	SM	Gray to brown silty SAND, damp
	with					
	liner			7		Dark brown silty SAND, damp
				8	MII	Brown clayey SILT, damp
	2-foot			8	MH	Brown clayey SIL1, damp
0	core	100		9		
	with	100				
	liner			10		
						Groundwater not encountered
						Set bar hole probe at 6.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CHA. 0.00/
						CH4: 0.9% CO2: 0.7%
						O2: 20.2%
						H2S: 0.0 ppmv

SOIL PROBE BORING RECORD

 Boring ID
 TGP-8

 Total depth
 12 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method
Project number <u>10-04850-000</u>	Location Second Transect from north	Sampling method 4 ft core with plastic liner
Client City of Seattle	westernmost probe	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 13, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Wate r level (feet)	Depth (feet, BGS)	Soil group	Soil description
0	4-foot core with liner	100		1 2 3	Fill	Asphalt – 2.0", aggregate – 5", crushed rock Buff colored cement kiln dust
0	4-foot core with liner	75	<u>▼</u> 6.5	5 6 7 8	Fill GW/Fill SW/Fill	Static water level measured at 6.5 feet Crushed brick Gray GRAVEL. Crushed rock, fill, damp Black gravelly SAND, rock fragments, fill, hydrocarbon stain, wet
0	2-foot core with liner	No Recovery	$\overline{\triangle}$	9		Ground water encountered during drilling at 8.0 feet No recovery
0	2-foot core with	50		11	МН	Brown clayey SILT, wet
						Set bar hole probe at 5.0 ft bgs. Backfilled borehole with bentonite chips. CH4: 0.1% CO2: 3.3% O2: 13.4% H2S: 0.0 ppmv

Boring ID TGP-9
Total depth 8 feet
Sheet 1 of 1

Project name	South Park LF	Drilling Contr	ractor ESN	Drilling method P	Push-probe rig
Project number	er 10-04850-000	Location	Third transect from north	Sampling method	4 ft core with plastic liner
Client City of Seattle		west of TGF	P-10	Air monitoring (Y/N)	Yes
HEC rep.	Bruce Carpenter	Date Oc	tober 13, 2015	Instrument(s)	PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Dept h (feet, BGS)	Soil group	Soil description
	4-foot			1	ML/Fill	Asphalt – 1.0", aggregate – 7", crushed rock Gray to brown sandy SILT, fill, damp
0	core	100		2		
	with liner			3	SP/Fill ML/Fill	Brown medium SAND, trace of gravel, fill, damp Gray sandy SILT, fill, damp
	IIIICI			3	IVIL/FIII	2.5 inches Buff colored cement kiln dust, fill, damp
				4		
					SW	Gray gravelly SAND, trace of silt, fill, damp
	4-foot			5		
0	core	50	\mathbf{V}/∇	6		Static water level measured at 6.0 feet
	with		<u>▼/▽</u> 6.0			Ground water encountered during drilling at 6.0 feet
	liner			7	SM/Fill	Gray silty SAND, trace of gravel, fill, wet
				8		
				0		Set bar hole probe at 5.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CH4: 0.2% CO2: 0.2%
						O2: 17.3%
						H2S: 0.0 ppmv

 Boring ID
 TGP-10

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method Push-probe rig
Project number <u>10-04850-000</u>	Location Third transect from north	Sampling method 4 ft core with plastic liner
Client City of Seattle	easternmost probe	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 13, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
						Asphalt – 2.0", aggregate –6", crushed rock
	4-foot			1	SWFill	Brown gravelly SAND, trace of silt, charred wood, fill, damp
0	core with	75		2	ML/Fill	Brown sandy SILT, trace of clay, glass, fill, damp
	liner			3	SM/Fill	Tan silty SAND, fill, damp
				4		Wood fragments
	4-foot			5		wood fragments
0	core	50		6	ML/Fill	Brown to black sandy SILT, glass, brick fragments, fill, damp
	with liner			7		
	2.5.4		<u>▼</u>	8		Trace of gravel
0	2-foot core	100	8.10	9		Static water level measured at 8.10 feet Groundwater encountered at 9.0 feet
U	with	100	$\overline{\triangle}$	9	SM/Fill	Black silty SAND, charred wood, fill, wet
	liner			10	CH	Brown clayey SILT, wet
	IIIICI			10	CII	Set bar hole probe at 5.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CH4: 0.0% CO2: 0.5%
						02: 19.9%
						H2S: 0.0 ppmv

 Boring ID
 TGP-11

 Total depth
 12 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method Push-probe rig
Project number <u>10-04850-000</u>	Location Third transect from north	Sampling method 4 ft core with plastic liner
Client _ City of Seattle	middle probe	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 13, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Wate r level (feet)	Depth (feet, BGS)	Soil group	Soil description
0	4-foot core with liner	95		1 2 3	SM/Fill ML/Fill Fill ML/Fill SM/Fill Fill	Asphalt – 1.0", aggregate – 7.0", crushed rock 3-inch Brown silty SAND, trace of gravel, damp, 3-inch Gray sandy SILT, fill, damp Buff colored CKD, fill, damp 2-inch gravelly sandy SILT, fill, damp Gray gravelly SILT, fill, damp Buff colored cement kiln dust, fill, damp
0	4-foot core with liner	100	<u>▼</u> 7.0	5 6 7 8	SM/Fill Fill	2-inch Brown silty SAND, fill, damp Buff colored cement kiln dust, fill, damp Static water level measured at 7.0 feet
0	2-foot core with liner	No Recovery	abla	9		No recovery Groundwater encountered during drilling at 10.0 feet
0	2-foot core with	50		11	ОН	Black clayey SILT, organic material, sheen, wet
						Set bar hole probe at 8.0 ft bgs. Backfilled borehole with bentonite chips. CH4: 0.4% CO2: 0.0% O2: 21.1% H2S: 0.0 ppmv

 Boring ID
 TGP-12

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name	South Park LF	Drilling Contr	ractor ESN	Drilling method _ F	Push-probe rig
Project number	r 10-04850-000	Location	Middle transect, fourth from	Sampling method	4 ft core with plastic liner
Client City	of Seattle	easternmos	st location	Air monitoring (Y/N)	Yes
HEC rep.	Bruce Carpenter	Date Oc	tober 13, 2015	Instrument(s)	PID, GEM Plus

PID	Sample type,	%	Water level	Depth (feet,	Soil	Call description
(ppm)	interval	recovery	(feet)	BGS)	group	Soil description
						Asphalt – 1.0", aggregate – 6.0", crushed rock
				1	GW/Fill	4-inch Dark Brown sandy GRAVEL, fill, dry
					SW/Fill	Tan gravelly SAND, 2-inch piece of wood, fill, dry
	4-foot	100		2		
0	core	100				D 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	with			3	E.11	Buff colored cement kiln dust, fill, dry
	liner			4	Fill	
				4		Black silty SAND, wood fragments, fill, damp
				5	SM/Fill	Black Silly SAND, wood fragments, IIII, damp
	4-foot			3	SIVI/FIII	
0	core	90		6		
0	with	90		0	ML/Fill	Gray sandy SILT, fill, damp
	liner			7	1V1L/11111	Gray Sandy St. 1, ini, damp
	IIIICI					Black silty SAND, organic material, damp
				8	SM	Black Sitty of the by organic material, dump
	2-foot			- 0	5111	
0	core	100		9		
	with	100				Gray silty SAND, damp
	liner			10	ОН	Dark gray silty CLAY, damp
						Groundwater not encountered during drilling.
						Set bar hole probe at 8 ft bgs.
						Backfilled borehole with bentonite chips.
						_
						CH4: 2.1%
						CO2: 0.0%
						O2: 20.6%
						H2S: 0.0 ppmv

 Boring ID
 TGP-13

 Total depth
 8 feet

 Sheet
 1
 of
 1

Project name	South Park LF	Drilling Contr	actor ESN	Drilling method P	Push-probe rig
Project number	r 10-04850-000	Location	Third transect from north	Sampling method	4 ft core with plastic liner
Client City	of Seattle	westernmos	st probe	Air monitoring (Y/N)	Yes
HEC rep.	Bruce Carpenter	Date Oc	tober 13, 2015	Instrument(s)	PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Dept h (feet, BGS)	Soil group	Soil description
	4.0			1	Fill	Asphalt – 1.0", aggregate – 5.0", silty gravel Buff colored cement kiln dust, fill, dry
0	4-foot core with	100		2		
	liner		<u></u>	3		Static water level measured at 3.5 feet
			<u>▼</u> 3.5	4		damp
				5	SW/Fill	Gray gravelly SAND, damp
0	4-foot core	100	<u>▽</u> 6.0	6	SP/Fill	Gray medium SAND, fill, damp wet, ground water encountered during drilling at 6.0 feet
	with liner		6.0	7		
				8		
						Set bar hole probe at 3.0 ft bgs. Backfilled borehole with bentonite chips.
						CH4: 0.0%
						CO2: 0.0% O2: 20.9%
						H2S: 0.0 ppmv

 Boring ID
 TGP-14

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method Push-probe rig
Project number <u>10-04850-000</u>	Location Fourth transect from north	Sampling method 5 ft core with plastic liner
Client City of Seattle	second probe from easternmost location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 14, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
(PP)			(1001)	1	g. 0 a p	Asphalt – 1.0", aggregate – 9.0", crushed rock
					SW/Fill	Black gravelly SAND, fill, dry
0	5-foot core	80		2		Gray gravelly SAND, fill, damp
	with liner			3	Fill	3-inch Buff colored cement kiln dust, fill, damp
	IIIIei			4	ML/Fill	Black sandy SILT, brick fragments, fill, damp
				5		
				6	SM/Fill	2-inch Gray silty SAND, fill, damp
0	5-foot core	80	_	7	CH/Fill SM/Fill	Dark gray to black silty CLAY, organic material, fill, damp Static water level measured at 7.50 feet
	with	80	<u>▼</u> 7.50	8		Brown silty SAND, glass, plastic, brick fragm ents, fill, damp
	liner			9	GW/Fill	Ground water encountered during drilling at 8.00 feet Gray to brown sandy GRAVEL, trace of silt, sheen, wet
					GM/Fill	Black sandy GRAVEL, trace of silt, sheen, wet
				10		Set bar hole probe at 3.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CH4: 4.9%
						CO2: 0.2% O2: 15.8%
						H2S: 0.0 ppmv

Boring ID	TGP-15
Total depth	10 feet
Sheet 1	of 1

Project name South Park LF	Drilling Contractor ESN	Drilling method
Project number <u>10-04850-000</u>	Location Fourth transect from north	Sampling method 5 ft core with plastic liner
Client City of Seattle	Easternmost probe location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 14, 2015	Instrument(s) PID, GEM Plus

			I		I	
DID	Sample	0/	Water	Depth	0 "	
PID (ppm)	type, interval	% recovery	level (feet)	(feet, BGS)	Soil group	Soil description
(ррііі)	interval	recovery	(ICCI)	D00)	group	Asphalt – 1", aggregate – 8", crushed rock
				1		rispitate 1, aggregate 6, crushed fock
				1	ML/Fill	Light brown sandy SILT, fill, damp
	5 Co at			2	IVIL/FIII	Light brown sandy Stell, iiii, damp
	5-foot	7.5				
0	core	75				
	with			3		Gray-brown mottled sandy SILT, fill, damp
	liner					
				4		
					OL/Fill	Dark brown-black clayey SILT, fill, organic material
				5	SM/Fill	Brown sandy SILT brick fragments, fill, damp
						Glass, with gravel
				6		
	5-foot			7		
0	core	60		,	ML/Fill	Dark brown-black gravelly SILT, organic material, wood fragments,
	with		▼	8	1112/1111	Static water level measured at 8.00 feet
	liner		8.00			moist
				9		
			_			Groundwater encountered during drilling at 9.5 feet.
			$\overline{\triangle}$	10	ML	Gray-brown sandy SILT, wet
						Set bar hole probe at 5.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CH4: 5.7%
						CO2: 4.6%
						O2: 4.8%
						H2S: 0.0 ppmv
			l	I	l	

Boring ID) TO	3P-16		
Total dep	oth	10 fe	et	
Sheet	1	of	1	
	Total dep		Total depth 10 fe	Boring ID TGP-16 Total depth 10 feet Sheet 1 of 1

Project name South Park LF **Drilling Contractor ESN** Drilling method Push-probe rig Project number <u>10-04850-000</u> Fourth transect from north Sampling method Location 5 ft core with plastic liner Client City of Seattle Middle probe location Air monitoring (Y/N) Yes Bruce Carpenter Date HEC rep. October 14, 2015 Instrument(s) PID, GEM Plus

Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
	•		1		Asphalt – 1", aggregate – 8", crushed rock
5-foot			2	SW/Fill	Tan gravelly SAND, fill, damp
core	80			Fill	Buff colored cement kiln dust, wood fragments, fill, damp
liner				GW/Fill	5" black sandy GRAVEL, fill, damp Buff colored cement kiln dust, fill, damp
					, , , ,
				SM/Fill	Black sandy SILT, brick fragments, fil, wet Petroleum hydrocarbon odor
				ML/Fill	Dark brown clayey SILT, fill, damp
	60	$\overline{\nabla}$	7	CM/E:11	Groundwater encountered during drilling at 7 feet. Black sandy SILT, organic material, wood fragments, fill, wet
with	00		8	SIVI/FIII	Black Salidy SIL1, organic material, wood fragments, fill, wet
liner			Q	ОН	Gray clayey SILT, organic material, wet
		<u>▼</u> 9.6			Static water level measured at 9.6 feet.
					Set bar hole probe at 4.0 ft bgs. Backfilled borehole with bentonite chips.
					CH4: 4.3%
					CO2: 0.0% O2: 9.8%
					H2S: 0.0 ppmv
	type, interval 5-foot core with liner 5-foot core with	type, % recovery 5-foot core 80 with liner 5-foot core of 60 with	type, interval recovery level (feet) 5-foot core 80 with liner 5-foot core 60 with	type, interval	type, interval recovery level (feet, BGS) group 1

 Boring ID
 TGP-17

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method Push-probe rig
Project number <u>10-04850-000</u>	Location Fourth transect from north	Sampling method 5 ft core with plastic liner
Client _ City of Seattle	second probe from westernmost location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 14, 2015	Instrument(s) PID, GEM Plus

PID	Sample type,	%	Water level	Depth (feet,	Soil	Soil description
(ppm)	interval	recovery	(feet)	BGS)	group	<u> </u>
				1	MI /E:11	Asphalt – 1.0", aggregate – 5.0", sandy gravel
				1	ML/Fill Fill	Tan gravelly SILT, trace sand, fill, damp Buff colored cement kiln dust, damp
	5-foot			2	1 111	Buil colored cement killi dust, damp
0	core	75				
	with	/3		3		
	liner					
				4		
				5	ML/Fill	2" tan sandy SILT, 4"Dark brown sandy SILT, fill, damp
				6	OL/Fill	As above, organic material, sticks, wood and few brick fragments
			•	0		Static water level measured at 6.80 feet.
	5-foot		<u>▼</u> 6.80	7		
0	core	60				
	with			8		
	liner		$\overline{\nabla}$			Groundwater encountered during drilling at 9.0 feet
				9	SM/Fill	Dark gray silty SAND, trace clay, fill, wet
				10	ML	Brown clayey SILT, damp
				10		Set bar hole probe at 5.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CH4: 1.4%
						CO2: 0.0%
						O2: 21.3% H2S: 0.0 ppmv
						1123. 0.0 ppiny

\sim					
~/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DDIN			17 ± D	
JUIL	FNU	머니니	Chin		ECORD

 Boring ID
 TGP-18

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method
Project number <u>10-04850-000</u>	Location Southern transect	Sampling method 5 ft core with plastic liner
Client City of Seattle	second probe from easternmost location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 14, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
(ppiii)	into var	receivery	(ioot)	1	group	Asphalt – 1", aggregate – 9", sandy gravel
	5.0				GW/Fill	5" Brown-gray sandy GRAVEL, fill, damp
0	5-foot core	100		2	ML/Fill	4" Black sandy GRAVEL, charred wood, fill, damp Gray sandy SILT, trace gravel, damp
	with	100		3	14112//1 111	Gray Sandy StE1, trace graver, damp
	liner					
				4		
				5	SP/ML/Fill	Gray-brown sandy SILT, fill, damp 2" Gray medium SAND lens, fill
					ML/Fill	Gray sandy SILT, fill, damp
				6	SM/Fill	Black silty SAND, trace gravel, wood fragments, and glass, damp
	5-foot			7		
0	core with	90		8		
	liner			0		
	imei			9		
				10	СН	Gray-brown silty CLAY, damp
						Groundwater not encountered during drilling.
						Set bar hole probe at 8.0 ft bgs. Backfilled borehole with bentonite chips.
						Backfilled borehole with bentonite chips.
						CH4: 2.9%
						CO2: 0.2%
						O2: 19.2%
						H2S: 0.0 ppmv

 Boring ID
 TGP-19

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method Push-probe rig
Project number <u>10-04850-000</u>	Location Southern transect	Sampling method 5 ft core with plastic liner
Client City of Seattle	Second probe from easternmost location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 14, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
W.1. /				1	Fill	Asphalt – 1", aggregate – 6.0", sandy gravel Buff colored cement kiln dust, fill, damp
0	5-foot core	100		2		
	with liner	100		3		
				5		
				6	ML/Fill	4" lens of dark brown SILT, fill, damp
	5-foot			7	Fill	Buff colored cement kiln dust, fill, damp
0	core with	100		8		
	liner			9	ОН	Cobbles, Black silty CLAY, organic material, damp
				10		Brown silty CLAY, organic material, damp Groundwater not encountered during drilling.
						Set bar hole probe at 6.0 ft bgs. Backfilled borehole with bentonite chips.
						CH4: 4.2% CO2: 0.0%
						O2: 20.4% H2S: 0.0 ppmv

 Boring ID
 TGP-20

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name South Park LF	Drilling Contractor ESN	Drilling method Push-probe rig
Project number <u>10-04850-000</u>	Location Southern transect	Sampling method _5 ft core with plastic liner
Client City of Seattle	Second probe from westernmost location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 14, 2015	Instrument(s) PID, GEM Plus

PID (ppm)	Sample type, interval 5-foot core with liner	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group GP/Fill SW/Fill SM/Fill Fill	Soil description Asphalt – 1", aggregate – 4", sandy gravel 4" Gray GRAVEL, fill, damp 4" Black gravelly SAND, fill, damp Gray silty SAND, trace gravel, fill, damp Buff colored cement kiln dust, fill, damp Gray-brown mottled gravelly SILT, fill, damp
0	5-foot core with	80	<u>▼</u> 5.4	5 6 7 8		Groundwater encountered during at 5.0 feet. Gray sandy SILT, trace clay, fill, wet. Static water level measured at 5.4 feet Dark brown-black sandy SILT, damp
	liner			9	СН	Gray silty CLAY, damp Gray-brown clayey SILT, organic material, wood fragments Set bar hole probe at 3.0 ft bgs.
						Backfilled borehole with bentonite chips. CH4: 0.9% CO2: 0.0% O2: 20.6% H2S: 0.0 ppmv

Boring ID	TGP-21			
Total depth	10 feet			
Sheet 1	of 1			

Project name South Park LF	Drilling Contractor ESN	Drilling method
Project number <u>10-04850-000</u>	Location Southern transect	Sampling method 5 ft core with plastic liner
Client City of Seattle	westernmost probe location	Air monitoring (Y/N) Yes
HEC rep. Bruce Carpenter	Date October 14, 2015	Instrument(s) PID, GEM Plus

			I	I	I	T
5.5	Sample	0.4	Water	Depth		
PID (ppm)	type, interval	% recovery	level (feet)	(feet, BGS)	Soil group	Soil description
(ррііі)	interval	recovery	(ICCI)	DO3)	group	Grass, topsoil
				1	GW/Fill	Brown sandy GRAVEL, fill, damp
				1	G W/I'III	Brown sandy OKAVEL, IIII, damp
	5 C4			2		
	5-foot			2	2 57 (7)11	D 11 027 T 011 1
0	core	70			ML/Fill	Brown gravelly SILT, fill, damp
	with			3		Tan sandy SILT, damp
	liner				Fill	3" Buff colored cement kiln dust, fill, damp
				4	ML/Fill	3" Brown sandy SILT, fill, damp
					SM/Fill	Gray silty SAND, fill, wet, groundwater encountered at 4 feet
			<u>▼</u> 4.95	5		Static water level measured at 4.95 feet
			4.95			
				6		
					СН	Gray-brown clayey SILT, damp
	5-foot			7		
0	core	80				
	with			8		
	liner					Brown clayey SILT, damp
	IIIICI			9		Brown citagey BrE1, dump
				10		
				10		Sat have halo proha at 2.0 ft has
						Set bar hole probe at 3.0 ft bgs. Backfilled borehole with bentonite chips.
						Backfilled borefloie with bentonite chips.
						CH4: 0.5%
						CO2: 0.1%
						O2: 20.8%
						H2S: 0.0 ppmv

 Boring ID
 TGP-22

 Total depth
 5 feet

 Sheet
 1
 of
 1

Project name	South Park LF	Drilling Cont	ractor ESN	Drilling method P	ush-probe
Project number 10-04850-000		Location Fourth transect from north		Sampling method	5 ft core with plastic liner
Client City of	of Seattle	westernmo	st probe location	Air monitoring (Y/N)	Yes
HEC rep.	Bruce Carpenter	Date Oc	ctober 14, 2015	Instrument(s)	PID, GEM Plus

				1	ı	
PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
\I- I****/			(1201)		3.344	Asphalt – 1", aggregate – 4", sandy gravel
				1	GW/Fill	Brown sandy GRAVEL, fill, dry
					Fill	Buff colored cement kiln dust, fill, damp
	5-foot			2		-
0	core	80				
	with		<u>▼</u> 3.0	3		Static water level measured at 3.0 feet
	liner		3.0			
				4	SW/Fill	Brown gravelly SAND, fill, damp, groundwater encountered at 4.0 feet.
			$\overline{\nabla}$		ML/Fill	3" Light brown sandy SILT, fill, and 3" Black sandy SILT, fill, wet
				5	SP/Fill	Gray medium SAND, fill, wet
						Set bar hole probe at 2.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CHA 0.00/
						CH4: 0.0% CO2: 0.0%
						O2: 21.6%
						H2S: 0.0 ppmv
						1125: 010 pp.111

 Boring ID
 TGP-23

 Total depth
 15 feet

 Sheet
 1
 of
 1

Project name	South Park LF	Drilling Contra	ractor ESN	Drilling methodF	Push-probe rig
Project numbe	r 10-04850-000	Location	Northernmost probe on landfill	Sampling method	5 ft core with plastic liner
Client City	of Seattle			Air monitoring (Y/N)	Yes
HEC rep.	Bruce Carpenter	Date Oc	tober 14, 2015	Instrument(s)	PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
(PPIII)	intol val	10007019	(1001)	200)	group	Asphalt – 1", aggregate – 4", sandy gravel
				1	GW/Fill	4" Dark brown gravelly SAND, fill, dry
						Light brown gravelly SAND, fill, damp
	5-foot			2		
0	core	70				
	with			3	OT /P:11	
	liner			4	CL/Fill	6" Gray clayey SILT, trace gravel, fill, damp
				4	GC/Fill	Black –gray clayey GRAVEL, crushed rock, fill
				5	SM/Fill	Dark-brown silty SAND, glass and brick fragments, organic material, wood waste, fill
					NR	No Recovery
				6		
	_					
	5-foot	NID		7		
-	core with	NR		8		
	liner			0		
	inici			9		
				10		
				10		No Recovery
				11		The necessary
	5.6.4		_	10		
0	5-foot core	6	<u>▼</u> 12.00	12		Static water level measured at 12.00 feet.
0	with	0	12.00	13		
	liner			- 15		
				14		
			$\overline{\nabla}$			Groundwater encountered during drilling at 14.5 feet
				15	GM/Fill	Black sandy GRAVEL, broken glass, fill, hydrocarbon odor, wet
						Set bar hole probe at 5.0 ft bgs.
						Backfilled borehole with bentonite chips.
						CH4: 4.8%
						CO2: 1.7%
						O2: 0.3%
						H2S: 0.0 ppmv

 Boring ID
 TGP-24

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name	South Park LF	Drilling Co	ontractor ESN	Drilling method P	ush-probe rig
Project numbe	r 10-04850-000	Location	Middle probe located within	Sampling method	5 ft core with plastic liner
Client City	of Seattle	landfill		Air monitoring (Y/N)	Yes
HEC rep.	Bruce Carpenter	Date	October 14, 2015	Instrument(s)	PID, GEM Plus

PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
\I= \(\sigma\)			(1201)		3.356	Asphalt – 1.0", aggregate – 4.0", sandy gravel
				1	SM/Fill	Light brown gravelly SAND, fill, damp
	5-foot			2		
2.4	core	60				
	with			3		
	liner			4	MT /E:11	42 C
				4	ML/Fill SW/Fill	4" Gray clayey SILT, fill 4" Black gravelly SAND, crushed rock, fill
				5	SM/Fill	4" Dark white specks, silty SAND, brick fragments, fill, damp
					SW/Fill	Black gravelly SAND, brick fragments, fill, damp
				6	S W/I III	Black glavelly of the formations, fin, damp
					Fill	4" Brick fragments, fill
	5-foot			7	SM/Fill	4" Brown silty SAND, fill
1.0	core	30				
	with			8	Fill	3" Black charred wood
	liner				SM/Fill	3" Brown silty SAND, fill, damp
				9		
				10		
						Groundwater not encountered during drilling. Set bar hole probe at 5.0 ft bgs.
						Backfilled borehole with bentonite chips.
						backined objetione with bentonite emps.
						CH4: 4.2%
						CO2: 2.8%
						O2: 3.4%
						H2S: 0.0 ppmv

 Boring ID
 TGP-25

 Total depth
 10 feet

 Sheet
 1
 of
 1

Project name	South Park LF	Drilling Cor	ntractor ESN	Drilling method P	ush-probe rig
Project numbe	r 10-04850-000	Location	Southernmost probe located	Sampling method	5 ft core with plastic liner
Client City	of Seattle	Within lar	ndfill	Air monitoring (Y/N)	Yes
HEC rep.	Bruce Carpenter	Date 0	October 14, 2015	Instrument(s)	PID, GEM Plus

		I			I	
PID (ppm)	Sample type, interval	% recovery	Water level (feet)	Depth (feet, BGS)	Soil group	Soil description
(- /			(1001)		3. c a p	Asphalt – 1.0", aggregate – 9.0", sandy gravel
				1		
					SW/Fill	Light brown gravelly SAND, fill, damp
	5-foot			2		
0	core	80				
	with			3		
	liner			4) (T /D'11	C 1 CHT CH 1
				4	ML/Fill SW/Fill	Gray sandy SILT, fill, damp Gray gravelly SAND, fill, damp
				5	ML/Fill	Gray graverry SAND, firi, damp Gray sandy SILT, fill, dry
					IVIL/1*111	Gray sailty SiE1, iii, try
				6		
					SW/Fill	Black gravelly SAND, crushed rock, fill, dry
	5-foot			7	SP/Fill	4" Buff colored SAND, fill
1.4	core	75				4" Orange-brown SAND, fill
	with			8		
	liner			0	SW/Fill	Brown-black gravelly SAND, fill, damp
				9	Fill	Broken glass, nail, brick fragments, fill
				10	-	
			10		Groundwater not encountered during drilling.	
					Set bar hole probe at 9.5 ft bgs.	
						Backfilled borehole with bentonite chips.
						CVIA A COV
						CH4: 4.6% CO2: 6.3%
					O2: 0.3%	
						H2S: 0.0 ppmv

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix L Supplemental Investigations

Attachment L.2
Monthly Monitoring for New LFG Probes –
September 2016 through August 2017

TECHNICAL MEMORANDUM

Date: September 19, 2017

To: Teri Floyd, Floyd|Snider

From: Bruce Carpenter and Michael Spillane, Herrera Environmental Consultants

Subject: LFG Monitoring Results at Kenyon Industrial Park

INTRODUCTION

The South Park PLP Group requested Floyd|Snider and Herrera Environmental Consultants (Herrera) install five landfill gas (LFG) compliance perimeter gas probes at Kenyon Industrial Park (KIP), based on results of a LFG characterization conducted at KIP by Herrera in September/October 2015. The 2015 investigation was conducted to determine LFG concentrations extending across a swale situated adjacent to the northern portion of the west South Park Landfill (Landfill) boundary (Figure 1).

Five probes, GP-39 through GP-43, were installed in September 2016, based on the *Compliance Probe Installation and Monitoring Work Plan* provided in Attachment A. The purpose of these probes is to monitor the potential pathway of methane to the building. The borings were logged by a Herrera licensed hydrogeologist and LFG measurements made at each location. Gas probe boring logs, including probe construction details, are provided in Attachment B.

LFG PROBE MONITORING

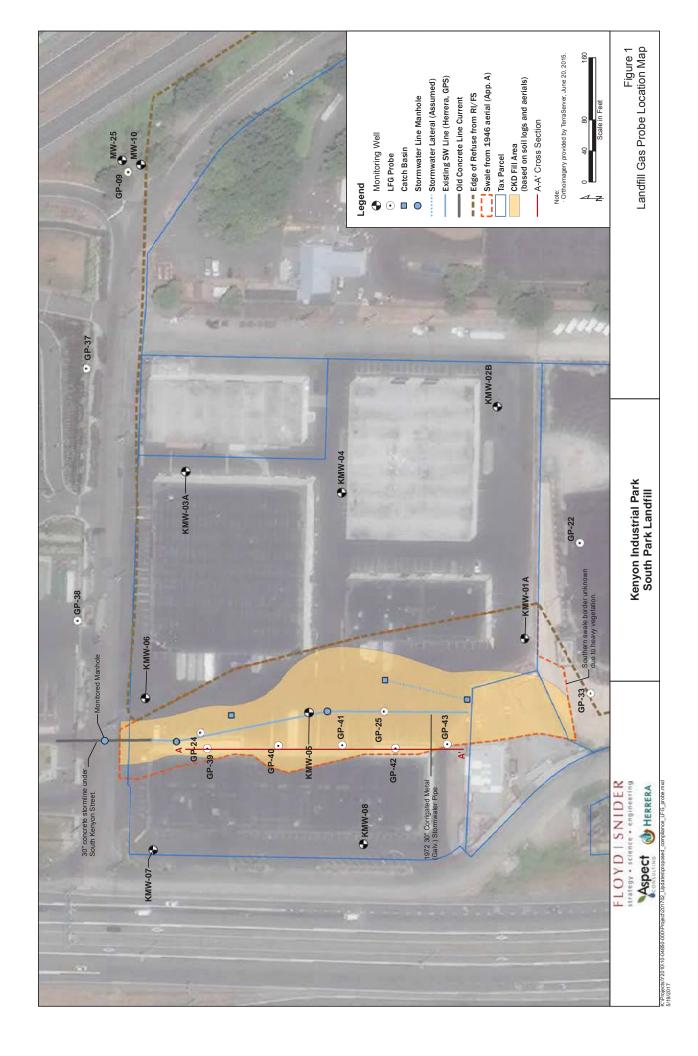
Following probe installation, Herrera performed monthly monitoring beginning in September 2016. LFG monitoring was also conducted at two gas probes, GP-24 and GP-25, and four monitoring wells, KMW-01A, KMW-03A, KMW-04, and KMW-06, previously installed on the KIP property. The additional monitoring was conducted to determine distribution of LFG throughout KIP. Two perimeter probes, including GP-22 and GP-33 located on South Park Property Development (SPPD), the adjacent property to the south, also were monitored to determine effectiveness of the active LFG collection system constructed on SPPD.

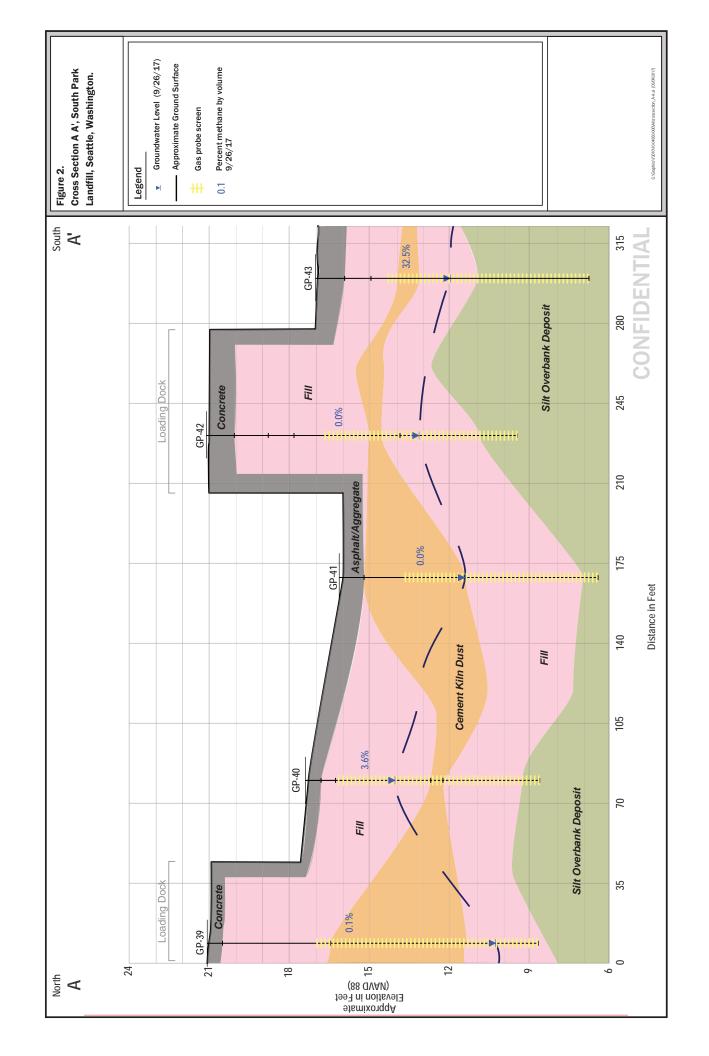
A summary of probe monitoring results is provided in Table 1. During the 12-month monitoring period, September 2016 through August 2017, water levels fluctuated from 0.69 to 2.70 feet across the site. The highest water levels were measured in April 2017 and the lowest levels in August 2017. Figure 2 depicts Cross Section A A', including Probes GP-39 through GP-43. It provides initial methane and water levels measured on September 26, 2016.

During the 12-month monitoring period, results were as follows:

- No methane was detected in probe GP-39 with the exception of 0.1 percent during the
 initial monitoring period. The screen in this probe is open to fill material located above
 and below the cement Kiln Dust (CKD). Typically CKD is a dense, low permeable layer
 that impedes the flow of LFG.
- Methane concentrations ranged from 0 to 7.5 percent in probe GP-40. During the November 2016 and April 2017 monitoring periods, high water levels prevented purging more than one probe volume. The probe screen straddles two fill zones and CKD, but during all 12 monitoring periods, the water level was above the lower fill zone and CKD.
- No methane was detected in probe GP-41. The screen in this probe is open to the lower fill zone and CKD, which extends to the asphalt/aggregate, within 1 foot of ground surface. The water level extended above the top of the screen during monitoring performed in February, March, April, and June 2017.
- No methane was detected in probe GP-42. The screen in this probe straddles two fill zones and CKD.
- Methane concentrations ranged from 0.5 to 46.4 percent in probe GP-43. During 7 of the 12 monitoring periods, high water levels prevented measurements from equilibrating. The probe screen straddles two fill zones and CKD.
- No methane was detected in a manhole located north of KIP and the swale in the center of Kenyon Street.

Methane concentrations in the other probes and wells measured across KIP are typical of historical readings taken prior to the 12-month monitoring period results discussed in this memorandum. The two lower explosion level (LEL) exceedances measured in probes GP-22 and GP-33 during December 14, 2016, were attributed to an unscheduled shutdown of the LFG extraction system on SPPD. The methane concentrations dropped below the LEL during subsequent monitoring when the extraction system was operational.


CONCLUSIONS


- Five LFG Compliance Probes, GP-39, 40, 41, 42, and 43 were installed in September 2016 to monitor the potential pathway of methane to the westernmost building on KIP.
- During 12 months of LFG probe monitoring from September 2016 through August 2017, no methane was detected in probes GP-39, GP-41, and GP-42, with the exception of a reading of 0.1 percent during initial monitoring in GP-39.

- Methane concentrations ranged from 0.0 to 7.5 percent in probe GP-40, including one LEL exceedance during 12 monitoring periods.
- Methane concentrations measured in probe GP-43 ranged from 0.5 to 46.4 percent during 12 monitoring periods. High water levels and flow faults prevented the methane concentration from equilibrating during 7 of the 12 monitoring periods. The final methane concentration measured during this monitoring period, on August 28, 2017, was 0.5 percent, the lowest measurement during 12 months of monitoring.

Та	Table 1. Landi	Landfill Gas Monitoring Results Kenyon Industrial Park/South Park Landfill, Seattle, Washington.	toring Resul	ts Kenyon I	ndustrial P	ark/South	Park Landfi	II, Seattle, \	Nashington	
Monitoring Stations	Date	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ O)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppmv)	Static Water Level (ft bgs)	Screen Setting (ft bgs)	Range of CKD (ft bgs)
GP-24	1/31/2017	30.32	0.00	21.1	0.0	3.3	0	5.77	5.5–10.5	1.0-7.0
GP-24	2/27/2017	29.74	-0.01	16.0 ^a	0.0	4.4	0	5.18 ^b	5.5–10.5	1.0-7.0
GP-24	3/20/2017	29.96	ΣN	4.3 ^a	0.0	4.2	0	5.37 ^b	5.5-10.5	1.0-7.0
GP-24	4/12/2017	29.75	ΣZ	8.1 ^a	0.0	5.8	0	5.45 ^b	5.5-10.5	1.0-7.0
GP-24	5/15/2017	29.93	ΣN	16.0 ^a	0.0	4.0	0	2.60	5.5-10.5	1.0-7.0
GP-24	6/15/2017	29.82	-0.02	38.0	0.0	1.5	0	5.80	5.5-10.5	1.0-7.0
GP-24	7/18/2017	29.83	0.00	47.4	0.0	0.3	9	6.42	5.5-10.5	1.0-7.0
GP-24	8/28/2017	29.67	0.00	53.1	0.0	0.1	2	6.49	5.5-10.5	1.0-7.0
GP-25	1/31/2017	30.44	ΣΖ	70.7	0.0	8.6	0	6.54	5.4-10.4	1.0-5.0
GP-25	2/27/2017	29.76	ΣΖ	68.5	0.1	0.0	0	6.08	5.4-10.4	1.0-5.0
GP-25	3/20/2017	29.96	ΣN	70.0	0.0	0.2	0	00.9	5.4-10.4	1.0-5.0
GP-25	4/12/2017	29.74	ΣΖ	73.2	0.0	0.3	1	5.85	5.4-10.4	1.0-5.0
GP-25	5/15/2017	29.93	ΣΖ	72.1	0.0	0.2	0	6.10	5.4-10.4	1.0-5.0
GP-25	6/15/2017	29.82	ΣN	77.5	0.0	0.2	1	6.02	5.4-10.4	1.0-5.0
GP-25	7/18/2017	29.83	ΣΖ	75.3	0.0	0.0	0	6.36	5.4-10.4	1.0-5.0
GP-25	8/28/2017	29.67	ΣZ	76.5	0.0	0.1	0	6.41	5.4-10.4	1.0-5.0
GP-39	9/26/2016	30.03	ΣΖ	0.1	2.5	14.0	0	10.54°	5.0-12.3	4.8–9.5
GP-39	10/3/2016	29.91	ΣZ	0.0	3.1	14.6	0	10.57 ^c	5.0-12.3	4.8–9.5
GP-39	11/18/2016	29.83	ΣΖ	0.0	1.2	19.2	0	10.13^{c}	5.0-12.3	4.8–9.5
GP-39	12/14/2016	29.98	0.00	0.0	1.1	21.6	ΣN	10.12^{c}	5.0-12.3	4.8–9.5
GP-39	1/31/2017	30.31	0.00	0.0	0.4	20.2	0	10.15^{c}	5.0-12.3	4.8–9.5
GP-39	2/27/2017	29.76	0.00	0.0	9.0	20.5	0	9.94€	5.0-12.3	4.8–9.5
GP-39	3/20/2017	29.96	0.03	0.0	0.5	20.1	0	9.42 ^c	5.0-12.3	4.8-9.5

Table 1 (Table 1 (continued).		Landfill Gas Monitoring Results Kenyon Industrial Park/South Park Landfill, Seattle, Washington	Results Ke	nyon Indus	trial Park/	South Park	Landfill, Se	attle, Wash	ington.
Monitoring Stations	Date	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ O)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppmv)	Static Water Level (ft bgs)	Screen Setting (ft bgs)	Range of CKD (ft bgs)
GP-39	4/12/2017	29.75	0.00	0.0	0.5	20.2	0	9.95°	5.0-12.3	4.8–9.5
GP-39	5/15/2017	29.93	0.00	0.0	9.0	19.7	0	10.03°	5.0-12.3	4.8–9.5
GP-39	6/15/2017	29.82	0.00	0.0	1.0	16.8	0	10.16^{c}	5.0-12.3	4.8–9.5
GP-39	7/18/2017	29.83	0.00	0.0	1.3	15.1	0	10.33	5.0-12.3	4.8–9.5
GP-39	8/28/2017	29.66	0.00	0.0	2.3	14.6	0	10.63	5.0-12.3	4.8–9.5
GP-40	9/26/2016	30.01	ΣΖ	3.6	4.5	11.0	0	3.25	1.3–8.6	4.0-4.5
GP-40	10/3/2016	29.91	ΣN	1.2	4.5	11.2	0	3.27	1.3–8.6	4.0-4.5
GP-40	11/18/2016	29.82	ΣΖ	0.0ª	0.0	20.6	0	2.28	1.3-8.6	4.0-4.5
GP-40	12/14/2016	29.97	0.03	0.7	2.4	13.5	ΣN	2.52	1.3–8.6	4.0-4.5
GP-40	1/31/2017	30.31	0.00	0.0	2.0	13.2	0	3.06	1.3-8.6	4.0-4.5
GP-40	2/27/2017	29.76	0.00	1.5	2.0	13.0	0	2.26	1.3-8.6	4.0-4.5
GP-40	3/20/2017	29.96	0.00	0.0	0.2	20.1	0	2.10	1.3-8.6	4.0-4.5
GP-40	4/12/2017	29.96	0.00	1.3	1.0	5.5	0	1.78ª	1.3-8.6	4.0-4.5
GP-40	5/15/2017	29.93	-0.03	0.3	3.4	14.2	0	2.64	1.3–8.6	4.0-4.5
GP-40	6/15/2017	29.82	0.00	4.0	5.6	8.0	0	3.08	1.3–8.6	4.0-4.5
GP-40	7/18/2017	29.83	-0.01	2.4	6.5	7.9	0	3.36	1.3-8.6	4.0-4.5
GP-40	8/28/2017	29.67	0.00	7.5	7.5	4.5	0	3.36	1.3–8.6	4.0-4.5
GP-41	9/26/2016	30.01	ΣΖ	0.0	0.4	19.0	0	4.36	2.3–9.6	0.8-4.5
GP-41	10/3/2016	29.91	ΣΖ	0.0	0.4	19.5	0	4.28	2.3–9.6	0.8-4.5
GP-41	11/18/2016	29.82	ΣZ	0.0 ^a	0.0	19.6	0	2.57	2.3–9.6	0.8-4.5
GP-41	12/14/2016	29.97	-0.08	0.0	0.1	22.3	ΣN	3.04	2.3–9.6	0.8–4.5
GP-41	1/31/2017	30.31	0.00	0.0	0.0	21.2	0	3.64	2.3–9.6	0.8-4.5
GP-41	2/27/2017	29.76	0.00	0.0ª	0.0	20.9	0	1.85 ^b	2.3–9.6	0.8-4.5
GP-41	3/20/2017	29.96	ΣN	0.0 ^a	0.0	20.9	0	1.92 ^b	2.3–9.6	0.8–4.5

Table 1	Table 1 (continued).	Landfill Gas	Landfill Gas Monitoring Results Kenyon Industrial Park/South Park Landfill, Seattle, Washington.	Results Ke	nyon Indus	trial Park/	South Park	Landfill, Se	attle, Wash	ington.
Monitoring Stations	Date	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ O)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppmv)	Static Water Level (ft bgs)	Screen Setting (ft bgs)	Range of CKD (ft bgs)
GP-41	4/12/2017	29.75	ΣN	0.0a	0.0	20.6	0	1.73 ^b	2.3–9.6	0.8–4.5
GP-41	5/15/2017	29.93	ΣN	0.0ª	0.1	20.8	0	2.44	2.3–9.6	0.8-4.5
GP-41	6/15/2017	29.82	ΣN	0.0ª	0.1	20.6	0	1.88 ^b	2.3–9.6	0.8–4.5
GP-41	7/18/2017	29.83	0.00	0.0	0.2	19.5	0	4.27	2.3–9.6	0.8-4.5
GP-41	8/28/2017	29.67	0.00	0.0	0.4	19.0	0	4.43	2.3–9.6	0.8-4.5
GP-42	9/26/2016	30.01	ΣN	0.0	1.2	17.8	0	7.62 ^c	4.2–11.5	6.0-6.5
GP-42	10/3/2016	29.91	ΣN	0.0	1.2	18.2	0	7.73 ^c	4.2–11.5	6.0-6.5
GP-42	11/18/2016	29.82	ΣN	0.0	0.5	19.8	0	6.32 ^c	4.2–11.5	6.0-6.5
GP-42	12/14/2016	29.95	-0.04	0.0	9:0	21.6	NM	6.70 ^c	4.2–11.5	6.0–6.5
GP-42	1/31/2017	30.31	0.00	0.0	0.2	20.6	0	7.32 ^c	4.2–11.5	6.0-6.5
GP-42	2/27/2017	30.31	0.00	0.0	0.3	20.4	0	6.20°	4.2–11.5	6.0-6.5
GP-42	3/20/2017	29.96	0.00	0.0	0.2	20.5	0	6.19 ^c	4.2–11.5	6.0-6.5
GP-42	4/12/2017	29.74	0.00	0.0	0.3	20.1	0	5.76 ^c	4.2–11.5	6.0-6.5
GP-42	5/15/2017	29.93	-0.01	0.0	0.5	20.1	0	6.58 ^c	4.2–11.5	6.0-6.5
GP-42	6/15/2017	29.82	0.00	0.0	0.7	19.0	0	7.15 ^c	4.2–11.5	6.0-6.5
GP-42	7/18/2017	29.83	0.00	0.0	0.7	18.4	0	7.75	4.2–11.5	6.0-6.5
GP-42	8/28/2017	29.67	0.00	0.0	1.0	17.3	0	7.93	4.2–11.5	6.0-6.5
GP-43	9/26/2016	30.01	ΣΖ	32.5	2.8	9.0	0	4.90	2.6–9.9	3.0–3.7
GP-43	10/3/2016	29.91	ΣΖ	32.7	2.9	9.0	0	5.05	2.6–9.9	3.0–3.7
GP-43	11/18/2016	29.82	ΣZ	1.5 ^d	3.5	15.4	0	4.05	2.6–9.9	3.0–3.7
GP-43	12/14/2016	29.95	0.00	1.1 ^e	2.7	19.5	ΣN	2.94	2.6–9.9	3.0–3.7
GP-43	1/31/2017	30.31	0.00	6.0	1.2	17.8	0	3.94	2.6–9.9	3.0–3.7
GP-43	2/27/2017 ^f	29.76	0.02	21.2 ^a	3.2	2.7	0	3.78	2.6–9.9	3.0–3.7
GP-43	2/27/2017 ^f	29.72	ΣN	11.9 ^a	1.9	13.5	0	3.70	2.6–9.9	3.0–3.7

Table 1	Table 1 (continued).	Landfill Gas	Landfill Gas Monitoring Results Kenyon Industrial Park/South Park Landfill, Seattle, Washington.	g Results Ke	nyon Indus	trial Park/	South Park	Landfill, Se	attle, Wash	ington.
Monitoring Stations	Date	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ O)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppmv)	Static Water Level (ft bgs)	Screen Setting (ft bgs)	Range of CKD (ft bgs)
GP-43	3/20/2017	29.96	0.00	4.5ª	1.0	0.9	0	3.62	2.6–9.9	3.0–3.7
GP-43	4/12/2017	29.74	0.05	7.29	1.2	0.4	0	4.03	2.6–9.9	3.0–3.7
GP-43	5/15/2017	29.94	0.00	46.49	2.5	2.3	0	4.35	2.6–9.9	3.0–3.7
GP-43	6/15/2017	29.82	0.00	16.3	2.1	0.3	0	4.60	2.6–9.9	3.0–3.7
GP-43	7/18/2017	29.83	0.00	17.1	2.9	3.3	0	4.98	2.6–9.9	3.0–3.7
GP-43	8/28/2017	29.68	0.00	0.5	1.5	17.3	0	5.05	2.6–9.9	3.0–3.7
KMW-01A	10/3/2016	29.87	ΣN	8.3	6.5	9.0	2	11.02	5.6-21.6	NP
KMW-01A	11/18/2016	29.86	N	4.7	4.8	0.3	5	9.81	5.6-21.6	NP
KMW-01A	12/14/2016	30.00	0.00	4.0	5.0	0.00	ΣN	ΣN	5.6-21.6	NP
KMW-01A	1/31/2017	30.40	0.00	1.6	3.9	0.0	3	10.09	5.6–21.6	NP
KMW-01A	2/27/2017	29.72	0.00	6.0	3.6	0.0	2	9.29	5.6-21.6	NP
KMW-01A	3/20/2017	29.90	-0.04	0.8	2.7	0.2	П	9.14	5.6-21.6	NP
KMW-01A	4/12/2017	29.72	0.00	0.7	2.7	0.2	2	8.83	5.6-21.6	NP
KMW-01A	5/15/2017	29.94	0.00	0.8	2.6	0.2	2	9.43	5.6-21.6	NP
KMW-01A	6/15/2017	29.82	0.00	0.8	3.2	0.2	0	9.97	5.6-21.6	NP
KMW-01A	7/18/2017	29.83	0.00	5.8	3.6	0.1	8	10.61	5.6-21.6	NP
KMW-01A	8/28/2017	29.70	0.00	11.9	5.5	0.0	12	11.08	5.6-21.6	NP
KMW-03A	11/18/2016	29.89	ΣN	1.2	2.3	6.2	0	11.23	9.7–24.7	NP
KMW-03A	12/14/2016	30.00	ΣN	2.2	2.4	0.1	ΣN	11.27	9.7–24.7	NP
KMW-03A	1/31/2017	30.43	ΣN	3.2	2.7	0.0	0	11.02	9.7–24.7	NP
KMW-03A	2/27/2017	29.72	ΣN	2.7	2.8	0.0	0	10.50	9.7–24.7	NP
KMW-03A	3/20/2017	29.91	ΣN	3.8	3.0	0.4	0	10.25	9.7–24.7	NP
KMW-03A	4/12/2017	29.72	ΣN	4.1	4.0	0.2	0	10.10	9.7–24.7	NP
KMW-03A	5/15/2017	29.94	ΣN	2.4	4.4	0.3	0	10.30	9.7–24.7	NP

Table 1 (Table 1 (continued).		Landfill Gas Monitoring Results Kenyon Industrial Park/South Park Landfill, Seattle, Washington	Results Ke	nyon Indus	trial Park/	South Park	Landfill, Se	attle, Washi	ington.
Monitoring Stations	Date	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ O)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppmv)	Static Water Level (ft bgs)	Screen Setting (ft bgs)	Range of CKD (ft bgs)
KMW-03A	6/15/2017	29.82	ΣN	1.3	3.8	0.3	0	10.78	9.7–24.7	NP
KMW-03A	7/18/2017	29.87	ΝM	1.5	3.1	0.5	0	11.30	9.7–24.7	NP
KMW-03A	8/28/2017	29.72	ΣN	0.7	4.1	0.0	0	11.70	9.7–24.7	NP
KMW-04	11/18/2016	29.88	ΣN	3.8	1.9	0.2	0	12.22	5.3–20.3	NP
KMW-04	12/14/2016	30.00	ΣΖ	3.0	1.4	4.9	N	11.89	5.3–20.3	NP
KMW-04	1/31/2017	30.40	ΣΖ	0.3	0.4	17.3	0	11.74	5.3–20.3	NP
KMW-04	2/27/2017	29.71	ΣN	2.7	1.3	0.2	0	11.20	5.3–20.3	NP
KMW-04	3/20/2017	29.90	ΣN	1.3	9.0	9.7	0	11.10	5.3–20.3	NP
KMW-04	4/12/2017	29.72	ΣN	0.2	0.4	18.6	0	10.92	5.3–20.3	NP
KMW-04	5/15/2017	29.94	ΣN	2.1	1.1	0.3	0	11.01	5.3–20.3	NP
KMW-04	6/15/2017	29.82	ΣΖ	2.2	1.5	0.2	0	11.49	5.3–20.3	NP
KMW-04	7/18/2017	29.87	ΣΖ	0.6	9.0	13.2	0	11.95	5.3–20.3	NP
KMW-04	8/28/2017	29.71	ΣN	2.3	1.6	0.0	0	12.38	5.3–20.3	NP
KMW-06	11/18/2016	29.90	ΣΖ	0.2	6.3	0.2	0	9.77	5.5–20.5	NP
KMW-06	12/14/2016	30.04	ΣΖ	0.2	9.9	0.0	ΣZ	9.80	5.5–20.5	NP
KMW-06	1/31/2017	30.43	ΣN	0.0	3.9	9.2	0	9.75	5.5–20.5	NP
KMW-06	2/27/2017	29.72	ΣΖ	0.0	4.7	6.8	0	9.18	5.5–20.5	NP
KMW-06	3/20/2017	29.91	ΣN	0.0	0.9	0.3	0	8.91	5.5–20.5	NP
KMW-06	4/12/2017	29.71	ΣΖ	0.0	5.2	0.9	0	8.80	5.5–20.5	N
KMW-06	5/15/2017	29.95	ΣΖ	0.0	4.1	10.8	0	9.10	5.5-20.5	NP
KMW-06	6/15/2017	29.82	ΣN	0.0	9.1	0.5	0	9.70	5.5–20.5	NP
KMW-06	7/18/2017	29.92	ΣN	0.1	6.6	0.1	0	10.22	5.5–20.5	NP
KMW-06	8/28/2017	29.69	ΣN	0.2	10.9	0.1	0	10.65	5.5–20.5	NP

Table 1	Table 1 (continued).	Landfill Gas M	s Monitorin	onitoring Results Kenyon Industrial Park/South Park Landfill, Seattle, Washington.	nyon Indus	trial Park/	South Park	Landfill, Se	attle, Washi	ngton.
Monitoring Stations	Date	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ O)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppmv)	Static Water Level (ft bgs)	Screen Setting (ft bgs)	Range of CKD (ft bgs)
GP-22	10/3/2016	29.83	00:00	4.2	11.3	0.1	0	NM	5.0–21.0	NP
GP-22	11/18/2016	29.85	00:00	3.9	8.0	0.1	4	NM	5.0–21.0	NP
GP-22	12/14/2016	29.90	-0.07	9.2	9.8	0.0	NΝ	ΝM	5.0-21.0	NP
GP-22	1/31/2017	30.34	-0.01	3.3	5.3	0.0	2	ΣN	5.0-21.0	NP
GP-22	2/27/2017	Well screen flo	oded – no gas	Well screen flooded – no gas monitoring data collected.	a collected.					
GP-22	3/20/2017	Well screen flo	oded – no gas	Well screen flooded – no gas monitoring data collected.	a collected.					
GP-22	4/12/2017	Well screen flo	oded – no gas	Well screen flooded – no gas monitoring data collected	a collected.					
GP-22	5/15/2017	Well screen flo	oded – no gas	Well screen flooded – no gas monitoring data collected.	a collected.					
GP-22	6/15/2017	Well screen flo	oded – no gas	Well screen flooded – no gas monitoring data collected.	a collected.					
GP-22	7/18/2017	Well screen blo	ocked – no gas	Well screen blocked – no gas monitoring data collected	a collected.					
GP-22	8/28/2017	Well screen blo	ocked – no gas	Well screen blocked – no gas monitoring data collected	a collected.					
GP-33	10/3/2016	29.83	0.0	0.7	6.6	0.2	0	ΣN	5.0-10.0	NP
GP-33	11/18/2016	29.85	0.0	1.5	4.5	7.0	0	ΣN	5.0-10.0	NP
GP-33	12/14/2016	29.91	-0.06	5.3	3.6	0.0	ΣN	ΣN	5.0-10.0	NP
GP-33	1/31/2017	30.04	0.00	1.3	6.0	0.8	0	ΣΖ	5.0–10.0	NP
GP-33	2/27/2017	Well screen flo	oded – no gas	Well screen flooded – no gas monitoring data collected	a collected.					
GP-33	3/20/2017	29.91	00:00	4.3	6.9	0.7	0	ΣN	5.0-10.0	NP
GP-33	4/12/2017	Well screen flo	oded – no gas	Well screen flooded – no gas monitoring data collected	a collected.					
GP-33	5/15/2017	29.94	0.00	1.3	3.4	1.9	0	ΣN	5.0-10.0	NP
GP-33	6/15/2017	29.82	ΣN	0.0	4.0	7.3	0	ΣN	5.0-10.0	NP
GP-33	7/18/2017	29.92	-0.01	0.0	7.3	5.0	0	ΣN	5.0-10.0	NP
GP-33	8/28/2017	29.74	0.00	0.0	8.7	3.3	0	ΣN	5.0-10.0	NP
Manhole	9/26/2016	30.01	ΥN	0.0	0.0	20.4	0	ΝΑ	NA	NA
Manhole	10/3/2016	29.91	NA	0.0	0.1	20.8	0	ΝΑ	NA	A

Table 1	(continued).	Table 1 (continued). Landfill Gas Monitoring Results Kenyon Industrial Park/South Park Landfill, Seattle, Washington.	չ Monitoring	y Results Ke	nyon Indus	trial Park/	South Park	Landfill, Se	attle, Washi	ngton.
Monitoring Stations	Date	Barometric Pressure (inches Hg)	Well Head Pressure (inches H ₂ O)	Methane (percent volume)	Carbon Dioxide (percent volume)	Oxygen (percent volume)	Hydrogen Sulfide (ppmv)	Static Water Level (ft bgs)	Screen Setting (ft bgs)	Range of CKD (ft bgs)
Manhole	11/18/2016	29.83	NA	0.0	0.0	21.2	0	NA	NA	NA
Manhole	12/14/2016	29.93	NA	0.0	0:0	22.6	0	NA	NA	NA
Manhole	1/31/2017	30.31	NA	0:0	0.0	21.2	0	NA	NA	NA
Manhole	2/27/2017	29.76	AN	0.0	0.1	21.0	0	NA	NA	NA
Manhole	3/20/2017	29.91	NA	0.0	0.1	21.0	0	NA	NA	NA
Manhole	4/12/2017	29.82	AN	0.0	0.1	21.3	0	NA	NA	NA
Manhole	5/15/2017	29.95	AN	0.0	0.1	21.1	0	NA	NA	NA
Manhole	6/15/2017	29.83	AN	0.0	0.2	20.5	0	NA	NA	NA
Manhole	7/18/2017	29.93	ΑN	0.0	0:0	21.0	0	NA	NA	NA
Manhole	8/28/2017	29.82	NA	0.0	0.0	20.4	0	NA	NA	NA

Notes:

Highlighted results are greater than the LEL of 5.1 percent at 20°C.

 $^{\mathrm{a}}$ Unable to purge more than one probe volume, water level too high.

^b Water level above top of screen.

 $^{\mathrm{c}}$ Probe installed on loading dock 4 feet above ground surface.

 $^{
m d}$ Measurements did not stabilize, GEM faulted due to high water level after purging 2-1/4 volumes.

e Measurements did not stabilize, GEM faulted due to high water level after purging 2-1/2 volumes.

f Initial measurement at 9:30 am, re-monitored at 2:37 p.m.

 $^{9}\,$ Measurements did not stabilize, GEM faulted due to high water level after purging 1-1/4 volumes.

Abbreviations:

Not measured	Not present
Σ	ΔN
Celsius	Water
U	H_2O

 Hg
 Mercury
 ppmv
 Parts per million by volume

 LEL
 Lower explosion level
 bgs
 Below ground surface

NA Not applicable

15

ATTACHMENT A

Compliance Probe Installation and Monitoring Work Plan

Technical Memorandum

To: Jerome Cruz, Washington State Department of Ecology

Copies: Ching Pi Wang (Department of Ecology); South Park Landfill PLP Group

From: Teri Floyd, Ph.D. (Floyd|Snider) and Mike Spillane (Herrera)

Date: September 7, 2016

Project No: South Park Landfill

Re: Compliance Probe Installation and Monitoring Work Plan,

Kenyon Industrial Park, Seattle, WA

INTRODUCTION

The South Park PLP Group requested Floyd|Snider and Herrera Environmental Consultants (Herrera) prepare this Work Plan to install five compliance perimeter gas probes at Kenyon Industrial Park (KIP). The proposed probe locations are based on the results of a landfill gas (LFG) characterization conducted at KIP by Herrera in September/October 2015 (Figure 1). The investigation was conducted across a swale situated adjacent to the northern portion of the west South Park Landfill (Landfill) boundary. Details of the characterization are provided in a Revised Technical Memorandum produced by Herrera on August 19, 2016. The purpose of these probes is to monitor the potential pathway of methane to the building.

PROBE INSTALLATION

Five new probes will be installed as close to the building as possible. Boring locations for new LFG probes GP-39 through GP-43 will be marked and measured in the field, and the locations adjusted, as necessary, based on access constraints and presence of utilities. One-Call and private utility location services will be used to confirm subsurface utility locations. The proposed boring locations are outside of the Landfill footprint and installation is not expected to occur in solid waste.

Drill Type and Configuration

The LFG probe borings will be advanced using a push-probe drill rig to approximately 10 feet below ground surface [bgs], based on depth to groundwater, which has been measured at depths ranging from 3 to 6.5 feet in temporary probes TGP-8, TGP-13, and TGP-21 completed during the September/October LFG investigation. Extending probes to 10 feet bgs will ensure probes extend

deep enough to account for fluctuating groundwater elevations with a 2 foot contingency. However, the probes will not be installed more than 1 foot into the Silt Overbank Deposit if it is encountered. The probe screen depths will be installed between 2 feet and approximately 10 feet bgs to allow monitoring of potential LFG migration throughout fluctuating groundwater levels without blinding of the screen. At least part of the screen depth will be beneath the CKD deposit when it is encountered. The location of the screen depth relative to the CKD deposit will be carefully indicated on the log.

Gas probes will be constructed with 0.75-inch schedule 40 polyvinyl chloride (PVC), including 8 feet of 0.010-inch machine-slotted well screen with a 10/20 silica sand prepacked filter. A #2/12 sand filter pack will extend 6 inches above the top of the screen and a blank riser above the screen will be sealed by bentonite chips and concrete. The gas probes will be constructed in accordance with Washington Administrative Code (WAC) 173-160-400, Minimum Standards for Construction and Maintenance of Resource Protection Wells and Geotechnical Soil Borings. Each probe will include a locking cap.

Completion of the probes will include an 8-inch diameter flush-mount protective casing. The existing asphaltic surface will be saw cut 4 inches larger than the 8-inch protective casing and the interstitial area finished with 2,000 PSI concrete to a depth matching the existing paving.

Soil Logging Procedures

Discrete soil samples will be collected continuously at 5-foot intervals for soil classification and field screening using a 2-inch diameter probe-drive sampler, attached to the probe rods that will complete a 2.25-inch diameter borehole. A dedicated plastic liner will be inserted inside the drive sampler. Soil will be classified by a licensed geologist in general accordance with the Unified Soil Classification System (USCS) and the American Society for Testing and Materials (ASTM) D2488-06, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure).

During drilling, conditions at the borehole will be monitored for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID). The PID is designed to detect and measure VOC vapor in air, but it does not detect methane. The VOC concentration will be used to monitor worker health and safety during drilling.

Pertinent geologic and hydrogeologic subsurface conditions and PID readings will be recorded on a soil probe boring log. A Landtec GEM 2000 (Plus) meter will be used to measure methane, carbon dioxide, carbon monoxide, oxygen, and hydrogen sulfide.

Investigation-derived waste, including soil and water generated during gas probe installations, will be placed into 20-gallon drums, then labeled and stored on the STSII property pending analytical results including pH and RCRA metals. Decontamination water will be used to hydrate bentonite chips during probe construction. It is anticipated that the volume of decontamination water generated will be less than 5 gallons.

A gas probe boring log, including installation details, will be completed for each probe. The logs will provide a soil description, water level, instrument readings, and construction details.

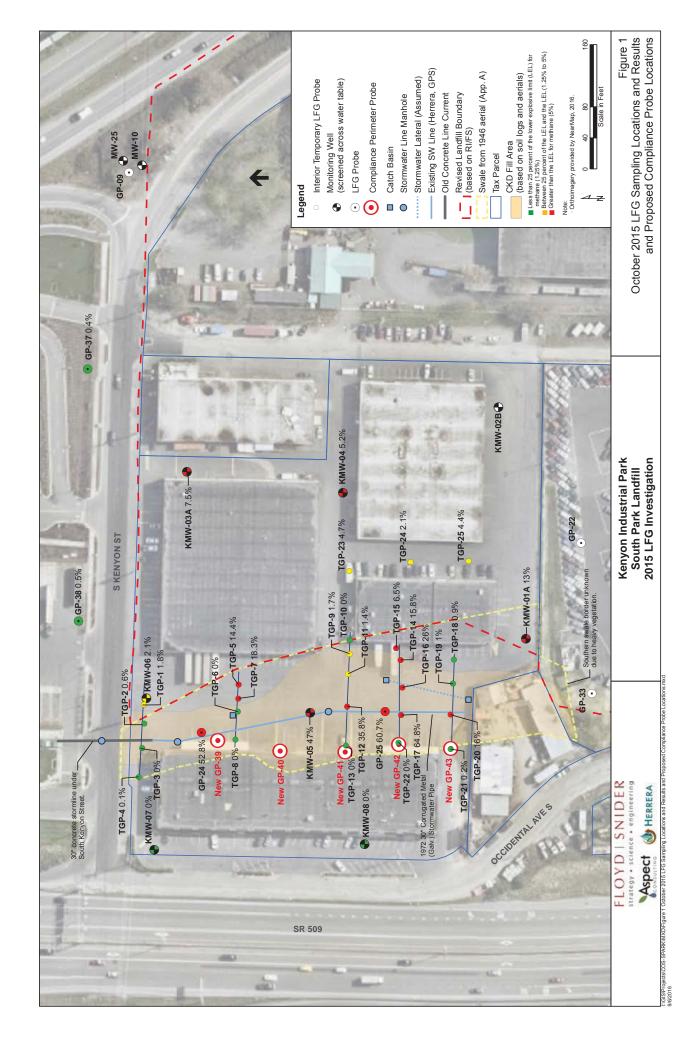
LANDFILL GAS MONITORING PROCEDURES

The five new probes and the manhole in South Kenyon Street will be monitored monthly as soon as 1 week after probe installation.

Barometric pressure will be tracked and LFG monitoring will be performed during a period of falling pressure of at least 12 hours (when possible). The barometric conditions for the previous 48 hours will be considered in the selection of the monitoring period. If optimum barometric pressure conditions do not occur during a particular month, monthly monitoring will still be performed. The Landtec Gem 2000 Plus will be calibrated daily with methane, according to procedures provided in the operations manual.

Gas probe monitoring will be conducted by attaching a Tygon tube with quick-connect fittings to the well cap or silicon tubing directly to the stopcock. The tubing will be attached to a water filter and to the intake of the GEM 2000 Plus multi-meter. Downhole pressure relative to atmospheric pressure will be measured after connecting the GEM 2000 Plus to the gas probe stopcock prior to purging.

Water levels will be monitored in each probe with a water level indicator to determine that there is unsaturated screen section.


Methane, carbon dioxide, oxygen, and hydrogen sulfide concentrations, probe pressure and barometric pressure will be measured using the GEM 2000 Plus. LFG at all probe and monitoring locations will be monitored using a purge time that will evacuate a minimum of one probe volume from each probe prior to recording gas measurements.

All parameters except barometric pressure will be monitored at 20-second intervals during purging. A minimum of one pore volume will be purged. A 0.75-inch diameter Schedule 40 PVC probe volume is 100 milliliters per foot, the GEM flow rate is 300 milliliters per minute. It will take approximately 3 minutes and 20 seconds to purge one volume from each probe. During purging, parameters will be recorded at minimum 20-second intervals, until parameters are stabilized. Stabilization is defined as three readings over a 1-minute period that are within 10 percent of one another. Monitoring and water level data will be recorded on the Gas Monitoring Log form (Figure 2).

LIST OF ATTACHMENTS

Figure 1 October 2015 LFG Sampling Locations and Results and Proposed Compliance Probe Locations

Figure 2 Gas Probe Data Sheet

Gas Probe Data Sheet

Gas	Gas Probe ID: GP-							Canister ID:			
01	Sample ID: NA						Initial Canist	Initial Canister Pressure:			
Date	Date and Time:						Final Canist	Final Canister Pressure			
Total Casing Volume (cc):	olume (cc):					1	Fiel	Field Personnel			
Casing Volume Purged	Volume Purged (cc)	Purge Rate (ml/min)		PURGE TIME	TIME		CH ₄ (% Volume)	C0 ₂ (% Volume)	0 ₂ (% Volume)	H2S (% Volume)	CO (% Volume)
0			0	min	0	sec					
1/4				min		sec					
1/2				min		sec					
3/4				min		sec					
1				min		sec					
1-1/4				min		sec					
1-1/2				min		sec					
1-3/4				min		sec					
2				min		sec					
2-1/4				min		sec					
2-1/2				min		sec					
2-3/4				min		sec					
3				min		sec					

Comments/Special Instructions:

			Screen:	ater Level Meter
Barometric Pressure: GP-	Well head Pressure: NA	Well Diameter: 0.75"	Water Level/Well Bottom:	Equipment Used: Gem 2000 (Plus), Water Level Meter

Figure 2. Gas Probe Data Sheet.

August 2016

ATTACHMENT B

Gas Probe Boring Logs

Well ID GP-39 Total depth: <u>15'</u> Sheet ___1 of _1

Project name: South Park Landfill/KIP
Project number: 10-04850-000

Client: City of Seattle

Drilling Contractor: **ESN NW** Drilling method: Push probe rig

Sampling method: <u>5' core sample</u> Instrument(s): **GEM/PID**

Location: N. loading dock - KIP

HEC rep: Bruce Carpenter

PID (ppm)	Sampling interval	% Recovery	Depth (feet, BGS)	Soil Group	Water Level (feet)	Soil Description	Probe Detail
			1			6" Concrete (loading dock)	Concrete seal, 0' - 1'
	7		2			Brown-Gray sandy GRAVEL, to gravelly	
0		80	3	GW/ SW		SAND, fill, dry	Hydrated bentonite chips, 1' - 4'
		80	4			4" zone black gravelly SAND, dry	
			5	Fill		(original ground surface) Buff colored cement kiln dust (CKD),	
	\setminus		6			fill, dry l damp to wet	#2/12 sand
			7				filter pack, 4' - 13.5'
0	X	100	8				
			9				3/4-inch dia. schedule 40 PVC
	/ \		10			Brown-black, sandy GRAVEL,	10 slot prepacked screen 5'-12.3'
	$\langle \hspace{0.1cm} \rangle$		11	GW/ SW	10.6	wet, groundwater encountered at 9.5'	Screen 5-12.5
			12			Brown,sandy GRAVEL, gravelly Sand, wet	
0	X	80	13				
			14	ML			PVC endcap
			15			Brown-gray clayey SILT, (silt overbank deposit), wet	Hole caved in
						CH ₄ - 0.3 CO ₂ - 1.7 O ₂ - 15.2 H ₂ S - 0	

Well ID **GP-40** Total depth: 9' Sheet ___1 of _1

Project name: South Park Landfill/KIP
Project number: 10-04850-000

Client: City of Seattle

Drilling Contractor: **ESN NW** Drilling method: Push probe rig

Sampling method: <u>5' core sample</u> Instrument(s): **GEM/PID**

Location: S. TPG-8 and NW of KMW-05

HEC rep: Bruce Carpenter

PID (ppm)	Sampling interval	% Recovery	Depth (feet, BGS)	Soil Group	Water Level (feet)	Soil Description	Probe Detail
	interval	40 15	(feet,			Asphalt 3"; Aggregate 6" Brown silty, SAND, fill, damp Brown, silty SAND, damp groundwater encountered at 3.2' Buff colored CKD, fill, wet Brown-gray, medium SAND, wet No recovery Gray-brown clayey SILT, wood, (silt overbank deposit) wet Refusal at 9' bgs CH ₄ - 0.8 CO ₂ - 0.7 O ₂ - 19.5 H ₂ S - 0	Concrete seal, 0' - 0.5' Hydrated bentonite chips, 0.5' - 1.0 #2/12 sand filter pack, 1' - 9' 3/4-inch dia. schedule 40 PVC 10 slot prepacked screen 1.3'-8.6'

Well ID GP-41 Total depth: 10' Sheet ___1 of _1

Project name: South Park Landfill/KIP
Project number: 10-04850-000

Client: City of Seattle

Drilling Contractor: **ESN NW** Drilling method: Push probe rig Sampling method: <u>5' core sample</u>

Instrument(s): **GEM/PID**

Location: Adjacent to TGP-13

HEC rep: Bruce Carpenter

PID (ppm)	Sampling interval	% Recovery	Depth (feet, BGS)	Soil Group	Water Level (feet)	Soil Description	Probe Detail
0		25	1 2 3 4 5 6 7 8	FILL	4.3'	2" Asphalt 6" aggregate, silty, gravel Buff colored cement kiln dust (CKD), dry Brown silty SAND, fill, damp groundwater encountered at 4.3' Sand, fill/poor recovery	Concrete seal, 0'-1' Hydrated bentonite chips, 1'-1.5' #2/12 sand filter pack, 1.5'-10' 3/4-inch dia. schedule 40 PVC 10 slot prepacked screen 2.3'-9.6'
			9 10	ML		Dark gray-dark brown clayey SILT, damp, organic material, wood (silt overback deposit) CH ₄ - 0.0 CO ₂ - 0.0 O ₂ - 20.2 H ₂ S - 0	PVC endcap

Well ID GP-42 Total depth: 13' Sheet ___1 of _1

Project name: South Park Landfill/KIP
Project number: 10-04850-000

Client: City of Seattle

Drilling Contractor: **ESN NW** Drilling method: Push probe rig Sampling method: <u>5' core sample</u>

Instrument(s): **GEM/PID**

Location: Adjacent to TGP-22

HEC rep: Bruce Carpenter Date: 09/14/2016

PID (ppm)	Sampling interval	% Recovery	Depth (feet, BGS)	Soil Group	Water Level (feet)	Soil Description	Probe Detail
						4" concrete	Concrete seal,
			1			Drawn madium CAND fill doman	0' - 1' Hydrated
			2	SP		Brown medium SAND, fill, damp	bentonite chips,
	\setminus		3				1'-2'
0		65					#2/12 sand
	$ \wedge $		4				filter pack, 2' - 12'
			5				
	\setminus		6	SM		Provincialty CAND, doman	
	\ /		- 0	FILL		Brown-silty SAND, damp Buff colored cement kiln dust, damp	
	$ \setminus /$		7	ML		3" black sandy silt, hydrocarbon, odor,	3/4-inch dia. schedule 40 PVC
0	X	50	8		7.62'	damp Gray medium SAND, fill, damp	10 slot prepacked
	/ \			SP			screen 4.2'-11.5'
	/ \		9				
			10			Groundwater encountered at 9.5'	
	\		11	ML		Dark brown clayey SILT, damp (silt overback deposit)	
						damp (siit overback deposit)	
0		35	12				PVC endcap
			13				Hole caved in
						CH ₄ - 0.2	
						CO ₂ ⁴ - 0.1 O ₂ - 19.8 H ₂ S - 0	
						H ₂ ² S - 0	
						of well CP 42 at (11/01/2016)	

Well ID GP-43 Total depth: 10' Sheet ____1 of _1

Project name: South Park Landfill/KIP
Project number: 10-04850-000

Client: City of Seattle

Drilling Contractor: **ESN NW** Drilling method: Push probe rig Sampling method: <u>5' core sample</u>

Instrument(s): **GEM/PID**

Location: Adjacent to TGP-21

HEC rep: Bruce Carpenter

PID (ppm)	Sampling interval		Depth (feet, BGS)	Soil Group	Water Level (feet)	Soil Description	Probe Detail
			1			Grass, topsoil	Concrete seal, 0' - 1'
	\setminus		2	ML		Brown, gravelly SILT, fill, damp	Hydrated bentonite chips, 1.0' - 2.0'
0		50	3	FILL		8" Buff colored cement kiln dust (CKD)	
	$/ \setminus$		<u>4</u> 5	SM	_	Gray fine silty SAND, fill, damp	#2/12 sand filter pack,
			6	JIVI	4.90'	Groundwater encountered at 6'	2.0' - 10'
0		100	7	СН		Gray-brown clayey SILT, wet	3/4-inch dia. schedule 40 PVC 10 slot
	$ $	100	8	ML		Brown sandy SILT, wet	prepacked screen 2.6'-9.9'
	$/ \setminus$		9	OL		Dark brown clayey SILT, wood chips, organic matter (silt overbank deposit)	
			10			CH ₄ - 0.0 CO ₂ - 0.1 O ₂ - 20.9 H ₂ S - 0	PVC endcap

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix L Supplemental Investigations

Attachment L.3
Lenci Phase II Subsurface
Sampling and Testing
(Environmental Associates 2017)

PHASE-II SUBSURFACE SAMPLING & TESTING

Frank Lenci Corporation Property 424-432 South Cloverdale Street Seattle, Washington

FRANK LENCI CORPORATION

ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112" Avenue Northeast, Suite 300 Bellevue, Washington 98004 (425) 455-9025 Office (888) 453-5394 Toll Free (425) 455-2316 Fax

April 28, 2017 PR-3156-2

Frank Lenci Corporation c/o Mr. John Pietromonaco Pietromonaco Properties 7900 SE 28th Street, Suite 400 Mercer Island, Washington 98040

john@pietroprop.com

RE: Preliminary Phase-II Subsurface Sampling & Testing Lenci Parcel 424-432 South Cloverdale Street Seattle, Washington

Dear Mr. Pietromonaco:

The contents of this report are confidential and are intended solely for your use and the use of your representatives. A single electronic copy of this report is being distributed to you. No other distribution or discussion of these findings will take place without your prior approval in writing.

Background

Earlier environmental reviews reflect that following a period of agricultural use as a farm, the predominant use of the site during much of the 1960's and 1970's was as an auto recycling facility (wrecking yard).

The subject property (Lenci Parcel) lies south of and adjacent to the boundary of the former South Park Landfill operations area. The landfill is currently the focus of a Remedial Investigation / Feasibility Study (RI/FS), being overseen by the Washington State Department of Ecology (WDOE). Based upon our conversations, it is our understanding that the Client has been advised by the WDOE that a review of historical aerial imagery suggests that a portion of the subject site (referred to by the agency as a "lobe") may have historically been subject to landfill activities. This suspected "lobe" and its spatial location relative to the subject parcel is depicted graphically on the attached Proposed Exploration Plan. While the WDOE has apparently offered to perform on-site explorations on the Lenci Parcel, it is our understanding that the Client desired to independently conduct its own evaluation of the area of interest to the WDOE. This letter report presents a summary of the approach, methods, and findings of the Phase II recently performed by Environmental Associates. Inc. (EAI) in general accordance with its proposal of March 9, 2017.

Unable to comment in earlier times as to what specific impacts (if any) may have resulted from the presence of the landfill, certain scope elements of the current Phase II were previously recommended in EAI's May 10, 1993 Phase I report.

Subsurface Explorations

On March 31, 2017, EAI observed the completion of three (3) direct-push soil borings at the approximate locations depicted as B1 through B3 on Plate 2 Exploration Plan. Boring B1 was positioned within the inferred centroid of the area of interest to the WDOE, which the agency postulated as including a "lobe" of landfill deposits associated with the north-adjacent South Park landfill site. Borings B2 and B3 were positioned in an effort to assess localities to the west and east lateral limits of the inferred "lobe."

Soil Sampling

At each boring location, soil cores were collected in 4 to 5-foot sections from the ground surface to varying depths between 12 and 22 feet below the ground surface. Upon recovery, each core was opened and examined. Representative soil samples were collected from each core following EPA methodology 5035-A, a protocol that is intended to minimize the potential loss of volatile organic compounds (VOCs).

Groundwater Sampling - Existing Monitoring Well

Shallow groundwater was encountered at all three (3) push-probe borings at an approximate depth of 5 feet below the ground surface. Additionally, while on site EAI observed a previously existing monitoring well, located approximately 12 to 14 feet off the northwest corner of subject building on the subject property. The monitoring well was 3/4-inch in diameter and appeared to extend to a depth of 10 feet below the ground surface. At the time of EAI's field work, no markings were found on the well monument to identify the name/designation of this monitoring well, therefore for the purposes of this current study it was simply designated MW-NW.

Subsequent research utilizing a partial WDOE well-tag ID lead to identification of this well as WDOE Well-ID# BCM-827. A log for this monitoring well on file at the WDOE suggests that it was installed on December 29, 2010 by the City of Seattle. The purpose and intent by the City for the installation of this well is unknown to EAI, nor has the Client expressed to EAI any knowledge of this well or any findings that may have historically been derived at the time of / or following its installation.

Since this monitoring well was located within the inferred boundaries of the area of interest to the WDOE, and groundwater samples from permanent monitoring wells tend to be more representative of groundwater environmental conditions than "grab samples" from temporary borings, a groundwater sample was collected from MW-NW. Prior to sampling the well was first micro-purged with a peristaltic pump utilizing a low-flow technique. A representative groundwater sample was then transferred directly to laboratory-prepared containers. Groundwater samples intended to be analyzed for dissolved metals were field filtered with a disposable 0.45-micron filter cartridge.

Subsurface Conditions and Soil Sample Selection

Logs for each soil boring, along with a copy of the monitoring well log for MW-NW are provided Appendix-A, and the general subsurface conditions encountered are further described below.

The near surface soils consisted of 3 to 6 feet of fine to medium sand, interpreted to represent fill likely used during development of the current property building in the late 1960s. Under this more recent fill, a layer of wood chips with minor amounts of glass and brick debris was encountered. At B1 this lower fill layer was approximately 2.5 feet thick, whereas at B2 it was approximately 7 feet thick and was somewhat intermixed with organic silts. At B3 the layer of wood chips was less than one (1) foot in thickness. Plate 3 (Photographs) includes photos of the wood-chip fill layers encountered at both B1 and B2. At all three (3) boring locations, soils below the wood-chip layer appeared to be native tideland deposits consisting of organic silt and peat, which extended to the maximum depths of exploration that varied between 12 and 22 feet below the ground surface. As noted earlier, shallow groundwater was present at a depth of approximately 5 feet below the ground surface.

During soil sample collection, a portion of each sample was temporarily sealed in plastic zip-lock bags. After a brief period, a photo ionization detector (PID) was used to sample the "headspace" within each scaled bag. The concentration of any volatile organic compounds VOCs detected in the headspace by the PID is also included in the boring logs in Appendix-A. For this particular study the PID did not detect any significantly elevated concentrations of VOCs during the field screening procedure.

Two (2) soil samples from the current borings along with the groundwater sample from MW-NW were initially selected for laboratory analysis. At B1, the fill layer appeared to be mostly comprised of wood-chips and therefore a soil sample was selected from the deeper native soils below the wood chip fill (sample B1-8). At B2, the wood-chip and brick fill appeared to also be partially intermixed with soil, so a composite of this fill was collected for laboratory analysis as B2-4.

Laboratory Analysis

The two (2) selected soil samples and one (1) selected groundwater sample were initially analyzed for the following compounds:

- Petroleum hydrocarbons, including gasoline, diesel, and oil range petroleum by Washington State test methods NWTPH-G (gasoline) and NWTPH-Dx (diesel and oil).
- Volatile organic compounds (VOCs) by EPA Method 8260.
- Semi-volatile organic compounds (SVOCS) including polycyclic aromatic hydrocarbons (PAHs) by EPA-8270.
- RCRA-8 metals, including arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver, by EPA Method 6020. The groundwater sample from MW-NW was analyzed for dissolved metals only.
- Following EAI's review of initial laboratory results and of soil layering relationships (soil stratigraphy) between the various borings as documented on the boring logs, soil samples designated as B1-8 (sample obtained from 8 foot depth in boring B1 and B2-4 (sample from 4 foot depth in boring B2) were subsequently selected for additional testing for arsenic following EPA Method 1311/Toxicity Characteristic Leaching Procedure or "TCLP" (173-340-747) (7)(b)(ii).

A copy of the laboratory report is provided in Appendix-B and the results are discussed in the remaining subsections of this report.

Analytical Results - Soil Samples

Petroleum Hydrocarbons & VOCs

As presented in Table 1, traces of gasoline range petroleum were detected in both selected soil samples, however no associated BTEX compounds (benzene, toluene, ethylbenzene, xylenes) were detected. Both detected concentrations of gasoline were well below (i.e. compliant with) the WDOE's target compliance level of 100 parts per million (ppm), which applies when BTEX compounds are not present.

Referencing the laboratory report in Appendix-B, traces of other petroleum-related volatile compounds were also detected, including 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene, and isopropyltoluene. Of these compounds only 1,3,5-trimethylbenzene and naphthalene have individual target compliance levels. As noted in Table 1, the concentrations of these compounds were well below (i.e. compliant with) their corresponding target MTCA compliance levels.

Semi Volatile Organic Compounds / PAH Compounds

Of the numerous semi-volatile organic compounds (SVOCs) tested for, only a select few carcinogenic PAH compounds were detected in sample B2-4. These concentrations are presented in Table 2. Additionally, Table 2 includes a summation of total carcinogenic PAHs which are calculated by summing the product of each cPAH compound multiplied by its toxicity equivalency fraction following the procedure outlined in WAC 173-340-708(8). This toxicity summation yielded a total cPAH concentration of 0.26 ppm for sample B2-4. This concentration is well below (i.e. compliant with) the MTCA target compliance level of 2.0 ppm for industrial property. For reader reference, the subject property is zoned industrial therefore the 2.0 ppm compliance level for PAHs is applicable.

Metals

Referencing Table 3, several heavy metals were detected in the selected soil samples, including arsenic, barium, cadmium, chromium, and lead. Of the detected concentrations, only the sample B1-8 which was obtained from boring B1 at a depth of 8 feet within the <u>native</u> organic silt/peat deposit underlying fills within the area explored contained arsenic at a concentration (21 ppm), slightly exceeding the WDOE target compliance level (20 ppm). Armed with the relatively common understanding that peat is known to concentrate arsenic under anoxic/reducing environments such as this (Langner, P., 2011), we suspect such naturally occurring hio-concentration/bio-sequestration as a process which may account for the finding in this case.

As discussed earlier in the report, in an effort to validate to some extent the stability of the bio-sequestration postulated above, and to confirm the non-hazardous nature of materials underlying the property, certain samples were selected for additional testing for arsenic following EPA Method 1311/Toxicity Characteristic Leaching Procedure or "TCLP" (173-340-747) (7)(b)(ii). Results of the TCLP evaluation of samples B1-8 and B2-4 show that for arsenic, neither the native organic silt/peat nor the mixed fill sample would be classified as "dangerous" in terms of leaching risk under the TCLP guidelines.

Analytical Results - Groundwater

Referencing the laboratory report in Appendix-B, neither petroleum hydrocarbons (gasoline, diesel, or oil TPH), nor VOCs, or SVOCs were detected in the groundwater sample at concentrations above the laboratory's minimum detection limits. As presented in Table 4, the only detections in the groundwater were dissolved concentrations of metals. Arsenic, barium, and chromium were present in the groundwater sample, however all three concentrations were below (i.e. <u>in compliance</u> with) the WDOE's target levels for unrestricted land use.

Summary Discussion Of Findings / Conclusions

As discussed in the Background section of this report, the WDOE's interpretation of historical aerial images has inferred that historic South Park Landfill operations, may have extended further south than the current west to east alignment of South Sullivan Street. This approximate area of interest is depicted by brown-tinting on Plate 2. Exploration Plan.

A Scattle-King County Department of Public Health - Abandoned Landfill Study (1984), suggests that the South Park landfill was used in the 1950s by area sawmills for disposal of waste sawdust, and in later years it was used as "burning dump" from municipal refuse disposal.

The thin lenses of wood chips (sawdust) intermixed with minor occurrences of glass and brick as depicted in the sampler photographs presented on Plate 3 and as described in the boring logs contained in Appendix A are similar to some types of materials which have been described by others in association with landfills. As the thickness of the fill was more pronounced at B2, the "lobe" area described by WDOE may have been centered further west than was projected by WDOE in their interpretive review of aerial photographs.

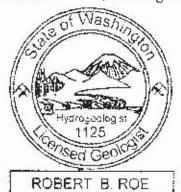
Although fill was encountered, the sampling and laboratory testing performed as part of this current study suggests a very low risk to the public / environment by these materials at the subject. As previously discussed, of the analytes evaluated, only arsenic exceeded an applicable WDOE target compliance level (by 1 ppm). As discussed earlier in this report, that sample was obtained from a depth of approximately 8 feet at boring location B-1. The geologic unit from which the sample was obtained from several feet below the water table and was described as a <u>native</u> organic silt with peat as a substantial component. With respect to soils, that finding is consistent with many low lying and/or marshy areas which historically occupied a substantial portion of the Duwamish locality. In such organic-rich environments where fluctuations in water levels and shifts in biological activity result in anoxic/reducing conditions common to such native marsh areas, many workers have shown that nearly complete sequestration/bio-concentration of <u>naturally occurring</u> arsenic often results. (Languer, P., 2011; Wang, S., et al. 2006).

Without benefit of additional information, the principles illuminated by the cited works would appear to preclude a unique or incontrovertible finding that the arsenic at 8 feet in B-1 is somehow related to the landfill. Finally, regardless of genesis, the results of supplemental TCLP evaluation of the material in question has confirmed that with respect to arsenic the native organic silt/peat appears to be stable and would not be classified as dangerous under MTCA or under other applicable State or Federal laws or regulations.

Taking the totality of the findings developed/discovered to date including but not limited to laboratory testing of soils. <u>compliant groundwater</u> conditions along with the inferred direction of groundwater movement (north to northeast, i.e. <u>away from</u> the subject site), we (EAI) would have no basis upon which to predicate a recommendation for further action or additional evaluation at this time.

Limitations

This report has been prepared for the exclusive use of Frank Lenci Corporation, along with their several representatives for specific application to this site. Our work for this project was conducted in a manner consistent with that level of care and skill normally exercised by members of the environmental science profession currently practicing under similar conditions in the area, and in accordance with the terms and conditions set forth in our proposal dated March 9, 2017. The opinions expressed in this report are based upon interpretations, observations and testing made at a separated locations and conditions may vary between those sampling localities or at other locations, depths, and/or media. EAI makes no warranty as to the accuracy or reliability of data / opinions provided/rendered by other parties. EAI makes no warranty with respect to opinions, or comments, or acceptance of this report by any regulatory agency or other review entity. No other warranty expressed or implied, is made. If new information is developed in future site work which may include excavations, borings, studies, etc., Environmental Associates, Inc., must be retained to reevaluate the conclusions of this document and to provide amendments as required.


We appreciate the opportunity to be of service on this assignment. If you have any questions or if we may be of additional service, please do not besitate to contact us.

Respectfully submitted,

ENVIRONMENTAL ASSOCIATES, INC.

Robert B. Roe, M.Sc., LHG. Senior Hydrogeologist

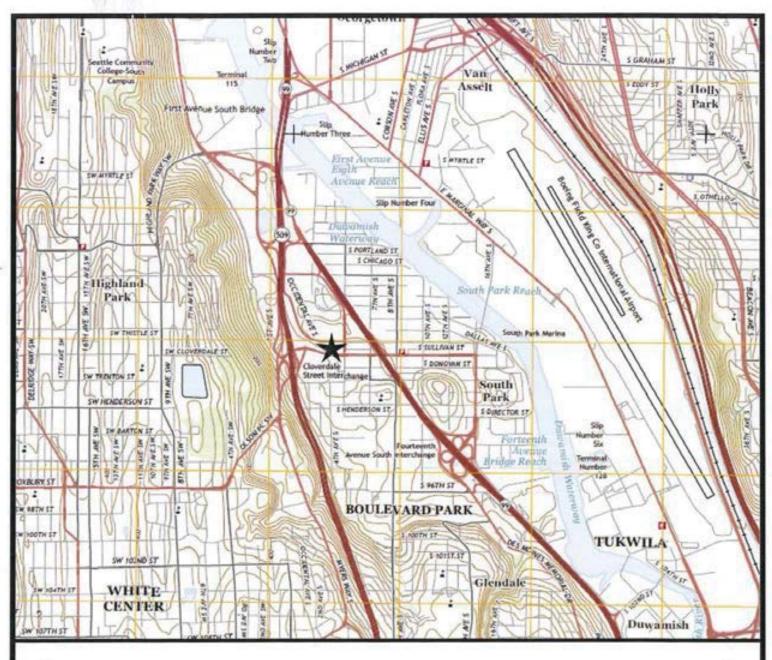
License: 1125 (Washington)

Don W. Spencer, M.Sc., P.G., R.F.

Principal

License: 604 (Washington)

License: 11464 (Oregon)
License: 876 (California)
License: 5195 (Illinois)
License: 0327 (Mississippi)


REFERENCES

Gonzalez, A.Z., Krachler, M., et al., 2006. Spatial distribution of natural enrichments of arsenic. selenium, and uranium in a minerotrophic peatland Gola di Lago, Canton Ticino. Switzerland. Environmental Science Technology, Vol. 40, 6568-6574.

Langner, P., Mikutta, C., Kretzschmar, R., 2011. Arsenic Sequestration/Bio-Concentration By Organic Sulphur In Peat. Nature Geoscience (2012) Vol. 5, 66-73.

McArthur, J.M., et al. 2004. Natural Organic Matter In Sedimentary Basins And Its Relation To Arsenic In Anoxic Groundwater. Applied Geochemistry, Vol. 19, 1255-1293.

Wang, S., Mulligan, C.N. 2006. Effect Of Natural Organic Matter On Arsenic Release From Soils And Sediments Into Groundwater. Environmental Geochem. Health Vol. 28, 197-214.

Approximate location of the subject property.

Inferred direction of groundwater flow in vicinity of the subject site, based upon local topographic gradient.

ENVIRONMENTAL

ASSOCIATES, INC.

1380 - 112th Avenue NE, Suite 300 Bellevue, Washington 98004

VICINITY / TOPOGRAPHIC MAP

LENCI PROPERTY 424-432 South Cloverdale Street Seattle, Washington

Job Number: Date: Plate: 1
JN-3156-2 March 2017 1

Approximate location of an existing monitoring well located off the northwest corner of the building.

ENVIRONMENTAL

ASSOCIATES, INC.

1380 112th Avenue N.E., Stc. 300 Bellevue, Washington 98004

EXPLORATION PLAN

LENCI PROPERTY 424-432 South Cloverdale Street Seattle, Washington

Job Number:	Date:	Scale:	Plate:
JN-3156-2	March 2017		2

Boring B1 soil core depicting wood-chip fill layer encountered between 4 and 6 feet below the ground surface.

