REMEDIAL INVESTIGATION WORK PLAN

Mt. Baker Housing Association McClellan St. and Martin Luther King Jr. Way S. Seattle, Washington PPCD No. 16-2-29584-3 SEA Facility Site ID #96127971, Cleanup Site ID #13054

Prepared for: Mt. Baker Housing Association

Project No. 160324 • October 27, 2017 Final

REMEDIAL INVESTIGATION WORK PLAN

Mt. Baker Housing Association McClellan St. and Martin Luther King Jr. Way S. Seattle, Washington PPCD No. 16-2-29584-3 SEA Facility Site ID #96127971, Cleanup Site ID #13054

Prepared for: Mt. Baker Housing Association

Project No. 160324 • October 27, 2017 Final

Aspect Consulting, LLC

Dave Cook, LG, CPG Principal Geologist dcook@aspectconsulting.com

Jessica Smith, LG Senior Geologist jsmith@aspectconsulting.com

V:\160324 Mt Baker Housing Assoc – Mt Baker Properties Site\Deliverables\McClellan\Rl Work Plan_FINAL\MBHA FINAL RIWP.docx

Contents

Ac	ronyr	ns	iv
EX		FIVE S	UMMARY ES-1
1	INT	RODU	ICTION1
	1.1 Site Information		
	1.2	Subj	ect Property Location and Current Uses
	1.3	-	y Considerations
	1.4		<i>,</i> latory Status and Future Use of the Subject Property
	1.5	•	pjectives and Purpose4
2	EN	VIRON	IMENTAL SETTING
	2.1	Торо	graphy and Surface Water5
	2.2	-	ogy
	2.3	Grou	ndwater
3	SIT	E HIS	FORY AND BACKGROUND
	3.1	McCl	ellan Street Parcels6
	3.2	Form	er Phillips 66 Gasoline Service Station Parcel6
4	PRE	EVIOU	S INVESTIGATIONS
	4.1	Sout	h McClellan Street Parcels and Adjacent ROW8
		.1.1	Phase I Environmental Site Assessments (ESAs)8
	4.	.1.2	Site Characterization: 2806 S. McClellan Street, Residence (Parcel - 0032)
	4.	.1.3	Site Characterization: 2864 S. McClellan St, Mt. Baker Cleaners
			(Parcel -0031)9
	4.	.1.4	Limited Phase II ESA, ROWs Adjacent to McClellan Street Parcels
		_	(2016)
	4.2		er Phillips 66 Gas Station Parcel
		.2.1 .2.2	Removal of USTs (1989)
		.2.2	Removal of Gas Station Equipment (2005)
		.2.4	In-Situ Treatment (2005 – 2007)
		.2.5	Additional Subsurface Characterization (2008)
	4.	.2.6	Additional Subsurface Characterization (2009 – 2011)
		.2.7	Shallow Subsurface Explorations (2015)16
		.2.8	RI Activities, CRA (2013 – 2016)
	4.	.2.9	Ecology Opinion Letters16

	4.3	Northern Adjacent Property, Mount Baker Village Apartments	17
5	CO	NCEPTUAL SITE MODEL	17
	5.1	Mt. Baker Cleaners Parcel CSM	18
	5.2	Former Phillips 66 Gas Station Parcel CSM	19
	5.3	Potential Exposure Pathways	20
	5.4	Terrestrial Ecological Protection	20
6	CLE	EANUP STANDARDS	20
	6.1	Constituents of Potential Concern	20
	6.2	Preliminary Screening Levels	20
7	AR	EAS REQUIRING FURTHER EVALUATION	21
7 8		EAS REQUIRING FURTHER EVALUATION	
-			23
-	RE	MEDIAL INVESTIGATION APPROACH	23 23
-	RE 8.1	NEDIAL INVESTIGATION APPROACH RI Soil Investigation	23 23 24
-	RE 8.1 8.2	MEDIAL INVESTIGATION APPROACH RI Soil Investigation Contained-In Determination Soil Investigation	23 23 24 25
-	REI 8.1 8.2 8.3 8.4	MEDIAL INVESTIGATION APPROACH RI Soil Investigation Contained-In Determination Soil Investigation Groundwater Evaluation	23 23 24 25 29

List of Tables

4	Cite lafe meeting Commence (in text)
1	Site Information Summary (in text)
2	Subject Property Characteristics and Current Use (in text)
3	Chemical Analytical Results of Soil Samples Obtained at the Site
4	Summary of Groundwater Results
5	Summary of Monitoring Well Construction Information
6	Summary of Depth to Water Measurements and Groundwater Elevations
7	Summary of Proposed Soil Sampling Locations, RI (in text)
8	Summary of Proposed Soil Sampling Locations, CID (in text)
9	Summary of Proposed Monitoring Wells and Groundwater Sampling (in text)

List of Figures

- 1 Site Location
- 2 Site Plan

- 3 Groundwater Elevations and Flow Direction
- 4 Existing Exploration and Historic Site Conditions
- 5 Summary of Excavations Conducted at the Former Phillips 66 Gas Station
- 6 Chlorinated Solvents Concentrations in Soil
- 7 Diesel-range Petroleum Hydrocarbon Concentrations in Soil
- 8 Gasoline-range Petroleum Hydrocarbon and BTEX Concentrations in Soil
- 9 Chlorinated Solvents Concentrations in Groundwater
- 10 Diesel-range Petroleum Hydrocarbon Concentrations in Groundwater
- 11 Gasoline-range Petroleum Hydrocarbon Concentrations in Groundwater
- 12 Cross-Section A-A'
- 13 Cross-Section B-B'
- 14 Cross-Section C-C'
- 15 Proposed Locations of Additional Borings and Monitoring Wells
- 16 Proposed Soil Sample Locations for the Contained-In Determination
- 17 Proposed Locations for Subslab Soil Vapor Sampling

List of Appendices

A Boring Logs from Previous Explorations

Acronyms

Aspect	Aspect Consulting, LLC
ASTM	American Society for Testing and Materials
bgs	below ground surface
BETX	benzene, ethylbenzene, toluene and xylenes
CAP	Cleanup Action Plan
cfh	cubic feet per hour
CRA	Conestoga-Rovers & Associates
CSM	conceptual site model
DNR	Washington State Department of Natural Resources
Ecology	Washington Department of Ecology
EDB	1-2, dibromoethane
EDC	1,2-dichloroethane
EPA	U.S. Environmental Protection Agency
EPH	extractable petroleum hydrocarbon
ERM	Environmental Resources Management
ESA	Environmental Site Assessment
FS	Feasibility Study
GPR	ground penetrating radar
hVOC	halogenated volatile organic compound
JEM	Johnson and Ettinger Model
MBHA	Mt. Baker Housing Association
mg/kg	milligrams/kilograms
μg/L	micrograms per liter
MLK	Martin Luther King
ml/min	milliliters per minute
msl	mean sea level
MTCA	Model Toxics Control Act
PAH	polycyclic aromatic hydrocarbon

PCB	polychlorinated biphenyls
PCE	Tetrachloroethene
PPCD	Prospective Purchaser Consent Decree
psi	pounds per square inch
REC	Recognized Environmental Condition ¹
RI	Remedial Investigation
ROW	rights-of-way
ROZ	Redevelopment Opportunity Zone
SHA	Site Hazard Assessment
SVE	soil vapor extraction
TCE	trichloroethylene
TCLP	Toxicity Characteristic Leaching Procedure
UST	underground storage tank
VC	vinyl chloride
VCP	Voluntary Cleanup Program
VOC	volatile organic compound
VPH	volatile petroleum hydrocarbon
WAC	Washington Administrative Code

¹As defined by Section 1.1.1 of ASTM E1527-13, RECs are: hazardous substances or petroleum products under conditions that indicate an existing release, a past release, or a material threat of a release into structures on the properties or into the ground, groundwater, or surface water of the properties.

EXECUTIVE SUMMARY

This Remedial Investigation (RI) Work Plan has been prepared on behalf of the Mt. Baker Housing Association (MBHA) for the Mount Baker Properties Site located along S. McClellan Street and Martin Luther King (MLK) Jr. Way South in Seattle, Washington. The Mount Baker Properties Site consists of five (5) parcels (000360-0030, 000360-0032, 00360-008, 000360-0031, and 000360-0055) and are referred to collectively as the Subject Property. The purpose of this RI Work Plan is to describe the plan to obtain sufficient subsurface information to address data gaps, prepare a RI report in accordance with Washington Administrative Code (WAC) 173-340-350, and select a cleanup action under WAC 173-340-360.

Soil and groundwater contamination has been identified at the Subject Property as a result of several studies completed between 1989 and 2017 from the following sources of contamination:

- Mt. Baker Cleaners located at 2864 S. McClellan St. (parcel 000360-0031). A dry cleaner has operated on this parcel since approximately 1940. Tetrachloroethene (PCE) was used at the dry cleaner from the establishment of the cleaner until February of 2017. Chlorinated solvent-contaminated soil and groundwater have been confirmed at parcel -0031 and beyond the parcel boundary.
- 2. Former Phillips 66 and Chevron gas station located at 2800 MLK Jr. Way S. (parcel 000360-0055). From the mid-1950s until the mid-1990s, parcel -0055 was operated as a gasoline service station. Following closure of the gasoline service station, the parcel was utilized as an automobile detail and service facility from the mid-1990s until its recent vacancy. PCE, gasoline-, diesel-, xylene-, lead-, and, arsenic-contaminated soil and/or groundwater have been confirmed at the parcel and beyond the western parcel boundary.
- **3.** Heating oil was utilized at the Subject Property on the Mt. Baker Cleaners parcel at 2864 S. McClellan St., the single-family residence at 2806 S. McClellan St., and the former Phillips 66 gas station at 2800 MLK Jr. Way S. that may have resulted in releases to soil and/or groundwater. Diesel-range petroleum hydrocarbons were detected in the groundwater sample obtained on the Mt. Baker Cleaners parcel (AMW-1) above the Washington Model Toxics Control Act (MTCA) Method A cleanup level.

Additional soil, groundwater, and soil vapor evaluation is necessary to understand the nature, vertical and lateral extent of the subsurface contamination, and to prepare a Feasibility Study (FS) and Cleanup Action Plan (CAP) to mitigate contaminated media. The additional evaluation will consist of the installation of 15 monitoring wells, 12 soil borings, and 7 soil vapor samples, as described in Section 8.0 of this report.

1 INTRODUCTION

Aspect Consulting, LLC (Aspect) prepared this Remedial Investigation (RI) Work Plan on behalf of the Mt. Baker Housing Association (MBHA) for the Mount Baker Properties Site located along S. McClellan Street and Martin Luther King (MLK) Jr. Way South in Seattle, Washington. The RI Work Plan was prepared to comply with actions outlined in a Prospective Purchaser Consent Decree (PPCD) between Washington State Department of Ecology (Ecology) and MBHA (PPCD No. 16-2-29584-3 SEA).

The Mount Baker Properties Site consists of five (5) parcels (000360-0030, 000360-0032, 00360-008, 000360-0031, and 000360-0055) and are referred to collectively as the Subject Property. The Subject Property is shown relative to surrounding physical features on Figure 1, *Site Location*. The Subject Property parcels are shown on Figure 2, *Site Plan*. The Subject Property will be remediated and redeveloped with affordable and workforce housing.

Sources of soil and groundwater contamination are present at: 1) the Mt. Baker Cleaners parcel (2864 S. McClellan St.), 2) the Former Phillips 66 and Chevron Gas Station (2800 MLK Jr. Way S.), and 3) home heating-oil Underground Storage Tanks (USTs) associated with residential or commercial uses on the Mt. Baker Cleaners parcel, the single-family residence at 2806 S. McClellan St., and the former Phillips 66 gas station. The locations where contaminated soil or groundwater originating from these sources has come to be located is referred to herein as the Site. The extent of the contaminated Site has yet to be fully defined.

1.1 Site Information

Relevant information for the Subject Property as well as contact information are summarized in Table 1 below. The Subject Property is shown relative to surrounding physical features on Figure 2.

Subject Property Information				
Property Addresses	2802-2864 S. McClellan Street, Seattle, WA 98144 and 2800 Martin Luther King Jr. Way S, Seattle, WA 98144			
Name	Mount Baker Properties Site (also referred to as Mt. Baker Housing Association Gateway Project)			
Ecology Site IDs	PPCD No. 16-2-29584-3 SEA Facility Site ID #96127971 Cleanup Site ID #13054			
Parcel Numbers	000360-0030, 000360-0032, 000360-0008, 000360-0031 and 000360-0055.			

Table	1. Site	Information	Summary

	The Subject Property slopes moderately toward to the			
Topography Description	southwest, from an elevation of approximately 90 feet above mean sea level (msl) at the northeast corner of the Mt. Baker Cleaners parcel to approximately 70 feet msl in the southwest corner of the former Phillips 66 gas station parcel.			
	1. Mt. Baker Cleaners . A dry cleaner operated on this parcel since approximately 1940. Tetrachloroethene (PCE) was used at the dry cleaner from the establishment of the cleaner until February of 2017. Chlorinated solvent-contaminated soil and groundwater have been confirmed at parcel -0031 and beyond the parcel boundary.			
Sources and Presence of Soil and/or Groundwater Contamination (discussed further in Section 3)	2. Former Phillips 66 and Chevron gas station. From the mid-1950s until the mid-1990s, parcel -0055 operated as a gasoline service station. Following closure of the gasoline service station, the parcel was utilized as an automobile detail and service facility from the mid-1990s until its recent vacancy. Gasoline- , diesel-, xylene-, lead-, and, arsenic-contaminated soil and/or groundwater have been confirmed at the parcel and beyond the western parcel boundary. Chlorinated solvents also have been detected at concentrations exceeding groundwater cleanup levels beneath this property.			
	3. Heating oil at Mt. Baker Cleaners, the single-family residence at 2806 S. McClellan St. and the former Phillips 66 gas station. Heating oil use and storage may have resulted in releases to soil and/or groundwater. Diesel-range petroleum hydrocarbons were detected in the groundwater sample obtained on the Mt. Baker Cleaners parcel (AMW-1) above the Model Toxics Control Act (MTCA) Method A cleanup level.			
	Contact Information			
Property Owner	Mt. Baker Housing Association Contact: Conor J. Hansen 1423 31 st Avenue South Seattle, WA 98144 206.257.2939			
Environmental Consultant	Aspect Consulting, LLC Dave Cook, LG, CPG 401 2 nd Avenue South #201 Seattle, Washington 98104 206.838.5837			
Ecology Site Manager	Ching-Pi Wang 3190 160th Avenue SE Bellevue, Washington 98008-5452 425.649.7134			

1.2 Subject Property Location and Current Uses

The Subject Property consists of five tax parcels totaling approximately 0.66 acres located in a mixed-use commercial and residential area of the Mount Baker neighborhood of Seattle, Washington. Current use and parcel characteristics are described in Table 2 below.

Parcel Number (reference ID)	Associated Address(es)	Size (acres)	Current Use and Development
000360-0030	2802 S. McClellan St.	0.08	One multitenant mixed-use retail and residential building with paved patio and landscaped areas. The retail spaces are currently vacant.
000360-0032	2806 S. McClellan St.	0.11	One single-family residence, gravel paved, and landscaped areas.
000360-0008	2810 S. McClellan St.	0.11	One multi-tenant four-plex residential building with paved and landscaped areas.
000360-0031	2862 and 2864 S. McClellan St.	0.11	One two-tenant retail building, currently fully occupied by Mount Baker Cleaners dry cleaner, and landscaped areas.
000360-0055	2800 MLK Jr. Way S.	0.25	Vacant one-level building with concrete, gravel and vegetated surrounding area currently used as construction parking for the adjacent property.

Table 2. Subject Property Characteristics and	I Current Use
---	---------------

1.3 Utility Considerations

Several utilities are present in utility corridors within both the S. McClellan Street and MLK Jr. Way South rights-of-ways (ROW), which are adjacent to the Subject Property. It is possible that the utility corridors are acting as a preferential pathway for contaminant migration in groundwater, but more evaluation is needed to confirm this potential. The approximate locations of the known utilities are shown in plan view on Figure 2, and in the cross sections, Figures 12 - 14.

1.4 Regulatory Status and Future Use of the Subject Property

The Phillips 66 parcel was initially enrolled in Ecology's Voluntary Cleanup Program (VCP) in July 2010 by Chevron Environmental Management Company and ConocoPhillips (Ecology VCP No. NW2321 and Facility/Site No. 42746846). Following enrollment in the VCP, several studies were completed and submitted to Ecology on behalf of ConocoPhillips and three opinion letters were issued by Ecology (Stantec, 2010; Ecology, 2010b; Stantec, 2012; Ecology, 2012; CRA, 2013; Ecology, 2014a; and, CRA, 2014), and are summarized in Section 4.2. In the most recent opinion letter from

Ecology (2014a), Ecology stated that additional soil, groundwater, and soil vapor evaluation is necessary.

The Mt. Baker Cleaners parcel was initially listed by Ecology as a known contaminated site in 2009, following the completion of groundwater sampling conducted on an adjacent parcel (PBS, 2009). In 2010, Ecology conducted an Initial Investigation of the Mt. Baker Cleaners parcel and concluded that topography indicates the source of the tetrachloroethene (PCE)-contaminated groundwater identified on the adjacent parcel to be the Mt. Baker Dry Cleaners (Ecology, 2010a). Ecology then sent an Early Notice Letter to Mt. Baker Cleaners stating that the parcel had been listed as a confirmed contaminated site and requesting that subsurface investigation and cleanup be completed (Ecology, 2010b). A Site Hazard Assessment (SHA) was conducted by Ecology during 2014 and 2015. Based on the results of the SHA, Ecology determined that the Mt. Baker Cleaners parcel is contaminated with PCE, trichloroethene (TCE) and cis-1,2-dichloroethene and was ranked as a 3, where 1 represents the highest relative risk and 5 the lowest (Ecology, 2014b; Ecology, 2015a; Ecology, 2015b).

On December 8, 2016, a PPCD for the Site was fully executed by MBHA, Ecology, and the Washington State Attorney General's office. Following execution of the PPCD, the parcels were purchased by MBHA in December 2016. On February 10, 2017, the parcels comprising the Subject Property were designated by the City of Seattle as a Redevelopment Opportunity Zone (ROZ), which, in addition to the PPCD, allows Ecology to provide funding to MBHA to investigate and remediate the Site, thus providing the ability for it to be redeveloped as affordable housing units. As part of the redevelopment process and in accordance with the PPCD, cleanup actions will be completed to mitigate the contamination at the Site.

1.5 RI Objectives and Purpose

The objective of the RI Work Plan is to describe the plan to obtain sufficient subsurface information to address data gaps, prepare a RI report in accordance with Washington Administrative Code (WAC) 173-340-350, and select a cleanup action under WAC 173-340-360. The RI Work Plan serves the following purposes:

- Provide a summary of the completed investigations to date at the Site.
- Describe the preliminary conceptual site model explaining contaminant movement through the subsurface and exposure pathways.
- Identify data gaps that require investigation to fully define the Site, and will enable evaluation and selection of a cleanup action as part of a Feasibility Study (FS).
- Provide the description and rationale for the scope of work to be performed for the RI.

2 ENVIRONMENTAL SETTING

2.1 Topography and Surface Water

The Subject Property slopes moderately toward the southwest, from an elevation of approximately 90 feet above mean sea level (msl) at the northeast corner of the Mt. Baker Cleaners parcel to approximately 70 feet above msl in the southwest corner of the former Phillips 66 gas station parcel. The nearest body of water to the Subject Property is Lake Washington, located approximately 0.57 miles to the east. A historic drainage is depicted on historical topographic maps dated 1894 through 1909 in a similar location to the existing Martin Luther King Junior Way South right-of-way. The orientation of this drainage roughly northeast to south-southwest relative to the Subject Property and positioned along the valley low point further supports the documented groundwater flow direction toward the south-southwest. There are no reported water wells (resource protection or public drinking water) within a 1-mile radius of the Subject Property (Aspect, 2016a and Aspect, 2016b).

2.2 Geology

According to the Washington Interactive Geologic Map, provided by the Washington State Department of Natural Resources (DNR), the Subject Property is underlain by Quaternary glacial till and outwash deposits of the Pleistocene's Fraser-age glaciation (about 30,000 to 10,000 years ago (DNR, 2016). Based on explorations completed at the Site, soil beneath the Subject Property generally consists of silty and gravelly sand fill soil overlying dense to very dense glacially consolidated silty sand with gravel. Fill soil at the Subject Property ranges in thickness from approximately 5 to 15 feet. Low permeability soil (silt and clay) were encountered in borings completed in the S. McClellan St. and MLK Jr. Way ROW (HC-MW-1 through HC-MW-6) at depths between approximately 16 and 18 feet below ground surface (bgs).

2.3 Groundwater

Groundwater has been encountered in the monitoring wells on the Subject Property and across the Site, between approximately 6 and 15 feet bgs (or elevations of 77 feet to 46 feet). Each of the monitoring wells on the Subject Property were surveyed on May 11, 2017, and depth to water was measured on May 12, 2017. Based on these groundwater measurements, the groundwater flow direction at the Subject Property is generally to the south-southwest, as shown on Figure 3, *Groundwater Elevations and Flow Direction*.

3 SITE HISTORY AND BACKGROUND

Historic uses of the Subject Property are described below. Parcel numbers and addresses are shown on Figure 2.

3.1 McClellan Street Parcels

The earliest identified use of the four McClellan St. parcels was as a portion of greater "vegetable gardens" in 1916 (Aspect, 2016b). The four existing buildings, each on their own separate parcels, are the first identified development on the McClellan Street Parcels, beginning with the existing Mount Baker Cleaners building in 1927, as described on a parcel-by-parcel basis, below.

- 2864 S. McClellan St, Mount Baker Cleaners (Parcel -0031). The existing retail building at 2864 S. McClellan St. was constructed in 1927 and originally occupied by a grocery store, as indicated in city directories. A dry cleaner shared the building by as early as 1940, according to tax assessor records and city directories. The dry-cleaning business has been operating there since at least 1951 as Mount Baker Cleaners under several owners. Tax assessor records indicate the building was originally heated by a heating-oil system; the existing heating system is natural gas. PCE was utilized in the dry-cleaning equipment until February 2017, when the dry cleaner converted to non-PCE dry cleaning equipment as a condition of its lease with MBHA. We understand that during the 1940s through 1990s, dry cleaning and spot cleaning occurred in the northeast quadrant of the building. This portion of the building has a concrete slab with no drains. In the early 1990s, the concrete slab was extended to the south and a "closed system" dry-cleaning machine was installed on the new 2-foot-thick slab. The area in the central and south portions of the building have wood floors whereby contaminants could spill and discharge to soil beneath the building. These features are shown on Figure 2.
- 2802 S. McClellan St., Multi-tenant Property (Parcel -0030). The existing multitenant retail and residential building on Parcel -0030 was constructed in 1928 and originally occupied by a shoe repair store and barber shop according to tax assessor records and city directories. The barber shop was replaced by a restaurant in the 1950s. The shoe repair store continued operation until the 1970s, when the space was converted to a grocery and novelty store, which operated (under various brands) until at least 2013. The building is currently only residentially occupied. Tax assessor records indicate that the building was originally heated by "stove," and is currently heated by natural gas.
- 2806 S. McClellan St., Residence (Parcel -0032). The existing residential dwelling located on Parcel -0032 was constructed in 1950. Tax assessor records indicate the dwelling was originally heated by a heating-oil system; the existing heat system is natural gas.
- 2810 S. McClellan St., Four-plex (Parcel -0008). The existing residential fourplex located on Parcel -0008 was constructed in 1959. Tax assessor records indicate that the complex has been heated by electric system since its construction.

3.2 Former Phillips 66 Gasoline Service Station Parcel

The first identified development of the former Phillips 66 gasoline service station parcel was in 1916 as part of a larger "vegetable gardens" (Aspect, 2016a). The gardens appear

to have been cleared and the first building constructed on the parcel by 1951, which consisted of a small, unheated real estate office building.

In 1955, the real estate office was replaced by the existing automobile service and gasoline station facility. Tax assessor records indicate that in 1955 the building was heated by an oil-burning furnace, and had two fuel islands with four total fuel pumps, one 4,000-gallon tank, one 5,000-gallon tank, one 280-gallon tank, and two hydraulic hoists.

City directory and tax assessor records indicate the following petroleum companies occupied the Subject Property building; we understand these companies were associated with (or predecessors of) ConocoPhillips Petroleum: Tidewater Oil (also listed as Associates Gas Station) from the 1950s to 1960s; Phillips Petroleum (listed as Phillips Gas Station and Rainier Bonanza Self-Serve) in the 1970s to 1990s. The following automobile detailing and repair facilities subsequently occupied the Subject Property from the 1990s until its recent vacancy, with the exception of an additional period of vacancy between 2004 and 2010: R&R Auto Repair, CK Auto Repair and Service, and Vu Auto Care Detail.

4 PREVIOUS INVESTIGATIONS

Several environmental investigations have been completed at the Subject Property. Each of the previous investigations are summarized in this section. Accessible boring logs for each of the previous explorations are included in Appendix A. Soil chemical analytical results are summarized in Table 3. Groundwater chemical analytical results are summarized in Table 4. Monitoring well construction information is summarized in Table 5 and groundwater elevations are summarized in Table 6. The following figures graphically present the information summarized in Section 4:

- Figure 4, *Existing Explorations and Historic Site Conditions*, shows the approximate locations of the explorations completed at the Subject Property.
- Figure 5, *Summary of Excavations Conducted at the Former Phillips 66 Gas Station*, presents the approximate locations of the excavations previously completed on the former Phillips 66 gas station parcel.
- Figure 6, *Chlorinated Solvents Concentrations in Soil*, presents the groundwater chemical analytical results of chlorinated solvents.
- Figure 7, *Diesel-Range Petroleum Hydrocarbon Concentrations in Soil*, presents the groundwater chemical analytical results of diesel-range petroleum hydrocarbons.
- Figure 8, *Gasoline-Range Petroleum Hydrocarbon and BTEX Concentrations in Soil*, presents the groundwater chemical analytical results of gasoline-range petroleum hydrocarbons.
- Figure 9, *Chlorinated Solvents Concentrations in Groundwater*, presents the groundwater chemical analytical results of chlorinated solvents.

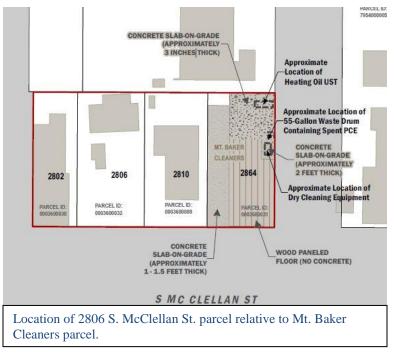
- Figure 10, *Diesel-Range Petroleum Hydrocarbon Concentrations in Groundwater*, presents the groundwater chemical analytical results of diesel-range petroleum hydrocarbons.
- Figure 11, *Gasoline-Range Petroleum Hydrocarbon Concentrations in Groundwater*, presents the groundwater chemical analytical results of gasoline-range petroleum hydrocarbons.
- Figures 12 14, *Cross-Sections*, show the subsurface conditions and chemical analytical results along the cross-section lines shown in plan view on Figure 4.

4.1 South McClellan Street Parcels and Adjacent ROW

Since 2009, several environmental investigations have been completed at the McClellan Street parcels (2802, 2806, 2801 and 2864 S. McClellan Street), and in the adjacent ROW (S McClellan St., 29th Avenue S, and MLK Jr. Way S.). Each of the environmental investigations are summarized below (Sections 4.1.1 through 4.1.6).

4.1.1 Phase I Environmental Site Assessments (ESAs)

Phase I ESAs were conducted in 2009 on parcels -0030 and -0032 (2802 and 2806 S. McClellan Street), and in 2015 and 2016 for each of the 4 parcels on McClellan Street (Horus, 2009; GeoEngineers 2015b; Aspect, 2016b). Additionally, a due diligence evaluation was completed in 2015 (GeoEngineers, 2015a). Based on the results of the Phase I ESAs and historic evaluations, the following environmental conditions were identified on the four McClellan Street parcels:


- A dry cleaner has been operated at 2864 S. McClellan Street (the Mt. Baker Cleaners) since the 1940s. Documented chlorinated solvent-contaminated soil and groundwater sourced from the Mt. Baker Cleaners parcel is migrating away from the parcel toward the southwest.
- A former gasoline service station is present at 2800 Martin Luther King Jr. Way S (the former Phillips 66 Gas Station). Petroleum-contaminated soil and groundwater has been identified on the former gas station parcel. This parcel is part of this RIWP, part of the Subject Property and encompassed by the Site.
- Several drums (both upright and overturned) that "contain or might once have held" petroleum, fuels and lubricants were observed throughout the basement of the 2802 S. McClellan Street parcel.
- Petroleum staining was observed in unpaved soils at 2806 S. McClellan Street where cars had been parked.

The 2016 Phase I ESA recommended that soil and groundwater sampling be conducted on each of the parcels to evaluate the extent of the chlorinated solvent contamination and potential presence of petroleum hydrocarbons.

Additional soil and groundwater testing was recommended to evaluate the extent of the chlorinated solvent contamination and potential presence of petroleum hydrocarbons.

4.1.2 Site Characterization: 2806 S. McClellan Street, Residence (Parcel-0032)

In 2009, A limited Phase II ESA was conducted to evaluate the presence of petroleum hydrocarbons in soil and chlorinated solvents in groundwater beneath parcel -0032 (2806 S. McClellan St.; PBS, 2009). Three borings (PBS-SB-1 through PBS-SB-3; see Figure 4) were completed to depths ranging between 14 and 18 feet bgs using a direct-push drill rig. Soil samples were

obtained from each boring for chemical analysis of petroleum hydrocarbons and grab groundwater samples were obtained from PBS-SB-1 and PBS-SB-3 for chemical analysis of chlorinated solvents.

Petroleum hydrocarbons were not detected in three soil samples (PBS-SB-1 through PBS-SB-3) submitted for chemical analysis of hydrocarbon identification at depths between approximately 8 and 12 feet bgs (Figures 7 and 8).

PCE, trichloroethene (TCE), cis-1,2-Dichloroethene, and vinyl chloride (VC) were each detected in the groundwater sample obtained from boring PBS-SB-1 (located on the eastern edge of the parcel, closest to the dry cleaner; see Figure 9) at concentrations greater than the corresponding Washington Model Toxics Control Act (MTCA) Method A cleanup levels. PCE and TCE were detected at concentrations greater than the MTCA Method A cleanup levels in the groundwater sample (GW-2) obtained from boring PBS-SB-3 (located on the eastern portion of the parcel, farther away from the dry cleaner; see Figure 9).

4.1.3 Site Characterization: 2864 S. McClellan St, Mt. Baker Cleaners (Parcel-0031)

Site assessments were completed at the Mt. Baker Cleaners parcel in 2010, 2014, and 2017. Additionally, in 2014, the UST located in the northeast corner of the Mt. Baker Cleaners parcel was decommissioned in-place. Each of these assessments are summarized below.

4.1.3.1 Limited Phase II ESA (2010)

In 2010, borings were conducted at the Mt. Baker Cleaners parcel (parcel -0031, 2864 S. McClellan St.) to evaluate the presence of chlorinated solvents in soil and groundwater (KEE, 2010). Three borings (KEE-B1 through KEE-B3; approximate locations shown on Figure 4) were completed to depths of approximately 16 feet bgs. Soil samples were obtained from each boring at depths of 3 or 4 feet bgs and grab groundwater samples were obtained from two of the borings (KEE-B2 and KEE-B3) for chemical analysis of halogenated volatile organic compounds (hVOCs).

PCE was detected in the soil sample obtained at approximately 3 feet bgs from KEE-B2 at a concentration of 0.090 milligrams per kilogram (mg/kg), which is greater than the MTCA Method A cleanup level of 0.05 mg/kg. Chlorinated solvents were not detected in borings KEE-B1 and KEE-B3 (see Figure 6).

PCE and TCE were detected in the groundwater samples KEE-B3 and KEE-B2 at concentrations significantly greater than the MTCA Method A cleanup levels of 5 micrograms per liter (μ g/L; PCE concentrations of 2,100 μ g/L and 3,700 μ g/L and TCE concentrations of 57 μ g/L and 22 μ g/L, respectively; see Figure 9).

In addition to the borings, the underground storage tank present in the northeast corner of the building was located using ground penetrating radar (GPR) and was determined to have a capacity of 500 gallons (approximate location shown on Figure 2). The UST, although originally utilized for home heating oil, reportedly appeared to be approximately ¹/₄ full of product that appeared to be dry cleaning solvent. However, at the time the UST was decommissioned (discussed further in Section 4.1.3.2) it was reported that the contents did not appear to be cleaning solvent.

4.1.3.2 UST Decommissioning (2014)

The UST located in the northeast corner of the Mt. Baker Cleaners parcel (-0031, 2864 S. McClellan St.) was decommissioned in place on December 20, 2011 (AEG, 2011). During the UST decommissioning, the contents of the UST were removed, the UST was cleaned, filled with controlled density slurry fill (CDF), and then covered with the native soil that had been removed to access the tank. According to the 2014 UST decommission report (AEG, 2014), "Because the UST was 'closed in-place,' the entire tank could not be visually inspected, the actual condition of the tank, and if it had any holes, was not able to be determined." Additionally, the report states that there was no indication that the product in the UST was dry cleaning solvent, although it does not appear that the product in the UST was sampled.

Two soil samples (SE-B-6 and SW-B-7) were obtained from the area beneath the UST at depths of approximately 6 and 7 feet bgs and were submitted for chemical analysis of diesel-range petroleum hydrocarbons and chlorinated solvents. Diesel-range petroleum hydrocarbons were not detected in either sample and PCE was detected in both samples at concentrations greater than the MTCA Method A cleanup level (1.43 mg/kg and 0.322 mg/kg, respectively; see Figures 7 and 6).

4.1.3.3 Limited Phase II ESA (2017)

Six direct-push explorations (AB-01 through AB-04, AB-06 and AMW-01; see Figure 4) were completed within the Mt. Baker Cleaners parcel in February and March 2017 to

evaluate the extent of the chlorinated solvents in soil (Aspect, 2017) beneath the parcel and evaluate whether the PCE contaminated soil meets the toxicity characteristics of a dangerous waste. One of the borings (AMW-1) was completed as a permanent groundwater monitoring well.

A total of 13 soil samples were submitted for chemical analysis of petroleum hydrocarbons, metals, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs, and/or PCE toxicity characteristic leaching procedure (TCLP). Petroleum hydrocarbons, metals and PAHs either were not detected or were detected at concentrations less than the MTCA Method A cleanup levels in each of the soil samples (Figures 7 and 8). PCE was detected in each of the borings at concentrations greater than the MTCA Method A cleanup levels at depths ranging from 2 feet to 15 feet (the base of the borings). Additionally, TCE was detected at concentrations greater than the MTCA Method A cleanup levels in borings AB-1 and AB-3, and depths of 11 and 9.5 feet bgs, respectively (Figure 6).

Based on the results of the TCLP testing, the PCE contaminated soil beneath the Mt. Baker Cleaners parcel does not meet the toxicity characteristics of a dangerous waste and can be designated as a Contained-In dangerous waste by Ecology.

PCE and diesel-range petroleum hydrocarbons were detected at concentrations greater than the corresponding MTCA Method A cleanup levels in the groundwater sample obtained from AMW-1. TCE was detected at a concentration less than the MTCA Method A cleanup level (Figure 9).

4.1.4 Limited Phase II ESA, ROWs Adjacent to McClellan Street Parcels (2016)

In 2016, seven groundwater monitoring wells (HC-MW-1 through HC-MW-7) and two soil borings (HC-SB-1 and HC-SB-2) were completed within the ROW adjacent to parcels -0031, -0030, and -0032 (Hart Crowser, 2016; see Figure 4). Soil samples obtained from each of the borings and monitoring wells and groundwater samples obtained from the monitoring wells were submitted for chemical analysis of diesel-, heavy oil-, and gasoline-range hydrocarbons, metals, and volatile organic compounds.

Contaminants of concern were not detected or were detected at concentrations less than the MTCA Method A cleanup levels in each of the soil samples, with the following exceptions:

- **HC-MW-1 at 10 feet bgs**: benzene was detected at a concentration of 0.3 mg/kg, which is greater than the MTCA Method A cleanup level of 0.03 mg/kg.
- HC-MW-5 at 10 and 12.5 feet bgs: PCE was detected at concentrations of 1.2 and 2.7 mg/kg, respectively, which are greater than the MTCA Method A cleanup level of 0.05 mg/kg.

Contaminants of concern were not detected or were detected at concentrations less than the MTCA Method A cleanup levels in each of the groundwater samples, with the following exceptions:

- HC-MW-1, HC-MW-2, HC-MW-3, HC-MW-5, and HC-MW-6: Chlorinated solvents (PCE, TCE and/or VC) were detected at concentrations greater than the MTCA Method A cleanup levels.
- HC-MW-2, HC-MW-4, HC-MW-6, and HC-MW-7: Total and dissolved arsenic was detected at concentrations ranging between 6.4 and 13 μ g/L, which are greater than the MTCA Method A cleanup level of 5 μ g/L.
- HC-MW-2 and HC-MW-5: Gasoline-range hydrocarbons were detected at concentrations greater than the MTCA Method A cleanup level; however, the laboratory stated in their report that based on their review of the chromatograms, the "detected gasoline" was PCE and that gasoline-range petroleum hydrocarbons are not actually present in the groundwater samples.

Based on these results, the northern extent of the chlorinated solvent-contaminated groundwater was identified (HC-MW-4). The extent of the chlorinated solvent-contaminated groundwater to the east, west, and south has not yet been defined (see Figure 9).

4.2 Former Phillips 66 Gas Station Parcel

Several environmental investigations have been completed at the former Phillips 66 gas station parcel beginning in 1989 when the USTs were removed. Each of the environmental investigations are summarized below (Sections 4.2.1 through 4.2.8).

4.2.1 Removal of USTs (1989)

The first reported remedial action at the former Phillips 66 parcel occurred in 1989 and included removal of three USTs (one 4,000-gallon UST and one 5,000-gallon UST, each used for storage of gasoline, and one 500-gallon UST used for storage of used oil) from the northwest corner of the Phillips 66 property (shown on Figure 5). According to the 2005 Phase I ESA (G-Logics, 2005a), eight soil samples were obtained from the limits of the UST removal excavation and gasoline-range petroleum hydrocarbons were detected in one soil sample at 90 mg/kg. However, the specific location of the soil sample is unknown so is not shown on the site plans included in this report. The MTCA Method A cleanup level for gasoline is 30 mg/kg when benzene is present and 100 mg/kg when benzene is not present. No other documentation regarding the 1989 UST removals has been identified and it is unknown whether benzene was analyzed. It is also unknown whether the soil excavated during the UST removal was transported off-site or re-used as backfill in the UST removal. Based on these data, gasoline was likely released from one or more USTs in the northwest corner of the property and gasoline-contaminated soil likely remains in place.

4.2.2 Removal of Gas Station Equipment (2005)

The next documented remedial action occurred in 2005 and consisted of removal of two underground vehicle hoists, a 270-gallon heating-oil UST, an oil/water separator, a floor drain sump, and approximately 200 feet of abandoned product lines (shown on Figure 5). Soil samples were obtained at the limits of each of the excavations, as summarized in the bullets below (G-Logics 2005b and G-Logics 2005c).

- The heating-oil UST was reportedly located approximately 4 feet bgs, was rusted, and contained a 2-inch diameter hole in the bottom at a depth of approximately 7.5 feet bgs. Following removal of the heating-oil UST, one soil sample was obtained from the limits of the heating-oil UST excavation. One soil sample was obtained from the limits of the UST excavation and diesel- and heavy oil-range petroleum hydrocarbons were detected at concentrations less than the MTCA Method A cleanup levels in the sample. However, due to excessive caving of soils during the excavation soil samples could not obtained where stained soil was observed on the southern end of the excavation at an approximate depth of 7.5 feet bgs and the UST excavation was backfilled with the soil excavated during the UST removal.
- The two hydraulic hoists removed from the Phillips 66 property were located in the service bay. One sample was obtained at the base of the northern hoist at a depth of approximately 9.5 feet bgs and at the base of the southern hoist at a depth of approximately 8 feet bgs. Oil-range petroleum hydrocarbons were detected at the northern hoist excavation at a concentration of 1,000 mg/kg (MTCA Method A cleanup level is 2,000 mg/kg) and were not detected in the soil sample obtained from the limits of the southern hoist excavation However, diesel-range petroleum hydrocarbons were detected at a concentration of 2,200 mg/kg in the stockpile sample obtained from the stockpiled generated during the hoist removal. Stockpiled soil was reportedly placed in the upper two feet of the hoist excavation along with concrete rubble from the floor slab demolition.
- The oil/water separator was located on the west garage exterior. Diesel-range petroleum hydrocarbons were not detected in one soil sample obtained from the base of the oil/water separator removal at a depth of approximately 4.5 feet bgs. Soil excavated during the removal was combined with broken asphalt and used as backfill.
- The floor drain sump was located in the interior of the garage. Staining was observed in soil at the limits of the sump removal, but oil-range hydrocarbons were not detected in the sample obtained from the base of the excavation at approximately 4.0 feet bgs. An additional soil sample was obtained from the stockpile generated during the excavation of the floor drain sump and oil-range hydrocarbons were detected at a concentration of 230 mg/kg in the stockpile sample. Soil removed during the excavation (including the soil stockpile) of the sump was used as backfill.
- Approximately 200 feet of abandoned product piping was removed from the western portion of the property in 2005 from depths less than 3 feet bgs (G-Logics, 2005c). Gasoline-range petroleum hydrocarbons and benzene, ethylbenzene, toluene, and xylenes (BTEX) either were not detected or were detected at concentrations below the MTCA Method A cleanup levels in four soil samples obtained at the limits of the pipe excavation. During the removal of the piping, approximately 15 tons of soil was stockpiled and sampled (G-Logics, 2005c). Gasoline-range hydrocarbons and xylenes were detected at concentrations less than the MTCA Method A cleanup level in the stockpile sample. In their report, G-Logics states that the stockpile was placed on and

covered with plastic sheeting and that, "based on the analytical results of the two collected soil samples, the excavated and stockpiled soils would be acceptable for disposal at a Subtitle D landfill." However, the actual end use of the approximately 15 tons of stockpiled soil is unknown.

4.2.3 Soil and Groundwater Sampling (2005 – 2007)

Between February 2005 and July 2006, four rounds of drilling with soil and groundwater sampling and monitoring well installations were conducted at the Phillips66 property (G-Logics, 2008). Five monitoring wells were installed (MW-1 through MW-5) and twenty-two (22) borings were completed (GL-1 through GL-6 and P-1 through P16; Figure 4). Groundwater samples were obtained from the monitoring wells beginning in August 2005 through April 2007.

Based on the Phase II ESA activities, gasoline- and BTEX-contaminated soil is present to the north, south, and west of the pump islands at depths of approximately 8 to 20 feet bgs (Figure 8).

Groundwater was encountered at depths of 9 to 11 feet bgs between December and February, and 12 to 13 feet bgs between August and October. Groundwater flow direction was consistently to the south-southwest. Gasoline- and BTEX-contaminated groundwater was identified in monitoring wells MW-2, MW-3 and MW-5 (gasoline concentrations ranging from 1,200 to 65,000 µg/L; Figure 11). Contaminants were not detected in MW-1 (sampled 5 times between August 2005 and April 2007) and were not detected in MW-4 (sampled 3 times between June 2006 and April 2007).

4.2.4 In-Situ Treatment (2005 – 2007)

In-situ remediation equipment was installed at the property in August 2005 in the vicinity of the former pump islands along the western property boundary to treat gasoline and benzene contaminated soil present between approximately 15 and 20 feet bgs and the contaminated groundwater in this area. The system initially consisted of an ozone generator, an air compressor, five injection wells (depths ranging from 19 to 22 feet bgs) and the monitoring wells installed during the Phase II ESA activities. Each day, 2 pounds of ozone per day was injected at a pressure of up to 30 pounds per square inch (psi) until August 2006, when a second air compressor was added and the original compressor was dedicated to the ozone generator. In December 2006, the system was shut down for repairs and in January 2007, the repaired compressor was reinstalled and ozone was injected into the primary compressed-air feed with a total flow rate of 200 standard cubic feet per hour (cfh) at 30 psi. Concentrations of gasoline-range hydrocarbons were reduced during the August to December 2006, but rebounded to elevated levels after that.

In December 2006, a perforated pipe approximately 40-feet in length was installed in a trench upgradient of the former pump islands at a depth of approximately 6-7 feet bgs and Fenton's reagent (a mixture of hydrogen peroxide and iron catalyst) was introduced into the pipe in January 2007. In March 2007, a treatment well was installed immediately west of the former western pump island and was screened at a depth of 16 to 19 feet bgs. Between January and March 2007, approximately 1,700 gallons of Fenton's reagent was applied in the horizontal pipe, the treatment well, and monitoring wells MW-1, MW-3, and MW-4 during several applications to supplement the ozone remediation system.

However, after almost 2 years of *in-situ* treatment, contaminant concentrations remained at concentrations greater than the MTCA Method A cleanup levels in groundwater and G-Logics concluded that the geologic and hydrogeologic conditions at the property (primarily consisting of dense silts and clays) were limiting adequate dispersion of product through the strata and continued *in-situ* remediation was not practical or cost effective. The *in-situ* treatment system was shut down in 2007 (G-Logics, 2008).

4.2.5 Additional Subsurface Characterization (2008)

In October and November 2008, Environmental Resources Management (ERM) completed four borings (B-1 through B-4) and obtained groundwater samples from MW-1 through MW-5 to evaluate the presence of chlorinated solvents in groundwater beneath the Phillips 66 property. Groundwater flow direction was toward the south during the sampling. Chlorinated solvents (PCE, TCE, and VC) were detected at concentrations greater than the MTCA Method A cleanup level in groundwater samples obtained from MW-1, MW-3, and MW-4, and in B-2 (located on the northeast property boundary, upgradient of the gas station; Figure 9) and B-3. Based on these findings, ERM concluded that the source of the chlorinated solvents is the Mt. Baker Cleaners property located to the northeast.

4.2.6 Additional Subsurface Characterization (2009 – 2011)

In November 2009, groundwater samples were obtained from monitoring wells MW-1 through MW-5 (Stantec, 2010). During the sampling event, the reported groundwater flow direction was to the southwest at an approximate gradient of 0.065 foot/foot. Each of the groundwater samples were submitted for chemical analysis of gasoline-range petroleum hydrocarbons and BTEX.

Gasoline and BTEX were not detected in MW-1 and MW-4 (consistent with previous sampling events). Gasoline was detected at concentrations less than the MTCA Method A cleanup levels in MW-2 and MW-3 and BTEX were not detected in these wells (lower concentrations than in previous events). Gasoline was detected at a concentration greater than the MTCA Method A cleanup level and BTEX were detected at concentrations less than the MTCA Method A cleanup levels in MW-5 (similar to previous events).

In 2011, seven borings (B-1 through B-7) were completed at the former Phillips 66 gas station parcel using a direct-push drill rig, and five monitoring wells (MW-6 through MW-10) were installed using a hollow-stem auger rig. Borings B-1 through B-7 were located on the parcel and MW-6 through MW-10 were located both on and off the parcel. Soil samples were obtained from each of the borings and monitoring wells for chemical analysis of petroleum hydrocarbons, BTEX and lead. Grab groundwater samples obtained from each of the borings were submitted for chemical analysis of petroleum hydrocarbons, BTEX and lead. Grab groundwater samples obtained from each of the monitoring wells were submitted for chemical analysis of petroleum hydrocarbons, BTEX, total lead, 1-2, dibromoethane (EDB), and 1,2-dichloroethane (EDC).

Gasoline-, heavy oil-, diesel-range petroleum hydrocarbons and/or xylenes were detected at concentrations greater than the MTCA Method A cleanup levels in soil samples obtained at depths between approximately 5 and 15 feet bgs in borings B-2, B-3, B-6, MW-8, and MW-9 (Figure 8).

Gasoline and/or xylenes were detected at concentrations greater than the MTCA Method A cleanup levels in groundwater samples obtained from each of the grab groundwater samples except for B-4 and B-5, in which contaminants of concern were not detected. Gasoline- and/or diesel-range hydrocarbons were detected at concentrations greater than the MTCA Method A cleanup levels in groundwater samples obtained from the monitoring wells except for MW-4, MW-6, and MW-9.

Based on the chemical analytical results, it was concluded that the lateral extent of the gasoline-contaminated groundwater plume had been identified. It was also concluded that additional assessment was required at the former Phillips 66 gas station parcel to evaluate the extent of soil contamination immediately west of B-6 and in the vicinity of the former heating-oil UST (B-3 and MW-9).

4.2.7 Shallow Subsurface Explorations (2015)

In 2015, seven direct-push borings (DP-1 through DP-7) were completed at the former Phillips 66 gas station parcel to evaluate the presence of chlorinated solvents in the shallow (ground surface to 6 feet bgs), unsaturated soil (GeoEngineers 2015c). Soil samples were obtained from each of the explorations at depths of 2 and 6 feet bgs for chemical analysis of hVOCs.

PCE was detected in each of the samples submitted for analysis from borings DP-1 through DP-3 and DP-5 through DP-7 at concentrations less than the MTCA Method A cleanup level of 0.05 mg/kg. PCE was not detected in the soil samples obtained from DP-4 (Figure 6). PCE concentrations increased with depth in borings DP-1, DP-3 and DP-6 and decreased with depth in borings DP-2 and DP-7. Due to the inconsistency in the increasing and decreasing concentrations with depth, it was concluded that the source of the shallow PCE-impacted soil could either be from "off-gassing" of PCE from the groundwater plume beneath the parcel or from historic use and releases at the gas station.

4.2.8 RI Activities, CRA (2013 – 2016)

Additional remedial investigation activities were completed between 2014 and 2016 by Conestoga-Rovers & Associates (CRA) on behalf of Phillips 66. However, the results of the investigation have not been provided to us and are not available in Ecology's files.

4.2.9 Ecology Opinion Letters

Ecology issued opinion letters regarding the Phillips 66 parcel in 2010, 2012 and 2014 (Ecology, 2010; Ecology, 2012; and, Ecology, 2014). In their opinion letters, Ecology stated that subsurface soil and groundwater contamination had been confirmed on the parcel as a result of the former gasoline service station operations, that PCE contamination at the parcel could be a result of parts washing in the former service garage, and that additional characterization is needed at the parcel to understand the nature and extent of subsurface contamination. Ecology also recommended that soil vapor sampling be conducted at the parcel.

4.3 Northern Adjacent Property, Mount Baker Village Apartments

In 2006, a Phase I ESA and Limited Phase II ESA was conducted at the Mount Baker Village Apartments property (2530 – 2580 29th Avenue South), located immediately adjacent to the north of the McClellan St. Subject Property parcels (Kane, 2006). The 2006 Phase I ESA identified the Mt. Baker Cleaners parcel as a REC and three borings (K-SB-1 through K-SB-3) were completed on the Mount Baker Village Apartments property to evaluate whether chlorinated solvents had migrated from the Mt. Baker Cleaners to the north onto the Mount Baker Village property. Four soil samples obtained from the borings were submitted for chemical analysis of chlorinated solvents. PCE was detected in sample K-SB-3 obtained at approximately 7 feet bgs at a concentration of 0.05 mg/kg, which is equal to the cleanup level. Chlorinated solvents either were not detected or were detected at concentrations less than the cleanup level in the remaining soil samples submitted for chemical analysis. Additionally, two grab groundwater samples were obtained from these borings.

In 2016, 6 borings (ATC-B-1 through ATC-B-6) were completed on the Mount Baker Village Apartments property immediately north of the Mt. Baker Cleaners. One soil sample per boring was submitted for chemical analysis of petroleum hydrocarbons and VOCs, which were not detected in each of the soil samples.

Grab groundwater samples were also obtained from borings ATC-B-1 through ATC-B-5 and were analyzed for petroleum hydrocarbons and VOCs. Contaminants were not detected, except for the following:

- PCE was detected at concentrations greater than the MTCA Method A cleanup level in groundwater samples obtained from borings ATC-B-1 and ATC-B-2.
- TCE was detected at a concentration less than the MTCA Method A cleanup level in ATC-B-1.

In 2016, five subslab soil vapor samples were obtained from beneath the Mount Baker Village Apartment building immediately north of the Mt. Baker Cleaners. Based on the chemical analytical results and follow-up Johnson-Ettinger Model calculations, the presence of chlorinated solvents in groundwater beneath the Mt. Baker Cleaners property does not represent a threat to indoor air quality at the Mount Baker Village Apartments.

5 CONCEPTUAL SITE MODEL

As Ecology determined in the PPCD, the Site includes the releases at the Mt. Baker Cleaners parcel and the Phillips 66 gas station parcel, which are comingled for purposes of this RI Work Plan—because there are two sources of contamination that are located on different parcels that span S. McClellan St.—we have broken the conceptual site model (CSM) into two parts; a CSM for a chlorinated solvent release at the Mt Baker Cleaners parcel and a CSM for a petroleum release at the former Phillips 66 gas station parcel. The transport mechanism and direction of plume migration is the same for the CSMs which merge into one groundwater plume south and southwest of the former Phillips 66 parcel.

5.1 Mt. Baker Cleaners Parcel CSM

Based on our evaluation of the dry-cleaner processes, machines in use (historic and new), significant amount of soil testing data, and our site reconnaissance and interviews, the following represents our working conceptual site model.

Releases of PCE likely occurred in two areas of the dry cleaner business prior to the 1990s when the "closed system" dry cleaning machine was installed. Historically, we understand that dry cleaning and spot cleaning occurred in the northeast quadrant of the building. This area has a thick concrete slab with no drains. However, the area in the central and south portions of the building have wood floors whereby contaminants could spill and discharge to soil beneath the building. The secondary mechanism of release to the subsurface could have occurred from PCE that allegedly was stored in the heating-oil UST (now decommissioned) located in the northeast corner of the building. Releases from this tank, which is in contact with soil, would have migrated beneath the north portion of the building (below the concrete slab that founded the dry-cleaning equipment). If either or both release mechanisms occurred, PCE migrated downward to the unconfined shallow groundwater table which flows from northeast to southwest. Groundwater monitoring and testing results are consistent with this conceptual site model and fit with either possible release mechanism. Each of these potential sources were/are located in the northeast portion of the parcel (Figure 2).

Based on chemical analytical testing of soil samples at the Mt. Baker Cleaners parcel, chlorinated solvents are present from near the ground surface to depths of at least 15 feet bgs. The vertical extent of the chlorinated solvent soil contamination has not been identified on the Mt. Baker Cleaners parcel, however, low permeability soil (clay and silt) was encountered in HC-MW-1 through HC-MW-6 (located in the ROWs adjacent to the Mt. Baker Cleaners parcel) at depths between approximately 16 and 18 feet bgs and it is likely that soil contamination does not extend beneath this low permeability soil. Soil samples obtained from parcels -0030, -0032, and -0008 have not been analyzed for chlorinated solvents, so the lateral extent of the chlorinated solvent-contamination on the parcels to the west is unknown. However, the chlorinated solvent-contaminated soil is bounded to the west by HC-MW-6 and HC-MW-7, which are located in the MLK Jr. Way ROW. The PCE-contaminated soil is bounded to the south by HC-MW-01 and HC-MW-02, to the east by HC-MW-03 and HC-SB-01, and to the north by K-SB-3, ATC-B-1 through ATC-B-6, and HC-MW-4 (see Figure 6).