Boring B2 soil core depicting a mixture of wood-chips, brick debris, and organic silts.

ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112th Avenue N.E., Ste. 300 Bellevue, Washington 98004

SITE PHOTOGRAPHS

LENCI PROPERTY 424-432 South Cloverdale Street Seattle, Washington

Job Number:

JN-3156-2

Plate:

March 2017

3

- Soil Sampling Results	nillion (ppm)
TABLE 1 - Petroleum Hydrocarbons & VOCs - Soil Sampling Results	All results and limits in parts per million (ppm)

Boring / Sample Name	Gasoline	Diesel	Heavy Oil	Benzene	Toluene	Tolucae Ethylbenzene	Total	1,3,5-	Naphthalene
	(TPH)	(TPH)	(трн)				Xylenes	Trimethylbenzene	
81-8	<u>v.1</u>	155 -	1116	0,02	Sith	\$3rth;	503	\$671	\$30%
B2-4		186	I	C.02	51111	11.115	37.01	1590	0.086
Keperting Limit) Ic	(3)	lus l	(11)2	\$0.0	500	4.15	\$0.0	0.05
WOUS Compliance Levels 1	10#	2000	2000	0.03	r-	9	h	800	ψ.
11.77									

Note:

"HD" denotes analyte not detected at or above listed Reporting Limit
 "I denotes sample not analyzed for specific analyte
 "Reporting Limit" represents the laboratory ower quantitation limit
 Method A soil cleanup levels up published in the Model Texins Control. Act (MTCA) 173-340-WAC.
 The MTCA gasoline TPH cleanup level is 100 ppm for soils with to benzene and less than 20% anomatic hydrocalbans between C8 and C16. Otherwise, the cleanup revel is 30 ppm

God and takes denotes concentrations above MTCA Midhad Alson channel levels

	^{R)} zHA9 sinagonisusO latoT	00'0	0.26			0.1	ĉ
	Benzo(h)քեւուուքնու	0	0.0	0.1	0.1		1
sults	Вепхо(а)ап1ргасепе	0	1,40	0.1	1.0		
npling Re Ilion (ppn	репхо(к)Пиотяптиеле	0	0.00	0.1	0.1		
- Soil Sar rts per mi	ananyq(ba-,2,2,1)onabal	0	1.2	0.1	6.1		
nic PAHs nits in par	Эпээвтићив(а,в)охиэді(І	0	0.0	0,1	0.1		
Carcinogenic PAHs - Soil Sampling Results ults and limits in parts per million (ppm)	Сундленс	0	0.05	10.0	0.1		
TABLE 2 - (All resu	Benzo(a)pyrene	0	0	1.0	0.1		
<u>'</u>	Boring / Sample Name	B1-8	B2-4	ePAII Foxicity Equivilant Fraction 18	Reporting Lanit	MTCA-Method-A Residential 141	MTCA-Method-A Industrial 15

"3.00" denotes analyte not detected at or above tisted Reporting Limit.
 "NA" denotes sample not analyzed for specific analyte.

Notes.

"Reporting Limit represents the latteratory lower quantitation limit.

Method A soil cleanup level for lotal cardinogenic PAHs as published in the Model Toxics Control. Act (MTCA) 173-340-WAC.

Total cardinogenic PAHs are calculated by suming the product of each cPAH multiplied by its toxicity equivalency fraction pair WAC 173-340-708(8).

TABLE 3 - RCRA-8 Metals - Soil Sampling Results All results and limits in parts per million (ppm)		
TABLE 3 - RCRA-8 Metals - Soil Sampling All results and limits in parts per million	Results	(mdd)
	TABLE 3 - RCRA-8 Metals - Soil Sampling	All results and limits in parts per million

Baring/ Sample Name	ojuosaV	TCLP Arsenie	mមាំងនវ	muimbsD	тијточАЭ	hяэчГ	УшэлэД	Selenium	Silver
131-8	2.1	5.05	120	X	15	4.1	· 0.5	-30	- 20
B2-4	7.5	<0.2	210	1.4	42	140	< 0.5	<20	50
Reporting Unit	1	6,2	1	1		1	0.2	1	-
Existing Cleanup Level*	20 (A)	5 14)	16.000 (3)	2 (A)	2000 (A)	250 (A)	2 (A)	400 (B)	400 (13)

- "ND" denotes analyte not detected at or above listed Reporting Limit
 "NA" thirdless sample not analyzed for specific analyte.
- "Reporting Limit" represents the aboratory lower guantitation limit.

 Method A or Bicleanup levels as published in the Model Toxics Control Act (MTCA) 173-349-WAC.

 The Method A target compliance level for for the more ceramon form of chromium (chromium III) is 2,000 ppm.
- The target compliance level for the less common chromium VLIs 19 ppm. Chromium VLIs not generally suspected at this type of facility TCLP maximum concentration of contaminants for the Toxicity Characteristic as presented in WAC 173-203-690.

Bold and Italius denotes concentrations above existing MTCA Method A soul clearup levels

Groun rts per		10
	All results and limits in parts per billion (ppb)	BLE 4 -

	15	Sakk
DL.	16	80 (B)
<10	101	80 (B)
_	-	2(A)
£1	2	15 (A)
<u>.</u>	-01	50 (A)
Çı	e:	\$ (A)
370	20	3,200 (13)
50 7	CI	5 (A)
MW-WW	Reporting Limit	Existing Cleanup Levet
	4.8 370 <2 12 2 1 <10	48 370 <2 2 1 <10 2 20 3 10 2 1 10

"ND" denotes analyte not detected at or above I stard Reporting Limit
 "NA cenotes sample not analyzed for specific analyte
 "Reporting Limit represents the laboratory lower quarkitation limit,
 Method A or Bicleanup lovote as published in the Model Toxics Control Act (MTCA) 173, 340 WAC.

Bold and italies denotes concentrations above existing MTCA Method A soil clearup levels

APPENDIX-A

Boring Logs

t, Weit Tag	BORING B1	Ground Surface Elevation (-7 f
Denth Who takether Blows to Sentile Design totaler ratio Fool	usos DESCRIPTION	Soil Sample PID
— Xosa	(F) Sand, fine to medium sand, minor silt, gray, no ocors, Interpreted to be filt.	
5 Wet	(F) Fill, wood-chips with minor glass debris. "rotting-wood odor"	62
10	OL/ Organic-Silt / Peat, sift, organic, peaty, with lenses of peat & natural woody materiat, and occasional lenses of sand.	B1-8 (0)
=======================================	sand-lense at @13-feet	8! [4] 0::
15 - -		
20		
- 	Bornig terminated at 22 feet Groundwater escountered at - 5 feet	
25 <u> </u>		
30		
- -		
35		
40		

ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112th Avenue NE, Suite 300 Bellevue, Washington 98004

BORING B1

LENCI PROPERTY 424 South Cloverdale Street Seattle, Washington

Job Number:	Date:	Logged by:	Plate:
JN-3156-2	3/31/2017	RBR	A-1

WDOF, Wo Lat: Long:	ell I	ធវិ				Ε	BORING B2	Ground Su	rface Flee	ation: -7 ft
	0	Depth/ Sample	Well Design	Molsturer Witter Table	Blows / Foot	uscs	DESCRIPTION	Soil Sample	- Ein	
	-	. -		- Moist	: : :	(F)	Sand, fine to medium sand, minor sitt, gray, no odors. Interpreted to be fill.	:		:
	5		_ _	Wet	 ! !	(F)	Fill, wood-chips with minor glass debris, intermixed with organic-sitts. Thin gray-green clay layer at 7-feet, "rotting-wood odor"		ו ל	
	10		· : _ _	Wet		·		B2-9	0,3	: 1
		#	- -	Wet	- - - ! :	OL/ Pt	Organic-Sitt / Peat, silt, organic, peaty, with lenses of peat with native woody material, and occasional lenses of sand.			!
	15		:		: : !			B2-84 .	0.0	:
							Boring terminated at 16 feet. Groundwater encountered at ~5 feet			:
	20	<u>-</u>						;		:
		<u> </u>		: : i	:					i
	25	<u> </u>		i				:		İ
				· :				:		! !
	30	<u> </u>						: 		<u>i</u> :
		_ _ ! _ !						!		:
	35	_					:	į		
		-					·	i		:
	40	_	! 	_			:	:		:

Sampler: Continuous Strataprobe Macro-Core Driller: ESN - Geoprobe

ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112th Avenue NE, Suite 300 Bellevue, Washington 98004

BORING B2

LENCI PROPERTY 424 South Cloverdale Street Seattle, Washington

Job Number:	Date:	Logged by:	Plate:
JN-3156-2	3/31/2017	RBR	A-2

er (DO) (Wa Lat Lang:	ell :	145.				E	BORING B3	Ground Sur1	acz Elevapam (7 f)
	0	Depth- Sample	VVeil Design	Massazor Water Tatar	Blows / Foot	USCS	DESCRIPTION	Soil Sample	PID
		<u>-</u> -	-	- Neist -	- -	(F)	Sand, fine to medium sand, minor silt, gray, no odors. Interpreted to be fill.		<u>_01_</u>
		- -				_(F)_	Fill, wood chips with minor glass debris		
	5			Wer		OL/ Pt	Organic-Silt / Peat, silt, organic, peaty, with lenses of peat with native woody material, and occasional lenses of sand.	133-8	0.1
	10	-							
		-						83-12	0.5
	15	_ 					Bodag terminated at 12 feet Graindwater encorattered at +5 feet		
	20	_ _ _ 							
;		_ _ _							
;	30	<u>-</u> -							
;	35	<u>-</u>							
		_ _ _							
1	40								
Sample: OnDer 19				ibe Maigra C	one				
<u>.</u>	. •		Г	NVII	ON	ME	BORIN	G B3	

ENVIRONMENTAL ASSOCIATES, INC.

1380 - 112th Avenue NE, Suite 308 Reflevue, Washington 98004 LENCI PROPERTY 424 South Cloverdale Street Seattle, Washington

Job Number:	Date:	Logged by:	Plate:
JN-3156-2	3/31/2017	RBR	A-3

onstruction/Decommission	114-0	- <i>-</i> -	Type of West	
Construction	4039	75	Resource Pro	tunti. m
Decommission OSIC/VAL IASTAT	Lation Value		Geolechnical	
of bucon Mandrer	2012410.4.11001	Property Owner Co.	of Seattle	Esti ixeng
		Site Authors 8105 59		
ion sulting Tirut - Aspect Consulting	1226	City Seattle	County	
nique Ecology Well ID ag No. BCM	827	Location to <u>NV</u>	<i>l</i> = 1≈ <u>NW _</u> sw 32	[60] 24% P. 48 02 Web
Topic my Tugot Model Electrical Condition and pactical of		Lat/Long (s.f.s. Tan Deg		Cat Min See
ζ_{ij} and the U is well darked above and with $L^{2}V$ arising C		stiff Required) Long D	- <u> </u>	Ening Mint See
property of the second way and be experienced as		Tas Paskar No <u>73284</u> 0-	3005	
Soils Thomas Some Stort Price	: Fleve		ei 21/4	
nder Transee Signature <u>245</u> Nage Transee Luceuse So. <u>2842</u>	F-1050	Cased (# 1 nopsed Drame)		
		Work/(Decorate asion Spin F	ine <u>/2-/</u>	9-2010
tailinee, freensed drifter's greature, and friceise No.		Work Decovarission Fod D	az <u>12-29</u>	- <u>Z010</u>
coornact V. Xisgin	Well Date	W10-680	Form	rien Description
	Concrete Stribled S Depth : O'ana Casing (dia 8 Materia)	ieni <u>Z´</u> F1 I(n) <u>3/4" x 5'</u> PVC	5 Mallgrau 5.1ts, Damp	10'. FI els, Fine Sands ces, loose s, to Dank brown kedin.
	Backetti	N/AFT	organics M	redia.
	Tiypy	N/A		·
			- 19	FT
	Note al	Benton to chips		
	Cenve, Pack	<u></u>		
	Muternal	2/12 + Ru Pack		
	Sereen (die x. dep)	3/4" x 5'		I- E
	Star Size	,010		
	Simesia.	NC Re Rock	:	
	д Васкії В	N/A	_	THE
	Material	NA	(S)	JEINED/
<i>₩₩₩</i>	Total Hose Depth	<u>≇\$\$′ /∂′</u> FT		8 02-2011

APPENDIX-B

Laboratory Reports

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Scattle, Washington ESN Northwest 1210 Bastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Soil by Method NWTPH-Dx Extended

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Dieset Range Organics (mg/kg)	Lube Oil Range Organics (mg/kg)
Method Blank	4/3/2017	4/3/2017	126	ba	nd
LCS	4/3/2017	4/3/2017	115	139%	
R1-8	4/3/2017	4/3/2017	132	nd	nd
B1-8 Duplicate	4/3/2017	4/3/2017	119	ted	nd
B2-4	4/3/2017	4/3/2017	110	nd	nd
Reporting Limits		1888 18 <u></u>	(4.00)	50	100

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EA1-3156-2 Scuttle, Washington ESN Northwest 1216 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Diesel Range Organics & Lube Oil Range Organics in Water by Method NWTPH-Dx Extended

Sample Number	Date Prepared	Date Analyzed	Surrogate Recovery (%)	Diesel Range Organics (ug/L)	Lebe Oil Range Organics (ug/L)
Method Blank	4/3/2017	4/3/2017	124	nd	nd
LCS	4/3/2017	4/3/2017	119	113%	
MW-NW	4/3/2017	4/3/2017	154*	nd	bc
Reporting Limits				250	500

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Seattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Soil by Method NWTPH-Gx

Sample	Date	Date	Surregate	Gasoline Range Organics
Number	Prepared	Analyzed	Recovery (%)	(mg/kg)
Method Blank	4/5/2017	4/5/2017	107	nd
LCS	4/5/2017	4/5/2017	105	134%
B1-8	3/31/2017	4/5/2017	106	15
B2-4	3/31/2017	4/5/2017	106	49
Reporting Limits				10

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Scattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Gasoline Range Organics in Water by Method NWTPH-Gx

Sample	Date	Surrogate	Gasoline Range Organics
Number	Analyzed	Recovery (%)	(ug/L)
Method Blank	4/4/2017	107	nd
LCS	4/4/2017	108	106%
MW-NW	4/4/2017	105	nd
Reporting Limits			100

[&]quot;nd" Indicates not detected at the listed detection limits.

[&]quot;int" Indicates that interference prevents determination.

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Seattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98507 (360) 459-4670 (360) 459-3432 Fa lab@esnaw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/5035

	RL	MB	UCS	LCSD	B1-8	B2-4
Date extracted		04/05/17	04/05/17	04/05/17	03/31/12	03/31/17
Date analyzed	(mg/Kg)	04/05/17	04/05/17	04/05/17	04/05/17	04/05/17
% Moistare					59%	12%
	·-	. —			•	
Dichlorodiffooromethane	0.03	isl			nd	nd
Chloromothane	0.05	nd			nd	nd
Vinyl chloride	0.02	nd	119%	121%	ad	nd
Bromomethaue	0.05	65(1			սվ	នលី
Chluroethasse	0.05	rad			nd	nd
Trichlorofluoromethane	0.05	nú			nd	nd
Accione	0.25	กส			nd	nd
1,1-Dichloroothene	0.05	nst	87%	87%	nd	nd
Methylene chloride	0.05	nc			pd	nd
Methyl-i-hutyl other (MTBE)	0.05	htl			ыd	nd
trans-1,2-Dichloreethene	0.05	nd			пЛ	and
1,1-Dichlomethase	0.05	пd			nd	nd
2-Butanose (MEK)	0.25	nd			nd	nd
cis-1,2-Dichloroethene	0.05	pci			ьп	nd
2,2-Dichtoropropane	0.05	nd			tyri	пП
Chloreform	0.05	rad	12,3%	114%	nd	nd
Bromochloromethane	0.05	nd			nd	nd
1,1,1-Trichloroethane	0.05	nd			пd	ad
1,2-Dichloroethane (EDC)	0.05	вl			nd	324
1,1-Dichloropropene	0.05	nd			nd	Rd
Carban tetraubloride	0.05	nd			nd	nd
Венгенс	0.02	nd	88%	01%	nd	nd
Trichhoroethene (TCE)	0.02	nd	109%	F11%	nd	nd
3,2-Dichleropropage	0.05	nd	99%	103%	nd	nd
Dibromomethane	0.05	nil			иd	aาตี
Bramodichloromethanc	0.05	nst			ıы	อน์
4-Methyl-2-pentanone (MIBK)	0.25	nd			nel	adi
cis-1,3-Dichleropropene	0.05	ud			nd	nd
Toluene	0.05	ml	104%	11.1%	nd	nd
trans-1,3-Dioblompropone	0.05	nd			nd	nd
1,1,2-Trickioroethane	0.05	nd			nd.	nd
2-Hexanone	0.25	nel			e) Č	nd
1,3-Dichlozopropane	0.05	nd			eL(nd
Dibromochloromethase	0.05	rd			nd	rad
Tetrachloroethene (PCE)	0.02	rad	116%	1.22%	nd	ពេក
1,2-Dibromoethane (EDB)	0.05	nd			nd	nşl
Ckterobenzene	0.05	nal	114%	138%	nd	nd
t,1,1,2-l'etrachlmoethanc	0.05	nd			nd	nd
Ethylbenzene	0.05	nd	\$12%	(14%	nd	nd
Xylenes	(I.15	υd	107%	111%	nal	ъd
Styrene	0.05	nú			nd	110
Bremoform	0.05	ııd			пd	nd
1,1,2,2-Tetrach@roethane	0.05	nd			nd	ปรา
sopropylbenzene	0.05	nsl			nd	erd.
1,2,3-Trichioropropane	0.05	ticl			nd	nd
Bromobenzene	(1,415	be			ed	nd

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Scattle, Washington 6SN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fa lab@esnnw.com

Analysis of Volatile Organic Compounds in Soil by Method 8260C/8035

Dec. 10.000	RL	MB	1.CS	LCSD	B1-8	B2-4
Date extracted	10000	04/05/17	04/05/17	0.005/17	03/31/17	03/31/17
Date analyzed	(mg/Kg)	GE/GS/17	04/05/17	04/05/17	04/05/17	04/05/17
% Moisture					59%	12%
n-Propylbenzene	0.05	nd			nd	nd
2-Chlorotoluese	0.05	JEG.			nd	ะหตั
4-Chlorotosaene	0.05	ad			nd	nd
1,3,5-Trimethylbeazene	0.05	nd			nd	0.051
tert-Butylbenzene	0.05	nd			nd	пJ
1,2,4-Trimethythenzene	0.05	nd			eagl	0.10
sec-Butyfbenzene	0.05	nd			bd	nd
1,3-Dichlerghenzene	0.05	nd			ad	nd
1.4-Dichtorobenzene	0.05	nd			ııd	nd
Isopropyltokione	0.05	prd			nd	0.11
1,2-Dichlorobenzene	0.03	nd			nd	rad
n-Battylbenzesic	0.05	nd			nd	nçl
1,2-Dibromo-3-Chloropropane	0.05	nd			nd	nd
1,2,4-Tricklombenzene	0.05	nd			nd	កជ
Naphthalene	0.05	and)			LEC	0.066
Hexaeldoro-1,3-butadiene	0.05	nd			atti	nd
1,2,3-Trichlorobenzene	0.95	rd			nd	nd
Sunogate recoveries						
Dibromaffrontatione		117%	99%	99%	112%	113%
Foktene-d8		99%	92%	93%	100%	102%
4-Bromofluorobeszene		107%	102%	103%	106%	106%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits. Acceptable Recovery limits: 65% TO 135%

Acceptable RPD limit: 35%

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Seattle, Washington

ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnaw.com

Analysis of Volatile Organic Compounds to Water by Method 8260C75030C

734 055	RU	M8	1.CS	LCSD.	MW-SW
Date analyzed	(ug/l,)	04/04/17	04/04/17	04/04/17	202022
Dichlorodifluoromethase	1.0	nd			nci
Chloromethate	1.0	nd			nd nd
19100000000000000000000000000000000000	G.2	nd	117%	124%	na ed
Vinyl chloride Bromomethane	1,0	nd nd	1.17.70	12476	1000
Chorochane	1.0	nd			u(l
Trichlorofluoromethane	1.0	177.7			nd
		bu			ıкl
Acetone	10.0	asd	88%	87%	nd
I, I-Dichlaroethene	1.0	nd ud	0.000	3/70	nd
Methylene chloride	3400000				nd
Methyl-t-butyl ether (MTBE)	1.0	nd			nd
trans-1,2-Dichiuroethene	1.0	nd			a:d
t,1-Dichtoroethane	0.1	nd			1111
2-Butanone (MEK)	10.0	nd			nd
cis-1,2-Dichioroethese	1.0	ııd			nd
2,2-Dichloropropane	1.0	nd			nd
Chloroform	1.0	and	125%	119%	necl.
Bromochloromethane	1.0	rsd			ud
1,1,1-Tricktoroethane	1.0	nd			F2(
1,2-Dichloroethaue (EDC)	0.1	nd			ud
1,1-Dichloroprupene	1.0	nd			กป
Carbon tetraebloride	1.0	nd	2000		nd
Benzene	1.0	nd	\$1%	79%	nd
Trichlornethene (TCE)	0.1	ad	2.9000	0.070,000,000	r.d
1,2-Dichloropropase	1.0	tscl	88%	87%	75d
Dibromomethane	1.0	ird			ed
Bromodichloromethane	1.0	nd			nd
4-Methyl-2-pentanone (MIBK)	1.0	nd			nd
cis-1.3-Dichloropropene	1.0	nd			nd
Valuene	1.0	334	93%	94%	nd
raus-1,3-Dichloropropene	0.4	ពថ			nď
I, I, 2-Trichlereethane	1.0	be			nd
2-Hexamue	1.0	int			eal
I,3-Dickloropropane	1.0	nd			nd
Dibromochloromethane	1.0	nd			nd
Cetrachiomethene (PCE)	1.0	nc	99%	99%	nd
,2-Dibromoethane (EDR)	1.0	nd			nd
Chlorobenzene	1.0	ગા	101%	101%	nd
,1.1,2-Tetrachkaroethaue	1.0	nsl			. sql
lthylhenzene	1.0	nd	97%	99%	nd
Cylenes	3.0	na	98%	118%	nd
Styrene	0.1	ng			nd
Bromoferm	1.0	nd			nd
,1,2.2-Tetrachleroethene	0.1	nd			nd
sopropylbenzene	1.0	ad			nd
.2,3-Trickloropropane	1.0	nel			nd.
Iroznobenzene	1.0	nd			ad

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #6AI-3156-2 Scattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Analysis of Volatile Organic Compounds in Water by Method 8260C/5030C

Analytical Results

	К[.	MB	LCS	LCSD	MW-NW
Date analyzed	(ng/1.)	04/04/17	04/04/17	04/04/17	
n-Propylbeazene	0.1	તાન			pd
2-Chlorotoluene	1.0	nd			nd
4-Chlorotoluene	1.0	nd			1161
1,3,5-Trimethy/benzene	1.0	nd			116
tert-Butylbenzene	1.0	nd.			nd
1,2,4-Trimethylbenzene	1.0	пd			aid
seo-Butylbenzene	1.0	nd			nsl
1,3-Dichtorobenzene	1.0	កផ			nd
1,4-Dichlorobenzene	1.0	nd			nd
Isopropylloleene	1,0	aid			nđ
1,2-Dichlorobenzene	1.0	aid			nd
a-Botylbenzene	1.0	nd			ad
1,2-Dibromo-3-Chleropropane	1.0	ıĸl			ed.
1,2,4-Trichlorobenzene	1.0	nd			ed
Naphthafene	1.0	nd			nd
Jexaehluro-1,3-butadiene	1.0	nd			nd
f,2,3-Trichlorobenzeae	1.0	ad			nd
Surrogate recoveries					
Dibromofluorouschane		118%	113%	134%	\$16%
Fotuene-d8		97%	91%	90%	98%
4-Bromofluorobenzeue		(07%	97%	101%	105%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits. Acceptable Recovery limits: 65% TO 135%.

Acceptable RPD limit: 35%

Environmental Associates, Inc. PROJECT LENGI PROPERTY PROJECT #EAI-3156-2 Scattle, Washington

Acenaphthone

2,4-Dmitrophenol

ESN Northwest 1210 Eastside Street SE Soite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax !ab@esnnw.com

Analysis of Semicolattle Organic Compounds in Soil by Method 8270 Analytical Results MTH BLK LCS B2-4 B1-8 Date extracted 04/03/17 04/03/17 04/03/17 04/03/17 Reporting Date analyzed Limits 04/03/47 04/03/17 04/03/17 04/03/17 Moisture, % (mg/kg)0% 12% Pyridine 1.0 ud 220 nd Anitme 1.0 nd 400 nd Phenel 10 nd 83% nd nd 2-Chlorophenol 1.0 nd. zici Hd Bis (2-chloroethy)) officer 2.0 rid nd nd 1,3-Dichlorobenzene 1.0 ac. nd bet 1,4-Dichlorobenzese 50% 1.0 nd ed nd 1,2-Dichforobenzene 1.0 ud ba :14 Benzy! alcohol. 1.0 nd DG. old nđ Hexacholore/barre 1.0 nd nd 102% N-Nitreso di n-propylamine 10 nd aid nd 3,4-Methylphenol (m,p-cresot) 1.0 nd nd ba 2-Methylphenof (o-cresol) 1.0 md nd nd Bis (2-chloroisopropyl) ether 5.0 nd nd nd Nitrobanzene 1.0 nd nd nd 1.0 Isophoreae 336 nd nd 2-Nitrophenol 50 nd 10:96 13 nď 2,4-Dimethylphenol 1.0 aid rid nd Bis (2-eldoroetboxy) methane 1.0 s:d ndnd 2,4-Dichlorophenol 50 nđ old nd 104% 1,2,4-Trichlorobetizeste 1.0 nd nul nd : 0 Naphthalene rid nd nd 4-Chloroscilline 50 nd nd 274 Hexachlerobutadiene 1.0 128% nd nd no! 4-Chloro-3-methylphonol 5.0 114% nd nd nd 2-Methylaspthaleac 1.0 nd ná nd 1-Melloyinapthalene 1.0 ná nd nđ Hexaublerocyclopentodiese 1.0 n:f 143% ŋď rid 79% 50 2,4,6-Trichloropheno nd nd nd 2,4,5-Teichloropheno! 5.0 nd nd nd 2-Chlorosophthalene :0 nd nd DC, 50 2-Nitrousiline nđ od nd 1,4-Dmétrobenzese 5.0 pd nd gdAcenaphthylene nd 0.1 tid 134 1.3 Dinntrobenzene 5.0 2.1 ı:đ bin Dignethylphthalate 1.0 пф rid nd 2.6-Dinitrotoleane 10 nd nd nd 1,2-Dinitrobenzene 14) pul ııd nd

0.7

50

102%

95%

ad

nd

nd

na.

nd

1:d

Environmental Asseciates, Inc. PROJECT LENCI PROPERTY PROJECT #EAL-3156-2 Scottle, Washington ESN Northwest 1210 Eastside Street SE State 200 Olympia, WA 98501 (360) 459-4670 — (360) 459-3430 Pax hab@esnaw.com

Auptysis of Semivolatite Organic Compounds in Soil by Method 8270

Analytical Results

		MTH BLK	LCS	B1-8	B2-4
Date extracted	Reporting	04/03/17	04/03/17	04/03/17	64/03/1
Date analyzed	Limus	04/03/17	04/03/17	04/03/17	04/03/1
Moisture, %	(mg/kg)			0%	:2%
2,4-Dinitrotolgene	1.0	nd	102%	14d	nd
4-Nritopheno)	5.0	nd	127%	nd no	nd
Dibenzofisran	1.0	nu sid	12775	กรับ สาร์	nd
2,3,4,5-Tetrach/wophenul	1.0	nd .		na vd	nd
2,3,5,6-Tetracklorophenol	1.0	nd		nd	nd
Fluorene	0.1	ud		rid	nd
4-Chtorophenylphenylether	10	nd		nd	nel
Diethylphtimlate	1.0	nd		nd	Edi
4-Nitroanitine	5.0	nd		nd	25
4.6-Dimiro-2-methylphenol	5.0	nd		nd	nd
N-ndrosodiplicay/amine	1.0	314		ad	nd
Azobenzene	1.0	nci		ad	нd
4-Broinophovylphenylether	1.0	ad		ad	пd
Rexachlarabenzene	1.0	nd		nd	ba
Penrachlurophenol	5.0	nd	145%	nd	r.d
Prienanthrene	0.1	nd	1-1.574	nd	nd.
Anthracene	0.1	nd		nd	ned
Cashazole	1.0	Dit.		nd	nd
Di-p-hytylphthalale	1.0	ınd		nd	nd Lu
Fluozanihene	0.1	nel	106%	41.5	(1,77
Pysenc	01	ad	106%	rat	0.89
Butylbeezylphthalate	1.0	nd		กส์	nd
Bis(2 ethylhoxyl) adapate	1.0	nď		nd	nd
Benzo(a)polhracene	61	nd	103%	nd	1.4
Chrysene	0.1	nd	9946	nd	0.05
3is (2-ethylhexyl) phthalate	1.0	nd	37.5	กป	1113
Di-n-octyl phthalate	1.0	nd.	86%	nd	nd
lenzo(b)fluoranibene	0.1	ı'd		nd	nd
Benzo(k)Huoranthene	0.1	nd		ed	ed
łenze(a)pyrene	0.1	nd	122%	ed	nd
Siltengu(a,la)anthracene	0.1	nd		ast.	nd
Senze(ghi)perylene	0.1	nd	13890	nd	1.0
ndeno(1,2,3-cd)pyreno	0.1	ŋd	105%	nd	1.2
iurrogate recoveries					
-Fluorophenol		71%	76%	80%	65%
henai-dá		77%	85%	77%	70%
Nirobenzene-dă		92%	11496	106%	82%
-l'inorobiobenyl		98%	98%	116%	88%
4.6-Tribramaphenal		98%	19%	:14%	93%
-Terphenyl-d14		102%	100%	107%	8936

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits. 2-Flurephenol: 10-135 %

Pisenol - d5: 10-135 %

2,4,6-tribron:ophenol: 29-159%

Mijrobenzene - d5: 20-120 %

2-Fluzobiphenyl: 50-150%

p-Terphonyl-d14: 50-150%

Acceptable RPD fimit, 35%

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Scottle, Washington ESN Northwest 1210 Eastside Street SE Strite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnirv.com

Analysis of Semivolatile Organic Companieds in Water by Method 8270

Analytical Results

	Reporting	MTH BUK		MW-NW
Date extracted	Limits	04/03/17	04/93/17	04/03/17
Date analyzed	$(\mu g/U)$	04/03/17	04/03/17	04/93/17
Pyridice	2.0	nd		ad
Aniliae	2.0	nd		nd
Phenol	2.0	nd	88%	nd
2-Chloropheno	2,0	bn	2011-6	n.d
Bis (2-chloruethyl) other	2.0	114		nd
1,3-Dichlorohenzene	2.0	ind		nd
1,4-Dichlorohenzene	2.0	กป	86%	nd
1,2-Dichlorobenzene	2.0	nd	0070	nd
Benzyl alcohol	2.0	nđ		ad
2-Methylphenol (a-cresul)	2.0	nd		ba
Bis (2-chloroisopropyl) ether	10.0	nd		ud
3,4-Methylphenol (m,p-cresol)	2.0	nđ		nd
Hexacholerethane	2.0	rid		nd.
N-Nitroso-di-n-propylamine	2.0	cd	96%	nd
Nitrobanzene	2.0	nd	2070	nd
	2.0	nd		ınd
Isophorone	10.0	nd		nd
2-Nitrophenol	10.0	nd		rtd
4-Nétrophenol	2.0	60000		ed
2,4-Disaethylphenol Bis (2-chloroethoxy) methane	2.0	nd ad		nd
		ad		
2,4-Dichluraphenol	10.0	ינול	coenc.	nd
1,2,4-Trichlorobenzene	2.0	nd d	96%) (d
Naplithalene (17)	2.0	nd		ាថ
Chloroanihau	10.0	nd	-2004	nd
Texachlorobutadiene	2.0	nd	128%	181
I-Chiloro-3-methylphonol	10.0	nd	115%	nd
2-Methylnepthalene	2.0	ad		nd
-Methylospthalene	2.0	asd.	114042	nd
Texachtorocyclopentadjene	2.0	22d	149%	nd
,4,6-Trichlorophersol	10.0	nd	78%	nd
4,5-Trichlurophenol	10.0	nd		nd
-Chloronaphthuleue	2.0	nd		ng.
-Nitroandine	10.0	nd		πd
,4-Dinitrobenzeno	10.0	nd		ηd
Dimethylplithalate	2.0	nd		end.
krenaphthylene	0,2	nd.		25d
3-Dinotrobenzene	10.0	nd		11.1
,6-Dimitotoluene	2.0	red .		nd
,2-Dinitrobenzono	2.0	nd		nd
cenaph@ene	0.2	nd	99%	nd
A-Dinitrophenos	2.0	nd	130%	nd
,4-Digitrotoluene	2.0	nd	99%	nd
-Nitrophenol	0.01	ŋd	109%	nd
Dibenzoforau	2.0	nd		ped
3,4,6-Tetrachiorophenol	2.0	ba		nd
A,5,6-Tetrachlorophenol	20	nd		aid
4-Dmitrophenol	10.0	nd		нd
Inorene	0.2	nd		nd

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Seattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esanw.com

Analysis of Semivolatile Organic Compounds in Water by Method 8270

Analytical Results

To come the first section	Reporting	MTH BLK	LCS	MW-NW
Date extracted	Limits	04/03/37	04/03/17	04/03/17
Date analyzed	(gg/\underline{L})	04/03/17	04/03/17	04/03/17
4-Chlorophenylphenylether	2.0	nd		nd
Diethylphthalate	2.0	nd		nd
4-Nitmaniline	10.0	nd		Etd
4,6-Dinitro-2-methylphenol	10.0	nd		nd
N-nitrosudiphenylamine	20	ևա		nd
Azalienzene	2.0	nd		nd
4-Bromophenylphenylother	2.0	nd		nd
Hexachlorobenzene	2.0	rid		nd
Pentachloropheaul	10.0	nd	142%	and
Phenanthrone	0.2	nd		nd
Anthracene	0.2	and		nd
Carbiizote	2.0	aid		ыd
Di-n-bistylphthalate	2,6	nd		nd
Fluoranthene	0.2	пd		nd
Ругеве	0.2	nd	104%	ngi
Butylbenzylphtkalate	2.0	nd		nd
Bis(2-ethylhexyl) adipate	2.0	nd		nd
Benzo(n)anthracene	0.2	nd		aid
Cliny sene	0.2	nd		nd
Bis (2-ethylhexyl) phthalate	2.0	bd		nd
Di-n-octyl phthalate	2.0	nd	89%	nd
Benzo(b)fluoraethene	0.2	nd		nd
Benzo(k)fluoranthene	0.2	nd		nd
Зелго(а)ругене	0.2	nd	122%	nd
Othenzo(a,b)authracene	0.2	pg		nd
Benze(ghi)peryfene	0.2	nd		and
ndeno[1,2,3-cd)pyrene	0.2	nd		and
Surrogate recoveries				
2-Fluorophenol	124 713	78%	83%	68%
Pheriot-d6		88%	91%	75%
Vitrobenzene-d5		103%	10886	24%

Surrogate recoveries			
2-Puorophenol	78%	83%	68%
Phenot-d6	88%	91%	75%
Nitrobenzene-d5	103%	108%	24%
2-Phagrabiphenyl	93%	98%	131%
2,4,6-Tribroumphenol	104%	117%	106%
4-Terphonyt-614	108%	99%	146%

Data Qualifiers and Analytical Comments

nd - not detected at listed reporting limits

Acceptable Recovery limits: 2-Flumphenol; 10-135 % Phenol - d5; 10-135 %

2,4,6- mbromophenol: 29-159% Nitrobenzene - d5: 20-120 %

2-Florobiphenyl: 50-150% p-Torphenyl-d14: 50-150% Acceptable RPD limit: 35%

Environmental Associates, Inc PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Scattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@csnnv.com

Total Metals in Soil by EPA-6020 Series

Sample	Date	Lead (Pb)	Cadmiem (Cd)	Chromium (Cr)	Assauc (As)	Silver (Ag)	Barum (Ba)	Selenium (Se)	Mercury (Hg)
Number	Analyzed	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Method Blank	4/6/2017	nd.	nd	nd	ья	nd	111	bec	nđ
B1-3	4/6/2017	4.1	แป	51	21	nd	120	ad	nd
B2-4	4/6/2017	140	1.4	42	7.5	nd	210	nd	nd
Reporting Limits		5.0	1.0	5.0	5.0	20	50	20	0.5

[&]quot;nd" ladicates not detected at listed detection limits.

QA/QC Data - Total Metals EPA-6028

	***************************************	Matrix Spil	æ	Mat	rix Spike Dupli	cate	RPD
	Spiked Cone, (mg/kg)	Measured Cone, (mg/kg)	Spike Recovery (%)	Spiked Conc. (mg/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)	(%)
Lead	73.5	78.1	106	75.2	79.8	106	0.13
Cadmium	73.5	73.4	99.9	75.2	75.7	101	0.80
Chroneium	73.5	95.4	130	75.2	96 4	128	1.24
Arsenie	73.5	86.3	117	75.2	86.7	115	1.82
Silver	73.5	72.6	98.8	75.2	73.0	97,1	1.74
Вагния	73.5	112.0	152M	75.2	80.3	107	35.2M
Selenam	73.5	79.1	108	75.2	79.7	106	1.53
Mercury	7.35	7.61	104	7.52	7.76	103	0.33

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

M - Matrix Spike recovery failed due to matrix interference.

2000000	Labo	ratory Contro	Sample
	Spiked Cond. Img/kg)	Measured Conc. (mg/kg)	Spike Recovery (%)
1.ead	100	106	106
Cadmium	100	103	103
Chromium	100	116	116
Arsenic	100	115	115
Silver	100	101	101
Barium	100	103	103
Selenium	100	114	114
Merciny	10.0	10.3	103

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES, 80%-120%

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Scattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fex lab@esnow.com

Dissolved Metals in Water by EPA-6020 Method

Sample	Date	Load (Pb)	Cadmism (Cd)	Circuitum (Cr)	Arsenic (As)	Silver (Ag)	Basium (Ba)	Sclenium (Sc)	Mercury (Hg)
Number	Analyzed	(ug/L)	(ug/L)	(ag/L)	(3g/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Method Blank	5/6/2017	nd	nd	nd	nd	nd	nd	nd	nd
MW-NW	4/6/2017	nđ	nd	12	4.8	nď	370	nd	nď
MW-NW Duplicate	4/6/2017	nd	गर्वे	12	4.8	nd	340	net	nd
Reporting Limits	<u> </u>	2.0	2.0	10	2.0	10	20	10	1.0

"nd" Indicates not detected at listed detection limits.

QA/QC Data - Total Metals EPA-6020

	Labo	satory Control	Sample	Laboratory (Control Sample	Duplicate !	RPD
	Spiked Conc. (ug/L)	Measured Cone. (ng/l.)	Spike Recovery (%)	Spiked Conc (ng/L)	Measureit Cone, (ug/L)	Spike Recovery (%)	(%)
Lead	20	21,8	109	20	21.3	107	2.32
Cadanium	20	19.9	99.5	20	20.1	101	1.00
Chromium	20	20.9	105	20	20.7	104	0.96
Arsenic	20	21.5	108	20	21.7	109	0.93
Silver	20	23 5	118	20	21.9	110	7 05
Bariom	20	21,1	401	20	20.9	105	0.95
Selenium	2(1	21.7	109	20	22.6	113	4.06
Mercitry	2.0	2.26	113	2.0	2.15	108	4.99

ACCEPTABLE RECOVERY LIMITS FOR LABORATORY CONTROL SAMPLES: 80%-120% ACCEPTABLE RPD IS 20%

Emtronantat	Services Network
_	~
ESN	NORTHWEST, INC.

CHAIN-OF-CUSTODY RECORD

CLIENT:												<u></u> ,	DATE			- 1				PAGE	Q.	
ADDRESS:								İ					ŘÕ.	ECT	Ž	PROJECT NAME:						
PHONE:				FAX:									ő	LOCATION:	ż							
CLIENT PROJECT #:				PROJECT MANAGER:	MAN	ΑĞ	۳. ۳.					<u>.</u>	荗	COLLECTOR:	ő						DATE OF COLLECTION:	
Sample Number	Depth	Ë	Sample	Container	Sisca Name and	9 4	000000	* 10 \$ 10 10 10 10 10 10 10 10 10 10 10 10 10	1 / 28/2 03/	10181	2 (4 % (1) 4 (4) 4			3/8/3/4/3/2/4 5/8/3/4/3/2/4 5/8/3/4/3/4/3/4/3/4/3/4/3/4/3/4/3/4/3/4/3	\%\ 2\	\$61.000 P	103 ON 10	31/13 ON		NOTES		radmukl letot or Containers protesodes
1.					\mathbb{H}						H		Н	Ц	L		H	Н				
2.															_			-				
3.										_	-						\dashv					
4,		П									-	\dashv					\dashv					<u>-</u>
5.					_	Щ			T		-	\dashv	-				\dashv	\dashv				
6.																						
7.											Н		Н	Щ			_	Щ				
8,											_	ļ										
9,												_								:		
10.				:							. <u>-</u> .										_	
11.		!																		_		
12.								:	_											d solved		
13.																						
14.																						
15.											 				<u> </u>		_					
16.		П			Н				Н		Н	Н	Н	Ц	Ц		Н	Н			:	
17.					\Box												Н				•	
18.					_				_											=		
RELINQUISHED BY (Signature)	(a.	DAT	DATE/TIME	RECEIN	RECEIVED BY (Signature)	\$igna	ture)		Ô	DATE/TIME	ш		Ì	-	SAMP	SAMPLE RECEIPT	CEIPT		İ	LABORATORY NOTES:	' NOTES:	
											<u>⊢11</u>	OTAL	MUM	BER O	00 4	TOTAL NUMBER OF CONTAINERS	ERS					
											╗	N N	레 하	3	ř	CHAIN OF CUSTODY SEALS Y/N/NA	YNA YNA		╛	-		
RELINQUISHED BY (Signature)	اَج	DAT	DATE/TIME	RECEN	RECEIVED BY (Signature)	Signa	(ante		٩	DATE/TIME	_1	SEALS INTACT? Y/N/NA	NTAC	17.4/1	AN/A							
_											∞ 2	ECEIV	9	80	ONO	RECEIVED GOOD COND./COLD				; 		
												NOTES								Turn Around Times 24 HR	Time: 24 HR 48 HR	R S DAY
1210 Eastside Street SE, Suite 200	e 200								Phony	Phone: 360-459-4670	9-467	0									Website: www.esnnw.con	Silhw.com

1210 Eastside Street SE, Suite 200 Olympia, Washington 98501

Phone: 360-459-4670 Fax: 360-459-3432

E-Mail: info@esnnw.com

ESN NORTHWAST, CAL.

Services Nerwork

CLIENT: Provide Levels	Sec. 12. 12	いるまるの	Large Contraction of Patronian Property	DATE: 3(2/17) PAGE	GF OF	
1 .)}	字 4.85	S. to 123	Surk 70 Mercon Island July 9500	PROJECT NAME: Leng Pro]
PHONE: (201) 232-75	38C	FAX: D	FAX: John a petropisto com		-	!
CLIENT PROJECT #: 1985	年2007年8	l	ÇŞ Ç	courector: E型 / 公文 Co-<	DATE OF COLLECTION:	3/34/2
	Sam	Sample Container	(S. 1.00)	# 10 10 10 10 10 10 10 10 10 10 10 10 10		stanicani stanicani ytotet Yedrovia
Sample Number Depth	Time	Type	30/30/30/30/30/30/30/30/30/30/30/30/30/3	8 13 10 10 15 13 10 10 10 10 10 10 10 10 10 10 10 10 10	NOTES	5340; ' 6d61'
1. 15 i 1	igs.	्राक्षाच्या रहेता. स्टब्स				y) z
2. (51- 5) (3. (5) · [7]						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	-		×××			1 (h
5. B29						Μ,
6. 82 - 84						07
7. §52−3						Pη
8 45 8						m
9. B. D.	<u>></u>					~
10. B	13 22	C Marketing				<u></u>
11. 62						ર
12. My - My					Niso 1051	زن
13. 8(- FT.)	S.	1 50 A Dec			1	J.
14.		. —				40
15.						
15.					į	
17.	— j					
18.						
RELINQUISHEB BY (Signature)	DATE/TIME	2	RECEIVED BY (Signature) DATE/TIME	SAMPLE RECEIPT	LABORATORY NOTES:	
The state of the s	S (3/3/5)			TOTAL NUMBER OF CONTAINERS	,	
				CHAIN OF CUSTODY SEALS Y/N/NA	··· -	
RELINQUISHED BY (Signature)	DATE/TIME		RECEIVED BY (Signature) DATE/TIME SEA	SEALS INTACT? Y/N/NA		
			IREC	RECEIVED GOOD COND./COLD	Turn Argund Time: 24 HR 48 P	48 HR S DAY
1710 Factoria Street SF Suite 700			Phone: 360-459-4570		16	os municipal

Olympia, Washington 98501

Fax: 360-459-3432

E-Mail: info@esnpw.com

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Scattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

Sample Preparation Information for Toxicity Characteristic Leaching Procedure (TCLP) by EPA Method 1311

Sample Number: B1-4
No. of Extractions: 1
Type of Extraction: Rotary
Extraction Fluid: #1
Date Extracted: 4/20/2017

Sample Preparation Information for Toxicity Characteristic Leaching Procedure (TCLP) by EPA Method 1311

Sample Number: B1-8
No. of Extractions: 1
Type of Extraction: Rotary
Extraction Fluid: #1
Date Extracted: 4/20/2017

Environmental Associates, Inc. PROJECT LENCI PROPERTY PROJECT #EAI-3156-2 Scattle, Washington ESN Northwest 1210 Eastside Street SE Suite 200 Olympia, WA 98501 (360) 459-4670 (360) 459-3432 Fax lab@esnnw.com

TCLP Metals in Soil by EPA-Method 1311/6020

Sample Number	Date Analyzed	Arsenic (As) (mg/L)
Method Blank	4/24/2017	nd
B1-4	4/24/2017	nd
B1-8	4/24/2017	nd
Method Detection Limits	3. (83)	0.2

QA/QC Data - TCLP Metals EPA-Method 1311/6020

Sample Number:TCLP	Date Analyzed	Arsenic (As) (mg/L)
Laboratory Control Sample Spike	Anaryzea	1.00
Laboratory Control Sample Result	4/24/2017	1.23
Percent Recovery (%)		123
Method Detection Limits		0.2

ACCEPTABLE RECOVERY LIMITS FOR MATRIX SPIKES: 75%-125% ACCEPTABLE RPD IS 20%

CONTRACT OF STANDINGS SECTIONS CHAIN-OF-CUSTODY RECORD

Enviroumental Services Network	
E.S.N.	

CLIENT: Provide Control	のは、大学の語のでは、	l , ; ;	200	178	60000	19 29 47	DATE:		 		PAGE	40	
ADDRESS: 7/50 SE		X 18 00 20 1					PROJEC	PROJECT NAME:	11		77.00	.	
PHONE: (70, 1237-137	 lp.	FAX:	FAX: Total above	1200			LOCATION:	NOI.	000000				!
CLIENT PROJECT #: 😤 🕾			PROJECT MANAGE	ER:) //	COLLEC	CTOR:	- λ. ζ-ί ()		/ / / -	OATE UII	
			55%	(0)		Q.	1803	\$100.00 m	12/2		1		3). /ai
Sample Number : Depth	Sample Time Type	Container	Cist Hel	Seg Vid	08 20 10 10 10 10 10 10 10 10 10 10 10 10 10		10 14 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	185. 145.55.	Silve Oils	2 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NOTES	53	drum Victor PrijetnaD : Priođe/victor drum Mistori
1	-				; 	Ţ_		-		18			1
2, 01-5			X X		X		Y.		1	X			100
3. એ+(ÿ						-)		•	. Ang
ji - 2ij 🍅	-				XX		Z		: 	<u></u>			· · · ·
S. GT - 3													62
6. 32-44													777
7-69-2													1
\$ 50° 8		:								 	_		1 10
5										[]			(1)
10. 5	Q.	7			_				_	<u> </u>			
11. 87.					:								e V
12. W S.					7		7		ļ,		33 KZ	~	· ::
13. 公丁五年	17.		_										<u>.</u>
14.							-		-) 			÷ .
15.													
16.		<i>-</i>									<u>-</u>		
17.													
18.													
RELINQUISHED BY (Signature).	DATE/TIME		RECEIVED BY (Signature)	grature)	DATE	DATE/FIME		SAMP	SAMPLE RECEIPT	_	LABORAT	LABORATORY NOTES:	
				A 11 A 12 A 12 A 12 A 12 A 12 A 12 A 12	r. F		TOTAL MUMBER OF CONTAINERS CHAIN OF CUSTODY SEALS Y/V/NA	SER OF CON	NTAINERS US Y/N/NA			~~(~¥<)	
RELINQUISHED BY (Signature)	DATE/TIME	1	RECEIVED BY (Signature)	ghature	DATE	DATE/TIME	SEALS INTACT? Y/N/NA	TP Y/N/NA					
							RECEIVED GOOD COND./COLD	OOD COND.	7,001.0		<u> </u>		/ - V.
							XGTES:) (Turn Arn	Turn dround Time: 24 HR 48 HR 15 DAY	48 HR ∴Ş DAY
1210 Eastside Street St., Suite 700 Olympia, Washington 98501					Phone:	Phone: 350-459-4670 Fax: 363-459-3457	570					Website: v F.Mail: a	Website: www.eshiw.com F.Mail: info@negov.com
was a second sec						****	Y					(114 div. n	a Marchaelanda A

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix L Supplemental Investigations

Attachment L.4
South Park Landfill – Indoor Air Monitoring at WG Clark
(Herrera 2016)

Date: October 20, 2016

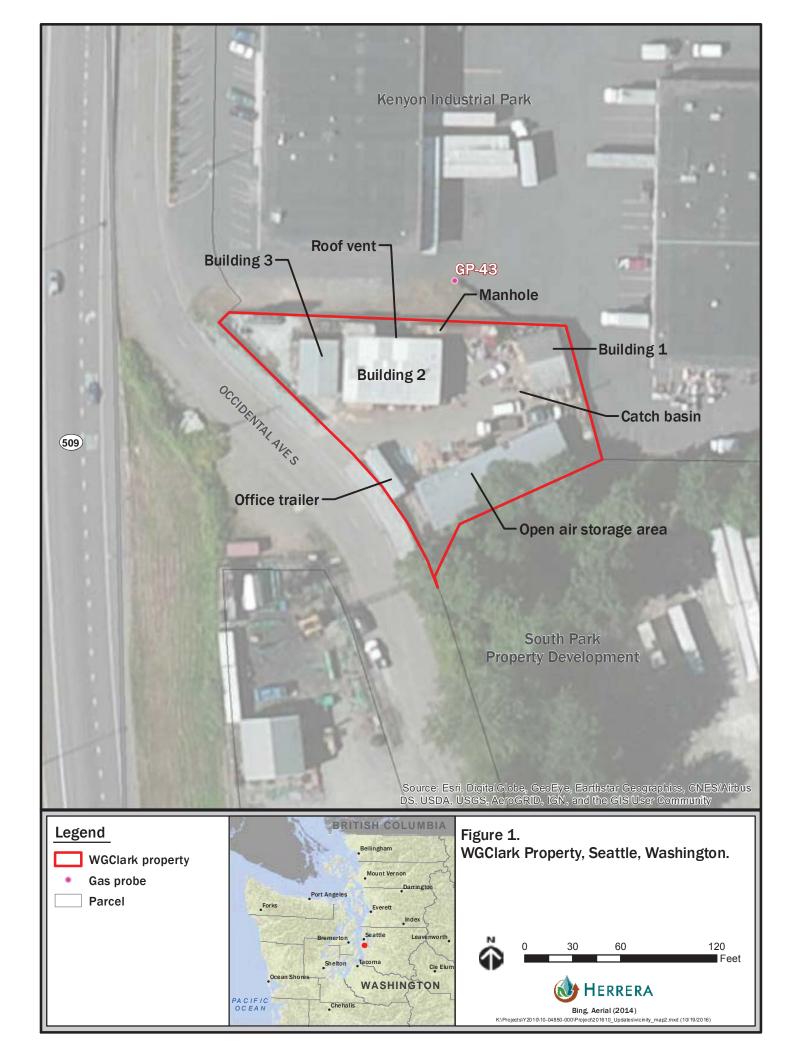
To: Teri Floyd, Floyd | Snider

From: Bruce Carpenter and Michael Spillane

Subject: South Park Landfill - Indoor Air Monitoring at WG Clark

INDOOR AIR MONITORING - WG CLARK PROPERTY

Elevated concentrations of methane were detected in perimeter probe GP-43 on September 26 and October 3, 2016 (Figure 1). The concentrations ranged from 32.5 to 32.7 percent by volume methane, exceeding the lower explosion level of 5.1 percent at 20° Centigrade, which triggered indoor air monitoring for buildings located within 100 feet of the probe.


The City of Seattle, Seattle Public Utilities completed an access agreement with WG Clark and requested Herrera Environmental Consultants (Herrera) conduct air monitoring at the WG Clark buildings located at 7958 Occidental Avenue South. At 12:50 PM on October 17, 2016, Herrera staff began monitoring the interior of the WG Clark buildings. A Landtec GEM-2000 Plus and RAE – MiniRAE 3000 Photoionization Detector (PID) were used to monitor the indoor air. The GEM and PID were calibrated by Field Environmental Instruments, Inc. on October 16 and October 17, 2016, respectively, prior to delivery to Herrera.

Buildings 1, 2, and 3 have been constructed with a concrete slab on grade. A methane mitigation system has been constructed in Building 2, including a series of perforated pipe installed in gravel beneath the concrete slab and vented to the roof on the north side of the building. The concrete is in good condition in all three of the buildings, although, several minor cracks were observed in each building. There were no floor drains observed in any of the buildings, including the restroom in Building 2. A new office trailer was moved onto the property several months ago. It is located on gravel and raised above the ground, surrounded by a skirt siding with vents located on each side. There are several metal shipping containers with wooden floors located on the property and used for equipment storage. A large open air building is located in the southern part of the property, it is constructed on gravel with a steel roof, but no walls. Much of the property is paved with asphalt.

Both instruments remained on while walking throughout all of the buildings. It was held adjacent to cracks in the floor, vents on the office trailer, and other monitoring points. A Storm drain catchment, roof vent for the methane mitigation system in Building 2, and manhole, also were monitored outside of the buildings.

The GEM had a detection limit 0.1 percent by volume methane and the PID had a detection limit of 0.1 parts per million (ppm), no methane or volatile organic compounds (VOCs) were observed above the detection limits during the air monitoring.

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix L Supplemental Investigations

Attachment L.5 Ecology's 7901 Investigation

From: Cruz, Jerome (ECY) < JCRU461@ECY.WA.GOV>

Sent: Friday, July 7, 2017 8:29 AM **To:** Teri A. Floyd;

Cc: Flynn, James (Seattle); Wang, Ching-Pi (ECY); Dube, Tom E.; Neuner, Jeff
Subject: FW: Validated Data and Field Documents for the 7901 Parcel Environmental

Investigation at SPLF

Attachments: 7901_SPLF_Soil_Detected Chemicals_063017.pdf; 7901_SPLF_GW_Detected Chemicals_

063017.pdf

Hi Teri and Gretchen,

I am forwarding to you the soil and groundwater results from the recently completed 7901 investigation. Based on the flagged exceedances, I would like to include a discussion of these in relation to the Landfill property, RI/FS, and cleanup plan.

I'd like to include this as a discussion topic for our July 13 meeting.

Thanks,

Jerome

Jerome B. Cruz, Ph.D.

Toxics Cleanup Program, Northwest Regional Office

3190 - 160th SE Bellevue, WA 98008 Tel: (425) 649-7094 Fax: (425) 649-7098

Jerome.Cruz@ecy.wa.gov

http://www.ecy.wa.gov/programs/tcp/cleanup.html

From: Dube, Tom E.

Sent: Friday, July 07, 2017 12:17 AM

To: Cruz, Jerome (ECY); 'Gretchen Hill'; 'Kim Johannessen'; ; Anderson, Ivy (ATG)

Subject: RE: Validated Data and Field Documents for the 7901 Parcel Environmental Investigation at SPLF

Attached are two summary tables of analytical data from this 7901 environmental investigation. Environmental sample results that exceed the listed screening levels are shown in bold font.

In producing these tables, we used screening levels that follow the general approach applied in the South Park Landfill draft final Remedial Investigation Report (June 2016). This includes applying MTCA Method C soil cleanup levels, and Method B groundwater cleanup levels, the latter including evaluation of pertinent ARARs (which include Maximum Contaminant Levels). There are a few cases where Method A or background values are utilized.

The screening levels in these tables were taken from the most recent values listed in Ecology's CLARC database, and applying MCLs for groundwater where applicable. In the case of TPH-diesel and heavy oil in soil, the calculated Method C TPH value in the RI Report (7,000 mg/kg) was applied. For TPH-gasoline in soil, the MTCA Method A value was applied

because gasoline was not a chemical of concern in the SPLF samples utilized for calculating the diesel/heavy oil cleanup level.

The screening levels in the attached files are not intended to be applied at this time as cleanup levels, but only for initial screening of the data in the 7901 investigation. Ecology reserves the option of modifying these screening levels at a future date.

Tom

Thomas Dubé | Leidos office: 425.482.3325 |

From: Dube, Tom E.

Sent: Friday, June 30, 2017 10:50 PM

To: 'Cruz, Jerome (ECY)' < <u>JCRU461@ECY.WA.GOV</u>>; 'Gretchen Hill' ; 'Kim Johannessen' ; 'ivya@atg.wa.gov'

< ivya@atg.wa.gov>

Subject: Validated Data and Field Documents for the 7901 Parcel Environmental Investigation at SPLF

7901 SPLF Team:

The data validation for this environmental investigation was completed on Monday, June 26, 2017. Attached you will find five documents, including those requested in the site access agreement. These files include:

- An Excel file with the validation adjustments to the original EIM-format file from the lab, TestAmerica. You have previously received the original lab files, so those are not included here.
- The analytical validation summary report, completed by Leidos.
- Scans of our field logbook and the groundwater purging forms.
- An aerial photo map of the site, showing the four borings (you have previously received this same figure), along with a listing of their geographic coordinates.
- The four boring logs.

The last item, the summary data table, is currently in Jerome's inbox and will be reviewed and finalized after the holiday.

Let us know if you have any questions.

Thanks,

Tom

Thomas Dubé, R.G. | Leidos

Sr. Hydrogeologist | Environmental Planning & Restoration Group office: 425.482.3325 | | |

Leidos

18912 North Creek Parkway, #101 Bothell, WA 98011-8016 www.leidos.com

Please consider the environment before printing this e-mail.

Table 1. Soil Analytical Data for Detected Chemicals 7901 Parcel -- South Park Landfill

Location ID:				7901-SB-01		7901-SB-02	\$B-02		7901-SB-03			7901-SB-04	
Sample ID:			7901-SB-01-9.5	7901-SB-01-14.5	7901-SB-01-17.5	7901-SB-02-14.5	7901-SB-02-17.5	7901-SB-03-8	7901-SB-03-9	7901-SB-03-17	7901-SB-04-9	7901-SB-04-14	7901-SB-04-18.5
Sample Depth (ft):			9.3 - 10	14 - 14.7	17.5 - 18.5	14.5 - 15	17.5 - 18	8-8.5	9 - 10	17 - 18	9.3 - 10	14 - 15	18.5 - 20
Sample Date & Time:	Saino	Coroning	5/25/17 15:35	5/25/17 15:40	5/25/17 15:45	5/25/17 09:30	5/25/17 09:35	5/25/17 14:05	5/25/17 14:10	5/25/17 14:15	5/25/17 12:05	5/25/17 12:10	5/25/17 12:15
Chemical Name (mg/kg)	Level		Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Metals													
Antimony	1,400	MTCA C	66	3.5	0.36	8.0	10	62	77	0.85	49	0.79	6.2
Arsenic	88	MTCA C	35	14	5.7	19	22	11	42	0.9	49	1.8	13
Beryllium	7,000	MTCA C	0.25	0.53	0.36	0.22 U	0.26 U	0.23	0.21	0.33	0.74	0.21 U	0.23 U
Cadmium	3,500	MTCA C	2.8	4.9	0.54 U	42	0.97	1.3	22	0.37	17	1.1	0.97
Chromium	1.0E+06	MTCA C	170	99	19	54	42	44	110	17	40	10	27
Copper	140,000	MTCA C	1,100	44	30	099	350	150	2,400	35	570	22	f 66
Lead	1,000	MTCA A	6,100	1,100	48	2,300	48	320	5,100	37	22,000	63	210 J
Mercury	1,050	MTCA C	0.24	0.078	0.061	0.43	0.041 U	0.056	0.34	0.048	99.0	0.032 U	0.042 U
Nickel	70,000	MTCA C	31	32	15	110	65	48	130	14	63	21	20 J
Selenium	17,500	MTCA C	1.3 U	1.1 U	1.3 U	1.1 U	1.3 U	1 U	0.82 U	0.86 U	1.4	1 U	1.1 U
Silver	17,500	MTCA C	3.4	0.22 U	0.27 U	0.47	0.26 U	0.33	2.2	0.17 U	1.0	0.21 U	0.23 U
Zinc	1.0E+06	MTCA C	1,200	1,800	110	12,000	360	1,400	4,800	180	8,600	480	1,400
ТРН													
Gasoline	100	MTCA A	21 J	32	15 U	24	12 U	7.3 U	220 J	12 U	31	43	12 UJ
Diesel (#2)	7,000	MTCA calc	3,800	1,300	74 U	330	N 69	52 U	2,200	O 29	1,300	1,500	490 J
Motor Oil	7,000	MTCA calc	9,000	4,000	230	970	240	110	3,800	67 U	3,000	22,000	800 J
SVOCs													
Acenaphthene	210,000	MTCA C	35	0.14 U	0.036 U	99.0	0.035 U	0.028 U	0.15 U	0.035 U	0.33	1.4 U	0.036 U
Acenaphthylene	1	1	4.1	0.14 U	0.036 U	0.29 U	0.035 U	0.028 U	0.15 U	0.035 U	0.034	1.4 U	0.036 U
Anthracene	1.0E+06	MTCA C	26	0.14 U	0.036 U	1.7	0.053	0.028 U	3.7	0.035 U	0.21	1.4 U	0.036 U
Benzo(a)anthracene	180	MTCA C	82	0.25	0.036 U	2.8	0.14	0.028 U	29	0.035 U	0.54	1.4 U	0.036 U
Benzo(a)pyrene	18	MTCA C	63	0.33 U	0.087 U	2.5	0.11	0.067 U	16	0.084 U	0.52	3.3 U	0.085 U
Benzo(b)fluoranthene	180	MTCA C	26	0.14 U	0.036 U	2.6	0.13	0.028 U	19	0.035 U	0.71	1.4 U	0.036 U
Benzo(k)fluoranthene	1,800	MTCA C	22	0.33 U	0.087 U	0.95	0.084 U	0.067 U	8.4	0.084 U	0.18	3.3 U	0.085 U
Benzo(ghi)perylene	1	1	25 J	0.33 UJ	0.087 UJ	1.6 J	0.084 UJ	0.067 UJ	7.6 J	0.084 UJ	0.23 J	3.3 UJ	0.085 UJ
Carbazole	-	1	18	0.83 U	0.22 U	1.7 U	0.21 U	0.17 U	1.4	0.21 U	0.19 U	8.2 U	0.21 U
Chrysene	18,000	MTCA C	77	0.33 U	0.087 U	3.0	0.14	0.067 U	27	0.084 U	0.76	3.3 U	0.085 U
Dibenz(a,h)anthracene	18	MTCA C	6.2	0.28 U	0.073 U	0.58 U	0.07 U	0.056 U	2.2	0.07 U	0.11	2.7 U	0.071 UJ
Dibenzofuran	3,500	MTCA C	10	0.83 U	0.22 U	1.7 U	0.21 U	0.17 U	0.88 U	0.21 U	0.19	8.2 U	0.21 U
Fluoranthene	140,000	MTCA C	190	0.53	0.088	7.1	0.31	0.028 U	66	0.035 U	1.2	1.4 U	0.036 U
Fluorene	140,000	MTCA C	31	0.14 U	0.036 U	0.99	0.035 U	0.028 U	0.68	0.035 U	0.4	1.4 U	0.036 U
Indeno(1,2,3-cd)pyrene	180	MTCA C	31	0.22 U	0.058 U	1.9	0.093	0.045 U	6.6	0.056 U	0.32	2.2 U	0.057 UJ
Naphthalene	70,000	MTCA C	15	0.14 U	0.036 U	0.59	0.035 U	0.028 U	0.23	0.035 U	0.21	1.4 U	0.036 U
1-Methylnaphthalene	4,500	MTCA C	13	0.17 U	0.044 U	0.35 U	0.042 U	0.033 U	0.34	0.042 U	0.14	1.6 U	0.043 U
2-Methylnaphthalene	14,000	MTCA C	14	0.28 U	0.073 U	0.58 U	0.07 U	0.056 U	0.57	0.07 U	0.18	2.7 U	0.071 U
Phenanthrene	1	1	250	0.54	0.087 U	7.9	0.26	0.067 U	12	0.084 U	1.6	3.3 U	0.085 U
Pyrene	105,000	MTCA C	240	0.58	0.11	6.9	0.31	0.067 U	95	0.084 U	1.4	3.3 ∪	0.085 U
Total cPAHS (TEQ, NDx0.5)	18	MICAC	83	0.24	0.058 U	3.4	0.16	0.045 U	23	0.056 U	0.71	2.2 U	0.057 UJ

Notes:
Results and screening levels presented in mg/kg. Bold values exceed the respective screening levels. Qual = Qualifier flag.
Metals were analyzed by SW6020A or SW7471A (mercury). SVOCs were analyzed by SW8270D.
Gasoline was analyzed by NWTPH-Gs. Diesel and motor oil were analyzed by NWTPH-Bx.
PCB Aroclors were analyzed by SW8082A, but without any detections.
Soil screening levels were primarily developed under MTCA Method C, with TPH-gasoline and lead SLs under Method A; TPH-diesel and motor oil SLs were calculated under Method C (SPLF RI Report, June 2016).

Table 2. Groundwater Analytical Data for Detected Chemicals
7901 Parcel -- South Park Landfill

Location ID:			7901-SB-01	7901-SB-02	7901-SB-04	GW Trip Blank
Sample ID:			7901-SB-01-GW	7901-SB-02-GW	7901-SB-04-GW	7901-TB-GW
Sample Inlet Depth (ft):			17.5	19.5	17.5	
Sample Date & Time:			5/25/17 16:00	5/25/17 10:35	5/25/17 12:50	5/25/17 12:00
P	Screening	Screening	., .,	, , ,	2, 2,	, , ,
Chemical Name (ug/L)	Level	Reference	Result Qual	Result Qual	Result Qual	Result Qual
Metals						
Antimony	6.0	MCL	2 U	2 U	7.0	
Arsenic	5.0	MTCA A / BG	5 U	5 U	6.8	
Chromium	100	MCL	2 U	2 U	5.2	
Copper	640	MTCA B	10 U	10 U	52	
Iron	27,000	Local BG	11,000	6,300	18,000	
Lead	15	MCL	27	4 U	250	
Manganese	2,200	MTCA B	60	300	130	
Zinc	4,800	MTCA B	93	35 U	610	
TPH						
Diesel (#2)	500	MTCA A	670	1,100	1,200	
Motor Oil	500	MTCA A	380	660	1,000	
PAHs						
Acenaphthene	960	MTCA B	0.12 J	0.63 J	0.26	
Acenaphthylene			0.021 U	0.056	0.026	
Anthracene	4,800	MTCA B	0.023	0.089	0.029	
Fluoranthene	640	MTCA B	0.032	0.02 U	0.023	
Fluorene	640	MTCA B	0.021 U	0.045	0.02 U	
Naphthalene	160	MTCA B	0.041 UJ	0.062 J	0.041 UJ	
1-Methylnaphthalene	1.5	MTCA B	0.021 UJ	0.19 J	0.02 UJ	
Phenanthrene			0.068	0.034	0.029	
Pyrene	480	MTCA B	0.037	0.021	0.047	
VOCs						
Chlorobenzene	100	MCL	0.2 U	1.3	0.96	0.2 U
cis-1,2-Dichloroethene	16	MTCA B	0.2 U	0.2 U	2.1	0.2 U
Vinyl Chloride	0.29	MTCA B / MCL	0.30	0.16	0.97	0.02 U

Notes:

Results and screening levels presented in ug/L. Bold values exceed the respective screening levels.

Metals were analyzed by SW6020A.

Diesel and motor oil were analyzed by NWTPH-Dx. Gasoline was analyzed by NWTPH-Gx, but without any detections.

PAHs were analyzed by SW8270D-SIM. VOCs were analyzed by SW8260C.

PCB Aroclors were analyzed by SW8082A, but without any detections.

BG = Background concentration

MCL = Maximum Contaminant Level

Qual = Qualifier flag

Groundwater screening levels were primarily developed under MTCA Method B, which requires evauation of ARARs such as MCLs; TPH SLs were under Method A; arsenic and iron SLs used background values (from SPLF RI Report, June 2016).

From: Cruz, Jerome (ECY) < JCRU461@ECY.WA.GOV>

 Sent:
 Tuesday, July 11, 2017 1:57 PM

 To:
 Teri A. Floyd;

Cc: Flynn, James (Seattle); Wang, Ching-Pi (ECY); Dube, Tom E.; Neuner, Jeff Subject: RE: Validated Data and Field Documents for the 7901 Parcel Environmental

Investigation at SPLF

Attachments: 7901 Parcel Environmental Investigation SAP/QAPP Document; FW: EXTERNAL:

TestAmerica report files from 580-68649-1 7901 Parcel-South Park Landfill; RE:

Validated Data and Field Documents for the 7901 Parcel Environmental Investigation at

SPLF

Hi Teri,

I've attached all the requested information. RE: request #3, the tables seems to already have the footnote on NWTPH-Gx indicating nondetect. Are you requesting to see the nondetect data for TPH-Gx?

Thanks,

Jerome

Jerome B. Cruz, Ph.D.

Toxics Cleanup Program, Northwest Regional Office

3190 - 160th SE Bellevue, WA 98008 Tel: (425) 649-7094 Fax: (425) 649-7098

Jerome.Cruz@ecy.wa.gov

http://www.ecy.wa.gov/programs/tcp/cleanup.html

From: Teri A. Floyd

Sent: Monday, July 10, 2017 11:02 AM
To: Cruz, Jerome (ECY);

Cc: Flynn, James (Seattle); Wang, Ching-Pi (ECY); Dube, Tom E.; Neuner, Jeff

Subject: RE: Validated Data and Field Documents for the 7901 Parcel Environmental Investigation at SPLF

Jerome, Good Morning!

Thanks for sending over the data. We will need the following additional information from you:

- (1) A copy of the Work Plan under which the sampling was performed, and any deviations that occurred in the field (these could be in an email).
- (2) A figure showing the final location of the geoborings, their coordinates and its datum.
- (3) If the NWTPH-G measurement in groundwater included BTEX and they were not detected or if other VOCs (such as BTEX) were analyzed by 8260 and not detected, we would like that data and recommend that the footnote on the groundwater table be modified to say that.

We can talk further about the data at our meeting on Thursday. Thanks, Teri

Teri A. Floyd, Ph.D. FLOYD|SNIDER

601 Union Street, Suite 600, Seattle, WA 98101-2341

T: 206.292.2078 | F: 206.682.7867 |

| www.floydsnider.com

From: Cruz, Jerome (ECY) [mailto:JCRU461@ECY.WA.GOV]

Sent: Friday, July 07, 2017 8:29 AM

To: Teri A. Floyd

Cc: Flynn, James (Seattle) ; Wang, Ching-Pi (ECY) < <u>CWAN461@ECY.WA.GOV</u>>; Dube, Tom E.

; Neuner, Jeff < Jeff. Neuner@seattle.gov >

Subject: FW: Validated Data and Field Documents for the 7901 Parcel Environmental Investigation at SPLF

Hi Teri and Gretchen,

I am forwarding to you the soil and groundwater results from the recently completed 7901 investigation. Based on the flagged exceedances, I would like to include a discussion of these in relation to the Landfill property, RI/FS, and cleanup plan.

I'd like to include this as a discussion topic for our July 13 meeting.

Thanks,

Jerome

Jerome B. Cruz. Ph.D.

Toxics Cleanup Program, Northwest Regional Office

3190 - 160th SE Bellevue, WA 98008 Tel: (425) 649-7094 Fax: (425) 649-7098

Jerome.Cruz@ecy.wa.gov

http://www.ecy.wa.gov/programs/tcp/cleanup.html

From: Dube, Tom E.

Sent: Friday, July 07, 2017 12:17 AM

To: Cruz, Jerome (ECY) < <u>JCRU461@ECY.WA.GOV</u>>; 'Gretchen Hill' ; 'Kim Johannessen' ; Anderson, Ivy (ATG)

<IvyA@ATG.WA.GOV>

Subject: RE: Validated Data and Field Documents for the 7901 Parcel Environmental Investigation at SPLF

Attached are two summary tables of analytical data from this 7901 environmental investigation. Environmental sample results that exceed the listed screening levels are shown in bold font.

In producing these tables, we used screening levels that follow the general approach applied in the South Park Landfill draft final Remedial Investigation Report (June 2016). This includes applying MTCA Method C soil cleanup levels, and Method B groundwater cleanup levels, the latter including evaluation of pertinent ARARs (which include Maximum Contaminant Levels). There are a few cases where Method A or background values are utilized.

The screening levels in these tables were taken from the most recent values listed in Ecology's CLARC database, and applying MCLs for groundwater where applicable. In the case of TPH-diesel and heavy oil in soil, the calculated Method C TPH value in the RI Report (7,000 mg/kg) was applied. For TPH-gasoline in soil, the MTCA Method A value was applied because gasoline was not a chemical of concern in the SPLF samples utilized for calculating the diesel/heavy oil cleanup level.

The screening levels in the attached files are not intended to be applied at this time as cleanup levels, but only for initial screening of the data in the 7901 investigation. Ecology reserves the option of modifying these screening levels at a future date.

Tom

Thomas Dubé | Leidos office: 425.482.3325 |

From: Dube, Tom E.

Sent: Friday, June 30, 2017 10:50 PM

To: 'Cruz, Jerome (ECY)' < JCRU461@ECY.WA.GOV">JCRU461@ECY.WA.GOV>; 'Gretchen Hill' ; 'Kim Johannessen' ; 'ivya@atg.wa.gov'

<ivya@atg.wa.gov>

Subject: Validated Data and Field Documents for the 7901 Parcel Environmental Investigation at SPLF

7901 SPLF Team:

The data validation for this environmental investigation was completed on Monday, June 26, 2017. Attached you will find five documents, including those requested in the site access agreement. These files include:

- An Excel file with the validation adjustments to the original EIM-format file from the lab, TestAmerica. You have previously received the original lab files, so those are not included here.
- The analytical validation summary report, completed by Leidos.
- Scans of our field logbook and the groundwater purging forms.
- An aerial photo map of the site, showing the four borings (you have previously received this same figure), along with a listing of their geographic coordinates.
- The four boring logs.

The last item, the summary data table, is currently in Jerome's inbox and will be reviewed and finalized after the holiday.

Let us know if you have any questions.

Thanks, Tom

Thomas Dubé, R.G. | Leidos

Sr. Hydrogeologist | Environmental Planning & Restoration Group office: 425.482.3325 | |

Leidos

18912 North Creek Parkway, #101 Bothell, WA 98011-8016 www.leidos.com

Please consider the environment before printing this e-mail.

From: Dube, Tom E.

Sent: Wednesday, May 17, 2017 11:31 PM

To: Cruz, Jerome (ECY); 'Gretchen Hill'; 'Kim Johannessen';

Anderson, Ivy (ATG)

Subject: 7901 Parcel Environmental Investigation SAP/QAPP Document

Attachments: 7901 Parcel Investigation SAP-QAPP_Final_051717.pdf

7901 Parcel Team:

Attached is the Sampling and Analysis Plan (SAP) and Quality Assurance Project Plan (QAPP) for the environmental investigation at the 7901 Parcel. The two map figures are located at the very end of the document.

The drilling activity for this investigation is scheduled to take place on May 25th. If you have any questions, please let me know.

Thank you, Tom

Thomas Dubé, R.G. | Leidos

Sr. Hydrogeologist | Environmental Planning & Restoration Group office: 425.482.3325 | | | | | | | |

Leidos 18912 North Creek Parkway, #101 Bothell, WA 98011-8016 www.leidos.com

Please consider the environment before printing this e-mail.

South Park Landfill

7901 Parcel Environmental Investigation

Sampling and Analysis Plan and Quality Assurance Project Plan

FINAL

Prepared for

Toxics Cleanup Program
Northwest Regional Office
Washington State Department of Ecology
Bellevue, Washington

Prepared by

Leidos, Inc. 18912 North Creek Parkway, Suite 101 Bothell, WA 98011

May 2017

Limitation of Use: Project activities performed by Leidos were restricted to analysis of records made available by the Washington State Department of Ecology (Ecology) or third parties during the project. In preparing this report, Leidos has relied on verbal and written information provided by secondary sources and interviews, including information provided by the customer. Leidos has made no independent investigations concerning the accuracy or completeness of the information relied upon. Because the project activities consisted of evaluating a limited supply of information, Leidos may not have identified all potential items of concern and, therefore, Leidos warrants only that the project activities under this contract have been performed within the parameters and scope communicated by Ecology and reflected in the contract. Data and information presented in this report were accurate based on the information available to Leidos.

This report is intended to be used in its entirety. Taking or using in any way excerpts from this report is not permitted, and any party doing so does so at its own risk.

Table of Contents

		Page
1.0	Introduction	1
1.1	Purpose and Objectives	
1.2	Project Planning and Coordination	2
1.3	Sample Collection	2
1.4	Laboratory Coordination and Quality Assurance/Quality Control Management	2
1.5	Health and Safety Manager	2
1.6	Data Manager	2
1.7	Subcontractor Support	2
1.8	Schedule	3
2.0	Field Sampling Plan	4
2.1	Sampling Locations	
2.2	Sample Collection and Handling Methods	4
2	.2.1 Sample Identification, Containers, and Labels	6
2	.2.2 Sample Storage and Delivery	6
2	.2.3 Waste Disposal and Handling Procedures	7
2.3	Field Documentation	7
2.4	Laboratory Analyses	8
3.0	Quality Assurance Project Plan	9
3.1	Measurements of Data Quality	9
3.2	Quality Assurance and Quality Control	10
3	.2.1 Field Quality Assurance/Quality Control Samples	
3	.2.2 Laboratory Quality Assurance/Quality Control Samples	10
_	.2.3 Data Validation	
3	.2.4 Analytical Laboratory Reports	15
4.0	Data Analysis, Recordkeeping, and Reporting Requirements	16
4.1	Analysis of Chemistry Data	
4.2	Recordkeeping	16
4.3	Data Report	16
5.0	References	17

Appendices

Appendix A	Data Management Procedures
Appendix B	Standard Laboratory Reporting Limits
Appendix C	Laboratory In-house QC Limits
Appendix D	Electronic Data Deliverable Format

Tables

Table 2-1. Chemical Analyses and Maximum Sample Numbers	6
Table 2-2. Sample Identification Examples	6
Table 3-1. Analytical Methods, Sample Container, and Absolute Minimum Sample Volume	
Requirements	11
Table 3-2. Analytical Methods, Holding Times, and Preservation Requirements	12
Table 3-3. Laboratory QA/QC Sample Frequency Requirements	12
Table 3-4. Laboratory QA/QC Sample Acceptance Criteria – DQOs	

Figures

- Figure 1. South Park Landfill Site Vicinity
 Figure 2. 7901 2nd Avenue S. Property and Boring Locations

Acronyms and Abbreviations

bgs below ground surface

CCV continuing calibration verification CLP Contract Laboratory Program

CoC chain of custody
DQO data quality objective
DRO diesel range organics

Ecology Washington State Department of Ecology

EDD electronic data deliverable

EIM Environmental Information Management EPA U.S. Environmental Protection Agency

FM Field Manager

GRO gasoline range organics HSM Health and Safety Manager

ICPMS inductively coupled plasma/mass spectrometry

ICS interference check solution IDW investigation-derived waste IPR initial precision and recovery

IS internal standard

LCS laboratory control sample

LCSD laboratory control sample duplicate

LDW Lower Duwamish Waterway

MDL method detection limit

MS matrix spike

MSD matrix spike duplicate
MTCA Model Toxics Control Act
NFG National Functional Guidelines

NWTPH Northwest Total Petroleum Hydrocarbons

OPR ongoing precision and recovery

PCB polychlorinated biphenyl PID photoionization detector

PP priority pollutant

PPE personal protective equipment

QA quality assurance

QAPP quality assurance project plan

QC quality control RL reporting limit

RPD relative percent difference RSD relative standard deviation SAP sampling and analysis plan

SRDS South Recycle and Disposal Station SVOC semivolatile organic compound

1.0 Introduction

The South Park Landfill is a closed solid waste landfill in the South Park neighborhood of Seattle, Washington. It is located on the western side of the Lower Duwamish Valley between State Routes 509 and 99. The landfill operated from the 1930s until 1966. By 1970, the City of Seattle South Recycling and Disposal Station (SRDS), Kenyon Business Park (also referred to as the Kenyon Industrial Park), and several other facilities were in operation on top of the former landfill.

The 7901 2nd Avenue South property lies just beyond the northeastern end of the Kenyon Industrial parcel (Figure 1). The two properties both included initial active landfill dumping, followed by use as an auto-wrecking yard. Following this, in 1965, a 17,000-square foot building was constructed on the 7901 parcel, which still stands today. Previous operators at the 7901 parcel include the former Formula Corporation, followed by T.H. Seafood (SAIC 2012; Floyd|Snider 2016).

In February 2007, the South Park Landfill site was added to Washington State's Hazardous Sites List. Soil, groundwater, surface water, and landfill gas monitoring began in the late 1980s and has continued to the present day (Floyd|Snider 2016).

Leidos reviewed existing data, specific sampling and analysis protocols, and other supporting data collected to date at this portion of the South Park Landfill. Based on this review, a total of four locations have been selected at the 7901 parcel to be sampled for the presence of polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), and metals in soil and groundwater. Further information on the selected locations is provided in Sections 2.1 and 2.2.

This Sampling and Analysis Plan (SAP), together with the Quality Assurance Project Plan (QAPP), was prepared in accordance with the requirements outlined in Washington Administrative Code (WAC) 173-340-820. Analytical procedures are identified in the SAP/QAPP in accordance with WAC 173-340-830.

1.1 Purpose and Objectives

The primary purpose of this sampling and analysis effort is to collect soil and groundwater samples from several locations within the 7901 parcel and analyze them for PCBs, VOCs, SVOCs, TPH, and metals. Sample analytical results may be used for the following purposes:

- Fill data gaps for PCBs, VOCs, SVOCs, TPH, and metals in soil and groundwater, as identified during data compilation efforts for the *South Park Landfill Remedial Investigation/Feasibility Study* (Floyd/Snider 2016).
- Allow more accurate use and evaluation of data to determine the presence of chemical contamination at levels above the Model Toxics Control Act (MTCA) cleanup levels.

Leidos and its subcontractors will implement this SAP/QAPP under the direction of Ecology. The following sections describe the key roles and responsibilities of the project team.

1.2 Project Planning and Coordination

Jerome Cruz of Ecology will serve as the Ecology Project Manager who will conduct overall project coordination, supply Ecology-furnished services, review reports, and coordinate with contractors. Tom Dubé of Leidos will serve as the Leidos Project Manager for this work assignment; he is responsible for executing this SAP/QAPP, overseeing the collection and analysis of field samples, and reporting the field and analytical results to Ecology.

1.3 Sample Collection

Ruth Otteman of Leidos will serve as the Field Manager (FM) responsible for collecting and processing samples in accordance with this SAP/QAPP and transporting samples to the analytical laboratories for analysis. The FM, or delegate appointed by the PM, will oversee field preparation to ensure all sampling equipment meets sampling guidelines.

1.4 Laboratory Coordination and Quality Assurance/Quality Control Management

Joseph Peters of Leidos will serve as the laboratory coordinator responsible for subcontracting with state-certified laboratories and ensuring use of established protocols for chemical analysis and data management. He will also serve as the project chemist and project quality assurance (QA)/quality control (QC) coordinator. Mr. Peters will provide QA oversight for the laboratory programs, including laboratory reporting and holding times, and oversight of the Leidos data validation process to ensure that the laboratory analytical and QA/QC data are considered valid and that procedures meet the analytical requirements.

1.5 Health and Safety Manager

Randy Hansen of Leidos will serve as the designated Leidos Health and Safety Manager (HSM). The HSM is responsible for ensuring that all personnel are properly trained and fully aware of potential site hazards. Under Mr. Hansen's direction, a delegate Site Safety and Health Officer is responsible for ensuring that personnel conduct all work in a safe manner, wear appropriate personal protective equipment (PPE), and abide by the conditions set forth in the site-specific Health and Safety Plan.

1.6 Data Manager

Megan Gay of Leidos will serve as the data manager for this project. Ms. Gay is responsible for following data management procedures described in Appendix A, reporting data to the project team as scheduled, managing the project database, and submitting data to Ecology's Environmental Information Management (EIM) database.

1.7 Subcontractor Support

The Leidos project team will consist of the following subcontractors for utility locating services, drilling services, laboratory analytical services, and investigation-derived waste (IDW) disposal:

• Subsurface utility location services:

ULS Services Corporation / Geomarkout

Mike Benedict

15151 52nd Ave S, Ste. 2

Tukwila, WA 98188 Phone: (206) 384-2857

Email: mwb@geomarkout.com

Direct-push drilling activities:

Holt Drilling

Steve Rasmussen

10621 Todd Rd E

Puyallup, WA 98372

Phone: (253) 604-4878

E-mail: srasmussen@holtservicesinc.com

• All analyses:

Test America Laboratories

Kathy Kreps 5755 8th Street E Fife, WA 98424

Phone: (253) 248-4964

Email: Kathy.Kreps@testamericainc.com

• IDW disposal:

Clean Harbors

John Bige

26328 79th Avenue South

Kent. WA 98032

Phone: (206) 549-1597

Email: bige.john@cleanharbors.com

1.8 Schedule

Mobilization, utility-locating, and sampling will take place in May 2017 following approval of this SAP/QAPP and will last approximately 2 days. During this time period, soil and groundwater samples will be collected from the 7901 parcel using direct-push drilling techniques ("geoprobe"). Utility location will take place on a day prior to geoprobe activities. All project analytical results will be validated when the data become available from the laboratory.

Sample analysis will require 15 days for all analyses. Data will be validated within 5 days of receipt of final laboratory reports from the analytical laboratories.

2.0 Field Sampling Plan

The purpose of the Field Sampling Plan is to describe the procedures and methodologies utilized in soil and groundwater sample collection at the 7901 parcel site. Soil samples will be collected at a rate of approximately three samples per boring. One groundwater sample will be collected from each soil boring.

Prior to the sampling event:

- A private utility locator will be employed for marking utilities in or near areas to be drilled. Planned sample locations will be approved for clearance by the property owner or manager. A sufficiently large area will be identified for the clearing of utilities to accommodate the potential need for the adjustment of one or more sample locations.
- Assess the feasibility of collecting soil samples near each corner of the exterior of the building using geoprobe, and relocate boring as necessary.
- Identify an area to store drum(s) containing soil cuts, decontamination water, and purge water.

2.1 Sampling Locations

Up to four soil borings will be advanced via direct-push technique, one near each exterior corner of the 7901 building. The maximum number of soil borings will be determined by the schedule, which will be limited to one day of geoprobe activities. One groundwater sample will be collected from each soil boring in the interval below the water table. Depth to water is expected to be at approximately 10 to 12 feet below ground surface (bgs).

2.2 Sample Collection and Handling Methods

This section describes the methodology for geoprobe drilling, equipment decontamination, sample collection, identification, processing, and waste handling during sampling events.

Prior to direct-push activities, each of the four sampling locations will have a small amount of surface asphalt removed. The boring will then be hand-cleared to a depth of 5 feet bgs. This will serve to evaluate the presence of subsurface utilities or other obstacles to geoprobing. If obstacles are encountered, the boring will be shifted laterally, typically several feet away. This clearing will be done either by hand augering, or with use of air-knife techniques using a vacuum truck. The drilling subcontractor will perform the asphalt removal and hand-clearing activity. It is anticipated that up to one soil sample will be collected in this interval (e.g., at 4 feet bgs), which will be performed using a hand auger.

During geoprobing activities, soil will be continuously logged in the boring and recorded on the boring log. Soil samples will also be collected and selected for analysis. Determination of where to collect the samples will depend on field indications of contamination (odor, sheen, photoionization detection [PID], discoloration), the depth of the water table, and via evaluation of the depths of contamination identified in previous sampling of surrounding portions of the landfill. It is anticipated that soil for analysis will be collected in each boring at or near the water table, with one sample above the water table (such as at 4 feet bgs, where previous borings identified

petroleum odors), and one below the water table. Soil samples will be collected from all four borings and will be analyzed for PCBs, polycyclic aromatic hydrocarbons (PAHs), TPH, and metals. A silt overbank deposit underlies much of the site (at about 12 to 18 feet bgs) and the base of this unit would comprise the target depth. The maximum total depth for each boring will be approximately 20 feet bgs.

One groundwater sample will be collected from each soil boring, within the uppermost water zone encountered. This would represent either the shallow perched water, or groundwater at the regional water table in the A-zone unit in the alluvial aquifer. An attempt will be made to collect the sample from a depth with a relatively coarse material, which may be in the alluvial aquifer below the silt overbank deposit.

To collect the groundwater grab samples, the direct-push drill rod will be advanced to the desired depth. A temporary slotted well screen will be placed inside the drill rod to the desired screened interval. The rod will then be extracted sufficiently to allow groundwater to infiltrate the screen. The groundwater will be purged using a peristaltic pump until field parameters stabilize and turbidity minimizes. The following water-quality parameter will be measured: pH, turbidity, specific conductance, and temperature. Once parameters have stabilized, a groundwater sample will be collected and submitted to the analytical laboratory for analysis of PCBs, VOCs, SVOCs, TPH, and total (unfiltered) metals.

A PID will be used to monitor for VOCs in the soil material during geoprobe activities. Upon opening the geoprobe core, a small portion of the soil from each layer (approximately every foot) will be removed and placed in a freezer Ziploc bag. These will be allowed to reach ambient temperatures and then the PID will be inserted into the bag to determine the approximate concentration of organic volatile constituents in the headspace of the bag. This PID reading (in parts per million) will be recorded on the boring log and used in the process of determining the more contaminated zones in each boring, for selection of soil samples for analysis. The PID will also be used to monitor the breathing zone during geoprobe activities. The PID will be calibrated daily with a gas of known concentration (e.g., isobutylene). All daily calibration information will be recorded in the field logbook.

To ensure that chemical analysis results reflect the actual concentrations at sampling locations, equipment used in survey and sampling activities (including drill rig equipment) must be properly cleaned and decontaminated. Therefore, equipment used to conduct survey and sampling activities will be decontaminated before sampling activities begin, between sampling activities, and after sampling activities have been completed.

Decontaminated equipment will be used to collect each sample. All sampling equipment, including stainless steel bowls and spoons, will be initially washed with laboratory-grade, non-phosphate detergent (i.e., Liquinox®), scrubbed, and rinsed with potable water. Deionized or distilled water will be used for final rinsing. Table 2-1 lists the target parameters and the analytical method by which each parameter will be analyzed. Analytes for investigation of soil and groundwater were identified based on previous investigations and project scoping requirements.

Analysis	Analytical Method	Estimated Maximum Number of Soil Samples	Estimated Maximum Number of Groundwater Samples
PCBs	EPA 8082	12	4
VOCs	EPA 8260C	0	4
SVOCs (full suite)	EPA 8270D	0	4
PAHs	EPA 8270D	12	0
Metals	EPA 6020B/7040A	12	4
Total Petroleum Hydrocarbons	NWTPH-Gx, -Dx	12	4

Table 2-1. Chemical Analyses and Maximum Sample Numbers

The list of target parameters, the analytical method by which each parameter will be analyzed, the method holding times, the containers, and the preservatives are included in Section 3.2.2.

2.2.1 Sample Identification, Containers, and Labels

Samples will be identified by facility abbreviation, location identifier, depth (soil top depth), and groundwater matrix (Table 2-2). For example, a soil sample may be designated 7901-SB-02-15 (boring #2 at 15 feet bgs), and a groundwater sample may be designated 7901-SB-03-GW (groundwater grab sample collected from boring #3). All samples collected during the investigation will be labeled clearly and legibly.

Sample Type	Facility Abbreviation	Location Identifier	Soil Depth	Groundwater Matrix
Soil	7901	SB-02	15	
Groundwater	7901	SB-03		GW

Table 2-2. Sample Identification Examples

 $7901 = 7901 \ 2^{nd} \ Ave \ S \ parcel$

Sample labels will be self-adhering, waterproof material. Indelible ink will be used to complete each sample label, which will contain the project name, sample identification, date and time of collection, analysis and method to be conducted (or a reference to a priority of analysis list on the chain of custody [CoC] form), preservation, and the initials of the person preparing the sample. Labels will be affixed to sample jars and bottles. Modifications to the sampling containers may be made during sample collection based on available sample volume.

2.2.2 Sample Storage and Delivery

All samples will be stored in sturdy, insulated coolers and preserved by cooling with ice or frozen gel-packs to a temperature between 0°C and 6°C. Maximum sample holding and extraction times will be strictly adhered to by field personnel for sample delivery and by the analytical laboratory (see Section 3.0).

Leidos field personnel will be responsible for packaging the samples, signing the CoC forms, and notifying the laboratory and project chemist of the estimated delivery time. Upon receipt of samples at the laboratory, the condition of the samples will be recorded by the receiver.

2.2.3 Waste Disposal and Handling Procedures

IDW generated during the field activities may include soil, investigation-derived debris (asphalt and/or concrete), purge water, decontamination fluids, PPE, and expendable solid waste associated with general field operations. Potentially contaminated soil, groundwater and decontamination fluids will be stored at the site in a steel drum.

The following waste handling procedures will be used during implementation of the SAP:

- Containers of IDW generated during field activities will be labeled and dated with information appropriate for accurate tracking and identification of the containers and their contents. IDW containers will be labeled as "Pending Analysis" until the results of analytical testing are received.
- Non-hazardous solid wastes that may be generated during field sampling activities, including gloves, foil, paper, plastic bags, disposable sampling equipment and other miscellaneous types of debris, will be disposed as sanitary waste by the drilling subcontractor or Leidos personnel in approved municipal waste receptacles.
- Final waste determinations will be based on knowledge of where and how the waste was generated and analytical results from the sampling locations. Wherever possible, testing results from analytical samples collected as part of the sampling program will be used to make waste determinations. None of the IDW is expected to be hazardous waste.
- If onsite disposal is allowed by the individual facility (e.g., into existing groundwater waste drums), this option will be followed.

2.3 Field Documentation

A complete record of field activities will be maintained. Documentation necessary to meet QA objectives for this project include field notes and field forms, sample container labels, and CoC forms. The field documentation will provide descriptions of all sampling activities, sampling personnel, and weather conditions, and will record all modifications, decisions, and/or corrective actions to the study design and procedures identified in this SAP.