Groundwater is present at the Subject Property at depths ranging between approximately 6 and 15 feet bgs and flows south/southwest. Groundwater is in contact with the chlorinated solvent-contaminated soil at the Mt. Baker Cleaners parcel year-round. Chlorinated solvent-contaminated groundwater has migrated from Parcel -0031 to the south/southwest. The northern extent of the groundwater contamination is bounded by

HC-MW-4 and the subsurface explorations completed on the Mount Baker Village Apartments property to the north, which included K-SB-1, K-SB-3, ATC-B-3 through ATC-B-5 and soil vapor samples SV-1 through SV-5. The southern, western, and eastern extent of the chlorinated solvent-contaminated groundwater plume is unknown. It is possible that utility corridors located in S. McClellan St. and MLK Jr. Way S. are impacting the migration of chlorinated solvents in groundwater. The vertical extent (downward migration) of chlorinated solvents is likely bounded by a thick low permeability layer of silt and clay, which was encountered in borings HC-MW-1 through HC-MW-6 at depths of approximately 16 to 18 feet below the ground surface (elevations from 63 to 47 feet).

Soil vapor sampling has not been conducted at the Mt. Baker Cleaners parcel, and there is an unknown risk related to vapor intrusion from the chlorinated solvent contaminated soil and groundwater beneath the existing building.

5.2 Former Phillips 66 Gas Station Parcel CSM

Gasoline- and diesel-range petroleum hydrocarbons were released into soil at the former Phillips 66 parcel prior to closure of the gas and auto service station in 1989. Additionally, in Ecology's 2014 opinion letter, they identified the service garage as a potential source of PCE at the parcel and PCE was detected in shallow, unsaturated soil in borings completed in 2014 (GeoEngineers, 2015c).

Based on the location of the heaviest petroleum-impacted area, the petroleum release(s) were likely associated with the former pump islands in the southwestern portion of the parcel and the heating-oil UST located in the southeastern portion of the parcel, which were present on the property beginning in approximately 1955. Remedial excavations were completed to remove the gas station equipment and USTs, while soil with petroleum hydrocarbon contamination was used to backfill the equipment excavations and remains on the parcel.

Based on the chemical analytical results of the soil samples obtained on the parcel, the petroleum-contaminated soil near the former pump islands is present between approximately 15 and 20 feet bgs, and near the heating-oil UST between at least 10 and 15 feet bgs. The contaminated soil in both of these locations is likely in contact with (and possibly deeper than) groundwater throughout the majority of the year.

The groundwater beneath the Subject Property flows to the south-southwest and was measured in May 2017 at depths of approximately 9 to 12 feet bgs on the former Phillips 66 gas station parcel.

Gasoline- and diesel-contaminated groundwater was identified in the immediate vicinity of the pump islands (MW-3, MW-5 and MW-8). The gasoline-contaminated groundwater appears to have migrated off the parcel to the west, but is bounded by MW-6. However, the lack of contaminants in MW-6 may be due to diversion of contaminated groundwater into the sanitary sewer and storm drain utility corridor located in MLK Jr. Way S. It is possible that the utility corridor in the ROW is acting as a preferential pathway for groundwater migration and have intercepted the western migration of contaminated groundwater from the former Phillips 66 gas station. The petroleum-contaminated

groundwater is also bounded to the north, east, and south by monitoring wells MW-1, MW-4, MW-7, and MW-2. The gasoline- and diesel-contaminated groundwater are associated with former gasoline service station facilities and remaining contaminated soil.

Chlorinated solvent-contaminated groundwater is present beneath the parcel. It is unclear if the documented shallow solvent-contaminated soil from service station area contributed to this contamination or if the PCE-contaminated groundwater is solely related to the documented releases at the upgradient Mt. Baker Cleaners. Soil vapor sampling has not been conducted at the Phillips 66 parcel; however, there is a risk of vapor intrusion from the chlorinated solvent-contaminated soil and groundwater beneath the existing building.

5.3 Potential Exposure Pathways

Exposure pathways considered for the Site include nonaqueous phase liquid (NAPL) to groundwater, groundwater to surface water, soil to groundwater, soil direct contact, and soil vapor inhalation. Of these potential exposure pathways, the only complete pathways are soil to groundwater, soil direct contact, and soil vapor inhalation, as described in the Conceptual Site Model. The proposed explorations in this RI Work Plan will address each of the complete pathways, as described in Section 8.0.

5.4 Terrestrial Ecological Protection

The site qualifies for an exclusion from the terrestrial ecological evaluation because there is less than 1.5 acres of contiguous undeveloped land on the site or within 500 feet of any area of the site (WAC 173-340-7491(c)(i)(ii)).

6 CLEANUP STANDARDS

6.1 Constituents of Potential Concern

The primary sources of contamination at the Site are dry cleaning operations, gasoline service station operations (gasoline USTs, hydraulic hoists, parts washing with solvents, and a waste-oil UST) and heating-oil USTs (both on the Mt. Baker Cleaners parcel and the former Phillips 66 gasoline service station parcel).

Constituents of potential concern for the Site include: chlorinated solvents (PCE, TCE, cis-1,2-Dichloroethene, and VC), gasoline-, diesel- and heavy oil-range petroleum hydrocarbons, and BTEX. Of these, additional evaluation is necessary to evaluate the vertical and/or lateral extents of chlorinated solvents, gasoline-, diesel- and heavy oil-range petroleum hydrocarbons. Testing of additional potential constituents of concern based on MTCA 173-340-900 Table 830-1 (including PAHs, polychlorinated biphenyls (PCBs), and other VOCs) have been completed.

6.2 Preliminary Screening Levels

MTCA Method A cleanup levels are available for all of the constituents of concern at the Site and are shown in Tables 3 and 4 of this report. Following completion of the RI,

additional evaluation will be conducted to ensure that the MTCA Method A cleanup levels are appropriate for the contaminants at the site.

7 AREAS REQUIRING FURTHER EVALUATION

Several environmental studies have been completed at both the dry cleaner and former gasoline service station, however, data gaps remain at the Site. The purpose of this section of the RI Work Plan is to identify the data gaps remaining at the site that will be evaluated during the RI, as discussed in Section 8. The data gaps include:

1. Soil Data Gaps.

- a. Nature and extent of PCE-contaminated soil at the Mt. Baker Cleaners and surrounding parcels. Borings conducted on the Mt. Baker Cleaners parcel in 2017 extended between 9.5 and 15 feet bgs and solvents (PCE and TCE) were present at concentrations greater than the MTCA Method A cleanup level at these depths. The lateral extent of the PCE-contaminated soil is not bounded to the west. Additionally, TCLP testing is needed on the parcels surrounding the Mt. Baker Cleaners parcel to evaluate whether soil meets the toxicity characteristics of a dangerous waste.
- b. Soil conditions related to the closed in-place heating-oil UST located in the northeast corner of the Mt. Baker Cleaners parcel. Based on MTCA 173-340-900 Table 830-1, PCB testing is required near the closed-in-place heating-oil UST. Additionally, diesel-range hydrocarbons above the MTCA Method A cleanup level are present in groundwater at AMW-1. The specific source of the diesel likely is related to the heating-oil UST. Soil testing for petroleum hydrocarbons should be conducted in the vicinity of AMW-1.
- c. Petroleum hydrocarbon-contaminated soil at the former Phillips 66 gas station parcel. The eastern and northern extent of heating-oil contamination near the former heating-oil UST on the eastern edge of the former gas station parcel has not yet been established. Additionally, the western lateral extent of gasoline-contaminated soil near B-6 (located along the western parcel boundary) has not been evaluated and the presence of soil contamination beneath the groundwater table should be reevaluated.

2. Groundwater Data Gaps.

- a. Lateral extent of chlorinated solvent-contaminated groundwater. The lateral extent of the chlorinated solvent-contaminated groundwater to the south-southeast is unknown. And additional verification of whether solvents may be following preferential utility pathways needs evaluated along MLK Way S and S. McClellan Street.
- **b.** Effect of utility corridors on contaminant migration. It is possible that the utility corridors present in both the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.

3. Soil Vapor Data Gaps.

a. Soil Vapor testing to evaluate the potential for vapor intrusion. Soil vapor sampling to evaluate the potential vapor intrusion of volatile compounds such as chlorinated solvents, gasoline and gasoline additives has not been conducted at the Site.

8 REMEDIAL INVESTIGATION APPROACH

8.1 RI Soil Investigation

Ten soil borings (AB-07 through AB-16) will be completed at the Site to evaluate the vertical and lateral extents of the soil contamination. The locations of the proposed borings are shown on Figure 15, *Proposed Locations of Additional Borings and Monitoring Wells*. Borings AB-11, AB-12, AB-15, AMW-2, AMW-4, and AMW-10 will be completed with a hollow-stem auger drill rig and the remaining borings will be completed using a limited-access direct-push drill rig. The rationale for each proposed soil boring location is summarized in Table 7 below.

Proposed	Proposed Depth of Boring		Proposed Sample Depths		
Boring ID	(feet bgs)	Purpose	(feet bgs)	Proposed Chemical Analysis	
AB-17	20	Dry cleaner parcel. Evaluate soil impacts associated with the former heating-oil UST (which may have been used to store solvents) and dry cleaner operations.	2, 6, 10, 15, and 20	PCBs, Chlorinated solvents, diesel- range petroleum hydrocarbons, PCE TCLP (if PCE detected at or above 15 mg/kg).	
ADP-20	20-25	Dry cleaner and parcels to west. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, 15, 20, and 25	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).	
AB-21	20-25	Dry cleaner and parcels to west. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, 15, 20, and 25	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).	
AB-22	20-25	Dry cleaner and parcels to west. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, 15, 20, and 25	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).	
AB-23	20	Gas station parcel. Evaluate soil impacts from the pump islands to the west of boring B-6.	15, 20	Gasoline-range petroleum hydrocarbons,	

Table 7. Summary of Proposed Soil Sampling Locations, RI

ADP-24	20	Gas station parcel. Evaluate soil impacts from the heating-oil UST to the north and east of borings B-3 and MW-9.	5, 10, 15, and 20	Diesel-range petroleum hydrocarbons.
AB-25	30	Gas station parcel. Evaluate the depth of residual contaminated soil in the vicinity of the former pump island relative to groundwater.	5, 10, 12.5, 15, 17.5, 20, 25, and 30	Gasoline-range petroleum hydrocarbons, BTEX, volatile petroleum hydrocarbons (VPH), and extractable petroleum hydrocarbons (EPH).
ADP-26	20	Private residence parcel. Evaluate soil impacts associated with dry cleaner operations.	5, 10, 15, and 20	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).
AMW-2	20-25	Dry cleaner and parcels to west. Evaluate soil impacts associated with dry cleaner operations and heating-oil UST	2, 5, 10, 15, 20 and 25	Chlorinated solvents, Diesel-range petroleum hydrocarbons, PCE TCLP (if PCE detected at or above 15 mg/kg).
AMW-4	20	Gas station parcel. Evaluate soil impacts from the heating-oil UST to the north and east of borings B-3 and MW-9.	5, 10, 15, 20	Chlorinated solvents, Diesel-range petroleum hydrocarbons.
AMW-10	20-25	Dry cleaner and parcels to west. Evaluate soil impacts associated with dry cleaner operations. Evaluate whether the utilities present in the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.	2, 5, 10, 15, 20 and 25	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).

8.2 Contained-In Determination Soil Investigation

In addition to the soil investigation described above, additional soil sampling and chemical analysis has been requested by Ecology to evaluate whether the soil at the Mt. Baker Cleaners parcels meets the criteria for a "Contained-In" dangerous waste. To fulfill this request, six additional borings (ADP-18, ADP-19, ADP-27 through ADP-30) will be completed within the Mt. Baker Cleaners parcel and two additional borings (ADP-31 and ADP-32) will be completed on the parcels west of Mt. Baker Cleaners, as shown on Figures 15 and 16. Each of these borings will be completed using limited access direct-push drilling equipment. The rationale for each proposed soil boring location is summarized in Table 8 below.

Table 8. Summary of Proposed Soil Sampling Locations, CID Proposed Proposed				
	Depth of		Sample	
Proposed	Boring		Depths	
Boring ID	(feet bgs)	Purpose	(feet bgs)	Proposed Chemical Analysis
ADP-18	20	Dry cleaner parcel. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, 15, and 20	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).
ADP-19	20	Dry cleaner parcel. Evaluate soil impacts associated with dry cleaner operations and heating-oil UST.	2, 5, 10, 15, and 20	Chlorinated solvents, diesel-range petroleum hydrocarbons, PCE TCLP (if PCE detected at or above 15 mg/kg).
ADP-27	20	Dry cleaner parcel. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, 15, and 20	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).
ADP-28	20	Dry cleaner parcel. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, 15, and 20	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).
ADP-29	20	Dry cleaner parcel. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, 15, and 20	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).
ADP-30	20	Dry cleaner parcel. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, 15, and 20	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).
ADP-31	15	Parcels west of the dry cleaner. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, and 15	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).
ADP-32	15	Parcels west of the dry cleaner. Evaluate soil impacts associated with dry cleaner operations.	2, 5, 10, and 15	Chlorinated solvents, PCE TCLP (if PCE detected at or above 15 mg/kg).

Table 8. Summary of Proposed Soil Sampling Locations, CID

8.3 Groundwater Evaluation

Fifteen monitoring wells (AMW-2 through AMW-16) will be completed at the Site to evaluate the lateral extent of the chlorinated solvent-contaminated groundwater plume and the diesel-range petroleum hydrocarbons identified in monitoring well AMW-1. Monitoring wells will be installed using a hollow-stem auger drill rig. Additionally,

reconnaissance "grab" groundwater samples will be obtained from each of the hollowstem auger borings that are not completed as monitoring wells (AB-17, AB-21, AB-22, AB-23, and AB-25) and submitted for chemical analysis of chlorinated solvents. The grab groundwater sample obtained from AB-23 will also be submitted for chemical analysis of gasoline-range petroleum hydrocarbons to evaluate the western extent of gasoline-contaminated groundwater present in MW-3 and MW-5. The locations of the proposed monitoring wells are shown on Figure 15, *Proposed Locations of Additional Borings and Monitoring Wells*.

Each of the monitoring wells will be completed with a 2-inch polyvinyl chloride (PVC) screen with 0.010-inch slots. The well annulus will be backfilled with a 10-20 size washed sand pack to at least 1 foot above the top of the screen and sealed with hydrated bentonite chips and concrete to the ground surface. The monitoring wells will be finished with a flush-mount traffic-rated monument. Following installation, water levels and groundwater samples will be obtained from each of the monitoring wells at the Site (including monitoring wells installed during previous studies). The rationale for each proposed monitoring well and well construction details are summarized in Table 9 below.

Based on the boring logs of soil borings HC-MW-1 through HC-MW-2, low permeability soil (silt and clay) is expected to be encountered at each monitoring well location at depths of approximately 15 to 20 feet bgs. This low permeability soil is acting as a barrier for downward migration of PCE (an aquitard). As long as the expected aquitard is encountered, a deep monitoring well to evaluate the vertical extent of PCE is not necessary.

Proposed Boring ID	Proposed Depth of Monitoring Well (feet bgs)	Proposed Screen Interval (feet bgs)	Purpose	Proposed Chemical Analysis
AMW-2	15	5-15	Evaluate lateral extent of chlorinated solvent- and diesel-range petroleum hydrocarbon contaminated groundwater to the southwest. Evaluate whether the utilities present in the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.	Chlorinated solvents and diesel-range petroleum hydrocarbons.
AMW-3	15	5-15	Evaluate eastern lateral extent of chlorinated solvent- contaminated groundwater.	Chlorinated solvents.
AMW-4	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest.	Chlorinated solvents.
AMW-5	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest.	Chlorinated solvents.
AMW-6	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest. Evaluate whether the utilities present in the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.	Chlorinated solvents.
AMW-7	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest.	Chlorinated solvents.

Table 9. Summary of Proposed Monitoring Wells and Groundwater Sampling

AMW-8	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest.	Chlorinated solvents.
AMW-9	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest. Evaluate whether the utilities present in the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.	Chlorinated solvents.
AMW-10	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest.	Chlorinated solvents.
AMW-11	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest. Evaluate whether the utilities present in the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.	Chlorinated solvents.
AMW-12	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the southwest prior to the MLK utilidor. Evaluate whether the utilities present in the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.	Chlorinated solvents.
AMW-13	20	10-20	Evaluate whether there is a source of VOCs on the former gas station property south of MW-9 in the vicinity of the former heating-oil UST.	Chlorinated solvents.

AMW-14	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest. Evaluate whether the utilities present in the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.	Chlorinated solvents.
AMW-15	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest. Evaluate whether the utilities present in the S. McClellan St. and MLK Jr. Way S. ROWs are impacting the lateral migration of chlorinated solvents in groundwater.	Chlorinated solvents.
AMW-16	20	10-20	Evaluate lateral extent of chlorinated solvent- contaminated groundwater to the south and southwest.	Chlorinated solvents.

8.4 Soil Vapor Evaluation

Seven soil vapor samples (ASV-1 through ASV-7) will be completed at the Site to evaluate the potential for vapor intrusion into the existing buildings. The soil vapor samples will be completed in the approximate locations shown on Figure 16, *Proposed Locations for Subslab Soil Vapor Sampling*. Each of the soil vapor samples will be completed using subslab soil vapor sampling methods directly below the interior concrete basement slab. This will consist of the following:

Temporary vapor extraction points will be installed through the slab in each location using a rotary hammer drill. Soil vapor samples will be collected using laboratory-supplied and individually certified evacuated 1-liter SUMMA canisters fitted with 150-milliliters-perminute (ml/min) flow controllers and dedicated sampling trains, per the following procedures:

• Prior to sampling, a shut-in test will be performed by inducing a vacuum to the sampling train (including dedicated disposable Teflon tubing, fittings, and connections to the SUMMA canister). A minimum vacuum of 10 inches of mercury will be applied for a period of 5 minutes to observe that no change in vacuum occurs, which indicates that the sampling train was free of leaks that could introduce ambient indoor air to the soil vapor sample.

- The vapor extraction point will then be enclosed in a leak-testing shroud, and helium tracer gas will be applied until approximately 30 percent helium was measured inside the shroud. A total of 700 ml of air/vapor will be purged through each extraction point to ensure that any remaining ambient indoor air inside the sampling train is removed, to identify a poor seal between the vapor extraction point and the slab, and to facilitate field screening of subslab vapors prior to sampling.
- After confirming that no significant leakage is present in the sampling train or around the vapor extraction point seal and that all remaining ambient indoor air had been removed from the sampling apparatus, the SUMMA canisters will be opened and allowed to fill at 150 ml/min over approximately 5 minutes, or when the canister vacuum reached -5 inches of mercury.

Samples will be analyzed using U.S. Environmental Protection Agency (EPA) Method TO-15 for VOCs and American Society for Testing and Materials (ASTM) method D1946 for helium. If necessary, follow-up evaluation using the Johnson and Ettinger Model (JEM²) will be conducted to calculate estimated indoor air concentrations of contaminants that are detected above the subslab soil vapor screening levels.

9 REFERENCES

- Aspect Consulting, LLC (Aspect), 2016a, Phase I Environmental Site Assessment, Hooe Property, Phillips 66 Site 070644, 2800 Martin Luther King Jr. Way S., Seattle, Washington, dated December 19, 2016.
- Aspect Consulting, LLC (Aspect), 2016b, Phase I Environmental Site Assessment, McClellan Strip Parcels (including the Mount Baker Cleaners Site), 2802, 2806m 2810, 2864 South McClellan Street, Seattle, Washington, dated December 19, 2016.
- Aspect Consulting, LLC (Aspect), 2017, April 5, 2017 Meeting Summary and Next Steps, Mt. Baker Housing Association PPCD No. 16-2-29584-3 SEA, dated June 27, 2017.
- Associated Environmental Group, LLC (AEG), 2014, UST Decommissioning (In-Place) Letter Report, Mt. Baker Cleaners, 2864 South McClellan Street, Seattle, Washington 98144, dated January 7, 2014.

² The JEM is a mathematical model that is endorsed by the United States Environmental Protection Agency (EPA) and Ecology for predicting estimated indoor air concentrations of volatile contaminants identified in the subsurface. The estimate includes consideration of exposure rates, contaminant chemical properties, contaminant transport mechanisms, soil and groundwater properties, and building construction specifications. Default values for these parameters developed by the EPA and recommended for use by Ecology are the most conservative in the range of values, including use of exposure rates for the residential scenario. Alternatively, the EPA and Ecology allow for inputting of non-default values for some select parameters to tailor the estimate to known site conditions (such as building construction parameters, soil types, depth to groundwater or the contaminant mass, etc.).

- Conestoga-Rovers & Associates (CRA), 2013, Remedial Investigation and Feasibility Study Work Plan, Phillips 66/Former Tidewater Site, 2800 MLK Jr Way S., Seattle, Washington, dated December 2, 2013.
- Conestoga-Rovers & Associates (CRA), 2014, Ecology Opinion Letter Remedial Investigation and Feasibility Study Work Plan, dated May 7, 2014.
- GeoEngineers, 2015a, Preliminary Due Diligence Opinion, Four Properties at NE corner of MLK Junior Way South and South McClellan Street, Seattle, Washington, dated January 28, 2015.
- GeoEngineers, 2015b, Phase I Environmental Site Assessment, McClellan Strip Parcels, Four Properties at northeast corner of Martin Luther King Junior Way South and South McClellan Street, Seattle, Washington, dated September 28, 2015.
- GeoEngineers, 2015c, Environmental Borings, Soil Sampling and Testing Results, Environmental Due Diligence Services – Hooe Property, 2800 Martin Luther King Junior Way South, Seattle, Washington, dated October 1, 2015.
- G-Logics, Inc. (G-Logics), 2005a, Phase I Environmental Site Assessment, Former Gas Station, 2800 Martin Luther King Way South, Seattle, WA 98144, dated January 11, 2005.
- G-Logics, Inc., (G-Logics), 2005b, Phase II Environmental Site Assessment and Equipment Removal, Former Gas Station, 2800 Martin Luther King Way South, Seattle, WA 98144, dated March 17, 2005.
- G-Logics, Inc. (G-Logics), 2005c, Cleanup Action Report, Former Gas Station, 2800 Martin Luther King Way South, Seattle, WA 98144, dated October 31, 2005.
- G-Logics, Inc. (G-Logics), 2008, Summary Report, Site Remediation and Groundwater Monitoring, Former Auto Service Station, 2800 Martin Luther King Way South, Seattle, WA 98144, dated January 14, 2008.
- Environmental Resources Management (ERM), 2009, Preliminary Site Findings, Chlorinated Volatile Organic Compounds in Groundwater, 2800 Martin Luther King Jr. Way S., Seattle, dated March 31, 2009.
- Hart Crowser, 2016, Mount Baker Strip Properties Summary Memorandum, dated November 1, 2016.
- HORUS Environmental, Inc. (HORUS), 2009, Phase I Environmental Site Assessment, 2802 & 2806 South McClellan Street, Seattle, Washington, dated June 23, 2009.
- Kane Environmental Inc (Kane), 2006, Phase I Environmental Site Assessment & Limited Phase II Assessment, Mount Baker Village Apartments, 2530 – 2580 29th Avenue South, Seattle, Washington, dated February 10, 2006.
- KEE, LLC, 2010, Limited Phase II Site Assessment, Mt. Baker Cleaners, 2864 S. McClellan St., Seattle, WA 98144, dated June 11, 2010.

- PBS Engineering + Environmental (PBS), 2009, Limited Phase II Environmental Site Assessment, 2806 South McClellan Street, Seattle, Washington 98144, dated July 2009.
- Stantec, 2010, Groundwater Sampling Results, Report and Work Plan, Former Tidewater Site, Chevron Site 301211, ConocoPhillips Site 5173, 2800 Martin Luther King Way South, Seattle, WA. Dated July 5, 2010.
- Stantec, 2012, Soil and Groundwater Assessment Report, Former Tidewater Service Station, ConocoPhillips Site 5173, Chevron Site 301233, 2800 Martin Luther King Way, Seattle, WA, dated March 14, 2012.
- Washington State Department of Ecology (Ecology), 2010a, Initial Investigation Field Report for Mt. Baker Cleaners, 2864 S. McClellan St, dated May 27, 2010.
- Washington State Department of Ecology (Ecology), 2010b, Opinion Pursuant to WAC 173-340-515(5) on Proposed Remedial Action for Phillips 66 070644, VCP No.: NW2321, dated November 9, 2010.
- Washington State Department of Ecology (Ecology), 2012, Opinion Pursuant to WAC 173-340-515(5) on Proposed Remedial Action for Phillips 66 070644, VCP No.: NW2321, dated October 17, 2012.
- Washington State Department of Ecology (Ecology), 2014a, Opinion Pursuant to WAC 173-340-353(5) on Proposed Remedial Action for Phillips 66 070644, VCP No.: NW2321, dated February 13, 2014.
- Washington State Department of Ecology (Ecology), 2014b, Site Hazard Assessment Notification Letter – Mount Baker Cleaners, dated September 26, 2014.
- Washington State Department of Ecology (Ecology), 2015a, Site Hazard Assessment Worksheet, dated April 3, 2015.
- Washington State Department of Ecology (Ecology), 2015b, Site Hazard Assessment Rank Notification Letter, dated July 1, 2015.

10LIMITATIONS

Work for this project was performed for the Mt. Baker Housing Association (Client), and this report was prepared in accordance with generally accepted professional practices for the nature and conditions of work completed in the same or similar localities, at the time the work was performed. This report does not represent a legal opinion. No other warranty, expressed or implied, is made.

All reports prepared by Aspect Consulting for the Client apply only to the services described in the Agreement(s) with the Client. Any use or reuse by any party other than the Client is at the sole risk of that party, and without liability to Aspect Consulting. Aspect Consulting's original files/reports shall govern in the event of any dispute regarding the content of electronic documents furnished to others.

TABLES

	Da	te and Consultant											2005	G-Logics			
		Boring ID	GL-1	GL-2	GL-2	GL-3	GL-4	GL-4	GL-4	GL-5	GL-5	GL-5	GL-6	GL-6	N HOIST BOTTOM	NORTH PUMP-2	S HOIST BOTTOM
		Sample Depth	5 ft	4 ft	9 ft	6 ft	9 ft	14 ft	18 ft	10 ft	15 ft	20 ft	15 ft	20 ft	9.5 ft	2 ft	8 ft
		Sample Date	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/9/2005	2/4/2005	2/4/2005	2/4/2005
		Sample Code	GL1-5	GL2-4	GL2-9	GL3-6	GL4-9	GL4-14	GL4-18	GL5-10	GL5-15	GL5-20	GL6-15	GL6-20	N HOIST BOTTOM-9.5	NORTH PUMP-2	S HOIST BOTTOM-8
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluele, Ethylbenzene, an	d Total X	ylenes using EPA	Method 8	260B													
Benzene	mg/kg	0.03	< 0 U	< 0 U	< 0 U		< 0 U	< 0 U	< 0 U							< 0.02 U	
Toluene	mg/kg	7	< 0 U	< 0 U	< 0 U		< 0 U	< 0 U	< 0 U							< 0.05 U	
Ethylbenzene	mg/kg	6	< 0 U	< 0 U	< 0 U		< 0 U	< 0 U	< 0 U							< 0.05 U	
Total Xylenes	mg/kg	9	< 0 U	< 0 U	< 0 U		< 0 U	< 0 U	< 0 U							< 0.05 U	
Carcinogenic Polycyclic Aromatic Hy		ons (PAHs) using E	PA Metho	od 8270D/	SIM												
Benz(a)anthracene	mg/kg																
Benzo(a)pyrene	mg/kg	0.1															
Benzo(b)fluoranthene	mg/kg																
Benzo(k)fluoranthene	mg/kg																
Chrysene	mg/kg																
Dibenzo(a,h)anthracene	mg/kg																
Naphthalene (8260)	mg/kg	5															
Naphthalene (8270 SIM)	mg/kg	5															
Naphthalene (8270)	mg/kg	5															
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1															
Total Petroleum Hydrocarbons using	g Northwe	est Methods NWTF	PH-Dx and	I NWTPH-	Gx												
Gasoline Range Organics	mg/kg	30 100	< 0 U	< 0 U	< 0 U		< 0 U	< 0 U	< 0 U							< 5 U	
Diesel Range Organics	mg/kg	2000				< 0 U		< 0 U		1400	550	< 0 U	< 0 U	< 0 U	< 20 U	< 20 U	< 20 U
Motor Oil Range Organics	mg/kg	2000				280		< 0 U		120	< 0 U	< 0 U	530	< 0 U	1000	< 50 U	< 50 U
Select Volatile Organic Compounds	(VOCs) u	ising EPA Method	s 8260B														
1,2-Dibromoethane (EDB)	mg/kg	0.005															
1,2-Dichloroethane (EDC)	mg/kg																
cis-1,2-Dichloroethene (DCE)	mg/kg																
Methyl tert-butyl ether (MTBE)	mg/kg	0.1															
Methylene Chloride	mg/kg	0.02															
Tetrachloroethene (PCE)	mg/kg	0.05															
Tetrachloroethene (PCE) (TCLP)	ug/L																
Trichloroethene (TCE)	mg/kg	0.03															
Trichlorofluoromethane	mg/kg																
Vinyl Chloride	mg/kg																

Notes

	Da	te and Consultant				2006	Kane											
			SOUTH PUMP-2	SUMP-B-4	K-SB-1	K-SB-2	K-SB-2	K-SB-3	MW-4	MW-5	MW-5	MW-5	P-1	P-1	P-2	P-3	P-3	P-3
		Sample Depth		4 ft	3 ft	4 ft	6 ft	7 ft	20 ft	12 ft	16 ft	20 ft	12 ft	16 ft	16 ft	12 ft	16 ft	20 ft
		Sample Date	2/4/2005	2/4/2005	1/25/2006	1/25/2006	1/25/2006	1/25/2006	6/22/2006	6/22/2006	6/22/2006	6/22/2006	6/6/2005	6/6/2005	6/6/2005	6/6/2005	6/6/2005	6/6/2005
		Sample Code	SOUTH PUMP-2	SUMP BOTTOM-4	K-SB-1-3	K-SB-2-4	K-SB-2-6	K-SB-3-7	MW4-20	MW5-12	MW5-16	MW5-20	P1-12	P1-16	P2-16	P3-12	P3-16	P3-20
		MTCA Method A																
Chemical Name	Units	Cleanup Level																
Benzene, Toluele, Ethylbenzene, ar	nd Total X	ylenes using EPA																
Benzene	mg/kg	0.03	< 0.02 U		< 0.02 U	< 0.02 U		< 0.02 U	< 0 U	< 0 U	< 0 U	0.03	< 0 U	0.37	< 0 U	< 0 U	0.075	< 0 U
Toluene	mg/kg	7	< 0.05 U		< 0.05 U				< 0 U	< 0 U	< 0 U	< 0 U	< 0 U	0.082	< 0 U	< 0 U	< 0 U	< 0 U
Ethylbenzene	mg/kg	6	< 0.05 U		< 0.05 U				< 0 U	< 0 U	< 0 U	0.06	< 0 U	< 0 U	< 0 U	< 0 U	0.6	< 0 U
Total Xylenes	mg/kg	9	< 0.05 U		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0 U	< 0 U	0.16	0.36	0.16	< 0 U	< 0 U	< 0 U	1.9	< 0 U
Carcinogenic Polycyclic Aromatic Hy	ydrocarbo	ons (PAHs) using E																
Benz(a)anthracene	mg/kg																	
Benzo(a)pyrene	mg/kg	0.1																
Benzo(b)fluoranthene	mg/kg																	
Benzo(k)fluoranthene	mg/kg																	
Chrysene	mg/kg																	
Dibenzo(a,h)anthracene	mg/kg																	
Naphthalene (8260)	mg/kg	5																
Naphthalene (8270 SIM)	mg/kg	5																
Naphthalene (8270)	mg/kg	5																
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1																
Total Petroleum Hydrocarbons using	g Northwe	est Methods NWTF																
Gasoline Range Organics	mg/kg	30 100	< 5 U						< 0 U	< 0 U	< 0 U	22	< 0 U	< 0 U	< 0 U	< 0 U	52	< 0 U
Diesel Range Organics	mg/kg	2000	23	< 20 U														
Motor Oil Range Organics	mg/kg	2000	< 50 U	< 50 U														
Select Volatile Organic Compounds	(VOCs) ι																	
1,2-Dibromoethane (EDB)	mg/kg	0.005																
1,2-Dichloroethane (EDC)	mg/kg																	
cis-1,2-Dichloroethene (DCE)	mg/kg				< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U										
Methyl tert-butyl ether (MTBE)	mg/kg	0.1																
Methylene Chloride	mg/kg	0.02																
Tetrachloroethene (PCE)	mg/kg	0.05			< 0.02 U	0.04	0.05	< 0.02 U										
Tetrachloroethene (PCE) (TCLP)	ug/L																	
Trichloroethene (TCE)	mg/kg	0.03			< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U										
Trichlorofluoromethane	mg/kg																	
Vinyl Chloride	mg/kg				< 0.01 U	< 0.01 U	< 0.01 U	< 0.01 U										

Notes

	Da	te and Consultant						2008	G-Logics											
		Boring ID	P-4	P-5	P-6	P-6	P-6	P-7	P-7	P-8	P-8	P-8	P-9	P-9	P-9	P-10	P-11	P-12	P-12	P-13
		Sample Depth		15 ft	12 ft	16 ft	18 ft	12 ft	18 ft	12 ft	16 ft	20 ft	12 ft	15 ft	20 ft	16 ft	12 ft	4 ft	15 ft	20 ft
		Sample Date				6/6/2005		6/6/2005		6/6/2005		6/6/2005	6/6/2005					6/22/2006	6/22/2006	
		Sample Code		P5-15	P6-12	P6-16	P6-18	P7-12	P7-18	P8-12	P8-16	P8-20	P9-12	P9-15	P9-20	P10-16	P11-12	P12-4	P12-15	P13-20
		MTCA Method A																		
Chemical Name	Units	Cleanup Level																		
Benzene, Toluele, Ethylbenzene, ar	nd Total X	ylenes using EPA																		
Benzene	mg/kg	0.03	< 0 U	< 0 U	< 0 U	0.26	< 0 U	< 0 U	25 J	< 0 U	7	0.16	< 0 U	14	< 0 U	0.034	< 0 U	< 0 U	< 0 U	< 0 U
Toluene	mg/kg	7	< 0 U	< 0 U	< 0 U	0.05	< 0 U	< 0 U	18 J	< 0 U	10	0.04	< 0 U	2.2	< 0 U	0.05	< 0 U	< 0 U	< 0 U	< 0 U
Ethylbenzene	mg/kg	6	< 0 U	< 0 U	< 0 U	< 0 U	< 0 U	< 0 U	120 J	< 0 U	45	0.63	< 0 U	< 0 U	< 0 U	0.35	< 0 U	< 0 U	< 0 U	< 0 U
Total Xylenes	mg/kg	9	< 0 U	< 0 U	< 0 U	0.03	< 0 U	< 0 U	390 J	< 0 U	310	4	< 0 U	4.1	0.3	1.6	< 0 U	< 0 U	< 0 U	< 0 U
Carcinogenic Polycyclic Aromatic H	ydrocarbo	ons (PAHs) using E																		
Benz(a)anthracene	mg/kg																			1
Benzo(a)pyrene	mg/kg	0.1																		1
Benzo(b)fluoranthene	mg/kg																			
Benzo(k)fluoranthene	mg/kg																			1
Chrysene	mg/kg																			
Dibenzo(a,h)anthracene	mg/kg																			1
Naphthalene (8260)	mg/kg	5																		1
Naphthalene (8270 SIM)	mg/kg	5																		1
Naphthalene (8270)	mg/kg	5																		1
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1																		1
Total Petroleum Hydrocarbons using	g Northwe	est Methods NWTF																		
Gasoline Range Organics	mg/kg	30 100	< 0 U	< 0 U	< 0 U	16	< 0 U	< 0 U	6000 J	< 0 U	4000	80	< 0 U	1300	53	40	< 0 U	< 0 U	< 0 U	< 0 U
Diesel Range Organics	mg/kg	2000																		
Motor Oil Range Organics	mg/kg	2000																		1
Select Volatile Organic Compounds			:																	
1,2-Dibromoethane (EDB)	mg/kg	0.005																		
1,2-Dichloroethane (EDC)	mg/kg																			
cis-1,2-Dichloroethene (DCE)	mg/kg																			
Methyl tert-butyl ether (MTBE)	mg/kg	0.1																		
Methylene Chloride	mg/kg	0.02																		
Tetrachloroethene (PCE)	mg/kg	0.05																		
Tetrachloroethene (PCE) (TCLP)	ug/L																			
Trichloroethene (TCE)	mg/kg	0.03																		
Trichlorofluoromethane	mg/kg																			
Vinyl Chloride	mg/kg																			

Notes

	Da	te and Consultant						2009 PBS			2010 KEE						
		Boring ID	P-14	P-15	P-16	P-16	PBS-SB-1	PBS-SB-2	PBS-SB-3	KEE-B-1	KEE-B-2	KEE-B-3	B-1	B-1	B-1	B-1	B-2
		Sample Depth	16 ft	20 ft	16 ft	20 ft	9 - 12 ft	8 - 11 ft	9 - 12 ft	-	-	-	5 ft	10 ft	15 ft	18 ft	5 ft
		Sample Date	6/22/2006	6/22/2006	6/22/2006	6/22/2006	6/25/2009	6/25/2009	6/25/2009	5/24/2010	5/24/2010	5/24/2010	4/18/2011	4/19/2011	4/19/2011	4/19/2011	4/18/2011
		Sample Code	P14-16	P15-20	P16-16	P16-20	SB-1-SO	SB-2-SO	SB-3-SO	B1-3	B2-3	B3-4	B-1-5	B-1-10	B-1-15	B-1-18	B-2-5
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluele, Ethylbenzene, an	d Total X	(ylenes using EPA															
Benzene	mg/kg	0.03	< 0 U	< 0 U	< 0 U	< 0 U							< 0.0005 U	< 0.0005 U	< 0.02 U	< 0.0005 U	0.002
Toluene	mg/kg	7	< 0 U	< 0 U	< 0 U	< 0 U							< 0.001 U	< 0.001 U	< 0.04 U	< 0.0009 U	
Ethylbenzene	mg/kg	6	< 0 U	< 0 U	< 0 U	< 0 U							< 0.001 U			< 0.0009 U	
Total Xylenes	mg/kg	9	< 0 U	< 0 U	< 0 U	< 0 U							< 0.001 U	< 0.001 U	< 0.04 U	< 0.0009 U	0.002
Carcinogenic Polycyclic Aromatic Hy	/drocarbo	ons (PAHs) using E															
Benz(a)anthracene	mg/kg																
Benzo(a)pyrene	mg/kg	0.1															
Benzo(b)fluoranthene	mg/kg																
Benzo(k)fluoranthene	mg/kg																
Chrysene	mg/kg																
Dibenzo(a,h)anthracene	mg/kg																
Naphthalene (8260)	mg/kg	5															
Naphthalene (8270 SIM)	mg/kg	5															
Naphthalene (8270)	mg/kg	5															
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1															
Total Petroleum Hydrocarbons using				_		-	-	-		-			-	_	-		
Gasoline Range Organics	mg/kg	30 100	< 0 U	< 0 U	< 0 U	< 0 U	< 20 U	< 20 U	< 20 U				< 1.1 U	2	40	< 1.4 U	1.4
Diesel Range Organics	mg/kg	2000					< 50 U	< 50 U	< 50 U								
Motor Oil Range Organics	mg/kg	2000					< 100 U	< 100 U	< 100 U								
Select Volatile Organic Compounds	(VOCs) เ						-	-		-	_		-				
1,2-Dibromoethane (EDB)	mg/kg	0.005										< 0.0012 U					
1,2-Dichloroethane (EDC)	mg/kg											< 0.0012 U					
cis-1,2-Dichloroethene (DCE)	mg/kg									< 0.0011 U	< 0.0011 U	< 0.0012 U					
Methyl tert-butyl ether (MTBE)	mg/kg	0.1											< 0.0005 U	< 0.0005 U	< 0.02 U	< 0.0005 U	V < 0.0005 U
Methylene Chloride	mg/kg	0.02									< 0.0053 U						
Tetrachloroethene (PCE)	mg/kg	0.05								0.0036	0.09	0.0027					
Tetrachloroethene (PCE) (TCLP)	ug/L																
Trichloroethene (TCE)	mg/kg	0.03										< 0.0012 U					
Trichlorofluoromethane	mg/kg											< 0.0012 U					
Vinyl Chloride	mg/kg									< 0.0011 U	< 0.0011 U	< 0.0012 U					

Notes

	Da	te and Consultant														2	012 Stantec
		Boring ID	B-2	B-2	B-2	B-3	B-3	B-3	B-3	B-4	B-4	B-4	B-4	B-5	B-5	B-5	B-5
		Sample Depth	11 ft	15 ft	18 ft	5 ft	10 ft	15 ft	20 ft	5 ft	10 ft	15 ft	17 ft	5 ft	10 ft	15 ft	18 ft
		Sample Date	4/19/2011	4/19/2011	4/19/2011	4/18/2011	4/19/2011	4/19/2011	4/19/2011	4/18/2011	4/19/2011	4/19/2011	4/19/2011	4/18/2011	4/19/2011	4/19/2011	4/19/2011
		Sample Code	B-2-11	B-2-15	B-2-18	B-3-5	B-3-10	B-3-15	B-3-20	B-4-5	B-4-10	B-4-15	B-4-17	B-5-5	B-5-10	B-5-15	B-5-18
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluele, Ethylbenzene, an	nd Total X	ylenes using EPA															
Benzene	mg/kg	0.03	0.001	< 0.045 U	0.003	0.0008		< 0.024 U		0.001	< 0.0009 U	< 0.0005 U	0.005	< 0.0005 U	< 0.0006 U	< 0.0006 U	0.002
Toluene	mg/kg	7	0.002	< 0.089 U	< 0.001 U	< 0.001 U		< 0.048 U	< 0.001 U	< 0.001 U	< 0.002 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U
Ethylbenzene	mg/kg	6	< 0.001 U	1.2	0.007	< 0.001 U	< 0.043 U		< 0.001 U	< 0.001 U	< 0.002 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U
Total Xylenes	mg/kg	9	0.005	26	0.15	< 0.001 U	< 0.043 U	< 0.048 U	< 0.001 U	< 0.001 U	< 0.002 U	< 0.001 U	0.004	< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U
Carcinogenic Polycyclic Aromatic Hy		ons (PAHs) using E								-	_			-			
Benz(a)anthracene	mg/kg																
Benzo(a)pyrene	mg/kg	0.1															
Benzo(b)fluoranthene	mg/kg																
Benzo(k)fluoranthene	mg/kg																
Chrysene	mg/kg																
Dibenzo(a,h)anthracene	mg/kg																
Naphthalene (8260)	mg/kg	5												< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U
Naphthalene (8270 SIM)	mg/kg	5				< 0.037 U	< 0.038 U	2.7	< 0.00079 U					< 0.0019 U	< 0.00075 U	< 0.00077 U	0.0017
Naphthalene (8270)	mg/kg	5															
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1															
Total Petroleum Hydrocarbons using	g Northwe																
Gasoline Range Organics	mg/kg	30 100	12	820	4.5	< 13 U	450	720	< 1.2 U	< 1.2 U	< 200 U	< 18 U	1.9	< 1.4 U	< 1.2 U	< 1.4 U	< 1.3 U
Diesel Range Organics	mg/kg	2000				150	10000	3200	< 3.6 U					11	< 3.4 U	12	< 3.8 U
Motor Oil Range Organics	mg/kg	2000				1000	< 570 U	< 620 U	< 12 U					< 11 U	< 11 U	< 12 U	< 13 U
Select Volatile Organic Compounds	(VOCs) ι		:														
1,2-Dibromoethane (EDB)	mg/kg	0.005															
1,2-Dichloroethane (EDC)	mg/kg																
cis-1,2-Dichloroethene (DCE)	mg/kg													< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.0005 U	< 0.045 U	< 0.0006 U	< 0.0005 U	< 0.022 U	< 0.024 U	< 0.0005 U	< 0.0005 U	J < 0.0009 U	< 0.0005 U	< 0.0007 U	< 0.0005 U	< 0.0006 U	< 0.0006 U	< 0.0005 U
Methylene Chloride	mg/kg	0.02															
Tetrachloroethene (PCE)	mg/kg	0.05												< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U
Tetrachloroethene (PCE) (TCLP)	ug/L																
Trichloroethene (TCE)	mg/kg	0.03												< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U
Trichlorofluoromethane	mg/kg																
Vinyl Chloride	mg/kg													< 0.001 U	< 0.001 U	< 0.001 U	< 0.001 U

Notes

	Da	te and Consultant								-							
		Boring ID		B-6	B-6	B-6	B-7	B-7	B-7	B-7	MW-6	MW-6	MW-7	MW-7	MW-8	MW-8	MW-9
		Sample Depth		10 ft	15 ft	17 ft	5 ft	10 ft	15 ft	17 ft	10 ft	15 ft	5 ft	15 ft	10 ft	15 ft	10 ft
		Sample Date	4/18/2011	4/19/2011	4/19/2011	4/19/2011	4/18/2011	4/19/2011	4/19/2011	4/19/2011	12/11/2007	12/11/2007		7/13/2011	12/11/2007	12/11/2007	12/11/2007
		Sample Code	B-6-5	B-6-10	B-6-15	B-6-17	B-7-5	B-7-10	B-7-15	B-7-17	MW-6-10	MW-6-15	MW-7-5	MW-7-15	MW-8-10	MW-8-15	MW-9-10
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluele, Ethylbenzene, an	d Total X	(ylenes using EPA															
Benzene	mg/kg	0.03	< 0.0004 U	< 0.0005 U	< 0.29 U	< 0.0008 U	< 0.0005 U	< 0.0004 U	0.0006	0.003	< 0 U	0.002	< 0 U	0.002	< 0 U	< 0 UJ	0.002
Toluene	mg/kg	7	< 0.0009 U	< 0.001 U	< 0.58 U	< 0.002 U	< 0.001 U	< 0.0008 U	0.001	0.002	< 0 U	0.002	< 0 U	< 0 U	0.001	< 0 UJ	0.002
Ethylbenzene	mg/kg	6	< 0.0009 U	< 0.001 U	1.9	< 0.002 U	< 0.001 U	< 0.0008 U	0.001	0.006	< 0 U	< 0 U	< 0 U	< 0 U	< 0 U	< 0 UJ	< 0 U
Total Xylenes	mg/kg	9	< 0.0009 U	< 0.001 U	8.4	0.025	< 0.001 U	< 0.0008 U	0.006	0.015	< 0 U	< 0 U	< 0 U	< 0 U	0.012	0.077 J	< 0 U
Carcinogenic Polycyclic Aromatic Hy	/drocarbo	ons (PAHs) using [
Benz(a)anthracene	mg/kg																0.16
Benzo(a)pyrene	mg/kg	0.1															0.21
Benzo(b)fluoranthene	mg/kg																0.16
Benzo(k)fluoranthene	mg/kg																< 0.073 U
Chrysene	mg/kg																0.37
Dibenzo(a,h)anthracene	mg/kg																< 0.073 U
Naphthalene (8260)	mg/kg	5															
Naphthalene (8270 SIM)	mg/kg	5															
Naphthalene (8270)	mg/kg	5															< 0.073 U
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1															
Total Petroleum Hydrocarbons using	g Northwe	est Methods NWT					•			-	•			•			
Gasoline Range Organics	mg/kg	30 100	< 1.1 U	< 1.3 U	1300	< 24 U	< 1.1 U	< 1.1 U	1.1	35	< 0 U	1.7	< 0 U	< 0 U	1	110	< 0 UJ
Diesel Range Organics	mg/kg	2000									< 0 U	14	< 0 U	11	< 0 U	< 0 U	860
Motor Oil Range Organics	mg/kg	2000									43	50	< 0 U	25	29	< 0 U	13000
Select Volatile Organic Compounds	(VOCs) u	using EPA Method								-	-						
1,2-Dibromoethane (EDB)	mg/kg	0.005															
1,2-Dichloroethane (EDC)	mg/kg																
cis-1,2-Dichloroethene (DCE)	mg/kg																
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.0004 U	< 0.0005 U	< 0.29 U	< 0.0008 U	< 0.0005 U	< 0.0004 U	< 0.0005 U	< 0.0007 U							
Methylene Chloride	mg/kg	0.02								Ī							
Tetrachloroethene (PCE)	mg/kg	0.05															
Tetrachloroethene (PCE) (TCLP)	ug/L																
Trichloroethene (TCE)	mg/kg	0.03															
Trichlorofluoromethane	mg/kg																
Vinyl Chloride	mg/kg																

Notes

	Da	te and Consultant					2014	AEG							2015	GeoEng
		Boring ID	MW-9	MW-9	MW-10	MW-10	SW-B-6	SW-B-7	DP-1	DP-1	DP-2	DP-2	DP-3	DP-3	DP-4	DP-4
		Sample Depth	15 ft	20 ft	10 ft	15 ft	-	-	2 ft	6 ft	2 ft	6 ft	2 ft	4 ft	2 ft	6 ft
		Sample Date		12/11/2007	7/13/2011	7/13/2011	12/20/2011	12/20/2011	9/2/2015	9/2/2015	9/2/2015	9/2/2015	9/2/2015	9/2/2015	9/2/2015	9/2/2015
		Sample Code				MW-10-15		SW-B-7	DP-1-2.0	DP-1-6.0	DP-2-2.0	DP-2-6.0	DP-3-2.0	DP-3-4.0	DP-4-2.0	DP-4-6.0
		MTCA Method A														
Chemical Name	Units	Cleanup Level														
Benzene, Toluele, Ethylbenzene, ar	nd Total X	(ylenes using EPA														
Benzene	mg/kg	0.03	0.002	< 0 U	< 0 U	< 0 U										
Toluene	mg/kg	7	0.001	< 0 U	< 0 U	< 0 U										
Ethylbenzene	mg/kg	6	< 0 U	< 0 U	< 0 U	< 0 U										
Total Xylenes	mg/kg	9	< 0 U	< 0 U	< 0 U	< 0 U										
Carcinogenic Polycyclic Aromatic H	ydrocarbo	ons (PAHs) using E														
Benz(a)anthracene	mg/kg		0.21													
Benzo(a)pyrene	mg/kg	0.1	0.22													
Benzo(b)fluoranthene	mg/kg		0.16													
Benzo(k)fluoranthene	mg/kg		< 0.078 U													
Chrysene	mg/kg		0.48													
Dibenzo(a,h)anthracene	mg/kg		< 0.078 U													
Naphthalene (8260)	mg/kg	5														
Naphthalene (8270 SIM)	mg/kg	5														
Naphthalene (8270)	mg/kg	5	< 0.078 U													
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1														
Total Petroleum Hydrocarbons using	g Northwe	est Methods NWTF										-	•		•	
Gasoline Range Organics	mg/kg	30 100	< 0 UJ	< 0 U	< 0 U	< 0 U										
Diesel Range Organics	mg/kg	2000	200	< 0 U	< 0 U	< 0 U	< 25 U	< 25 U								
Motor Oil Range Organics	mg/kg	2000	3600	< 0 U	< 0 U	35										
Select Volatile Organic Compounds	(VOCs)	using EPA Method														
1,2-Dibromoethane (EDB)	mg/kg	0.005							< 0.00085 U	< 0.00081 U	< 0.00080 U	< 0.00097 U	< 0.00085 U	< 0.0011 U	< 0.00083 U	< 0.00079 U
1,2-Dichloroethane (EDC)	mg/kg						< 0.03 U	< 0.03 U	< 0.00085 U	< 0.00081 U	< 0.00080 U	< 0.00097 U	< 0.00085 U	< 0.0011 U	< 0.00083 U	< 0.00079 U
cis-1,2-Dichloroethene (DCE)	mg/kg						< 0.02 U	< 0.02 U	< 0.00085 U	< 0.00081 U	< 0.00080 U	< 0.00097 U	< 0.00085 U	< 0.0011 U	< 0.00083 U	< 0.00079 U
Methyl tert-butyl ether (MTBE)	mg/kg	0.1														
Methylene Chloride	mg/kg	0.02							< 0.0043 U	< 0.0041 U	< 0.0040 U	< 0.0049 U	< 0.0042 U	< 0.0055 U	< 0.0041 U	< 0.0039 U
Tetrachloroethene (PCE)	mg/kg	0.05					1.43	0.31	0.0012	0.003	0.016	0.01	0.002	0.0075	< 0.00083 U	< 0.00079 U
Tetrachloroethene (PCE) (TCLP)	ug/L															
Trichloroethene (TCE)	mg/kg	0.03					< 0.03 U	< 0.03 U	< 0.00085 U	< 0.00081 U	< 0.00080 U	< 0.00097 U	< 0.00085 U	< 0.0011 U	< 0.00083 U	< 0.00079 U
Trichlorofluoromethane	mg/kg								< 0.00085 U	< 0.00081 U	< 0.00080 U	< 0.00097 U	< 0.00085 U	< 0.0011 U	< 0.00083 U	< 0.00079 U
Vinyl Chloride	mg/kg						< 0.02 U	< 0.02 U	< 0.00085 U	< 0.00081 U	< 0.00080 U	< 0.00097 U	< 0.00085 U	< 0.0011 U	< 0.00083 U	< 0.00079 U