A field logbook(s) will be kept onsite during field operations. Daily activities will be recorded in a bound field logbook with water-resistant numbered pages. All entries will be made legibly, in indelible ink, and will be signed and dated daily. Information recorded will include the following:

- Date, time, place, and location of sampling;
- Onsite personnel and visitors;
- Daily safety discussion and any safety issues;
- QA/QC samples collected (i.e., duplicate samples and rinse blanks);
- Field measurements (depth to water, etc.) and their units; and
- Observations about the site, location, and samples (weather, odor, appearance, etc.).

Field logbooks are intended to provide sufficient data and observations to enable participants to reconstruct events that occur during project field activities. Entries will be factual, detailed, and objective. Unless restricted by weather conditions, all original data recorded in field logbooks and on sample identification tags, CoC records, and field forms will be written in waterproof ink. If an error is made, the individual responsible may make corrections simply by crossing out the error with a single line and recording the correct information next to it. The erroneous information must not be obliterated. All corrections must be initialed and dated. All documentation, including voided entries, must be maintained within project files.

The field crew will retain samples at all times until samples are relinquished to be delivered to the laboratory. CoC forms will be initiated at the time of sample collection to ensure that all collected samples are properly documented and traceable through storage, transport, and analysis. When all line items on the form are completed or when the samples are relinquished, the sample collection custodian will sign and date the form, list the time, and confirm the completeness of all descriptive information contained on the form. Each individual who subsequently assumes responsibility for the sample will sign the CoC form and provide the reason for assuming custody. The field custody terminates when the laboratory receives the samples. The FM will retain a copy of the completed, signed, form(s) for project files.

2.4 Laboratory Analyses

Analytical laboratory reports will be accompanied by sufficient raw data and QC results to enable independent reviewers to evaluate the quality of the data, to validate the data, and to recalculate the results, as appropriate. The analytical laboratory deliverables are listed in Section 3.0.

3.0 Quality Assurance Project Plan

The purpose of the QAPP is to provide confidence in the analytical results through a system of QA/QC performance checks with respect to data collection methods, laboratory analysis, data reporting, and appropriate corrective actions to achieve compliance with established performance and data quality criteria. This section presents the QA/QC protocols used to ensure that the data obtained during the investigation are legally defensible and usable for their intended purpose.

3.1 Measurements of Data Quality

The quality of the data reported by the laboratories will be evaluated for accuracy, precision, representativeness, completeness, and comparability as described below.

Accuracy is the degree to which an observed measurement agrees with an accepted reference or true value. Accuracy is a measure of the bias in the system and is expressed as the percent recoveries of spiked analytes in matrix spike/matrix spike duplicate (MS/MSD) and laboratory control sample/laboratory control sample duplicate (LCS/LCSD) samples. LCSD analysis is only required for analytical batches that don't have an associated MS/MSD. Accuracy will also be evaluated through the surrogate spikes in each sample for organic analysis. The performance-based laboratory control limits for accuracy will be used for the project.

Precision is a measure of mutual agreement among individual measurements of the same property under prescribed conditions. Precision will be assessed by the analysis of MS/MSD samples, and LCS/LCSD samples. The calculated relative percent differences (RPDs) for laboratory duplicates or MS/MSD pairs will provide information on the precision of sampling and analytical procedures, and the RPDs for LCS/LCSD pairs will provide information on precision of the analytical procedures. LCSD analysis is only required for analytical batches that don't have an associated MS/MSD. The performance-based laboratory control limits for precision will be used for the project.

Representativeness expresses the degree to which data accurately and precisely represent an actual condition or characteristic at a particular sampling point. Representativeness is achieved by collecting samples representative of the matrix at the time of collection. Representativeness is also achieved by ensuring that standard sample handling and analytical methodology are followed.

Completeness refers to the amount of acceptable data points collected relative to the amount needed to achieve the project's technical objectives. Completeness is calculated as the number of valid data points achieved divided by the total number of data points expected for all requested analyses. For this project, the overall completeness objective is 95 percent.

Comparability is based on the use of established U.S. Environmental Protection Agency (EPA)-approved methods for the analysis of the selected parameters. The quantification of the analytical parameters is based on published methods, supplemented with well-documented procedures used in the laboratory to ensure reproducibility of the data.

3.2 Quality Assurance and Quality Control

Field and laboratory QA/QC samples will be used to evaluate the data precision, accuracy, representativeness, and comparability of the analytical results. The field QA samples to be collected are described in Section 3.2.1. The laboratory QA samples are discussed in Section 3.2.2.

3.2.1 Field Quality Assurance/Quality Control Samples

Field duplicate, equipment rinse blank, and source blank collection and analysis are not part of the scope for this project. Field sample accuracy and precision will be assessed through the collection and analysis of MS/MSD samples. MS and MSD samples are a form of laboratory QA/QC for determining matrix effects and the reliability of the analytical processes and equipment. The matrix effect is a condition in which sample composition interferes with the analysis of the desired analyte(s). To meet analytical EPA frequency requirements, extra volume will be collected for the analysis of one soil MS/MSD pair and one aqueous MS/MSD pair for each analytical parameter. The sampling locations chosen for MS/MSD analysis will require enough sample volume to perform the analysis in triplicate (i.e., primary analysis, MS analysis, and MSD analysis).

3.2.2 Laboratory Quality Assurance/Quality Control Samples

Instrument calibration and laboratory QA/QC sample requirements are defined in the test methods and the laboratory's written standard operating procedures. An LCSD should be analyzed if the laboratory does not have sufficient sample volume to prepare a project-specific MS/MSD for organic test methods. The results of these samples will provide information on the accuracy and precision of the chemical analysis and will be used to qualify data, as necessary, during data validation using EPA functional guidelines modified as necessary to accommodate non-Contract Laboratory Program (i.e., EPA SW-846 methodology) (EPA 1986) analytical methods (EPA 2008, 2016).

Analytical methods, sample container, and minimum sample volumes are summarized in Table 3-1. The sample volumes provided in Table 3-1 are the amount necessary to perform field sample analysis. Additional sample volume is required for MS/MSDs and will be addressed during the field sampling planning process and placement of the sample container order with TestAmerica.

Table 3-1. Analytical Methods, Sample Container, and Absolute Minimum Sample Volume Requirements

Laboratory	Analyte Group	Analytical Method	Sample Container ¹	Minimum/Preferred Sample Volume
	· · · · · · · · ·	Soil Sar	nples	
TestAmerica	PCB Aroclors	SW 8082A	One 4 oz. amber glass w/ Teflon-lined cap	10 g
TestAmerica	GRO	NWTPH-Gx	Two 40 ml glass vials w/ Teflon-lined septa caps	5 g
TestAmerica	DRO	NWTPH-Dx	One 4 oz. amber glass w/	20 g
TestAmerica	SVOCs	SW 8270D	Teflon-lined cap	20 g
TestAmerica	PP Metals ²	SW 6020B	One 4 oz. amber glass w/	20 g
TestAmerica	Mercury	SW 7471A	Teflon-lined cap	10 g
		Groundwate	r Samples	
TestAmerica	PCB Aroclors	SW 8082A	Two 500 ml glass amber bottles with Teflon-lined lid	500 mL
TestAmerica	GRO	NWTPH-Gx	Three 40 ml glass vials w/ Teflon-lined septa caps	5 mL
TestAmerica	DRO	NWTPH-Dx	Two 500 ml glass jars w/Teflon-lined lid.	500 mL
TestAmerica	PAHs	SW 8270D	Two 500 ml glass amber bottles with Teflon-lined lid	500 mL
TestAmerica	VOCs	SW 8260B/C	Three 40 ml glass vials w/ Teflon-lined septa caps	5 mL
TestAmerica	Total ³ PP Metals + Iron, Manganese	SW 6020B	One 250 ml plastic bottle	75 mL
TestAmerica	Mercury	SW 7470A	7	50 mL

SW = SW-846; EPA Test Methods for Evaluating Solid Waste: Physical/Chemical Methods Compendium. NWTPH = Ecology 1997; Analytical Methods for Petroleum Hydrocarbons.

Table 3-2 lists the analytical methods, holding times, and preservation requirements for all targeted analyses. The frequency requirements for the analysis of laboratory QA/QC samples are summarized in Table 3-3. Acceptance criteria for laboratory QA/QC samples are summarized in Table 3-4, and method detection limits (MDLs) and reporting limits for each analytical method are provided in Appendix B.

¹ Multiple analyses may be consolidated into fewer containers. Leidos will work with the TestAmerica Project Manager for clarification when requesting sample containers for this project. The table above includes the collection of extra volume in cases where extra sample may be required in case of container breakage during sample shipment and/or back-up sample may be necessary if re-analysis is required.

² PP (priority pollutant) metals include silver, arsenic, beryllium, cadmium, chromium, copper, mercury, nickel, lead, antimony, selenium, thallium and zinc.

³ Metals analyses for groundwater will be total (unfiltered) and preserved in the field.

Table 3-2. Analytical Methods, Holding Times, and Preservation Requirements

Analyte Group	Analytical Method	Holding Time	Preservation
	Soil	Samples	•
PCB Aroclors	SW 8082A	1 year ¹	Cool (2 – 6°C)
GRO	NWTPH-Gx	14 days	Cool (2 – 6°C)
DRO	NWTPH-Dx	14 days	Cool (2 – 6°C)
SVOCs	SW 8270D	14 days extraction; 40 days analysis	Cool (2 – 6°C)
PP Metals	SW 6020A	180 days	Cool (2 – 6°C)
Mercury	SW 7471A	28 days	Cool (2 – 6°C)
	Groundw	ater Samples	•
PCB Aroclors	SW 8082A	1 year	Cool (2 – 6°C)
GRO	NWTPH-Gx	14 days extraction; 40 days analysis	Cool $(2 - 6^{\circ}C)$, HCL pH ≤ 2
DRO	NWTPH-Dx	14 days extraction; 40 days analysis	Cool $(2 - 6^{\circ}C)$, HCL pH ≤ 2
PAHs	SW 8270D	7 days extraction; 40 days analysis	Cool (2 – 6°C)
VOCs	SW 8260C	14 days	Cool $(2 - 6^{\circ}C)$, HCL pH ≤ 2
Total PP Metals + Iron, Manganese	SW 6020A	180 days	Cool (2 – 6°C), HNO ₃ preserved
Mercury	SW 7470A	28 days	Cool (2 – 6°C), HNO ₃ preserved

¹ Holding time based on 40 CFR 136.

Table 3-3. Laboratory QA/QC Sample Frequency Requirements

Analysis	Initial Calibration	CCV	LCS/LCSD	Method Blank	MS/MSD	Surrogates
PCB Aroclors	Prior to analysis; when ICV/CCV fails	10 field samples, and end of batch	One per prep batch. LCSD required if no MSD	One per prep batch	Rate of 5% for all field samples analyzed.	Every sample
GRO	Prior to analysis; when CCV fails	Daily, before and after samples are analyzed	One per prep batch. LCSD required if no MSD	1	Rate of 5% for all field samples analyzed.	Every sample
DRO	Prior to analysis; when CCV fails	Daily, before and after samples are analyzed.	One per prep batch. LCSD required if no MSD		Rate of 5% for all field samples analyzed.	Every sample
SVOCs	Prior to analysis; when ICV/CCV fails		One per prep batch. LCSD required if no MSD	1	Rate of 5% for all field samples analyzed.	Every sample
PP Metals (including mercury)	Daily; prior to sample analysis;	After every 10 field samples analyzed	One per prep batch. LCSD	1	Rate of 5% for all field samples analyzed.	NA

Analysis	Initial Calibration	CCV	LCS/LCSD	Method Blank	MS/MSD	Surrogates
	when ICV/CCV fails		required if no MSD			S
PAHs	Prior to analysis; when ICV/CCV fails		One per prep batch. LCSD required if no MSD	One per prep batch	Rate of 5% for all field samples analyzed.	Every sample
VOCs	Prior to analysis; when ICV/CCV fails	Daily; before sample analysis; every 12 hours and end of analytical batch	One per prep batch. LCSD required if no MSD	One per prep batch	Rate of 5% for all field samples analyzed.	Every sample

See listing of Acronyms and Abbreviations for definition of acronyms in this table.

Table 3-4. Laboratory QA/QC Sample Acceptance Criteria – DQOs

	Data Quality	Measurement Performance	QC Sample and/or Activity Used to Assess Measurement
Analytical Group	Indicator	Criterion	Performance
All Analytical groups	Completeness	≥95 percent; determined by the number of valid data points achieved divided by the total number of data points expected for all requested analyses (not rejected during validation)	All usable sample data points collected
All Analytical Groups	Accuracy/Bias contamination	< Laboratory reporting limit	Method blank
SW-846 8000 Series Organic Methods	Analytical instrument accuracy	Within ± 20% of true value	CCV
SW-846 8000 Series Organic Methods	Accuracy and precision	See Appendix E for Laboratory In-house precision and accuracy limits.	MS/MSD LCS/LCSD
SW-846 8000 Series Organic Methods	Accuracy	See Appendix E for Laboratory In-house precision and accuracy limits.	Surrogate
SW-846 8000 Series Organic Methods	Accuracy/Bias	Area within -50% to + 100% of ICAL midpoint standard	Internal Standard (IS) (for GC/MS methods: PAHs, SVOCs, VOCs)
SW-846 8000 Series Organic Methods	Accuracy/Bias	RPD ≤ 40%	Second column confirmation (For GC methods: PCB Aroclors)
NWTPH-Gx	Analytical instrument accuracy	Within ± 20% of true value	CCV
NWTPH-Gx	Accuracy	Within ± 50% of true value	Surrogate
NWTPH-Gx	Precision	See Appendix E for Laboratory In-house precision and accuracy limits.	Laboratory duplicate
NWTPH-Gx	Accuracy/Precision	See Appendix E for Laboratory In-house precision and accuracy limits.	LCS/LCSD MS/MSD

Analytical Group	Data Quality Indicator	Measurement Performance Criterion	QC Sample and/or Activity Used to Assess Measurement Performance
NWTPH-Dx	Analytical instrument accuracy	Within ± 15% of true value	CCV
NWTPH-Dx	Accuracy	Within ± 50% of true value	Surrogate
NWTPH-Dx	Precision	See Appendix E for Laboratory In-house precision and accuracy limits.	Laboratory duplicate
NWTPH-Dx	Accuracy/Precision	See Appendix E for Laboratory In-house precision and accuracy limits.	LCS/LCSD MS/MSD
ICPMS Metals + mercury	Analytical instrument accuracy	Within ± 10% of true value	CCV
ICPMS Metals	Accuracy/Bias	IS intensity in the samples within 30-120% of intensity of the IS in the ICAL blank	Internal Standard (IS)
ICPMS Metals	Analytical instrument accuracy at the RL	Within ± 20% of true value	Low-level Calibration check (Low Level ICV)
ICPMS Metals	Accuracy/Bias	ICS-A; Absolute value of non- spiked metals < RL; ICS-AB: Within ± 20% of true value	Interference Check Solutions
ICPMS Metals + Mercury	Accuracy/Precision	See Appendix E for Laboratory In-house precision and accuracy limits.	LCS/LCSD MS/MSD/Lab Duplicate
ICPMS Metals + Mercury	Accuracy/matrix interference	$\%$ D \leq 10% for original sample values $>$ 50 x MDL	Serial Dilution

See listing of Acronyms and Abbreviations for definition of acronyms in this table.

3.2.3 Data Validation

All analytical results obtained during this investigation will undergo data validation by qualified Leidos chemists. All results will undergo data verification and validation according to EPA Stage 2B data validation (EPA 2009). Guidance from this QAPP and EPA's *National Functional Guidelines for Organic Data Review* (EPA 2008) and EPA's *National Functional Guidelines for Inorganic Data Review* (EPA 2004) will be used to validate the analytical results. The National Functional Guidelines (NFGs) referenced provide a general approach to data validation since the NFGs were designed to evaluate data from EPA's Contract Laboratory Program (CLP) and these data are being generated using SW-846 methods. If data quality concerns are noted that renders the data unusable, the laboratory will be contacted, as necessary, and the samples will be reanalyzed if sufficient volume exist, and the holding times have not been grossly exceeded. If required, field mobilization and re-sampling will occur to achieve project data quality objectives for completeness. The results of the data validation will be summarized in a Data Quality Assessment report, which will be included as an appendix to the data report described in Section 4 3

The data validation report will include a sample index that provides field sample IDs and the associated analytical groups; a data verification and validation checklist for each sample delivery group validated for any given analysis, and a summary of qualified data points and

corresponding reason codes associated with the data validation qualifiers that are provided on annotated Form I's and summarized in tabular format for each sample and analysis. The data validation process will examine all components listed in Section 3.2.4 for each analytical method, if applicable.

3.2.4 Analytical Laboratory Reports

Analytical data packages will contain sufficient information to allow for the EPA Stage 2B and review of all sample and laboratory QC sample results (e.g., calibration, method blanks, LCS/LCSD, interference check samples, serial dilutions surrogates, internals, and MS/MSD), including all raw data needed to recalculate reported results as required to meet EPA Stage 2B validation on all hazardous substance analytical results. The analytical laboratory deliverables will include, but are not limited to, the following:

- MDLs and reporting limits for each sample.
- Laboratory qualifiers reported with analyte concentrations and a summary of qualifier definitions.
- Case narrative, including any problems encountered, protocol modifications, and/or corrective actions taken.
- Sample analytical and QA/QC results with units and control limits.
- All method references used during analyses.
- Any protocol deviations from the approved QAPP.
- Instrument tuning results.
- Surrogate recovery results and control limits.
- Internal standard recovery results and control limits.
- MS/MSD results and control limits.
- Laboratory duplicate results and control limits.
- Method blank results.
- Interference check sample results.
- Serial Dilution Results
- LCS/LCSD results and control limits.
- Initial and continuing calibration results and control limits.
- Sample custody records (including original CoC forms and sample receipt information).
- Sample and QC results in the EDD format specified in Appendix F.

The analytical laboratories will provide electronic copies of the data packages to Leidos (hardcopies are not required).

4.0 Data Analysis, Recordkeeping, and Reporting Requirements

4.1 Analysis of Chemistry Data

The chemical results for groundwater and surface water samples will be processed using the data management rules presented in Appendix A. Data tables will indicate sample locations, unique sample identifiers, sample date, chemical concentrations, final data qualifiers, and chemistry results will be compared to cleanup levels, as identified in the South Park Landfill RI/FS report (Floyd|Snider 2016).

4.2 Recordkeeping

At the conclusion of the study, all records including laboratory data reports, data validation reports, and other relevant documentation will be provided to Ecology for archive.

4.3 Data Report

Due to the expedited schedule and limited budget on this project, a minimal data report will be presented. This will include primarily a data summary table comparing results to MTCA Cleanup Levels, and a sample location figure showing locations of soil borings. Electronic copies of supporting information will also be provided. At a minimum, the following will be included in the deliverable package:

- Copies of field data collection forms and borehole logs.
- CoC records.
- Electronic copies of laboratory reports and the data validation reports.

The validated chemistry data, recorded in the EDDs, will be uploaded into Ecology's EIM database following completion of the final data report, but no later than June 30, 2017. Information for entering environmental data into EIM can be found on Ecology's website: http://www.ecy.wa.gov/eim/.

5.0 References

- Ecology. 1997. Analytical Methods for Petroleum Hydrocarbons. Publication Number. ECY 97-602. June.
- EPA (U.S. Environmental Protection Agency). 1986 and updates. SW-846 Manual, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. http://www.epa.gov/epaoswer/hazwaste/test/sw846.html.
- EPA. 2007. SW-846 Method 8082A. Polychlorinated Biphenyls by Gas Chromatography. February.
- EPA. 2014. SW-846 Method 8270D. Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry. July.
- EPA. 1998. SW-846 Method 6020A. Inductively Coupled Plasma Mass Spectrometry. January.
- EPA. 1994. SW-846 Method 7471A. Mercury in Liquid Waste. September.
- EPA. 1994. SW-846 Method 7470A. Mercury in Solid or Semisolid Waste (Manual Cold-Vapor Technique). September.
- EPA. 2006. SW-846 Method 8260C. Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS). August.
- EPA. 2004. Contract Laboratory Program, National Functional Guidelines for Inorganic Data Review. Office of Emergency and Remedial Response. EPA-540/R-04-004. October.
- EPA. 2008. Contract Laboratory Program, National Functional Guidelines for Organic Data Review. Office of Emergency and Remedial Response. EPA-540-R-08-01. June.
- EPA. 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use. Office of Emergency and Remedial Response. EPA-540-R-08-005. January
- EPA. 2016. National Functional Guidelines for High Resolution Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation (OSRTI). OLEM 9200.3-115, EPA 542-B-16-001. April.
- Floyd|Snider. 2016. South Park Landfill Remedial Investigation / Feasibility Study (draft final). Prepared for City of Seattle, South Park Property Development, LLC. June.
- Science Applications International Corporation (SAIC). 2012. Summary of Existing Information and Identification of Data Gaps; Lower Duwamish Waterway, RM2.1 West, 1st Avenue South Storm Drain. Prepared for Toxics Cleanup Program, Northwest Regional Office, Washington State Department of Ecology. September.

Appendix A Data Management Procedures

A1. Reporting and Calculating Procedures

Data qualifiers will be reported by the laboratories, as defined in the data packages. Additional data qualifiers may be applied during data validation using U.S. Environmental Protection Agency functional guidelines. Leidos will review the combination of both laboratory and validation qualifiers and will report final results with a single set of interpreted qualifiers, listed in Table C-2. All data qualifiers will be maintained in the project database. Results rejected for quality assurance/quality control reasons will be reported as rejected, without quantitative values.

Final Data Qualifier	Qualifier Definition
J	Estimated concentration
U	Non-detect at the given reporting limit
UJ	Non-detect at the given reporting limit, which is estimated
С	Result is a coelution
CJ	Result is a coelution with an estimated concentration
CU	Non-detected result is a coelution
CUJ	Non-detected result is a coelution with an estimated concentration
R	Rejected

Table A-1. Final Data Qualifiers

A2. Best Result Selection

When multiple results for a single chemical are available for a sample, analyte, and fraction, one single result must be selected for reporting purposes. Chemicals analyzed by the same analytical method will be qualified by Leidos validation personnel.. However, if multiple analyses are involved, then the final result is selected by Leidos. Results not selected as the final result are qualified with a "DNR" to indicate "Do Not Report" in the project database. Results selected as the final result are reported without additional data qualification. The rationale used for best result selection is summarized below.

Detected Results

When all results are detected, the result with the highest concentration is selected as the final result. If, however, the results are from diluted and non-diluted analyses by the same analytical method, the result from the analysis with the lowest dilution factor is selected. If more than one result with the same concentration and dilution factor is available, then the result with the most certainty is selected; for example, a non-qualified result would be given preference over a result qualified as estimated (J-qualified).

Non-Detected Results

When all results are non-detected, the result with the lowest reporting limit is selected as the final result. If more than one result with the same reporting limit is available, then the result with the most certainty is selected, if known; for example, a non-qualified result (U-qualified) would be given preference over a result qualified as estimated (UJ-qualified).

Mixture of Detected and Non-Detected Results

If both detected and non-detected results are available, the detected result will be selected as the final result.

A3. Reporting and Calculating Procedures

Significant Figures

Results will be reported by Leidos using the same number of significant figures reported by the laboratory. Calculated values, including averages and calculated totals, will be reported by Leidos to two significant figures, with the exception of toxic equivalency quotients (TEQs).

Calculated Totals

Calculated analyte totals will be calculated as described below:

- Total PCBs Aroclors are calculated in accordance with the procedures described in the Washington State Sediment Management Standards (SMS) using only detected values for seven Aroclor mixtures (Aroclors 1016, 1221, 1232, 1242, 1248, 1254, and 1260). However, if detected concentrations are found for additional Aroclors, they will also be included in calculated total and will be noted accordingly in the technical memorandum and its data tables. For samples in which none of the Aroclor mixtures are detected, the total PCB Aroclor results will be given a value equal to the highest RL of the individual Aroclor mixtures and assigned a U-qualifier.
- Total polycyclic aromatic hydrocarbons (PAHs), low molecular weight PAHs (LPAHs), high molecular weight PAHs (HPAHs), and total benzofluoranthenes are calculated in accordance with the procedures described in SMS. Total LPAHs are the sum of detected concentrations of naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, and anthracene. Total HPAHs are the sum of detected concentrations of fluoranthene, pyrene, benzo(a)anthracene, chrysene, total benzofluoranthenes, benzo(a)pyrene, indeno(1,2,3,-c,d)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene. Total PAHs include all chemicals listed above for LPAH and HPAH. Total benzofluoranthenes are the sum of the b (i.e., benzo(b)fluoranthene), j, and k isomers when data for these individual isomers are available. Alternately, a total benzofluoranthenes result may be reported by the laboratory, depending on the analytical conditions. For samples in which all individual compounds within the groups described above are undetected, the single highest RL for the component chemical in that sample represents the associated total result.

Weighted Totals

Weighted calculated analyte totals will be calculated as described below:

Carcinogenic PAH (cPAH) values will be calculated using toxicity equivalency factor (TEF) values (MTCA 2001) based on an individual compound's relative toxicity to benzo(a)pyrene.

Final cPAH concentrations are equivalent to the sum of the concentrations of the seven individual cPAH compounds multiplied by their associated TEF. Non-detected values will be half of the reporting limit for data evaluation purposes.

Table A-2. cPAH TEFs

Analyte	TEF Value
Benzo(a)anthracene	0.1
Benzo(a)pyrene	1
Benzo(b)fluoranthene	0.1
Benzo(k)fluoranthene	0.1
Chrysene	0.01
Dibenz(a,h)anthracene	0.1
Indeno(1,2,3-cd)pyrene	0.1

Appendix B Standard Laboratory Reporting Limits

Analyte Description CAS Number RL MDL Units						
Analyte Description PCB Aroclors	CAS Number	KL	INIDL	Units		
PCB-1016	12674-11-2	0.025	0.0074	ma/ka		
PCB-1010 PCB-1221	11104-28-2	0.023	0.0074	mg/kg		
PCB-1221 PCB-1232	11104-28-2	0.011	0.0042	mg/kg mg/kg		
PCB-1232	53469-21-9	0.011	0.0049	mg/kg		
PCB-1248	12672-29-6	0.01	0.0010	mg/kg		
PCB-1254	11097-69-1	0.011	0.0029	mg/kg		
PCB-1254	11096-82-5	0.01	0.0013	mg/kg		
GRO	11030-82-3	0.01	0.0013	IIIg/ Ng		
TPH-Gasoline	STL00228	4	2.09	mg/kg		
DRO	51100228	<u> </u>	2.03	IIIg/ Ng		
TPH-Diesel (C10-C24)	STL00163	30	10.9	mg/kg		
TPH-Heavy Oil (>C24-C36)	STL00103	100	24.9	mg/kg		
SVOCs	D1100233	1100	J24.3			
1,2,4-Trichlorobenzene	120-82-1	50	6	ug/kg		
1,2-Dichlorobenzene	95-50-1	50	12	ug/kg		
1,3-Dichlorobenzene	541-73-1	50	4.8	ug/kg		
1,4-Dichlorobenzene	106-46-7	50	8.3	ug/kg		
1-Methylnaphthalene	90-12-0	30	5	ug/kg		
2,4,5-Trichlorophenol	95-95-4	200	45	ug/kg		
2,4,6-Trichlorophenol	88-06-2	150	36	ug/kg		
2,4-Dichlorophenol	120-83-2	100	15	ug/kg		
2,4-Dimethylphenol	105-67-9	100	15	ug/kg		
2,4-Dinitrophenol	51-28-5	1000	200	ug/kg		
2,4-Dinitrotoluene	121-14-2	200	43	ug/kg		
2,6-Dinitrotoluene	606-20-2	150	34	ug/kg		
2-Chloronaphthalene	91-58-7	25	5	ug/kg		
2-Chlorophenol	95-57-8	200	42	ug/kg		
2-Methylnaphthalene	91-57-6	50	8.8	ug/kg		
2-Methylphenol	95-48-7	150	37	ug/kg		
2-Nitroaniline	88-74-4	100	15	ug/kg		
2-Nitrophenol	88-75-5	200	46	ug/kg		
3 & 4 Methylphenol	15831-10-4	200	15	ug/kg		
3,3'-Dichlorobenzidine	91-94-1	400	100	ug/kg		
3-Nitroaniline	99-09-2	200	40	ug/kg		
4,6-Dinitro-2-methylphenol	534-52-1	1000	100	ug/kg		
4-Bromophenyl phenyl ether	101-55-3	200	41	ug/kg		
4-Chloro-3-methylphenol	59-50-7	150	33	ug/kg		
4-Chloroaniline	106-47-8	1500	400	ug/kg		
4-Chlorophenyl phenyl ether	7005-72-3	200	41	ug/kg		
4-Nitroaniline	100-01-6	100	20	ug/kg		

Analyte Description	CAS Number	RL	MDL	Units
4-Nitrophenol	100-02-7	1500	368	ug/kg
Acenaphthene	83-32-9	25	5	ug/kg
Acenaphthylene	208-96-8	25	5	ug/kg
Anthracene	120-12-7	25	5	ug/kg
Benzo[a]anthracene	56-55-3	25	5	ug/kg
Benzo[a]pyrene	50-32-8	60	13	ug/kg
Benzo[b]fluoranthene	205-99-2	25	5	ug/kg
Benzo[g,h,i]perylene	191-24-2	60	15	ug/kg
Benzo[k]fluoranthene	207-08-9	60	14	ug/kg
Benzoic acid	65-85-0	2500	1060	ug/kg
Benzyl alcohol	100-51-6	4000	37	ug/kg
Bis(2-chloroethoxy)methane	111-91-1	200	41	ug/kg
Bis(2-chloroethyl)ether	111-44-4	200	40	ug/kg
Bis(2-ethylhexyl) phthalate	117-81-7	600	136	ug/kg
bis(chloroisopropyl) ether	108-60-1	250	37	ug/kg
Butyl benzyl phthalate	85-68-7	200	50	ug/kg
Carbazole	86-74-8	150	31	ug/kg
Chrysene	218-01-9	60	13	ug/kg
Dibenz(a,h)anthracene	53-70-3	50	12	ug/kg
Dibenzofuran	132-64-9	150	36	ug/kg
Diethyl phthalate	84-66-2	550	132	ug/kg
Dimethyl phthalate	131-11-3	150	33	ug/kg
Di-n-butyl phthalate	84-74-2	500	57	ug/kg
Di-n-octyl phthalate	117-84-0	1000	222	ug/kg
Fluoranthene	206-44-0	25	5	ug/kg
Fluorene	86-73-7	25	5	ug/kg
Hexachlorobenzene	118-74-1	50	5	ug/kg
Hexachlorobutadiene	87-68-3	50	15	ug/kg
Hexachlorocyclopentadiene	77-47-4	100	26	ug/kg
Hexachloroethane	67-72-1	150	38	ug/kg
Indeno[1,2,3-cd]pyrene	193-39-5	40	5	ug/kg
Isophorone	78-59-1	150	37	ug/kg
Naphthalene	91-20-3	25	5	ug/kg
Nitrobenzene	98-95-3	200	42	ug/kg
N-Nitrosodi-n-propylamine	621-64-7	200	44	ug/kg
N-Nitrosodiphenylamine	86-30-6	60	15	ug/kg
Pentachlorophenol	87-86-5	400	91	ug/kg
Phenanthrene	85-01-8	60	12	ug/kg
Phenol	108-95-2	150	38	ug/kg
Pyrene	129-00-0	60	15	ug/kg
Metals				
Antimony	7440-36-0	0.2	0.068	mg/kg

Laboratory Reporting Limits and Method Detection Limits – Soil					
Analyte Description	CAS Number	RL	MDL	Units	
Arsenic	7440-38-2	0.5	0.1	mg/kg	
Beryllium	7440-41-7	0.2	0.015	mg/kg	
Cadmium	7440-43-9	0.2	0.077	mg/kg	
Chromium	7440-47-3	0.5	0.063	mg/kg	
Copper	7440-50-8	1	0.22	mg/kg	
Lead	7439-92-1	0.5	0.048	mg/kg	
Nickel	7440-02-0	0.5	0.193	mg/kg	
Selenium	7782-49-2	1	0.218	mg/kg	
Silver	7440-22-4	0.2	0.02	mg/kg	
Thallium	7440-28-0	0.4	0.055	mg/kg	
Zinc	7440-66-6	5	1.61	mg/kg	
Mercury	7439-97-6	0.03	0.009	mg/kg	

Laboratory Reporting Limits and Method Detection Limits – Water					
Analyte Description	CAS Number	RL	MDL	Units	
PCB Aroclors					
PCB-1016	12674-11-2	0.5	0.021	ug/L	
PCB-1221	11104-28-2	0.5	0.03	ug/L	
PCB-1232	11141-16-5	0.5	0.027	ug/L	
PCB-1242	53469-21-9	0.5	0.028	ug/L	
PCB-1248	12672-29-6	0.5	0.021	ug/L	
PCB-1254	11097-69-1	0.5	0.02	ug/L	
PCB-1260	11096-82-5	0.5	0.026	ug/L	
GRO					
TPH-Gasoline	STL00228	0.5	0.05	mg/L	
DRO					
TPH-Diesel (C10-C24)	STL00163	0.25	0.09	mg/L	
TPH-Heavy Oil (>C24-C36)	STL00299	0.5	0.166	mg/L	
PAHs					
1-Methylnaphthalene	90-12-0	0.02	0.006	ug/L	
2-Methylnaphthalene	91-57-6	0.03	0.009	ug/L	
Acenaphthene	83-32-9	0.02	0.002	ug/L	
Acenaphthylene	208-96-8	0.02	0.002	ug/L	
Anthracene	120-12-7	0.02	0.003	ug/L	
Benzo[a]anthracene	56-55-3	0.02	0.002	ug/L	
Benzo[a]pyrene	50-32-8	0.02	0.003	ug/L	
Benzo[b]fluoranthene	205-99-2	0.02	0.008	ug/L	
Benzo[g,h,i]perylene	191-24-2	0.02	0.003	ug/L	
Benzo[k]fluoranthene	207-08-9	0.03	0.009	ug/L	
Chrysene	218-01-9	0.02	0.006	ug/L	
Dibenz(a,h)anthracene	53-70-3	0.02	0.002	ug/L	
Fluoranthene	206-44-0	0.02	0.002	ug/L	

		B 4	1.1 . **
CAS Number	RL	MDL	Units
_		_	ug/L
	+	_	ug/L
	<u> </u>		ug/L
	+		ug/L
129-00-0	0.02	0.004	ug/L
Isaa aa s	lo o	lo 00=	1 /
		_	ug/L
	+	_	ug/L
			ug/L
		_	ug/L
	+		ug/L
75-35-4	0.1	0.018	ug/L
563-58-6	0.1		ug/L
87-61-6	0.5	0.1	ug/L
96-18-4	0.2	0.05	ug/L
120-82-1	0.2	0.04	ug/L
95-63-6	0.2	0.03	ug/L
96-12-8	2	0.44	ug/L
95-50-1	0.3	0.05	ug/L
107-06-2	0.2	0.025	ug/L
78-87-5	0.2	0.025	ug/L
108-67-8	0.5	0.083	ug/L
541-73-1	0.3	0.05	ug/L
142-28-9	0.2	0.025	ug/L
106-46-7	0.3	0.05	ug/L
594-20-7	0.5	0.06	ug/L
95-49-8	0.5	0.07	ug/L
	+		ug/L
			ug/L
	 		ug/L
	+		ug/L
	+	_	ug/L
	 		ug/L
	+		ug/L
_		_	ug/L
	+		ug/L
	+		ug/L ug/L
	+		
	+		ug/L
			ug/L
	+		ug/L
_		_	ug/L ug/L
	563-58-6 87-61-6 96-18-4 120-82-1 95-63-6 96-12-8 95-50-1 107-06-2 78-87-5 108-67-8 541-73-1 142-28-9 106-46-7 594-20-7	193-39-5 0.02 91-20-3 0.04 85-01-8 0.02 129-00-0 0.02 630-20-6 0.2 71-55-6 0.2 79-34-5 0.2 79-00-5 0.2 75-34-3 0.2 75-35-4 0.1 563-58-6 0.1 87-61-6 0.5 96-18-4 0.2 120-82-1 0.2 95-63-6 0.2 96-12-8 2 95-50-1 0.3 107-06-2 0.2 78-87-5 0.2 108-67-8 0.5 541-73-1 0.3 142-28-9 0.2 106-46-7 0.3 594-20-7 0.5 95-49-8 0.5 106-43-4 0.3 99-87-6 0.3 71-43-2 0.2 108-86-1 0.2 75-25-2 0.5 74-83-9 1 56-23-5 0.2 124-48-1 0.2 <tr< td=""><td>193-39-5 0.02 0.007 91-20-3 0.04 0.013 85-01-8 0.02 0.004 129-00-0 0.02 0.004 630-20-6 0.2 0.025 71-55-6 0.2 0.025 79-34-5 0.2 0.025 75-34-3 0.2 0.025 75-35-4 0.1 0.018 563-58-6 0.1 0.015 87-61-6 0.5 0.1 96-18-4 0.2 0.05 120-82-1 0.2 0.04 95-63-6 0.2 0.03 96-12-8 2 0.44 95-50-1 0.3 0.05 107-06-2 0.2 0.025 78-87-5 0.2 0.025 108-67-8 0.5 0.083 541-73-1 0.3 0.05 106-46-7 0.3 0.05 106-43-4 0.3 0.05 99-87-6 0.3 0.05 <t< td=""></t<></td></tr<>	193-39-5 0.02 0.007 91-20-3 0.04 0.013 85-01-8 0.02 0.004 129-00-0 0.02 0.004 630-20-6 0.2 0.025 71-55-6 0.2 0.025 79-34-5 0.2 0.025 75-34-3 0.2 0.025 75-35-4 0.1 0.018 563-58-6 0.1 0.015 87-61-6 0.5 0.1 96-18-4 0.2 0.05 120-82-1 0.2 0.04 95-63-6 0.2 0.03 96-12-8 2 0.44 95-50-1 0.3 0.05 107-06-2 0.2 0.025 78-87-5 0.2 0.025 108-67-8 0.5 0.083 541-73-1 0.3 0.05 106-46-7 0.3 0.05 106-43-4 0.3 0.05 99-87-6 0.3 0.05 <t< td=""></t<>

Laboratory Reporting Limits and Method Detection Limits – Water					
Analyte Description	CAS Number	RL	MDL	Units	
Dibromomethane	74-95-3	0.2	0.025	ug/L	
Dichlorobromomethane	75-27-4	0.2	0.025	ug/L	
Dichlorodifluoromethane	75-71-8	0.4	0.05	ug/L	
Ethylbenzene	100-41-4	0.2	0.03	ug/L	
Ethylene Dibromide	106-93-4	0.1	0.025	ug/L	
Hexachlorobutadiene	87-68-3	0.5	0.075	ug/L	
Isopropylbenzene	98-82-8	0.5	0.06	ug/L	
Methyl tert-butyl ether	1634-04-4	0.2	0.025	ug/L	
Methylene Chloride	75-09-2	0.5	0.11	ug/L	
m-Xylene & p-Xylene	179601-23-1	0.5	0.05	ug/L	
Naphthalene	91-20-3	0.5	0.1	ug/L	
n-Butylbenzene	104-51-8	0.5	0.08	ug/L	
N-Propylbenzene	103-65-1	0.2	0.025	ug/L	
o-Xylene	95-47-6	0.5	0.06	ug/L	
sec-Butylbenzene	135-98-8	0.5	0.07	ug/L	
Styrene	100-42-5	0.5	0.1	ug/L	
tert-Butylbenzene	98-06-6	0.5	0.1	ug/L	
Tetrachloroethene	127-18-4	0.5	0.07	ug/L	
Toluene	108-88-3	0.2	0.025	ug/L	
trans-1,2-Dichloroethene	156-60-5	0.2	0.025	ug/L	
trans-1,3-Dichloropropene	10061-02-6	0.2	0.025	ug/L	
Trichloroethene	79-01-6	0.2	0.025	ug/L	
Trichlorofluoromethane	75-69-4	0.5	0.025	ug/L	
Vinyl chloride	75-01-4	0.02	0.013	ug/L	
Metals					
Antimony	7440-36-0	0.002	0.00055	mg/L	
Arsenic	7440-38-2	0.005	0.00135	mg/L	
Beryllium	7440-41-7	0.002	0.000215	mg/L	
Cadmium	7440-43-9	0.002	0.0005	mg/L	
Chromium	7440-47-3	0.002	0.000705	mg/L	
Copper	7440-50-8	0.01	0.00302	mg/L	
Iron	7439-89-6	1	0.178	mg/L	
Lead	7439-92-1	0.004	0.000995	mg/L	
Manganese	7439-96-5	0.01	0.0023	mg/L	
Nickel	7440-02-0	0.015	0.00054	mg/L	
Selenium	7782-49-2	0.04	0.0103	mg/L	
Silver	7440-22-4	0.002	0.000215	mg/L	
Thallium	7440-28-0	0.005	0.000325	mg/L	
Zinc	7440-66-6	0.035	0.0095	mg/L	
Mercury	7439-97-6	0.0003	0.00015	mg/L	

Appendix C

Laboratory In-house Quality Control Limits

Laboratory In-House Quality Control Criteria						
Analyta Description	LCL % Recovery	UCL % Passyony	LCS/LCSD % RPD	MS/MSD % RPD		
Analyte Description PCB Aroclors - Soil	% Recovery	% Recovery	% KPD	70 KPD		
PCB-1016	51	129	25	25		
PCB-1010	45	130	40	40		
	37	140	NA	NA		
DCB Decachlorobiphenyl (Surr)						
Tetrachloro-m-xylene (Surr) GRO - Soil	45	135	NA	NA		
	CO	120	25	25		
TPH-Gasoline	68	120	25	35		
4-Bromofluorobenzene (Surr)	50	150	NA	NA NA		
Trifluorotoluene (Surr)	50	150	NA	NA		
DRO - Soil		407	4.5			
TPH-Diesel (C10-C24)	70	125	16	16		
TPH-Heavy Oil (>C24-C36)	64	127	17	17		
o-Terphenyl (Surr)	50	150	NA	NA		
SVOCs - Soil						
1,2,4-Trichlorobenzene	66	115	18	40		
1,2-Dichlorobenzene	64	112	20	40		
1,3-Dichlorobenzene	64	111	19	40		
1,4-Dichlorobenzene	64	110	19	40		
1-Methylnaphthalene	73	118	19	40		
2,4,5-Trichlorophenol	63	117	23	40		
2,4,6-Trichlorophenol	62	124	22	40		
2,4-Dichlorophenol	68	125	19	40		
2,4-Dimethylphenol	32	145	40	40		
2,4-Dinitrophenol	20	141	40	40		
2,4-Dinitrotoluene	68	121	18	40		
2,6-Dinitrotoluene	74	115	19	40		
2-Chloronaphthalene	68	112	19	40		
2-Chlorophenol	68	117	20	40		
2-Methylnaphthalene	71	119	18	40		
2-Methylphenol	64	124	25	40		
2-Nitroaniline	64	121	22	40		
2-Nitrophenol	67	127	19	40		
3 & 4 Methylphenol	70	116	27	40		
3,3'-Dichlorobenzidine	30	103	29	40		
3-Nitroaniline	21	103	25	40		
4,6-Dinitro-2-methylphenol	34	140	34	40		
4-Bromophenyl phenyl ether	68	122	17	40		
4-Chloro-3-methylphenol	69	121	27	40		

Laboratory In-House Quality Control Criteria						
	LCL	UCL	LCS/LCSD	MS/MSD		
Analyte Description	% Recovery	% Recovery	% RPD	% RPD		
4-Chloroaniline	20	103	40	40		
4-Chlorophenyl phenyl ether	75	117	17	40		
4-Nitroaniline	46	118	32	40		
4-Nitrophenol	20	150	20	40		
Acenaphthene	68	116	17	40		
Acenaphthylene	68	120	17	40		
Anthracene	73	123	16	40		
Benzo[a]anthracene	68	125	17	40		
Benzo[a]pyrene	66	117	18	40		
Benzo[b]fluoranthene	63	132	20	40		
Benzo[g,h,i]perylene	60	130	22	40		
Benzo[k]fluoranthene	63	130	19	40		
Benzoic acid	20	150	40	40		
Benzyl alcohol	36	137	26	40		
Bis(2-chloroethoxy)methane	69	119	20	40		
Bis(2-chloroethyl)ether	62	110	22	40		
Bis(2-ethylhexyl) phthalate	55	144	19	40		
bis(chloroisopropyl) ether	57	112	20	40		
Butyl benzyl phthalate	62	142	18	40		
Carbazole	76	135	16	40		
Chrysene	75	114	17	40		
Dibenz(a,h)anthracene	56	134	21	40		
Dibenzofuran	72	119	19	40		
Diethyl phthalate	66	122	13	40		
Dimethyl phthalate	78	117	18	40		
Di-n-butyl phthalate	66	129	18	40		
Di-n-octyl phthalate	47	150	18	40		
Fluoranthene	73	125	15	40		
Fluorene	70	121	17	40		
Hexachlorobenzene	66	117	17	40		
Hexachlorobutadiene	65	116	21	40		
Hexachlorocyclopentadiene	46	131	23	40		
Hexachloroethane	62	120	21	40		
Indeno[1,2,3-cd]pyrene	56	145	21	40		
Isophorone	67	119	18	40		
Naphthalene	62	112	18	40		
Nitrobenzene	64	118	23	40		
N-Nitrosodi-n-propylamine	62	116	21	40		

Laboratory In-House Quality Control Criteria						
Analyte Description	LCL % Recovery	UCL % Recovery	LCS/LCSD % RPD	MS/MSD % RPD		
N-Nitrosodiphenylamine	73	127	16	40		
Pentachlorophenol	20	128	40	40		
Phenanthrene	73	112	15	40		
Phenol	63	120	19	40		
Pyrene	70	120	18	40		
2,4,6-Tribromophenol (Surr)	59	128	NA	NA		
2-Fluorobiphenyl	67	115	NA	NA		
2-Fluorophenol (Surr)	65	125	NA	NA		
Nitrobenzene-d5 (Surr)	66	120	NA	NA		
Phenol-d5 (Surr)	69	118	NA	NA		
Terphenyl-d14 (Surr)	78	136	NA	NA		
Metals - Soil						
Antimony	80	120	20	20		
Arsenic	80	120	20	20		
Beryllium	80	120	20	20		
Cadmium	80	120	20	20		
Chromium	80	120	20	20		
Copper	80	120	20	20		
Lead	80	120	20	20		
Nickel	80	120	20	20		
Selenium	80	120	20	20		
Silver	80	120	20	20		
Thallium	80	120	20	20		
Zinc	80	120	20	20		
Mercury	80	120	20	20		
PCB Aroclors - Groundwater						
PCB-1016	25	145	27	27		
PCB-1260	30	145	22	22		
DCB Decachlorobiphenyl (Surr)	38	121	NA	NA		
Tetrachloro-m-xylene (Surr)	26	124	NA	NA		
GRO – Groundwater						
TPH-Gasoline	79	110	20	35		
4-Bromofluorobenzene (Surr)	50	150	NA	NA		
Trifluorotoluene (Surr)	50	150	NA	NA		
DRO – Groundwater						
TPH-Diesel (C10-C24)	59	120	27	27		
TPH-Heavy Oil (>C24-C36)	53	129	19	19		
o-Terphenyl (Surr)	50	150	NA	NA		

Laboratory In-House Quality Control Criteria						
	LCL	UCL	LCS/LCSD	MS/MSD		
Analyte Description	% Recovery	% Recovery	% RPD	% RPD		
PAHs – Groundwater						
1-Methylnaphthalene	57	120	20	20		
2-Methylnaphthalene	54	114	20	20		
Acenaphthene	54	109	20	20		
Acenaphthylene	30	127	20	20		
Anthracene	30	130	20	20		
Benzo[a]anthracene	35	125	20	20		
Benzo[a]pyrene	30	127	20	20		
Benzo[b]fluoranthene	59	126	20	20		
Benzo[g,h,i]perylene	51	128	20	20		
Benzo[k]fluoranthene	49	136	20	20		
Chrysene	57	120	20	20		
Dibenz(a,h)anthracene	60	136	20	20		
Fluoranthene	58	128	20	20		
Fluorene	50	130	20	20		
Indeno[1,2,3-cd]pyrene	53	131	20	20		
Naphthalene	54	115	20	20		
Phenanthrene	53	158	20	20		
Pyrene	53	121	20	20		
Terphenyl-d14 (Surr)	64	150	NA	NA		
VOCs – Groundwater						
1,1,1,2-Tetrachloroethane	68	139	20	35		
1,1,1-Trichloroethane	56	150	29	35		
1,1,2,2-Tetrachloroethane	60	134	25	35		
1,1,2-Trichloroethane	62	137	30	35		
1,1-Dichloroethane	68	135	27	35		
1,1-Dichloroethene	64	125	28	35		
1,1-Dichloropropene	64	146	20	35		
1,2,3-Trichlorobenzene	60	137	20	35		
1,2,3-Trichloropropane	45	150	20	35		
1,2,4-Trichlorobenzene	60	138	20	35		
1,2,4-Trimethylbenzene	70	142	20	35		
1,2-Dibromo-3-Chloropropane	34	150	20	35		
1,2-Dichlorobenzene	73	120	14	35		
1,2-Dichloroethane	63	150	29	35		
1,2-Dichloropropane	72	120	20	35		
1,3,5-Trimethylbenzene	70	145	20	35		
1,3-Dichlorobenzene	76	120	12	35		

	ory In-House Q	UCL	LCS/LCSD	MS/MSD
Analyte Description	% Recovery	% Recovery	% RPD	% RPD
1,3-Dichloropropane	61	130	29	35
1,4-Dichlorobenzene	77	120	11	35
2,2-Dichloropropane	60	150	29	35
2-Chlorotoluene	68	130	20	35
4-Chlorotoluene	75	130	20	35
4-Isopropyltoluene	72	127	14	35
Benzene	73	120	20	35
Bromobenzene	68	130	20	35
Bromoform	51	137	20	35
Bromomethane	61	135	31	35
Carbon tetrachloride	54	150	30	35
Chlorobenzene	74	114	12	35
Chlorobromomethane	71	131	20	35
Chlorodibromomethane	46	150	20	35
Chloroethane	58	130	35	35
Chloroform	71	130	20	35
Chloromethane	40	150	31	35
cis-1,2-Dichloroethene	73	130	20	35
cis-1,3-Dichloropropene	54	150	28	35
Dibromomethane	65	137	20	35
Dichlorobromomethane	62	150	20	35
Dichlorodifluoromethane	45	150	29	35
Ethylbenzene	74	125	20	35
Ethylene Dibromide	56	146	20	35
Hexachlorobutadiene	38	150	20	35
Isopropylbenzene	75	137	20	35
Methyl tert-butyl ether	56	150	26	35
Methylene Chloride	58	134	29	35
m-Xylene & p-Xylene	73	130	20	35
Naphthalene	26	150	20	35
n-Butylbenzene	66	125	20	35
N-Propylbenzene	61	142	20	35
o-Xylene	80	139	20	35
sec-Butylbenzene	62	140	20	35
Styrene	68	136	20	35
tert-Butylbenzene	55	150	20	35
Tetrachloroethene	67	123	20	35
Toluene	70	126	20	35

Laboratory In-House Quality Control Criteria					
	LCL	UCL	LCS/LCSD	MS/MSD	
Analyte Description	% Recovery	% Recovery	% RPD	% RPD	
trans-1,2-Dichloroethene	69	124	27	35	
trans-1,3-Dichloropropene	40	150	30	35	
Trichloroethene	72	123	20	35	
Trichlorofluoromethane	60	150	31	35	
Vinyl chloride	59	140	30	35	
1,2-Dichloroethane-d4 (Surr)	46	150	NA	NA	
4-Bromofluorobenzene (Surr)	81	120	NA	NA	
Dibromofluoromethane (Surr)	42	132	NA	NA	
Toluene-d8 (Surr)	75	125	NA	NA	
Trifluorotoluene (Surr)	74	118	NA	NA	
Metals – Groundwater					
Antimony	80	120	20	20	
Arsenic	80	120	20	20	
Beryllium	80	120	20	20	
Cadmium	80	120	20	20	
Chromium	80	120	20	20	
Copper	80	120	20	20	
Iron	80	120	20	20	
Lead	80	120	20	20	
Manganese	80	120	20	20	
Nickel	80	120	20	20	
Selenium	80	120	20	20	
Silver	80	120	20	20	
Thallium	80	120	20	20	
Zinc	80	120	20	20	
Mercury	80	120	20	20	

LCL = Lower control limit

LCS = Laboratory control sample

LCSD = Laboratory control sample duplicate

MS = Matrix spike

MSD = Matrix spike duplicate

RPD = Relative percent difference

Surr = Surrogate

UCL = Upper control limit

Appendix D

Electronic Data Deliverable Format

May 2017 FINAL

Laboratory electronic data deliverables (EDDs) will be submitted as tab-delimited text or csv files and will conform to the specifications listed below. This format provides all data required for an Environmental Information Management (EIM) submittal.

Field	Name	Type ¹	Data Required ²
1	PROJID	T	No
2	STUDYID	T	No
3	FIELDID	T	No
4	LABID	T	Yes
5	LABBATCH	T	Yes
6	CAS NUMBER	T	Special
7	ANALYTE	T	Yes
8	VALUE	N	Yes
9	VALUESF	N	No
10	LABQUAL	T	Special
11	UNITS	T	Yes
12	MDL	N	Special
13	REPLIMIT	N	Yes
14	ANLGROUP	T	No
15	PREPMETHOD	T	No
16	ANLMETHOD	T	Yes
17	MATTYPE	T	Yes
18	BASIS	T	Yes
19	LEACHDATE	T	No
20	EXTRDATE	D	Special
21	ANLDATE	D	Yes
22	DILFACTOR	N	Yes
23	COLUMN	T	Yes
24	FRACTION	T	Yes
25	LABNAME	T	Yes
26	PARENTID	T	Special
27	SAMPLEQTY	N	No
28	QTYUNITS	Т	No
29	MOISTURE	N	No
30	QCTYPE1	T	Special
31	QCTYPE2	T	Special
32	SURROGATE	N	Special
33	SPIKE	N	Special
34	RECOVERY	N	No
35	RPD	N	No
36	LOWLIMIT	N	No
37	UPPLIMIT	N	No
38	RPDLIMIT	N	No

Note: Table footnotes are on following pages.

- ¹ *Type* field refers to the following data types:
 - T Text, preferably left justified.
 - N Numeric, no decimal defined.
 - Date/time, date must be eight characters long for the date with the format MM/DD/YY. Time must be six or eight characters long in the format of HH:MM (hours and minutes) or HH:MM:SS (hours, minutes, and seconds). The time must be presented in 24-hour clock (not 12-hour clock).
- ² Data required field indicates the following:
 - **Yes** The field must contain some information and a blank value is not acceptable.
 - No The field does not require information and, if left blank, is assumed to mean no information was supplied.
 - **Special** A special case where the field may be left blank if appropriate; however, a blank field does <u>not</u> represent a lack of information; rather, it indicates some meaning (i.e., a blank in LABQUAL indicates a detected result).

Field Descriptions:

- 1. **PROJID:** Project name, provided by the client at the beginning of the work assignment and is also listed on the chain of custody (CoC) forms, sample labels, and other project documentation.
- STUDYID: Unique eight-character identifier (ID) to identify the study in the Washington Department of Ecology's EIM database.
- 3. **FIELDID:** The sample ID number as reported on the CoC form and on sample labels, or the laboratory quality control (QC) sample ID.
 - QC samples created by the laboratory from field samples (e.g., laboratory duplicates) must contain the exact SAMPID of the field sample. Other laboratory QC samples (e.g., blanks, spikes, and duplicates) must have unique sample IDs that may be identical to the LABID below.
- 4. **LABID:** The laboratory internal ID number. The combination of the FIELDID and LABID fields should be sufficient to uniquely define either an environmental or QC sample but may not be sufficient to distinguish reanalyses and dilutions.
- 5. **LABBATCH:** The laboratory ID number used to associate laboratory generated QC samples.
- 6. CAS NUMBER: A unique identifying number assigned by the Chemical Abstracts Service (CAS) Division of the American Chemical Society to each distinct chemical substance recorded in the CAS Chemical Registry System. The CAS number is accepted nationally and internationally as an identifier for specific, definable chemical substances.
- 7. ANALYTE: Analyte or parameter reported. All compounds should be reported in upper case.
- 8. **VALUE:** Concentration, value, or result of the compound tested, reported to the correct number of significant figures. The reporting limit (RL) will be reported for non-detect values. Only numbers are acceptable for this field.
 - In the case of spiked results, the VALUE will be the spiked sample result and will not be adjusted for the original sample results. If spiked compounds are diluted beyond detection, then the RL shall be reported in the VALUE field and a "U" added with other qualifiers in the LABQUAL field.
- 9. **VALUESF:** The number of significant figures that should be reported for the VALUE field.
- 10. **LABQUAL:** Laboratory flags or qualifiers are reported in this field.

Qualifier codes may be used from the *Statement of Work for Organics Analysis, Multi-Media, Multi-Concentration*, and Document OLM01.0 through revision OLM01.8 (EPA, August 1991). More than one qualifier may be used per record. If other qualifiers are used, then the laboratory must include a list of the definitions of the codes with the electronics. The list may be present as a paper copy or an electronic text file.

All non-detected results shall be reported with a "U" qualifier. The qualification "ND" for non-detected results is unacceptable. Blank values are acceptable and implied to mean a detected result. If a range will be reported (e.g., greater than 50) the symbol ">" shall be reported in this field.

- 11. **UNITS:** The units of measure for each record will be reported in this field.
- 12. **MDL:** Used to report the method detection limit (MDL); a value determined by MDL studies performed in accordance with 40 Code of Federal Regulations or sample-specific estimated detection limits (e.g., 2.5 times signal to noise ratio) for high resolution, isotope dilution test methods. This value is corrected for dilution, percent moisture, or related factors that affect the MDL and/or RL. MDLs are required for all results, as applicable (e.g., not applicable for total solids).

May 2017 FINAL

- 13. **REPLIMIT:** Used to report the RL (presented in REPLIMIT field). Non-detect results reported in the VALUE field should contain the RL corrected for dilution, percent moisture, or related factors that affect the RL.
- 14. **ANLGROUP:** Field used to group results from various methods. For instance, an entry of 'METALS' may be entered to report results from methods SW-846 6010, SW-846 7041, and SW-846 7470.
- 15. **PREPMETHOD:** Indicate the extraction or digestion method used (e.g., SW-846 3550B).
- 16. **ANLMETHOD:** Indicate the analytical method used (e.g., SW-846 8270). Dissolved metals must be clearly identified versus total metals results.
- 17. **MATTYPE:** Indicate one of the following for the matrix analyzed: SOIL, SEDIMENT, TISSUE, and WATER. If a sample or laboratory QC material does not match one of these, indicate with a code of "X" and explain in the cover letter.
- 18. **BASIS:** Indicate whether results are reported on a dry weight or wet weight basis, using the terms DRY or WET. If a sample or laboratory QC material does not match one of these, indicate with a code of "X" and explain in the cover letter.
- 19. **LEACHDATE:** Date the sample was extracted for Toxicity Characteristic Leaching Procedure or Synthetic Precipitation Leaching Procedure test methods. If leaching extraction is not applicable, then the field must be left blank.
- 20. **EXTRDATE:** Date the sample was extracted or prepared. If an extraction or preparation step is not applicable, then the field may be blank.
- 21. **ANLDATE:** Date the sample was analyzed.
- 22. **DILFACTOR:** The dilution factor. This should also reflect "effective" dilutions achieved by increasing or decreasing sample or extracting solvent volumes from standard amounts. That is, pre-concentration steps will result in a dilution factor of less than 1; this is okay.
- 23. **COLUMN:** This field is used to identify the analytical column from which the result was reported, if applicable.

Code	Definition
1	Primary column
2	Secondary column, also known as conformational column
N	Not applicable

24. **FRACTION:** This field identifies when an aqueous sample is filtered prior to analysis to determine the "dissolved" portion of the chemical of interest. Unfiltered aqueous samples are reported as the "total" fraction. This nomenclature is typically used for metals analysis.

Code	Definition
T	Total
D	Dissolved
N	Not applicable

- 25. **LABNAME**: The full name (and location if appropriate) or abbreviated name (and location) of the laboratory performing the analysis.
- 26. **PARENTID**: For duplicate samples only (i.e., laboratory duplicate, matrix spike duplicate, or laboratory control sample duplicate). List the parent sample ID.
- 27. **SAMPLEQTY:** Quantity or weight of the sample aliquot used for analysis.
- 28. QTYUNITS: The units of measure for the quantity or weight of the sample used for analysis.
- 29. **MOISTURE:** Moisture content of solid samples, expressed as percent moisture.
- 30. QCTYPE1: This field is used to identify laboratory QC samples. A blank value is acceptable, indicating the record is not one of the sample types below. One of the following codes must be used to identify the laboratory QC sample type:

Code	Definition
RM	Reference material
MB	Method blank
LCS	Laboratory control sample (blank spike or ongoing precision and recovery check)
MS/MSD	Matrix spike/matrix spike duplicate samples
DUP	Duplicate (laboratory duplicates only; field duplicates will have a unique SAMPID)

31. QCTYPE2: This field is used to identify analyte types, including tentatively identified compounds (TICs), surrogate compounds, internal standards, and labeled compounds. A blank value is acceptable, indicating the record is not one of the analyte types below. One of the following codes must be used to identify the analyte type:

Code	Definition
SUR	Surrogate or labeled compound result
TIC	Tentatively identified compound
IS	Internal standard

- 32. **SURROGATE:** If added, this refers to the surrogate or labeled compound concentration or amount expected (e.g., 100 for 100 μg/kg). Units of measure are implied from the UNITS field.
- 33. **SPIKE:** If added, this refers to the spike concentration or amount expected (e.g., 100 for 100 μg/kg). Units of measure are implied from the UNITS field.
- 34. **RECOVERY:** Percent recovery. A blank value is acceptable, indicating a non-spiked, non-reference material result. This field should be filled in for surrogates and labeled compounds as well as spiked QC samples and reference materials.
- 35. **RPD:** Relative percent difference. This field should be filled in for field and laboratory duplicate, matrix spike duplicates, and laboratory control sample duplicates.
- 36. **LOWLIMIT:** Lower recovery control limit. This field should be filled in for surrogates, QC samples, and reference materials.
- 37. UPPLIMIT: Upper recovery control limit. This field should be filled in for surrogates, QC samples, and reference materials.
- 38. **RPDLIMIT:** Relative percent difference control limit. This field should be filled in for laboratory duplicates and spiked sample duplicates.

The EDD used for data validation will include all of the fields noted above with data populated by the laboratory, and the following additional fields populated by the data validator.

Field	Name	Type ¹	Data Required ²
39	val_name	T	Yes
40	val_date	D	Yes
41	val_qual	T	Special
42	val_level	T	Yes
43	val_reason	T	Special
44	val notes	T	No

¹ Type field refers to the following data types:

- T Text, preferably left justified.
- Date/time, date must be eight characters long for the date with the format MM/DD/YY. Time must be six or eight characters long in the format of HH:MM (hours and minutes) or HH:MM:SS (hours, minutes, and seconds). The time must be presented in 24 -clock (not 12-hour clock).

- **Yes** The field <u>must</u> contain some information and a blank value is <u>not</u> acceptable.
- No The field does not require information and, if left blank, is assumed to mean no information was supplied.
- **Special** A special case where the field may be left blank if appropriate; however, a blank field does <u>not</u> represent a lack of information; rather, it indicates some meaning (i.e., a blank in LABQUAL indicates a detected result).
- 39. val_name: The full or abbreviated name of the data validation firm.
- 40. val_date: The date on which data validation was completed.
- 41. val_qual: Any data qualifiers added during data validation.
- 42. val_level: The level of data validation (e.g., full or summary, S2AVEM).
- 43. val reason: The reason (or reason code) for data qualification. This field is required if validation qualifiers were added.
- 44. val_notes: Any additional notes. If numeric results changed during data validation, it must be noted here.

May 2017 FINAL

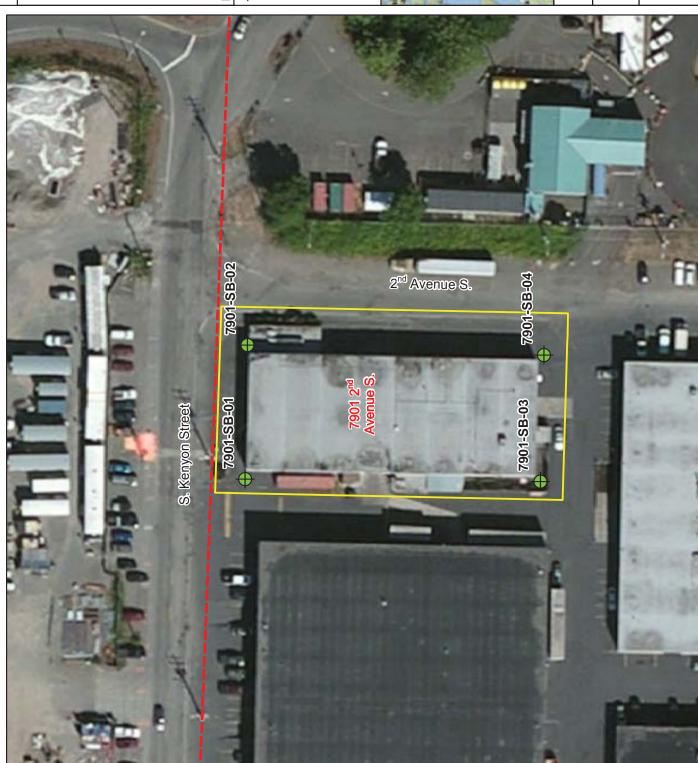
² Data required field indicates the following:

LEGEND:

South Park Landfill Boundary

Parcel Boundary

1. Background Source: ESRI World Imagery (USDA NAIP, 08/2015).


SOUTH PARK LANDFILL SEATTLE, WA

SOUTH PARK LANDFILL SITE VICINITY

FIGURE: 1

DATE: 4/25/2017

PROJECT: \SouthPark_LF\Projects\WP\SouthPark_LF_Vicinity.mxd

LEGEND:

Proposed Boring

South Park Landfill Landfill Boundary

ZOO4 2nd Axion

7901 2nd Avenue S. Parcel Boundary

NOTES:

1. Background Source: ESRI World Imagery (USDA NAIP, 08/2015).

▼ leidos

SOUTH PARK LANDFILL SEATTLE, WA 7901 2nd AVENUE S. PROPERTY AND BORING LOCATIONS

FIGURE: 2

DATE: 4/25/2017

PROJECT: \SouthPark_LF\Projects\WP\SouthPark_LF_BoringLocation.mxd

From: Dube, Tom E.

Sent: Tuesday, June 13, 2017 7:00 PM

To: Cruz, Jerome (ECY); 'Gretchen Hill'; 'Kim Johannessen';

Anderson, Ivy (ATG)

Subject: FW: EXTERNAL: TestAmerica report files from 580-68649-1 7901 Parcel-South Park

Landfill

Attachments: J68649-1 UDS Level 2 Report Final Report.pdf; 580-68649-1_EimWashington.csv; 7901

_Geoprobe Boring Locations.pdf

The laboratory submitted their analytical report today for soil and groundwater sampling at the 7901 property. The lab sent the EIM data file (Excel) to Kim LaDuca but forgot to send the laboratory report (pdf), which also includes the chain of custody form. So I am forwarding both files to the group now, along with a pdf map showing the boring locations.

Validation of this data will begin soon.

Let us know if you have any questions.

Thanks, Tom

Thomas Dubé | Leidos

office: 425.482.3325

From: Walker, Elaine [mailto:elaine.walker@testamericainc.com]

Sent: Tuesday, June 13, 2017 4:40 PM **To:** Peters, Joe E.; Dube, Tom E.

Subject: EXTERNAL: TestAmerica report files from 580-68649-1 7901 Parcel-South Park Landfill

Hello,

Attached please find the report files for job 580-68649-1; 7901 Parcel-South Park Landfill

Please feel free to contact me if you have any questions.

Thank you.

Please let us know if we met your expectations by rating the service you received from TestAmerica on this project by visiting our website at: <u>Project Feedback</u>

ELAINE M WALKER

Project Manager II

TestAmerica Seattle
THE LEADER IN ENVIRONMENTAL TESTING

Tel: 253.248.4972

www.testamericainc.com

Reference: [201404] Attachments: 1

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Seattle 5755 8th Street East Tacoma, WA 98424 Tel: (253)922-2310

TestAmerica Job ID: 580-68649-1

Client Project/Site: 7901 Parcel-South Park Landfill

For:

Leidos, Inc. 18912 North Creek Parkway, Suite 101 Bothell, Washington 98011

Attn: Tom Dube

M. Elains Walker

Authorized for release by: 6/13/2017 4:35:06 PM

Elaine Walker, Project Manager II (253)248-4972 elaine.walker@testamericainc.com

-----LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill TestAmerica Job ID: 580-68649-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions	8
Client Sample Results	9
QC Sample Results	53
Chronicle	80
Certification Summary	88
Sample Summary	89
Chain of Custody	90
Receipt Checklists	92

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Job ID: 580-68649-1

Laboratory: TestAmerica Seattle

Narrative

CASE NARRATIVE

Client: Leidos, Inc.

Project: 7901 Parcel-South Park Landfill Report Number: 580-68649-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) resulting from a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are an unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes within the calibration range of the instrument or that reduces the interferences thereby enabling the quantification of target analytes.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

Fifteen samples were received on 5/26/2017 4:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 0.3° C and 6.0° C.

The reference method requires samples to be preserved to a pH of 2 or less. The following sample was received with insufficient preservation at a pH of more than 2: 7901-SB-04-GW (580-68649-3). The sample was preserved to the appropriate pH in the laboratory.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC-MS) - WATER

Samples 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2), 7901-SB-04-GW (580-68649-3) and 7901-TB-GW (580-68649-4) were analyzed for volatile organic compounds (GC-MS) in accordance with 8260C. The samples were analyzed on 05/31/2017 and 06/01/2017.

The continuing calibration verification (CCV) associated with batch 580-247301 recovered above the upper control limit for 2,2-Dichloropropane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2), 7901-SB-04-GW (580-68649-3), 7901-TB-GW (580-68649-4) and (CCVIS 580-247301/2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS) - WATER

Samples 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2) and 7901-SB-04-GW (580-68649-3) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082A. The samples were prepared on 06/07/2017 and analyzed on 06/08/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

POLYCHLORINATED BIPHENYLS (PCBS) - SOIL

Samples 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17

> TestAmerica Seattle 6/13/2017

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Job ID: 580-68649-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

(580-68649-12), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14) and 7901-SB-04-18.5 (580-68649-15) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA SW-846 Method 8082. The samples were prepared on 06/02/2017 and analyzed on 06/04/2017.

The following samples required a copper clean-up to reduce matrix interferences caused by sulfur: 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17 (580-68649-12), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14), 7901-SB-04-18.5 (580-68649-15), 7901-SB-04-18.5 (580-68649-15[MS]), 7901-SB-04-18.5 (580-68649-15[MSD]), (LCS 580-247425/2-A), (LCSD 580-247425/3-A) and (MB 580-247425/1-A).

The following sample contained non-target PCB-1268: 7901-SB-03-9 (580-68649-11).

The CCVs associated with batch580-247887 fell outside the control limits for surrogate DCB Decachlorobiphenyl. Since the associated samples had surrogate DCB Decachlorobiphenyl recoveries within the limits, the data has been reported.

The continuing calibration verification (CCV) associated with batch 580-247887 recovered above the upper control limit for PCB-1260 on the confirmation column. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported fro the primary column which met the control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS) - SOIL

Samples 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17 (580-68649-12), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14) and 7901-SB-04-18.5 (580-68649-15) were analyzed for semivolatile organic compounds (GC-MS) in accordance with 8270D. The samples were prepared on 06/05/2017 and analyzed on 06/06/2017 and 06/07/2017.

Phenol-d5 (Surr) failed the surrogate recovery criteria high for 7901-SB-03-9 (580-68649-11). 2,4,6-Tribromophenol (Surr) failed the surrogate recovery criteria low for 7901-SB-04-14 (580-68649-14). Phenol-d5 (Surr) failed the surrogate recovery criteria high for 7901-SB-01-14.5 (580-68649-6). Chromatographic evidence of matrix interference is present; therefore, re-extraction and/or re-analysis were not warranted.

Benzo[g,h,i]perylene failed the recovery criteria low for LCS 580-247561/3-A. This random marginal exceedance does not indicate a systematic control problem. Qualified results have been reported.

Several analytes failed the recovery criteria low for the MS of sample 7901-SB-04-18.5MS (580-68649-15) in batch 580-247639. 3 & 4 Methylphenol, Bis(2-chloroethyl)ether and bis(chloroisopropyl) ether failed the recovery criteria high. For the MSD of sample 7901-SB-04-18.5MSD (580-68649-15) in batch 580-247639, several analytes failed the recovery criteria low. bis(chloroisopropyl) ether failed the recovery criteria high. Also, several analytes exceeded the RPD limit. Sample matrix interference and/or non-homogeneity are suspected.

The minimum response factor (RF) criteria for the continuing calibration verification (CCV) analyzed in batch 580-247422 was outside criteria for the following analytes: N-Nitrosodi-n-propylamine and 2,4-Dimethylphenol. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analytes is considered estimated.

The minimum response factor (RF) criteria for the continuing calibration verification (CCV) analyzed in batch 580-247639 was outside criteria for 2,4-Dimethylphenol and N-Nitrosodi-n-propylamine. As indicated in the reference method, sample analysis may proceed; however, any detection or non-detection for the affected analyte(s) is considered estimated.

The continuing calibration verification (CCV) associated with batch 580-247639 recovered above the upper control limit for 2.2'-oxybis[1-chloropropane], Di-n-butylphthalate, and Butylbenzyl phthalate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17 (580-68649-12), 7901-SB-04-9 (580-68649-13),

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Job ID: 580-68649-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

 $7901-SB-04-14 \ (580-68649-14), \ 7901-SB-04-18.5 \ (580-68649-15), \ 7901-SB-04-18.5 \ (580-68649-15[MS]), \ (CCVC 580-247639/31), \ (CCVIS 580-247639/3), \ (CCVL 580-247639/4), \ (LCS 580-247561/3-A) \ and \ (MB 580-247561/1-A).$

Samples 7901-SB-01-9.5 (580-68649-5)[50X], 7901-SB-01-14.5 (580-68649-6)[5X], 7901-SB-02-14.5 (580-68649-8)[10X], 7901-SB-03-9 (580-68649-11)[5X], 7901-SB-03-9 (580-68649-11)[5X], 7901-SB-03-9 (580-68649-11)[5X] and 7901-SB-04-14 (580-68649-14)[50X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

SEMIVOLATILE ORGANIC COMPOUNDS - SELECTED ION MODE (SIM) - WATER

Samples 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2) and 7901-SB-04-GW (580-68649-3) were analyzed for semivolatile organic compounds - Selected Ion Mode (SIM) in accordance with EPA SW-846 Method 8270D SIM. The samples were prepared on 05/31/2017 and analyzed on 05/31/2017 and 06/03/2017.

1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthene and Naphthalene failed the recovery criteria low for LCS 580-247225/2-A. Acenaphthene and Naphthalene failed the recovery criteria low for LCSD 580-247225/3-A. These analytes were outside the Marginal Exceedance Limits; therefore, re-extraction and/or re-analysis were performed. Since the out-of-hold re-extraction yielded no improvement to the data, the original set is reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GASOLINE RANGE ORGANICS (GRO) - WATER

Samples 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2) and 7901-SB-04-GW (580-68649-3) were analyzed for gasoline range organics (GRO) in accordance with Method NWTPH-Gx. The samples were analyzed on 05/30/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GASOLINE RANGE ORGANICS (GRO) - SOIL

Samples 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17 (580-68649-12), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14) and 7901-SB-04-18.5 (580-68649-15) were analyzed for gasoline range organics (GRO) in accordance with Method NWTPH-Gx. The samples were prepared and analyzed on 06/07/2017, 06/08/2017 and 06/10/2017.

Reanalysis of the following samples was performed outside of the analytical holding time due to failure of the instrument's QC: 7901-SB-04-18.5 (580-68649-15), 7901-SB-04-18.5 (580-68649-15[MSD]).

Gasoline exceeded the RPD limit for the MSD of sample 7901-SB-04-18.5MSD (580-68649-15) in batch 580-248155. Sample matrix interference and/or non-homogeneity are suspected because the MS/MSD and associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

DIESEL AND MOTOR OIL RANGE ORGANICS - WATER

Samples 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2) and 7901-SB-04-GW (580-68649-3) were analyzed for diesel and motor oil range organics in accordance with Method NWTPH-Dx. The samples were prepared on 06/07/2017 and analyzed on 06/08/2017.

The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2) and 7901-SB-04-GW (580-68649-3).

 $No \ additional \ analytical \ or \ quality \ issues \ were \ noted, \ other \ than \ those \ described \ above \ or \ in \ the \ Definitions/Glossary \ page.$

3

5

6

0

a

Job ID: 580-68649-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

DIESEL AND EXTENDED RANGE ORGANICS - SOIL

Samples 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17 (580-68649-12), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14) and 7901-SB-04-18.5 (580-68649-15) were analyzed for diesel and extended range organics in accordance with Method NWTPH-Dx. The samples were prepared on 06/01/2017 and analyzed on 06/02/2017, 06/03/2017, 06/09/2017 and 06/10/2017.

o-Terphenyl failed the surrogate recovery criteria high for 7901-SB-03-9 (580-68649-11). o-Terphenyl failed the surrogate recovery criteria high for 7901-SB-01-9.5 (580-68649-5). Evidence of matrix interference due to high target analytes is present; therefore, re-extraction and/or re-analysis were not performed.

#2 Diesel (C10-C24) and Motor Oil (>C24-C36) failed the recovery criteria low for the MS of sample 7901-SB-04-18.5MS (580-68649-15) in batch 580-248128. #2 Diesel (C10-C24) and Motor Oil (>C24-C36) failed the recovery criteria low for the MSD of sample 7901-SB-04-18.5MSD (580-68649-15) in batch 580-248128. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

The following samples contained a hydrocarbon pattern in the diesel range; however, the elution pattern was later than the typical diesel fuel pattern used by the laboratory for quantitative purposes: 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-02-14.5 (580-68649-8), 7901-SB-03-9 (580-68649-11), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14) and 7901-SB-04-18.5 (580-68649-15).

Sample 7901-SB-04-14 (580-68649-14)[5X] required dilution prior to analysis to bring the concentration of target analytes within the calibration range. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL METALS (ICPMS) - WATER

Samples 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2) and 7901-SB-04-GW (580-68649-3) were analyzed for total recoverable metals (ICPMS) in accordance with EPA SW-846 Method 6020A. The samples were prepared on 05/30/2017 and analyzed on 05/31/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TOTAL MERCURY - WATER

Samples 7901-SB-01-GW (580-68649-1), 7901-SB-02-GW (580-68649-2) and 7901-SB-04-GW (580-68649-3) were analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 05/30/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

METALS (ICPMS) - SOIL

Samples 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17 (580-68649-12), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14) and 7901-SB-04-18.5 (580-68649-15) were analyzed for metals (ICPMS) in accordance with SW846 6020A. The samples were prepared on 05/30/2017 and analyzed on 05/31/2017.

Copper failed the recovery criteria low for the MS of sample 7901-SB-04-18.5MS (580-68649-15) in batch 580-247306. Lead and Zinc failed the recovery criteria high. Copper, Lead and Zinc failed the recovery criteria high for the MSD of sample 7901-SB-04-18.5MSD (580-68649-15) in batch 580-247306. Copper and Lead exceeded the RPD limit.

Copper and Nickel exceeded the RPD limit for the duplicate of sample 7901-SB-04-18.5DU (580-68649-15).

Samples 7901-SB-02-14.5 (580-68649-8)[1000X], 7901-SB-03-9 (580-68649-11)[1000X] and 7901-SB-04-9 (580-68649-13)[1000X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Job ID: 580-68649-1 (Continued)

Laboratory: TestAmerica Seattle (Continued)

TOTAL MERCURY - SOIL

Samples 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17 (580-68649-12), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14) and 7901-SB-04-18.5 (580-68649-15) were analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared and analyzed on 05/30/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

PERCENT SOLIDS

Samples 7901-SB-01-9.5 (580-68649-5), 7901-SB-01-14.5 (580-68649-6), 7901-SB-01-17.5 (580-68649-7), 7901-SB-02-14.5 (580-68649-8), 7901-SB-02-17.5 (580-68649-9), 7901-SB-03-8 (580-68649-10), 7901-SB-03-9 (580-68649-11), 7901-SB-03-17 (580-68649-12), 7901-SB-04-9 (580-68649-13), 7901-SB-04-14 (580-68649-14) and 7901-SB-04-18.5 (580-68649-15) were analyzed for percent solids in accordance with ASTM D2216. The samples were analyzed on 06/02/2017 and 06/05/2017.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

А

e e

_

0

9

10

TestAmerica Seattle 6/13/2017

Definitions/Glossary

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Qualifier Description

applicable.

Surrogate is outside control limits

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 580-68649-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
X	Surrogate is outside control limits
F2	MS/MSD RPD exceeds control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
GC VOA	
Qualifier	Qualifier Description

F2		MS/MSD RPD exceeds control limits
Н		Sample was prepped or analyzed beyond the specified holding time
GC Se	emi VO	A .