Notes

	Da	te and Consultant										2016 ATC			
		Boring ID	DP-5	DP-5	DP-6	DP-6	DP-7	DP-7	ATC-B-1	ATC-B-2	ATC-B-2	ATC-B-3	ATC-B-4	ATC-B-5	ATC-B-6
		Sample Depth	2 ft	4 ft	2 ft	6 ft	2 ft	6 ft	9.5 - 10 ft	4.5 - 5 ft	9.5 - 10 ft	7.5 - 8 ft	4.5 - 5 ft	4.5 - 5 ft	4.5 - 5 ft
		Sample Depth	9/2/2015	9/2/2015	9/2/2015	9/2/2015	9/2/2015	9/2/2015	1/8/2016	1/8/2016	1/8/2016	1/8/2016	1/8/2016	1/8/2016	1/8/2016
		Sample Code	DP-5-2.0	DP-5-4.0	DP-6-2.0	DP-6-6.0	DP-7-2.0	DP-7-6.0	B-1-9.5-10	B-2-4.5-5	B-2-9.5-10	B-3-7.5-8	B-4-4.5-5	B-5-4.5-5	B-6-4.5-5
		MTCA Method A	DI - <u>J</u> -2.0	DI -0-4.0	D1 -0-2.0	D1 -0-0.0	D1 -1-2.0	DI -1-0.0	D-1-3.3-10	D-2-4.3-3	D-2-9.0-10	D-3-7.3-0	D-4-4.3-3	D-0-4.0-0	D-0-4.3-3
Chemical Name	Units	Cleanup Level													
Benzene, Toluele, Ethylbenzene, an	d Total X	vlenes using EPA				•		•	•	•					•
Benzene	mg/kg	0.03							< 0.00269 U	< 0.0332 U	< 0.0455 U	< 0.0278 U	< 0.0289 U	< 0.0289 U	< 0.0500 U
Toluene	mg/kg	7							< 0.00269 U	< 0.0332 U	< 0.0455 U	< 0.0278 U	< 0.0289 U	< 0.0289 U	< 0.0500 U
Ethylbenzene	mg/kg	6							< 0.00404 U	< 0.0498 U	< 0.0682 U	< 0.0417 U	< 0.0433 U	< 0.0433 U	< 0.0750 U
Total Xylenes	mg/kg	9							< 0.00269 U	< 0.0332 U	< 0.0455 U	< 0.0278 U	< 0.0289 U	< 0.0289 U	< 0.0500 U
Carcinogenic Polycyclic Aromatic Hy		ons (PAHs) using E				-	•	•		-		•		-	•
Benz(a)anthracene	mg/kg														
Benzo(a)pyrene	mg/kg	0.1													
Benzo(b)fluoranthene	mg/kg														
Benzo(k)fluoranthene	mg/kg														
Chrysene	mg/kg														
Dibenzo(a,h)anthracene	mg/kg														
Naphthalene (8260)	mg/kg	5							< 0.00404 U	< 0.0498 U	< 0.0682 U	< 0.0417 U	< 0.0433 U	< 0.0433 U	< 0.0750 U
Naphthalene (8270 SIM)	mg/kg	5													
Naphthalene (8270)	mg/kg	5													
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1													
Total Petroleum Hydrocarbons using	g Northwe														
Gasoline Range Organics	mg/kg	30 100							< 22.3 U		< 21.3 U				
Diesel Range Organics	mg/kg	2000							< 55.8 U		< 53.3 U				
Motor Oil Range Organics	mg/kg	2000							< 112 U		< 107 U				
Select Volatile Organic Compounds	(VOCs) ι														
1,2-Dibromoethane (EDB)	mg/kg								< 0.000674 U			< 0.00695 U		< 0.00722 U	
1,2-Dichloroethane (EDC)	mg/kg							< 0.00085 U			< 0.0682 U	< 0.0417 U		< 0.0433 U	
cis-1,2-Dichloroethene (DCE)	mg/kg		< 0.00073 U	< 0.00078 U	< 0.00074 U	< 0.00080 U	< 0.00081 U	< 0.00085 U		< 0.0332 U	< 0.0455 U	< 0.0278 U	< 0.0289 U		< 0.0500 U
Methyl tert-butyl ether (MTBE)	mg/kg	0.1							< 0.00674 U	< 0.0831 U	< 0.114 U	< 0.0695 U	< 0.0722 U		< 0.125 U
Methylene Chloride	mg/kg	0.02	< 0.0037 U	< 0.0039 U	< 0.0037 U	< 0.0040 U	< 0.0041 U	< 0.0042 U	< 0.00269 U	< 0.0332 U	< 0.0455 U	< 0.0278 U	< 0.0289 U		< 0.0500 U
Tetrachloroethene (PCE)	mg/kg	0.05	0.00082	0.00081	0.0026	0.0058	0.0046	0.002	< 0.00269 U	< 0.0332 U	< 0.0455 U	< 0.0278 U	< 0.0289 U	< 0.0289 U	< 0.0500 U
Tetrachloroethene (PCE) (TCLP)	ug/L														
Trichloroethene (TCE)	mg/kg								< 0.00269 U			< 0.0278 U	< 0.0289 U		
Trichlorofluoromethane	mg/kg								< 0.00674 U		< 0.114 U	< 0.0695 U		< 0.0722 U	< 0.125 U
Vinyl Chloride	mg/kg		< 0.00073 U	< 0.00078 U	< 0.00074 U	< 0.00080 U	< 0.00081 U	< 0.00085 U	< 0.000269 U	< 0.00332 U	< 0.00455 U	< 0.00278 U	< 0.00289 U	< 0.00289 U	< 0.00500 U

Notes

Bold - detected Blue - exceeded MTCA A U = Not Detected

J = Estimated Value

-										00463			
Da													
	•												HC-MW-6
													15 ft
	•												9/29/2016
1		HC-MW-1-10	HC-MW-1-15	HC-MW-2-8.5	HC-MW-2-20	HC-MW-3-5	HC-MW-3-7.5	HC-MW-4-12	HC-MW-4-25	HC-MW-5-10	HC-MW-5-12.5	HC-MW-6-10	HC-MW-6-15
	•												
	· · ·		1		1	•	•	•		-	1	•	-
													< 0.00098 U
													< 0.0049 U
													< 0.00098 U
0			< 0.057 U	< 0.048 U	< 0.059 U	< 0.0018 U	< 0.0015 U	< 0.0020 U	< 0.0021 U	< 0.0020 U	< 0.11 U	< 0.0023 U	< 0.0020 U
	ons (PAHs) using E						-	-					
5	0.1												
mg/kg													
mg/kg													
mg/kg													
mg/kg													
mg/kg	5					< 0.00092 U	< 0.00075 U	< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.057 U	< 0.0011 U	< 0.00098 U
mg/kg	5												
mg/kg	5												
mg/kg	0.1												
g Northwe	est Methods NWTF												
mg/kg	30 100	< 6.2 U					< 5.1 U	< 6.0 U			< 6.3 U	< 7.1 U	< 5.6 U
mg/kg		< 30 U	< 30 U	< 28 U	< 30 U	< 28 U	< 28 U	< 30 U	< 30 U	< 31 U	< 29 U	< 32 U	< 30 U
mg/kg	2000	87	< 59 U	< 57 U	< 59 U	< 56 U	< 56 U	< 59 U	< 60 U	< 62 U	< 59 U	120	< 59 U
(VOCs) u	using EPA Method												
mg/kg	0.005	< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.0012 U			< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.057 U	< 0.0011 U	< 0.00098 U
mg/kg		< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.0012 U	< 0.00092 U	< 0.00075 U	< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.057 U	< 0.0011 U	< 0.00098 U
mg/kg		< 0.0010 U	0.0043	0.0027	< 0.0012 U	< 0.00092 U	< 0.00075 U	< 0.0010 U	< 0.0011 U	0.0016	< 0.057 U	< 0.0011 U	< 0.00098 U
mg/kg	0.1					< 0.00092 U	< 0.00075 U	< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.057 U	< 0.0011 U	< 0.00098 U
mg/kg	0.02	< 0.0050 U	< 0.0053 U	< 0.0050 U	< 0.0058 U	< 0.0046 U	< 0.0038 U	< 0.0050 U	< 0.0053 U	< 0.0050 U	< 0.29 U	< 0.0056 U	< 0.0049 U
mg/kg	0.05	< 0.0010 U	0.044	0.0053	< 0.0012 U	0.0078	0.0047	< 0.0010 U	< 0.0011 U	1.2	2.7	< 0.0011 U	< 0.00098 U
ug/L													
mg/kg	0.03	< 0.0010 U	0.0032	0.0036	< 0.0012 U	< 0.00092 U	< 0.00075 U	< 0.0010 U	< 0.0011 U	0.0062	< 0.057 U	< 0.0011 U	< 0.00098 U
mg/kg		< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.0012 U	< 0.00092 U	< 0.00075 U	< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.057 U	< 0.0011 U	< 0.00098 U
mg/kg		< 0.0010 U	< 0.0011 U	< 0.0010 U	< 0.0012 U	< 0.0014 U	< 0.0011 U	< 0.0015 U	< 0.0011 U	< 0.0015 U	< 0.086 U	< 0.0017 U	< 0.0015 U
	Units d Total X mg/kg	Sample Depth Sample Date Sample Code MTCA Method A Units Cleanup Level d Total Xylenes using EPA mg/kg 0.03 mg/kg 6 mg/kg 9 /drocarbons (PAHs) using E mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 5 mg/kg 5 mg/kg 5 mg/kg 0.1 mg/kg 5 mg/kg 5 mg/kg 5 mg/kg 0.1 mg/kg 5 mg/kg 5 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 30 100 mg/kg 2000 mg/kg 2000 mg/kg 0.005 mg/kg 0.005 mg/kg 0.1 mg/kg 0.02 <	Boring ID HC-MW-1 Sample Depth 10 ft Sample Date 5/16/2016 Sample Code HC-MW-1-10 MTCA Method A Cleanup Level d Total X/lenes using EPA mg/kg mg/kg 0.03 0.3 mg/kg 6 < 0.062 U	Boring ID Sample Deth Sample Date HC-MW-1 10 ft HC-MW-1 15 ft Sample Code 5/16/2016 5/16/2016 MTCA Method A Cleanup Level HC-MW-1-10 HC-MW-1-15 d Total Xylenes using EPA mg/kg 0.03 0.3 < 0.020 U	Boring ID HC-MW-1 HC-MW-1 HC-MW-2 Sample Deth 10 ft 15 ft 8.5 ft Sample Code HC-MW-1-10 HC-MW-1.15 5/17/2016 MTCA Method A Cleanup Level V 0.03 0.3 < 0.020 U	Boring ID HC-MW-1 10 ft HC-MW-1 15 ft HC-MW-2 8.5 ft HC-MW-2 20 ft Sample Date 5/16/2016 5/16/2016 5/17/2016 5/17/2016 Sample Code HC-MW-1-10 HC-MW-1-15 HC-MW-2.8.5 HC-MW-2-20 MTCA Method A Cleanup Level Northwest HC-MW-2 Intervention Intervention d Total Xylenes using EPA 0.03 0.3 < 0.020 U	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Boring ID HC-MW-1 HC-MW-1 HC-MW-2 HC-MW-2 HC-MW-3 FC-MW-3 FC-MW-3 FC-MW-3 St 5 ft 5.5 5 7.5 ft 7.5	Boring ID HC-MW-1 HC-MW-2 HC-MW-2 HC-MW-3 HC-MW-3 HC-MW-3 HC-MW-3 IC-MW-3 IC-MW-4 I21 Sample Date Sample Code HC-MW-1-10 HC-MW-1-15 IC-MW-2-8.5 HC-MW-3-5 HC-MW-3-7.5 HC-MW-4-12 MTCA Method A Units Cleanup Level 0.03 0.03 <0.020 U	Boring ID HC-MW-1 HC-MW-1 HC-MW-2 HC-MW-2 HC-MW-3 HC-MW-3 HC-MW-4 HC-MW-4 HC-MW-4 Sample Date 51/8/2016 9/26/2016	Boring ID Sample Depth HC-MW-1 10 ft HC-MW-1 15 ft HC-MW-2 8.5 ft HC-MW-3 5 ft HC-MW-3 5 ft HC-MW-4 5 ft <th< td=""><td>Boring ID Sample Date Sample Date Sife/2016 HC-MW-1 15 ft Sife/2016 HC-MW-2 5 ft Sife/2016 HC-MW-3 5 ft Sife/2016 HC-MW-3 5 ft Sife/2016 HC-MW-4 5 ft HC-MW-4 25 ft Sife/2016 HC-MW-4 9/29/2016 HC-MW-4 9/29/2016 HC-MW-4 9/29/2016 HC-MW-4 9/29/2016 HC-MW-4 9/29/2016 HC-MW-4-12 9/29/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/29/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 P/20/2016 HC-MW-4-12 P/20/2016 HC-MW-4-12 P/20/2016 <</td><td>Borng ID HC-MW-1 HC-MW-2 HC-MW-2 HC-MW-3 HC-MW-3 HC-MW-3 HC-MW-4 HC-MW-4 HC-MW-4 HC-MW-5 <</td></th<>	Boring ID Sample Date Sample Date Sife/2016 HC-MW-1 15 ft Sife/2016 HC-MW-2 5 ft Sife/2016 HC-MW-3 5 ft Sife/2016 HC-MW-3 5 ft Sife/2016 HC-MW-4 5 ft HC-MW-4 25 ft Sife/2016 HC-MW-4 9/29/2016 HC-MW-4 9/29/2016 HC-MW-4 9/29/2016 HC-MW-4 9/29/2016 HC-MW-4 9/29/2016 HC-MW-4-12 9/29/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/29/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 9/20/2016 HC-MW-4-12 P/20/2016 HC-MW-4-12 P/20/2016 HC-MW-4-12 P/20/2016 <	Borng ID HC-MW-1 HC-MW-2 HC-MW-2 HC-MW-3 HC-MW-3 HC-MW-3 HC-MW-4 HC-MW-4 HC-MW-4 HC-MW-5 <

Notes

Bold - detected Blue - exceeded MTCA A

U = Not Detected

J = Estimated Value

	Da	te and Consultant													2017 Asp	ect 1	
		Boring ID	HC-MW-7	HC-MW-7	HC-SB-1	HC-SB-1	HC-SB-2	HC-SB-2	AB-1	AB-1	AB-2	AB-2	AB-3	AB-3	AB-4	AB-6	AB-6
		Sample Depth	7.5 ft	10 ft	10 ft	15 ft	10 ft	12.5 ft	6 ft	11 ft	8 ft	13.6 ft	2 ft	9.5 ft	6 ft	6 ft	14 ft
		Sample Date	9/30/2016	9/30/2016	9/28/2016	9/29/2016	9/20/2016	9/20/2016	2/18/2017	2/18/2017	2/18/2017	2/18/2017	2/18/2017	2/18/2017	3/8/2017	3/8/2017	3/8/2017
		Sample Code	HC-MW-7-7.5	HC-MW-7-10	HC-SB-1-10	HC-SB-1-15	HC-SB-2-10	HC-SB-2-12.5	AB-1-6.0	AB-1-11.0	AB-2-8.0	AB-2-13.6	AB-3-2.0	AB-3-9.5	AB-4-6.0	AB-6-6.0	AB-6-14.0
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluele, Ethylbenzene, ar	nd Total X	(ylenes using EPA															
Benzene	mg/kg	0.03	< 0.0011 U	< 0.0010 U	< 0.0010 U	< 0.00094 U	< 0.0011 U	< 0.00081 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U				
Toluene	mg/kg	7	< 0.0055 U	< 0.0051 U	< 0.0051 U	< 0.0047 U	< 0.0056 U	< 0.0041 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6	< 0.0011 U	< 0.0010 U	< 0.0010 U	< 0.00094 U	< 0.0011 U	< 0.00081 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Total Xylenes	mg/kg	9	< 0.0022 U	< 0.0021 U	< 0.0020 U	< 0.0019 U	< 0.0022 U	< 0.0016 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U				
Carcinogenic Polycyclic Aromatic H	ydrocarbo	ons (PAHs) using E															
Benz(a)anthracene	mg/kg								0.045				< 0.01 U				
Benzo(a)pyrene	mg/kg	0.1							0.067				< 0.01 U				
Benzo(b)fluoranthene	mg/kg								0.079				< 0.01 U				
Benzo(k)fluoranthene	mg/kg								0.029				< 0.01 U				
Chrysene	mg/kg								0.058				< 0.01 U				
Dibenzo(a,h)anthracene	mg/kg								< 0.01 U				< 0.01 U				
Naphthalene (8260)	mg/kg	5	< 0.0011 U	< 0.0010 U	< 0.0010 U	< 0.00094 U	< 0.0011 U	< 0.00081 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Naphthalene (8270 SIM)	mg/kg	5							< 0.01 U				< 0.01 U				
Naphthalene (8270)	mg/kg	5															
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1							0.08968				< 0.00755 U				
Total Petroleum Hydrocarbons usin	g Northwe	est Methods NWTF															
Gasoline Range Organics	mg/kg	30 100	< 6.1 U	< 7.0 U	< 5.6 U	< 5.9 U	< 6.2 U	< 4.8 U	< 2 U				< 2 U				
Diesel Range Organics	mg/kg	2000	< 30 U	< 32 U	< 29 U	< 28 U	< 31 U	< 28 U	< 50 U				< 50 U				
Motor Oil Range Organics	mg/kg	2000	< 59 U	< 64 U	< 58 U	< 57 U	< 61 U	< 57 U	< 250 U				< 250 U				
Select Volatile Organic Compounds	(VOCs) (using EPA Method															
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.0011 U	< 0.0010 U	< 0.0010 U	< 0.00094 U	< 0.0011 U	< 0.00081 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
1,2-Dichloroethane (EDC)	mg/kg		< 0.0011 U	< 0.0010 U	< 0.0010 U	< 0.00094 U	< 0.0011 U	< 0.00081 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
cis-1,2-Dichloroethene (DCE)	mg/kg		< 0.0011 U	< 0.0010 U	0.0022	< 0.00094 U	0.0079	0.0019	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.0011 U	< 0.0010 U	< 0.0010 U	< 0.00094 U	< 0.0011 U	< 0.00081 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U				
Methylene Chloride	mg/kg	0.02	< 0.0055 U	< 0.0051 U	< 0.0051 U	< 0.0047 U	< 0.0056 U	< 0.0041 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U				
Tetrachloroethene (PCE)	mg/kg	0.05	< 0.0011 U	< 0.0010 U	< 0.0051 U	0.0076	0.027	0.03	1.7	11	4.8	4.2	0.42	15	0.032	< 0.025 U	0.95
Tetrachloroethene (PCE) (TCLP)	ug/L									280	200			260			20
Trichloroethene (TCE)	mg/kg	0.03	< 0.0011 U	< 0.0010 U	< 0.0010 U	< 0.00094 U	0.0065	0.0019	< 0.02 U	0.22	< 0.02 U	< 0.02 U	< 0.02 U	0.13	< 0.02 U	< 0.02 U	< 0.02 U
Trichlorofluoromethane	mg/kg		< 0.0011 U	< 0.0010 U	< 0.0010 U	< 0.00094 U	< 0.0011 U	< 0.00081 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Vinyl Chloride	mg/kg		< 0.0017 U	< 0.0015 U	< 0.0015 U	< 0.0014 U	< 0.0011 U	< 0.0012 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U

Notes

Bold - detected Blue - exceeded MTCA A U = Not Detected

J = Estimated Value

	Da					
	Da	te and Consultant				
		Boring ID		AMW-1	AMW-1	AMW-1
		Sample Depth		4 ft	11 ft	15 ft
		Sample Date		3/8/2017	3/8/2017	3/8/2017
	1	Sample Code	AB-6-15.0	AMW-1-4.0	AMW-1-11.0	AMW-1-15.0
		MTCA Method A				
Chemical Name	Units	Cleanup Level				
Benzene, Toluele, Ethylbenzene, ar						
Benzene	mg/kg	0.03	< 0.03 U	< 0.03 U	< 0.03 U	< 0.03 U
Toluene	mg/kg	7	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Ethylbenzene	mg/kg	6	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Total Xylenes	mg/kg	9	< 0.1 U	< 0.1 U	< 0.1 U	< 0.1 U
Carcinogenic Polycyclic Aromatic Hy	ydrocarbo	ons (PAHs) using E				
Benz(a)anthracene	mg/kg					< 0.01 U
Benzo(a)pyrene	mg/kg	0.1				< 0.01 U
Benzo(b)fluoranthene	mg/kg					< 0.01 U
Benzo(k)fluoranthene	mg/kg					< 0.01 U
Chrysene	mg/kg					< 0.01 U
Dibenzo(a,h)anthracene	mg/kg					< 0.01 U
Naphthalene (8260)	mg/kg	5	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Naphthalene (8270 SIM)	mg/kg	5				< 0.01 U
Naphthalene (8270)	mg/kg	5				
Total cPAHs TEQ (ND = 1/2 RDL)	mg/kg	0.1				< 0.00755 U
Total Petroleum Hydrocarbons using	g Northwe	est Methods NWT				
Gasoline Range Organics	mg/kg	30 100				< 2 U
Diesel Range Organics	mg/kg	2000				< 50 U
Motor Oil Range Organics	mg/kg	2000				< 250 U
Select Volatile Organic Compounds	(VOCs) ι	using EPA Method				
1,2-Dibromoethane (EDB)	mg/kg	0.005	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
1,2-Dichloroethane (EDC)	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
cis-1,2-Dichloroethene (DCE)	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Methyl tert-butyl ether (MTBE)	mg/kg	0.1	< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U
Methylene Chloride	mg/kg	0.02	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Tetrachloroethene (PCE)	mg/kg	0.05	0.48	0.036	0.54	0.58
Tetrachloroethene (PCE) (TCLP)	ug/L		14		11	11
Trichloroethene (TCE)	mg/kg	0.03	< 0.02 U	< 0.02 U	< 0.02 U	< 0.02 U
Trichlorofluoromethane	mg/kg		< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Vinyl Chloride	mg/kg		< 0.05 U	< 0.05 U	< 0.05 U	< 0.05 U

Notes

Bold - detected Blue - exceeded MTCA A U = Not Detected

J = Estimated Value

Table 3 Remedial Investigation Work Plan 11 of 11

		Year and Consultant	2006	Kane	2009	PBS			2009 Stanted	;		2010	KEE			2	2012 Stante
	Borir	ng/Monitoring Well ID		K-SB-3	PBS-SB-1	PBS-SB-3	MW-1	MW-2	MW-3	MW-4	MW-5		KEE-B-3	B-1	B-2	B-3	B-4
		Sample Date					11/12/2009		11/12/2009		11/12/2009			4/19/2011	4/19/2011	4/19/2011	4/19/2011
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluene, Ethylbenzene	, and Total Xylenes	using EPA Method 82	70D/SIM														
Benzene	ug/L	5	<1U	<1U	<1U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	1.3			< 0.5 U	<1U	1	< 0.5 U
Toluene	ug/L	1000	<1U	<1U	3.2	1.3	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U			< 0.5 U	3	28	< 0.5 U
Ethylbenzene	ug/L	700	<1U	<1U	1.1	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	36.3			< 0.5 U	290	33	< 0.5 U
Total Xylenes	ug/L	1000	<1U	<1U	4.6	< 3 U	< 3 U	< 3 U	< 3 U	< 3 U	125			1	5100	150	< 0.5 U
Field Parameters											•						•
Temperature	deg C																
Specific Conductance	uS/cm																
Dissolved Oxygen	mg/L																
рН	pH units																
Oxidation Reduction Potential	mV																
Turbidity	NTU																
Select Metals using EPA Method	6000/7000 Series										•	•					
Arsenic (Dissolved)	ug/L	5															
Arsenic (Total)	ug/L	5															
Lead (Dissolved)	ug/L	15															
Lead (Total)	ug/L	15												18.5	32.9	9.2	48.5
Polycyclic Aromatic Hyrodrcarbor	ns (PAHs) using EPA	Method 8270D/SIM			•						•						
Naphthalene (8260 SIM)	ug/L	160															
Naphthalene (8260)	ug/L	160	<1U	<1U	2.4	1.7											
Naphthalene (8270 SIM)	ug/L	160														570	
Total Petroleum Hydrocarbons us	sing Northwest Metho	ods NWTPH-Dx and N	WTPH-Gx								•						•
Gasoline Range Organics	ug/L	800 1000					< 50 U	455	71.7	< 50 U	2340			1700	20000	3400	< 50 U
Diesel Range Organics	ug/L	500														100000	
Motor Oil Range Organics	ug/L	500														< 3400 U	
Select Volatile Organic Compound	ds (VOCs) using EP	A Method 8260B									• •			-			-
1,1,1-Trichloroethane	ug/L	200										< 20 U	< 20 U				
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01															
1,2-Dibromoethane (EDB) (8260)	ug/L	0.01										< 20 U	< 20 U				
1,2-Dichloroethane (EDC)	ug/L	5										< 20 U	< 20 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U
1,2-Dichloropropane	ug/L											< 20 U	< 20 U				
cis-1,2-Dichloroethene (DCE)	ug/L		< 1 U	<1U	350	32						< 20 U	49	1			
Methyl tert-butyl ether (MTBE)	ug/L	20												< 0.5 U	< 1 U	< 0.5 U	< 0.5 U
Methylene Chloride	ug/L	5										< 100 U	< 100 U				
Tetrachloroethene (PCE)	ug/L	5	< 1 U	< 1 U	2200	330						3700	2100				
Trichloroethene (TCE)	ug/L	5	< 1 U	< 1 U	250	28						22	57				
Vinyl Chloride	ug/L	0.2	< 0.2 U	< 0.2 U	6.3	< 0.2 U						< 20 U	< 20 U				

Notes

Bold - detected Blue - exceeded MTCA A

U = Not Detected

		Year and Consultant	с					2016 ATC								2016 G	HC Data
	Borir	ng/Monitoring Well ID		B-6	B-7	ATC-B-1	ATC-B-2	ATC-B-3	ATC-B-5	ATC-B-6	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7
		Sample Date		4/19/2011		1/8/2016	1/8/2016	1/8/2016	1/8/2016				5/26/2016		5/26/2016	5/26/2016	
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluene, Ethylbenzene,	, and Total Xylenes	using EPA Method 82															
Benzene	ug/L	5	< 0.5 U	< 1 U	0.6	< 1.00 U											
Toluene	ug/L	1000	< 0.5 U	<1U	7	< 1.00 U											
Ethylbenzene	ug/L	700	< 0.5 U	330	140	< 1.00 U											
Total Xylenes	ug/L	1000	< 0.5 U	2000	570	< 1.00 U											
Field Parameters											-					•	•
Temperature	deg C																
Specific Conductance	uS/cm																
Dissolved Oxygen	mg/L																
рН	pH units			1							Ī	1					
Oxidation Reduction Potential	mV																
Turbidity	NTU																
Select Metals using EPA Method	6000/7000 Series	-										1					1
Arsenic (Dissolved)	ug/L	5															
Arsenic (Total)	ug/L	5															
Lead (Dissolved)	ug/L	15															
Lead (Total)	ug/L	15	116	18.4	15.7												
Polycyclic Aromatic Hyrodrcarbon	s (PAHs) using EPA	A Method 8270D/SIM		<u>.</u>											<u>.</u>		
Naphthalene (8260 SIM)	ug/L	160															
Naphthalene (8260)	ug/L	160	<1U			< 1.00 U											
Naphthalene (8270 SIM)	ug/L	160	< 0.032 U														
Total Petroleum Hydrocarbons us	ing Northwest Metho	ods NWTPH-Dx and N			<u> </u>						<u> </u>				<u>.</u>		
Gasoline Range Organics	ug/L	800 1000	< 50 U	27000	3900	< 399 U		< 399 U									
Diesel Range Organics	ug/L	500	530			< 499 U		< 498 U									
Motor Oil Range Organics	ug/L	500	< 74 U			< 499 U		< 498 U									
Select Volatile Organic Compound	ds (VOCs) using EP	A Method 8260B								•	•						•
1,1,1-Trichloroethane	ug/L	200				< 1.00 U											
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01															
1,2-Dibromoethane (EDB) (8260)	ug/L	0.01				< 0.0600 U											
1,2-Dichloroethane (EDC)	ug/L	5		<1U	< 0.5 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U							
1,2-Dichloropropane	ug/L					< 1.00 U											
cis-1,2-Dichloroethene (DCE)	ug/L		< 0.8 U			< 1.00 U											
Methyl tert-butyl ether (MTBE)	ug/L	20	< 0.5 U	<1U	< 0.5 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U							
Methylene Chloride	ug/L	5				< 1.00 U											
Tetrachloroethene (PCE)	ug/L	5	< 0.8 U			90.4	11.9	< 1.00 U	< 1.00 U	< 1.00 U	3	<1U	<1U	<1U	<1U	< 1 U	0.7 J
Trichloroethene (TCE)	ug/L	5	< 1 U			1.45	< 0.500 U	< 0.500 U	< 0.500 U		3	<1U	<1U	<1U	<1U	< 1 U	4
Vinyl Chloride	ug/L	0.2	< 1 U			< 0.200 U	< 0.200 U	< 0.200 U		< 0.200 U	1	<1U	<1U	<1U	<1U	< 1 U	3

Notes

Bold - detected

Blue - exceeded MTCA A

U = Not Detected

		Year and Consultant									2016 HC Da							
	Borir	ng/Monitoring Well ID	MW-8	MW-9	MW-10	MW-11	MW-13	HC-MW-1	HC-MW-2	HC-MW-3	HC-MW-4	HC-MW-5	HC-MW-6	HC-MW-7	MW-1	MW-2	MW-3	MW-4
		Sample Date	5/26/2016	5/25/2016	5/26/2016	5/25/2016	5/25/2016	9/30/2016	9/29/2016	9/30/2016	10/3/2016	9/30/2016	10/3/2016	10/3/2016	8/8/2016	8/8/2016	8/8/2016	8/9/2016
		MTCA Method A																
Chemical Name	Units	Cleanup Level																
Benzene, Toluene, Ethylbenzene	, and Total Xylenes	using EPA Method 82																
Benzene	ug/L	5						< 2.0 U	< 4.0 U	< 0.20 U	< 0.20 U	< 20 U	< 0.20 U	< 0.20 U	< 1	< 1	< 1	< 1
Toluene	ug/L	1000						< 10 U	< 20 U	< 1.0 U	< 1.0 U	< 100 U	< 1.0 U	< 1.0 U	< 1	< 1	< 1	< 1
Ethylbenzene	ug/L	700						< 2.0 U	< 4.0 U	< 0.20 U	< 0.20 U	< 20 U	< 0.20 U	< 0.20 U	< 1	< 1	61	< 1
Total Xylenes	ug/L	1000						< 4.0 U	< 8.0 U	< 0.40 U	< 0.40 U	< 40 U	< 0.40 U	< 0.40 U	< 1	1	39	< 1
Field Parameters							•	•	•						•			
Temperature	deg C							19.67	19.99	20.24	16.64	19.95	18.23	19.17				
Specific Conductance	uS/cm							156.5	446	129.6	406	122	205.7	163.4			-	
Dissolved Oxygen	mg/L							< 0	< 0	0.01	7.07	7.87	1.47	2.84			-	
рН	pH units							6.49	7.48	7.14	9.24	7.61	7.4	6.74				
Oxidation Reduction Potential	mV							118	65	67	55	65	57	91			-	
Turbidity	NTU							4.7	1.6	11.3	2	2.9	5.3	19.5				
Select Metals using EPA Method	6000/7000 Series			-											-			
Arsenic (Dissolved)	ug/L	5						< 3.0 U	11	< 3.0 U	9.1	< 3.0 U	12	6.8				
Arsenic (Total)	ug/L	5						< 3.3 U	11	< 3.3 U	9.3	< 3.3 U	13	6.4				
Lead (Dissolved)	ug/L	15						< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U				
Lead (Total)	ug/L	15						< 1.1 U	< 1.1 U	< 1.1 U	< 1.1 U	< 1.1 U	< 1.1 U	< 1.1 U	0.19 J	0.18 J	0.23 J	0.12 J
Polycyclic Aromatic Hyrodrcarbor	ns (PAHs) using EPA	Method 8270D/SIM																
Naphthalene (8260 SIM)	ug/L	160													< 0.060	< 0.061	3.1	< 0.061
Naphthalene (8260)	ug/L	160						< 10 U	< 20 U	< 1.0 U	< 1.0 U	< 100 U	< 1.0 U	< 1.0 U	< 5	< 5	5 J	< 5
Naphthalene (8270 SIM)	ug/L	160																
Total Petroleum Hydrocarbons us	sing Northwest Metho	ods NWTPH-Dx and N	N															
Gasoline Range Organics	ug/L	800 1000						< 430 X	< 1100 X	< 100 U	< 100 U	< 2700 X	< 100 U	< 100 U	< 250	640	4400	62 J
Diesel Range Organics	ug/L	500						< 260 U	< 260 U	< 260 U	< 270 U	< 260 U	< 260 U	< 260 U	< 100	72 J	99 J	< 100
Motor Oil Range Organics	ug/L	500						< 410 U	< 420 U	< 410 U	< 440 U	< 410 U	< 410 U	< 410 U	< 250	< 250	< 250	< 260
Select Volatile Organic Compoun	ds (VOCs) using EP																	
1,1,1-Trichloroethane	ug/L	200						< 2.0 U	< 4.0 U	< 0.20 U	< 0.20 U	< 20 U	< 0.20 U	< 0.20 U	< 1	< 1	< 1	< 1
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01													< 0.029	< 0.029	< 0.029	< 0.029
1,2-Dibromoethane (EDB) (8260)	ug/L	0.01						< 2.0 U			< 0.20 U		< 0.20 U					
1,2-Dichloroethane (EDC)	ug/L	5						< 2.0 U	< 4.0 U	< 0.20 U	< 0.20 U	< 20 U	< 0.20 U		< 1	< 1	< 1	< 1
1,2-Dichloropropane	ug/L							< 2.0 U	< 4.0 U	< 0.20 U		< 20 U	< 0.20 U		< 1	< 1	< 1	< 1
cis-1,2-Dichloroethene (DCE)	ug/L							63	35	1.5	< 0.20 U	< 20 U	18	< 0.20 U	9	< 1	1	< 1
Methyl tert-butyl ether (MTBE)	ug/L	20						< 2.0 U	< 4.0 U	< 0.20 U		< 20 U	< 0.20 U		< 1	< 1	< 1	< 1
Methylene Chloride	ug/L	5						< 10 U	< 20 U	< 1.0 U	< 1.0 U	< 100 U	< 1.0 U	< 1.0 U	< 4	< 4	< 4	< 4
Tetrachloroethene (PCE)	ug/L	5	< 1 U	160	<1U	1100	2	290	950	15	< 0.20 U	4900	1.5	< 0.20 U	3	< 1	< 1	< 1
Trichloroethene (TCE)	ug/L	5	< 1 U	110	< 1 U	45	<1U	33	76	3.4	< 0.20 U	34	4.8	< 0.20 U	2	< 1	< 1	< 1
Vinyl Chloride	ug/L	0.2	< 1 U	11	24	0.6 J	31	12	< 4.0 U	< 0.20 U	< 0.20 U	< 20 U	7	< 0.20 U	2	< 1	< 1	< 1

Notes

Bold - detected Blue - exceeded MTCA A

U = Not Detected

		Year and Consultant		2016-0	8 GHD						2017 Aspect 1							
	Bori	ng/Monitoring Well ID		MW-6	MW-7	MW-8	MW-9	MW-10	MW-11	MW-13	AMW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2
	Bon	Sample Date									3/24/2017					12/11/2014		
		MTCA Method A	0/0/2010	0/0/2010	0/0/2010	0/0/2010	0/0/2010	0/0/2010	0/0/2010	0/0/2010	0/24/2011	2/20/2010	0/12/2010	0/10/2014	0/21/2014	12/11/2014	0/20/2014	2/20/2010
Chemical Name	Units	Cleanup Level																
Benzene, Toluene, Ethylbenzene	, and Total Xylenes	using EPA Method 82	2					<u></u>	<u> </u>		•			<u> </u>		<u> </u>	<u> </u>	
Benzene	ug/L	5	< 1	< 1	< 1	< 1	< 1	< 1	< 2	< 1	< 0.35 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Toluene	ug/L	1000	0.6 J	< 1	< 1	0.7 J	< 1	< 1	< 2	< 1	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Ethylbenzene	ug/L	700	9	< 1	< 1	150	< 1	< 1	< 2	< 1	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	5
Total Xylenes	ug/L	1000	7	< 1	< 1	490	< 1	< 1	< 2	< 1	< 2 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	21
Field Parameters													•	•	•	•	•	
Temperature	deg C										13.5							
Specific Conductance	uS/cm										292.2							
Dissolved Oxygen	mg/L										7.68							
pH	pH units										6.83							
Oxidation Reduction Potential	mV										102.3							
Turbidity	NTU										94.1							
Select Metals using EPA Method	6000/7000 Series	•						•	•		•			<u> </u>			<u> </u>	
Arsenic (Dissolved)	ug/L	5																
Arsenic (Total)	ug/L	5																
Lead (Dissolved)	ug/L	15																
Lead (Total)	ug/L	15	1	0.74 J	1.6	0.78 J	< 1.0	< 1.0	0.29 J	1.3		0.25 J	0.29 J	0.2	0.1	0.84 J	0.4 J	0.63 J
Polycyclic Aromatic Hyrodrcarbor	ns (PAHs) using EPA	A Method 8270D/SIM											•	•	•	•	•	
Naphthalene (8260 SIM)	ug/L	160	7	< 0.060	< 0.060	62	< 0.060	< 0.061	< 0.060	< 0.060								
Naphthalene (8260)	ug/L	160	7	< 5	< 5	78	< 5	< 5	< 10	< 5	< 1 U	<1U	<1U	<1U	<1U	< 1 U	<1U	<1U
Naphthalene (8270 SIM)	ug/L	160										< 0.031 U	< 0.031 U	< 0.031 U	< 0.030 U	< 0.03 U	< 0.028 U	1.1
Total Petroleum Hydrocarbons us	sing Northwest Meth	ods NWTPH-Dx and I	·										•	•	•	•	•	
Gasoline Range Organics	ug/L	800 1000	3400	83 J	52 J	14000	120 J	< 250	760	< 250	< 780 X	< 50 U	< 50 U	790				
Diesel Range Organics	ug/L	500	270	< 100	< 100	530	< 100	< 100	< 100	< 100	7000	< 28 U	< 28 U	< 29 U	< 28 U	< 29 U	< 28 U	280
Motor Oil Range Organics	ug/L	500	< 250	< 260	< 250	< 250	< 250	< 260	< 250	< 250	400 X	< 66 U	< 66 U	< 68 U	< 66 U	< 67 U	< 66 U	< 66 U
Select Volatile Organic Compoun	ds (VOCs) using EP	A Method 8260B		•						•	•	•	•		•			
1,1,1-Trichloroethane	ug/L	200	< 1	< 1	< 1	< 1	< 1	< 1	< 2	< 1	< 1 U							
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01	< 0.029	< 0.029	< 0.029	< 0.029	< 0.029	< 0.029	< 0.580	< 0.029								
1,2-Dibromoethane (EDB) (8260)	ug/L	0.01									< 1 U							
1,2-Dichloroethane (EDC)	ug/L	5	< 1	< 1	< 1	< 1	< 1	< 1	< 2	< 1	< 1 U							
1,2-Dichloropropane	ug/L		< 1	< 1	< 1	< 1	< 1	< 1	< 2	< 1	< 1 U							
cis-1,2-Dichloroethene (DCE)	ug/L		< 1	< 1	13	1	83	3	14	44	< 1 U	14	15	21	19	20	12	< 0.5 U
Methyl tert-butyl ether (MTBE)	ug/L	20	< 1	< 1	< 1	< 1	< 1	< 1	< 2	< 1	< 1 U			Ī			l	
Methylene Chloride	ug/L	5	< 4	< 4	< 4	< 4	< 4	< 4	< 8	< 4	< 5 U							
Tetrachloroethene (PCE)	ug/L	5	< 1	< 1	2	< 1	130	< 1	900	0.9 J	1500	4	5	7	5	4	6	< 0.5 U
Trichloroethene (TCE)	ug/L	5	< 1	< 1	5	< 1	49	< 1	34	< 1	1.8	4	5	6	4	5	6	< 0.5 U
Vinyl Chloride	ug/L	0.2	< 1	< 1	3	< 1	8	20	< 2	37	< 0.2 U	0.8 J	< 0.5 U	1	2	1 J	0.9 J	< 0.5 U

Notes

Bold - detected

Blue - exceeded MTCA A

U = Not Detected

		Year and Consultant															
	Borir	ng/Monitoring Well ID		MW-2	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4
		Sample Date															
		MTCA Method A	0,12,2010	0,10,2011	0,21,2011	12/11/2011	0,20,2011	2/20/2010	6,16,2010	0,10,2011	0/21/2011	12,11,2011	0/20/2011	2/20/2010	0,10,2010	0,10,2011	0/21/2011
Chemical Name	Units	Cleanup Level															
Benzene, Toluene, Ethylbenzene	, and Total Xylenes	using EPA Method 82		-	-		-						-	-	-		
Benzene	ug/L	5	< 0.5 U	0.9	< 0.5 U	< 0.5 U	< 0.5 U	<1U	<1U	< 0.5 U	<1U	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Toluene	ug/L	1000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	<1U	< 0.5 U	<1U	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Ethylbenzene	ug/L	700	< 0.5 U	3	< 0.5 U	< 0.5 U	< 0.5 U	72	160	100	180	150	34	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Total Xylenes	ug/L	1000	< 0.5 U	2	< 0.5 U	< 0.5 U	< 0.5 U	190	360	410	460	510	34	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Field Parameters				-	-		-						-				
Temperature	deg C																
Specific Conductance	uS/cm																
Dissolved Oxygen	mg/L																
pН	pH units																
Oxidation Reduction Potential	mV																
Turbidity	NTU																
Select Metals using EPA Method	6000/7000 Series											•		•		•	
Arsenic (Dissolved)	ug/L	5												1			,
Arsenic (Total)	ug/L	5															
Lead (Dissolved)	ug/L	15															
Lead (Total)	ug/L	15	0.59 J	0.9	0.42	0.93 J	0.44 J	0.45 J	6.7	1.2	0.65	0.45 J	0.2 J	< 0.13 U	< 0.082 U	0.14	< 0.085 U
Polycyclic Aromatic Hyrodrcarbor	ns (PAHs) using EPA	A Method 8270D/SIM			•					•						•	
Naphthalene (8260 SIM)	ug/L	160															
Naphthalene (8260)	ug/L	160	<1U	<1U	<1U	< 1 U	<1U	24	54	49	54	69	9	<1U	<1U	<1U	<1U
Naphthalene (8270 SIM)	ug/L	160	0.13	< 0.031 U	0.12 J	< 0.03 U	0.19	22	45	38	43	53	7.8	< 0.031 U	< 0.031 U	< 0.031 U	< 0.030 U
Total Petroleum Hydrocarbons us	sing Northwest Metho	ods NWTPH-Dx and N			•					•						•	
Gasoline Range Organics	ug/L	800 1000	360	870	370	420	440	6900	7700	6300	8700	7800	2800	< 50 U	< 50 U	< 50 U	< 50 U
Diesel Range Organics	ug/L	500	330	180	300	170	270	410	310	180	210	150	170	< 28 U	< 28 U	< 29 U	< 28 U
Motor Oil Range Organics	ug/L	500	< 67 U	< 68 U	< 66 U	< 66 U	< 66 U	< 66 U	< 67 U	< 68 U	< 66 U	< 67 U	< 66 U	< 66 U	< 66 U	< 68 U	< 66 U
Select Volatile Organic Compoun	ds (VOCs) using EP	A Method 8260B			•					•						•	
1,1,1-Trichloroethane	ug/L	200															
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01															
1,2-Dibromoethane (EDB) (8260)	ug/L	0.01															
1,2-Dichloroethane (EDC)	ug/L	5															
1,2-Dichloropropane	ug/L																
cis-1,2-Dichloroethene (DCE)	ug/L		< 0.5 U	< 0.8 U	< 0.5 U	< 0.5 U	< 0.5 U	1 J	3	4	4	2	2	< 0.5 U	< 0.5 U	< 0.8 U	< 0.5 U
Methyl tert-butyl ether (MTBE)	ug/L	20															
Methylene Chloride	ug/L	5															
Tetrachloroethene (PCE)	ug/L	5	< 0.5 U	< 0.8 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	<1U	< 0.8 U	<1U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.8 U	< 0.5 U
Trichloroethene (TCE)	ug/L	5	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 1 U	<1U	< 1 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U
Vinyl Chloride	ug/L	0.2	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	<1U	1	<1U	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U

Notes

Bold - detected

Blue - exceeded MTCA A

U = Not Detected

		Year and Consultant												CR	A GW		
	Borir	ng/Monitoring Well ID	MW-4	MW-4	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-7
		Sample Date	12/10/2014	8/28/2014	2/26/2016	3/13/2015	3/19/2014	5/28/2014	12/11/2014	8/28/2014	2/26/2016	3/13/2015	3/18/2014	5/28/2014	12/10/2014	8/29/2014	2/26/2016
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluene, Ethylbenzene		using EPA Method 82		-				-					-		-	-	
Benzene	ug/L	5	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	4	1	< 0.5 U	< 0.5 U	< 0.5 U
Toluene	ug/L	1000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	0.9 J	< 0.5 U	< 0.5 U	< 0.5 U				
Ethylbenzene	ug/L	700	< 0.5 U	< 0.5 U	18	5	34	8	0.8 J	34	< 0.5 U	< 0.5 U	< 0.5 U				
Total Xylenes	ug/L	1000	< 0.5 U	< 0.5 U	44	5	150	26	5	65	< 0.5 U	< 0.5 U	< 0.5 U				
Field Parameters																	
Temperature	deg C																
Specific Conductance	uS/cm																
Dissolved Oxygen	mg/L																
рН	pH units																
Oxidation Reduction Potential	mV																
Turbidity	NTU																
Select Metals using EPA Method	6000/7000 Series			•				•		•		•		•	•		
Arsenic (Dissolved)	ug/L	5															
Arsenic (Total)	ug/L	5															
Lead (Dissolved)	ug/L	15															
Lead (Total)	ug/L	15	0.15 J	0.14 J	0.28 J	0.1 J	0.17	0.16	1.3	0.49 J	0.89 J	2.4	0.97	30.5	20.5	24.4	5.9
Polycyclic Aromatic Hyrodrcarbor	ns (PAHs) using EPA	A Method 8270D/SIM					-		-		·		-			-	
Naphthalene (8260 SIM)	ug/L	160															
Naphthalene (8260)	ug/L	160	< 1 U	< 1 U	4 J	2 J	26	9	1 J	36	<1U	<1U	<1U	<1U	< 1 U	< 1 U	<1U
Naphthalene (8270 SIM)	ug/L	160	< 0.03 U	< 0.028 U	3.4	1.5	13	6.8	0.34	46	< 0.032 U	< 0.031 U	< 0.031 U	< 0.030 U	< 0.03 U	< 0.028 U	< 0.033 U
Total Petroleum Hydrocarbons us	sing Northwest Metho	ods NWTPH-Dx and I	Ň			•			•		•	•					•
Gasoline Range Organics	ug/L	800 1000	< 50 U	< 50 U	1500	670	1700	570	260	3900	< 50 U	< 50 U	< 50 U				
Diesel Range Organics	ug/L	500	< 29 U	< 28 U	180	170	110	100	< 29 U	360	< 28 U	< 28 U	< 29 U	< 28 U	< 28 U	59 J	< 29 U
Motor Oil Range Organics	ug/L	500	< 67 U	< 66 U	< 67 U	< 66 U	< 68 U	< 66 U	< 67 U	< 66 U	< 66 U	< 66 U	< 68 U	< 66 U	< 66 U	120 J	< 67 U
Select Volatile Organic Compoun	nds (VOCs) using EP	A Method 8260B					-		-								
1,1,1-Trichloroethane	ug/L	200															
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01															
1,2-Dibromoethane (EDB) (8260)	ug/L	0.01															
1,2-Dichloroethane (EDC)	ug/L	5															
1,2-Dichloropropane	ug/L																
cis-1,2-Dichloroethene (DCE)	ug/L		< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.8 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.8 U	< 0.5 U	< 0.5 U	< 0.5 U	14
Methyl tert-butyl ether (MTBE)	ug/L	20						l		1			Ī	1			
Methylene Chloride	ug/L	5						l		1			Ī	1			
Tetrachloroethene (PCE)	ug/L	5	< 0.5 U	< 0.5 U	< 0.5 U	0.5 J	< 0.8 U	0.5	0.6 J	< 0.5 U	< 0.5 U	< 0.5 U	< 0.8 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Trichloroethene (TCE)	ug/L	5	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	2
Vinyl Chloride	ug/L	0.2	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	3

Notes

Bold - detected

Blue - exceeded MTCA A

U = Not Detected

		Year and Consultant															
	Borir	ng/Monitoring Well ID	MW-7	MW-7	MW-7	MW-7	MW-7	MW-8	MW-8	MW-8	MW-8	MW-8	MW-8	MW-9	MW-9	MW-9	MW-9
		Sample Date	3/13/2015	3/18/2014	5/28/2014	12/10/2014	8/29/2014	2/26/2016	3/12/2015	3/19/2014	5/28/2014	12/10/2014	8/28/2014	2/25/2016	3/12/2015	3/18/2014	5/27/2014
		MTCA Method A															
Chemical Name	Units	Cleanup Level															
Benzene, Toluene, Ethylbenzene	, and Total Xylenes	using EPA Method 82								-	-		-		-		
Benzene	ug/L	5	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 1 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Toluene	ug/L	1000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 1 U	0.8 J	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Ethylbenzene	ug/L	700	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	36	92	33	50	94	170	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Total Xylenes	ug/L	1000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	120	390	370	270	350	590	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Field Parameters																	
Temperature	deg C																
Specific Conductance	uS/cm																
Dissolved Oxygen	mg/L																
pН	pH units																
Oxidation Reduction Potential	mV																
Turbidity	NTU																
Select Metals using EPA Method	6000/7000 Series																
Arsenic (Dissolved)	ug/L	5											T				
Arsenic (Total)	ug/L	5															
Lead (Dissolved)	ug/L	15															
Lead (Total)	ug/L	15	11.8	79.3	9.7	35.6	40.9	4.3	3.5	12.6	3.9	4.4	1.6	< 0.13 U	0.16 J	0.087	0.092
Polycyclic Aromatic Hyrodrcarbor	ns (PAHs) using EPA	Method 8270D/SIM										•		•		•	
Naphthalene (8260 SIM)	ug/L	160															
Naphthalene (8260)	ug/L	160	<1U	<1U	<1U	< 1 U	<1U	18	83	57	39	65	70	<1U	<1U	<1U	<1U
Naphthalene (8270 SIM)	ug/L	160	< 0.031 U	< 0.031 U	< 0.030 U	< 0.03 U	< 0.028 U	16	40	47	30	49	68	< 0.032 U	< 0.031 U	< 0.031 U	< 0.030 U
Total Petroleum Hydrocarbons us	sing Northwest Metho	ods NWTPH-Dx and I		•								•		•		•	
Gasoline Range Organics	ug/L	800 1000	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	7900	9300	8400	5600	9000	11000	< 50 U	60 J	96	64
Diesel Range Organics	ug/L	500	< 28 U	< 29 U	< 29 U	< 28 U	< 28 U	910	790	2400	860	1600	500	< 28 U	86 J	37	50
Motor Oil Range Organics	ug/L	500	< 66 U	< 68 U	< 67 U	< 66 U	< 66 U	200 J	< 66 U	< 68 U	< 67 U	< 66 U	< 67 U	< 66 U	< 67 U	< 68 U	< 67 U
Select Volatile Organic Compoun	<u> </u>	A Method 8260B		1			1					•				1	
1,1,1-Trichloroethane	ug/L	200												1			
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01															
1,2-Dibromoethane (EDB) (8260)	ug/L	0.01															
1,2-Dichloroethane (EDC)	ug/L	5															
1,2-Dichloropropane	ug/L																
cis-1,2-Dichloroethene (DCE)	ug/L		11	13	12	7	1 J	0.6 J	1 J	2	2	2 J	3	43	150	110	140
Methyl tert-butyl ether (MTBE)	ug/L	20		-			_		-			-	-	-		-	-
Methylene Chloride	ug/L	5											1	1			1
Tetrachloroethene (PCE)	ug/L	5	1	< 0.8 U	< 0.5 U	< 0.5 U	< 0.5 U	0.8 J	< 1 U	1	1	<1U	< 0.5 U	96	140	180	140
Trichloroethene (TCE)	ug/L	5	5	2	3	2	< 0.5 U	0.6 J	1 J	< 1 U	0.7	<1U	< 0.5 U	38	120	100	120
Vinyl Chloride	ug/L	0.2	3	3	3	3	2	< 0.5 U	<10	<10	< 0.5 U	<1U	< 0.5 U	5	16	13	14

Notes

Bold - detected

Blue - exceeded MTCA A

U = Not Detected

		Year and Consultant															
		ng/Monitoring Well ID	MW-9	MW-9	MW-10	MW-10	MW-10	MW-10	MW-10	MW-10	MW-11	MW-11	MW-11	MW-11	MW-13	MW-13	MW-13
	Bonn	Sample Date															
		MTCA Method A	12/10/2011	0/20/2011	2/20/2010	0,12,2010	0/10/2011	0/21/2011	12/10/2011	0/20/2011	2/20/2010	0/12/2010	12/10/2011	0/20/2011	2/20/2010	0/12/2010	12/10/2011
Chemical Name	Units	Cleanup Level															
Benzene, Toluene, Ethylbenzene	, and Total Xylenes (using EPA Method 82													•		
Benzene	ug/L	5	< 0.5 U	< 0.5 U	1	0.5 J	2	< 0.5 U	1	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Toluene	ug/L	1000	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	0.7	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Ethylbenzene	ug/L	700	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Total Xylenes	ug/L	1000	< 0.5 U	< 0.5 U	2	0.6 J	6	< 0.5 U	2	< 0.5 U	<1U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Field Parameters																	
Temperature	deg C																
Specific Conductance	uS/cm																
Dissolved Oxygen	mg/L																
pH	pH units																
Oxidation Reduction Potential	mV																
Turbidity	NTU																
Select Metals using EPA Method	6000/7000 Series														•		
Arsenic (Dissolved)	ug/L	5															
Arsenic (Total)	ug/L	5															
Lead (Dissolved)	ug/L	15															
Lead (Total)	ug/L	15	< 0.082 U	0.12 J	< 0.13 U	< 0.082 U	< 0.085 U	0.11	0.23 J	0.43 J	0.28 J	10	0.2 J	0.22 J	0.7 J	0.68 J	0.81 J
Polycyclic Aromatic Hyrodrcarbor	ns (PAHs) using EPA	Method 8270D/SIM												•	•		
Naphthalene (8260 SIM)	ug/L	160															
Naphthalene (8260)	ug/L	160	< 1 U	<1U	<1U	<1U	<1U	<1U	< 1 U	<1U	< 2 U	<1U	< 1 U	< 1 U	<1U	<1U	< 1 U
Naphthalene (8270 SIM)	ug/L	160	< 0.03 U	0.046 J	0.19	0.075	0.46	0.04	0.16	0.053 J	< 0.031 U	< 0.031 U	0.031 J	0.041 J	< 0.031 U	< 0.031 U	< 0.03 U
Total Petroleum Hydrocarbons us	sing Northwest Metho	ods NWTPH-Dx and N												•			
Gasoline Range Organics	ug/L	800 1000	81 J	< 50 U	300	99 J	520	< 50 U	140 J	< 50 U	740	480	560	580	< 50 U	< 50 U	< 50 U
Diesel Range Organics	ug/L	500	56 J	44	110	100	190	75	140	90 J	< 29 U	< 29 U	< 28 U	< 29 U	< 29 U	< 28 U	< 28 U
Motor Oil Range Organics	ug/L	500	< 66 U	< 67 U	< 67 U	< 67 U	< 68 U	< 67 U	< 65 U	< 67 U	< 67 U	< 67 U	< 66 U	< 67 U	< 67 U	< 66 U	< 65 U
Select Volatile Organic Compoun	ds (VOCs) using EP	A Method 8260B												•			
1,1,1-Trichloroethane	ug/L	200															
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01															
1,2-Dibromoethane (EDB) (8260)	ug/L	0.01															
1,2-Dichloroethane (EDC)	ug/L	5															
1,2-Dichloropropane	ug/L																
cis-1,2-Dichloroethene (DCE)	ug/L		120	89	1	9	0.9	12	1 J	0.6 J	13	17	15	15	50	35	39
Methyl tert-butyl ether (MTBE)	ug/L	20															
Methylene Chloride	ug/L	5															
Tetrachloroethene (PCE)	ug/L	5	140	71	< 0.5 U	< 0.5 U	< 0.8 U	< 0.5 U	< 0.5 U	< 0.5 U	850	1200	1200	1200	19	< 5 U	1
Trichloroethene (TCE)	ug/L	5	87	41	< 0.5 U	< 0.5 U	<1U	0.6	< 0.5 U	< 0.5 U	30	41	37	38	5	< 0.5 U	< 0.5 U
Vinyl Chloride	ug/L	0.2	13	8	10	38	12	56	10	17	<1U	0.7 J	0.6 J	0.6 J	18	26	26

Notes

Bold - detected

Blue - exceeded MTCA A

U = Not Detected

Year and Consultant Boring/Monitoring Well ID									
	Borin	•							
		Sample Date	8/28/2014						
		MTCA Method A							
Chemical Name	Units	Cleanup Level							
Benzene, Toluene, Ethylbenzene		using EPA Method 82							
Benzene	ug/L	5	< 0.5 U						
Toluene	ug/L	1000	< 0.5 U						
Ethylbenzene	ug/L	700	< 0.5 U						
Total Xylenes	ug/L	1000	< 0.5 U						
Field Parameters									
Temperature	deg C								
Specific Conductance	uS/cm								
Dissolved Oxygen	mg/L								
pH	pH units								
Oxidation Reduction Potential	mV								
Turbidity	NTU								
Select Metals using EPA Method									
Arsenic (Dissolved)	ug/L	5							
Arsenic (Total)	ug/L	5							
Lead (Dissolved)	ug/L	15							
Lead (Total)	ug/L	15	1.7						
Polycyclic Aromatic Hyrodrcarbor		Method 8270D/SIM							
Naphthalene (8260 SIM)	ug/L	160							
Naphthalene (8260)	ug/L	160	<1U						
Naphthalene (8270 SIM)	ug/L	160	< 0.028 U						
Total Petroleum Hydrocarbons us									
Gasoline Range Organics	ug/L	800 1000	< 50 U						
Diesel Range Organics	ug/L	500	41 J						
Motor Oil Range Organics	ug/L	500	< 66 U						
Select Volatile Organic Compoun									
1,1,1-Trichloroethane	ug/L	200							
1,2-Dibromoethane (EDB) (8011)	ug/L	0.01							
1,2-Dibromoethane (EDB) (8260	ug/L	0.01							
1,2-Dichloroethane (EDC)	ug/L	5	ļ						
1,2-Dichloropropane	ug/L	¥							
cis-1,2-Dichloroethene (DCE)	ug/L		57						
Methyl tert-butyl ether (MTBE)	ug/L	20							
Methylene Chloride	ug/L	5							
Tetrachloroethene (PCE)	ug/L	5	< 0.5 U						
Trichloroethene (TCE)	ug/L	5	< 0.5 U						
Vinyl Chloride	ug/L	0.2	< 0.0 O						
	uy/L	0.2	21						

Notes

Bold - detected Blue - exceeded MTCA A U = Not Detected Only select analytes shown on the table. See laboratory reports for full lists.