Qualifier

X

F1	MS and/or MSD Recovery is outside acceptance limits.
Metals	
Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
F3	Duplicate RPD exceeds the control limit

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Seattle

Page 8 of 92

6/13/2017

Project/Site: 7901 Parcel-South Park Landfill

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-1

Matrix: Water

Client Sample ID: 7901-SB-01-GW

Date Collected: 05/25/17 16:00 Date Received: 05/26/17 16:30

Method: 8260C - Volatile Orga ^{Analyte}	Result Qualif			Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND Quan	0.30	0.050	ug/L	— <u>-</u> -	. roparoa	05/31/17 23:24	
2-Chlorotoluene	ND	0.50	0.070	•			05/31/17 23:24	
1,2,3-Trichloropropane	ND	0.20	0.050	_			05/31/17 23:24	
Carbon tetrachloride	ND	0.20	0.025	_			05/31/17 23:24	
cis-1,3-Dichloropropene	ND	0.50	0.090	-			05/31/17 23:24	
Chlorobenzene	ND	0.20	0.025	_			05/31/17 23:24	
Vinyl chloride	0.30	0.020	0.013				05/31/17 23:24	
sec-Butylbenzene	ND	0.50	0.070	-			05/31/17 23:24	
Dibromomethane	ND	0.20	0.025	_			05/31/17 23:24	
m-Xylene & p-Xylene	ND	0.50	0.050				05/31/17 23:24	
o-Xylene	ND	0.50	0.060	_			05/31/17 23:24	
1,2,4-Trichlorobenzene	ND	0.20	0.040	•			05/31/17 23:24	
Styrene	ND	0.50	0.10	-			05/31/17 23:24	
Chlorobromomethane	ND	0.20	0.025	_			05/31/17 23:24	
Dichlorobromomethane	ND	0.20	0.025	_			05/31/17 23:24	
1,3-Dichlorobenzene	ND	0.30	0.050	_			05/31/17 23:24	
Benzene	ND ND	0.20	0.030	_			05/31/17 23:24	
Chloroethane	ND ND	0.50	0.025	_			05/31/17 23:24	
trans-1,3-Dichloropropene	ND ND			-				
	ND ND	0.20 0.50	0.025	_			05/31/17 23:24	
1,2,3-Trichlorobenzene			0.10	_			05/31/17 23:24	
N-Propylbenzene	ND ND	0.20	0.025	_			05/31/17 23:24	
4-Isopropyltoluene	ND	0.30	0.050	_			05/31/17 23:24	
n-Butylbenzene	ND	0.50	0.080	_			05/31/17 23:24	
1,1-Dichloropropene	ND	0.10	0.015	-			05/31/17 23:24	
cis-1,2-Dichloroethene	ND	0.20	0.025	_			05/31/17 23:24	
1,1,2,2-Tetrachloroethane	ND	0.20	0.025	_			05/31/17 23:24	
1,2,4-Trimethylbenzene	ND	0.20	0.030	_			05/31/17 23:24	
Toluene	ND	0.20	0.025	-			05/31/17 23:24	
Naphthalene	ND	0.50	0.10	_			05/31/17 23:24	
1,3,5-Trimethylbenzene	ND	0.50	0.083	_			05/31/17 23:24	
1,3-Dichloropropane	ND	0.20	0.025	_			05/31/17 23:24	
Chloroform	ND	0.20	0.030	-			05/31/17 23:24	
4-Chlorotoluene	ND	0.30	0.050	-			05/31/17 23:24	
Chlorodibromomethane	ND	0.20	0.025	-			05/31/17 23:24	
Dichlorodifluoromethane	ND	0.40	0.050	-			05/31/17 23:24	
1,1,2-Trichloroethane	ND	0.20	0.025				05/31/17 23:24	
ert-Butylbenzene	ND	0.50	0.10				05/31/17 23:24	
Chloromethane	ND	0.30	0.050	_			05/31/17 23:24	
Methylene Chloride	ND	0.50	0.11	-			05/31/17 23:24	
1,1-Dichloroethene	ND	0.10	0.018				05/31/17 23:24	
sopropylbenzene	ND	0.50	0.060	-			05/31/17 23:24	
1,2-Dichloroethane	ND	0.20	0.025	-			05/31/17 23:24	
Tetrachloroethene	ND	0.50	0.070	_			05/31/17 23:24	
1,1,1-Trichloroethane	ND	0.20	0.025	_			05/31/17 23:24	
2,2-Dichloropropane	ND	0.50	0.060	ug/L			05/31/17 23:24	
Ethylene Dibromide	ND	0.10	0.025	ug/L			05/31/17 23:24	
Bromoform	ND	0.50	0.080	ug/L			05/31/17 23:24	
1,2-Dibromo-3-Chloropropane	ND	2.0	0.44	ug/L			05/31/17 23:24	

TestAmerica Seattle

6/13/2017

Page 9 of 92

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-01-GW

Date Collected: 05/25/17 16:00 Date Received: 05/26/17 16:30 Lab Sample ID: 580-68649-1

Matrix: Water

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.20	0.025	ug/L			05/31/17 23:24	1
Bromobenzene	ND		0.20	0.035	ug/L			05/31/17 23:24	1
1,2-Dichloropropane	ND		0.20	0.025	ug/L			05/31/17 23:24	1
1,1,1,2-Tetrachloroethane	ND		0.20	0.025	ug/L			05/31/17 23:24	1
Ethylbenzene	ND		0.20	0.030	ug/L			05/31/17 23:24	1
trans-1,2-Dichloroethene	ND		0.20	0.025	ug/L			05/31/17 23:24	1
Hexachlorobutadiene	ND		0.50	0.075	ug/L			05/31/17 23:24	1
1,1-Dichloroethane	ND		0.20	0.025	ug/L			05/31/17 23:24	1
Bromomethane	ND		1.0	0.16	ug/L			05/31/17 23:24	1
1,4-Dichlorobenzene	ND		0.30	0.050	ug/L			05/31/17 23:24	1
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			05/31/17 23:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		81 - 120					05/31/17 23:24	1
Toluene-d8 (Surr)	94		75 - 125					05/31/17 23:24	1
Trifluorotoluene (Surr)	95		74 - 118					05/31/17 23:24	1
Dibromofluoromethane (Surr)	98		42 - 132					05/31/17 23:24	1
1,2-Dichloroethane-d4 (Surr)	95		46 - 150					05/31/17 23:24	1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND	*	0.041	0.013	ug/L		05/31/17 08:24	06/03/17 14:50	1
2-Methylnaphthalene	ND	*	0.031	0.0093	ug/L		05/31/17 08:24	06/03/17 14:50	1
1-Methylnaphthalene	ND	*	0.021	0.0062	ug/L		05/31/17 08:24	06/03/17 14:50	1
Acenaphthylene	ND		0.021	0.0021	ug/L		05/31/17 08:24	06/03/17 14:50	1
Acenaphthene	0.12	*	0.021	0.0021	ug/L		05/31/17 08:24	06/03/17 14:50	1
Fluorene	ND		0.021	0.0031	ug/L		05/31/17 08:24	06/03/17 14:50	1
Phenanthrene	0.068		0.021	0.0041	ug/L		05/31/17 08:24	06/03/17 14:50	1
Anthracene	0.023		0.021	0.0031	ug/L		05/31/17 08:24	06/03/17 14:50	1
Fluoranthene	0.032		0.021	0.0021	ug/L		05/31/17 08:24	06/03/17 14:50	1
Pyrene	0.037		0.021	0.0041	ug/L		05/31/17 08:24	06/03/17 14:50	1
Benzo[a]anthracene	ND		0.021	0.0021	ug/L		05/31/17 08:24	06/03/17 14:50	1
Chrysene	ND		0.021	0.0062	ug/L		05/31/17 08:24	06/03/17 14:50	1
Benzo[b]fluoranthene	ND		0.021	0.0082	ug/L		05/31/17 08:24	06/03/17 14:50	1
Benzo[k]fluoranthene	ND		0.031	0.0093	ug/L		05/31/17 08:24	06/03/17 14:50	1
Benzo[a]pyrene	ND		0.021	0.0031	ug/L		05/31/17 08:24	06/03/17 14:50	1
Indeno[1,2,3-cd]pyrene	ND		0.021	0.0072	ug/L		05/31/17 08:24	06/03/17 14:50	1
Dibenz(a,h)anthracene	ND		0.021	0.0021	ug/L		05/31/17 08:24	06/03/17 14:50	1
Benzo[g,h,i]perylene	ND		0.021	0.0031	ug/L		05/31/17 08:24	06/03/17 14:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Terphenyl-d14	75		53 - 112				05/31/17 08:24	06/03/17 14:50	1

Method: NWTPH-Gx - North	nwest - Volatile	Petroleui	m Products (GC)					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.50	0.050	mg/L			05/30/17 22:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		58 - 133			-		05/30/17 22:13	1

TestAmerica Seattle

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Date Received: 05/26/17 16:30

TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-1

Client Sample ID: 7901-SB-01-GW Date Collected: 05/25/17 16:00 **Matrix: Water**

Analyte	Result C	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.52	0.022	ug/L		06/07/17 08:57	06/08/17 03:16	1
PCB-1221	ND		0.52	0.031	ug/L		06/07/17 08:57	06/08/17 03:16	1
PCB-1232	ND		0.52	0.028	ug/L		06/07/17 08:57	06/08/17 03:16	1
PCB-1242	ND		0.52	0.029	ug/L		06/07/17 08:57	06/08/17 03:16	1
PCB-1248	ND		0.52	0.022	ug/L		06/07/17 08:57	06/08/17 03:16	1
PCB-1254	ND		0.52	0.021	ug/L		06/07/17 08:57	06/08/17 03:16	1
PCB-1260	ND		0.52	0.027	ug/L		06/07/17 08:57	06/08/17 03:16	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	101		38 - 134				06/07/17 08:57	06/08/17 03:16	1
Tetrachloro-m-xylene	83		54 - 115				06/07/17 08:57	06/08/17 03:16	1
Method: NWTPH-Dx - No	rthwest - Semi-Vo	latile Pet	roleum Prod	ucts (GC	3)				
Analyte	Result 0		RL	2010 (01	Unit	D	Prepared	Analyzed	Dil Fac

Method: NWTPH-Dx - North	west - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	0.67		0.10	0.019	mg/L		06/07/17 14:31	06/08/17 15:47	1
Motor Oil (>C24-C36)	0.38		0.26	0.079	mg/L		06/07/17 14:31	06/08/17 15:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	89		43 - 119				06/07/17 14:31	06/08/17 15:47	1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0050	0.0014	mg/L		05/30/17 18:17	05/31/17 11:36	5
Antimony	ND		0.0020	0.00055	mg/L		05/30/17 18:17	05/31/17 11:36	5
Beryllium	ND		0.0020	0.00022	mg/L		05/30/17 18:17	05/31/17 11:36	5
Cadmium	ND		0.0020	0.00050	mg/L		05/30/17 18:17	05/31/17 11:36	5
Chromium	ND		0.0020	0.00071	mg/L		05/30/17 18:17	05/31/17 11:36	5
Copper	ND		0.010	0.0030	mg/L		05/30/17 18:17	05/31/17 11:36	5
Iron	11		1.0	0.18	mg/L		05/30/17 18:17	05/31/17 11:36	5
Lead	0.027		0.0040	0.0010	mg/L		05/30/17 18:17	05/31/17 11:36	5
Manganese	0.060		0.010	0.0023	mg/L		05/30/17 18:17	05/31/17 11:36	5
Nickel	ND		0.015	0.00054	mg/L		05/30/17 18:17	05/31/17 11:36	5
Selenium	ND		0.040	0.010	mg/L		05/30/17 18:17	05/31/17 11:36	5
Silver	ND		0.0020	0.00022	mg/L		05/30/17 18:17	05/31/17 11:36	5
Thallium	ND		0.0050	0.00033	mg/L		05/30/17 18:17	05/31/17 11:36	5
Zinc	0.093		0.035	0.0095	mg/L		05/30/17 18:17	05/31/17 11:36	5

Method: 7470A - Mercury (CVAA)								
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00030	0.00015 mg/L		05/30/17 10:12	05/30/17 13:26	1

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: 580-68649-2

TestAmerica Job ID: 580-68649-1

Matrix: Water

Client Sample ID: 7901-SB-02-GW

Date Collected: 05/25/17 10:35 Date Received: 05/26/17 16:30

Method: 8260C - Volatile Org ^{Analyte}	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND Qualifier	0.30	0.050	ug/L		Trepared	05/31/17 23:53	Diria
2-Chlorotoluene	ND	0.50	0.070	-			05/31/17 23:53	
1,2,3-Trichloropropane	ND	0.20	0.050	-			05/31/17 23:53	
Carbon tetrachloride	ND	0.20	0.025	J			05/31/17 23:53	· · · · · .
cis-1,3-Dichloropropene	ND	0.20	0.023	-			05/31/17 23:53	
Chlorobenzene	1.3	0.30	0.090	_			05/31/17 23:53	
		0.020	0.025	•			05/31/17 23:53	· · · · · .
Vinyl chloride	0.16 ND	0.020		-			05/31/17 23:53	
sec-Butylbenzene	ND ND	0.30	0.070	_				
Dibromomethane			0.025	-			05/31/17 23:53	
m-Xylene & p-Xylene	ND	0.50	0.050	_			05/31/17 23:53	
o-Xylene	ND	0.50	0.060	-			05/31/17 23:53	
I,2,4-Trichlorobenzene	ND	0.20	0.040	-			05/31/17 23:53	
Styrene	ND	0.50	0.10	-			05/31/17 23:53	
Chlorobromomethane	ND	0.20	0.025	-			05/31/17 23:53	
Dichlorobromomethane	ND	0.20	0.025				05/31/17 23:53	
1,3-Dichlorobenzene	ND	0.30	0.050	-			05/31/17 23:53	
Benzene	ND	0.20	0.025	J			05/31/17 23:53	
Chloroethane	ND	0.50	0.075	-			05/31/17 23:53	
rans-1,3-Dichloropropene	ND	0.20	0.025	ug/L			05/31/17 23:53	
,2,3-Trichlorobenzene	ND	0.50	0.10	ug/L			05/31/17 23:53	
I-Propylbenzene	ND	0.20	0.025	ug/L			05/31/17 23:53	
-Isopropyltoluene	ND	0.30	0.050	ug/L			05/31/17 23:53	
-Butylbenzene	ND	0.50	0.080	ug/L			05/31/17 23:53	
,1-Dichloropropene	ND	0.10	0.015	ug/L			05/31/17 23:53	
is-1,2-Dichloroethene	ND	0.20	0.025	ug/L			05/31/17 23:53	
,1,2,2-Tetrachloroethane	ND	0.20	0.025	ug/L			05/31/17 23:53	
,2,4-Trimethylbenzene	ND	0.20	0.030	ug/L			05/31/17 23:53	
oluene	ND	0.20	0.025	ug/L			05/31/17 23:53	
Naphthalene	ND	0.50	0.10	ug/L			05/31/17 23:53	
,3,5-Trimethylbenzene	ND	0.50	0.083	-			05/31/17 23:53	
,3-Dichloropropane	ND	0.20	0.025	-			05/31/17 23:53	
Chloroform	ND	0.20	0.030	-			05/31/17 23:53	
l-Chlorotoluene	ND	0.30	0.050	-			05/31/17 23:53	
Chlorodibromomethane	ND	0.20	0.025	-			05/31/17 23:53	
Dichlorodifluoromethane	ND	0.40	0.050	-			05/31/17 23:53	
,1,2-Trichloroethane	ND	0.20	0.025	-			05/31/17 23:53	
ert-Butylbenzene	ND	0.50		ug/L			05/31/17 23:53	
Chloromethane	ND	0.30	0.050				05/31/17 23:53	
Methylene Chloride	ND	0.50		ug/L			05/31/17 23:53	
1,1-Dichloroethene	ND	0.10	0.018	-			05/31/17 23:53	
sopropylbenzene	ND	0.50	0.060				05/31/17 23:53	
I,2-Dichloroethane	ND	0.20	0.025	-			05/31/17 23:53	
Fetrachloroethene	ND	0.50	0.070				05/31/17 23:53	
1,1,1-Trichloroethane	ND ND	0.30	0.070				05/31/17 23:53	
2,2-Dichloropropane	ND ND	0.20		-			05/31/17 23:53	
·			0.060	-				
Ethylene Dibromide	ND ND	0.10	0.025	-			05/31/17 23:53	
Bromoform	ND	0.50	0.080	-			05/31/17 23:53	
1,2-Dibromo-3-Chloropropane Trichlorofluoromethane	ND ND	2.0 0.50	0.44	ug/L			05/31/17 23:53 05/31/17 23:53	

TestAmerica Seattle

8

4.0

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: 580-68649-2

TestAmerica Job ID: 580-68649-1

Client Sample ID: 7901-SB-02-GW Date Collected: 05/25/17 10:35

Matrix: Water

Duto	oonootoa.	00/20/11	
Date	Received:	05/26/17	16:30

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.20	0.025	ug/L			05/31/17 23:53	1
Bromobenzene	ND		0.20	0.035	ug/L			05/31/17 23:53	1
1,2-Dichloropropane	ND		0.20	0.025	ug/L			05/31/17 23:53	1
1,1,1,2-Tetrachloroethane	ND		0.20	0.025	ug/L			05/31/17 23:53	1
Ethylbenzene	ND		0.20	0.030	ug/L			05/31/17 23:53	1
trans-1,2-Dichloroethene	ND		0.20	0.025	ug/L			05/31/17 23:53	1
Hexachlorobutadiene	ND		0.50	0.075	ug/L			05/31/17 23:53	1
1,1-Dichloroethane	ND		0.20	0.025	ug/L			05/31/17 23:53	1
Bromomethane	ND		1.0	0.16	ug/L			05/31/17 23:53	1
1,4-Dichlorobenzene	ND		0.30	0.050	ug/L			05/31/17 23:53	1
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			05/31/17 23:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		81 - 120			-		05/31/17 23:53	1
Toluene-d8 (Surr)	92		75 - 125					05/31/17 23:53	1
Trifluorotoluene (Surr)	91		74 - 118					05/31/17 23:53	1
Dibromofluoromethane (Surr)	101		42 - 132					05/31/17 23:53	1
1,2-Dichloroethane-d4 (Surr)	98		46 - 150					05/31/17 23:53	1

Method: 8270D SIM - Semivo	latile Organic Compou	nds (GC/MS SIM)
Analyte	Result Qualifier	RL
March diseases	0.000 +	0.044 0.0

Analyte	Result	Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	0.062	*	0.041	0.013	ug/L		05/31/17 08:24	06/03/17 15:39	1
2-Methylnaphthalene	ND	*	0.031	0.0092	ug/L		05/31/17 08:24	06/03/17 15:39	1
1-Methylnaphthalene	0.19	*	0.020	0.0061	ug/L		05/31/17 08:24	06/03/17 15:39	1
Acenaphthylene	0.056		0.020	0.0020	ug/L		05/31/17 08:24	06/03/17 15:39	1
Acenaphthene	0.63	*	0.020	0.0020	ug/L		05/31/17 08:24	06/03/17 15:39	1
Fluorene	0.045		0.020	0.0031	ug/L		05/31/17 08:24	06/03/17 15:39	1
Phenanthrene	0.034		0.020	0.0041	ug/L		05/31/17 08:24	06/03/17 15:39	1
Anthracene	0.089		0.020	0.0031	ug/L		05/31/17 08:24	06/03/17 15:39	1
Fluoranthene	ND		0.020	0.0020	ug/L		05/31/17 08:24	06/03/17 15:39	1
Pyrene	0.021		0.020	0.0041	ug/L		05/31/17 08:24	06/03/17 15:39	1
Benzo[a]anthracene	ND		0.020	0.0020	ug/L		05/31/17 08:24	06/03/17 15:39	1
Chrysene	ND		0.020	0.0061	ug/L		05/31/17 08:24	06/03/17 15:39	1
Benzo[b]fluoranthene	ND		0.020	0.0082	ug/L		05/31/17 08:24	06/03/17 15:39	1
Benzo[k]fluoranthene	ND		0.031	0.0092	ug/L		05/31/17 08:24	06/03/17 15:39	1
Benzo[a]pyrene	ND		0.020	0.0031	ug/L		05/31/17 08:24	06/03/17 15:39	1
Indeno[1,2,3-cd]pyrene	ND		0.020	0.0071	ug/L		05/31/17 08:24	06/03/17 15:39	1
Dibenz(a,h)anthracene	ND		0.020	0.0020	ug/L		05/31/17 08:24	06/03/17 15:39	1
Benzo[g,h,i]perylene	ND		0.020	0.0031	ug/L		05/31/17 08:24	06/03/17 15:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tarnhanul d11	76		E2 112				05/21/17 00:21	06/02/17 15:20	

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	76	53 - 112	05/31/17 08:24	06/03/17 15:39	1

Method: NWTPH-Gx - Northw			,	GC)	1114	_	D	A a b a d	DU E
Analyte		Qualifier	RL		Unit	В	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.50	0.050	mg/L			05/30/17 22:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		58 - 133			-		05/30/17 22:45	1
Trifluorotoluene (Surr)	104		77 - 128					05/30/17 22:45	1

TestAmerica Seattle

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-2

Matrix: Water

Client Sample ID: 7901-SB-02-GW

Date Collected: 05/25/17 10:35 Date Received: 05/26/17 16:30

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.52	0.022	ug/L		06/07/17 08:57	06/08/17 03:33	1
PCB-1221	ND		0.52	0.031	ug/L		06/07/17 08:57	06/08/17 03:33	1
PCB-1232	ND		0.52	0.028	ug/L		06/07/17 08:57	06/08/17 03:33	1
PCB-1242	ND		0.52	0.029	ug/L		06/07/17 08:57	06/08/17 03:33	1
PCB-1248	ND		0.52	0.022	ug/L		06/07/17 08:57	06/08/17 03:33	1
PCB-1254	ND		0.52	0.021	ug/L		06/07/17 08:57	06/08/17 03:33	1
PCB-1260	ND		0.52	0.027	ug/L		06/07/17 08:57	06/08/17 03:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	92		38 - 134				06/07/17 08:57	06/08/17 03:33	1
Tetrachloro-m-xylene	79		54 - 115				06/07/17 08:57	06/08/17 03:33	1

Method: NWTPH-Dx - Northy	west - Semi-V	olatile Pet	roleum Prod	ucts (G0	C)				
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1.1		0.10	0.020	mg/L		06/07/17 14:31	06/08/17 16:09	1
Motor Oil (>C24-C36)	0.66		0.26	0.080	mg/L		06/07/17 14:31	06/08/17 16:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	92		43 - 119				06/07/17 14:31	06/08/17 16:09	1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0050	0.0014	mg/L		05/30/17 18:17	05/31/17 12:36	5
Antimony	ND		0.0020	0.00055	mg/L		05/30/17 18:17	05/31/17 12:36	5
Beryllium	ND		0.0020	0.00022	mg/L		05/30/17 18:17	05/31/17 12:36	5
Cadmium	ND		0.0020	0.00050	mg/L		05/30/17 18:17	05/31/17 12:36	5
Chromium	ND		0.0020	0.00071	mg/L		05/30/17 18:17	05/31/17 12:36	5
Copper	ND		0.010	0.0030	mg/L		05/30/17 18:17	05/31/17 12:36	5
Iron	6.3		1.0	0.18	mg/L		05/30/17 18:17	05/31/17 12:36	5
Lead	ND		0.0040	0.0010	mg/L		05/30/17 18:17	05/31/17 12:36	5
Manganese	0.30		0.010	0.0023	mg/L		05/30/17 18:17	05/31/17 12:36	5
Nickel	ND		0.015	0.00054	mg/L		05/30/17 18:17	05/31/17 12:36	5
Selenium	ND		0.040	0.010	mg/L		05/30/17 18:17	05/31/17 12:36	5
Silver	ND		0.0020	0.00022	mg/L		05/30/17 18:17	05/31/17 12:36	5
Thallium	ND		0.0050	0.00033	mg/L		05/30/17 18:17	05/31/17 12:36	5
Zinc	ND		0.035	0.0095	mg/L		05/30/17 18:17	05/31/17 12:36	5

Method: 7470A - Mercury (CVAA)							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00030	0.00015 mg/L		05/30/17 10:12	05/30/17 13:51	1

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-GW Lab Sample ID: 580-68649-3

Date Collected: 05/25/17 12:50 Date Received: 05/26/17 16:30

Matrix: Water

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND ND	0.30	0.050	ug/L			06/01/17 00:22	1
2-Chlorotoluene	ND	0.50	0.070	ug/L			06/01/17 00:22	1
1,2,3-Trichloropropane	ND	0.20	0.050	ug/L			06/01/17 00:22	1
Carbon tetrachloride	ND	0.20	0.025	ug/L			06/01/17 00:22	1
cis-1,3-Dichloropropene	ND	0.50	0.090	ug/L			06/01/17 00:22	1
Chlorobenzene	0.96	0.20	0.025	ug/L			06/01/17 00:22	1
Vinyl chloride	0.97	0.020	0.013	ug/L			06/01/17 00:22	1
sec-Butylbenzene	ND	0.50	0.070	ug/L			06/01/17 00:22	1
Dibromomethane	ND	0.20	0.025	ug/L			06/01/17 00:22	1
m-Xylene & p-Xylene	ND	0.50	0.050	ug/L			06/01/17 00:22	1
o-Xylene	ND	0.50	0.060	ug/L			06/01/17 00:22	1
1,2,4-Trichlorobenzene	ND	0.20	0.040	ug/L			06/01/17 00:22	1
Styrene	ND	0.50	0.10	ug/L			06/01/17 00:22	1
Chlorobromomethane	ND	0.20	0.025	ug/L			06/01/17 00:22	1
Dichlorobromomethane	ND	0.20	0.025	ug/L			06/01/17 00:22	1
1,3-Dichlorobenzene	ND	0.30	0.050	ug/L			06/01/17 00:22	1
Benzene	ND	0.20	0.025	ug/L			06/01/17 00:22	1
Chloroethane	ND	0.50	0.075	ug/L			06/01/17 00:22	1
trans-1,3-Dichloropropene	ND	0.20	0.025	-			06/01/17 00:22	1
1,2,3-Trichlorobenzene	ND	0.50	0.10	-			06/01/17 00:22	1
N-Propylbenzene	ND	0.20	0.025	-			06/01/17 00:22	1
4-Isopropyltoluene	ND	0.30	0.050	-			06/01/17 00:22	1
n-Butylbenzene	ND	0.50	0.080	-			06/01/17 00:22	1
1,1-Dichloropropene	ND	0.10	0.015	-			06/01/17 00:22	1
cis-1,2-Dichloroethene	2.1	0.20	0.025	-			06/01/17 00:22	1
1,1,2,2-Tetrachloroethane	ND	0.20	0.025	-			06/01/17 00:22	1
1,2,4-Trimethylbenzene	ND	0.20	0.030	-			06/01/17 00:22	1
Toluene	ND	0.20	0.025	-			06/01/17 00:22	1
Naphthalene	ND	0.50	0.10	-			06/01/17 00:22	1
1,3,5-Trimethylbenzene	ND	0.50	0.083	-			06/01/17 00:22	1
1,3-Dichloropropane	ND	0.20	0.025	-			06/01/17 00:22	1
Chloroform	ND	0.20	0.030	_			06/01/17 00:22	1
4-Chlorotoluene	ND	0.30	0.050	-			06/01/17 00:22	1
Chlorodibromomethane	ND	0.20	0.025	-			06/01/17 00:22	
Dichlorodifluoromethane	ND	0.40	0.050	_			06/01/17 00:22	1
1,1,2-Trichloroethane	ND	0.20	0.025	-			06/01/17 00:22	1
tert-Butylbenzene	ND	0.50		ug/L			06/01/17 00:22	
Chloromethane	ND	0.30	0.050				06/01/17 00:22	1
Methylene Chloride	ND	0.50		ug/L			06/01/17 00:22	1
1,1-Dichloroethene	ND	0.10	0.018				06/01/17 00:22	
Isopropylbenzene	ND	0.50	0.060				06/01/17 00:22	1
1,2-Dichloroethane	ND	0.20	0.025	_			06/01/17 00:22	1
Tetrachloroethene	ND	0.50	0.070				06/01/17 00:22	
1,1,1-Trichloroethane	ND	0.30	0.075	_			06/01/17 00:22	1
2,2-Dichloropropane	ND ND	0.20	0.023	-			06/01/17 00:22	1
Ethylene Dibromide	ND ND	0.10	0.025	-			06/01/17 00:22	1
Bromoform	ND	0.50	0.080	-			06/01/17 00:22	1
1,2-Dibromo-3-Chloropropane	ND	2.0		ug/L			06/01/17 00:22	1
Trichlorofluoromethane	ND	0.50	0.025	ug/L			06/01/17 00:22	1

TestAmerica Seattle

TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-GW

Date Collected: 05/25/17 12:50 Date Received: 05/26/17 16:30

Client: Leidos, Inc.

Lab Sample ID: 580-68649-3

Matrix: Water

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.20	0.025	ug/L			06/01/17 00:22	1
Bromobenzene	ND		0.20	0.035	ug/L			06/01/17 00:22	1
1,2-Dichloropropane	ND		0.20	0.025	ug/L			06/01/17 00:22	1
1,1,1,2-Tetrachloroethane	ND		0.20	0.025	ug/L			06/01/17 00:22	1
Ethylbenzene	ND		0.20	0.030	ug/L			06/01/17 00:22	1
trans-1,2-Dichloroethene	ND		0.20	0.025	ug/L			06/01/17 00:22	1
Hexachlorobutadiene	ND		0.50	0.075	ug/L			06/01/17 00:22	1
1,1-Dichloroethane	ND		0.20	0.025	ug/L			06/01/17 00:22	1
Bromomethane	ND		1.0	0.16	ug/L			06/01/17 00:22	1
1,4-Dichlorobenzene	ND		0.30	0.050	ug/L			06/01/17 00:22	1
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			06/01/17 00:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			81 - 120					06/01/17 00:22	1
Toluene-d8 (Surr)	93		75 - 125					06/01/17 00:22	1
Trifluorotoluene (Surr)	98		74 - 118					06/01/17 00:22	1
Dibromofluoromethane (Surr)	103		42 - 132					06/01/17 00:22	1
1,2-Dichloroethane-d4 (Surr)	91		46 - 150					06/01/17 00:22	1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Naphthalene	ND	*	0.041	0.013	ug/L		05/31/17 08:24	05/31/17 23:51	
2-Methylnaphthalene	ND	*	0.031	0.0092	ug/L		05/31/17 08:24	05/31/17 23:51	
1-Methylnaphthalene	ND	*	0.020	0.0061	ug/L		05/31/17 08:24	05/31/17 23:51	
Acenaphthylene	0.026		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 23:51	
Acenaphthene	0.26	*	0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 23:51	
Fluorene	ND		0.020	0.0031	ug/L		05/31/17 08:24	05/31/17 23:51	
Phenanthrene	0.029		0.020	0.0041	ug/L		05/31/17 08:24	05/31/17 23:51	
Anthracene	0.029		0.020	0.0031	ug/L		05/31/17 08:24	05/31/17 23:51	
Fluoranthene	0.023		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 23:51	
Pyrene	0.047		0.020	0.0041	ug/L		05/31/17 08:24	05/31/17 23:51	
Benzo[a]anthracene	ND		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 23:51	
Chrysene	ND		0.020	0.0061	ug/L		05/31/17 08:24	05/31/17 23:51	
Benzo[b]fluoranthene	ND		0.020	0.0082	ug/L		05/31/17 08:24	05/31/17 23:51	
Benzo[k]fluoranthene	ND		0.031	0.0092	ug/L		05/31/17 08:24	05/31/17 23:51	
Benzo[a]pyrene	ND		0.020	0.0031	ug/L		05/31/17 08:24	05/31/17 23:51	
Indeno[1,2,3-cd]pyrene	ND		0.020	0.0072	ug/L		05/31/17 08:24	05/31/17 23:51	
Dibenz(a,h)anthracene	ND		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 23:51	
Benzo[g,h,i]perylene	ND		0.020	0.0031	ug/L		05/31/17 08:24	05/31/17 23:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Terphenyl-d14	68		53 - 112				05/31/17 08:24	05/31/17 23:51	

Method: NWTPH-Gx - North	hwest - Volatile	Petroleui	m Products (GC)					
Analyte	Result	Qualifier	RL	1	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		0.50	0.050	mg/L			05/30/17 23:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		58 - 133			-		05/30/17 23:18	1
								05/30/17 23:18	

TestAmerica Seattle

Page 16 of 92

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-GW

TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-3

Matrix: Water

Date Collected: 05/25/17 12:50 Date Received: 05/26/17 16:30

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.51	0.022	ug/L		06/07/17 08:57	06/08/17 03:50	1
PCB-1221	ND		0.51	0.031	ug/L		06/07/17 08:57	06/08/17 03:50	1
PCB-1232	ND		0.51	0.028	ug/L		06/07/17 08:57	06/08/17 03:50	1
PCB-1242	ND		0.51	0.029	ug/L		06/07/17 08:57	06/08/17 03:50	1
PCB-1248	ND		0.51	0.022	ug/L		06/07/17 08:57	06/08/17 03:50	1
PCB-1254	ND		0.51	0.020	ug/L		06/07/17 08:57	06/08/17 03:50	1
PCB-1260	ND		0.51	0.027	ug/L		06/07/17 08:57	06/08/17 03:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	91		38 - 134				06/07/17 08:57	06/08/17 03:50	1
Tetrachloro-m-xylene	83		54 - 115				06/07/17 08:57	06/08/17 03:50	1

				5)	ucts (GC	roleum Prod	olatile Peti	hwest - Semi-V	Method: NWTPH-Dx - North
Dil Fac	Analyzed	Prepared	D	Unit		RL	Qualifier	Result	Analyte
32 1	06/08/17 16:32	06/07/17 14:31		mg/L	0.019	0.10		1.2	#2 Diesel (C10-C24)
32 1	06/08/17 16:32	06/07/17 14:31		mg/L	0.079	0.26		1.0	Motor Oil (>C24-C36)
	Analyzed 06/08/17 16:32	Prepared 06/07/17 14:31				43 ₋ 119	Qualifier	%Recovery	Surrogate o-Terphenyl
:32	06/08/17 16:32 Analyzed	06/07/17 14:31 Prepared		0		0.26	Qualifier	1.0 %Recovery	Motor Oil (>C24-C36) Surrogate

Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0068	0.00	50 0.001	4 mg/L		05/30/17 18:17	05/31/17 11:40	5
Antimony	0.0070	0.00	20 0.0005	55 mg/L		05/30/17 18:17	05/31/17 11:40	5
Beryllium	ND	0.00	20 0.0002	2 mg/L		05/30/17 18:17	05/31/17 11:40	5
Cadmium	ND	0.00	20 0.0005	0 mg/L		05/30/17 18:17	05/31/17 11:40	5
Chromium	0.0052	0.00	20 0.0007	'1 mg/L		05/30/17 18:17	05/31/17 11:40	5
Copper	0.052	0.0	10 0.003	0 mg/L		05/30/17 18:17	05/31/17 11:40	5
Iron	18		1.0 0.1	8 mg/L		05/30/17 18:17	05/31/17 11:40	5
Lead	0.25	0.00	40 0.001	0 mg/L		05/30/17 18:17	05/31/17 11:40	5
Manganese	0.13	0.0	10 0.002	3 mg/L		05/30/17 18:17	05/31/17 11:40	5
Nickel	ND	0.0	15 0.0005	4 mg/L		05/30/17 18:17	05/31/17 11:40	5
Selenium	ND	0.0	40 0.01	0 mg/L		05/30/17 18:17	05/31/17 11:40	5
Silver	ND	0.00	20 0.0002	2 mg/L		05/30/17 18:17	05/31/17 11:40	5
Thallium	ND	0.00	50 0.0003	3 mg/L		05/30/17 18:17	05/31/17 11:40	5
Zinc	0.61	0.0	35 0.009	5 mg/L		05/30/17 18:17	05/31/17 11:40	5

Method: 7470A - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00030	0.00015 mg/L		05/30/17 10:12	05/30/17 13:55	1

7

10

4 4

Client: Leidos, Inc.

TestAmerica Job ID: 580-68649-1 Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-TB-GW

Lab Sample ID: 580-68649-4 Date Collected: 05/25/17 12:00 **Matrix: Water**

Date Received: 05/26/17 16:30

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	ND ND	0.30	0.050	ug/L			05/31/17 19:34	
2-Chlorotoluene	ND	0.50	0.070	ug/L			05/31/17 19:34	
1,2,3-Trichloropropane	ND	0.20	0.050	ug/L			05/31/17 19:34	
Carbon tetrachloride	ND	0.20	0.025	ug/L			05/31/17 19:34	
cis-1,3-Dichloropropene	ND	0.50	0.090	ug/L			05/31/17 19:34	
Chlorobenzene	ND	0.20	0.025	ug/L			05/31/17 19:34	
Vinyl chloride	ND	0.020	0.013	ug/L			05/31/17 19:34	
sec-Butylbenzene	ND	0.50	0.070	ug/L			05/31/17 19:34	
Dibromomethane	ND	0.20	0.025	ug/L			05/31/17 19:34	
m-Xylene & p-Xylene	ND	0.50	0.050	ug/L			05/31/17 19:34	
o-Xylene	ND	0.50	0.060	ug/L			05/31/17 19:34	
1,2,4-Trichlorobenzene	ND	0.20	0.040	_			05/31/17 19:34	
Styrene	ND	0.50	0.10	ug/L			05/31/17 19:34	
Chlorobromomethane	ND	0.20	0.025	_			05/31/17 19:34	
Dichlorobromomethane	ND	0.20	0.025	-			05/31/17 19:34	
1,3-Dichlorobenzene	ND	0.30	0.050				05/31/17 19:34	
Benzene	ND	0.20	0.025	•			05/31/17 19:34	
Chloroethane	ND	0.50	0.075	-			05/31/17 19:34	
trans-1,3-Dichloropropene	ND	0.20	0.025	_			05/31/17 19:34	
1,2,3-Trichlorobenzene	ND	0.50	0.10	-			05/31/17 19:34	
N-Propylbenzene	ND	0.20	0.025	_			05/31/17 19:34	
4-Isopropyltoluene	ND	0.30	0.050	-			05/31/17 19:34	
n-Butylbenzene	ND	0.50	0.080	_			05/31/17 19:34	
1,1-Dichloropropene	ND	0.10	0.015	-			05/31/17 19:34	
cis-1,2-Dichloroethene	ND	0.20	0.025	-			05/31/17 19:34	
1,1,2,2-Tetrachloroethane	ND	0.20	0.025	_			05/31/17 19:34	
1,2,4-Trimethylbenzene	ND	0.20	0.030	_			05/31/17 19:34	
Toluene	ND	0.20	0.025	J			05/31/17 19:34	
Naphthalene	ND	0.50	0.10	-			05/31/17 19:34	
1,3,5-Trimethylbenzene	ND	0.50	0.083	-			05/31/17 19:34	
1,3-Dichloropropane	ND	0.20	0.025	_			05/31/17 19:34	
Chloroform	ND	0.20	0.030	-			05/31/17 19:34	
4-Chlorotoluene	ND	0.30	0.050	_			05/31/17 19:34	
Chlorodibromomethane	ND	0.20	0.025	-			05/31/17 19:34	
Dichlorodifluoromethane	ND	0.40	0.050	-			05/31/17 19:34	
1,1,2-Trichloroethane	ND	0.20	0.025	_			05/31/17 19:34	
tert-Butylbenzene	ND	0.50	0.10				05/31/17 19:34	
Chloromethane	ND	0.30	0.050				05/31/17 19:34	
Methylene Chloride	ND	0.50	0.11	_			05/31/17 19:34	
1,1-Dichloroethene	ND	0.10	0.018				05/31/17 19:34	
Isopropylbenzene	ND	0.50	0.060	_			05/31/17 19:34	
1,2-Dichloroethane	ND	0.20	0.025	_			05/31/17 19:34	
Tetrachloroethene	ND	0.50	0.070				05/31/17 19:34	
1,1,1-Trichloroethane	ND	0.30	0.075	_			05/31/17 19:34	
2,2-Dichloropropane	ND	0.20	0.025	_			05/31/17 19:34	
Ethylene Dibromide	ND	0.30	0.025				05/31/17 19:34	
Bromoform	ND ND	0.10		_			05/31/17 19:34	
			0.080	_				
1,2-Dibromo-3-Chloropropane Trichlorofluoromethane	ND ND	2.0 0.50	0.025	ug/L			05/31/17 19:34 05/31/17 19:34	

TestAmerica Seattle

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-TB-GW

Date Collected: 05/25/17 12:00 Date Received: 05/26/17 16:30

Lab Sample	ID:	580-68	649-4

TestAmerica Job ID: 580-68649-1

Matrix: Water

Method: 8260C - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ıed)					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.20	0.025	ug/L			05/31/17 19:34	1
Bromobenzene	ND		0.20	0.035	ug/L			05/31/17 19:34	1
1,2-Dichloropropane	ND		0.20	0.025	ug/L			05/31/17 19:34	1
1,1,1,2-Tetrachloroethane	ND		0.20	0.025	ug/L			05/31/17 19:34	1
Ethylbenzene	ND		0.20	0.030	ug/L			05/31/17 19:34	1
trans-1,2-Dichloroethene	ND		0.20	0.025	ug/L			05/31/17 19:34	1
Hexachlorobutadiene	ND		0.50	0.075	ug/L			05/31/17 19:34	1
1,1-Dichloroethane	ND		0.20	0.025	ug/L			05/31/17 19:34	1
Bromomethane	ND		1.0	0.16	ug/L			05/31/17 19:34	1
1,4-Dichlorobenzene	ND		0.30	0.050	ug/L			05/31/17 19:34	1
Methyl tert-butyl ether	ND		0.20	0.025	ug/L			05/31/17 19:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		81 - 120					05/31/17 19:34	1
Toluene-d8 (Surr)	97		75 - 125					05/31/17 19:34	1
Trifluorotoluene (Surr)	100		74 - 118					05/31/17 19:34	1
Dibromofluoromethane (Surr)	104		42 - 132					05/31/17 19:34	1
1,2-Dichloroethane-d4 (Surr)	97		46 - 150					05/31/17 19:34	1

U	
\overline{A}	

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-01-9.5

Date Collected: 05/25/17 15:35

Date Received: 05/26/17 16:30

TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-5

Matrix: Solid Percent Solids: 78.6

Method: 8270D - Semivolatile	Organic Co	mpounds (GC/MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		3000	370	ug/Kg	<u> </u>	06/05/17 09:38	06/06/17 19:47	50
1,2-Dichlorobenzene	ND		3000	730	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
1,3-Dichlorobenzene	ND		3000	290	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	50
1,4-Dichlorobenzene	ND		3000	510	ug/Kg		06/05/17 09:38	06/06/17 19:47	50
1-Methylnaphthalene	13000		1800	300	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	50
2,4,5-Trichlorophenol	ND		12000	2700	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	50
2,4,6-Trichlorophenol	ND		9100	2200	ug/Kg	φ.	06/05/17 09:38	06/06/17 19:47	50
2,4-Dichlorophenol	ND		6100	910	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	50
2,4-Dimethylphenol	ND		6100	910	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	50
2,4-Dinitrophenol	ND		61000	12000	ug/Kg	\$	06/05/17 09:38	06/06/17 19:47	50
2,4-Dinitrotoluene	ND		12000	2600	ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	50
2,6-Dinitrotoluene	ND		9100	2100	ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	50
2-Chloronaphthalene	ND		1500	300	ug/Kg	\$	06/05/17 09:38	06/06/17 19:47	50
2-Chlorophenol	ND		12000	2600	ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	50
2-Methylnaphthalene	14000		3000	540	ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	50
2-Methylphenol	ND		9100	2300	ug/Kg	φ.	06/05/17 09:38	06/06/17 19:47	50
2-Nitroaniline	ND		6100		ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
2-Nitrophenol	ND		12000	2800	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
3 & 4 Methylphenol	ND		12000	910	ug/Kg	ф.	06/05/17 09:38	06/06/17 19:47	50
3,3'-Dichlorobenzidine	ND		24000		ug/Kg	₩	06/05/17 09:38	06/06/17 19:47	50
3-Nitroaniline	ND		12000	2400	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
4,6-Dinitro-2-methylphenol	ND		61000	6100	ug/Kg	ф.	06/05/17 09:38	06/06/17 19:47	50
4-Bromophenyl phenyl ether	ND		12000		ug/Kg	₩	06/05/17 09:38	06/06/17 19:47	50
4-Chloro-3-methylphenol	ND		9100	2000	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
4-Chloroaniline	ND		91000	24000			06/05/17 09:38	06/06/17 19:47	50
4-Chlorophenyl phenyl ether	ND		12000		ug/Kg	₩	06/05/17 09:38	06/06/17 19:47	50
4-Nitroaniline	ND		6100			₽	06/05/17 09:38	06/06/17 19:47	50
4-Nitrophenol	ND		91000	22000			06/05/17 09:38	06/06/17 19:47	50
Acenaphthene	35000		1500	300		₽	06/05/17 09:38	06/06/17 19:47	50
Acenaphthylene	4100		1500	300	ug/Kg	₩	06/05/17 09:38	06/06/17 19:47	50
Anthracene	56000		1500			ф.	06/05/17 09:38	06/06/17 19:47	50
Benzo[a]anthracene	82000		1500	300	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
Benzo[a]pyrene	63000		3700	790	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
Benzo[b]fluoranthene	56000		1500	300	ug/Kg	ф.	06/05/17 09:38	06/06/17 19:47	50
Benzo[g,h,i]perylene	25000	*	3700	910	ug/Kg	₩	06/05/17 09:38	06/06/17 19:47	50
Benzo[k]fluoranthene	22000		3700	850	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
Benzoic acid	ND		150000	64000	ug/Kg		06/05/17 09:38	06/06/17 19:47	50
Benzyl alcohol	ND		240000		ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
Bis(2-chloroethoxy)methane	ND		12000	2500	ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	50
Bis(2-chloroethyl)ether	ND		12000	2400	ug/Kg	φ.	06/05/17 09:38	06/06/17 19:47	50
Bis(2-ethylhexyl) phthalate	ND		37000	8300	ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	50
bis(chloroisopropyl) ether	ND		15000	2300	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	50
Butyl benzyl phthalate	ND		12000		ug/Kg		06/05/17 09:38	06/06/17 19:47	50
Carbazole	18000		9100		ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	50
Chrysene	77000		3700		ug/Kg	₩		06/06/17 19:47	50
Dibenz(a,h)anthracene	6200		3000		ug/Kg	ф.	06/05/17 09:38	06/06/17 19:47	50
Dibenzofuran	10000		9100		ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	50
Diethyl phthalate	ND		33000		ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	50
Dimethyl phthalate	ND		9100		ug/Kg	₽.	06/05/17 09:38	06/06/17 19:47	50

TestAmerica Seattle

Client: Leidos, Inc.
Project/Site: 7901 Parcel-South Park Land

Date Collected: 05/25/17 15:35

Date Received: 05/26/17 16:30

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-01-9.5

Lab Sample ID: 580-68649-5

Matrix: Solid

Percent Solids: 78.6

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Di-n-butyl phthalate	ND		30000	3500	ug/Kg	₩	06/05/17 09:38	06/06/17 19:47	5
Di-n-octyl phthalate	ND		61000	14000	ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	5
Fluoranthene	190000		1500	300	ug/Kg	\$	06/05/17 09:38	06/06/17 19:47	5
Fluorene	31000		1500	300	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	5
Hexachlorobenzene	ND		3000	300	ug/Kg	≎	06/05/17 09:38	06/06/17 19:47	5
Hexachlorobutadiene	ND		3000	910	ug/Kg	\$	06/05/17 09:38	06/06/17 19:47	5
Hexachlorocyclopentadiene	ND		6100	1600	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	5
Hexachloroethane	ND		9100	2300	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
Indeno[1,2,3-cd]pyrene	31000		2400	300	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
Isophorone	ND		9100	2300	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	5
Naphthalene	15000		1500	300	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	5
Nitrobenzene	ND		12000	2600	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	5
N-Nitrosodi-n-propylamine	ND		12000	2700	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	50
N-Nitrosodiphenylamine	ND		3700	910	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	5
Pentachlorophenol	ND		24000	5500	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	5
Phenanthrene	250000		3700	730	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	5
Phenol	ND		9100	2300	ug/Kg	☼	06/05/17 09:38	06/06/17 19:47	5
Pyrene	240000		3700	910	ug/Kg	₽	06/05/17 09:38	06/06/17 19:47	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	31		10 - 126				06/05/17 09:38	06/06/17 19:47	5
2-Fluorobiphenyl	63		57 - 110				06/05/17 09:38	06/06/17 19:47	5
2-Fluorophenol (Surr)	85		36 - 125				06/05/17 09:38	06/06/17 19:47	5
Nitrobenzene-d5 (Surr)	96		54 - 113				06/05/17 09:38	06/06/17 19:47	5
Phenol-d5 (Surr)	90		59 - 113				06/05/17 09:38	06/06/17 19:47	5
Terphenyl-d14 (Surr)	87		68 - 120				06/05/17 09:38	06/06/17 19:47	5

Method: NWTPH-GX - Northw	est - volatile	Petroleul	m Products ((GC)					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	21		9.8	5.1	mg/Kg	\	06/07/17 10:37	06/07/17 19:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		50 - 150				06/07/17 10:37	06/07/17 19:22	1
Trifluorotoluene (Surr)							06/07/17 10:37	06/07/17 19:22	1

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.031	0.0093	mg/Kg	₩	06/02/17 09:07	06/04/17 16:16	1
PCB-1221	ND	0.014	0.0053	mg/Kg	☼	06/02/17 09:07	06/04/17 16:16	1
PCB-1232	ND	0.014	0.0061	mg/Kg	₩	06/02/17 09:07	06/04/17 16:16	1
PCB-1242	ND	0.013	0.0020	mg/Kg	φ.	06/02/17 09:07	06/04/17 16:16	1
PCB-1248	ND	0.014	0.0036	mg/Kg	₩	06/02/17 09:07	06/04/17 16:16	1
PCB-1254	ND	0.013	0.0019	mg/Kg	₩	06/02/17 09:07	06/04/17 16:16	1
PCB-1260	ND	0.013	0.0024	mg/Kg	☼	06/02/17 09:07	06/04/17 16:16	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	80	25 - 149				06/02/17 09:07	06/04/17 16:16	1
Tetrachloro-m-xylene	80	35 - 130				06/02/17 09:07	06/04/17 16:16	1

Client: Leidos, Inc.

Client Sample ID: 7901-SB-01-9.5

Date Collected: 05/25/17 15:35

Date Received: 05/26/17 16:30

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: 580-68649-5

TestAmerica Job ID: 580-68649-1

Matrix: Solid

Percent Solids: 78.6

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	3800		59	14	mg/Kg	☼	06/01/17 11:07	06/09/17 22:26	
Motor Oil (>C24-C36)	9000		59	11	mg/Kg	₩	06/01/17 11:07	06/09/17 22:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	702	X	54 - 118				06/01/17 11:07	06/09/17 22:26	
Method: 6020A - Metals (ICP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	99		0.25	0.086	mg/Kg	₩	05/30/17 16:00	05/31/17 14:51	1
Arsenic	35		0.63	0.13	mg/Kg	☼	05/30/17 16:00	05/31/17 14:51	1
Beryllium	0.25		0.25	0.019	mg/Kg	☼	05/30/17 16:00	05/31/17 14:51	1
Cadmium	2.8		0.50	0.097	mg/Kg	₽	05/30/17 16:00	05/31/17 14:51	1
Chromium	170		0.63	0.079	mg/Kg	☼	05/30/17 16:00	05/31/17 14:51	1
Copper	1100		1.3	0.28	mg/Kg	☼	05/30/17 16:00	05/31/17 14:51	1
Lead	6100		0.63	0.061	mg/Kg	₽	05/30/17 16:00	05/31/17 14:51	1
Nickel	31		0.63	0.24	mg/Kg	☼	05/30/17 16:00	05/31/17 14:51	1
Selenium	ND		1.3	0.28	mg/Kg	☼	05/30/17 16:00	05/31/17 14:51	1
Silver	3.4		0.25	0.025	mg/Kg	φ.	05/30/17 16:00	05/31/17 14:51	1
Thallium	ND		0.50	0.069	mg/Kg	☼	05/30/17 16:00	05/31/17 14:51	1
Zinc	1200		6.3	2.0	mg/Kg	☼	05/30/17 16:00	05/31/17 14:51	1
Method: 7471A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.24		0.037	0.011	mg/Kg	\	05/30/17 12:06	05/30/17 15:21	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	78.6		0.1	0.1	%			06/05/17 15:52	
Percent Moisture	21.4		0.1	0.1	%			06/05/17 15:52	

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Date Received: 05/26/17 16:30

Lab Sample ID: 580-68649-6

Matrix: Solid Percent Solids: 85.2

Client Sample ID: 7901-SB-01-14.5 Date Collected: 05/25/17 15:40

Method: 8270D - Semivolatil Analyte	Result	Qualifier	ŔL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		280	33	ug/Kg	<u> </u>	06/05/17 09:38	06/06/17 20:13	5
1,2-Dichlorobenzene	ND		280	67	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
1,3-Dichlorobenzene	ND		280	27	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
1,4-Dichlorobenzene	ND		280	46	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
1-Methylnaphthalene	ND		170	28	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
2,4,5-Trichlorophenol	ND		1100	250	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
2,4,6-Trichlorophenol	ND		830	200	ug/Kg		06/05/17 09:38	06/06/17 20:13	5
2,4-Dichlorophenol	ND		550	83	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
2,4-Dimethylphenol	ND		550	83	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
2,4-Dinitrophenol	ND		5500	1100	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
2,4-Dinitrotoluene	ND		1100	240	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
2,6-Dinitrotoluene	ND		830	190	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
2-Chloronaphthalene	ND		140	28	ug/Kg	₩.	06/05/17 09:38	06/06/17 20:13	5
2-Chlorophenol	ND		1100	230	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
2-Methylnaphthalene	ND		280	49	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
2-Methylphenol	ND		830	210	ug/Kg		06/05/17 09:38	06/06/17 20:13	5
2-Nitroaniline	ND		550		ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
2-Nitrophenol	ND		1100	260	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
3 & 4 Methylphenol	ND		1100	83	ug/Kg	ф.	06/05/17 09:38	06/06/17 20:13	5
3,3'-Dichlorobenzidine	ND		2200	550	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
3-Nitroaniline	ND		1100	220	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
4,6-Dinitro-2-methylphenol	ND		5500	550	ug/Kg	-	06/05/17 09:38	06/06/17 20:13	5
4-Bromophenyl phenyl ether	ND		1100	230	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
4-Chloro-3-methylphenol	ND		830	180	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
4-Chloroaniline	ND		8300	2200	ug/Kg		06/05/17 09:38	06/06/17 20:13	5
4-Chlorophenyl phenyl ether	ND		1100	230	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
4-Nitroaniline	ND		550	110	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
4-Nitrophenol	ND		8300	2000	ug/Kg		06/05/17 09:38	06/06/17 20:13	5
Acenaphthene	ND		140	28	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
Acenaphthylene	ND		140	28	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
Anthracene	ND		140	28	ug/Kg		06/05/17 09:38	06/06/17 20:13	5
Benzo[a]anthracene	250		140	28	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
Benzo[a]pyrene	ND		330		ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
Benzo[b]fluoranthene	ND		140		ug/Kg		06/05/17 09:38	06/06/17 20:13	5
Benzo[g,h,i]perylene	ND	*	330	83	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
Benzo[k]fluoranthene	ND		330	78	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	5
Benzoic acid	ND		14000		ug/Kg		06/05/17 09:38	06/06/17 20:13	5
Benzyl alcohol	ND		22000	210	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
Bis(2-chloroethoxy)methane	ND		1100	230	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
Bis(2-chloroethyl)ether	ND		1100	220	ug/Kg		06/05/17 09:38	06/06/17 20:13	5
Bis(2-ethylhexyl) phthalate	ND		3300	750	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
bis(chloroisopropyl) ether	ND		1400		ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	5
Butyl benzyl phthalate	ND		1100		ug/Kg		06/05/17 09:38	06/06/17 20:13	5
Carbazole	ND		830		ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	5
Chrysene	ND		330		ug/Kg	☆	06/05/17 09:38	06/06/17 20:13	5
Dibenz(a,h)anthracene	ND		280		ug/Kg		06/05/17 09:38	06/06/17 20:13	5
Dibenzofuran	ND		830			₽	06/05/17 09:38	06/06/17 20:13	5
Diethyl phthalate	ND		3100			т Ф	06/05/17 09:38	06/06/17 20:13	5
בוסנו ואו פוונו ומומנכ	שוו		3100	130	ugrity	Tr.	00.00111 00.00	JUIJUI II 20.13	3

TestAmerica Seattle

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-01-14.5

Date Collected: 05/25/17 15:40 Date Received: 05/26/17 16:30

PCB-1248

PCB-1254

PCB-1260

Surrogate

DCB Decachlorobiphenyl Tetrachloro-m-xylene

Lab Sample ID: 580-68649-6

Matrix: Solid

Percent Solids: 85.2

Method: 8270D - Semivola Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Di-n-butyl phthalate	ND		2800		ug/Kg	-	06/05/17 09:38	06/06/17 20:13	
Di-n-octyl phthalate	ND		5500	1200	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	
Fluoranthene	530		140	28	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	
Fluorene	ND		140	28	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	
Hexachlorobenzene	ND		280	28	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	
Hexachlorobutadiene	ND		280	83	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	
Hexachlorocyclopentadiene	ND		550	140	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	
Hexachloroethane	ND		830	210	ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	
Indeno[1,2,3-cd]pyrene	ND		220	28	ug/Kg		06/05/17 09:38	06/06/17 20:13	
Isophorone	ND		830	210	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	
Naphthalene	ND		140	28	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	
Nitrobenzene	ND		1100	230	ug/Kg		06/05/17 09:38	06/06/17 20:13	
N-Nitrosodi-n-propylamine	ND		1100	240	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	
N-Nitrosodiphenylamine	ND		330		ug/Kg	≎	06/05/17 09:38	06/06/17 20:13	
Pentachlorophenol	ND		2200	500	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	
Phenanthrene	540		330	67	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	
Phenol	ND		830	210	ug/Kg	₩	06/05/17 09:38	06/06/17 20:13	
Pyrene	580		330	83	ug/Kg	₽	06/05/17 09:38	06/06/17 20:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2,4,6-Tribromophenol (Surr)	58		10 - 126				06/05/17 09:38	06/06/17 20:13	
2-Fluorobiphenyl	81		57 - 110				06/05/17 09:38	06/06/17 20:13	
2-Fluorophenol (Surr)	106		36 - 125				06/05/17 09:38	06/06/17 20:13	
Nitrobenzene-d5 (Surr)	89		54 - 113				06/05/17 09:38	06/06/17 20:13	
Phenol-d5 (Surr)	116	Χ	59 - 113				06/05/17 09:38	06/06/17 20:13	
Terphenyl-d14 (Surr)	100		68 - 120				06/05/17 09:38	06/06/17 20:13	
Method: NWTPH-Gx - Nort	hwest - Volatile	Petroleu	m Products	(GC)					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Gasoline	32		12	6.0	mg/Kg	₩	06/07/17 10:37	06/07/17 19:52	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	92		50 - 150				06/07/17 10:37	06/07/17 19:52	
Trifluorotoluene (Surr)							06/07/17 10:37	06/07/17 19:52	
Method: 8082A - Polychlor	inated Bipheny	ıls (PCBs)	by Gas Chr	omatogr	aphy				
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
PCB-1016	ND		0.027	0.0081	mg/Kg	<u> </u>	06/02/17 09:07	06/04/17 16:32	
PCB-1221	ND		0.012	0.0046	mg/Kg	≎	06/02/17 09:07	06/04/17 16:32	
FGB-1221					0 0				
PCB-1232	ND		0.012	0.0054	mg/Kg	₩	06/02/17 09:07	06/04/17 16:32	

Analyzed

© 06/02/17 09:07 06/04/17 16:32

© 06/02/17 09:07 06/04/17 16:32

© 06/02/17 09:07 06/04/17 16:32

06/02/17 09:07 06/04/17 16:32

06/02/17 09:07 06/04/17 16:32

Prepared

0.012

0.011

0.011

Limits

25 - 149

35 - 130

0.0032 mg/Kg

0.0016 mg/Kg

0.0021 mg/Kg

ND

ND

ND

%Recovery Qualifier

75

72

Dil Fac

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Percent Moisture

Client Sample ID: 7901-SB-01-14.5 Lab Sample ID: 580-68649-6

Date Collected: 05/25/17 15:40 **Matrix: Solid** Date Received: 05/26/17 16:30 Percent Solids: 85.2

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1300		53	13	mg/Kg	₽	06/01/17 11:07	06/09/17 22:48	
Motor Oil (>C24-C36)	4000		53	9.7	mg/Kg	₩	06/01/17 11:07	06/09/17 22:48	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	102		54 - 118				06/01/17 11:07	06/09/17 22:48	
Method: 6020A - Metals ((ICP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	3.5		0.22	0.076	mg/Kg	<u>₩</u>	05/30/17 16:00	05/31/17 14:55	10
Arsenic	14		0.56	0.11	mg/Kg	₩	05/30/17 16:00	05/31/17 14:55	10
Beryllium	0.53		0.22	0.017	mg/Kg	₩	05/30/17 16:00	05/31/17 14:55	1
Cadmium	4.9		0.45	0.086	mg/Kg	₽	05/30/17 16:00	05/31/17 14:55	1
Chromium	66		0.56	0.070	mg/Kg	☼	05/30/17 16:00	05/31/17 14:55	1
Copper	44		1.1	0.25	mg/Kg	₩	05/30/17 16:00	05/31/17 14:55	1
Lead	1100		0.56	0.054	mg/Kg	₽	05/30/17 16:00	05/31/17 14:55	1
Nickel	32		0.56	0.22	mg/Kg	☼	05/30/17 16:00	05/31/17 14:55	1
Selenium	ND		1.1	0.24	mg/Kg	☼	05/30/17 16:00	05/31/17 14:55	1
Silver	ND		0.22	0.022	mg/Kg	₩.	05/30/17 16:00	05/31/17 14:55	1
Thallium	ND		0.45	0.061	mg/Kg	☼	05/30/17 16:00	05/31/17 14:55	10
Zinc	1800		5.6	1.8	mg/Kg	₩	05/30/17 16:00	05/31/17 14:55	1
Method: 7471A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.078		0.033	0.0098	mg/Kg	\	05/30/17 12:06	05/30/17 15:23	
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	85.2		0.1	0.1	%			06/05/17 15:52	•

0.1

0.1 %

14.8

06/05/17 15:52

Client: Leidos, Inc.

Client Sample ID: 7901-SB-01-17.5

Date Collected: 05/25/17 15:45

Date Received: 05/26/17 16:30

Dibenz(a,h)anthracene

Dibenzofuran

Diethyl phthalate

Dimethyl phthalate

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-7

Matrix: Solid Percent Solids: 65.8

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND		73		ug/Kg		06/05/17 09:38	06/06/17 15:05	
1,2-Dichlorobenzene	ND		73		ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
1,3-Dichlorobenzene	ND		73		ug/Kg		06/05/17 09:38	06/06/17 15:05	
1,4-Dichlorobenzene	ND		73		ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
1-Methylnaphthalene	ND		44	7.3	ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	
2,4,5-Trichlorophenol	ND		290	66	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
2,4,6-Trichlorophenol	ND		220	52	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
2,4-Dichlorophenol	ND		150	22	ug/Kg	≎	06/05/17 09:38	06/06/17 15:05	
2,4-Dimethylphenol	ND		150	22	ug/Kg	≎	06/05/17 09:38	06/06/17 15:05	
2,4-Dinitrophenol	ND		1500	290	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
2,4-Dinitrotoluene	ND		290	63	ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	
2,6-Dinitrotoluene	ND		220	50	ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	
2-Chloronaphthalene	ND		36	7.3	ug/Kg		06/05/17 09:38	06/06/17 15:05	
2-Chlorophenol	ND		290	61		₽	06/05/17 09:38	06/06/17 15:05	
2-Methylnaphthalene	ND		73		ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	
2-Methylphenol	ND		220		ug/Kg	 ф	06/05/17 09:38	06/06/17 15:05	
2-Nitroaniline	ND		150		ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
2-Nitrophenol	ND		290		ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	
3 & 4 Methylphenol	ND		290		ug/Kg		06/05/17 09:38	06/06/17 15:05	
3,3'-Dichlorobenzidine	ND		580		ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	
3-Nitroaniline	ND		290		ug/Kg		06/05/17 09:38	06/06/17 15:05	
			1500				06/05/17 09:38	06/06/17 15:05	
4,6-Dinitro-2-methylphenol	ND				ug/Kg	~ ☆			
4-Bromophenyl phenyl ether	ND		290		ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	
4-Chloro-3-methylphenol	ND		220		ug/Kg		06/05/17 09:38	06/06/17 15:05	
4-Chloroaniline	ND		2200		ug/Kg	‡	06/05/17 09:38	06/06/17 15:05	
4-Chlorophenyl phenyl ether	ND		290		ug/Kg	₩.	06/05/17 09:38	06/06/17 15:05	
4-Nitroaniline	ND		150				06/05/17 09:38	06/06/17 15:05	
4-Nitrophenol	ND		2200		ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
Acenaphthene	ND		36	7.3	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
Acenaphthylene	ND		36	7.3	ug/Kg		06/05/17 09:38	06/06/17 15:05	
Anthracene	ND		36		ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	
Benzo[a]anthracene	ND		36	7.3	ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	
Benzo[a]pyrene	ND		87	19	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	
Benzo[b]fluoranthene	ND		36	7.3	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
Benzo[g,h,i]perylene	ND	*	87	22	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	
Benzo[k]fluoranthene	ND		87	20	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	
Benzoic acid	ND		3600	1500	ug/Kg	ф.	06/05/17 09:38	06/06/17 15:05	
Benzyl alcohol	ND		5800	54	ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	
Bis(2-chloroethoxy)methane	ND		290		ug/Kg	≎	06/05/17 09:38	06/06/17 15:05	
Bis(2-chloroethyl)ether	ND		290		ug/Kg		06/05/17 09:38	06/06/17 15:05	
Bis(2-ethylhexyl) phthalate	ND		870		ug/Kg	₩		06/06/17 15:05	
bis(chloroisopropyl) ether	ND		360		ug/Kg	☼	06/05/17 09:38		
Butyl benzyl phthalate	ND		290		ug/Kg			06/06/17 15:05	
Carbazole	ND		220		ug/Kg	₽		06/06/17 15:05	
Chrysene	ND		87		ug/Kg			06/06/17 15:05	
,00110							00/05/17 05:50	00/00/17 15:05	

TestAmerica Seattle

© 06/05/17 09:38 06/06/17 15:05

06/05/17 09:38 06/06/17 15:05

06/05/17 09:38 06/06/17 15:05

06/05/17 09:38 06/06/17 15:05

73

220

800

220

17 ug/Kg

52 ug/Kg

190 ug/Kg

48 ug/Kg

ND

ND

ND

ND

TestAmerica Job ID: 580-68649-1

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-01-17.5

Date Collected: 05/25/17 15:45 Date Received: 05/26/17 16:30 Lab Sample ID: 580-68649-7

Matrix: Solid Percent Solids: 65.8

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	ND		730	83	ug/Kg	<u> </u>	06/05/17 09:38	06/06/17 15:05	1
Di-n-octyl phthalate	ND		1500	320	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Fluoranthene	88		36	7.3	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Fluorene	ND		36	7.3	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Hexachlorobenzene	ND		73	7.3	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Hexachlorobutadiene	ND		73	22	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Hexachlorocyclopentadiene	ND		150	38	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Hexachloroethane	ND		220	55	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Indeno[1,2,3-cd]pyrene	ND		58	7.3	ug/Kg		06/05/17 09:38	06/06/17 15:05	1
Isophorone	ND		220	54	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Naphthalene	ND		36	7.3	ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	1
Nitrobenzene	ND		290	61	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	1
N-Nitrosodi-n-propylamine	ND		290	64	ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	1
N-Nitrosodiphenylamine	ND		87	22	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Pentachlorophenol	ND		580	130	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	1
Phenanthrene	ND		87	17	ug/Kg	☼	06/05/17 09:38	06/06/17 15:05	1
Phenol	ND		220	55	ug/Kg	₩	06/05/17 09:38	06/06/17 15:05	1
Pyrene	110		87	22	ug/Kg	₽	06/05/17 09:38	06/06/17 15:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	66		10 - 126				06/05/17 09:38	06/06/17 15:05	1
2-Fluorobiphenyl	57		57 - 110				06/05/17 09:38	06/06/17 15:05	1
2-Fluorophenol (Surr)	82		36 - 125				06/05/17 09:38	06/06/17 15:05	1

1	Nitrobenzene-d5 (Surr) Phenol-d5 (Surr) Terphenyl-d14 (Surr)	66 84 70		54 - 113 59 - 113 68 - 120			06/05/17 09:38	06/06/17 15:05 06/06/17 15:05 06/06/17 15:05	1 1 1
1	Method: NWTPH-Gx - Northwest - V Analyte Gasoline		Petroleum Qualifier	Products (GC) RL 15	Unit mg/Kg	— D	Prepared 06/07/17 10:37	Analyzed 06/07/17 20:23	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		50 - 150	06/07/17 10:37 06/07/17 20:23	1
Trifluorotoluene (Surr)				06/07/17 10:37 06/07/17 20:23	1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.035	0.010	mg/Kg	<u> </u>	06/02/17 09:07	06/04/17 16:48	1
PCB-1221	ND		0.015	0.0059	mg/Kg	☼	06/02/17 09:07	06/04/17 16:48	1
PCB-1232	ND		0.015	0.0069	mg/Kg	☼	06/02/17 09:07	06/04/17 16:48	1
PCB-1242	ND		0.014	0.0022	mg/Kg		06/02/17 09:07	06/04/17 16:48	1
PCB-1248	ND		0.015	0.0041	mg/Kg	☼	06/02/17 09:07	06/04/17 16:48	1
PCB-1254	ND		0.014	0.0021	mg/Kg	☼	06/02/17 09:07	06/04/17 16:48	1
PCB-1260	ND		0.014	0.0027	mg/Kg	₽	06/02/17 09:07	06/04/17 16:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	64		25 - 149				06/02/17 09:07	06/04/17 16:48	1
Tetrachloro-m-xylene	84		35 - 130				06/02/17 09:07	06/04/17 16:48	1

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Percent Moisture

Client Sample ID: 7901-SB-01-17.5 Lab Sample ID: 580-68649-7

Date Collected: 05/25/17 15:45 **Matrix: Solid** Date Received: 05/26/17 16:30 Percent Solids: 65.8

Method: NWTPH-Dx - Nor Analyte		Qualifier	RL	•	Únit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	ND		74	18	mg/Kg	<u> </u>	06/01/17 11:07	06/02/17 22:43	
Motor Oil (>C24-C36)	230		74	13	mg/Kg	≎	06/01/17 11:07	06/02/17 22:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	71		54 - 118				06/01/17 11:07	06/02/17 22:43	
Method: 6020A - Metals (I	CP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.36		0.27	0.091	mg/Kg	₩	05/30/17 16:00	05/31/17 16:20	10
Arsenic	5.7		0.67	0.13	mg/Kg	₩	05/30/17 16:00	05/31/17 16:20	10
Beryllium	0.36		0.27	0.020	mg/Kg	☼	05/30/17 16:00	05/31/17 16:20	10
Cadmium	ND		0.54	0.10	mg/Kg	₽	05/30/17 16:00	05/31/17 16:20	10
Chromium	19		0.67	0.085	mg/Kg	☼	05/30/17 16:00	05/31/17 16:20	10
Copper	30		1.3	0.30	mg/Kg	☼	05/30/17 16:00	05/31/17 16:20	10
Lead	48		0.67	0.064	mg/Kg	₽	05/30/17 16:00	05/31/17 16:20	10
Nickel	15		0.67	0.26	mg/Kg	☼	05/30/17 16:00	05/31/17 16:20	10
Selenium	ND		1.3	0.29	mg/Kg	☼	05/30/17 16:00	05/31/17 16:20	10
Silver	ND		0.27	0.027	mg/Kg	φ.	05/30/17 16:00	05/31/17 16:20	10
Thallium	ND		0.54	0.074	mg/Kg	☼	05/30/17 16:00	05/31/17 16:20	10
Zinc	110		6.7	2.2	mg/Kg	☼	05/30/17 16:00	05/31/17 16:20	10
Method: 7471A - Mercury	(CVAA)								
Analyte	,	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.061		0.044	0.013	mg/Kg	\	05/30/17 12:06	05/30/17 15:26	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	65.8		0.1	0.1	%			06/02/17 14:42	

0.1

0.1 %

34.2

06/02/17 14:42

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-02-14.5

Date Collected: 05/25/17 09:30

Date Received: 05/26/17 16:30

TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-8

Matrix: Solid Percent Solids: 84.0

Method: 8270D - Semivolatile Analyte	Result Qualifier			Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	580		ug/Kg	₩.	06/05/17 09:38	06/06/17 15:30	10
1,2-Dichlorobenzene	ND	580		ug/Kg	- D -		06/06/17 15:30	10
1,3-Dichlorobenzene	ND	580		ug/Kg			06/06/17 15:30	10
1,4-Dichlorobenzene	ND	580		ug/Kg	₩.		06/06/17 15:30	10
1-Methylnaphthalene	ND	350		ug/Kg	₩	06/05/17 09:38	06/06/17 15:30	10
2,4,5-Trichlorophenol	ND	2300	520	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	10
2,4,6-Trichlorophenol	ND	1700	420	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	10
2,4-Dichlorophenol	ND	1200	170	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	10
2,4-Dimethylphenol	ND	1200	170	ug/Kg	≎	06/05/17 09:38	06/06/17 15:30	10
2,4-Dinitrophenol	ND	12000	2300	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	10
2,4-Dinitrotoluene	ND	2300	500	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	10
2,6-Dinitrotoluene	ND	1700	390	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	10
2-Chloronaphthalene	ND	290	58	ug/Kg		06/05/17 09:38	06/06/17 15:30	10
2-Chlorophenol	ND	2300		ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	10
2-Methylnaphthalene	ND	580		ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	10
2-Methylphenol	ND	1700		ug/Kg		06/05/17 09:38	06/06/17 15:30	10
2-Nitroaniline	ND	1200		ug/Kg	₩		06/06/17 15:30	10
2-Nitrophenol	ND	2300		ug/Kg	☼		06/06/17 15:30	10
3 & 4 Methylphenol	ND	2300		ug/Kg			06/06/17 15:30	10
3,3'-Dichlorobenzidine	ND	4600			₽		06/06/17 15:30	10
3-Nitroaniline	ND	2300		ug/Kg	₩		06/06/17 15:30	10
4,6-Dinitro-2-methylphenol	ND	12000		ug/Kg			06/06/17 15:30	10
• •	ND	2300			☼		06/06/17 15:30	10
4-Bromophenyl phenyl ether	ND	1700		ug/Kg ug/Kg	☆		06/06/17 15:30	10
4-Chloro-3-methylphenol 4-Chloroaniline		17000					06/06/17 15:30	10
	ND			ug/Kg				
4-Chlorophenyl phenyl ether	ND	2300		ug/Kg	₽		06/06/17 15:30	10
4-Nitroaniline	ND	1200		ug/Kg			06/06/17 15:30	10
4-Nitrophenol	ND	17000		ug/Kg	ψ.		06/06/17 15:30	10
Acenaphthene	660	290		ug/Kg	₩.		06/06/17 15:30	10
Acenaphthylene	ND	290		ug/Kg	- .		06/06/17 15:30	10
Anthracene	1700	290		ug/Kg	₽		06/06/17 15:30	10
Benzo[a]anthracene	2800	290	58	ug/Kg	- D -		06/06/17 15:30	10
Benzo[a]pyrene	2500	700		ug/Kg		06/05/17 09:38	06/06/17 15:30	10
Benzo[b]fluoranthene	2600	290		ug/Kg	≎	06/05/17 09:38	06/06/17 15:30	10
Benzo[g,h,i]perylene	1600 *	700	170	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	10
Benzo[k]fluoranthene	950	700	160	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	10
Benzoic acid	ND	29000	12000	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	10
Benzyl alcohol	ND	46000	430	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	10
Bis(2-chloroethoxy)methane	ND	2300	480	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	10
Bis(2-chloroethyl)ether	ND	2300	460	ug/Kg	\$	06/05/17 09:38	06/06/17 15:30	10
Bis(2-ethylhexyl) phthalate	ND	7000	1600	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	10
bis(chloroisopropyl) ether	ND	2900	430	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	10
Butyl benzyl phthalate	ND	2300		ug/Kg	ф		06/06/17 15:30	10
Carbazole	ND	1700		ug/Kg	₩		06/06/17 15:30	10
Chrysene	3000	700		ug/Kg	₩		06/06/17 15:30	10
Dibenz(a,h)anthracene	ND	580		ug/Kg			06/06/17 15:30	10
Dibenzofuran	ND	1700		ug/Kg	₽		06/06/17 15:30	10
	ND	6400			₽		06/06/17 15:30	
Diethyl phthalate Dimethyl phthalate	ND ND	1700		ug/Kg ug/Kg	.		06/06/17 15:30	10

TestAmerica Seattle

6/13/2017

Page 29 of 92

TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-02-14.5

Date Collected: 05/25/17 09:30 Date Received: 05/26/17 16:30

Client: Leidos, Inc.

Tetrachloro-m-xylene

Lab Sample ID: 580-68649-8

Matrix: Solid

Percent Solids: 84.0

Method: 8270D - Semivola Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Di-n-butyl phthalate	ND		5800	660	ug/Kg	<u></u>	06/05/17 09:38	06/06/17 15:30	1
Di-n-octyl phthalate	ND		12000	2600	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Fluoranthene	7100		290	58	ug/Kg	ф.	06/05/17 09:38	06/06/17 15:30	1
Fluorene	990		290	58	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Hexachlorobenzene	ND		580	58	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Hexachlorobutadiene	ND		580	170	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Hexachlorocyclopentadiene	ND		1200	300	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Hexachloroethane	ND		1700	440	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
ndeno[1,2,3-cd]pyrene	1900		460	58	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	1
sophorone	ND		1700	430	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Naphthalene	590		290	58	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Nitrobenzene	ND		2300	490	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	1
N-Nitrosodi-n-propylamine	ND		2300	510	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
N-Nitrosodiphenylamine	ND		700	170	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Pentachlorophenol	ND		4600	1100	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	1
Phenanthrene	7900		700	140	ug/Kg	₽	06/05/17 09:38	06/06/17 15:30	1
Phenol	ND		1700	440	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Pyrene	6900		700	170	ug/Kg	☼	06/05/17 09:38	06/06/17 15:30	1
Currogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
,4,6-Tribromophenol (Surr)	54		10 - 126				06/05/17 09:38	06/06/17 15:30	
2-Fluorobiphenyl	74		57 - 110				06/05/17 09:38	06/06/17 15:30	1
2-Fluorophenol (Surr)	83		36 - 125				06/05/17 09:38	06/06/17 15:30	1
Nitrobenzene-d5 (Surr)	92		54 - 113				06/05/17 09:38	06/06/17 15:30	1
Phenol-d5 (Surr)	93		59 - 113				06/05/17 09:38	06/06/17 15:30	1
Terphenyl-d14 (Surr)	87		68 - 120				06/05/17 09:38	06/06/17 15:30	1
Method: NWTPH-Gx - Nort	:hwest - Volatile	e Petroleu	m Products ((GC)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	24		9.4	4.9	mg/Kg	\	06/07/17 10:37	06/07/17 20:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
-Bromofluorobenzene (Surr)	89		50 - 150				06/07/17 10:37	06/07/17 20:53	
rifluorotoluene (Surr)							06/07/17 10:37	06/07/17 20:53	
Method: 8082A - Polychloi	rinated Bipheny	yls (PCBs)	by Gas Chro	omatogr	aphy				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.027	0.0081	0 0	₩	06/02/17 09:07	06/04/17 17:04	
PCB-1221	ND		0.012	0.0046		₩	06/02/17 09:07	06/04/17 17:04	
PCB-1232	ND		0.012	0.0054		₩	06/02/17 09:07	06/04/17 17:04	
PCB-1242	ND		0.011	0.0017	mg/Kg	₽	06/02/17 09:07	06/04/17 17:04	
PCB-1248	ND		0.012	0.0032		☼	06/02/17 09:07	06/04/17 17:04	
PCB-1254	ND		0.011	0.0016	mg/Kg	☼	06/02/17 09:07	06/04/17 17:04	
PCB-1260	ND		0.011	0.0021	mg/Kg		06/02/17 09:07	06/04/17 17:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
DCB Decachlorobiphenyl	81		25 - 149				06/02/17 09:07	06/04/17 17:04	

TestAmerica Seattle

06/02/17 09:07 06/04/17 17:04

35 - 130

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Percent Moisture

Client Sample ID: 7901-SB-02-14.5 Lab Sample ID: 580-68649-8

Date Collected: 05/25/17 09:30 **Matrix: Solid** Date Received: 05/26/17 16:30 Percent Solids: 84.0

Analyte	Result	Qualifier	RL	•	Únit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	330		59	14	mg/Kg	<u> </u>	06/01/17 11:07	06/02/17 23:14	
Motor Oil (>C24-C36)	970		59	11	mg/Kg	₩	06/01/17 11:07	06/02/17 23:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	98		54 - 118				06/01/17 11:07	06/02/17 23:14	
Method: 6020A - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	8.0		0.22	0.074	mg/Kg	₩	05/30/17 16:00	05/31/17 16:24	10
Arsenic	19		0.55	0.11	mg/Kg	₩	05/30/17 16:00	05/31/17 16:24	10
Beryllium	ND		0.22	0.016	mg/Kg	≎	05/30/17 16:00	05/31/17 16:24	10
Cadmium	42		0.44	0.084	mg/Kg	₽	05/30/17 16:00	05/31/17 16:24	10
Chromium	54		0.55	0.069	mg/Kg	☼	05/30/17 16:00	05/31/17 16:24	10
Copper	660		1.1	0.24	mg/Kg	≎	05/30/17 16:00	05/31/17 16:24	10
Lead	2300		0.55	0.053	mg/Kg	\$	05/30/17 16:00	05/31/17 16:24	10
Nickel	110		0.55	0.21	mg/Kg	≎	05/30/17 16:00	05/31/17 16:24	10
Selenium	ND		1.1	0.24	mg/Kg	☼	05/30/17 16:00	05/31/17 16:24	10
Silver	0.47		0.22	0.022	mg/Kg	₽	05/30/17 16:00	05/31/17 16:24	10
Thallium	ND		0.44	0.060	mg/Kg	☼	05/30/17 16:00	05/31/17 16:24	10
Zinc	12000		550	180	mg/Kg	☼	05/30/17 16:00	05/31/17 16:41	1000
Method: 7471A - Mercury	y (CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.43		0.034	0.010	mg/Kg	\	05/30/17 12:06	05/30/17 15:32	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	84.0		0.1	0.1	%		·	06/02/17 14:42	

0.1

0.1 %

16.0

06/02/17 14:42

_

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-02-17.5

Date Collected: 05/25/17 09:35

Date Received: 05/26/17 16:30

Lab Sample ID: 580-68649-9

Matrix: Solid
Percent Solids: 65.8

4

Method: 8270D - Semivolatil Analyte	le Organic Con Result (Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND	70	8.4	ug/Kg		06/05/17 09:38	06/06/17 15:56	
1,2-Dichlorobenzene	ND	70		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
1,3-Dichlorobenzene	ND	70		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
1,4-Dichlorobenzene	ND	70		ug/Kg	.	06/05/17 09:38	06/06/17 15:56	
1-Methylnaphthalene	ND	42			₩	06/05/17 09:38	06/06/17 15:56	
2,4,5-Trichlorophenol	ND	280		0 0	☼	06/05/17 09:38	06/06/17 15:56	
2,4,6-Trichlorophenol	ND	210	50			06/05/17 09:38	06/06/17 15:56	
2,4-Dichlorophenol	ND	140	21	ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
2,4-Dimethylphenol	ND	140	21	ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
2,4-Dinitrophenol	ND	1400	280	ug/Kg		06/05/17 09:38	06/06/17 15:56	
2,4-Dinitrotoluene	ND	280		ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	
2,6-Dinitrotoluene	ND	210		ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	
2-Chloronaphthalene	ND	35		ug/Kg		06/05/17 09:38	06/06/17 15:56	
2-Chlorophenol	ND	280		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
2-Methylnaphthalene	ND	70		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
2-Methylphenol	ND	210		ug/Kg		06/05/17 09:38	06/06/17 15:56	
2-Nitroaniline	ND	140	21	ug/Kg	₽	06/05/17 09:38	06/06/17 15:56	
2-Nitrophenol	ND	280		ug/Kg	☆	06/05/17 09:38	06/06/17 15:56	
3 & 4 Methylphenol	ND	280	21			06/05/17 09:38	06/06/17 15:56	
3,3'-Dichlorobenzidine	ND	560		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
3-Nitroaniline	ND	280		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
4,6-Dinitro-2-methylphenol	ND	1400		ug/Kg		06/05/17 09:38	06/06/17 15:56	
4-Bromophenyl phenyl ether	ND	280		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
4-Chloro-3-methylphenol	ND	210		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
4-Chloroaniline	ND	2100		ug/Kg		06/05/17 09:38	06/06/17 15:56	
4-Chlorophenyl phenyl ether	ND	280		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
4-Nitroaniline	ND	140		ug/Kg	.∵	06/05/17 09:38	06/06/17 15:56	
4-Nitrophenol	ND	2100		ug/Kg		06/05/17 09:38	06/06/17 15:56	
Acenaphthene	ND	35		ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	
Acenaphthylene	ND	35		ug/Kg	₩	06/05/17 09:38	06/06/17 15:56	
-	53	35		ug/Kg		06/05/17 09:38	06/06/17 15:56	
Anthracene	140	35		ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	
Benzo[a]anthracene	140	84		ug/Kg ug/Kg	☆	06/05/17 09:38	06/06/17 15:56	
Benzo[a]pyrene		35		ug/Kg		06/05/17 09:38	06/06/17 15:56	
Benzo[b]fluoranthene	130 ND *		21	ug/Kg ug/Kg		06/05/17 09:38	06/06/17 15:56	
Benzo[g,h,i]perylene Benzo[k]fluoranthene	ND ND	84		ug/Kg ug/Kg	☆	06/05/17 09:38	06/06/17 15:56	
Benzoic acid	ND	3500		ug/Kg		06/05/17 09:38	06/06/17 15:56	
				ug/Kg ug/Kg	☆			
Benzyl alcohol	ND	5600		0 0	*	06/05/17 09:38		
Bis(2-chloroethoxy)methane	ND	280		ug/Kg	٠	06/05/17 09:38		
Bis(2-chloroethyl)ether	ND	280		ug/Kg	₩ ₩		06/06/17 15:56	
Bis(2-ethylhexyl) phthalate	ND	840		ug/Kg	₩	06/05/17 09:38		
ois(chloroisopropyl) ether	ND	350		ug/Kg	*. .p.	06/05/17 09:38	06/06/17 15:56	
Butyl benzyl phthalate	ND	280		ug/Kg	₩ ₩	06/05/17 09:38	06/06/17 15:56	
Carbazole	ND	210		ug/Kg	☆	06/05/17 09:38	06/06/17 15:56	
Chrysene	140	84		ug/Kg		06/05/17 09:38	06/06/17 15:56	
Dibenz(a,h)anthracene	ND	70		ug/Kg	ή. †	06/05/17 09:38	06/06/17 15:56	
Dibenzofuran	ND	210		ug/Kg	ψ.	06/05/17 09:38		
Diethyl phthalate	ND	770		ug/Kg		06/05/17 09:38	06/06/17 15:56	
Dimethyl phthalate	ND	210	46	ug/Kg	≎	06/05/17 09:38	06/06/17 15:56	

TestAmerica Seattle

Client: Leidos, Inc.

Date Collected: 05/25/17 09:35

Date Received: 05/26/17 16:30

Project/Site: 7901 Parcel-South Park Landfill Client Sample ID: 7901-SB-02-17.5

Lab Sample ID: 580-68649-9

Matrix: Solid Percent Solids: 65.8

Analyte	Result Q	Qualifier RL		Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	ND ND	700	80	ug/Kg	<u> </u>	06/05/17 09:38	06/06/17 15:56	1
Di-n-octyl phthalate	ND	1400	310	ug/Kg	≎	06/05/17 09:38	06/06/17 15:56	1
Fluoranthene	310	35	7.0	ug/Kg	\$	06/05/17 09:38	06/06/17 15:56	1
Fluorene	ND	35	7.0	ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	1
Hexachlorobenzene	ND	70	7.0	ug/Kg	≎	06/05/17 09:38	06/06/17 15:56	1
Hexachlorobutadiene	ND	70	21	ug/Kg	\$	06/05/17 09:38	06/06/17 15:56	1
Hexachlorocyclopentadiene	ND	140	36	ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	1
Hexachloroethane	ND	210	53	ug/Kg	₽	06/05/17 09:38	06/06/17 15:56	1
Indeno[1,2,3-cd]pyrene	93	56	7.0	ug/Kg	φ.	06/05/17 09:38	06/06/17 15:56	1
Isophorone	ND	210	52	ug/Kg	₽	06/05/17 09:38	06/06/17 15:56	1
Naphthalene	ND	35	7.0	ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	1
Nitrobenzene	ND	280	59	ug/Kg	φ.	06/05/17 09:38	06/06/17 15:56	1
N-Nitrosodi-n-propylamine	ND	280	62	ug/Kg	₽	06/05/17 09:38	06/06/17 15:56	1
N-Nitrosodiphenylamine	ND	84	21	ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	1
Pentachlorophenol	ND	560	130	ug/Kg	₽	06/05/17 09:38	06/06/17 15:56	1
Phenanthrene	260	84	17	ug/Kg	₽	06/05/17 09:38	06/06/17 15:56	1
Phenol	ND	210	53	ug/Kg	☼	06/05/17 09:38	06/06/17 15:56	1
Pyrene	310	84	21	ug/Kg	₩.	06/05/17 09:38	06/06/17 15:56	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	70		10 - 126	06/05/17 09:38	06/06/17 15:56	1
2-Fluorobiphenyl	61		57 - 110	06/05/17 09:38	06/06/17 15:56	1
2-Fluorophenol (Surr)	83		36 - 125	06/05/17 09:38	06/06/17 15:56	1
Nitrobenzene-d5 (Surr)	70		54 - 113	06/05/17 09:38	06/06/17 15:56	1
Phenol-d5 (Surr)	83		59 - 113	06/05/17 09:38	06/06/17 15:56	1
Terphenyl-d14 (Surr)	73		68 - 120	06/05/17 09:38	06/06/17 15:56	1

Method: NWTPH-Gx - Northw	est - Volatile	e Petroleu	m Products (C	SC)					
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	ND		12	6.5	mg/Kg	₩	06/07/17 10:37	06/07/17 21:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		50 - 150				06/07/17 10:37	06/07/17 21:23	1

Analyte	Result C	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.036	0.011	mg/Kg	₩	06/02/17 09:07	06/04/17 17:20	1
PCB-1221	ND		0.016	0.0061	mg/Kg	₩	06/02/17 09:07	06/04/17 17:20	1
PCB-1232	ND		0.016	0.0071	mg/Kg	☼	06/02/17 09:07	06/04/17 17:20	1
PCB-1242	ND		0.015	0.0023	mg/Kg	₽	06/02/17 09:07	06/04/17 17:20	1
PCB-1248	ND		0.016	0.0042	mg/Kg	☼	06/02/17 09:07	06/04/17 17:20	1
PCB-1254	ND		0.015	0.0022	mg/Kg	₩	06/02/17 09:07	06/04/17 17:20	1
PCB-1260	ND		0.015	0.0028	mg/Kg	₽	06/02/17 09:07	06/04/17 17:20	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	69		25 - 149				06/02/17 09:07	06/04/17 17:20	1
Tetrachloro-m-xylene	86		35 - 130				06/02/17 09:07	06/04/17 17:20	1

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Percent Moisture

Client Sample ID: 7901-SB-02-17.5 Lab Sample ID: 580-68649-9

Date Collected: 05/25/17 09:35 **Matrix: Solid** Date Received: 05/26/17 16:30 Percent Solids: 65.8

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		69	17	mg/Kg	<u> </u>	06/01/17 11:07	06/02/17 23:44	
Motor Oil (>C24-C36)	240		69	13	mg/Kg	₩	06/01/17 11:07	06/02/17 23:44	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	76		54 - 118				06/01/17 11:07	06/02/17 23:44	
Method: 6020A - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	10		0.26	0.087	mg/Kg	<u>₩</u>	05/30/17 16:00	05/31/17 16:29	10
Arsenic	22		0.64	0.13	mg/Kg	₩	05/30/17 16:00	05/31/17 16:29	10
Beryllium	ND		0.26	0.019	mg/Kg	₩	05/30/17 16:00	05/31/17 16:29	10
Cadmium	0.97		0.51	0.099	mg/Kg	₽	05/30/17 16:00	05/31/17 16:29	10
Chromium	42		0.64	0.081	mg/Kg	₩	05/30/17 16:00	05/31/17 16:29	10
Copper	350		1.3	0.28	mg/Kg	₩	05/30/17 16:00	05/31/17 16:29	10
Lead	48		0.64	0.062	mg/Kg	₽	05/30/17 16:00	05/31/17 16:29	10
Nickel	65		0.64	0.25	mg/Kg	₩	05/30/17 16:00	05/31/17 16:29	10
Selenium	ND		1.3	0.28	mg/Kg	☼	05/30/17 16:00	05/31/17 16:29	10
Silver	ND		0.26	0.026	mg/Kg		05/30/17 16:00	05/31/17 16:29	10
Thallium	ND		0.51	0.071	mg/Kg	₩	05/30/17 16:00	05/31/17 16:29	10
Zinc	360		6.4	2.1	mg/Kg	₩	05/30/17 16:00	05/31/17 16:29	10
Method: 7471A - Mercur	y (CVAA)								
Analyte	• '	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND ND		0.041	0.012	mg/Kg	\	05/30/17 12:06	05/30/17 15:35	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	65.8		0.1	0.1	%	_		06/02/17 14:42	

0.1

0.1 %

34.2

06/02/17 14:42

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-03-8

Date Collected: 05/25/17 14:05

Date Received: 05/26/17 16:30

TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-10

Matrix: Solid Percent Solids: 86.5

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	56	6.7	ug/Kg	<u> </u>	06/05/17 09:38	06/06/17 16:22	1
1,2-Dichlorobenzene	ND	56	13	0 0	☼	06/05/17 09:38	06/06/17 16:22	1
1,3-Dichlorobenzene	ND	56				06/05/17 09:38	06/06/17 16:22	1
1,4-Dichlorobenzene	ND	56		ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
1-Methylnaphthalene	ND	33	5.6	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2,4,5-Trichlorophenol	ND	220	50	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2,4,6-Trichlorophenol	ND	170	40	ug/Kg	₽	06/05/17 09:38	06/06/17 16:22	1
2,4-Dichlorophenol	ND	110	17	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2,4-Dimethylphenol	ND	110	17	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2,4-Dinitrophenol	ND	1100	220	ug/Kg	₽	06/05/17 09:38	06/06/17 16:22	1
2,4-Dinitrotoluene	ND	220	48	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2,6-Dinitrotoluene	ND	170	38	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2-Chloronaphthalene	ND	28	5.6	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2-Chlorophenol	ND	220	47	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2-Methylnaphthalene	ND	56	9.8	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2-Methylphenol	ND	170	41	ug/Kg	₽	06/05/17 09:38	06/06/17 16:22	1
2-Nitroaniline	ND	110	17	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
2-Nitrophenol	ND	220	51	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
3 & 4 Methylphenol	ND	220	17	ug/Kg	₩.	06/05/17 09:38	06/06/17 16:22	1
3,3'-Dichlorobenzidine	ND	450	110	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
3-Nitroaniline	ND	220	45	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
4,6-Dinitro-2-methylphenol	ND	1100	110	ug/Kg		06/05/17 09:38	06/06/17 16:22	1
4-Bromophenyl phenyl ether	ND	220	46	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
4-Chloro-3-methylphenol	ND	170	37	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
4-Chloroaniline	ND	1700	450	ug/Kg		06/05/17 09:38	06/06/17 16:22	1
4-Chlorophenyl phenyl ether	ND	220	46	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
4-Nitroaniline	ND	110	22	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
4-Nitrophenol	ND	1700	410	ug/Kg		06/05/17 09:38	06/06/17 16:22	1
Acenaphthene	ND	28		ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Acenaphthylene	ND	28		ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Anthracene	ND	28	5.6	ug/Kg	· · · · · · · · · · · · · · · · · · ·	06/05/17 09:38	06/06/17 16:22	1
Benzo[a]anthracene	ND	28	5.6	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Benzo[a]pyrene	ND	67	14		☼	06/05/17 09:38	06/06/17 16:22	1
Benzo[b]fluoranthene	ND	28	5.6	ug/Kg		06/05/17 09:38	06/06/17 16:22	1
Benzo[g,h,i]perylene	ND *	67	17	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Benzo[k]fluoranthene	ND	67		ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Benzoic acid	ND	2800		ug/Kg	· · · · · · · · · · · · · · · · · · ·	06/05/17 09:38	06/06/17 16:22	1
Benzyl alcohol	ND	4500		ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Bis(2-chloroethoxy)methane	ND	220		ug/Kg	₩		06/06/17 16:22	1
Bis(2-chloroethyl)ether	ND	220		ug/Kg	· · · · · · · · · · · · · · · · · · ·		06/06/17 16:22	1
Bis(2-ethylhexyl) phthalate	ND	670		ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
bis(chloroisopropyl) ether	ND	280		ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Butyl benzyl phthalate	ND	220		ug/Kg	· · · · · · · · · · · · · · · · · · ·	06/05/17 09:38	06/06/17 16:22	
Carbazole	ND	170		ug/Kg	₽	06/05/17 09:38	06/06/17 16:22	1
Chrysene	ND	67		ug/Kg	 	06/05/17 09:38	06/06/17 16:22	1
Dibenz(a,h)anthracene	ND	56		ug/Kg	· · · · · · · · · · · · · · · · · · ·	06/05/17 09:38	06/06/17 16:22	
Dibenzofuran	ND	170		ug/Kg ug/Kg	~ ⇔	06/05/17 09:38	06/06/17 16:22	1
	ND				卒		06/06/17 16:22	1
Diethyl phthalate	חוו	610	100	ug/Kg	~	00/00/17 09.30	00/00/1/ 10.22	ı

Tetrachloro-m-xylene

TestAmerica Job ID: 580-68649-1 Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-03-8

Lab Sample ID: 580-68649-10

Matrix: Solid Perc

Date Collected: 05/25/17 14:05 Date Received: 05/26/17 16:30

ent Solids: 86.5	

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	ND		560	64	ug/Kg	<u> </u>	06/05/17 09:38	06/06/17 16:22	1
Di-n-octyl phthalate	ND		1100	250	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Fluoranthene	ND		28	5.6	ug/Kg	₽	06/05/17 09:38	06/06/17 16:22	1
Fluorene	ND		28	5.6	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Hexachlorobenzene	ND		56	5.6	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Hexachlorobutadiene	ND		56	17	ug/Kg	₽	06/05/17 09:38	06/06/17 16:22	1
Hexachlorocyclopentadiene	ND		110	29	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Hexachloroethane	ND		170	42	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Indeno[1,2,3-cd]pyrene	ND		45	5.6	ug/Kg	φ.	06/05/17 09:38	06/06/17 16:22	1
Isophorone	ND		170	41	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Naphthalene	ND		28	5.6	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Nitrobenzene	ND		220	47	ug/Kg	φ.	06/05/17 09:38	06/06/17 16:22	1
N-Nitrosodi-n-propylamine	ND		220	49	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
N-Nitrosodiphenylamine	ND		67	17	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Pentachlorophenol	ND		450	100	ug/Kg	₽	06/05/17 09:38	06/06/17 16:22	1
Phenanthrene	ND		67	13	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Phenol	ND		170	42	ug/Kg	☼	06/05/17 09:38	06/06/17 16:22	1
Pyrene	ND		67	17	ug/Kg	₩	06/05/17 09:38	06/06/17 16:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	76		10 - 126				06/05/17 09:38	06/06/17 16:22	1
2 Fluorahinhanul	74		F7 440				06/05/47 00:39	06/06/17 16:00	4

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	76		10 - 126	06/05/17 09:38	06/06/17 16:22	1
2-Fluorobiphenyl	71		57 - 110	06/05/17 09:38	06/06/17 16:22	1
2-Fluorophenol (Surr)	101		36 - 125	06/05/17 09:38	06/06/17 16:22	1
Nitrobenzene-d5 (Surr)	81		54 - 113	06/05/17 09:38	06/06/17 16:22	1
Phenol-d5 (Surr)	102		59 - 113	06/05/17 09:38	06/06/17 16:22	1
Terphenyl-d14 (Surr)	88		68 - 120	06/05/17 09:38	06/06/17 16:22	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC	2)
· ·	•

97

Analyte Gasoline	- Result ND	Qualifier	7.3	3.8	Unit mg/Kg	— D	Prepared 06/08/17 11:43	Analyzed 06/08/17 18:20	Dil Fac
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		50 - 150				06/08/17 11:43	06/08/17 18:20	1
Trifluorotoluene (Surr)							06/08/17 11:43	06/08/17 18:20	1

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.028	0.0082	mg/Kg	₩	06/02/17 09:07	06/04/17 17:37	1
PCB-1221	ND		0.012	0.0046	mg/Kg	☼	06/02/17 09:07	06/04/17 17:37	1
PCB-1232	ND		0.012	0.0054	mg/Kg	☼	06/02/17 09:07	06/04/17 17:37	1
PCB-1242	ND		0.011	0.0018	mg/Kg		06/02/17 09:07	06/04/17 17:37	1
PCB-1248	ND		0.012	0.0032	mg/Kg	☼	06/02/17 09:07	06/04/17 17:37	1
PCB-1254	ND		0.011	0.0017	mg/Kg	☼	06/02/17 09:07	06/04/17 17:37	1
PCB-1260	ND		0.011	0.0021	mg/Kg	☼	06/02/17 09:07	06/04/17 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	92		25 - 149				06/02/17 09:07	06/04/17 17:37	1

35 - 130

06/02/17 09:07 06/04/17 17:37

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-03-8

Lab Sample ID: 580-68649-10 Date Collected: 05/25/17 14:05

Matrix: Solid

Date Received: 05/26/17 16:30 Percent Solids: 86.5

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	ND		52	13	mg/Kg	<u>₩</u>	06/01/17 11:07	06/03/17 00:14	1
Motor Oil (>C24-C36)	110		52	9.5	mg/Kg	₽	06/01/17 11:07	06/03/17 00:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	76		54 - 118				06/01/17 11:07	06/03/17 00:14	1
Method: 6020A - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	62		0.20	0.070	mg/Kg	<u> </u>	05/30/17 16:00	05/31/17 13:52	10
Arsenic	11		0.51	0.10	mg/Kg	₩	05/30/17 16:00	05/31/17 13:52	10
Beryllium	0.23		0.20	0.015	mg/Kg	₩	05/30/17 16:00	05/31/17 13:52	10
Cadmium	1.3		0.41	0.079	mg/Kg	₩.	05/30/17 16:00	05/31/17 13:52	10
Chromium	44		0.51	0.064	mg/Kg	₩	05/30/17 16:00	05/31/17 13:52	10
Copper	150		1.0	0.22	mg/Kg	₩	05/30/17 16:00	05/31/17 13:52	10
Lead	320		0.51	0.049	mg/Kg	₩.	05/30/17 16:00	05/31/17 13:52	10
Nickel	48		0.51	0.20	mg/Kg	₩	05/30/17 16:00	05/31/17 13:52	10
Selenium	ND		1.0	0.22	mg/Kg	₩	05/30/17 16:00	05/31/17 13:52	10
Silver	0.33		0.20	0.020	mg/Kg	₩.	05/30/17 16:00	05/31/17 13:52	10
Thallium	ND		0.41	0.056	mg/Kg	₩	05/30/17 16:00	05/31/17 13:52	10
Zinc	1400		5.1	1.6	mg/Kg	₽	05/30/17 16:00	05/31/17 13:52	10
Method: 7471A - Mercury	y (CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.056		0.032	0.0097	mg/Kg	\	05/30/17 12:06	05/30/17 15:37	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	86.5		0.1	0.1	%		-	06/02/17 14:42	1
Percent Moisture	13.5		0.1	0.1	%			06/02/17 14:42	1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-03-9

Date Collected: 05/25/17 14:10 Date Received: 05/26/17 16:30

Client: Leidos, Inc.