Table 3 Remedial Investigation Work Plan 9 of 9

Table 5 - Summary of Monitoring Well Construction Information Project No. 160324, McClellan St. and Martin Luther King Way S., Seattle, WA

Well Location on the			Type of		Bottom of Well	Screened Interval	Sand Pack Interval	Ground Elevation	TOC Elevation
Property	Monitoring Well ID	Consultant	Monitoring Well	Installation Date	(feet bgs)	(feet bgs)	(feet bgs)	(feet NAVD88)	(feet NAVD88)
McClellan Parcels	AMW-1	Aspect	Permanent	02/18/17	13.5	8.5-13.5	6.5-15	77.81	77.55
	KEE-B-2	KEE	Temporary	05/24/10	16	6-16	3.0-16	N/A	N/A
	KEE-B-3			05/24/10	16	6-16	3.0-16	N/A	N/A
MLK, McClellan and 29th	HC-MW-1	Hart Crowser	Permanent	05/16/16	17	7-17	5.0-20	67.54	67.23
ROWs	HC-MW-2			05/16/16	17	7-17	5.0-20	75.07	74.82
	HC-MW-3			09/26/16	16	6-16	4.0-20	78.50	78.19
	HC-MW-4			09/28/16	20	10-20	8.0-20	87.94	87.74
	HC-MW-5			09/29/16	17	7-17	5.0-20	72.79	72.54
	HC-MW-6			09/29/16	19	9-19	7.0-20	63.22	62.92
	HC-MW-7			09/30/16	18	8-18	6.0-20	63.88	63.59
Former Phillips 66 Gas	MW-1	g-logics	Permanent	08/09/05	23	13-23	11-23.5	63.04	62.6
Station Property	MW-2			08/09/05	23	13-23	11.0-23	61.36	60.78
	MW-3			08/09/05	20	10-20	6.75-20	62.18	61.87
	MW-4			06/22/06	20	15-20	13-20	63.18	62.98
	MW-5			06/22/06	20	10-20	5-20	61.98	61.86
	MW-6	Stantec		07/12/11	20	10-20	8-20	58.6	58.28
	MW-7			07/13/11	20	10-20	8-20	57.43	57.13
	MW-8			07/12/11	20	10-20	8-20	62.21	61.82
	MW-9			07/12/11	25	10-25	8-25	63.24	62.83
	MW-10			07/13/11	20	10-20	8-20	59.42	59.23
	MW-11	CRA		Unknown	Unknown	Unknown	Unknown	68.67	68.17
	MW-12			Unknown	Unknown	Unknown	Unknown	62.21	61.51
	MW-13			Unknown	Unknown	Unknown	Unknown	66.09	65.54

Table 6 - Summary of Depth to Water Measurements and Groundwater Elevations Project No. 160324, McClellan St. and Martin Luther King Way S., Seattle, WA

Monitoring		Depth to Water	Groundwater Elevation
Well ID	Date	(feet bTOC)	(feet NAVD88)
AMW-1	03/24/17	8.08	69.47
	05/12/17 09/30/16	8.98 9.86	68.57 57.37
HC-MW-1 HC-MW-2	05/12/17	9.80 8.16	59.07
	09/29/16	9.33	65.49
	05/12/17	8.10	66.72
HC-MW-3	09/30/16 05/12/17	7.61 6.31	70.58 71.88
HC-MW-4	10/03/16	11.73	76.01
	05/12/17	9.82	77.92
HC-MW-5	09/30/16	7.60	64.94
HC-MW-6	05/12/17 10/03/16	6.13 8.32	66.41 54.60
	05/12/17	7.01	55.91
HC-MW-7	10/03/16	7.39	56.20
	05/12/17	6.46	57.13
	11/12/09 03/19/14	11.79 8.69	50.81 53.91
	05/27/14	9.98	52.62
	08/28/14	11.87	50.73
MW-1	12/11/14	10.97	51.63
	03/12/15 02/25/16	10.31 9.56	52.29 53.04
	05/25/16	11.27	51.33
	08/08/16	12.53	50.07
	05/12/17 11/12/09	9.90 12.35	52.70 48.43
	03/18/14	12.35	48.43 50.47
	05/27/14	10.25	50.53
	08/28/14	12.11	48.67
MW-2	12/11/14 03/12/15	11.05 10.31	49.73 50.47
	03/12/13	9.19	51.59
	05/25/16	10.68	50.10
	08/08/16	12.12	48.66
	05/12/17 11/12/09	9.94 11.59	50.84 50.28
MW-3	03/19/14	9.20	52.67
	05/27/14	10.58	51.29
	08/29/14	11.81	50.06
	12/11/14 03/13/15	9.91 10.64	51.96 51.23
	02/25/16	9.33	52.54
	05/26/16	11.23	50.64
	08/08/16	12.37	49.50
	05/12/17 11/12/09	10.20 11.98	51.67 51.00
	03/18/14	9.29	53.69
	05/27/14	10.89	52.09
	08/28/14 12/10/14	12.27 11.17	50.71 51.81
MW-4	03/13/15	10.80	52.18
	02/25/16	9.23	53.75
	05/25/16	10.83	52.15
	08/09/16 05/12/17	12.42 10.26	50.56 52.72
	11/12/09	12.10	49.76
	03/19/14	9.21	52.65
MW-5	05/28/14 08/28/14	10.62 12.01	51.24
	08/28/14 12/11/14	12.01 9.61	49.85 52.25
	03/13/15	10.69	51.17
	02/26/16	9.01	52.85
	05/26/16 08/08/16	11.05 12.43	50.81 49.43
	08/08/16 05/12/17	12.43	49.43 51.71
	03/18/14	11.38	46.90
	05/28/14	11.87	46.41
MW-6	08/29/14 12/10/14	11.86 11.72	46.42 46.56
	03/13/15	11.72	46.87
	02/26/16	11.49	46.79
	05/26/16	11.88	46.40
	08/09/16 05/12/17	12.09 11.59	46.19 46.69
	03/12/17	11.09	40.09

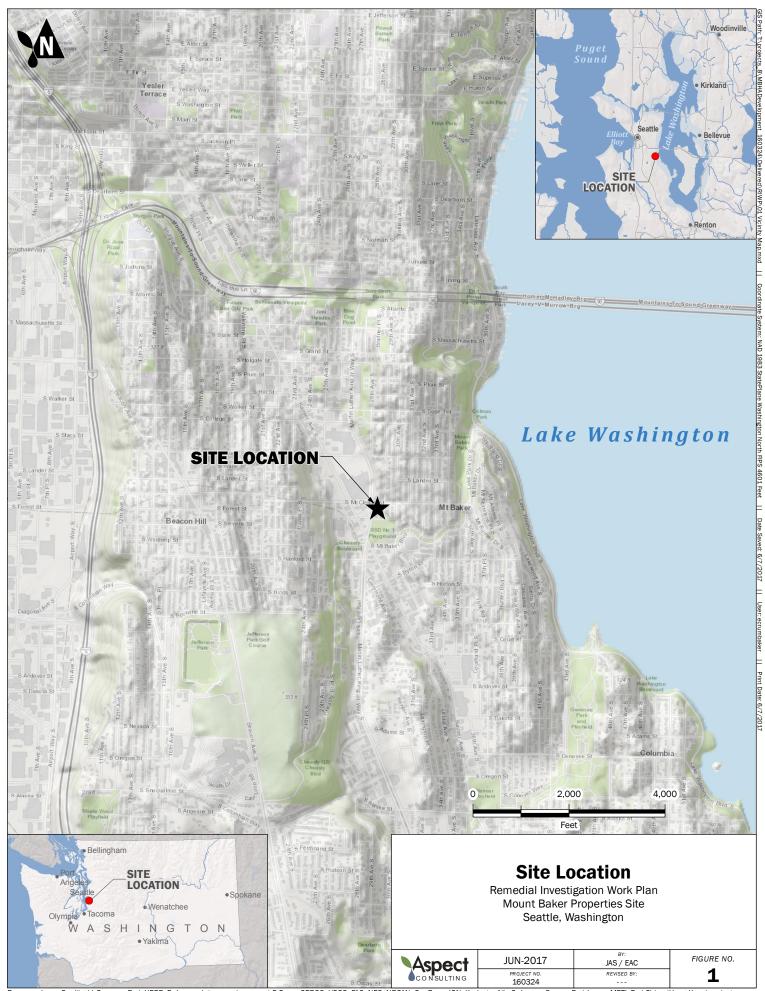
Aspect Consulting

Table 6

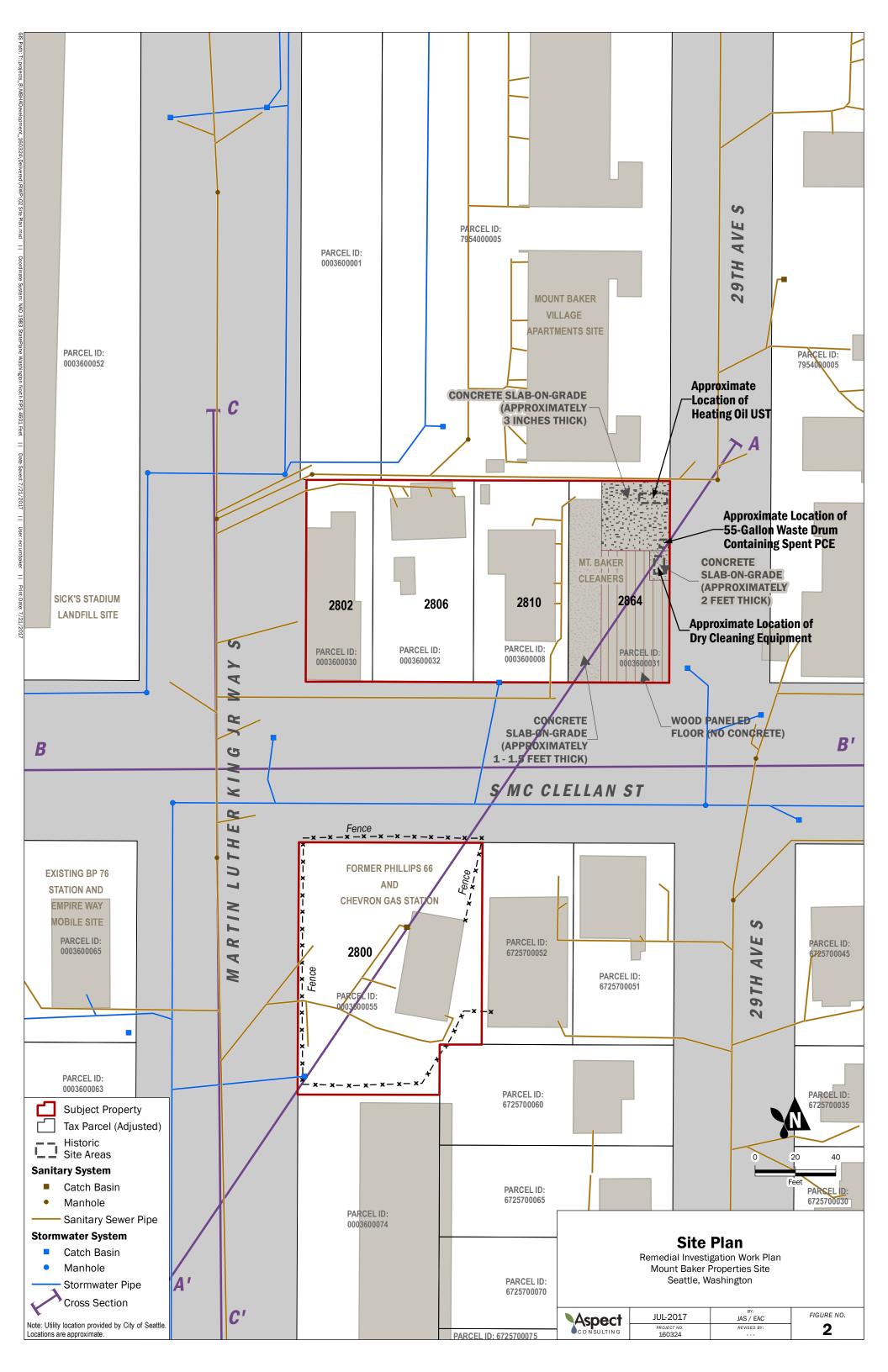
 TU/2//2017
 Remedial Investigation Work Plan

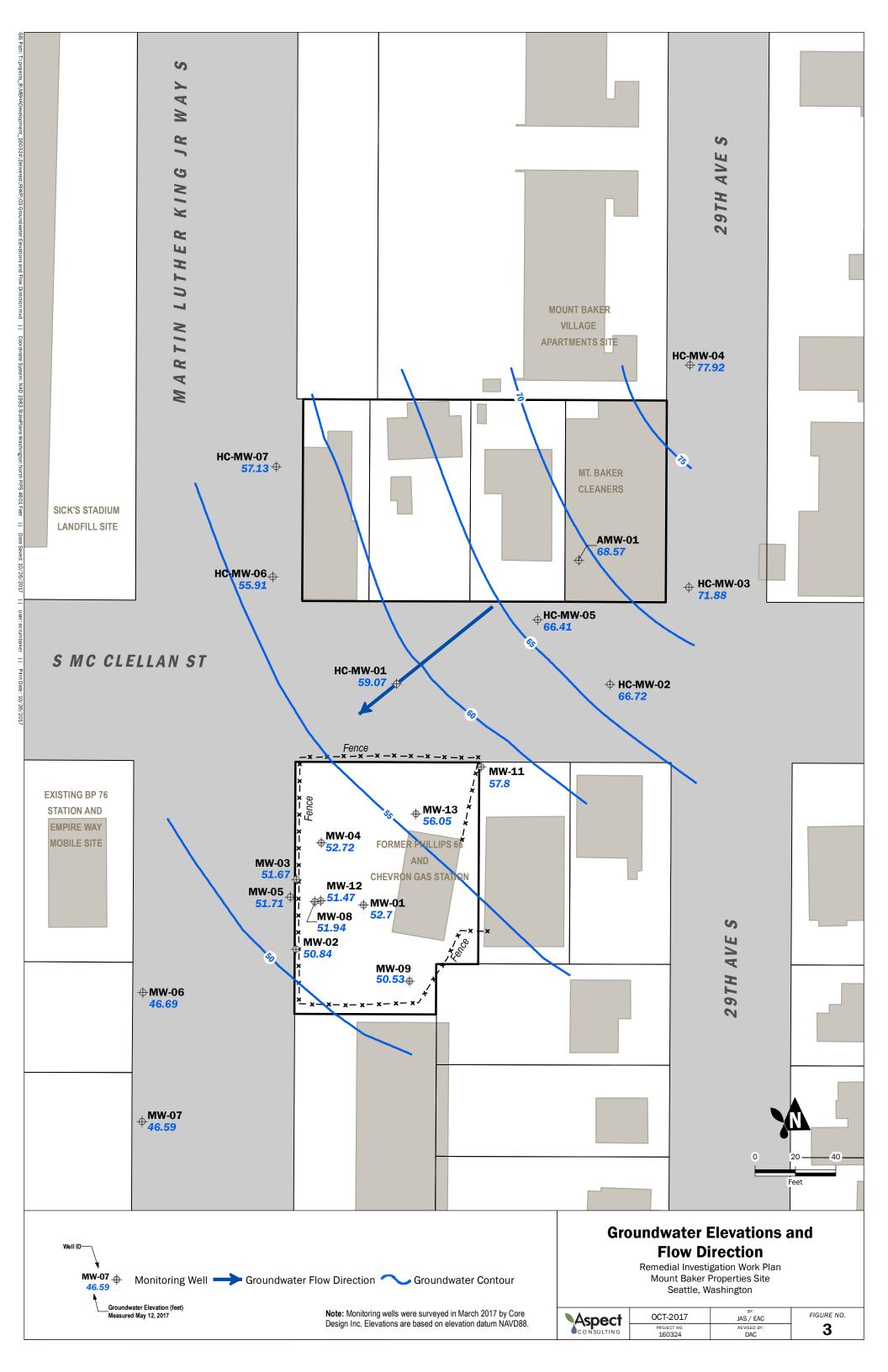
 V:\160324 Mt Baker Housing Assoc – Mt Baker Properties Site\Deliverables\McClellan\Rl Work Plan_FINAL\Tables\Table 5 and 6 - Well Construction and DTW.xlsx
 1 of 2

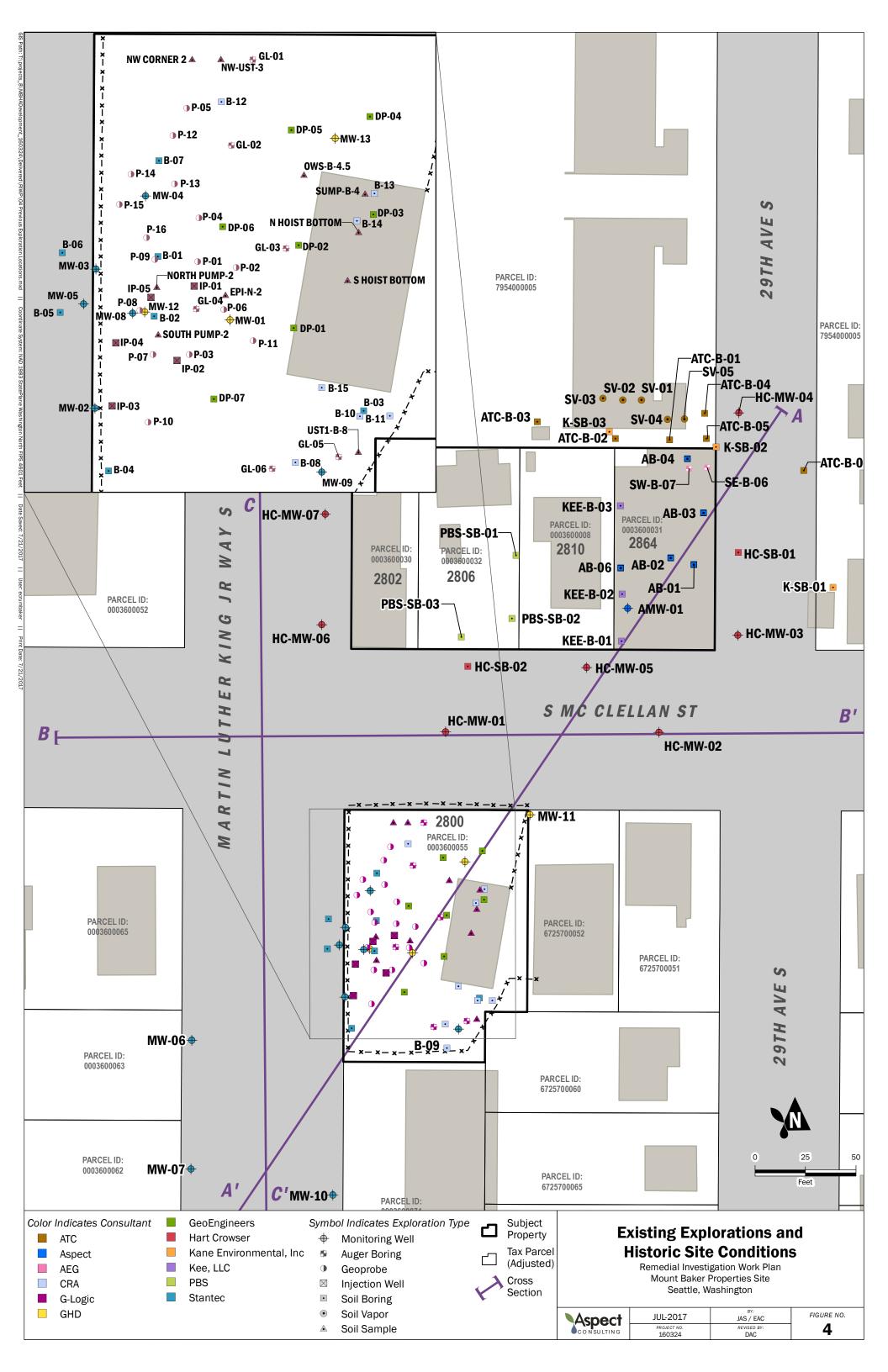
Table 6 - Summary of Depth to Water Measurements and Groundwater Elevations Project No. 160324, McClellan St. and Martin Luther King Way S., Seattle, WA

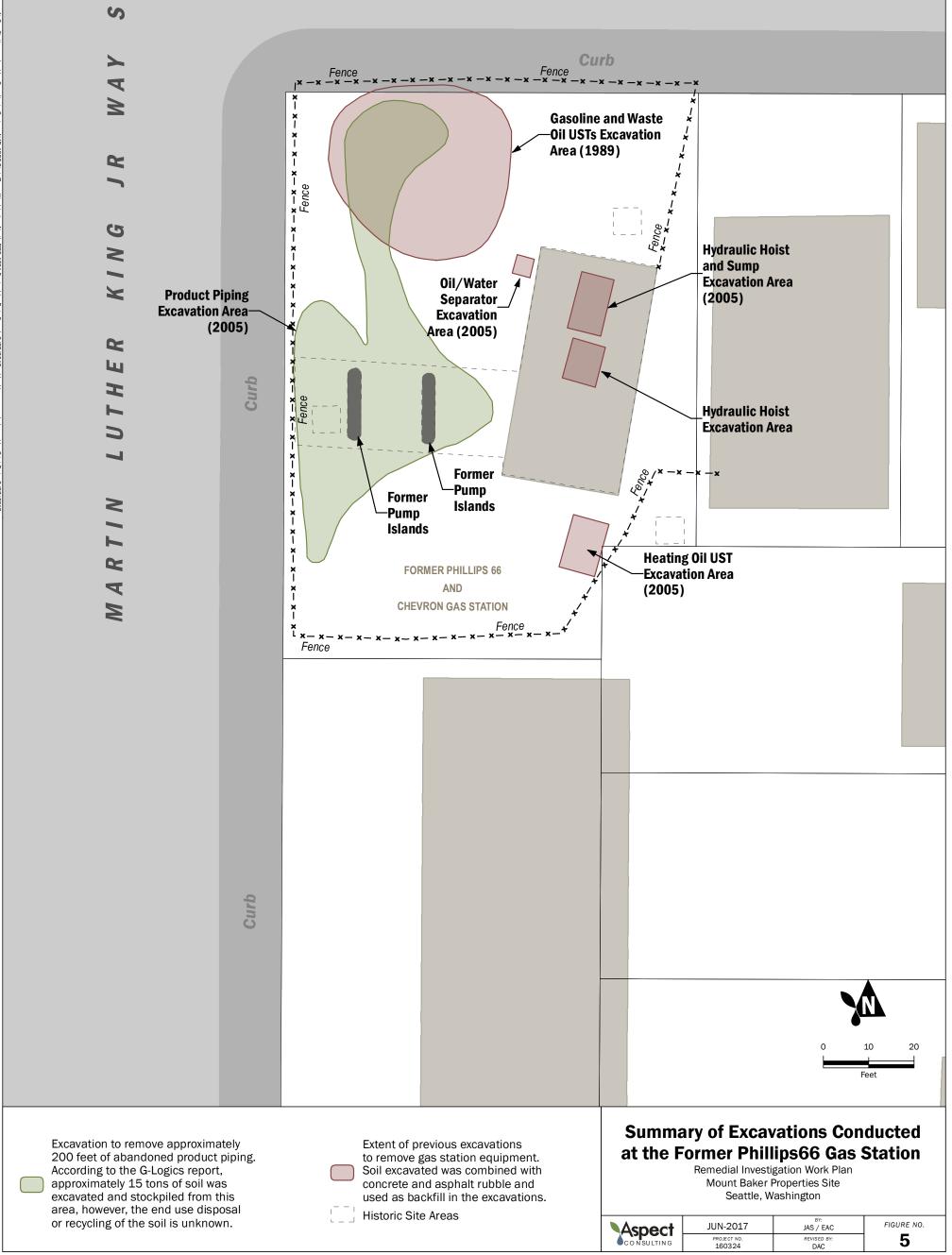

			Groundwater
Monitoring		Depth to Water	Elevation
Well ID	Date	(feet bTOC)	(feet NAVD88)
MW-7	03/18/14	10.39	46.74
	05/28/14	10.78	46.35
	08/29/14	10.90	46.23
	12/10/14	10.56	46.57
	03/13/15	10.78	46.35
	02/26/16	10.43	46.70
	05/26/16	10.73	46.40
	08/09/16	10.73	46.40
	05/12/17	10.54	46.59
MW-8	03/19/14	8.73	53.09
	05/28/14	10.41	51.41
	08/28/14	11.95	49.87
	12/10/14	9.66	52.16
	03/12/15	10.56	51.26
	02/26/16	8.71	53.11
	05/26/16	11.25	50.57
	08/09/16	12.31	49.51
	05/12/17	9.88	51.94
MW-9	03/18/14	12.07	50.76
	05/27/14	12.97	49.86
	08/28/14	14.73	48.10
	12/10/14	12.12	50.71
	03/12/15	12.72	50.11
	02/25/16	11.96	50.87
	05/25/16	13.61	49.22
	08/08/16	14.91	47.92
	05/12/17	12.30	50.53
	03/18/14	11.29	47.94
MW-10	05/27/14	10.14	49.09
	08/29/14	11.63	47.60
	12/10/14	9.45	49.78
	03/12/15	10.29	48.94
	02/26/16	9.33	49.90
	05/26/16	10.92	48.31
	08/09/16	11.86	47.37
	05/12/17	9.89	49.34
MW-11	08/28/14	11.23	56.94
	12/10/14	9.66	58.51
	03/12/15	10.63	57.54
	02/25/16	9.89	58.28
	05/25/16	10.95	57.22
	08/08/16	11.35	56.82
	05/12/17	10.37	57.80
MW-12	03/12/15	10.43	51.08
	05/21/15	10.83	50.68
	08/10/15	12.39	49.12
	12/21/15	7.93	53.58
	02/25/16	8.95	52.56
	05/25/16	11.09	50.42
	08/08/16	12.23	49.28
	05/12/17	10.04	51.47
MW-13	08/28/14	10.10	55.44
	12/10/14	8.78	56.76
	03/12/15	9.42	56.12
	02/25/16	8.78	56.76
	05/25/16	9.95	55.59
	08/08/16	10.37	55.17
	05/12/17	9.49	56.05

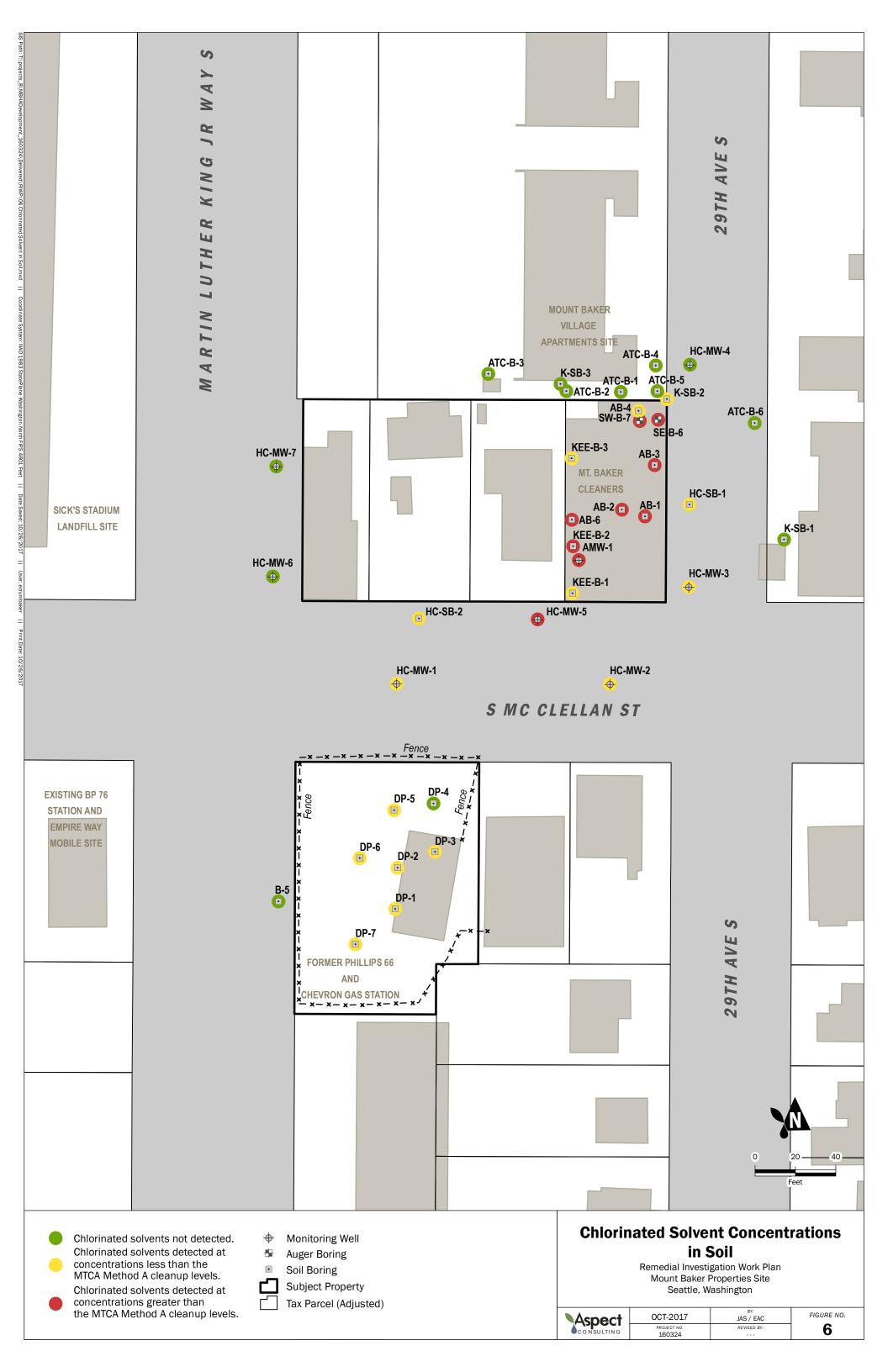
Aspect Consulting

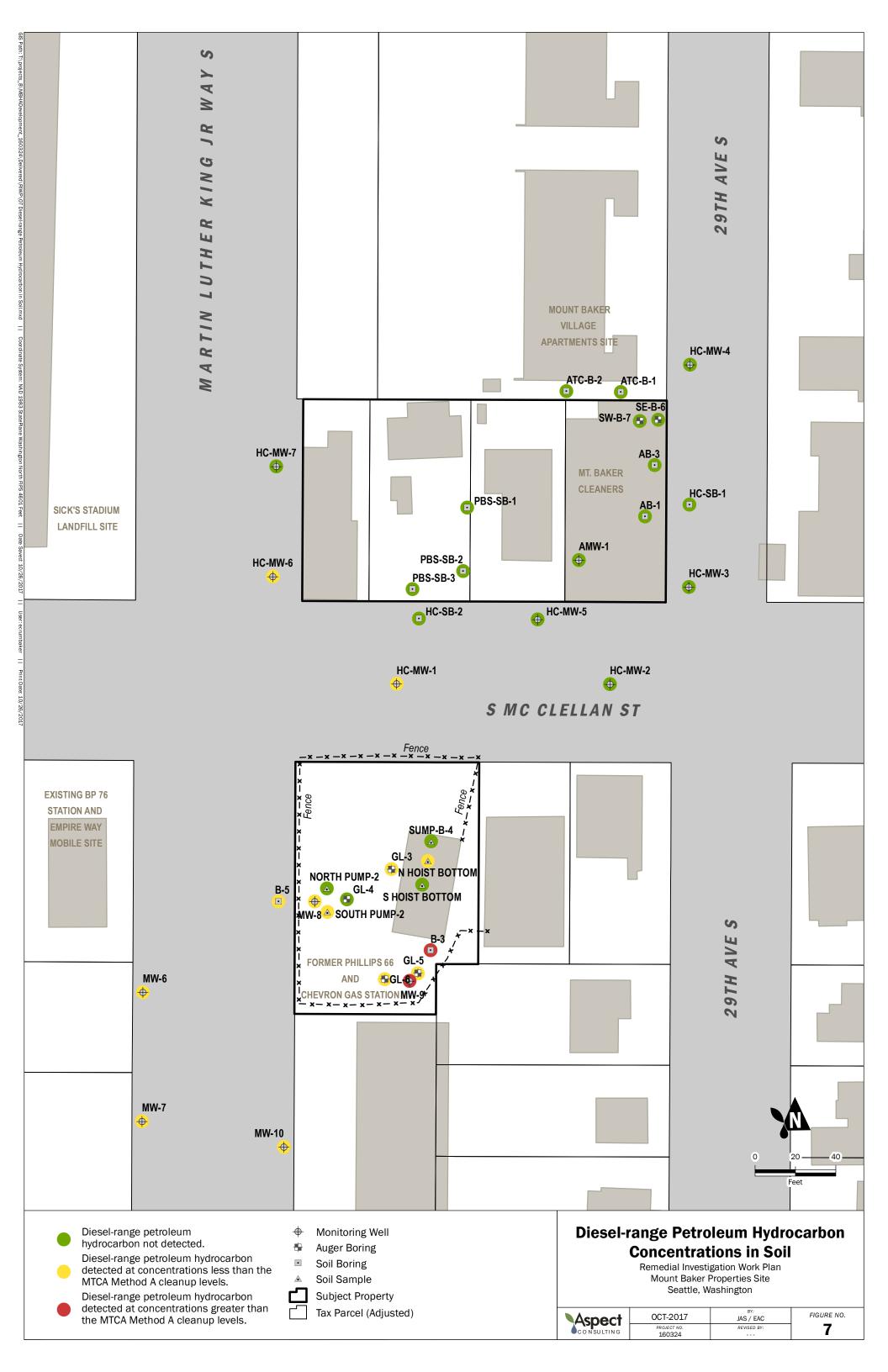

Table 6

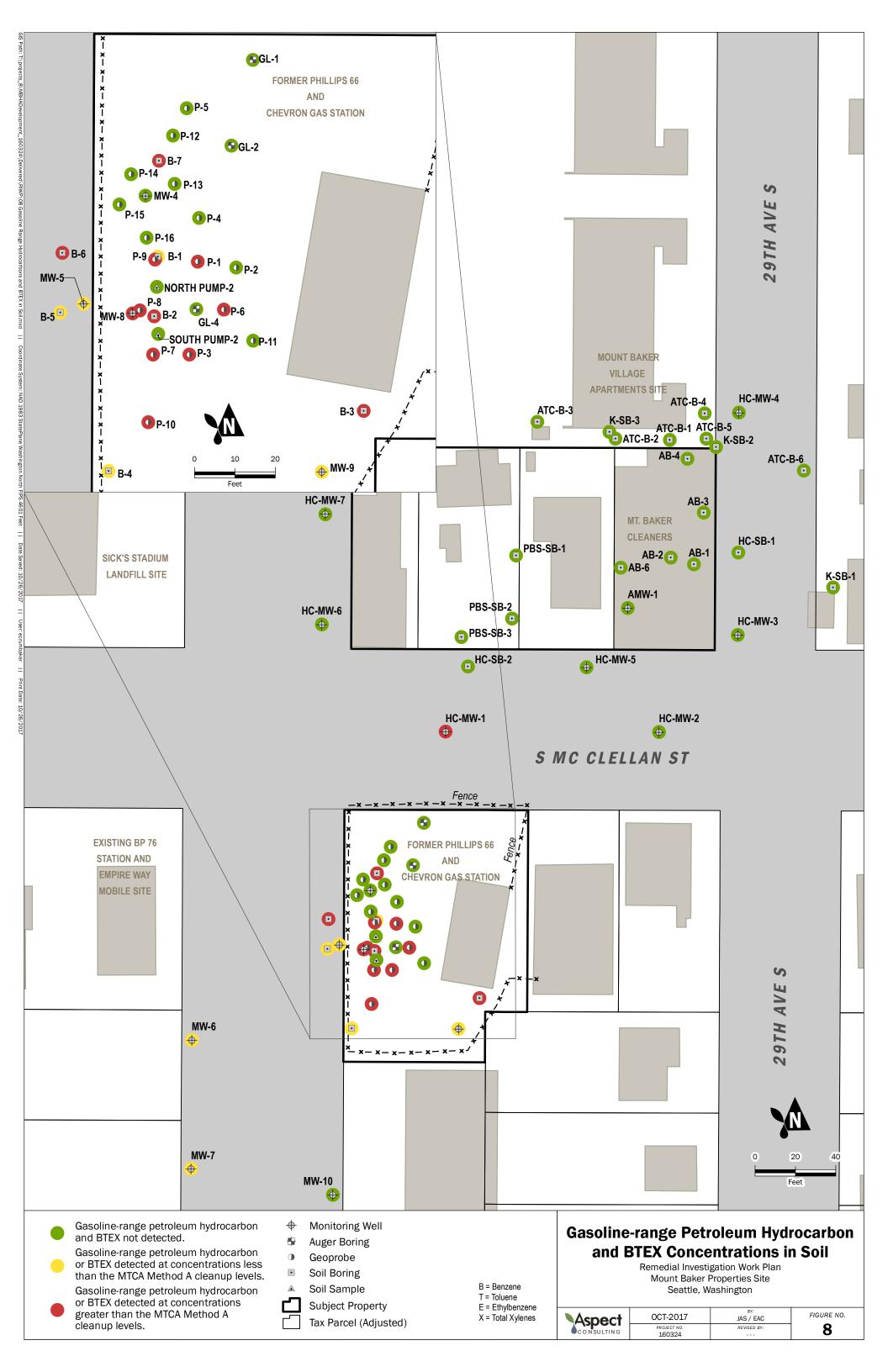

10/27/2017 Cemedial Investigation Work Plan V:\160324 Mt Baker Housing Assoc – Mt Baker Properties Site\Deliverables\McClellan\RI Work Plan_FINAL\Tables\Table 5 and 6 - Well Construction and DTW.xlsx 2 of 2

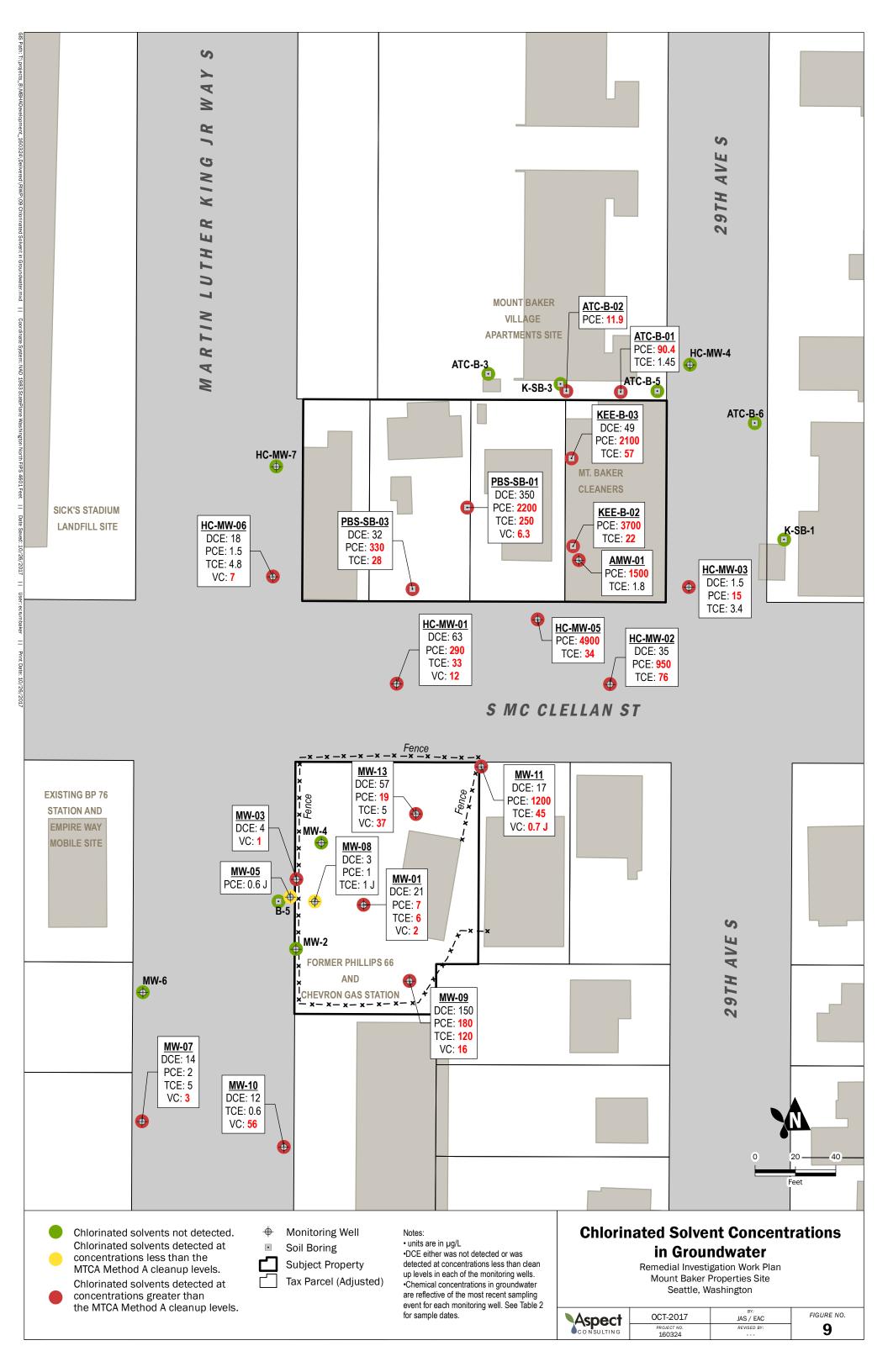

FIGURES

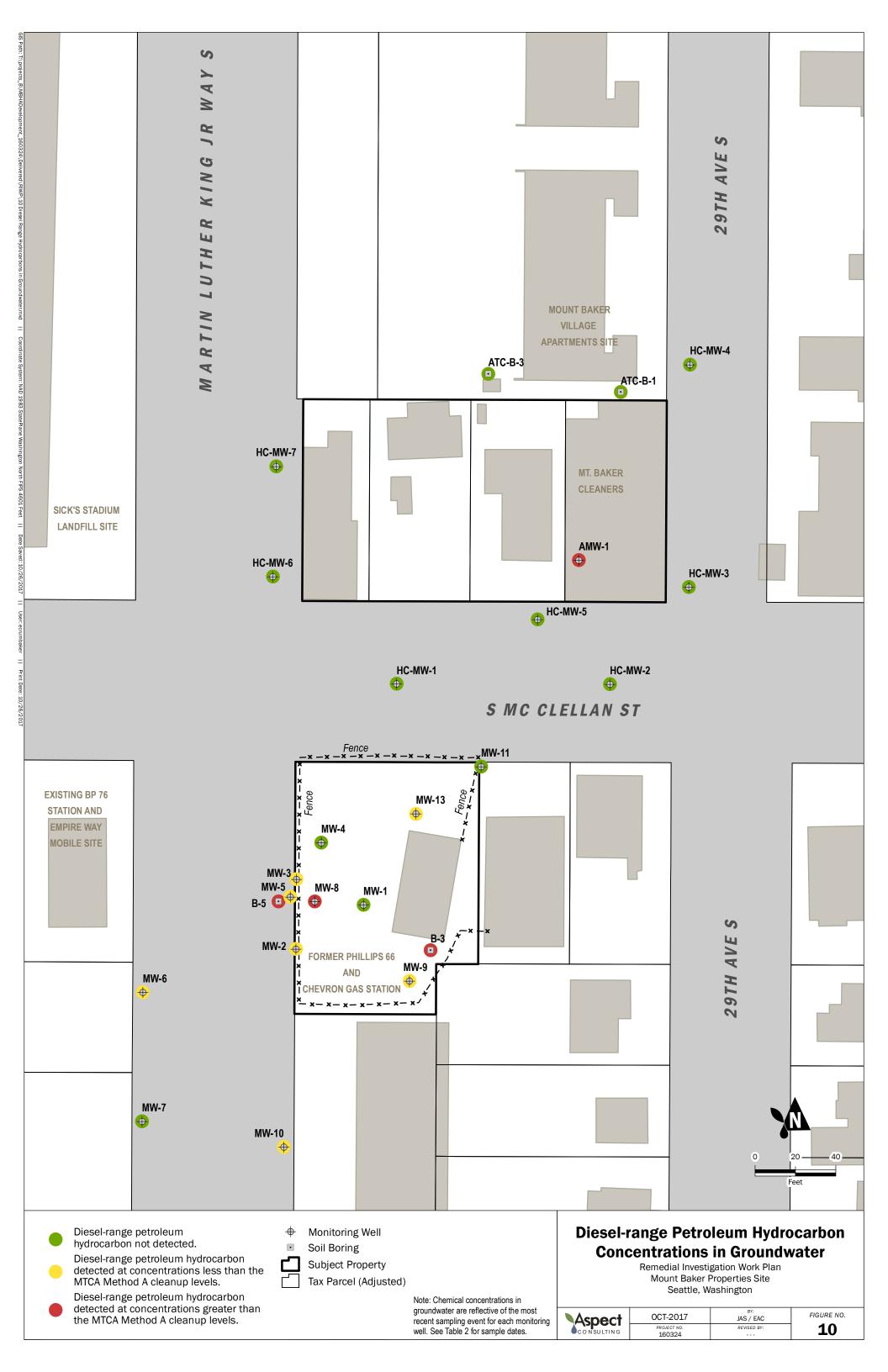

Basemap Layer Credits || Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MagmyIndia, © OpenStreetMap contributors, and the GIS User Community Copyright:© 2014 Esri

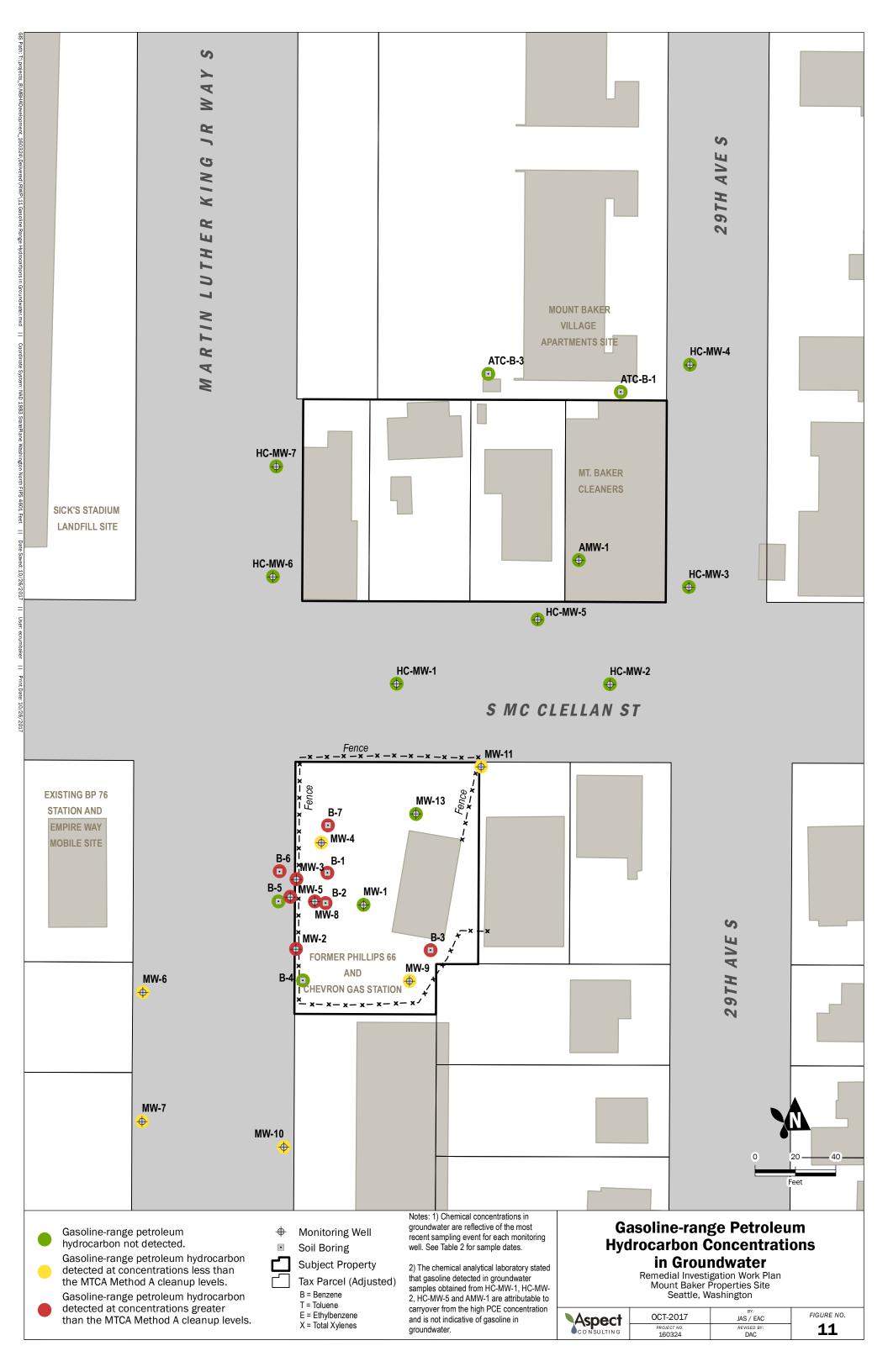


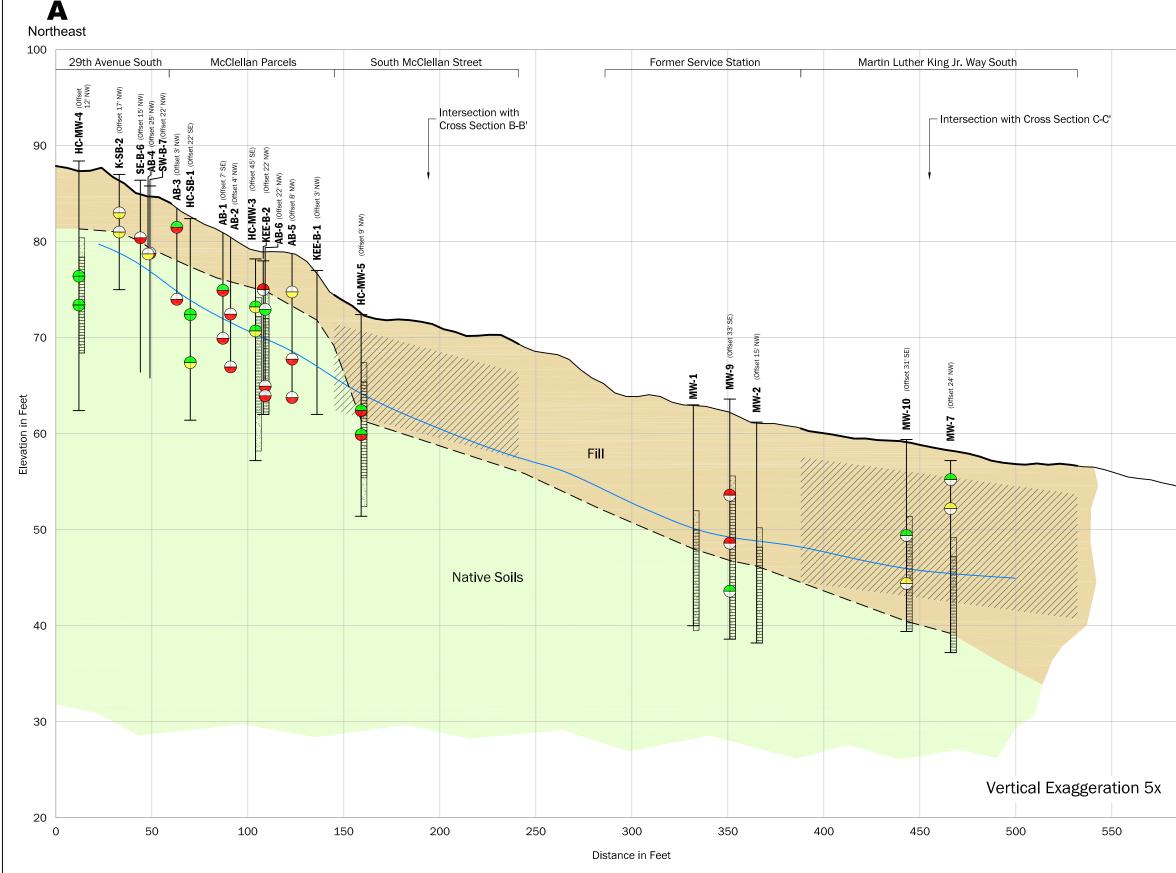


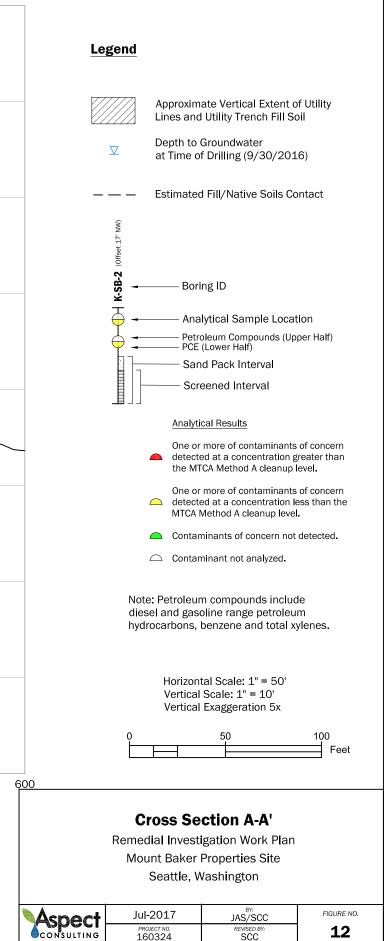



S MC CLELLAN ST



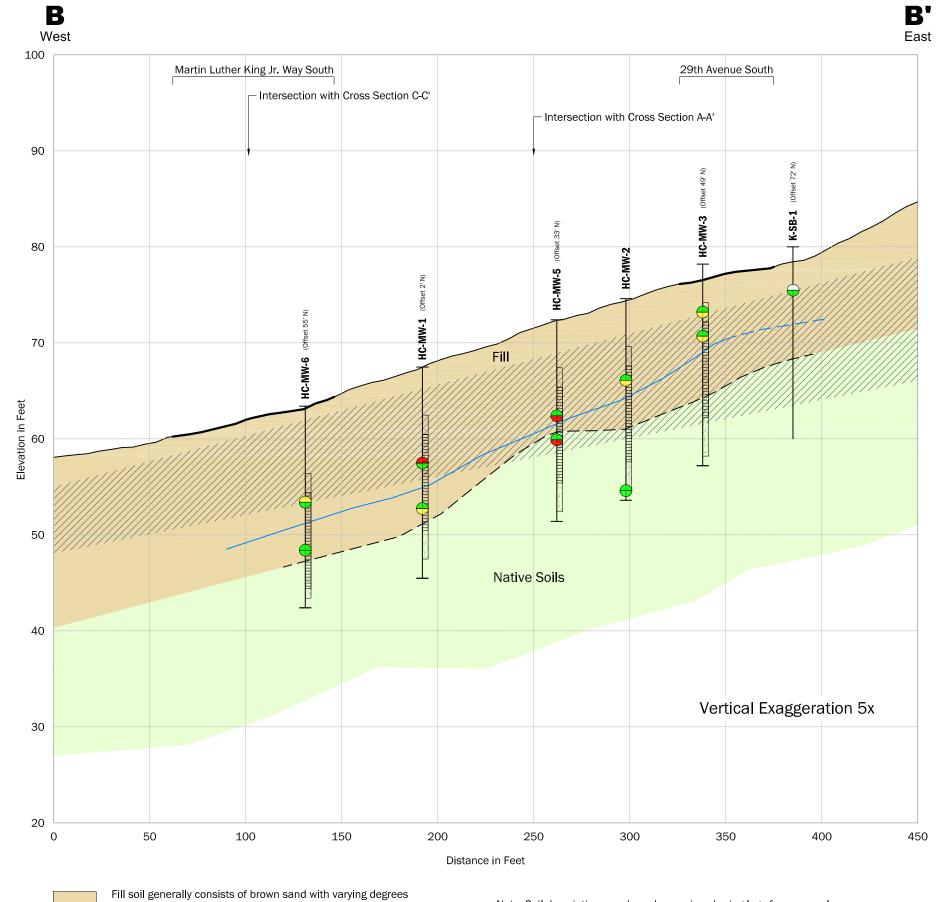




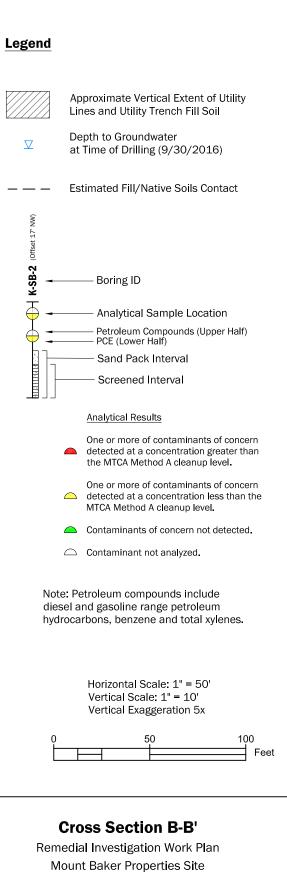


Fill soil generally consists of brown sand with varying degrees of silt, gravel and, occasionally brick and concrete fragments.

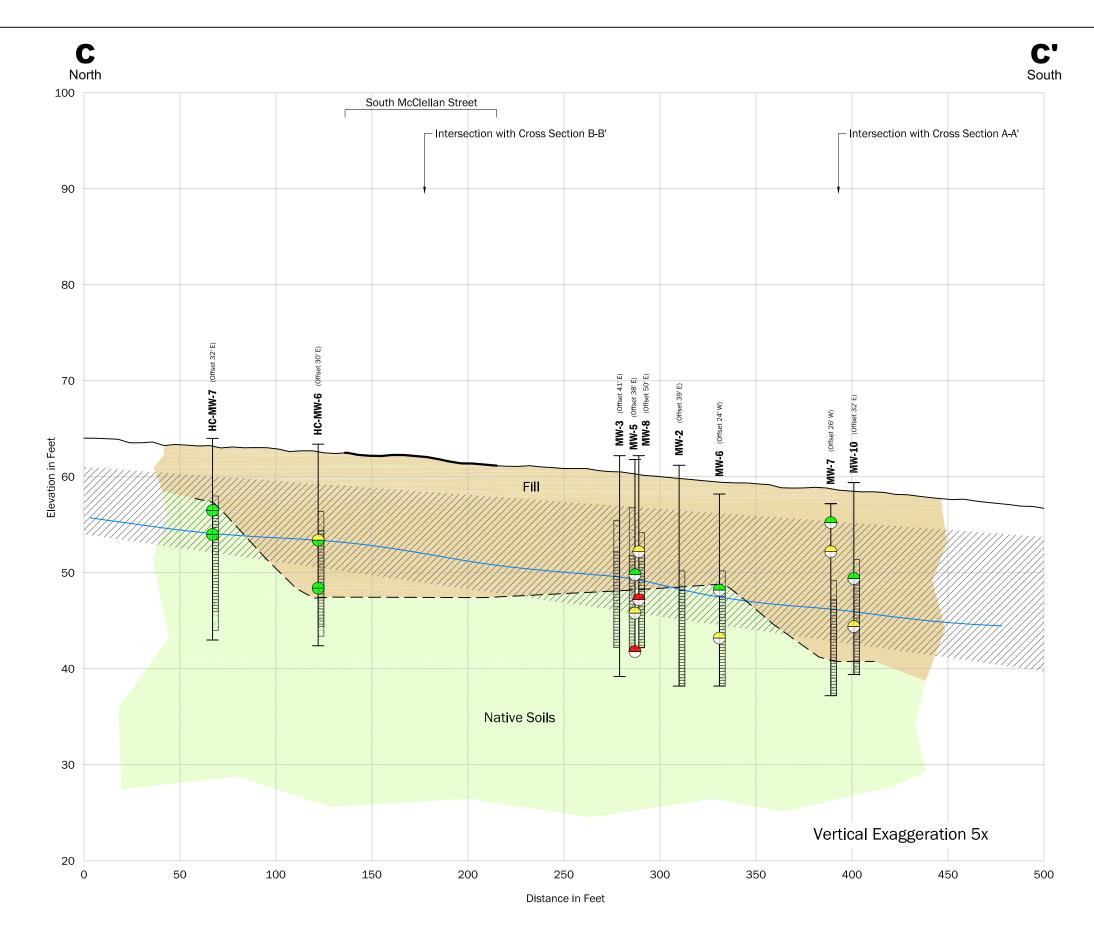
Native soil generally consists of silt with varying degrees of sand and, occasionally, thin interbedded sand lenses.


Note: Soil descriptions are based on various boring logs from several different consultants dating back to 2005 and were generalized for this cross section. The fill and native soil contact for each boring was estimated based on these general descriptions.

PROJECT NO. 160324


REVISED BY

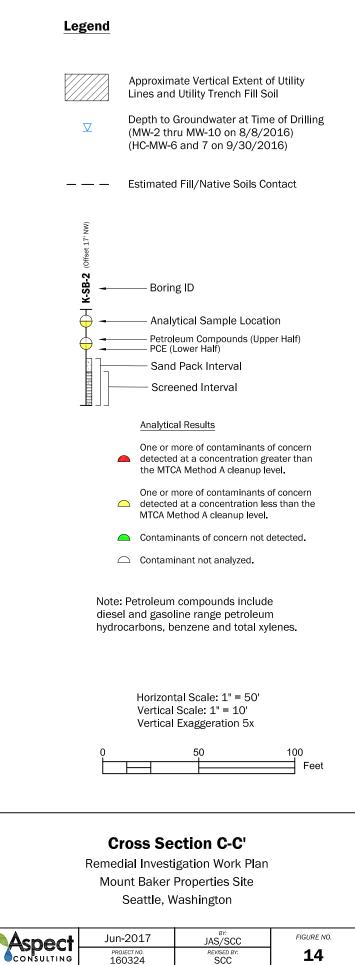
of silt, gravel and, occasionally brick and concrete fragments.


Native soil generally consists of silt with varying degrees of sand and, occasionally, thin interbedded sand lenses.

Note: Soil descriptions are based on various boring logs from several different consultants dating back to 2005 and were generalized for this cross section. The fill and native soil contact for each boring was estimated based on these general descriptions.

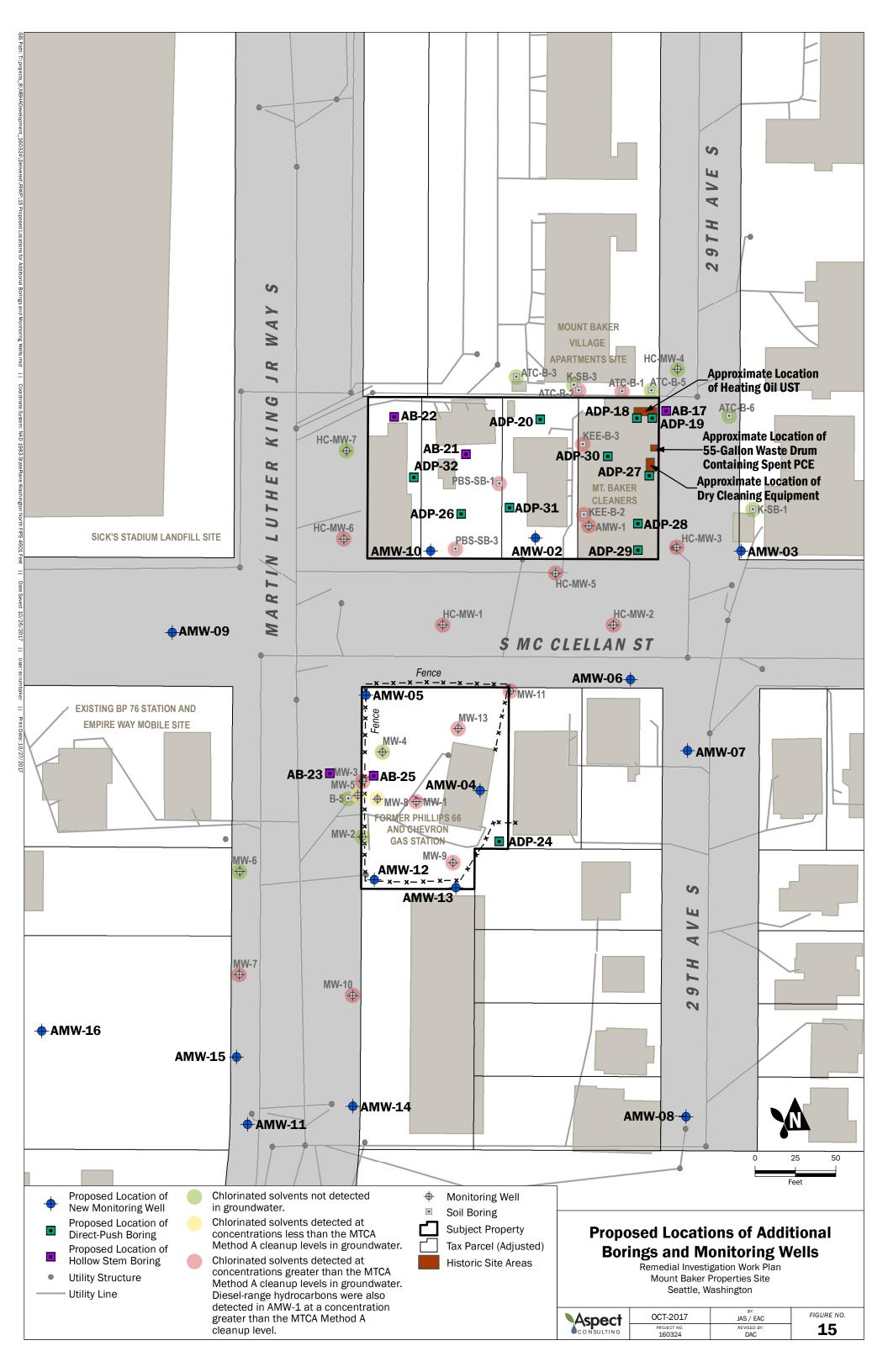
Seattle, Washington

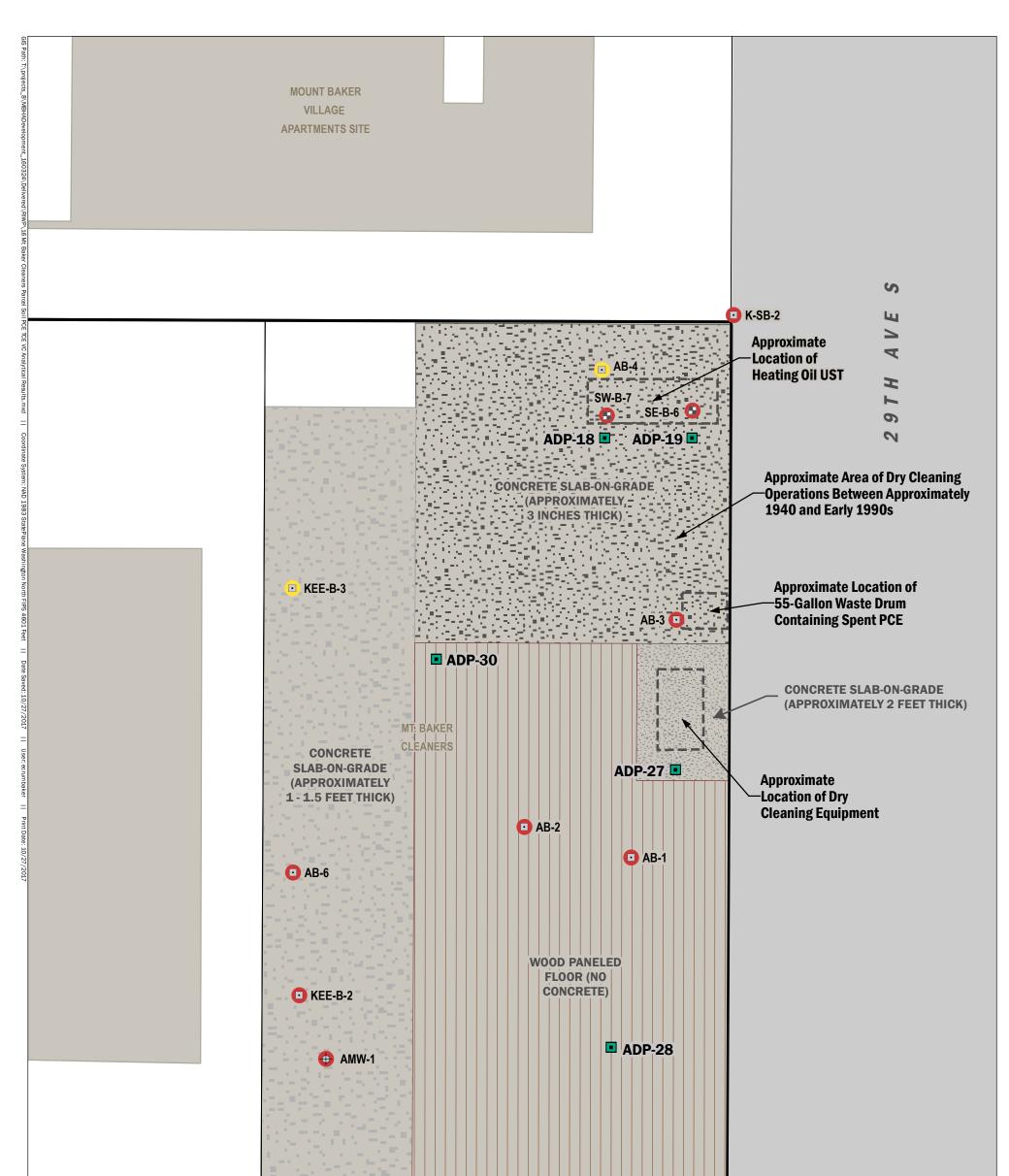
Aspect	Jun-2017	JAS/SCC	FIGURE NO.
CONSULTING	PROJECT NO. 160324	REVISED BY:	13

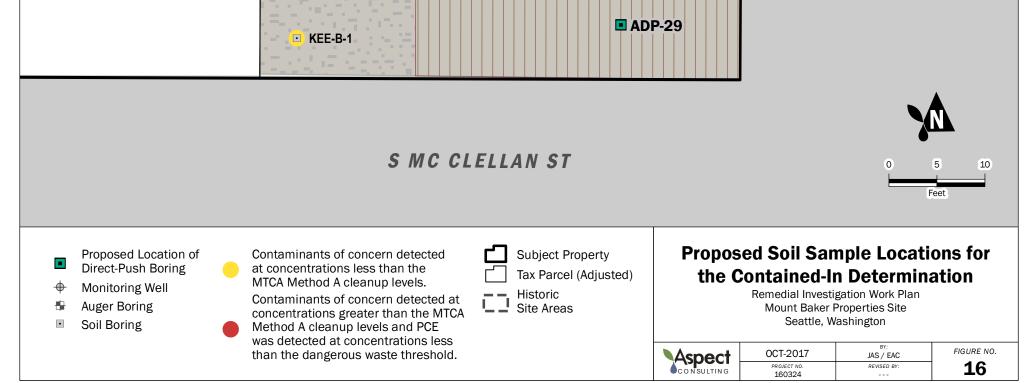


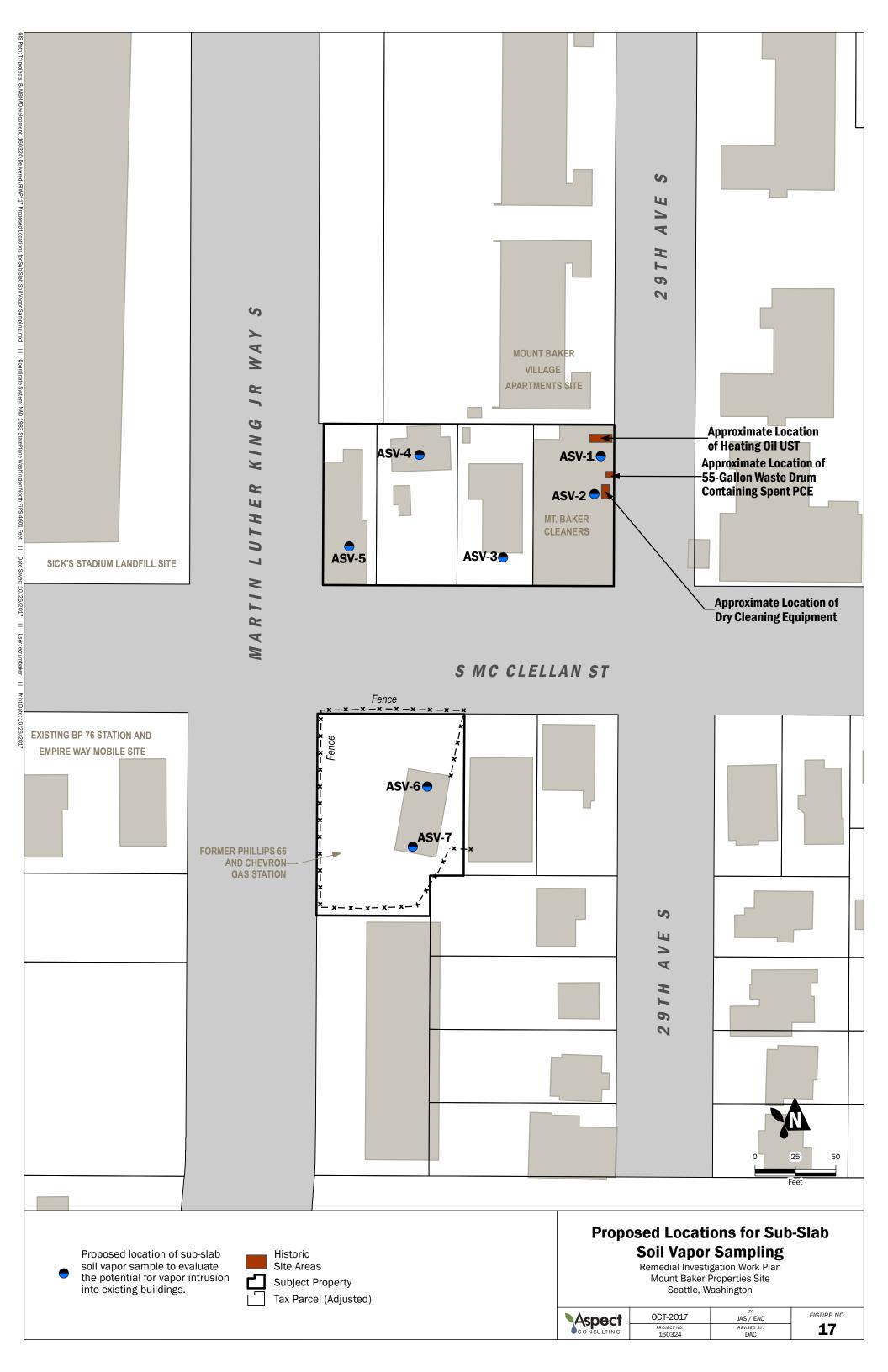
Fill soil generally consists of brown sand with varying degrees of silt, gravel and, occasionally brick and concrete fragments.

Native soil generally consists of silt with varying degrees of sand and, occasionally, thin interbedded sand lenses.


Note: Soil descriptions are based on various boring logs from several different consultants dating back to 2005 and were generalized for this cross section. The fill and native soil contact for each boring was estimated based on these general descriptions.




REVISED B


PROJECT NO. 160324

14

APPENDIX A

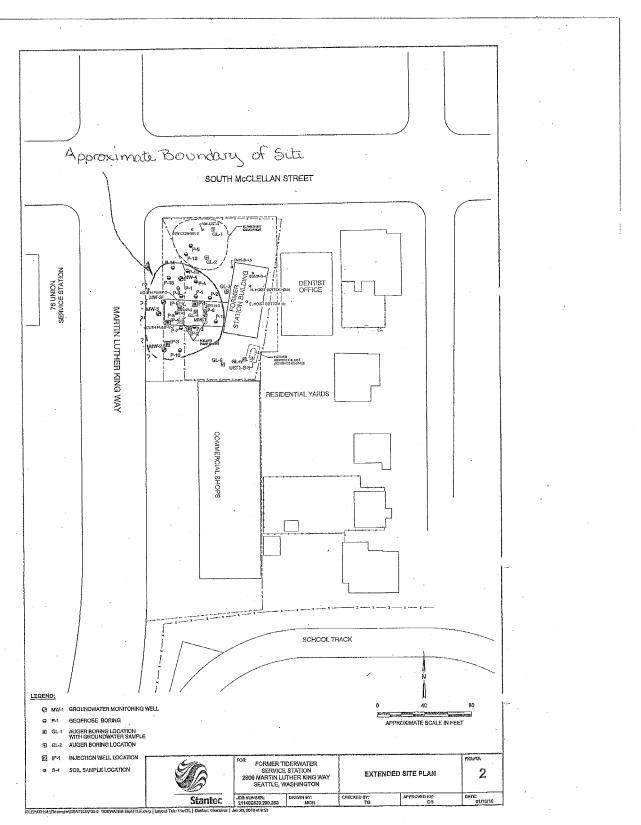
Boring Logs for Previous Investigations

APPENDIX A

Boring Logs from Previous Explorations

							BORING LOG #: B-1	; Page	e 1	of 1
			Cardno	O ATC	Project Name:	Mt Baker VIIge Aprtm	Ints Drilling Information			
							Drilling Contractor:	ESN		
ENVIRONME Building Scien	NTAL · GEOTE		Cardno	DATC	Project #:	282 EM 00124	Drilling Method: Borehole Diameter:	Direct P 2-inch	ush	
policilia colci	OLO MATERI	ALC ILCIING]		Location	2569 29th Ave S	Sampler Type:	Macroco	oro	
					Location.			IVIACIOCI	Jie	
						Seattle, WA				
						Event Information				
	Logged	by:		SP			Wall/Paring Designatio	n. E	3-1	
	Boring I	Dy. Depth:		3F 15		-	Well/Boring Designatio Surface Elevation:	п <u>.</u>	D-1	
	GW En	countered		10		-	Start Date:	01/08/16		
		SW Level:				-	End Date:	01/08/10	6	
	Notes:									
			s	ion					ion	
	/	I val	dinç	icat					ucti	
Depth (ft)	Recovery	Blow Counts	PID/FID Readings	USCS Classification		Soil Classif			Well Construction	
Jept	Rec C		Q	Cla		Descrip	tion		Cor	
	H us	BIG	D/F	S					ell e	
			□	SN					M	
					Surface: Gra	SS		†		
				SC		ND: medium brown fi	ne sand with 30%			
- 1 -						clay; 10% medium s			В°	
	-				induration; da	amp; no product odor	•		Backfilled	
_ 2 _									fille	
_ 3 _									d ≯	
									with	
_ 4 _	_		0.0						bentonite	
									ntor	
- 5 -									nite	
					no recovery l	between 5 and 8 feet			chips	
- 6 -									sd	
- 7 -										
- 8 -			0.0		light brown w	vith 40% fine sand; 25	5% medium sand:			
	-		0.0			eak induration; wet; no				
- 9 -	-								_	
L –										
F ¹⁰ −					saturated be	low 10 feet				\vdash
										+
- 11 -										
- 13 -										
- 14 -				SM		: light brown fine san				
			0.0			ilt; saturated; modera	te induration; no			+
- 15 -					product odor					
					Boring termin	nated at 15 feet below	v ground surface			+
- 16 -		_							-+	+
	$\left \right $									+
- 17 -	+									+
	++								-+	+
- 18 -										+
										+
- 19 -										+
										+
_ 20 _	I I		1						I	

		1						BORING LOG #: B-	2; Pag	e ′	1 of	
ENVIRONM	ENTAL + E	EOTECHNIC	CAL			Project Name: Project #:	Mt Baker Vilge Aprtr 282 EM 00124	nnts Drilling Information Drilling Contractor: Drilling Method:	ESN Direct	Push		
BUILDING SCIE						-		Borehole Diameter:	2-inch			
				-		Location:	2569 29th Ave S	Sampler Type:	Macroo	core		
							Seattle, WA					
							Event Information	n				
		ged by			SP			Well/Boring Designation	on:	B-2		
		ng Dep	oth: Intered		15 10		-	Surface Elevation: Start Date:	01/08/	16		
	-		Level:		10		-	End Date:	01/08/			
	Note	es:					-					
		_		gs	ion					1	IIOI	
(t)	5	Sample Interval	Blow Counts	adin	ficat						Incl	
Depth (ft)	Recovery	e Int	Cor	Re	assi		Soil Class Descri			400	IISU	
Dep	Rec	npl	NO	μ	S CI		Desch	puon		Č	3	
		Sa	В	PID/FID Readings	USCS Classification					101		
					5	Surface: Gra	<u></u>				>	
					SC			sand with 15% medium				
- 1 -								ak induration; damp; no			μ Σ	
- 2 -						product odor					ackf	
											illec	
- 3 -											≤.	
	_			0.0							Backfilled with bentonite chips	
- 4 -				0.0							ent	
					SM	SILTY SAND	: medium brown me	dium sand with 20%			onit	
- 5 -					•			tion; dry; no product odo	r		e cł	
- 6 -							-				nips	-
	_											
- 7 -	_											
	-										-	
- 8 -					-						-	
											-	
- 9 -				0.0							-	
- - - 10 -						50% medium	sand; 30% fine san	d; 20% silt; weak				
10 -						induration; sa	aturated; no product	odor below 10 feet				
- 11 -												
- 12 -												
- 13 -					ML	SILT with SA	ND: light brown silt;	15% fine sand; dry;				
 - 14 -				0.0			ition; no product odo					
											\square	
- 15 -				ļ		Dania (
						Boring termin	nated at 15 feet below	w ground surface				
- 16 -	-										\rightarrow	
	1										\neg	
- 17 -	1											
- 18 -												-
- 19 -												
											\rightarrow	
_ 20 _	1					I						


								BORING LOG #: B-3	; Page	э 1	of	f 1
Ā		C		Cardno	ATC	Project Name:	Mt Baker VIIge Aprtr	nnts Drilling Information Drilling Contractor:	ESN			
ENVIRONME	ITAL • GEI	OTECHNIC	AL	Cardno	ATC	Project #:	282 EM 00124	Drilling Method:	Direct F	ush		
BUILDING SCIEN						-		Borehole Diameter:	2-inch			
						Location:	2569 29th Ave S	Sampler Type:	Macroc	ore		
							Seattle, WA					
							Event Information	n				
	Logg	ed hv:			SP			Well/Boring Designatio	n: í	B-3		
	Borin	g Dep	oth:		15		-	Surface Elevation:				
			ntered Level:		10		-	Start Date: End Date:	01/08/1 01/08/1			
	Notes		20101				-	2.10 20101		<u> </u>		
				s	uo					Ę	IIO	
÷	~	rval	Its	PID/FID Readings	USCS Classification					Wall Construction	nrn	
Depth (ft)	Recovery	Sample Interval	Blow Counts	Rea	Issif		Soil Class			octr	ner	
Dept	Reco	nple	Mo		Cla		Descri	ption		Č	5	
-		San	ĕ	ID/F	scs						Б	
				₽	ŝ						\$	
					CN 4	Surface: Gra		Constant Constant				
- 1 —					SM		dium sand; 20% silt	tium brown fine sand			B	
							arse gravel; strong i				ack	
- 2						dry; no produ		,			fille	
- 3 -											Backfilled with bentonite chips	
											itht	
- 4				0.0	-						oen:	
											toni	
- 5											te c	
											hip	
- 6 -											Ű	
₹ 7 –												
						saturated bel	ow / feet					
- 8 -												
				0.0								
- 9 -					ML			with 15% fine sand; stron	g			
_ 10 _						induration; dr	y; no product odor					
					-							
- 11										-+		
										-		
- 12 -												
- 13 -												
				0.0	-					\square		
- 14				0.0								
– 15 –						Boring termin	nated at 15 feet belo	w ground surface				
- 16 -												
									$ \rightarrow $	-+		
- 17	\vdash									-+		
	\vdash											
- 18	\vdash									-		
_ 19 _												
_ 20 _												

								B	ORING LOG #: B-4	; Pag	е	1 0	of 1
	A		C				Project Name: Project #:	Mt Baker VIIge Aprtm 282 EM 00124	Drilling Information Drilling Contractor: Drilling Method:	ESN Direct	Push		
BUILD			ATERIALS 1		ourune			202 Elli 00124	Borehole Diameter:	2-inch			
							Location:	2569 29th Ave S	Sampler Type:	Macro	core		
								Seattle, WA					
r								Event Information					
			ged by ng Dep			SP 10)	-	Well/Boring Designatio Surface Elevation:	n:	B-4		
				untered Level:		No		-	Start Date: End Date:	01/08/			
		Note		Level.				-	End Date.	01/06/	10		
	Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classi Descrip				Well Construction	
-	_						Surface: Gra						1
	1 –					SM		: light brown fine san luration; dry; no produ				E	<u> </u>
	_							iuration, dry, no produ				Backfilled with bentonite chips	
	2 –											fille	
_	3 -											d ×	
_	- -											ith b	
	4 –				0.0							ent	
_					0.0							onite	
_	5 -											e ch	
_	6 –											ips	
_	-												-
	7 –											-	
	8 -												
	- -												
	9 –				0.0								
	-				0.0	CL	CLAY: dark o	grey low plasticity clay	/ with 30% silt			-	
- 1	10 -					_	strong indura	tion; dry; no product	odor				
_ 1	11 -								ground surface due to				
	-						drilling refuse	al					
- 1	12 –	\vdash											╞
_ ,	- 13 -												1
_													
- 1	14 –												-
1													
-	-												1
_ 1	16 -												
_ 1	17 –	<u> </u>											
	_												-
- 1	18 –												╞
	- 19 -												L
_													1
∟ 2	20 –												

				1	/					BORING LOG #: B-5	; Page	1	of	1
BU				EOTECHNIA				Project Name: Project #:	Mt Baker Vilge Apr 282 EM 00124	tmnts Drilling Information Drilling Contractor: Drilling Method: Borehole Diameter:	ESN Direct Pu 2-inch	ısh		
						1		Location:	2569 29th Ave S	Sampler Type:	Macroco	re		
									Seattle, WA					
									Event Information	on				
				ged by ng Dep			SP 10		-	Well/Boring Designatio Surface Elevation:	ın <u>: B</u>	-5		
			GW	Encou	untered		8		-	Start Date:	01/08/16			
			Stati Note		Level:				-	End Date:	01/08/16			
							6					5		
	Depth (ft)		Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification			sification/ ription		Well Construction		
								Surface: Gra						
	1						SM		with CLAY: mediu				Τ	
_									20% low plasticity					
-	2							weak indurat	ion; no product odo	1			-	
	~											- 4	-	
	3													
	4					0.0								
_							ML		ND: light brown silt duration; no produc	with 25% fine sand;		0	-	
_	5							ary, strong in	duration, no produc			(i		
_	~	-											-	
	6											Ů		
	7	_												
		-												
	8						SM	SILTY SAND	: dark brown mediu	um sand with 20% fine			-	
-	0						0			saturated; no product			-	
	9					0.0		odor						
	10	_						D · · · ·						
		-						Boring termin	ated at 10 feet belo	ow ground surface		_		
	11	+										-+	+	
_	12	+												
	١Z													
_	13	\downarrow												
		+										+	+	
	14	+										+		
	15	+											╞	
	10	1												
	16	\downarrow												
-		+										-+	+	
-	17	+		1								+		
\vdash	40	+											╈	
	18													
Ľ	19	\square												
<u> </u>		+										-		
L	20													

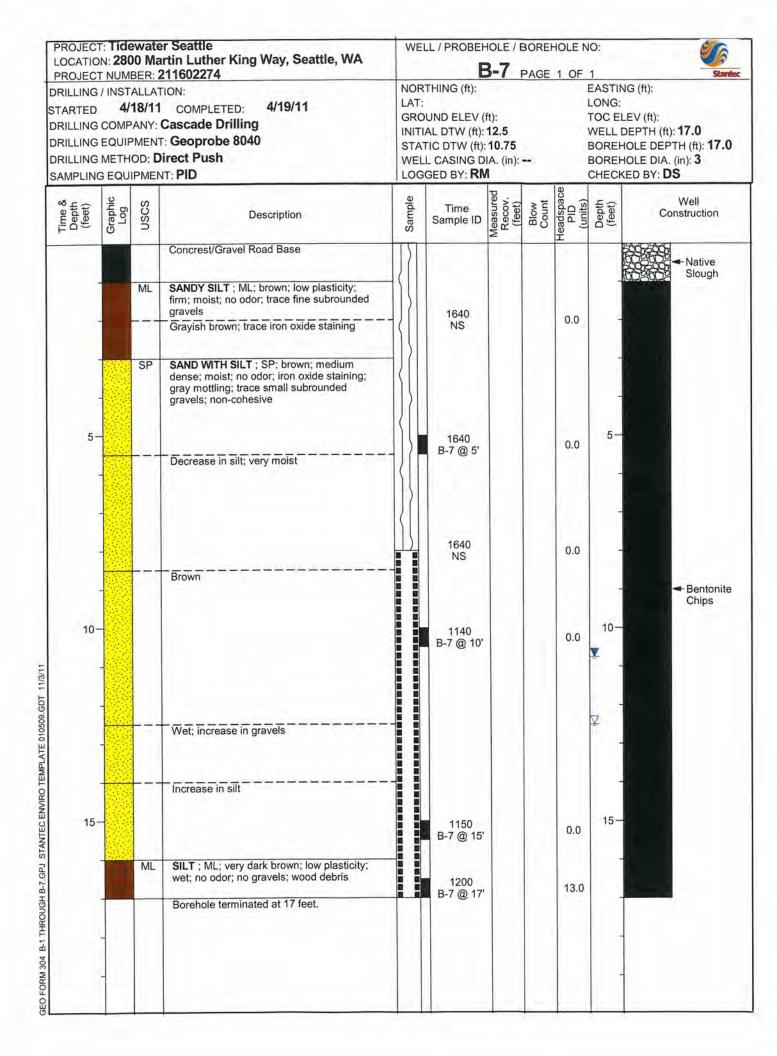
									BORING LOG #: B-6	; Page	1	of	1
	7		C				Project Name: Project #:	Mt Baker VIIge Aprtm 282 EM 00124	Drilling Information Drilling Contractor: Drilling Method:	ESN Direct P	uch		
BI	UILDING SCIE		ATERIALS 1		Caruno	AIC	F10ject #.	202 LW 00124	Borehole Diameter:	2-inch	usii		
					4		Location:	2569 29th Ave S	Sampler Type:	Macroco	ore		
								Seattle, WA					
								Event Information	 \				
			ged by			SP		_	Well/Boring Designatio	in: B	8-6		
			ng Dep Encol	oth: Intered		10 5		-	Surface Elevation: Start Date:	01/08/16	3		
				Level:		0	·	_	End Date:	01/08/16			
		Note	es:				-						_
	Depth (ft)	Recovery	Sample Interval	Blow Counts	PID/FID Readings	USCS Classification		Soil Classi Descrip			Well Construction		
							Surface: Gras	<u> </u>					
┢	-					SM		ss): light brown medium	sand with 25%				
	1 -					0.01		% silt; wet; strong inc			Ţ	'n	
	2 -					-	product odor					rkf	
	-											B	
	3 -	_										N.	
_	-				0.0							Rackfilled with bentonite chine	
-	4 -				0.0							entr	
∇	5 -											nite	
	5 -					GP		ey coarse gravel with			9	3	
	6 -	_					5% silt; weak	induration; saturated	d; no product odor			Do -	
-	-												-
-	7 -											-	
	8 -												
	- -					ML		ND: dark brown silt v	,				
_	9 -				0.0		strong indura	tion; dry; no product	odor				
_	-						Boring termin	nated at 9.5 feet below	w ground surface due		_	_	
_	10 -						to drilling refu		w ground sundoe due			-	
	- 11 -					-							
												\square	
_	12 -	-			<u> </u>							+	
_	-	-									+	+	
\vdash	13 -	-										\neg	
	- 14 -												
L											\square	\square	
_	15 -	-											
	- 16												
┡	-				-							-	
┝	17 -											+	
⊢	-				+							+	
-	18 -	1											
	- 19 -												-
\vdash	-	-											
L	20 -						I						

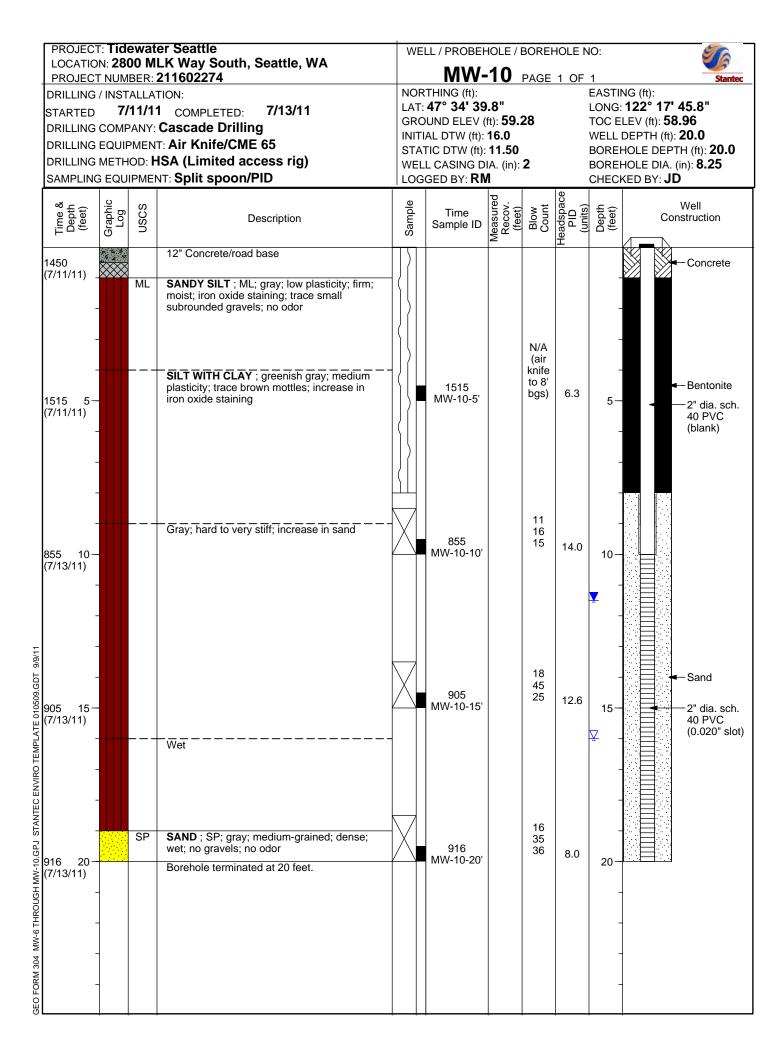
.

APPENDIX C SOIL BORING AND MONITORING WELL COMPLETION LOGS

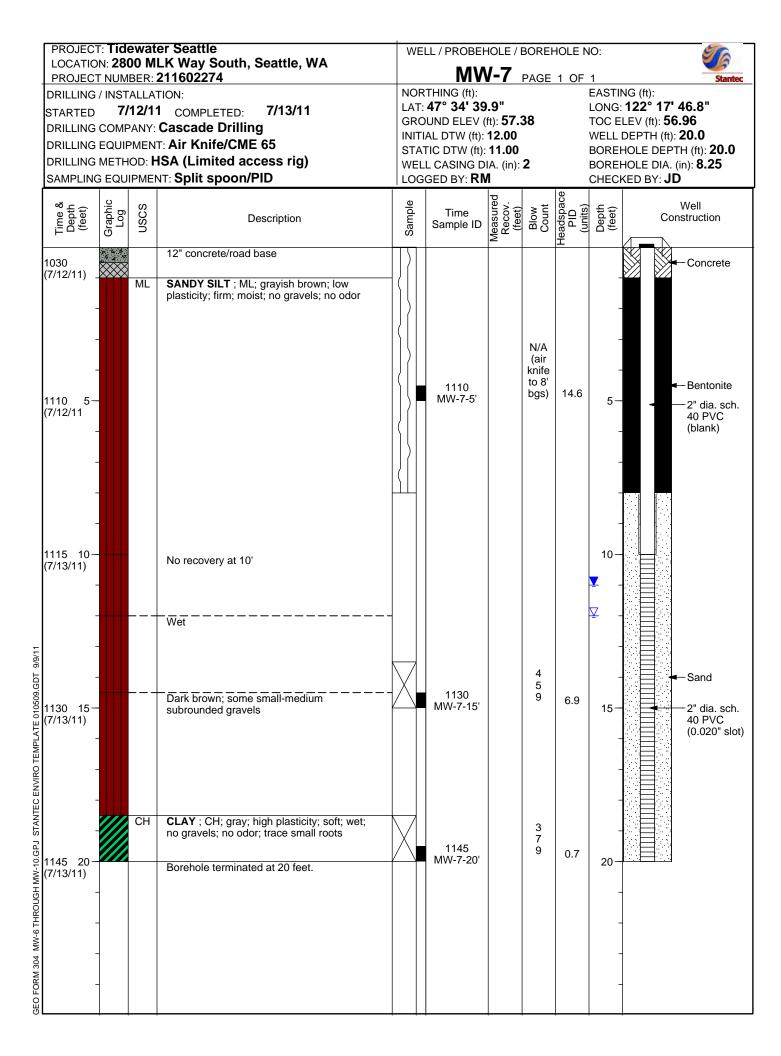
LOCATIC	N: 280	00 Ma	r Seattle Intin Luther King Way, Seattle, WA	WE	LL / PROBEH					V
DRILLING STARTED DRILLING DRILLING	/ INST 4/ COMP EQUIF METH	ALLAT 18/11 PANY: P PMENT OD: D	COMPLETED: 4/19/11 Cascade Drilling T: Geoprobe 8040 irect Push	LAT: GRC INITI STA WEL	THING (ft):	ft): 11.5 11.0 IA. (in):			EASTIN LONG: TOC EL WELL I BOREH BOREH	Sta NG (ft): DEPTH (ft): 18.0 HOLE DEPTH (ft): 18. HOLE DIA. (in): 3 (ED BY: DS
Time & Depth (feet)	Graphic Log	USCS	Description	Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)	Well Construction
		ML	Weathered Ashpalt/Gravel Road Base SANDY SILT ; ML; gray; low plasticity; firm; moist; no odor; iron oxide staining; few small subrounded gravels		1100 NS	~		<u>т</u> 0.0		→ Native Slough
5-		SP	SAND WITH SILT ; SP; greenish brown; medium dense; moist; no odor; trace fine to small subrounded gravels; non-cohesive		1145 B-1 @ 5'			7.0	5-	
					945 NS			0.0	1 1 1	
10-		5			945 B-1 @ 10'			0.0	10 ▼ -	- Bentonit Chips
			Same as above; light brown; wet						-	
15-		CL	SANDY CLAY ; CL; brown; low plasticity; firm; moist; slight odor; some small rounded gravels; gray mottling		955			04.0	- 15-	
		ML	SILT WITH SAND ; ML; dark brown; low plasticity; firm; wet; no odor; some small		B-1 @ 15'			91.0		
			Same as above; increase in sand; decrease in plant roots Borehole terminated at 18 feet.		1000 B-1 @ 18'			1.0		

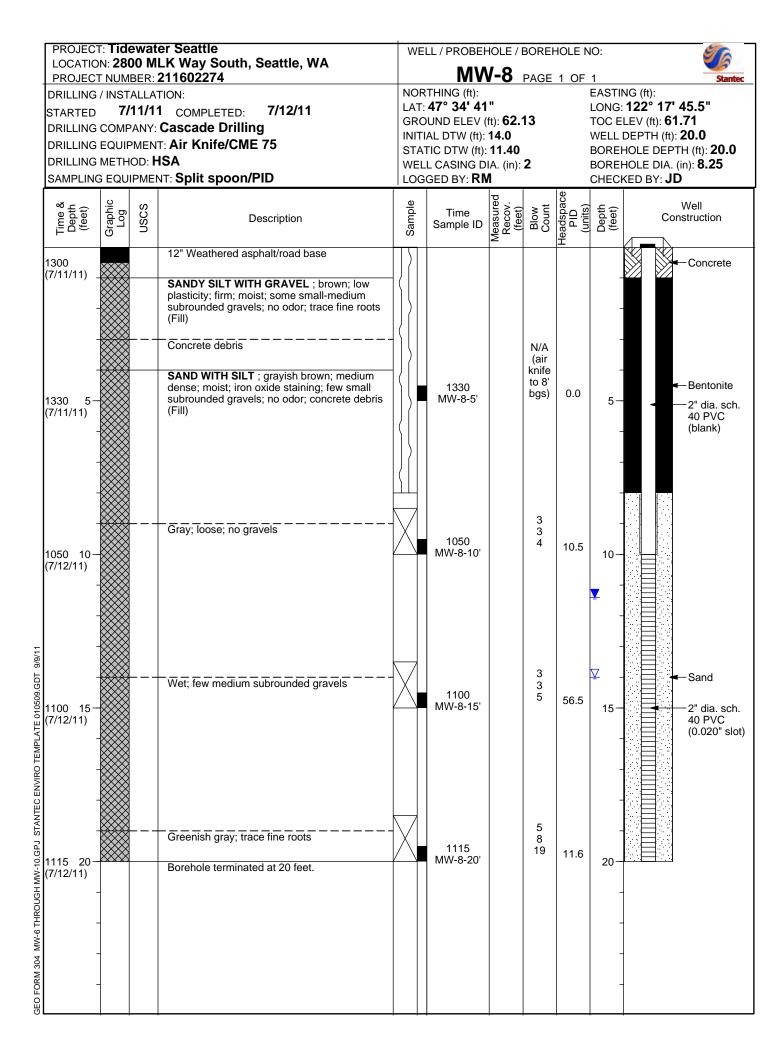
			er Seattle artin Luther King Way, Seattle, WA	WE	LL / PROBEH				S	
PROJEC DRILLING STARTED DRILLING DRILLING DRILLING	/ INST / INST 4/ COMF EQUIF METH	BER: 2 ALLAT 18/11 PANY: PMENT OD: D	211602274 TION: COMPLETED: 4/19/11 Cascade Drilling T: Geoprobe 8040 Direct Push	LAT GRO INIT STA WEI	THING (ft): DUND ELEV (ft IAL DTW (ft): 1 TIC DTW (ft): ' LL CASING DI	2.0 10.25 A. (in):	<u>1 OF</u>	DF 1 Star EASTING (ft): LONG: TOC ELEV (ft): WELL DEPTH (ft): 18.0 BOREHOLE DEPTH (ft): 18.0 BOREHOLE DIA. (in): 3 CHECKED BY: DS		
Time & Depth (feet)	Graphic Log	IPMEN	Description	Sample	GED BY: RM Time Sample ID	Measured Recov. (feet) Blow Count	Headspace PID (units)	1	Well Construction	
-	0	_	Gravel Road Base	111		2	Ť	2	22225	
		ML	SILT WITH FINE SAND ; ML; brown; low plasticity; firm; moist; no odor; Trace small subrounded gravel; some asphalt debris at 1 ft bgs		1040 NS		0.0		South Strong Slough	
			Same as above; no gravels; light gray; iron oxide staining; firm					-		
5-	Ħ		SANDY SILT ; no odor; some construction debris		1045 B-2 @ 5'		0.0	5-		
					1050 NS		0.0	-		
	5757X		6" gravel lens						-Bentonite	
10-	<u>s (xe)</u>	SP	SAND WITH SILT ; SP; brown; medium dense; moist; no odor; no gravels; non cohesive		920		0.0	¥ 10−	Chips	
			Same as above; decrease in silt Same as above; wet		B-2 @ 11'		0.0	⊻ -		
					925			- 15-		
			Same as above; some small subrounded gravels		925 B-2 @ 15'		1,100			
-			SAND WITH CLAY ; moist; slight odor					-		
4		ML	SILT WITH SAND ; ML; very dark brown; low plasticity; firm; moist; no odor; no gravels Borehole terminated at 18 feet.		935 B-2 @18'		24			


			er Seattle artin Luther King Way, Seattle, WA	WE	LL / PROBEH					20	
			211602274		E	3-3	PAGE	1 OF	1	Sta	
DRILLING STARTED DRILLING DRILLING	/ INST 4 COMI EQUI METH	TALLA 18/11 PANY: PMEN HOD: C	TION: COMPLETED: 4/19/11 Cascade Drilling T: Geoprobe 8040 Direct Push	LAT: GRO INITI STA WEL	THING (ft):	t): 16.5 11.75 A. (in):			EASTING (ft): LONG: TOC ELEV (ft): WELL DEPTH (ft): 20.0 BOREHOLE DEPTH (ft): 20. BOREHOLE DIA. (in): 3 CHECKED BY: DS		
Time & Depth (feet)	Graphic Log	USCS	Description	Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)	Well Construction	
			Gravel Road Base/Construction Debris	1151		2		Ĩ	-		
		ML	SILT WITH SAND ; ML; dark brown; low plasticity; soft; moist; no odor; some small subrounded gravels; construction debris at 1.75 ft bgs		1510 NS			0.0		Antive Slough	
-			Same as above; light brown; increase in sand; stiff; some fine plant roots	1)}					-		
5-			Some construction debris at 3.75 ft bgs						5-		
			Some construction debris at 6 ft bgs	$\left \left\langle \left \right\rangle \right\rangle \right $	1510 B-3 @ 5'			0.0	5-		
			Some construction debris at 7 ft bgs								
10-		SP	SAND ; SP; gray; medium dense; moist; slight odor; no gravels; non-cohesive; trace fines		835 B-3 @ 10'			37.0	10-	← Bentonii Chips	
			Same as above; trace fine plant roots						¥		
15-			Same as above; very dark brown; HC staining		845 B-3 @ 15'			110	15-		
			SAND WITH CLAY ; wet; iron oxide staining						Ţ -		
			Same as above; olive green with gray mottling						-		
			Same as above; decrease in odor; dense		900						
20-	<u>ataw</u>		Borehole terminated at 20 feet.	i i	B-3- @ 20'			2.0	20-		


		00 Ma	er Seattle artin Luther King Way, Seattle, WA 211602274	WE		HOLE / 3-4				Stank
RILLING	4/ COMF EQUIF METH	18/11 PANY: PMEN IOD: C	COMPLETED: 4/19/11 Cascade Drilling T: Geoprobe 8040 Direct Push	LAT: GRO INITI STAT	THING (ft):	ft): 12.0 11.75 IA. (in):			EASTII LONG: TOC E WELL BOREI BOREI	NG (ft): LEV (ft): DEPTH (ft): 17.0 HOLE DEPTH (ft): 17.0 HOLE DIA. (in): 3 KED BY: DS
Time & Depth (feet)	Graphic Log	USCS	Description	Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)	Well Construction
			Apshalt/Road Base	151				1		
-		ML	SILT WITH TRACE SAND ; ML; brown; low plasticity; firm; moist; no odor; no gravels SILT WITH CLAY ; dark brown		1510 NS			0.0	-	ACAC A Native COSCOS Slough
5-			Same as above; decrease in clay; some fine subangular gravels; moist; trace plant roots		1510 B-4 @ 5'			0.0		
-			Asphalt/construction debris from 6 to 7 ft bgs						-	
-		ML	SILT WITH CLAY ; ML; dark brown; firm						-	
- 10-					810 B-4 @ 10'			0.0		- Bentonite Chips
-		GP	GRAVEL WITH SAND ; GP; wet; no odor; subangular medium to coarse gravel; trace fines						¥ .	
15—	0000				815 B-4 @ 15'			0.0	15-	
		SP	SAND ; SP; gray; dense; wet; no odor; no gravels; non-cohesive; some plant roots		D-4 (@ 15					
		CL SP	CLAY WITH SAND ; CL; brown; low plasticity; wet; no odor; no gravels; some plant roots SAND ; SP; gray; dense; wet; no odor; no gravels; non-cohesive; some plant roots Borehole terminated at 17 feet.		825 B-4 @ 17'			0.0	-	

OCATIO	N: 280	00 Ma	er Seattle artin Luther King Way, Seattle, WA 211602274	VVE	LL / PROBEH	3-5				Stant
RILLING	4/ COMP EQUIF METH	18/11 PANY: PMEN OD: D	I COMPLETED: 4/19/11 Cascade Drilling T: Geoprobe 8040 Direct Push	LAT: GRC INITI STA WEL	THING (ft):	ft): 13.0 11.50 IA. (in):			EASTI LONG: TOC E WELL BOREI BOREI CHECI	NG (ft): LEV (ft): DEPTH (ft): 18.0 HOLE DEPTH (ft): 18.0 HOLE DIA. (in): 3 KED BY: DS
Depth (feet)	Graphic Log	USCS	Description	Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)	Well Construction
			Asphalt/Road Base	1151			-	1	-	
		ML	SANDY SILT ; ML; grayish brown; low plasticity; soft; moist; no odor; trace small subrounded gravels		1210 NS			0.0	-	Slough
5-		SP	SAND WITH SILT ; SP; gray; medium dense; moist; no odor; trace fine subrounded gravels; non-cohesive		1210 B-5 @ 5'			0.0	5-	
			Sa,e as above; trace iron oxide staining		1210 NS			0.0	-	
- 10 -		1	SANDY SILT ; light brown; low plasticity; firm; moist; no odor; no gravels		1010 B-5 @ 10'			0.0	10-	- Bentonite Chips
-									-	
			Same as above; wet						¥ -	
- 15—		SP	SAND WITH SILT ; SP; light gray; medium dense; wet; no odor; few small subrounded gravels; wood debris		1020 B-5 @ 15'			0.0	- 15-	
-		ML	SILT ; ML; very dark brown; low plasticity; firm; wet; no odor; few small subrounded gravels; wood debris		1000				-	
-		SP	SAND ; SP; gray; dense; wet; no odor; trace small gravels; non-cohesive Borehole terminated at 18 feet.		1030 B-5 @18			0.0		