Lab Sample ID: 580-68649-11

Matrix: Solid Percent Solids: 79.8

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	290	35	ug/Kg	<u>∓</u>	06/05/17 09:38	06/06/17 16:47	5
1,2-Dichlorobenzene	ND	290		ug/Kg	☼	06/05/17 09:38	06/06/17 16:47	5
1,3-Dichlorobenzene	ND	290	28	ug/Kg	*	06/05/17 09:38	06/06/17 16:47	5
1,4-Dichlorobenzene	ND	290	49	ug/Kg	₽	06/05/17 09:38	06/06/17 16:47	5
1-Methylnaphthalene	340	180	29	ug/Kg	₽	06/05/17 09:38	06/06/17 16:47	5
2,4,5-Trichlorophenol	ND	1200	260	ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
2,4,6-Trichlorophenol	ND	880	210	ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
2,4-Dichlorophenol	ND	590	88	ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
2,4-Dimethylphenol	ND	590	88	ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
2,4-Dinitrophenol	ND	5900	1200	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
2,4-Dinitrotoluene	ND	1200	250	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
2,6-Dinitrotoluene	ND	880	200	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
2-Chloronaphthalene	ND	150	29	ug/Kg	₽	06/05/17 09:38	06/06/17 16:47	5
2-Chlorophenol	ND	1200	250	ug/Kg	⇔	06/05/17 09:38	06/06/17 16:47	5
2-Methylnaphthalene	570	290	52	ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
2-Methylphenol	ND	880	220	ug/Kg		06/05/17 09:38	06/06/17 16:47	5
2-Nitroaniline	ND	590	88	ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
2-Nitrophenol	ND	1200	270	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
3 & 4 Methylphenol	ND	1200	88	ug/Kg		06/05/17 09:38	06/06/17 16:47	5
3,3'-Dichlorobenzidine	ND	2300	590	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
3-Nitroaniline	ND	1200	230	ug/Kg	₽	06/05/17 09:38	06/06/17 16:47	5
4,6-Dinitro-2-methylphenol	ND	5900	590	ug/Kg		06/05/17 09:38	06/06/17 16:47	5
4-Bromophenyl phenyl ether	ND	1200	240	ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
4-Chloro-3-methylphenol	ND	880		ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
4-Chloroaniline	ND	8800		ug/Kg		06/05/17 09:38	06/06/17 16:47	5
4-Chlorophenyl phenyl ether	ND	1200	240	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
4-Nitroaniline	ND	590	120	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
4-Nitrophenol	ND	8800		ug/Kg		06/05/17 09:38	06/06/17 16:47	5
Acenaphthene	ND	150	29	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
Acenaphthylene	ND	150	29	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	5
Anthracene	3700	150	29	ug/Kg	 -	06/05/17 09:38	06/06/17 16:47	5
Benzo[a]anthracene	29000	150	29	ug/Kg	⇔	06/05/17 09:38	06/06/17 16:47	5
Benzo[a]pyrene	16000	350		ug/Kg	₩	06/05/17 09:38	06/06/17 16:47	5
Benzo[b]fluoranthene	19000	150		ug/Kg		06/05/17 09:38	06/06/17 16:47	5
Benzo[g,h,i]perylene	7600 *	350		ug/Kg	₩		06/06/17 16:47	5
Benzo[k]fluoranthene	8400	350		ug/Kg	₩		06/06/17 16:47	5
Benzoic acid	ND	15000		ug/Kg			06/06/17 16:47	5
Benzyl alcohol	ND	23000		ug/Kg	₩		06/06/17 16:47	5
Bis(2-chloroethoxy)methane	ND	1200		ug/Kg	☆		06/06/17 16:47	5
Bis(2-chloroethyl)ether	ND	1200		ug/Kg			06/06/17 16:47	5
Bis(2-ethylhexyl) phthalate	ND	3500		ug/Kg	₽		06/06/17 16:47	5
bis(chloroisopropyl) ether	ND	1500		ug/Kg	☆	06/05/17 09:38	06/06/17 16:47	5
Butyl benzyl phthalate	ND	1200		ug/Kg		06/05/17 09:38	06/06/17 16:47	5
Carbazole	1400	880		ug/Kg	₽	06/05/17 09:38	06/06/17 16:47	5
	27000	350		ug/Kg		06/05/17 09:38		5
Chrysene		290		ug/Kg		06/05/17 09:38	06/06/17 16:47	5
Dibenz(a,h)anthracene	2200 ND	290 880			₩		06/06/17 16:47	
Dibenzofuran Diethyl phthalato	ND ND	3200		ug/Kg	₩		06/06/17 16:47	5
Diethyl phthalate Dimethyl phthalate	ND	880		ug/Kg ug/Kg	· · · · · · .		06/06/17 16:47	5

TestAmerica Seattle

6/13/2017

Tetrachloro-m-xylene

TestAmerica Job ID: 580-68649-1

Client Sample ID: 7901-SB-03-9

Lab Sample ID: 580-68649-11 Date Collected: 05/25/17 14:10 **Matrix: Solid** Date Received: 05/26/17 16:30

Percent Solids: 79.8

Analyte	tile Organic Co Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Di-n-butyl phthalate	ND		2900	330	ug/Kg	— -	06/05/17 09:38	06/06/17 16:47	
Di-n-octyl phthalate	ND		5900	1300	0 0	☼	06/05/17 09:38	06/06/17 16:47	
Fluorene	680		150		ug/Kg		06/05/17 09:38	06/06/17 16:47	
Hexachlorobenzene	ND		290	29		☼	06/05/17 09:38	06/06/17 16:47	
Hexachlorobutadiene	ND		290	88		₽	06/05/17 09:38	06/06/17 16:47	
Hexachlorocyclopentadiene	ND		590		ug/Kg	<u>.</u> .	06/05/17 09:38	06/06/17 16:47	
Hexachloroethane	ND ND		880			☼	06/05/17 09:38	06/06/17 16:47	
						☼		06/06/17 16:47	
ndeno[1,2,3-cd]pyrene	9900		230	29	ug/Kg	*	06/05/17 09:38		
sophorone	ND		880		ug/Kg		06/05/17 09:38	06/06/17 16:47	
Naphthalene	230		150	29	0 0	☆	06/05/17 09:38	06/06/17 16:47	
Vitrobenzene	ND		1200		ug/Kg		06/05/17 09:38	06/06/17 16:47	
N-Nitrosodi-n-propylamine	ND		1200		ug/Kg	☆	06/05/17 09:38	06/06/17 16:47	
N-Nitrosodiphenylamine	ND		350		ug/Kg	₽	06/05/17 09:38	06/06/17 16:47	
Pentachlorophenol	ND		2300		ug/Kg	‡	06/05/17 09:38	06/06/17 16:47	
Phenanthrene	12000		350	70	ug/Kg	₽	06/05/17 09:38	06/06/17 16:47	
Phenol	ND		880	220	ug/Kg	≎	06/05/17 09:38	06/06/17 16:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2,4,6-Tribromophenol (Surr)	59		10 - 126				06/05/17 09:38	06/06/17 16:47	
2-Fluorobiphenyl	81		57 - 110				06/05/17 09:38	06/06/17 16:47	
2-Fluorophenol (Surr)	121		36 - 125				06/05/17 09:38	06/06/17 16:47	
Nitrobenzene-d5 (Surr)	104		54 - 113				06/05/17 09:38	06/06/17 16:47	
Phenol-d5 (Surr)	126	X	59 ₋ 113				06/05/17 09:38	06/06/17 16:47	
Terphenyl-d14 (Surr)	97		68 - 120				06/05/17 09:38	06/06/17 16:47	
Method: 8270D - Semivolat	tile Organic Co	mnounds	(GC/MS) - DI						
Analyte	_	Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fa
Fluoranthene	99000		1500	290		_	06/05/17 09:38	06/07/17 15:45	
Pyrene	95000		3500		ug/Kg	≎	06/05/17 09:38	06/07/17 15:45	
Method: NWTPH-Gx - Nort	hwest - Volatile	Petroleur	m Producte (GC)					
Analyte		Qualifier	RL	00)	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	220	Quantities	9.4	4 9	mg/Kg	— -	06/08/17 11:43	06/08/17 18:50	
Jasonne	220		0.4	4.0	mg/rtg		00/00/17 11.40	00/00/17 10:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Bromofluorobenzene (Surr)	119		50 - 150				06/08/17 11:43	06/08/17 18:50	
Trifluorotoluene (Surr)							06/08/17 11:43	06/08/17 18:50	
Wethod: 8082A - Polychlor	inated Bipheny	ıls (PCBs)	by Gas Chro	omatogr	aphy				
Analyte		Qualifier	RL	3.	Unit	D	Prepared	Analyzed	Dil F
PCB-1016	ND		0.030	0.0088	mg/Kg	<u></u>	•	06/04/17 17:53	
PCB-1221	ND		0.013	0.0050		☼		06/04/17 17:53	
PCB-1232	ND		0.013	0.0059		☆		06/04/17 17:53	
PCB-1242	ND		0.013	0.0033				06/04/17 17:53	
PCB-1248	ND ND		0.012	0.0019		≎		06/04/17 17:53	
PCB-1254	ND ND		0.013	0.0035		≎		06/04/17 17:53	
PCB-1260	ND ND		0.012	0.0018				06/04/17 17:53	
					5 -9				
Surrogate DCB Decachlorobiphenyl	— %Recovery 99	Qualifier	25 ₋ 149				Prepared 06/02/17 09:07	Analyzed 06/04/17 17:53	Dil F
UUD DECACDIORODIDDENVI	99		/5 - 149				UD/UZ/17 U9*07	00/04/1/ 1/53	

TestAmerica Seattle

06/02/17 09:07 06/04/17 17:53

35 - 130

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

79.8

20.2

Project/Site: 7901 Parcel-South Park Landfill

Percent Solids

Percent Moisture

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	2200		60	15	mg/Kg	<u> </u>	06/01/17 11:07	06/09/17 23:11	1
Motor Oil (>C24-C36)	3800		60	11	mg/Kg	₩	06/01/17 11:07	06/09/17 23:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	170	X	54 - 118				06/01/17 11:07	06/09/17 23:11	1
Method: 6020A - Metals ((ICP/MS)								
Analyte	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	77		0.16	0.056	mg/Kg	₩	05/30/17 16:00	05/31/17 14:34	10
Arsenic	42		0.41	0.082	mg/Kg	☼	05/30/17 16:00	05/31/17 14:34	10
Beryllium	0.21		0.16	0.012	mg/Kg	☼	05/30/17 16:00	05/31/17 14:34	10
Cadmium	22		0.33	0.063	mg/Kg	₽	05/30/17 16:00	05/31/17 14:34	10
Chromium	110		0.41	0.052	mg/Kg	☼	05/30/17 16:00	05/31/17 14:34	10
Copper	2400		0.82	0.18	mg/Kg	☼	05/30/17 16:00	05/31/17 14:34	10
Lead	5100		41	3.9	mg/Kg	₩	05/30/17 16:00	05/31/17 15:04	1000
Nickel	130		0.41	0.16	mg/Kg	☼	05/30/17 16:00	05/31/17 14:34	10
Selenium	ND		0.82	0.18	mg/Kg	☼	05/30/17 16:00	05/31/17 14:34	10
Silver	2.2		0.16	0.016	mg/Kg		05/30/17 16:00	05/31/17 14:34	10
Thallium	ND		0.33	0.045	mg/Kg	☼	05/30/17 16:00	05/31/17 14:34	10
Zinc	4800		410	130	mg/Kg	₩	05/30/17 16:00	05/31/17 15:04	1000
Method: 7471A - Mercury	(CVAA)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.34		0.032	0.0095	mg/Kg	<u> </u>	05/30/17 12:06	05/30/17 15:39	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

0.1

0.1

0.1 %

0.1 %

6/13/2017

06/02/17 14:42

06/02/17 14:42

Client: Leidos, Inc.

TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-03-17 Lab Sample ID: 580-68649-12

 Date Collected: 05/25/17 14:15
 Matrix: Solid

 Date Received: 05/26/17 16:30
 Percent Solids: 70.7

Method: 8270D - Semivolati				1114	_	D	A 1	D.: -
Analyte	Result Q			Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND	70		ug/Kg	*	06/05/17 09:38	06/06/17 17:13	
1,2-Dichlorobenzene	ND	70		ug/Kg	☆	06/05/17 09:38	06/06/17 17:13	
,3-Dichlorobenzene	ND	70		ug/Kg	 .	06/05/17 09:38	06/06/17 17:13	
,4-Dichlorobenzene	ND	70		ug/Kg	☆	06/05/17 09:38	06/06/17 17:13	
-Methylnaphthalene	ND	42	7.0	ug/Kg	φ.	06/05/17 09:38	06/06/17 17:13	
2,4,5-Trichlorophenol	ND	280		ug/Kg		06/05/17 09:38	06/06/17 17:13	
2,4,6-Trichlorophenol	ND	210	51	ug/Kg	Ţ.	06/05/17 09:38	06/06/17 17:13	
2,4-Dichlorophenol	ND	140	21	ug/Kg	₽.	06/05/17 09:38	06/06/17 17:13	
2,4-Dimethylphenol	ND	140	21	ug/Kg		06/05/17 09:38	06/06/17 17:13	
2,4-Dinitrophenol	ND	1400	280	ug/Kg	*	06/05/17 09:38	06/06/17 17:13	
2,4-Dinitrotoluene	ND	280		ug/Kg	☼	06/05/17 09:38	06/06/17 17:13	
2,6-Dinitrotoluene	ND	210	48	ug/Kg	☼	06/05/17 09:38	06/06/17 17:13	
2-Chloronaphthalene	ND	35	7.0	ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
2-Chlorophenol	ND	280	59	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
-Methylnaphthalene	ND	70		ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
2-Methylphenol	ND	210	52	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
2-Nitroaniline	ND	140	21	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
2-Nitrophenol	ND	280	65	ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
8 & 4 Methylphenol	ND	280	21	ug/Kg		06/05/17 09:38	06/06/17 17:13	
,3'-Dichlorobenzidine	ND	560	140	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
-Nitroaniline	ND	280	56	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
,6-Dinitro-2-methylphenol	ND	1400	140	ug/Kg	.	06/05/17 09:38	06/06/17 17:13	
-Bromophenyl phenyl ether	ND	280	58	ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
-Chloro-3-methylphenol	ND	210	46	ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
-Chloroaniline	ND	2100	560	ug/Kg	 	06/05/17 09:38	06/06/17 17:13	
-Chlorophenyl phenyl ether	ND	280		ug/Kg	☼	06/05/17 09:38	06/06/17 17:13	
-Nitroaniline	ND	140		ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
-Nitrophenol	ND	2100		ug/Kg		06/05/17 09:38	06/06/17 17:13	
cenaphthene	ND	35		ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
Acenaphthylene	ND	35		ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
Anthracene	ND	35	7.0	ug/Kg		06/05/17 09:38	06/06/17 17:13	
Benzo[a]anthracene	ND	35	7.0	ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
Benzo[a]pyrene	ND	84		ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
Benzo[b]fluoranthene	ND	35		ug/Kg		06/05/17 09:38	06/06/17 17:13	
Benzo[g,h,i]perylene	ND *	84	21	ug/Kg		06/05/17 09:38	06/06/17 17:13	
Benzo[k]fluoranthene	ND	84		ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
Benzoic acid	ND	3500		ug/Kg ug/Kg		06/05/17 09:38	06/06/17 17:13	
						06/05/17 09:38		
Benzyl alcohol	ND	5600		ug/Kg	φ. **		06/06/17 17:13	
Bis(2-chloroethoxy)methane	ND	280		ug/Kg		06/05/17 09:38	06/06/17 17:13	
Bis(2-chloroethyl)ether	ND	280		ug/Kg	☆			
Bis(2-ethylhexyl) phthalate	ND	840		ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
ois(chloroisopropyl) ether	ND	350		ug/Kg	:	06/05/17 09:38	06/06/17 17:13	
Butyl benzyl phthalate	ND	280		ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Carbazole	ND	210		ug/Kg	Ţ.	06/05/17 09:38	06/06/17 17:13	
Chrysene	ND	84		ug/Kg	.	06/05/17 09:38	06/06/17 17:13	
Dibenz(a,h)anthracene	ND	70		ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
Dibenzofuran	ND	210	51	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Diethyl phthalate	ND	770	190	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Dimethyl phthalate	ND	210	46	ug/Kg		06/05/17 09:38	06/06/17 17:13	

TestAmerica Seattle

6/13/2017

2

3

J

8

9

- 10

1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-03-17

Client: Leidos, Inc.

Lab Sample ID: 580-68649-12 Date Collected: 05/25/17 14:15 **Matrix: Solid** Date Received: 05/26/17 16:30

Percent Solids: 70.7

Analyte	tile Organic Co Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Di-n-butyl phthalate	ND		700	80	ug/Kg	<u> </u>	06/05/17 09:38	06/06/17 17:13	
Di-n-octyl phthalate	ND		1400	310	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Fluoranthene	ND		35	7.0	ug/Kg	₽	06/05/17 09:38	06/06/17 17:13	
Fluorene	ND		35	7.0	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Hexachlorobenzene	ND		70	7.0	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Hexachlorobutadiene	ND		70	21	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Hexachlorocyclopentadiene	ND		140	37	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Hexachloroethane	ND		210	53	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Indeno[1,2,3-cd]pyrene	ND		56	7.0	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Isophorone	ND		210	52	ug/Kg	☼	06/05/17 09:38	06/06/17 17:13	
Naphthalene	ND		35	7.0	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Nitrobenzene	ND		280	59	ug/Kg		06/05/17 09:38	06/06/17 17:13	
N-Nitrosodi-n-propylamine	ND		280		ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
N-Nitrosodiphenylamine	ND		84		ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Pentachlorophenol	ND		560		ug/Kg		06/05/17 09:38	06/06/17 17:13	
Phenanthrene	ND		84	17	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Phenol	ND		210	53	ug/Kg	₩	06/05/17 09:38	06/06/17 17:13	
Pyrene	ND		84	21	ug/Kg	\$	06/05/17 09:38	06/06/17 17:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	81		10 - 126				06/05/17 09:38	06/06/17 17:13	
2-Fluorobiphenyl	70		57 - 110				06/05/17 09:38	06/06/17 17:13	
2-Fluorophenol (Surr)	101		36 - 125				06/05/17 09:38	06/06/17 17:13	
Nitrobenzene-d5 (Surr)	82		54 - 113				06/05/17 09:38	06/06/17 17:13	
Phenol-d5 (Surr)	100		59 - 113				06/05/17 09:38	06/06/17 17:13	
Terphenyl-d14 (Surr)	86		68 - 120				06/05/17 09:38	06/06/17 17:13	
Method: NWTPH-Gx - Nort	hwest - Volatile	e Petroleui	m Products ((GC)					
Analyte	Result	Qualifier	RL	,	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline	ND		12	6.1	mg/Kg	₩	06/08/17 11:43	06/08/17 19:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		50 - 150				06/08/17 11:43	06/08/17 19:21	
Trifluorotoluene (Surr)							06/08/17 11:43	06/08/17 19:21	
Method: 8082A - Polychlor	inated Bipheny	yls (PCBs)	by Gas Chro	omatogr	aphy				
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.033	0.0097		<u></u>	06/02/17 09:07	06/04/17 18:09	
PCB-1221	ND		0.014	0.0055	mg/Kg	₩	06/02/17 09:07	06/04/17 18:09	
PCB-1232	ND		0.014	0.0064		₩	06/02/17 09:07	06/04/17 18:09	
PCB-1242	ND		0.013	0.0021	mg/Kg	₽	06/02/17 09:07	06/04/17 18:09	
PCB-1248	ND		0.014	0.0038		₩	06/02/17 09:07	06/04/17 18:09	
PCB-1254	ND		0.013	0.0020	mg/Kg	₩	06/02/17 09:07	06/04/17 18:09	
PCB-1260	ND		0.013	0.0025	mg/Kg	*	06/02/17 09:07	06/04/17 18:09	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	66		25 - 149				06/02/17 09:07	06/04/17 18:09	
BOB Beddomorobiphenyi	00								

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-03-17

Lab Sample ID: 580-68649-12 Date Collected: 05/25/17 14:15 **Matrix: Solid** Date Received: 05/26/17 16:30

Percent Solids: 70.7

Analyte	orthwest - Semi-V Result	Qualifier	RL	•	Únit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	ND		67	16	mg/Kg	<u> </u>	06/01/17 11:07	06/09/17 23:33	-
Motor Oil (>C24-C36)	ND		67	12	mg/Kg	₩	06/01/17 11:07	06/09/17 23:33	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	97		54 - 118				06/01/17 11:07	06/09/17 23:33	
Method: 6020A - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	0.85		0.17	0.059	mg/Kg	<u> </u>	05/30/17 16:00	05/31/17 14:39	1
Arsenic	6.0		0.43	0.086	mg/Kg	☼	05/30/17 16:00	05/31/17 14:39	1
Beryllium	0.33		0.17	0.013	mg/Kg	☼	05/30/17 16:00	05/31/17 14:39	1
Cadmium	0.37		0.34	0.066	mg/Kg	₩	05/30/17 16:00	05/31/17 14:39	1
Chromium	17		0.43	0.054	mg/Kg	☼	05/30/17 16:00	05/31/17 14:39	1
Copper	35		0.86	0.19	mg/Kg	☼	05/30/17 16:00	05/31/17 14:39	1
Lead	37		0.43	0.041	mg/Kg	₩	05/30/17 16:00	05/31/17 14:39	1
Nickel	14		0.43	0.17	mg/Kg	☼	05/30/17 16:00	05/31/17 14:39	1
Selenium	ND		0.86	0.19	mg/Kg	☼	05/30/17 16:00	05/31/17 14:39	1
Silver	ND		0.17	0.017	mg/Kg		05/30/17 16:00	05/31/17 14:39	1
Thallium	ND		0.34	0.047	mg/Kg	☼	05/30/17 16:00	05/31/17 14:39	1
Zinc	180		4.3	1.4	mg/Kg	₩	05/30/17 16:00	05/31/17 14:39	1
Method: 7471A - Mercur	y (CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.048		0.040	0.012	mg/Kg	₩	05/30/17 12:06	05/30/17 15:41	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	70.7		0.1	0.1	%			06/05/17 15:52	
Percent Moisture	29.3		0.1	0.1	%			06/05/17 15:52	

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: 580-68649-13

Matrix: Solid

Client Sample ID: 7901-SB-04-9

Date Collected: 05/25/17 12:05 Date Received: 05/26/17 16:30 Percent Solids: 76.2

Method: 8270D - Semivolatil	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND	62		ug/Kg	☆	06/05/17 09:38	06/06/17 17:39	
1,2-Dichlorobenzene	ND	62		ug/Kg	₽.	06/05/17 09:38	06/06/17 17:39	
1,3-Dichlorobenzene	ND	62	6.0	ug/Kg	, .	06/05/17 09:38	06/06/17 17:39	
1,4-Dichlorobenzene	ND	62		ug/Kg	*	06/05/17 09:38	06/06/17 17:39	
1-Methylnaphthalene	140	37		ug/Kg	:	06/05/17 09:38	06/06/17 17:39	
2,4,5-Trichlorophenol	ND	250		ug/Kg		06/05/17 09:38	06/06/17 17:39	
2,4,6-Trichlorophenol	ND	190		ug/Kg	₩.	06/05/17 09:38	06/06/17 17:39	
2,4-Dichlorophenol	ND	120	19	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	
2,4-Dimethylphenol	ND	120	19	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
2,4-Dinitrophenol	ND	1200	250	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	
2,4-Dinitrotoluene	ND	250	53	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
2,6-Dinitrotoluene	ND	190	42	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
2-Chloronaphthalene	ND	31	6.2	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
2-Chlorophenol	ND	250	52	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	
2-Methylnaphthalene	180	62	11	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	
2-Methylphenol	ND	190	46	ug/Kg	₩.	06/05/17 09:38	06/06/17 17:39	
2-Nitroaniline	ND	120	19	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
2-Nitrophenol	ND	250	57	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
3 & 4 Methylphenol	ND	250	19	ug/Kg		06/05/17 09:38	06/06/17 17:39	
3,3'-Dichlorobenzidine	ND	500	120	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	
3-Nitroaniline	ND	250	50	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
4,6-Dinitro-2-methylphenol	ND	1200	120	ug/Kg	-	06/05/17 09:38	06/06/17 17:39	
4-Bromophenyl phenyl ether	ND	250	51	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
4-Chloro-3-methylphenol	ND	190	41	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
4-Chloroaniline	ND	1900		ug/Kg	-	06/05/17 09:38	06/06/17 17:39	
4-Chlorophenyl phenyl ether	ND	250	51	ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
4-Nitroaniline	ND	120		ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
4-Nitrophenol	ND	1900		ug/Kg		06/05/17 09:38	06/06/17 17:39	
Acenaphthene	330	31		ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
Acenaphthylene	34	31		ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
Anthracene	210	31		ug/Kg		06/05/17 09:38	06/06/17 17:39	
Benzo[a]anthracene	540	31		ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
Benzo[a]pyrene	520	74		ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	
Benzo[b]fluoranthene	710	31		ug/Kg		06/05/17 09:38	06/06/17 17:39	
	230 *	74		ug/Kg	₽		06/06/17 17:39	
Benzo[g,h,i]perylene					~~ -75-	06/05/17 09:38	06/06/17 17:39	
Benzo[k]fluoranthene	180	74	17	ug/Kg	· · · · · · · · · · · · · · · · · · ·		06/06/17 17:39	
Benzoic acid	ND	3100		ug/Kg	244			
Benzyl alcohol	ND	5000		ug/Kg	₩ ₩		06/06/17 17:39	
Bis(2-chloroethoxy)methane	ND	250		ug/Kg			06/06/17 17:39	
Bis(2-chloroethyl)ether	ND	250		ug/Kg	₩		06/06/17 17:39	
Bis(2-ethylhexyl) phthalate	ND	740		ug/Kg	☆		06/06/17 17:39	
ois(chloroisopropyl) ether	ND	310		ug/Kg			06/06/17 17:39	
Butyl benzyl phthalate	ND	250		ug/Kg	₩		06/06/17 17:39	
Carbazole	ND	190		ug/Kg	₩	06/05/17 09:38		
Chrysene	760	74		ug/Kg	.	06/05/17 09:38	06/06/17 17:39	
Dibenz(a,h)anthracene	110	62		ug/Kg	₽		06/06/17 17:39	
Dibenzofuran	190	190		ug/Kg	☼	06/05/17 09:38		
Diethyl phthalate	ND	680		ug/Kg	₩	06/05/17 09:38	06/06/17 17:39	
Dimethyl phthalate	ND	190	41	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	

TestAmerica Seattle

6/13/2017

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-9

Date Collected: 05/25/17 12:05 Date Received: 05/26/17 16:30

Client: Leidos, Inc.

Lab Sample ID: 580-68649-13

Matrix: Solid

Percent Solids: 76.2

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	ND		620	71	ug/Kg	<u></u>	06/05/17 09:38	06/06/17 17:39	1
Di-n-octyl phthalate	ND		1200	280	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
Fluoranthene	1200		31	6.2	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
Fluorene	400		31	6.2	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
Hexachlorobenzene	ND		62	6.2	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
Hexachlorobutadiene	ND		62	19	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
Hexachlorocyclopentadiene	ND		120	32	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
Hexachloroethane	ND		190	47	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	1
Indeno[1,2,3-cd]pyrene	320		50	6.2	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
Isophorone	ND		190	46	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	1
Naphthalene	210		31	6.2	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	1
Nitrobenzene	ND		250	52	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
N-Nitrosodi-n-propylamine	ND		250	55	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	1
N-Nitrosodiphenylamine	ND		74	19	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	1
Pentachlorophenol	ND		500	110	ug/Kg	₽	06/05/17 09:38	06/06/17 17:39	1
Phenanthrene	1600		74	15	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	1
Phenol	ND		190	47	ug/Kg	☼	06/05/17 09:38	06/06/17 17:39	1
Pyrene	1400		74	19	ug/Kg		06/05/17 09:38	06/06/17 17:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	67		10 - 126				06/05/17 09:38	06/06/17 17:39	1
2-Fluorobiphenyl	64		57 - 110				06/05/17 09:38	06/06/17 17:39	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	67	10 - 126	06/05/17 09:38	06/06/17 17:39	1
2-Fluorobiphenyl	64	57 - 110	06/05/17 09:38	06/06/17 17:39	1
2-Fluorophenol (Surr)	105	36 - 125	06/05/17 09:38	06/06/17 17:39	1
Nitrobenzene-d5 (Surr)	82	54 - 113	06/05/17 09:38	06/06/17 17:39	1
Phenol-d5 (Surr)	108	59 - 113	06/05/17 09:38	06/06/17 17:39	1
Terphenyl-d14 (Surr)	89	68 - 120	06/05/17 09:38	06/06/17 17:39	1

Method: NWTPH-Gx - Northy	vest - Volatile Petroleui	m Products (G	3C)			
Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Gasoline	31	10	5.4 mg/Kg	□ □ □ 06/08/17 11:43	06/08/17 19:51	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery Qualifier	Limits 50 - 150			Analyzed 06/08/17 19:51	Dil Fac

Analyte	Result C	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.032	0.0096	mg/Kg	₩	06/02/17 09:07	06/04/17 18:25	1
PCB-1221	ND		0.014	0.0054	mg/Kg	₩	06/02/17 09:07	06/04/17 18:25	1
PCB-1232	ND		0.014	0.0063	mg/Kg	☼	06/02/17 09:07	06/04/17 18:25	1
PCB-1242	ND		0.013	0.0021	mg/Kg	⊅	06/02/17 09:07	06/04/17 18:25	1
PCB-1248	ND		0.014	0.0037	mg/Kg	₩	06/02/17 09:07	06/04/17 18:25	1
PCB-1254	ND		0.013	0.0019	mg/Kg	₩	06/02/17 09:07	06/04/17 18:25	1
PCB-1260	ND		0.013	0.0025	mg/Kg	₽	06/02/17 09:07	06/04/17 18:25	1
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	81		25 - 149				06/02/17 09:07	06/04/17 18:25	1
Tetrachloro-m-xylene	78		35 - 130				06/02/17 09:07	06/04/17 18:25	1

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-9

Lab Sample ID: 580-68649-13 Date Collected: 05/25/17 12:05 **Matrix: Solid**

Date Received: 05/26/17 16:30 Percent Solids: 76.2

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
#2 Diesel (C10-C24)	1300		63	15	mg/Kg	<u> </u>	06/01/17 11:07	06/09/17 23:55	1
Motor Oil (>C24-C36)	3000		63	11	mg/Kg	≎	06/01/17 11:07	06/09/17 23:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	110		54 - 118				06/01/17 11:07	06/09/17 23:55	1
Method: 6020A - Metals	(ICP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	49		0.20	0.070	mg/Kg	\	05/30/17 16:00	05/31/17 14:43	10
Arsenic	49		0.51	0.10	mg/Kg	☼	05/30/17 16:00	05/31/17 14:43	10
Beryllium	0.74		0.20	0.015	mg/Kg	☼	05/30/17 16:00	05/31/17 14:43	10
Cadmium	17		0.41	0.079	mg/Kg	₽	05/30/17 16:00	05/31/17 14:43	10
Chromium	40		0.51	0.064	mg/Kg	☼	05/30/17 16:00	05/31/17 14:43	10
Copper	570		1.0	0.22	mg/Kg	☼	05/30/17 16:00	05/31/17 14:43	10
Lead	22000		51	4.9	mg/Kg	₽	05/30/17 16:00	05/31/17 14:59	1000
Nickel	63		0.51	0.20	mg/Kg	☼	05/30/17 16:00	05/31/17 14:43	10
Selenium	1.4		1.0	0.22	mg/Kg	₩	05/30/17 16:00	05/31/17 14:43	10
Silver	1.0		0.20	0.020	mg/Kg	₽	05/30/17 16:00	05/31/17 14:43	10
Thallium	ND		0.41	0.056	mg/Kg	₩	05/30/17 16:00	05/31/17 14:43	10
Zinc	8600		510	160	mg/Kg	≎	05/30/17 16:00	05/31/17 14:59	1000
Method: 7471A - Mercury	y (CVAA)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.66		0.033	0.0099	mg/Kg	\	05/30/17 12:06	05/30/17 15:44	1
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	76.2		0.1	0.1	%			06/05/17 15:52	1
Percent Moisture	23.8		0.1	0.1	%			06/05/17 15:52	1

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill TestAmerica Job ID: 580-68649-1

Tojou one. Foot Franco ocali Frank Zanami

Client Sample ID: 7901-SB-04-14

Date Collected: 05/25/17 12:10

Lab Sample ID: 580-68649-14

Matrix: Solid

 Date Collected: 05/25/17 12:10
 Matrix: Solid

 Date Received: 05/26/17 16:30
 Percent Solids: 82.7

Method: 8270D - Semivolatil Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
1,2,4-Trichlorobenzene	- ND		2700	330	ug/Kg	— ş	06/05/17 09:38	06/06/17 18:04	
1,2-Dichlorobenzene	ND		2700	650	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
1,3-Dichlorobenzene	ND		2700	260	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
1,4-Dichlorobenzene	ND		2700	450	ug/Kg	· · · · · · · · · · · · · · · · · · ·	06/05/17 09:38	06/06/17 18:04	
1-Methylnaphthalene	ND		1600	270	ug/Kg		06/05/17 09:38	06/06/17 18:04	
2,4,5-Trichlorophenol	ND		11000	2500	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
2,4,6-Trichlorophenol	ND		8200	2000	ug/Kg	· · · · · · · · · · · · · · · · · · ·	06/05/17 09:38	06/06/17 18:04	
2,4-Dichlorophenol	ND		5500	820	ug/Kg	*	06/05/17 09:38	06/06/17 18:04	
2,4-Dimethylphenol	ND		5500	820		*	06/05/17 09:38	06/06/17 18:04	
	ND		55000	11000	ug/Kg		06/05/17 09:38	06/06/17 18:04	
2,4-Dinitrophenol					ug/Kg	₩			
2,4-Dinitrotoluene	ND		11000	2300	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
2,6-Dinitrotoluene	ND		8200	1900	ug/Kg		06/05/17 09:38	06/06/17 18:04	
2-Chloronaphthalene	ND		1400	270	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
2-Chlorophenol	ND		11000	2300	ug/Kg	*	06/05/17 09:38	06/06/17 18:04	
2-Methylnaphthalene	ND		2700	480	ug/Kg		06/05/17 09:38	06/06/17 18:04	
2-Methylphenol	ND		8200	2000	ug/Kg	₩.	06/05/17 09:38	06/06/17 18:04	
2-Nitroaniline	ND		5500	820	ug/Kg	\$	06/05/17 09:38	06/06/17 18:04	
2-Nitrophenol	ND		11000	2500	ug/Kg		06/05/17 09:38	06/06/17 18:04	
3 & 4 Methylphenol	ND		11000	820	ug/Kg	‡	06/05/17 09:38	06/06/17 18:04	
3,3'-Dichlorobenzidine	ND		22000	5500	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
3-Nitroaniline	ND		11000	2200	ug/Kg	☼	06/05/17 09:38	06/06/17 18:04	
4,6-Dinitro-2-methylphenol	ND		55000	5500	ug/Kg	≎	06/05/17 09:38	06/06/17 18:04	
4-Bromophenyl phenyl ether	ND		11000	2200	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
4-Chloro-3-methylphenol	ND		8200	1800	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
1-Chloroaniline	ND		82000	22000	ug/Kg	☼	06/05/17 09:38	06/06/17 18:04	
1-Chlorophenyl phenyl ether	ND		11000	2200	ug/Kg	☼	06/05/17 09:38	06/06/17 18:04	
4-Nitroaniline	ND		5500	1100	ug/Kg	☼	06/05/17 09:38	06/06/17 18:04	
4-Nitrophenol	ND		82000	20000	ug/Kg	≎	06/05/17 09:38	06/06/17 18:04	
Acenaphthene	ND		1400	270	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
Acenaphthylene	ND		1400	270	ug/Kg	☼	06/05/17 09:38	06/06/17 18:04	
Anthracene	ND		1400	270	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
Benzo[a]anthracene	ND		1400	270	ug/Kg	☼	06/05/17 09:38	06/06/17 18:04	
Benzo[a]pyrene	ND		3300	710	ug/Kg	☼	06/05/17 09:38	06/06/17 18:04	
Benzo[b]fluoranthene	ND		1400	270	ug/Kg	ф.	06/05/17 09:38	06/06/17 18:04	
Benzo[g,h,i]perylene	ND	*	3300	820	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
Benzo[k]fluoranthene	ND		3300		ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	
Benzoic acid	ND		140000	58000			06/05/17 09:38	06/06/17 18:04	
Benzyl alcohol	ND		220000		ug/Kg	☆	06/05/17 09:38	06/06/17 18:04	
Bis(2-chloroethoxy)methane	ND		11000		ug/Kg	₩	06/05/17 09:38		
Bis(2-chloroethyl)ether	ND		11000		ug/Kg		06/05/17 09:38		
Bis(2-ethylhexyl) phthalate	ND		33000		ug/Kg	₩	06/05/17 09:38		
ois(chloroisopropyl) ether	ND		14000		ug/Kg	₩	06/05/17 09:38		
Butyl benzyl phthalate	ND		11000		ug/Kg		06/05/17 09:38		
Carbazole	ND		8200		ug/Kg	₩	06/05/17 09:38		
Chrysene	ND		3300		ug/Kg ug/Kg	₩		06/06/17 18:04	
Dibenz(a,h)anthracene			2700		ug/Kg ug/Kg	· · · · · · · ·		06/06/17 18:04	
· · /	ND					₽			
Dibenzofuran	ND		8200		ug/Kg			06/06/17 18:04	
Diethyl phthalate Dimethyl phthalate	ND ND		30000 8200		ug/Kg ug/Kg			06/06/17 18:04 06/06/17 18:04	

TestAmerica Seattle

6/13/2017

_

4

6

Ω

9

10

1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-14

Client: Leidos, Inc.

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Lab Sample ID: 580-68649-14 Date Collected: 05/25/17 12:10 **Matrix: Solid** Date Received: 05/26/17 16:30 Percent Solids: 82.7

Method: 8270D - Semivolat	ile Organic Co	mpounds	(GC/MS) (Cd	ntinued)				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	ND		27000	3100	ug/Kg	<u></u>	06/05/17 09:38	06/06/17 18:04	50
Di-n-octyl phthalate	ND		55000	12000	ug/Kg	≎	06/05/17 09:38	06/06/17 18:04	50
Fluoranthene	ND		1400	270	ug/Kg	\$	06/05/17 09:38	06/06/17 18:04	50
Fluorene	ND		1400	270	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	50
Hexachlorobenzene	ND		2700	270	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	50
Hexachlorobutadiene	ND		2700	820	ug/Kg	₩.	06/05/17 09:38	06/06/17 18:04	50
Hexachlorocyclopentadiene	ND		5500	1400	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	50
Hexachloroethane	ND		8200	2100	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	50
ndeno[1,2,3-cd]pyrene	ND		2200	270	ug/Kg		06/05/17 09:38	06/06/17 18:04	50
sophorone	ND		8200	2000	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	50
Naphthalene	ND		1400	270	ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	50
Nitrobenzene	ND		11000	2300	ug/Kg	ф.	06/05/17 09:38	06/06/17 18:04	50
N-Nitrosodi-n-propylamine	ND		11000		ug/Kg	₩	06/05/17 09:38	06/06/17 18:04	50
N-Nitrosodiphenylamine	ND		3300		ug/Kg	₽		06/06/17 18:04	50
Pentachlorophenol	ND		22000		ug/Kg		06/05/17 09:38	06/06/17 18:04	50
Phenanthrene	ND		3300		ug/Kg	≎	06/05/17 09:38	06/06/17 18:04	50
Phenol	ND		8200		ug/Kg	₽		06/06/17 18:04	50
Pyrene	ND		3300		ug/Kg	\$		06/06/17 18:04	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)		X	10 - 126				06/05/17 09:38	06/06/17 18:04	50
2-Fluorobiphenyl	81		57 - 110				06/05/17 09:38	06/06/17 18:04	50
2-Fluorophenol (Surr)	114		36 - 125				06/05/17 09:38	06/06/17 18:04	50
Nitrobenzene-d5 (Surr)	111		54 - 113				06/05/17 09:38	06/06/17 18:04	50
Phenol-d5 (Surr)	104		59 - 113				06/05/17 09:38	06/06/17 18:04	50
Terphenyl-d14 (Surr)	74		68 - 120				06/05/17 09:38	06/06/17 18:04	50
Method: NWTPH-Gx - North	hwest - Volatile	Petroleur	n Products ((GC)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	43		10	5.3	mg/Kg	-	06/08/17 11:43	06/08/17 20:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	109		50 - 150				06/08/17 11:43	06/08/17 20:22	1
Trifluorotoluene (Surr)							06/08/17 11:43	06/08/17 20:22	1
Method: 8082A - Polychlor	inated Bipheny	ls (PCBs)	by Gas Chro	omatogr	aphy				
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.028	0.0084	mg/Kg	<u> </u>	06/02/17 09:07	06/04/17 18:42	1
PCB-1221	ND		0.012	0.0048	mg/Kg	₩	06/02/17 09:07	06/04/17 18:42	1
PCB-1232	ND		0.012	0.0056		☼	06/02/17 09:07	06/04/17 18:42	1
PCB-1242	ND		0.011	0.0018	mg/Kg		06/02/17 09:07	06/04/17 18:42	1
PCB-1248	ND		0.012	0.0033	mg/Kg	☼	06/02/17 09:07	06/04/17 18:42	1
PCB-1254	ND		0.011	0.0017	mg/Kg	☼	06/02/17 09:07	06/04/17 18:42	1
PCB-1260	ND		0.011	0.0022	mg/Kg	\$	06/02/17 09:07	06/04/17 18:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DOD Dagashlawshinkawal	70		25 140					06/04/47 40:40	

TestAmerica Seattle

6/13/2017

06/02/17 09:07 06/04/17 18:42

06/02/17 09:07 06/04/17 18:42

25 - 149

35 - 130

79

86

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-14

Percent Moisture

Lab Sample ID: 580-68649-14 Date Collected: 05/25/17 12:10 **Matrix: Solid** Date Received: 05/26/17 16:30

Percent Solids: 82.7

								i diddiii ddiid	0. 02.
Method: NWTPH-Dx - Not Analyte		olatile Pet Qualifier	roleum Prod	lucts (G	C) Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	1500		300	73	mg/Kg	<u> </u>	06/01/17 11:07	06/10/17 00:17	
Motor Oil (>C24-C36)	22000		300		mg/Kg	₩	06/01/17 11:07	06/10/17 00:17	ţ
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	85		54 - 118				06/01/17 11:07	06/10/17 00:17	
- Method: 6020A - Metals (ICP/MS)								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	0.79		0.21	0.070	mg/Kg	<u> </u>	05/30/17 16:00	05/31/17 14:47	10
Arsenic	1.8		0.51	0.10	mg/Kg	☼	05/30/17 16:00	05/31/17 14:47	10
Beryllium	ND		0.21	0.015	mg/Kg	☼	05/30/17 16:00	05/31/17 14:47	10
Cadmium	1.1		0.41	0.079	mg/Kg	₽	05/30/17 16:00	05/31/17 14:47	10
Chromium	10		0.51	0.065	mg/Kg	☼	05/30/17 16:00	05/31/17 14:47	10
Copper	22		1.0	0.23	mg/Kg	☼	05/30/17 16:00	05/31/17 14:47	10
Lead	63		0.51	0.049	mg/Kg	₩	05/30/17 16:00	05/31/17 14:47	10
Nickel	21		0.51	0.20	mg/Kg	☼	05/30/17 16:00	05/31/17 14:47	10
Selenium	ND		1.0	0.22	mg/Kg	☼	05/30/17 16:00	05/31/17 14:47	10
Silver	ND		0.21	0.021	mg/Kg		05/30/17 16:00	05/31/17 14:47	10
Thallium	ND		0.41	0.056	mg/Kg	☼	05/30/17 16:00	05/31/17 14:47	10
Zinc	480		5.1	1.7	mg/Kg	₩	05/30/17 16:00	05/31/17 14:47	10
- Method: 7471A - Mercury	(CVAA)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.032	0.0096	mg/Kg	\	05/30/17 12:06	05/30/17 15:46	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	82.7		0.1	0.1	%			06/05/17 15:52	

0.1

0.1 %

17.3

06/05/17 15:52

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-18.5

Date Collected: 05/25/17 12:15

Date Received: 05/26/17 16:30

Lab Sample ID: 580-68649-15

Matrix: Solid Percent Solids: 69.1

Method: 8270D - Semivolatil Analyte	Result	Qualifier	ŘL		Unit	D <u>₩</u>	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND		71	8.5	ug/Kg		06/05/17 09:38	06/06/17 18:30	
1,2-Dichlorobenzene	ND		71	17	ug/Kg	ψ.	06/05/17 09:38	06/06/17 18:30	
1,3-Dichlorobenzene	ND		71		ug/Kg		06/05/17 09:38	06/06/17 18:30	
1,4-Dichlorobenzene	ND		71		ug/Kg	☆	06/05/17 09:38	06/06/17 18:30	
1-Methylnaphthalene	ND		43	7.1	ug/Kg	ψ.	06/05/17 09:38	06/06/17 18:30	
2,4,5-Trichlorophenol	ND		280	64	ug/Kg		06/05/17 09:38	06/06/17 18:30	
2,4,6-Trichlorophenol	ND		210	51	0 0		06/05/17 09:38	06/06/17 18:30	
2,4-Dichlorophenol	ND		140	21	ug/Kg		06/05/17 09:38	06/06/17 18:30	
2,4-Dimethylphenol	ND		140	21			06/05/17 09:38	06/06/17 18:30	
2,4-Dinitrophenol	ND		1400	280	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
2,4-Dinitrotoluene	ND	F2	280	61	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
2,6-Dinitrotoluene	ND	F2	210	48	ug/Kg		06/05/17 09:38	06/06/17 18:30	
2-Chloronaphthalene		F2	36	7.1	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
2-Chlorophenol	ND		280	60	ug/Kg	☼	06/05/17 09:38	06/06/17 18:30	
2-Methylnaphthalene	ND		71	13	ug/Kg	₩	06/05/17 09:38	06/06/17 18:30	
2-Methylphenol	ND		210	53	ug/Kg	≎	06/05/17 09:38	06/06/17 18:30	
2-Nitroaniline	ND	F2	140	21	ug/Kg	≎	06/05/17 09:38	06/06/17 18:30	
2-Nitrophenol	ND		280	66	ug/Kg	☼	06/05/17 09:38	06/06/17 18:30	
3 & 4 Methylphenol	ND	F1	280	21	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
3,3'-Dichlorobenzidine	ND		570	140	ug/Kg	☼	06/05/17 09:38	06/06/17 18:30	
3-Nitroaniline	ND		280	57	ug/Kg	₩	06/05/17 09:38	06/06/17 18:30	
4,6-Dinitro-2-methylphenol	ND		1400	140	ug/Kg	≎	06/05/17 09:38	06/06/17 18:30	
4-Bromophenyl phenyl ether	ND		280	58	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
4-Chloro-3-methylphenol	ND	F2	210	47	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
4-Chloroaniline	ND	F1	2100	570	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
4-Chlorophenyl phenyl ether	ND	F2	280	58	ug/Kg	☼	06/05/17 09:38	06/06/17 18:30	
4-Nitroaniline	ND		140	28	ug/Kg	☼	06/05/17 09:38	06/06/17 18:30	
4-Nitrophenol	ND	F2	2100	520	ug/Kg	\$	06/05/17 09:38	06/06/17 18:30	
Acenaphthene	ND	F2	36	7.1	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
Acenaphthylene	ND	F2	36	7.1	ug/Kg	≎	06/05/17 09:38	06/06/17 18:30	
Anthracene	ND		36	7.1	ug/Kg	ф.	06/05/17 09:38	06/06/17 18:30	
Benzo[a]anthracene	ND	F2	36	7.1	ug/Kg	₽	06/05/17 09:38	06/06/17 18:30	
Benzo[a]pyrene	ND		85	19	ug/Kg	☆	06/05/17 09:38	06/06/17 18:30	
Benzo[b]fluoranthene	ND		36	7.1	ug/Kg		06/05/17 09:38	06/06/17 18:30	
Benzo[g,h,i]perylene	ND	F1 *	85		ug/Kg	☼	06/05/17 09:38	06/06/17 18:30	
Benzo[k]fluoranthene	ND		85		ug/Kg	☼	06/05/17 09:38	06/06/17 18:30	
Benzoic acid	ND		3600		ug/Kg			06/06/17 18:30	
Benzyl alcohol	ND		5700		ug/Kg	₽		06/06/17 18:30	
Bis(2-chloroethoxy)methane	ND		280		ug/Kg	₽		06/06/17 18:30	
Bis(2-chloroethyl)ether	ND	F1	280		ug/Kg	 		06/06/17 18:30	
Bis(2-ethylhexyl) phthalate	ND		850	190	ug/Kg	₽		06/06/17 18:30	
bis(chloroisopropyl) ether	ND		360		ug/Kg	₽		06/06/17 18:30	
Butyl benzyl phthalate	ND		280		ug/Kg			06/06/17 18:30	
Carbazole	ND		210		ug/Kg	₩		06/06/17 18:30	
Chrysene	ND	F2	85		ug/Kg	₩		06/06/17 18:30	
Dibenz(a,h)anthracene	ND		71		ug/Kg			06/06/17 18:30	
Dibenzofuran		F1 F2	210		ug/Kg ug/Kg	т Ф		06/06/17 18:30	
	ND		780			~ Ф		06/06/17 18:30	
Diethyl phthalate Dimethyl phthalate	ND		210	190	ug/Kg ug/Kg	ф.		06/06/17 18:30	

Hexachloroethane

Isophorone

Naphthalene

Nitrobenzene

Indeno[1,2,3-cd]pyrene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-18.5

Date Collected: 05/25/17 12:15

Date Received: 05/26/17 16:30

Lab Sample ID: 580-68649-15

Matrix: Solid Percent Solids: 69.1

TestAmerica Job ID: 580-68649-1

5
6

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Dil Fac **Analyte** Result Qualifier RL Unit D Prepared **Analyzed** Di-n-butyl phthalate $\overline{\mathsf{ND}}$ 710 81 ug/Kg 06/05/17 09:38 06/06/17 18:30 Di-n-octyl phthalate ND 1400 06/05/17 09:38 06/06/17 18:30 320 ug/Kg Fluoranthene ND 36 7.1 ug/Kg 06/05/17 09:38 06/06/17 18:30 Fluorene ND F2 36 7.1 ug/Kg 06/05/17 09:38 06/06/17 18:30 Hexachlorobenzene 71 7.1 06/05/17 09:38 06/06/17 18:30 ND ug/Kg 71 Hexachlorobutadiene ND F1 21 ug/Kg 06/05/17 09:38 06/06/17 18:30 Hexachlorocyclopentadiene ND F1F2 140 ug/Kg

210

57

210

36

280

280

85

570

85

210

85

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

7.1

53 ug/Kg

7.1 ug/Kg

63

21 ug/Kg

130

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

06/05/17 09:38 06/06/17 18:30 06/05/17 09:38 06/06/17 18:30 06/05/17 09:38 06/06/17 18:30 06/05/17 09:38 06/06/17 18:30 06/05/17 09:38 06/06/17 18:30

06/05/17 09:38 06/06/17 18:30 06/05/17 09:38 06/06/17 18:30 06/05/17 09:38 06/06/17 18:30 06/05/17 09:38 06/06/17 18:30 06/05/17 09:38 06/06/17 18:30

06/05/17 09:38 06/06/17 18:30

06/05/17 09:38 06/06/17 18:30

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	80		10 - 126	06/05/17 09:38	06/06/17 18:30	1
2-Fluorobiphenyl	58		57 - 110	06/05/17 09:38	06/06/17 18:30	1
2-Fluorophenol (Surr)	103		36 - 125	06/05/17 09:38	06/06/17 18:30	1
Nitrobenzene-d5 (Surr)	70		54 - 113	06/05/17 09:38	06/06/17 18:30	1
Phenol-d5 (Surr)	113		59 - 113	06/05/17 09:38	06/06/17 18:30	1
Terphenyl-d14 (Surr)	83		68 - 120	06/05/17 09:38	06/06/17 18:30	1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)										
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline	ND	H F2	12	6.4	mg/Kg		06/10/17 07:05	06/10/17 15:58	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	87		50 - 150				06/10/17 07:05	06/10/17 15:58	1	
Trifluorotoluene (Surr)							06/10/17 07:05	06/10/17 15:58	1	

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.033	0.0097	mg/Kg	₩	06/02/17 09:07	06/04/17 15:27	1
PCB-1221	ND		0.014	0.0055	mg/Kg	≎	06/02/17 09:07	06/04/17 15:27	1
PCB-1232	ND		0.014	0.0064	mg/Kg	☼	06/02/17 09:07	06/04/17 15:27	1
PCB-1242	ND		0.013	0.0021	mg/Kg	φ.	06/02/17 09:07	06/04/17 15:27	1
PCB-1248	ND		0.014	0.0038	mg/Kg	☼	06/02/17 09:07	06/04/17 15:27	1
PCB-1254	ND		0.013	0.0020	mg/Kg	☼	06/02/17 09:07	06/04/17 15:27	1
PCB-1260	ND		0.013	0.0025	mg/Kg		06/02/17 09:07	06/04/17 15:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	73	-	25 - 149				06/02/17 09:07	06/04/17 15:27	1
Tetrachloro-m-xylene	84		35 - 130				06/02/17 09:07	06/04/17 15:27	1

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-18.5 Lab Sample ID: 580-68649-15

Date Collected: 05/25/17 12:15 **Matrix: Solid** Date Received: 05/26/17 16:30 Percent Solids: 69.1

Pate Neceived. 05/20/17 10.							l l	r ercent John	3. 03.
Method: NWTPH-Dx - North		olatile Pet	roleum Prod RL	ucts (G	C) Unit	D	Prepared	Analyzed	Dil Fa
#2 Diesel (C10-C24)	490		68	17		— -	06/01/17 11:07	06/10/17 00:40	
Motor Oil (>C24-C36)	800		68	12	mg/Kg	₩	06/01/17 11:07	06/10/17 00:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	96		54 - 118				06/01/17 11:07	06/10/17 00:40	-
Method: 6020A - Metals (IC	P/MS)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Antimony	6.2		0.23	0.078	mg/Kg	<u></u>	05/30/17 16:00	05/31/17 13:56	1
Arsenic	13		0.57	0.11	mg/Kg	☼	05/30/17 16:00	05/31/17 13:56	1
Beryllium	ND		0.23	0.017	mg/Kg	☼	05/30/17 16:00	05/31/17 13:56	1
Cadmium	0.97		0.46	0.088	mg/Kg	₽	05/30/17 16:00	05/31/17 13:56	1
Chromium	27		0.57	0.072	mg/Kg	☼	05/30/17 16:00	05/31/17 13:56	1
Copper	99	F1 F2	1.1	0.25	mg/Kg	☼	05/30/17 16:00	05/31/17 13:56	1
Lead	210	F1 F2	0.57	0.055	mg/Kg	₽	05/30/17 16:00	05/31/17 13:56	1
Nickel	20		0.57	0.22	mg/Kg	☼	05/30/17 16:00	05/31/17 13:56	1
Selenium	ND		1.1	0.25	mg/Kg	☼	05/30/17 16:00	05/31/17 13:56	1
Silver	ND		0.23	0.023	mg/Kg	ф.	05/30/17 16:00	05/31/17 13:56	1
Thallium	ND		0.46	0.063	mg/Kg	☼	05/30/17 16:00	05/31/17 13:56	1
Zinc	1400		5.7	1.8	mg/Kg	₩	05/30/17 16:00	05/31/17 13:56	1
Method: 7471A - Mercury (CVAA)								
Analyte	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.042	0.013	mg/Kg	\	05/30/17 12:06	05/30/17 15:12	
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Percent Solids	69.1		0.1	0.1	%			06/02/17 11:31	
Percent Moisture	30.9		0.1	0.1	%			06/02/17 11:31	

QC Sample Results

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Method: 8260C - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-247301/6

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total/NA**

Analysis Batch: 247301	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		0.30	0.050	ug/L			05/31/17 18:36	1
2-Chlorotoluene	ND		0.50	0.070	ug/L			05/31/17 18:36	1
1,2,3-Trichloropropane	ND		0.20	0.050	ug/L			05/31/17 18:36	1
Carbon tetrachloride	ND		0.20	0.025	ug/L			05/31/17 18:36	1
cis-1,3-Dichloropropene	ND		0.50	0.090	ug/L			05/31/17 18:36	1
Chlorobenzene	ND		0.20	0.025	ug/L			05/31/17 18:36	1
Binyl chloride	ND		0.020	0.013	ug/L			05/31/17 18:36	1
sec-Xutylbenzene	ND		0.50	0.070	ug/L			05/31/17 18:36	1
Dibromomethane	ND		0.20	0.025	ug/L			05/31/17 18:36	1
m-&ylene Mp-&ylene	ND		0.50	0.050	ug/L			05/31/17 18:36	1
o-&ylene	ND		0.50	0.060	_			05/31/17 18:36	1
1,2,4-Trichlorobenzene	ND		0.20	0.040	ug/L			05/31/17 18:36	1
Styrene	ND		0.50	0.10	_			05/31/17 18:36	1
Chlorobromomethane	ND		0.20	0.025	-			05/31/17 18:36	1
Dichlorobromomethane	ND		0.20	0.025	_			05/31/17 18:36	1
1,3-Dichlorobenzene	ND		0.30	0.050	-			05/31/17 18:36	
Xenzene	ND		0.20	0.025	_			05/31/17 18:36	1
Chloroethane	ND		0.50	0.075	_			05/31/17 18:36	1
trans-1,3-Dichloropropene	ND		0.20	0.025	-			05/31/17 18:36	1
1,2,3-Trichlorobenzene	ND		0.50	0.10	_			05/31/17 18:36	1
N-Propylbenzene	ND		0.20	0.025	_			05/31/17 18:36	1
4-Isopropyltoluene	ND		0.30	0.050	_			05/31/17 18:36	
n-Xutylbenzene	ND		0.50	0.080	-			05/31/17 18:36	1
1,1-Dichloropropene	ND		0.10	0.015	_			05/31/17 18:36	1
cis-1,2-Dichloroethene	ND		0.20	0.025	-			05/31/17 18:36	1
1,1,2,2-Tetrachloroethane	ND		0.20	0.025	_			05/31/17 18:36	1
1,2,4-Trimethylbenzene	ND		0.20	0.030	_			05/31/17 18:36	1
Toluene	ND		0.20	0.025	_			05/31/17 18:36	
Naphthalene	ND		0.50	0.10	-			05/31/17 18:36	1
1,3,5-Trimethylbenzene	ND		0.50	0.083	_			05/31/17 18:36	1
1,3-Dichloropropane	ND		0.20	0.025				05/31/17 18:36	· · · · · · · · · · · · · · · · · · ·
Chloroform	ND		0.20	0.030	•			05/31/17 18:36	1
4-Chlorotoluene	ND		0.20	0.050	_			05/31/17 18:36	1
Chlorodibromomethane	ND		0.20	0.025	-			05/31/17 18:36	········· 1
Dichlorodifluoromethane	ND		0.40	0.050	_			05/31/17 18:36	
1,1,2-Trichloroethane	ND		0.40	0.025	J			05/31/17 18:36	1
tert-Xutylbenzene	ND		0.50		ug/L			05/31/17 18:36	
Chloromethane	ND		0.30	0.050				05/31/17 18:36	1
E ethylene Chloride	ND		0.50	0.030	-			05/31/17 18:36	1
1,1-Dichloroethene				0.018	_			05/31/17 18:36	
	ND ND		0.10 0.50	0.060	-			05/31/17 18:36	1
Isopropylbenzene					_				
1,2-Dichloroethane Tetrachloroethene	ND		0.20	0.025	_			05/31/17 18:36 05/31/17 18:36	1
1,1,1-Trichloroethane	ND ND		0.50 0.20	0.070	_				1
* *					_			05/31/17 18:36	1
2,2-Dichloropropane	ND		0.50	0.060				05/31/17 18:36	1
Hthylene Dibromide	ND		0.10	0.025	_			05/31/17 18:36	1
Xromoform 1,2-Dibromo-3-Chloropropane	ND ND		0.50 2.0	0.080	ug/L ug/L			05/31/17 18:36 05/31/17 18:36	1

TestAmerica Seattle

6/13/2017

Page 53 of 92

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-247301/6

Matrix: Water

Analysis Batch: 247301

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		0.50	0.025	ug/L			05/31/17 18:36	1
Trichloroethene	ND		0.20	0.025	ug/L			05/31/17 18:36	1
Xromobenzene	ND		0.20	0.035	ug/L			05/31/17 18:36	1
1,2-Dichloropropane	ND		0.20	0.025	ug/L			05/31/17 18:36	1
1,1,1,2-Tetrachloroethane	ND		0.20	0.025	ug/L			05/31/17 18:36	1
Hthylbenzene	ND		0.20	0.030	ug/L			05/31/17 18:36	1
trans-1,2-Dichloroethene	ND		0.20	0.025	ug/L			05/31/17 18:36	• • • • • • • • • • • • • • • • • • • •
x e*achlorobutadiene	ND		0.50	0.075	ug/L			05/31/17 18:36	
1,1-Dichloroethane	ND		0.20	0.025	ug/L			05/31/17 18:36	1
Xromomethane	ND		1.0	0.16	ug/L			05/31/17 18:36	1
1,4-Dichlorobenzene	ND		0.30	0.050	ug/L			05/31/17 18:36	1
E ethyl tert-butyl ether	ND		0.20	0.025	ug/L			05/31/17 18:36	1

MB MB

Surrogate	%Recovery Qualifi	er Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104	81 - 120	05/31/17 18:3	5 1
Toluene-d8 (Surr)	97	75 - 125	05/31/17 18:3	5 1
Trifluorotoluene (Surr)	100	74 - 118	05/31/17 18:3	5 1
Dibromofluoromethane (Surr)	104	42 - 132	05/31/17 18:3	5 1
1,2-Dichloroethane-d4 (Surr)	95	46 - 150	05/31/17 18:3	5 1

Lab Sample ID: LCS 580-247301/3

Matrix: Water

Analysis Batch: 247301

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichlorobenzene	5.00	5.25		ug/L		105	73 - 120
2-Chlorotoluene	5.00	5.10		ug/L		102	68 - 130
1,2,3-Trichloropropane	5.00	4.89		ug/L		98	45 - 150
Carbon tetrachloride	5.00	5.97		ug/L		119	54 - 150
cis-1,3-Dichloropropene	5.00	4.97		ug/L		99	54 - 150
Chlorobenzene	5.00	5.22		ug/L		104	74 - 114
Binyl chloride	5.00	5.14		ug/L		103	59 - 140
sec-Xutylbenzene	5.00	4.86		ug/L		97	62 - 140
Dibromomethane	5.00	6.09		ug/L		122	65 - 137
m-&ylene Mp-&ylene	5.00	5.15		ug/L		103	73 - 130
o-&ylene	5.00	4.96		ug/L		99	80 - 139
1,2,4-Trichlorobenzene	5.00	5.42		ug/L		108	60 - 138
Styrene	5.00	5.35		ug/L		107	68 - 136
Chlorobromomethane	5.00	5.96		ug/L		119	71 - 131
Dichlorobromomethane	5.00	5.67		ug/L		113	62 - 150
1,3-Dichlorobenzene	5.00	5.31		ug/L		106	76 - 120
Xenzene	5.00	5.52		ug/L		110	73 - 120
Chloroethane	5.00	5.30		ug/L		106	58 - 130
trans-1,3-Dichloropropene	5.00	4.92		ug/L		98	40 - 150
1,2,3-Trichlorobenzene	5.00	5.94		ug/L		119	60 - 137
N-Propylbenzene	5.00	4.81		ug/L		96	61 - 142
4-Isopropyltoluene	5.00	5.07		ug/L		101	72 - 127
n-Xutylbenzene	5.00	5.43		ug/L		109	66 - 125

Page 54 of 92

QC Sample Results

Client: Leidos, Inc.

TestAmerica Job ID: 580-68649-1 Project/Site: 7901 Parcel-South Park Landfill

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-247301/3

Matrix: Water

Analysis Batch: 247301

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloropropene	5.00	5.49		ug/L		110	64 - 146	
cis-1,2-Dichloroethene	5.00	5.66		ug/L		113	73 - 130	
1,1,2,2-Tetrachloroethane	5.00	5.09		ug/L		102	60 - 134	
1,2,4-Trimethylbenzene	5.00	4.98		ug/L		100	70 - 142	
Toluene	5.00	4.98		ug/L		100	70 - 126	
Naphthalene	5.00	5.56		ug/L		111	26 - 150	
1,3,5-Trimethylbenzene	5.00	4.88		ug/L		98	70 - 145	
1,3-Dichloropropane	5.00	4.77		ug/L		95	61 - 130	
Chloroform	5.00	5.71		ug/L		114	71 - 130	
4-Chlorotoluene	5.00	5.13		ug/L		103	75 - 130	
Chlorodibromomethane	5.00	5.26		ug/L		105	46 - 150	
Dichlorodifluoromethane	5.00	5.40		ug/L		108	45 - 150	
1,1,2-Trichloroethane	5.00	5.02		ug/L		100	62 - 137	
tert-Xutylbenzene	5.00	5.01		ug/L		100	55 - 150	
Chloromethane	5.00	5.18		ug/L		104	40 - 150	
E ethylene Chloride	5.00	5.38		ug/L		108	58 - 134	
1,1-Dichloroethene	5.00	5.74		ug/L		115	64 - 125	
Isopropylbenzene	5.00	5.20		ug/L		104	75 - 137	
1,2-Dichloroethane	5.00	5.52		ug/L		110	63 - 150	
Tetrachloroethene	5.00	5.61		ug/L		112	67 - 123	
1,1,1-Trichloroethane	5.00	5.57		ug/L		111	56 - 150	
2,2-Dichloropropane	5.00	6.20		ug/L		124	60 - 150	
Hthylene Dibromide	5.00	5.16		ug/L		103	56 - 146	
Xromoform	5.00	5.42		ug/L		108	51 - 137	
1,2-Dibromo-3-Chloropropane	5.00	5.47		ug/L		109	34 - 150	
Trichlorofluoromethane	5.00	5.34		ug/L		107	60 - 150	
Trichloroethene	5.00	5.74		ug/L		115	72 - 123	
Xromobenzene	5.00	5.14		ug/L		103	68 - 130	
1,2-Dichloropropane	5.00	5.27		ug/L		105	72 - 120	
1,1,1,2-Tetrachloroethane	5.00	5.34		ug/L		107	68 - 139	
Hthylbenzene	5.00	4.93		ug/L		99	74 - 125	
trans-1,2-Dichloroethene	5.00	5.68		ug/L		114	69 - 124	
x e*achlorobutadiene	5.00	5.57		ug/L		111	38 - 150	
1,1-Dichloroethane	5.00	5.35		ug/L		107	68 - 135	
Xromomethane	5.00	5.50		ug/L		110	61 - 135	
1,4-Dichlorobenzene	5.00	5.35		ug/L		107	77 - 120	
E ethyl tert-butyl ether	5.00	5.44		ug/L		109	56 - 150	
The state of the s								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		81 - 120
Toluene-d8 (Surr)	91		75 - 125
Trifluorotoluene (Surr)	93		74 - 118
Dibromofluoromethane (Surr)	106		42 - 132
1,2-Dichloroethane-d4 (Surr)	99		46 - 150

QC Sample Results

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-247301/4

Matrix: Water

2,2-Dichloropropane

Hthylene Dibromide

1,2-Dibromo-3-Chloropropane

Xromoform

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 247301							i icp iy	pc. 10t	
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D %	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	5.00	5.16		ug/L		103	73 - 120	2	14
2-Chlorotoluene	5.00	5.02		ug/L		100	68 - 130	2	20
1,2,3-Trichloropropane	5.00	4.59		ug/L		92	45 - 150	6	20
Carbon tetrachloride	5.00	5.72		ug/L		114	54 - 150	4	30
cis-1,3-Dichloropropene	5.00	4.84		ug/L		97	54 - 150	3	28
Chlorobenzene	5.00	5.07		ug/L		101	74 - 114	3	12
Binyl chloride	5.00	4.93		ug/L		99	59 - 140	4	30
sec-Xutylbenzene	5.00	4.78		ug/L		96	62 - 140	2	20
Dibromomethane	5.00	5.77		ug/L		115	65 - 137	5	20
m-&ylene Mp-&ylene	5.00	5.04		ug/L		101	73 - 130	2	20
o-&ylene	5.00	4.83		ug/L		97	80 - 139	3	20
1,2,4-Trichlorobenzene	5.00	5.41		ug/L		108	60 - 138	0	20
Styrene	5.00	5.18		ug/L		104	68 - 136	3	20
Chlorobromomethane	5.00	5.63		ug/L		113	71 - 131	6	20
Dichlorobromomethane	5.00	5.35		ug/L		107	62 - 150	6	20
1,3-Dichlorobenzene	5.00	5.20		ug/L		104	76 - 120	2	12
Xenzene	5.00	5.42		ug/L		108	73 - 120	2	20
Chloroethane	5.00	4.89		ug/L		98	58 ₋ 130	8	35
trans-1,3-Dichloropropene	5.00	4.73		ug/L		95	40 - 150	4	30
1,2,3-Trichlorobenzene	5.00	5.72		ug/L		114	60 - 137	4	20
N-Propylbenzene	5.00	4.75		ug/L		95	61 - 142	1	20
4-Isopropyltoluene	5.00	5.01		ug/L		100	72 - 127	1	14
n-Xutylbenzene	5.00	5.44		ug/L		109	66 - 125	0	20
1,1-Dichloropropene	5.00	5.30		ug/L		106	64 - 146	3	20
cis-1,2-Dichloroethene	5.00	5.53		ug/L		111	73 - 130	2	20
1,1,2,2-Tetrachloroethane	5.00	4.70		ug/L		94	60 - 134	8	25
1,2,4-Trimethylbenzene	5.00	4.88		ug/L		98	70 - 142	2	20
Toluene	5.00	4.91		ug/L		98	70 - 126	<u>-</u>	20
Naphthalene	5.00	5.20		ug/L		104	26 - 150	7	20
1,3,5-Trimethylbenzene	5.00	4.79		ug/L		96	70 - 145	2	20
1,3-Dichloropropane	5.00	4.51		ug/L		90	61 - 130	6	29
Chloroform	5.00	5.60		ug/L		112	71 - 130	2	20
4-Chlorotoluene	5.00	5.03		ug/L		101	75 ₋ 130	2	20
Chlorodibromomethane	5.00	4.95				99	46 - 150	6	20
Dichlorodifluoromethane	5.00	5.71		ug/L ug/L		114	45 ₋ 150	6	29
	5.00	4.72		-		94	62 ₋ 137		30
1,1,2-Trichloroethane				ug/L				6	
tert-Xutylbenzene	5.00	4.93		ug/L		99	55 - 150	1	20
Chloromethane	5.00	4.93		ug/L		99	40 ₋ 150	5	31
E ethylene Chloride	5.00	5.02		ug/L		100	58 - 134	7	29
1,1-Dichloroethene	5.00	5.21		ug/L		104	64 - 125	10	28
Isopropylbenzene	5.00	5.05		ug/L		101	75 - 137	3	20
1,2-Dichloroethane	5.00	5.22		ug/L		104	63 - 150	6	29
Tetrachloroethene	5.00	5.45		ug/L		109	67 - 123	3	20
1,1,1-Trichloroethane	5.00	5.62		ug/L		112	56 ₋ 150	1	29
O O Diablementaria	E 00	0.05		//		405	00 450	4	00

TestAmerica Seattle

6/13/2017

6

29

20

20

20

6.25

4.84

5.00

5.13

ug/L

ug/L

ug/L

ug/L

125

97

100

103

60 - 150

56 - 146

51 - 137

34 - 150

5.00

5.00

5.00

5.00

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Method: 8260C - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 580-247301/4

Matrix: Water

Analysis Batch: 247301

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichlorofluoromethane	5.00	5.25		ug/L		105	60 - 150	2	31
Trichloroethene	5.00	5.61		ug/L		112	72 - 123	2	20
Xromobenzene	5.00	5.02		ug/L		100	68 - 130	2	20
1,2-Dichloropropane	5.00	5.10		ug/L		102	72 - 120	3	20
1,1,1,2-Tetrachloroethane	5.00	5.14		ug/L		103	68 - 139	4	20
Hthylbenzene	5.00	4.80		ug/L		96	74 - 125	3	20
trans-1,2-Dichloroethene	5.00	5.66		ug/L		113	69 - 124	0	27
x e*achlorobutadiene	5.00	5.77		ug/L		115	38 - 150	4	20
1,1-Dichloroethane	5.00	5.25		ug/L		105	68 - 135	2	27
Xromomethane	5.00	4.94		ug/L		99	61 - 135	11	31
1,4-Dichlorobenzene	5.00	5.28		ug/L		106	77 - 120	1	11
E ethyl tert-butyl ether	5.00	4.96		ug/L		99	56 - 150	9	26

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		81 - 120
Toluene-d8 (Surr)	92		75 - 125
Trifluorotoluene (Surr)	95		74 - 118
Dibromofluoromethane (Surr)	106		42 - 132
1,2-Dichloroethane-d4 (Surr)	97		46 - 150

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 580-247561/1-A

Matrix: Solid

Analysis Batch: 247639

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 247561

7 min, y 010 = 0100111 = 11 000									
		MB				_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		25	3.0	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
1,2-Dichlorobenzene	ND		25	6.0	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
1,3-Dichlorobenzene	ND		25	2.4	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
1,4-Dichlorobenzene	ND		25	4.2	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
1-E ethylnaphthalene	ND		15	2.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2,4,5-Trichlorophenol	ND		100	23	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2,4,6-Trichlorophenol	ND		75	18	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2,4-Dichlorophenol	ND		50	7.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2,4-Dimethylphenol	ND		50	7.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2,4-Dinitrophenol	ND		500	100	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2,4-Dinitrotoluene	ND		100	22	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2,6-Dinitrotoluene	ND		75	17	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2-Chloronaphthalene	ND		13	2.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2-Chlorophenol	ND		100	21	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2-E ethylnaphthalene	ND		25	4.4	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2-E ethylphenol	ND		75	19	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2-Nitroaniline	ND		50	7.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
2-Nitrophenol	ND		100	23	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
3 M4 E ethylphenol	ND		100	7.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
3,3[-Dichlorobenzidine	ND		200	50	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
3-Nitroaniline	ND		100	20	ug/Fg		06/05/17 09:38	06/06/17 09:58	1

TestAmerica Seattle

Page 57 of 92

6/13/2017

QC Sample Results

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-247561/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA

Analysis Batch: 247639	MB	MB						Prep Batch:	Z-77 00 T
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
4,6-Dinitro-2-methylphenol	ND		500	50	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
4-Xromophenyl phenyl ether	ND		100	21	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
4-Chloro-3-methylphenol	ND		75	17	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
4-Chloroaniline	ND		750	200	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
4-Chlorophenyl phenyl ether	ND		100	21	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
4-Nitroaniline	ND		50	10	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
4-Nitrophenol	ND		750	180	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Acenaphthene	ND		13	2.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Acenaphthylene	ND		13	2.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Anthracene	ND		13	2.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xenzo]a(anthracene	ND		13	2.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xenzo]a(pyrene	ND		30		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xenzo]b(fluoranthene	ND		13	2.5	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xenzo]g,h,i(perylene	ND		30		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xenzo]k(fluoranthene	ND		30		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xenzoic acid	ND		1300		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xenzyl alcohol	ND		2000		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xis)2-chloroetho*y@nethane	ND		100		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xis)2-chloroethyl@ther	ND		100		ug/Fg		06/05/17 09:38		1
Xis)2-ethylhe*ylGphthalate	ND		300		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
bis)chloroisopropylGether	ND		130		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Xutyl benzyl phthalate	ND		100		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Carbazole	ND		75		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Chrysene	ND		30		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Dibenz)a,h@nthracene	ND		25	6.0	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Dibenzofuran	ND		75		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Diethyl phthalate	ND		280		ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Dimethyl phthalate	ND		75		ug/Fg		06/05/17 09:38	06/06/17 09:58	
Di-n-butyl phthalate	ND		250	29	ug/Fg		06/05/17 09:38	06/06/17 09:58	1
Di-n-octyl phthalate	ND		500				06/05/17 09:38	06/06/17 09:58	1
vluoranthene	ND		13		ug/Fg		06/05/17 09:38		
vluorene	ND		13		ug/Fg		06/05/17 09:38		1
x e*achlorobenzene	ND		25		ug/Fg		06/05/17 09:38		1
x e*achlorobutadiene	ND		25		ug/Fg			06/06/17 09:58	
x e*achlorocyclopentadiene	ND		50		ug/Fg			06/06/17 09:58	1
x e*achloroethane	ND		75		ug/Fg		06/05/17 09:38		1
Indeno]1,2,3-cd(pyrene	ND		20		ug/Fg		06/05/17 09:38		
Isophorone	ND		75		ug/Fg			06/06/17 09:58	1
Naphthalene	ND		13		ug/Fg ug/Fg		06/05/17 09:38		1
Nitrobenzene	ND		100		ug/Fg ug/Fg		06/05/17 09:38		
	ND		100				06/05/17 09:38		1
N-Nitrosodi-n-propylamine	ND ND		30		ug/Fg				1
N-Nitrosodiphenylamine					ug/Fg		06/05/17 09:38	06/06/17 09:58	۱
Pentachlorophenol	ND		200		ug/Fg				1
Phenanthrene	ND		30 75		ug/Fg			06/06/17 09:58	1
Phenol	ND ND		75 30		ug/Fg ug/Fg			06/06/17 09:58 06/06/17 09:58	1

QC Sample Results

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 580-247561/1-A

Matrix: Solid

Analysis Batch: 247639

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 247561

	MB MB				
Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	48	10 - 126	06/05/17 09:38	06/06/17 09:58	1
2-Fluorobiphenyl	74	57 - 110	06/05/17 09:38	06/06/17 09:58	1
2-Fluorophenol (Surr)	89	36 - 125	06/05/17 09:38	06/06/17 09:58	1
Nitrobenzene-d5 (Surr)	80	54 - 113	06/05/17 09:38	06/06/17 09:58	1
Phenol-d5 (Surr)	90	59 - 113	06/05/17 09:38	06/06/17 09:58	1
Terphenyl-d14 (Surr)	75	68 - 120	06/05/17 09:38	06/06/17 09:58	1

Lab Sample ID: LCS 580-247561/3-A

Matrix: Solid

Analysis Batch: 247639

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 247561

2,4-Dinitrotoluene 1000 846 ug/Fg 85 71-125 2,6-Dinitrotoluene 1000 880 ug/Fg 88 63-129 2-Chloronaphthalene 1000 853 ug/Fg 85 73-114 2-Chlorophenol 1000 863 ug/Fg 88 71-117 2-Eethylpaphthalene 1000 940 ug/Fg 88 71-117 2-Eethylphenol 1000 940 ug/Fg 94 70-111 2-Nitrophenol 1000 920 ug/Fg 92 63-122 2-Nitrophenol 1000 850 ug/Fg 97 70-111 3-Nitroaniline 1000 973 ug/Fg 97 70-111 3,3-Dichlorobenzidine 2000 1440 ug/Fg 72 35-135 3-Nitroaniline 1000 604 ug/Fg 59 16-134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74-116 4-Chloro-aniline 1000 831 ug/Fg 93 69-114 4-Nitrophenol 200	7, 6.0 <u>2</u>	Spike	LCS	LCS			%Rec.	
1,2-Dichlorobenzene 1000 825 ug/Fg 83 73.103 1.3-103 1.3-104-104-lorobenzene 1000 804 ug/Fg 80 72.107 1.3-Dichlorobenzene 1000 803 ug/Fg 80 72.107 1.5-Dichlorobenzene 1000 803 ug/Fg 80 70.105 1.E ethylnaphthalene 1000 833 ug/Fg 83 76.109 2.4,5-Trichlorophenol 1000 871 ug/Fg 85 65.115 2.4-Dichlorophenol 1000 884 ug/Fg 85 65.115 2.4-Dichlorophenol 1000 804 ug/Fg 85 65.115 2.4-Dichlorophenol 1000 1100 ug/Fg 100 64.119 2.4-Dimbthylphenol 1000 1100 ug/Fg 110 64.119 2.4-Dimbthylphenol 1000 150 ug/Fg 28 10.115 2.4-Dinitrotoluene 1000 83 Ug/Fg 85 71.125 2.6-Dinitrotoluene 1000 886 ug/Fg 85 71.125 2.6-Dinitrotoluene 1000 883 ug/Fg 85 73.114 2-Chlorophenol 1000 883 ug/Fg 85 73.114 2-Chlorophenol 1000 863 ug/Fg 86 78.112 2-E ethylnaphthalene 1000 883 ug/Fg 86 78.112 2-E ethylnaphthalene 1000 885 ug/Fg 86 78.112 2-E ethylnaphthalene 1000 885 ug/Fg 94 70.1111 2-Nitroaniline 1000 920 ug/Fg 94 70.1111 2-Nitroaniline 1000 950 ug/Fg 95 67.119 3.4-E ethylphenol 1000 973 ug/Fg 97 70.1111 3.3-E phylphenol 1000 973 ug/Fg 97 70.1111 3.3-E phylphenol 1000 973 ug/Fg 97 70.1111 3.3-E phylphenol 1000 980 ug/Fg 99 99 99 99 99 99 99 99 99 99 99 99 99	Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
1,3-Dichlorobenzene 1000 804 ug/Fg 80 72 107 1.4-Dichlorobenzene 1000 803 ug/Fg 83 76 109 1.4-Dichlorobenzene 1000 803 ug/Fg 83 76 109 2.4,5-Trichlorophenol 1000 871 ug/Fg 87 64 -110 2.4,6-Trichlorophenol 1000 854 ug/Fg 85 65 .115 2.4-Dichlorophenol 1000 864 ug/Fg 80 69 .121 2.4-Dinterphyphenol 1000 864 ug/Fg 80 69 .121 2.4-Dinterphyphenol 1000 8100 ug/Fg 80 69 .121 2.4-Dinterphyphenol 1000 864 ug/Fg 80 69 .121 2.4-Dinterphyphenol 1000 864 ug/Fg 80 69 .121 2.4-Dinterphyphenol 1000 866 ug/Fg 85 71 .125 2.4-Dinterphyphenol 1000 866 ug/Fg 85 71 .125 2.4-Dinterphyphenol 1000 866 ug/Fg 85 71 .125 2.4-Dinterphyphenol 1000 880 ug/Fg 85 73 .144 2.4-Dinterphyphenol 1000 880 ug/Fg 86 73 .144 2.4-Dinterphyphenol 1000 863 ug/Fg 86 73 .144 2.4-Dinterphyphenol 1000 863 ug/Fg 86 73 .144 2.4-Dinterphyphenol 1000 863 ug/Fg 86 73 .144 2.4-Dinterphyphenol 1000 863 ug/Fg 86 73 .144 2.4-Dinterphyphenol 1000 863 ug/Fg 86 73 .144 2.4-Dinterphyphenol 1000 880 ug/Fg 86 73 .144 2.4-Dinterphyphenol 1000 860 ug/Fg 92 63 .122 2.4-Dinterphyphenol 1000 850 ug/Fg 94 70 .111 3.3-Dichlorobenzidine 1000 970 ug/Fg 97 70 .111 3.3-Dichlorobenzidine 1000 850 ug/Fg 85 73 .135 3-Dirterphyphenol 1000 860 ug/Fg 86 76 .119 3.3-Dirterphyphenol 1000 860 ug/Fg 86 76 .119 3.3-Dirterphyphenol 1000 860 ug/Fg 86 76 .119 4.4-Dinterphyphenol 1000 860 ug/Fg 86 76 .119 4.4-Dinterphyphenol 1000 861 ug/Fg 86 75 .116 4.4-Dinterphyphenol 1000 829 ug/Fg 84 74 .116 4.Dinterphyphenol 1000 829 ug/Fg 84 74 .116 4.Dinterphyphenol 1000 825 ug/Fg 88 73 .116 4.Dinterphyphenol 1000 884 ug/Fg 88 73 .118 4.Dinterphyphenol 1000 886 ug/Fg 88 73 .118 4.Dinterphyphenol 1000 886 ug/Fg 88 73 .118 4.Dinterphyphenol 1000 886 ug/Fg 87 73 .116 4.Dinterphyphenol 1000 886 ug/Fg 87 73 .116 4.Dinterphyphenol 1000 886 ug/Fg 87 73 .116 4.Dinterphyphenol 1000 886 ug/Fg 87 73 .116 4.Dinterphyphenol 1000 886 ug/Fg 87 73 .116 4.Dinterphyphenol 1000 887 ug/Fg 87 73 .116 4.Dinterphyphenol 1000 887 ug/Fg 87 73 .116 4.Dinterphyphyphenol 1000 880 ug/Fg 87 73 .116 4.Dinterphyphyphyphyphyphyphyphyphyphyphyp	1,2,4-Trichlorobenzene	1000	780		ug/Fg	78	66 - 115	
1,4-Dichlorobenzene 1000 803 ug/Fg 80 70 - 105 1-E ethylnaphthalene 1000 833 ug/Fg 83 76 - 109 2,4-S-Trichlorophenol 1000 854 ug/Fg 85 65 - 115 2,4-Dichlorophenol 1000 804 ug/Fg 80 69 - 121 2,4-Dinitrybphenol 2000 563 J ug/Fg 80 69 - 121 2,4-Dinitrybphenol 2000 563 J ug/Fg 85 71 - 125 2,4-Dinitrybphenol 1000 846 ug/Fg 85 71 - 125 2,4-Dinitrybphenol 1000 846 ug/Fg 85 71 - 125 2,4-Dinitrybphenol 1000 883 ug/Fg 85 73 - 114 2,4-Dinitrybphenol 1000 883 ug/Fg 85 73 - 114 2,4-Dinitrybphenol 1000 863 ug/Fg 85 73 - 114 2,4-Dinitrybphenol 1000 885 ug/Fg 85 71 - 117 </td <td>1,2-Dichlorobenzene</td> <td>1000</td> <td>825</td> <td></td> <td>ug/Fg</td> <td>83</td> <td>73 - 103</td> <td></td>	1,2-Dichlorobenzene	1000	825		ug/Fg	83	73 - 103	
1-Eethylnaphthalene	1,3-Dichlorobenzene	1000	804		ug/Fg	80	72 - 107	
2,4,5-Trichlorophenol 1000 771 ug/Fg 85 64-110 2,4,6-Trichlorophenol 1000 854 ug/Fg 85 65-115 2,4-Dichlorophenol 1000 804 ug/Fg 80 69-121 2,4-Dimethylphenol 1000 1100 ug/Fg 28 10-115 2,4-Dimitroblenel 1000 863 ug/Fg 85 71-125 2,6-Dinitrotoluene 1000 863 ug/Fg 85 71-125 2,6-Dinitrotoluene 1000 853 ug/Fg 85 71-142 2-Chloropaphthalene 1000 853 ug/Fg 86 73-114 2-Chlorophenol 1000 863 ug/Fg 86 78-112 2-E ethylphenol 1000 865 ug/Fg 88 71-117 2-E ethylphenol 1000 940 ug/Fg 94 70-111 2-Nitrophenol 1000 865 ug/Fg 92 63-122 2-Nitrophenol 1000 865 ug/Fg 97 70-111 3,3-Eichlorobenzidine 10	1,4-Dichlorobenzene	1000	803		ug/Fg	80	70 - 105	
2,4,6-Trichlorophenol 1000 854 ug/Fg 85 65 - 115 2,4-Dichlorophenol 1000 804 ug/Fg 80 69 - 121 2,4-Dinitrophenol 1000 1100 ug/Fg 110 64 - 119 2,4-Dinitrophenol 2000 563 J ug/Fg 28 10 - 115 2,4-Dinitrophenol 1000 846 ug/Fg 85 71 - 125 2,6-Dinitrofoluene 1000 846 ug/Fg 85 71 - 125 2,6-Dinitrophenol 1000 853 ug/Fg 85 73 - 114 2-Chlorophenol 1000 863 ug/Fg 86 78 - 112 2-E ethylphaphol 1000 885 ug/Fg 88 71 - 117 2-E ethylphanol 1000 940 ug/Fg 94 70 - 111 2-Nitrophenol 1000 850 ug/Fg 97 70 - 111 3-Nitrophenol 1000 850 ug/Fg 97 70 - 111 3-Nitrophenol 1000 973 ug/Fg 97 70 - 111 3-Nitr	1-E ethylnaphthalene	1000	833		ug/Fg	83	76 - 109	
2,4-Dichlorophenol 1000 804 ug/Fg 110 64-119 2,4-Dimitrylphenol 2000 563 J ug/Fg 28 10-1115 2,4-Dinitrotoluene 1000 846 ug/Fg 85 71-125 2,6-Dinitrotoluene 1000 880 ug/Fg 88 63.129 2-Chlorophenol 1000 853 ug/Fg 85 73-114 2-Chlorophenol 1000 863 ug/Fg 86 78-114 2-Chlorophenol 1000 863 ug/Fg 86 78-114 2-Chlorophenol 1000 885 ug/Fg 88 71-117 2-E ethylphenol 1000 940 ug/Fg 85 77-111 2-Ritrophenol 1000 920 ug/Fg 92 63-122 2-Nitrophenol 1000 920 ug/Fg 85 67-1119 3 M E ethylphenol 1000 850 ug/Fg 85 67-1119 3, Pitroanline 1000 644 ug/Fg 60 21-103 4-S. Dinitro-2-methylphenol	2,4,5-Trichlorophenol	1000	771		ug/Fg	77	64 - 110	
2.4-Dimethylphenol 1000 1100 ug/Fg 110 64-119 2.4-Dinitrophenol 2000 563 J ug/Fg 28 10-115 2.4-Dinitrobluene 1000 846 ug/Fg 85 71-125 2.6-Dinitrobluene 1000 880 ug/Fg 85 71-125 2.6-Dinitrobluene 1000 853 ug/Fg 85 73-114 2-Chloronaphthalene 1000 863 ug/Fg 86 78-112 2-Eethylpaphthalene 1000 885 ug/Fg 88 71-117 2-Eethylphenol 1000 940 ug/Fg 94 70-111 2-Bittroaniline 1000 920 ug/Fg 92 63-122 2-Nitrophenol 1000 950 ug/Fg 92 63-122 2-Nitrophenol 1000 920 ug/Fg 92 63-122 2-Nitrophenol 1000 973 ug/Fg 97 70-111 3-Siphichiorobenzidine 1000 604 ug/Fg 50 21-103 4-B-Dinitro-2-methylphenol<	2,4,6-Trichlorophenol	1000	854		ug/Fg	85	65 - 115	
2,4-Dinitrophenol 2000 563 J ug/Fg 28 10.115 2,4-Dinitrobluene 1000 846 ug/Fg 85 71-125 2,6-Dinitrobluene 1000 880 ug/Fg 85 71-125 2,6-Dinitrobluene 1000 853 ug/Fg 85 73-114 2-Chlorophenol 1000 863 ug/Fg 86 78-112 2-E ethylphenol 1000 985 ug/Fg 94 70-111 2-E ethylphenol 1000 940 ug/Fg 92 63-122 2-Nitrophenol 1000 950 ug/Fg 92 63-122 2-Nitrophenol 1000 950 ug/Fg 92 63-122 2-Nitrophenol 1000 973 ug/Fg 97 70-111 3,4F-Dinitro-Denzidine 2000 1440 ug/Fg 60 21-103 4,6-Dinitro-2-methylphenol 2000 1190 ug/Fg 59 16-134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 93 69-114 4-Chlorophenyl p	2,4-Dichlorophenol	1000	804		ug/Fg	80	69 - 121	
2,4-Dinitrotoluene 1000 846 ug/Fg 85 71-125 2,6-Dinitrotoluene 1000 880 ug/Fg 88 63-129 2-Chloronaphthalene 1000 853 ug/Fg 85 73-114 2-Chlorophenol 1000 863 ug/Fg 88 71-117 2-Eethylpaphthalene 1000 940 ug/Fg 88 71-117 2-Eethylphenol 1000 940 ug/Fg 94 70-111 2-Nitrophenol 1000 920 ug/Fg 92 63-122 2-Nitrophenol 1000 850 ug/Fg 92 63-122 2-Nitrophenol 1000 850 ug/Fg 97 70-111 3,4-Dichlorobenzidine 2000 1440 ug/Fg 72 35-135 3-Nitroaniline 1000 604 ug/Fg 59 16-134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74-116 4-Chloro-a-methylphenol 1000 839 ug/Fg 93 69-114 4-Chloro-phenyl phenyl ether	2,4-Dimethylphenol	1000	1100		ug/Fg	110	64 - 119	
2,6-Dinitrotoluene 1000 880 ug/Fg 88 63 - 129 2-Chloropaphthalene 1000 853 ug/Fg 85 73 - 114 2-Chlorophenol 1000 863 ug/Fg 86 78 - 112 2-Eethylpaphthalene 1000 865 ug/Fg 94 70 - 111 2-Eethylphenol 1000 940 ug/Fg 94 70 - 111 2-Nitrophenol 1000 850 ug/Fg 95 63 - 122 2-Nitrophenol 1000 850 ug/Fg 97 70 - 111 3,5-Dichlorobenzidine 2000 1440 ug/Fg 97 70 - 111 3,5-Dichlorobenzidine 1000 604 ug/Fg 97 70 - 111 3,5-Dichlorobenzidine 1000 604 ug/Fg 97 70 - 111 3,5-Dichlorobenzidine 1000 604 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylphenol 1000 839 ug/Fg 84 74 - 116 4-Xromophenyl phenyl ether 1000 839 ug/Fg 93 69 - 114 <t< td=""><td>2,4-Dinitrophenol</td><td>2000</td><td>563</td><td>J</td><td>ug/Fg</td><td>28</td><td>10 - 115</td><td></td></t<>	2,4-Dinitrophenol	2000	563	J	ug/Fg	28	10 - 115	
2-Chloronaphthalene 1000 853 ug/Fg 85 73 - 114 2-Chlorophenol 1000 863 ug/Fg 86 78 - 112 2-Eethylnaphthalene 1000 885 ug/Fg 88 71 - 117 2-Eethylnaphthalene 1000 940 ug/Fg 94 70 - 111 2-Eethylphenol 1000 950 ug/Fg 92 63 . 122 2-Nitrophenol 1000 850 ug/Fg 95 67 - 119 3 M4 Eethylphenol 1000 973 ug/Fg 97 70 - 111 3,3-Pichlorobenzidine 2000 1440 ug/Fg 72 35 . 135 3-Nitroaniline 1000 604 ug/Fg 72 35 . 135 3-Nitroaniline 1000 604 ug/Fg 72 35 . 135 3-Nitroaniline 1000 604 ug/Fg 60 21 - 103 4-Chlorophenyl phenyl ether 1000 839 ug/Fg 60 21 - 103 4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 . 114 4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 . 114 4-Chlorophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chlorophenyl phenyl ether 1000 851 ug/Fg 86 75 . 115 4-Nitroaniline 1000 852 ug/Fg 86 75 . 115 4-Nitroaniline 1000 853 ug/Fg 86 75 . 115 4-Nitroaniline 1000 854 ug/Fg 86 75 . 115 4-Nitroaniline 1000 858 ug/Fg 86 75 . 115 4-Nitroaniline 1000 858 ug/Fg 87 73 . 116 Acenaphthylene 1000 867 ug/Fg 87 73 . 111 Acenaphthylene 1000 867 ug/Fg 98 77 73 . 116 Xenzolp(fluoranthene 1000 867 ug/Fg 77 71 . 124 Xenzolp(pyene 1000 774 ug/Fg 77 71 . 124 Xenzolp(hiloranthene 1000 774 ug/Fg 77 71 . 124	2,4-Dinitrotoluene	1000	846		ug/Fg	85	71 - 125	
2-Chlorophenol 1000 863 ug/Fg 86 78 - 112 2-E ethylaphthalene 1000 885 ug/Fg 88 71 - 117 2-E ethylaphthalene 1000 940 ug/Fg 94 70 - 111 2-E ethylaphenol 1000 920 ug/Fg 92 63 - 122 2-Nitrophenol 1000 850 ug/Fg 97 70 - 111 3 M4 E ethylaphenol 1000 973 ug/Fg 97 70 - 111 3,Fibichlorobenzidine 2000 1440 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylaphenol 1000 604 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylaphenol 1000 839 ug/Fg 93 69 - 114 4-Chloro-3-methylaphenol 1000 929 ug/Fg 93 69 - 114 4-Chloropaniline 1000 861 ug/Fg 86 75 - 115 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitrophenol 200 1510 ug/Fg 86 75 - 115 <td>2,6-Dinitrotoluene</td> <td>1000</td> <td>880</td> <td></td> <td>ug/Fg</td> <td>88</td> <td>63 - 129</td> <td></td>	2,6-Dinitrotoluene	1000	880		ug/Fg	88	63 - 129	
2-Eethylnaphthalene 1000 885 ug/Fg 88 71 - 117 2-Eethylphenol 1000 940 ug/Fg 94 70 - 111 2-Nitroaniline 1000 920 ug/Fg 92 63 - 122 2-Nitrophenol 1000 850 ug/Fg 85 67 - 119 3 M4 Eethylphenol 1000 973 ug/Fg 97 70 - 111 3,Floichlorobenzidine 2000 1440 ug/Fg 72 35 - 135 3-Nitroaniline 1000 604 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylphenol 2000 1190 ug/Fg 59 16 - 134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 93 69 - 114 4-Chloro-3-methylphenol 1000 438 J ug/Fg 93 69 - 114 4-Chloroaniline 1000 438 J ug/Fg 86 75 - 115 4-Nitrophenol ether 1000 861 ug/Fg 86 75 - 115 4-Nitrophenol 200 1510 ug/Fg 83 71 - 11	2-Chloronaphthalene	1000	853		ug/Fg	85	73 - 114	
2-Eethylphenol 1000 940 ug/Fg 94 70 - 111 2-Nitroaniline 1000 920 ug/Fg 92 63 - 122 2-Nitrophenol 1000 850 ug/Fg 85 67 - 119 3 M4 E ethylphenol 1000 973 ug/Fg 97 70 - 111 3,FDichlorobenzidine 2000 1440 ug/Fg 60 21 - 103 3-Nitroaniline 1000 604 ug/Fg 60 21 - 103 4-Chointro-2-methylphenol 2000 1190 ug/Fg 59 16 - 134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chloro-3-methylphenol 1000 839 ug/Fg 84 74 - 116 4-Chlorophenyl phenyl ether 1000 438 J ug/Fg 93 69 - 114 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitrophenol 200 1510 ug/Fg 86 75 - 115 4-Nitrophenol 200 1510 ug/Fg 87 71 - 114 <td>2-Chlorophenol</td> <td>1000</td> <td>863</td> <td></td> <td>ug/Fg</td> <td>86</td> <td>78 - 112</td> <td></td>	2-Chlorophenol	1000	863		ug/Fg	86	78 - 112	
2-Nitroaniline 1000 920 ug/Fg 92 63 - 122 2-Nitrophenol 1000 850 ug/Fg 85 67 - 119 3 M4 E ethylphenol 1000 973 ug/Fg 97 70 - 111 3,3-Dichlorobenzidine 2000 1440 ug/Fg 72 35 - 135 3-Nitroaniline 1000 604 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylphenol 2000 1190 ug/Fg 59 16 - 134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chloro-3-methylphenol 1000 839 ug/Fg 93 69 - 114 4-Chloro-3-methylphenol 1000 839 ug/Fg 93 69 - 114 4-Chloro-3-methylphenol 1000 438 Jug/Fg 93 69 - 114 4-Chloro-3-methylphenol 1000 438 Ug/Fg 93 69 - 114 4-Chloro-3-methylphenol 1000 861 ug/Fg 86 75 - 115 4-Nitrophenol 200 1510 ug/Fg 86 75 - 115	2-E ethylnaphthalene	1000	885		ug/Fg	88	71 - 117	
2-Nitrophenol 1000 850 ug/Fg 85 67 - 119 3 M4 E ethylphenol 1000 973 ug/Fg 97 70 - 111 3,3[-Dichlorobenzidine 2000 1440 ug/Fg 72 35 - 135 3-Nitroaniline 1000 604 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylphenol 2000 1190 ug/Fg 59 16 - 134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 - 114 4-Chloro-3-methylphenol 1000 438 J ug/Fg 93 69 - 114 4-Chloroaniline 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 861 ug/Fg 86 75 - 115 4-Nitrophenol 2000 1510 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 83 71 - 111 Acenaphthene 1000 884 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 867 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 800 ug/Fg 77 71 - 124 Xenzo]a(pyrene 1000 774 ug/Fg 77 71 - 124 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 774 ug/Fg 73 75 - 122	2-E ethylphenol	1000	940		ug/Fg	94	70 - 111	
3 M4 E ethylphenol 1000 973 ug/Fg 97 70 - 111 3,3{-Dichlorobenzidine 2000 1440 ug/Fg 72 35 - 135 3-Nitroaniline 1000 604 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylphenol 2000 1190 ug/Fg 59 16 - 134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 - 114 4-Chloropaniline 1000 438 J ug/Fg 86 75 - 115 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 957 ug/Fg 96 74 - 117 Xenzoja(anthracene 1000 867 ug/Fg 87 73 - 116	2-Nitroaniline	1000	920		ug/Fg	92	63 - 122	
3,3,EDichlorobenzidine 2000 1440 ug/Fg 72 35 - 135 3-Nitroaniline 1000 604 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylphenol 2000 1190 ug/Fg 59 16 - 134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 - 114 4-Chlorophenyl phenyl ether 1000 438 J ug/Fg 44 10 - 110 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 867 ug/Fg 87 73 - 116 Xenzoja(pyrene 1000 774 ug/Fg 77 71 - 124	2-Nitrophenol	1000	850		ug/Fg	85	67 - 119	
3-Nitroaniline 1000 604 ug/Fg 60 21 - 103 4,6-Dinitro-2-methylphenol 2000 1190 ug/Fg 59 16 - 134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 - 114 4-Chloroaniline 1000 438 J ug/Fg 44 10 - 110 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 774 ug/Fg 77 71 - 124 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]c,h,i(perylene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 777 Z ug/Fg 73 75 - 122	3 M4 E ethylphenol	1000	973		ug/Fg	97	70 - 111	
4,6-Dinitro-2-methylphenol 2000 1190 ug/Fg 59 16 - 134 4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 - 114 4-Chlorophenyl phenyl ether 1000 438 J ug/Fg 44 10 - 110 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzoja(anthracene 1000 867 ug/Fg 80 72 - 121 Xenzojb(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzojb, i(perylene 1000 727 Z ug/Fg 73	3,3[-Dichlorobenzidine	2000	1440		ug/Fg	72	35 - 135	
4-Xromophenyl phenyl ether 1000 839 ug/Fg 84 74 - 116 4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 - 114 4-Chloroaniline 1000 438 J ug/Fg 44 10 - 110 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(pyrene 1000 800 ug/Fg 87 73 - 116 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	3-Nitroaniline	1000	604		ug/Fg	60	21 - 103	
4-Chloro-3-methylphenol 1000 929 ug/Fg 93 69 - 114 4-Chloroaniline 1000 438 J ug/Fg 44 10 - 110 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	4,6-Dinitro-2-methylphenol	2000	1190		ug/Fg	59	16 - 134	
4-Chlorophenyl phenyl ether 1000 438 J ug/Fg 44 10 - 110 4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	4-Xromophenyl phenyl ether	1000	839		ug/Fg	84	74 - 116	
4-Chlorophenyl phenyl ether 1000 861 ug/Fg 86 75 - 115 4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	4-Chloro-3-methylphenol	1000	929		ug/Fg	93	69 - 114	
4-Nitroaniline 1000 825 ug/Fg 82 63 - 119 4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	4-Chloroaniline	1000	438	J	ug/Fg	44	10 - 110	
4-Nitrophenol 2000 1510 ug/Fg 76 21 - 134 Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	4-Chlorophenyl phenyl ether	1000	861		ug/Fg	86	75 - 115	
Acenaphthene 1000 828 ug/Fg 83 71 - 111 Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	4-Nitroaniline	1000	825		ug/Fg	82	63 - 119	
Acenaphthylene 1000 884 ug/Fg 88 73 - 128 Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	4-Nitrophenol	2000	1510		ug/Fg	76	21 - 134	
Anthracene 1000 957 ug/Fg 96 74 - 117 Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	Acenaphthene	1000	828		ug/Fg	83	71 - 111	
Xenzo]a(anthracene 1000 867 ug/Fg 87 73 - 116 Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	Acenaphthylene	1000	884		ug/Fg	88	73 - 128	
Xenzo]a(pyrene 1000 800 ug/Fg 80 72 - 121 Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	Anthracene	1000	957		ug/Fg	96	74 - 117	
Xenzo]b(fluoranthene 1000 774 ug/Fg 77 71 - 124 Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	Xenzo]a(anthracene	1000	867		ug/Fg	87	73 - 116	
Xenzo]g,h,i(perylene 1000 727 Z ug/Fg 73 75 - 122	Xenzo]a(pyrene	1000	800		ug/Fg	80	72 - 121	
	Xenzo]b(fluoranthene	1000	774		ug/Fg	77	71 - 124	
Xenzo]k(fluoranthene 1000 757 ug/Fg 76 68 - 123	Xenzo]g,h,i(perylene	1000	727	Z	ug/Fg	73	75 - 122	
	Xenzo]k(fluoranthene	1000	757		ug/Fg	76	68 - 123	

TestAmerica Seattle

6/13/2017

Page 59 of 92

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 580-247561/3-A

Matrix: Solid

Analysis Batch: 247639

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 247561 %Rec.