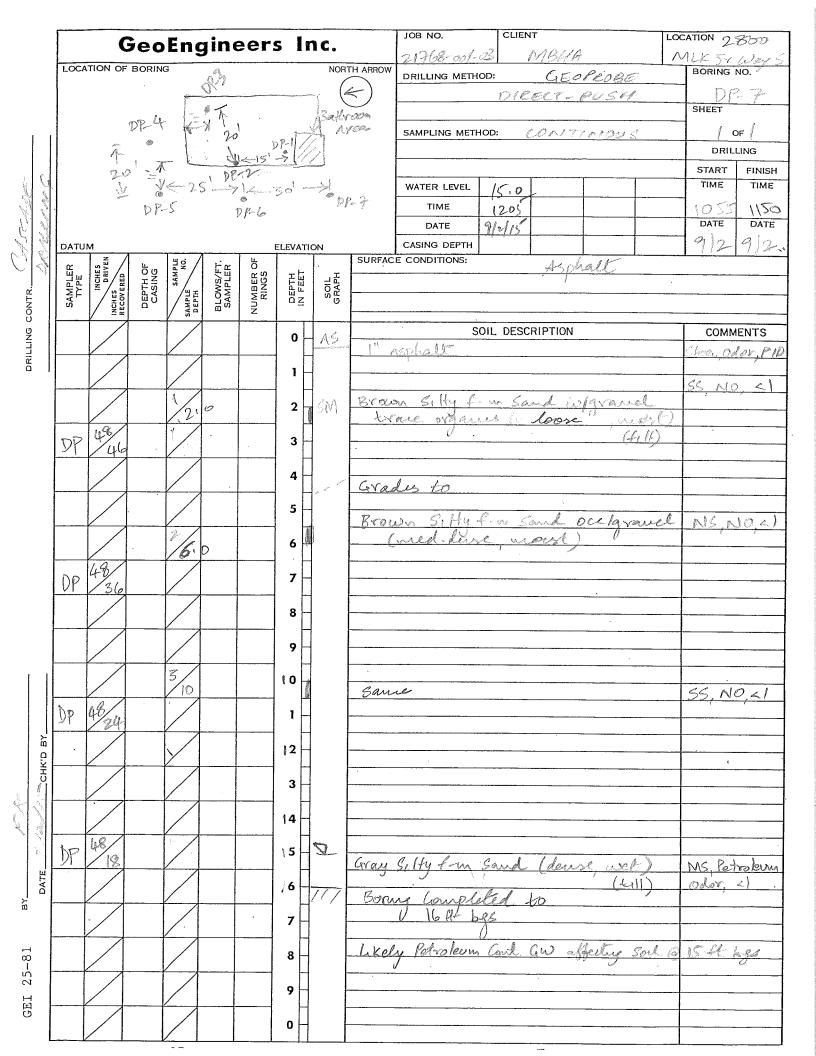

GEO FORM 304 B-1 THROUGH B-7.GPJ STANTEC ENVIRO TEMPLATE 010509.GDT 11/3/11


DRILLING / STARTED		PROJECT: Tidewater Seattle LOCATION: 2800 Martin Luther King Way, Seattle, WA PROJECT NUMBER: 211602274			WELL / PROBEHOLE / BOREHOLE NO: B-6 PAGE 1 OF 1 Start							
DRILLING / INSTALLATION: STARTED 4/18/11 COMPLETED: 4/19/11 DRILLING COMPANY: Cascade Drilling DRILLING EQUIPMENT: Geoprobe 8040 DRILLING METHOD: Direct Push SAMPLING EQUIPMENT: PID			NORTHING (ft):EASTING (ft):LAT:LONG:GROUND ELEV (ft):TOC ELEV (ft):INITIAL DTW (ft): 12.0WELL DEPTH (ft): 17.0STATIC DTW (ft): 10.75BOREHOLE DEPTH (ft): 1WELL CASING DIA. (in):BOREHOLE DIA. (in): 3LOGGED BY: RMCHECKED BY: DS							PTH (ft): 17.0 (in): 3		
Time & Depth (feet)	Graphic Log	USCS	Description	Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)	с	Well onstruction	
			Asphalt/Road Base]]]				-			 Native Slough 	
	I	ML	SANDY SILT ; ML; light brown; low plasticity; firm; moist; no odor; trace small subrounded gravels		1730 NS			0.0				
		SP	SAND WITH SILT ; SP; grayish brown; medium dense; moist; no odor; trace small to fine subrounded gravels									
5-			Same as above; increase in gravels	-{(1730 B-6 @ 5'			0.0	5-			
					B-0 @ 0				-	Î		
					1730 NS			0.0	-			
-			Brown								- Bentonit Chips	
10-			Very moist		1100 B-6 @10'			6.0	10- ¥			
-			Wet; slight HC odor	-					¥ .			
-			Gray; iron oxide staining; HC odor									
					1110 B-6 @ 15			1,880	15-			
-			Increase in silt	-	1120							
-			SILT ; dark brown; low plasticity; wet; no odor; no gravels; wood debris Borehole terminated at 17 feet.	-	B-6 @ 17			7.6				

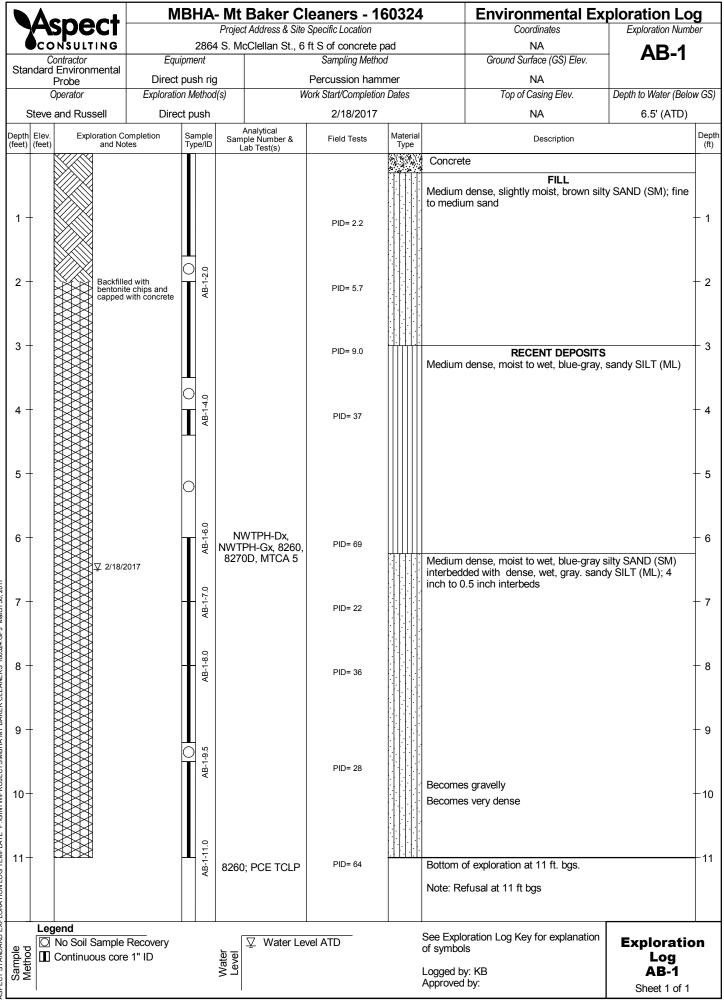
	er Seattle LK Way South, Seattle, WA	WELL / PROBEHOLE / BOREHOLE NO:									
LOCATION: 2800 MLK Way South, Seattle, WA PROJECT NUMBER: 211602274 DRILLING / INSTALLATION: STARTED 7/12/11 COMPLETED: 7/12/11 DRILLING COMPANY: Cascade Drilling DRILLING EQUIPMENT: Air Knife/CME 75 DRILLING METHOD: HSA SAMPLING EQUIPMENT: Split spoon/PID				0.5" ft): 58.4 12.0 12.15 IA. (in):	EASTING (ft): LONG: 122° 17' 46.8" TOC ELEV (ft): 58.03 WELL DEPTH (ft): 20.0 BOREHOLE DEPTH (ft): 20.0 BOREHOLE DIA. (in): 8.25 CHECKED BY: JD						
USCS	Description	Sample	Time Sample ID	Measured Recov. (feet)	Blow Count	Headspace PID (units)	Depth (feet)	Well Construction			
\mathbf{a}	12" Concrete/road base					<u> </u>		Concrete			
SP	SILT WITH FINE SAND ; ML; gray; low plasticity; firm; moist; no gravels; no odor SILTY SAND ; SP; brown; medium dense; moist; trace small subrounded gravels; no odor		910 MW-6-5'		N/A (air knife to 8' bgs)	16.1	- - 5- -	- - Bentonite - 2" dia. sch 40 PVC (blank)			
ML	SILT WITH SAND ; ML; gray; medium plasticity; soft; moist; trace brown mottles; some fine rounded gravels; no odor; trace fine roots		1330 MW-6-10'		2 2 2	0.5					
	Wet; many small-medium subbrounded gravels		1340 MW-6-15'		2 5 9	1.8	- - 15	← Sand 2" dia. sct 40 PVC (0.020" sk			
CL	CLAY ; CL; gray; low plasticity; firm; moist; no gravels; no odor Borehole terminated at 20 feet.		1355 MW-6-20'		2 4 6	0.5					
	BOO M MBER: TALLA TALLA TALLA IPANY: IPMEN HOD: I O SO SO ML ML ML	B00 MLK Way South, Seattle, WA MBER: 211602274 STALLATION: VT2/11 COMPLETED: 7/12/11 IPANY: Cascade Drilling IPMENT: Air Knife/CME 75 HOD: HSA UIPMENT: Split spoon/PID 3 3 Concrete/road base ML SILT WITH FINE SAND ; ML; gray; low plasticity; firm; moist; no gravels; no odor SP SILTY SAND ; SP; brown; medium dense; moist; trace small subrounded gravels; no odor ML SILT WITH SAND ; ML; gray; medium plasticity; soft; moist; trace brown mottles; some fine rounded gravels; no odor; trace Wet; many small-medium subbrounded Wet; many small-medium subbrounded gravels Very dark brown; many medium roots Very dark brown; many medium roots	B00 MLK Way South, Seattle, WA MBER: 211602274 MBER: 211602274 NOF STALLATION: NOF IPANY: Cascade Drilling INIT IPMENT: Air Knife/CME 75 STA HOD: HSA WEL UIPMENT: Split spoon/PID Loc 12" Concrete/road base ML ML SILT WITH FINE SAND ; ML; gray; low plasticity; firm; moist; no gravels; no odor SP SILTY SAND ; SP; brown; medium dense; moist; trace small subrounded gravels; no odor ML SILT WITH SAND ; ML; gray; medium plasticity; soft; moist; trace brown mottles; some fine rounded gravels; no odor; trace fine roots Wet; many small-medium subbrounded gravels; no odor; trace fine roots Very dark brown; many medium roots CL CLAY; CL; gray; low plasticity; firm; moist; no gravels; no odor	B00 MLK Way South, Seattle, WA MMER: 211602274 STALLATION: MORTHING (ft): STALLATION: NORTHING (ft): IPANY: Cascade Drilling IIPMENT: Air Knife/CME 75 IHOD: HSA UIPMENT: Split spoon/PID UIPMENT: Split spoon/PID LOGGED BY: RN 20 Description 0 21 Concrete/road base IIIme ML SILT WITH FINE SAND ; ML: gray; low Jiff (ft): 21 Concrete/road base IIIme ML SILT WITH FINE SAND ; ML: gray; low Jiff (ft): Plasticity: firm; moist; no gravels; no odor 910 ML SILT WITH SAND ; ML: gray; medium MW-6-5' ML SILT WITH SAND ; ML: gray; medium Jiff (ft): plasticity: soft; moist; trace brown mottles; some fine rounded gravels; no odor; trace fine roots Jiff (MW-6-10' Wet; many small-medium subbrounded III asto MW-6-10' Wet; many small-medium subbrounded III asto Jiff (MW-6-15' Wet; many small-medium subbrounded III asto Jiff (MW-6-15') CL CLAY ; CL: gray; low plasticity; firm; moist; most; many medium roots Jiff (MW-6-15')	B00 MLK Way South, Seattle, WA MW-6-10* MBER: 211602274 MW-6-15* TALLATION: MW-6-15* V12/11 COMPLETED: 7/12/11 IPANY: Cascade Drilling NORTHING (f): IPMENT: Air Knife/CME 75 HOD: HSA UPMENT: Split spoon/PID Sample ID 3 Description 3 Description 4 12* Concrete/road base ML SILTY WITH FINE SAND ; ML; gray; low plasticity; firm; moist; no gravels; no odor SP SILTY SAND ; SP; brown; medium dense; moist; trace small subrounded gravels; no odor; trace fine roots ML SILT WITH SAND ; ML; gray; medium plasticity; firm; moist; no odor; trace fine roots ML SILT WITH SAND ; ML; gray; medium plasticity; soft; moist; trace brown mottles; some fine rounded gravels; no odor; trace fine roots Wet; many smail-medium subbrounded 1330 Wet; many smail-medium subbrounded 1340 MW-6-15* 1340 WW-6-15* 1355	B00 MLK Way South, Seattle, WA MW-6.5' MBER: 211602274 MW-6.5' TALLATION: MW-6.5' WITAL DTON: MW-6.15' WITAL TON: MW-6.15' WITAL ATTON: MW-6.5' WITAL TOW (fb): LA: 47° 34' 40.5'' GROUND ELEY (fb): S8.4 IPMENT: Air Knife/CME 75 HOD: HSA UIPMENT: Split spoon/PID Coccept (fb): Locged EP: RM Sample ID IP Description IP Silt T WITH FINE SAND ; ML: gray; low plasticity: firm; moist; no gravels; no odor MW-6-5' ML SILT WITH SAND ; ML: gray; medium plasticity: soft; moist; trace small subrounded gravels; no odor; trace fine rounded gravels; n	B00 MLK Way South, Seattle, WA Mathematical Mathem	B00 MLK Way South, Seattle, WA MW-6 PAGE 1 OF 1 MBER: 211602274 MW-6 PAGE 1 OF 1 MALLATION: MICROPHICETED: 7/12/11 NORTHING (ft): EAST MPANY: Cascade Drilling MICROPHICETED: 7/12/11 NORTHING (ft): EAST MPANY: Cascade Drilling MICROPHICETED: 7/12/11 NORTHING (ft): EAST MPANY: Cascade Drilling MICROPHICETED: 7/12/11 NORTHING (ft): EAST MIL BILT KNITH CAME 75 HOD: HSA UIPMENT: Alt Knife/CME 75 BORE HOD: HSA UIPMENT: Split spoon/PID COGED BY: RM CHEC 12" Concrete/road base Time Sample ID MICROPHICETED: Time model MICROPHICETED: Time model MICROPHICETED: Time model ML SILT WITH FINE SAND : ML: gray: low plasticity: firm; moist; race small subrounded gravels; no odor MICROPHICETED: MICR			

GeoEngineers Inc. JOB NO. CLENT 21768-001-03 MBHA LOCATION OF BORING NORTH ARROW DRILLING METHOD: GEOPPORE DIRECT PUSH SAMPLING METHOD: CONSTINUES WATER LEVEL 9:0 PLOD ONTINIC	LOCATION 2800
IS DIRECT PUSH SAMPLING METHOD: CONITINIOUS WATER LEVEL 9:0 WATER LEVEL 9:0 WATER LEVEL 9:0 DATUM ELEVATION CASING DEPTH DATE WATER LEVEL 9:2 WATER LEVEL 9:0 DATUM ELEVATION CASING DEPTH DATE UNIT OF THE SURFACE CONDITIONS: Constant	MLK JV Way S BORING NO.
SAMPLING METHOD: CONTINIOUS WATER LEVEL 9:0 Pt bes WATER LEVEL 9:0 Pt bes TIME 1415 DATE 91215 CASING DEPTH U U U U U U U U U U U U U U U U U U U	DP-1
UNITE	SHEET
DATUM ELEVATION CASING DEPTH DATE 9/2/15 CASING DEPTH CASING DEPTH CA	OF
DATUM ELEVATION CASING DEPTH DATE 9/2/15 CASING DEPTH CASING DEPTH CA	DRILLING
DATUM ELEVATION CASING DEPTH DATE 9/2/15 CASING DEPTH CASING DEPTH CA	START FINISH TIME TIME
· ⊣ ∺ F ≩ ⊑ ∖ ≅ × ≅ ∧ ≥ ∺ − ₩ E − ₩ E	1350 1420
· ⊣ ∺ F ≩ ⊑ ∖ ≅ × ≅ ∧ ≥ ∺ − ₩ E − ₩ E	DATE DATE
· ⊣ ∺ F ≩ ⊑ ∖ ≅ × ≅ ∧ ≥ ∺ − ₩ E − ₩ E	9/2 9/2
VEL STATUS OF CC SOIL DESCRIPTION	
O CC SOIL DESCRIPTION	
CC 3" convrete	COMMENTS
	sheen, odar, PID
2 SM Brown Silty four Sand W/gravel (Loose, mound) (4)	N/S, NO, KI
R 24	
5	
6 Gravel cartant decreases	NS, NO. 21
DP 48 20 7	
8	
9	
DP 30 310 10 SM Gray Silly four Sand wharavel	NS .NO, 21
DP 6 10 11 (very dure, wet	
Refusal at 11 ft bes	
	5
	······································
7	
8 81	
e	
С О	

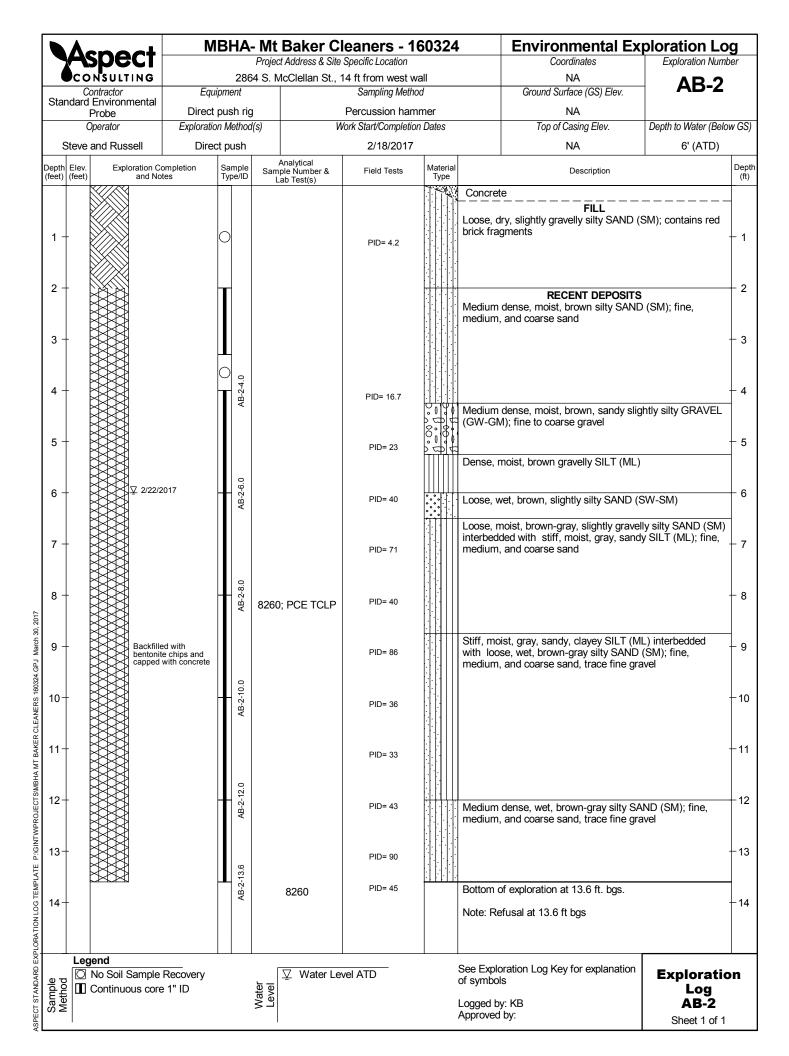
		C	3ea	Eng	aine	eer	s Ir	IC.		JOB NO.	CLIEI			LOC	ATION 2	800
	LOCA	TION OF		-					TH ARROW	21768-00 -0	5 1	MBHA		ML	K JY W BORING	ay S
			20111							DRILLING METH	OD:		OPROBE			
								C	\mathcal{I}			DIRE	CT PUSH		DP- SHEET	2
						·				SAMPLING METH	lod:	CON	TINOUS			DF /
															DRIL	LING
												1			START	FINISH
40										WATER LEVEL TIME	KI07	obser.	pd		TIME	TIME
CASCADE										DATE					1345 DATE	DATE
45< 21_1	DATU						ELEVATIO	NC		CASING DEPTH					912	9/2
	<u>۳</u>	INCHES DRIVEN S FRED	្រុកិតិ	SAMPLE NO.	ER.	NUMBER OF RINGS	тĿ	т	SURFACI	E CONDITIONS:	-	Cone	ete		·	
TR.	SAMPLER TYPE	INCHE DRIV INCHES RECOVERED	DEPTH OF CASING	TH SA	BLOWS/FT. SAMPLER	MBEI RING	DEPTH IN FEET	SOIL GRAPH						•		
NO U U	ν,	REC	ā	SAMPLE	S ^P	л z	<u> </u>									
DRILLING CONTR.							0 -	CL				RIPTION			COMM	
DRIL				$ \land$			1-			3" Connel	l				<u>Sheen a</u>	tor, Pip
		$\langle \rangle$		$\left\{ \cdot \right\}$				CAA	172	- 11		~ 1	4 A			
				2:0			2	SM	50	own Silty	+-m	<u>Sand</u> oose, u	w/graner rost)	-0.*	NIS.n	10, <1
	DP	48/12		· /			3 -		•	•						
	21_	42					4									
			<u> </u>				5 -									
				$\left \right $			1									
							6		Gram	el content	deis	eases		1	NS, NC) <1
	DP	48 40		26.	>		7							_		
							8 -	777								
							9 -	F	Born	ng lampt	ited	-to 8-	Ht bys			
							0	F					<i>C</i>		· · ·	
							1	ļ								
BY							2 ⊣	ļ								
CHK'D BY							H	F							¢	
2115							3	F								
6				\square			4		· · · · · · · · · · · · · · · · · · ·							
							5	-								
BY DATE.							6	-						_		<u> </u>
m						•	7	-								
-81		\square					8 -	F								
25			}				9	-		· · · · · · · · · · · · · · · · · · ·		. = .				
GEI		\rightarrow	{				H	-]
L							0 -									

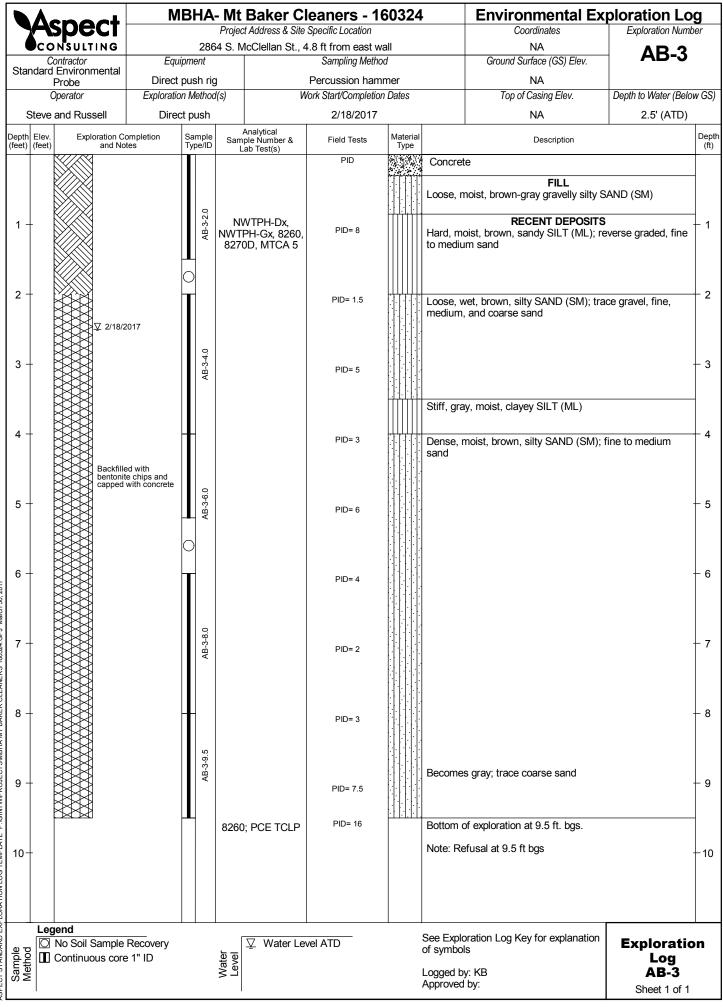

バイ

		G	;eo	Eng	gine	eer	s I	nc.		JOB NO. 21768-001-0	CLIEN 3		LO	CATION LA	500
	LOCA	TION OF	BORING	3			<u> </u>	NORT	TH ARROW	DRILLING METHOD		GEOPEOBE	/	BORING	
								(\bigcirc			hier (1 mish		DP Sheet	- 3
4 T										SAMPLING METHO	D:	ONTIMOUS		-	DF /
													······································	DRIL	LING
i. C.										WATER LEVEL			1	START TIME	FINISH TIME
200										TIME				1320	1340 Date
E S										DATE				DATE	
28		EN	<u>ل</u> ر.	NO.	ŀα		ELEVAT	1.	SURFAC	CASING DEPTH E CONDITIONS:	[onureli		9/2	912
R	SAMPLER TYPE	INCHES DRIVEN INCHES RECOVERED	DEPTH OF CASING	SAMPLE LE NO. TH	BLOWS/FT. SAMPLER	NUMBER OF RINGS	DEPTH IN FEET	SOIL GRAPH							
CONT	d'S	INCH	<u><u></u></u>	SAMPLE	SA SA	z z	ΩΞ			·····					
DRILLING CONTR.							0	cc		SOI 3" connele	L DESCF	RIPTION			ENTS
DRIL							1	-				·····		_SPRA, 9	d <i>a</i> x <u>, PID</u>
									RYA	ution California	<u></u>	Caril ace	lavoud		
				12.0			2			who silty of	<u>ose, v</u>	roust)	1 miasso	116,1	10,21
	DP	48 36					3	-	•		-				
				2.			4		Sa	rapiles				NS,A	10, 41
					·		5	-							
								_	6.00	A content	- And				
							6	-	<u> </u>	M. (Bulent	aur	Later fraker		·	
	DP	496/ 133					7	-							
				3/8.0			8							NS, N	12,01
							9 -							······	
			·				-	4							
							10		No	Renovery				Rock	Asha
	DP	48					11	4		<u> </u>				<u>sample</u>	~ Shoe
D BY.		\square		\checkmark			12								
снкъ		$ \rightarrow $		$ \rightarrow $			13		•					¢	
		<u>.</u> 36/							P	011	20 1			N \$ 1 ²⁴	
NZI.	DP	26					4		way	Silly form :	ar Carrollar			NS, NO	2.2.1
1							15	777		Refusal	n #	15 46 6es			
DATE.	Í		ř				6			· · ·	W last Res	0			
B			{	\rightarrow			7								
				<u>/·</u>			1			· · · · · · · · · · · · · · · · · · ·					
25-81							8			4					
1		\square		Λ			9 -								
GEI							0			····					
L															

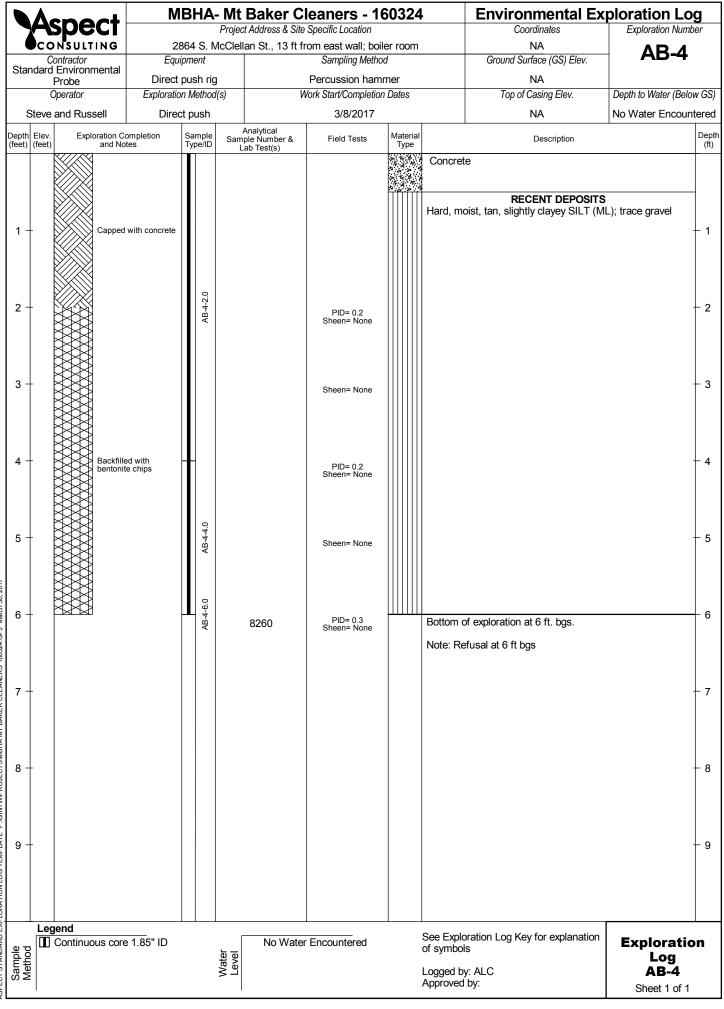

		G	ien	Eng	ine	Per	s I	nc		JOB NO.	CLIEN	IT			ATION 2	
	LOCA	TION OF		-					TH ARROW	21768-001-		MBA	1 <u>A</u>	M	LK TV	way S NO.
			BORING	3						DRILLING METH	OD:		PROBE			
									\mathcal{I}			DIRE	<u>et Rusu</u>		DP- SHEET	4
										SAMPLING METH		6 10 1	151,10100			of /
										SAMPLING MET	100:		NTINOUS		DRIL	
ASCADE										w					START	FINISH
9.5										WATER LEVEL	810	<u>ft bys</u>			TIME	TIME
N Z										TIME	1315	0			1255	1315
K Z										DATE	9/2/15	ecentri I			DATE	DATE
02	DATU						ELEVAT			CASING DEPTH		l			9/2	912
2	щ	INCHES DRIVEN S DRIVEN	рõõ	SAMPLE NO.	/FT. ER	NUMBER OF RINGS	ェ늡	, r	SURFAC	E CONDITIONS:		Asizh	all_		·	
TR.	SAMPLER TYPE	INCHE DRI INCHES RECOVERED	DEPTH OF CASING	PLE SI	BLOWS/FT. SAMPLER	MBE	DEPTH IN FEET	SOIL GRAPH				\$				
N U U	ν,	INCH	ٽ <u>م</u>	SAMPLE DEPTH	ν BL	л х										
DRILLING CONTR.							0	AS			OIL DESC	RIPTION				ENTS
RILL		\mathbb{K}		$\langle - \rangle$				+	- 2"	Asphalt	,				Sheer C	dor, PID
ā							1+	-								
				1			2	SM	Bre	why silfy	fru	Cand	ust a variet			
				12:0	1					rwn s, lty	llor	N.C. Sand	ust)		NE N	10, 11
	DP	48/27		· /			3	-		•		-				
		121		K				-								
							4	1								
							5 -	-								
									· 6 . 7		R- A					
				76	>		6		GYA	vel conten	<u>k dl</u>	<u>ireas</u> a	<u></u>		NS, KI	0.4
	~~~	48					7									
	DP_	30											•			
							8 -	X		Pal A	t 8	l low L.	ez 5ª .			
										<u>requirac e</u>	haden D	-y-c 0	<u> </u>			
							9						·			
							0 -								<u> </u>	
							_  -									
							1									
) BY				$\square$			2									
CHK'D		$\leftarrow$					+								t	
XU							3									
42							4		· · · · · · · · · · · · · · · · · · ·							
C.							-									
							5 -									
DATE																
							6									
							7									
							-									
25-81							8						· · · · · · · · · · · · · · · · · · ·			
		$\Lambda$	1	$\square$			9					•			·	
GEI			ł				-									
Ĭ				/			0		·····							
L		<u> </u>	k							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			]

		G	ieo	Eng	ine	eer	s I	nc.		JOB NO.	CLIEN	MBA	10	LOCA	-	800
	LOCA	TION OF		-					TH ARROW	21768-001- DRILLING METH			PROBE	ME		way S NO.
								(	$\bigcirc$	DRILLING METH	00.		T PUSH		DP-	- 5
								,	$\bigcirc$						SHEET	·····
[ ]										SAMPLING METH	IOD:	CON	TINOUS			DF
											····				DRIL	LING FINISH
n V	<b>、</b>									WATER LEVEL	Noto	bserves	L		TIME	TIME
23										TIME	-				1220 date	1250
ASCAD.										DATE CASING DEPTH					DATE 9/2	DATE 912
80	DATU	E A	<u>ь</u>	Hý /	Fr		ELEVAT	1.	SURFAC	E CONDITIONS:		I Aspha	100		i i di	112
	SAMPLER TYPE	INCHES DRIVEN INCHES RECOVERED	DEPTH OF CASING	SAMPLE NO.	BLOWS/FT. SAMPLER	NUMBER OF RINGS	DEPTH IN FEET	SOIL GRAPH				Y	di d			
TNO	SAN	INCHE	С EF	SAMPLE	BLO	NUN RIN	۳z	ν <u>ω</u>					· · · · · · · · · · · · · · · · · · ·			
DRILLING CONTR.		$\square$		$\left[ \right]$			0	AS		S	OIL DESC	RIPTION			COMM	ENTS
צורדו		$\langle \rangle$			-			1-	2",	Asphalt					Sheen 1	18 ar , 190
							1	-								
				1			2	SM	Br	own silte	f-us	Savid	warand			
		48								· · ·	<u>(lec</u>	<u>, 56. , Mad</u>	<u>vst-0</u>		NS A	10, <1
	DP	37					3						, 			
				2/2.	>		4									
					·		5									
				$\langle \rangle$											> 3	
							6	-	5 au	L					NB.A	10_ 1
	DP	48	_				7	-								
							8	_					· · · · · · · · · · · · · · · · · · ·			
								71		Refusar	at	8 H	<u>bes</u>			
1 1							9				, . <u>-</u>					
		1195		$\langle \rangle$			10								· · ·	
	DP	40					1	-								
снк'о ву				$\times$			12					·			t	
G							3	-								
FX 2115				$\land$			4									
9/2							5									
DATE							6	4								
BY		. /					7									
1							8 -									
25-81		$ \rightarrow $					-			,		· · · · · · · · · · · · · · · · · · ·				
GEI							9									
							0						· · · · · · · · · · · · · · · · · · ·			


		G		End	in	an	c	nc.		JOB NO.	CLIE	T		LOC	CATION 2	800
				-	J	501	<b></b>			21768-001	-03	MBI	YA	M	LK JE I	
	LOCA	TION OF	BORING	з				NOR		DRILLING METH	OD:	GE	OPLOBE	2 		
								(			[	MREL	FPUS6	4	DP	_ 6
															-{	
										SAMPLING METH	IOD:	CONT	MAJOUS			DF
	1														DRIL	
	~									WATER LEVEL	Alat	obser			TIME	FINISH TIME
A S										TIME		102207	v ca		1200	1230
- 6 9										DATE					DATE	DATE
XS	DATU			<b>.</b>			ELEVA	TION		CASING DEPTH					912	9/2
09	8	INCHES DRIVEN S /ERED	ក្តិតិ	SAMPLE NO.	ÊĤ.	NUMBER OF RINGS		;  . ;	SURFAC	E CONDITIONS:		Aspha	u –			
R	SAMPLER TYPE	INCHE DRIV INCHES RECOVERED	DEPTH OF CASING	R S	BLOWS/FT. SAMPLER	ABEI	DEPTH	SOIL GRAPH				/				
NOC	ŝ	RECO	ä	SAMPLE	SP	In z	<u> </u>	. 0								
DRILLING CONTR.							0	AS			OIL DESC	RIPTION		<u>.</u>	СОММ	ENTS
גורח		$\mathbb{Z}$		K					2"	Asphalt					Share 0	dar. PD
ā							1									· · · · · · · · · · · · · · · · · · ·
				1				L SM	Bro	row Silty	four	Sand	wlarge	w.l.		
				12.	>		2			con silfy	1 600.	90 . MAG	soft 1-	£111)	55, N	0, 21
	DP	48		·//			3			•					.'	
	-21	1 yry														
							4									
							5									
				76.			6		Sann	all i					16 41	
		48					7		6 44 44						NS,N	o, a
	DP	46						_							-	
							8	711			plik		8:41	1.07		
							•		<i>D</i>	orny Lou	<u>pae</u>	<u>d to</u>	<u>870</u>	<u>655</u>		
							9						•			
							\ <b>0</b>	-								
							_	-								
							1					· · - · ·				
0 BY				$\checkmark$			2	-							· · · · ·	
СНК'D								-	•						¢	
							3	-								
K		. /		$\square$			4									{
K K								4				<u>`</u>				
Q.							5									
DATE.							6									
ں Ha							0									· ·
						•	7	4	,							
			f				-	-								
25-81							8	1		·····	·					
1		$\wedge$		$\bigwedge$			9	-				•				
GEI		$ \rightarrow $		$ \rightarrow $			F	┥┞			<del></del>					
-				/			0 -	1			· · · · · · · · · · · · · · · · · · ·				- · · · · · ·	
L	/		Ľ		I		i	J						·		




	u		0.0		Well-graded gravel and	Terms I	Describing	<b>Relative Densi</b>	ty and Consistency
	Coarse Fraction Sieve	S 2		GW	gravel with sand, little to		Density	SPT ⁽²⁾ blows/foot	
	Е	nes 0			no fines		Very Loose	0 to 4	Test Symbols
υ	arse		500		Poorly, graded gravel	Coarse- Grained Soils	Loose	4 to 10	FC = Fines Content
	Coarse Sieve				Poorly-graded gravel and gravel with sand,	Graineu Solis	Medium Dens		GS = Grain Size
0 S	4 م	6		GP	little to no fines		Dense Van: Danas	30 to 50	MC = Moisture Content AL = Atterberg Limits
50	50% ⁽¹⁾ on No.						Very Dense	>50	C = Consolidation
l l 2	50% ⁽¹⁾ on No.	- P	000		Silty gravel and silty	]	<u>Consistency</u>	SPT ⁽²⁾ blows/foot	DD = Dry Density
5	han	g û	9	GM	gravel with sand	Fine-	Very Soft	0 to 2	K = Permeability
eq	Vore than Retained	ues	<u>9</u> 99	•	-	Grained Soils	Soft Medium Stiff	2 to 4 4 to 8	Str = Shear Strength
tain	- More than Retained						Stiff	8 to 15	Env = Environmental PiD = Photojonization
Rei	s	12	ĽA		Clayey gravel and		Very Stiff	15 to 30	Detector
E,	Gravels			GC	clayey gravel with sand		Hard	>30	
20%	ū		HA				Con	nponent Definit	tions
an	۲ ۲				Well-graded sand and	Descriptive		Range and Sieve Nu	
<b>₽</b>	<u>cto</u>	(2)		sw	sand with gravel, little	Boulders		er than 12"	
Jor I	Fra	Jes		••••	to no fines	Cobbles	3" to	12"	
	se					Grave	3" to	No. 4 (4.75 mm)	
	f Coar Sieve	N2%			Poorly-graded sand	Coarse Gra			
l N	C S			SP	and sand with gravel,	Fine Grave	3/4" t	o No. 4 (4.75 mm)	
l   li	re o 0.4		····		little to no fines	Sand		(4.75 mm) to No. 200	
Coarse-Grained Soils - More than 50% ⁽¹⁾ Retained on No. 200 Sieve	50% ⁽¹⁾ or More of Coarse Fraction Passes No. 4 Sieve				Silty sand and	Coarse Sar		(4.75 mm) to No. 10 (2	
l e	or	: (2)		SM	silty sand with	Medium Sa Fine Sand		0 (2.00 mm) to No. 40 0 (0.425 mm) to No. 20	
Soal	Pa;	Fines		•	gravel				
	50		<u></u>			Silt and Clay	Smal	ler than No. 200 (0.075	mm)
	Sands - {	12	//		Clayey sand and clayey sand with gravel	⁽³⁾ Estimat	ed Percent	age	<b>Moisture Content</b>
	San			SC	l clayey sand with graver	Percentag		•	Dry - Absence of moisture,
	<i>°</i>					by Weigh	t <u>Mo</u>	difier	dusty, dry to the touch
					Silt, sandy silt, gravelly silt,	<5	Trac	ce	Slightly Moist - Perceptible
e l		8 III		ML	silt with sand or gravel	<b>5</b> 1 <b>1 5</b>			moisture Moist - Damp but no visible
						5 to 15		ıhtly (sandy, silty, /ey, gravelly)	water
l g	ays				Clay of low to medium	15 to 30		idy, silty, clayey,	Very Moist - Water visible but
	U C C C C			CL	plasticity; silty, sandy, or			velly)	not free draining
Z	an			CL	gravelly clay, lean clay	30 to 49	Ver	y (sandy, s <b>il</b> ty,	Wet - Visible free water, usually
Passes No. 200 Sieve	Silts and Clays	quid Limit Less trian 30					clay	/ey, gravelly)	from below water table
Pa;		unt F	==		Organic clay or silt of low			Symbols	Cement grout
ore	-	Ē		OL	plasticity	Sampler	Blows/6" or		surface seal
ΙŽ		F					portion of 6"		Bentonite chips
( <u>1</u> )					Elastic silt, clayey silt, silt	2.0" OD	🦯 San	npler Type	chips
%		ъ II		мн	with micaceous or diato-	Split-Spoon		escription	Grout
- ¹					maceous fine sand or silt	Sampler (SPT)	Continuous F	Push	↔ seal
l sie	ays				Oley, of block is leasting to		Non-Standar	d Samp <b>l</b> er	Filter pack with
d S	U C C	R 🖌			Clay of high plasticity, sandy or gravelly clay, fat	Bulk sample			
	an	ë V		СН	clay with sand or gravel		(including Sh	Wall Tube Sampler elby tube)	Screened casing
Gra	silts					Grab Sample	<b>B</b>	Gro	ansducer
Fine-Grained Soils - 50% ⁽¹⁾ or More	Silts and Clays	nb 🖌			Organic clay or silt of		O Portion not re		End cap
	-	-		он	medium to high	(1) Percentage b		(5)	Combined USCS symbols used for
					plasticity	(1) Percentage L	rd Penetration Te	st fi	nes between 5% and 15% as
	0	- É	<u> </u>		Peat, muck and other	(ASTM D-158	86)		stimated in General Accordance
	Organic Soils			РТ	highly organic soils	(3) In General Ad			with Standard Practice for
⁹	, g s	The second secon		FI			actice for Descript ation of Soils (AST		Description and Identification of
	<u> </u>	¥				(4) Depth of grou			Coils (ASTM D-2488)
								ATD = At time of drillin Static water level (date)	
						1	<u>+</u>		
					ort are based on visual field and/or la				
					ot be construed to imply field or labo -2488 were used as an identification				oratory classification
method	13 UI AS		2-10/ 0	unu D		gaine for the Online		- Oyətəm.	DATE: PROJECT NO.
	enc	ct.		ي منافل					PROJECT NO.
	lspe		onsu arth+'		Ex	ploration	Log Key	/	DESIGNED BY:
	www.	aspecto				-		-	DRAWN BY: FIGURE NO.
		a limited	liability o	company					REVISED BY: A-1
L									I

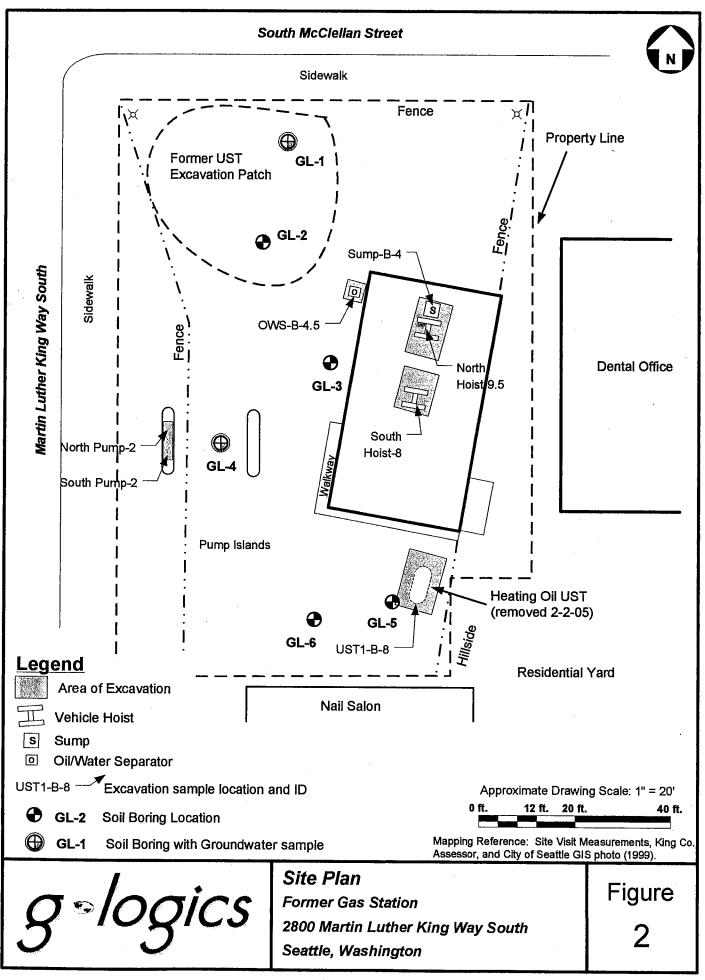



(SPECT STANDARD EXPLORATION LOG TEMPLATE P:\GINTWPROJECTSWBHA MT BAKER CLEANERS 160324.GPJ March 30, 2017





ASPECT STANDARD EXPLORATION LOG TEMPLATE P:\GINTWPROJECTSWBHA MT BAKER CLEANERS 160324.GPJ March 30, 2017




ASPECT STANDARD EXPLORATION LOG TEMPLATE P:/GINTWPROJECTS/MBHA MT BAKER CLEANERS 160324.GPJ March 30, 2017

	spe	ect	N	IBHA		Cleaners - 1	603	24	•	Environmental E		
				2864 S		Site Specific Location ) ft from S wall; vac	ant sic	le		Coordinates NA	Exploration Nu	
С	Contractor			ipment		Sampling Meth				Ground Surface (GS) Elev.	AB-5/AN	
Standard	l Enviror Probe	nmental	Direct	push ri	g	Percussion har	nmer			NA	Ecology Well BJP 800	Tag N N
	Operator		Exploratio		-	Work Start/Completion		s		Top of Casing Elev.	Depth to Water (B	
Steve	and Ru	ssell	Dire	ct push		3/8/2017				NA	10' (Stati	c)
epth Elev. feet) (feet)	Exp	oloration Co and Not	ompletion tes	Sample Type/ID	Analytical Sample Number & Lab Test(s)	Field Tests	Mat Tv	erial /pe		Description		D
							A 4		Concret	e		
		8" flush-i monume	mount ent and e surface seal				A 4 4	4				
+		Concrete	e suitace seai						Medium	FILL dense, moist, brown, silty SA	ND (SM): trace	ł
		× ×							gravel			
1		>		AMW-1-2.0						TOPSOIL		
				AMM		PID= 0.3 Sheen= None				hard, moist, dark brown, grav ice organics	elly, sandy SILT	
		> >								-		
+		Hydratec chips	d bentonite			PID= 0.2 Sheen= None				RECENT DEPOSIT		+
									Dense, r orange n	noist, tan, slightly gravelly silty nottling	y SAND (SM);	
+				AMW-1-4.0						J		+
		> >		AMV	8260	PID= 0.2 Sheen= None						
-									1			
5 +						PID= 0.2 Sheen= None						Ť
		×		9.0								
+	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			AMW-1-6.0		PID= 0.2			Hard. m	pist, tan, sandy SILT (ML) inte	erbedded with	+
		Þ.		AM		Sheen= None				mica-rich SAND (SP)		
$\downarrow$												
						PID= 0.2 Sheen= None						
				8.0								
+				AMW-1-8.0		PID= 0.5 Sheen= None	$\mathbb{H}$					t
		Colorado	o Silica 10/20 er pack	A		Sheen= None		$\parallel$	Hard m	pist, tan to gray, slightly clayey	/ SILT (ML)	-
+			•	0		PID= 0.5				ded with coarse, mica-rich SA		ļ
				AMW-1-10.0		Sheen= None						
	目	. ▼ 3/8/20	17 At time of	AMW								
10-		ground	dwater			PID= 0.6 Sheen= None						T
		. sampli	шg	11.0					Dense, r	noist to wet, gray silty SAND (	(SM); fine sand	
+				AMW-1-11.0	8260, PCE TCI	P PID= 0.8						+
	目			AM		- Sheen= None			]			
+		0.010" sl	lot screen			PID= 2.9						ļ
						Sheen= None						
Ť				.13.0		PID= 3.0 Sheen= None						Ť
				AMW-1-13.0								
+		·]		P A		PID= 4.3						ł
				o.		Sheen= None						
15-				AMW-1-15.0	NWTPH-Dx,				<b></b>	<b>A A A A A A A A A A</b>		
-				AMW	NWTPH-GX, 82 MTCA 5, PAH				Bottom o	of exploration at 15 ft. bgs.		
					8270D, PCE TC							
	gend		e 1.85" ID			Water Level	1			pration Log Key for explanation	1 Evolored	hia-
		ious core ious core				vvaler Level			of symbol		Explorat Log	liðf
Method					Water Level				Logged by		AB-5/AM	<b>W</b> -′
					I				Approved	uy.	Sheet 1 of	f 1

		М	BHA	- Mt Baker Cl		60324		Environmental Ex	ploration Lo	g
CONSULI			2864 S ipment	Project Address & Site . McClellan St., 5 ft fr	•			Coordinates NA Ground Surface (GS) Elev.	Exploration Num	
Standard Environ Probe Operator	mental	•	, push ri	-	Percussion ham /ork Start/Completio	nmer		NA Top of Casing Elev.	Depth to Water (Belo	
Steve and Rus	sell	Direc	ct push		3/8/2017			NA	6' (ATD)	-1
epth Elev. Exp eet) (feet)	loration Com and Notes		Sample Type/ID		Field Tests	Material Type		Description		Dep (ft
	Capped wit	with	AB-6-15.0         AB-6-12.0         AB-6-10.0         AB-6-8.0         AB-6-4.0         AB-6-2.0	8260 8260, PCE TCLP 8260, PCE TCLP	PID= 0.2 Sheen= None PID= 0.2 Sheen= None PID= 0.2 Sheen= None PID= 0.2 Sheen= None PID= 0.2 Sheen= None PID= 0.2 Sheen= None PID= 0.3 Sheen= None PID= 0.3 Sheen= None PID= 0.3 Sheen= None PID= 0.5 Sheen= None PID= 0.5 Sheen= None PID= 0.5 Sheen= None PID= 1.0 Sheen= None PID= 1.4 Sheen= None		Medium I Medium I Interbedd SAND (S Medium I with occ	FILL         dense, moist, brown to tan silty         RECENT DEPOSITS         hard, moist, tan, sandy SILT (M         dense, moist, tan, slightly claye         led with occasional thin beds o         iww); saturated soils 6'-8'         hard, moist, tan, sandy SILT (M         asional thin beds of mica-rich c         dense, moist to wet silty SAND         dense, moist to wet silty SAND         dium hard, moist to wet, sandy         is soils 13'-15'         f exploration at 15 ft. bgs.	IL) y silty SAND (SM) f gravelly medium IL) interbedded oarse SAND (SP) (SM) interbedded	
				Water Lev Geeler Level Ceveler Ceveler Ceveler	vel ATD		See Explo of symbols Logged by Approved	r: ALC	Exploration Log AB-6 Sheet 1 of 1	

ASPECT STANDARD EXPLORATION LOG TEMPLATE P:GINTWPROJECTSWBHA MT BAKER CLEANERS 160324.GPJ March 30, 2017



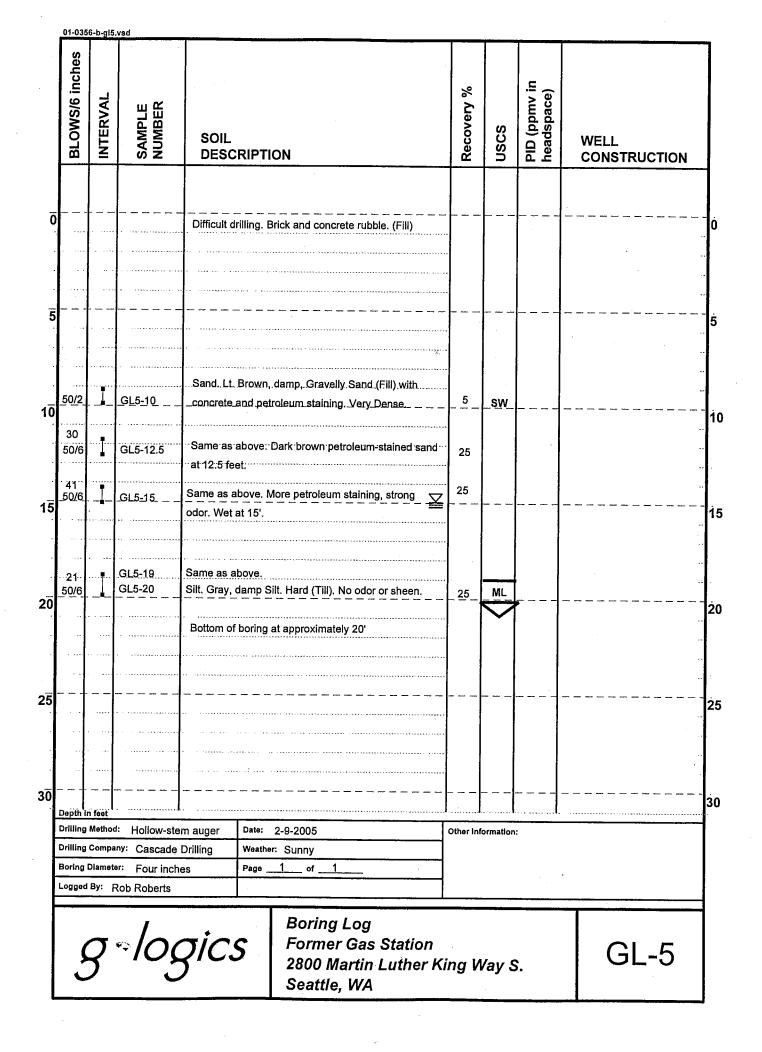
01-0356-B-F2.vsd Project File:

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTIO	N			Recovery %	uscs	PID (ppmv in headspace)	WELL CONSTRUCTION	
	· ····		Slighty s	ilty sand ir	n cuttings							
8 - - <u>11</u> - 12	· · · · · · ·	GL1-5	Sand. Lt. Medium		amp, Gravel	ly Silty Sand	(Fill)	. 80	 SW			
4 - 11 - 14		GL1-10	Sand. Gi	ay, damp,	Gravelly Sa	and. Medium	Dense.	80	SM	· ·		
4 8 12			Sand. Mo	bist to Wet	, Oxidized, ç	jray to brown	graveliy					  
				dium Den			¥					
5076	<b>1</b>	No Sample	1		approximat	and. Very Del ely 20.5'	nse (Till)	_ 10				  
· · · ·	 		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
Depth i	 n feet											· · · · · · · · · · · · · · · · · · ·
Drilling Boring	Diamet	any: Cascade	Drilling	Date: 2 Weather: Page				Groun		sample G	L-1 collected by peristaltic ary well screen	
	9		<b>γi</b> C.	s		Log r Gas Sta lartin Lu		ing V	Vay S	 5.	GL-1	-

~ 4

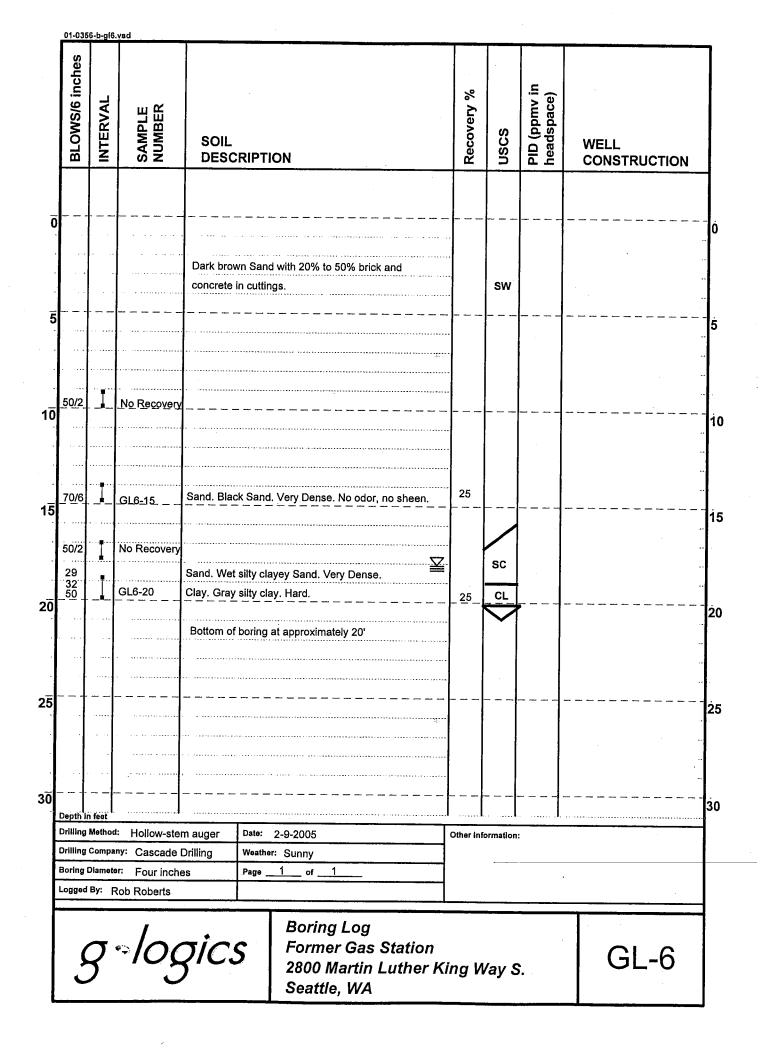
.

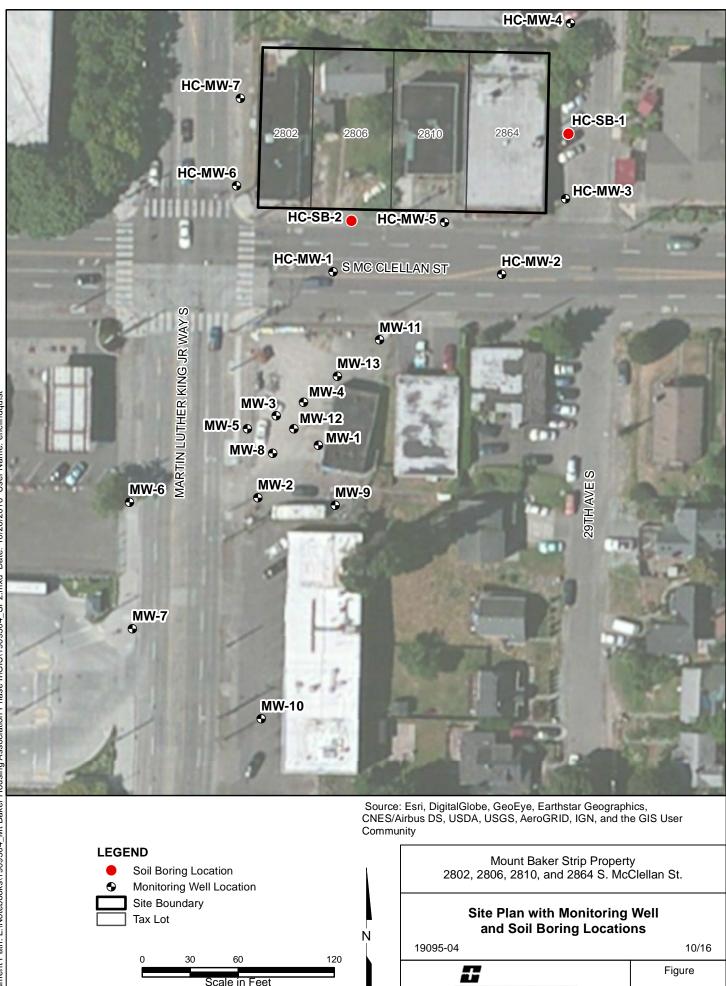
	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	CRIPTION	Recovery %	USCS	PID (ppmv in headspace)	WELL CONSTRUCTION
Ō				Sand. Lt petroleu	. Brown silty sand in cuttings. Slig m odor.	ht			
	11 12 9		GL2-4		. Brown, damp, Gravelly Sand (Fil No Odors.	I) Medium 90			
5							sw		
10	6 7 10	· · · •	GL2-9	Same as	above	80			
				•	<u>&gt;</u>				
15	4	·	GL2-14	Loose.	oist to Wet, dark brown silty sand	(native). 60	SM		
	12 20 21		.GL2-19		.above. Dense, Wet	50			
20		· · · · · · · · · · · · · · · · · · ·		Bottom o	of boring at approximately 19.5'				
25	 	·							
		· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		······			
30	Depth i	n feet							
	Boring	Compa Diamete	iny: Cascade	Drilling	Date:         2-9-2005           Weather:         Sunny           Page	Other In	formation	:	
	\$	7	-10	qic.	<i>S</i> <i>Boring Log</i> <i>Former Gas S</i> 2800 Martin L		Vav S	 6.	GL-2


÷ *

,...**,** 

DI ONICIE :	BLUWS/b incnes	INTERVAL	SAMPLE NUMBER	SOIL	CRIPTI	ON	•		Recovery %	uscs	PID (ppmv in headspace)	WELL	TRUCTION
				· · · · · · · ·									
						and gray sa	nd in cuttings.	No		[			· •• •• •• •• •• •• •• ••
	••••			petroleu	m odor.			······					•
							·····	·····					
5				Sand. G	ay, dam	p, Silty grav	elly Sand. Me	dium	·				
(	5 9		GL3-6	Dense. I					75	SM			
	3						•••••						
- 3	3	·	GL3-11	Same as					80_				
	*				••••••••••						•		
				Bottom of	·boring a	it approxima	itely 11'						
	-												
					· · · · · · · · · · · · · · · · · · ·				]				
				· · · · · · · · · · · · ·									
							· · · · · · · · · · · · · · · · · · ·	••••••					
				• ••••									
	•												
•								ţ.		ĺ			
	+												
Dept	th in	feet				·····							
_	-	Method			+	2-9-2005			Other inf	ormation			
_		Compa Diamete	ny: Cascade			Sunny							
		_	Four inch Rob Roberts	es	Page	of	1						
	3	3		zic.	5	2800	g Log er Gas Si Martin Lu e, WA		ng V	lay S	· · · · · · · · · · · · · · · · · · ·		GL-3


	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL	CRIPTI	ON			Recovery %	uscs	PID (ppmv in headspace)	WEL	L STRUCTION
							2						
ō													
	· · · ·												
	-5	<b>F</b>											
	5 6		GL4-4			ind gray, da m Dense.	mp, slightly g	ravelly, sl.	. 80	SP			
5											<b></b>		
						-							
	3 6				•••••		•						
	12		GL4-9	Same a	s above		·····		. 70				
10													
	4 5	<b>p</b>											
-	• • 7•••		GL4-14	Same as	above. I	Noist to wet.		Z	70				
15													<b></b>
·	6 12	·		Clay Gr	on Siltu	Clay. Hard.				CL			
	19…	<b>j</b>	GL4-19		Seri Oilty	Clay, Hald.					•		
20				Bottom	of boring a	at approxima	ately 19'			-~-			
		•• ••••			· · · · · · · · · · · · · · · · · · ·		•••••••						
					· · · · · · · · · · · · · · · · · · ·		······································						
25										·			
_													
30	Depth i	n feet		<u> </u>		·····							
- F		Metho				2-9-2005			Other Inf	ormation	1		<u> </u>
-		Compa Diamet	ny: Cascade	· · · · · · · · ·		Sunny	1						ted by peristaltic
- F			er: Four incl Rob Roberts	162	Page	or	<u></u>		pump	nrough	a tempo	rary well s	creen
	5	9		zic	S		er Gas S Martin L		ing V	Vay S	S.		GL-4


••



÷

.





Document Path: L:Notebooks/1909504_Mt Baker Housing Association Phase INGIS/1909504_SP2.mxd Date: 10/26/2016 User Name: ericlindquist

2

HARTCROWSER

#### Key to Exploration Logs

#### Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

#### Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on the

logs. SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blows/Foot	SILT or CLAY Consistency	Standard Penetration Resistance (N) in Blows/Foot	Approximate Shear Strength in TSF
Very loose	0 to 4	Very soft	0 to 2	<0.125
Loose	4 to 10	Soft	2 to 4	0.125 to 0.25
Medium dense	10 to 30	Medium stiff	4 to 8	0.25 to 0.5
Dense	30 to 50	Stiff	8 to 15	0.5 to 1.0
Very dense	>50	Very stiff	15 to 30	1.0 to 2.0
		Hard	>30	>2.0

#### Sampling Test Symbols

1.5" I.D. Split Spoon

Cuttings

Shelby Tube (Pushed)

Bag Core Run

Grab (Jar)

3.0" I.D. Split Spoon

#### SOIL CLASSIFICATION CHART

			SYM	BOLS	TYPICAL
M	AJOR DIVISI	ONS	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS	•••	SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)	SP		POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00120				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
н	GHLY ORGANIC S	SOILS	ــلـــــلــ - ــلـــــــــــــــــــــــ	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

#### Moisture

Dry Little perceptible moisture

Damp Some perceptible moisture, likely below optimum

Moist Likely near optimum moisture content

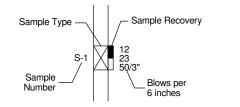
Wet Much perceptible moisture, likely above optimum

Minor Constituents	Estimated Percentage
Trace	<5
Slightly (clayey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 - 50

#### Laboratory Test Symbols

GS	Grain Size Classification
CN	Consolidation
UU	Unconsolidated Undrained Triaxial
CU	Consolidated Undrained Triaxial
CD	Consolidated Drained Triaxial
QU	Unconfined Compression
DS	Direct Shear
K	Permeability
PP	Pocket Penetrometer
	Approximate Compressive Strength in TSF
ΤV	Torvane
	Approximate Shear Strength in TSF
CBR	California Bearing Ratio
MD	Moisture Density Relationship
AL	Atterberg Limits
	Water Content in Percent
	Liquid Limit
	Natural
	Plastic Limit
PID	Photoionization Detector Reading
CA	Chemical Analysis
рт	In City Density in DOE

DT In Situ Density in PCF

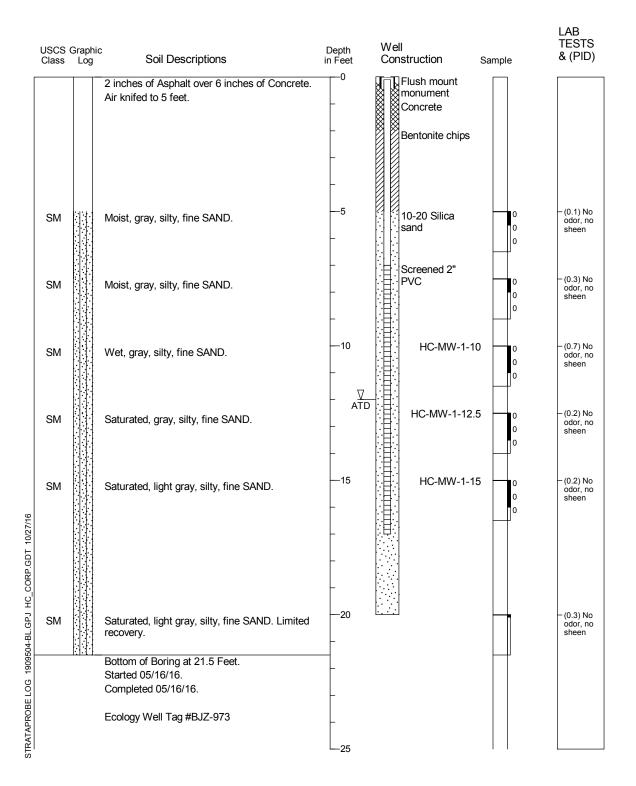

OT Tests by Others

#### **Groundwater Indicators**

Groundwater Level on Date or (ATD) At Time of Drilling

♀ Groundwater Seepage
 ♦ (Test Pits)

#### Sample Key





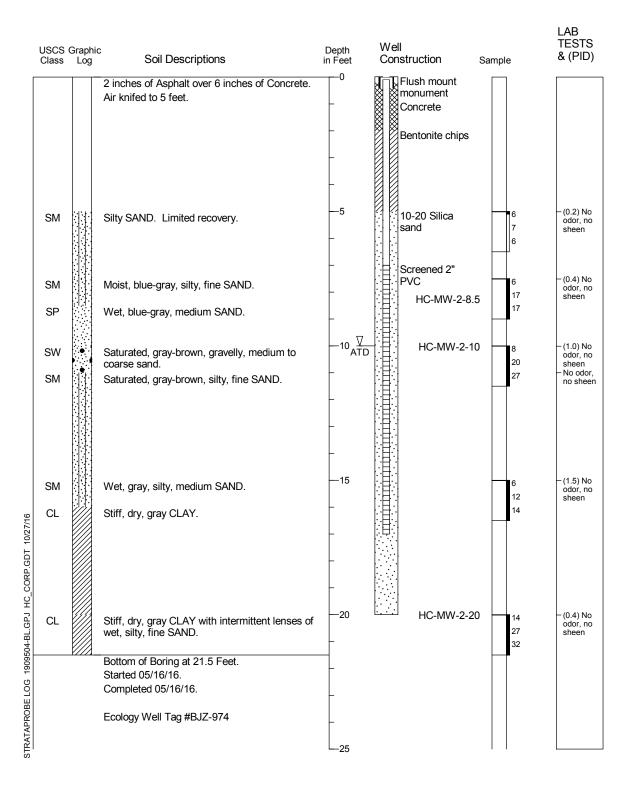

KEY SHEET 1909504-BL-10-16.GPJ HC_CORP.GDT 10/18/16

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Location: 47° 34' 42.06" N 122° 17' 44.98" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum: Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



1. Refer to Figure A-1 for explanation of descriptions and symbols.


2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

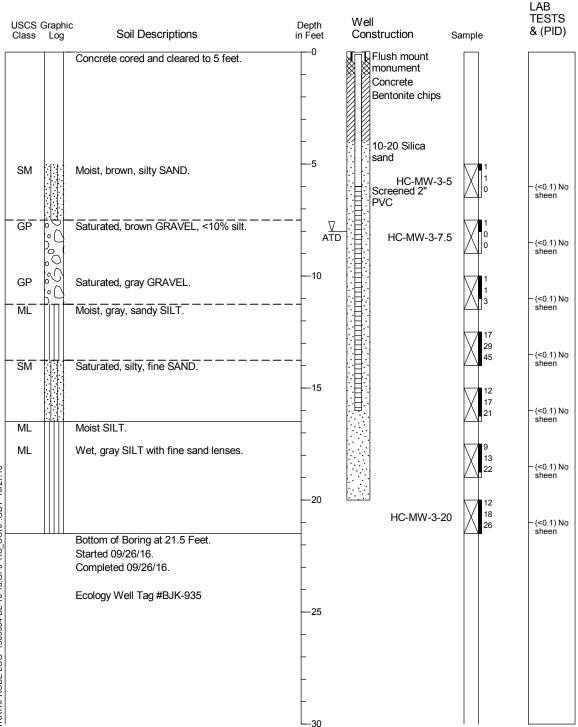
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.



Location: 47° 34' 42.07" N 122° 17' 43.44" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum: Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



1. Refer to Figure A-1 for explanation of descriptions and symbols.


2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

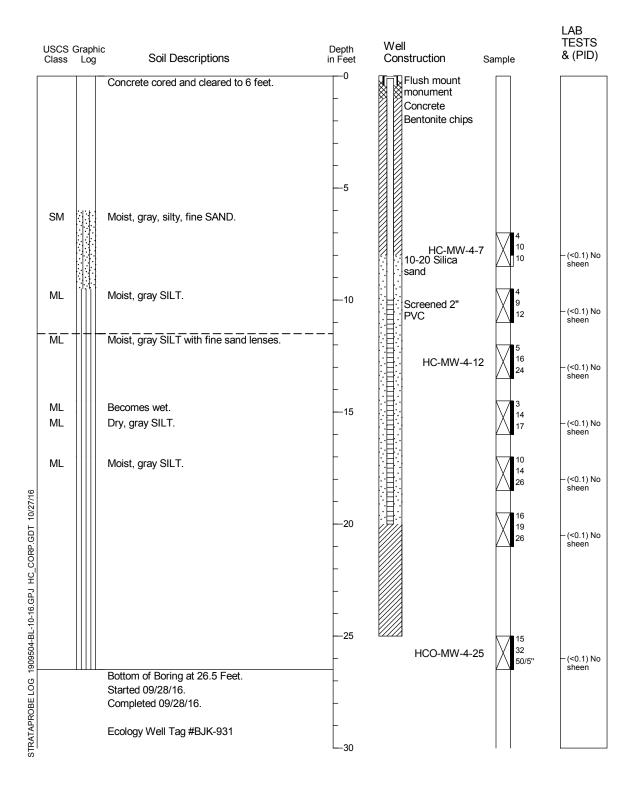


Location: 47° 34' 42.54" N 122° 17' 42.88" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum: Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



STRATAPROBE LOG 1909504-BL-10-16.GPJ HC_CORP.GDT 10/27/16

HARTCROWSER 19095-04 9/16 Figure A-4


1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2489) unless atteautions.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: 47° 34' 43.63" N 122° 17' 42.87" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum: Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

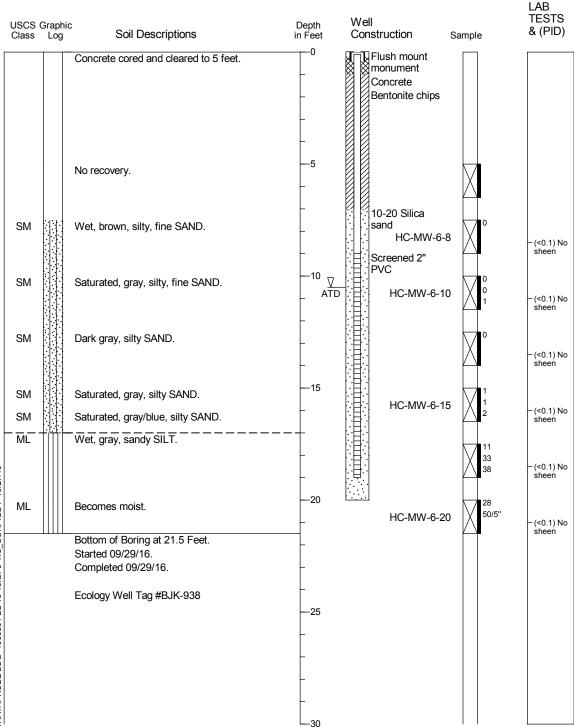


Location: 47° 34' 42.38" N 122° 17' 43.98" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby

USCS ( Class	Graph Log		Depth in Feet	Well Construction Sa	ample	LAB TESTS & (PID)
		Concrete cored and cleared to 7 feet to avoid sewer line.	0	Flush mount monument Concrete Bentonite chips		
			5 -	10-20 Silica sand		
SM		_, Wet, brown, silty SAND.		I:⊟: Screened 2"	2	
		Wet, brown, sandy SILT.		HC-MW-5-7.5	33	- (1.0) No sheen
SP		Saturated, brown, fine SAND.  Saturated, brown SILT with fine sand lenses.		HC-MW-5-10	3 9 15	– (8.0) No sheen
ML		Moist, gray SILT with lenses of fine sand.	-	HC-MW-12.5	8 20 29	- (12) No sheen
ML		Becomes saturated.	—15 -		16 35 29	– (5.0) No sheen
ML		Moist, gray, sandy SILT.	-		3 23 27	−(<0.1) No sheen
		December with	20		4	
ML - <u>SP</u> -	ĻЩ	Becomes wet.		HC-MW-5-20	17	
		Bottom of Boring at 21.5 Feet. Started 09/29/16. Completed 09/29/16.			39	
		Ecology Well Tag #BJK-937	- 25			
			-			
			-			
1			L-30		1 1	

**HARTCROWSER** 19095-04 9/16 Figure A-6


Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

time.

STRATAPROBE LOG 1909504-BL-10-16.GPJ HC_CORP.GDT 10/27/16

Location: 47° 34' 42.58" N 122° 17' 45.88" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



STRATAPROBE LOG 1909504-BL-10-16.GPJ HC_CORP.GDT 10/27/16

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

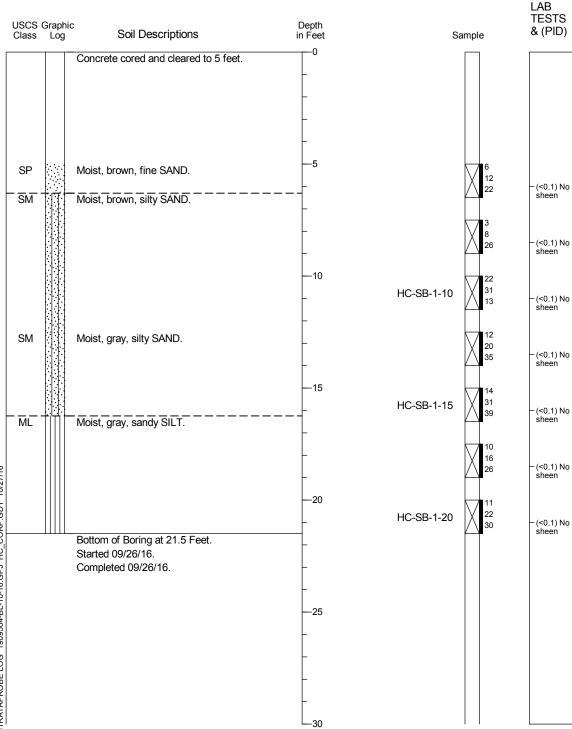


Location: 47° 34' 43.12" N 122° 17' 45.86" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby

USCS Class	Graphi Log	c Soil Descriptions	Depth in Feet	Well Construction Sample	LAB TESTS & (PID)
		Concrete cored and cleared to 7 feet.	0  5	Flush mount monument Concrete Bentonite chips	
ML		Wet, gray, sandy SILT.	-	10-20 Silica	
			-	HC-MW-7-7.5	– (<0.1) No sheen
ML		Wet, blue/gray to gray, sandy SILT.	10		−(<0.1) No sheen
ML		Saturated to wet, gray, sandy SILT.		8 28 53	- (<0.1) No sheen
SM		Moist, brown, silty SAND with cobbles.		50/6"	– (<0.1) No sheen
ML		Wet, gray, sandy SILT with fine sand lenses.		15 25 31	- (<0.1) No
SM		Wet, gray, silty SAND.	20	HC-MW-7-20	sheen - (<0.1) No
	<u></u> .	Bottom of Boring at 21.5 Feet. Started 09/30/16. Completed 09/30/16.			sheen
- <del>SM</del> -		Ecology Well Tag #BJK-932	_ —25 _		
			_		
			30		

**HARTCROWSER** 19095-04 9/16 Figure A-8


Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

time.

# **Boring Log HC-SB-1**

Location: 47° 34' 42.95" N 122° 17' 42.87" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby

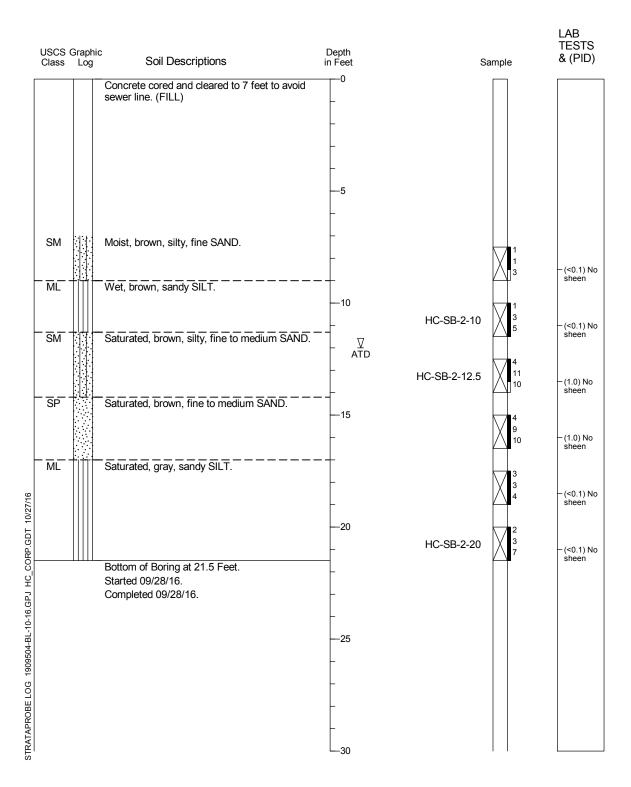


**HARTCROWSER** 19095-04 9/16 Figure A-9

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).


4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

STRATAPROBE LOG 1909504-BL-10-16.GPJ HC_CORP.GDT 10/27/16

# Boring Log HC-SB-2

Location: 47° 34' 42.38" N 122° 17' 44.83" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



**HARTCROWSER** 19095-04 9/16 Figure A-10

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

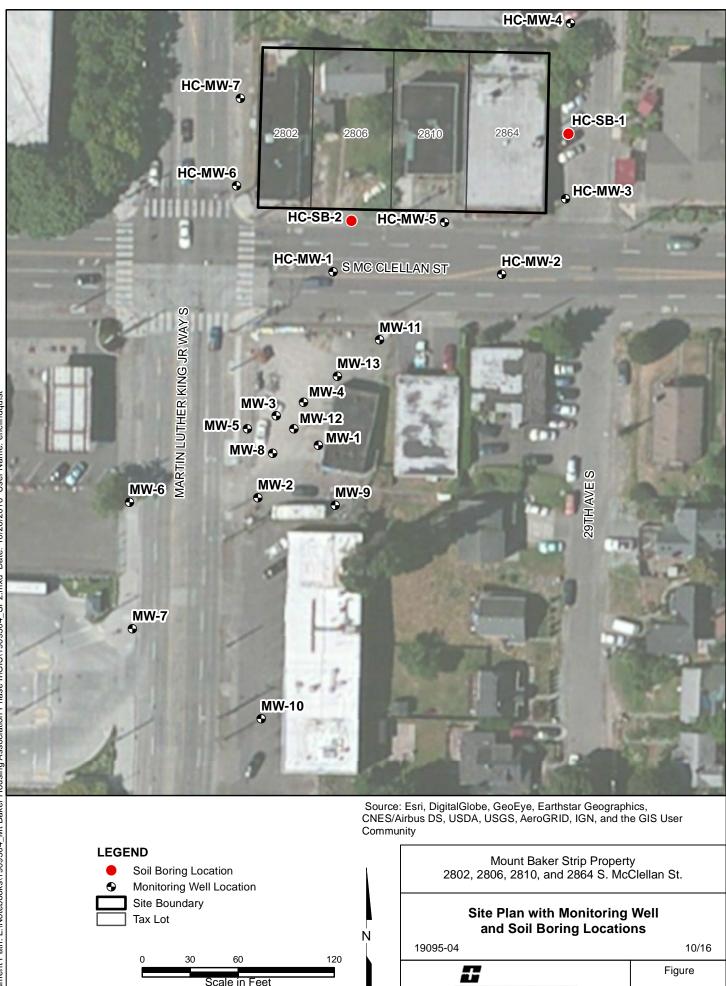
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

<b>BLOWS/6 inches</b>	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
								8" Boring
<u> </u>			Surface: S	oil and subsurface gravel	   			_Well Box
5								Bentonite Seal
				I, poorly graded, Olive, moist, loose, ense, not compacted, fine to medium sand		SМ 		
				ater encountered at ~ 13-feet color change to Olive Grey at 13-14-feet				hose
								2/12 Sand
			Sandy Sili	, Grey, wet, very dense, till. 22-feet		ML		2.62-inch diameter x 26- inch long ceramic diffuser with
					   			viton gaskets and stainless steel fittings 
Dept	th in fe		J					
Drillin Borin	g Diamet	any: Cascade	Drilling	Date:         8-19-05           Weather:         Sunny           Page         1	Other In	formatio	n:	
	9	-10	gic	<i>S</i> Boring/Well Log 2800 MLK Way Sout Seattle, WA	h			IP-1

BLOWS/6 inches		INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
									8" Boring
D				Surface: S	oil and subsurface gravel				
5						-			Bentonite Seal
5	- +				l, poorly graded, Olive, moist, loose, ense, not compacted, fine to medium sand		SM		
					color change to Olive Grey at 12-13-feet				1/2" I.D. EPDM hose
5									2/12 Sand
				Sandy Sili	r, Grey, wet, very dense, till. 22-feet		ML		2.62-inch diameter x 26- inch long ceramic diffuser with viton gaskets and stainless steel
5						- - -			fittings
De	pth	in fee				·L	L		
Dril Bor	lling	Diamete	ny: Cascade		Date:         8-19-05           Weather:         Sunny           Page            Of	Other In	formatio	n:	
	5	3	-105	gic	<i>S</i> Boring/Well Log 2800 MLK Way South Seattle, WA	'n			IP-2

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
									8" Boring
0				Surface: A	sphalt and subsurface gravel				
5									Bentonite Seal
0					I, poorly graded, Olive, moist, loose, ense, not compacted, fine to medium sand		SM		
					color change to Olive Grey at 12-feet				%" LD. EPDM hose
5									2/12 Sand
5				Sandy Sill	:, Grey, wet, very dense, till. 22-feet	 - -	ML		2.62-inch diameter x 26- inch long ceramic diffuser with viton gaskets and stainless steel
5						- 			fittings
0	Dept	h in fe					L		
ļ	Drilling	Diamete	ny: Cascade		Date:         8-19-05           Weather:         Sunny           Page         1	Other In	formatio	n:	
		9	-10	gic	<i>S</i> Boring/Well Log 2800 MLK Way South Seattle, WA	'n			IP-3


____

------

	BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
									8" Boring
				Surface: C	oncrete and subsurface gravel				
_									
<b> </b>									Bentonite Seal
				Silty Sand	, poorly graded, Olive, moist, loose,		SM		
_				medium d	ense, not compacted, fine to medium sand				
				Groundwa	ter and odor encountered at ~ 13-feet				½" I.D. EPDM
					color change to Olive Grey at 13-feet	-			
									2/12 Sand
_									
				Sandy Silf	, Grey, wet, very dense, till.		ML		2.62-inch diameter x 26-
				E.O.B. at	22-feet		$\checkmark$		inch long ceramic diffuser with viton gaskets and stainless steel
_	-								fittings — — — — — — — — — — — — — — — — — — —
D	 ept	h in fe	et	·	·	L	L	L	
⊢		g Metho	d: Hollow-ste any: Cascade		Date: 8-19-05 Weather: Sunny	Other In	formatio	n:	
в	oring	Diamet			Page _ 1 _ of _ 1				
	ogge	d By:	Harrington		•				
		9	-109	gic	<i>S</i> Boring/Well Log 2800 MLK Way South Seattle, WA	ל			IP-4

- -

BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
								8" Boring
	+		Surface: A	sphalt and subsurface gravel				Well Box
								Bentonite Seal
				l, poorly graded, Olive, moist, loose, ense, not compacted, fine to medium sand		SM		
			Groundwa	ater encountered at ~ 13-feet				1/2" I.D. EPDM hose
			As above	color change to Olive Grey at 17-19-feet				2/12 Sand
	+		Sandy Sil	t, Grey, wet, very dense, till.		— — — мl		2.62-inch diameter x 26- inch long ceramic
			E.O.B. at	22-feet				diffuser with viton gaskets and stainless steel fittings
Dep	th in fee							 
Drillin Drillin Borin	ng Method ng Compar ng Diamete	: Hollow-ste	Drilling	Date:         8-19-05           Weather:         Sunny           Page         1	Other In	formatio	n:	
	9	/	qic	<i>S</i> <i>Boring/Well Log</i> <i>2800 MLK Way Sour</i> <i>Seattle, WA</i>	th			IP-5



Document Path: L:Notebooks/1909504_Mt Baker Housing Association Phase INGIS/1909504_SP2.mxd Date: 10/26/2016 User Name: ericlindquist

2

HARTCROWSER

#### Key to Exploration Logs

#### Sample Description

Classification of soils in this report is based on visual field and laboratory observations which include density/consistency, moisture condition, grain size, and plasticity estimates and should not be construed to imply field nor laboratory testing unless presented herein. Visual-manual classification methods of ASTM D 2488 were used as an identification guide.

Soil descriptions consist of the following:

Density/consistency, moisture, color, minor constituents, MAJOR CONSTITUENT, additional remarks.

#### Density/Consistency

Soil density/consistency in borings is related primarily to the Standard Penetration Resistance. Soil density/consistency in test pits and probes is estimated based on visual observation and is presented parenthetically on the

logs. SAND or GRAVEL Density	Standard Penetration Resistance (N) in Blows/Foot	SILT or CLAY Consistency	Standard Penetration Resistance (N) in Blows/Foot	Approximate Shear Strength in TSF
Very loose	0 to 4	Very soft	0 to 2	<0.125
Loose	4 to 10	Soft	2 to 4	0.125 to 0.25
Medium dense	10 to 30	Medium stiff	4 to 8	0.25 to 0.5
Dense	30 to 50	Stiff	8 to 15	0.5 to 1.0
Very dense	>50	Very stiff	15 to 30	1.0 to 2.0
		Hard	>30	>2.0

#### Sampling Test Symbols

1.5" I.D. Split Spoon

Cuttings

Shelby Tube (Pushed)

Bag Core Run

Grab (Jar)

3.0" I.D. Split Spoon

#### SOIL CLASSIFICATION CHART

			SYM	BOLS	TYPICAL
IVI	AJOR DIVISI	JNS	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS	•••	SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)	NO FINES)		POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
00120				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				он	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
н	GHLY ORGANIC S	SOILS	ﯩﻠﯩ ﻋﻠﯩ . ﻋﻠﯩ ﻋﺎ	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

#### Moisture

Dry Little perceptible moisture

Damp Some perceptible moisture, likely below optimum

Moist Likely near optimum moisture content

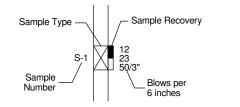
Wet Much perceptible moisture, likely above optimum

Minor Constituents	Estimated Percentage
Trace	<5
Slightly (clayey, silty, etc.)	5 - 12
Clayey, silty, sandy, gravelly	12 - 30
Very (clayey, silty, etc.)	30 - 50

#### Laboratory Test Symbols

GS	Grain Size Classification
CN	Consolidation
UU	Unconsolidated Undrained Triaxial
CU	Consolidated Undrained Triaxial
CD	Consolidated Drained Triaxial
QU	Unconfined Compression
DS	Direct Shear
К	Permeability
PP	Pocket Penetrometer
	Approximate Compressive Strength in TSF
ΤV	Torvane
	Approximate Shear Strength in TSF
CBR	California Bearing Ratio
MD	Moisture Density Relationship
AL	Atterberg Limits
	Water Content in Percent
	Liquid Limit
	Natural
	Plastic Limit
PID	Photoionization Detector Reading
CA	Chemical Analysis
DT	In City Density in DOE

DT In Situ Density in PCF

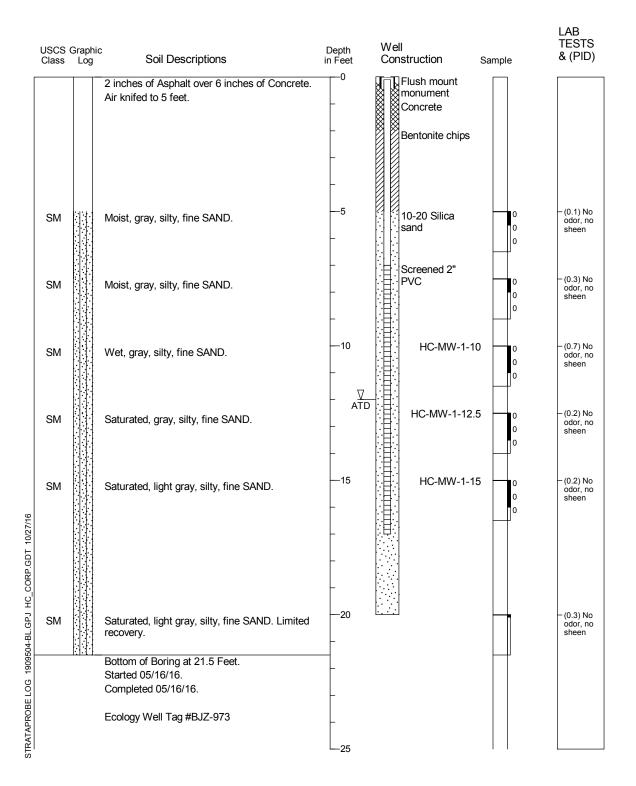

OT Tests by Others

#### **Groundwater Indicators**

Groundwater Level on Date or (ATD) At Time of Drilling

♀ Groundwater Seepage
 ♦ (Test Pits)

#### Sample Key





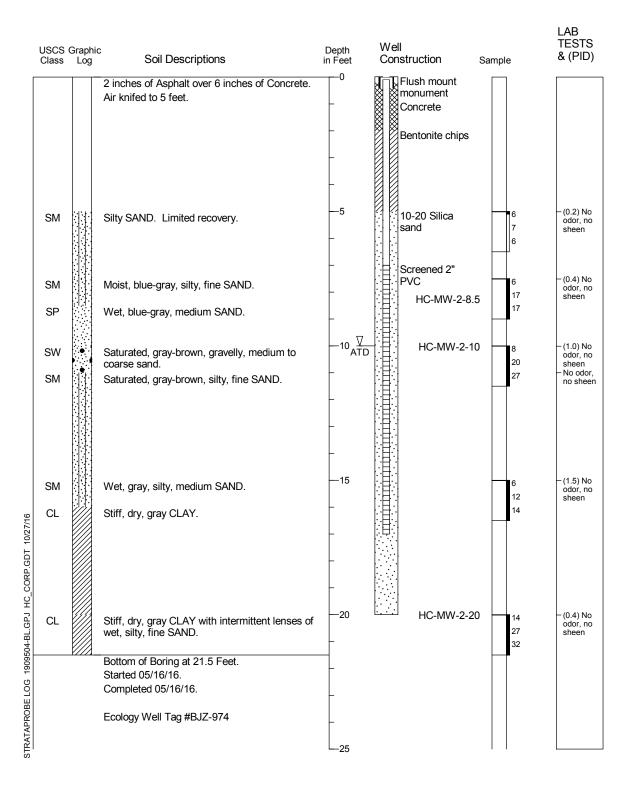

KEY SHEET 1909504-BL-10-16.GPJ HC_CORP.GDT 10/18/16

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Location: 47° 34' 42.06" N 122° 17' 44.98" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum: Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



1. Refer to Figure A-1 for explanation of descriptions and symbols.


2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

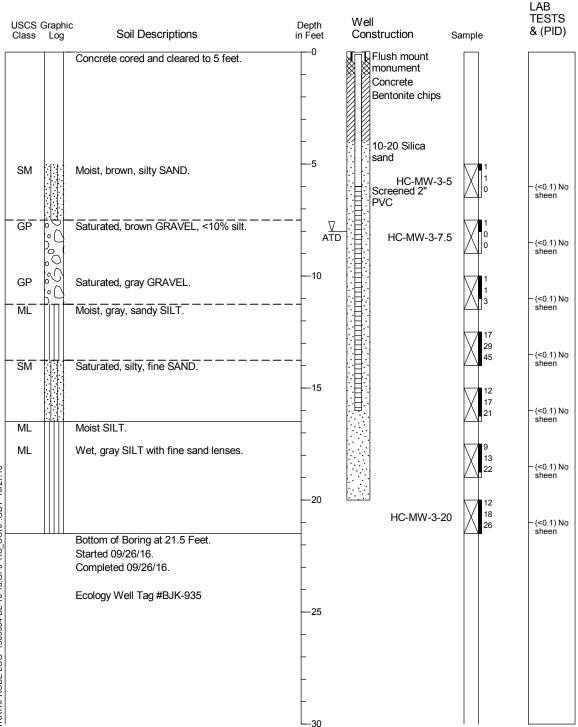
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.



Location: 47° 34' 42.07" N 122° 17' 43.44" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum: Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



1. Refer to Figure A-1 for explanation of descriptions and symbols.


2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

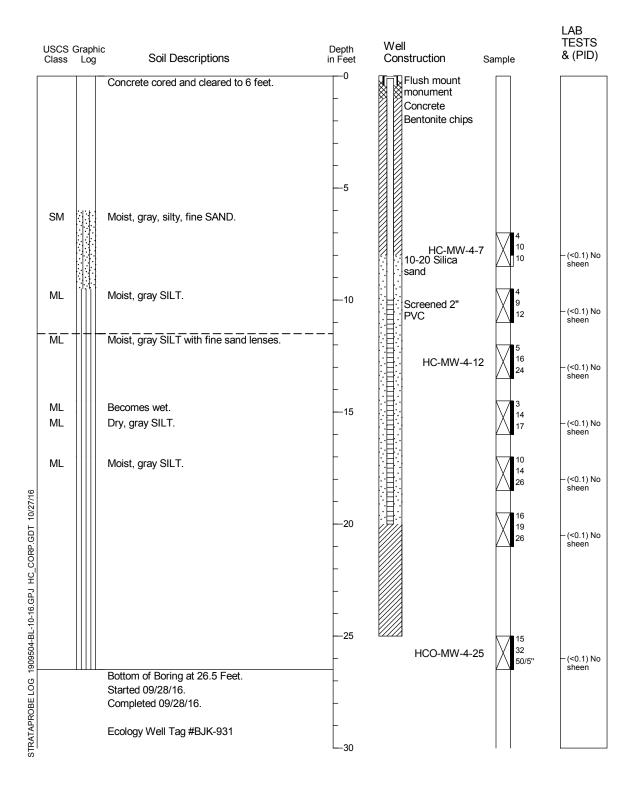


Location: 47° 34' 42.54" N 122° 17' 42.88" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum: Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



STRATAPROBE LOG 1909504-BL-10-16.GPJ HC_CORP.GDT 10/27/16

HARTCROWSER 19095-04 9/16 Figure A-4


1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2489) unless atteautions.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

Location: 47° 34' 43.63" N 122° 17' 42.87" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum: Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

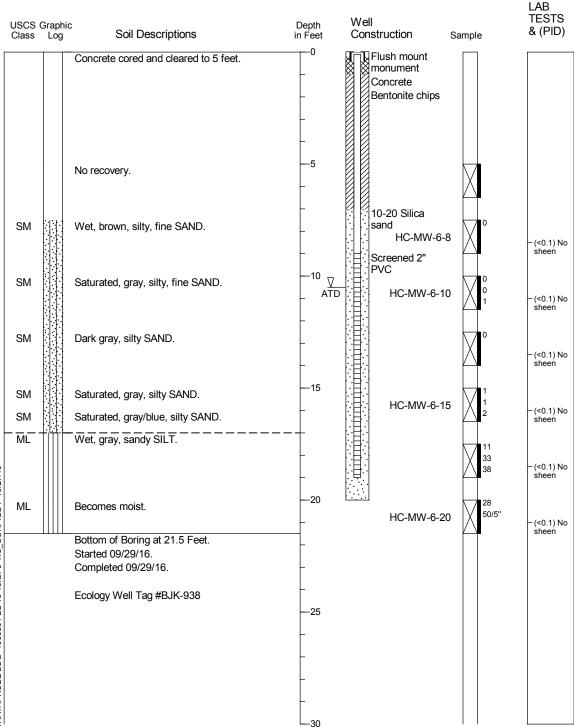


Location: 47° 34' 42.38" N 122° 17' 43.98" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby

Concrete cored and cleared to 7 feet to avoid       0       Image: Sever line.       0       Image: Sever line.       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td< th=""><th>USCS ( Class</th><th>Graph Log</th><th></th><th>Depth in Feet</th><th>Well Construction Sa</th><th>ample</th><th>LAB TESTS &amp; (PID)</th></td<>	USCS ( Class	Graph Log		Depth in Feet	Well Construction Sa	ample	LAB TESTS & (PID)
SM       112       Wet, brown, silty SAND.         ML       Wet, brown, sandy SILT.       Screened 2"         SP       Saturated, brown, fine SAND.       -10         ML       Saturated, brown SILT with lenses of fine sand.       -10         ML       Becomes saturated.       -15         ML       Becomes wet.       -15         SP       Fine to medium SAND.       -20         ML       Becomes wet.       -20         HC-MW-5-20       417         Bottom of Boring at 21.5 Feet.       -25         Started 09/29/16.       -25         Ecology Well Tag #BJK-937       -25				- 0	Concrete		