Allalysis Batch. 247039	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Xenzoic acid	2000	ND		ug/Fg		30	10 - 141
Xenzyl alcohol	1000	805	J	ug/Fg		80	60 - 114
Xis)2-chloroetho*y@nethane	1000	848		ug/Fg		85	74 - 114
Xis)2-chloroethyl@ther	1000	905		ug/Fg		90	70 - 111
Xis)2-ethylhe*ylGphthalate	1000	820		ug/Fg		82	66 - 130
bis)chloroisopropylGether	1000	1190		ug/Fg		119	64 - 121
Xutyl benzyl phthalate	1000	932		ug/Fg		93	67 - 135
Carbazole	1000	970		ug/Fg		97	80 - 131
Chrysene	1000	758		ug/Fg		76	71 - 116
Dibenz)a,h@nthracene	1000	777		ug/Fg		78	71 - 111
Dibenzofuran	1000	837		ug/Fg		84	77 - 114
Diethyl phthalate	1000	815		ug/Fg		81	71 - 114
Dimethyl phthalate	1000	838		ug/Fg		84	77 - 120
Di-n-butyl phthalate	1000	1020		ug/Fg		102	68 - 129
Di-n-octyl phthalate	1000	870	J	ug/Fg		87	68 - 124
vluoranthene	1000	944		ug/Fg		94	75 - 116
vluorene	1000	871		ug/Fg		87	68 - 121
x e*achlorobenzene	1000	767		ug/Fg		77	70 - 107
x e*achlorobutadiene	1000	759		ug/Fg		76	71 - 116
x e*achlorocyclopentadiene	1000	1040		ug/Fg		104	63 - 131
x e*achloroethane	1000	883		ug/Fg		88	72 - 111
Indeno]1,2,3-cd(pyrene	1000	851		ug/Fg		85	75 - 118
Isophorone	1000	933		ug/Fg		93	78 - 109
Naphthalene	1000	810		ug/Fg		81	75 - 106
Nitrobenzene	1000	901		ug/Fg		90	70 - 114
N-Nitrosodi-n-propylamine	1000	906		ug/Fg		91	62 - 116
N-Nitrosodiphenylamine	1000	906		ug/Fg		91	73 - 127
Pentachlorophenol	2000	1170		ug/Fg		58	36 - 109
Phenanthrene	1000	846		ug/Fg		85	73 - 107
Phenol	1000	951		ug/Fg		95	65 - 112
Pyrene	1000	918		ug/Fg		92	73 - 118

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	73		10 - 126
2-Fluorobiphenyl	76		57 - 110
2-Fluorophenol (Surr)	92		36 - 125
Nitrobenzene-d5 (Surr)	85		54 - 113
Phenol-d5 (Surr)	94		59 - 113
Terphenyl-d14 (Surr)	79		68 - 120

Lab Sample ID: 580-68649-15 MS

Matrix: Solid

A -- - |- - - |- D-4-|- - 0.47000

Analysis Batch: 24/639									Prep Ba	atcn: 24/561
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,4-Trichlorobenzene	ND		1360	1030		ug/Fg		76	66 - 115	
1,2-Dichlorobenzene	ND		1360	1150		ug/Fg	☼	84	73 - 103	
1,3-Dichlorobenzene	ND		1360	1130		ug/Fg	☼	83	72 - 107	

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: 7901-SB-04-18.5

Page 60 of 92

QC Sample Results

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 580-68649-15 MS

Client Sample ID: 7901-SB-04-18.5
Prep Type: Total/NA
Pron Batch: 247561

		riep Type. Total/NA	
		Prep Batch: 247561	ı
		%Rec.	
1	%Rec	Limite	í

Matrix: Solid Analysis Batch: 247639	Sample	Sample	Spike	MS	MS				Prep Type: Total/NA Prep Batch: 247562 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,4-Dichlorobenzene	ND		1360	1090		ug/Fg	<u> </u>	81	70 - 105
1-E ethylnaphthalene	ND		1360	1170		ug/Fg	₩.	86	76 - 109
2,4,5-Trichlorophenol	ND		1360	1180		ug/Fg	₽	87	64 - 110
2,4,6-Trichlorophenol	ND		1360	1300		ug/Fg		96	65 - 115
2,4-Dichlorophenol	ND		1360	1240		ug/Fg	₩	91	69 - 121
2,4-Dimethylphenol	ND		1360	1600		ug/Fg	₩	118	64 - 119
2,4-Dinitrophenol	ND		2710	ND		ug/Fg		29	10 - 115
2,4-Dinitrotoluene	ND	v2	1360	1130		ug/Fg	☼	83	71 ₋ 125
2,6-Dinitrotoluene		v2	1360	1180		ug/Fg	☼	87	63 - 129
2-Chloronaphthalene		v2	1360	1080		ug/Fg	· · · · · · · · · · · · · · · · · · ·	80	73 - 114
2-Chlorophenol	ND		1360	1400		ug/Fg	₽	103	78 - 112
2-E ethylnaphthalene	ND		1360	1180		ug/Fg	₽	87	71 - 117
2-E ethylphenol	ND		1360	1480		ug/Fg		109	70 - 111
2-Nitroaniline		v2	1360	1340		ug/Fg	₩	98	63 - 122
2-Nitrophenol	ND		1360	1330		ug/Fg	₩	98	67 - 119
3 M4 E ethylphenol	ND	v1	1360	1540	v 1	ug/Fg		114	70 - 111
3,3[-Dichlorobenzidine	ND		2710	2650	•	ug/Fg	₩	98	35 - 135
3-Nitroaniline	ND		1360	908		ug/Fg	₩	67	21 - 103
4,6-Dinitro-2-methylphenol	ND		2710	ND		ug/Fg		48	16 - 134
4-Xromophenyl phenyl ether	ND		1360	1130		ug/Fg	₩	83	74 - 116
4-Chloro-3-methylphenol		v2	1360	1260		ug/Fg	₩	93	69 - 114
4-Chloroaniline	ND		1360	ND	v 1	ug/Fg		0	10 - 110
4-Chlorophenyl phenyl ether		v2	1360	1050	V 1	ug/Fg	₩	78	75 - 115
4-Nitroaniline	ND	*-	1360	1070		ug/Fg	₩	79	63 - 119
4-Nitrophenol		v2	2710	2210		ug/Fg		82	21 - 134
Acenaphthene		v2	1360	1070		ug/Fg	₩	79	71 - 111
Acenaphthylene		v2	1360	1160		ug/Fg	₽	86	73 - 128
Anthracene	ND	• • • • • • • • • • • • • • • • • • • •	1360	1380		ug/Fg		102	74 - 117
Xenzo]a(anthracene		v2	1360	1290		ug/Fg	₩	95	73 - 116
Xenzo]a(pyrene	ND	V Z	1360	1170		ug/Fg	₩	86	72 - 121
Xenzo]b(fluoranthene	ND		1360	1060		ug/Fg		78	71 - 124
Xenzo]g,h,i(perylene		v1Z	1360	711	v.1	ug/Fg	₩	52	75 - 122
Xenzo]k(fluoranthene	ND	VIZ	1360	990	V 1	ug/Fg	☼	73	68 - 123
Xenzoic acid	ND		2710	ND		ug/Fg		107	10 - 141
Xenzyl alcohol	ND ND		1360	ND ND		ug/Fg	☼	89	60 - 114
Xis)2-chloroetho*y@nethane	ND		1360	1290		ug/Fg	☼	95	74 - 114
Xis)2-chloroethyl@ther	ND		1360	1560		ug/Fg		115	70 - 111
Xis)2-ethylhe*ylQphthalate		v2	1360	1480	V I	ug/Fg	☼	109	66 - 130
bis)chloroisopropyl@ther	ND		1360	1780	v.1		☼	131	64 - 121
		V I	1360	1660	V I	ug/Fg	· · · · · · · · · · · · · · · · · · ·	122	
Xutyl benzyl phthalate Carbazole	ND					ug/Fg	≎		67 ₋ 135 80 - 131
	ND ND	v.2	1360	1420		ug/Fg	₩	105	
Chrysene			1360	1030		ug/Fg		76	71 - 116
Dibenz)a,h@nthracene	ND		1360	846		ug/Fg	≎	62	71 - 111 77 - 114
Dibenzofuran		v1 v2	1360	1010	VI	ug/Fg	₩	75	
Diethyl phthalate		v2	1360	1130		ug/Fg		83	71 - 114
Dimethyl phthalate		v2	1360	1150		ug/Fg	*	85 125	77 - 120
Di-n-butyl phthalate	ND		1360	1690		ug/Fg	*	125	68 - 129
Di-n-octyl phthalate	ND		1360	1590		ug/Fg	☼	117	68 - 124

Project/Site: 7901 Parcel-South Park Landfill

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 580-68649-15 MS

Matrix: Solid

Client: Leidos, Inc.

Analysis Batch: 247639

Client Sample ID: 7901-SB-04-18.5

Prep Type: Total/NA Prep Batch: 247561

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
vluoranthene	ND		1360	1330		ug/Fg	<u></u>	98	75 - 116
vluorene	ND	v2	1360	1100		ug/Fg	₩.	81	68 - 121
x e*achlorobenzene	ND		1360	1040		ug/Fg	₩	76	70 - 107
x e*achlorobutadiene	ND	v1	1360	939	v1	ug/Fg	₩.	69	71 - 116
x e*achlorocyclopentadiene	ND	v1 v2	1360	268	v1	ug/Fg	₩	20	63 - 131
x e*achloroethane	ND		1360	1050		ug/Fg	₩	77	72 - 111
Indeno]1,2,3-cd(pyrene	ND	v1	1360	950	v1	ug/Fg	₩.	70	75 - 118
Isophorone	ND		1360	1460		ug/Fg	₩	108	78 ₋ 109
Naphthalene	ND		1360	1140		ug/Fg	₩	84	75 - 106
Nitrobenzene	ND		1360	1310		ug/Fg	₩.	96	70 - 114
N-Nitrosodi-n-propylamine	ND		1360	1380		ug/Fg	☼	101	62 - 116
N-Nitrosodiphenylamine	ND		1360	1370		ug/Fg	☼	101	73 - 127
Pentachlorophenol	ND		2710	1850		ug/Fg	₩	68	36 - 109
Phenanthrene	ND		1360	1190		ug/Fg	☼	88	73 - 107
Phenol	ND		1360	1390		ug/Fg	☼	102	65 - 112
Pyrene	ND		1360	1340		ug/Fg		99	73 - 118

MS MS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	82		10 - 126
2-Fluorobiphenyl	68		57 - 110
2-Fluorophenol (Surr)	108		36 - 125
Nitrobenzene-d5 (Surr)	84		54 - 113
Phenol-d5 (Surr)	109		59 - 113
Terphenyl-d14 (Surr)	82		68 - 120

Lab Sample ID: 580-68649-15 MSD

Matrix: Solid

Analysis Batch: 247639

Client	Sample	ID:	7901-	SB-04-18.5
		_	_	

Prep Type: Total/NA Prep Batch: 247561

MSD MSD Sample Sample Spike %Rec. **RPD** RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Limit ₩ 74 ND 1410 66 - 115 2 1,2,4-Trichlorobenzene 1040 ug/Fg 10 Ö 1,2-Dichlorobenzene ND 1410 1150 ug/Fg 82 73 - 103 10 ND 1,3-Dichlorobenzene 1410 1170 ug/Fg 83 72 - 107 3 10 1,4-Dichlorobenzene ND 1410 1130 ug/Fg 80 70 - 105 10 1-E ethylnaphthalene ND 1410 1150 ug/Fg 82 76 - 109 10 Ö 89 2,4,5-Trichlorophenol ND 1410 1250 ug/Fg 64 - 110 16 . . 2,4,6-Trichlorophenol ND 1410 1350 ug/Fg 95 65 - 115 10 ₩ 2,4-Dichlorophenol ND 1410 1270 ug/Fg 90 69 - 121 3 10 ☼ 2,4-Dimethylphenol ND 1410 1590 ug/Fg 113 64 - 119 10 . . 2,4-Dinitrophenol ND 2820 ND ug/Fg 23 10 - 115 19 37 2,4-Dinitrotoluene ND v2 1410 1340 v2 ug/Fg ₩ 95 71 - 125 17 10 2,6-Dinitrotoluene ND ٧2 1410 1450 v2 ug/Fg ₩ 103 63 - 129 21 13 1410 ď 90 2-Chloronaphthalene ND v2 1260 v2 ug/Fg 73 - 114 10 ₩ ND 98 2-Chlorophenol 1410 1390 ug/Fg 78 - 11210 1 ÷Ċ÷ 2-E ethylnaphthalene ND 1410 1230 ug/Fg 87 71 - 11710 ₩ ND 103 2-E ethylphenol 1410 1450 ug/Fg 70 - 111 2 15 ₩ 2-Nitroaniline ND v2 1410 1550 ug/Fg 110 63 - 12215 10 2-Nitrophenol ND 1410 1330 ug/Fg 94 67 - 119 n 10

TestAmerica Seattle

Page 62 of 92

QC Sample Results

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Client Sample ID: 7901-SB-04-18.5

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 580-68649-15 MSD

Matrix: Solid									Prep Ty	-	
Analysis Batch: 247639	0	OI-	Omiles	MOD	MOD				Prep Ba	atch: 24	
Analyte	•	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
3 M4 E ethylphenol	ND		1410	1520	- Guainiei	ug/Fg	— -	108	70 - 111	2	10
3,3[-Dichlorobenzidine	ND		2820	2810		ug/Fg		100	35 - 135	6	15
3-Nitroaniline	ND		1410	960		ug/Fg	₽	68	21 - 103	6	11
4,6-Dinitro-2-methylphenol	ND		2820	ND		ug/Fg		44	16 - 134	5	17
4-Xromophenyl phenyl ether	ND		1410	1180		ug/Fg	₽	83	74 - 116	4	10
4-Chloro-3-methylphenol		v2	1410	1450	v2	ug/Fg	₽	103	69 - 114	15	10
4-Chloroaniline	ND		1410			ug/Fg		0	10 - 110	NC NC	40
4-Chlorophenyl phenyl ether		v2	1410	1250		ug/Fg	₽	89	75 ₋ 115	18	10
4-Nitroaniline	ND	·-	1410	1280	*-	ug/Fg	₩	91	63 - 119	17	40
4-Nitrophenol		v2	2820	2740	v2	ug/Fg		97	21 - 134	21	10
Acenaphthene		v2	1410	1280		ug/Fg	₩	91	71 - 111	18	10
Acenaphthylene		v2 v2	1410	1380		ug/Fg	₽	98	73 - 128	17	10
Anthracene	ND	· · · · · · · · · · · · · · · · · · ·	1410	1420		ug/Fg		101	74 - 117	3	10
Xenzola(anthracene		v2	1410	1470	v2	ug/Fg	₽	104	73 - 116	13	10
Xenzo]a(pyrene	ND	٧Z	1410	1270	٧٧	ug/Fg	₽	90	73 - 110 72 - 121	8	10
Xenzo]b(fluoranthene	ND		1410	1110		ug/Fg		79	71 - 124	4	10
Xenzo]g,h,i(perylene		v1 Z	1410	759	v.1	ug/Fg ug/Fg	₽	54	71 - 12 4 75 - 122	7	10
Xenzo]k(fluoranthene	ND ND	VIZ	1410	1030	VI	ug/Fg ug/Fg	₽	73	68 - 123	4	10
Xenzoic acid	ND		2820	ND		ug/Fg		98	10 - 141	5	10
Xenzyl alcohol	ND ND		1410	ND		ug/Fg ug/Fg	₽	87	60 - 114	1	10
Xis)2-chloroetho*y@nethane	ND ND		1410	1280		ug/Fg ug/Fg	₽		74 - 114	1	10
Xis)2-chloroethyl@ther	ND		1410	1490				91	70 - 111	5	17
,		v 1 v2	1410	1650	w2	ug/Fg ug/Fg	☆	117	66 - 130	11	10
Xis)2-ethylhe*ylGphthalate						0 0	₩				11
bis)chloroisopropylGether	ND	V I	1410	1800	V I	ug/Fg	*	128	64 - 121	2 9	
Xutyl benzyl phthalate	ND		1410	1810 1490		ug/Fg	☆	129	67 ₋ 135	4	10
Carbazole	ND	v.0	1410	1180		ug/Fg	₩	105	80 - 131		10
Chrysene		v2	1410			ug/Fg		83	71 - 116	13	10
Dibenz)a,h@nthracene	ND		1410	967		ug/Fg	₩	69	71 ₋ 111	13 21	40
Dibenzofuran Diathyl abthalata		v1 v2 v2	1410	1250		ug/Fg	₽	89	77 ₋ 114		10
Diethyl phthalate			1410	1290		ug/Fg		91	71 - 114	13	10
Dimethyl phthalate		v2	1410	1310	V2	ug/Fg		93	77 - 120	12	10
Di-n-butyl phthalate	ND		1410	1680		ug/Fg	☆ ~	119	68 - 129	0	10
Di-n-octyl phthalate	ND		1410	1600		ug/Fg	 ₩	113	68 - 124	0	10
vluoranthene	ND	0	1410	1450	0	ug/Fg	☆	103	75 ₋ 116	9	10
vluorene		v2	1410	1300	٧Z	ug/Fg		92	68 - 121	17	10
x e*achlorobenzene	ND		1410	1040		ug/Fg	¥	74	70 - 107	1	10
x e*achlorobutadiene	ND		1410	924		ug/Fg	*	66	71 - 116	2	11
x e*achlorocyclopentadiene		v1 v2	1410		v1 v2	ug/Fg	☆	31	63 - 131	49	15
x e*achloroethane	ND		1410	1100		ug/Fg	· · · · · · · · · · · · · · · · · · ·	78	72 - 111	5	10
Indeno]1,2,3-cd(pyrene	ND	V 1	1410	1040	V1	ug/Fg	₩	73	75 - 118	9	17
Isophorone	ND		1410	1520		ug/Fg	☼	108	78 - 109	4	10
Naphthalene	ND		1410	1150		ug/Fg		81	75 - 106	1	10
Nitrobenzene	ND		1410	1300		ug/Fg	≎	92	70 - 114	1	10
N-Nitrosodi-n-propylamine	ND		1410	1390		ug/Fg	☆	99	62 - 116	1	10
N-Nitrosodiphenylamine	ND.		1410	1340		ug/Fg		95	73 - 127	3	10
Pentachlorophenol	ND		2820	1890		ug/Fg	*	67	36 - 109	2	24
Phenanthrene	ND		1410	1210		ug/Fg	₩	86	73 - 107	2	11
Phenol	ND		1410	1450		ug/Fg	₩	103	65 - 112	5	10

TestAmerica Seattle

6/13/2017

Project/Site: 7901 Parcel-South Park Landfill

Client: Leidos, Inc.

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 580-68649-15 MSD Client Sample ID: 7901-SB-04-18.5 **Matrix: Solid Prep Type: Total/NA Analysis Batch: 247639** Prep Batch: 247561 MSD MSD Sample Sample Spike **RPD** %Rec. Analyte Result Qualifier Added Result Qualifier Limits RPD Unit %Rec Limit Pyrene ND 1410 1410 ug/Fg 100 73 - 118 5 10

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	79		10 - 126
2-Fluorobiphenyl	70		57 - 110
2-Fluorophenol (Surr)	103		36 - 125
Nitrobenzene-d5 (Surr)	83		54 - 113
Phenol-d5 (Surr)	104		59 - 113
Terphenyl-d14 (Surr)	79		68 - 120

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 580-247225/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 247262								Prep Batch:	247225
	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		0.040	0.013	ug/L		05/31/17 08:24	05/31/17 16:00	1
2-E ethylnaphthalene	ND		0.030	0.0090	ug/L		05/31/17 08:24	05/31/17 16:00	1
1-E ethylnaphthalene	ND		0.020	0.0060	ug/L		05/31/17 08:24	05/31/17 16:00	1
Acenaphthylene	ND		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 16:00	1
Acenaphthene	ND		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 16:00	1
vluorene	ND		0.020	0.0030	ug/L		05/31/17 08:24	05/31/17 16:00	1
Phenanthrene	ND		0.020	0.0040	ug/L		05/31/17 08:24	05/31/17 16:00	1
Anthracene	ND		0.020	0.0030	ug/L		05/31/17 08:24	05/31/17 16:00	1
vluoranthene	ND		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 16:00	1
Pyrene	ND		0.020	0.0040	ug/L		05/31/17 08:24	05/31/17 16:00	1
Xenzo]a(anthracene	ND		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 16:00	1
Chrysene	ND		0.020	0.0060	ug/L		05/31/17 08:24	05/31/17 16:00	1
Xenzo]b(fluoranthene	ND		0.020	0.0080	ug/L		05/31/17 08:24	05/31/17 16:00	1
Xenzo]k(fluoranthene	ND		0.030	0.0090	ug/L		05/31/17 08:24	05/31/17 16:00	1
Xenzo]a(pyrene	ND		0.020	0.0030	ug/L		05/31/17 08:24	05/31/17 16:00	1
Indeno]1,2,3-cd(pyrene	ND		0.020	0.0070	ug/L		05/31/17 08:24	05/31/17 16:00	1
Dibenz)a,h@nthracene	ND		0.020	0.0020	ug/L		05/31/17 08:24	05/31/17 16:00	1
Xenzo]g,h,i(perylene	ND		0.020	0.0030	ug/L		05/31/17 08:24	05/31/17 16:00	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Terphenyl-d14	83		53 - 112	05/31/17 08:24	05/31/17 16:00	1

Lab Sample ID: LCS 580-247225/2-A **Matrix: Water**

Analysis Batch: 247262

Prep Batch: 247225 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Naphthalene 4.00 2.09 Z ug/L 52 62 - 104 2-E ethylnaphthalene 4.00 2.28 Z ug/L 57 61 - 118 4.00 2.20 Z 1-E ethylnaphthalene ug/L 55 57 - 107

TestAmerica Seattle

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 64 of 92

6/13/2017

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCS 580-247225/2-A

Matrix: Water

Analysis Batch: 247262

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 247225

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	4.00	2.59		ug/L		65	63 - 118	
Acenaphthene	4.00	2.33	Z	ug/L		58	62 - 103	
vluorene	4.00	2.71		ug/L		68	68 - 108	
Phenanthrene	4.00	2.99		ug/L		75	65 - 104	
Anthracene	4.00	3.34		ug/L		84	69 - 112	
vluoranthene	4.00	3.45		ug/L		86	70 - 109	
Pyrene	4.00	3.22		ug/L		81	69 - 105	
Xenzo]a(anthracene	4.00	3.43		ug/L		86	71 - 119	
Chrysene	4.00	3.02		ug/L		75	64 - 107	
Xenzo]b(fluoranthene	4.00	3.14		ug/L		78	66 - 117	
Xenzo]k(fluoranthene	4.00	3.37		ug/L		84	68 - 114	
Xenzo]a(pyrene	4.00	3.65		ug/L		91	76 - 118	
Indeno]1,2,3-cd(pyrene	4.00	3.21		ug/L		80	63 - 116	
Dibenz)a,h@nthracene	4.00	3.25		ug/L		81	60 - 125	

4.00

3.35

ug/L

LCS LCS

Surrogate %Recovery Qualifier Limits Terphenyl-d14 53 - 112 78

Lab Sample ID: LCSD 580-247225/3-A

Matrix: Water

Xenzo]g,h,i(perylene

Analysis Batch: 247262

Client Sample	ID:	Lab	Control	Sample	Dup
----------------------	-----	-----	---------	---------------	-----

61 - 114

Prep Type: Total/NA Prep Batch: 247225

Analysis Batch: 24/262	Spike	LCSD	LCSD				%Rec.	ilch: 24	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Naphthalene	4.00	2.32	Z	ug/L		58	62 - 104	10	15
2-E ethylnaphthalene	4.00	2.43		ug/L		61	61 - 118	7	16
1-E ethylnaphthalene	4.00	2.37		ug/L		59	57 - 107	8	17
Acenaphthylene	4.00	2.70		ug/L		67	63 - 118	4	13
Acenaphthene	4.00	2.41	Z	ug/L		60	62 - 103	4	13
vluorene	4.00	2.80		ug/L		70	68 - 108	3	12
Phenanthrene	4.00	3.17		ug/L		79	65 - 104	6	15
Anthracene	4.00	3.51		ug/L		88	69 - 112	5	17
vluoranthene	4.00	3.73		ug/L		93	70 - 109	8	20
Pyrene	4.00	3.57		ug/L		89	69 - 105	10	17
Xenzo]a(anthracene	4.00	3.70		ug/L		93	71 - 119	8	16
Chrysene	4.00	3.23		ug/L		81	64 - 107	7	16
Xenzo]b(fluoranthene	4.00	3.42		ug/L		86	66 - 117	9	20
Xenzo]k(fluoranthene	4.00	3.58		ug/L		90	68 - 114	6	20
Xenzo]a(pyrene	4.00	3.90		ug/L		97	76 - 118	7	17
Indeno]1,2,3-cd(pyrene	4.00	3.43		ug/L		86	63 - 116	7	15
Dibenz)a,h@nthracene	4.00	3.45		ug/L		86	60 - 125	6	15
Xenzo]g,h,i(perylene	4.00	3.60		ug/L		90	61 - 114	7	16

LCSD LCSD

Surrogate %Recovery Qualifier Limits Terphenyl-d14 84 53 - 112

Project/Site: 7901 Parcel-South Park Landfill

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-247167/6 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 247167

Client: Leidos, Inc.

MB MB Analyte Result Qualifier RL Unit D Analyzed Dil Fac **Prepared** Vasoline 0.50 05/30/17 16:19 $\overline{\mathsf{ND}}$ 0.050 mg/L

MB MB %Recovery

Surrogate Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 96 58 - 133 05/30/17 16:19 Trifluorotoluene (Surr) 107 77 - 128 05/30/17 16:19

Lab Sample ID: LCS 580-247167/7 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 247167

LCS LCS Spike %Rec. Added Limits **Analyte** Result Qualifier Unit %Rec D Vasoline 1.00 0.891 89 79 - 110 mg/L

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 58 - 133 101 Trifluorotoluene (Surr) 98 77 - 128

Lab Sample ID: LCSD 580-247167/8 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 247167

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Vasoline 1.00 0.884 mg/L 79 - 110

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 101 58 - 133 Trifluorotoluene (Surr) 97 77 - 128

MB MB

Lab Sample ID: MB 580-247768/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 247806

MR MR Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Vasoline ND 4.0 2.1 mg/Fg 06/07/17 10:37 06/07/17 16:50

Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 92 50 - 150 06/07/17 10:37 06/07/17 16:50

Lab Sample ID: MB 580-247928/1-A

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 247937** Prep Batch: 247928 MB MB Analyte Result Qualifier RL Unit **Prepared** Analyzed Dil Fac 06/08/17 11:43 06/08/17 15:17 Vasoline $\overline{\mathsf{ND}}$ 4.0 2.1 mg/Fg

TestAmerica Seattle

Prep Batch: 247768

Client Sample ID: Method Blank

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: MB 580-247928/1-A

Matrix: Solid

Analysis Batch: 247937

MB MB

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 50 - 150 88

LCS LCS

LCSD LCSD

36.9

Result Qualifier

36.9

Result Qualifier

Unit

Unit

Unit

2.1 mg/Fg

LCS LCS

34.9

Result Qualifier

Unit

mg/Fg

mg/Fg

mg/Fg

D %Rec

Lab Sample ID: LCS 580-247928/2-A

Matrix: Solid

Analysis Batch: 247937

Analyte

Vasoline

Surrogate 4-Bromofluorobenzene (Surr)

%Recovery Qualifier

LCS LCS

Limits 50 - 150

Spike

Added

40.0

RL

4.0

Limits

50 - 150

50 - 150

Spike

Added

40.0

Spike

Added

40.0

Lab Sample ID: LCSD 580-247928/3-A

Matrix: Solid

Vasoline

Vasoline

Analysis Batch: 247937

Analyte

Surrogate 4-Bromofluorobenzene (Surr)

LCSD LCSD %Recovery Qualifier 95

Limits 50 - 150

Lab Sample ID: MB 580-248145/1-A

Matrix: Solid

Analysis Batch: 248155

MR MR

ND

91

98

LCS LCS

Result Qualifier

Qualifier

Analyte

MB MB Surrogate %Recovery

4-Bromofluorobenzene (Surr)

Trifluorotoluene (Surr)

Lab Sample ID: LCS 580-248145/2-A **Matrix: Solid**

Analysis Batch: 248155

Analyte Vasoline

Surrogate 4-Bromofluorobenzene (Surr)

%Recovery Qualifier Limits 90 50 - 150 Trifluorotoluene (Surr) 92 50 - 150

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 247928

06/08/17 11:43 06/08/17 15:17

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 247928

%Rec.

Limits

68 - 120

Client Sample ID: Lab Control Sample Dup

%Rec

92

92

Prep Type: Total/NA Prep Batch: 247928

%Rec.

RPD Limits RPD

Limit 25 68 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 248145

Prepared Analyzed Dil Fac 06/10/17 07:05 06/10/17 14:27

Prepared Dil Fac Analyzed 06/10/17 07:05 06/10/17 14:27

Client Sample ID: Lab Control Sample

06/10/17 07:05 06/10/17 14:27

Prep Type: Total/NA **Prep Batch: 248145**

%Rec.

Limits

68 - 120

%Rec

87

Project/Site: 7901 Parcel-South Park Landfill

Client: Leidos, Inc.

Method: NWTPH-Gx - Northwest - Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: LCSD 580-248145/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 248145 Analysis Batch: 248155** Spike LCSD LCSD %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit

40.0 25 Vasoline 36.3 91 68 - 120 4 mg/Fg LCSD LCSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 100 50 - 150 Trifluorotoluene (Surr) 95 50 - 150

Lab Sample ID: 580-68649-15 MS Client Sample ID: 7901-SB-04-18.5

Matrix: Solid Analysis Batch: 248155

Prep Batch: 248145 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits ₹ Vasoline ND x v2 122 60.7 x 50 50 - 150 mg/Fg

MS MS %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 50 - 150 93

Lab Sample ID: 580-68649-15 MSD Client Sample ID: 7901-SB-04-18.5

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 248155 Prep Batch: 248145**

Sample Sample Spike MSD MSD %Rec. **RPD** D %Rec Result Qualifier Added Result Qualifier Unit Limits RPD Limit **Analyte** 122 Vasoline ND x v2 131 x v2 mg/Fg 107 50 - 150 73

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 90 50 - 150

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 580-247425/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 247425 **Analysis Batch: 247537**

	MB	MR							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCX-1016	ND		0.025	0.0074	mg/Fg		06/02/17 09:07	06/04/17 13:49	1
PCX-1221	ND		0.011	0.0042	mg/Fg		06/02/17 09:07	06/04/17 13:49	1
PCX-1232	ND		0.011	0.0049	mg/Fg		06/02/17 09:07	06/04/17 13:49	1
PCX-1242	ND		0.010	0.0016	mg/Fg		06/02/17 09:07	06/04/17 13:49	1
PCX-1248	ND		0.011	0.0029	mg/Fg		06/02/17 09:07	06/04/17 13:49	1
PCX-1254	ND		0.010	0.0015	mg/Fg		06/02/17 09:07	06/04/17 13:49	1
PCX-1260	ND		0.010	0.0019	mg/Fg		06/02/17 09:07	06/04/17 13:49	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	89		25 - 149	06/02/17 09:07	06/04/17 13:49	1
Tetrachloro-m-vylene	92		35 130	06/02/17 09:07	06/04/17 13:40	1

TestAmerica Seattle

Prep Type: Total/NA

Project/Site: 7901 Parcel-South Park Landfill

Client: Leidos, Inc.

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

25 - 149

35 - 130

Lab Sample ID: LCS 580-2 Matrix: Solid Analysis Batch: 247537	247425/2-A					Clier	nt Sa	mple ID	: Lab Contr Prep Type Prep Bato	: Total/NA
-			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCX-1016			0.100	0.0935		mg/Fg		94	69 - 126	
PCX-1260			0.100	0.0870		mg/Fg		87	68 - 136	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

Lab Sample ID: LCSD 580-247425/3-A Matrix: Solid Analysis Batch: 247537			(Client Sa	mple	ID: Lab	Control Prep Tyl	pe: Tot	al/NA
Analysis Batch. 24/55/	Spike	LCSD	LCSD				ЯRec.	ilcii. 24	RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCX-1016	0.100	0.0936		mg/Fg		94	69 - 126	0	17
PCX-1260	0.100	0.0886		mg/Fg		89	68 - 136	2	21

	LCSD LCSI	D
Surrogate	%Recovery Qual	ifier Limits
DCB Decachlorobiphenyl	95	25 - 149
Tetrachloro-m-xvlene	99	35 - 130

107

97

Client Sample ID: 7901-SB-04-18.5 Lab Sample ID: 580-68649-15 MS Matrix: Solid Prep Type: Total/NA

Analysis Batch: 247537

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCX-1016	ND		0.136	0.111		mg/Fg	\	82	69 - 126	
PCX-1260	ND		0.136	0.0984		mg/Fg	₽	73	68 - 136	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	70		25 - 149
Tetrachloro-m-xylene	87		35 - 130

Lab Sample ID: 580-68649-15 MSD Client Sample ID: 7901-SB-04-18.5 **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 247537 Prep Batch: 247425 Sample Sample Spike MSD MSD %Rec. **RPD**

Analyte	Result	Qualifier	Added	Result Qualifie	r Unit	D	%Rec	Limits	RPD	Limit
PCX-1016	ND		0.133	0.102	mg/Fg	\	77	69 - 126	8	17
PCX-1260	ND		0.133	0.0940	mg/Fg	₽	71	68 - 136	5	21
	MSD	MSD								
Surrogate	%Recovery	Qualifier	Limits							
DCB Decachlorobiphenyl	68		25 - 149							
Tetrachloro-m-xylene	77		35 - 130							

TestAmerica Seattle

Prep Batch: 247425

Project/Site: 7901 Parcel-South Park Landfill

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 580-247749/1-A **Matrix: Water**

Analysis Batch: 247887

Client: Leidos, Inc.

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 247749

	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCX-1016	ND		0.50	0.021	ug/L		06/07/17 08:57	06/08/17 02:25	1
PCX-1221	ND		0.50	0.030	ug/L		06/07/17 08:57	06/08/17 02:25	1
PCX-1232	ND		0.50	0.027	ug/L		06/07/17 08:57	06/08/17 02:25	1
PCX-1242	ND		0.50	0.028	ug/L		06/07/17 08:57	06/08/17 02:25	1
PCX-1248	ND		0.50	0.021	ug/L		06/07/17 08:57	06/08/17 02:25	1
PCX-1254	ND		0.50	0.020	ug/L		06/07/17 08:57	06/08/17 02:25	1
PCX-1260	ND		0.50	0.026	ug/L		06/07/17 08:57	06/08/17 02:25	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	121		38 - 134	06/07/17 08:57	06/08/17 02:25	1
Tetrachloro-m-xylene	82		54 - 115	06/07/17 08:57	06/08/17 02:25	1

Lab Sample ID: LCS 580-247749/6-A

Matrix: Water

Analysis Batch: 247887

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 247749

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCX-1016	 1.00	0.862		ug/L		86	60 - 121	
PCX-1260	1.00	1.01		ug/L		101	55 - 132	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	127	38 - 134
Tetrachloro-m-xylene	84	54 - 115

Lab Sample ID: LCSD 580-247749/7-A

Matrix: Water

Analysis Batch: 247887

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 247749

LCSD LCSD Spike **RPD** %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 60 - 121 PCX-1016 1.00 90 20 0.899 ug/L 4 PCX-1260 22 1.00 1.07 ug/L 107 55 - 132

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	129		38 - 134
Tetrachloro-m-xylene	82		54 - 115

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC)

Lab Sample ID: MB 580-247362/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 247513

	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
K2 Diesel)C10-C24G	ND		50	12	mg/Fg		06/01/17 11:07	06/02/17 20:07	1
E otor ' il)%C24-C36G	ND		50	9.1	mg/Fg		06/01/17 11:07	06/02/17 20:07	1

Prep Batch: 247362

Page 70 of 92

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 247362**

Prep Type: Total/NA

Prep Batch: 247362

Prep Type: Total/NA

Prep Type: Total/NA

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: MB 580-247362/1-A

Matrix: Solid

Analysis Batch: 247513

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 54 - 118 06/01/17 11:07 06/02/17 20:07 77

Lab Sample ID: MB 580-247362/1-A

Matrix: Solid

Analysis Batch: 248128

MB MB

Result Qualifier RL Unit Dil Fac Analyte Prepared **Analyzed** K2 Diesel)C10-C24G $\overline{\mathsf{ND}}$ 50 12 mg/Fg 06/01/17 11:07 06/09/17 22:04 Eotor ' il)%C24-C36G ND 50 9.1 mg/Fg 06/01/17 11:07 06/09/17 22:04

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 95 54 - 118 06/01/17 11:07 06/09/17 22:04

Lab Sample ID: LCS 580-247362/2-A

Matrix: Solid

Analysis Batch: 247513

Prep Batch: 247362 LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits K2 Diesel)C10-C24G 500 432 86 70 - 125 mg/Fg Eotor ' il)%C24-C36G 500 470 mg/Fg 94 70 - 119

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 54 - 118

Lab Sample ID: LCSD 580-247362/3-A

Matrix: Solid

Analysis Batch: 247513

Prep Batch: 247362 LCSD LCSD Spike %Rec. **RPD Analyte** Added Result Qualifier Unit D %Rec Limits RPD Limit K2 Diesel)C10-C24G 500 446 mg/Fg 89 70 - 125 3 16 500 Eotor ' il)%C24-C36G 488 mg/Fg 98 70 - 11916

LCSD LCSD

Surrogate %Recovery Qualifier Limits o-Terphenyl 54 - 118

Lab Sample ID: 580-68649-15 MS

Matrix: Solid

Analysis Batch: 248128 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec

₩ 671 K2 Diesel)C10-C24G 490 v1 700 v1 mg/Fg 31 70 - 125 Eotor ' il)%C24-C36G 671 800 v1 806 v1 mg/Fg 0.3 70 - 119

MS MS

%Recovery Qualifier Limits Surrogate 54 - 118 o-Terphenyl 92

Client Sample ID: 7901-SB-04-18.5

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 247820

Prep Type: Total/NA

Prep Type: Total/NA

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Method: NWTPH-Dx - Northwest - Semi-Volatile Petroleum Products (GC) (Continued)

Lab Sample ID: 580-68649-15 MSD

Matrix: Solid Analysis Batch: 248128								·	Prep Ty Prep Ba	-	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
K2 Diesel)C10-C24G	490	v1	670	689	v 1	mg/Fg	<u></u>	29	70 - 125	2	16
Eotor' il)%C24-C36G	800	v1	670	945	v1	mg/Fg	☼	21	70 - 119	16	16
	MSD	MSD									

Limits Surrogate %Recovery Qualifier o-Terphenyl 89 54 - 118

Lab Sample ID: MB 580-247820/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 247934

	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
K2 Diesel)C10-C24G	ND		0.10	0.019	mg/L		06/07/17 14:31	06/08/17 14:39	1
E otor 'il)%C24-C36G	ND		0.25	0.077	mg/L		06/07/17 14:31	06/08/17 14:39	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac o-Terphenyl 84 43 - 119 06/07/17 14:31 06/08/17 14:39

Lab Sample ID: LCS 580-247820/2-A

Matrix: Water

Analysis Batch: 247934							Prep Ba	atch: 247820
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
K2 Diesel)C10-C24G	2.00	1.76		mg/L		88	59 - 112	
Eotor'il)%C24-C36G	2.00	1.92		mg/L		96	64 - 120	

LCS LCS

Surrogate %Recovery Qualifier Limits o-Terphenyl 88 43 - 119

Lab Sample ID: LCSD 580-247820/3-A

Matrix: Water

Analysis Batch: 247934							Prep Ba	atch: 24	47820
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
K2 Diesel)C10-C24G	2.00	1.81		mg/L		90	59 - 112	3	16
E otor ' il)%C24-C36G	2.00	1.99		mg/L		99	64 - 120	4	17

LCSD LCSD

Surrogate Limits %Recovery Qualifier 43 - 119 o-Terphenyl 94

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 580-247209/22-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 247306

Prep Batch: 247209 MB MB RL Unit Analyte Result Qualifier Prepared Analyzed

0.20 05/30/17 16:00 05/31/17 13:39 Antimony ND 0.068 mg/Fg

Project/Site: 7901 Parcel-South Park Landfill

Client: Leidos, Inc.

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 580-247209/22-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Prep Batch: 247209 Analysis Batch: 247306**

MB MB Analyte Result Qualifier RL Unit **Prepared** Analyzed Dil Fac Arsenic ND 0.50 0.10 mg/Fg 05/30/17 16:00 05/31/17 13:39 10 Xeryllium ND 0.20 0.015 mg/Fg 05/30/17 16:00 05/31/17 13:39 10 Cadmium ND 0.40 0.077 mg/Fg 05/30/17 16:00 05/31/17 13:39 10 Chromium ND 0.50 0.063 mg/Fg 05/30/17 16:00 05/31/17 13:39 10 0.22 mg/Fg Copper ND 05/30/17 16:00 05/31/17 13:39 10 1.0 Lead ND 0.50 0.048 mg/Fg 05/30/17 16:00 05/31/17 13:39 10 Nickel ND 0.50 0.19 mg/Fg 05/30/17 16:00 05/31/17 13:39 10 Selenium ND 0.22 mg/Fg 1.0 05/30/17 16:00 05/31/17 13:39 10 Sil#er ND 0.20 0.020 mg/Fg 05/30/17 16:00 05/31/17 13:39 10 Thallium ND 0.40 0.055 mg/Fg 05/30/17 16:00 05/31/17 13:39 10

5.0

1.6 mg/Fg

Lab Sample ID: LCS 580-247209/23-A

ND

Matrix: Solid

Cinc

Analysis Batch: 247306

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 247209

05/30/17 16:00 05/31/17 13:39

7 manyolo Batom 2 m ooo	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	150	148		mg/Fg		98	80 - 120
Arsenic	200	196		mg/Fg		98	80 - 120
Xeryllium	5.00	4.85		mg/Fg		97	80 - 120
Cadmium	5.00	4.93		mg/Fg		99	80 - 120
Chromium	20.0	19.1		mg/Fg		95	80 - 120
Copper	25.0	24.7		mg/Fg		99	80 - 120
Lead	50.0	45.0		mg/Fg		90	80 - 120
Nickel	50.0	47.9		mg/Fg		96	80 - 120
Selenium	200	201		mg/Fg		100	80 - 120
Sil#er	30.0	29.5		mg/Fg		98	80 - 120
Thallium	200	178		mg/Fg		89	80 - 120
Oinc	200	192		mg/Fg		96	80 - 120

Lab Sample ID: LCSD 580-247209/24-A

Matrix: Solid

Client	Sample	ID:	Lab	Control	Sampl	e Dup
				Prep Ty	/pe: To	tal/NA
				Pren B	latch: 2	47209

Analysis Batch: 247306							Prep Ba	ıtch: 24	17209
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	150	146		mg/Fg		97	80 - 120	1	20
Arsenic	200	195		mg/Fg		98	80 - 120	1	20
Xeryllium	5.00	4.86		mg/Fg		97	80 - 120	0	20
Cadmium	5.00	4.92		mg/Fg		98	80 - 120	0	20
Chromium	20.0	18.8		mg/Fg		94	80 - 120	1	20
Copper	25.0	24.5		mg/Fg		98	80 - 120	1	20
Lead	50.0	45.1		mg/Fg		90	80 - 120	0	20
Nickel	50.0	48.0		mg/Fg		96	80 - 120	0	20
Selenium	200	198		mg/Fg		99	80 - 120	1	20
Sil#er	30.0	29.0		mg/Fg		97	80 - 120	2	20
Thallium	200	179		mg/Fg		90	80 - 120	1	20
Oinc	200	189		mg/Fg		95	80 - 120	1	20

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 580-68649-15 MS Client Sample ID: 7901-SB-04-18.5

Matrix: Solid Prep Type: Total/NA Analysis Batch: 247306 **Prep Batch: 247209**

7a., 6.0 _ a 1. 000	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	6.2		194	189		mg/Fg	<u> </u>	94	80 - 120	
Arsenic	13		258	256		mg/Fg	₩	94	80 - 120	
Xeryllium	ND		6.46	6.09		mg/Fg	₩	91	80 - 120	
Cadmium	0.97		6.46	6.84		mg/Fg	₩	91	80 - 120	
Chromium	27		25.8	49.6		mg/Fg	₩	86	80 - 120	
Copper	99	v1 v2	32.3	118	v1	mg/Fg	₩	59	80 - 120	
Lead	210	v1 v2	64.6	372	v1	mg/Fg	₩	258	80 - 120	
Nickel	20		64.6	80.6		mg/Fg	₩	94	80 - 120	
Selenium	ND		258	245		mg/Fg	₩	94	80 - 120	
Sil#er	ND		38.7	35.6		mg/Fg	₩	92	80 - 120	
Thallium	ND		258	227		mg/Fg	₩	88	80 - 120	
Cinc	1400		258	1730	4	mg/Fg	₩	122	80 - 120	

Lab Sample ID: 580-68649-15 MSD Client Sample ID: 7901-SB-04-18.5

Matrix: Solid

Prep Type: Total/NA Analysis Batch: 247306 **Prep Batch: 247209**

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
6.2		175	184		mg/Fg	<u></u>	102	80 - 120	3	20
13		233	242		mg/Fg	₩	98	80 - 120	6	20
ND		5.82	5.76		mg/Fg	☼	95	80 - 120	6	20
0.97		5.82	6.42		mg/Fg		94	80 - 120	6	20
27		23.3	54.4		mg/Fg	☼	116	80 - 120	9	20
99	v1 v2	29.1	339	v1 v2	mg/Fg	☼	825	80 - 120	97	20
210	v1 v2	58.2	896	v1 v2	mg/Fg	₩.	1187	80 - 120	83	20
20		58.2	79.7		mg/Fg	☼	103	80 - 120	1	20
ND		233	229		mg/Fg	☼	98	80 - 120	7	20
ND		34.9	32.9		mg/Fg	₩.	94	80 - 120	8	20
ND		233	212		mg/Fg	☼	91	80 - 120	7	20
1400		233	2080	4	mg/Fg	₩	287	80 - 120	19	20
	Result 6.2 13 ND 0.97 27 99 210 20 ND ND ND	13 ND 0.97 27 99 v1 v2 210 v1 v2 20 ND ND	Result Qualifier Added 6.2 175 13 233 ND 5.82 0.97 5.82 27 23.3 99 v1 v2 29.1 210 v1 v2 58.2 20 58.2 ND 233 ND 34.9 ND 233	Result Qualifier Added Result 6.2 175 184 13 233 242 ND 5.82 5.76 0.97 5.82 6.42 27 23.3 54.4 99 v1 v2 29.1 339 210 v1 v2 58.2 896 20 58.2 79.7 ND 233 229 ND 34.9 32.9 ND 233 212	Result Qualifier Added Result Qualifier 6.2 175 184 13 233 242 ND 5.82 5.76 0.97 5.82 6.42 27 23.3 54.4 99 v1 v2 29.1 339 v1 v2 210 v1 v2 58.2 896 v1 v2 20 58.2 79.7 ND 233 229 ND 34.9 32.9 ND 233 212	Result Qualifier Added Result Qualifier Unit 6.2 175 184 mg/Fg 13 233 242 mg/Fg ND 5.82 5.76 mg/Fg 0.97 5.82 6.42 mg/Fg 27 23.3 54.4 mg/Fg 99 v1 v2 29.1 339 v1 v2 mg/Fg 210 v1 v2 58.2 896 v1 v2 mg/Fg ND 233 229 mg/Fg ND 34.9 32.9 mg/Fg ND 233 212 mg/Fg	Result Qualifier Added Result Qualifier Unit D 6.2 175 184 mg/Fg \$\frac{1}{2}\$ 13 233 242 mg/Fg \$\frac{1}{2}\$ ND 5.82 5.76 mg/Fg \$\frac{1}{2}\$ 0.97 5.82 6.42 mg/Fg \$\frac{1}{2}\$ 27 23.3 54.4 mg/Fg \$\frac{1}{2}\$ 99 v1 v2 29.1 339 v1 v2 mg/Fg \$\frac{1}{2}\$ 210 v1 v2 58.2 896 v1 v2 mg/Fg \$\frac{1}{2}\$ ND 233 229 mg/Fg \$\frac{1}{2}\$ ND 34.9 32.9 mg/Fg \$\frac{1}{2}\$ ND 233 212 mg/Fg \$\frac{1}{2}\$	Result Qualifier Added Result Qualifier Unit D %Rec 6.2 175 184 mg/Fg \$\frac{1}{2}\$ 102 13 233 242 mg/Fg \$\frac{1}{2}\$ ND 5.82 5.76 mg/Fg \$\frac{1}{2}\$ 0.97 5.82 6.42 mg/Fg \$\frac{1}{2}\$ 27 23.3 54.4 mg/Fg \$\frac{1}{2}\$ 99 v1 v2 29.1 339 v1 v2 mg/Fg \$\frac{1}{2}\$ 210 v1 v2 58.2 896 v1 v2 mg/Fg \$\frac{1}{2}\$ ND 233 229 mg/Fg \$\frac{1}{2}\$ 98 ND 34.9 32.9 mg/Fg \$\frac{1}{2}\$ ND 233 212 mg/Fg \$\frac{1}{2}\$	Sample Result Result Qualifier Added Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Sample Result Result Qualifier Added Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit

Lab Sample ID: 580-68649-15 DU Client Sample ID: 7901-SB-04-18.5 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 247306 **Prep Batch: 247209**

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	6.2		7.35		mg/Fg	- -		20
Arsenic	13		15.6		mg/Fg	₩	19	20
Xeryllium	ND		ND		mg/Fg	₩	NC	20
Cadmium	0.97		0.985		mg/Fg	₩	2	20
Chromium	27		30.5		mg/Fg	₩	11	20
Copper	99	v1 v2	150	v3	mg/Fg	₩	41	20
Lead	210	v1 v2	229		mg/Fg	\$	11	20
Nickel	20		24.3	v3	mg/Fg	₩	21	20
Selenium	ND		ND		mg/Fg	₩	NC	20
Sil#er	ND		ND		mg/Fg	₩	NC	20
Thallium	ND		ND		mg/Fg	₩	NC	20
Oinc	1400		1620		mg/Fg	₩	14	20

TestAmerica Seattle

6/13/2017

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: MB 580-247222/9-A

Method: 6020A - Metals (ICP/MS) (Continued)

Matrix: Water

Client: Leidos, Inc.

Analysis Batch: 247267

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 247222**

	MB MB							
Analyte Re:	sult Qualifi	ier RL		Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND	0.0020 0	.00055	mg/L		05/30/17 18:17	05/31/17 12:23	5
Arsenic	ND	0.0050	0.0014	mg/L		05/30/17 18:17	05/31/17 12:23	5
Xeryllium	ND	0.0020 0	.00022	mg/L		05/30/17 18:17	05/31/17 12:23	5
Cadmium	ND	0.0020 0	.00050	mg/L		05/30/17 18:17	05/31/17 12:23	5
Chromium	ND	0.0020 0	.00071	mg/L		05/30/17 18:17	05/31/17 12:23	5
Copper	ND	0.010	0.0030	mg/L		05/30/17 18:17	05/31/17 12:23	5
Iron	ND	1.0	0.18	mg/L		05/30/17 18:17	05/31/17 12:23	5
Lead	ND	0.0040	0.0010	mg/L		05/30/17 18:17	05/31/17 12:23	5
E anganese	ND	0.010	0.0023	mg/L		05/30/17 18:17	05/31/17 12:23	5
Nickel	ND	0.015 0	.00054	mg/L		05/30/17 18:17	05/31/17 12:23	5
Selenium	ND	0.040	0.010	mg/L		05/30/17 18:17	05/31/17 12:23	5
Sil#er	ND	0.0020 0	.00022	mg/L		05/30/17 18:17	05/31/17 12:23	5
Thallium	ND	0.0050 0	.00033	mg/L		05/30/17 18:17	05/31/17 12:23	5
Onc	ND	0.035	0.0095	mg/L		05/30/17 18:17	05/31/17 12:23	5

Lab Sample ID: LCS 580-247222/10-A

Matrix: Water

Analysis Batch: 247267

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 247222

Allalysis Batoli. 247207	Spike	LCS I	LCS				%Rec.
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits
Antimony	3.00	2.94		mg/L		98	80 - 120
Arsenic	4.00	3.86		mg/L		97	80 - 120
Xeryllium	0.100	0.0953		mg/L		95	80 - 120
Cadmium	0.100	0.101		mg/L		101	80 - 120
Chromium	0.400	0.377		mg/L		94	80 - 120
Copper	0.500	0.495		mg/L		99	80 - 120
Iron	22.0	21.8		mg/L		99	80 - 120
Lead	1.00	0.920		mg/L		92	80 - 120
Eanganese	1.00	0.937		mg/L		94	80 - 120
Nickel	1.00	0.954		mg/L		95	80 - 120
Selenium	4.00	3.94		mg/L		99	80 - 120
Sil#er	0.600	0.581		mg/L		97	80 - 120
Thallium	4.00	3.69		mg/L		92	80 - 120
Cinc	4.00	3.76		mg/L		94	80 - 120

Lab Sample ID: LCSD 580-247222/11-A

Matrix: Water

Analysis Ratch: 247267

Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable Pron Batch: 247222

						Prep Ba	itcn: 24	1/222
Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
3.00	2.97		mg/L		99	80 - 120	1	20
4.00	3.92		mg/L		98	80 - 120	2	20
0.100	0.0970		mg/L		97	80 - 120	2	20
0.100	0.101		mg/L		101	80 - 120	0	20
0.400	0.383		mg/L		96	80 - 120	2	20
0.500	0.505		mg/L		101	80 - 120	2	20
22.0	22.0		mg/L		100	80 - 120	1	20
1.00	0.933		mg/L		93	80 - 120	1	20
	Added 3.00 4.00 0.100 0.100 0.400 0.500 22.0	Added Result 3.00 2.97 4.00 3.92 0.100 0.0970 0.100 0.101 0.400 0.383 0.500 0.505 22.0 22.0	Added Result Qualifier 3.00 2.97 4.00 3.92 0.100 0.0970 0.100 0.101 0.400 0.383 0.500 0.505 22.0 22.0	Added Result Qualifier Unit 3.00 2.97 mg/L 4.00 3.92 mg/L 0.100 0.0970 mg/L 0.100 0.101 mg/L 0.400 0.383 mg/L 0.500 0.505 mg/L 22.0 22.0 mg/L	Added Result Qualifier Unit D 3.00 2.97 mg/L mg/L 4.00 3.92 mg/L mg/L 0.100 0.0970 mg/L mg/L 0.400 0.101 mg/L mg/L 0.500 0.505 mg/L 22.0 22.0 mg/L	Added Result Qualifier Unit D %Rec 3.00 2.97 mg/L 99 4.00 3.92 mg/L 98 0.100 0.0970 mg/L 97 0.100 0.101 mg/L 101 0.400 0.383 mg/L 96 0.500 0.505 mg/L 101 22.0 22.0 mg/L 100	Spike LCSD LCSD WRec. Added Result Qualifier Unit D %Rec Limits 3.00 2.97 mg/L 99 80 - 120 4.00 3.92 mg/L 98 80 - 120 0.100 0.0970 mg/L 97 80 - 120 0.100 0.101 mg/L 101 80 - 120 0.400 0.383 mg/L 96 80 - 120 0.500 0.505 mg/L 101 80 - 120 22.0 22.0 mg/L 100 80 - 120	Added Result Qualifier Unit D %Rec Limits RPD 3.00 2.97 mg/L 99 80 - 120 1 4.00 3.92 mg/L 98 80 - 120 2 0.100 0.0970 mg/L 97 80 - 120 2 0.100 0.101 mg/L 101 80 - 120 0 0.400 0.383 mg/L 96 80 - 120 2 0.500 0.505 mg/L 101 80 - 120 2 22.0 22.0 mg/L 100 80 - 120 1

TestAmerica Seattle

Page 75 of 92

6/13/2017

Spike

Added

1.00

1.00

4.00

0.600

4.00

4.00

Spike

Added

Sample Sample

Result Qualifier

0.950

0.955

4.01

0.587

3.73

3.80

MS MS

Result Qualifier

mg/L

Unit

TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: LCSD 580-247222/11-A

Matrix: Water

Client: Leidos, Inc.

Analysis Batch: 247267

Client Sample ID: Lab Control Sample Dup
Prep Type: Total Recoverable
D D t k 0.47000

Prep Batch: 247222 LCSD LCSD **RPD** %Rec. Result Qualifier Limits RPD Unit %Rec Limit 95 80 - 120 20 mg/L mg/L 96 80 - 120 0 20 100 80 - 120 20 mg/L mg/L 98 80 - 120 20 mg/L 93 80 - 120 20

95

Lab Sample ID: 580-68649-2 MS

Matrix: Water

Analyte

Nickel

Sil#er

Cinc

Selenium

Thallium

Analyte

Eanganese

Analysis Batch: 247267

Client Sample ID: 7901-SB-02-GW **Prep Type: Total Recoverable**

80 - 120

Prep Batch: 247222

%Rec. D %Rec Limits 98 80 - 120 95 80 - 120 93 80 - 120 100 80 - 120 94 80 - 120

Antimony ND 3.00 2.93 mg/L ND 4.00 Arsenic 3.81 mg/L Xeryllium ND 0.100 0.0927 mg/L Cadmium ND 0.100 0.100 mg/L Chromium ND 0.400 0.375 mg/L ND 0.500 0.484 97 80 - 120 Copper mg/L Iron 6.3 22.0 27.0 mg/L 94 80 - 120 Lead ND 1.00 0.920 mg/L 92 80 - 1200.30 92 80 - 120 E anganese 1.00 1.22 mg/L Nickel ND 1.00 0.941 mg/L 94 80 - 120 98 Selenium ND 4.00 3.91 mg/L 80 - 120 Sil#er ND 0.600 0.555 mg/L 92 80 - 120 Thallium ND 4.00 93 80 - 120 3.72 mg/L **Cinc** ND 4.00 3.72 mg/L 93 80 - 120

Lab Sample ID: 580-68649-2 MSD

Matrix: Water

Analysis Ratch: 247267

Client Sample ID: 7901-SB-02-GW **Prep Type: Total Recoverable Prop Ratch: 247222**

Analysis Batch: 24/26/									Prep Ba	aten: 24	+/ ZZZ
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND		3.00	2.88		mg/L		96	80 - 120	2	20
Arsenic	ND		4.00	3.84		mg/L		96	80 - 120	1	20
Xeryllium	ND		0.100	0.0950		mg/L		95	80 - 120	2	20
Cadmium	ND		0.100	0.0983		mg/L		98	80 - 120	2	20
Chromium	ND		0.400	0.377		mg/L		94	80 - 120	1	20
Copper	ND		0.500	0.483		mg/L		97	80 - 120	0	20
Iron	6.3		22.0	26.9		mg/L		94	80 - 120	0	20
Lead	ND		1.00	0.902		mg/L		90	80 - 120	2	20
E anganese	0.30		1.00	1.23		mg/L		93	80 - 120	1	20
Nickel	ND		1.00	0.950		mg/L		95	80 - 120	1	20
Selenium	ND		4.00	3.95		mg/L		99	80 - 120	1	20
Sil#er	ND		0.600	0.556		mg/L		93	80 - 120	0	20
Thallium	ND		4.00	3.67		mg/L		92	80 - 120	1	20
Cinc	ND		4.00	3.73		mg/L		93	80 - 120	0	20

TestAmerica Seattle

6/13/2017

Project/Site: 7901 Parcel-South Park Landfill

Client: Leidos, Inc.

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: 580-68649-2 DU	Client Sample ID: 7901-SB-02-GW
Matrix: Water	Prep Type: Total Recoverable
Analysis Batch: 247267	Prep Batch: 247222

Analysis Balch: 24/26/							Prep Batch: 22	+1222
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Antimony	ND		ND		mg/L		NC	20
Arsenic	ND		ND		mg/L		NC	20
Xeryllium	ND		ND		mg/L		NC	20
Cadmium	ND		ND		mg/L		NC	20
Chromium	ND		ND		mg/L		NC	20
Copper	ND		ND		mg/L		NC	20
Iron	6.3		6.00		mg/L		4	20
Lead	ND		ND		mg/L		NC	20
Eanganese	0.30		0.286		mg/L		4	20
Nickel	ND		ND		mg/L		NC	20
Selenium	ND		ND		mg/L		NC	20
Sil#er	ND		ND		mg/L		NC	20
Thallium	ND		ND		mg/L		NC	20
Oinc	ND		ND		mg/L		NC	20
					•			

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 580-247143/15-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 247215

E ercury

MB MB

Unit Dil Fac **Analyte** Result Qualifier RL **Analyzed** Prepared 05/30/17 10:13 05/30/17 13:11 **E** ercury $\overline{\mathsf{ND}}$ 0.00030 0.00015 mg/L

Lab Sample ID: LCS 580-247143/16-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 247215** Prep Batch: 247143 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits E ercury 0.00200 0.00207 mg/L 103 80 - 120

Lab Sample ID: LCSD 580-247143/17-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 247215 Prep Batch: 247143** LCSD LCSD Spike %Rec. **RPD**

Analyte Added Result Qualifier Unit %Rec Limits RPD Limit 0.00200 E ercury 0.00199 mg/L 100 80 - 120

Lab Sample ID: 580-68649-1 MS **Matrix: Water**

ND

Prep Type: Total/NA **Analysis Batch: 247215 Prep Batch: 247143** Sample Sample Spike MS MS %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits 80 - 120

0.00203

mg/L

101

0.00200

TestAmerica Seattle

Client Sample ID: 7901-SB-01-GW

Prep Batch: 247143

Client: Leidos, Inc. Project/Site: 7901 Parcel-South Park Landfill

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 580-68649	-1 MSD						Clien	t Samp	le ID: 790	1-SB-0	1-GW
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 247215									Prep Ba	atch: 24	47143
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
l 											

E ercury	ND		0.00200	0.00200		mg/L	100	80 - 120	1	20
Lab Sample ID: 580-68649-	-1 DU						Client Sam	ple ID: 790	1-SB-0	1-GW
Matrix: Water								Prep Ty	pe: Tot	al/NA
Analysis Batch: 247215								Prep Ba	atch: 24	47143
	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
E ercury	ND			ND		mg/L			NC	20

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 580-247157/17-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 247213	Prep Batch: 247157
MB MB	

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
E ercury	ND	0.030	0.0090 mg/Fg	_	05/30/17 12:06	05/30/17 15:05	1

Lab Sample ID: LCS 580-247157/18-A				Clien	t Sample	ID: Lab Control Sample	
Matrix: Solid						Prep Type: Total/NA	
Analysis Batch: 247213						Prep Batch: 247157	
-	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Re	ec Limits	
E ercury	0.167	0.161		mg/Fg	9	97 80 - 120	

Lab Sample ID: LCSD 580-247157/19-A				Client Sai	mple	ID: Lab	Control	Sample	Dup
Matrix: Solid							Prep Typ	e: Tot	al/NA
Analysis Batch: 247213							Prep Ba	atch: 24	17157
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Eercury	0.167	0.158		mg/Fg		95	80 - 120	2	20

Lab Sample ID: 580-68649-	15 MS						Client	Sampl	le ID: 7901-	SB-04-18.5
Matrix: Solid									Prep Type	e: Total/NA
Analysis Batch: 247213									Prep Bat	ch: 247157
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
E ercury	ND		0.225	0.262		mg/Fg	\	107	80 - 120	

Lab Sample ID: 580-68649-15 MSD					Client Sample ID: 7901-SB-04-18.5							
Matrix: Solid					Prep Type: Total/NA							
Analysis Batch: 247213						Prep Ba	itch: 24	17157				
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
E ercury	ND		0.223	0.255		mg/Fg	<u> </u>	104	80 - 120	3	20	

QC Sample Results

Client: Leidos, Inc. TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 580-68649-15 DU Client Sample ID: 7901-SB-04-18.5 **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 247213 Prep Batch: 247157 Sample Sample DU DU **RPD**

Analyte Result Qualifier Result Qualifier Unit D RPD Limit ND NC 20 E ercury 0.0895 mg/Fg

Method: D 2216 - Percent Moisture

Lab Sample ID: 580-68649-5 DU Client Sample ID: 7901-SB-01-9.5 **Prep Type: Total/NA**

Matrix: Solid

Analysis Batch: 247614

DU DU RPD Sample Sample RPD Result Qualifier Limit **Analyte** Result Qualifier Unit D Percent Solids 78.6 81.0 3 20 Percent E oisture 21.4 19.0 12 20

_

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: 580-68649-1

Lab Sample ID: 580-68649-2

Lab Sample ID: 580-68649-3

Matrix: Water

Matrix: Water

Client Sample ID: 7901-SB-01-GW

Date Collected: 05/25/17 16:00 Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			247301	05/31/17 23:24	W1T	TAL SEA
Total/NA	Prep	3510C			247225	05/31/17 08:24	MRG	TAL SEA
Total/NA	Analysis	8270D SIM		1	247520	06/03/17 14:50	D1R	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247167	05/30/17 22:13	RSB	TAL SEA
Total/NA	Prep	3510C			247749	06/07/17 08:57	MRG	TAL SEA
Total/NA	Analysis	8082A		1	247887	06/08/17 03:16	DCV	TAL SEA
Total/NA	Prep	3510C			247820	06/07/17 14:31	MRG	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	247934	06/08/17 15:47	W1T	TAL SEA
Total Recoverable	Prep	3005A			247222	05/30/17 18:17	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	247267	05/31/17 11:36	FCW	TAL SEA
Total/NA	Prep	7470A			247143	05/30/17 10:12	ADB	TAL SEA
Total/NA	Analysis	7470A		1	247215	05/30/17 13:26	FCW	TAL SEA

Client Sample ID: 7901-SB-02-GW

Date Collected: 05/25/17 10:35

Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	247301	05/31/17 23:53	W1T	TAL SEA
Total/NA	Prep	3510C			247225	05/31/17 08:24	MRG	TAL SEA
Total/NA	Analysis	8270D SIM		1	247520	06/03/17 15:39	D1R	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247167	05/30/17 22:45	RSB	TAL SEA
Total/NA	Prep	3510C			247749	06/07/17 08:57	MRG	TAL SEA
Total/NA	Analysis	8082A		1	247887	06/08/17 03:33	DCV	TAL SEA
Total/NA	Prep	3510C			247820	06/07/17 14:31	MRG	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	247934	06/08/17 16:09	W1T	TAL SEA
Total Recoverable	Prep	3005A			247222	05/30/17 18:17	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	247267	05/31/17 12:36	FCW	TAL SEA
Total/NA	Prep	7470A			247143	05/30/17 10:12	ADB	TAL SEA
Total/NA	Analysis	7470A		1	247215	05/30/17 13:51	FCW	TAL SEA

Client Sample ID: 7901-SB-04-GW

Date Collected: 05/25/17 12:50

Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	247301	06/01/17 00:22	W1T	TAL SEA
Total/NA	Prep	3510C			247225	05/31/17 08:24	MRG	TAL SEA
Total/NA	Analysis	8270D SIM		1	247262	05/31/17 23:51	D1R	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247167	05/30/17 23:18	RSB	TAL SEA
Total/NA	Prep	3510C			247749	06/07/17 08:57	MRG	TAL SEA
Total/NA	Analysis	8082A		1	247887	06/08/17 03:50	DCV	TAL SEA

TestAmerica Seattle

Page 80 of 92

6/13/2017

Matrix: Water

4

J

7

9

10

2

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: 580-68649-3

Lab Sample ID: 580-68649-4

Lab Sample ID: 580-68649-5

Lab Sample ID: 580-68649-5

Matrix: Water

Matrix: Water

Matrix: Solid

Matrix: Solid

Percent Solids: 78.6

Client Sample ID: 7901-SB-04-GW Date Collected: 05/25/17 12:50

Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			247820	06/07/17 14:31	MRG	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	247934	06/08/17 16:32	W1T	TAL SEA
Total Recoverable	Prep	3005A			247222	05/30/17 18:17	PAB	TAL SEA
Total Recoverable	Analysis	6020A		5	247267	05/31/17 11:40	FCW	TAL SEA
Total/NA	Prep	7470A			247143	05/30/17 10:12	ADB	TAL SEA
Total/NA	Analysis	7470A		1	247215	05/30/17 13:55	FCW	TAL SEA

Client Sample ID: 7901-TB-GW

Date Collected: 05/25/17 12:00

Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			247301	05/31/17 19:34	W1T	TAL SEA

Client Sample ID: 7901-SB-01-9.5

Date Collected: 05/25/17 15:35

Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247614	06/05/17 15:52	Z1T	TAL SEA

Client Sample ID: 7901-SB-01-9.5

Date Collected: 05/25/17 15:35

Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		50	247639	06/06/17 19:47	ERB	TAL SEA
Total/NA	Prep	5035			247768	06/07/17 10:37	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247806	06/07/17 19:22	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 16:16	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	248128	06/09/17 22:26	JCP	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 14:51	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA
Total/NA	Analysis	7471A		1	247213	05/30/17 15:21	FCW	TAL SEA

_

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-01-14.5 Lab Sample ID: 580-68649-6

Date Collected: 05/25/17 15:40 Matrix: Solid

Date Received: 05/26/17 16:30

Batch Batch Dilution Batch **Prepared Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab 247614 06/05/17 15:52 Z1T Total/NA Analysis D 2216 TAL SEA

Client Sample ID: 7901-SB-01-14.5 Lab Sample ID: 580-68649-6

Date Collected: 05/25/17 15:40

Matrix: Solid
Date Received: 05/26/17 16:30

Percent Solids: 85.2

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		5	247639	06/06/17 20:13	ERB	TAL SEA
Total/NA	Prep	5035			247768	06/07/17 10:37	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247806	06/07/17 19:52	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 16:32	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	248128	06/09/17 22:48	JCP	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 14:55	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA
Total/NA	Analysis	7471A		1	247213	05/30/17 15:23	FCW	TAL SEA

Client Sample ID: 7901-SB-01-17.5 Lab Sample ID: 580-68649-7

Date Collected: 05/25/17 15:45 Date Received: 05/26/17 16:30

Batch Batch Dilution Batch **Prepared** Number Method or Analyzed **Prep Type** Type Run **Factor** Analyst Lab D 2216 TAL SEA Total/NA Analysis 247492 06/02/17 14:42 ADB

Client Sample ID: 7901-SB-01-17.5 Lab Sample ID: 580-68649-7

Date Collected: 05/25/17 15:45

Date Received: 05/26/17 16:30

Matrix: Solid
Percent Solids: 65.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		1	247639	06/06/17 15:05	ERB	TAL SEA
Total/NA	Prep	5035			247768	06/07/17 10:37	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247806	06/07/17 20:23	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 16:48	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	247513	06/02/17 22:43	TL1	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 16:20	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA

TestAmerica Seattle

Page 82 of 92

6/13/2017

Matrix: Solid

5

6

7

a

10

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-01-17.5

Date Collected: 05/25/17 15:45 Date Received: 05/26/17 16:30

Lab Sample ID: 580-68649-7

Matrix: Solid Percent Solids: 65.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7471A			247213	05/30/17 15:26	FCW	TAL SEA

Lab Sample ID: 580-68649-8 Client Sample ID: 7901-SB-02-14.5

Date Collected: 05/25/17 09:30 Date Received: 05/26/17 16:30

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247492	06/02/17 14:42	ADB	TAL SEA

Client Sample ID: 7901-SB-02-14.5 Lab Sample ID: 580-68649-8

Date Collected: 05/25/17 09:30 **Matrix: Solid** Date Received: 05/26/17 16:30 Percent Solids: 84.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SE
Total/NA	Analysis	8270D		10	247639	06/06/17 15:30	ERB	TAL SE
Total/NA	Prep	5035			247768	06/07/17 10:37	RSB	TAL SE
Total/NA	Analysis	NWTPH-Gx		1	247806	06/07/17 20:53	RSB	TAL SE
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SE
Total/NA	Analysis	8082A		1	247537	06/04/17 17:04	DCV	TAL SE
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SE
Total/NA	Analysis	NWTPH-Dx		1	247513	06/02/17 23:14	TL1	TAL SE
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SE
Total/NA	Analysis	6020A		10	247306	05/31/17 16:24	FCW	TAL SE
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SE
Total/NA	Analysis	6020A		1000	247306	05/31/17 16:41	FCW	TAL SE
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SE
Total/NA	Analysis	7471A		1	247213	05/30/17 15:32	FCW	TAL SE

Client Sample ID: 7901-SB-02-17.5

Date Collected: 05/25/17 09:35

Date Received: 05/26/17 16:30

Lab Sample ID: 580-68649-9

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247492	06/02/17 14:42	ADB	TAL SEA

Client Sample ID: 7901-SB-02-17.5

Date Collected: 05/25/17 09:35 Date Received: 05/26/17 16:30

Lab Sample ID: 580-68649-9

Matrix: Solid

Percent Solids: 65.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		1	247639	06/06/17 15:56	FRB	TAL SEA

Project/Site: 7901 Parcel-South Park Landfill

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			247768	06/07/17 10:37	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247806	06/07/17 21:23	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 17:20	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	247513	06/02/17 23:44	TL1	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 16:29	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA
Total/NA	Analysis	7471A		1	247213	05/30/17 15:35	FCW	TAL SEA

Lab Sample ID: 580-68649-10

Lab Sample ID: 580-68649-10

Lab Sample ID: 580-68649-11

Matrix: Solid

Matrix: Solid

Date Collected: 05/25/17 14:05 Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247492	06/02/17 14:42	ADB	TAL SEA

Client Sample ID: 7901-SB-03-8

Client Sample ID: 7901-SB-03-8

Date Collected: 05/25/17 14:05

Date Received: 05/26/17 16:30 Percent Solids: 86.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		1	247639	06/06/17 16:22	ERB	TAL SEA
Total/NA	Prep	5035			247928	06/08/17 11:43	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247937	06/08/17 18:20	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 17:37	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	247513	06/03/17 00:14	TL1	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 13:52	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA
Total/NA	Analysis	7471A		1	247213	05/30/17 15:37	FCW	TAL SEA

Client Sample ID: 7901-SB-03-9

Date Collected: 05/25/17 14:10

Date Received: 05/26/17 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216			247492	06/02/17 14:42	ADB	TAL SEA

TestAmerica Seattle

Matrix: Solid

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: 580-68649-11

Matrix: Solid Percent Solids: 79.8

Client Sample ID: 7901-SB-03-9

Date Collected: 05/25/17 14:10 Date Received: 05/26/17 16:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		5	247639	06/06/17 16:47	ERB	TAL SEA
Total/NA	Prep	3550B	DL		247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D	DL	50	247757	06/07/17 15:45	D1R	TAL SEA
Total/NA	Prep	5035			247928	06/08/17 11:43	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247937	06/08/17 18:50	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 17:53	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	248128	06/09/17 23:11	JCP	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 14:34	FCW	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		1000	247306	05/31/17 15:04	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA
Total/NA	Analysis	7471A		1	247213	05/30/17 15:39	FCW	TAL SEA

Client Sample ID: 7901-SB-03-17

Date Collected: 05/25/17 14:15 Date Received: 05/26/17 16:30

Lab Sample ID: 580-68649-12

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247614	06/05/17 15:52	Z1T	TAL SEA

Client Sample ID: 7901-SB-03-17

Date Collected: 05/25/17 14:15

Date Received: 05/26/17 16:30

=	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		1	247639	06/06/17 17:13	ERB	TAL SEA
Total/NA	Prep	5035			247928	06/08/17 11:43	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247937	06/08/17 19:21	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 18:09	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	248128	06/09/17 23:33	JCP	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 14:39	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA
Total/NA	Analysis	7471A		1	247213	05/30/17 15:41	FCW	TAL SEA
-								

TestAmerica Seattle

Lab Sample ID: 580-68649-12

Matrix: Solid Percent Solids: 70.7

2

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Lab Sample ID: 580-68649-13

Matrix: Solid

Client Sample ID: 7901-SB-04-9

Date Collected: 05/25/17 12:05 Date Received: 05/26/17 16:30

l		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	D 2216		1	247614	06/05/17 15:52	Z1T	TAL SEA

Client Sample ID: 7901-SB-04-9 Lab Sample ID: 580-68649-13

Date Collected: 05/25/17 12:05

Date Received: 05/26/17 16:30

Matrix: Solid
Percent Solids: 76.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		1	247639	06/06/17 17:39	ERB	TAL SEA
Total/NA	Prep	5035			247928	06/08/17 11:43	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247937	06/08/17 19:51	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 18:25	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	248128	06/09/17 23:55	JCP	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 14:43	FCW	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		1000	247306	05/31/17 14:59	FCW	TAL SE
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SE
Total/NA	Analysis	7471A		1	247213	05/30/17 15:44	FCW	TAL SE

Client Sample ID: 7901-SB-04-14 Lab Sample ID: 580-68649-14

Date Collected: 05/25/17 12:10 Matrix: Solid

Date Received: 05/26/17 16:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	D 2216		1	247614	06/05/17 15:52	Z1T	TAL SEA

Client Sample ID: 7901-SB-04-14

 Date Collected: 05/25/17 12:10
 Matrix: Solid

 Date Received: 05/26/17 16:30
 Percent Solids: 82.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		50	247639	06/06/17 18:04	ERB	TAL SEA
Total/NA	Prep	5035			247928	06/08/17 11:43	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	247937	06/08/17 20:22	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 18:42	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		5	248128	06/10/17 00:17	JCP	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA

TestAmerica Seattle

Lab Sample ID: 580-68649-14

Page 86 of 92

Lab Chronicle

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

Client Sample ID: 7901-SB-04-14

Date Collected: 05/25/17 12:10

Date Received: 05/26/17 16:30

TestAmerica Job ID: 580-68649-1

Lab Sample ID: 580-68649-14

Matrix: Solid

Percent Solids: 82.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6020A		10	247306	05/31/17 14:47	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA
Total/NA	Analysis	7471A		1	247213	05/30/17 15:46	FCW	TAL SEA

Client Sample ID: 7901-SB-04-18.5 Lab Sample ID: 580-68649-15

Date Collected: 05/25/17 12:15 **Matrix: Solid**

Date Received: 05/26/17 16:30

Batch Batch Dilution Batch Prepared Method **Prep Type** Туре Run **Factor** Number or Analyzed Analyst Lab 247442 06/02/17 11:31 Y1W D 2216 TAL SEA Total/NA Analysis

Client Sample ID: 7901-SB-04-18.5 Lab Sample ID: 580-68649-15

Date Collected: 05/25/17 12:15 **Matrix: Solid** Date Received: 05/26/17 16:30 Percent Solids: 69.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550B			247561	06/05/17 09:38	Y1W	TAL SEA
Total/NA	Analysis	8270D		1	247639	06/06/17 18:30	ERB	TAL SEA
Total/NA	Prep	5035			248145	06/10/17 07:05	RSB	TAL SEA
Total/NA	Analysis	NWTPH-Gx		1	248155	06/10/17 15:58	RSB	TAL SEA
Total/NA	Prep	3546			247425	06/02/17 09:07	APR	TAL SEA
Total/NA	Analysis	8082A		1	247537	06/04/17 15:27	DCV	TAL SEA
Total/NA	Prep	3546			247362	06/01/17 11:07	Y1W	TAL SEA
Total/NA	Analysis	NWTPH-Dx		1	248128	06/10/17 00:40	JCP	TAL SEA
Total/NA	Prep	3050B			247209	05/30/17 16:00	PAB	TAL SEA
Total/NA	Analysis	6020A		10	247306	05/31/17 13:56	FCW	TAL SEA
Total/NA	Prep	7471A			247157	05/30/17 12:06	ADB	TAL SEA
Total/NA	Analysis	7471A		1	247213	05/30/17 15:12	FCW	TAL SEA

Laboratory References:

TAL SEA = TestAmerica Seattle, 5755 8th Street East, Tacoma, WA 98424, TEL (253)922-2310

Accreditation/Certification Summary

Client: Leidos, Inc.

TestAmerica Job ID: 580-68649-1

Project/Site: 7901 Parcel-South Park Landfill

Laboratory: TestAmerica Seattle

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program		EPA Region	Identification Number	Expiration Dat
ashington	State Pro	gram	10	C553	02-17-18
The following analyte	s are included in this repo	rt, but are not accre	dited/certified under t	his accreditation/certificatio	n:
Analysis Method	Prep Method	Matrix	Analyt	e	
8270D	3550B	Solid	3 & 4 1	Methylphenol	
The following analyte	e are included in this rene	ert but accreditation	/cortification is not off	ered by the governing author	ority:
Analysis Method	Prep Method	Matrix	Analyt		only.
6020A	3005A	Water	Antimo		
6020A	3005A	Water	Arseni		
6020A	3005A	Water	Berylli		
6020A	3005A	Water	Cadmi		
6020A	3005A	Water	Chrom	iium	
6020A	3005A	Water	Coppe	r	
6020A	3005A	Water	Iron		
6020A	3005A	Water	Lead		
6020A	3005A	Water	Manga	nese	
6020A	3005A	Water	Nickel		
6020A	3005A	Water	Seleni	um	
6020A	3005A	Water	Silver		
6020A	3005A	Water	Thalliu	m	
6020A	3005A	Water	Zinc		
6020A	3050B	Solid	Antimo	ony	
6020A	3050B	Solid	Arseni	С	
6020A	3050B	Solid	Berylli	um	
6020A	3050B	Solid	Cadmi	um	
6020A	3050B	Solid	Chrom	ium	
6020A	3050B	Solid	Coppe	r	
6020A	3050B	Solid	Lead		
6020A	3050B	Solid	Nickel		
6020A	3050B	Solid	Seleni	um	
6020A	3050B	Solid	Silver		
6020A	3050B	Solid	Thalliu	m	
6020A	3050B	Solid	Zinc		
8270D	3550B	Solid		Trichlorobenzene	
8270D	3550B	Solid	,	oroisopropyl) ether	
D 2216		Solid		nt Moisture	
D 2216		Solid	Percer	nt Solids	

3

4

0

9

Sample Summary

Client: Leidos, Inc.

Project/Site: 7901 Parcel-South Park Landfill

TestAmerica Job ID: 580-68649-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
580-68649-1	7901-SB-01-GW	Water	05/25/17 16:00 05/	26/17 16:30
580-68649-2	7901-SB-02-GW	Water	05/25/17 10:35 05/	26/17 16:30
580-68649-3	7901-SB-04-GW	Water	05/25/17 12:50 05/	26/17 16:30
580-68649-4	7901-TB-GW	Water	05/25/17 12:00 05/	26/17 16:30
580-68649-5	7901-SB-01-9.5	Solid	05/25/17 15:35 05/	26/17 16:30
580-68649-6	7901-SB-01-14.5	Solid	05/25/17 15:40 05/	26/17 16:30
580-68649-7	7901-SB-01-17.5	Solid	05/25/17 15:45 05/	26/17 16:30
580-68649-8	7901-SB-02-14.5	Solid	05/25/17 09:30 05/	26/17 16:30
580-68649-9	7901-SB-02-17.5	Solid	05/25/17 09:35 05/	26/17 16:30
580-68649-10	7901-SB-03-8	Solid	05/25/17 14:05 05/	26/17 16:30
580-68649-11	7901-SB-03-9	Solid	05/25/17 14:10 05/	26/17 16:30
580-68649-12	7901-SB-03-17	Solid	05/25/17 14:15 05/	26/17 16:30
580-68649-13	7901-SB-04-9	Solid	05/25/17 12:05 05/	26/17 16:30
580-68649-14	7901-SB-04-14	Solid	05/25/17 12:10 05/	26/17 16:30
580-68649-15	7901-SB-04-18.5	Solid	05/25/17 12:15 05/	26/17 16:30

6

0

9

TestAn Te		nerica Seattle th Street E.	≗교경	68649		Chain of	
THE LEADER IN ENVIRA 580-86649 Chain of Custody	stody	3-922-2310 3-922-5047 estamericainc.com	ainc.com		Short Hold	Custody Record	_
Chent		neut Contact	Jen A	Jagn A	5/25	5/2017 Chain of Custody Number 31022	022
18912 North Craft pkmy, #101	1 , # loi	13 N	- 402	Fax Homber - 33.25	тар Митреч	Page 1 of	~!
Con State 11 WA WA	48011	Sample A. P.		Elaine (i)	Analysis (A	, , , , , , , , , , , , , , , , , , , ,	
HOPET Mame and location (State)	K Langal	Bulling Co		: :	** (1 *** *** *** *** *** *** *** *** *** *	Special Instructions/	ctions/
Contract Purchase Order/Duote No.			Matrix	Containers & Preservatives	-	Conditions of Receipt	3eceipt
Sample I.D. and Location/Description Containers for each sample may be combined on one line!	Shake	Time was	,000 000	HOPN - (21/07 - HOPN	1001 2007 2007 2007 2007 2001 2001 2001		
7901-5B-01-6W	5/25/17/600	<u> </u>	7	9 1	XXXXX	1 Amy 14 TO LOS/(CSD	\$//csp
7901-5B-02-GW		1035 X	6		х х х х	tor ground water	Walter
7901-58-04-6W		125C X	+	- 8 - 1	XX X X	GW Hats (PP+Fe M	PP+Fe, M
1901-TB-GW	ج-	12co X		m	×	Trip Blank	
40+							3
7901-5B-01-9.5	11/57/5	15.35	 ×		××× × ×	Cooler Dac L. Orech, F. & Lab	r IICe. Y
7901-SB-01-145		1540	×		× × × ×	Mod Packs Packing	
- SB-01 -		1545	×		X X X X I	<i>√</i> (c)	
-58-02-		083c	×		*		* 1.000 S
i ,	->	0935	×		XXXXXX	1 B Cooler 185 Cory Car Circus Cooler Dsc 5; Sharkshow at Lab	
						Wet/Packs Packing	
						\$7/N	
Chaoler No Scaler Temp III Mon-Harand	Possible Hazard Identification Cal Noon-Hazard Li Planonable	mable 🗀 Skin trotant	nant 🗀 Poison B	C Chrkmown	Sample Disposal DD Disposal By Lab	iA fee may be assessed if samples Months are retained longer than 1 months	if samples in month
iness days [] 5 Days	NG [] 15 Days		Per Sow	OC Requirements iSpecify		<u> </u>	
ed By Signifform	ما	Date 5/26/17	700E	J. Received By Signiffrant	Found (1870 Lune)	Date Fine	Time 1630
/ NignePrior			Fine	2. Received By Signiffrant		. Date Time	
3. Relinquished By Injury Print		. Date	Time	3. Received By Signiffront	71.5	Date	
Comments Metals include price to pail.	27) L 24 7	20 4747		A Wa Fe & Win	NUTEH-DX	2 For dioxi Anawy alls.	2/15
DISTRIBUTION: WHITE - Stays with the Samples, CAMARY - Returned to Client with Report, PHIK - Field Copy (1892).	- Returned to Citer	r with Report, Philip	Page	56.90 Oct		l	TAL 8674-59960770)

\Box	
rica	
₁ meri	
St⊁	
<u>Ď</u>	

THE LEADER IN ENVIRONMENTAL TESTING

Tacoma, WA 96424 Tel. 253-922-2310 Fax 253-922-5047 TestAmerica Seattle 5755 8th Street E.

Q Contract	7			
Г			1	
١.		•	'	

Short Hold

Chain of

Custody Record

		www.testamericainc.com	ainc,com						
chien Leidos		Chent Contact					Dare	Chain of Custody Mumber	91 023
18912 North Greek PKWY, #101	Kwy, #10	j	er pårea CodejiFa	Number			Lab Number	Ser.	2 10 2
Sale Sale)108h	Sampler		Lab Contact		(Analysis (Attach list if more space is needed)	, , , , , , , , , , , , , , , , , , ,	
Cation (States	Landall	Billing Contact			7.8°C	0922 04.7 04.7	×3.	Spec	Special Instructions/
Contract Purchase Order Ouate No		••	Matex	Containers & Presematives		8 2 2 23	-11d1 -11d1 -11d1	Cone	Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	ne) Uakr	SE SE SE SE SE SE SE SE SE SE SE SE SE S	sauton ins pas	HOWN EGMIN HOSSEY	Mecrit Moon Vales	1441 20V2 20V	-WV		
7901-58-03-8	5/25/17	1405	×		· - -	×	_ X X X		
7901-58-03-9		1410	×		×	×	XXX		
7901-58-03-17		1415	X		× -	×	XXX		
7901-513-04-9		1205	×		×	×	XXX		
7901-5B-04-14		1210	×		×	×	XXX	 	
1901-58-04 - 18,5	>	1215	×		× 25	><	XXX	Also	MS/MSD
				 - 			· _		
						<u>.</u>			
								-	
Cooler Rossible Temp	Possible Hazard Identification \(\begin{align*} \text{Non-Hazard} \end{align*} \(\begin{align*} \text{Ron-Hazard} \end{align*}	nkesion 🗇 Flammable 🗀 Skio Imilant	lant 🗀 Poison B	na B 🗀 Unkrinskan	Sanple Disposal wwn Return To Client	isposal To Client	Disposal By Lab Archive For	ya tee may Manths are retained	(A fee may be assessed if samples are retained longer than I month
iness days)	3,000 51 15 20 80	s E Other Perc		OC Requirements (Specify)	is (Speculy)				
	A Glack	5/26/	120 O	1. Received By	Signiform	Francisco	To Lung 7	5/16/17	7 1630
		Date	Trape	2. Received By Styll Print	1			Chale	Time
3 Reimquished By Sign-Prince		ajed	Sine	3. Received By SugarProst	Significant			Date	Inne

Metals include provity Pollutant (6020 \$ 7471), NWJTOH-DX 15 for diesel & liean College Tal 88MBY208

Comments

TAL-88/43/20470

Login Sample Receipt Checklist

Client: Leidos, Inc. Job Number: 580-68649-1

Login Number: 68649 List Source: TestAmerica Seattle

List Number: 1

Creator: Ponce-McDermott, Monica

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	pH adjusted
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

9

10

Result Lab Name	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	lestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA TactAmerica Coattle	lestAmerica, seatrie- Tacoma WA																							
Result_ Lab Replicate_ ID																																					
Result_ Method		SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C
Digestion_ Method																																					
- Result d Basis																																					
Fraction_ Sr Analyzed		Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
on Result Data Qualifier	ם	ם	ο	⊃	ο	⊃		ο	ο	n	⊃	Ξ	Þ	⊃	⊃	ο	ο	ο	⊃	ο	ם	ם	⊃	ο	ο	⊃	Э	Э	Ξ	ο	ם	ο	⊃	ם	⊃	ο	⊃
Result_ Detection_ Detection_ Limit_ Limit Type	0.05	0.07 MDL	0.05 MDL	0.025 MDL	0.09 MDL	0.025 MDL	0.013 MDL	0.07 MDL	0.025 MDL	0.05 MDL	0.06 MDL	0.04 MDL	0.1 MDL	0.025 MDL	0.025 MDL	0.05 MDL	0.025 MDL	0.075 MDL	0.025 MDL	0.1 MDL	0.025 MDL	0.05 MDL	0.08 MDL	0.015 MDL	0.025 MDL	0.025 MDL	0.03 MDL	0.025 MDL	0.1 MDL	0.083 MDL	0.025 MDL	0.03 MDL	0.05 MDL	0.025 MDL	0.05 MDL	0.025 MDL	0.1 MDL
Result_ Reporting_ Reporting_ Limit_ Limit Type	0.3 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.02 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.3 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.3 PQL	0.5 PQL	0.1 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.3 PQL	0.2 PQL	0.4 PQL	0.2 PQL	0.5 PQL
Result_ Value_ Units	0.3 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.3 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.3 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.3 ug/L	0.5 ug/L	0.1 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.3 ug/L	0.2 ug/L	0.4 ug/L	0.2 ug/L	0.5 ug/L
Lab_ Analysis_ Result_ Time value		23:24:00	23:24:00	23.24:00	23.24:00	23.24:00	23:24:00	23.24:00	23.24:00	23.24:00	23.24:00	23:24:00	23:24:00	23:24:00	23:24:00	23:24:00	23.24:00	23:24:00	23.24:00	23.24:00	23:24:00	23:24:00	23.24:00	23:24:00	23:24:00	23:24:00	23:24:00	23:24:00	23:24:00	23:24:00	23:24:00	23.24:00	23.24:00	23:24:00	23:24:00	23.24:00	23.24:00
Lab_ Lab_ Analysis_ Analysis_ Date_ Date Accuracy	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D
Result_ Parameter_ CAS_ Number	95-50-1	95-49-8	96-18-4	56-23-5	10061-01-5	108-90-7	75-01-4	135-98-8	74-95-3	179601-23-1	95-47-6	120-82-1	100-42-5	74-97-5	75-27-4	541-73-1	71-43-2	75-00-3	10061-02-6	87-61-6	103-65-1	9-87-6	104-51-8	563-58-6	156-59-2	79-34-5	95-63-6	108-88-3	91-20-3	108-67-8	142-28-9	67-66-3	106-43-4	124-48-1	75-71-8	79-00-5	9-90-86
Result Parameter Name	1,2-Dichlorobenzene	2-Chlorotoluene	1,2,3-Trichloropropane	Carbon Tetrachloride	Cis-1,3-Dichloropropene	Chlorobenzene	Vinyl Chloride	Sec-Butylbenzene	Dibromomethane	m, p-Xylene	o-Xylene	1,2,4-Trichlorobenzene	Styrene	Bromochloromethane	Dichlorobromomethane	1,3-Dichlorobenzene	Benzene	Chloroethane	Trans-1,3-Dichloropropene	1,2,3-Trichlorobenzene	n- Propylbenzene	p-Isopropyltoluene	n-Butylbenzene	1,1-Dichloropropene	Cis-1,2-Dichloroethene	1,1,2,2-Tetrachloroethane	1,2,4-Trimethylbenzene	Toluene	Naphthalene	1,3,5-Trimethylbenzene	1,3-Dichloropropane	Chloroform	4-Chlorotoluene	Chlorodibromomethane	CK-12	1,1,2-Trichloroethane	Tert-Butylbenzene
Sample_ Source Re								,								,		,	,		Source - Other n-		Source - Other n-	Source - Other 1,	Source - Other Ct		,		Source - Other Na	Source - Other 1,							Source - Other Te
Sample_ Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Sample_ Composite_ Flag		z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
Sample_ Replicate_ Sample ID Flag	MΘ	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-S8-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-S8-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-5B-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N
Field_ Collection_ Start_ Time																																					
Field_ Collection_ Start_ Date	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Field_ Collector		Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Field_ Study-Specific_ Collection_ Location_ID Type		7901-SB-01-GW Sample	7901-5B-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample					
Study-3 Location ID Locatio		7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5	7901-5
Study ID Locati		NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA

TestAmerica, Seattle- Tacoma WAA	TestAmerica, Seattle-	TestAmerica, Seattle-	TestAmerica, Seattle-	Tacoma WA TestAmerica, Seattle-	Tacoma WA Test America Seattle.	Tacoma WA	l estAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
JU9 CBWNS	SW82.60C	20928W3	3002000	SW82 60C	SW8260C	SW82 60C	SW82 60C	SW8260C	SW8260C	SW8260C	\$W8260C	SW8260C	SW82 60C	SW8260C	SW8260C	SW8260C	SW8270DSIM																						
Total	Total	1800 F	loldi.	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
=	=	· :	5	-	ם	⊃	Ξ	Э	э	⊃	⊃	⊃	⊃	⊃	⊃	Ξ	Ξ	э	Þ	Ξ	Э	Ξ	ο	ο	⊃	⊃	Э		Þ					Ξ	Ξ	Э	ם	ο	ם
10 O	M M	O.LI MDL	O'OTO MIDE	0.06 MDL	0.025 MDL	0.07 MDL	0.025 MDL	0.06 MDL	0.025 MDL	0.08 MDL	0.44 MDL	0.025 MDL	0.025 MDL	0.035 MDL	0.025 MDL	0.025 MDL	0.03 MDL	0.025 MDL	0.075 MDL	0.025 MDL	0.16 MDL	0.05 MDL	0.025 MDL	0.013 MDL	0.0093 MDL	0.0062 MDL	0.0021 MDL	0.0021 MDL	0.0031 MDL	0.0041 MDL	0.0031 MDL	0.0021 MDL	0.0041 MDL	0.0021 MDL	0.0062 MDL	0.0082 MDL	0.0093 MDL	0.0031 MDL	0.0072 MDL
Oabo	104 5 0	0.5 PQL	O. P. P. C.	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.1 PQL	0.5 PQL	2 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.2 PQL	1 PQL	0.3 PQL	0.2 PQL	0.041 PQL	0.031 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.021 PQL	0.031 PQL	0.021 PQL	0.021 PQL
03.197	1/81130	1/8n c.o	0.1 08/1	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.1 ug/L	0.5 ug/L	2 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	1 ug/L	0.3 ug/L	0.2 ug/L	0.041 ug/L	0.031 ug/L	0.021 ug/L	0.021 ug/L	0.12 ug/L	0.021 ug/L	0.068 ug/L	0.023 ug/L	0.032 ug/L	0.037 ug/L	0.021 ug/L	0.021 ug/L	0.021 ug/L	0.031 ug/L	0.021 ug/L	0.021 ug/L
23:24:00	23:24:00	23:24:00	79:74:00	23.24:00	23:24:00	23:24:00	23:24:00	23.24:00	23:24:00	23.24:00	23.24:00	23:24:00	23.24:00	23:24:00	23:24:00	23.24:00	23:24:00	23:24:00	23:24:00	23:24:00	23.24:00	23:24:00	23:24:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00	14:50:00
5/31/2017 D	5/31/2017 D	0/102/15/6	0 / 107/16/6	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D
74-87-3	75.00.7	7-60-67	+05-07	98-82-8	107-06-2	127-18-4	71-55-6	594-20-7	106-93-4	75-25-2	ane 96-12-8	75-69-4	79-01-6	108-86-1	78-87-5	630-20-6	100-41-4	156-60-5	87-68-3	75-34-3	74-83-9	106-46-7	1634-04-4	91-20-3	91-57-6	90-12-0	208-96-8	83-32-9	86-73-7	85-01-8	120-12-7	206-44-0	129-00-0	56-55-3	218-01-9	205-99-2	207-08-9	50-32-8	193-39-5
Chloromethane	Mathylana Chlorida	Metriyerie Criminae	5		1,2-Dichloroethane	Tetrachloroethene	1,1,1-Trichloroethane	2,2-Dichloropropane	Ethylene dibromide	Bromoform	1,2-Dibromo-3-Chloropropane 96-12-8	CFC-11	Trichloroethene	Bromobenzene	1,2-Dichloropropane	1,1,1,2-Tetrachloroethane	Ethylbenzene	Trans-1,2-Dichloroethene	Hexachlorobutadiene	1,1-Dichloroethane	Bromomethane	1,4-Dichlorobenzene	Methyl t-butyl ether	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz[a]anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene
Source -	Source -	Source -	Source -	Other Source -	Other	Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other
Water	Water	ia ia ia ia ia ia ia ia ia ia ia ia ia i	ia 1pAA	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
z	: 2	2 2	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
N MS-10-85-10-67 (00:00:-91					16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-S8-01-GW N	16:00:00 7901-S8-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-S8-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-S8-01-GW N	16:00:00 7901-S8-01-GW N	16:00:00 7901-S8-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-58-01-GW	16:00:00 7901-58-01-GW N	16:00:00 7901-58-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N
5/25/2017	5/25/2017	5/25/2017	1707/57/6	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	toneritant	Consultant	Consulding	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-58-01-5W Samule					7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-5B-01-GW Sample	7901-58-01-GW Sample	7901-5B-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-5B-01-GW Sample	7901-5B-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-5B-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-5B-01-GW Sample	7901-5B-01-GW Sample				
4 2	4 2	ž ;	ž	ď Z	ΑN	ΑN	Ą	NA	Ą	Ą	NA	ΝΑ	NA	NA	ΑN	NA	NA	NA	NA	AA	NA	ΑN	NA																
Ž	2	¥ ;	NA.	V.	NA	NA	NA	NA	NA	NA	W	Ą	W	Ą	Ą	NA	N	NA	NA	NA	NA	NA	N	NA	NA	Ŋ	¥	¥	Ŋ	N	NA	N A	NA	NA	NA	N	N	Ą	NA

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270DSIM	SW8270DSIM	NWTPH-GX	SW8082A	SW8082A	SW8082A	SW8082A.	SW8082A.	SW8082A.	SW8082A.	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A.	SW7470A	SW8260C	SW82 60C	SW8260C	SW8260C	SW8260C																			
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Э	⊃	⊃	ס	⊃	Э	Э	⊃	⊃	ο			Ξ	ο	⊃	⊃	⊃	ם				Э	Э	ο	⊃		⊃	⊃	⊃	⊃	Э	⊃			ס	Э	⊃	⊃	Þ
0.0021 MDL	0.0031 MDL	0.05 MDL	0.022 MDL	0.031 MDL	0.028 MDL	0.029 MDL	0.022 MDL	0.021 MDL	0.027 MDL	0.019 MDL	0.079 MDL	0.0014 MDL	0.00055 MDL	0.00022 MDL	0.0005 MDL	0.00071 MDL	0.003 MDL	0.18 MDL	0.001 MDL	0.0023 MDL	0.00054 MDL	0.01 MDL	0.00022 MDL	0.00033 MDL	0.0095 MDL	0.00015 MDL	0.05 MDL	0.07 MDL	0.05 MDL	0.025 MDL	0.09 MDL	0.025 MDL	0.013 MDL	0.07 MDL	0.025 MDL	0.05 MDL	0.06 MDL	0.04 MDL
0.021 PQL	0.021 PQL	0.5 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.1 PQL	0.26 PQL	0.005 PQL	0.002 PQL	0.002 PQL	0.002 PQL	0.002 PQL	0.01 PQL	1 PQL	0.004 PQL	0.01 PQL	0.015 PQL	0.04 PQL	0.002 PQL	0.005 PQL	0.035 PQL	0.0003 PQL	0.3 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.02 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.5 PQL	0.2 PQL
0.021 ug/L	0.021 ug/L	0.5 mg/L	0.52 ug/L	J/gm 79:0	0.38 mg/L	0.005 mg/L	0.002 mg/L	0.002 mg/L	0.002 mg/L	0.002 mg/L	0.01 mg/L	11 mg/L	0.027 mg/L	0.06 mg/L	0.015 mg/L	0.04 mg/L	0.002 mg/L	0.005 mg/L	0.093 mg/L	0.0003 mg/L	0.3 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	1.3 ug/L	0.16 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.5 ug/L	0.2 ug/L						
14:50:00	14:50:00	22:13:00	3:16:00	3:16:00	3:16:00	3:16:00	3:16:00	3:16:00	3:16:00	15:47:00	15:47:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	11:36:00	13:26:24	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00
6/3/2017 D	6/3/2017 D	5/30/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	5/31/2017 D											
53-70-3	191-24-2	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-38-2	7440-36-0	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-89-6	7439-92-1	7439-96-5	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	95-50-1	95-49-8	96-18-4	56-23-5	10061-01-5	108-90-7	75-01-4	135-98-8	74-95-3	179601-23-1	95-47-6	120-82-1
Dibenzo(a,h)anthracene	Benzo(ghi)perylene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Arsenic	Antimony	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2-Dichlorobenzene	2-Chlorotoluene	1,2,3-Trichloropropane	Carbon Tetrachloride	Cis-1,3-Dichloropropene	Chlorobenzene	Vinyl Chloride	Sec-Butylbenzene	Dibromomethane	m, p-Xylene	o-Xylene	1,2,4-Trichlorobenzene
Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source	Source - Other																										
Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
16:00:00 7901-58-01-GW	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW	16:00:00 7901-5B-01-GW N	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	16:00:00 7901-SB-01-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N										
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-58-01-GW Sample	7901-5B-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-5B-01-GW Sample	7901-SB-01-GW Sample	7901-5B-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-SB-01-GW Sample	7901-58-01-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-58-02-GW Sample	7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-58-02-GW Sample
Ą	Ϋ́	A N	NA	A N	NA	Υ Y	A N	NA	NA	NA	N A	N.A.	NA	Ą	NA	NA	N.	NA	NA	NA	NA	A N	NA															
V V	NA	N	NA	NA	ž	¥	NA	NA	NA	NA	NA	N	NA																									

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW82 60C	SW8260C	SW8260C	SW8260C	SW8260C																						
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
⊃	⊃	⊃	ם	Þ	n	Э	Э	Э	Э	⊃	ο	Э	⊃	Э	⊃	⊃	⊃	⊃	_	n	⊃	⊃	⊃	_	Э	⊃	⊃	ο	Þ	n	⊃	⊃	О	⊃	Э	Э	⊃	⊃
0.1 MDL	0.025 MDL	0.025 MDL	0.05 MDL	0.025 MDL	0.075 MDL	0.025 MDL	0.1 MDL	0.025 MDL	0.05 MDL	0.08 MDL	0.015 MDL	0.025 MDL	0.025 MDL	0.03 MDL	0.025 MDL	0.1 MDL	0.083 MDL	0.025 MDL	0.03 MDL	0.05 MDL	0.025 MDL	0.05 MDL	0.025 MDL	0.1 MDL	0.05 MDL	0.11 MDL	0.018 MDL	0.06 MDL	0.025 MDL	0.07 MDL	0.025 MDL	0.06 MDL	0.025 MDL	0.08 MDL	0.44 MDL	0.025 MDL	0.025 MDL	0.035 MDL
0.5 PQL	0.2 PQL	0.2 PQL	0.3 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.3 PQL	0.5 PQL	0.1 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.3 PQL	0.2 PQL	0.4 PQL	0.2 PQL	0.5 PQL	0.3 PQL	0.5 PQL	0.1 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.1 PQL	0.5 PQL	2 PQL	0.5 PQL	0.2 PQL	0.2 PQL
0.5 ug/L	0.2 ug/L	0.2 ug/L	0.3 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.3 ug/L	0.5 ug/L	0.1 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.3 ug/L	0.2 ug/L	0.4 ug/L	0.2 ug/L	0.5 ug/L	0.3 ug/L	0.5 ug/L	0.1 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.1 ug/L	0.5 ug/L	2 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L
23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00
5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D
100-42-5	74-97-5	75-27-4	541-73-1	71-43-2	75-00-3	ne 10061-02-6	87-61-6	103-65-1	9-87-6	104-51-8	563-58-6	156-59-2	e 79-34-5	92-63-6	108-88-3	91-20-3	108-67-8	142-28-9	67-66-3	106-43-4	124-48-1	75-71-8	79-00-5	9-90-86	74-87-3	75-09-2	75-35-4	98-82-8	107-06-2	127-18-4	71-55-6	594-20-7	106-93-4	75-25-2	pane 96-12-8	75-69-4	9-10-62	108-86-1
Styrene	Bromochloromethane	Dichlorobromomethane	1,3-Dichlorobenzene	Benzene	Chloroethane	Trans-1,3-Dichloropropene	1,2,3-Trichlorobenzene	n-Propylbenzene	p-Isopropyltoluene	n-Butylbenzene	1,1-Dichloropropene	Cis-1,2-Dichloroethene	1,1,2,2-Tetrachloroethane	1, 2, 4-Trimethylbenzene	Toluene	Naphthalene	1,3,5-Trimethylbenzene	1,3-Dichloropropane	Chloroform	4-Chlorotoluene	Chlorodibromomethane	CFC-12	1,1,2-Trichloroethane	Tert-Butylbenzene	Chloromethane	Methylene Chloride	1,1-Dichloroethene	Cumene	1,2-Dichloroethane	Tetrachloroethene	1,1,1-Trichloroethane	2,2-Dichloropropane	Ethylene dibromide	Bromoform	1,2-Dibromo-3-Chloropropane 96-12-8	CFC-11	Trichloroethene	Bromobenzene
Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source -	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other
Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-S8-02-GW N	10:35:00 7901-S8-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-S8-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N																		
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-58-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample
NA	ΝΑ	NA	Ą	N.	NA	NA	A	ΝΑ	N.	ΝΑ	ΝΑ	NA	NA	N.	NA	ΑN	Ν	ΝA	NA	Ν	ΝΑ	ΑN	NA	NA	ΝΑ	NA	ΝΑ	N.	N A	Ą								
A A	NA	NA	N	N	N	N	NA	NA	N	N	Ä	M	W	Ą	NA	N	NA	NA	NA	N A	NA	NA	NA	NA	NA	NA	W	N	N	NA	NA	NA	NA	NA	N	N	NA	N.

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SWR260C	SW8260C	SW82 60C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8270DSIM	NWTPH-GX	SW8082A	SW8082A	SW8082A.	SW8082A	SW8082A	SW8082A.	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A																	
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Ξ	⊃	ο	ο	⊃	ם	Þ	ס	ם		Э							ο		ס	ם	ם	ο	ο	ם	ם	ο	⊃	ם	ם	Э	ם	Э	Э	⊃			Э	ο
0.025 MDL	0.025 MDL	0.03 MDL	0.025 MDL	0.075 MDL	0.025 MDL	0.16 MDL	0.05 MDL	0.025 MDL	0.013 MDL	0.0092 MDL	0.0061 MDL	0.002 MDL	0.002 MDL	0.0031 MDL	0.0041 MDL	0.0031 MDL	0.002 MDL	0.0041 MDL	0.002 MDL	0.0061 MDL	0.0082 MDL	0.0092 MDL	0.0031 MDL	0.0071 MDL	0.002 MDL	0.0031 MDL	0.05 MDL	0.022 MDL	0.031 MDL	0.028 MDL	0.029 MDL	0.022 MDL	0.021 MDL	0.027 MDL	0.02 MDL	0.08 MDL	0.0014 MDL	0.00055 MDL
0.2 POL	0.2 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.2 PQL	1 PQL	0.3 PQL	0.2 PQL	0.041 PQL	0.031 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.031 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.5 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.52 PQL	0.1 PQL	0.26 PQL	0.005 PQL	0.002 PQL
0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	1 ug/L	0.3 ug/L	0.2 ug/L	0.062 ug/L	0.031 ug/L	0.19 ug/L	0.056 ug/L	0.63 ug/L	0.045 ug/L	0.034 ug/L	0.089 ug/L	0.02 ug/L	0.021 ug/L	0.02 ug/L	0.02 ug/L	0.02 ug/L	0.031 ug/L	0.02 ug/L	0.02 ug/L	0.02 ug/L	0.02 ug/L	0.5 mg/L	0.52 ug/L	1.1 mg/L	0.66 mg/L	0.005 mg/L	0.002 mg/L						
23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	23:53:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	15:39:00	22:45:00	3:33:00	3:33:00	3:33:00	3:33:00	3:33:00	3:33:00	3:33:00	16:09:00	16:09:00	12:36:00	12:36:00
5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	6/3/2017 D	5/30/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	5/31/2017 D	5/31/2017 D
78-87-5	630-20-6	100-41-4	156-60-5	87-68-3	75-34-3	74-83-9	106-46-7	1634-04-4	91-20-3	91-57-6	90-12-0	208-96-8	83-32-9	86-73-7	85-01-8	120-12-7	206-44-0	129-00-0	56-55-3	218-01-9	205-99-2	207-08-9	50-32-8	193-39-5	53-70-3	191-24-2	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-38-2	7440-36-0
1.2-Dichloropropane	1,1,1,2-Tetrachloroethane	Ethylbenzene	Trans-1,2-Dichloroethene	Hexachlorobutadiene	1,1-Dichloroethane	Bromomethane	1,4-Dichlorobenzene	Methyl t-butyl ether	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz[a]anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Benz o(ghi)perylene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Arsenic	Antimony
Source -	Source - Other																																					
Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
10:35:00 7901-58-02-GW N		10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-SB-02-GW N	10:35:00 7901-58-02-GW N	10:35:00 7901-5B-02-GW N	10:35:00 7901-SB-02-GW N																								
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-02-6W Sample			7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-58-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-5B-02-GW Sample	7901-SB-02-GW Sample				
Ą	Ą	ΑN	Ϋ́	NA	N.	NA	NA	NA	NA	ΝΑ	NA	N A	ΝΑ	NA	ΝΑ	ΝΑ	NA	NA	NA	NA	Ą	NA	NA	Ą	N.	NA	NA	ΝA	NA	N.	NA	NA	N.	NA	N.	N A	N A	NA A
Š	Ϋ́	NA	N A	NA	N	Ϋ́	A	N	A	N A	¥	Ą	N	NA A	NA	NA	N	N	ΝΑ	NA	ΝΑ	N A	Ą	Ν	Ϋ́	N A	A	N A	Ν	N A	NA	N	N	A	N	Ϋ́	¥ Z	Ϋ́

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW7470A	SW8260C																									
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Ξ	Ξ	⊃	⊃		⊃		Э	ם	⊃	⊃	ο	Э	Э	⊃	⊃	⊃	⊃			⊃	⊃	Ξ	Ξ	⊃	ם	Ξ	⊃	ο	⊃	ο	⊃	⊃	Ξ	⊃	⊃	ο		ο
0.00022 MDL	0.0005 MDL	0.00071 MDL	0.003 MDL	0.18 MDL	0.001 MDL	0.0023 MDL	0.00054 MDL	0.01 MDL	0.00022 MDL	0.00033 MDL	0.0095 MDL	0.00015 MDL	0.05 MDL	0.07 MDL	0.05 MDL	0.025 MDL	0.09 MDL	0.025 MDL	0.013 MDL	0.07 MDL	0.025 MDL	0.05 MDL	0.06 MDL	0.04 MDL	0.1 MDL	0.025 MDL	0.025 MDL	0.05 MDL	0.025 MDL	0.075 MDL	0.025 MDL	0.1 MDL	0.025 MDL	0.05 MDL	0.08 MDL	0.015 MDL	0.025 MDL	0.025 MDL
0.002 PQL	0.002 PQL	0.002 PQL	0.01 PQL	1 PQL	0.004 PQL	0.01 PQL	0.015 PQL	0.04 PQL	0.002 PQL	0.005 PQL	0.035 PQL	0.0003 PQL	0.3 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.02 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.3 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.3 PQL	0.5 PQL	0.1 PQL	0.2 PQL	0.2 PQL
0.002 mg/L	0.002 mg/L	0.002 mg/L	0.01 mg/L	6.3 mg/L	0.004 mg/L	0.3 mg/L	0.015 mg/L	0.04 mg/L	0.002 mg/L	0.005 mg/L	0.035 mg/L	0.0003 mg/L	0.3 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	1/8n 96:0	1/gn 26:0	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.3 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.3 ug/L	0.5 ug/L	0.1 ug/L	2.1 ug/L	0.2 ug/L
12:36:00	12:36:00	12:36:00	12:36:00	12:36:00	12:36:00	12:36:00	12:36:00	12:36:00	12:36:00	12:36:00	12:36:00	13:51:07	0:22:00	0.22:00	0:22:00	0:22:00	0:22:00	0.22:00	0.22:00	0:22:00	0:22:00	0.22:00	0.22:00	0:22:00	0:22:00	0.22:00	0.22:00	0.22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0.22:00	0:22:00	0.22:00	0.22:00	0.22:00
5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D
7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-89-6	7439-92-1	7439-96-5	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	95-50-1	95-49-8	96-18-4	56-23-5	10061-01-5	108-90-7	75-01-4	135-98-8	74-95-3	179601-23-1	95-47-6	120-82-1	100-42-5	74-97-5	75-27-4	541-73-1	71-43-2	75-00-3	10061-02-6	87-61-6	103-65-1	9-84-66	104-51-8	563-58-6	156-59-2	79-34-5
Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2-Dichlorobenzene	2-Chlorotoluene	1,2,3-Trichloropropane	Carbon Tetrachloride	Cis-1, 3- Dichloropropene	Chlorobenzene	Vinyl Chloride	Sec-Butylbenzene	Dibromomethane	m, p-Xylene	o-Xylene	1,2,4-Trichlorobenzene	Styrene	Bromochloromethane	Dichlorobromomethane	1,3-Dichlorobenzene	Benzene	Chloroethane	Trans-1,3-Dichloropropene	1,2,3-Trichlorobenzene	n-Propylbenzene	p-Isopropyltoluene	n-Butylbenzene	1,1-Dichloropropene	Cis-1,2-Dichloroethene	1,1,2,2-Tetrachloroethane
Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other
Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
10:35:00 7901-58-02-GW N	10:35:00 7901-SB-02-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-58-04-GW N	12:50:00 7901-58-04-GW N	12:50:00 7901-SB-04-GW N																																	
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-SB-02-GW Sample	7901-SB-02-GW Sample	7901-58-02-GW Sample	7901-SB-04-GW Sample	7901-58-04-GW Sample	7901-58-04-GW Sample	7901-SB-04-GW Sample	7901-5B-04-GW Sample	7901-SB-04-GW Sample	7901-5B-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample																								
NA	NA	NA	NA	ĄN	NA	NA	NA	NA	Ą	NA	NA	Ą	ď.	ĄN	NA	NA	NA	Ą	Ą	NA	Ą	NA	Ą	NA	NA	Ą	NA	Ϋ́	NA	NA	NA	NA						
NA	NA	NA	NA	NA	NA	NA	N	NA	¥	Ŋ	Ą	Ą	NA	NA	NA	NA	NA	NA	N	Ϋ́	NA																	

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW82 60C	SW82 60C	SW8260C	SW82 60C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM										
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Ξ	⊃	⊃	Э	ο	Þ	Э	Э	О	Э	⊃	⊃	∍	⊃	⊃	⊃	Э	Ξ	Э	Ξ	Э	ο	⊃	Ξ	⊃	Э	⊃	⊃	⊃	⊃	٥	Э	⊃	Э	⊃	Э	Э		
0.03 MDL	0.025 MDL	0.1 MDL	0.083 MDL	0.025 MDL	0.03 MDL	0.05 MDL	0.025 MDL	0.05 MDL	0.025 MDL	0.1 MDL	0.05 MDL	0.11 MDL	0.018 MDL	0.06 MDL	0.025 MDL	0.07 MDL	0.025 MDL	0.06 MDL	0.025 MDL	0.08 MDL	0.44 MDL	0.025 MDL	0.025 MDL	0.035 MDL	0.025 MDL	0.025 MDL	0.03 MDL	0.025 MDL	0.075 MDL	0.025 MDL	0.16 MDL	0.05 MDL	0.025 MDL	0.013 MDL	0.0092 MDL	0.0061 MDL	0.002 MDL	0.002 MDL
0.2 PQL	0.2 PQL	0.5 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.3 PQL	0.2 PQL	0.4 PQL	0.2 PQL	0.5 PQL	0.3 PQL	0.5 PQL	0.1 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.1 PQL	0.5 PQL	2 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.2 PQL	1 PQL	0.3 PQL	0.2 PQL	0.041 PQL	0.031 PQL	0.02 PQL	0.02 PQL	0.02 PQL
0.2 ug/L	0.2 ug/L	0.5 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.3 ug/L	0.2 ug/L	0.4 ug/L	0.2 ug/L	0.5 ug/L	0.3 ug/L	0.5 ug/L	0.1 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.1 ug/L	0.5 ug/L	2 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	1 ug/L	0.3 ug/L	0.2 ug/L	0.041 ug/L	0.031 ug/L	0.02 ug/L	0.026 ug/L	0.26 ug/L
0:22:00	0:22:00	0:22:00	0.22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0.22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0:22:00	0.22:00	0:22:00	0:22:00	0:22:00	0:22:00	0.22:00	0:22:00	0:22:00	0.22:00	0:22:00	0.22:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00
6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	6/1/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D
95-63-6	108-88-3	91-20-3	108-67-8	142-28-9	67-66-3	106-43-4	124-48-1	75-71-8	79-00-5	9-90-86	74-87-3	75-09-2	75-35-4	98-82-8	107-06-2	127-18-4	71-55-6	594-20-7	106-93-4	75-25-2	ine 96-12-8	75-69-4	79-01-6	108-86-1	78-87-5	630-20-6	100-41-4	156-60-5	87-68-3	75-34-3	74-83-9	106-46-7	1634-04-4	91-20-3	91-57-6	90-12-0	208-96-8	83-32-9
1,2,4-Trimethylbenzene	Toluene	Naphthalene	1,3,5-Trimethylbenzene	1,3-Dichloropropane	Chloroform	4-Chlorotoluene	Chlorodibromomethane	CFC-12	1,1,2-Trichloroethane	Tert-Butylbenzene	Chloromethane	Methylene Chloride	1,1-Dichloroethene	Cumene	1,2-Dichloroethane	Tetrachloroethene	1,1,1-Trichloroethane	2,2-Dichloropropane	Ethylene dibromide	Bromoform	1,2-Dibromo-3-Chloropropane 96-12-8	CFC-11	Trichloroethene	Bromobenzene	1,2-Dichloropropane	1,1,1,2-Tetrachloroethane	Ethylbenzene	Trans-1,2-Dichloroethene	Hexachlorobutadiene	1,1-Dichloroethane	Bromomethane	1,4-Dichlorobenzene	Methyl t-butyl ether	Naphthalene	2-Methylnaphthalene	1-Methylnaphthalene	Acenaphthylene	Acenaphthene
Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other		Source - Other	,	Source - Other		Source - Other																					
Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
12:50:00 7901-5B-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-58-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-58-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-58-04-GW N	12:50:00 7901-58-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-58-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-58-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-SB-04-GW N	12:50:00 7901-5B-04-GW N	12:50:00 7901-58-04-GW N												
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant		Consultant		Consultant	Consultant	Consultant	Consultant		Consultant												
7901-58-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample	7901-58-04-GW Sample	7901-58-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample	7901-58-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample	7901-58-04-GW Sample	7901-SB-04-GW Sample	7901-58-04-GW Sample		7901-SB-04-GW Sample	7901-5B-04-GW Sample	7901-58-04-GW Sample	7901-SB-04-GW Sample	7901-5B-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample	7901-5B-04-GW Sample	7901-SB-04-GW Sample	7901-58-04-GW Sample	7901-SB-04-GW Sample	7901-SB-04-GW Sample										
Ą	Ϋ́	NA	N.	N.A.	NA	N.	N.	N A	N A	N A	N A	N A	Ϋ́	N.	NA	ΑN	NA	AA	NA	Ą	N A	ΑN	NA	N A	A A	Ą	NA	NA	ΑN	NA	Ą	NA	Ą	ΝΑ	N A	N A	NA	N A
NA	N	A	N	Ν	Ν	NA	NA	N	NA	NA	¥	Ą	N	NA A	Ą	Ϋ́	N	NA	A	NA	Ν	NA	V V	Ν	ž	N	Ą	Ą	Ą	N A	N	N	N	N	NA	NA	Ϋ́	N

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA TestAmerica, Seattle-	Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	restamenca, seattle- Tacoma WA
W8270D5IM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	SW8270DSIM	NWTPH-GX	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW7470A	SW8260C
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
э					Þ	n	n	ח	⊃	Ξ	⊃	⊃	⊃	⊃	⊃)	n	n	Þ	п					Э)						٥	n	э	Э		Þ	Э
0.0031 MDL	0.0041 MDL	0.0031 MDL	0.002 MDL	0.0041 MDL	0.002 MDL	0.0061 MDL	0.0082 MDL	0.0092 MDL	0.0031 MDL	0.0072 MDL	0.002 MDL	0.0031 MDL	0.05 MDL	0.022 MDL	0.031 MDL	0.028 MDL	0.029 MDL	0.022 MDL	0.02 MDL	0.027 MDL	0.019 MDL	0.079 MDL	0.0014 MDL	0.00055 MDL	0.00022 MDL	0.0005 MDL	0.00071 MDL	0.003 MDL	0.18 MDL	0.001 MDL	0.0023 MDL	0.00054 MDL	0.01 MDL	0.00022 MDL	0.00033 MDL	0.0095 MDL	0.00015 MDL	0.05 MDL
0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.031 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.02 PQL	0.5 PQL	0.51 PQL	0.51 PQL	0.51 PQL	0.51 PQL	0.51 PQL	0.51 PQL	0.51 PQL	0.1 PQL	0.26 PQL	0.005 PQL	0.002 PQL	0.002 PQL	0.002 PQL	0.002 PQL	0.01 PQL	1 PQL	0.004 PQL	0.01 PQL	0.015 PQL	0.04 PQL	0.002 PQL	0.005 PQL	0.035 PQL	0.0003 PQL	0.3 PQL
0.02 ug/L	0.029 ug/L	0.029 ug/L	0.023 ug/L	0.047 ug/L	0.02 ug/L	0.02 ug/L	0.02 ug/L	0.031 ug/L	0.02 ug/L	0.02 ug/L	0.02 ug/L	0.02 ug/L	0.5 mg/L	0.51 ug/L	0.51 ug/L	0.51 ug/L	0.51 ug/L	0.51 ug/L	0.51 ug/L	0.51 ug/L	1.2 mg/L	1 mg/L	0.0068 mg/L	0.007 mg/L	0.002 mg/L	0.002 mg/L	0.0052 mg/L	0.052 mg/L	18 mg/L	0.25 mg/L	0.13 mg/L	0.015 mg/L	0.04 mg/L	0.002 mg/L	0.005 mg/L	0.61 mg/L	0.0003 mg/L	0.3 ug/L
23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:51:00	23:18:00	3:50:00	3:50:00	3:50:00	3:50:00	3:50:00	3:50:00	3:50:00	16:32:00	16:32:00	11:40:00	11.40:00	11:40:00	11:40:00	11.40:00	11.40:00	11:40:00	11:40:00	11.40:00	11.40:00	11:40:00	11:40:00	11:40:00	11:40:00	13:55:36	19:34:00
5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	6/8/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	5/31/2017 D
86-73-7	85-01-8	120-12-7	206-44-0	129-00-0	56-55-3	218-01-9	205-99-2	207-08-9	50-32-8	193-39-5	53-70-3	191-24-2	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-38-2	7440-36-0	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-89-6	7439-92-1	7439-96-5	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	95-50-1
Fluorene	rene				cene		Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Benzo(ghi)perylene		1016	221	1232	242	48	254	1260																		1,2-Dichlorobenzene
₩.	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz[a]anthracene	Chrysene	Benzo(b)f	Benzo(k)f	Benzo(a	()	Dibenzo	Benzolg	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Arsenic	Antimony	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Selenium	Silver	Thallium	Zinc	Mercuny	1,2-Dich
																PCB-aroclor																						Source - Other 1,2-Dich
					Other Source -											PCB-aroclor																						
Source - Other	Source - Other	Source - Other	Other	Other	Water Other Source -	Other	Other	Other	Source - Other	Source - Other	Other	Other	Other	Other	Other	Source - Other PCB-aroclor	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Other	other	Source - Other	Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	other
Source - Water Other	Source Water Other	Source - Water Other	Water Other	Water Other	N Water Other Source -	Water Other	Water Other	Water Other	Source - Water Other	Source - Water Other	Water Other	Water Other	Water Other	Water Other	- Source - Water Other	Source - Water Other PCB-aroclor	Source - Water Other	- Source - Water Other	- Source - Water Other	Source - Water Other	. Source - Water Other	Source - Water Other	Water Other	- Source - Water Other	Source - Water Other	Water Other	- Source - Water Other	- Source - Water Other	Source - Water Other	Source - Water Other	Source - Water Other	Source - Water Other	Source - Water Other	Source - Water Other	Source - Water Other	Source - Water Other	Source - Water Other	other
Source - N Water Other	Source - N Water Other	Source - N Water Other	N N Water Other	N N Water Other	12:50:00 7901-58-04-GW N N Water Other Source Source	N Water Other	N N Water Other	N N Water Other	N Water Other	Source - N Water Other	N N Water Other	N N Water Other	N Water Other	N N Water Other	N N Water Other	N Water Other PCB-arodor	N Water Other	N Water Other	N Water Other	Source N Water Other	N Water Other	Source N Water Other	N N Water Other	N N Water Other	Source - N Water Other	N N Water Other	N Water Other	Source N Water Other	Source - N Water Other	Source - N Water Other	N Water Other	Source - N Water Other	Source - N Water Other	Source- N Water Other	Source - N Water Other	Source N Water Other	N Water Other	N Water Other
Source - 12:50:00 7901:SB-04-5W N N Water Other	Source - 12:50:00 7901-58-04-GW N N Water Other	12:50:00 7901-58-04-GW N N Water Other	12:50:00 7901-SB-04-GW N N Water Other course.	12:50:00 7901-58-04-GW N N Water Source	12:50:00 7901-58-04-GW N N Water Other Source Source	12:50:00 7901-SB-04-GW N N Water Other	12:50:00 7901-SB-04-GW N N Water Journe	12:50:00 7901-58-04-GW N N Water Other	12:50:00 7901-58-04-GW N N Water Other	Source - 12:50:00 7901-58-04-GW N N Water Other	12:50:00 7901-SB-04-GW N N Water Source -	12:50:00 7901-SB-04-GW N N Water Source -	12:50:00 7901-58-04-GW N N Water Other	12:50:00 7901-SB-04-GW N N Water Source	12:50:00 7901-SB-04-GW N N Water Source	12:50:00 7901-58-04-5W N N Water Other PCB-arodor	12:50:00 7901-SB-04-GW N N Water Other	12:50:00 7901-SB-04-GW N N Water Other	12:50:00 7901-58-04-GW N N Water Other	Source - 12:50:00 7901-SB-04-GW N N Water Other -	12:50:00 7901-58-04-GW N N Water Other	Source - 12:50:00 7901-58-04-GW N N Water Other	12:50:00 7901:58-04-GW N N Water Other	12:50:00 7901-58-04-GW N N Water Other	12:50:00 7901-SB-04-GW N N Water Other	12:50:00 7901-58-04-GW N N Water Other	. Source	Source - 22:50:00 7901-SB-04-GW N N Water Other	Source - 12:50:00 7901-SB-04-GW N N Water Other	12:50:00 7901-SB-04-GW N N Water Other	. Source	Source - 12:50:00 7901-58-04-GW N Water Other	Source - 12:50:00 7901-58-04-GW N N Water Other	Source - 12:50:00 7901-58-04-6W N N Water Other	Source - 12:50:00 7901-58-04-GW N N Water Other	Source - 12:50:00 7901-58-04-GW N N Water Other	12:50:00 7901-58-04-GW N N Water Other	. Source - Source - 12:00:00 7901-TB-GW N N Water Other
Sample Consultant 5/25/2017 12:5000 7901:58-04-6W N N Water Other	Source - Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N N Water Other Consultant	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N Water Other Source-	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N Water Other Consultant	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-56-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:SB-04-GW N Water Source -	Sample Consultant 5/25/2017 12:50:00 79:01:58-Q4-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-Q4-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901;58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901;58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-56-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-Q4-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-6W N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901-58-Q4-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-6W N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Source - Sample Consultant 5/25/2017 12:50:00 7901-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-Q4-GW N Water Other	5/25/2017 12:00:00 7901-TB-GW N N Water Other
Source - Consident \$/25/2017 12:50:00 7903-59-04-0W N N Water Other Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-5W N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Sou	Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N N Water Other Source - Source	Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901;-58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901-58-04-6W N N Water Other	Consultant 5/25/2017 12:50:00 7901:58-Q4-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901-58-Q4-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other PCB-andon	Source - Sonsultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901:5B-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901.58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Consultant 5/25/2017 12:50:00 7901;-SB-Q4-GW N N Water Other	Source - Sonsulant 5/25/2017 12:50:00 79015-58-04-GW N N Water Other	Source - Sonsultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901x-58-04-GW N N Water Other	Source - Sonsulant 5/25/2017 12:50:00 79015-58-Q4-GW N N Water Other	Source - Sonsultant 5/25/2017 12:50:00 79015-58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Sonsultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-5W N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Source - Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Source - Sonsultant 5/25/2017 12:00:00 7901L-TB-GW N N Water Other
Sample Consultant 5/25/2017 12:5000 7901:58-04-6W N N Water Other	Source - Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N N Water Other Consultant	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N Water Other Source-	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N Water Other Consultant	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-56-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:SB-04-GW N Water Source -	Sample Consultant 5/25/2017 12:50:00 79:01:58-Q4-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-Q4-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901;58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901;58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-56-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-Q4-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-6W N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901-58-Q4-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901:58-04-6W N N Water Other	Sample Consultant 5/25/2017 12:50:00 7901-58-04-GW N N Water Other	Source - Sample Consultant 5/25/2017 12:50:00 7901-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01-58-04-GW N Water Other	Sample Consultant 5/25/2017 12:50:00 79:01:58-Q4-GW N Water Other	Sample Consultant 5/25/2017 12:00:00 7901:TB-GW N N Water Other

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW82 60C	SW82 60C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Ξ	⊃	Ξ	⊃	⊃	ם	⊃	Þ	Ξ	⊃	Ξ	⊃	⊃	⊃	⊃	⊃	⊃	Þ	⊃	Э	Ξ	⊃	⊃	⊃	⊃	⊃	⊃	⊃	Э	⊃	⊃	Ξ	ם	⊃	Ξ	Ξ	⊃	⊃	Ξ
0.07 MDL	0.05 MDL	0.025 MDL	0.09 MDL	0.025 MDL	0.013 MDL	0.07 MDL	0.025 MDL	0.05 MDL	0.06 MDL	0.04 MDL	0.1 MDL	0.025 MDL	0.025 MDL	0.05 MDL	0.025 MDL	0.075 MDL	0.025 MDL	0.1 MDL	0.025 MDL	0.05 MDL	0.08 MDL	0.015 MDL	0.025 MDL	0.025 MDL	0.03 MDL	0.025 MDL	0.1 MDL	0.083 MDL	0.025 MDL	0.03 MDL	0.05 MDL	0.025 MDL	0.05 MDL	0.025 MDL	0.1 MDL	0.05 MDL	0.11 MDL	0.018 MDL
0.5 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.02 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.3 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.3 PQL	0.5 PQL	0.1 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.3 PQL	0.2 PQL	0.4 PQL	0.2 PQL	0.5 PQL	0.3 PQL	0.5 PQL	0.1 PQL
0.5 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.02 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.3 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.3 ug/L	0.5 ug/L	0.1 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.3 ug/L	0.2 ug/L	0.4 ug/L	0.2 ug/L	0.5 ug/L	0.3 ug/L	0.5 ug/L	0.1 ug/L
19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00
5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D
95-49-8	96-18-4	56-23-5	10061-01-5	108-90-7	75-01-4	135-98-8	74-95-3	179601-23-1	95-47-6	120-82-1	100-42-5	74-97-5	75-27-4	541-73-1	71-43-2	75-00-3	10061-02-6	87-61-6	103-65-1	9-83-66	104-51-8	563-58-6	156-59-2	79-34-5	95-63-6	108-88-3	91-20-3	108-67-8	142-28-9	67-66-3	106-43-4	124-48-1	75-71-8	79-00-5	9-90-86	74-87-3	75-09-2	75-35-4
2-Chlorotolue ne	1,2,3-Trichloropropane	Carbon Tetrachloride	Cis-1, 3-Dichloropropene	Chlorobenzene	Vinyl Chloride	Sec-Butylbenzene	Dibromomethane	m, p-Xylene	o-Xylene	1,2,4-Trichlorobenzene	Styrene	Bromochloromethane	Dichlorobromomethane	1,3-Dichlorobenzene	Benzene	Chloroethane	Trans-1,3-Dichloropropene	1,2,3-Trichlorobenzene	n-Propylbenzene	p-Isopropyltoluene	n-Butylbenzene	1,1-Dichloropropene	Cis-1,2-Dichloroethene	1,1,2,2-Tetrachloroethane	1,2,4-Trimethylbenzene	Toluene	Naphthalene	1,3,5-Trimethylbenzene	1,3-Dichloropropane	Chloroform	4-Chlorotoluene	Chlorodibromomethane	CFC-12	1,1,2-Trichloroethane	Tert-Butylbenzene	Chloromethane	Methylene Chloride	1,1-Dichloroethene
									Source - Other		,																											Source - Other
Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW
Ϋ́	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΑN	NA	N.																				
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ν	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ą	NA	Ν	NA	Ą	ν V

TestAmerica, Seattle- Tacoma WA	l estamenca, seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, seattle- Tacoma WA
SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW8260C	SW82 60C	SW82 60C	SW8260C	SW8260C	SW8270D	SW8270D	SW8270D	SW8270D															
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Dry	Dry	Dry	Dry															
ם	⊃	⊃	⊃	⊃	Э	О	⊃	⊃	⊃	Э	⊃	⊃	⊃	Э	Э	⊃	О	⊃	⊃	⊃	⊃	⊃	Э		Э	ο	⊃	Э	⊃	О	Þ	ס	Э		⊃	⊃	⊃	⊃
0.06 MDL	0.025 MDL	0.07 MDL	0.025 MDL	0.06 MDL	0.025 MDL	0.08 MDL	0.44 MDL	0.025 MDL	0.025 MDL	0.035 MDL	0.025 MDL	0.025 MDL	0.03 MDL	0.025 MDL	0.075 MDL	0.025 MDL	0.16 MDL	0.05 MDL	0.025 MDL	370 MDL	730 MDL	290 MDL	510 MDL	300 MDL	2700 MDL	2200 MDL	910 MDL	910 MDL	12000 MDL	2600 MDL	2100 MDL	300 MDL	2600 MDL	540 MDL	2300 MDL	910 MDL	2800 MDL	910 MDL
0.5 PQL	0.2 PQL	0.5 PQL	0.2 PQL	0.5 PQL	0.1 PQL	0.5 PQL	2 PQL	0.5 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.2 PQL	0.5 PQL	0.2 PQL	1 PQL	0.3 PQL	0.2 PQL	3000 PQL	3000 PQL	3000 PQL	3000 PQL	1800 PQL	12000 PQL	9100 PQL	6100 PQL	6100 PQL	61000 PQL	12000 P.Q.L	9100 PQL	1500 PQL	12000 PQL	3000 PQL	9100 PQL	6100 PQL	12000 PQL	12000 PQL
0.5 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	0.5 ug/L	0.1 ug/L	0.5 ug/L	2 ug/L	0.5 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.2 ug/L	0.5 ug/L	0.2 ug/L	1 ug/L	0.3 ug/L	0.2 ug/L	3000 ug/Kg	3000 ug/kg	3000 ug/kg	3000 ug/Kg	13000 ug/Kg	12000 ug/Kg	9100 ug/Kg	6100 ug/Kg	6100 ug/Kg	61000 ug/Kg	12000 ug/Kg	9100 ug/Kg	1500 ug/Kg	12000 ug/Kg	14000 ug/Kg	9100 ug/Kg	6100 ug/Kg	12000 ug/Kg	12000 ug/Kg
19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:34:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00
5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
98-82-8	107-06-2	127-18-4	71-55-6	594-20-7	106-93-4	75-25-2	ne 96-12-8	75-69-4	79-01-6	108-86-1	78-87-5	630-20-6	100-41-4	156-60-5	87-68-3	75-34-3	74-83-9	106-46-7	1634-04-4	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4
Cumene	1,2-Dichloroethane	Tetrachloroethene	1, 1, 1-Trichloroethane	2,2-Dichloropropane	Ethylene dibromide	Bromoform	1,2-Dibromo-3-Chloropropane 96-12-8	CFC-11	Trichloroethene	Bromobenzene	1,2-Dichloropropane	1,1,1,2-Tetrachloroethane	Ethylbenzene	Trans-1,2-Dichloroethene	Hexachlorobutadiene	1,1-Dichloroethane	Bromomethane	1,4-Dichlorobenzene	Methyl t-butyl ether	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)
	Source - Other	Source - Other	Source - Other				Source - Other		Source - Other						Source - Other		Source - Other	Source - Other	Source - Other	Source - Other	i Source - Other	i Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other
Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Solid/Sedi ment	Solid/Sedi ment	Solid/Sedi	Solid/Sedi ment															
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	z	z	z	z	Z	z	Z	z	z	Z	Z	Z	Z
12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	12:00:00 7901-TB-GW	15:35:00 7901-58-01-9.5	15:35:00 7901-SB-01-9.5	15:35:00 7901-SB-01-9.5	15:35:00 7901-SB-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-SB-01-9.5	15:35:00 7901-SB-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-SB-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-SB-01-9.5
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-TB-GW	7901-58-01-9.5	7901-SB-01-9.5	7901-58-01-9.5	7901-SB-01-9.5	7901-58-01-9.5	7901-58-01-9.5	7901-SB-01-9.5	7901-58-01-9.5	7901-SB-01-9.5	7901-5B-01-9.5	7901-SB-01-9.5								
¥.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ν	A	Ϋ́	N A	NA	Ą	AN	A	A	Ą	Ą	¥.	NA	Ν	ΑN	ΑN	AN	NA	NA	Ν	ΑN	Ν	A	Ą	Ą	Ϋ́	ΑN	ΑN	Ą	ΑN	AN	Ϋ́	AN	¥ Z	¥.	A	NA	NA	N.

TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D
Dιγ	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Þ	ם	n	Þ	D	n	ס	Þ	Þ									n	D	Þ	ם	Þ	ם	D					ם	ם	n	Þ			Þ	n	Þ	Þ	
6100 MDL	2400 MDL	6100 MDL	2500 MDL	2000 MDL	24000 MDL	2500 MDL	1200 MDL	22000 MDL	300 MDL	300 MDL	300 MDL	300 MDL	790 MDL	300 MDL	910 MDL	850 MDL	64000 MDL	2300 MDL	2500 MDL	2400 MDL	8300 MDL	2300 MDL	3000 MDL	1900 MDL	790 MDL	730 MDL	2200 MDL	8000 MDL	2000 MDL	3500 MDL	14000 MDL	300 MDL	300 MDL	300 MDL	910 MDL	1600 MDL	2300 MDL	300 MDL
24000 PQL	12000 PQL	61000 PQL	12000 PQL	9100 PQL	91000 PQL	12000 PQL	6100 PQL	91000 PQL	1500 PQL	1500 PQL	1500 PQL	1500 PQL	3700 PQL	1500 PQL	3700 PQL	3700 PQL	150000 PQL	240000 PQL	12000 PQL	12000 PQL	37000 PQL	15000 PQL	12000 PQL	9100 PQL	3700 PQL	3000 PQL	9100 PQL	33000 PQL	9100 PQL	30000 PQL	61000 PQL	1500 PQL	1500 PQL	3000 PQL	3000 PQL	6100 PQL	9100 PQL	2400 PQL
24000 ug/Kg	12000 ug/Kg	61000 ug/Kg	12000 ug/Kg	9100 ug/Kg	91000 ug/Kg	12000 ug/Kg	6100 ug/Kg	91000 ug/Kg	35000 ug/Kg	4100 ug/Kg	56000 ug/Kg	82000 ug/Kg	63000 ug/Kg	56000 ug/Kg	25000 ug/Kg	22000 ug/Kg	150000 ug/Kg	240000 ug/Kg	12000 ug/Kg	12000 ug/Kg	37000 ug/Kg	15000 ug/Kg	12000 ug/Kg	18000 ug/Kg	77000 ug/Kg	6200 ug/Kg	10000 ug/Kg	33000 ug/Kg	9100 ug/Kg	30000 ug/Kg	61000 ug/Kg	190000 ug/Kg	31000 ug/Kg	3000 ug/Kg	3000 ug/Kg	6100 ug/Kg	9100 ug/Kg	31000 ug/Kg
19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
91-94-1	99-09-2	534-52-1	101-55-3	59-50-7	106-47-8	7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	0-58-59	100-51-6	111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0	7-52-38	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5
3,3'- Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophenyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz[a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benz o(k)fluoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl) Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chryse ne	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene
Source - Other	other	Source - Other		Source - Other	Other	other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	, -	Source - Other	ource -	Solid/Sedi Source - ment Other I																			
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
15:35:00 7901-58-01-9.5 N	15:35:00 7901-SB-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-SB-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	N 15:35:00 7901-58-01-9.5	15:35:00 7901-SB-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-S8-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-S8-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-5B-01-9.5	15:35:00 7901-58-01-9.5 N	15:35:00 7901-SB-01-9.5 N
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample						
A	NA	AN	NA	NA	AN	NA	AN	AN	NA	NA	AN	NA	ΝΑ	NA	NA	NA	ΝΑ	NA	AN	NA	AN	NA	NA	NA	ΝΑ	NA	Ą	Ą	Ą	NA	AN	ΝΑ	AN	N.	ΝΑ	AA	N.	ΝΑ
N A	NA	NA	NA	NA	NA	NA	NA	NA	Ą	ž	Ą	N A	Υ V	ď.	ď.	Y Z	NA	N	Ą	Ą	Ą	NA A	NA	Ä	N A	Y Z	NA	NA	N	ž	Ą	¥	Ą	Ą	NA	NA	NA	NA

Tacoma WA Test America Seattle-	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	NWTPH-GX	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW7471A	SW8270D						
																			Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total							
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Aud	hu	Dry	bry	Dry	Dry	Dry	Dry	Dry	Dry	Aud	Dry	Dry	Dry	Aud	bry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Aud	Dry	Duy	Dry	Dry	Aud	Aud	Dry	Dry
Þ		ם	⊃	⊃	ם		Ξ			⊃	Þ	n	n	⊃	ם	⊃											⊃		⊃			⊃	Þ	Э	Э	Э	Э	0
2300 MDL	300 MDL	2600 MDL	2700 MDL	910 MDL	2500 MDL	730 MDL	2300 MDL	910 MDL	5.1 MDL	0.0093 MDL	0.0053 MDL	0.0061 MDL	0.002 MDL	0.0036 MDL	0.0019 MDL	0.0024 MDL	14 MDL	11 MDL	0.086 MDL	0.13 MDL	0.019 MDL	0.097 MDL	0.079 MDL	0.28 MDL	0.061 MDL	0.24 MDL	0.28 MDL	0.025 MDL	0.069 MDL	2 MDL	0.011 MDL	33 MDL	10W Z9	27 MDL	46 MDL	28 MDL	250 MDL	200 MDL
9100 PQL	1500 PQL	12000 PQL	12000 PQL	3700 PQL	24000 PQL	3700 PQL	9100 PQL	3700 PQL	9.8 PQL	0.031 PQL	0.014 PQL	0.014 PQL	0.013 PQL	0.014 PQL	0.013 PQL	0.013 PQL	59 PQL	59 PQL	0.25 PQL	0.63 PQL	0.25 PQL	0.5 PQL	0.63 PQL	1.3 PQL	0.63 PQL	0.63 PQL	1.3 PQL	0.25 PQL	0.5 PQL	6.3 PQL	0.037 PQL	280 PQL	280 PQL	280 PQL	280 PQL	170 PQL	1100 PQL	830 PQL
9100 ug/Kg	15000 ug/Kg	12000 ug/Kg	12000 ug/Kg	3700 ug/Kg	24000 ug/Kg	250000 ug/Kg	9100 ug/Kg	240000 ug/Kg	21 mg/Kg	0.031 mg/kg	0.014 mg/Kg	0.014 mg/Kg	0.013 mg/Kg	0.014 mg/Kg	0.013 mg/Kg	0.013 mg/Kg	3800 mg/Kg	9000 mg/Kg	99 mg/Kg	35 mg/Kg	0.25 mg/Kg	2.8 mg/Kg	170 mg/Kg	1100 mg/Kg	6100 mg/Kg	31 mg/Kg	1.3 mg/Kg	3.4 mg/Kg	0.5 mg/Kg	1200 mg/Kg	0.24 mg/Kg	280 ug/Kg	280 ug/Kg	280 ug/Kg	280 ug/Kg	170 ug/Kg	1100 ug/Kg	830 ug/Kg
19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:47:00	19:22:00	16:16:00	16:16:00	16:16:00	16:16:00	16:16:00	16:16:00	16:16:00	22.26:00	22:26:00	14:51:00	14:51:00	14:51:00	14:51:00	14:51:00	14:51:00	14:51:00	14:51:00	14:51:00	14:51:00	14:51:00	14:51:00	15:21:20	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/7/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/9/2017 D	6/9/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
78-59-1	91-20-3	98-95-3	621-64-7	86-30-6	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2
Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Beryllum	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol
	Other	Source - Other		Source - Other	Source - Other	Source - Other	Source - Other	Solid/Sedi Source - ment Other	Source - Other	Source - Other	Other	other	Source - Other	other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other		Source - Other	ource - Other	Solid/Sedi Source - ment Other													
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-5B-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-SB-01-9.5 N	N 15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	N 5:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-SB-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	N 15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	N 15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-58-01-9.5 N	15:35:00 7901-5B-01-9.5 N	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5	15:35:00 7901-58-01-9.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-5B-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-5B-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-58-01-9.5 Sample	7901-5B-01-9.5 Sample	7901-58-01-9.5 Sample	7901-SB-01-9.5 Sample	7901-5B-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-9.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-5B-01-14.5 Sample	7901-58-01-14.5 Sample	7901-58-01-14.5 Sample	7901-5B-01-14.5 Sample	7901-58-01-14.5 Sample
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ą
Ą	ă,	Ą	Ϋ́	Š	Ą	Ą	ΝΑ	ž	ž	ž	¥	Ą	A A	Ą	Ą	Ą	ΝΑ	Ą	NA	ΝΑ	Ą	Ä	N A	Ą	Ą	Ā	Ą	ΝΑ	Ą	Ą	Ą	Ą	ΝΑ	NA	Ą	A A	Ą	Ą

TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA		TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	ριγ	ριγ	Dry
ם	n	Þ	ο	n	ם	D	D	ם	⊃)	Þ	D	n	n	D	n	n	o	Þ	D	D	ם	D		Þ	ο	Þ	ם	ם	ם	Þ	Þ	n	Þ	Þ	Þ	Þ	ם
83 MDL	83 MDL	1100 MDL	240 MDL	190 MDL	28 MDL	230 MDL	49 MDL	210 MDL	83 MDL	260 MDL	83 MDL	550 MDL	220 MDL	250 MDL	230 MDL	180 MDL	2200 MDL	230 MDL	110 MDL	2000 MDL	28 MDL	28 MDL	28 MDL	28 MDL	72 MDL	28 MDL	83 MDL	78 MDL	2900 MDL	210 MDL	230 MDL	220 MDL	750 MDL	210 MDL	280 MDL	170 MDL	72 MDL	10 MDL
550 PQL	550 PQL	5500 PQL	1100 PQL	830 PQL	140 PQL	1100 PQL	280 PQL	830 PQL	550 PQL	1100 PQL	1100 PQL	2200 PQL	1100 PQL	5500 PQL	1100 PQL	830 PQL	8300 PQL	1100 PQL	550 PQL	8300 PQL	140 PQL	140 PQL	140 PQL	140 PQL	330 PQL	140 PQL	330 PQL	330 PQL	14000 PQL	22000 PQL	1100 PQL	1100 PQL	3300 PQL	1400 PQL	1100 PQL	830 PQL	330 PQL	280 PQL
550 ug/Kg	550 ug/Kg	5500 ug/Kg	1100 ug/Kg	830 ug/Kg	140 ug/Kg	1100 ug/Kg	280 ug/Kg	830 ug/Kg	550 ug/Kg	1100 ug/Kg	1100 ug/Kg	2200 ug/Kg	1100 ug/Kg	5500 ug/Kg	1100 ug/Kg	830 ug/Kg	8300 ug/Kg	1100 ug/Kg	550 ug/Kg	8300 ug/Kg	140 ug/Kg	140 ug/Kg	140 ug/Kg	250 ug/Kg	330 ug/Kg	140 ug/Kg	330 ug/Kg	330 ug/Kg	14000 ug/Kg	22000 ug/Kg	1100 ug/Kg	1100 ug/Kg	3300 ug/Kg	1400 ug/Kg	1100 ug/Kg	830 ug/Kg	330 ug/Kg	280 ug/Kg
20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	534-52-1	101-55-3	59-50-7	106-47-8	7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	0-58-59	100-51-6	111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3
2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'-Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophenyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz[a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene
	ource - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Other Other	other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Solid/Sedi Source - ment Other D	Source - Other	Source - Other	Source - Other	ource -	Solid/Sedi Source - ment Other D
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-58-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample
NA	AA	NA A	NA	Ą	NA A	NA	NA	NA	NA	NA	NA A	N.	N.A.	NA A	NA A	NA A	N.A.	NA	NA A	A A	NA A	N.	NA	A A	NA A	NA	NA A	NA	NA A	NA A	NA A	NA A	NA	NA A	Ą	NA	NA	NA A
N A	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ν	¥	NA	NA	NA	NA	NA	NA	NA	¥	¥	ž	¥	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N

Tacoma WA TestAmerica Seattle	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	NWTPH-GX	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A						
																															Total	Total	Total	Total	Total	Total	Total	Total
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Þ	ם	Э	⊃	ם		Þ	⊃	Þ	Э	Э	⊃	⊃	⊃	⊃	⊃	⊃	⊃		Þ			⊃	⊃	⊃	⊃	⊃	Ξ	⊃										
200 MDL	730 MDL	180 MDL	320 MDL	1200 MDL	28 MDL	28 MDL	28 MDL	83 MDL	140 MDL	210 MDL	28 MDL	210 MDL	28 MDL	230 MDL	240 MDL	83 MDL	200 MDL	10W Z9	210 MDL	83 MDL	9 WDF	0.0081 MDL	0.0046 MDL	0.0054 MDL	0.0018 MDL	0.0032 MDL	0.0016 MDL	0.0021 MDL	13 MDL	9.7 MDL	0.076 MDL	0.11 MDL	0.017 MDL	0.086 MDL	0.07 MDL	0.25 MDL	0.054 MDL	0.22 MDL
830 PQL	3100 PQL	830 PQL	2800 PQL	5500 PQL	140 PQL	140 PQL	280 PQL	280 PQL	550 PQL	830 PQL	220 PQL	830 PQL	140 PQL	1100 PQL	1100 PQL	330 PQL	2200 PQL	330 PQL	830 PQL	330 PQL	12 PQL	0.027 PQL	0.012 PQL	0.012 PQL	0.011 PQL	0.012 PQL	0.011 PQL	0.011 PQL	53 PQL	53 PQL	0.22 PQL	0.56 PQL	0.22 PQL	0.45 PQL	0.56 PQL	1.1 PQL	0.56 PQL	0.56 PQL
830 ug/Kg	3100 ug/Kg	830 ug/Kg	2800 ug/Kg	5500 ug/Kg	530 ug/Kg	140 ug/Kg	280 ug/Kg	280 ug/Kg	550 ug/Kg	830 ug/Kg	220 ug/Kg	830 ug/Kg	140 ug/Kg	1100 ug/Kg	1100 ug/Kg	330 ug/Kg	2200 ug/Kg	540 ug/Kg	830 ug/Kg	580 ug/Kg	32 mg/Kg	0.027 mg/Kg	0.012 mg/Kg	0.012 mg/Kg	0.011 mg/Kg	0.012 mg/Kg	0.011 mg/Kg	0.011 mg/Kg	1300 mg/Kg	4000 mg/Kg	3.5 mg/Kg	14 mg/Kg	0.53 mg/Kg	4.9 mg/Kg	66 mg/Kg	44 mg/Kg	1100 mg/Kg	32 mg/Kg
20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	20:13:00	19:52:00	16:32:00	16:32:00	16:32:00	16:32:00	16:32:00	16:32:00	16:32:00	22:48:00	22:48:00	14:55:00	14:55:00	14:55:00	14:55:00	14:55:00	14:55:00	14:55:00	14:55:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/7/2017 D	6/4/2017 D	6/9/2017 D	6/9/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D						
132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0	86-73-7	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3	621-64-7	9-06-98	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0
Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Berylium	Cadmium	Chromium	Copper	Lead	Nickel
solid/sedi Source -	ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-5B-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-58-01-14.5 N	15:40:00 7901-5B-01-14.5 N					
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-58-01-14.5 Sample	7901-58-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-58-01-14.5 Sample	7901-58-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-58-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample								
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Α̈́	A A	ΑA	ΑĀ	ΑĀ	Ą	ΑĀ	ž	ž	¥	ΝA	ΑN	Υ V	A A	¥.	ΑN	ΑN	ΝA	A A	ΑN	ΑN	ΑN	Υ V	Α̈́	Ϋ́	A A	Υ V	Ϋ́	ΑN	ΑĀ	ΑN	A N	ΑĀ	ΑN	ΑĀ	A A	ν. V

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Taroma WA	TestAmerica, Seattle- Taroma WA	TestAmerica, Seattle-	Tacoma WA
SW6020A	SW6020A	SW6020A	SW6020A	SW7471A	SW8270D	SWR270D	3W82 70D	3W8270D	SW8270D																														
Total	Total	Total	Total	Total																																			
Βry	Dry	Au	Dry	Dry	Dry	. vd	à à	Å č	Ś	Dry																													
Э	ם	⊃			5	ο	>	ס	ם	Þ	Э	ם	Э	Э	Э	Þ	⊃	>	>	⊃	⊃	Þ	⊃	Э	Þ	>	⊃	Э	ס	Э	Э	>	⊃	ם	5	> =	o =	>	⊃
0.24 MDL	0.022 MDL	0.061 MDL	1.8 MDL	0.0098 MDL	8.7 MDL	17 MDL	7 MDL	12 MDL	7.3 MDL	99 WDF	52 MDL	22 MDL	22 MDL	290 MDL	63 MDL	SO MDL	7.3 MDL	61 MDL	13 MDL	54 MDL	22 MDL	70 WDF	22 MDL	150 MDL	S8 MDL	150 MDL	10W 09	48 MDL	280 MDL	10W 09	29 MDL	540 MDL	7.3 MDL	7.3 MDL	7.3 MDL		19 MDI	TO MOL	7.3 MDL
1.1 PQL	0.22 PQL	0.45 PQL	5.6 PQL	0.033 PQL	73 PQL	73 PQL	73 PQL	73 PQL	44 PQL	290 PQL	220 PQL	150 PQL	150 PQL	1500 PQL	290 PQL	220 PQL	36 PQL	290 PQL	73 PQL	220 PQL	150 PQL	290 PQL	290 PQL	580 PQL	290 PQL	1500 PQL	290 PQL	220 PQL	2200 PQL	290 PQL	150 PQL	2200 PQL	36 PQL	36 PQL	36 POL	36 PO	35 Tal.	97 PQL	36 PQL
1.1 mg/Kg	0.22 mg/Kg	0.45 mg/Kg	1800 mg/Kg	0.078 mg/Kg	73 ug/Kg	73 ug/Kg	73 ug/Kg	73 ug/Kg	44 ug/Kg	290 ug/Kg	220 ug/Kg	150 ug/Kg	150 ug/Kg	1500 ug/Kg	290 ug/Kg	220 ug/Kg	36 ug/Kg	290 ug/Kg	73 ug/Kg	220 ug/Kg	150 ug/Kg	290 ug/Kg	290 ug/Kg	580 ug/Kg	290 ug/Kg	1500 ug/Kg	290 ug/Kg	220 ug/Kg	2200 ug/Kg	290 ug/Kg	150 ug/Kg	2200 ug/Kg	36 ug/Kg	36 ug/Kg	36 ug/Kg	36 19/89	30 ug/ ng	8V/8n /e	36 ug/Kg
14:55:00	14:55:00	14:55:00	14:55:00	15:23:43	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00
5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	0/2/02/2/9	0 /102/9/9	0/2/201/ D	6/6/2017 D
7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	6-79-501	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	534-52-1	101-55-3	59-50-7	106-47-8	7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	26.55.3	50-33-3	90-35-06	205-99-2
Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'-Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophenyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Renzfalanthracene	Benzo(a)nvrene	perzo(ajpyrene	Benzo(b)fluoranthene
Solid/Sedi Source- ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source -	Solid/Sedi Source -	Sedi	ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	: z	z z	z	z
15:40:00 7901-58-01-14:5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:40:00 7901-SB-01-14.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17:5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17:5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17.5 N		15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17:5 N	N 5:45:00 7901-58-01-17.5				15:45:00 7901-SB-01-17.5 N									
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	3/23/201/	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-01-14.5 Sample	7901-58-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-14.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample				7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample				750 t-58-0t-17:5 Sample	7901-58-01-17.5 Sample											
Ā	NA	NA	NA	NA	NA	ΝΑ	NA	A	NA	Ą	2 4	2 2	K.	N.A.																									
NA	N	N	NA	N A	NA	NA	NA	NA	NA	NA	N A	NA	NA	N A	NA	N A	N	NA	Ν̈́	NA	NA	W	Ą	(4 2	<u> </u>	AN.	NA												

Tacoma WA TestAmerica Seattle-	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82 70D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82 70D	SW8270D	SW8270D	SW8270D	SW8270D	SW82 70D	SW8270D	NWTPH-GX	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
D	n	ם	Þ	o	ס	n	D	ם	Þ	Þ	>	ס	Þ	Þ	ח	Þ		ס	ס	Þ	ם	ס	Þ	Þ	Þ	Ξ	ם	Þ	ח	ם	כ		ס	n	Þ	Þ	Þ	ס
22 MDL	20 MDL	1500 MDL	S4 MDL	90 MDL	S8 MDL	200 MDL	54 MDL	73 MDL	45 MDL	19 MDL	17 MDL	52 MDL	190 MDL	48 MDL	83 MDL	320 MDL	7.3 MDL	7.3 MDL	7.3 MDL	22 MDL	38 MDL	SS MDL	7.3 MDL	S4 MDL	7.3 MDL	61 MDL	64 MDL	22 MDL	130 MDL	17 MDL	25 MDL	22 MDL	7.8 MDL	0.01 MDL	0.0059 MDL	0.0069 MDL	0.0022 MDL	0.0041 MDL
87 PQL	87 PQL	3600 PQL	5800 PQL	290 PQL	290 PQL	870 PQL	360 PQL	290 PQL	220 PQL	87 PQL	73 PQL	220 PQL	800 PQL	220 PQL	730 PQL	1500 PQL	36 PQL	36 PQL	73 PQL	73 PQL	150 PQL	220 PQL	58 PQL	220 PQL	36 PQL	290 PQL	290 PQL	87 PQL	580 PQL	87 PQL	220 PQL	87 PQL	15 PQL	0.035 PQL	0.015 PQL	0.015 PQL	0.014 PQL	0.015 PQL
87 ug/Kg	87 ug/Kg	3600 ug/Kg	5800 ug/Kg	290 ug/Kg	290 ug/Kg	870 ug/Kg	360 ug/Kg	290 ug/Kg	220 ug/Kg	87 ug/Kg	73 ug/Kg	220 ug/Kg	800 ug/Kg	220 ug/Kg	730 ug/Kg	1500 ug/Kg	88 ug/Kg	36 ug/Kg	73 ug/Kg	73 ug/Kg	150 ug/Kg	220 ug/Kg	58 ug/Kg	220 ug/Kg	36 ug/Kg	290 ug/Kg	290 ug/Kg	87 ug/Kg	580 ug/Kg	87 ug/Kg	220 ug/Kg	110 ug/Kg	15 mg/Kg	0.035 mg/Kg	0.015 mg/Kg	0.015 mg/Kg	0.014 mg/Kg	0.015 mg/Kg
15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15,05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	15:05:00	20:23:00	16:48:00	16:48:00	16:48:00	16:48:00	16:48:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/7/2017 D	6/4/2017 D				
191-24-2	207-08-9	65-85-0	100-51-6	111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0	86-73-7	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3	621-64-7	9-08-30-6	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6
Benzo(ghi)perylene	Benzo(k)fluoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-arodor 1242	PCB-aroclor 1248
ment Other	ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
15:45:00 7901-58-01-17:5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-58-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-5B-01-17.5 Sample	7901-SB-01-17.5 Sample
	∢	NA	NA	NA	NA	NA	NA	N.A.	N.A.	NA	NA	NA	NA A	NA A	NA	N.	NA	Ą	A A	N A	NA	NA	Ą	N.A.	NA	N.A.	NA	NA	NA	NA	NA	NA	NA	NA	NA	N.	A A	NA
Ν	N.	-																																				

Tacoma WA Test America Seattle-	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8082A	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW7471A	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW8270D SW8270D	SW8270D	SW8270D	SW8270D	SW8270D																				
				Total																																		
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Drγ
Þ	Þ	Ξ					⊃					Ξ	ο	ο			⊃	Ξ	⊃	⊃	⊃	⊃	Þ	ם	Ξ	ο	Ξ	⊃	ם	⊃	D	⊃	Þ	Ξ	Ξ	ο	ο	⊃
0.0021 MDL	0.0027 MDL	18 MDL	13 MDL	0.091 MDL	0.13 MDL	0.02 MDL	0.1 MDL	0.085 MDL	0.3 MDL	0.064 MDL	0.26 MDL	0.29 MDL	0.027 MDL	0.074 MDL	2.2 MDL	0.013 MDL	70 MDL	140 MDL	36 MDL	10W 96	28 MDL	520 MDL	420 MDL	170 MDL	170 MDL	2300 MDL	200 MDL	390 MDL	28 MDL	490 MDL	100 MDL	430 MDL	170 MDL	530 MDL	170 MDL	1200 MDL	460 MDL	1200 MDL
0.014 PQL	0.014 PQL	74 PQL	74 PQL	0.27 PQL	10.67 PQL	0.27 PQL	0.54 PQL	0.67 PQL	1.3 PQL	0.67 PQL	0.67 PQL	1.3 PQL	0.27 PQL	0.54 PQL	6.7 PQL	0.044 PQL	580 PQL	580 PQL	580 PQL	580 PQL	350 PQL	2300 PQL	1700 PQL	1200 PQL	1200 PQL	12000 PQL	2300 PQL	1700 PQL	290 PQL	2300 PQL	580 PQL	1700 PQL	1200 PQL	2300 PQL	2300 PQL	4600 PQL	2300 PQL	12000 POL
0.014 mg/Kg	0.014 mg/Kg	74 mg/Kg	230 mg/Kg	0.36 mg/Kg	5.7 mg/Kg	0.36 mg/Kg	0.54 mg/Kg	19 mg/Kg	30 mg/Kg	48 mg/Kg	15 mg/Kg	1.3 mg/Kg	0.27 mg/Kg	0.54 mg/Kg	110 mg/Kg	0.061 mg/Kg	580 ug/Kg	580 ug/Kg	580 ug/Kg	580 ug/Kg	350 ug/Kg	2300 ug/Kg	1700 ug/Kg	1200 ug/Kg	1200 ug/Kg	12000 ug/Kg	2300 ug/Kg	1700 ug/Kg	290 ug/Kg	2300 ug/Kg	580 ug/Kg	1700 ug/Kg	1200 ug/Kg	2300 ug/Kg	2300 ug/Kg	4600 ug/Kg	2300 ug/Kg	12000 119/89
16:48:00	16:48:00	22:43:00	22:43:00	16.20:00	16:20:00	16:20:00	16.20:00	16:20:00	16:20:00	16.20:00	16.20:00	16:20:00	16:20:00	16:20:00	16.20:00	15.26:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00
6/4/2017 D	6/4/2017 D	6/2/2017 D	6/2/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	534.52.1
PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'-Dichlorobenzidine	m-Nitroaniline	4 6. Dinitro. 2. Methylohenol
ment Other	ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	ment Other	ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source -
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z
15:45:00 7901-SB-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-5B-01-17.5 N	15:45:00 7901-5B-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-5B-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-5B-01-17.5 N	15:45:00 7901-5B-01-17.5 N	15:45:00 7901-SB-01-17.5 N	15:45:00 7901-58-01-17.5 N	15:45:00 7901-58-01-17.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-5B-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N					
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-58-01-17.5 Sample	7901-58-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-58-01-17.5 Sample	7901-58-01-17.5 Sample	7901-58-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-01-17.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-S8-02-14.5 Sample
NA	NA	NA	NA	AA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	92																	
ΝΑ	ΑN	ΑN	Ą	ΑN	AA	AA	ΑĀ	Ą	Ą	ΝΑ	Ā	Ą	Ą	Ā	A A	NA	A	NA	Ā	NA A	Ą	NA	NA A	ΝΑ	Ą	ΑĀ	ΑĀ	Ą	Ψ.	A	Ā	¥	¥	¥	ΑĀ	Ą	ΑĀ	9

TestAmerica, Seattle- Tacoma WA TestAmerica Seattle-	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA		TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82 70D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
⊃	n	Э	ם	ס	ם		Þ							Þ	Þ	ם	Þ	Þ	Þ	D	D		Þ	D	Þ	Þ	Þ	D			Þ	D	Þ	Þ		D		ם
480 MDL	380 MDL	4600 MDL	480 MDL	230 MDL	4300 MDL	58 MDL	58 MDL	58 MDL	58 MDL	150 MDL	S8 MDL	170 MDL	160 MDL	12000 MDL	430 MDL	480 MDL	460 MDL	1600 MDL	430 MDL	280 MDL	360 MDL	150 MDL	140 MDL	420 MDL	1500 MDL	380 MDL	1GW 099	2600 MDL	58 MDL	28 MDL	58 MDL	170 MDL	300 MDL	440 MDL	S8 MDL	430 MDL	S8 MDL	490 MDL
2300 PQL	1700 PQL	17000 PQL	2300 PQL	1200 PQL	17000 PQL	290 PQL	290 PQL	290 PQL	290 PQL	700 PQL	290 PQL	700 PQL	700 PQL	29000 PQL	46000 PQL	2300 PQL	2300 PQL	7000 PQL	2900 PQL	2300 PQL	1700 PQL	700 PQL	580 PQL	1700 PQL	6400 PQL	1700 PQL	5800 PQL	12000 PQL	290 PQL	290 PQL	580 PQL	580 PQL	1200 PQL	1700 PQL	460 PQL	1700 PQL	290 PQL	2300 PQL
2300 ug/Kg	1700 ug/Kg	17000 ug/Kg	2300 ug/Kg	1200 ug/Kg	17000 ug/Kg	660 ug/Kg	290 ug/Kg	1700 ug/Kg	2800 ug/Kg	2500 ug/Kg	2600 ug/Kg	1600 ug/Kg	950 ug/Kg	29000 ug/Kg	46000 ug/Kg	2300 ug/Kg	2300 ug/Kg	7000 ug/Kg	2900 ug/Kg	2300 ug/Kg	1700 ug/Kg	3000 ug/Kg	580 ug/Kg	1700 ug/Kg	6400 ug/Kg	1700 ug/Kg	5800 ug/Kg	12000 ug/Kg	7100 ug/Kg	990 ug/Kg	580 ug/Kg	580 ug/Kg	1200 ug/Kg	1700 ug/Kg	1900 ug/Kg	1700 ug/Kg	590 ug/Kg	2300 ug/Kg
15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
101-55-3	59-50-7	106-47-8	7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	65-85-0	100-51-6	111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0	86-73-7	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3
PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophemyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz[a]anthracene	Benzo(a)pyre ne	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo (k)fiuoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Vaphthalene	Nitrobenzene
Source - Other	Other	Source - Other	,	Other	Other	Source - Other	ource - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	ource -	Solid/Sedi Source - ment Other ?							
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14:5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14:5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N														
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample
N A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝΑ
Ν	NA	NA	NA	Ν	NA	NA	NA	NA	NA	¥	¥	NA	NA	NA	NA	NA	NA	NA	NA	¥	ă	M	NA	Ā	N A	N A	N A	Ϋ́	NA	¥	Ā	¥	¥	NA	NA	NA	NA	¥.

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	l est America, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	NWTPH-GX	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW602.0A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW7471A	SW8270D	SW8270D	SW8270D	SW82 70D	SW8270D	SW8270D	SW82.70D	SW82.70D	SW82.70D	SW8270D						
																Total																						
ριλ	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Э	⊃	⊃		⊃			О	⊃	⊃	Э	⊃	⊃	⊃					Э						⊃		Э			Э	Þ	⊃	О	ο	⊃	n	Э	Э	⊃
510 MDL	170 MDL	1100 MDL	140 MDL	440 MDL	170 MDL	4.9 MDL	0.0081 MDL	0.0046 MDL	0.0054 MDL	0.0017 MDL	0.0032 MDL	0.0016 MDL	0.0021 MDL	14 MDL	11 MDL	0.074 MDL	0.11 MDL	0.016 MDL	0.084 MDL	0.069 MDL	0.24 MDL	0.053 MDL	0.21 MDL	0.24 MDL	0.022 MDL	0.06 MDL	180 MDL	0.01 MDL	8.4 MDL	17 MDL	10W 29	12 MDL	7 MDL	63 MDL	SO MDL	21 MDL	21 MDL	280 MDL
2300 PQL	700 PQL	4600 PQL	700 PQL	1700 PQL	700 PQL	9.4 PQL	0.027 PQL	0.012 PQL	0.012 PQL	0.011 PQL	0.012 PQL	0.011 PQL	0.011 PQL	59 PQL	59 PQL	0.22 PQL	0.55 PQL	0.22 PQL	0.44 PQL	0.55 PQL	1.1 PQL	0.55 PQL	0.55 PQL	1.1 PQL	0.22 PQL	0.44 PQL	550 PQL	0.034 PQL	70 PQL	70 PQL	70 PQL	70 PQL	42 PQL	280 PQL	210 PQL	140 PQL	140 PQL	1400 PQL
2300 ug/Kg	700 ug/Kg	4600 ug/Kg	7900 ug/Kg	1700 ug/Kg	6900 ug/Kg	24 mg/Kg	0.027 mg/Kg	0.012 mg/Kg	0.012 mg/Kg	0.011 mg/Kg	0.012 mg/Kg	0.011 mg/Kg	0.011 mg/Kg	330 mg/Kg	970 mg/Kg	8 mg/Kg	19 mg/Kg	0.22 mg/Kg	42 mg/Kg	54 mg/Kg	660 mg/Kg	2300 mg/Kg	110 mg/Kg	1.1 mg/Kg	0.47 mg/Kg	0.44 mg/Kg	12000 mg/Kg	0.43 mg/Kg	70 ug/Kg	70 ug/Kg	70 ug/Kg	70 ug/Kg	42 ug/Kg	280 ug/Kg	210 ug/Kg	140 ug/Kg	140 ug/Kg	1400 ug/Kg
15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	15:30:00	20:53:00	17:04:00	17:04:00	17:04:00	17:04:00	17:04:00	17:04:00	17:04:00	23:14:00	23:14:00	16:24:00	16:24:00	16:24:00	16:24:00	16:24:00	16:24:00	16:24:00	16:24:00	16:24:00	16:24:00	16:24:00	16:41:00	15:32:54	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/7/2017 D	6/4/2017 D	6/2/2017 D	6/2/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D						
621-64-7	86-30-6	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5
N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Berylium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol
Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	ource - Other	,	ource - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-SB-02-14.5 N	9:30:00 7901-58-02-14.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-58-02-17.5 N	9:35:00 7901-58-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-58-02-17.5 N	9:35:00 7901-58-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N								
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-58-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-58-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-5B-02-14.5 Sample	7901-SB-02-14.5 Sample	7901-58-02-14.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample								
Ā	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ą	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ą	ž	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ą	¥	NA	NA	N	N

TestAmerica, Seattle- Tacoma WA TestAmerica Coattle-	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA		TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW8270D	SW8270D	SW82.70D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW8270D	SW8270D	SW82.70D	SW82.70D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW8270D	SW8270D	SW8270D	SW82.70D	SW82.70D	SW8270D
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	λνα	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	λνα	Dry	Dry	λνα	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry						
Э	Þ	ο	D	D	٥	٥	Þ	٥	ם	Þ	n	n	n	D	D	ο	n	Þ	Þ					n	D	ο	ο	n	n	n	ם	n	D		n	٦	٦	n
70W 09	48 MDL	7 MDL	S9 MDL	12 MDL	52 MDL	21 MDL	64 MDL	21 MDL	140 MDL	36 MDL	140 MDL	57 MDL	46 MDL	260 MDL	27 MDL	28 MDL	520 MDL	7 MDL	7 MDL	7 MDL	7 MDL	18 MDL	7 MDL	21 MDL	20 MDL	1500 MDL	52 MDL	57 MDL	S6 MDL	190 MDL	52 MDL	70 MDL	43 MDL	18 MDL	17 MDL	SO MDL	180 MDL	46 MDL
280 PQL	210 PQL	35 PQL	280 PQL	70 PQL	210 PQL	140 PQL	280 PQL	280 PQL	260 PQL	280 PQL	1400 PQL	280 PQL	210 PQL	2100 PQL	280 PQL	140 PQL	2100 PQL	35 PQL	35 PQL	35 PQL	35 PQL	84 PQL	35 PQL	84 PQL	84 PQL	3500 PQL	5600 PQL	280 PQL	280 PQL	840 PQL	350 PQL	280 PQL	210 PQL	84 PQL	70 PQL	210 PQL	770 PQL	210 PQL
280 ug/Kg	210 ug/Kg	35 ug/Kg	280 ug/Kg	70 ug/Kg	210 ug/Kg	140 ug/Kg	280 ug/Kg	280 ug/Kg	560 ug/Kg	280 ug/Kg	1400 ug/Kg	280 ug/Kg	210 ug/Kg	2100 ug/Kg	280 ug/Kg	140 ug/Kg	2100 ug/Kg	35 ug/Kg	35 ug/Kg	53 ug/Kg	140 ug/Kg	110 ug/Kg	130 ug/Kg	84 ug/Kg	84 ug/Kg	3500 ug/Kg	5600 ug/Kg	280 ug/Kg	280 ug/Kg	840 ug/Kg	350 ug/Kg	280 ug/Kg	210 ug/Kg	140 ug/Kg	70 ug/Kg	210 ug/Kg	770 ug/Kg	210 ug/Kg
15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	534-52-1	101-55-3	59-50-7	106-47-8	7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	0-58-59	100-51-6	111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3
2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m, p-Cresol (2:1 ratio)	3,3'-Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophenyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz [a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate
	Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source -	other	Source - Other		Source - Other	ource - Other	Solid/Sedi Source - ment Other D																								
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17:5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17:5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17:5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17:5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-58-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample
NA	NA	ΝΑ	N.	N.	A	A	A	A	ΝΑ	NA	A N	ΝΑ	Ϋ́	ΑN	ΑN	ΝΑ	ΑN	NA	A	A N	ΝΑ	NA	ΝΑ	ΝΑ	ΑN	ΝΑ	ΑN	N.	A A	A N	ΑN	ΝΑ	NA	ΑN	A N	ΑN	ΑN	NA
NA	N A	Ą	ΝΑ	Ϋ́	NA	NA	NA	ΑĀ	Ą	Ą	NA	NA	NA	NA	NA	A	Ν	Ā	A A	¥	Ą	Ą	NA	ΑN	ΑN	Ϋ́	A A	Ϋ́	Ą	ΑN	Ν	ΑN	A	ΑĀ	ΑN	NA	A A	Ϋ́

Tacoma WA Test America Seattle	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	NWTPH-GX	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A						
																												Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	ριλ	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry																	
ם	ο		ο	ο	⊃	ο	ם		Ξ	Þ	Ξ	⊃	⊃	Þ		⊃		ם	Þ	ο	⊃	ם	⊃	⊃	⊃	Ξ				⊃						ο	Э	⊃
80 MDL	310 MDL	7 MDL	7 MDL	7 MDL	21 MDL	36 MDL	53 MDL	7 MDL	52 MDL	7 MDL	S9 MDL	62 MDL	21 MDL	130 MDL	17 MDL	53 MDL	21 MDL	6.5 MDL	0.011 MDL	0.0061 MDL	0.0071 MDL	0.0023 MDL	0.0042 MDL	0.0022 MDL	0.0028 MDL	17 MDL	13 MDL	0.087 MDL	0.13 MDL	0.019 MDL	0.099 MDL	0.081 MDL	0.28 MDL	0.062 MDL	0.25 MDL	0.28 MDL	0.026 MDL	0.071 MDL
700 PQL	1400 P.Q.L	35 PQL	35 PQL	70 PQL	70 PQL	140 PQL	210 PQL	S6 PQL	210 PQL	35 PQL	280 PQL	280 PQL	84 PQL	104 095	84 PQL	210 PQL	84 PQL	12 PQL	0.036 PQL	0.016 PQL	0.016 PQL	0.015 PQL	0.016 PQL	0.015 PQL	0.015 PQL	1DA 69	1Dd 69	0.26 PQL	0.64 PQL	0.26 PQL	0.51 PQL	0.64 PQL	1.3 PQL	0.64 PQL	0.64 PQL	1.3 PQL	0.26 PQL	0.51 PQL
700 ug/Kg	1400 ug/Kg	310 ug/Kg	35 ug/Kg	70 ug/Kg	70 ug/Kg	140 ug/Kg	210 ug/Kg	93 ug/Kg	210 ug/Kg	35 ug/Kg	280 ug/Kg	280 ug/Kg	84 ug/Kg	560 ug/Kg	260 ug/Kg	210 ug/Kg	310 ug/Kg	12 mg/Kg	0.036 mg/Kg	0.016 mg/Kg	0.016 mg/Kg	0.015 mg/Kg	0.016 mg/Kg	0.015 mg/Kg	0.015 mg/Kg	69 mg/Kg	240 mg/Kg	10 mg/Kg	22 mg/Kg	0.26 mg/Kg	0.97 mg/Kg	42 mg/Kg	350 mg/Kg	48 mg/Kg	65 mg/Kg	1.3 mg/Kg	0.26 mg/Kg	0.51 mg/Kg
15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	15:56:00	21:23:00	17:20:00	17:20:00	17:20:00	17:20:00	17:20:00	17:20:00	17:20:00	23:44:00	23:44:00	16:29:00	16:29:00	16:29:00	16:29:00	16:29:00	16:29:00	16:29:00	16:29:00	16:29:00	16:29:00	16:29:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/7/2017 D	6/4/2017 D	6/2/2017 D	6/2/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D						
84-74-2	117-84-0	206-44-0	86-73-7	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3	621-64-7	9-06-98	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0
Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium
ment Other	ment Other	Solid/Sedi Source - ment Other	Source - Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Source - Other	solid/sedi source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
9:35:00 7901-SB-02-17:5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17:5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17:5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17:5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N	9:35:00 7901-SB-02-17.5 N
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample		7901-SB-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-58-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-SB-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample	7901-5B-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample	7901-58-02-17.5 Sample				
ΑN	V.	ď.	V.	ΑN	NA	N.	A N	Ą	Ą	NA	Ą	NA	A N	V.	A N	A N	A N	ΑN	N.	AN	A N	ΑN	Ą	Ą	NA	NA	ΝΑ	A N	Ϋ́	Ą.	Ą.	A N	ΝΑ	ΑN	Ą	ΑN	Ą	A N
	Ą	Ą	ΑN	Ϋ́	A.	Ą	Ą	Ą	Ą	Ą	ž	A.	Ϋ́	ΑN	Ϋ́	Ą	Ą	A.	Ą	NA A	Ą	Ą	Ą	AA	ΑN	Ą	Y.	A A	ΑÄ	Ą	ΑÄ	ΑA	Ą	ΑĀ	Ą	Ą	ΑN	Ϋ́

TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW6020A	SW7471A	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D
Total	Total																																					
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	ргу	ргу	Dry
	⊃	Þ	⊃	⊃	⊃	Э	n	Þ	⊃	⊃	⊃	⊃	⊃	⊃	⊃	ο	Ξ	Э	Э	Þ	Э	⊃	⊃	Э	⊃	Э	Э	Э	Э	Э	⊃	Э	О	⊃	Э	Э	Э	٦
2.1 MDL	0.012 MDL	6.7 MDL	13 MDL	5.3 MDL	9.2 MDL	3.6 MDL	20 MDL	40 MDL	17 MDL	17 MDL	220 MDL	48 MDL	38 MDL	5.6 MDL	47 MDL	9.8 MDL	41 MDL	17 MDL	S1 MDL	17 MDL	110 MDL	45 MDL	110 MDL	46 MDL	37 MDL	450 MDL	46 MDL	22 MDL	410 MDL	5.6 MDL	5.6 MDL	5.6 MDL	70W 9'S	14 MDL	5.6 MDL	17 MDL	16 MDL	1200 MDL
6.4 PQL	0.041 PQL	56 PQL	56 PQL	56 PQL	S6 PQL	33 PQL	220 PQL	170 PQL	110 PQL	110 PQL	1100 PQL	220 PQL	170 PQL	28 PQL	220 PQL	26 PQL	170 PQL	110 PQL	220 PQL	220 PQL	450 PQL	220 PQL	1100 PQL	220 PQL	170 PQL	1700 PQL	220 PQL	110 PQL	1700 PQL	28 PQL	28 PQL	28 PQL	28 PQL	104 FQL	28 PQL	104 FQL	104 FQL	2800 PQL
360 mg/Kg	0.041 mg/Kg	56 ug/Kg	56 ug/Kg	56 ug/Kg	56 ug/Kg	33 ug/Kg	220 ug/Kg	170 ug/Kg	110 ug/Kg	110 ug/Kg	1100 ug/Kg	220 ug/Kg	170 ug/Kg	28 ug/Kg	220 ug/Kg	56 ug/Kg	170 ug/Kg	110 ug/Kg	220 ug/Kg	220 ug/Kg	450 ug/Kg	220 ug/Kg	1100 ug/Kg	220 ug/Kg	170 ug/Kg	1700 ug/Kg	220 ug/Kg	110 ug/Kg	1700 ug/Kg	28 ug/Kg	28 ug/Kg	28 ug/Kg	28 ug/Kg	67 ug/Kg	28 ug/Kg	67 ug/Kg	67 ug/Kg	2800 ug/Kg
16:29:00	15:35:09	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16.22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00
5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	534-52-1	101-55-3	59-50-7	106-47-8	7005-72-3	100-01-6	100-02-7	83-32-9	8-96-80	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	65-85-0
Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'-Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophenyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz[a]anthracene	Benzo(a)pyre ne	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Benzoic Acid
Source - Other	Source - Other	Source - Other	Source - Other	Source - Other		ment Other		Source - Other	Source - Other	Solid/Sedi Source - ment Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other		Source - Other		Source - Other																
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
17.5 N	17.5 N	2	2	2	2	2	2	2	Z	Z 8	Z 8	2	z	z	2	Z	2	2	Z	Z	Z 8	Z 8	2	Z	2	2	2	2	2	2	2	Z	Z	Z	Z	Z	Z	z
9:35:00 7901-58-02-17.5	9:35:00 7901-SB-02-17.5	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-58-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-58-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-SB-03-8
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-02-17.5 Sample	7901-5B-02-17.5	7901-5B-03-8	7901-5B-03-8	7901-SB-03-8	7901-5B-03-8	7901-SB-03-8	7901-SB-03-8	7901-5B-03-8	7901-58-03-8	7901-5B-03-8	7901-5B-03-8	7901-5B-03-8	7901-5B-03-8	7901-5B-03-8	7901-5B-03-8	7901-SB-03-8	7901-5B-03-8	7901-58-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-5B-03-8	7901-5B-03-8	7901-58-03-8	7901-SB-03-8	7901-5B-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-5B-03-8								
NA	NA	NA	NA	Ą	N.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N.	NA	ΝΑ	NA	NA	N.	NA	N.	N.	N.	NA									
Ν	Ä	N A	NA	NA	NA	NA	NA	N	Ä	NA	N	NA	NA	NA	NA	NA	NA	N	N	NA	NA	NA	NA	NA	N	ž	Ą	Ą	Ą	Ā								