ML       Wet, brown, sandy SILT.         SP       Saturated, brown, fine SAND.         ML       Saturated, brown SILT with fine sand lenses.         ML       Saturated, brown SILT with fine sand lenses.         ML       Moist, gray SILT with lenses of fine sand.         ML       Becomes saturated.         ML       Becomes saturated.         ML       Becomes wet.         SP       Fine to medium SAND.         Solution of Boring at 21.5 Feet.         Started 09/29/16.         Ecology Well Tag #BJK-937				—5 -			
ML       Wet, brown, sandy SiL1.	SM					2	
ML       Saturated, brown SILT with fine sand lenses.         ML       Moist, gray SILT with lenses of fine sand.         ML       Becomes saturated.         ML       Becomes saturated.         ML       Moist, gray, sandy SILT.         ML       Becomes wet.         SP       Fine to medium SAND.         Bottom of Boring at 21.5 Feet.         Statured 09/29/16.         Completed 09/29/16.         Ecology Well Tag #BJK-937			·		HC-MW-5-7.5	3	- (1.0) No sheen
ML       Moist, gray SILT with lenses of fine sand.         ML       Becomes saturated.         ML       Moist, gray, sandy SILT.         ML       Becomes wet.         SP       Fine to medium SAND.         Bottom of Boring at 21.5 Feet.         Started 09/29/16.         Completed 09/29/16.         Ecology Well Tag #BJK-937					HC-MW-5-10		- (8.0) No
ML Moist, gray, sandy SILT. ML Becomes wet. SP Fine to medium SAND. Bottom of Boring at 21.5 Feet. Started 09/29/16. Ecology Well Tag #BJK-937 -25 -25 -25	ML		Moist, gray SILT with lenses of fine sand.	-	HC-MW-12.5	20	– (12) No
ML       Becomes wet.         SP       Fine to medium SAND.         Bottom of Boring at 21.5 Feet.         Started 09/29/16.         Completed 09/29/16.         Ecology Well Tag #BJK-937	ML		Becomes saturated.	—15 -		35	– (5.0) No sheen
ML       Image: Becomes wet.       Image: HC-MW-5-20       Image: Becomes wet.         SP       Fine to medium SAND.       Image: HC-MW-5-20       Image: Becomes wet.         Bottom of Boring at 21.5 Feet.       Started 09/29/16.       Image: Becomes wet.       Image: Becomes wet.         Completed 09/29/16.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.         Ecology Well Tag #BJK-937       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.         Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.         Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.         Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.         Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.         Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.         Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.       Image: Becomes wet.	ML		Moist, gray, sandy SILT.	-		23	- (<0.1) No sheen
SP       Fine to medium SAND.         Bottom of Boring at 21.5 Feet.         Started 09/29/16.         Completed 09/29/16.         Ecology Well Tag #BJK-937         -25         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -			December with	20		4	
Bottom of Boring at 21.5 Feet.	5	ĻЩ,			HC-MW-5-20		
-2525			Bottom of Boring at 21.5 Feet. Started 09/29/16.			39	
	1		Ecology Well Tag #BJK-937	- 25			
				-			

**HARTCROWSER** 19095-04 9/16 Figure A-6


Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

time.

STRATAPROBE LOG 1909504-BL-10-16.GPJ HC_CORP.GDT 10/27/16

Location: 47° 34' 42.58" N 122° 17' 45.88" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



STRATAPROBE LOG 1909504-BL-10-16.GPJ HC_CORP.GDT 10/27/16

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

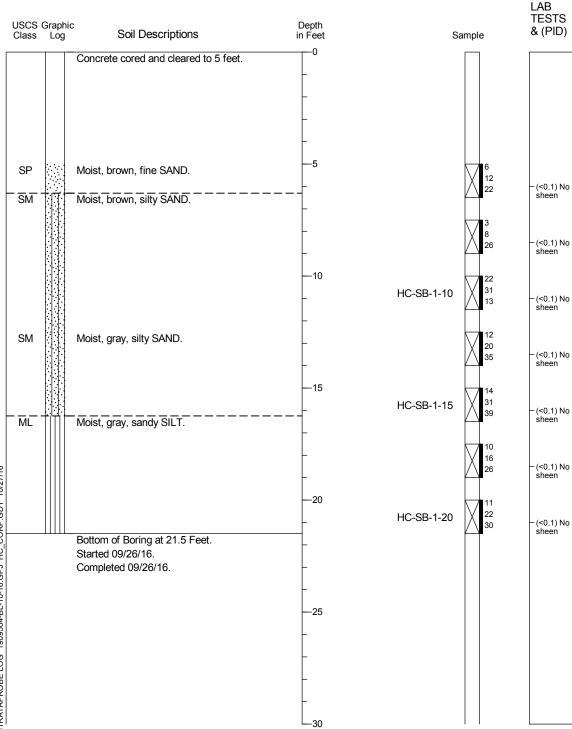


Location: 47° 34' 43.12" N 122° 17' 45.86" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby

USCS Class	Graphi Log	c Soil Descriptions	Depth in Feet	Well Construction Sample	LAB TESTS & (PID)
		Concrete cored and cleared to 7 feet.	0  5	Flush mount monument Concrete Bentonite chips	
ML		Wet, gray, sandy SILT.	-	10-20 Silica	
			-	HC-MW-7-7.5	- (<0.1) No sheen
ML		Wet, blue/gray to gray, sandy SILT.	10		− (<0.1) No sheen
ML		Saturated to wet, gray, sandy SILT.		8 28 53	– (<0.1) No sheen
SM		Moist, brown, silty SAND with cobbles.		50/6"	– (<0.1) No sheen
ML		Wet, gray, sandy SILT with fine sand lenses.			- (<0.1) No
SM		Wet, gray, silty SAND.	20	HC-MW-7-20	sheen - (<0.1) No
	<u></u> .	Bottom of Boring at 21.5 Feet. Started 09/30/16. Completed 09/30/16.			sheen
- SM -		Ecology Well Tag #BJK-932	_ —25 _		
			30		

**HARTCROWSER** 19095-04 9/16 Figure A-8


Refer to Figure A-1 for explanation of descriptions and symbols.
 Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

time.

# **Boring Log HC-SB-1**

Location: 47° 34' 42.95" N 122° 17' 42.87" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby

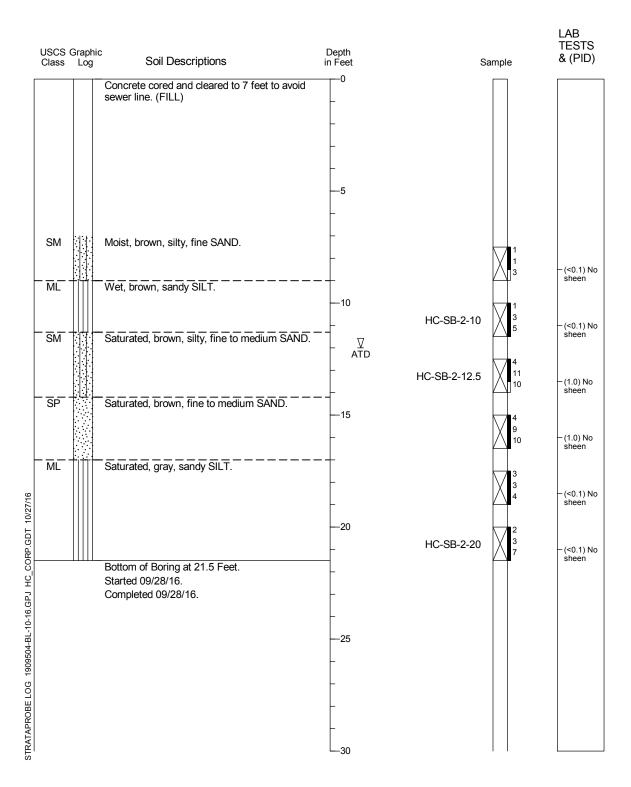


**HARTCROWSER** 19095-04 9/16 Figure A-9

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).


4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

STRATAPROBE LOG 1909504-BL-10-16.GPJ HC_CORP.GDT 10/27/16

# Boring Log HC-SB-2

Location: 47° 34' 42.38" N 122° 17' 44.83" W Approximate Ground Surface Elevation: Feet Horizontal Datum: WGS84 Vertical Datum:

Drill Equipment: Hollow Stem Auger Hammer Type: 140 lb. Autohammer Hole Diameter: 8 inches Logged By: J. Green Reviewed By: R. Stainsby



**HARTCROWSER** 19095-04 9/16 Figure A-10

1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

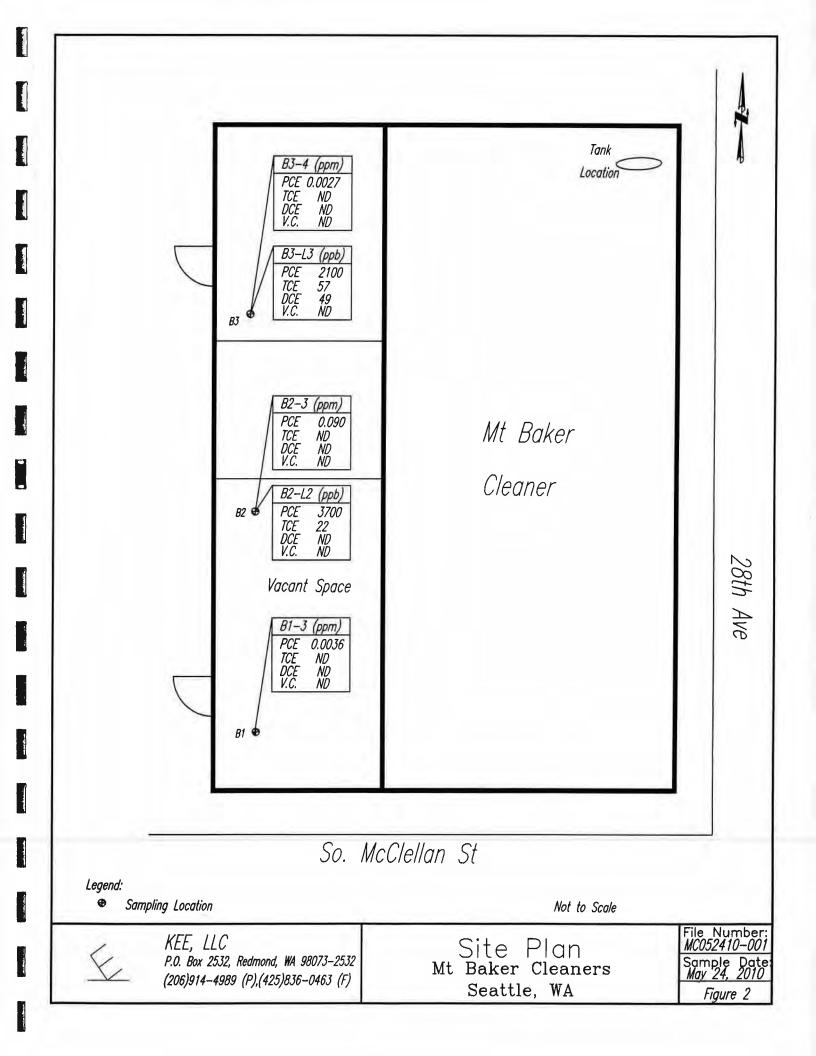
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

<b>BLOWS/6 inches</b>	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
								8" Boring
<b>)</b> — —			Surface: S	oil and subsurface gravel	   			_Well Box
5								Bentonite Seal
				I, poorly graded, Olive, moist, loose, ense, not compacted, fine to medium sand		SМ 		
				ater encountered at ~ 13-feet color change to Olive Grey at 13-14-feet				hose
								2/12 Sand
			Sandy Sill	, Grey, wet, very dense, till. 22-feet		ML		2.62-inch diameter x 26- inch long ceramic diffuser with viton gaskets and
					    			stainless steel fittings
Dept	th in fe		J					
Drillin Borin	g Diamet	any: Cascade	Drilling	Date:         8-19-05           Weather:         Sunny           Page            Of	Other In	formatio	n:	
	9	-10	gic	<i>S</i> Boring/Well Log 2800 MLK Way Sout Seattle, WA	h			IP-1

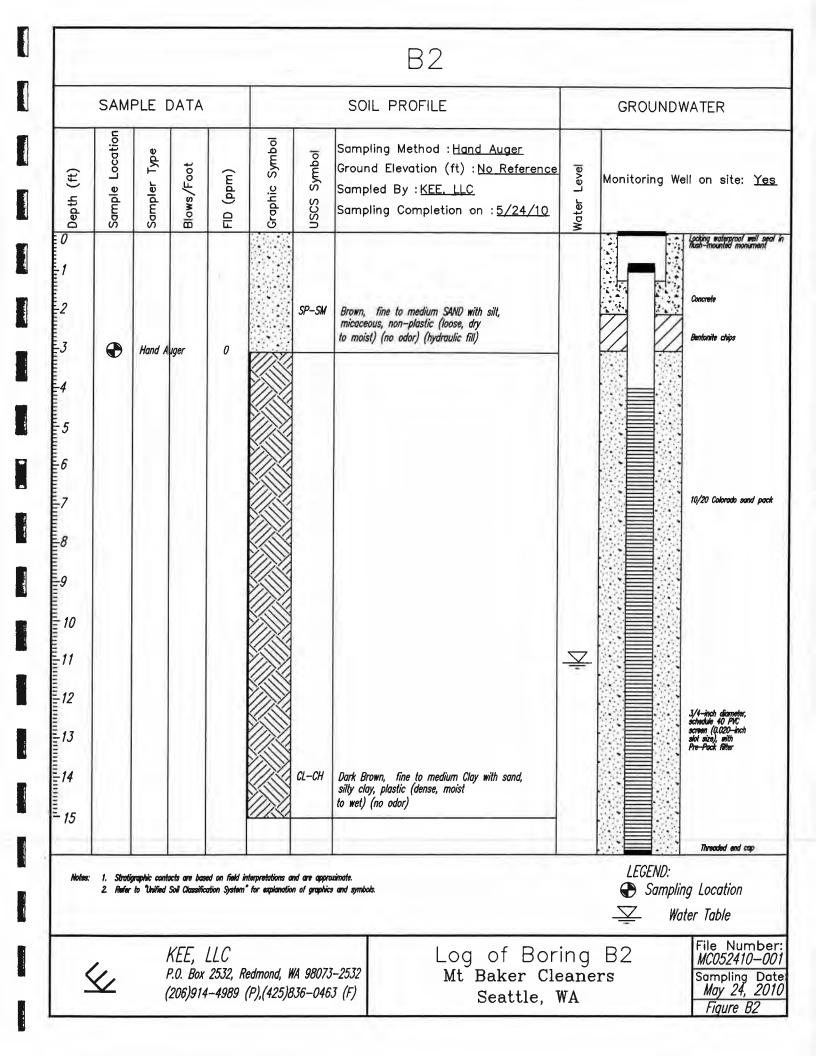
<b>BLOWS/6 inches</b>	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
								8" Boring
5			Surface: S	oil and subsurface gravel				
5								Bentonite Seal
				I, poorly graded, Olive, moist, loose, ense, not compacted, fine to medium sand		SМ		
				color change to Olive Grey at 12-13-feet ater encountered at ~ 13-feet				½" I.D. EPDM hose
5								2/12 Sand
			Sandy Sill E.O.B. at	:, Grey, wet, very dense, till. 22-feet		ML		2.62-inch diameter x 26- inch long ceramic diffuser with viton gaskets and
					-  - -			stainless steel fittings
Dep	th in fe				·L	L		
Drillir Borin	ıg Diamet	any: Cascade		Date:         8-19-05           Weather:         Sunny           Page            Of	Other In	formation	n:	
	9	-10	gic	<i>S</i> Boring/Well Log 2800 MLK Way South Seattle, WA	ה			IP-2

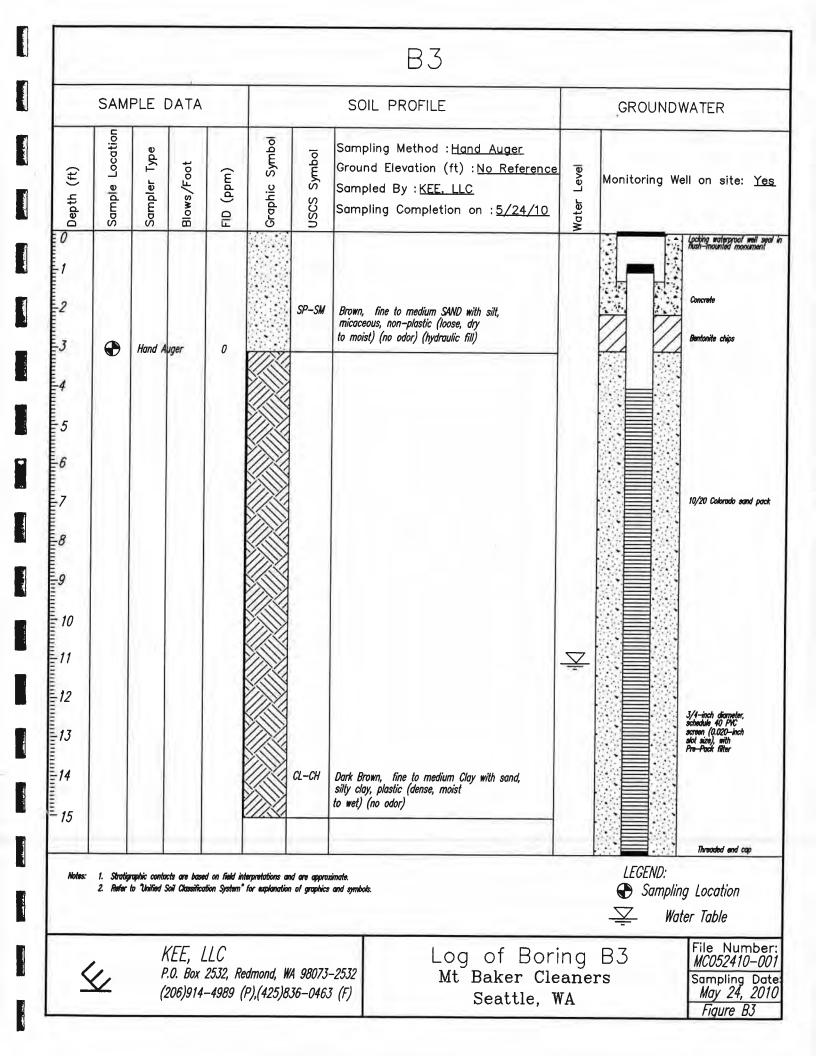
	<b>BLOWS/6 inches</b>	INTERVAL	SAMPLE SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
									8" Boring
0				Surface: A	sphalt and subsurface gravel				
5									Bentonite Seal
0					I, poorly graded, Olive, moist, loose, ense, not compacted, fine to medium sand		SM		
					color change to Olive Grey at 12-feet				½" LD. EPDM hose
5									2/12 Sand
<b>D</b>				Sandy Sill	:, Grey, wet, very dense, till. 22-feet	 - -	ML		2.62-inch diameter x 26- inch long ceramic diffuser with viton gaskets and stainless steel
5						·  ·			fittings
0	Dept	h in fe					L		
ŀ	Drilling	Diamete	ny: Cascade		Date:         8-19-05           Weather:         Sunny           Page         1	Other In	formatio	n:	
		9	-10	gic	<i>S</i> Boring/Well Log 2800 MLK Way South Seattle, WA	ה			IP-3

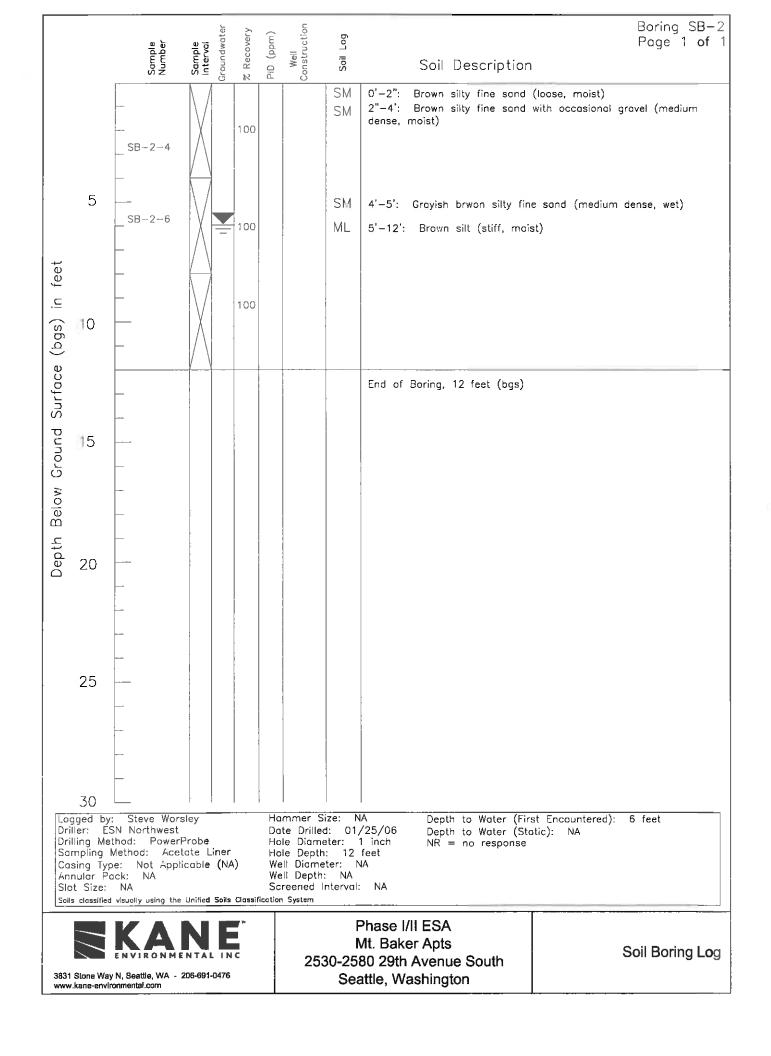

____

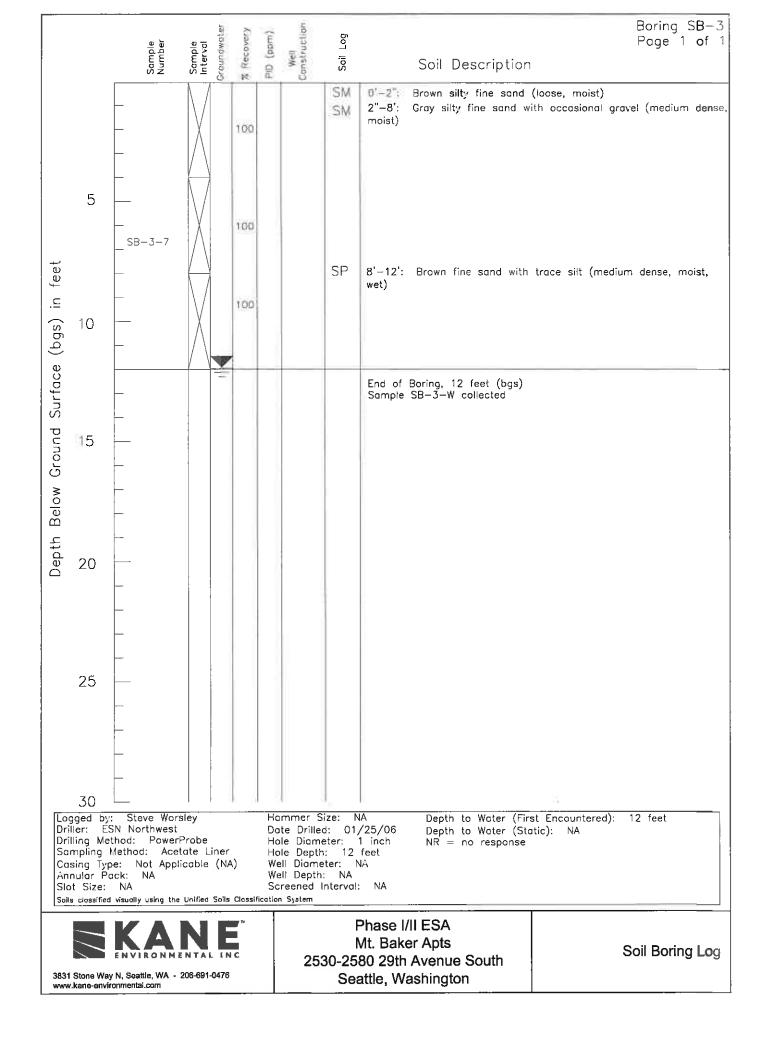
------

	<b>BLOWS/6 inches</b>	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
									8" Boring
)				Surface: C	oncrete and subsurface gravel				
					·				
									Bentonite Seal
				Silty Sand	, poorly graded, Olive, moist, loose,		SМ		
				medium d	ense, not compacted, fine to medium sand				
				Groundur	ter and odor encountered at ~ 13-feet				½" I.D. EPDM hose
					color change to Olive Grey at 13-feet				
									· · · · · · · · · · · · · · · · · · ·
									2/12 Sand
				Sandy Silf	, Grey, wet, very dense, till.		ML		2.62-inch diameter x 26-
				E.O.B. at	22-feet				inch long ceramic diffuser with viton gaskets and stainless steel
_									fittings
									-
									-
1	Dept	h in fe		J		L	L	L	l
⊢		g Metho	d: Hollow-ste any: Cascade		Date: 8-19-05 Weather: Sunny	Other In	formatio	n:	
⊢		g Diamet			Page1         of1				
ŀ	Logge	d By:	Harrington						
		9	-10	qic.	<i>S</i> <i>Boring/Well Log</i> <i>2800 MLK Way South</i> <i>Seattle, WA</i>	h			IP-4

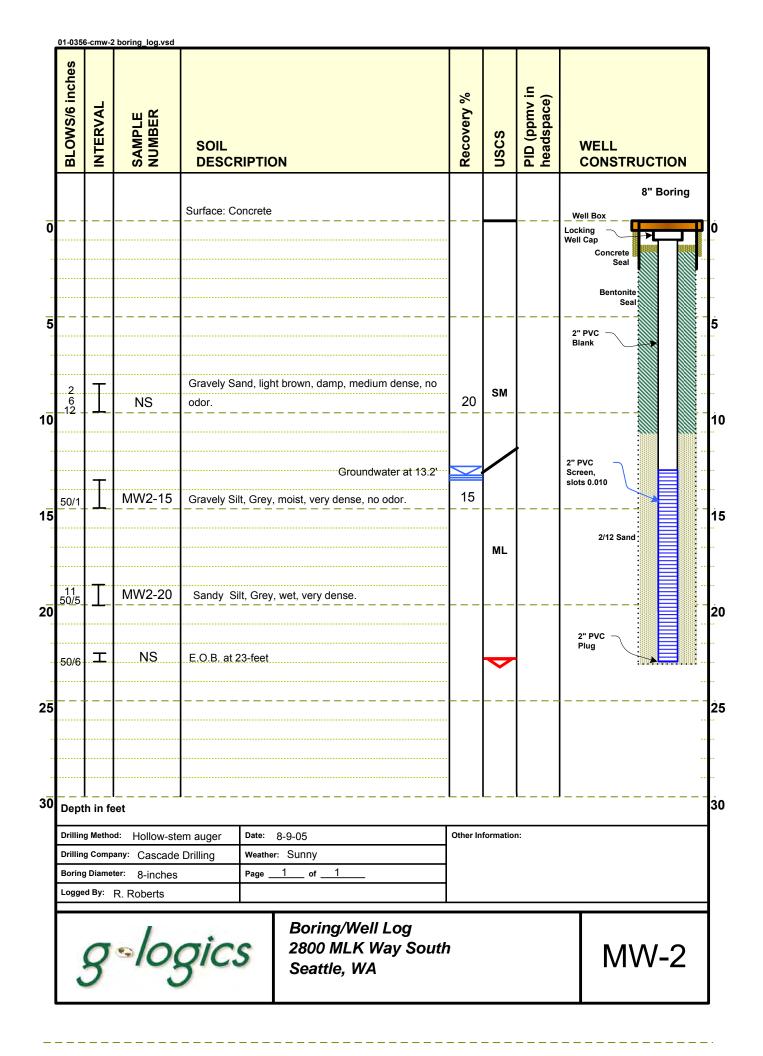

- -


BLOWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
								8" Boring
	+		Surface: A	sphalt and subsurface gravel				Well Box
								Bentonite Seal
				l, poorly graded, Olive, moist, loose, ense, not compacted, fine to medium sand		SM		
			Groundwa	ater encountered at ~ 13-feet				1/2" I.D. EPDM hose
			As above	color change to Olive Grey at 17-19-feet				2/12 Sand
	+		Sandy Sil	t, Grey, wet, very dense, till.		— — — мl		2.62-inch diameter x 26- inch long ceramic
			E.O.B. at	22-feet				diffuser with viton gaskets and stainless steel fittings
Dep	th in fee							 
Drillin Drillin Borin	ng Method ng Compar ng Diamete	: Hollow-ste	Drilling	Date:         8-19-05           Weather:         Sunny           Page         1	Other In	formatio	n:	
	9		qic	<i>S</i> <i>Boring/Well Log</i> <i>2800 MLK Way Sour</i> <i>Seattle, WA</i>	th			IP-5





							B1	1	
	SAM	PLE [			4	_	SOIL PROFILE		GROUNDWATER
Depth (ft)	Sample Location	Sampler Type	Blows/Foot	FID (ppm)	Graphic Symbol	USCS Symbol	Sampling Method : <u>Hand Auger</u> Ground Elevation (ft) : <u>No Referen</u> Sampled By : <u>KEE, LLC</u> Sampling Completion on : <u>5/24/10</u>	r Lev	Monitoring Well on site: <u>N</u>
0 1 2 3 4 5 6 7 8 9 10	æ	Hand A	ıger	0		SP-SM	Brown, fine to medium SAND with silt, micaceous, non-plastic (loose, dry to moist) (no odor) (hydraulic fill)		Concrete Bentonite chips
10 11 12 13 14									3/4-inch diameter, schedule 40 PVC screen (0.020-inch skido sziel), mith Pre-Puck filter Ihreaded end cap
Notes:					interpretations a " for exploration				LEGEND: Sampling Location
	2. North	w unimed	Jon Gassiik	এচনা সুবৰো	ни еционара	п от упортис	а или артийнаа.		Sampling Location
<	<u>/</u>		KEE, P.O. Box (206)914	2532, K	edmond, V (P),(425)&	VA 9807. 336—046	3-2532 33-2532 34 (F) Log of Bo Mt Baker ( Seattle,	lean	) B1 File Num MC052410- ers Sampling May 24, 2 Figure Bi

8










	BLOWS/6 inches INTERVAL SAMPLE NUMBER NUMBER				RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUC	TION
				Surface: E	xposed Soil				8'' Well Box	Boring
				Silty Sand	, light brown, damp, medium dense, no		ѕм		Locking Well Cap Concrete Seal	
	17 13 10	T	NS			- 15			Bentonite Seal	
						·	SM		2" PVC Blank	
	13 17 20	Ŧ	NS	Silty Sand odor.	, changed to Olive Brown, damp, dense, no					
	20 -		[_]		Groundwater at 12.6					
	10	T		Gravely S	and, Grey, wet at 15', very dense, no odor.		sw		2" PVC Screen	
_	30	. 上	MW1-15							
10	0/6 0/6	T			, Dark Grey, wet, very dense, no odor.		ML		2/12 Sand	
10 	0/6	· <b>-</b>	MW1-20	Gravely Si	ilt, Light Brown, very dense, no odor	10				-
				Silt (glacia	al till), Grey, wet, very dense				2" PVC –	
10	0/5	I	NS	E.O.B. at	23.5-feet	10	~		Plug	
_ D	eptl	h in fe	 eet			.L	L	L	]	
D	rilling	g Metho	d: Hollow-ste		Date: 8-9-05	Other In	formatio	n:		
_		g Comp Diame	any: Cascade ter: 8-inches	Drilling	Weather:           Page of	{				
L	ogge	d By:	R. Roberts			1				
	9	Q	~los	qic.	<i>S</i> Boring/Well Log 2800 MLK Way South Seattle, WA	h			MW	/-1



<b>BLOWS/6 inches</b>	INTERVAL	SAMPLE NUMBER	SOIL DESCI	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
			Surface: C	oncrete				8" Boring
			Silty Sand odor.	light brown, damp, medium dense, no				Locking Well Cap Concrete Seal
					 			Bentonite Seal 
	Ţ	NS		changes to Grey at 8.5-feet, damp,	  	SM		
	T			ense, no odor.	  			2" PVC Screen
1 _ 1 -		MW3-15		dor in cuttings	 			2/12 Sand
11 <u>50/6</u>	I	MW3-20	Sandy Cl	Groundwater at 12.8 ay, Grey, wet, very dense.		мL		2" PVC Plug
50/6	Т	NC		, Grey, wet, very dense 23-feet, backfilled with Bentonite to 20-feet	  	SM		Bentonite Seal
		<u>NS</u>			  			
Dept	h in fe							 
Drillin Drillin Boring	g Metho g Comp g Diame	^{ad:} Hollow-ste any: Cascade		Date:         8-9-05           Weather:         Sunny           Page         1	Other In	formatio	n:	
	Q	-10	qic.	<i>Boring/Well Log</i> 2800 MLK Way Sout Seattle, WA	h			MW-3

	BLOWS/6 Inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTION	Recovery %	nscs	PID (ppmv in headspace)	WELL CONSTRUCTION
				Surface: C	concrete				8" Boring
		T							Locking Well Cap Concrete Seal
						50			Bentonite Seal
		·				  			2" PVC Blank
			 MW4-12						
			1111114-12						10-20 Sand
_					Groundwater at 12.				2" PVC Screen
_			_MW4-20						2" PVC Plug
					d, Grey, wet, very dense 23-feet, backfilled with Bentonite to 20-feet		SM		
- -	enth	n in fe							  
Di	rilling	Metho	d: Direct Pus		Date: 6/22/2006	Other Ir	nformatio	n:	
в	oring	Diame	any: NW Prob ter: 2" (8" @ s R. Roberts		Weather:         Sunny           Page         1           0f         1				
	5	σ	/	qic	<i>S</i> <i>Boring/Well Log</i> <i>2800 MLK Way Sou</i> <i>Seattle, WA</i>	th			MW-4

BI OWS/6 inches	INTERVAL	SAMPLE NUMBER	SOIL DESC	RIPTIO	N		à	Kecovery %	nscs	PID (ppmv in headspace)	WE	LL NSTRUG	CTION	
												2" [	Dia. Seal Dia. Borin	
			Portland (	Cement C	oncrete Sla	а <u>р</u>					Well_Boz Locking Well Cap Concrete Seal			
			Light-brov	vn, gravel	y, silty SAI	ND, no odor			SM		Bentonite Seal — — — — 10/20 —			
								10			Sand 0.75" PVC Blank			
		MW5-12	Damp, nc	odor			 	40	Brown	0.0				
			Gray silty	SAND, ve	ery wet, str	ong aged-gasoline			A Contraction					
	┈╼┛	MW5-16	odor from	14' to 16'				30		0.3				
		MW5-20	Dark brov	/n sandy \$	SILT. Dam	p, w/6" peat layer,		60	ML	0.0				
			slight odo	r		E.O.B. at 20 fe	et		V		1.4" O.D. Pre-pack Screen	(0.75" I.D.)- ed Well		
De	pth in		]				L.				]			
	lling Meth			Date: 6	-22-2006		Oti	ner In	formatio	n:				$\neg$
-		pany: NW Prot			Clear, sur									
⊢	ring Diam gged By:	R. Roberts	•	Page	<u> </u>									
	8	-10	gic	S	MLK	g/Well Log Former Gas Martin Luth			Vay S	South		MW	/-5	

**D Boring/Well Number: Project Name:** 6663 366-0 Project Number: Date: Page of <del>ا</del>ر) Drilling Method: al Started: Weather: Clov Drilling Company: USCOR Completed: Other Information: Yn Boring Diameter; Backfilled With: 3 The H Logged By: Lin Surface Conditions: Depth Sample Sample Blowe 8" % Rec. PID USCS Soil Description (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) in feet Number Туре (ppmv) A Dr man Shad Grain tran, temp A. Sitt, Sperch 1.0 75 SAN 2 11-4 No 0-01 5  $f\theta$ 81-8 No other SAA 40 10 P1-12 75 14 Wet en12 300 m open GAS _5 1-19 53 AA 50 (a)20 ALLUY  $\mathcal{O}$ N/O Strong adar for water Jr. Jong for Suples BOB @ 20 **Boring Location Diagram** Monum, Rise Scale: 1 Square = MTK feet Ground Surface Show to mala hala. Well Cap Void Ven Tilly Well Box Coment Seal P-1 IUmns. Bentonite Seal Q6-26 Get or h 2 Yome Vorty 2" PVC Blank 51. Tur Sily OFFICE 2" PVC Screen 2" PVC Plug Sand 23  $q \cdot logics$ Caving/BOB Copyright G-Logics, field boring log form.vsc

**Project Name:** 0-2 **Boring/Well Number:** 616165 Page of Date: Project Number: Weather: Started: Drilling Method: Other Information: Completed: Drilling Company: henmite Backfilled With: Boring Diameter: Surface Conditions: Logged By: Blows 6" % Rec. PID USCS Soil Description Sample Sample Depth (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) in feet Туре Number (ppmv) UR) WBRV mon Ser NAK savety Sand P2-4 50 0.0 5 No Ofm SAA 60 m-A 0.] 0 hed distation 0:3 75 p-12 Welly Q ~ D NY OVER GRAVEL 5 90 NД A K Gre 701-,U. man ND m=20 90 0.3 0 1h Boring Location Diagram Monum. Rise N Maken holer spil, 124 vez hvb.2. 2 16= Screen Sel 6 15-20 pvc. Scale: 1 Square Ground Surface ---Well Cap Void Well Box Comont Seal Bentonite Seai 2" PVC Blank 24 2" PVC Screen NO OPEN IN PURCE BUCKET 2" PVC Plug V Sand IODICS Caving/BOB Copyright G-Logics, field boring log form.vsd finda 1-2 glbm

**Project Name:** Boring/Well Number:  $\otimes$ -7 Page 616 of Date: 356 Project Number: 10:45 Kan Weather: Started: **Drilling Method:** D are Other Information: Drilling Company: Completed: 511 Backfilled With: Boring Diameter: tra. R Surface Conditions: Logged By: H PID Soil Description (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) USCS Blows 6" % Rec. Depth Sample Sample (ppmv) Number in feet Туре Dde OVEVE) 07 90 137 No 600 5 60 13 5 51, Ju GCE NO 6 0 12 65 GD 68 5 -1-6 4.6 13-20 46 0 **Boring Location Diagram** Monum. Rise N Scale: 1 Square = Ground Surface -----Well Cap Void Well Box Cement Seal Bentonite Seal 2" PVC Blank Ø = 24ĥ 2" PVC Screen 2" PVC Plug Sand TOOICS Caving/BOB

Copyright G-Logics, field boring log form.vsd

200 Project Name: MLK **р_4 Boring/Well Number:** Page 1 of 616 Date: Project Number: Weather: Started: Drilling Method: Other Information: Drilling Company: Completed: 14 Backfilled With: Boring Diameter Surface Conditions: Logged By: USCS Soil Description PID Depth Sample Sample Blowe 6" % Rec. (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) (ppmv) Number CA in feet Туре f Jan 2 W/Sree 15 1 715 NS M open Me7. 5 NIDOR 40 2.0 SAA. py=z ٥ ( I.G 15 No onor SAA P4-2 CIY NU MOUT Sunt fine 3000  $\sqrt{7}$ 144 1:9 12-gr) 50 Q151 WW W 5 1134-15 10 16 57 1.\$ PU-20 GL 0 Ja 4 rad bah 20 **Boring Location Diagram** Monum, Rise N Scale: 1 Square Ground Surface ----Well Cap Void Well Box OU Cement Seal 26 Bentonite Seal 2" PVC Blank 2" PVC Screen 2" PVC Plug Sand logics Caving/BOB Copyright G-Logics, field boring log form.vsd

250 MK **Project Name:** 5 Boring/Well Number: 616/05 Page of Date: Project Number: l 20 Weather: NY Started: **Drilling Method:** Other Information: Drilling Company: Completed: 4520 Je 20 Backfilled With: Boring Diameter: Fim Surface Conditions: Logged By: ۲ usċs Soil Description Blows 6" PID Sample Sample % Rec. Depth (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) Number (ppmv) in feet Туре Azolat U. Burn qj 5 NS No fres Nº gr 5 pro 20/6 'nς 60 1.6 Б 0  $\overline{\mathcal{W}}$ 1.5 with fre so Jkt SMA 15-12 1.4 60 R5-15 5 212 lang [] ¥, 15-19 ND N OVON 0 BOB **Boring Location Diagram** Monum. Rise N Scale: 1 Square Ground Surface Well Cap Void C Well Box Cement Seal Bentonite Seal Ľ 2" PVC Blank 2" PVC Screen Amgient VX5 2" PVC Plug Sand logics 1.2 Caving/BOB Copyright G-Logics, field bori

MLK **Project Name:** 290 **Boring/Well Number:** I). 61616 Page of ) Project Number: Date: ь ~ アリ Weather: Started: Drilling Method: whe Other Information: Drilling Company: Completed: いり Wintz **Backfilled With:** Boring Diameter: Conheto Surface Conditions: Logged By: Soil Description (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) USCS PID Blows 6" % Rec. Depth Sample Sample Number (ppmv) Туре in feet NO ODIAS 0.9 70 16-4 _5 - NU Get **5**89 60 64 NS 0 2 t Ò  $\hat{}$ P6-12 n od SA NC. 6 5 00 74 6-16 would 6 P6-14 21 90 Green th ) 0 5 **Boring Location Diagram** Monum. Rise N Scale: 1 Square Ground Surface -----Well Cap Void Well Box Coment Seal 18 Bentonite Seal 2" PVC Blank 15 2" PVC Screen wet, shu 2" PVC Plug Sand Caving/BOB Copyright G-Logics, field boring log form.vsd

**Project Name: Boring/Well Number:** ~ 66 of Page Date: Project Number: 00 Weather: Started: **Drilling Method:** : 30 Other Information: **Drilling Company:** Completed: Boring Diameter: **Backfilled With:** /k1 Surface Conditions: Logged By: PID USCS Soil Description Depth Sample Sample Blows 6" % Rec. (USCS Soil Type, Color, Moisture, Deneity/ Consistency, Cementation, Grain Size, Odor, Other) (ppmv) Number in feet Туре Sind It gram dy nzvel Ð 60 04 N5 5 1.0 15 10W recontr 25 0 N5 15 17-12 NO 60M 5 th M p7-16 15 Ľ, لمه Ohn 07-18 118 V 70 0 Note simple dept, in since, Monum. Rise N Scale: 1 Square Ground Surface .... well ) male Well Cap Void Well Box Coment Seal Bentonite Seal 2" PVC Blank mik Ø 34 2" PVC Screen 2" PVC Plug Sand  ${g}$ ~IOQICS Caving/BOB Copyright G-Logics, field boring log form.vsd

**Boring/Well Number: Project Name:** D -616105 Page of Date: Project Number: SVMM JU5 Weather: vor **Drilling Method:** Started: Other Information: **Drilling Company:** 5162 Completed: Soring Diameter: Backfilled With: oncrete Surface Conditions: Logged By: PID USCS Soil Description Blows 6" % Rec. Depth Sample Sample (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) Number (ppmv) in feet Туре U. Bren dang gratley Sand 70 1.9 NS NO DOM 5 No fecoren Ô 0 Las felos. **A-12** 50 10  $\overline{\mathcal{I}}$ 5 1450 50 16-16 P4-70 25 100 0 Ň٧ **Boring Location Diagram** Monum. Rise N Scale: 1 Square = Ground Surface Well Cap Void Well Box Cement Seal A Bentonite Seal 2" PVC Blank 57 2" PVC Screen Fidebulk is 10 WPGt g.l. Copyright G-Logics, field boring 612 fump Islan 2-8" Chat of P.8 2" PVC Plug g~logics Sand Caving/BOB Copyright G-Logics, field boring log form.vsd

Boring/Well Number: P -6 **Project Name:** Page 616 Date: of Project Number: Weather: Started: **Orilling Method:** Drilling Company: Completed: 134 Other Information: Boring Diameter/ Backfilled With: Surface Conditions: Logged By: 4 Sample Blows 6" % Rec. PID USCS Soil Description Depth Sample (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) in feet Туре Number (ppmv) U. Brown Whell greachy 52-2 No order 70 3.9 Nς 5 SAA Wat Red Oxin 4.1 60 NS NO OVA 0 4.3 -H Bern Gardh SAA P9-D 60 1 Jamp Nord hot Gri 16 60 5 12 70 -21) <u>6</u> ŧЮ 32 20 on Monum. Rise **Boring Location Diagram** N Scale: 1 Souare Ground Surface Well Cap Void Well Box () Cement Seal Bentonite Seal 2" PVC Blank 23 2" PVC Screen 2" PVC Plug g logics Sand Caving/BOB Copyright G-Logics, field boring log form.vsd

**Project Name:** Boring/Well Number: D -10 616 Page of Date: Project Number: 2145 Weather: 5~nm Started: **Drilling Method:** 162 Other Information: Completed: **Drilling Company:** Backfilled With: Boring Diameter: Asolut Surface Conditions: Logged By: USCS PID Soil Description % Rec. Depth Sample Sample Blows 6" (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Oder, Other) (ppmv) Number in feet Туре Ut born Silly Smal ~/larg (harts - (grand) No open 64 50 NS 5 U. Brown greatly Sound NO ODER 04 50 NS 0 H. Brui Fre Sand Jung / No gravel) NO 0 Z GRAGENU and gravel 60 NJJ 0. Gray Sand Stiddor - Agevel I how and Gray Sand Worganks 2417 5 70 0.6 010-16 10-20 3,2 TA) 0 **Boring Location Diagram** Monum. Rise N Scale: 1 Squa Ground Surface Well Cap Void Well Box Coment Scal Q-10 Bentonite Seal 2" PVC Blank 32-2" PVC Screen 2" PVC Plug g-logics Sand Caving/BOB Copyright G-Logics, field boring log form.vsd

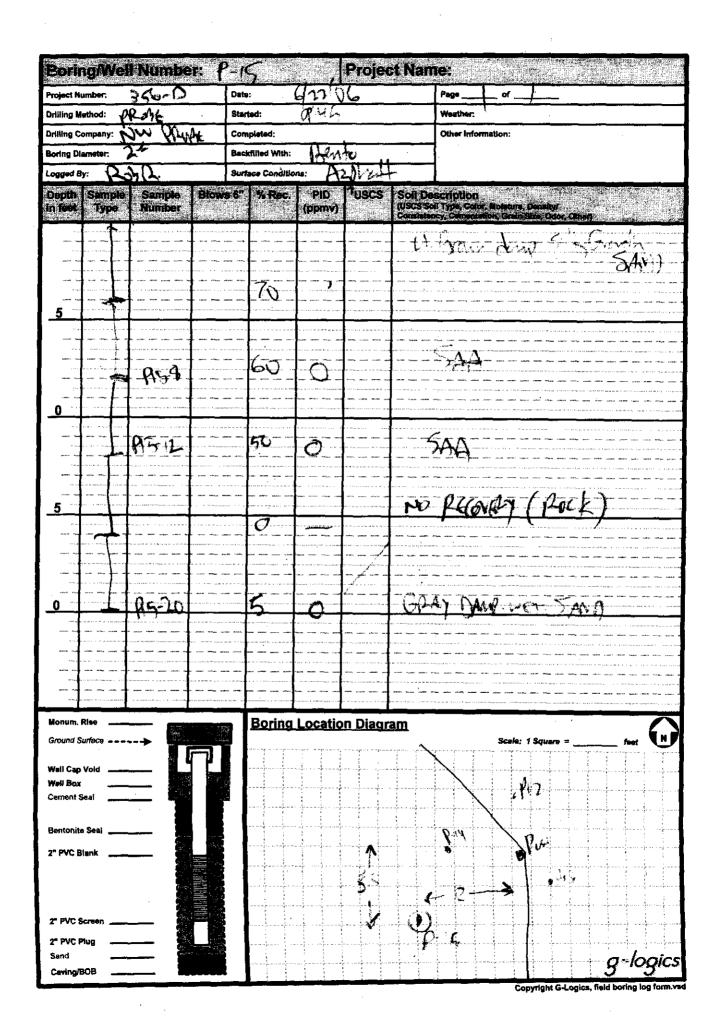
2000 Mik **Project Name: Boring/Well Number:** 0-1 616 Page of Date: 6 Project Number: ٥V 1 L Weather: Started: **Drilling Method:** Other Information: Completed: **Drilling Company:** Boring Diameter: **Backfilled With:** Harlin Surface Conditions: W Logged By: Soil Description (USCS Soil Type, Color, Moisture, Density/ Consistency, Cementation, Grain Size, Odor, Other) PID USCS Blows 6" % Rec. Depth Sample Sample Number (ppmv) in feet Туре 2229 Grave Lt. Brann Svzvety Savd damp, NU der EV. 0.5 NS 5 One har for Sara 12 75 NS NI) Oc 62 0 1.] 75 91-12 Olar Branh  $\overline{\mathbf{J}}$ ₫? to Obe 5 Ű NS Ξς Ohmp Gre P11-20 1 NØ Date 0 **Boring Location Diagram** Monum. Rise N Scale: 1 Square Ground Surface Well Cap Void Well Box Cement Seal Bentonite Seal Y R 2" PVC Blank 9 SEV BLOG 2" PVC Screen 2" PVC Plug g~logics 5and Caving/BOB Copyright G-Logics, field boring log form.vsd

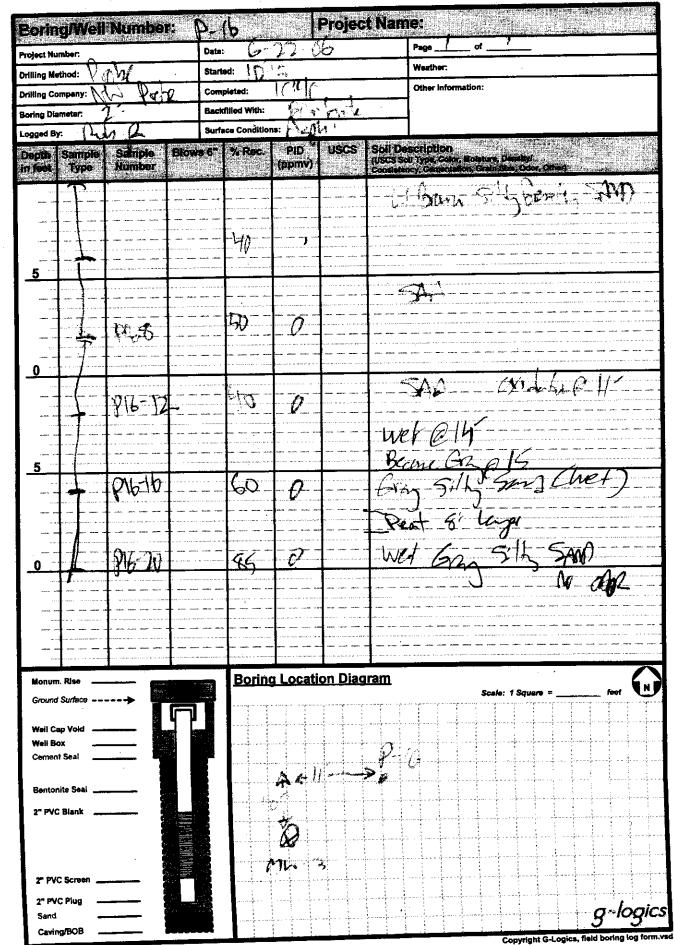
Project Number:		Date:	6-22-	Db		Page of			
Drilling Method:		Started:				Weather:			
Drilling Company	NW MAK	Completed:				Other Information:			
Boring Diameter:		Backfilled Wit							
	25 DL	Surface Cond		a management of the second	n na statione				
Depts Sam		nws 6" % Re	c. PID (ppmv)	USCS	Soll De	senation V operative abrents Denity/			
						SACINATION SCIENCE POWER CANAD			
	anan 1997 arat anan 1997 arat arat arat arat arat arat arat ara		······		-t-f-	Bran Gar S.L SAND (FILL			
	R12-4	75		• • • • • • • • • • • • • • • • • • •	9,	this was			
5						J			
					· · · · · · · · · · · · · · · · · ·				
-1-6-	428-1-					Z12			
	- + 4 / 2			**************************************					
_0				••••• •••• ••••					
						12			
		P	$\mathcal{O}_{\mathcal{O}}$		- <i>Y</i>				
	Q12-161	Nan	7.77	·					
_5			0.0	ML	_14	Grapher SA No Ann			
-17					Dr h	Rov-S'H L- Fortgonts			
		• • • • • • • • • • • • • • • • • • •		hl					
					6	maket Fandle Saul			
0 1	19122	8D		- 141	2.11	ALL SAM			
·····		-			+/יר	16 Avon Grh			
				· · · · · · · · · · · · · · · · · · ·					
	•	·		·····					
····		·	··· · ··· · · · · · · · · · · · · · ·	***** **** **** **** ****					
Monum. Rise		Borin	g Locatio	n Diagra	m				
Ground Surface -						Scale: 1 Square = teet			
Well Cap Void			$\setminus$ (						
Well Box			'.						
			$\rightarrow$	<u>گ</u>	*				
Bentonite Seal 🔔					<u> </u>				
2" PVC Blank 🔔		*	14		$\mathcal{A}$				
				1.	~				
				4-1.0-	≽				
Z' PVC Screen _				l					
z" PVC Plug _									
Sand -					E de la	g∞loqia			

• -

• -

- .


Copyright G-Logics, field boring log form.vsd


**Project Name Boring/Well Number:** n 6-22-16 Page 356-D of Project Number: Date-Weather: **Drifting Method:** Started: IN PRUS Other Information: Completed: Drilling Company: **Backfilled With:** Boring Diameter: Surface Conditions: YI Logged By: USCS Soll Description Depth In feet Sample Type -7°-8, Blows 6" % Rec. PID Sample Number (ppmv) SAL SAMD 17. Spinp Granethy SW-Flit P13-4 65 5____ SAA (FAR 70 0 A)- 8 Ð 40 WY A n P 12-12-Ω 2 Strid h 5 511 Trenke 20 P13-16 J. MMA. amt Horegons 0 0,3-20 0 Sing the groun Sill - Hard -Ni Way ML P13-74 ß **Boring Location Diagram** Monum, Rise l n J Ground Surface Scale: 1 Square Weil Cap Void Well Box Cement Seal Bentonite Sea **9**17-2" PVC Blank Ť Ø 27 PVC Scr 2" PVC Plug Sand logic Caving/BOB

Copyright G-Logics, field boring log for

Project Name: Boring Well Number 21210b Page of Dete: Project Number: Weather: Started: **Orlling Method:** Other Information: **Drilling Company:** Completed: Boring Diameter: Backfilled With: Surface Conditions: Logged By: SoliDesembles de la service USS sur la service de la se Sample Number Cepth Sample Blows 6" % Rec. **PID** USCS Nig C in feet (ppmv) Type 11 Orann 5 5 Gritty Smile (dame) No clin 60 Ŧ 5 ... SA NO DATA  $\overline{\rho}$ 50 PILL S 0 SAA NO aDon 6 Oly 1 5 12-10the for NODA 6- Pert Longer 1 77 C) 0 ofth) JYOY No am Part Boring Location Diagram Monum. Rise (nj Ground Surface Scale: 1 Square = Well Cap Void Well Box 18 Cement Seal Bentonite Seal 84 m> 2" PVC Biank (B) 2" PVC Screen 2" PVC Plug Sand g~logics Caving/BOB

Copyright G-Logics, field boring log form.vsd





Ś

Ρ	rojec	t Nu	mber:	410	17.00	0	****	Date:	6/25/09	Boring #:	<u>SB-1</u>		
	Proj	ect N	lame:	McCle	llan .	Property	,	Surface Elevation:	n/a	(ft/	above MSL		
Pr	ojec	t Loc	ation:	2806	Souti	h McCle	llan Street, Seattle	Start/End Date:	6/25/09				
Dril	ller/E	quip	ment:	ESN/I	owe	rProbe		Final Boring Depth: 16'					
Geole	ogist	/Eng	ineer:	Projec	t Mai	nager - 1	Harry Goren	Outer Hole Diameter:	2"				
c)	ampl		ethod:	Dire	ct Pu	sh		Sheet	1	of	3		
Depth (feet bgs)	h torval	Γ	mple D Bupes Did Did		Browertt. Groundwa ber Level		Soil Description						
1	vise is is been						0-4'						
2							2" grass						
3				-		merona , con conse as col champion	Very loose, mediu	m brown silty sand, no g	ravel	a 1. a a tang bina dan patipana ang ana a gunanggunagan	, ,, , , , , , , , , , , , , , , , , ,		
4						99399679 997999 ( 1980) 1997	4'-8'	na anama 1 ku, ay 2 + 1 ku/y ku anama ku ku ku ya ang mananang manangang ang ang ang ang ang ang ang ang	***	99 - 9 August 2019 (1996) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 2019 (1997) - 20	an d'andre anna an an an an an an an an an a		
5 5	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					Mitalmanner († 1514 mat ser 1694) 1994 - Marine Marine, frank	Light gray silty sa	nd, moist, loose, no grav	el, no odor or	discoloratio	n formalisation and formal of the second		
7 8	ne-polytopolyto						where proceedings are also also also also also also also also	viel ar fele opriseit maar met ster het met felste maar felste maar fan ster met werde fan meer ste man oor meer de ster felste felste felste felste felste felste felste meer felste felste felste felste felste fe	udelin fan ser fan	ur manun femiliar dan dara dar földarligt som	lief 1. Filologic (2004) en lief en lie En lief en lief		
9 9	allini menderati	. Urad Materiana	Minimum internetion	SB-1 (9-12)	an diservation o		Light brown silty	sand, moist, no gravel	201944-1474444200000000000000000000000000000000	el and week here and week a summing reaction of the device	ang ng kang pang pang pang pang pang pang pang p		
1						na strangen en som der fordet at den strangen en som en	(Dense from 11'-	2') Glacial till		9	Alexandron (Helefon, Andreas, Helefon, Helefon, Helefon, Helefon, Helefon, Helefon, Helefon, Helefon, Helefon,		
2	ool/alderiera			SB-1 (GW-1)	(Set instantions)	jų įsittojan atta antara pristantijos ar	12'-15'	ander and an	nan-seran ang a sanya ng kana sang ang ang ang ang ang ang ang ang ang	ta vanatieverpreter van en een van een van de seere aan de seere	antana ang saya ang ang ang ang ang ang ang ang ang an		
— з		Spottom	ananan serierah		arki (de Xinata Q		Light brown silty	sand, no gravel, moist, v	ery dense	iperneten ander operation of the second s	an a		
- 4				nter minor municipante			15'-16'	nner get med andere in minnen is e en minne als in in med and e e a statiographical participation , as and a so					
5							Medium gray silt	y sand, very dense, dry					
- 7							Bottom of hole at 1	6' bgs					
s								encountered at 14' bgs. Stat erched lens between 11'-16					

Ρ	rojec	st Nui	nber:	410	17.00	0		Date:	6/25/09	Boring #: SB-2
	Proj	ect N	ame:	McCle	ellan .	Property		Surface Elevation:	n/a	(ft/ above MSL)
Pr	ojec	t Loc	ation:	2806	Sout	h McCle	llan Street, Seattle	Start/End Date:	6/25/09	
Dril	ler/E	quip	ment:	ESN/	Powe	rProbe		Final Boring Depth:	18'	
Geole	ogist	/Eng	neer:	Projec	t Ma	nager - H	Iarry Goren	Outer Hole Diameter:	2"	
S	amp  T		thod:		ect Pu	ish		Sheet	2	of 3
Dega (foetbogs)	thereas		mple D; Suppose Did		Blows'å.	Groundwa ter Level		Soil Descri	iption	
							0"-4'		<u>ye e e e e e e e e e e e e e e e e e e </u>	
— 1 — 2						ann - John Staffred Ross, International (	2" grass			
— 3			ning particul and descent according				Very loose, mediu	m brown silty sand, no g	gravel	na mara sa manang magang magang pang ang ang ang ang ang ang ang ang ang
4	1,11,11,11,11,1,1,1,1,1		1999-1993 (J. 1997 - 1977) (J. 1997) 1999-1994 (J. 1977) (J. 1977)				4'-8'	אור איז		angalan a, Ala ma, ay ma an anakatana an'anganana anganana a ankana a sa anitana da karibana angana.
— 5 — 8				4 x 4 x 1 x 1 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2			Dark brown silty s	and, moist, no gravel	میشود به میکند. به در این آن	
— 7 — B	-2023-0002/24-9		zijek (naroje od danosti izač Alexanso na varod konizač	apatensi manuna ditu ta data data and		den su ford-rengen det er leder 1992 - San de Garden de San		a grudam filla gle envisit glut på vågar för værde værde var grede af havde som den verska se stra I af sugar som envisit som en værde som envisit som envisit som envisit som envisit som envisit som envisit som	na energi dalama ka lada a dara da a da a da a da a da a d	zanéjejő szepredensikásztőka feledő közőkésző dísérek aroka jadéresen néheszőkészek necesékesztekésetekető télékező teleket közete meleteketeket keleketeket veleketeketeketeketeketeketeketeketeket
P		4		SB-2 (8-11)		65 de la companya de	nd nef hand konstantief fan it fan an ier waar wat wat wat wat wat wat wat fan fan fan fan fan fan fan fan fan	sand, moist, no gravel	a) manjarikan kaning sina ara-tara para tara tara tara tara tara tara	ĸĊĸĊŧĸŎĸĬĸĬĊĸĬĊĸĬĸĊĸĬŔŎĬŔŎĸŦŎĸŦĸĊĸĿŢĊĿĹĬĸĸĸŔŎŎĊĊĸĹĬĊĬĊŔŎĸĸĸĬĸĊĸĸĬţĊŎĸĬŢĊĬŎ
— a — 1							Dense from 11'-12	2', dry (Glacial till)	1	
- 2		-8258724/06982		epterson to a constraint of the second s		fallen son fallen fan steren fan s	12'-14'	n de Standahur e mar ethol trade de son bonningtan mar et person e so monann an	Vanyan Sama Vandan Sama Sama Sa Sama Sa Sama Sa Sa	(\$40)45)4594500450545454444444
— s	(seleccentra)	Searce and S	elitiinea u nuntaense raeg	alamati da falandara da ma		and a form of an incomplete a local $a$	Very moist, light	brown silty sand, no grav	vel (50% reco	very)
¢	*** <b>*</b> ********						14'-16'			
— 5 — 8			···· · · · · · ·		- · · · · · · · · · · · · · · · · · · ·		Dark gray, very d boring after 15 mi	ense silty sand (till), dry nutes	(50% recover	y) - no water in
- 7										
s							Bottom of hole at 1	8' bgs (refusal) ———		
— o							No groundwater en	countered. Rod detected mi	inimal maistura	at less

.

		Proje	ect N	umber:	410	17.00	0		Date: <u>6/25/09</u>						
		Pn	oject	Name:	McCle	ellan	Property	,	Surface Elevation:	n/a	(ft/ above MSL)				
	F	² roje	ct Lo	cation:	2806	Sout	h McCle	llan Street, Seattle	Start/End Date:	6/25/09					
	D	rillen	'Equi	pment:	ESN/	Powe	rProbe		Final Boring Depth:	14'					
	Geo	ologi	st/En	gineer:				Harry Goren	Outer Hole Diameter:	2"					
	<u> </u> :	Sam		lethod: ample D		ect Pu	sh	I	Sheet 3 Of 3						
	Deptih (fast host)	Interval		PID Reading from		Ellowe/1.	Groundwa		Soil Descr	iption					
				N	Amazoni de minergeren	1		0"-4'		****					
							ana ana amin'ny fisiana definina a fis	2" grass	unumunity of a numue and a second of the sec	11.11.11.11.11.11.11.11.11.11.11.11.11.					
		8		,	-			Very loose, mediu	រm brown silty sand, no ទួ	gravel					
		4			an a			4'-8'							
		5		1	-			Light brown silty	sand, dry, loose, no grav	en .	ng mangk panangkang pangkang manakata mari tahunahaman dan katabat ang kanangan mari ta taut da ka				
		•						7'-8'	naanaanaan manaanaa madaar moo sahaa aanaa maraan oo maadaa maanaanaa ka midoo dahoo oo fa doo fa	a na an	No de parte a serie de la cita y manera a conse a conservant en en esta para neuro so da caparese a se de para				
			****				Sector Control March 2010 and 201	Dark gray silty sa	nd, moist, organic odor	en - en ser an	ligen bildendersredend van Ref i ein daar op werken en een en op werden wat in de onder				
								<i>8'-12'</i>			yes wegte regel waar je bevaar of de soldt some of constraits references to be references on a soldt				
I		)	enter <mark>e</mark> taismente		SB-3 (9-12)			Medium dense, lig sand	ght gray silty sand, damp	, trending to m	nedium gray silty				
	·	its stighter	aren en er sans	annal agus a nailteann anna	e -venduniensens sich einstadisch		aliya e politika karanta katalaka k	Moist from 11'-12	2 '. 		รร่งที่มีสารี และเหตุรี่ได้สาราชการและและเหตุรายได้ การระดับสาราชการการการการการการการการการการการการการก				
	3	2	n én alexten »		SB-3 (GW-2)			12'-14'	epermenty opposition and position of the second and a solution of the second second second second second second	an an a na an	ni forma for en la companya na companya				
				and another and a second				Saturated, light g	ray silty sand with trace	gravels					
								Bottom of hole at	14' bgs	,					
		,		1					st encountered at 13' bgs. S Screened interval between		to 10'				