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	NWTPH-GX	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	NWTPH-DX
ριγ	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Þ	ם	ם	ם	D	ο	п	n	n	D	Э	⊃	Þ	Þ	ם	Þ	Þ	Þ	Þ	ם	n	D	Э	Э	Þ	Þ	ם	ם	э	n	n	Þ	D	Þ	ם	⊃	ם	Э	ם
41 MDL	46 MDL	45 MDL	150 MDL	41 MDL	26 MDL	35 MDL	14 MDL	13 MDL	40 MDL	150 MDL	37 MDL	64 MDL	250 MDL	5.6 MDL	5.6 MDL	5.6 MDL	17 MDL	29 MDL	42 MDL	5.6 MDL	41 MDL	5.6 MDL	47 MDL	49 MDL	17 MDL	100 MDL	13 MDL	42 MDL	17 MDL	3.8 MDL	0.0082 MDL	0.0046 MDL	0.0054 MDL	0.0018 MDL	0.0032 MDL	0.0017 MDL	0.0021 MDL	13 MDL
4500 PQL	220 PQL	220 PQL	670 PQL	280 PQL	220 PQL	170 PQL	104 <i>L</i> 9	S6 PQL	170 PQL	610 PQL	170 PQL	560 PQL	1100 PQL	28 PQL	28 PQL	26 PQL	56 PQL	110 PQL	170 PQL	45 PQL	170 PQL	28 PQL	220 PQL	220 PQL	67 PQL	450 PQL	67 PQL	170 PQL	104 Year	7.3 PQL	0.028 PQL	0.012 PQL	0.012 PQL	0.011 PQL	0.012 PQL	0.011 PQL	0.011 PQL	52 PQL
4500 ug/Kg	220 ug/Kg	220 ug/Kg	670 ug/Kg	280 ug/Kg	220 ug/Kg	170 ug/Kg	67 ug/Kg	56 ug/Kg	170 ug/Kg	610 ug/Kg	170 ug/Kg	560 ug/Kg	1100 ug/Kg	28 ug/Kg	28 ug/Kg	56 ug/Kg	56 ug/Kg	110 ug/Kg	170 ug/Kg	45 ug/Kg	170 ug/Kg	28 ug/Kg	220 ug/Kg	220 ug/Kg	67 ug/Kg	450 ug/Kg	67 ug/Kg	170 ug/Kg	67 ug/Kg	7.3 mg/Kg	0.028 mg/Kg	0.012 mg/Kg	0.012 mg/Kg	0.011 mg/Kg	0.012 mg/Kg	0.011 mg/Kg	0.011 mg/Kg	52 mg/Kg
16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	16:22:00	18:20:00	17:37:00	17:37:00	17:37:00	17:37:00	17:37:00	17:37:00	17:37:00	0:14:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/8/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/3/2017 D				
100-51-6	111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0	86-73-7	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3	621-64-7	9-06-98	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6
Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-arodor 1232	PCB-arodor 1242	PCB-arodor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel
			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			ment Other	Solid/Sedi Source - ment Other	solid/sedi source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
14:05:00 7901-SB-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-5B-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-58-03-8	7901-SB-03-8	7901-58-03-8	7901-5B-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-58-03-8	7901-SB-03-8	7901-SB-03-8	7901-58-03-8	7901-SB-03-8	7901-58-03-8	7901-SB-03-8	7901-58-03-8	7901-SB-03-8	7901-SB-03-8	7901-5B-03-8	7901-SB-03-8	7901-5B-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8						
Ā	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ą	NA	NA	NA	N.	NA	NA	NA	NA	NA																	
N	NA	Ϋ́ N	Ϋ́ N	NA	NA	AN	NA	NA	NA	Ą	N	ă	NA	Ϋ́ N	¥.	NA	Ą	ž	Ą	NA	NA	NA	NA	NA	NA	V V	A A	NA	Ϋ́	NA	NA	Š,						

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
NWTPH-DX	SW6020A	SW7471A	SW8270D																																			
	Total																																					
λu	Dry																																					
									Э		⊃			ο	ο	Э	Þ		⊃	Ξ	ο	⊃	⊃	⊃	⊃	⊃	⊃		⊃	Э	Э	Э	О	⊃	Э	Э	⊃	Ξ
9.5 MDL	0.07 MDL	0.1 MDL	0.015 MDL	0.079 MDL	0.064 MDL	0.22 MDL	0.049 MDL	0.2 MDL	0.22 MDL	0.02 MDL	0.056 MDL	1.6 MDL	0.0097 MDL	35 MDL	70 MDL	28 MDL	49 MDL	29 MDL	260 MDL	210 MDL	88 MDL	88 MDL	1200 MDL	250 MDL	200 MDL	29 MDL	250 MDL	52 MDL	220 MDL	38 MDL	270 MDL	38 MDL	290 MDL	230 MDL	290 MDL	240 MDL	190 MDL	2300 MDL
52 PQL	0.2 PQL	0.51 PQL	0.2 PQL	0.41 PQL	0.51 PQL	1 PQL	0.51 PQL	0.51 PQL	1 PQL	0.2 PQL	0.41 PQL	5.1 PQL	0.032 PQL	290 PQL	290 PQL	290 PQL	290 PQL	180 PQL	1200 PQL	880 PQL	590 PQL	590 PQL	5900 PQL	1200 PQL	880 PQL	150 PQL	1200 PQL	290 PQL	880 PQL	590 PQL	1200 PQL	1200 PQL	2300 PQL	1200 PQL	5900 PQL	1200 PQL	880 PQL	8800 PQL
110 mg/Kg	62 mg/Kg	11 mg/Kg	0.23 mg/Kg	1.3 mg/Kg	44 mg/Kg	150 mg/Kg	320 mg/Kg	48 mg/Kg	1 mg/Kg	0.33 mg/Kg	0.41 mg/Kg	1400 mg/Kg	0.056 mg/Kg	290 ug/Kg	290 ug/Kg	290 ug/Kg	290 ug/Kg	340 ug/Kg	1200 ug/Kg	880 ug/Kg	590 ug/Kg	590 ug/Kg	83//8n 0065	1200 ug/Kg	880 ug/Kg	150 ug/Kg	1200 ug/Kg	570 ug/Kg	880 ug/Kg	590 ug/Kg	1200 ug/Kg	1200 ug/Kg	2300 ug/Kg	1200 ug/Kg	5900 ug/Kg	1200 ug/Kg	880 ug/Kg	8800 ug/Kg
0:14:00	13:52:00	13:52:00	13:52:00	13:52:00	13:52:00	13:52:00	13:52:00	13:52:00	13:52:00	13:52:00	13:52:00	13:52:00	15:37:29	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00
6/3/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
	7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	534-52-1	101-55-3	59-50-7	106-47-8
Motor Oil	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Nicke1	Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'-Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline
	Solid/Sedi Source - ment Other	Source - Other	Solid/Sedi Source - ment Other	Source - Other	Source - Other	Source - Other	Source - Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Source - Other	Solid/Sedi Source - ment Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other		Source - Other	Source - Other	Source - Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
14:05:00 7901-58-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-58-03-8	14:05:00 7901-5B-03-8	14:05:00 7901-58-03-8	14:05:00 7901-SB-03-8	14:05:00 7901-58-03-8	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-58-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-58-03-9	14:10:00 7901-58-03-9	14:10:00 7901-58-03-9	14:10:00 7901-58-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-58-03-9	14:10:00 7901-5B-03-9	14:10:00 7901-58-03-9	14:10:00 7901-5B-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-5B-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-58-03-9	14:10:00 7901-SB-03-9				
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-8	7901-58-03-8	7901-58-03-8	7901-SB-03-8	7901-5B-03-8	7901-SB-03-8	7901-SB-03-8	7901-SB-03-9	7901-58-03-9	7901-SB-03-9																						
Ą	NA	Ą	ΝA	ΑN	NA	NA	NA	Ą	NA	ΝΑ	NA	NA	A	NA	NA	ΑĀ	NA	A	NA	NA	AA	AA	Ą	A	ΝA	NA	ΝA	Ą	ΝA	A	A	Ą	NA	Ν	NA	NA	NA	NA
NA	NA	N A	N	N	NA	N	N A	NA	N A	N	Ä	NA	N A	N A	N A	N	N	N	NA	NA	N A	ν V	NA	N	N	NA	N	NA	N	N	N	N	N	NA	Ą	Ą	ž	Ą

TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerka, Seattle- Tacoma WA
SW8270D	SW8270D	SW82.70D	SW8270D	SW8270D	SW8270D	SW82.70D	SW82.70D	SW8270D	SW82.70D	SW82.70D	SW82.70D	SW82.70D	SW82.70D	SW82.70D	SW82.70D	SW8270D	SW82.70D	SW8270D	SW8270D	SW8270D	SW82.70D	SW82.70D	SW82.70D	SW8270D	SW82.70D	SW8270D												
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Drγ
Þ	ם	D	ם	D							D	D	D	D	D	ם	Þ				Þ	ם	n	Þ	Þ		Э	Э	Ξ	Þ		D		Ξ	Þ	Þ	Þ	
240 MDL	120 MDL	2200 MDL	29 MDL	29 MDL	29 MDL	29 MDL	76 MDL	29 MDL	88 MDL	82 MDL	6200 MDL	220 MDL	240 MDL	230 MDL	800 MDL	220 MDL	290 MDL	180 MDL	76 MDL	70 MDL	210 MDL	780 MDL	190 MDL	330 MDL	1300 MDL	29 MDL	29 MDL	88 MDL	150 MDL	220 MDL	29 MDL	220 MDL	29 MDL	250 MDL	260 MDL	88 MDL	530 MDL	70 MDL
1200 PQL	590 PQL	8800 PQL	150 PQL	150 PQL	150 PQL	150 PQL	350 PQL	150 PQL	350 PQL	350 PQL	15000 PQL	23000 PQL	1200 PQL	1200 PQL	3500 PQL	1500 PQL	1200 PQL	880 PQL	350 PQL	290 PQL	880 PQL	3200 PQL	880 PQL	2900 PQL	5900 PQL	150 PQL	290 PQL	290 PQL	590 PQL	880 PQL	230 PQL	880 PQL	150 PQL	1200 PQL	1200 PQL	350 PQL	2300 PQL	350 PQL
1200 ug/Kg	590 ug/Kg	8800 ug/Kg	150 ug/Kg	150 ug/Kg	3700 ug/Kg	29000 ug/Kg	16000 ug/Kg	19000 ug/Kg	7600 ug/Kg	8400 ug/Kg	15000 ug/Kg	23000 ug/Kg	1200 ug/Kg	1200 ug/Kg	3500 ug/Kg	1500 ug/Kg	1200 ug/Kg	1400 ug/Kg	27000 ug/Kg	2200 ug/Kg	880 ug/Kg	3200 ug/Kg	880 ug/Kg	2900 ug/Kg	5900 ug/Kg	680 ug/Kg	290 ug/Kg	290 ug/Kg	590 ug/Kg	880 ug/Kg	9900 ug/Kg	880 ug/Kg	230 ug/Kg	1200 ug/Kg	1200 ug/Kg	350 ug/Kg	2300 ug/Kg	12000 ug/Kg
16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00	16:47:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	65-85-0	100-51-6	111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	86-73-7	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3	621-64-7	9-06-98	87-86-5	85-01-8
4-Chlorophenyl-Phenylether 7005-72-3	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz[a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzolghi)perylene	Benzo(k)fluoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene
Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other		Source - Other	Source - Other		Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other		Source - Other	Source - Other		Source - Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Source - Other	Source - Other	Source - Other		Source - Other							
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
14:10:00 7901-5B-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-58-03-9	14:10:00 7901-58-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-58-03-9	14:10:00 7901-58-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-5B-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-5B-03-9										
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-5B-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-5B-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-5B-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-5B-03-9	7901-5B-03-9	7901-58-03-9	7901-SB-03-9													
ΝΑ	A A	ΑN	Ϋ́	NA	A	NA	NA	A	ΑN	ΝΑ	ΝΑ	ΝΑ	ΑN	ΑN	ΑN	NA	N.A.	NA	N.	A	A N	ΑN	ΝΑ	N.	N.	N.	N.	N.	A A	N.	N.A.	Ą	A	N.	N.	ΑN	N.	NA A
Ϋ́	NA	Ä	NA	NA	NA	NA	Ä	NA	Ä	NA	NA	NA	N	Ä	Ä	NA	Å.	NA	Ą	NA	Ϋ́	NA	¥	Ą	Ą	Ν	Ν	NA	Ν	NA	Å.	Ä	NA	Ν	N	N	Ν	Ą

TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
	DILI	DILI									J																											
SW8270D	SW8270D	SW8270D	NWTPH-GX	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW7471A	SW8270D																													
													Total																									
Dry	Dry	Dry	Dry	Dny	Dry																																	
ο				n	D	n	n	D	ם	Э											ο		Þ			n	n	D	ם	5	Э	Э	Э	D	Э	ο	Э	o
220 MDL	290 MDL	880 MDL	4.9 MDL	0.0088 MDL	0.005 MDL	0.0059 MDL	0,0019 MDL	0.0035 MDL	0.0018 MDL	0.0023 MDL	15 MDL	11 MDL	0.056 MDL	0.082 MDL	0.012 MDL	0.063 MDL	0.052 MDL	0.18 MDL	3.9 MDL	0.16 MDL	0.18 MDL	0.016 MDL	0.045 MDL	130 MDL	0.0095 MDL	8.4 MDL	17 MDL	6.8 MDL	12 MDL	7 MDL	e3 MDL	51 MDL	21 MDL	21 MDL	280 MDL	70 MDF	48 MDL	7 MDL
880 PQL	1500 PQL	3500 PQL	9.4 PQL	0.03 PQL	0.013 PQL	0.013 PQL	0.012 PQL	0.013 PQL	0.012 PQL	0.012 PQL	60 PQL	60 PQL	0.16 PQL	0.41 PQL	0.16 PQL	0.33 PQL	0.41 PQL	0.82 PQL	41 PQL	0.41 PQL	0.82 PQL	0.16 PQL	0.33 PQL	410 PQL	0.032 PQL	70 PQL	70 PQL	70 PQL	70 PQL	42 PQL	280 PQL	210 PQL	140 PQL	140 PQL	1400 PQL	280 PQL	210 PQL	35 PQL
880 ug/Kg	99000 ug/Kg	95000 ug/Kg	220 mg/Kg	0.03 mg/Kg	0.013 mg/Kg	0.013 mg/Kg	0.012 mg/Kg	0.013 mg/Kg	0.012 mg/Kg	0.012 mg/Kg	2200 mg/Kg	3800 mg/Kg	77 mg/Kg	42 mg/Kg	0.21 mg/Kg	22 mg/Kg	110 mg/Kg	2400 mg/Kg	5100 mg/Kg	130 mg/Kg	0.82 mg/Kg	2.2 mg/Kg	0.33 mg/Kg	4800 mg/Kg	0.34 mg/Kg	70 ug/Kg	70 ug/Kg	70 ug/Kg	70 ug/Kg	42 ug/Kg	280 ug/Kg	210 ug/Kg	140 ug/Kg	140 ug/Kg	1400 ug/Kg	280 ug/Kg	210 ug/Kg	35 ug/Kg
16:47:00	15.45:00	15:45:00	18:50:00	17:53:00	17:53:00	17:53:00	17:53:00	17:53:00	17:53:00	17:53:00	23:11:00	23:11:00	14:34:00	14:34:00	14:34:00	14:34:00	14:34:00	14:34:00	15:04:00	14:34:00	14:34:00	14:34:00	14:34:00	15:04:00	15:39:43	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00
6/6/2017 D	6/7/2017 D	6/7/2017 D	6/8/2017 D	6/4/2017 D	6/9/2017 D	6/9/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D						
108-95-2	206-44-0	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7
Phenol	Fluoranthene	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002
Solid/Sedi Source- ment Other	ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	17 N	N N	17 N										
14:10:00 7901-58-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-5B-03-9	14:10:00 7901-SB-03-9	14:10:00 7901-58-03-9	14:10:00 7901-SB-03-9	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17											
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-9	7901-SB-03-17												
Ą	NA	NA	NA	N.	NA	NA	NA	NA	NA A	NA	NA A	NA	NA	NA	NA	N.A.	NA A	NA	N.	Ą	NA	NA A	NA	NA A														
A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	lestamerica, seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW8270D	SW82.70D	SW8270D	SW82.70D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW82.70D	SW8270D	SW8270D	SW8270D									
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Ξ	ם	Э	⊃	ο	О	Э	n	О	∍	⊃	⊃	Þ	⊃	ם	Э	Þ	⊃	D	ם	Э	ס	⊃	Э	٥)	Э	⊃	ם	n	ם	ס	ם	Э	⊃	⊃	n	Э	⊃
29 MDL	12 MDL	52 MDL	21 MDL	10W S9	21 MDL	140 MDL	26 MDL	140 MDL	S8 MDL	46 MDL	700 WDF	S8 MDL	28 MDL	520 MDL	7 MDL	7 MDL	7 MDL	7 MDL	18 MDL	7 MDL	21 MDL	20 MDL	1500 MDL	52 MDL	S8 MDL	36 MDL	190 MDL	52 MDL	70 MDL	44 MDL	18 MDL	17 MDL	51 MDL	190 MDL	46 MDL	80 MDL	310 MDL	7 MDL
280 PQL	70 PQL	210 PQL	140 PQL	280 PQL	280 PQL	360 PQL	280 PQL	1400 PQL	280 PQL	210 PQL	2100 PQL	280 PQL	140 PQL	2100 PQL	35 PQL	35 PQL	35 PQL	35 PQL	84 PQL	35 PQL	84 PQL	84 PQL	3500 PQL	5600 PQL	280 PQL	280 PQL	840 PQL	350 PQL	280 PQL	210 PQL	84 PQL	70 PQL	210 PQL	770 PQL	210 PQL	700 PQL	1400 PQL	35 PQL
280 ug/Kg	70 ug/Kg	210 ug/Kg	140 ug/Kg	280 ug/Kg	280 ug/Kg	560 ug/Kg	280 ug/Kg	1400 ug/Kg	280 ug/Kg	210 ug/Kg	2100 ug/Kg	280 ug/Kg	140 ug/Kg	2100 ug/Kg	35 ug/Kg	35 ug/Kg	35 ug/Kg	35 ug/Kg	84 ug/Kg	35 ug/Kg	84 ug/Kg	84 ug/Kg	3500 ug/Kg	5600 ug/Kg	280 ug/Kg	280 ug/Kg	840 ug/Kg	350 ug/Kg	280 ug/Kg	210 ug/Kg	84 ug/Kg	70 ug/Kg	210 ug/Kg	770 ug/Kg	210 ug/Kg	700 ug/Kg	1400 ug/Kg	35 ug/Kg
17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	1 534-52-1	101-55-3	59-50-7	106-47-8	er 7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	65-85-0	100-51-6	ne 111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0
2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'- Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroanline	4-Chlorophemyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz [a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benz o(ghi)perylene	Benzo(k)fluoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene
			Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
-17 N	-17 N	-17 N	-17 N	-17 N	-17 N	-17 N	-17 N	-17 N	-17 N	-17 N	-17 N																											
14:15:00 7901-5B-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17									
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-58-03-17	7901-58-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-5B-03-17	7901-5B-03-17	7901-5B-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-5B-03-17	7901-5B-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-SB-03-17	7901-58-03-17	7901-58-03-17	7901-58-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-5B-03-17	7901-SB-03-17	7901-SB-03-17
Ϋ́	Ϋ́	N A	NA	ν. V	N A	NA	Ą	N A	Ν	Ϋ́	NA	Ą	NA	Ϋ́	NA	Ϋ́	N A	Ą	Ą	Ą	Α	Ν	N A	Ϋ́	N A	A	NA	N A	A A	N A	Ą	N A	NA	ΝΑ	ΝΑ	A A	N A	N
Z Z	A	NA	A	NA	NA	N	NA	N	NA	NA	Ν	NA	A	NA	NA	NA	¥	Ą	NA	NA	NA	NA																

TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA		TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	NWTPH-GX	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW7471A	SW8270D											
																									Total													
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Duy	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	hu	Dry	Dry	Dry	Dry	huy	Dry	Dry	Dry	Dry	Aud	Dry							
ο	D	Э	⊃	⊃	О	ם	ם	ם	Э	Э	⊃	D	D	⊃	⊃	Э	n	n	Þ	o	⊃	Þ	⊃	Э									О	⊃	⊃			Э
7 MDL	7 MDL	21 MDL	37 MDL	53 MDL	7 MDL	52 MDL	7 MDL	29 MDL	62 MDL	21 MDL	130 MDL	17 MDL	53 MDL	21 MDL	6.1 MDL	0.0097 MDL	0.0055 MDL	0.0064 MDL	0.0021 MDL	0.0038 MDL	0.002 MDL	0.0025 MDL	16 MDL	12 MDL	0.059 MDL	0.086 MDL	0.013 MDL	0.066 MDL	0.054 MDL	0.19 MDL	0.041 MDL	0.17 MDL	0.19 MDL	0.017 MDL	0.047 MDL	1.4 MDL	0.012 MDL	7.4 MDL
35 PQL	70 PQL	70 PQL	140 PQL	210 PQL	56 PQL	210 PQL	35 PQL	280 PQL	280 PQL	84 PQL	260 PQL	84 PQL	210 PQL	84 PQL	12 PQL	0.033 PQL	0.014 PQL	0.014 PQL	0.013 PQL	0.014 PQL	0.013 PQL	0.013 PQL	104 F6	104 F6	0.17 PQL	0.43 PQL	0.17 PQL	0.34 PQL	0.43 PQL	0.86 PQL	0.43 PQL	0.43 PQL	108 PQL	0.17 PQL	0.34 PQL	4.3 PQL	0.04 PQL	62 PQL
35 ug/Kg	70 ug/Kg	70 ug/Kg	140 ug/Kg	210 ug/Kg	56 ug/Kg	210 ug/Kg	35 ug/Kg	280 ug/Kg	280 ug/Kg	84 ug/Kg	560 ug/Kg	84 ug/Kg	210 ug/Kg	84 ug/Kg	12 mg/Kg	0.033 mg/Kg	0.014 mg/Kg	0.014 mg/Kg	0.013 mg/Kg	0.014 mg/Kg	0.013 mg/Kg	0.013 mg/Kg	67 mg/Kg	67 mg/Kg	0.85 mg/Kg	6 mg/Kg	0.33 mg/Kg	0.37 mg/Kg	17 mg/Kg	35 mg/Kg	37 mg/Kg	14 mg/Kg	0.86 mg/Kg	0.17 mg/Kg	0.34 mg/Kg	180 mg/Kg	0.048 mg/Kg	62 ug/Kg
17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	17:13:00	19:21:00	18:09:00	18:09:00	18:09:00	18:09:00	18:09:00	18:09:00	18:09:00	23:33:00	23:33:00	14:39:00	14:39:00	14:39:00	14:39:00	14:39:00	14:39:00	14:39:00	14:39:00	14:39:00	14:39:00	14:39:00	14:39:00	15.41:58	17:39:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/8/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/9/2017 D	6/9/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D
86-73-7	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3	621-64-7	9-08-98	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1
Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-arodor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene
Solid/Sedl Source - ment Other	ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other			ment Other	solid) sedi source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	ment Other	ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-58-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-5B-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	14:15:00 7901-SB-03-17	12:05:00 7901-SB-04-9					
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-58-03-17	7901-58-03-17	7901-SB-03-17	7901-58-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-SB-03-17	7901-58-03-17	7901-58-03-17	7901-SB-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-SB-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-58-03-17	7901-58-03-17	7901-SB-03-17	7901-SB-03-17	7901-SB-04-9
NA	NA	NA	NA	NA	NA	NA	NA	NA	N A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ä	Ą	NA	Ν	Ϋ́	Ą	N A	N.	N A	A	Ϋ́	N A	Ν	NA	× ×	Α̈́	× ×	NA	Ą	NA	NA	Ν	NA	NA	NA	NA	NA	Ν	NA	Ϋ́	NA	N A	NA						

TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW82.70D	SW8270D															
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Þ	D	ם		ם	ο	ο	ם	ס	ם	Э	Þ	ם		Э	Э	ם	ס	ο	ם	Э	ο	Э	⊃	ם	ם	Э									Þ	Þ	⊃	ο
15 MDL	9 WDF	10 MDL	6.2 MDL	S6 MDL	45 MDL	19 MDL	19 MDL	250 MDL	53 MDL	42 MDL	6.2 MDL	52 MDL	11 MDL	46 MDL	19 MDL	S7 MDL	19 MDL	120 MDL	SO MDL	120 MDL	S1 MDL	41 MDL	200 MDL	51 MDL	25 MDL	460 MDL	6.2 MDL	6.2 MDL	6.2 MDL	6.2 MDL	16 MDL	6.2 MDL	19 MDL	17 MDL	1300 MDL	46 MDL	S1 MDL	20 MDL
62 PQL	62 PQL	62 PQL	37 PQL	250 PQL	190 PQL	120 PQL	120 PQL	1200 PQL	250 PQL	190 PQL	31 PQL	250 PQL	62 PQL	190 PQL	120 PQL	250 PQL	250 PQL	500 PQL	250 PQL	1200 PQL	250 PQL	190 PQL	1900 PQL	250 PQL	120 PQL	1900 PQL	31 PQL	31 PQL	31 PQL	31 PQL	74 PQL	31 PQL	74 PQL	74 PQL	3100 PQL	5000 PQL	250 PQL	250 PQL
62 ug/Kg	62 ug/Kg	62 ug/Kg	140 ug/Kg	250 ug/Kg	190 ug/Kg	120 ug/Kg	120 ug/Kg	1200 ug/Kg	250 ug/Kg	190 ug/Kg	31 ug/Kg	250 ug/Kg	180 ug/Kg	190 ug/Kg	120 ug/Kg	250 ug/Kg	250 ug/Kg	500 ug/Kg	250 ug/Kg	1200 ug/Kg	250 ug/Kg	190 ug/Kg	1900 ug/Kg	250 ug/Kg	120 ug/Kg	1900 ug/Kg	330 ug/Kg	34 ug/Kg	210 ug/Kg	540 ug/Kg	520 ug/Kg	710 ug/Kg	230 ug/Kg	180 ug/Kg	3100 ug/Kg	5000 ug/Kg	250 ug/Kg	250 ug/Kg
17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2		101-55-3	59-50-7	106-47-8	er 7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	65-85-0	100-51-6	ne 111-91-1	111-44-4
1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'- Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophemyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz[a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benz o(ghi)perylene	Benzo(k)fluoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether
			Solid/ Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	je di	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	z	z	z
12:05:00 7901-5B-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-58-04-9
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-58-04-9	7901-SB-04-9																														
Ą	ΑN	ΑN	Ϋ́	Ϋ́	N A	N A	Ν	Ą	Ą	N A	A A	ΑN	ΑN	N A	N A	A A	A	A	A	Ą	ΑN	Ϋ́	Ą	A	NA	A A	A A	Ą	ΑN	Ą	Ą	Ą	N A	ΑĀ	ΑĀ	N A	Ą	N A
NA	NA	NA	NA	NA	N	N	NA	NA	NA	N	N	NA	N	N	N	NA	N	NA	N	N	NA	¥.																

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, seaπie- Tacoma WA
SW8270D	SW82 70D	SW8270D	SW82.70D	SW8270D	SW82.70D	SW8270D	SW8270D	NWTPH-GX	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A																									
																																					Total	Total
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dny	Dry	Dry
э	⊃	Þ	Э				Þ	Þ	⊃	Э			⊃	Þ	Þ	Þ		Э		Э	ם	⊃	Э		⊃			ם	⊃	ם	Þ	n	Þ	⊃				
170 MDL	46 MDL	62 MDL	38 MDL	16 MDL	15 MDL	45 MDL	160 MDL	41 MDL	71 MDL	280 MDL	6.2 MDL	6.2 MDL	6.2 MDL	19 MDL	32 MDL	47 MDL	6.2 MDL	46 MDL	6.2 MDL	52 MDL	SS MDL	19 MDL	110 MDL	15 MDL	47 MDL	19 MDL	5.4 MDL	0.0096 MDL	0.0054 MDL	0.0063 MDL	0.0021 MDL	0.0037 MDL	0.0019 MDL	0.0025 MDL	15 MDL	11 MDL	0.07 MDL	0.1 MDL
740 PQL	310 PQL	250 PQL	190 PQL	74 PQL	62 PQL	190 PQL	680 PQL	190 PQL	620 PQL	1200 PQL	31 PQL	31 PQL	62 PQL	62 PQL	120 PQL	190 PQL	SO PQL	190 PQL	31 PQL	250 PQL	250 PQL	74 PQL	500 PQL	74 PQL	190 PQL	74 PQL	10 PQL	0.032 PQL	0.014 PQL	0.014 PQL	0.013 PQL	0.014 PQL	0.013 PQL	0.013 PQL	63 PQL	63 PQL	0.2 PQL	0.51 PQL
740 ug/Kg	310 ug/Kg	250 ug/Kg	190 ug/Kg	760 ug/Kg	110 ug/Kg	190 ug/Kg	680 ug/Kg	190 ug/Kg	620 ug/Kg	1200 ug/Kg	1200 ug/Kg	400 ug/Kg	62 ug/Kg	62 ug/Kg	120 ug/Kg	190 ug/Kg	320 ug/Kg	190 ug/Kg	210 ug/Kg	250 ug/Kg	250 ug/Kg	74 ug/Kg	500 ug/Kg	1600 ug/Kg	190 ug/Kg	1400 ug/Kg	31 mg/Kg	0.032 mg/Kg	0.014 mg/Kg	0.014 mg/Kg	0.013 mg/Kg	0.014 mg/Kg	0.013 mg/Kg	0.013 mg/Kg	1300 mg/Kg	3000 mg/Kg	49 mg/Kg	49 mg/Kg
17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	17:39:00	19:51:00	18:25:00	18:25:00	18:25:00	18:25:00	18:25:00	18:25:00	18:25:00	23:55:00	23:55:00	14:43:00	14:43:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/8/2017 D	6/4/2017 D	6/9/2017 D	6/9/2017 D	5/31/2017 D	5/31/2017 D						
117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0	86-73-7	118-74-1	87-68-3	77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3	621-64-7	9-08-98	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2
Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyi phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-arodor 1254	PCB-arodor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic
			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-58-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-58-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-58-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-58-04-9	7901-SB-04-9	7901-58-04-9	7901-58-04-9	7901-SB-04-9	7901-SB-04-9	7901-SB-04-9	7901-58-04-9	7901-SB-04-9																			
Ą	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	N	NA	NA	NA	NA	Ą	ž	NA	NA	NA	NA	N	NA	Ą	NA	NA	NA	NA														

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW7471A	SW8270D																											
Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total																												
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	λυg	Dry	Dry
								Э			⊃	⊃	Ξ	⊃	⊃	ם	⊃	Э	О	О	Э	⊃	⊃	⊃	⊃	⊃	ם	⊃	Ξ	⊃	o	Э	О	Э	⊃	ם	⊃	⊃
0.015 MDL	0.079 MDL	0.064 MDL	0.22 MDL	4.9 MDL	0.2 MDL	0.22 MDL	0.02 MDL	0.056 MDL	160 MDL	0.0099 MDL	330 MDL	920 MDL	260 MDL	450 MDL	270 MDL	2500 MDL	2000 MDL	820 MDL	820 MDL	11000 MDL	2300 MDL	1900 MDL	270 MDL	2300 MDL	480 MDL	2000 MDL	820 MDL	2500 MDL	820 MDL	2500 MDL	2200 MDL	2500 MDL	2200 MDL	1800 MDL	22000 MDL	2200 MDL	1100 MDL	20000 MDL
0.2 PQL	0.41 PQL	0.51 PQL	1 PQL	51 PQL	0.51 PQL	1 PQL	0.2 PQL	0.41 PQL	510 PQL	0.033 PQL	2700 PQL	2700 PQL	2700 PQL	2700 PQL	1600 PQL	11000 PQL	8200 PQL	5500 PQL	5500 PQL	55000 PQL	11000 PQL	8200 PQL	1400 PQL	11000 PQL	2700 PQL	8200 PQL	5500 PQL	11000 PQL	11000 PQL	22000 PQL	11000 PQL	55000 PQL	11000 PQL	8200 PQL	82000 PQL	11000 PQL	5500 PQL	82000 PQL
0.74 mg/Kg	17 mg/Kg	40 mg/Kg	570 mg/Kg	22000 mg/Kg	63 mg/Kg	1.4 mg/Kg	1 mg/Kg	0.41 mg/Kg	8600 mg/Kg	0.66 mg/Kg	2700 ug/Kg	2700 ug/Kg	2700 ug/Kg	2700 ug/Kg	1600 ug/Kg	11000 ug/Kg	8200 ug/Kg	5500 ug/Kg	5500 ug/Kg	55000 ug/Kg	11000 ug/Kg	8200 ug/Kg	1400 ug/Kg	11000 ug/Kg	2700 ug/Kg	8200 ug/Kg	5500 ug/Kg	11000 ug/Kg	11000 ug/Kg	22000 ug/Kg	11000 ug/Kg	55000 ug/Kg	11000 ug/Kg	8200 ug/Kg	82000 ug/Kg	11000 ug/Kg	5500 ug/Kg	82000 ug/Kg
14:43:00	14:43:00	14:43:00	14:43:00	14:59:00	14:43:00	14:43:00	14:43:00	14:43:00	14:59:00	15:44:16	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00
5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7	88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	534-52-1	101-55-3	59-50-7	106-47-8	7005-72-3	100-01-6	100-02-7
Beryllium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol	2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'-Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophemyl-Phemylether	4-Nitroaniline	4-Nitrophenol
	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
z	2	z	Z 6	z	z	z	z	N 6	z	z	14 N	14 N	14 N	14 N	14 N	14 N	14 N	14 N	14 N																			
12:05:00 7901-5B-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:05:00 7901-5B-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-SB-04-9	12:05:00 7901-58-04-9	12:05:00 7901-58-04-9	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-58-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-5B-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-58-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-5B-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-SB-04-14	12:10:00 7901-5B-04-14								
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-04-9	7901-SB-04-9	7901-58-04-9	7901-SB-04-9	7901-SB-04-9	7901-58-04-9	7901-SB-04-9	7901-58-04-9	7901-SB-04-9	7901-SB-04-9	7901-58-04-9	7901-SB-04-14	7901-58-04-14	7901-SB-04-14	7901-58-04-14	7901-58-04-14	7901-SB-04-14	7901-58-04-14	7901-SB-04-14																				
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ą
NA	Ϋ́	ď.	A A	V.	A A	NA A	Ą	NA	Ν	V V	NA A	A	Y Y	V.	V.	Ą	NA	NA	NA	NA	Ą	N	Ŋ	Ŋ	NA A	NA	N.	NA A	NA A	NA	NA A	Ą	Ą	Ą	Ŋ	N.	NA	NA

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82 70D	SW82 70D	SW8270D	SW8270D	SW82 70D	SW82 70D	SW8270D	SW8270D	SW82 70D	SW82 70D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82 70D	SW8270D	SW8270D	SW8270D	SW82 70D	SW8270D	SW8270D
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
Ξ	D	ם	ם	Э	Þ	Ξ	ם	ם	Ξ	Þ	Þ	Э	ם	ם	٦	Þ	ס	Þ	Þ	ο	Ξ	Þ	Þ	Ξ	Þ	ס	ס	Þ	Þ	Ξ	Ξ	Э	⊃	Ξ	⊃	Ξ	Ξ	⊃
270 MDL	270 MDL	270 MDL	270 MDL	710 MDL	270 MDL	820 MDL	10W 09Z	28000 MDL	2000 MDL	2200 MDL	2200 MDL	7400 MDL	2000 MDL	2700 MDL	1700 MDL	710 MDL	10M 059	2000 MDL	7200 MDL	1800 MDL	3100 MDL	12000 MDL	270 MDL	270 MDL	270 MDL	820 MDL	1400 MDL	2100 MDL	270 MDL	2000 MDL	270 MDL	2300 MDL	2400 MDL	820 MDL	2000 MDL	920 MDL	2100 MDL	820 MDL
1400 PQL	1400 PQL	1400 PQL	1400 PQL	3300 PQL	1400 PQL	3300 PQL	3300 PQL	140000 PQL	220000 PQL	11000 PQL	11000 PQL	33000 PQL	14000 PQL	11000 PQL	8200 PQL	3300 PQL	2700 PQL	8200 PQL	30000 PQL	8200 PQL	27000 PQL	55000 PQL	1400 PQL	1400 PQL	2700 PQL	2700 PQL	5500 PQL	8200 PQL	2200 PQL	8200 PQL	1400 PQL	11000 PQL	11000 PQL	3300 PQL	22000 PQL	3300 PQL	8200 PQL	3300 PQL
1400 ug/Kg	1400 ug/Kg	1400 ug/Kg	1400 ug/Kg	3300 ug/Kg	1400 ug/Kg	3300 ug/Kg	3300 ug/Kg	140000 ug/Kg	220000 ug/Kg	11000 ug/Kg	11000 ug/Kg	33000 ug/Kg	14000 ug/Kg	11000 ug/Kg	8200 ug/Kg	3300 ug/Kg	2700 ug/Kg	8200 ug/Kg	30000 ug/Kg	8200 ug/Kg	27000 ug/Kg	55000 ug/Kg	1400 ug/Kg	1400 ug/Kg	2700 ug/Kg	2700 ug/Kg	5500 ug/Kg	8200 ug/Kg	2200 ug/Kg	8200 ug/Kg	1400 ug/Kg	11000 ug/Kg	11000 ug/Kg	3300 ug/Kg	22000 ug/Kg	3300 ug/Kg	8200 ug/Kg	3300 ug/Kg
18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00	18:04:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	65-85-0	100-51-6	ine 111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0	86-73-7	118-74-1	87-68-3	ne 77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	98-95-3	e 621-64-7	9-06-98	87-86-5	85-01-8	108-95-2	129-00-0
Acenaphthene	Acenaphthylene	Anthracene	Benz[a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene	Benzo(k)fluoranthene	Benzoic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene
			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source- ment Other	Solid/Sedi Source- ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
12:10:00 7901-58-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-SB-04-14 N											
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample	Sample
7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-58-04-14	7901-58-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-58-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-58-04-14	7901-SB-04-14	7901-SB-04-14	7901-58-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-SB-04-14	7901-58-04-14	7901-SB-04-14	7901-SB-04-14	7901-58-04-14	7901-58-04-14	7901-58-04-14	7901-58-04-14	7901-58-04-14	7901-SB-04-14
Ą	Ą	Ą	ď.	ď Z	N	N	Ą	Ą	Ϋ́	Ä	N	Ą	Ą	ď.	ď.	Ϋ́	Ą	Ą	Ą	NA	Ą	Ν	N	ď.	Ą	V V	ν V	Υ V	ν V	N	NA	N	NA	Ν	N A	N	Ν	N A
Ä	NA	NA	NA	NA	NA	NA	Ą	Ą	ž	Ą	¥	NA	NA	NA	NA	NA	NA	NA	N	NA A	¥	Ą	NA	Ą	NA.	NA.	NA	NA	NA	NA	NA							

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA.	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA
NWTPH-GX	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW6020A	SW7471A	SW8270D SW8270D	SW8270D														
										Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total																
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
	ο	⊃	⊃	ם	⊃	Э	⊃					Э						Э	ם	⊃		Ξ	⊃	⊃	⊃	⊃	⊃	⊃	ם)	ο	⊃	U F2	U F2	U F2	ם)	Ξ
5.3 MDL	0.0084 MDL	0.0048 MDL	0.0056 MDL	0.0018 MDL	0.0033 MDL	0.0017 MDL	0.0022 MDL	73 MDL	54 MDL	0.07 MDL	0.1 MDL	0.015 MDL	0.079 MDL	0.065 MDL	0.23 MDL	0.049 MDL	0.2 MDL	0.22 MDL	0.021 MDL	0.056 MDL	1.7 MDL	0.0096 MDL	8.5 MDL	17 MDL	6.8 MDL	12 MDL	7.1 MDL	64 MDL	51 MDL	21 MDL	21 MDL	280 MDL	61 MDL	48 MDL	7.1 MDL	90 MDL	13 MDL	53 MDL
10 PQL	0.028 PQL	0.012 PQL	0.012 PQL	0.011 PQL	0.012 PQL	0.011 PQL	0.011 PQL	300 PQL	300 PQL	0.21 PQL	0.51 PQL	0.21 PQL	0.41 PQL	0.51 PQL	1 PQL	0.51 PQL	0.51 PQL	1 PQL	0.21 PQL	0.41 PQL	5.1 PQL	0.032 PQL	71 PQL	71 PQL	71 PQL	71 PQL	43 PQL	280 PQL	210 PQL	140 PQL	140 PQL	1400 PQL	280 PQL	210 PQL	36 PQL	280 PQL	71 PQL	210 PQL
43 mg/Kg	0.028 mg/Kg	0.012 mg/Kg	0.012 mg/Kg	0.011 mg/Kg	0.012 mg/Kg	0.011 mg/Kg	0.011 mg/Kg	1500 mg/Kg	22000 mg/Kg	0.79 mg/Kg	1.8 mg/Kg	0.21 mg/Kg	1.1 mg/Kg	10 mg/Kg	22 mg/Kg	63 mg/Kg	21 mg/Kg	1 mg/Kg	0.21 mg/Kg	0.41 mg/Kg	480 mg/Kg	0.032 mg/Kg	71 ug/Kg	71 ug/Kg	71 ug/Kg	71 ug/Kg	43 ug/Kg	280 ug/Kg	210 ug/Kg	140 ug/Kg	140 ug/Kg	1400 ug/Kg	280 ug/Kg	210 ug/Kg	36 ug/Kg	280 ug/Kg	71 ug/Kg	210 ug/Kg
20.22:00	18:42:00	18:42:00	18:42:00	18:42:00	18:42:00	18:42:00	18:42:00	0:17:00	0:17:00	14.47:00	14:47:00	14:47:00	14.47:00	14:47:00	14:47:00	14:47:00	14:47:00	14:47:00	14:47:00	14:47:00	14:47:00	15:46:31	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00
6/8/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/10/2017 D	6/10/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/31/2017 D	5/30/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6	120-82-1	95-50-1	541-73-1	106-46-7	90-12-0	95-95-4	88-06-2	120-83-2	105-67-9	51-28-5	121-14-2	606-20-2	91-58-7	95-57-8	91-57-6	95-48-7
Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium	Zinc	Mercury	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Methylnaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	PCN-002	2-Chlorophenol	2-Methylnaphthalene	o-Cresol
	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other			Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other		Solid/Sedi Source - ment Other	solid/sedi source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
12:10:00 7901-58-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-58-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-SB-04-14 N	12:10:00 7901-5B-04-14 N	12:10:00 7901-58-04-14 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-5B-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-5B-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-5B-04-18.5 N	12:15:00 7901-5B-04-18.5 N	12:15:00 7901-58-04-18.5 N					
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-04-14 Sample	7901-SB-04-14 Sample	7901-SB-04-14 Sample	7901-5B-04-14 Sample	7901-SB-04-14 Sample	7901-5B-04-14 Sample	7901-5B-04-14 Sample	7901-5B-04-14 Sample	7901-5B-04-14 Sample	7901-SB-04-14 Sample	7901-5B-04-14 Sample	7901-58-04-14 Sample	7901-58-04-14 Sample	7901-SB-04-14 Sample	7901-SB-04-14 Sample	7901-SB-04-14 Sample	7901-SB-04-14 Sample	7901-58-04-14 Sample	7901-5B-04-14 Sample	7901-SB-04-14 Sample	7901-SB-04-14 Sample	7901-SB-04-14 Sample	7901-58-04-14 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-5B-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample				
Å.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN
Ä	N	A	AN	N	N	NA	N	NA	N	NA	Ä	Ν	N A	N	AN	A	N	NA	NA	NA	N	Ϋ́	N	N	N	N	N A	N	A	N	NA	N	Ä	Ä	Ä	N	NA	NA

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW8270D	SW8270D	SW82.70D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW82.70D	SW8270D	SW82.70D	SW8270D	SW8270D	SW8270D	SW82.70D	SW8270D	SW8270D						
Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry
U F2	D	UF1	n	ם	D	ס	U F2	U FI	U F2	Þ	U F2	U F2	U F2	n	U F2	D	D	UF	n	ס	Þ	D	UF1	U F2	U FI	n	n	U F2	UF1	U F1 F2	U F2	U F2	D	Þ	D	U F2	n	U F1
21 MDL	10W 99	21 MDL	140 MDL	27 MDL	140 MDL	28 MDL	47 MDL	270 MDL	28 MDL	28 MDL	520 MDL	7.1 MDL	7.1 MDL	7.1 MDL	7.1 MDL	19 MDL	7.1 MDL	21 MDL	20 MDL	1500 MDL	53 MDL	28 MDL	57 MDL	190 MDL	53 MDL	71 MDL	44 MDL	19 MDL	17 MDL	51 MDL	190 MDL	47 MDL	81 MDL	320 MDL	7.1 MDL	7.1 MDL	7.1 MDL	21 MDL
140 PQL	280 PQL	280 PQL	570 PQL	280 PQL	1400 PQL	280 PQL	210 PQL	2100 PQL	280 PQL	140 PQL	2100 PQL	36 PQL	36 PQL	36 PQL	36 PQL	85 PQL	36 PQL	85 PQL	85 PQL	3600 PQL	5700 PQL	280 PQL	280 PQL	850 PQL	360 PQL	280 PQL	210 PQL	85 PQL	71 PQL	210 PQL	780 PQL	210 PQL	710 PQL	1400 P.Q.L	36 PQL	36 PQL	71 PQL	71 PQL
140 ug/Kg	280 ug/Kg	280 ug/Kg	570 ug/Kg	280 ug/Kg	1400 ug/Kg	280 ug/Kg	210 ug/Kg	2100 ug/Kg	280 ug/Kg	140 ug/Kg	2100 ug/Kg	36 ug/Kg	36 ug/Kg	36 ug/Kg	36 ug/Kg	85 ug/Kg	36 ug/Kg	85 ug/Kg	85 ug/Kg	3600 ug/Kg	5700 ug/Kg	280 ug/Kg	280 ug/Kg	850 ug/Kg	360 ug/Kg	280 ug/Kg	210 ug/Kg	85 ug/Kg	71 ug/Kg	210 ug/Kg	780 ug/Kg	210 ug/Kg	710 ug/Kg	1400 ug/Kg	36 ug/Kg	36 ug/Kg	71 ug/Kg	71 ug/Kg
18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D
88-74-4	88-75-5	15831-10-4	91-94-1	99-09-2	534-52-1	101-55-3	59-50-7	106-47-8	7005-72-3	100-01-6	100-02-7	83-32-9	208-96-8	120-12-7	56-55-3	50-32-8	205-99-2	191-24-2	207-08-9	65-85-0	100-51-6	111-91-1	111-44-4	117-81-7	108-60-1	85-68-7	86-74-8	218-01-9	53-70-3	132-64-9	84-66-2	131-11-3	84-74-2	117-84-0	206-44-0	86-73-7	118-74-1	87-68-3
2-Nitroaniline	2-Nitrophenol	m,p-Cresol (2:1 ratio)	3,3'- Dichlorobenzidine	m-Nitroaniline	4,6-Dinitro-2-Methylphenol	PBDE-003	4-Chloro-3-Methylphenol	4-Chloroaniline	4-Chlorophenyl-Phenylether	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benz[a]anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benz o(ghi)perylene	Benz o(k)fluoranthene	Benz oic Acid	Benzyl Alcohol	Bis(2-Chloroethoxy)Methane	Bis(2-Chloroethyl)Ether	Di(2-ethylhexyl) phthalate	Bis(2-chloro-1-methylethyl) ether	Butyl benzyl phthalate	Carbazole	Chrysene	Dibenzo(a,h)anthracene	Dibenzofuran	Diethyl phthalate	Dimethyl phthalate	Dibutyl phthalate	Di-n-octyl phthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene
Source - Other		Source - Other		Source - Other	Source - Other	Source - Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	Source - Other	,	Source - Other	Solid/Sedi Source - ment Other																		
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
12:15:00 7901-58-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-5B-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-SB-04-18.5 N	12:15:00 7901-5B-04-18.5 N	12:15:00 7901-SB-04-18.5 N														
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-04-18.5 Sample	7901-58-04-18.5 Sample	7901-58-04-18.5 Sample	7901-58-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-5B-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-5B-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-5B-04-18.5 Sample	7901-58-04-18.5 Sample	7901-58-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample				
Ϋ́	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA													
N	Ϋ́	AN	AN	NA	A	AN	Ą	NA	Ϋ́	V.	Ϋ́	NA	¥.	ΑN	ΑN	N	NA	NA	NA	NA A	N	NA	NA	ΑN	Ϋ́	Ϋ́	Ϋ́	Ϋ́	NA	Ϋ́	A	ΑN	Ą	ĄN	Ϋ́	Ϋ́	Ν	Ą

TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA	Tacoma WA	lestamerica, seattle- Tacoma WA	TestAmerica, Seattle- Tacoma WA																					
SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	SW8270D	NWTPH-GX	SW8082A	NWTPH-DX	NWTPH-DX	SW6020A	SW7471A																	
																						Total												
Aud	Dry Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dry											
U F1 F2	0	U F1	Э	Þ	⊃	Э	ם	ם	⊃	⊃	Э	U HF2	0	⊃	ם	0	n	⊃	n	E	덛			Þ			F1 F2	F1 F2		⊃	ם	ο		Þ
37 MDL	54 MDL	7.1 MDL	53 MDL	7.1 MDL	10W 09	1 MDL	21 MDL	130 MDL	17 MDL	54 MDL	21 MDL	6.4 MDL	0.0097 MDL	0.0055 MDL	0.0064 MDL	0.0021 MDL	0.0038 MDL	0.002 MDL	0.0025 MDL	17 MDL	12 MDL	0.078 MDL	0.11 MDL	0.017 MDL	0.088 MDL	0.072 MDL	0.25 MDL	0.055 MDL	0.22 MDL	0.25 MDL	0.023 MDL	0.063 MDL	1.8 MDL	0.013 MDL
140 PQL	210 PQL	57 PQL	210 PQL	36 PQL	280 PQL	280 PQL	85 PQL	570 PQL	85 PQL	210 PQL	85 PQL	12 PQL	0.033 PQL	0.014 PQL	0.014 PQL	0.013 PQL	0.014 PQL	0.013 PQL	0.013 PQL	1DA 89	68 PQL	0.23 PQL	0.57 PQL	0.23 PQL	0.46 PQL	0.57 PQL	1.1 PQL	0.57 PQL	0.57 PQL	1.1 PQL	0.23 PQL	0.46 PQL	5.7 PQL	0.042 PQL
140 ug/Kg	210 ug/Kg	57 ug/Kg	210 ug/Kg	36 ug/Kg	280 ug/Kg	280 ug/Kg	85 ug/Kg	570 ug/Kg	85 ug/Kg	210 ug/Kg	85 ug/Kg	12 mg/Kg	0.033 mg/Kg	0.014 mg/Kg	0.014 mg/Kg	0.013 mg/Kg	0.014 mg/Kg	0.013 mg/Kg	0.013 mg/Kg	490 mg/Kg	800 mg/Kg	6.2 mg/Kg	13 mg/Kg	0.23 mg/Kg	0.97 mg/Kg	27 mg/Kg	99 mg/Kg	210 mg/Kg	20 mg/Kg	1.1 mg/Kg	0.23 mg/Kg	0.46 mg/Kg	1400 mg/Kg	0.042 mg/Kg
18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	18:30:00	15:58:00	15:27:00	15.27:00	15:27:00	15:27:00	15:27:00	15:27:00	15:27:00	0.40:00	0.40:00	13:56:00	13:56:00	13:56:00	13:56:00	13:56:00	13:56:00	13:56:00	13:56:00	13:56:00	13:56:00	13:56:00	13:56:00	15:12:18
6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/6/2017 D	6/10/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/4/2017 D	6/10/2017 D	6/10/2017 D	5/31/2017 D	5/30/2017 D											
iene 77-47-4	67-72-1	193-39-5	78-59-1	91-20-3	8-98-3	ine 621-64-7	9-0E-98 a	87-86-5	85-01-8	108-95-2	129-00-0	86290-81-5	12674-11-2	11104-28-2	11141-16-5	53469-21-9	12672-29-6	11097-69-1	11096-82-5	68476-34-6		7440-36-0	7440-38-2	7440-41-7	7440-43-9	7440-47-3	7440-50-8	7439-92-1	7440-02-0	7782-49-2	7440-22-4	7440-28-0	7440-66-6	7439-97-6
Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	Naphthalene	Nitrobenzene	N-Nitrosodi-n-propylamine	N-Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	Gasoline	PCB-aroclor 1016	PCB-aroclor 1221	PCB-aroclor 1232	PCB-aroclor 1242	PCB-aroclor 1248	PCB-aroclor 1254	PCB-aroclor 1260	#2 Diesel	Motor Oil	Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Nickel	Selenium	Silver	Thallium	Zinc	Mercury
Solid/Sedi Source - ment Other				Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other					Solid/Sedi Source - ment Other	solid/sedi source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other	Solid/Sedi Source - ment Other
z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z
12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-5B-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-5B-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N	12:15:00 7901-58-04-18.5 N									
5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017	5/25/2017
Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant	Consultant
7901-5B-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-5B-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-58-04-18.5 Sample	7901-SB-04-18.5 Sample	7901-5B-04-18.5 Sample	7901-5B-04-18.5 Sample	7901-58-04-18.5 Sample											
Ą	NA	A.	NA	NA	NA	NA	N.	N.	NA	NA	Ą	NA	NA	Ą	NA	NA	NA	ΝΑ	NA	ΝΑ	NA	NA	NA	NA	NA	ΝΑ	N.	Ą						
N	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N											

Figure 1 7901 2nd Avenue S. Property and Boring Locations

Prepared By: cjc
File: SouthParkLandfill_Boring_Locations.mxd
Illustrative purposes only.

From: Dube, Tom E.

Sent: Friday, July 7, 2017 12:17 AM

To: Cruz, Jerome (ECY); 'Gretchen Hill'; 'Kim Johannessen';

Anderson, Ivy (ATG)

Subject: RE: Validated Data and Field Documents for the 7901 Parcel Environmental

Investigation at SPLF

Attachments: 7901_SPLF_Soil_Detected Chemicals_063017.pdf; 7901_SPLF_GW_Detected Chemicals_

063017.pdf

Attached are two summary tables of analytical data from this 7901 environmental investigation. Environmental sample results that exceed the listed screening levels are shown in bold font.

In producing these tables, we used screening levels that follow the general approach applied in the South Park Landfill draft final Remedial Investigation Report (June 2016). This includes applying MTCA Method C soil cleanup levels, and Method B groundwater cleanup levels, the latter including evaluation of pertinent ARARs (which include Maximum Contaminant Levels). There are a few cases where Method A or background values are utilized.

The screening levels in these tables were taken from the most recent values listed in Ecology's CLARC database, and applying MCLs for groundwater where applicable. In the case of TPH-diesel and heavy oil in soil, the calculated Method C TPH value in the RI Report (7,000 mg/kg) was applied. For TPH-gasoline in soil, the MTCA Method A value was applied because gasoline was not a chemical of concern in the SPLF samples utilized for calculating the diesel/heavy oil cleanup level.

The screening levels in the attached files are not intended to be applied at this time as cleanup levels, but only for initial screening of the data in the 7901 investigation. Ecology reserves the option of modifying these screening levels at a future date.

Tom

Thomas Dubé | Leidos

office: 425.482.3325 |

From: Dube, Tom E.

Sent: Friday, June 30, 2017 10:50 PM

To: 'Cruz, Jerome (ECY)'; 'Gretchen Hill'; 'Kim Johannessen'; 'ivya@atg.wa.gov'

Subject: Validated Data and Field Documents for the 7901 Parcel Environmental Investigation at SPLF

7901 SPLF Team:

The data validation for this environmental investigation was completed on Monday, June 26, 2017. Attached you will find five documents, including those requested in the site access agreement. These files include:

- An Excel file with the validation adjustments to the original EIM-format file from the lab, TestAmerica. You have previously received the original lab files, so those are not included here.
- The analytical validation summary report, completed by Leidos.
- Scans of our field logbook and the groundwater purging forms.
- An aerial photo map of the site, showing the four borings (you have previously received this same figure), along with a listing of their geographic coordinates.

• The four boring logs.

The last item, the summary data table, is currently in Jerome's inbox and will be reviewed and finalized after the holiday.

Let us know if you have any questions.

Thanks, Tom

Thomas Dubé, R.G. | Leidos

Sr. Hydrogeologist | Environmental Planning & Restoration Group office: 425.482.3325 | | |

Leidos 18912 North Creek Parkway, #101 Bothell, WA 98011-8016 www.leidos.com

Please consider the environment before printing this e-mail.

Table 1. Soil Analytical Data for Detected Chemicals 7901 Parcel -- South Park Landfill

Location ID:				7901-SB-01		7901-SB-02	\$B-02		7901-SB-03			7901-SB-04	
Sample ID:			7901-SB-01-9.5	7901-SB-01-14.5	7901-SB-01-17.5	7901-SB-02-14.5	7901-SB-02-17.5	7901-SB-03-8	7901-SB-03-9	7901-SB-03-17	7901-SB-04-9	7901-SB-04-14	7901-SB-04-18.5
Sample Depth (ft):			9.3 - 10	14 - 14.7	17.5 - 18.5	14.5 - 15	17.5 - 18	8-8.5	9 - 10	17 - 18	9.3 - 10	14 - 15	18.5 - 20
Sample Date & Time:	Saino	Coroning	5/25/17 15:35	5/25/17 15:40	5/25/17 15:45	5/25/17 09:30	5/25/17 09:35	5/25/17 14:05	5/25/17 14:10	5/25/17 14:15	5/25/17 12:05	5/25/17 12:10	5/25/17 12:15
Chemical Name (mg/kg)	Level		Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual	Result Qual
Metals													
Antimony	1,400	MTCA C	66	3.5	0.36	8.0	10	62	77	0.85	49	0.79	6.2
Arsenic	88	MTCA C	35	14	5.7	19	22	11	42	0.9	49	1.8	13
Beryllium	7,000	MTCA C	0.25	0.53	0.36	0.22 U	0.26 U	0.23	0.21	0.33	0.74	0.21 U	0.23 U
Cadmium	3,500	MTCA C	2.8	4.9	0.54 U	42	0.97	1.3	22	0.37	17	1.1	0.97
Chromium	1.0E+06	MTCA C	170	99	19	54	42	44	110	17	40	10	27
Copper	140,000	MTCA C	1,100	44	30	099	350	150	2,400	35	570	22	f 66
Lead	1,000	MTCA A	6,100	1,100	48	2,300	48	320	5,100	37	22,000	63	210 J
Mercury	1,050	MTCA C	0.24	0.078	0.061	0.43	0.041 U	0.056	0.34	0.048	99.0	0.032 U	0.042 U
Nickel	70,000	MTCA C	31	32	15	110	65	48	130	14	63	21	20 J
Selenium	17,500	MTCA C	1.3 U	1.1 U	1.3 U	1.1 U	1.3 U	1 U	0.82 U	0.86 U	1.4	1 U	1.1 U
Silver	17,500	MTCA C	3.4	0.22 U	0.27 U	0.47	0.26 U	0.33	2.2	0.17 U	1.0	0.21 U	0.23 U
Zinc	1.0E+06	MTCA C	1,200	1,800	110	12,000	360	1,400	4,800	180	8,600	480	1,400
ТРН													
Gasoline	100	MTCA A	21 J	32	15 U	24	12 U	7.3 U	220 J	12 U	31	43	12 UJ
Diesel (#2)	7,000	MTCA calc	3,800	1,300	74 U	330	N 69	52 U	2,200	O 29	1,300	1,500	490 J
Motor Oil	7,000	MTCA calc	9,000	4,000	230	970	240	110	3,800	67 U	3,000	22,000	800 J
SVOCs													
Acenaphthene	210,000	MTCA C	35	0.14 U	0.036 U	99.0	0.035 U	0.028 U	0.15 U	0.035 U	0.33	1.4 U	0.036 U
Acenaphthylene	1	1	4.1	0.14 U	0.036 U	0.29 U	0.035 U	0.028 U	0.15 U	0.035 U	0.034	1.4 U	0.036 U
Anthracene	1.0E+06	MTCA C	26	0.14 U	0.036 U	1.7	0.053	0.028 U	3.7	0.035 U	0.21	1.4 U	0.036 U
Benzo(a)anthracene	180	MTCA C	82	0.25	0.036 U	2.8	0.14	0.028 U	29	0.035 U	0.54	1.4 U	0.036 U
Benzo(a)pyrene	18	MTCA C	63	0.33 U	0.087 U	2.5	0.11	0.067 U	16	0.084 U	0.52	3.3 U	0.085 U
Benzo(b)fluoranthene	180	MTCA C	26	0.14 U	0.036 U	2.6	0.13	0.028 U	19	0.035 U	0.71	1.4 U	0.036 U
Benzo(k)fluoranthene	1,800	MTCA C	22	0.33 U	0.087 U	0.95	0.084 U	0.067 U	8.4	0.084 U	0.18	3.3 U	0.085 U
Benzo(ghi)perylene	1	1	25 J	0.33 UJ	0.087 UJ	1.6 J	0.084 UJ	0.067 UJ	7.6 J	0.084 UJ	0.23 J	3.3 UJ	0.085 UJ
Carbazole	1	1	18	0.83 U	0.22 U	1.7 U	0.21 U	0.17 U	1.4	0.21 U	0.19 U	8.2 U	0.21 U
Chrysene	18,000	MTCA C	77	0.33 U	0.087 U	3.0	0.14	0.067 U	27	0.084 U	0.76	3.3 0	0.085 U
Dibenz(a,h)anthracene	18	MTCA C	6.2	0.28 U	0.073 U	0.58 U	0.07 U	0.056 U	2.2	0.07 U	0.11	2.7 U	0.071 UJ
Dibenzofuran	3,500	MTCA C	10	0.83 U	0.22 U	1.7 U	0.21 U	0.17 U	0.88 U	0.21 U	0.19	8.2 U	0.21 U
Fluoranthene	140,000	MTCA C	190	0.53	0.088	7.1	0.31	0.028 U	66	0.035 U	1.2	1.4 U	0.036 U
Fluorene	140,000	MTCA C	31	0.14 U	0.036 U	0.99	0.035 U	0.028 U	0.68	0.035 U	0.4	1.4 U	0.036 U
Indeno(1,2,3-cd)pyrene	180	MTCA C	31	0.22 U	0.058 U	1.9	0.093	0.045 U	6.6	0.056 U	0.32	2.2 U	0.057 UJ
Naphthalene	70,000	MTCA C	15	0.14 U	0.036 U	0.59	0.035 U	0.028 U	0.23	0.035 U	0.21	1.4 U	0.036 U
1-Methylnaphthalene	4,500	MTCA C	13	0.17 U	0.044 U	0.35 U	0.042 U	0.033 U	0.34	0.042 U	0.14	1.6 U	0.043 U
2-Methylnaphthalene	14,000	MTCA C	14	0.28 U	0.073 U	0.58 U	0.07 U	0.056 U	0.57	0.07 U	0.18	2.7 U	0.071 U
Phenanthrene	1	1	250	0.54	0.087 U	7.9	0.26	0.067 U	12	0.084 U	1.6	3.3 U	0.085 U
Pyrene	105,000	MTCA C	240	0.58	0.11	6.9	0.31	0.067 U	95	0.084 U	1.4	3.3 ∪	0.085 U
Total cPAHS (TEQ, NDx0.5)	18	MICAC	83	0.24	0.058 U	3.4	0.16	0.045 U	23	0.056 U	0.71	2.2 U	0.057 UJ

Notes:
Results and screening levels presented in mg/kg. Bold values exceed the respective screening levels. Qual = Qualifier flag.
Metals were analyzed by SW6020A or SW7471A (mercury). SVOCs were analyzed by SW8270D.
Gasoline was analyzed by NWTPH-Gs. Diesel and motor oil were analyzed by NWTPH-Bx.
PCB Aroclors were analyzed by SW8082A, but without any detections.
Soil screening levels were primarily developed under MTCA Method C, with TPH-gasoline and lead SLs under Method A; TPH-diesel and motor oil SLs were calculated under Method C (SPLF RI Report, June 2016).

Table 2. Groundwater Analytical Data for Detected Chemicals
7901 Parcel -- South Park Landfill

Location ID:			7901-SB-01	7901-SB-02	7901-SB-04	GW Trip Blank
Sample ID:			7901-SB-01-GW	7901-SB-02-GW	7901-SB-04-GW	7901-TB-GW
Sample Inlet Depth (ft):			17.5	19.5	17.5	
Sample Date & Time:			5/25/17 16:00	5/25/17 10:35	5/25/17 12:50	5/25/17 12:00
P	Screening	Screening	., .,	, , ,	2, 2,	, , ,
Chemical Name (ug/L)	Level	Reference	Result Qual	Result Qual	Result Qual	Result Qual
Metals						
Antimony	6.0	MCL	2 U	2 U	7.0	
Arsenic	5.0	MTCA A / BG	5 U	5 U 5 U		
Chromium	100	MCL	2 U	2 U	5.2	
Copper	640	MTCA B	10 U	10 U	52	
Iron	27,000	Local BG	11,000	6,300	18,000	
Lead	15	MCL	27	4 U	250	
Manganese	2,200	MTCA B	60	300	130	
Zinc	4,800	MTCA B	93 35 U		610	
TPH						
Diesel (#2)	500	MTCA A	670	1,100	1,200	
Motor Oil	500	MTCA A	380	660	1,000	
PAHs						
Acenaphthene	960	MTCA B	0.12 J	0.63 J	0.26	
Acenaphthylene			0.021 U	0.056	0.026	
Anthracene	4,800	MTCA B	0.023	0.089	0.029	
Fluoranthene	640	MTCA B	0.032	0.02 U	0.023	
Fluorene	640	MTCA B	0.021 U	0.045	0.02 U	
Naphthalene	160	MTCA B	0.041 UJ	0.062 J	0.041 UJ	
1-Methylnaphthalene	1.5	MTCA B	0.021 UJ	0.19 J	0.02 UJ	
Phenanthrene			0.068	0.034	0.029	
Pyrene	480	MTCA B	0.037	0.021	0.047	
VOCs						
Chlorobenzene	100	MCL	0.2 U	1.3	0.96	0.2 U
cis-1,2-Dichloroethene	16	MTCA B	0.2 U	0.2 U	2.1	0.2 U
Vinyl Chloride	0.29	MTCA B / MCL	0.30	0.16	0.97	0.02 U

Notes:

Results and screening levels presented in ug/L. Bold values exceed the respective screening levels.

Metals were analyzed by SW6020A.

Diesel and motor oil were analyzed by NWTPH-Dx. Gasoline was analyzed by NWTPH-Gx, but without any detections.

PAHs were analyzed by SW8270D-SIM. VOCs were analyzed by SW8260C.

PCB Aroclors were analyzed by SW8082A, but without any detections.

BG = Background concentration

MCL = Maximum Contaminant Level

Qual = Qualifier flag

Groundwater screening levels were primarily developed under MTCA Method B, which requires evauation of ARARs such as MCLs; TPH SLs were under Method A; arsenic and iron SLs used background values (from SPLF RI Report, June 2016).

From: Cruz, Jerome (ECY) < JCRU461@ECY.WA.GOV>

Sent: Tuesday, August 1, 2017 3:24 PM **To:** Teri A. Floyd

Cc: Neuner, Jeff; Wang, Ching-Pi (ECY); Anderson, Ivy (ATG); Dube, Tom E.

Subject: FW: Proposed Revisions to SPLF Cleanup Levels

Attachments: SPLF-7901_Soil Revised CULs_072017.pdf; SPLF-7901_GW Revised CULs_072017.pdf

Hi Gretchen and Teri,

I spoke to you before about how some cleanup levels may need revisions because the RI/FS did not use the most stringent standard (MCL vs. Method B). I have forwarded below an explanation from Tom Dube of Leidos and the tables he created flagging these items.

I compared the attached tables to site data in the RI/FS tables (Appendix C, tables C.5, C.6) and concluded that no changes were needed on our COCs because these cleanup levels were not exceeded except for antimony in groundwater (the 7901 data exceeds the 6 ppb CUL, the data for the rest of the site does not). It might be attributable to the auto wrecking yard contamination. In any case, since the downgradient wells do not appear to exceed the CUL, the situation is no different from the other detections or exceedances that are in the interior of the site but which appear to attenuate before it leaves the landfill boundary. Likewise, I saw no soil exceedances when compared the revised cleanup levels (some were even higher than what was in the RI/FS). Let me know if you agree with these conclusions from the data.

I propose proceeding in the following manner:

As we discussed in our meeting today, please examine the tables and Tom's email. Ecology will assess your comments and/or refutations.

As it is now, I don't think drastic revisions to the RI/FS are needed. I suggest revising the cleanup level tables in the RI to reflect the appropriate revised numbers from Tom's tables. Other changes are not needed in the RI except maybe for a short description of antimony in 7901 in the RI text and also including this metal in the EC for 7901. The CAP remains unchanged.

Thanks,

Jerome

Jerome B. Cruz, Ph.D.

Toxics Cleanup Program, Northwest Regional Office

3190 - 160th SE Bellevue, WA 98008 Tel: (425) 649-7094 Fax: (425) 649-7098

Jerome.Cruz@ecy.wa.gov

http://www.ecy.wa.gov/programs/tcp/cleanup.html

From: Dube, Tom E.

Sent: Tuesday, August 01, 2017 10:15 AM

To: Cruz, Jerome (ECY)

Subject: RE: Proposed Revisions to SPLF Cleanup Levels

Jerome,

The two attached tables are the same as those that I previously sent you. I just added them on to package everything so that if you wanted to forward the whole e-mail to others, then it would be easy for you.

Tom

Thomas Dubé | Leidos

office: 425.482.3325 |

From: Dube, Tom E.

Sent: Tuesday, August 01, 2017 10:13 AM

To: Cruz, Jerome (ECY) < JCRU461@ECY.WA.GOV Subject: Proposed Revisions to SPLF Cleanup Levels

Jerome,

As part of developing screening levels in the 7901 parcel investigation, I have reviewed the CULs used in the SPLF RI/FS report (June 2016) and made some adjustments. The CULs presented in tables in the RI/FS report are incorporated into the two attached tables, along with the revised CULs that are based on using the latest CLARC tables and following directions in MTCA, and checking the values against Priscilla Tomlinson's LDW PCUL spreadsheet. There are some differences between what is presented in the RI/FS report and what I came up with, as shown in the two tables.

The list of chemicals in these tables is based on combining the list in the RI/FS tables (as stated in footnotes in the attached tables) and those detected in the 7901 parcel investigation.

There are a number of reasons for the differences in CULs presented in the attached tables. The reasons for these differences are stated in the right column. Regarding the differences in groundwater CULs for VOCs, the RI/FS report states that they adjusted the MCL as the applicable standard. It is not clear how this took place because you cannot adjust a federal ARAR value (MCLs), and MTCA requires that the final CUL be at least as stringent as federal law. The RI/FS report did properly take into account the ARAR rule in MTCA under Method B for vinyl chloride and benzene. However, for the first four VOCs listed as "incorrect application," the MCL is more stringent than the Method B value, and thus must be considered as the lower value for the final CUL. For the case of TCE, the RI/FS report did not consider the non-cancer Method B value of 4.0 ug/L, which becomes the most stringent number after application of the ARAR rule.

For the groundwater background numbers in Table 2, I only used the aquifer A-zone values for Fe and Mn, because that is the depth zone we sampled at the 7901 parcel. The B-zone values could also be added to this table.

Let me know if you have any questions.

Thanks,

Tom

Thomas Dubé, R.G. | Leidos

Sr. Hydrogeologist | Environmental Planning & Restoration Group

office: 425.482.3325 |

Leidos 18912 North Creek Parkway, #101 Bothell, WA 98011-8016 www.leidos.com

Please consider the environment before printing this e-mail.

Table 1. Revisions to Soil Cleanup Levels -- South Park Landfill

Chemical Name	SPLF RI/FS CUL (mg/kg)	SPLF RI/FS CUL Reference	SPLF + 7901 Revised CUL (mg/kg)	SPLF + 7901 Revised CUL Reference	Reason for Difference from RI/FS Report to Revised CUL
Metals					
Aluminum			1,000,000	MTCA C	CUL was not previously listed in RI/FS; rounded down to 1.0M ppm
Antimony	1,400	MTCA C	1,400	MTCA C	
Arsenic	88	MTCA C	88	MTCA C	
Barium	700,000	MTCA C	700,000	MTCA C	Included due to detection in 7001 investigation
Beryllium Cadmium	3,500	MTCA C	7,000 3,500	MTCA C MTCA C	Included due to detection in 7901 investigation
Chromium	5,250,000	MTCA C	1,000,000	MTCA C	Rounded down to 1.0M ppm
Copper	130,000	MTCA C	140,000	MTCA C	Modification in toxicity (CLARC)
Iron			1,000,000	MTCA C	CUL was not previously listed in RI/FS; rounded down to 1.0M ppm
Lead	1,000	MTCA A	1,000	MTCA A	, , , , , , , , , , , , , , , , , , ,
Manganese	490,000	MTCA C	490,000	MTCA C	
Mercury	1,050	MTCA C	1,050	MTCA C	
Nickel	70,000	MTCA C	70,000	MTCA C	
Selenium			17,500	MTCA C	Included due to detection in 7901 investigation
Silver	17,500	MTCA C	17,500	MTCA C	
Zinc	1,100,000	MTCA C	1,000,000	MTCA C	Rounded down to 1.0M ppm
ТРН					
Gasoline			100	MTCA A	Included due to detection in 7901 investigation; Method A value used
Diesel (#2)	7,000	MTCA C calc	7,000	MTCA C calc	
Motor Oil	7,000	MTCA C calc	7,000	MTCA C calc	
PAHs/SVOCs	r	r	ı	r	1
Acenaphthene	210,000	MTCA C	210,000	MTCA C	
Acenaphthylene	210,000	MTCA C			Removed because CUL is not listed in CLARC
Anthracene	1,100,000	MTCA C	1,000,000	MTCA C	Rounded down to 1.0M ppm
Benzo(a)anthracene			40*	 NATCA C	landered by a service DaD and the service of Tabel aDAU TEO
Benzo(a)pyrene			18*	MTCA C	Included because BaP applies the same as Total cPAH-TEQ
Benzo(b)fluoranthene Benzo(k)fluoranthene					
Benzo(ghi)perylene					
Total cPAHs (TEQ, NDx0.5)	18	MTCA C	18*	MTCA C	
Carbazole					
Chrysene					
Dibenz(a,h)anthracene					
Dibenzofuran	3,500	MTCA C	3,500	MTCA C	
Fluoranthene	140,000	MTCA C	140,000	MTCA C	
Fluorene	140,000	MTCA C	140,000	MTCA C	
Indeno(1,2,3-cd)pyrene					
Naphthalene	70,000	MTCA C	70,000	MTCA C	
1-Methylnaphthalene			4,500	MTCA C	CUL was not previously listed in RI/FS
2-Methylnaphthalene	14,000	MTCA C	14,000	MTCA C	
Phenanthrene					
Pyrene	110,000	MTCA C	110,000	MTCA C	
bis(2-ethylhexyl)phthalate	9,400	MTCA C	9,400	MTCA C	
Di-n-octyl phthalate			35,000	MTCA C	CUL was not previously listed in RI/FS
Butyl benzyl phthalate	69,000	MTCA C	69,000	MTCA C	CUI una not praviously listed in DI/FC
Diethylphthalate			1,000,000	MTCA C	CUL was not previously listed in RI/FS; rounded down to 1.0M ppm
Dimethyl phthalate Di-n-butyl phthalate			350,000	MTCA C	CUL was not previously listed in RI/FS
1,4-Dichlorobenzene			24,000	MTCA C	CUL was not previously listed in RI/FS CUL was not previously listed in RI/FS
4-Methylphenol	18,000	MTCA C	350,000	MTCA C	Modification in toxicity (CLARC)
Pentachlorophenol	330	MTCA C	330	MTCA C	
VOCs					"
Acetone	Not Toxic	MTCA C	1,000,000	MTCA C	CUL was not previously listed in RI/FS; rounded down to 1.0M ppm
Methylene Chloride	18,000	MTCA C	21,000	MTCA C	Modification in toxicity (CLARC)
PCBs					
PCB Aroclor 1242	10	MTCA C			RI/FS listed Method A industrial CUL
PCB Aroclor 1248	10	MTCA C			RI/FS listed Method A industrial CUL
PCB Aroclor 1254	10	MTCA C	66	MTCA C	RI/FS listed Method A industrial CUL, not Method C
PCB Aroclor 1260	10	MTCA C	66	MTCA C	RI/FS listed Method A industrial CUL, not Method C
Total PCBs	10	MTCA C	66	MTCA C	RI/FS listed Method A industrial CUL, not Method C
Herbicides and Pesticides	1	T	1	1	T
alpha-Chlordane	350	MTCA C	375	MTCA C	Uncertain source of CUL in RI/FS; CUL is for general Chlordane
gamma-Chlordane	350	MTCA C	375	MTCA C	Uncertain source of CUL in RI/FS; CUL is for general Chlordane
Dieldrin	380	MTCA C	8.2	MTCA C	Uncertain source of CUL in RI/FS
p,p'-DDD	550	MTCA C	550	MTCA C	
p,p'-DDE p,p'-DDT	390 390	MTCA C	390 390	MTCA C	
ו חח. א ^{יל}	330	MTCA C	330	MTCA C	<u> </u>

Notes:

SPLF RI/FS CULs for soil/landfill/solids were taken from Tables 4.2 and 4.4 (SPLF RI/FS Report, June 2016).

 $Soil\ revised\ CULs\ were\ primarily\ developed\ under\ MTCA\ Method\ C\ (CLARC\ July\ 2017),\ with\ TPH-gas\ and\ lead\ CULs\ using\ Method\ A;$

TPH-diesel and motor oil CULs were calculated under Method C (from SPLF RI Report, June 2016).

Chemicals in this list are a combination of those in the SPLF RI/FS report tables and those detected in the 7901 Parcel environmental investigation;

for the 7901 investigation, the CULs in this table are only intended as preliminary screening levels at this time.

^{*} With updated EPA toxicity values, the Method C CUL for BaP/Total cPAHs will be raised to 130 mg/kg.

Table 2. Revisions to Groundwater Cleanup Levels -- South Park Landfill

Chemical Name	SPLF	SPLF	SPLF + 7901	SPLF + 7901	Reason for Difference from		
Cifeffical Name	RI/FS CUL	RI/FS CUL	Revised CUL	Revised CUL	RI/FS Report to Revised CUL		
	(ug/L)	Reference	(ug/L)	Reference	MI/15 Report to Nevised Co.		
Metals							
Aluminum	1,600	MTCA B	16,000	MTCA B	Uncertain source of CUL in RI/FS		
Antimony			6.0	MTCA B / MCL	Included due to detection in 7901 investigation		
Arsenic	5.0	MTCA A / BG	5.0	MTCA A / BG			
Barium	2,000	MCL/MTCA	2,000	MTCA B / MCL			
Cadmium	5.0	MCL/MTCA	5.0	MTCA B / MCL			
Chromium			100	MTCA B / MCL	Included due to detection in 7901 investigation		
Copper	640	MTCA B	640	MTCA B			
Iron	27,000	Local BG	27,000	Local BG			
Lead	15	MCL/MTCA	15	MTCA B / MCL			
Manganese	2,100	Local BG	2,200	MTCA B	MTCA B CUL is greater than local background value		
Selenium	50	MCL/MTCA	50	MTCA B / MCL			
Vanadium	140	MTCA B	80	MTCA B	Modification in toxicity (CLARC)		
Zinc	5,000	MCL/MTCA	4,800	MTCA B	Modification in toxicity (CLARC)		
TPH							
Gasoline	800	MTCA A	800	MTCA A			
Diesel (#2)	500	MTCA A	500	MTCA A			
Motor Oil	500	MTCA A	500	MTCA A			
PAHs/SVOCs							
Acenaphthene			960	MTCA B	Included due to detection in 7901 investigation		
Acenaphthylene							
Anthracene			4,800	MTCA B	Included due to detection in 7901 investigation		
Fluoranthene			640	MTCA B	Included due to detection in 7901 investigation		
Fluorene			640	MTCA B	Included due to detection in 7901 investigation		
Naphthalene	160	MTCA B	160	MTCA B			
1-Methylnaphthalene			1.5	MTCA B	Included due to detection in 7901 investigation		
Phenanthrene							
Pyrene			480	MTCA B	Included due to detection in 7901 investigation		
VOCs							
1,1-Dichloroethane	1,600	MTCA B	7.7	MTCA B	Modification in toxicity, addition of cancer risk (CLARC)		
1,2-Dichlorobenzene	720	MTCA B	600	MTCA B / MCL	Incorrect application of ARAR		
1,2-Dichloropropane	NA	MTCA B	5.0	MTCA B / MCL	Incorrect application of ARAR		
Benzene	5.0	MCL/MTCA	5.0	MTCA B / MCL			
Chlorobenzene	160	MTCA B	100	MTCA B / MCL	Incorrect application of ARAR		
cis-1,2-Dichloroethene	16	MTCA B	16	MTCA B			
trans-1,2-Dichloroethene	160	MTCA B	100	MTCA B / MCL	Incorrect application of ARAR		
Trichloroethene	5.0	MCL/MTCA	4.0		Incorrect application of ARAR/MTCA B noncancer value		
Vinyl Chloride	0.29	MCL/MTCA	0.29	MTCA B / MCL			

Notes:

BG = Background concentration

MCL = Maximum Contaminant Level

SPLF RI/FS CULs for groundwater were taken from Table 5.5, and Fe and Mn background values from table on p. 5-17 (SPLF RI/FS Report, June 2016). Groundwater revised CULs were primarily developed under MTCA Method B (CLARC July 2017), including evaluation of ARAR (MCLs);

TPH CULs were developed using Method A; arsenic and iron CULs used background values (from SPLF RI/FS Report, June 2016).

Chemicals in this list are a combination of those in the SPLF RI/FS report tables and those detected in the 7901 Parcel environmental investigation; for the 7901 investigation, the CULs in this table are only intended as preliminary screening levels at this time.

South Park Landfill

Remedial Investigation/ Feasibility Study

Appendix M Pavement at KIP and 7901 Parcels Memorandum

Memorandum

To: Jerome Cruz, Washington State Department of Ecology

Copies: South Park Landfill PLP Group and Consultant Team

From: Teri Floyd, PhD

Date: May 25, 2016

Project No: COS-SPARK

Re: Pavement at KIP and 7901 Parcels

Washington State Department of Ecology (Ecology) is concerned that they do not have enough information about the pavement section at the Kenyon Industrial Park (KIP) and 7901 2nd Ave., LLC (7901) Parcels in order to determine that it is sufficiently functionally equivalent to the pavement section in the Cleanup Action Plan (CAP) for the South Park Landfill Site.

The Feasibility Study concludes that the pavement section at the KIP and 7901 Parcels is performing adequately to meet the requirements of, and is functionally equivalent to what is required in, the CAP.

DEFINITION OF FUNCTIONALLY EQUIVALENT

Under the Model Toxics Control Act (MTCA; Washington Administrative Code [WAC] 173-340-710), solid waste landfill closure requirements shall be per the regulations set forth in WAC 173-304. The Minimum Functional Standards (MFS) for a landfill cap, per WAC 173-304, are intended to perform two functions:

- 1. Provide protection to mitigate the direct contact exposure pathway to humans and the environment.
- 2. Minimize infiltration of stormwater into the solid waste, which creates additional leachate.

As discussed in the South Park Draft Final Remedial Investigation and Feasibility Study (RI/FS) and CAP, leachate production from infiltrating rainwater is not measurably impacting groundwater quality and does not influence the design requirements of the landfill cap for the following reasons:

- The South Park Landfill was an unlined solid waste facility that operated from the late 1930s to the mid-1960s and was closed in 1966.
 - The landfill wastes are now more than 60 years old.

- From 1966 to 2015, approximately 60 percent of the landfill (the SPPD Parcel and part of the SRDS Parcel) was unpaved and rainwater falling on the unpaved sections infiltrated through the landfill contents.
- The base of the waste is in direct contact with groundwater under water table conditions.
- Leachate quality is barely distinguishable from groundwater, as measured in the KIP "KMW" wells, which are screened across the waste layer in a section that has been paved since the late 1960s. This comparison can be found in Section 5.6 of the RI/FS.

Based on these goals, the functional equivalent was assessed by considering the following criteria:

- 1. The pavement acts as a barrier to separate the contained wastes from contact with humans, terrestrial plants, and animals.
- 2. The pavement acts to direct stormwater that falls on the site into a stormwater collection system such that
 - a. Stormwater leaving the site has not contacted contained wastes; and
 - Conditions are similar to those during the RI, allowing the RI data to be used to predict that current infiltration rates have little-to-no impact on leachate and groundwater quality.
- 3. The pavement is of sufficient quality that it does not require constant or frequent repairs in order to meet items 1 and 2, above.

EXISTING PAVEMENT DESCRIPTION AT KIP AND 7901

The existing pavement at the KIP and 7901 Parcels was originally placed between 1967 and 1972 when these parcels were developed. The parcels have been in continuous use since then for warehousing and light industrial use, including truck traffic. No as-builts have been located of the pavement section.

At landfill closure in 1966, a soil cap of at least 1 foot was added to the parcels consistent with landfill closure requirements in force at the time. When the parcels were redeveloped into their current use, the site was regraded prior to the construction of the slab on grade buildings and the surrounding pavement. Based on aerials, this regrading may have occurred in two events, one around 1966 to 1968, after which much of the KIP and 7901 Parcels were used for auto salvage yards, and the other 1 to 4 years later as the current buildings and pavements were being placed.

Pavement Section

Since then, at least 50 investigative borings have been advanced through the pavement section; borings have been included in Appendix B of the RI/FS. Their locations are shown in Figure 1 on

a high-resolution aerial base map (note that Figure 1 is a large format figure). A review of the boring logs indicates that the asphalt section is 1 to 4 inches in thickness. Underlying the asphalt is a thin gravel layer that was sometimes called out by the geologist and sometimes not, but is generally 4 to 9 inches in the "TGP" borings (Oct 2015 LFG Investigation at KIP) where the geologist was specifically asked to determine its thickness. The next layer down is labeled as fill on most borings—fill would include both the cover soil and underlying waste contents, which also includes soil.

To get an estimate of where the waste layer actually starts, the logs were reviewed for terms indicating non-soil materials. When an interval on the logs was referred to as soil, sand, silt, etc. with incidental identification of wood fragments, brick fragments, glass shards, and/or nails, the interval was considered to be soil; the soil was not assumed to be clean. When the interval was identified as including refuse, waste, solid waste, ash, or similar term, the interval was considered to be waste. Based on this review of the logs, waste was present within 7 inches of the groundwater surface in at least one boring and waste was capped by 10 feet of soil in another boring. In the majority of the borings, the waste layer begins within 1 to 3 feet of the surface.

Figure 1, a high resolution aerial that shows conditions in 2015 at the KIP and 7901 Parcels, also includes the locations of all soil borings analyzed; some of the borings date to the 1990s. The "TGP" borings are from 2015. All boring logs used have previously been made available to Ecology.

Pavement Occurrence and Quality

As can be seen on the high-resolution aerial in Figure 1, the KIP and 7901 Parcels are covered by either pavement or buildings, except for a small landscaped strip along Occidental Ave S. and a gravel area along the W.G. Clarke facility. Both of the unpaved areas are outside of the Landfill Boundary. As can be seen by zooming the figure, the pavement remains in good repair. Photographs taken during the October 2015 LFG Investigation at KIP are shown in Attachment A, Photographs 1 through 6 and show additional views of the pavement. A key item to note is the overall quality of the pavement after several decades of use; the absence of major areas of cracking and failure indicate that the subsurface has not substantially subsided and is capable of supporting the truck traffic at the site. Signs of good maintenance practices are also visible in the photographs. For example, the pavement is clean and free of debris in all photographs; sealed cracks and patched pavement areas where subsurface utilities were repaired are visible in Photograph 4. Photograph 8 shows a new crack that formed in the last year and is less than 0.5 inches wide and does not expose pavement; it is adjacent to an older crack that has been sealed. The less than 0.5-inch crack would be identified in the Annual Pavement Inspection, which is part of the proposed Operation, Maintenance, and Monitoring Plan (OMMP) and would need to be sealed if it expanded further. One area of "alligator" cracked pavement was identified at the KIP Parcel and is shown in Photograph 7. This is another example of a section of pavement that would be identified under the proposed OMMP as needing additional inspection and potential repair if the cracks grew. Specific language is in Section 3.2 of Section A.1 of the OMMP.

SUMMARY

The existing pavement at the KIP and 7901 Parcels is in good repair and is functioning to separate the underlying wastes from humans, terrestrial plants, and animals, and from stormwater entering the stormwater system and leaving the site. The pavement is also directing the majority of the stormwater that falls on the site into the existing stormwater system. Because the pavement conditions today are very similar to those during the RI field work (2011 to 2013), the amount of stormwater that infiltrates is believed to be similar. RI found that infiltrating stormwater under current conditions had a negligible impact on groundwater quality; therefore, the pavement's current function as stormwater infiltration is consistent with the requirements in the CAP.

The facility is active and pavement ages; therefore, the pavement will need to be inspected and maintained. This requirement is discussed in the CAP, the Environmental Covenant, and the OMMP. The pavement does not need to be replaced until such time as it fails to perform.

The FS envisioned a time when the site would be redeveloped or undergo major repairs; at that time the landfill cap would be brought into alignment with landfill regulations for a standard cap. If the owners at that time wanted to use a different cap, then they would need to seek Ecology approval for a waiver at that time.

ATTACHMENTS

Figure 1 KIP and 7901 Parcels Pavement Review

Attachment 1 Site Pavement Photographs

FLOYD | SNIDER strategy - science - engineering

Figure 1 KIP and 7901 Parcels Pavement Review

Attachment 1 Site Pavement Photographs

Photograph 1. North side of the KIP parcel facing north-northeast. White powder is bentonite and/or concrete residual from filling temporary soil boring.

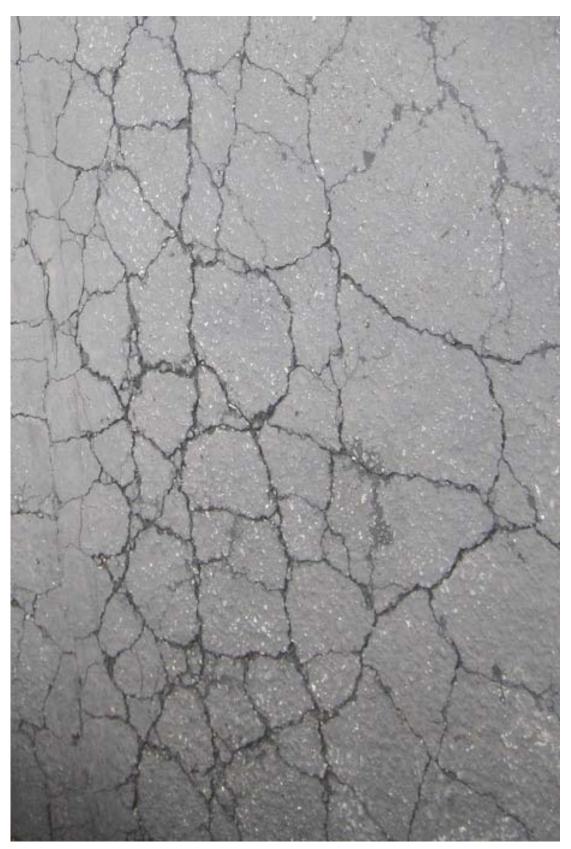
Photograph 2. North central portion of the KIP parcel facing south, during installation of temporary gas probes.

Attachment 1: Site Pavement
Photographs
Photographs 1 and 2

Photograph 3. Central portion of the KIP parcel facing east. White powder is bentonite and/or concrete residual from filling temporary soil boring.

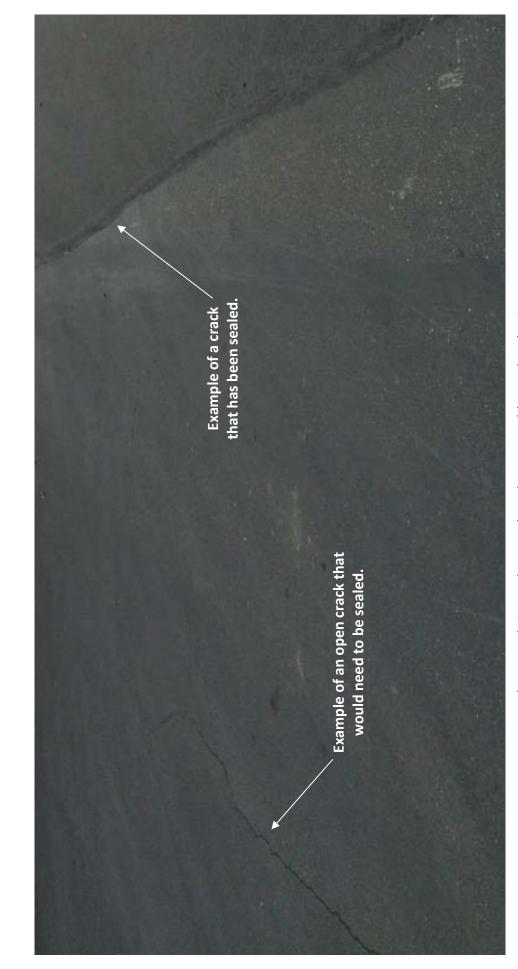
Photograph 4. Central portion of the KIP parcel facing north. Historical pavement patch and sealed crack visible in figure.

Attachment 1: Site Pavement
Photographs
Photographs 3 and 4


Photograph 5. Central portion of the KIP parcel facing west-northwest. Sealed crack visible in foreground.

Photograph 6. Central portion of the KIP parcel facing south toward the higher SPPD Parcel.

Attachment 1: Site Pavement
Photographs
Photographs 5 and 6



Photograph 7. Example of pavement "spider" or "alligator" cracks that would warrant additional inspection and repair under the proposed OMMP.

FLOYD | SNIDER

KIP/7901 Pavement Memorandum South Park Landfill Seattle, Washington

Attachment 1: Site Pavement Photographs Photograph 7

Photograph 8. Crack examples. These are addressed in the OMMP.

Attachment 1: Site Pavement Photographs Photograph 8